repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
CalebBell/fluids
fluids/core.py
Peclet_heat
def Peclet_heat(V, L, rho=None, Cp=None, k=None, alpha=None): r'''Calculates heat transfer Peclet number or `Pe` for a specified velocity `V`, characteristic length `L`, and specified properties for the given fluid. .. math:: Pe = \frac{VL\rho C_p}{k} = \frac{LV}{\alpha} Inputs either of any of the following sets: * V, L, density `rho`, heat capacity `Cp`, and thermal conductivity `k` * V, L, and thermal diffusivity `alpha` Parameters ---------- V : float Velocity [m/s] L : float Characteristic length [m] rho : float, optional Density, [kg/m^3] Cp : float, optional Heat capacity, [J/kg/K] k : float, optional Thermal conductivity, [W/m/K] alpha : float, optional Thermal diffusivity, [m^2/s] Returns ------- Pe : float Peclet number (heat) [] Notes ----- .. math:: Pe = \frac{\text{Bulk heat transfer}}{\text{Conduction heat transfer}} An error is raised if none of the required input sets are provided. Examples -------- >>> Peclet_heat(1.5, 2, 1000., 4000., 0.6) 20000000.0 >>> Peclet_heat(1.5, 2, alpha=1E-7) 30000000.0 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006. ''' if rho and Cp and k: alpha = k/(rho*Cp) elif not alpha: raise Exception('Either heat capacity and thermal conductivity and\ density, or thermal diffusivity is needed') return V*L/alpha
python
def Peclet_heat(V, L, rho=None, Cp=None, k=None, alpha=None): r'''Calculates heat transfer Peclet number or `Pe` for a specified velocity `V`, characteristic length `L`, and specified properties for the given fluid. .. math:: Pe = \frac{VL\rho C_p}{k} = \frac{LV}{\alpha} Inputs either of any of the following sets: * V, L, density `rho`, heat capacity `Cp`, and thermal conductivity `k` * V, L, and thermal diffusivity `alpha` Parameters ---------- V : float Velocity [m/s] L : float Characteristic length [m] rho : float, optional Density, [kg/m^3] Cp : float, optional Heat capacity, [J/kg/K] k : float, optional Thermal conductivity, [W/m/K] alpha : float, optional Thermal diffusivity, [m^2/s] Returns ------- Pe : float Peclet number (heat) [] Notes ----- .. math:: Pe = \frac{\text{Bulk heat transfer}}{\text{Conduction heat transfer}} An error is raised if none of the required input sets are provided. Examples -------- >>> Peclet_heat(1.5, 2, 1000., 4000., 0.6) 20000000.0 >>> Peclet_heat(1.5, 2, alpha=1E-7) 30000000.0 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006. ''' if rho and Cp and k: alpha = k/(rho*Cp) elif not alpha: raise Exception('Either heat capacity and thermal conductivity and\ density, or thermal diffusivity is needed') return V*L/alpha
[ "def", "Peclet_heat", "(", "V", ",", "L", ",", "rho", "=", "None", ",", "Cp", "=", "None", ",", "k", "=", "None", ",", "alpha", "=", "None", ")", ":", "if", "rho", "and", "Cp", "and", "k", ":", "alpha", "=", "k", "/", "(", "rho", "*", "Cp", ")", "elif", "not", "alpha", ":", "raise", "Exception", "(", "'Either heat capacity and thermal conductivity and\\\n density, or thermal diffusivity is needed'", ")", "return", "V", "*", "L", "/", "alpha" ]
r'''Calculates heat transfer Peclet number or `Pe` for a specified velocity `V`, characteristic length `L`, and specified properties for the given fluid. .. math:: Pe = \frac{VL\rho C_p}{k} = \frac{LV}{\alpha} Inputs either of any of the following sets: * V, L, density `rho`, heat capacity `Cp`, and thermal conductivity `k` * V, L, and thermal diffusivity `alpha` Parameters ---------- V : float Velocity [m/s] L : float Characteristic length [m] rho : float, optional Density, [kg/m^3] Cp : float, optional Heat capacity, [J/kg/K] k : float, optional Thermal conductivity, [W/m/K] alpha : float, optional Thermal diffusivity, [m^2/s] Returns ------- Pe : float Peclet number (heat) [] Notes ----- .. math:: Pe = \frac{\text{Bulk heat transfer}}{\text{Conduction heat transfer}} An error is raised if none of the required input sets are provided. Examples -------- >>> Peclet_heat(1.5, 2, 1000., 4000., 0.6) 20000000.0 >>> Peclet_heat(1.5, 2, alpha=1E-7) 30000000.0 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006.
[ "r", "Calculates", "heat", "transfer", "Peclet", "number", "or", "Pe", "for", "a", "specified", "velocity", "V", "characteristic", "length", "L", "and", "specified", "properties", "for", "the", "given", "fluid", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/core.py#L187-L246
train
CalebBell/fluids
fluids/core.py
Fourier_heat
def Fourier_heat(t, L, rho=None, Cp=None, k=None, alpha=None): r'''Calculates heat transfer Fourier number or `Fo` for a specified time `t`, characteristic length `L`, and specified properties for the given fluid. .. math:: Fo = \frac{k t}{C_p \rho L^2} = \frac{\alpha t}{L^2} Inputs either of any of the following sets: * t, L, density `rho`, heat capacity `Cp`, and thermal conductivity `k` * t, L, and thermal diffusivity `alpha` Parameters ---------- t : float time [s] L : float Characteristic length [m] rho : float, optional Density, [kg/m^3] Cp : float, optional Heat capacity, [J/kg/K] k : float, optional Thermal conductivity, [W/m/K] alpha : float, optional Thermal diffusivity, [m^2/s] Returns ------- Fo : float Fourier number (heat) [] Notes ----- .. math:: Fo = \frac{\text{Heat conduction rate}} {\text{Rate of thermal energy storage in a solid}} An error is raised if none of the required input sets are provided. Examples -------- >>> Fourier_heat(t=1.5, L=2, rho=1000., Cp=4000., k=0.6) 5.625e-08 >>> Fourier_heat(1.5, 2, alpha=1E-7) 3.75e-08 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006. ''' if rho and Cp and k: alpha = k/(rho*Cp) elif not alpha: raise Exception('Either heat capacity and thermal conductivity and \ density, or thermal diffusivity is needed') return t*alpha/L**2
python
def Fourier_heat(t, L, rho=None, Cp=None, k=None, alpha=None): r'''Calculates heat transfer Fourier number or `Fo` for a specified time `t`, characteristic length `L`, and specified properties for the given fluid. .. math:: Fo = \frac{k t}{C_p \rho L^2} = \frac{\alpha t}{L^2} Inputs either of any of the following sets: * t, L, density `rho`, heat capacity `Cp`, and thermal conductivity `k` * t, L, and thermal diffusivity `alpha` Parameters ---------- t : float time [s] L : float Characteristic length [m] rho : float, optional Density, [kg/m^3] Cp : float, optional Heat capacity, [J/kg/K] k : float, optional Thermal conductivity, [W/m/K] alpha : float, optional Thermal diffusivity, [m^2/s] Returns ------- Fo : float Fourier number (heat) [] Notes ----- .. math:: Fo = \frac{\text{Heat conduction rate}} {\text{Rate of thermal energy storage in a solid}} An error is raised if none of the required input sets are provided. Examples -------- >>> Fourier_heat(t=1.5, L=2, rho=1000., Cp=4000., k=0.6) 5.625e-08 >>> Fourier_heat(1.5, 2, alpha=1E-7) 3.75e-08 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006. ''' if rho and Cp and k: alpha = k/(rho*Cp) elif not alpha: raise Exception('Either heat capacity and thermal conductivity and \ density, or thermal diffusivity is needed') return t*alpha/L**2
[ "def", "Fourier_heat", "(", "t", ",", "L", ",", "rho", "=", "None", ",", "Cp", "=", "None", ",", "k", "=", "None", ",", "alpha", "=", "None", ")", ":", "if", "rho", "and", "Cp", "and", "k", ":", "alpha", "=", "k", "/", "(", "rho", "*", "Cp", ")", "elif", "not", "alpha", ":", "raise", "Exception", "(", "'Either heat capacity and thermal conductivity and \\\ndensity, or thermal diffusivity is needed'", ")", "return", "t", "*", "alpha", "/", "L", "**", "2" ]
r'''Calculates heat transfer Fourier number or `Fo` for a specified time `t`, characteristic length `L`, and specified properties for the given fluid. .. math:: Fo = \frac{k t}{C_p \rho L^2} = \frac{\alpha t}{L^2} Inputs either of any of the following sets: * t, L, density `rho`, heat capacity `Cp`, and thermal conductivity `k` * t, L, and thermal diffusivity `alpha` Parameters ---------- t : float time [s] L : float Characteristic length [m] rho : float, optional Density, [kg/m^3] Cp : float, optional Heat capacity, [J/kg/K] k : float, optional Thermal conductivity, [W/m/K] alpha : float, optional Thermal diffusivity, [m^2/s] Returns ------- Fo : float Fourier number (heat) [] Notes ----- .. math:: Fo = \frac{\text{Heat conduction rate}} {\text{Rate of thermal energy storage in a solid}} An error is raised if none of the required input sets are provided. Examples -------- >>> Fourier_heat(t=1.5, L=2, rho=1000., Cp=4000., k=0.6) 5.625e-08 >>> Fourier_heat(1.5, 2, alpha=1E-7) 3.75e-08 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006.
[ "r", "Calculates", "heat", "transfer", "Fourier", "number", "or", "Fo", "for", "a", "specified", "time", "t", "characteristic", "length", "L", "and", "specified", "properties", "for", "the", "given", "fluid", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/core.py#L288-L348
train
CalebBell/fluids
fluids/core.py
Graetz_heat
def Graetz_heat(V, D, x, rho=None, Cp=None, k=None, alpha=None): r'''Calculates Graetz number or `Gz` for a specified velocity `V`, diameter `D`, axial distance `x`, and specified properties for the given fluid. .. math:: Gz = \frac{VD^2\cdot C_p \rho}{x\cdot k} = \frac{VD^2}{x \alpha} Inputs either of any of the following sets: * V, D, x, density `rho`, heat capacity `Cp`, and thermal conductivity `k` * V, D, x, and thermal diffusivity `alpha` Parameters ---------- V : float Velocity, [m/s] D : float Diameter [m] x : float Axial distance [m] rho : float, optional Density, [kg/m^3] Cp : float, optional Heat capacity, [J/kg/K] k : float, optional Thermal conductivity, [W/m/K] alpha : float, optional Thermal diffusivity, [m^2/s] Returns ------- Gz : float Graetz number [] Notes ----- .. math:: Gz = \frac{\text{Time for radial heat diffusion in a fluid by conduction}} {\text{Time taken by fluid to reach distance x}} .. math:: Gz = \frac{D}{x}RePr An error is raised if none of the required input sets are provided. Examples -------- >>> Graetz_heat(1.5, 0.25, 5, 800., 2200., 0.6) 55000.0 >>> Graetz_heat(1.5, 0.25, 5, alpha=1E-7) 187500.0 References ---------- .. [1] Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ: Wiley, 2011. ''' if rho and Cp and k: alpha = k/(rho*Cp) elif not alpha: raise Exception('Either heat capacity and thermal conductivity and\ density, or thermal diffusivity is needed') return V*D**2/(x*alpha)
python
def Graetz_heat(V, D, x, rho=None, Cp=None, k=None, alpha=None): r'''Calculates Graetz number or `Gz` for a specified velocity `V`, diameter `D`, axial distance `x`, and specified properties for the given fluid. .. math:: Gz = \frac{VD^2\cdot C_p \rho}{x\cdot k} = \frac{VD^2}{x \alpha} Inputs either of any of the following sets: * V, D, x, density `rho`, heat capacity `Cp`, and thermal conductivity `k` * V, D, x, and thermal diffusivity `alpha` Parameters ---------- V : float Velocity, [m/s] D : float Diameter [m] x : float Axial distance [m] rho : float, optional Density, [kg/m^3] Cp : float, optional Heat capacity, [J/kg/K] k : float, optional Thermal conductivity, [W/m/K] alpha : float, optional Thermal diffusivity, [m^2/s] Returns ------- Gz : float Graetz number [] Notes ----- .. math:: Gz = \frac{\text{Time for radial heat diffusion in a fluid by conduction}} {\text{Time taken by fluid to reach distance x}} .. math:: Gz = \frac{D}{x}RePr An error is raised if none of the required input sets are provided. Examples -------- >>> Graetz_heat(1.5, 0.25, 5, 800., 2200., 0.6) 55000.0 >>> Graetz_heat(1.5, 0.25, 5, alpha=1E-7) 187500.0 References ---------- .. [1] Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ: Wiley, 2011. ''' if rho and Cp and k: alpha = k/(rho*Cp) elif not alpha: raise Exception('Either heat capacity and thermal conductivity and\ density, or thermal diffusivity is needed') return V*D**2/(x*alpha)
[ "def", "Graetz_heat", "(", "V", ",", "D", ",", "x", ",", "rho", "=", "None", ",", "Cp", "=", "None", ",", "k", "=", "None", ",", "alpha", "=", "None", ")", ":", "if", "rho", "and", "Cp", "and", "k", ":", "alpha", "=", "k", "/", "(", "rho", "*", "Cp", ")", "elif", "not", "alpha", ":", "raise", "Exception", "(", "'Either heat capacity and thermal conductivity and\\\n density, or thermal diffusivity is needed'", ")", "return", "V", "*", "D", "**", "2", "/", "(", "x", "*", "alpha", ")" ]
r'''Calculates Graetz number or `Gz` for a specified velocity `V`, diameter `D`, axial distance `x`, and specified properties for the given fluid. .. math:: Gz = \frac{VD^2\cdot C_p \rho}{x\cdot k} = \frac{VD^2}{x \alpha} Inputs either of any of the following sets: * V, D, x, density `rho`, heat capacity `Cp`, and thermal conductivity `k` * V, D, x, and thermal diffusivity `alpha` Parameters ---------- V : float Velocity, [m/s] D : float Diameter [m] x : float Axial distance [m] rho : float, optional Density, [kg/m^3] Cp : float, optional Heat capacity, [J/kg/K] k : float, optional Thermal conductivity, [W/m/K] alpha : float, optional Thermal diffusivity, [m^2/s] Returns ------- Gz : float Graetz number [] Notes ----- .. math:: Gz = \frac{\text{Time for radial heat diffusion in a fluid by conduction}} {\text{Time taken by fluid to reach distance x}} .. math:: Gz = \frac{D}{x}RePr An error is raised if none of the required input sets are provided. Examples -------- >>> Graetz_heat(1.5, 0.25, 5, 800., 2200., 0.6) 55000.0 >>> Graetz_heat(1.5, 0.25, 5, alpha=1E-7) 187500.0 References ---------- .. [1] Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ: Wiley, 2011.
[ "r", "Calculates", "Graetz", "number", "or", "Gz", "for", "a", "specified", "velocity", "V", "diameter", "D", "axial", "distance", "x", "and", "specified", "properties", "for", "the", "given", "fluid", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/core.py#L390-L454
train
CalebBell/fluids
fluids/core.py
Schmidt
def Schmidt(D, mu=None, nu=None, rho=None): r'''Calculates Schmidt number or `Sc` for a fluid with the given parameters. .. math:: Sc = \frac{\mu}{D\rho} = \frac{\nu}{D} Inputs can be any of the following sets: * Diffusivity, dynamic viscosity, and density * Diffusivity and kinematic viscosity Parameters ---------- D : float Diffusivity of a species, [m^2/s] mu : float, optional Dynamic viscosity, [Pa*s] nu : float, optional Kinematic viscosity, [m^2/s] rho : float, optional Density, [kg/m^3] Returns ------- Sc : float Schmidt number [] Notes ----- .. math:: Sc =\frac{\text{kinematic viscosity}}{\text{molecular diffusivity}} = \frac{\text{viscous diffusivity}}{\text{species diffusivity}} An error is raised if none of the required input sets are provided. Examples -------- >>> Schmidt(D=2E-6, mu=4.61E-6, rho=800) 0.00288125 >>> Schmidt(D=1E-9, nu=6E-7) 599.9999999999999 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006. ''' if rho and mu: return mu/(rho*D) elif nu: return nu/D else: raise Exception('Insufficient information provided for Schmidt number calculation')
python
def Schmidt(D, mu=None, nu=None, rho=None): r'''Calculates Schmidt number or `Sc` for a fluid with the given parameters. .. math:: Sc = \frac{\mu}{D\rho} = \frac{\nu}{D} Inputs can be any of the following sets: * Diffusivity, dynamic viscosity, and density * Diffusivity and kinematic viscosity Parameters ---------- D : float Diffusivity of a species, [m^2/s] mu : float, optional Dynamic viscosity, [Pa*s] nu : float, optional Kinematic viscosity, [m^2/s] rho : float, optional Density, [kg/m^3] Returns ------- Sc : float Schmidt number [] Notes ----- .. math:: Sc =\frac{\text{kinematic viscosity}}{\text{molecular diffusivity}} = \frac{\text{viscous diffusivity}}{\text{species diffusivity}} An error is raised if none of the required input sets are provided. Examples -------- >>> Schmidt(D=2E-6, mu=4.61E-6, rho=800) 0.00288125 >>> Schmidt(D=1E-9, nu=6E-7) 599.9999999999999 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006. ''' if rho and mu: return mu/(rho*D) elif nu: return nu/D else: raise Exception('Insufficient information provided for Schmidt number calculation')
[ "def", "Schmidt", "(", "D", ",", "mu", "=", "None", ",", "nu", "=", "None", ",", "rho", "=", "None", ")", ":", "if", "rho", "and", "mu", ":", "return", "mu", "/", "(", "rho", "*", "D", ")", "elif", "nu", ":", "return", "nu", "/", "D", "else", ":", "raise", "Exception", "(", "'Insufficient information provided for Schmidt number calculation'", ")" ]
r'''Calculates Schmidt number or `Sc` for a fluid with the given parameters. .. math:: Sc = \frac{\mu}{D\rho} = \frac{\nu}{D} Inputs can be any of the following sets: * Diffusivity, dynamic viscosity, and density * Diffusivity and kinematic viscosity Parameters ---------- D : float Diffusivity of a species, [m^2/s] mu : float, optional Dynamic viscosity, [Pa*s] nu : float, optional Kinematic viscosity, [m^2/s] rho : float, optional Density, [kg/m^3] Returns ------- Sc : float Schmidt number [] Notes ----- .. math:: Sc =\frac{\text{kinematic viscosity}}{\text{molecular diffusivity}} = \frac{\text{viscous diffusivity}}{\text{species diffusivity}} An error is raised if none of the required input sets are provided. Examples -------- >>> Schmidt(D=2E-6, mu=4.61E-6, rho=800) 0.00288125 >>> Schmidt(D=1E-9, nu=6E-7) 599.9999999999999 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006.
[ "r", "Calculates", "Schmidt", "number", "or", "Sc", "for", "a", "fluid", "with", "the", "given", "parameters", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/core.py#L457-L512
train
CalebBell/fluids
fluids/core.py
Lewis
def Lewis(D=None, alpha=None, Cp=None, k=None, rho=None): r'''Calculates Lewis number or `Le` for a fluid with the given parameters. .. math:: Le = \frac{k}{\rho C_p D} = \frac{\alpha}{D} Inputs can be either of the following sets: * Diffusivity and Thermal diffusivity * Diffusivity, heat capacity, thermal conductivity, and density Parameters ---------- D : float Diffusivity of a species, [m^2/s] alpha : float, optional Thermal diffusivity, [m^2/s] Cp : float, optional Heat capacity, [J/kg/K] k : float, optional Thermal conductivity, [W/m/K] rho : float, optional Density, [kg/m^3] Returns ------- Le : float Lewis number [] Notes ----- .. math:: Le=\frac{\text{Thermal diffusivity}}{\text{Mass diffusivity}} = \frac{Sc}{Pr} An error is raised if none of the required input sets are provided. Examples -------- >>> Lewis(D=22.6E-6, alpha=19.1E-6) 0.8451327433628318 >>> Lewis(D=22.6E-6, rho=800., k=.2, Cp=2200) 0.00502815768302494 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006. .. [3] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010. ''' if k and Cp and rho: alpha = k/(rho*Cp) elif alpha: pass else: raise Exception('Insufficient information provided for Le calculation') return alpha/D
python
def Lewis(D=None, alpha=None, Cp=None, k=None, rho=None): r'''Calculates Lewis number or `Le` for a fluid with the given parameters. .. math:: Le = \frac{k}{\rho C_p D} = \frac{\alpha}{D} Inputs can be either of the following sets: * Diffusivity and Thermal diffusivity * Diffusivity, heat capacity, thermal conductivity, and density Parameters ---------- D : float Diffusivity of a species, [m^2/s] alpha : float, optional Thermal diffusivity, [m^2/s] Cp : float, optional Heat capacity, [J/kg/K] k : float, optional Thermal conductivity, [W/m/K] rho : float, optional Density, [kg/m^3] Returns ------- Le : float Lewis number [] Notes ----- .. math:: Le=\frac{\text{Thermal diffusivity}}{\text{Mass diffusivity}} = \frac{Sc}{Pr} An error is raised if none of the required input sets are provided. Examples -------- >>> Lewis(D=22.6E-6, alpha=19.1E-6) 0.8451327433628318 >>> Lewis(D=22.6E-6, rho=800., k=.2, Cp=2200) 0.00502815768302494 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006. .. [3] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010. ''' if k and Cp and rho: alpha = k/(rho*Cp) elif alpha: pass else: raise Exception('Insufficient information provided for Le calculation') return alpha/D
[ "def", "Lewis", "(", "D", "=", "None", ",", "alpha", "=", "None", ",", "Cp", "=", "None", ",", "k", "=", "None", ",", "rho", "=", "None", ")", ":", "if", "k", "and", "Cp", "and", "rho", ":", "alpha", "=", "k", "/", "(", "rho", "*", "Cp", ")", "elif", "alpha", ":", "pass", "else", ":", "raise", "Exception", "(", "'Insufficient information provided for Le calculation'", ")", "return", "alpha", "/", "D" ]
r'''Calculates Lewis number or `Le` for a fluid with the given parameters. .. math:: Le = \frac{k}{\rho C_p D} = \frac{\alpha}{D} Inputs can be either of the following sets: * Diffusivity and Thermal diffusivity * Diffusivity, heat capacity, thermal conductivity, and density Parameters ---------- D : float Diffusivity of a species, [m^2/s] alpha : float, optional Thermal diffusivity, [m^2/s] Cp : float, optional Heat capacity, [J/kg/K] k : float, optional Thermal conductivity, [W/m/K] rho : float, optional Density, [kg/m^3] Returns ------- Le : float Lewis number [] Notes ----- .. math:: Le=\frac{\text{Thermal diffusivity}}{\text{Mass diffusivity}} = \frac{Sc}{Pr} An error is raised if none of the required input sets are provided. Examples -------- >>> Lewis(D=22.6E-6, alpha=19.1E-6) 0.8451327433628318 >>> Lewis(D=22.6E-6, rho=800., k=.2, Cp=2200) 0.00502815768302494 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006. .. [3] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.
[ "r", "Calculates", "Lewis", "number", "or", "Le", "for", "a", "fluid", "with", "the", "given", "parameters", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/core.py#L515-L574
train
CalebBell/fluids
fluids/core.py
Confinement
def Confinement(D, rhol, rhog, sigma, g=g): r'''Calculates Confinement number or `Co` for a fluid in a channel of diameter `D` with liquid and gas densities `rhol` and `rhog` and surface tension `sigma`, under the influence of gravitational force `g`. .. math:: \text{Co}=\frac{\left[\frac{\sigma}{g(\rho_l-\rho_g)}\right]^{0.5}}{D} Parameters ---------- D : float Diameter of channel, [m] rhol : float Density of liquid phase, [kg/m^3] rhog : float Density of gas phase, [kg/m^3] sigma : float Surface tension between liquid-gas phase, [N/m] g : float, optional Acceleration due to gravity, [m/s^2] Returns ------- Co : float Confinement number [-] Notes ----- Used in two-phase pressure drop and heat transfer correlations. First used in [1]_ according to [3]_. .. math:: \text{Co} = \frac{\frac{\text{surface tension force}} {\text{buoyancy force}}}{\text{Channel area}} Examples -------- >>> Confinement(0.001, 1077, 76.5, 4.27E-3) 0.6596978265315191 References ---------- .. [1] Cornwell, Keith, and Peter A. Kew. "Boiling in Small Parallel Channels." In Energy Efficiency in Process Technology, edited by Dr P. A. Pilavachi, 624-638. Springer Netherlands, 1993. doi:10.1007/978-94-011-1454-7_56. .. [2] Kandlikar, Satish G. Heat Transfer and Fluid Flow in Minichannels and Microchannels. Elsevier, 2006. .. [3] Tran, T. N, M. -C Chyu, M. W Wambsganss, and D. M France. Two-Phase Pressure Drop of Refrigerants during Flow Boiling in Small Channels: An Experimental Investigation and Correlation Development." International Journal of Multiphase Flow 26, no. 11 (November 1, 2000): 1739-54. doi:10.1016/S0301-9322(99)00119-6. ''' return (sigma/(g*(rhol-rhog)))**0.5/D
python
def Confinement(D, rhol, rhog, sigma, g=g): r'''Calculates Confinement number or `Co` for a fluid in a channel of diameter `D` with liquid and gas densities `rhol` and `rhog` and surface tension `sigma`, under the influence of gravitational force `g`. .. math:: \text{Co}=\frac{\left[\frac{\sigma}{g(\rho_l-\rho_g)}\right]^{0.5}}{D} Parameters ---------- D : float Diameter of channel, [m] rhol : float Density of liquid phase, [kg/m^3] rhog : float Density of gas phase, [kg/m^3] sigma : float Surface tension between liquid-gas phase, [N/m] g : float, optional Acceleration due to gravity, [m/s^2] Returns ------- Co : float Confinement number [-] Notes ----- Used in two-phase pressure drop and heat transfer correlations. First used in [1]_ according to [3]_. .. math:: \text{Co} = \frac{\frac{\text{surface tension force}} {\text{buoyancy force}}}{\text{Channel area}} Examples -------- >>> Confinement(0.001, 1077, 76.5, 4.27E-3) 0.6596978265315191 References ---------- .. [1] Cornwell, Keith, and Peter A. Kew. "Boiling in Small Parallel Channels." In Energy Efficiency in Process Technology, edited by Dr P. A. Pilavachi, 624-638. Springer Netherlands, 1993. doi:10.1007/978-94-011-1454-7_56. .. [2] Kandlikar, Satish G. Heat Transfer and Fluid Flow in Minichannels and Microchannels. Elsevier, 2006. .. [3] Tran, T. N, M. -C Chyu, M. W Wambsganss, and D. M France. Two-Phase Pressure Drop of Refrigerants during Flow Boiling in Small Channels: An Experimental Investigation and Correlation Development." International Journal of Multiphase Flow 26, no. 11 (November 1, 2000): 1739-54. doi:10.1016/S0301-9322(99)00119-6. ''' return (sigma/(g*(rhol-rhog)))**0.5/D
[ "def", "Confinement", "(", "D", ",", "rhol", ",", "rhog", ",", "sigma", ",", "g", "=", "g", ")", ":", "return", "(", "sigma", "/", "(", "g", "*", "(", "rhol", "-", "rhog", ")", ")", ")", "**", "0.5", "/", "D" ]
r'''Calculates Confinement number or `Co` for a fluid in a channel of diameter `D` with liquid and gas densities `rhol` and `rhog` and surface tension `sigma`, under the influence of gravitational force `g`. .. math:: \text{Co}=\frac{\left[\frac{\sigma}{g(\rho_l-\rho_g)}\right]^{0.5}}{D} Parameters ---------- D : float Diameter of channel, [m] rhol : float Density of liquid phase, [kg/m^3] rhog : float Density of gas phase, [kg/m^3] sigma : float Surface tension between liquid-gas phase, [N/m] g : float, optional Acceleration due to gravity, [m/s^2] Returns ------- Co : float Confinement number [-] Notes ----- Used in two-phase pressure drop and heat transfer correlations. First used in [1]_ according to [3]_. .. math:: \text{Co} = \frac{\frac{\text{surface tension force}} {\text{buoyancy force}}}{\text{Channel area}} Examples -------- >>> Confinement(0.001, 1077, 76.5, 4.27E-3) 0.6596978265315191 References ---------- .. [1] Cornwell, Keith, and Peter A. Kew. "Boiling in Small Parallel Channels." In Energy Efficiency in Process Technology, edited by Dr P. A. Pilavachi, 624-638. Springer Netherlands, 1993. doi:10.1007/978-94-011-1454-7_56. .. [2] Kandlikar, Satish G. Heat Transfer and Fluid Flow in Minichannels and Microchannels. Elsevier, 2006. .. [3] Tran, T. N, M. -C Chyu, M. W Wambsganss, and D. M France. Two-Phase Pressure Drop of Refrigerants during Flow Boiling in Small Channels: An Experimental Investigation and Correlation Development." International Journal of Multiphase Flow 26, no. 11 (November 1, 2000): 1739-54. doi:10.1016/S0301-9322(99)00119-6.
[ "r", "Calculates", "Confinement", "number", "or", "Co", "for", "a", "fluid", "in", "a", "channel", "of", "diameter", "D", "with", "liquid", "and", "gas", "densities", "rhol", "and", "rhog", "and", "surface", "tension", "sigma", "under", "the", "influence", "of", "gravitational", "force", "g", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/core.py#L666-L720
train
CalebBell/fluids
fluids/core.py
Morton
def Morton(rhol, rhog, mul, sigma, g=g): r'''Calculates Morton number or `Mo` for a liquid and vapor with the specified properties, under the influence of gravitational force `g`. .. math:: Mo = \frac{g \mu_l^4(\rho_l - \rho_g)}{\rho_l^2 \sigma^3} Parameters ---------- rhol : float Density of liquid phase, [kg/m^3] rhog : float Density of gas phase, [kg/m^3] mul : float Viscosity of liquid phase, [Pa*s] sigma : float Surface tension between liquid-gas phase, [N/m] g : float, optional Acceleration due to gravity, [m/s^2] Returns ------- Mo : float Morton number, [-] Notes ----- Used in modeling bubbles in liquid. Examples -------- >>> Morton(1077.0, 76.5, 4.27E-3, 0.023) 2.311183104430743e-07 References ---------- .. [1] Kunes, Josef. Dimensionless Physical Quantities in Science and Engineering. Elsevier, 2012. .. [2] Yan, Xiaokang, Kaixin Zheng, Yan Jia, Zhenyong Miao, Lijun Wang, Yijun Cao, and Jiongtian Liu. “Drag Coefficient Prediction of a Single Bubble Rising in Liquids.” Industrial & Engineering Chemistry Research, April 2, 2018. https://doi.org/10.1021/acs.iecr.7b04743. ''' mul2 = mul*mul return g*mul2*mul2*(rhol - rhog)/(rhol*rhol*sigma*sigma*sigma)
python
def Morton(rhol, rhog, mul, sigma, g=g): r'''Calculates Morton number or `Mo` for a liquid and vapor with the specified properties, under the influence of gravitational force `g`. .. math:: Mo = \frac{g \mu_l^4(\rho_l - \rho_g)}{\rho_l^2 \sigma^3} Parameters ---------- rhol : float Density of liquid phase, [kg/m^3] rhog : float Density of gas phase, [kg/m^3] mul : float Viscosity of liquid phase, [Pa*s] sigma : float Surface tension between liquid-gas phase, [N/m] g : float, optional Acceleration due to gravity, [m/s^2] Returns ------- Mo : float Morton number, [-] Notes ----- Used in modeling bubbles in liquid. Examples -------- >>> Morton(1077.0, 76.5, 4.27E-3, 0.023) 2.311183104430743e-07 References ---------- .. [1] Kunes, Josef. Dimensionless Physical Quantities in Science and Engineering. Elsevier, 2012. .. [2] Yan, Xiaokang, Kaixin Zheng, Yan Jia, Zhenyong Miao, Lijun Wang, Yijun Cao, and Jiongtian Liu. “Drag Coefficient Prediction of a Single Bubble Rising in Liquids.” Industrial & Engineering Chemistry Research, April 2, 2018. https://doi.org/10.1021/acs.iecr.7b04743. ''' mul2 = mul*mul return g*mul2*mul2*(rhol - rhog)/(rhol*rhol*sigma*sigma*sigma)
[ "def", "Morton", "(", "rhol", ",", "rhog", ",", "mul", ",", "sigma", ",", "g", "=", "g", ")", ":", "mul2", "=", "mul", "*", "mul", "return", "g", "*", "mul2", "*", "mul2", "*", "(", "rhol", "-", "rhog", ")", "/", "(", "rhol", "*", "rhol", "*", "sigma", "*", "sigma", "*", "sigma", ")" ]
r'''Calculates Morton number or `Mo` for a liquid and vapor with the specified properties, under the influence of gravitational force `g`. .. math:: Mo = \frac{g \mu_l^4(\rho_l - \rho_g)}{\rho_l^2 \sigma^3} Parameters ---------- rhol : float Density of liquid phase, [kg/m^3] rhog : float Density of gas phase, [kg/m^3] mul : float Viscosity of liquid phase, [Pa*s] sigma : float Surface tension between liquid-gas phase, [N/m] g : float, optional Acceleration due to gravity, [m/s^2] Returns ------- Mo : float Morton number, [-] Notes ----- Used in modeling bubbles in liquid. Examples -------- >>> Morton(1077.0, 76.5, 4.27E-3, 0.023) 2.311183104430743e-07 References ---------- .. [1] Kunes, Josef. Dimensionless Physical Quantities in Science and Engineering. Elsevier, 2012. .. [2] Yan, Xiaokang, Kaixin Zheng, Yan Jia, Zhenyong Miao, Lijun Wang, Yijun Cao, and Jiongtian Liu. “Drag Coefficient Prediction of a Single Bubble Rising in Liquids.” Industrial & Engineering Chemistry Research, April 2, 2018. https://doi.org/10.1021/acs.iecr.7b04743.
[ "r", "Calculates", "Morton", "number", "or", "Mo", "for", "a", "liquid", "and", "vapor", "with", "the", "specified", "properties", "under", "the", "influence", "of", "gravitational", "force", "g", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/core.py#L723-L767
train
CalebBell/fluids
fluids/core.py
Prandtl
def Prandtl(Cp=None, k=None, mu=None, nu=None, rho=None, alpha=None): r'''Calculates Prandtl number or `Pr` for a fluid with the given parameters. .. math:: Pr = \frac{C_p \mu}{k} = \frac{\nu}{\alpha} = \frac{C_p \rho \nu}{k} Inputs can be any of the following sets: * Heat capacity, dynamic viscosity, and thermal conductivity * Thermal diffusivity and kinematic viscosity * Heat capacity, kinematic viscosity, thermal conductivity, and density Parameters ---------- Cp : float Heat capacity, [J/kg/K] k : float Thermal conductivity, [W/m/K] mu : float, optional Dynamic viscosity, [Pa*s] nu : float, optional Kinematic viscosity, [m^2/s] rho : float Density, [kg/m^3] alpha : float Thermal diffusivity, [m^2/s] Returns ------- Pr : float Prandtl number [] Notes ----- .. math:: Pr=\frac{\text{kinematic viscosity}}{\text{thermal diffusivity}} = \frac{\text{momentum diffusivity}}{\text{thermal diffusivity}} An error is raised if none of the required input sets are provided. Examples -------- >>> Prandtl(Cp=1637., k=0.010, mu=4.61E-6) 0.754657 >>> Prandtl(Cp=1637., k=0.010, nu=6.4E-7, rho=7.1) 0.7438528 >>> Prandtl(nu=6.3E-7, alpha=9E-7) 0.7000000000000001 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006. .. [3] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010. ''' if k and Cp and mu: return Cp*mu/k elif nu and rho and Cp and k: return nu*rho*Cp/k elif nu and alpha: return nu/alpha else: raise Exception('Insufficient information provided for Pr calculation')
python
def Prandtl(Cp=None, k=None, mu=None, nu=None, rho=None, alpha=None): r'''Calculates Prandtl number or `Pr` for a fluid with the given parameters. .. math:: Pr = \frac{C_p \mu}{k} = \frac{\nu}{\alpha} = \frac{C_p \rho \nu}{k} Inputs can be any of the following sets: * Heat capacity, dynamic viscosity, and thermal conductivity * Thermal diffusivity and kinematic viscosity * Heat capacity, kinematic viscosity, thermal conductivity, and density Parameters ---------- Cp : float Heat capacity, [J/kg/K] k : float Thermal conductivity, [W/m/K] mu : float, optional Dynamic viscosity, [Pa*s] nu : float, optional Kinematic viscosity, [m^2/s] rho : float Density, [kg/m^3] alpha : float Thermal diffusivity, [m^2/s] Returns ------- Pr : float Prandtl number [] Notes ----- .. math:: Pr=\frac{\text{kinematic viscosity}}{\text{thermal diffusivity}} = \frac{\text{momentum diffusivity}}{\text{thermal diffusivity}} An error is raised if none of the required input sets are provided. Examples -------- >>> Prandtl(Cp=1637., k=0.010, mu=4.61E-6) 0.754657 >>> Prandtl(Cp=1637., k=0.010, nu=6.4E-7, rho=7.1) 0.7438528 >>> Prandtl(nu=6.3E-7, alpha=9E-7) 0.7000000000000001 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006. .. [3] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010. ''' if k and Cp and mu: return Cp*mu/k elif nu and rho and Cp and k: return nu*rho*Cp/k elif nu and alpha: return nu/alpha else: raise Exception('Insufficient information provided for Pr calculation')
[ "def", "Prandtl", "(", "Cp", "=", "None", ",", "k", "=", "None", ",", "mu", "=", "None", ",", "nu", "=", "None", ",", "rho", "=", "None", ",", "alpha", "=", "None", ")", ":", "if", "k", "and", "Cp", "and", "mu", ":", "return", "Cp", "*", "mu", "/", "k", "elif", "nu", "and", "rho", "and", "Cp", "and", "k", ":", "return", "nu", "*", "rho", "*", "Cp", "/", "k", "elif", "nu", "and", "alpha", ":", "return", "nu", "/", "alpha", "else", ":", "raise", "Exception", "(", "'Insufficient information provided for Pr calculation'", ")" ]
r'''Calculates Prandtl number or `Pr` for a fluid with the given parameters. .. math:: Pr = \frac{C_p \mu}{k} = \frac{\nu}{\alpha} = \frac{C_p \rho \nu}{k} Inputs can be any of the following sets: * Heat capacity, dynamic viscosity, and thermal conductivity * Thermal diffusivity and kinematic viscosity * Heat capacity, kinematic viscosity, thermal conductivity, and density Parameters ---------- Cp : float Heat capacity, [J/kg/K] k : float Thermal conductivity, [W/m/K] mu : float, optional Dynamic viscosity, [Pa*s] nu : float, optional Kinematic viscosity, [m^2/s] rho : float Density, [kg/m^3] alpha : float Thermal diffusivity, [m^2/s] Returns ------- Pr : float Prandtl number [] Notes ----- .. math:: Pr=\frac{\text{kinematic viscosity}}{\text{thermal diffusivity}} = \frac{\text{momentum diffusivity}}{\text{thermal diffusivity}} An error is raised if none of the required input sets are provided. Examples -------- >>> Prandtl(Cp=1637., k=0.010, mu=4.61E-6) 0.754657 >>> Prandtl(Cp=1637., k=0.010, nu=6.4E-7, rho=7.1) 0.7438528 >>> Prandtl(nu=6.3E-7, alpha=9E-7) 0.7000000000000001 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006. .. [3] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition. Berlin; New York:: Springer, 2010.
[ "r", "Calculates", "Prandtl", "number", "or", "Pr", "for", "a", "fluid", "with", "the", "given", "parameters", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/core.py#L811-L876
train
CalebBell/fluids
fluids/core.py
Grashof
def Grashof(L, beta, T1, T2=0, rho=None, mu=None, nu=None, g=g): r'''Calculates Grashof number or `Gr` for a fluid with the given properties, temperature difference, and characteristic length. .. math:: Gr = \frac{g\beta (T_s-T_\infty)L^3}{\nu^2} = \frac{g\beta (T_s-T_\infty)L^3\rho^2}{\mu^2} Inputs either of any of the following sets: * L, beta, T1 and T2, and density `rho` and kinematic viscosity `mu` * L, beta, T1 and T2, and dynamic viscosity `nu` Parameters ---------- L : float Characteristic length [m] beta : float Volumetric thermal expansion coefficient [1/K] T1 : float Temperature 1, usually a film temperature [K] T2 : float, optional Temperature 2, usually a bulk temperature (or 0 if only a difference is provided to the function) [K] rho : float, optional Density, [kg/m^3] mu : float, optional Dynamic viscosity, [Pa*s] nu : float, optional Kinematic viscosity, [m^2/s] g : float, optional Acceleration due to gravity, [m/s^2] Returns ------- Gr : float Grashof number [] Notes ----- .. math:: Gr = \frac{\text{Buoyancy forces}}{\text{Viscous forces}} An error is raised if none of the required input sets are provided. Used in free convection problems only. Examples -------- Example 4 of [1]_, p. 1-21 (matches): >>> Grashof(L=0.9144, beta=0.000933, T1=178.2, rho=1.1613, mu=1.9E-5) 4656936556.178915 >>> Grashof(L=0.9144, beta=0.000933, T1=378.2, T2=200, nu=1.636e-05) 4657491516.530312 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006. ''' if rho and mu: nu = mu/rho elif not nu: raise Exception('Either density and viscosity, or dynamic viscosity, \ is needed') return g*beta*abs(T2-T1)*L**3/nu**2
python
def Grashof(L, beta, T1, T2=0, rho=None, mu=None, nu=None, g=g): r'''Calculates Grashof number or `Gr` for a fluid with the given properties, temperature difference, and characteristic length. .. math:: Gr = \frac{g\beta (T_s-T_\infty)L^3}{\nu^2} = \frac{g\beta (T_s-T_\infty)L^3\rho^2}{\mu^2} Inputs either of any of the following sets: * L, beta, T1 and T2, and density `rho` and kinematic viscosity `mu` * L, beta, T1 and T2, and dynamic viscosity `nu` Parameters ---------- L : float Characteristic length [m] beta : float Volumetric thermal expansion coefficient [1/K] T1 : float Temperature 1, usually a film temperature [K] T2 : float, optional Temperature 2, usually a bulk temperature (or 0 if only a difference is provided to the function) [K] rho : float, optional Density, [kg/m^3] mu : float, optional Dynamic viscosity, [Pa*s] nu : float, optional Kinematic viscosity, [m^2/s] g : float, optional Acceleration due to gravity, [m/s^2] Returns ------- Gr : float Grashof number [] Notes ----- .. math:: Gr = \frac{\text{Buoyancy forces}}{\text{Viscous forces}} An error is raised if none of the required input sets are provided. Used in free convection problems only. Examples -------- Example 4 of [1]_, p. 1-21 (matches): >>> Grashof(L=0.9144, beta=0.000933, T1=178.2, rho=1.1613, mu=1.9E-5) 4656936556.178915 >>> Grashof(L=0.9144, beta=0.000933, T1=378.2, T2=200, nu=1.636e-05) 4657491516.530312 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006. ''' if rho and mu: nu = mu/rho elif not nu: raise Exception('Either density and viscosity, or dynamic viscosity, \ is needed') return g*beta*abs(T2-T1)*L**3/nu**2
[ "def", "Grashof", "(", "L", ",", "beta", ",", "T1", ",", "T2", "=", "0", ",", "rho", "=", "None", ",", "mu", "=", "None", ",", "nu", "=", "None", ",", "g", "=", "g", ")", ":", "if", "rho", "and", "mu", ":", "nu", "=", "mu", "/", "rho", "elif", "not", "nu", ":", "raise", "Exception", "(", "'Either density and viscosity, or dynamic viscosity, \\\n is needed'", ")", "return", "g", "*", "beta", "*", "abs", "(", "T2", "-", "T1", ")", "*", "L", "**", "3", "/", "nu", "**", "2" ]
r'''Calculates Grashof number or `Gr` for a fluid with the given properties, temperature difference, and characteristic length. .. math:: Gr = \frac{g\beta (T_s-T_\infty)L^3}{\nu^2} = \frac{g\beta (T_s-T_\infty)L^3\rho^2}{\mu^2} Inputs either of any of the following sets: * L, beta, T1 and T2, and density `rho` and kinematic viscosity `mu` * L, beta, T1 and T2, and dynamic viscosity `nu` Parameters ---------- L : float Characteristic length [m] beta : float Volumetric thermal expansion coefficient [1/K] T1 : float Temperature 1, usually a film temperature [K] T2 : float, optional Temperature 2, usually a bulk temperature (or 0 if only a difference is provided to the function) [K] rho : float, optional Density, [kg/m^3] mu : float, optional Dynamic viscosity, [Pa*s] nu : float, optional Kinematic viscosity, [m^2/s] g : float, optional Acceleration due to gravity, [m/s^2] Returns ------- Gr : float Grashof number [] Notes ----- .. math:: Gr = \frac{\text{Buoyancy forces}}{\text{Viscous forces}} An error is raised if none of the required input sets are provided. Used in free convection problems only. Examples -------- Example 4 of [1]_, p. 1-21 (matches): >>> Grashof(L=0.9144, beta=0.000933, T1=178.2, rho=1.1613, mu=1.9E-5) 4656936556.178915 >>> Grashof(L=0.9144, beta=0.000933, T1=378.2, T2=200, nu=1.636e-05) 4657491516.530312 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006.
[ "r", "Calculates", "Grashof", "number", "or", "Gr", "for", "a", "fluid", "with", "the", "given", "properties", "temperature", "difference", "and", "characteristic", "length", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/core.py#L879-L946
train
CalebBell/fluids
fluids/core.py
Froude
def Froude(V, L, g=g, squared=False): r'''Calculates Froude number `Fr` for velocity `V` and geometric length `L`. If desired, gravity can be specified as well. Normally the function returns the result of the equation below; Froude number is also often said to be defined as the square of the equation below. .. math:: Fr = \frac{V}{\sqrt{gL}} Parameters ---------- V : float Velocity of the particle or fluid, [m/s] L : float Characteristic length, no typical definition [m] g : float, optional Acceleration due to gravity, [m/s^2] squared : bool, optional Whether to return the squared form of Froude number Returns ------- Fr : float Froude number, [-] Notes ----- Many alternate definitions including density ratios have been used. .. math:: Fr = \frac{\text{Inertial Force}}{\text{Gravity Force}} Examples -------- >>> Froude(1.83, L=2., g=1.63) 1.0135432593877318 >>> Froude(1.83, L=2., squared=True) 0.17074638128208924 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006. ''' Fr = V/(L*g)**0.5 if squared: Fr *= Fr return Fr
python
def Froude(V, L, g=g, squared=False): r'''Calculates Froude number `Fr` for velocity `V` and geometric length `L`. If desired, gravity can be specified as well. Normally the function returns the result of the equation below; Froude number is also often said to be defined as the square of the equation below. .. math:: Fr = \frac{V}{\sqrt{gL}} Parameters ---------- V : float Velocity of the particle or fluid, [m/s] L : float Characteristic length, no typical definition [m] g : float, optional Acceleration due to gravity, [m/s^2] squared : bool, optional Whether to return the squared form of Froude number Returns ------- Fr : float Froude number, [-] Notes ----- Many alternate definitions including density ratios have been used. .. math:: Fr = \frac{\text{Inertial Force}}{\text{Gravity Force}} Examples -------- >>> Froude(1.83, L=2., g=1.63) 1.0135432593877318 >>> Froude(1.83, L=2., squared=True) 0.17074638128208924 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006. ''' Fr = V/(L*g)**0.5 if squared: Fr *= Fr return Fr
[ "def", "Froude", "(", "V", ",", "L", ",", "g", "=", "g", ",", "squared", "=", "False", ")", ":", "Fr", "=", "V", "/", "(", "L", "*", "g", ")", "**", "0.5", "if", "squared", ":", "Fr", "*=", "Fr", "return", "Fr" ]
r'''Calculates Froude number `Fr` for velocity `V` and geometric length `L`. If desired, gravity can be specified as well. Normally the function returns the result of the equation below; Froude number is also often said to be defined as the square of the equation below. .. math:: Fr = \frac{V}{\sqrt{gL}} Parameters ---------- V : float Velocity of the particle or fluid, [m/s] L : float Characteristic length, no typical definition [m] g : float, optional Acceleration due to gravity, [m/s^2] squared : bool, optional Whether to return the squared form of Froude number Returns ------- Fr : float Froude number, [-] Notes ----- Many alternate definitions including density ratios have been used. .. math:: Fr = \frac{\text{Inertial Force}}{\text{Gravity Force}} Examples -------- >>> Froude(1.83, L=2., g=1.63) 1.0135432593877318 >>> Froude(1.83, L=2., squared=True) 0.17074638128208924 References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006.
[ "r", "Calculates", "Froude", "number", "Fr", "for", "velocity", "V", "and", "geometric", "length", "L", ".", "If", "desired", "gravity", "can", "be", "specified", "as", "well", ".", "Normally", "the", "function", "returns", "the", "result", "of", "the", "equation", "below", ";", "Froude", "number", "is", "also", "often", "said", "to", "be", "defined", "as", "the", "square", "of", "the", "equation", "below", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/core.py#L1028-L1077
train
CalebBell/fluids
fluids/core.py
Stokes_number
def Stokes_number(V, Dp, D, rhop, mu): r'''Calculates Stokes Number for a given characteristic velocity `V`, particle diameter `Dp`, characteristic diameter `D`, particle density `rhop`, and fluid viscosity `mu`. .. math:: \text{Stk} = \frac{\rho_p V D_p^2}{18\mu_f D} Parameters ---------- V : float Characteristic velocity (often superficial), [m/s] Dp : float Particle diameter, [m] D : float Characteristic diameter (ex demister wire diameter or cyclone diameter), [m] rhop : float Particle density, [kg/m^3] mu : float Fluid viscosity, [Pa*s] Returns ------- Stk : float Stokes numer, [-] Notes ----- Used in droplet impaction or collection studies. Examples -------- >>> Stokes_number(V=0.9, Dp=1E-5, D=1E-3, rhop=1000, mu=1E-5) 0.5 References ---------- .. [1] Rhodes, Martin J. Introduction to Particle Technology. Wiley, 2013. .. [2] Al-Dughaither, Abdullah S., Ahmed A. Ibrahim, and Waheed A. Al-Masry. "Investigating Droplet Separation Efficiency in Wire-Mesh Mist Eliminators in Bubble Column." Journal of Saudi Chemical Society 14, no. 4 (October 1, 2010): 331-39. https://doi.org/10.1016/j.jscs.2010.04.001. ''' return rhop*V*(Dp*Dp)/(18.0*mu*D)
python
def Stokes_number(V, Dp, D, rhop, mu): r'''Calculates Stokes Number for a given characteristic velocity `V`, particle diameter `Dp`, characteristic diameter `D`, particle density `rhop`, and fluid viscosity `mu`. .. math:: \text{Stk} = \frac{\rho_p V D_p^2}{18\mu_f D} Parameters ---------- V : float Characteristic velocity (often superficial), [m/s] Dp : float Particle diameter, [m] D : float Characteristic diameter (ex demister wire diameter or cyclone diameter), [m] rhop : float Particle density, [kg/m^3] mu : float Fluid viscosity, [Pa*s] Returns ------- Stk : float Stokes numer, [-] Notes ----- Used in droplet impaction or collection studies. Examples -------- >>> Stokes_number(V=0.9, Dp=1E-5, D=1E-3, rhop=1000, mu=1E-5) 0.5 References ---------- .. [1] Rhodes, Martin J. Introduction to Particle Technology. Wiley, 2013. .. [2] Al-Dughaither, Abdullah S., Ahmed A. Ibrahim, and Waheed A. Al-Masry. "Investigating Droplet Separation Efficiency in Wire-Mesh Mist Eliminators in Bubble Column." Journal of Saudi Chemical Society 14, no. 4 (October 1, 2010): 331-39. https://doi.org/10.1016/j.jscs.2010.04.001. ''' return rhop*V*(Dp*Dp)/(18.0*mu*D)
[ "def", "Stokes_number", "(", "V", ",", "Dp", ",", "D", ",", "rhop", ",", "mu", ")", ":", "return", "rhop", "*", "V", "*", "(", "Dp", "*", "Dp", ")", "/", "(", "18.0", "*", "mu", "*", "D", ")" ]
r'''Calculates Stokes Number for a given characteristic velocity `V`, particle diameter `Dp`, characteristic diameter `D`, particle density `rhop`, and fluid viscosity `mu`. .. math:: \text{Stk} = \frac{\rho_p V D_p^2}{18\mu_f D} Parameters ---------- V : float Characteristic velocity (often superficial), [m/s] Dp : float Particle diameter, [m] D : float Characteristic diameter (ex demister wire diameter or cyclone diameter), [m] rhop : float Particle density, [kg/m^3] mu : float Fluid viscosity, [Pa*s] Returns ------- Stk : float Stokes numer, [-] Notes ----- Used in droplet impaction or collection studies. Examples -------- >>> Stokes_number(V=0.9, Dp=1E-5, D=1E-3, rhop=1000, mu=1E-5) 0.5 References ---------- .. [1] Rhodes, Martin J. Introduction to Particle Technology. Wiley, 2013. .. [2] Al-Dughaither, Abdullah S., Ahmed A. Ibrahim, and Waheed A. Al-Masry. "Investigating Droplet Separation Efficiency in Wire-Mesh Mist Eliminators in Bubble Column." Journal of Saudi Chemical Society 14, no. 4 (October 1, 2010): 331-39. https://doi.org/10.1016/j.jscs.2010.04.001.
[ "r", "Calculates", "Stokes", "Number", "for", "a", "given", "characteristic", "velocity", "V", "particle", "diameter", "Dp", "characteristic", "diameter", "D", "particle", "density", "rhop", "and", "fluid", "viscosity", "mu", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/core.py#L1644-L1688
train
CalebBell/fluids
fluids/core.py
Suratman
def Suratman(L, rho, mu, sigma): r'''Calculates Suratman number, `Su`, for a fluid with the given characteristic length, density, viscosity, and surface tension. .. math:: \text{Su} = \frac{\rho\sigma L}{\mu^2} Parameters ---------- L : float Characteristic length [m] rho : float Density of fluid, [kg/m^3] mu : float Viscosity of fluid, [Pa*s] sigma : float Surface tension, [N/m] Returns ------- Su : float Suratman number [] Notes ----- Also known as Laplace number. Used in two-phase flow, especially the bubbly-slug regime. No confusion regarding the definition of this group has been observed. .. math:: \text{Su} = \frac{\text{Re}^2}{\text{We}} =\frac{\text{Inertia}\cdot \text{Surface tension} }{\text{(viscous forces)}^2} The oldest reference to this group found by the author is in 1963, from [2]_. Examples -------- >>> Suratman(1E-4, 1000., 1E-3, 1E-1) 10000.0 References ---------- .. [1] Sen, Nilava. "Suratman Number in Bubble-to-Slug Flow Pattern Transition under Microgravity." Acta Astronautica 65, no. 3-4 (August 2009): 423-28. doi:10.1016/j.actaastro.2009.02.013. .. [2] Catchpole, John P., and George. Fulford. "DIMENSIONLESS GROUPS." Industrial & Engineering Chemistry 58, no. 3 (March 1, 1966): 46-60. doi:10.1021/ie50675a012. ''' return rho*sigma*L/(mu*mu)
python
def Suratman(L, rho, mu, sigma): r'''Calculates Suratman number, `Su`, for a fluid with the given characteristic length, density, viscosity, and surface tension. .. math:: \text{Su} = \frac{\rho\sigma L}{\mu^2} Parameters ---------- L : float Characteristic length [m] rho : float Density of fluid, [kg/m^3] mu : float Viscosity of fluid, [Pa*s] sigma : float Surface tension, [N/m] Returns ------- Su : float Suratman number [] Notes ----- Also known as Laplace number. Used in two-phase flow, especially the bubbly-slug regime. No confusion regarding the definition of this group has been observed. .. math:: \text{Su} = \frac{\text{Re}^2}{\text{We}} =\frac{\text{Inertia}\cdot \text{Surface tension} }{\text{(viscous forces)}^2} The oldest reference to this group found by the author is in 1963, from [2]_. Examples -------- >>> Suratman(1E-4, 1000., 1E-3, 1E-1) 10000.0 References ---------- .. [1] Sen, Nilava. "Suratman Number in Bubble-to-Slug Flow Pattern Transition under Microgravity." Acta Astronautica 65, no. 3-4 (August 2009): 423-28. doi:10.1016/j.actaastro.2009.02.013. .. [2] Catchpole, John P., and George. Fulford. "DIMENSIONLESS GROUPS." Industrial & Engineering Chemistry 58, no. 3 (March 1, 1966): 46-60. doi:10.1021/ie50675a012. ''' return rho*sigma*L/(mu*mu)
[ "def", "Suratman", "(", "L", ",", "rho", ",", "mu", ",", "sigma", ")", ":", "return", "rho", "*", "sigma", "*", "L", "/", "(", "mu", "*", "mu", ")" ]
r'''Calculates Suratman number, `Su`, for a fluid with the given characteristic length, density, viscosity, and surface tension. .. math:: \text{Su} = \frac{\rho\sigma L}{\mu^2} Parameters ---------- L : float Characteristic length [m] rho : float Density of fluid, [kg/m^3] mu : float Viscosity of fluid, [Pa*s] sigma : float Surface tension, [N/m] Returns ------- Su : float Suratman number [] Notes ----- Also known as Laplace number. Used in two-phase flow, especially the bubbly-slug regime. No confusion regarding the definition of this group has been observed. .. math:: \text{Su} = \frac{\text{Re}^2}{\text{We}} =\frac{\text{Inertia}\cdot \text{Surface tension} }{\text{(viscous forces)}^2} The oldest reference to this group found by the author is in 1963, from [2]_. Examples -------- >>> Suratman(1E-4, 1000., 1E-3, 1E-1) 10000.0 References ---------- .. [1] Sen, Nilava. "Suratman Number in Bubble-to-Slug Flow Pattern Transition under Microgravity." Acta Astronautica 65, no. 3-4 (August 2009): 423-28. doi:10.1016/j.actaastro.2009.02.013. .. [2] Catchpole, John P., and George. Fulford. "DIMENSIONLESS GROUPS." Industrial & Engineering Chemistry 58, no. 3 (March 1, 1966): 46-60. doi:10.1021/ie50675a012.
[ "r", "Calculates", "Suratman", "number", "Su", "for", "a", "fluid", "with", "the", "given", "characteristic", "length", "density", "viscosity", "and", "surface", "tension", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/core.py#L1828-L1878
train
CalebBell/fluids
fluids/core.py
nu_mu_converter
def nu_mu_converter(rho, mu=None, nu=None): r'''Calculates either kinematic or dynamic viscosity, depending on inputs. Used when one type of viscosity is known as well as density, to obtain the other type. Raises an error if both types of viscosity or neither type of viscosity is provided. .. math:: \nu = \frac{\mu}{\rho} .. math:: \mu = \nu\rho Parameters ---------- rho : float Density, [kg/m^3] mu : float, optional Dynamic viscosity, [Pa*s] nu : float, optional Kinematic viscosity, [m^2/s] Returns ------- mu or nu : float Dynamic viscosity, Pa*s or Kinematic viscosity, m^2/s Examples -------- >>> nu_mu_converter(998., nu=1.0E-6) 0.000998 References ---------- .. [1] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006. ''' if (nu and mu) or not rho or (not nu and not mu): raise Exception('Inputs must be rho and one of mu and nu.') if mu: return mu/rho elif nu: return nu*rho
python
def nu_mu_converter(rho, mu=None, nu=None): r'''Calculates either kinematic or dynamic viscosity, depending on inputs. Used when one type of viscosity is known as well as density, to obtain the other type. Raises an error if both types of viscosity or neither type of viscosity is provided. .. math:: \nu = \frac{\mu}{\rho} .. math:: \mu = \nu\rho Parameters ---------- rho : float Density, [kg/m^3] mu : float, optional Dynamic viscosity, [Pa*s] nu : float, optional Kinematic viscosity, [m^2/s] Returns ------- mu or nu : float Dynamic viscosity, Pa*s or Kinematic viscosity, m^2/s Examples -------- >>> nu_mu_converter(998., nu=1.0E-6) 0.000998 References ---------- .. [1] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006. ''' if (nu and mu) or not rho or (not nu and not mu): raise Exception('Inputs must be rho and one of mu and nu.') if mu: return mu/rho elif nu: return nu*rho
[ "def", "nu_mu_converter", "(", "rho", ",", "mu", "=", "None", ",", "nu", "=", "None", ")", ":", "if", "(", "nu", "and", "mu", ")", "or", "not", "rho", "or", "(", "not", "nu", "and", "not", "mu", ")", ":", "raise", "Exception", "(", "'Inputs must be rho and one of mu and nu.'", ")", "if", "mu", ":", "return", "mu", "/", "rho", "elif", "nu", ":", "return", "nu", "*", "rho" ]
r'''Calculates either kinematic or dynamic viscosity, depending on inputs. Used when one type of viscosity is known as well as density, to obtain the other type. Raises an error if both types of viscosity or neither type of viscosity is provided. .. math:: \nu = \frac{\mu}{\rho} .. math:: \mu = \nu\rho Parameters ---------- rho : float Density, [kg/m^3] mu : float, optional Dynamic viscosity, [Pa*s] nu : float, optional Kinematic viscosity, [m^2/s] Returns ------- mu or nu : float Dynamic viscosity, Pa*s or Kinematic viscosity, m^2/s Examples -------- >>> nu_mu_converter(998., nu=1.0E-6) 0.000998 References ---------- .. [1] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and Applications. Boston: McGraw Hill Higher Education, 2006.
[ "r", "Calculates", "either", "kinematic", "or", "dynamic", "viscosity", "depending", "on", "inputs", ".", "Used", "when", "one", "type", "of", "viscosity", "is", "known", "as", "well", "as", "density", "to", "obtain", "the", "other", "type", ".", "Raises", "an", "error", "if", "both", "types", "of", "viscosity", "or", "neither", "type", "of", "viscosity", "is", "provided", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/core.py#L2158-L2199
train
CalebBell/fluids
fluids/core.py
Engauge_2d_parser
def Engauge_2d_parser(lines, flat=False): '''Not exposed function to read a 2D file generated by engauge-digitizer; for curve fitting. ''' z_values = [] x_lists = [] y_lists = [] working_xs = [] working_ys = [] new_curve = True for line in lines: if line.strip() == '': new_curve = True elif new_curve: z = float(line.split(',')[1]) z_values.append(z) if working_xs and working_ys: x_lists.append(working_xs) y_lists.append(working_ys) working_xs = [] working_ys = [] new_curve = False else: x, y = [float(i) for i in line.strip().split(',')] working_xs.append(x) working_ys.append(y) x_lists.append(working_xs) y_lists.append(working_ys) if flat: all_zs = [] all_xs = [] all_ys = [] for z, xs, ys in zip(z_values, x_lists, y_lists): for x, y in zip(xs, ys): all_zs.append(z) all_xs.append(x) all_ys.append(y) return all_zs, all_xs, all_ys return z_values, x_lists, y_lists
python
def Engauge_2d_parser(lines, flat=False): '''Not exposed function to read a 2D file generated by engauge-digitizer; for curve fitting. ''' z_values = [] x_lists = [] y_lists = [] working_xs = [] working_ys = [] new_curve = True for line in lines: if line.strip() == '': new_curve = True elif new_curve: z = float(line.split(',')[1]) z_values.append(z) if working_xs and working_ys: x_lists.append(working_xs) y_lists.append(working_ys) working_xs = [] working_ys = [] new_curve = False else: x, y = [float(i) for i in line.strip().split(',')] working_xs.append(x) working_ys.append(y) x_lists.append(working_xs) y_lists.append(working_ys) if flat: all_zs = [] all_xs = [] all_ys = [] for z, xs, ys in zip(z_values, x_lists, y_lists): for x, y in zip(xs, ys): all_zs.append(z) all_xs.append(x) all_ys.append(y) return all_zs, all_xs, all_ys return z_values, x_lists, y_lists
[ "def", "Engauge_2d_parser", "(", "lines", ",", "flat", "=", "False", ")", ":", "z_values", "=", "[", "]", "x_lists", "=", "[", "]", "y_lists", "=", "[", "]", "working_xs", "=", "[", "]", "working_ys", "=", "[", "]", "new_curve", "=", "True", "for", "line", "in", "lines", ":", "if", "line", ".", "strip", "(", ")", "==", "''", ":", "new_curve", "=", "True", "elif", "new_curve", ":", "z", "=", "float", "(", "line", ".", "split", "(", "','", ")", "[", "1", "]", ")", "z_values", ".", "append", "(", "z", ")", "if", "working_xs", "and", "working_ys", ":", "x_lists", ".", "append", "(", "working_xs", ")", "y_lists", ".", "append", "(", "working_ys", ")", "working_xs", "=", "[", "]", "working_ys", "=", "[", "]", "new_curve", "=", "False", "else", ":", "x", ",", "y", "=", "[", "float", "(", "i", ")", "for", "i", "in", "line", ".", "strip", "(", ")", ".", "split", "(", "','", ")", "]", "working_xs", ".", "append", "(", "x", ")", "working_ys", ".", "append", "(", "y", ")", "x_lists", ".", "append", "(", "working_xs", ")", "y_lists", ".", "append", "(", "working_ys", ")", "if", "flat", ":", "all_zs", "=", "[", "]", "all_xs", "=", "[", "]", "all_ys", "=", "[", "]", "for", "z", ",", "xs", ",", "ys", "in", "zip", "(", "z_values", ",", "x_lists", ",", "y_lists", ")", ":", "for", "x", ",", "y", "in", "zip", "(", "xs", ",", "ys", ")", ":", "all_zs", ".", "append", "(", "z", ")", "all_xs", ".", "append", "(", "x", ")", "all_ys", ".", "append", "(", "y", ")", "return", "all_zs", ",", "all_xs", ",", "all_ys", "return", "z_values", ",", "x_lists", ",", "y_lists" ]
Not exposed function to read a 2D file generated by engauge-digitizer; for curve fitting.
[ "Not", "exposed", "function", "to", "read", "a", "2D", "file", "generated", "by", "engauge", "-", "digitizer", ";", "for", "curve", "fitting", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/core.py#L2869-L2910
train
CalebBell/fluids
fluids/compressible.py
isothermal_work_compression
def isothermal_work_compression(P1, P2, T, Z=1): r'''Calculates the work of compression or expansion of a gas going through an isothermal process. .. math:: W = zRT\ln\left(\frac{P_2}{P_1}\right) Parameters ---------- P1 : float Inlet pressure, [Pa] P2 : float Outlet pressure, [Pa] T : float Temperature of the gas going through an isothermal process, [K] Z : float Constant compressibility factor of the gas, [-] Returns ------- W : float Work performed per mole of gas compressed/expanded [J/mol] Notes ----- The full derivation with all forms is as follows: .. math:: W = \int_{P_1}^{P_2} V dP = zRT\int_{P_1}^{P_2} \frac{1}{P} dP .. math:: W = zRT\ln\left(\frac{P_2}{P_1}\right) = P_1 V_1 \ln\left(\frac{P_2} {P_1}\right) = P_2 V_2 \ln\left(\frac{P_2}{P_1}\right) The substitutions are according to the ideal gas law with compressibility: .. math: PV = ZRT The work of compression/expansion is the change in enthalpy of the gas. Returns negative values for expansion and positive values for compression. An average compressibility factor can be used where Z changes. For further accuracy, this expression can be used repeatedly with small changes in pressure and the work from each step summed. This is the best possible case for compression; all actual compresssors require more work to do the compression. By making the compression take a large number of stages and cooling the gas between stages, this can be approached reasonable closely. Integrally geared compressors are often used for this purpose. Examples -------- >>> isothermal_work_compression(1E5, 1E6, 300) 5743.427304244769 References ---------- .. [1] Couper, James R., W. Roy Penney, and James R. Fair. Chemical Process Equipment: Selection and Design. 2nd ed. Amsterdam ; Boston: Gulf Professional Publishing, 2009. ''' return Z*R*T*log(P2/P1)
python
def isothermal_work_compression(P1, P2, T, Z=1): r'''Calculates the work of compression or expansion of a gas going through an isothermal process. .. math:: W = zRT\ln\left(\frac{P_2}{P_1}\right) Parameters ---------- P1 : float Inlet pressure, [Pa] P2 : float Outlet pressure, [Pa] T : float Temperature of the gas going through an isothermal process, [K] Z : float Constant compressibility factor of the gas, [-] Returns ------- W : float Work performed per mole of gas compressed/expanded [J/mol] Notes ----- The full derivation with all forms is as follows: .. math:: W = \int_{P_1}^{P_2} V dP = zRT\int_{P_1}^{P_2} \frac{1}{P} dP .. math:: W = zRT\ln\left(\frac{P_2}{P_1}\right) = P_1 V_1 \ln\left(\frac{P_2} {P_1}\right) = P_2 V_2 \ln\left(\frac{P_2}{P_1}\right) The substitutions are according to the ideal gas law with compressibility: .. math: PV = ZRT The work of compression/expansion is the change in enthalpy of the gas. Returns negative values for expansion and positive values for compression. An average compressibility factor can be used where Z changes. For further accuracy, this expression can be used repeatedly with small changes in pressure and the work from each step summed. This is the best possible case for compression; all actual compresssors require more work to do the compression. By making the compression take a large number of stages and cooling the gas between stages, this can be approached reasonable closely. Integrally geared compressors are often used for this purpose. Examples -------- >>> isothermal_work_compression(1E5, 1E6, 300) 5743.427304244769 References ---------- .. [1] Couper, James R., W. Roy Penney, and James R. Fair. Chemical Process Equipment: Selection and Design. 2nd ed. Amsterdam ; Boston: Gulf Professional Publishing, 2009. ''' return Z*R*T*log(P2/P1)
[ "def", "isothermal_work_compression", "(", "P1", ",", "P2", ",", "T", ",", "Z", "=", "1", ")", ":", "return", "Z", "*", "R", "*", "T", "*", "log", "(", "P2", "/", "P1", ")" ]
r'''Calculates the work of compression or expansion of a gas going through an isothermal process. .. math:: W = zRT\ln\left(\frac{P_2}{P_1}\right) Parameters ---------- P1 : float Inlet pressure, [Pa] P2 : float Outlet pressure, [Pa] T : float Temperature of the gas going through an isothermal process, [K] Z : float Constant compressibility factor of the gas, [-] Returns ------- W : float Work performed per mole of gas compressed/expanded [J/mol] Notes ----- The full derivation with all forms is as follows: .. math:: W = \int_{P_1}^{P_2} V dP = zRT\int_{P_1}^{P_2} \frac{1}{P} dP .. math:: W = zRT\ln\left(\frac{P_2}{P_1}\right) = P_1 V_1 \ln\left(\frac{P_2} {P_1}\right) = P_2 V_2 \ln\left(\frac{P_2}{P_1}\right) The substitutions are according to the ideal gas law with compressibility: .. math: PV = ZRT The work of compression/expansion is the change in enthalpy of the gas. Returns negative values for expansion and positive values for compression. An average compressibility factor can be used where Z changes. For further accuracy, this expression can be used repeatedly with small changes in pressure and the work from each step summed. This is the best possible case for compression; all actual compresssors require more work to do the compression. By making the compression take a large number of stages and cooling the gas between stages, this can be approached reasonable closely. Integrally geared compressors are often used for this purpose. Examples -------- >>> isothermal_work_compression(1E5, 1E6, 300) 5743.427304244769 References ---------- .. [1] Couper, James R., W. Roy Penney, and James R. Fair. Chemical Process Equipment: Selection and Design. 2nd ed. Amsterdam ; Boston: Gulf Professional Publishing, 2009.
[ "r", "Calculates", "the", "work", "of", "compression", "or", "expansion", "of", "a", "gas", "going", "through", "an", "isothermal", "process", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/compressible.py#L38-L102
train
CalebBell/fluids
fluids/compressible.py
isentropic_T_rise_compression
def isentropic_T_rise_compression(T1, P1, P2, k, eta=1): r'''Calculates the increase in temperature of a fluid which is compressed or expanded under isentropic, adiabatic conditions assuming constant Cp and Cv. The polytropic model is the same equation; just provide `n` instead of `k` and use a polytropic efficienty for `eta` instead of a isentropic efficiency. .. math:: T_2 = T_1 + \frac{\Delta T_s}{\eta_s} = T_1 \left\{1 + \frac{1} {\eta_s}\left[\left(\frac{P_2}{P_1}\right)^{(k-1)/k}-1\right]\right\} Parameters ---------- T1 : float Initial temperature of gas [K] P1 : float Initial pressure of gas [Pa] P2 : float Final pressure of gas [Pa] k : float Isentropic exponent of the gas (Cp/Cv) or polytropic exponent `n` to use this as a polytropic model instead [-] eta : float Isentropic efficiency of the process or polytropic efficiency of the process to use this as a polytropic model instead [-] Returns ------- T2 : float Final temperature of gas [K] Notes ----- For the ideal case (`eta`=1), the model simplifies to: .. math:: \frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{(k-1)/k} Examples -------- >>> isentropic_T_rise_compression(286.8, 54050, 432400, 1.4) 519.5230938217768 References ---------- .. [1] Couper, James R., W. Roy Penney, and James R. Fair. Chemical Process Equipment: Selection and Design. 2nd ed. Amsterdam ; Boston: Gulf Professional Publishing, 2009. .. [2] GPSA. GPSA Engineering Data Book. 13th edition. Gas Processors Suppliers Association, Tulsa, OK, 2012. ''' dT = T1*((P2/P1)**((k - 1.0)/k) - 1.0)/eta return T1 + dT
python
def isentropic_T_rise_compression(T1, P1, P2, k, eta=1): r'''Calculates the increase in temperature of a fluid which is compressed or expanded under isentropic, adiabatic conditions assuming constant Cp and Cv. The polytropic model is the same equation; just provide `n` instead of `k` and use a polytropic efficienty for `eta` instead of a isentropic efficiency. .. math:: T_2 = T_1 + \frac{\Delta T_s}{\eta_s} = T_1 \left\{1 + \frac{1} {\eta_s}\left[\left(\frac{P_2}{P_1}\right)^{(k-1)/k}-1\right]\right\} Parameters ---------- T1 : float Initial temperature of gas [K] P1 : float Initial pressure of gas [Pa] P2 : float Final pressure of gas [Pa] k : float Isentropic exponent of the gas (Cp/Cv) or polytropic exponent `n` to use this as a polytropic model instead [-] eta : float Isentropic efficiency of the process or polytropic efficiency of the process to use this as a polytropic model instead [-] Returns ------- T2 : float Final temperature of gas [K] Notes ----- For the ideal case (`eta`=1), the model simplifies to: .. math:: \frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{(k-1)/k} Examples -------- >>> isentropic_T_rise_compression(286.8, 54050, 432400, 1.4) 519.5230938217768 References ---------- .. [1] Couper, James R., W. Roy Penney, and James R. Fair. Chemical Process Equipment: Selection and Design. 2nd ed. Amsterdam ; Boston: Gulf Professional Publishing, 2009. .. [2] GPSA. GPSA Engineering Data Book. 13th edition. Gas Processors Suppliers Association, Tulsa, OK, 2012. ''' dT = T1*((P2/P1)**((k - 1.0)/k) - 1.0)/eta return T1 + dT
[ "def", "isentropic_T_rise_compression", "(", "T1", ",", "P1", ",", "P2", ",", "k", ",", "eta", "=", "1", ")", ":", "dT", "=", "T1", "*", "(", "(", "P2", "/", "P1", ")", "**", "(", "(", "k", "-", "1.0", ")", "/", "k", ")", "-", "1.0", ")", "/", "eta", "return", "T1", "+", "dT" ]
r'''Calculates the increase in temperature of a fluid which is compressed or expanded under isentropic, adiabatic conditions assuming constant Cp and Cv. The polytropic model is the same equation; just provide `n` instead of `k` and use a polytropic efficienty for `eta` instead of a isentropic efficiency. .. math:: T_2 = T_1 + \frac{\Delta T_s}{\eta_s} = T_1 \left\{1 + \frac{1} {\eta_s}\left[\left(\frac{P_2}{P_1}\right)^{(k-1)/k}-1\right]\right\} Parameters ---------- T1 : float Initial temperature of gas [K] P1 : float Initial pressure of gas [Pa] P2 : float Final pressure of gas [Pa] k : float Isentropic exponent of the gas (Cp/Cv) or polytropic exponent `n` to use this as a polytropic model instead [-] eta : float Isentropic efficiency of the process or polytropic efficiency of the process to use this as a polytropic model instead [-] Returns ------- T2 : float Final temperature of gas [K] Notes ----- For the ideal case (`eta`=1), the model simplifies to: .. math:: \frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{(k-1)/k} Examples -------- >>> isentropic_T_rise_compression(286.8, 54050, 432400, 1.4) 519.5230938217768 References ---------- .. [1] Couper, James R., W. Roy Penney, and James R. Fair. Chemical Process Equipment: Selection and Design. 2nd ed. Amsterdam ; Boston: Gulf Professional Publishing, 2009. .. [2] GPSA. GPSA Engineering Data Book. 13th edition. Gas Processors Suppliers Association, Tulsa, OK, 2012.
[ "r", "Calculates", "the", "increase", "in", "temperature", "of", "a", "fluid", "which", "is", "compressed", "or", "expanded", "under", "isentropic", "adiabatic", "conditions", "assuming", "constant", "Cp", "and", "Cv", ".", "The", "polytropic", "model", "is", "the", "same", "equation", ";", "just", "provide", "n", "instead", "of", "k", "and", "use", "a", "polytropic", "efficienty", "for", "eta", "instead", "of", "a", "isentropic", "efficiency", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/compressible.py#L212-L264
train
CalebBell/fluids
fluids/compressible.py
isentropic_efficiency
def isentropic_efficiency(P1, P2, k, eta_s=None, eta_p=None): r'''Calculates either isentropic or polytropic efficiency from the other type of efficiency. .. math:: \eta_s = \frac{(P_2/P_1)^{(k-1)/k}-1} {(P_2/P_1)^{\frac{k-1}{k\eta_p}}-1} .. math:: \eta_p = \frac{\left(k - 1\right) \log{\left (\frac{P_{2}}{P_{1}} \right )}}{k \log{\left (\frac{1}{\eta_{s}} \left(\eta_{s} + \left(\frac{P_{2}}{P_{1}}\right)^{\frac{1}{k} \left(k - 1\right)} - 1\right) \right )}} Parameters ---------- P1 : float Initial pressure of gas [Pa] P2 : float Final pressure of gas [Pa] k : float Isentropic exponent of the gas (Cp/Cv) [-] eta_s : float, optional Isentropic (adiabatic) efficiency of the process, [-] eta_p : float, optional Polytropic efficiency of the process, [-] Returns ------- eta_s or eta_p : float Isentropic or polytropic efficiency, depending on input, [-] Notes ----- The form for obtained `eta_p` from `eta_s` was derived with SymPy. Examples -------- >>> isentropic_efficiency(1E5, 1E6, 1.4, eta_p=0.78) 0.7027614191263858 References ---------- .. [1] Couper, James R., W. Roy Penney, and James R. Fair. Chemical Process Equipment: Selection and Design. 2nd ed. Amsterdam ; Boston: Gulf Professional Publishing, 2009. ''' if eta_s is None and eta_p: return ((P2/P1)**((k-1.0)/k)-1.0)/((P2/P1)**((k-1.0)/(k*eta_p))-1.0) elif eta_p is None and eta_s: return (k - 1.0)*log(P2/P1)/(k*log( (eta_s + (P2/P1)**((k - 1.0)/k) - 1.0)/eta_s)) else: raise Exception('Either eta_s or eta_p is required')
python
def isentropic_efficiency(P1, P2, k, eta_s=None, eta_p=None): r'''Calculates either isentropic or polytropic efficiency from the other type of efficiency. .. math:: \eta_s = \frac{(P_2/P_1)^{(k-1)/k}-1} {(P_2/P_1)^{\frac{k-1}{k\eta_p}}-1} .. math:: \eta_p = \frac{\left(k - 1\right) \log{\left (\frac{P_{2}}{P_{1}} \right )}}{k \log{\left (\frac{1}{\eta_{s}} \left(\eta_{s} + \left(\frac{P_{2}}{P_{1}}\right)^{\frac{1}{k} \left(k - 1\right)} - 1\right) \right )}} Parameters ---------- P1 : float Initial pressure of gas [Pa] P2 : float Final pressure of gas [Pa] k : float Isentropic exponent of the gas (Cp/Cv) [-] eta_s : float, optional Isentropic (adiabatic) efficiency of the process, [-] eta_p : float, optional Polytropic efficiency of the process, [-] Returns ------- eta_s or eta_p : float Isentropic or polytropic efficiency, depending on input, [-] Notes ----- The form for obtained `eta_p` from `eta_s` was derived with SymPy. Examples -------- >>> isentropic_efficiency(1E5, 1E6, 1.4, eta_p=0.78) 0.7027614191263858 References ---------- .. [1] Couper, James R., W. Roy Penney, and James R. Fair. Chemical Process Equipment: Selection and Design. 2nd ed. Amsterdam ; Boston: Gulf Professional Publishing, 2009. ''' if eta_s is None and eta_p: return ((P2/P1)**((k-1.0)/k)-1.0)/((P2/P1)**((k-1.0)/(k*eta_p))-1.0) elif eta_p is None and eta_s: return (k - 1.0)*log(P2/P1)/(k*log( (eta_s + (P2/P1)**((k - 1.0)/k) - 1.0)/eta_s)) else: raise Exception('Either eta_s or eta_p is required')
[ "def", "isentropic_efficiency", "(", "P1", ",", "P2", ",", "k", ",", "eta_s", "=", "None", ",", "eta_p", "=", "None", ")", ":", "if", "eta_s", "is", "None", "and", "eta_p", ":", "return", "(", "(", "P2", "/", "P1", ")", "**", "(", "(", "k", "-", "1.0", ")", "/", "k", ")", "-", "1.0", ")", "/", "(", "(", "P2", "/", "P1", ")", "**", "(", "(", "k", "-", "1.0", ")", "/", "(", "k", "*", "eta_p", ")", ")", "-", "1.0", ")", "elif", "eta_p", "is", "None", "and", "eta_s", ":", "return", "(", "k", "-", "1.0", ")", "*", "log", "(", "P2", "/", "P1", ")", "/", "(", "k", "*", "log", "(", "(", "eta_s", "+", "(", "P2", "/", "P1", ")", "**", "(", "(", "k", "-", "1.0", ")", "/", "k", ")", "-", "1.0", ")", "/", "eta_s", ")", ")", "else", ":", "raise", "Exception", "(", "'Either eta_s or eta_p is required'", ")" ]
r'''Calculates either isentropic or polytropic efficiency from the other type of efficiency. .. math:: \eta_s = \frac{(P_2/P_1)^{(k-1)/k}-1} {(P_2/P_1)^{\frac{k-1}{k\eta_p}}-1} .. math:: \eta_p = \frac{\left(k - 1\right) \log{\left (\frac{P_{2}}{P_{1}} \right )}}{k \log{\left (\frac{1}{\eta_{s}} \left(\eta_{s} + \left(\frac{P_{2}}{P_{1}}\right)^{\frac{1}{k} \left(k - 1\right)} - 1\right) \right )}} Parameters ---------- P1 : float Initial pressure of gas [Pa] P2 : float Final pressure of gas [Pa] k : float Isentropic exponent of the gas (Cp/Cv) [-] eta_s : float, optional Isentropic (adiabatic) efficiency of the process, [-] eta_p : float, optional Polytropic efficiency of the process, [-] Returns ------- eta_s or eta_p : float Isentropic or polytropic efficiency, depending on input, [-] Notes ----- The form for obtained `eta_p` from `eta_s` was derived with SymPy. Examples -------- >>> isentropic_efficiency(1E5, 1E6, 1.4, eta_p=0.78) 0.7027614191263858 References ---------- .. [1] Couper, James R., W. Roy Penney, and James R. Fair. Chemical Process Equipment: Selection and Design. 2nd ed. Amsterdam ; Boston: Gulf Professional Publishing, 2009.
[ "r", "Calculates", "either", "isentropic", "or", "polytropic", "efficiency", "from", "the", "other", "type", "of", "efficiency", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/compressible.py#L267-L320
train
CalebBell/fluids
fluids/compressible.py
P_isothermal_critical_flow
def P_isothermal_critical_flow(P, fd, D, L): r'''Calculates critical flow pressure `Pcf` for a fluid flowing isothermally and suffering pressure drop caused by a pipe's friction factor. .. math:: P_2 = P_{1} e^{\frac{1}{2 D} \left(D \left(\operatorname{LambertW} {\left (- e^{\frac{1}{D} \left(- D - L f_d\right)} \right )} + 1\right) + L f_d\right)} Parameters ---------- P : float Inlet pressure [Pa] fd : float Darcy friction factor for flow in pipe [-] D : float Diameter of pipe, [m] L : float Length of pipe, [m] Returns ------- Pcf : float Critical flow pressure of a compressible gas flowing from `P1` to `Pcf` in a tube of length L and friction factor `fd` [Pa] Notes ----- Assumes isothermal flow. Developed based on the `isothermal_gas` model, using SymPy. The isothermal gas model is solved for maximum mass flow rate; any pressure drop under it is impossible due to the formation of a shock wave. Examples -------- >>> P_isothermal_critical_flow(P=1E6, fd=0.00185, L=1000., D=0.5) 389699.7317645518 References ---------- .. [1] Wilkes, James O. Fluid Mechanics for Chemical Engineers with Microfluidics and CFD. 2 edition. Upper Saddle River, NJ: Prentice Hall, 2005. ''' # Correct branch of lambertw found by trial and error lambert_term = float(lambertw(-exp((-D - L*fd)/D), -1).real) return P*exp((D*(lambert_term + 1.0) + L*fd)/(2.0*D))
python
def P_isothermal_critical_flow(P, fd, D, L): r'''Calculates critical flow pressure `Pcf` for a fluid flowing isothermally and suffering pressure drop caused by a pipe's friction factor. .. math:: P_2 = P_{1} e^{\frac{1}{2 D} \left(D \left(\operatorname{LambertW} {\left (- e^{\frac{1}{D} \left(- D - L f_d\right)} \right )} + 1\right) + L f_d\right)} Parameters ---------- P : float Inlet pressure [Pa] fd : float Darcy friction factor for flow in pipe [-] D : float Diameter of pipe, [m] L : float Length of pipe, [m] Returns ------- Pcf : float Critical flow pressure of a compressible gas flowing from `P1` to `Pcf` in a tube of length L and friction factor `fd` [Pa] Notes ----- Assumes isothermal flow. Developed based on the `isothermal_gas` model, using SymPy. The isothermal gas model is solved for maximum mass flow rate; any pressure drop under it is impossible due to the formation of a shock wave. Examples -------- >>> P_isothermal_critical_flow(P=1E6, fd=0.00185, L=1000., D=0.5) 389699.7317645518 References ---------- .. [1] Wilkes, James O. Fluid Mechanics for Chemical Engineers with Microfluidics and CFD. 2 edition. Upper Saddle River, NJ: Prentice Hall, 2005. ''' # Correct branch of lambertw found by trial and error lambert_term = float(lambertw(-exp((-D - L*fd)/D), -1).real) return P*exp((D*(lambert_term + 1.0) + L*fd)/(2.0*D))
[ "def", "P_isothermal_critical_flow", "(", "P", ",", "fd", ",", "D", ",", "L", ")", ":", "# Correct branch of lambertw found by trial and error", "lambert_term", "=", "float", "(", "lambertw", "(", "-", "exp", "(", "(", "-", "D", "-", "L", "*", "fd", ")", "/", "D", ")", ",", "-", "1", ")", ".", "real", ")", "return", "P", "*", "exp", "(", "(", "D", "*", "(", "lambert_term", "+", "1.0", ")", "+", "L", "*", "fd", ")", "/", "(", "2.0", "*", "D", ")", ")" ]
r'''Calculates critical flow pressure `Pcf` for a fluid flowing isothermally and suffering pressure drop caused by a pipe's friction factor. .. math:: P_2 = P_{1} e^{\frac{1}{2 D} \left(D \left(\operatorname{LambertW} {\left (- e^{\frac{1}{D} \left(- D - L f_d\right)} \right )} + 1\right) + L f_d\right)} Parameters ---------- P : float Inlet pressure [Pa] fd : float Darcy friction factor for flow in pipe [-] D : float Diameter of pipe, [m] L : float Length of pipe, [m] Returns ------- Pcf : float Critical flow pressure of a compressible gas flowing from `P1` to `Pcf` in a tube of length L and friction factor `fd` [Pa] Notes ----- Assumes isothermal flow. Developed based on the `isothermal_gas` model, using SymPy. The isothermal gas model is solved for maximum mass flow rate; any pressure drop under it is impossible due to the formation of a shock wave. Examples -------- >>> P_isothermal_critical_flow(P=1E6, fd=0.00185, L=1000., D=0.5) 389699.7317645518 References ---------- .. [1] Wilkes, James O. Fluid Mechanics for Chemical Engineers with Microfluidics and CFD. 2 edition. Upper Saddle River, NJ: Prentice Hall, 2005.
[ "r", "Calculates", "critical", "flow", "pressure", "Pcf", "for", "a", "fluid", "flowing", "isothermally", "and", "suffering", "pressure", "drop", "caused", "by", "a", "pipe", "s", "friction", "factor", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/compressible.py#L452-L499
train
CalebBell/fluids
fluids/compressible.py
P_upstream_isothermal_critical_flow
def P_upstream_isothermal_critical_flow(P, fd, D, L): '''Not part of the public API. Reverses `P_isothermal_critical_flow`. Examples -------- >>> P_upstream_isothermal_critical_flow(P=389699.7317645518, fd=0.00185, ... L=1000., D=0.5) 1000000.0000000001 ''' lambertw_term = float(lambertw(-exp(-(fd*L+D)/D), -1).real) return exp(-0.5*(D*lambertw_term+fd*L+D)/D)*P
python
def P_upstream_isothermal_critical_flow(P, fd, D, L): '''Not part of the public API. Reverses `P_isothermal_critical_flow`. Examples -------- >>> P_upstream_isothermal_critical_flow(P=389699.7317645518, fd=0.00185, ... L=1000., D=0.5) 1000000.0000000001 ''' lambertw_term = float(lambertw(-exp(-(fd*L+D)/D), -1).real) return exp(-0.5*(D*lambertw_term+fd*L+D)/D)*P
[ "def", "P_upstream_isothermal_critical_flow", "(", "P", ",", "fd", ",", "D", ",", "L", ")", ":", "lambertw_term", "=", "float", "(", "lambertw", "(", "-", "exp", "(", "-", "(", "fd", "*", "L", "+", "D", ")", "/", "D", ")", ",", "-", "1", ")", ".", "real", ")", "return", "exp", "(", "-", "0.5", "*", "(", "D", "*", "lambertw_term", "+", "fd", "*", "L", "+", "D", ")", "/", "D", ")", "*", "P" ]
Not part of the public API. Reverses `P_isothermal_critical_flow`. Examples -------- >>> P_upstream_isothermal_critical_flow(P=389699.7317645518, fd=0.00185, ... L=1000., D=0.5) 1000000.0000000001
[ "Not", "part", "of", "the", "public", "API", ".", "Reverses", "P_isothermal_critical_flow", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/compressible.py#L502-L512
train
CalebBell/fluids
fluids/compressible.py
is_critical_flow
def is_critical_flow(P1, P2, k): r'''Determines if a flow of a fluid driven by pressure gradient P1 - P2 is critical, for a fluid with the given isentropic coefficient. This function calculates critical flow pressure, and checks if this is larger than P2. If so, the flow is critical and choked. Parameters ---------- P1 : float Higher, source pressure [Pa] P2 : float Lower, downstream pressure [Pa] k : float Isentropic coefficient [] Returns ------- flowtype : bool True if the flow is choked; otherwise False Notes ----- Assumes isentropic flow. Uses P_critical_flow function. Examples -------- Examples 1-2 from API 520. >>> is_critical_flow(670E3, 532E3, 1.11) False >>> is_critical_flow(670E3, 101E3, 1.11) True References ---------- .. [1] API. 2014. API 520 - Part 1 Sizing, Selection, and Installation of Pressure-relieving Devices, Part I - Sizing and Selection, 9E. ''' Pcf = P_critical_flow(P1, k) return Pcf > P2
python
def is_critical_flow(P1, P2, k): r'''Determines if a flow of a fluid driven by pressure gradient P1 - P2 is critical, for a fluid with the given isentropic coefficient. This function calculates critical flow pressure, and checks if this is larger than P2. If so, the flow is critical and choked. Parameters ---------- P1 : float Higher, source pressure [Pa] P2 : float Lower, downstream pressure [Pa] k : float Isentropic coefficient [] Returns ------- flowtype : bool True if the flow is choked; otherwise False Notes ----- Assumes isentropic flow. Uses P_critical_flow function. Examples -------- Examples 1-2 from API 520. >>> is_critical_flow(670E3, 532E3, 1.11) False >>> is_critical_flow(670E3, 101E3, 1.11) True References ---------- .. [1] API. 2014. API 520 - Part 1 Sizing, Selection, and Installation of Pressure-relieving Devices, Part I - Sizing and Selection, 9E. ''' Pcf = P_critical_flow(P1, k) return Pcf > P2
[ "def", "is_critical_flow", "(", "P1", ",", "P2", ",", "k", ")", ":", "Pcf", "=", "P_critical_flow", "(", "P1", ",", "k", ")", "return", "Pcf", ">", "P2" ]
r'''Determines if a flow of a fluid driven by pressure gradient P1 - P2 is critical, for a fluid with the given isentropic coefficient. This function calculates critical flow pressure, and checks if this is larger than P2. If so, the flow is critical and choked. Parameters ---------- P1 : float Higher, source pressure [Pa] P2 : float Lower, downstream pressure [Pa] k : float Isentropic coefficient [] Returns ------- flowtype : bool True if the flow is choked; otherwise False Notes ----- Assumes isentropic flow. Uses P_critical_flow function. Examples -------- Examples 1-2 from API 520. >>> is_critical_flow(670E3, 532E3, 1.11) False >>> is_critical_flow(670E3, 101E3, 1.11) True References ---------- .. [1] API. 2014. API 520 - Part 1 Sizing, Selection, and Installation of Pressure-relieving Devices, Part I - Sizing and Selection, 9E.
[ "r", "Determines", "if", "a", "flow", "of", "a", "fluid", "driven", "by", "pressure", "gradient", "P1", "-", "P2", "is", "critical", "for", "a", "fluid", "with", "the", "given", "isentropic", "coefficient", ".", "This", "function", "calculates", "critical", "flow", "pressure", "and", "checks", "if", "this", "is", "larger", "than", "P2", ".", "If", "so", "the", "flow", "is", "critical", "and", "choked", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/compressible.py#L515-L554
train
CalebBell/fluids
fluids/friction.py
one_phase_dP
def one_phase_dP(m, rho, mu, D, roughness=0, L=1, Method=None): r'''Calculates single-phase pressure drop. This is a wrapper around other methods. Parameters ---------- m : float Mass flow rate of fluid, [kg/s] rho : float Density of fluid, [kg/m^3] mu : float Viscosity of fluid, [Pa*s] D : float Diameter of pipe, [m] roughness : float, optional Roughness of pipe for use in calculating friction factor, [m] L : float, optional Length of pipe, [m] Method : string, optional A string of the function name to use Returns ------- dP : float Pressure drop of the single-phase flow, [Pa] Notes ----- Examples -------- >>> one_phase_dP(10.0, 1000, 1E-5, .1, L=1) 63.43447321097365 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' D2 = D*D V = m/(0.25*pi*D2*rho) Re = Reynolds(V=V, rho=rho, mu=mu, D=D) fd = friction_factor(Re=Re, eD=roughness/D, Method=Method) dP = fd*L/D*(0.5*rho*V*V) return dP
python
def one_phase_dP(m, rho, mu, D, roughness=0, L=1, Method=None): r'''Calculates single-phase pressure drop. This is a wrapper around other methods. Parameters ---------- m : float Mass flow rate of fluid, [kg/s] rho : float Density of fluid, [kg/m^3] mu : float Viscosity of fluid, [Pa*s] D : float Diameter of pipe, [m] roughness : float, optional Roughness of pipe for use in calculating friction factor, [m] L : float, optional Length of pipe, [m] Method : string, optional A string of the function name to use Returns ------- dP : float Pressure drop of the single-phase flow, [Pa] Notes ----- Examples -------- >>> one_phase_dP(10.0, 1000, 1E-5, .1, L=1) 63.43447321097365 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009. ''' D2 = D*D V = m/(0.25*pi*D2*rho) Re = Reynolds(V=V, rho=rho, mu=mu, D=D) fd = friction_factor(Re=Re, eD=roughness/D, Method=Method) dP = fd*L/D*(0.5*rho*V*V) return dP
[ "def", "one_phase_dP", "(", "m", ",", "rho", ",", "mu", ",", "D", ",", "roughness", "=", "0", ",", "L", "=", "1", ",", "Method", "=", "None", ")", ":", "D2", "=", "D", "*", "D", "V", "=", "m", "/", "(", "0.25", "*", "pi", "*", "D2", "*", "rho", ")", "Re", "=", "Reynolds", "(", "V", "=", "V", ",", "rho", "=", "rho", ",", "mu", "=", "mu", ",", "D", "=", "D", ")", "fd", "=", "friction_factor", "(", "Re", "=", "Re", ",", "eD", "=", "roughness", "/", "D", ",", "Method", "=", "Method", ")", "dP", "=", "fd", "*", "L", "/", "D", "*", "(", "0.5", "*", "rho", "*", "V", "*", "V", ")", "return", "dP" ]
r'''Calculates single-phase pressure drop. This is a wrapper around other methods. Parameters ---------- m : float Mass flow rate of fluid, [kg/s] rho : float Density of fluid, [kg/m^3] mu : float Viscosity of fluid, [Pa*s] D : float Diameter of pipe, [m] roughness : float, optional Roughness of pipe for use in calculating friction factor, [m] L : float, optional Length of pipe, [m] Method : string, optional A string of the function name to use Returns ------- dP : float Pressure drop of the single-phase flow, [Pa] Notes ----- Examples -------- >>> one_phase_dP(10.0, 1000, 1E-5, .1, L=1) 63.43447321097365 References ---------- .. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane, 2009.
[ "r", "Calculates", "single", "-", "phase", "pressure", "drop", ".", "This", "is", "a", "wrapper", "around", "other", "methods", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/friction.py#L3874-L3918
train
CalebBell/fluids
fluids/flow_meter.py
discharge_coefficient_to_K
def discharge_coefficient_to_K(D, Do, C): r'''Converts a discharge coefficient to a standard loss coefficient, for use in computation of the actual pressure drop of an orifice or other device. .. math:: K = \left[\frac{\sqrt{1-\beta^4(1-C^2)}}{C\beta^2} - 1\right]^2 Parameters ---------- D : float Upstream internal pipe diameter, [m] Do : float Diameter of orifice at flow conditions, [m] C : float Coefficient of discharge of the orifice, [-] Returns ------- K : float Loss coefficient with respect to the velocity and density of the fluid just upstream of the orifice, [-] Notes ----- If expansibility is used in the orifice calculation, the result will not match with the specified pressure drop formula in [1]_; it can almost be matched by dividing the calculated mass flow by the expansibility factor and using that mass flow with the loss coefficient. Examples -------- >>> discharge_coefficient_to_K(D=0.07366, Do=0.05, C=0.61512) 5.2314291729754 References ---------- .. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001. .. [2] ISO 5167-2:2003 - Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full -- Part 2: Orifice Plates. ''' beta = Do/D beta2 = beta*beta beta4 = beta2*beta2 return ((1.0 - beta4*(1.0 - C*C))**0.5/(C*beta2) - 1.0)**2
python
def discharge_coefficient_to_K(D, Do, C): r'''Converts a discharge coefficient to a standard loss coefficient, for use in computation of the actual pressure drop of an orifice or other device. .. math:: K = \left[\frac{\sqrt{1-\beta^4(1-C^2)}}{C\beta^2} - 1\right]^2 Parameters ---------- D : float Upstream internal pipe diameter, [m] Do : float Diameter of orifice at flow conditions, [m] C : float Coefficient of discharge of the orifice, [-] Returns ------- K : float Loss coefficient with respect to the velocity and density of the fluid just upstream of the orifice, [-] Notes ----- If expansibility is used in the orifice calculation, the result will not match with the specified pressure drop formula in [1]_; it can almost be matched by dividing the calculated mass flow by the expansibility factor and using that mass flow with the loss coefficient. Examples -------- >>> discharge_coefficient_to_K(D=0.07366, Do=0.05, C=0.61512) 5.2314291729754 References ---------- .. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001. .. [2] ISO 5167-2:2003 - Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full -- Part 2: Orifice Plates. ''' beta = Do/D beta2 = beta*beta beta4 = beta2*beta2 return ((1.0 - beta4*(1.0 - C*C))**0.5/(C*beta2) - 1.0)**2
[ "def", "discharge_coefficient_to_K", "(", "D", ",", "Do", ",", "C", ")", ":", "beta", "=", "Do", "/", "D", "beta2", "=", "beta", "*", "beta", "beta4", "=", "beta2", "*", "beta2", "return", "(", "(", "1.0", "-", "beta4", "*", "(", "1.0", "-", "C", "*", "C", ")", ")", "**", "0.5", "/", "(", "C", "*", "beta2", ")", "-", "1.0", ")", "**", "2" ]
r'''Converts a discharge coefficient to a standard loss coefficient, for use in computation of the actual pressure drop of an orifice or other device. .. math:: K = \left[\frac{\sqrt{1-\beta^4(1-C^2)}}{C\beta^2} - 1\right]^2 Parameters ---------- D : float Upstream internal pipe diameter, [m] Do : float Diameter of orifice at flow conditions, [m] C : float Coefficient of discharge of the orifice, [-] Returns ------- K : float Loss coefficient with respect to the velocity and density of the fluid just upstream of the orifice, [-] Notes ----- If expansibility is used in the orifice calculation, the result will not match with the specified pressure drop formula in [1]_; it can almost be matched by dividing the calculated mass flow by the expansibility factor and using that mass flow with the loss coefficient. Examples -------- >>> discharge_coefficient_to_K(D=0.07366, Do=0.05, C=0.61512) 5.2314291729754 References ---------- .. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001. .. [2] ISO 5167-2:2003 - Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full -- Part 2: Orifice Plates.
[ "r", "Converts", "a", "discharge", "coefficient", "to", "a", "standard", "loss", "coefficient", "for", "use", "in", "computation", "of", "the", "actual", "pressure", "drop", "of", "an", "orifice", "or", "other", "device", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/flow_meter.py#L438-L484
train
CalebBell/fluids
fluids/particle_size_distribution.py
ParticleSizeDistributionContinuous.dn
def dn(self, fraction, n=None): r'''Computes the diameter at which a specified `fraction` of the distribution falls under. Utilizes a bounded solver to search for the desired diameter. Parameters ---------- fraction : float Fraction of the distribution which should be under the calculated diameter, [-] n : int, optional None (for the `order` specified when the distribution was created), 0 (number), 1 (length), 2 (area), 3 (volume/mass), or any integer, [-] Returns ------- d : float Particle size diameter, [m] Examples -------- >>> psd = PSDLognormal(s=0.5, d_characteristic=5E-6, order=3) >>> psd.dn(.5) 5e-06 >>> psd.dn(1) 0.00029474365335233776 >>> psd.dn(0) 0.0 ''' if fraction == 1.0: # Avoid returning the maximum value of the search interval fraction = 1.0 - epsilon if fraction < 0: raise ValueError('Fraction must be more than 0') elif fraction == 0: # pragma: no cover if self.truncated: return self.d_min return 0.0 # Solve to float prevision limit - works well, but is there a real # point when with mpmath it would never happen? # dist.cdf(dist.dn(0)-1e-35) == 0 # dist.cdf(dist.dn(0)-1e-36) == input # dn(0) == 1.9663615597466143e-20 # def err(d): # cdf = self.cdf(d, n=n) # if cdf == 0: # cdf = -1 # return cdf # return brenth(err, self.d_minimum, self.d_excessive, maxiter=1000, xtol=1E-200) elif fraction > 1: raise ValueError('Fraction less than 1') # As the dn may be incredibly small, it is required for the absolute # tolerance to not be happy - it needs to continue iterating as long # as necessary to pin down the answer return brenth(lambda d:self.cdf(d, n=n) -fraction, self.d_minimum, self.d_excessive, maxiter=1000, xtol=1E-200)
python
def dn(self, fraction, n=None): r'''Computes the diameter at which a specified `fraction` of the distribution falls under. Utilizes a bounded solver to search for the desired diameter. Parameters ---------- fraction : float Fraction of the distribution which should be under the calculated diameter, [-] n : int, optional None (for the `order` specified when the distribution was created), 0 (number), 1 (length), 2 (area), 3 (volume/mass), or any integer, [-] Returns ------- d : float Particle size diameter, [m] Examples -------- >>> psd = PSDLognormal(s=0.5, d_characteristic=5E-6, order=3) >>> psd.dn(.5) 5e-06 >>> psd.dn(1) 0.00029474365335233776 >>> psd.dn(0) 0.0 ''' if fraction == 1.0: # Avoid returning the maximum value of the search interval fraction = 1.0 - epsilon if fraction < 0: raise ValueError('Fraction must be more than 0') elif fraction == 0: # pragma: no cover if self.truncated: return self.d_min return 0.0 # Solve to float prevision limit - works well, but is there a real # point when with mpmath it would never happen? # dist.cdf(dist.dn(0)-1e-35) == 0 # dist.cdf(dist.dn(0)-1e-36) == input # dn(0) == 1.9663615597466143e-20 # def err(d): # cdf = self.cdf(d, n=n) # if cdf == 0: # cdf = -1 # return cdf # return brenth(err, self.d_minimum, self.d_excessive, maxiter=1000, xtol=1E-200) elif fraction > 1: raise ValueError('Fraction less than 1') # As the dn may be incredibly small, it is required for the absolute # tolerance to not be happy - it needs to continue iterating as long # as necessary to pin down the answer return brenth(lambda d:self.cdf(d, n=n) -fraction, self.d_minimum, self.d_excessive, maxiter=1000, xtol=1E-200)
[ "def", "dn", "(", "self", ",", "fraction", ",", "n", "=", "None", ")", ":", "if", "fraction", "==", "1.0", ":", "# Avoid returning the maximum value of the search interval", "fraction", "=", "1.0", "-", "epsilon", "if", "fraction", "<", "0", ":", "raise", "ValueError", "(", "'Fraction must be more than 0'", ")", "elif", "fraction", "==", "0", ":", "# pragma: no cover", "if", "self", ".", "truncated", ":", "return", "self", ".", "d_min", "return", "0.0", "# Solve to float prevision limit - works well, but is there a real", "# point when with mpmath it would never happen?", "# dist.cdf(dist.dn(0)-1e-35) == 0", "# dist.cdf(dist.dn(0)-1e-36) == input", "# dn(0) == 1.9663615597466143e-20", "# def err(d): ", "# cdf = self.cdf(d, n=n)", "# if cdf == 0:", "# cdf = -1", "# return cdf", "# return brenth(err, self.d_minimum, self.d_excessive, maxiter=1000, xtol=1E-200)", "elif", "fraction", ">", "1", ":", "raise", "ValueError", "(", "'Fraction less than 1'", ")", "# As the dn may be incredibly small, it is required for the absolute ", "# tolerance to not be happy - it needs to continue iterating as long", "# as necessary to pin down the answer", "return", "brenth", "(", "lambda", "d", ":", "self", ".", "cdf", "(", "d", ",", "n", "=", "n", ")", "-", "fraction", ",", "self", ".", "d_minimum", ",", "self", ".", "d_excessive", ",", "maxiter", "=", "1000", ",", "xtol", "=", "1E-200", ")" ]
r'''Computes the diameter at which a specified `fraction` of the distribution falls under. Utilizes a bounded solver to search for the desired diameter. Parameters ---------- fraction : float Fraction of the distribution which should be under the calculated diameter, [-] n : int, optional None (for the `order` specified when the distribution was created), 0 (number), 1 (length), 2 (area), 3 (volume/mass), or any integer, [-] Returns ------- d : float Particle size diameter, [m] Examples -------- >>> psd = PSDLognormal(s=0.5, d_characteristic=5E-6, order=3) >>> psd.dn(.5) 5e-06 >>> psd.dn(1) 0.00029474365335233776 >>> psd.dn(0) 0.0
[ "r", "Computes", "the", "diameter", "at", "which", "a", "specified", "fraction", "of", "the", "distribution", "falls", "under", ".", "Utilizes", "a", "bounded", "solver", "to", "search", "for", "the", "desired", "diameter", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/particle_size_distribution.py#L1360-L1417
train
CalebBell/fluids
fluids/particle_size_distribution.py
ParticleSizeDistribution.fit
def fit(self, x0=None, distribution='lognormal', n=None, **kwargs): '''Incomplete method to fit experimental values to a curve. It is very hard to get good initial guesses, which are really required for this. Differential evolution is promissing. This API is likely to change in the future. ''' dist = {'lognormal': PSDLognormal, 'GGS': PSDGatesGaudinSchuhman, 'RR': PSDRosinRammler}[distribution] if distribution == 'lognormal': if x0 is None: d_characteristic = sum([fi*di for fi, di in zip(self.fractions, self.Dis)]) s = 0.4 x0 = [d_characteristic, s] elif distribution == 'GGS': if x0 is None: d_characteristic = sum([fi*di for fi, di in zip(self.fractions, self.Dis)]) m = 1.5 x0 = [d_characteristic, m] elif distribution == 'RR': if x0 is None: x0 = [5E-6, 1e-2] from scipy.optimize import minimize return minimize(self._fit_obj_function, x0, args=(dist, n), **kwargs)
python
def fit(self, x0=None, distribution='lognormal', n=None, **kwargs): '''Incomplete method to fit experimental values to a curve. It is very hard to get good initial guesses, which are really required for this. Differential evolution is promissing. This API is likely to change in the future. ''' dist = {'lognormal': PSDLognormal, 'GGS': PSDGatesGaudinSchuhman, 'RR': PSDRosinRammler}[distribution] if distribution == 'lognormal': if x0 is None: d_characteristic = sum([fi*di for fi, di in zip(self.fractions, self.Dis)]) s = 0.4 x0 = [d_characteristic, s] elif distribution == 'GGS': if x0 is None: d_characteristic = sum([fi*di for fi, di in zip(self.fractions, self.Dis)]) m = 1.5 x0 = [d_characteristic, m] elif distribution == 'RR': if x0 is None: x0 = [5E-6, 1e-2] from scipy.optimize import minimize return minimize(self._fit_obj_function, x0, args=(dist, n), **kwargs)
[ "def", "fit", "(", "self", ",", "x0", "=", "None", ",", "distribution", "=", "'lognormal'", ",", "n", "=", "None", ",", "*", "*", "kwargs", ")", ":", "dist", "=", "{", "'lognormal'", ":", "PSDLognormal", ",", "'GGS'", ":", "PSDGatesGaudinSchuhman", ",", "'RR'", ":", "PSDRosinRammler", "}", "[", "distribution", "]", "if", "distribution", "==", "'lognormal'", ":", "if", "x0", "is", "None", ":", "d_characteristic", "=", "sum", "(", "[", "fi", "*", "di", "for", "fi", ",", "di", "in", "zip", "(", "self", ".", "fractions", ",", "self", ".", "Dis", ")", "]", ")", "s", "=", "0.4", "x0", "=", "[", "d_characteristic", ",", "s", "]", "elif", "distribution", "==", "'GGS'", ":", "if", "x0", "is", "None", ":", "d_characteristic", "=", "sum", "(", "[", "fi", "*", "di", "for", "fi", ",", "di", "in", "zip", "(", "self", ".", "fractions", ",", "self", ".", "Dis", ")", "]", ")", "m", "=", "1.5", "x0", "=", "[", "d_characteristic", ",", "m", "]", "elif", "distribution", "==", "'RR'", ":", "if", "x0", "is", "None", ":", "x0", "=", "[", "5E-6", ",", "1e-2", "]", "from", "scipy", ".", "optimize", "import", "minimize", "return", "minimize", "(", "self", ".", "_fit_obj_function", ",", "x0", ",", "args", "=", "(", "dist", ",", "n", ")", ",", "*", "*", "kwargs", ")" ]
Incomplete method to fit experimental values to a curve. It is very hard to get good initial guesses, which are really required for this. Differential evolution is promissing. This API is likely to change in the future.
[ "Incomplete", "method", "to", "fit", "experimental", "values", "to", "a", "curve", ".", "It", "is", "very", "hard", "to", "get", "good", "initial", "guesses", "which", "are", "really", "required", "for", "this", ".", "Differential", "evolution", "is", "promissing", ".", "This", "API", "is", "likely", "to", "change", "in", "the", "future", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/particle_size_distribution.py#L1881-L1905
train
CalebBell/fluids
fluids/particle_size_distribution.py
ParticleSizeDistribution.Dis
def Dis(self): '''Representative diameters of each bin. ''' return [self.di_power(i, power=1) for i in range(self.N)]
python
def Dis(self): '''Representative diameters of each bin. ''' return [self.di_power(i, power=1) for i in range(self.N)]
[ "def", "Dis", "(", "self", ")", ":", "return", "[", "self", ".", "di_power", "(", "i", ",", "power", "=", "1", ")", "for", "i", "in", "range", "(", "self", ".", "N", ")", "]" ]
Representative diameters of each bin.
[ "Representative", "diameters", "of", "each", "bin", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/particle_size_distribution.py#L1908-L1911
train
CalebBell/fluids
fluids/geometry.py
SA_tank
def SA_tank(D, L, sideA=None, sideB=None, sideA_a=0, sideB_a=0, sideA_f=None, sideA_k=None, sideB_f=None, sideB_k=None, full_output=False): r'''Calculates the surface are of a cylindrical tank with optional heads. In the degenerate case of being provided with only `D` and `L`, provides the surface area of a cylinder. Parameters ---------- D : float Diameter of the cylindrical section of the tank, [m] L : float Length of the main cylindrical section of the tank, [m] sideA : string, optional The left (or bottom for vertical) head of the tank's type; one of [None, 'conical', 'ellipsoidal', 'torispherical', 'guppy', 'spherical']. sideB : string, optional The right (or top for vertical) head of the tank's type; one of [None, 'conical', 'ellipsoidal', 'torispherical', 'guppy', 'spherical']. sideA_a : float, optional The distance the head as specified by sideA extends down or to the left from the main cylindrical section, [m] sideB_a : float, optional The distance the head as specified by sideB extends up or to the right from the main cylindrical section, [m] sideA_f : float, optional Dish-radius parameter for side A; fD = dish radius [1/m] sideA_k : float, optional knuckle-radius parameter for side A; kD = knuckle radius [1/m] sideB_f : float, optional Dish-radius parameter for side B; fD = dish radius [1/m] sideB_k : float, optional knuckle-radius parameter for side B; kD = knuckle radius [1/m] Returns ------- SA : float Surface area of the tank [m^2] areas : tuple, only returned if full_output == True (sideA_SA, sideB_SA, lateral_SA) Other Parameters ---------------- full_output : bool, optional Returns a tuple of (sideA_SA, sideB_SA, lateral_SA) if True Examples -------- Cylinder, Spheroid, Long Cones, and spheres. All checked. >>> SA_tank(D=2, L=2) 18.84955592153876 >>> SA_tank(D=1., L=0, sideA='ellipsoidal', sideA_a=2, sideB='ellipsoidal', ... sideB_a=2) 28.480278854014387 >>> SA_tank(D=1., L=5, sideA='conical', sideA_a=2, sideB='conical', ... sideB_a=2) 22.18452243965656 >>> SA_tank(D=1., L=5, sideA='spherical', sideA_a=0.5, sideB='spherical', ... sideB_a=0.5) 18.84955592153876 ''' # Side A if sideA == 'conical': sideA_SA = SA_conical_head(D=D, a=sideA_a) elif sideA == 'ellipsoidal': sideA_SA = SA_ellipsoidal_head(D=D, a=sideA_a) elif sideA == 'guppy': sideA_SA = SA_guppy_head(D=D, a=sideA_a) elif sideA == 'spherical': sideA_SA = SA_partial_sphere(D=D, h=sideA_a) elif sideA == 'torispherical': sideA_SA = SA_torispheroidal(D=D, fd=sideA_f, fk=sideA_k) else: sideA_SA = pi/4*D**2 # Circle # Side B if sideB == 'conical': sideB_SA = SA_conical_head(D=D, a=sideB_a) elif sideB == 'ellipsoidal': sideB_SA = SA_ellipsoidal_head(D=D, a=sideB_a) elif sideB == 'guppy': sideB_SA = SA_guppy_head(D=D, a=sideB_a) elif sideB == 'spherical': sideB_SA = SA_partial_sphere(D=D, h=sideB_a) elif sideB == 'torispherical': sideB_SA = SA_torispheroidal(D=D, fd=sideB_f, fk=sideB_k) else: sideB_SA = pi/4*D**2 # Circle lateral_SA = pi*D*L SA = sideA_SA + sideB_SA + lateral_SA if full_output: return SA, (sideA_SA, sideB_SA, lateral_SA) else: return SA
python
def SA_tank(D, L, sideA=None, sideB=None, sideA_a=0, sideB_a=0, sideA_f=None, sideA_k=None, sideB_f=None, sideB_k=None, full_output=False): r'''Calculates the surface are of a cylindrical tank with optional heads. In the degenerate case of being provided with only `D` and `L`, provides the surface area of a cylinder. Parameters ---------- D : float Diameter of the cylindrical section of the tank, [m] L : float Length of the main cylindrical section of the tank, [m] sideA : string, optional The left (or bottom for vertical) head of the tank's type; one of [None, 'conical', 'ellipsoidal', 'torispherical', 'guppy', 'spherical']. sideB : string, optional The right (or top for vertical) head of the tank's type; one of [None, 'conical', 'ellipsoidal', 'torispherical', 'guppy', 'spherical']. sideA_a : float, optional The distance the head as specified by sideA extends down or to the left from the main cylindrical section, [m] sideB_a : float, optional The distance the head as specified by sideB extends up or to the right from the main cylindrical section, [m] sideA_f : float, optional Dish-radius parameter for side A; fD = dish radius [1/m] sideA_k : float, optional knuckle-radius parameter for side A; kD = knuckle radius [1/m] sideB_f : float, optional Dish-radius parameter for side B; fD = dish radius [1/m] sideB_k : float, optional knuckle-radius parameter for side B; kD = knuckle radius [1/m] Returns ------- SA : float Surface area of the tank [m^2] areas : tuple, only returned if full_output == True (sideA_SA, sideB_SA, lateral_SA) Other Parameters ---------------- full_output : bool, optional Returns a tuple of (sideA_SA, sideB_SA, lateral_SA) if True Examples -------- Cylinder, Spheroid, Long Cones, and spheres. All checked. >>> SA_tank(D=2, L=2) 18.84955592153876 >>> SA_tank(D=1., L=0, sideA='ellipsoidal', sideA_a=2, sideB='ellipsoidal', ... sideB_a=2) 28.480278854014387 >>> SA_tank(D=1., L=5, sideA='conical', sideA_a=2, sideB='conical', ... sideB_a=2) 22.18452243965656 >>> SA_tank(D=1., L=5, sideA='spherical', sideA_a=0.5, sideB='spherical', ... sideB_a=0.5) 18.84955592153876 ''' # Side A if sideA == 'conical': sideA_SA = SA_conical_head(D=D, a=sideA_a) elif sideA == 'ellipsoidal': sideA_SA = SA_ellipsoidal_head(D=D, a=sideA_a) elif sideA == 'guppy': sideA_SA = SA_guppy_head(D=D, a=sideA_a) elif sideA == 'spherical': sideA_SA = SA_partial_sphere(D=D, h=sideA_a) elif sideA == 'torispherical': sideA_SA = SA_torispheroidal(D=D, fd=sideA_f, fk=sideA_k) else: sideA_SA = pi/4*D**2 # Circle # Side B if sideB == 'conical': sideB_SA = SA_conical_head(D=D, a=sideB_a) elif sideB == 'ellipsoidal': sideB_SA = SA_ellipsoidal_head(D=D, a=sideB_a) elif sideB == 'guppy': sideB_SA = SA_guppy_head(D=D, a=sideB_a) elif sideB == 'spherical': sideB_SA = SA_partial_sphere(D=D, h=sideB_a) elif sideB == 'torispherical': sideB_SA = SA_torispheroidal(D=D, fd=sideB_f, fk=sideB_k) else: sideB_SA = pi/4*D**2 # Circle lateral_SA = pi*D*L SA = sideA_SA + sideB_SA + lateral_SA if full_output: return SA, (sideA_SA, sideB_SA, lateral_SA) else: return SA
[ "def", "SA_tank", "(", "D", ",", "L", ",", "sideA", "=", "None", ",", "sideB", "=", "None", ",", "sideA_a", "=", "0", ",", "sideB_a", "=", "0", ",", "sideA_f", "=", "None", ",", "sideA_k", "=", "None", ",", "sideB_f", "=", "None", ",", "sideB_k", "=", "None", ",", "full_output", "=", "False", ")", ":", "# Side A", "if", "sideA", "==", "'conical'", ":", "sideA_SA", "=", "SA_conical_head", "(", "D", "=", "D", ",", "a", "=", "sideA_a", ")", "elif", "sideA", "==", "'ellipsoidal'", ":", "sideA_SA", "=", "SA_ellipsoidal_head", "(", "D", "=", "D", ",", "a", "=", "sideA_a", ")", "elif", "sideA", "==", "'guppy'", ":", "sideA_SA", "=", "SA_guppy_head", "(", "D", "=", "D", ",", "a", "=", "sideA_a", ")", "elif", "sideA", "==", "'spherical'", ":", "sideA_SA", "=", "SA_partial_sphere", "(", "D", "=", "D", ",", "h", "=", "sideA_a", ")", "elif", "sideA", "==", "'torispherical'", ":", "sideA_SA", "=", "SA_torispheroidal", "(", "D", "=", "D", ",", "fd", "=", "sideA_f", ",", "fk", "=", "sideA_k", ")", "else", ":", "sideA_SA", "=", "pi", "/", "4", "*", "D", "**", "2", "# Circle", "# Side B", "if", "sideB", "==", "'conical'", ":", "sideB_SA", "=", "SA_conical_head", "(", "D", "=", "D", ",", "a", "=", "sideB_a", ")", "elif", "sideB", "==", "'ellipsoidal'", ":", "sideB_SA", "=", "SA_ellipsoidal_head", "(", "D", "=", "D", ",", "a", "=", "sideB_a", ")", "elif", "sideB", "==", "'guppy'", ":", "sideB_SA", "=", "SA_guppy_head", "(", "D", "=", "D", ",", "a", "=", "sideB_a", ")", "elif", "sideB", "==", "'spherical'", ":", "sideB_SA", "=", "SA_partial_sphere", "(", "D", "=", "D", ",", "h", "=", "sideB_a", ")", "elif", "sideB", "==", "'torispherical'", ":", "sideB_SA", "=", "SA_torispheroidal", "(", "D", "=", "D", ",", "fd", "=", "sideB_f", ",", "fk", "=", "sideB_k", ")", "else", ":", "sideB_SA", "=", "pi", "/", "4", "*", "D", "**", "2", "# Circle", "lateral_SA", "=", "pi", "*", "D", "*", "L", "SA", "=", "sideA_SA", "+", "sideB_SA", "+", "lateral_SA", "if", "full_output", ":", "return", "SA", ",", "(", "sideA_SA", ",", "sideB_SA", ",", "lateral_SA", ")", "else", ":", "return", "SA" ]
r'''Calculates the surface are of a cylindrical tank with optional heads. In the degenerate case of being provided with only `D` and `L`, provides the surface area of a cylinder. Parameters ---------- D : float Diameter of the cylindrical section of the tank, [m] L : float Length of the main cylindrical section of the tank, [m] sideA : string, optional The left (or bottom for vertical) head of the tank's type; one of [None, 'conical', 'ellipsoidal', 'torispherical', 'guppy', 'spherical']. sideB : string, optional The right (or top for vertical) head of the tank's type; one of [None, 'conical', 'ellipsoidal', 'torispherical', 'guppy', 'spherical']. sideA_a : float, optional The distance the head as specified by sideA extends down or to the left from the main cylindrical section, [m] sideB_a : float, optional The distance the head as specified by sideB extends up or to the right from the main cylindrical section, [m] sideA_f : float, optional Dish-radius parameter for side A; fD = dish radius [1/m] sideA_k : float, optional knuckle-radius parameter for side A; kD = knuckle radius [1/m] sideB_f : float, optional Dish-radius parameter for side B; fD = dish radius [1/m] sideB_k : float, optional knuckle-radius parameter for side B; kD = knuckle radius [1/m] Returns ------- SA : float Surface area of the tank [m^2] areas : tuple, only returned if full_output == True (sideA_SA, sideB_SA, lateral_SA) Other Parameters ---------------- full_output : bool, optional Returns a tuple of (sideA_SA, sideB_SA, lateral_SA) if True Examples -------- Cylinder, Spheroid, Long Cones, and spheres. All checked. >>> SA_tank(D=2, L=2) 18.84955592153876 >>> SA_tank(D=1., L=0, sideA='ellipsoidal', sideA_a=2, sideB='ellipsoidal', ... sideB_a=2) 28.480278854014387 >>> SA_tank(D=1., L=5, sideA='conical', sideA_a=2, sideB='conical', ... sideB_a=2) 22.18452243965656 >>> SA_tank(D=1., L=5, sideA='spherical', sideA_a=0.5, sideB='spherical', ... sideB_a=0.5) 18.84955592153876
[ "r", "Calculates", "the", "surface", "are", "of", "a", "cylindrical", "tank", "with", "optional", "heads", ".", "In", "the", "degenerate", "case", "of", "being", "provided", "with", "only", "D", "and", "L", "provides", "the", "surface", "area", "of", "a", "cylinder", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/geometry.py#L1192-L1287
train
CalebBell/fluids
fluids/geometry.py
pitch_angle_solver
def pitch_angle_solver(angle=None, pitch=None, pitch_parallel=None, pitch_normal=None): r'''Utility to take any two of `angle`, `pitch`, `pitch_parallel`, and `pitch_normal` and calculate the other two. This is useful for applications with tube banks, as in shell and tube heat exchangers or air coolers and allows for a wider range of user input. .. math:: \text{pitch normal} = \text{pitch} \cdot \sin(\text{angle}) .. math:: \text{pitch parallel} = \text{pitch} \cdot \cos(\text{angle}) Parameters ---------- angle : float, optional The angle of the tube layout, [degrees] pitch : float, optional The shortest distance between tube centers; defined in relation to the flow direction only, [m] pitch_parallel : float, optional The distance between tube center along a line parallel to the flow; has been called `longitudinal` pitch, `pp`, `s2`, `SL`, and `p2`, [m] pitch_normal : float, optional The distance between tube centers in a line 90° to the line of flow; has been called the `transverse` pitch, `pn`, `s1`, `ST`, and `p1`, [m] Returns ------- angle : float The angle of the tube layout, [degrees] pitch : float The shortest distance between tube centers; defined in relation to the flow direction only, [m] pitch_parallel : float The distance between tube center along a line parallel to the flow; has been called `longitudinal` pitch, `pp`, `s2`, `SL`, and `p2`, [m] pitch_normal : float The distance between tube centers in a line 90° to the line of flow; has been called the `transverse` pitch, `pn`, `s1`, `ST`, and `p1`, [m] Notes ----- For the 90 and 0 degree case, the normal or parallel pitches can be zero; given the angle and the zero value, obviously is it not possible to calculate the pitch and a math error will be raised. No exception will be raised if three or four inputs are provided; the other two will simply be calculated according to the list of if statements used. An exception will be raised if only one input is provided. Examples -------- >>> pitch_angle_solver(pitch=1, angle=30) (30, 1, 0.8660254037844387, 0.49999999999999994) References ---------- .. [1] Schlunder, Ernst U, and International Center for Heat and Mass Transfer. Heat Exchanger Design Handbook. Washington: Hemisphere Pub. Corp., 1983. ''' if angle is not None and pitch is not None: pitch_normal = pitch*sin(radians(angle)) pitch_parallel = pitch*cos(radians(angle)) elif angle is not None and pitch_normal is not None: pitch = pitch_normal/sin(radians(angle)) pitch_parallel = pitch*cos(radians(angle)) elif angle is not None and pitch_parallel is not None: pitch = pitch_parallel/cos(radians(angle)) pitch_normal = pitch*sin(radians(angle)) elif pitch_normal is not None and pitch is not None: angle = degrees(asin(pitch_normal/pitch)) pitch_parallel = pitch*cos(radians(angle)) elif pitch_parallel is not None and pitch is not None: angle = degrees(acos(pitch_parallel/pitch)) pitch_normal = pitch*sin(radians(angle)) elif pitch_parallel is not None and pitch_normal is not None: angle = degrees(asin(pitch_normal/(pitch_normal**2 + pitch_parallel**2)**0.5)) pitch = (pitch_normal**2 + pitch_parallel**2)**0.5 else: raise Exception('Two of the arguments are required') return angle, pitch, pitch_parallel, pitch_normal
python
def pitch_angle_solver(angle=None, pitch=None, pitch_parallel=None, pitch_normal=None): r'''Utility to take any two of `angle`, `pitch`, `pitch_parallel`, and `pitch_normal` and calculate the other two. This is useful for applications with tube banks, as in shell and tube heat exchangers or air coolers and allows for a wider range of user input. .. math:: \text{pitch normal} = \text{pitch} \cdot \sin(\text{angle}) .. math:: \text{pitch parallel} = \text{pitch} \cdot \cos(\text{angle}) Parameters ---------- angle : float, optional The angle of the tube layout, [degrees] pitch : float, optional The shortest distance between tube centers; defined in relation to the flow direction only, [m] pitch_parallel : float, optional The distance between tube center along a line parallel to the flow; has been called `longitudinal` pitch, `pp`, `s2`, `SL`, and `p2`, [m] pitch_normal : float, optional The distance between tube centers in a line 90° to the line of flow; has been called the `transverse` pitch, `pn`, `s1`, `ST`, and `p1`, [m] Returns ------- angle : float The angle of the tube layout, [degrees] pitch : float The shortest distance between tube centers; defined in relation to the flow direction only, [m] pitch_parallel : float The distance between tube center along a line parallel to the flow; has been called `longitudinal` pitch, `pp`, `s2`, `SL`, and `p2`, [m] pitch_normal : float The distance between tube centers in a line 90° to the line of flow; has been called the `transverse` pitch, `pn`, `s1`, `ST`, and `p1`, [m] Notes ----- For the 90 and 0 degree case, the normal or parallel pitches can be zero; given the angle and the zero value, obviously is it not possible to calculate the pitch and a math error will be raised. No exception will be raised if three or four inputs are provided; the other two will simply be calculated according to the list of if statements used. An exception will be raised if only one input is provided. Examples -------- >>> pitch_angle_solver(pitch=1, angle=30) (30, 1, 0.8660254037844387, 0.49999999999999994) References ---------- .. [1] Schlunder, Ernst U, and International Center for Heat and Mass Transfer. Heat Exchanger Design Handbook. Washington: Hemisphere Pub. Corp., 1983. ''' if angle is not None and pitch is not None: pitch_normal = pitch*sin(radians(angle)) pitch_parallel = pitch*cos(radians(angle)) elif angle is not None and pitch_normal is not None: pitch = pitch_normal/sin(radians(angle)) pitch_parallel = pitch*cos(radians(angle)) elif angle is not None and pitch_parallel is not None: pitch = pitch_parallel/cos(radians(angle)) pitch_normal = pitch*sin(radians(angle)) elif pitch_normal is not None and pitch is not None: angle = degrees(asin(pitch_normal/pitch)) pitch_parallel = pitch*cos(radians(angle)) elif pitch_parallel is not None and pitch is not None: angle = degrees(acos(pitch_parallel/pitch)) pitch_normal = pitch*sin(radians(angle)) elif pitch_parallel is not None and pitch_normal is not None: angle = degrees(asin(pitch_normal/(pitch_normal**2 + pitch_parallel**2)**0.5)) pitch = (pitch_normal**2 + pitch_parallel**2)**0.5 else: raise Exception('Two of the arguments are required') return angle, pitch, pitch_parallel, pitch_normal
[ "def", "pitch_angle_solver", "(", "angle", "=", "None", ",", "pitch", "=", "None", ",", "pitch_parallel", "=", "None", ",", "pitch_normal", "=", "None", ")", ":", "if", "angle", "is", "not", "None", "and", "pitch", "is", "not", "None", ":", "pitch_normal", "=", "pitch", "*", "sin", "(", "radians", "(", "angle", ")", ")", "pitch_parallel", "=", "pitch", "*", "cos", "(", "radians", "(", "angle", ")", ")", "elif", "angle", "is", "not", "None", "and", "pitch_normal", "is", "not", "None", ":", "pitch", "=", "pitch_normal", "/", "sin", "(", "radians", "(", "angle", ")", ")", "pitch_parallel", "=", "pitch", "*", "cos", "(", "radians", "(", "angle", ")", ")", "elif", "angle", "is", "not", "None", "and", "pitch_parallel", "is", "not", "None", ":", "pitch", "=", "pitch_parallel", "/", "cos", "(", "radians", "(", "angle", ")", ")", "pitch_normal", "=", "pitch", "*", "sin", "(", "radians", "(", "angle", ")", ")", "elif", "pitch_normal", "is", "not", "None", "and", "pitch", "is", "not", "None", ":", "angle", "=", "degrees", "(", "asin", "(", "pitch_normal", "/", "pitch", ")", ")", "pitch_parallel", "=", "pitch", "*", "cos", "(", "radians", "(", "angle", ")", ")", "elif", "pitch_parallel", "is", "not", "None", "and", "pitch", "is", "not", "None", ":", "angle", "=", "degrees", "(", "acos", "(", "pitch_parallel", "/", "pitch", ")", ")", "pitch_normal", "=", "pitch", "*", "sin", "(", "radians", "(", "angle", ")", ")", "elif", "pitch_parallel", "is", "not", "None", "and", "pitch_normal", "is", "not", "None", ":", "angle", "=", "degrees", "(", "asin", "(", "pitch_normal", "/", "(", "pitch_normal", "**", "2", "+", "pitch_parallel", "**", "2", ")", "**", "0.5", ")", ")", "pitch", "=", "(", "pitch_normal", "**", "2", "+", "pitch_parallel", "**", "2", ")", "**", "0.5", "else", ":", "raise", "Exception", "(", "'Two of the arguments are required'", ")", "return", "angle", ",", "pitch", ",", "pitch_parallel", ",", "pitch_normal" ]
r'''Utility to take any two of `angle`, `pitch`, `pitch_parallel`, and `pitch_normal` and calculate the other two. This is useful for applications with tube banks, as in shell and tube heat exchangers or air coolers and allows for a wider range of user input. .. math:: \text{pitch normal} = \text{pitch} \cdot \sin(\text{angle}) .. math:: \text{pitch parallel} = \text{pitch} \cdot \cos(\text{angle}) Parameters ---------- angle : float, optional The angle of the tube layout, [degrees] pitch : float, optional The shortest distance between tube centers; defined in relation to the flow direction only, [m] pitch_parallel : float, optional The distance between tube center along a line parallel to the flow; has been called `longitudinal` pitch, `pp`, `s2`, `SL`, and `p2`, [m] pitch_normal : float, optional The distance between tube centers in a line 90° to the line of flow; has been called the `transverse` pitch, `pn`, `s1`, `ST`, and `p1`, [m] Returns ------- angle : float The angle of the tube layout, [degrees] pitch : float The shortest distance between tube centers; defined in relation to the flow direction only, [m] pitch_parallel : float The distance between tube center along a line parallel to the flow; has been called `longitudinal` pitch, `pp`, `s2`, `SL`, and `p2`, [m] pitch_normal : float The distance between tube centers in a line 90° to the line of flow; has been called the `transverse` pitch, `pn`, `s1`, `ST`, and `p1`, [m] Notes ----- For the 90 and 0 degree case, the normal or parallel pitches can be zero; given the angle and the zero value, obviously is it not possible to calculate the pitch and a math error will be raised. No exception will be raised if three or four inputs are provided; the other two will simply be calculated according to the list of if statements used. An exception will be raised if only one input is provided. Examples -------- >>> pitch_angle_solver(pitch=1, angle=30) (30, 1, 0.8660254037844387, 0.49999999999999994) References ---------- .. [1] Schlunder, Ernst U, and International Center for Heat and Mass Transfer. Heat Exchanger Design Handbook. Washington: Hemisphere Pub. Corp., 1983.
[ "r", "Utility", "to", "take", "any", "two", "of", "angle", "pitch", "pitch_parallel", "and", "pitch_normal", "and", "calculate", "the", "other", "two", ".", "This", "is", "useful", "for", "applications", "with", "tube", "banks", "as", "in", "shell", "and", "tube", "heat", "exchangers", "or", "air", "coolers", "and", "allows", "for", "a", "wider", "range", "of", "user", "input", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/geometry.py#L3030-L3113
train
CalebBell/fluids
fluids/geometry.py
A_hollow_cylinder
def A_hollow_cylinder(Di, Do, L): r'''Returns the surface area of a hollow cylinder. .. math:: A = \pi D_o L + \pi D_i L + 2\cdot \frac{\pi D_o^2}{4} - 2\cdot \frac{\pi D_i^2}{4} Parameters ---------- Di : float Diameter of the hollow in the cylinder, [m] Do : float Diameter of the exterior of the cylinder, [m] L : float Length of the cylinder, [m] Returns ------- A : float Surface area [m^2] Examples -------- >>> A_hollow_cylinder(0.005, 0.01, 0.1) 0.004830198704894308 ''' side_o = pi*Do*L side_i = pi*Di*L cap_circle = pi*Do**2/4*2 cap_removed = pi*Di**2/4*2 return side_o + side_i + cap_circle - cap_removed
python
def A_hollow_cylinder(Di, Do, L): r'''Returns the surface area of a hollow cylinder. .. math:: A = \pi D_o L + \pi D_i L + 2\cdot \frac{\pi D_o^2}{4} - 2\cdot \frac{\pi D_i^2}{4} Parameters ---------- Di : float Diameter of the hollow in the cylinder, [m] Do : float Diameter of the exterior of the cylinder, [m] L : float Length of the cylinder, [m] Returns ------- A : float Surface area [m^2] Examples -------- >>> A_hollow_cylinder(0.005, 0.01, 0.1) 0.004830198704894308 ''' side_o = pi*Do*L side_i = pi*Di*L cap_circle = pi*Do**2/4*2 cap_removed = pi*Di**2/4*2 return side_o + side_i + cap_circle - cap_removed
[ "def", "A_hollow_cylinder", "(", "Di", ",", "Do", ",", "L", ")", ":", "side_o", "=", "pi", "*", "Do", "*", "L", "side_i", "=", "pi", "*", "Di", "*", "L", "cap_circle", "=", "pi", "*", "Do", "**", "2", "/", "4", "*", "2", "cap_removed", "=", "pi", "*", "Di", "**", "2", "/", "4", "*", "2", "return", "side_o", "+", "side_i", "+", "cap_circle", "-", "cap_removed" ]
r'''Returns the surface area of a hollow cylinder. .. math:: A = \pi D_o L + \pi D_i L + 2\cdot \frac{\pi D_o^2}{4} - 2\cdot \frac{\pi D_i^2}{4} Parameters ---------- Di : float Diameter of the hollow in the cylinder, [m] Do : float Diameter of the exterior of the cylinder, [m] L : float Length of the cylinder, [m] Returns ------- A : float Surface area [m^2] Examples -------- >>> A_hollow_cylinder(0.005, 0.01, 0.1) 0.004830198704894308
[ "r", "Returns", "the", "surface", "area", "of", "a", "hollow", "cylinder", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/geometry.py#L3285-L3315
train
CalebBell/fluids
fluids/geometry.py
A_multiple_hole_cylinder
def A_multiple_hole_cylinder(Do, L, holes): r'''Returns the surface area of a cylinder with multiple holes. Calculation will naively return a negative value or other impossible result if the number of cylinders added is physically impossible. Holes may be of different shapes, but must be perpendicular to the axis of the cylinder. .. math:: A = \pi D_o L + 2\cdot \frac{\pi D_o^2}{4} + \sum_{i}^n \left( \pi D_i L - 2\cdot \frac{\pi D_i^2}{4}\right) Parameters ---------- Do : float Diameter of the exterior of the cylinder, [m] L : float Length of the cylinder, [m] holes : list List of tuples containing (diameter, count) pairs of descriptions for each of the holes sizes. Returns ------- A : float Surface area [m^2] Examples -------- >>> A_multiple_hole_cylinder(0.01, 0.1, [(0.005, 1)]) 0.004830198704894308 ''' side_o = pi*Do*L cap_circle = pi*Do**2/4*2 A = cap_circle + side_o for Di, n in holes: side_i = pi*Di*L cap_removed = pi*Di**2/4*2 A = A + side_i*n - cap_removed*n return A
python
def A_multiple_hole_cylinder(Do, L, holes): r'''Returns the surface area of a cylinder with multiple holes. Calculation will naively return a negative value or other impossible result if the number of cylinders added is physically impossible. Holes may be of different shapes, but must be perpendicular to the axis of the cylinder. .. math:: A = \pi D_o L + 2\cdot \frac{\pi D_o^2}{4} + \sum_{i}^n \left( \pi D_i L - 2\cdot \frac{\pi D_i^2}{4}\right) Parameters ---------- Do : float Diameter of the exterior of the cylinder, [m] L : float Length of the cylinder, [m] holes : list List of tuples containing (diameter, count) pairs of descriptions for each of the holes sizes. Returns ------- A : float Surface area [m^2] Examples -------- >>> A_multiple_hole_cylinder(0.01, 0.1, [(0.005, 1)]) 0.004830198704894308 ''' side_o = pi*Do*L cap_circle = pi*Do**2/4*2 A = cap_circle + side_o for Di, n in holes: side_i = pi*Di*L cap_removed = pi*Di**2/4*2 A = A + side_i*n - cap_removed*n return A
[ "def", "A_multiple_hole_cylinder", "(", "Do", ",", "L", ",", "holes", ")", ":", "side_o", "=", "pi", "*", "Do", "*", "L", "cap_circle", "=", "pi", "*", "Do", "**", "2", "/", "4", "*", "2", "A", "=", "cap_circle", "+", "side_o", "for", "Di", ",", "n", "in", "holes", ":", "side_i", "=", "pi", "*", "Di", "*", "L", "cap_removed", "=", "pi", "*", "Di", "**", "2", "/", "4", "*", "2", "A", "=", "A", "+", "side_i", "*", "n", "-", "cap_removed", "*", "n", "return", "A" ]
r'''Returns the surface area of a cylinder with multiple holes. Calculation will naively return a negative value or other impossible result if the number of cylinders added is physically impossible. Holes may be of different shapes, but must be perpendicular to the axis of the cylinder. .. math:: A = \pi D_o L + 2\cdot \frac{\pi D_o^2}{4} + \sum_{i}^n \left( \pi D_i L - 2\cdot \frac{\pi D_i^2}{4}\right) Parameters ---------- Do : float Diameter of the exterior of the cylinder, [m] L : float Length of the cylinder, [m] holes : list List of tuples containing (diameter, count) pairs of descriptions for each of the holes sizes. Returns ------- A : float Surface area [m^2] Examples -------- >>> A_multiple_hole_cylinder(0.01, 0.1, [(0.005, 1)]) 0.004830198704894308
[ "r", "Returns", "the", "surface", "area", "of", "a", "cylinder", "with", "multiple", "holes", ".", "Calculation", "will", "naively", "return", "a", "negative", "value", "or", "other", "impossible", "result", "if", "the", "number", "of", "cylinders", "added", "is", "physically", "impossible", ".", "Holes", "may", "be", "of", "different", "shapes", "but", "must", "be", "perpendicular", "to", "the", "axis", "of", "the", "cylinder", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/geometry.py#L3346-L3384
train
CalebBell/fluids
fluids/geometry.py
TANK.V_from_h
def V_from_h(self, h, method='full'): r'''Method to calculate the volume of liquid in a fully defined tank given a specified height `h`. `h` must be under the maximum height. If the method is 'chebyshev', and the coefficients have not yet been calculated, they are created by calling `set_chebyshev_approximators`. Parameters ---------- h : float Height specified, [m] method : str One of 'full' (calculated rigorously) or 'chebyshev' Returns ------- V : float Volume of liquid in the tank up to the specified height, [m^3] Notes ----- ''' if method == 'full': return V_from_h(h, self.D, self.L, self.horizontal, self.sideA, self.sideB, self.sideA_a, self.sideB_a, self.sideA_f, self.sideA_k, self.sideB_f, self.sideB_k) elif method == 'chebyshev': if not self.chebyshev: self.set_chebyshev_approximators() return self.V_from_h_cheb(h) else: raise Exception("Allowable methods are 'full' or 'chebyshev'.")
python
def V_from_h(self, h, method='full'): r'''Method to calculate the volume of liquid in a fully defined tank given a specified height `h`. `h` must be under the maximum height. If the method is 'chebyshev', and the coefficients have not yet been calculated, they are created by calling `set_chebyshev_approximators`. Parameters ---------- h : float Height specified, [m] method : str One of 'full' (calculated rigorously) or 'chebyshev' Returns ------- V : float Volume of liquid in the tank up to the specified height, [m^3] Notes ----- ''' if method == 'full': return V_from_h(h, self.D, self.L, self.horizontal, self.sideA, self.sideB, self.sideA_a, self.sideB_a, self.sideA_f, self.sideA_k, self.sideB_f, self.sideB_k) elif method == 'chebyshev': if not self.chebyshev: self.set_chebyshev_approximators() return self.V_from_h_cheb(h) else: raise Exception("Allowable methods are 'full' or 'chebyshev'.")
[ "def", "V_from_h", "(", "self", ",", "h", ",", "method", "=", "'full'", ")", ":", "if", "method", "==", "'full'", ":", "return", "V_from_h", "(", "h", ",", "self", ".", "D", ",", "self", ".", "L", ",", "self", ".", "horizontal", ",", "self", ".", "sideA", ",", "self", ".", "sideB", ",", "self", ".", "sideA_a", ",", "self", ".", "sideB_a", ",", "self", ".", "sideA_f", ",", "self", ".", "sideA_k", ",", "self", ".", "sideB_f", ",", "self", ".", "sideB_k", ")", "elif", "method", "==", "'chebyshev'", ":", "if", "not", "self", ".", "chebyshev", ":", "self", ".", "set_chebyshev_approximators", "(", ")", "return", "self", ".", "V_from_h_cheb", "(", "h", ")", "else", ":", "raise", "Exception", "(", "\"Allowable methods are 'full' or 'chebyshev'.\"", ")" ]
r'''Method to calculate the volume of liquid in a fully defined tank given a specified height `h`. `h` must be under the maximum height. If the method is 'chebyshev', and the coefficients have not yet been calculated, they are created by calling `set_chebyshev_approximators`. Parameters ---------- h : float Height specified, [m] method : str One of 'full' (calculated rigorously) or 'chebyshev' Returns ------- V : float Volume of liquid in the tank up to the specified height, [m^3] Notes -----
[ "r", "Method", "to", "calculate", "the", "volume", "of", "liquid", "in", "a", "fully", "defined", "tank", "given", "a", "specified", "height", "h", ".", "h", "must", "be", "under", "the", "maximum", "height", ".", "If", "the", "method", "is", "chebyshev", "and", "the", "coefficients", "have", "not", "yet", "been", "calculated", "they", "are", "created", "by", "calling", "set_chebyshev_approximators", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/geometry.py#L1713-L1744
train
CalebBell/fluids
fluids/geometry.py
TANK.h_from_V
def h_from_V(self, V, method='spline'): r'''Method to calculate the height of liquid in a fully defined tank given a specified volume of liquid in it `V`. `V` must be under the maximum volume. If the method is 'spline', and the interpolation table is not yet defined, creates it by calling the method set_table. If the method is 'chebyshev', and the coefficients have not yet been calculated, they are created by calling `set_chebyshev_approximators`. Parameters ---------- V : float Volume of liquid in the tank up to the desired height, [m^3] method : str One of 'spline', 'chebyshev', or 'brenth' Returns ------- h : float Height of liquid at which the volume is as desired, [m] ''' if method == 'spline': if not self.table: self.set_table() return float(self.interp_h_from_V(V)) elif method == 'chebyshev': if not self.chebyshev: self.set_chebyshev_approximators() return self.h_from_V_cheb(V) elif method == 'brenth': to_solve = lambda h : self.V_from_h(h, method='full') - V return brenth(to_solve, self.h_max, 0) else: raise Exception("Allowable methods are 'full' or 'chebyshev', " "or 'brenth'.")
python
def h_from_V(self, V, method='spline'): r'''Method to calculate the height of liquid in a fully defined tank given a specified volume of liquid in it `V`. `V` must be under the maximum volume. If the method is 'spline', and the interpolation table is not yet defined, creates it by calling the method set_table. If the method is 'chebyshev', and the coefficients have not yet been calculated, they are created by calling `set_chebyshev_approximators`. Parameters ---------- V : float Volume of liquid in the tank up to the desired height, [m^3] method : str One of 'spline', 'chebyshev', or 'brenth' Returns ------- h : float Height of liquid at which the volume is as desired, [m] ''' if method == 'spline': if not self.table: self.set_table() return float(self.interp_h_from_V(V)) elif method == 'chebyshev': if not self.chebyshev: self.set_chebyshev_approximators() return self.h_from_V_cheb(V) elif method == 'brenth': to_solve = lambda h : self.V_from_h(h, method='full') - V return brenth(to_solve, self.h_max, 0) else: raise Exception("Allowable methods are 'full' or 'chebyshev', " "or 'brenth'.")
[ "def", "h_from_V", "(", "self", ",", "V", ",", "method", "=", "'spline'", ")", ":", "if", "method", "==", "'spline'", ":", "if", "not", "self", ".", "table", ":", "self", ".", "set_table", "(", ")", "return", "float", "(", "self", ".", "interp_h_from_V", "(", "V", ")", ")", "elif", "method", "==", "'chebyshev'", ":", "if", "not", "self", ".", "chebyshev", ":", "self", ".", "set_chebyshev_approximators", "(", ")", "return", "self", ".", "h_from_V_cheb", "(", "V", ")", "elif", "method", "==", "'brenth'", ":", "to_solve", "=", "lambda", "h", ":", "self", ".", "V_from_h", "(", "h", ",", "method", "=", "'full'", ")", "-", "V", "return", "brenth", "(", "to_solve", ",", "self", ".", "h_max", ",", "0", ")", "else", ":", "raise", "Exception", "(", "\"Allowable methods are 'full' or 'chebyshev', \"", "\"or 'brenth'.\"", ")" ]
r'''Method to calculate the height of liquid in a fully defined tank given a specified volume of liquid in it `V`. `V` must be under the maximum volume. If the method is 'spline', and the interpolation table is not yet defined, creates it by calling the method set_table. If the method is 'chebyshev', and the coefficients have not yet been calculated, they are created by calling `set_chebyshev_approximators`. Parameters ---------- V : float Volume of liquid in the tank up to the desired height, [m^3] method : str One of 'spline', 'chebyshev', or 'brenth' Returns ------- h : float Height of liquid at which the volume is as desired, [m]
[ "r", "Method", "to", "calculate", "the", "height", "of", "liquid", "in", "a", "fully", "defined", "tank", "given", "a", "specified", "volume", "of", "liquid", "in", "it", "V", ".", "V", "must", "be", "under", "the", "maximum", "volume", ".", "If", "the", "method", "is", "spline", "and", "the", "interpolation", "table", "is", "not", "yet", "defined", "creates", "it", "by", "calling", "the", "method", "set_table", ".", "If", "the", "method", "is", "chebyshev", "and", "the", "coefficients", "have", "not", "yet", "been", "calculated", "they", "are", "created", "by", "calling", "set_chebyshev_approximators", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/geometry.py#L1746-L1779
train
CalebBell/fluids
fluids/geometry.py
TANK.set_table
def set_table(self, n=100, dx=None): r'''Method to set an interpolation table of liquids levels versus volumes in the tank, for a fully defined tank. Normally run by the h_from_V method, this may be run prior to its use with a custom specification. Either the number of points on the table, or the vertical distance between steps may be specified. Parameters ---------- n : float, optional Number of points in the interpolation table, [-] dx : float, optional Vertical distance between steps in the interpolation table, [m] ''' if dx: self.heights = np.linspace(0, self.h_max, int(self.h_max/dx)+1) else: self.heights = np.linspace(0, self.h_max, n) self.volumes = [self.V_from_h(h) for h in self.heights] from scipy.interpolate import UnivariateSpline self.interp_h_from_V = UnivariateSpline(self.volumes, self.heights, ext=3, s=0.0) self.table = True
python
def set_table(self, n=100, dx=None): r'''Method to set an interpolation table of liquids levels versus volumes in the tank, for a fully defined tank. Normally run by the h_from_V method, this may be run prior to its use with a custom specification. Either the number of points on the table, or the vertical distance between steps may be specified. Parameters ---------- n : float, optional Number of points in the interpolation table, [-] dx : float, optional Vertical distance between steps in the interpolation table, [m] ''' if dx: self.heights = np.linspace(0, self.h_max, int(self.h_max/dx)+1) else: self.heights = np.linspace(0, self.h_max, n) self.volumes = [self.V_from_h(h) for h in self.heights] from scipy.interpolate import UnivariateSpline self.interp_h_from_V = UnivariateSpline(self.volumes, self.heights, ext=3, s=0.0) self.table = True
[ "def", "set_table", "(", "self", ",", "n", "=", "100", ",", "dx", "=", "None", ")", ":", "if", "dx", ":", "self", ".", "heights", "=", "np", ".", "linspace", "(", "0", ",", "self", ".", "h_max", ",", "int", "(", "self", ".", "h_max", "/", "dx", ")", "+", "1", ")", "else", ":", "self", ".", "heights", "=", "np", ".", "linspace", "(", "0", ",", "self", ".", "h_max", ",", "n", ")", "self", ".", "volumes", "=", "[", "self", ".", "V_from_h", "(", "h", ")", "for", "h", "in", "self", ".", "heights", "]", "from", "scipy", ".", "interpolate", "import", "UnivariateSpline", "self", ".", "interp_h_from_V", "=", "UnivariateSpline", "(", "self", ".", "volumes", ",", "self", ".", "heights", ",", "ext", "=", "3", ",", "s", "=", "0.0", ")", "self", ".", "table", "=", "True" ]
r'''Method to set an interpolation table of liquids levels versus volumes in the tank, for a fully defined tank. Normally run by the h_from_V method, this may be run prior to its use with a custom specification. Either the number of points on the table, or the vertical distance between steps may be specified. Parameters ---------- n : float, optional Number of points in the interpolation table, [-] dx : float, optional Vertical distance between steps in the interpolation table, [m]
[ "r", "Method", "to", "set", "an", "interpolation", "table", "of", "liquids", "levels", "versus", "volumes", "in", "the", "tank", "for", "a", "fully", "defined", "tank", ".", "Normally", "run", "by", "the", "h_from_V", "method", "this", "may", "be", "run", "prior", "to", "its", "use", "with", "a", "custom", "specification", ".", "Either", "the", "number", "of", "points", "on", "the", "table", "or", "the", "vertical", "distance", "between", "steps", "may", "be", "specified", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/geometry.py#L1781-L1802
train
CalebBell/fluids
fluids/geometry.py
TANK._V_solver_error
def _V_solver_error(self, Vtarget, D, L, horizontal, sideA, sideB, sideA_a, sideB_a, sideA_f, sideA_k, sideB_f, sideB_k, sideA_a_ratio, sideB_a_ratio): '''Function which uses only the variables given, and the TANK class itself, to determine how far from the desired volume, Vtarget, the volume produced by the specified parameters in a new TANK instance is. Should only be used by solve_tank_for_V method. ''' a = TANK(D=float(D), L=float(L), horizontal=horizontal, sideA=sideA, sideB=sideB, sideA_a=sideA_a, sideB_a=sideB_a, sideA_f=sideA_f, sideA_k=sideA_k, sideB_f=sideB_f, sideB_k=sideB_k, sideA_a_ratio=sideA_a_ratio, sideB_a_ratio=sideB_a_ratio) error = abs(Vtarget - a.V_total) return error
python
def _V_solver_error(self, Vtarget, D, L, horizontal, sideA, sideB, sideA_a, sideB_a, sideA_f, sideA_k, sideB_f, sideB_k, sideA_a_ratio, sideB_a_ratio): '''Function which uses only the variables given, and the TANK class itself, to determine how far from the desired volume, Vtarget, the volume produced by the specified parameters in a new TANK instance is. Should only be used by solve_tank_for_V method. ''' a = TANK(D=float(D), L=float(L), horizontal=horizontal, sideA=sideA, sideB=sideB, sideA_a=sideA_a, sideB_a=sideB_a, sideA_f=sideA_f, sideA_k=sideA_k, sideB_f=sideB_f, sideB_k=sideB_k, sideA_a_ratio=sideA_a_ratio, sideB_a_ratio=sideB_a_ratio) error = abs(Vtarget - a.V_total) return error
[ "def", "_V_solver_error", "(", "self", ",", "Vtarget", ",", "D", ",", "L", ",", "horizontal", ",", "sideA", ",", "sideB", ",", "sideA_a", ",", "sideB_a", ",", "sideA_f", ",", "sideA_k", ",", "sideB_f", ",", "sideB_k", ",", "sideA_a_ratio", ",", "sideB_a_ratio", ")", ":", "a", "=", "TANK", "(", "D", "=", "float", "(", "D", ")", ",", "L", "=", "float", "(", "L", ")", ",", "horizontal", "=", "horizontal", ",", "sideA", "=", "sideA", ",", "sideB", "=", "sideB", ",", "sideA_a", "=", "sideA_a", ",", "sideB_a", "=", "sideB_a", ",", "sideA_f", "=", "sideA_f", ",", "sideA_k", "=", "sideA_k", ",", "sideB_f", "=", "sideB_f", ",", "sideB_k", "=", "sideB_k", ",", "sideA_a_ratio", "=", "sideA_a_ratio", ",", "sideB_a_ratio", "=", "sideB_a_ratio", ")", "error", "=", "abs", "(", "Vtarget", "-", "a", ".", "V_total", ")", "return", "error" ]
Function which uses only the variables given, and the TANK class itself, to determine how far from the desired volume, Vtarget, the volume produced by the specified parameters in a new TANK instance is. Should only be used by solve_tank_for_V method.
[ "Function", "which", "uses", "only", "the", "variables", "given", "and", "the", "TANK", "class", "itself", "to", "determine", "how", "far", "from", "the", "desired", "volume", "Vtarget", "the", "volume", "produced", "by", "the", "specified", "parameters", "in", "a", "new", "TANK", "instance", "is", ".", "Should", "only", "be", "used", "by", "solve_tank_for_V", "method", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/geometry.py#L1843-L1856
train
CalebBell/fluids
fluids/geometry.py
PlateExchanger.plate_exchanger_identifier
def plate_exchanger_identifier(self): '''Method to create an identifying string in format 'L' + wavelength + 'A' + amplitude + 'B' + chevron angle-chevron angle. Wavelength and amplitude are specified in units of mm and rounded to two decimal places. ''' s = ('L' + str(round(self.wavelength*1000, 2)) + 'A' + str(round(self.amplitude*1000, 2)) + 'B' + '-'.join([str(i) for i in self.chevron_angles])) return s
python
def plate_exchanger_identifier(self): '''Method to create an identifying string in format 'L' + wavelength + 'A' + amplitude + 'B' + chevron angle-chevron angle. Wavelength and amplitude are specified in units of mm and rounded to two decimal places. ''' s = ('L' + str(round(self.wavelength*1000, 2)) + 'A' + str(round(self.amplitude*1000, 2)) + 'B' + '-'.join([str(i) for i in self.chevron_angles])) return s
[ "def", "plate_exchanger_identifier", "(", "self", ")", ":", "s", "=", "(", "'L'", "+", "str", "(", "round", "(", "self", ".", "wavelength", "*", "1000", ",", "2", ")", ")", "+", "'A'", "+", "str", "(", "round", "(", "self", ".", "amplitude", "*", "1000", ",", "2", ")", ")", "+", "'B'", "+", "'-'", ".", "join", "(", "[", "str", "(", "i", ")", "for", "i", "in", "self", ".", "chevron_angles", "]", ")", ")", "return", "s" ]
Method to create an identifying string in format 'L' + wavelength + 'A' + amplitude + 'B' + chevron angle-chevron angle. Wavelength and amplitude are specified in units of mm and rounded to two decimal places.
[ "Method", "to", "create", "an", "identifying", "string", "in", "format", "L", "+", "wavelength", "+", "A", "+", "amplitude", "+", "B", "+", "chevron", "angle", "-", "chevron", "angle", ".", "Wavelength", "and", "amplitude", "are", "specified", "in", "units", "of", "mm", "and", "rounded", "to", "two", "decimal", "places", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/geometry.py#L2163-L2171
train
CalebBell/fluids
fluids/numerics/__init__.py
linspace
def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None): '''Port of numpy's linspace to pure python. Does not support dtype, and returns lists of floats. ''' num = int(num) start = start * 1. stop = stop * 1. if num <= 0: return [] if endpoint: if num == 1: return [start] step = (stop-start)/float((num-1)) if num == 1: step = nan y = [start] for _ in range(num-2): y.append(y[-1] + step) y.append(stop) else: step = (stop-start)/float(num) if num == 1: step = nan y = [start] for _ in range(num-1): y.append(y[-1] + step) if retstep: return y, step else: return y
python
def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None): '''Port of numpy's linspace to pure python. Does not support dtype, and returns lists of floats. ''' num = int(num) start = start * 1. stop = stop * 1. if num <= 0: return [] if endpoint: if num == 1: return [start] step = (stop-start)/float((num-1)) if num == 1: step = nan y = [start] for _ in range(num-2): y.append(y[-1] + step) y.append(stop) else: step = (stop-start)/float(num) if num == 1: step = nan y = [start] for _ in range(num-1): y.append(y[-1] + step) if retstep: return y, step else: return y
[ "def", "linspace", "(", "start", ",", "stop", ",", "num", "=", "50", ",", "endpoint", "=", "True", ",", "retstep", "=", "False", ",", "dtype", "=", "None", ")", ":", "num", "=", "int", "(", "num", ")", "start", "=", "start", "*", "1.", "stop", "=", "stop", "*", "1.", "if", "num", "<=", "0", ":", "return", "[", "]", "if", "endpoint", ":", "if", "num", "==", "1", ":", "return", "[", "start", "]", "step", "=", "(", "stop", "-", "start", ")", "/", "float", "(", "(", "num", "-", "1", ")", ")", "if", "num", "==", "1", ":", "step", "=", "nan", "y", "=", "[", "start", "]", "for", "_", "in", "range", "(", "num", "-", "2", ")", ":", "y", ".", "append", "(", "y", "[", "-", "1", "]", "+", "step", ")", "y", ".", "append", "(", "stop", ")", "else", ":", "step", "=", "(", "stop", "-", "start", ")", "/", "float", "(", "num", ")", "if", "num", "==", "1", ":", "step", "=", "nan", "y", "=", "[", "start", "]", "for", "_", "in", "range", "(", "num", "-", "1", ")", ":", "y", ".", "append", "(", "y", "[", "-", "1", "]", "+", "step", ")", "if", "retstep", ":", "return", "y", ",", "step", "else", ":", "return", "y" ]
Port of numpy's linspace to pure python. Does not support dtype, and returns lists of floats.
[ "Port", "of", "numpy", "s", "linspace", "to", "pure", "python", ".", "Does", "not", "support", "dtype", "and", "returns", "lists", "of", "floats", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/numerics/__init__.py#L361-L392
train
CalebBell/fluids
fluids/numerics/__init__.py
derivative
def derivative(func, x0, dx=1.0, n=1, args=(), order=3): '''Reimplementation of SciPy's derivative function, with more cached coefficients and without using numpy. If new coefficients not cached are needed, they are only calculated once and are remembered. ''' if order < n + 1: raise ValueError if order % 2 == 0: raise ValueError weights = central_diff_weights(order, n) tot = 0.0 ho = order >> 1 for k in range(order): tot += weights[k]*func(x0 + (k - ho)*dx, *args) return tot/product([dx]*n)
python
def derivative(func, x0, dx=1.0, n=1, args=(), order=3): '''Reimplementation of SciPy's derivative function, with more cached coefficients and without using numpy. If new coefficients not cached are needed, they are only calculated once and are remembered. ''' if order < n + 1: raise ValueError if order % 2 == 0: raise ValueError weights = central_diff_weights(order, n) tot = 0.0 ho = order >> 1 for k in range(order): tot += weights[k]*func(x0 + (k - ho)*dx, *args) return tot/product([dx]*n)
[ "def", "derivative", "(", "func", ",", "x0", ",", "dx", "=", "1.0", ",", "n", "=", "1", ",", "args", "=", "(", ")", ",", "order", "=", "3", ")", ":", "if", "order", "<", "n", "+", "1", ":", "raise", "ValueError", "if", "order", "%", "2", "==", "0", ":", "raise", "ValueError", "weights", "=", "central_diff_weights", "(", "order", ",", "n", ")", "tot", "=", "0.0", "ho", "=", "order", ">>", "1", "for", "k", "in", "range", "(", "order", ")", ":", "tot", "+=", "weights", "[", "k", "]", "*", "func", "(", "x0", "+", "(", "k", "-", "ho", ")", "*", "dx", ",", "*", "args", ")", "return", "tot", "/", "product", "(", "[", "dx", "]", "*", "n", ")" ]
Reimplementation of SciPy's derivative function, with more cached coefficients and without using numpy. If new coefficients not cached are needed, they are only calculated once and are remembered.
[ "Reimplementation", "of", "SciPy", "s", "derivative", "function", "with", "more", "cached", "coefficients", "and", "without", "using", "numpy", ".", "If", "new", "coefficients", "not", "cached", "are", "needed", "they", "are", "only", "calculated", "once", "and", "are", "remembered", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/numerics/__init__.py#L547-L561
train
CalebBell/fluids
fluids/numerics/__init__.py
polyder
def polyder(c, m=1, scl=1, axis=0): '''not quite a copy of numpy's version because this was faster to implement. ''' c = list(c) cnt = int(m) if cnt == 0: return c n = len(c) if cnt >= n: c = c[:1]*0 else: for i in range(cnt): n = n - 1 c *= scl der = [0.0 for _ in range(n)] for j in range(n, 0, -1): der[j - 1] = j*c[j] c = der return c
python
def polyder(c, m=1, scl=1, axis=0): '''not quite a copy of numpy's version because this was faster to implement. ''' c = list(c) cnt = int(m) if cnt == 0: return c n = len(c) if cnt >= n: c = c[:1]*0 else: for i in range(cnt): n = n - 1 c *= scl der = [0.0 for _ in range(n)] for j in range(n, 0, -1): der[j - 1] = j*c[j] c = der return c
[ "def", "polyder", "(", "c", ",", "m", "=", "1", ",", "scl", "=", "1", ",", "axis", "=", "0", ")", ":", "c", "=", "list", "(", "c", ")", "cnt", "=", "int", "(", "m", ")", "if", "cnt", "==", "0", ":", "return", "c", "n", "=", "len", "(", "c", ")", "if", "cnt", ">=", "n", ":", "c", "=", "c", "[", ":", "1", "]", "*", "0", "else", ":", "for", "i", "in", "range", "(", "cnt", ")", ":", "n", "=", "n", "-", "1", "c", "*=", "scl", "der", "=", "[", "0.0", "for", "_", "in", "range", "(", "n", ")", "]", "for", "j", "in", "range", "(", "n", ",", "0", ",", "-", "1", ")", ":", "der", "[", "j", "-", "1", "]", "=", "j", "*", "c", "[", "j", "]", "c", "=", "der", "return", "c" ]
not quite a copy of numpy's version because this was faster to implement.
[ "not", "quite", "a", "copy", "of", "numpy", "s", "version", "because", "this", "was", "faster", "to", "implement", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/numerics/__init__.py#L620-L640
train
CalebBell/fluids
fluids/numerics/__init__.py
horner_log
def horner_log(coeffs, log_coeff, x): '''Technically possible to save one addition of the last term of coeffs is removed but benchmarks said nothing was saved''' tot = 0.0 for c in coeffs: tot = tot*x + c return tot + log_coeff*log(x)
python
def horner_log(coeffs, log_coeff, x): '''Technically possible to save one addition of the last term of coeffs is removed but benchmarks said nothing was saved''' tot = 0.0 for c in coeffs: tot = tot*x + c return tot + log_coeff*log(x)
[ "def", "horner_log", "(", "coeffs", ",", "log_coeff", ",", "x", ")", ":", "tot", "=", "0.0", "for", "c", "in", "coeffs", ":", "tot", "=", "tot", "*", "x", "+", "c", "return", "tot", "+", "log_coeff", "*", "log", "(", "x", ")" ]
Technically possible to save one addition of the last term of coeffs is removed but benchmarks said nothing was saved
[ "Technically", "possible", "to", "save", "one", "addition", "of", "the", "last", "term", "of", "coeffs", "is", "removed", "but", "benchmarks", "said", "nothing", "was", "saved" ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/numerics/__init__.py#L679-L685
train
CalebBell/fluids
fluids/numerics/__init__.py
implementation_optimize_tck
def implementation_optimize_tck(tck): '''Converts 1-d or 2-d splines calculated with SciPy's `splrep` or `bisplrep` to a format for fastest computation - lists in PyPy, and numpy arrays otherwise. Only implemented for 3 and 5 length `tck`s. ''' if IS_PYPY: return tck else: if len(tck) == 3: tck[0] = np.array(tck[0]) tck[1] = np.array(tck[1]) elif len(tck) == 5: tck[0] = np.array(tck[0]) tck[1] = np.array(tck[1]) tck[2] = np.array(tck[2]) else: raise NotImplementedError return tck
python
def implementation_optimize_tck(tck): '''Converts 1-d or 2-d splines calculated with SciPy's `splrep` or `bisplrep` to a format for fastest computation - lists in PyPy, and numpy arrays otherwise. Only implemented for 3 and 5 length `tck`s. ''' if IS_PYPY: return tck else: if len(tck) == 3: tck[0] = np.array(tck[0]) tck[1] = np.array(tck[1]) elif len(tck) == 5: tck[0] = np.array(tck[0]) tck[1] = np.array(tck[1]) tck[2] = np.array(tck[2]) else: raise NotImplementedError return tck
[ "def", "implementation_optimize_tck", "(", "tck", ")", ":", "if", "IS_PYPY", ":", "return", "tck", "else", ":", "if", "len", "(", "tck", ")", "==", "3", ":", "tck", "[", "0", "]", "=", "np", ".", "array", "(", "tck", "[", "0", "]", ")", "tck", "[", "1", "]", "=", "np", ".", "array", "(", "tck", "[", "1", "]", ")", "elif", "len", "(", "tck", ")", "==", "5", ":", "tck", "[", "0", "]", "=", "np", ".", "array", "(", "tck", "[", "0", "]", ")", "tck", "[", "1", "]", "=", "np", ".", "array", "(", "tck", "[", "1", "]", ")", "tck", "[", "2", "]", "=", "np", ".", "array", "(", "tck", "[", "2", "]", ")", "else", ":", "raise", "NotImplementedError", "return", "tck" ]
Converts 1-d or 2-d splines calculated with SciPy's `splrep` or `bisplrep` to a format for fastest computation - lists in PyPy, and numpy arrays otherwise. Only implemented for 3 and 5 length `tck`s.
[ "Converts", "1", "-", "d", "or", "2", "-", "d", "splines", "calculated", "with", "SciPy", "s", "splrep", "or", "bisplrep", "to", "a", "format", "for", "fastest", "computation", "-", "lists", "in", "PyPy", "and", "numpy", "arrays", "otherwise", ".", "Only", "implemented", "for", "3", "and", "5", "length", "tck", "s", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/numerics/__init__.py#L870-L889
train
CalebBell/fluids
fluids/numerics/__init__.py
py_bisect
def py_bisect(f, a, b, args=(), xtol=_xtol, rtol=_rtol, maxiter=_iter, ytol=None, full_output=False, disp=True): '''Port of SciPy's C bisect routine. ''' fa = f(a, *args) fb = f(b, *args) if fa*fb > 0.0: raise ValueError("f(a) and f(b) must have different signs") elif fa == 0.0: return a elif fb == 0.0: return b dm = b - a iterations = 0.0 for i in range(maxiter): dm *= 0.5 xm = a + dm fm = f(xm, *args) if fm*fa >= 0.0: a = xm abs_dm = fabs(dm) if fm == 0.0: return xm elif ytol is not None: if (abs_dm < xtol + rtol*abs_dm) and abs(fm) < ytol: return xm elif (abs_dm < xtol + rtol*abs_dm): return xm raise UnconvergedError("Failed to converge after %d iterations" %maxiter)
python
def py_bisect(f, a, b, args=(), xtol=_xtol, rtol=_rtol, maxiter=_iter, ytol=None, full_output=False, disp=True): '''Port of SciPy's C bisect routine. ''' fa = f(a, *args) fb = f(b, *args) if fa*fb > 0.0: raise ValueError("f(a) and f(b) must have different signs") elif fa == 0.0: return a elif fb == 0.0: return b dm = b - a iterations = 0.0 for i in range(maxiter): dm *= 0.5 xm = a + dm fm = f(xm, *args) if fm*fa >= 0.0: a = xm abs_dm = fabs(dm) if fm == 0.0: return xm elif ytol is not None: if (abs_dm < xtol + rtol*abs_dm) and abs(fm) < ytol: return xm elif (abs_dm < xtol + rtol*abs_dm): return xm raise UnconvergedError("Failed to converge after %d iterations" %maxiter)
[ "def", "py_bisect", "(", "f", ",", "a", ",", "b", ",", "args", "=", "(", ")", ",", "xtol", "=", "_xtol", ",", "rtol", "=", "_rtol", ",", "maxiter", "=", "_iter", ",", "ytol", "=", "None", ",", "full_output", "=", "False", ",", "disp", "=", "True", ")", ":", "fa", "=", "f", "(", "a", ",", "*", "args", ")", "fb", "=", "f", "(", "b", ",", "*", "args", ")", "if", "fa", "*", "fb", ">", "0.0", ":", "raise", "ValueError", "(", "\"f(a) and f(b) must have different signs\"", ")", "elif", "fa", "==", "0.0", ":", "return", "a", "elif", "fb", "==", "0.0", ":", "return", "b", "dm", "=", "b", "-", "a", "iterations", "=", "0.0", "for", "i", "in", "range", "(", "maxiter", ")", ":", "dm", "*=", "0.5", "xm", "=", "a", "+", "dm", "fm", "=", "f", "(", "xm", ",", "*", "args", ")", "if", "fm", "*", "fa", ">=", "0.0", ":", "a", "=", "xm", "abs_dm", "=", "fabs", "(", "dm", ")", "if", "fm", "==", "0.0", ":", "return", "xm", "elif", "ytol", "is", "not", "None", ":", "if", "(", "abs_dm", "<", "xtol", "+", "rtol", "*", "abs_dm", ")", "and", "abs", "(", "fm", ")", "<", "ytol", ":", "return", "xm", "elif", "(", "abs_dm", "<", "xtol", "+", "rtol", "*", "abs_dm", ")", ":", "return", "xm", "raise", "UnconvergedError", "(", "\"Failed to converge after %d iterations\"", "%", "maxiter", ")" ]
Port of SciPy's C bisect routine.
[ "Port", "of", "SciPy", "s", "C", "bisect", "routine", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/numerics/__init__.py#L1058-L1089
train
CalebBell/fluids
fluids/control_valve.py
is_choked_turbulent_l
def is_choked_turbulent_l(dP, P1, Psat, FF, FL=None, FLP=None, FP=None): r'''Calculates if a liquid flow in IEC 60534 calculations is critical or not, for use in IEC 60534 liquid valve sizing calculations. Either FL may be provided or FLP and FP, depending on the calculation process. .. math:: \Delta P > F_L^2(P_1 - F_F P_{sat}) .. math:: \Delta P >= \left(\frac{F_{LP}}{F_P}\right)^2(P_1 - F_F P_{sat}) Parameters ---------- dP : float Differential pressure across the valve, with reducer/expanders [Pa] P1 : float Pressure of the fluid before the valve and reducers/expanders [Pa] Psat : float Saturation pressure of the fluid at inlet temperature [Pa] FF : float Liquid critical pressure ratio factor [-] FL : float, optional Liquid pressure recovery factor of a control valve without attached fittings [-] FLP : float, optional Combined liquid pressure recovery factor with piping geometry factor, for a control valve with attached fittings [-] FP : float, optional Piping geometry factor [-] Returns ------- choked : bool Whether or not the flow is choked [-] Examples -------- >>> is_choked_turbulent_l(460.0, 680.0, 70.1, 0.94, 0.9) False >>> is_choked_turbulent_l(460.0, 680.0, 70.1, 0.94, 0.6) True References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007 ''' if FLP and FP: return dP >= (FLP/FP)**2*(P1-FF*Psat) elif FL: return dP >= FL**2*(P1-FF*Psat) else: raise Exception('Either (FLP and FP) or FL is needed')
python
def is_choked_turbulent_l(dP, P1, Psat, FF, FL=None, FLP=None, FP=None): r'''Calculates if a liquid flow in IEC 60534 calculations is critical or not, for use in IEC 60534 liquid valve sizing calculations. Either FL may be provided or FLP and FP, depending on the calculation process. .. math:: \Delta P > F_L^2(P_1 - F_F P_{sat}) .. math:: \Delta P >= \left(\frac{F_{LP}}{F_P}\right)^2(P_1 - F_F P_{sat}) Parameters ---------- dP : float Differential pressure across the valve, with reducer/expanders [Pa] P1 : float Pressure of the fluid before the valve and reducers/expanders [Pa] Psat : float Saturation pressure of the fluid at inlet temperature [Pa] FF : float Liquid critical pressure ratio factor [-] FL : float, optional Liquid pressure recovery factor of a control valve without attached fittings [-] FLP : float, optional Combined liquid pressure recovery factor with piping geometry factor, for a control valve with attached fittings [-] FP : float, optional Piping geometry factor [-] Returns ------- choked : bool Whether or not the flow is choked [-] Examples -------- >>> is_choked_turbulent_l(460.0, 680.0, 70.1, 0.94, 0.9) False >>> is_choked_turbulent_l(460.0, 680.0, 70.1, 0.94, 0.6) True References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007 ''' if FLP and FP: return dP >= (FLP/FP)**2*(P1-FF*Psat) elif FL: return dP >= FL**2*(P1-FF*Psat) else: raise Exception('Either (FLP and FP) or FL is needed')
[ "def", "is_choked_turbulent_l", "(", "dP", ",", "P1", ",", "Psat", ",", "FF", ",", "FL", "=", "None", ",", "FLP", "=", "None", ",", "FP", "=", "None", ")", ":", "if", "FLP", "and", "FP", ":", "return", "dP", ">=", "(", "FLP", "/", "FP", ")", "**", "2", "*", "(", "P1", "-", "FF", "*", "Psat", ")", "elif", "FL", ":", "return", "dP", ">=", "FL", "**", "2", "*", "(", "P1", "-", "FF", "*", "Psat", ")", "else", ":", "raise", "Exception", "(", "'Either (FLP and FP) or FL is needed'", ")" ]
r'''Calculates if a liquid flow in IEC 60534 calculations is critical or not, for use in IEC 60534 liquid valve sizing calculations. Either FL may be provided or FLP and FP, depending on the calculation process. .. math:: \Delta P > F_L^2(P_1 - F_F P_{sat}) .. math:: \Delta P >= \left(\frac{F_{LP}}{F_P}\right)^2(P_1 - F_F P_{sat}) Parameters ---------- dP : float Differential pressure across the valve, with reducer/expanders [Pa] P1 : float Pressure of the fluid before the valve and reducers/expanders [Pa] Psat : float Saturation pressure of the fluid at inlet temperature [Pa] FF : float Liquid critical pressure ratio factor [-] FL : float, optional Liquid pressure recovery factor of a control valve without attached fittings [-] FLP : float, optional Combined liquid pressure recovery factor with piping geometry factor, for a control valve with attached fittings [-] FP : float, optional Piping geometry factor [-] Returns ------- choked : bool Whether or not the flow is choked [-] Examples -------- >>> is_choked_turbulent_l(460.0, 680.0, 70.1, 0.94, 0.9) False >>> is_choked_turbulent_l(460.0, 680.0, 70.1, 0.94, 0.6) True References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007
[ "r", "Calculates", "if", "a", "liquid", "flow", "in", "IEC", "60534", "calculations", "is", "critical", "or", "not", "for", "use", "in", "IEC", "60534", "liquid", "valve", "sizing", "calculations", ".", "Either", "FL", "may", "be", "provided", "or", "FLP", "and", "FP", "depending", "on", "the", "calculation", "process", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/control_valve.py#L259-L310
train
CalebBell/fluids
fluids/control_valve.py
is_choked_turbulent_g
def is_choked_turbulent_g(x, Fgamma, xT=None, xTP=None): r'''Calculates if a gas flow in IEC 60534 calculations is critical or not, for use in IEC 60534 gas valve sizing calculations. Either xT or xTP must be provided, depending on the calculation process. .. math:: x \ge F_\gamma x_T .. math:: x \ge F_\gamma x_{TP} Parameters ---------- x : float Differential pressure over inlet pressure, [-] Fgamma : float Specific heat ratio factor [-] xT : float, optional Pressure difference ratio factor of a valve without fittings at choked flow [-] xTP : float Pressure difference ratio factor of a valve with fittings at choked flow [-] Returns ------- choked : bool Whether or not the flow is choked [-] Examples -------- Example 3, compressible flow, non-choked with attached fittings: >>> is_choked_turbulent_g(0.544, 0.929, 0.6) False >>> is_choked_turbulent_g(0.544, 0.929, xTP=0.625) False References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007 ''' if xT: return x >= Fgamma*xT elif xTP: return x >= Fgamma*xTP else: raise Exception('Either xT or xTP is needed')
python
def is_choked_turbulent_g(x, Fgamma, xT=None, xTP=None): r'''Calculates if a gas flow in IEC 60534 calculations is critical or not, for use in IEC 60534 gas valve sizing calculations. Either xT or xTP must be provided, depending on the calculation process. .. math:: x \ge F_\gamma x_T .. math:: x \ge F_\gamma x_{TP} Parameters ---------- x : float Differential pressure over inlet pressure, [-] Fgamma : float Specific heat ratio factor [-] xT : float, optional Pressure difference ratio factor of a valve without fittings at choked flow [-] xTP : float Pressure difference ratio factor of a valve with fittings at choked flow [-] Returns ------- choked : bool Whether or not the flow is choked [-] Examples -------- Example 3, compressible flow, non-choked with attached fittings: >>> is_choked_turbulent_g(0.544, 0.929, 0.6) False >>> is_choked_turbulent_g(0.544, 0.929, xTP=0.625) False References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007 ''' if xT: return x >= Fgamma*xT elif xTP: return x >= Fgamma*xTP else: raise Exception('Either xT or xTP is needed')
[ "def", "is_choked_turbulent_g", "(", "x", ",", "Fgamma", ",", "xT", "=", "None", ",", "xTP", "=", "None", ")", ":", "if", "xT", ":", "return", "x", ">=", "Fgamma", "*", "xT", "elif", "xTP", ":", "return", "x", ">=", "Fgamma", "*", "xTP", "else", ":", "raise", "Exception", "(", "'Either xT or xTP is needed'", ")" ]
r'''Calculates if a gas flow in IEC 60534 calculations is critical or not, for use in IEC 60534 gas valve sizing calculations. Either xT or xTP must be provided, depending on the calculation process. .. math:: x \ge F_\gamma x_T .. math:: x \ge F_\gamma x_{TP} Parameters ---------- x : float Differential pressure over inlet pressure, [-] Fgamma : float Specific heat ratio factor [-] xT : float, optional Pressure difference ratio factor of a valve without fittings at choked flow [-] xTP : float Pressure difference ratio factor of a valve with fittings at choked flow [-] Returns ------- choked : bool Whether or not the flow is choked [-] Examples -------- Example 3, compressible flow, non-choked with attached fittings: >>> is_choked_turbulent_g(0.544, 0.929, 0.6) False >>> is_choked_turbulent_g(0.544, 0.929, xTP=0.625) False References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007
[ "r", "Calculates", "if", "a", "gas", "flow", "in", "IEC", "60534", "calculations", "is", "critical", "or", "not", "for", "use", "in", "IEC", "60534", "gas", "valve", "sizing", "calculations", ".", "Either", "xT", "or", "xTP", "must", "be", "provided", "depending", "on", "the", "calculation", "process", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/control_valve.py#L313-L360
train
CalebBell/fluids
fluids/control_valve.py
Reynolds_valve
def Reynolds_valve(nu, Q, D1, FL, Fd, C): r'''Calculates Reynolds number of a control valve for a liquid or gas flowing through it at a specified Q, for a specified D1, FL, Fd, C, and with kinematic viscosity `nu` according to IEC 60534 calculations. .. math:: Re_v = \frac{N_4 F_d Q}{\nu \sqrt{C F_L}}\left(\frac{F_L^2 C^2} {N_2D^4} +1\right)^{1/4} Parameters ---------- nu : float Kinematic viscosity, [m^2/s] Q : float Volumetric flow rate of the fluid [m^3/s] D1 : float Diameter of the pipe before the valve [m] FL : float, optional Liquid pressure recovery factor of a control valve without attached fittings [] Fd : float Valve style modifier [-] C : float Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m^3/hr] Returns ------- Rev : float Valve reynolds number [-] Examples -------- >>> Reynolds_valve(3.26e-07, 360, 150.0, 0.9, 0.46, 165) 2966984.7525455453 References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007 ''' return N4*Fd*Q/nu/(C*FL)**0.5*(FL**2*C**2/(N2*D1**4) + 1)**0.25
python
def Reynolds_valve(nu, Q, D1, FL, Fd, C): r'''Calculates Reynolds number of a control valve for a liquid or gas flowing through it at a specified Q, for a specified D1, FL, Fd, C, and with kinematic viscosity `nu` according to IEC 60534 calculations. .. math:: Re_v = \frac{N_4 F_d Q}{\nu \sqrt{C F_L}}\left(\frac{F_L^2 C^2} {N_2D^4} +1\right)^{1/4} Parameters ---------- nu : float Kinematic viscosity, [m^2/s] Q : float Volumetric flow rate of the fluid [m^3/s] D1 : float Diameter of the pipe before the valve [m] FL : float, optional Liquid pressure recovery factor of a control valve without attached fittings [] Fd : float Valve style modifier [-] C : float Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m^3/hr] Returns ------- Rev : float Valve reynolds number [-] Examples -------- >>> Reynolds_valve(3.26e-07, 360, 150.0, 0.9, 0.46, 165) 2966984.7525455453 References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007 ''' return N4*Fd*Q/nu/(C*FL)**0.5*(FL**2*C**2/(N2*D1**4) + 1)**0.25
[ "def", "Reynolds_valve", "(", "nu", ",", "Q", ",", "D1", ",", "FL", ",", "Fd", ",", "C", ")", ":", "return", "N4", "*", "Fd", "*", "Q", "/", "nu", "/", "(", "C", "*", "FL", ")", "**", "0.5", "*", "(", "FL", "**", "2", "*", "C", "**", "2", "/", "(", "N2", "*", "D1", "**", "4", ")", "+", "1", ")", "**", "0.25" ]
r'''Calculates Reynolds number of a control valve for a liquid or gas flowing through it at a specified Q, for a specified D1, FL, Fd, C, and with kinematic viscosity `nu` according to IEC 60534 calculations. .. math:: Re_v = \frac{N_4 F_d Q}{\nu \sqrt{C F_L}}\left(\frac{F_L^2 C^2} {N_2D^4} +1\right)^{1/4} Parameters ---------- nu : float Kinematic viscosity, [m^2/s] Q : float Volumetric flow rate of the fluid [m^3/s] D1 : float Diameter of the pipe before the valve [m] FL : float, optional Liquid pressure recovery factor of a control valve without attached fittings [] Fd : float Valve style modifier [-] C : float Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m^3/hr] Returns ------- Rev : float Valve reynolds number [-] Examples -------- >>> Reynolds_valve(3.26e-07, 360, 150.0, 0.9, 0.46, 165) 2966984.7525455453 References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007
[ "r", "Calculates", "Reynolds", "number", "of", "a", "control", "valve", "for", "a", "liquid", "or", "gas", "flowing", "through", "it", "at", "a", "specified", "Q", "for", "a", "specified", "D1", "FL", "Fd", "C", "and", "with", "kinematic", "viscosity", "nu", "according", "to", "IEC", "60534", "calculations", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/control_valve.py#L363-L403
train
CalebBell/fluids
fluids/control_valve.py
Reynolds_factor
def Reynolds_factor(FL, C, d, Rev, full_trim=True): r'''Calculates the Reynolds number factor `FR` for a valve with a Reynolds number `Rev`, diameter `d`, flow coefficient `C`, liquid pressure recovery factor `FL`, and with either full or reduced trim, all according to IEC 60534 calculations. If full trim: .. math:: F_{R,1a} = 1 + \left(\frac{0.33F_L^{0.5}}{n_1^{0.25}}\right)\log_{10} \left(\frac{Re_v}{10000}\right) .. math:: F_{R,2} = \min(\frac{0.026}{F_L}\sqrt{n_1 Re_v},\; 1) .. math:: n_1 = \frac{N_2}{\left(\frac{C}{d^2}\right)^2} .. math:: F_R = F_{R,2} \text{ if Rev < 10 else } \min(F_{R,1a}, F_{R,2}) Otherwise : .. math:: F_{R,3a} = 1 + \left(\frac{0.33F_L^{0.5}}{n_2^{0.25}}\right)\log_{10} \left(\frac{Re_v}{10000}\right) .. math:: F_{R,4} = \frac{0.026}{F_L}\sqrt{n_2 Re_v} .. math:: n_2 = 1 + N_{32}\left(\frac{C}{d}\right)^{2/3} .. math:: F_R = F_{R,4} \text{ if Rev < 10 else } \min(F_{R,3a}, F_{R,4}) Parameters ---------- FL : float Liquid pressure recovery factor of a control valve without attached fittings [] C : float Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m^3/hr] d : float Diameter of the valve [m] Rev : float Valve reynolds number [-] full_trim : bool Whether or not the valve has full trim Returns ------- FR : float Reynolds number factor for laminar or transitional flow [] Examples -------- In Example 4, compressible flow with small flow trim sized for gas flow (Cv in the problem was converted to Kv here to make FR match with N32, N2): >>> Reynolds_factor(FL=0.98, C=0.015483, d=15., Rev=1202., full_trim=False) 0.7148753122302025 References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007 ''' if full_trim: n1 = N2/(min(C/d**2, 0.04))**2 # C/d**2 must not exceed 0.04 FR_1a = 1 + (0.33*FL**0.5)/n1**0.25*log10(Rev/10000.) FR_2 = 0.026/FL*(n1*Rev)**0.5 if Rev < 10: FR = FR_2 else: FR = min(FR_2, FR_1a) else: n2 = 1 + N32*(C/d**2)**(2/3.) FR_3a = 1 + (0.33*FL**0.5)/n2**0.25*log10(Rev/10000.) FR_4 = min(0.026/FL*(n2*Rev)**0.5, 1) if Rev < 10: FR = FR_4 else: FR = min(FR_3a, FR_4) return FR
python
def Reynolds_factor(FL, C, d, Rev, full_trim=True): r'''Calculates the Reynolds number factor `FR` for a valve with a Reynolds number `Rev`, diameter `d`, flow coefficient `C`, liquid pressure recovery factor `FL`, and with either full or reduced trim, all according to IEC 60534 calculations. If full trim: .. math:: F_{R,1a} = 1 + \left(\frac{0.33F_L^{0.5}}{n_1^{0.25}}\right)\log_{10} \left(\frac{Re_v}{10000}\right) .. math:: F_{R,2} = \min(\frac{0.026}{F_L}\sqrt{n_1 Re_v},\; 1) .. math:: n_1 = \frac{N_2}{\left(\frac{C}{d^2}\right)^2} .. math:: F_R = F_{R,2} \text{ if Rev < 10 else } \min(F_{R,1a}, F_{R,2}) Otherwise : .. math:: F_{R,3a} = 1 + \left(\frac{0.33F_L^{0.5}}{n_2^{0.25}}\right)\log_{10} \left(\frac{Re_v}{10000}\right) .. math:: F_{R,4} = \frac{0.026}{F_L}\sqrt{n_2 Re_v} .. math:: n_2 = 1 + N_{32}\left(\frac{C}{d}\right)^{2/3} .. math:: F_R = F_{R,4} \text{ if Rev < 10 else } \min(F_{R,3a}, F_{R,4}) Parameters ---------- FL : float Liquid pressure recovery factor of a control valve without attached fittings [] C : float Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m^3/hr] d : float Diameter of the valve [m] Rev : float Valve reynolds number [-] full_trim : bool Whether or not the valve has full trim Returns ------- FR : float Reynolds number factor for laminar or transitional flow [] Examples -------- In Example 4, compressible flow with small flow trim sized for gas flow (Cv in the problem was converted to Kv here to make FR match with N32, N2): >>> Reynolds_factor(FL=0.98, C=0.015483, d=15., Rev=1202., full_trim=False) 0.7148753122302025 References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007 ''' if full_trim: n1 = N2/(min(C/d**2, 0.04))**2 # C/d**2 must not exceed 0.04 FR_1a = 1 + (0.33*FL**0.5)/n1**0.25*log10(Rev/10000.) FR_2 = 0.026/FL*(n1*Rev)**0.5 if Rev < 10: FR = FR_2 else: FR = min(FR_2, FR_1a) else: n2 = 1 + N32*(C/d**2)**(2/3.) FR_3a = 1 + (0.33*FL**0.5)/n2**0.25*log10(Rev/10000.) FR_4 = min(0.026/FL*(n2*Rev)**0.5, 1) if Rev < 10: FR = FR_4 else: FR = min(FR_3a, FR_4) return FR
[ "def", "Reynolds_factor", "(", "FL", ",", "C", ",", "d", ",", "Rev", ",", "full_trim", "=", "True", ")", ":", "if", "full_trim", ":", "n1", "=", "N2", "/", "(", "min", "(", "C", "/", "d", "**", "2", ",", "0.04", ")", ")", "**", "2", "# C/d**2 must not exceed 0.04", "FR_1a", "=", "1", "+", "(", "0.33", "*", "FL", "**", "0.5", ")", "/", "n1", "**", "0.25", "*", "log10", "(", "Rev", "/", "10000.", ")", "FR_2", "=", "0.026", "/", "FL", "*", "(", "n1", "*", "Rev", ")", "**", "0.5", "if", "Rev", "<", "10", ":", "FR", "=", "FR_2", "else", ":", "FR", "=", "min", "(", "FR_2", ",", "FR_1a", ")", "else", ":", "n2", "=", "1", "+", "N32", "*", "(", "C", "/", "d", "**", "2", ")", "**", "(", "2", "/", "3.", ")", "FR_3a", "=", "1", "+", "(", "0.33", "*", "FL", "**", "0.5", ")", "/", "n2", "**", "0.25", "*", "log10", "(", "Rev", "/", "10000.", ")", "FR_4", "=", "min", "(", "0.026", "/", "FL", "*", "(", "n2", "*", "Rev", ")", "**", "0.5", ",", "1", ")", "if", "Rev", "<", "10", ":", "FR", "=", "FR_4", "else", ":", "FR", "=", "min", "(", "FR_3a", ",", "FR_4", ")", "return", "FR" ]
r'''Calculates the Reynolds number factor `FR` for a valve with a Reynolds number `Rev`, diameter `d`, flow coefficient `C`, liquid pressure recovery factor `FL`, and with either full or reduced trim, all according to IEC 60534 calculations. If full trim: .. math:: F_{R,1a} = 1 + \left(\frac{0.33F_L^{0.5}}{n_1^{0.25}}\right)\log_{10} \left(\frac{Re_v}{10000}\right) .. math:: F_{R,2} = \min(\frac{0.026}{F_L}\sqrt{n_1 Re_v},\; 1) .. math:: n_1 = \frac{N_2}{\left(\frac{C}{d^2}\right)^2} .. math:: F_R = F_{R,2} \text{ if Rev < 10 else } \min(F_{R,1a}, F_{R,2}) Otherwise : .. math:: F_{R,3a} = 1 + \left(\frac{0.33F_L^{0.5}}{n_2^{0.25}}\right)\log_{10} \left(\frac{Re_v}{10000}\right) .. math:: F_{R,4} = \frac{0.026}{F_L}\sqrt{n_2 Re_v} .. math:: n_2 = 1 + N_{32}\left(\frac{C}{d}\right)^{2/3} .. math:: F_R = F_{R,4} \text{ if Rev < 10 else } \min(F_{R,3a}, F_{R,4}) Parameters ---------- FL : float Liquid pressure recovery factor of a control valve without attached fittings [] C : float Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m^3/hr] d : float Diameter of the valve [m] Rev : float Valve reynolds number [-] full_trim : bool Whether or not the valve has full trim Returns ------- FR : float Reynolds number factor for laminar or transitional flow [] Examples -------- In Example 4, compressible flow with small flow trim sized for gas flow (Cv in the problem was converted to Kv here to make FR match with N32, N2): >>> Reynolds_factor(FL=0.98, C=0.015483, d=15., Rev=1202., full_trim=False) 0.7148753122302025 References ---------- .. [1] IEC 60534-2-1 / ISA-75.01.01-2007
[ "r", "Calculates", "the", "Reynolds", "number", "factor", "FR", "for", "a", "valve", "with", "a", "Reynolds", "number", "Rev", "diameter", "d", "flow", "coefficient", "C", "liquid", "pressure", "recovery", "factor", "FL", "and", "with", "either", "full", "or", "reduced", "trim", "all", "according", "to", "IEC", "60534", "calculations", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/control_valve.py#L461-L547
train
CalebBell/fluids
fluids/units.py
func_args
def func_args(func): '''Basic function which returns a tuple of arguments of a function or method. ''' try: return tuple(inspect.signature(func).parameters) except: return tuple(inspect.getargspec(func).args)
python
def func_args(func): '''Basic function which returns a tuple of arguments of a function or method. ''' try: return tuple(inspect.signature(func).parameters) except: return tuple(inspect.getargspec(func).args)
[ "def", "func_args", "(", "func", ")", ":", "try", ":", "return", "tuple", "(", "inspect", ".", "signature", "(", "func", ")", ".", "parameters", ")", "except", ":", "return", "tuple", "(", "inspect", ".", "getargspec", "(", "func", ")", ".", "args", ")" ]
Basic function which returns a tuple of arguments of a function or method.
[ "Basic", "function", "which", "returns", "a", "tuple", "of", "arguments", "of", "a", "function", "or", "method", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/units.py#L51-L58
train
CalebBell/fluids
fluids/optional/pychebfun.py
cast_scalar
def cast_scalar(method): """ Cast scalars to constant interpolating objects """ @wraps(method) def new_method(self, other): if np.isscalar(other): other = type(self)([other],self.domain()) return method(self, other) return new_method
python
def cast_scalar(method): """ Cast scalars to constant interpolating objects """ @wraps(method) def new_method(self, other): if np.isscalar(other): other = type(self)([other],self.domain()) return method(self, other) return new_method
[ "def", "cast_scalar", "(", "method", ")", ":", "@", "wraps", "(", "method", ")", "def", "new_method", "(", "self", ",", "other", ")", ":", "if", "np", ".", "isscalar", "(", "other", ")", ":", "other", "=", "type", "(", "self", ")", "(", "[", "other", "]", ",", "self", ".", "domain", "(", ")", ")", "return", "method", "(", "self", ",", "other", ")", "return", "new_method" ]
Cast scalars to constant interpolating objects
[ "Cast", "scalars", "to", "constant", "interpolating", "objects" ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/optional/pychebfun.py#L75-L84
train
CalebBell/fluids
fluids/optional/pychebfun.py
dct
def dct(data): """ Compute DCT using FFT """ N = len(data)//2 fftdata = fftpack.fft(data, axis=0)[:N+1] fftdata /= N fftdata[0] /= 2. fftdata[-1] /= 2. if np.isrealobj(data): data = np.real(fftdata) else: data = fftdata return data
python
def dct(data): """ Compute DCT using FFT """ N = len(data)//2 fftdata = fftpack.fft(data, axis=0)[:N+1] fftdata /= N fftdata[0] /= 2. fftdata[-1] /= 2. if np.isrealobj(data): data = np.real(fftdata) else: data = fftdata return data
[ "def", "dct", "(", "data", ")", ":", "N", "=", "len", "(", "data", ")", "//", "2", "fftdata", "=", "fftpack", ".", "fft", "(", "data", ",", "axis", "=", "0", ")", "[", ":", "N", "+", "1", "]", "fftdata", "/=", "N", "fftdata", "[", "0", "]", "/=", "2.", "fftdata", "[", "-", "1", "]", "/=", "2.", "if", "np", ".", "isrealobj", "(", "data", ")", ":", "data", "=", "np", ".", "real", "(", "fftdata", ")", "else", ":", "data", "=", "fftdata", "return", "data" ]
Compute DCT using FFT
[ "Compute", "DCT", "using", "FFT" ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/optional/pychebfun.py#L637-L650
train
CalebBell/fluids
fluids/optional/pychebfun.py
Polyfun._cutoff
def _cutoff(self, coeffs, vscale): """ Compute cutoff index after which the coefficients are deemed negligible. """ bnd = self._threshold(vscale) inds = np.nonzero(abs(coeffs) >= bnd) if len(inds[0]): N = inds[0][-1] else: N = 0 return N+1
python
def _cutoff(self, coeffs, vscale): """ Compute cutoff index after which the coefficients are deemed negligible. """ bnd = self._threshold(vscale) inds = np.nonzero(abs(coeffs) >= bnd) if len(inds[0]): N = inds[0][-1] else: N = 0 return N+1
[ "def", "_cutoff", "(", "self", ",", "coeffs", ",", "vscale", ")", ":", "bnd", "=", "self", ".", "_threshold", "(", "vscale", ")", "inds", "=", "np", ".", "nonzero", "(", "abs", "(", "coeffs", ")", ">=", "bnd", ")", "if", "len", "(", "inds", "[", "0", "]", ")", ":", "N", "=", "inds", "[", "0", "]", "[", "-", "1", "]", "else", ":", "N", "=", "0", "return", "N", "+", "1" ]
Compute cutoff index after which the coefficients are deemed negligible.
[ "Compute", "cutoff", "index", "after", "which", "the", "coefficients", "are", "deemed", "negligible", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/optional/pychebfun.py#L203-L213
train
CalebBell/fluids
fluids/optional/pychebfun.py
Polyfun.same_domain
def same_domain(self, fun2): """ Returns True if the domains of two objects are the same. """ return np.allclose(self.domain(), fun2.domain(), rtol=1e-14, atol=1e-14)
python
def same_domain(self, fun2): """ Returns True if the domains of two objects are the same. """ return np.allclose(self.domain(), fun2.domain(), rtol=1e-14, atol=1e-14)
[ "def", "same_domain", "(", "self", ",", "fun2", ")", ":", "return", "np", ".", "allclose", "(", "self", ".", "domain", "(", ")", ",", "fun2", ".", "domain", "(", ")", ",", "rtol", "=", "1e-14", ",", "atol", "=", "1e-14", ")" ]
Returns True if the domains of two objects are the same.
[ "Returns", "True", "if", "the", "domains", "of", "two", "objects", "are", "the", "same", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/optional/pychebfun.py#L241-L245
train
CalebBell/fluids
fluids/optional/pychebfun.py
Polyfun.restrict
def restrict(self,subinterval): """ Return a Polyfun that matches self on subinterval. """ if (subinterval[0] < self._domain[0]) or (subinterval[1] > self._domain[1]): raise ValueError("Can only restrict to subinterval") return self.from_function(self, subinterval)
python
def restrict(self,subinterval): """ Return a Polyfun that matches self on subinterval. """ if (subinterval[0] < self._domain[0]) or (subinterval[1] > self._domain[1]): raise ValueError("Can only restrict to subinterval") return self.from_function(self, subinterval)
[ "def", "restrict", "(", "self", ",", "subinterval", ")", ":", "if", "(", "subinterval", "[", "0", "]", "<", "self", ".", "_domain", "[", "0", "]", ")", "or", "(", "subinterval", "[", "1", "]", ">", "self", ".", "_domain", "[", "1", "]", ")", ":", "raise", "ValueError", "(", "\"Can only restrict to subinterval\"", ")", "return", "self", ".", "from_function", "(", "self", ",", "subinterval", ")" ]
Return a Polyfun that matches self on subinterval.
[ "Return", "a", "Polyfun", "that", "matches", "self", "on", "subinterval", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/optional/pychebfun.py#L395-L401
train
CalebBell/fluids
fluids/optional/pychebfun.py
Chebfun.basis
def basis(self, n): """ Chebyshev basis functions T_n. """ if n == 0: return self(np.array([1.])) vals = np.ones(n+1) vals[1::2] = -1 return self(vals)
python
def basis(self, n): """ Chebyshev basis functions T_n. """ if n == 0: return self(np.array([1.])) vals = np.ones(n+1) vals[1::2] = -1 return self(vals)
[ "def", "basis", "(", "self", ",", "n", ")", ":", "if", "n", "==", "0", ":", "return", "self", "(", "np", ".", "array", "(", "[", "1.", "]", ")", ")", "vals", "=", "np", ".", "ones", "(", "n", "+", "1", ")", "vals", "[", "1", ":", ":", "2", "]", "=", "-", "1", "return", "self", "(", "vals", ")" ]
Chebyshev basis functions T_n.
[ "Chebyshev", "basis", "functions", "T_n", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/optional/pychebfun.py#L435-L443
train
CalebBell/fluids
fluids/optional/pychebfun.py
Chebfun.sum
def sum(self): """ Evaluate the integral over the given interval using Clenshaw-Curtis quadrature. """ ak = self.coefficients() ak2 = ak[::2] n = len(ak2) Tints = 2/(1-(2*np.arange(n))**2) val = np.sum((Tints*ak2.T).T, axis=0) a_, b_ = self.domain() return 0.5*(b_-a_)*val
python
def sum(self): """ Evaluate the integral over the given interval using Clenshaw-Curtis quadrature. """ ak = self.coefficients() ak2 = ak[::2] n = len(ak2) Tints = 2/(1-(2*np.arange(n))**2) val = np.sum((Tints*ak2.T).T, axis=0) a_, b_ = self.domain() return 0.5*(b_-a_)*val
[ "def", "sum", "(", "self", ")", ":", "ak", "=", "self", ".", "coefficients", "(", ")", "ak2", "=", "ak", "[", ":", ":", "2", "]", "n", "=", "len", "(", "ak2", ")", "Tints", "=", "2", "/", "(", "1", "-", "(", "2", "*", "np", ".", "arange", "(", "n", ")", ")", "**", "2", ")", "val", "=", "np", ".", "sum", "(", "(", "Tints", "*", "ak2", ".", "T", ")", ".", "T", ",", "axis", "=", "0", ")", "a_", ",", "b_", "=", "self", ".", "domain", "(", ")", "return", "0.5", "*", "(", "b_", "-", "a_", ")", "*", "val" ]
Evaluate the integral over the given interval using Clenshaw-Curtis quadrature.
[ "Evaluate", "the", "integral", "over", "the", "given", "interval", "using", "Clenshaw", "-", "Curtis", "quadrature", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/optional/pychebfun.py#L449-L460
train
CalebBell/fluids
fluids/optional/pychebfun.py
Chebfun.integrate
def integrate(self): """ Return the object representing the primitive of self over the domain. The output starts at zero on the left-hand side of the domain. """ coeffs = self.coefficients() a,b = self.domain() int_coeffs = 0.5*(b-a)*poly.chebyshev.chebint(coeffs) antiderivative = self.from_coeff(int_coeffs, domain=self.domain()) return antiderivative - antiderivative(a)
python
def integrate(self): """ Return the object representing the primitive of self over the domain. The output starts at zero on the left-hand side of the domain. """ coeffs = self.coefficients() a,b = self.domain() int_coeffs = 0.5*(b-a)*poly.chebyshev.chebint(coeffs) antiderivative = self.from_coeff(int_coeffs, domain=self.domain()) return antiderivative - antiderivative(a)
[ "def", "integrate", "(", "self", ")", ":", "coeffs", "=", "self", ".", "coefficients", "(", ")", "a", ",", "b", "=", "self", ".", "domain", "(", ")", "int_coeffs", "=", "0.5", "*", "(", "b", "-", "a", ")", "*", "poly", ".", "chebyshev", ".", "chebint", "(", "coeffs", ")", "antiderivative", "=", "self", ".", "from_coeff", "(", "int_coeffs", ",", "domain", "=", "self", ".", "domain", "(", ")", ")", "return", "antiderivative", "-", "antiderivative", "(", "a", ")" ]
Return the object representing the primitive of self over the domain. The output starts at zero on the left-hand side of the domain.
[ "Return", "the", "object", "representing", "the", "primitive", "of", "self", "over", "the", "domain", ".", "The", "output", "starts", "at", "zero", "on", "the", "left", "-", "hand", "side", "of", "the", "domain", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/optional/pychebfun.py#L462-L471
train
CalebBell/fluids
fluids/optional/pychebfun.py
Chebfun.differentiate
def differentiate(self, n=1): """ n-th derivative, default 1. """ ak = self.coefficients() a_, b_ = self.domain() for _ in range(n): ak = self.differentiator(ak) return self.from_coeff((2./(b_-a_))**n*ak, domain=self.domain())
python
def differentiate(self, n=1): """ n-th derivative, default 1. """ ak = self.coefficients() a_, b_ = self.domain() for _ in range(n): ak = self.differentiator(ak) return self.from_coeff((2./(b_-a_))**n*ak, domain=self.domain())
[ "def", "differentiate", "(", "self", ",", "n", "=", "1", ")", ":", "ak", "=", "self", ".", "coefficients", "(", ")", "a_", ",", "b_", "=", "self", ".", "domain", "(", ")", "for", "_", "in", "range", "(", "n", ")", ":", "ak", "=", "self", ".", "differentiator", "(", "ak", ")", "return", "self", ".", "from_coeff", "(", "(", "2.", "/", "(", "b_", "-", "a_", ")", ")", "**", "n", "*", "ak", ",", "domain", "=", "self", ".", "domain", "(", ")", ")" ]
n-th derivative, default 1.
[ "n", "-", "th", "derivative", "default", "1", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/optional/pychebfun.py#L473-L481
train
CalebBell/fluids
fluids/optional/pychebfun.py
Chebfun.sample_function
def sample_function(self, f, N): """ Sample a function on N+1 Chebyshev points. """ x = self.interpolation_points(N+1) return f(x)
python
def sample_function(self, f, N): """ Sample a function on N+1 Chebyshev points. """ x = self.interpolation_points(N+1) return f(x)
[ "def", "sample_function", "(", "self", ",", "f", ",", "N", ")", ":", "x", "=", "self", ".", "interpolation_points", "(", "N", "+", "1", ")", "return", "f", "(", "x", ")" ]
Sample a function on N+1 Chebyshev points.
[ "Sample", "a", "function", "on", "N", "+", "1", "Chebyshev", "points", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/optional/pychebfun.py#L538-L543
train
CalebBell/fluids
fluids/optional/pychebfun.py
Chebfun.interpolator
def interpolator(self, x, values): """ Returns a polynomial with vector coefficients which interpolates the values at the Chebyshev points x """ # hacking the barycentric interpolator by computing the weights in advance p = Bary([0.]) N = len(values) weights = np.ones(N) weights[0] = .5 weights[1::2] = -1 weights[-1] *= .5 p.wi = weights p.xi = x p.set_yi(values) return p
python
def interpolator(self, x, values): """ Returns a polynomial with vector coefficients which interpolates the values at the Chebyshev points x """ # hacking the barycentric interpolator by computing the weights in advance p = Bary([0.]) N = len(values) weights = np.ones(N) weights[0] = .5 weights[1::2] = -1 weights[-1] *= .5 p.wi = weights p.xi = x p.set_yi(values) return p
[ "def", "interpolator", "(", "self", ",", "x", ",", "values", ")", ":", "# hacking the barycentric interpolator by computing the weights in advance", "p", "=", "Bary", "(", "[", "0.", "]", ")", "N", "=", "len", "(", "values", ")", "weights", "=", "np", ".", "ones", "(", "N", ")", "weights", "[", "0", "]", "=", ".5", "weights", "[", "1", ":", ":", "2", "]", "=", "-", "1", "weights", "[", "-", "1", "]", "*=", ".5", "p", ".", "wi", "=", "weights", "p", ".", "xi", "=", "x", "p", ".", "set_yi", "(", "values", ")", "return", "p" ]
Returns a polynomial with vector coefficients which interpolates the values at the Chebyshev points x
[ "Returns", "a", "polynomial", "with", "vector", "coefficients", "which", "interpolates", "the", "values", "at", "the", "Chebyshev", "points", "x" ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/optional/pychebfun.py#L582-L596
train
CalebBell/fluids
fluids/drag.py
drag_sphere
def drag_sphere(Re, Method=None, AvailableMethods=False): r'''This function handles calculation of drag coefficient on spheres. Twenty methods are available, all requiring only the Reynolds number of the sphere. Most methods are valid from Re=0 to Re=200,000. A correlation will be automatically selected if none is specified. The full list of correlations valid for a given Reynolds number can be obtained with the `AvailableMethods` flag. If no correlation is selected, the following rules are used: * If Re < 0.01, use Stoke's solution. * If 0.01 <= Re < 0.1, linearly combine 'Barati' with Stokes's solution such that at Re = 0.1 the solution is 'Barati', and at Re = 0.01 the solution is 'Stokes'. * If 0.1 <= Re <= ~212963, use the 'Barati' solution. * If ~212963 < Re <= 1E6, use the 'Barati_high' solution. * For Re > 1E6, raises an exception; no valid results have been found. Examples -------- >>> drag_sphere(200) 0.7682237950389874 Parameters ---------- Re : float Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-] Returns ------- Cd : float Drag coefficient [-] methods : list, only returned if AvailableMethods == True List of methods which can be used to calculate `Cd` with the given `Re` Other Parameters ---------------- Method : string, optional A string of the function name to use, as in the dictionary drag_sphere_correlations AvailableMethods : bool, optional If True, function will consider which methods which can be used to calculate `Cd` with the given `Re` ''' def list_methods(): methods = [] for key, (func, Re_min, Re_max) in drag_sphere_correlations.items(): if (Re_min is None or Re > Re_min) and (Re_max is None or Re < Re_max): methods.append(key) return methods if AvailableMethods: return list_methods() if not Method: if Re > 0.1: # Smooth transition point between the two models if Re <= 212963.26847812787: return Barati(Re) elif Re <= 1E6: return Barati_high(Re) else: raise ValueError('No models implement a solution for Re > 1E6') elif Re >= 0.01: # Re from 0.01 to 0.1 ratio = (Re - 0.01)/(0.1 - 0.01) # Ensure a smooth transition by linearly switching to Stokes' law return ratio*Barati(Re) + (1-ratio)*Stokes(Re) else: return Stokes(Re) if Method in drag_sphere_correlations: return drag_sphere_correlations[Method][0](Re) else: raise Exception('Failure in in function')
python
def drag_sphere(Re, Method=None, AvailableMethods=False): r'''This function handles calculation of drag coefficient on spheres. Twenty methods are available, all requiring only the Reynolds number of the sphere. Most methods are valid from Re=0 to Re=200,000. A correlation will be automatically selected if none is specified. The full list of correlations valid for a given Reynolds number can be obtained with the `AvailableMethods` flag. If no correlation is selected, the following rules are used: * If Re < 0.01, use Stoke's solution. * If 0.01 <= Re < 0.1, linearly combine 'Barati' with Stokes's solution such that at Re = 0.1 the solution is 'Barati', and at Re = 0.01 the solution is 'Stokes'. * If 0.1 <= Re <= ~212963, use the 'Barati' solution. * If ~212963 < Re <= 1E6, use the 'Barati_high' solution. * For Re > 1E6, raises an exception; no valid results have been found. Examples -------- >>> drag_sphere(200) 0.7682237950389874 Parameters ---------- Re : float Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-] Returns ------- Cd : float Drag coefficient [-] methods : list, only returned if AvailableMethods == True List of methods which can be used to calculate `Cd` with the given `Re` Other Parameters ---------------- Method : string, optional A string of the function name to use, as in the dictionary drag_sphere_correlations AvailableMethods : bool, optional If True, function will consider which methods which can be used to calculate `Cd` with the given `Re` ''' def list_methods(): methods = [] for key, (func, Re_min, Re_max) in drag_sphere_correlations.items(): if (Re_min is None or Re > Re_min) and (Re_max is None or Re < Re_max): methods.append(key) return methods if AvailableMethods: return list_methods() if not Method: if Re > 0.1: # Smooth transition point between the two models if Re <= 212963.26847812787: return Barati(Re) elif Re <= 1E6: return Barati_high(Re) else: raise ValueError('No models implement a solution for Re > 1E6') elif Re >= 0.01: # Re from 0.01 to 0.1 ratio = (Re - 0.01)/(0.1 - 0.01) # Ensure a smooth transition by linearly switching to Stokes' law return ratio*Barati(Re) + (1-ratio)*Stokes(Re) else: return Stokes(Re) if Method in drag_sphere_correlations: return drag_sphere_correlations[Method][0](Re) else: raise Exception('Failure in in function')
[ "def", "drag_sphere", "(", "Re", ",", "Method", "=", "None", ",", "AvailableMethods", "=", "False", ")", ":", "def", "list_methods", "(", ")", ":", "methods", "=", "[", "]", "for", "key", ",", "(", "func", ",", "Re_min", ",", "Re_max", ")", "in", "drag_sphere_correlations", ".", "items", "(", ")", ":", "if", "(", "Re_min", "is", "None", "or", "Re", ">", "Re_min", ")", "and", "(", "Re_max", "is", "None", "or", "Re", "<", "Re_max", ")", ":", "methods", ".", "append", "(", "key", ")", "return", "methods", "if", "AvailableMethods", ":", "return", "list_methods", "(", ")", "if", "not", "Method", ":", "if", "Re", ">", "0.1", ":", "# Smooth transition point between the two models", "if", "Re", "<=", "212963.26847812787", ":", "return", "Barati", "(", "Re", ")", "elif", "Re", "<=", "1E6", ":", "return", "Barati_high", "(", "Re", ")", "else", ":", "raise", "ValueError", "(", "'No models implement a solution for Re > 1E6'", ")", "elif", "Re", ">=", "0.01", ":", "# Re from 0.01 to 0.1", "ratio", "=", "(", "Re", "-", "0.01", ")", "/", "(", "0.1", "-", "0.01", ")", "# Ensure a smooth transition by linearly switching to Stokes' law", "return", "ratio", "*", "Barati", "(", "Re", ")", "+", "(", "1", "-", "ratio", ")", "*", "Stokes", "(", "Re", ")", "else", ":", "return", "Stokes", "(", "Re", ")", "if", "Method", "in", "drag_sphere_correlations", ":", "return", "drag_sphere_correlations", "[", "Method", "]", "[", "0", "]", "(", "Re", ")", "else", ":", "raise", "Exception", "(", "'Failure in in function'", ")" ]
r'''This function handles calculation of drag coefficient on spheres. Twenty methods are available, all requiring only the Reynolds number of the sphere. Most methods are valid from Re=0 to Re=200,000. A correlation will be automatically selected if none is specified. The full list of correlations valid for a given Reynolds number can be obtained with the `AvailableMethods` flag. If no correlation is selected, the following rules are used: * If Re < 0.01, use Stoke's solution. * If 0.01 <= Re < 0.1, linearly combine 'Barati' with Stokes's solution such that at Re = 0.1 the solution is 'Barati', and at Re = 0.01 the solution is 'Stokes'. * If 0.1 <= Re <= ~212963, use the 'Barati' solution. * If ~212963 < Re <= 1E6, use the 'Barati_high' solution. * For Re > 1E6, raises an exception; no valid results have been found. Examples -------- >>> drag_sphere(200) 0.7682237950389874 Parameters ---------- Re : float Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-] Returns ------- Cd : float Drag coefficient [-] methods : list, only returned if AvailableMethods == True List of methods which can be used to calculate `Cd` with the given `Re` Other Parameters ---------------- Method : string, optional A string of the function name to use, as in the dictionary drag_sphere_correlations AvailableMethods : bool, optional If True, function will consider which methods which can be used to calculate `Cd` with the given `Re`
[ "r", "This", "function", "handles", "calculation", "of", "drag", "coefficient", "on", "spheres", ".", "Twenty", "methods", "are", "available", "all", "requiring", "only", "the", "Reynolds", "number", "of", "the", "sphere", ".", "Most", "methods", "are", "valid", "from", "Re", "=", "0", "to", "Re", "=", "200", "000", ".", "A", "correlation", "will", "be", "automatically", "selected", "if", "none", "is", "specified", ".", "The", "full", "list", "of", "correlations", "valid", "for", "a", "given", "Reynolds", "number", "can", "be", "obtained", "with", "the", "AvailableMethods", "flag", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/drag.py#L1028-L1101
train
CalebBell/fluids
fluids/drag.py
v_terminal
def v_terminal(D, rhop, rho, mu, Method=None): r'''Calculates terminal velocity of a falling sphere using any drag coefficient method supported by `drag_sphere`. The laminar solution for Re < 0.01 is first tried; if the resulting terminal velocity does not put it in the laminar regime, a numerical solution is used. .. math:: v_t = \sqrt{\frac{4 g d_p (\rho_p-\rho_f)}{3 C_D \rho_f }} Parameters ---------- D : float Diameter of the sphere, [m] rhop : float Particle density, [kg/m^3] rho : float Density of the surrounding fluid, [kg/m^3] mu : float Viscosity of the surrounding fluid [Pa*s] Method : string, optional A string of the function name to use, as in the dictionary drag_sphere_correlations Returns ------- v_t : float Terminal velocity of falling sphere [m/s] Notes ----- As there are no correlations implemented for Re > 1E6, an error will be raised if the numerical solver seeks a solution above that limit. The laminar solution is given in [1]_ and is: .. math:: v_t = \frac{g d_p^2 (\rho_p - \rho_f)}{18 \mu_f} Examples -------- >>> v_terminal(D=70E-6, rhop=2600., rho=1000., mu=1E-3) 0.004142497244531304 Example 7-1 in GPSA handbook, 13th edition: >>> from scipy.constants import * >>> v_terminal(D=150E-6, rhop=31.2*lb/foot**3, rho=2.07*lb/foot**3, mu=1.2e-05)/foot 0.4491992020345101 The answer reported there is 0.46 ft/sec. References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Rushton, Albert, Anthony S. Ward, and Richard G. Holdich. Solid-Liquid Filtration and Separation Technology. 1st edition. Weinheim ; New York: Wiley-VCH, 1996. ''' '''The following would be the ideal implementation. The actual function is optimized for speed, not readability def err(V): Re = rho*V*D/mu Cd = Barati_high(Re) V2 = (4/3.*g*D*(rhop-rho)/rho/Cd)**0.5 return (V-V2) return fsolve(err, 1.)''' v_lam = g*D*D*(rhop-rho)/(18*mu) Re_lam = Reynolds(V=v_lam, D=D, rho=rho, mu=mu) if Re_lam < 0.01 or Method == 'Stokes': return v_lam Re_almost = rho*D/mu main = 4/3.*g*D*(rhop-rho)/rho V_max = 1E6/rho/D*mu # where the correlation breaks down, Re=1E6 def err(V): Cd = drag_sphere(Re_almost*V, Method=Method) return V - (main/Cd)**0.5 # Begin the solver with 1/100 th the velocity possible at the maximum # Reynolds number the correlation is good for return float(newton(err, V_max/100, tol=1E-12))
python
def v_terminal(D, rhop, rho, mu, Method=None): r'''Calculates terminal velocity of a falling sphere using any drag coefficient method supported by `drag_sphere`. The laminar solution for Re < 0.01 is first tried; if the resulting terminal velocity does not put it in the laminar regime, a numerical solution is used. .. math:: v_t = \sqrt{\frac{4 g d_p (\rho_p-\rho_f)}{3 C_D \rho_f }} Parameters ---------- D : float Diameter of the sphere, [m] rhop : float Particle density, [kg/m^3] rho : float Density of the surrounding fluid, [kg/m^3] mu : float Viscosity of the surrounding fluid [Pa*s] Method : string, optional A string of the function name to use, as in the dictionary drag_sphere_correlations Returns ------- v_t : float Terminal velocity of falling sphere [m/s] Notes ----- As there are no correlations implemented for Re > 1E6, an error will be raised if the numerical solver seeks a solution above that limit. The laminar solution is given in [1]_ and is: .. math:: v_t = \frac{g d_p^2 (\rho_p - \rho_f)}{18 \mu_f} Examples -------- >>> v_terminal(D=70E-6, rhop=2600., rho=1000., mu=1E-3) 0.004142497244531304 Example 7-1 in GPSA handbook, 13th edition: >>> from scipy.constants import * >>> v_terminal(D=150E-6, rhop=31.2*lb/foot**3, rho=2.07*lb/foot**3, mu=1.2e-05)/foot 0.4491992020345101 The answer reported there is 0.46 ft/sec. References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Rushton, Albert, Anthony S. Ward, and Richard G. Holdich. Solid-Liquid Filtration and Separation Technology. 1st edition. Weinheim ; New York: Wiley-VCH, 1996. ''' '''The following would be the ideal implementation. The actual function is optimized for speed, not readability def err(V): Re = rho*V*D/mu Cd = Barati_high(Re) V2 = (4/3.*g*D*(rhop-rho)/rho/Cd)**0.5 return (V-V2) return fsolve(err, 1.)''' v_lam = g*D*D*(rhop-rho)/(18*mu) Re_lam = Reynolds(V=v_lam, D=D, rho=rho, mu=mu) if Re_lam < 0.01 or Method == 'Stokes': return v_lam Re_almost = rho*D/mu main = 4/3.*g*D*(rhop-rho)/rho V_max = 1E6/rho/D*mu # where the correlation breaks down, Re=1E6 def err(V): Cd = drag_sphere(Re_almost*V, Method=Method) return V - (main/Cd)**0.5 # Begin the solver with 1/100 th the velocity possible at the maximum # Reynolds number the correlation is good for return float(newton(err, V_max/100, tol=1E-12))
[ "def", "v_terminal", "(", "D", ",", "rhop", ",", "rho", ",", "mu", ",", "Method", "=", "None", ")", ":", "'''The following would be the ideal implementation. The actual function is\n optimized for speed, not readability\n def err(V):\n Re = rho*V*D/mu\n Cd = Barati_high(Re)\n V2 = (4/3.*g*D*(rhop-rho)/rho/Cd)**0.5\n return (V-V2)\n return fsolve(err, 1.)'''", "v_lam", "=", "g", "*", "D", "*", "D", "*", "(", "rhop", "-", "rho", ")", "/", "(", "18", "*", "mu", ")", "Re_lam", "=", "Reynolds", "(", "V", "=", "v_lam", ",", "D", "=", "D", ",", "rho", "=", "rho", ",", "mu", "=", "mu", ")", "if", "Re_lam", "<", "0.01", "or", "Method", "==", "'Stokes'", ":", "return", "v_lam", "Re_almost", "=", "rho", "*", "D", "/", "mu", "main", "=", "4", "/", "3.", "*", "g", "*", "D", "*", "(", "rhop", "-", "rho", ")", "/", "rho", "V_max", "=", "1E6", "/", "rho", "/", "D", "*", "mu", "# where the correlation breaks down, Re=1E6", "def", "err", "(", "V", ")", ":", "Cd", "=", "drag_sphere", "(", "Re_almost", "*", "V", ",", "Method", "=", "Method", ")", "return", "V", "-", "(", "main", "/", "Cd", ")", "**", "0.5", "# Begin the solver with 1/100 th the velocity possible at the maximum", "# Reynolds number the correlation is good for", "return", "float", "(", "newton", "(", "err", ",", "V_max", "/", "100", ",", "tol", "=", "1E-12", ")", ")" ]
r'''Calculates terminal velocity of a falling sphere using any drag coefficient method supported by `drag_sphere`. The laminar solution for Re < 0.01 is first tried; if the resulting terminal velocity does not put it in the laminar regime, a numerical solution is used. .. math:: v_t = \sqrt{\frac{4 g d_p (\rho_p-\rho_f)}{3 C_D \rho_f }} Parameters ---------- D : float Diameter of the sphere, [m] rhop : float Particle density, [kg/m^3] rho : float Density of the surrounding fluid, [kg/m^3] mu : float Viscosity of the surrounding fluid [Pa*s] Method : string, optional A string of the function name to use, as in the dictionary drag_sphere_correlations Returns ------- v_t : float Terminal velocity of falling sphere [m/s] Notes ----- As there are no correlations implemented for Re > 1E6, an error will be raised if the numerical solver seeks a solution above that limit. The laminar solution is given in [1]_ and is: .. math:: v_t = \frac{g d_p^2 (\rho_p - \rho_f)}{18 \mu_f} Examples -------- >>> v_terminal(D=70E-6, rhop=2600., rho=1000., mu=1E-3) 0.004142497244531304 Example 7-1 in GPSA handbook, 13th edition: >>> from scipy.constants import * >>> v_terminal(D=150E-6, rhop=31.2*lb/foot**3, rho=2.07*lb/foot**3, mu=1.2e-05)/foot 0.4491992020345101 The answer reported there is 0.46 ft/sec. References ---------- .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Professional, 2007. .. [2] Rushton, Albert, Anthony S. Ward, and Richard G. Holdich. Solid-Liquid Filtration and Separation Technology. 1st edition. Weinheim ; New York: Wiley-VCH, 1996.
[ "r", "Calculates", "terminal", "velocity", "of", "a", "falling", "sphere", "using", "any", "drag", "coefficient", "method", "supported", "by", "drag_sphere", ".", "The", "laminar", "solution", "for", "Re", "<", "0", ".", "01", "is", "first", "tried", ";", "if", "the", "resulting", "terminal", "velocity", "does", "not", "put", "it", "in", "the", "laminar", "regime", "a", "numerical", "solution", "is", "used", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/drag.py#L1104-L1185
train
CalebBell/fluids
fluids/drag.py
integrate_drag_sphere
def integrate_drag_sphere(D, rhop, rho, mu, t, V=0, Method=None, distance=False): r'''Integrates the velocity and distance traveled by a particle moving at a speed which will converge to its terminal velocity. Performs an integration of the following expression for acceleration: .. math:: a = \frac{g(\rho_p-\rho_f)}{\rho_p} - \frac{3C_D \rho_f u^2}{4D \rho_p} Parameters ---------- D : float Diameter of the sphere, [m] rhop : float Particle density, [kg/m^3] rho : float Density of the surrounding fluid, [kg/m^3] mu : float Viscosity of the surrounding fluid [Pa*s] t : float Time to integrate the particle to, [s] V : float Initial velocity of the particle, [m/s] Method : string, optional A string of the function name to use, as in the dictionary drag_sphere_correlations distance : bool, optional Whether or not to calculate the distance traveled and return it as well Returns ------- v : float Velocity of falling sphere after time `t` [m/s] x : float, returned only if `distance` == True Distance traveled by the falling sphere in time `t`, [m] Notes ----- This can be relatively slow as drag correlations can be complex. There are analytical solutions available for the Stokes law regime (Re < 0.3). They were obtained from Wolfram Alpha. [1]_ was not used in the derivation, but also describes the derivation fully. .. math:: V(t) = \frac{\exp(-at) (V_0 a + b(\exp(at) - 1))}{a} .. math:: x(t) = \frac{\exp(-a t)\left[V_0 a(\exp(a t) - 1) + b\exp(a t)(a t-1) + b\right]}{a^2} .. math:: a = \frac{18\mu_f}{D^2\rho_p} .. math:: b = \frac{g(\rho_p-\rho_f)}{\rho_p} The analytical solution will automatically be used if the initial and terminal velocity is show the particle's behavior to be laminar. Note that this behavior requires that the terminal velocity of the particle be solved for - this adds slight (1%) overhead for the cases where particles are not laminar. Examples -------- >>> integrate_drag_sphere(D=0.001, rhop=2200., rho=1.2, mu=1.78E-5, t=0.5, ... V=30, distance=True) (9.686465044053476, 7.8294546436299175) References ---------- .. [1] Timmerman, Peter, and Jacobus P. van der Weele. "On the Rise and Fall of a Ball with Linear or Quadratic Drag." American Journal of Physics 67, no. 6 (June 1999): 538-46. https://doi.org/10.1119/1.19320. ''' laminar_initial = Reynolds(V=V, rho=rho, D=D, mu=mu) < 0.01 v_laminar_end_assumed = v_terminal(D=D, rhop=rhop, rho=rho, mu=mu, Method=Method) laminar_end = Reynolds(V=v_laminar_end_assumed, rho=rho, D=D, mu=mu) < 0.01 if Method == 'Stokes' or (laminar_initial and laminar_end and Method is None): try: t1 = 18.0*mu/(D*D*rhop) t2 = g*(rhop-rho)/rhop V_end = exp(-t1*t)*(t1*V + t2*(exp(t1*t) - 1.0))/t1 x_end = exp(-t1*t)*(V*t1*(exp(t1*t) - 1.0) + t2*exp(t1*t)*(t1*t - 1.0) + t2)/(t1*t1) if distance: return V_end, x_end else: return V_end except OverflowError: # It is only necessary to integrate to terminal velocity t_to_terminal = time_v_terminal_Stokes(D, rhop, rho, mu, V0=V, tol=1e-9) if t_to_terminal > t: raise Exception('Should never happen') V_end, x_end = integrate_drag_sphere(D=D, rhop=rhop, rho=rho, mu=mu, t=t_to_terminal, V=V, Method='Stokes', distance=True) # terminal velocity has been reached - V does not change, but x does # No reason to believe this isn't working even though it isn't # matching the ode solver if distance: return V_end, x_end + V_end*(t - t_to_terminal) else: return V_end # This is a serious problem for small diameters # It would be possible to step slowly, using smaller increments # of time to avlid overflows. However, this unfortunately quickly # gets much, exponentially, slower than just using odeint because # for example solving 10000 seconds might require steps of .0001 # seconds at a diameter of 1e-7 meters. # x = 0.0 # subdivisions = 10 # dt = t/subdivisions # for i in range(subdivisions): # V, dx = integrate_drag_sphere(D=D, rhop=rhop, rho=rho, mu=mu, # t=dt, V=V, distance=True, # Method=Method) # x += dx # if distance: # return V, x # else: # return V Re_ish = rho*D/mu c1 = g*(rhop-rho)/rhop c2 = -0.75*rho/(D*rhop) def dv_dt(V, t): if V == 0: # 64/Re goes to infinity, but gets multiplied by 0 squared. t2 = 0.0 else: # t2 = c2*V*V*Stokes(Re_ish*V) t2 = c2*V*V*drag_sphere(Re_ish*V, Method=Method) return c1 + t2 # Number of intervals for the solution to be solved for; the integrator # doesn't care what we give it, but a large number of intervals are needed # For an accurate integration of the particle's distance traveled pts = 1000 if distance else 2 ts = np.linspace(0, t, pts) # Delayed import of necessaray functions from scipy.integrate import odeint, cumtrapz # Perform the integration Vs = odeint(dv_dt, [V], ts) # V_end = float(Vs[-1]) if distance: # Calculate the distance traveled x = float(cumtrapz(np.ravel(Vs), ts)[-1]) return V_end, x else: return V_end
python
def integrate_drag_sphere(D, rhop, rho, mu, t, V=0, Method=None, distance=False): r'''Integrates the velocity and distance traveled by a particle moving at a speed which will converge to its terminal velocity. Performs an integration of the following expression for acceleration: .. math:: a = \frac{g(\rho_p-\rho_f)}{\rho_p} - \frac{3C_D \rho_f u^2}{4D \rho_p} Parameters ---------- D : float Diameter of the sphere, [m] rhop : float Particle density, [kg/m^3] rho : float Density of the surrounding fluid, [kg/m^3] mu : float Viscosity of the surrounding fluid [Pa*s] t : float Time to integrate the particle to, [s] V : float Initial velocity of the particle, [m/s] Method : string, optional A string of the function name to use, as in the dictionary drag_sphere_correlations distance : bool, optional Whether or not to calculate the distance traveled and return it as well Returns ------- v : float Velocity of falling sphere after time `t` [m/s] x : float, returned only if `distance` == True Distance traveled by the falling sphere in time `t`, [m] Notes ----- This can be relatively slow as drag correlations can be complex. There are analytical solutions available for the Stokes law regime (Re < 0.3). They were obtained from Wolfram Alpha. [1]_ was not used in the derivation, but also describes the derivation fully. .. math:: V(t) = \frac{\exp(-at) (V_0 a + b(\exp(at) - 1))}{a} .. math:: x(t) = \frac{\exp(-a t)\left[V_0 a(\exp(a t) - 1) + b\exp(a t)(a t-1) + b\right]}{a^2} .. math:: a = \frac{18\mu_f}{D^2\rho_p} .. math:: b = \frac{g(\rho_p-\rho_f)}{\rho_p} The analytical solution will automatically be used if the initial and terminal velocity is show the particle's behavior to be laminar. Note that this behavior requires that the terminal velocity of the particle be solved for - this adds slight (1%) overhead for the cases where particles are not laminar. Examples -------- >>> integrate_drag_sphere(D=0.001, rhop=2200., rho=1.2, mu=1.78E-5, t=0.5, ... V=30, distance=True) (9.686465044053476, 7.8294546436299175) References ---------- .. [1] Timmerman, Peter, and Jacobus P. van der Weele. "On the Rise and Fall of a Ball with Linear or Quadratic Drag." American Journal of Physics 67, no. 6 (June 1999): 538-46. https://doi.org/10.1119/1.19320. ''' laminar_initial = Reynolds(V=V, rho=rho, D=D, mu=mu) < 0.01 v_laminar_end_assumed = v_terminal(D=D, rhop=rhop, rho=rho, mu=mu, Method=Method) laminar_end = Reynolds(V=v_laminar_end_assumed, rho=rho, D=D, mu=mu) < 0.01 if Method == 'Stokes' or (laminar_initial and laminar_end and Method is None): try: t1 = 18.0*mu/(D*D*rhop) t2 = g*(rhop-rho)/rhop V_end = exp(-t1*t)*(t1*V + t2*(exp(t1*t) - 1.0))/t1 x_end = exp(-t1*t)*(V*t1*(exp(t1*t) - 1.0) + t2*exp(t1*t)*(t1*t - 1.0) + t2)/(t1*t1) if distance: return V_end, x_end else: return V_end except OverflowError: # It is only necessary to integrate to terminal velocity t_to_terminal = time_v_terminal_Stokes(D, rhop, rho, mu, V0=V, tol=1e-9) if t_to_terminal > t: raise Exception('Should never happen') V_end, x_end = integrate_drag_sphere(D=D, rhop=rhop, rho=rho, mu=mu, t=t_to_terminal, V=V, Method='Stokes', distance=True) # terminal velocity has been reached - V does not change, but x does # No reason to believe this isn't working even though it isn't # matching the ode solver if distance: return V_end, x_end + V_end*(t - t_to_terminal) else: return V_end # This is a serious problem for small diameters # It would be possible to step slowly, using smaller increments # of time to avlid overflows. However, this unfortunately quickly # gets much, exponentially, slower than just using odeint because # for example solving 10000 seconds might require steps of .0001 # seconds at a diameter of 1e-7 meters. # x = 0.0 # subdivisions = 10 # dt = t/subdivisions # for i in range(subdivisions): # V, dx = integrate_drag_sphere(D=D, rhop=rhop, rho=rho, mu=mu, # t=dt, V=V, distance=True, # Method=Method) # x += dx # if distance: # return V, x # else: # return V Re_ish = rho*D/mu c1 = g*(rhop-rho)/rhop c2 = -0.75*rho/(D*rhop) def dv_dt(V, t): if V == 0: # 64/Re goes to infinity, but gets multiplied by 0 squared. t2 = 0.0 else: # t2 = c2*V*V*Stokes(Re_ish*V) t2 = c2*V*V*drag_sphere(Re_ish*V, Method=Method) return c1 + t2 # Number of intervals for the solution to be solved for; the integrator # doesn't care what we give it, but a large number of intervals are needed # For an accurate integration of the particle's distance traveled pts = 1000 if distance else 2 ts = np.linspace(0, t, pts) # Delayed import of necessaray functions from scipy.integrate import odeint, cumtrapz # Perform the integration Vs = odeint(dv_dt, [V], ts) # V_end = float(Vs[-1]) if distance: # Calculate the distance traveled x = float(cumtrapz(np.ravel(Vs), ts)[-1]) return V_end, x else: return V_end
[ "def", "integrate_drag_sphere", "(", "D", ",", "rhop", ",", "rho", ",", "mu", ",", "t", ",", "V", "=", "0", ",", "Method", "=", "None", ",", "distance", "=", "False", ")", ":", "laminar_initial", "=", "Reynolds", "(", "V", "=", "V", ",", "rho", "=", "rho", ",", "D", "=", "D", ",", "mu", "=", "mu", ")", "<", "0.01", "v_laminar_end_assumed", "=", "v_terminal", "(", "D", "=", "D", ",", "rhop", "=", "rhop", ",", "rho", "=", "rho", ",", "mu", "=", "mu", ",", "Method", "=", "Method", ")", "laminar_end", "=", "Reynolds", "(", "V", "=", "v_laminar_end_assumed", ",", "rho", "=", "rho", ",", "D", "=", "D", ",", "mu", "=", "mu", ")", "<", "0.01", "if", "Method", "==", "'Stokes'", "or", "(", "laminar_initial", "and", "laminar_end", "and", "Method", "is", "None", ")", ":", "try", ":", "t1", "=", "18.0", "*", "mu", "/", "(", "D", "*", "D", "*", "rhop", ")", "t2", "=", "g", "*", "(", "rhop", "-", "rho", ")", "/", "rhop", "V_end", "=", "exp", "(", "-", "t1", "*", "t", ")", "*", "(", "t1", "*", "V", "+", "t2", "*", "(", "exp", "(", "t1", "*", "t", ")", "-", "1.0", ")", ")", "/", "t1", "x_end", "=", "exp", "(", "-", "t1", "*", "t", ")", "*", "(", "V", "*", "t1", "*", "(", "exp", "(", "t1", "*", "t", ")", "-", "1.0", ")", "+", "t2", "*", "exp", "(", "t1", "*", "t", ")", "*", "(", "t1", "*", "t", "-", "1.0", ")", "+", "t2", ")", "/", "(", "t1", "*", "t1", ")", "if", "distance", ":", "return", "V_end", ",", "x_end", "else", ":", "return", "V_end", "except", "OverflowError", ":", "# It is only necessary to integrate to terminal velocity", "t_to_terminal", "=", "time_v_terminal_Stokes", "(", "D", ",", "rhop", ",", "rho", ",", "mu", ",", "V0", "=", "V", ",", "tol", "=", "1e-9", ")", "if", "t_to_terminal", ">", "t", ":", "raise", "Exception", "(", "'Should never happen'", ")", "V_end", ",", "x_end", "=", "integrate_drag_sphere", "(", "D", "=", "D", ",", "rhop", "=", "rhop", ",", "rho", "=", "rho", ",", "mu", "=", "mu", ",", "t", "=", "t_to_terminal", ",", "V", "=", "V", ",", "Method", "=", "'Stokes'", ",", "distance", "=", "True", ")", "# terminal velocity has been reached - V does not change, but x does", "# No reason to believe this isn't working even though it isn't", "# matching the ode solver", "if", "distance", ":", "return", "V_end", ",", "x_end", "+", "V_end", "*", "(", "t", "-", "t_to_terminal", ")", "else", ":", "return", "V_end", "# This is a serious problem for small diameters", "# It would be possible to step slowly, using smaller increments", "# of time to avlid overflows. However, this unfortunately quickly", "# gets much, exponentially, slower than just using odeint because", "# for example solving 10000 seconds might require steps of .0001", "# seconds at a diameter of 1e-7 meters.", "# x = 0.0", "# subdivisions = 10", "# dt = t/subdivisions", "# for i in range(subdivisions):", "# V, dx = integrate_drag_sphere(D=D, rhop=rhop, rho=rho, mu=mu,", "# t=dt, V=V, distance=True,", "# Method=Method)", "# x += dx", "# if distance:", "# return V, x", "# else:", "# return V", "Re_ish", "=", "rho", "*", "D", "/", "mu", "c1", "=", "g", "*", "(", "rhop", "-", "rho", ")", "/", "rhop", "c2", "=", "-", "0.75", "*", "rho", "/", "(", "D", "*", "rhop", ")", "def", "dv_dt", "(", "V", ",", "t", ")", ":", "if", "V", "==", "0", ":", "# 64/Re goes to infinity, but gets multiplied by 0 squared.", "t2", "=", "0.0", "else", ":", "# t2 = c2*V*V*Stokes(Re_ish*V)", "t2", "=", "c2", "*", "V", "*", "V", "*", "drag_sphere", "(", "Re_ish", "*", "V", ",", "Method", "=", "Method", ")", "return", "c1", "+", "t2", "# Number of intervals for the solution to be solved for; the integrator", "# doesn't care what we give it, but a large number of intervals are needed", "# For an accurate integration of the particle's distance traveled", "pts", "=", "1000", "if", "distance", "else", "2", "ts", "=", "np", ".", "linspace", "(", "0", ",", "t", ",", "pts", ")", "# Delayed import of necessaray functions", "from", "scipy", ".", "integrate", "import", "odeint", ",", "cumtrapz", "# Perform the integration", "Vs", "=", "odeint", "(", "dv_dt", ",", "[", "V", "]", ",", "ts", ")", "#", "V_end", "=", "float", "(", "Vs", "[", "-", "1", "]", ")", "if", "distance", ":", "# Calculate the distance traveled", "x", "=", "float", "(", "cumtrapz", "(", "np", ".", "ravel", "(", "Vs", ")", ",", "ts", ")", "[", "-", "1", "]", ")", "return", "V_end", ",", "x", "else", ":", "return", "V_end" ]
r'''Integrates the velocity and distance traveled by a particle moving at a speed which will converge to its terminal velocity. Performs an integration of the following expression for acceleration: .. math:: a = \frac{g(\rho_p-\rho_f)}{\rho_p} - \frac{3C_D \rho_f u^2}{4D \rho_p} Parameters ---------- D : float Diameter of the sphere, [m] rhop : float Particle density, [kg/m^3] rho : float Density of the surrounding fluid, [kg/m^3] mu : float Viscosity of the surrounding fluid [Pa*s] t : float Time to integrate the particle to, [s] V : float Initial velocity of the particle, [m/s] Method : string, optional A string of the function name to use, as in the dictionary drag_sphere_correlations distance : bool, optional Whether or not to calculate the distance traveled and return it as well Returns ------- v : float Velocity of falling sphere after time `t` [m/s] x : float, returned only if `distance` == True Distance traveled by the falling sphere in time `t`, [m] Notes ----- This can be relatively slow as drag correlations can be complex. There are analytical solutions available for the Stokes law regime (Re < 0.3). They were obtained from Wolfram Alpha. [1]_ was not used in the derivation, but also describes the derivation fully. .. math:: V(t) = \frac{\exp(-at) (V_0 a + b(\exp(at) - 1))}{a} .. math:: x(t) = \frac{\exp(-a t)\left[V_0 a(\exp(a t) - 1) + b\exp(a t)(a t-1) + b\right]}{a^2} .. math:: a = \frac{18\mu_f}{D^2\rho_p} .. math:: b = \frac{g(\rho_p-\rho_f)}{\rho_p} The analytical solution will automatically be used if the initial and terminal velocity is show the particle's behavior to be laminar. Note that this behavior requires that the terminal velocity of the particle be solved for - this adds slight (1%) overhead for the cases where particles are not laminar. Examples -------- >>> integrate_drag_sphere(D=0.001, rhop=2200., rho=1.2, mu=1.78E-5, t=0.5, ... V=30, distance=True) (9.686465044053476, 7.8294546436299175) References ---------- .. [1] Timmerman, Peter, and Jacobus P. van der Weele. "On the Rise and Fall of a Ball with Linear or Quadratic Drag." American Journal of Physics 67, no. 6 (June 1999): 538-46. https://doi.org/10.1119/1.19320.
[ "r", "Integrates", "the", "velocity", "and", "distance", "traveled", "by", "a", "particle", "moving", "at", "a", "speed", "which", "will", "converge", "to", "its", "terminal", "velocity", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/drag.py#L1260-L1414
train
CalebBell/fluids
fluids/fittings.py
bend_rounded_Ito
def bend_rounded_Ito(Di, angle, Re, rc=None, bend_diameters=None, roughness=0.0): '''Ito method as shown in Blevins. Curved friction factor as given in Blevins, with minor tweaks to be more accurate to the original methods. ''' if not rc: if bend_diameters is None: bend_diameters = 5.0 rc = Di*bend_diameters radius_ratio = rc/Di angle_rad = radians(angle) De2 = Re*(Di/rc)**2.0 if rc > 50.0*Di: alpha = 1.0 else: # Alpha is up to 6, as ratio gets higher, can go down to 1 alpha_45 = 1.0 + 5.13*(Di/rc)**1.47 alpha_90 = 0.95 + 4.42*(Di/rc)**1.96 if rc/Di < 9.85 else 1.0 alpha_180 = 1.0 + 5.06*(Di/rc)**4.52 alpha = interp(angle, _Ito_angles, [alpha_45, alpha_90, alpha_180]) if De2 <= 360.0: fc = friction_factor_curved(Re=Re, Di=Di, Dc=2.0*rc, roughness=roughness, Rec_method='Srinivasan', laminar_method='White', turbulent_method='Srinivasan turbulent') K = 0.0175*alpha*fc*angle*rc/Di else: K = 0.00431*alpha*angle*Re**-0.17*(rc/Di)**0.84 return K
python
def bend_rounded_Ito(Di, angle, Re, rc=None, bend_diameters=None, roughness=0.0): '''Ito method as shown in Blevins. Curved friction factor as given in Blevins, with minor tweaks to be more accurate to the original methods. ''' if not rc: if bend_diameters is None: bend_diameters = 5.0 rc = Di*bend_diameters radius_ratio = rc/Di angle_rad = radians(angle) De2 = Re*(Di/rc)**2.0 if rc > 50.0*Di: alpha = 1.0 else: # Alpha is up to 6, as ratio gets higher, can go down to 1 alpha_45 = 1.0 + 5.13*(Di/rc)**1.47 alpha_90 = 0.95 + 4.42*(Di/rc)**1.96 if rc/Di < 9.85 else 1.0 alpha_180 = 1.0 + 5.06*(Di/rc)**4.52 alpha = interp(angle, _Ito_angles, [alpha_45, alpha_90, alpha_180]) if De2 <= 360.0: fc = friction_factor_curved(Re=Re, Di=Di, Dc=2.0*rc, roughness=roughness, Rec_method='Srinivasan', laminar_method='White', turbulent_method='Srinivasan turbulent') K = 0.0175*alpha*fc*angle*rc/Di else: K = 0.00431*alpha*angle*Re**-0.17*(rc/Di)**0.84 return K
[ "def", "bend_rounded_Ito", "(", "Di", ",", "angle", ",", "Re", ",", "rc", "=", "None", ",", "bend_diameters", "=", "None", ",", "roughness", "=", "0.0", ")", ":", "if", "not", "rc", ":", "if", "bend_diameters", "is", "None", ":", "bend_diameters", "=", "5.0", "rc", "=", "Di", "*", "bend_diameters", "radius_ratio", "=", "rc", "/", "Di", "angle_rad", "=", "radians", "(", "angle", ")", "De2", "=", "Re", "*", "(", "Di", "/", "rc", ")", "**", "2.0", "if", "rc", ">", "50.0", "*", "Di", ":", "alpha", "=", "1.0", "else", ":", "# Alpha is up to 6, as ratio gets higher, can go down to 1", "alpha_45", "=", "1.0", "+", "5.13", "*", "(", "Di", "/", "rc", ")", "**", "1.47", "alpha_90", "=", "0.95", "+", "4.42", "*", "(", "Di", "/", "rc", ")", "**", "1.96", "if", "rc", "/", "Di", "<", "9.85", "else", "1.0", "alpha_180", "=", "1.0", "+", "5.06", "*", "(", "Di", "/", "rc", ")", "**", "4.52", "alpha", "=", "interp", "(", "angle", ",", "_Ito_angles", ",", "[", "alpha_45", ",", "alpha_90", ",", "alpha_180", "]", ")", "if", "De2", "<=", "360.0", ":", "fc", "=", "friction_factor_curved", "(", "Re", "=", "Re", ",", "Di", "=", "Di", ",", "Dc", "=", "2.0", "*", "rc", ",", "roughness", "=", "roughness", ",", "Rec_method", "=", "'Srinivasan'", ",", "laminar_method", "=", "'White'", ",", "turbulent_method", "=", "'Srinivasan turbulent'", ")", "K", "=", "0.0175", "*", "alpha", "*", "fc", "*", "angle", "*", "rc", "/", "Di", "else", ":", "K", "=", "0.00431", "*", "alpha", "*", "angle", "*", "Re", "**", "-", "0.17", "*", "(", "rc", "/", "Di", ")", "**", "0.84", "return", "K" ]
Ito method as shown in Blevins. Curved friction factor as given in Blevins, with minor tweaks to be more accurate to the original methods.
[ "Ito", "method", "as", "shown", "in", "Blevins", ".", "Curved", "friction", "factor", "as", "given", "in", "Blevins", "with", "minor", "tweaks", "to", "be", "more", "accurate", "to", "the", "original", "methods", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/fittings.py#L1193-L1224
train
CalebBell/fluids
fluids/design_climate.py
geopy_geolocator
def geopy_geolocator(): '''Lazy loader for geocoder from geopy. This currently loads the `Nominatim` geocode and returns an instance of it, taking ~2 us. ''' global geolocator if geolocator is None: try: from geopy.geocoders import Nominatim except ImportError: return None geolocator = Nominatim(user_agent=geolocator_user_agent) return geolocator return geolocator
python
def geopy_geolocator(): '''Lazy loader for geocoder from geopy. This currently loads the `Nominatim` geocode and returns an instance of it, taking ~2 us. ''' global geolocator if geolocator is None: try: from geopy.geocoders import Nominatim except ImportError: return None geolocator = Nominatim(user_agent=geolocator_user_agent) return geolocator return geolocator
[ "def", "geopy_geolocator", "(", ")", ":", "global", "geolocator", "if", "geolocator", "is", "None", ":", "try", ":", "from", "geopy", ".", "geocoders", "import", "Nominatim", "except", "ImportError", ":", "return", "None", "geolocator", "=", "Nominatim", "(", "user_agent", "=", "geolocator_user_agent", ")", "return", "geolocator", "return", "geolocator" ]
Lazy loader for geocoder from geopy. This currently loads the `Nominatim` geocode and returns an instance of it, taking ~2 us.
[ "Lazy", "loader", "for", "geocoder", "from", "geopy", ".", "This", "currently", "loads", "the", "Nominatim", "geocode", "and", "returns", "an", "instance", "of", "it", "taking", "~2", "us", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/design_climate.py#L86-L98
train
CalebBell/fluids
fluids/design_climate.py
heating_degree_days
def heating_degree_days(T, T_base=F2K(65), truncate=True): r'''Calculates the heating degree days for a period of time. .. math:: \text{heating degree days} = max(T - T_{base}, 0) Parameters ---------- T : float Measured temperature; sometimes an average over a length of time is used, other times the average of the lowest and highest temperature in a period are used, [K] T_base : float, optional Reference temperature for the degree day calculation, defaults to 65 °F (18.33 °C, 291.483 K), the value most used in the US, [K] truncate : bool If truncate is True, no negative values will be returned; if negative, the value is truncated to 0, [-] Returns ------- heating_degree_days : float Degree above the base temperature multiplied by the length of time of the measurement, normally days [day*K] Notes ----- Some common base temperatures are 18 °C (Canada), 15.5 °C (EU), 17 °C (Denmark, Finland), 12 °C Switzerland. The base temperature should always be presented with the results. The time unit does not have to be days; it can be any time unit, and the calculation behaves the same. Examples -------- >>> heating_degree_days(303.8) 12.31666666666672 >>> heating_degree_days(273) 0.0 >>> heating_degree_days(322, T_base=300) 22 References ---------- .. [1] "Heating Degree Day." Wikipedia, January 24, 2018. https://en.wikipedia.org/w/index.php?title=Heating_degree_day&oldid=822187764. ''' dd = T - T_base if truncate and dd < 0.0: dd = 0.0 return dd
python
def heating_degree_days(T, T_base=F2K(65), truncate=True): r'''Calculates the heating degree days for a period of time. .. math:: \text{heating degree days} = max(T - T_{base}, 0) Parameters ---------- T : float Measured temperature; sometimes an average over a length of time is used, other times the average of the lowest and highest temperature in a period are used, [K] T_base : float, optional Reference temperature for the degree day calculation, defaults to 65 °F (18.33 °C, 291.483 K), the value most used in the US, [K] truncate : bool If truncate is True, no negative values will be returned; if negative, the value is truncated to 0, [-] Returns ------- heating_degree_days : float Degree above the base temperature multiplied by the length of time of the measurement, normally days [day*K] Notes ----- Some common base temperatures are 18 °C (Canada), 15.5 °C (EU), 17 °C (Denmark, Finland), 12 °C Switzerland. The base temperature should always be presented with the results. The time unit does not have to be days; it can be any time unit, and the calculation behaves the same. Examples -------- >>> heating_degree_days(303.8) 12.31666666666672 >>> heating_degree_days(273) 0.0 >>> heating_degree_days(322, T_base=300) 22 References ---------- .. [1] "Heating Degree Day." Wikipedia, January 24, 2018. https://en.wikipedia.org/w/index.php?title=Heating_degree_day&oldid=822187764. ''' dd = T - T_base if truncate and dd < 0.0: dd = 0.0 return dd
[ "def", "heating_degree_days", "(", "T", ",", "T_base", "=", "F2K", "(", "65", ")", ",", "truncate", "=", "True", ")", ":", "dd", "=", "T", "-", "T_base", "if", "truncate", "and", "dd", "<", "0.0", ":", "dd", "=", "0.0", "return", "dd" ]
r'''Calculates the heating degree days for a period of time. .. math:: \text{heating degree days} = max(T - T_{base}, 0) Parameters ---------- T : float Measured temperature; sometimes an average over a length of time is used, other times the average of the lowest and highest temperature in a period are used, [K] T_base : float, optional Reference temperature for the degree day calculation, defaults to 65 °F (18.33 °C, 291.483 K), the value most used in the US, [K] truncate : bool If truncate is True, no negative values will be returned; if negative, the value is truncated to 0, [-] Returns ------- heating_degree_days : float Degree above the base temperature multiplied by the length of time of the measurement, normally days [day*K] Notes ----- Some common base temperatures are 18 °C (Canada), 15.5 °C (EU), 17 °C (Denmark, Finland), 12 °C Switzerland. The base temperature should always be presented with the results. The time unit does not have to be days; it can be any time unit, and the calculation behaves the same. Examples -------- >>> heating_degree_days(303.8) 12.31666666666672 >>> heating_degree_days(273) 0.0 >>> heating_degree_days(322, T_base=300) 22 References ---------- .. [1] "Heating Degree Day." Wikipedia, January 24, 2018. https://en.wikipedia.org/w/index.php?title=Heating_degree_day&oldid=822187764.
[ "r", "Calculates", "the", "heating", "degree", "days", "for", "a", "period", "of", "time", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/design_climate.py#L193-L246
train
CalebBell/fluids
fluids/design_climate.py
cooling_degree_days
def cooling_degree_days(T, T_base=283.15, truncate=True): r'''Calculates the cooling degree days for a period of time. .. math:: \text{cooling degree days} = max(T_{base} - T, 0) Parameters ---------- T : float Measured temperature; sometimes an average over a length of time is used, other times the average of the lowest and highest temperature in a period are used, [K] T_base : float, optional Reference temperature for the degree day calculation, defaults to 10 °C, 283.15 K, a common value, [K] truncate : bool If truncate is True, no negative values will be returned; if negative, the value is truncated to 0, [-] Returns ------- cooling_degree_days : float Degree below the base temperature multiplied by the length of time of the measurement, normally days [day*K] Notes ----- The base temperature should always be presented with the results. The time unit does not have to be days; it can be time unit, and the calculation behaves the same. Examples -------- >>> cooling_degree_days(250) 33.14999999999998 >>> cooling_degree_days(300) 0.0 >>> cooling_degree_days(250, T_base=300) 50 References ---------- .. [1] "Heating Degree Day." Wikipedia, January 24, 2018. https://en.wikipedia.org/w/index.php?title=Heating_degree_day&oldid=822187764. ''' dd = T_base - T if truncate and dd < 0.0: dd = 0.0 return dd
python
def cooling_degree_days(T, T_base=283.15, truncate=True): r'''Calculates the cooling degree days for a period of time. .. math:: \text{cooling degree days} = max(T_{base} - T, 0) Parameters ---------- T : float Measured temperature; sometimes an average over a length of time is used, other times the average of the lowest and highest temperature in a period are used, [K] T_base : float, optional Reference temperature for the degree day calculation, defaults to 10 °C, 283.15 K, a common value, [K] truncate : bool If truncate is True, no negative values will be returned; if negative, the value is truncated to 0, [-] Returns ------- cooling_degree_days : float Degree below the base temperature multiplied by the length of time of the measurement, normally days [day*K] Notes ----- The base temperature should always be presented with the results. The time unit does not have to be days; it can be time unit, and the calculation behaves the same. Examples -------- >>> cooling_degree_days(250) 33.14999999999998 >>> cooling_degree_days(300) 0.0 >>> cooling_degree_days(250, T_base=300) 50 References ---------- .. [1] "Heating Degree Day." Wikipedia, January 24, 2018. https://en.wikipedia.org/w/index.php?title=Heating_degree_day&oldid=822187764. ''' dd = T_base - T if truncate and dd < 0.0: dd = 0.0 return dd
[ "def", "cooling_degree_days", "(", "T", ",", "T_base", "=", "283.15", ",", "truncate", "=", "True", ")", ":", "dd", "=", "T_base", "-", "T", "if", "truncate", "and", "dd", "<", "0.0", ":", "dd", "=", "0.0", "return", "dd" ]
r'''Calculates the cooling degree days for a period of time. .. math:: \text{cooling degree days} = max(T_{base} - T, 0) Parameters ---------- T : float Measured temperature; sometimes an average over a length of time is used, other times the average of the lowest and highest temperature in a period are used, [K] T_base : float, optional Reference temperature for the degree day calculation, defaults to 10 °C, 283.15 K, a common value, [K] truncate : bool If truncate is True, no negative values will be returned; if negative, the value is truncated to 0, [-] Returns ------- cooling_degree_days : float Degree below the base temperature multiplied by the length of time of the measurement, normally days [day*K] Notes ----- The base temperature should always be presented with the results. The time unit does not have to be days; it can be time unit, and the calculation behaves the same. Examples -------- >>> cooling_degree_days(250) 33.14999999999998 >>> cooling_degree_days(300) 0.0 >>> cooling_degree_days(250, T_base=300) 50 References ---------- .. [1] "Heating Degree Day." Wikipedia, January 24, 2018. https://en.wikipedia.org/w/index.php?title=Heating_degree_day&oldid=822187764.
[ "r", "Calculates", "the", "cooling", "degree", "days", "for", "a", "period", "of", "time", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/design_climate.py#L249-L300
train
CalebBell/fluids
fluids/design_climate.py
get_station_year_text
def get_station_year_text(WMO, WBAN, year): '''Basic method to download data from the GSOD database, given a station identifier and year. Parameters ---------- WMO : int or None World Meteorological Organization (WMO) identifiers, [-] WBAN : int or None Weather Bureau Army Navy (WBAN) weather station identifier, [-] year : int Year data should be retrieved from, [year] Returns ------- data : str Downloaded data file ''' if WMO is None: WMO = 999999 if WBAN is None: WBAN = 99999 station = str(int(WMO)) + '-' + str(int(WBAN)) gsod_year_dir = os.path.join(data_dir, 'gsod', str(year)) path = os.path.join(gsod_year_dir, station + '.op') if os.path.exists(path): data = open(path).read() if data and data != 'Exception': return data else: raise Exception(data) toget = ('ftp://ftp.ncdc.noaa.gov/pub/data/gsod/' + str(year) + '/' + station + '-' + str(year) +'.op.gz') try: data = urlopen(toget, timeout=5) except Exception as e: if not os.path.exists(gsod_year_dir): os.makedirs(gsod_year_dir) open(path, 'w').write('Exception') raise Exception('Could not obtain desired data; check ' 'if the year has data published for the ' 'specified station and the station was specified ' 'in the correct form. The full error is %s' %(e)) data = data.read() data_thing = StringIO(data) f = gzip.GzipFile(fileobj=data_thing, mode="r") year_station_data = f.read() try: year_station_data = year_station_data.decode('utf-8') except: pass # Cache the data for future use if not os.path.exists(gsod_year_dir): os.makedirs(gsod_year_dir) open(path, 'w').write(year_station_data) return year_station_data
python
def get_station_year_text(WMO, WBAN, year): '''Basic method to download data from the GSOD database, given a station identifier and year. Parameters ---------- WMO : int or None World Meteorological Organization (WMO) identifiers, [-] WBAN : int or None Weather Bureau Army Navy (WBAN) weather station identifier, [-] year : int Year data should be retrieved from, [year] Returns ------- data : str Downloaded data file ''' if WMO is None: WMO = 999999 if WBAN is None: WBAN = 99999 station = str(int(WMO)) + '-' + str(int(WBAN)) gsod_year_dir = os.path.join(data_dir, 'gsod', str(year)) path = os.path.join(gsod_year_dir, station + '.op') if os.path.exists(path): data = open(path).read() if data and data != 'Exception': return data else: raise Exception(data) toget = ('ftp://ftp.ncdc.noaa.gov/pub/data/gsod/' + str(year) + '/' + station + '-' + str(year) +'.op.gz') try: data = urlopen(toget, timeout=5) except Exception as e: if not os.path.exists(gsod_year_dir): os.makedirs(gsod_year_dir) open(path, 'w').write('Exception') raise Exception('Could not obtain desired data; check ' 'if the year has data published for the ' 'specified station and the station was specified ' 'in the correct form. The full error is %s' %(e)) data = data.read() data_thing = StringIO(data) f = gzip.GzipFile(fileobj=data_thing, mode="r") year_station_data = f.read() try: year_station_data = year_station_data.decode('utf-8') except: pass # Cache the data for future use if not os.path.exists(gsod_year_dir): os.makedirs(gsod_year_dir) open(path, 'w').write(year_station_data) return year_station_data
[ "def", "get_station_year_text", "(", "WMO", ",", "WBAN", ",", "year", ")", ":", "if", "WMO", "is", "None", ":", "WMO", "=", "999999", "if", "WBAN", "is", "None", ":", "WBAN", "=", "99999", "station", "=", "str", "(", "int", "(", "WMO", ")", ")", "+", "'-'", "+", "str", "(", "int", "(", "WBAN", ")", ")", "gsod_year_dir", "=", "os", ".", "path", ".", "join", "(", "data_dir", ",", "'gsod'", ",", "str", "(", "year", ")", ")", "path", "=", "os", ".", "path", ".", "join", "(", "gsod_year_dir", ",", "station", "+", "'.op'", ")", "if", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "data", "=", "open", "(", "path", ")", ".", "read", "(", ")", "if", "data", "and", "data", "!=", "'Exception'", ":", "return", "data", "else", ":", "raise", "Exception", "(", "data", ")", "toget", "=", "(", "'ftp://ftp.ncdc.noaa.gov/pub/data/gsod/'", "+", "str", "(", "year", ")", "+", "'/'", "+", "station", "+", "'-'", "+", "str", "(", "year", ")", "+", "'.op.gz'", ")", "try", ":", "data", "=", "urlopen", "(", "toget", ",", "timeout", "=", "5", ")", "except", "Exception", "as", "e", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "gsod_year_dir", ")", ":", "os", ".", "makedirs", "(", "gsod_year_dir", ")", "open", "(", "path", ",", "'w'", ")", ".", "write", "(", "'Exception'", ")", "raise", "Exception", "(", "'Could not obtain desired data; check '", "'if the year has data published for the '", "'specified station and the station was specified '", "'in the correct form. The full error is %s'", "%", "(", "e", ")", ")", "data", "=", "data", ".", "read", "(", ")", "data_thing", "=", "StringIO", "(", "data", ")", "f", "=", "gzip", ".", "GzipFile", "(", "fileobj", "=", "data_thing", ",", "mode", "=", "\"r\"", ")", "year_station_data", "=", "f", ".", "read", "(", ")", "try", ":", "year_station_data", "=", "year_station_data", ".", "decode", "(", "'utf-8'", ")", "except", ":", "pass", "# Cache the data for future use", "if", "not", "os", ".", "path", ".", "exists", "(", "gsod_year_dir", ")", ":", "os", ".", "makedirs", "(", "gsod_year_dir", ")", "open", "(", "path", ",", "'w'", ")", ".", "write", "(", "year_station_data", ")", "return", "year_station_data" ]
Basic method to download data from the GSOD database, given a station identifier and year. Parameters ---------- WMO : int or None World Meteorological Organization (WMO) identifiers, [-] WBAN : int or None Weather Bureau Army Navy (WBAN) weather station identifier, [-] year : int Year data should be retrieved from, [year] Returns ------- data : str Downloaded data file
[ "Basic", "method", "to", "download", "data", "from", "the", "GSOD", "database", "given", "a", "station", "identifier", "and", "year", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/design_climate.py#L699-L760
train
CalebBell/fluids
fluids/packed_tower.py
_Stichlmair_flood_f
def _Stichlmair_flood_f(inputs, Vl, rhog, rhol, mug, voidage, specific_area, C1, C2, C3, H): '''Internal function which calculates the errors of the two Stichlmair objective functions, and their jacobian. ''' Vg, dP_irr = float(inputs[0]), float(inputs[1]) dp = 6.0*(1.0 - voidage)/specific_area Re = Vg*rhog*dp/mug f0 = C1/Re + C2/Re**0.5 + C3 dP_dry = 0.75*f0*(1.0 - voidage)/voidage**4.65*rhog*H/dp*Vg*Vg c = (-C1/Re - 0.5*C2*Re**-0.5)/f0 Frl = Vl*Vl*specific_area/(g*voidage**4.65) h0 = 0.555*Frl**(1/3.) hT = h0*(1.0 + 20.0*(dP_irr/H/rhol/g)**2) err1 = dP_dry/H*((1.0 - voidage + hT)/(1.0 - voidage))**((2.0 + c)/3.)*(voidage/(voidage-hT))**4.65 - dP_irr/H term = (dP_irr/(rhol*g*H))**2 err2 = (1./term - 40.0*((2.0+c)/3.)*h0/(1.0 - voidage + h0*(1.0 + 20.0*term)) - 186.0*h0/(voidage - h0*(1.0 + 20.0*term))) return err1, err2
python
def _Stichlmair_flood_f(inputs, Vl, rhog, rhol, mug, voidage, specific_area, C1, C2, C3, H): '''Internal function which calculates the errors of the two Stichlmair objective functions, and their jacobian. ''' Vg, dP_irr = float(inputs[0]), float(inputs[1]) dp = 6.0*(1.0 - voidage)/specific_area Re = Vg*rhog*dp/mug f0 = C1/Re + C2/Re**0.5 + C3 dP_dry = 0.75*f0*(1.0 - voidage)/voidage**4.65*rhog*H/dp*Vg*Vg c = (-C1/Re - 0.5*C2*Re**-0.5)/f0 Frl = Vl*Vl*specific_area/(g*voidage**4.65) h0 = 0.555*Frl**(1/3.) hT = h0*(1.0 + 20.0*(dP_irr/H/rhol/g)**2) err1 = dP_dry/H*((1.0 - voidage + hT)/(1.0 - voidage))**((2.0 + c)/3.)*(voidage/(voidage-hT))**4.65 - dP_irr/H term = (dP_irr/(rhol*g*H))**2 err2 = (1./term - 40.0*((2.0+c)/3.)*h0/(1.0 - voidage + h0*(1.0 + 20.0*term)) - 186.0*h0/(voidage - h0*(1.0 + 20.0*term))) return err1, err2
[ "def", "_Stichlmair_flood_f", "(", "inputs", ",", "Vl", ",", "rhog", ",", "rhol", ",", "mug", ",", "voidage", ",", "specific_area", ",", "C1", ",", "C2", ",", "C3", ",", "H", ")", ":", "Vg", ",", "dP_irr", "=", "float", "(", "inputs", "[", "0", "]", ")", ",", "float", "(", "inputs", "[", "1", "]", ")", "dp", "=", "6.0", "*", "(", "1.0", "-", "voidage", ")", "/", "specific_area", "Re", "=", "Vg", "*", "rhog", "*", "dp", "/", "mug", "f0", "=", "C1", "/", "Re", "+", "C2", "/", "Re", "**", "0.5", "+", "C3", "dP_dry", "=", "0.75", "*", "f0", "*", "(", "1.0", "-", "voidage", ")", "/", "voidage", "**", "4.65", "*", "rhog", "*", "H", "/", "dp", "*", "Vg", "*", "Vg", "c", "=", "(", "-", "C1", "/", "Re", "-", "0.5", "*", "C2", "*", "Re", "**", "-", "0.5", ")", "/", "f0", "Frl", "=", "Vl", "*", "Vl", "*", "specific_area", "/", "(", "g", "*", "voidage", "**", "4.65", ")", "h0", "=", "0.555", "*", "Frl", "**", "(", "1", "/", "3.", ")", "hT", "=", "h0", "*", "(", "1.0", "+", "20.0", "*", "(", "dP_irr", "/", "H", "/", "rhol", "/", "g", ")", "**", "2", ")", "err1", "=", "dP_dry", "/", "H", "*", "(", "(", "1.0", "-", "voidage", "+", "hT", ")", "/", "(", "1.0", "-", "voidage", ")", ")", "**", "(", "(", "2.0", "+", "c", ")", "/", "3.", ")", "*", "(", "voidage", "/", "(", "voidage", "-", "hT", ")", ")", "**", "4.65", "-", "dP_irr", "/", "H", "term", "=", "(", "dP_irr", "/", "(", "rhol", "*", "g", "*", "H", ")", ")", "**", "2", "err2", "=", "(", "1.", "/", "term", "-", "40.0", "*", "(", "(", "2.0", "+", "c", ")", "/", "3.", ")", "*", "h0", "/", "(", "1.0", "-", "voidage", "+", "h0", "*", "(", "1.0", "+", "20.0", "*", "term", ")", ")", "-", "186.0", "*", "h0", "/", "(", "voidage", "-", "h0", "*", "(", "1.0", "+", "20.0", "*", "term", ")", ")", ")", "return", "err1", ",", "err2" ]
Internal function which calculates the errors of the two Stichlmair objective functions, and their jacobian.
[ "Internal", "function", "which", "calculates", "the", "errors", "of", "the", "two", "Stichlmair", "objective", "functions", "and", "their", "jacobian", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/packed_tower.py#L568-L586
train
CalebBell/fluids
fluids/packed_tower.py
Robbins
def Robbins(L, G, rhol, rhog, mul, H=1.0, Fpd=24.0): r'''Calculates pressure drop across a packed column, using the Robbins equation. Pressure drop is given by: .. math:: \Delta P = C_3 G_f^2 10^{C_4L_f}+0.4[L_f/20000]^{0.1}[C_3G_f^210^{C_4L_f}]^4 .. math:: G_f=G[0.075/\rho_g]^{0.5}[F_{pd}/20]^{0.5}=986F_s[F_{pd}/20]^{0.5} .. math:: L_f=L[62.4/\rho_L][F_{pd}/20]^{0.5}\mu^{0.1} .. math:: F_s=V_s\rho_g^{0.5} Parameters ---------- L : float Specific liquid mass flow rate [kg/s/m^2] G : float Specific gas mass flow rate [kg/s/m^2] rhol : float Density of liquid [kg/m^3] rhog : float Density of gas [kg/m^3] mul : float Viscosity of liquid [Pa*s] H : float Height of packing [m] Fpd : float Robbins packing factor (tabulated for packings) [1/ft] Returns ------- dP : float Pressure drop across packing [Pa] Notes ----- Perry's displayed equation has a typo in a superscript. This model is based on the example in Perry's. Examples -------- >>> Robbins(L=12.2, G=2.03, rhol=1000., rhog=1.1853, mul=0.001, H=2.0, Fpd=24.0) 619.6624593438102 References ---------- .. [1] Robbins [Chem. Eng. Progr., p. 87 (May 1991) Improved Pressure Drop Prediction with a New Correlation. ''' # Convert SI units to imperial for use in correlation L = L*737.33812 # kg/s/m^2 to lb/hr/ft^2 G = G*737.33812 # kg/s/m^2 to lb/hr/ft^2 rhol = rhol*0.062427961 # kg/m^3 to lb/ft^3 rhog = rhog*0.062427961 # kg/m^3 to lb/ft^3 mul = mul*1000.0 # Pa*s to cP C3 = 7.4E-8 C4 = 2.7E-5 Fpd_root_term = (.05*Fpd)**0.5 Lf = L*(62.4/rhol)*Fpd_root_term*mul**0.1 Gf = G*(0.075/rhog)**0.5*Fpd_root_term Gf2 = Gf*Gf C4LF_10_GF2_C3 = C3*Gf2*10.0**(C4*Lf) C4LF_10_GF2_C3_2 = C4LF_10_GF2_C3*C4LF_10_GF2_C3 dP = C4LF_10_GF2_C3 + 0.4*(5e-5*Lf)**0.1*(C4LF_10_GF2_C3_2*C4LF_10_GF2_C3_2) return dP*817.22083*H
python
def Robbins(L, G, rhol, rhog, mul, H=1.0, Fpd=24.0): r'''Calculates pressure drop across a packed column, using the Robbins equation. Pressure drop is given by: .. math:: \Delta P = C_3 G_f^2 10^{C_4L_f}+0.4[L_f/20000]^{0.1}[C_3G_f^210^{C_4L_f}]^4 .. math:: G_f=G[0.075/\rho_g]^{0.5}[F_{pd}/20]^{0.5}=986F_s[F_{pd}/20]^{0.5} .. math:: L_f=L[62.4/\rho_L][F_{pd}/20]^{0.5}\mu^{0.1} .. math:: F_s=V_s\rho_g^{0.5} Parameters ---------- L : float Specific liquid mass flow rate [kg/s/m^2] G : float Specific gas mass flow rate [kg/s/m^2] rhol : float Density of liquid [kg/m^3] rhog : float Density of gas [kg/m^3] mul : float Viscosity of liquid [Pa*s] H : float Height of packing [m] Fpd : float Robbins packing factor (tabulated for packings) [1/ft] Returns ------- dP : float Pressure drop across packing [Pa] Notes ----- Perry's displayed equation has a typo in a superscript. This model is based on the example in Perry's. Examples -------- >>> Robbins(L=12.2, G=2.03, rhol=1000., rhog=1.1853, mul=0.001, H=2.0, Fpd=24.0) 619.6624593438102 References ---------- .. [1] Robbins [Chem. Eng. Progr., p. 87 (May 1991) Improved Pressure Drop Prediction with a New Correlation. ''' # Convert SI units to imperial for use in correlation L = L*737.33812 # kg/s/m^2 to lb/hr/ft^2 G = G*737.33812 # kg/s/m^2 to lb/hr/ft^2 rhol = rhol*0.062427961 # kg/m^3 to lb/ft^3 rhog = rhog*0.062427961 # kg/m^3 to lb/ft^3 mul = mul*1000.0 # Pa*s to cP C3 = 7.4E-8 C4 = 2.7E-5 Fpd_root_term = (.05*Fpd)**0.5 Lf = L*(62.4/rhol)*Fpd_root_term*mul**0.1 Gf = G*(0.075/rhog)**0.5*Fpd_root_term Gf2 = Gf*Gf C4LF_10_GF2_C3 = C3*Gf2*10.0**(C4*Lf) C4LF_10_GF2_C3_2 = C4LF_10_GF2_C3*C4LF_10_GF2_C3 dP = C4LF_10_GF2_C3 + 0.4*(5e-5*Lf)**0.1*(C4LF_10_GF2_C3_2*C4LF_10_GF2_C3_2) return dP*817.22083*H
[ "def", "Robbins", "(", "L", ",", "G", ",", "rhol", ",", "rhog", ",", "mul", ",", "H", "=", "1.0", ",", "Fpd", "=", "24.0", ")", ":", "# Convert SI units to imperial for use in correlation", "L", "=", "L", "*", "737.33812", "# kg/s/m^2 to lb/hr/ft^2", "G", "=", "G", "*", "737.33812", "# kg/s/m^2 to lb/hr/ft^2", "rhol", "=", "rhol", "*", "0.062427961", "# kg/m^3 to lb/ft^3", "rhog", "=", "rhog", "*", "0.062427961", "# kg/m^3 to lb/ft^3", "mul", "=", "mul", "*", "1000.0", "# Pa*s to cP", "C3", "=", "7.4E-8", "C4", "=", "2.7E-5", "Fpd_root_term", "=", "(", ".05", "*", "Fpd", ")", "**", "0.5", "Lf", "=", "L", "*", "(", "62.4", "/", "rhol", ")", "*", "Fpd_root_term", "*", "mul", "**", "0.1", "Gf", "=", "G", "*", "(", "0.075", "/", "rhog", ")", "**", "0.5", "*", "Fpd_root_term", "Gf2", "=", "Gf", "*", "Gf", "C4LF_10_GF2_C3", "=", "C3", "*", "Gf2", "*", "10.0", "**", "(", "C4", "*", "Lf", ")", "C4LF_10_GF2_C3_2", "=", "C4LF_10_GF2_C3", "*", "C4LF_10_GF2_C3", "dP", "=", "C4LF_10_GF2_C3", "+", "0.4", "*", "(", "5e-5", "*", "Lf", ")", "**", "0.1", "*", "(", "C4LF_10_GF2_C3_2", "*", "C4LF_10_GF2_C3_2", ")", "return", "dP", "*", "817.22083", "*", "H" ]
r'''Calculates pressure drop across a packed column, using the Robbins equation. Pressure drop is given by: .. math:: \Delta P = C_3 G_f^2 10^{C_4L_f}+0.4[L_f/20000]^{0.1}[C_3G_f^210^{C_4L_f}]^4 .. math:: G_f=G[0.075/\rho_g]^{0.5}[F_{pd}/20]^{0.5}=986F_s[F_{pd}/20]^{0.5} .. math:: L_f=L[62.4/\rho_L][F_{pd}/20]^{0.5}\mu^{0.1} .. math:: F_s=V_s\rho_g^{0.5} Parameters ---------- L : float Specific liquid mass flow rate [kg/s/m^2] G : float Specific gas mass flow rate [kg/s/m^2] rhol : float Density of liquid [kg/m^3] rhog : float Density of gas [kg/m^3] mul : float Viscosity of liquid [Pa*s] H : float Height of packing [m] Fpd : float Robbins packing factor (tabulated for packings) [1/ft] Returns ------- dP : float Pressure drop across packing [Pa] Notes ----- Perry's displayed equation has a typo in a superscript. This model is based on the example in Perry's. Examples -------- >>> Robbins(L=12.2, G=2.03, rhol=1000., rhog=1.1853, mul=0.001, H=2.0, Fpd=24.0) 619.6624593438102 References ---------- .. [1] Robbins [Chem. Eng. Progr., p. 87 (May 1991) Improved Pressure Drop Prediction with a New Correlation.
[ "r", "Calculates", "pressure", "drop", "across", "a", "packed", "column", "using", "the", "Robbins", "equation", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/packed_tower.py#L741-L812
train
CalebBell/fluids
fluids/packed_bed.py
dP_packed_bed
def dP_packed_bed(dp, voidage, vs, rho, mu, L=1, Dt=None, sphericity=None, Method=None, AvailableMethods=False): r'''This function handles choosing which pressure drop in a packed bed correlation is used. Automatically select which correlation to use if none is provided. Returns None if insufficient information is provided. Preferred correlations are 'Erdim, Akgiray & Demir' when tube diameter is not provided, and 'Harrison, Brunner & Hecker' when tube diameter is provided. If you are using a particles in a narrow tube between 2 and 3 particle diameters, expect higher than normal voidages (0.4-0.5) and used the method 'Guo, Sun, Zhang, Ding & Liu'. Examples -------- >>> dP_packed_bed(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3) 1438.2826958844414 >>> dP_packed_bed(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3, Dt=0.01) 1255.1625662548427 >>> dP_packed_bed(dp=0.05, voidage=0.492, vs=0.1, rho=1E3, mu=1E-3, Dt=0.015, Method='Guo, Sun, Zhang, Ding & Liu') 18782.499710673364 Parameters ---------- dp : float Particle diameter of spheres [m] voidage : float Void fraction of bed packing [-] vs : float Superficial velocity of the fluid (volumetric flow rate/cross-sectional area) [m/s] rho : float Density of the fluid [kg/m^3] mu : float Viscosity of the fluid, [Pa*s] L : float, optional Length the fluid flows in the packed bed [m] Dt : float, optional Diameter of the tube, [m] sphericity : float, optional Sphericity of the particles [-] Returns ------- dP : float Pressure drop across the bed [Pa] methods : list, only returned if AvailableMethods == True List of methods which can be used to calculate `dP` with the given inputs Other Parameters ---------------- Method : string, optional A string of the function name to use, as in the dictionary packed_beds_correlations AvailableMethods : bool, optional If True, function will consider which methods which can be used to calculate `dP` with the given inputs and return them as a list ''' def list_methods(): methods = [] if all((dp, voidage, vs, rho, mu, L)): for key, values in packed_beds_correlations.items(): if Dt or not values[1]: methods.append(key) if 'Harrison, Brunner & Hecker' in methods: methods.remove('Harrison, Brunner & Hecker') methods.insert(0, 'Harrison, Brunner & Hecker') elif 'Erdim, Akgiray & Demir' in methods: methods.remove('Erdim, Akgiray & Demir') methods.insert(0, 'Erdim, Akgiray & Demir') return methods if AvailableMethods: return list_methods() if not Method: Method = list_methods()[0] if dp and sphericity: dp = dp*sphericity if Method in packed_beds_correlations: if packed_beds_correlations[Method][1]: return packed_beds_correlations[Method][0](dp=dp, voidage=voidage, vs=vs, rho=rho, mu=mu, L=L, Dt=Dt) else: return packed_beds_correlations[Method][0](dp=dp, voidage=voidage, vs=vs, rho=rho, mu=mu, L=L) else: raise Exception('Failure in in function')
python
def dP_packed_bed(dp, voidage, vs, rho, mu, L=1, Dt=None, sphericity=None, Method=None, AvailableMethods=False): r'''This function handles choosing which pressure drop in a packed bed correlation is used. Automatically select which correlation to use if none is provided. Returns None if insufficient information is provided. Preferred correlations are 'Erdim, Akgiray & Demir' when tube diameter is not provided, and 'Harrison, Brunner & Hecker' when tube diameter is provided. If you are using a particles in a narrow tube between 2 and 3 particle diameters, expect higher than normal voidages (0.4-0.5) and used the method 'Guo, Sun, Zhang, Ding & Liu'. Examples -------- >>> dP_packed_bed(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3) 1438.2826958844414 >>> dP_packed_bed(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3, Dt=0.01) 1255.1625662548427 >>> dP_packed_bed(dp=0.05, voidage=0.492, vs=0.1, rho=1E3, mu=1E-3, Dt=0.015, Method='Guo, Sun, Zhang, Ding & Liu') 18782.499710673364 Parameters ---------- dp : float Particle diameter of spheres [m] voidage : float Void fraction of bed packing [-] vs : float Superficial velocity of the fluid (volumetric flow rate/cross-sectional area) [m/s] rho : float Density of the fluid [kg/m^3] mu : float Viscosity of the fluid, [Pa*s] L : float, optional Length the fluid flows in the packed bed [m] Dt : float, optional Diameter of the tube, [m] sphericity : float, optional Sphericity of the particles [-] Returns ------- dP : float Pressure drop across the bed [Pa] methods : list, only returned if AvailableMethods == True List of methods which can be used to calculate `dP` with the given inputs Other Parameters ---------------- Method : string, optional A string of the function name to use, as in the dictionary packed_beds_correlations AvailableMethods : bool, optional If True, function will consider which methods which can be used to calculate `dP` with the given inputs and return them as a list ''' def list_methods(): methods = [] if all((dp, voidage, vs, rho, mu, L)): for key, values in packed_beds_correlations.items(): if Dt or not values[1]: methods.append(key) if 'Harrison, Brunner & Hecker' in methods: methods.remove('Harrison, Brunner & Hecker') methods.insert(0, 'Harrison, Brunner & Hecker') elif 'Erdim, Akgiray & Demir' in methods: methods.remove('Erdim, Akgiray & Demir') methods.insert(0, 'Erdim, Akgiray & Demir') return methods if AvailableMethods: return list_methods() if not Method: Method = list_methods()[0] if dp and sphericity: dp = dp*sphericity if Method in packed_beds_correlations: if packed_beds_correlations[Method][1]: return packed_beds_correlations[Method][0](dp=dp, voidage=voidage, vs=vs, rho=rho, mu=mu, L=L, Dt=Dt) else: return packed_beds_correlations[Method][0](dp=dp, voidage=voidage, vs=vs, rho=rho, mu=mu, L=L) else: raise Exception('Failure in in function')
[ "def", "dP_packed_bed", "(", "dp", ",", "voidage", ",", "vs", ",", "rho", ",", "mu", ",", "L", "=", "1", ",", "Dt", "=", "None", ",", "sphericity", "=", "None", ",", "Method", "=", "None", ",", "AvailableMethods", "=", "False", ")", ":", "def", "list_methods", "(", ")", ":", "methods", "=", "[", "]", "if", "all", "(", "(", "dp", ",", "voidage", ",", "vs", ",", "rho", ",", "mu", ",", "L", ")", ")", ":", "for", "key", ",", "values", "in", "packed_beds_correlations", ".", "items", "(", ")", ":", "if", "Dt", "or", "not", "values", "[", "1", "]", ":", "methods", ".", "append", "(", "key", ")", "if", "'Harrison, Brunner & Hecker'", "in", "methods", ":", "methods", ".", "remove", "(", "'Harrison, Brunner & Hecker'", ")", "methods", ".", "insert", "(", "0", ",", "'Harrison, Brunner & Hecker'", ")", "elif", "'Erdim, Akgiray & Demir'", "in", "methods", ":", "methods", ".", "remove", "(", "'Erdim, Akgiray & Demir'", ")", "methods", ".", "insert", "(", "0", ",", "'Erdim, Akgiray & Demir'", ")", "return", "methods", "if", "AvailableMethods", ":", "return", "list_methods", "(", ")", "if", "not", "Method", ":", "Method", "=", "list_methods", "(", ")", "[", "0", "]", "if", "dp", "and", "sphericity", ":", "dp", "=", "dp", "*", "sphericity", "if", "Method", "in", "packed_beds_correlations", ":", "if", "packed_beds_correlations", "[", "Method", "]", "[", "1", "]", ":", "return", "packed_beds_correlations", "[", "Method", "]", "[", "0", "]", "(", "dp", "=", "dp", ",", "voidage", "=", "voidage", ",", "vs", "=", "vs", ",", "rho", "=", "rho", ",", "mu", "=", "mu", ",", "L", "=", "L", ",", "Dt", "=", "Dt", ")", "else", ":", "return", "packed_beds_correlations", "[", "Method", "]", "[", "0", "]", "(", "dp", "=", "dp", ",", "voidage", "=", "voidage", ",", "vs", "=", "vs", ",", "rho", "=", "rho", ",", "mu", "=", "mu", ",", "L", "=", "L", ")", "else", ":", "raise", "Exception", "(", "'Failure in in function'", ")" ]
r'''This function handles choosing which pressure drop in a packed bed correlation is used. Automatically select which correlation to use if none is provided. Returns None if insufficient information is provided. Preferred correlations are 'Erdim, Akgiray & Demir' when tube diameter is not provided, and 'Harrison, Brunner & Hecker' when tube diameter is provided. If you are using a particles in a narrow tube between 2 and 3 particle diameters, expect higher than normal voidages (0.4-0.5) and used the method 'Guo, Sun, Zhang, Ding & Liu'. Examples -------- >>> dP_packed_bed(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3) 1438.2826958844414 >>> dP_packed_bed(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3, Dt=0.01) 1255.1625662548427 >>> dP_packed_bed(dp=0.05, voidage=0.492, vs=0.1, rho=1E3, mu=1E-3, Dt=0.015, Method='Guo, Sun, Zhang, Ding & Liu') 18782.499710673364 Parameters ---------- dp : float Particle diameter of spheres [m] voidage : float Void fraction of bed packing [-] vs : float Superficial velocity of the fluid (volumetric flow rate/cross-sectional area) [m/s] rho : float Density of the fluid [kg/m^3] mu : float Viscosity of the fluid, [Pa*s] L : float, optional Length the fluid flows in the packed bed [m] Dt : float, optional Diameter of the tube, [m] sphericity : float, optional Sphericity of the particles [-] Returns ------- dP : float Pressure drop across the bed [Pa] methods : list, only returned if AvailableMethods == True List of methods which can be used to calculate `dP` with the given inputs Other Parameters ---------------- Method : string, optional A string of the function name to use, as in the dictionary packed_beds_correlations AvailableMethods : bool, optional If True, function will consider which methods which can be used to calculate `dP` with the given inputs and return them as a list
[ "r", "This", "function", "handles", "choosing", "which", "pressure", "drop", "in", "a", "packed", "bed", "correlation", "is", "used", ".", "Automatically", "select", "which", "correlation", "to", "use", "if", "none", "is", "provided", ".", "Returns", "None", "if", "insufficient", "information", "is", "provided", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/packed_bed.py#L994-L1079
train
CalebBell/fluids
fluids/two_phase.py
Friedel
def Friedel(m, x, rhol, rhog, mul, mug, sigma, D, roughness=0, L=1): r'''Calculates two-phase pressure drop with the Friedel correlation. .. math:: \Delta P_{friction} = \Delta P_{lo} \phi_{lo}^2 .. math:: \phi_{lo}^2 = E + \frac{3.24FH}{Fr^{0.0454} We^{0.035}} .. math:: H = \left(\frac{\rho_l}{\rho_g}\right)^{0.91}\left(\frac{\mu_g}{\mu_l} \right)^{0.19}\left(1 - \frac{\mu_g}{\mu_l}\right)^{0.7} .. math:: F = x^{0.78}(1 - x)^{0.224} .. math:: E = (1-x)^2 + x^2\left(\frac{\rho_l f_{d,go}}{\rho_g f_{d,lo}}\right) .. math:: Fr = \frac{G_{tp}^2}{gD\rho_H^2} .. math:: We = \frac{G_{tp}^2 D}{\sigma \rho_H} .. math:: \rho_H = \left(\frac{x}{\rho_g} + \frac{1-x}{\rho_l}\right)^{-1} Parameters ---------- m : float Mass flow rate of fluid, [kg/s] x : float Quality of fluid, [-] rhol : float Liquid density, [kg/m^3] rhog : float Gas density, [kg/m^3] mul : float Viscosity of liquid, [Pa*s] mug : float Viscosity of gas, [Pa*s] sigma : float Surface tension, [N/m] D : float Diameter of pipe, [m] roughness : float, optional Roughness of pipe for use in calculating friction factor, [m] L : float, optional Length of pipe, [m] Returns ------- dP : float Pressure drop of the two-phase flow, [Pa] Notes ----- Applicable to vertical upflow and horizontal flow. Known to work poorly when mul/mug > 1000. Gives mean errors on the order of 40%. Tested on data with diameters as small as 4 mm. The power of 0.0454 is given as 0.045 in [2]_, [3]_, [4]_, and [5]_; [6]_ and [2]_ give 0.0454 and [2]_ also gives a similar correlation said to be presented in [1]_, so it is believed this 0.0454 was the original power. [6]_ also gives an expression for friction factor claimed to be presented in [1]_; it is not used here. Examples -------- Example 4 in [6]_: >>> Friedel(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6, ... sigma=0.0487, D=0.05, roughness=0, L=1) 738.6500525002245 References ---------- .. [1] Friedel, L. "Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two-Phase Pipe Flow." , in: Proceedings, European Two Phase Flow Group Meeting, Ispra, Italy, 1979: 485-481. .. [2] Whalley, P. B. Boiling, Condensation, and Gas-Liquid Flow. Oxford: Oxford University Press, 1987. .. [3] Triplett, K. A., S. M. Ghiaasiaan, S. I. Abdel-Khalik, A. LeMouel, and B. N. McCord. "Gas-liquid Two-Phase Flow in Microchannels: Part II: Void Fraction and Pressure Drop.” International Journal of Multiphase Flow 25, no. 3 (April 1999): 395-410. doi:10.1016/S0301-9322(98)00055-X. .. [4] Mekisso, Henock Mateos. "Comparison of Frictional Pressure Drop Correlations for Isothermal Two-Phase Horizontal Flow." Thesis, Oklahoma State University, 2013. https://shareok.org/handle/11244/11109. .. [5] Thome, John R. "Engineering Data Book III." Wolverine Tube Inc (2004). http://www.wlv.com/heat-transfer-databook/ .. [6] Ghiaasiaan, S. Mostafa. Two-Phase Flow, Boiling, and Condensation: In Conventional and Miniature Systems. Cambridge University Press, 2007. ''' # Liquid-only properties, for calculation of E, dP_lo v_lo = m/rhol/(pi/4*D**2) Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D) fd_lo = friction_factor(Re=Re_lo, eD=roughness/D) dP_lo = fd_lo*L/D*(0.5*rhol*v_lo**2) # Gas-only properties, for calculation of E v_go = m/rhog/(pi/4*D**2) Re_go = Reynolds(V=v_go, rho=rhog, mu=mug, D=D) fd_go = friction_factor(Re=Re_go, eD=roughness/D) F = x**0.78*(1-x)**0.224 H = (rhol/rhog)**0.91*(mug/mul)**0.19*(1 - mug/mul)**0.7 E = (1-x)**2 + x**2*(rhol*fd_go/(rhog*fd_lo)) # Homogeneous properties, for Froude/Weber numbers voidage_h = homogeneous(x, rhol, rhog) rho_h = rhol*(1-voidage_h) + rhog*voidage_h Q_h = m/rho_h v_h = Q_h/(pi/4*D**2) Fr = Froude(V=v_h, L=D, squared=True) # checked with (m/(pi/4*D**2))**2/g/D/rho_h**2 We = Weber(V=v_h, L=D, rho=rho_h, sigma=sigma) # checked with (m/(pi/4*D**2))**2*D/sigma/rho_h phi_lo2 = E + 3.24*F*H/(Fr**0.0454*We**0.035) return phi_lo2*dP_lo
python
def Friedel(m, x, rhol, rhog, mul, mug, sigma, D, roughness=0, L=1): r'''Calculates two-phase pressure drop with the Friedel correlation. .. math:: \Delta P_{friction} = \Delta P_{lo} \phi_{lo}^2 .. math:: \phi_{lo}^2 = E + \frac{3.24FH}{Fr^{0.0454} We^{0.035}} .. math:: H = \left(\frac{\rho_l}{\rho_g}\right)^{0.91}\left(\frac{\mu_g}{\mu_l} \right)^{0.19}\left(1 - \frac{\mu_g}{\mu_l}\right)^{0.7} .. math:: F = x^{0.78}(1 - x)^{0.224} .. math:: E = (1-x)^2 + x^2\left(\frac{\rho_l f_{d,go}}{\rho_g f_{d,lo}}\right) .. math:: Fr = \frac{G_{tp}^2}{gD\rho_H^2} .. math:: We = \frac{G_{tp}^2 D}{\sigma \rho_H} .. math:: \rho_H = \left(\frac{x}{\rho_g} + \frac{1-x}{\rho_l}\right)^{-1} Parameters ---------- m : float Mass flow rate of fluid, [kg/s] x : float Quality of fluid, [-] rhol : float Liquid density, [kg/m^3] rhog : float Gas density, [kg/m^3] mul : float Viscosity of liquid, [Pa*s] mug : float Viscosity of gas, [Pa*s] sigma : float Surface tension, [N/m] D : float Diameter of pipe, [m] roughness : float, optional Roughness of pipe for use in calculating friction factor, [m] L : float, optional Length of pipe, [m] Returns ------- dP : float Pressure drop of the two-phase flow, [Pa] Notes ----- Applicable to vertical upflow and horizontal flow. Known to work poorly when mul/mug > 1000. Gives mean errors on the order of 40%. Tested on data with diameters as small as 4 mm. The power of 0.0454 is given as 0.045 in [2]_, [3]_, [4]_, and [5]_; [6]_ and [2]_ give 0.0454 and [2]_ also gives a similar correlation said to be presented in [1]_, so it is believed this 0.0454 was the original power. [6]_ also gives an expression for friction factor claimed to be presented in [1]_; it is not used here. Examples -------- Example 4 in [6]_: >>> Friedel(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6, ... sigma=0.0487, D=0.05, roughness=0, L=1) 738.6500525002245 References ---------- .. [1] Friedel, L. "Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two-Phase Pipe Flow." , in: Proceedings, European Two Phase Flow Group Meeting, Ispra, Italy, 1979: 485-481. .. [2] Whalley, P. B. Boiling, Condensation, and Gas-Liquid Flow. Oxford: Oxford University Press, 1987. .. [3] Triplett, K. A., S. M. Ghiaasiaan, S. I. Abdel-Khalik, A. LeMouel, and B. N. McCord. "Gas-liquid Two-Phase Flow in Microchannels: Part II: Void Fraction and Pressure Drop.” International Journal of Multiphase Flow 25, no. 3 (April 1999): 395-410. doi:10.1016/S0301-9322(98)00055-X. .. [4] Mekisso, Henock Mateos. "Comparison of Frictional Pressure Drop Correlations for Isothermal Two-Phase Horizontal Flow." Thesis, Oklahoma State University, 2013. https://shareok.org/handle/11244/11109. .. [5] Thome, John R. "Engineering Data Book III." Wolverine Tube Inc (2004). http://www.wlv.com/heat-transfer-databook/ .. [6] Ghiaasiaan, S. Mostafa. Two-Phase Flow, Boiling, and Condensation: In Conventional and Miniature Systems. Cambridge University Press, 2007. ''' # Liquid-only properties, for calculation of E, dP_lo v_lo = m/rhol/(pi/4*D**2) Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D) fd_lo = friction_factor(Re=Re_lo, eD=roughness/D) dP_lo = fd_lo*L/D*(0.5*rhol*v_lo**2) # Gas-only properties, for calculation of E v_go = m/rhog/(pi/4*D**2) Re_go = Reynolds(V=v_go, rho=rhog, mu=mug, D=D) fd_go = friction_factor(Re=Re_go, eD=roughness/D) F = x**0.78*(1-x)**0.224 H = (rhol/rhog)**0.91*(mug/mul)**0.19*(1 - mug/mul)**0.7 E = (1-x)**2 + x**2*(rhol*fd_go/(rhog*fd_lo)) # Homogeneous properties, for Froude/Weber numbers voidage_h = homogeneous(x, rhol, rhog) rho_h = rhol*(1-voidage_h) + rhog*voidage_h Q_h = m/rho_h v_h = Q_h/(pi/4*D**2) Fr = Froude(V=v_h, L=D, squared=True) # checked with (m/(pi/4*D**2))**2/g/D/rho_h**2 We = Weber(V=v_h, L=D, rho=rho_h, sigma=sigma) # checked with (m/(pi/4*D**2))**2*D/sigma/rho_h phi_lo2 = E + 3.24*F*H/(Fr**0.0454*We**0.035) return phi_lo2*dP_lo
[ "def", "Friedel", "(", "m", ",", "x", ",", "rhol", ",", "rhog", ",", "mul", ",", "mug", ",", "sigma", ",", "D", ",", "roughness", "=", "0", ",", "L", "=", "1", ")", ":", "# Liquid-only properties, for calculation of E, dP_lo", "v_lo", "=", "m", "/", "rhol", "/", "(", "pi", "/", "4", "*", "D", "**", "2", ")", "Re_lo", "=", "Reynolds", "(", "V", "=", "v_lo", ",", "rho", "=", "rhol", ",", "mu", "=", "mul", ",", "D", "=", "D", ")", "fd_lo", "=", "friction_factor", "(", "Re", "=", "Re_lo", ",", "eD", "=", "roughness", "/", "D", ")", "dP_lo", "=", "fd_lo", "*", "L", "/", "D", "*", "(", "0.5", "*", "rhol", "*", "v_lo", "**", "2", ")", "# Gas-only properties, for calculation of E", "v_go", "=", "m", "/", "rhog", "/", "(", "pi", "/", "4", "*", "D", "**", "2", ")", "Re_go", "=", "Reynolds", "(", "V", "=", "v_go", ",", "rho", "=", "rhog", ",", "mu", "=", "mug", ",", "D", "=", "D", ")", "fd_go", "=", "friction_factor", "(", "Re", "=", "Re_go", ",", "eD", "=", "roughness", "/", "D", ")", "F", "=", "x", "**", "0.78", "*", "(", "1", "-", "x", ")", "**", "0.224", "H", "=", "(", "rhol", "/", "rhog", ")", "**", "0.91", "*", "(", "mug", "/", "mul", ")", "**", "0.19", "*", "(", "1", "-", "mug", "/", "mul", ")", "**", "0.7", "E", "=", "(", "1", "-", "x", ")", "**", "2", "+", "x", "**", "2", "*", "(", "rhol", "*", "fd_go", "/", "(", "rhog", "*", "fd_lo", ")", ")", "# Homogeneous properties, for Froude/Weber numbers", "voidage_h", "=", "homogeneous", "(", "x", ",", "rhol", ",", "rhog", ")", "rho_h", "=", "rhol", "*", "(", "1", "-", "voidage_h", ")", "+", "rhog", "*", "voidage_h", "Q_h", "=", "m", "/", "rho_h", "v_h", "=", "Q_h", "/", "(", "pi", "/", "4", "*", "D", "**", "2", ")", "Fr", "=", "Froude", "(", "V", "=", "v_h", ",", "L", "=", "D", ",", "squared", "=", "True", ")", "# checked with (m/(pi/4*D**2))**2/g/D/rho_h**2", "We", "=", "Weber", "(", "V", "=", "v_h", ",", "L", "=", "D", ",", "rho", "=", "rho_h", ",", "sigma", "=", "sigma", ")", "# checked with (m/(pi/4*D**2))**2*D/sigma/rho_h", "phi_lo2", "=", "E", "+", "3.24", "*", "F", "*", "H", "/", "(", "Fr", "**", "0.0454", "*", "We", "**", "0.035", ")", "return", "phi_lo2", "*", "dP_lo" ]
r'''Calculates two-phase pressure drop with the Friedel correlation. .. math:: \Delta P_{friction} = \Delta P_{lo} \phi_{lo}^2 .. math:: \phi_{lo}^2 = E + \frac{3.24FH}{Fr^{0.0454} We^{0.035}} .. math:: H = \left(\frac{\rho_l}{\rho_g}\right)^{0.91}\left(\frac{\mu_g}{\mu_l} \right)^{0.19}\left(1 - \frac{\mu_g}{\mu_l}\right)^{0.7} .. math:: F = x^{0.78}(1 - x)^{0.224} .. math:: E = (1-x)^2 + x^2\left(\frac{\rho_l f_{d,go}}{\rho_g f_{d,lo}}\right) .. math:: Fr = \frac{G_{tp}^2}{gD\rho_H^2} .. math:: We = \frac{G_{tp}^2 D}{\sigma \rho_H} .. math:: \rho_H = \left(\frac{x}{\rho_g} + \frac{1-x}{\rho_l}\right)^{-1} Parameters ---------- m : float Mass flow rate of fluid, [kg/s] x : float Quality of fluid, [-] rhol : float Liquid density, [kg/m^3] rhog : float Gas density, [kg/m^3] mul : float Viscosity of liquid, [Pa*s] mug : float Viscosity of gas, [Pa*s] sigma : float Surface tension, [N/m] D : float Diameter of pipe, [m] roughness : float, optional Roughness of pipe for use in calculating friction factor, [m] L : float, optional Length of pipe, [m] Returns ------- dP : float Pressure drop of the two-phase flow, [Pa] Notes ----- Applicable to vertical upflow and horizontal flow. Known to work poorly when mul/mug > 1000. Gives mean errors on the order of 40%. Tested on data with diameters as small as 4 mm. The power of 0.0454 is given as 0.045 in [2]_, [3]_, [4]_, and [5]_; [6]_ and [2]_ give 0.0454 and [2]_ also gives a similar correlation said to be presented in [1]_, so it is believed this 0.0454 was the original power. [6]_ also gives an expression for friction factor claimed to be presented in [1]_; it is not used here. Examples -------- Example 4 in [6]_: >>> Friedel(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6, ... sigma=0.0487, D=0.05, roughness=0, L=1) 738.6500525002245 References ---------- .. [1] Friedel, L. "Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two-Phase Pipe Flow." , in: Proceedings, European Two Phase Flow Group Meeting, Ispra, Italy, 1979: 485-481. .. [2] Whalley, P. B. Boiling, Condensation, and Gas-Liquid Flow. Oxford: Oxford University Press, 1987. .. [3] Triplett, K. A., S. M. Ghiaasiaan, S. I. Abdel-Khalik, A. LeMouel, and B. N. McCord. "Gas-liquid Two-Phase Flow in Microchannels: Part II: Void Fraction and Pressure Drop.” International Journal of Multiphase Flow 25, no. 3 (April 1999): 395-410. doi:10.1016/S0301-9322(98)00055-X. .. [4] Mekisso, Henock Mateos. "Comparison of Frictional Pressure Drop Correlations for Isothermal Two-Phase Horizontal Flow." Thesis, Oklahoma State University, 2013. https://shareok.org/handle/11244/11109. .. [5] Thome, John R. "Engineering Data Book III." Wolverine Tube Inc (2004). http://www.wlv.com/heat-transfer-databook/ .. [6] Ghiaasiaan, S. Mostafa. Two-Phase Flow, Boiling, and Condensation: In Conventional and Miniature Systems. Cambridge University Press, 2007.
[ "r", "Calculates", "two", "-", "phase", "pressure", "drop", "with", "the", "Friedel", "correlation", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/two_phase.py#L204-L324
train
CalebBell/fluids
fluids/atmosphere.py
airmass
def airmass(func, angle, H_max=86400.0, R_planet=6.371229E6, RI=1.000276): r'''Calculates mass of air per square meter in the atmosphere using a provided atmospheric model. The lowest air mass is calculated straight up; as the angle is lowered to nearer and nearer the horizon, the air mass increases, and can approach 40x or more the minimum airmass. .. math:: m(\gamma) = \int_0^\infty \rho \left\{1 - \left[1 + 2(\text{RI}-1) (1-\rho/\rho_0)\right] \left[\frac{\cos \gamma}{(1+h/R)}\right]^2\right\}^{-1/2} dH Parameters ---------- func : float Function which returns the density of the atmosphere as a function of elevation angle : float Degrees above the horizon (90 = straight up), [degrees] H_max : float, optional Maximum height to compute the integration up to before the contribution of density becomes negligible, [m] R_planet : float, optional The radius of the planet for which the integration is being performed, [m] RI : float, optional The refractive index of the atmosphere (air on earth at 0.7 um as default) assumed a constant, [-] Returns ------- m : float Mass of air per square meter in the atmosphere, [kg/m^2] Notes ----- Numerical integration via SciPy's `quad` is used to perform the calculation. Examples -------- >>> airmass(lambda Z : ATMOSPHERE_1976(Z).rho, 90) 10356.127665863998 References ---------- .. [1] Kasten, Fritz, and Andrew T. Young. "Revised Optical Air Mass Tables and Approximation Formula." Applied Optics 28, no. 22 (November 15, 1989): 4735-38. https://doi.org/10.1364/AO.28.004735. ''' delta0 = RI - 1.0 rho0 = func(0.0) angle_term = cos(radians(angle)) def to_int(Z): rho = func(Z) t1 = (1.0 + 2.0*delta0*(1.0 - rho/rho0)) t2 = (angle_term/(1.0 + Z/R_planet))**2 t3 = (1.0 - t1*t2)**-0.5 return rho*t3 from scipy.integrate import quad return float(quad(to_int, 0, 86400.0)[0])
python
def airmass(func, angle, H_max=86400.0, R_planet=6.371229E6, RI=1.000276): r'''Calculates mass of air per square meter in the atmosphere using a provided atmospheric model. The lowest air mass is calculated straight up; as the angle is lowered to nearer and nearer the horizon, the air mass increases, and can approach 40x or more the minimum airmass. .. math:: m(\gamma) = \int_0^\infty \rho \left\{1 - \left[1 + 2(\text{RI}-1) (1-\rho/\rho_0)\right] \left[\frac{\cos \gamma}{(1+h/R)}\right]^2\right\}^{-1/2} dH Parameters ---------- func : float Function which returns the density of the atmosphere as a function of elevation angle : float Degrees above the horizon (90 = straight up), [degrees] H_max : float, optional Maximum height to compute the integration up to before the contribution of density becomes negligible, [m] R_planet : float, optional The radius of the planet for which the integration is being performed, [m] RI : float, optional The refractive index of the atmosphere (air on earth at 0.7 um as default) assumed a constant, [-] Returns ------- m : float Mass of air per square meter in the atmosphere, [kg/m^2] Notes ----- Numerical integration via SciPy's `quad` is used to perform the calculation. Examples -------- >>> airmass(lambda Z : ATMOSPHERE_1976(Z).rho, 90) 10356.127665863998 References ---------- .. [1] Kasten, Fritz, and Andrew T. Young. "Revised Optical Air Mass Tables and Approximation Formula." Applied Optics 28, no. 22 (November 15, 1989): 4735-38. https://doi.org/10.1364/AO.28.004735. ''' delta0 = RI - 1.0 rho0 = func(0.0) angle_term = cos(radians(angle)) def to_int(Z): rho = func(Z) t1 = (1.0 + 2.0*delta0*(1.0 - rho/rho0)) t2 = (angle_term/(1.0 + Z/R_planet))**2 t3 = (1.0 - t1*t2)**-0.5 return rho*t3 from scipy.integrate import quad return float(quad(to_int, 0, 86400.0)[0])
[ "def", "airmass", "(", "func", ",", "angle", ",", "H_max", "=", "86400.0", ",", "R_planet", "=", "6.371229E6", ",", "RI", "=", "1.000276", ")", ":", "delta0", "=", "RI", "-", "1.0", "rho0", "=", "func", "(", "0.0", ")", "angle_term", "=", "cos", "(", "radians", "(", "angle", ")", ")", "def", "to_int", "(", "Z", ")", ":", "rho", "=", "func", "(", "Z", ")", "t1", "=", "(", "1.0", "+", "2.0", "*", "delta0", "*", "(", "1.0", "-", "rho", "/", "rho0", ")", ")", "t2", "=", "(", "angle_term", "/", "(", "1.0", "+", "Z", "/", "R_planet", ")", ")", "**", "2", "t3", "=", "(", "1.0", "-", "t1", "*", "t2", ")", "**", "-", "0.5", "return", "rho", "*", "t3", "from", "scipy", ".", "integrate", "import", "quad", "return", "float", "(", "quad", "(", "to_int", ",", "0", ",", "86400.0", ")", "[", "0", "]", ")" ]
r'''Calculates mass of air per square meter in the atmosphere using a provided atmospheric model. The lowest air mass is calculated straight up; as the angle is lowered to nearer and nearer the horizon, the air mass increases, and can approach 40x or more the minimum airmass. .. math:: m(\gamma) = \int_0^\infty \rho \left\{1 - \left[1 + 2(\text{RI}-1) (1-\rho/\rho_0)\right] \left[\frac{\cos \gamma}{(1+h/R)}\right]^2\right\}^{-1/2} dH Parameters ---------- func : float Function which returns the density of the atmosphere as a function of elevation angle : float Degrees above the horizon (90 = straight up), [degrees] H_max : float, optional Maximum height to compute the integration up to before the contribution of density becomes negligible, [m] R_planet : float, optional The radius of the planet for which the integration is being performed, [m] RI : float, optional The refractive index of the atmosphere (air on earth at 0.7 um as default) assumed a constant, [-] Returns ------- m : float Mass of air per square meter in the atmosphere, [kg/m^2] Notes ----- Numerical integration via SciPy's `quad` is used to perform the calculation. Examples -------- >>> airmass(lambda Z : ATMOSPHERE_1976(Z).rho, 90) 10356.127665863998 References ---------- .. [1] Kasten, Fritz, and Andrew T. Young. "Revised Optical Air Mass Tables and Approximation Formula." Applied Optics 28, no. 22 (November 15, 1989): 4735-38. https://doi.org/10.1364/AO.28.004735.
[ "r", "Calculates", "mass", "of", "air", "per", "square", "meter", "in", "the", "atmosphere", "using", "a", "provided", "atmospheric", "model", ".", "The", "lowest", "air", "mass", "is", "calculated", "straight", "up", ";", "as", "the", "angle", "is", "lowered", "to", "nearer", "and", "nearer", "the", "horizon", "the", "air", "mass", "increases", "and", "can", "approach", "40x", "or", "more", "the", "minimum", "airmass", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/atmosphere.py#L689-L750
train
CalebBell/fluids
fluids/atmosphere.py
ATMOSPHERE_1976._get_ind_from_H
def _get_ind_from_H(H): r'''Method defined in the US Standard Atmosphere 1976 for determining the index of the layer a specified elevation is above. Levels are 0, 11E3, 20E3, 32E3, 47E3, 51E3, 71E3, 84852 meters respectively. ''' if H <= 0: return 0 for ind, Hi in enumerate(H_std): if Hi >= H : return ind-1 return 7
python
def _get_ind_from_H(H): r'''Method defined in the US Standard Atmosphere 1976 for determining the index of the layer a specified elevation is above. Levels are 0, 11E3, 20E3, 32E3, 47E3, 51E3, 71E3, 84852 meters respectively. ''' if H <= 0: return 0 for ind, Hi in enumerate(H_std): if Hi >= H : return ind-1 return 7
[ "def", "_get_ind_from_H", "(", "H", ")", ":", "if", "H", "<=", "0", ":", "return", "0", "for", "ind", ",", "Hi", "in", "enumerate", "(", "H_std", ")", ":", "if", "Hi", ">=", "H", ":", "return", "ind", "-", "1", "return", "7" ]
r'''Method defined in the US Standard Atmosphere 1976 for determining the index of the layer a specified elevation is above. Levels are 0, 11E3, 20E3, 32E3, 47E3, 51E3, 71E3, 84852 meters respectively.
[ "r", "Method", "defined", "in", "the", "US", "Standard", "Atmosphere", "1976", "for", "determining", "the", "index", "of", "the", "layer", "a", "specified", "elevation", "is", "above", ".", "Levels", "are", "0", "11E3", "20E3", "32E3", "47E3", "51E3", "71E3", "84852", "meters", "respectively", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/atmosphere.py#L154-L164
train
CalebBell/fluids
fluids/piping.py
gauge_from_t
def gauge_from_t(t, SI=True, schedule='BWG'): r'''Looks up the gauge of a given wire thickness of given schedule. Values are all non-linear, and tabulated internally. Parameters ---------- t : float Thickness, [m] SI : bool, optional If False, requires that the thickness is given in inches not meters schedule : str Gauge schedule, one of 'BWG', 'AWG', 'SWG', 'MWG', 'BSWG', or 'SSWG' Returns ------- gauge : float-like Wire Gauge, [-] Notes ----- An internal variable, tol, is used in the selection of the wire gauge. If the next smaller wire gauge is within 10% of the difference between it and the previous wire gauge, the smaller wire gauge is selected. Accordingly, this function can return a gauge with a thickness smaller than desired in some circumstances. * Birmingham Wire Gauge (BWG) ranges from 0.2 (0.5 inch) to 36 (0.004 inch). * American Wire Gauge (AWG) ranges from 0.167 (0.58 inch) to 51 (0.00099 inch). These are used for electrical wires. * Steel Wire Gauge (SWG) ranges from 0.143 (0.49 inch) to 51 (0.0044 inch). Also called Washburn & Moen wire gauge, American Steel gauge, Wire Co. gauge, and Roebling wire gauge. * Music Wire Gauge (MWG) ranges from 0.167 (0.004 inch) to 46 (0.18 inch). Also called Piano Wire Gauge. * British Standard Wire Gage (BSWG) ranges from 0.143 (0.5 inch) to 51 (0.001 inch). Also called Imperial Wire Gage (IWG). * Stub's Steel Wire Gage (SSWG) ranges from 1 (0.227 inch) to 80 (0.013 inch) Examples -------- >>> gauge_from_t(.5, SI=False, schedule='BWG') 0.2 References ---------- .. [1] Oberg, Erik, Franklin D. Jones, and Henry H. Ryffel. Machinery's Handbook. Industrial Press, Incorporated, 2012. ''' tol = 0.1 # Handle units if SI: t_inch = round(t/inch, 9) # all schedules are in inches else: t_inch = t # Get the schedule try: sch_integers, sch_inch, sch_SI, decreasing = wire_schedules[schedule] except: raise ValueError('Wire gauge schedule not found') # Check if outside limits sch_max, sch_min = sch_inch[0], sch_inch[-1] if t_inch > sch_max: raise ValueError('Input thickness is above the largest in the selected schedule') # If given thickness is exactly in the index, be happy if t_inch in sch_inch: gauge = sch_integers[sch_inch.index(t_inch)] else: for i in range(len(sch_inch)): if sch_inch[i] >= t_inch: larger = sch_inch[i] else: break if larger == sch_min: gauge = sch_min # If t is under the lowest schedule, be happy else: smaller = sch_inch[i] if (t_inch - smaller) <= tol*(larger - smaller): gauge = sch_integers[i] else: gauge = sch_integers[i-1] return gauge
python
def gauge_from_t(t, SI=True, schedule='BWG'): r'''Looks up the gauge of a given wire thickness of given schedule. Values are all non-linear, and tabulated internally. Parameters ---------- t : float Thickness, [m] SI : bool, optional If False, requires that the thickness is given in inches not meters schedule : str Gauge schedule, one of 'BWG', 'AWG', 'SWG', 'MWG', 'BSWG', or 'SSWG' Returns ------- gauge : float-like Wire Gauge, [-] Notes ----- An internal variable, tol, is used in the selection of the wire gauge. If the next smaller wire gauge is within 10% of the difference between it and the previous wire gauge, the smaller wire gauge is selected. Accordingly, this function can return a gauge with a thickness smaller than desired in some circumstances. * Birmingham Wire Gauge (BWG) ranges from 0.2 (0.5 inch) to 36 (0.004 inch). * American Wire Gauge (AWG) ranges from 0.167 (0.58 inch) to 51 (0.00099 inch). These are used for electrical wires. * Steel Wire Gauge (SWG) ranges from 0.143 (0.49 inch) to 51 (0.0044 inch). Also called Washburn & Moen wire gauge, American Steel gauge, Wire Co. gauge, and Roebling wire gauge. * Music Wire Gauge (MWG) ranges from 0.167 (0.004 inch) to 46 (0.18 inch). Also called Piano Wire Gauge. * British Standard Wire Gage (BSWG) ranges from 0.143 (0.5 inch) to 51 (0.001 inch). Also called Imperial Wire Gage (IWG). * Stub's Steel Wire Gage (SSWG) ranges from 1 (0.227 inch) to 80 (0.013 inch) Examples -------- >>> gauge_from_t(.5, SI=False, schedule='BWG') 0.2 References ---------- .. [1] Oberg, Erik, Franklin D. Jones, and Henry H. Ryffel. Machinery's Handbook. Industrial Press, Incorporated, 2012. ''' tol = 0.1 # Handle units if SI: t_inch = round(t/inch, 9) # all schedules are in inches else: t_inch = t # Get the schedule try: sch_integers, sch_inch, sch_SI, decreasing = wire_schedules[schedule] except: raise ValueError('Wire gauge schedule not found') # Check if outside limits sch_max, sch_min = sch_inch[0], sch_inch[-1] if t_inch > sch_max: raise ValueError('Input thickness is above the largest in the selected schedule') # If given thickness is exactly in the index, be happy if t_inch in sch_inch: gauge = sch_integers[sch_inch.index(t_inch)] else: for i in range(len(sch_inch)): if sch_inch[i] >= t_inch: larger = sch_inch[i] else: break if larger == sch_min: gauge = sch_min # If t is under the lowest schedule, be happy else: smaller = sch_inch[i] if (t_inch - smaller) <= tol*(larger - smaller): gauge = sch_integers[i] else: gauge = sch_integers[i-1] return gauge
[ "def", "gauge_from_t", "(", "t", ",", "SI", "=", "True", ",", "schedule", "=", "'BWG'", ")", ":", "tol", "=", "0.1", "# Handle units", "if", "SI", ":", "t_inch", "=", "round", "(", "t", "/", "inch", ",", "9", ")", "# all schedules are in inches", "else", ":", "t_inch", "=", "t", "# Get the schedule", "try", ":", "sch_integers", ",", "sch_inch", ",", "sch_SI", ",", "decreasing", "=", "wire_schedules", "[", "schedule", "]", "except", ":", "raise", "ValueError", "(", "'Wire gauge schedule not found'", ")", "# Check if outside limits", "sch_max", ",", "sch_min", "=", "sch_inch", "[", "0", "]", ",", "sch_inch", "[", "-", "1", "]", "if", "t_inch", ">", "sch_max", ":", "raise", "ValueError", "(", "'Input thickness is above the largest in the selected schedule'", ")", "# If given thickness is exactly in the index, be happy", "if", "t_inch", "in", "sch_inch", ":", "gauge", "=", "sch_integers", "[", "sch_inch", ".", "index", "(", "t_inch", ")", "]", "else", ":", "for", "i", "in", "range", "(", "len", "(", "sch_inch", ")", ")", ":", "if", "sch_inch", "[", "i", "]", ">=", "t_inch", ":", "larger", "=", "sch_inch", "[", "i", "]", "else", ":", "break", "if", "larger", "==", "sch_min", ":", "gauge", "=", "sch_min", "# If t is under the lowest schedule, be happy", "else", ":", "smaller", "=", "sch_inch", "[", "i", "]", "if", "(", "t_inch", "-", "smaller", ")", "<=", "tol", "*", "(", "larger", "-", "smaller", ")", ":", "gauge", "=", "sch_integers", "[", "i", "]", "else", ":", "gauge", "=", "sch_integers", "[", "i", "-", "1", "]", "return", "gauge" ]
r'''Looks up the gauge of a given wire thickness of given schedule. Values are all non-linear, and tabulated internally. Parameters ---------- t : float Thickness, [m] SI : bool, optional If False, requires that the thickness is given in inches not meters schedule : str Gauge schedule, one of 'BWG', 'AWG', 'SWG', 'MWG', 'BSWG', or 'SSWG' Returns ------- gauge : float-like Wire Gauge, [-] Notes ----- An internal variable, tol, is used in the selection of the wire gauge. If the next smaller wire gauge is within 10% of the difference between it and the previous wire gauge, the smaller wire gauge is selected. Accordingly, this function can return a gauge with a thickness smaller than desired in some circumstances. * Birmingham Wire Gauge (BWG) ranges from 0.2 (0.5 inch) to 36 (0.004 inch). * American Wire Gauge (AWG) ranges from 0.167 (0.58 inch) to 51 (0.00099 inch). These are used for electrical wires. * Steel Wire Gauge (SWG) ranges from 0.143 (0.49 inch) to 51 (0.0044 inch). Also called Washburn & Moen wire gauge, American Steel gauge, Wire Co. gauge, and Roebling wire gauge. * Music Wire Gauge (MWG) ranges from 0.167 (0.004 inch) to 46 (0.18 inch). Also called Piano Wire Gauge. * British Standard Wire Gage (BSWG) ranges from 0.143 (0.5 inch) to 51 (0.001 inch). Also called Imperial Wire Gage (IWG). * Stub's Steel Wire Gage (SSWG) ranges from 1 (0.227 inch) to 80 (0.013 inch) Examples -------- >>> gauge_from_t(.5, SI=False, schedule='BWG') 0.2 References ---------- .. [1] Oberg, Erik, Franklin D. Jones, and Henry H. Ryffel. Machinery's Handbook. Industrial Press, Incorporated, 2012.
[ "r", "Looks", "up", "the", "gauge", "of", "a", "given", "wire", "thickness", "of", "given", "schedule", ".", "Values", "are", "all", "non", "-", "linear", "and", "tabulated", "internally", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/piping.py#L349-L434
train
CalebBell/fluids
fluids/piping.py
t_from_gauge
def t_from_gauge(gauge, SI=True, schedule='BWG'): r'''Looks up the thickness of a given wire gauge of given schedule. Values are all non-linear, and tabulated internally. Parameters ---------- gauge : float-like Wire Gauge, [] SI : bool, optional If False, will return a thickness in inches not meters schedule : str Gauge schedule, one of 'BWG', 'AWG', 'SWG', 'MWG', 'BSWG', or 'SSWG' Returns ------- t : float Thickness, [m] Notes ----- * Birmingham Wire Gauge (BWG) ranges from 0.2 (0.5 inch) to 36 (0.004 inch). * American Wire Gauge (AWG) ranges from 0.167 (0.58 inch) to 51 (0.00099 inch). These are used for electrical wires. * Steel Wire Gauge (SWG) ranges from 0.143 (0.49 inch) to 51 (0.0044 inch). Also called Washburn & Moen wire gauge, American Steel gauge, Wire Co. gauge, and Roebling wire gauge. * Music Wire Gauge (MWG) ranges from 0.167 (0.004 inch) to 46 (0.18 inch). Also called Piano Wire Gauge. * British Standard Wire Gage (BSWG) ranges from 0.143 (0.5 inch) to 51 (0.001 inch). Also called Imperial Wire Gage (IWG). * Stub's Steel Wire Gage (SSWG) ranges from 1 (0.227 inch) to 80 (0.013 inch) Examples -------- >>> t_from_gauge(.2, False, 'BWG') 0.5 References ---------- .. [1] Oberg, Erik, Franklin D. Jones, and Henry H. Ryffel. Machinery's Handbook. Industrial Press, Incorporated, 2012. ''' try: sch_integers, sch_inch, sch_SI, decreasing = wire_schedules[schedule] except: raise ValueError("Wire gauge schedule not found; supported gauges are \ 'BWG', 'AWG', 'SWG', 'MWG', 'BSWG', and 'SSWG'.") try: i = sch_integers.index(gauge) except: raise ValueError('Input gauge not found in selected schedule') if SI: return sch_SI[i] # returns thickness in m else: return sch_inch[i]
python
def t_from_gauge(gauge, SI=True, schedule='BWG'): r'''Looks up the thickness of a given wire gauge of given schedule. Values are all non-linear, and tabulated internally. Parameters ---------- gauge : float-like Wire Gauge, [] SI : bool, optional If False, will return a thickness in inches not meters schedule : str Gauge schedule, one of 'BWG', 'AWG', 'SWG', 'MWG', 'BSWG', or 'SSWG' Returns ------- t : float Thickness, [m] Notes ----- * Birmingham Wire Gauge (BWG) ranges from 0.2 (0.5 inch) to 36 (0.004 inch). * American Wire Gauge (AWG) ranges from 0.167 (0.58 inch) to 51 (0.00099 inch). These are used for electrical wires. * Steel Wire Gauge (SWG) ranges from 0.143 (0.49 inch) to 51 (0.0044 inch). Also called Washburn & Moen wire gauge, American Steel gauge, Wire Co. gauge, and Roebling wire gauge. * Music Wire Gauge (MWG) ranges from 0.167 (0.004 inch) to 46 (0.18 inch). Also called Piano Wire Gauge. * British Standard Wire Gage (BSWG) ranges from 0.143 (0.5 inch) to 51 (0.001 inch). Also called Imperial Wire Gage (IWG). * Stub's Steel Wire Gage (SSWG) ranges from 1 (0.227 inch) to 80 (0.013 inch) Examples -------- >>> t_from_gauge(.2, False, 'BWG') 0.5 References ---------- .. [1] Oberg, Erik, Franklin D. Jones, and Henry H. Ryffel. Machinery's Handbook. Industrial Press, Incorporated, 2012. ''' try: sch_integers, sch_inch, sch_SI, decreasing = wire_schedules[schedule] except: raise ValueError("Wire gauge schedule not found; supported gauges are \ 'BWG', 'AWG', 'SWG', 'MWG', 'BSWG', and 'SSWG'.") try: i = sch_integers.index(gauge) except: raise ValueError('Input gauge not found in selected schedule') if SI: return sch_SI[i] # returns thickness in m else: return sch_inch[i]
[ "def", "t_from_gauge", "(", "gauge", ",", "SI", "=", "True", ",", "schedule", "=", "'BWG'", ")", ":", "try", ":", "sch_integers", ",", "sch_inch", ",", "sch_SI", ",", "decreasing", "=", "wire_schedules", "[", "schedule", "]", "except", ":", "raise", "ValueError", "(", "\"Wire gauge schedule not found; supported gauges are \\\n'BWG', 'AWG', 'SWG', 'MWG', 'BSWG', and 'SSWG'.\"", ")", "try", ":", "i", "=", "sch_integers", ".", "index", "(", "gauge", ")", "except", ":", "raise", "ValueError", "(", "'Input gauge not found in selected schedule'", ")", "if", "SI", ":", "return", "sch_SI", "[", "i", "]", "# returns thickness in m", "else", ":", "return", "sch_inch", "[", "i", "]" ]
r'''Looks up the thickness of a given wire gauge of given schedule. Values are all non-linear, and tabulated internally. Parameters ---------- gauge : float-like Wire Gauge, [] SI : bool, optional If False, will return a thickness in inches not meters schedule : str Gauge schedule, one of 'BWG', 'AWG', 'SWG', 'MWG', 'BSWG', or 'SSWG' Returns ------- t : float Thickness, [m] Notes ----- * Birmingham Wire Gauge (BWG) ranges from 0.2 (0.5 inch) to 36 (0.004 inch). * American Wire Gauge (AWG) ranges from 0.167 (0.58 inch) to 51 (0.00099 inch). These are used for electrical wires. * Steel Wire Gauge (SWG) ranges from 0.143 (0.49 inch) to 51 (0.0044 inch). Also called Washburn & Moen wire gauge, American Steel gauge, Wire Co. gauge, and Roebling wire gauge. * Music Wire Gauge (MWG) ranges from 0.167 (0.004 inch) to 46 (0.18 inch). Also called Piano Wire Gauge. * British Standard Wire Gage (BSWG) ranges from 0.143 (0.5 inch) to 51 (0.001 inch). Also called Imperial Wire Gage (IWG). * Stub's Steel Wire Gage (SSWG) ranges from 1 (0.227 inch) to 80 (0.013 inch) Examples -------- >>> t_from_gauge(.2, False, 'BWG') 0.5 References ---------- .. [1] Oberg, Erik, Franklin D. Jones, and Henry H. Ryffel. Machinery's Handbook. Industrial Press, Incorporated, 2012.
[ "r", "Looks", "up", "the", "thickness", "of", "a", "given", "wire", "gauge", "of", "given", "schedule", ".", "Values", "are", "all", "non", "-", "linear", "and", "tabulated", "internally", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/piping.py#L437-L493
train
CalebBell/fluids
fluids/safety_valve.py
API520_F2
def API520_F2(k, P1, P2): r'''Calculates coefficient F2 for subcritical flow for use in API 520 subcritical flow relief valve sizing. .. math:: F_2 = \sqrt{\left(\frac{k}{k-1}\right)r^\frac{2}{k} \left[\frac{1-r^\frac{k-1}{k}}{1-r}\right]} .. math:: r = \frac{P_2}{P_1} Parameters ---------- k : float Isentropic coefficient or ideal gas heat capacity ratio [-] P1 : float Upstream relieving pressure; the set pressure plus the allowable overpressure, plus atmospheric pressure, [Pa] P2 : float Built-up backpressure; the increase in pressure during flow at the outlet of a pressure-relief device after it opens, [Pa] Returns ------- F2 : float Subcritical flow coefficient `F2` [-] Notes ----- F2 is completely dimensionless. Examples -------- From [1]_ example 2, matches. >>> API520_F2(1.8, 1E6, 7E5) 0.8600724121105563 References ---------- .. [1] API Standard 520, Part 1 - Sizing and Selection. ''' r = P2/P1 return ( k/(k-1)*r**(2./k) * ((1-r**((k-1.)/k))/(1.-r)) )**0.5
python
def API520_F2(k, P1, P2): r'''Calculates coefficient F2 for subcritical flow for use in API 520 subcritical flow relief valve sizing. .. math:: F_2 = \sqrt{\left(\frac{k}{k-1}\right)r^\frac{2}{k} \left[\frac{1-r^\frac{k-1}{k}}{1-r}\right]} .. math:: r = \frac{P_2}{P_1} Parameters ---------- k : float Isentropic coefficient or ideal gas heat capacity ratio [-] P1 : float Upstream relieving pressure; the set pressure plus the allowable overpressure, plus atmospheric pressure, [Pa] P2 : float Built-up backpressure; the increase in pressure during flow at the outlet of a pressure-relief device after it opens, [Pa] Returns ------- F2 : float Subcritical flow coefficient `F2` [-] Notes ----- F2 is completely dimensionless. Examples -------- From [1]_ example 2, matches. >>> API520_F2(1.8, 1E6, 7E5) 0.8600724121105563 References ---------- .. [1] API Standard 520, Part 1 - Sizing and Selection. ''' r = P2/P1 return ( k/(k-1)*r**(2./k) * ((1-r**((k-1.)/k))/(1.-r)) )**0.5
[ "def", "API520_F2", "(", "k", ",", "P1", ",", "P2", ")", ":", "r", "=", "P2", "/", "P1", "return", "(", "k", "/", "(", "k", "-", "1", ")", "*", "r", "**", "(", "2.", "/", "k", ")", "*", "(", "(", "1", "-", "r", "**", "(", "(", "k", "-", "1.", ")", "/", "k", ")", ")", "/", "(", "1.", "-", "r", ")", ")", ")", "**", "0.5" ]
r'''Calculates coefficient F2 for subcritical flow for use in API 520 subcritical flow relief valve sizing. .. math:: F_2 = \sqrt{\left(\frac{k}{k-1}\right)r^\frac{2}{k} \left[\frac{1-r^\frac{k-1}{k}}{1-r}\right]} .. math:: r = \frac{P_2}{P_1} Parameters ---------- k : float Isentropic coefficient or ideal gas heat capacity ratio [-] P1 : float Upstream relieving pressure; the set pressure plus the allowable overpressure, plus atmospheric pressure, [Pa] P2 : float Built-up backpressure; the increase in pressure during flow at the outlet of a pressure-relief device after it opens, [Pa] Returns ------- F2 : float Subcritical flow coefficient `F2` [-] Notes ----- F2 is completely dimensionless. Examples -------- From [1]_ example 2, matches. >>> API520_F2(1.8, 1E6, 7E5) 0.8600724121105563 References ---------- .. [1] API Standard 520, Part 1 - Sizing and Selection.
[ "r", "Calculates", "coefficient", "F2", "for", "subcritical", "flow", "for", "use", "in", "API", "520", "subcritical", "flow", "relief", "valve", "sizing", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/safety_valve.py#L130-L173
train
CalebBell/fluids
fluids/safety_valve.py
API520_SH
def API520_SH(T1, P1): r'''Calculates correction due to steam superheat for steam flow for use in API 520 relief valve sizing. 2D interpolation among a table with 28 pressures and 10 temperatures is performed. Parameters ---------- T1 : float Temperature of the fluid entering the valve [K] P1 : float Upstream relieving pressure; the set pressure plus the allowable overpressure, plus atmospheric pressure, [Pa] Returns ------- KSH : float Correction due to steam superheat [-] Notes ----- For P above 20679 kPag, use the critical flow model. Superheat cannot be above 649 degrees Celsius. If T1 is above 149 degrees Celsius, returns 1. Examples -------- Custom example from table 9: >>> API520_SH(593+273.15, 1066.325E3) 0.7201800000000002 References ---------- .. [1] API Standard 520, Part 1 - Sizing and Selection. ''' if P1 > 20780325.0: # 20679E3+atm raise Exception('For P above 20679 kPag, use the critical flow model') if T1 > 922.15: raise Exception('Superheat cannot be above 649 degrees Celcius') if T1 < 422.15: return 1. # No superheat under 15 psig return float(bisplev(T1, P1, API520_KSH_tck))
python
def API520_SH(T1, P1): r'''Calculates correction due to steam superheat for steam flow for use in API 520 relief valve sizing. 2D interpolation among a table with 28 pressures and 10 temperatures is performed. Parameters ---------- T1 : float Temperature of the fluid entering the valve [K] P1 : float Upstream relieving pressure; the set pressure plus the allowable overpressure, plus atmospheric pressure, [Pa] Returns ------- KSH : float Correction due to steam superheat [-] Notes ----- For P above 20679 kPag, use the critical flow model. Superheat cannot be above 649 degrees Celsius. If T1 is above 149 degrees Celsius, returns 1. Examples -------- Custom example from table 9: >>> API520_SH(593+273.15, 1066.325E3) 0.7201800000000002 References ---------- .. [1] API Standard 520, Part 1 - Sizing and Selection. ''' if P1 > 20780325.0: # 20679E3+atm raise Exception('For P above 20679 kPag, use the critical flow model') if T1 > 922.15: raise Exception('Superheat cannot be above 649 degrees Celcius') if T1 < 422.15: return 1. # No superheat under 15 psig return float(bisplev(T1, P1, API520_KSH_tck))
[ "def", "API520_SH", "(", "T1", ",", "P1", ")", ":", "if", "P1", ">", "20780325.0", ":", "# 20679E3+atm", "raise", "Exception", "(", "'For P above 20679 kPag, use the critical flow model'", ")", "if", "T1", ">", "922.15", ":", "raise", "Exception", "(", "'Superheat cannot be above 649 degrees Celcius'", ")", "if", "T1", "<", "422.15", ":", "return", "1.", "# No superheat under 15 psig", "return", "float", "(", "bisplev", "(", "T1", ",", "P1", ",", "API520_KSH_tck", ")", ")" ]
r'''Calculates correction due to steam superheat for steam flow for use in API 520 relief valve sizing. 2D interpolation among a table with 28 pressures and 10 temperatures is performed. Parameters ---------- T1 : float Temperature of the fluid entering the valve [K] P1 : float Upstream relieving pressure; the set pressure plus the allowable overpressure, plus atmospheric pressure, [Pa] Returns ------- KSH : float Correction due to steam superheat [-] Notes ----- For P above 20679 kPag, use the critical flow model. Superheat cannot be above 649 degrees Celsius. If T1 is above 149 degrees Celsius, returns 1. Examples -------- Custom example from table 9: >>> API520_SH(593+273.15, 1066.325E3) 0.7201800000000002 References ---------- .. [1] API Standard 520, Part 1 - Sizing and Selection.
[ "r", "Calculates", "correction", "due", "to", "steam", "superheat", "for", "steam", "flow", "for", "use", "in", "API", "520", "relief", "valve", "sizing", ".", "2D", "interpolation", "among", "a", "table", "with", "28", "pressures", "and", "10", "temperatures", "is", "performed", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/safety_valve.py#L319-L361
train
CalebBell/fluids
fluids/safety_valve.py
API520_W
def API520_W(Pset, Pback): r'''Calculates capacity correction due to backpressure on balanced spring-loaded PRVs in liquid service. For pilot operated valves, this is always 1. Applicable up to 50% of the percent gauge backpressure, For use in API 520 relief valve sizing. 1D interpolation among a table with 53 backpressures is performed. Parameters ---------- Pset : float Set pressure for relief [Pa] Pback : float Backpressure, [Pa] Returns ------- KW : float Correction due to liquid backpressure [-] Notes ----- If the calculated gauge backpressure is less than 15%, a value of 1 is returned. Examples -------- Custom example from figure 31: >>> API520_W(1E6, 3E5) # 22% overpressure 0.9511471848008564 References ---------- .. [1] API Standard 520, Part 1 - Sizing and Selection. ''' gauge_backpressure = (Pback-atm)/(Pset-atm)*100.0 # in percent if gauge_backpressure < 15.0: return 1.0 return interp(gauge_backpressure, Kw_x, Kw_y)
python
def API520_W(Pset, Pback): r'''Calculates capacity correction due to backpressure on balanced spring-loaded PRVs in liquid service. For pilot operated valves, this is always 1. Applicable up to 50% of the percent gauge backpressure, For use in API 520 relief valve sizing. 1D interpolation among a table with 53 backpressures is performed. Parameters ---------- Pset : float Set pressure for relief [Pa] Pback : float Backpressure, [Pa] Returns ------- KW : float Correction due to liquid backpressure [-] Notes ----- If the calculated gauge backpressure is less than 15%, a value of 1 is returned. Examples -------- Custom example from figure 31: >>> API520_W(1E6, 3E5) # 22% overpressure 0.9511471848008564 References ---------- .. [1] API Standard 520, Part 1 - Sizing and Selection. ''' gauge_backpressure = (Pback-atm)/(Pset-atm)*100.0 # in percent if gauge_backpressure < 15.0: return 1.0 return interp(gauge_backpressure, Kw_x, Kw_y)
[ "def", "API520_W", "(", "Pset", ",", "Pback", ")", ":", "gauge_backpressure", "=", "(", "Pback", "-", "atm", ")", "/", "(", "Pset", "-", "atm", ")", "*", "100.0", "# in percent", "if", "gauge_backpressure", "<", "15.0", ":", "return", "1.0", "return", "interp", "(", "gauge_backpressure", ",", "Kw_x", ",", "Kw_y", ")" ]
r'''Calculates capacity correction due to backpressure on balanced spring-loaded PRVs in liquid service. For pilot operated valves, this is always 1. Applicable up to 50% of the percent gauge backpressure, For use in API 520 relief valve sizing. 1D interpolation among a table with 53 backpressures is performed. Parameters ---------- Pset : float Set pressure for relief [Pa] Pback : float Backpressure, [Pa] Returns ------- KW : float Correction due to liquid backpressure [-] Notes ----- If the calculated gauge backpressure is less than 15%, a value of 1 is returned. Examples -------- Custom example from figure 31: >>> API520_W(1E6, 3E5) # 22% overpressure 0.9511471848008564 References ---------- .. [1] API Standard 520, Part 1 - Sizing and Selection.
[ "r", "Calculates", "capacity", "correction", "due", "to", "backpressure", "on", "balanced", "spring", "-", "loaded", "PRVs", "in", "liquid", "service", ".", "For", "pilot", "operated", "valves", "this", "is", "always", "1", ".", "Applicable", "up", "to", "50%", "of", "the", "percent", "gauge", "backpressure", "For", "use", "in", "API", "520", "relief", "valve", "sizing", ".", "1D", "interpolation", "among", "a", "table", "with", "53", "backpressures", "is", "performed", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/safety_valve.py#L383-L421
train
CalebBell/fluids
fluids/safety_valve.py
API520_B
def API520_B(Pset, Pback, overpressure=0.1): r'''Calculates capacity correction due to backpressure on balanced spring-loaded PRVs in vapor service. For pilot operated valves, this is always 1. Applicable up to 50% of the percent gauge backpressure, For use in API 520 relief valve sizing. 1D interpolation among a table with 53 backpressures is performed. Parameters ---------- Pset : float Set pressure for relief [Pa] Pback : float Backpressure, [Pa] overpressure : float, optional The maximum fraction overpressure; one of 0.1, 0.16, or 0.21, [] Returns ------- Kb : float Correction due to vapor backpressure [-] Notes ----- If the calculated gauge backpressure is less than 30%, 38%, or 50% for overpressures of 0.1, 0.16, or 0.21, a value of 1 is returned. Percent gauge backpressure must be under 50%. Examples -------- Custom examples from figure 30: >>> API520_B(1E6, 5E5) 0.7929945420944432 References ---------- .. [1] API Standard 520, Part 1 - Sizing and Selection. ''' gauge_backpressure = (Pback-atm)/(Pset-atm)*100 # in percent if overpressure not in [0.1, 0.16, 0.21]: raise Exception('Only overpressure of 10%, 16%, or 21% are permitted') if (overpressure == 0.1 and gauge_backpressure < 30) or ( overpressure == 0.16 and gauge_backpressure < 38) or ( overpressure == 0.21 and gauge_backpressure < 50): return 1 elif gauge_backpressure > 50: raise Exception('Gauge pressure must be < 50%') if overpressure == 0.16: Kb = interp(gauge_backpressure, Kb_16_over_x, Kb_16_over_y) elif overpressure == 0.1: Kb = interp(gauge_backpressure, Kb_10_over_x, Kb_10_over_y) return Kb
python
def API520_B(Pset, Pback, overpressure=0.1): r'''Calculates capacity correction due to backpressure on balanced spring-loaded PRVs in vapor service. For pilot operated valves, this is always 1. Applicable up to 50% of the percent gauge backpressure, For use in API 520 relief valve sizing. 1D interpolation among a table with 53 backpressures is performed. Parameters ---------- Pset : float Set pressure for relief [Pa] Pback : float Backpressure, [Pa] overpressure : float, optional The maximum fraction overpressure; one of 0.1, 0.16, or 0.21, [] Returns ------- Kb : float Correction due to vapor backpressure [-] Notes ----- If the calculated gauge backpressure is less than 30%, 38%, or 50% for overpressures of 0.1, 0.16, or 0.21, a value of 1 is returned. Percent gauge backpressure must be under 50%. Examples -------- Custom examples from figure 30: >>> API520_B(1E6, 5E5) 0.7929945420944432 References ---------- .. [1] API Standard 520, Part 1 - Sizing and Selection. ''' gauge_backpressure = (Pback-atm)/(Pset-atm)*100 # in percent if overpressure not in [0.1, 0.16, 0.21]: raise Exception('Only overpressure of 10%, 16%, or 21% are permitted') if (overpressure == 0.1 and gauge_backpressure < 30) or ( overpressure == 0.16 and gauge_backpressure < 38) or ( overpressure == 0.21 and gauge_backpressure < 50): return 1 elif gauge_backpressure > 50: raise Exception('Gauge pressure must be < 50%') if overpressure == 0.16: Kb = interp(gauge_backpressure, Kb_16_over_x, Kb_16_over_y) elif overpressure == 0.1: Kb = interp(gauge_backpressure, Kb_10_over_x, Kb_10_over_y) return Kb
[ "def", "API520_B", "(", "Pset", ",", "Pback", ",", "overpressure", "=", "0.1", ")", ":", "gauge_backpressure", "=", "(", "Pback", "-", "atm", ")", "/", "(", "Pset", "-", "atm", ")", "*", "100", "# in percent", "if", "overpressure", "not", "in", "[", "0.1", ",", "0.16", ",", "0.21", "]", ":", "raise", "Exception", "(", "'Only overpressure of 10%, 16%, or 21% are permitted'", ")", "if", "(", "overpressure", "==", "0.1", "and", "gauge_backpressure", "<", "30", ")", "or", "(", "overpressure", "==", "0.16", "and", "gauge_backpressure", "<", "38", ")", "or", "(", "overpressure", "==", "0.21", "and", "gauge_backpressure", "<", "50", ")", ":", "return", "1", "elif", "gauge_backpressure", ">", "50", ":", "raise", "Exception", "(", "'Gauge pressure must be < 50%'", ")", "if", "overpressure", "==", "0.16", ":", "Kb", "=", "interp", "(", "gauge_backpressure", ",", "Kb_16_over_x", ",", "Kb_16_over_y", ")", "elif", "overpressure", "==", "0.1", ":", "Kb", "=", "interp", "(", "gauge_backpressure", ",", "Kb_10_over_x", ",", "Kb_10_over_y", ")", "return", "Kb" ]
r'''Calculates capacity correction due to backpressure on balanced spring-loaded PRVs in vapor service. For pilot operated valves, this is always 1. Applicable up to 50% of the percent gauge backpressure, For use in API 520 relief valve sizing. 1D interpolation among a table with 53 backpressures is performed. Parameters ---------- Pset : float Set pressure for relief [Pa] Pback : float Backpressure, [Pa] overpressure : float, optional The maximum fraction overpressure; one of 0.1, 0.16, or 0.21, [] Returns ------- Kb : float Correction due to vapor backpressure [-] Notes ----- If the calculated gauge backpressure is less than 30%, 38%, or 50% for overpressures of 0.1, 0.16, or 0.21, a value of 1 is returned. Percent gauge backpressure must be under 50%. Examples -------- Custom examples from figure 30: >>> API520_B(1E6, 5E5) 0.7929945420944432 References ---------- .. [1] API Standard 520, Part 1 - Sizing and Selection.
[ "r", "Calculates", "capacity", "correction", "due", "to", "backpressure", "on", "balanced", "spring", "-", "loaded", "PRVs", "in", "vapor", "service", ".", "For", "pilot", "operated", "valves", "this", "is", "always", "1", ".", "Applicable", "up", "to", "50%", "of", "the", "percent", "gauge", "backpressure", "For", "use", "in", "API", "520", "relief", "valve", "sizing", ".", "1D", "interpolation", "among", "a", "table", "with", "53", "backpressures", "is", "performed", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/safety_valve.py#L452-L504
train
CalebBell/fluids
fluids/safety_valve.py
API520_A_g
def API520_A_g(m, T, Z, MW, k, P1, P2=101325, Kd=0.975, Kb=1, Kc=1): r'''Calculates required relief valve area for an API 520 valve passing a gas or a vapor, at either critical or sub-critical flow. For critical flow: .. math:: A = \frac{m}{CK_dP_1K_bK_c}\sqrt{\frac{TZ}{M}} For sub-critical flow: .. math:: A = \frac{17.9m}{F_2K_dK_c}\sqrt{\frac{TZ}{MP_1(P_1-P_2)}} Parameters ---------- m : float Mass flow rate of vapor through the valve, [kg/s] T : float Temperature of vapor entering the valve, [K] Z : float Compressibility factor of the vapor, [-] MW : float Molecular weight of the vapor, [g/mol] k : float Isentropic coefficient or ideal gas heat capacity ratio [-] P1 : float Upstream relieving pressure; the set pressure plus the allowable overpressure, plus atmospheric pressure, [Pa] P2 : float, optional Built-up backpressure; the increase in pressure during flow at the outlet of a pressure-relief device after it opens, [Pa] Kd : float, optional The effective coefficient of discharge, from the manufacturer or for preliminary sizing, using 0.975 normally or 0.62 when used with a rupture disc as described in [1]_, [] Kb : float, optional Correction due to vapor backpressure [-] Kc : float, optional Combination correction factor for installation with a ruture disk upstream of the PRV, [] Returns ------- A : float Minimum area for relief valve according to [1]_, [m^2] Notes ----- Units are interlally kg/hr, kPa, and mm^2 to match [1]_. Examples -------- Example 1 from [1]_ for critical flow, matches: >>> API520_A_g(m=24270/3600., T=348., Z=0.90, MW=51., k=1.11, P1=670E3, Kb=1, Kc=1) 0.0036990460646834414 Example 2 from [1]_ for sub-critical flow, matches: >>> API520_A_g(m=24270/3600., T=348., Z=0.90, MW=51., k=1.11, P1=670E3, P2=532E3, Kd=0.975, Kb=1, Kc=1) 0.004248358775943481 References ---------- .. [1] API Standard 520, Part 1 - Sizing and Selection. ''' P1, P2 = P1/1000., P2/1000. # Pa to Kpa in the standard m = m*3600. # kg/s to kg/hr if is_critical_flow(P1, P2, k): C = API520_C(k) A = m/(C*Kd*Kb*Kc*P1)*(T*Z/MW)**0.5 else: F2 = API520_F2(k, P1, P2) A = 17.9*m/(F2*Kd*Kc)*(T*Z/(MW*P1*(P1-P2)))**0.5 return A*0.001**2
python
def API520_A_g(m, T, Z, MW, k, P1, P2=101325, Kd=0.975, Kb=1, Kc=1): r'''Calculates required relief valve area for an API 520 valve passing a gas or a vapor, at either critical or sub-critical flow. For critical flow: .. math:: A = \frac{m}{CK_dP_1K_bK_c}\sqrt{\frac{TZ}{M}} For sub-critical flow: .. math:: A = \frac{17.9m}{F_2K_dK_c}\sqrt{\frac{TZ}{MP_1(P_1-P_2)}} Parameters ---------- m : float Mass flow rate of vapor through the valve, [kg/s] T : float Temperature of vapor entering the valve, [K] Z : float Compressibility factor of the vapor, [-] MW : float Molecular weight of the vapor, [g/mol] k : float Isentropic coefficient or ideal gas heat capacity ratio [-] P1 : float Upstream relieving pressure; the set pressure plus the allowable overpressure, plus atmospheric pressure, [Pa] P2 : float, optional Built-up backpressure; the increase in pressure during flow at the outlet of a pressure-relief device after it opens, [Pa] Kd : float, optional The effective coefficient of discharge, from the manufacturer or for preliminary sizing, using 0.975 normally or 0.62 when used with a rupture disc as described in [1]_, [] Kb : float, optional Correction due to vapor backpressure [-] Kc : float, optional Combination correction factor for installation with a ruture disk upstream of the PRV, [] Returns ------- A : float Minimum area for relief valve according to [1]_, [m^2] Notes ----- Units are interlally kg/hr, kPa, and mm^2 to match [1]_. Examples -------- Example 1 from [1]_ for critical flow, matches: >>> API520_A_g(m=24270/3600., T=348., Z=0.90, MW=51., k=1.11, P1=670E3, Kb=1, Kc=1) 0.0036990460646834414 Example 2 from [1]_ for sub-critical flow, matches: >>> API520_A_g(m=24270/3600., T=348., Z=0.90, MW=51., k=1.11, P1=670E3, P2=532E3, Kd=0.975, Kb=1, Kc=1) 0.004248358775943481 References ---------- .. [1] API Standard 520, Part 1 - Sizing and Selection. ''' P1, P2 = P1/1000., P2/1000. # Pa to Kpa in the standard m = m*3600. # kg/s to kg/hr if is_critical_flow(P1, P2, k): C = API520_C(k) A = m/(C*Kd*Kb*Kc*P1)*(T*Z/MW)**0.5 else: F2 = API520_F2(k, P1, P2) A = 17.9*m/(F2*Kd*Kc)*(T*Z/(MW*P1*(P1-P2)))**0.5 return A*0.001**2
[ "def", "API520_A_g", "(", "m", ",", "T", ",", "Z", ",", "MW", ",", "k", ",", "P1", ",", "P2", "=", "101325", ",", "Kd", "=", "0.975", ",", "Kb", "=", "1", ",", "Kc", "=", "1", ")", ":", "P1", ",", "P2", "=", "P1", "/", "1000.", ",", "P2", "/", "1000.", "# Pa to Kpa in the standard", "m", "=", "m", "*", "3600.", "# kg/s to kg/hr", "if", "is_critical_flow", "(", "P1", ",", "P2", ",", "k", ")", ":", "C", "=", "API520_C", "(", "k", ")", "A", "=", "m", "/", "(", "C", "*", "Kd", "*", "Kb", "*", "Kc", "*", "P1", ")", "*", "(", "T", "*", "Z", "/", "MW", ")", "**", "0.5", "else", ":", "F2", "=", "API520_F2", "(", "k", ",", "P1", ",", "P2", ")", "A", "=", "17.9", "*", "m", "/", "(", "F2", "*", "Kd", "*", "Kc", ")", "*", "(", "T", "*", "Z", "/", "(", "MW", "*", "P1", "*", "(", "P1", "-", "P2", ")", ")", ")", "**", "0.5", "return", "A", "*", "0.001", "**", "2" ]
r'''Calculates required relief valve area for an API 520 valve passing a gas or a vapor, at either critical or sub-critical flow. For critical flow: .. math:: A = \frac{m}{CK_dP_1K_bK_c}\sqrt{\frac{TZ}{M}} For sub-critical flow: .. math:: A = \frac{17.9m}{F_2K_dK_c}\sqrt{\frac{TZ}{MP_1(P_1-P_2)}} Parameters ---------- m : float Mass flow rate of vapor through the valve, [kg/s] T : float Temperature of vapor entering the valve, [K] Z : float Compressibility factor of the vapor, [-] MW : float Molecular weight of the vapor, [g/mol] k : float Isentropic coefficient or ideal gas heat capacity ratio [-] P1 : float Upstream relieving pressure; the set pressure plus the allowable overpressure, plus atmospheric pressure, [Pa] P2 : float, optional Built-up backpressure; the increase in pressure during flow at the outlet of a pressure-relief device after it opens, [Pa] Kd : float, optional The effective coefficient of discharge, from the manufacturer or for preliminary sizing, using 0.975 normally or 0.62 when used with a rupture disc as described in [1]_, [] Kb : float, optional Correction due to vapor backpressure [-] Kc : float, optional Combination correction factor for installation with a ruture disk upstream of the PRV, [] Returns ------- A : float Minimum area for relief valve according to [1]_, [m^2] Notes ----- Units are interlally kg/hr, kPa, and mm^2 to match [1]_. Examples -------- Example 1 from [1]_ for critical flow, matches: >>> API520_A_g(m=24270/3600., T=348., Z=0.90, MW=51., k=1.11, P1=670E3, Kb=1, Kc=1) 0.0036990460646834414 Example 2 from [1]_ for sub-critical flow, matches: >>> API520_A_g(m=24270/3600., T=348., Z=0.90, MW=51., k=1.11, P1=670E3, P2=532E3, Kd=0.975, Kb=1, Kc=1) 0.004248358775943481 References ---------- .. [1] API Standard 520, Part 1 - Sizing and Selection.
[ "r", "Calculates", "required", "relief", "valve", "area", "for", "an", "API", "520", "valve", "passing", "a", "gas", "or", "a", "vapor", "at", "either", "critical", "or", "sub", "-", "critical", "flow", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/safety_valve.py#L507-L582
train
CalebBell/fluids
fluids/safety_valve.py
API520_A_steam
def API520_A_steam(m, T, P1, Kd=0.975, Kb=1, Kc=1): r'''Calculates required relief valve area for an API 520 valve passing a steam, at either saturation or superheat but not partially condensed. .. math:: A = \frac{190.5m}{P_1 K_d K_b K_c K_N K_{SH}} Parameters ---------- m : float Mass flow rate of steam through the valve, [kg/s] T : float Temperature of steam entering the valve, [K] P1 : float Upstream relieving pressure; the set pressure plus the allowable overpressure, plus atmospheric pressure, [Pa] Kd : float, optional The effective coefficient of discharge, from the manufacturer or for preliminary sizing, using 0.975 normally or 0.62 when used with a rupture disc as described in [1]_, [] Kb : float, optional Correction due to vapor backpressure [-] Kc : float, optional Combination correction factor for installation with a rupture disk upstream of the PRV, [] Returns ------- A : float Minimum area for relief valve according to [1]_, [m^2] Notes ----- Units are interlally kg/hr, kPa, and mm^2 to match [1]_. With the provided temperature and pressure, the KN coefficient is calculated with the function API520_N; as is the superheat correction KSH, with the function API520_SH. Examples -------- Example 4 from [1]_, matches: >>> API520_A_steam(m=69615/3600., T=592.5, P1=12236E3, Kd=0.975, Kb=1, Kc=1) 0.0011034712423692733 References ---------- .. [1] API Standard 520, Part 1 - Sizing and Selection. ''' KN = API520_N(P1) KSH = API520_SH(T, P1) P1 = P1/1000. # Pa to kPa m = m*3600. # kg/s to kg/hr A = 190.5*m/(P1*Kd*Kb*Kc*KN*KSH) return A*0.001**2
python
def API520_A_steam(m, T, P1, Kd=0.975, Kb=1, Kc=1): r'''Calculates required relief valve area for an API 520 valve passing a steam, at either saturation or superheat but not partially condensed. .. math:: A = \frac{190.5m}{P_1 K_d K_b K_c K_N K_{SH}} Parameters ---------- m : float Mass flow rate of steam through the valve, [kg/s] T : float Temperature of steam entering the valve, [K] P1 : float Upstream relieving pressure; the set pressure plus the allowable overpressure, plus atmospheric pressure, [Pa] Kd : float, optional The effective coefficient of discharge, from the manufacturer or for preliminary sizing, using 0.975 normally or 0.62 when used with a rupture disc as described in [1]_, [] Kb : float, optional Correction due to vapor backpressure [-] Kc : float, optional Combination correction factor for installation with a rupture disk upstream of the PRV, [] Returns ------- A : float Minimum area for relief valve according to [1]_, [m^2] Notes ----- Units are interlally kg/hr, kPa, and mm^2 to match [1]_. With the provided temperature and pressure, the KN coefficient is calculated with the function API520_N; as is the superheat correction KSH, with the function API520_SH. Examples -------- Example 4 from [1]_, matches: >>> API520_A_steam(m=69615/3600., T=592.5, P1=12236E3, Kd=0.975, Kb=1, Kc=1) 0.0011034712423692733 References ---------- .. [1] API Standard 520, Part 1 - Sizing and Selection. ''' KN = API520_N(P1) KSH = API520_SH(T, P1) P1 = P1/1000. # Pa to kPa m = m*3600. # kg/s to kg/hr A = 190.5*m/(P1*Kd*Kb*Kc*KN*KSH) return A*0.001**2
[ "def", "API520_A_steam", "(", "m", ",", "T", ",", "P1", ",", "Kd", "=", "0.975", ",", "Kb", "=", "1", ",", "Kc", "=", "1", ")", ":", "KN", "=", "API520_N", "(", "P1", ")", "KSH", "=", "API520_SH", "(", "T", ",", "P1", ")", "P1", "=", "P1", "/", "1000.", "# Pa to kPa", "m", "=", "m", "*", "3600.", "# kg/s to kg/hr", "A", "=", "190.5", "*", "m", "/", "(", "P1", "*", "Kd", "*", "Kb", "*", "Kc", "*", "KN", "*", "KSH", ")", "return", "A", "*", "0.001", "**", "2" ]
r'''Calculates required relief valve area for an API 520 valve passing a steam, at either saturation or superheat but not partially condensed. .. math:: A = \frac{190.5m}{P_1 K_d K_b K_c K_N K_{SH}} Parameters ---------- m : float Mass flow rate of steam through the valve, [kg/s] T : float Temperature of steam entering the valve, [K] P1 : float Upstream relieving pressure; the set pressure plus the allowable overpressure, plus atmospheric pressure, [Pa] Kd : float, optional The effective coefficient of discharge, from the manufacturer or for preliminary sizing, using 0.975 normally or 0.62 when used with a rupture disc as described in [1]_, [] Kb : float, optional Correction due to vapor backpressure [-] Kc : float, optional Combination correction factor for installation with a rupture disk upstream of the PRV, [] Returns ------- A : float Minimum area for relief valve according to [1]_, [m^2] Notes ----- Units are interlally kg/hr, kPa, and mm^2 to match [1]_. With the provided temperature and pressure, the KN coefficient is calculated with the function API520_N; as is the superheat correction KSH, with the function API520_SH. Examples -------- Example 4 from [1]_, matches: >>> API520_A_steam(m=69615/3600., T=592.5, P1=12236E3, Kd=0.975, Kb=1, Kc=1) 0.0011034712423692733 References ---------- .. [1] API Standard 520, Part 1 - Sizing and Selection.
[ "r", "Calculates", "required", "relief", "valve", "area", "for", "an", "API", "520", "valve", "passing", "a", "steam", "at", "either", "saturation", "or", "superheat", "but", "not", "partially", "condensed", "." ]
57f556752e039f1d3e5a822f408c184783db2828
https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/safety_valve.py#L585-L639
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/context.py
pisaContext.getFile
def getFile(self, name, relative=None): """ Returns a file name or None """ if self.pathCallback is not None: return getFile(self._getFileDeprecated(name, relative)) return getFile(name, relative or self.pathDirectory)
python
def getFile(self, name, relative=None): """ Returns a file name or None """ if self.pathCallback is not None: return getFile(self._getFileDeprecated(name, relative)) return getFile(name, relative or self.pathDirectory)
[ "def", "getFile", "(", "self", ",", "name", ",", "relative", "=", "None", ")", ":", "if", "self", ".", "pathCallback", "is", "not", "None", ":", "return", "getFile", "(", "self", ".", "_getFileDeprecated", "(", "name", ",", "relative", ")", ")", "return", "getFile", "(", "name", ",", "relative", "or", "self", ".", "pathDirectory", ")" ]
Returns a file name or None
[ "Returns", "a", "file", "name", "or", "None" ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/context.py#L812-L818
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/context.py
pisaContext.getFontName
def getFontName(self, names, default="helvetica"): """ Name of a font """ # print names, self.fontList if type(names) is not ListType: if type(names) not in six.string_types: names = str(names) names = names.strip().split(",") for name in names: if type(name) not in six.string_types: name = str(name) font = self.fontList.get(name.strip().lower(), None) if font is not None: return font return self.fontList.get(default, None)
python
def getFontName(self, names, default="helvetica"): """ Name of a font """ # print names, self.fontList if type(names) is not ListType: if type(names) not in six.string_types: names = str(names) names = names.strip().split(",") for name in names: if type(name) not in six.string_types: name = str(name) font = self.fontList.get(name.strip().lower(), None) if font is not None: return font return self.fontList.get(default, None)
[ "def", "getFontName", "(", "self", ",", "names", ",", "default", "=", "\"helvetica\"", ")", ":", "# print names, self.fontList", "if", "type", "(", "names", ")", "is", "not", "ListType", ":", "if", "type", "(", "names", ")", "not", "in", "six", ".", "string_types", ":", "names", "=", "str", "(", "names", ")", "names", "=", "names", ".", "strip", "(", ")", ".", "split", "(", "\",\"", ")", "for", "name", "in", "names", ":", "if", "type", "(", "name", ")", "not", "in", "six", ".", "string_types", ":", "name", "=", "str", "(", "name", ")", "font", "=", "self", ".", "fontList", ".", "get", "(", "name", ".", "strip", "(", ")", ".", "lower", "(", ")", ",", "None", ")", "if", "font", "is", "not", "None", ":", "return", "font", "return", "self", ".", "fontList", ".", "get", "(", "default", ",", "None", ")" ]
Name of a font
[ "Name", "of", "a", "font" ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/context.py#L820-L835
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/parser.py
pisaPreLoop
def pisaPreLoop(node, context, collect=False): """ Collect all CSS definitions """ data = u"" if node.nodeType == Node.TEXT_NODE and collect: data = node.data elif node.nodeType == Node.ELEMENT_NODE: name = node.tagName.lower() if name in ("style", "link"): attr = pisaGetAttributes(context, name, node.attributes) media = [x.strip() for x in attr.media.lower().split(",") if x.strip()] if attr.get("type", "").lower() in ("", "text/css") and \ (not media or "all" in media or "print" in media or "pdf" in media): if name == "style": for node in node.childNodes: data += pisaPreLoop(node, context, collect=True) context.addCSS(data) return u"" if name == "link" and attr.href and attr.rel.lower() == "stylesheet": # print "CSS LINK", attr context.addCSS('\n@import "%s" %s;' % (attr.href, ",".join(media))) for node in node.childNodes: result = pisaPreLoop(node, context, collect=collect) if collect: data += result return data
python
def pisaPreLoop(node, context, collect=False): """ Collect all CSS definitions """ data = u"" if node.nodeType == Node.TEXT_NODE and collect: data = node.data elif node.nodeType == Node.ELEMENT_NODE: name = node.tagName.lower() if name in ("style", "link"): attr = pisaGetAttributes(context, name, node.attributes) media = [x.strip() for x in attr.media.lower().split(",") if x.strip()] if attr.get("type", "").lower() in ("", "text/css") and \ (not media or "all" in media or "print" in media or "pdf" in media): if name == "style": for node in node.childNodes: data += pisaPreLoop(node, context, collect=True) context.addCSS(data) return u"" if name == "link" and attr.href and attr.rel.lower() == "stylesheet": # print "CSS LINK", attr context.addCSS('\n@import "%s" %s;' % (attr.href, ",".join(media))) for node in node.childNodes: result = pisaPreLoop(node, context, collect=collect) if collect: data += result return data
[ "def", "pisaPreLoop", "(", "node", ",", "context", ",", "collect", "=", "False", ")", ":", "data", "=", "u\"\"", "if", "node", ".", "nodeType", "==", "Node", ".", "TEXT_NODE", "and", "collect", ":", "data", "=", "node", ".", "data", "elif", "node", ".", "nodeType", "==", "Node", ".", "ELEMENT_NODE", ":", "name", "=", "node", ".", "tagName", ".", "lower", "(", ")", "if", "name", "in", "(", "\"style\"", ",", "\"link\"", ")", ":", "attr", "=", "pisaGetAttributes", "(", "context", ",", "name", ",", "node", ".", "attributes", ")", "media", "=", "[", "x", ".", "strip", "(", ")", "for", "x", "in", "attr", ".", "media", ".", "lower", "(", ")", ".", "split", "(", "\",\"", ")", "if", "x", ".", "strip", "(", ")", "]", "if", "attr", ".", "get", "(", "\"type\"", ",", "\"\"", ")", ".", "lower", "(", ")", "in", "(", "\"\"", ",", "\"text/css\"", ")", "and", "(", "not", "media", "or", "\"all\"", "in", "media", "or", "\"print\"", "in", "media", "or", "\"pdf\"", "in", "media", ")", ":", "if", "name", "==", "\"style\"", ":", "for", "node", "in", "node", ".", "childNodes", ":", "data", "+=", "pisaPreLoop", "(", "node", ",", "context", ",", "collect", "=", "True", ")", "context", ".", "addCSS", "(", "data", ")", "return", "u\"\"", "if", "name", "==", "\"link\"", "and", "attr", ".", "href", "and", "attr", ".", "rel", ".", "lower", "(", ")", "==", "\"stylesheet\"", ":", "# print \"CSS LINK\", attr", "context", ".", "addCSS", "(", "'\\n@import \"%s\" %s;'", "%", "(", "attr", ".", "href", ",", "\",\"", ".", "join", "(", "media", ")", ")", ")", "for", "node", "in", "node", ".", "childNodes", ":", "result", "=", "pisaPreLoop", "(", "node", ",", "context", ",", "collect", "=", "collect", ")", "if", "collect", ":", "data", "+=", "result", "return", "data" ]
Collect all CSS definitions
[ "Collect", "all", "CSS", "definitions" ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/parser.py#L440-L476
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/parser.py
pisaParser
def pisaParser(src, context, default_css="", xhtml=False, encoding=None, xml_output=None): """ - Parse HTML and get miniDOM - Extract CSS informations, add default CSS, parse CSS - Handle the document DOM itself and build reportlab story - Return Context object """ global CSSAttrCache CSSAttrCache = {} if xhtml: # TODO: XHTMLParser doesn't see to exist... parser = html5lib.XHTMLParser(tree=treebuilders.getTreeBuilder("dom")) else: parser = html5lib.HTMLParser(tree=treebuilders.getTreeBuilder("dom")) if isinstance(src, six.text_type): # If an encoding was provided, do not change it. if not encoding: encoding = "utf-8" src = src.encode(encoding) src = pisaTempFile(src, capacity=context.capacity) # # Test for the restrictions of html5lib # if encoding: # # Workaround for html5lib<0.11.1 # if hasattr(inputstream, "isValidEncoding"): # if encoding.strip().lower() == "utf8": # encoding = "utf-8" # if not inputstream.isValidEncoding(encoding): # log.error("%r is not a valid encoding e.g. 'utf8' is not valid but 'utf-8' is!", encoding) # else: # if inputstream.codecName(encoding) is None: # log.error("%r is not a valid encoding", encoding) document = parser.parse( src, ) # encoding=encoding) if xml_output: if encoding: xml_output.write(document.toprettyxml(encoding=encoding)) else: xml_output.write(document.toprettyxml(encoding="utf8")) if default_css: context.addDefaultCSS(default_css) pisaPreLoop(document, context) # try: context.parseCSS() # except: # context.cssText = DEFAULT_CSS # context.parseCSS() # context.debug(9, pprint.pformat(context.css)) pisaLoop(document, context) return context
python
def pisaParser(src, context, default_css="", xhtml=False, encoding=None, xml_output=None): """ - Parse HTML and get miniDOM - Extract CSS informations, add default CSS, parse CSS - Handle the document DOM itself and build reportlab story - Return Context object """ global CSSAttrCache CSSAttrCache = {} if xhtml: # TODO: XHTMLParser doesn't see to exist... parser = html5lib.XHTMLParser(tree=treebuilders.getTreeBuilder("dom")) else: parser = html5lib.HTMLParser(tree=treebuilders.getTreeBuilder("dom")) if isinstance(src, six.text_type): # If an encoding was provided, do not change it. if not encoding: encoding = "utf-8" src = src.encode(encoding) src = pisaTempFile(src, capacity=context.capacity) # # Test for the restrictions of html5lib # if encoding: # # Workaround for html5lib<0.11.1 # if hasattr(inputstream, "isValidEncoding"): # if encoding.strip().lower() == "utf8": # encoding = "utf-8" # if not inputstream.isValidEncoding(encoding): # log.error("%r is not a valid encoding e.g. 'utf8' is not valid but 'utf-8' is!", encoding) # else: # if inputstream.codecName(encoding) is None: # log.error("%r is not a valid encoding", encoding) document = parser.parse( src, ) # encoding=encoding) if xml_output: if encoding: xml_output.write(document.toprettyxml(encoding=encoding)) else: xml_output.write(document.toprettyxml(encoding="utf8")) if default_css: context.addDefaultCSS(default_css) pisaPreLoop(document, context) # try: context.parseCSS() # except: # context.cssText = DEFAULT_CSS # context.parseCSS() # context.debug(9, pprint.pformat(context.css)) pisaLoop(document, context) return context
[ "def", "pisaParser", "(", "src", ",", "context", ",", "default_css", "=", "\"\"", ",", "xhtml", "=", "False", ",", "encoding", "=", "None", ",", "xml_output", "=", "None", ")", ":", "global", "CSSAttrCache", "CSSAttrCache", "=", "{", "}", "if", "xhtml", ":", "# TODO: XHTMLParser doesn't see to exist...", "parser", "=", "html5lib", ".", "XHTMLParser", "(", "tree", "=", "treebuilders", ".", "getTreeBuilder", "(", "\"dom\"", ")", ")", "else", ":", "parser", "=", "html5lib", ".", "HTMLParser", "(", "tree", "=", "treebuilders", ".", "getTreeBuilder", "(", "\"dom\"", ")", ")", "if", "isinstance", "(", "src", ",", "six", ".", "text_type", ")", ":", "# If an encoding was provided, do not change it.", "if", "not", "encoding", ":", "encoding", "=", "\"utf-8\"", "src", "=", "src", ".", "encode", "(", "encoding", ")", "src", "=", "pisaTempFile", "(", "src", ",", "capacity", "=", "context", ".", "capacity", ")", "# # Test for the restrictions of html5lib", "# if encoding:", "# # Workaround for html5lib<0.11.1", "# if hasattr(inputstream, \"isValidEncoding\"):", "# if encoding.strip().lower() == \"utf8\":", "# encoding = \"utf-8\"", "# if not inputstream.isValidEncoding(encoding):", "# log.error(\"%r is not a valid encoding e.g. 'utf8' is not valid but 'utf-8' is!\", encoding)", "# else:", "# if inputstream.codecName(encoding) is None:", "# log.error(\"%r is not a valid encoding\", encoding)", "document", "=", "parser", ".", "parse", "(", "src", ",", ")", "# encoding=encoding)", "if", "xml_output", ":", "if", "encoding", ":", "xml_output", ".", "write", "(", "document", ".", "toprettyxml", "(", "encoding", "=", "encoding", ")", ")", "else", ":", "xml_output", ".", "write", "(", "document", ".", "toprettyxml", "(", "encoding", "=", "\"utf8\"", ")", ")", "if", "default_css", ":", "context", ".", "addDefaultCSS", "(", "default_css", ")", "pisaPreLoop", "(", "document", ",", "context", ")", "# try:", "context", ".", "parseCSS", "(", ")", "# except:", "# context.cssText = DEFAULT_CSS", "# context.parseCSS()", "# context.debug(9, pprint.pformat(context.css))", "pisaLoop", "(", "document", ",", "context", ")", "return", "context" ]
- Parse HTML and get miniDOM - Extract CSS informations, add default CSS, parse CSS - Handle the document DOM itself and build reportlab story - Return Context object
[ "-", "Parse", "HTML", "and", "get", "miniDOM", "-", "Extract", "CSS", "informations", "add", "default", "CSS", "parse", "CSS", "-", "Handle", "the", "document", "DOM", "itself", "and", "build", "reportlab", "story", "-", "Return", "Context", "object" ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/parser.py#L703-L760
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/paragraph.py
Line.doLayout
def doLayout(self, width): """ Align words in previous line. """ # Calculate dimensions self.width = width font_sizes = [0] + [frag.get("fontSize", 0) for frag in self] self.fontSize = max(font_sizes) self.height = self.lineHeight = max(frag * self.LINEHEIGHT for frag in font_sizes) # Apply line height y = (self.lineHeight - self.fontSize) # / 2 for frag in self: frag["y"] = y return self.height
python
def doLayout(self, width): """ Align words in previous line. """ # Calculate dimensions self.width = width font_sizes = [0] + [frag.get("fontSize", 0) for frag in self] self.fontSize = max(font_sizes) self.height = self.lineHeight = max(frag * self.LINEHEIGHT for frag in font_sizes) # Apply line height y = (self.lineHeight - self.fontSize) # / 2 for frag in self: frag["y"] = y return self.height
[ "def", "doLayout", "(", "self", ",", "width", ")", ":", "# Calculate dimensions", "self", ".", "width", "=", "width", "font_sizes", "=", "[", "0", "]", "+", "[", "frag", ".", "get", "(", "\"fontSize\"", ",", "0", ")", "for", "frag", "in", "self", "]", "self", ".", "fontSize", "=", "max", "(", "font_sizes", ")", "self", ".", "height", "=", "self", ".", "lineHeight", "=", "max", "(", "frag", "*", "self", ".", "LINEHEIGHT", "for", "frag", "in", "font_sizes", ")", "# Apply line height", "y", "=", "(", "self", ".", "lineHeight", "-", "self", ".", "fontSize", ")", "# / 2", "for", "frag", "in", "self", ":", "frag", "[", "\"y\"", "]", "=", "y", "return", "self", ".", "height" ]
Align words in previous line.
[ "Align", "words", "in", "previous", "line", "." ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/paragraph.py#L276-L293
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/paragraph.py
Text.splitIntoLines
def splitIntoLines(self, maxWidth, maxHeight, splitted=False): """ Split text into lines and calculate X positions. If we need more space in height than available we return the rest of the text """ self.lines = [] self.height = 0 self.maxWidth = self.width = maxWidth self.maxHeight = maxHeight boxStack = [] style = self.style x = 0 # Start with indent in first line of text if not splitted: x = style["textIndent"] lenText = len(self) pos = 0 while pos < lenText: # Reset values for new line posBegin = pos line = Line(style) # Update boxes for next line for box in copy.copy(boxStack): box["x"] = 0 line.append(BoxBegin(box)) while pos < lenText: # Get fragment, its width and set X frag = self[pos] fragWidth = frag["width"] frag["x"] = x pos += 1 # Keep in mind boxes for next lines if isinstance(frag, BoxBegin): boxStack.append(frag) elif isinstance(frag, BoxEnd): boxStack.pop() # If space or linebreak handle special way if frag.isSoft: if frag.isLF: line.append(frag) break # First element of line should not be a space if x == 0: continue # Keep in mind last possible line break # The elements exceed the current line elif fragWidth + x > maxWidth: break # Add fragment to line and update x x += fragWidth line.append(frag) # Remove trailing white spaces while line and line[-1].name in ("space", "br"): line.pop() # Add line to list line.dumpFragments() # if line: self.height += line.doLayout(self.width) self.lines.append(line) # If not enough space for current line force to split if self.height > maxHeight: return posBegin # Reset variables x = 0 # Apply alignment self.lines[- 1].isLast = True for line in self.lines: line.doAlignment(maxWidth, style["textAlign"]) return None
python
def splitIntoLines(self, maxWidth, maxHeight, splitted=False): """ Split text into lines and calculate X positions. If we need more space in height than available we return the rest of the text """ self.lines = [] self.height = 0 self.maxWidth = self.width = maxWidth self.maxHeight = maxHeight boxStack = [] style = self.style x = 0 # Start with indent in first line of text if not splitted: x = style["textIndent"] lenText = len(self) pos = 0 while pos < lenText: # Reset values for new line posBegin = pos line = Line(style) # Update boxes for next line for box in copy.copy(boxStack): box["x"] = 0 line.append(BoxBegin(box)) while pos < lenText: # Get fragment, its width and set X frag = self[pos] fragWidth = frag["width"] frag["x"] = x pos += 1 # Keep in mind boxes for next lines if isinstance(frag, BoxBegin): boxStack.append(frag) elif isinstance(frag, BoxEnd): boxStack.pop() # If space or linebreak handle special way if frag.isSoft: if frag.isLF: line.append(frag) break # First element of line should not be a space if x == 0: continue # Keep in mind last possible line break # The elements exceed the current line elif fragWidth + x > maxWidth: break # Add fragment to line and update x x += fragWidth line.append(frag) # Remove trailing white spaces while line and line[-1].name in ("space", "br"): line.pop() # Add line to list line.dumpFragments() # if line: self.height += line.doLayout(self.width) self.lines.append(line) # If not enough space for current line force to split if self.height > maxHeight: return posBegin # Reset variables x = 0 # Apply alignment self.lines[- 1].isLast = True for line in self.lines: line.doAlignment(maxWidth, style["textAlign"]) return None
[ "def", "splitIntoLines", "(", "self", ",", "maxWidth", ",", "maxHeight", ",", "splitted", "=", "False", ")", ":", "self", ".", "lines", "=", "[", "]", "self", ".", "height", "=", "0", "self", ".", "maxWidth", "=", "self", ".", "width", "=", "maxWidth", "self", ".", "maxHeight", "=", "maxHeight", "boxStack", "=", "[", "]", "style", "=", "self", ".", "style", "x", "=", "0", "# Start with indent in first line of text", "if", "not", "splitted", ":", "x", "=", "style", "[", "\"textIndent\"", "]", "lenText", "=", "len", "(", "self", ")", "pos", "=", "0", "while", "pos", "<", "lenText", ":", "# Reset values for new line", "posBegin", "=", "pos", "line", "=", "Line", "(", "style", ")", "# Update boxes for next line", "for", "box", "in", "copy", ".", "copy", "(", "boxStack", ")", ":", "box", "[", "\"x\"", "]", "=", "0", "line", ".", "append", "(", "BoxBegin", "(", "box", ")", ")", "while", "pos", "<", "lenText", ":", "# Get fragment, its width and set X", "frag", "=", "self", "[", "pos", "]", "fragWidth", "=", "frag", "[", "\"width\"", "]", "frag", "[", "\"x\"", "]", "=", "x", "pos", "+=", "1", "# Keep in mind boxes for next lines", "if", "isinstance", "(", "frag", ",", "BoxBegin", ")", ":", "boxStack", ".", "append", "(", "frag", ")", "elif", "isinstance", "(", "frag", ",", "BoxEnd", ")", ":", "boxStack", ".", "pop", "(", ")", "# If space or linebreak handle special way", "if", "frag", ".", "isSoft", ":", "if", "frag", ".", "isLF", ":", "line", ".", "append", "(", "frag", ")", "break", "# First element of line should not be a space", "if", "x", "==", "0", ":", "continue", "# Keep in mind last possible line break", "# The elements exceed the current line", "elif", "fragWidth", "+", "x", ">", "maxWidth", ":", "break", "# Add fragment to line and update x", "x", "+=", "fragWidth", "line", ".", "append", "(", "frag", ")", "# Remove trailing white spaces", "while", "line", "and", "line", "[", "-", "1", "]", ".", "name", "in", "(", "\"space\"", ",", "\"br\"", ")", ":", "line", ".", "pop", "(", ")", "# Add line to list", "line", ".", "dumpFragments", "(", ")", "# if line:", "self", ".", "height", "+=", "line", ".", "doLayout", "(", "self", ".", "width", ")", "self", ".", "lines", ".", "append", "(", "line", ")", "# If not enough space for current line force to split", "if", "self", ".", "height", ">", "maxHeight", ":", "return", "posBegin", "# Reset variables", "x", "=", "0", "# Apply alignment", "self", ".", "lines", "[", "-", "1", "]", ".", "isLast", "=", "True", "for", "line", "in", "self", ".", "lines", ":", "line", ".", "doAlignment", "(", "maxWidth", ",", "style", "[", "\"textAlign\"", "]", ")", "return", "None" ]
Split text into lines and calculate X positions. If we need more space in height than available we return the rest of the text
[ "Split", "text", "into", "lines", "and", "calculate", "X", "positions", ".", "If", "we", "need", "more", "space", "in", "height", "than", "available", "we", "return", "the", "rest", "of", "the", "text" ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/paragraph.py#L330-L415
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/paragraph.py
Text.dumpLines
def dumpLines(self): """ For debugging dump all line and their content """ for i, line in enumerate(self.lines): logger.debug("Line %d:", i) logger.debug(line.dumpFragments())
python
def dumpLines(self): """ For debugging dump all line and their content """ for i, line in enumerate(self.lines): logger.debug("Line %d:", i) logger.debug(line.dumpFragments())
[ "def", "dumpLines", "(", "self", ")", ":", "for", "i", ",", "line", "in", "enumerate", "(", "self", ".", "lines", ")", ":", "logger", ".", "debug", "(", "\"Line %d:\"", ",", "i", ")", "logger", ".", "debug", "(", "line", ".", "dumpFragments", "(", ")", ")" ]
For debugging dump all line and their content
[ "For", "debugging", "dump", "all", "line", "and", "their", "content" ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/paragraph.py#L417-L423
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/paragraph.py
Paragraph.wrap
def wrap(self, availWidth, availHeight): """ Determine the rectangle this paragraph really needs. """ # memorize available space self.avWidth = availWidth self.avHeight = availHeight logger.debug("*** wrap (%f, %f)", availWidth, availHeight) if not self.text: logger.debug("*** wrap (%f, %f) needed", 0, 0) return 0, 0 # Split lines width = availWidth self.splitIndex = self.text.splitIntoLines(width, availHeight) self.width, self.height = availWidth, self.text.height logger.debug("*** wrap (%f, %f) needed, splitIndex %r", self.width, self.height, self.splitIndex) return self.width, self.height
python
def wrap(self, availWidth, availHeight): """ Determine the rectangle this paragraph really needs. """ # memorize available space self.avWidth = availWidth self.avHeight = availHeight logger.debug("*** wrap (%f, %f)", availWidth, availHeight) if not self.text: logger.debug("*** wrap (%f, %f) needed", 0, 0) return 0, 0 # Split lines width = availWidth self.splitIndex = self.text.splitIntoLines(width, availHeight) self.width, self.height = availWidth, self.text.height logger.debug("*** wrap (%f, %f) needed, splitIndex %r", self.width, self.height, self.splitIndex) return self.width, self.height
[ "def", "wrap", "(", "self", ",", "availWidth", ",", "availHeight", ")", ":", "# memorize available space", "self", ".", "avWidth", "=", "availWidth", "self", ".", "avHeight", "=", "availHeight", "logger", ".", "debug", "(", "\"*** wrap (%f, %f)\"", ",", "availWidth", ",", "availHeight", ")", "if", "not", "self", ".", "text", ":", "logger", ".", "debug", "(", "\"*** wrap (%f, %f) needed\"", ",", "0", ",", "0", ")", "return", "0", ",", "0", "# Split lines", "width", "=", "availWidth", "self", ".", "splitIndex", "=", "self", ".", "text", ".", "splitIntoLines", "(", "width", ",", "availHeight", ")", "self", ".", "width", ",", "self", ".", "height", "=", "availWidth", ",", "self", ".", "text", ".", "height", "logger", ".", "debug", "(", "\"*** wrap (%f, %f) needed, splitIndex %r\"", ",", "self", ".", "width", ",", "self", ".", "height", ",", "self", ".", "splitIndex", ")", "return", "self", ".", "width", ",", "self", ".", "height" ]
Determine the rectangle this paragraph really needs.
[ "Determine", "the", "rectangle", "this", "paragraph", "really", "needs", "." ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/paragraph.py#L458-L481
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/paragraph.py
Paragraph.split
def split(self, availWidth, availHeight): """ Split ourselves in two paragraphs. """ logger.debug("*** split (%f, %f)", availWidth, availHeight) splitted = [] if self.splitIndex: text1 = self.text[:self.splitIndex] text2 = self.text[self.splitIndex:] p1 = Paragraph(Text(text1), self.style, debug=self.debug) p2 = Paragraph(Text(text2), self.style, debug=self.debug, splitted=True) splitted = [p1, p2] logger.debug("*** text1 %s / text %s", len(text1), len(text2)) logger.debug('*** return %s', self.splitted) return splitted
python
def split(self, availWidth, availHeight): """ Split ourselves in two paragraphs. """ logger.debug("*** split (%f, %f)", availWidth, availHeight) splitted = [] if self.splitIndex: text1 = self.text[:self.splitIndex] text2 = self.text[self.splitIndex:] p1 = Paragraph(Text(text1), self.style, debug=self.debug) p2 = Paragraph(Text(text2), self.style, debug=self.debug, splitted=True) splitted = [p1, p2] logger.debug("*** text1 %s / text %s", len(text1), len(text2)) logger.debug('*** return %s', self.splitted) return splitted
[ "def", "split", "(", "self", ",", "availWidth", ",", "availHeight", ")", ":", "logger", ".", "debug", "(", "\"*** split (%f, %f)\"", ",", "availWidth", ",", "availHeight", ")", "splitted", "=", "[", "]", "if", "self", ".", "splitIndex", ":", "text1", "=", "self", ".", "text", "[", ":", "self", ".", "splitIndex", "]", "text2", "=", "self", ".", "text", "[", "self", ".", "splitIndex", ":", "]", "p1", "=", "Paragraph", "(", "Text", "(", "text1", ")", ",", "self", ".", "style", ",", "debug", "=", "self", ".", "debug", ")", "p2", "=", "Paragraph", "(", "Text", "(", "text2", ")", ",", "self", ".", "style", ",", "debug", "=", "self", ".", "debug", ",", "splitted", "=", "True", ")", "splitted", "=", "[", "p1", ",", "p2", "]", "logger", ".", "debug", "(", "\"*** text1 %s / text %s\"", ",", "len", "(", "text1", ")", ",", "len", "(", "text2", ")", ")", "logger", ".", "debug", "(", "'*** return %s'", ",", "self", ".", "splitted", ")", "return", "splitted" ]
Split ourselves in two paragraphs.
[ "Split", "ourselves", "in", "two", "paragraphs", "." ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/paragraph.py#L483-L502
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/paragraph.py
Paragraph.draw
def draw(self): """ Render the content of the paragraph. """ logger.debug("*** draw") if not self.text: return canvas = self.canv style = self.style canvas.saveState() # Draw box arround paragraph for debugging if self.debug: bw = 0.5 bc = Color(1, 1, 0) bg = Color(0.9, 0.9, 0.9) canvas.setStrokeColor(bc) canvas.setLineWidth(bw) canvas.setFillColor(bg) canvas.rect( style.leftIndent, 0, self.width, self.height, fill=1, stroke=1) y = 0 dy = self.height for line in self.text.lines: y += line.height for frag in line: # Box if hasattr(frag, "draw"): frag.draw(canvas, dy - y) # Text if frag.get("text", ""): canvas.setFont(frag["fontName"], frag["fontSize"]) canvas.setFillColor(frag.get("color", style["color"])) canvas.drawString(frag["x"], dy - y + frag["y"], frag["text"]) # XXX LINK link = frag.get("link", None) if link: _scheme_re = re.compile('^[a-zA-Z][-+a-zA-Z0-9]+$') x, y, w, h = frag["x"], dy - y, frag["width"], frag["fontSize"] rect = (x, y, w, h) if isinstance(link, six.text_type): link = link.encode('utf8') parts = link.split(':', 1) scheme = len(parts) == 2 and parts[0].lower() or '' if _scheme_re.match(scheme) and scheme != 'document': kind = scheme.lower() == 'pdf' and 'GoToR' or 'URI' if kind == 'GoToR': link = parts[1] canvas.linkURL(link, rect, relative=1, kind=kind) else: if link[0] == '#': link = link[1:] scheme = '' canvas.linkRect("", scheme != 'document' and link or parts[1], rect, relative=1) canvas.restoreState()
python
def draw(self): """ Render the content of the paragraph. """ logger.debug("*** draw") if not self.text: return canvas = self.canv style = self.style canvas.saveState() # Draw box arround paragraph for debugging if self.debug: bw = 0.5 bc = Color(1, 1, 0) bg = Color(0.9, 0.9, 0.9) canvas.setStrokeColor(bc) canvas.setLineWidth(bw) canvas.setFillColor(bg) canvas.rect( style.leftIndent, 0, self.width, self.height, fill=1, stroke=1) y = 0 dy = self.height for line in self.text.lines: y += line.height for frag in line: # Box if hasattr(frag, "draw"): frag.draw(canvas, dy - y) # Text if frag.get("text", ""): canvas.setFont(frag["fontName"], frag["fontSize"]) canvas.setFillColor(frag.get("color", style["color"])) canvas.drawString(frag["x"], dy - y + frag["y"], frag["text"]) # XXX LINK link = frag.get("link", None) if link: _scheme_re = re.compile('^[a-zA-Z][-+a-zA-Z0-9]+$') x, y, w, h = frag["x"], dy - y, frag["width"], frag["fontSize"] rect = (x, y, w, h) if isinstance(link, six.text_type): link = link.encode('utf8') parts = link.split(':', 1) scheme = len(parts) == 2 and parts[0].lower() or '' if _scheme_re.match(scheme) and scheme != 'document': kind = scheme.lower() == 'pdf' and 'GoToR' or 'URI' if kind == 'GoToR': link = parts[1] canvas.linkURL(link, rect, relative=1, kind=kind) else: if link[0] == '#': link = link[1:] scheme = '' canvas.linkRect("", scheme != 'document' and link or parts[1], rect, relative=1) canvas.restoreState()
[ "def", "draw", "(", "self", ")", ":", "logger", ".", "debug", "(", "\"*** draw\"", ")", "if", "not", "self", ".", "text", ":", "return", "canvas", "=", "self", ".", "canv", "style", "=", "self", ".", "style", "canvas", ".", "saveState", "(", ")", "# Draw box arround paragraph for debugging", "if", "self", ".", "debug", ":", "bw", "=", "0.5", "bc", "=", "Color", "(", "1", ",", "1", ",", "0", ")", "bg", "=", "Color", "(", "0.9", ",", "0.9", ",", "0.9", ")", "canvas", ".", "setStrokeColor", "(", "bc", ")", "canvas", ".", "setLineWidth", "(", "bw", ")", "canvas", ".", "setFillColor", "(", "bg", ")", "canvas", ".", "rect", "(", "style", ".", "leftIndent", ",", "0", ",", "self", ".", "width", ",", "self", ".", "height", ",", "fill", "=", "1", ",", "stroke", "=", "1", ")", "y", "=", "0", "dy", "=", "self", ".", "height", "for", "line", "in", "self", ".", "text", ".", "lines", ":", "y", "+=", "line", ".", "height", "for", "frag", "in", "line", ":", "# Box", "if", "hasattr", "(", "frag", ",", "\"draw\"", ")", ":", "frag", ".", "draw", "(", "canvas", ",", "dy", "-", "y", ")", "# Text", "if", "frag", ".", "get", "(", "\"text\"", ",", "\"\"", ")", ":", "canvas", ".", "setFont", "(", "frag", "[", "\"fontName\"", "]", ",", "frag", "[", "\"fontSize\"", "]", ")", "canvas", ".", "setFillColor", "(", "frag", ".", "get", "(", "\"color\"", ",", "style", "[", "\"color\"", "]", ")", ")", "canvas", ".", "drawString", "(", "frag", "[", "\"x\"", "]", ",", "dy", "-", "y", "+", "frag", "[", "\"y\"", "]", ",", "frag", "[", "\"text\"", "]", ")", "# XXX LINK", "link", "=", "frag", ".", "get", "(", "\"link\"", ",", "None", ")", "if", "link", ":", "_scheme_re", "=", "re", ".", "compile", "(", "'^[a-zA-Z][-+a-zA-Z0-9]+$'", ")", "x", ",", "y", ",", "w", ",", "h", "=", "frag", "[", "\"x\"", "]", ",", "dy", "-", "y", ",", "frag", "[", "\"width\"", "]", ",", "frag", "[", "\"fontSize\"", "]", "rect", "=", "(", "x", ",", "y", ",", "w", ",", "h", ")", "if", "isinstance", "(", "link", ",", "six", ".", "text_type", ")", ":", "link", "=", "link", ".", "encode", "(", "'utf8'", ")", "parts", "=", "link", ".", "split", "(", "':'", ",", "1", ")", "scheme", "=", "len", "(", "parts", ")", "==", "2", "and", "parts", "[", "0", "]", ".", "lower", "(", ")", "or", "''", "if", "_scheme_re", ".", "match", "(", "scheme", ")", "and", "scheme", "!=", "'document'", ":", "kind", "=", "scheme", ".", "lower", "(", ")", "==", "'pdf'", "and", "'GoToR'", "or", "'URI'", "if", "kind", "==", "'GoToR'", ":", "link", "=", "parts", "[", "1", "]", "canvas", ".", "linkURL", "(", "link", ",", "rect", ",", "relative", "=", "1", ",", "kind", "=", "kind", ")", "else", ":", "if", "link", "[", "0", "]", "==", "'#'", ":", "link", "=", "link", "[", "1", ":", "]", "scheme", "=", "''", "canvas", ".", "linkRect", "(", "\"\"", ",", "scheme", "!=", "'document'", "and", "link", "or", "parts", "[", "1", "]", ",", "rect", ",", "relative", "=", "1", ")", "canvas", ".", "restoreState", "(", ")" ]
Render the content of the paragraph.
[ "Render", "the", "content", "of", "the", "paragraph", "." ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/paragraph.py#L504-L573
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/pisa.py
showLogging
def showLogging(debug=False): """ Shortcut for enabling log dump """ try: log_level = logging.WARN log_format = LOG_FORMAT_DEBUG if debug: log_level = logging.DEBUG logging.basicConfig( level=log_level, format=log_format) except: logging.basicConfig()
python
def showLogging(debug=False): """ Shortcut for enabling log dump """ try: log_level = logging.WARN log_format = LOG_FORMAT_DEBUG if debug: log_level = logging.DEBUG logging.basicConfig( level=log_level, format=log_format) except: logging.basicConfig()
[ "def", "showLogging", "(", "debug", "=", "False", ")", ":", "try", ":", "log_level", "=", "logging", ".", "WARN", "log_format", "=", "LOG_FORMAT_DEBUG", "if", "debug", ":", "log_level", "=", "logging", ".", "DEBUG", "logging", ".", "basicConfig", "(", "level", "=", "log_level", ",", "format", "=", "log_format", ")", "except", ":", "logging", ".", "basicConfig", "(", ")" ]
Shortcut for enabling log dump
[ "Shortcut", "for", "enabling", "log", "dump" ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/pisa.py#L420-L434
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/w3c/cssParser.py
CSSParser.parseFile
def parseFile(self, srcFile, closeFile=False): """Parses CSS file-like objects using the current cssBuilder. Use for external stylesheets.""" try: result = self.parse(srcFile.read()) finally: if closeFile: srcFile.close() return result
python
def parseFile(self, srcFile, closeFile=False): """Parses CSS file-like objects using the current cssBuilder. Use for external stylesheets.""" try: result = self.parse(srcFile.read()) finally: if closeFile: srcFile.close() return result
[ "def", "parseFile", "(", "self", ",", "srcFile", ",", "closeFile", "=", "False", ")", ":", "try", ":", "result", "=", "self", ".", "parse", "(", "srcFile", ".", "read", "(", ")", ")", "finally", ":", "if", "closeFile", ":", "srcFile", ".", "close", "(", ")", "return", "result" ]
Parses CSS file-like objects using the current cssBuilder. Use for external stylesheets.
[ "Parses", "CSS", "file", "-", "like", "objects", "using", "the", "current", "cssBuilder", ".", "Use", "for", "external", "stylesheets", "." ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/w3c/cssParser.py#L427-L436
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/w3c/cssParser.py
CSSParser.parse
def parse(self, src): """Parses CSS string source using the current cssBuilder. Use for embedded stylesheets.""" self.cssBuilder.beginStylesheet() try: # XXX Some simple preprocessing src = cssSpecial.cleanupCSS(src) try: src, stylesheet = self._parseStylesheet(src) except self.ParseError as err: err.setFullCSSSource(src) raise finally: self.cssBuilder.endStylesheet() return stylesheet
python
def parse(self, src): """Parses CSS string source using the current cssBuilder. Use for embedded stylesheets.""" self.cssBuilder.beginStylesheet() try: # XXX Some simple preprocessing src = cssSpecial.cleanupCSS(src) try: src, stylesheet = self._parseStylesheet(src) except self.ParseError as err: err.setFullCSSSource(src) raise finally: self.cssBuilder.endStylesheet() return stylesheet
[ "def", "parse", "(", "self", ",", "src", ")", ":", "self", ".", "cssBuilder", ".", "beginStylesheet", "(", ")", "try", ":", "# XXX Some simple preprocessing", "src", "=", "cssSpecial", ".", "cleanupCSS", "(", "src", ")", "try", ":", "src", ",", "stylesheet", "=", "self", ".", "_parseStylesheet", "(", "src", ")", "except", "self", ".", "ParseError", "as", "err", ":", "err", ".", "setFullCSSSource", "(", "src", ")", "raise", "finally", ":", "self", ".", "cssBuilder", ".", "endStylesheet", "(", ")", "return", "stylesheet" ]
Parses CSS string source using the current cssBuilder. Use for embedded stylesheets.
[ "Parses", "CSS", "string", "source", "using", "the", "current", "cssBuilder", ".", "Use", "for", "embedded", "stylesheets", "." ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/w3c/cssParser.py#L439-L456
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/w3c/cssParser.py
CSSParser.parseInline
def parseInline(self, src): """Parses CSS inline source string using the current cssBuilder. Use to parse a tag's 'sytle'-like attribute.""" self.cssBuilder.beginInline() try: try: src, properties = self._parseDeclarationGroup(src.strip(), braces=False) except self.ParseError as err: err.setFullCSSSource(src, inline=True) raise result = self.cssBuilder.inline(properties) finally: self.cssBuilder.endInline() return result
python
def parseInline(self, src): """Parses CSS inline source string using the current cssBuilder. Use to parse a tag's 'sytle'-like attribute.""" self.cssBuilder.beginInline() try: try: src, properties = self._parseDeclarationGroup(src.strip(), braces=False) except self.ParseError as err: err.setFullCSSSource(src, inline=True) raise result = self.cssBuilder.inline(properties) finally: self.cssBuilder.endInline() return result
[ "def", "parseInline", "(", "self", ",", "src", ")", ":", "self", ".", "cssBuilder", ".", "beginInline", "(", ")", "try", ":", "try", ":", "src", ",", "properties", "=", "self", ".", "_parseDeclarationGroup", "(", "src", ".", "strip", "(", ")", ",", "braces", "=", "False", ")", "except", "self", ".", "ParseError", "as", "err", ":", "err", ".", "setFullCSSSource", "(", "src", ",", "inline", "=", "True", ")", "raise", "result", "=", "self", ".", "cssBuilder", ".", "inline", "(", "properties", ")", "finally", ":", "self", ".", "cssBuilder", ".", "endInline", "(", ")", "return", "result" ]
Parses CSS inline source string using the current cssBuilder. Use to parse a tag's 'sytle'-like attribute.
[ "Parses", "CSS", "inline", "source", "string", "using", "the", "current", "cssBuilder", ".", "Use", "to", "parse", "a", "tag", "s", "sytle", "-", "like", "attribute", "." ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/w3c/cssParser.py#L459-L474
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/w3c/cssParser.py
CSSParser.parseAttributes
def parseAttributes(self, attributes=None, **kwAttributes): """Parses CSS attribute source strings, and return as an inline stylesheet. Use to parse a tag's highly CSS-based attributes like 'font'. See also: parseSingleAttr """ attributes = attributes if attributes is not None else {} if attributes: kwAttributes.update(attributes) self.cssBuilder.beginInline() try: properties = [] try: for propertyName, src in six.iteritems(kwAttributes): src, property = self._parseDeclarationProperty(src.strip(), propertyName) properties.append(property) except self.ParseError as err: err.setFullCSSSource(src, inline=True) raise result = self.cssBuilder.inline(properties) finally: self.cssBuilder.endInline() return result
python
def parseAttributes(self, attributes=None, **kwAttributes): """Parses CSS attribute source strings, and return as an inline stylesheet. Use to parse a tag's highly CSS-based attributes like 'font'. See also: parseSingleAttr """ attributes = attributes if attributes is not None else {} if attributes: kwAttributes.update(attributes) self.cssBuilder.beginInline() try: properties = [] try: for propertyName, src in six.iteritems(kwAttributes): src, property = self._parseDeclarationProperty(src.strip(), propertyName) properties.append(property) except self.ParseError as err: err.setFullCSSSource(src, inline=True) raise result = self.cssBuilder.inline(properties) finally: self.cssBuilder.endInline() return result
[ "def", "parseAttributes", "(", "self", ",", "attributes", "=", "None", ",", "*", "*", "kwAttributes", ")", ":", "attributes", "=", "attributes", "if", "attributes", "is", "not", "None", "else", "{", "}", "if", "attributes", ":", "kwAttributes", ".", "update", "(", "attributes", ")", "self", ".", "cssBuilder", ".", "beginInline", "(", ")", "try", ":", "properties", "=", "[", "]", "try", ":", "for", "propertyName", ",", "src", "in", "six", ".", "iteritems", "(", "kwAttributes", ")", ":", "src", ",", "property", "=", "self", ".", "_parseDeclarationProperty", "(", "src", ".", "strip", "(", ")", ",", "propertyName", ")", "properties", ".", "append", "(", "property", ")", "except", "self", ".", "ParseError", "as", "err", ":", "err", ".", "setFullCSSSource", "(", "src", ",", "inline", "=", "True", ")", "raise", "result", "=", "self", ".", "cssBuilder", ".", "inline", "(", "properties", ")", "finally", ":", "self", ".", "cssBuilder", ".", "endInline", "(", ")", "return", "result" ]
Parses CSS attribute source strings, and return as an inline stylesheet. Use to parse a tag's highly CSS-based attributes like 'font'. See also: parseSingleAttr
[ "Parses", "CSS", "attribute", "source", "strings", "and", "return", "as", "an", "inline", "stylesheet", ".", "Use", "to", "parse", "a", "tag", "s", "highly", "CSS", "-", "based", "attributes", "like", "font", "." ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/w3c/cssParser.py#L476-L501
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/w3c/cssParser.py
CSSParser.parseSingleAttr
def parseSingleAttr(self, attrValue): """Parse a single CSS attribute source string, and returns the built CSS expression. Use to parse a tag's highly CSS-based attributes like 'font'. See also: parseAttributes """ results = self.parseAttributes(temp=attrValue) if 'temp' in results[1]: return results[1]['temp'] else: return results[0]['temp']
python
def parseSingleAttr(self, attrValue): """Parse a single CSS attribute source string, and returns the built CSS expression. Use to parse a tag's highly CSS-based attributes like 'font'. See also: parseAttributes """ results = self.parseAttributes(temp=attrValue) if 'temp' in results[1]: return results[1]['temp'] else: return results[0]['temp']
[ "def", "parseSingleAttr", "(", "self", ",", "attrValue", ")", ":", "results", "=", "self", ".", "parseAttributes", "(", "temp", "=", "attrValue", ")", "if", "'temp'", "in", "results", "[", "1", "]", ":", "return", "results", "[", "1", "]", "[", "'temp'", "]", "else", ":", "return", "results", "[", "0", "]", "[", "'temp'", "]" ]
Parse a single CSS attribute source string, and returns the built CSS expression. Use to parse a tag's highly CSS-based attributes like 'font'. See also: parseAttributes
[ "Parse", "a", "single", "CSS", "attribute", "source", "string", "and", "returns", "the", "built", "CSS", "expression", ".", "Use", "to", "parse", "a", "tag", "s", "highly", "CSS", "-", "based", "attributes", "like", "font", "." ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/w3c/cssParser.py#L504-L515
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/w3c/cssParser.py
CSSParser._parseAtFrame
def _parseAtFrame(self, src): """ XXX Proprietary for PDF """ src = src[len('@frame '):].lstrip() box, src = self._getIdent(src) src, properties = self._parseDeclarationGroup(src.lstrip()) result = [self.cssBuilder.atFrame(box, properties)] return src.lstrip(), result
python
def _parseAtFrame(self, src): """ XXX Proprietary for PDF """ src = src[len('@frame '):].lstrip() box, src = self._getIdent(src) src, properties = self._parseDeclarationGroup(src.lstrip()) result = [self.cssBuilder.atFrame(box, properties)] return src.lstrip(), result
[ "def", "_parseAtFrame", "(", "self", ",", "src", ")", ":", "src", "=", "src", "[", "len", "(", "'@frame '", ")", ":", "]", ".", "lstrip", "(", ")", "box", ",", "src", "=", "self", ".", "_getIdent", "(", "src", ")", "src", ",", "properties", "=", "self", ".", "_parseDeclarationGroup", "(", "src", ".", "lstrip", "(", ")", ")", "result", "=", "[", "self", ".", "cssBuilder", ".", "atFrame", "(", "box", ",", "properties", ")", "]", "return", "src", ".", "lstrip", "(", ")", ",", "result" ]
XXX Proprietary for PDF
[ "XXX", "Proprietary", "for", "PDF" ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/w3c/cssParser.py#L788-L796
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/util.py
ErrorMsg
def ErrorMsg(): """ Helper to get a nice traceback as string """ import traceback limit = None _type, value, tb = sys.exc_info() _list = traceback.format_tb(tb, limit) + \ traceback.format_exception_only(_type, value) return "Traceback (innermost last):\n" + "%-20s %s" % ( " ".join(_list[:-1]), _list[-1])
python
def ErrorMsg(): """ Helper to get a nice traceback as string """ import traceback limit = None _type, value, tb = sys.exc_info() _list = traceback.format_tb(tb, limit) + \ traceback.format_exception_only(_type, value) return "Traceback (innermost last):\n" + "%-20s %s" % ( " ".join(_list[:-1]), _list[-1])
[ "def", "ErrorMsg", "(", ")", ":", "import", "traceback", "limit", "=", "None", "_type", ",", "value", ",", "tb", "=", "sys", ".", "exc_info", "(", ")", "_list", "=", "traceback", ".", "format_tb", "(", "tb", ",", "limit", ")", "+", "traceback", ".", "format_exception_only", "(", "_type", ",", "value", ")", "return", "\"Traceback (innermost last):\\n\"", "+", "\"%-20s %s\"", "%", "(", "\" \"", ".", "join", "(", "_list", "[", ":", "-", "1", "]", ")", ",", "_list", "[", "-", "1", "]", ")" ]
Helper to get a nice traceback as string
[ "Helper", "to", "get", "a", "nice", "traceback", "as", "string" ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/util.py#L119-L131
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/util.py
transform_attrs
def transform_attrs(obj, keys, container, func, extras=None): """ Allows to apply one function to set of keys cheching if key is in container, also trasform ccs key to report lab keys. extras = Are extra params for func, it will be call like func(*[param1, param2]) obj = frag keys = [(reportlab, css), ... ] container = cssAttr """ cpextras = extras for reportlab, css in keys: extras = cpextras if extras is None: extras = [] elif not isinstance(extras, list): extras = [extras] if css in container: extras.insert(0, container[css]) setattr(obj, reportlab, func(*extras) )
python
def transform_attrs(obj, keys, container, func, extras=None): """ Allows to apply one function to set of keys cheching if key is in container, also trasform ccs key to report lab keys. extras = Are extra params for func, it will be call like func(*[param1, param2]) obj = frag keys = [(reportlab, css), ... ] container = cssAttr """ cpextras = extras for reportlab, css in keys: extras = cpextras if extras is None: extras = [] elif not isinstance(extras, list): extras = [extras] if css in container: extras.insert(0, container[css]) setattr(obj, reportlab, func(*extras) )
[ "def", "transform_attrs", "(", "obj", ",", "keys", ",", "container", ",", "func", ",", "extras", "=", "None", ")", ":", "cpextras", "=", "extras", "for", "reportlab", ",", "css", "in", "keys", ":", "extras", "=", "cpextras", "if", "extras", "is", "None", ":", "extras", "=", "[", "]", "elif", "not", "isinstance", "(", "extras", ",", "list", ")", ":", "extras", "=", "[", "extras", "]", "if", "css", "in", "container", ":", "extras", ".", "insert", "(", "0", ",", "container", "[", "css", "]", ")", "setattr", "(", "obj", ",", "reportlab", ",", "func", "(", "*", "extras", ")", ")" ]
Allows to apply one function to set of keys cheching if key is in container, also trasform ccs key to report lab keys. extras = Are extra params for func, it will be call like func(*[param1, param2]) obj = frag keys = [(reportlab, css), ... ] container = cssAttr
[ "Allows", "to", "apply", "one", "function", "to", "set", "of", "keys", "cheching", "if", "key", "is", "in", "container", "also", "trasform", "ccs", "key", "to", "report", "lab", "keys", "." ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/util.py#L140-L164
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/util.py
copy_attrs
def copy_attrs(obj1, obj2, attrs): """ Allows copy a list of attributes from object2 to object1. Useful for copy ccs attributes to fragment """ for attr in attrs: value = getattr(obj2, attr) if hasattr(obj2, attr) else None if value is None and isinstance(obj2, dict) and attr in obj2: value = obj2[attr] setattr(obj1, attr, value)
python
def copy_attrs(obj1, obj2, attrs): """ Allows copy a list of attributes from object2 to object1. Useful for copy ccs attributes to fragment """ for attr in attrs: value = getattr(obj2, attr) if hasattr(obj2, attr) else None if value is None and isinstance(obj2, dict) and attr in obj2: value = obj2[attr] setattr(obj1, attr, value)
[ "def", "copy_attrs", "(", "obj1", ",", "obj2", ",", "attrs", ")", ":", "for", "attr", "in", "attrs", ":", "value", "=", "getattr", "(", "obj2", ",", "attr", ")", "if", "hasattr", "(", "obj2", ",", "attr", ")", "else", "None", "if", "value", "is", "None", "and", "isinstance", "(", "obj2", ",", "dict", ")", "and", "attr", "in", "obj2", ":", "value", "=", "obj2", "[", "attr", "]", "setattr", "(", "obj1", ",", "attr", ",", "value", ")" ]
Allows copy a list of attributes from object2 to object1. Useful for copy ccs attributes to fragment
[ "Allows", "copy", "a", "list", "of", "attributes", "from", "object2", "to", "object1", ".", "Useful", "for", "copy", "ccs", "attributes", "to", "fragment" ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/util.py#L167-L176
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/util.py
set_value
def set_value(obj, attrs, value, _copy=False): """ Allows set the same value to a list of attributes """ for attr in attrs: if _copy: value = copy(value) setattr(obj, attr, value)
python
def set_value(obj, attrs, value, _copy=False): """ Allows set the same value to a list of attributes """ for attr in attrs: if _copy: value = copy(value) setattr(obj, attr, value)
[ "def", "set_value", "(", "obj", ",", "attrs", ",", "value", ",", "_copy", "=", "False", ")", ":", "for", "attr", "in", "attrs", ":", "if", "_copy", ":", "value", "=", "copy", "(", "value", ")", "setattr", "(", "obj", ",", "attr", ",", "value", ")" ]
Allows set the same value to a list of attributes
[ "Allows", "set", "the", "same", "value", "to", "a", "list", "of", "attributes" ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/util.py#L179-L186
train
xhtml2pdf/xhtml2pdf
xhtml2pdf/util.py
getColor
def getColor(value, default=None): """ Convert to color value. This returns a Color object instance from a text bit. """ if isinstance(value, Color): return value value = str(value).strip().lower() if value == "transparent" or value == "none": return default if value in COLOR_BY_NAME: return COLOR_BY_NAME[value] if value.startswith("#") and len(value) == 4: value = "#" + value[1] + value[1] + \ value[2] + value[2] + value[3] + value[3] elif rgb_re.search(value): # e.g., value = "<css function: rgb(153, 51, 153)>", go figure: r, g, b = [int(x) for x in rgb_re.search(value).groups()] value = "#%02x%02x%02x" % (r, g, b) else: # Shrug pass return toColor(value, default)
python
def getColor(value, default=None): """ Convert to color value. This returns a Color object instance from a text bit. """ if isinstance(value, Color): return value value = str(value).strip().lower() if value == "transparent" or value == "none": return default if value in COLOR_BY_NAME: return COLOR_BY_NAME[value] if value.startswith("#") and len(value) == 4: value = "#" + value[1] + value[1] + \ value[2] + value[2] + value[3] + value[3] elif rgb_re.search(value): # e.g., value = "<css function: rgb(153, 51, 153)>", go figure: r, g, b = [int(x) for x in rgb_re.search(value).groups()] value = "#%02x%02x%02x" % (r, g, b) else: # Shrug pass return toColor(value, default)
[ "def", "getColor", "(", "value", ",", "default", "=", "None", ")", ":", "if", "isinstance", "(", "value", ",", "Color", ")", ":", "return", "value", "value", "=", "str", "(", "value", ")", ".", "strip", "(", ")", ".", "lower", "(", ")", "if", "value", "==", "\"transparent\"", "or", "value", "==", "\"none\"", ":", "return", "default", "if", "value", "in", "COLOR_BY_NAME", ":", "return", "COLOR_BY_NAME", "[", "value", "]", "if", "value", ".", "startswith", "(", "\"#\"", ")", "and", "len", "(", "value", ")", "==", "4", ":", "value", "=", "\"#\"", "+", "value", "[", "1", "]", "+", "value", "[", "1", "]", "+", "value", "[", "2", "]", "+", "value", "[", "2", "]", "+", "value", "[", "3", "]", "+", "value", "[", "3", "]", "elif", "rgb_re", ".", "search", "(", "value", ")", ":", "# e.g., value = \"<css function: rgb(153, 51, 153)>\", go figure:", "r", ",", "g", ",", "b", "=", "[", "int", "(", "x", ")", "for", "x", "in", "rgb_re", ".", "search", "(", "value", ")", ".", "groups", "(", ")", "]", "value", "=", "\"#%02x%02x%02x\"", "%", "(", "r", ",", "g", ",", "b", ")", "else", ":", "# Shrug", "pass", "return", "toColor", "(", "value", ",", "default", ")" ]
Convert to color value. This returns a Color object instance from a text bit.
[ "Convert", "to", "color", "value", ".", "This", "returns", "a", "Color", "object", "instance", "from", "a", "text", "bit", "." ]
230357a392f48816532d3c2fa082a680b80ece48
https://github.com/xhtml2pdf/xhtml2pdf/blob/230357a392f48816532d3c2fa082a680b80ece48/xhtml2pdf/util.py#L190-L214
train