repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
NoviceLive/intellicoder
intellicoder/utils.py
AttrsGetter.get_attrs
def get_attrs(self, *names): """Get multiple attributes from multiple objects.""" attrs = [getattr(self, name) for name in names] return attrs
python
def get_attrs(self, *names): """Get multiple attributes from multiple objects.""" attrs = [getattr(self, name) for name in names] return attrs
[ "def", "get_attrs", "(", "self", ",", "*", "names", ")", ":", "attrs", "=", "[", "getattr", "(", "self", ",", "name", ")", "for", "name", "in", "names", "]", "return", "attrs" ]
Get multiple attributes from multiple objects.
[ "Get", "multiple", "attributes", "from", "multiple", "objects", "." ]
6cac5ebfce65c370dbebe47756a1789b120ef982
https://github.com/NoviceLive/intellicoder/blob/6cac5ebfce65c370dbebe47756a1789b120ef982/intellicoder/utils.py#L155-L158
train
dpa-newslab/livebridge
livebridge/base/posts.py
BasePost.target_id
def target_id(self): """Returns the id the target, to which this post has to be syndicated. :returns: string""" # already set? if self._target_id: return self._target_id # post already exists? if self._existing: self._target_id = self._existing.get("target_id") return self._target_id
python
def target_id(self): """Returns the id the target, to which this post has to be syndicated. :returns: string""" # already set? if self._target_id: return self._target_id # post already exists? if self._existing: self._target_id = self._existing.get("target_id") return self._target_id
[ "def", "target_id", "(", "self", ")", ":", "# already set?", "if", "self", ".", "_target_id", ":", "return", "self", ".", "_target_id", "# post already exists?", "if", "self", ".", "_existing", ":", "self", ".", "_target_id", "=", "self", ".", "_existing", ".", "get", "(", "\"target_id\"", ")", "return", "self", ".", "_target_id" ]
Returns the id the target, to which this post has to be syndicated. :returns: string
[ "Returns", "the", "id", "the", "target", "to", "which", "this", "post", "has", "to", "be", "syndicated", "." ]
d930e887faa2f882d15b574f0f1fe4a580d7c5fa
https://github.com/dpa-newslab/livebridge/blob/d930e887faa2f882d15b574f0f1fe4a580d7c5fa/livebridge/base/posts.py#L115-L125
train
NoviceLive/intellicoder
intellicoder/intellisense/formatters.py
with_formatter
def with_formatter(formatter): """Apply a formatter function the return value of the decorated function. """ def _decorator_after_args(unwrapped): def _wrapped(self, *args, **kwargs): logging.debug('unwrapped: %s', unwrapped) logging.debug('self: %s', self) logging.debug('args: %s', args) logging.debug('kwargs: %s', kwargs) return_value = unwrapped(self, *args, **kwargs) if 'raw' in kwargs and kwargs['raw']: return return_value else: return formatter(return_value) return _wrapped return _decorator_after_args
python
def with_formatter(formatter): """Apply a formatter function the return value of the decorated function. """ def _decorator_after_args(unwrapped): def _wrapped(self, *args, **kwargs): logging.debug('unwrapped: %s', unwrapped) logging.debug('self: %s', self) logging.debug('args: %s', args) logging.debug('kwargs: %s', kwargs) return_value = unwrapped(self, *args, **kwargs) if 'raw' in kwargs and kwargs['raw']: return return_value else: return formatter(return_value) return _wrapped return _decorator_after_args
[ "def", "with_formatter", "(", "formatter", ")", ":", "def", "_decorator_after_args", "(", "unwrapped", ")", ":", "def", "_wrapped", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "logging", ".", "debug", "(", "'unwrapped: %s'", ",", "unwrapped", ")", "logging", ".", "debug", "(", "'self: %s'", ",", "self", ")", "logging", ".", "debug", "(", "'args: %s'", ",", "args", ")", "logging", ".", "debug", "(", "'kwargs: %s'", ",", "kwargs", ")", "return_value", "=", "unwrapped", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", "if", "'raw'", "in", "kwargs", "and", "kwargs", "[", "'raw'", "]", ":", "return", "return_value", "else", ":", "return", "formatter", "(", "return_value", ")", "return", "_wrapped", "return", "_decorator_after_args" ]
Apply a formatter function the return value of the decorated function.
[ "Apply", "a", "formatter", "function", "the", "return", "value", "of", "the", "decorated", "function", "." ]
6cac5ebfce65c370dbebe47756a1789b120ef982
https://github.com/NoviceLive/intellicoder/blob/6cac5ebfce65c370dbebe47756a1789b120ef982/intellicoder/intellisense/formatters.py#L31-L47
train
NoviceLive/intellicoder
intellicoder/intellisense/formatters.py
format_info
def format_info(raw): """Format a string representing the information concerning the name. """ logging.debug(_('raw[0]: %s'), raw[0]) results, sense = raw # A scenario where ORM really stands out. new = '\n'.join( '{} {} {} {}'.format( i[0], sense.kind_id_to_name(i[1]), sense.file_id_to_name(i[2]).lower(), i[3] + ' ' if i[3] else '').strip() for i in results) return new
python
def format_info(raw): """Format a string representing the information concerning the name. """ logging.debug(_('raw[0]: %s'), raw[0]) results, sense = raw # A scenario where ORM really stands out. new = '\n'.join( '{} {} {} {}'.format( i[0], sense.kind_id_to_name(i[1]), sense.file_id_to_name(i[2]).lower(), i[3] + ' ' if i[3] else '').strip() for i in results) return new
[ "def", "format_info", "(", "raw", ")", ":", "logging", ".", "debug", "(", "_", "(", "'raw[0]: %s'", ")", ",", "raw", "[", "0", "]", ")", "results", ",", "sense", "=", "raw", "# A scenario where ORM really stands out.", "new", "=", "'\\n'", ".", "join", "(", "'{} {} {} {}'", ".", "format", "(", "i", "[", "0", "]", ",", "sense", ".", "kind_id_to_name", "(", "i", "[", "1", "]", ")", ",", "sense", ".", "file_id_to_name", "(", "i", "[", "2", "]", ")", ".", "lower", "(", ")", ",", "i", "[", "3", "]", "+", "' '", "if", "i", "[", "3", "]", "else", "''", ")", ".", "strip", "(", ")", "for", "i", "in", "results", ")", "return", "new" ]
Format a string representing the information concerning the name.
[ "Format", "a", "string", "representing", "the", "information", "concerning", "the", "name", "." ]
6cac5ebfce65c370dbebe47756a1789b120ef982
https://github.com/NoviceLive/intellicoder/blob/6cac5ebfce65c370dbebe47756a1789b120ef982/intellicoder/intellisense/formatters.py#L59-L72
train
NoviceLive/intellicoder
intellicoder/intellisense/formatters.py
format_names
def format_names(raw): """Format a string representing the names contained in the files. """ if raw: raw = [ '{}:\n{}'.format( header.lower(), ' '.join(func[0] for func in funcs) ) for header, funcs in raw ] return '\n'.join(raw) return ''
python
def format_names(raw): """Format a string representing the names contained in the files. """ if raw: raw = [ '{}:\n{}'.format( header.lower(), ' '.join(func[0] for func in funcs) ) for header, funcs in raw ] return '\n'.join(raw) return ''
[ "def", "format_names", "(", "raw", ")", ":", "if", "raw", ":", "raw", "=", "[", "'{}:\\n{}'", ".", "format", "(", "header", ".", "lower", "(", ")", ",", "' '", ".", "join", "(", "func", "[", "0", "]", "for", "func", "in", "funcs", ")", ")", "for", "header", ",", "funcs", "in", "raw", "]", "return", "'\\n'", ".", "join", "(", "raw", ")", "return", "''" ]
Format a string representing the names contained in the files.
[ "Format", "a", "string", "representing", "the", "names", "contained", "in", "the", "files", "." ]
6cac5ebfce65c370dbebe47756a1789b120ef982
https://github.com/NoviceLive/intellicoder/blob/6cac5ebfce65c370dbebe47756a1789b120ef982/intellicoder/intellisense/formatters.py#L75-L86
train
NoviceLive/intellicoder
intellicoder/intellisense/formatters.py
format_kinds
def format_kinds(raw): """Format a string representing the kinds.""" output = ' '.join('{} {}'.format(*kind) for kind in raw if kind) return output
python
def format_kinds(raw): """Format a string representing the kinds.""" output = ' '.join('{} {}'.format(*kind) for kind in raw if kind) return output
[ "def", "format_kinds", "(", "raw", ")", ":", "output", "=", "' '", ".", "join", "(", "'{} {}'", ".", "format", "(", "*", "kind", ")", "for", "kind", "in", "raw", "if", "kind", ")", "return", "output" ]
Format a string representing the kinds.
[ "Format", "a", "string", "representing", "the", "kinds", "." ]
6cac5ebfce65c370dbebe47756a1789b120ef982
https://github.com/NoviceLive/intellicoder/blob/6cac5ebfce65c370dbebe47756a1789b120ef982/intellicoder/intellisense/formatters.py#L89-L92
train
etal/biocma
biocma/utils.py
find_seq_rec
def find_seq_rec(block, name, case_sensitive=True): """Given part of a sequence ID, find the first matching record.""" if case_sensitive: def test(name, rec): return name in rec['id'] else: def test(name, rec): return name.upper() in rec['id'].upper() for rec in block['sequences']: if test(name, rec): return rec raise ValueError("No sequence ID matches %s" % repr(name))
python
def find_seq_rec(block, name, case_sensitive=True): """Given part of a sequence ID, find the first matching record.""" if case_sensitive: def test(name, rec): return name in rec['id'] else: def test(name, rec): return name.upper() in rec['id'].upper() for rec in block['sequences']: if test(name, rec): return rec raise ValueError("No sequence ID matches %s" % repr(name))
[ "def", "find_seq_rec", "(", "block", ",", "name", ",", "case_sensitive", "=", "True", ")", ":", "if", "case_sensitive", ":", "def", "test", "(", "name", ",", "rec", ")", ":", "return", "name", "in", "rec", "[", "'id'", "]", "else", ":", "def", "test", "(", "name", ",", "rec", ")", ":", "return", "name", ".", "upper", "(", ")", "in", "rec", "[", "'id'", "]", ".", "upper", "(", ")", "for", "rec", "in", "block", "[", "'sequences'", "]", ":", "if", "test", "(", "name", ",", "rec", ")", ":", "return", "rec", "raise", "ValueError", "(", "\"No sequence ID matches %s\"", "%", "repr", "(", "name", ")", ")" ]
Given part of a sequence ID, find the first matching record.
[ "Given", "part", "of", "a", "sequence", "ID", "find", "the", "first", "matching", "record", "." ]
eac0c57eb83a9498e53ccdeb9cbc3fe21a5826a7
https://github.com/etal/biocma/blob/eac0c57eb83a9498e53ccdeb9cbc3fe21a5826a7/biocma/utils.py#L6-L18
train
etal/biocma
biocma/utils.py
find_seq_id
def find_seq_id(block, name, case_sensitive=True): """Given part of a sequence ID, find the first actual ID that contains it. Example:: >>> find_seq_id(block, '2QG5') 'gi|158430190|pdb|2QG5|A' Raise a ValueError if no matching key is found. """ # logging.warn("DEPRECATED: Try to use cma.find_seq_rec instead") rec = find_seq_rec(block, name, case_sensitive) return rec['id']
python
def find_seq_id(block, name, case_sensitive=True): """Given part of a sequence ID, find the first actual ID that contains it. Example:: >>> find_seq_id(block, '2QG5') 'gi|158430190|pdb|2QG5|A' Raise a ValueError if no matching key is found. """ # logging.warn("DEPRECATED: Try to use cma.find_seq_rec instead") rec = find_seq_rec(block, name, case_sensitive) return rec['id']
[ "def", "find_seq_id", "(", "block", ",", "name", ",", "case_sensitive", "=", "True", ")", ":", "# logging.warn(\"DEPRECATED: Try to use cma.find_seq_rec instead\")", "rec", "=", "find_seq_rec", "(", "block", ",", "name", ",", "case_sensitive", ")", "return", "rec", "[", "'id'", "]" ]
Given part of a sequence ID, find the first actual ID that contains it. Example:: >>> find_seq_id(block, '2QG5') 'gi|158430190|pdb|2QG5|A' Raise a ValueError if no matching key is found.
[ "Given", "part", "of", "a", "sequence", "ID", "find", "the", "first", "actual", "ID", "that", "contains", "it", "." ]
eac0c57eb83a9498e53ccdeb9cbc3fe21a5826a7
https://github.com/etal/biocma/blob/eac0c57eb83a9498e53ccdeb9cbc3fe21a5826a7/biocma/utils.py#L21-L33
train
etal/biocma
biocma/utils.py
get_consensus
def get_consensus(block): """Calculate a simple consensus sequence for the block.""" from collections import Counter # Take aligned (non-insert) chars from all rows; transpose columns = zip(*[[c for c in row['seq'] if not c.islower()] for row in block['sequences']]) cons_chars = [Counter(col).most_common()[0][0] for col in columns] cons_chars = [c if c != '-' else 'X' for c in cons_chars] assert len(cons_chars) == block['query_length'] cons_sequence = { 'index': 1, 'id': 'consensus', 'description': '', 'dbxrefs': {}, 'phylum': '', 'taxchar': '', 'head_len': None, 'tail_len': None, 'head_seq': '', 'tail_seq': '', 'length': block['query_length'], 'seq': ''.join(cons_chars), } return cons_sequence
python
def get_consensus(block): """Calculate a simple consensus sequence for the block.""" from collections import Counter # Take aligned (non-insert) chars from all rows; transpose columns = zip(*[[c for c in row['seq'] if not c.islower()] for row in block['sequences']]) cons_chars = [Counter(col).most_common()[0][0] for col in columns] cons_chars = [c if c != '-' else 'X' for c in cons_chars] assert len(cons_chars) == block['query_length'] cons_sequence = { 'index': 1, 'id': 'consensus', 'description': '', 'dbxrefs': {}, 'phylum': '', 'taxchar': '', 'head_len': None, 'tail_len': None, 'head_seq': '', 'tail_seq': '', 'length': block['query_length'], 'seq': ''.join(cons_chars), } return cons_sequence
[ "def", "get_consensus", "(", "block", ")", ":", "from", "collections", "import", "Counter", "# Take aligned (non-insert) chars from all rows; transpose", "columns", "=", "zip", "(", "*", "[", "[", "c", "for", "c", "in", "row", "[", "'seq'", "]", "if", "not", "c", ".", "islower", "(", ")", "]", "for", "row", "in", "block", "[", "'sequences'", "]", "]", ")", "cons_chars", "=", "[", "Counter", "(", "col", ")", ".", "most_common", "(", ")", "[", "0", "]", "[", "0", "]", "for", "col", "in", "columns", "]", "cons_chars", "=", "[", "c", "if", "c", "!=", "'-'", "else", "'X'", "for", "c", "in", "cons_chars", "]", "assert", "len", "(", "cons_chars", ")", "==", "block", "[", "'query_length'", "]", "cons_sequence", "=", "{", "'index'", ":", "1", ",", "'id'", ":", "'consensus'", ",", "'description'", ":", "''", ",", "'dbxrefs'", ":", "{", "}", ",", "'phylum'", ":", "''", ",", "'taxchar'", ":", "''", ",", "'head_len'", ":", "None", ",", "'tail_len'", ":", "None", ",", "'head_seq'", ":", "''", ",", "'tail_seq'", ":", "''", ",", "'length'", ":", "block", "[", "'query_length'", "]", ",", "'seq'", ":", "''", ".", "join", "(", "cons_chars", ")", ",", "}", "return", "cons_sequence" ]
Calculate a simple consensus sequence for the block.
[ "Calculate", "a", "simple", "consensus", "sequence", "for", "the", "block", "." ]
eac0c57eb83a9498e53ccdeb9cbc3fe21a5826a7
https://github.com/etal/biocma/blob/eac0c57eb83a9498e53ccdeb9cbc3fe21a5826a7/biocma/utils.py#L36-L60
train
etal/biocma
biocma/utils.py
get_conservation
def get_conservation(block): """Calculate conservation levels at each consensus position. Return a dict of {position: float conservation} """ consensus = block['sequences'][0]['seq'] assert all(c.isupper() for c in consensus), \ "So-called consensus contains indels!" # remove all non-consensus positions -- now alignment is easy cleaned = [[c for c in s['seq'] if not c.islower()] for s in block['sequences'][1:]] height = float(len(cleaned)) # validation for row in cleaned: if len(row) != len(consensus): raise ValueError("Aligned sequence length (%s) doesn't match " "consensus (%s)" % (len(row), len(consensus))) # transpose & go columns = zip(*cleaned) return dict((idx + 1, columns[idx].count(cons_char) / height) for idx, cons_char in enumerate(consensus))
python
def get_conservation(block): """Calculate conservation levels at each consensus position. Return a dict of {position: float conservation} """ consensus = block['sequences'][0]['seq'] assert all(c.isupper() for c in consensus), \ "So-called consensus contains indels!" # remove all non-consensus positions -- now alignment is easy cleaned = [[c for c in s['seq'] if not c.islower()] for s in block['sequences'][1:]] height = float(len(cleaned)) # validation for row in cleaned: if len(row) != len(consensus): raise ValueError("Aligned sequence length (%s) doesn't match " "consensus (%s)" % (len(row), len(consensus))) # transpose & go columns = zip(*cleaned) return dict((idx + 1, columns[idx].count(cons_char) / height) for idx, cons_char in enumerate(consensus))
[ "def", "get_conservation", "(", "block", ")", ":", "consensus", "=", "block", "[", "'sequences'", "]", "[", "0", "]", "[", "'seq'", "]", "assert", "all", "(", "c", ".", "isupper", "(", ")", "for", "c", "in", "consensus", ")", ",", "\"So-called consensus contains indels!\"", "# remove all non-consensus positions -- now alignment is easy", "cleaned", "=", "[", "[", "c", "for", "c", "in", "s", "[", "'seq'", "]", "if", "not", "c", ".", "islower", "(", ")", "]", "for", "s", "in", "block", "[", "'sequences'", "]", "[", "1", ":", "]", "]", "height", "=", "float", "(", "len", "(", "cleaned", ")", ")", "# validation", "for", "row", "in", "cleaned", ":", "if", "len", "(", "row", ")", "!=", "len", "(", "consensus", ")", ":", "raise", "ValueError", "(", "\"Aligned sequence length (%s) doesn't match \"", "\"consensus (%s)\"", "%", "(", "len", "(", "row", ")", ",", "len", "(", "consensus", ")", ")", ")", "# transpose & go", "columns", "=", "zip", "(", "*", "cleaned", ")", "return", "dict", "(", "(", "idx", "+", "1", ",", "columns", "[", "idx", "]", ".", "count", "(", "cons_char", ")", "/", "height", ")", "for", "idx", ",", "cons_char", "in", "enumerate", "(", "consensus", ")", ")" ]
Calculate conservation levels at each consensus position. Return a dict of {position: float conservation}
[ "Calculate", "conservation", "levels", "at", "each", "consensus", "position", "." ]
eac0c57eb83a9498e53ccdeb9cbc3fe21a5826a7
https://github.com/etal/biocma/blob/eac0c57eb83a9498e53ccdeb9cbc3fe21a5826a7/biocma/utils.py#L63-L84
train
etal/biocma
biocma/utils.py
get_equivalent_positions
def get_equivalent_positions(block): """Create a mapping of equivalent residue positions to consensus. Build a dict-of-dicts:: {consensus-posn: {id: equiv-posn, id: equiv-posn, ...}, ...} The first sequence in the alignment is assumed to be the (gapless) consensus sequence. """ consensus = block['sequences'][0]['seq'] rest = block['sequences'][1:] # Validation if '-' in consensus or '.' in consensus: raise ValueError("First sequence (consensus?) contains gaps") # Check for duplicate sequence IDs seen = set() dupes = set() for rec in rest: if rec['id'] in seen: dupes.add(rec['id']) else: seen.add(rec['id']) if dupes: raise ValueError("Duplicate sequences:\n" + '\n'.join(dupes)) curr_shift = {} curr_resn = {} # NB: consensus doesn't have head/tail, but other sequences may for rec in rest: # Count inserts seen so far -- shift string indexes by this far ahead to # get the "equivalent" location in the sequence string # - as in, how far ahead in the current seq do we need to jump to get # to a position equivalent to what's in the consensus? # - can this ever be less than 0 (==consensus)? No, because that's # where gaps come from. Good. curr_shift[rec['id']] = 0 # Residue number in the actual sequence at the current (shifted) # location # curr_posn[id] = current equivalent res.num in `id` to cons[i] curr_resn[rec['id']] = rec['head_len'] equivalencies = dict((i+1, {}) for i in xrange(len(consensus))) # Map each character position i in the consensus sequence # to equivalent residues in each of the other sequences # i = index in the consensus string (== consensus res.num - 1) for i, char in enumerate(consensus): assert char.isupper() for rec in rest: rid = rec['id'] strposn = i + curr_shift[rid] if rec['seq'][strposn].isupper(): # Match curr_resn[rid] += 1 elif rec['seq'][strposn].islower(): # Insert while rec['seq'][strposn].islower(): # Count the whole insert size curr_shift[rid] += 1 curr_resn[rid] += 1 strposn += 1 curr_resn[rid] += 1 # Count the next match, too else: # Deletion / gap assert rec['seq'][strposn] in '.-' continue equivalencies[i+1][rid] = curr_resn[rid] return equivalencies
python
def get_equivalent_positions(block): """Create a mapping of equivalent residue positions to consensus. Build a dict-of-dicts:: {consensus-posn: {id: equiv-posn, id: equiv-posn, ...}, ...} The first sequence in the alignment is assumed to be the (gapless) consensus sequence. """ consensus = block['sequences'][0]['seq'] rest = block['sequences'][1:] # Validation if '-' in consensus or '.' in consensus: raise ValueError("First sequence (consensus?) contains gaps") # Check for duplicate sequence IDs seen = set() dupes = set() for rec in rest: if rec['id'] in seen: dupes.add(rec['id']) else: seen.add(rec['id']) if dupes: raise ValueError("Duplicate sequences:\n" + '\n'.join(dupes)) curr_shift = {} curr_resn = {} # NB: consensus doesn't have head/tail, but other sequences may for rec in rest: # Count inserts seen so far -- shift string indexes by this far ahead to # get the "equivalent" location in the sequence string # - as in, how far ahead in the current seq do we need to jump to get # to a position equivalent to what's in the consensus? # - can this ever be less than 0 (==consensus)? No, because that's # where gaps come from. Good. curr_shift[rec['id']] = 0 # Residue number in the actual sequence at the current (shifted) # location # curr_posn[id] = current equivalent res.num in `id` to cons[i] curr_resn[rec['id']] = rec['head_len'] equivalencies = dict((i+1, {}) for i in xrange(len(consensus))) # Map each character position i in the consensus sequence # to equivalent residues in each of the other sequences # i = index in the consensus string (== consensus res.num - 1) for i, char in enumerate(consensus): assert char.isupper() for rec in rest: rid = rec['id'] strposn = i + curr_shift[rid] if rec['seq'][strposn].isupper(): # Match curr_resn[rid] += 1 elif rec['seq'][strposn].islower(): # Insert while rec['seq'][strposn].islower(): # Count the whole insert size curr_shift[rid] += 1 curr_resn[rid] += 1 strposn += 1 curr_resn[rid] += 1 # Count the next match, too else: # Deletion / gap assert rec['seq'][strposn] in '.-' continue equivalencies[i+1][rid] = curr_resn[rid] return equivalencies
[ "def", "get_equivalent_positions", "(", "block", ")", ":", "consensus", "=", "block", "[", "'sequences'", "]", "[", "0", "]", "[", "'seq'", "]", "rest", "=", "block", "[", "'sequences'", "]", "[", "1", ":", "]", "# Validation", "if", "'-'", "in", "consensus", "or", "'.'", "in", "consensus", ":", "raise", "ValueError", "(", "\"First sequence (consensus?) contains gaps\"", ")", "# Check for duplicate sequence IDs", "seen", "=", "set", "(", ")", "dupes", "=", "set", "(", ")", "for", "rec", "in", "rest", ":", "if", "rec", "[", "'id'", "]", "in", "seen", ":", "dupes", ".", "add", "(", "rec", "[", "'id'", "]", ")", "else", ":", "seen", ".", "add", "(", "rec", "[", "'id'", "]", ")", "if", "dupes", ":", "raise", "ValueError", "(", "\"Duplicate sequences:\\n\"", "+", "'\\n'", ".", "join", "(", "dupes", ")", ")", "curr_shift", "=", "{", "}", "curr_resn", "=", "{", "}", "# NB: consensus doesn't have head/tail, but other sequences may", "for", "rec", "in", "rest", ":", "# Count inserts seen so far -- shift string indexes by this far ahead to", "# get the \"equivalent\" location in the sequence string", "# - as in, how far ahead in the current seq do we need to jump to get", "# to a position equivalent to what's in the consensus?", "# - can this ever be less than 0 (==consensus)? No, because that's", "# where gaps come from. Good.", "curr_shift", "[", "rec", "[", "'id'", "]", "]", "=", "0", "# Residue number in the actual sequence at the current (shifted)", "# location", "# curr_posn[id] = current equivalent res.num in `id` to cons[i]", "curr_resn", "[", "rec", "[", "'id'", "]", "]", "=", "rec", "[", "'head_len'", "]", "equivalencies", "=", "dict", "(", "(", "i", "+", "1", ",", "{", "}", ")", "for", "i", "in", "xrange", "(", "len", "(", "consensus", ")", ")", ")", "# Map each character position i in the consensus sequence", "# to equivalent residues in each of the other sequences", "# i = index in the consensus string (== consensus res.num - 1)", "for", "i", ",", "char", "in", "enumerate", "(", "consensus", ")", ":", "assert", "char", ".", "isupper", "(", ")", "for", "rec", "in", "rest", ":", "rid", "=", "rec", "[", "'id'", "]", "strposn", "=", "i", "+", "curr_shift", "[", "rid", "]", "if", "rec", "[", "'seq'", "]", "[", "strposn", "]", ".", "isupper", "(", ")", ":", "# Match", "curr_resn", "[", "rid", "]", "+=", "1", "elif", "rec", "[", "'seq'", "]", "[", "strposn", "]", ".", "islower", "(", ")", ":", "# Insert", "while", "rec", "[", "'seq'", "]", "[", "strposn", "]", ".", "islower", "(", ")", ":", "# Count the whole insert size", "curr_shift", "[", "rid", "]", "+=", "1", "curr_resn", "[", "rid", "]", "+=", "1", "strposn", "+=", "1", "curr_resn", "[", "rid", "]", "+=", "1", "# Count the next match, too", "else", ":", "# Deletion / gap", "assert", "rec", "[", "'seq'", "]", "[", "strposn", "]", "in", "'.-'", "continue", "equivalencies", "[", "i", "+", "1", "]", "[", "rid", "]", "=", "curr_resn", "[", "rid", "]", "return", "equivalencies" ]
Create a mapping of equivalent residue positions to consensus. Build a dict-of-dicts:: {consensus-posn: {id: equiv-posn, id: equiv-posn, ...}, ...} The first sequence in the alignment is assumed to be the (gapless) consensus sequence.
[ "Create", "a", "mapping", "of", "equivalent", "residue", "positions", "to", "consensus", "." ]
eac0c57eb83a9498e53ccdeb9cbc3fe21a5826a7
https://github.com/etal/biocma/blob/eac0c57eb83a9498e53ccdeb9cbc3fe21a5826a7/biocma/utils.py#L87-L156
train
etal/biocma
biocma/utils.py
get_inserts
def get_inserts(block): """Identify the inserts in sequence in a block. Inserts are relative to the consensus (theoretically), and identified by lowercase letters in the sequence. The returned integer pairs represent the insert start and end positions in the full-length sequence, using one-based numbering. The first sequence of the CMA block is included, though it may just be the consensus sequence, which shouldn't have any inserts. Output: {id1: [(start, end), (start, end), ...], id2: ..., ...} """ def find_inserts(seq, head_len): """Locate the lowercase regions in a character sequence. Yield the insert ranges as tuples using 1-based numbering, shifted by head_len. """ in_insert = False curr_start = None deletions = 0 for idx, is_lower in enumerate(map(str.islower, seq)): if is_lower: if not in_insert: # Start of a new insert region curr_start = head_len + idx + 1 - deletions in_insert = True else: if in_insert: # End of the current insert region yield (curr_start, head_len + idx - deletions) in_insert = False if seq[idx] == '-': deletions += 1 return dict((record['id'], list(find_inserts(record['seq'], record['head_len']))) for record in block['sequences'])
python
def get_inserts(block): """Identify the inserts in sequence in a block. Inserts are relative to the consensus (theoretically), and identified by lowercase letters in the sequence. The returned integer pairs represent the insert start and end positions in the full-length sequence, using one-based numbering. The first sequence of the CMA block is included, though it may just be the consensus sequence, which shouldn't have any inserts. Output: {id1: [(start, end), (start, end), ...], id2: ..., ...} """ def find_inserts(seq, head_len): """Locate the lowercase regions in a character sequence. Yield the insert ranges as tuples using 1-based numbering, shifted by head_len. """ in_insert = False curr_start = None deletions = 0 for idx, is_lower in enumerate(map(str.islower, seq)): if is_lower: if not in_insert: # Start of a new insert region curr_start = head_len + idx + 1 - deletions in_insert = True else: if in_insert: # End of the current insert region yield (curr_start, head_len + idx - deletions) in_insert = False if seq[idx] == '-': deletions += 1 return dict((record['id'], list(find_inserts(record['seq'], record['head_len']))) for record in block['sequences'])
[ "def", "get_inserts", "(", "block", ")", ":", "def", "find_inserts", "(", "seq", ",", "head_len", ")", ":", "\"\"\"Locate the lowercase regions in a character sequence.\n\n Yield the insert ranges as tuples using 1-based numbering, shifted by\n head_len.\n \"\"\"", "in_insert", "=", "False", "curr_start", "=", "None", "deletions", "=", "0", "for", "idx", ",", "is_lower", "in", "enumerate", "(", "map", "(", "str", ".", "islower", ",", "seq", ")", ")", ":", "if", "is_lower", ":", "if", "not", "in_insert", ":", "# Start of a new insert region", "curr_start", "=", "head_len", "+", "idx", "+", "1", "-", "deletions", "in_insert", "=", "True", "else", ":", "if", "in_insert", ":", "# End of the current insert region", "yield", "(", "curr_start", ",", "head_len", "+", "idx", "-", "deletions", ")", "in_insert", "=", "False", "if", "seq", "[", "idx", "]", "==", "'-'", ":", "deletions", "+=", "1", "return", "dict", "(", "(", "record", "[", "'id'", "]", ",", "list", "(", "find_inserts", "(", "record", "[", "'seq'", "]", ",", "record", "[", "'head_len'", "]", ")", ")", ")", "for", "record", "in", "block", "[", "'sequences'", "]", ")" ]
Identify the inserts in sequence in a block. Inserts are relative to the consensus (theoretically), and identified by lowercase letters in the sequence. The returned integer pairs represent the insert start and end positions in the full-length sequence, using one-based numbering. The first sequence of the CMA block is included, though it may just be the consensus sequence, which shouldn't have any inserts. Output: {id1: [(start, end), (start, end), ...], id2: ..., ...}
[ "Identify", "the", "inserts", "in", "sequence", "in", "a", "block", "." ]
eac0c57eb83a9498e53ccdeb9cbc3fe21a5826a7
https://github.com/etal/biocma/blob/eac0c57eb83a9498e53ccdeb9cbc3fe21a5826a7/biocma/utils.py#L159-L200
train
computational-metabolomics/msp2db
msp2db/re.py
get_meta_regex
def get_meta_regex(schema='mona'): """ Create a dictionary of regex for extracting the meta data for the spectra """ # NOTE: will just ignore cases, to avoid repetition here meta_parse = collections.OrderedDict() if schema == 'mona': meta_parse['collision_energy'] = ['^collision energy(?:=|:)(.*)$'] meta_parse['ms_level'] = ['^ms.*level(?:=|:)\D*(\d*)$', '^ms type(?:=|:)\D*(\d*)$', '^Spectrum_type(?:=|:)\D*(\d*)$'] meta_parse['accession'] = ['^accession(?:=|:)(.*)$', '^DB#(?:=|:)(.*)$'] meta_parse['resolution'] = ['^resolution(?:=|:)(.*)$'] meta_parse['polarity'] = ['^ion.*mode(?:=|:)(.*)$', '^ionization.*mode(?:=|:)(.*)$', '^polarity(?:=|:)(.*)$'] meta_parse['fragmentation_type'] = ['^fragmentation.*mode(?:=|:)(.*)$', '^fragmentation.*type(?:=|:)(.*)$'] meta_parse['precursor_mz'] = ['^precursor m/z(?:=|:)\s*(\d*[.,]?\d*)$', '^precursor.*mz(?:=|:)\s*(\d*[.,]?\d*)$'] meta_parse['precursor_type'] = ['^precursor.*type(?:=|:)(.*)$', '^adduct(?:=|:)(.*)$'] meta_parse['instrument_type'] = ['^instrument.*type(?:=|:)(.*)$'] meta_parse['instrument'] = ['^instrument(?:=|:)(.*)$'] meta_parse['copyright'] = ['^copyright(?:=|:)(.*)$'] # meta_parse['column'] = ['^column(?:=|:)(.*)$'] meta_parse['mass_accuracy'] = ['^mass.*accuracy(?:=|:)\s*(\d*[.,]?\d*)$'] meta_parse['mass_error'] = ['^mass.*error(?:=|:)\s*(\d*[.,]?\d*)$'] meta_parse['origin'] = ['^origin(?:=|:)(.*)$'] meta_parse['name'] = ['^Name(?:=|:)(.*)$'] meta_parse['splash'] = ['^splash:(.*)$'] meta_parse['retention_time'] = ['^retention.*time(?:=|:)\s*(\d*[.,]?\d*)$'] meta_parse['retention_index'] = ['^retention.*index(?:=|:)\s*(\d*[.,]?\d*)$'] elif schema == 'massbank': meta_parse['collision_energy'] = ['^AC\$MASS_SPECTROMETRY:\s+COLLISION_ENERGY\s+(.*)$'] meta_parse['ms_level'] = ['^AC\$MASS_SPECTROMETRY:\s+MS_TYPE\s+\D*(\d*)$'] meta_parse['accession'] = ['^ACCESSION:(.*)$'] meta_parse['resolution'] = ['^AC\$MASS_SPECTROMETRY:\s+RESOLUTION\s+(.*)$'] meta_parse['polarity'] = ['^AC\$MASS_SPECTROMETRY:\s+ION_MODE\s+(.*)$'] meta_parse['fragmentation_type'] = ['^AC\$MASS_SPECTROMETRY:\s+FRAGMENTATION_MODE\s+(.*)$'] meta_parse['precursor_mz'] = ['^MS\$FOCUSED_ION:\s+PRECURSOR_M/Z\s+(\d*[.,]?\d*)$'] meta_parse['precursor_type'] = ['^MS\$FOCUSED_ION:\s+PRECURSOR_TYPE\s+(.*)$'] meta_parse['instrument_type'] = ['^AC\$INSTRUMENT_TYPE:\s+(.*)$'] meta_parse['instrument'] = ['^AC\$INSTRUMENT:\s+(.*)$'] meta_parse['copyright'] = ['^COPYRIGHT:\s+(.*)'] # meta_parse['column'] = ['^column(?:=|:)(.*)$'] meta_parse['mass_accuracy'] = ['^AC\$MASS_SPECTROMETRY:\s+ACCURACY\s+(.*)$'] # need to check meta_parse['mass_error'] = ['^AC\$MASS_SPECTROMETRY:\s+ERROR\s+(.*)$'] # need to check meta_parse['splash'] = ['^PK\$SPLASH:\s+(.*)$'] meta_parse['origin'] = ['^origin(?:=|:)(.*)$'] meta_parse['name'] = ['^RECORD_TITLE:\s+(.*)$'] meta_parse['retention_time'] = ['^AC\$CHROMATOGRAPHY:\s+RETENTION.*TIME\s+(\d*[.,]?\d*)$'] meta_parse['retention_index'] = ['^AC\$CHROMATOGRAPHY:\s+RETENTION.*INDEX\s+(\d*[.,]?\d*)$'] return meta_parse
python
def get_meta_regex(schema='mona'): """ Create a dictionary of regex for extracting the meta data for the spectra """ # NOTE: will just ignore cases, to avoid repetition here meta_parse = collections.OrderedDict() if schema == 'mona': meta_parse['collision_energy'] = ['^collision energy(?:=|:)(.*)$'] meta_parse['ms_level'] = ['^ms.*level(?:=|:)\D*(\d*)$', '^ms type(?:=|:)\D*(\d*)$', '^Spectrum_type(?:=|:)\D*(\d*)$'] meta_parse['accession'] = ['^accession(?:=|:)(.*)$', '^DB#(?:=|:)(.*)$'] meta_parse['resolution'] = ['^resolution(?:=|:)(.*)$'] meta_parse['polarity'] = ['^ion.*mode(?:=|:)(.*)$', '^ionization.*mode(?:=|:)(.*)$', '^polarity(?:=|:)(.*)$'] meta_parse['fragmentation_type'] = ['^fragmentation.*mode(?:=|:)(.*)$', '^fragmentation.*type(?:=|:)(.*)$'] meta_parse['precursor_mz'] = ['^precursor m/z(?:=|:)\s*(\d*[.,]?\d*)$', '^precursor.*mz(?:=|:)\s*(\d*[.,]?\d*)$'] meta_parse['precursor_type'] = ['^precursor.*type(?:=|:)(.*)$', '^adduct(?:=|:)(.*)$'] meta_parse['instrument_type'] = ['^instrument.*type(?:=|:)(.*)$'] meta_parse['instrument'] = ['^instrument(?:=|:)(.*)$'] meta_parse['copyright'] = ['^copyright(?:=|:)(.*)$'] # meta_parse['column'] = ['^column(?:=|:)(.*)$'] meta_parse['mass_accuracy'] = ['^mass.*accuracy(?:=|:)\s*(\d*[.,]?\d*)$'] meta_parse['mass_error'] = ['^mass.*error(?:=|:)\s*(\d*[.,]?\d*)$'] meta_parse['origin'] = ['^origin(?:=|:)(.*)$'] meta_parse['name'] = ['^Name(?:=|:)(.*)$'] meta_parse['splash'] = ['^splash:(.*)$'] meta_parse['retention_time'] = ['^retention.*time(?:=|:)\s*(\d*[.,]?\d*)$'] meta_parse['retention_index'] = ['^retention.*index(?:=|:)\s*(\d*[.,]?\d*)$'] elif schema == 'massbank': meta_parse['collision_energy'] = ['^AC\$MASS_SPECTROMETRY:\s+COLLISION_ENERGY\s+(.*)$'] meta_parse['ms_level'] = ['^AC\$MASS_SPECTROMETRY:\s+MS_TYPE\s+\D*(\d*)$'] meta_parse['accession'] = ['^ACCESSION:(.*)$'] meta_parse['resolution'] = ['^AC\$MASS_SPECTROMETRY:\s+RESOLUTION\s+(.*)$'] meta_parse['polarity'] = ['^AC\$MASS_SPECTROMETRY:\s+ION_MODE\s+(.*)$'] meta_parse['fragmentation_type'] = ['^AC\$MASS_SPECTROMETRY:\s+FRAGMENTATION_MODE\s+(.*)$'] meta_parse['precursor_mz'] = ['^MS\$FOCUSED_ION:\s+PRECURSOR_M/Z\s+(\d*[.,]?\d*)$'] meta_parse['precursor_type'] = ['^MS\$FOCUSED_ION:\s+PRECURSOR_TYPE\s+(.*)$'] meta_parse['instrument_type'] = ['^AC\$INSTRUMENT_TYPE:\s+(.*)$'] meta_parse['instrument'] = ['^AC\$INSTRUMENT:\s+(.*)$'] meta_parse['copyright'] = ['^COPYRIGHT:\s+(.*)'] # meta_parse['column'] = ['^column(?:=|:)(.*)$'] meta_parse['mass_accuracy'] = ['^AC\$MASS_SPECTROMETRY:\s+ACCURACY\s+(.*)$'] # need to check meta_parse['mass_error'] = ['^AC\$MASS_SPECTROMETRY:\s+ERROR\s+(.*)$'] # need to check meta_parse['splash'] = ['^PK\$SPLASH:\s+(.*)$'] meta_parse['origin'] = ['^origin(?:=|:)(.*)$'] meta_parse['name'] = ['^RECORD_TITLE:\s+(.*)$'] meta_parse['retention_time'] = ['^AC\$CHROMATOGRAPHY:\s+RETENTION.*TIME\s+(\d*[.,]?\d*)$'] meta_parse['retention_index'] = ['^AC\$CHROMATOGRAPHY:\s+RETENTION.*INDEX\s+(\d*[.,]?\d*)$'] return meta_parse
[ "def", "get_meta_regex", "(", "schema", "=", "'mona'", ")", ":", "# NOTE: will just ignore cases, to avoid repetition here", "meta_parse", "=", "collections", ".", "OrderedDict", "(", ")", "if", "schema", "==", "'mona'", ":", "meta_parse", "[", "'collision_energy'", "]", "=", "[", "'^collision energy(?:=|:)(.*)$'", "]", "meta_parse", "[", "'ms_level'", "]", "=", "[", "'^ms.*level(?:=|:)\\D*(\\d*)$'", ",", "'^ms type(?:=|:)\\D*(\\d*)$'", ",", "'^Spectrum_type(?:=|:)\\D*(\\d*)$'", "]", "meta_parse", "[", "'accession'", "]", "=", "[", "'^accession(?:=|:)(.*)$'", ",", "'^DB#(?:=|:)(.*)$'", "]", "meta_parse", "[", "'resolution'", "]", "=", "[", "'^resolution(?:=|:)(.*)$'", "]", "meta_parse", "[", "'polarity'", "]", "=", "[", "'^ion.*mode(?:=|:)(.*)$'", ",", "'^ionization.*mode(?:=|:)(.*)$'", ",", "'^polarity(?:=|:)(.*)$'", "]", "meta_parse", "[", "'fragmentation_type'", "]", "=", "[", "'^fragmentation.*mode(?:=|:)(.*)$'", ",", "'^fragmentation.*type(?:=|:)(.*)$'", "]", "meta_parse", "[", "'precursor_mz'", "]", "=", "[", "'^precursor m/z(?:=|:)\\s*(\\d*[.,]?\\d*)$'", ",", "'^precursor.*mz(?:=|:)\\s*(\\d*[.,]?\\d*)$'", "]", "meta_parse", "[", "'precursor_type'", "]", "=", "[", "'^precursor.*type(?:=|:)(.*)$'", ",", "'^adduct(?:=|:)(.*)$'", "]", "meta_parse", "[", "'instrument_type'", "]", "=", "[", "'^instrument.*type(?:=|:)(.*)$'", "]", "meta_parse", "[", "'instrument'", "]", "=", "[", "'^instrument(?:=|:)(.*)$'", "]", "meta_parse", "[", "'copyright'", "]", "=", "[", "'^copyright(?:=|:)(.*)$'", "]", "# meta_parse['column'] = ['^column(?:=|:)(.*)$']", "meta_parse", "[", "'mass_accuracy'", "]", "=", "[", "'^mass.*accuracy(?:=|:)\\s*(\\d*[.,]?\\d*)$'", "]", "meta_parse", "[", "'mass_error'", "]", "=", "[", "'^mass.*error(?:=|:)\\s*(\\d*[.,]?\\d*)$'", "]", "meta_parse", "[", "'origin'", "]", "=", "[", "'^origin(?:=|:)(.*)$'", "]", "meta_parse", "[", "'name'", "]", "=", "[", "'^Name(?:=|:)(.*)$'", "]", "meta_parse", "[", "'splash'", "]", "=", "[", "'^splash:(.*)$'", "]", "meta_parse", "[", "'retention_time'", "]", "=", "[", "'^retention.*time(?:=|:)\\s*(\\d*[.,]?\\d*)$'", "]", "meta_parse", "[", "'retention_index'", "]", "=", "[", "'^retention.*index(?:=|:)\\s*(\\d*[.,]?\\d*)$'", "]", "elif", "schema", "==", "'massbank'", ":", "meta_parse", "[", "'collision_energy'", "]", "=", "[", "'^AC\\$MASS_SPECTROMETRY:\\s+COLLISION_ENERGY\\s+(.*)$'", "]", "meta_parse", "[", "'ms_level'", "]", "=", "[", "'^AC\\$MASS_SPECTROMETRY:\\s+MS_TYPE\\s+\\D*(\\d*)$'", "]", "meta_parse", "[", "'accession'", "]", "=", "[", "'^ACCESSION:(.*)$'", "]", "meta_parse", "[", "'resolution'", "]", "=", "[", "'^AC\\$MASS_SPECTROMETRY:\\s+RESOLUTION\\s+(.*)$'", "]", "meta_parse", "[", "'polarity'", "]", "=", "[", "'^AC\\$MASS_SPECTROMETRY:\\s+ION_MODE\\s+(.*)$'", "]", "meta_parse", "[", "'fragmentation_type'", "]", "=", "[", "'^AC\\$MASS_SPECTROMETRY:\\s+FRAGMENTATION_MODE\\s+(.*)$'", "]", "meta_parse", "[", "'precursor_mz'", "]", "=", "[", "'^MS\\$FOCUSED_ION:\\s+PRECURSOR_M/Z\\s+(\\d*[.,]?\\d*)$'", "]", "meta_parse", "[", "'precursor_type'", "]", "=", "[", "'^MS\\$FOCUSED_ION:\\s+PRECURSOR_TYPE\\s+(.*)$'", "]", "meta_parse", "[", "'instrument_type'", "]", "=", "[", "'^AC\\$INSTRUMENT_TYPE:\\s+(.*)$'", "]", "meta_parse", "[", "'instrument'", "]", "=", "[", "'^AC\\$INSTRUMENT:\\s+(.*)$'", "]", "meta_parse", "[", "'copyright'", "]", "=", "[", "'^COPYRIGHT:\\s+(.*)'", "]", "# meta_parse['column'] = ['^column(?:=|:)(.*)$']", "meta_parse", "[", "'mass_accuracy'", "]", "=", "[", "'^AC\\$MASS_SPECTROMETRY:\\s+ACCURACY\\s+(.*)$'", "]", "# need to check", "meta_parse", "[", "'mass_error'", "]", "=", "[", "'^AC\\$MASS_SPECTROMETRY:\\s+ERROR\\s+(.*)$'", "]", "# need to check", "meta_parse", "[", "'splash'", "]", "=", "[", "'^PK\\$SPLASH:\\s+(.*)$'", "]", "meta_parse", "[", "'origin'", "]", "=", "[", "'^origin(?:=|:)(.*)$'", "]", "meta_parse", "[", "'name'", "]", "=", "[", "'^RECORD_TITLE:\\s+(.*)$'", "]", "meta_parse", "[", "'retention_time'", "]", "=", "[", "'^AC\\$CHROMATOGRAPHY:\\s+RETENTION.*TIME\\s+(\\d*[.,]?\\d*)$'", "]", "meta_parse", "[", "'retention_index'", "]", "=", "[", "'^AC\\$CHROMATOGRAPHY:\\s+RETENTION.*INDEX\\s+(\\d*[.,]?\\d*)$'", "]", "return", "meta_parse" ]
Create a dictionary of regex for extracting the meta data for the spectra
[ "Create", "a", "dictionary", "of", "regex", "for", "extracting", "the", "meta", "data", "for", "the", "spectra" ]
f86f01efca26fd2745547c9993f97337c6bef123
https://github.com/computational-metabolomics/msp2db/blob/f86f01efca26fd2745547c9993f97337c6bef123/msp2db/re.py#L5-L57
train
computational-metabolomics/msp2db
msp2db/re.py
get_compound_regex
def get_compound_regex(schema='mona'): """ Create a dictionary of regex for extracting the compound information for the spectra """ # NOTE: will just ignore cases in the regex, to avoid repetition here meta_parse = collections.OrderedDict() if schema == 'mona': meta_parse['name'] = ['^Name(?:=|:)(.*)$'] meta_parse['inchikey_id'] = ['^inchikey(?:=|:)(.*)$'] meta_parse['molecular_formula'] = ['^molecular formula(?:=|:)(.*)$', '^formula:(.*)$'] meta_parse['molecular_weight'] = ['^MW(?:=|:)(\d*[.,]?\d*)$'] meta_parse['pubchem_id'] = ['^pubchem.*cid(?:=|:)(\d*)".*$'] meta_parse['chemspider_id'] = ['^chemspider(?:=|:)(\d*)".*$'] meta_parse['compound_class'] = ['^compound.*class(?:=|:)(.*)$'] meta_parse['exact_mass'] = ['^exact.*mass(?:=|:)(\d*[.,]?\d*)$'] meta_parse['smiles'] = ['^SMILES(?:=|:)(.*)$'] meta_parse['other_names'] = ['^Synonym(?:=|:)(.*)$'] elif schema == 'massbank': meta_parse['name'] = ['^CH\$NAME:\s+(.*)$'] meta_parse['other_names'] = ['^CH\$NAME:\s+(.*)$'] meta_parse['inchikey_id'] = ['^CH\$LINK:\s+INCHIKEY\s+(.*)$'] meta_parse['molecular_formula'] = ['^CH\$FORMULA:\s+(.*)$'] meta_parse['molecular_weight'] = ['^CH\$MOLECULAR_WEIGHT:\s+(.*)$'] meta_parse['pubchem_id'] = ['^CH\$LINK:\s+PUBCHEM\s+CID:(.*)$'] meta_parse['chemspider_id'] = ['^CH\$LINK:\s+CHEMSPIDER\s+(.*)$'] meta_parse['compound_class'] = ['^CH\$COMPOUND_CLASS:\s+(.*)$'] meta_parse['exact_mass'] = ['^CH\$EXACT_MASS:\s+(.*)$'] meta_parse['smiles'] = ['^CH\$SMILES:\s+(.*)$'] return meta_parse
python
def get_compound_regex(schema='mona'): """ Create a dictionary of regex for extracting the compound information for the spectra """ # NOTE: will just ignore cases in the regex, to avoid repetition here meta_parse = collections.OrderedDict() if schema == 'mona': meta_parse['name'] = ['^Name(?:=|:)(.*)$'] meta_parse['inchikey_id'] = ['^inchikey(?:=|:)(.*)$'] meta_parse['molecular_formula'] = ['^molecular formula(?:=|:)(.*)$', '^formula:(.*)$'] meta_parse['molecular_weight'] = ['^MW(?:=|:)(\d*[.,]?\d*)$'] meta_parse['pubchem_id'] = ['^pubchem.*cid(?:=|:)(\d*)".*$'] meta_parse['chemspider_id'] = ['^chemspider(?:=|:)(\d*)".*$'] meta_parse['compound_class'] = ['^compound.*class(?:=|:)(.*)$'] meta_parse['exact_mass'] = ['^exact.*mass(?:=|:)(\d*[.,]?\d*)$'] meta_parse['smiles'] = ['^SMILES(?:=|:)(.*)$'] meta_parse['other_names'] = ['^Synonym(?:=|:)(.*)$'] elif schema == 'massbank': meta_parse['name'] = ['^CH\$NAME:\s+(.*)$'] meta_parse['other_names'] = ['^CH\$NAME:\s+(.*)$'] meta_parse['inchikey_id'] = ['^CH\$LINK:\s+INCHIKEY\s+(.*)$'] meta_parse['molecular_formula'] = ['^CH\$FORMULA:\s+(.*)$'] meta_parse['molecular_weight'] = ['^CH\$MOLECULAR_WEIGHT:\s+(.*)$'] meta_parse['pubchem_id'] = ['^CH\$LINK:\s+PUBCHEM\s+CID:(.*)$'] meta_parse['chemspider_id'] = ['^CH\$LINK:\s+CHEMSPIDER\s+(.*)$'] meta_parse['compound_class'] = ['^CH\$COMPOUND_CLASS:\s+(.*)$'] meta_parse['exact_mass'] = ['^CH\$EXACT_MASS:\s+(.*)$'] meta_parse['smiles'] = ['^CH\$SMILES:\s+(.*)$'] return meta_parse
[ "def", "get_compound_regex", "(", "schema", "=", "'mona'", ")", ":", "# NOTE: will just ignore cases in the regex, to avoid repetition here", "meta_parse", "=", "collections", ".", "OrderedDict", "(", ")", "if", "schema", "==", "'mona'", ":", "meta_parse", "[", "'name'", "]", "=", "[", "'^Name(?:=|:)(.*)$'", "]", "meta_parse", "[", "'inchikey_id'", "]", "=", "[", "'^inchikey(?:=|:)(.*)$'", "]", "meta_parse", "[", "'molecular_formula'", "]", "=", "[", "'^molecular formula(?:=|:)(.*)$'", ",", "'^formula:(.*)$'", "]", "meta_parse", "[", "'molecular_weight'", "]", "=", "[", "'^MW(?:=|:)(\\d*[.,]?\\d*)$'", "]", "meta_parse", "[", "'pubchem_id'", "]", "=", "[", "'^pubchem.*cid(?:=|:)(\\d*)\".*$'", "]", "meta_parse", "[", "'chemspider_id'", "]", "=", "[", "'^chemspider(?:=|:)(\\d*)\".*$'", "]", "meta_parse", "[", "'compound_class'", "]", "=", "[", "'^compound.*class(?:=|:)(.*)$'", "]", "meta_parse", "[", "'exact_mass'", "]", "=", "[", "'^exact.*mass(?:=|:)(\\d*[.,]?\\d*)$'", "]", "meta_parse", "[", "'smiles'", "]", "=", "[", "'^SMILES(?:=|:)(.*)$'", "]", "meta_parse", "[", "'other_names'", "]", "=", "[", "'^Synonym(?:=|:)(.*)$'", "]", "elif", "schema", "==", "'massbank'", ":", "meta_parse", "[", "'name'", "]", "=", "[", "'^CH\\$NAME:\\s+(.*)$'", "]", "meta_parse", "[", "'other_names'", "]", "=", "[", "'^CH\\$NAME:\\s+(.*)$'", "]", "meta_parse", "[", "'inchikey_id'", "]", "=", "[", "'^CH\\$LINK:\\s+INCHIKEY\\s+(.*)$'", "]", "meta_parse", "[", "'molecular_formula'", "]", "=", "[", "'^CH\\$FORMULA:\\s+(.*)$'", "]", "meta_parse", "[", "'molecular_weight'", "]", "=", "[", "'^CH\\$MOLECULAR_WEIGHT:\\s+(.*)$'", "]", "meta_parse", "[", "'pubchem_id'", "]", "=", "[", "'^CH\\$LINK:\\s+PUBCHEM\\s+CID:(.*)$'", "]", "meta_parse", "[", "'chemspider_id'", "]", "=", "[", "'^CH\\$LINK:\\s+CHEMSPIDER\\s+(.*)$'", "]", "meta_parse", "[", "'compound_class'", "]", "=", "[", "'^CH\\$COMPOUND_CLASS:\\s+(.*)$'", "]", "meta_parse", "[", "'exact_mass'", "]", "=", "[", "'^CH\\$EXACT_MASS:\\s+(.*)$'", "]", "meta_parse", "[", "'smiles'", "]", "=", "[", "'^CH\\$SMILES:\\s+(.*)$'", "]", "return", "meta_parse" ]
Create a dictionary of regex for extracting the compound information for the spectra
[ "Create", "a", "dictionary", "of", "regex", "for", "extracting", "the", "compound", "information", "for", "the", "spectra" ]
f86f01efca26fd2745547c9993f97337c6bef123
https://github.com/computational-metabolomics/msp2db/blob/f86f01efca26fd2745547c9993f97337c6bef123/msp2db/re.py#L60-L91
train
lowandrew/OLCTools
coreGenome/coretyper.py
CoreTyper.handler
def handler(self): """Run the required analyses""" printtime('Creating and populating objects', self.start) self.populate() printtime('Populating {} sequence profiles'.format(self.analysistype), self.start) self.profiler() # Annotate sequences with prokka self.annotatethreads() # Run the analyses self.cdsthreads() # Find core coding features self.cdssequencethreads() # Extract the sequence for each coding feature self.allelematchthreads() # Determine sequence types from the analyses printtime('Determining {} sequence types'.format(self.analysistype), self.start) self.sequencetyper() # Create reports printtime('Creating {} reports'.format(self.analysistype), self.start) self.reporter()
python
def handler(self): """Run the required analyses""" printtime('Creating and populating objects', self.start) self.populate() printtime('Populating {} sequence profiles'.format(self.analysistype), self.start) self.profiler() # Annotate sequences with prokka self.annotatethreads() # Run the analyses self.cdsthreads() # Find core coding features self.cdssequencethreads() # Extract the sequence for each coding feature self.allelematchthreads() # Determine sequence types from the analyses printtime('Determining {} sequence types'.format(self.analysistype), self.start) self.sequencetyper() # Create reports printtime('Creating {} reports'.format(self.analysistype), self.start) self.reporter()
[ "def", "handler", "(", "self", ")", ":", "printtime", "(", "'Creating and populating objects'", ",", "self", ".", "start", ")", "self", ".", "populate", "(", ")", "printtime", "(", "'Populating {} sequence profiles'", ".", "format", "(", "self", ".", "analysistype", ")", ",", "self", ".", "start", ")", "self", ".", "profiler", "(", ")", "# Annotate sequences with prokka", "self", ".", "annotatethreads", "(", ")", "# Run the analyses", "self", ".", "cdsthreads", "(", ")", "# Find core coding features", "self", ".", "cdssequencethreads", "(", ")", "# Extract the sequence for each coding feature", "self", ".", "allelematchthreads", "(", ")", "# Determine sequence types from the analyses", "printtime", "(", "'Determining {} sequence types'", ".", "format", "(", "self", ".", "analysistype", ")", ",", "self", ".", "start", ")", "self", ".", "sequencetyper", "(", ")", "# Create reports", "printtime", "(", "'Creating {} reports'", ".", "format", "(", "self", ".", "analysistype", ")", ",", "self", ".", "start", ")", "self", ".", "reporter", "(", ")" ]
Run the required analyses
[ "Run", "the", "required", "analyses" ]
88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a
https://github.com/lowandrew/OLCTools/blob/88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a/coreGenome/coretyper.py#L19-L38
train
lowandrew/OLCTools
coreGenome/coretyper.py
CoreTyper.annotatethreads
def annotatethreads(self): """ Use prokka to annotate each strain """ # Move the files to subfolders and create objects self.runmetadata = createobject.ObjectCreation(self) # Fix headers self.headers() printtime('Performing prokka analyses', self.start) # Create and start threads for i in range(self.cpus): # Send the threads to the appropriate destination function threads = Thread(target=self.annotate, args=()) # Set the daemon to true - something to do with thread management threads.setDaemon(True) # Start the threading threads.start() for sample in self.metadata.samples: # Create the prokka attribute in the metadata object setattr(sample, 'prokka', GenObject()) sample.prokka.outputdir = os.path.join(sample.general.outputdirectory, 'prokka') if not os.path.isdir(sample.prokka.outputdir): os.makedirs(sample.prokka.outputdir) # TODO Incorporate MASH/rMLST/user inputted genus, species results in the system call # Create the system call # prokka 2014-SEQ-0275.fasta --force --genus Escherichia --species coli --usegenus --addgenes # --prefix 2014-SEQ-0275 --locustag EC0275 --outputdir /path/to/sequences/2014-SEQ-0275/prokka sample.prokka.command = 'prokka {} ' \ '--force ' \ '--genus {} ' \ '--species {} ' \ '--usegenus ' \ '--addgenes ' \ '--prefix {} ' \ '--locustag {} ' \ '--outdir {}' \ .format(sample.general.fixedheaders, self.genus, self.species, sample.name, sample.name, sample.prokka.outputdir) self.queue.put(sample) self.queue.join()
python
def annotatethreads(self): """ Use prokka to annotate each strain """ # Move the files to subfolders and create objects self.runmetadata = createobject.ObjectCreation(self) # Fix headers self.headers() printtime('Performing prokka analyses', self.start) # Create and start threads for i in range(self.cpus): # Send the threads to the appropriate destination function threads = Thread(target=self.annotate, args=()) # Set the daemon to true - something to do with thread management threads.setDaemon(True) # Start the threading threads.start() for sample in self.metadata.samples: # Create the prokka attribute in the metadata object setattr(sample, 'prokka', GenObject()) sample.prokka.outputdir = os.path.join(sample.general.outputdirectory, 'prokka') if not os.path.isdir(sample.prokka.outputdir): os.makedirs(sample.prokka.outputdir) # TODO Incorporate MASH/rMLST/user inputted genus, species results in the system call # Create the system call # prokka 2014-SEQ-0275.fasta --force --genus Escherichia --species coli --usegenus --addgenes # --prefix 2014-SEQ-0275 --locustag EC0275 --outputdir /path/to/sequences/2014-SEQ-0275/prokka sample.prokka.command = 'prokka {} ' \ '--force ' \ '--genus {} ' \ '--species {} ' \ '--usegenus ' \ '--addgenes ' \ '--prefix {} ' \ '--locustag {} ' \ '--outdir {}' \ .format(sample.general.fixedheaders, self.genus, self.species, sample.name, sample.name, sample.prokka.outputdir) self.queue.put(sample) self.queue.join()
[ "def", "annotatethreads", "(", "self", ")", ":", "# Move the files to subfolders and create objects", "self", ".", "runmetadata", "=", "createobject", ".", "ObjectCreation", "(", "self", ")", "# Fix headers", "self", ".", "headers", "(", ")", "printtime", "(", "'Performing prokka analyses'", ",", "self", ".", "start", ")", "# Create and start threads", "for", "i", "in", "range", "(", "self", ".", "cpus", ")", ":", "# Send the threads to the appropriate destination function", "threads", "=", "Thread", "(", "target", "=", "self", ".", "annotate", ",", "args", "=", "(", ")", ")", "# Set the daemon to true - something to do with thread management", "threads", ".", "setDaemon", "(", "True", ")", "# Start the threading", "threads", ".", "start", "(", ")", "for", "sample", "in", "self", ".", "metadata", ".", "samples", ":", "# Create the prokka attribute in the metadata object", "setattr", "(", "sample", ",", "'prokka'", ",", "GenObject", "(", ")", ")", "sample", ".", "prokka", ".", "outputdir", "=", "os", ".", "path", ".", "join", "(", "sample", ".", "general", ".", "outputdirectory", ",", "'prokka'", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "sample", ".", "prokka", ".", "outputdir", ")", ":", "os", ".", "makedirs", "(", "sample", ".", "prokka", ".", "outputdir", ")", "# TODO Incorporate MASH/rMLST/user inputted genus, species results in the system call", "# Create the system call", "# prokka 2014-SEQ-0275.fasta --force --genus Escherichia --species coli --usegenus --addgenes", "# --prefix 2014-SEQ-0275 --locustag EC0275 --outputdir /path/to/sequences/2014-SEQ-0275/prokka", "sample", ".", "prokka", ".", "command", "=", "'prokka {} '", "'--force '", "'--genus {} '", "'--species {} '", "'--usegenus '", "'--addgenes '", "'--prefix {} '", "'--locustag {} '", "'--outdir {}'", ".", "format", "(", "sample", ".", "general", ".", "fixedheaders", ",", "self", ".", "genus", ",", "self", ".", "species", ",", "sample", ".", "name", ",", "sample", ".", "name", ",", "sample", ".", "prokka", ".", "outputdir", ")", "self", ".", "queue", ".", "put", "(", "sample", ")", "self", ".", "queue", ".", "join", "(", ")" ]
Use prokka to annotate each strain
[ "Use", "prokka", "to", "annotate", "each", "strain" ]
88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a
https://github.com/lowandrew/OLCTools/blob/88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a/coreGenome/coretyper.py#L100-L139
train
lowandrew/OLCTools
coreGenome/coretyper.py
CoreTyper.cdsthreads
def cdsthreads(self): """ Determines which core genes from a pre-calculated database are present in each strain """ # Create and start threads for i in range(self.cpus): # Send the threads to the appropriate destination function threads = Thread(target=self.cds, args=()) # Set the daemon to true - something to do with thread management threads.setDaemon(True) # Start the threading threads.start() for sample in self.metadata.samples: # sample[self.analysistype].corepresence = dict() self.cdsqueue.put(sample) self.cdsqueue.join()
python
def cdsthreads(self): """ Determines which core genes from a pre-calculated database are present in each strain """ # Create and start threads for i in range(self.cpus): # Send the threads to the appropriate destination function threads = Thread(target=self.cds, args=()) # Set the daemon to true - something to do with thread management threads.setDaemon(True) # Start the threading threads.start() for sample in self.metadata.samples: # sample[self.analysistype].corepresence = dict() self.cdsqueue.put(sample) self.cdsqueue.join()
[ "def", "cdsthreads", "(", "self", ")", ":", "# Create and start threads", "for", "i", "in", "range", "(", "self", ".", "cpus", ")", ":", "# Send the threads to the appropriate destination function", "threads", "=", "Thread", "(", "target", "=", "self", ".", "cds", ",", "args", "=", "(", ")", ")", "# Set the daemon to true - something to do with thread management", "threads", ".", "setDaemon", "(", "True", ")", "# Start the threading", "threads", ".", "start", "(", ")", "for", "sample", "in", "self", ".", "metadata", ".", "samples", ":", "#", "sample", "[", "self", ".", "analysistype", "]", ".", "corepresence", "=", "dict", "(", ")", "self", ".", "cdsqueue", ".", "put", "(", "sample", ")", "self", ".", "cdsqueue", ".", "join", "(", ")" ]
Determines which core genes from a pre-calculated database are present in each strain
[ "Determines", "which", "core", "genes", "from", "a", "pre", "-", "calculated", "database", "are", "present", "in", "each", "strain" ]
88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a
https://github.com/lowandrew/OLCTools/blob/88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a/coreGenome/coretyper.py#L207-L223
train
lowandrew/OLCTools
coreGenome/coretyper.py
CoreTyper.cdssequencethreads
def cdssequencethreads(self): """ Extracts the sequence of each gene for each strain """ # Create and start threads for i in range(self.cpus): # Send the threads to the appropriate destination function threads = Thread(target=self.cdssequence, args=()) # Set the daemon to true - something to do with thread management threads.setDaemon(True) # Start the threading threads.start() for sample in self.metadata.samples: # Initialise a dictionary to store the sequence of each core gene sample[self.analysistype].coresequence = dict() self.sequencequeue.put(sample) self.sequencequeue.join()
python
def cdssequencethreads(self): """ Extracts the sequence of each gene for each strain """ # Create and start threads for i in range(self.cpus): # Send the threads to the appropriate destination function threads = Thread(target=self.cdssequence, args=()) # Set the daemon to true - something to do with thread management threads.setDaemon(True) # Start the threading threads.start() for sample in self.metadata.samples: # Initialise a dictionary to store the sequence of each core gene sample[self.analysistype].coresequence = dict() self.sequencequeue.put(sample) self.sequencequeue.join()
[ "def", "cdssequencethreads", "(", "self", ")", ":", "# Create and start threads", "for", "i", "in", "range", "(", "self", ".", "cpus", ")", ":", "# Send the threads to the appropriate destination function", "threads", "=", "Thread", "(", "target", "=", "self", ".", "cdssequence", ",", "args", "=", "(", ")", ")", "# Set the daemon to true - something to do with thread management", "threads", ".", "setDaemon", "(", "True", ")", "# Start the threading", "threads", ".", "start", "(", ")", "for", "sample", "in", "self", ".", "metadata", ".", "samples", ":", "# Initialise a dictionary to store the sequence of each core gene", "sample", "[", "self", ".", "analysistype", "]", ".", "coresequence", "=", "dict", "(", ")", "self", ".", "sequencequeue", ".", "put", "(", "sample", ")", "self", ".", "sequencequeue", ".", "join", "(", ")" ]
Extracts the sequence of each gene for each strain
[ "Extracts", "the", "sequence", "of", "each", "gene", "for", "each", "strain" ]
88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a
https://github.com/lowandrew/OLCTools/blob/88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a/coreGenome/coretyper.py#L247-L263
train
lowandrew/OLCTools
coreGenome/coretyper.py
CoreTyper.allelematchthreads
def allelematchthreads(self): """ Determine allele of each gene """ # Create and start threads for i in range(self.cpus): # Send the threads to the appropriate destination function threads = Thread(target=self.allelematch, args=()) # Set the daemon to true - something to do with thread management threads.setDaemon(True) # Start the threading threads.start() for sample in self.metadata.samples: sample[self.analysistype].allelematches = dict() self.allelequeue.put(sample) self.allelequeue.join()
python
def allelematchthreads(self): """ Determine allele of each gene """ # Create and start threads for i in range(self.cpus): # Send the threads to the appropriate destination function threads = Thread(target=self.allelematch, args=()) # Set the daemon to true - something to do with thread management threads.setDaemon(True) # Start the threading threads.start() for sample in self.metadata.samples: sample[self.analysistype].allelematches = dict() self.allelequeue.put(sample) self.allelequeue.join()
[ "def", "allelematchthreads", "(", "self", ")", ":", "# Create and start threads", "for", "i", "in", "range", "(", "self", ".", "cpus", ")", ":", "# Send the threads to the appropriate destination function", "threads", "=", "Thread", "(", "target", "=", "self", ".", "allelematch", ",", "args", "=", "(", ")", ")", "# Set the daemon to true - something to do with thread management", "threads", ".", "setDaemon", "(", "True", ")", "# Start the threading", "threads", ".", "start", "(", ")", "for", "sample", "in", "self", ".", "metadata", ".", "samples", ":", "sample", "[", "self", ".", "analysistype", "]", ".", "allelematches", "=", "dict", "(", ")", "self", ".", "allelequeue", ".", "put", "(", "sample", ")", "self", ".", "allelequeue", ".", "join", "(", ")" ]
Determine allele of each gene
[ "Determine", "allele", "of", "each", "gene" ]
88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a
https://github.com/lowandrew/OLCTools/blob/88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a/coreGenome/coretyper.py#L274-L289
train
by46/simplekit
simplekit/url/path.py
remove_path_segments
def remove_path_segments(segments, removes): """Removes the removes from the tail of segments. Examples:: >>> # '/a/b/c' - 'b/c' == '/a/' >>> assert remove_path_segments(['', 'a', 'b', 'c'], ['b', 'c']) == ['', 'a', ''] >>> # '/a/b/c' - '/b/c' == '/a >>> assert remove_path_segments(['', 'a', 'b', 'c'], ['', 'b', 'c']) == ['', 'a'] :param segments: :class:`list`, a list of the path segment :param removes: :class:`list`, a list of the path segment :return: :class:`list`, The list of all remaining path segments after all segments in ``removes`` have been removed from the end of ``segments``. If no segment from ``removes`` were removed from the ``segments``, the ``segments`` is return unmodified. """ if segments == ['']: segments.append('') if removes == ['']: removes.append('') if segments == removes: ret = [] elif len(removes) > len(segments): ret = segments else: # TODO(benjamin): incomplete removes2 = list(removes) if len(removes) > 1 and removes[0] == '': removes2.pop(0) if removes2 and removes2 == segments[-1 * len(removes2):]: ret = segments[:len(segments) - len(removes2)] if removes[0] != '' and ret: ret.append('') else: ret = segments return ret
python
def remove_path_segments(segments, removes): """Removes the removes from the tail of segments. Examples:: >>> # '/a/b/c' - 'b/c' == '/a/' >>> assert remove_path_segments(['', 'a', 'b', 'c'], ['b', 'c']) == ['', 'a', ''] >>> # '/a/b/c' - '/b/c' == '/a >>> assert remove_path_segments(['', 'a', 'b', 'c'], ['', 'b', 'c']) == ['', 'a'] :param segments: :class:`list`, a list of the path segment :param removes: :class:`list`, a list of the path segment :return: :class:`list`, The list of all remaining path segments after all segments in ``removes`` have been removed from the end of ``segments``. If no segment from ``removes`` were removed from the ``segments``, the ``segments`` is return unmodified. """ if segments == ['']: segments.append('') if removes == ['']: removes.append('') if segments == removes: ret = [] elif len(removes) > len(segments): ret = segments else: # TODO(benjamin): incomplete removes2 = list(removes) if len(removes) > 1 and removes[0] == '': removes2.pop(0) if removes2 and removes2 == segments[-1 * len(removes2):]: ret = segments[:len(segments) - len(removes2)] if removes[0] != '' and ret: ret.append('') else: ret = segments return ret
[ "def", "remove_path_segments", "(", "segments", ",", "removes", ")", ":", "if", "segments", "==", "[", "''", "]", ":", "segments", ".", "append", "(", "''", ")", "if", "removes", "==", "[", "''", "]", ":", "removes", ".", "append", "(", "''", ")", "if", "segments", "==", "removes", ":", "ret", "=", "[", "]", "elif", "len", "(", "removes", ")", ">", "len", "(", "segments", ")", ":", "ret", "=", "segments", "else", ":", "# TODO(benjamin): incomplete", "removes2", "=", "list", "(", "removes", ")", "if", "len", "(", "removes", ")", ">", "1", "and", "removes", "[", "0", "]", "==", "''", ":", "removes2", ".", "pop", "(", "0", ")", "if", "removes2", "and", "removes2", "==", "segments", "[", "-", "1", "*", "len", "(", "removes2", ")", ":", "]", ":", "ret", "=", "segments", "[", ":", "len", "(", "segments", ")", "-", "len", "(", "removes2", ")", "]", "if", "removes", "[", "0", "]", "!=", "''", "and", "ret", ":", "ret", ".", "append", "(", "''", ")", "else", ":", "ret", "=", "segments", "return", "ret" ]
Removes the removes from the tail of segments. Examples:: >>> # '/a/b/c' - 'b/c' == '/a/' >>> assert remove_path_segments(['', 'a', 'b', 'c'], ['b', 'c']) == ['', 'a', ''] >>> # '/a/b/c' - '/b/c' == '/a >>> assert remove_path_segments(['', 'a', 'b', 'c'], ['', 'b', 'c']) == ['', 'a'] :param segments: :class:`list`, a list of the path segment :param removes: :class:`list`, a list of the path segment :return: :class:`list`, The list of all remaining path segments after all segments in ``removes`` have been removed from the end of ``segments``. If no segment from ``removes`` were removed from the ``segments``, the ``segments`` is return unmodified.
[ "Removes", "the", "removes", "from", "the", "tail", "of", "segments", "." ]
33f3ce6de33accc185e1057f096af41859db5976
https://github.com/by46/simplekit/blob/33f3ce6de33accc185e1057f096af41859db5976/simplekit/url/path.py#L9-L48
train
by46/simplekit
simplekit/url/path.py
join_path_segments
def join_path_segments(*args): """Join multiple list of path segments This function is not encoding aware, it does not test for, or changed the encoding of the path segments it's passed. Example:: >>> assert join_path_segments(['a'], ['b']) == ['a','b'] >>> assert join_path_segments(['a',''], ['b']) == ['a','b'] >>> assert join_path_segments(['a'], ['','b']) == ['a','b'] >>> assert join_path_segments(['a',''], ['','b']) == ['a','','b'] >>> assert join_path_segments(['a','b'], ['c','d']) == ['a','b','c','d'] :param args: optional arguments :return: :class:`list`, the segment list of the result path """ finals = [] for segments in args: if not segments or segments[0] == ['']: continue elif not finals: finals.extend(segments) else: # Example #1: ['a',''] + ['b'] == ['a','b'] # Example #2: ['a',''] + ['','b'] == ['a','','b'] if finals[-1] == '' and (segments[0] != '' or len(segments) > 1): finals.pop(-1) # Example: ['a'] + ['','b'] == ['a','b'] elif finals[-1] != '' and segments[0] == '' and len(segments) > 1: segments.pop(0) finals.extend(segments) return finals
python
def join_path_segments(*args): """Join multiple list of path segments This function is not encoding aware, it does not test for, or changed the encoding of the path segments it's passed. Example:: >>> assert join_path_segments(['a'], ['b']) == ['a','b'] >>> assert join_path_segments(['a',''], ['b']) == ['a','b'] >>> assert join_path_segments(['a'], ['','b']) == ['a','b'] >>> assert join_path_segments(['a',''], ['','b']) == ['a','','b'] >>> assert join_path_segments(['a','b'], ['c','d']) == ['a','b','c','d'] :param args: optional arguments :return: :class:`list`, the segment list of the result path """ finals = [] for segments in args: if not segments or segments[0] == ['']: continue elif not finals: finals.extend(segments) else: # Example #1: ['a',''] + ['b'] == ['a','b'] # Example #2: ['a',''] + ['','b'] == ['a','','b'] if finals[-1] == '' and (segments[0] != '' or len(segments) > 1): finals.pop(-1) # Example: ['a'] + ['','b'] == ['a','b'] elif finals[-1] != '' and segments[0] == '' and len(segments) > 1: segments.pop(0) finals.extend(segments) return finals
[ "def", "join_path_segments", "(", "*", "args", ")", ":", "finals", "=", "[", "]", "for", "segments", "in", "args", ":", "if", "not", "segments", "or", "segments", "[", "0", "]", "==", "[", "''", "]", ":", "continue", "elif", "not", "finals", ":", "finals", ".", "extend", "(", "segments", ")", "else", ":", "# Example #1: ['a',''] + ['b'] == ['a','b']", "# Example #2: ['a',''] + ['','b'] == ['a','','b']", "if", "finals", "[", "-", "1", "]", "==", "''", "and", "(", "segments", "[", "0", "]", "!=", "''", "or", "len", "(", "segments", ")", ">", "1", ")", ":", "finals", ".", "pop", "(", "-", "1", ")", "# Example: ['a'] + ['','b'] == ['a','b']", "elif", "finals", "[", "-", "1", "]", "!=", "''", "and", "segments", "[", "0", "]", "==", "''", "and", "len", "(", "segments", ")", ">", "1", ":", "segments", ".", "pop", "(", "0", ")", "finals", ".", "extend", "(", "segments", ")", "return", "finals" ]
Join multiple list of path segments This function is not encoding aware, it does not test for, or changed the encoding of the path segments it's passed. Example:: >>> assert join_path_segments(['a'], ['b']) == ['a','b'] >>> assert join_path_segments(['a',''], ['b']) == ['a','b'] >>> assert join_path_segments(['a'], ['','b']) == ['a','b'] >>> assert join_path_segments(['a',''], ['','b']) == ['a','','b'] >>> assert join_path_segments(['a','b'], ['c','d']) == ['a','b','c','d'] :param args: optional arguments :return: :class:`list`, the segment list of the result path
[ "Join", "multiple", "list", "of", "path", "segments" ]
33f3ce6de33accc185e1057f096af41859db5976
https://github.com/by46/simplekit/blob/33f3ce6de33accc185e1057f096af41859db5976/simplekit/url/path.py#L52-L83
train
portfors-lab/sparkle
sparkle/data/acqdata.py
increment
def increment(index, dims, data_shape): """Increments a given index according to the shape of the data added :param index: Current index to be incremented :type index: list :param dims: Shape of the data that the index is being incremented by :type dims: tuple :param data_shape: Shape of the data structure being incremented, this is check that incrementing is correct :returns: list - the incremented index """ # check dimensions of data match structure inc_to_match = data_shape[1:] for dim_a, dim_b in zip(inc_to_match, dims[-1*(len(inc_to_match)):]): if dim_a != dim_b: raise DataIndexError() # now we can safely discard all but the highest dimension inc_index = len(index) - len(data_shape) inc_amount = data_shape[0] # make the index and increment amount dimensions match index[inc_index] += inc_amount # finally check that we did not run over allowed dimension if index[inc_index] > dims[inc_index]: raise DataIndexError() while inc_index > 0 and index[inc_index] == dims[inc_index]: index[inc_index-1] +=1 index[inc_index:] = [0]*len(index[inc_index:]) inc_index -=1 return index
python
def increment(index, dims, data_shape): """Increments a given index according to the shape of the data added :param index: Current index to be incremented :type index: list :param dims: Shape of the data that the index is being incremented by :type dims: tuple :param data_shape: Shape of the data structure being incremented, this is check that incrementing is correct :returns: list - the incremented index """ # check dimensions of data match structure inc_to_match = data_shape[1:] for dim_a, dim_b in zip(inc_to_match, dims[-1*(len(inc_to_match)):]): if dim_a != dim_b: raise DataIndexError() # now we can safely discard all but the highest dimension inc_index = len(index) - len(data_shape) inc_amount = data_shape[0] # make the index and increment amount dimensions match index[inc_index] += inc_amount # finally check that we did not run over allowed dimension if index[inc_index] > dims[inc_index]: raise DataIndexError() while inc_index > 0 and index[inc_index] == dims[inc_index]: index[inc_index-1] +=1 index[inc_index:] = [0]*len(index[inc_index:]) inc_index -=1 return index
[ "def", "increment", "(", "index", ",", "dims", ",", "data_shape", ")", ":", "# check dimensions of data match structure", "inc_to_match", "=", "data_shape", "[", "1", ":", "]", "for", "dim_a", ",", "dim_b", "in", "zip", "(", "inc_to_match", ",", "dims", "[", "-", "1", "*", "(", "len", "(", "inc_to_match", ")", ")", ":", "]", ")", ":", "if", "dim_a", "!=", "dim_b", ":", "raise", "DataIndexError", "(", ")", "# now we can safely discard all but the highest dimension", "inc_index", "=", "len", "(", "index", ")", "-", "len", "(", "data_shape", ")", "inc_amount", "=", "data_shape", "[", "0", "]", "# make the index and increment amount dimensions match", "index", "[", "inc_index", "]", "+=", "inc_amount", "# finally check that we did not run over allowed dimension", "if", "index", "[", "inc_index", "]", ">", "dims", "[", "inc_index", "]", ":", "raise", "DataIndexError", "(", ")", "while", "inc_index", ">", "0", "and", "index", "[", "inc_index", "]", "==", "dims", "[", "inc_index", "]", ":", "index", "[", "inc_index", "-", "1", "]", "+=", "1", "index", "[", "inc_index", ":", "]", "=", "[", "0", "]", "*", "len", "(", "index", "[", "inc_index", ":", "]", ")", "inc_index", "-=", "1", "return", "index" ]
Increments a given index according to the shape of the data added :param index: Current index to be incremented :type index: list :param dims: Shape of the data that the index is being incremented by :type dims: tuple :param data_shape: Shape of the data structure being incremented, this is check that incrementing is correct :returns: list - the incremented index
[ "Increments", "a", "given", "index", "according", "to", "the", "shape", "of", "the", "data", "added" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/data/acqdata.py#L231-L262
train
klahnakoski/mo-logs
mo_logs/__init__.py
Log.error
def error( cls, template, # human readable template default_params={}, # parameters for template cause=None, # pausible cause stack_depth=0, **more_params ): """ raise an exception with a trace for the cause too :param template: *string* human readable string with placeholders for parameters :param default_params: *dict* parameters to fill in template :param cause: *Exception* for chaining :param stack_depth: *int* how many calls you want popped off the stack to report the *true* caller :param log_context: *dict* extra key:value pairs for your convenience :param more_params: *any more parameters (which will overwrite default_params) :return: """ if not is_text(template): sys.stderr.write(str("Log.error was expecting a unicode template")) Log.error("Log.error was expecting a unicode template") if default_params and isinstance(listwrap(default_params)[0], BaseException): cause = default_params default_params = {} params = Data(dict(default_params, **more_params)) add_to_trace = False if cause == None: causes = None elif is_list(cause): causes = [] for c in listwrap(cause): # CAN NOT USE LIST-COMPREHENSION IN PYTHON3 (EXTRA STACK DEPTH FROM THE IN-LINED GENERATOR) causes.append(Except.wrap(c, stack_depth=1)) causes = FlatList(causes) elif isinstance(cause, BaseException): causes = Except.wrap(cause, stack_depth=1) else: causes = None Log.error("can only accept Exception, or list of exceptions") trace = exceptions.extract_stack(stack_depth + 1) if add_to_trace: cause[0].trace.extend(trace[1:]) e = Except(context=exceptions.ERROR, template=template, params=params, cause=causes, trace=trace) raise_from_none(e)
python
def error( cls, template, # human readable template default_params={}, # parameters for template cause=None, # pausible cause stack_depth=0, **more_params ): """ raise an exception with a trace for the cause too :param template: *string* human readable string with placeholders for parameters :param default_params: *dict* parameters to fill in template :param cause: *Exception* for chaining :param stack_depth: *int* how many calls you want popped off the stack to report the *true* caller :param log_context: *dict* extra key:value pairs for your convenience :param more_params: *any more parameters (which will overwrite default_params) :return: """ if not is_text(template): sys.stderr.write(str("Log.error was expecting a unicode template")) Log.error("Log.error was expecting a unicode template") if default_params and isinstance(listwrap(default_params)[0], BaseException): cause = default_params default_params = {} params = Data(dict(default_params, **more_params)) add_to_trace = False if cause == None: causes = None elif is_list(cause): causes = [] for c in listwrap(cause): # CAN NOT USE LIST-COMPREHENSION IN PYTHON3 (EXTRA STACK DEPTH FROM THE IN-LINED GENERATOR) causes.append(Except.wrap(c, stack_depth=1)) causes = FlatList(causes) elif isinstance(cause, BaseException): causes = Except.wrap(cause, stack_depth=1) else: causes = None Log.error("can only accept Exception, or list of exceptions") trace = exceptions.extract_stack(stack_depth + 1) if add_to_trace: cause[0].trace.extend(trace[1:]) e = Except(context=exceptions.ERROR, template=template, params=params, cause=causes, trace=trace) raise_from_none(e)
[ "def", "error", "(", "cls", ",", "template", ",", "# human readable template", "default_params", "=", "{", "}", ",", "# parameters for template", "cause", "=", "None", ",", "# pausible cause", "stack_depth", "=", "0", ",", "*", "*", "more_params", ")", ":", "if", "not", "is_text", "(", "template", ")", ":", "sys", ".", "stderr", ".", "write", "(", "str", "(", "\"Log.error was expecting a unicode template\"", ")", ")", "Log", ".", "error", "(", "\"Log.error was expecting a unicode template\"", ")", "if", "default_params", "and", "isinstance", "(", "listwrap", "(", "default_params", ")", "[", "0", "]", ",", "BaseException", ")", ":", "cause", "=", "default_params", "default_params", "=", "{", "}", "params", "=", "Data", "(", "dict", "(", "default_params", ",", "*", "*", "more_params", ")", ")", "add_to_trace", "=", "False", "if", "cause", "==", "None", ":", "causes", "=", "None", "elif", "is_list", "(", "cause", ")", ":", "causes", "=", "[", "]", "for", "c", "in", "listwrap", "(", "cause", ")", ":", "# CAN NOT USE LIST-COMPREHENSION IN PYTHON3 (EXTRA STACK DEPTH FROM THE IN-LINED GENERATOR)", "causes", ".", "append", "(", "Except", ".", "wrap", "(", "c", ",", "stack_depth", "=", "1", ")", ")", "causes", "=", "FlatList", "(", "causes", ")", "elif", "isinstance", "(", "cause", ",", "BaseException", ")", ":", "causes", "=", "Except", ".", "wrap", "(", "cause", ",", "stack_depth", "=", "1", ")", "else", ":", "causes", "=", "None", "Log", ".", "error", "(", "\"can only accept Exception, or list of exceptions\"", ")", "trace", "=", "exceptions", ".", "extract_stack", "(", "stack_depth", "+", "1", ")", "if", "add_to_trace", ":", "cause", "[", "0", "]", ".", "trace", ".", "extend", "(", "trace", "[", "1", ":", "]", ")", "e", "=", "Except", "(", "context", "=", "exceptions", ".", "ERROR", ",", "template", "=", "template", ",", "params", "=", "params", ",", "cause", "=", "causes", ",", "trace", "=", "trace", ")", "raise_from_none", "(", "e", ")" ]
raise an exception with a trace for the cause too :param template: *string* human readable string with placeholders for parameters :param default_params: *dict* parameters to fill in template :param cause: *Exception* for chaining :param stack_depth: *int* how many calls you want popped off the stack to report the *true* caller :param log_context: *dict* extra key:value pairs for your convenience :param more_params: *any more parameters (which will overwrite default_params) :return:
[ "raise", "an", "exception", "with", "a", "trace", "for", "the", "cause", "too" ]
0971277ac9caf28a755b766b70621916957d4fea
https://github.com/klahnakoski/mo-logs/blob/0971277ac9caf28a755b766b70621916957d4fea/mo_logs/__init__.py#L305-L354
train
TorkamaniLab/metapipe
metapipe/models/command_template.py
_get_parts_list
def _get_parts_list(to_go, so_far=[[]], ticker=None): """ Iterates over to_go, building the list of parts. To provide items for the beginning, use so_far. """ try: part = to_go.pop(0) except IndexError: return so_far, ticker # Lists of input groups if isinstance(part, list) and any(isinstance(e, list) for e in part): while len(part) > 0: so_far, ticker = _get_parts_list(part, so_far, ticker) ticker.tick() # Input Group elif isinstance(part, list) and any(isinstance(e, Input) for e in part): while len(part) > 0: so_far, ticker = _get_parts_list(part, so_far, ticker) # Magic Inputs elif isinstance(part, Input) and part.is_magic: inputs = part.eval() while len(inputs) > 0: so_far, ticker = _get_parts_list(inputs, so_far, ticker) ticker.tick() # Normal inputs elif isinstance(part, Input) and not part.is_magic: so_far[ticker.value].append(part) # Everything else else: so_far = _append(so_far, part) return so_far, ticker
python
def _get_parts_list(to_go, so_far=[[]], ticker=None): """ Iterates over to_go, building the list of parts. To provide items for the beginning, use so_far. """ try: part = to_go.pop(0) except IndexError: return so_far, ticker # Lists of input groups if isinstance(part, list) and any(isinstance(e, list) for e in part): while len(part) > 0: so_far, ticker = _get_parts_list(part, so_far, ticker) ticker.tick() # Input Group elif isinstance(part, list) and any(isinstance(e, Input) for e in part): while len(part) > 0: so_far, ticker = _get_parts_list(part, so_far, ticker) # Magic Inputs elif isinstance(part, Input) and part.is_magic: inputs = part.eval() while len(inputs) > 0: so_far, ticker = _get_parts_list(inputs, so_far, ticker) ticker.tick() # Normal inputs elif isinstance(part, Input) and not part.is_magic: so_far[ticker.value].append(part) # Everything else else: so_far = _append(so_far, part) return so_far, ticker
[ "def", "_get_parts_list", "(", "to_go", ",", "so_far", "=", "[", "[", "]", "]", ",", "ticker", "=", "None", ")", ":", "try", ":", "part", "=", "to_go", ".", "pop", "(", "0", ")", "except", "IndexError", ":", "return", "so_far", ",", "ticker", "# Lists of input groups", "if", "isinstance", "(", "part", ",", "list", ")", "and", "any", "(", "isinstance", "(", "e", ",", "list", ")", "for", "e", "in", "part", ")", ":", "while", "len", "(", "part", ")", ">", "0", ":", "so_far", ",", "ticker", "=", "_get_parts_list", "(", "part", ",", "so_far", ",", "ticker", ")", "ticker", ".", "tick", "(", ")", "# Input Group", "elif", "isinstance", "(", "part", ",", "list", ")", "and", "any", "(", "isinstance", "(", "e", ",", "Input", ")", "for", "e", "in", "part", ")", ":", "while", "len", "(", "part", ")", ">", "0", ":", "so_far", ",", "ticker", "=", "_get_parts_list", "(", "part", ",", "so_far", ",", "ticker", ")", "# Magic Inputs", "elif", "isinstance", "(", "part", ",", "Input", ")", "and", "part", ".", "is_magic", ":", "inputs", "=", "part", ".", "eval", "(", ")", "while", "len", "(", "inputs", ")", ">", "0", ":", "so_far", ",", "ticker", "=", "_get_parts_list", "(", "inputs", ",", "so_far", ",", "ticker", ")", "ticker", ".", "tick", "(", ")", "# Normal inputs", "elif", "isinstance", "(", "part", ",", "Input", ")", "and", "not", "part", ".", "is_magic", ":", "so_far", "[", "ticker", ".", "value", "]", ".", "append", "(", "part", ")", "# Everything else", "else", ":", "so_far", "=", "_append", "(", "so_far", ",", "part", ")", "return", "so_far", ",", "ticker" ]
Iterates over to_go, building the list of parts. To provide items for the beginning, use so_far.
[ "Iterates", "over", "to_go", "building", "the", "list", "of", "parts", ".", "To", "provide", "items", "for", "the", "beginning", "use", "so_far", "." ]
15592e5b0c217afb00ac03503f8d0d7453d4baf4
https://github.com/TorkamaniLab/metapipe/blob/15592e5b0c217afb00ac03503f8d0d7453d4baf4/metapipe/models/command_template.py#L74-L105
train
TorkamaniLab/metapipe
metapipe/models/command_template.py
_get_max_size
def _get_max_size(parts, size=1): """ Given a list of parts, find the maximum number of commands contained in it. """ max_group_size = 0 for part in parts: if isinstance(part, list): group_size = 0 for input_group in part: group_size += 1 if group_size > max_group_size: max_group_size = group_size magic_size = _get_magic_size(parts) return max_group_size * magic_size
python
def _get_max_size(parts, size=1): """ Given a list of parts, find the maximum number of commands contained in it. """ max_group_size = 0 for part in parts: if isinstance(part, list): group_size = 0 for input_group in part: group_size += 1 if group_size > max_group_size: max_group_size = group_size magic_size = _get_magic_size(parts) return max_group_size * magic_size
[ "def", "_get_max_size", "(", "parts", ",", "size", "=", "1", ")", ":", "max_group_size", "=", "0", "for", "part", "in", "parts", ":", "if", "isinstance", "(", "part", ",", "list", ")", ":", "group_size", "=", "0", "for", "input_group", "in", "part", ":", "group_size", "+=", "1", "if", "group_size", ">", "max_group_size", ":", "max_group_size", "=", "group_size", "magic_size", "=", "_get_magic_size", "(", "parts", ")", "return", "max_group_size", "*", "magic_size" ]
Given a list of parts, find the maximum number of commands contained in it.
[ "Given", "a", "list", "of", "parts", "find", "the", "maximum", "number", "of", "commands", "contained", "in", "it", "." ]
15592e5b0c217afb00ac03503f8d0d7453d4baf4
https://github.com/TorkamaniLab/metapipe/blob/15592e5b0c217afb00ac03503f8d0d7453d4baf4/metapipe/models/command_template.py#L108-L123
train
TorkamaniLab/metapipe
metapipe/models/command_template.py
_grow
def _grow(list_of_lists, num_new): """ Given a list of lists, and a number of new lists to add, copy the content of the first list into the new ones, and add them to the list of lists. """ first = list_of_lists[0] for i in range(num_new): list_of_lists.append(copy.deepcopy(first)) return list_of_lists
python
def _grow(list_of_lists, num_new): """ Given a list of lists, and a number of new lists to add, copy the content of the first list into the new ones, and add them to the list of lists. """ first = list_of_lists[0] for i in range(num_new): list_of_lists.append(copy.deepcopy(first)) return list_of_lists
[ "def", "_grow", "(", "list_of_lists", ",", "num_new", ")", ":", "first", "=", "list_of_lists", "[", "0", "]", "for", "i", "in", "range", "(", "num_new", ")", ":", "list_of_lists", ".", "append", "(", "copy", ".", "deepcopy", "(", "first", ")", ")", "return", "list_of_lists" ]
Given a list of lists, and a number of new lists to add, copy the content of the first list into the new ones, and add them to the list of lists.
[ "Given", "a", "list", "of", "lists", "and", "a", "number", "of", "new", "lists", "to", "add", "copy", "the", "content", "of", "the", "first", "list", "into", "the", "new", "ones", "and", "add", "them", "to", "the", "list", "of", "lists", "." ]
15592e5b0c217afb00ac03503f8d0d7453d4baf4
https://github.com/TorkamaniLab/metapipe/blob/15592e5b0c217afb00ac03503f8d0d7453d4baf4/metapipe/models/command_template.py#L144-L152
train
TorkamaniLab/metapipe
metapipe/models/command_template.py
_search_for_files
def _search_for_files(parts): """ Given a list of parts, return all of the nested file parts. """ file_parts = [] for part in parts: if isinstance(part, list): file_parts.extend(_search_for_files(part)) elif isinstance(part, FileToken): file_parts.append(part) return file_parts
python
def _search_for_files(parts): """ Given a list of parts, return all of the nested file parts. """ file_parts = [] for part in parts: if isinstance(part, list): file_parts.extend(_search_for_files(part)) elif isinstance(part, FileToken): file_parts.append(part) return file_parts
[ "def", "_search_for_files", "(", "parts", ")", ":", "file_parts", "=", "[", "]", "for", "part", "in", "parts", ":", "if", "isinstance", "(", "part", ",", "list", ")", ":", "file_parts", ".", "extend", "(", "_search_for_files", "(", "part", ")", ")", "elif", "isinstance", "(", "part", ",", "FileToken", ")", ":", "file_parts", ".", "append", "(", "part", ")", "return", "file_parts" ]
Given a list of parts, return all of the nested file parts.
[ "Given", "a", "list", "of", "parts", "return", "all", "of", "the", "nested", "file", "parts", "." ]
15592e5b0c217afb00ac03503f8d0d7453d4baf4
https://github.com/TorkamaniLab/metapipe/blob/15592e5b0c217afb00ac03503f8d0d7453d4baf4/metapipe/models/command_template.py#L155-L163
train
TorkamaniLab/metapipe
metapipe/models/command_template.py
CommandTemplate.eval
def eval(self): """ Returns a list of Command objects that can be evaluated as their string values. Each command will track it's preliminary dependencies, but these values should not be depended on for running commands. """ max_size = _get_max_size(self.parts) parts_list = _grow([[]], max_size-1) counter = Ticker(max_size) parts = self.parts[:] while len(parts) > 0: parts_list, counter = _get_parts_list(parts, parts_list, counter) commands = [] for i, parts in enumerate(parts_list): alias = self._get_alias(i+1) new_parts = copy.deepcopy(parts) commands.append(Command(alias=alias, parts=new_parts)) return commands
python
def eval(self): """ Returns a list of Command objects that can be evaluated as their string values. Each command will track it's preliminary dependencies, but these values should not be depended on for running commands. """ max_size = _get_max_size(self.parts) parts_list = _grow([[]], max_size-1) counter = Ticker(max_size) parts = self.parts[:] while len(parts) > 0: parts_list, counter = _get_parts_list(parts, parts_list, counter) commands = [] for i, parts in enumerate(parts_list): alias = self._get_alias(i+1) new_parts = copy.deepcopy(parts) commands.append(Command(alias=alias, parts=new_parts)) return commands
[ "def", "eval", "(", "self", ")", ":", "max_size", "=", "_get_max_size", "(", "self", ".", "parts", ")", "parts_list", "=", "_grow", "(", "[", "[", "]", "]", ",", "max_size", "-", "1", ")", "counter", "=", "Ticker", "(", "max_size", ")", "parts", "=", "self", ".", "parts", "[", ":", "]", "while", "len", "(", "parts", ")", ">", "0", ":", "parts_list", ",", "counter", "=", "_get_parts_list", "(", "parts", ",", "parts_list", ",", "counter", ")", "commands", "=", "[", "]", "for", "i", ",", "parts", "in", "enumerate", "(", "parts_list", ")", ":", "alias", "=", "self", ".", "_get_alias", "(", "i", "+", "1", ")", "new_parts", "=", "copy", ".", "deepcopy", "(", "parts", ")", "commands", ".", "append", "(", "Command", "(", "alias", "=", "alias", ",", "parts", "=", "new_parts", ")", ")", "return", "commands" ]
Returns a list of Command objects that can be evaluated as their string values. Each command will track it's preliminary dependencies, but these values should not be depended on for running commands.
[ "Returns", "a", "list", "of", "Command", "objects", "that", "can", "be", "evaluated", "as", "their", "string", "values", ".", "Each", "command", "will", "track", "it", "s", "preliminary", "dependencies", "but", "these", "values", "should", "not", "be", "depended", "on", "for", "running", "commands", "." ]
15592e5b0c217afb00ac03503f8d0d7453d4baf4
https://github.com/TorkamaniLab/metapipe/blob/15592e5b0c217afb00ac03503f8d0d7453d4baf4/metapipe/models/command_template.py#L48-L67
train
hkupty/asterix
asterix/core.py
start_system
def start_system(components, bind_to, hooks={}): """Start all components on component map.""" deps = build_deps_graph(components) started_components = start_components(components, deps, None) run_hooks(hooks, started_components) if type(bind_to) is str: master = started_components[bind_to] else: master = bind_to setattr(master, '__components', started_components) return master
python
def start_system(components, bind_to, hooks={}): """Start all components on component map.""" deps = build_deps_graph(components) started_components = start_components(components, deps, None) run_hooks(hooks, started_components) if type(bind_to) is str: master = started_components[bind_to] else: master = bind_to setattr(master, '__components', started_components) return master
[ "def", "start_system", "(", "components", ",", "bind_to", ",", "hooks", "=", "{", "}", ")", ":", "deps", "=", "build_deps_graph", "(", "components", ")", "started_components", "=", "start_components", "(", "components", ",", "deps", ",", "None", ")", "run_hooks", "(", "hooks", ",", "started_components", ")", "if", "type", "(", "bind_to", ")", "is", "str", ":", "master", "=", "started_components", "[", "bind_to", "]", "else", ":", "master", "=", "bind_to", "setattr", "(", "master", ",", "'__components'", ",", "started_components", ")", "return", "master" ]
Start all components on component map.
[ "Start", "all", "components", "on", "component", "map", "." ]
809ee5b02a29e38889c5bd4eb5f0859da0703d0c
https://github.com/hkupty/asterix/blob/809ee5b02a29e38889c5bd4eb5f0859da0703d0c/asterix/core.py#L48-L61
train
portfors-lab/sparkle
sparkle/stim/auto_parameter_model.py
AutoParameterModel.ranges
def ranges(self): """The expanded lists of values generated from the parameter fields :returns: list<list>, outer list is for each parameter, inner loops are that parameter's values to loop through """ steps = [] for p in self._parameters: # inclusive range if p['parameter'] == 'filename': steps.append(p['names']) else: if p['step'] > 0: start = p['start'] stop = p['stop'] if start > stop: step = p['step']*-1 else: step = p['step'] # nsteps = np.ceil(np.around(abs(start - stop), 4) / p['step']) nsteps = self.nStepsForParam(p) # print 'nsteps', np.around(abs(start - stop), 4), p['step'] # print 'start, stop, steps', start, stop, nsteps step_tmp = np.linspace(start, start+step*(nsteps-2), nsteps-1) # print 'step_tmp', step_tmp # if step_tmp[-1] != stop: step_tmp = np.append(step_tmp,stop) # print 'step range', step_tmp steps.append(np.around(step_tmp,4)) else: assert p['start'] == p['stop'] steps.append([p['start']]) return steps
python
def ranges(self): """The expanded lists of values generated from the parameter fields :returns: list<list>, outer list is for each parameter, inner loops are that parameter's values to loop through """ steps = [] for p in self._parameters: # inclusive range if p['parameter'] == 'filename': steps.append(p['names']) else: if p['step'] > 0: start = p['start'] stop = p['stop'] if start > stop: step = p['step']*-1 else: step = p['step'] # nsteps = np.ceil(np.around(abs(start - stop), 4) / p['step']) nsteps = self.nStepsForParam(p) # print 'nsteps', np.around(abs(start - stop), 4), p['step'] # print 'start, stop, steps', start, stop, nsteps step_tmp = np.linspace(start, start+step*(nsteps-2), nsteps-1) # print 'step_tmp', step_tmp # if step_tmp[-1] != stop: step_tmp = np.append(step_tmp,stop) # print 'step range', step_tmp steps.append(np.around(step_tmp,4)) else: assert p['start'] == p['stop'] steps.append([p['start']]) return steps
[ "def", "ranges", "(", "self", ")", ":", "steps", "=", "[", "]", "for", "p", "in", "self", ".", "_parameters", ":", "# inclusive range", "if", "p", "[", "'parameter'", "]", "==", "'filename'", ":", "steps", ".", "append", "(", "p", "[", "'names'", "]", ")", "else", ":", "if", "p", "[", "'step'", "]", ">", "0", ":", "start", "=", "p", "[", "'start'", "]", "stop", "=", "p", "[", "'stop'", "]", "if", "start", ">", "stop", ":", "step", "=", "p", "[", "'step'", "]", "*", "-", "1", "else", ":", "step", "=", "p", "[", "'step'", "]", "# nsteps = np.ceil(np.around(abs(start - stop), 4) / p['step'])", "nsteps", "=", "self", ".", "nStepsForParam", "(", "p", ")", "# print 'nsteps', np.around(abs(start - stop), 4), p['step']", "# print 'start, stop, steps', start, stop, nsteps", "step_tmp", "=", "np", ".", "linspace", "(", "start", ",", "start", "+", "step", "*", "(", "nsteps", "-", "2", ")", ",", "nsteps", "-", "1", ")", "# print 'step_tmp', step_tmp", "# if step_tmp[-1] != stop:", "step_tmp", "=", "np", ".", "append", "(", "step_tmp", ",", "stop", ")", "# print 'step range', step_tmp", "steps", ".", "append", "(", "np", ".", "around", "(", "step_tmp", ",", "4", ")", ")", "else", ":", "assert", "p", "[", "'start'", "]", "==", "p", "[", "'stop'", "]", "steps", ".", "append", "(", "[", "p", "[", "'start'", "]", "]", ")", "return", "steps" ]
The expanded lists of values generated from the parameter fields :returns: list<list>, outer list is for each parameter, inner loops are that parameter's values to loop through
[ "The", "expanded", "lists", "of", "values", "generated", "from", "the", "parameter", "fields" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/auto_parameter_model.py#L301-L335
train
portfors-lab/sparkle
sparkle/stim/auto_parameter_model.py
AutoParameterModel._selectionParameters
def _selectionParameters(self, param): """see docstring for selectedParameterTypes""" components = param['selection'] if len(components) == 0: return [] # extract the selected component names editable_sets = [] for comp in components: # all the keys (component names) for the auto details for components in selection details = comp.auto_details() editable_sets.append(set(details.keys())) editable_paramters = set.intersection(*editable_sets) # do not allow selecting of filename from here return list(editable_paramters)
python
def _selectionParameters(self, param): """see docstring for selectedParameterTypes""" components = param['selection'] if len(components) == 0: return [] # extract the selected component names editable_sets = [] for comp in components: # all the keys (component names) for the auto details for components in selection details = comp.auto_details() editable_sets.append(set(details.keys())) editable_paramters = set.intersection(*editable_sets) # do not allow selecting of filename from here return list(editable_paramters)
[ "def", "_selectionParameters", "(", "self", ",", "param", ")", ":", "components", "=", "param", "[", "'selection'", "]", "if", "len", "(", "components", ")", "==", "0", ":", "return", "[", "]", "# extract the selected component names", "editable_sets", "=", "[", "]", "for", "comp", "in", "components", ":", "# all the keys (component names) for the auto details for components in selection", "details", "=", "comp", ".", "auto_details", "(", ")", "editable_sets", ".", "append", "(", "set", "(", "details", ".", "keys", "(", ")", ")", ")", "editable_paramters", "=", "set", ".", "intersection", "(", "*", "editable_sets", ")", "# do not allow selecting of filename from here", "return", "list", "(", "editable_paramters", ")" ]
see docstring for selectedParameterTypes
[ "see", "docstring", "for", "selectedParameterTypes" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/auto_parameter_model.py#L337-L350
train
portfors-lab/sparkle
sparkle/stim/auto_parameter_model.py
AutoParameterModel.updateComponentStartVals
def updateComponentStartVals(self): """Go through selected components for each auto parameter and set the start value""" for param in self._parameters: for component in param['selection']: if param['parameter'] == 'filename': component.set(param['parameter'], param['names'][0]) else: component.set(param['parameter'], param['start'])
python
def updateComponentStartVals(self): """Go through selected components for each auto parameter and set the start value""" for param in self._parameters: for component in param['selection']: if param['parameter'] == 'filename': component.set(param['parameter'], param['names'][0]) else: component.set(param['parameter'], param['start'])
[ "def", "updateComponentStartVals", "(", "self", ")", ":", "for", "param", "in", "self", ".", "_parameters", ":", "for", "component", "in", "param", "[", "'selection'", "]", ":", "if", "param", "[", "'parameter'", "]", "==", "'filename'", ":", "component", ".", "set", "(", "param", "[", "'parameter'", "]", ",", "param", "[", "'names'", "]", "[", "0", "]", ")", "else", ":", "component", ".", "set", "(", "param", "[", "'parameter'", "]", ",", "param", "[", "'start'", "]", ")" ]
Go through selected components for each auto parameter and set the start value
[ "Go", "through", "selected", "components", "for", "each", "auto", "parameter", "and", "set", "the", "start", "value" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/auto_parameter_model.py#L352-L359
train
portfors-lab/sparkle
sparkle/stim/auto_parameter_model.py
AutoParameterModel.verify
def verify(self): """Checks all parameters for invalidating conditions :returns: str -- message if error, 0 otherwise """ for row in range(self.nrows()): result = self.verify_row(row) if result != 0: return result return 0
python
def verify(self): """Checks all parameters for invalidating conditions :returns: str -- message if error, 0 otherwise """ for row in range(self.nrows()): result = self.verify_row(row) if result != 0: return result return 0
[ "def", "verify", "(", "self", ")", ":", "for", "row", "in", "range", "(", "self", ".", "nrows", "(", ")", ")", ":", "result", "=", "self", ".", "verify_row", "(", "row", ")", "if", "result", "!=", "0", ":", "return", "result", "return", "0" ]
Checks all parameters for invalidating conditions :returns: str -- message if error, 0 otherwise
[ "Checks", "all", "parameters", "for", "invalidating", "conditions" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/auto_parameter_model.py#L381-L390
train
yamcs/yamcs-python
yamcs-client/examples/query_mdb.py
find_parameter
def find_parameter(): """Find one parameter.""" p1 = mdb.get_parameter('/YSS/SIMULATOR/BatteryVoltage2') print('Via qualified name:', p1) p2 = mdb.get_parameter('MDB:OPS Name/SIMULATOR_BatteryVoltage2') print('Via domain-specific alias:', p2)
python
def find_parameter(): """Find one parameter.""" p1 = mdb.get_parameter('/YSS/SIMULATOR/BatteryVoltage2') print('Via qualified name:', p1) p2 = mdb.get_parameter('MDB:OPS Name/SIMULATOR_BatteryVoltage2') print('Via domain-specific alias:', p2)
[ "def", "find_parameter", "(", ")", ":", "p1", "=", "mdb", ".", "get_parameter", "(", "'/YSS/SIMULATOR/BatteryVoltage2'", ")", "print", "(", "'Via qualified name:'", ",", "p1", ")", "p2", "=", "mdb", ".", "get_parameter", "(", "'MDB:OPS Name/SIMULATOR_BatteryVoltage2'", ")", "print", "(", "'Via domain-specific alias:'", ",", "p2", ")" ]
Find one parameter.
[ "Find", "one", "parameter", "." ]
1082fee8a299010cc44416bbb7518fac0ef08b48
https://github.com/yamcs/yamcs-python/blob/1082fee8a299010cc44416bbb7518fac0ef08b48/yamcs-client/examples/query_mdb.py#L24-L30
train
lowandrew/OLCTools
spadespipeline/mobrecon.py
MobRecon.summary_reporter
def summary_reporter(self): """ Parse individual MOB Recon reports into a summary report """ logging.info('Creating MOB-recon summary report') with open(os.path.join(self.reportpath, 'mob_recon_summary.csv'), 'w') as summary: data = 'Strain,Location,Contig,Incompatibility,IncompatibilityAccession,RelaxaseType,' \ 'MashNearestNeighbor,MashNeighborDistance\n' for sample in self.metadata: # Initialise a dictionary to store results for the COWBAT final report sample[self.analysistype].pipelineresults = dict() for primarykey, results in sample[self.analysistype].report_dict.items(): # Only process results if they are not calculated to be chromosomal if results['cluster_id'] != 'chromosome': data += ','.join(str(result).replace(',', ';') if str(result) != 'nan' else 'ND' for result in [ sample.name, results['cluster_id'], results['contig_id'].split('|')[1], results['rep_type'], results['rep_type_accession'], results['relaxase_type'], results['mash_nearest_neighbor'], results['mash_neighbor_distance']] ) data += '\n' # Add the calculated incompatibility to the pipeline results for use in the final COWBAT report sample[self.analysistype].pipelineresults[results['cluster_id']] = \ ';'.join(str(result).replace(',', ';') if str(result) != 'nan' else 'ND' for result in [ results['rep_type']] ) summary.write(data)
python
def summary_reporter(self): """ Parse individual MOB Recon reports into a summary report """ logging.info('Creating MOB-recon summary report') with open(os.path.join(self.reportpath, 'mob_recon_summary.csv'), 'w') as summary: data = 'Strain,Location,Contig,Incompatibility,IncompatibilityAccession,RelaxaseType,' \ 'MashNearestNeighbor,MashNeighborDistance\n' for sample in self.metadata: # Initialise a dictionary to store results for the COWBAT final report sample[self.analysistype].pipelineresults = dict() for primarykey, results in sample[self.analysistype].report_dict.items(): # Only process results if they are not calculated to be chromosomal if results['cluster_id'] != 'chromosome': data += ','.join(str(result).replace(',', ';') if str(result) != 'nan' else 'ND' for result in [ sample.name, results['cluster_id'], results['contig_id'].split('|')[1], results['rep_type'], results['rep_type_accession'], results['relaxase_type'], results['mash_nearest_neighbor'], results['mash_neighbor_distance']] ) data += '\n' # Add the calculated incompatibility to the pipeline results for use in the final COWBAT report sample[self.analysistype].pipelineresults[results['cluster_id']] = \ ';'.join(str(result).replace(',', ';') if str(result) != 'nan' else 'ND' for result in [ results['rep_type']] ) summary.write(data)
[ "def", "summary_reporter", "(", "self", ")", ":", "logging", ".", "info", "(", "'Creating MOB-recon summary report'", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "self", ".", "reportpath", ",", "'mob_recon_summary.csv'", ")", ",", "'w'", ")", "as", "summary", ":", "data", "=", "'Strain,Location,Contig,Incompatibility,IncompatibilityAccession,RelaxaseType,'", "'MashNearestNeighbor,MashNeighborDistance\\n'", "for", "sample", "in", "self", ".", "metadata", ":", "# Initialise a dictionary to store results for the COWBAT final report", "sample", "[", "self", ".", "analysistype", "]", ".", "pipelineresults", "=", "dict", "(", ")", "for", "primarykey", ",", "results", "in", "sample", "[", "self", ".", "analysistype", "]", ".", "report_dict", ".", "items", "(", ")", ":", "# Only process results if they are not calculated to be chromosomal", "if", "results", "[", "'cluster_id'", "]", "!=", "'chromosome'", ":", "data", "+=", "','", ".", "join", "(", "str", "(", "result", ")", ".", "replace", "(", "','", ",", "';'", ")", "if", "str", "(", "result", ")", "!=", "'nan'", "else", "'ND'", "for", "result", "in", "[", "sample", ".", "name", ",", "results", "[", "'cluster_id'", "]", ",", "results", "[", "'contig_id'", "]", ".", "split", "(", "'|'", ")", "[", "1", "]", ",", "results", "[", "'rep_type'", "]", ",", "results", "[", "'rep_type_accession'", "]", ",", "results", "[", "'relaxase_type'", "]", ",", "results", "[", "'mash_nearest_neighbor'", "]", ",", "results", "[", "'mash_neighbor_distance'", "]", "]", ")", "data", "+=", "'\\n'", "# Add the calculated incompatibility to the pipeline results for use in the final COWBAT report", "sample", "[", "self", ".", "analysistype", "]", ".", "pipelineresults", "[", "results", "[", "'cluster_id'", "]", "]", "=", "';'", ".", "join", "(", "str", "(", "result", ")", ".", "replace", "(", "','", ",", "';'", ")", "if", "str", "(", "result", ")", "!=", "'nan'", "else", "'ND'", "for", "result", "in", "[", "results", "[", "'rep_type'", "]", "]", ")", "summary", ".", "write", "(", "data", ")" ]
Parse individual MOB Recon reports into a summary report
[ "Parse", "individual", "MOB", "Recon", "reports", "into", "a", "summary", "report" ]
88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a
https://github.com/lowandrew/OLCTools/blob/88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a/spadespipeline/mobrecon.py#L107-L139
train
lowandrew/OLCTools
spadespipeline/mobrecon.py
MobRecon.amrsummary
def amrsummary(self): """ Create a report combining results from resfinder_assembled and mob_recon_summary reports """ logging.info('Creating AMR summary table from ResFinder and MOB-recon outputs') with open(os.path.join(self.reportpath, 'amr_summary.csv'), 'w') as amr: data = 'Strain,Gene,Allele,Resistance,PercentIdentity,Contig,Location,PlasmidIncompatibilitySets\n' for sample in self.metadata: # Initialise a dictionary to store a set of all the incompatibility types listed for a contig. # As the inc type will only be located on one of possibly several contigs associated with a predicted # plasmid, it is nice to know details about the plasmid inc_dict = dict() for primarykey, results in sample[self.analysistype].report_dict.items(): try: inc = results['cluster_id'] # Convert the rep_type field (predicted incompatibilities) into a more a consistent # format - pandas will call empty fields 'nan', which is a float rep = str(results['rep_type']).replace(',', ';') if str(results['rep_type']) != 'nan' else 'ND' # Add the incompatibility to the set try: inc_dict[inc].add(rep) except KeyError: inc_dict[inc] = set() inc_dict[inc].add(rep) except KeyError: pass # for primarykey, results in sample[self.analysistype].report_dict.items(): try: contig = results['contig_id'].split('|')[1] # Unicycler gives contigs names such as: 3_length=187116_depth=1.60x_circular=true - test # to see if the contig name looks unicycler-like, and set the name appropriately (in this # case, it would be 3) if contig.split('_')[1].startswith('length'): contig = contig.split('_')[0] # Use the list of results from the resfinder analyses for amr_result in sample.resfinder_assembled.sampledata: # Ensure that the current contig is the same as the one in the resfinder results. Ensure # that the slice of the amr result is treated as a string. Unicycler contigs seem to be # treated as integers if contig == str(amr_result[-1]): # Set up the output string data += '{sn},'.format(sn=sample.name) # Add the resistance and MOB recon outputs for the strain data += '{amr},{mob}\n'\ .format(amr=','.join(str(res) if str(res) != 'nan' else 'ND' for res in amr_result[0:4]), mob=','.join(str(res) if str(res) != 'nan' else 'ND' for res in [contig, results['cluster_id'], ';'.join(sorted(inc_dict[str(results['cluster_id'])])) ] ) ) except KeyError: pass amr.write(data)
python
def amrsummary(self): """ Create a report combining results from resfinder_assembled and mob_recon_summary reports """ logging.info('Creating AMR summary table from ResFinder and MOB-recon outputs') with open(os.path.join(self.reportpath, 'amr_summary.csv'), 'w') as amr: data = 'Strain,Gene,Allele,Resistance,PercentIdentity,Contig,Location,PlasmidIncompatibilitySets\n' for sample in self.metadata: # Initialise a dictionary to store a set of all the incompatibility types listed for a contig. # As the inc type will only be located on one of possibly several contigs associated with a predicted # plasmid, it is nice to know details about the plasmid inc_dict = dict() for primarykey, results in sample[self.analysistype].report_dict.items(): try: inc = results['cluster_id'] # Convert the rep_type field (predicted incompatibilities) into a more a consistent # format - pandas will call empty fields 'nan', which is a float rep = str(results['rep_type']).replace(',', ';') if str(results['rep_type']) != 'nan' else 'ND' # Add the incompatibility to the set try: inc_dict[inc].add(rep) except KeyError: inc_dict[inc] = set() inc_dict[inc].add(rep) except KeyError: pass # for primarykey, results in sample[self.analysistype].report_dict.items(): try: contig = results['contig_id'].split('|')[1] # Unicycler gives contigs names such as: 3_length=187116_depth=1.60x_circular=true - test # to see if the contig name looks unicycler-like, and set the name appropriately (in this # case, it would be 3) if contig.split('_')[1].startswith('length'): contig = contig.split('_')[0] # Use the list of results from the resfinder analyses for amr_result in sample.resfinder_assembled.sampledata: # Ensure that the current contig is the same as the one in the resfinder results. Ensure # that the slice of the amr result is treated as a string. Unicycler contigs seem to be # treated as integers if contig == str(amr_result[-1]): # Set up the output string data += '{sn},'.format(sn=sample.name) # Add the resistance and MOB recon outputs for the strain data += '{amr},{mob}\n'\ .format(amr=','.join(str(res) if str(res) != 'nan' else 'ND' for res in amr_result[0:4]), mob=','.join(str(res) if str(res) != 'nan' else 'ND' for res in [contig, results['cluster_id'], ';'.join(sorted(inc_dict[str(results['cluster_id'])])) ] ) ) except KeyError: pass amr.write(data)
[ "def", "amrsummary", "(", "self", ")", ":", "logging", ".", "info", "(", "'Creating AMR summary table from ResFinder and MOB-recon outputs'", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "self", ".", "reportpath", ",", "'amr_summary.csv'", ")", ",", "'w'", ")", "as", "amr", ":", "data", "=", "'Strain,Gene,Allele,Resistance,PercentIdentity,Contig,Location,PlasmidIncompatibilitySets\\n'", "for", "sample", "in", "self", ".", "metadata", ":", "# Initialise a dictionary to store a set of all the incompatibility types listed for a contig.", "# As the inc type will only be located on one of possibly several contigs associated with a predicted", "# plasmid, it is nice to know details about the plasmid", "inc_dict", "=", "dict", "(", ")", "for", "primarykey", ",", "results", "in", "sample", "[", "self", ".", "analysistype", "]", ".", "report_dict", ".", "items", "(", ")", ":", "try", ":", "inc", "=", "results", "[", "'cluster_id'", "]", "# Convert the rep_type field (predicted incompatibilities) into a more a consistent", "# format - pandas will call empty fields 'nan', which is a float", "rep", "=", "str", "(", "results", "[", "'rep_type'", "]", ")", ".", "replace", "(", "','", ",", "';'", ")", "if", "str", "(", "results", "[", "'rep_type'", "]", ")", "!=", "'nan'", "else", "'ND'", "# Add the incompatibility to the set", "try", ":", "inc_dict", "[", "inc", "]", ".", "add", "(", "rep", ")", "except", "KeyError", ":", "inc_dict", "[", "inc", "]", "=", "set", "(", ")", "inc_dict", "[", "inc", "]", ".", "add", "(", "rep", ")", "except", "KeyError", ":", "pass", "#", "for", "primarykey", ",", "results", "in", "sample", "[", "self", ".", "analysistype", "]", ".", "report_dict", ".", "items", "(", ")", ":", "try", ":", "contig", "=", "results", "[", "'contig_id'", "]", ".", "split", "(", "'|'", ")", "[", "1", "]", "# Unicycler gives contigs names such as: 3_length=187116_depth=1.60x_circular=true - test", "# to see if the contig name looks unicycler-like, and set the name appropriately (in this", "# case, it would be 3)", "if", "contig", ".", "split", "(", "'_'", ")", "[", "1", "]", ".", "startswith", "(", "'length'", ")", ":", "contig", "=", "contig", ".", "split", "(", "'_'", ")", "[", "0", "]", "# Use the list of results from the resfinder analyses", "for", "amr_result", "in", "sample", ".", "resfinder_assembled", ".", "sampledata", ":", "# Ensure that the current contig is the same as the one in the resfinder results. Ensure", "# that the slice of the amr result is treated as a string. Unicycler contigs seem to be", "# treated as integers", "if", "contig", "==", "str", "(", "amr_result", "[", "-", "1", "]", ")", ":", "# Set up the output string", "data", "+=", "'{sn},'", ".", "format", "(", "sn", "=", "sample", ".", "name", ")", "# Add the resistance and MOB recon outputs for the strain", "data", "+=", "'{amr},{mob}\\n'", ".", "format", "(", "amr", "=", "','", ".", "join", "(", "str", "(", "res", ")", "if", "str", "(", "res", ")", "!=", "'nan'", "else", "'ND'", "for", "res", "in", "amr_result", "[", "0", ":", "4", "]", ")", ",", "mob", "=", "','", ".", "join", "(", "str", "(", "res", ")", "if", "str", "(", "res", ")", "!=", "'nan'", "else", "'ND'", "for", "res", "in", "[", "contig", ",", "results", "[", "'cluster_id'", "]", ",", "';'", ".", "join", "(", "sorted", "(", "inc_dict", "[", "str", "(", "results", "[", "'cluster_id'", "]", ")", "]", ")", ")", "]", ")", ")", "except", "KeyError", ":", "pass", "amr", ".", "write", "(", "data", ")" ]
Create a report combining results from resfinder_assembled and mob_recon_summary reports
[ "Create", "a", "report", "combining", "results", "from", "resfinder_assembled", "and", "mob_recon_summary", "reports" ]
88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a
https://github.com/lowandrew/OLCTools/blob/88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a/spadespipeline/mobrecon.py#L141-L196
train
lowandrew/OLCTools
spadespipeline/mobrecon.py
MobRecon.geneseekrsummary
def geneseekrsummary(self): """ Create a report combining GeneSeekr and MOB Recon outputs """ logging.info('Creating predicted plasmid-borne gene summary table') with open(os.path.join(self.reportpath, 'plasmid_borne_summary.csv'), 'w') as pbs: data = 'Strain,Gene,PercentIdentity,Contig,Location,PlasmidIncompatibilitySets\n' for sample in self.metadata: # Create a flag to determine whether the strain name needs to be added to the data string if there # were no results result_bool = False # Initialise a dictionary to store a set of all the incompatibility types listed for a contig. # As the inc type will only be located on one of possibly several contigs associated with a predicted # plasmid, it is nice to know details about the plasmid inc_dict = dict() # Iterate through all the MOB recon outputs to populate the incompatibility set for primarykey, results in sample[self.analysistype].report_dict.items(): try: inc = results['cluster_id'] # Convert the rep_type field (predicted incompatibilities) into a more a consistent # format - pandas will call empty fields 'nan', which is a float rep = str(results['rep_type']).replace(',', ';') if str(results['rep_type']) != 'nan' else 'ND' # Add the incompatibility to the set try: inc_dict[inc].add(rep) except KeyError: inc_dict[inc] = set() inc_dict[inc].add(rep) except KeyError: pass for primarykey, results in sample[self.analysistype].report_dict.items(): try: contig = results['contig_id'].split('|')[1] # Unicycler gives contigs names such as: 3_length=187116_depth=1.60x_circular=true - test # to see if the contig name looks unicycler-like, and set the name appropriately (in this # case, it would be 3) if contig.split('_')[1].startswith('length'): contig = contig.split('_')[0] for gene, result_dict in sample.geneseekr_results.sampledata.items(): if contig == result_dict['query_id']: percent_identity = result_dict['PercentIdentity'] # Set up the output string if the percent identity of the match is greater than the # cutoff if float(result_dict['PercentIdentity']) >= self.cutoff: # As there was at least a single gene passing the threshold, set the boolean to True result_bool = True data += '{sn},'.format(sn=sample.name) data += '{gene},{pi},{contig},{cid},{inc}\n'\ .format(gene=gene, pi=percent_identity, contig=contig, cid=results['cluster_id'], inc=';'.join(sorted(inc_dict[str(results['cluster_id'])]))) except KeyError: pass # If there were no results associated with the strain, make the row the strain name only if not result_bool: data += '{sn}\n'.format(sn=sample.name) # Write the string to the report pbs.write(data)
python
def geneseekrsummary(self): """ Create a report combining GeneSeekr and MOB Recon outputs """ logging.info('Creating predicted plasmid-borne gene summary table') with open(os.path.join(self.reportpath, 'plasmid_borne_summary.csv'), 'w') as pbs: data = 'Strain,Gene,PercentIdentity,Contig,Location,PlasmidIncompatibilitySets\n' for sample in self.metadata: # Create a flag to determine whether the strain name needs to be added to the data string if there # were no results result_bool = False # Initialise a dictionary to store a set of all the incompatibility types listed for a contig. # As the inc type will only be located on one of possibly several contigs associated with a predicted # plasmid, it is nice to know details about the plasmid inc_dict = dict() # Iterate through all the MOB recon outputs to populate the incompatibility set for primarykey, results in sample[self.analysistype].report_dict.items(): try: inc = results['cluster_id'] # Convert the rep_type field (predicted incompatibilities) into a more a consistent # format - pandas will call empty fields 'nan', which is a float rep = str(results['rep_type']).replace(',', ';') if str(results['rep_type']) != 'nan' else 'ND' # Add the incompatibility to the set try: inc_dict[inc].add(rep) except KeyError: inc_dict[inc] = set() inc_dict[inc].add(rep) except KeyError: pass for primarykey, results in sample[self.analysistype].report_dict.items(): try: contig = results['contig_id'].split('|')[1] # Unicycler gives contigs names such as: 3_length=187116_depth=1.60x_circular=true - test # to see if the contig name looks unicycler-like, and set the name appropriately (in this # case, it would be 3) if contig.split('_')[1].startswith('length'): contig = contig.split('_')[0] for gene, result_dict in sample.geneseekr_results.sampledata.items(): if contig == result_dict['query_id']: percent_identity = result_dict['PercentIdentity'] # Set up the output string if the percent identity of the match is greater than the # cutoff if float(result_dict['PercentIdentity']) >= self.cutoff: # As there was at least a single gene passing the threshold, set the boolean to True result_bool = True data += '{sn},'.format(sn=sample.name) data += '{gene},{pi},{contig},{cid},{inc}\n'\ .format(gene=gene, pi=percent_identity, contig=contig, cid=results['cluster_id'], inc=';'.join(sorted(inc_dict[str(results['cluster_id'])]))) except KeyError: pass # If there were no results associated with the strain, make the row the strain name only if not result_bool: data += '{sn}\n'.format(sn=sample.name) # Write the string to the report pbs.write(data)
[ "def", "geneseekrsummary", "(", "self", ")", ":", "logging", ".", "info", "(", "'Creating predicted plasmid-borne gene summary table'", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "self", ".", "reportpath", ",", "'plasmid_borne_summary.csv'", ")", ",", "'w'", ")", "as", "pbs", ":", "data", "=", "'Strain,Gene,PercentIdentity,Contig,Location,PlasmidIncompatibilitySets\\n'", "for", "sample", "in", "self", ".", "metadata", ":", "# Create a flag to determine whether the strain name needs to be added to the data string if there", "# were no results", "result_bool", "=", "False", "# Initialise a dictionary to store a set of all the incompatibility types listed for a contig.", "# As the inc type will only be located on one of possibly several contigs associated with a predicted", "# plasmid, it is nice to know details about the plasmid", "inc_dict", "=", "dict", "(", ")", "# Iterate through all the MOB recon outputs to populate the incompatibility set", "for", "primarykey", ",", "results", "in", "sample", "[", "self", ".", "analysistype", "]", ".", "report_dict", ".", "items", "(", ")", ":", "try", ":", "inc", "=", "results", "[", "'cluster_id'", "]", "# Convert the rep_type field (predicted incompatibilities) into a more a consistent", "# format - pandas will call empty fields 'nan', which is a float", "rep", "=", "str", "(", "results", "[", "'rep_type'", "]", ")", ".", "replace", "(", "','", ",", "';'", ")", "if", "str", "(", "results", "[", "'rep_type'", "]", ")", "!=", "'nan'", "else", "'ND'", "# Add the incompatibility to the set", "try", ":", "inc_dict", "[", "inc", "]", ".", "add", "(", "rep", ")", "except", "KeyError", ":", "inc_dict", "[", "inc", "]", "=", "set", "(", ")", "inc_dict", "[", "inc", "]", ".", "add", "(", "rep", ")", "except", "KeyError", ":", "pass", "for", "primarykey", ",", "results", "in", "sample", "[", "self", ".", "analysistype", "]", ".", "report_dict", ".", "items", "(", ")", ":", "try", ":", "contig", "=", "results", "[", "'contig_id'", "]", ".", "split", "(", "'|'", ")", "[", "1", "]", "# Unicycler gives contigs names such as: 3_length=187116_depth=1.60x_circular=true - test", "# to see if the contig name looks unicycler-like, and set the name appropriately (in this", "# case, it would be 3)", "if", "contig", ".", "split", "(", "'_'", ")", "[", "1", "]", ".", "startswith", "(", "'length'", ")", ":", "contig", "=", "contig", ".", "split", "(", "'_'", ")", "[", "0", "]", "for", "gene", ",", "result_dict", "in", "sample", ".", "geneseekr_results", ".", "sampledata", ".", "items", "(", ")", ":", "if", "contig", "==", "result_dict", "[", "'query_id'", "]", ":", "percent_identity", "=", "result_dict", "[", "'PercentIdentity'", "]", "# Set up the output string if the percent identity of the match is greater than the", "# cutoff", "if", "float", "(", "result_dict", "[", "'PercentIdentity'", "]", ")", ">=", "self", ".", "cutoff", ":", "# As there was at least a single gene passing the threshold, set the boolean to True", "result_bool", "=", "True", "data", "+=", "'{sn},'", ".", "format", "(", "sn", "=", "sample", ".", "name", ")", "data", "+=", "'{gene},{pi},{contig},{cid},{inc}\\n'", ".", "format", "(", "gene", "=", "gene", ",", "pi", "=", "percent_identity", ",", "contig", "=", "contig", ",", "cid", "=", "results", "[", "'cluster_id'", "]", ",", "inc", "=", "';'", ".", "join", "(", "sorted", "(", "inc_dict", "[", "str", "(", "results", "[", "'cluster_id'", "]", ")", "]", ")", ")", ")", "except", "KeyError", ":", "pass", "# If there were no results associated with the strain, make the row the strain name only", "if", "not", "result_bool", ":", "data", "+=", "'{sn}\\n'", ".", "format", "(", "sn", "=", "sample", ".", "name", ")", "# Write the string to the report", "pbs", ".", "write", "(", "data", ")" ]
Create a report combining GeneSeekr and MOB Recon outputs
[ "Create", "a", "report", "combining", "GeneSeekr", "and", "MOB", "Recon", "outputs" ]
88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a
https://github.com/lowandrew/OLCTools/blob/88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a/spadespipeline/mobrecon.py#L198-L257
train
kevinconway/venvctrl
venvctrl/venv/command.py
CommandMixin._execute
def _execute(cmd): """Run a command in a subshell.""" cmd_parts = shlex.split(cmd) if sys.version_info[0] < 3: cmd_parts = shlex.split(cmd.encode('ascii')) proc = subprocess.Popen( cmd_parts, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) out, err = proc.communicate() if proc.returncode != 0: raise subprocess.CalledProcessError( returncode=proc.returncode, cmd=cmd, output=err, ) return CommandResult( code=proc.returncode, out=out.decode('utf8'), err=err.decode('utf8'), )
python
def _execute(cmd): """Run a command in a subshell.""" cmd_parts = shlex.split(cmd) if sys.version_info[0] < 3: cmd_parts = shlex.split(cmd.encode('ascii')) proc = subprocess.Popen( cmd_parts, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) out, err = proc.communicate() if proc.returncode != 0: raise subprocess.CalledProcessError( returncode=proc.returncode, cmd=cmd, output=err, ) return CommandResult( code=proc.returncode, out=out.decode('utf8'), err=err.decode('utf8'), )
[ "def", "_execute", "(", "cmd", ")", ":", "cmd_parts", "=", "shlex", ".", "split", "(", "cmd", ")", "if", "sys", ".", "version_info", "[", "0", "]", "<", "3", ":", "cmd_parts", "=", "shlex", ".", "split", "(", "cmd", ".", "encode", "(", "'ascii'", ")", ")", "proc", "=", "subprocess", ".", "Popen", "(", "cmd_parts", ",", "stdout", "=", "subprocess", ".", "PIPE", ",", "stderr", "=", "subprocess", ".", "PIPE", ",", ")", "out", ",", "err", "=", "proc", ".", "communicate", "(", ")", "if", "proc", ".", "returncode", "!=", "0", ":", "raise", "subprocess", ".", "CalledProcessError", "(", "returncode", "=", "proc", ".", "returncode", ",", "cmd", "=", "cmd", ",", "output", "=", "err", ",", ")", "return", "CommandResult", "(", "code", "=", "proc", ".", "returncode", ",", "out", "=", "out", ".", "decode", "(", "'utf8'", ")", ",", "err", "=", "err", ".", "decode", "(", "'utf8'", ")", ",", ")" ]
Run a command in a subshell.
[ "Run", "a", "command", "in", "a", "subshell", "." ]
36d4e0e4d5ebced6385a6ade1198f4769ff2df41
https://github.com/kevinconway/venvctrl/blob/36d4e0e4d5ebced6385a6ade1198f4769ff2df41/venvctrl/venv/command.py#L22-L47
train
kevinconway/venvctrl
venvctrl/venv/command.py
CommandMixin.cmd_path
def cmd_path(self, cmd): """Get the path of a command in the virtual if it exists. Args: cmd (str): The command to look for. Returns: str: The full path to the command. Raises: ValueError: If the command is not present. """ for binscript in self.bin.files: if binscript.path.endswith('/{0}'.format(cmd)): return binscript.path raise ValueError('The command {0} was not found.'.format(cmd))
python
def cmd_path(self, cmd): """Get the path of a command in the virtual if it exists. Args: cmd (str): The command to look for. Returns: str: The full path to the command. Raises: ValueError: If the command is not present. """ for binscript in self.bin.files: if binscript.path.endswith('/{0}'.format(cmd)): return binscript.path raise ValueError('The command {0} was not found.'.format(cmd))
[ "def", "cmd_path", "(", "self", ",", "cmd", ")", ":", "for", "binscript", "in", "self", ".", "bin", ".", "files", ":", "if", "binscript", ".", "path", ".", "endswith", "(", "'/{0}'", ".", "format", "(", "cmd", ")", ")", ":", "return", "binscript", ".", "path", "raise", "ValueError", "(", "'The command {0} was not found.'", ".", "format", "(", "cmd", ")", ")" ]
Get the path of a command in the virtual if it exists. Args: cmd (str): The command to look for. Returns: str: The full path to the command. Raises: ValueError: If the command is not present.
[ "Get", "the", "path", "of", "a", "command", "in", "the", "virtual", "if", "it", "exists", "." ]
36d4e0e4d5ebced6385a6ade1198f4769ff2df41
https://github.com/kevinconway/venvctrl/blob/36d4e0e4d5ebced6385a6ade1198f4769ff2df41/venvctrl/venv/command.py#L49-L67
train
kevinconway/venvctrl
venvctrl/venv/command.py
CommandMixin.python
def python(self, cmd): """Execute a python script using the virtual environment python.""" python_bin = self.cmd_path('python') cmd = '{0} {1}'.format(python_bin, cmd) return self._execute(cmd)
python
def python(self, cmd): """Execute a python script using the virtual environment python.""" python_bin = self.cmd_path('python') cmd = '{0} {1}'.format(python_bin, cmd) return self._execute(cmd)
[ "def", "python", "(", "self", ",", "cmd", ")", ":", "python_bin", "=", "self", ".", "cmd_path", "(", "'python'", ")", "cmd", "=", "'{0} {1}'", ".", "format", "(", "python_bin", ",", "cmd", ")", "return", "self", ".", "_execute", "(", "cmd", ")" ]
Execute a python script using the virtual environment python.
[ "Execute", "a", "python", "script", "using", "the", "virtual", "environment", "python", "." ]
36d4e0e4d5ebced6385a6ade1198f4769ff2df41
https://github.com/kevinconway/venvctrl/blob/36d4e0e4d5ebced6385a6ade1198f4769ff2df41/venvctrl/venv/command.py#L73-L77
train
kevinconway/venvctrl
venvctrl/venv/command.py
CommandMixin.pip
def pip(self, cmd): """Execute some pip function using the virtual environment pip.""" pip_bin = self.cmd_path('pip') cmd = '{0} {1}'.format(pip_bin, cmd) return self._execute(cmd)
python
def pip(self, cmd): """Execute some pip function using the virtual environment pip.""" pip_bin = self.cmd_path('pip') cmd = '{0} {1}'.format(pip_bin, cmd) return self._execute(cmd)
[ "def", "pip", "(", "self", ",", "cmd", ")", ":", "pip_bin", "=", "self", ".", "cmd_path", "(", "'pip'", ")", "cmd", "=", "'{0} {1}'", ".", "format", "(", "pip_bin", ",", "cmd", ")", "return", "self", ".", "_execute", "(", "cmd", ")" ]
Execute some pip function using the virtual environment pip.
[ "Execute", "some", "pip", "function", "using", "the", "virtual", "environment", "pip", "." ]
36d4e0e4d5ebced6385a6ade1198f4769ff2df41
https://github.com/kevinconway/venvctrl/blob/36d4e0e4d5ebced6385a6ade1198f4769ff2df41/venvctrl/venv/command.py#L79-L83
train
lowandrew/OLCTools
spadespipeline/GeneSeekr.py
GeneSeekr.filterunique
def filterunique(self): """ Filters multiple BLAST hits in a common region of the genome. Leaves only the best hit """ for sample in self.metadata: # Initialise variables sample[self.analysistype].blastresults = list() resultdict = dict() rowdict = dict() try: # Iterate through all the contigs, which had BLAST hits for contig in sample[self.analysistype].queryranges: # Find all the locations in each contig that correspond to the BLAST hits for location in sample[self.analysistype].queryranges[contig]: # Extract the BLAST result dictionary for the contig for row in sample[self.analysistype].results[contig]: # Initialise variable to reduce the number of times row['value'] needs to be typed contig = row['query_id'] high = row['high'] low = row['low'] percentidentity = row['percentidentity'] # Join the two ranges in the location list with a comma locstr = ','.join([str(x) for x in location]) # Create a set of the location of all the base pairs between the low and high (-1) e.g. # [6, 10] would give 6, 7, 8, 9, but NOT 10. This turns out to be useful, as there are # genes located back-to-back in the genome e.g. strB and strA, with locations of 2557,3393 # and 3393,4196, respectively. By not including 3393 in the strB calculations, I don't # have to worry about this single bp overlap loc = set(range(low, high)) # Use a set intersection to determine whether the current result overlaps with location # This will allow all the hits to be grouped together based on their location if loc.intersection(set(range(location[0], location[1]))): # Populate the grouped hits for each location try: resultdict[contig][locstr].append(percentidentity) rowdict[contig][locstr].append(row) # Initialise and populate the lists of the nested dictionary except KeyError: try: resultdict[contig][locstr] = list() resultdict[contig][locstr].append(percentidentity) rowdict[contig][locstr] = list() rowdict[contig][locstr].append(row) # As this is a nested dictionary, it needs to be initialised here except KeyError: resultdict[contig] = dict() resultdict[contig][locstr] = list() resultdict[contig][locstr].append(percentidentity) rowdict[contig] = dict() rowdict[contig][locstr] = list() rowdict[contig][locstr].append(row) except KeyError: pass # Find the best hit for each location based on percent identity for contig in resultdict: # Do not allow the same gene to be added to the dictionary more than once genes = list() for location in resultdict[contig]: # Initialise a variable to determine whether there is already a best hit found for the location multiple = False # Iterate through the BLAST results to find the best hit for row in rowdict[contig][location]: # Add the best hit to the .blastresults attribute of the object if row['percentidentity'] == max(resultdict[contig][location]) and not multiple \ and row['subject_id'] not in genes: sample[self.analysistype].blastresults.append(row) genes.append(row['subject_id']) multiple = True
python
def filterunique(self): """ Filters multiple BLAST hits in a common region of the genome. Leaves only the best hit """ for sample in self.metadata: # Initialise variables sample[self.analysistype].blastresults = list() resultdict = dict() rowdict = dict() try: # Iterate through all the contigs, which had BLAST hits for contig in sample[self.analysistype].queryranges: # Find all the locations in each contig that correspond to the BLAST hits for location in sample[self.analysistype].queryranges[contig]: # Extract the BLAST result dictionary for the contig for row in sample[self.analysistype].results[contig]: # Initialise variable to reduce the number of times row['value'] needs to be typed contig = row['query_id'] high = row['high'] low = row['low'] percentidentity = row['percentidentity'] # Join the two ranges in the location list with a comma locstr = ','.join([str(x) for x in location]) # Create a set of the location of all the base pairs between the low and high (-1) e.g. # [6, 10] would give 6, 7, 8, 9, but NOT 10. This turns out to be useful, as there are # genes located back-to-back in the genome e.g. strB and strA, with locations of 2557,3393 # and 3393,4196, respectively. By not including 3393 in the strB calculations, I don't # have to worry about this single bp overlap loc = set(range(low, high)) # Use a set intersection to determine whether the current result overlaps with location # This will allow all the hits to be grouped together based on their location if loc.intersection(set(range(location[0], location[1]))): # Populate the grouped hits for each location try: resultdict[contig][locstr].append(percentidentity) rowdict[contig][locstr].append(row) # Initialise and populate the lists of the nested dictionary except KeyError: try: resultdict[contig][locstr] = list() resultdict[contig][locstr].append(percentidentity) rowdict[contig][locstr] = list() rowdict[contig][locstr].append(row) # As this is a nested dictionary, it needs to be initialised here except KeyError: resultdict[contig] = dict() resultdict[contig][locstr] = list() resultdict[contig][locstr].append(percentidentity) rowdict[contig] = dict() rowdict[contig][locstr] = list() rowdict[contig][locstr].append(row) except KeyError: pass # Find the best hit for each location based on percent identity for contig in resultdict: # Do not allow the same gene to be added to the dictionary more than once genes = list() for location in resultdict[contig]: # Initialise a variable to determine whether there is already a best hit found for the location multiple = False # Iterate through the BLAST results to find the best hit for row in rowdict[contig][location]: # Add the best hit to the .blastresults attribute of the object if row['percentidentity'] == max(resultdict[contig][location]) and not multiple \ and row['subject_id'] not in genes: sample[self.analysistype].blastresults.append(row) genes.append(row['subject_id']) multiple = True
[ "def", "filterunique", "(", "self", ")", ":", "for", "sample", "in", "self", ".", "metadata", ":", "# Initialise variables", "sample", "[", "self", ".", "analysistype", "]", ".", "blastresults", "=", "list", "(", ")", "resultdict", "=", "dict", "(", ")", "rowdict", "=", "dict", "(", ")", "try", ":", "# Iterate through all the contigs, which had BLAST hits", "for", "contig", "in", "sample", "[", "self", ".", "analysistype", "]", ".", "queryranges", ":", "# Find all the locations in each contig that correspond to the BLAST hits", "for", "location", "in", "sample", "[", "self", ".", "analysistype", "]", ".", "queryranges", "[", "contig", "]", ":", "# Extract the BLAST result dictionary for the contig", "for", "row", "in", "sample", "[", "self", ".", "analysistype", "]", ".", "results", "[", "contig", "]", ":", "# Initialise variable to reduce the number of times row['value'] needs to be typed", "contig", "=", "row", "[", "'query_id'", "]", "high", "=", "row", "[", "'high'", "]", "low", "=", "row", "[", "'low'", "]", "percentidentity", "=", "row", "[", "'percentidentity'", "]", "# Join the two ranges in the location list with a comma", "locstr", "=", "','", ".", "join", "(", "[", "str", "(", "x", ")", "for", "x", "in", "location", "]", ")", "# Create a set of the location of all the base pairs between the low and high (-1) e.g.", "# [6, 10] would give 6, 7, 8, 9, but NOT 10. This turns out to be useful, as there are", "# genes located back-to-back in the genome e.g. strB and strA, with locations of 2557,3393", "# and 3393,4196, respectively. By not including 3393 in the strB calculations, I don't", "# have to worry about this single bp overlap", "loc", "=", "set", "(", "range", "(", "low", ",", "high", ")", ")", "# Use a set intersection to determine whether the current result overlaps with location", "# This will allow all the hits to be grouped together based on their location", "if", "loc", ".", "intersection", "(", "set", "(", "range", "(", "location", "[", "0", "]", ",", "location", "[", "1", "]", ")", ")", ")", ":", "# Populate the grouped hits for each location", "try", ":", "resultdict", "[", "contig", "]", "[", "locstr", "]", ".", "append", "(", "percentidentity", ")", "rowdict", "[", "contig", "]", "[", "locstr", "]", ".", "append", "(", "row", ")", "# Initialise and populate the lists of the nested dictionary", "except", "KeyError", ":", "try", ":", "resultdict", "[", "contig", "]", "[", "locstr", "]", "=", "list", "(", ")", "resultdict", "[", "contig", "]", "[", "locstr", "]", ".", "append", "(", "percentidentity", ")", "rowdict", "[", "contig", "]", "[", "locstr", "]", "=", "list", "(", ")", "rowdict", "[", "contig", "]", "[", "locstr", "]", ".", "append", "(", "row", ")", "# As this is a nested dictionary, it needs to be initialised here", "except", "KeyError", ":", "resultdict", "[", "contig", "]", "=", "dict", "(", ")", "resultdict", "[", "contig", "]", "[", "locstr", "]", "=", "list", "(", ")", "resultdict", "[", "contig", "]", "[", "locstr", "]", ".", "append", "(", "percentidentity", ")", "rowdict", "[", "contig", "]", "=", "dict", "(", ")", "rowdict", "[", "contig", "]", "[", "locstr", "]", "=", "list", "(", ")", "rowdict", "[", "contig", "]", "[", "locstr", "]", ".", "append", "(", "row", ")", "except", "KeyError", ":", "pass", "# Find the best hit for each location based on percent identity", "for", "contig", "in", "resultdict", ":", "# Do not allow the same gene to be added to the dictionary more than once", "genes", "=", "list", "(", ")", "for", "location", "in", "resultdict", "[", "contig", "]", ":", "# Initialise a variable to determine whether there is already a best hit found for the location", "multiple", "=", "False", "# Iterate through the BLAST results to find the best hit", "for", "row", "in", "rowdict", "[", "contig", "]", "[", "location", "]", ":", "# Add the best hit to the .blastresults attribute of the object", "if", "row", "[", "'percentidentity'", "]", "==", "max", "(", "resultdict", "[", "contig", "]", "[", "location", "]", ")", "and", "not", "multiple", "and", "row", "[", "'subject_id'", "]", "not", "in", "genes", ":", "sample", "[", "self", ".", "analysistype", "]", ".", "blastresults", ".", "append", "(", "row", ")", "genes", ".", "append", "(", "row", "[", "'subject_id'", "]", ")", "multiple", "=", "True" ]
Filters multiple BLAST hits in a common region of the genome. Leaves only the best hit
[ "Filters", "multiple", "BLAST", "hits", "in", "a", "common", "region", "of", "the", "genome", ".", "Leaves", "only", "the", "best", "hit" ]
88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a
https://github.com/lowandrew/OLCTools/blob/88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a/spadespipeline/GeneSeekr.py#L51-L118
train
lowandrew/OLCTools
spadespipeline/GeneSeekr.py
GeneSeekr.makedbthreads
def makedbthreads(self): """ Setup and create threads for class """ # Find all the target folders in the analysis and add them to the targetfolders set for sample in self.metadata: if sample[self.analysistype].combinedtargets != 'NA': self.targetfolders.add(sample[self.analysistype].targetpath) # Create and start threads for each fasta file in the list for i in range(len(self.targetfolders)): # Send the threads to makeblastdb threads = Thread(target=self.makeblastdb, args=()) # Set the daemon to true - something to do with thread management threads.setDaemon(True) # Start the threading threads.start() # Make blast databases for MLST files (if necessary) for targetdir in self.targetfolders: # List comprehension to remove any previously created database files from list self.targetfiles = glob(os.path.join(targetdir, '*.fasta')) try: _ = self.targetfiles[0] except IndexError: self.targetfiles = glob(os.path.join(targetdir, '*.fasta')) for targetfile in self.targetfiles: # Read the sequences from the target file to a dictionary self.records[targetfile] = SeqIO.to_dict(SeqIO.parse(targetfile, 'fasta')) # Add the fasta file to the queue self.dqueue.put(targetfile) self.dqueue.join()
python
def makedbthreads(self): """ Setup and create threads for class """ # Find all the target folders in the analysis and add them to the targetfolders set for sample in self.metadata: if sample[self.analysistype].combinedtargets != 'NA': self.targetfolders.add(sample[self.analysistype].targetpath) # Create and start threads for each fasta file in the list for i in range(len(self.targetfolders)): # Send the threads to makeblastdb threads = Thread(target=self.makeblastdb, args=()) # Set the daemon to true - something to do with thread management threads.setDaemon(True) # Start the threading threads.start() # Make blast databases for MLST files (if necessary) for targetdir in self.targetfolders: # List comprehension to remove any previously created database files from list self.targetfiles = glob(os.path.join(targetdir, '*.fasta')) try: _ = self.targetfiles[0] except IndexError: self.targetfiles = glob(os.path.join(targetdir, '*.fasta')) for targetfile in self.targetfiles: # Read the sequences from the target file to a dictionary self.records[targetfile] = SeqIO.to_dict(SeqIO.parse(targetfile, 'fasta')) # Add the fasta file to the queue self.dqueue.put(targetfile) self.dqueue.join()
[ "def", "makedbthreads", "(", "self", ")", ":", "# Find all the target folders in the analysis and add them to the targetfolders set", "for", "sample", "in", "self", ".", "metadata", ":", "if", "sample", "[", "self", ".", "analysistype", "]", ".", "combinedtargets", "!=", "'NA'", ":", "self", ".", "targetfolders", ".", "add", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "targetpath", ")", "# Create and start threads for each fasta file in the list", "for", "i", "in", "range", "(", "len", "(", "self", ".", "targetfolders", ")", ")", ":", "# Send the threads to makeblastdb", "threads", "=", "Thread", "(", "target", "=", "self", ".", "makeblastdb", ",", "args", "=", "(", ")", ")", "# Set the daemon to true - something to do with thread management", "threads", ".", "setDaemon", "(", "True", ")", "# Start the threading", "threads", ".", "start", "(", ")", "# Make blast databases for MLST files (if necessary)", "for", "targetdir", "in", "self", ".", "targetfolders", ":", "# List comprehension to remove any previously created database files from list", "self", ".", "targetfiles", "=", "glob", "(", "os", ".", "path", ".", "join", "(", "targetdir", ",", "'*.fasta'", ")", ")", "try", ":", "_", "=", "self", ".", "targetfiles", "[", "0", "]", "except", "IndexError", ":", "self", ".", "targetfiles", "=", "glob", "(", "os", ".", "path", ".", "join", "(", "targetdir", ",", "'*.fasta'", ")", ")", "for", "targetfile", "in", "self", ".", "targetfiles", ":", "# Read the sequences from the target file to a dictionary", "self", ".", "records", "[", "targetfile", "]", "=", "SeqIO", ".", "to_dict", "(", "SeqIO", ".", "parse", "(", "targetfile", ",", "'fasta'", ")", ")", "# Add the fasta file to the queue", "self", ".", "dqueue", ".", "put", "(", "targetfile", ")", "self", ".", "dqueue", ".", "join", "(", ")" ]
Setup and create threads for class
[ "Setup", "and", "create", "threads", "for", "class" ]
88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a
https://github.com/lowandrew/OLCTools/blob/88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a/spadespipeline/GeneSeekr.py#L120-L149
train
grahame/dividebatur
dividebatur/senatecount.py
check_config
def check_config(config): "basic checks that the configuration file is valid" shortnames = [count['shortname'] for count in config['count']] if len(shortnames) != len(set(shortnames)): logger.error("error: duplicate `shortname' in count configuration.") return False return True
python
def check_config(config): "basic checks that the configuration file is valid" shortnames = [count['shortname'] for count in config['count']] if len(shortnames) != len(set(shortnames)): logger.error("error: duplicate `shortname' in count configuration.") return False return True
[ "def", "check_config", "(", "config", ")", ":", "shortnames", "=", "[", "count", "[", "'shortname'", "]", "for", "count", "in", "config", "[", "'count'", "]", "]", "if", "len", "(", "shortnames", ")", "!=", "len", "(", "set", "(", "shortnames", ")", ")", ":", "logger", ".", "error", "(", "\"error: duplicate `shortname' in count configuration.\"", ")", "return", "False", "return", "True" ]
basic checks that the configuration file is valid
[ "basic", "checks", "that", "the", "configuration", "file", "is", "valid" ]
adc1f6e8013943471f1679e3c94f9448a1e4a472
https://github.com/grahame/dividebatur/blob/adc1f6e8013943471f1679e3c94f9448a1e4a472/dividebatur/senatecount.py#L464-L470
train
grahame/dividebatur
dividebatur/senatecount.py
Automation._qstr
def _qstr(self, question): "we need to cope with a list, or a list of lists" parts = [] for entry in question: if type(entry) is list: parts.append(self._qstr(entry)) else: parts.append('"%s"<%d>' % (self._count_data.get_candidate_title(entry), entry)) return ', '.join(parts)
python
def _qstr(self, question): "we need to cope with a list, or a list of lists" parts = [] for entry in question: if type(entry) is list: parts.append(self._qstr(entry)) else: parts.append('"%s"<%d>' % (self._count_data.get_candidate_title(entry), entry)) return ', '.join(parts)
[ "def", "_qstr", "(", "self", ",", "question", ")", ":", "parts", "=", "[", "]", "for", "entry", "in", "question", ":", "if", "type", "(", "entry", ")", "is", "list", ":", "parts", ".", "append", "(", "self", ".", "_qstr", "(", "entry", ")", ")", "else", ":", "parts", ".", "append", "(", "'\"%s\"<%d>'", "%", "(", "self", ".", "_count_data", ".", "get_candidate_title", "(", "entry", ")", ",", "entry", ")", ")", "return", "', '", ".", "join", "(", "parts", ")" ]
we need to cope with a list, or a list of lists
[ "we", "need", "to", "cope", "with", "a", "list", "or", "a", "list", "of", "lists" ]
adc1f6e8013943471f1679e3c94f9448a1e4a472
https://github.com/grahame/dividebatur/blob/adc1f6e8013943471f1679e3c94f9448a1e4a472/dividebatur/senatecount.py#L333-L341
train
grahame/dividebatur
dividebatur/senatecount.py
Automation.create_callback
def create_callback(self): """ create a callback, suitable to be passed to SenateCounter """ def __callback(question_posed): logger.debug("%s: asked to choose between: %s" % (self._name, self._qstr(question_posed))) if self._upto == len(self._data): logger.error("%s: out of automation data, requested to pick between %s" % (self._name, self._qstr(question_posed))) raise AutomationException("out of automation data") question_archived, answer = self._data[self._upto] if question_archived != question_posed: logger.error("%s: automation data mismatch, expected question `%s', got question `%s'" % (self._name, self._qstr(question_archived), self._qstr(question_posed))) resp = question_posed.index(answer) self._upto += 1 return resp return __callback
python
def create_callback(self): """ create a callback, suitable to be passed to SenateCounter """ def __callback(question_posed): logger.debug("%s: asked to choose between: %s" % (self._name, self._qstr(question_posed))) if self._upto == len(self._data): logger.error("%s: out of automation data, requested to pick between %s" % (self._name, self._qstr(question_posed))) raise AutomationException("out of automation data") question_archived, answer = self._data[self._upto] if question_archived != question_posed: logger.error("%s: automation data mismatch, expected question `%s', got question `%s'" % (self._name, self._qstr(question_archived), self._qstr(question_posed))) resp = question_posed.index(answer) self._upto += 1 return resp return __callback
[ "def", "create_callback", "(", "self", ")", ":", "def", "__callback", "(", "question_posed", ")", ":", "logger", ".", "debug", "(", "\"%s: asked to choose between: %s\"", "%", "(", "self", ".", "_name", ",", "self", ".", "_qstr", "(", "question_posed", ")", ")", ")", "if", "self", ".", "_upto", "==", "len", "(", "self", ".", "_data", ")", ":", "logger", ".", "error", "(", "\"%s: out of automation data, requested to pick between %s\"", "%", "(", "self", ".", "_name", ",", "self", ".", "_qstr", "(", "question_posed", ")", ")", ")", "raise", "AutomationException", "(", "\"out of automation data\"", ")", "question_archived", ",", "answer", "=", "self", ".", "_data", "[", "self", ".", "_upto", "]", "if", "question_archived", "!=", "question_posed", ":", "logger", ".", "error", "(", "\"%s: automation data mismatch, expected question `%s', got question `%s'\"", "%", "(", "self", ".", "_name", ",", "self", ".", "_qstr", "(", "question_archived", ")", ",", "self", ".", "_qstr", "(", "question_posed", ")", ")", ")", "resp", "=", "question_posed", ".", "index", "(", "answer", ")", "self", ".", "_upto", "+=", "1", "return", "resp", "return", "__callback" ]
create a callback, suitable to be passed to SenateCounter
[ "create", "a", "callback", "suitable", "to", "be", "passed", "to", "SenateCounter" ]
adc1f6e8013943471f1679e3c94f9448a1e4a472
https://github.com/grahame/dividebatur/blob/adc1f6e8013943471f1679e3c94f9448a1e4a472/dividebatur/senatecount.py#L343-L358
train
jmbhughes/suvi-trainer
scripts/fetch_hek_labeled.py
main
def main(): """ fetches hek data and makes thematic maps as requested """ args = get_args() config = Config(args.config) # Load dates if os.path.isfile(args.dates): with open(args.dates) as f: dates = [dateparser.parse(line.split(" ")[0]) for line in f.readlines()] else: # assume it's a date dates = [dateparser.parse(args.dates)] if args.verbose: print("Dates are:") for date in dates: print(date) for date in dates: if args.verbose: print('Processing {}'.format(date)) suvi_data = Fetcher(date, ['suvi-l2-ci195'], suvi_composite_path=config.suvi_composite_path).fetch(multithread=False)['suvi-l2-ci195'] if suvi_data[0] is not None: config.expert = 'HEK' responses = query_hek(date) thmap = make_thmap(suvi_data, responses, config) Outgest(os.path.join(args.output, "thmap_hek_{}.fits".format(date.strftime("%Y%m%d%H%M%S"))), thmap, {"c195": suvi_data[0], "suvi-l2-ci195": suvi_data[0]}, args.config).save()
python
def main(): """ fetches hek data and makes thematic maps as requested """ args = get_args() config = Config(args.config) # Load dates if os.path.isfile(args.dates): with open(args.dates) as f: dates = [dateparser.parse(line.split(" ")[0]) for line in f.readlines()] else: # assume it's a date dates = [dateparser.parse(args.dates)] if args.verbose: print("Dates are:") for date in dates: print(date) for date in dates: if args.verbose: print('Processing {}'.format(date)) suvi_data = Fetcher(date, ['suvi-l2-ci195'], suvi_composite_path=config.suvi_composite_path).fetch(multithread=False)['suvi-l2-ci195'] if suvi_data[0] is not None: config.expert = 'HEK' responses = query_hek(date) thmap = make_thmap(suvi_data, responses, config) Outgest(os.path.join(args.output, "thmap_hek_{}.fits".format(date.strftime("%Y%m%d%H%M%S"))), thmap, {"c195": suvi_data[0], "suvi-l2-ci195": suvi_data[0]}, args.config).save()
[ "def", "main", "(", ")", ":", "args", "=", "get_args", "(", ")", "config", "=", "Config", "(", "args", ".", "config", ")", "# Load dates", "if", "os", ".", "path", ".", "isfile", "(", "args", ".", "dates", ")", ":", "with", "open", "(", "args", ".", "dates", ")", "as", "f", ":", "dates", "=", "[", "dateparser", ".", "parse", "(", "line", ".", "split", "(", "\" \"", ")", "[", "0", "]", ")", "for", "line", "in", "f", ".", "readlines", "(", ")", "]", "else", ":", "# assume it's a date", "dates", "=", "[", "dateparser", ".", "parse", "(", "args", ".", "dates", ")", "]", "if", "args", ".", "verbose", ":", "print", "(", "\"Dates are:\"", ")", "for", "date", "in", "dates", ":", "print", "(", "date", ")", "for", "date", "in", "dates", ":", "if", "args", ".", "verbose", ":", "print", "(", "'Processing {}'", ".", "format", "(", "date", ")", ")", "suvi_data", "=", "Fetcher", "(", "date", ",", "[", "'suvi-l2-ci195'", "]", ",", "suvi_composite_path", "=", "config", ".", "suvi_composite_path", ")", ".", "fetch", "(", "multithread", "=", "False", ")", "[", "'suvi-l2-ci195'", "]", "if", "suvi_data", "[", "0", "]", "is", "not", "None", ":", "config", ".", "expert", "=", "'HEK'", "responses", "=", "query_hek", "(", "date", ")", "thmap", "=", "make_thmap", "(", "suvi_data", ",", "responses", ",", "config", ")", "Outgest", "(", "os", ".", "path", ".", "join", "(", "args", ".", "output", ",", "\"thmap_hek_{}.fits\"", ".", "format", "(", "date", ".", "strftime", "(", "\"%Y%m%d%H%M%S\"", ")", ")", ")", ",", "thmap", ",", "{", "\"c195\"", ":", "suvi_data", "[", "0", "]", ",", "\"suvi-l2-ci195\"", ":", "suvi_data", "[", "0", "]", "}", ",", "args", ".", "config", ")", ".", "save", "(", ")" ]
fetches hek data and makes thematic maps as requested
[ "fetches", "hek", "data", "and", "makes", "thematic", "maps", "as", "requested" ]
3d89894a4a037286221974c7eb5634d229b4f5d4
https://github.com/jmbhughes/suvi-trainer/blob/3d89894a4a037286221974c7eb5634d229b4f5d4/scripts/fetch_hek_labeled.py#L85-L114
train
TorkamaniLab/metapipe
metapipe/models/job_template.py
JobTemplate._get_jobs_from_template
def _get_jobs_from_template(self, template, job_class): """ Given a template, a job class, construct jobs from the given template. """ jobs = [] for command in template.eval(): alias = command.alias depends_on = [job.alias for job in self.queue.all_jobs for deps in command.depends_on if deps == job.alias] command.update_dependent_files([job.command for job in self.queue.all_jobs if not isinstance(job, JobTemplate)]) job = job_class(alias, command, depends_on) jobs.append(job) return jobs
python
def _get_jobs_from_template(self, template, job_class): """ Given a template, a job class, construct jobs from the given template. """ jobs = [] for command in template.eval(): alias = command.alias depends_on = [job.alias for job in self.queue.all_jobs for deps in command.depends_on if deps == job.alias] command.update_dependent_files([job.command for job in self.queue.all_jobs if not isinstance(job, JobTemplate)]) job = job_class(alias, command, depends_on) jobs.append(job) return jobs
[ "def", "_get_jobs_from_template", "(", "self", ",", "template", ",", "job_class", ")", ":", "jobs", "=", "[", "]", "for", "command", "in", "template", ".", "eval", "(", ")", ":", "alias", "=", "command", ".", "alias", "depends_on", "=", "[", "job", ".", "alias", "for", "job", "in", "self", ".", "queue", ".", "all_jobs", "for", "deps", "in", "command", ".", "depends_on", "if", "deps", "==", "job", ".", "alias", "]", "command", ".", "update_dependent_files", "(", "[", "job", ".", "command", "for", "job", "in", "self", ".", "queue", ".", "all_jobs", "if", "not", "isinstance", "(", "job", ",", "JobTemplate", ")", "]", ")", "job", "=", "job_class", "(", "alias", ",", "command", ",", "depends_on", ")", "jobs", ".", "append", "(", "job", ")", "return", "jobs" ]
Given a template, a job class, construct jobs from the given template.
[ "Given", "a", "template", "a", "job", "class", "construct", "jobs", "from", "the", "given", "template", "." ]
15592e5b0c217afb00ac03503f8d0d7453d4baf4
https://github.com/TorkamaniLab/metapipe/blob/15592e5b0c217afb00ac03503f8d0d7453d4baf4/metapipe/models/job_template.py#L47-L64
train
NoviceLive/intellicoder
intellicoder/executables/pe.py
PE.get_export_table
def get_export_table(self): """Get the export table.""" symbols = self.binary.DIRECTORY_ENTRY_EXPORT.symbols names = AttrsGetter(symbols, join=False).name return names
python
def get_export_table(self): """Get the export table.""" symbols = self.binary.DIRECTORY_ENTRY_EXPORT.symbols names = AttrsGetter(symbols, join=False).name return names
[ "def", "get_export_table", "(", "self", ")", ":", "symbols", "=", "self", ".", "binary", ".", "DIRECTORY_ENTRY_EXPORT", ".", "symbols", "names", "=", "AttrsGetter", "(", "symbols", ",", "join", "=", "False", ")", ".", "name", "return", "names" ]
Get the export table.
[ "Get", "the", "export", "table", "." ]
6cac5ebfce65c370dbebe47756a1789b120ef982
https://github.com/NoviceLive/intellicoder/blob/6cac5ebfce65c370dbebe47756a1789b120ef982/intellicoder/executables/pe.py#L54-L58
train
sholsapp/py509
py509/x509.py
resolve_pkix_certificate
def resolve_pkix_certificate(url): """Resolve a certificate from a remote host. Extensions like the authority information access extension point to certificates hosted on remote servers. This functionc an be used to download and load the certificate. :param str url: The URL to resolve a certificate from. :returns: The certificate. :rtype: OpenSSL.crypto.X509 """ http = urllib3.PoolManager() rsp = http.request('GET', url, headers={'Content-Type': 'application/pkix-cert'}) if rsp.status == 200: # if strict_compliance and 'application/x-x509-ca-cert' not in rsp.headers: # # This web server's response isn't following the RFC, but might contain # # data representing a DER encoded certificate. # return try: return load_certificate(crypto.FILETYPE_ASN1, rsp.data) except crypto.Error: log.error('Failed to load DER encoded certificate from %s', url) try: return load_certificate(crypto.FILETYPE_PEM, rsp.data) except crypto.Error: log.error('Failed to load PEM encoded certificate from %s', url) raise RuntimeError('Failed to load any certificate from %s', url) else: raise RuntimeError('Failed to fetch intermediate certificate at {0}!'.format(url))
python
def resolve_pkix_certificate(url): """Resolve a certificate from a remote host. Extensions like the authority information access extension point to certificates hosted on remote servers. This functionc an be used to download and load the certificate. :param str url: The URL to resolve a certificate from. :returns: The certificate. :rtype: OpenSSL.crypto.X509 """ http = urllib3.PoolManager() rsp = http.request('GET', url, headers={'Content-Type': 'application/pkix-cert'}) if rsp.status == 200: # if strict_compliance and 'application/x-x509-ca-cert' not in rsp.headers: # # This web server's response isn't following the RFC, but might contain # # data representing a DER encoded certificate. # return try: return load_certificate(crypto.FILETYPE_ASN1, rsp.data) except crypto.Error: log.error('Failed to load DER encoded certificate from %s', url) try: return load_certificate(crypto.FILETYPE_PEM, rsp.data) except crypto.Error: log.error('Failed to load PEM encoded certificate from %s', url) raise RuntimeError('Failed to load any certificate from %s', url) else: raise RuntimeError('Failed to fetch intermediate certificate at {0}!'.format(url))
[ "def", "resolve_pkix_certificate", "(", "url", ")", ":", "http", "=", "urllib3", ".", "PoolManager", "(", ")", "rsp", "=", "http", ".", "request", "(", "'GET'", ",", "url", ",", "headers", "=", "{", "'Content-Type'", ":", "'application/pkix-cert'", "}", ")", "if", "rsp", ".", "status", "==", "200", ":", "# if strict_compliance and 'application/x-x509-ca-cert' not in rsp.headers:", "# # This web server's response isn't following the RFC, but might contain", "# # data representing a DER encoded certificate.", "# return", "try", ":", "return", "load_certificate", "(", "crypto", ".", "FILETYPE_ASN1", ",", "rsp", ".", "data", ")", "except", "crypto", ".", "Error", ":", "log", ".", "error", "(", "'Failed to load DER encoded certificate from %s'", ",", "url", ")", "try", ":", "return", "load_certificate", "(", "crypto", ".", "FILETYPE_PEM", ",", "rsp", ".", "data", ")", "except", "crypto", ".", "Error", ":", "log", ".", "error", "(", "'Failed to load PEM encoded certificate from %s'", ",", "url", ")", "raise", "RuntimeError", "(", "'Failed to load any certificate from %s'", ",", "url", ")", "else", ":", "raise", "RuntimeError", "(", "'Failed to fetch intermediate certificate at {0}!'", ".", "format", "(", "url", ")", ")" ]
Resolve a certificate from a remote host. Extensions like the authority information access extension point to certificates hosted on remote servers. This functionc an be used to download and load the certificate. :param str url: The URL to resolve a certificate from. :returns: The certificate. :rtype: OpenSSL.crypto.X509
[ "Resolve", "a", "certificate", "from", "a", "remote", "host", "." ]
83bd6786a8ec1543b66c42ea5523e611c3e8dc5a
https://github.com/sholsapp/py509/blob/83bd6786a8ec1543b66c42ea5523e611c3e8dc5a/py509/x509.py#L14-L43
train
sholsapp/py509
py509/x509.py
make_certificate_signing_request
def make_certificate_signing_request(pkey, digest='sha512', **name): """Make a certificate signing request. :param OpenSSL.crypto.PKey pkey: A private key. :param str digest: A valid digest to use. For example, `sha512`. :param name: Key word arguments containing subject name parts: C, ST, L, O, OU, CN. :return: A certificate signing request. :rtype: :class:`OpenSSL.crypto.X509Request` """ csr = crypto.X509Req() subj = csr.get_subject() subj.C = name.get('C', 'US') subj.ST = name.get('ST', 'CA') subj.L = name.get('L', 'Home') subj.O = name.get('O', 'Home') subj.OU = name.get('OU', 'Unit') subj.CN = name.get('CN', 'Common') csr.set_pubkey(pkey) csr.set_version(3) csr.sign(pkey, digest) return csr
python
def make_certificate_signing_request(pkey, digest='sha512', **name): """Make a certificate signing request. :param OpenSSL.crypto.PKey pkey: A private key. :param str digest: A valid digest to use. For example, `sha512`. :param name: Key word arguments containing subject name parts: C, ST, L, O, OU, CN. :return: A certificate signing request. :rtype: :class:`OpenSSL.crypto.X509Request` """ csr = crypto.X509Req() subj = csr.get_subject() subj.C = name.get('C', 'US') subj.ST = name.get('ST', 'CA') subj.L = name.get('L', 'Home') subj.O = name.get('O', 'Home') subj.OU = name.get('OU', 'Unit') subj.CN = name.get('CN', 'Common') csr.set_pubkey(pkey) csr.set_version(3) csr.sign(pkey, digest) return csr
[ "def", "make_certificate_signing_request", "(", "pkey", ",", "digest", "=", "'sha512'", ",", "*", "*", "name", ")", ":", "csr", "=", "crypto", ".", "X509Req", "(", ")", "subj", "=", "csr", ".", "get_subject", "(", ")", "subj", ".", "C", "=", "name", ".", "get", "(", "'C'", ",", "'US'", ")", "subj", ".", "ST", "=", "name", ".", "get", "(", "'ST'", ",", "'CA'", ")", "subj", ".", "L", "=", "name", ".", "get", "(", "'L'", ",", "'Home'", ")", "subj", ".", "O", "=", "name", ".", "get", "(", "'O'", ",", "'Home'", ")", "subj", ".", "OU", "=", "name", ".", "get", "(", "'OU'", ",", "'Unit'", ")", "subj", ".", "CN", "=", "name", ".", "get", "(", "'CN'", ",", "'Common'", ")", "csr", ".", "set_pubkey", "(", "pkey", ")", "csr", ".", "set_version", "(", "3", ")", "csr", ".", "sign", "(", "pkey", ",", "digest", ")", "return", "csr" ]
Make a certificate signing request. :param OpenSSL.crypto.PKey pkey: A private key. :param str digest: A valid digest to use. For example, `sha512`. :param name: Key word arguments containing subject name parts: C, ST, L, O, OU, CN. :return: A certificate signing request. :rtype: :class:`OpenSSL.crypto.X509Request`
[ "Make", "a", "certificate", "signing", "request", "." ]
83bd6786a8ec1543b66c42ea5523e611c3e8dc5a
https://github.com/sholsapp/py509/blob/83bd6786a8ec1543b66c42ea5523e611c3e8dc5a/py509/x509.py#L71-L93
train
sholsapp/py509
py509/x509.py
make_certificate
def make_certificate(csr, ca_key, ca_cert, serial, not_before, not_after, digest='sha512', version=2, exts=()): """Make a certificate. The following extensions are added to all certificates in the following order *before* additional extensions specified by `exts` kwarg: - subjectKeyIdentifier - authorityKeyIdentifier :param OpenSSL.crypto.X509Request csr: A certificate signing request. :param OpenSSL.crypto.PKey ca_key: The signing authority's key. :param OpenSSL.crypto.X509 ca_cert: The signing authority's certificate. :param int serial: A serial number. :param int not_before: A number of seconds from now to wait before the certificate is valid. :param int not_after: A number of seconds from now to wait before expiring the certificate. :param str digest: A valid digest. :param int version: The version of SSL to use with this certificate. :param list[OpenSSL.crypto.X509Extension] exts: A list of extensions to add to this certificate. :return: A X.509 certificate. :rtype: :class:`OpenSSL.crypto.X509` """ crt = crypto.X509() crt.set_serial_number(serial) crt.gmtime_adj_notBefore(not_before) crt.gmtime_adj_notAfter(not_after) crt.set_issuer(ca_cert.get_subject()) crt.set_subject(csr.get_subject()) crt.set_pubkey(csr.get_pubkey()) crt.set_version(version) crt.add_extensions([ crypto.X509Extension(b'subjectKeyIdentifier', False, b'hash', subject=crt)]) if ca_cert.get_subject() == crt.get_subject(): crt.add_extensions([ crypto.X509Extension(b'authorityKeyIdentifier', False, b'keyid:always', issuer=crt)]) else: crt.add_extensions([ crypto.X509Extension(b'authorityKeyIdentifier', False, b'keyid:always', issuer=ca_cert)]) crt.add_extensions(exts) crt.sign(ca_key, digest) return crt
python
def make_certificate(csr, ca_key, ca_cert, serial, not_before, not_after, digest='sha512', version=2, exts=()): """Make a certificate. The following extensions are added to all certificates in the following order *before* additional extensions specified by `exts` kwarg: - subjectKeyIdentifier - authorityKeyIdentifier :param OpenSSL.crypto.X509Request csr: A certificate signing request. :param OpenSSL.crypto.PKey ca_key: The signing authority's key. :param OpenSSL.crypto.X509 ca_cert: The signing authority's certificate. :param int serial: A serial number. :param int not_before: A number of seconds from now to wait before the certificate is valid. :param int not_after: A number of seconds from now to wait before expiring the certificate. :param str digest: A valid digest. :param int version: The version of SSL to use with this certificate. :param list[OpenSSL.crypto.X509Extension] exts: A list of extensions to add to this certificate. :return: A X.509 certificate. :rtype: :class:`OpenSSL.crypto.X509` """ crt = crypto.X509() crt.set_serial_number(serial) crt.gmtime_adj_notBefore(not_before) crt.gmtime_adj_notAfter(not_after) crt.set_issuer(ca_cert.get_subject()) crt.set_subject(csr.get_subject()) crt.set_pubkey(csr.get_pubkey()) crt.set_version(version) crt.add_extensions([ crypto.X509Extension(b'subjectKeyIdentifier', False, b'hash', subject=crt)]) if ca_cert.get_subject() == crt.get_subject(): crt.add_extensions([ crypto.X509Extension(b'authorityKeyIdentifier', False, b'keyid:always', issuer=crt)]) else: crt.add_extensions([ crypto.X509Extension(b'authorityKeyIdentifier', False, b'keyid:always', issuer=ca_cert)]) crt.add_extensions(exts) crt.sign(ca_key, digest) return crt
[ "def", "make_certificate", "(", "csr", ",", "ca_key", ",", "ca_cert", ",", "serial", ",", "not_before", ",", "not_after", ",", "digest", "=", "'sha512'", ",", "version", "=", "2", ",", "exts", "=", "(", ")", ")", ":", "crt", "=", "crypto", ".", "X509", "(", ")", "crt", ".", "set_serial_number", "(", "serial", ")", "crt", ".", "gmtime_adj_notBefore", "(", "not_before", ")", "crt", ".", "gmtime_adj_notAfter", "(", "not_after", ")", "crt", ".", "set_issuer", "(", "ca_cert", ".", "get_subject", "(", ")", ")", "crt", ".", "set_subject", "(", "csr", ".", "get_subject", "(", ")", ")", "crt", ".", "set_pubkey", "(", "csr", ".", "get_pubkey", "(", ")", ")", "crt", ".", "set_version", "(", "version", ")", "crt", ".", "add_extensions", "(", "[", "crypto", ".", "X509Extension", "(", "b'subjectKeyIdentifier'", ",", "False", ",", "b'hash'", ",", "subject", "=", "crt", ")", "]", ")", "if", "ca_cert", ".", "get_subject", "(", ")", "==", "crt", ".", "get_subject", "(", ")", ":", "crt", ".", "add_extensions", "(", "[", "crypto", ".", "X509Extension", "(", "b'authorityKeyIdentifier'", ",", "False", ",", "b'keyid:always'", ",", "issuer", "=", "crt", ")", "]", ")", "else", ":", "crt", ".", "add_extensions", "(", "[", "crypto", ".", "X509Extension", "(", "b'authorityKeyIdentifier'", ",", "False", ",", "b'keyid:always'", ",", "issuer", "=", "ca_cert", ")", "]", ")", "crt", ".", "add_extensions", "(", "exts", ")", "crt", ".", "sign", "(", "ca_key", ",", "digest", ")", "return", "crt" ]
Make a certificate. The following extensions are added to all certificates in the following order *before* additional extensions specified by `exts` kwarg: - subjectKeyIdentifier - authorityKeyIdentifier :param OpenSSL.crypto.X509Request csr: A certificate signing request. :param OpenSSL.crypto.PKey ca_key: The signing authority's key. :param OpenSSL.crypto.X509 ca_cert: The signing authority's certificate. :param int serial: A serial number. :param int not_before: A number of seconds from now to wait before the certificate is valid. :param int not_after: A number of seconds from now to wait before expiring the certificate. :param str digest: A valid digest. :param int version: The version of SSL to use with this certificate. :param list[OpenSSL.crypto.X509Extension] exts: A list of extensions to add to this certificate. :return: A X.509 certificate. :rtype: :class:`OpenSSL.crypto.X509`
[ "Make", "a", "certificate", "." ]
83bd6786a8ec1543b66c42ea5523e611c3e8dc5a
https://github.com/sholsapp/py509/blob/83bd6786a8ec1543b66c42ea5523e611c3e8dc5a/py509/x509.py#L96-L139
train
sholsapp/py509
py509/x509.py
make_certificate_authority
def make_certificate_authority(**name): """Make a certificate authority. A certificate authority can sign certificates. For clients to be able to validate certificates signed by your certificate authorithy, they must trust the certificate returned by this function. :param name: Key word arguments containing subject name parts: C, ST, L, O, OU, CN. :return: A root self-signed certificate to act as an authority. :rtype: :class:`OpenSSL.crypto.X509` """ key = make_pkey() csr = make_certificate_signing_request(key, **name) crt = make_certificate(csr, key, csr, make_serial(), 0, 10 * 365 * 24 * 60 * 60, exts=[crypto.X509Extension(b'basicConstraints', True, b'CA:TRUE')]) return key, crt
python
def make_certificate_authority(**name): """Make a certificate authority. A certificate authority can sign certificates. For clients to be able to validate certificates signed by your certificate authorithy, they must trust the certificate returned by this function. :param name: Key word arguments containing subject name parts: C, ST, L, O, OU, CN. :return: A root self-signed certificate to act as an authority. :rtype: :class:`OpenSSL.crypto.X509` """ key = make_pkey() csr = make_certificate_signing_request(key, **name) crt = make_certificate(csr, key, csr, make_serial(), 0, 10 * 365 * 24 * 60 * 60, exts=[crypto.X509Extension(b'basicConstraints', True, b'CA:TRUE')]) return key, crt
[ "def", "make_certificate_authority", "(", "*", "*", "name", ")", ":", "key", "=", "make_pkey", "(", ")", "csr", "=", "make_certificate_signing_request", "(", "key", ",", "*", "*", "name", ")", "crt", "=", "make_certificate", "(", "csr", ",", "key", ",", "csr", ",", "make_serial", "(", ")", ",", "0", ",", "10", "*", "365", "*", "24", "*", "60", "*", "60", ",", "exts", "=", "[", "crypto", ".", "X509Extension", "(", "b'basicConstraints'", ",", "True", ",", "b'CA:TRUE'", ")", "]", ")", "return", "key", ",", "crt" ]
Make a certificate authority. A certificate authority can sign certificates. For clients to be able to validate certificates signed by your certificate authorithy, they must trust the certificate returned by this function. :param name: Key word arguments containing subject name parts: C, ST, L, O, OU, CN. :return: A root self-signed certificate to act as an authority. :rtype: :class:`OpenSSL.crypto.X509`
[ "Make", "a", "certificate", "authority", "." ]
83bd6786a8ec1543b66c42ea5523e611c3e8dc5a
https://github.com/sholsapp/py509/blob/83bd6786a8ec1543b66c42ea5523e611c3e8dc5a/py509/x509.py#L142-L158
train
sholsapp/py509
py509/x509.py
load_certificate
def load_certificate(filetype, buf): """Load a certificate and patch in incubating functionality. Load a certificate using the same API as :func:`OpenSSL.crypto.load_certificate` so clients can use this function as a drop in replacement. Doing so patches in *incubating* functionality: functionality that is not yet (or possibly will never be) present in pyOpenSSL. :param int filetype: The type of data in ``buf`` -- either :py:data:`OpenSSL.crypto.FILETYPE_PEM` or :py:data:`OpenSSL.crypto.FILETYPE_ASN1`. :param str buf: The buffer containing the certificate. """ x509cert = crypto.load_certificate(filetype, buf) patch_certificate(x509cert) return x509cert
python
def load_certificate(filetype, buf): """Load a certificate and patch in incubating functionality. Load a certificate using the same API as :func:`OpenSSL.crypto.load_certificate` so clients can use this function as a drop in replacement. Doing so patches in *incubating* functionality: functionality that is not yet (or possibly will never be) present in pyOpenSSL. :param int filetype: The type of data in ``buf`` -- either :py:data:`OpenSSL.crypto.FILETYPE_PEM` or :py:data:`OpenSSL.crypto.FILETYPE_ASN1`. :param str buf: The buffer containing the certificate. """ x509cert = crypto.load_certificate(filetype, buf) patch_certificate(x509cert) return x509cert
[ "def", "load_certificate", "(", "filetype", ",", "buf", ")", ":", "x509cert", "=", "crypto", ".", "load_certificate", "(", "filetype", ",", "buf", ")", "patch_certificate", "(", "x509cert", ")", "return", "x509cert" ]
Load a certificate and patch in incubating functionality. Load a certificate using the same API as :func:`OpenSSL.crypto.load_certificate` so clients can use this function as a drop in replacement. Doing so patches in *incubating* functionality: functionality that is not yet (or possibly will never be) present in pyOpenSSL. :param int filetype: The type of data in ``buf`` -- either :py:data:`OpenSSL.crypto.FILETYPE_PEM` or :py:data:`OpenSSL.crypto.FILETYPE_ASN1`. :param str buf: The buffer containing the certificate.
[ "Load", "a", "certificate", "and", "patch", "in", "incubating", "functionality", "." ]
83bd6786a8ec1543b66c42ea5523e611c3e8dc5a
https://github.com/sholsapp/py509/blob/83bd6786a8ec1543b66c42ea5523e611c3e8dc5a/py509/x509.py#L221-L237
train
sholsapp/py509
py509/x509.py
load_x509_certificates
def load_x509_certificates(buf): """Load one or multiple X.509 certificates from a buffer. :param str buf: A buffer is an instance of `basestring` and can contain multiple certificates. :return: An iterator that iterates over certificates in a buffer. :rtype: list[:class:`OpenSSL.crypto.X509`] """ if not isinstance(buf, basestring): raise ValueError('`buf` should be an instance of `basestring` not `%s`' % type(buf)) for pem in re.findall('(-----BEGIN CERTIFICATE-----\s(\S+\n*)+\s-----END CERTIFICATE-----\s)', buf): yield load_certificate(crypto.FILETYPE_PEM, pem[0])
python
def load_x509_certificates(buf): """Load one or multiple X.509 certificates from a buffer. :param str buf: A buffer is an instance of `basestring` and can contain multiple certificates. :return: An iterator that iterates over certificates in a buffer. :rtype: list[:class:`OpenSSL.crypto.X509`] """ if not isinstance(buf, basestring): raise ValueError('`buf` should be an instance of `basestring` not `%s`' % type(buf)) for pem in re.findall('(-----BEGIN CERTIFICATE-----\s(\S+\n*)+\s-----END CERTIFICATE-----\s)', buf): yield load_certificate(crypto.FILETYPE_PEM, pem[0])
[ "def", "load_x509_certificates", "(", "buf", ")", ":", "if", "not", "isinstance", "(", "buf", ",", "basestring", ")", ":", "raise", "ValueError", "(", "'`buf` should be an instance of `basestring` not `%s`'", "%", "type", "(", "buf", ")", ")", "for", "pem", "in", "re", ".", "findall", "(", "'(-----BEGIN CERTIFICATE-----\\s(\\S+\\n*)+\\s-----END CERTIFICATE-----\\s)'", ",", "buf", ")", ":", "yield", "load_certificate", "(", "crypto", ".", "FILETYPE_PEM", ",", "pem", "[", "0", "]", ")" ]
Load one or multiple X.509 certificates from a buffer. :param str buf: A buffer is an instance of `basestring` and can contain multiple certificates. :return: An iterator that iterates over certificates in a buffer. :rtype: list[:class:`OpenSSL.crypto.X509`]
[ "Load", "one", "or", "multiple", "X", ".", "509", "certificates", "from", "a", "buffer", "." ]
83bd6786a8ec1543b66c42ea5523e611c3e8dc5a
https://github.com/sholsapp/py509/blob/83bd6786a8ec1543b66c42ea5523e611c3e8dc5a/py509/x509.py#L240-L253
train
lowandrew/OLCTools
databasesetup/database_setup.py
DatabaseSetup.cowbat
def cowbat(self): """ Run all the methods """ logging.info('Beginning COWBAT database downloads') if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'genesippr')): self.sipprverse_targets(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'coregenome')): self.cowbat_targets(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'ConFindr')): self.confindr_targets() if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'mash')): self.mash(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'MLST')): self.mlst(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'rMLST')): self.rmlst(databasepath=self.databasepath, credentials=self.credentials) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'univec')): self.univec(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'resfinder')): self.cge_db_downloader(databasepath=self.databasepath, analysistype='resfinder', dbname='resfinder_db') if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'virulence')): self.cge_db_downloader(databasepath=self.databasepath, analysistype='virulence', dbname='virulencefinder_db') if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'serosippr')): self.cge_db_downloader(databasepath=self.databasepath, analysistype='serosippr', dbname='serotypefinder_db') if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'pointfinder')): self.cge_db_downloader(databasepath=self.databasepath, analysistype='pointfinder', dbname='pointfinder_db') if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'clark')): self.clark(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'mob_suite')): self.mob_suite_targets()
python
def cowbat(self): """ Run all the methods """ logging.info('Beginning COWBAT database downloads') if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'genesippr')): self.sipprverse_targets(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'coregenome')): self.cowbat_targets(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'ConFindr')): self.confindr_targets() if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'mash')): self.mash(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'MLST')): self.mlst(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'rMLST')): self.rmlst(databasepath=self.databasepath, credentials=self.credentials) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'univec')): self.univec(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'resfinder')): self.cge_db_downloader(databasepath=self.databasepath, analysistype='resfinder', dbname='resfinder_db') if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'virulence')): self.cge_db_downloader(databasepath=self.databasepath, analysistype='virulence', dbname='virulencefinder_db') if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'serosippr')): self.cge_db_downloader(databasepath=self.databasepath, analysistype='serosippr', dbname='serotypefinder_db') if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'pointfinder')): self.cge_db_downloader(databasepath=self.databasepath, analysistype='pointfinder', dbname='pointfinder_db') if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'clark')): self.clark(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'mob_suite')): self.mob_suite_targets()
[ "def", "cowbat", "(", "self", ")", ":", "logging", ".", "info", "(", "'Beginning COWBAT database downloads'", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'genesippr'", ")", ")", ":", "self", ".", "sipprverse_targets", "(", "databasepath", "=", "self", ".", "databasepath", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'coregenome'", ")", ")", ":", "self", ".", "cowbat_targets", "(", "databasepath", "=", "self", ".", "databasepath", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'ConFindr'", ")", ")", ":", "self", ".", "confindr_targets", "(", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'mash'", ")", ")", ":", "self", ".", "mash", "(", "databasepath", "=", "self", ".", "databasepath", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'MLST'", ")", ")", ":", "self", ".", "mlst", "(", "databasepath", "=", "self", ".", "databasepath", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'rMLST'", ")", ")", ":", "self", ".", "rmlst", "(", "databasepath", "=", "self", ".", "databasepath", ",", "credentials", "=", "self", ".", "credentials", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'univec'", ")", ")", ":", "self", ".", "univec", "(", "databasepath", "=", "self", ".", "databasepath", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'resfinder'", ")", ")", ":", "self", ".", "cge_db_downloader", "(", "databasepath", "=", "self", ".", "databasepath", ",", "analysistype", "=", "'resfinder'", ",", "dbname", "=", "'resfinder_db'", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'virulence'", ")", ")", ":", "self", ".", "cge_db_downloader", "(", "databasepath", "=", "self", ".", "databasepath", ",", "analysistype", "=", "'virulence'", ",", "dbname", "=", "'virulencefinder_db'", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'serosippr'", ")", ")", ":", "self", ".", "cge_db_downloader", "(", "databasepath", "=", "self", ".", "databasepath", ",", "analysistype", "=", "'serosippr'", ",", "dbname", "=", "'serotypefinder_db'", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'pointfinder'", ")", ")", ":", "self", ".", "cge_db_downloader", "(", "databasepath", "=", "self", ".", "databasepath", ",", "analysistype", "=", "'pointfinder'", ",", "dbname", "=", "'pointfinder_db'", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'clark'", ")", ")", ":", "self", ".", "clark", "(", "databasepath", "=", "self", ".", "databasepath", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'mob_suite'", ")", ")", ":", "self", ".", "mob_suite_targets", "(", ")" ]
Run all the methods
[ "Run", "all", "the", "methods" ]
88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a
https://github.com/lowandrew/OLCTools/blob/88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a/databasesetup/database_setup.py#L21-L60
train
lowandrew/OLCTools
databasesetup/database_setup.py
DatabaseSetup.sipprverse_full
def sipprverse_full(self): """ Run a subset of the methods - only the targets used in the sipprverse are required here """ logging.info('Beginning sipprverse full database downloads') if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'genesippr')): self.sipprverse_targets(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'ConFindr')): self.confindr_targets() if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'mash')): self.mash(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'MLST')): self.mlst(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'rMLST')): self.rmlst(databasepath=self.databasepath, credentials=self.credentials) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'resfinder')): self.cge_db_downloader(databasepath=self.databasepath, analysistype='resfinder', dbname='resfinder_db') if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'virulence')): self.cge_db_downloader(databasepath=self.databasepath, analysistype='virulence', dbname='virulencefinder_db') if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'serosippr')): self.cge_db_downloader(databasepath=self.databasepath, analysistype='serosippr', dbname='serotypefinder_db')
python
def sipprverse_full(self): """ Run a subset of the methods - only the targets used in the sipprverse are required here """ logging.info('Beginning sipprverse full database downloads') if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'genesippr')): self.sipprverse_targets(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'ConFindr')): self.confindr_targets() if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'mash')): self.mash(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'MLST')): self.mlst(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'rMLST')): self.rmlst(databasepath=self.databasepath, credentials=self.credentials) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'resfinder')): self.cge_db_downloader(databasepath=self.databasepath, analysistype='resfinder', dbname='resfinder_db') if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'virulence')): self.cge_db_downloader(databasepath=self.databasepath, analysistype='virulence', dbname='virulencefinder_db') if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'serosippr')): self.cge_db_downloader(databasepath=self.databasepath, analysistype='serosippr', dbname='serotypefinder_db')
[ "def", "sipprverse_full", "(", "self", ")", ":", "logging", ".", "info", "(", "'Beginning sipprverse full database downloads'", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'genesippr'", ")", ")", ":", "self", ".", "sipprverse_targets", "(", "databasepath", "=", "self", ".", "databasepath", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'ConFindr'", ")", ")", ":", "self", ".", "confindr_targets", "(", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'mash'", ")", ")", ":", "self", ".", "mash", "(", "databasepath", "=", "self", ".", "databasepath", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'MLST'", ")", ")", ":", "self", ".", "mlst", "(", "databasepath", "=", "self", ".", "databasepath", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'rMLST'", ")", ")", ":", "self", ".", "rmlst", "(", "databasepath", "=", "self", ".", "databasepath", ",", "credentials", "=", "self", ".", "credentials", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'resfinder'", ")", ")", ":", "self", ".", "cge_db_downloader", "(", "databasepath", "=", "self", ".", "databasepath", ",", "analysistype", "=", "'resfinder'", ",", "dbname", "=", "'resfinder_db'", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'virulence'", ")", ")", ":", "self", ".", "cge_db_downloader", "(", "databasepath", "=", "self", ".", "databasepath", ",", "analysistype", "=", "'virulence'", ",", "dbname", "=", "'virulencefinder_db'", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'serosippr'", ")", ")", ":", "self", ".", "cge_db_downloader", "(", "databasepath", "=", "self", ".", "databasepath", ",", "analysistype", "=", "'serosippr'", ",", "dbname", "=", "'serotypefinder_db'", ")" ]
Run a subset of the methods - only the targets used in the sipprverse are required here
[ "Run", "a", "subset", "of", "the", "methods", "-", "only", "the", "targets", "used", "in", "the", "sipprverse", "are", "required", "here" ]
88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a
https://github.com/lowandrew/OLCTools/blob/88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a/databasesetup/database_setup.py#L62-L89
train
lowandrew/OLCTools
databasesetup/database_setup.py
DatabaseSetup.sipprverse_method
def sipprverse_method(self): """ Reduced subset again. Only sipprverse, MASH, and confindr targets are required """ logging.info('Beginning sipprverse method database downloads') if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'genesippr')): self.sipprverse_targets(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'ConFindr')): self.confindr_targets() if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'mash')): self.mash(databasepath=self.databasepath)
python
def sipprverse_method(self): """ Reduced subset again. Only sipprverse, MASH, and confindr targets are required """ logging.info('Beginning sipprverse method database downloads') if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'genesippr')): self.sipprverse_targets(databasepath=self.databasepath) if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'ConFindr')): self.confindr_targets() if self.overwrite or not os.path.isdir(os.path.join(self.databasepath, 'mash')): self.mash(databasepath=self.databasepath)
[ "def", "sipprverse_method", "(", "self", ")", ":", "logging", ".", "info", "(", "'Beginning sipprverse method database downloads'", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'genesippr'", ")", ")", ":", "self", ".", "sipprverse_targets", "(", "databasepath", "=", "self", ".", "databasepath", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'ConFindr'", ")", ")", ":", "self", ".", "confindr_targets", "(", ")", "if", "self", ".", "overwrite", "or", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "self", ".", "databasepath", ",", "'mash'", ")", ")", ":", "self", ".", "mash", "(", "databasepath", "=", "self", ".", "databasepath", ")" ]
Reduced subset again. Only sipprverse, MASH, and confindr targets are required
[ "Reduced", "subset", "again", ".", "Only", "sipprverse", "MASH", "and", "confindr", "targets", "are", "required" ]
88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a
https://github.com/lowandrew/OLCTools/blob/88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a/databasesetup/database_setup.py#L91-L101
train
yamcs/yamcs-python
yamcs-client/yamcs/model.py
Event.severity
def severity(self): """ Severity level of the event. One of ``INFO``, ``WATCH``, ``WARNING``, ``DISTRESS``, ``CRITICAL`` or ``SEVERE``. """ if self._proto.HasField('severity'): return yamcs_pb2.Event.EventSeverity.Name(self._proto.severity) return None
python
def severity(self): """ Severity level of the event. One of ``INFO``, ``WATCH``, ``WARNING``, ``DISTRESS``, ``CRITICAL`` or ``SEVERE``. """ if self._proto.HasField('severity'): return yamcs_pb2.Event.EventSeverity.Name(self._proto.severity) return None
[ "def", "severity", "(", "self", ")", ":", "if", "self", ".", "_proto", ".", "HasField", "(", "'severity'", ")", ":", "return", "yamcs_pb2", ".", "Event", ".", "EventSeverity", ".", "Name", "(", "self", ".", "_proto", ".", "severity", ")", "return", "None" ]
Severity level of the event. One of ``INFO``, ``WATCH``, ``WARNING``, ``DISTRESS``, ``CRITICAL`` or ``SEVERE``.
[ "Severity", "level", "of", "the", "event", ".", "One", "of", "INFO", "WATCH", "WARNING", "DISTRESS", "CRITICAL", "or", "SEVERE", "." ]
1082fee8a299010cc44416bbb7518fac0ef08b48
https://github.com/yamcs/yamcs-python/blob/1082fee8a299010cc44416bbb7518fac0ef08b48/yamcs-client/yamcs/model.py#L129-L136
train
yamcs/yamcs-python
yamcs-client/yamcs/model.py
Instance.state
def state(self): """ State of this instance. One of ``OFFLINE``, ``INITIALIZING``, ``INITIALIZED``, ``STARTING``, ``RUNNING``, ``STOPPING`` or ``FAILED``. """ if self._proto.HasField('state'): return yamcsManagement_pb2.YamcsInstance.InstanceState.Name(self._proto.state) return None
python
def state(self): """ State of this instance. One of ``OFFLINE``, ``INITIALIZING``, ``INITIALIZED``, ``STARTING``, ``RUNNING``, ``STOPPING`` or ``FAILED``. """ if self._proto.HasField('state'): return yamcsManagement_pb2.YamcsInstance.InstanceState.Name(self._proto.state) return None
[ "def", "state", "(", "self", ")", ":", "if", "self", ".", "_proto", ".", "HasField", "(", "'state'", ")", ":", "return", "yamcsManagement_pb2", ".", "YamcsInstance", ".", "InstanceState", ".", "Name", "(", "self", ".", "_proto", ".", "state", ")", "return", "None" ]
State of this instance. One of ``OFFLINE``, ``INITIALIZING``, ``INITIALIZED``, ``STARTING``, ``RUNNING``, ``STOPPING`` or ``FAILED``.
[ "State", "of", "this", "instance", ".", "One", "of", "OFFLINE", "INITIALIZING", "INITIALIZED", "STARTING", "RUNNING", "STOPPING", "or", "FAILED", "." ]
1082fee8a299010cc44416bbb7518fac0ef08b48
https://github.com/yamcs/yamcs-python/blob/1082fee8a299010cc44416bbb7518fac0ef08b48/yamcs-client/yamcs/model.py#L267-L275
train
yamcs/yamcs-python
yamcs-client/yamcs/model.py
Service.state
def state(self): """State of this service.""" if self._proto.HasField('state'): return yamcsManagement_pb2.ServiceState.Name(self._proto.state) return None
python
def state(self): """State of this service.""" if self._proto.HasField('state'): return yamcsManagement_pb2.ServiceState.Name(self._proto.state) return None
[ "def", "state", "(", "self", ")", ":", "if", "self", ".", "_proto", ".", "HasField", "(", "'state'", ")", ":", "return", "yamcsManagement_pb2", ".", "ServiceState", ".", "Name", "(", "self", ".", "_proto", ".", "state", ")", "return", "None" ]
State of this service.
[ "State", "of", "this", "service", "." ]
1082fee8a299010cc44416bbb7518fac0ef08b48
https://github.com/yamcs/yamcs-python/blob/1082fee8a299010cc44416bbb7518fac0ef08b48/yamcs-client/yamcs/model.py#L345-L349
train
dalloriam/engel
engel/widgets/base.py
BaseContainer.add_child
def add_child(self, child): """ Add a new child element to this widget. :param child: Object inheriting :class:`BaseElement`. """ self.children.append(child) child.parent = self if self.view and self.view.is_loaded: self.view.dispatch({ 'name': 'append', 'html': child.compile(), 'selector': '#' + str(self.id) })
python
def add_child(self, child): """ Add a new child element to this widget. :param child: Object inheriting :class:`BaseElement`. """ self.children.append(child) child.parent = self if self.view and self.view.is_loaded: self.view.dispatch({ 'name': 'append', 'html': child.compile(), 'selector': '#' + str(self.id) })
[ "def", "add_child", "(", "self", ",", "child", ")", ":", "self", ".", "children", ".", "append", "(", "child", ")", "child", ".", "parent", "=", "self", "if", "self", ".", "view", "and", "self", ".", "view", ".", "is_loaded", ":", "self", ".", "view", ".", "dispatch", "(", "{", "'name'", ":", "'append'", ",", "'html'", ":", "child", ".", "compile", "(", ")", ",", "'selector'", ":", "'#'", "+", "str", "(", "self", ".", "id", ")", "}", ")" ]
Add a new child element to this widget. :param child: Object inheriting :class:`BaseElement`.
[ "Add", "a", "new", "child", "element", "to", "this", "widget", "." ]
f3477cd546e885bc53e755b3eb1452ce43ef5697
https://github.com/dalloriam/engel/blob/f3477cd546e885bc53e755b3eb1452ce43ef5697/engel/widgets/base.py#L166-L180
train
dalloriam/engel
engel/widgets/base.py
BaseContainer.remove_child
def remove_child(self, child): """ Remove a child widget from this widget. :param child: Object inheriting :class:`BaseElement` """ self.children.remove(child) child.parent = None if self.view and self.view.is_loaded: self.view.dispatch({ 'name': 'remove', 'selector': '#' + child.id })
python
def remove_child(self, child): """ Remove a child widget from this widget. :param child: Object inheriting :class:`BaseElement` """ self.children.remove(child) child.parent = None if self.view and self.view.is_loaded: self.view.dispatch({ 'name': 'remove', 'selector': '#' + child.id })
[ "def", "remove_child", "(", "self", ",", "child", ")", ":", "self", ".", "children", ".", "remove", "(", "child", ")", "child", ".", "parent", "=", "None", "if", "self", ".", "view", "and", "self", ".", "view", ".", "is_loaded", ":", "self", ".", "view", ".", "dispatch", "(", "{", "'name'", ":", "'remove'", ",", "'selector'", ":", "'#'", "+", "child", ".", "id", "}", ")" ]
Remove a child widget from this widget. :param child: Object inheriting :class:`BaseElement`
[ "Remove", "a", "child", "widget", "from", "this", "widget", "." ]
f3477cd546e885bc53e755b3eb1452ce43ef5697
https://github.com/dalloriam/engel/blob/f3477cd546e885bc53e755b3eb1452ce43ef5697/engel/widgets/base.py#L182-L195
train
dalloriam/engel
engel/widgets/base.py
BaseContainer.compile
def compile(self): """ Recursively compile this widget as well as all of its children to HTML. :returns: HTML string representation of this widget. """ self.content = "".join(map(lambda x: x.compile(), self.children)) return self._generate_html()
python
def compile(self): """ Recursively compile this widget as well as all of its children to HTML. :returns: HTML string representation of this widget. """ self.content = "".join(map(lambda x: x.compile(), self.children)) return self._generate_html()
[ "def", "compile", "(", "self", ")", ":", "self", ".", "content", "=", "\"\"", ".", "join", "(", "map", "(", "lambda", "x", ":", "x", ".", "compile", "(", ")", ",", "self", ".", "children", ")", ")", "return", "self", ".", "_generate_html", "(", ")" ]
Recursively compile this widget as well as all of its children to HTML. :returns: HTML string representation of this widget.
[ "Recursively", "compile", "this", "widget", "as", "well", "as", "all", "of", "its", "children", "to", "HTML", "." ]
f3477cd546e885bc53e755b3eb1452ce43ef5697
https://github.com/dalloriam/engel/blob/f3477cd546e885bc53e755b3eb1452ce43ef5697/engel/widgets/base.py#L220-L227
train
loganasherjones/yapconf
yapconf/handlers.py
ConfigChangeHandler.handle_config_change
def handle_config_change(self, new_config): """Handle the new configuration. Args: new_config (dict): The new configuration """ if self.user_handler: self.user_handler(self.current_config, new_config) self._call_spec_handlers(new_config) self.current_config = copy.deepcopy(new_config)
python
def handle_config_change(self, new_config): """Handle the new configuration. Args: new_config (dict): The new configuration """ if self.user_handler: self.user_handler(self.current_config, new_config) self._call_spec_handlers(new_config) self.current_config = copy.deepcopy(new_config)
[ "def", "handle_config_change", "(", "self", ",", "new_config", ")", ":", "if", "self", ".", "user_handler", ":", "self", ".", "user_handler", "(", "self", ".", "current_config", ",", "new_config", ")", "self", ".", "_call_spec_handlers", "(", "new_config", ")", "self", ".", "current_config", "=", "copy", ".", "deepcopy", "(", "new_config", ")" ]
Handle the new configuration. Args: new_config (dict): The new configuration
[ "Handle", "the", "new", "configuration", "." ]
d2970e6e7e3334615d4d978d8b0ca33006d79d16
https://github.com/loganasherjones/yapconf/blob/d2970e6e7e3334615d4d978d8b0ca33006d79d16/yapconf/handlers.py#L23-L33
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.setReferenceVoltage
def setReferenceVoltage(self, caldb, calv): """Sets the reference point to determine what outgoing voltage will produce what intensity, used to calculate the proper output amplitude of components :param caldb: calibration intensity in dbSPL :type caldb: float :param calv: calibration voltage that was used to record the intensity provided :type calv: float """ self.caldb = caldb self.calv = calv
python
def setReferenceVoltage(self, caldb, calv): """Sets the reference point to determine what outgoing voltage will produce what intensity, used to calculate the proper output amplitude of components :param caldb: calibration intensity in dbSPL :type caldb: float :param calv: calibration voltage that was used to record the intensity provided :type calv: float """ self.caldb = caldb self.calv = calv
[ "def", "setReferenceVoltage", "(", "self", ",", "caldb", ",", "calv", ")", ":", "self", ".", "caldb", "=", "caldb", "self", ".", "calv", "=", "calv" ]
Sets the reference point to determine what outgoing voltage will produce what intensity, used to calculate the proper output amplitude of components :param caldb: calibration intensity in dbSPL :type caldb: float :param calv: calibration voltage that was used to record the intensity provided :type calv: float
[ "Sets", "the", "reference", "point", "to", "determine", "what", "outgoing", "voltage", "will", "produce", "what", "intensity", "used", "to", "calculate", "the", "proper", "output", "amplitude", "of", "components" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L73-L83
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.setCalibration
def setCalibration(self, dbBoostArray, frequencies, frange): """Sets the calibration to use with this stimulus, creates a filter that will be applied to output signal generated by this model. Set arguments to `None` to clear calibration. :param dbBoostArray: frequency response of the system (in dB) :type dbBoostArray: numpy.ndarray :param frequencies: corresponding frequencies for the dbBoostArray :type frequencies: numpy.ndarray :param frange: The desired frequency range for which to apply the calibration, in Hz :type frange: (int, int) """ if dbBoostArray is not None and frequencies is not None: logger = logging.getLogger('main') if dbBoostArray.shape != frequencies.shape: logger.error("ERROR: calibration array and frequency array must have same dimensions") return if frange is None: # maximum possible range frange = (frequencies[0], frequencies[-1]) logger.debug('setting calibration with samplerate {}'.format(self.samplerate())) fs = self.samplerate() if fs in StimulusModel.kernelCache: logger.debug('---->using cached filter') # makes the assumption that the cache will be cleared if the frequency reponse # changes self.impulseResponse = StimulusModel.kernelCache[fs] else: logger.debug('---->calculating new filter for fs {}'.format(fs)) self.impulseResponse = impulse_response(fs, dbBoostArray, frequencies, frange) # mutable type so will affect data structure persistently StimulusModel.kernelCache[fs] = self.impulseResponse # store this so we can quickly check if a calibration needs to be re-done self._calibration_fs = fs # calculate for the default samplerate, if not already, since # we are very likely to need it, and it's better to have this done # up front, than cause lag in the UI later if DEFAULT_SAMPLERATE not in StimulusModel.kernelCache: StimulusModel.kernelCache[DEFAULT_SAMPLERATE] = impulse_response(DEFAULT_SAMPLERATE, dbBoostArray, frequencies, frange) # hang on to these for re-calculating impulse response on samplerate change self._attenuationVector = dbBoostArray self._calFrequencies = frequencies self._calFrange = frange else: self.impulseResponse = None
python
def setCalibration(self, dbBoostArray, frequencies, frange): """Sets the calibration to use with this stimulus, creates a filter that will be applied to output signal generated by this model. Set arguments to `None` to clear calibration. :param dbBoostArray: frequency response of the system (in dB) :type dbBoostArray: numpy.ndarray :param frequencies: corresponding frequencies for the dbBoostArray :type frequencies: numpy.ndarray :param frange: The desired frequency range for which to apply the calibration, in Hz :type frange: (int, int) """ if dbBoostArray is not None and frequencies is not None: logger = logging.getLogger('main') if dbBoostArray.shape != frequencies.shape: logger.error("ERROR: calibration array and frequency array must have same dimensions") return if frange is None: # maximum possible range frange = (frequencies[0], frequencies[-1]) logger.debug('setting calibration with samplerate {}'.format(self.samplerate())) fs = self.samplerate() if fs in StimulusModel.kernelCache: logger.debug('---->using cached filter') # makes the assumption that the cache will be cleared if the frequency reponse # changes self.impulseResponse = StimulusModel.kernelCache[fs] else: logger.debug('---->calculating new filter for fs {}'.format(fs)) self.impulseResponse = impulse_response(fs, dbBoostArray, frequencies, frange) # mutable type so will affect data structure persistently StimulusModel.kernelCache[fs] = self.impulseResponse # store this so we can quickly check if a calibration needs to be re-done self._calibration_fs = fs # calculate for the default samplerate, if not already, since # we are very likely to need it, and it's better to have this done # up front, than cause lag in the UI later if DEFAULT_SAMPLERATE not in StimulusModel.kernelCache: StimulusModel.kernelCache[DEFAULT_SAMPLERATE] = impulse_response(DEFAULT_SAMPLERATE, dbBoostArray, frequencies, frange) # hang on to these for re-calculating impulse response on samplerate change self._attenuationVector = dbBoostArray self._calFrequencies = frequencies self._calFrange = frange else: self.impulseResponse = None
[ "def", "setCalibration", "(", "self", ",", "dbBoostArray", ",", "frequencies", ",", "frange", ")", ":", "if", "dbBoostArray", "is", "not", "None", "and", "frequencies", "is", "not", "None", ":", "logger", "=", "logging", ".", "getLogger", "(", "'main'", ")", "if", "dbBoostArray", ".", "shape", "!=", "frequencies", ".", "shape", ":", "logger", ".", "error", "(", "\"ERROR: calibration array and frequency array must have same dimensions\"", ")", "return", "if", "frange", "is", "None", ":", "# maximum possible range", "frange", "=", "(", "frequencies", "[", "0", "]", ",", "frequencies", "[", "-", "1", "]", ")", "logger", ".", "debug", "(", "'setting calibration with samplerate {}'", ".", "format", "(", "self", ".", "samplerate", "(", ")", ")", ")", "fs", "=", "self", ".", "samplerate", "(", ")", "if", "fs", "in", "StimulusModel", ".", "kernelCache", ":", "logger", ".", "debug", "(", "'---->using cached filter'", ")", "# makes the assumption that the cache will be cleared if the frequency reponse", "# changes", "self", ".", "impulseResponse", "=", "StimulusModel", ".", "kernelCache", "[", "fs", "]", "else", ":", "logger", ".", "debug", "(", "'---->calculating new filter for fs {}'", ".", "format", "(", "fs", ")", ")", "self", ".", "impulseResponse", "=", "impulse_response", "(", "fs", ",", "dbBoostArray", ",", "frequencies", ",", "frange", ")", "# mutable type so will affect data structure persistently", "StimulusModel", ".", "kernelCache", "[", "fs", "]", "=", "self", ".", "impulseResponse", "# store this so we can quickly check if a calibration needs to be re-done ", "self", ".", "_calibration_fs", "=", "fs", "# calculate for the default samplerate, if not already, since", "# we are very likely to need it, and it's better to have this done", "# up front, than cause lag in the UI later", "if", "DEFAULT_SAMPLERATE", "not", "in", "StimulusModel", ".", "kernelCache", ":", "StimulusModel", ".", "kernelCache", "[", "DEFAULT_SAMPLERATE", "]", "=", "impulse_response", "(", "DEFAULT_SAMPLERATE", ",", "dbBoostArray", ",", "frequencies", ",", "frange", ")", "# hang on to these for re-calculating impulse response on samplerate change", "self", ".", "_attenuationVector", "=", "dbBoostArray", "self", ".", "_calFrequencies", "=", "frequencies", "self", ".", "_calFrange", "=", "frange", "else", ":", "self", ".", "impulseResponse", "=", "None" ]
Sets the calibration to use with this stimulus, creates a filter that will be applied to output signal generated by this model. Set arguments to `None` to clear calibration. :param dbBoostArray: frequency response of the system (in dB) :type dbBoostArray: numpy.ndarray :param frequencies: corresponding frequencies for the dbBoostArray :type frequencies: numpy.ndarray :param frange: The desired frequency range for which to apply the calibration, in Hz :type frange: (int, int)
[ "Sets", "the", "calibration", "to", "use", "with", "this", "stimulus", "creates", "a", "filter", "that", "will", "be", "applied", "to", "output", "signal", "generated", "by", "this", "model", ".", "Set", "arguments", "to", "None", "to", "clear", "calibration", "." ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L85-L134
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.updateCalibration
def updateCalibration(self): """Updates the current calibration according to intenal values. For example, if the stimulus samplerate changes the calibration needs to be recalculated.""" if self.samplerate() != self._calibration_fs: self.setCalibration(self._attenuationVector, self._calFrequencies, self._calFrange)
python
def updateCalibration(self): """Updates the current calibration according to intenal values. For example, if the stimulus samplerate changes the calibration needs to be recalculated.""" if self.samplerate() != self._calibration_fs: self.setCalibration(self._attenuationVector, self._calFrequencies, self._calFrange)
[ "def", "updateCalibration", "(", "self", ")", ":", "if", "self", ".", "samplerate", "(", ")", "!=", "self", ".", "_calibration_fs", ":", "self", ".", "setCalibration", "(", "self", ".", "_attenuationVector", ",", "self", ".", "_calFrequencies", ",", "self", ".", "_calFrange", ")" ]
Updates the current calibration according to intenal values. For example, if the stimulus samplerate changes the calibration needs to be recalculated.
[ "Updates", "the", "current", "calibration", "according", "to", "intenal", "values", ".", "For", "example", "if", "the", "stimulus", "samplerate", "changes", "the", "calibration", "needs", "to", "be", "recalculated", "." ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L136-L140
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.samplerate
def samplerate(self): """Returns the generation rate for this stimulus :returns: int -- the output samplerate (Hz) """ rates = [] for track in self._segments: for component in track: # special case, where component is a wav file: # it will set the master samplerate to match its own if component.__class__.__name__ == 'Vocalization': if component.samplerate() is not None: rates.append(component.samplerate()) if len(set(rates)) > 1: # error check # raise Exception("Wav files with different sample rates in same stimulus") logger = logging.getLogger('main') logger.error("Wav files with different sample rates in same stimulus") return None elif len(set(rates)) == 1: return rates[0] else: return DEFAULT_SAMPLERATE
python
def samplerate(self): """Returns the generation rate for this stimulus :returns: int -- the output samplerate (Hz) """ rates = [] for track in self._segments: for component in track: # special case, where component is a wav file: # it will set the master samplerate to match its own if component.__class__.__name__ == 'Vocalization': if component.samplerate() is not None: rates.append(component.samplerate()) if len(set(rates)) > 1: # error check # raise Exception("Wav files with different sample rates in same stimulus") logger = logging.getLogger('main') logger.error("Wav files with different sample rates in same stimulus") return None elif len(set(rates)) == 1: return rates[0] else: return DEFAULT_SAMPLERATE
[ "def", "samplerate", "(", "self", ")", ":", "rates", "=", "[", "]", "for", "track", "in", "self", ".", "_segments", ":", "for", "component", "in", "track", ":", "# special case, where component is a wav file:", "# it will set the master samplerate to match its own", "if", "component", ".", "__class__", ".", "__name__", "==", "'Vocalization'", ":", "if", "component", ".", "samplerate", "(", ")", "is", "not", "None", ":", "rates", ".", "append", "(", "component", ".", "samplerate", "(", ")", ")", "if", "len", "(", "set", "(", "rates", ")", ")", ">", "1", ":", "# error check", "# raise Exception(\"Wav files with different sample rates in same stimulus\")", "logger", "=", "logging", ".", "getLogger", "(", "'main'", ")", "logger", ".", "error", "(", "\"Wav files with different sample rates in same stimulus\"", ")", "return", "None", "elif", "len", "(", "set", "(", "rates", ")", ")", "==", "1", ":", "return", "rates", "[", "0", "]", "else", ":", "return", "DEFAULT_SAMPLERATE" ]
Returns the generation rate for this stimulus :returns: int -- the output samplerate (Hz)
[ "Returns", "the", "generation", "rate", "for", "this", "stimulus" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L147-L170
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.columnCount
def columnCount(self, row=None): """Returns the number of components in a track, or the max number of components in any row, if none given :param row: track to get count for :type row: int :returns: int -- number of components for *row* """ if row is not None: wholerow = self._segments[row] return len(wholerow) else: column_lengths = [len(x) for x in self._segments] return max(column_lengths)
python
def columnCount(self, row=None): """Returns the number of components in a track, or the max number of components in any row, if none given :param row: track to get count for :type row: int :returns: int -- number of components for *row* """ if row is not None: wholerow = self._segments[row] return len(wholerow) else: column_lengths = [len(x) for x in self._segments] return max(column_lengths)
[ "def", "columnCount", "(", "self", ",", "row", "=", "None", ")", ":", "if", "row", "is", "not", "None", ":", "wholerow", "=", "self", ".", "_segments", "[", "row", "]", "return", "len", "(", "wholerow", ")", "else", ":", "column_lengths", "=", "[", "len", "(", "x", ")", "for", "x", "in", "self", ".", "_segments", "]", "return", "max", "(", "column_lengths", ")" ]
Returns the number of components in a track, or the max number of components in any row, if none given :param row: track to get count for :type row: int :returns: int -- number of components for *row*
[ "Returns", "the", "number", "of", "components", "in", "a", "track", "or", "the", "max", "number", "of", "components", "in", "any", "row", "if", "none", "given" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L194-L207
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.componentCount
def componentCount(self): """Returns the total number of components in stimulus :returns: number of components (not including expanded auto-params) """ return sum([self.columnCountForRow(x) for x in range(self.rowCount())])
python
def componentCount(self): """Returns the total number of components in stimulus :returns: number of components (not including expanded auto-params) """ return sum([self.columnCountForRow(x) for x in range(self.rowCount())])
[ "def", "componentCount", "(", "self", ")", ":", "return", "sum", "(", "[", "self", ".", "columnCountForRow", "(", "x", ")", "for", "x", "in", "range", "(", "self", ".", "rowCount", "(", ")", ")", "]", ")" ]
Returns the total number of components in stimulus :returns: number of components (not including expanded auto-params)
[ "Returns", "the", "total", "number", "of", "components", "in", "stimulus" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L215-L220
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.component
def component(self, row, col): """Gets the components for the location :param row: track the component is in :type row: int :param col: the ith member of the track :type col: int :returns: :class:`AbstractStimulusComponent<sparkle.stim.abstract_component.AbstractStimulusComponent>` """ try: comp = self._segments[row][col] except: # invalid index print 'Invalid index' return None return comp
python
def component(self, row, col): """Gets the components for the location :param row: track the component is in :type row: int :param col: the ith member of the track :type col: int :returns: :class:`AbstractStimulusComponent<sparkle.stim.abstract_component.AbstractStimulusComponent>` """ try: comp = self._segments[row][col] except: # invalid index print 'Invalid index' return None return comp
[ "def", "component", "(", "self", ",", "row", ",", "col", ")", ":", "try", ":", "comp", "=", "self", ".", "_segments", "[", "row", "]", "[", "col", "]", "except", ":", "# invalid index", "print", "'Invalid index'", "return", "None", "return", "comp" ]
Gets the components for the location :param row: track the component is in :type row: int :param col: the ith member of the track :type col: int :returns: :class:`AbstractStimulusComponent<sparkle.stim.abstract_component.AbstractStimulusComponent>`
[ "Gets", "the", "components", "for", "the", "location" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L222-L237
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.insertComponent
def insertComponent(self, comp, row=0, col=0): """Inserts component into model :param comp: Component to insert into the stimulus :type comp: :class:`AbstractStimulusComponent<sparkle.stim.abstract_component.AbstractStimulusComponent>` :param row: Track number to place comp in :type row: int :param col: location in track to insert component to :type col: int """ if row > len(self._segments) -1: self.insertEmptyRow() self._segments[row].insert(col, comp) # in case of samplerate change, just always update self.updateCalibration()
python
def insertComponent(self, comp, row=0, col=0): """Inserts component into model :param comp: Component to insert into the stimulus :type comp: :class:`AbstractStimulusComponent<sparkle.stim.abstract_component.AbstractStimulusComponent>` :param row: Track number to place comp in :type row: int :param col: location in track to insert component to :type col: int """ if row > len(self._segments) -1: self.insertEmptyRow() self._segments[row].insert(col, comp) # in case of samplerate change, just always update self.updateCalibration()
[ "def", "insertComponent", "(", "self", ",", "comp", ",", "row", "=", "0", ",", "col", "=", "0", ")", ":", "if", "row", ">", "len", "(", "self", ".", "_segments", ")", "-", "1", ":", "self", ".", "insertEmptyRow", "(", ")", "self", ".", "_segments", "[", "row", "]", ".", "insert", "(", "col", ",", "comp", ")", "# in case of samplerate change, just always update", "self", ".", "updateCalibration", "(", ")" ]
Inserts component into model :param comp: Component to insert into the stimulus :type comp: :class:`AbstractStimulusComponent<sparkle.stim.abstract_component.AbstractStimulusComponent>` :param row: Track number to place comp in :type row: int :param col: location in track to insert component to :type col: int
[ "Inserts", "component", "into", "model" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L239-L254
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.overwriteComponent
def overwriteComponent(self, comp, row, col): """Overwrites the component at the specficied location with a provided one. :param comp: New component to insert :type comp: :class:`AbstractStimulusComponent<sparkle.stim.abstract_component.AbstractStimulusComponent>` :param row: track location of existing component to overwrite :type row: int :param col: location in track of existing component to overwrite :type col: int """ self._segments[row][col] = comp # in case of samplerate change, just always update self.updateCalibration()
python
def overwriteComponent(self, comp, row, col): """Overwrites the component at the specficied location with a provided one. :param comp: New component to insert :type comp: :class:`AbstractStimulusComponent<sparkle.stim.abstract_component.AbstractStimulusComponent>` :param row: track location of existing component to overwrite :type row: int :param col: location in track of existing component to overwrite :type col: int """ self._segments[row][col] = comp # in case of samplerate change, just always update self.updateCalibration()
[ "def", "overwriteComponent", "(", "self", ",", "comp", ",", "row", ",", "col", ")", ":", "self", ".", "_segments", "[", "row", "]", "[", "col", "]", "=", "comp", "# in case of samplerate change, just always update", "self", ".", "updateCalibration", "(", ")" ]
Overwrites the component at the specficied location with a provided one. :param comp: New component to insert :type comp: :class:`AbstractStimulusComponent<sparkle.stim.abstract_component.AbstractStimulusComponent>` :param row: track location of existing component to overwrite :type row: int :param col: location in track of existing component to overwrite :type col: int
[ "Overwrites", "the", "component", "at", "the", "specficied", "location", "with", "a", "provided", "one", "." ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L256-L269
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.removeLastRow
def removeLastRow(self): """Removes the last track""" lastrow = self._segments.pop(len(self._segments)-1) if len(lastrow) > 0: raise Exception("Attempt to remove non-empty stimulus track")
python
def removeLastRow(self): """Removes the last track""" lastrow = self._segments.pop(len(self._segments)-1) if len(lastrow) > 0: raise Exception("Attempt to remove non-empty stimulus track")
[ "def", "removeLastRow", "(", "self", ")", ":", "lastrow", "=", "self", ".", "_segments", ".", "pop", "(", "len", "(", "self", ".", "_segments", ")", "-", "1", ")", "if", "len", "(", "lastrow", ")", ">", "0", ":", "raise", "Exception", "(", "\"Attempt to remove non-empty stimulus track\"", ")" ]
Removes the last track
[ "Removes", "the", "last", "track" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L275-L279
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.removeComponent
def removeComponent(self, row,col): """Removes the component at the given location :param row: track location of existing component to remove :type row: int :param col: location in track of existing component to remove :type col: int """ self._segments[row].pop(col) # If this row is now empty we should remove it? if self.columnCountForRow(-1) == 0: self.removeRow(len(self._segments)-1) # in case of samplerate change, just always update self.updateCalibration()
python
def removeComponent(self, row,col): """Removes the component at the given location :param row: track location of existing component to remove :type row: int :param col: location in track of existing component to remove :type col: int """ self._segments[row].pop(col) # If this row is now empty we should remove it? if self.columnCountForRow(-1) == 0: self.removeRow(len(self._segments)-1) # in case of samplerate change, just always update self.updateCalibration()
[ "def", "removeComponent", "(", "self", ",", "row", ",", "col", ")", ":", "self", ".", "_segments", "[", "row", "]", ".", "pop", "(", "col", ")", "# If this row is now empty we should remove it?", "if", "self", ".", "columnCountForRow", "(", "-", "1", ")", "==", "0", ":", "self", ".", "removeRow", "(", "len", "(", "self", ".", "_segments", ")", "-", "1", ")", "# in case of samplerate change, just always update", "self", ".", "updateCalibration", "(", ")" ]
Removes the component at the given location :param row: track location of existing component to remove :type row: int :param col: location in track of existing component to remove :type col: int
[ "Removes", "the", "component", "at", "the", "given", "location" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L285-L300
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.indexByComponent
def indexByComponent(self, component): """Returns a location for the given component, or None if it is not in the model :param component: Component to get index for :type component: :class:`AbstractStimulusComponent<sparkle.stim.abstract_component.AbstractStimulusComponent>` :returns: (int, int) -- (row, column) of component """ for row, rowcontents in enumerate(self._segments): if component in rowcontents: column = rowcontents.index(component) return (row, column)
python
def indexByComponent(self, component): """Returns a location for the given component, or None if it is not in the model :param component: Component to get index for :type component: :class:`AbstractStimulusComponent<sparkle.stim.abstract_component.AbstractStimulusComponent>` :returns: (int, int) -- (row, column) of component """ for row, rowcontents in enumerate(self._segments): if component in rowcontents: column = rowcontents.index(component) return (row, column)
[ "def", "indexByComponent", "(", "self", ",", "component", ")", ":", "for", "row", ",", "rowcontents", "in", "enumerate", "(", "self", ".", "_segments", ")", ":", "if", "component", "in", "rowcontents", ":", "column", "=", "rowcontents", ".", "index", "(", "component", ")", "return", "(", "row", ",", "column", ")" ]
Returns a location for the given component, or None if it is not in the model :param component: Component to get index for :type component: :class:`AbstractStimulusComponent<sparkle.stim.abstract_component.AbstractStimulusComponent>` :returns: (int, int) -- (row, column) of component
[ "Returns", "a", "location", "for", "the", "given", "component", "or", "None", "if", "it", "is", "not", "in", "the", "model" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L309-L320
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.traceCount
def traceCount(self): """The number of unique stimului for this stimulus object :returns: int -- The expanded trace count """ nsegs = sum([len(track) for track in self._segments]) if nsegs == 0: return 0 ntraces = 1 for irow in range(self._autoParams.nrows()): ntraces = ntraces*self._autoParams.numSteps(irow) return ntraces
python
def traceCount(self): """The number of unique stimului for this stimulus object :returns: int -- The expanded trace count """ nsegs = sum([len(track) for track in self._segments]) if nsegs == 0: return 0 ntraces = 1 for irow in range(self._autoParams.nrows()): ntraces = ntraces*self._autoParams.numSteps(irow) return ntraces
[ "def", "traceCount", "(", "self", ")", ":", "nsegs", "=", "sum", "(", "[", "len", "(", "track", ")", "for", "track", "in", "self", ".", "_segments", "]", ")", "if", "nsegs", "==", "0", ":", "return", "0", "ntraces", "=", "1", "for", "irow", "in", "range", "(", "self", ".", "_autoParams", ".", "nrows", "(", ")", ")", ":", "ntraces", "=", "ntraces", "*", "self", ".", "_autoParams", ".", "numSteps", "(", "irow", ")", "return", "ntraces" ]
The number of unique stimului for this stimulus object :returns: int -- The expanded trace count
[ "The", "number", "of", "unique", "stimului", "for", "this", "stimulus", "object" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L322-L333
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.contains
def contains(self, stimtype): """Returns whether the specified stimlus type is a component in this stimulus :param stimtype: :class:`AbstractStimulusComponent<sparkle.stim.abstract_component.AbstractStimulusComponent>` subclass class name to test for membership in the components of this stimulus :type stimtype: str :returns: bool -- if the stimtype is in the model """ for track in self._segments: for component in track: if component.__class__.__name__ == stimtype: return True return False
python
def contains(self, stimtype): """Returns whether the specified stimlus type is a component in this stimulus :param stimtype: :class:`AbstractStimulusComponent<sparkle.stim.abstract_component.AbstractStimulusComponent>` subclass class name to test for membership in the components of this stimulus :type stimtype: str :returns: bool -- if the stimtype is in the model """ for track in self._segments: for component in track: if component.__class__.__name__ == stimtype: return True return False
[ "def", "contains", "(", "self", ",", "stimtype", ")", ":", "for", "track", "in", "self", ".", "_segments", ":", "for", "component", "in", "track", ":", "if", "component", ".", "__class__", ".", "__name__", "==", "stimtype", ":", "return", "True", "return", "False" ]
Returns whether the specified stimlus type is a component in this stimulus :param stimtype: :class:`AbstractStimulusComponent<sparkle.stim.abstract_component.AbstractStimulusComponent>` subclass class name to test for membership in the components of this stimulus :type stimtype: str :returns: bool -- if the stimtype is in the model
[ "Returns", "whether", "the", "specified", "stimlus", "type", "is", "a", "component", "in", "this", "stimulus" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L355-L366
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.purgeAutoSelected
def purgeAutoSelected(self): """Clears out orphaned auto parameters""" params = self._autoParams.allData() for p in params: comps_to_remove = [] for comp in p['selection']: if self.indexByComponent(comp) is None: comps_to_remove.append(comp) for orphaned in comps_to_remove: p['selection'].remove(orphaned)
python
def purgeAutoSelected(self): """Clears out orphaned auto parameters""" params = self._autoParams.allData() for p in params: comps_to_remove = [] for comp in p['selection']: if self.indexByComponent(comp) is None: comps_to_remove.append(comp) for orphaned in comps_to_remove: p['selection'].remove(orphaned)
[ "def", "purgeAutoSelected", "(", "self", ")", ":", "params", "=", "self", ".", "_autoParams", ".", "allData", "(", ")", "for", "p", "in", "params", ":", "comps_to_remove", "=", "[", "]", "for", "comp", "in", "p", "[", "'selection'", "]", ":", "if", "self", ".", "indexByComponent", "(", "comp", ")", "is", "None", ":", "comps_to_remove", ".", "append", "(", "comp", ")", "for", "orphaned", "in", "comps_to_remove", ":", "p", "[", "'selection'", "]", ".", "remove", "(", "orphaned", ")" ]
Clears out orphaned auto parameters
[ "Clears", "out", "orphaned", "auto", "parameters" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L368-L377
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.expandFunction
def expandFunction(self, func, args=[]): """applies the given function to each of this stimulus's memerships when autoparamters are applied :param func: callable to execute for each version of the stimulus :type instancemethod: :param args: arguments to feed to func :type args: list :returns: list<results of *func*>, one for each trace """ # initilize array to hold all varied parameters params = self._autoParams.allData() steps = self.autoParamRanges() ntraces = 1 for p in steps: ntraces = ntraces*len(p) varylist = [[None for x in range(len(params))] for y in range(ntraces)] x = 1 for iset, step_set in enumerate(steps): for itrace in range(ntraces): idx = (itrace / x) % len(step_set) varylist[itrace][iset] = step_set[idx] x = x*len(step_set) # now create the stimuli according to steps # go through list of modifing parameters, update this stimulus, # and then save current state to list stim_list = [] for itrace in range(ntraces): for ip, param in enumerate(params): for component in param['selection']: # print 'setting component {} parameter {} to {}'.format(component.name, param['parameter'], varylist[itrace][ip]) # so I encountered a bug when the parameters were dragged the # pickling/unpickling seems to either make a copy or somehow # otherwise loose connection to the original components # make sure to be setting the components that are in this model. index = self.indexByComponent(component) component = self.component(*index) component.set(param['parameter'], varylist[itrace][ip]) # copy of current stim state, or go ahead and turn it into a signal? # so then would I want to formulate some doc here as well? stim_list.append(func(*args)) # now reset the components to start value for ip, param in enumerate(params): for component in param['selection']: component.set(param['parameter'], varylist[0][ip]) return stim_list
python
def expandFunction(self, func, args=[]): """applies the given function to each of this stimulus's memerships when autoparamters are applied :param func: callable to execute for each version of the stimulus :type instancemethod: :param args: arguments to feed to func :type args: list :returns: list<results of *func*>, one for each trace """ # initilize array to hold all varied parameters params = self._autoParams.allData() steps = self.autoParamRanges() ntraces = 1 for p in steps: ntraces = ntraces*len(p) varylist = [[None for x in range(len(params))] for y in range(ntraces)] x = 1 for iset, step_set in enumerate(steps): for itrace in range(ntraces): idx = (itrace / x) % len(step_set) varylist[itrace][iset] = step_set[idx] x = x*len(step_set) # now create the stimuli according to steps # go through list of modifing parameters, update this stimulus, # and then save current state to list stim_list = [] for itrace in range(ntraces): for ip, param in enumerate(params): for component in param['selection']: # print 'setting component {} parameter {} to {}'.format(component.name, param['parameter'], varylist[itrace][ip]) # so I encountered a bug when the parameters were dragged the # pickling/unpickling seems to either make a copy or somehow # otherwise loose connection to the original components # make sure to be setting the components that are in this model. index = self.indexByComponent(component) component = self.component(*index) component.set(param['parameter'], varylist[itrace][ip]) # copy of current stim state, or go ahead and turn it into a signal? # so then would I want to formulate some doc here as well? stim_list.append(func(*args)) # now reset the components to start value for ip, param in enumerate(params): for component in param['selection']: component.set(param['parameter'], varylist[0][ip]) return stim_list
[ "def", "expandFunction", "(", "self", ",", "func", ",", "args", "=", "[", "]", ")", ":", "# initilize array to hold all varied parameters", "params", "=", "self", ".", "_autoParams", ".", "allData", "(", ")", "steps", "=", "self", ".", "autoParamRanges", "(", ")", "ntraces", "=", "1", "for", "p", "in", "steps", ":", "ntraces", "=", "ntraces", "*", "len", "(", "p", ")", "varylist", "=", "[", "[", "None", "for", "x", "in", "range", "(", "len", "(", "params", ")", ")", "]", "for", "y", "in", "range", "(", "ntraces", ")", "]", "x", "=", "1", "for", "iset", ",", "step_set", "in", "enumerate", "(", "steps", ")", ":", "for", "itrace", "in", "range", "(", "ntraces", ")", ":", "idx", "=", "(", "itrace", "/", "x", ")", "%", "len", "(", "step_set", ")", "varylist", "[", "itrace", "]", "[", "iset", "]", "=", "step_set", "[", "idx", "]", "x", "=", "x", "*", "len", "(", "step_set", ")", "# now create the stimuli according to steps", "# go through list of modifing parameters, update this stimulus,", "# and then save current state to list", "stim_list", "=", "[", "]", "for", "itrace", "in", "range", "(", "ntraces", ")", ":", "for", "ip", ",", "param", "in", "enumerate", "(", "params", ")", ":", "for", "component", "in", "param", "[", "'selection'", "]", ":", "# print 'setting component {} parameter {} to {}'.format(component.name, param['parameter'], varylist[itrace][ip])", "# so I encountered a bug when the parameters were dragged the", "# pickling/unpickling seems to either make a copy or somehow", "# otherwise loose connection to the original components", "# make sure to be setting the components that are in this model.", "index", "=", "self", ".", "indexByComponent", "(", "component", ")", "component", "=", "self", ".", "component", "(", "*", "index", ")", "component", ".", "set", "(", "param", "[", "'parameter'", "]", ",", "varylist", "[", "itrace", "]", "[", "ip", "]", ")", "# copy of current stim state, or go ahead and turn it into a signal?", "# so then would I want to formulate some doc here as well?", "stim_list", ".", "append", "(", "func", "(", "*", "args", ")", ")", "# now reset the components to start value", "for", "ip", ",", "param", "in", "enumerate", "(", "params", ")", ":", "for", "component", "in", "param", "[", "'selection'", "]", ":", "component", ".", "set", "(", "param", "[", "'parameter'", "]", ",", "varylist", "[", "0", "]", "[", "ip", "]", ")", "return", "stim_list" ]
applies the given function to each of this stimulus's memerships when autoparamters are applied :param func: callable to execute for each version of the stimulus :type instancemethod: :param args: arguments to feed to func :type args: list :returns: list<results of *func*>, one for each trace
[ "applies", "the", "given", "function", "to", "each", "of", "this", "stimulus", "s", "memerships", "when", "autoparamters", "are", "applied" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L392-L441
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.setReorderFunc
def setReorderFunc(self, func, name=None): """Sets the function that reorders the expanded signals of this stimulus :param func: a function which takes the template doc as an argument :type func: callable :param name: a name to assign the function (for documentation purposes) :type name: str """ self.reorder = func self.reorderName = name
python
def setReorderFunc(self, func, name=None): """Sets the function that reorders the expanded signals of this stimulus :param func: a function which takes the template doc as an argument :type func: callable :param name: a name to assign the function (for documentation purposes) :type name: str """ self.reorder = func self.reorderName = name
[ "def", "setReorderFunc", "(", "self", ",", "func", ",", "name", "=", "None", ")", ":", "self", ".", "reorder", "=", "func", "self", ".", "reorderName", "=", "name" ]
Sets the function that reorders the expanded signals of this stimulus :param func: a function which takes the template doc as an argument :type func: callable :param name: a name to assign the function (for documentation purposes) :type name: str
[ "Sets", "the", "function", "that", "reorders", "the", "expanded", "signals", "of", "this", "stimulus" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L443-L452
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.expandedStim
def expandedStim(self): """ Apply the autoparameters to this stimulus and return a list of the resulting stimuli, a complimentary list of doc dictionaries, and a complimentary list of undesired attenuations. :returns: list<numpy.ndarray>, list<dict>, list<float> -- the signals, their doc, undesired attenuations (dB) """ logger = logging.getLogger('main') logger.debug("Generating Expanded Stimulus") # 3 loops now -- could be done in one... signals = self.expandFunction(self.signal) docs = self.expandFunction(self.componentDoc) overloads = [] for s, d in zip(signals, docs): d['overloaded_attenuation'] = s[2] overloads.append(s[2]) # remove the undesired attenuation argument signals = [sig[0:2] for sig in signals] if self.reorder: order = self.reorder(docs) signals = [signals[i] for i in order] docs = [docs[i] for i in order] return signals, docs, overloads
python
def expandedStim(self): """ Apply the autoparameters to this stimulus and return a list of the resulting stimuli, a complimentary list of doc dictionaries, and a complimentary list of undesired attenuations. :returns: list<numpy.ndarray>, list<dict>, list<float> -- the signals, their doc, undesired attenuations (dB) """ logger = logging.getLogger('main') logger.debug("Generating Expanded Stimulus") # 3 loops now -- could be done in one... signals = self.expandFunction(self.signal) docs = self.expandFunction(self.componentDoc) overloads = [] for s, d in zip(signals, docs): d['overloaded_attenuation'] = s[2] overloads.append(s[2]) # remove the undesired attenuation argument signals = [sig[0:2] for sig in signals] if self.reorder: order = self.reorder(docs) signals = [signals[i] for i in order] docs = [docs[i] for i in order] return signals, docs, overloads
[ "def", "expandedStim", "(", "self", ")", ":", "logger", "=", "logging", ".", "getLogger", "(", "'main'", ")", "logger", ".", "debug", "(", "\"Generating Expanded Stimulus\"", ")", "# 3 loops now -- could be done in one...", "signals", "=", "self", ".", "expandFunction", "(", "self", ".", "signal", ")", "docs", "=", "self", ".", "expandFunction", "(", "self", ".", "componentDoc", ")", "overloads", "=", "[", "]", "for", "s", ",", "d", "in", "zip", "(", "signals", ",", "docs", ")", ":", "d", "[", "'overloaded_attenuation'", "]", "=", "s", "[", "2", "]", "overloads", ".", "append", "(", "s", "[", "2", "]", ")", "# remove the undesired attenuation argument", "signals", "=", "[", "sig", "[", "0", ":", "2", "]", "for", "sig", "in", "signals", "]", "if", "self", ".", "reorder", ":", "order", "=", "self", ".", "reorder", "(", "docs", ")", "signals", "=", "[", "signals", "[", "i", "]", "for", "i", "in", "order", "]", "docs", "=", "[", "docs", "[", "i", "]", "for", "i", "in", "order", "]", "return", "signals", ",", "docs", ",", "overloads" ]
Apply the autoparameters to this stimulus and return a list of the resulting stimuli, a complimentary list of doc dictionaries, and a complimentary list of undesired attenuations. :returns: list<numpy.ndarray>, list<dict>, list<float> -- the signals, their doc, undesired attenuations (dB)
[ "Apply", "the", "autoparameters", "to", "this", "stimulus", "and", "return", "a", "list", "of", "the", "resulting", "stimuli", "a", "complimentary", "list", "of", "doc", "dictionaries", "and", "a", "complimentary", "list", "of", "undesired", "attenuations", "." ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L454-L481
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.loadFromTemplate
def loadFromTemplate(template, stim=None): """Loads the stimlus to the state provided by a template :param template: dict that includes all info nesessary to recreate stim :type template: dict :param stim: Stimulus to apply to, creates a new model if None :type stim: StimulusModel """ if stim is None: stim = StimulusModel() stim.setRepCount(template['reps']) stim.setUserTag(template.get('user_tag', '')) # don't set calibration details - this should be the same application wide component_classes = get_stimuli_models() for comp_doc in template['components']: comp = get_component(comp_doc['stim_type'], component_classes) comp.loadState(comp_doc) # ignore extra dict entries stim.insertComponent(comp, *comp_doc['index']) # revert from location based selection to component list autoparams = template['autoparameters'] for p in autoparams: selection = p['selection'] component_selection = [] for index in selection: component = stim.component(*index) component_selection.append(component) p['selection'] = component_selection stim.autoParams().setParameterList(autoparams) stim.setReorderFunc(order_function(template['reorder']), template['reorder']) stim.setStimType(template['testtype']) return stim
python
def loadFromTemplate(template, stim=None): """Loads the stimlus to the state provided by a template :param template: dict that includes all info nesessary to recreate stim :type template: dict :param stim: Stimulus to apply to, creates a new model if None :type stim: StimulusModel """ if stim is None: stim = StimulusModel() stim.setRepCount(template['reps']) stim.setUserTag(template.get('user_tag', '')) # don't set calibration details - this should be the same application wide component_classes = get_stimuli_models() for comp_doc in template['components']: comp = get_component(comp_doc['stim_type'], component_classes) comp.loadState(comp_doc) # ignore extra dict entries stim.insertComponent(comp, *comp_doc['index']) # revert from location based selection to component list autoparams = template['autoparameters'] for p in autoparams: selection = p['selection'] component_selection = [] for index in selection: component = stim.component(*index) component_selection.append(component) p['selection'] = component_selection stim.autoParams().setParameterList(autoparams) stim.setReorderFunc(order_function(template['reorder']), template['reorder']) stim.setStimType(template['testtype']) return stim
[ "def", "loadFromTemplate", "(", "template", ",", "stim", "=", "None", ")", ":", "if", "stim", "is", "None", ":", "stim", "=", "StimulusModel", "(", ")", "stim", ".", "setRepCount", "(", "template", "[", "'reps'", "]", ")", "stim", ".", "setUserTag", "(", "template", ".", "get", "(", "'user_tag'", ",", "''", ")", ")", "# don't set calibration details - this should be the same application wide", "component_classes", "=", "get_stimuli_models", "(", ")", "for", "comp_doc", "in", "template", "[", "'components'", "]", ":", "comp", "=", "get_component", "(", "comp_doc", "[", "'stim_type'", "]", ",", "component_classes", ")", "comp", ".", "loadState", "(", "comp_doc", ")", "# ignore extra dict entries", "stim", ".", "insertComponent", "(", "comp", ",", "*", "comp_doc", "[", "'index'", "]", ")", "# revert from location based selection to component list", "autoparams", "=", "template", "[", "'autoparameters'", "]", "for", "p", "in", "autoparams", ":", "selection", "=", "p", "[", "'selection'", "]", "component_selection", "=", "[", "]", "for", "index", "in", "selection", ":", "component", "=", "stim", ".", "component", "(", "*", "index", ")", "component_selection", ".", "append", "(", "component", ")", "p", "[", "'selection'", "]", "=", "component_selection", "stim", ".", "autoParams", "(", ")", ".", "setParameterList", "(", "autoparams", ")", "stim", ".", "setReorderFunc", "(", "order_function", "(", "template", "[", "'reorder'", "]", ")", ",", "template", "[", "'reorder'", "]", ")", "stim", ".", "setStimType", "(", "template", "[", "'testtype'", "]", ")", "return", "stim" ]
Loads the stimlus to the state provided by a template :param template: dict that includes all info nesessary to recreate stim :type template: dict :param stim: Stimulus to apply to, creates a new model if None :type stim: StimulusModel
[ "Loads", "the", "stimlus", "to", "the", "state", "provided", "by", "a", "template" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L506-L538
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.duration
def duration(self): """The duration of this stimulus :returns: float -- duration in seconds """ durs = [] for track in self._segments: durs.append(sum([comp.duration() for comp in track])) return max(durs)
python
def duration(self): """The duration of this stimulus :returns: float -- duration in seconds """ durs = [] for track in self._segments: durs.append(sum([comp.duration() for comp in track])) return max(durs)
[ "def", "duration", "(", "self", ")", ":", "durs", "=", "[", "]", "for", "track", "in", "self", ".", "_segments", ":", "durs", ".", "append", "(", "sum", "(", "[", "comp", ".", "duration", "(", ")", "for", "comp", "in", "track", "]", ")", ")", "return", "max", "(", "durs", ")" ]
The duration of this stimulus :returns: float -- duration in seconds
[ "The", "duration", "of", "this", "stimulus" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L557-L566
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.signal
def signal(self, force_fs=False): """The current stimulus in signal representation, this is the sum of its components :param force_fs: Allow to use a different samplerate than the default, should be used to recreate historical signals only :type force_fs: int :returns: numpy.ndarray -- voltage signal for this stimulus """ assert None not in self.voltage_limits, 'Max voltage level not set' if force_fs: samplerate = force_fs else: samplerate = self.samplerate() track_signals = [] max_db = max([comp.intensity() for t in self._segments for comp in t]) # atten = self.caldb - max_db atten = 0 # if max_db > self.caldb: # raise Exception("Stimulus intensity over maxium") # print 'caldb:', self.caldb, 'max db:', max_db, 'atten:', atten, 'calv', self.calv for track in self._segments: track_list = [] for component in track: track_list.append(component.signal(fs=samplerate, atten=0, caldb=self.caldb, calv=self.calv)) if len(track_list) > 0: track_signals.append(np.hstack(track_list)) # track_signals = sorted(track_signals, key=len, reverse=True) full_len = len(max(track_signals, key=len)) total_signal = np.zeros((full_len,)) for track in track_signals: total_signal[0:len(track)] += track # if there is only square waves in stimulus, do not apply calibration -- # it is assumed to not be a signal for the speaker component_names = list(set([comp.name for track in self._segments for comp in track])) if 'silence' in component_names: component_names.remove('silence') if len(component_names) > 1 or (len(component_names) == 1 and component_names[0] != "Square Wave"): total_signal = convolve_filter(total_signal, self.impulseResponse) maxv = self.voltage_limits[0] to_speaker = True else: maxv = self.voltage_limits[1] to_speaker = False # last sample should always go to 0, so output isn't stuck on some # other value when stim ends total_signal[-1] = 0 undesired_attenuation = 0 # sig_max = max(abs(total_signal)) # if sig_max > self.calv: # over_db = 20 * np.log10(sig_max/self.calv) # allowance = float(min(over_db, atten)) # scalev = (10 ** (allowance/20)*self.calv) # total_signal = total_signal/scalev # print 'sigmax {}, over_db {}, allowance {}, scalev {}'.format(sig_max, over_db, allowance, scalev) # atten -= allowance minv = self.voltage_limits[2] sig_max = np.max(abs(total_signal)) if sig_max > maxv: # scale stim down to outputable max total_signal = (total_signal/sig_max)*maxv attenuated = 20 * np.log10(sig_max/maxv) if attenuated <= atten: atten = atten - attenuated else: undesired_attenuation = attenuated - atten atten = 0 logger = logging.getLogger('main') logger.warning("STIMULUS AMPLTIUDE {:.2f}V EXCEEDS MAXIMUM({}V), RESCALING. \ UNDESIRED ATTENUATION {:.2f}dB".format(sig_max, maxv, undesired_attenuation)) elif sig_max < minv and sig_max !=0 and to_speaker: before_rms = np.sqrt(np.mean(pow(total_signal,2))) total_signal = (total_signal/sig_max)*minv after_rms = np.sqrt(np.mean(pow(total_signal,2))) attenuated = -20 * np.log10(before_rms/after_rms) # print 'signal below min, adding {} attenuation'.format(attenuated) atten += attenuated return total_signal, atten, undesired_attenuation
python
def signal(self, force_fs=False): """The current stimulus in signal representation, this is the sum of its components :param force_fs: Allow to use a different samplerate than the default, should be used to recreate historical signals only :type force_fs: int :returns: numpy.ndarray -- voltage signal for this stimulus """ assert None not in self.voltage_limits, 'Max voltage level not set' if force_fs: samplerate = force_fs else: samplerate = self.samplerate() track_signals = [] max_db = max([comp.intensity() for t in self._segments for comp in t]) # atten = self.caldb - max_db atten = 0 # if max_db > self.caldb: # raise Exception("Stimulus intensity over maxium") # print 'caldb:', self.caldb, 'max db:', max_db, 'atten:', atten, 'calv', self.calv for track in self._segments: track_list = [] for component in track: track_list.append(component.signal(fs=samplerate, atten=0, caldb=self.caldb, calv=self.calv)) if len(track_list) > 0: track_signals.append(np.hstack(track_list)) # track_signals = sorted(track_signals, key=len, reverse=True) full_len = len(max(track_signals, key=len)) total_signal = np.zeros((full_len,)) for track in track_signals: total_signal[0:len(track)] += track # if there is only square waves in stimulus, do not apply calibration -- # it is assumed to not be a signal for the speaker component_names = list(set([comp.name for track in self._segments for comp in track])) if 'silence' in component_names: component_names.remove('silence') if len(component_names) > 1 or (len(component_names) == 1 and component_names[0] != "Square Wave"): total_signal = convolve_filter(total_signal, self.impulseResponse) maxv = self.voltage_limits[0] to_speaker = True else: maxv = self.voltage_limits[1] to_speaker = False # last sample should always go to 0, so output isn't stuck on some # other value when stim ends total_signal[-1] = 0 undesired_attenuation = 0 # sig_max = max(abs(total_signal)) # if sig_max > self.calv: # over_db = 20 * np.log10(sig_max/self.calv) # allowance = float(min(over_db, atten)) # scalev = (10 ** (allowance/20)*self.calv) # total_signal = total_signal/scalev # print 'sigmax {}, over_db {}, allowance {}, scalev {}'.format(sig_max, over_db, allowance, scalev) # atten -= allowance minv = self.voltage_limits[2] sig_max = np.max(abs(total_signal)) if sig_max > maxv: # scale stim down to outputable max total_signal = (total_signal/sig_max)*maxv attenuated = 20 * np.log10(sig_max/maxv) if attenuated <= atten: atten = atten - attenuated else: undesired_attenuation = attenuated - atten atten = 0 logger = logging.getLogger('main') logger.warning("STIMULUS AMPLTIUDE {:.2f}V EXCEEDS MAXIMUM({}V), RESCALING. \ UNDESIRED ATTENUATION {:.2f}dB".format(sig_max, maxv, undesired_attenuation)) elif sig_max < minv and sig_max !=0 and to_speaker: before_rms = np.sqrt(np.mean(pow(total_signal,2))) total_signal = (total_signal/sig_max)*minv after_rms = np.sqrt(np.mean(pow(total_signal,2))) attenuated = -20 * np.log10(before_rms/after_rms) # print 'signal below min, adding {} attenuation'.format(attenuated) atten += attenuated return total_signal, atten, undesired_attenuation
[ "def", "signal", "(", "self", ",", "force_fs", "=", "False", ")", ":", "assert", "None", "not", "in", "self", ".", "voltage_limits", ",", "'Max voltage level not set'", "if", "force_fs", ":", "samplerate", "=", "force_fs", "else", ":", "samplerate", "=", "self", ".", "samplerate", "(", ")", "track_signals", "=", "[", "]", "max_db", "=", "max", "(", "[", "comp", ".", "intensity", "(", ")", "for", "t", "in", "self", ".", "_segments", "for", "comp", "in", "t", "]", ")", "# atten = self.caldb - max_db", "atten", "=", "0", "# if max_db > self.caldb:", "# raise Exception(\"Stimulus intensity over maxium\")", "# print 'caldb:', self.caldb, 'max db:', max_db, 'atten:', atten, 'calv', self.calv", "for", "track", "in", "self", ".", "_segments", ":", "track_list", "=", "[", "]", "for", "component", "in", "track", ":", "track_list", ".", "append", "(", "component", ".", "signal", "(", "fs", "=", "samplerate", ",", "atten", "=", "0", ",", "caldb", "=", "self", ".", "caldb", ",", "calv", "=", "self", ".", "calv", ")", ")", "if", "len", "(", "track_list", ")", ">", "0", ":", "track_signals", ".", "append", "(", "np", ".", "hstack", "(", "track_list", ")", ")", "# track_signals = sorted(track_signals, key=len, reverse=True)", "full_len", "=", "len", "(", "max", "(", "track_signals", ",", "key", "=", "len", ")", ")", "total_signal", "=", "np", ".", "zeros", "(", "(", "full_len", ",", ")", ")", "for", "track", "in", "track_signals", ":", "total_signal", "[", "0", ":", "len", "(", "track", ")", "]", "+=", "track", "# if there is only square waves in stimulus, do not apply calibration --", "# it is assumed to not be a signal for the speaker", "component_names", "=", "list", "(", "set", "(", "[", "comp", ".", "name", "for", "track", "in", "self", ".", "_segments", "for", "comp", "in", "track", "]", ")", ")", "if", "'silence'", "in", "component_names", ":", "component_names", ".", "remove", "(", "'silence'", ")", "if", "len", "(", "component_names", ")", ">", "1", "or", "(", "len", "(", "component_names", ")", "==", "1", "and", "component_names", "[", "0", "]", "!=", "\"Square Wave\"", ")", ":", "total_signal", "=", "convolve_filter", "(", "total_signal", ",", "self", ".", "impulseResponse", ")", "maxv", "=", "self", ".", "voltage_limits", "[", "0", "]", "to_speaker", "=", "True", "else", ":", "maxv", "=", "self", ".", "voltage_limits", "[", "1", "]", "to_speaker", "=", "False", "# last sample should always go to 0, so output isn't stuck on some", "# other value when stim ends", "total_signal", "[", "-", "1", "]", "=", "0", "undesired_attenuation", "=", "0", "# sig_max = max(abs(total_signal))", "# if sig_max > self.calv:", "# over_db = 20 * np.log10(sig_max/self.calv)", "# allowance = float(min(over_db, atten))", "# scalev = (10 ** (allowance/20)*self.calv)", "# total_signal = total_signal/scalev", "# print 'sigmax {}, over_db {}, allowance {}, scalev {}'.format(sig_max, over_db, allowance, scalev)", "# atten -= allowance", "minv", "=", "self", ".", "voltage_limits", "[", "2", "]", "sig_max", "=", "np", ".", "max", "(", "abs", "(", "total_signal", ")", ")", "if", "sig_max", ">", "maxv", ":", "# scale stim down to outputable max", "total_signal", "=", "(", "total_signal", "/", "sig_max", ")", "*", "maxv", "attenuated", "=", "20", "*", "np", ".", "log10", "(", "sig_max", "/", "maxv", ")", "if", "attenuated", "<=", "atten", ":", "atten", "=", "atten", "-", "attenuated", "else", ":", "undesired_attenuation", "=", "attenuated", "-", "atten", "atten", "=", "0", "logger", "=", "logging", ".", "getLogger", "(", "'main'", ")", "logger", ".", "warning", "(", "\"STIMULUS AMPLTIUDE {:.2f}V EXCEEDS MAXIMUM({}V), RESCALING. \\\n UNDESIRED ATTENUATION {:.2f}dB\"", ".", "format", "(", "sig_max", ",", "maxv", ",", "undesired_attenuation", ")", ")", "elif", "sig_max", "<", "minv", "and", "sig_max", "!=", "0", "and", "to_speaker", ":", "before_rms", "=", "np", ".", "sqrt", "(", "np", ".", "mean", "(", "pow", "(", "total_signal", ",", "2", ")", ")", ")", "total_signal", "=", "(", "total_signal", "/", "sig_max", ")", "*", "minv", "after_rms", "=", "np", ".", "sqrt", "(", "np", ".", "mean", "(", "pow", "(", "total_signal", ",", "2", ")", ")", ")", "attenuated", "=", "-", "20", "*", "np", ".", "log10", "(", "before_rms", "/", "after_rms", ")", "# print 'signal below min, adding {} attenuation'.format(attenuated)", "atten", "+=", "attenuated", "return", "total_signal", ",", "atten", ",", "undesired_attenuation" ]
The current stimulus in signal representation, this is the sum of its components :param force_fs: Allow to use a different samplerate than the default, should be used to recreate historical signals only :type force_fs: int :returns: numpy.ndarray -- voltage signal for this stimulus
[ "The", "current", "stimulus", "in", "signal", "representation", "this", "is", "the", "sum", "of", "its", "components" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L568-L654
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.componentDoc
def componentDoc(self, starttime=True): """The documentation for the components, as a dict :returns dict -- values are the generation samplerate, and a list of the individual component docs """ samplerate = self.samplerate() doc_list = [] for row, track in enumerate(self._segments): start_time = 0 for col, component in enumerate(track): info = component.stateDict() info['stim_type'] = component.name if starttime: info['start_s'] = start_time info['index'] = (row, col) start_time += info['duration'] doc_list.append(info) return {'samplerate_da':samplerate, 'components' : doc_list}
python
def componentDoc(self, starttime=True): """The documentation for the components, as a dict :returns dict -- values are the generation samplerate, and a list of the individual component docs """ samplerate = self.samplerate() doc_list = [] for row, track in enumerate(self._segments): start_time = 0 for col, component in enumerate(track): info = component.stateDict() info['stim_type'] = component.name if starttime: info['start_s'] = start_time info['index'] = (row, col) start_time += info['duration'] doc_list.append(info) return {'samplerate_da':samplerate, 'components' : doc_list}
[ "def", "componentDoc", "(", "self", ",", "starttime", "=", "True", ")", ":", "samplerate", "=", "self", ".", "samplerate", "(", ")", "doc_list", "=", "[", "]", "for", "row", ",", "track", "in", "enumerate", "(", "self", ".", "_segments", ")", ":", "start_time", "=", "0", "for", "col", ",", "component", "in", "enumerate", "(", "track", ")", ":", "info", "=", "component", ".", "stateDict", "(", ")", "info", "[", "'stim_type'", "]", "=", "component", ".", "name", "if", "starttime", ":", "info", "[", "'start_s'", "]", "=", "start_time", "info", "[", "'index'", "]", "=", "(", "row", ",", "col", ")", "start_time", "+=", "info", "[", "'duration'", "]", "doc_list", ".", "append", "(", "info", ")", "return", "{", "'samplerate_da'", ":", "samplerate", ",", "'components'", ":", "doc_list", "}" ]
The documentation for the components, as a dict :returns dict -- values are the generation samplerate, and a list of the individual component docs
[ "The", "documentation", "for", "the", "components", "as", "a", "dict" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L656-L675
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.warning
def warning(self): """Checks Stimulus for any warning conditions :returns: str -- warning message, if any, 0 otherwise """ signals, docs, overs = self.expandedStim() if np.any(np.array(overs) > 0): msg = 'Stimuli in this test are over the maximum allowable \ voltage output. They will be rescaled with a maximum \ undesired attenuation of {:.2f}dB.'.format(np.amax(overs)) return msg return 0
python
def warning(self): """Checks Stimulus for any warning conditions :returns: str -- warning message, if any, 0 otherwise """ signals, docs, overs = self.expandedStim() if np.any(np.array(overs) > 0): msg = 'Stimuli in this test are over the maximum allowable \ voltage output. They will be rescaled with a maximum \ undesired attenuation of {:.2f}dB.'.format(np.amax(overs)) return msg return 0
[ "def", "warning", "(", "self", ")", ":", "signals", ",", "docs", ",", "overs", "=", "self", ".", "expandedStim", "(", ")", "if", "np", ".", "any", "(", "np", ".", "array", "(", "overs", ")", ">", "0", ")", ":", "msg", "=", "'Stimuli in this test are over the maximum allowable \\\n voltage output. They will be rescaled with a maximum \\\n undesired attenuation of {:.2f}dB.'", ".", "format", "(", "np", ".", "amax", "(", "overs", ")", ")", "return", "msg", "return", "0" ]
Checks Stimulus for any warning conditions :returns: str -- warning message, if any, 0 otherwise
[ "Checks", "Stimulus", "for", "any", "warning", "conditions" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L715-L726
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.verifyExpanded
def verifyExpanded(self, samplerate): """Checks the expanded parameters for invalidating conditions :param samplerate: generation samplerate (Hz), passed on to component verification :type samplerate: int :returns: str -- error message, if any, 0 otherwise""" results = self.expandFunction(self.verifyComponents, args=(samplerate,)) msg = [x for x in results if x] if len(msg) > 0: return msg[0] else: return 0
python
def verifyExpanded(self, samplerate): """Checks the expanded parameters for invalidating conditions :param samplerate: generation samplerate (Hz), passed on to component verification :type samplerate: int :returns: str -- error message, if any, 0 otherwise""" results = self.expandFunction(self.verifyComponents, args=(samplerate,)) msg = [x for x in results if x] if len(msg) > 0: return msg[0] else: return 0
[ "def", "verifyExpanded", "(", "self", ",", "samplerate", ")", ":", "results", "=", "self", ".", "expandFunction", "(", "self", ".", "verifyComponents", ",", "args", "=", "(", "samplerate", ",", ")", ")", "msg", "=", "[", "x", "for", "x", "in", "results", "if", "x", "]", "if", "len", "(", "msg", ")", ">", "0", ":", "return", "msg", "[", "0", "]", "else", ":", "return", "0" ]
Checks the expanded parameters for invalidating conditions :param samplerate: generation samplerate (Hz), passed on to component verification :type samplerate: int :returns: str -- error message, if any, 0 otherwise
[ "Checks", "the", "expanded", "parameters", "for", "invalidating", "conditions" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L728-L739
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.verifyComponents
def verifyComponents(self, samplerate): """Checks the current components for invalidating conditions :param samplerate: generation samplerate (Hz), passed on to component verification :type samplerate: int :returns: str -- error message, if any, 0 otherwise """ # flatten list of components components = [comp for track in self._segments for comp in track] for comp in components: msg = comp.verify(samplerate=samplerate) if msg: return msg return 0
python
def verifyComponents(self, samplerate): """Checks the current components for invalidating conditions :param samplerate: generation samplerate (Hz), passed on to component verification :type samplerate: int :returns: str -- error message, if any, 0 otherwise """ # flatten list of components components = [comp for track in self._segments for comp in track] for comp in components: msg = comp.verify(samplerate=samplerate) if msg: return msg return 0
[ "def", "verifyComponents", "(", "self", ",", "samplerate", ")", ":", "# flatten list of components", "components", "=", "[", "comp", "for", "track", "in", "self", ".", "_segments", "for", "comp", "in", "track", "]", "for", "comp", "in", "components", ":", "msg", "=", "comp", ".", "verify", "(", "samplerate", "=", "samplerate", ")", "if", "msg", ":", "return", "msg", "return", "0" ]
Checks the current components for invalidating conditions :param samplerate: generation samplerate (Hz), passed on to component verification :type samplerate: int :returns: str -- error message, if any, 0 otherwise
[ "Checks", "the", "current", "components", "for", "invalidating", "conditions" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L741-L754
train
portfors-lab/sparkle
sparkle/stim/stimulus_model.py
StimulusModel.verify
def verify(self, windowSize=None): """Checks the stimulus, including expanded parameters for invalidating conditions :param windowSize: acquistion (recording) window size (seconds) :type windowSize: float :returns: str -- error message, if any, 0 otherwise""" if self.samplerate() is None: return "Multiple recording files with conflicting samplerates" msg = self._autoParams.verify() if msg: return msg if self.traceCount() == 0: return "Test is empty" if windowSize is not None: durations = self.expandFunction(self.duration) # print 'windowSize', windowSize, 'self', durations[0], durations[-1] # ranges are linear, so we only need to test first and last if durations[0] > windowSize or durations[-1] > windowSize: return "Stimulus duration exceeds window duration" msg = self.verifyExpanded(self.samplerate()) if msg: return msg if self.caldb is None or self.calv is None: return "Test reference voltage not set" if None in self.voltage_limits: return "Device voltage limits not set" return 0
python
def verify(self, windowSize=None): """Checks the stimulus, including expanded parameters for invalidating conditions :param windowSize: acquistion (recording) window size (seconds) :type windowSize: float :returns: str -- error message, if any, 0 otherwise""" if self.samplerate() is None: return "Multiple recording files with conflicting samplerates" msg = self._autoParams.verify() if msg: return msg if self.traceCount() == 0: return "Test is empty" if windowSize is not None: durations = self.expandFunction(self.duration) # print 'windowSize', windowSize, 'self', durations[0], durations[-1] # ranges are linear, so we only need to test first and last if durations[0] > windowSize or durations[-1] > windowSize: return "Stimulus duration exceeds window duration" msg = self.verifyExpanded(self.samplerate()) if msg: return msg if self.caldb is None or self.calv is None: return "Test reference voltage not set" if None in self.voltage_limits: return "Device voltage limits not set" return 0
[ "def", "verify", "(", "self", ",", "windowSize", "=", "None", ")", ":", "if", "self", ".", "samplerate", "(", ")", "is", "None", ":", "return", "\"Multiple recording files with conflicting samplerates\"", "msg", "=", "self", ".", "_autoParams", ".", "verify", "(", ")", "if", "msg", ":", "return", "msg", "if", "self", ".", "traceCount", "(", ")", "==", "0", ":", "return", "\"Test is empty\"", "if", "windowSize", "is", "not", "None", ":", "durations", "=", "self", ".", "expandFunction", "(", "self", ".", "duration", ")", "# print 'windowSize', windowSize, 'self', durations[0], durations[-1]", "# ranges are linear, so we only need to test first and last", "if", "durations", "[", "0", "]", ">", "windowSize", "or", "durations", "[", "-", "1", "]", ">", "windowSize", ":", "return", "\"Stimulus duration exceeds window duration\"", "msg", "=", "self", ".", "verifyExpanded", "(", "self", ".", "samplerate", "(", ")", ")", "if", "msg", ":", "return", "msg", "if", "self", ".", "caldb", "is", "None", "or", "self", ".", "calv", "is", "None", ":", "return", "\"Test reference voltage not set\"", "if", "None", "in", "self", ".", "voltage_limits", ":", "return", "\"Device voltage limits not set\"", "return", "0" ]
Checks the stimulus, including expanded parameters for invalidating conditions :param windowSize: acquistion (recording) window size (seconds) :type windowSize: float :returns: str -- error message, if any, 0 otherwise
[ "Checks", "the", "stimulus", "including", "expanded", "parameters", "for", "invalidating", "conditions" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/stim/stimulus_model.py#L756-L782
train
portfors-lab/sparkle
sparkle/acq/daq_tasks.py
get_ao_chans
def get_ao_chans(dev): """Discover and return a list of the names of all analog output channels for the given device :param dev: the device name :type dev: str """ buf = create_string_buffer(256) buflen = c_uint32(sizeof(buf)) DAQmxGetDevAOPhysicalChans(dev.encode(), buf, buflen) pybuf = buf.value chans = pybuf.decode(u'utf-8').split(u",") return chans
python
def get_ao_chans(dev): """Discover and return a list of the names of all analog output channels for the given device :param dev: the device name :type dev: str """ buf = create_string_buffer(256) buflen = c_uint32(sizeof(buf)) DAQmxGetDevAOPhysicalChans(dev.encode(), buf, buflen) pybuf = buf.value chans = pybuf.decode(u'utf-8').split(u",") return chans
[ "def", "get_ao_chans", "(", "dev", ")", ":", "buf", "=", "create_string_buffer", "(", "256", ")", "buflen", "=", "c_uint32", "(", "sizeof", "(", "buf", ")", ")", "DAQmxGetDevAOPhysicalChans", "(", "dev", ".", "encode", "(", ")", ",", "buf", ",", "buflen", ")", "pybuf", "=", "buf", ".", "value", "chans", "=", "pybuf", ".", "decode", "(", "u'utf-8'", ")", ".", "split", "(", "u\",\"", ")", "return", "chans" ]
Discover and return a list of the names of all analog output channels for the given device :param dev: the device name :type dev: str
[ "Discover", "and", "return", "a", "list", "of", "the", "names", "of", "all", "analog", "output", "channels", "for", "the", "given", "device" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/acq/daq_tasks.py#L313-L324
train
portfors-lab/sparkle
sparkle/acq/daq_tasks.py
get_devices
def get_devices(): """Discover and return a list of the names of all NI devices on this system""" buf = create_string_buffer(512) buflen = c_uint32(sizeof(buf)) DAQmxGetSysDevNames(buf, buflen) pybuf = buf.value devices = pybuf.decode(u'utf-8').split(u",") return devices
python
def get_devices(): """Discover and return a list of the names of all NI devices on this system""" buf = create_string_buffer(512) buflen = c_uint32(sizeof(buf)) DAQmxGetSysDevNames(buf, buflen) pybuf = buf.value devices = pybuf.decode(u'utf-8').split(u",") return devices
[ "def", "get_devices", "(", ")", ":", "buf", "=", "create_string_buffer", "(", "512", ")", "buflen", "=", "c_uint32", "(", "sizeof", "(", "buf", ")", ")", "DAQmxGetSysDevNames", "(", "buf", ",", "buflen", ")", "pybuf", "=", "buf", ".", "value", "devices", "=", "pybuf", ".", "decode", "(", "u'utf-8'", ")", ".", "split", "(", "u\",\"", ")", "return", "devices" ]
Discover and return a list of the names of all NI devices on this system
[ "Discover", "and", "return", "a", "list", "of", "the", "names", "of", "all", "NI", "devices", "on", "this", "system" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/acq/daq_tasks.py#L339-L346
train
portfors-lab/sparkle
sparkle/acq/daq_tasks.py
AOTask.write
def write(self, output): """Writes the data to be output to the device buffer, output will be looped when the data runs out :param output: data to output :type output: numpy.ndarray """ w = c_int32() # print "output max", max(abs(output)) self.WriteAnalogF64(self.bufsize, 0, 10.0, DAQmx_Val_GroupByChannel, output, w, None);
python
def write(self, output): """Writes the data to be output to the device buffer, output will be looped when the data runs out :param output: data to output :type output: numpy.ndarray """ w = c_int32() # print "output max", max(abs(output)) self.WriteAnalogF64(self.bufsize, 0, 10.0, DAQmx_Val_GroupByChannel, output, w, None);
[ "def", "write", "(", "self", ",", "output", ")", ":", "w", "=", "c_int32", "(", ")", "# print \"output max\", max(abs(output))", "self", ".", "WriteAnalogF64", "(", "self", ".", "bufsize", ",", "0", ",", "10.0", ",", "DAQmx_Val_GroupByChannel", ",", "output", ",", "w", ",", "None", ")" ]
Writes the data to be output to the device buffer, output will be looped when the data runs out :param output: data to output :type output: numpy.ndarray
[ "Writes", "the", "data", "to", "be", "output", "to", "the", "device", "buffer", "output", "will", "be", "looped", "when", "the", "data", "runs", "out" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/acq/daq_tasks.py#L109-L118
train
portfors-lab/sparkle
sparkle/gui/plotting/calibration_explore_display.py
ExtendedCalibrationDisplay.setXlimits
def setXlimits(self, lims): """Sets the X axis limits of the signal plots :param lims: (min, max) of x axis, in same units as data :type lims: (float, float) """ self.responseSignalPlot.setXlim(lims) self.stimSignalPlot.setXlim(lims)
python
def setXlimits(self, lims): """Sets the X axis limits of the signal plots :param lims: (min, max) of x axis, in same units as data :type lims: (float, float) """ self.responseSignalPlot.setXlim(lims) self.stimSignalPlot.setXlim(lims)
[ "def", "setXlimits", "(", "self", ",", "lims", ")", ":", "self", ".", "responseSignalPlot", ".", "setXlim", "(", "lims", ")", "self", ".", "stimSignalPlot", ".", "setXlim", "(", "lims", ")" ]
Sets the X axis limits of the signal plots :param lims: (min, max) of x axis, in same units as data :type lims: (float, float)
[ "Sets", "the", "X", "axis", "limits", "of", "the", "signal", "plots" ]
5fad1cf2bec58ec6b15d91da20f6236a74826110
https://github.com/portfors-lab/sparkle/blob/5fad1cf2bec58ec6b15d91da20f6236a74826110/sparkle/gui/plotting/calibration_explore_display.py#L136-L143
train
NoviceLive/pat
pat/pat.py
Pat.from_chars
def from_chars(cls, chars='', optimal=3): """Construct a Pat object from the specified string and optimal position count.""" if not chars: chars = ''.join(ALNUM) sets = most_even_chunk(chars, optimal) return cls(sets)
python
def from_chars(cls, chars='', optimal=3): """Construct a Pat object from the specified string and optimal position count.""" if not chars: chars = ''.join(ALNUM) sets = most_even_chunk(chars, optimal) return cls(sets)
[ "def", "from_chars", "(", "cls", ",", "chars", "=", "''", ",", "optimal", "=", "3", ")", ":", "if", "not", "chars", ":", "chars", "=", "''", ".", "join", "(", "ALNUM", ")", "sets", "=", "most_even_chunk", "(", "chars", ",", "optimal", ")", "return", "cls", "(", "sets", ")" ]
Construct a Pat object from the specified string and optimal position count.
[ "Construct", "a", "Pat", "object", "from", "the", "specified", "string", "and", "optimal", "position", "count", "." ]
bd223fc5e758213662befbebdf9538f3fbf58ad6
https://github.com/NoviceLive/pat/blob/bd223fc5e758213662befbebdf9538f3fbf58ad6/pat/pat.py#L47-L53
train
NoviceLive/pat
pat/pat.py
Pat.create
def create(self, count): """Create a pattern of the specified length.""" space, self.space = tee(self.space) limit = reduce(mul, map(len, self.sets)) * self.position logging.debug('limit: %s', limit) if limit >= count: return ''.join(islice(space, count)) else: raise IndexError('{count} Overflows {sets}!'.format( count=count, sets=self.sets))
python
def create(self, count): """Create a pattern of the specified length.""" space, self.space = tee(self.space) limit = reduce(mul, map(len, self.sets)) * self.position logging.debug('limit: %s', limit) if limit >= count: return ''.join(islice(space, count)) else: raise IndexError('{count} Overflows {sets}!'.format( count=count, sets=self.sets))
[ "def", "create", "(", "self", ",", "count", ")", ":", "space", ",", "self", ".", "space", "=", "tee", "(", "self", ".", "space", ")", "limit", "=", "reduce", "(", "mul", ",", "map", "(", "len", ",", "self", ".", "sets", ")", ")", "*", "self", ".", "position", "logging", ".", "debug", "(", "'limit: %s'", ",", "limit", ")", "if", "limit", ">=", "count", ":", "return", "''", ".", "join", "(", "islice", "(", "space", ",", "count", ")", ")", "else", ":", "raise", "IndexError", "(", "'{count} Overflows {sets}!'", ".", "format", "(", "count", "=", "count", ",", "sets", "=", "self", ".", "sets", ")", ")" ]
Create a pattern of the specified length.
[ "Create", "a", "pattern", "of", "the", "specified", "length", "." ]
bd223fc5e758213662befbebdf9538f3fbf58ad6
https://github.com/NoviceLive/pat/blob/bd223fc5e758213662befbebdf9538f3fbf58ad6/pat/pat.py#L63-L72
train
NoviceLive/pat
pat/pat.py
Pat.locate
def locate(self, pattern, big_endian=False): """Locate the pattern.""" space, self.space = tee(self.space) if pattern.startswith('0x'): target = unhexlify( pattern[2:].encode('utf-8')).decode('utf-8') if not big_endian: target = target[::-1] else: target = pattern for index, one in enumerate(window(space, self.position)): if ''.join(one) == target[:self.position]: return index raise KeyError('{target} Not Found In {sets}!'.format( target=pattern, sets=self.sets))
python
def locate(self, pattern, big_endian=False): """Locate the pattern.""" space, self.space = tee(self.space) if pattern.startswith('0x'): target = unhexlify( pattern[2:].encode('utf-8')).decode('utf-8') if not big_endian: target = target[::-1] else: target = pattern for index, one in enumerate(window(space, self.position)): if ''.join(one) == target[:self.position]: return index raise KeyError('{target} Not Found In {sets}!'.format( target=pattern, sets=self.sets))
[ "def", "locate", "(", "self", ",", "pattern", ",", "big_endian", "=", "False", ")", ":", "space", ",", "self", ".", "space", "=", "tee", "(", "self", ".", "space", ")", "if", "pattern", ".", "startswith", "(", "'0x'", ")", ":", "target", "=", "unhexlify", "(", "pattern", "[", "2", ":", "]", ".", "encode", "(", "'utf-8'", ")", ")", ".", "decode", "(", "'utf-8'", ")", "if", "not", "big_endian", ":", "target", "=", "target", "[", ":", ":", "-", "1", "]", "else", ":", "target", "=", "pattern", "for", "index", ",", "one", "in", "enumerate", "(", "window", "(", "space", ",", "self", ".", "position", ")", ")", ":", "if", "''", ".", "join", "(", "one", ")", "==", "target", "[", ":", "self", ".", "position", "]", ":", "return", "index", "raise", "KeyError", "(", "'{target} Not Found In {sets}!'", ".", "format", "(", "target", "=", "pattern", ",", "sets", "=", "self", ".", "sets", ")", ")" ]
Locate the pattern.
[ "Locate", "the", "pattern", "." ]
bd223fc5e758213662befbebdf9538f3fbf58ad6
https://github.com/NoviceLive/pat/blob/bd223fc5e758213662befbebdf9538f3fbf58ad6/pat/pat.py#L74-L88
train
JukeboxPipeline/jukeboxmaya
src/jukeboxmaya/common.py
preserve_namespace
def preserve_namespace(newns=None): """Contextmanager that will restore the current namespace :param newns: a name of namespace that should be set in the beginning. the original namespace will be restored afterwards. If None, does not set a namespace. :type newns: str | None :returns: None :rtype: None :raises: None """ ns = cmds.namespaceInfo(an=True) try: cmds.namespace(set=newns) yield finally: cmds.namespace(set=ns)
python
def preserve_namespace(newns=None): """Contextmanager that will restore the current namespace :param newns: a name of namespace that should be set in the beginning. the original namespace will be restored afterwards. If None, does not set a namespace. :type newns: str | None :returns: None :rtype: None :raises: None """ ns = cmds.namespaceInfo(an=True) try: cmds.namespace(set=newns) yield finally: cmds.namespace(set=ns)
[ "def", "preserve_namespace", "(", "newns", "=", "None", ")", ":", "ns", "=", "cmds", ".", "namespaceInfo", "(", "an", "=", "True", ")", "try", ":", "cmds", ".", "namespace", "(", "set", "=", "newns", ")", "yield", "finally", ":", "cmds", ".", "namespace", "(", "set", "=", "ns", ")" ]
Contextmanager that will restore the current namespace :param newns: a name of namespace that should be set in the beginning. the original namespace will be restored afterwards. If None, does not set a namespace. :type newns: str | None :returns: None :rtype: None :raises: None
[ "Contextmanager", "that", "will", "restore", "the", "current", "namespace" ]
c8d6318d53cdb5493453c4a6b65ef75bdb2d5f2c
https://github.com/JukeboxPipeline/jukeboxmaya/blob/c8d6318d53cdb5493453c4a6b65ef75bdb2d5f2c/src/jukeboxmaya/common.py#L8-L23
train
JukeboxPipeline/jukeboxmaya
src/jukeboxmaya/common.py
preserve_selection
def preserve_selection(): """Contextmanager that will restore the current selection :returns: None :rtype: None :raises: None """ sl = cmds.ls(sl=True) try: yield finally: cmds.select(sl, replace=True)
python
def preserve_selection(): """Contextmanager that will restore the current selection :returns: None :rtype: None :raises: None """ sl = cmds.ls(sl=True) try: yield finally: cmds.select(sl, replace=True)
[ "def", "preserve_selection", "(", ")", ":", "sl", "=", "cmds", ".", "ls", "(", "sl", "=", "True", ")", "try", ":", "yield", "finally", ":", "cmds", ".", "select", "(", "sl", ",", "replace", "=", "True", ")" ]
Contextmanager that will restore the current selection :returns: None :rtype: None :raises: None
[ "Contextmanager", "that", "will", "restore", "the", "current", "selection" ]
c8d6318d53cdb5493453c4a6b65ef75bdb2d5f2c
https://github.com/JukeboxPipeline/jukeboxmaya/blob/c8d6318d53cdb5493453c4a6b65ef75bdb2d5f2c/src/jukeboxmaya/common.py#L27-L38
train