repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
networks-lab/metaknowledge
metaknowledge/recordCollection.py
makeNodeTuple
def makeNodeTuple(citation, idVal, nodeInfo, fullInfo, nodeType, count, coreCitesDict, coreValues, detailedValues, addCR): """Makes a tuple of idVal and a dict of the selected attributes""" d = {} if nodeInfo: if nodeType == 'full': if coreValues: if citation in coreCitesDict: R = coreCitesDict[citation] d['MK-ID'] = R.id if not detailedValues: infoVals = [] for tag in coreValues: tagVal = R.get(tag) if isinstance(tagVal, str): infoVals.append(tagVal.replace(',','')) elif isinstance(tagVal, list): infoVals.append(tagVal[0].replace(',','')) else: pass d['info'] = ', '.join(infoVals) else: for tag in coreValues: v = R.get(tag, None) if isinstance(v, list): d[tag] = '|'.join(sorted(v)) else: d[tag] = v d['inCore'] = True if addCR: d['citations'] = '|'.join((str(c) for c in R.get('citations', []))) else: d['MK-ID'] = 'None' d['info'] = citation.allButDOI() d['inCore'] = False if addCR: d['citations'] = '' else: d['info'] = citation.allButDOI() elif nodeType == 'journal': if citation.isJournal(): d['info'] = str(citation.FullJournalName()) else: d['info'] = "None" elif nodeType == 'original': d['info'] = str(citation) else: d['info'] = idVal if fullInfo: d['fullCite'] = str(citation) if count: d['count'] = 1 return (idVal, d)
python
def makeNodeTuple(citation, idVal, nodeInfo, fullInfo, nodeType, count, coreCitesDict, coreValues, detailedValues, addCR): """Makes a tuple of idVal and a dict of the selected attributes""" d = {} if nodeInfo: if nodeType == 'full': if coreValues: if citation in coreCitesDict: R = coreCitesDict[citation] d['MK-ID'] = R.id if not detailedValues: infoVals = [] for tag in coreValues: tagVal = R.get(tag) if isinstance(tagVal, str): infoVals.append(tagVal.replace(',','')) elif isinstance(tagVal, list): infoVals.append(tagVal[0].replace(',','')) else: pass d['info'] = ', '.join(infoVals) else: for tag in coreValues: v = R.get(tag, None) if isinstance(v, list): d[tag] = '|'.join(sorted(v)) else: d[tag] = v d['inCore'] = True if addCR: d['citations'] = '|'.join((str(c) for c in R.get('citations', []))) else: d['MK-ID'] = 'None' d['info'] = citation.allButDOI() d['inCore'] = False if addCR: d['citations'] = '' else: d['info'] = citation.allButDOI() elif nodeType == 'journal': if citation.isJournal(): d['info'] = str(citation.FullJournalName()) else: d['info'] = "None" elif nodeType == 'original': d['info'] = str(citation) else: d['info'] = idVal if fullInfo: d['fullCite'] = str(citation) if count: d['count'] = 1 return (idVal, d)
[ "def", "makeNodeTuple", "(", "citation", ",", "idVal", ",", "nodeInfo", ",", "fullInfo", ",", "nodeType", ",", "count", ",", "coreCitesDict", ",", "coreValues", ",", "detailedValues", ",", "addCR", ")", ":", "d", "=", "{", "}", "if", "nodeInfo", ":", "if", "nodeType", "==", "'full'", ":", "if", "coreValues", ":", "if", "citation", "in", "coreCitesDict", ":", "R", "=", "coreCitesDict", "[", "citation", "]", "d", "[", "'MK-ID'", "]", "=", "R", ".", "id", "if", "not", "detailedValues", ":", "infoVals", "=", "[", "]", "for", "tag", "in", "coreValues", ":", "tagVal", "=", "R", ".", "get", "(", "tag", ")", "if", "isinstance", "(", "tagVal", ",", "str", ")", ":", "infoVals", ".", "append", "(", "tagVal", ".", "replace", "(", "','", ",", "''", ")", ")", "elif", "isinstance", "(", "tagVal", ",", "list", ")", ":", "infoVals", ".", "append", "(", "tagVal", "[", "0", "]", ".", "replace", "(", "','", ",", "''", ")", ")", "else", ":", "pass", "d", "[", "'info'", "]", "=", "', '", ".", "join", "(", "infoVals", ")", "else", ":", "for", "tag", "in", "coreValues", ":", "v", "=", "R", ".", "get", "(", "tag", ",", "None", ")", "if", "isinstance", "(", "v", ",", "list", ")", ":", "d", "[", "tag", "]", "=", "'|'", ".", "join", "(", "sorted", "(", "v", ")", ")", "else", ":", "d", "[", "tag", "]", "=", "v", "d", "[", "'inCore'", "]", "=", "True", "if", "addCR", ":", "d", "[", "'citations'", "]", "=", "'|'", ".", "join", "(", "(", "str", "(", "c", ")", "for", "c", "in", "R", ".", "get", "(", "'citations'", ",", "[", "]", ")", ")", ")", "else", ":", "d", "[", "'MK-ID'", "]", "=", "'None'", "d", "[", "'info'", "]", "=", "citation", ".", "allButDOI", "(", ")", "d", "[", "'inCore'", "]", "=", "False", "if", "addCR", ":", "d", "[", "'citations'", "]", "=", "''", "else", ":", "d", "[", "'info'", "]", "=", "citation", ".", "allButDOI", "(", ")", "elif", "nodeType", "==", "'journal'", ":", "if", "citation", ".", "isJournal", "(", ")", ":", "d", "[", "'info'", "]", "=", "str", "(", "citation", ".", "FullJournalName", "(", ")", ")", "else", ":", "d", "[", "'info'", "]", "=", "\"None\"", "elif", "nodeType", "==", "'original'", ":", "d", "[", "'info'", "]", "=", "str", "(", "citation", ")", "else", ":", "d", "[", "'info'", "]", "=", "idVal", "if", "fullInfo", ":", "d", "[", "'fullCite'", "]", "=", "str", "(", "citation", ")", "if", "count", ":", "d", "[", "'count'", "]", "=", "1", "return", "(", "idVal", ",", "d", ")" ]
Makes a tuple of idVal and a dict of the selected attributes
[ "Makes", "a", "tuple", "of", "idVal", "and", "a", "dict", "of", "the", "selected", "attributes" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/recordCollection.py#L1709-L1760
train
networks-lab/metaknowledge
metaknowledge/recordCollection.py
expandRecs
def expandRecs(G, RecCollect, nodeType, weighted): """Expand all the citations from _RecCollect_""" for Rec in RecCollect: fullCiteList = [makeID(c, nodeType) for c in Rec.createCitation(multiCite = True)] if len(fullCiteList) > 1: for i, citeID1 in enumerate(fullCiteList): if citeID1 in G: for citeID2 in fullCiteList[i + 1:]: if citeID2 not in G: G.add_node(citeID2, **G.node[citeID1]) if weighted: G.add_edge(citeID1, citeID2, weight = 1) else: G.add_edge(citeID1, citeID2) elif weighted: try: G.edges[citeID1, citeID2]['weight'] += 1 except KeyError: G.add_edge(citeID1, citeID2, weight = 1) for e1, e2, data in G.edges(citeID1, data = True): G.add_edge(citeID2, e2, **data)
python
def expandRecs(G, RecCollect, nodeType, weighted): """Expand all the citations from _RecCollect_""" for Rec in RecCollect: fullCiteList = [makeID(c, nodeType) for c in Rec.createCitation(multiCite = True)] if len(fullCiteList) > 1: for i, citeID1 in enumerate(fullCiteList): if citeID1 in G: for citeID2 in fullCiteList[i + 1:]: if citeID2 not in G: G.add_node(citeID2, **G.node[citeID1]) if weighted: G.add_edge(citeID1, citeID2, weight = 1) else: G.add_edge(citeID1, citeID2) elif weighted: try: G.edges[citeID1, citeID2]['weight'] += 1 except KeyError: G.add_edge(citeID1, citeID2, weight = 1) for e1, e2, data in G.edges(citeID1, data = True): G.add_edge(citeID2, e2, **data)
[ "def", "expandRecs", "(", "G", ",", "RecCollect", ",", "nodeType", ",", "weighted", ")", ":", "for", "Rec", "in", "RecCollect", ":", "fullCiteList", "=", "[", "makeID", "(", "c", ",", "nodeType", ")", "for", "c", "in", "Rec", ".", "createCitation", "(", "multiCite", "=", "True", ")", "]", "if", "len", "(", "fullCiteList", ")", ">", "1", ":", "for", "i", ",", "citeID1", "in", "enumerate", "(", "fullCiteList", ")", ":", "if", "citeID1", "in", "G", ":", "for", "citeID2", "in", "fullCiteList", "[", "i", "+", "1", ":", "]", ":", "if", "citeID2", "not", "in", "G", ":", "G", ".", "add_node", "(", "citeID2", ",", "*", "*", "G", ".", "node", "[", "citeID1", "]", ")", "if", "weighted", ":", "G", ".", "add_edge", "(", "citeID1", ",", "citeID2", ",", "weight", "=", "1", ")", "else", ":", "G", ".", "add_edge", "(", "citeID1", ",", "citeID2", ")", "elif", "weighted", ":", "try", ":", "G", ".", "edges", "[", "citeID1", ",", "citeID2", "]", "[", "'weight'", "]", "+=", "1", "except", "KeyError", ":", "G", ".", "add_edge", "(", "citeID1", ",", "citeID2", ",", "weight", "=", "1", ")", "for", "e1", ",", "e2", ",", "data", "in", "G", ".", "edges", "(", "citeID1", ",", "data", "=", "True", ")", ":", "G", ".", "add_edge", "(", "citeID2", ",", "e2", ",", "*", "*", "data", ")" ]
Expand all the citations from _RecCollect_
[ "Expand", "all", "the", "citations", "from", "_RecCollect_" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/recordCollection.py#L1792-L1812
train
networks-lab/metaknowledge
metaknowledge/recordCollection.py
RecordCollection.dropNonJournals
def dropNonJournals(self, ptVal = 'J', dropBad = True, invert = False): """Drops the non journal type `Records` from the collection, this is done by checking _ptVal_ against the PT tag # Parameters _ptVal_ : `optional [str]` > Default `'J'`, The value of the PT tag to be kept, default is `'J'` the journal tag, other tags can be substituted. _dropBad_ : `optional [bool]` > Default `True`, if `True` bad `Records` will be dropped as well those that are not journal entries _invert_ : `optional [bool]` > Default `False`, Set `True` to drop journals (or the PT tag given by _ptVal_) instead of keeping them. **Note**, it still drops bad Records if _dropBad_ is `True` """ if dropBad: self.dropBadEntries() if invert: self._collection = {r for r in self._collection if r['pubType'] != ptVal.upper()} else: self._collection = {r for r in self._collection if r['pubType'] == ptVal.upper()}
python
def dropNonJournals(self, ptVal = 'J', dropBad = True, invert = False): """Drops the non journal type `Records` from the collection, this is done by checking _ptVal_ against the PT tag # Parameters _ptVal_ : `optional [str]` > Default `'J'`, The value of the PT tag to be kept, default is `'J'` the journal tag, other tags can be substituted. _dropBad_ : `optional [bool]` > Default `True`, if `True` bad `Records` will be dropped as well those that are not journal entries _invert_ : `optional [bool]` > Default `False`, Set `True` to drop journals (or the PT tag given by _ptVal_) instead of keeping them. **Note**, it still drops bad Records if _dropBad_ is `True` """ if dropBad: self.dropBadEntries() if invert: self._collection = {r for r in self._collection if r['pubType'] != ptVal.upper()} else: self._collection = {r for r in self._collection if r['pubType'] == ptVal.upper()}
[ "def", "dropNonJournals", "(", "self", ",", "ptVal", "=", "'J'", ",", "dropBad", "=", "True", ",", "invert", "=", "False", ")", ":", "if", "dropBad", ":", "self", ".", "dropBadEntries", "(", ")", "if", "invert", ":", "self", ".", "_collection", "=", "{", "r", "for", "r", "in", "self", ".", "_collection", "if", "r", "[", "'pubType'", "]", "!=", "ptVal", ".", "upper", "(", ")", "}", "else", ":", "self", ".", "_collection", "=", "{", "r", "for", "r", "in", "self", ".", "_collection", "if", "r", "[", "'pubType'", "]", "==", "ptVal", ".", "upper", "(", ")", "}" ]
Drops the non journal type `Records` from the collection, this is done by checking _ptVal_ against the PT tag # Parameters _ptVal_ : `optional [str]` > Default `'J'`, The value of the PT tag to be kept, default is `'J'` the journal tag, other tags can be substituted. _dropBad_ : `optional [bool]` > Default `True`, if `True` bad `Records` will be dropped as well those that are not journal entries _invert_ : `optional [bool]` > Default `False`, Set `True` to drop journals (or the PT tag given by _ptVal_) instead of keeping them. **Note**, it still drops bad Records if _dropBad_ is `True`
[ "Drops", "the", "non", "journal", "type", "Records", "from", "the", "collection", "this", "is", "done", "by", "checking", "_ptVal_", "against", "the", "PT", "tag" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/recordCollection.py#L192-L214
train
networks-lab/metaknowledge
metaknowledge/recordCollection.py
RecordCollection.writeFile
def writeFile(self, fname = None): """Writes the `RecordCollection` to a file, the written file's format is identical to those download from WOS. The order of `Records` written is random. # Parameters _fname_ : `optional [str]` > Default `None`, if given the output file will written to _fanme_, if `None` the `RecordCollection`'s name's first 200 characters are used with the suffix .isi """ if len(self._collectedTypes) < 2: recEncoding = self.peek().encoding() else: recEncoding = 'utf-8' if fname: f = open(fname, mode = 'w', encoding = recEncoding) else: f = open(self.name[:200] + '.txt', mode = 'w', encoding = recEncoding) if self._collectedTypes == {'WOSRecord'}: f.write("\ufeffFN Thomson Reuters Web of Science\u2122\n") f.write("VR 1.0\n") elif self._collectedTypes == {'MedlineRecord'}: f.write('\n') elif self._collectedTypes == {'ScopusRecord'}: f.write("\ufeff{}\n".format(','.join(scopusHeader))) for R in self._collection: R.writeRecord(f) f.write('\n') if self._collectedTypes == {'WOSRecord'}: f.write('EF') f.close()
python
def writeFile(self, fname = None): """Writes the `RecordCollection` to a file, the written file's format is identical to those download from WOS. The order of `Records` written is random. # Parameters _fname_ : `optional [str]` > Default `None`, if given the output file will written to _fanme_, if `None` the `RecordCollection`'s name's first 200 characters are used with the suffix .isi """ if len(self._collectedTypes) < 2: recEncoding = self.peek().encoding() else: recEncoding = 'utf-8' if fname: f = open(fname, mode = 'w', encoding = recEncoding) else: f = open(self.name[:200] + '.txt', mode = 'w', encoding = recEncoding) if self._collectedTypes == {'WOSRecord'}: f.write("\ufeffFN Thomson Reuters Web of Science\u2122\n") f.write("VR 1.0\n") elif self._collectedTypes == {'MedlineRecord'}: f.write('\n') elif self._collectedTypes == {'ScopusRecord'}: f.write("\ufeff{}\n".format(','.join(scopusHeader))) for R in self._collection: R.writeRecord(f) f.write('\n') if self._collectedTypes == {'WOSRecord'}: f.write('EF') f.close()
[ "def", "writeFile", "(", "self", ",", "fname", "=", "None", ")", ":", "if", "len", "(", "self", ".", "_collectedTypes", ")", "<", "2", ":", "recEncoding", "=", "self", ".", "peek", "(", ")", ".", "encoding", "(", ")", "else", ":", "recEncoding", "=", "'utf-8'", "if", "fname", ":", "f", "=", "open", "(", "fname", ",", "mode", "=", "'w'", ",", "encoding", "=", "recEncoding", ")", "else", ":", "f", "=", "open", "(", "self", ".", "name", "[", ":", "200", "]", "+", "'.txt'", ",", "mode", "=", "'w'", ",", "encoding", "=", "recEncoding", ")", "if", "self", ".", "_collectedTypes", "==", "{", "'WOSRecord'", "}", ":", "f", ".", "write", "(", "\"\\ufeffFN Thomson Reuters Web of Science\\u2122\\n\"", ")", "f", ".", "write", "(", "\"VR 1.0\\n\"", ")", "elif", "self", ".", "_collectedTypes", "==", "{", "'MedlineRecord'", "}", ":", "f", ".", "write", "(", "'\\n'", ")", "elif", "self", ".", "_collectedTypes", "==", "{", "'ScopusRecord'", "}", ":", "f", ".", "write", "(", "\"\\ufeff{}\\n\"", ".", "format", "(", "','", ".", "join", "(", "scopusHeader", ")", ")", ")", "for", "R", "in", "self", ".", "_collection", ":", "R", ".", "writeRecord", "(", "f", ")", "f", ".", "write", "(", "'\\n'", ")", "if", "self", ".", "_collectedTypes", "==", "{", "'WOSRecord'", "}", ":", "f", ".", "write", "(", "'EF'", ")", "f", ".", "close", "(", ")" ]
Writes the `RecordCollection` to a file, the written file's format is identical to those download from WOS. The order of `Records` written is random. # Parameters _fname_ : `optional [str]` > Default `None`, if given the output file will written to _fanme_, if `None` the `RecordCollection`'s name's first 200 characters are used with the suffix .isi
[ "Writes", "the", "RecordCollection", "to", "a", "file", "the", "written", "file", "s", "format", "is", "identical", "to", "those", "download", "from", "WOS", ".", "The", "order", "of", "Records", "written", "is", "random", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/recordCollection.py#L216-L245
train
networks-lab/metaknowledge
metaknowledge/recordCollection.py
RecordCollection.writeBib
def writeBib(self, fname = None, maxStringLength = 1000, wosMode = False, reducedOutput = False, niceIDs = True): """Writes a bibTex entry to _fname_ for each `Record` in the collection. If the Record is of a journal article (PT J) the bibtext type is set to `'article'`, otherwise it is set to `'misc'`. The ID of the entry is the WOS number and all the Record's fields are given as entries with their long names. **Note** This is not meant to be used directly with LaTeX none of the special characters have been escaped and there are a large number of unnecessary fields provided. _niceID_ and _maxLength_ have been provided to make conversions easier only. **Note** Record entries that are lists have their values separated with the string `' and '`, as this is the way bibTex understands # Parameters _fname_ : `optional [str]` > Default `None`, The name of the file to be written. If not given one will be derived from the collection and the file will be written to . _maxStringLength_ : `optional [int]` > Default 1000, The max length for a continuous string. Most bibTex implementation only allow string to be up to 1000 characters ([source](https://www.cs.arizona.edu/~collberg/Teaching/07.231/BibTeX/bibtex.html)), this splits them up into substrings then uses the native string concatenation (the `'#'` character) to allow for longer strings _WOSMode_ : `optional [bool]` > Default `False`, if `True` the data produced will be unprocessed and use double curly braces. This is the style WOS produces bib files in and mostly macthes that. _restrictedOutput_ : `optional [bool]` > Default `False`, if `True` the tags output will be limited to: `'AF'`, `'BF'`, `'ED'`, `'TI'`, `'SO'`, `'LA'`, `'NR'`, `'TC'`, `'Z9'`, `'PU'`, `'J9'`, `'PY'`, `'PD'`, `'VL'`, `'IS'`, `'SU'`, `'PG'`, `'DI'`, `'D2'`, and `'UT'` _niceID_ : `optional [bool]` > Default `True`, if `True` the IDs used will be derived from the authors, publishing date and title, if `False` it will be the UT tag """ if fname: f = open(fname, mode = 'w', encoding = 'utf-8') else: f = open(self.name[:200] + '.bib', mode = 'w', encoding = 'utf-8') f.write("%This file was generated by the metaknowledge Python package.\n%The contents have been automatically generated and are likely to not work with\n%LaTeX without some human intervention. This file is meant for other automatic\n%systems and not to be used directly for making citations\n") #I figure this is worth mentioning, as someone will get annoyed at none of the special characters being escaped and how terrible some of the fields look to humans for R in self: try: f.write('\n\n') f.write(R.bibString(maxLength = maxStringLength, WOSMode = wosMode, restrictedOutput = reducedOutput, niceID = niceIDs)) except BadWOSRecord: pass except AttributeError: raise RecordsNotCompatible("The Record '{}', with ID '{}' does not support writing to bibtext files.".format(R, R.id)) f.close()
python
def writeBib(self, fname = None, maxStringLength = 1000, wosMode = False, reducedOutput = False, niceIDs = True): """Writes a bibTex entry to _fname_ for each `Record` in the collection. If the Record is of a journal article (PT J) the bibtext type is set to `'article'`, otherwise it is set to `'misc'`. The ID of the entry is the WOS number and all the Record's fields are given as entries with their long names. **Note** This is not meant to be used directly with LaTeX none of the special characters have been escaped and there are a large number of unnecessary fields provided. _niceID_ and _maxLength_ have been provided to make conversions easier only. **Note** Record entries that are lists have their values separated with the string `' and '`, as this is the way bibTex understands # Parameters _fname_ : `optional [str]` > Default `None`, The name of the file to be written. If not given one will be derived from the collection and the file will be written to . _maxStringLength_ : `optional [int]` > Default 1000, The max length for a continuous string. Most bibTex implementation only allow string to be up to 1000 characters ([source](https://www.cs.arizona.edu/~collberg/Teaching/07.231/BibTeX/bibtex.html)), this splits them up into substrings then uses the native string concatenation (the `'#'` character) to allow for longer strings _WOSMode_ : `optional [bool]` > Default `False`, if `True` the data produced will be unprocessed and use double curly braces. This is the style WOS produces bib files in and mostly macthes that. _restrictedOutput_ : `optional [bool]` > Default `False`, if `True` the tags output will be limited to: `'AF'`, `'BF'`, `'ED'`, `'TI'`, `'SO'`, `'LA'`, `'NR'`, `'TC'`, `'Z9'`, `'PU'`, `'J9'`, `'PY'`, `'PD'`, `'VL'`, `'IS'`, `'SU'`, `'PG'`, `'DI'`, `'D2'`, and `'UT'` _niceID_ : `optional [bool]` > Default `True`, if `True` the IDs used will be derived from the authors, publishing date and title, if `False` it will be the UT tag """ if fname: f = open(fname, mode = 'w', encoding = 'utf-8') else: f = open(self.name[:200] + '.bib', mode = 'w', encoding = 'utf-8') f.write("%This file was generated by the metaknowledge Python package.\n%The contents have been automatically generated and are likely to not work with\n%LaTeX without some human intervention. This file is meant for other automatic\n%systems and not to be used directly for making citations\n") #I figure this is worth mentioning, as someone will get annoyed at none of the special characters being escaped and how terrible some of the fields look to humans for R in self: try: f.write('\n\n') f.write(R.bibString(maxLength = maxStringLength, WOSMode = wosMode, restrictedOutput = reducedOutput, niceID = niceIDs)) except BadWOSRecord: pass except AttributeError: raise RecordsNotCompatible("The Record '{}', with ID '{}' does not support writing to bibtext files.".format(R, R.id)) f.close()
[ "def", "writeBib", "(", "self", ",", "fname", "=", "None", ",", "maxStringLength", "=", "1000", ",", "wosMode", "=", "False", ",", "reducedOutput", "=", "False", ",", "niceIDs", "=", "True", ")", ":", "if", "fname", ":", "f", "=", "open", "(", "fname", ",", "mode", "=", "'w'", ",", "encoding", "=", "'utf-8'", ")", "else", ":", "f", "=", "open", "(", "self", ".", "name", "[", ":", "200", "]", "+", "'.bib'", ",", "mode", "=", "'w'", ",", "encoding", "=", "'utf-8'", ")", "f", ".", "write", "(", "\"%This file was generated by the metaknowledge Python package.\\n%The contents have been automatically generated and are likely to not work with\\n%LaTeX without some human intervention. This file is meant for other automatic\\n%systems and not to be used directly for making citations\\n\"", ")", "#I figure this is worth mentioning, as someone will get annoyed at none of the special characters being escaped and how terrible some of the fields look to humans", "for", "R", "in", "self", ":", "try", ":", "f", ".", "write", "(", "'\\n\\n'", ")", "f", ".", "write", "(", "R", ".", "bibString", "(", "maxLength", "=", "maxStringLength", ",", "WOSMode", "=", "wosMode", ",", "restrictedOutput", "=", "reducedOutput", ",", "niceID", "=", "niceIDs", ")", ")", "except", "BadWOSRecord", ":", "pass", "except", "AttributeError", ":", "raise", "RecordsNotCompatible", "(", "\"The Record '{}', with ID '{}' does not support writing to bibtext files.\"", ".", "format", "(", "R", ",", "R", ".", "id", ")", ")", "f", ".", "close", "(", ")" ]
Writes a bibTex entry to _fname_ for each `Record` in the collection. If the Record is of a journal article (PT J) the bibtext type is set to `'article'`, otherwise it is set to `'misc'`. The ID of the entry is the WOS number and all the Record's fields are given as entries with their long names. **Note** This is not meant to be used directly with LaTeX none of the special characters have been escaped and there are a large number of unnecessary fields provided. _niceID_ and _maxLength_ have been provided to make conversions easier only. **Note** Record entries that are lists have their values separated with the string `' and '`, as this is the way bibTex understands # Parameters _fname_ : `optional [str]` > Default `None`, The name of the file to be written. If not given one will be derived from the collection and the file will be written to . _maxStringLength_ : `optional [int]` > Default 1000, The max length for a continuous string. Most bibTex implementation only allow string to be up to 1000 characters ([source](https://www.cs.arizona.edu/~collberg/Teaching/07.231/BibTeX/bibtex.html)), this splits them up into substrings then uses the native string concatenation (the `'#'` character) to allow for longer strings _WOSMode_ : `optional [bool]` > Default `False`, if `True` the data produced will be unprocessed and use double curly braces. This is the style WOS produces bib files in and mostly macthes that. _restrictedOutput_ : `optional [bool]` > Default `False`, if `True` the tags output will be limited to: `'AF'`, `'BF'`, `'ED'`, `'TI'`, `'SO'`, `'LA'`, `'NR'`, `'TC'`, `'Z9'`, `'PU'`, `'J9'`, `'PY'`, `'PD'`, `'VL'`, `'IS'`, `'SU'`, `'PG'`, `'DI'`, `'D2'`, and `'UT'` _niceID_ : `optional [bool]` > Default `True`, if `True` the IDs used will be derived from the authors, publishing date and title, if `False` it will be the UT tag
[ "Writes", "a", "bibTex", "entry", "to", "_fname_", "for", "each", "Record", "in", "the", "collection", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/recordCollection.py#L373-L418
train
networks-lab/metaknowledge
metaknowledge/recordCollection.py
RecordCollection.makeDict
def makeDict(self, onlyTheseTags = None, longNames = False, raw = False, numAuthors = True, genderCounts = True): """Returns a dict with each key a tag and the values being lists of the values for each of the Records in the collection, `None` is given when there is no value and they are in the same order across each tag. When used with pandas: `pandas.DataFrame(RC.makeDict())` returns a data frame with each column a tag and each row a Record. # Parameters _onlyTheseTags_ : `optional [iterable]` > Default `None`, if an iterable (list, tuple, etc) only the tags in _onlyTheseTags_ will be used, if not given then all tags in the records are given. > If you want to use all known tags pass [metaknowledge.knownTagsList](./ExtendedRecord.html#metaknowledge.ExtendedRecord.tagProcessingFunc). _longNames_ : `optional [bool]` > Default `False`, if `True` will convert the tags to their longer names, otherwise the short 2 character ones will be used. _cleanedVal_ : `optional [bool]` > Default `True`, if `True` the processed values for each `Record`'s field will be provided, otherwise the raw values are given. _numAuthors_ : `optional [bool]` > Default `True`, if `True` adds the number of authors as the column `'numAuthors'`. """ if onlyTheseTags: for i in range(len(onlyTheseTags)): if onlyTheseTags[i] in fullToTagDict: onlyTheseTags[i] = fullToTagDict[onlyTheseTags[i]] retrievedFields = onlyTheseTags else: retrievedFields = [] for R in self: tagsLst = [t for t in R.keys() if t not in retrievedFields] retrievedFields += tagsLst if longNames: try: retrievedFields = [tagToFullDict[t] for t in retrievedFields] except KeyError: raise KeyError("One of the tags could not be converted to a long name.") retDict = {k : [] for k in retrievedFields} if numAuthors: retDict["num-Authors"] = [] if genderCounts: retDict.update({'num-Male' : [], 'num-Female' : [], 'num-Unknown' : []}) for R in self: if numAuthors: retDict["num-Authors"].append(len(R.get('authorsShort', []))) if genderCounts: m, f, u = R.authGenders(_countsTuple = True) retDict['num-Male'].append(m) retDict['num-Female'].append(f) retDict['num-Unknown'].append(u) for k, v in R.subDict(retrievedFields, raw = raw).items(): retDict[k].append(v) return retDict
python
def makeDict(self, onlyTheseTags = None, longNames = False, raw = False, numAuthors = True, genderCounts = True): """Returns a dict with each key a tag and the values being lists of the values for each of the Records in the collection, `None` is given when there is no value and they are in the same order across each tag. When used with pandas: `pandas.DataFrame(RC.makeDict())` returns a data frame with each column a tag and each row a Record. # Parameters _onlyTheseTags_ : `optional [iterable]` > Default `None`, if an iterable (list, tuple, etc) only the tags in _onlyTheseTags_ will be used, if not given then all tags in the records are given. > If you want to use all known tags pass [metaknowledge.knownTagsList](./ExtendedRecord.html#metaknowledge.ExtendedRecord.tagProcessingFunc). _longNames_ : `optional [bool]` > Default `False`, if `True` will convert the tags to their longer names, otherwise the short 2 character ones will be used. _cleanedVal_ : `optional [bool]` > Default `True`, if `True` the processed values for each `Record`'s field will be provided, otherwise the raw values are given. _numAuthors_ : `optional [bool]` > Default `True`, if `True` adds the number of authors as the column `'numAuthors'`. """ if onlyTheseTags: for i in range(len(onlyTheseTags)): if onlyTheseTags[i] in fullToTagDict: onlyTheseTags[i] = fullToTagDict[onlyTheseTags[i]] retrievedFields = onlyTheseTags else: retrievedFields = [] for R in self: tagsLst = [t for t in R.keys() if t not in retrievedFields] retrievedFields += tagsLst if longNames: try: retrievedFields = [tagToFullDict[t] for t in retrievedFields] except KeyError: raise KeyError("One of the tags could not be converted to a long name.") retDict = {k : [] for k in retrievedFields} if numAuthors: retDict["num-Authors"] = [] if genderCounts: retDict.update({'num-Male' : [], 'num-Female' : [], 'num-Unknown' : []}) for R in self: if numAuthors: retDict["num-Authors"].append(len(R.get('authorsShort', []))) if genderCounts: m, f, u = R.authGenders(_countsTuple = True) retDict['num-Male'].append(m) retDict['num-Female'].append(f) retDict['num-Unknown'].append(u) for k, v in R.subDict(retrievedFields, raw = raw).items(): retDict[k].append(v) return retDict
[ "def", "makeDict", "(", "self", ",", "onlyTheseTags", "=", "None", ",", "longNames", "=", "False", ",", "raw", "=", "False", ",", "numAuthors", "=", "True", ",", "genderCounts", "=", "True", ")", ":", "if", "onlyTheseTags", ":", "for", "i", "in", "range", "(", "len", "(", "onlyTheseTags", ")", ")", ":", "if", "onlyTheseTags", "[", "i", "]", "in", "fullToTagDict", ":", "onlyTheseTags", "[", "i", "]", "=", "fullToTagDict", "[", "onlyTheseTags", "[", "i", "]", "]", "retrievedFields", "=", "onlyTheseTags", "else", ":", "retrievedFields", "=", "[", "]", "for", "R", "in", "self", ":", "tagsLst", "=", "[", "t", "for", "t", "in", "R", ".", "keys", "(", ")", "if", "t", "not", "in", "retrievedFields", "]", "retrievedFields", "+=", "tagsLst", "if", "longNames", ":", "try", ":", "retrievedFields", "=", "[", "tagToFullDict", "[", "t", "]", "for", "t", "in", "retrievedFields", "]", "except", "KeyError", ":", "raise", "KeyError", "(", "\"One of the tags could not be converted to a long name.\"", ")", "retDict", "=", "{", "k", ":", "[", "]", "for", "k", "in", "retrievedFields", "}", "if", "numAuthors", ":", "retDict", "[", "\"num-Authors\"", "]", "=", "[", "]", "if", "genderCounts", ":", "retDict", ".", "update", "(", "{", "'num-Male'", ":", "[", "]", ",", "'num-Female'", ":", "[", "]", ",", "'num-Unknown'", ":", "[", "]", "}", ")", "for", "R", "in", "self", ":", "if", "numAuthors", ":", "retDict", "[", "\"num-Authors\"", "]", ".", "append", "(", "len", "(", "R", ".", "get", "(", "'authorsShort'", ",", "[", "]", ")", ")", ")", "if", "genderCounts", ":", "m", ",", "f", ",", "u", "=", "R", ".", "authGenders", "(", "_countsTuple", "=", "True", ")", "retDict", "[", "'num-Male'", "]", ".", "append", "(", "m", ")", "retDict", "[", "'num-Female'", "]", ".", "append", "(", "f", ")", "retDict", "[", "'num-Unknown'", "]", ".", "append", "(", "u", ")", "for", "k", ",", "v", "in", "R", ".", "subDict", "(", "retrievedFields", ",", "raw", "=", "raw", ")", ".", "items", "(", ")", ":", "retDict", "[", "k", "]", ".", "append", "(", "v", ")", "return", "retDict" ]
Returns a dict with each key a tag and the values being lists of the values for each of the Records in the collection, `None` is given when there is no value and they are in the same order across each tag. When used with pandas: `pandas.DataFrame(RC.makeDict())` returns a data frame with each column a tag and each row a Record. # Parameters _onlyTheseTags_ : `optional [iterable]` > Default `None`, if an iterable (list, tuple, etc) only the tags in _onlyTheseTags_ will be used, if not given then all tags in the records are given. > If you want to use all known tags pass [metaknowledge.knownTagsList](./ExtendedRecord.html#metaknowledge.ExtendedRecord.tagProcessingFunc). _longNames_ : `optional [bool]` > Default `False`, if `True` will convert the tags to their longer names, otherwise the short 2 character ones will be used. _cleanedVal_ : `optional [bool]` > Default `True`, if `True` the processed values for each `Record`'s field will be provided, otherwise the raw values are given. _numAuthors_ : `optional [bool]` > Default `True`, if `True` adds the number of authors as the column `'numAuthors'`.
[ "Returns", "a", "dict", "with", "each", "key", "a", "tag", "and", "the", "values", "being", "lists", "of", "the", "values", "for", "each", "of", "the", "Records", "in", "the", "collection", "None", "is", "given", "when", "there", "is", "no", "value", "and", "they", "are", "in", "the", "same", "order", "across", "each", "tag", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/recordCollection.py#L698-L753
train
networks-lab/metaknowledge
metaknowledge/recordCollection.py
RecordCollection.getCitations
def getCitations(self, field = None, values = None, pandasFriendly = True, counts = True): """Creates a pandas ready dict with each row a different citation the contained Records and columns containing the original string, year, journal, author's name and the number of times it occured. There are also options to filter the output citations with _field_ and _values_ # Parameters _field_ : `optional str` > Default `None`, if given all citations missing the named field will be dropped. _values_ : `optional str or list[str]` > Default `None`, if _field_ is also given only those citations with one of the strings given in _values_ will be included. > e.g. to get only citations from 1990 or 1991: `field = year, values = [1991, 1990]` _pandasFriendly_ : `optional bool` > Default `True`, if `False` a list of the citations will be returned instead of the more complicated pandas dict _counts_ : `optional bool` > Default `True`, if `False` the counts columns will be removed # Returns `dict` > A pandas ready dict with all the Citations """ retCites = [] if values is not None: if isinstance(values, (str, int, float)) or not isinstance(values, collections.abc.Container): values = [values] for R in self: retCites += R.getCitations(field = field, values = values, pandasFriendly = False) if pandasFriendly: return _pandasPrep(retCites, counts) else: return list(set(retCites))
python
def getCitations(self, field = None, values = None, pandasFriendly = True, counts = True): """Creates a pandas ready dict with each row a different citation the contained Records and columns containing the original string, year, journal, author's name and the number of times it occured. There are also options to filter the output citations with _field_ and _values_ # Parameters _field_ : `optional str` > Default `None`, if given all citations missing the named field will be dropped. _values_ : `optional str or list[str]` > Default `None`, if _field_ is also given only those citations with one of the strings given in _values_ will be included. > e.g. to get only citations from 1990 or 1991: `field = year, values = [1991, 1990]` _pandasFriendly_ : `optional bool` > Default `True`, if `False` a list of the citations will be returned instead of the more complicated pandas dict _counts_ : `optional bool` > Default `True`, if `False` the counts columns will be removed # Returns `dict` > A pandas ready dict with all the Citations """ retCites = [] if values is not None: if isinstance(values, (str, int, float)) or not isinstance(values, collections.abc.Container): values = [values] for R in self: retCites += R.getCitations(field = field, values = values, pandasFriendly = False) if pandasFriendly: return _pandasPrep(retCites, counts) else: return list(set(retCites))
[ "def", "getCitations", "(", "self", ",", "field", "=", "None", ",", "values", "=", "None", ",", "pandasFriendly", "=", "True", ",", "counts", "=", "True", ")", ":", "retCites", "=", "[", "]", "if", "values", "is", "not", "None", ":", "if", "isinstance", "(", "values", ",", "(", "str", ",", "int", ",", "float", ")", ")", "or", "not", "isinstance", "(", "values", ",", "collections", ".", "abc", ".", "Container", ")", ":", "values", "=", "[", "values", "]", "for", "R", "in", "self", ":", "retCites", "+=", "R", ".", "getCitations", "(", "field", "=", "field", ",", "values", "=", "values", ",", "pandasFriendly", "=", "False", ")", "if", "pandasFriendly", ":", "return", "_pandasPrep", "(", "retCites", ",", "counts", ")", "else", ":", "return", "list", "(", "set", "(", "retCites", ")", ")" ]
Creates a pandas ready dict with each row a different citation the contained Records and columns containing the original string, year, journal, author's name and the number of times it occured. There are also options to filter the output citations with _field_ and _values_ # Parameters _field_ : `optional str` > Default `None`, if given all citations missing the named field will be dropped. _values_ : `optional str or list[str]` > Default `None`, if _field_ is also given only those citations with one of the strings given in _values_ will be included. > e.g. to get only citations from 1990 or 1991: `field = year, values = [1991, 1990]` _pandasFriendly_ : `optional bool` > Default `True`, if `False` a list of the citations will be returned instead of the more complicated pandas dict _counts_ : `optional bool` > Default `True`, if `False` the counts columns will be removed # Returns `dict` > A pandas ready dict with all the Citations
[ "Creates", "a", "pandas", "ready", "dict", "with", "each", "row", "a", "different", "citation", "the", "contained", "Records", "and", "columns", "containing", "the", "original", "string", "year", "journal", "author", "s", "name", "and", "the", "number", "of", "times", "it", "occured", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/recordCollection.py#L900-L940
train
networks-lab/metaknowledge
metaknowledge/recordCollection.py
RecordCollection.networkCoCitation
def networkCoCitation(self, dropAnon = True, nodeType = "full", nodeInfo = True, fullInfo = False, weighted = True, dropNonJournals = False, count = True, keyWords = None, detailedCore = True, detailedCoreAttributes = False, coreOnly = False, expandedCore = False, addCR = False): """Creates a co-citation network for the RecordCollection. # Parameters _nodeType_ : `optional [str]` > One of `"full"`, `"original"`, `"author"`, `"journal"` or `"year"`. Specifies the value of the nodes in the graph. The default `"full"` causes the citations to be compared holistically using the [metaknowledge.Citation](./Citation.html#metaknowledge.citation.Citation) builtin comparison operators. `"original"` uses the raw original strings of the citations. While `"author"`, `"journal"` and `"year"` each use the author, journal and year respectively. _dropAnon_ : `optional [bool]` > default `True`, if `True` citations labeled anonymous are removed from the network _nodeInfo_ : `optional [bool]` > default `True`, if `True` an extra piece of information is stored with each node. The extra inforamtion is detemined by _nodeType_. _fullInfo_ : `optional [bool]` > default `False`, if `True` the original citation string is added to the node as an extra value, the attribute is labeled as fullCite _weighted_ : `optional [bool]` > default `True`, wether the edges are weighted. If `True` the edges are weighted by the number of citations. _dropNonJournals_ : `optional [bool]` > default `False`, wether to drop citations of non-journals _count_ : `optional [bool]` > default `True`, causes the number of occurrences of a node to be counted _keyWords_ : `optional [str] or [list[str]]` > A string or list of strings that the citations are checked against, if they contain any of the strings they are removed from the network _detailedCore_ : `optional [bool or iterable[WOS tag Strings]]` > default `True`, if `True` all Citations from the core (those of records in the RecordCollection) and the _nodeType_ is `'full'` all nodes from the core will be given info strings composed of information from the Record objects themselves. This is Equivalent to passing the list: `['AF', 'PY', 'TI', 'SO', 'VL', 'BP']`. > If _detailedCore_ is an iterable (That evaluates to `True`) of WOS Tags (or long names) The values of those tags will be used to make the info attribute. All > The resultant string is the values of each tag, with commas removed, seperated by `', '`, just like the info given by non-core Citations. Note that for tags like `'AF'` that return lists only the first entry in the list will be used. Also a second attribute is created for all nodes called inCore wich is a boolean describing if the node is in the core or not. > Note: _detailedCore_ is not identical to the _detailedInfo_ argument of [Recordcollection.networkCoAuthor()](#metaknowledge.RecordCollection.networkCoAuthor) _coreOnly_ : `optional [bool]` > default `False`, if `True` only Citations from the RecordCollection will be included in the network _expandedCore_ : `optional [bool]` > default `False`, if `True` all citations in the ouput graph that are records in the collection will be duplicated for each author. If the nodes are `"full"`, `"original"` or `"author"` this will result in new noded being created for the other options the results are **not** defined or tested. Edges will be created between each of the nodes for each record expanded, attributes will be copied from exiting nodes. # Returns `Networkx Graph` > A networkx graph with hashes as ID and co-citation as edges """ allowedTypes = ["full", "original", "author", "journal", "year"] if nodeType not in allowedTypes: raise RCValueError("{} is not an allowed nodeType.".format(nodeType)) coreValues = [] if bool(detailedCore): try: for tag in detailedCore: coreValues.append(normalizeToTag(tag)) except TypeError: coreValues = ['id', 'authorsFull', 'year', 'title', 'journal', 'volume', 'beginningPage'] tmpgrph = nx.Graph() pcount = 0 progArgs = (0, "Starting to make a co-citation network") if metaknowledge.VERBOSE_MODE: progKwargs = {'dummy' : False} else: progKwargs = {'dummy' : True} with _ProgressBar(*progArgs, **progKwargs) as PBar: if coreOnly or coreValues or expandedCore: coreCitesDict = {R.createCitation() : R for R in self} if coreOnly: coreCites = coreCitesDict.keys() else: coreCites = None else: coreCitesDict = None coreCites = None for R in self: if PBar: pcount += 1 PBar.updateVal(pcount / len(self), "Analyzing: {}".format(R)) Cites = R.get('citations') if Cites: filteredCites = filterCites(Cites, nodeType, dropAnon, dropNonJournals, keyWords, coreCites) addToNetwork(tmpgrph, filteredCites, count, weighted, nodeType, nodeInfo , fullInfo, coreCitesDict, coreValues, detailedCoreAttributes, addCR, headNd = None) if expandedCore: if PBar: PBar.updateVal(.98, "Expanding core Records") expandRecs(tmpgrph, self, nodeType, weighted) if PBar: PBar.finish("Done making a co-citation network from {}".format(self)) return tmpgrph
python
def networkCoCitation(self, dropAnon = True, nodeType = "full", nodeInfo = True, fullInfo = False, weighted = True, dropNonJournals = False, count = True, keyWords = None, detailedCore = True, detailedCoreAttributes = False, coreOnly = False, expandedCore = False, addCR = False): """Creates a co-citation network for the RecordCollection. # Parameters _nodeType_ : `optional [str]` > One of `"full"`, `"original"`, `"author"`, `"journal"` or `"year"`. Specifies the value of the nodes in the graph. The default `"full"` causes the citations to be compared holistically using the [metaknowledge.Citation](./Citation.html#metaknowledge.citation.Citation) builtin comparison operators. `"original"` uses the raw original strings of the citations. While `"author"`, `"journal"` and `"year"` each use the author, journal and year respectively. _dropAnon_ : `optional [bool]` > default `True`, if `True` citations labeled anonymous are removed from the network _nodeInfo_ : `optional [bool]` > default `True`, if `True` an extra piece of information is stored with each node. The extra inforamtion is detemined by _nodeType_. _fullInfo_ : `optional [bool]` > default `False`, if `True` the original citation string is added to the node as an extra value, the attribute is labeled as fullCite _weighted_ : `optional [bool]` > default `True`, wether the edges are weighted. If `True` the edges are weighted by the number of citations. _dropNonJournals_ : `optional [bool]` > default `False`, wether to drop citations of non-journals _count_ : `optional [bool]` > default `True`, causes the number of occurrences of a node to be counted _keyWords_ : `optional [str] or [list[str]]` > A string or list of strings that the citations are checked against, if they contain any of the strings they are removed from the network _detailedCore_ : `optional [bool or iterable[WOS tag Strings]]` > default `True`, if `True` all Citations from the core (those of records in the RecordCollection) and the _nodeType_ is `'full'` all nodes from the core will be given info strings composed of information from the Record objects themselves. This is Equivalent to passing the list: `['AF', 'PY', 'TI', 'SO', 'VL', 'BP']`. > If _detailedCore_ is an iterable (That evaluates to `True`) of WOS Tags (or long names) The values of those tags will be used to make the info attribute. All > The resultant string is the values of each tag, with commas removed, seperated by `', '`, just like the info given by non-core Citations. Note that for tags like `'AF'` that return lists only the first entry in the list will be used. Also a second attribute is created for all nodes called inCore wich is a boolean describing if the node is in the core or not. > Note: _detailedCore_ is not identical to the _detailedInfo_ argument of [Recordcollection.networkCoAuthor()](#metaknowledge.RecordCollection.networkCoAuthor) _coreOnly_ : `optional [bool]` > default `False`, if `True` only Citations from the RecordCollection will be included in the network _expandedCore_ : `optional [bool]` > default `False`, if `True` all citations in the ouput graph that are records in the collection will be duplicated for each author. If the nodes are `"full"`, `"original"` or `"author"` this will result in new noded being created for the other options the results are **not** defined or tested. Edges will be created between each of the nodes for each record expanded, attributes will be copied from exiting nodes. # Returns `Networkx Graph` > A networkx graph with hashes as ID and co-citation as edges """ allowedTypes = ["full", "original", "author", "journal", "year"] if nodeType not in allowedTypes: raise RCValueError("{} is not an allowed nodeType.".format(nodeType)) coreValues = [] if bool(detailedCore): try: for tag in detailedCore: coreValues.append(normalizeToTag(tag)) except TypeError: coreValues = ['id', 'authorsFull', 'year', 'title', 'journal', 'volume', 'beginningPage'] tmpgrph = nx.Graph() pcount = 0 progArgs = (0, "Starting to make a co-citation network") if metaknowledge.VERBOSE_MODE: progKwargs = {'dummy' : False} else: progKwargs = {'dummy' : True} with _ProgressBar(*progArgs, **progKwargs) as PBar: if coreOnly or coreValues or expandedCore: coreCitesDict = {R.createCitation() : R for R in self} if coreOnly: coreCites = coreCitesDict.keys() else: coreCites = None else: coreCitesDict = None coreCites = None for R in self: if PBar: pcount += 1 PBar.updateVal(pcount / len(self), "Analyzing: {}".format(R)) Cites = R.get('citations') if Cites: filteredCites = filterCites(Cites, nodeType, dropAnon, dropNonJournals, keyWords, coreCites) addToNetwork(tmpgrph, filteredCites, count, weighted, nodeType, nodeInfo , fullInfo, coreCitesDict, coreValues, detailedCoreAttributes, addCR, headNd = None) if expandedCore: if PBar: PBar.updateVal(.98, "Expanding core Records") expandRecs(tmpgrph, self, nodeType, weighted) if PBar: PBar.finish("Done making a co-citation network from {}".format(self)) return tmpgrph
[ "def", "networkCoCitation", "(", "self", ",", "dropAnon", "=", "True", ",", "nodeType", "=", "\"full\"", ",", "nodeInfo", "=", "True", ",", "fullInfo", "=", "False", ",", "weighted", "=", "True", ",", "dropNonJournals", "=", "False", ",", "count", "=", "True", ",", "keyWords", "=", "None", ",", "detailedCore", "=", "True", ",", "detailedCoreAttributes", "=", "False", ",", "coreOnly", "=", "False", ",", "expandedCore", "=", "False", ",", "addCR", "=", "False", ")", ":", "allowedTypes", "=", "[", "\"full\"", ",", "\"original\"", ",", "\"author\"", ",", "\"journal\"", ",", "\"year\"", "]", "if", "nodeType", "not", "in", "allowedTypes", ":", "raise", "RCValueError", "(", "\"{} is not an allowed nodeType.\"", ".", "format", "(", "nodeType", ")", ")", "coreValues", "=", "[", "]", "if", "bool", "(", "detailedCore", ")", ":", "try", ":", "for", "tag", "in", "detailedCore", ":", "coreValues", ".", "append", "(", "normalizeToTag", "(", "tag", ")", ")", "except", "TypeError", ":", "coreValues", "=", "[", "'id'", ",", "'authorsFull'", ",", "'year'", ",", "'title'", ",", "'journal'", ",", "'volume'", ",", "'beginningPage'", "]", "tmpgrph", "=", "nx", ".", "Graph", "(", ")", "pcount", "=", "0", "progArgs", "=", "(", "0", ",", "\"Starting to make a co-citation network\"", ")", "if", "metaknowledge", ".", "VERBOSE_MODE", ":", "progKwargs", "=", "{", "'dummy'", ":", "False", "}", "else", ":", "progKwargs", "=", "{", "'dummy'", ":", "True", "}", "with", "_ProgressBar", "(", "*", "progArgs", ",", "*", "*", "progKwargs", ")", "as", "PBar", ":", "if", "coreOnly", "or", "coreValues", "or", "expandedCore", ":", "coreCitesDict", "=", "{", "R", ".", "createCitation", "(", ")", ":", "R", "for", "R", "in", "self", "}", "if", "coreOnly", ":", "coreCites", "=", "coreCitesDict", ".", "keys", "(", ")", "else", ":", "coreCites", "=", "None", "else", ":", "coreCitesDict", "=", "None", "coreCites", "=", "None", "for", "R", "in", "self", ":", "if", "PBar", ":", "pcount", "+=", "1", "PBar", ".", "updateVal", "(", "pcount", "/", "len", "(", "self", ")", ",", "\"Analyzing: {}\"", ".", "format", "(", "R", ")", ")", "Cites", "=", "R", ".", "get", "(", "'citations'", ")", "if", "Cites", ":", "filteredCites", "=", "filterCites", "(", "Cites", ",", "nodeType", ",", "dropAnon", ",", "dropNonJournals", ",", "keyWords", ",", "coreCites", ")", "addToNetwork", "(", "tmpgrph", ",", "filteredCites", ",", "count", ",", "weighted", ",", "nodeType", ",", "nodeInfo", ",", "fullInfo", ",", "coreCitesDict", ",", "coreValues", ",", "detailedCoreAttributes", ",", "addCR", ",", "headNd", "=", "None", ")", "if", "expandedCore", ":", "if", "PBar", ":", "PBar", ".", "updateVal", "(", ".98", ",", "\"Expanding core Records\"", ")", "expandRecs", "(", "tmpgrph", ",", "self", ",", "nodeType", ",", "weighted", ")", "if", "PBar", ":", "PBar", ".", "finish", "(", "\"Done making a co-citation network from {}\"", ".", "format", "(", "self", ")", ")", "return", "tmpgrph" ]
Creates a co-citation network for the RecordCollection. # Parameters _nodeType_ : `optional [str]` > One of `"full"`, `"original"`, `"author"`, `"journal"` or `"year"`. Specifies the value of the nodes in the graph. The default `"full"` causes the citations to be compared holistically using the [metaknowledge.Citation](./Citation.html#metaknowledge.citation.Citation) builtin comparison operators. `"original"` uses the raw original strings of the citations. While `"author"`, `"journal"` and `"year"` each use the author, journal and year respectively. _dropAnon_ : `optional [bool]` > default `True`, if `True` citations labeled anonymous are removed from the network _nodeInfo_ : `optional [bool]` > default `True`, if `True` an extra piece of information is stored with each node. The extra inforamtion is detemined by _nodeType_. _fullInfo_ : `optional [bool]` > default `False`, if `True` the original citation string is added to the node as an extra value, the attribute is labeled as fullCite _weighted_ : `optional [bool]` > default `True`, wether the edges are weighted. If `True` the edges are weighted by the number of citations. _dropNonJournals_ : `optional [bool]` > default `False`, wether to drop citations of non-journals _count_ : `optional [bool]` > default `True`, causes the number of occurrences of a node to be counted _keyWords_ : `optional [str] or [list[str]]` > A string or list of strings that the citations are checked against, if they contain any of the strings they are removed from the network _detailedCore_ : `optional [bool or iterable[WOS tag Strings]]` > default `True`, if `True` all Citations from the core (those of records in the RecordCollection) and the _nodeType_ is `'full'` all nodes from the core will be given info strings composed of information from the Record objects themselves. This is Equivalent to passing the list: `['AF', 'PY', 'TI', 'SO', 'VL', 'BP']`. > If _detailedCore_ is an iterable (That evaluates to `True`) of WOS Tags (or long names) The values of those tags will be used to make the info attribute. All > The resultant string is the values of each tag, with commas removed, seperated by `', '`, just like the info given by non-core Citations. Note that for tags like `'AF'` that return lists only the first entry in the list will be used. Also a second attribute is created for all nodes called inCore wich is a boolean describing if the node is in the core or not. > Note: _detailedCore_ is not identical to the _detailedInfo_ argument of [Recordcollection.networkCoAuthor()](#metaknowledge.RecordCollection.networkCoAuthor) _coreOnly_ : `optional [bool]` > default `False`, if `True` only Citations from the RecordCollection will be included in the network _expandedCore_ : `optional [bool]` > default `False`, if `True` all citations in the ouput graph that are records in the collection will be duplicated for each author. If the nodes are `"full"`, `"original"` or `"author"` this will result in new noded being created for the other options the results are **not** defined or tested. Edges will be created between each of the nodes for each record expanded, attributes will be copied from exiting nodes. # Returns `Networkx Graph` > A networkx graph with hashes as ID and co-citation as edges
[ "Creates", "a", "co", "-", "citation", "network", "for", "the", "RecordCollection", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/recordCollection.py#L1075-L1177
train
networks-lab/metaknowledge
metaknowledge/recordCollection.py
RecordCollection.networkBibCoupling
def networkBibCoupling(self, weighted = True, fullInfo = False, addCR = False): """Creates a bibliographic coupling network based on citations for the RecordCollection. # Parameters _weighted_ : `optional bool` > Default `True`, if `True` the weight of the edges will be added to the network _fullInfo_ : `optional bool` > Default `False`, if `True` the full citation string will be added to each of the nodes of the network. # Returns `Networkx Graph` > A graph of the bibliographic coupling """ progArgs = (0, "Make a citation network for coupling") if metaknowledge.VERBOSE_MODE: progKwargs = {'dummy' : False} else: progKwargs = {'dummy' : True} with _ProgressBar(*progArgs, **progKwargs) as PBar: citeGrph = self.networkCitation(weighted = False, directed = True, detailedCore = True, fullInfo = fullInfo, count = False, nodeInfo = True, addCR = addCR, _quiet = True) pcount = 0 pmax = len(citeGrph) PBar.updateVal(.2, "Starting to classify nodes") workingGrph = nx.Graph() couplingSet = set() for n, d in citeGrph.nodes(data = True): pcount += 1 PBar.updateVal(.2 + .4 * (pcount / pmax), "Classifying: {}".format(n)) if d['inCore']: workingGrph.add_node(n, **d) if citeGrph.in_degree(n) > 0: couplingSet.add(n) pcount = 0 pmax = len(couplingSet) for n in couplingSet: PBar.updateVal(.6 + .4 * (pcount / pmax), "Coupling: {}".format(n)) citesLst = list(citeGrph.in_edges(n)) for i, edgeOuter in enumerate(citesLst): outerNode = edgeOuter[0] for edgeInner in citesLst[i + 1:]: innerNode = edgeInner[0] if weighted and workingGrph.has_edge(outerNode, innerNode): workingGrph.edges[outerNode, innerNode]['weight'] += 1 elif weighted: workingGrph.add_edge(outerNode, innerNode, weight = 1) else: workingGrph.add_edge(outerNode, innerNode) PBar.finish("Done making a bib-coupling network from {}".format(self)) return workingGrph
python
def networkBibCoupling(self, weighted = True, fullInfo = False, addCR = False): """Creates a bibliographic coupling network based on citations for the RecordCollection. # Parameters _weighted_ : `optional bool` > Default `True`, if `True` the weight of the edges will be added to the network _fullInfo_ : `optional bool` > Default `False`, if `True` the full citation string will be added to each of the nodes of the network. # Returns `Networkx Graph` > A graph of the bibliographic coupling """ progArgs = (0, "Make a citation network for coupling") if metaknowledge.VERBOSE_MODE: progKwargs = {'dummy' : False} else: progKwargs = {'dummy' : True} with _ProgressBar(*progArgs, **progKwargs) as PBar: citeGrph = self.networkCitation(weighted = False, directed = True, detailedCore = True, fullInfo = fullInfo, count = False, nodeInfo = True, addCR = addCR, _quiet = True) pcount = 0 pmax = len(citeGrph) PBar.updateVal(.2, "Starting to classify nodes") workingGrph = nx.Graph() couplingSet = set() for n, d in citeGrph.nodes(data = True): pcount += 1 PBar.updateVal(.2 + .4 * (pcount / pmax), "Classifying: {}".format(n)) if d['inCore']: workingGrph.add_node(n, **d) if citeGrph.in_degree(n) > 0: couplingSet.add(n) pcount = 0 pmax = len(couplingSet) for n in couplingSet: PBar.updateVal(.6 + .4 * (pcount / pmax), "Coupling: {}".format(n)) citesLst = list(citeGrph.in_edges(n)) for i, edgeOuter in enumerate(citesLst): outerNode = edgeOuter[0] for edgeInner in citesLst[i + 1:]: innerNode = edgeInner[0] if weighted and workingGrph.has_edge(outerNode, innerNode): workingGrph.edges[outerNode, innerNode]['weight'] += 1 elif weighted: workingGrph.add_edge(outerNode, innerNode, weight = 1) else: workingGrph.add_edge(outerNode, innerNode) PBar.finish("Done making a bib-coupling network from {}".format(self)) return workingGrph
[ "def", "networkBibCoupling", "(", "self", ",", "weighted", "=", "True", ",", "fullInfo", "=", "False", ",", "addCR", "=", "False", ")", ":", "progArgs", "=", "(", "0", ",", "\"Make a citation network for coupling\"", ")", "if", "metaknowledge", ".", "VERBOSE_MODE", ":", "progKwargs", "=", "{", "'dummy'", ":", "False", "}", "else", ":", "progKwargs", "=", "{", "'dummy'", ":", "True", "}", "with", "_ProgressBar", "(", "*", "progArgs", ",", "*", "*", "progKwargs", ")", "as", "PBar", ":", "citeGrph", "=", "self", ".", "networkCitation", "(", "weighted", "=", "False", ",", "directed", "=", "True", ",", "detailedCore", "=", "True", ",", "fullInfo", "=", "fullInfo", ",", "count", "=", "False", ",", "nodeInfo", "=", "True", ",", "addCR", "=", "addCR", ",", "_quiet", "=", "True", ")", "pcount", "=", "0", "pmax", "=", "len", "(", "citeGrph", ")", "PBar", ".", "updateVal", "(", ".2", ",", "\"Starting to classify nodes\"", ")", "workingGrph", "=", "nx", ".", "Graph", "(", ")", "couplingSet", "=", "set", "(", ")", "for", "n", ",", "d", "in", "citeGrph", ".", "nodes", "(", "data", "=", "True", ")", ":", "pcount", "+=", "1", "PBar", ".", "updateVal", "(", ".2", "+", ".4", "*", "(", "pcount", "/", "pmax", ")", ",", "\"Classifying: {}\"", ".", "format", "(", "n", ")", ")", "if", "d", "[", "'inCore'", "]", ":", "workingGrph", ".", "add_node", "(", "n", ",", "*", "*", "d", ")", "if", "citeGrph", ".", "in_degree", "(", "n", ")", ">", "0", ":", "couplingSet", ".", "add", "(", "n", ")", "pcount", "=", "0", "pmax", "=", "len", "(", "couplingSet", ")", "for", "n", "in", "couplingSet", ":", "PBar", ".", "updateVal", "(", ".6", "+", ".4", "*", "(", "pcount", "/", "pmax", ")", ",", "\"Coupling: {}\"", ".", "format", "(", "n", ")", ")", "citesLst", "=", "list", "(", "citeGrph", ".", "in_edges", "(", "n", ")", ")", "for", "i", ",", "edgeOuter", "in", "enumerate", "(", "citesLst", ")", ":", "outerNode", "=", "edgeOuter", "[", "0", "]", "for", "edgeInner", "in", "citesLst", "[", "i", "+", "1", ":", "]", ":", "innerNode", "=", "edgeInner", "[", "0", "]", "if", "weighted", "and", "workingGrph", ".", "has_edge", "(", "outerNode", ",", "innerNode", ")", ":", "workingGrph", ".", "edges", "[", "outerNode", ",", "innerNode", "]", "[", "'weight'", "]", "+=", "1", "elif", "weighted", ":", "workingGrph", ".", "add_edge", "(", "outerNode", ",", "innerNode", ",", "weight", "=", "1", ")", "else", ":", "workingGrph", ".", "add_edge", "(", "outerNode", ",", "innerNode", ")", "PBar", ".", "finish", "(", "\"Done making a bib-coupling network from {}\"", ".", "format", "(", "self", ")", ")", "return", "workingGrph" ]
Creates a bibliographic coupling network based on citations for the RecordCollection. # Parameters _weighted_ : `optional bool` > Default `True`, if `True` the weight of the edges will be added to the network _fullInfo_ : `optional bool` > Default `False`, if `True` the full citation string will be added to each of the nodes of the network. # Returns `Networkx Graph` > A graph of the bibliographic coupling
[ "Creates", "a", "bibliographic", "coupling", "network", "based", "on", "citations", "for", "the", "RecordCollection", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/recordCollection.py#L1294-L1348
train
networks-lab/metaknowledge
metaknowledge/recordCollection.py
RecordCollection.yearSplit
def yearSplit(self, startYear, endYear, dropMissingYears = True): """Creates a RecordCollection of Records from the years between _startYear_ and _endYear_ inclusive. # Parameters _startYear_ : `int` > The smallest year to be included in the returned RecordCollection _endYear_ : `int` > The largest year to be included in the returned RecordCollection _dropMissingYears_ : `optional [bool]` > Default `True`, if `True` Records with missing years will be dropped. If `False` a `TypeError` exception will be raised # Returns `RecordCollection` > A RecordCollection of Records from _startYear_ to _endYear_ """ recordsInRange = set() for R in self: try: if R.get('year') >= startYear and R.get('year') <= endYear: recordsInRange.add(R) except TypeError: if dropMissingYears: pass else: raise RCret = RecordCollection(recordsInRange, name = "{}({}-{})".format(self.name, startYear, endYear), quietStart = True) RCret._collectedTypes = self._collectedTypes.copy() return RCret
python
def yearSplit(self, startYear, endYear, dropMissingYears = True): """Creates a RecordCollection of Records from the years between _startYear_ and _endYear_ inclusive. # Parameters _startYear_ : `int` > The smallest year to be included in the returned RecordCollection _endYear_ : `int` > The largest year to be included in the returned RecordCollection _dropMissingYears_ : `optional [bool]` > Default `True`, if `True` Records with missing years will be dropped. If `False` a `TypeError` exception will be raised # Returns `RecordCollection` > A RecordCollection of Records from _startYear_ to _endYear_ """ recordsInRange = set() for R in self: try: if R.get('year') >= startYear and R.get('year') <= endYear: recordsInRange.add(R) except TypeError: if dropMissingYears: pass else: raise RCret = RecordCollection(recordsInRange, name = "{}({}-{})".format(self.name, startYear, endYear), quietStart = True) RCret._collectedTypes = self._collectedTypes.copy() return RCret
[ "def", "yearSplit", "(", "self", ",", "startYear", ",", "endYear", ",", "dropMissingYears", "=", "True", ")", ":", "recordsInRange", "=", "set", "(", ")", "for", "R", "in", "self", ":", "try", ":", "if", "R", ".", "get", "(", "'year'", ")", ">=", "startYear", "and", "R", ".", "get", "(", "'year'", ")", "<=", "endYear", ":", "recordsInRange", ".", "add", "(", "R", ")", "except", "TypeError", ":", "if", "dropMissingYears", ":", "pass", "else", ":", "raise", "RCret", "=", "RecordCollection", "(", "recordsInRange", ",", "name", "=", "\"{}({}-{})\"", ".", "format", "(", "self", ".", "name", ",", "startYear", ",", "endYear", ")", ",", "quietStart", "=", "True", ")", "RCret", ".", "_collectedTypes", "=", "self", ".", "_collectedTypes", ".", "copy", "(", ")", "return", "RCret" ]
Creates a RecordCollection of Records from the years between _startYear_ and _endYear_ inclusive. # Parameters _startYear_ : `int` > The smallest year to be included in the returned RecordCollection _endYear_ : `int` > The largest year to be included in the returned RecordCollection _dropMissingYears_ : `optional [bool]` > Default `True`, if `True` Records with missing years will be dropped. If `False` a `TypeError` exception will be raised # Returns `RecordCollection` > A RecordCollection of Records from _startYear_ to _endYear_
[ "Creates", "a", "RecordCollection", "of", "Records", "from", "the", "years", "between", "_startYear_", "and", "_endYear_", "inclusive", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/recordCollection.py#L1362-L1397
train
networks-lab/metaknowledge
metaknowledge/recordCollection.py
RecordCollection.localCiteStats
def localCiteStats(self, pandasFriendly = False, keyType = "citation"): """Returns a dict with all the citations in the CR field as keys and the number of times they occur as the values # Parameters _pandasFriendly_ : `optional [bool]` > default `False`, makes the output be a dict with two keys one `'Citations'` is the citations the other is their occurrence counts as `'Counts'`. _keyType_ : `optional [str]` > default `'citation'`, the type of key to use for the dictionary, the valid strings are `'citation'`, `'journal'`, `'year'` or `'author'`. IF changed from `'citation'` all citations matching the requested option will be contracted and their counts added together. # Returns `dict[str, int or Citation : int]` > A dictionary with keys as given by _keyType_ and integers giving their rates of occurrence in the collection """ count = 0 recCount = len(self) progArgs = (0, "Starting to get the local stats on {}s.".format(keyType)) if metaknowledge.VERBOSE_MODE: progKwargs = {'dummy' : False} else: progKwargs = {'dummy' : True} with _ProgressBar(*progArgs, **progKwargs) as PBar: keyTypesLst = ["citation", "journal", "year", "author"] citesDict = {} if keyType not in keyTypesLst: raise TypeError("{} is not a valid key type, only '{}' or '{}' are.".format(keyType, "', '".join(keyTypesLst[:-1]), keyTypesLst[-1])) for R in self: rCites = R.get('citations') if PBar: count += 1 PBar.updateVal(count / recCount, "Analysing: {}".format(R.UT)) if rCites: for c in rCites: if keyType == keyTypesLst[0]: cVal = c else: cVal = getattr(c, keyType) if cVal is None: continue if cVal in citesDict: citesDict[cVal] += 1 else: citesDict[cVal] = 1 if PBar: PBar.finish("Done, {} {} fields analysed".format(len(citesDict), keyType)) if pandasFriendly: citeLst = [] countLst = [] for cite, occ in citesDict.items(): citeLst.append(cite) countLst.append(occ) return {"Citations" : citeLst, "Counts" : countLst} else: return citesDict
python
def localCiteStats(self, pandasFriendly = False, keyType = "citation"): """Returns a dict with all the citations in the CR field as keys and the number of times they occur as the values # Parameters _pandasFriendly_ : `optional [bool]` > default `False`, makes the output be a dict with two keys one `'Citations'` is the citations the other is their occurrence counts as `'Counts'`. _keyType_ : `optional [str]` > default `'citation'`, the type of key to use for the dictionary, the valid strings are `'citation'`, `'journal'`, `'year'` or `'author'`. IF changed from `'citation'` all citations matching the requested option will be contracted and their counts added together. # Returns `dict[str, int or Citation : int]` > A dictionary with keys as given by _keyType_ and integers giving their rates of occurrence in the collection """ count = 0 recCount = len(self) progArgs = (0, "Starting to get the local stats on {}s.".format(keyType)) if metaknowledge.VERBOSE_MODE: progKwargs = {'dummy' : False} else: progKwargs = {'dummy' : True} with _ProgressBar(*progArgs, **progKwargs) as PBar: keyTypesLst = ["citation", "journal", "year", "author"] citesDict = {} if keyType not in keyTypesLst: raise TypeError("{} is not a valid key type, only '{}' or '{}' are.".format(keyType, "', '".join(keyTypesLst[:-1]), keyTypesLst[-1])) for R in self: rCites = R.get('citations') if PBar: count += 1 PBar.updateVal(count / recCount, "Analysing: {}".format(R.UT)) if rCites: for c in rCites: if keyType == keyTypesLst[0]: cVal = c else: cVal = getattr(c, keyType) if cVal is None: continue if cVal in citesDict: citesDict[cVal] += 1 else: citesDict[cVal] = 1 if PBar: PBar.finish("Done, {} {} fields analysed".format(len(citesDict), keyType)) if pandasFriendly: citeLst = [] countLst = [] for cite, occ in citesDict.items(): citeLst.append(cite) countLst.append(occ) return {"Citations" : citeLst, "Counts" : countLst} else: return citesDict
[ "def", "localCiteStats", "(", "self", ",", "pandasFriendly", "=", "False", ",", "keyType", "=", "\"citation\"", ")", ":", "count", "=", "0", "recCount", "=", "len", "(", "self", ")", "progArgs", "=", "(", "0", ",", "\"Starting to get the local stats on {}s.\"", ".", "format", "(", "keyType", ")", ")", "if", "metaknowledge", ".", "VERBOSE_MODE", ":", "progKwargs", "=", "{", "'dummy'", ":", "False", "}", "else", ":", "progKwargs", "=", "{", "'dummy'", ":", "True", "}", "with", "_ProgressBar", "(", "*", "progArgs", ",", "*", "*", "progKwargs", ")", "as", "PBar", ":", "keyTypesLst", "=", "[", "\"citation\"", ",", "\"journal\"", ",", "\"year\"", ",", "\"author\"", "]", "citesDict", "=", "{", "}", "if", "keyType", "not", "in", "keyTypesLst", ":", "raise", "TypeError", "(", "\"{} is not a valid key type, only '{}' or '{}' are.\"", ".", "format", "(", "keyType", ",", "\"', '\"", ".", "join", "(", "keyTypesLst", "[", ":", "-", "1", "]", ")", ",", "keyTypesLst", "[", "-", "1", "]", ")", ")", "for", "R", "in", "self", ":", "rCites", "=", "R", ".", "get", "(", "'citations'", ")", "if", "PBar", ":", "count", "+=", "1", "PBar", ".", "updateVal", "(", "count", "/", "recCount", ",", "\"Analysing: {}\"", ".", "format", "(", "R", ".", "UT", ")", ")", "if", "rCites", ":", "for", "c", "in", "rCites", ":", "if", "keyType", "==", "keyTypesLst", "[", "0", "]", ":", "cVal", "=", "c", "else", ":", "cVal", "=", "getattr", "(", "c", ",", "keyType", ")", "if", "cVal", "is", "None", ":", "continue", "if", "cVal", "in", "citesDict", ":", "citesDict", "[", "cVal", "]", "+=", "1", "else", ":", "citesDict", "[", "cVal", "]", "=", "1", "if", "PBar", ":", "PBar", ".", "finish", "(", "\"Done, {} {} fields analysed\"", ".", "format", "(", "len", "(", "citesDict", ")", ",", "keyType", ")", ")", "if", "pandasFriendly", ":", "citeLst", "=", "[", "]", "countLst", "=", "[", "]", "for", "cite", ",", "occ", "in", "citesDict", ".", "items", "(", ")", ":", "citeLst", ".", "append", "(", "cite", ")", "countLst", ".", "append", "(", "occ", ")", "return", "{", "\"Citations\"", ":", "citeLst", ",", "\"Counts\"", ":", "countLst", "}", "else", ":", "return", "citesDict" ]
Returns a dict with all the citations in the CR field as keys and the number of times they occur as the values # Parameters _pandasFriendly_ : `optional [bool]` > default `False`, makes the output be a dict with two keys one `'Citations'` is the citations the other is their occurrence counts as `'Counts'`. _keyType_ : `optional [str]` > default `'citation'`, the type of key to use for the dictionary, the valid strings are `'citation'`, `'journal'`, `'year'` or `'author'`. IF changed from `'citation'` all citations matching the requested option will be contracted and their counts added together. # Returns `dict[str, int or Citation : int]` > A dictionary with keys as given by _keyType_ and integers giving their rates of occurrence in the collection
[ "Returns", "a", "dict", "with", "all", "the", "citations", "in", "the", "CR", "field", "as", "keys", "and", "the", "number", "of", "times", "they", "occur", "as", "the", "values" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/recordCollection.py#L1399-L1457
train
networks-lab/metaknowledge
metaknowledge/recordCollection.py
RecordCollection.localCitesOf
def localCitesOf(self, rec): """Takes in a Record, WOS string, citation string or Citation and returns a RecordCollection of all records that cite it. # Parameters _rec_ : `Record, str or Citation` > The object that is being cited # Returns `RecordCollection` > A `RecordCollection` containing only those `Records` that cite _rec_ """ localCites = [] if isinstance(rec, Record): recCite = rec.createCitation() if isinstance(rec, str): try: recCite = self.getID(rec) except ValueError: try: recCite = Citation(rec) except AttributeError: raise ValueError("{} is not a valid WOS string or a valid citation string".format(recCite)) else: if recCite is None: return RecordCollection(inCollection = localCites, name = "Records_citing_{}".format(rec), quietStart = True) else: recCite = recCite.createCitation() elif isinstance(rec, Citation): recCite = rec else: raise ValueError("{} is not a valid input, rec must be a Record, string or Citation object.".format(rec)) for R in self: rCites = R.get('citations') if rCites: for cite in rCites: if recCite == cite: localCites.append(R) break return RecordCollection(inCollection = localCites, name = "Records_citing_'{}'".format(rec), quietStart = True)
python
def localCitesOf(self, rec): """Takes in a Record, WOS string, citation string or Citation and returns a RecordCollection of all records that cite it. # Parameters _rec_ : `Record, str or Citation` > The object that is being cited # Returns `RecordCollection` > A `RecordCollection` containing only those `Records` that cite _rec_ """ localCites = [] if isinstance(rec, Record): recCite = rec.createCitation() if isinstance(rec, str): try: recCite = self.getID(rec) except ValueError: try: recCite = Citation(rec) except AttributeError: raise ValueError("{} is not a valid WOS string or a valid citation string".format(recCite)) else: if recCite is None: return RecordCollection(inCollection = localCites, name = "Records_citing_{}".format(rec), quietStart = True) else: recCite = recCite.createCitation() elif isinstance(rec, Citation): recCite = rec else: raise ValueError("{} is not a valid input, rec must be a Record, string or Citation object.".format(rec)) for R in self: rCites = R.get('citations') if rCites: for cite in rCites: if recCite == cite: localCites.append(R) break return RecordCollection(inCollection = localCites, name = "Records_citing_'{}'".format(rec), quietStart = True)
[ "def", "localCitesOf", "(", "self", ",", "rec", ")", ":", "localCites", "=", "[", "]", "if", "isinstance", "(", "rec", ",", "Record", ")", ":", "recCite", "=", "rec", ".", "createCitation", "(", ")", "if", "isinstance", "(", "rec", ",", "str", ")", ":", "try", ":", "recCite", "=", "self", ".", "getID", "(", "rec", ")", "except", "ValueError", ":", "try", ":", "recCite", "=", "Citation", "(", "rec", ")", "except", "AttributeError", ":", "raise", "ValueError", "(", "\"{} is not a valid WOS string or a valid citation string\"", ".", "format", "(", "recCite", ")", ")", "else", ":", "if", "recCite", "is", "None", ":", "return", "RecordCollection", "(", "inCollection", "=", "localCites", ",", "name", "=", "\"Records_citing_{}\"", ".", "format", "(", "rec", ")", ",", "quietStart", "=", "True", ")", "else", ":", "recCite", "=", "recCite", ".", "createCitation", "(", ")", "elif", "isinstance", "(", "rec", ",", "Citation", ")", ":", "recCite", "=", "rec", "else", ":", "raise", "ValueError", "(", "\"{} is not a valid input, rec must be a Record, string or Citation object.\"", ".", "format", "(", "rec", ")", ")", "for", "R", "in", "self", ":", "rCites", "=", "R", ".", "get", "(", "'citations'", ")", "if", "rCites", ":", "for", "cite", "in", "rCites", ":", "if", "recCite", "==", "cite", ":", "localCites", ".", "append", "(", "R", ")", "break", "return", "RecordCollection", "(", "inCollection", "=", "localCites", ",", "name", "=", "\"Records_citing_'{}'\"", ".", "format", "(", "rec", ")", ",", "quietStart", "=", "True", ")" ]
Takes in a Record, WOS string, citation string or Citation and returns a RecordCollection of all records that cite it. # Parameters _rec_ : `Record, str or Citation` > The object that is being cited # Returns `RecordCollection` > A `RecordCollection` containing only those `Records` that cite _rec_
[ "Takes", "in", "a", "Record", "WOS", "string", "citation", "string", "or", "Citation", "and", "returns", "a", "RecordCollection", "of", "all", "records", "that", "cite", "it", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/recordCollection.py#L1459-L1501
train
networks-lab/metaknowledge
metaknowledge/recordCollection.py
RecordCollection.citeFilter
def citeFilter(self, keyString = '', field = 'all', reverse = False, caseSensitive = False): """Filters `Records` by some string, _keyString_, in their citations and returns all `Records` with at least one citation possessing _keyString_ in the field given by _field_. # Parameters _keyString_ : `optional [str]` > Default `''`, gives the string to be searched for, if it is is blank then all citations with the specified field will be matched _field_ : `optional [str]` > Default `'all'`, gives the component of the citation to be looked at, it can be one of a few strings. The default is `'all'` which will cause the entire original `Citation` to be searched. It can be used to search across fields, e.g. `'1970, V2'` is a valid keystring The other options are: + `'author'`, searches the author field + `'year'`, searches the year field + `'journal'`, searches the journal field + `'V'`, searches the volume field + `'P'`, searches the page field + `'misc'`, searches all the remaining uncategorized information + `'anonymous'`, searches for anonymous `Citations`, _keyString_ is not ignored + `'bad'`, searches for bad citations, keyString is not used _reverse_ : `optional [bool]` > Default `False`, being set to `True` causes all `Records` not matching the query to be returned _caseSensitive_ : `optional [bool]` > Default `False`, if `True` causes the search across the original to be case sensitive, **only** the `'all'` option can be case sensitive """ retRecs = [] keyString = str(keyString) for R in self: try: if field == 'all': for cite in R.get('citations'): if caseSensitive: if keyString in cite.original: retRecs.append(R) break else: if keyString.upper() in cite.original.upper(): retRecs.append(R) break elif field == 'author': for cite in R.get('citations'): try: if keyString.upper() in cite.author.upper(): retRecs.append(R) break except AttributeError: pass elif field == 'journal': for cite in R.get('citations'): try: if keyString.upper() in cite.journal: retRecs.append(R) break except AttributeError: pass elif field == 'year': for cite in R.get('citations'): try: if int(keyString) == cite.year: retRecs.append(R) break except AttributeError: pass elif field == 'V': for cite in R.get('citations'): try: if keyString.upper() in cite.V: retRecs.append(R) break except AttributeError: pass elif field == 'P': for cite in R.get('citations'): try: if keyString.upper() in cite.P: retRecs.append(R) break except AttributeError: pass elif field == 'misc': for cite in R.get('citations'): try: if keyString.upper() in cite.misc: retRecs.append(R) break except AttributeError: pass elif field == 'anonymous': for cite in R.get('citations'): if cite.isAnonymous(): retRecs.append(R) break elif field == 'bad': for cite in R.get('citations'): if cite.bad: retRecs.append(R) break except TypeError: pass if reverse: excluded = [] for R in self: if R not in retRecs: excluded.append(R) return RecordCollection(inCollection = excluded, name = self.name, quietStart = True) else: return RecordCollection(inCollection = retRecs, name = self.name, quietStart = True)
python
def citeFilter(self, keyString = '', field = 'all', reverse = False, caseSensitive = False): """Filters `Records` by some string, _keyString_, in their citations and returns all `Records` with at least one citation possessing _keyString_ in the field given by _field_. # Parameters _keyString_ : `optional [str]` > Default `''`, gives the string to be searched for, if it is is blank then all citations with the specified field will be matched _field_ : `optional [str]` > Default `'all'`, gives the component of the citation to be looked at, it can be one of a few strings. The default is `'all'` which will cause the entire original `Citation` to be searched. It can be used to search across fields, e.g. `'1970, V2'` is a valid keystring The other options are: + `'author'`, searches the author field + `'year'`, searches the year field + `'journal'`, searches the journal field + `'V'`, searches the volume field + `'P'`, searches the page field + `'misc'`, searches all the remaining uncategorized information + `'anonymous'`, searches for anonymous `Citations`, _keyString_ is not ignored + `'bad'`, searches for bad citations, keyString is not used _reverse_ : `optional [bool]` > Default `False`, being set to `True` causes all `Records` not matching the query to be returned _caseSensitive_ : `optional [bool]` > Default `False`, if `True` causes the search across the original to be case sensitive, **only** the `'all'` option can be case sensitive """ retRecs = [] keyString = str(keyString) for R in self: try: if field == 'all': for cite in R.get('citations'): if caseSensitive: if keyString in cite.original: retRecs.append(R) break else: if keyString.upper() in cite.original.upper(): retRecs.append(R) break elif field == 'author': for cite in R.get('citations'): try: if keyString.upper() in cite.author.upper(): retRecs.append(R) break except AttributeError: pass elif field == 'journal': for cite in R.get('citations'): try: if keyString.upper() in cite.journal: retRecs.append(R) break except AttributeError: pass elif field == 'year': for cite in R.get('citations'): try: if int(keyString) == cite.year: retRecs.append(R) break except AttributeError: pass elif field == 'V': for cite in R.get('citations'): try: if keyString.upper() in cite.V: retRecs.append(R) break except AttributeError: pass elif field == 'P': for cite in R.get('citations'): try: if keyString.upper() in cite.P: retRecs.append(R) break except AttributeError: pass elif field == 'misc': for cite in R.get('citations'): try: if keyString.upper() in cite.misc: retRecs.append(R) break except AttributeError: pass elif field == 'anonymous': for cite in R.get('citations'): if cite.isAnonymous(): retRecs.append(R) break elif field == 'bad': for cite in R.get('citations'): if cite.bad: retRecs.append(R) break except TypeError: pass if reverse: excluded = [] for R in self: if R not in retRecs: excluded.append(R) return RecordCollection(inCollection = excluded, name = self.name, quietStart = True) else: return RecordCollection(inCollection = retRecs, name = self.name, quietStart = True)
[ "def", "citeFilter", "(", "self", ",", "keyString", "=", "''", ",", "field", "=", "'all'", ",", "reverse", "=", "False", ",", "caseSensitive", "=", "False", ")", ":", "retRecs", "=", "[", "]", "keyString", "=", "str", "(", "keyString", ")", "for", "R", "in", "self", ":", "try", ":", "if", "field", "==", "'all'", ":", "for", "cite", "in", "R", ".", "get", "(", "'citations'", ")", ":", "if", "caseSensitive", ":", "if", "keyString", "in", "cite", ".", "original", ":", "retRecs", ".", "append", "(", "R", ")", "break", "else", ":", "if", "keyString", ".", "upper", "(", ")", "in", "cite", ".", "original", ".", "upper", "(", ")", ":", "retRecs", ".", "append", "(", "R", ")", "break", "elif", "field", "==", "'author'", ":", "for", "cite", "in", "R", ".", "get", "(", "'citations'", ")", ":", "try", ":", "if", "keyString", ".", "upper", "(", ")", "in", "cite", ".", "author", ".", "upper", "(", ")", ":", "retRecs", ".", "append", "(", "R", ")", "break", "except", "AttributeError", ":", "pass", "elif", "field", "==", "'journal'", ":", "for", "cite", "in", "R", ".", "get", "(", "'citations'", ")", ":", "try", ":", "if", "keyString", ".", "upper", "(", ")", "in", "cite", ".", "journal", ":", "retRecs", ".", "append", "(", "R", ")", "break", "except", "AttributeError", ":", "pass", "elif", "field", "==", "'year'", ":", "for", "cite", "in", "R", ".", "get", "(", "'citations'", ")", ":", "try", ":", "if", "int", "(", "keyString", ")", "==", "cite", ".", "year", ":", "retRecs", ".", "append", "(", "R", ")", "break", "except", "AttributeError", ":", "pass", "elif", "field", "==", "'V'", ":", "for", "cite", "in", "R", ".", "get", "(", "'citations'", ")", ":", "try", ":", "if", "keyString", ".", "upper", "(", ")", "in", "cite", ".", "V", ":", "retRecs", ".", "append", "(", "R", ")", "break", "except", "AttributeError", ":", "pass", "elif", "field", "==", "'P'", ":", "for", "cite", "in", "R", ".", "get", "(", "'citations'", ")", ":", "try", ":", "if", "keyString", ".", "upper", "(", ")", "in", "cite", ".", "P", ":", "retRecs", ".", "append", "(", "R", ")", "break", "except", "AttributeError", ":", "pass", "elif", "field", "==", "'misc'", ":", "for", "cite", "in", "R", ".", "get", "(", "'citations'", ")", ":", "try", ":", "if", "keyString", ".", "upper", "(", ")", "in", "cite", ".", "misc", ":", "retRecs", ".", "append", "(", "R", ")", "break", "except", "AttributeError", ":", "pass", "elif", "field", "==", "'anonymous'", ":", "for", "cite", "in", "R", ".", "get", "(", "'citations'", ")", ":", "if", "cite", ".", "isAnonymous", "(", ")", ":", "retRecs", ".", "append", "(", "R", ")", "break", "elif", "field", "==", "'bad'", ":", "for", "cite", "in", "R", ".", "get", "(", "'citations'", ")", ":", "if", "cite", ".", "bad", ":", "retRecs", ".", "append", "(", "R", ")", "break", "except", "TypeError", ":", "pass", "if", "reverse", ":", "excluded", "=", "[", "]", "for", "R", "in", "self", ":", "if", "R", "not", "in", "retRecs", ":", "excluded", ".", "append", "(", "R", ")", "return", "RecordCollection", "(", "inCollection", "=", "excluded", ",", "name", "=", "self", ".", "name", ",", "quietStart", "=", "True", ")", "else", ":", "return", "RecordCollection", "(", "inCollection", "=", "retRecs", ",", "name", "=", "self", ".", "name", ",", "quietStart", "=", "True", ")" ]
Filters `Records` by some string, _keyString_, in their citations and returns all `Records` with at least one citation possessing _keyString_ in the field given by _field_. # Parameters _keyString_ : `optional [str]` > Default `''`, gives the string to be searched for, if it is is blank then all citations with the specified field will be matched _field_ : `optional [str]` > Default `'all'`, gives the component of the citation to be looked at, it can be one of a few strings. The default is `'all'` which will cause the entire original `Citation` to be searched. It can be used to search across fields, e.g. `'1970, V2'` is a valid keystring The other options are: + `'author'`, searches the author field + `'year'`, searches the year field + `'journal'`, searches the journal field + `'V'`, searches the volume field + `'P'`, searches the page field + `'misc'`, searches all the remaining uncategorized information + `'anonymous'`, searches for anonymous `Citations`, _keyString_ is not ignored + `'bad'`, searches for bad citations, keyString is not used _reverse_ : `optional [bool]` > Default `False`, being set to `True` causes all `Records` not matching the query to be returned _caseSensitive_ : `optional [bool]` > Default `False`, if `True` causes the search across the original to be case sensitive, **only** the `'all'` option can be case sensitive
[ "Filters", "Records", "by", "some", "string", "_keyString_", "in", "their", "citations", "and", "returns", "all", "Records", "with", "at", "least", "one", "citation", "possessing", "_keyString_", "in", "the", "field", "given", "by", "_field_", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/recordCollection.py#L1503-L1615
train
networks-lab/metaknowledge
metaknowledge/citation.py
filterNonJournals
def filterNonJournals(citesLst, invert = False): """Removes the `Citations` from _citesLst_ that are not journals # Parameters _citesLst_ : `list [Citation]` > A list of citations to be filtered _invert_ : `optional [bool]` > Default `False`, if `True` non-journals will be kept instead of journals # Returns `list [Citation]` > A filtered list of Citations from _citesLst_ """ retCites = [] for c in citesLst: if c.isJournal(): if not invert: retCites.append(c) elif invert: retCites.append(c) return retCites
python
def filterNonJournals(citesLst, invert = False): """Removes the `Citations` from _citesLst_ that are not journals # Parameters _citesLst_ : `list [Citation]` > A list of citations to be filtered _invert_ : `optional [bool]` > Default `False`, if `True` non-journals will be kept instead of journals # Returns `list [Citation]` > A filtered list of Citations from _citesLst_ """ retCites = [] for c in citesLst: if c.isJournal(): if not invert: retCites.append(c) elif invert: retCites.append(c) return retCites
[ "def", "filterNonJournals", "(", "citesLst", ",", "invert", "=", "False", ")", ":", "retCites", "=", "[", "]", "for", "c", "in", "citesLst", ":", "if", "c", ".", "isJournal", "(", ")", ":", "if", "not", "invert", ":", "retCites", ".", "append", "(", "c", ")", "elif", "invert", ":", "retCites", ".", "append", "(", "c", ")", "return", "retCites" ]
Removes the `Citations` from _citesLst_ that are not journals # Parameters _citesLst_ : `list [Citation]` > A list of citations to be filtered _invert_ : `optional [bool]` > Default `False`, if `True` non-journals will be kept instead of journals # Returns `list [Citation]` > A filtered list of Citations from _citesLst_
[ "Removes", "the", "Citations", "from", "_citesLst_", "that", "are", "not", "journals" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/citation.py#L364-L391
train
networks-lab/metaknowledge
metaknowledge/mkCollection.py
Collection.add
def add(self, elem): """ Adds _elem_ to the collection. # Parameters _elem_ : `object` > The object to be added """ if isinstance(elem, self._allowedTypes): self._collection.add(elem) self._collectedTypes.add(type(elem).__name__) else: raise CollectionTypeError("{} can only contain '{}', '{}' is not allowed.".format(type(self).__name__, self._allowedTypes, elem))
python
def add(self, elem): """ Adds _elem_ to the collection. # Parameters _elem_ : `object` > The object to be added """ if isinstance(elem, self._allowedTypes): self._collection.add(elem) self._collectedTypes.add(type(elem).__name__) else: raise CollectionTypeError("{} can only contain '{}', '{}' is not allowed.".format(type(self).__name__, self._allowedTypes, elem))
[ "def", "add", "(", "self", ",", "elem", ")", ":", "if", "isinstance", "(", "elem", ",", "self", ".", "_allowedTypes", ")", ":", "self", ".", "_collection", ".", "add", "(", "elem", ")", "self", ".", "_collectedTypes", ".", "add", "(", "type", "(", "elem", ")", ".", "__name__", ")", "else", ":", "raise", "CollectionTypeError", "(", "\"{} can only contain '{}', '{}' is not allowed.\"", ".", "format", "(", "type", "(", "self", ")", ".", "__name__", ",", "self", ".", "_allowedTypes", ",", "elem", ")", ")" ]
Adds _elem_ to the collection. # Parameters _elem_ : `object` > The object to be added
[ "Adds", "_elem_", "to", "the", "collection", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkCollection.py#L120-L133
train
networks-lab/metaknowledge
metaknowledge/mkCollection.py
Collection.remove
def remove(self, elem): """Removes _elem_ from the collection, will raise a KeyError is _elem_ is missing # Parameters _elem_ : `object` > The object to be removed """ try: return self._collection.remove(elem) except KeyError: raise KeyError("'{}' was not found in the {}: '{}'.".format(elem, type(self).__name__, self)) from None
python
def remove(self, elem): """Removes _elem_ from the collection, will raise a KeyError is _elem_ is missing # Parameters _elem_ : `object` > The object to be removed """ try: return self._collection.remove(elem) except KeyError: raise KeyError("'{}' was not found in the {}: '{}'.".format(elem, type(self).__name__, self)) from None
[ "def", "remove", "(", "self", ",", "elem", ")", ":", "try", ":", "return", "self", ".", "_collection", ".", "remove", "(", "elem", ")", "except", "KeyError", ":", "raise", "KeyError", "(", "\"'{}' was not found in the {}: '{}'.\"", ".", "format", "(", "elem", ",", "type", "(", "self", ")", ".", "__name__", ",", "self", ")", ")", "from", "None" ]
Removes _elem_ from the collection, will raise a KeyError is _elem_ is missing # Parameters _elem_ : `object` > The object to be removed
[ "Removes", "_elem_", "from", "the", "collection", "will", "raise", "a", "KeyError", "is", "_elem_", "is", "missing" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkCollection.py#L147-L159
train
networks-lab/metaknowledge
metaknowledge/mkCollection.py
Collection.clear
def clear(self): """"Removes all elements from the collection and resets the error handling """ self.bad = False self.errors = {} self._collection.clear()
python
def clear(self): """"Removes all elements from the collection and resets the error handling """ self.bad = False self.errors = {} self._collection.clear()
[ "def", "clear", "(", "self", ")", ":", "self", ".", "bad", "=", "False", "self", ".", "errors", "=", "{", "}", "self", ".", "_collection", ".", "clear", "(", ")" ]
Removes all elements from the collection and resets the error handling
[ "Removes", "all", "elements", "from", "the", "collection", "and", "resets", "the", "error", "handling" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkCollection.py#L161-L166
train
networks-lab/metaknowledge
metaknowledge/mkCollection.py
Collection.pop
def pop(self): """Removes a random element from the collection and returns it # Returns `object` > A random object from the collection """ try: return self._collection.pop() except KeyError: raise KeyError("Nothing left in the {}: '{}'.".format(type(self).__name__, self)) from None
python
def pop(self): """Removes a random element from the collection and returns it # Returns `object` > A random object from the collection """ try: return self._collection.pop() except KeyError: raise KeyError("Nothing left in the {}: '{}'.".format(type(self).__name__, self)) from None
[ "def", "pop", "(", "self", ")", ":", "try", ":", "return", "self", ".", "_collection", ".", "pop", "(", ")", "except", "KeyError", ":", "raise", "KeyError", "(", "\"Nothing left in the {}: '{}'.\"", ".", "format", "(", "type", "(", "self", ")", ".", "__name__", ",", "self", ")", ")", "from", "None" ]
Removes a random element from the collection and returns it # Returns `object` > A random object from the collection
[ "Removes", "a", "random", "element", "from", "the", "collection", "and", "returns", "it" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkCollection.py#L168-L180
train
networks-lab/metaknowledge
metaknowledge/mkCollection.py
Collection.copy
def copy(self): """Creates a shallow copy of the collection # Returns `Collection` > A copy of the `Collection` """ collectedCopy = copy.copy(self) collectedCopy._collection = copy.copy(collectedCopy._collection) self._collectedTypes = copy.copy(self._collectedTypes) self._allowedTypes = copy.copy(self._allowedTypes) collectedCopy.errors = copy.copy(collectedCopy.errors) return collectedCopy
python
def copy(self): """Creates a shallow copy of the collection # Returns `Collection` > A copy of the `Collection` """ collectedCopy = copy.copy(self) collectedCopy._collection = copy.copy(collectedCopy._collection) self._collectedTypes = copy.copy(self._collectedTypes) self._allowedTypes = copy.copy(self._allowedTypes) collectedCopy.errors = copy.copy(collectedCopy.errors) return collectedCopy
[ "def", "copy", "(", "self", ")", ":", "collectedCopy", "=", "copy", ".", "copy", "(", "self", ")", "collectedCopy", ".", "_collection", "=", "copy", ".", "copy", "(", "collectedCopy", ".", "_collection", ")", "self", ".", "_collectedTypes", "=", "copy", ".", "copy", "(", "self", ".", "_collectedTypes", ")", "self", ".", "_allowedTypes", "=", "copy", ".", "copy", "(", "self", ".", "_allowedTypes", ")", "collectedCopy", ".", "errors", "=", "copy", ".", "copy", "(", "collectedCopy", ".", "errors", ")", "return", "collectedCopy" ]
Creates a shallow copy of the collection # Returns `Collection` > A copy of the `Collection`
[ "Creates", "a", "shallow", "copy", "of", "the", "collection" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkCollection.py#L279-L293
train
networks-lab/metaknowledge
metaknowledge/mkCollection.py
Collection.chunk
def chunk(self, maxSize): """Splits the `Collection` into _maxSize_ size or smaller `Collections` # Parameters _maxSize_ : `int` > The maximum number of elements in a retuned `Collection` # Returns `list [Collection]` > A list of `Collections` that if all merged (`|` operator) would create the original """ chunks = [] currentSize = maxSize + 1 for i in self: if currentSize >= maxSize: currentSize = 0 chunks.append(type(self)({i}, name = 'Chunk-{}-of-{}'.format(len(chunks), self.name), quietStart = True)) else: chunks[-1].add(i) currentSize += 1 return chunks
python
def chunk(self, maxSize): """Splits the `Collection` into _maxSize_ size or smaller `Collections` # Parameters _maxSize_ : `int` > The maximum number of elements in a retuned `Collection` # Returns `list [Collection]` > A list of `Collections` that if all merged (`|` operator) would create the original """ chunks = [] currentSize = maxSize + 1 for i in self: if currentSize >= maxSize: currentSize = 0 chunks.append(type(self)({i}, name = 'Chunk-{}-of-{}'.format(len(chunks), self.name), quietStart = True)) else: chunks[-1].add(i) currentSize += 1 return chunks
[ "def", "chunk", "(", "self", ",", "maxSize", ")", ":", "chunks", "=", "[", "]", "currentSize", "=", "maxSize", "+", "1", "for", "i", "in", "self", ":", "if", "currentSize", ">=", "maxSize", ":", "currentSize", "=", "0", "chunks", ".", "append", "(", "type", "(", "self", ")", "(", "{", "i", "}", ",", "name", "=", "'Chunk-{}-of-{}'", ".", "format", "(", "len", "(", "chunks", ")", ",", "self", ".", "name", ")", ",", "quietStart", "=", "True", ")", ")", "else", ":", "chunks", "[", "-", "1", "]", ".", "add", "(", "i", ")", "currentSize", "+=", "1", "return", "chunks" ]
Splits the `Collection` into _maxSize_ size or smaller `Collections` # Parameters _maxSize_ : `int` > The maximum number of elements in a retuned `Collection` # Returns `list [Collection]` > A list of `Collections` that if all merged (`|` operator) would create the original
[ "Splits", "the", "Collection", "into", "_maxSize_", "size", "or", "smaller", "Collections" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkCollection.py#L309-L334
train
networks-lab/metaknowledge
metaknowledge/mkCollection.py
Collection.split
def split(self, maxSize): """Destructively, splits the `Collection` into _maxSize_ size or smaller `Collections`. The source `Collection` will be empty after this operation # Parameters _maxSize_ : `int` > The maximum number of elements in a retuned `Collection` # Returns `list [Collection]` > A list of `Collections` that if all merged (`|` operator) would create the original """ chunks = [] currentSize = maxSize + 1 try: while True: if currentSize >= maxSize: currentSize = 0 chunks.append(type(self)({self.pop()}, name = 'Chunk-{}-of-{}'.format(len(chunks), self.name), quietStart = True)) else: chunks[-1].add(self.pop()) currentSize += 1 except KeyError: self.clear() self.name = 'Emptied-{}'.format(self.name) return chunks
python
def split(self, maxSize): """Destructively, splits the `Collection` into _maxSize_ size or smaller `Collections`. The source `Collection` will be empty after this operation # Parameters _maxSize_ : `int` > The maximum number of elements in a retuned `Collection` # Returns `list [Collection]` > A list of `Collections` that if all merged (`|` operator) would create the original """ chunks = [] currentSize = maxSize + 1 try: while True: if currentSize >= maxSize: currentSize = 0 chunks.append(type(self)({self.pop()}, name = 'Chunk-{}-of-{}'.format(len(chunks), self.name), quietStart = True)) else: chunks[-1].add(self.pop()) currentSize += 1 except KeyError: self.clear() self.name = 'Emptied-{}'.format(self.name) return chunks
[ "def", "split", "(", "self", ",", "maxSize", ")", ":", "chunks", "=", "[", "]", "currentSize", "=", "maxSize", "+", "1", "try", ":", "while", "True", ":", "if", "currentSize", ">=", "maxSize", ":", "currentSize", "=", "0", "chunks", ".", "append", "(", "type", "(", "self", ")", "(", "{", "self", ".", "pop", "(", ")", "}", ",", "name", "=", "'Chunk-{}-of-{}'", ".", "format", "(", "len", "(", "chunks", ")", ",", "self", ".", "name", ")", ",", "quietStart", "=", "True", ")", ")", "else", ":", "chunks", "[", "-", "1", "]", ".", "add", "(", "self", ".", "pop", "(", ")", ")", "currentSize", "+=", "1", "except", "KeyError", ":", "self", ".", "clear", "(", ")", "self", ".", "name", "=", "'Emptied-{}'", ".", "format", "(", "self", ".", "name", ")", "return", "chunks" ]
Destructively, splits the `Collection` into _maxSize_ size or smaller `Collections`. The source `Collection` will be empty after this operation # Parameters _maxSize_ : `int` > The maximum number of elements in a retuned `Collection` # Returns `list [Collection]` > A list of `Collections` that if all merged (`|` operator) would create the original
[ "Destructively", "splits", "the", "Collection", "into", "_maxSize_", "size", "or", "smaller", "Collections", ".", "The", "source", "Collection", "will", "be", "empty", "after", "this", "operation" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkCollection.py#L336-L364
train
networks-lab/metaknowledge
metaknowledge/mkCollection.py
CollectionWithIDs.containsID
def containsID(self, idVal): """Checks if the collected items contains the give _idVal_ # Parameters _idVal_ : `str` > The queried id string # Returns `bool` > `True` if the item is in the collection """ for i in self: if i.id == idVal: return True return False
python
def containsID(self, idVal): """Checks if the collected items contains the give _idVal_ # Parameters _idVal_ : `str` > The queried id string # Returns `bool` > `True` if the item is in the collection """ for i in self: if i.id == idVal: return True return False
[ "def", "containsID", "(", "self", ",", "idVal", ")", ":", "for", "i", "in", "self", ":", "if", "i", ".", "id", "==", "idVal", ":", "return", "True", "return", "False" ]
Checks if the collected items contains the give _idVal_ # Parameters _idVal_ : `str` > The queried id string # Returns `bool` > `True` if the item is in the collection
[ "Checks", "if", "the", "collected", "items", "contains", "the", "give", "_idVal_" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkCollection.py#L420-L438
train
networks-lab/metaknowledge
metaknowledge/mkCollection.py
CollectionWithIDs.discardID
def discardID(self, idVal): """Checks if the collected items contains the give _idVal_ and discards it if it is found, will not raise an exception if item is not found # Parameters _idVal_ : `str` > The discarded id string """ for i in self: if i.id == idVal: self._collection.discard(i) return
python
def discardID(self, idVal): """Checks if the collected items contains the give _idVal_ and discards it if it is found, will not raise an exception if item is not found # Parameters _idVal_ : `str` > The discarded id string """ for i in self: if i.id == idVal: self._collection.discard(i) return
[ "def", "discardID", "(", "self", ",", "idVal", ")", ":", "for", "i", "in", "self", ":", "if", "i", ".", "id", "==", "idVal", ":", "self", ".", "_collection", ".", "discard", "(", "i", ")", "return" ]
Checks if the collected items contains the give _idVal_ and discards it if it is found, will not raise an exception if item is not found # Parameters _idVal_ : `str` > The discarded id string
[ "Checks", "if", "the", "collected", "items", "contains", "the", "give", "_idVal_", "and", "discards", "it", "if", "it", "is", "found", "will", "not", "raise", "an", "exception", "if", "item", "is", "not", "found" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkCollection.py#L440-L452
train
networks-lab/metaknowledge
metaknowledge/mkCollection.py
CollectionWithIDs.removeID
def removeID(self, idVal): """Checks if the collected items contains the give _idVal_ and removes it if it is found, will raise a `KeyError` if item is not found # Parameters _idVal_ : `str` > The removed id string """ for i in self: if i.id == idVal: self._collection.remove(i) return raise KeyError("A Record with the ID '{}' was not found in the RecordCollection: '{}'.".format(idVal, self))
python
def removeID(self, idVal): """Checks if the collected items contains the give _idVal_ and removes it if it is found, will raise a `KeyError` if item is not found # Parameters _idVal_ : `str` > The removed id string """ for i in self: if i.id == idVal: self._collection.remove(i) return raise KeyError("A Record with the ID '{}' was not found in the RecordCollection: '{}'.".format(idVal, self))
[ "def", "removeID", "(", "self", ",", "idVal", ")", ":", "for", "i", "in", "self", ":", "if", "i", ".", "id", "==", "idVal", ":", "self", ".", "_collection", ".", "remove", "(", "i", ")", "return", "raise", "KeyError", "(", "\"A Record with the ID '{}' was not found in the RecordCollection: '{}'.\"", ".", "format", "(", "idVal", ",", "self", ")", ")" ]
Checks if the collected items contains the give _idVal_ and removes it if it is found, will raise a `KeyError` if item is not found # Parameters _idVal_ : `str` > The removed id string
[ "Checks", "if", "the", "collected", "items", "contains", "the", "give", "_idVal_", "and", "removes", "it", "if", "it", "is", "found", "will", "raise", "a", "KeyError", "if", "item", "is", "not", "found" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkCollection.py#L454-L467
train
networks-lab/metaknowledge
metaknowledge/mkCollection.py
CollectionWithIDs.badEntries
def badEntries(self): """Creates a new collection of the same type with only the bad entries # Returns `CollectionWithIDs` > A collection of only the bad entries """ badEntries = set() for i in self: if i.bad: badEntries.add(i) return type(self)(badEntries, quietStart = True)
python
def badEntries(self): """Creates a new collection of the same type with only the bad entries # Returns `CollectionWithIDs` > A collection of only the bad entries """ badEntries = set() for i in self: if i.bad: badEntries.add(i) return type(self)(badEntries, quietStart = True)
[ "def", "badEntries", "(", "self", ")", ":", "badEntries", "=", "set", "(", ")", "for", "i", "in", "self", ":", "if", "i", ".", "bad", ":", "badEntries", ".", "add", "(", "i", ")", "return", "type", "(", "self", ")", "(", "badEntries", ",", "quietStart", "=", "True", ")" ]
Creates a new collection of the same type with only the bad entries # Returns `CollectionWithIDs` > A collection of only the bad entries
[ "Creates", "a", "new", "collection", "of", "the", "same", "type", "with", "only", "the", "bad", "entries" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkCollection.py#L489-L502
train
networks-lab/metaknowledge
metaknowledge/mkCollection.py
CollectionWithIDs.dropBadEntries
def dropBadEntries(self): """Removes all the bad entries from the collection """ self._collection = set((i for i in self if not i.bad)) self.bad = False self.errors = {}
python
def dropBadEntries(self): """Removes all the bad entries from the collection """ self._collection = set((i for i in self if not i.bad)) self.bad = False self.errors = {}
[ "def", "dropBadEntries", "(", "self", ")", ":", "self", ".", "_collection", "=", "set", "(", "(", "i", "for", "i", "in", "self", "if", "not", "i", ".", "bad", ")", ")", "self", ".", "bad", "=", "False", "self", ".", "errors", "=", "{", "}" ]
Removes all the bad entries from the collection
[ "Removes", "all", "the", "bad", "entries", "from", "the", "collection" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkCollection.py#L504-L509
train
networks-lab/metaknowledge
metaknowledge/mkCollection.py
CollectionWithIDs.tags
def tags(self): """Creates a list of all the tags of the contained items # Returns `list [str]` > A list of all the tags """ tags = set() for i in self: tags |= set(i.keys()) return tags
python
def tags(self): """Creates a list of all the tags of the contained items # Returns `list [str]` > A list of all the tags """ tags = set() for i in self: tags |= set(i.keys()) return tags
[ "def", "tags", "(", "self", ")", ":", "tags", "=", "set", "(", ")", "for", "i", "in", "self", ":", "tags", "|=", "set", "(", "i", ".", "keys", "(", ")", ")", "return", "tags" ]
Creates a list of all the tags of the contained items # Returns `list [str]` > A list of all the tags
[ "Creates", "a", "list", "of", "all", "the", "tags", "of", "the", "contained", "items" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkCollection.py#L511-L523
train
networks-lab/metaknowledge
metaknowledge/mkCollection.py
CollectionWithIDs.rankedSeries
def rankedSeries(self, tag, outputFile = None, giveCounts = True, giveRanks = False, greatestFirst = True, pandasMode = True, limitTo = None): """Creates an pandas dict of the ordered list of all the values of _tag_, with and ranked by their number of occurrences. A list can also be returned with the the counts or ranks added or it can be written to a file. # Parameters _tag_ : `str` > The tag to be ranked _outputFile_ : `optional str` > A file path to write a csv with 2 columns, one the tag values the other their counts _giveCounts_ : `optional bool` > Default `True`, if `True` the retuned list will be composed of tuples the first values being the tag value and the second their counts. This supersedes _giveRanks_. _giveRanks_ : `optional bool` > Default `False`, if `True` and _giveCounts_ is `False`, the retuned list will be composed of tuples the first values being the tag value and the second their ranks. This is superseded by _giveCounts_. _greatestFirst_ : `optional bool` > Default `True`, if `True` the returned list will be ordered with the highest ranked value first, otherwise the lowest ranked will be first. _pandasMode_ : `optional bool` > Default `True`, if `True` a `dict` ready for pandas will be returned, otherwise a list _limitTo_ : `optional list[values]` > Default `None`, if a list is provided only those values in the list will be counted or returned # Returns `dict[str:list[value]] or list[str]` > A `dict` or `list` will be returned depending on if _pandasMode_ is `True` """ if giveRanks and giveCounts: raise mkException("rankedSeries cannot return counts and ranks only one of giveRanks or giveCounts can be True.") seriesDict = {} for R in self: #This should be faster than using get, since get is a wrapper for __getitem__ try: val = R[tag] except KeyError: continue if not isinstance(val, list): val = [val] for entry in val: if limitTo and entry not in limitTo: continue if entry in seriesDict: seriesDict[entry] += 1 else: seriesDict[entry] = 1 seriesList = sorted(seriesDict.items(), key = lambda x: x[1], reverse = greatestFirst) if outputFile is not None: with open(outputFile, 'w') as f: writer = csv.writer(f, dialect = 'excel') writer.writerow((str(tag), 'count')) writer.writerows(seriesList) if giveCounts and not pandasMode: return seriesList elif giveRanks or pandasMode: if not greatestFirst: seriesList.reverse() currentRank = 1 retList = [] panDict = {'entry' : [], 'count' : [], 'rank' : []} try: currentCount = seriesList[0][1] except IndexError: #Empty series so no need to loop pass else: for valString, count in seriesList: if currentCount > count: currentRank += 1 currentCount = count if pandasMode: panDict['entry'].append(valString) panDict['count'].append(count) panDict['rank'].append(currentRank) else: retList.append((valString, currentRank)) if not greatestFirst: retList.reverse() if pandasMode: return panDict else: return retList else: return [e for e,c in seriesList]
python
def rankedSeries(self, tag, outputFile = None, giveCounts = True, giveRanks = False, greatestFirst = True, pandasMode = True, limitTo = None): """Creates an pandas dict of the ordered list of all the values of _tag_, with and ranked by their number of occurrences. A list can also be returned with the the counts or ranks added or it can be written to a file. # Parameters _tag_ : `str` > The tag to be ranked _outputFile_ : `optional str` > A file path to write a csv with 2 columns, one the tag values the other their counts _giveCounts_ : `optional bool` > Default `True`, if `True` the retuned list will be composed of tuples the first values being the tag value and the second their counts. This supersedes _giveRanks_. _giveRanks_ : `optional bool` > Default `False`, if `True` and _giveCounts_ is `False`, the retuned list will be composed of tuples the first values being the tag value and the second their ranks. This is superseded by _giveCounts_. _greatestFirst_ : `optional bool` > Default `True`, if `True` the returned list will be ordered with the highest ranked value first, otherwise the lowest ranked will be first. _pandasMode_ : `optional bool` > Default `True`, if `True` a `dict` ready for pandas will be returned, otherwise a list _limitTo_ : `optional list[values]` > Default `None`, if a list is provided only those values in the list will be counted or returned # Returns `dict[str:list[value]] or list[str]` > A `dict` or `list` will be returned depending on if _pandasMode_ is `True` """ if giveRanks and giveCounts: raise mkException("rankedSeries cannot return counts and ranks only one of giveRanks or giveCounts can be True.") seriesDict = {} for R in self: #This should be faster than using get, since get is a wrapper for __getitem__ try: val = R[tag] except KeyError: continue if not isinstance(val, list): val = [val] for entry in val: if limitTo and entry not in limitTo: continue if entry in seriesDict: seriesDict[entry] += 1 else: seriesDict[entry] = 1 seriesList = sorted(seriesDict.items(), key = lambda x: x[1], reverse = greatestFirst) if outputFile is not None: with open(outputFile, 'w') as f: writer = csv.writer(f, dialect = 'excel') writer.writerow((str(tag), 'count')) writer.writerows(seriesList) if giveCounts and not pandasMode: return seriesList elif giveRanks or pandasMode: if not greatestFirst: seriesList.reverse() currentRank = 1 retList = [] panDict = {'entry' : [], 'count' : [], 'rank' : []} try: currentCount = seriesList[0][1] except IndexError: #Empty series so no need to loop pass else: for valString, count in seriesList: if currentCount > count: currentRank += 1 currentCount = count if pandasMode: panDict['entry'].append(valString) panDict['count'].append(count) panDict['rank'].append(currentRank) else: retList.append((valString, currentRank)) if not greatestFirst: retList.reverse() if pandasMode: return panDict else: return retList else: return [e for e,c in seriesList]
[ "def", "rankedSeries", "(", "self", ",", "tag", ",", "outputFile", "=", "None", ",", "giveCounts", "=", "True", ",", "giveRanks", "=", "False", ",", "greatestFirst", "=", "True", ",", "pandasMode", "=", "True", ",", "limitTo", "=", "None", ")", ":", "if", "giveRanks", "and", "giveCounts", ":", "raise", "mkException", "(", "\"rankedSeries cannot return counts and ranks only one of giveRanks or giveCounts can be True.\"", ")", "seriesDict", "=", "{", "}", "for", "R", "in", "self", ":", "#This should be faster than using get, since get is a wrapper for __getitem__", "try", ":", "val", "=", "R", "[", "tag", "]", "except", "KeyError", ":", "continue", "if", "not", "isinstance", "(", "val", ",", "list", ")", ":", "val", "=", "[", "val", "]", "for", "entry", "in", "val", ":", "if", "limitTo", "and", "entry", "not", "in", "limitTo", ":", "continue", "if", "entry", "in", "seriesDict", ":", "seriesDict", "[", "entry", "]", "+=", "1", "else", ":", "seriesDict", "[", "entry", "]", "=", "1", "seriesList", "=", "sorted", "(", "seriesDict", ".", "items", "(", ")", ",", "key", "=", "lambda", "x", ":", "x", "[", "1", "]", ",", "reverse", "=", "greatestFirst", ")", "if", "outputFile", "is", "not", "None", ":", "with", "open", "(", "outputFile", ",", "'w'", ")", "as", "f", ":", "writer", "=", "csv", ".", "writer", "(", "f", ",", "dialect", "=", "'excel'", ")", "writer", ".", "writerow", "(", "(", "str", "(", "tag", ")", ",", "'count'", ")", ")", "writer", ".", "writerows", "(", "seriesList", ")", "if", "giveCounts", "and", "not", "pandasMode", ":", "return", "seriesList", "elif", "giveRanks", "or", "pandasMode", ":", "if", "not", "greatestFirst", ":", "seriesList", ".", "reverse", "(", ")", "currentRank", "=", "1", "retList", "=", "[", "]", "panDict", "=", "{", "'entry'", ":", "[", "]", ",", "'count'", ":", "[", "]", ",", "'rank'", ":", "[", "]", "}", "try", ":", "currentCount", "=", "seriesList", "[", "0", "]", "[", "1", "]", "except", "IndexError", ":", "#Empty series so no need to loop", "pass", "else", ":", "for", "valString", ",", "count", "in", "seriesList", ":", "if", "currentCount", ">", "count", ":", "currentRank", "+=", "1", "currentCount", "=", "count", "if", "pandasMode", ":", "panDict", "[", "'entry'", "]", ".", "append", "(", "valString", ")", "panDict", "[", "'count'", "]", ".", "append", "(", "count", ")", "panDict", "[", "'rank'", "]", ".", "append", "(", "currentRank", ")", "else", ":", "retList", ".", "append", "(", "(", "valString", ",", "currentRank", ")", ")", "if", "not", "greatestFirst", ":", "retList", ".", "reverse", "(", ")", "if", "pandasMode", ":", "return", "panDict", "else", ":", "return", "retList", "else", ":", "return", "[", "e", "for", "e", ",", "c", "in", "seriesList", "]" ]
Creates an pandas dict of the ordered list of all the values of _tag_, with and ranked by their number of occurrences. A list can also be returned with the the counts or ranks added or it can be written to a file. # Parameters _tag_ : `str` > The tag to be ranked _outputFile_ : `optional str` > A file path to write a csv with 2 columns, one the tag values the other their counts _giveCounts_ : `optional bool` > Default `True`, if `True` the retuned list will be composed of tuples the first values being the tag value and the second their counts. This supersedes _giveRanks_. _giveRanks_ : `optional bool` > Default `False`, if `True` and _giveCounts_ is `False`, the retuned list will be composed of tuples the first values being the tag value and the second their ranks. This is superseded by _giveCounts_. _greatestFirst_ : `optional bool` > Default `True`, if `True` the returned list will be ordered with the highest ranked value first, otherwise the lowest ranked will be first. _pandasMode_ : `optional bool` > Default `True`, if `True` a `dict` ready for pandas will be returned, otherwise a list _limitTo_ : `optional list[values]` > Default `None`, if a list is provided only those values in the list will be counted or returned # Returns `dict[str:list[value]] or list[str]` > A `dict` or `list` will be returned depending on if _pandasMode_ is `True`
[ "Creates", "an", "pandas", "dict", "of", "the", "ordered", "list", "of", "all", "the", "values", "of", "_tag_", "with", "and", "ranked", "by", "their", "number", "of", "occurrences", ".", "A", "list", "can", "also", "be", "returned", "with", "the", "the", "counts", "or", "ranks", "added", "or", "it", "can", "be", "written", "to", "a", "file", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkCollection.py#L569-L663
train
networks-lab/metaknowledge
metaknowledge/mkCollection.py
CollectionWithIDs.timeSeries
def timeSeries(self, tag = None, outputFile = None, giveYears = True, greatestFirst = True, limitTo = False, pandasMode = True): """Creates an pandas dict of the ordered list of all the values of _tag_, with and ranked by the year the occurred in, multiple year occurrences will create multiple entries. A list can also be returned with the the counts or years added or it can be written to a file. If no _tag_ is given the `Records` in the collection will be used # Parameters _tag_ : `optional str` > Default `None`, if provided the tag will be ordered _outputFile_ : `optional str` > A file path to write a csv with 2 columns, one the tag values the other their years _giveYears_ : `optional bool` > Default `True`, if `True` the retuned list will be composed of tuples the first values being the tag value and the second their years. _greatestFirst_ : `optional bool` > Default `True`, if `True` the returned list will be ordered with the highest years first, otherwise the lowest years will be first. _pandasMode_ : `optional bool` > Default `True`, if `True` a `dict` ready for pandas will be returned, otherwise a list _limitTo_ : `optional list[values]` > Default `None`, if a list is provided only those values in the list will be counted or returned # Returns `dict[str:list[value]] or list[str]` > A `dict` or `list` will be returned depending on if _pandasMode_ is `True` """ seriesDict = {} for R in self: #This should be faster than using get, since get is a wrapper for __getitem__ try: year = R['year'] except KeyError: continue if tag is None: seriesDict[R] = {year : 1} else: try: val = R[tag] except KeyError: continue if not isinstance(val, list): val = [val] for entry in val: if limitTo and entry not in limitTo: continue if entry in seriesDict: try: seriesDict[entry][year] += 1 except KeyError: seriesDict[entry][year] = 1 else: seriesDict[entry] = {year : 1} seriesList = [] for e, yd in seriesDict.items(): seriesList += [(e, y) for y in yd.keys()] seriesList = sorted(seriesList, key = lambda x: x[1], reverse = greatestFirst) if outputFile is not None: with open(outputFile, 'w') as f: writer = csv.writer(f, dialect = 'excel') writer.writerow((str(tag), 'years')) writer.writerows(((k,'|'.join((str(y) for y in v))) for k,v in seriesDict.items())) if pandasMode: panDict = {'entry' : [], 'count' : [], 'year' : []} for entry, year in seriesList: panDict['entry'].append(entry) panDict['year'].append(year) panDict['count'].append(seriesDict[entry][year]) return panDict elif giveYears: return seriesList else: return [e for e,c in seriesList]
python
def timeSeries(self, tag = None, outputFile = None, giveYears = True, greatestFirst = True, limitTo = False, pandasMode = True): """Creates an pandas dict of the ordered list of all the values of _tag_, with and ranked by the year the occurred in, multiple year occurrences will create multiple entries. A list can also be returned with the the counts or years added or it can be written to a file. If no _tag_ is given the `Records` in the collection will be used # Parameters _tag_ : `optional str` > Default `None`, if provided the tag will be ordered _outputFile_ : `optional str` > A file path to write a csv with 2 columns, one the tag values the other their years _giveYears_ : `optional bool` > Default `True`, if `True` the retuned list will be composed of tuples the first values being the tag value and the second their years. _greatestFirst_ : `optional bool` > Default `True`, if `True` the returned list will be ordered with the highest years first, otherwise the lowest years will be first. _pandasMode_ : `optional bool` > Default `True`, if `True` a `dict` ready for pandas will be returned, otherwise a list _limitTo_ : `optional list[values]` > Default `None`, if a list is provided only those values in the list will be counted or returned # Returns `dict[str:list[value]] or list[str]` > A `dict` or `list` will be returned depending on if _pandasMode_ is `True` """ seriesDict = {} for R in self: #This should be faster than using get, since get is a wrapper for __getitem__ try: year = R['year'] except KeyError: continue if tag is None: seriesDict[R] = {year : 1} else: try: val = R[tag] except KeyError: continue if not isinstance(val, list): val = [val] for entry in val: if limitTo and entry not in limitTo: continue if entry in seriesDict: try: seriesDict[entry][year] += 1 except KeyError: seriesDict[entry][year] = 1 else: seriesDict[entry] = {year : 1} seriesList = [] for e, yd in seriesDict.items(): seriesList += [(e, y) for y in yd.keys()] seriesList = sorted(seriesList, key = lambda x: x[1], reverse = greatestFirst) if outputFile is not None: with open(outputFile, 'w') as f: writer = csv.writer(f, dialect = 'excel') writer.writerow((str(tag), 'years')) writer.writerows(((k,'|'.join((str(y) for y in v))) for k,v in seriesDict.items())) if pandasMode: panDict = {'entry' : [], 'count' : [], 'year' : []} for entry, year in seriesList: panDict['entry'].append(entry) panDict['year'].append(year) panDict['count'].append(seriesDict[entry][year]) return panDict elif giveYears: return seriesList else: return [e for e,c in seriesList]
[ "def", "timeSeries", "(", "self", ",", "tag", "=", "None", ",", "outputFile", "=", "None", ",", "giveYears", "=", "True", ",", "greatestFirst", "=", "True", ",", "limitTo", "=", "False", ",", "pandasMode", "=", "True", ")", ":", "seriesDict", "=", "{", "}", "for", "R", "in", "self", ":", "#This should be faster than using get, since get is a wrapper for __getitem__", "try", ":", "year", "=", "R", "[", "'year'", "]", "except", "KeyError", ":", "continue", "if", "tag", "is", "None", ":", "seriesDict", "[", "R", "]", "=", "{", "year", ":", "1", "}", "else", ":", "try", ":", "val", "=", "R", "[", "tag", "]", "except", "KeyError", ":", "continue", "if", "not", "isinstance", "(", "val", ",", "list", ")", ":", "val", "=", "[", "val", "]", "for", "entry", "in", "val", ":", "if", "limitTo", "and", "entry", "not", "in", "limitTo", ":", "continue", "if", "entry", "in", "seriesDict", ":", "try", ":", "seriesDict", "[", "entry", "]", "[", "year", "]", "+=", "1", "except", "KeyError", ":", "seriesDict", "[", "entry", "]", "[", "year", "]", "=", "1", "else", ":", "seriesDict", "[", "entry", "]", "=", "{", "year", ":", "1", "}", "seriesList", "=", "[", "]", "for", "e", ",", "yd", "in", "seriesDict", ".", "items", "(", ")", ":", "seriesList", "+=", "[", "(", "e", ",", "y", ")", "for", "y", "in", "yd", ".", "keys", "(", ")", "]", "seriesList", "=", "sorted", "(", "seriesList", ",", "key", "=", "lambda", "x", ":", "x", "[", "1", "]", ",", "reverse", "=", "greatestFirst", ")", "if", "outputFile", "is", "not", "None", ":", "with", "open", "(", "outputFile", ",", "'w'", ")", "as", "f", ":", "writer", "=", "csv", ".", "writer", "(", "f", ",", "dialect", "=", "'excel'", ")", "writer", ".", "writerow", "(", "(", "str", "(", "tag", ")", ",", "'years'", ")", ")", "writer", ".", "writerows", "(", "(", "(", "k", ",", "'|'", ".", "join", "(", "(", "str", "(", "y", ")", "for", "y", "in", "v", ")", ")", ")", "for", "k", ",", "v", "in", "seriesDict", ".", "items", "(", ")", ")", ")", "if", "pandasMode", ":", "panDict", "=", "{", "'entry'", ":", "[", "]", ",", "'count'", ":", "[", "]", ",", "'year'", ":", "[", "]", "}", "for", "entry", ",", "year", "in", "seriesList", ":", "panDict", "[", "'entry'", "]", ".", "append", "(", "entry", ")", "panDict", "[", "'year'", "]", ".", "append", "(", "year", ")", "panDict", "[", "'count'", "]", ".", "append", "(", "seriesDict", "[", "entry", "]", "[", "year", "]", ")", "return", "panDict", "elif", "giveYears", ":", "return", "seriesList", "else", ":", "return", "[", "e", "for", "e", ",", "c", "in", "seriesList", "]" ]
Creates an pandas dict of the ordered list of all the values of _tag_, with and ranked by the year the occurred in, multiple year occurrences will create multiple entries. A list can also be returned with the the counts or years added or it can be written to a file. If no _tag_ is given the `Records` in the collection will be used # Parameters _tag_ : `optional str` > Default `None`, if provided the tag will be ordered _outputFile_ : `optional str` > A file path to write a csv with 2 columns, one the tag values the other their years _giveYears_ : `optional bool` > Default `True`, if `True` the retuned list will be composed of tuples the first values being the tag value and the second their years. _greatestFirst_ : `optional bool` > Default `True`, if `True` the returned list will be ordered with the highest years first, otherwise the lowest years will be first. _pandasMode_ : `optional bool` > Default `True`, if `True` a `dict` ready for pandas will be returned, otherwise a list _limitTo_ : `optional list[values]` > Default `None`, if a list is provided only those values in the list will be counted or returned # Returns `dict[str:list[value]] or list[str]` > A `dict` or `list` will be returned depending on if _pandasMode_ is `True`
[ "Creates", "an", "pandas", "dict", "of", "the", "ordered", "list", "of", "all", "the", "values", "of", "_tag_", "with", "and", "ranked", "by", "the", "year", "the", "occurred", "in", "multiple", "year", "occurrences", "will", "create", "multiple", "entries", ".", "A", "list", "can", "also", "be", "returned", "with", "the", "the", "counts", "or", "years", "added", "or", "it", "can", "be", "written", "to", "a", "file", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkCollection.py#L665-L747
train
networks-lab/metaknowledge
metaknowledge/mkCollection.py
CollectionWithIDs.cooccurrenceCounts
def cooccurrenceCounts(self, keyTag, *countedTags): """Counts the number of times values from any of the _countedTags_ occurs with _keyTag_. The counts are retuned as a dictionary with the values of _keyTag_ mapping to dictionaries with each of the _countedTags_ values mapping to thier counts. # Parameters _keyTag_ : `str` > The tag used as the key for the returned dictionary _*countedTags_ : `str, str, str, ...` > The tags used as the key for the returned dictionary's values # Returns `dict[str:dict[str:int]]` > The dictionary of counts """ if not isinstance(keyTag, str): raise TagError("'{}' is not a string it cannot be used as a tag.".format(keyTag)) if len(countedTags) < 1: TagError("You need to provide atleast one tag") for tag in countedTags: if not isinstance(tag, str): raise TagError("'{}' is not a string it cannot be used as a tag.".format(tag)) occurenceDict = {} progArgs = (0, "Starting to count the co-occurrences of '{}' and' {}'".format(keyTag, "','".join(countedTags))) if metaknowledge.VERBOSE_MODE: progKwargs = {'dummy' : False} else: progKwargs = {'dummy' : True} with _ProgressBar(*progArgs, **progKwargs) as PBar: for i, R in enumerate(self): PBar.updateVal(i / len(self), "Analyzing {}".format(R)) keyVal = R.get(keyTag) if keyVal is None: continue if not isinstance(keyVal, list): keyVal = [keyVal] for key in keyVal: if key not in occurenceDict: occurenceDict[key] = {} for tag in countedTags: tagval = R.get(tag) if tagval is None: continue if not isinstance(tagval, list): tagval = [tagval] for val in tagval: for key in keyVal: try: occurenceDict[key][val] += 1 except KeyError: occurenceDict[key][val] = 1 PBar.finish("Done extracting the co-occurrences of '{}' and '{}'".format(keyTag, "','".join(countedTags))) return occurenceDict
python
def cooccurrenceCounts(self, keyTag, *countedTags): """Counts the number of times values from any of the _countedTags_ occurs with _keyTag_. The counts are retuned as a dictionary with the values of _keyTag_ mapping to dictionaries with each of the _countedTags_ values mapping to thier counts. # Parameters _keyTag_ : `str` > The tag used as the key for the returned dictionary _*countedTags_ : `str, str, str, ...` > The tags used as the key for the returned dictionary's values # Returns `dict[str:dict[str:int]]` > The dictionary of counts """ if not isinstance(keyTag, str): raise TagError("'{}' is not a string it cannot be used as a tag.".format(keyTag)) if len(countedTags) < 1: TagError("You need to provide atleast one tag") for tag in countedTags: if not isinstance(tag, str): raise TagError("'{}' is not a string it cannot be used as a tag.".format(tag)) occurenceDict = {} progArgs = (0, "Starting to count the co-occurrences of '{}' and' {}'".format(keyTag, "','".join(countedTags))) if metaknowledge.VERBOSE_MODE: progKwargs = {'dummy' : False} else: progKwargs = {'dummy' : True} with _ProgressBar(*progArgs, **progKwargs) as PBar: for i, R in enumerate(self): PBar.updateVal(i / len(self), "Analyzing {}".format(R)) keyVal = R.get(keyTag) if keyVal is None: continue if not isinstance(keyVal, list): keyVal = [keyVal] for key in keyVal: if key not in occurenceDict: occurenceDict[key] = {} for tag in countedTags: tagval = R.get(tag) if tagval is None: continue if not isinstance(tagval, list): tagval = [tagval] for val in tagval: for key in keyVal: try: occurenceDict[key][val] += 1 except KeyError: occurenceDict[key][val] = 1 PBar.finish("Done extracting the co-occurrences of '{}' and '{}'".format(keyTag, "','".join(countedTags))) return occurenceDict
[ "def", "cooccurrenceCounts", "(", "self", ",", "keyTag", ",", "*", "countedTags", ")", ":", "if", "not", "isinstance", "(", "keyTag", ",", "str", ")", ":", "raise", "TagError", "(", "\"'{}' is not a string it cannot be used as a tag.\"", ".", "format", "(", "keyTag", ")", ")", "if", "len", "(", "countedTags", ")", "<", "1", ":", "TagError", "(", "\"You need to provide atleast one tag\"", ")", "for", "tag", "in", "countedTags", ":", "if", "not", "isinstance", "(", "tag", ",", "str", ")", ":", "raise", "TagError", "(", "\"'{}' is not a string it cannot be used as a tag.\"", ".", "format", "(", "tag", ")", ")", "occurenceDict", "=", "{", "}", "progArgs", "=", "(", "0", ",", "\"Starting to count the co-occurrences of '{}' and' {}'\"", ".", "format", "(", "keyTag", ",", "\"','\"", ".", "join", "(", "countedTags", ")", ")", ")", "if", "metaknowledge", ".", "VERBOSE_MODE", ":", "progKwargs", "=", "{", "'dummy'", ":", "False", "}", "else", ":", "progKwargs", "=", "{", "'dummy'", ":", "True", "}", "with", "_ProgressBar", "(", "*", "progArgs", ",", "*", "*", "progKwargs", ")", "as", "PBar", ":", "for", "i", ",", "R", "in", "enumerate", "(", "self", ")", ":", "PBar", ".", "updateVal", "(", "i", "/", "len", "(", "self", ")", ",", "\"Analyzing {}\"", ".", "format", "(", "R", ")", ")", "keyVal", "=", "R", ".", "get", "(", "keyTag", ")", "if", "keyVal", "is", "None", ":", "continue", "if", "not", "isinstance", "(", "keyVal", ",", "list", ")", ":", "keyVal", "=", "[", "keyVal", "]", "for", "key", "in", "keyVal", ":", "if", "key", "not", "in", "occurenceDict", ":", "occurenceDict", "[", "key", "]", "=", "{", "}", "for", "tag", "in", "countedTags", ":", "tagval", "=", "R", ".", "get", "(", "tag", ")", "if", "tagval", "is", "None", ":", "continue", "if", "not", "isinstance", "(", "tagval", ",", "list", ")", ":", "tagval", "=", "[", "tagval", "]", "for", "val", "in", "tagval", ":", "for", "key", "in", "keyVal", ":", "try", ":", "occurenceDict", "[", "key", "]", "[", "val", "]", "+=", "1", "except", "KeyError", ":", "occurenceDict", "[", "key", "]", "[", "val", "]", "=", "1", "PBar", ".", "finish", "(", "\"Done extracting the co-occurrences of '{}' and '{}'\"", ".", "format", "(", "keyTag", ",", "\"','\"", ".", "join", "(", "countedTags", ")", ")", ")", "return", "occurenceDict" ]
Counts the number of times values from any of the _countedTags_ occurs with _keyTag_. The counts are retuned as a dictionary with the values of _keyTag_ mapping to dictionaries with each of the _countedTags_ values mapping to thier counts. # Parameters _keyTag_ : `str` > The tag used as the key for the returned dictionary _*countedTags_ : `str, str, str, ...` > The tags used as the key for the returned dictionary's values # Returns `dict[str:dict[str:int]]` > The dictionary of counts
[ "Counts", "the", "number", "of", "times", "values", "from", "any", "of", "the", "_countedTags_", "occurs", "with", "_keyTag_", ".", "The", "counts", "are", "retuned", "as", "a", "dictionary", "with", "the", "values", "of", "_keyTag_", "mapping", "to", "dictionaries", "with", "each", "of", "the", "_countedTags_", "values", "mapping", "to", "thier", "counts", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkCollection.py#L749-L806
train
networks-lab/metaknowledge
metaknowledge/diffusion.py
makeNodeID
def makeNodeID(Rec, ndType, extras = None): """Helper to make a node ID, extras is currently not used""" if ndType == 'raw': recID = Rec else: recID = Rec.get(ndType) if recID is None: pass elif isinstance(recID, list): recID = tuple(recID) else: recID = recID extraDict = {} if extras: for tag in extras: if tag == "raw": extraDict['Tag'] = Rec else: extraDict['Tag'] = Rec.get(tag) return recID, extraDict
python
def makeNodeID(Rec, ndType, extras = None): """Helper to make a node ID, extras is currently not used""" if ndType == 'raw': recID = Rec else: recID = Rec.get(ndType) if recID is None: pass elif isinstance(recID, list): recID = tuple(recID) else: recID = recID extraDict = {} if extras: for tag in extras: if tag == "raw": extraDict['Tag'] = Rec else: extraDict['Tag'] = Rec.get(tag) return recID, extraDict
[ "def", "makeNodeID", "(", "Rec", ",", "ndType", ",", "extras", "=", "None", ")", ":", "if", "ndType", "==", "'raw'", ":", "recID", "=", "Rec", "else", ":", "recID", "=", "Rec", ".", "get", "(", "ndType", ")", "if", "recID", "is", "None", ":", "pass", "elif", "isinstance", "(", "recID", ",", "list", ")", ":", "recID", "=", "tuple", "(", "recID", ")", "else", ":", "recID", "=", "recID", "extraDict", "=", "{", "}", "if", "extras", ":", "for", "tag", "in", "extras", ":", "if", "tag", "==", "\"raw\"", ":", "extraDict", "[", "'Tag'", "]", "=", "Rec", "else", ":", "extraDict", "[", "'Tag'", "]", "=", "Rec", ".", "get", "(", "tag", ")", "return", "recID", ",", "extraDict" ]
Helper to make a node ID, extras is currently not used
[ "Helper", "to", "make", "a", "node", "ID", "extras", "is", "currently", "not", "used" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/diffusion.py#L351-L370
train
networks-lab/metaknowledge
docs/mkdsupport.py
pandoc_process
def pandoc_process(app, what, name, obj, options, lines): """"Convert docstrings in Markdown into reStructureText using pandoc """ if not lines: return None input_format = app.config.mkdsupport_use_parser output_format = 'rst' # Since default encoding for sphinx.ext.autodoc is unicode and pypandoc.convert_text, which will always return a # unicode string, expects unicode or utf-8 encodes string, there is on need for dealing with coding text = SEP.join(lines) text = pypandoc.convert_text(text, output_format, format=input_format) # The 'lines' in Sphinx is a list of strings and the value should be changed del lines[:] lines.extend(text.split(SEP))
python
def pandoc_process(app, what, name, obj, options, lines): """"Convert docstrings in Markdown into reStructureText using pandoc """ if not lines: return None input_format = app.config.mkdsupport_use_parser output_format = 'rst' # Since default encoding for sphinx.ext.autodoc is unicode and pypandoc.convert_text, which will always return a # unicode string, expects unicode or utf-8 encodes string, there is on need for dealing with coding text = SEP.join(lines) text = pypandoc.convert_text(text, output_format, format=input_format) # The 'lines' in Sphinx is a list of strings and the value should be changed del lines[:] lines.extend(text.split(SEP))
[ "def", "pandoc_process", "(", "app", ",", "what", ",", "name", ",", "obj", ",", "options", ",", "lines", ")", ":", "if", "not", "lines", ":", "return", "None", "input_format", "=", "app", ".", "config", ".", "mkdsupport_use_parser", "output_format", "=", "'rst'", "# Since default encoding for sphinx.ext.autodoc is unicode and pypandoc.convert_text, which will always return a", "# unicode string, expects unicode or utf-8 encodes string, there is on need for dealing with coding", "text", "=", "SEP", ".", "join", "(", "lines", ")", "text", "=", "pypandoc", ".", "convert_text", "(", "text", ",", "output_format", ",", "format", "=", "input_format", ")", "# The 'lines' in Sphinx is a list of strings and the value should be changed", "del", "lines", "[", ":", "]", "lines", ".", "extend", "(", "text", ".", "split", "(", "SEP", ")", ")" ]
Convert docstrings in Markdown into reStructureText using pandoc
[ "Convert", "docstrings", "in", "Markdown", "into", "reStructureText", "using", "pandoc" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/docs/mkdsupport.py#L26-L43
train
networks-lab/metaknowledge
metaknowledge/medline/tagProcessing/specialFunctions.py
beginningPage
def beginningPage(R): """As pages may not be given as numbers this is the most accurate this function can be""" p = R['PG'] if p.startswith('suppl '): p = p[6:] return p.split(' ')[0].split('-')[0].replace(';', '')
python
def beginningPage(R): """As pages may not be given as numbers this is the most accurate this function can be""" p = R['PG'] if p.startswith('suppl '): p = p[6:] return p.split(' ')[0].split('-')[0].replace(';', '')
[ "def", "beginningPage", "(", "R", ")", ":", "p", "=", "R", "[", "'PG'", "]", "if", "p", ".", "startswith", "(", "'suppl '", ")", ":", "p", "=", "p", "[", "6", ":", "]", "return", "p", ".", "split", "(", "' '", ")", "[", "0", "]", ".", "split", "(", "'-'", ")", "[", "0", "]", ".", "replace", "(", "';'", ",", "''", ")" ]
As pages may not be given as numbers this is the most accurate this function can be
[ "As", "pages", "may", "not", "be", "given", "as", "numbers", "this", "is", "the", "most", "accurate", "this", "function", "can", "be" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/medline/tagProcessing/specialFunctions.py#L27-L32
train
networks-lab/metaknowledge
metaknowledge/mkRecord.py
Record.copy
def copy(self): """Correctly copies the `Record` # Returns `Record` > A completely decoupled copy of the original """ c = copy.copy(self) c._fieldDict = c._fieldDict.copy() return c
python
def copy(self): """Correctly copies the `Record` # Returns `Record` > A completely decoupled copy of the original """ c = copy.copy(self) c._fieldDict = c._fieldDict.copy() return c
[ "def", "copy", "(", "self", ")", ":", "c", "=", "copy", ".", "copy", "(", "self", ")", "c", ".", "_fieldDict", "=", "c", ".", "_fieldDict", ".", "copy", "(", ")", "return", "c" ]
Correctly copies the `Record` # Returns `Record` > A completely decoupled copy of the original
[ "Correctly", "copies", "the", "Record" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkRecord.py#L202-L213
train
networks-lab/metaknowledge
metaknowledge/mkRecord.py
ExtendedRecord.values
def values(self, raw = False): """Like `values` for dicts but with a `raw` option # Parameters _raw_ : `optional [bool]` > Default `False`, if `True` the `ValuesView` contains the raw values # Returns `ValuesView` > The values of the record """ if raw: return self._fieldDict.values() else: return collections.abc.Mapping.values(self)
python
def values(self, raw = False): """Like `values` for dicts but with a `raw` option # Parameters _raw_ : `optional [bool]` > Default `False`, if `True` the `ValuesView` contains the raw values # Returns `ValuesView` > The values of the record """ if raw: return self._fieldDict.values() else: return collections.abc.Mapping.values(self)
[ "def", "values", "(", "self", ",", "raw", "=", "False", ")", ":", "if", "raw", ":", "return", "self", ".", "_fieldDict", ".", "values", "(", ")", "else", ":", "return", "collections", ".", "abc", ".", "Mapping", ".", "values", "(", "self", ")" ]
Like `values` for dicts but with a `raw` option # Parameters _raw_ : `optional [bool]` > Default `False`, if `True` the `ValuesView` contains the raw values # Returns `ValuesView` > The values of the record
[ "Like", "values", "for", "dicts", "but", "with", "a", "raw", "option" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkRecord.py#L402-L420
train
networks-lab/metaknowledge
metaknowledge/mkRecord.py
ExtendedRecord.items
def items(self, raw = False): """Like `items` for dicts but with a `raw` option # Parameters _raw_ : `optional [bool]` > Default `False`, if `True` the `KeysView` contains the raw values as the values # Returns `KeysView` > The key-value pairs of the record """ if raw: return self._fieldDict.items() else: return collections.abc.Mapping.items(self)
python
def items(self, raw = False): """Like `items` for dicts but with a `raw` option # Parameters _raw_ : `optional [bool]` > Default `False`, if `True` the `KeysView` contains the raw values as the values # Returns `KeysView` > The key-value pairs of the record """ if raw: return self._fieldDict.items() else: return collections.abc.Mapping.items(self)
[ "def", "items", "(", "self", ",", "raw", "=", "False", ")", ":", "if", "raw", ":", "return", "self", ".", "_fieldDict", ".", "items", "(", ")", "else", ":", "return", "collections", ".", "abc", ".", "Mapping", ".", "items", "(", "self", ")" ]
Like `items` for dicts but with a `raw` option # Parameters _raw_ : `optional [bool]` > Default `False`, if `True` the `KeysView` contains the raw values as the values # Returns `KeysView` > The key-value pairs of the record
[ "Like", "items", "for", "dicts", "but", "with", "a", "raw", "option" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkRecord.py#L424-L442
train
networks-lab/metaknowledge
metaknowledge/mkRecord.py
ExtendedRecord.getCitations
def getCitations(self, field = None, values = None, pandasFriendly = True): """Creates a pandas ready dict with each row a different citation and columns containing the original string, year, journal and author's name. There are also options to filter the output citations with _field_ and _values_ # Parameters _field_ : `optional str` > Default `None`, if given all citations missing the named field will be dropped. _values_ : `optional str or list[str]` > Default `None`, if _field_ is also given only those citations with one of the strings given in _values_ will be included. > e.g. to get only citations from 1990 or 1991: `field = year, values = [1991, 1990]` _pandasFriendly_ : `optional bool` > Default `True`, if `False` a list of the citations will be returned instead of the more complicated pandas dict # Returns `dict` > A pandas ready dict with all the citations """ retCites = [] if values is not None: if isinstance(values, (str, int, float)) or not isinstance(values, collections.abc.Container): values = [values] if field is not None: for cite in self.get('citations', []): try: targetVal = getattr(cite, field) if values is None or targetVal in values: retCites.append(cite) except AttributeError: pass else: retCites = self.get('citations', []) if pandasFriendly: return _pandasPrep(retCites, False) return retCites
python
def getCitations(self, field = None, values = None, pandasFriendly = True): """Creates a pandas ready dict with each row a different citation and columns containing the original string, year, journal and author's name. There are also options to filter the output citations with _field_ and _values_ # Parameters _field_ : `optional str` > Default `None`, if given all citations missing the named field will be dropped. _values_ : `optional str or list[str]` > Default `None`, if _field_ is also given only those citations with one of the strings given in _values_ will be included. > e.g. to get only citations from 1990 or 1991: `field = year, values = [1991, 1990]` _pandasFriendly_ : `optional bool` > Default `True`, if `False` a list of the citations will be returned instead of the more complicated pandas dict # Returns `dict` > A pandas ready dict with all the citations """ retCites = [] if values is not None: if isinstance(values, (str, int, float)) or not isinstance(values, collections.abc.Container): values = [values] if field is not None: for cite in self.get('citations', []): try: targetVal = getattr(cite, field) if values is None or targetVal in values: retCites.append(cite) except AttributeError: pass else: retCites = self.get('citations', []) if pandasFriendly: return _pandasPrep(retCites, False) return retCites
[ "def", "getCitations", "(", "self", ",", "field", "=", "None", ",", "values", "=", "None", ",", "pandasFriendly", "=", "True", ")", ":", "retCites", "=", "[", "]", "if", "values", "is", "not", "None", ":", "if", "isinstance", "(", "values", ",", "(", "str", ",", "int", ",", "float", ")", ")", "or", "not", "isinstance", "(", "values", ",", "collections", ".", "abc", ".", "Container", ")", ":", "values", "=", "[", "values", "]", "if", "field", "is", "not", "None", ":", "for", "cite", "in", "self", ".", "get", "(", "'citations'", ",", "[", "]", ")", ":", "try", ":", "targetVal", "=", "getattr", "(", "cite", ",", "field", ")", "if", "values", "is", "None", "or", "targetVal", "in", "values", ":", "retCites", ".", "append", "(", "cite", ")", "except", "AttributeError", ":", "pass", "else", ":", "retCites", "=", "self", ".", "get", "(", "'citations'", ",", "[", "]", ")", "if", "pandasFriendly", ":", "return", "_pandasPrep", "(", "retCites", ",", "False", ")", "return", "retCites" ]
Creates a pandas ready dict with each row a different citation and columns containing the original string, year, journal and author's name. There are also options to filter the output citations with _field_ and _values_ # Parameters _field_ : `optional str` > Default `None`, if given all citations missing the named field will be dropped. _values_ : `optional str or list[str]` > Default `None`, if _field_ is also given only those citations with one of the strings given in _values_ will be included. > e.g. to get only citations from 1990 or 1991: `field = year, values = [1991, 1990]` _pandasFriendly_ : `optional bool` > Default `True`, if `False` a list of the citations will be returned instead of the more complicated pandas dict # Returns `dict` > A pandas ready dict with all the citations
[ "Creates", "a", "pandas", "ready", "dict", "with", "each", "row", "a", "different", "citation", "and", "columns", "containing", "the", "original", "string", "year", "journal", "and", "author", "s", "name", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkRecord.py#L546-L589
train
networks-lab/metaknowledge
metaknowledge/mkRecord.py
ExtendedRecord.subDict
def subDict(self, tags, raw = False): """Creates a dict of values of _tags_ from the Record. The tags are the keys and the values are the values. If the tag is missing the value will be `None`. # Parameters _tags_ : `list[str]` > The list of tags requested _raw_ : `optional [bool]` >default `False` if `True` the retuned values of the dict will be unprocessed # Returns `dict` > A dictionary with the keys _tags_ and the values from the record """ retDict = {} for tag in tags: retDict[tag] = self.get(tag, raw = raw) return retDict
python
def subDict(self, tags, raw = False): """Creates a dict of values of _tags_ from the Record. The tags are the keys and the values are the values. If the tag is missing the value will be `None`. # Parameters _tags_ : `list[str]` > The list of tags requested _raw_ : `optional [bool]` >default `False` if `True` the retuned values of the dict will be unprocessed # Returns `dict` > A dictionary with the keys _tags_ and the values from the record """ retDict = {} for tag in tags: retDict[tag] = self.get(tag, raw = raw) return retDict
[ "def", "subDict", "(", "self", ",", "tags", ",", "raw", "=", "False", ")", ":", "retDict", "=", "{", "}", "for", "tag", "in", "tags", ":", "retDict", "[", "tag", "]", "=", "self", ".", "get", "(", "tag", ",", "raw", "=", "raw", ")", "return", "retDict" ]
Creates a dict of values of _tags_ from the Record. The tags are the keys and the values are the values. If the tag is missing the value will be `None`. # Parameters _tags_ : `list[str]` > The list of tags requested _raw_ : `optional [bool]` >default `False` if `True` the retuned values of the dict will be unprocessed # Returns `dict` > A dictionary with the keys _tags_ and the values from the record
[ "Creates", "a", "dict", "of", "values", "of", "_tags_", "from", "the", "Record", ".", "The", "tags", "are", "the", "keys", "and", "the", "values", "are", "the", "values", ".", "If", "the", "tag", "is", "missing", "the", "value", "will", "be", "None", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkRecord.py#L591-L613
train
networks-lab/metaknowledge
metaknowledge/mkRecord.py
ExtendedRecord.authGenders
def authGenders(self, countsOnly = False, fractionsMode = False, _countsTuple = False): """Creates a dict mapping `'Male'`, `'Female'` and `'Unknown'` to lists of the names of all the authors. # Parameters _countsOnly_ : `optional bool` > Default `False`, if `True` the counts (lengths of the lists) will be given instead of the lists of names _fractionsMode_ : `optional bool` > Default `False`, if `True` the fraction counts (lengths of the lists divided by the total number of authors) will be given instead of the lists of names. This supersedes _countsOnly_ # Returns `dict[str:str or int]` > The mapping of genders to author's names or counts """ authDict = recordGenders(self) if _countsTuple or countsOnly or fractionsMode: rawList = list(authDict.values()) countsList = [] for k in ('Male','Female','Unknown'): countsList.append(rawList.count(k)) if fractionsMode: tot = sum(countsList) for i in range(3): countsList.append(countsList.pop(0) / tot) if _countsTuple: return tuple(countsList) else: return {'Male' : countsList[0], 'Female' : countsList[1], 'Unknown' : countsList[2]} else: return authDict
python
def authGenders(self, countsOnly = False, fractionsMode = False, _countsTuple = False): """Creates a dict mapping `'Male'`, `'Female'` and `'Unknown'` to lists of the names of all the authors. # Parameters _countsOnly_ : `optional bool` > Default `False`, if `True` the counts (lengths of the lists) will be given instead of the lists of names _fractionsMode_ : `optional bool` > Default `False`, if `True` the fraction counts (lengths of the lists divided by the total number of authors) will be given instead of the lists of names. This supersedes _countsOnly_ # Returns `dict[str:str or int]` > The mapping of genders to author's names or counts """ authDict = recordGenders(self) if _countsTuple or countsOnly or fractionsMode: rawList = list(authDict.values()) countsList = [] for k in ('Male','Female','Unknown'): countsList.append(rawList.count(k)) if fractionsMode: tot = sum(countsList) for i in range(3): countsList.append(countsList.pop(0) / tot) if _countsTuple: return tuple(countsList) else: return {'Male' : countsList[0], 'Female' : countsList[1], 'Unknown' : countsList[2]} else: return authDict
[ "def", "authGenders", "(", "self", ",", "countsOnly", "=", "False", ",", "fractionsMode", "=", "False", ",", "_countsTuple", "=", "False", ")", ":", "authDict", "=", "recordGenders", "(", "self", ")", "if", "_countsTuple", "or", "countsOnly", "or", "fractionsMode", ":", "rawList", "=", "list", "(", "authDict", ".", "values", "(", ")", ")", "countsList", "=", "[", "]", "for", "k", "in", "(", "'Male'", ",", "'Female'", ",", "'Unknown'", ")", ":", "countsList", ".", "append", "(", "rawList", ".", "count", "(", "k", ")", ")", "if", "fractionsMode", ":", "tot", "=", "sum", "(", "countsList", ")", "for", "i", "in", "range", "(", "3", ")", ":", "countsList", ".", "append", "(", "countsList", ".", "pop", "(", "0", ")", "/", "tot", ")", "if", "_countsTuple", ":", "return", "tuple", "(", "countsList", ")", "else", ":", "return", "{", "'Male'", ":", "countsList", "[", "0", "]", ",", "'Female'", ":", "countsList", "[", "1", "]", ",", "'Unknown'", ":", "countsList", "[", "2", "]", "}", "else", ":", "return", "authDict" ]
Creates a dict mapping `'Male'`, `'Female'` and `'Unknown'` to lists of the names of all the authors. # Parameters _countsOnly_ : `optional bool` > Default `False`, if `True` the counts (lengths of the lists) will be given instead of the lists of names _fractionsMode_ : `optional bool` > Default `False`, if `True` the fraction counts (lengths of the lists divided by the total number of authors) will be given instead of the lists of names. This supersedes _countsOnly_ # Returns `dict[str:str or int]` > The mapping of genders to author's names or counts
[ "Creates", "a", "dict", "mapping", "Male", "Female", "and", "Unknown", "to", "lists", "of", "the", "names", "of", "all", "the", "authors", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/mkRecord.py#L660-L695
train
networks-lab/metaknowledge
metaknowledge/proquest/proQuestHandlers.py
proQuestParser
def proQuestParser(proFile): """Parses a ProQuest file, _proFile_, to extract the individual entries. A ProQuest file has three sections, first a list of the contained entries, second the full metadata and finally a bibtex formatted entry for the record. This parser only uses the first two as the bibtex contains no information the second section does not. Also, the first section is only used to verify the second section. The returned [ProQuestRecord](../classes/ProQuestRecord.html#metaknowledge.proquest.ProQuestRecord) contains the data from the second section, with the same key strings as ProQuest uses and the unlabeled sections are called in order, `'Name'`, `'Author'` and `'url'`. # Parameters _proFile_ : `str` > A path to a valid ProQuest file, use [isProQuestFile](#metaknowledge.proquest.proQuestHandlers.isProQuestFile) to verify # Returns `set[ProQuestRecord]` > Records for each of the entries """ #assumes the file is ProQuest nameDict = {} recSet = set() error = None lineNum = 0 try: with open(proFile, 'r', encoding = 'utf-8') as openfile: f = enumerate(openfile, start = 1) for i in range(12): lineNum, line = next(f) # f is file so it *should* end, or at least cause a parser error eventually while True: lineNum, line = next(f) lineNum, line = next(f) if line == 'Bibliography\n': for i in range(3): lineNum, line = next(f) break else: s = line.split('. ') nameDict[int(s[0])] = '. '.join(s[1:])[:-1] while True: #import pdb; pdb.set_trace() lineNum, line = next(f) if line == 'Bibliography\n': break elif line.startswith('Document '): n = int(line[9:].split(' of ')[0]) R = ProQuestRecord(f, sFile = proFile, sLine = lineNum) if R.get('Title') != nameDict[n]: error = BadProQuestFile("The numbering of the titles at the beginning of the file does not match the records inside. Line {} has a record titled '{}' with number {}, the name should be '{}'.".format(lineNum, R.get('Title', "TITLE MISSING"), n, nameDict[n])) raise StopIteration recSet.add(R) lineNum, line = next(f) else: #Parsing failed error = BadProQuestFile("The file '{}' has parts of it that are unparsable starting at line: {}. It is likely that the seperators between the records are incorrect".format(proFile, lineNum)) raise StopIteration except (UnicodeDecodeError, StopIteration, ValueError) as e: if error is None: error = BadProQuestFile("The file '{}' has parts of it that are unparsable starting at line: {}.\nThe error was: '{}'".format(proFile, lineNum, e)) return recSet, error
python
def proQuestParser(proFile): """Parses a ProQuest file, _proFile_, to extract the individual entries. A ProQuest file has three sections, first a list of the contained entries, second the full metadata and finally a bibtex formatted entry for the record. This parser only uses the first two as the bibtex contains no information the second section does not. Also, the first section is only used to verify the second section. The returned [ProQuestRecord](../classes/ProQuestRecord.html#metaknowledge.proquest.ProQuestRecord) contains the data from the second section, with the same key strings as ProQuest uses and the unlabeled sections are called in order, `'Name'`, `'Author'` and `'url'`. # Parameters _proFile_ : `str` > A path to a valid ProQuest file, use [isProQuestFile](#metaknowledge.proquest.proQuestHandlers.isProQuestFile) to verify # Returns `set[ProQuestRecord]` > Records for each of the entries """ #assumes the file is ProQuest nameDict = {} recSet = set() error = None lineNum = 0 try: with open(proFile, 'r', encoding = 'utf-8') as openfile: f = enumerate(openfile, start = 1) for i in range(12): lineNum, line = next(f) # f is file so it *should* end, or at least cause a parser error eventually while True: lineNum, line = next(f) lineNum, line = next(f) if line == 'Bibliography\n': for i in range(3): lineNum, line = next(f) break else: s = line.split('. ') nameDict[int(s[0])] = '. '.join(s[1:])[:-1] while True: #import pdb; pdb.set_trace() lineNum, line = next(f) if line == 'Bibliography\n': break elif line.startswith('Document '): n = int(line[9:].split(' of ')[0]) R = ProQuestRecord(f, sFile = proFile, sLine = lineNum) if R.get('Title') != nameDict[n]: error = BadProQuestFile("The numbering of the titles at the beginning of the file does not match the records inside. Line {} has a record titled '{}' with number {}, the name should be '{}'.".format(lineNum, R.get('Title', "TITLE MISSING"), n, nameDict[n])) raise StopIteration recSet.add(R) lineNum, line = next(f) else: #Parsing failed error = BadProQuestFile("The file '{}' has parts of it that are unparsable starting at line: {}. It is likely that the seperators between the records are incorrect".format(proFile, lineNum)) raise StopIteration except (UnicodeDecodeError, StopIteration, ValueError) as e: if error is None: error = BadProQuestFile("The file '{}' has parts of it that are unparsable starting at line: {}.\nThe error was: '{}'".format(proFile, lineNum, e)) return recSet, error
[ "def", "proQuestParser", "(", "proFile", ")", ":", "#assumes the file is ProQuest", "nameDict", "=", "{", "}", "recSet", "=", "set", "(", ")", "error", "=", "None", "lineNum", "=", "0", "try", ":", "with", "open", "(", "proFile", ",", "'r'", ",", "encoding", "=", "'utf-8'", ")", "as", "openfile", ":", "f", "=", "enumerate", "(", "openfile", ",", "start", "=", "1", ")", "for", "i", "in", "range", "(", "12", ")", ":", "lineNum", ",", "line", "=", "next", "(", "f", ")", "# f is file so it *should* end, or at least cause a parser error eventually", "while", "True", ":", "lineNum", ",", "line", "=", "next", "(", "f", ")", "lineNum", ",", "line", "=", "next", "(", "f", ")", "if", "line", "==", "'Bibliography\\n'", ":", "for", "i", "in", "range", "(", "3", ")", ":", "lineNum", ",", "line", "=", "next", "(", "f", ")", "break", "else", ":", "s", "=", "line", ".", "split", "(", "'. '", ")", "nameDict", "[", "int", "(", "s", "[", "0", "]", ")", "]", "=", "'. '", ".", "join", "(", "s", "[", "1", ":", "]", ")", "[", ":", "-", "1", "]", "while", "True", ":", "#import pdb; pdb.set_trace()", "lineNum", ",", "line", "=", "next", "(", "f", ")", "if", "line", "==", "'Bibliography\\n'", ":", "break", "elif", "line", ".", "startswith", "(", "'Document '", ")", ":", "n", "=", "int", "(", "line", "[", "9", ":", "]", ".", "split", "(", "' of '", ")", "[", "0", "]", ")", "R", "=", "ProQuestRecord", "(", "f", ",", "sFile", "=", "proFile", ",", "sLine", "=", "lineNum", ")", "if", "R", ".", "get", "(", "'Title'", ")", "!=", "nameDict", "[", "n", "]", ":", "error", "=", "BadProQuestFile", "(", "\"The numbering of the titles at the beginning of the file does not match the records inside. Line {} has a record titled '{}' with number {}, the name should be '{}'.\"", ".", "format", "(", "lineNum", ",", "R", ".", "get", "(", "'Title'", ",", "\"TITLE MISSING\"", ")", ",", "n", ",", "nameDict", "[", "n", "]", ")", ")", "raise", "StopIteration", "recSet", ".", "add", "(", "R", ")", "lineNum", ",", "line", "=", "next", "(", "f", ")", "else", ":", "#Parsing failed", "error", "=", "BadProQuestFile", "(", "\"The file '{}' has parts of it that are unparsable starting at line: {}. It is likely that the seperators between the records are incorrect\"", ".", "format", "(", "proFile", ",", "lineNum", ")", ")", "raise", "StopIteration", "except", "(", "UnicodeDecodeError", ",", "StopIteration", ",", "ValueError", ")", "as", "e", ":", "if", "error", "is", "None", ":", "error", "=", "BadProQuestFile", "(", "\"The file '{}' has parts of it that are unparsable starting at line: {}.\\nThe error was: '{}'\"", ".", "format", "(", "proFile", ",", "lineNum", ",", "e", ")", ")", "return", "recSet", ",", "error" ]
Parses a ProQuest file, _proFile_, to extract the individual entries. A ProQuest file has three sections, first a list of the contained entries, second the full metadata and finally a bibtex formatted entry for the record. This parser only uses the first two as the bibtex contains no information the second section does not. Also, the first section is only used to verify the second section. The returned [ProQuestRecord](../classes/ProQuestRecord.html#metaknowledge.proquest.ProQuestRecord) contains the data from the second section, with the same key strings as ProQuest uses and the unlabeled sections are called in order, `'Name'`, `'Author'` and `'url'`. # Parameters _proFile_ : `str` > A path to a valid ProQuest file, use [isProQuestFile](#metaknowledge.proquest.proQuestHandlers.isProQuestFile) to verify # Returns `set[ProQuestRecord]` > Records for each of the entries
[ "Parses", "a", "ProQuest", "file", "_proFile_", "to", "extract", "the", "individual", "entries", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/proquest/proQuestHandlers.py#L42-L100
train
networks-lab/metaknowledge
metaknowledge/grants/nsfGrant.py
NSFGrant.getInvestigators
def getInvestigators(self, tags = None, seperator = ";", _getTag = False): """Returns a list of the names of investigators. The optional arguments are ignored. # Returns `list [str]` > A list of all the found investigator's names """ if tags is None: tags = ['Investigator'] elif isinstance(tags, str): tags = ['Investigator', tags] else: tags.append('Investigator') return super().getInvestigators(tags = tags, seperator = seperator, _getTag = _getTag)
python
def getInvestigators(self, tags = None, seperator = ";", _getTag = False): """Returns a list of the names of investigators. The optional arguments are ignored. # Returns `list [str]` > A list of all the found investigator's names """ if tags is None: tags = ['Investigator'] elif isinstance(tags, str): tags = ['Investigator', tags] else: tags.append('Investigator') return super().getInvestigators(tags = tags, seperator = seperator, _getTag = _getTag)
[ "def", "getInvestigators", "(", "self", ",", "tags", "=", "None", ",", "seperator", "=", "\";\"", ",", "_getTag", "=", "False", ")", ":", "if", "tags", "is", "None", ":", "tags", "=", "[", "'Investigator'", "]", "elif", "isinstance", "(", "tags", ",", "str", ")", ":", "tags", "=", "[", "'Investigator'", ",", "tags", "]", "else", ":", "tags", ".", "append", "(", "'Investigator'", ")", "return", "super", "(", ")", ".", "getInvestigators", "(", "tags", "=", "tags", ",", "seperator", "=", "seperator", ",", "_getTag", "=", "_getTag", ")" ]
Returns a list of the names of investigators. The optional arguments are ignored. # Returns `list [str]` > A list of all the found investigator's names
[ "Returns", "a", "list", "of", "the", "names", "of", "investigators", ".", "The", "optional", "arguments", "are", "ignored", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/grants/nsfGrant.py#L22-L37
train
networks-lab/metaknowledge
metaknowledge/genders/nameGender.py
nameStringGender
def nameStringGender(s, noExcept = False): """Expects `first, last`""" global mappingDict try: first = s.split(', ')[1].split(' ')[0].title() except IndexError: if noExcept: return 'Unknown' else: return GenderException("The given String: '{}' does not have a last name, first name pair in with a ', ' seperation.".format(s)) if mappingDict is None: mappingDict = getMapping() return mappingDict.get(first, 'Unknown')
python
def nameStringGender(s, noExcept = False): """Expects `first, last`""" global mappingDict try: first = s.split(', ')[1].split(' ')[0].title() except IndexError: if noExcept: return 'Unknown' else: return GenderException("The given String: '{}' does not have a last name, first name pair in with a ', ' seperation.".format(s)) if mappingDict is None: mappingDict = getMapping() return mappingDict.get(first, 'Unknown')
[ "def", "nameStringGender", "(", "s", ",", "noExcept", "=", "False", ")", ":", "global", "mappingDict", "try", ":", "first", "=", "s", ".", "split", "(", "', '", ")", "[", "1", "]", ".", "split", "(", "' '", ")", "[", "0", "]", ".", "title", "(", ")", "except", "IndexError", ":", "if", "noExcept", ":", "return", "'Unknown'", "else", ":", "return", "GenderException", "(", "\"The given String: '{}' does not have a last name, first name pair in with a ', ' seperation.\"", ".", "format", "(", "s", ")", ")", "if", "mappingDict", "is", "None", ":", "mappingDict", "=", "getMapping", "(", ")", "return", "mappingDict", ".", "get", "(", "first", ",", "'Unknown'", ")" ]
Expects `first, last`
[ "Expects", "first", "last" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/genders/nameGender.py#L54-L66
train
networks-lab/metaknowledge
metaknowledge/journalAbbreviations/backend.py
j9urlGenerator
def j9urlGenerator(nameDict = False): """How to get all the urls for the WOS Journal Title Abbreviations. Each is varies by only a few characters. These are the currently in use urls they may change. They are of the form: > "https://images.webofknowledge.com/images/help/WOS/{VAL}_abrvjt.html" > Where {VAL} is a capital letter or the string "0-9" # Returns `list[str]` > A list of all the url's strings """ start = "https://images.webofknowledge.com/images/help/WOS/" end = "_abrvjt.html" if nameDict: urls = {"0-9" : start + "0-9" + end} for c in string.ascii_uppercase: urls[c] = start + c + end else: urls = [start + "0-9" + end] for c in string.ascii_uppercase: urls.append(start + c + end) return urls
python
def j9urlGenerator(nameDict = False): """How to get all the urls for the WOS Journal Title Abbreviations. Each is varies by only a few characters. These are the currently in use urls they may change. They are of the form: > "https://images.webofknowledge.com/images/help/WOS/{VAL}_abrvjt.html" > Where {VAL} is a capital letter or the string "0-9" # Returns `list[str]` > A list of all the url's strings """ start = "https://images.webofknowledge.com/images/help/WOS/" end = "_abrvjt.html" if nameDict: urls = {"0-9" : start + "0-9" + end} for c in string.ascii_uppercase: urls[c] = start + c + end else: urls = [start + "0-9" + end] for c in string.ascii_uppercase: urls.append(start + c + end) return urls
[ "def", "j9urlGenerator", "(", "nameDict", "=", "False", ")", ":", "start", "=", "\"https://images.webofknowledge.com/images/help/WOS/\"", "end", "=", "\"_abrvjt.html\"", "if", "nameDict", ":", "urls", "=", "{", "\"0-9\"", ":", "start", "+", "\"0-9\"", "+", "end", "}", "for", "c", "in", "string", ".", "ascii_uppercase", ":", "urls", "[", "c", "]", "=", "start", "+", "c", "+", "end", "else", ":", "urls", "=", "[", "start", "+", "\"0-9\"", "+", "end", "]", "for", "c", "in", "string", ".", "ascii_uppercase", ":", "urls", ".", "append", "(", "start", "+", "c", "+", "end", ")", "return", "urls" ]
How to get all the urls for the WOS Journal Title Abbreviations. Each is varies by only a few characters. These are the currently in use urls they may change. They are of the form: > "https://images.webofknowledge.com/images/help/WOS/{VAL}_abrvjt.html" > Where {VAL} is a capital letter or the string "0-9" # Returns `list[str]` > A list of all the url's strings
[ "How", "to", "get", "all", "the", "urls", "for", "the", "WOS", "Journal", "Title", "Abbreviations", ".", "Each", "is", "varies", "by", "only", "a", "few", "characters", ".", "These", "are", "the", "currently", "in", "use", "urls", "they", "may", "change", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/journalAbbreviations/backend.py#L14-L38
train
networks-lab/metaknowledge
metaknowledge/journalAbbreviations/backend.py
_j9SaveCurrent
def _j9SaveCurrent(sDir = '.'): """Downloads and saves all the webpages For Backend """ dname = os.path.normpath(sDir + '/' + datetime.datetime.now().strftime("%Y-%m-%d_J9_AbbreviationDocs")) if not os.path.isdir(dname): os.mkdir(dname) os.chdir(dname) else: os.chdir(dname) for urlID, urlString in j9urlGenerator(nameDict = True).items(): fname = "{}_abrvjt.html".format(urlID) f = open(fname, 'wb') f.write(urllib.request.urlopen(urlString).read())
python
def _j9SaveCurrent(sDir = '.'): """Downloads and saves all the webpages For Backend """ dname = os.path.normpath(sDir + '/' + datetime.datetime.now().strftime("%Y-%m-%d_J9_AbbreviationDocs")) if not os.path.isdir(dname): os.mkdir(dname) os.chdir(dname) else: os.chdir(dname) for urlID, urlString in j9urlGenerator(nameDict = True).items(): fname = "{}_abrvjt.html".format(urlID) f = open(fname, 'wb') f.write(urllib.request.urlopen(urlString).read())
[ "def", "_j9SaveCurrent", "(", "sDir", "=", "'.'", ")", ":", "dname", "=", "os", ".", "path", ".", "normpath", "(", "sDir", "+", "'/'", "+", "datetime", ".", "datetime", ".", "now", "(", ")", ".", "strftime", "(", "\"%Y-%m-%d_J9_AbbreviationDocs\"", ")", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "dname", ")", ":", "os", ".", "mkdir", "(", "dname", ")", "os", ".", "chdir", "(", "dname", ")", "else", ":", "os", ".", "chdir", "(", "dname", ")", "for", "urlID", ",", "urlString", "in", "j9urlGenerator", "(", "nameDict", "=", "True", ")", ".", "items", "(", ")", ":", "fname", "=", "\"{}_abrvjt.html\"", ".", "format", "(", "urlID", ")", "f", "=", "open", "(", "fname", ",", "'wb'", ")", "f", ".", "write", "(", "urllib", ".", "request", ".", "urlopen", "(", "urlString", ")", ".", "read", "(", ")", ")" ]
Downloads and saves all the webpages For Backend
[ "Downloads", "and", "saves", "all", "the", "webpages" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/journalAbbreviations/backend.py#L40-L54
train
networks-lab/metaknowledge
metaknowledge/journalAbbreviations/backend.py
_getDict
def _getDict(j9Page): """Parses a Journal Title Abbreviations page Note the pages are not well formatted html as the <DT> tags are not closes so html parses (Beautiful Soup) do not work. This is a simple parser that only works on the webpages and may fail if they are changed For Backend """ slines = j9Page.read().decode('utf-8').split('\n') while slines.pop(0) != "<DL>": pass currentName = slines.pop(0).split('"></A><DT>')[1] currentTag = slines.pop(0).split("<B><DD>\t")[1] j9Dict = {} while True: try: j9Dict[currentTag].append(currentName) except KeyError: j9Dict[currentTag] = [currentName] try: currentName = slines.pop(0).split('</B><DT>')[1] currentTag = slines.pop(0).split("<B><DD>\t")[1] except IndexError: break return j9Dict
python
def _getDict(j9Page): """Parses a Journal Title Abbreviations page Note the pages are not well formatted html as the <DT> tags are not closes so html parses (Beautiful Soup) do not work. This is a simple parser that only works on the webpages and may fail if they are changed For Backend """ slines = j9Page.read().decode('utf-8').split('\n') while slines.pop(0) != "<DL>": pass currentName = slines.pop(0).split('"></A><DT>')[1] currentTag = slines.pop(0).split("<B><DD>\t")[1] j9Dict = {} while True: try: j9Dict[currentTag].append(currentName) except KeyError: j9Dict[currentTag] = [currentName] try: currentName = slines.pop(0).split('</B><DT>')[1] currentTag = slines.pop(0).split("<B><DD>\t")[1] except IndexError: break return j9Dict
[ "def", "_getDict", "(", "j9Page", ")", ":", "slines", "=", "j9Page", ".", "read", "(", ")", ".", "decode", "(", "'utf-8'", ")", ".", "split", "(", "'\\n'", ")", "while", "slines", ".", "pop", "(", "0", ")", "!=", "\"<DL>\"", ":", "pass", "currentName", "=", "slines", ".", "pop", "(", "0", ")", ".", "split", "(", "'\"></A><DT>'", ")", "[", "1", "]", "currentTag", "=", "slines", ".", "pop", "(", "0", ")", ".", "split", "(", "\"<B><DD>\\t\"", ")", "[", "1", "]", "j9Dict", "=", "{", "}", "while", "True", ":", "try", ":", "j9Dict", "[", "currentTag", "]", ".", "append", "(", "currentName", ")", "except", "KeyError", ":", "j9Dict", "[", "currentTag", "]", "=", "[", "currentName", "]", "try", ":", "currentName", "=", "slines", ".", "pop", "(", "0", ")", ".", "split", "(", "'</B><DT>'", ")", "[", "1", "]", "currentTag", "=", "slines", ".", "pop", "(", "0", ")", ".", "split", "(", "\"<B><DD>\\t\"", ")", "[", "1", "]", "except", "IndexError", ":", "break", "return", "j9Dict" ]
Parses a Journal Title Abbreviations page Note the pages are not well formatted html as the <DT> tags are not closes so html parses (Beautiful Soup) do not work. This is a simple parser that only works on the webpages and may fail if they are changed For Backend
[ "Parses", "a", "Journal", "Title", "Abbreviations", "page" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/journalAbbreviations/backend.py#L56-L79
train
networks-lab/metaknowledge
metaknowledge/journalAbbreviations/backend.py
_getCurrentj9Dict
def _getCurrentj9Dict(): """Downloads and parses all the webpages For Backend """ urls = j9urlGenerator() j9Dict = {} for url in urls: d = _getDict(urllib.request.urlopen(url)) if len(d) == 0: raise RuntimeError("Parsing failed, this is could require an update of the parser.") j9Dict.update(d) return j9Dict
python
def _getCurrentj9Dict(): """Downloads and parses all the webpages For Backend """ urls = j9urlGenerator() j9Dict = {} for url in urls: d = _getDict(urllib.request.urlopen(url)) if len(d) == 0: raise RuntimeError("Parsing failed, this is could require an update of the parser.") j9Dict.update(d) return j9Dict
[ "def", "_getCurrentj9Dict", "(", ")", ":", "urls", "=", "j9urlGenerator", "(", ")", "j9Dict", "=", "{", "}", "for", "url", "in", "urls", ":", "d", "=", "_getDict", "(", "urllib", ".", "request", ".", "urlopen", "(", "url", ")", ")", "if", "len", "(", "d", ")", "==", "0", ":", "raise", "RuntimeError", "(", "\"Parsing failed, this is could require an update of the parser.\"", ")", "j9Dict", ".", "update", "(", "d", ")", "return", "j9Dict" ]
Downloads and parses all the webpages For Backend
[ "Downloads", "and", "parses", "all", "the", "webpages" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/journalAbbreviations/backend.py#L81-L93
train
networks-lab/metaknowledge
metaknowledge/journalAbbreviations/backend.py
updatej9DB
def updatej9DB(dbname = abrevDBname, saveRawHTML = False): """Updates the database of Journal Title Abbreviations. Requires an internet connection. The data base is saved relative to the source file not the working directory. # Parameters _dbname_ : `optional [str]` > The name of the database file, default is "j9Abbreviations.db" _saveRawHTML_ : `optional [bool]` > Determines if the original HTML of the pages is stored, default `False`. If `True` they are saved in a directory inside j9Raws begining with todays date. """ if saveRawHTML: rawDir = '{}/j9Raws'.format(os.path.dirname(__file__)) if not os.path.isdir(rawDir): os.mkdir(rawDir) _j9SaveCurrent(sDir = rawDir) dbLoc = os.path.join(os.path.normpath(os.path.dirname(__file__)), dbname) try: with dbm.dumb.open(dbLoc, flag = 'c') as db: try: j9Dict = _getCurrentj9Dict() except urllib.error.URLError: raise urllib.error.URLError("Unable to access server, check your connection") for k, v in j9Dict.items(): if k in db: for jName in v: if jName not in j9Dict[k]: j9Dict[k] += '|' + jName else: db[k] = '|'.join(v) except dbm.dumb.error as e: raise JournalDataBaseError("Something happened with the database of WOS journal names. To fix this you should delete the 1 to 3 files whose names start with {}. If this doesn't work (sorry), deleteing everything in '{}' and reinstalling metaknowledge should.\nThe error was '{}'".format(dbLoc, os.path.dirname(__file__), e))
python
def updatej9DB(dbname = abrevDBname, saveRawHTML = False): """Updates the database of Journal Title Abbreviations. Requires an internet connection. The data base is saved relative to the source file not the working directory. # Parameters _dbname_ : `optional [str]` > The name of the database file, default is "j9Abbreviations.db" _saveRawHTML_ : `optional [bool]` > Determines if the original HTML of the pages is stored, default `False`. If `True` they are saved in a directory inside j9Raws begining with todays date. """ if saveRawHTML: rawDir = '{}/j9Raws'.format(os.path.dirname(__file__)) if not os.path.isdir(rawDir): os.mkdir(rawDir) _j9SaveCurrent(sDir = rawDir) dbLoc = os.path.join(os.path.normpath(os.path.dirname(__file__)), dbname) try: with dbm.dumb.open(dbLoc, flag = 'c') as db: try: j9Dict = _getCurrentj9Dict() except urllib.error.URLError: raise urllib.error.URLError("Unable to access server, check your connection") for k, v in j9Dict.items(): if k in db: for jName in v: if jName not in j9Dict[k]: j9Dict[k] += '|' + jName else: db[k] = '|'.join(v) except dbm.dumb.error as e: raise JournalDataBaseError("Something happened with the database of WOS journal names. To fix this you should delete the 1 to 3 files whose names start with {}. If this doesn't work (sorry), deleteing everything in '{}' and reinstalling metaknowledge should.\nThe error was '{}'".format(dbLoc, os.path.dirname(__file__), e))
[ "def", "updatej9DB", "(", "dbname", "=", "abrevDBname", ",", "saveRawHTML", "=", "False", ")", ":", "if", "saveRawHTML", ":", "rawDir", "=", "'{}/j9Raws'", ".", "format", "(", "os", ".", "path", ".", "dirname", "(", "__file__", ")", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "rawDir", ")", ":", "os", ".", "mkdir", "(", "rawDir", ")", "_j9SaveCurrent", "(", "sDir", "=", "rawDir", ")", "dbLoc", "=", "os", ".", "path", ".", "join", "(", "os", ".", "path", ".", "normpath", "(", "os", ".", "path", ".", "dirname", "(", "__file__", ")", ")", ",", "dbname", ")", "try", ":", "with", "dbm", ".", "dumb", ".", "open", "(", "dbLoc", ",", "flag", "=", "'c'", ")", "as", "db", ":", "try", ":", "j9Dict", "=", "_getCurrentj9Dict", "(", ")", "except", "urllib", ".", "error", ".", "URLError", ":", "raise", "urllib", ".", "error", ".", "URLError", "(", "\"Unable to access server, check your connection\"", ")", "for", "k", ",", "v", "in", "j9Dict", ".", "items", "(", ")", ":", "if", "k", "in", "db", ":", "for", "jName", "in", "v", ":", "if", "jName", "not", "in", "j9Dict", "[", "k", "]", ":", "j9Dict", "[", "k", "]", "+=", "'|'", "+", "jName", "else", ":", "db", "[", "k", "]", "=", "'|'", ".", "join", "(", "v", ")", "except", "dbm", ".", "dumb", ".", "error", "as", "e", ":", "raise", "JournalDataBaseError", "(", "\"Something happened with the database of WOS journal names. To fix this you should delete the 1 to 3 files whose names start with {}. If this doesn't work (sorry), deleteing everything in '{}' and reinstalling metaknowledge should.\\nThe error was '{}'\"", ".", "format", "(", "dbLoc", ",", "os", ".", "path", ".", "dirname", "(", "__file__", ")", ",", "e", ")", ")" ]
Updates the database of Journal Title Abbreviations. Requires an internet connection. The data base is saved relative to the source file not the working directory. # Parameters _dbname_ : `optional [str]` > The name of the database file, default is "j9Abbreviations.db" _saveRawHTML_ : `optional [bool]` > Determines if the original HTML of the pages is stored, default `False`. If `True` they are saved in a directory inside j9Raws begining with todays date.
[ "Updates", "the", "database", "of", "Journal", "Title", "Abbreviations", ".", "Requires", "an", "internet", "connection", ".", "The", "data", "base", "is", "saved", "relative", "to", "the", "source", "file", "not", "the", "working", "directory", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/journalAbbreviations/backend.py#L95-L128
train
networks-lab/metaknowledge
metaknowledge/journalAbbreviations/backend.py
getj9dict
def getj9dict(dbname = abrevDBname, manualDB = manualDBname, returnDict ='both'): """Returns the dictionary of journal abbreviations mapping to a list of the associated journal names. By default the local database is used. The database is in the file _dbname_ in the same directory as this source file # Parameters _dbname_ : `optional [str]` > The name of the downloaded database file, the default is determined at run time. It is recommended that this remain untouched. _manualDB_ : `optional [str]` > The name of the manually created database file, the default is determined at run time. It is recommended that this remain untouched. _returnDict_ : `optional [str]` > default `'both'`, can be used to get both databases or only one with `'WOS'` or `'manual'`. """ dbLoc = os.path.normpath(os.path.dirname(__file__)) retDict = {} try: if returnDict == 'both' or returnDict == 'WOS': with dbm.dumb.open(dbLoc + '/{}'.format(dbname)) as db: if len(db) == 0: raise JournalDataBaseError("J9 Database empty or missing, to regenerate it import and run metaknowledge.WOS.journalAbbreviations.updatej9DB().") for k, v in db.items(): retDict[k.decode('utf-8')] = v.decode('utf-8').split('|') except JournalDataBaseError: updatej9DB() return getj9dict(dbname = dbname, manualDB = manualDB, returnDict = returnDict) try: if returnDict == 'both' or returnDict == 'manual': if os.path.isfile(dbLoc + '/{}.dat'.format(manualDB)): with dbm.dumb.open(dbLoc + '/{}'.format(manualDB)) as db: for k, v in db.items(): retDict[k.decode('utf-8')] = v.decode('utf-8').split('|') else: if returnDict == 'manual': raise JournalDataBaseError("Manual J9 Database ({0}) missing, to create it run addToDB(dbname = {0})".format(manualDB)) except JournalDataBaseError: updatej9DB(dbname = manualDB) return getj9dict(dbname = dbname, manualDB = manualDB, returnDict = returnDict) return retDict
python
def getj9dict(dbname = abrevDBname, manualDB = manualDBname, returnDict ='both'): """Returns the dictionary of journal abbreviations mapping to a list of the associated journal names. By default the local database is used. The database is in the file _dbname_ in the same directory as this source file # Parameters _dbname_ : `optional [str]` > The name of the downloaded database file, the default is determined at run time. It is recommended that this remain untouched. _manualDB_ : `optional [str]` > The name of the manually created database file, the default is determined at run time. It is recommended that this remain untouched. _returnDict_ : `optional [str]` > default `'both'`, can be used to get both databases or only one with `'WOS'` or `'manual'`. """ dbLoc = os.path.normpath(os.path.dirname(__file__)) retDict = {} try: if returnDict == 'both' or returnDict == 'WOS': with dbm.dumb.open(dbLoc + '/{}'.format(dbname)) as db: if len(db) == 0: raise JournalDataBaseError("J9 Database empty or missing, to regenerate it import and run metaknowledge.WOS.journalAbbreviations.updatej9DB().") for k, v in db.items(): retDict[k.decode('utf-8')] = v.decode('utf-8').split('|') except JournalDataBaseError: updatej9DB() return getj9dict(dbname = dbname, manualDB = manualDB, returnDict = returnDict) try: if returnDict == 'both' or returnDict == 'manual': if os.path.isfile(dbLoc + '/{}.dat'.format(manualDB)): with dbm.dumb.open(dbLoc + '/{}'.format(manualDB)) as db: for k, v in db.items(): retDict[k.decode('utf-8')] = v.decode('utf-8').split('|') else: if returnDict == 'manual': raise JournalDataBaseError("Manual J9 Database ({0}) missing, to create it run addToDB(dbname = {0})".format(manualDB)) except JournalDataBaseError: updatej9DB(dbname = manualDB) return getj9dict(dbname = dbname, manualDB = manualDB, returnDict = returnDict) return retDict
[ "def", "getj9dict", "(", "dbname", "=", "abrevDBname", ",", "manualDB", "=", "manualDBname", ",", "returnDict", "=", "'both'", ")", ":", "dbLoc", "=", "os", ".", "path", ".", "normpath", "(", "os", ".", "path", ".", "dirname", "(", "__file__", ")", ")", "retDict", "=", "{", "}", "try", ":", "if", "returnDict", "==", "'both'", "or", "returnDict", "==", "'WOS'", ":", "with", "dbm", ".", "dumb", ".", "open", "(", "dbLoc", "+", "'/{}'", ".", "format", "(", "dbname", ")", ")", "as", "db", ":", "if", "len", "(", "db", ")", "==", "0", ":", "raise", "JournalDataBaseError", "(", "\"J9 Database empty or missing, to regenerate it import and run metaknowledge.WOS.journalAbbreviations.updatej9DB().\"", ")", "for", "k", ",", "v", "in", "db", ".", "items", "(", ")", ":", "retDict", "[", "k", ".", "decode", "(", "'utf-8'", ")", "]", "=", "v", ".", "decode", "(", "'utf-8'", ")", ".", "split", "(", "'|'", ")", "except", "JournalDataBaseError", ":", "updatej9DB", "(", ")", "return", "getj9dict", "(", "dbname", "=", "dbname", ",", "manualDB", "=", "manualDB", ",", "returnDict", "=", "returnDict", ")", "try", ":", "if", "returnDict", "==", "'both'", "or", "returnDict", "==", "'manual'", ":", "if", "os", ".", "path", ".", "isfile", "(", "dbLoc", "+", "'/{}.dat'", ".", "format", "(", "manualDB", ")", ")", ":", "with", "dbm", ".", "dumb", ".", "open", "(", "dbLoc", "+", "'/{}'", ".", "format", "(", "manualDB", ")", ")", "as", "db", ":", "for", "k", ",", "v", "in", "db", ".", "items", "(", ")", ":", "retDict", "[", "k", ".", "decode", "(", "'utf-8'", ")", "]", "=", "v", ".", "decode", "(", "'utf-8'", ")", ".", "split", "(", "'|'", ")", "else", ":", "if", "returnDict", "==", "'manual'", ":", "raise", "JournalDataBaseError", "(", "\"Manual J9 Database ({0}) missing, to create it run addToDB(dbname = {0})\"", ".", "format", "(", "manualDB", ")", ")", "except", "JournalDataBaseError", ":", "updatej9DB", "(", "dbname", "=", "manualDB", ")", "return", "getj9dict", "(", "dbname", "=", "dbname", ",", "manualDB", "=", "manualDB", ",", "returnDict", "=", "returnDict", ")", "return", "retDict" ]
Returns the dictionary of journal abbreviations mapping to a list of the associated journal names. By default the local database is used. The database is in the file _dbname_ in the same directory as this source file # Parameters _dbname_ : `optional [str]` > The name of the downloaded database file, the default is determined at run time. It is recommended that this remain untouched. _manualDB_ : `optional [str]` > The name of the manually created database file, the default is determined at run time. It is recommended that this remain untouched. _returnDict_ : `optional [str]` > default `'both'`, can be used to get both databases or only one with `'WOS'` or `'manual'`.
[ "Returns", "the", "dictionary", "of", "journal", "abbreviations", "mapping", "to", "a", "list", "of", "the", "associated", "journal", "names", ".", "By", "default", "the", "local", "database", "is", "used", ".", "The", "database", "is", "in", "the", "file", "_dbname_", "in", "the", "same", "directory", "as", "this", "source", "file" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/journalAbbreviations/backend.py#L130-L172
train
networks-lab/metaknowledge
metaknowledge/WOS/tagProcessing/funcDicts.py
normalizeToTag
def normalizeToTag(val): """Converts tags or full names to 2 character tags, case insensitive # Parameters _val_: `str` > A two character string giving the tag or its full name # Returns `str` > The short name of _val_ """ try: val = val.upper() except AttributeError: raise KeyError("{} is not a tag or name string".format(val)) if val not in tagsAndNameSetUpper: raise KeyError("{} is not a tag or name string".format(val)) else: try: return fullToTagDictUpper[val] except KeyError: return val
python
def normalizeToTag(val): """Converts tags or full names to 2 character tags, case insensitive # Parameters _val_: `str` > A two character string giving the tag or its full name # Returns `str` > The short name of _val_ """ try: val = val.upper() except AttributeError: raise KeyError("{} is not a tag or name string".format(val)) if val not in tagsAndNameSetUpper: raise KeyError("{} is not a tag or name string".format(val)) else: try: return fullToTagDictUpper[val] except KeyError: return val
[ "def", "normalizeToTag", "(", "val", ")", ":", "try", ":", "val", "=", "val", ".", "upper", "(", ")", "except", "AttributeError", ":", "raise", "KeyError", "(", "\"{} is not a tag or name string\"", ".", "format", "(", "val", ")", ")", "if", "val", "not", "in", "tagsAndNameSetUpper", ":", "raise", "KeyError", "(", "\"{} is not a tag or name string\"", ".", "format", "(", "val", ")", ")", "else", ":", "try", ":", "return", "fullToTagDictUpper", "[", "val", "]", "except", "KeyError", ":", "return", "val" ]
Converts tags or full names to 2 character tags, case insensitive # Parameters _val_: `str` > A two character string giving the tag or its full name # Returns `str` > The short name of _val_
[ "Converts", "tags", "or", "full", "names", "to", "2", "character", "tags", "case", "insensitive" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/WOS/tagProcessing/funcDicts.py#L41-L66
train
networks-lab/metaknowledge
metaknowledge/WOS/tagProcessing/funcDicts.py
normalizeToName
def normalizeToName(val): """Converts tags or full names to full names, case sensitive # Parameters _val_: `str` > A two character string giving the tag or its full name # Returns `str` > The full name of _val_ """ if val not in tagsAndNameSet: raise KeyError("{} is not a tag or name string".format(val)) else: try: return tagToFullDict[val] except KeyError: return val
python
def normalizeToName(val): """Converts tags or full names to full names, case sensitive # Parameters _val_: `str` > A two character string giving the tag or its full name # Returns `str` > The full name of _val_ """ if val not in tagsAndNameSet: raise KeyError("{} is not a tag or name string".format(val)) else: try: return tagToFullDict[val] except KeyError: return val
[ "def", "normalizeToName", "(", "val", ")", ":", "if", "val", "not", "in", "tagsAndNameSet", ":", "raise", "KeyError", "(", "\"{} is not a tag or name string\"", ".", "format", "(", "val", ")", ")", "else", ":", "try", ":", "return", "tagToFullDict", "[", "val", "]", "except", "KeyError", ":", "return", "val" ]
Converts tags or full names to full names, case sensitive # Parameters _val_: `str` > A two character string giving the tag or its full name # Returns `str` > The full name of _val_
[ "Converts", "tags", "or", "full", "names", "to", "full", "names", "case", "sensitive" ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/WOS/tagProcessing/funcDicts.py#L68-L89
train
networks-lab/metaknowledge
metaknowledge/grants/baseGrant.py
Grant.update
def update(self, other): """Adds all the tag-entry pairs from _other_ to the `Grant`. If there is a conflict _other_ takes precedence. # Parameters _other_ : `Grant` > Another `Grant` of the same type as _self_ """ if type(self) != type(other): return NotImplemented else: if other.bad: self.error = other.error self.bad = True self._fieldDict.update(other._fieldDict)
python
def update(self, other): """Adds all the tag-entry pairs from _other_ to the `Grant`. If there is a conflict _other_ takes precedence. # Parameters _other_ : `Grant` > Another `Grant` of the same type as _self_ """ if type(self) != type(other): return NotImplemented else: if other.bad: self.error = other.error self.bad = True self._fieldDict.update(other._fieldDict)
[ "def", "update", "(", "self", ",", "other", ")", ":", "if", "type", "(", "self", ")", "!=", "type", "(", "other", ")", ":", "return", "NotImplemented", "else", ":", "if", "other", ".", "bad", ":", "self", ".", "error", "=", "other", ".", "error", "self", ".", "bad", "=", "True", "self", ".", "_fieldDict", ".", "update", "(", "other", ".", "_fieldDict", ")" ]
Adds all the tag-entry pairs from _other_ to the `Grant`. If there is a conflict _other_ takes precedence. # Parameters _other_ : `Grant` > Another `Grant` of the same type as _self_
[ "Adds", "all", "the", "tag", "-", "entry", "pairs", "from", "_other_", "to", "the", "Grant", ".", "If", "there", "is", "a", "conflict", "_other_", "takes", "precedence", "." ]
8162bf95e66bb6f9916081338e6e2a6132faff75
https://github.com/networks-lab/metaknowledge/blob/8162bf95e66bb6f9916081338e6e2a6132faff75/metaknowledge/grants/baseGrant.py#L99-L114
train
kxgames/glooey
glooey/widget.py
EventDispatcher.relay_events_from
def relay_events_from(self, originator, event_type, *more_event_types): """ Configure this handler to re-dispatch events from another handler. This method configures this handler dispatch an event of type *event_type* whenever *originator* dispatches events of the same type or any of the types in *more_event_types*. Any arguments passed to the original event are copied to the new event. This method is mean to be useful for creating composite widgets that want to present a simple API by making it seem like the events being generated by their children are actually coming from them. See the `/composing_widgets` tutorial for an example. """ handlers = { event_type: lambda *args, **kwargs: \ self.dispatch_event(event_type, *args, **kwargs) for event_type in (event_type,) + more_event_types } originator.set_handlers(**handlers)
python
def relay_events_from(self, originator, event_type, *more_event_types): """ Configure this handler to re-dispatch events from another handler. This method configures this handler dispatch an event of type *event_type* whenever *originator* dispatches events of the same type or any of the types in *more_event_types*. Any arguments passed to the original event are copied to the new event. This method is mean to be useful for creating composite widgets that want to present a simple API by making it seem like the events being generated by their children are actually coming from them. See the `/composing_widgets` tutorial for an example. """ handlers = { event_type: lambda *args, **kwargs: \ self.dispatch_event(event_type, *args, **kwargs) for event_type in (event_type,) + more_event_types } originator.set_handlers(**handlers)
[ "def", "relay_events_from", "(", "self", ",", "originator", ",", "event_type", ",", "*", "more_event_types", ")", ":", "handlers", "=", "{", "event_type", ":", "lambda", "*", "args", ",", "*", "*", "kwargs", ":", "self", ".", "dispatch_event", "(", "event_type", ",", "*", "args", ",", "*", "*", "kwargs", ")", "for", "event_type", "in", "(", "event_type", ",", ")", "+", "more_event_types", "}", "originator", ".", "set_handlers", "(", "*", "*", "handlers", ")" ]
Configure this handler to re-dispatch events from another handler. This method configures this handler dispatch an event of type *event_type* whenever *originator* dispatches events of the same type or any of the types in *more_event_types*. Any arguments passed to the original event are copied to the new event. This method is mean to be useful for creating composite widgets that want to present a simple API by making it seem like the events being generated by their children are actually coming from them. See the `/composing_widgets` tutorial for an example.
[ "Configure", "this", "handler", "to", "re", "-", "dispatch", "events", "from", "another", "handler", "." ]
f0125c1f218b05cfb2efb52a88d80f54eae007a0
https://github.com/kxgames/glooey/blob/f0125c1f218b05cfb2efb52a88d80f54eae007a0/glooey/widget.py#L25-L44
train
kxgames/glooey
glooey/widget.py
EventDispatcher.start_event
def start_event(self, event_type, *args, dt=1/60): """ Begin dispatching the given event at the given frequency. Calling this method will cause an event of type *event_type* with arguments *args* to be dispatched every *dt* seconds. This will continue until `stop_event()` is called for the same event. These continuously firing events are useful if, for example, you want to make a button that scrolls for as long as it's being held. """ # Don't bother scheduling a timer if nobody's listening. This isn't # great from a general-purpose perspective, because a long-lived event # could have listeners attach and detach in the middle. But I don't # like the idea of making a bunch of clocks to spit out a bunch of # events that are never used, although to be fair I don't actually know # how expensive that would be. If I want to make this implementation # more general purpose, I could start and stop timers as necessary in # the methods that add or remove handlers. if not any(self.__yield_handlers(event_type)): return def on_time_interval(dt): # self.dispatch_event(event_type, *args, dt) pyglet.clock.schedule_interval(on_time_interval, dt) self.__timers[event_type] = on_time_interval
python
def start_event(self, event_type, *args, dt=1/60): """ Begin dispatching the given event at the given frequency. Calling this method will cause an event of type *event_type* with arguments *args* to be dispatched every *dt* seconds. This will continue until `stop_event()` is called for the same event. These continuously firing events are useful if, for example, you want to make a button that scrolls for as long as it's being held. """ # Don't bother scheduling a timer if nobody's listening. This isn't # great from a general-purpose perspective, because a long-lived event # could have listeners attach and detach in the middle. But I don't # like the idea of making a bunch of clocks to spit out a bunch of # events that are never used, although to be fair I don't actually know # how expensive that would be. If I want to make this implementation # more general purpose, I could start and stop timers as necessary in # the methods that add or remove handlers. if not any(self.__yield_handlers(event_type)): return def on_time_interval(dt): # self.dispatch_event(event_type, *args, dt) pyglet.clock.schedule_interval(on_time_interval, dt) self.__timers[event_type] = on_time_interval
[ "def", "start_event", "(", "self", ",", "event_type", ",", "*", "args", ",", "dt", "=", "1", "/", "60", ")", ":", "# Don't bother scheduling a timer if nobody's listening. This isn't ", "# great from a general-purpose perspective, because a long-lived event ", "# could have listeners attach and detach in the middle. But I don't ", "# like the idea of making a bunch of clocks to spit out a bunch of ", "# events that are never used, although to be fair I don't actually know ", "# how expensive that would be. If I want to make this implementation ", "# more general purpose, I could start and stop timers as necessary in ", "# the methods that add or remove handlers.", "if", "not", "any", "(", "self", ".", "__yield_handlers", "(", "event_type", ")", ")", ":", "return", "def", "on_time_interval", "(", "dt", ")", ":", "#", "self", ".", "dispatch_event", "(", "event_type", ",", "*", "args", ",", "dt", ")", "pyglet", ".", "clock", ".", "schedule_interval", "(", "on_time_interval", ",", "dt", ")", "self", ".", "__timers", "[", "event_type", "]", "=", "on_time_interval" ]
Begin dispatching the given event at the given frequency. Calling this method will cause an event of type *event_type* with arguments *args* to be dispatched every *dt* seconds. This will continue until `stop_event()` is called for the same event. These continuously firing events are useful if, for example, you want to make a button that scrolls for as long as it's being held.
[ "Begin", "dispatching", "the", "given", "event", "at", "the", "given", "frequency", "." ]
f0125c1f218b05cfb2efb52a88d80f54eae007a0
https://github.com/kxgames/glooey/blob/f0125c1f218b05cfb2efb52a88d80f54eae007a0/glooey/widget.py#L46-L72
train
kxgames/glooey
glooey/widget.py
EventDispatcher.stop_event
def stop_event(self, event_type): """ Stop dispatching the given event. It is not an error to attempt to stop an event that was never started, the request will just be silently ignored. """ if event_type in self.__timers: pyglet.clock.unschedule(self.__timers[event_type])
python
def stop_event(self, event_type): """ Stop dispatching the given event. It is not an error to attempt to stop an event that was never started, the request will just be silently ignored. """ if event_type in self.__timers: pyglet.clock.unschedule(self.__timers[event_type])
[ "def", "stop_event", "(", "self", ",", "event_type", ")", ":", "if", "event_type", "in", "self", ".", "__timers", ":", "pyglet", ".", "clock", ".", "unschedule", "(", "self", ".", "__timers", "[", "event_type", "]", ")" ]
Stop dispatching the given event. It is not an error to attempt to stop an event that was never started, the request will just be silently ignored.
[ "Stop", "dispatching", "the", "given", "event", "." ]
f0125c1f218b05cfb2efb52a88d80f54eae007a0
https://github.com/kxgames/glooey/blob/f0125c1f218b05cfb2efb52a88d80f54eae007a0/glooey/widget.py#L74-L82
train
kxgames/glooey
glooey/widget.py
EventDispatcher.__yield_handlers
def __yield_handlers(self, event_type): """ Yield all the handlers registered for the given event type. """ if event_type not in self.event_types: raise ValueError("%r not found in %r.event_types == %r" % (event_type, self, self.event_types)) # Search handler stack for matching event handlers for frame in list(self._event_stack): if event_type in frame: yield frame[event_type] # Check instance for an event handler if hasattr(self, event_type): yield getattr(self, event_type)
python
def __yield_handlers(self, event_type): """ Yield all the handlers registered for the given event type. """ if event_type not in self.event_types: raise ValueError("%r not found in %r.event_types == %r" % (event_type, self, self.event_types)) # Search handler stack for matching event handlers for frame in list(self._event_stack): if event_type in frame: yield frame[event_type] # Check instance for an event handler if hasattr(self, event_type): yield getattr(self, event_type)
[ "def", "__yield_handlers", "(", "self", ",", "event_type", ")", ":", "if", "event_type", "not", "in", "self", ".", "event_types", ":", "raise", "ValueError", "(", "\"%r not found in %r.event_types == %r\"", "%", "(", "event_type", ",", "self", ",", "self", ".", "event_types", ")", ")", "# Search handler stack for matching event handlers", "for", "frame", "in", "list", "(", "self", ".", "_event_stack", ")", ":", "if", "event_type", "in", "frame", ":", "yield", "frame", "[", "event_type", "]", "# Check instance for an event handler", "if", "hasattr", "(", "self", ",", "event_type", ")", ":", "yield", "getattr", "(", "self", ",", "event_type", ")" ]
Yield all the handlers registered for the given event type.
[ "Yield", "all", "the", "handlers", "registered", "for", "the", "given", "event", "type", "." ]
f0125c1f218b05cfb2efb52a88d80f54eae007a0
https://github.com/kxgames/glooey/blob/f0125c1f218b05cfb2efb52a88d80f54eae007a0/glooey/widget.py#L84-L98
train
kxgames/glooey
glooey/helpers.py
HoldUpdatesMixin._filter_pending_updates
def _filter_pending_updates(self): """ Return all the updates that need to be applied, from a list of all the updates that were called while the hold was active. This method is meant to be overridden by subclasses that want to customize how held updates are applied. The `self._pending_updates` member variable is a list containing a (method, args, kwargs) tuple for each update that was called while updates were being held. This list is in the order that the updates were actually called, and any updates that were called more than once will appear in this list more than once. This method should yield or return an list of the tuples in the same format representing the updates that should be applied, in the order they should be applied. The default implementation filters out duplicate updates without changing their order. In cases where it matters, the last call to each update is used to determine the order. """ from more_itertools import unique_everseen as unique yield from reversed(list(unique(reversed(self._pending_updates))))
python
def _filter_pending_updates(self): """ Return all the updates that need to be applied, from a list of all the updates that were called while the hold was active. This method is meant to be overridden by subclasses that want to customize how held updates are applied. The `self._pending_updates` member variable is a list containing a (method, args, kwargs) tuple for each update that was called while updates were being held. This list is in the order that the updates were actually called, and any updates that were called more than once will appear in this list more than once. This method should yield or return an list of the tuples in the same format representing the updates that should be applied, in the order they should be applied. The default implementation filters out duplicate updates without changing their order. In cases where it matters, the last call to each update is used to determine the order. """ from more_itertools import unique_everseen as unique yield from reversed(list(unique(reversed(self._pending_updates))))
[ "def", "_filter_pending_updates", "(", "self", ")", ":", "from", "more_itertools", "import", "unique_everseen", "as", "unique", "yield", "from", "reversed", "(", "list", "(", "unique", "(", "reversed", "(", "self", ".", "_pending_updates", ")", ")", ")", ")" ]
Return all the updates that need to be applied, from a list of all the updates that were called while the hold was active. This method is meant to be overridden by subclasses that want to customize how held updates are applied. The `self._pending_updates` member variable is a list containing a (method, args, kwargs) tuple for each update that was called while updates were being held. This list is in the order that the updates were actually called, and any updates that were called more than once will appear in this list more than once. This method should yield or return an list of the tuples in the same format representing the updates that should be applied, in the order they should be applied. The default implementation filters out duplicate updates without changing their order. In cases where it matters, the last call to each update is used to determine the order.
[ "Return", "all", "the", "updates", "that", "need", "to", "be", "applied", "from", "a", "list", "of", "all", "the", "updates", "that", "were", "called", "while", "the", "hold", "was", "active", ".", "This", "method", "is", "meant", "to", "be", "overridden", "by", "subclasses", "that", "want", "to", "customize", "how", "held", "updates", "are", "applied", "." ]
f0125c1f218b05cfb2efb52a88d80f54eae007a0
https://github.com/kxgames/glooey/blob/f0125c1f218b05cfb2efb52a88d80f54eae007a0/glooey/helpers.py#L59-L79
train
csurfer/gitsuggest
gitsuggest/utilities.py
ReposToHTML.get_html
def get_html(self): """Method to convert the repository list to a search results page.""" here = path.abspath(path.dirname(__file__)) env = Environment(loader=FileSystemLoader(path.join(here, "res/"))) suggest = env.get_template("suggest.htm.j2") return suggest.render( logo=path.join(here, "res/logo.png"), user_login=self.user, repos=self.repos, )
python
def get_html(self): """Method to convert the repository list to a search results page.""" here = path.abspath(path.dirname(__file__)) env = Environment(loader=FileSystemLoader(path.join(here, "res/"))) suggest = env.get_template("suggest.htm.j2") return suggest.render( logo=path.join(here, "res/logo.png"), user_login=self.user, repos=self.repos, )
[ "def", "get_html", "(", "self", ")", ":", "here", "=", "path", ".", "abspath", "(", "path", ".", "dirname", "(", "__file__", ")", ")", "env", "=", "Environment", "(", "loader", "=", "FileSystemLoader", "(", "path", ".", "join", "(", "here", ",", "\"res/\"", ")", ")", ")", "suggest", "=", "env", ".", "get_template", "(", "\"suggest.htm.j2\"", ")", "return", "suggest", ".", "render", "(", "logo", "=", "path", ".", "join", "(", "here", ",", "\"res/logo.png\"", ")", ",", "user_login", "=", "self", ".", "user", ",", "repos", "=", "self", ".", "repos", ",", ")" ]
Method to convert the repository list to a search results page.
[ "Method", "to", "convert", "the", "repository", "list", "to", "a", "search", "results", "page", "." ]
02efdbf50acb094e502aef9c139dde62676455ee
https://github.com/csurfer/gitsuggest/blob/02efdbf50acb094e502aef9c139dde62676455ee/gitsuggest/utilities.py#L26-L37
train
csurfer/gitsuggest
gitsuggest/utilities.py
ReposToHTML.to_html
def to_html(self, write_to): """Method to convert the repository list to a search results page and write it to a HTML file. :param write_to: File/Path to write the html file to. """ page_html = self.get_html() with open(write_to, "wb") as writefile: writefile.write(page_html.encode("utf-8"))
python
def to_html(self, write_to): """Method to convert the repository list to a search results page and write it to a HTML file. :param write_to: File/Path to write the html file to. """ page_html = self.get_html() with open(write_to, "wb") as writefile: writefile.write(page_html.encode("utf-8"))
[ "def", "to_html", "(", "self", ",", "write_to", ")", ":", "page_html", "=", "self", ".", "get_html", "(", ")", "with", "open", "(", "write_to", ",", "\"wb\"", ")", "as", "writefile", ":", "writefile", ".", "write", "(", "page_html", ".", "encode", "(", "\"utf-8\"", ")", ")" ]
Method to convert the repository list to a search results page and write it to a HTML file. :param write_to: File/Path to write the html file to.
[ "Method", "to", "convert", "the", "repository", "list", "to", "a", "search", "results", "page", "and", "write", "it", "to", "a", "HTML", "file", "." ]
02efdbf50acb094e502aef9c139dde62676455ee
https://github.com/csurfer/gitsuggest/blob/02efdbf50acb094e502aef9c139dde62676455ee/gitsuggest/utilities.py#L39-L48
train
csurfer/gitsuggest
gitsuggest/suggest.py
GitSuggest.get_unique_repositories
def get_unique_repositories(repo_list): """Method to create unique list of repositories from the list of repositories given. :param repo_list: List of repositories which might contain duplicates. :return: List of repositories with no duplicate in them. """ unique_list = list() included = defaultdict(lambda: False) for repo in repo_list: if not included[repo.full_name]: unique_list.append(repo) included[repo.full_name] = True return unique_list
python
def get_unique_repositories(repo_list): """Method to create unique list of repositories from the list of repositories given. :param repo_list: List of repositories which might contain duplicates. :return: List of repositories with no duplicate in them. """ unique_list = list() included = defaultdict(lambda: False) for repo in repo_list: if not included[repo.full_name]: unique_list.append(repo) included[repo.full_name] = True return unique_list
[ "def", "get_unique_repositories", "(", "repo_list", ")", ":", "unique_list", "=", "list", "(", ")", "included", "=", "defaultdict", "(", "lambda", ":", "False", ")", "for", "repo", "in", "repo_list", ":", "if", "not", "included", "[", "repo", ".", "full_name", "]", ":", "unique_list", ".", "append", "(", "repo", ")", "included", "[", "repo", ".", "full_name", "]", "=", "True", "return", "unique_list" ]
Method to create unique list of repositories from the list of repositories given. :param repo_list: List of repositories which might contain duplicates. :return: List of repositories with no duplicate in them.
[ "Method", "to", "create", "unique", "list", "of", "repositories", "from", "the", "list", "of", "repositories", "given", "." ]
02efdbf50acb094e502aef9c139dde62676455ee
https://github.com/csurfer/gitsuggest/blob/02efdbf50acb094e502aef9c139dde62676455ee/gitsuggest/suggest.py#L74-L87
train
csurfer/gitsuggest
gitsuggest/suggest.py
GitSuggest.minus
def minus(repo_list_a, repo_list_b): """Method to create a list of repositories such that the repository belongs to repo list a but not repo list b. In an ideal scenario we should be able to do this by set(a) - set(b) but as GithubRepositories have shown that set() on them is not reliable resort to this until it is all sorted out. :param repo_list_a: List of repositories. :param repo_list_b: List of repositories. """ included = defaultdict(lambda: False) for repo in repo_list_b: included[repo.full_name] = True a_minus_b = list() for repo in repo_list_a: if not included[repo.full_name]: included[repo.full_name] = True a_minus_b.append(repo) return a_minus_b
python
def minus(repo_list_a, repo_list_b): """Method to create a list of repositories such that the repository belongs to repo list a but not repo list b. In an ideal scenario we should be able to do this by set(a) - set(b) but as GithubRepositories have shown that set() on them is not reliable resort to this until it is all sorted out. :param repo_list_a: List of repositories. :param repo_list_b: List of repositories. """ included = defaultdict(lambda: False) for repo in repo_list_b: included[repo.full_name] = True a_minus_b = list() for repo in repo_list_a: if not included[repo.full_name]: included[repo.full_name] = True a_minus_b.append(repo) return a_minus_b
[ "def", "minus", "(", "repo_list_a", ",", "repo_list_b", ")", ":", "included", "=", "defaultdict", "(", "lambda", ":", "False", ")", "for", "repo", "in", "repo_list_b", ":", "included", "[", "repo", ".", "full_name", "]", "=", "True", "a_minus_b", "=", "list", "(", ")", "for", "repo", "in", "repo_list_a", ":", "if", "not", "included", "[", "repo", ".", "full_name", "]", ":", "included", "[", "repo", ".", "full_name", "]", "=", "True", "a_minus_b", ".", "append", "(", "repo", ")", "return", "a_minus_b" ]
Method to create a list of repositories such that the repository belongs to repo list a but not repo list b. In an ideal scenario we should be able to do this by set(a) - set(b) but as GithubRepositories have shown that set() on them is not reliable resort to this until it is all sorted out. :param repo_list_a: List of repositories. :param repo_list_b: List of repositories.
[ "Method", "to", "create", "a", "list", "of", "repositories", "such", "that", "the", "repository", "belongs", "to", "repo", "list", "a", "but", "not", "repo", "list", "b", "." ]
02efdbf50acb094e502aef9c139dde62676455ee
https://github.com/csurfer/gitsuggest/blob/02efdbf50acb094e502aef9c139dde62676455ee/gitsuggest/suggest.py#L90-L112
train
csurfer/gitsuggest
gitsuggest/suggest.py
GitSuggest.__populate_repositories_of_interest
def __populate_repositories_of_interest(self, username): """Method to populate repositories which will be used to suggest repositories for the user. For this purpose we use two kinds of repositories. 1. Repositories starred by user him/herself. 2. Repositories starred by the users followed by the user. :param username: Username for the user for whom repositories are being suggested for. """ # Handle to the user to whom repositories need to be suggested. user = self.github.get_user(username) # Procure repositories starred by the user. self.user_starred_repositories.extend(user.get_starred()) # Repositories starred by users followed by the user. if self.deep_dive: for following_user in user.get_following(): self.user_following_starred_repositories.extend( following_user.get_starred() )
python
def __populate_repositories_of_interest(self, username): """Method to populate repositories which will be used to suggest repositories for the user. For this purpose we use two kinds of repositories. 1. Repositories starred by user him/herself. 2. Repositories starred by the users followed by the user. :param username: Username for the user for whom repositories are being suggested for. """ # Handle to the user to whom repositories need to be suggested. user = self.github.get_user(username) # Procure repositories starred by the user. self.user_starred_repositories.extend(user.get_starred()) # Repositories starred by users followed by the user. if self.deep_dive: for following_user in user.get_following(): self.user_following_starred_repositories.extend( following_user.get_starred() )
[ "def", "__populate_repositories_of_interest", "(", "self", ",", "username", ")", ":", "# Handle to the user to whom repositories need to be suggested.", "user", "=", "self", ".", "github", ".", "get_user", "(", "username", ")", "# Procure repositories starred by the user.", "self", ".", "user_starred_repositories", ".", "extend", "(", "user", ".", "get_starred", "(", ")", ")", "# Repositories starred by users followed by the user.", "if", "self", ".", "deep_dive", ":", "for", "following_user", "in", "user", ".", "get_following", "(", ")", ":", "self", ".", "user_following_starred_repositories", ".", "extend", "(", "following_user", ".", "get_starred", "(", ")", ")" ]
Method to populate repositories which will be used to suggest repositories for the user. For this purpose we use two kinds of repositories. 1. Repositories starred by user him/herself. 2. Repositories starred by the users followed by the user. :param username: Username for the user for whom repositories are being suggested for.
[ "Method", "to", "populate", "repositories", "which", "will", "be", "used", "to", "suggest", "repositories", "for", "the", "user", ".", "For", "this", "purpose", "we", "use", "two", "kinds", "of", "repositories", "." ]
02efdbf50acb094e502aef9c139dde62676455ee
https://github.com/csurfer/gitsuggest/blob/02efdbf50acb094e502aef9c139dde62676455ee/gitsuggest/suggest.py#L114-L136
train
csurfer/gitsuggest
gitsuggest/suggest.py
GitSuggest.__get_interests
def __get_interests(self): """Method to procure description of repositories the authenticated user is interested in. We currently attribute interest to: 1. The repositories the authenticated user has starred. 2. The repositories the users the authenticated user follows have starred. :return: List of repository descriptions. """ # All repositories of interest. repos_of_interest = itertools.chain( self.user_starred_repositories, self.user_following_starred_repositories, ) # Extract descriptions out of repositories of interest. repo_descriptions = [repo.description for repo in repos_of_interest] return list(set(repo_descriptions))
python
def __get_interests(self): """Method to procure description of repositories the authenticated user is interested in. We currently attribute interest to: 1. The repositories the authenticated user has starred. 2. The repositories the users the authenticated user follows have starred. :return: List of repository descriptions. """ # All repositories of interest. repos_of_interest = itertools.chain( self.user_starred_repositories, self.user_following_starred_repositories, ) # Extract descriptions out of repositories of interest. repo_descriptions = [repo.description for repo in repos_of_interest] return list(set(repo_descriptions))
[ "def", "__get_interests", "(", "self", ")", ":", "# All repositories of interest.", "repos_of_interest", "=", "itertools", ".", "chain", "(", "self", ".", "user_starred_repositories", ",", "self", ".", "user_following_starred_repositories", ",", ")", "# Extract descriptions out of repositories of interest.", "repo_descriptions", "=", "[", "repo", ".", "description", "for", "repo", "in", "repos_of_interest", "]", "return", "list", "(", "set", "(", "repo_descriptions", ")", ")" ]
Method to procure description of repositories the authenticated user is interested in. We currently attribute interest to: 1. The repositories the authenticated user has starred. 2. The repositories the users the authenticated user follows have starred. :return: List of repository descriptions.
[ "Method", "to", "procure", "description", "of", "repositories", "the", "authenticated", "user", "is", "interested", "in", "." ]
02efdbf50acb094e502aef9c139dde62676455ee
https://github.com/csurfer/gitsuggest/blob/02efdbf50acb094e502aef9c139dde62676455ee/gitsuggest/suggest.py#L138-L157
train
csurfer/gitsuggest
gitsuggest/suggest.py
GitSuggest.__get_words_to_ignore
def __get_words_to_ignore(self): """Compiles list of all words to ignore. :return: List of words to ignore. """ # Stop words in English. english_stopwords = stopwords.words("english") here = path.abspath(path.dirname(__file__)) # Languages in git repositories. git_languages = [] with open(path.join(here, "gitlang/languages.txt"), "r") as langauges: git_languages = [line.strip() for line in langauges] # Other words to avoid in git repositories. words_to_avoid = [] with open(path.join(here, "gitlang/others.txt"), "r") as languages: words_to_avoid = [line.strip() for line in languages] return set( itertools.chain(english_stopwords, git_languages, words_to_avoid) )
python
def __get_words_to_ignore(self): """Compiles list of all words to ignore. :return: List of words to ignore. """ # Stop words in English. english_stopwords = stopwords.words("english") here = path.abspath(path.dirname(__file__)) # Languages in git repositories. git_languages = [] with open(path.join(here, "gitlang/languages.txt"), "r") as langauges: git_languages = [line.strip() for line in langauges] # Other words to avoid in git repositories. words_to_avoid = [] with open(path.join(here, "gitlang/others.txt"), "r") as languages: words_to_avoid = [line.strip() for line in languages] return set( itertools.chain(english_stopwords, git_languages, words_to_avoid) )
[ "def", "__get_words_to_ignore", "(", "self", ")", ":", "# Stop words in English.", "english_stopwords", "=", "stopwords", ".", "words", "(", "\"english\"", ")", "here", "=", "path", ".", "abspath", "(", "path", ".", "dirname", "(", "__file__", ")", ")", "# Languages in git repositories.", "git_languages", "=", "[", "]", "with", "open", "(", "path", ".", "join", "(", "here", ",", "\"gitlang/languages.txt\"", ")", ",", "\"r\"", ")", "as", "langauges", ":", "git_languages", "=", "[", "line", ".", "strip", "(", ")", "for", "line", "in", "langauges", "]", "# Other words to avoid in git repositories.", "words_to_avoid", "=", "[", "]", "with", "open", "(", "path", ".", "join", "(", "here", ",", "\"gitlang/others.txt\"", ")", ",", "\"r\"", ")", "as", "languages", ":", "words_to_avoid", "=", "[", "line", ".", "strip", "(", ")", "for", "line", "in", "languages", "]", "return", "set", "(", "itertools", ".", "chain", "(", "english_stopwords", ",", "git_languages", ",", "words_to_avoid", ")", ")" ]
Compiles list of all words to ignore. :return: List of words to ignore.
[ "Compiles", "list", "of", "all", "words", "to", "ignore", "." ]
02efdbf50acb094e502aef9c139dde62676455ee
https://github.com/csurfer/gitsuggest/blob/02efdbf50acb094e502aef9c139dde62676455ee/gitsuggest/suggest.py#L159-L181
train
csurfer/gitsuggest
gitsuggest/suggest.py
GitSuggest.__clean_and_tokenize
def __clean_and_tokenize(self, doc_list): """Method to clean and tokenize the document list. :param doc_list: Document list to clean and tokenize. :return: Cleaned and tokenized document list. """ # Some repositories fill entire documentation in description. We ignore # such repositories for cleaner tokens. doc_list = filter( lambda x: x is not None and len(x) <= GitSuggest.MAX_DESC_LEN, doc_list, ) cleaned_doc_list = list() # Regular expression to remove out all punctuations, numbers and other # un-necessary text substrings like emojis etc. tokenizer = RegexpTokenizer(r"[a-zA-Z]+") # Get stop words. stopwords = self.__get_words_to_ignore() # Get english words. dict_words = self.__get_words_to_consider() for doc in doc_list: # Lowercase doc. lower = doc.lower() # Tokenize removing numbers and punctuation. tokens = tokenizer.tokenize(lower) # Include meaningful words. tokens = [tok for tok in tokens if tok in dict_words] # Remove stopwords. tokens = [tok for tok in tokens if tok not in stopwords] # Filter Nones if any are introduced. tokens = [tok for tok in tokens if tok is not None] cleaned_doc_list.append(tokens) return cleaned_doc_list
python
def __clean_and_tokenize(self, doc_list): """Method to clean and tokenize the document list. :param doc_list: Document list to clean and tokenize. :return: Cleaned and tokenized document list. """ # Some repositories fill entire documentation in description. We ignore # such repositories for cleaner tokens. doc_list = filter( lambda x: x is not None and len(x) <= GitSuggest.MAX_DESC_LEN, doc_list, ) cleaned_doc_list = list() # Regular expression to remove out all punctuations, numbers and other # un-necessary text substrings like emojis etc. tokenizer = RegexpTokenizer(r"[a-zA-Z]+") # Get stop words. stopwords = self.__get_words_to_ignore() # Get english words. dict_words = self.__get_words_to_consider() for doc in doc_list: # Lowercase doc. lower = doc.lower() # Tokenize removing numbers and punctuation. tokens = tokenizer.tokenize(lower) # Include meaningful words. tokens = [tok for tok in tokens if tok in dict_words] # Remove stopwords. tokens = [tok for tok in tokens if tok not in stopwords] # Filter Nones if any are introduced. tokens = [tok for tok in tokens if tok is not None] cleaned_doc_list.append(tokens) return cleaned_doc_list
[ "def", "__clean_and_tokenize", "(", "self", ",", "doc_list", ")", ":", "# Some repositories fill entire documentation in description. We ignore", "# such repositories for cleaner tokens.", "doc_list", "=", "filter", "(", "lambda", "x", ":", "x", "is", "not", "None", "and", "len", "(", "x", ")", "<=", "GitSuggest", ".", "MAX_DESC_LEN", ",", "doc_list", ",", ")", "cleaned_doc_list", "=", "list", "(", ")", "# Regular expression to remove out all punctuations, numbers and other", "# un-necessary text substrings like emojis etc.", "tokenizer", "=", "RegexpTokenizer", "(", "r\"[a-zA-Z]+\"", ")", "# Get stop words.", "stopwords", "=", "self", ".", "__get_words_to_ignore", "(", ")", "# Get english words.", "dict_words", "=", "self", ".", "__get_words_to_consider", "(", ")", "for", "doc", "in", "doc_list", ":", "# Lowercase doc.", "lower", "=", "doc", ".", "lower", "(", ")", "# Tokenize removing numbers and punctuation.", "tokens", "=", "tokenizer", ".", "tokenize", "(", "lower", ")", "# Include meaningful words.", "tokens", "=", "[", "tok", "for", "tok", "in", "tokens", "if", "tok", "in", "dict_words", "]", "# Remove stopwords.", "tokens", "=", "[", "tok", "for", "tok", "in", "tokens", "if", "tok", "not", "in", "stopwords", "]", "# Filter Nones if any are introduced.", "tokens", "=", "[", "tok", "for", "tok", "in", "tokens", "if", "tok", "is", "not", "None", "]", "cleaned_doc_list", ".", "append", "(", "tokens", ")", "return", "cleaned_doc_list" ]
Method to clean and tokenize the document list. :param doc_list: Document list to clean and tokenize. :return: Cleaned and tokenized document list.
[ "Method", "to", "clean", "and", "tokenize", "the", "document", "list", "." ]
02efdbf50acb094e502aef9c139dde62676455ee
https://github.com/csurfer/gitsuggest/blob/02efdbf50acb094e502aef9c139dde62676455ee/gitsuggest/suggest.py#L190-L233
train
csurfer/gitsuggest
gitsuggest/suggest.py
GitSuggest.__construct_lda_model
def __construct_lda_model(self): """Method to create LDA model to procure list of topics from. We do that by first fetching the descriptions of repositories user has shown interest in. We tokenize the hence fetched descriptions to procure list of cleaned tokens by dropping all the stop words and language names from it. We use the cleaned and sanitized token list to train LDA model from which we hope to procure topics of interests to the authenticated user. """ # Fetch descriptions of repos of interest to authenticated user. repos_of_interest = self.__get_interests() # Procure clean tokens from the descriptions. cleaned_tokens = self.__clean_and_tokenize(repos_of_interest) # If cleaned tokens are empty, it can cause an exception while # generating LDA. But tokens shouldn't be something meaningful as that # would mean we are suggesting repos without reason. Hence the random # string to ensure that LDA doesn't cause exception but the token # doesn't generate any suggestions either. if not cleaned_tokens: cleaned_tokens = [["zkfgzkfgzkfgzkfgzkfgzkfg"]] # Setup LDA requisites. dictionary = corpora.Dictionary(cleaned_tokens) corpus = [dictionary.doc2bow(text) for text in cleaned_tokens] # Generate LDA model self.lda_model = models.ldamodel.LdaModel( corpus, num_topics=1, id2word=dictionary, passes=10 )
python
def __construct_lda_model(self): """Method to create LDA model to procure list of topics from. We do that by first fetching the descriptions of repositories user has shown interest in. We tokenize the hence fetched descriptions to procure list of cleaned tokens by dropping all the stop words and language names from it. We use the cleaned and sanitized token list to train LDA model from which we hope to procure topics of interests to the authenticated user. """ # Fetch descriptions of repos of interest to authenticated user. repos_of_interest = self.__get_interests() # Procure clean tokens from the descriptions. cleaned_tokens = self.__clean_and_tokenize(repos_of_interest) # If cleaned tokens are empty, it can cause an exception while # generating LDA. But tokens shouldn't be something meaningful as that # would mean we are suggesting repos without reason. Hence the random # string to ensure that LDA doesn't cause exception but the token # doesn't generate any suggestions either. if not cleaned_tokens: cleaned_tokens = [["zkfgzkfgzkfgzkfgzkfgzkfg"]] # Setup LDA requisites. dictionary = corpora.Dictionary(cleaned_tokens) corpus = [dictionary.doc2bow(text) for text in cleaned_tokens] # Generate LDA model self.lda_model = models.ldamodel.LdaModel( corpus, num_topics=1, id2word=dictionary, passes=10 )
[ "def", "__construct_lda_model", "(", "self", ")", ":", "# Fetch descriptions of repos of interest to authenticated user.", "repos_of_interest", "=", "self", ".", "__get_interests", "(", ")", "# Procure clean tokens from the descriptions.", "cleaned_tokens", "=", "self", ".", "__clean_and_tokenize", "(", "repos_of_interest", ")", "# If cleaned tokens are empty, it can cause an exception while", "# generating LDA. But tokens shouldn't be something meaningful as that", "# would mean we are suggesting repos without reason. Hence the random", "# string to ensure that LDA doesn't cause exception but the token", "# doesn't generate any suggestions either.", "if", "not", "cleaned_tokens", ":", "cleaned_tokens", "=", "[", "[", "\"zkfgzkfgzkfgzkfgzkfgzkfg\"", "]", "]", "# Setup LDA requisites.", "dictionary", "=", "corpora", ".", "Dictionary", "(", "cleaned_tokens", ")", "corpus", "=", "[", "dictionary", ".", "doc2bow", "(", "text", ")", "for", "text", "in", "cleaned_tokens", "]", "# Generate LDA model", "self", ".", "lda_model", "=", "models", ".", "ldamodel", ".", "LdaModel", "(", "corpus", ",", "num_topics", "=", "1", ",", "id2word", "=", "dictionary", ",", "passes", "=", "10", ")" ]
Method to create LDA model to procure list of topics from. We do that by first fetching the descriptions of repositories user has shown interest in. We tokenize the hence fetched descriptions to procure list of cleaned tokens by dropping all the stop words and language names from it. We use the cleaned and sanitized token list to train LDA model from which we hope to procure topics of interests to the authenticated user.
[ "Method", "to", "create", "LDA", "model", "to", "procure", "list", "of", "topics", "from", "." ]
02efdbf50acb094e502aef9c139dde62676455ee
https://github.com/csurfer/gitsuggest/blob/02efdbf50acb094e502aef9c139dde62676455ee/gitsuggest/suggest.py#L235-L267
train
csurfer/gitsuggest
gitsuggest/suggest.py
GitSuggest.__get_query_for_repos
def __get_query_for_repos(self, term_count=5): """Method to procure query based on topics authenticated user is interested in. :param term_count: Count of terms in query. :return: Query string. """ repo_query_terms = list() for term in self.lda_model.get_topic_terms(0, topn=term_count): repo_query_terms.append(self.lda_model.id2word[term[0]]) return " ".join(repo_query_terms)
python
def __get_query_for_repos(self, term_count=5): """Method to procure query based on topics authenticated user is interested in. :param term_count: Count of terms in query. :return: Query string. """ repo_query_terms = list() for term in self.lda_model.get_topic_terms(0, topn=term_count): repo_query_terms.append(self.lda_model.id2word[term[0]]) return " ".join(repo_query_terms)
[ "def", "__get_query_for_repos", "(", "self", ",", "term_count", "=", "5", ")", ":", "repo_query_terms", "=", "list", "(", ")", "for", "term", "in", "self", ".", "lda_model", ".", "get_topic_terms", "(", "0", ",", "topn", "=", "term_count", ")", ":", "repo_query_terms", ".", "append", "(", "self", ".", "lda_model", ".", "id2word", "[", "term", "[", "0", "]", "]", ")", "return", "\" \"", ".", "join", "(", "repo_query_terms", ")" ]
Method to procure query based on topics authenticated user is interested in. :param term_count: Count of terms in query. :return: Query string.
[ "Method", "to", "procure", "query", "based", "on", "topics", "authenticated", "user", "is", "interested", "in", "." ]
02efdbf50acb094e502aef9c139dde62676455ee
https://github.com/csurfer/gitsuggest/blob/02efdbf50acb094e502aef9c139dde62676455ee/gitsuggest/suggest.py#L269-L279
train
csurfer/gitsuggest
gitsuggest/suggest.py
GitSuggest.get_suggested_repositories
def get_suggested_repositories(self): """Method to procure suggested repositories for the user. :return: Iterator to procure suggested repositories for the user. """ if self.suggested_repositories is None: # Procure repositories to suggest to user. repository_set = list() for term_count in range(5, 2, -1): query = self.__get_query_for_repos(term_count=term_count) repository_set.extend(self.__get_repos_for_query(query)) # Remove repositories authenticated user is already interested in. catchy_repos = GitSuggest.minus( repository_set, self.user_starred_repositories ) # Filter out repositories with too long descriptions. This is a # measure to weed out spammy repositories. filtered_repos = [] if len(catchy_repos) > 0: for repo in catchy_repos: if ( repo is not None and repo.description is not None and len(repo.description) <= GitSuggest.MAX_DESC_LEN ): filtered_repos.append(repo) # Present the repositories, highly starred to not starred. filtered_repos = sorted( filtered_repos, key=attrgetter("stargazers_count"), reverse=True, ) self.suggested_repositories = GitSuggest.get_unique_repositories( filtered_repos ) # Return an iterator to help user fetch the repository listing. for repository in self.suggested_repositories: yield repository
python
def get_suggested_repositories(self): """Method to procure suggested repositories for the user. :return: Iterator to procure suggested repositories for the user. """ if self.suggested_repositories is None: # Procure repositories to suggest to user. repository_set = list() for term_count in range(5, 2, -1): query = self.__get_query_for_repos(term_count=term_count) repository_set.extend(self.__get_repos_for_query(query)) # Remove repositories authenticated user is already interested in. catchy_repos = GitSuggest.minus( repository_set, self.user_starred_repositories ) # Filter out repositories with too long descriptions. This is a # measure to weed out spammy repositories. filtered_repos = [] if len(catchy_repos) > 0: for repo in catchy_repos: if ( repo is not None and repo.description is not None and len(repo.description) <= GitSuggest.MAX_DESC_LEN ): filtered_repos.append(repo) # Present the repositories, highly starred to not starred. filtered_repos = sorted( filtered_repos, key=attrgetter("stargazers_count"), reverse=True, ) self.suggested_repositories = GitSuggest.get_unique_repositories( filtered_repos ) # Return an iterator to help user fetch the repository listing. for repository in self.suggested_repositories: yield repository
[ "def", "get_suggested_repositories", "(", "self", ")", ":", "if", "self", ".", "suggested_repositories", "is", "None", ":", "# Procure repositories to suggest to user.", "repository_set", "=", "list", "(", ")", "for", "term_count", "in", "range", "(", "5", ",", "2", ",", "-", "1", ")", ":", "query", "=", "self", ".", "__get_query_for_repos", "(", "term_count", "=", "term_count", ")", "repository_set", ".", "extend", "(", "self", ".", "__get_repos_for_query", "(", "query", ")", ")", "# Remove repositories authenticated user is already interested in.", "catchy_repos", "=", "GitSuggest", ".", "minus", "(", "repository_set", ",", "self", ".", "user_starred_repositories", ")", "# Filter out repositories with too long descriptions. This is a", "# measure to weed out spammy repositories.", "filtered_repos", "=", "[", "]", "if", "len", "(", "catchy_repos", ")", ">", "0", ":", "for", "repo", "in", "catchy_repos", ":", "if", "(", "repo", "is", "not", "None", "and", "repo", ".", "description", "is", "not", "None", "and", "len", "(", "repo", ".", "description", ")", "<=", "GitSuggest", ".", "MAX_DESC_LEN", ")", ":", "filtered_repos", ".", "append", "(", "repo", ")", "# Present the repositories, highly starred to not starred.", "filtered_repos", "=", "sorted", "(", "filtered_repos", ",", "key", "=", "attrgetter", "(", "\"stargazers_count\"", ")", ",", "reverse", "=", "True", ",", ")", "self", ".", "suggested_repositories", "=", "GitSuggest", ".", "get_unique_repositories", "(", "filtered_repos", ")", "# Return an iterator to help user fetch the repository listing.", "for", "repository", "in", "self", ".", "suggested_repositories", ":", "yield", "repository" ]
Method to procure suggested repositories for the user. :return: Iterator to procure suggested repositories for the user.
[ "Method", "to", "procure", "suggested", "repositories", "for", "the", "user", "." ]
02efdbf50acb094e502aef9c139dde62676455ee
https://github.com/csurfer/gitsuggest/blob/02efdbf50acb094e502aef9c139dde62676455ee/gitsuggest/suggest.py#L296-L339
train
bcicen/wikitables
wikitables/util.py
guess_type
def guess_type(s): """ attempt to convert string value into numeric type """ sc = s.replace(',', '') # remove comma from potential numbers try: return int(sc) except ValueError: pass try: return float(sc) except ValueError: pass return s
python
def guess_type(s): """ attempt to convert string value into numeric type """ sc = s.replace(',', '') # remove comma from potential numbers try: return int(sc) except ValueError: pass try: return float(sc) except ValueError: pass return s
[ "def", "guess_type", "(", "s", ")", ":", "sc", "=", "s", ".", "replace", "(", "','", ",", "''", ")", "# remove comma from potential numbers", "try", ":", "return", "int", "(", "sc", ")", "except", "ValueError", ":", "pass", "try", ":", "return", "float", "(", "sc", ")", "except", "ValueError", ":", "pass", "return", "s" ]
attempt to convert string value into numeric type
[ "attempt", "to", "convert", "string", "value", "into", "numeric", "type" ]
055cbabaa60762edbab78bf6a76ba19875f328f7
https://github.com/bcicen/wikitables/blob/055cbabaa60762edbab78bf6a76ba19875f328f7/wikitables/util.py#L15-L29
train
bcicen/wikitables
wikitables/readers.py
FieldReader.parse
def parse(self, node): """ Return generator yielding Field objects for a given node """ self._attrs = {} vals = [] yielded = False for x in self._read_parts(node): if isinstance(x, Field): yielded = True x.attrs = self._attrs yield x else: vals.append(ustr(x).strip(' \n\t')) joined = ' '.join([ x for x in vals if x ]) if joined: yielded = True yield Field(node, guess_type(joined), self._attrs) if not yielded: yield Field(node, "", self._attrs)
python
def parse(self, node): """ Return generator yielding Field objects for a given node """ self._attrs = {} vals = [] yielded = False for x in self._read_parts(node): if isinstance(x, Field): yielded = True x.attrs = self._attrs yield x else: vals.append(ustr(x).strip(' \n\t')) joined = ' '.join([ x for x in vals if x ]) if joined: yielded = True yield Field(node, guess_type(joined), self._attrs) if not yielded: yield Field(node, "", self._attrs)
[ "def", "parse", "(", "self", ",", "node", ")", ":", "self", ".", "_attrs", "=", "{", "}", "vals", "=", "[", "]", "yielded", "=", "False", "for", "x", "in", "self", ".", "_read_parts", "(", "node", ")", ":", "if", "isinstance", "(", "x", ",", "Field", ")", ":", "yielded", "=", "True", "x", ".", "attrs", "=", "self", ".", "_attrs", "yield", "x", "else", ":", "vals", ".", "append", "(", "ustr", "(", "x", ")", ".", "strip", "(", "' \\n\\t'", ")", ")", "joined", "=", "' '", ".", "join", "(", "[", "x", "for", "x", "in", "vals", "if", "x", "]", ")", "if", "joined", ":", "yielded", "=", "True", "yield", "Field", "(", "node", ",", "guess_type", "(", "joined", ")", ",", "self", ".", "_attrs", ")", "if", "not", "yielded", ":", "yield", "Field", "(", "node", ",", "\"\"", ",", "self", ".", "_attrs", ")" ]
Return generator yielding Field objects for a given node
[ "Return", "generator", "yielding", "Field", "objects", "for", "a", "given", "node" ]
055cbabaa60762edbab78bf6a76ba19875f328f7
https://github.com/bcicen/wikitables/blob/055cbabaa60762edbab78bf6a76ba19875f328f7/wikitables/readers.py#L21-L43
train
bcicen/wikitables
wikitables/readers.py
RowReader.parse
def parse(self, *nodes): """ Parse one or more `tr` nodes, yielding wikitables.Row objects """ for n in nodes: if not n.contents: continue row = self._parse(n) if not row.is_null: yield row
python
def parse(self, *nodes): """ Parse one or more `tr` nodes, yielding wikitables.Row objects """ for n in nodes: if not n.contents: continue row = self._parse(n) if not row.is_null: yield row
[ "def", "parse", "(", "self", ",", "*", "nodes", ")", ":", "for", "n", "in", "nodes", ":", "if", "not", "n", ".", "contents", ":", "continue", "row", "=", "self", ".", "_parse", "(", "n", ")", "if", "not", "row", ".", "is_null", ":", "yield", "row" ]
Parse one or more `tr` nodes, yielding wikitables.Row objects
[ "Parse", "one", "or", "more", "tr", "nodes", "yielding", "wikitables", ".", "Row", "objects" ]
055cbabaa60762edbab78bf6a76ba19875f328f7
https://github.com/bcicen/wikitables/blob/055cbabaa60762edbab78bf6a76ba19875f328f7/wikitables/readers.py#L102-L111
train
bcicen/wikitables
wikitables/__init__.py
WikiTable._find_header_row
def _find_header_row(self): """ Evaluate all rows and determine header position, based on greatest number of 'th' tagged elements """ th_max = 0 header_idx = 0 for idx, tr in enumerate(self._tr_nodes): th_count = len(tr.contents.filter_tags(matches=ftag('th'))) if th_count > th_max: th_max = th_count header_idx = idx if not th_max: return self._log('found header at row %d (%d <th> elements)' % \ (header_idx, th_max)) header_row = self._tr_nodes.pop(header_idx) return header_row.contents.filter_tags(matches=ftag('th'))
python
def _find_header_row(self): """ Evaluate all rows and determine header position, based on greatest number of 'th' tagged elements """ th_max = 0 header_idx = 0 for idx, tr in enumerate(self._tr_nodes): th_count = len(tr.contents.filter_tags(matches=ftag('th'))) if th_count > th_max: th_max = th_count header_idx = idx if not th_max: return self._log('found header at row %d (%d <th> elements)' % \ (header_idx, th_max)) header_row = self._tr_nodes.pop(header_idx) return header_row.contents.filter_tags(matches=ftag('th'))
[ "def", "_find_header_row", "(", "self", ")", ":", "th_max", "=", "0", "header_idx", "=", "0", "for", "idx", ",", "tr", "in", "enumerate", "(", "self", ".", "_tr_nodes", ")", ":", "th_count", "=", "len", "(", "tr", ".", "contents", ".", "filter_tags", "(", "matches", "=", "ftag", "(", "'th'", ")", ")", ")", "if", "th_count", ">", "th_max", ":", "th_max", "=", "th_count", "header_idx", "=", "idx", "if", "not", "th_max", ":", "return", "self", ".", "_log", "(", "'found header at row %d (%d <th> elements)'", "%", "(", "header_idx", ",", "th_max", ")", ")", "header_row", "=", "self", ".", "_tr_nodes", ".", "pop", "(", "header_idx", ")", "return", "header_row", ".", "contents", ".", "filter_tags", "(", "matches", "=", "ftag", "(", "'th'", ")", ")" ]
Evaluate all rows and determine header position, based on greatest number of 'th' tagged elements
[ "Evaluate", "all", "rows", "and", "determine", "header", "position", "based", "on", "greatest", "number", "of", "th", "tagged", "elements" ]
055cbabaa60762edbab78bf6a76ba19875f328f7
https://github.com/bcicen/wikitables/blob/055cbabaa60762edbab78bf6a76ba19875f328f7/wikitables/__init__.py#L92-L112
train
bcicen/wikitables
wikitables/__init__.py
WikiTable._make_default_header
def _make_default_header(self): """ Return a generic placeholder header based on the tables column count """ td_max = 0 for idx, tr in enumerate(self._tr_nodes): td_count = len(tr.contents.filter_tags(matches=ftag('td'))) if td_count > td_max: td_max = td_count self._log('creating default header (%d columns)' % td_max) return [ 'column%d' % n for n in range(0,td_max) ]
python
def _make_default_header(self): """ Return a generic placeholder header based on the tables column count """ td_max = 0 for idx, tr in enumerate(self._tr_nodes): td_count = len(tr.contents.filter_tags(matches=ftag('td'))) if td_count > td_max: td_max = td_count self._log('creating default header (%d columns)' % td_max) return [ 'column%d' % n for n in range(0,td_max) ]
[ "def", "_make_default_header", "(", "self", ")", ":", "td_max", "=", "0", "for", "idx", ",", "tr", "in", "enumerate", "(", "self", ".", "_tr_nodes", ")", ":", "td_count", "=", "len", "(", "tr", ".", "contents", ".", "filter_tags", "(", "matches", "=", "ftag", "(", "'td'", ")", ")", ")", "if", "td_count", ">", "td_max", ":", "td_max", "=", "td_count", "self", ".", "_log", "(", "'creating default header (%d columns)'", "%", "td_max", ")", "return", "[", "'column%d'", "%", "n", "for", "n", "in", "range", "(", "0", ",", "td_max", ")", "]" ]
Return a generic placeholder header based on the tables column count
[ "Return", "a", "generic", "placeholder", "header", "based", "on", "the", "tables", "column", "count" ]
055cbabaa60762edbab78bf6a76ba19875f328f7
https://github.com/bcicen/wikitables/blob/055cbabaa60762edbab78bf6a76ba19875f328f7/wikitables/__init__.py#L114-L126
train
bcicen/wikitables
wikitables/client.py
Client.fetch_page
def fetch_page(self, title, method='GET'): """ Query for page by title """ params = { 'prop': 'revisions', 'format': 'json', 'action': 'query', 'explaintext': '', 'titles': title, 'rvprop': 'content' } r = self.request(method, self.base_url, params=params) r.raise_for_status() pages = r.json()["query"]["pages"] # use key from first result in 'pages' array pageid = list(pages.keys())[0] if pageid == '-1': raise ArticleNotFound('no matching articles returned') return pages[pageid]
python
def fetch_page(self, title, method='GET'): """ Query for page by title """ params = { 'prop': 'revisions', 'format': 'json', 'action': 'query', 'explaintext': '', 'titles': title, 'rvprop': 'content' } r = self.request(method, self.base_url, params=params) r.raise_for_status() pages = r.json()["query"]["pages"] # use key from first result in 'pages' array pageid = list(pages.keys())[0] if pageid == '-1': raise ArticleNotFound('no matching articles returned') return pages[pageid]
[ "def", "fetch_page", "(", "self", ",", "title", ",", "method", "=", "'GET'", ")", ":", "params", "=", "{", "'prop'", ":", "'revisions'", ",", "'format'", ":", "'json'", ",", "'action'", ":", "'query'", ",", "'explaintext'", ":", "''", ",", "'titles'", ":", "title", ",", "'rvprop'", ":", "'content'", "}", "r", "=", "self", ".", "request", "(", "method", ",", "self", ".", "base_url", ",", "params", "=", "params", ")", "r", ".", "raise_for_status", "(", ")", "pages", "=", "r", ".", "json", "(", ")", "[", "\"query\"", "]", "[", "\"pages\"", "]", "# use key from first result in 'pages' array", "pageid", "=", "list", "(", "pages", ".", "keys", "(", ")", ")", "[", "0", "]", "if", "pageid", "==", "'-1'", ":", "raise", "ArticleNotFound", "(", "'no matching articles returned'", ")", "return", "pages", "[", "pageid", "]" ]
Query for page by title
[ "Query", "for", "page", "by", "title" ]
055cbabaa60762edbab78bf6a76ba19875f328f7
https://github.com/bcicen/wikitables/blob/055cbabaa60762edbab78bf6a76ba19875f328f7/wikitables/client.py#L16-L32
train
wooparadog/pystack
pystack.py
print_stack
def print_stack(pid, include_greenlet=False, debugger=None, verbose=False): """Executes a file in a running Python process.""" # TextIOWrapper of Python 3 is so strange. sys_stdout = getattr(sys.stdout, 'buffer', sys.stdout) sys_stderr = getattr(sys.stderr, 'buffer', sys.stderr) make_args = make_gdb_args environ = dict(os.environ) if ( debugger == 'lldb' or (debugger is None and platform.system().lower() == 'darwin') ): make_args = make_lldb_args # fix the PATH environment variable for using built-in Python with lldb environ['PATH'] = '/usr/bin:%s' % environ.get('PATH', '') tmp_fd, tmp_path = tempfile.mkstemp() os.chmod(tmp_path, 0o777) commands = [] commands.append(FILE_OPEN_COMMAND) commands.extend(UTILITY_COMMANDS) commands.extend(THREAD_STACK_COMMANDS) if include_greenlet: commands.extend(GREENLET_STACK_COMMANDS) commands.append(FILE_CLOSE_COMMAND) command = r';'.join(commands) args = make_args(pid, command % tmp_path) process = subprocess.Popen( args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = process.communicate() if verbose: sys_stderr.write(b'Standard Output:\n%s\n' % out) sys_stderr.write(b'Standard Error:\n%s\n' % err) sys_stderr.flush() for chunk in iter(functools.partial(os.read, tmp_fd, 1024), b''): sys_stdout.write(chunk) sys_stdout.write(b'\n') sys_stdout.flush()
python
def print_stack(pid, include_greenlet=False, debugger=None, verbose=False): """Executes a file in a running Python process.""" # TextIOWrapper of Python 3 is so strange. sys_stdout = getattr(sys.stdout, 'buffer', sys.stdout) sys_stderr = getattr(sys.stderr, 'buffer', sys.stderr) make_args = make_gdb_args environ = dict(os.environ) if ( debugger == 'lldb' or (debugger is None and platform.system().lower() == 'darwin') ): make_args = make_lldb_args # fix the PATH environment variable for using built-in Python with lldb environ['PATH'] = '/usr/bin:%s' % environ.get('PATH', '') tmp_fd, tmp_path = tempfile.mkstemp() os.chmod(tmp_path, 0o777) commands = [] commands.append(FILE_OPEN_COMMAND) commands.extend(UTILITY_COMMANDS) commands.extend(THREAD_STACK_COMMANDS) if include_greenlet: commands.extend(GREENLET_STACK_COMMANDS) commands.append(FILE_CLOSE_COMMAND) command = r';'.join(commands) args = make_args(pid, command % tmp_path) process = subprocess.Popen( args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = process.communicate() if verbose: sys_stderr.write(b'Standard Output:\n%s\n' % out) sys_stderr.write(b'Standard Error:\n%s\n' % err) sys_stderr.flush() for chunk in iter(functools.partial(os.read, tmp_fd, 1024), b''): sys_stdout.write(chunk) sys_stdout.write(b'\n') sys_stdout.flush()
[ "def", "print_stack", "(", "pid", ",", "include_greenlet", "=", "False", ",", "debugger", "=", "None", ",", "verbose", "=", "False", ")", ":", "# TextIOWrapper of Python 3 is so strange.", "sys_stdout", "=", "getattr", "(", "sys", ".", "stdout", ",", "'buffer'", ",", "sys", ".", "stdout", ")", "sys_stderr", "=", "getattr", "(", "sys", ".", "stderr", ",", "'buffer'", ",", "sys", ".", "stderr", ")", "make_args", "=", "make_gdb_args", "environ", "=", "dict", "(", "os", ".", "environ", ")", "if", "(", "debugger", "==", "'lldb'", "or", "(", "debugger", "is", "None", "and", "platform", ".", "system", "(", ")", ".", "lower", "(", ")", "==", "'darwin'", ")", ")", ":", "make_args", "=", "make_lldb_args", "# fix the PATH environment variable for using built-in Python with lldb", "environ", "[", "'PATH'", "]", "=", "'/usr/bin:%s'", "%", "environ", ".", "get", "(", "'PATH'", ",", "''", ")", "tmp_fd", ",", "tmp_path", "=", "tempfile", ".", "mkstemp", "(", ")", "os", ".", "chmod", "(", "tmp_path", ",", "0o777", ")", "commands", "=", "[", "]", "commands", ".", "append", "(", "FILE_OPEN_COMMAND", ")", "commands", ".", "extend", "(", "UTILITY_COMMANDS", ")", "commands", ".", "extend", "(", "THREAD_STACK_COMMANDS", ")", "if", "include_greenlet", ":", "commands", ".", "extend", "(", "GREENLET_STACK_COMMANDS", ")", "commands", ".", "append", "(", "FILE_CLOSE_COMMAND", ")", "command", "=", "r';'", ".", "join", "(", "commands", ")", "args", "=", "make_args", "(", "pid", ",", "command", "%", "tmp_path", ")", "process", "=", "subprocess", ".", "Popen", "(", "args", ",", "stdout", "=", "subprocess", ".", "PIPE", ",", "stderr", "=", "subprocess", ".", "PIPE", ")", "out", ",", "err", "=", "process", ".", "communicate", "(", ")", "if", "verbose", ":", "sys_stderr", ".", "write", "(", "b'Standard Output:\\n%s\\n'", "%", "out", ")", "sys_stderr", ".", "write", "(", "b'Standard Error:\\n%s\\n'", "%", "err", ")", "sys_stderr", ".", "flush", "(", ")", "for", "chunk", "in", "iter", "(", "functools", ".", "partial", "(", "os", ".", "read", ",", "tmp_fd", ",", "1024", ")", ",", "b''", ")", ":", "sys_stdout", ".", "write", "(", "chunk", ")", "sys_stdout", ".", "write", "(", "b'\\n'", ")", "sys_stdout", ".", "flush", "(", ")" ]
Executes a file in a running Python process.
[ "Executes", "a", "file", "in", "a", "running", "Python", "process", "." ]
1ee5bb0ab516f60dd407d7b18d2faa752a8e289c
https://github.com/wooparadog/pystack/blob/1ee5bb0ab516f60dd407d7b18d2faa752a8e289c/pystack.py#L77-L116
train
wooparadog/pystack
pystack.py
cli_main
def cli_main(pid, include_greenlet, debugger, verbose): '''Print stack of python process. $ pystack <pid> ''' try: print_stack(pid, include_greenlet, debugger, verbose) except DebuggerNotFound as e: click.echo('DebuggerNotFound: %s' % e.args[0], err=True) click.get_current_context().exit(1)
python
def cli_main(pid, include_greenlet, debugger, verbose): '''Print stack of python process. $ pystack <pid> ''' try: print_stack(pid, include_greenlet, debugger, verbose) except DebuggerNotFound as e: click.echo('DebuggerNotFound: %s' % e.args[0], err=True) click.get_current_context().exit(1)
[ "def", "cli_main", "(", "pid", ",", "include_greenlet", ",", "debugger", ",", "verbose", ")", ":", "try", ":", "print_stack", "(", "pid", ",", "include_greenlet", ",", "debugger", ",", "verbose", ")", "except", "DebuggerNotFound", "as", "e", ":", "click", ".", "echo", "(", "'DebuggerNotFound: %s'", "%", "e", ".", "args", "[", "0", "]", ",", "err", "=", "True", ")", "click", ".", "get_current_context", "(", ")", ".", "exit", "(", "1", ")" ]
Print stack of python process. $ pystack <pid>
[ "Print", "stack", "of", "python", "process", "." ]
1ee5bb0ab516f60dd407d7b18d2faa752a8e289c
https://github.com/wooparadog/pystack/blob/1ee5bb0ab516f60dd407d7b18d2faa752a8e289c/pystack.py#L131-L140
train
rahul13ramesh/hidden_markov
hidden_markov/hmm_class.py
hmm.forward_algo
def forward_algo(self,observations): """ Finds the probability of an observation sequence for given model parameters **Arguments**: :param observations: The observation sequence, where each element belongs to 'observations' variable declared with __init__ object. :type observations: A list or tuple :return: The probability of occurence of the observation sequence :rtype: float **Example**: >>> states = ('s', 't') >>> possible_observation = ('A','B' ) >>> # Numpy arrays of the data >>> start_probability = np.matrix( '0.5 0.5 ') >>> transition_probability = np.matrix('0.6 0.4 ; 0.3 0.7 ') >>> emission_probability = np.matrix( '0.3 0.7 ; 0.4 0.6 ' ) >>> # Initialize class object >>> test = hmm(states,possible_observation,start_probability,transition_probability,emission_probability) >>> observations = ('A', 'B','B','A') >>> print(test.forward_algo(observations)) .. note:: No scaling applied here and hence this routine is susceptible to underflow errors. Use :func:`hmm.log_prob` instead. """ # Store total number of observations total_stages = len(observations) total_stages = len(observations) # Alpha[i] stores the probability of reaching state 'i' in stage 'j' where 'j' is the iteration number # Inittialize Alpha ob_ind = self.obs_map[ observations[0] ] alpha = np.multiply ( np.transpose(self.em_prob[:,ob_ind]) , self.start_prob ) # Iteratively find alpha(using knowledge of alpha in the previous stage) for curr_t in range(1,total_stages): ob_ind = self.obs_map[observations[curr_t]] alpha = np.dot( alpha , self.trans_prob) alpha = np.multiply( alpha , np.transpose( self.em_prob[:,ob_ind] )) # Sum the alpha's over the last stage total_prob = alpha.sum() return ( total_prob )
python
def forward_algo(self,observations): """ Finds the probability of an observation sequence for given model parameters **Arguments**: :param observations: The observation sequence, where each element belongs to 'observations' variable declared with __init__ object. :type observations: A list or tuple :return: The probability of occurence of the observation sequence :rtype: float **Example**: >>> states = ('s', 't') >>> possible_observation = ('A','B' ) >>> # Numpy arrays of the data >>> start_probability = np.matrix( '0.5 0.5 ') >>> transition_probability = np.matrix('0.6 0.4 ; 0.3 0.7 ') >>> emission_probability = np.matrix( '0.3 0.7 ; 0.4 0.6 ' ) >>> # Initialize class object >>> test = hmm(states,possible_observation,start_probability,transition_probability,emission_probability) >>> observations = ('A', 'B','B','A') >>> print(test.forward_algo(observations)) .. note:: No scaling applied here and hence this routine is susceptible to underflow errors. Use :func:`hmm.log_prob` instead. """ # Store total number of observations total_stages = len(observations) total_stages = len(observations) # Alpha[i] stores the probability of reaching state 'i' in stage 'j' where 'j' is the iteration number # Inittialize Alpha ob_ind = self.obs_map[ observations[0] ] alpha = np.multiply ( np.transpose(self.em_prob[:,ob_ind]) , self.start_prob ) # Iteratively find alpha(using knowledge of alpha in the previous stage) for curr_t in range(1,total_stages): ob_ind = self.obs_map[observations[curr_t]] alpha = np.dot( alpha , self.trans_prob) alpha = np.multiply( alpha , np.transpose( self.em_prob[:,ob_ind] )) # Sum the alpha's over the last stage total_prob = alpha.sum() return ( total_prob )
[ "def", "forward_algo", "(", "self", ",", "observations", ")", ":", "# Store total number of observations total_stages = len(observations) ", "total_stages", "=", "len", "(", "observations", ")", "# Alpha[i] stores the probability of reaching state 'i' in stage 'j' where 'j' is the iteration number", "# Inittialize Alpha", "ob_ind", "=", "self", ".", "obs_map", "[", "observations", "[", "0", "]", "]", "alpha", "=", "np", ".", "multiply", "(", "np", ".", "transpose", "(", "self", ".", "em_prob", "[", ":", ",", "ob_ind", "]", ")", ",", "self", ".", "start_prob", ")", "# Iteratively find alpha(using knowledge of alpha in the previous stage)", "for", "curr_t", "in", "range", "(", "1", ",", "total_stages", ")", ":", "ob_ind", "=", "self", ".", "obs_map", "[", "observations", "[", "curr_t", "]", "]", "alpha", "=", "np", ".", "dot", "(", "alpha", ",", "self", ".", "trans_prob", ")", "alpha", "=", "np", ".", "multiply", "(", "alpha", ",", "np", ".", "transpose", "(", "self", ".", "em_prob", "[", ":", ",", "ob_ind", "]", ")", ")", "# Sum the alpha's over the last stage", "total_prob", "=", "alpha", ".", "sum", "(", ")", "return", "(", "total_prob", ")" ]
Finds the probability of an observation sequence for given model parameters **Arguments**: :param observations: The observation sequence, where each element belongs to 'observations' variable declared with __init__ object. :type observations: A list or tuple :return: The probability of occurence of the observation sequence :rtype: float **Example**: >>> states = ('s', 't') >>> possible_observation = ('A','B' ) >>> # Numpy arrays of the data >>> start_probability = np.matrix( '0.5 0.5 ') >>> transition_probability = np.matrix('0.6 0.4 ; 0.3 0.7 ') >>> emission_probability = np.matrix( '0.3 0.7 ; 0.4 0.6 ' ) >>> # Initialize class object >>> test = hmm(states,possible_observation,start_probability,transition_probability,emission_probability) >>> observations = ('A', 'B','B','A') >>> print(test.forward_algo(observations)) .. note:: No scaling applied here and hence this routine is susceptible to underflow errors. Use :func:`hmm.log_prob` instead.
[ "Finds", "the", "probability", "of", "an", "observation", "sequence", "for", "given", "model", "parameters" ]
6ba6012665f9e09c980ff70901604d051ba57dcc
https://github.com/rahul13ramesh/hidden_markov/blob/6ba6012665f9e09c980ff70901604d051ba57dcc/hidden_markov/hmm_class.py#L144-L190
train
rahul13ramesh/hidden_markov
hidden_markov/hmm_class.py
hmm.viterbi
def viterbi(self,observations): """ The probability of occurence of the observation sequence **Arguments**: :param observations: The observation sequence, where each element belongs to 'observations' variable declared with __init__ object. :type observations: A list or tuple :return: Returns a list of hidden states. :rtype: list of states **Features**: Scaling applied here. This ensures that no underflow error occurs. **Example**: >>> states = ('s', 't') >>> possible_observation = ('A','B' ) >>> # Numpy arrays of the data >>> start_probability = np.matrix( '0.5 0.5 ') >>> transition_probability = np.matrix('0.6 0.4 ; 0.3 0.7 ') >>> emission_probability = np.matrix( '0.3 0.7 ; 0.4 0.6 ' ) >>> # Initialize class object >>> test = hmm(states,possible_observation,start_probability,transition_probability,emission_probability) >>> observations = ('A', 'B','B','A') >>> print(test.viterbi(observations)) """ # Find total states,observations total_stages = len(observations) num_states = len(self.states) # initialize data # Path stores the state sequence giving maximum probability old_path = np.zeros( (total_stages, num_states) ) new_path = np.zeros( (total_stages, num_states) ) # Find initial delta # Map observation to an index # delta[s] stores the probability of most probable path ending in state 's' ob_ind = self.obs_map[ observations[0] ] delta = np.multiply ( np.transpose(self.em_prob[:,ob_ind]) , self.start_prob ) # Scale delta delta = delta /np.sum(delta) # initialize path old_path[0,:] = [i for i in range(num_states) ] # Find delta[t][x] for each state 'x' at the iteration 't' # delta[t][x] can be found using delta[t-1][x] and taking the maximum possible path for curr_t in range(1,total_stages): # Map observation to an index ob_ind = self.obs_map[ observations[curr_t] ] # Find temp and take max along each row to get delta temp = np.multiply (np.multiply(delta , self.trans_prob.transpose()) , self.em_prob[:, ob_ind] ) # Update delta and scale it delta = temp.max(axis = 1).transpose() delta = delta /np.sum(delta) # Find state which is most probable using argax # Convert to a list for easier processing max_temp = temp.argmax(axis=1).transpose() max_temp = np.ravel(max_temp).tolist() # Update path for s in range(num_states): new_path[:curr_t,s] = old_path[0:curr_t, max_temp[s] ] new_path[curr_t,:] = [i for i in range(num_states) ] old_path = new_path.copy() # Find the state in last stage, giving maximum probability final_max = np.argmax(np.ravel(delta)) best_path = old_path[:,final_max].tolist() best_path_map = [ self.state_map[i] for i in best_path] return best_path_map
python
def viterbi(self,observations): """ The probability of occurence of the observation sequence **Arguments**: :param observations: The observation sequence, where each element belongs to 'observations' variable declared with __init__ object. :type observations: A list or tuple :return: Returns a list of hidden states. :rtype: list of states **Features**: Scaling applied here. This ensures that no underflow error occurs. **Example**: >>> states = ('s', 't') >>> possible_observation = ('A','B' ) >>> # Numpy arrays of the data >>> start_probability = np.matrix( '0.5 0.5 ') >>> transition_probability = np.matrix('0.6 0.4 ; 0.3 0.7 ') >>> emission_probability = np.matrix( '0.3 0.7 ; 0.4 0.6 ' ) >>> # Initialize class object >>> test = hmm(states,possible_observation,start_probability,transition_probability,emission_probability) >>> observations = ('A', 'B','B','A') >>> print(test.viterbi(observations)) """ # Find total states,observations total_stages = len(observations) num_states = len(self.states) # initialize data # Path stores the state sequence giving maximum probability old_path = np.zeros( (total_stages, num_states) ) new_path = np.zeros( (total_stages, num_states) ) # Find initial delta # Map observation to an index # delta[s] stores the probability of most probable path ending in state 's' ob_ind = self.obs_map[ observations[0] ] delta = np.multiply ( np.transpose(self.em_prob[:,ob_ind]) , self.start_prob ) # Scale delta delta = delta /np.sum(delta) # initialize path old_path[0,:] = [i for i in range(num_states) ] # Find delta[t][x] for each state 'x' at the iteration 't' # delta[t][x] can be found using delta[t-1][x] and taking the maximum possible path for curr_t in range(1,total_stages): # Map observation to an index ob_ind = self.obs_map[ observations[curr_t] ] # Find temp and take max along each row to get delta temp = np.multiply (np.multiply(delta , self.trans_prob.transpose()) , self.em_prob[:, ob_ind] ) # Update delta and scale it delta = temp.max(axis = 1).transpose() delta = delta /np.sum(delta) # Find state which is most probable using argax # Convert to a list for easier processing max_temp = temp.argmax(axis=1).transpose() max_temp = np.ravel(max_temp).tolist() # Update path for s in range(num_states): new_path[:curr_t,s] = old_path[0:curr_t, max_temp[s] ] new_path[curr_t,:] = [i for i in range(num_states) ] old_path = new_path.copy() # Find the state in last stage, giving maximum probability final_max = np.argmax(np.ravel(delta)) best_path = old_path[:,final_max].tolist() best_path_map = [ self.state_map[i] for i in best_path] return best_path_map
[ "def", "viterbi", "(", "self", ",", "observations", ")", ":", "# Find total states,observations", "total_stages", "=", "len", "(", "observations", ")", "num_states", "=", "len", "(", "self", ".", "states", ")", "# initialize data", "# Path stores the state sequence giving maximum probability", "old_path", "=", "np", ".", "zeros", "(", "(", "total_stages", ",", "num_states", ")", ")", "new_path", "=", "np", ".", "zeros", "(", "(", "total_stages", ",", "num_states", ")", ")", "# Find initial delta", "# Map observation to an index", "# delta[s] stores the probability of most probable path ending in state 's' ", "ob_ind", "=", "self", ".", "obs_map", "[", "observations", "[", "0", "]", "]", "delta", "=", "np", ".", "multiply", "(", "np", ".", "transpose", "(", "self", ".", "em_prob", "[", ":", ",", "ob_ind", "]", ")", ",", "self", ".", "start_prob", ")", "# Scale delta", "delta", "=", "delta", "/", "np", ".", "sum", "(", "delta", ")", "# initialize path", "old_path", "[", "0", ",", ":", "]", "=", "[", "i", "for", "i", "in", "range", "(", "num_states", ")", "]", "# Find delta[t][x] for each state 'x' at the iteration 't'", "# delta[t][x] can be found using delta[t-1][x] and taking the maximum possible path", "for", "curr_t", "in", "range", "(", "1", ",", "total_stages", ")", ":", "# Map observation to an index", "ob_ind", "=", "self", ".", "obs_map", "[", "observations", "[", "curr_t", "]", "]", "# Find temp and take max along each row to get delta", "temp", "=", "np", ".", "multiply", "(", "np", ".", "multiply", "(", "delta", ",", "self", ".", "trans_prob", ".", "transpose", "(", ")", ")", ",", "self", ".", "em_prob", "[", ":", ",", "ob_ind", "]", ")", "# Update delta and scale it", "delta", "=", "temp", ".", "max", "(", "axis", "=", "1", ")", ".", "transpose", "(", ")", "delta", "=", "delta", "/", "np", ".", "sum", "(", "delta", ")", "# Find state which is most probable using argax", "# Convert to a list for easier processing", "max_temp", "=", "temp", ".", "argmax", "(", "axis", "=", "1", ")", ".", "transpose", "(", ")", "max_temp", "=", "np", ".", "ravel", "(", "max_temp", ")", ".", "tolist", "(", ")", "# Update path", "for", "s", "in", "range", "(", "num_states", ")", ":", "new_path", "[", ":", "curr_t", ",", "s", "]", "=", "old_path", "[", "0", ":", "curr_t", ",", "max_temp", "[", "s", "]", "]", "new_path", "[", "curr_t", ",", ":", "]", "=", "[", "i", "for", "i", "in", "range", "(", "num_states", ")", "]", "old_path", "=", "new_path", ".", "copy", "(", ")", "# Find the state in last stage, giving maximum probability", "final_max", "=", "np", ".", "argmax", "(", "np", ".", "ravel", "(", "delta", ")", ")", "best_path", "=", "old_path", "[", ":", ",", "final_max", "]", ".", "tolist", "(", ")", "best_path_map", "=", "[", "self", ".", "state_map", "[", "i", "]", "for", "i", "in", "best_path", "]", "return", "best_path_map" ]
The probability of occurence of the observation sequence **Arguments**: :param observations: The observation sequence, where each element belongs to 'observations' variable declared with __init__ object. :type observations: A list or tuple :return: Returns a list of hidden states. :rtype: list of states **Features**: Scaling applied here. This ensures that no underflow error occurs. **Example**: >>> states = ('s', 't') >>> possible_observation = ('A','B' ) >>> # Numpy arrays of the data >>> start_probability = np.matrix( '0.5 0.5 ') >>> transition_probability = np.matrix('0.6 0.4 ; 0.3 0.7 ') >>> emission_probability = np.matrix( '0.3 0.7 ; 0.4 0.6 ' ) >>> # Initialize class object >>> test = hmm(states,possible_observation,start_probability,transition_probability,emission_probability) >>> observations = ('A', 'B','B','A') >>> print(test.viterbi(observations))
[ "The", "probability", "of", "occurence", "of", "the", "observation", "sequence" ]
6ba6012665f9e09c980ff70901604d051ba57dcc
https://github.com/rahul13ramesh/hidden_markov/blob/6ba6012665f9e09c980ff70901604d051ba57dcc/hidden_markov/hmm_class.py#L194-L277
train
rahul13ramesh/hidden_markov
hidden_markov/hmm_class.py
hmm.train_hmm
def train_hmm(self,observation_list, iterations, quantities): """ Runs the Baum Welch Algorithm and finds the new model parameters **Arguments**: :param observation_list: A nested list, or a list of lists :type observation_list: Contains a list multiple observation sequences. :param iterations: Maximum number of iterations for the algorithm :type iterations: An integer :param quantities: Number of times, each corresponding item in 'observation_list' occurs. :type quantities: A list of integers :return: Returns the emission, transition and start probabilites as numpy matrices :rtype: Three numpy matices **Features**: Scaling applied here. This ensures that no underflow error occurs. **Example**: >>> states = ('s', 't') >>> possible_observation = ('A','B' ) >>> # Numpy arrays of the data >>> start_probability = np.matrix( '0.5 0.5 ') >>> transition_probability = np.matrix('0.6 0.4 ; 0.3 0.7 ') >>> emission_probability = np.matrix( '0.3 0.7 ; 0.4 0.6 ' ) >>> # Initialize class object >>> test = hmm(states,possible_observation,start_probability,transition_probability,emission_probability) >>> >>> observations = ('A', 'B','B','A') >>> obs4 = ('B', 'A','B') >>> observation_tuple = [] >>> observation_tuple.extend( [observations,obs4] ) >>> quantities_observations = [10, 20] >>> num_iter=1000 >>> e,t,s = test.train_hmm(observation_tuple,num_iter,quantities_observations) >>> # e,t,s contain new emission transition and start probabilities """ obs_size = len(observation_list) prob = float('inf') q = quantities # Train the model 'iteration' number of times # store em_prob and trans_prob copies since you should use same values for one loop for i in range(iterations): emProbNew = np.asmatrix(np.zeros((self.em_prob.shape))) transProbNew = np.asmatrix(np.zeros((self.trans_prob.shape))) startProbNew = np.asmatrix(np.zeros((self.start_prob.shape))) for j in range(obs_size): # re-assing values based on weight emProbNew= emProbNew + q[j] * self._train_emission(observation_list[j]) transProbNew = transProbNew + q[j] * self._train_transition(observation_list[j]) startProbNew = startProbNew + q[j] * self._train_start_prob(observation_list[j]) # Normalizing em_norm = emProbNew.sum(axis = 1) trans_norm = transProbNew.sum(axis = 1) start_norm = startProbNew.sum(axis = 1) emProbNew = emProbNew/ em_norm.transpose() startProbNew = startProbNew/ start_norm.transpose() transProbNew = transProbNew/ trans_norm.transpose() self.em_prob,self.trans_prob = emProbNew,transProbNew self.start_prob = startProbNew if prob - self.log_prob(observation_list,quantities)>0.0000001: prob = self.log_prob(observation_list,quantities) else: return self.em_prob, self.trans_prob , self.start_prob return self.em_prob, self.trans_prob , self.start_prob
python
def train_hmm(self,observation_list, iterations, quantities): """ Runs the Baum Welch Algorithm and finds the new model parameters **Arguments**: :param observation_list: A nested list, or a list of lists :type observation_list: Contains a list multiple observation sequences. :param iterations: Maximum number of iterations for the algorithm :type iterations: An integer :param quantities: Number of times, each corresponding item in 'observation_list' occurs. :type quantities: A list of integers :return: Returns the emission, transition and start probabilites as numpy matrices :rtype: Three numpy matices **Features**: Scaling applied here. This ensures that no underflow error occurs. **Example**: >>> states = ('s', 't') >>> possible_observation = ('A','B' ) >>> # Numpy arrays of the data >>> start_probability = np.matrix( '0.5 0.5 ') >>> transition_probability = np.matrix('0.6 0.4 ; 0.3 0.7 ') >>> emission_probability = np.matrix( '0.3 0.7 ; 0.4 0.6 ' ) >>> # Initialize class object >>> test = hmm(states,possible_observation,start_probability,transition_probability,emission_probability) >>> >>> observations = ('A', 'B','B','A') >>> obs4 = ('B', 'A','B') >>> observation_tuple = [] >>> observation_tuple.extend( [observations,obs4] ) >>> quantities_observations = [10, 20] >>> num_iter=1000 >>> e,t,s = test.train_hmm(observation_tuple,num_iter,quantities_observations) >>> # e,t,s contain new emission transition and start probabilities """ obs_size = len(observation_list) prob = float('inf') q = quantities # Train the model 'iteration' number of times # store em_prob and trans_prob copies since you should use same values for one loop for i in range(iterations): emProbNew = np.asmatrix(np.zeros((self.em_prob.shape))) transProbNew = np.asmatrix(np.zeros((self.trans_prob.shape))) startProbNew = np.asmatrix(np.zeros((self.start_prob.shape))) for j in range(obs_size): # re-assing values based on weight emProbNew= emProbNew + q[j] * self._train_emission(observation_list[j]) transProbNew = transProbNew + q[j] * self._train_transition(observation_list[j]) startProbNew = startProbNew + q[j] * self._train_start_prob(observation_list[j]) # Normalizing em_norm = emProbNew.sum(axis = 1) trans_norm = transProbNew.sum(axis = 1) start_norm = startProbNew.sum(axis = 1) emProbNew = emProbNew/ em_norm.transpose() startProbNew = startProbNew/ start_norm.transpose() transProbNew = transProbNew/ trans_norm.transpose() self.em_prob,self.trans_prob = emProbNew,transProbNew self.start_prob = startProbNew if prob - self.log_prob(observation_list,quantities)>0.0000001: prob = self.log_prob(observation_list,quantities) else: return self.em_prob, self.trans_prob , self.start_prob return self.em_prob, self.trans_prob , self.start_prob
[ "def", "train_hmm", "(", "self", ",", "observation_list", ",", "iterations", ",", "quantities", ")", ":", "obs_size", "=", "len", "(", "observation_list", ")", "prob", "=", "float", "(", "'inf'", ")", "q", "=", "quantities", "# Train the model 'iteration' number of times", "# store em_prob and trans_prob copies since you should use same values for one loop", "for", "i", "in", "range", "(", "iterations", ")", ":", "emProbNew", "=", "np", ".", "asmatrix", "(", "np", ".", "zeros", "(", "(", "self", ".", "em_prob", ".", "shape", ")", ")", ")", "transProbNew", "=", "np", ".", "asmatrix", "(", "np", ".", "zeros", "(", "(", "self", ".", "trans_prob", ".", "shape", ")", ")", ")", "startProbNew", "=", "np", ".", "asmatrix", "(", "np", ".", "zeros", "(", "(", "self", ".", "start_prob", ".", "shape", ")", ")", ")", "for", "j", "in", "range", "(", "obs_size", ")", ":", "# re-assing values based on weight", "emProbNew", "=", "emProbNew", "+", "q", "[", "j", "]", "*", "self", ".", "_train_emission", "(", "observation_list", "[", "j", "]", ")", "transProbNew", "=", "transProbNew", "+", "q", "[", "j", "]", "*", "self", ".", "_train_transition", "(", "observation_list", "[", "j", "]", ")", "startProbNew", "=", "startProbNew", "+", "q", "[", "j", "]", "*", "self", ".", "_train_start_prob", "(", "observation_list", "[", "j", "]", ")", "# Normalizing", "em_norm", "=", "emProbNew", ".", "sum", "(", "axis", "=", "1", ")", "trans_norm", "=", "transProbNew", ".", "sum", "(", "axis", "=", "1", ")", "start_norm", "=", "startProbNew", ".", "sum", "(", "axis", "=", "1", ")", "emProbNew", "=", "emProbNew", "/", "em_norm", ".", "transpose", "(", ")", "startProbNew", "=", "startProbNew", "/", "start_norm", ".", "transpose", "(", ")", "transProbNew", "=", "transProbNew", "/", "trans_norm", ".", "transpose", "(", ")", "self", ".", "em_prob", ",", "self", ".", "trans_prob", "=", "emProbNew", ",", "transProbNew", "self", ".", "start_prob", "=", "startProbNew", "if", "prob", "-", "self", ".", "log_prob", "(", "observation_list", ",", "quantities", ")", ">", "0.0000001", ":", "prob", "=", "self", ".", "log_prob", "(", "observation_list", ",", "quantities", ")", "else", ":", "return", "self", ".", "em_prob", ",", "self", ".", "trans_prob", ",", "self", ".", "start_prob", "return", "self", ".", "em_prob", ",", "self", ".", "trans_prob", ",", "self", ".", "start_prob" ]
Runs the Baum Welch Algorithm and finds the new model parameters **Arguments**: :param observation_list: A nested list, or a list of lists :type observation_list: Contains a list multiple observation sequences. :param iterations: Maximum number of iterations for the algorithm :type iterations: An integer :param quantities: Number of times, each corresponding item in 'observation_list' occurs. :type quantities: A list of integers :return: Returns the emission, transition and start probabilites as numpy matrices :rtype: Three numpy matices **Features**: Scaling applied here. This ensures that no underflow error occurs. **Example**: >>> states = ('s', 't') >>> possible_observation = ('A','B' ) >>> # Numpy arrays of the data >>> start_probability = np.matrix( '0.5 0.5 ') >>> transition_probability = np.matrix('0.6 0.4 ; 0.3 0.7 ') >>> emission_probability = np.matrix( '0.3 0.7 ; 0.4 0.6 ' ) >>> # Initialize class object >>> test = hmm(states,possible_observation,start_probability,transition_probability,emission_probability) >>> >>> observations = ('A', 'B','B','A') >>> obs4 = ('B', 'A','B') >>> observation_tuple = [] >>> observation_tuple.extend( [observations,obs4] ) >>> quantities_observations = [10, 20] >>> num_iter=1000 >>> e,t,s = test.train_hmm(observation_tuple,num_iter,quantities_observations) >>> # e,t,s contain new emission transition and start probabilities
[ "Runs", "the", "Baum", "Welch", "Algorithm", "and", "finds", "the", "new", "model", "parameters" ]
6ba6012665f9e09c980ff70901604d051ba57dcc
https://github.com/rahul13ramesh/hidden_markov/blob/6ba6012665f9e09c980ff70901604d051ba57dcc/hidden_markov/hmm_class.py#L281-L363
train
rahul13ramesh/hidden_markov
hidden_markov/hmm_class.py
hmm.log_prob
def log_prob(self,observations_list, quantities): """ Finds Weighted log probability of a list of observation sequences **Arguments**: :param observation_list: A nested list, or a list of lists :type observation_list: Contains a list multiple observation sequences. :param quantities: Number of times, each corresponding item in 'observation_list' occurs. :type quantities: A list of integers :return: Weighted log probability of multiple observations. :rtype: float **Features**: Scaling applied here. This ensures that no underflow error occurs. **Example**: >>> states = ('s', 't') >>> possible_observation = ('A','B' ) >>> # Numpy arrays of the data >>> start_probability = np.matrix( '0.5 0.5 ') >>> transition_probability = np.matrix('0.6 0.4 ; 0.3 0.7 ') >>> emission_probability = np.matrix( '0.3 0.7 ; 0.4 0.6 ' ) >>> # Initialize class object >>> test = hmm(states,possible_observation,start_probability,transition_probability,emission_probability) >>> observations = ('A', 'B','B','A') >>> obs4 = ('B', 'A','B') >>> observation_tuple = [] >>> observation_tuple.extend( [observations,obs4] ) >>> quantities_observations = [10, 20] >>> >>> prob = test.log_prob(observation_tuple, quantities_observations) """ prob = 0 for q,obs in enumerate(observations_list): temp,c_scale = self._alpha_cal(obs) prob = prob + -1 * quantities[q] * np.sum(np.log(c_scale)) return prob
python
def log_prob(self,observations_list, quantities): """ Finds Weighted log probability of a list of observation sequences **Arguments**: :param observation_list: A nested list, or a list of lists :type observation_list: Contains a list multiple observation sequences. :param quantities: Number of times, each corresponding item in 'observation_list' occurs. :type quantities: A list of integers :return: Weighted log probability of multiple observations. :rtype: float **Features**: Scaling applied here. This ensures that no underflow error occurs. **Example**: >>> states = ('s', 't') >>> possible_observation = ('A','B' ) >>> # Numpy arrays of the data >>> start_probability = np.matrix( '0.5 0.5 ') >>> transition_probability = np.matrix('0.6 0.4 ; 0.3 0.7 ') >>> emission_probability = np.matrix( '0.3 0.7 ; 0.4 0.6 ' ) >>> # Initialize class object >>> test = hmm(states,possible_observation,start_probability,transition_probability,emission_probability) >>> observations = ('A', 'B','B','A') >>> obs4 = ('B', 'A','B') >>> observation_tuple = [] >>> observation_tuple.extend( [observations,obs4] ) >>> quantities_observations = [10, 20] >>> >>> prob = test.log_prob(observation_tuple, quantities_observations) """ prob = 0 for q,obs in enumerate(observations_list): temp,c_scale = self._alpha_cal(obs) prob = prob + -1 * quantities[q] * np.sum(np.log(c_scale)) return prob
[ "def", "log_prob", "(", "self", ",", "observations_list", ",", "quantities", ")", ":", "prob", "=", "0", "for", "q", ",", "obs", "in", "enumerate", "(", "observations_list", ")", ":", "temp", ",", "c_scale", "=", "self", ".", "_alpha_cal", "(", "obs", ")", "prob", "=", "prob", "+", "-", "1", "*", "quantities", "[", "q", "]", "*", "np", ".", "sum", "(", "np", ".", "log", "(", "c_scale", ")", ")", "return", "prob" ]
Finds Weighted log probability of a list of observation sequences **Arguments**: :param observation_list: A nested list, or a list of lists :type observation_list: Contains a list multiple observation sequences. :param quantities: Number of times, each corresponding item in 'observation_list' occurs. :type quantities: A list of integers :return: Weighted log probability of multiple observations. :rtype: float **Features**: Scaling applied here. This ensures that no underflow error occurs. **Example**: >>> states = ('s', 't') >>> possible_observation = ('A','B' ) >>> # Numpy arrays of the data >>> start_probability = np.matrix( '0.5 0.5 ') >>> transition_probability = np.matrix('0.6 0.4 ; 0.3 0.7 ') >>> emission_probability = np.matrix( '0.3 0.7 ; 0.4 0.6 ' ) >>> # Initialize class object >>> test = hmm(states,possible_observation,start_probability,transition_probability,emission_probability) >>> observations = ('A', 'B','B','A') >>> obs4 = ('B', 'A','B') >>> observation_tuple = [] >>> observation_tuple.extend( [observations,obs4] ) >>> quantities_observations = [10, 20] >>> >>> prob = test.log_prob(observation_tuple, quantities_observations)
[ "Finds", "Weighted", "log", "probability", "of", "a", "list", "of", "observation", "sequences" ]
6ba6012665f9e09c980ff70901604d051ba57dcc
https://github.com/rahul13ramesh/hidden_markov/blob/6ba6012665f9e09c980ff70901604d051ba57dcc/hidden_markov/hmm_class.py#L513-L555
train
mortada/fredapi
fredapi/fred.py
Fred.__fetch_data
def __fetch_data(self, url): """ helper function for fetching data given a request URL """ url += '&api_key=' + self.api_key try: response = urlopen(url) root = ET.fromstring(response.read()) except HTTPError as exc: root = ET.fromstring(exc.read()) raise ValueError(root.get('message')) return root
python
def __fetch_data(self, url): """ helper function for fetching data given a request URL """ url += '&api_key=' + self.api_key try: response = urlopen(url) root = ET.fromstring(response.read()) except HTTPError as exc: root = ET.fromstring(exc.read()) raise ValueError(root.get('message')) return root
[ "def", "__fetch_data", "(", "self", ",", "url", ")", ":", "url", "+=", "'&api_key='", "+", "self", ".", "api_key", "try", ":", "response", "=", "urlopen", "(", "url", ")", "root", "=", "ET", ".", "fromstring", "(", "response", ".", "read", "(", ")", ")", "except", "HTTPError", "as", "exc", ":", "root", "=", "ET", ".", "fromstring", "(", "exc", ".", "read", "(", ")", ")", "raise", "ValueError", "(", "root", ".", "get", "(", "'message'", ")", ")", "return", "root" ]
helper function for fetching data given a request URL
[ "helper", "function", "for", "fetching", "data", "given", "a", "request", "URL" ]
d3ca79efccb9525f2752a0d6da90e793e87c3fd8
https://github.com/mortada/fredapi/blob/d3ca79efccb9525f2752a0d6da90e793e87c3fd8/fredapi/fred.py#L58-L69
train
mortada/fredapi
fredapi/fred.py
Fred._parse
def _parse(self, date_str, format='%Y-%m-%d'): """ helper function for parsing FRED date string into datetime """ rv = pd.to_datetime(date_str, format=format) if hasattr(rv, 'to_pydatetime'): rv = rv.to_pydatetime() return rv
python
def _parse(self, date_str, format='%Y-%m-%d'): """ helper function for parsing FRED date string into datetime """ rv = pd.to_datetime(date_str, format=format) if hasattr(rv, 'to_pydatetime'): rv = rv.to_pydatetime() return rv
[ "def", "_parse", "(", "self", ",", "date_str", ",", "format", "=", "'%Y-%m-%d'", ")", ":", "rv", "=", "pd", ".", "to_datetime", "(", "date_str", ",", "format", "=", "format", ")", "if", "hasattr", "(", "rv", ",", "'to_pydatetime'", ")", ":", "rv", "=", "rv", ".", "to_pydatetime", "(", ")", "return", "rv" ]
helper function for parsing FRED date string into datetime
[ "helper", "function", "for", "parsing", "FRED", "date", "string", "into", "datetime" ]
d3ca79efccb9525f2752a0d6da90e793e87c3fd8
https://github.com/mortada/fredapi/blob/d3ca79efccb9525f2752a0d6da90e793e87c3fd8/fredapi/fred.py#L71-L78
train
mortada/fredapi
fredapi/fred.py
Fred.get_series_first_release
def get_series_first_release(self, series_id): """ Get first-release data for a Fred series id. This ignores any revision to the data series. For instance, The US GDP for Q1 2014 was first released to be 17149.6, and then later revised to 17101.3, and 17016.0. This will ignore revisions after the first release. Parameters ---------- series_id : str Fred series id such as 'GDP' Returns ------- data : Series a Series where each index is the observation date and the value is the data for the Fred series """ df = self.get_series_all_releases(series_id) first_release = df.groupby('date').head(1) data = first_release.set_index('date')['value'] return data
python
def get_series_first_release(self, series_id): """ Get first-release data for a Fred series id. This ignores any revision to the data series. For instance, The US GDP for Q1 2014 was first released to be 17149.6, and then later revised to 17101.3, and 17016.0. This will ignore revisions after the first release. Parameters ---------- series_id : str Fred series id such as 'GDP' Returns ------- data : Series a Series where each index is the observation date and the value is the data for the Fred series """ df = self.get_series_all_releases(series_id) first_release = df.groupby('date').head(1) data = first_release.set_index('date')['value'] return data
[ "def", "get_series_first_release", "(", "self", ",", "series_id", ")", ":", "df", "=", "self", ".", "get_series_all_releases", "(", "series_id", ")", "first_release", "=", "df", ".", "groupby", "(", "'date'", ")", ".", "head", "(", "1", ")", "data", "=", "first_release", ".", "set_index", "(", "'date'", ")", "[", "'value'", "]", "return", "data" ]
Get first-release data for a Fred series id. This ignores any revision to the data series. For instance, The US GDP for Q1 2014 was first released to be 17149.6, and then later revised to 17101.3, and 17016.0. This will ignore revisions after the first release. Parameters ---------- series_id : str Fred series id such as 'GDP' Returns ------- data : Series a Series where each index is the observation date and the value is the data for the Fred series
[ "Get", "first", "-", "release", "data", "for", "a", "Fred", "series", "id", ".", "This", "ignores", "any", "revision", "to", "the", "data", "series", ".", "For", "instance", "The", "US", "GDP", "for", "Q1", "2014", "was", "first", "released", "to", "be", "17149", ".", "6", "and", "then", "later", "revised", "to", "17101", ".", "3", "and", "17016", ".", "0", ".", "This", "will", "ignore", "revisions", "after", "the", "first", "release", "." ]
d3ca79efccb9525f2752a0d6da90e793e87c3fd8
https://github.com/mortada/fredapi/blob/d3ca79efccb9525f2752a0d6da90e793e87c3fd8/fredapi/fred.py#L160-L179
train
mortada/fredapi
fredapi/fred.py
Fred.get_series_as_of_date
def get_series_as_of_date(self, series_id, as_of_date): """ Get latest data for a Fred series id as known on a particular date. This includes any revision to the data series before or on as_of_date, but ignores any revision on dates after as_of_date. Parameters ---------- series_id : str Fred series id such as 'GDP' as_of_date : datetime, or datetime-like str such as '10/25/2014' Include data revisions on or before this date, and ignore revisions afterwards Returns ------- data : Series a Series where each index is the observation date and the value is the data for the Fred series """ as_of_date = pd.to_datetime(as_of_date) df = self.get_series_all_releases(series_id) data = df[df['realtime_start'] <= as_of_date] return data
python
def get_series_as_of_date(self, series_id, as_of_date): """ Get latest data for a Fred series id as known on a particular date. This includes any revision to the data series before or on as_of_date, but ignores any revision on dates after as_of_date. Parameters ---------- series_id : str Fred series id such as 'GDP' as_of_date : datetime, or datetime-like str such as '10/25/2014' Include data revisions on or before this date, and ignore revisions afterwards Returns ------- data : Series a Series where each index is the observation date and the value is the data for the Fred series """ as_of_date = pd.to_datetime(as_of_date) df = self.get_series_all_releases(series_id) data = df[df['realtime_start'] <= as_of_date] return data
[ "def", "get_series_as_of_date", "(", "self", ",", "series_id", ",", "as_of_date", ")", ":", "as_of_date", "=", "pd", ".", "to_datetime", "(", "as_of_date", ")", "df", "=", "self", ".", "get_series_all_releases", "(", "series_id", ")", "data", "=", "df", "[", "df", "[", "'realtime_start'", "]", "<=", "as_of_date", "]", "return", "data" ]
Get latest data for a Fred series id as known on a particular date. This includes any revision to the data series before or on as_of_date, but ignores any revision on dates after as_of_date. Parameters ---------- series_id : str Fred series id such as 'GDP' as_of_date : datetime, or datetime-like str such as '10/25/2014' Include data revisions on or before this date, and ignore revisions afterwards Returns ------- data : Series a Series where each index is the observation date and the value is the data for the Fred series
[ "Get", "latest", "data", "for", "a", "Fred", "series", "id", "as", "known", "on", "a", "particular", "date", ".", "This", "includes", "any", "revision", "to", "the", "data", "series", "before", "or", "on", "as_of_date", "but", "ignores", "any", "revision", "on", "dates", "after", "as_of_date", "." ]
d3ca79efccb9525f2752a0d6da90e793e87c3fd8
https://github.com/mortada/fredapi/blob/d3ca79efccb9525f2752a0d6da90e793e87c3fd8/fredapi/fred.py#L181-L201
train
mortada/fredapi
fredapi/fred.py
Fred.get_series_vintage_dates
def get_series_vintage_dates(self, series_id): """ Get a list of vintage dates for a series. Vintage dates are the dates in history when a series' data values were revised or new data values were released. Parameters ---------- series_id : str Fred series id such as 'CPIAUCSL' Returns ------- dates : list list of vintage dates """ url = "%s/series/vintagedates?series_id=%s" % (self.root_url, series_id) root = self.__fetch_data(url) if root is None: raise ValueError('No vintage date exists for series id: ' + series_id) dates = [] for child in root.getchildren(): dates.append(self._parse(child.text)) return dates
python
def get_series_vintage_dates(self, series_id): """ Get a list of vintage dates for a series. Vintage dates are the dates in history when a series' data values were revised or new data values were released. Parameters ---------- series_id : str Fred series id such as 'CPIAUCSL' Returns ------- dates : list list of vintage dates """ url = "%s/series/vintagedates?series_id=%s" % (self.root_url, series_id) root = self.__fetch_data(url) if root is None: raise ValueError('No vintage date exists for series id: ' + series_id) dates = [] for child in root.getchildren(): dates.append(self._parse(child.text)) return dates
[ "def", "get_series_vintage_dates", "(", "self", ",", "series_id", ")", ":", "url", "=", "\"%s/series/vintagedates?series_id=%s\"", "%", "(", "self", ".", "root_url", ",", "series_id", ")", "root", "=", "self", ".", "__fetch_data", "(", "url", ")", "if", "root", "is", "None", ":", "raise", "ValueError", "(", "'No vintage date exists for series id: '", "+", "series_id", ")", "dates", "=", "[", "]", "for", "child", "in", "root", ".", "getchildren", "(", ")", ":", "dates", ".", "append", "(", "self", ".", "_parse", "(", "child", ".", "text", ")", ")", "return", "dates" ]
Get a list of vintage dates for a series. Vintage dates are the dates in history when a series' data values were revised or new data values were released. Parameters ---------- series_id : str Fred series id such as 'CPIAUCSL' Returns ------- dates : list list of vintage dates
[ "Get", "a", "list", "of", "vintage", "dates", "for", "a", "series", ".", "Vintage", "dates", "are", "the", "dates", "in", "history", "when", "a", "series", "data", "values", "were", "revised", "or", "new", "data", "values", "were", "released", "." ]
d3ca79efccb9525f2752a0d6da90e793e87c3fd8
https://github.com/mortada/fredapi/blob/d3ca79efccb9525f2752a0d6da90e793e87c3fd8/fredapi/fred.py#L250-L272
train
mortada/fredapi
fredapi/fred.py
Fred.__do_series_search
def __do_series_search(self, url): """ helper function for making one HTTP request for data, and parsing the returned results into a DataFrame """ root = self.__fetch_data(url) series_ids = [] data = {} num_results_returned = 0 # number of results returned in this HTTP request num_results_total = int(root.get('count')) # total number of results, this can be larger than number of results returned for child in root.getchildren(): num_results_returned += 1 series_id = child.get('id') series_ids.append(series_id) data[series_id] = {"id": series_id} fields = ["realtime_start", "realtime_end", "title", "observation_start", "observation_end", "frequency", "frequency_short", "units", "units_short", "seasonal_adjustment", "seasonal_adjustment_short", "last_updated", "popularity", "notes"] for field in fields: data[series_id][field] = child.get(field) if num_results_returned > 0: data = pd.DataFrame(data, columns=series_ids).T # parse datetime columns for field in ["realtime_start", "realtime_end", "observation_start", "observation_end", "last_updated"]: data[field] = data[field].apply(self._parse, format=None) # set index name data.index.name = 'series id' else: data = None return data, num_results_total
python
def __do_series_search(self, url): """ helper function for making one HTTP request for data, and parsing the returned results into a DataFrame """ root = self.__fetch_data(url) series_ids = [] data = {} num_results_returned = 0 # number of results returned in this HTTP request num_results_total = int(root.get('count')) # total number of results, this can be larger than number of results returned for child in root.getchildren(): num_results_returned += 1 series_id = child.get('id') series_ids.append(series_id) data[series_id] = {"id": series_id} fields = ["realtime_start", "realtime_end", "title", "observation_start", "observation_end", "frequency", "frequency_short", "units", "units_short", "seasonal_adjustment", "seasonal_adjustment_short", "last_updated", "popularity", "notes"] for field in fields: data[series_id][field] = child.get(field) if num_results_returned > 0: data = pd.DataFrame(data, columns=series_ids).T # parse datetime columns for field in ["realtime_start", "realtime_end", "observation_start", "observation_end", "last_updated"]: data[field] = data[field].apply(self._parse, format=None) # set index name data.index.name = 'series id' else: data = None return data, num_results_total
[ "def", "__do_series_search", "(", "self", ",", "url", ")", ":", "root", "=", "self", ".", "__fetch_data", "(", "url", ")", "series_ids", "=", "[", "]", "data", "=", "{", "}", "num_results_returned", "=", "0", "# number of results returned in this HTTP request", "num_results_total", "=", "int", "(", "root", ".", "get", "(", "'count'", ")", ")", "# total number of results, this can be larger than number of results returned", "for", "child", "in", "root", ".", "getchildren", "(", ")", ":", "num_results_returned", "+=", "1", "series_id", "=", "child", ".", "get", "(", "'id'", ")", "series_ids", ".", "append", "(", "series_id", ")", "data", "[", "series_id", "]", "=", "{", "\"id\"", ":", "series_id", "}", "fields", "=", "[", "\"realtime_start\"", ",", "\"realtime_end\"", ",", "\"title\"", ",", "\"observation_start\"", ",", "\"observation_end\"", ",", "\"frequency\"", ",", "\"frequency_short\"", ",", "\"units\"", ",", "\"units_short\"", ",", "\"seasonal_adjustment\"", ",", "\"seasonal_adjustment_short\"", ",", "\"last_updated\"", ",", "\"popularity\"", ",", "\"notes\"", "]", "for", "field", "in", "fields", ":", "data", "[", "series_id", "]", "[", "field", "]", "=", "child", ".", "get", "(", "field", ")", "if", "num_results_returned", ">", "0", ":", "data", "=", "pd", ".", "DataFrame", "(", "data", ",", "columns", "=", "series_ids", ")", ".", "T", "# parse datetime columns", "for", "field", "in", "[", "\"realtime_start\"", ",", "\"realtime_end\"", ",", "\"observation_start\"", ",", "\"observation_end\"", ",", "\"last_updated\"", "]", ":", "data", "[", "field", "]", "=", "data", "[", "field", "]", ".", "apply", "(", "self", ".", "_parse", ",", "format", "=", "None", ")", "# set index name", "data", ".", "index", ".", "name", "=", "'series id'", "else", ":", "data", "=", "None", "return", "data", ",", "num_results_total" ]
helper function for making one HTTP request for data, and parsing the returned results into a DataFrame
[ "helper", "function", "for", "making", "one", "HTTP", "request", "for", "data", "and", "parsing", "the", "returned", "results", "into", "a", "DataFrame" ]
d3ca79efccb9525f2752a0d6da90e793e87c3fd8
https://github.com/mortada/fredapi/blob/d3ca79efccb9525f2752a0d6da90e793e87c3fd8/fredapi/fred.py#L274-L305
train
mortada/fredapi
fredapi/fred.py
Fred.__get_search_results
def __get_search_results(self, url, limit, order_by, sort_order, filter): """ helper function for getting search results up to specified limit on the number of results. The Fred HTTP API truncates to 1000 results per request, so this may issue multiple HTTP requests to obtain more available data. """ order_by_options = ['search_rank', 'series_id', 'title', 'units', 'frequency', 'seasonal_adjustment', 'realtime_start', 'realtime_end', 'last_updated', 'observation_start', 'observation_end', 'popularity'] if order_by is not None: if order_by in order_by_options: url = url + '&order_by=' + order_by else: raise ValueError('%s is not in the valid list of order_by options: %s' % (order_by, str(order_by_options))) if filter is not None: if len(filter) == 2: url = url + '&filter_variable=%s&filter_value=%s' % (filter[0], filter[1]) else: raise ValueError('Filter should be a 2 item tuple like (filter_variable, filter_value)') sort_order_options = ['asc', 'desc'] if sort_order is not None: if sort_order in sort_order_options: url = url + '&sort_order=' + sort_order else: raise ValueError('%s is not in the valid list of sort_order options: %s' % (sort_order, str(sort_order_options))) data, num_results_total = self.__do_series_search(url) if data is None: return data if limit == 0: max_results_needed = num_results_total else: max_results_needed = limit if max_results_needed > self.max_results_per_request: for i in range(1, max_results_needed // self.max_results_per_request + 1): offset = i * self.max_results_per_request next_data, _ = self.__do_series_search(url + '&offset=' + str(offset)) data = data.append(next_data) return data.head(max_results_needed)
python
def __get_search_results(self, url, limit, order_by, sort_order, filter): """ helper function for getting search results up to specified limit on the number of results. The Fred HTTP API truncates to 1000 results per request, so this may issue multiple HTTP requests to obtain more available data. """ order_by_options = ['search_rank', 'series_id', 'title', 'units', 'frequency', 'seasonal_adjustment', 'realtime_start', 'realtime_end', 'last_updated', 'observation_start', 'observation_end', 'popularity'] if order_by is not None: if order_by in order_by_options: url = url + '&order_by=' + order_by else: raise ValueError('%s is not in the valid list of order_by options: %s' % (order_by, str(order_by_options))) if filter is not None: if len(filter) == 2: url = url + '&filter_variable=%s&filter_value=%s' % (filter[0], filter[1]) else: raise ValueError('Filter should be a 2 item tuple like (filter_variable, filter_value)') sort_order_options = ['asc', 'desc'] if sort_order is not None: if sort_order in sort_order_options: url = url + '&sort_order=' + sort_order else: raise ValueError('%s is not in the valid list of sort_order options: %s' % (sort_order, str(sort_order_options))) data, num_results_total = self.__do_series_search(url) if data is None: return data if limit == 0: max_results_needed = num_results_total else: max_results_needed = limit if max_results_needed > self.max_results_per_request: for i in range(1, max_results_needed // self.max_results_per_request + 1): offset = i * self.max_results_per_request next_data, _ = self.__do_series_search(url + '&offset=' + str(offset)) data = data.append(next_data) return data.head(max_results_needed)
[ "def", "__get_search_results", "(", "self", ",", "url", ",", "limit", ",", "order_by", ",", "sort_order", ",", "filter", ")", ":", "order_by_options", "=", "[", "'search_rank'", ",", "'series_id'", ",", "'title'", ",", "'units'", ",", "'frequency'", ",", "'seasonal_adjustment'", ",", "'realtime_start'", ",", "'realtime_end'", ",", "'last_updated'", ",", "'observation_start'", ",", "'observation_end'", ",", "'popularity'", "]", "if", "order_by", "is", "not", "None", ":", "if", "order_by", "in", "order_by_options", ":", "url", "=", "url", "+", "'&order_by='", "+", "order_by", "else", ":", "raise", "ValueError", "(", "'%s is not in the valid list of order_by options: %s'", "%", "(", "order_by", ",", "str", "(", "order_by_options", ")", ")", ")", "if", "filter", "is", "not", "None", ":", "if", "len", "(", "filter", ")", "==", "2", ":", "url", "=", "url", "+", "'&filter_variable=%s&filter_value=%s'", "%", "(", "filter", "[", "0", "]", ",", "filter", "[", "1", "]", ")", "else", ":", "raise", "ValueError", "(", "'Filter should be a 2 item tuple like (filter_variable, filter_value)'", ")", "sort_order_options", "=", "[", "'asc'", ",", "'desc'", "]", "if", "sort_order", "is", "not", "None", ":", "if", "sort_order", "in", "sort_order_options", ":", "url", "=", "url", "+", "'&sort_order='", "+", "sort_order", "else", ":", "raise", "ValueError", "(", "'%s is not in the valid list of sort_order options: %s'", "%", "(", "sort_order", ",", "str", "(", "sort_order_options", ")", ")", ")", "data", ",", "num_results_total", "=", "self", ".", "__do_series_search", "(", "url", ")", "if", "data", "is", "None", ":", "return", "data", "if", "limit", "==", "0", ":", "max_results_needed", "=", "num_results_total", "else", ":", "max_results_needed", "=", "limit", "if", "max_results_needed", ">", "self", ".", "max_results_per_request", ":", "for", "i", "in", "range", "(", "1", ",", "max_results_needed", "//", "self", ".", "max_results_per_request", "+", "1", ")", ":", "offset", "=", "i", "*", "self", ".", "max_results_per_request", "next_data", ",", "_", "=", "self", ".", "__do_series_search", "(", "url", "+", "'&offset='", "+", "str", "(", "offset", ")", ")", "data", "=", "data", ".", "append", "(", "next_data", ")", "return", "data", ".", "head", "(", "max_results_needed", ")" ]
helper function for getting search results up to specified limit on the number of results. The Fred HTTP API truncates to 1000 results per request, so this may issue multiple HTTP requests to obtain more available data.
[ "helper", "function", "for", "getting", "search", "results", "up", "to", "specified", "limit", "on", "the", "number", "of", "results", ".", "The", "Fred", "HTTP", "API", "truncates", "to", "1000", "results", "per", "request", "so", "this", "may", "issue", "multiple", "HTTP", "requests", "to", "obtain", "more", "available", "data", "." ]
d3ca79efccb9525f2752a0d6da90e793e87c3fd8
https://github.com/mortada/fredapi/blob/d3ca79efccb9525f2752a0d6da90e793e87c3fd8/fredapi/fred.py#L307-L349
train
mortada/fredapi
fredapi/fred.py
Fred.search
def search(self, text, limit=1000, order_by=None, sort_order=None, filter=None): """ Do a fulltext search for series in the Fred dataset. Returns information about matching series in a DataFrame. Parameters ---------- text : str text to do fulltext search on, e.g., 'Real GDP' limit : int, optional limit the number of results to this value. If limit is 0, it means fetching all results without limit. order_by : str, optional order the results by a criterion. Valid options are 'search_rank', 'series_id', 'title', 'units', 'frequency', 'seasonal_adjustment', 'realtime_start', 'realtime_end', 'last_updated', 'observation_start', 'observation_end', 'popularity' sort_order : str, optional sort the results by ascending or descending order. Valid options are 'asc' or 'desc' filter : tuple, optional filters the results. Expects a tuple like (filter_variable, filter_value). Valid filter_variable values are 'frequency', 'units', and 'seasonal_adjustment' Returns ------- info : DataFrame a DataFrame containing information about the matching Fred series """ url = "%s/series/search?search_text=%s&" % (self.root_url, quote_plus(text)) info = self.__get_search_results(url, limit, order_by, sort_order, filter) return info
python
def search(self, text, limit=1000, order_by=None, sort_order=None, filter=None): """ Do a fulltext search for series in the Fred dataset. Returns information about matching series in a DataFrame. Parameters ---------- text : str text to do fulltext search on, e.g., 'Real GDP' limit : int, optional limit the number of results to this value. If limit is 0, it means fetching all results without limit. order_by : str, optional order the results by a criterion. Valid options are 'search_rank', 'series_id', 'title', 'units', 'frequency', 'seasonal_adjustment', 'realtime_start', 'realtime_end', 'last_updated', 'observation_start', 'observation_end', 'popularity' sort_order : str, optional sort the results by ascending or descending order. Valid options are 'asc' or 'desc' filter : tuple, optional filters the results. Expects a tuple like (filter_variable, filter_value). Valid filter_variable values are 'frequency', 'units', and 'seasonal_adjustment' Returns ------- info : DataFrame a DataFrame containing information about the matching Fred series """ url = "%s/series/search?search_text=%s&" % (self.root_url, quote_plus(text)) info = self.__get_search_results(url, limit, order_by, sort_order, filter) return info
[ "def", "search", "(", "self", ",", "text", ",", "limit", "=", "1000", ",", "order_by", "=", "None", ",", "sort_order", "=", "None", ",", "filter", "=", "None", ")", ":", "url", "=", "\"%s/series/search?search_text=%s&\"", "%", "(", "self", ".", "root_url", ",", "quote_plus", "(", "text", ")", ")", "info", "=", "self", ".", "__get_search_results", "(", "url", ",", "limit", ",", "order_by", ",", "sort_order", ",", "filter", ")", "return", "info" ]
Do a fulltext search for series in the Fred dataset. Returns information about matching series in a DataFrame. Parameters ---------- text : str text to do fulltext search on, e.g., 'Real GDP' limit : int, optional limit the number of results to this value. If limit is 0, it means fetching all results without limit. order_by : str, optional order the results by a criterion. Valid options are 'search_rank', 'series_id', 'title', 'units', 'frequency', 'seasonal_adjustment', 'realtime_start', 'realtime_end', 'last_updated', 'observation_start', 'observation_end', 'popularity' sort_order : str, optional sort the results by ascending or descending order. Valid options are 'asc' or 'desc' filter : tuple, optional filters the results. Expects a tuple like (filter_variable, filter_value). Valid filter_variable values are 'frequency', 'units', and 'seasonal_adjustment' Returns ------- info : DataFrame a DataFrame containing information about the matching Fred series
[ "Do", "a", "fulltext", "search", "for", "series", "in", "the", "Fred", "dataset", ".", "Returns", "information", "about", "matching", "series", "in", "a", "DataFrame", "." ]
d3ca79efccb9525f2752a0d6da90e793e87c3fd8
https://github.com/mortada/fredapi/blob/d3ca79efccb9525f2752a0d6da90e793e87c3fd8/fredapi/fred.py#L351-L379
train
mortada/fredapi
fredapi/fred.py
Fred.search_by_release
def search_by_release(self, release_id, limit=0, order_by=None, sort_order=None, filter=None): """ Search for series that belongs to a release id. Returns information about matching series in a DataFrame. Parameters ---------- release_id : int release id, e.g., 151 limit : int, optional limit the number of results to this value. If limit is 0, it means fetching all results without limit. order_by : str, optional order the results by a criterion. Valid options are 'search_rank', 'series_id', 'title', 'units', 'frequency', 'seasonal_adjustment', 'realtime_start', 'realtime_end', 'last_updated', 'observation_start', 'observation_end', 'popularity' sort_order : str, optional sort the results by ascending or descending order. Valid options are 'asc' or 'desc' filter : tuple, optional filters the results. Expects a tuple like (filter_variable, filter_value). Valid filter_variable values are 'frequency', 'units', and 'seasonal_adjustment' Returns ------- info : DataFrame a DataFrame containing information about the matching Fred series """ url = "%s/release/series?release_id=%d" % (self.root_url, release_id) info = self.__get_search_results(url, limit, order_by, sort_order, filter) if info is None: raise ValueError('No series exists for release id: ' + str(release_id)) return info
python
def search_by_release(self, release_id, limit=0, order_by=None, sort_order=None, filter=None): """ Search for series that belongs to a release id. Returns information about matching series in a DataFrame. Parameters ---------- release_id : int release id, e.g., 151 limit : int, optional limit the number of results to this value. If limit is 0, it means fetching all results without limit. order_by : str, optional order the results by a criterion. Valid options are 'search_rank', 'series_id', 'title', 'units', 'frequency', 'seasonal_adjustment', 'realtime_start', 'realtime_end', 'last_updated', 'observation_start', 'observation_end', 'popularity' sort_order : str, optional sort the results by ascending or descending order. Valid options are 'asc' or 'desc' filter : tuple, optional filters the results. Expects a tuple like (filter_variable, filter_value). Valid filter_variable values are 'frequency', 'units', and 'seasonal_adjustment' Returns ------- info : DataFrame a DataFrame containing information about the matching Fred series """ url = "%s/release/series?release_id=%d" % (self.root_url, release_id) info = self.__get_search_results(url, limit, order_by, sort_order, filter) if info is None: raise ValueError('No series exists for release id: ' + str(release_id)) return info
[ "def", "search_by_release", "(", "self", ",", "release_id", ",", "limit", "=", "0", ",", "order_by", "=", "None", ",", "sort_order", "=", "None", ",", "filter", "=", "None", ")", ":", "url", "=", "\"%s/release/series?release_id=%d\"", "%", "(", "self", ".", "root_url", ",", "release_id", ")", "info", "=", "self", ".", "__get_search_results", "(", "url", ",", "limit", ",", "order_by", ",", "sort_order", ",", "filter", ")", "if", "info", "is", "None", ":", "raise", "ValueError", "(", "'No series exists for release id: '", "+", "str", "(", "release_id", ")", ")", "return", "info" ]
Search for series that belongs to a release id. Returns information about matching series in a DataFrame. Parameters ---------- release_id : int release id, e.g., 151 limit : int, optional limit the number of results to this value. If limit is 0, it means fetching all results without limit. order_by : str, optional order the results by a criterion. Valid options are 'search_rank', 'series_id', 'title', 'units', 'frequency', 'seasonal_adjustment', 'realtime_start', 'realtime_end', 'last_updated', 'observation_start', 'observation_end', 'popularity' sort_order : str, optional sort the results by ascending or descending order. Valid options are 'asc' or 'desc' filter : tuple, optional filters the results. Expects a tuple like (filter_variable, filter_value). Valid filter_variable values are 'frequency', 'units', and 'seasonal_adjustment' Returns ------- info : DataFrame a DataFrame containing information about the matching Fred series
[ "Search", "for", "series", "that", "belongs", "to", "a", "release", "id", ".", "Returns", "information", "about", "matching", "series", "in", "a", "DataFrame", "." ]
d3ca79efccb9525f2752a0d6da90e793e87c3fd8
https://github.com/mortada/fredapi/blob/d3ca79efccb9525f2752a0d6da90e793e87c3fd8/fredapi/fred.py#L381-L410
train
mortada/fredapi
fredapi/fred.py
Fred.search_by_category
def search_by_category(self, category_id, limit=0, order_by=None, sort_order=None, filter=None): """ Search for series that belongs to a category id. Returns information about matching series in a DataFrame. Parameters ---------- category_id : int category id, e.g., 32145 limit : int, optional limit the number of results to this value. If limit is 0, it means fetching all results without limit. order_by : str, optional order the results by a criterion. Valid options are 'search_rank', 'series_id', 'title', 'units', 'frequency', 'seasonal_adjustment', 'realtime_start', 'realtime_end', 'last_updated', 'observation_start', 'observation_end', 'popularity' sort_order : str, optional sort the results by ascending or descending order. Valid options are 'asc' or 'desc' filter : tuple, optional filters the results. Expects a tuple like (filter_variable, filter_value). Valid filter_variable values are 'frequency', 'units', and 'seasonal_adjustment' Returns ------- info : DataFrame a DataFrame containing information about the matching Fred series """ url = "%s/category/series?category_id=%d&" % (self.root_url, category_id) info = self.__get_search_results(url, limit, order_by, sort_order, filter) if info is None: raise ValueError('No series exists for category id: ' + str(category_id)) return info
python
def search_by_category(self, category_id, limit=0, order_by=None, sort_order=None, filter=None): """ Search for series that belongs to a category id. Returns information about matching series in a DataFrame. Parameters ---------- category_id : int category id, e.g., 32145 limit : int, optional limit the number of results to this value. If limit is 0, it means fetching all results without limit. order_by : str, optional order the results by a criterion. Valid options are 'search_rank', 'series_id', 'title', 'units', 'frequency', 'seasonal_adjustment', 'realtime_start', 'realtime_end', 'last_updated', 'observation_start', 'observation_end', 'popularity' sort_order : str, optional sort the results by ascending or descending order. Valid options are 'asc' or 'desc' filter : tuple, optional filters the results. Expects a tuple like (filter_variable, filter_value). Valid filter_variable values are 'frequency', 'units', and 'seasonal_adjustment' Returns ------- info : DataFrame a DataFrame containing information about the matching Fred series """ url = "%s/category/series?category_id=%d&" % (self.root_url, category_id) info = self.__get_search_results(url, limit, order_by, sort_order, filter) if info is None: raise ValueError('No series exists for category id: ' + str(category_id)) return info
[ "def", "search_by_category", "(", "self", ",", "category_id", ",", "limit", "=", "0", ",", "order_by", "=", "None", ",", "sort_order", "=", "None", ",", "filter", "=", "None", ")", ":", "url", "=", "\"%s/category/series?category_id=%d&\"", "%", "(", "self", ".", "root_url", ",", "category_id", ")", "info", "=", "self", ".", "__get_search_results", "(", "url", ",", "limit", ",", "order_by", ",", "sort_order", ",", "filter", ")", "if", "info", "is", "None", ":", "raise", "ValueError", "(", "'No series exists for category id: '", "+", "str", "(", "category_id", ")", ")", "return", "info" ]
Search for series that belongs to a category id. Returns information about matching series in a DataFrame. Parameters ---------- category_id : int category id, e.g., 32145 limit : int, optional limit the number of results to this value. If limit is 0, it means fetching all results without limit. order_by : str, optional order the results by a criterion. Valid options are 'search_rank', 'series_id', 'title', 'units', 'frequency', 'seasonal_adjustment', 'realtime_start', 'realtime_end', 'last_updated', 'observation_start', 'observation_end', 'popularity' sort_order : str, optional sort the results by ascending or descending order. Valid options are 'asc' or 'desc' filter : tuple, optional filters the results. Expects a tuple like (filter_variable, filter_value). Valid filter_variable values are 'frequency', 'units', and 'seasonal_adjustment' Returns ------- info : DataFrame a DataFrame containing information about the matching Fred series
[ "Search", "for", "series", "that", "belongs", "to", "a", "category", "id", ".", "Returns", "information", "about", "matching", "series", "in", "a", "DataFrame", "." ]
d3ca79efccb9525f2752a0d6da90e793e87c3fd8
https://github.com/mortada/fredapi/blob/d3ca79efccb9525f2752a0d6da90e793e87c3fd8/fredapi/fred.py#L412-L442
train
mathiasertl/django-ca
ca/django_ca/managers.py
CertificateManager.init
def init(self, ca, csr, **kwargs): """Create a signed certificate from a CSR and store it to the database. All parameters are passed on to :py:func:`Certificate.objects.sign_cert() <django_ca.managers.CertificateManager.sign_cert>`. """ c = self.model(ca=ca) c.x509, csr = self.sign_cert(ca, csr, **kwargs) c.csr = csr.public_bytes(Encoding.PEM).decode('utf-8') c.save() post_issue_cert.send(sender=self.model, cert=c) return c
python
def init(self, ca, csr, **kwargs): """Create a signed certificate from a CSR and store it to the database. All parameters are passed on to :py:func:`Certificate.objects.sign_cert() <django_ca.managers.CertificateManager.sign_cert>`. """ c = self.model(ca=ca) c.x509, csr = self.sign_cert(ca, csr, **kwargs) c.csr = csr.public_bytes(Encoding.PEM).decode('utf-8') c.save() post_issue_cert.send(sender=self.model, cert=c) return c
[ "def", "init", "(", "self", ",", "ca", ",", "csr", ",", "*", "*", "kwargs", ")", ":", "c", "=", "self", ".", "model", "(", "ca", "=", "ca", ")", "c", ".", "x509", ",", "csr", "=", "self", ".", "sign_cert", "(", "ca", ",", "csr", ",", "*", "*", "kwargs", ")", "c", ".", "csr", "=", "csr", ".", "public_bytes", "(", "Encoding", ".", "PEM", ")", ".", "decode", "(", "'utf-8'", ")", "c", ".", "save", "(", ")", "post_issue_cert", ".", "send", "(", "sender", "=", "self", ".", "model", ",", "cert", "=", "c", ")", "return", "c" ]
Create a signed certificate from a CSR and store it to the database. All parameters are passed on to :py:func:`Certificate.objects.sign_cert() <django_ca.managers.CertificateManager.sign_cert>`.
[ "Create", "a", "signed", "certificate", "from", "a", "CSR", "and", "store", "it", "to", "the", "database", "." ]
976d7ea05276320f20daed2a6d59c8f5660fe976
https://github.com/mathiasertl/django-ca/blob/976d7ea05276320f20daed2a6d59c8f5660fe976/ca/django_ca/managers.py#L442-L455
train
mathiasertl/django-ca
ca/django_ca/admin.py
CertificateMixin.download_bundle_view
def download_bundle_view(self, request, pk): """A view that allows the user to download a certificate bundle in PEM format.""" return self._download_response(request, pk, bundle=True)
python
def download_bundle_view(self, request, pk): """A view that allows the user to download a certificate bundle in PEM format.""" return self._download_response(request, pk, bundle=True)
[ "def", "download_bundle_view", "(", "self", ",", "request", ",", "pk", ")", ":", "return", "self", ".", "_download_response", "(", "request", ",", "pk", ",", "bundle", "=", "True", ")" ]
A view that allows the user to download a certificate bundle in PEM format.
[ "A", "view", "that", "allows", "the", "user", "to", "download", "a", "certificate", "bundle", "in", "PEM", "format", "." ]
976d7ea05276320f20daed2a6d59c8f5660fe976
https://github.com/mathiasertl/django-ca/blob/976d7ea05276320f20daed2a6d59c8f5660fe976/ca/django_ca/admin.py#L118-L121
train
mathiasertl/django-ca
ca/django_ca/admin.py
CertificateMixin.get_actions
def get_actions(self, request): """Disable the "delete selected" admin action. Otherwise the action is present even though has_delete_permission is False, it just doesn't work. """ actions = super(CertificateMixin, self).get_actions(request) actions.pop('delete_selected', '') return actions
python
def get_actions(self, request): """Disable the "delete selected" admin action. Otherwise the action is present even though has_delete_permission is False, it just doesn't work. """ actions = super(CertificateMixin, self).get_actions(request) actions.pop('delete_selected', '') return actions
[ "def", "get_actions", "(", "self", ",", "request", ")", ":", "actions", "=", "super", "(", "CertificateMixin", ",", "self", ")", ".", "get_actions", "(", "request", ")", "actions", ".", "pop", "(", "'delete_selected'", ",", "''", ")", "return", "actions" ]
Disable the "delete selected" admin action. Otherwise the action is present even though has_delete_permission is False, it just doesn't work.
[ "Disable", "the", "delete", "selected", "admin", "action", "." ]
976d7ea05276320f20daed2a6d59c8f5660fe976
https://github.com/mathiasertl/django-ca/blob/976d7ea05276320f20daed2a6d59c8f5660fe976/ca/django_ca/admin.py#L126-L134
train
mathiasertl/django-ca
ca/django_ca/profiles.py
get_cert_profile_kwargs
def get_cert_profile_kwargs(name=None): """Get kwargs suitable for get_cert X509 keyword arguments from the given profile.""" if name is None: name = ca_settings.CA_DEFAULT_PROFILE profile = deepcopy(ca_settings.CA_PROFILES[name]) kwargs = { 'cn_in_san': profile['cn_in_san'], 'subject': get_default_subject(name=name), } key_usage = profile.get('keyUsage') if key_usage and key_usage.get('value'): kwargs['key_usage'] = KeyUsage(key_usage) ext_key_usage = profile.get('extendedKeyUsage') if ext_key_usage and ext_key_usage.get('value'): kwargs['extended_key_usage'] = ExtendedKeyUsage(ext_key_usage) tls_feature = profile.get('TLSFeature') if tls_feature and tls_feature.get('value'): kwargs['tls_feature'] = TLSFeature(tls_feature) if profile.get('ocsp_no_check'): kwargs['ocsp_no_check'] = profile['ocsp_no_check'] return kwargs
python
def get_cert_profile_kwargs(name=None): """Get kwargs suitable for get_cert X509 keyword arguments from the given profile.""" if name is None: name = ca_settings.CA_DEFAULT_PROFILE profile = deepcopy(ca_settings.CA_PROFILES[name]) kwargs = { 'cn_in_san': profile['cn_in_san'], 'subject': get_default_subject(name=name), } key_usage = profile.get('keyUsage') if key_usage and key_usage.get('value'): kwargs['key_usage'] = KeyUsage(key_usage) ext_key_usage = profile.get('extendedKeyUsage') if ext_key_usage and ext_key_usage.get('value'): kwargs['extended_key_usage'] = ExtendedKeyUsage(ext_key_usage) tls_feature = profile.get('TLSFeature') if tls_feature and tls_feature.get('value'): kwargs['tls_feature'] = TLSFeature(tls_feature) if profile.get('ocsp_no_check'): kwargs['ocsp_no_check'] = profile['ocsp_no_check'] return kwargs
[ "def", "get_cert_profile_kwargs", "(", "name", "=", "None", ")", ":", "if", "name", "is", "None", ":", "name", "=", "ca_settings", ".", "CA_DEFAULT_PROFILE", "profile", "=", "deepcopy", "(", "ca_settings", ".", "CA_PROFILES", "[", "name", "]", ")", "kwargs", "=", "{", "'cn_in_san'", ":", "profile", "[", "'cn_in_san'", "]", ",", "'subject'", ":", "get_default_subject", "(", "name", "=", "name", ")", ",", "}", "key_usage", "=", "profile", ".", "get", "(", "'keyUsage'", ")", "if", "key_usage", "and", "key_usage", ".", "get", "(", "'value'", ")", ":", "kwargs", "[", "'key_usage'", "]", "=", "KeyUsage", "(", "key_usage", ")", "ext_key_usage", "=", "profile", ".", "get", "(", "'extendedKeyUsage'", ")", "if", "ext_key_usage", "and", "ext_key_usage", ".", "get", "(", "'value'", ")", ":", "kwargs", "[", "'extended_key_usage'", "]", "=", "ExtendedKeyUsage", "(", "ext_key_usage", ")", "tls_feature", "=", "profile", ".", "get", "(", "'TLSFeature'", ")", "if", "tls_feature", "and", "tls_feature", ".", "get", "(", "'value'", ")", ":", "kwargs", "[", "'tls_feature'", "]", "=", "TLSFeature", "(", "tls_feature", ")", "if", "profile", ".", "get", "(", "'ocsp_no_check'", ")", ":", "kwargs", "[", "'ocsp_no_check'", "]", "=", "profile", "[", "'ocsp_no_check'", "]", "return", "kwargs" ]
Get kwargs suitable for get_cert X509 keyword arguments from the given profile.
[ "Get", "kwargs", "suitable", "for", "get_cert", "X509", "keyword", "arguments", "from", "the", "given", "profile", "." ]
976d7ea05276320f20daed2a6d59c8f5660fe976
https://github.com/mathiasertl/django-ca/blob/976d7ea05276320f20daed2a6d59c8f5660fe976/ca/django_ca/profiles.py#L25-L49
train
mathiasertl/django-ca
ca/django_ca/utils.py
format_name
def format_name(subject): """Convert a subject into the canonical form for distinguished names. This function does not take care of sorting the subject in any meaningful order. Examples:: >>> format_name([('CN', 'example.com'), ]) '/CN=example.com' >>> format_name([('CN', 'example.com'), ('O', "My Organization"), ]) '/CN=example.com/O=My Organization' """ if isinstance(subject, x509.Name): subject = [(OID_NAME_MAPPINGS[s.oid], s.value) for s in subject] return '/%s' % ('/'.join(['%s=%s' % (force_text(k), force_text(v)) for k, v in subject]))
python
def format_name(subject): """Convert a subject into the canonical form for distinguished names. This function does not take care of sorting the subject in any meaningful order. Examples:: >>> format_name([('CN', 'example.com'), ]) '/CN=example.com' >>> format_name([('CN', 'example.com'), ('O', "My Organization"), ]) '/CN=example.com/O=My Organization' """ if isinstance(subject, x509.Name): subject = [(OID_NAME_MAPPINGS[s.oid], s.value) for s in subject] return '/%s' % ('/'.join(['%s=%s' % (force_text(k), force_text(v)) for k, v in subject]))
[ "def", "format_name", "(", "subject", ")", ":", "if", "isinstance", "(", "subject", ",", "x509", ".", "Name", ")", ":", "subject", "=", "[", "(", "OID_NAME_MAPPINGS", "[", "s", ".", "oid", "]", ",", "s", ".", "value", ")", "for", "s", "in", "subject", "]", "return", "'/%s'", "%", "(", "'/'", ".", "join", "(", "[", "'%s=%s'", "%", "(", "force_text", "(", "k", ")", ",", "force_text", "(", "v", ")", ")", "for", "k", ",", "v", "in", "subject", "]", ")", ")" ]
Convert a subject into the canonical form for distinguished names. This function does not take care of sorting the subject in any meaningful order. Examples:: >>> format_name([('CN', 'example.com'), ]) '/CN=example.com' >>> format_name([('CN', 'example.com'), ('O', "My Organization"), ]) '/CN=example.com/O=My Organization'
[ "Convert", "a", "subject", "into", "the", "canonical", "form", "for", "distinguished", "names", "." ]
976d7ea05276320f20daed2a6d59c8f5660fe976
https://github.com/mathiasertl/django-ca/blob/976d7ea05276320f20daed2a6d59c8f5660fe976/ca/django_ca/utils.py#L125-L140
train
mathiasertl/django-ca
ca/django_ca/utils.py
format_general_name
def format_general_name(name): """Format a single general name. >>> import ipaddress >>> format_general_name(x509.DNSName('example.com')) 'DNS:example.com' >>> format_general_name(x509.IPAddress(ipaddress.IPv4Address('127.0.0.1'))) 'IP:127.0.0.1' """ if isinstance(name, x509.DirectoryName): value = format_name(name.value) else: value = name.value return '%s:%s' % (SAN_NAME_MAPPINGS[type(name)], value)
python
def format_general_name(name): """Format a single general name. >>> import ipaddress >>> format_general_name(x509.DNSName('example.com')) 'DNS:example.com' >>> format_general_name(x509.IPAddress(ipaddress.IPv4Address('127.0.0.1'))) 'IP:127.0.0.1' """ if isinstance(name, x509.DirectoryName): value = format_name(name.value) else: value = name.value return '%s:%s' % (SAN_NAME_MAPPINGS[type(name)], value)
[ "def", "format_general_name", "(", "name", ")", ":", "if", "isinstance", "(", "name", ",", "x509", ".", "DirectoryName", ")", ":", "value", "=", "format_name", "(", "name", ".", "value", ")", "else", ":", "value", "=", "name", ".", "value", "return", "'%s:%s'", "%", "(", "SAN_NAME_MAPPINGS", "[", "type", "(", "name", ")", "]", ",", "value", ")" ]
Format a single general name. >>> import ipaddress >>> format_general_name(x509.DNSName('example.com')) 'DNS:example.com' >>> format_general_name(x509.IPAddress(ipaddress.IPv4Address('127.0.0.1'))) 'IP:127.0.0.1'
[ "Format", "a", "single", "general", "name", "." ]
976d7ea05276320f20daed2a6d59c8f5660fe976
https://github.com/mathiasertl/django-ca/blob/976d7ea05276320f20daed2a6d59c8f5660fe976/ca/django_ca/utils.py#L143-L157
train
mathiasertl/django-ca
ca/django_ca/utils.py
add_colons
def add_colons(s): """Add colons after every second digit. This function is used in functions to prettify serials. >>> add_colons('teststring') 'te:st:st:ri:ng' """ return ':'.join([s[i:i + 2] for i in range(0, len(s), 2)])
python
def add_colons(s): """Add colons after every second digit. This function is used in functions to prettify serials. >>> add_colons('teststring') 'te:st:st:ri:ng' """ return ':'.join([s[i:i + 2] for i in range(0, len(s), 2)])
[ "def", "add_colons", "(", "s", ")", ":", "return", "':'", ".", "join", "(", "[", "s", "[", "i", ":", "i", "+", "2", "]", "for", "i", "in", "range", "(", "0", ",", "len", "(", "s", ")", ",", "2", ")", "]", ")" ]
Add colons after every second digit. This function is used in functions to prettify serials. >>> add_colons('teststring') 'te:st:st:ri:ng'
[ "Add", "colons", "after", "every", "second", "digit", "." ]
976d7ea05276320f20daed2a6d59c8f5660fe976
https://github.com/mathiasertl/django-ca/blob/976d7ea05276320f20daed2a6d59c8f5660fe976/ca/django_ca/utils.py#L200-L208
train
mathiasertl/django-ca
ca/django_ca/utils.py
int_to_hex
def int_to_hex(i): """Create a hex-representation of the given serial. >>> int_to_hex(12345678) 'BC:61:4E' """ s = hex(i)[2:].upper() if six.PY2 is True and isinstance(i, long): # pragma: only py2 # NOQA # Strip the "L" suffix, since hex(1L) -> 0x1L. # NOTE: Do not convert to int earlier. int(<very-large-long>) is still long s = s[:-1] return add_colons(s)
python
def int_to_hex(i): """Create a hex-representation of the given serial. >>> int_to_hex(12345678) 'BC:61:4E' """ s = hex(i)[2:].upper() if six.PY2 is True and isinstance(i, long): # pragma: only py2 # NOQA # Strip the "L" suffix, since hex(1L) -> 0x1L. # NOTE: Do not convert to int earlier. int(<very-large-long>) is still long s = s[:-1] return add_colons(s)
[ "def", "int_to_hex", "(", "i", ")", ":", "s", "=", "hex", "(", "i", ")", "[", "2", ":", "]", ".", "upper", "(", ")", "if", "six", ".", "PY2", "is", "True", "and", "isinstance", "(", "i", ",", "long", ")", ":", "# pragma: only py2 # NOQA", "# Strip the \"L\" suffix, since hex(1L) -> 0x1L.", "# NOTE: Do not convert to int earlier. int(<very-large-long>) is still long", "s", "=", "s", "[", ":", "-", "1", "]", "return", "add_colons", "(", "s", ")" ]
Create a hex-representation of the given serial. >>> int_to_hex(12345678) 'BC:61:4E'
[ "Create", "a", "hex", "-", "representation", "of", "the", "given", "serial", "." ]
976d7ea05276320f20daed2a6d59c8f5660fe976
https://github.com/mathiasertl/django-ca/blob/976d7ea05276320f20daed2a6d59c8f5660fe976/ca/django_ca/utils.py#L211-L222
train
mathiasertl/django-ca
ca/django_ca/utils.py
parse_name
def parse_name(name): """Parses a subject string as used in OpenSSLs command line utilities. The ``name`` is expected to be close to the subject format commonly used by OpenSSL, for example ``/C=AT/L=Vienna/CN=example.com/[email protected]``. The function does its best to be lenient on deviations from the format, object identifiers are case-insensitive (e.g. ``cn`` is the same as ``CN``, whitespace at the start and end is stripped and the subject does not have to start with a slash (``/``). >>> parse_name('/CN=example.com') [('CN', 'example.com')] >>> parse_name('c=AT/l= Vienna/o="ex org"/CN=example.com') [('C', 'AT'), ('L', 'Vienna'), ('O', 'ex org'), ('CN', 'example.com')] Dictionary keys are normalized to the values of :py:const:`OID_NAME_MAPPINGS` and keys will be sorted based on x509 name specifications regardless of the given order: >>> parse_name('L="Vienna / District"/[email protected]') [('L', 'Vienna / District'), ('emailAddress', '[email protected]')] >>> parse_name('/C=AT/CN=example.com') == parse_name('/CN=example.com/C=AT') True Due to the magic of :py:const:`NAME_RE`, the function even supports quoting strings and including slashes, so strings like ``/OU="Org / Org Unit"/CN=example.com`` will work as expected. >>> parse_name('L="Vienna / District"/CN=example.com') [('L', 'Vienna / District'), ('CN', 'example.com')] But note that it's still easy to trick this function, if you really want to. The following example is *not* a valid subject, the location is just bogus, and whatever you were expecting as output, it's certainly different: >>> parse_name('L="Vienna " District"/CN=example.com') [('L', 'Vienna'), ('CN', 'example.com')] Examples of where this string is used are: .. code-block:: console # openssl req -new -key priv.key -out csr -utf8 -batch -sha256 -subj '/C=AT/CN=example.com' # openssl x509 -in cert.pem -noout -subject -nameopt compat /C=AT/L=Vienna/CN=example.com """ name = name.strip() if not name: # empty subjects are ok return [] try: items = [(NAME_CASE_MAPPINGS[t[0].upper()], force_text(t[2])) for t in NAME_RE.findall(name)] except KeyError as e: raise ValueError('Unknown x509 name field: %s' % e.args[0]) # Check that no OIDs not in MULTIPLE_OIDS occur more then once for key, oid in NAME_OID_MAPPINGS.items(): if sum(1 for t in items if t[0] == key) > 1 and oid not in MULTIPLE_OIDS: raise ValueError('Subject contains multiple "%s" fields' % key) return sort_name(items)
python
def parse_name(name): """Parses a subject string as used in OpenSSLs command line utilities. The ``name`` is expected to be close to the subject format commonly used by OpenSSL, for example ``/C=AT/L=Vienna/CN=example.com/[email protected]``. The function does its best to be lenient on deviations from the format, object identifiers are case-insensitive (e.g. ``cn`` is the same as ``CN``, whitespace at the start and end is stripped and the subject does not have to start with a slash (``/``). >>> parse_name('/CN=example.com') [('CN', 'example.com')] >>> parse_name('c=AT/l= Vienna/o="ex org"/CN=example.com') [('C', 'AT'), ('L', 'Vienna'), ('O', 'ex org'), ('CN', 'example.com')] Dictionary keys are normalized to the values of :py:const:`OID_NAME_MAPPINGS` and keys will be sorted based on x509 name specifications regardless of the given order: >>> parse_name('L="Vienna / District"/[email protected]') [('L', 'Vienna / District'), ('emailAddress', '[email protected]')] >>> parse_name('/C=AT/CN=example.com') == parse_name('/CN=example.com/C=AT') True Due to the magic of :py:const:`NAME_RE`, the function even supports quoting strings and including slashes, so strings like ``/OU="Org / Org Unit"/CN=example.com`` will work as expected. >>> parse_name('L="Vienna / District"/CN=example.com') [('L', 'Vienna / District'), ('CN', 'example.com')] But note that it's still easy to trick this function, if you really want to. The following example is *not* a valid subject, the location is just bogus, and whatever you were expecting as output, it's certainly different: >>> parse_name('L="Vienna " District"/CN=example.com') [('L', 'Vienna'), ('CN', 'example.com')] Examples of where this string is used are: .. code-block:: console # openssl req -new -key priv.key -out csr -utf8 -batch -sha256 -subj '/C=AT/CN=example.com' # openssl x509 -in cert.pem -noout -subject -nameopt compat /C=AT/L=Vienna/CN=example.com """ name = name.strip() if not name: # empty subjects are ok return [] try: items = [(NAME_CASE_MAPPINGS[t[0].upper()], force_text(t[2])) for t in NAME_RE.findall(name)] except KeyError as e: raise ValueError('Unknown x509 name field: %s' % e.args[0]) # Check that no OIDs not in MULTIPLE_OIDS occur more then once for key, oid in NAME_OID_MAPPINGS.items(): if sum(1 for t in items if t[0] == key) > 1 and oid not in MULTIPLE_OIDS: raise ValueError('Subject contains multiple "%s" fields' % key) return sort_name(items)
[ "def", "parse_name", "(", "name", ")", ":", "name", "=", "name", ".", "strip", "(", ")", "if", "not", "name", ":", "# empty subjects are ok", "return", "[", "]", "try", ":", "items", "=", "[", "(", "NAME_CASE_MAPPINGS", "[", "t", "[", "0", "]", ".", "upper", "(", ")", "]", ",", "force_text", "(", "t", "[", "2", "]", ")", ")", "for", "t", "in", "NAME_RE", ".", "findall", "(", "name", ")", "]", "except", "KeyError", "as", "e", ":", "raise", "ValueError", "(", "'Unknown x509 name field: %s'", "%", "e", ".", "args", "[", "0", "]", ")", "# Check that no OIDs not in MULTIPLE_OIDS occur more then once", "for", "key", ",", "oid", "in", "NAME_OID_MAPPINGS", ".", "items", "(", ")", ":", "if", "sum", "(", "1", "for", "t", "in", "items", "if", "t", "[", "0", "]", "==", "key", ")", ">", "1", "and", "oid", "not", "in", "MULTIPLE_OIDS", ":", "raise", "ValueError", "(", "'Subject contains multiple \"%s\" fields'", "%", "key", ")", "return", "sort_name", "(", "items", ")" ]
Parses a subject string as used in OpenSSLs command line utilities. The ``name`` is expected to be close to the subject format commonly used by OpenSSL, for example ``/C=AT/L=Vienna/CN=example.com/[email protected]``. The function does its best to be lenient on deviations from the format, object identifiers are case-insensitive (e.g. ``cn`` is the same as ``CN``, whitespace at the start and end is stripped and the subject does not have to start with a slash (``/``). >>> parse_name('/CN=example.com') [('CN', 'example.com')] >>> parse_name('c=AT/l= Vienna/o="ex org"/CN=example.com') [('C', 'AT'), ('L', 'Vienna'), ('O', 'ex org'), ('CN', 'example.com')] Dictionary keys are normalized to the values of :py:const:`OID_NAME_MAPPINGS` and keys will be sorted based on x509 name specifications regardless of the given order: >>> parse_name('L="Vienna / District"/[email protected]') [('L', 'Vienna / District'), ('emailAddress', '[email protected]')] >>> parse_name('/C=AT/CN=example.com') == parse_name('/CN=example.com/C=AT') True Due to the magic of :py:const:`NAME_RE`, the function even supports quoting strings and including slashes, so strings like ``/OU="Org / Org Unit"/CN=example.com`` will work as expected. >>> parse_name('L="Vienna / District"/CN=example.com') [('L', 'Vienna / District'), ('CN', 'example.com')] But note that it's still easy to trick this function, if you really want to. The following example is *not* a valid subject, the location is just bogus, and whatever you were expecting as output, it's certainly different: >>> parse_name('L="Vienna " District"/CN=example.com') [('L', 'Vienna'), ('CN', 'example.com')] Examples of where this string is used are: .. code-block:: console # openssl req -new -key priv.key -out csr -utf8 -batch -sha256 -subj '/C=AT/CN=example.com' # openssl x509 -in cert.pem -noout -subject -nameopt compat /C=AT/L=Vienna/CN=example.com
[ "Parses", "a", "subject", "string", "as", "used", "in", "OpenSSLs", "command", "line", "utilities", "." ]
976d7ea05276320f20daed2a6d59c8f5660fe976
https://github.com/mathiasertl/django-ca/blob/976d7ea05276320f20daed2a6d59c8f5660fe976/ca/django_ca/utils.py#L245-L301
train
mathiasertl/django-ca
ca/django_ca/utils.py
parse_general_name
def parse_general_name(name): """Parse a general name from user input. This function will do its best to detect the intended type of any value passed to it: >>> parse_general_name('example.com') <DNSName(value='example.com')> >>> parse_general_name('*.example.com') <DNSName(value='*.example.com')> >>> parse_general_name('.example.com') # Syntax used e.g. for NameConstraints: All levels of subdomains <DNSName(value='.example.com')> >>> parse_general_name('[email protected]') <RFC822Name(value='[email protected]')> >>> parse_general_name('https://example.com') <UniformResourceIdentifier(value='https://example.com')> >>> parse_general_name('1.2.3.4') <IPAddress(value=1.2.3.4)> >>> parse_general_name('fd00::1') <IPAddress(value=fd00::1)> >>> parse_general_name('/CN=example.com') <DirectoryName(value=<Name(CN=example.com)>)> The default fallback is to assume a :py:class:`~cg:cryptography.x509.DNSName`. If this doesn't work, an exception will be raised: >>> parse_general_name('foo..bar`*123') # doctest: +ELLIPSIS Traceback (most recent call last): ... idna.core.IDNAError: ... If you want to override detection, you can prefix the name to match :py:const:`GENERAL_NAME_RE`: >>> parse_general_name('email:[email protected]') <RFC822Name(value='[email protected]')> >>> parse_general_name('URI:https://example.com') <UniformResourceIdentifier(value='https://example.com')> >>> parse_general_name('dirname:/CN=example.com') <DirectoryName(value=<Name(CN=example.com)>)> Some more exotic values can only be generated by using this prefix: >>> parse_general_name('rid:2.5.4.3') <RegisteredID(value=<ObjectIdentifier(oid=2.5.4.3, name=commonName)>)> >>> parse_general_name('otherName:2.5.4.3;UTF8:example.com') <OtherName(type_id=<ObjectIdentifier(oid=2.5.4.3, name=commonName)>, value=b'example.com')> If you give a prefixed value, this function is less forgiving of any typos and does not catch any exceptions: >>> parse_general_name('email:foo@bar com') Traceback (most recent call last): ... ValueError: Invalid domain: bar com """ name = force_text(name) typ = None match = GENERAL_NAME_RE.match(name) if match is not None: typ, name = match.groups() typ = typ.lower() if typ is None: if re.match('[a-z0-9]{2,}://', name): # Looks like a URI try: return x509.UniformResourceIdentifier(name) except Exception: # pragma: no cover - this really accepts anything pass if '@' in name: # Looks like an Email address try: return x509.RFC822Name(validate_email(name)) except Exception: pass if name.strip().startswith('/'): # maybe it's a dirname? return x509.DirectoryName(x509_name(name)) # Try to parse this as IPAddress/Network try: return x509.IPAddress(ip_address(name)) except ValueError: pass try: return x509.IPAddress(ip_network(name)) except ValueError: pass # Try to encode as domain name. DNSName() does not validate the domain name, but this check will fail. if name.startswith('*.'): idna.encode(name[2:]) elif name.startswith('.'): idna.encode(name[1:]) else: idna.encode(name) # Almost anything passes as DNS name, so this is our default fallback return x509.DNSName(name) if typ == 'uri': return x509.UniformResourceIdentifier(name) elif typ == 'email': return x509.RFC822Name(validate_email(name)) elif typ == 'ip': try: return x509.IPAddress(ip_address(name)) except ValueError: pass try: return x509.IPAddress(ip_network(name)) except ValueError: pass raise ValueError('Could not parse IP address.') elif typ == 'rid': return x509.RegisteredID(x509.ObjectIdentifier(name)) elif typ == 'othername': regex = "(.*);(.*):(.*)" if re.match(regex, name) is not None: oid, asn_typ, val = re.match(regex, name).groups() oid = x509.ObjectIdentifier(oid) if asn_typ == 'UTF8': val = val.encode('utf-8') elif asn_typ == 'OctetString': val = bytes(bytearray.fromhex(val)) val = OctetString(val).dump() else: raise ValueError('Unsupported ASN type in otherName: %s' % asn_typ) val = force_bytes(val) return x509.OtherName(oid, val) else: raise ValueError('Incorrect otherName format: %s' % name) elif typ == 'dirname': return x509.DirectoryName(x509_name(name)) else: # Try to encode the domain name. DNSName() does not validate the domain name, but this # check will fail. if name.startswith('*.'): idna.encode(name[2:]) elif name.startswith('.'): idna.encode(name[1:]) else: idna.encode(name) return x509.DNSName(name)
python
def parse_general_name(name): """Parse a general name from user input. This function will do its best to detect the intended type of any value passed to it: >>> parse_general_name('example.com') <DNSName(value='example.com')> >>> parse_general_name('*.example.com') <DNSName(value='*.example.com')> >>> parse_general_name('.example.com') # Syntax used e.g. for NameConstraints: All levels of subdomains <DNSName(value='.example.com')> >>> parse_general_name('[email protected]') <RFC822Name(value='[email protected]')> >>> parse_general_name('https://example.com') <UniformResourceIdentifier(value='https://example.com')> >>> parse_general_name('1.2.3.4') <IPAddress(value=1.2.3.4)> >>> parse_general_name('fd00::1') <IPAddress(value=fd00::1)> >>> parse_general_name('/CN=example.com') <DirectoryName(value=<Name(CN=example.com)>)> The default fallback is to assume a :py:class:`~cg:cryptography.x509.DNSName`. If this doesn't work, an exception will be raised: >>> parse_general_name('foo..bar`*123') # doctest: +ELLIPSIS Traceback (most recent call last): ... idna.core.IDNAError: ... If you want to override detection, you can prefix the name to match :py:const:`GENERAL_NAME_RE`: >>> parse_general_name('email:[email protected]') <RFC822Name(value='[email protected]')> >>> parse_general_name('URI:https://example.com') <UniformResourceIdentifier(value='https://example.com')> >>> parse_general_name('dirname:/CN=example.com') <DirectoryName(value=<Name(CN=example.com)>)> Some more exotic values can only be generated by using this prefix: >>> parse_general_name('rid:2.5.4.3') <RegisteredID(value=<ObjectIdentifier(oid=2.5.4.3, name=commonName)>)> >>> parse_general_name('otherName:2.5.4.3;UTF8:example.com') <OtherName(type_id=<ObjectIdentifier(oid=2.5.4.3, name=commonName)>, value=b'example.com')> If you give a prefixed value, this function is less forgiving of any typos and does not catch any exceptions: >>> parse_general_name('email:foo@bar com') Traceback (most recent call last): ... ValueError: Invalid domain: bar com """ name = force_text(name) typ = None match = GENERAL_NAME_RE.match(name) if match is not None: typ, name = match.groups() typ = typ.lower() if typ is None: if re.match('[a-z0-9]{2,}://', name): # Looks like a URI try: return x509.UniformResourceIdentifier(name) except Exception: # pragma: no cover - this really accepts anything pass if '@' in name: # Looks like an Email address try: return x509.RFC822Name(validate_email(name)) except Exception: pass if name.strip().startswith('/'): # maybe it's a dirname? return x509.DirectoryName(x509_name(name)) # Try to parse this as IPAddress/Network try: return x509.IPAddress(ip_address(name)) except ValueError: pass try: return x509.IPAddress(ip_network(name)) except ValueError: pass # Try to encode as domain name. DNSName() does not validate the domain name, but this check will fail. if name.startswith('*.'): idna.encode(name[2:]) elif name.startswith('.'): idna.encode(name[1:]) else: idna.encode(name) # Almost anything passes as DNS name, so this is our default fallback return x509.DNSName(name) if typ == 'uri': return x509.UniformResourceIdentifier(name) elif typ == 'email': return x509.RFC822Name(validate_email(name)) elif typ == 'ip': try: return x509.IPAddress(ip_address(name)) except ValueError: pass try: return x509.IPAddress(ip_network(name)) except ValueError: pass raise ValueError('Could not parse IP address.') elif typ == 'rid': return x509.RegisteredID(x509.ObjectIdentifier(name)) elif typ == 'othername': regex = "(.*);(.*):(.*)" if re.match(regex, name) is not None: oid, asn_typ, val = re.match(regex, name).groups() oid = x509.ObjectIdentifier(oid) if asn_typ == 'UTF8': val = val.encode('utf-8') elif asn_typ == 'OctetString': val = bytes(bytearray.fromhex(val)) val = OctetString(val).dump() else: raise ValueError('Unsupported ASN type in otherName: %s' % asn_typ) val = force_bytes(val) return x509.OtherName(oid, val) else: raise ValueError('Incorrect otherName format: %s' % name) elif typ == 'dirname': return x509.DirectoryName(x509_name(name)) else: # Try to encode the domain name. DNSName() does not validate the domain name, but this # check will fail. if name.startswith('*.'): idna.encode(name[2:]) elif name.startswith('.'): idna.encode(name[1:]) else: idna.encode(name) return x509.DNSName(name)
[ "def", "parse_general_name", "(", "name", ")", ":", "name", "=", "force_text", "(", "name", ")", "typ", "=", "None", "match", "=", "GENERAL_NAME_RE", ".", "match", "(", "name", ")", "if", "match", "is", "not", "None", ":", "typ", ",", "name", "=", "match", ".", "groups", "(", ")", "typ", "=", "typ", ".", "lower", "(", ")", "if", "typ", "is", "None", ":", "if", "re", ".", "match", "(", "'[a-z0-9]{2,}://'", ",", "name", ")", ":", "# Looks like a URI", "try", ":", "return", "x509", ".", "UniformResourceIdentifier", "(", "name", ")", "except", "Exception", ":", "# pragma: no cover - this really accepts anything", "pass", "if", "'@'", "in", "name", ":", "# Looks like an Email address", "try", ":", "return", "x509", ".", "RFC822Name", "(", "validate_email", "(", "name", ")", ")", "except", "Exception", ":", "pass", "if", "name", ".", "strip", "(", ")", ".", "startswith", "(", "'/'", ")", ":", "# maybe it's a dirname?", "return", "x509", ".", "DirectoryName", "(", "x509_name", "(", "name", ")", ")", "# Try to parse this as IPAddress/Network", "try", ":", "return", "x509", ".", "IPAddress", "(", "ip_address", "(", "name", ")", ")", "except", "ValueError", ":", "pass", "try", ":", "return", "x509", ".", "IPAddress", "(", "ip_network", "(", "name", ")", ")", "except", "ValueError", ":", "pass", "# Try to encode as domain name. DNSName() does not validate the domain name, but this check will fail.", "if", "name", ".", "startswith", "(", "'*.'", ")", ":", "idna", ".", "encode", "(", "name", "[", "2", ":", "]", ")", "elif", "name", ".", "startswith", "(", "'.'", ")", ":", "idna", ".", "encode", "(", "name", "[", "1", ":", "]", ")", "else", ":", "idna", ".", "encode", "(", "name", ")", "# Almost anything passes as DNS name, so this is our default fallback", "return", "x509", ".", "DNSName", "(", "name", ")", "if", "typ", "==", "'uri'", ":", "return", "x509", ".", "UniformResourceIdentifier", "(", "name", ")", "elif", "typ", "==", "'email'", ":", "return", "x509", ".", "RFC822Name", "(", "validate_email", "(", "name", ")", ")", "elif", "typ", "==", "'ip'", ":", "try", ":", "return", "x509", ".", "IPAddress", "(", "ip_address", "(", "name", ")", ")", "except", "ValueError", ":", "pass", "try", ":", "return", "x509", ".", "IPAddress", "(", "ip_network", "(", "name", ")", ")", "except", "ValueError", ":", "pass", "raise", "ValueError", "(", "'Could not parse IP address.'", ")", "elif", "typ", "==", "'rid'", ":", "return", "x509", ".", "RegisteredID", "(", "x509", ".", "ObjectIdentifier", "(", "name", ")", ")", "elif", "typ", "==", "'othername'", ":", "regex", "=", "\"(.*);(.*):(.*)\"", "if", "re", ".", "match", "(", "regex", ",", "name", ")", "is", "not", "None", ":", "oid", ",", "asn_typ", ",", "val", "=", "re", ".", "match", "(", "regex", ",", "name", ")", ".", "groups", "(", ")", "oid", "=", "x509", ".", "ObjectIdentifier", "(", "oid", ")", "if", "asn_typ", "==", "'UTF8'", ":", "val", "=", "val", ".", "encode", "(", "'utf-8'", ")", "elif", "asn_typ", "==", "'OctetString'", ":", "val", "=", "bytes", "(", "bytearray", ".", "fromhex", "(", "val", ")", ")", "val", "=", "OctetString", "(", "val", ")", ".", "dump", "(", ")", "else", ":", "raise", "ValueError", "(", "'Unsupported ASN type in otherName: %s'", "%", "asn_typ", ")", "val", "=", "force_bytes", "(", "val", ")", "return", "x509", ".", "OtherName", "(", "oid", ",", "val", ")", "else", ":", "raise", "ValueError", "(", "'Incorrect otherName format: %s'", "%", "name", ")", "elif", "typ", "==", "'dirname'", ":", "return", "x509", ".", "DirectoryName", "(", "x509_name", "(", "name", ")", ")", "else", ":", "# Try to encode the domain name. DNSName() does not validate the domain name, but this", "# check will fail.", "if", "name", ".", "startswith", "(", "'*.'", ")", ":", "idna", ".", "encode", "(", "name", "[", "2", ":", "]", ")", "elif", "name", ".", "startswith", "(", "'.'", ")", ":", "idna", ".", "encode", "(", "name", "[", "1", ":", "]", ")", "else", ":", "idna", ".", "encode", "(", "name", ")", "return", "x509", ".", "DNSName", "(", "name", ")" ]
Parse a general name from user input. This function will do its best to detect the intended type of any value passed to it: >>> parse_general_name('example.com') <DNSName(value='example.com')> >>> parse_general_name('*.example.com') <DNSName(value='*.example.com')> >>> parse_general_name('.example.com') # Syntax used e.g. for NameConstraints: All levels of subdomains <DNSName(value='.example.com')> >>> parse_general_name('[email protected]') <RFC822Name(value='[email protected]')> >>> parse_general_name('https://example.com') <UniformResourceIdentifier(value='https://example.com')> >>> parse_general_name('1.2.3.4') <IPAddress(value=1.2.3.4)> >>> parse_general_name('fd00::1') <IPAddress(value=fd00::1)> >>> parse_general_name('/CN=example.com') <DirectoryName(value=<Name(CN=example.com)>)> The default fallback is to assume a :py:class:`~cg:cryptography.x509.DNSName`. If this doesn't work, an exception will be raised: >>> parse_general_name('foo..bar`*123') # doctest: +ELLIPSIS Traceback (most recent call last): ... idna.core.IDNAError: ... If you want to override detection, you can prefix the name to match :py:const:`GENERAL_NAME_RE`: >>> parse_general_name('email:[email protected]') <RFC822Name(value='[email protected]')> >>> parse_general_name('URI:https://example.com') <UniformResourceIdentifier(value='https://example.com')> >>> parse_general_name('dirname:/CN=example.com') <DirectoryName(value=<Name(CN=example.com)>)> Some more exotic values can only be generated by using this prefix: >>> parse_general_name('rid:2.5.4.3') <RegisteredID(value=<ObjectIdentifier(oid=2.5.4.3, name=commonName)>)> >>> parse_general_name('otherName:2.5.4.3;UTF8:example.com') <OtherName(type_id=<ObjectIdentifier(oid=2.5.4.3, name=commonName)>, value=b'example.com')> If you give a prefixed value, this function is less forgiving of any typos and does not catch any exceptions: >>> parse_general_name('email:foo@bar com') Traceback (most recent call last): ... ValueError: Invalid domain: bar com
[ "Parse", "a", "general", "name", "from", "user", "input", "." ]
976d7ea05276320f20daed2a6d59c8f5660fe976
https://github.com/mathiasertl/django-ca/blob/976d7ea05276320f20daed2a6d59c8f5660fe976/ca/django_ca/utils.py#L345-L490
train
mathiasertl/django-ca
ca/django_ca/utils.py
parse_hash_algorithm
def parse_hash_algorithm(value=None): """Parse a hash algorithm value. The most common use case is to pass a str naming a class in :py:mod:`~cg:cryptography.hazmat.primitives.hashes`. For convenience, passing ``None`` will return the value of :ref:`CA_DIGEST_ALGORITHM <settings-ca-digest-algorithm>`, and passing an :py:class:`~cg:cryptography.hazmat.primitives.hashes.HashAlgorithm` will return that instance unchanged. Example usage:: >>> parse_hash_algorithm() # doctest: +ELLIPSIS <cryptography.hazmat.primitives.hashes.SHA512 object at ...> >>> parse_hash_algorithm('SHA512') # doctest: +ELLIPSIS <cryptography.hazmat.primitives.hashes.SHA512 object at ...> >>> parse_hash_algorithm(' SHA512 ') # doctest: +ELLIPSIS <cryptography.hazmat.primitives.hashes.SHA512 object at ...> >>> parse_hash_algorithm(hashes.SHA512) # doctest: +ELLIPSIS <cryptography.hazmat.primitives.hashes.SHA512 object at ...> >>> parse_hash_algorithm(hashes.SHA512()) # doctest: +ELLIPSIS <cryptography.hazmat.primitives.hashes.SHA512 object at ...> >>> parse_hash_algorithm('Wrong') # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Unknown hash algorithm: Wrong >>> parse_hash_algorithm(object()) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Unknown type passed: object Parameters ---------- value : str or :py:class:`~cg:cryptography.hazmat.primitives.hashes.HashAlgorithm`, optional The value to parse, the function description on how possible values are used. Returns ------- algorithm A :py:class:`~cg:cryptography.hazmat.primitives.hashes.HashAlgorithm` instance. Raises ------ ValueError If an unknown object is passed or if ``value`` does not name a known algorithm. """ if value is None: return ca_settings.CA_DIGEST_ALGORITHM elif isinstance(value, type) and issubclass(value, hashes.HashAlgorithm): return value() elif isinstance(value, hashes.HashAlgorithm): return value elif isinstance(value, six.string_types): try: return getattr(hashes, value.strip())() except AttributeError: raise ValueError('Unknown hash algorithm: %s' % value) else: raise ValueError('Unknown type passed: %s' % type(value).__name__)
python
def parse_hash_algorithm(value=None): """Parse a hash algorithm value. The most common use case is to pass a str naming a class in :py:mod:`~cg:cryptography.hazmat.primitives.hashes`. For convenience, passing ``None`` will return the value of :ref:`CA_DIGEST_ALGORITHM <settings-ca-digest-algorithm>`, and passing an :py:class:`~cg:cryptography.hazmat.primitives.hashes.HashAlgorithm` will return that instance unchanged. Example usage:: >>> parse_hash_algorithm() # doctest: +ELLIPSIS <cryptography.hazmat.primitives.hashes.SHA512 object at ...> >>> parse_hash_algorithm('SHA512') # doctest: +ELLIPSIS <cryptography.hazmat.primitives.hashes.SHA512 object at ...> >>> parse_hash_algorithm(' SHA512 ') # doctest: +ELLIPSIS <cryptography.hazmat.primitives.hashes.SHA512 object at ...> >>> parse_hash_algorithm(hashes.SHA512) # doctest: +ELLIPSIS <cryptography.hazmat.primitives.hashes.SHA512 object at ...> >>> parse_hash_algorithm(hashes.SHA512()) # doctest: +ELLIPSIS <cryptography.hazmat.primitives.hashes.SHA512 object at ...> >>> parse_hash_algorithm('Wrong') # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Unknown hash algorithm: Wrong >>> parse_hash_algorithm(object()) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Unknown type passed: object Parameters ---------- value : str or :py:class:`~cg:cryptography.hazmat.primitives.hashes.HashAlgorithm`, optional The value to parse, the function description on how possible values are used. Returns ------- algorithm A :py:class:`~cg:cryptography.hazmat.primitives.hashes.HashAlgorithm` instance. Raises ------ ValueError If an unknown object is passed or if ``value`` does not name a known algorithm. """ if value is None: return ca_settings.CA_DIGEST_ALGORITHM elif isinstance(value, type) and issubclass(value, hashes.HashAlgorithm): return value() elif isinstance(value, hashes.HashAlgorithm): return value elif isinstance(value, six.string_types): try: return getattr(hashes, value.strip())() except AttributeError: raise ValueError('Unknown hash algorithm: %s' % value) else: raise ValueError('Unknown type passed: %s' % type(value).__name__)
[ "def", "parse_hash_algorithm", "(", "value", "=", "None", ")", ":", "if", "value", "is", "None", ":", "return", "ca_settings", ".", "CA_DIGEST_ALGORITHM", "elif", "isinstance", "(", "value", ",", "type", ")", "and", "issubclass", "(", "value", ",", "hashes", ".", "HashAlgorithm", ")", ":", "return", "value", "(", ")", "elif", "isinstance", "(", "value", ",", "hashes", ".", "HashAlgorithm", ")", ":", "return", "value", "elif", "isinstance", "(", "value", ",", "six", ".", "string_types", ")", ":", "try", ":", "return", "getattr", "(", "hashes", ",", "value", ".", "strip", "(", ")", ")", "(", ")", "except", "AttributeError", ":", "raise", "ValueError", "(", "'Unknown hash algorithm: %s'", "%", "value", ")", "else", ":", "raise", "ValueError", "(", "'Unknown type passed: %s'", "%", "type", "(", "value", ")", ".", "__name__", ")" ]
Parse a hash algorithm value. The most common use case is to pass a str naming a class in :py:mod:`~cg:cryptography.hazmat.primitives.hashes`. For convenience, passing ``None`` will return the value of :ref:`CA_DIGEST_ALGORITHM <settings-ca-digest-algorithm>`, and passing an :py:class:`~cg:cryptography.hazmat.primitives.hashes.HashAlgorithm` will return that instance unchanged. Example usage:: >>> parse_hash_algorithm() # doctest: +ELLIPSIS <cryptography.hazmat.primitives.hashes.SHA512 object at ...> >>> parse_hash_algorithm('SHA512') # doctest: +ELLIPSIS <cryptography.hazmat.primitives.hashes.SHA512 object at ...> >>> parse_hash_algorithm(' SHA512 ') # doctest: +ELLIPSIS <cryptography.hazmat.primitives.hashes.SHA512 object at ...> >>> parse_hash_algorithm(hashes.SHA512) # doctest: +ELLIPSIS <cryptography.hazmat.primitives.hashes.SHA512 object at ...> >>> parse_hash_algorithm(hashes.SHA512()) # doctest: +ELLIPSIS <cryptography.hazmat.primitives.hashes.SHA512 object at ...> >>> parse_hash_algorithm('Wrong') # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Unknown hash algorithm: Wrong >>> parse_hash_algorithm(object()) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Unknown type passed: object Parameters ---------- value : str or :py:class:`~cg:cryptography.hazmat.primitives.hashes.HashAlgorithm`, optional The value to parse, the function description on how possible values are used. Returns ------- algorithm A :py:class:`~cg:cryptography.hazmat.primitives.hashes.HashAlgorithm` instance. Raises ------ ValueError If an unknown object is passed or if ``value`` does not name a known algorithm.
[ "Parse", "a", "hash", "algorithm", "value", "." ]
976d7ea05276320f20daed2a6d59c8f5660fe976
https://github.com/mathiasertl/django-ca/blob/976d7ea05276320f20daed2a6d59c8f5660fe976/ca/django_ca/utils.py#L493-L555
train