repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
craffel/mir_eval
mir_eval/util.py
_fast_hit_windows
def _fast_hit_windows(ref, est, window): '''Fast calculation of windowed hits for time events. Given two lists of event times ``ref`` and ``est``, and a tolerance window, computes a list of pairings ``(i, j)`` where ``|ref[i] - est[j]| <= window``. This is equivalent to, but more efficient than the following: >>> hit_ref, hit_est = np.where(np.abs(np.subtract.outer(ref, est)) ... <= window) Parameters ---------- ref : np.ndarray, shape=(n,) Array of reference values est : np.ndarray, shape=(m,) Array of estimated values window : float >= 0 Size of the tolerance window Returns ------- hit_ref : np.ndarray hit_est : np.ndarray indices such that ``|hit_ref[i] - hit_est[i]| <= window`` ''' ref = np.asarray(ref) est = np.asarray(est) ref_idx = np.argsort(ref) ref_sorted = ref[ref_idx] left_idx = np.searchsorted(ref_sorted, est - window, side='left') right_idx = np.searchsorted(ref_sorted, est + window, side='right') hit_ref, hit_est = [], [] for j, (start, end) in enumerate(zip(left_idx, right_idx)): hit_ref.extend(ref_idx[start:end]) hit_est.extend([j] * (end - start)) return hit_ref, hit_est
python
def _fast_hit_windows(ref, est, window): '''Fast calculation of windowed hits for time events. Given two lists of event times ``ref`` and ``est``, and a tolerance window, computes a list of pairings ``(i, j)`` where ``|ref[i] - est[j]| <= window``. This is equivalent to, but more efficient than the following: >>> hit_ref, hit_est = np.where(np.abs(np.subtract.outer(ref, est)) ... <= window) Parameters ---------- ref : np.ndarray, shape=(n,) Array of reference values est : np.ndarray, shape=(m,) Array of estimated values window : float >= 0 Size of the tolerance window Returns ------- hit_ref : np.ndarray hit_est : np.ndarray indices such that ``|hit_ref[i] - hit_est[i]| <= window`` ''' ref = np.asarray(ref) est = np.asarray(est) ref_idx = np.argsort(ref) ref_sorted = ref[ref_idx] left_idx = np.searchsorted(ref_sorted, est - window, side='left') right_idx = np.searchsorted(ref_sorted, est + window, side='right') hit_ref, hit_est = [], [] for j, (start, end) in enumerate(zip(left_idx, right_idx)): hit_ref.extend(ref_idx[start:end]) hit_est.extend([j] * (end - start)) return hit_ref, hit_est
[ "def", "_fast_hit_windows", "(", "ref", ",", "est", ",", "window", ")", ":", "ref", "=", "np", ".", "asarray", "(", "ref", ")", "est", "=", "np", ".", "asarray", "(", "est", ")", "ref_idx", "=", "np", ".", "argsort", "(", "ref", ")", "ref_sorted", "=", "ref", "[", "ref_idx", "]", "left_idx", "=", "np", ".", "searchsorted", "(", "ref_sorted", ",", "est", "-", "window", ",", "side", "=", "'left'", ")", "right_idx", "=", "np", ".", "searchsorted", "(", "ref_sorted", ",", "est", "+", "window", ",", "side", "=", "'right'", ")", "hit_ref", ",", "hit_est", "=", "[", "]", ",", "[", "]", "for", "j", ",", "(", "start", ",", "end", ")", "in", "enumerate", "(", "zip", "(", "left_idx", ",", "right_idx", ")", ")", ":", "hit_ref", ".", "extend", "(", "ref_idx", "[", "start", ":", "end", "]", ")", "hit_est", ".", "extend", "(", "[", "j", "]", "*", "(", "end", "-", "start", ")", ")", "return", "hit_ref", ",", "hit_est" ]
Fast calculation of windowed hits for time events. Given two lists of event times ``ref`` and ``est``, and a tolerance window, computes a list of pairings ``(i, j)`` where ``|ref[i] - est[j]| <= window``. This is equivalent to, but more efficient than the following: >>> hit_ref, hit_est = np.where(np.abs(np.subtract.outer(ref, est)) ... <= window) Parameters ---------- ref : np.ndarray, shape=(n,) Array of reference values est : np.ndarray, shape=(m,) Array of estimated values window : float >= 0 Size of the tolerance window Returns ------- hit_ref : np.ndarray hit_est : np.ndarray indices such that ``|hit_ref[i] - hit_est[i]| <= window``
[ "Fast", "calculation", "of", "windowed", "hits", "for", "time", "events", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/util.py#L713-L755
train
craffel/mir_eval
mir_eval/util.py
validate_events
def validate_events(events, max_time=30000.): """Checks that a 1-d event location ndarray is well-formed, and raises errors if not. Parameters ---------- events : np.ndarray, shape=(n,) Array of event times max_time : float If an event is found above this time, a ValueError will be raised. (Default value = 30000.) """ # Make sure no event times are huge if (events > max_time).any(): raise ValueError('An event at time {} was found which is greater than ' 'the maximum allowable time of max_time = {} (did you' ' supply event times in ' 'seconds?)'.format(events.max(), max_time)) # Make sure event locations are 1-d np ndarrays if events.ndim != 1: raise ValueError('Event times should be 1-d numpy ndarray, ' 'but shape={}'.format(events.shape)) # Make sure event times are increasing if (np.diff(events) < 0).any(): raise ValueError('Events should be in increasing order.')
python
def validate_events(events, max_time=30000.): """Checks that a 1-d event location ndarray is well-formed, and raises errors if not. Parameters ---------- events : np.ndarray, shape=(n,) Array of event times max_time : float If an event is found above this time, a ValueError will be raised. (Default value = 30000.) """ # Make sure no event times are huge if (events > max_time).any(): raise ValueError('An event at time {} was found which is greater than ' 'the maximum allowable time of max_time = {} (did you' ' supply event times in ' 'seconds?)'.format(events.max(), max_time)) # Make sure event locations are 1-d np ndarrays if events.ndim != 1: raise ValueError('Event times should be 1-d numpy ndarray, ' 'but shape={}'.format(events.shape)) # Make sure event times are increasing if (np.diff(events) < 0).any(): raise ValueError('Events should be in increasing order.')
[ "def", "validate_events", "(", "events", ",", "max_time", "=", "30000.", ")", ":", "# Make sure no event times are huge", "if", "(", "events", ">", "max_time", ")", ".", "any", "(", ")", ":", "raise", "ValueError", "(", "'An event at time {} was found which is greater than '", "'the maximum allowable time of max_time = {} (did you'", "' supply event times in '", "'seconds?)'", ".", "format", "(", "events", ".", "max", "(", ")", ",", "max_time", ")", ")", "# Make sure event locations are 1-d np ndarrays", "if", "events", ".", "ndim", "!=", "1", ":", "raise", "ValueError", "(", "'Event times should be 1-d numpy ndarray, '", "'but shape={}'", ".", "format", "(", "events", ".", "shape", ")", ")", "# Make sure event times are increasing", "if", "(", "np", ".", "diff", "(", "events", ")", "<", "0", ")", ".", "any", "(", ")", ":", "raise", "ValueError", "(", "'Events should be in increasing order.'", ")" ]
Checks that a 1-d event location ndarray is well-formed, and raises errors if not. Parameters ---------- events : np.ndarray, shape=(n,) Array of event times max_time : float If an event is found above this time, a ValueError will be raised. (Default value = 30000.)
[ "Checks", "that", "a", "1", "-", "d", "event", "location", "ndarray", "is", "well", "-", "formed", "and", "raises", "errors", "if", "not", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/util.py#L783-L808
train
craffel/mir_eval
mir_eval/util.py
validate_frequencies
def validate_frequencies(frequencies, max_freq, min_freq, allow_negatives=False): """Checks that a 1-d frequency ndarray is well-formed, and raises errors if not. Parameters ---------- frequencies : np.ndarray, shape=(n,) Array of frequency values max_freq : float If a frequency is found above this pitch, a ValueError will be raised. (Default value = 5000.) min_freq : float If a frequency is found below this pitch, a ValueError will be raised. (Default value = 20.) allow_negatives : bool Whether or not to allow negative frequency values. """ # If flag is true, map frequencies to their absolute value. if allow_negatives: frequencies = np.abs(frequencies) # Make sure no frequency values are huge if (np.abs(frequencies) > max_freq).any(): raise ValueError('A frequency of {} was found which is greater than ' 'the maximum allowable value of max_freq = {} (did ' 'you supply frequency values in ' 'Hz?)'.format(frequencies.max(), max_freq)) # Make sure no frequency values are tiny if (np.abs(frequencies) < min_freq).any(): raise ValueError('A frequency of {} was found which is less than the ' 'minimum allowable value of min_freq = {} (did you ' 'supply frequency values in ' 'Hz?)'.format(frequencies.min(), min_freq)) # Make sure frequency values are 1-d np ndarrays if frequencies.ndim != 1: raise ValueError('Frequencies should be 1-d numpy ndarray, ' 'but shape={}'.format(frequencies.shape))
python
def validate_frequencies(frequencies, max_freq, min_freq, allow_negatives=False): """Checks that a 1-d frequency ndarray is well-formed, and raises errors if not. Parameters ---------- frequencies : np.ndarray, shape=(n,) Array of frequency values max_freq : float If a frequency is found above this pitch, a ValueError will be raised. (Default value = 5000.) min_freq : float If a frequency is found below this pitch, a ValueError will be raised. (Default value = 20.) allow_negatives : bool Whether or not to allow negative frequency values. """ # If flag is true, map frequencies to their absolute value. if allow_negatives: frequencies = np.abs(frequencies) # Make sure no frequency values are huge if (np.abs(frequencies) > max_freq).any(): raise ValueError('A frequency of {} was found which is greater than ' 'the maximum allowable value of max_freq = {} (did ' 'you supply frequency values in ' 'Hz?)'.format(frequencies.max(), max_freq)) # Make sure no frequency values are tiny if (np.abs(frequencies) < min_freq).any(): raise ValueError('A frequency of {} was found which is less than the ' 'minimum allowable value of min_freq = {} (did you ' 'supply frequency values in ' 'Hz?)'.format(frequencies.min(), min_freq)) # Make sure frequency values are 1-d np ndarrays if frequencies.ndim != 1: raise ValueError('Frequencies should be 1-d numpy ndarray, ' 'but shape={}'.format(frequencies.shape))
[ "def", "validate_frequencies", "(", "frequencies", ",", "max_freq", ",", "min_freq", ",", "allow_negatives", "=", "False", ")", ":", "# If flag is true, map frequencies to their absolute value.", "if", "allow_negatives", ":", "frequencies", "=", "np", ".", "abs", "(", "frequencies", ")", "# Make sure no frequency values are huge", "if", "(", "np", ".", "abs", "(", "frequencies", ")", ">", "max_freq", ")", ".", "any", "(", ")", ":", "raise", "ValueError", "(", "'A frequency of {} was found which is greater than '", "'the maximum allowable value of max_freq = {} (did '", "'you supply frequency values in '", "'Hz?)'", ".", "format", "(", "frequencies", ".", "max", "(", ")", ",", "max_freq", ")", ")", "# Make sure no frequency values are tiny", "if", "(", "np", ".", "abs", "(", "frequencies", ")", "<", "min_freq", ")", ".", "any", "(", ")", ":", "raise", "ValueError", "(", "'A frequency of {} was found which is less than the '", "'minimum allowable value of min_freq = {} (did you '", "'supply frequency values in '", "'Hz?)'", ".", "format", "(", "frequencies", ".", "min", "(", ")", ",", "min_freq", ")", ")", "# Make sure frequency values are 1-d np ndarrays", "if", "frequencies", ".", "ndim", "!=", "1", ":", "raise", "ValueError", "(", "'Frequencies should be 1-d numpy ndarray, '", "'but shape={}'", ".", "format", "(", "frequencies", ".", "shape", ")", ")" ]
Checks that a 1-d frequency ndarray is well-formed, and raises errors if not. Parameters ---------- frequencies : np.ndarray, shape=(n,) Array of frequency values max_freq : float If a frequency is found above this pitch, a ValueError will be raised. (Default value = 5000.) min_freq : float If a frequency is found below this pitch, a ValueError will be raised. (Default value = 20.) allow_negatives : bool Whether or not to allow negative frequency values.
[ "Checks", "that", "a", "1", "-", "d", "frequency", "ndarray", "is", "well", "-", "formed", "and", "raises", "errors", "if", "not", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/util.py#L811-L847
train
craffel/mir_eval
mir_eval/util.py
intervals_to_durations
def intervals_to_durations(intervals): """Converts an array of n intervals to their n durations. Parameters ---------- intervals : np.ndarray, shape=(n, 2) An array of time intervals, as returned by :func:`mir_eval.io.load_intervals()`. The ``i`` th interval spans time ``intervals[i, 0]`` to ``intervals[i, 1]``. Returns ------- durations : np.ndarray, shape=(n,) Array of the duration of each interval. """ validate_intervals(intervals) return np.abs(np.diff(intervals, axis=-1)).flatten()
python
def intervals_to_durations(intervals): """Converts an array of n intervals to their n durations. Parameters ---------- intervals : np.ndarray, shape=(n, 2) An array of time intervals, as returned by :func:`mir_eval.io.load_intervals()`. The ``i`` th interval spans time ``intervals[i, 0]`` to ``intervals[i, 1]``. Returns ------- durations : np.ndarray, shape=(n,) Array of the duration of each interval. """ validate_intervals(intervals) return np.abs(np.diff(intervals, axis=-1)).flatten()
[ "def", "intervals_to_durations", "(", "intervals", ")", ":", "validate_intervals", "(", "intervals", ")", "return", "np", ".", "abs", "(", "np", ".", "diff", "(", "intervals", ",", "axis", "=", "-", "1", ")", ")", ".", "flatten", "(", ")" ]
Converts an array of n intervals to their n durations. Parameters ---------- intervals : np.ndarray, shape=(n, 2) An array of time intervals, as returned by :func:`mir_eval.io.load_intervals()`. The ``i`` th interval spans time ``intervals[i, 0]`` to ``intervals[i, 1]``. Returns ------- durations : np.ndarray, shape=(n,) Array of the duration of each interval.
[ "Converts", "an", "array", "of", "n", "intervals", "to", "their", "n", "durations", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/util.py#L907-L925
train
craffel/mir_eval
mir_eval/separation.py
validate
def validate(reference_sources, estimated_sources): """Checks that the input data to a metric are valid, and throws helpful errors if not. Parameters ---------- reference_sources : np.ndarray, shape=(nsrc, nsampl) matrix containing true sources estimated_sources : np.ndarray, shape=(nsrc, nsampl) matrix containing estimated sources """ if reference_sources.shape != estimated_sources.shape: raise ValueError('The shape of estimated sources and the true ' 'sources should match. reference_sources.shape ' '= {}, estimated_sources.shape ' '= {}'.format(reference_sources.shape, estimated_sources.shape)) if reference_sources.ndim > 3 or estimated_sources.ndim > 3: raise ValueError('The number of dimensions is too high (must be less ' 'than 3). reference_sources.ndim = {}, ' 'estimated_sources.ndim ' '= {}'.format(reference_sources.ndim, estimated_sources.ndim)) if reference_sources.size == 0: warnings.warn("reference_sources is empty, should be of size " "(nsrc, nsample). sdr, sir, sar, and perm will all " "be empty np.ndarrays") elif _any_source_silent(reference_sources): raise ValueError('All the reference sources should be non-silent (not ' 'all-zeros), but at least one of the reference ' 'sources is all 0s, which introduces ambiguity to the' ' evaluation. (Otherwise we can add infinitely many ' 'all-zero sources.)') if estimated_sources.size == 0: warnings.warn("estimated_sources is empty, should be of size " "(nsrc, nsample). sdr, sir, sar, and perm will all " "be empty np.ndarrays") elif _any_source_silent(estimated_sources): raise ValueError('All the estimated sources should be non-silent (not ' 'all-zeros), but at least one of the estimated ' 'sources is all 0s. Since we require each reference ' 'source to be non-silent, having a silent estimated ' 'source will result in an underdetermined system.') if (estimated_sources.shape[0] > MAX_SOURCES or reference_sources.shape[0] > MAX_SOURCES): raise ValueError('The supplied matrices should be of shape (nsrc,' ' nsampl) but reference_sources.shape[0] = {} and ' 'estimated_sources.shape[0] = {} which is greater ' 'than mir_eval.separation.MAX_SOURCES = {}. To ' 'override this check, set ' 'mir_eval.separation.MAX_SOURCES to a ' 'larger value.'.format(reference_sources.shape[0], estimated_sources.shape[0], MAX_SOURCES))
python
def validate(reference_sources, estimated_sources): """Checks that the input data to a metric are valid, and throws helpful errors if not. Parameters ---------- reference_sources : np.ndarray, shape=(nsrc, nsampl) matrix containing true sources estimated_sources : np.ndarray, shape=(nsrc, nsampl) matrix containing estimated sources """ if reference_sources.shape != estimated_sources.shape: raise ValueError('The shape of estimated sources and the true ' 'sources should match. reference_sources.shape ' '= {}, estimated_sources.shape ' '= {}'.format(reference_sources.shape, estimated_sources.shape)) if reference_sources.ndim > 3 or estimated_sources.ndim > 3: raise ValueError('The number of dimensions is too high (must be less ' 'than 3). reference_sources.ndim = {}, ' 'estimated_sources.ndim ' '= {}'.format(reference_sources.ndim, estimated_sources.ndim)) if reference_sources.size == 0: warnings.warn("reference_sources is empty, should be of size " "(nsrc, nsample). sdr, sir, sar, and perm will all " "be empty np.ndarrays") elif _any_source_silent(reference_sources): raise ValueError('All the reference sources should be non-silent (not ' 'all-zeros), but at least one of the reference ' 'sources is all 0s, which introduces ambiguity to the' ' evaluation. (Otherwise we can add infinitely many ' 'all-zero sources.)') if estimated_sources.size == 0: warnings.warn("estimated_sources is empty, should be of size " "(nsrc, nsample). sdr, sir, sar, and perm will all " "be empty np.ndarrays") elif _any_source_silent(estimated_sources): raise ValueError('All the estimated sources should be non-silent (not ' 'all-zeros), but at least one of the estimated ' 'sources is all 0s. Since we require each reference ' 'source to be non-silent, having a silent estimated ' 'source will result in an underdetermined system.') if (estimated_sources.shape[0] > MAX_SOURCES or reference_sources.shape[0] > MAX_SOURCES): raise ValueError('The supplied matrices should be of shape (nsrc,' ' nsampl) but reference_sources.shape[0] = {} and ' 'estimated_sources.shape[0] = {} which is greater ' 'than mir_eval.separation.MAX_SOURCES = {}. To ' 'override this check, set ' 'mir_eval.separation.MAX_SOURCES to a ' 'larger value.'.format(reference_sources.shape[0], estimated_sources.shape[0], MAX_SOURCES))
[ "def", "validate", "(", "reference_sources", ",", "estimated_sources", ")", ":", "if", "reference_sources", ".", "shape", "!=", "estimated_sources", ".", "shape", ":", "raise", "ValueError", "(", "'The shape of estimated sources and the true '", "'sources should match. reference_sources.shape '", "'= {}, estimated_sources.shape '", "'= {}'", ".", "format", "(", "reference_sources", ".", "shape", ",", "estimated_sources", ".", "shape", ")", ")", "if", "reference_sources", ".", "ndim", ">", "3", "or", "estimated_sources", ".", "ndim", ">", "3", ":", "raise", "ValueError", "(", "'The number of dimensions is too high (must be less '", "'than 3). reference_sources.ndim = {}, '", "'estimated_sources.ndim '", "'= {}'", ".", "format", "(", "reference_sources", ".", "ndim", ",", "estimated_sources", ".", "ndim", ")", ")", "if", "reference_sources", ".", "size", "==", "0", ":", "warnings", ".", "warn", "(", "\"reference_sources is empty, should be of size \"", "\"(nsrc, nsample). sdr, sir, sar, and perm will all \"", "\"be empty np.ndarrays\"", ")", "elif", "_any_source_silent", "(", "reference_sources", ")", ":", "raise", "ValueError", "(", "'All the reference sources should be non-silent (not '", "'all-zeros), but at least one of the reference '", "'sources is all 0s, which introduces ambiguity to the'", "' evaluation. (Otherwise we can add infinitely many '", "'all-zero sources.)'", ")", "if", "estimated_sources", ".", "size", "==", "0", ":", "warnings", ".", "warn", "(", "\"estimated_sources is empty, should be of size \"", "\"(nsrc, nsample). sdr, sir, sar, and perm will all \"", "\"be empty np.ndarrays\"", ")", "elif", "_any_source_silent", "(", "estimated_sources", ")", ":", "raise", "ValueError", "(", "'All the estimated sources should be non-silent (not '", "'all-zeros), but at least one of the estimated '", "'sources is all 0s. Since we require each reference '", "'source to be non-silent, having a silent estimated '", "'source will result in an underdetermined system.'", ")", "if", "(", "estimated_sources", ".", "shape", "[", "0", "]", ">", "MAX_SOURCES", "or", "reference_sources", ".", "shape", "[", "0", "]", ">", "MAX_SOURCES", ")", ":", "raise", "ValueError", "(", "'The supplied matrices should be of shape (nsrc,'", "' nsampl) but reference_sources.shape[0] = {} and '", "'estimated_sources.shape[0] = {} which is greater '", "'than mir_eval.separation.MAX_SOURCES = {}. To '", "'override this check, set '", "'mir_eval.separation.MAX_SOURCES to a '", "'larger value.'", ".", "format", "(", "reference_sources", ".", "shape", "[", "0", "]", ",", "estimated_sources", ".", "shape", "[", "0", "]", ",", "MAX_SOURCES", ")", ")" ]
Checks that the input data to a metric are valid, and throws helpful errors if not. Parameters ---------- reference_sources : np.ndarray, shape=(nsrc, nsampl) matrix containing true sources estimated_sources : np.ndarray, shape=(nsrc, nsampl) matrix containing estimated sources
[ "Checks", "that", "the", "input", "data", "to", "a", "metric", "are", "valid", "and", "throws", "helpful", "errors", "if", "not", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/separation.py#L62-L121
train
craffel/mir_eval
mir_eval/separation.py
_any_source_silent
def _any_source_silent(sources): """Returns true if the parameter sources has any silent first dimensions""" return np.any(np.all(np.sum( sources, axis=tuple(range(2, sources.ndim))) == 0, axis=1))
python
def _any_source_silent(sources): """Returns true if the parameter sources has any silent first dimensions""" return np.any(np.all(np.sum( sources, axis=tuple(range(2, sources.ndim))) == 0, axis=1))
[ "def", "_any_source_silent", "(", "sources", ")", ":", "return", "np", ".", "any", "(", "np", ".", "all", "(", "np", ".", "sum", "(", "sources", ",", "axis", "=", "tuple", "(", "range", "(", "2", ",", "sources", ".", "ndim", ")", ")", ")", "==", "0", ",", "axis", "=", "1", ")", ")" ]
Returns true if the parameter sources has any silent first dimensions
[ "Returns", "true", "if", "the", "parameter", "sources", "has", "any", "silent", "first", "dimensions" ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/separation.py#L124-L127
train
craffel/mir_eval
mir_eval/separation.py
bss_eval_sources
def bss_eval_sources(reference_sources, estimated_sources, compute_permutation=True): """ Ordering and measurement of the separation quality for estimated source signals in terms of filtered true source, interference and artifacts. The decomposition allows a time-invariant filter distortion of length 512, as described in Section III.B of [#vincent2006performance]_. Passing ``False`` for ``compute_permutation`` will improve the computation performance of the evaluation; however, it is not always appropriate and is not the way that the BSS_EVAL Matlab toolbox computes bss_eval_sources. Examples -------- >>> # reference_sources[n] should be an ndarray of samples of the >>> # n'th reference source >>> # estimated_sources[n] should be the same for the n'th estimated >>> # source >>> (sdr, sir, sar, ... perm) = mir_eval.separation.bss_eval_sources(reference_sources, ... estimated_sources) Parameters ---------- reference_sources : np.ndarray, shape=(nsrc, nsampl) matrix containing true sources (must have same shape as estimated_sources) estimated_sources : np.ndarray, shape=(nsrc, nsampl) matrix containing estimated sources (must have same shape as reference_sources) compute_permutation : bool, optional compute permutation of estimate/source combinations (True by default) Returns ------- sdr : np.ndarray, shape=(nsrc,) vector of Signal to Distortion Ratios (SDR) sir : np.ndarray, shape=(nsrc,) vector of Source to Interference Ratios (SIR) sar : np.ndarray, shape=(nsrc,) vector of Sources to Artifacts Ratios (SAR) perm : np.ndarray, shape=(nsrc,) vector containing the best ordering of estimated sources in the mean SIR sense (estimated source number ``perm[j]`` corresponds to true source number ``j``). Note: ``perm`` will be ``[0, 1, ..., nsrc-1]`` if ``compute_permutation`` is ``False``. References ---------- .. [#] Emmanuel Vincent, Shoko Araki, Fabian J. Theis, Guido Nolte, Pau Bofill, Hiroshi Sawada, Alexey Ozerov, B. Vikrham Gowreesunker, Dominik Lutter and Ngoc Q.K. Duong, "The Signal Separation Evaluation Campaign (2007-2010): Achievements and remaining challenges", Signal Processing, 92, pp. 1928-1936, 2012. """ # make sure the input is of shape (nsrc, nsampl) if estimated_sources.ndim == 1: estimated_sources = estimated_sources[np.newaxis, :] if reference_sources.ndim == 1: reference_sources = reference_sources[np.newaxis, :] validate(reference_sources, estimated_sources) # If empty matrices were supplied, return empty lists (special case) if reference_sources.size == 0 or estimated_sources.size == 0: return np.array([]), np.array([]), np.array([]), np.array([]) nsrc = estimated_sources.shape[0] # does user desire permutations? if compute_permutation: # compute criteria for all possible pair matches sdr = np.empty((nsrc, nsrc)) sir = np.empty((nsrc, nsrc)) sar = np.empty((nsrc, nsrc)) for jest in range(nsrc): for jtrue in range(nsrc): s_true, e_spat, e_interf, e_artif = \ _bss_decomp_mtifilt(reference_sources, estimated_sources[jest], jtrue, 512) sdr[jest, jtrue], sir[jest, jtrue], sar[jest, jtrue] = \ _bss_source_crit(s_true, e_spat, e_interf, e_artif) # select the best ordering perms = list(itertools.permutations(list(range(nsrc)))) mean_sir = np.empty(len(perms)) dum = np.arange(nsrc) for (i, perm) in enumerate(perms): mean_sir[i] = np.mean(sir[perm, dum]) popt = perms[np.argmax(mean_sir)] idx = (popt, dum) return (sdr[idx], sir[idx], sar[idx], np.asarray(popt)) else: # compute criteria for only the simple correspondence # (estimate 1 is estimate corresponding to reference source 1, etc.) sdr = np.empty(nsrc) sir = np.empty(nsrc) sar = np.empty(nsrc) for j in range(nsrc): s_true, e_spat, e_interf, e_artif = \ _bss_decomp_mtifilt(reference_sources, estimated_sources[j], j, 512) sdr[j], sir[j], sar[j] = \ _bss_source_crit(s_true, e_spat, e_interf, e_artif) # return the default permutation for compatibility popt = np.arange(nsrc) return (sdr, sir, sar, popt)
python
def bss_eval_sources(reference_sources, estimated_sources, compute_permutation=True): """ Ordering and measurement of the separation quality for estimated source signals in terms of filtered true source, interference and artifacts. The decomposition allows a time-invariant filter distortion of length 512, as described in Section III.B of [#vincent2006performance]_. Passing ``False`` for ``compute_permutation`` will improve the computation performance of the evaluation; however, it is not always appropriate and is not the way that the BSS_EVAL Matlab toolbox computes bss_eval_sources. Examples -------- >>> # reference_sources[n] should be an ndarray of samples of the >>> # n'th reference source >>> # estimated_sources[n] should be the same for the n'th estimated >>> # source >>> (sdr, sir, sar, ... perm) = mir_eval.separation.bss_eval_sources(reference_sources, ... estimated_sources) Parameters ---------- reference_sources : np.ndarray, shape=(nsrc, nsampl) matrix containing true sources (must have same shape as estimated_sources) estimated_sources : np.ndarray, shape=(nsrc, nsampl) matrix containing estimated sources (must have same shape as reference_sources) compute_permutation : bool, optional compute permutation of estimate/source combinations (True by default) Returns ------- sdr : np.ndarray, shape=(nsrc,) vector of Signal to Distortion Ratios (SDR) sir : np.ndarray, shape=(nsrc,) vector of Source to Interference Ratios (SIR) sar : np.ndarray, shape=(nsrc,) vector of Sources to Artifacts Ratios (SAR) perm : np.ndarray, shape=(nsrc,) vector containing the best ordering of estimated sources in the mean SIR sense (estimated source number ``perm[j]`` corresponds to true source number ``j``). Note: ``perm`` will be ``[0, 1, ..., nsrc-1]`` if ``compute_permutation`` is ``False``. References ---------- .. [#] Emmanuel Vincent, Shoko Araki, Fabian J. Theis, Guido Nolte, Pau Bofill, Hiroshi Sawada, Alexey Ozerov, B. Vikrham Gowreesunker, Dominik Lutter and Ngoc Q.K. Duong, "The Signal Separation Evaluation Campaign (2007-2010): Achievements and remaining challenges", Signal Processing, 92, pp. 1928-1936, 2012. """ # make sure the input is of shape (nsrc, nsampl) if estimated_sources.ndim == 1: estimated_sources = estimated_sources[np.newaxis, :] if reference_sources.ndim == 1: reference_sources = reference_sources[np.newaxis, :] validate(reference_sources, estimated_sources) # If empty matrices were supplied, return empty lists (special case) if reference_sources.size == 0 or estimated_sources.size == 0: return np.array([]), np.array([]), np.array([]), np.array([]) nsrc = estimated_sources.shape[0] # does user desire permutations? if compute_permutation: # compute criteria for all possible pair matches sdr = np.empty((nsrc, nsrc)) sir = np.empty((nsrc, nsrc)) sar = np.empty((nsrc, nsrc)) for jest in range(nsrc): for jtrue in range(nsrc): s_true, e_spat, e_interf, e_artif = \ _bss_decomp_mtifilt(reference_sources, estimated_sources[jest], jtrue, 512) sdr[jest, jtrue], sir[jest, jtrue], sar[jest, jtrue] = \ _bss_source_crit(s_true, e_spat, e_interf, e_artif) # select the best ordering perms = list(itertools.permutations(list(range(nsrc)))) mean_sir = np.empty(len(perms)) dum = np.arange(nsrc) for (i, perm) in enumerate(perms): mean_sir[i] = np.mean(sir[perm, dum]) popt = perms[np.argmax(mean_sir)] idx = (popt, dum) return (sdr[idx], sir[idx], sar[idx], np.asarray(popt)) else: # compute criteria for only the simple correspondence # (estimate 1 is estimate corresponding to reference source 1, etc.) sdr = np.empty(nsrc) sir = np.empty(nsrc) sar = np.empty(nsrc) for j in range(nsrc): s_true, e_spat, e_interf, e_artif = \ _bss_decomp_mtifilt(reference_sources, estimated_sources[j], j, 512) sdr[j], sir[j], sar[j] = \ _bss_source_crit(s_true, e_spat, e_interf, e_artif) # return the default permutation for compatibility popt = np.arange(nsrc) return (sdr, sir, sar, popt)
[ "def", "bss_eval_sources", "(", "reference_sources", ",", "estimated_sources", ",", "compute_permutation", "=", "True", ")", ":", "# make sure the input is of shape (nsrc, nsampl)", "if", "estimated_sources", ".", "ndim", "==", "1", ":", "estimated_sources", "=", "estimated_sources", "[", "np", ".", "newaxis", ",", ":", "]", "if", "reference_sources", ".", "ndim", "==", "1", ":", "reference_sources", "=", "reference_sources", "[", "np", ".", "newaxis", ",", ":", "]", "validate", "(", "reference_sources", ",", "estimated_sources", ")", "# If empty matrices were supplied, return empty lists (special case)", "if", "reference_sources", ".", "size", "==", "0", "or", "estimated_sources", ".", "size", "==", "0", ":", "return", "np", ".", "array", "(", "[", "]", ")", ",", "np", ".", "array", "(", "[", "]", ")", ",", "np", ".", "array", "(", "[", "]", ")", ",", "np", ".", "array", "(", "[", "]", ")", "nsrc", "=", "estimated_sources", ".", "shape", "[", "0", "]", "# does user desire permutations?", "if", "compute_permutation", ":", "# compute criteria for all possible pair matches", "sdr", "=", "np", ".", "empty", "(", "(", "nsrc", ",", "nsrc", ")", ")", "sir", "=", "np", ".", "empty", "(", "(", "nsrc", ",", "nsrc", ")", ")", "sar", "=", "np", ".", "empty", "(", "(", "nsrc", ",", "nsrc", ")", ")", "for", "jest", "in", "range", "(", "nsrc", ")", ":", "for", "jtrue", "in", "range", "(", "nsrc", ")", ":", "s_true", ",", "e_spat", ",", "e_interf", ",", "e_artif", "=", "_bss_decomp_mtifilt", "(", "reference_sources", ",", "estimated_sources", "[", "jest", "]", ",", "jtrue", ",", "512", ")", "sdr", "[", "jest", ",", "jtrue", "]", ",", "sir", "[", "jest", ",", "jtrue", "]", ",", "sar", "[", "jest", ",", "jtrue", "]", "=", "_bss_source_crit", "(", "s_true", ",", "e_spat", ",", "e_interf", ",", "e_artif", ")", "# select the best ordering", "perms", "=", "list", "(", "itertools", ".", "permutations", "(", "list", "(", "range", "(", "nsrc", ")", ")", ")", ")", "mean_sir", "=", "np", ".", "empty", "(", "len", "(", "perms", ")", ")", "dum", "=", "np", ".", "arange", "(", "nsrc", ")", "for", "(", "i", ",", "perm", ")", "in", "enumerate", "(", "perms", ")", ":", "mean_sir", "[", "i", "]", "=", "np", ".", "mean", "(", "sir", "[", "perm", ",", "dum", "]", ")", "popt", "=", "perms", "[", "np", ".", "argmax", "(", "mean_sir", ")", "]", "idx", "=", "(", "popt", ",", "dum", ")", "return", "(", "sdr", "[", "idx", "]", ",", "sir", "[", "idx", "]", ",", "sar", "[", "idx", "]", ",", "np", ".", "asarray", "(", "popt", ")", ")", "else", ":", "# compute criteria for only the simple correspondence", "# (estimate 1 is estimate corresponding to reference source 1, etc.)", "sdr", "=", "np", ".", "empty", "(", "nsrc", ")", "sir", "=", "np", ".", "empty", "(", "nsrc", ")", "sar", "=", "np", ".", "empty", "(", "nsrc", ")", "for", "j", "in", "range", "(", "nsrc", ")", ":", "s_true", ",", "e_spat", ",", "e_interf", ",", "e_artif", "=", "_bss_decomp_mtifilt", "(", "reference_sources", ",", "estimated_sources", "[", "j", "]", ",", "j", ",", "512", ")", "sdr", "[", "j", "]", ",", "sir", "[", "j", "]", ",", "sar", "[", "j", "]", "=", "_bss_source_crit", "(", "s_true", ",", "e_spat", ",", "e_interf", ",", "e_artif", ")", "# return the default permutation for compatibility", "popt", "=", "np", ".", "arange", "(", "nsrc", ")", "return", "(", "sdr", ",", "sir", ",", "sar", ",", "popt", ")" ]
Ordering and measurement of the separation quality for estimated source signals in terms of filtered true source, interference and artifacts. The decomposition allows a time-invariant filter distortion of length 512, as described in Section III.B of [#vincent2006performance]_. Passing ``False`` for ``compute_permutation`` will improve the computation performance of the evaluation; however, it is not always appropriate and is not the way that the BSS_EVAL Matlab toolbox computes bss_eval_sources. Examples -------- >>> # reference_sources[n] should be an ndarray of samples of the >>> # n'th reference source >>> # estimated_sources[n] should be the same for the n'th estimated >>> # source >>> (sdr, sir, sar, ... perm) = mir_eval.separation.bss_eval_sources(reference_sources, ... estimated_sources) Parameters ---------- reference_sources : np.ndarray, shape=(nsrc, nsampl) matrix containing true sources (must have same shape as estimated_sources) estimated_sources : np.ndarray, shape=(nsrc, nsampl) matrix containing estimated sources (must have same shape as reference_sources) compute_permutation : bool, optional compute permutation of estimate/source combinations (True by default) Returns ------- sdr : np.ndarray, shape=(nsrc,) vector of Signal to Distortion Ratios (SDR) sir : np.ndarray, shape=(nsrc,) vector of Source to Interference Ratios (SIR) sar : np.ndarray, shape=(nsrc,) vector of Sources to Artifacts Ratios (SAR) perm : np.ndarray, shape=(nsrc,) vector containing the best ordering of estimated sources in the mean SIR sense (estimated source number ``perm[j]`` corresponds to true source number ``j``). Note: ``perm`` will be ``[0, 1, ..., nsrc-1]`` if ``compute_permutation`` is ``False``. References ---------- .. [#] Emmanuel Vincent, Shoko Araki, Fabian J. Theis, Guido Nolte, Pau Bofill, Hiroshi Sawada, Alexey Ozerov, B. Vikrham Gowreesunker, Dominik Lutter and Ngoc Q.K. Duong, "The Signal Separation Evaluation Campaign (2007-2010): Achievements and remaining challenges", Signal Processing, 92, pp. 1928-1936, 2012.
[ "Ordering", "and", "measurement", "of", "the", "separation", "quality", "for", "estimated", "source", "signals", "in", "terms", "of", "filtered", "true", "source", "interference", "and", "artifacts", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/separation.py#L130-L241
train
craffel/mir_eval
mir_eval/separation.py
bss_eval_sources_framewise
def bss_eval_sources_framewise(reference_sources, estimated_sources, window=30*44100, hop=15*44100, compute_permutation=False): """Framewise computation of bss_eval_sources Please be aware that this function does not compute permutations (by default) on the possible relations between reference_sources and estimated_sources due to the dangers of a changing permutation. Therefore (by default), it assumes that ``reference_sources[i]`` corresponds to ``estimated_sources[i]``. To enable computing permutations please set ``compute_permutation`` to be ``True`` and check that the returned ``perm`` is identical for all windows. NOTE: if ``reference_sources`` and ``estimated_sources`` would be evaluated using only a single window or are shorter than the window length, the result of :func:`mir_eval.separation.bss_eval_sources` called on ``reference_sources`` and ``estimated_sources`` (with the ``compute_permutation`` parameter passed to :func:`mir_eval.separation.bss_eval_sources`) is returned. Examples -------- >>> # reference_sources[n] should be an ndarray of samples of the >>> # n'th reference source >>> # estimated_sources[n] should be the same for the n'th estimated >>> # source >>> (sdr, sir, sar, ... perm) = mir_eval.separation.bss_eval_sources_framewise( reference_sources, ... estimated_sources) Parameters ---------- reference_sources : np.ndarray, shape=(nsrc, nsampl) matrix containing true sources (must have the same shape as ``estimated_sources``) estimated_sources : np.ndarray, shape=(nsrc, nsampl) matrix containing estimated sources (must have the same shape as ``reference_sources``) window : int, optional Window length for framewise evaluation (default value is 30s at a sample rate of 44.1kHz) hop : int, optional Hop size for framewise evaluation (default value is 15s at a sample rate of 44.1kHz) compute_permutation : bool, optional compute permutation of estimate/source combinations for all windows (False by default) Returns ------- sdr : np.ndarray, shape=(nsrc, nframes) vector of Signal to Distortion Ratios (SDR) sir : np.ndarray, shape=(nsrc, nframes) vector of Source to Interference Ratios (SIR) sar : np.ndarray, shape=(nsrc, nframes) vector of Sources to Artifacts Ratios (SAR) perm : np.ndarray, shape=(nsrc, nframes) vector containing the best ordering of estimated sources in the mean SIR sense (estimated source number ``perm[j]`` corresponds to true source number ``j``). Note: ``perm`` will be ``range(nsrc)`` for all windows if ``compute_permutation`` is ``False`` """ # make sure the input is of shape (nsrc, nsampl) if estimated_sources.ndim == 1: estimated_sources = estimated_sources[np.newaxis, :] if reference_sources.ndim == 1: reference_sources = reference_sources[np.newaxis, :] validate(reference_sources, estimated_sources) # If empty matrices were supplied, return empty lists (special case) if reference_sources.size == 0 or estimated_sources.size == 0: return np.array([]), np.array([]), np.array([]), np.array([]) nsrc = reference_sources.shape[0] nwin = int( np.floor((reference_sources.shape[1] - window + hop) / hop) ) # if fewer than 2 windows would be evaluated, return the sources result if nwin < 2: result = bss_eval_sources(reference_sources, estimated_sources, compute_permutation) return [np.expand_dims(score, -1) for score in result] # compute the criteria across all windows sdr = np.empty((nsrc, nwin)) sir = np.empty((nsrc, nwin)) sar = np.empty((nsrc, nwin)) perm = np.empty((nsrc, nwin)) # k iterates across all the windows for k in range(nwin): win_slice = slice(k * hop, k * hop + window) ref_slice = reference_sources[:, win_slice] est_slice = estimated_sources[:, win_slice] # check for a silent frame if (not _any_source_silent(ref_slice) and not _any_source_silent(est_slice)): sdr[:, k], sir[:, k], sar[:, k], perm[:, k] = bss_eval_sources( ref_slice, est_slice, compute_permutation ) else: # if we have a silent frame set results as np.nan sdr[:, k] = sir[:, k] = sar[:, k] = perm[:, k] = np.nan return sdr, sir, sar, perm
python
def bss_eval_sources_framewise(reference_sources, estimated_sources, window=30*44100, hop=15*44100, compute_permutation=False): """Framewise computation of bss_eval_sources Please be aware that this function does not compute permutations (by default) on the possible relations between reference_sources and estimated_sources due to the dangers of a changing permutation. Therefore (by default), it assumes that ``reference_sources[i]`` corresponds to ``estimated_sources[i]``. To enable computing permutations please set ``compute_permutation`` to be ``True`` and check that the returned ``perm`` is identical for all windows. NOTE: if ``reference_sources`` and ``estimated_sources`` would be evaluated using only a single window or are shorter than the window length, the result of :func:`mir_eval.separation.bss_eval_sources` called on ``reference_sources`` and ``estimated_sources`` (with the ``compute_permutation`` parameter passed to :func:`mir_eval.separation.bss_eval_sources`) is returned. Examples -------- >>> # reference_sources[n] should be an ndarray of samples of the >>> # n'th reference source >>> # estimated_sources[n] should be the same for the n'th estimated >>> # source >>> (sdr, sir, sar, ... perm) = mir_eval.separation.bss_eval_sources_framewise( reference_sources, ... estimated_sources) Parameters ---------- reference_sources : np.ndarray, shape=(nsrc, nsampl) matrix containing true sources (must have the same shape as ``estimated_sources``) estimated_sources : np.ndarray, shape=(nsrc, nsampl) matrix containing estimated sources (must have the same shape as ``reference_sources``) window : int, optional Window length for framewise evaluation (default value is 30s at a sample rate of 44.1kHz) hop : int, optional Hop size for framewise evaluation (default value is 15s at a sample rate of 44.1kHz) compute_permutation : bool, optional compute permutation of estimate/source combinations for all windows (False by default) Returns ------- sdr : np.ndarray, shape=(nsrc, nframes) vector of Signal to Distortion Ratios (SDR) sir : np.ndarray, shape=(nsrc, nframes) vector of Source to Interference Ratios (SIR) sar : np.ndarray, shape=(nsrc, nframes) vector of Sources to Artifacts Ratios (SAR) perm : np.ndarray, shape=(nsrc, nframes) vector containing the best ordering of estimated sources in the mean SIR sense (estimated source number ``perm[j]`` corresponds to true source number ``j``). Note: ``perm`` will be ``range(nsrc)`` for all windows if ``compute_permutation`` is ``False`` """ # make sure the input is of shape (nsrc, nsampl) if estimated_sources.ndim == 1: estimated_sources = estimated_sources[np.newaxis, :] if reference_sources.ndim == 1: reference_sources = reference_sources[np.newaxis, :] validate(reference_sources, estimated_sources) # If empty matrices were supplied, return empty lists (special case) if reference_sources.size == 0 or estimated_sources.size == 0: return np.array([]), np.array([]), np.array([]), np.array([]) nsrc = reference_sources.shape[0] nwin = int( np.floor((reference_sources.shape[1] - window + hop) / hop) ) # if fewer than 2 windows would be evaluated, return the sources result if nwin < 2: result = bss_eval_sources(reference_sources, estimated_sources, compute_permutation) return [np.expand_dims(score, -1) for score in result] # compute the criteria across all windows sdr = np.empty((nsrc, nwin)) sir = np.empty((nsrc, nwin)) sar = np.empty((nsrc, nwin)) perm = np.empty((nsrc, nwin)) # k iterates across all the windows for k in range(nwin): win_slice = slice(k * hop, k * hop + window) ref_slice = reference_sources[:, win_slice] est_slice = estimated_sources[:, win_slice] # check for a silent frame if (not _any_source_silent(ref_slice) and not _any_source_silent(est_slice)): sdr[:, k], sir[:, k], sar[:, k], perm[:, k] = bss_eval_sources( ref_slice, est_slice, compute_permutation ) else: # if we have a silent frame set results as np.nan sdr[:, k] = sir[:, k] = sar[:, k] = perm[:, k] = np.nan return sdr, sir, sar, perm
[ "def", "bss_eval_sources_framewise", "(", "reference_sources", ",", "estimated_sources", ",", "window", "=", "30", "*", "44100", ",", "hop", "=", "15", "*", "44100", ",", "compute_permutation", "=", "False", ")", ":", "# make sure the input is of shape (nsrc, nsampl)", "if", "estimated_sources", ".", "ndim", "==", "1", ":", "estimated_sources", "=", "estimated_sources", "[", "np", ".", "newaxis", ",", ":", "]", "if", "reference_sources", ".", "ndim", "==", "1", ":", "reference_sources", "=", "reference_sources", "[", "np", ".", "newaxis", ",", ":", "]", "validate", "(", "reference_sources", ",", "estimated_sources", ")", "# If empty matrices were supplied, return empty lists (special case)", "if", "reference_sources", ".", "size", "==", "0", "or", "estimated_sources", ".", "size", "==", "0", ":", "return", "np", ".", "array", "(", "[", "]", ")", ",", "np", ".", "array", "(", "[", "]", ")", ",", "np", ".", "array", "(", "[", "]", ")", ",", "np", ".", "array", "(", "[", "]", ")", "nsrc", "=", "reference_sources", ".", "shape", "[", "0", "]", "nwin", "=", "int", "(", "np", ".", "floor", "(", "(", "reference_sources", ".", "shape", "[", "1", "]", "-", "window", "+", "hop", ")", "/", "hop", ")", ")", "# if fewer than 2 windows would be evaluated, return the sources result", "if", "nwin", "<", "2", ":", "result", "=", "bss_eval_sources", "(", "reference_sources", ",", "estimated_sources", ",", "compute_permutation", ")", "return", "[", "np", ".", "expand_dims", "(", "score", ",", "-", "1", ")", "for", "score", "in", "result", "]", "# compute the criteria across all windows", "sdr", "=", "np", ".", "empty", "(", "(", "nsrc", ",", "nwin", ")", ")", "sir", "=", "np", ".", "empty", "(", "(", "nsrc", ",", "nwin", ")", ")", "sar", "=", "np", ".", "empty", "(", "(", "nsrc", ",", "nwin", ")", ")", "perm", "=", "np", ".", "empty", "(", "(", "nsrc", ",", "nwin", ")", ")", "# k iterates across all the windows", "for", "k", "in", "range", "(", "nwin", ")", ":", "win_slice", "=", "slice", "(", "k", "*", "hop", ",", "k", "*", "hop", "+", "window", ")", "ref_slice", "=", "reference_sources", "[", ":", ",", "win_slice", "]", "est_slice", "=", "estimated_sources", "[", ":", ",", "win_slice", "]", "# check for a silent frame", "if", "(", "not", "_any_source_silent", "(", "ref_slice", ")", "and", "not", "_any_source_silent", "(", "est_slice", ")", ")", ":", "sdr", "[", ":", ",", "k", "]", ",", "sir", "[", ":", ",", "k", "]", ",", "sar", "[", ":", ",", "k", "]", ",", "perm", "[", ":", ",", "k", "]", "=", "bss_eval_sources", "(", "ref_slice", ",", "est_slice", ",", "compute_permutation", ")", "else", ":", "# if we have a silent frame set results as np.nan", "sdr", "[", ":", ",", "k", "]", "=", "sir", "[", ":", ",", "k", "]", "=", "sar", "[", ":", ",", "k", "]", "=", "perm", "[", ":", ",", "k", "]", "=", "np", ".", "nan", "return", "sdr", ",", "sir", ",", "sar", ",", "perm" ]
Framewise computation of bss_eval_sources Please be aware that this function does not compute permutations (by default) on the possible relations between reference_sources and estimated_sources due to the dangers of a changing permutation. Therefore (by default), it assumes that ``reference_sources[i]`` corresponds to ``estimated_sources[i]``. To enable computing permutations please set ``compute_permutation`` to be ``True`` and check that the returned ``perm`` is identical for all windows. NOTE: if ``reference_sources`` and ``estimated_sources`` would be evaluated using only a single window or are shorter than the window length, the result of :func:`mir_eval.separation.bss_eval_sources` called on ``reference_sources`` and ``estimated_sources`` (with the ``compute_permutation`` parameter passed to :func:`mir_eval.separation.bss_eval_sources`) is returned. Examples -------- >>> # reference_sources[n] should be an ndarray of samples of the >>> # n'th reference source >>> # estimated_sources[n] should be the same for the n'th estimated >>> # source >>> (sdr, sir, sar, ... perm) = mir_eval.separation.bss_eval_sources_framewise( reference_sources, ... estimated_sources) Parameters ---------- reference_sources : np.ndarray, shape=(nsrc, nsampl) matrix containing true sources (must have the same shape as ``estimated_sources``) estimated_sources : np.ndarray, shape=(nsrc, nsampl) matrix containing estimated sources (must have the same shape as ``reference_sources``) window : int, optional Window length for framewise evaluation (default value is 30s at a sample rate of 44.1kHz) hop : int, optional Hop size for framewise evaluation (default value is 15s at a sample rate of 44.1kHz) compute_permutation : bool, optional compute permutation of estimate/source combinations for all windows (False by default) Returns ------- sdr : np.ndarray, shape=(nsrc, nframes) vector of Signal to Distortion Ratios (SDR) sir : np.ndarray, shape=(nsrc, nframes) vector of Source to Interference Ratios (SIR) sar : np.ndarray, shape=(nsrc, nframes) vector of Sources to Artifacts Ratios (SAR) perm : np.ndarray, shape=(nsrc, nframes) vector containing the best ordering of estimated sources in the mean SIR sense (estimated source number ``perm[j]`` corresponds to true source number ``j``). Note: ``perm`` will be ``range(nsrc)`` for all windows if ``compute_permutation`` is ``False``
[ "Framewise", "computation", "of", "bss_eval_sources" ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/separation.py#L244-L353
train
craffel/mir_eval
mir_eval/separation.py
bss_eval_images_framewise
def bss_eval_images_framewise(reference_sources, estimated_sources, window=30*44100, hop=15*44100, compute_permutation=False): """Framewise computation of bss_eval_images Please be aware that this function does not compute permutations (by default) on the possible relations between ``reference_sources`` and ``estimated_sources`` due to the dangers of a changing permutation. Therefore (by default), it assumes that ``reference_sources[i]`` corresponds to ``estimated_sources[i]``. To enable computing permutations please set ``compute_permutation`` to be ``True`` and check that the returned ``perm`` is identical for all windows. NOTE: if ``reference_sources`` and ``estimated_sources`` would be evaluated using only a single window or are shorter than the window length, the result of ``bss_eval_images`` called on ``reference_sources`` and ``estimated_sources`` (with the ``compute_permutation`` parameter passed to ``bss_eval_images``) is returned Examples -------- >>> # reference_sources[n] should be an ndarray of samples of the >>> # n'th reference source >>> # estimated_sources[n] should be the same for the n'th estimated >>> # source >>> (sdr, isr, sir, sar, ... perm) = mir_eval.separation.bss_eval_images_framewise( reference_sources, ... estimated_sources, window, .... hop) Parameters ---------- reference_sources : np.ndarray, shape=(nsrc, nsampl, nchan) matrix containing true sources (must have the same shape as ``estimated_sources``) estimated_sources : np.ndarray, shape=(nsrc, nsampl, nchan) matrix containing estimated sources (must have the same shape as ``reference_sources``) window : int Window length for framewise evaluation hop : int Hop size for framewise evaluation compute_permutation : bool, optional compute permutation of estimate/source combinations for all windows (False by default) Returns ------- sdr : np.ndarray, shape=(nsrc, nframes) vector of Signal to Distortion Ratios (SDR) isr : np.ndarray, shape=(nsrc, nframes) vector of source Image to Spatial distortion Ratios (ISR) sir : np.ndarray, shape=(nsrc, nframes) vector of Source to Interference Ratios (SIR) sar : np.ndarray, shape=(nsrc, nframes) vector of Sources to Artifacts Ratios (SAR) perm : np.ndarray, shape=(nsrc, nframes) vector containing the best ordering of estimated sources in the mean SIR sense (estimated source number perm[j] corresponds to true source number j) Note: perm will be range(nsrc) for all windows if compute_permutation is False """ # make sure the input has 3 dimensions # assuming input is in shape (nsampl) or (nsrc, nsampl) estimated_sources = np.atleast_3d(estimated_sources) reference_sources = np.atleast_3d(reference_sources) # we will ensure input doesn't have more than 3 dimensions in validate validate(reference_sources, estimated_sources) # If empty matrices were supplied, return empty lists (special case) if reference_sources.size == 0 or estimated_sources.size == 0: return np.array([]), np.array([]), np.array([]), np.array([]) nsrc = reference_sources.shape[0] nwin = int( np.floor((reference_sources.shape[1] - window + hop) / hop) ) # if fewer than 2 windows would be evaluated, return the images result if nwin < 2: result = bss_eval_images(reference_sources, estimated_sources, compute_permutation) return [np.expand_dims(score, -1) for score in result] # compute the criteria across all windows sdr = np.empty((nsrc, nwin)) isr = np.empty((nsrc, nwin)) sir = np.empty((nsrc, nwin)) sar = np.empty((nsrc, nwin)) perm = np.empty((nsrc, nwin)) # k iterates across all the windows for k in range(nwin): win_slice = slice(k * hop, k * hop + window) ref_slice = reference_sources[:, win_slice, :] est_slice = estimated_sources[:, win_slice, :] # check for a silent frame if (not _any_source_silent(ref_slice) and not _any_source_silent(est_slice)): sdr[:, k], isr[:, k], sir[:, k], sar[:, k], perm[:, k] = \ bss_eval_images( ref_slice, est_slice, compute_permutation ) else: # if we have a silent frame set results as np.nan sdr[:, k] = sir[:, k] = sar[:, k] = perm[:, k] = np.nan return sdr, isr, sir, sar, perm
python
def bss_eval_images_framewise(reference_sources, estimated_sources, window=30*44100, hop=15*44100, compute_permutation=False): """Framewise computation of bss_eval_images Please be aware that this function does not compute permutations (by default) on the possible relations between ``reference_sources`` and ``estimated_sources`` due to the dangers of a changing permutation. Therefore (by default), it assumes that ``reference_sources[i]`` corresponds to ``estimated_sources[i]``. To enable computing permutations please set ``compute_permutation`` to be ``True`` and check that the returned ``perm`` is identical for all windows. NOTE: if ``reference_sources`` and ``estimated_sources`` would be evaluated using only a single window or are shorter than the window length, the result of ``bss_eval_images`` called on ``reference_sources`` and ``estimated_sources`` (with the ``compute_permutation`` parameter passed to ``bss_eval_images``) is returned Examples -------- >>> # reference_sources[n] should be an ndarray of samples of the >>> # n'th reference source >>> # estimated_sources[n] should be the same for the n'th estimated >>> # source >>> (sdr, isr, sir, sar, ... perm) = mir_eval.separation.bss_eval_images_framewise( reference_sources, ... estimated_sources, window, .... hop) Parameters ---------- reference_sources : np.ndarray, shape=(nsrc, nsampl, nchan) matrix containing true sources (must have the same shape as ``estimated_sources``) estimated_sources : np.ndarray, shape=(nsrc, nsampl, nchan) matrix containing estimated sources (must have the same shape as ``reference_sources``) window : int Window length for framewise evaluation hop : int Hop size for framewise evaluation compute_permutation : bool, optional compute permutation of estimate/source combinations for all windows (False by default) Returns ------- sdr : np.ndarray, shape=(nsrc, nframes) vector of Signal to Distortion Ratios (SDR) isr : np.ndarray, shape=(nsrc, nframes) vector of source Image to Spatial distortion Ratios (ISR) sir : np.ndarray, shape=(nsrc, nframes) vector of Source to Interference Ratios (SIR) sar : np.ndarray, shape=(nsrc, nframes) vector of Sources to Artifacts Ratios (SAR) perm : np.ndarray, shape=(nsrc, nframes) vector containing the best ordering of estimated sources in the mean SIR sense (estimated source number perm[j] corresponds to true source number j) Note: perm will be range(nsrc) for all windows if compute_permutation is False """ # make sure the input has 3 dimensions # assuming input is in shape (nsampl) or (nsrc, nsampl) estimated_sources = np.atleast_3d(estimated_sources) reference_sources = np.atleast_3d(reference_sources) # we will ensure input doesn't have more than 3 dimensions in validate validate(reference_sources, estimated_sources) # If empty matrices were supplied, return empty lists (special case) if reference_sources.size == 0 or estimated_sources.size == 0: return np.array([]), np.array([]), np.array([]), np.array([]) nsrc = reference_sources.shape[0] nwin = int( np.floor((reference_sources.shape[1] - window + hop) / hop) ) # if fewer than 2 windows would be evaluated, return the images result if nwin < 2: result = bss_eval_images(reference_sources, estimated_sources, compute_permutation) return [np.expand_dims(score, -1) for score in result] # compute the criteria across all windows sdr = np.empty((nsrc, nwin)) isr = np.empty((nsrc, nwin)) sir = np.empty((nsrc, nwin)) sar = np.empty((nsrc, nwin)) perm = np.empty((nsrc, nwin)) # k iterates across all the windows for k in range(nwin): win_slice = slice(k * hop, k * hop + window) ref_slice = reference_sources[:, win_slice, :] est_slice = estimated_sources[:, win_slice, :] # check for a silent frame if (not _any_source_silent(ref_slice) and not _any_source_silent(est_slice)): sdr[:, k], isr[:, k], sir[:, k], sar[:, k], perm[:, k] = \ bss_eval_images( ref_slice, est_slice, compute_permutation ) else: # if we have a silent frame set results as np.nan sdr[:, k] = sir[:, k] = sar[:, k] = perm[:, k] = np.nan return sdr, isr, sir, sar, perm
[ "def", "bss_eval_images_framewise", "(", "reference_sources", ",", "estimated_sources", ",", "window", "=", "30", "*", "44100", ",", "hop", "=", "15", "*", "44100", ",", "compute_permutation", "=", "False", ")", ":", "# make sure the input has 3 dimensions", "# assuming input is in shape (nsampl) or (nsrc, nsampl)", "estimated_sources", "=", "np", ".", "atleast_3d", "(", "estimated_sources", ")", "reference_sources", "=", "np", ".", "atleast_3d", "(", "reference_sources", ")", "# we will ensure input doesn't have more than 3 dimensions in validate", "validate", "(", "reference_sources", ",", "estimated_sources", ")", "# If empty matrices were supplied, return empty lists (special case)", "if", "reference_sources", ".", "size", "==", "0", "or", "estimated_sources", ".", "size", "==", "0", ":", "return", "np", ".", "array", "(", "[", "]", ")", ",", "np", ".", "array", "(", "[", "]", ")", ",", "np", ".", "array", "(", "[", "]", ")", ",", "np", ".", "array", "(", "[", "]", ")", "nsrc", "=", "reference_sources", ".", "shape", "[", "0", "]", "nwin", "=", "int", "(", "np", ".", "floor", "(", "(", "reference_sources", ".", "shape", "[", "1", "]", "-", "window", "+", "hop", ")", "/", "hop", ")", ")", "# if fewer than 2 windows would be evaluated, return the images result", "if", "nwin", "<", "2", ":", "result", "=", "bss_eval_images", "(", "reference_sources", ",", "estimated_sources", ",", "compute_permutation", ")", "return", "[", "np", ".", "expand_dims", "(", "score", ",", "-", "1", ")", "for", "score", "in", "result", "]", "# compute the criteria across all windows", "sdr", "=", "np", ".", "empty", "(", "(", "nsrc", ",", "nwin", ")", ")", "isr", "=", "np", ".", "empty", "(", "(", "nsrc", ",", "nwin", ")", ")", "sir", "=", "np", ".", "empty", "(", "(", "nsrc", ",", "nwin", ")", ")", "sar", "=", "np", ".", "empty", "(", "(", "nsrc", ",", "nwin", ")", ")", "perm", "=", "np", ".", "empty", "(", "(", "nsrc", ",", "nwin", ")", ")", "# k iterates across all the windows", "for", "k", "in", "range", "(", "nwin", ")", ":", "win_slice", "=", "slice", "(", "k", "*", "hop", ",", "k", "*", "hop", "+", "window", ")", "ref_slice", "=", "reference_sources", "[", ":", ",", "win_slice", ",", ":", "]", "est_slice", "=", "estimated_sources", "[", ":", ",", "win_slice", ",", ":", "]", "# check for a silent frame", "if", "(", "not", "_any_source_silent", "(", "ref_slice", ")", "and", "not", "_any_source_silent", "(", "est_slice", ")", ")", ":", "sdr", "[", ":", ",", "k", "]", ",", "isr", "[", ":", ",", "k", "]", ",", "sir", "[", ":", ",", "k", "]", ",", "sar", "[", ":", ",", "k", "]", ",", "perm", "[", ":", ",", "k", "]", "=", "bss_eval_images", "(", "ref_slice", ",", "est_slice", ",", "compute_permutation", ")", "else", ":", "# if we have a silent frame set results as np.nan", "sdr", "[", ":", ",", "k", "]", "=", "sir", "[", ":", ",", "k", "]", "=", "sar", "[", ":", ",", "k", "]", "=", "perm", "[", ":", ",", "k", "]", "=", "np", ".", "nan", "return", "sdr", ",", "isr", ",", "sir", ",", "sar", ",", "perm" ]
Framewise computation of bss_eval_images Please be aware that this function does not compute permutations (by default) on the possible relations between ``reference_sources`` and ``estimated_sources`` due to the dangers of a changing permutation. Therefore (by default), it assumes that ``reference_sources[i]`` corresponds to ``estimated_sources[i]``. To enable computing permutations please set ``compute_permutation`` to be ``True`` and check that the returned ``perm`` is identical for all windows. NOTE: if ``reference_sources`` and ``estimated_sources`` would be evaluated using only a single window or are shorter than the window length, the result of ``bss_eval_images`` called on ``reference_sources`` and ``estimated_sources`` (with the ``compute_permutation`` parameter passed to ``bss_eval_images``) is returned Examples -------- >>> # reference_sources[n] should be an ndarray of samples of the >>> # n'th reference source >>> # estimated_sources[n] should be the same for the n'th estimated >>> # source >>> (sdr, isr, sir, sar, ... perm) = mir_eval.separation.bss_eval_images_framewise( reference_sources, ... estimated_sources, window, .... hop) Parameters ---------- reference_sources : np.ndarray, shape=(nsrc, nsampl, nchan) matrix containing true sources (must have the same shape as ``estimated_sources``) estimated_sources : np.ndarray, shape=(nsrc, nsampl, nchan) matrix containing estimated sources (must have the same shape as ``reference_sources``) window : int Window length for framewise evaluation hop : int Hop size for framewise evaluation compute_permutation : bool, optional compute permutation of estimate/source combinations for all windows (False by default) Returns ------- sdr : np.ndarray, shape=(nsrc, nframes) vector of Signal to Distortion Ratios (SDR) isr : np.ndarray, shape=(nsrc, nframes) vector of source Image to Spatial distortion Ratios (ISR) sir : np.ndarray, shape=(nsrc, nframes) vector of Source to Interference Ratios (SIR) sar : np.ndarray, shape=(nsrc, nframes) vector of Sources to Artifacts Ratios (SAR) perm : np.ndarray, shape=(nsrc, nframes) vector containing the best ordering of estimated sources in the mean SIR sense (estimated source number perm[j] corresponds to true source number j) Note: perm will be range(nsrc) for all windows if compute_permutation is False
[ "Framewise", "computation", "of", "bss_eval_images" ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/separation.py#L493-L606
train
craffel/mir_eval
mir_eval/separation.py
_project
def _project(reference_sources, estimated_source, flen): """Least-squares projection of estimated source on the subspace spanned by delayed versions of reference sources, with delays between 0 and flen-1 """ nsrc = reference_sources.shape[0] nsampl = reference_sources.shape[1] # computing coefficients of least squares problem via FFT ## # zero padding and FFT of input data reference_sources = np.hstack((reference_sources, np.zeros((nsrc, flen - 1)))) estimated_source = np.hstack((estimated_source, np.zeros(flen - 1))) n_fft = int(2**np.ceil(np.log2(nsampl + flen - 1.))) sf = scipy.fftpack.fft(reference_sources, n=n_fft, axis=1) sef = scipy.fftpack.fft(estimated_source, n=n_fft) # inner products between delayed versions of reference_sources G = np.zeros((nsrc * flen, nsrc * flen)) for i in range(nsrc): for j in range(nsrc): ssf = sf[i] * np.conj(sf[j]) ssf = np.real(scipy.fftpack.ifft(ssf)) ss = toeplitz(np.hstack((ssf[0], ssf[-1:-flen:-1])), r=ssf[:flen]) G[i * flen: (i+1) * flen, j * flen: (j+1) * flen] = ss G[j * flen: (j+1) * flen, i * flen: (i+1) * flen] = ss.T # inner products between estimated_source and delayed versions of # reference_sources D = np.zeros(nsrc * flen) for i in range(nsrc): ssef = sf[i] * np.conj(sef) ssef = np.real(scipy.fftpack.ifft(ssef)) D[i * flen: (i+1) * flen] = np.hstack((ssef[0], ssef[-1:-flen:-1])) # Computing projection # Distortion filters try: C = np.linalg.solve(G, D).reshape(flen, nsrc, order='F') except np.linalg.linalg.LinAlgError: C = np.linalg.lstsq(G, D)[0].reshape(flen, nsrc, order='F') # Filtering sproj = np.zeros(nsampl + flen - 1) for i in range(nsrc): sproj += fftconvolve(C[:, i], reference_sources[i])[:nsampl + flen - 1] return sproj
python
def _project(reference_sources, estimated_source, flen): """Least-squares projection of estimated source on the subspace spanned by delayed versions of reference sources, with delays between 0 and flen-1 """ nsrc = reference_sources.shape[0] nsampl = reference_sources.shape[1] # computing coefficients of least squares problem via FFT ## # zero padding and FFT of input data reference_sources = np.hstack((reference_sources, np.zeros((nsrc, flen - 1)))) estimated_source = np.hstack((estimated_source, np.zeros(flen - 1))) n_fft = int(2**np.ceil(np.log2(nsampl + flen - 1.))) sf = scipy.fftpack.fft(reference_sources, n=n_fft, axis=1) sef = scipy.fftpack.fft(estimated_source, n=n_fft) # inner products between delayed versions of reference_sources G = np.zeros((nsrc * flen, nsrc * flen)) for i in range(nsrc): for j in range(nsrc): ssf = sf[i] * np.conj(sf[j]) ssf = np.real(scipy.fftpack.ifft(ssf)) ss = toeplitz(np.hstack((ssf[0], ssf[-1:-flen:-1])), r=ssf[:flen]) G[i * flen: (i+1) * flen, j * flen: (j+1) * flen] = ss G[j * flen: (j+1) * flen, i * flen: (i+1) * flen] = ss.T # inner products between estimated_source and delayed versions of # reference_sources D = np.zeros(nsrc * flen) for i in range(nsrc): ssef = sf[i] * np.conj(sef) ssef = np.real(scipy.fftpack.ifft(ssef)) D[i * flen: (i+1) * flen] = np.hstack((ssef[0], ssef[-1:-flen:-1])) # Computing projection # Distortion filters try: C = np.linalg.solve(G, D).reshape(flen, nsrc, order='F') except np.linalg.linalg.LinAlgError: C = np.linalg.lstsq(G, D)[0].reshape(flen, nsrc, order='F') # Filtering sproj = np.zeros(nsampl + flen - 1) for i in range(nsrc): sproj += fftconvolve(C[:, i], reference_sources[i])[:nsampl + flen - 1] return sproj
[ "def", "_project", "(", "reference_sources", ",", "estimated_source", ",", "flen", ")", ":", "nsrc", "=", "reference_sources", ".", "shape", "[", "0", "]", "nsampl", "=", "reference_sources", ".", "shape", "[", "1", "]", "# computing coefficients of least squares problem via FFT ##", "# zero padding and FFT of input data", "reference_sources", "=", "np", ".", "hstack", "(", "(", "reference_sources", ",", "np", ".", "zeros", "(", "(", "nsrc", ",", "flen", "-", "1", ")", ")", ")", ")", "estimated_source", "=", "np", ".", "hstack", "(", "(", "estimated_source", ",", "np", ".", "zeros", "(", "flen", "-", "1", ")", ")", ")", "n_fft", "=", "int", "(", "2", "**", "np", ".", "ceil", "(", "np", ".", "log2", "(", "nsampl", "+", "flen", "-", "1.", ")", ")", ")", "sf", "=", "scipy", ".", "fftpack", ".", "fft", "(", "reference_sources", ",", "n", "=", "n_fft", ",", "axis", "=", "1", ")", "sef", "=", "scipy", ".", "fftpack", ".", "fft", "(", "estimated_source", ",", "n", "=", "n_fft", ")", "# inner products between delayed versions of reference_sources", "G", "=", "np", ".", "zeros", "(", "(", "nsrc", "*", "flen", ",", "nsrc", "*", "flen", ")", ")", "for", "i", "in", "range", "(", "nsrc", ")", ":", "for", "j", "in", "range", "(", "nsrc", ")", ":", "ssf", "=", "sf", "[", "i", "]", "*", "np", ".", "conj", "(", "sf", "[", "j", "]", ")", "ssf", "=", "np", ".", "real", "(", "scipy", ".", "fftpack", ".", "ifft", "(", "ssf", ")", ")", "ss", "=", "toeplitz", "(", "np", ".", "hstack", "(", "(", "ssf", "[", "0", "]", ",", "ssf", "[", "-", "1", ":", "-", "flen", ":", "-", "1", "]", ")", ")", ",", "r", "=", "ssf", "[", ":", "flen", "]", ")", "G", "[", "i", "*", "flen", ":", "(", "i", "+", "1", ")", "*", "flen", ",", "j", "*", "flen", ":", "(", "j", "+", "1", ")", "*", "flen", "]", "=", "ss", "G", "[", "j", "*", "flen", ":", "(", "j", "+", "1", ")", "*", "flen", ",", "i", "*", "flen", ":", "(", "i", "+", "1", ")", "*", "flen", "]", "=", "ss", ".", "T", "# inner products between estimated_source and delayed versions of", "# reference_sources", "D", "=", "np", ".", "zeros", "(", "nsrc", "*", "flen", ")", "for", "i", "in", "range", "(", "nsrc", ")", ":", "ssef", "=", "sf", "[", "i", "]", "*", "np", ".", "conj", "(", "sef", ")", "ssef", "=", "np", ".", "real", "(", "scipy", ".", "fftpack", ".", "ifft", "(", "ssef", ")", ")", "D", "[", "i", "*", "flen", ":", "(", "i", "+", "1", ")", "*", "flen", "]", "=", "np", ".", "hstack", "(", "(", "ssef", "[", "0", "]", ",", "ssef", "[", "-", "1", ":", "-", "flen", ":", "-", "1", "]", ")", ")", "# Computing projection", "# Distortion filters", "try", ":", "C", "=", "np", ".", "linalg", ".", "solve", "(", "G", ",", "D", ")", ".", "reshape", "(", "flen", ",", "nsrc", ",", "order", "=", "'F'", ")", "except", "np", ".", "linalg", ".", "linalg", ".", "LinAlgError", ":", "C", "=", "np", ".", "linalg", ".", "lstsq", "(", "G", ",", "D", ")", "[", "0", "]", ".", "reshape", "(", "flen", ",", "nsrc", ",", "order", "=", "'F'", ")", "# Filtering", "sproj", "=", "np", ".", "zeros", "(", "nsampl", "+", "flen", "-", "1", ")", "for", "i", "in", "range", "(", "nsrc", ")", ":", "sproj", "+=", "fftconvolve", "(", "C", "[", ":", ",", "i", "]", ",", "reference_sources", "[", "i", "]", ")", "[", ":", "nsampl", "+", "flen", "-", "1", "]", "return", "sproj" ]
Least-squares projection of estimated source on the subspace spanned by delayed versions of reference sources, with delays between 0 and flen-1
[ "Least", "-", "squares", "projection", "of", "estimated", "source", "on", "the", "subspace", "spanned", "by", "delayed", "versions", "of", "reference", "sources", "with", "delays", "between", "0", "and", "flen", "-", "1" ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/separation.py#L679-L722
train
craffel/mir_eval
mir_eval/separation.py
_bss_image_crit
def _bss_image_crit(s_true, e_spat, e_interf, e_artif): """Measurement of the separation quality for a given image in terms of filtered true source, spatial error, interference and artifacts. """ # energy ratios sdr = _safe_db(np.sum(s_true**2), np.sum((e_spat+e_interf+e_artif)**2)) isr = _safe_db(np.sum(s_true**2), np.sum(e_spat**2)) sir = _safe_db(np.sum((s_true+e_spat)**2), np.sum(e_interf**2)) sar = _safe_db(np.sum((s_true+e_spat+e_interf)**2), np.sum(e_artif**2)) return (sdr, isr, sir, sar)
python
def _bss_image_crit(s_true, e_spat, e_interf, e_artif): """Measurement of the separation quality for a given image in terms of filtered true source, spatial error, interference and artifacts. """ # energy ratios sdr = _safe_db(np.sum(s_true**2), np.sum((e_spat+e_interf+e_artif)**2)) isr = _safe_db(np.sum(s_true**2), np.sum(e_spat**2)) sir = _safe_db(np.sum((s_true+e_spat)**2), np.sum(e_interf**2)) sar = _safe_db(np.sum((s_true+e_spat+e_interf)**2), np.sum(e_artif**2)) return (sdr, isr, sir, sar)
[ "def", "_bss_image_crit", "(", "s_true", ",", "e_spat", ",", "e_interf", ",", "e_artif", ")", ":", "# energy ratios", "sdr", "=", "_safe_db", "(", "np", ".", "sum", "(", "s_true", "**", "2", ")", ",", "np", ".", "sum", "(", "(", "e_spat", "+", "e_interf", "+", "e_artif", ")", "**", "2", ")", ")", "isr", "=", "_safe_db", "(", "np", ".", "sum", "(", "s_true", "**", "2", ")", ",", "np", ".", "sum", "(", "e_spat", "**", "2", ")", ")", "sir", "=", "_safe_db", "(", "np", ".", "sum", "(", "(", "s_true", "+", "e_spat", ")", "**", "2", ")", ",", "np", ".", "sum", "(", "e_interf", "**", "2", ")", ")", "sar", "=", "_safe_db", "(", "np", ".", "sum", "(", "(", "s_true", "+", "e_spat", "+", "e_interf", ")", "**", "2", ")", ",", "np", ".", "sum", "(", "e_artif", "**", "2", ")", ")", "return", "(", "sdr", ",", "isr", ",", "sir", ",", "sar", ")" ]
Measurement of the separation quality for a given image in terms of filtered true source, spatial error, interference and artifacts.
[ "Measurement", "of", "the", "separation", "quality", "for", "a", "given", "image", "in", "terms", "of", "filtered", "true", "source", "spatial", "error", "interference", "and", "artifacts", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/separation.py#L815-L824
train
craffel/mir_eval
mir_eval/separation.py
_safe_db
def _safe_db(num, den): """Properly handle the potential +Inf db SIR, instead of raising a RuntimeWarning. Only denominator is checked because the numerator can never be 0. """ if den == 0: return np.Inf return 10 * np.log10(num / den)
python
def _safe_db(num, den): """Properly handle the potential +Inf db SIR, instead of raising a RuntimeWarning. Only denominator is checked because the numerator can never be 0. """ if den == 0: return np.Inf return 10 * np.log10(num / den)
[ "def", "_safe_db", "(", "num", ",", "den", ")", ":", "if", "den", "==", "0", ":", "return", "np", ".", "Inf", "return", "10", "*", "np", ".", "log10", "(", "num", "/", "den", ")" ]
Properly handle the potential +Inf db SIR, instead of raising a RuntimeWarning. Only denominator is checked because the numerator can never be 0.
[ "Properly", "handle", "the", "potential", "+", "Inf", "db", "SIR", "instead", "of", "raising", "a", "RuntimeWarning", ".", "Only", "denominator", "is", "checked", "because", "the", "numerator", "can", "never", "be", "0", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/separation.py#L827-L834
train
craffel/mir_eval
mir_eval/separation.py
evaluate
def evaluate(reference_sources, estimated_sources, **kwargs): """Compute all metrics for the given reference and estimated signals. NOTE: This will always compute :func:`mir_eval.separation.bss_eval_images` for any valid input and will additionally compute :func:`mir_eval.separation.bss_eval_sources` for valid input with fewer than 3 dimensions. Examples -------- >>> # reference_sources[n] should be an ndarray of samples of the >>> # n'th reference source >>> # estimated_sources[n] should be the same for the n'th estimated source >>> scores = mir_eval.separation.evaluate(reference_sources, ... estimated_sources) Parameters ---------- reference_sources : np.ndarray, shape=(nsrc, nsampl[, nchan]) matrix containing true sources estimated_sources : np.ndarray, shape=(nsrc, nsampl[, nchan]) matrix containing estimated sources kwargs Additional keyword arguments which will be passed to the appropriate metric or preprocessing functions. Returns ------- scores : dict Dictionary of scores, where the key is the metric name (str) and the value is the (float) score achieved. """ # Compute all the metrics scores = collections.OrderedDict() sdr, isr, sir, sar, perm = util.filter_kwargs( bss_eval_images, reference_sources, estimated_sources, **kwargs ) scores['Images - Source to Distortion'] = sdr.tolist() scores['Images - Image to Spatial'] = isr.tolist() scores['Images - Source to Interference'] = sir.tolist() scores['Images - Source to Artifact'] = sar.tolist() scores['Images - Source permutation'] = perm.tolist() sdr, isr, sir, sar, perm = util.filter_kwargs( bss_eval_images_framewise, reference_sources, estimated_sources, **kwargs ) scores['Images Frames - Source to Distortion'] = sdr.tolist() scores['Images Frames - Image to Spatial'] = isr.tolist() scores['Images Frames - Source to Interference'] = sir.tolist() scores['Images Frames - Source to Artifact'] = sar.tolist() scores['Images Frames - Source permutation'] = perm.tolist() # Verify we can compute sources on this input if reference_sources.ndim < 3 and estimated_sources.ndim < 3: sdr, sir, sar, perm = util.filter_kwargs( bss_eval_sources_framewise, reference_sources, estimated_sources, **kwargs ) scores['Sources Frames - Source to Distortion'] = sdr.tolist() scores['Sources Frames - Source to Interference'] = sir.tolist() scores['Sources Frames - Source to Artifact'] = sar.tolist() scores['Sources Frames - Source permutation'] = perm.tolist() sdr, sir, sar, perm = util.filter_kwargs( bss_eval_sources, reference_sources, estimated_sources, **kwargs ) scores['Sources - Source to Distortion'] = sdr.tolist() scores['Sources - Source to Interference'] = sir.tolist() scores['Sources - Source to Artifact'] = sar.tolist() scores['Sources - Source permutation'] = perm.tolist() return scores
python
def evaluate(reference_sources, estimated_sources, **kwargs): """Compute all metrics for the given reference and estimated signals. NOTE: This will always compute :func:`mir_eval.separation.bss_eval_images` for any valid input and will additionally compute :func:`mir_eval.separation.bss_eval_sources` for valid input with fewer than 3 dimensions. Examples -------- >>> # reference_sources[n] should be an ndarray of samples of the >>> # n'th reference source >>> # estimated_sources[n] should be the same for the n'th estimated source >>> scores = mir_eval.separation.evaluate(reference_sources, ... estimated_sources) Parameters ---------- reference_sources : np.ndarray, shape=(nsrc, nsampl[, nchan]) matrix containing true sources estimated_sources : np.ndarray, shape=(nsrc, nsampl[, nchan]) matrix containing estimated sources kwargs Additional keyword arguments which will be passed to the appropriate metric or preprocessing functions. Returns ------- scores : dict Dictionary of scores, where the key is the metric name (str) and the value is the (float) score achieved. """ # Compute all the metrics scores = collections.OrderedDict() sdr, isr, sir, sar, perm = util.filter_kwargs( bss_eval_images, reference_sources, estimated_sources, **kwargs ) scores['Images - Source to Distortion'] = sdr.tolist() scores['Images - Image to Spatial'] = isr.tolist() scores['Images - Source to Interference'] = sir.tolist() scores['Images - Source to Artifact'] = sar.tolist() scores['Images - Source permutation'] = perm.tolist() sdr, isr, sir, sar, perm = util.filter_kwargs( bss_eval_images_framewise, reference_sources, estimated_sources, **kwargs ) scores['Images Frames - Source to Distortion'] = sdr.tolist() scores['Images Frames - Image to Spatial'] = isr.tolist() scores['Images Frames - Source to Interference'] = sir.tolist() scores['Images Frames - Source to Artifact'] = sar.tolist() scores['Images Frames - Source permutation'] = perm.tolist() # Verify we can compute sources on this input if reference_sources.ndim < 3 and estimated_sources.ndim < 3: sdr, sir, sar, perm = util.filter_kwargs( bss_eval_sources_framewise, reference_sources, estimated_sources, **kwargs ) scores['Sources Frames - Source to Distortion'] = sdr.tolist() scores['Sources Frames - Source to Interference'] = sir.tolist() scores['Sources Frames - Source to Artifact'] = sar.tolist() scores['Sources Frames - Source permutation'] = perm.tolist() sdr, sir, sar, perm = util.filter_kwargs( bss_eval_sources, reference_sources, estimated_sources, **kwargs ) scores['Sources - Source to Distortion'] = sdr.tolist() scores['Sources - Source to Interference'] = sir.tolist() scores['Sources - Source to Artifact'] = sar.tolist() scores['Sources - Source permutation'] = perm.tolist() return scores
[ "def", "evaluate", "(", "reference_sources", ",", "estimated_sources", ",", "*", "*", "kwargs", ")", ":", "# Compute all the metrics", "scores", "=", "collections", ".", "OrderedDict", "(", ")", "sdr", ",", "isr", ",", "sir", ",", "sar", ",", "perm", "=", "util", ".", "filter_kwargs", "(", "bss_eval_images", ",", "reference_sources", ",", "estimated_sources", ",", "*", "*", "kwargs", ")", "scores", "[", "'Images - Source to Distortion'", "]", "=", "sdr", ".", "tolist", "(", ")", "scores", "[", "'Images - Image to Spatial'", "]", "=", "isr", ".", "tolist", "(", ")", "scores", "[", "'Images - Source to Interference'", "]", "=", "sir", ".", "tolist", "(", ")", "scores", "[", "'Images - Source to Artifact'", "]", "=", "sar", ".", "tolist", "(", ")", "scores", "[", "'Images - Source permutation'", "]", "=", "perm", ".", "tolist", "(", ")", "sdr", ",", "isr", ",", "sir", ",", "sar", ",", "perm", "=", "util", ".", "filter_kwargs", "(", "bss_eval_images_framewise", ",", "reference_sources", ",", "estimated_sources", ",", "*", "*", "kwargs", ")", "scores", "[", "'Images Frames - Source to Distortion'", "]", "=", "sdr", ".", "tolist", "(", ")", "scores", "[", "'Images Frames - Image to Spatial'", "]", "=", "isr", ".", "tolist", "(", ")", "scores", "[", "'Images Frames - Source to Interference'", "]", "=", "sir", ".", "tolist", "(", ")", "scores", "[", "'Images Frames - Source to Artifact'", "]", "=", "sar", ".", "tolist", "(", ")", "scores", "[", "'Images Frames - Source permutation'", "]", "=", "perm", ".", "tolist", "(", ")", "# Verify we can compute sources on this input", "if", "reference_sources", ".", "ndim", "<", "3", "and", "estimated_sources", ".", "ndim", "<", "3", ":", "sdr", ",", "sir", ",", "sar", ",", "perm", "=", "util", ".", "filter_kwargs", "(", "bss_eval_sources_framewise", ",", "reference_sources", ",", "estimated_sources", ",", "*", "*", "kwargs", ")", "scores", "[", "'Sources Frames - Source to Distortion'", "]", "=", "sdr", ".", "tolist", "(", ")", "scores", "[", "'Sources Frames - Source to Interference'", "]", "=", "sir", ".", "tolist", "(", ")", "scores", "[", "'Sources Frames - Source to Artifact'", "]", "=", "sar", ".", "tolist", "(", ")", "scores", "[", "'Sources Frames - Source permutation'", "]", "=", "perm", ".", "tolist", "(", ")", "sdr", ",", "sir", ",", "sar", ",", "perm", "=", "util", ".", "filter_kwargs", "(", "bss_eval_sources", ",", "reference_sources", ",", "estimated_sources", ",", "*", "*", "kwargs", ")", "scores", "[", "'Sources - Source to Distortion'", "]", "=", "sdr", ".", "tolist", "(", ")", "scores", "[", "'Sources - Source to Interference'", "]", "=", "sir", ".", "tolist", "(", ")", "scores", "[", "'Sources - Source to Artifact'", "]", "=", "sar", ".", "tolist", "(", ")", "scores", "[", "'Sources - Source permutation'", "]", "=", "perm", ".", "tolist", "(", ")", "return", "scores" ]
Compute all metrics for the given reference and estimated signals. NOTE: This will always compute :func:`mir_eval.separation.bss_eval_images` for any valid input and will additionally compute :func:`mir_eval.separation.bss_eval_sources` for valid input with fewer than 3 dimensions. Examples -------- >>> # reference_sources[n] should be an ndarray of samples of the >>> # n'th reference source >>> # estimated_sources[n] should be the same for the n'th estimated source >>> scores = mir_eval.separation.evaluate(reference_sources, ... estimated_sources) Parameters ---------- reference_sources : np.ndarray, shape=(nsrc, nsampl[, nchan]) matrix containing true sources estimated_sources : np.ndarray, shape=(nsrc, nsampl[, nchan]) matrix containing estimated sources kwargs Additional keyword arguments which will be passed to the appropriate metric or preprocessing functions. Returns ------- scores : dict Dictionary of scores, where the key is the metric name (str) and the value is the (float) score achieved.
[ "Compute", "all", "metrics", "for", "the", "given", "reference", "and", "estimated", "signals", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/separation.py#L837-L921
train
craffel/mir_eval
mir_eval/sonify.py
clicks
def clicks(times, fs, click=None, length=None): """Returns a signal with the signal 'click' placed at each specified time Parameters ---------- times : np.ndarray times to place clicks, in seconds fs : int desired sampling rate of the output signal click : np.ndarray click signal, defaults to a 1 kHz blip length : int desired number of samples in the output signal, defaults to ``times.max()*fs + click.shape[0] + 1`` Returns ------- click_signal : np.ndarray Synthesized click signal """ # Create default click signal if click is None: # 1 kHz tone, 100ms click = np.sin(2*np.pi*np.arange(fs*.1)*1000/(1.*fs)) # Exponential decay click *= np.exp(-np.arange(fs*.1)/(fs*.01)) # Set default length if length is None: length = int(times.max()*fs + click.shape[0] + 1) # Pre-allocate click signal click_signal = np.zeros(length) # Place clicks for time in times: # Compute the boundaries of the click start = int(time*fs) end = start + click.shape[0] # Make sure we don't try to output past the end of the signal if start >= length: break if end >= length: click_signal[start:] = click[:length - start] break # Normally, just add a click here click_signal[start:end] = click return click_signal
python
def clicks(times, fs, click=None, length=None): """Returns a signal with the signal 'click' placed at each specified time Parameters ---------- times : np.ndarray times to place clicks, in seconds fs : int desired sampling rate of the output signal click : np.ndarray click signal, defaults to a 1 kHz blip length : int desired number of samples in the output signal, defaults to ``times.max()*fs + click.shape[0] + 1`` Returns ------- click_signal : np.ndarray Synthesized click signal """ # Create default click signal if click is None: # 1 kHz tone, 100ms click = np.sin(2*np.pi*np.arange(fs*.1)*1000/(1.*fs)) # Exponential decay click *= np.exp(-np.arange(fs*.1)/(fs*.01)) # Set default length if length is None: length = int(times.max()*fs + click.shape[0] + 1) # Pre-allocate click signal click_signal = np.zeros(length) # Place clicks for time in times: # Compute the boundaries of the click start = int(time*fs) end = start + click.shape[0] # Make sure we don't try to output past the end of the signal if start >= length: break if end >= length: click_signal[start:] = click[:length - start] break # Normally, just add a click here click_signal[start:end] = click return click_signal
[ "def", "clicks", "(", "times", ",", "fs", ",", "click", "=", "None", ",", "length", "=", "None", ")", ":", "# Create default click signal", "if", "click", "is", "None", ":", "# 1 kHz tone, 100ms", "click", "=", "np", ".", "sin", "(", "2", "*", "np", ".", "pi", "*", "np", ".", "arange", "(", "fs", "*", ".1", ")", "*", "1000", "/", "(", "1.", "*", "fs", ")", ")", "# Exponential decay", "click", "*=", "np", ".", "exp", "(", "-", "np", ".", "arange", "(", "fs", "*", ".1", ")", "/", "(", "fs", "*", ".01", ")", ")", "# Set default length", "if", "length", "is", "None", ":", "length", "=", "int", "(", "times", ".", "max", "(", ")", "*", "fs", "+", "click", ".", "shape", "[", "0", "]", "+", "1", ")", "# Pre-allocate click signal", "click_signal", "=", "np", ".", "zeros", "(", "length", ")", "# Place clicks", "for", "time", "in", "times", ":", "# Compute the boundaries of the click", "start", "=", "int", "(", "time", "*", "fs", ")", "end", "=", "start", "+", "click", ".", "shape", "[", "0", "]", "# Make sure we don't try to output past the end of the signal", "if", "start", ">=", "length", ":", "break", "if", "end", ">=", "length", ":", "click_signal", "[", "start", ":", "]", "=", "click", "[", ":", "length", "-", "start", "]", "break", "# Normally, just add a click here", "click_signal", "[", "start", ":", "end", "]", "=", "click", "return", "click_signal" ]
Returns a signal with the signal 'click' placed at each specified time Parameters ---------- times : np.ndarray times to place clicks, in seconds fs : int desired sampling rate of the output signal click : np.ndarray click signal, defaults to a 1 kHz blip length : int desired number of samples in the output signal, defaults to ``times.max()*fs + click.shape[0] + 1`` Returns ------- click_signal : np.ndarray Synthesized click signal
[ "Returns", "a", "signal", "with", "the", "signal", "click", "placed", "at", "each", "specified", "time" ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/sonify.py#L14-L60
train
craffel/mir_eval
mir_eval/sonify.py
time_frequency
def time_frequency(gram, frequencies, times, fs, function=np.sin, length=None, n_dec=1): """Reverse synthesis of a time-frequency representation of a signal Parameters ---------- gram : np.ndarray ``gram[n, m]`` is the magnitude of ``frequencies[n]`` from ``times[m]`` to ``times[m + 1]`` Non-positive magnitudes are interpreted as silence. frequencies : np.ndarray array of size ``gram.shape[0]`` denoting the frequency of each row of gram times : np.ndarray, shape= ``(gram.shape[1],)`` or ``(gram.shape[1], 2)`` Either the start time of each column in the gram, or the time interval corresponding to each column. fs : int desired sampling rate of the output signal function : function function to use to synthesize notes, should be :math:`2\pi`-periodic length : int desired number of samples in the output signal, defaults to ``times[-1]*fs`` n_dec : int the number of decimals used to approximate each sonfied frequency. Defaults to 1 decimal place. Higher precision will be slower. Returns ------- output : np.ndarray synthesized version of the piano roll """ # Default value for length if times.ndim == 1: # Convert to intervals times = util.boundaries_to_intervals(times) if length is None: length = int(times[-1, 1] * fs) times, _ = util.adjust_intervals(times, t_max=length) # Truncate times so that the shape matches gram n_times = gram.shape[1] times = times[:n_times] def _fast_synthesize(frequency): """A faster way to synthesize a signal. Generate one cycle, and simulate arbitrary repetitions using array indexing tricks. """ # hack so that we can ensure an integer number of periods and samples # rounds frequency to 1st decimal, s.t. 10 * frequency will be an int frequency = np.round(frequency, n_dec) # Generate 10*frequency periods at this frequency # Equivalent to n_samples = int(n_periods * fs / frequency) # n_periods = 10*frequency is the smallest integer that guarantees # that n_samples will be an integer, since assuming 10*frequency # is an integer n_samples = int(10.0**n_dec * fs) short_signal = function(2.0 * np.pi * np.arange(n_samples) * frequency / fs) # Calculate the number of loops we need to fill the duration n_repeats = int(np.ceil(length/float(short_signal.shape[0]))) # Simulate tiling the short buffer by using stride tricks long_signal = as_strided(short_signal, shape=(n_repeats, len(short_signal)), strides=(0, short_signal.itemsize)) # Use a flatiter to simulate a long 1D buffer return long_signal.flat def _const_interpolator(value): """Return a function that returns `value` no matter the input. """ def __interpolator(x): return value return __interpolator # Threshold the tfgram to remove non-positive values gram = np.maximum(gram, 0) # Pre-allocate output signal output = np.zeros(length) time_centers = np.mean(times, axis=1) * float(fs) for n, frequency in enumerate(frequencies): # Get a waveform of length samples at this frequency wave = _fast_synthesize(frequency) # Interpolate the values in gram over the time grid if len(time_centers) > 1: gram_interpolator = interp1d( time_centers, gram[n, :], kind='linear', bounds_error=False, fill_value=0.0) # If only one time point, create constant interpolator else: gram_interpolator = _const_interpolator(gram[n, 0]) # Scale each time interval by the piano roll magnitude for m, (start, end) in enumerate((times * fs).astype(int)): # Clip the timings to make sure the indices are valid start, end = max(start, 0), min(end, length) # add to waveform output[start:end] += ( wave[start:end] * gram_interpolator(np.arange(start, end))) # Normalize, but only if there's non-zero values norm = np.abs(output).max() if norm >= np.finfo(output.dtype).tiny: output /= norm return output
python
def time_frequency(gram, frequencies, times, fs, function=np.sin, length=None, n_dec=1): """Reverse synthesis of a time-frequency representation of a signal Parameters ---------- gram : np.ndarray ``gram[n, m]`` is the magnitude of ``frequencies[n]`` from ``times[m]`` to ``times[m + 1]`` Non-positive magnitudes are interpreted as silence. frequencies : np.ndarray array of size ``gram.shape[0]`` denoting the frequency of each row of gram times : np.ndarray, shape= ``(gram.shape[1],)`` or ``(gram.shape[1], 2)`` Either the start time of each column in the gram, or the time interval corresponding to each column. fs : int desired sampling rate of the output signal function : function function to use to synthesize notes, should be :math:`2\pi`-periodic length : int desired number of samples in the output signal, defaults to ``times[-1]*fs`` n_dec : int the number of decimals used to approximate each sonfied frequency. Defaults to 1 decimal place. Higher precision will be slower. Returns ------- output : np.ndarray synthesized version of the piano roll """ # Default value for length if times.ndim == 1: # Convert to intervals times = util.boundaries_to_intervals(times) if length is None: length = int(times[-1, 1] * fs) times, _ = util.adjust_intervals(times, t_max=length) # Truncate times so that the shape matches gram n_times = gram.shape[1] times = times[:n_times] def _fast_synthesize(frequency): """A faster way to synthesize a signal. Generate one cycle, and simulate arbitrary repetitions using array indexing tricks. """ # hack so that we can ensure an integer number of periods and samples # rounds frequency to 1st decimal, s.t. 10 * frequency will be an int frequency = np.round(frequency, n_dec) # Generate 10*frequency periods at this frequency # Equivalent to n_samples = int(n_periods * fs / frequency) # n_periods = 10*frequency is the smallest integer that guarantees # that n_samples will be an integer, since assuming 10*frequency # is an integer n_samples = int(10.0**n_dec * fs) short_signal = function(2.0 * np.pi * np.arange(n_samples) * frequency / fs) # Calculate the number of loops we need to fill the duration n_repeats = int(np.ceil(length/float(short_signal.shape[0]))) # Simulate tiling the short buffer by using stride tricks long_signal = as_strided(short_signal, shape=(n_repeats, len(short_signal)), strides=(0, short_signal.itemsize)) # Use a flatiter to simulate a long 1D buffer return long_signal.flat def _const_interpolator(value): """Return a function that returns `value` no matter the input. """ def __interpolator(x): return value return __interpolator # Threshold the tfgram to remove non-positive values gram = np.maximum(gram, 0) # Pre-allocate output signal output = np.zeros(length) time_centers = np.mean(times, axis=1) * float(fs) for n, frequency in enumerate(frequencies): # Get a waveform of length samples at this frequency wave = _fast_synthesize(frequency) # Interpolate the values in gram over the time grid if len(time_centers) > 1: gram_interpolator = interp1d( time_centers, gram[n, :], kind='linear', bounds_error=False, fill_value=0.0) # If only one time point, create constant interpolator else: gram_interpolator = _const_interpolator(gram[n, 0]) # Scale each time interval by the piano roll magnitude for m, (start, end) in enumerate((times * fs).astype(int)): # Clip the timings to make sure the indices are valid start, end = max(start, 0), min(end, length) # add to waveform output[start:end] += ( wave[start:end] * gram_interpolator(np.arange(start, end))) # Normalize, but only if there's non-zero values norm = np.abs(output).max() if norm >= np.finfo(output.dtype).tiny: output /= norm return output
[ "def", "time_frequency", "(", "gram", ",", "frequencies", ",", "times", ",", "fs", ",", "function", "=", "np", ".", "sin", ",", "length", "=", "None", ",", "n_dec", "=", "1", ")", ":", "# Default value for length", "if", "times", ".", "ndim", "==", "1", ":", "# Convert to intervals", "times", "=", "util", ".", "boundaries_to_intervals", "(", "times", ")", "if", "length", "is", "None", ":", "length", "=", "int", "(", "times", "[", "-", "1", ",", "1", "]", "*", "fs", ")", "times", ",", "_", "=", "util", ".", "adjust_intervals", "(", "times", ",", "t_max", "=", "length", ")", "# Truncate times so that the shape matches gram", "n_times", "=", "gram", ".", "shape", "[", "1", "]", "times", "=", "times", "[", ":", "n_times", "]", "def", "_fast_synthesize", "(", "frequency", ")", ":", "\"\"\"A faster way to synthesize a signal.\n Generate one cycle, and simulate arbitrary repetitions\n using array indexing tricks.\n \"\"\"", "# hack so that we can ensure an integer number of periods and samples", "# rounds frequency to 1st decimal, s.t. 10 * frequency will be an int", "frequency", "=", "np", ".", "round", "(", "frequency", ",", "n_dec", ")", "# Generate 10*frequency periods at this frequency", "# Equivalent to n_samples = int(n_periods * fs / frequency)", "# n_periods = 10*frequency is the smallest integer that guarantees", "# that n_samples will be an integer, since assuming 10*frequency", "# is an integer", "n_samples", "=", "int", "(", "10.0", "**", "n_dec", "*", "fs", ")", "short_signal", "=", "function", "(", "2.0", "*", "np", ".", "pi", "*", "np", ".", "arange", "(", "n_samples", ")", "*", "frequency", "/", "fs", ")", "# Calculate the number of loops we need to fill the duration", "n_repeats", "=", "int", "(", "np", ".", "ceil", "(", "length", "/", "float", "(", "short_signal", ".", "shape", "[", "0", "]", ")", ")", ")", "# Simulate tiling the short buffer by using stride tricks", "long_signal", "=", "as_strided", "(", "short_signal", ",", "shape", "=", "(", "n_repeats", ",", "len", "(", "short_signal", ")", ")", ",", "strides", "=", "(", "0", ",", "short_signal", ".", "itemsize", ")", ")", "# Use a flatiter to simulate a long 1D buffer", "return", "long_signal", ".", "flat", "def", "_const_interpolator", "(", "value", ")", ":", "\"\"\"Return a function that returns `value`\n no matter the input.\n \"\"\"", "def", "__interpolator", "(", "x", ")", ":", "return", "value", "return", "__interpolator", "# Threshold the tfgram to remove non-positive values", "gram", "=", "np", ".", "maximum", "(", "gram", ",", "0", ")", "# Pre-allocate output signal", "output", "=", "np", ".", "zeros", "(", "length", ")", "time_centers", "=", "np", ".", "mean", "(", "times", ",", "axis", "=", "1", ")", "*", "float", "(", "fs", ")", "for", "n", ",", "frequency", "in", "enumerate", "(", "frequencies", ")", ":", "# Get a waveform of length samples at this frequency", "wave", "=", "_fast_synthesize", "(", "frequency", ")", "# Interpolate the values in gram over the time grid", "if", "len", "(", "time_centers", ")", ">", "1", ":", "gram_interpolator", "=", "interp1d", "(", "time_centers", ",", "gram", "[", "n", ",", ":", "]", ",", "kind", "=", "'linear'", ",", "bounds_error", "=", "False", ",", "fill_value", "=", "0.0", ")", "# If only one time point, create constant interpolator", "else", ":", "gram_interpolator", "=", "_const_interpolator", "(", "gram", "[", "n", ",", "0", "]", ")", "# Scale each time interval by the piano roll magnitude", "for", "m", ",", "(", "start", ",", "end", ")", "in", "enumerate", "(", "(", "times", "*", "fs", ")", ".", "astype", "(", "int", ")", ")", ":", "# Clip the timings to make sure the indices are valid", "start", ",", "end", "=", "max", "(", "start", ",", "0", ")", ",", "min", "(", "end", ",", "length", ")", "# add to waveform", "output", "[", "start", ":", "end", "]", "+=", "(", "wave", "[", "start", ":", "end", "]", "*", "gram_interpolator", "(", "np", ".", "arange", "(", "start", ",", "end", ")", ")", ")", "# Normalize, but only if there's non-zero values", "norm", "=", "np", ".", "abs", "(", "output", ")", ".", "max", "(", ")", "if", "norm", ">=", "np", ".", "finfo", "(", "output", ".", "dtype", ")", ".", "tiny", ":", "output", "/=", "norm", "return", "output" ]
Reverse synthesis of a time-frequency representation of a signal Parameters ---------- gram : np.ndarray ``gram[n, m]`` is the magnitude of ``frequencies[n]`` from ``times[m]`` to ``times[m + 1]`` Non-positive magnitudes are interpreted as silence. frequencies : np.ndarray array of size ``gram.shape[0]`` denoting the frequency of each row of gram times : np.ndarray, shape= ``(gram.shape[1],)`` or ``(gram.shape[1], 2)`` Either the start time of each column in the gram, or the time interval corresponding to each column. fs : int desired sampling rate of the output signal function : function function to use to synthesize notes, should be :math:`2\pi`-periodic length : int desired number of samples in the output signal, defaults to ``times[-1]*fs`` n_dec : int the number of decimals used to approximate each sonfied frequency. Defaults to 1 decimal place. Higher precision will be slower. Returns ------- output : np.ndarray synthesized version of the piano roll
[ "Reverse", "synthesis", "of", "a", "time", "-", "frequency", "representation", "of", "a", "signal" ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/sonify.py#L63-L184
train
craffel/mir_eval
mir_eval/sonify.py
pitch_contour
def pitch_contour(times, frequencies, fs, amplitudes=None, function=np.sin, length=None, kind='linear'): '''Sonify a pitch contour. Parameters ---------- times : np.ndarray time indices for each frequency measurement, in seconds frequencies : np.ndarray frequency measurements, in Hz. Non-positive measurements will be interpreted as un-voiced samples. fs : int desired sampling rate of the output signal amplitudes : np.ndarray amplitude measurments, nonnegative defaults to ``np.ones((length,))`` function : function function to use to synthesize notes, should be :math:`2\pi`-periodic length : int desired number of samples in the output signal, defaults to ``max(times)*fs`` kind : str Interpolation mode for the frequency and amplitude values. See: ``scipy.interpolate.interp1d`` for valid settings. Returns ------- output : np.ndarray synthesized version of the pitch contour ''' fs = float(fs) if length is None: length = int(times.max() * fs) # Squash the negative frequencies. # wave(0) = 0, so clipping here will un-voice the corresponding instants frequencies = np.maximum(frequencies, 0.0) # Build a frequency interpolator f_interp = interp1d(times * fs, 2 * np.pi * frequencies / fs, kind=kind, fill_value=0.0, bounds_error=False, copy=False) # Estimate frequency at sample points f_est = f_interp(np.arange(length)) if amplitudes is None: a_est = np.ones((length, )) else: # build an amplitude interpolator a_interp = interp1d( times * fs, amplitudes, kind=kind, fill_value=0.0, bounds_error=False, copy=False) a_est = a_interp(np.arange(length)) # Sonify the waveform return a_est * function(np.cumsum(f_est))
python
def pitch_contour(times, frequencies, fs, amplitudes=None, function=np.sin, length=None, kind='linear'): '''Sonify a pitch contour. Parameters ---------- times : np.ndarray time indices for each frequency measurement, in seconds frequencies : np.ndarray frequency measurements, in Hz. Non-positive measurements will be interpreted as un-voiced samples. fs : int desired sampling rate of the output signal amplitudes : np.ndarray amplitude measurments, nonnegative defaults to ``np.ones((length,))`` function : function function to use to synthesize notes, should be :math:`2\pi`-periodic length : int desired number of samples in the output signal, defaults to ``max(times)*fs`` kind : str Interpolation mode for the frequency and amplitude values. See: ``scipy.interpolate.interp1d`` for valid settings. Returns ------- output : np.ndarray synthesized version of the pitch contour ''' fs = float(fs) if length is None: length = int(times.max() * fs) # Squash the negative frequencies. # wave(0) = 0, so clipping here will un-voice the corresponding instants frequencies = np.maximum(frequencies, 0.0) # Build a frequency interpolator f_interp = interp1d(times * fs, 2 * np.pi * frequencies / fs, kind=kind, fill_value=0.0, bounds_error=False, copy=False) # Estimate frequency at sample points f_est = f_interp(np.arange(length)) if amplitudes is None: a_est = np.ones((length, )) else: # build an amplitude interpolator a_interp = interp1d( times * fs, amplitudes, kind=kind, fill_value=0.0, bounds_error=False, copy=False) a_est = a_interp(np.arange(length)) # Sonify the waveform return a_est * function(np.cumsum(f_est))
[ "def", "pitch_contour", "(", "times", ",", "frequencies", ",", "fs", ",", "amplitudes", "=", "None", ",", "function", "=", "np", ".", "sin", ",", "length", "=", "None", ",", "kind", "=", "'linear'", ")", ":", "fs", "=", "float", "(", "fs", ")", "if", "length", "is", "None", ":", "length", "=", "int", "(", "times", ".", "max", "(", ")", "*", "fs", ")", "# Squash the negative frequencies.", "# wave(0) = 0, so clipping here will un-voice the corresponding instants", "frequencies", "=", "np", ".", "maximum", "(", "frequencies", ",", "0.0", ")", "# Build a frequency interpolator", "f_interp", "=", "interp1d", "(", "times", "*", "fs", ",", "2", "*", "np", ".", "pi", "*", "frequencies", "/", "fs", ",", "kind", "=", "kind", ",", "fill_value", "=", "0.0", ",", "bounds_error", "=", "False", ",", "copy", "=", "False", ")", "# Estimate frequency at sample points", "f_est", "=", "f_interp", "(", "np", ".", "arange", "(", "length", ")", ")", "if", "amplitudes", "is", "None", ":", "a_est", "=", "np", ".", "ones", "(", "(", "length", ",", ")", ")", "else", ":", "# build an amplitude interpolator", "a_interp", "=", "interp1d", "(", "times", "*", "fs", ",", "amplitudes", ",", "kind", "=", "kind", ",", "fill_value", "=", "0.0", ",", "bounds_error", "=", "False", ",", "copy", "=", "False", ")", "a_est", "=", "a_interp", "(", "np", ".", "arange", "(", "length", ")", ")", "# Sonify the waveform", "return", "a_est", "*", "function", "(", "np", ".", "cumsum", "(", "f_est", ")", ")" ]
Sonify a pitch contour. Parameters ---------- times : np.ndarray time indices for each frequency measurement, in seconds frequencies : np.ndarray frequency measurements, in Hz. Non-positive measurements will be interpreted as un-voiced samples. fs : int desired sampling rate of the output signal amplitudes : np.ndarray amplitude measurments, nonnegative defaults to ``np.ones((length,))`` function : function function to use to synthesize notes, should be :math:`2\pi`-periodic length : int desired number of samples in the output signal, defaults to ``max(times)*fs`` kind : str Interpolation mode for the frequency and amplitude values. See: ``scipy.interpolate.interp1d`` for valid settings. Returns ------- output : np.ndarray synthesized version of the pitch contour
[ "Sonify", "a", "pitch", "contour", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/sonify.py#L187-L250
train
craffel/mir_eval
mir_eval/sonify.py
chords
def chords(chord_labels, intervals, fs, **kwargs): """Synthesizes chord labels Parameters ---------- chord_labels : list of str List of chord label strings. intervals : np.ndarray, shape=(len(chord_labels), 2) Start and end times of each chord label fs : int Sampling rate to synthesize at kwargs Additional keyword arguments to pass to :func:`mir_eval.sonify.time_frequency` Returns ------- output : np.ndarray Synthesized chord labels """ util.validate_intervals(intervals) # Convert from labels to chroma roots, interval_bitmaps, _ = chord.encode_many(chord_labels) chromagram = np.array([np.roll(interval_bitmap, root) for (interval_bitmap, root) in zip(interval_bitmaps, roots)]).T return chroma(chromagram, intervals, fs, **kwargs)
python
def chords(chord_labels, intervals, fs, **kwargs): """Synthesizes chord labels Parameters ---------- chord_labels : list of str List of chord label strings. intervals : np.ndarray, shape=(len(chord_labels), 2) Start and end times of each chord label fs : int Sampling rate to synthesize at kwargs Additional keyword arguments to pass to :func:`mir_eval.sonify.time_frequency` Returns ------- output : np.ndarray Synthesized chord labels """ util.validate_intervals(intervals) # Convert from labels to chroma roots, interval_bitmaps, _ = chord.encode_many(chord_labels) chromagram = np.array([np.roll(interval_bitmap, root) for (interval_bitmap, root) in zip(interval_bitmaps, roots)]).T return chroma(chromagram, intervals, fs, **kwargs)
[ "def", "chords", "(", "chord_labels", ",", "intervals", ",", "fs", ",", "*", "*", "kwargs", ")", ":", "util", ".", "validate_intervals", "(", "intervals", ")", "# Convert from labels to chroma", "roots", ",", "interval_bitmaps", ",", "_", "=", "chord", ".", "encode_many", "(", "chord_labels", ")", "chromagram", "=", "np", ".", "array", "(", "[", "np", ".", "roll", "(", "interval_bitmap", ",", "root", ")", "for", "(", "interval_bitmap", ",", "root", ")", "in", "zip", "(", "interval_bitmaps", ",", "roots", ")", "]", ")", ".", "T", "return", "chroma", "(", "chromagram", ",", "intervals", ",", "fs", ",", "*", "*", "kwargs", ")" ]
Synthesizes chord labels Parameters ---------- chord_labels : list of str List of chord label strings. intervals : np.ndarray, shape=(len(chord_labels), 2) Start and end times of each chord label fs : int Sampling rate to synthesize at kwargs Additional keyword arguments to pass to :func:`mir_eval.sonify.time_frequency` Returns ------- output : np.ndarray Synthesized chord labels
[ "Synthesizes", "chord", "labels" ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/sonify.py#L300-L329
train
craffel/mir_eval
mir_eval/onset.py
validate
def validate(reference_onsets, estimated_onsets): """Checks that the input annotations to a metric look like valid onset time arrays, and throws helpful errors if not. Parameters ---------- reference_onsets : np.ndarray reference onset locations, in seconds estimated_onsets : np.ndarray estimated onset locations, in seconds """ # If reference or estimated onsets are empty, warn because metric will be 0 if reference_onsets.size == 0: warnings.warn("Reference onsets are empty.") if estimated_onsets.size == 0: warnings.warn("Estimated onsets are empty.") for onsets in [reference_onsets, estimated_onsets]: util.validate_events(onsets, MAX_TIME)
python
def validate(reference_onsets, estimated_onsets): """Checks that the input annotations to a metric look like valid onset time arrays, and throws helpful errors if not. Parameters ---------- reference_onsets : np.ndarray reference onset locations, in seconds estimated_onsets : np.ndarray estimated onset locations, in seconds """ # If reference or estimated onsets are empty, warn because metric will be 0 if reference_onsets.size == 0: warnings.warn("Reference onsets are empty.") if estimated_onsets.size == 0: warnings.warn("Estimated onsets are empty.") for onsets in [reference_onsets, estimated_onsets]: util.validate_events(onsets, MAX_TIME)
[ "def", "validate", "(", "reference_onsets", ",", "estimated_onsets", ")", ":", "# If reference or estimated onsets are empty, warn because metric will be 0", "if", "reference_onsets", ".", "size", "==", "0", ":", "warnings", ".", "warn", "(", "\"Reference onsets are empty.\"", ")", "if", "estimated_onsets", ".", "size", "==", "0", ":", "warnings", ".", "warn", "(", "\"Estimated onsets are empty.\"", ")", "for", "onsets", "in", "[", "reference_onsets", ",", "estimated_onsets", "]", ":", "util", ".", "validate_events", "(", "onsets", ",", "MAX_TIME", ")" ]
Checks that the input annotations to a metric look like valid onset time arrays, and throws helpful errors if not. Parameters ---------- reference_onsets : np.ndarray reference onset locations, in seconds estimated_onsets : np.ndarray estimated onset locations, in seconds
[ "Checks", "that", "the", "input", "annotations", "to", "a", "metric", "look", "like", "valid", "onset", "time", "arrays", "and", "throws", "helpful", "errors", "if", "not", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/onset.py#L35-L53
train
craffel/mir_eval
mir_eval/onset.py
f_measure
def f_measure(reference_onsets, estimated_onsets, window=.05): """Compute the F-measure of correct vs incorrectly predicted onsets. "Corectness" is determined over a small window. Examples -------- >>> reference_onsets = mir_eval.io.load_events('reference.txt') >>> estimated_onsets = mir_eval.io.load_events('estimated.txt') >>> F, P, R = mir_eval.onset.f_measure(reference_onsets, ... estimated_onsets) Parameters ---------- reference_onsets : np.ndarray reference onset locations, in seconds estimated_onsets : np.ndarray estimated onset locations, in seconds window : float Window size, in seconds (Default value = .05) Returns ------- f_measure : float 2*precision*recall/(precision + recall) precision : float (# true positives)/(# true positives + # false positives) recall : float (# true positives)/(# true positives + # false negatives) """ validate(reference_onsets, estimated_onsets) # If either list is empty, return 0s if reference_onsets.size == 0 or estimated_onsets.size == 0: return 0., 0., 0. # Compute the best-case matching between reference and estimated onset # locations matching = util.match_events(reference_onsets, estimated_onsets, window) precision = float(len(matching))/len(estimated_onsets) recall = float(len(matching))/len(reference_onsets) # Compute F-measure and return all statistics return util.f_measure(precision, recall), precision, recall
python
def f_measure(reference_onsets, estimated_onsets, window=.05): """Compute the F-measure of correct vs incorrectly predicted onsets. "Corectness" is determined over a small window. Examples -------- >>> reference_onsets = mir_eval.io.load_events('reference.txt') >>> estimated_onsets = mir_eval.io.load_events('estimated.txt') >>> F, P, R = mir_eval.onset.f_measure(reference_onsets, ... estimated_onsets) Parameters ---------- reference_onsets : np.ndarray reference onset locations, in seconds estimated_onsets : np.ndarray estimated onset locations, in seconds window : float Window size, in seconds (Default value = .05) Returns ------- f_measure : float 2*precision*recall/(precision + recall) precision : float (# true positives)/(# true positives + # false positives) recall : float (# true positives)/(# true positives + # false negatives) """ validate(reference_onsets, estimated_onsets) # If either list is empty, return 0s if reference_onsets.size == 0 or estimated_onsets.size == 0: return 0., 0., 0. # Compute the best-case matching between reference and estimated onset # locations matching = util.match_events(reference_onsets, estimated_onsets, window) precision = float(len(matching))/len(estimated_onsets) recall = float(len(matching))/len(reference_onsets) # Compute F-measure and return all statistics return util.f_measure(precision, recall), precision, recall
[ "def", "f_measure", "(", "reference_onsets", ",", "estimated_onsets", ",", "window", "=", ".05", ")", ":", "validate", "(", "reference_onsets", ",", "estimated_onsets", ")", "# If either list is empty, return 0s", "if", "reference_onsets", ".", "size", "==", "0", "or", "estimated_onsets", ".", "size", "==", "0", ":", "return", "0.", ",", "0.", ",", "0.", "# Compute the best-case matching between reference and estimated onset", "# locations", "matching", "=", "util", ".", "match_events", "(", "reference_onsets", ",", "estimated_onsets", ",", "window", ")", "precision", "=", "float", "(", "len", "(", "matching", ")", ")", "/", "len", "(", "estimated_onsets", ")", "recall", "=", "float", "(", "len", "(", "matching", ")", ")", "/", "len", "(", "reference_onsets", ")", "# Compute F-measure and return all statistics", "return", "util", ".", "f_measure", "(", "precision", ",", "recall", ")", ",", "precision", ",", "recall" ]
Compute the F-measure of correct vs incorrectly predicted onsets. "Corectness" is determined over a small window. Examples -------- >>> reference_onsets = mir_eval.io.load_events('reference.txt') >>> estimated_onsets = mir_eval.io.load_events('estimated.txt') >>> F, P, R = mir_eval.onset.f_measure(reference_onsets, ... estimated_onsets) Parameters ---------- reference_onsets : np.ndarray reference onset locations, in seconds estimated_onsets : np.ndarray estimated onset locations, in seconds window : float Window size, in seconds (Default value = .05) Returns ------- f_measure : float 2*precision*recall/(precision + recall) precision : float (# true positives)/(# true positives + # false positives) recall : float (# true positives)/(# true positives + # false negatives)
[ "Compute", "the", "F", "-", "measure", "of", "correct", "vs", "incorrectly", "predicted", "onsets", ".", "Corectness", "is", "determined", "over", "a", "small", "window", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/onset.py#L56-L98
train
craffel/mir_eval
mir_eval/transcription.py
validate
def validate(ref_intervals, ref_pitches, est_intervals, est_pitches): """Checks that the input annotations to a metric look like time intervals and a pitch list, and throws helpful errors if not. Parameters ---------- ref_intervals : np.ndarray, shape=(n,2) Array of reference notes time intervals (onset and offset times) ref_pitches : np.ndarray, shape=(n,) Array of reference pitch values in Hertz est_intervals : np.ndarray, shape=(m,2) Array of estimated notes time intervals (onset and offset times) est_pitches : np.ndarray, shape=(m,) Array of estimated pitch values in Hertz """ # Validate intervals validate_intervals(ref_intervals, est_intervals) # Make sure intervals and pitches match in length if not ref_intervals.shape[0] == ref_pitches.shape[0]: raise ValueError('Reference intervals and pitches have different ' 'lengths.') if not est_intervals.shape[0] == est_pitches.shape[0]: raise ValueError('Estimated intervals and pitches have different ' 'lengths.') # Make sure all pitch values are positive if ref_pitches.size > 0 and np.min(ref_pitches) <= 0: raise ValueError("Reference contains at least one non-positive pitch " "value") if est_pitches.size > 0 and np.min(est_pitches) <= 0: raise ValueError("Estimate contains at least one non-positive pitch " "value")
python
def validate(ref_intervals, ref_pitches, est_intervals, est_pitches): """Checks that the input annotations to a metric look like time intervals and a pitch list, and throws helpful errors if not. Parameters ---------- ref_intervals : np.ndarray, shape=(n,2) Array of reference notes time intervals (onset and offset times) ref_pitches : np.ndarray, shape=(n,) Array of reference pitch values in Hertz est_intervals : np.ndarray, shape=(m,2) Array of estimated notes time intervals (onset and offset times) est_pitches : np.ndarray, shape=(m,) Array of estimated pitch values in Hertz """ # Validate intervals validate_intervals(ref_intervals, est_intervals) # Make sure intervals and pitches match in length if not ref_intervals.shape[0] == ref_pitches.shape[0]: raise ValueError('Reference intervals and pitches have different ' 'lengths.') if not est_intervals.shape[0] == est_pitches.shape[0]: raise ValueError('Estimated intervals and pitches have different ' 'lengths.') # Make sure all pitch values are positive if ref_pitches.size > 0 and np.min(ref_pitches) <= 0: raise ValueError("Reference contains at least one non-positive pitch " "value") if est_pitches.size > 0 and np.min(est_pitches) <= 0: raise ValueError("Estimate contains at least one non-positive pitch " "value")
[ "def", "validate", "(", "ref_intervals", ",", "ref_pitches", ",", "est_intervals", ",", "est_pitches", ")", ":", "# Validate intervals", "validate_intervals", "(", "ref_intervals", ",", "est_intervals", ")", "# Make sure intervals and pitches match in length", "if", "not", "ref_intervals", ".", "shape", "[", "0", "]", "==", "ref_pitches", ".", "shape", "[", "0", "]", ":", "raise", "ValueError", "(", "'Reference intervals and pitches have different '", "'lengths.'", ")", "if", "not", "est_intervals", ".", "shape", "[", "0", "]", "==", "est_pitches", ".", "shape", "[", "0", "]", ":", "raise", "ValueError", "(", "'Estimated intervals and pitches have different '", "'lengths.'", ")", "# Make sure all pitch values are positive", "if", "ref_pitches", ".", "size", ">", "0", "and", "np", ".", "min", "(", "ref_pitches", ")", "<=", "0", ":", "raise", "ValueError", "(", "\"Reference contains at least one non-positive pitch \"", "\"value\"", ")", "if", "est_pitches", ".", "size", ">", "0", "and", "np", ".", "min", "(", "est_pitches", ")", "<=", "0", ":", "raise", "ValueError", "(", "\"Estimate contains at least one non-positive pitch \"", "\"value\"", ")" ]
Checks that the input annotations to a metric look like time intervals and a pitch list, and throws helpful errors if not. Parameters ---------- ref_intervals : np.ndarray, shape=(n,2) Array of reference notes time intervals (onset and offset times) ref_pitches : np.ndarray, shape=(n,) Array of reference pitch values in Hertz est_intervals : np.ndarray, shape=(m,2) Array of estimated notes time intervals (onset and offset times) est_pitches : np.ndarray, shape=(m,) Array of estimated pitch values in Hertz
[ "Checks", "that", "the", "input", "annotations", "to", "a", "metric", "look", "like", "time", "intervals", "and", "a", "pitch", "list", "and", "throws", "helpful", "errors", "if", "not", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/transcription.py#L117-L149
train
craffel/mir_eval
mir_eval/transcription.py
validate_intervals
def validate_intervals(ref_intervals, est_intervals): """Checks that the input annotations to a metric look like time intervals, and throws helpful errors if not. Parameters ---------- ref_intervals : np.ndarray, shape=(n,2) Array of reference notes time intervals (onset and offset times) est_intervals : np.ndarray, shape=(m,2) Array of estimated notes time intervals (onset and offset times) """ # If reference or estimated notes are empty, warn if ref_intervals.size == 0: warnings.warn("Reference notes are empty.") if est_intervals.size == 0: warnings.warn("Estimated notes are empty.") # Validate intervals util.validate_intervals(ref_intervals) util.validate_intervals(est_intervals)
python
def validate_intervals(ref_intervals, est_intervals): """Checks that the input annotations to a metric look like time intervals, and throws helpful errors if not. Parameters ---------- ref_intervals : np.ndarray, shape=(n,2) Array of reference notes time intervals (onset and offset times) est_intervals : np.ndarray, shape=(m,2) Array of estimated notes time intervals (onset and offset times) """ # If reference or estimated notes are empty, warn if ref_intervals.size == 0: warnings.warn("Reference notes are empty.") if est_intervals.size == 0: warnings.warn("Estimated notes are empty.") # Validate intervals util.validate_intervals(ref_intervals) util.validate_intervals(est_intervals)
[ "def", "validate_intervals", "(", "ref_intervals", ",", "est_intervals", ")", ":", "# If reference or estimated notes are empty, warn", "if", "ref_intervals", ".", "size", "==", "0", ":", "warnings", ".", "warn", "(", "\"Reference notes are empty.\"", ")", "if", "est_intervals", ".", "size", "==", "0", ":", "warnings", ".", "warn", "(", "\"Estimated notes are empty.\"", ")", "# Validate intervals", "util", ".", "validate_intervals", "(", "ref_intervals", ")", "util", ".", "validate_intervals", "(", "est_intervals", ")" ]
Checks that the input annotations to a metric look like time intervals, and throws helpful errors if not. Parameters ---------- ref_intervals : np.ndarray, shape=(n,2) Array of reference notes time intervals (onset and offset times) est_intervals : np.ndarray, shape=(m,2) Array of estimated notes time intervals (onset and offset times)
[ "Checks", "that", "the", "input", "annotations", "to", "a", "metric", "look", "like", "time", "intervals", "and", "throws", "helpful", "errors", "if", "not", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/transcription.py#L152-L171
train
craffel/mir_eval
mir_eval/transcription.py
match_note_offsets
def match_note_offsets(ref_intervals, est_intervals, offset_ratio=0.2, offset_min_tolerance=0.05, strict=False): """Compute a maximum matching between reference and estimated notes, only taking note offsets into account. Given two note sequences represented by ``ref_intervals`` and ``est_intervals`` (see :func:`mir_eval.io.load_valued_intervals`), we seek the largest set of correspondences ``(i, j)`` such that the offset of reference note ``i`` has to be within ``offset_tolerance`` of the offset of estimated note ``j``, where ``offset_tolerance`` is equal to ``offset_ratio`` times the reference note's duration, i.e. ``offset_ratio * ref_duration[i]`` where ``ref_duration[i] = ref_intervals[i, 1] - ref_intervals[i, 0]``. If the resulting ``offset_tolerance`` is less than ``offset_min_tolerance`` (50 ms by default) then ``offset_min_tolerance`` is used instead. Every reference note is matched against at most one estimated note. Note there are separate functions :func:`match_note_onsets` and :func:`match_notes` for matching notes based on onsets only or based on onset, offset, and pitch, respectively. This is because the rules for matching note onsets and matching note offsets are different. Parameters ---------- ref_intervals : np.ndarray, shape=(n,2) Array of reference notes time intervals (onset and offset times) est_intervals : np.ndarray, shape=(m,2) Array of estimated notes time intervals (onset and offset times) offset_ratio : float > 0 The ratio of the reference note's duration used to define the ``offset_tolerance``. Default is 0.2 (20%), meaning the ``offset_tolerance`` will equal the ``ref_duration * 0.2``, or 0.05 (50 ms), whichever is greater. offset_min_tolerance : float > 0 The minimum tolerance for offset matching. See ``offset_ratio`` description for an explanation of how the offset tolerance is determined. strict : bool If ``strict=False`` (the default), threshold checks for offset matching are performed using ``<=`` (less than or equal). If ``strict=True``, the threshold checks are performed using ``<`` (less than). Returns ------- matching : list of tuples A list of matched reference and estimated notes. ``matching[i] == (i, j)`` where reference note ``i`` matches estimated note ``j``. """ # set the comparison function if strict: cmp_func = np.less else: cmp_func = np.less_equal # check for offset matches offset_distances = np.abs(np.subtract.outer(ref_intervals[:, 1], est_intervals[:, 1])) # Round distances to a target precision to avoid the situation where # if the distance is exactly 50ms (and strict=False) it erroneously # doesn't match the notes because of precision issues. offset_distances = np.around(offset_distances, decimals=N_DECIMALS) ref_durations = util.intervals_to_durations(ref_intervals) offset_tolerances = np.maximum(offset_ratio * ref_durations, offset_min_tolerance) offset_hit_matrix = ( cmp_func(offset_distances, offset_tolerances.reshape(-1, 1))) # check for hits hits = np.where(offset_hit_matrix) # Construct the graph input # Flip graph so that 'matching' is a list of tuples where the first item # in each tuple is the reference note index, and the second item is the # estimated note index. G = {} for ref_i, est_i in zip(*hits): if est_i not in G: G[est_i] = [] G[est_i].append(ref_i) # Compute the maximum matching matching = sorted(util._bipartite_match(G).items()) return matching
python
def match_note_offsets(ref_intervals, est_intervals, offset_ratio=0.2, offset_min_tolerance=0.05, strict=False): """Compute a maximum matching between reference and estimated notes, only taking note offsets into account. Given two note sequences represented by ``ref_intervals`` and ``est_intervals`` (see :func:`mir_eval.io.load_valued_intervals`), we seek the largest set of correspondences ``(i, j)`` such that the offset of reference note ``i`` has to be within ``offset_tolerance`` of the offset of estimated note ``j``, where ``offset_tolerance`` is equal to ``offset_ratio`` times the reference note's duration, i.e. ``offset_ratio * ref_duration[i]`` where ``ref_duration[i] = ref_intervals[i, 1] - ref_intervals[i, 0]``. If the resulting ``offset_tolerance`` is less than ``offset_min_tolerance`` (50 ms by default) then ``offset_min_tolerance`` is used instead. Every reference note is matched against at most one estimated note. Note there are separate functions :func:`match_note_onsets` and :func:`match_notes` for matching notes based on onsets only or based on onset, offset, and pitch, respectively. This is because the rules for matching note onsets and matching note offsets are different. Parameters ---------- ref_intervals : np.ndarray, shape=(n,2) Array of reference notes time intervals (onset and offset times) est_intervals : np.ndarray, shape=(m,2) Array of estimated notes time intervals (onset and offset times) offset_ratio : float > 0 The ratio of the reference note's duration used to define the ``offset_tolerance``. Default is 0.2 (20%), meaning the ``offset_tolerance`` will equal the ``ref_duration * 0.2``, or 0.05 (50 ms), whichever is greater. offset_min_tolerance : float > 0 The minimum tolerance for offset matching. See ``offset_ratio`` description for an explanation of how the offset tolerance is determined. strict : bool If ``strict=False`` (the default), threshold checks for offset matching are performed using ``<=`` (less than or equal). If ``strict=True``, the threshold checks are performed using ``<`` (less than). Returns ------- matching : list of tuples A list of matched reference and estimated notes. ``matching[i] == (i, j)`` where reference note ``i`` matches estimated note ``j``. """ # set the comparison function if strict: cmp_func = np.less else: cmp_func = np.less_equal # check for offset matches offset_distances = np.abs(np.subtract.outer(ref_intervals[:, 1], est_intervals[:, 1])) # Round distances to a target precision to avoid the situation where # if the distance is exactly 50ms (and strict=False) it erroneously # doesn't match the notes because of precision issues. offset_distances = np.around(offset_distances, decimals=N_DECIMALS) ref_durations = util.intervals_to_durations(ref_intervals) offset_tolerances = np.maximum(offset_ratio * ref_durations, offset_min_tolerance) offset_hit_matrix = ( cmp_func(offset_distances, offset_tolerances.reshape(-1, 1))) # check for hits hits = np.where(offset_hit_matrix) # Construct the graph input # Flip graph so that 'matching' is a list of tuples where the first item # in each tuple is the reference note index, and the second item is the # estimated note index. G = {} for ref_i, est_i in zip(*hits): if est_i not in G: G[est_i] = [] G[est_i].append(ref_i) # Compute the maximum matching matching = sorted(util._bipartite_match(G).items()) return matching
[ "def", "match_note_offsets", "(", "ref_intervals", ",", "est_intervals", ",", "offset_ratio", "=", "0.2", ",", "offset_min_tolerance", "=", "0.05", ",", "strict", "=", "False", ")", ":", "# set the comparison function", "if", "strict", ":", "cmp_func", "=", "np", ".", "less", "else", ":", "cmp_func", "=", "np", ".", "less_equal", "# check for offset matches", "offset_distances", "=", "np", ".", "abs", "(", "np", ".", "subtract", ".", "outer", "(", "ref_intervals", "[", ":", ",", "1", "]", ",", "est_intervals", "[", ":", ",", "1", "]", ")", ")", "# Round distances to a target precision to avoid the situation where", "# if the distance is exactly 50ms (and strict=False) it erroneously", "# doesn't match the notes because of precision issues.", "offset_distances", "=", "np", ".", "around", "(", "offset_distances", ",", "decimals", "=", "N_DECIMALS", ")", "ref_durations", "=", "util", ".", "intervals_to_durations", "(", "ref_intervals", ")", "offset_tolerances", "=", "np", ".", "maximum", "(", "offset_ratio", "*", "ref_durations", ",", "offset_min_tolerance", ")", "offset_hit_matrix", "=", "(", "cmp_func", "(", "offset_distances", ",", "offset_tolerances", ".", "reshape", "(", "-", "1", ",", "1", ")", ")", ")", "# check for hits", "hits", "=", "np", ".", "where", "(", "offset_hit_matrix", ")", "# Construct the graph input", "# Flip graph so that 'matching' is a list of tuples where the first item", "# in each tuple is the reference note index, and the second item is the", "# estimated note index.", "G", "=", "{", "}", "for", "ref_i", ",", "est_i", "in", "zip", "(", "*", "hits", ")", ":", "if", "est_i", "not", "in", "G", ":", "G", "[", "est_i", "]", "=", "[", "]", "G", "[", "est_i", "]", ".", "append", "(", "ref_i", ")", "# Compute the maximum matching", "matching", "=", "sorted", "(", "util", ".", "_bipartite_match", "(", "G", ")", ".", "items", "(", ")", ")", "return", "matching" ]
Compute a maximum matching between reference and estimated notes, only taking note offsets into account. Given two note sequences represented by ``ref_intervals`` and ``est_intervals`` (see :func:`mir_eval.io.load_valued_intervals`), we seek the largest set of correspondences ``(i, j)`` such that the offset of reference note ``i`` has to be within ``offset_tolerance`` of the offset of estimated note ``j``, where ``offset_tolerance`` is equal to ``offset_ratio`` times the reference note's duration, i.e. ``offset_ratio * ref_duration[i]`` where ``ref_duration[i] = ref_intervals[i, 1] - ref_intervals[i, 0]``. If the resulting ``offset_tolerance`` is less than ``offset_min_tolerance`` (50 ms by default) then ``offset_min_tolerance`` is used instead. Every reference note is matched against at most one estimated note. Note there are separate functions :func:`match_note_onsets` and :func:`match_notes` for matching notes based on onsets only or based on onset, offset, and pitch, respectively. This is because the rules for matching note onsets and matching note offsets are different. Parameters ---------- ref_intervals : np.ndarray, shape=(n,2) Array of reference notes time intervals (onset and offset times) est_intervals : np.ndarray, shape=(m,2) Array of estimated notes time intervals (onset and offset times) offset_ratio : float > 0 The ratio of the reference note's duration used to define the ``offset_tolerance``. Default is 0.2 (20%), meaning the ``offset_tolerance`` will equal the ``ref_duration * 0.2``, or 0.05 (50 ms), whichever is greater. offset_min_tolerance : float > 0 The minimum tolerance for offset matching. See ``offset_ratio`` description for an explanation of how the offset tolerance is determined. strict : bool If ``strict=False`` (the default), threshold checks for offset matching are performed using ``<=`` (less than or equal). If ``strict=True``, the threshold checks are performed using ``<`` (less than). Returns ------- matching : list of tuples A list of matched reference and estimated notes. ``matching[i] == (i, j)`` where reference note ``i`` matches estimated note ``j``.
[ "Compute", "a", "maximum", "matching", "between", "reference", "and", "estimated", "notes", "only", "taking", "note", "offsets", "into", "account", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/transcription.py#L174-L260
train
craffel/mir_eval
mir_eval/transcription.py
match_note_onsets
def match_note_onsets(ref_intervals, est_intervals, onset_tolerance=0.05, strict=False): """Compute a maximum matching between reference and estimated notes, only taking note onsets into account. Given two note sequences represented by ``ref_intervals`` and ``est_intervals`` (see :func:`mir_eval.io.load_valued_intervals`), we see the largest set of correspondences ``(i,j)`` such that the onset of reference note ``i`` is within ``onset_tolerance`` of the onset of estimated note ``j``. Every reference note is matched against at most one estimated note. Note there are separate functions :func:`match_note_offsets` and :func:`match_notes` for matching notes based on offsets only or based on onset, offset, and pitch, respectively. This is because the rules for matching note onsets and matching note offsets are different. Parameters ---------- ref_intervals : np.ndarray, shape=(n,2) Array of reference notes time intervals (onset and offset times) est_intervals : np.ndarray, shape=(m,2) Array of estimated notes time intervals (onset and offset times) onset_tolerance : float > 0 The tolerance for an estimated note's onset deviating from the reference note's onset, in seconds. Default is 0.05 (50 ms). strict : bool If ``strict=False`` (the default), threshold checks for onset matching are performed using ``<=`` (less than or equal). If ``strict=True``, the threshold checks are performed using ``<`` (less than). Returns ------- matching : list of tuples A list of matched reference and estimated notes. ``matching[i] == (i, j)`` where reference note ``i`` matches estimated note ``j``. """ # set the comparison function if strict: cmp_func = np.less else: cmp_func = np.less_equal # check for onset matches onset_distances = np.abs(np.subtract.outer(ref_intervals[:, 0], est_intervals[:, 0])) # Round distances to a target precision to avoid the situation where # if the distance is exactly 50ms (and strict=False) it erroneously # doesn't match the notes because of precision issues. onset_distances = np.around(onset_distances, decimals=N_DECIMALS) onset_hit_matrix = cmp_func(onset_distances, onset_tolerance) # find hits hits = np.where(onset_hit_matrix) # Construct the graph input # Flip graph so that 'matching' is a list of tuples where the first item # in each tuple is the reference note index, and the second item is the # estimated note index. G = {} for ref_i, est_i in zip(*hits): if est_i not in G: G[est_i] = [] G[est_i].append(ref_i) # Compute the maximum matching matching = sorted(util._bipartite_match(G).items()) return matching
python
def match_note_onsets(ref_intervals, est_intervals, onset_tolerance=0.05, strict=False): """Compute a maximum matching between reference and estimated notes, only taking note onsets into account. Given two note sequences represented by ``ref_intervals`` and ``est_intervals`` (see :func:`mir_eval.io.load_valued_intervals`), we see the largest set of correspondences ``(i,j)`` such that the onset of reference note ``i`` is within ``onset_tolerance`` of the onset of estimated note ``j``. Every reference note is matched against at most one estimated note. Note there are separate functions :func:`match_note_offsets` and :func:`match_notes` for matching notes based on offsets only or based on onset, offset, and pitch, respectively. This is because the rules for matching note onsets and matching note offsets are different. Parameters ---------- ref_intervals : np.ndarray, shape=(n,2) Array of reference notes time intervals (onset and offset times) est_intervals : np.ndarray, shape=(m,2) Array of estimated notes time intervals (onset and offset times) onset_tolerance : float > 0 The tolerance for an estimated note's onset deviating from the reference note's onset, in seconds. Default is 0.05 (50 ms). strict : bool If ``strict=False`` (the default), threshold checks for onset matching are performed using ``<=`` (less than or equal). If ``strict=True``, the threshold checks are performed using ``<`` (less than). Returns ------- matching : list of tuples A list of matched reference and estimated notes. ``matching[i] == (i, j)`` where reference note ``i`` matches estimated note ``j``. """ # set the comparison function if strict: cmp_func = np.less else: cmp_func = np.less_equal # check for onset matches onset_distances = np.abs(np.subtract.outer(ref_intervals[:, 0], est_intervals[:, 0])) # Round distances to a target precision to avoid the situation where # if the distance is exactly 50ms (and strict=False) it erroneously # doesn't match the notes because of precision issues. onset_distances = np.around(onset_distances, decimals=N_DECIMALS) onset_hit_matrix = cmp_func(onset_distances, onset_tolerance) # find hits hits = np.where(onset_hit_matrix) # Construct the graph input # Flip graph so that 'matching' is a list of tuples where the first item # in each tuple is the reference note index, and the second item is the # estimated note index. G = {} for ref_i, est_i in zip(*hits): if est_i not in G: G[est_i] = [] G[est_i].append(ref_i) # Compute the maximum matching matching = sorted(util._bipartite_match(G).items()) return matching
[ "def", "match_note_onsets", "(", "ref_intervals", ",", "est_intervals", ",", "onset_tolerance", "=", "0.05", ",", "strict", "=", "False", ")", ":", "# set the comparison function", "if", "strict", ":", "cmp_func", "=", "np", ".", "less", "else", ":", "cmp_func", "=", "np", ".", "less_equal", "# check for onset matches", "onset_distances", "=", "np", ".", "abs", "(", "np", ".", "subtract", ".", "outer", "(", "ref_intervals", "[", ":", ",", "0", "]", ",", "est_intervals", "[", ":", ",", "0", "]", ")", ")", "# Round distances to a target precision to avoid the situation where", "# if the distance is exactly 50ms (and strict=False) it erroneously", "# doesn't match the notes because of precision issues.", "onset_distances", "=", "np", ".", "around", "(", "onset_distances", ",", "decimals", "=", "N_DECIMALS", ")", "onset_hit_matrix", "=", "cmp_func", "(", "onset_distances", ",", "onset_tolerance", ")", "# find hits", "hits", "=", "np", ".", "where", "(", "onset_hit_matrix", ")", "# Construct the graph input", "# Flip graph so that 'matching' is a list of tuples where the first item", "# in each tuple is the reference note index, and the second item is the", "# estimated note index.", "G", "=", "{", "}", "for", "ref_i", ",", "est_i", "in", "zip", "(", "*", "hits", ")", ":", "if", "est_i", "not", "in", "G", ":", "G", "[", "est_i", "]", "=", "[", "]", "G", "[", "est_i", "]", ".", "append", "(", "ref_i", ")", "# Compute the maximum matching", "matching", "=", "sorted", "(", "util", ".", "_bipartite_match", "(", "G", ")", ".", "items", "(", ")", ")", "return", "matching" ]
Compute a maximum matching between reference and estimated notes, only taking note onsets into account. Given two note sequences represented by ``ref_intervals`` and ``est_intervals`` (see :func:`mir_eval.io.load_valued_intervals`), we see the largest set of correspondences ``(i,j)`` such that the onset of reference note ``i`` is within ``onset_tolerance`` of the onset of estimated note ``j``. Every reference note is matched against at most one estimated note. Note there are separate functions :func:`match_note_offsets` and :func:`match_notes` for matching notes based on offsets only or based on onset, offset, and pitch, respectively. This is because the rules for matching note onsets and matching note offsets are different. Parameters ---------- ref_intervals : np.ndarray, shape=(n,2) Array of reference notes time intervals (onset and offset times) est_intervals : np.ndarray, shape=(m,2) Array of estimated notes time intervals (onset and offset times) onset_tolerance : float > 0 The tolerance for an estimated note's onset deviating from the reference note's onset, in seconds. Default is 0.05 (50 ms). strict : bool If ``strict=False`` (the default), threshold checks for onset matching are performed using ``<=`` (less than or equal). If ``strict=True``, the threshold checks are performed using ``<`` (less than). Returns ------- matching : list of tuples A list of matched reference and estimated notes. ``matching[i] == (i, j)`` where reference note ``i`` matches estimated note ``j``.
[ "Compute", "a", "maximum", "matching", "between", "reference", "and", "estimated", "notes", "only", "taking", "note", "onsets", "into", "account", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/transcription.py#L263-L333
train
craffel/mir_eval
mir_eval/melody.py
validate_voicing
def validate_voicing(ref_voicing, est_voicing): """Checks that voicing inputs to a metric are in the correct format. Parameters ---------- ref_voicing : np.ndarray Reference boolean voicing array est_voicing : np.ndarray Estimated boolean voicing array """ if ref_voicing.size == 0: warnings.warn("Reference voicing array is empty.") if est_voicing.size == 0: warnings.warn("Estimated voicing array is empty.") if ref_voicing.sum() == 0: warnings.warn("Reference melody has no voiced frames.") if est_voicing.sum() == 0: warnings.warn("Estimated melody has no voiced frames.") # Make sure they're the same length if ref_voicing.shape[0] != est_voicing.shape[0]: raise ValueError('Reference and estimated voicing arrays should ' 'be the same length.') for voicing in [ref_voicing, est_voicing]: # Make sure they're (effectively) boolean if np.logical_and(voicing != 0, voicing != 1).any(): raise ValueError('Voicing arrays must be boolean.')
python
def validate_voicing(ref_voicing, est_voicing): """Checks that voicing inputs to a metric are in the correct format. Parameters ---------- ref_voicing : np.ndarray Reference boolean voicing array est_voicing : np.ndarray Estimated boolean voicing array """ if ref_voicing.size == 0: warnings.warn("Reference voicing array is empty.") if est_voicing.size == 0: warnings.warn("Estimated voicing array is empty.") if ref_voicing.sum() == 0: warnings.warn("Reference melody has no voiced frames.") if est_voicing.sum() == 0: warnings.warn("Estimated melody has no voiced frames.") # Make sure they're the same length if ref_voicing.shape[0] != est_voicing.shape[0]: raise ValueError('Reference and estimated voicing arrays should ' 'be the same length.') for voicing in [ref_voicing, est_voicing]: # Make sure they're (effectively) boolean if np.logical_and(voicing != 0, voicing != 1).any(): raise ValueError('Voicing arrays must be boolean.')
[ "def", "validate_voicing", "(", "ref_voicing", ",", "est_voicing", ")", ":", "if", "ref_voicing", ".", "size", "==", "0", ":", "warnings", ".", "warn", "(", "\"Reference voicing array is empty.\"", ")", "if", "est_voicing", ".", "size", "==", "0", ":", "warnings", ".", "warn", "(", "\"Estimated voicing array is empty.\"", ")", "if", "ref_voicing", ".", "sum", "(", ")", "==", "0", ":", "warnings", ".", "warn", "(", "\"Reference melody has no voiced frames.\"", ")", "if", "est_voicing", ".", "sum", "(", ")", "==", "0", ":", "warnings", ".", "warn", "(", "\"Estimated melody has no voiced frames.\"", ")", "# Make sure they're the same length", "if", "ref_voicing", ".", "shape", "[", "0", "]", "!=", "est_voicing", ".", "shape", "[", "0", "]", ":", "raise", "ValueError", "(", "'Reference and estimated voicing arrays should '", "'be the same length.'", ")", "for", "voicing", "in", "[", "ref_voicing", ",", "est_voicing", "]", ":", "# Make sure they're (effectively) boolean", "if", "np", ".", "logical_and", "(", "voicing", "!=", "0", ",", "voicing", "!=", "1", ")", ".", "any", "(", ")", ":", "raise", "ValueError", "(", "'Voicing arrays must be boolean.'", ")" ]
Checks that voicing inputs to a metric are in the correct format. Parameters ---------- ref_voicing : np.ndarray Reference boolean voicing array est_voicing : np.ndarray Estimated boolean voicing array
[ "Checks", "that", "voicing", "inputs", "to", "a", "metric", "are", "in", "the", "correct", "format", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/melody.py#L61-L87
train
craffel/mir_eval
mir_eval/melody.py
hz2cents
def hz2cents(freq_hz, base_frequency=10.0): """Convert an array of frequency values in Hz to cents. 0 values are left in place. Parameters ---------- freq_hz : np.ndarray Array of frequencies in Hz. base_frequency : float Base frequency for conversion. (Default value = 10.0) Returns ------- cent : np.ndarray Array of frequencies in cents, relative to base_frequency """ freq_cent = np.zeros(freq_hz.shape[0]) freq_nonz_ind = np.flatnonzero(freq_hz) normalized_frequency = np.abs(freq_hz[freq_nonz_ind])/base_frequency freq_cent[freq_nonz_ind] = 1200*np.log2(normalized_frequency) return freq_cent
python
def hz2cents(freq_hz, base_frequency=10.0): """Convert an array of frequency values in Hz to cents. 0 values are left in place. Parameters ---------- freq_hz : np.ndarray Array of frequencies in Hz. base_frequency : float Base frequency for conversion. (Default value = 10.0) Returns ------- cent : np.ndarray Array of frequencies in cents, relative to base_frequency """ freq_cent = np.zeros(freq_hz.shape[0]) freq_nonz_ind = np.flatnonzero(freq_hz) normalized_frequency = np.abs(freq_hz[freq_nonz_ind])/base_frequency freq_cent[freq_nonz_ind] = 1200*np.log2(normalized_frequency) return freq_cent
[ "def", "hz2cents", "(", "freq_hz", ",", "base_frequency", "=", "10.0", ")", ":", "freq_cent", "=", "np", ".", "zeros", "(", "freq_hz", ".", "shape", "[", "0", "]", ")", "freq_nonz_ind", "=", "np", ".", "flatnonzero", "(", "freq_hz", ")", "normalized_frequency", "=", "np", ".", "abs", "(", "freq_hz", "[", "freq_nonz_ind", "]", ")", "/", "base_frequency", "freq_cent", "[", "freq_nonz_ind", "]", "=", "1200", "*", "np", ".", "log2", "(", "normalized_frequency", ")", "return", "freq_cent" ]
Convert an array of frequency values in Hz to cents. 0 values are left in place. Parameters ---------- freq_hz : np.ndarray Array of frequencies in Hz. base_frequency : float Base frequency for conversion. (Default value = 10.0) Returns ------- cent : np.ndarray Array of frequencies in cents, relative to base_frequency
[ "Convert", "an", "array", "of", "frequency", "values", "in", "Hz", "to", "cents", ".", "0", "values", "are", "left", "in", "place", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/melody.py#L118-L141
train
craffel/mir_eval
mir_eval/melody.py
constant_hop_timebase
def constant_hop_timebase(hop, end_time): """Generates a time series from 0 to ``end_time`` with times spaced ``hop`` apart Parameters ---------- hop : float Spacing of samples in the time series end_time : float Time series will span ``[0, end_time]`` Returns ------- times : np.ndarray Generated timebase """ # Compute new timebase. Rounding/linspace is to avoid float problems. end_time = np.round(end_time, 10) times = np.linspace(0, hop*int(np.floor(end_time/hop)), int(np.floor(end_time/hop)) + 1) times = np.round(times, 10) return times
python
def constant_hop_timebase(hop, end_time): """Generates a time series from 0 to ``end_time`` with times spaced ``hop`` apart Parameters ---------- hop : float Spacing of samples in the time series end_time : float Time series will span ``[0, end_time]`` Returns ------- times : np.ndarray Generated timebase """ # Compute new timebase. Rounding/linspace is to avoid float problems. end_time = np.round(end_time, 10) times = np.linspace(0, hop*int(np.floor(end_time/hop)), int(np.floor(end_time/hop)) + 1) times = np.round(times, 10) return times
[ "def", "constant_hop_timebase", "(", "hop", ",", "end_time", ")", ":", "# Compute new timebase. Rounding/linspace is to avoid float problems.", "end_time", "=", "np", ".", "round", "(", "end_time", ",", "10", ")", "times", "=", "np", ".", "linspace", "(", "0", ",", "hop", "*", "int", "(", "np", ".", "floor", "(", "end_time", "/", "hop", ")", ")", ",", "int", "(", "np", ".", "floor", "(", "end_time", "/", "hop", ")", ")", "+", "1", ")", "times", "=", "np", ".", "round", "(", "times", ",", "10", ")", "return", "times" ]
Generates a time series from 0 to ``end_time`` with times spaced ``hop`` apart Parameters ---------- hop : float Spacing of samples in the time series end_time : float Time series will span ``[0, end_time]`` Returns ------- times : np.ndarray Generated timebase
[ "Generates", "a", "time", "series", "from", "0", "to", "end_time", "with", "times", "spaced", "hop", "apart" ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/melody.py#L165-L187
train
craffel/mir_eval
mir_eval/segment.py
detection
def detection(reference_intervals, estimated_intervals, window=0.5, beta=1.0, trim=False): """Boundary detection hit-rate. A hit is counted whenever an reference boundary is within ``window`` of a estimated boundary. Note that each boundary is matched at most once: this is achieved by computing the size of a maximal matching between reference and estimated boundary points, subject to the window constraint. Examples -------- >>> ref_intervals, _ = mir_eval.io.load_labeled_intervals('ref.lab') >>> est_intervals, _ = mir_eval.io.load_labeled_intervals('est.lab') >>> # With 0.5s windowing >>> P05, R05, F05 = mir_eval.segment.detection(ref_intervals, ... est_intervals, ... window=0.5) >>> # With 3s windowing >>> P3, R3, F3 = mir_eval.segment.detection(ref_intervals, ... est_intervals, ... window=3) >>> # Ignoring hits for the beginning and end of track >>> P, R, F = mir_eval.segment.detection(ref_intervals, ... est_intervals, ... window=0.5, ... trim=True) Parameters ---------- reference_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. estimated_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. window : float > 0 size of the window of 'correctness' around ground-truth beats (in seconds) (Default value = 0.5) beta : float > 0 weighting constant for F-measure. (Default value = 1.0) trim : boolean if ``True``, the first and last boundary times are ignored. Typically, these denote start (0) and end-markers. (Default value = False) Returns ------- precision : float precision of estimated predictions recall : float recall of reference reference boundaries f_measure : float F-measure (weighted harmonic mean of ``precision`` and ``recall``) """ validate_boundary(reference_intervals, estimated_intervals, trim) # Convert intervals to boundaries reference_boundaries = util.intervals_to_boundaries(reference_intervals) estimated_boundaries = util.intervals_to_boundaries(estimated_intervals) # Suppress the first and last intervals if trim: reference_boundaries = reference_boundaries[1:-1] estimated_boundaries = estimated_boundaries[1:-1] # If we have no boundaries, we get no score. if len(reference_boundaries) == 0 or len(estimated_boundaries) == 0: return 0.0, 0.0, 0.0 matching = util.match_events(reference_boundaries, estimated_boundaries, window) precision = float(len(matching)) / len(estimated_boundaries) recall = float(len(matching)) / len(reference_boundaries) f_measure = util.f_measure(precision, recall, beta=beta) return precision, recall, f_measure
python
def detection(reference_intervals, estimated_intervals, window=0.5, beta=1.0, trim=False): """Boundary detection hit-rate. A hit is counted whenever an reference boundary is within ``window`` of a estimated boundary. Note that each boundary is matched at most once: this is achieved by computing the size of a maximal matching between reference and estimated boundary points, subject to the window constraint. Examples -------- >>> ref_intervals, _ = mir_eval.io.load_labeled_intervals('ref.lab') >>> est_intervals, _ = mir_eval.io.load_labeled_intervals('est.lab') >>> # With 0.5s windowing >>> P05, R05, F05 = mir_eval.segment.detection(ref_intervals, ... est_intervals, ... window=0.5) >>> # With 3s windowing >>> P3, R3, F3 = mir_eval.segment.detection(ref_intervals, ... est_intervals, ... window=3) >>> # Ignoring hits for the beginning and end of track >>> P, R, F = mir_eval.segment.detection(ref_intervals, ... est_intervals, ... window=0.5, ... trim=True) Parameters ---------- reference_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. estimated_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. window : float > 0 size of the window of 'correctness' around ground-truth beats (in seconds) (Default value = 0.5) beta : float > 0 weighting constant for F-measure. (Default value = 1.0) trim : boolean if ``True``, the first and last boundary times are ignored. Typically, these denote start (0) and end-markers. (Default value = False) Returns ------- precision : float precision of estimated predictions recall : float recall of reference reference boundaries f_measure : float F-measure (weighted harmonic mean of ``precision`` and ``recall``) """ validate_boundary(reference_intervals, estimated_intervals, trim) # Convert intervals to boundaries reference_boundaries = util.intervals_to_boundaries(reference_intervals) estimated_boundaries = util.intervals_to_boundaries(estimated_intervals) # Suppress the first and last intervals if trim: reference_boundaries = reference_boundaries[1:-1] estimated_boundaries = estimated_boundaries[1:-1] # If we have no boundaries, we get no score. if len(reference_boundaries) == 0 or len(estimated_boundaries) == 0: return 0.0, 0.0, 0.0 matching = util.match_events(reference_boundaries, estimated_boundaries, window) precision = float(len(matching)) / len(estimated_boundaries) recall = float(len(matching)) / len(reference_boundaries) f_measure = util.f_measure(precision, recall, beta=beta) return precision, recall, f_measure
[ "def", "detection", "(", "reference_intervals", ",", "estimated_intervals", ",", "window", "=", "0.5", ",", "beta", "=", "1.0", ",", "trim", "=", "False", ")", ":", "validate_boundary", "(", "reference_intervals", ",", "estimated_intervals", ",", "trim", ")", "# Convert intervals to boundaries", "reference_boundaries", "=", "util", ".", "intervals_to_boundaries", "(", "reference_intervals", ")", "estimated_boundaries", "=", "util", ".", "intervals_to_boundaries", "(", "estimated_intervals", ")", "# Suppress the first and last intervals", "if", "trim", ":", "reference_boundaries", "=", "reference_boundaries", "[", "1", ":", "-", "1", "]", "estimated_boundaries", "=", "estimated_boundaries", "[", "1", ":", "-", "1", "]", "# If we have no boundaries, we get no score.", "if", "len", "(", "reference_boundaries", ")", "==", "0", "or", "len", "(", "estimated_boundaries", ")", "==", "0", ":", "return", "0.0", ",", "0.0", ",", "0.0", "matching", "=", "util", ".", "match_events", "(", "reference_boundaries", ",", "estimated_boundaries", ",", "window", ")", "precision", "=", "float", "(", "len", "(", "matching", ")", ")", "/", "len", "(", "estimated_boundaries", ")", "recall", "=", "float", "(", "len", "(", "matching", ")", ")", "/", "len", "(", "reference_boundaries", ")", "f_measure", "=", "util", ".", "f_measure", "(", "precision", ",", "recall", ",", "beta", "=", "beta", ")", "return", "precision", ",", "recall", ",", "f_measure" ]
Boundary detection hit-rate. A hit is counted whenever an reference boundary is within ``window`` of a estimated boundary. Note that each boundary is matched at most once: this is achieved by computing the size of a maximal matching between reference and estimated boundary points, subject to the window constraint. Examples -------- >>> ref_intervals, _ = mir_eval.io.load_labeled_intervals('ref.lab') >>> est_intervals, _ = mir_eval.io.load_labeled_intervals('est.lab') >>> # With 0.5s windowing >>> P05, R05, F05 = mir_eval.segment.detection(ref_intervals, ... est_intervals, ... window=0.5) >>> # With 3s windowing >>> P3, R3, F3 = mir_eval.segment.detection(ref_intervals, ... est_intervals, ... window=3) >>> # Ignoring hits for the beginning and end of track >>> P, R, F = mir_eval.segment.detection(ref_intervals, ... est_intervals, ... window=0.5, ... trim=True) Parameters ---------- reference_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. estimated_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. window : float > 0 size of the window of 'correctness' around ground-truth beats (in seconds) (Default value = 0.5) beta : float > 0 weighting constant for F-measure. (Default value = 1.0) trim : boolean if ``True``, the first and last boundary times are ignored. Typically, these denote start (0) and end-markers. (Default value = False) Returns ------- precision : float precision of estimated predictions recall : float recall of reference reference boundaries f_measure : float F-measure (weighted harmonic mean of ``precision`` and ``recall``)
[ "Boundary", "detection", "hit", "-", "rate", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/segment.py#L176-L260
train
craffel/mir_eval
mir_eval/segment.py
deviation
def deviation(reference_intervals, estimated_intervals, trim=False): """Compute the median deviations between reference and estimated boundary times. Examples -------- >>> ref_intervals, _ = mir_eval.io.load_labeled_intervals('ref.lab') >>> est_intervals, _ = mir_eval.io.load_labeled_intervals('est.lab') >>> r_to_e, e_to_r = mir_eval.boundary.deviation(ref_intervals, ... est_intervals) Parameters ---------- reference_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. estimated_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. trim : boolean if ``True``, the first and last intervals are ignored. Typically, these denote start (0.0) and end-of-track markers. (Default value = False) Returns ------- reference_to_estimated : float median time from each reference boundary to the closest estimated boundary estimated_to_reference : float median time from each estimated boundary to the closest reference boundary """ validate_boundary(reference_intervals, estimated_intervals, trim) # Convert intervals to boundaries reference_boundaries = util.intervals_to_boundaries(reference_intervals) estimated_boundaries = util.intervals_to_boundaries(estimated_intervals) # Suppress the first and last intervals if trim: reference_boundaries = reference_boundaries[1:-1] estimated_boundaries = estimated_boundaries[1:-1] # If we have no boundaries, we get no score. if len(reference_boundaries) == 0 or len(estimated_boundaries) == 0: return np.nan, np.nan dist = np.abs(np.subtract.outer(reference_boundaries, estimated_boundaries)) estimated_to_reference = np.median(dist.min(axis=0)) reference_to_estimated = np.median(dist.min(axis=1)) return reference_to_estimated, estimated_to_reference
python
def deviation(reference_intervals, estimated_intervals, trim=False): """Compute the median deviations between reference and estimated boundary times. Examples -------- >>> ref_intervals, _ = mir_eval.io.load_labeled_intervals('ref.lab') >>> est_intervals, _ = mir_eval.io.load_labeled_intervals('est.lab') >>> r_to_e, e_to_r = mir_eval.boundary.deviation(ref_intervals, ... est_intervals) Parameters ---------- reference_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. estimated_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. trim : boolean if ``True``, the first and last intervals are ignored. Typically, these denote start (0.0) and end-of-track markers. (Default value = False) Returns ------- reference_to_estimated : float median time from each reference boundary to the closest estimated boundary estimated_to_reference : float median time from each estimated boundary to the closest reference boundary """ validate_boundary(reference_intervals, estimated_intervals, trim) # Convert intervals to boundaries reference_boundaries = util.intervals_to_boundaries(reference_intervals) estimated_boundaries = util.intervals_to_boundaries(estimated_intervals) # Suppress the first and last intervals if trim: reference_boundaries = reference_boundaries[1:-1] estimated_boundaries = estimated_boundaries[1:-1] # If we have no boundaries, we get no score. if len(reference_boundaries) == 0 or len(estimated_boundaries) == 0: return np.nan, np.nan dist = np.abs(np.subtract.outer(reference_boundaries, estimated_boundaries)) estimated_to_reference = np.median(dist.min(axis=0)) reference_to_estimated = np.median(dist.min(axis=1)) return reference_to_estimated, estimated_to_reference
[ "def", "deviation", "(", "reference_intervals", ",", "estimated_intervals", ",", "trim", "=", "False", ")", ":", "validate_boundary", "(", "reference_intervals", ",", "estimated_intervals", ",", "trim", ")", "# Convert intervals to boundaries", "reference_boundaries", "=", "util", ".", "intervals_to_boundaries", "(", "reference_intervals", ")", "estimated_boundaries", "=", "util", ".", "intervals_to_boundaries", "(", "estimated_intervals", ")", "# Suppress the first and last intervals", "if", "trim", ":", "reference_boundaries", "=", "reference_boundaries", "[", "1", ":", "-", "1", "]", "estimated_boundaries", "=", "estimated_boundaries", "[", "1", ":", "-", "1", "]", "# If we have no boundaries, we get no score.", "if", "len", "(", "reference_boundaries", ")", "==", "0", "or", "len", "(", "estimated_boundaries", ")", "==", "0", ":", "return", "np", ".", "nan", ",", "np", ".", "nan", "dist", "=", "np", ".", "abs", "(", "np", ".", "subtract", ".", "outer", "(", "reference_boundaries", ",", "estimated_boundaries", ")", ")", "estimated_to_reference", "=", "np", ".", "median", "(", "dist", ".", "min", "(", "axis", "=", "0", ")", ")", "reference_to_estimated", "=", "np", ".", "median", "(", "dist", ".", "min", "(", "axis", "=", "1", ")", ")", "return", "reference_to_estimated", ",", "estimated_to_reference" ]
Compute the median deviations between reference and estimated boundary times. Examples -------- >>> ref_intervals, _ = mir_eval.io.load_labeled_intervals('ref.lab') >>> est_intervals, _ = mir_eval.io.load_labeled_intervals('est.lab') >>> r_to_e, e_to_r = mir_eval.boundary.deviation(ref_intervals, ... est_intervals) Parameters ---------- reference_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. estimated_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. trim : boolean if ``True``, the first and last intervals are ignored. Typically, these denote start (0.0) and end-of-track markers. (Default value = False) Returns ------- reference_to_estimated : float median time from each reference boundary to the closest estimated boundary estimated_to_reference : float median time from each estimated boundary to the closest reference boundary
[ "Compute", "the", "median", "deviations", "between", "reference", "and", "estimated", "boundary", "times", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/segment.py#L263-L321
train
craffel/mir_eval
mir_eval/segment.py
pairwise
def pairwise(reference_intervals, reference_labels, estimated_intervals, estimated_labels, frame_size=0.1, beta=1.0): """Frame-clustering segmentation evaluation by pair-wise agreement. Examples -------- >>> (ref_intervals, ... ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab') >>> (est_intervals, ... est_labels) = mir_eval.io.load_labeled_intervals('est.lab') >>> # Trim or pad the estimate to match reference timing >>> (ref_intervals, ... ref_labels) = mir_eval.util.adjust_intervals(ref_intervals, ... ref_labels, ... t_min=0) >>> (est_intervals, ... est_labels) = mir_eval.util.adjust_intervals( ... est_intervals, est_labels, t_min=0, t_max=ref_intervals.max()) >>> precision, recall, f = mir_eval.structure.pairwise(ref_intervals, ... ref_labels, ... est_intervals, ... est_labels) Parameters ---------- reference_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. reference_labels : list, shape=(n,) reference segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. estimated_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. estimated_labels : list, shape=(m,) estimated segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. frame_size : float > 0 length (in seconds) of frames for clustering (Default value = 0.1) beta : float > 0 beta value for F-measure (Default value = 1.0) Returns ------- precision : float > 0 Precision of detecting whether frames belong in the same cluster recall : float > 0 Recall of detecting whether frames belong in the same cluster f : float > 0 F-measure of detecting whether frames belong in the same cluster """ validate_structure(reference_intervals, reference_labels, estimated_intervals, estimated_labels) # Check for empty annotations. Don't need to check labels because # validate_structure makes sure they're the same size as intervals if reference_intervals.size == 0 or estimated_intervals.size == 0: return 0., 0., 0. # Generate the cluster labels y_ref = util.intervals_to_samples(reference_intervals, reference_labels, sample_size=frame_size)[-1] y_ref = util.index_labels(y_ref)[0] # Map to index space y_est = util.intervals_to_samples(estimated_intervals, estimated_labels, sample_size=frame_size)[-1] y_est = util.index_labels(y_est)[0] # Build the reference label agreement matrix agree_ref = np.equal.outer(y_ref, y_ref) # Count the unique pairs n_agree_ref = (agree_ref.sum() - len(y_ref)) / 2.0 # Repeat for estimate agree_est = np.equal.outer(y_est, y_est) n_agree_est = (agree_est.sum() - len(y_est)) / 2.0 # Find where they agree matches = np.logical_and(agree_ref, agree_est) n_matches = (matches.sum() - len(y_ref)) / 2.0 precision = n_matches / n_agree_est recall = n_matches / n_agree_ref f_measure = util.f_measure(precision, recall, beta=beta) return precision, recall, f_measure
python
def pairwise(reference_intervals, reference_labels, estimated_intervals, estimated_labels, frame_size=0.1, beta=1.0): """Frame-clustering segmentation evaluation by pair-wise agreement. Examples -------- >>> (ref_intervals, ... ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab') >>> (est_intervals, ... est_labels) = mir_eval.io.load_labeled_intervals('est.lab') >>> # Trim or pad the estimate to match reference timing >>> (ref_intervals, ... ref_labels) = mir_eval.util.adjust_intervals(ref_intervals, ... ref_labels, ... t_min=0) >>> (est_intervals, ... est_labels) = mir_eval.util.adjust_intervals( ... est_intervals, est_labels, t_min=0, t_max=ref_intervals.max()) >>> precision, recall, f = mir_eval.structure.pairwise(ref_intervals, ... ref_labels, ... est_intervals, ... est_labels) Parameters ---------- reference_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. reference_labels : list, shape=(n,) reference segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. estimated_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. estimated_labels : list, shape=(m,) estimated segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. frame_size : float > 0 length (in seconds) of frames for clustering (Default value = 0.1) beta : float > 0 beta value for F-measure (Default value = 1.0) Returns ------- precision : float > 0 Precision of detecting whether frames belong in the same cluster recall : float > 0 Recall of detecting whether frames belong in the same cluster f : float > 0 F-measure of detecting whether frames belong in the same cluster """ validate_structure(reference_intervals, reference_labels, estimated_intervals, estimated_labels) # Check for empty annotations. Don't need to check labels because # validate_structure makes sure they're the same size as intervals if reference_intervals.size == 0 or estimated_intervals.size == 0: return 0., 0., 0. # Generate the cluster labels y_ref = util.intervals_to_samples(reference_intervals, reference_labels, sample_size=frame_size)[-1] y_ref = util.index_labels(y_ref)[0] # Map to index space y_est = util.intervals_to_samples(estimated_intervals, estimated_labels, sample_size=frame_size)[-1] y_est = util.index_labels(y_est)[0] # Build the reference label agreement matrix agree_ref = np.equal.outer(y_ref, y_ref) # Count the unique pairs n_agree_ref = (agree_ref.sum() - len(y_ref)) / 2.0 # Repeat for estimate agree_est = np.equal.outer(y_est, y_est) n_agree_est = (agree_est.sum() - len(y_est)) / 2.0 # Find where they agree matches = np.logical_and(agree_ref, agree_est) n_matches = (matches.sum() - len(y_ref)) / 2.0 precision = n_matches / n_agree_est recall = n_matches / n_agree_ref f_measure = util.f_measure(precision, recall, beta=beta) return precision, recall, f_measure
[ "def", "pairwise", "(", "reference_intervals", ",", "reference_labels", ",", "estimated_intervals", ",", "estimated_labels", ",", "frame_size", "=", "0.1", ",", "beta", "=", "1.0", ")", ":", "validate_structure", "(", "reference_intervals", ",", "reference_labels", ",", "estimated_intervals", ",", "estimated_labels", ")", "# Check for empty annotations. Don't need to check labels because", "# validate_structure makes sure they're the same size as intervals", "if", "reference_intervals", ".", "size", "==", "0", "or", "estimated_intervals", ".", "size", "==", "0", ":", "return", "0.", ",", "0.", ",", "0.", "# Generate the cluster labels", "y_ref", "=", "util", ".", "intervals_to_samples", "(", "reference_intervals", ",", "reference_labels", ",", "sample_size", "=", "frame_size", ")", "[", "-", "1", "]", "y_ref", "=", "util", ".", "index_labels", "(", "y_ref", ")", "[", "0", "]", "# Map to index space", "y_est", "=", "util", ".", "intervals_to_samples", "(", "estimated_intervals", ",", "estimated_labels", ",", "sample_size", "=", "frame_size", ")", "[", "-", "1", "]", "y_est", "=", "util", ".", "index_labels", "(", "y_est", ")", "[", "0", "]", "# Build the reference label agreement matrix", "agree_ref", "=", "np", ".", "equal", ".", "outer", "(", "y_ref", ",", "y_ref", ")", "# Count the unique pairs", "n_agree_ref", "=", "(", "agree_ref", ".", "sum", "(", ")", "-", "len", "(", "y_ref", ")", ")", "/", "2.0", "# Repeat for estimate", "agree_est", "=", "np", ".", "equal", ".", "outer", "(", "y_est", ",", "y_est", ")", "n_agree_est", "=", "(", "agree_est", ".", "sum", "(", ")", "-", "len", "(", "y_est", ")", ")", "/", "2.0", "# Find where they agree", "matches", "=", "np", ".", "logical_and", "(", "agree_ref", ",", "agree_est", ")", "n_matches", "=", "(", "matches", ".", "sum", "(", ")", "-", "len", "(", "y_ref", ")", ")", "/", "2.0", "precision", "=", "n_matches", "/", "n_agree_est", "recall", "=", "n_matches", "/", "n_agree_ref", "f_measure", "=", "util", ".", "f_measure", "(", "precision", ",", "recall", ",", "beta", "=", "beta", ")", "return", "precision", ",", "recall", ",", "f_measure" ]
Frame-clustering segmentation evaluation by pair-wise agreement. Examples -------- >>> (ref_intervals, ... ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab') >>> (est_intervals, ... est_labels) = mir_eval.io.load_labeled_intervals('est.lab') >>> # Trim or pad the estimate to match reference timing >>> (ref_intervals, ... ref_labels) = mir_eval.util.adjust_intervals(ref_intervals, ... ref_labels, ... t_min=0) >>> (est_intervals, ... est_labels) = mir_eval.util.adjust_intervals( ... est_intervals, est_labels, t_min=0, t_max=ref_intervals.max()) >>> precision, recall, f = mir_eval.structure.pairwise(ref_intervals, ... ref_labels, ... est_intervals, ... est_labels) Parameters ---------- reference_intervals : np.ndarray, shape=(n, 2) reference segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. reference_labels : list, shape=(n,) reference segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. estimated_intervals : np.ndarray, shape=(m, 2) estimated segment intervals, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. estimated_labels : list, shape=(m,) estimated segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. frame_size : float > 0 length (in seconds) of frames for clustering (Default value = 0.1) beta : float > 0 beta value for F-measure (Default value = 1.0) Returns ------- precision : float > 0 Precision of detecting whether frames belong in the same cluster recall : float > 0 Recall of detecting whether frames belong in the same cluster f : float > 0 F-measure of detecting whether frames belong in the same cluster
[ "Frame", "-", "clustering", "segmentation", "evaluation", "by", "pair", "-", "wise", "agreement", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/segment.py#L324-L418
train
craffel/mir_eval
mir_eval/segment.py
_contingency_matrix
def _contingency_matrix(reference_indices, estimated_indices): """Computes the contingency matrix of a true labeling vs an estimated one. Parameters ---------- reference_indices : np.ndarray Array of reference indices estimated_indices : np.ndarray Array of estimated indices Returns ------- contingency_matrix : np.ndarray Contingency matrix, shape=(#reference indices, #estimated indices) .. note:: Based on sklearn.metrics.cluster.contingency_matrix """ ref_classes, ref_class_idx = np.unique(reference_indices, return_inverse=True) est_classes, est_class_idx = np.unique(estimated_indices, return_inverse=True) n_ref_classes = ref_classes.shape[0] n_est_classes = est_classes.shape[0] # Using coo_matrix is faster than histogram2d return scipy.sparse.coo_matrix((np.ones(ref_class_idx.shape[0]), (ref_class_idx, est_class_idx)), shape=(n_ref_classes, n_est_classes), dtype=np.int).toarray()
python
def _contingency_matrix(reference_indices, estimated_indices): """Computes the contingency matrix of a true labeling vs an estimated one. Parameters ---------- reference_indices : np.ndarray Array of reference indices estimated_indices : np.ndarray Array of estimated indices Returns ------- contingency_matrix : np.ndarray Contingency matrix, shape=(#reference indices, #estimated indices) .. note:: Based on sklearn.metrics.cluster.contingency_matrix """ ref_classes, ref_class_idx = np.unique(reference_indices, return_inverse=True) est_classes, est_class_idx = np.unique(estimated_indices, return_inverse=True) n_ref_classes = ref_classes.shape[0] n_est_classes = est_classes.shape[0] # Using coo_matrix is faster than histogram2d return scipy.sparse.coo_matrix((np.ones(ref_class_idx.shape[0]), (ref_class_idx, est_class_idx)), shape=(n_ref_classes, n_est_classes), dtype=np.int).toarray()
[ "def", "_contingency_matrix", "(", "reference_indices", ",", "estimated_indices", ")", ":", "ref_classes", ",", "ref_class_idx", "=", "np", ".", "unique", "(", "reference_indices", ",", "return_inverse", "=", "True", ")", "est_classes", ",", "est_class_idx", "=", "np", ".", "unique", "(", "estimated_indices", ",", "return_inverse", "=", "True", ")", "n_ref_classes", "=", "ref_classes", ".", "shape", "[", "0", "]", "n_est_classes", "=", "est_classes", ".", "shape", "[", "0", "]", "# Using coo_matrix is faster than histogram2d", "return", "scipy", ".", "sparse", ".", "coo_matrix", "(", "(", "np", ".", "ones", "(", "ref_class_idx", ".", "shape", "[", "0", "]", ")", ",", "(", "ref_class_idx", ",", "est_class_idx", ")", ")", ",", "shape", "=", "(", "n_ref_classes", ",", "n_est_classes", ")", ",", "dtype", "=", "np", ".", "int", ")", ".", "toarray", "(", ")" ]
Computes the contingency matrix of a true labeling vs an estimated one. Parameters ---------- reference_indices : np.ndarray Array of reference indices estimated_indices : np.ndarray Array of estimated indices Returns ------- contingency_matrix : np.ndarray Contingency matrix, shape=(#reference indices, #estimated indices) .. note:: Based on sklearn.metrics.cluster.contingency_matrix
[ "Computes", "the", "contingency", "matrix", "of", "a", "true", "labeling", "vs", "an", "estimated", "one", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/segment.py#L516-L543
train
craffel/mir_eval
mir_eval/segment.py
_adjusted_rand_index
def _adjusted_rand_index(reference_indices, estimated_indices): """Compute the Rand index, adjusted for change. Parameters ---------- reference_indices : np.ndarray Array of reference indices estimated_indices : np.ndarray Array of estimated indices Returns ------- ari : float Adjusted Rand index .. note:: Based on sklearn.metrics.cluster.adjusted_rand_score """ n_samples = len(reference_indices) ref_classes = np.unique(reference_indices) est_classes = np.unique(estimated_indices) # Special limit cases: no clustering since the data is not split; # or trivial clustering where each document is assigned a unique cluster. # These are perfect matches hence return 1.0. if (ref_classes.shape[0] == est_classes.shape[0] == 1 or ref_classes.shape[0] == est_classes.shape[0] == 0 or (ref_classes.shape[0] == est_classes.shape[0] == len(reference_indices))): return 1.0 contingency = _contingency_matrix(reference_indices, estimated_indices) # Compute the ARI using the contingency data sum_comb_c = sum(scipy.special.comb(n_c, 2, exact=1) for n_c in contingency.sum(axis=1)) sum_comb_k = sum(scipy.special.comb(n_k, 2, exact=1) for n_k in contingency.sum(axis=0)) sum_comb = sum((scipy.special.comb(n_ij, 2, exact=1) for n_ij in contingency.flatten())) prod_comb = (sum_comb_c * sum_comb_k)/float(scipy.special.comb(n_samples, 2)) mean_comb = (sum_comb_k + sum_comb_c)/2. return (sum_comb - prod_comb)/(mean_comb - prod_comb)
python
def _adjusted_rand_index(reference_indices, estimated_indices): """Compute the Rand index, adjusted for change. Parameters ---------- reference_indices : np.ndarray Array of reference indices estimated_indices : np.ndarray Array of estimated indices Returns ------- ari : float Adjusted Rand index .. note:: Based on sklearn.metrics.cluster.adjusted_rand_score """ n_samples = len(reference_indices) ref_classes = np.unique(reference_indices) est_classes = np.unique(estimated_indices) # Special limit cases: no clustering since the data is not split; # or trivial clustering where each document is assigned a unique cluster. # These are perfect matches hence return 1.0. if (ref_classes.shape[0] == est_classes.shape[0] == 1 or ref_classes.shape[0] == est_classes.shape[0] == 0 or (ref_classes.shape[0] == est_classes.shape[0] == len(reference_indices))): return 1.0 contingency = _contingency_matrix(reference_indices, estimated_indices) # Compute the ARI using the contingency data sum_comb_c = sum(scipy.special.comb(n_c, 2, exact=1) for n_c in contingency.sum(axis=1)) sum_comb_k = sum(scipy.special.comb(n_k, 2, exact=1) for n_k in contingency.sum(axis=0)) sum_comb = sum((scipy.special.comb(n_ij, 2, exact=1) for n_ij in contingency.flatten())) prod_comb = (sum_comb_c * sum_comb_k)/float(scipy.special.comb(n_samples, 2)) mean_comb = (sum_comb_k + sum_comb_c)/2. return (sum_comb - prod_comb)/(mean_comb - prod_comb)
[ "def", "_adjusted_rand_index", "(", "reference_indices", ",", "estimated_indices", ")", ":", "n_samples", "=", "len", "(", "reference_indices", ")", "ref_classes", "=", "np", ".", "unique", "(", "reference_indices", ")", "est_classes", "=", "np", ".", "unique", "(", "estimated_indices", ")", "# Special limit cases: no clustering since the data is not split;", "# or trivial clustering where each document is assigned a unique cluster.", "# These are perfect matches hence return 1.0.", "if", "(", "ref_classes", ".", "shape", "[", "0", "]", "==", "est_classes", ".", "shape", "[", "0", "]", "==", "1", "or", "ref_classes", ".", "shape", "[", "0", "]", "==", "est_classes", ".", "shape", "[", "0", "]", "==", "0", "or", "(", "ref_classes", ".", "shape", "[", "0", "]", "==", "est_classes", ".", "shape", "[", "0", "]", "==", "len", "(", "reference_indices", ")", ")", ")", ":", "return", "1.0", "contingency", "=", "_contingency_matrix", "(", "reference_indices", ",", "estimated_indices", ")", "# Compute the ARI using the contingency data", "sum_comb_c", "=", "sum", "(", "scipy", ".", "special", ".", "comb", "(", "n_c", ",", "2", ",", "exact", "=", "1", ")", "for", "n_c", "in", "contingency", ".", "sum", "(", "axis", "=", "1", ")", ")", "sum_comb_k", "=", "sum", "(", "scipy", ".", "special", ".", "comb", "(", "n_k", ",", "2", ",", "exact", "=", "1", ")", "for", "n_k", "in", "contingency", ".", "sum", "(", "axis", "=", "0", ")", ")", "sum_comb", "=", "sum", "(", "(", "scipy", ".", "special", ".", "comb", "(", "n_ij", ",", "2", ",", "exact", "=", "1", ")", "for", "n_ij", "in", "contingency", ".", "flatten", "(", ")", ")", ")", "prod_comb", "=", "(", "sum_comb_c", "*", "sum_comb_k", ")", "/", "float", "(", "scipy", ".", "special", ".", "comb", "(", "n_samples", ",", "2", ")", ")", "mean_comb", "=", "(", "sum_comb_k", "+", "sum_comb_c", ")", "/", "2.", "return", "(", "sum_comb", "-", "prod_comb", ")", "/", "(", "mean_comb", "-", "prod_comb", ")" ]
Compute the Rand index, adjusted for change. Parameters ---------- reference_indices : np.ndarray Array of reference indices estimated_indices : np.ndarray Array of estimated indices Returns ------- ari : float Adjusted Rand index .. note:: Based on sklearn.metrics.cluster.adjusted_rand_score
[ "Compute", "the", "Rand", "index", "adjusted", "for", "change", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/segment.py#L546-L589
train
craffel/mir_eval
mir_eval/segment.py
_mutual_info_score
def _mutual_info_score(reference_indices, estimated_indices, contingency=None): """Compute the mutual information between two sequence labelings. Parameters ---------- reference_indices : np.ndarray Array of reference indices estimated_indices : np.ndarray Array of estimated indices contingency : np.ndarray Pre-computed contingency matrix. If None, one will be computed. (Default value = None) Returns ------- mi : float Mutual information .. note:: Based on sklearn.metrics.cluster.mutual_info_score """ if contingency is None: contingency = _contingency_matrix(reference_indices, estimated_indices).astype(float) contingency_sum = np.sum(contingency) pi = np.sum(contingency, axis=1) pj = np.sum(contingency, axis=0) outer = np.outer(pi, pj) nnz = contingency != 0.0 # normalized contingency contingency_nm = contingency[nnz] log_contingency_nm = np.log(contingency_nm) contingency_nm /= contingency_sum # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision log_outer = -np.log(outer[nnz]) + np.log(pi.sum()) + np.log(pj.sum()) mi = (contingency_nm * (log_contingency_nm - np.log(contingency_sum)) + contingency_nm * log_outer) return mi.sum()
python
def _mutual_info_score(reference_indices, estimated_indices, contingency=None): """Compute the mutual information between two sequence labelings. Parameters ---------- reference_indices : np.ndarray Array of reference indices estimated_indices : np.ndarray Array of estimated indices contingency : np.ndarray Pre-computed contingency matrix. If None, one will be computed. (Default value = None) Returns ------- mi : float Mutual information .. note:: Based on sklearn.metrics.cluster.mutual_info_score """ if contingency is None: contingency = _contingency_matrix(reference_indices, estimated_indices).astype(float) contingency_sum = np.sum(contingency) pi = np.sum(contingency, axis=1) pj = np.sum(contingency, axis=0) outer = np.outer(pi, pj) nnz = contingency != 0.0 # normalized contingency contingency_nm = contingency[nnz] log_contingency_nm = np.log(contingency_nm) contingency_nm /= contingency_sum # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision log_outer = -np.log(outer[nnz]) + np.log(pi.sum()) + np.log(pj.sum()) mi = (contingency_nm * (log_contingency_nm - np.log(contingency_sum)) + contingency_nm * log_outer) return mi.sum()
[ "def", "_mutual_info_score", "(", "reference_indices", ",", "estimated_indices", ",", "contingency", "=", "None", ")", ":", "if", "contingency", "is", "None", ":", "contingency", "=", "_contingency_matrix", "(", "reference_indices", ",", "estimated_indices", ")", ".", "astype", "(", "float", ")", "contingency_sum", "=", "np", ".", "sum", "(", "contingency", ")", "pi", "=", "np", ".", "sum", "(", "contingency", ",", "axis", "=", "1", ")", "pj", "=", "np", ".", "sum", "(", "contingency", ",", "axis", "=", "0", ")", "outer", "=", "np", ".", "outer", "(", "pi", ",", "pj", ")", "nnz", "=", "contingency", "!=", "0.0", "# normalized contingency", "contingency_nm", "=", "contingency", "[", "nnz", "]", "log_contingency_nm", "=", "np", ".", "log", "(", "contingency_nm", ")", "contingency_nm", "/=", "contingency_sum", "# log(a / b) should be calculated as log(a) - log(b) for", "# possible loss of precision", "log_outer", "=", "-", "np", ".", "log", "(", "outer", "[", "nnz", "]", ")", "+", "np", ".", "log", "(", "pi", ".", "sum", "(", ")", ")", "+", "np", ".", "log", "(", "pj", ".", "sum", "(", ")", ")", "mi", "=", "(", "contingency_nm", "*", "(", "log_contingency_nm", "-", "np", ".", "log", "(", "contingency_sum", ")", ")", "+", "contingency_nm", "*", "log_outer", ")", "return", "mi", ".", "sum", "(", ")" ]
Compute the mutual information between two sequence labelings. Parameters ---------- reference_indices : np.ndarray Array of reference indices estimated_indices : np.ndarray Array of estimated indices contingency : np.ndarray Pre-computed contingency matrix. If None, one will be computed. (Default value = None) Returns ------- mi : float Mutual information .. note:: Based on sklearn.metrics.cluster.mutual_info_score
[ "Compute", "the", "mutual", "information", "between", "two", "sequence", "labelings", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/segment.py#L663-L701
train
craffel/mir_eval
mir_eval/segment.py
_entropy
def _entropy(labels): """Calculates the entropy for a labeling. Parameters ---------- labels : list-like List of labels. Returns ------- entropy : float Entropy of the labeling. .. note:: Based on sklearn.metrics.cluster.entropy """ if len(labels) == 0: return 1.0 label_idx = np.unique(labels, return_inverse=True)[1] pi = np.bincount(label_idx).astype(np.float) pi = pi[pi > 0] pi_sum = np.sum(pi) # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision return -np.sum((pi / pi_sum) * (np.log(pi) - np.log(pi_sum)))
python
def _entropy(labels): """Calculates the entropy for a labeling. Parameters ---------- labels : list-like List of labels. Returns ------- entropy : float Entropy of the labeling. .. note:: Based on sklearn.metrics.cluster.entropy """ if len(labels) == 0: return 1.0 label_idx = np.unique(labels, return_inverse=True)[1] pi = np.bincount(label_idx).astype(np.float) pi = pi[pi > 0] pi_sum = np.sum(pi) # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision return -np.sum((pi / pi_sum) * (np.log(pi) - np.log(pi_sum)))
[ "def", "_entropy", "(", "labels", ")", ":", "if", "len", "(", "labels", ")", "==", "0", ":", "return", "1.0", "label_idx", "=", "np", ".", "unique", "(", "labels", ",", "return_inverse", "=", "True", ")", "[", "1", "]", "pi", "=", "np", ".", "bincount", "(", "label_idx", ")", ".", "astype", "(", "np", ".", "float", ")", "pi", "=", "pi", "[", "pi", ">", "0", "]", "pi_sum", "=", "np", ".", "sum", "(", "pi", ")", "# log(a / b) should be calculated as log(a) - log(b) for", "# possible loss of precision", "return", "-", "np", ".", "sum", "(", "(", "pi", "/", "pi_sum", ")", "*", "(", "np", ".", "log", "(", "pi", ")", "-", "np", ".", "log", "(", "pi_sum", ")", ")", ")" ]
Calculates the entropy for a labeling. Parameters ---------- labels : list-like List of labels. Returns ------- entropy : float Entropy of the labeling. .. note:: Based on sklearn.metrics.cluster.entropy
[ "Calculates", "the", "entropy", "for", "a", "labeling", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/segment.py#L704-L728
train
craffel/mir_eval
mir_eval/tempo.py
validate_tempi
def validate_tempi(tempi, reference=True): """Checks that there are two non-negative tempi. For a reference value, at least one tempo has to be greater than zero. Parameters ---------- tempi : np.ndarray length-2 array of tempo, in bpm reference : bool indicates a reference value """ if tempi.size != 2: raise ValueError('tempi must have exactly two values') if not np.all(np.isfinite(tempi)) or np.any(tempi < 0): raise ValueError('tempi={} must be non-negative numbers'.format(tempi)) if reference and np.all(tempi == 0): raise ValueError('reference tempi={} must have one' ' value greater than zero'.format(tempi))
python
def validate_tempi(tempi, reference=True): """Checks that there are two non-negative tempi. For a reference value, at least one tempo has to be greater than zero. Parameters ---------- tempi : np.ndarray length-2 array of tempo, in bpm reference : bool indicates a reference value """ if tempi.size != 2: raise ValueError('tempi must have exactly two values') if not np.all(np.isfinite(tempi)) or np.any(tempi < 0): raise ValueError('tempi={} must be non-negative numbers'.format(tempi)) if reference and np.all(tempi == 0): raise ValueError('reference tempi={} must have one' ' value greater than zero'.format(tempi))
[ "def", "validate_tempi", "(", "tempi", ",", "reference", "=", "True", ")", ":", "if", "tempi", ".", "size", "!=", "2", ":", "raise", "ValueError", "(", "'tempi must have exactly two values'", ")", "if", "not", "np", ".", "all", "(", "np", ".", "isfinite", "(", "tempi", ")", ")", "or", "np", ".", "any", "(", "tempi", "<", "0", ")", ":", "raise", "ValueError", "(", "'tempi={} must be non-negative numbers'", ".", "format", "(", "tempi", ")", ")", "if", "reference", "and", "np", ".", "all", "(", "tempi", "==", "0", ")", ":", "raise", "ValueError", "(", "'reference tempi={} must have one'", "' value greater than zero'", ".", "format", "(", "tempi", ")", ")" ]
Checks that there are two non-negative tempi. For a reference value, at least one tempo has to be greater than zero. Parameters ---------- tempi : np.ndarray length-2 array of tempo, in bpm reference : bool indicates a reference value
[ "Checks", "that", "there", "are", "two", "non", "-", "negative", "tempi", ".", "For", "a", "reference", "value", "at", "least", "one", "tempo", "has", "to", "be", "greater", "than", "zero", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/tempo.py#L29-L51
train
craffel/mir_eval
mir_eval/tempo.py
validate
def validate(reference_tempi, reference_weight, estimated_tempi): """Checks that the input annotations to a metric look like valid tempo annotations. Parameters ---------- reference_tempi : np.ndarray reference tempo values, in bpm reference_weight : float perceptual weight of slow vs fast in reference estimated_tempi : np.ndarray estimated tempo values, in bpm """ validate_tempi(reference_tempi, reference=True) validate_tempi(estimated_tempi, reference=False) if reference_weight < 0 or reference_weight > 1: raise ValueError('Reference weight must lie in range [0, 1]')
python
def validate(reference_tempi, reference_weight, estimated_tempi): """Checks that the input annotations to a metric look like valid tempo annotations. Parameters ---------- reference_tempi : np.ndarray reference tempo values, in bpm reference_weight : float perceptual weight of slow vs fast in reference estimated_tempi : np.ndarray estimated tempo values, in bpm """ validate_tempi(reference_tempi, reference=True) validate_tempi(estimated_tempi, reference=False) if reference_weight < 0 or reference_weight > 1: raise ValueError('Reference weight must lie in range [0, 1]')
[ "def", "validate", "(", "reference_tempi", ",", "reference_weight", ",", "estimated_tempi", ")", ":", "validate_tempi", "(", "reference_tempi", ",", "reference", "=", "True", ")", "validate_tempi", "(", "estimated_tempi", ",", "reference", "=", "False", ")", "if", "reference_weight", "<", "0", "or", "reference_weight", ">", "1", ":", "raise", "ValueError", "(", "'Reference weight must lie in range [0, 1]'", ")" ]
Checks that the input annotations to a metric look like valid tempo annotations. Parameters ---------- reference_tempi : np.ndarray reference tempo values, in bpm reference_weight : float perceptual weight of slow vs fast in reference estimated_tempi : np.ndarray estimated tempo values, in bpm
[ "Checks", "that", "the", "input", "annotations", "to", "a", "metric", "look", "like", "valid", "tempo", "annotations", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/tempo.py#L54-L74
train
craffel/mir_eval
mir_eval/tempo.py
detection
def detection(reference_tempi, reference_weight, estimated_tempi, tol=0.08): """Compute the tempo detection accuracy metric. Parameters ---------- reference_tempi : np.ndarray, shape=(2,) Two non-negative reference tempi reference_weight : float > 0 The relative strength of ``reference_tempi[0]`` vs ``reference_tempi[1]``. estimated_tempi : np.ndarray, shape=(2,) Two non-negative estimated tempi. tol : float in [0, 1]: The maximum allowable deviation from a reference tempo to count as a hit. ``|est_t - ref_t| <= tol * ref_t`` (Default value = 0.08) Returns ------- p_score : float in [0, 1] Weighted average of recalls: ``reference_weight * hits[0] + (1 - reference_weight) * hits[1]`` one_correct : bool True if at least one reference tempo was correctly estimated both_correct : bool True if both reference tempi were correctly estimated Raises ------ ValueError If the input tempi are ill-formed If the reference weight is not in the range [0, 1] If ``tol < 0`` or ``tol > 1``. """ validate(reference_tempi, reference_weight, estimated_tempi) if tol < 0 or tol > 1: raise ValueError('invalid tolerance {}: must lie in the range ' '[0, 1]'.format(tol)) if tol == 0.: warnings.warn('A tolerance of 0.0 may not ' 'lead to the results you expect.') hits = [False, False] for i, ref_t in enumerate(reference_tempi): if ref_t > 0: # Compute the relative error for this reference tempo f_ref_t = float(ref_t) relative_error = np.min(np.abs(ref_t - estimated_tempi) / f_ref_t) # Count the hits hits[i] = relative_error <= tol p_score = reference_weight * hits[0] + (1.0-reference_weight) * hits[1] one_correct = bool(np.max(hits)) both_correct = bool(np.min(hits)) return p_score, one_correct, both_correct
python
def detection(reference_tempi, reference_weight, estimated_tempi, tol=0.08): """Compute the tempo detection accuracy metric. Parameters ---------- reference_tempi : np.ndarray, shape=(2,) Two non-negative reference tempi reference_weight : float > 0 The relative strength of ``reference_tempi[0]`` vs ``reference_tempi[1]``. estimated_tempi : np.ndarray, shape=(2,) Two non-negative estimated tempi. tol : float in [0, 1]: The maximum allowable deviation from a reference tempo to count as a hit. ``|est_t - ref_t| <= tol * ref_t`` (Default value = 0.08) Returns ------- p_score : float in [0, 1] Weighted average of recalls: ``reference_weight * hits[0] + (1 - reference_weight) * hits[1]`` one_correct : bool True if at least one reference tempo was correctly estimated both_correct : bool True if both reference tempi were correctly estimated Raises ------ ValueError If the input tempi are ill-formed If the reference weight is not in the range [0, 1] If ``tol < 0`` or ``tol > 1``. """ validate(reference_tempi, reference_weight, estimated_tempi) if tol < 0 or tol > 1: raise ValueError('invalid tolerance {}: must lie in the range ' '[0, 1]'.format(tol)) if tol == 0.: warnings.warn('A tolerance of 0.0 may not ' 'lead to the results you expect.') hits = [False, False] for i, ref_t in enumerate(reference_tempi): if ref_t > 0: # Compute the relative error for this reference tempo f_ref_t = float(ref_t) relative_error = np.min(np.abs(ref_t - estimated_tempi) / f_ref_t) # Count the hits hits[i] = relative_error <= tol p_score = reference_weight * hits[0] + (1.0-reference_weight) * hits[1] one_correct = bool(np.max(hits)) both_correct = bool(np.min(hits)) return p_score, one_correct, both_correct
[ "def", "detection", "(", "reference_tempi", ",", "reference_weight", ",", "estimated_tempi", ",", "tol", "=", "0.08", ")", ":", "validate", "(", "reference_tempi", ",", "reference_weight", ",", "estimated_tempi", ")", "if", "tol", "<", "0", "or", "tol", ">", "1", ":", "raise", "ValueError", "(", "'invalid tolerance {}: must lie in the range '", "'[0, 1]'", ".", "format", "(", "tol", ")", ")", "if", "tol", "==", "0.", ":", "warnings", ".", "warn", "(", "'A tolerance of 0.0 may not '", "'lead to the results you expect.'", ")", "hits", "=", "[", "False", ",", "False", "]", "for", "i", ",", "ref_t", "in", "enumerate", "(", "reference_tempi", ")", ":", "if", "ref_t", ">", "0", ":", "# Compute the relative error for this reference tempo", "f_ref_t", "=", "float", "(", "ref_t", ")", "relative_error", "=", "np", ".", "min", "(", "np", ".", "abs", "(", "ref_t", "-", "estimated_tempi", ")", "/", "f_ref_t", ")", "# Count the hits", "hits", "[", "i", "]", "=", "relative_error", "<=", "tol", "p_score", "=", "reference_weight", "*", "hits", "[", "0", "]", "+", "(", "1.0", "-", "reference_weight", ")", "*", "hits", "[", "1", "]", "one_correct", "=", "bool", "(", "np", ".", "max", "(", "hits", ")", ")", "both_correct", "=", "bool", "(", "np", ".", "min", "(", "hits", ")", ")", "return", "p_score", ",", "one_correct", ",", "both_correct" ]
Compute the tempo detection accuracy metric. Parameters ---------- reference_tempi : np.ndarray, shape=(2,) Two non-negative reference tempi reference_weight : float > 0 The relative strength of ``reference_tempi[0]`` vs ``reference_tempi[1]``. estimated_tempi : np.ndarray, shape=(2,) Two non-negative estimated tempi. tol : float in [0, 1]: The maximum allowable deviation from a reference tempo to count as a hit. ``|est_t - ref_t| <= tol * ref_t`` (Default value = 0.08) Returns ------- p_score : float in [0, 1] Weighted average of recalls: ``reference_weight * hits[0] + (1 - reference_weight) * hits[1]`` one_correct : bool True if at least one reference tempo was correctly estimated both_correct : bool True if both reference tempi were correctly estimated Raises ------ ValueError If the input tempi are ill-formed If the reference weight is not in the range [0, 1] If ``tol < 0`` or ``tol > 1``.
[ "Compute", "the", "tempo", "detection", "accuracy", "metric", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/tempo.py#L77-L145
train
craffel/mir_eval
mir_eval/multipitch.py
validate
def validate(ref_time, ref_freqs, est_time, est_freqs): """Checks that the time and frequency inputs are well-formed. Parameters ---------- ref_time : np.ndarray reference time stamps in seconds ref_freqs : list of np.ndarray reference frequencies in Hz est_time : np.ndarray estimate time stamps in seconds est_freqs : list of np.ndarray estimated frequencies in Hz """ util.validate_events(ref_time, max_time=MAX_TIME) util.validate_events(est_time, max_time=MAX_TIME) if ref_time.size == 0: warnings.warn("Reference times are empty.") if ref_time.ndim != 1: raise ValueError("Reference times have invalid dimension") if len(ref_freqs) == 0: warnings.warn("Reference frequencies are empty.") if est_time.size == 0: warnings.warn("Estimated times are empty.") if est_time.ndim != 1: raise ValueError("Estimated times have invalid dimension") if len(est_freqs) == 0: warnings.warn("Estimated frequencies are empty.") if ref_time.size != len(ref_freqs): raise ValueError('Reference times and frequencies have unequal ' 'lengths.') if est_time.size != len(est_freqs): raise ValueError('Estimate times and frequencies have unequal ' 'lengths.') for freq in ref_freqs: util.validate_frequencies(freq, max_freq=MAX_FREQ, min_freq=MIN_FREQ, allow_negatives=False) for freq in est_freqs: util.validate_frequencies(freq, max_freq=MAX_FREQ, min_freq=MIN_FREQ, allow_negatives=False)
python
def validate(ref_time, ref_freqs, est_time, est_freqs): """Checks that the time and frequency inputs are well-formed. Parameters ---------- ref_time : np.ndarray reference time stamps in seconds ref_freqs : list of np.ndarray reference frequencies in Hz est_time : np.ndarray estimate time stamps in seconds est_freqs : list of np.ndarray estimated frequencies in Hz """ util.validate_events(ref_time, max_time=MAX_TIME) util.validate_events(est_time, max_time=MAX_TIME) if ref_time.size == 0: warnings.warn("Reference times are empty.") if ref_time.ndim != 1: raise ValueError("Reference times have invalid dimension") if len(ref_freqs) == 0: warnings.warn("Reference frequencies are empty.") if est_time.size == 0: warnings.warn("Estimated times are empty.") if est_time.ndim != 1: raise ValueError("Estimated times have invalid dimension") if len(est_freqs) == 0: warnings.warn("Estimated frequencies are empty.") if ref_time.size != len(ref_freqs): raise ValueError('Reference times and frequencies have unequal ' 'lengths.') if est_time.size != len(est_freqs): raise ValueError('Estimate times and frequencies have unequal ' 'lengths.') for freq in ref_freqs: util.validate_frequencies(freq, max_freq=MAX_FREQ, min_freq=MIN_FREQ, allow_negatives=False) for freq in est_freqs: util.validate_frequencies(freq, max_freq=MAX_FREQ, min_freq=MIN_FREQ, allow_negatives=False)
[ "def", "validate", "(", "ref_time", ",", "ref_freqs", ",", "est_time", ",", "est_freqs", ")", ":", "util", ".", "validate_events", "(", "ref_time", ",", "max_time", "=", "MAX_TIME", ")", "util", ".", "validate_events", "(", "est_time", ",", "max_time", "=", "MAX_TIME", ")", "if", "ref_time", ".", "size", "==", "0", ":", "warnings", ".", "warn", "(", "\"Reference times are empty.\"", ")", "if", "ref_time", ".", "ndim", "!=", "1", ":", "raise", "ValueError", "(", "\"Reference times have invalid dimension\"", ")", "if", "len", "(", "ref_freqs", ")", "==", "0", ":", "warnings", ".", "warn", "(", "\"Reference frequencies are empty.\"", ")", "if", "est_time", ".", "size", "==", "0", ":", "warnings", ".", "warn", "(", "\"Estimated times are empty.\"", ")", "if", "est_time", ".", "ndim", "!=", "1", ":", "raise", "ValueError", "(", "\"Estimated times have invalid dimension\"", ")", "if", "len", "(", "est_freqs", ")", "==", "0", ":", "warnings", ".", "warn", "(", "\"Estimated frequencies are empty.\"", ")", "if", "ref_time", ".", "size", "!=", "len", "(", "ref_freqs", ")", ":", "raise", "ValueError", "(", "'Reference times and frequencies have unequal '", "'lengths.'", ")", "if", "est_time", ".", "size", "!=", "len", "(", "est_freqs", ")", ":", "raise", "ValueError", "(", "'Estimate times and frequencies have unequal '", "'lengths.'", ")", "for", "freq", "in", "ref_freqs", ":", "util", ".", "validate_frequencies", "(", "freq", ",", "max_freq", "=", "MAX_FREQ", ",", "min_freq", "=", "MIN_FREQ", ",", "allow_negatives", "=", "False", ")", "for", "freq", "in", "est_freqs", ":", "util", ".", "validate_frequencies", "(", "freq", ",", "max_freq", "=", "MAX_FREQ", ",", "min_freq", "=", "MIN_FREQ", ",", "allow_negatives", "=", "False", ")" ]
Checks that the time and frequency inputs are well-formed. Parameters ---------- ref_time : np.ndarray reference time stamps in seconds ref_freqs : list of np.ndarray reference frequencies in Hz est_time : np.ndarray estimate time stamps in seconds est_freqs : list of np.ndarray estimated frequencies in Hz
[ "Checks", "that", "the", "time", "and", "frequency", "inputs", "are", "well", "-", "formed", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/multipitch.py#L57-L101
train
craffel/mir_eval
mir_eval/multipitch.py
resample_multipitch
def resample_multipitch(times, frequencies, target_times): """Resamples multipitch time series to a new timescale. Values in ``target_times`` outside the range of ``times`` return no pitch estimate. Parameters ---------- times : np.ndarray Array of time stamps frequencies : list of np.ndarray List of np.ndarrays of frequency values target_times : np.ndarray Array of target time stamps Returns ------- frequencies_resampled : list of numpy arrays Frequency list of lists resampled to new timebase """ if target_times.size == 0: return [] if times.size == 0: return [np.array([])]*len(target_times) n_times = len(frequencies) # scipy's interpolate doesn't handle ragged arrays. Instead, we interpolate # the frequency index and then map back to the frequency values. # This only works because we're using a nearest neighbor interpolator! frequency_index = np.arange(0, n_times) # times are already ordered so assume_sorted=True for efficiency # since we're interpolating the index, fill_value is set to the first index # that is out of range. We handle this in the next line. new_frequency_index = scipy.interpolate.interp1d( times, frequency_index, kind='nearest', bounds_error=False, assume_sorted=True, fill_value=n_times)(target_times) # create array of frequencies plus additional empty element at the end for # target time stamps that are out of the interpolation range freq_vals = frequencies + [np.array([])] # map interpolated indices back to frequency values frequencies_resampled = [ freq_vals[i] for i in new_frequency_index.astype(int)] return frequencies_resampled
python
def resample_multipitch(times, frequencies, target_times): """Resamples multipitch time series to a new timescale. Values in ``target_times`` outside the range of ``times`` return no pitch estimate. Parameters ---------- times : np.ndarray Array of time stamps frequencies : list of np.ndarray List of np.ndarrays of frequency values target_times : np.ndarray Array of target time stamps Returns ------- frequencies_resampled : list of numpy arrays Frequency list of lists resampled to new timebase """ if target_times.size == 0: return [] if times.size == 0: return [np.array([])]*len(target_times) n_times = len(frequencies) # scipy's interpolate doesn't handle ragged arrays. Instead, we interpolate # the frequency index and then map back to the frequency values. # This only works because we're using a nearest neighbor interpolator! frequency_index = np.arange(0, n_times) # times are already ordered so assume_sorted=True for efficiency # since we're interpolating the index, fill_value is set to the first index # that is out of range. We handle this in the next line. new_frequency_index = scipy.interpolate.interp1d( times, frequency_index, kind='nearest', bounds_error=False, assume_sorted=True, fill_value=n_times)(target_times) # create array of frequencies plus additional empty element at the end for # target time stamps that are out of the interpolation range freq_vals = frequencies + [np.array([])] # map interpolated indices back to frequency values frequencies_resampled = [ freq_vals[i] for i in new_frequency_index.astype(int)] return frequencies_resampled
[ "def", "resample_multipitch", "(", "times", ",", "frequencies", ",", "target_times", ")", ":", "if", "target_times", ".", "size", "==", "0", ":", "return", "[", "]", "if", "times", ".", "size", "==", "0", ":", "return", "[", "np", ".", "array", "(", "[", "]", ")", "]", "*", "len", "(", "target_times", ")", "n_times", "=", "len", "(", "frequencies", ")", "# scipy's interpolate doesn't handle ragged arrays. Instead, we interpolate", "# the frequency index and then map back to the frequency values.", "# This only works because we're using a nearest neighbor interpolator!", "frequency_index", "=", "np", ".", "arange", "(", "0", ",", "n_times", ")", "# times are already ordered so assume_sorted=True for efficiency", "# since we're interpolating the index, fill_value is set to the first index", "# that is out of range. We handle this in the next line.", "new_frequency_index", "=", "scipy", ".", "interpolate", ".", "interp1d", "(", "times", ",", "frequency_index", ",", "kind", "=", "'nearest'", ",", "bounds_error", "=", "False", ",", "assume_sorted", "=", "True", ",", "fill_value", "=", "n_times", ")", "(", "target_times", ")", "# create array of frequencies plus additional empty element at the end for", "# target time stamps that are out of the interpolation range", "freq_vals", "=", "frequencies", "+", "[", "np", ".", "array", "(", "[", "]", ")", "]", "# map interpolated indices back to frequency values", "frequencies_resampled", "=", "[", "freq_vals", "[", "i", "]", "for", "i", "in", "new_frequency_index", ".", "astype", "(", "int", ")", "]", "return", "frequencies_resampled" ]
Resamples multipitch time series to a new timescale. Values in ``target_times`` outside the range of ``times`` return no pitch estimate. Parameters ---------- times : np.ndarray Array of time stamps frequencies : list of np.ndarray List of np.ndarrays of frequency values target_times : np.ndarray Array of target time stamps Returns ------- frequencies_resampled : list of numpy arrays Frequency list of lists resampled to new timebase
[ "Resamples", "multipitch", "time", "series", "to", "a", "new", "timescale", ".", "Values", "in", "target_times", "outside", "the", "range", "of", "times", "return", "no", "pitch", "estimate", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/multipitch.py#L104-L150
train
craffel/mir_eval
mir_eval/multipitch.py
compute_num_true_positives
def compute_num_true_positives(ref_freqs, est_freqs, window=0.5, chroma=False): """Compute the number of true positives in an estimate given a reference. A frequency is correct if it is within a quartertone of the correct frequency. Parameters ---------- ref_freqs : list of np.ndarray reference frequencies (MIDI) est_freqs : list of np.ndarray estimated frequencies (MIDI) window : float Window size, in semitones chroma : bool If True, computes distances modulo n. If True, ``ref_freqs`` and ``est_freqs`` should be wrapped modulo n. Returns ------- true_positives : np.ndarray Array the same length as ref_freqs containing the number of true positives. """ n_frames = len(ref_freqs) true_positives = np.zeros((n_frames, )) for i, (ref_frame, est_frame) in enumerate(zip(ref_freqs, est_freqs)): if chroma: # match chroma-wrapped frequency events matching = util.match_events( ref_frame, est_frame, window, distance=util._outer_distance_mod_n) else: # match frequency events within tolerance window in semitones matching = util.match_events(ref_frame, est_frame, window) true_positives[i] = len(matching) return true_positives
python
def compute_num_true_positives(ref_freqs, est_freqs, window=0.5, chroma=False): """Compute the number of true positives in an estimate given a reference. A frequency is correct if it is within a quartertone of the correct frequency. Parameters ---------- ref_freqs : list of np.ndarray reference frequencies (MIDI) est_freqs : list of np.ndarray estimated frequencies (MIDI) window : float Window size, in semitones chroma : bool If True, computes distances modulo n. If True, ``ref_freqs`` and ``est_freqs`` should be wrapped modulo n. Returns ------- true_positives : np.ndarray Array the same length as ref_freqs containing the number of true positives. """ n_frames = len(ref_freqs) true_positives = np.zeros((n_frames, )) for i, (ref_frame, est_frame) in enumerate(zip(ref_freqs, est_freqs)): if chroma: # match chroma-wrapped frequency events matching = util.match_events( ref_frame, est_frame, window, distance=util._outer_distance_mod_n) else: # match frequency events within tolerance window in semitones matching = util.match_events(ref_frame, est_frame, window) true_positives[i] = len(matching) return true_positives
[ "def", "compute_num_true_positives", "(", "ref_freqs", ",", "est_freqs", ",", "window", "=", "0.5", ",", "chroma", "=", "False", ")", ":", "n_frames", "=", "len", "(", "ref_freqs", ")", "true_positives", "=", "np", ".", "zeros", "(", "(", "n_frames", ",", ")", ")", "for", "i", ",", "(", "ref_frame", ",", "est_frame", ")", "in", "enumerate", "(", "zip", "(", "ref_freqs", ",", "est_freqs", ")", ")", ":", "if", "chroma", ":", "# match chroma-wrapped frequency events", "matching", "=", "util", ".", "match_events", "(", "ref_frame", ",", "est_frame", ",", "window", ",", "distance", "=", "util", ".", "_outer_distance_mod_n", ")", "else", ":", "# match frequency events within tolerance window in semitones", "matching", "=", "util", ".", "match_events", "(", "ref_frame", ",", "est_frame", ",", "window", ")", "true_positives", "[", "i", "]", "=", "len", "(", "matching", ")", "return", "true_positives" ]
Compute the number of true positives in an estimate given a reference. A frequency is correct if it is within a quartertone of the correct frequency. Parameters ---------- ref_freqs : list of np.ndarray reference frequencies (MIDI) est_freqs : list of np.ndarray estimated frequencies (MIDI) window : float Window size, in semitones chroma : bool If True, computes distances modulo n. If True, ``ref_freqs`` and ``est_freqs`` should be wrapped modulo n. Returns ------- true_positives : np.ndarray Array the same length as ref_freqs containing the number of true positives.
[ "Compute", "the", "number", "of", "true", "positives", "in", "an", "estimate", "given", "a", "reference", ".", "A", "frequency", "is", "correct", "if", "it", "is", "within", "a", "quartertone", "of", "the", "correct", "frequency", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/multipitch.py#L204-L243
train
craffel/mir_eval
mir_eval/multipitch.py
compute_accuracy
def compute_accuracy(true_positives, n_ref, n_est): """Compute accuracy metrics. Parameters ---------- true_positives : np.ndarray Array containing the number of true positives at each time point. n_ref : np.ndarray Array containing the number of reference frequencies at each time point. n_est : np.ndarray Array containing the number of estimate frequencies at each time point. Returns ------- precision : float ``sum(true_positives)/sum(n_est)`` recall : float ``sum(true_positives)/sum(n_ref)`` acc : float ``sum(true_positives)/sum(n_est + n_ref - true_positives)`` """ true_positive_sum = float(true_positives.sum()) n_est_sum = n_est.sum() if n_est_sum > 0: precision = true_positive_sum/n_est.sum() else: warnings.warn("Estimate frequencies are all empty.") precision = 0.0 n_ref_sum = n_ref.sum() if n_ref_sum > 0: recall = true_positive_sum/n_ref.sum() else: warnings.warn("Reference frequencies are all empty.") recall = 0.0 acc_denom = (n_est + n_ref - true_positives).sum() if acc_denom > 0: acc = true_positive_sum/acc_denom else: acc = 0.0 return precision, recall, acc
python
def compute_accuracy(true_positives, n_ref, n_est): """Compute accuracy metrics. Parameters ---------- true_positives : np.ndarray Array containing the number of true positives at each time point. n_ref : np.ndarray Array containing the number of reference frequencies at each time point. n_est : np.ndarray Array containing the number of estimate frequencies at each time point. Returns ------- precision : float ``sum(true_positives)/sum(n_est)`` recall : float ``sum(true_positives)/sum(n_ref)`` acc : float ``sum(true_positives)/sum(n_est + n_ref - true_positives)`` """ true_positive_sum = float(true_positives.sum()) n_est_sum = n_est.sum() if n_est_sum > 0: precision = true_positive_sum/n_est.sum() else: warnings.warn("Estimate frequencies are all empty.") precision = 0.0 n_ref_sum = n_ref.sum() if n_ref_sum > 0: recall = true_positive_sum/n_ref.sum() else: warnings.warn("Reference frequencies are all empty.") recall = 0.0 acc_denom = (n_est + n_ref - true_positives).sum() if acc_denom > 0: acc = true_positive_sum/acc_denom else: acc = 0.0 return precision, recall, acc
[ "def", "compute_accuracy", "(", "true_positives", ",", "n_ref", ",", "n_est", ")", ":", "true_positive_sum", "=", "float", "(", "true_positives", ".", "sum", "(", ")", ")", "n_est_sum", "=", "n_est", ".", "sum", "(", ")", "if", "n_est_sum", ">", "0", ":", "precision", "=", "true_positive_sum", "/", "n_est", ".", "sum", "(", ")", "else", ":", "warnings", ".", "warn", "(", "\"Estimate frequencies are all empty.\"", ")", "precision", "=", "0.0", "n_ref_sum", "=", "n_ref", ".", "sum", "(", ")", "if", "n_ref_sum", ">", "0", ":", "recall", "=", "true_positive_sum", "/", "n_ref", ".", "sum", "(", ")", "else", ":", "warnings", ".", "warn", "(", "\"Reference frequencies are all empty.\"", ")", "recall", "=", "0.0", "acc_denom", "=", "(", "n_est", "+", "n_ref", "-", "true_positives", ")", ".", "sum", "(", ")", "if", "acc_denom", ">", "0", ":", "acc", "=", "true_positive_sum", "/", "acc_denom", "else", ":", "acc", "=", "0.0", "return", "precision", ",", "recall", ",", "acc" ]
Compute accuracy metrics. Parameters ---------- true_positives : np.ndarray Array containing the number of true positives at each time point. n_ref : np.ndarray Array containing the number of reference frequencies at each time point. n_est : np.ndarray Array containing the number of estimate frequencies at each time point. Returns ------- precision : float ``sum(true_positives)/sum(n_est)`` recall : float ``sum(true_positives)/sum(n_ref)`` acc : float ``sum(true_positives)/sum(n_est + n_ref - true_positives)``
[ "Compute", "accuracy", "metrics", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/multipitch.py#L246-L291
train
craffel/mir_eval
mir_eval/multipitch.py
compute_err_score
def compute_err_score(true_positives, n_ref, n_est): """Compute error score metrics. Parameters ---------- true_positives : np.ndarray Array containing the number of true positives at each time point. n_ref : np.ndarray Array containing the number of reference frequencies at each time point. n_est : np.ndarray Array containing the number of estimate frequencies at each time point. Returns ------- e_sub : float Substitution error e_miss : float Miss error e_fa : float False alarm error e_tot : float Total error """ n_ref_sum = float(n_ref.sum()) if n_ref_sum == 0: warnings.warn("Reference frequencies are all empty.") return 0., 0., 0., 0. # Substitution error e_sub = (np.min([n_ref, n_est], axis=0) - true_positives).sum()/n_ref_sum # compute the max of (n_ref - n_est) and 0 e_miss_numerator = n_ref - n_est e_miss_numerator[e_miss_numerator < 0] = 0 # Miss error e_miss = e_miss_numerator.sum()/n_ref_sum # compute the max of (n_est - n_ref) and 0 e_fa_numerator = n_est - n_ref e_fa_numerator[e_fa_numerator < 0] = 0 # False alarm error e_fa = e_fa_numerator.sum()/n_ref_sum # total error e_tot = (np.max([n_ref, n_est], axis=0) - true_positives).sum()/n_ref_sum return e_sub, e_miss, e_fa, e_tot
python
def compute_err_score(true_positives, n_ref, n_est): """Compute error score metrics. Parameters ---------- true_positives : np.ndarray Array containing the number of true positives at each time point. n_ref : np.ndarray Array containing the number of reference frequencies at each time point. n_est : np.ndarray Array containing the number of estimate frequencies at each time point. Returns ------- e_sub : float Substitution error e_miss : float Miss error e_fa : float False alarm error e_tot : float Total error """ n_ref_sum = float(n_ref.sum()) if n_ref_sum == 0: warnings.warn("Reference frequencies are all empty.") return 0., 0., 0., 0. # Substitution error e_sub = (np.min([n_ref, n_est], axis=0) - true_positives).sum()/n_ref_sum # compute the max of (n_ref - n_est) and 0 e_miss_numerator = n_ref - n_est e_miss_numerator[e_miss_numerator < 0] = 0 # Miss error e_miss = e_miss_numerator.sum()/n_ref_sum # compute the max of (n_est - n_ref) and 0 e_fa_numerator = n_est - n_ref e_fa_numerator[e_fa_numerator < 0] = 0 # False alarm error e_fa = e_fa_numerator.sum()/n_ref_sum # total error e_tot = (np.max([n_ref, n_est], axis=0) - true_positives).sum()/n_ref_sum return e_sub, e_miss, e_fa, e_tot
[ "def", "compute_err_score", "(", "true_positives", ",", "n_ref", ",", "n_est", ")", ":", "n_ref_sum", "=", "float", "(", "n_ref", ".", "sum", "(", ")", ")", "if", "n_ref_sum", "==", "0", ":", "warnings", ".", "warn", "(", "\"Reference frequencies are all empty.\"", ")", "return", "0.", ",", "0.", ",", "0.", ",", "0.", "# Substitution error", "e_sub", "=", "(", "np", ".", "min", "(", "[", "n_ref", ",", "n_est", "]", ",", "axis", "=", "0", ")", "-", "true_positives", ")", ".", "sum", "(", ")", "/", "n_ref_sum", "# compute the max of (n_ref - n_est) and 0", "e_miss_numerator", "=", "n_ref", "-", "n_est", "e_miss_numerator", "[", "e_miss_numerator", "<", "0", "]", "=", "0", "# Miss error", "e_miss", "=", "e_miss_numerator", ".", "sum", "(", ")", "/", "n_ref_sum", "# compute the max of (n_est - n_ref) and 0", "e_fa_numerator", "=", "n_est", "-", "n_ref", "e_fa_numerator", "[", "e_fa_numerator", "<", "0", "]", "=", "0", "# False alarm error", "e_fa", "=", "e_fa_numerator", ".", "sum", "(", ")", "/", "n_ref_sum", "# total error", "e_tot", "=", "(", "np", ".", "max", "(", "[", "n_ref", ",", "n_est", "]", ",", "axis", "=", "0", ")", "-", "true_positives", ")", ".", "sum", "(", ")", "/", "n_ref_sum", "return", "e_sub", ",", "e_miss", ",", "e_fa", ",", "e_tot" ]
Compute error score metrics. Parameters ---------- true_positives : np.ndarray Array containing the number of true positives at each time point. n_ref : np.ndarray Array containing the number of reference frequencies at each time point. n_est : np.ndarray Array containing the number of estimate frequencies at each time point. Returns ------- e_sub : float Substitution error e_miss : float Miss error e_fa : float False alarm error e_tot : float Total error
[ "Compute", "error", "score", "metrics", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/multipitch.py#L294-L343
train
craffel/mir_eval
mir_eval/hierarchy.py
_hierarchy_bounds
def _hierarchy_bounds(intervals_hier): '''Compute the covered time range of a hierarchical segmentation. Parameters ---------- intervals_hier : list of ndarray A hierarchical segmentation, encoded as a list of arrays of segment intervals. Returns ------- t_min : float t_max : float The minimum and maximum times spanned by the annotation ''' boundaries = list(itertools.chain(*list(itertools.chain(*intervals_hier)))) return min(boundaries), max(boundaries)
python
def _hierarchy_bounds(intervals_hier): '''Compute the covered time range of a hierarchical segmentation. Parameters ---------- intervals_hier : list of ndarray A hierarchical segmentation, encoded as a list of arrays of segment intervals. Returns ------- t_min : float t_max : float The minimum and maximum times spanned by the annotation ''' boundaries = list(itertools.chain(*list(itertools.chain(*intervals_hier)))) return min(boundaries), max(boundaries)
[ "def", "_hierarchy_bounds", "(", "intervals_hier", ")", ":", "boundaries", "=", "list", "(", "itertools", ".", "chain", "(", "*", "list", "(", "itertools", ".", "chain", "(", "*", "intervals_hier", ")", ")", ")", ")", "return", "min", "(", "boundaries", ")", ",", "max", "(", "boundaries", ")" ]
Compute the covered time range of a hierarchical segmentation. Parameters ---------- intervals_hier : list of ndarray A hierarchical segmentation, encoded as a list of arrays of segment intervals. Returns ------- t_min : float t_max : float The minimum and maximum times spanned by the annotation
[ "Compute", "the", "covered", "time", "range", "of", "a", "hierarchical", "segmentation", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/hierarchy.py#L83-L100
train
craffel/mir_eval
mir_eval/hierarchy.py
_align_intervals
def _align_intervals(int_hier, lab_hier, t_min=0.0, t_max=None): '''Align a hierarchical annotation to span a fixed start and end time. Parameters ---------- int_hier : list of list of intervals lab_hier : list of list of str Hierarchical segment annotations, encoded as a list of list of intervals (int_hier) and list of list of strings (lab_hier) t_min : None or number >= 0 The minimum time value for the segmentation t_max : None or number >= t_min The maximum time value for the segmentation Returns ------- intervals_hier : list of list of intervals labels_hier : list of list of str `int_hier` `lab_hier` aligned to span `[t_min, t_max]`. ''' return [list(_) for _ in zip(*[util.adjust_intervals(np.asarray(ival), labels=lab, t_min=t_min, t_max=t_max) for ival, lab in zip(int_hier, lab_hier)])]
python
def _align_intervals(int_hier, lab_hier, t_min=0.0, t_max=None): '''Align a hierarchical annotation to span a fixed start and end time. Parameters ---------- int_hier : list of list of intervals lab_hier : list of list of str Hierarchical segment annotations, encoded as a list of list of intervals (int_hier) and list of list of strings (lab_hier) t_min : None or number >= 0 The minimum time value for the segmentation t_max : None or number >= t_min The maximum time value for the segmentation Returns ------- intervals_hier : list of list of intervals labels_hier : list of list of str `int_hier` `lab_hier` aligned to span `[t_min, t_max]`. ''' return [list(_) for _ in zip(*[util.adjust_intervals(np.asarray(ival), labels=lab, t_min=t_min, t_max=t_max) for ival, lab in zip(int_hier, lab_hier)])]
[ "def", "_align_intervals", "(", "int_hier", ",", "lab_hier", ",", "t_min", "=", "0.0", ",", "t_max", "=", "None", ")", ":", "return", "[", "list", "(", "_", ")", "for", "_", "in", "zip", "(", "*", "[", "util", ".", "adjust_intervals", "(", "np", ".", "asarray", "(", "ival", ")", ",", "labels", "=", "lab", ",", "t_min", "=", "t_min", ",", "t_max", "=", "t_max", ")", "for", "ival", ",", "lab", "in", "zip", "(", "int_hier", ",", "lab_hier", ")", "]", ")", "]" ]
Align a hierarchical annotation to span a fixed start and end time. Parameters ---------- int_hier : list of list of intervals lab_hier : list of list of str Hierarchical segment annotations, encoded as a list of list of intervals (int_hier) and list of list of strings (lab_hier) t_min : None or number >= 0 The minimum time value for the segmentation t_max : None or number >= t_min The maximum time value for the segmentation Returns ------- intervals_hier : list of list of intervals labels_hier : list of list of str `int_hier` `lab_hier` aligned to span `[t_min, t_max]`.
[ "Align", "a", "hierarchical", "annotation", "to", "span", "a", "fixed", "start", "and", "end", "time", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/hierarchy.py#L103-L130
train
craffel/mir_eval
mir_eval/hierarchy.py
_compare_frame_rankings
def _compare_frame_rankings(ref, est, transitive=False): '''Compute the number of ranking disagreements in two lists. Parameters ---------- ref : np.ndarray, shape=(n,) est : np.ndarray, shape=(n,) Reference and estimate ranked lists. `ref[i]` is the relevance score for point `i`. transitive : bool If true, all pairs of reference levels are compared. If false, only adjacent pairs of reference levels are compared. Returns ------- inversions : int The number of pairs of indices `i, j` where `ref[i] < ref[j]` but `est[i] >= est[j]`. normalizer : float The total number of pairs (i, j) under consideration. If transitive=True, then this is |{(i,j) : ref[i] < ref[j]}| If transitive=False, then this is |{i,j) : ref[i] +1 = ref[j]}| ''' idx = np.argsort(ref) ref_sorted = ref[idx] est_sorted = est[idx] # Find the break-points in ref_sorted levels, positions, counts = np.unique(ref_sorted, return_index=True, return_counts=True) positions = list(positions) positions.append(len(ref_sorted)) index = collections.defaultdict(lambda: slice(0)) ref_map = collections.defaultdict(lambda: 0) for level, cnt, start, end in zip(levels, counts, positions[:-1], positions[1:]): index[level] = slice(start, end) ref_map[level] = cnt # Now that we have values sorted, apply the inversion-counter to # pairs of reference values if transitive: level_pairs = itertools.combinations(levels, 2) else: level_pairs = [(i, i+1) for i in levels] level_pairs, lcounter = itertools.tee(level_pairs) normalizer = float(sum([ref_map[i] * ref_map[j] for (i, j) in lcounter])) if normalizer == 0: return 0, 0.0 inversions = 0 for level_1, level_2 in level_pairs: inversions += _count_inversions(est_sorted[index[level_1]], est_sorted[index[level_2]]) return inversions, float(normalizer)
python
def _compare_frame_rankings(ref, est, transitive=False): '''Compute the number of ranking disagreements in two lists. Parameters ---------- ref : np.ndarray, shape=(n,) est : np.ndarray, shape=(n,) Reference and estimate ranked lists. `ref[i]` is the relevance score for point `i`. transitive : bool If true, all pairs of reference levels are compared. If false, only adjacent pairs of reference levels are compared. Returns ------- inversions : int The number of pairs of indices `i, j` where `ref[i] < ref[j]` but `est[i] >= est[j]`. normalizer : float The total number of pairs (i, j) under consideration. If transitive=True, then this is |{(i,j) : ref[i] < ref[j]}| If transitive=False, then this is |{i,j) : ref[i] +1 = ref[j]}| ''' idx = np.argsort(ref) ref_sorted = ref[idx] est_sorted = est[idx] # Find the break-points in ref_sorted levels, positions, counts = np.unique(ref_sorted, return_index=True, return_counts=True) positions = list(positions) positions.append(len(ref_sorted)) index = collections.defaultdict(lambda: slice(0)) ref_map = collections.defaultdict(lambda: 0) for level, cnt, start, end in zip(levels, counts, positions[:-1], positions[1:]): index[level] = slice(start, end) ref_map[level] = cnt # Now that we have values sorted, apply the inversion-counter to # pairs of reference values if transitive: level_pairs = itertools.combinations(levels, 2) else: level_pairs = [(i, i+1) for i in levels] level_pairs, lcounter = itertools.tee(level_pairs) normalizer = float(sum([ref_map[i] * ref_map[j] for (i, j) in lcounter])) if normalizer == 0: return 0, 0.0 inversions = 0 for level_1, level_2 in level_pairs: inversions += _count_inversions(est_sorted[index[level_1]], est_sorted[index[level_2]]) return inversions, float(normalizer)
[ "def", "_compare_frame_rankings", "(", "ref", ",", "est", ",", "transitive", "=", "False", ")", ":", "idx", "=", "np", ".", "argsort", "(", "ref", ")", "ref_sorted", "=", "ref", "[", "idx", "]", "est_sorted", "=", "est", "[", "idx", "]", "# Find the break-points in ref_sorted", "levels", ",", "positions", ",", "counts", "=", "np", ".", "unique", "(", "ref_sorted", ",", "return_index", "=", "True", ",", "return_counts", "=", "True", ")", "positions", "=", "list", "(", "positions", ")", "positions", ".", "append", "(", "len", "(", "ref_sorted", ")", ")", "index", "=", "collections", ".", "defaultdict", "(", "lambda", ":", "slice", "(", "0", ")", ")", "ref_map", "=", "collections", ".", "defaultdict", "(", "lambda", ":", "0", ")", "for", "level", ",", "cnt", ",", "start", ",", "end", "in", "zip", "(", "levels", ",", "counts", ",", "positions", "[", ":", "-", "1", "]", ",", "positions", "[", "1", ":", "]", ")", ":", "index", "[", "level", "]", "=", "slice", "(", "start", ",", "end", ")", "ref_map", "[", "level", "]", "=", "cnt", "# Now that we have values sorted, apply the inversion-counter to", "# pairs of reference values", "if", "transitive", ":", "level_pairs", "=", "itertools", ".", "combinations", "(", "levels", ",", "2", ")", "else", ":", "level_pairs", "=", "[", "(", "i", ",", "i", "+", "1", ")", "for", "i", "in", "levels", "]", "level_pairs", ",", "lcounter", "=", "itertools", ".", "tee", "(", "level_pairs", ")", "normalizer", "=", "float", "(", "sum", "(", "[", "ref_map", "[", "i", "]", "*", "ref_map", "[", "j", "]", "for", "(", "i", ",", "j", ")", "in", "lcounter", "]", ")", ")", "if", "normalizer", "==", "0", ":", "return", "0", ",", "0.0", "inversions", "=", "0", "for", "level_1", ",", "level_2", "in", "level_pairs", ":", "inversions", "+=", "_count_inversions", "(", "est_sorted", "[", "index", "[", "level_1", "]", "]", ",", "est_sorted", "[", "index", "[", "level_2", "]", "]", ")", "return", "inversions", ",", "float", "(", "normalizer", ")" ]
Compute the number of ranking disagreements in two lists. Parameters ---------- ref : np.ndarray, shape=(n,) est : np.ndarray, shape=(n,) Reference and estimate ranked lists. `ref[i]` is the relevance score for point `i`. transitive : bool If true, all pairs of reference levels are compared. If false, only adjacent pairs of reference levels are compared. Returns ------- inversions : int The number of pairs of indices `i, j` where `ref[i] < ref[j]` but `est[i] >= est[j]`. normalizer : float The total number of pairs (i, j) under consideration. If transitive=True, then this is |{(i,j) : ref[i] < ref[j]}| If transitive=False, then this is |{i,j) : ref[i] +1 = ref[j]}|
[ "Compute", "the", "number", "of", "ranking", "disagreements", "in", "two", "lists", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/hierarchy.py#L370-L436
train
craffel/mir_eval
mir_eval/hierarchy.py
validate_hier_intervals
def validate_hier_intervals(intervals_hier): '''Validate a hierarchical segment annotation. Parameters ---------- intervals_hier : ordered list of segmentations Raises ------ ValueError If any segmentation does not span the full duration of the top-level segmentation. If any segmentation does not start at 0. ''' # Synthesize a label array for the top layer. label_top = util.generate_labels(intervals_hier[0]) boundaries = set(util.intervals_to_boundaries(intervals_hier[0])) for level, intervals in enumerate(intervals_hier[1:], 1): # Make sure this level is consistent with the root label_current = util.generate_labels(intervals) validate_structure(intervals_hier[0], label_top, intervals, label_current) # Make sure all previous boundaries are accounted for new_bounds = set(util.intervals_to_boundaries(intervals)) if boundaries - new_bounds: warnings.warn('Segment hierarchy is inconsistent ' 'at level {:d}'.format(level)) boundaries |= new_bounds
python
def validate_hier_intervals(intervals_hier): '''Validate a hierarchical segment annotation. Parameters ---------- intervals_hier : ordered list of segmentations Raises ------ ValueError If any segmentation does not span the full duration of the top-level segmentation. If any segmentation does not start at 0. ''' # Synthesize a label array for the top layer. label_top = util.generate_labels(intervals_hier[0]) boundaries = set(util.intervals_to_boundaries(intervals_hier[0])) for level, intervals in enumerate(intervals_hier[1:], 1): # Make sure this level is consistent with the root label_current = util.generate_labels(intervals) validate_structure(intervals_hier[0], label_top, intervals, label_current) # Make sure all previous boundaries are accounted for new_bounds = set(util.intervals_to_boundaries(intervals)) if boundaries - new_bounds: warnings.warn('Segment hierarchy is inconsistent ' 'at level {:d}'.format(level)) boundaries |= new_bounds
[ "def", "validate_hier_intervals", "(", "intervals_hier", ")", ":", "# Synthesize a label array for the top layer.", "label_top", "=", "util", ".", "generate_labels", "(", "intervals_hier", "[", "0", "]", ")", "boundaries", "=", "set", "(", "util", ".", "intervals_to_boundaries", "(", "intervals_hier", "[", "0", "]", ")", ")", "for", "level", ",", "intervals", "in", "enumerate", "(", "intervals_hier", "[", "1", ":", "]", ",", "1", ")", ":", "# Make sure this level is consistent with the root", "label_current", "=", "util", ".", "generate_labels", "(", "intervals", ")", "validate_structure", "(", "intervals_hier", "[", "0", "]", ",", "label_top", ",", "intervals", ",", "label_current", ")", "# Make sure all previous boundaries are accounted for", "new_bounds", "=", "set", "(", "util", ".", "intervals_to_boundaries", "(", "intervals", ")", ")", "if", "boundaries", "-", "new_bounds", ":", "warnings", ".", "warn", "(", "'Segment hierarchy is inconsistent '", "'at level {:d}'", ".", "format", "(", "level", ")", ")", "boundaries", "|=", "new_bounds" ]
Validate a hierarchical segment annotation. Parameters ---------- intervals_hier : ordered list of segmentations Raises ------ ValueError If any segmentation does not span the full duration of the top-level segmentation. If any segmentation does not start at 0.
[ "Validate", "a", "hierarchical", "segment", "annotation", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/hierarchy.py#L439-L472
train
craffel/mir_eval
mir_eval/hierarchy.py
evaluate
def evaluate(ref_intervals_hier, ref_labels_hier, est_intervals_hier, est_labels_hier, **kwargs): '''Compute all hierarchical structure metrics for the given reference and estimated annotations. Examples -------- A toy example with two two-layer annotations >>> ref_i = [[[0, 30], [30, 60]], [[0, 15], [15, 30], [30, 45], [45, 60]]] >>> est_i = [[[0, 45], [45, 60]], [[0, 15], [15, 30], [30, 45], [45, 60]]] >>> ref_l = [ ['A', 'B'], ['a', 'b', 'a', 'c'] ] >>> est_l = [ ['A', 'B'], ['a', 'a', 'b', 'b'] ] >>> scores = mir_eval.hierarchy.evaluate(ref_i, ref_l, est_i, est_l) >>> dict(scores) {'T-Measure full': 0.94822745804853459, 'T-Measure reduced': 0.8732458222764804, 'T-Precision full': 0.96569179094693058, 'T-Precision reduced': 0.89939075137018787, 'T-Recall full': 0.93138358189386117, 'T-Recall reduced': 0.84857799953694923} A more realistic example, using SALAMI pre-parsed annotations >>> def load_salami(filename): ... "load SALAMI event format as labeled intervals" ... events, labels = mir_eval.io.load_labeled_events(filename) ... intervals = mir_eval.util.boundaries_to_intervals(events)[0] ... return intervals, labels[:len(intervals)] >>> ref_files = ['data/10/parsed/textfile1_uppercase.txt', ... 'data/10/parsed/textfile1_lowercase.txt'] >>> est_files = ['data/10/parsed/textfile2_uppercase.txt', ... 'data/10/parsed/textfile2_lowercase.txt'] >>> ref = [load_salami(fname) for fname in ref_files] >>> ref_int = [seg[0] for seg in ref] >>> ref_lab = [seg[1] for seg in ref] >>> est = [load_salami(fname) for fname in est_files] >>> est_int = [seg[0] for seg in est] >>> est_lab = [seg[1] for seg in est] >>> scores = mir_eval.hierarchy.evaluate(ref_int, ref_lab, ... est_hier, est_lab) >>> dict(scores) {'T-Measure full': 0.66029225561405358, 'T-Measure reduced': 0.62001868041578034, 'T-Precision full': 0.66844764668949885, 'T-Precision reduced': 0.63252297209957919, 'T-Recall full': 0.6523334654992341, 'T-Recall reduced': 0.60799919710921635} Parameters ---------- ref_intervals_hier : list of list-like ref_labels_hier : list of list of str est_intervals_hier : list of list-like est_labels_hier : list of list of str Hierarchical annotations are encoded as an ordered list of segmentations. Each segmentation itself is a list (or list-like) of intervals (\*_intervals_hier) and a list of lists of labels (\*_labels_hier). kwargs additional keyword arguments to the evaluation metrics. Returns ------- scores : OrderedDict Dictionary of scores, where the key is the metric name (str) and the value is the (float) score achieved. T-measures are computed in both the "full" (``transitive=True``) and "reduced" (``transitive=False``) modes. Raises ------ ValueError Thrown when the provided annotations are not valid. ''' # First, find the maximum length of the reference _, t_end = _hierarchy_bounds(ref_intervals_hier) # Pre-process the intervals to match the range of the reference, # and start at 0 ref_intervals_hier, ref_labels_hier = _align_intervals(ref_intervals_hier, ref_labels_hier, t_min=0.0, t_max=None) est_intervals_hier, est_labels_hier = _align_intervals(est_intervals_hier, est_labels_hier, t_min=0.0, t_max=t_end) scores = collections.OrderedDict() # Force the transitivity setting kwargs['transitive'] = False (scores['T-Precision reduced'], scores['T-Recall reduced'], scores['T-Measure reduced']) = util.filter_kwargs(tmeasure, ref_intervals_hier, est_intervals_hier, **kwargs) kwargs['transitive'] = True (scores['T-Precision full'], scores['T-Recall full'], scores['T-Measure full']) = util.filter_kwargs(tmeasure, ref_intervals_hier, est_intervals_hier, **kwargs) (scores['L-Precision'], scores['L-Recall'], scores['L-Measure']) = util.filter_kwargs(lmeasure, ref_intervals_hier, ref_labels_hier, est_intervals_hier, est_labels_hier, **kwargs) return scores
python
def evaluate(ref_intervals_hier, ref_labels_hier, est_intervals_hier, est_labels_hier, **kwargs): '''Compute all hierarchical structure metrics for the given reference and estimated annotations. Examples -------- A toy example with two two-layer annotations >>> ref_i = [[[0, 30], [30, 60]], [[0, 15], [15, 30], [30, 45], [45, 60]]] >>> est_i = [[[0, 45], [45, 60]], [[0, 15], [15, 30], [30, 45], [45, 60]]] >>> ref_l = [ ['A', 'B'], ['a', 'b', 'a', 'c'] ] >>> est_l = [ ['A', 'B'], ['a', 'a', 'b', 'b'] ] >>> scores = mir_eval.hierarchy.evaluate(ref_i, ref_l, est_i, est_l) >>> dict(scores) {'T-Measure full': 0.94822745804853459, 'T-Measure reduced': 0.8732458222764804, 'T-Precision full': 0.96569179094693058, 'T-Precision reduced': 0.89939075137018787, 'T-Recall full': 0.93138358189386117, 'T-Recall reduced': 0.84857799953694923} A more realistic example, using SALAMI pre-parsed annotations >>> def load_salami(filename): ... "load SALAMI event format as labeled intervals" ... events, labels = mir_eval.io.load_labeled_events(filename) ... intervals = mir_eval.util.boundaries_to_intervals(events)[0] ... return intervals, labels[:len(intervals)] >>> ref_files = ['data/10/parsed/textfile1_uppercase.txt', ... 'data/10/parsed/textfile1_lowercase.txt'] >>> est_files = ['data/10/parsed/textfile2_uppercase.txt', ... 'data/10/parsed/textfile2_lowercase.txt'] >>> ref = [load_salami(fname) for fname in ref_files] >>> ref_int = [seg[0] for seg in ref] >>> ref_lab = [seg[1] for seg in ref] >>> est = [load_salami(fname) for fname in est_files] >>> est_int = [seg[0] for seg in est] >>> est_lab = [seg[1] for seg in est] >>> scores = mir_eval.hierarchy.evaluate(ref_int, ref_lab, ... est_hier, est_lab) >>> dict(scores) {'T-Measure full': 0.66029225561405358, 'T-Measure reduced': 0.62001868041578034, 'T-Precision full': 0.66844764668949885, 'T-Precision reduced': 0.63252297209957919, 'T-Recall full': 0.6523334654992341, 'T-Recall reduced': 0.60799919710921635} Parameters ---------- ref_intervals_hier : list of list-like ref_labels_hier : list of list of str est_intervals_hier : list of list-like est_labels_hier : list of list of str Hierarchical annotations are encoded as an ordered list of segmentations. Each segmentation itself is a list (or list-like) of intervals (\*_intervals_hier) and a list of lists of labels (\*_labels_hier). kwargs additional keyword arguments to the evaluation metrics. Returns ------- scores : OrderedDict Dictionary of scores, where the key is the metric name (str) and the value is the (float) score achieved. T-measures are computed in both the "full" (``transitive=True``) and "reduced" (``transitive=False``) modes. Raises ------ ValueError Thrown when the provided annotations are not valid. ''' # First, find the maximum length of the reference _, t_end = _hierarchy_bounds(ref_intervals_hier) # Pre-process the intervals to match the range of the reference, # and start at 0 ref_intervals_hier, ref_labels_hier = _align_intervals(ref_intervals_hier, ref_labels_hier, t_min=0.0, t_max=None) est_intervals_hier, est_labels_hier = _align_intervals(est_intervals_hier, est_labels_hier, t_min=0.0, t_max=t_end) scores = collections.OrderedDict() # Force the transitivity setting kwargs['transitive'] = False (scores['T-Precision reduced'], scores['T-Recall reduced'], scores['T-Measure reduced']) = util.filter_kwargs(tmeasure, ref_intervals_hier, est_intervals_hier, **kwargs) kwargs['transitive'] = True (scores['T-Precision full'], scores['T-Recall full'], scores['T-Measure full']) = util.filter_kwargs(tmeasure, ref_intervals_hier, est_intervals_hier, **kwargs) (scores['L-Precision'], scores['L-Recall'], scores['L-Measure']) = util.filter_kwargs(lmeasure, ref_intervals_hier, ref_labels_hier, est_intervals_hier, est_labels_hier, **kwargs) return scores
[ "def", "evaluate", "(", "ref_intervals_hier", ",", "ref_labels_hier", ",", "est_intervals_hier", ",", "est_labels_hier", ",", "*", "*", "kwargs", ")", ":", "# First, find the maximum length of the reference", "_", ",", "t_end", "=", "_hierarchy_bounds", "(", "ref_intervals_hier", ")", "# Pre-process the intervals to match the range of the reference,", "# and start at 0", "ref_intervals_hier", ",", "ref_labels_hier", "=", "_align_intervals", "(", "ref_intervals_hier", ",", "ref_labels_hier", ",", "t_min", "=", "0.0", ",", "t_max", "=", "None", ")", "est_intervals_hier", ",", "est_labels_hier", "=", "_align_intervals", "(", "est_intervals_hier", ",", "est_labels_hier", ",", "t_min", "=", "0.0", ",", "t_max", "=", "t_end", ")", "scores", "=", "collections", ".", "OrderedDict", "(", ")", "# Force the transitivity setting", "kwargs", "[", "'transitive'", "]", "=", "False", "(", "scores", "[", "'T-Precision reduced'", "]", ",", "scores", "[", "'T-Recall reduced'", "]", ",", "scores", "[", "'T-Measure reduced'", "]", ")", "=", "util", ".", "filter_kwargs", "(", "tmeasure", ",", "ref_intervals_hier", ",", "est_intervals_hier", ",", "*", "*", "kwargs", ")", "kwargs", "[", "'transitive'", "]", "=", "True", "(", "scores", "[", "'T-Precision full'", "]", ",", "scores", "[", "'T-Recall full'", "]", ",", "scores", "[", "'T-Measure full'", "]", ")", "=", "util", ".", "filter_kwargs", "(", "tmeasure", ",", "ref_intervals_hier", ",", "est_intervals_hier", ",", "*", "*", "kwargs", ")", "(", "scores", "[", "'L-Precision'", "]", ",", "scores", "[", "'L-Recall'", "]", ",", "scores", "[", "'L-Measure'", "]", ")", "=", "util", ".", "filter_kwargs", "(", "lmeasure", ",", "ref_intervals_hier", ",", "ref_labels_hier", ",", "est_intervals_hier", ",", "est_labels_hier", ",", "*", "*", "kwargs", ")", "return", "scores" ]
Compute all hierarchical structure metrics for the given reference and estimated annotations. Examples -------- A toy example with two two-layer annotations >>> ref_i = [[[0, 30], [30, 60]], [[0, 15], [15, 30], [30, 45], [45, 60]]] >>> est_i = [[[0, 45], [45, 60]], [[0, 15], [15, 30], [30, 45], [45, 60]]] >>> ref_l = [ ['A', 'B'], ['a', 'b', 'a', 'c'] ] >>> est_l = [ ['A', 'B'], ['a', 'a', 'b', 'b'] ] >>> scores = mir_eval.hierarchy.evaluate(ref_i, ref_l, est_i, est_l) >>> dict(scores) {'T-Measure full': 0.94822745804853459, 'T-Measure reduced': 0.8732458222764804, 'T-Precision full': 0.96569179094693058, 'T-Precision reduced': 0.89939075137018787, 'T-Recall full': 0.93138358189386117, 'T-Recall reduced': 0.84857799953694923} A more realistic example, using SALAMI pre-parsed annotations >>> def load_salami(filename): ... "load SALAMI event format as labeled intervals" ... events, labels = mir_eval.io.load_labeled_events(filename) ... intervals = mir_eval.util.boundaries_to_intervals(events)[0] ... return intervals, labels[:len(intervals)] >>> ref_files = ['data/10/parsed/textfile1_uppercase.txt', ... 'data/10/parsed/textfile1_lowercase.txt'] >>> est_files = ['data/10/parsed/textfile2_uppercase.txt', ... 'data/10/parsed/textfile2_lowercase.txt'] >>> ref = [load_salami(fname) for fname in ref_files] >>> ref_int = [seg[0] for seg in ref] >>> ref_lab = [seg[1] for seg in ref] >>> est = [load_salami(fname) for fname in est_files] >>> est_int = [seg[0] for seg in est] >>> est_lab = [seg[1] for seg in est] >>> scores = mir_eval.hierarchy.evaluate(ref_int, ref_lab, ... est_hier, est_lab) >>> dict(scores) {'T-Measure full': 0.66029225561405358, 'T-Measure reduced': 0.62001868041578034, 'T-Precision full': 0.66844764668949885, 'T-Precision reduced': 0.63252297209957919, 'T-Recall full': 0.6523334654992341, 'T-Recall reduced': 0.60799919710921635} Parameters ---------- ref_intervals_hier : list of list-like ref_labels_hier : list of list of str est_intervals_hier : list of list-like est_labels_hier : list of list of str Hierarchical annotations are encoded as an ordered list of segmentations. Each segmentation itself is a list (or list-like) of intervals (\*_intervals_hier) and a list of lists of labels (\*_labels_hier). kwargs additional keyword arguments to the evaluation metrics. Returns ------- scores : OrderedDict Dictionary of scores, where the key is the metric name (str) and the value is the (float) score achieved. T-measures are computed in both the "full" (``transitive=True``) and "reduced" (``transitive=False``) modes. Raises ------ ValueError Thrown when the provided annotations are not valid.
[ "Compute", "all", "hierarchical", "structure", "metrics", "for", "the", "given", "reference", "and", "estimated", "annotations", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/hierarchy.py#L630-L751
train
craffel/mir_eval
mir_eval/display.py
__expand_limits
def __expand_limits(ax, limits, which='x'): '''Helper function to expand axis limits''' if which == 'x': getter, setter = ax.get_xlim, ax.set_xlim elif which == 'y': getter, setter = ax.get_ylim, ax.set_ylim else: raise ValueError('invalid axis: {}'.format(which)) old_lims = getter() new_lims = list(limits) # infinite limits occur on new axis objects with no data if np.isfinite(old_lims[0]): new_lims[0] = min(old_lims[0], limits[0]) if np.isfinite(old_lims[1]): new_lims[1] = max(old_lims[1], limits[1]) setter(new_lims)
python
def __expand_limits(ax, limits, which='x'): '''Helper function to expand axis limits''' if which == 'x': getter, setter = ax.get_xlim, ax.set_xlim elif which == 'y': getter, setter = ax.get_ylim, ax.set_ylim else: raise ValueError('invalid axis: {}'.format(which)) old_lims = getter() new_lims = list(limits) # infinite limits occur on new axis objects with no data if np.isfinite(old_lims[0]): new_lims[0] = min(old_lims[0], limits[0]) if np.isfinite(old_lims[1]): new_lims[1] = max(old_lims[1], limits[1]) setter(new_lims)
[ "def", "__expand_limits", "(", "ax", ",", "limits", ",", "which", "=", "'x'", ")", ":", "if", "which", "==", "'x'", ":", "getter", ",", "setter", "=", "ax", ".", "get_xlim", ",", "ax", ".", "set_xlim", "elif", "which", "==", "'y'", ":", "getter", ",", "setter", "=", "ax", ".", "get_ylim", ",", "ax", ".", "set_ylim", "else", ":", "raise", "ValueError", "(", "'invalid axis: {}'", ".", "format", "(", "which", ")", ")", "old_lims", "=", "getter", "(", ")", "new_lims", "=", "list", "(", "limits", ")", "# infinite limits occur on new axis objects with no data", "if", "np", ".", "isfinite", "(", "old_lims", "[", "0", "]", ")", ":", "new_lims", "[", "0", "]", "=", "min", "(", "old_lims", "[", "0", "]", ",", "limits", "[", "0", "]", ")", "if", "np", ".", "isfinite", "(", "old_lims", "[", "1", "]", ")", ":", "new_lims", "[", "1", "]", "=", "max", "(", "old_lims", "[", "1", "]", ",", "limits", "[", "1", "]", ")", "setter", "(", "new_lims", ")" ]
Helper function to expand axis limits
[ "Helper", "function", "to", "expand", "axis", "limits" ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/display.py#L19-L39
train
craffel/mir_eval
mir_eval/display.py
__get_axes
def __get_axes(ax=None, fig=None): '''Get or construct the target axes object for a new plot. Parameters ---------- ax : matplotlib.pyplot.axes, optional If provided, return this axes object directly. fig : matplotlib.figure.Figure, optional The figure to query for axes. By default, uses the current figure `plt.gcf()`. Returns ------- ax : matplotlib.pyplot.axes An axis handle on which to draw the segmentation. If none is provided, a new set of axes is created. new_axes : bool If `True`, the axis object was newly constructed. If `False`, the axis object already existed. ''' new_axes = False if ax is not None: return ax, new_axes if fig is None: import matplotlib.pyplot as plt fig = plt.gcf() if not fig.get_axes(): new_axes = True return fig.gca(), new_axes
python
def __get_axes(ax=None, fig=None): '''Get or construct the target axes object for a new plot. Parameters ---------- ax : matplotlib.pyplot.axes, optional If provided, return this axes object directly. fig : matplotlib.figure.Figure, optional The figure to query for axes. By default, uses the current figure `plt.gcf()`. Returns ------- ax : matplotlib.pyplot.axes An axis handle on which to draw the segmentation. If none is provided, a new set of axes is created. new_axes : bool If `True`, the axis object was newly constructed. If `False`, the axis object already existed. ''' new_axes = False if ax is not None: return ax, new_axes if fig is None: import matplotlib.pyplot as plt fig = plt.gcf() if not fig.get_axes(): new_axes = True return fig.gca(), new_axes
[ "def", "__get_axes", "(", "ax", "=", "None", ",", "fig", "=", "None", ")", ":", "new_axes", "=", "False", "if", "ax", "is", "not", "None", ":", "return", "ax", ",", "new_axes", "if", "fig", "is", "None", ":", "import", "matplotlib", ".", "pyplot", "as", "plt", "fig", "=", "plt", ".", "gcf", "(", ")", "if", "not", "fig", ".", "get_axes", "(", ")", ":", "new_axes", "=", "True", "return", "fig", ".", "gca", "(", ")", ",", "new_axes" ]
Get or construct the target axes object for a new plot. Parameters ---------- ax : matplotlib.pyplot.axes, optional If provided, return this axes object directly. fig : matplotlib.figure.Figure, optional The figure to query for axes. By default, uses the current figure `plt.gcf()`. Returns ------- ax : matplotlib.pyplot.axes An axis handle on which to draw the segmentation. If none is provided, a new set of axes is created. new_axes : bool If `True`, the axis object was newly constructed. If `False`, the axis object already existed.
[ "Get", "or", "construct", "the", "target", "axes", "object", "for", "a", "new", "plot", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/display.py#L42-L79
train
craffel/mir_eval
mir_eval/display.py
segments
def segments(intervals, labels, base=None, height=None, text=False, text_kw=None, ax=None, **kwargs): '''Plot a segmentation as a set of disjoint rectangles. Parameters ---------- intervals : np.ndarray, shape=(n, 2) segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. labels : list, shape=(n,) reference segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. base : number The vertical position of the base of the rectangles. By default, this will be the bottom of the plot. height : number The height of the rectangles. By default, this will be the top of the plot (minus ``base``). text : bool If true, each segment's label is displayed in its upper-left corner text_kw : dict If ``text == True``, the properties of the text object can be specified here. See ``matplotlib.pyplot.Text`` for valid parameters ax : matplotlib.pyplot.axes An axis handle on which to draw the segmentation. If none is provided, a new set of axes is created. kwargs Additional keyword arguments to pass to ``matplotlib.patches.Rectangle``. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes ''' if text_kw is None: text_kw = dict() text_kw.setdefault('va', 'top') text_kw.setdefault('clip_on', True) text_kw.setdefault('bbox', dict(boxstyle='round', facecolor='white')) # Make sure we have a numpy array intervals = np.atleast_2d(intervals) seg_def_style = dict(linewidth=1) ax, new_axes = __get_axes(ax=ax) if new_axes: ax.set_ylim([0, 1]) # Infer height if base is None: base = ax.get_ylim()[0] if height is None: height = ax.get_ylim()[1] cycler = ax._get_patches_for_fill.prop_cycler seg_map = dict() for lab in labels: if lab in seg_map: continue style = next(cycler) seg_map[lab] = seg_def_style.copy() seg_map[lab].update(style) # Swap color -> facecolor here so we preserve edgecolor on rects seg_map[lab]['facecolor'] = seg_map[lab].pop('color') seg_map[lab].update(kwargs) seg_map[lab]['label'] = lab for ival, lab in zip(intervals, labels): rect = Rectangle((ival[0], base), ival[1] - ival[0], height, **seg_map[lab]) ax.add_patch(rect) seg_map[lab].pop('label', None) if text: ann = ax.annotate(lab, xy=(ival[0], height), xycoords='data', xytext=(8, -10), textcoords='offset points', **text_kw) ann.set_clip_path(rect) if new_axes: ax.set_yticks([]) # Only expand if we have data if intervals.size: __expand_limits(ax, [intervals.min(), intervals.max()], which='x') return ax
python
def segments(intervals, labels, base=None, height=None, text=False, text_kw=None, ax=None, **kwargs): '''Plot a segmentation as a set of disjoint rectangles. Parameters ---------- intervals : np.ndarray, shape=(n, 2) segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. labels : list, shape=(n,) reference segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. base : number The vertical position of the base of the rectangles. By default, this will be the bottom of the plot. height : number The height of the rectangles. By default, this will be the top of the plot (minus ``base``). text : bool If true, each segment's label is displayed in its upper-left corner text_kw : dict If ``text == True``, the properties of the text object can be specified here. See ``matplotlib.pyplot.Text`` for valid parameters ax : matplotlib.pyplot.axes An axis handle on which to draw the segmentation. If none is provided, a new set of axes is created. kwargs Additional keyword arguments to pass to ``matplotlib.patches.Rectangle``. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes ''' if text_kw is None: text_kw = dict() text_kw.setdefault('va', 'top') text_kw.setdefault('clip_on', True) text_kw.setdefault('bbox', dict(boxstyle='round', facecolor='white')) # Make sure we have a numpy array intervals = np.atleast_2d(intervals) seg_def_style = dict(linewidth=1) ax, new_axes = __get_axes(ax=ax) if new_axes: ax.set_ylim([0, 1]) # Infer height if base is None: base = ax.get_ylim()[0] if height is None: height = ax.get_ylim()[1] cycler = ax._get_patches_for_fill.prop_cycler seg_map = dict() for lab in labels: if lab in seg_map: continue style = next(cycler) seg_map[lab] = seg_def_style.copy() seg_map[lab].update(style) # Swap color -> facecolor here so we preserve edgecolor on rects seg_map[lab]['facecolor'] = seg_map[lab].pop('color') seg_map[lab].update(kwargs) seg_map[lab]['label'] = lab for ival, lab in zip(intervals, labels): rect = Rectangle((ival[0], base), ival[1] - ival[0], height, **seg_map[lab]) ax.add_patch(rect) seg_map[lab].pop('label', None) if text: ann = ax.annotate(lab, xy=(ival[0], height), xycoords='data', xytext=(8, -10), textcoords='offset points', **text_kw) ann.set_clip_path(rect) if new_axes: ax.set_yticks([]) # Only expand if we have data if intervals.size: __expand_limits(ax, [intervals.min(), intervals.max()], which='x') return ax
[ "def", "segments", "(", "intervals", ",", "labels", ",", "base", "=", "None", ",", "height", "=", "None", ",", "text", "=", "False", ",", "text_kw", "=", "None", ",", "ax", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "text_kw", "is", "None", ":", "text_kw", "=", "dict", "(", ")", "text_kw", ".", "setdefault", "(", "'va'", ",", "'top'", ")", "text_kw", ".", "setdefault", "(", "'clip_on'", ",", "True", ")", "text_kw", ".", "setdefault", "(", "'bbox'", ",", "dict", "(", "boxstyle", "=", "'round'", ",", "facecolor", "=", "'white'", ")", ")", "# Make sure we have a numpy array", "intervals", "=", "np", ".", "atleast_2d", "(", "intervals", ")", "seg_def_style", "=", "dict", "(", "linewidth", "=", "1", ")", "ax", ",", "new_axes", "=", "__get_axes", "(", "ax", "=", "ax", ")", "if", "new_axes", ":", "ax", ".", "set_ylim", "(", "[", "0", ",", "1", "]", ")", "# Infer height", "if", "base", "is", "None", ":", "base", "=", "ax", ".", "get_ylim", "(", ")", "[", "0", "]", "if", "height", "is", "None", ":", "height", "=", "ax", ".", "get_ylim", "(", ")", "[", "1", "]", "cycler", "=", "ax", ".", "_get_patches_for_fill", ".", "prop_cycler", "seg_map", "=", "dict", "(", ")", "for", "lab", "in", "labels", ":", "if", "lab", "in", "seg_map", ":", "continue", "style", "=", "next", "(", "cycler", ")", "seg_map", "[", "lab", "]", "=", "seg_def_style", ".", "copy", "(", ")", "seg_map", "[", "lab", "]", ".", "update", "(", "style", ")", "# Swap color -> facecolor here so we preserve edgecolor on rects", "seg_map", "[", "lab", "]", "[", "'facecolor'", "]", "=", "seg_map", "[", "lab", "]", ".", "pop", "(", "'color'", ")", "seg_map", "[", "lab", "]", ".", "update", "(", "kwargs", ")", "seg_map", "[", "lab", "]", "[", "'label'", "]", "=", "lab", "for", "ival", ",", "lab", "in", "zip", "(", "intervals", ",", "labels", ")", ":", "rect", "=", "Rectangle", "(", "(", "ival", "[", "0", "]", ",", "base", ")", ",", "ival", "[", "1", "]", "-", "ival", "[", "0", "]", ",", "height", ",", "*", "*", "seg_map", "[", "lab", "]", ")", "ax", ".", "add_patch", "(", "rect", ")", "seg_map", "[", "lab", "]", ".", "pop", "(", "'label'", ",", "None", ")", "if", "text", ":", "ann", "=", "ax", ".", "annotate", "(", "lab", ",", "xy", "=", "(", "ival", "[", "0", "]", ",", "height", ")", ",", "xycoords", "=", "'data'", ",", "xytext", "=", "(", "8", ",", "-", "10", ")", ",", "textcoords", "=", "'offset points'", ",", "*", "*", "text_kw", ")", "ann", ".", "set_clip_path", "(", "rect", ")", "if", "new_axes", ":", "ax", ".", "set_yticks", "(", "[", "]", ")", "# Only expand if we have data", "if", "intervals", ".", "size", ":", "__expand_limits", "(", "ax", ",", "[", "intervals", ".", "min", "(", ")", ",", "intervals", ".", "max", "(", ")", "]", ",", "which", "=", "'x'", ")", "return", "ax" ]
Plot a segmentation as a set of disjoint rectangles. Parameters ---------- intervals : np.ndarray, shape=(n, 2) segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. labels : list, shape=(n,) reference segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. base : number The vertical position of the base of the rectangles. By default, this will be the bottom of the plot. height : number The height of the rectangles. By default, this will be the top of the plot (minus ``base``). text : bool If true, each segment's label is displayed in its upper-left corner text_kw : dict If ``text == True``, the properties of the text object can be specified here. See ``matplotlib.pyplot.Text`` for valid parameters ax : matplotlib.pyplot.axes An axis handle on which to draw the segmentation. If none is provided, a new set of axes is created. kwargs Additional keyword arguments to pass to ``matplotlib.patches.Rectangle``. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes
[ "Plot", "a", "segmentation", "as", "a", "set", "of", "disjoint", "rectangles", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/display.py#L82-L186
train
craffel/mir_eval
mir_eval/display.py
labeled_intervals
def labeled_intervals(intervals, labels, label_set=None, base=None, height=None, extend_labels=True, ax=None, tick=True, **kwargs): '''Plot labeled intervals with each label on its own row. Parameters ---------- intervals : np.ndarray, shape=(n, 2) segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. labels : list, shape=(n,) reference segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. label_set : list An (ordered) list of labels to determine the plotting order. If not provided, the labels will be inferred from ``ax.get_yticklabels()``. If no ``yticklabels`` exist, then the sorted set of unique values in ``labels`` is taken as the label set. base : np.ndarray, shape=(n,), optional Vertical positions of each label. By default, labels are positioned at integers ``np.arange(len(labels))``. height : scalar or np.ndarray, shape=(n,), optional Height for each label. If scalar, the same value is applied to all labels. By default, each label has ``height=1``. extend_labels : bool If ``False``, only values of ``labels`` that also exist in ``label_set`` will be shown. If ``True``, all labels are shown, with those in `labels` but not in `label_set` appended to the top of the plot. A horizontal line is drawn to indicate the separation between values in or out of ``label_set``. ax : matplotlib.pyplot.axes An axis handle on which to draw the intervals. If none is provided, a new set of axes is created. tick : bool If ``True``, sets tick positions and labels on the y-axis. kwargs Additional keyword arguments to pass to `matplotlib.collection.BrokenBarHCollection`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes ''' # Get the axes handle ax, _ = __get_axes(ax=ax) # Make sure we have a numpy array intervals = np.atleast_2d(intervals) if label_set is None: # If we have non-empty pre-existing tick labels, use them label_set = [_.get_text() for _ in ax.get_yticklabels()] # If none of the label strings have content, treat it as empty if not any(label_set): label_set = [] else: label_set = list(label_set) # Put additional labels at the end, in order if extend_labels: ticks = label_set + sorted(set(labels) - set(label_set)) elif label_set: ticks = label_set else: ticks = sorted(set(labels)) style = dict(linewidth=1) style.update(next(ax._get_patches_for_fill.prop_cycler)) # Swap color -> facecolor here so we preserve edgecolor on rects style['facecolor'] = style.pop('color') style.update(kwargs) if base is None: base = np.arange(len(ticks)) if height is None: height = 1 if np.isscalar(height): height = height * np.ones_like(base) seg_y = dict() for ybase, yheight, lab in zip(base, height, ticks): seg_y[lab] = (ybase, yheight) xvals = defaultdict(list) for ival, lab in zip(intervals, labels): if lab not in seg_y: continue xvals[lab].append((ival[0], ival[1] - ival[0])) for lab in seg_y: ax.add_collection(BrokenBarHCollection(xvals[lab], seg_y[lab], **style)) # Pop the label after the first time we see it, so we only get # one legend entry style.pop('label', None) # Draw a line separating the new labels from pre-existing labels if label_set != ticks: ax.axhline(len(label_set), color='k', alpha=0.5) if tick: ax.grid(True, axis='y') ax.set_yticks([]) ax.set_yticks(base) ax.set_yticklabels(ticks, va='bottom') ax.yaxis.set_major_formatter(IntervalFormatter(base, ticks)) if base.size: __expand_limits(ax, [base.min(), (base + height).max()], which='y') if intervals.size: __expand_limits(ax, [intervals.min(), intervals.max()], which='x') return ax
python
def labeled_intervals(intervals, labels, label_set=None, base=None, height=None, extend_labels=True, ax=None, tick=True, **kwargs): '''Plot labeled intervals with each label on its own row. Parameters ---------- intervals : np.ndarray, shape=(n, 2) segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. labels : list, shape=(n,) reference segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. label_set : list An (ordered) list of labels to determine the plotting order. If not provided, the labels will be inferred from ``ax.get_yticklabels()``. If no ``yticklabels`` exist, then the sorted set of unique values in ``labels`` is taken as the label set. base : np.ndarray, shape=(n,), optional Vertical positions of each label. By default, labels are positioned at integers ``np.arange(len(labels))``. height : scalar or np.ndarray, shape=(n,), optional Height for each label. If scalar, the same value is applied to all labels. By default, each label has ``height=1``. extend_labels : bool If ``False``, only values of ``labels`` that also exist in ``label_set`` will be shown. If ``True``, all labels are shown, with those in `labels` but not in `label_set` appended to the top of the plot. A horizontal line is drawn to indicate the separation between values in or out of ``label_set``. ax : matplotlib.pyplot.axes An axis handle on which to draw the intervals. If none is provided, a new set of axes is created. tick : bool If ``True``, sets tick positions and labels on the y-axis. kwargs Additional keyword arguments to pass to `matplotlib.collection.BrokenBarHCollection`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes ''' # Get the axes handle ax, _ = __get_axes(ax=ax) # Make sure we have a numpy array intervals = np.atleast_2d(intervals) if label_set is None: # If we have non-empty pre-existing tick labels, use them label_set = [_.get_text() for _ in ax.get_yticklabels()] # If none of the label strings have content, treat it as empty if not any(label_set): label_set = [] else: label_set = list(label_set) # Put additional labels at the end, in order if extend_labels: ticks = label_set + sorted(set(labels) - set(label_set)) elif label_set: ticks = label_set else: ticks = sorted(set(labels)) style = dict(linewidth=1) style.update(next(ax._get_patches_for_fill.prop_cycler)) # Swap color -> facecolor here so we preserve edgecolor on rects style['facecolor'] = style.pop('color') style.update(kwargs) if base is None: base = np.arange(len(ticks)) if height is None: height = 1 if np.isscalar(height): height = height * np.ones_like(base) seg_y = dict() for ybase, yheight, lab in zip(base, height, ticks): seg_y[lab] = (ybase, yheight) xvals = defaultdict(list) for ival, lab in zip(intervals, labels): if lab not in seg_y: continue xvals[lab].append((ival[0], ival[1] - ival[0])) for lab in seg_y: ax.add_collection(BrokenBarHCollection(xvals[lab], seg_y[lab], **style)) # Pop the label after the first time we see it, so we only get # one legend entry style.pop('label', None) # Draw a line separating the new labels from pre-existing labels if label_set != ticks: ax.axhline(len(label_set), color='k', alpha=0.5) if tick: ax.grid(True, axis='y') ax.set_yticks([]) ax.set_yticks(base) ax.set_yticklabels(ticks, va='bottom') ax.yaxis.set_major_formatter(IntervalFormatter(base, ticks)) if base.size: __expand_limits(ax, [base.min(), (base + height).max()], which='y') if intervals.size: __expand_limits(ax, [intervals.min(), intervals.max()], which='x') return ax
[ "def", "labeled_intervals", "(", "intervals", ",", "labels", ",", "label_set", "=", "None", ",", "base", "=", "None", ",", "height", "=", "None", ",", "extend_labels", "=", "True", ",", "ax", "=", "None", ",", "tick", "=", "True", ",", "*", "*", "kwargs", ")", ":", "# Get the axes handle", "ax", ",", "_", "=", "__get_axes", "(", "ax", "=", "ax", ")", "# Make sure we have a numpy array", "intervals", "=", "np", ".", "atleast_2d", "(", "intervals", ")", "if", "label_set", "is", "None", ":", "# If we have non-empty pre-existing tick labels, use them", "label_set", "=", "[", "_", ".", "get_text", "(", ")", "for", "_", "in", "ax", ".", "get_yticklabels", "(", ")", "]", "# If none of the label strings have content, treat it as empty", "if", "not", "any", "(", "label_set", ")", ":", "label_set", "=", "[", "]", "else", ":", "label_set", "=", "list", "(", "label_set", ")", "# Put additional labels at the end, in order", "if", "extend_labels", ":", "ticks", "=", "label_set", "+", "sorted", "(", "set", "(", "labels", ")", "-", "set", "(", "label_set", ")", ")", "elif", "label_set", ":", "ticks", "=", "label_set", "else", ":", "ticks", "=", "sorted", "(", "set", "(", "labels", ")", ")", "style", "=", "dict", "(", "linewidth", "=", "1", ")", "style", ".", "update", "(", "next", "(", "ax", ".", "_get_patches_for_fill", ".", "prop_cycler", ")", ")", "# Swap color -> facecolor here so we preserve edgecolor on rects", "style", "[", "'facecolor'", "]", "=", "style", ".", "pop", "(", "'color'", ")", "style", ".", "update", "(", "kwargs", ")", "if", "base", "is", "None", ":", "base", "=", "np", ".", "arange", "(", "len", "(", "ticks", ")", ")", "if", "height", "is", "None", ":", "height", "=", "1", "if", "np", ".", "isscalar", "(", "height", ")", ":", "height", "=", "height", "*", "np", ".", "ones_like", "(", "base", ")", "seg_y", "=", "dict", "(", ")", "for", "ybase", ",", "yheight", ",", "lab", "in", "zip", "(", "base", ",", "height", ",", "ticks", ")", ":", "seg_y", "[", "lab", "]", "=", "(", "ybase", ",", "yheight", ")", "xvals", "=", "defaultdict", "(", "list", ")", "for", "ival", ",", "lab", "in", "zip", "(", "intervals", ",", "labels", ")", ":", "if", "lab", "not", "in", "seg_y", ":", "continue", "xvals", "[", "lab", "]", ".", "append", "(", "(", "ival", "[", "0", "]", ",", "ival", "[", "1", "]", "-", "ival", "[", "0", "]", ")", ")", "for", "lab", "in", "seg_y", ":", "ax", ".", "add_collection", "(", "BrokenBarHCollection", "(", "xvals", "[", "lab", "]", ",", "seg_y", "[", "lab", "]", ",", "*", "*", "style", ")", ")", "# Pop the label after the first time we see it, so we only get", "# one legend entry", "style", ".", "pop", "(", "'label'", ",", "None", ")", "# Draw a line separating the new labels from pre-existing labels", "if", "label_set", "!=", "ticks", ":", "ax", ".", "axhline", "(", "len", "(", "label_set", ")", ",", "color", "=", "'k'", ",", "alpha", "=", "0.5", ")", "if", "tick", ":", "ax", ".", "grid", "(", "True", ",", "axis", "=", "'y'", ")", "ax", ".", "set_yticks", "(", "[", "]", ")", "ax", ".", "set_yticks", "(", "base", ")", "ax", ".", "set_yticklabels", "(", "ticks", ",", "va", "=", "'bottom'", ")", "ax", ".", "yaxis", ".", "set_major_formatter", "(", "IntervalFormatter", "(", "base", ",", "ticks", ")", ")", "if", "base", ".", "size", ":", "__expand_limits", "(", "ax", ",", "[", "base", ".", "min", "(", ")", ",", "(", "base", "+", "height", ")", ".", "max", "(", ")", "]", ",", "which", "=", "'y'", ")", "if", "intervals", ".", "size", ":", "__expand_limits", "(", "ax", ",", "[", "intervals", ".", "min", "(", ")", ",", "intervals", ".", "max", "(", ")", "]", ",", "which", "=", "'x'", ")", "return", "ax" ]
Plot labeled intervals with each label on its own row. Parameters ---------- intervals : np.ndarray, shape=(n, 2) segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. labels : list, shape=(n,) reference segment labels, in the format returned by :func:`mir_eval.io.load_labeled_intervals`. label_set : list An (ordered) list of labels to determine the plotting order. If not provided, the labels will be inferred from ``ax.get_yticklabels()``. If no ``yticklabels`` exist, then the sorted set of unique values in ``labels`` is taken as the label set. base : np.ndarray, shape=(n,), optional Vertical positions of each label. By default, labels are positioned at integers ``np.arange(len(labels))``. height : scalar or np.ndarray, shape=(n,), optional Height for each label. If scalar, the same value is applied to all labels. By default, each label has ``height=1``. extend_labels : bool If ``False``, only values of ``labels`` that also exist in ``label_set`` will be shown. If ``True``, all labels are shown, with those in `labels` but not in `label_set` appended to the top of the plot. A horizontal line is drawn to indicate the separation between values in or out of ``label_set``. ax : matplotlib.pyplot.axes An axis handle on which to draw the intervals. If none is provided, a new set of axes is created. tick : bool If ``True``, sets tick positions and labels on the y-axis. kwargs Additional keyword arguments to pass to `matplotlib.collection.BrokenBarHCollection`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes
[ "Plot", "labeled", "intervals", "with", "each", "label", "on", "its", "own", "row", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/display.py#L189-L320
train
craffel/mir_eval
mir_eval/display.py
hierarchy
def hierarchy(intervals_hier, labels_hier, levels=None, ax=None, **kwargs): '''Plot a hierarchical segmentation Parameters ---------- intervals_hier : list of np.ndarray A list of segmentation intervals. Each element should be an n-by-2 array of segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. Segmentations should be ordered by increasing specificity. labels_hier : list of list-like A list of segmentation labels. Each element should be a list of labels for the corresponding element in `intervals_hier`. levels : list of string Each element ``levels[i]`` is a label for the ```i`` th segmentation. This is used in the legend to denote the levels in a segment hierarchy. kwargs Additional keyword arguments to `labeled_intervals`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes ''' # This will break if a segment label exists in multiple levels if levels is None: levels = list(range(len(intervals_hier))) # Get the axes handle ax, _ = __get_axes(ax=ax) # Count the pre-existing patches n_patches = len(ax.patches) for ints, labs, key in zip(intervals_hier[::-1], labels_hier[::-1], levels[::-1]): labeled_intervals(ints, labs, label=key, ax=ax, **kwargs) # Reverse the patch ordering for anything we've added. # This way, intervals are listed in the legend from top to bottom ax.patches[n_patches:] = ax.patches[n_patches:][::-1] return ax
python
def hierarchy(intervals_hier, labels_hier, levels=None, ax=None, **kwargs): '''Plot a hierarchical segmentation Parameters ---------- intervals_hier : list of np.ndarray A list of segmentation intervals. Each element should be an n-by-2 array of segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. Segmentations should be ordered by increasing specificity. labels_hier : list of list-like A list of segmentation labels. Each element should be a list of labels for the corresponding element in `intervals_hier`. levels : list of string Each element ``levels[i]`` is a label for the ```i`` th segmentation. This is used in the legend to denote the levels in a segment hierarchy. kwargs Additional keyword arguments to `labeled_intervals`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes ''' # This will break if a segment label exists in multiple levels if levels is None: levels = list(range(len(intervals_hier))) # Get the axes handle ax, _ = __get_axes(ax=ax) # Count the pre-existing patches n_patches = len(ax.patches) for ints, labs, key in zip(intervals_hier[::-1], labels_hier[::-1], levels[::-1]): labeled_intervals(ints, labs, label=key, ax=ax, **kwargs) # Reverse the patch ordering for anything we've added. # This way, intervals are listed in the legend from top to bottom ax.patches[n_patches:] = ax.patches[n_patches:][::-1] return ax
[ "def", "hierarchy", "(", "intervals_hier", ",", "labels_hier", ",", "levels", "=", "None", ",", "ax", "=", "None", ",", "*", "*", "kwargs", ")", ":", "# This will break if a segment label exists in multiple levels", "if", "levels", "is", "None", ":", "levels", "=", "list", "(", "range", "(", "len", "(", "intervals_hier", ")", ")", ")", "# Get the axes handle", "ax", ",", "_", "=", "__get_axes", "(", "ax", "=", "ax", ")", "# Count the pre-existing patches", "n_patches", "=", "len", "(", "ax", ".", "patches", ")", "for", "ints", ",", "labs", ",", "key", "in", "zip", "(", "intervals_hier", "[", ":", ":", "-", "1", "]", ",", "labels_hier", "[", ":", ":", "-", "1", "]", ",", "levels", "[", ":", ":", "-", "1", "]", ")", ":", "labeled_intervals", "(", "ints", ",", "labs", ",", "label", "=", "key", ",", "ax", "=", "ax", ",", "*", "*", "kwargs", ")", "# Reverse the patch ordering for anything we've added.", "# This way, intervals are listed in the legend from top to bottom", "ax", ".", "patches", "[", "n_patches", ":", "]", "=", "ax", ".", "patches", "[", "n_patches", ":", "]", "[", ":", ":", "-", "1", "]", "return", "ax" ]
Plot a hierarchical segmentation Parameters ---------- intervals_hier : list of np.ndarray A list of segmentation intervals. Each element should be an n-by-2 array of segment intervals, in the format returned by :func:`mir_eval.io.load_intervals` or :func:`mir_eval.io.load_labeled_intervals`. Segmentations should be ordered by increasing specificity. labels_hier : list of list-like A list of segmentation labels. Each element should be a list of labels for the corresponding element in `intervals_hier`. levels : list of string Each element ``levels[i]`` is a label for the ```i`` th segmentation. This is used in the legend to denote the levels in a segment hierarchy. kwargs Additional keyword arguments to `labeled_intervals`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes
[ "Plot", "a", "hierarchical", "segmentation" ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/display.py#L343-L391
train
craffel/mir_eval
mir_eval/display.py
events
def events(times, labels=None, base=None, height=None, ax=None, text_kw=None, **kwargs): '''Plot event times as a set of vertical lines Parameters ---------- times : np.ndarray, shape=(n,) event times, in the format returned by :func:`mir_eval.io.load_events` or :func:`mir_eval.io.load_labeled_events`. labels : list, shape=(n,), optional event labels, in the format returned by :func:`mir_eval.io.load_labeled_events`. base : number The vertical position of the base of the line. By default, this will be the bottom of the plot. height : number The height of the lines. By default, this will be the top of the plot (minus `base`). ax : matplotlib.pyplot.axes An axis handle on which to draw the segmentation. If none is provided, a new set of axes is created. text_kw : dict If `labels` is provided, the properties of the text objects can be specified here. See `matplotlib.pyplot.Text` for valid parameters kwargs Additional keyword arguments to pass to `matplotlib.pyplot.vlines`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes ''' if text_kw is None: text_kw = dict() text_kw.setdefault('va', 'top') text_kw.setdefault('clip_on', True) text_kw.setdefault('bbox', dict(boxstyle='round', facecolor='white')) # make sure we have an array for times times = np.asarray(times) # Get the axes handle ax, new_axes = __get_axes(ax=ax) # If we have fresh axes, set the limits if new_axes: # Infer base and height if base is None: base = 0 if height is None: height = 1 ax.set_ylim([base, height]) else: if base is None: base = ax.get_ylim()[0] if height is None: height = ax.get_ylim()[1] cycler = ax._get_patches_for_fill.prop_cycler style = next(cycler).copy() style.update(kwargs) # If the user provided 'colors', don't override it with 'color' if 'colors' in style: style.pop('color', None) lines = ax.vlines(times, base, base + height, **style) if labels: for path, lab in zip(lines.get_paths(), labels): ax.annotate(lab, xy=(path.vertices[0][0], height), xycoords='data', xytext=(8, -10), textcoords='offset points', **text_kw) if new_axes: ax.set_yticks([]) __expand_limits(ax, [base, base + height], which='y') if times.size: __expand_limits(ax, [times.min(), times.max()], which='x') return ax
python
def events(times, labels=None, base=None, height=None, ax=None, text_kw=None, **kwargs): '''Plot event times as a set of vertical lines Parameters ---------- times : np.ndarray, shape=(n,) event times, in the format returned by :func:`mir_eval.io.load_events` or :func:`mir_eval.io.load_labeled_events`. labels : list, shape=(n,), optional event labels, in the format returned by :func:`mir_eval.io.load_labeled_events`. base : number The vertical position of the base of the line. By default, this will be the bottom of the plot. height : number The height of the lines. By default, this will be the top of the plot (minus `base`). ax : matplotlib.pyplot.axes An axis handle on which to draw the segmentation. If none is provided, a new set of axes is created. text_kw : dict If `labels` is provided, the properties of the text objects can be specified here. See `matplotlib.pyplot.Text` for valid parameters kwargs Additional keyword arguments to pass to `matplotlib.pyplot.vlines`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes ''' if text_kw is None: text_kw = dict() text_kw.setdefault('va', 'top') text_kw.setdefault('clip_on', True) text_kw.setdefault('bbox', dict(boxstyle='round', facecolor='white')) # make sure we have an array for times times = np.asarray(times) # Get the axes handle ax, new_axes = __get_axes(ax=ax) # If we have fresh axes, set the limits if new_axes: # Infer base and height if base is None: base = 0 if height is None: height = 1 ax.set_ylim([base, height]) else: if base is None: base = ax.get_ylim()[0] if height is None: height = ax.get_ylim()[1] cycler = ax._get_patches_for_fill.prop_cycler style = next(cycler).copy() style.update(kwargs) # If the user provided 'colors', don't override it with 'color' if 'colors' in style: style.pop('color', None) lines = ax.vlines(times, base, base + height, **style) if labels: for path, lab in zip(lines.get_paths(), labels): ax.annotate(lab, xy=(path.vertices[0][0], height), xycoords='data', xytext=(8, -10), textcoords='offset points', **text_kw) if new_axes: ax.set_yticks([]) __expand_limits(ax, [base, base + height], which='y') if times.size: __expand_limits(ax, [times.min(), times.max()], which='x') return ax
[ "def", "events", "(", "times", ",", "labels", "=", "None", ",", "base", "=", "None", ",", "height", "=", "None", ",", "ax", "=", "None", ",", "text_kw", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "text_kw", "is", "None", ":", "text_kw", "=", "dict", "(", ")", "text_kw", ".", "setdefault", "(", "'va'", ",", "'top'", ")", "text_kw", ".", "setdefault", "(", "'clip_on'", ",", "True", ")", "text_kw", ".", "setdefault", "(", "'bbox'", ",", "dict", "(", "boxstyle", "=", "'round'", ",", "facecolor", "=", "'white'", ")", ")", "# make sure we have an array for times", "times", "=", "np", ".", "asarray", "(", "times", ")", "# Get the axes handle", "ax", ",", "new_axes", "=", "__get_axes", "(", "ax", "=", "ax", ")", "# If we have fresh axes, set the limits", "if", "new_axes", ":", "# Infer base and height", "if", "base", "is", "None", ":", "base", "=", "0", "if", "height", "is", "None", ":", "height", "=", "1", "ax", ".", "set_ylim", "(", "[", "base", ",", "height", "]", ")", "else", ":", "if", "base", "is", "None", ":", "base", "=", "ax", ".", "get_ylim", "(", ")", "[", "0", "]", "if", "height", "is", "None", ":", "height", "=", "ax", ".", "get_ylim", "(", ")", "[", "1", "]", "cycler", "=", "ax", ".", "_get_patches_for_fill", ".", "prop_cycler", "style", "=", "next", "(", "cycler", ")", ".", "copy", "(", ")", "style", ".", "update", "(", "kwargs", ")", "# If the user provided 'colors', don't override it with 'color'", "if", "'colors'", "in", "style", ":", "style", ".", "pop", "(", "'color'", ",", "None", ")", "lines", "=", "ax", ".", "vlines", "(", "times", ",", "base", ",", "base", "+", "height", ",", "*", "*", "style", ")", "if", "labels", ":", "for", "path", ",", "lab", "in", "zip", "(", "lines", ".", "get_paths", "(", ")", ",", "labels", ")", ":", "ax", ".", "annotate", "(", "lab", ",", "xy", "=", "(", "path", ".", "vertices", "[", "0", "]", "[", "0", "]", ",", "height", ")", ",", "xycoords", "=", "'data'", ",", "xytext", "=", "(", "8", ",", "-", "10", ")", ",", "textcoords", "=", "'offset points'", ",", "*", "*", "text_kw", ")", "if", "new_axes", ":", "ax", ".", "set_yticks", "(", "[", "]", ")", "__expand_limits", "(", "ax", ",", "[", "base", ",", "base", "+", "height", "]", ",", "which", "=", "'y'", ")", "if", "times", ".", "size", ":", "__expand_limits", "(", "ax", ",", "[", "times", ".", "min", "(", ")", ",", "times", ".", "max", "(", ")", "]", ",", "which", "=", "'x'", ")", "return", "ax" ]
Plot event times as a set of vertical lines Parameters ---------- times : np.ndarray, shape=(n,) event times, in the format returned by :func:`mir_eval.io.load_events` or :func:`mir_eval.io.load_labeled_events`. labels : list, shape=(n,), optional event labels, in the format returned by :func:`mir_eval.io.load_labeled_events`. base : number The vertical position of the base of the line. By default, this will be the bottom of the plot. height : number The height of the lines. By default, this will be the top of the plot (minus `base`). ax : matplotlib.pyplot.axes An axis handle on which to draw the segmentation. If none is provided, a new set of axes is created. text_kw : dict If `labels` is provided, the properties of the text objects can be specified here. See `matplotlib.pyplot.Text` for valid parameters kwargs Additional keyword arguments to pass to `matplotlib.pyplot.vlines`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes
[ "Plot", "event", "times", "as", "a", "set", "of", "vertical", "lines" ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/display.py#L394-L490
train
craffel/mir_eval
mir_eval/display.py
pitch
def pitch(times, frequencies, midi=False, unvoiced=False, ax=None, **kwargs): '''Visualize pitch contours Parameters ---------- times : np.ndarray, shape=(n,) Sample times of frequencies frequencies : np.ndarray, shape=(n,) frequencies (in Hz) of the pitch contours. Voicing is indicated by sign (positive for voiced, non-positive for non-voiced). midi : bool If `True`, plot on a MIDI-numbered vertical axis. Otherwise, plot on a linear frequency axis. unvoiced : bool If `True`, unvoiced pitch contours are plotted and indicated by transparency. Otherwise, unvoiced pitch contours are omitted from the display. ax : matplotlib.pyplot.axes An axis handle on which to draw the pitch contours. If none is provided, a new set of axes is created. kwargs Additional keyword arguments to `matplotlib.pyplot.plot`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes ''' ax, _ = __get_axes(ax=ax) times = np.asarray(times) # First, segment into contiguously voiced contours frequencies, voicings = freq_to_voicing(np.asarray(frequencies, dtype=np.float)) # Here are all the change-points v_changes = 1 + np.flatnonzero(voicings[1:] != voicings[:-1]) v_changes = np.unique(np.concatenate([[0], v_changes, [len(voicings)]])) # Set up arrays of slices for voiced and unvoiced regions v_slices, u_slices = [], [] for start, end in zip(v_changes, v_changes[1:]): idx = slice(start, end) # A region is voiced if its starting sample is voiced # It's unvoiced if none of the samples in the region are voiced. if voicings[start]: v_slices.append(idx) elif frequencies[idx].all(): u_slices.append(idx) # Now we just need to plot the contour style = dict() style.update(next(ax._get_lines.prop_cycler)) style.update(kwargs) if midi: idx = frequencies > 0 frequencies[idx] = hz_to_midi(frequencies[idx]) # Tick at integer midi notes ax.yaxis.set_minor_locator(MultipleLocator(1)) for idx in v_slices: ax.plot(times[idx], frequencies[idx], **style) style.pop('label', None) # Plot the unvoiced portions if unvoiced: style['alpha'] = style.get('alpha', 1.0) * 0.5 for idx in u_slices: ax.plot(times[idx], frequencies[idx], **style) return ax
python
def pitch(times, frequencies, midi=False, unvoiced=False, ax=None, **kwargs): '''Visualize pitch contours Parameters ---------- times : np.ndarray, shape=(n,) Sample times of frequencies frequencies : np.ndarray, shape=(n,) frequencies (in Hz) of the pitch contours. Voicing is indicated by sign (positive for voiced, non-positive for non-voiced). midi : bool If `True`, plot on a MIDI-numbered vertical axis. Otherwise, plot on a linear frequency axis. unvoiced : bool If `True`, unvoiced pitch contours are plotted and indicated by transparency. Otherwise, unvoiced pitch contours are omitted from the display. ax : matplotlib.pyplot.axes An axis handle on which to draw the pitch contours. If none is provided, a new set of axes is created. kwargs Additional keyword arguments to `matplotlib.pyplot.plot`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes ''' ax, _ = __get_axes(ax=ax) times = np.asarray(times) # First, segment into contiguously voiced contours frequencies, voicings = freq_to_voicing(np.asarray(frequencies, dtype=np.float)) # Here are all the change-points v_changes = 1 + np.flatnonzero(voicings[1:] != voicings[:-1]) v_changes = np.unique(np.concatenate([[0], v_changes, [len(voicings)]])) # Set up arrays of slices for voiced and unvoiced regions v_slices, u_slices = [], [] for start, end in zip(v_changes, v_changes[1:]): idx = slice(start, end) # A region is voiced if its starting sample is voiced # It's unvoiced if none of the samples in the region are voiced. if voicings[start]: v_slices.append(idx) elif frequencies[idx].all(): u_slices.append(idx) # Now we just need to plot the contour style = dict() style.update(next(ax._get_lines.prop_cycler)) style.update(kwargs) if midi: idx = frequencies > 0 frequencies[idx] = hz_to_midi(frequencies[idx]) # Tick at integer midi notes ax.yaxis.set_minor_locator(MultipleLocator(1)) for idx in v_slices: ax.plot(times[idx], frequencies[idx], **style) style.pop('label', None) # Plot the unvoiced portions if unvoiced: style['alpha'] = style.get('alpha', 1.0) * 0.5 for idx in u_slices: ax.plot(times[idx], frequencies[idx], **style) return ax
[ "def", "pitch", "(", "times", ",", "frequencies", ",", "midi", "=", "False", ",", "unvoiced", "=", "False", ",", "ax", "=", "None", ",", "*", "*", "kwargs", ")", ":", "ax", ",", "_", "=", "__get_axes", "(", "ax", "=", "ax", ")", "times", "=", "np", ".", "asarray", "(", "times", ")", "# First, segment into contiguously voiced contours", "frequencies", ",", "voicings", "=", "freq_to_voicing", "(", "np", ".", "asarray", "(", "frequencies", ",", "dtype", "=", "np", ".", "float", ")", ")", "# Here are all the change-points", "v_changes", "=", "1", "+", "np", ".", "flatnonzero", "(", "voicings", "[", "1", ":", "]", "!=", "voicings", "[", ":", "-", "1", "]", ")", "v_changes", "=", "np", ".", "unique", "(", "np", ".", "concatenate", "(", "[", "[", "0", "]", ",", "v_changes", ",", "[", "len", "(", "voicings", ")", "]", "]", ")", ")", "# Set up arrays of slices for voiced and unvoiced regions", "v_slices", ",", "u_slices", "=", "[", "]", ",", "[", "]", "for", "start", ",", "end", "in", "zip", "(", "v_changes", ",", "v_changes", "[", "1", ":", "]", ")", ":", "idx", "=", "slice", "(", "start", ",", "end", ")", "# A region is voiced if its starting sample is voiced", "# It's unvoiced if none of the samples in the region are voiced.", "if", "voicings", "[", "start", "]", ":", "v_slices", ".", "append", "(", "idx", ")", "elif", "frequencies", "[", "idx", "]", ".", "all", "(", ")", ":", "u_slices", ".", "append", "(", "idx", ")", "# Now we just need to plot the contour", "style", "=", "dict", "(", ")", "style", ".", "update", "(", "next", "(", "ax", ".", "_get_lines", ".", "prop_cycler", ")", ")", "style", ".", "update", "(", "kwargs", ")", "if", "midi", ":", "idx", "=", "frequencies", ">", "0", "frequencies", "[", "idx", "]", "=", "hz_to_midi", "(", "frequencies", "[", "idx", "]", ")", "# Tick at integer midi notes", "ax", ".", "yaxis", ".", "set_minor_locator", "(", "MultipleLocator", "(", "1", ")", ")", "for", "idx", "in", "v_slices", ":", "ax", ".", "plot", "(", "times", "[", "idx", "]", ",", "frequencies", "[", "idx", "]", ",", "*", "*", "style", ")", "style", ".", "pop", "(", "'label'", ",", "None", ")", "# Plot the unvoiced portions", "if", "unvoiced", ":", "style", "[", "'alpha'", "]", "=", "style", ".", "get", "(", "'alpha'", ",", "1.0", ")", "*", "0.5", "for", "idx", "in", "u_slices", ":", "ax", ".", "plot", "(", "times", "[", "idx", "]", ",", "frequencies", "[", "idx", "]", ",", "*", "*", "style", ")", "return", "ax" ]
Visualize pitch contours Parameters ---------- times : np.ndarray, shape=(n,) Sample times of frequencies frequencies : np.ndarray, shape=(n,) frequencies (in Hz) of the pitch contours. Voicing is indicated by sign (positive for voiced, non-positive for non-voiced). midi : bool If `True`, plot on a MIDI-numbered vertical axis. Otherwise, plot on a linear frequency axis. unvoiced : bool If `True`, unvoiced pitch contours are plotted and indicated by transparency. Otherwise, unvoiced pitch contours are omitted from the display. ax : matplotlib.pyplot.axes An axis handle on which to draw the pitch contours. If none is provided, a new set of axes is created. kwargs Additional keyword arguments to `matplotlib.pyplot.plot`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes
[ "Visualize", "pitch", "contours" ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/display.py#L493-L574
train
craffel/mir_eval
mir_eval/display.py
multipitch
def multipitch(times, frequencies, midi=False, unvoiced=False, ax=None, **kwargs): '''Visualize multiple f0 measurements Parameters ---------- times : np.ndarray, shape=(n,) Sample times of frequencies frequencies : list of np.ndarray frequencies (in Hz) of the pitch measurements. Voicing is indicated by sign (positive for voiced, non-positive for non-voiced). `times` and `frequencies` should be in the format produced by :func:`mir_eval.io.load_ragged_time_series` midi : bool If `True`, plot on a MIDI-numbered vertical axis. Otherwise, plot on a linear frequency axis. unvoiced : bool If `True`, unvoiced pitches are plotted and indicated by transparency. Otherwise, unvoiced pitches are omitted from the display. ax : matplotlib.pyplot.axes An axis handle on which to draw the pitch contours. If none is provided, a new set of axes is created. kwargs Additional keyword arguments to `plt.scatter`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes ''' # Get the axes handle ax, _ = __get_axes(ax=ax) # Set up a style for the plot style_voiced = dict() style_voiced.update(next(ax._get_lines.prop_cycler)) style_voiced.update(kwargs) style_unvoiced = style_voiced.copy() style_unvoiced.pop('label', None) style_unvoiced['alpha'] = style_unvoiced.get('alpha', 1.0) * 0.5 # We'll collect all times and frequencies first, then plot them voiced_times = [] voiced_freqs = [] unvoiced_times = [] unvoiced_freqs = [] for t, freqs in zip(times, frequencies): if not len(freqs): continue freqs, voicings = freq_to_voicing(np.asarray(freqs, dtype=np.float)) # Discard all 0-frequency measurements idx = freqs > 0 freqs = freqs[idx] voicings = voicings[idx] if midi: freqs = hz_to_midi(freqs) n_voiced = sum(voicings) voiced_times.extend([t] * n_voiced) voiced_freqs.extend(freqs[voicings]) unvoiced_times.extend([t] * (len(freqs) - n_voiced)) unvoiced_freqs.extend(freqs[~voicings]) # Plot the voiced frequencies ax.scatter(voiced_times, voiced_freqs, **style_voiced) # Plot the unvoiced frequencies if unvoiced: ax.scatter(unvoiced_times, unvoiced_freqs, **style_unvoiced) # Tick at integer midi notes if midi: ax.yaxis.set_minor_locator(MultipleLocator(1)) return ax
python
def multipitch(times, frequencies, midi=False, unvoiced=False, ax=None, **kwargs): '''Visualize multiple f0 measurements Parameters ---------- times : np.ndarray, shape=(n,) Sample times of frequencies frequencies : list of np.ndarray frequencies (in Hz) of the pitch measurements. Voicing is indicated by sign (positive for voiced, non-positive for non-voiced). `times` and `frequencies` should be in the format produced by :func:`mir_eval.io.load_ragged_time_series` midi : bool If `True`, plot on a MIDI-numbered vertical axis. Otherwise, plot on a linear frequency axis. unvoiced : bool If `True`, unvoiced pitches are plotted and indicated by transparency. Otherwise, unvoiced pitches are omitted from the display. ax : matplotlib.pyplot.axes An axis handle on which to draw the pitch contours. If none is provided, a new set of axes is created. kwargs Additional keyword arguments to `plt.scatter`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes ''' # Get the axes handle ax, _ = __get_axes(ax=ax) # Set up a style for the plot style_voiced = dict() style_voiced.update(next(ax._get_lines.prop_cycler)) style_voiced.update(kwargs) style_unvoiced = style_voiced.copy() style_unvoiced.pop('label', None) style_unvoiced['alpha'] = style_unvoiced.get('alpha', 1.0) * 0.5 # We'll collect all times and frequencies first, then plot them voiced_times = [] voiced_freqs = [] unvoiced_times = [] unvoiced_freqs = [] for t, freqs in zip(times, frequencies): if not len(freqs): continue freqs, voicings = freq_to_voicing(np.asarray(freqs, dtype=np.float)) # Discard all 0-frequency measurements idx = freqs > 0 freqs = freqs[idx] voicings = voicings[idx] if midi: freqs = hz_to_midi(freqs) n_voiced = sum(voicings) voiced_times.extend([t] * n_voiced) voiced_freqs.extend(freqs[voicings]) unvoiced_times.extend([t] * (len(freqs) - n_voiced)) unvoiced_freqs.extend(freqs[~voicings]) # Plot the voiced frequencies ax.scatter(voiced_times, voiced_freqs, **style_voiced) # Plot the unvoiced frequencies if unvoiced: ax.scatter(unvoiced_times, unvoiced_freqs, **style_unvoiced) # Tick at integer midi notes if midi: ax.yaxis.set_minor_locator(MultipleLocator(1)) return ax
[ "def", "multipitch", "(", "times", ",", "frequencies", ",", "midi", "=", "False", ",", "unvoiced", "=", "False", ",", "ax", "=", "None", ",", "*", "*", "kwargs", ")", ":", "# Get the axes handle", "ax", ",", "_", "=", "__get_axes", "(", "ax", "=", "ax", ")", "# Set up a style for the plot", "style_voiced", "=", "dict", "(", ")", "style_voiced", ".", "update", "(", "next", "(", "ax", ".", "_get_lines", ".", "prop_cycler", ")", ")", "style_voiced", ".", "update", "(", "kwargs", ")", "style_unvoiced", "=", "style_voiced", ".", "copy", "(", ")", "style_unvoiced", ".", "pop", "(", "'label'", ",", "None", ")", "style_unvoiced", "[", "'alpha'", "]", "=", "style_unvoiced", ".", "get", "(", "'alpha'", ",", "1.0", ")", "*", "0.5", "# We'll collect all times and frequencies first, then plot them", "voiced_times", "=", "[", "]", "voiced_freqs", "=", "[", "]", "unvoiced_times", "=", "[", "]", "unvoiced_freqs", "=", "[", "]", "for", "t", ",", "freqs", "in", "zip", "(", "times", ",", "frequencies", ")", ":", "if", "not", "len", "(", "freqs", ")", ":", "continue", "freqs", ",", "voicings", "=", "freq_to_voicing", "(", "np", ".", "asarray", "(", "freqs", ",", "dtype", "=", "np", ".", "float", ")", ")", "# Discard all 0-frequency measurements", "idx", "=", "freqs", ">", "0", "freqs", "=", "freqs", "[", "idx", "]", "voicings", "=", "voicings", "[", "idx", "]", "if", "midi", ":", "freqs", "=", "hz_to_midi", "(", "freqs", ")", "n_voiced", "=", "sum", "(", "voicings", ")", "voiced_times", ".", "extend", "(", "[", "t", "]", "*", "n_voiced", ")", "voiced_freqs", ".", "extend", "(", "freqs", "[", "voicings", "]", ")", "unvoiced_times", ".", "extend", "(", "[", "t", "]", "*", "(", "len", "(", "freqs", ")", "-", "n_voiced", ")", ")", "unvoiced_freqs", ".", "extend", "(", "freqs", "[", "~", "voicings", "]", ")", "# Plot the voiced frequencies", "ax", ".", "scatter", "(", "voiced_times", ",", "voiced_freqs", ",", "*", "*", "style_voiced", ")", "# Plot the unvoiced frequencies", "if", "unvoiced", ":", "ax", ".", "scatter", "(", "unvoiced_times", ",", "unvoiced_freqs", ",", "*", "*", "style_unvoiced", ")", "# Tick at integer midi notes", "if", "midi", ":", "ax", ".", "yaxis", ".", "set_minor_locator", "(", "MultipleLocator", "(", "1", ")", ")", "return", "ax" ]
Visualize multiple f0 measurements Parameters ---------- times : np.ndarray, shape=(n,) Sample times of frequencies frequencies : list of np.ndarray frequencies (in Hz) of the pitch measurements. Voicing is indicated by sign (positive for voiced, non-positive for non-voiced). `times` and `frequencies` should be in the format produced by :func:`mir_eval.io.load_ragged_time_series` midi : bool If `True`, plot on a MIDI-numbered vertical axis. Otherwise, plot on a linear frequency axis. unvoiced : bool If `True`, unvoiced pitches are plotted and indicated by transparency. Otherwise, unvoiced pitches are omitted from the display. ax : matplotlib.pyplot.axes An axis handle on which to draw the pitch contours. If none is provided, a new set of axes is created. kwargs Additional keyword arguments to `plt.scatter`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes
[ "Visualize", "multiple", "f0", "measurements" ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/display.py#L577-L666
train
craffel/mir_eval
mir_eval/display.py
piano_roll
def piano_roll(intervals, pitches=None, midi=None, ax=None, **kwargs): '''Plot a quantized piano roll as intervals Parameters ---------- intervals : np.ndarray, shape=(n, 2) timing intervals for notes pitches : np.ndarray, shape=(n,), optional pitches of notes (in Hz). midi : np.ndarray, shape=(n,), optional pitches of notes (in MIDI numbers). At least one of ``pitches`` or ``midi`` must be provided. ax : matplotlib.pyplot.axes An axis handle on which to draw the intervals. If none is provided, a new set of axes is created. kwargs Additional keyword arguments to :func:`labeled_intervals`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes ''' if midi is None: if pitches is None: raise ValueError('At least one of `midi` or `pitches` ' 'must be provided.') midi = hz_to_midi(pitches) scale = np.arange(128) ax = labeled_intervals(intervals, np.round(midi).astype(int), label_set=scale, tick=False, ax=ax, **kwargs) # Minor tick at each semitone ax.yaxis.set_minor_locator(MultipleLocator(1)) ax.axis('auto') return ax
python
def piano_roll(intervals, pitches=None, midi=None, ax=None, **kwargs): '''Plot a quantized piano roll as intervals Parameters ---------- intervals : np.ndarray, shape=(n, 2) timing intervals for notes pitches : np.ndarray, shape=(n,), optional pitches of notes (in Hz). midi : np.ndarray, shape=(n,), optional pitches of notes (in MIDI numbers). At least one of ``pitches`` or ``midi`` must be provided. ax : matplotlib.pyplot.axes An axis handle on which to draw the intervals. If none is provided, a new set of axes is created. kwargs Additional keyword arguments to :func:`labeled_intervals`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes ''' if midi is None: if pitches is None: raise ValueError('At least one of `midi` or `pitches` ' 'must be provided.') midi = hz_to_midi(pitches) scale = np.arange(128) ax = labeled_intervals(intervals, np.round(midi).astype(int), label_set=scale, tick=False, ax=ax, **kwargs) # Minor tick at each semitone ax.yaxis.set_minor_locator(MultipleLocator(1)) ax.axis('auto') return ax
[ "def", "piano_roll", "(", "intervals", ",", "pitches", "=", "None", ",", "midi", "=", "None", ",", "ax", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "midi", "is", "None", ":", "if", "pitches", "is", "None", ":", "raise", "ValueError", "(", "'At least one of `midi` or `pitches` '", "'must be provided.'", ")", "midi", "=", "hz_to_midi", "(", "pitches", ")", "scale", "=", "np", ".", "arange", "(", "128", ")", "ax", "=", "labeled_intervals", "(", "intervals", ",", "np", ".", "round", "(", "midi", ")", ".", "astype", "(", "int", ")", ",", "label_set", "=", "scale", ",", "tick", "=", "False", ",", "ax", "=", "ax", ",", "*", "*", "kwargs", ")", "# Minor tick at each semitone", "ax", ".", "yaxis", ".", "set_minor_locator", "(", "MultipleLocator", "(", "1", ")", ")", "ax", ".", "axis", "(", "'auto'", ")", "return", "ax" ]
Plot a quantized piano roll as intervals Parameters ---------- intervals : np.ndarray, shape=(n, 2) timing intervals for notes pitches : np.ndarray, shape=(n,), optional pitches of notes (in Hz). midi : np.ndarray, shape=(n,), optional pitches of notes (in MIDI numbers). At least one of ``pitches`` or ``midi`` must be provided. ax : matplotlib.pyplot.axes An axis handle on which to draw the intervals. If none is provided, a new set of axes is created. kwargs Additional keyword arguments to :func:`labeled_intervals`. Returns ------- ax : matplotlib.pyplot.axes._subplots.AxesSubplot A handle to the (possibly constructed) plot axes
[ "Plot", "a", "quantized", "piano", "roll", "as", "intervals" ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/display.py#L669-L716
train
craffel/mir_eval
mir_eval/display.py
separation
def separation(sources, fs=22050, labels=None, alpha=0.75, ax=None, **kwargs): '''Source-separation visualization Parameters ---------- sources : np.ndarray, shape=(nsrc, nsampl) A list of waveform buffers corresponding to each source fs : number > 0 The sampling rate labels : list of strings An optional list of descriptors corresponding to each source alpha : float in [0, 1] Maximum alpha (opacity) of spectrogram values. ax : matplotlib.pyplot.axes An axis handle on which to draw the spectrograms. If none is provided, a new set of axes is created. kwargs Additional keyword arguments to ``scipy.signal.spectrogram`` Returns ------- ax The axis handle for this plot ''' # Get the axes handle ax, new_axes = __get_axes(ax=ax) # Make sure we have at least two dimensions sources = np.atleast_2d(sources) if labels is None: labels = ['Source {:d}'.format(_) for _ in range(len(sources))] kwargs.setdefault('scaling', 'spectrum') # The cumulative spectrogram across sources # is used to establish the reference power # for each individual source cumspec = None specs = [] for i, src in enumerate(sources): freqs, times, spec = spectrogram(src, fs=fs, **kwargs) specs.append(spec) if cumspec is None: cumspec = spec.copy() else: cumspec += spec ref_max = cumspec.max() ref_min = ref_max * 1e-6 color_conv = ColorConverter() for i, spec in enumerate(specs): # For each source, grab a new color from the cycler # Then construct a colormap that interpolates from # [transparent white -> new color] color = next(ax._get_lines.prop_cycler)['color'] color = color_conv.to_rgba(color, alpha=alpha) cmap = LinearSegmentedColormap.from_list(labels[i], [(1.0, 1.0, 1.0, 0.0), color]) ax.pcolormesh(times, freqs, spec, cmap=cmap, norm=LogNorm(vmin=ref_min, vmax=ref_max), shading='gouraud', label=labels[i]) # Attach a 0x0 rect to the axis with the corresponding label # This way, it will show up in the legend ax.add_patch(Rectangle((0, 0), 0, 0, color=color, label=labels[i])) if new_axes: ax.axis('tight') return ax
python
def separation(sources, fs=22050, labels=None, alpha=0.75, ax=None, **kwargs): '''Source-separation visualization Parameters ---------- sources : np.ndarray, shape=(nsrc, nsampl) A list of waveform buffers corresponding to each source fs : number > 0 The sampling rate labels : list of strings An optional list of descriptors corresponding to each source alpha : float in [0, 1] Maximum alpha (opacity) of spectrogram values. ax : matplotlib.pyplot.axes An axis handle on which to draw the spectrograms. If none is provided, a new set of axes is created. kwargs Additional keyword arguments to ``scipy.signal.spectrogram`` Returns ------- ax The axis handle for this plot ''' # Get the axes handle ax, new_axes = __get_axes(ax=ax) # Make sure we have at least two dimensions sources = np.atleast_2d(sources) if labels is None: labels = ['Source {:d}'.format(_) for _ in range(len(sources))] kwargs.setdefault('scaling', 'spectrum') # The cumulative spectrogram across sources # is used to establish the reference power # for each individual source cumspec = None specs = [] for i, src in enumerate(sources): freqs, times, spec = spectrogram(src, fs=fs, **kwargs) specs.append(spec) if cumspec is None: cumspec = spec.copy() else: cumspec += spec ref_max = cumspec.max() ref_min = ref_max * 1e-6 color_conv = ColorConverter() for i, spec in enumerate(specs): # For each source, grab a new color from the cycler # Then construct a colormap that interpolates from # [transparent white -> new color] color = next(ax._get_lines.prop_cycler)['color'] color = color_conv.to_rgba(color, alpha=alpha) cmap = LinearSegmentedColormap.from_list(labels[i], [(1.0, 1.0, 1.0, 0.0), color]) ax.pcolormesh(times, freqs, spec, cmap=cmap, norm=LogNorm(vmin=ref_min, vmax=ref_max), shading='gouraud', label=labels[i]) # Attach a 0x0 rect to the axis with the corresponding label # This way, it will show up in the legend ax.add_patch(Rectangle((0, 0), 0, 0, color=color, label=labels[i])) if new_axes: ax.axis('tight') return ax
[ "def", "separation", "(", "sources", ",", "fs", "=", "22050", ",", "labels", "=", "None", ",", "alpha", "=", "0.75", ",", "ax", "=", "None", ",", "*", "*", "kwargs", ")", ":", "# Get the axes handle", "ax", ",", "new_axes", "=", "__get_axes", "(", "ax", "=", "ax", ")", "# Make sure we have at least two dimensions", "sources", "=", "np", ".", "atleast_2d", "(", "sources", ")", "if", "labels", "is", "None", ":", "labels", "=", "[", "'Source {:d}'", ".", "format", "(", "_", ")", "for", "_", "in", "range", "(", "len", "(", "sources", ")", ")", "]", "kwargs", ".", "setdefault", "(", "'scaling'", ",", "'spectrum'", ")", "# The cumulative spectrogram across sources", "# is used to establish the reference power", "# for each individual source", "cumspec", "=", "None", "specs", "=", "[", "]", "for", "i", ",", "src", "in", "enumerate", "(", "sources", ")", ":", "freqs", ",", "times", ",", "spec", "=", "spectrogram", "(", "src", ",", "fs", "=", "fs", ",", "*", "*", "kwargs", ")", "specs", ".", "append", "(", "spec", ")", "if", "cumspec", "is", "None", ":", "cumspec", "=", "spec", ".", "copy", "(", ")", "else", ":", "cumspec", "+=", "spec", "ref_max", "=", "cumspec", ".", "max", "(", ")", "ref_min", "=", "ref_max", "*", "1e-6", "color_conv", "=", "ColorConverter", "(", ")", "for", "i", ",", "spec", "in", "enumerate", "(", "specs", ")", ":", "# For each source, grab a new color from the cycler", "# Then construct a colormap that interpolates from", "# [transparent white -> new color]", "color", "=", "next", "(", "ax", ".", "_get_lines", ".", "prop_cycler", ")", "[", "'color'", "]", "color", "=", "color_conv", ".", "to_rgba", "(", "color", ",", "alpha", "=", "alpha", ")", "cmap", "=", "LinearSegmentedColormap", ".", "from_list", "(", "labels", "[", "i", "]", ",", "[", "(", "1.0", ",", "1.0", ",", "1.0", ",", "0.0", ")", ",", "color", "]", ")", "ax", ".", "pcolormesh", "(", "times", ",", "freqs", ",", "spec", ",", "cmap", "=", "cmap", ",", "norm", "=", "LogNorm", "(", "vmin", "=", "ref_min", ",", "vmax", "=", "ref_max", ")", ",", "shading", "=", "'gouraud'", ",", "label", "=", "labels", "[", "i", "]", ")", "# Attach a 0x0 rect to the axis with the corresponding label", "# This way, it will show up in the legend", "ax", ".", "add_patch", "(", "Rectangle", "(", "(", "0", ",", "0", ")", ",", "0", ",", "0", ",", "color", "=", "color", ",", "label", "=", "labels", "[", "i", "]", ")", ")", "if", "new_axes", ":", "ax", ".", "axis", "(", "'tight'", ")", "return", "ax" ]
Source-separation visualization Parameters ---------- sources : np.ndarray, shape=(nsrc, nsampl) A list of waveform buffers corresponding to each source fs : number > 0 The sampling rate labels : list of strings An optional list of descriptors corresponding to each source alpha : float in [0, 1] Maximum alpha (opacity) of spectrogram values. ax : matplotlib.pyplot.axes An axis handle on which to draw the spectrograms. If none is provided, a new set of axes is created. kwargs Additional keyword arguments to ``scipy.signal.spectrogram`` Returns ------- ax The axis handle for this plot
[ "Source", "-", "separation", "visualization" ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/display.py#L719-L803
train
craffel/mir_eval
mir_eval/display.py
__ticker_midi_note
def __ticker_midi_note(x, pos): '''A ticker function for midi notes. Inputs x are interpreted as midi numbers, and converted to [NOTE][OCTAVE]+[cents]. ''' NOTES = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'] cents = float(np.mod(x, 1.0)) if cents >= 0.5: cents = cents - 1.0 x = x + 0.5 idx = int(x % 12) octave = int(x / 12) - 1 if cents == 0: return '{:s}{:2d}'.format(NOTES[idx], octave) return '{:s}{:2d}{:+02d}'.format(NOTES[idx], octave, int(cents * 100))
python
def __ticker_midi_note(x, pos): '''A ticker function for midi notes. Inputs x are interpreted as midi numbers, and converted to [NOTE][OCTAVE]+[cents]. ''' NOTES = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'] cents = float(np.mod(x, 1.0)) if cents >= 0.5: cents = cents - 1.0 x = x + 0.5 idx = int(x % 12) octave = int(x / 12) - 1 if cents == 0: return '{:s}{:2d}'.format(NOTES[idx], octave) return '{:s}{:2d}{:+02d}'.format(NOTES[idx], octave, int(cents * 100))
[ "def", "__ticker_midi_note", "(", "x", ",", "pos", ")", ":", "NOTES", "=", "[", "'C'", ",", "'C#'", ",", "'D'", ",", "'D#'", ",", "'E'", ",", "'F'", ",", "'F#'", ",", "'G'", ",", "'G#'", ",", "'A'", ",", "'A#'", ",", "'B'", "]", "cents", "=", "float", "(", "np", ".", "mod", "(", "x", ",", "1.0", ")", ")", "if", "cents", ">=", "0.5", ":", "cents", "=", "cents", "-", "1.0", "x", "=", "x", "+", "0.5", "idx", "=", "int", "(", "x", "%", "12", ")", "octave", "=", "int", "(", "x", "/", "12", ")", "-", "1", "if", "cents", "==", "0", ":", "return", "'{:s}{:2d}'", ".", "format", "(", "NOTES", "[", "idx", "]", ",", "octave", ")", "return", "'{:s}{:2d}{:+02d}'", ".", "format", "(", "NOTES", "[", "idx", "]", ",", "octave", ",", "int", "(", "cents", "*", "100", ")", ")" ]
A ticker function for midi notes. Inputs x are interpreted as midi numbers, and converted to [NOTE][OCTAVE]+[cents].
[ "A", "ticker", "function", "for", "midi", "notes", "." ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/display.py#L806-L826
train
craffel/mir_eval
mir_eval/display.py
ticker_notes
def ticker_notes(ax=None): '''Set the y-axis of the given axes to MIDI notes Parameters ---------- ax : matplotlib.pyplot.axes The axes handle to apply the ticker. By default, uses the current axes handle. ''' ax, _ = __get_axes(ax=ax) ax.yaxis.set_major_formatter(FMT_MIDI_NOTE) # Get the tick labels and reset the vertical alignment for tick in ax.yaxis.get_ticklabels(): tick.set_verticalalignment('baseline')
python
def ticker_notes(ax=None): '''Set the y-axis of the given axes to MIDI notes Parameters ---------- ax : matplotlib.pyplot.axes The axes handle to apply the ticker. By default, uses the current axes handle. ''' ax, _ = __get_axes(ax=ax) ax.yaxis.set_major_formatter(FMT_MIDI_NOTE) # Get the tick labels and reset the vertical alignment for tick in ax.yaxis.get_ticklabels(): tick.set_verticalalignment('baseline')
[ "def", "ticker_notes", "(", "ax", "=", "None", ")", ":", "ax", ",", "_", "=", "__get_axes", "(", "ax", "=", "ax", ")", "ax", ".", "yaxis", ".", "set_major_formatter", "(", "FMT_MIDI_NOTE", ")", "# Get the tick labels and reset the vertical alignment", "for", "tick", "in", "ax", ".", "yaxis", ".", "get_ticklabels", "(", ")", ":", "tick", ".", "set_verticalalignment", "(", "'baseline'", ")" ]
Set the y-axis of the given axes to MIDI notes Parameters ---------- ax : matplotlib.pyplot.axes The axes handle to apply the ticker. By default, uses the current axes handle.
[ "Set", "the", "y", "-", "axis", "of", "the", "given", "axes", "to", "MIDI", "notes" ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/display.py#L839-L854
train
craffel/mir_eval
mir_eval/display.py
ticker_pitch
def ticker_pitch(ax=None): '''Set the y-axis of the given axes to MIDI frequencies Parameters ---------- ax : matplotlib.pyplot.axes The axes handle to apply the ticker. By default, uses the current axes handle. ''' ax, _ = __get_axes(ax=ax) ax.yaxis.set_major_formatter(FMT_MIDI_HZ)
python
def ticker_pitch(ax=None): '''Set the y-axis of the given axes to MIDI frequencies Parameters ---------- ax : matplotlib.pyplot.axes The axes handle to apply the ticker. By default, uses the current axes handle. ''' ax, _ = __get_axes(ax=ax) ax.yaxis.set_major_formatter(FMT_MIDI_HZ)
[ "def", "ticker_pitch", "(", "ax", "=", "None", ")", ":", "ax", ",", "_", "=", "__get_axes", "(", "ax", "=", "ax", ")", "ax", ".", "yaxis", ".", "set_major_formatter", "(", "FMT_MIDI_HZ", ")" ]
Set the y-axis of the given axes to MIDI frequencies Parameters ---------- ax : matplotlib.pyplot.axes The axes handle to apply the ticker. By default, uses the current axes handle.
[ "Set", "the", "y", "-", "axis", "of", "the", "given", "axes", "to", "MIDI", "frequencies" ]
f41c8dafaea04b411252a516d1965af43c7d531b
https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/display.py#L857-L868
train
CartoDB/carto-python
carto/file_import.py
FileImportJob.run
def run(self, **import_params): """ Actually creates the import job on the CARTO server :param import_params: To be send to the Import API, see CARTO's docs on Import API for an updated list of accepted params :type import_params: kwargs :return: .. note:: The import job is asynchronous, so you should take care of the progression, by calling the :func:`carto.resources.AsyncResource.refresh` method and check the import job :py:attr:`~state` attribute. See :func:`carto.datasets.DatasetManager.create` for a unified method to import files into CARTO """ if self.file: import_params["url"] = self.file self.id_field = "id" if "connection" in import_params: self.fields.append("connector") self.update_from_dict(import_params["connection"]) self.save(force_create=True) else: super(FileImportJob, self).run(params=import_params, files=self.files)
python
def run(self, **import_params): """ Actually creates the import job on the CARTO server :param import_params: To be send to the Import API, see CARTO's docs on Import API for an updated list of accepted params :type import_params: kwargs :return: .. note:: The import job is asynchronous, so you should take care of the progression, by calling the :func:`carto.resources.AsyncResource.refresh` method and check the import job :py:attr:`~state` attribute. See :func:`carto.datasets.DatasetManager.create` for a unified method to import files into CARTO """ if self.file: import_params["url"] = self.file self.id_field = "id" if "connection" in import_params: self.fields.append("connector") self.update_from_dict(import_params["connection"]) self.save(force_create=True) else: super(FileImportJob, self).run(params=import_params, files=self.files)
[ "def", "run", "(", "self", ",", "*", "*", "import_params", ")", ":", "if", "self", ".", "file", ":", "import_params", "[", "\"url\"", "]", "=", "self", ".", "file", "self", ".", "id_field", "=", "\"id\"", "if", "\"connection\"", "in", "import_params", ":", "self", ".", "fields", ".", "append", "(", "\"connector\"", ")", "self", ".", "update_from_dict", "(", "import_params", "[", "\"connection\"", "]", ")", "self", ".", "save", "(", "force_create", "=", "True", ")", "else", ":", "super", "(", "FileImportJob", ",", "self", ")", ".", "run", "(", "params", "=", "import_params", ",", "files", "=", "self", ".", "files", ")" ]
Actually creates the import job on the CARTO server :param import_params: To be send to the Import API, see CARTO's docs on Import API for an updated list of accepted params :type import_params: kwargs :return: .. note:: The import job is asynchronous, so you should take care of the progression, by calling the :func:`carto.resources.AsyncResource.refresh` method and check the import job :py:attr:`~state` attribute. See :func:`carto.datasets.DatasetManager.create` for a unified method to import files into CARTO
[ "Actually", "creates", "the", "import", "job", "on", "the", "CARTO", "server" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/file_import.py#L79-L103
train
CartoDB/carto-python
carto/file_import.py
FileImportJobManager.filter
def filter(self): """ Get a filtered list of file imports :return: A list of file imports, with only the id set (you need to refresh them if you want all the attributes to be filled in) :rtype: list of :class:`carto.file_import.FileImportJob` :raise: CartoException """ try: response = self.send(self.get_collection_endpoint(), "get") if self.json_collection_attribute is not None: resource_ids = self.client.get_response_data( response, self.Meta.parse_json)[self.json_collection_attribute] else: resource_ids = self.client.get_response_data( response, self.Meta.parse_json) except Exception as e: raise CartoException(e) resources = [] for resource_id in resource_ids: try: resource = self.resource_class(self.client) except (ValueError, TypeError): continue else: setattr(resource, resource.Meta.id_field, resource_id) resources.append(resource) return resources
python
def filter(self): """ Get a filtered list of file imports :return: A list of file imports, with only the id set (you need to refresh them if you want all the attributes to be filled in) :rtype: list of :class:`carto.file_import.FileImportJob` :raise: CartoException """ try: response = self.send(self.get_collection_endpoint(), "get") if self.json_collection_attribute is not None: resource_ids = self.client.get_response_data( response, self.Meta.parse_json)[self.json_collection_attribute] else: resource_ids = self.client.get_response_data( response, self.Meta.parse_json) except Exception as e: raise CartoException(e) resources = [] for resource_id in resource_ids: try: resource = self.resource_class(self.client) except (ValueError, TypeError): continue else: setattr(resource, resource.Meta.id_field, resource_id) resources.append(resource) return resources
[ "def", "filter", "(", "self", ")", ":", "try", ":", "response", "=", "self", ".", "send", "(", "self", ".", "get_collection_endpoint", "(", ")", ",", "\"get\"", ")", "if", "self", ".", "json_collection_attribute", "is", "not", "None", ":", "resource_ids", "=", "self", ".", "client", ".", "get_response_data", "(", "response", ",", "self", ".", "Meta", ".", "parse_json", ")", "[", "self", ".", "json_collection_attribute", "]", "else", ":", "resource_ids", "=", "self", ".", "client", ".", "get_response_data", "(", "response", ",", "self", ".", "Meta", ".", "parse_json", ")", "except", "Exception", "as", "e", ":", "raise", "CartoException", "(", "e", ")", "resources", "=", "[", "]", "for", "resource_id", "in", "resource_ids", ":", "try", ":", "resource", "=", "self", ".", "resource_class", "(", "self", ".", "client", ")", "except", "(", "ValueError", ",", "TypeError", ")", ":", "continue", "else", ":", "setattr", "(", "resource", ",", "resource", ".", "Meta", ".", "id_field", ",", "resource_id", ")", "resources", ".", "append", "(", "resource", ")", "return", "resources" ]
Get a filtered list of file imports :return: A list of file imports, with only the id set (you need to refresh them if you want all the attributes to be filled in) :rtype: list of :class:`carto.file_import.FileImportJob` :raise: CartoException
[ "Get", "a", "filtered", "list", "of", "file", "imports" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/file_import.py#L117-L150
train
CartoDB/carto-python
carto/auth.py
APIKeyAuthClient.send
def send(self, relative_path, http_method, **requests_args): """ Makes an API-key-authorized request :param relative_path: URL path relative to self.base_url :param http_method: HTTP method :param requests_args: kwargs to be sent to requests :type relative_path: str :type http_method: str :type requests_args: kwargs :return: A request response object :raise: CartoException """ try: http_method, requests_args = self.prepare_send(http_method, **requests_args) response = super(APIKeyAuthClient, self).send(relative_path, http_method, **requests_args) except Exception as e: raise CartoException(e) if CartoRateLimitException.is_rate_limited(response): raise CartoRateLimitException(response) return response
python
def send(self, relative_path, http_method, **requests_args): """ Makes an API-key-authorized request :param relative_path: URL path relative to self.base_url :param http_method: HTTP method :param requests_args: kwargs to be sent to requests :type relative_path: str :type http_method: str :type requests_args: kwargs :return: A request response object :raise: CartoException """ try: http_method, requests_args = self.prepare_send(http_method, **requests_args) response = super(APIKeyAuthClient, self).send(relative_path, http_method, **requests_args) except Exception as e: raise CartoException(e) if CartoRateLimitException.is_rate_limited(response): raise CartoRateLimitException(response) return response
[ "def", "send", "(", "self", ",", "relative_path", ",", "http_method", ",", "*", "*", "requests_args", ")", ":", "try", ":", "http_method", ",", "requests_args", "=", "self", ".", "prepare_send", "(", "http_method", ",", "*", "*", "requests_args", ")", "response", "=", "super", "(", "APIKeyAuthClient", ",", "self", ")", ".", "send", "(", "relative_path", ",", "http_method", ",", "*", "*", "requests_args", ")", "except", "Exception", "as", "e", ":", "raise", "CartoException", "(", "e", ")", "if", "CartoRateLimitException", ".", "is_rate_limited", "(", "response", ")", ":", "raise", "CartoRateLimitException", "(", "response", ")", "return", "response" ]
Makes an API-key-authorized request :param relative_path: URL path relative to self.base_url :param http_method: HTTP method :param requests_args: kwargs to be sent to requests :type relative_path: str :type http_method: str :type requests_args: kwargs :return: A request response object :raise: CartoException
[ "Makes", "an", "API", "-", "key", "-", "authorized", "request" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/auth.py#L128-L154
train
CartoDB/carto-python
carto/auth.py
AuthAPIClient.is_valid_api_key
def is_valid_api_key(self): """ Checks validity. Right now, an API key is considered valid if it can list user API keys and the result contains that API key. This might change in the future. :return: True if the API key is considered valid for current user. """ res = self.send('api/v3/api_keys', 'get') return \ res.ok and \ self.api_key in (ak['token'] for ak in res.json()['result'])
python
def is_valid_api_key(self): """ Checks validity. Right now, an API key is considered valid if it can list user API keys and the result contains that API key. This might change in the future. :return: True if the API key is considered valid for current user. """ res = self.send('api/v3/api_keys', 'get') return \ res.ok and \ self.api_key in (ak['token'] for ak in res.json()['result'])
[ "def", "is_valid_api_key", "(", "self", ")", ":", "res", "=", "self", ".", "send", "(", "'api/v3/api_keys'", ",", "'get'", ")", "return", "res", ".", "ok", "and", "self", ".", "api_key", "in", "(", "ak", "[", "'token'", "]", "for", "ak", "in", "res", ".", "json", "(", ")", "[", "'result'", "]", ")" ]
Checks validity. Right now, an API key is considered valid if it can list user API keys and the result contains that API key. This might change in the future. :return: True if the API key is considered valid for current user.
[ "Checks", "validity", ".", "Right", "now", "an", "API", "key", "is", "considered", "valid", "if", "it", "can", "list", "user", "API", "keys", "and", "the", "result", "contains", "that", "API", "key", ".", "This", "might", "change", "in", "the", "future", "." ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/auth.py#L262-L273
train
CartoDB/carto-python
carto/datasets.py
DatasetManager.send
def send(self, url, http_method, **client_args): """ Sends an API request, taking into account that datasets are part of the visualization endpoint. :param url: Endpoint URL :param http_method: The method used to make the request to the API :param client_args: Arguments to be sent to the auth client :type url: str :type http_method: str :type client_args: kwargs :return: A request response object :raise: CartoException """ try: client_args = client_args or {} if "params" not in client_args: client_args["params"] = {} client_args["params"].update({"type": "table", "exclude_shared": "true"}) return super(DatasetManager, self).send(url, http_method, **client_args) except Exception as e: raise CartoException(e)
python
def send(self, url, http_method, **client_args): """ Sends an API request, taking into account that datasets are part of the visualization endpoint. :param url: Endpoint URL :param http_method: The method used to make the request to the API :param client_args: Arguments to be sent to the auth client :type url: str :type http_method: str :type client_args: kwargs :return: A request response object :raise: CartoException """ try: client_args = client_args or {} if "params" not in client_args: client_args["params"] = {} client_args["params"].update({"type": "table", "exclude_shared": "true"}) return super(DatasetManager, self).send(url, http_method, **client_args) except Exception as e: raise CartoException(e)
[ "def", "send", "(", "self", ",", "url", ",", "http_method", ",", "*", "*", "client_args", ")", ":", "try", ":", "client_args", "=", "client_args", "or", "{", "}", "if", "\"params\"", "not", "in", "client_args", ":", "client_args", "[", "\"params\"", "]", "=", "{", "}", "client_args", "[", "\"params\"", "]", ".", "update", "(", "{", "\"type\"", ":", "\"table\"", ",", "\"exclude_shared\"", ":", "\"true\"", "}", ")", "return", "super", "(", "DatasetManager", ",", "self", ")", ".", "send", "(", "url", ",", "http_method", ",", "*", "*", "client_args", ")", "except", "Exception", "as", "e", ":", "raise", "CartoException", "(", "e", ")" ]
Sends an API request, taking into account that datasets are part of the visualization endpoint. :param url: Endpoint URL :param http_method: The method used to make the request to the API :param client_args: Arguments to be sent to the auth client :type url: str :type http_method: str :type client_args: kwargs :return: A request response object :raise: CartoException
[ "Sends", "an", "API", "request", "taking", "into", "account", "that", "datasets", "are", "part", "of", "the", "visualization", "endpoint", "." ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/datasets.py#L96-L124
train
CartoDB/carto-python
carto/datasets.py
DatasetManager.is_sync_table
def is_sync_table(self, archive, interval, **import_args): """ Checks if this is a request for a sync dataset. The condition for creating a sync dataset is to provide a URL or a connection to an external database and an interval in seconds :param archive: URL to the file (both remote URLs or local paths are supported) or StringIO object :param interval: Interval in seconds. :param import_args: Connection parameters for an external database :type url: str :type interval: int :type import_args: kwargs :return: True if it is a sync dataset """ return (hasattr(archive, "startswith") and archive.startswith("http") or "connection" in import_args) \ and interval is not None
python
def is_sync_table(self, archive, interval, **import_args): """ Checks if this is a request for a sync dataset. The condition for creating a sync dataset is to provide a URL or a connection to an external database and an interval in seconds :param archive: URL to the file (both remote URLs or local paths are supported) or StringIO object :param interval: Interval in seconds. :param import_args: Connection parameters for an external database :type url: str :type interval: int :type import_args: kwargs :return: True if it is a sync dataset """ return (hasattr(archive, "startswith") and archive.startswith("http") or "connection" in import_args) \ and interval is not None
[ "def", "is_sync_table", "(", "self", ",", "archive", ",", "interval", ",", "*", "*", "import_args", ")", ":", "return", "(", "hasattr", "(", "archive", ",", "\"startswith\"", ")", "and", "archive", ".", "startswith", "(", "\"http\"", ")", "or", "\"connection\"", "in", "import_args", ")", "and", "interval", "is", "not", "None" ]
Checks if this is a request for a sync dataset. The condition for creating a sync dataset is to provide a URL or a connection to an external database and an interval in seconds :param archive: URL to the file (both remote URLs or local paths are supported) or StringIO object :param interval: Interval in seconds. :param import_args: Connection parameters for an external database :type url: str :type interval: int :type import_args: kwargs :return: True if it is a sync dataset
[ "Checks", "if", "this", "is", "a", "request", "for", "a", "sync", "dataset", "." ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/datasets.py#L126-L146
train
CartoDB/carto-python
carto/datasets.py
DatasetManager.create
def create(self, archive, interval=None, **import_args): """ Creating a table means uploading a file or setting up a sync table :param archive: URL to the file (both remote URLs or local paths are supported) or StringIO object :param interval: Interval in seconds. If not None, CARTO will try to set up a sync table against the (remote) URL :param import_args: Arguments to be sent to the import job when run :type archive: str :type interval: int :type import_args: kwargs :return: New dataset object :rtype: Dataset :raise: CartoException """ archive = archive.lower() if hasattr(archive, "lower") else archive if self.is_sync_table(archive, interval, **import_args): manager = SyncTableJobManager(self.client) else: manager = FileImportJobManager(self.client) import_job = manager.create(archive) if interval is None \ else manager.create(archive, interval) import_job.run(**import_args) if import_job.get_id() is None: raise CartoException(_("Import API returned corrupt job details \ when creating dataset")) import_job.refresh() count = 0 while import_job.state in ("enqueued", "queued", "pending", "uploading", "unpacking", "importing", "guessing") \ or (isinstance(manager, SyncTableJobManager) and import_job.state == "created"): if count >= MAX_NUMBER_OF_RETRIES: raise CartoException(_("Maximum number of retries exceeded \ when polling the import API for \ dataset creation")) time.sleep(INTERVAL_BETWEEN_RETRIES_S) import_job.refresh() count += 1 if import_job.state == "failure": raise CartoException(_("Dataset creation was not successful \ because of failed import (error: {error}") .format(error=json.dumps( import_job.get_error_text))) if (import_job.state != "complete" and import_job.state != "created" and import_job.state != "success") \ or import_job.success is False: raise CartoException(_("Dataset creation was not successful \ because of unknown import error")) if hasattr(import_job, "visualization_id") \ and import_job.visualization_id is not None: visualization_id = import_job.visualization_id else: table = TableManager(self.client).get(import_job.table_id) visualization_id = table.table_visualization.get_id() \ if table is not None else None try: return self.get(visualization_id) if visualization_id is not None \ else None except AttributeError: raise CartoException(_("Dataset creation was not successful \ because of unknown error"))
python
def create(self, archive, interval=None, **import_args): """ Creating a table means uploading a file or setting up a sync table :param archive: URL to the file (both remote URLs or local paths are supported) or StringIO object :param interval: Interval in seconds. If not None, CARTO will try to set up a sync table against the (remote) URL :param import_args: Arguments to be sent to the import job when run :type archive: str :type interval: int :type import_args: kwargs :return: New dataset object :rtype: Dataset :raise: CartoException """ archive = archive.lower() if hasattr(archive, "lower") else archive if self.is_sync_table(archive, interval, **import_args): manager = SyncTableJobManager(self.client) else: manager = FileImportJobManager(self.client) import_job = manager.create(archive) if interval is None \ else manager.create(archive, interval) import_job.run(**import_args) if import_job.get_id() is None: raise CartoException(_("Import API returned corrupt job details \ when creating dataset")) import_job.refresh() count = 0 while import_job.state in ("enqueued", "queued", "pending", "uploading", "unpacking", "importing", "guessing") \ or (isinstance(manager, SyncTableJobManager) and import_job.state == "created"): if count >= MAX_NUMBER_OF_RETRIES: raise CartoException(_("Maximum number of retries exceeded \ when polling the import API for \ dataset creation")) time.sleep(INTERVAL_BETWEEN_RETRIES_S) import_job.refresh() count += 1 if import_job.state == "failure": raise CartoException(_("Dataset creation was not successful \ because of failed import (error: {error}") .format(error=json.dumps( import_job.get_error_text))) if (import_job.state != "complete" and import_job.state != "created" and import_job.state != "success") \ or import_job.success is False: raise CartoException(_("Dataset creation was not successful \ because of unknown import error")) if hasattr(import_job, "visualization_id") \ and import_job.visualization_id is not None: visualization_id = import_job.visualization_id else: table = TableManager(self.client).get(import_job.table_id) visualization_id = table.table_visualization.get_id() \ if table is not None else None try: return self.get(visualization_id) if visualization_id is not None \ else None except AttributeError: raise CartoException(_("Dataset creation was not successful \ because of unknown error"))
[ "def", "create", "(", "self", ",", "archive", ",", "interval", "=", "None", ",", "*", "*", "import_args", ")", ":", "archive", "=", "archive", ".", "lower", "(", ")", "if", "hasattr", "(", "archive", ",", "\"lower\"", ")", "else", "archive", "if", "self", ".", "is_sync_table", "(", "archive", ",", "interval", ",", "*", "*", "import_args", ")", ":", "manager", "=", "SyncTableJobManager", "(", "self", ".", "client", ")", "else", ":", "manager", "=", "FileImportJobManager", "(", "self", ".", "client", ")", "import_job", "=", "manager", ".", "create", "(", "archive", ")", "if", "interval", "is", "None", "else", "manager", ".", "create", "(", "archive", ",", "interval", ")", "import_job", ".", "run", "(", "*", "*", "import_args", ")", "if", "import_job", ".", "get_id", "(", ")", "is", "None", ":", "raise", "CartoException", "(", "_", "(", "\"Import API returned corrupt job details \\\n when creating dataset\"", ")", ")", "import_job", ".", "refresh", "(", ")", "count", "=", "0", "while", "import_job", ".", "state", "in", "(", "\"enqueued\"", ",", "\"queued\"", ",", "\"pending\"", ",", "\"uploading\"", ",", "\"unpacking\"", ",", "\"importing\"", ",", "\"guessing\"", ")", "or", "(", "isinstance", "(", "manager", ",", "SyncTableJobManager", ")", "and", "import_job", ".", "state", "==", "\"created\"", ")", ":", "if", "count", ">=", "MAX_NUMBER_OF_RETRIES", ":", "raise", "CartoException", "(", "_", "(", "\"Maximum number of retries exceeded \\\n when polling the import API for \\\n dataset creation\"", ")", ")", "time", ".", "sleep", "(", "INTERVAL_BETWEEN_RETRIES_S", ")", "import_job", ".", "refresh", "(", ")", "count", "+=", "1", "if", "import_job", ".", "state", "==", "\"failure\"", ":", "raise", "CartoException", "(", "_", "(", "\"Dataset creation was not successful \\\n because of failed import (error: {error}\"", ")", ".", "format", "(", "error", "=", "json", ".", "dumps", "(", "import_job", ".", "get_error_text", ")", ")", ")", "if", "(", "import_job", ".", "state", "!=", "\"complete\"", "and", "import_job", ".", "state", "!=", "\"created\"", "and", "import_job", ".", "state", "!=", "\"success\"", ")", "or", "import_job", ".", "success", "is", "False", ":", "raise", "CartoException", "(", "_", "(", "\"Dataset creation was not successful \\\n because of unknown import error\"", ")", ")", "if", "hasattr", "(", "import_job", ",", "\"visualization_id\"", ")", "and", "import_job", ".", "visualization_id", "is", "not", "None", ":", "visualization_id", "=", "import_job", ".", "visualization_id", "else", ":", "table", "=", "TableManager", "(", "self", ".", "client", ")", ".", "get", "(", "import_job", ".", "table_id", ")", "visualization_id", "=", "table", ".", "table_visualization", ".", "get_id", "(", ")", "if", "table", "is", "not", "None", "else", "None", "try", ":", "return", "self", ".", "get", "(", "visualization_id", ")", "if", "visualization_id", "is", "not", "None", "else", "None", "except", "AttributeError", ":", "raise", "CartoException", "(", "_", "(", "\"Dataset creation was not successful \\\n because of unknown error\"", ")", ")" ]
Creating a table means uploading a file or setting up a sync table :param archive: URL to the file (both remote URLs or local paths are supported) or StringIO object :param interval: Interval in seconds. If not None, CARTO will try to set up a sync table against the (remote) URL :param import_args: Arguments to be sent to the import job when run :type archive: str :type interval: int :type import_args: kwargs :return: New dataset object :rtype: Dataset :raise: CartoException
[ "Creating", "a", "table", "means", "uploading", "a", "file", "or", "setting", "up", "a", "sync", "table" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/datasets.py#L148-L222
train
CartoDB/carto-python
carto/visualizations.py
VisualizationManager.send
def send(self, url, http_method, **client_args): """ Sends API request, taking into account that visualizations are only a subset of the resources available at the visualization endpoint :param url: Endpoint URL :param http_method: The method used to make the request to the API :param client_args: Arguments to be sent to the auth client :type url: str :type http_method: str :type client_args: kwargs :return: :raise: CartoException """ try: client_args.setdefault('params', {}) client_args["params"].update({"type": "derived", "exclude_shared": "true"}) return super(VisualizationManager, self).send(url, http_method, **client_args) except Exception as e: raise CartoException(e)
python
def send(self, url, http_method, **client_args): """ Sends API request, taking into account that visualizations are only a subset of the resources available at the visualization endpoint :param url: Endpoint URL :param http_method: The method used to make the request to the API :param client_args: Arguments to be sent to the auth client :type url: str :type http_method: str :type client_args: kwargs :return: :raise: CartoException """ try: client_args.setdefault('params', {}) client_args["params"].update({"type": "derived", "exclude_shared": "true"}) return super(VisualizationManager, self).send(url, http_method, **client_args) except Exception as e: raise CartoException(e)
[ "def", "send", "(", "self", ",", "url", ",", "http_method", ",", "*", "*", "client_args", ")", ":", "try", ":", "client_args", ".", "setdefault", "(", "'params'", ",", "{", "}", ")", "client_args", "[", "\"params\"", "]", ".", "update", "(", "{", "\"type\"", ":", "\"derived\"", ",", "\"exclude_shared\"", ":", "\"true\"", "}", ")", "return", "super", "(", "VisualizationManager", ",", "self", ")", ".", "send", "(", "url", ",", "http_method", ",", "*", "*", "client_args", ")", "except", "Exception", "as", "e", ":", "raise", "CartoException", "(", "e", ")" ]
Sends API request, taking into account that visualizations are only a subset of the resources available at the visualization endpoint :param url: Endpoint URL :param http_method: The method used to make the request to the API :param client_args: Arguments to be sent to the auth client :type url: str :type http_method: str :type client_args: kwargs :return: :raise: CartoException
[ "Sends", "API", "request", "taking", "into", "account", "that", "visualizations", "are", "only", "a", "subset", "of", "the", "resources", "available", "at", "the", "visualization", "endpoint" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/visualizations.py#L130-L155
train
CartoDB/carto-python
carto/exceptions.py
CartoRateLimitException.is_rate_limited
def is_rate_limited(response): """ Checks if the response has been rate limited by CARTO APIs :param response: The response rate limited by CARTO APIs :type response: requests.models.Response class :return: Boolean """ if (response.status_code == codes.too_many_requests and 'Retry-After' in response.headers and int(response.headers['Retry-After']) >= 0): return True return False
python
def is_rate_limited(response): """ Checks if the response has been rate limited by CARTO APIs :param response: The response rate limited by CARTO APIs :type response: requests.models.Response class :return: Boolean """ if (response.status_code == codes.too_many_requests and 'Retry-After' in response.headers and int(response.headers['Retry-After']) >= 0): return True return False
[ "def", "is_rate_limited", "(", "response", ")", ":", "if", "(", "response", ".", "status_code", "==", "codes", ".", "too_many_requests", "and", "'Retry-After'", "in", "response", ".", "headers", "and", "int", "(", "response", ".", "headers", "[", "'Retry-After'", "]", ")", ">=", "0", ")", ":", "return", "True", "return", "False" ]
Checks if the response has been rate limited by CARTO APIs :param response: The response rate limited by CARTO APIs :type response: requests.models.Response class :return: Boolean
[ "Checks", "if", "the", "response", "has", "been", "rate", "limited", "by", "CARTO", "APIs" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/exceptions.py#L46-L59
train
CartoDB/carto-python
carto/maps.py
NamedMap.update_from_dict
def update_from_dict(self, attribute_dict): """ Method overriden from the base class """ if 'template' in attribute_dict: self.update_from_dict(attribute_dict['template']) setattr(self, self.Meta.id_field, attribute_dict['template']['name']) return try: for k, v in attribute_dict.items(): setattr(self, k, v) except Exception: setattr(self, self.Meta.id_field, attribute_dict)
python
def update_from_dict(self, attribute_dict): """ Method overriden from the base class """ if 'template' in attribute_dict: self.update_from_dict(attribute_dict['template']) setattr(self, self.Meta.id_field, attribute_dict['template']['name']) return try: for k, v in attribute_dict.items(): setattr(self, k, v) except Exception: setattr(self, self.Meta.id_field, attribute_dict)
[ "def", "update_from_dict", "(", "self", ",", "attribute_dict", ")", ":", "if", "'template'", "in", "attribute_dict", ":", "self", ".", "update_from_dict", "(", "attribute_dict", "[", "'template'", "]", ")", "setattr", "(", "self", ",", "self", ".", "Meta", ".", "id_field", ",", "attribute_dict", "[", "'template'", "]", "[", "'name'", "]", ")", "return", "try", ":", "for", "k", ",", "v", "in", "attribute_dict", ".", "items", "(", ")", ":", "setattr", "(", "self", ",", "k", ",", "v", ")", "except", "Exception", ":", "setattr", "(", "self", ",", "self", ".", "Meta", ".", "id_field", ",", "attribute_dict", ")" ]
Method overriden from the base class
[ "Method", "overriden", "from", "the", "base", "class" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/maps.py#L165-L179
train
CartoDB/carto-python
carto/resources.py
AsyncResource.run
def run(self, **client_params): """ Actually creates the async job on the CARTO server :param client_params: To be send to the CARTO API. See CARTO's documentation depending on the subclass you are using :type client_params: kwargs :return: :raise: CartoException """ try: self.send(self.get_collection_endpoint(), http_method="POST", **client_params) except Exception as e: raise CartoException(e)
python
def run(self, **client_params): """ Actually creates the async job on the CARTO server :param client_params: To be send to the CARTO API. See CARTO's documentation depending on the subclass you are using :type client_params: kwargs :return: :raise: CartoException """ try: self.send(self.get_collection_endpoint(), http_method="POST", **client_params) except Exception as e: raise CartoException(e)
[ "def", "run", "(", "self", ",", "*", "*", "client_params", ")", ":", "try", ":", "self", ".", "send", "(", "self", ".", "get_collection_endpoint", "(", ")", ",", "http_method", "=", "\"POST\"", ",", "*", "*", "client_params", ")", "except", "Exception", "as", "e", ":", "raise", "CartoException", "(", "e", ")" ]
Actually creates the async job on the CARTO server :param client_params: To be send to the CARTO API. See CARTO's documentation depending on the subclass you are using :type client_params: kwargs :return: :raise: CartoException
[ "Actually", "creates", "the", "async", "job", "on", "the", "CARTO", "server" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/resources.py#L22-L41
train
CartoDB/carto-python
carto/sql.py
SQLClient.send
def send(self, sql, parse_json=True, do_post=True, format=None, **request_args): """ Executes SQL query in a CARTO server :param sql: The SQL :param parse_json: Set it to False if you want raw reponse :param do_post: Set it to True to force post request :param format: Any of the data export formats allowed by CARTO's SQL API :param request_args: Additional parameters to send with the request :type sql: str :type parse_json: boolean :type do_post: boolean :type format: str :type request_args: dictionary :return: response data, either as json or as a regular response.content object :rtype: object :raise: CartoException """ try: params = {'q': sql} if format: params['format'] = format if format not in ['json', 'geojson']: parse_json = False if request_args is not None: for attr in request_args: params[attr] = request_args[attr] if len(sql) < MAX_GET_QUERY_LEN and do_post is False: resp = self.auth_client.send(self.api_url, 'GET', params=params) else: resp = self.auth_client.send(self.api_url, 'POST', data=params) return self.auth_client.get_response_data(resp, parse_json) except CartoRateLimitException as e: raise e except Exception as e: raise CartoException(e)
python
def send(self, sql, parse_json=True, do_post=True, format=None, **request_args): """ Executes SQL query in a CARTO server :param sql: The SQL :param parse_json: Set it to False if you want raw reponse :param do_post: Set it to True to force post request :param format: Any of the data export formats allowed by CARTO's SQL API :param request_args: Additional parameters to send with the request :type sql: str :type parse_json: boolean :type do_post: boolean :type format: str :type request_args: dictionary :return: response data, either as json or as a regular response.content object :rtype: object :raise: CartoException """ try: params = {'q': sql} if format: params['format'] = format if format not in ['json', 'geojson']: parse_json = False if request_args is not None: for attr in request_args: params[attr] = request_args[attr] if len(sql) < MAX_GET_QUERY_LEN and do_post is False: resp = self.auth_client.send(self.api_url, 'GET', params=params) else: resp = self.auth_client.send(self.api_url, 'POST', data=params) return self.auth_client.get_response_data(resp, parse_json) except CartoRateLimitException as e: raise e except Exception as e: raise CartoException(e)
[ "def", "send", "(", "self", ",", "sql", ",", "parse_json", "=", "True", ",", "do_post", "=", "True", ",", "format", "=", "None", ",", "*", "*", "request_args", ")", ":", "try", ":", "params", "=", "{", "'q'", ":", "sql", "}", "if", "format", ":", "params", "[", "'format'", "]", "=", "format", "if", "format", "not", "in", "[", "'json'", ",", "'geojson'", "]", ":", "parse_json", "=", "False", "if", "request_args", "is", "not", "None", ":", "for", "attr", "in", "request_args", ":", "params", "[", "attr", "]", "=", "request_args", "[", "attr", "]", "if", "len", "(", "sql", ")", "<", "MAX_GET_QUERY_LEN", "and", "do_post", "is", "False", ":", "resp", "=", "self", ".", "auth_client", ".", "send", "(", "self", ".", "api_url", ",", "'GET'", ",", "params", "=", "params", ")", "else", ":", "resp", "=", "self", ".", "auth_client", ".", "send", "(", "self", ".", "api_url", ",", "'POST'", ",", "data", "=", "params", ")", "return", "self", ".", "auth_client", ".", "get_response_data", "(", "resp", ",", "parse_json", ")", "except", "CartoRateLimitException", "as", "e", ":", "raise", "e", "except", "Exception", "as", "e", ":", "raise", "CartoException", "(", "e", ")" ]
Executes SQL query in a CARTO server :param sql: The SQL :param parse_json: Set it to False if you want raw reponse :param do_post: Set it to True to force post request :param format: Any of the data export formats allowed by CARTO's SQL API :param request_args: Additional parameters to send with the request :type sql: str :type parse_json: boolean :type do_post: boolean :type format: str :type request_args: dictionary :return: response data, either as json or as a regular response.content object :rtype: object :raise: CartoException
[ "Executes", "SQL", "query", "in", "a", "CARTO", "server" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/sql.py#L70-L114
train
CartoDB/carto-python
carto/sql.py
BatchSQLClient.send
def send(self, url, http_method, json_body=None, http_header=None): """ Executes Batch SQL query in a CARTO server :param url: Endpoint url :param http_method: The method used to make the request to the API :param json_body: The information that needs to be sent, by default is set to None :param http_header: The header used to make write requests to the API, by default is none :type url: str :type http_method: str :type json_body: dict :type http_header: str :return: Response data, either as json or as a regular response.content object :rtype: object :raise: CartoException """ try: data = self.client.send(url, http_method=http_method, headers=http_header, json=json_body) data_json = self.client.get_response_data(data) except CartoRateLimitException as e: raise e except Exception as e: raise CartoException(e) return data_json
python
def send(self, url, http_method, json_body=None, http_header=None): """ Executes Batch SQL query in a CARTO server :param url: Endpoint url :param http_method: The method used to make the request to the API :param json_body: The information that needs to be sent, by default is set to None :param http_header: The header used to make write requests to the API, by default is none :type url: str :type http_method: str :type json_body: dict :type http_header: str :return: Response data, either as json or as a regular response.content object :rtype: object :raise: CartoException """ try: data = self.client.send(url, http_method=http_method, headers=http_header, json=json_body) data_json = self.client.get_response_data(data) except CartoRateLimitException as e: raise e except Exception as e: raise CartoException(e) return data_json
[ "def", "send", "(", "self", ",", "url", ",", "http_method", ",", "json_body", "=", "None", ",", "http_header", "=", "None", ")", ":", "try", ":", "data", "=", "self", ".", "client", ".", "send", "(", "url", ",", "http_method", "=", "http_method", ",", "headers", "=", "http_header", ",", "json", "=", "json_body", ")", "data_json", "=", "self", ".", "client", ".", "get_response_data", "(", "data", ")", "except", "CartoRateLimitException", "as", "e", ":", "raise", "e", "except", "Exception", "as", "e", ":", "raise", "CartoException", "(", "e", ")", "return", "data_json" ]
Executes Batch SQL query in a CARTO server :param url: Endpoint url :param http_method: The method used to make the request to the API :param json_body: The information that needs to be sent, by default is set to None :param http_header: The header used to make write requests to the API, by default is none :type url: str :type http_method: str :type json_body: dict :type http_header: str :return: Response data, either as json or as a regular response.content object :rtype: object :raise: CartoException
[ "Executes", "Batch", "SQL", "query", "in", "a", "CARTO", "server" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/sql.py#L149-L180
train
CartoDB/carto-python
carto/sql.py
BatchSQLClient.create
def create(self, sql_query): """ Creates a new batch SQL query. Batch SQL jobs are asynchronous, once created you should call :func:`carto.sql.BatchSQLClient.read` method given the `job_id` to retrieve the state of the batch query :param sql_query: The SQL query to be used :type sql_query: str or list of str :return: Response data, either as json or as a regular response.content object :rtype: object :raise: CartoException """ header = {'content-type': 'application/json'} data = self.send(self.api_url, http_method="POST", json_body={"query": sql_query}, http_header=header) return data
python
def create(self, sql_query): """ Creates a new batch SQL query. Batch SQL jobs are asynchronous, once created you should call :func:`carto.sql.BatchSQLClient.read` method given the `job_id` to retrieve the state of the batch query :param sql_query: The SQL query to be used :type sql_query: str or list of str :return: Response data, either as json or as a regular response.content object :rtype: object :raise: CartoException """ header = {'content-type': 'application/json'} data = self.send(self.api_url, http_method="POST", json_body={"query": sql_query}, http_header=header) return data
[ "def", "create", "(", "self", ",", "sql_query", ")", ":", "header", "=", "{", "'content-type'", ":", "'application/json'", "}", "data", "=", "self", ".", "send", "(", "self", ".", "api_url", ",", "http_method", "=", "\"POST\"", ",", "json_body", "=", "{", "\"query\"", ":", "sql_query", "}", ",", "http_header", "=", "header", ")", "return", "data" ]
Creates a new batch SQL query. Batch SQL jobs are asynchronous, once created you should call :func:`carto.sql.BatchSQLClient.read` method given the `job_id` to retrieve the state of the batch query :param sql_query: The SQL query to be used :type sql_query: str or list of str :return: Response data, either as json or as a regular response.content object :rtype: object :raise: CartoException
[ "Creates", "a", "new", "batch", "SQL", "query", "." ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/sql.py#L182-L204
train
CartoDB/carto-python
carto/sql.py
BatchSQLClient.create_and_wait_for_completion
def create_and_wait_for_completion(self, sql_query): """ Creates a new batch SQL query and waits for its completion or failure Batch SQL jobs are asynchronous, once created this method automatically queries the job status until it's one of 'done', 'failed', 'canceled', 'unknown' :param sql_query: The SQL query to be used :type sql_query: str or list of str :return: Response data, either as json or as a regular response.content object :rtype: object :raise: CartoException when there's an exception in the BatchSQLJob execution or the batch job status is one of the BATCH_JOBS_FAILED_STATUSES ('failed', 'canceled', 'unknown') """ header = {'content-type': 'application/json'} data = self.send(self.api_url, http_method="POST", json_body={"query": sql_query}, http_header=header) warnings.warn('Batch SQL job created with job_id: {job_id}'.format(job_id=data['job_id'])) while data and data['status'] in BATCH_JOBS_PENDING_STATUSES: time.sleep(BATCH_READ_STATUS_AFTER_SECONDS) data = self.read(data['job_id']) if data['status'] in BATCH_JOBS_FAILED_STATUSES: raise CartoException(_("Batch SQL job failed with result: {data}".format(data=data))) return data
python
def create_and_wait_for_completion(self, sql_query): """ Creates a new batch SQL query and waits for its completion or failure Batch SQL jobs are asynchronous, once created this method automatically queries the job status until it's one of 'done', 'failed', 'canceled', 'unknown' :param sql_query: The SQL query to be used :type sql_query: str or list of str :return: Response data, either as json or as a regular response.content object :rtype: object :raise: CartoException when there's an exception in the BatchSQLJob execution or the batch job status is one of the BATCH_JOBS_FAILED_STATUSES ('failed', 'canceled', 'unknown') """ header = {'content-type': 'application/json'} data = self.send(self.api_url, http_method="POST", json_body={"query": sql_query}, http_header=header) warnings.warn('Batch SQL job created with job_id: {job_id}'.format(job_id=data['job_id'])) while data and data['status'] in BATCH_JOBS_PENDING_STATUSES: time.sleep(BATCH_READ_STATUS_AFTER_SECONDS) data = self.read(data['job_id']) if data['status'] in BATCH_JOBS_FAILED_STATUSES: raise CartoException(_("Batch SQL job failed with result: {data}".format(data=data))) return data
[ "def", "create_and_wait_for_completion", "(", "self", ",", "sql_query", ")", ":", "header", "=", "{", "'content-type'", ":", "'application/json'", "}", "data", "=", "self", ".", "send", "(", "self", ".", "api_url", ",", "http_method", "=", "\"POST\"", ",", "json_body", "=", "{", "\"query\"", ":", "sql_query", "}", ",", "http_header", "=", "header", ")", "warnings", ".", "warn", "(", "'Batch SQL job created with job_id: {job_id}'", ".", "format", "(", "job_id", "=", "data", "[", "'job_id'", "]", ")", ")", "while", "data", "and", "data", "[", "'status'", "]", "in", "BATCH_JOBS_PENDING_STATUSES", ":", "time", ".", "sleep", "(", "BATCH_READ_STATUS_AFTER_SECONDS", ")", "data", "=", "self", ".", "read", "(", "data", "[", "'job_id'", "]", ")", "if", "data", "[", "'status'", "]", "in", "BATCH_JOBS_FAILED_STATUSES", ":", "raise", "CartoException", "(", "_", "(", "\"Batch SQL job failed with result: {data}\"", ".", "format", "(", "data", "=", "data", ")", ")", ")", "return", "data" ]
Creates a new batch SQL query and waits for its completion or failure Batch SQL jobs are asynchronous, once created this method automatically queries the job status until it's one of 'done', 'failed', 'canceled', 'unknown' :param sql_query: The SQL query to be used :type sql_query: str or list of str :return: Response data, either as json or as a regular response.content object :rtype: object :raise: CartoException when there's an exception in the BatchSQLJob execution or the batch job status is one of the BATCH_JOBS_FAILED_STATUSES ('failed', 'canceled', 'unknown')
[ "Creates", "a", "new", "batch", "SQL", "query", "and", "waits", "for", "its", "completion", "or", "failure" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/sql.py#L206-L238
train
CartoDB/carto-python
carto/sql.py
BatchSQLClient.read
def read(self, job_id): """ Reads the information for a specific Batch API request :param job_id: The id of the job to be read from :type job_id: str :return: Response data, either as json or as a regular response.content object :rtype: object :raise: CartoException """ data = self.send(self.api_url + job_id, http_method="GET") return data
python
def read(self, job_id): """ Reads the information for a specific Batch API request :param job_id: The id of the job to be read from :type job_id: str :return: Response data, either as json or as a regular response.content object :rtype: object :raise: CartoException """ data = self.send(self.api_url + job_id, http_method="GET") return data
[ "def", "read", "(", "self", ",", "job_id", ")", ":", "data", "=", "self", ".", "send", "(", "self", ".", "api_url", "+", "job_id", ",", "http_method", "=", "\"GET\"", ")", "return", "data" ]
Reads the information for a specific Batch API request :param job_id: The id of the job to be read from :type job_id: str :return: Response data, either as json or as a regular response.content object :rtype: object :raise: CartoException
[ "Reads", "the", "information", "for", "a", "specific", "Batch", "API", "request" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/sql.py#L240-L254
train
CartoDB/carto-python
carto/sql.py
BatchSQLClient.update
def update(self, job_id, sql_query): """ Updates the sql query of a specific job :param job_id: The id of the job to be updated :param sql_query: The new SQL query for the job :type job_id: str :type sql_query: str :return: Response data, either as json or as a regular response.content object :rtype: object :raise: CartoException """ header = {'content-type': 'application/json'} data = self.send(self.api_url + job_id, http_method="PUT", json_body={"query": sql_query}, http_header=header) return data
python
def update(self, job_id, sql_query): """ Updates the sql query of a specific job :param job_id: The id of the job to be updated :param sql_query: The new SQL query for the job :type job_id: str :type sql_query: str :return: Response data, either as json or as a regular response.content object :rtype: object :raise: CartoException """ header = {'content-type': 'application/json'} data = self.send(self.api_url + job_id, http_method="PUT", json_body={"query": sql_query}, http_header=header) return data
[ "def", "update", "(", "self", ",", "job_id", ",", "sql_query", ")", ":", "header", "=", "{", "'content-type'", ":", "'application/json'", "}", "data", "=", "self", ".", "send", "(", "self", ".", "api_url", "+", "job_id", ",", "http_method", "=", "\"PUT\"", ",", "json_body", "=", "{", "\"query\"", ":", "sql_query", "}", ",", "http_header", "=", "header", ")", "return", "data" ]
Updates the sql query of a specific job :param job_id: The id of the job to be updated :param sql_query: The new SQL query for the job :type job_id: str :type sql_query: str :return: Response data, either as json or as a regular response.content object :rtype: object :raise: CartoException
[ "Updates", "the", "sql", "query", "of", "a", "specific", "job" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/sql.py#L256-L276
train
CartoDB/carto-python
carto/sql.py
BatchSQLClient.cancel
def cancel(self, job_id): """ Cancels a job :param job_id: The id of the job to be cancelled :type job_id: str :return: A status code depending on whether the cancel request was successful :rtype: str :raise CartoException: """ try: confirmation = self.send(self.api_url + job_id, http_method="DELETE") except CartoException as e: if 'Cannot set status from done to cancelled' in e.args[0].args[0]: return 'done' else: raise e return confirmation['status']
python
def cancel(self, job_id): """ Cancels a job :param job_id: The id of the job to be cancelled :type job_id: str :return: A status code depending on whether the cancel request was successful :rtype: str :raise CartoException: """ try: confirmation = self.send(self.api_url + job_id, http_method="DELETE") except CartoException as e: if 'Cannot set status from done to cancelled' in e.args[0].args[0]: return 'done' else: raise e return confirmation['status']
[ "def", "cancel", "(", "self", ",", "job_id", ")", ":", "try", ":", "confirmation", "=", "self", ".", "send", "(", "self", ".", "api_url", "+", "job_id", ",", "http_method", "=", "\"DELETE\"", ")", "except", "CartoException", "as", "e", ":", "if", "'Cannot set status from done to cancelled'", "in", "e", ".", "args", "[", "0", "]", ".", "args", "[", "0", "]", ":", "return", "'done'", "else", ":", "raise", "e", "return", "confirmation", "[", "'status'", "]" ]
Cancels a job :param job_id: The id of the job to be cancelled :type job_id: str :return: A status code depending on whether the cancel request was successful :rtype: str :raise CartoException:
[ "Cancels", "a", "job" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/sql.py#L278-L298
train
CartoDB/carto-python
carto/sql.py
CopySQLClient.copyfrom
def copyfrom(self, query, iterable_data, compress=True, compression_level=DEFAULT_COMPRESSION_LEVEL): """ Gets data from an iterable object into a table :param query: The "COPY table_name [(column_name[, ...])] FROM STDIN [WITH(option[,...])]" query to execute :type query: str :param iterable_data: An object that can be iterated to retrieve the data :type iterable_data: object :return: Response data as json :rtype: str :raise CartoException: """ url = self.api_url + '/copyfrom' headers = { 'Content-Type': 'application/octet-stream', 'Transfer-Encoding': 'chunked' } params = {'api_key': self.api_key, 'q': query} if compress: headers['Content-Encoding'] = 'gzip' _iterable_data = self._compress_chunks(iterable_data, compression_level) else: _iterable_data = iterable_data try: response = self.client.send(url, http_method='POST', params=params, data=_iterable_data, headers=headers, stream=True) response_json = self.client.get_response_data(response) except CartoRateLimitException as e: raise e except Exception as e: raise CartoException(e) return response_json
python
def copyfrom(self, query, iterable_data, compress=True, compression_level=DEFAULT_COMPRESSION_LEVEL): """ Gets data from an iterable object into a table :param query: The "COPY table_name [(column_name[, ...])] FROM STDIN [WITH(option[,...])]" query to execute :type query: str :param iterable_data: An object that can be iterated to retrieve the data :type iterable_data: object :return: Response data as json :rtype: str :raise CartoException: """ url = self.api_url + '/copyfrom' headers = { 'Content-Type': 'application/octet-stream', 'Transfer-Encoding': 'chunked' } params = {'api_key': self.api_key, 'q': query} if compress: headers['Content-Encoding'] = 'gzip' _iterable_data = self._compress_chunks(iterable_data, compression_level) else: _iterable_data = iterable_data try: response = self.client.send(url, http_method='POST', params=params, data=_iterable_data, headers=headers, stream=True) response_json = self.client.get_response_data(response) except CartoRateLimitException as e: raise e except Exception as e: raise CartoException(e) return response_json
[ "def", "copyfrom", "(", "self", ",", "query", ",", "iterable_data", ",", "compress", "=", "True", ",", "compression_level", "=", "DEFAULT_COMPRESSION_LEVEL", ")", ":", "url", "=", "self", ".", "api_url", "+", "'/copyfrom'", "headers", "=", "{", "'Content-Type'", ":", "'application/octet-stream'", ",", "'Transfer-Encoding'", ":", "'chunked'", "}", "params", "=", "{", "'api_key'", ":", "self", ".", "api_key", ",", "'q'", ":", "query", "}", "if", "compress", ":", "headers", "[", "'Content-Encoding'", "]", "=", "'gzip'", "_iterable_data", "=", "self", ".", "_compress_chunks", "(", "iterable_data", ",", "compression_level", ")", "else", ":", "_iterable_data", "=", "iterable_data", "try", ":", "response", "=", "self", ".", "client", ".", "send", "(", "url", ",", "http_method", "=", "'POST'", ",", "params", "=", "params", ",", "data", "=", "_iterable_data", ",", "headers", "=", "headers", ",", "stream", "=", "True", ")", "response_json", "=", "self", ".", "client", ".", "get_response_data", "(", "response", ")", "except", "CartoRateLimitException", "as", "e", ":", "raise", "e", "except", "Exception", "as", "e", ":", "raise", "CartoException", "(", "e", ")", "return", "response_json" ]
Gets data from an iterable object into a table :param query: The "COPY table_name [(column_name[, ...])] FROM STDIN [WITH(option[,...])]" query to execute :type query: str :param iterable_data: An object that can be iterated to retrieve the data :type iterable_data: object :return: Response data as json :rtype: str :raise CartoException:
[ "Gets", "data", "from", "an", "iterable", "object", "into", "a", "table" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/sql.py#L341-L386
train
CartoDB/carto-python
carto/sql.py
CopySQLClient.copyfrom_file_object
def copyfrom_file_object(self, query, file_object, compress=True, compression_level=DEFAULT_COMPRESSION_LEVEL): """ Gets data from a readable file object into a table :param query: The "COPY table_name [(column_name[, ...])] FROM STDIN [WITH(option[,...])]" query to execute :type query: str :param file_object: A file-like object. Normally the return value of open('file.ext', 'rb') :type file_object: file :return: Response data as json :rtype: str :raise CartoException: """ chunk_generator = self._read_in_chunks(file_object) return self.copyfrom(query, chunk_generator, compress, compression_level)
python
def copyfrom_file_object(self, query, file_object, compress=True, compression_level=DEFAULT_COMPRESSION_LEVEL): """ Gets data from a readable file object into a table :param query: The "COPY table_name [(column_name[, ...])] FROM STDIN [WITH(option[,...])]" query to execute :type query: str :param file_object: A file-like object. Normally the return value of open('file.ext', 'rb') :type file_object: file :return: Response data as json :rtype: str :raise CartoException: """ chunk_generator = self._read_in_chunks(file_object) return self.copyfrom(query, chunk_generator, compress, compression_level)
[ "def", "copyfrom_file_object", "(", "self", ",", "query", ",", "file_object", ",", "compress", "=", "True", ",", "compression_level", "=", "DEFAULT_COMPRESSION_LEVEL", ")", ":", "chunk_generator", "=", "self", ".", "_read_in_chunks", "(", "file_object", ")", "return", "self", ".", "copyfrom", "(", "query", ",", "chunk_generator", ",", "compress", ",", "compression_level", ")" ]
Gets data from a readable file object into a table :param query: The "COPY table_name [(column_name[, ...])] FROM STDIN [WITH(option[,...])]" query to execute :type query: str :param file_object: A file-like object. Normally the return value of open('file.ext', 'rb') :type file_object: file :return: Response data as json :rtype: str :raise CartoException:
[ "Gets", "data", "from", "a", "readable", "file", "object", "into", "a", "table" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/sql.py#L388-L408
train
CartoDB/carto-python
carto/sql.py
CopySQLClient.copyfrom_file_path
def copyfrom_file_path(self, query, path, compress=True, compression_level=DEFAULT_COMPRESSION_LEVEL): """ Gets data from a readable file into a table :param query: The "COPY table_name [(column_name[, ...])] FROM STDIN [WITH(option[,...])]" query to execute :type query: str :param path: A path to a file :type path: str :return: Response data as json :rtype: str :raise CartoException: """ with open(path, 'rb') as f: result = self.copyfrom_file_object(query, f, compress, compression_level) return result
python
def copyfrom_file_path(self, query, path, compress=True, compression_level=DEFAULT_COMPRESSION_LEVEL): """ Gets data from a readable file into a table :param query: The "COPY table_name [(column_name[, ...])] FROM STDIN [WITH(option[,...])]" query to execute :type query: str :param path: A path to a file :type path: str :return: Response data as json :rtype: str :raise CartoException: """ with open(path, 'rb') as f: result = self.copyfrom_file_object(query, f, compress, compression_level) return result
[ "def", "copyfrom_file_path", "(", "self", ",", "query", ",", "path", ",", "compress", "=", "True", ",", "compression_level", "=", "DEFAULT_COMPRESSION_LEVEL", ")", ":", "with", "open", "(", "path", ",", "'rb'", ")", "as", "f", ":", "result", "=", "self", ".", "copyfrom_file_object", "(", "query", ",", "f", ",", "compress", ",", "compression_level", ")", "return", "result" ]
Gets data from a readable file into a table :param query: The "COPY table_name [(column_name[, ...])] FROM STDIN [WITH(option[,...])]" query to execute :type query: str :param path: A path to a file :type path: str :return: Response data as json :rtype: str :raise CartoException:
[ "Gets", "data", "from", "a", "readable", "file", "into", "a", "table" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/sql.py#L410-L430
train
CartoDB/carto-python
carto/sql.py
CopySQLClient.copyto
def copyto(self, query): """ Gets data from a table into a Response object that can be iterated :param query: The "COPY { table_name [(column_name[, ...])] | (query) } TO STDOUT [WITH(option[,...])]" query to execute :type query: str :return: response object :rtype: Response :raise CartoException: """ url = self.api_url + '/copyto' params = {'api_key': self.api_key, 'q': query} try: response = self.client.send(url, http_method='GET', params=params, stream=True) response.raise_for_status() except CartoRateLimitException as e: raise e except HTTPError as e: if 400 <= response.status_code < 500: # Client error, provide better reason reason = response.json()['error'][0] error_msg = u'%s Client Error: %s' % (response.status_code, reason) raise CartoException(error_msg) else: raise CartoException(e) except Exception as e: raise CartoException(e) return response
python
def copyto(self, query): """ Gets data from a table into a Response object that can be iterated :param query: The "COPY { table_name [(column_name[, ...])] | (query) } TO STDOUT [WITH(option[,...])]" query to execute :type query: str :return: response object :rtype: Response :raise CartoException: """ url = self.api_url + '/copyto' params = {'api_key': self.api_key, 'q': query} try: response = self.client.send(url, http_method='GET', params=params, stream=True) response.raise_for_status() except CartoRateLimitException as e: raise e except HTTPError as e: if 400 <= response.status_code < 500: # Client error, provide better reason reason = response.json()['error'][0] error_msg = u'%s Client Error: %s' % (response.status_code, reason) raise CartoException(error_msg) else: raise CartoException(e) except Exception as e: raise CartoException(e) return response
[ "def", "copyto", "(", "self", ",", "query", ")", ":", "url", "=", "self", ".", "api_url", "+", "'/copyto'", "params", "=", "{", "'api_key'", ":", "self", ".", "api_key", ",", "'q'", ":", "query", "}", "try", ":", "response", "=", "self", ".", "client", ".", "send", "(", "url", ",", "http_method", "=", "'GET'", ",", "params", "=", "params", ",", "stream", "=", "True", ")", "response", ".", "raise_for_status", "(", ")", "except", "CartoRateLimitException", "as", "e", ":", "raise", "e", "except", "HTTPError", "as", "e", ":", "if", "400", "<=", "response", ".", "status_code", "<", "500", ":", "# Client error, provide better reason", "reason", "=", "response", ".", "json", "(", ")", "[", "'error'", "]", "[", "0", "]", "error_msg", "=", "u'%s Client Error: %s'", "%", "(", "response", ".", "status_code", ",", "reason", ")", "raise", "CartoException", "(", "error_msg", ")", "else", ":", "raise", "CartoException", "(", "e", ")", "except", "Exception", "as", "e", ":", "raise", "CartoException", "(", "e", ")", "return", "response" ]
Gets data from a table into a Response object that can be iterated :param query: The "COPY { table_name [(column_name[, ...])] | (query) } TO STDOUT [WITH(option[,...])]" query to execute :type query: str :return: response object :rtype: Response :raise CartoException:
[ "Gets", "data", "from", "a", "table", "into", "a", "Response", "object", "that", "can", "be", "iterated" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/sql.py#L432-L468
train
CartoDB/carto-python
carto/sql.py
CopySQLClient.copyto_file_object
def copyto_file_object(self, query, file_object): """ Gets data from a table into a writable file object :param query: The "COPY { table_name [(column_name[, ...])] | (query) } TO STDOUT [WITH(option[,...])]" query to execute :type query: str :param file_object: A file-like object. Normally the return value of open('file.ext', 'wb') :type file_object: file :raise CartoException: """ response = self.copyto(query) for block in response.iter_content(DEFAULT_CHUNK_SIZE): file_object.write(block)
python
def copyto_file_object(self, query, file_object): """ Gets data from a table into a writable file object :param query: The "COPY { table_name [(column_name[, ...])] | (query) } TO STDOUT [WITH(option[,...])]" query to execute :type query: str :param file_object: A file-like object. Normally the return value of open('file.ext', 'wb') :type file_object: file :raise CartoException: """ response = self.copyto(query) for block in response.iter_content(DEFAULT_CHUNK_SIZE): file_object.write(block)
[ "def", "copyto_file_object", "(", "self", ",", "query", ",", "file_object", ")", ":", "response", "=", "self", ".", "copyto", "(", "query", ")", "for", "block", "in", "response", ".", "iter_content", "(", "DEFAULT_CHUNK_SIZE", ")", ":", "file_object", ".", "write", "(", "block", ")" ]
Gets data from a table into a writable file object :param query: The "COPY { table_name [(column_name[, ...])] | (query) } TO STDOUT [WITH(option[,...])]" query to execute :type query: str :param file_object: A file-like object. Normally the return value of open('file.ext', 'wb') :type file_object: file :raise CartoException:
[ "Gets", "data", "from", "a", "table", "into", "a", "writable", "file", "object" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/sql.py#L470-L486
train
CartoDB/carto-python
carto/sql.py
CopySQLClient.copyto_file_path
def copyto_file_path(self, query, path, append=False): """ Gets data from a table into a writable file :param query: The "COPY { table_name [(column_name[, ...])] | (query) } TO STDOUT [WITH(option[,...])]" query to execute :type query: str :param path: A path to a writable file :type path: str :param append: Whether to append or not if the file already exists Default value is False :type append: bool :raise CartoException: """ file_mode = 'wb' if not append else 'ab' with open(path, file_mode) as f: self.copyto_file_object(query, f)
python
def copyto_file_path(self, query, path, append=False): """ Gets data from a table into a writable file :param query: The "COPY { table_name [(column_name[, ...])] | (query) } TO STDOUT [WITH(option[,...])]" query to execute :type query: str :param path: A path to a writable file :type path: str :param append: Whether to append or not if the file already exists Default value is False :type append: bool :raise CartoException: """ file_mode = 'wb' if not append else 'ab' with open(path, file_mode) as f: self.copyto_file_object(query, f)
[ "def", "copyto_file_path", "(", "self", ",", "query", ",", "path", ",", "append", "=", "False", ")", ":", "file_mode", "=", "'wb'", "if", "not", "append", "else", "'ab'", "with", "open", "(", "path", ",", "file_mode", ")", "as", "f", ":", "self", ".", "copyto_file_object", "(", "query", ",", "f", ")" ]
Gets data from a table into a writable file :param query: The "COPY { table_name [(column_name[, ...])] | (query) } TO STDOUT [WITH(option[,...])]" query to execute :type query: str :param path: A path to a writable file :type path: str :param append: Whether to append or not if the file already exists Default value is False :type append: bool :raise CartoException:
[ "Gets", "data", "from", "a", "table", "into", "a", "writable", "file" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/sql.py#L488-L507
train
CartoDB/carto-python
carto/sync_tables.py
SyncTableJob.run
def run(self, **import_params): """ Actually creates the job import on the CARTO server :param import_params: To be send to the Import API, see CARTO's docs on Import API for an updated list of accepted params :type import_params: kwargs :return: .. note:: The sync table job is asynchronous, so you should take care of the progression, by calling the :func:`carto.resources.AsyncResource.refresh` method and check the import job :py:attr:`~state` attribute. See :func:`carto.datasets.DatasetManager.create` for a unified method to import files into CARTO """ import_params["url"] = self.url import_params["interval"] = self.interval if "connection" in import_params: self.fields.append("connector") import_params["connection"]["interval"] = self.interval self.update_from_dict(import_params["connection"]) self.save(force_create=True) else: return super(SyncTableJob, self).run(params=import_params)
python
def run(self, **import_params): """ Actually creates the job import on the CARTO server :param import_params: To be send to the Import API, see CARTO's docs on Import API for an updated list of accepted params :type import_params: kwargs :return: .. note:: The sync table job is asynchronous, so you should take care of the progression, by calling the :func:`carto.resources.AsyncResource.refresh` method and check the import job :py:attr:`~state` attribute. See :func:`carto.datasets.DatasetManager.create` for a unified method to import files into CARTO """ import_params["url"] = self.url import_params["interval"] = self.interval if "connection" in import_params: self.fields.append("connector") import_params["connection"]["interval"] = self.interval self.update_from_dict(import_params["connection"]) self.save(force_create=True) else: return super(SyncTableJob, self).run(params=import_params)
[ "def", "run", "(", "self", ",", "*", "*", "import_params", ")", ":", "import_params", "[", "\"url\"", "]", "=", "self", ".", "url", "import_params", "[", "\"interval\"", "]", "=", "self", ".", "interval", "if", "\"connection\"", "in", "import_params", ":", "self", ".", "fields", ".", "append", "(", "\"connector\"", ")", "import_params", "[", "\"connection\"", "]", "[", "\"interval\"", "]", "=", "self", ".", "interval", "self", ".", "update_from_dict", "(", "import_params", "[", "\"connection\"", "]", ")", "self", ".", "save", "(", "force_create", "=", "True", ")", "else", ":", "return", "super", "(", "SyncTableJob", ",", "self", ")", ".", "run", "(", "params", "=", "import_params", ")" ]
Actually creates the job import on the CARTO server :param import_params: To be send to the Import API, see CARTO's docs on Import API for an updated list of accepted params :type import_params: kwargs :return: .. note:: The sync table job is asynchronous, so you should take care of the progression, by calling the :func:`carto.resources.AsyncResource.refresh` method and check the import job :py:attr:`~state` attribute. See :func:`carto.datasets.DatasetManager.create` for a unified method to import files into CARTO
[ "Actually", "creates", "the", "job", "import", "on", "the", "CARTO", "server" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/sync_tables.py#L84-L106
train
CartoDB/carto-python
carto/sync_tables.py
SyncTableJob.force_sync
def force_sync(self): """ Forces to sync the SyncTableJob :return: :raise: CartoException """ try: self.send(self.get_resource_endpoint(), "put") except Exception as e: raise CartoException(e)
python
def force_sync(self): """ Forces to sync the SyncTableJob :return: :raise: CartoException """ try: self.send(self.get_resource_endpoint(), "put") except Exception as e: raise CartoException(e)
[ "def", "force_sync", "(", "self", ")", ":", "try", ":", "self", ".", "send", "(", "self", ".", "get_resource_endpoint", "(", ")", ",", "\"put\"", ")", "except", "Exception", "as", "e", ":", "raise", "CartoException", "(", "e", ")" ]
Forces to sync the SyncTableJob :return: :raise: CartoException
[ "Forces", "to", "sync", "the", "SyncTableJob" ]
f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16
https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/sync_tables.py#L118-L129
train
ikki407/stacking
stacking/base.py
BaseModel.set_prob_type
def set_prob_type(cls, problem_type, classification_type, eval_type): """ Set problem type """ assert problem_type in problem_type_list, 'Need to set Problem Type' if problem_type == 'classification': assert classification_type in classification_type_list,\ 'Need to set Classification Type' assert eval_type in eval_type_list, 'Need to set Evaluation Type' cls.problem_type = problem_type cls.classification_type = classification_type cls.eval_type = eval_type if cls.problem_type == 'classification': print 'Setting Problem:{}, Type:{}, Eval:{}'.format(cls.problem_type, cls.classification_type, cls.eval_type) elif cls.problem_type == 'regression': print 'Setting Problem:{}, Eval:{}'.format(cls.problem_type, cls.eval_type) return
python
def set_prob_type(cls, problem_type, classification_type, eval_type): """ Set problem type """ assert problem_type in problem_type_list, 'Need to set Problem Type' if problem_type == 'classification': assert classification_type in classification_type_list,\ 'Need to set Classification Type' assert eval_type in eval_type_list, 'Need to set Evaluation Type' cls.problem_type = problem_type cls.classification_type = classification_type cls.eval_type = eval_type if cls.problem_type == 'classification': print 'Setting Problem:{}, Type:{}, Eval:{}'.format(cls.problem_type, cls.classification_type, cls.eval_type) elif cls.problem_type == 'regression': print 'Setting Problem:{}, Eval:{}'.format(cls.problem_type, cls.eval_type) return
[ "def", "set_prob_type", "(", "cls", ",", "problem_type", ",", "classification_type", ",", "eval_type", ")", ":", "assert", "problem_type", "in", "problem_type_list", ",", "'Need to set Problem Type'", "if", "problem_type", "==", "'classification'", ":", "assert", "classification_type", "in", "classification_type_list", ",", "'Need to set Classification Type'", "assert", "eval_type", "in", "eval_type_list", ",", "'Need to set Evaluation Type'", "cls", ".", "problem_type", "=", "problem_type", "cls", ".", "classification_type", "=", "classification_type", "cls", ".", "eval_type", "=", "eval_type", "if", "cls", ".", "problem_type", "==", "'classification'", ":", "print", "'Setting Problem:{}, Type:{}, Eval:{}'", ".", "format", "(", "cls", ".", "problem_type", ",", "cls", ".", "classification_type", ",", "cls", ".", "eval_type", ")", "elif", "cls", ".", "problem_type", "==", "'regression'", ":", "print", "'Setting Problem:{}, Eval:{}'", ".", "format", "(", "cls", ".", "problem_type", ",", "cls", ".", "eval_type", ")", "return" ]
Set problem type
[ "Set", "problem", "type" ]
105073598fd4f9481212d9db9dea92559d9a9d5a
https://github.com/ikki407/stacking/blob/105073598fd4f9481212d9db9dea92559d9a9d5a/stacking/base.py#L280-L301
train
ikki407/stacking
stacking/base.py
BaseModel.make_multi_cols
def make_multi_cols(self, num_class, name): '''make cols for multi-class predictions''' cols = ['c' + str(i) + '_' for i in xrange(num_class)] cols = map(lambda x: x + name, cols) return cols
python
def make_multi_cols(self, num_class, name): '''make cols for multi-class predictions''' cols = ['c' + str(i) + '_' for i in xrange(num_class)] cols = map(lambda x: x + name, cols) return cols
[ "def", "make_multi_cols", "(", "self", ",", "num_class", ",", "name", ")", ":", "cols", "=", "[", "'c'", "+", "str", "(", "i", ")", "+", "'_'", "for", "i", "in", "xrange", "(", "num_class", ")", "]", "cols", "=", "map", "(", "lambda", "x", ":", "x", "+", "name", ",", "cols", ")", "return", "cols" ]
make cols for multi-class predictions
[ "make", "cols", "for", "multi", "-", "class", "predictions" ]
105073598fd4f9481212d9db9dea92559d9a9d5a
https://github.com/ikki407/stacking/blob/105073598fd4f9481212d9db9dea92559d9a9d5a/stacking/base.py#L308-L312
train
clalancette/pycdlib
pycdlib/path_table_record.py
PathTableRecord.parse
def parse(self, data): # type: (bytes) -> None ''' A method to parse an ISO9660 Path Table Record out of a string. Parameters: data - The string to parse. Returns: Nothing. ''' (self.len_di, self.xattr_length, self.extent_location, self.parent_directory_num) = struct.unpack_from(self.FMT, data[:8], 0) if self.len_di % 2 != 0: self.directory_identifier = data[8:-1] else: self.directory_identifier = data[8:] self.dirrecord = None self._initialized = True
python
def parse(self, data): # type: (bytes) -> None ''' A method to parse an ISO9660 Path Table Record out of a string. Parameters: data - The string to parse. Returns: Nothing. ''' (self.len_di, self.xattr_length, self.extent_location, self.parent_directory_num) = struct.unpack_from(self.FMT, data[:8], 0) if self.len_di % 2 != 0: self.directory_identifier = data[8:-1] else: self.directory_identifier = data[8:] self.dirrecord = None self._initialized = True
[ "def", "parse", "(", "self", ",", "data", ")", ":", "# type: (bytes) -> None", "(", "self", ".", "len_di", ",", "self", ".", "xattr_length", ",", "self", ".", "extent_location", ",", "self", ".", "parent_directory_num", ")", "=", "struct", ".", "unpack_from", "(", "self", ".", "FMT", ",", "data", "[", ":", "8", "]", ",", "0", ")", "if", "self", ".", "len_di", "%", "2", "!=", "0", ":", "self", ".", "directory_identifier", "=", "data", "[", "8", ":", "-", "1", "]", "else", ":", "self", ".", "directory_identifier", "=", "data", "[", "8", ":", "]", "self", ".", "dirrecord", "=", "None", "self", ".", "_initialized", "=", "True" ]
A method to parse an ISO9660 Path Table Record out of a string. Parameters: data - The string to parse. Returns: Nothing.
[ "A", "method", "to", "parse", "an", "ISO9660", "Path", "Table", "Record", "out", "of", "a", "string", "." ]
1e7b77a809e905d67dc71e12d70e850be26b6233
https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/path_table_record.py#L46-L64
train
clalancette/pycdlib
pycdlib/path_table_record.py
PathTableRecord._record
def _record(self, ext_loc, parent_dir_num): # type: (int, int) -> bytes ''' An internal method to generate a string representing this Path Table Record. Parameters: ext_loc - The extent location to place in this Path Table Record. parent_dir_num - The parent directory number to place in this Path Table Record. Returns: A string representing this Path Table Record. ''' return struct.pack(self.FMT, self.len_di, self.xattr_length, ext_loc, parent_dir_num) + self.directory_identifier + b'\x00' * (self.len_di % 2)
python
def _record(self, ext_loc, parent_dir_num): # type: (int, int) -> bytes ''' An internal method to generate a string representing this Path Table Record. Parameters: ext_loc - The extent location to place in this Path Table Record. parent_dir_num - The parent directory number to place in this Path Table Record. Returns: A string representing this Path Table Record. ''' return struct.pack(self.FMT, self.len_di, self.xattr_length, ext_loc, parent_dir_num) + self.directory_identifier + b'\x00' * (self.len_di % 2)
[ "def", "_record", "(", "self", ",", "ext_loc", ",", "parent_dir_num", ")", ":", "# type: (int, int) -> bytes", "return", "struct", ".", "pack", "(", "self", ".", "FMT", ",", "self", ".", "len_di", ",", "self", ".", "xattr_length", ",", "ext_loc", ",", "parent_dir_num", ")", "+", "self", ".", "directory_identifier", "+", "b'\\x00'", "*", "(", "self", ".", "len_di", "%", "2", ")" ]
An internal method to generate a string representing this Path Table Record. Parameters: ext_loc - The extent location to place in this Path Table Record. parent_dir_num - The parent directory number to place in this Path Table Record. Returns: A string representing this Path Table Record.
[ "An", "internal", "method", "to", "generate", "a", "string", "representing", "this", "Path", "Table", "Record", "." ]
1e7b77a809e905d67dc71e12d70e850be26b6233
https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/path_table_record.py#L66-L79
train
clalancette/pycdlib
pycdlib/path_table_record.py
PathTableRecord.record_little_endian
def record_little_endian(self): # type: () -> bytes ''' A method to generate a string representing the little endian version of this Path Table Record. Parameters: None. Returns: A string representing the little endian version of this Path Table Record. ''' if not self._initialized: raise pycdlibexception.PyCdlibInternalError('Path Table Record not yet initialized') return self._record(self.extent_location, self.parent_directory_num)
python
def record_little_endian(self): # type: () -> bytes ''' A method to generate a string representing the little endian version of this Path Table Record. Parameters: None. Returns: A string representing the little endian version of this Path Table Record. ''' if not self._initialized: raise pycdlibexception.PyCdlibInternalError('Path Table Record not yet initialized') return self._record(self.extent_location, self.parent_directory_num)
[ "def", "record_little_endian", "(", "self", ")", ":", "# type: () -> bytes", "if", "not", "self", ".", "_initialized", ":", "raise", "pycdlibexception", ".", "PyCdlibInternalError", "(", "'Path Table Record not yet initialized'", ")", "return", "self", ".", "_record", "(", "self", ".", "extent_location", ",", "self", ".", "parent_directory_num", ")" ]
A method to generate a string representing the little endian version of this Path Table Record. Parameters: None. Returns: A string representing the little endian version of this Path Table Record.
[ "A", "method", "to", "generate", "a", "string", "representing", "the", "little", "endian", "version", "of", "this", "Path", "Table", "Record", "." ]
1e7b77a809e905d67dc71e12d70e850be26b6233
https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/path_table_record.py#L81-L95
train
clalancette/pycdlib
pycdlib/path_table_record.py
PathTableRecord.record_big_endian
def record_big_endian(self): # type: () -> bytes ''' A method to generate a string representing the big endian version of this Path Table Record. Parameters: None. Returns: A string representing the big endian version of this Path Table Record. ''' if not self._initialized: raise pycdlibexception.PyCdlibInternalError('Path Table Record not yet initialized') return self._record(utils.swab_32bit(self.extent_location), utils.swab_16bit(self.parent_directory_num))
python
def record_big_endian(self): # type: () -> bytes ''' A method to generate a string representing the big endian version of this Path Table Record. Parameters: None. Returns: A string representing the big endian version of this Path Table Record. ''' if not self._initialized: raise pycdlibexception.PyCdlibInternalError('Path Table Record not yet initialized') return self._record(utils.swab_32bit(self.extent_location), utils.swab_16bit(self.parent_directory_num))
[ "def", "record_big_endian", "(", "self", ")", ":", "# type: () -> bytes", "if", "not", "self", ".", "_initialized", ":", "raise", "pycdlibexception", ".", "PyCdlibInternalError", "(", "'Path Table Record not yet initialized'", ")", "return", "self", ".", "_record", "(", "utils", ".", "swab_32bit", "(", "self", ".", "extent_location", ")", ",", "utils", ".", "swab_16bit", "(", "self", ".", "parent_directory_num", ")", ")" ]
A method to generate a string representing the big endian version of this Path Table Record. Parameters: None. Returns: A string representing the big endian version of this Path Table Record.
[ "A", "method", "to", "generate", "a", "string", "representing", "the", "big", "endian", "version", "of", "this", "Path", "Table", "Record", "." ]
1e7b77a809e905d67dc71e12d70e850be26b6233
https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/path_table_record.py#L97-L112
train
clalancette/pycdlib
pycdlib/path_table_record.py
PathTableRecord._new
def _new(self, name, parent_dir_num): # type: (bytes, int) -> None ''' An internal method to create a new Path Table Record. Parameters: name - The name for this Path Table Record. parent_dir_num - The directory number of the parent of this Path Table Record. Returns: Nothing. ''' self.len_di = len(name) self.xattr_length = 0 # FIXME: we don't support xattr for now self.parent_directory_num = parent_dir_num self.directory_identifier = name self._initialized = True
python
def _new(self, name, parent_dir_num): # type: (bytes, int) -> None ''' An internal method to create a new Path Table Record. Parameters: name - The name for this Path Table Record. parent_dir_num - The directory number of the parent of this Path Table Record. Returns: Nothing. ''' self.len_di = len(name) self.xattr_length = 0 # FIXME: we don't support xattr for now self.parent_directory_num = parent_dir_num self.directory_identifier = name self._initialized = True
[ "def", "_new", "(", "self", ",", "name", ",", "parent_dir_num", ")", ":", "# type: (bytes, int) -> None", "self", ".", "len_di", "=", "len", "(", "name", ")", "self", ".", "xattr_length", "=", "0", "# FIXME: we don't support xattr for now", "self", ".", "parent_directory_num", "=", "parent_dir_num", "self", ".", "directory_identifier", "=", "name", "self", ".", "_initialized", "=", "True" ]
An internal method to create a new Path Table Record. Parameters: name - The name for this Path Table Record. parent_dir_num - The directory number of the parent of this Path Table Record. Returns: Nothing.
[ "An", "internal", "method", "to", "create", "a", "new", "Path", "Table", "Record", "." ]
1e7b77a809e905d67dc71e12d70e850be26b6233
https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/path_table_record.py#L127-L143
train
clalancette/pycdlib
pycdlib/path_table_record.py
PathTableRecord.new_dir
def new_dir(self, name): # type: (bytes) -> None ''' A method to create a new Path Table Record. Parameters: name - The name for this Path Table Record. Returns: Nothing. ''' if self._initialized: raise pycdlibexception.PyCdlibInternalError('Path Table Record already initialized') # Zero for the parent dir num is bogus, but that will get fixed later. self._new(name, 0)
python
def new_dir(self, name): # type: (bytes) -> None ''' A method to create a new Path Table Record. Parameters: name - The name for this Path Table Record. Returns: Nothing. ''' if self._initialized: raise pycdlibexception.PyCdlibInternalError('Path Table Record already initialized') # Zero for the parent dir num is bogus, but that will get fixed later. self._new(name, 0)
[ "def", "new_dir", "(", "self", ",", "name", ")", ":", "# type: (bytes) -> None", "if", "self", ".", "_initialized", ":", "raise", "pycdlibexception", ".", "PyCdlibInternalError", "(", "'Path Table Record already initialized'", ")", "# Zero for the parent dir num is bogus, but that will get fixed later.", "self", ".", "_new", "(", "name", ",", "0", ")" ]
A method to create a new Path Table Record. Parameters: name - The name for this Path Table Record. Returns: Nothing.
[ "A", "method", "to", "create", "a", "new", "Path", "Table", "Record", "." ]
1e7b77a809e905d67dc71e12d70e850be26b6233
https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/path_table_record.py#L160-L174
train
clalancette/pycdlib
pycdlib/path_table_record.py
PathTableRecord.update_extent_location
def update_extent_location(self, extent_loc): # type: (int) -> None ''' A method to update the extent location for this Path Table Record. Parameters: extent_loc - The new extent location. Returns: Nothing. ''' if not self._initialized: raise pycdlibexception.PyCdlibInternalError('Path Table Record not yet initialized') self.extent_location = extent_loc
python
def update_extent_location(self, extent_loc): # type: (int) -> None ''' A method to update the extent location for this Path Table Record. Parameters: extent_loc - The new extent location. Returns: Nothing. ''' if not self._initialized: raise pycdlibexception.PyCdlibInternalError('Path Table Record not yet initialized') self.extent_location = extent_loc
[ "def", "update_extent_location", "(", "self", ",", "extent_loc", ")", ":", "# type: (int) -> None", "if", "not", "self", ".", "_initialized", ":", "raise", "pycdlibexception", ".", "PyCdlibInternalError", "(", "'Path Table Record not yet initialized'", ")", "self", ".", "extent_location", "=", "extent_loc" ]
A method to update the extent location for this Path Table Record. Parameters: extent_loc - The new extent location. Returns: Nothing.
[ "A", "method", "to", "update", "the", "extent", "location", "for", "this", "Path", "Table", "Record", "." ]
1e7b77a809e905d67dc71e12d70e850be26b6233
https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/path_table_record.py#L176-L189
train
clalancette/pycdlib
pycdlib/path_table_record.py
PathTableRecord.update_parent_directory_number
def update_parent_directory_number(self, parent_dir_num): # type: (int) -> None ''' A method to update the parent directory number for this Path Table Record from the directory record. Parameters: parent_dir_num - The new parent directory number to assign to this PTR. Returns: Nothing. ''' if not self._initialized: raise pycdlibexception.PyCdlibInternalError('Path Table Record not yet initialized') self.parent_directory_num = parent_dir_num
python
def update_parent_directory_number(self, parent_dir_num): # type: (int) -> None ''' A method to update the parent directory number for this Path Table Record from the directory record. Parameters: parent_dir_num - The new parent directory number to assign to this PTR. Returns: Nothing. ''' if not self._initialized: raise pycdlibexception.PyCdlibInternalError('Path Table Record not yet initialized') self.parent_directory_num = parent_dir_num
[ "def", "update_parent_directory_number", "(", "self", ",", "parent_dir_num", ")", ":", "# type: (int) -> None", "if", "not", "self", ".", "_initialized", ":", "raise", "pycdlibexception", ".", "PyCdlibInternalError", "(", "'Path Table Record not yet initialized'", ")", "self", ".", "parent_directory_num", "=", "parent_dir_num" ]
A method to update the parent directory number for this Path Table Record from the directory record. Parameters: parent_dir_num - The new parent directory number to assign to this PTR. Returns: Nothing.
[ "A", "method", "to", "update", "the", "parent", "directory", "number", "for", "this", "Path", "Table", "Record", "from", "the", "directory", "record", "." ]
1e7b77a809e905d67dc71e12d70e850be26b6233
https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/path_table_record.py#L191-L204
train
clalancette/pycdlib
pycdlib/path_table_record.py
PathTableRecord.equal_to_be
def equal_to_be(self, be_record): # type: (PathTableRecord) -> bool ''' A method to compare a little-endian path table record to its big-endian counterpart. This is used to ensure that the ISO is sane. Parameters: be_record - The big-endian object to compare with the little-endian object. Returns: True if this record is equal to the big-endian record passed in, False otherwise. ''' if not self._initialized: raise pycdlibexception.PyCdlibInternalError('This Path Table Record is not yet initialized') if be_record.len_di != self.len_di or \ be_record.xattr_length != self.xattr_length or \ utils.swab_32bit(be_record.extent_location) != self.extent_location or \ utils.swab_16bit(be_record.parent_directory_num) != self.parent_directory_num or \ be_record.directory_identifier != self.directory_identifier: return False return True
python
def equal_to_be(self, be_record): # type: (PathTableRecord) -> bool ''' A method to compare a little-endian path table record to its big-endian counterpart. This is used to ensure that the ISO is sane. Parameters: be_record - The big-endian object to compare with the little-endian object. Returns: True if this record is equal to the big-endian record passed in, False otherwise. ''' if not self._initialized: raise pycdlibexception.PyCdlibInternalError('This Path Table Record is not yet initialized') if be_record.len_di != self.len_di or \ be_record.xattr_length != self.xattr_length or \ utils.swab_32bit(be_record.extent_location) != self.extent_location or \ utils.swab_16bit(be_record.parent_directory_num) != self.parent_directory_num or \ be_record.directory_identifier != self.directory_identifier: return False return True
[ "def", "equal_to_be", "(", "self", ",", "be_record", ")", ":", "# type: (PathTableRecord) -> bool", "if", "not", "self", ".", "_initialized", ":", "raise", "pycdlibexception", ".", "PyCdlibInternalError", "(", "'This Path Table Record is not yet initialized'", ")", "if", "be_record", ".", "len_di", "!=", "self", ".", "len_di", "or", "be_record", ".", "xattr_length", "!=", "self", ".", "xattr_length", "or", "utils", ".", "swab_32bit", "(", "be_record", ".", "extent_location", ")", "!=", "self", ".", "extent_location", "or", "utils", ".", "swab_16bit", "(", "be_record", ".", "parent_directory_num", ")", "!=", "self", ".", "parent_directory_num", "or", "be_record", ".", "directory_identifier", "!=", "self", ".", "directory_identifier", ":", "return", "False", "return", "True" ]
A method to compare a little-endian path table record to its big-endian counterpart. This is used to ensure that the ISO is sane. Parameters: be_record - The big-endian object to compare with the little-endian object. Returns: True if this record is equal to the big-endian record passed in, False otherwise.
[ "A", "method", "to", "compare", "a", "little", "-", "endian", "path", "table", "record", "to", "its", "big", "-", "endian", "counterpart", ".", "This", "is", "used", "to", "ensure", "that", "the", "ISO", "is", "sane", "." ]
1e7b77a809e905d67dc71e12d70e850be26b6233
https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/path_table_record.py#L206-L228
train
clalancette/pycdlib
pycdlib/utils.py
copy_data
def copy_data(data_length, blocksize, infp, outfp): # type: (int, int, BinaryIO, BinaryIO) -> None ''' A utility function to copy data from the input file object to the output file object. This function will use the most efficient copy method available, which is often sendfile. Parameters: data_length - The amount of data to copy. blocksize - How much data to copy per iteration. infp - The file object to copy data from. outfp - The file object to copy data to. Returns: Nothing. ''' use_sendfile = False if have_sendfile: # Python 3 implements the fileno method for all file-like objects, so # we can't just use the existence of the method to tell whether it is # available. Instead, we try to assign it, and if we fail, then we # assume it is not available. try: x_unused = infp.fileno() # NOQA y_unused = outfp.fileno() # NOQA use_sendfile = True except (AttributeError, io.UnsupportedOperation): pass if use_sendfile: # This is one of those instances where using the file object and the # file descriptor causes problems. The sendfile() call actually updates # the underlying file descriptor, but the file object does not know # about it. To get around this, we instead get the offset, allow # sendfile() to update the offset, then manually seek the file object # to the right location. This ensures that the file object gets updated # properly. in_offset = infp.tell() out_offset = outfp.tell() sendfile(outfp.fileno(), infp.fileno(), in_offset, data_length) infp.seek(in_offset + data_length) outfp.seek(out_offset + data_length) else: left = data_length readsize = blocksize while left > 0: if left < readsize: readsize = left data = infp.read(readsize) # We have seen ISOs in the wild (Tribes Vengeance 1of4.iso) that # lie about the size of their files, causing reads to fail (since # we hit EOF before the supposed end of the file). If we are using # sendfile above, sendfile just silently returns as much data as it # can, with no additional checking. We should do the same here, so # if we got less data than we asked for, abort the loop silently. data_len = len(data) if data_len != readsize: data_len = left outfp.write(data) left -= data_len
python
def copy_data(data_length, blocksize, infp, outfp): # type: (int, int, BinaryIO, BinaryIO) -> None ''' A utility function to copy data from the input file object to the output file object. This function will use the most efficient copy method available, which is often sendfile. Parameters: data_length - The amount of data to copy. blocksize - How much data to copy per iteration. infp - The file object to copy data from. outfp - The file object to copy data to. Returns: Nothing. ''' use_sendfile = False if have_sendfile: # Python 3 implements the fileno method for all file-like objects, so # we can't just use the existence of the method to tell whether it is # available. Instead, we try to assign it, and if we fail, then we # assume it is not available. try: x_unused = infp.fileno() # NOQA y_unused = outfp.fileno() # NOQA use_sendfile = True except (AttributeError, io.UnsupportedOperation): pass if use_sendfile: # This is one of those instances where using the file object and the # file descriptor causes problems. The sendfile() call actually updates # the underlying file descriptor, but the file object does not know # about it. To get around this, we instead get the offset, allow # sendfile() to update the offset, then manually seek the file object # to the right location. This ensures that the file object gets updated # properly. in_offset = infp.tell() out_offset = outfp.tell() sendfile(outfp.fileno(), infp.fileno(), in_offset, data_length) infp.seek(in_offset + data_length) outfp.seek(out_offset + data_length) else: left = data_length readsize = blocksize while left > 0: if left < readsize: readsize = left data = infp.read(readsize) # We have seen ISOs in the wild (Tribes Vengeance 1of4.iso) that # lie about the size of their files, causing reads to fail (since # we hit EOF before the supposed end of the file). If we are using # sendfile above, sendfile just silently returns as much data as it # can, with no additional checking. We should do the same here, so # if we got less data than we asked for, abort the loop silently. data_len = len(data) if data_len != readsize: data_len = left outfp.write(data) left -= data_len
[ "def", "copy_data", "(", "data_length", ",", "blocksize", ",", "infp", ",", "outfp", ")", ":", "# type: (int, int, BinaryIO, BinaryIO) -> None", "use_sendfile", "=", "False", "if", "have_sendfile", ":", "# Python 3 implements the fileno method for all file-like objects, so", "# we can't just use the existence of the method to tell whether it is", "# available. Instead, we try to assign it, and if we fail, then we", "# assume it is not available.", "try", ":", "x_unused", "=", "infp", ".", "fileno", "(", ")", "# NOQA", "y_unused", "=", "outfp", ".", "fileno", "(", ")", "# NOQA", "use_sendfile", "=", "True", "except", "(", "AttributeError", ",", "io", ".", "UnsupportedOperation", ")", ":", "pass", "if", "use_sendfile", ":", "# This is one of those instances where using the file object and the", "# file descriptor causes problems. The sendfile() call actually updates", "# the underlying file descriptor, but the file object does not know", "# about it. To get around this, we instead get the offset, allow", "# sendfile() to update the offset, then manually seek the file object", "# to the right location. This ensures that the file object gets updated", "# properly.", "in_offset", "=", "infp", ".", "tell", "(", ")", "out_offset", "=", "outfp", ".", "tell", "(", ")", "sendfile", "(", "outfp", ".", "fileno", "(", ")", ",", "infp", ".", "fileno", "(", ")", ",", "in_offset", ",", "data_length", ")", "infp", ".", "seek", "(", "in_offset", "+", "data_length", ")", "outfp", ".", "seek", "(", "out_offset", "+", "data_length", ")", "else", ":", "left", "=", "data_length", "readsize", "=", "blocksize", "while", "left", ">", "0", ":", "if", "left", "<", "readsize", ":", "readsize", "=", "left", "data", "=", "infp", ".", "read", "(", "readsize", ")", "# We have seen ISOs in the wild (Tribes Vengeance 1of4.iso) that", "# lie about the size of their files, causing reads to fail (since", "# we hit EOF before the supposed end of the file). If we are using", "# sendfile above, sendfile just silently returns as much data as it", "# can, with no additional checking. We should do the same here, so", "# if we got less data than we asked for, abort the loop silently.", "data_len", "=", "len", "(", "data", ")", "if", "data_len", "!=", "readsize", ":", "data_len", "=", "left", "outfp", ".", "write", "(", "data", ")", "left", "-=", "data_len" ]
A utility function to copy data from the input file object to the output file object. This function will use the most efficient copy method available, which is often sendfile. Parameters: data_length - The amount of data to copy. blocksize - How much data to copy per iteration. infp - The file object to copy data from. outfp - The file object to copy data to. Returns: Nothing.
[ "A", "utility", "function", "to", "copy", "data", "from", "the", "input", "file", "object", "to", "the", "output", "file", "object", ".", "This", "function", "will", "use", "the", "most", "efficient", "copy", "method", "available", "which", "is", "often", "sendfile", "." ]
1e7b77a809e905d67dc71e12d70e850be26b6233
https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/utils.py#L93-L151
train
clalancette/pycdlib
pycdlib/utils.py
encode_space_pad
def encode_space_pad(instr, length, encoding): # type: (bytes, int, str) -> bytes ''' A function to pad out an input string with spaces to the length specified. The space is first encoded into the specified encoding, then appended to the input string until the length is reached. Parameters: instr - The input string to encode and pad. length - The length to pad the input string to. encoding - The encoding to use. Returns: The input string encoded in the encoding and padded with encoded spaces. ''' output = instr.decode('utf-8').encode(encoding) if len(output) > length: raise pycdlibexception.PyCdlibInvalidInput('Input string too long!') encoded_space = ' '.encode(encoding) left = length - len(output) while left > 0: output += encoded_space left -= len(encoded_space) if left < 0: output = output[:left] return output
python
def encode_space_pad(instr, length, encoding): # type: (bytes, int, str) -> bytes ''' A function to pad out an input string with spaces to the length specified. The space is first encoded into the specified encoding, then appended to the input string until the length is reached. Parameters: instr - The input string to encode and pad. length - The length to pad the input string to. encoding - The encoding to use. Returns: The input string encoded in the encoding and padded with encoded spaces. ''' output = instr.decode('utf-8').encode(encoding) if len(output) > length: raise pycdlibexception.PyCdlibInvalidInput('Input string too long!') encoded_space = ' '.encode(encoding) left = length - len(output) while left > 0: output += encoded_space left -= len(encoded_space) if left < 0: output = output[:left] return output
[ "def", "encode_space_pad", "(", "instr", ",", "length", ",", "encoding", ")", ":", "# type: (bytes, int, str) -> bytes", "output", "=", "instr", ".", "decode", "(", "'utf-8'", ")", ".", "encode", "(", "encoding", ")", "if", "len", "(", "output", ")", ">", "length", ":", "raise", "pycdlibexception", ".", "PyCdlibInvalidInput", "(", "'Input string too long!'", ")", "encoded_space", "=", "' '", ".", "encode", "(", "encoding", ")", "left", "=", "length", "-", "len", "(", "output", ")", "while", "left", ">", "0", ":", "output", "+=", "encoded_space", "left", "-=", "len", "(", "encoded_space", ")", "if", "left", "<", "0", ":", "output", "=", "output", "[", ":", "left", "]", "return", "output" ]
A function to pad out an input string with spaces to the length specified. The space is first encoded into the specified encoding, then appended to the input string until the length is reached. Parameters: instr - The input string to encode and pad. length - The length to pad the input string to. encoding - The encoding to use. Returns: The input string encoded in the encoding and padded with encoded spaces.
[ "A", "function", "to", "pad", "out", "an", "input", "string", "with", "spaces", "to", "the", "length", "specified", ".", "The", "space", "is", "first", "encoded", "into", "the", "specified", "encoding", "then", "appended", "to", "the", "input", "string", "until", "the", "length", "is", "reached", "." ]
1e7b77a809e905d67dc71e12d70e850be26b6233
https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/utils.py#L154-L182
train
clalancette/pycdlib
pycdlib/utils.py
gmtoffset_from_tm
def gmtoffset_from_tm(tm, local): # type: (float, time.struct_time) -> int ''' A function to compute the GMT offset from the time in seconds since the epoch and the local time object. Parameters: tm - The time in seconds since the epoch. local - The struct_time object representing the local time. Returns: The gmtoffset. ''' gmtime = time.gmtime(tm) tmpyear = gmtime.tm_year - local.tm_year tmpyday = gmtime.tm_yday - local.tm_yday tmphour = gmtime.tm_hour - local.tm_hour tmpmin = gmtime.tm_min - local.tm_min if tmpyday < 0: tmpyday = -1 else: if tmpyear > 0: tmpyday = 1 return -(tmpmin + 60 * (tmphour + 24 * tmpyday)) // 15
python
def gmtoffset_from_tm(tm, local): # type: (float, time.struct_time) -> int ''' A function to compute the GMT offset from the time in seconds since the epoch and the local time object. Parameters: tm - The time in seconds since the epoch. local - The struct_time object representing the local time. Returns: The gmtoffset. ''' gmtime = time.gmtime(tm) tmpyear = gmtime.tm_year - local.tm_year tmpyday = gmtime.tm_yday - local.tm_yday tmphour = gmtime.tm_hour - local.tm_hour tmpmin = gmtime.tm_min - local.tm_min if tmpyday < 0: tmpyday = -1 else: if tmpyear > 0: tmpyday = 1 return -(tmpmin + 60 * (tmphour + 24 * tmpyday)) // 15
[ "def", "gmtoffset_from_tm", "(", "tm", ",", "local", ")", ":", "# type: (float, time.struct_time) -> int", "gmtime", "=", "time", ".", "gmtime", "(", "tm", ")", "tmpyear", "=", "gmtime", ".", "tm_year", "-", "local", ".", "tm_year", "tmpyday", "=", "gmtime", ".", "tm_yday", "-", "local", ".", "tm_yday", "tmphour", "=", "gmtime", ".", "tm_hour", "-", "local", ".", "tm_hour", "tmpmin", "=", "gmtime", ".", "tm_min", "-", "local", ".", "tm_min", "if", "tmpyday", "<", "0", ":", "tmpyday", "=", "-", "1", "else", ":", "if", "tmpyear", ">", "0", ":", "tmpyday", "=", "1", "return", "-", "(", "tmpmin", "+", "60", "*", "(", "tmphour", "+", "24", "*", "tmpyday", ")", ")", "//", "15" ]
A function to compute the GMT offset from the time in seconds since the epoch and the local time object. Parameters: tm - The time in seconds since the epoch. local - The struct_time object representing the local time. Returns: The gmtoffset.
[ "A", "function", "to", "compute", "the", "GMT", "offset", "from", "the", "time", "in", "seconds", "since", "the", "epoch", "and", "the", "local", "time", "object", "." ]
1e7b77a809e905d67dc71e12d70e850be26b6233
https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/utils.py#L223-L246
train
clalancette/pycdlib
pycdlib/utils.py
zero_pad
def zero_pad(fp, data_size, pad_size): # type: (BinaryIO, int, int) -> None ''' A function to write padding out from data_size up to pad_size efficiently. Parameters: fp - The file object to use to write padding out to. data_size - The current size of the data. pad_size - The boundary size of data to pad out to. Returns: Nothing. ''' padbytes = pad_size - (data_size % pad_size) if padbytes == pad_size: # Nothing to pad, get out. return fp.seek(padbytes - 1, os.SEEK_CUR) fp.write(b'\x00')
python
def zero_pad(fp, data_size, pad_size): # type: (BinaryIO, int, int) -> None ''' A function to write padding out from data_size up to pad_size efficiently. Parameters: fp - The file object to use to write padding out to. data_size - The current size of the data. pad_size - The boundary size of data to pad out to. Returns: Nothing. ''' padbytes = pad_size - (data_size % pad_size) if padbytes == pad_size: # Nothing to pad, get out. return fp.seek(padbytes - 1, os.SEEK_CUR) fp.write(b'\x00')
[ "def", "zero_pad", "(", "fp", ",", "data_size", ",", "pad_size", ")", ":", "# type: (BinaryIO, int, int) -> None", "padbytes", "=", "pad_size", "-", "(", "data_size", "%", "pad_size", ")", "if", "padbytes", "==", "pad_size", ":", "# Nothing to pad, get out.", "return", "fp", ".", "seek", "(", "padbytes", "-", "1", ",", "os", ".", "SEEK_CUR", ")", "fp", ".", "write", "(", "b'\\x00'", ")" ]
A function to write padding out from data_size up to pad_size efficiently. Parameters: fp - The file object to use to write padding out to. data_size - The current size of the data. pad_size - The boundary size of data to pad out to. Returns: Nothing.
[ "A", "function", "to", "write", "padding", "out", "from", "data_size", "up", "to", "pad_size", "efficiently", "." ]
1e7b77a809e905d67dc71e12d70e850be26b6233
https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/utils.py#L249-L268
train