repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
Kortemme-Lab/klab
klab/biblio/doi.py
DOI.get_info
def get_info(self): 'Retrieve the data from CrossRef.' escaped_doi = urllib2.quote(self.doi, '') html = get_resource("www.crossref.org", '/guestquery?queryType=doi&restype=unixref&doi=%s&doi_search=Search' % escaped_doi) xml_matches = [] for m in re.finditer('(<doi_records>.*?</doi_records>)', html, re.DOTALL): xml_matches.append(m.group(0)) if len(xml_matches) == 0: raise DOIRetrievalException('No matches found for the DOI "%s".' % self.doi) elif len(xml_matches) == 1: return xml_matches[0] else: raise DOIRetrievalException('Multiple (%d) matches found for the DOI "%s".' % (len(xml_matches), self.doi))
python
def get_info(self): 'Retrieve the data from CrossRef.' escaped_doi = urllib2.quote(self.doi, '') html = get_resource("www.crossref.org", '/guestquery?queryType=doi&restype=unixref&doi=%s&doi_search=Search' % escaped_doi) xml_matches = [] for m in re.finditer('(<doi_records>.*?</doi_records>)', html, re.DOTALL): xml_matches.append(m.group(0)) if len(xml_matches) == 0: raise DOIRetrievalException('No matches found for the DOI "%s".' % self.doi) elif len(xml_matches) == 1: return xml_matches[0] else: raise DOIRetrievalException('Multiple (%d) matches found for the DOI "%s".' % (len(xml_matches), self.doi))
[ "def", "get_info", "(", "self", ")", ":", "escaped_doi", "=", "urllib2", ".", "quote", "(", "self", ".", "doi", ",", "''", ")", "html", "=", "get_resource", "(", "\"www.crossref.org\"", ",", "'/guestquery?queryType=doi&restype=unixref&doi=%s&doi_search=Search'", "%", "escaped_doi", ")", "xml_matches", "=", "[", "]", "for", "m", "in", "re", ".", "finditer", "(", "'(<doi_records>.*?</doi_records>)'", ",", "html", ",", "re", ".", "DOTALL", ")", ":", "xml_matches", ".", "append", "(", "m", ".", "group", "(", "0", ")", ")", "if", "len", "(", "xml_matches", ")", "==", "0", ":", "raise", "DOIRetrievalException", "(", "'No matches found for the DOI \"%s\".'", "%", "self", ".", "doi", ")", "elif", "len", "(", "xml_matches", ")", "==", "1", ":", "return", "xml_matches", "[", "0", "]", "else", ":", "raise", "DOIRetrievalException", "(", "'Multiple (%d) matches found for the DOI \"%s\".'", "%", "(", "len", "(", "xml_matches", ")", ",", "self", ".", "doi", ")", ")" ]
Retrieve the data from CrossRef.
[ "Retrieve", "the", "data", "from", "CrossRef", "." ]
6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b
https://github.com/Kortemme-Lab/klab/blob/6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b/klab/biblio/doi.py#L103-L117
train
Kortemme-Lab/klab
klab/bio/spackle.py
Spackler.add_backbone_atoms_linearly_from_loop_filepaths
def add_backbone_atoms_linearly_from_loop_filepaths(self, loop_json_filepath, fasta_filepath, residue_ids): '''A utility wrapper around add_backbone_atoms_linearly. Adds backbone atoms in a straight line from the first to the last residue of residue_ids. loop_json_filepath is a path to a JSON file using the JSON format for Rosetta loops files. This file identifies the insertion points of the sequence. fasta_filepath is a path to a FASTA file with one sequence. This sequence will be used as the sequence for the inserted residues (between the start and stop residues defined in loop_json_filepath). residue_ids is a list of PDB chain residues (columns 22-27 of ATOM lines in the PDB format). It is assumed that they are sequential although the logic does not depend on that. This list should have the length length as the sequence identified in the FASTA file. ''' # Parse the loop file loop_def = json.loads(read_file(loop_json_filepath)) assert(len(loop_def['LoopSet']) == 1) start_res = loop_def['LoopSet'][0]['start'] end_res = loop_def['LoopSet'][0]['stop'] start_res = PDB.ChainResidueID2String(start_res['chainID'], (str(start_res['resSeq']) + start_res['iCode']).strip()) end_res = PDB.ChainResidueID2String(end_res['chainID'], (str(end_res['resSeq']) + end_res['iCode']).strip()) assert(start_res in residue_ids) assert(end_res in residue_ids) # Parse the FASTA file and extract the sequence f = FASTA(read_file(fasta_filepath), strict = False) assert(len(f.get_sequences()) == 1) insertion_sequence = f.sequences[0][2] if not len(residue_ids) == len(insertion_sequence): raise Exception('The sequence in the FASTA file must have the same length as the list of residues.') # Create the insertion sequence (a sub-sequence of the FASTA sequence) # The post-condition is that the start and end residues are the first and last elements of kept_residues respectively kept_residues = [] insertion_residue_map = {} in_section = False found_end = False for x in range(len(residue_ids)): residue_id = residue_ids[x] if residue_id == start_res: in_section = True if in_section: kept_residues.append(residue_id) insertion_residue_map[residue_id] = insertion_sequence[x] if residue_id == end_res: found_end = True break if not kept_residues: raise Exception('The insertion sequence is empty (check the start and end residue ids).') if not found_end: raise Exception('The end residue was not encountered when iterating over the insertion sequence (check the start and end residue ids).') # Identify the start and end Residue objects try: start_res = self.residues[start_res[0]][start_res[1:]] end_res = self.residues[end_res[0]][end_res[1:]] except Exception, e: raise Exception('The start or end residue could not be found in the PDB file.') return self.add_backbone_atoms_linearly(start_res, end_res, kept_residues, insertion_residue_map)
python
def add_backbone_atoms_linearly_from_loop_filepaths(self, loop_json_filepath, fasta_filepath, residue_ids): '''A utility wrapper around add_backbone_atoms_linearly. Adds backbone atoms in a straight line from the first to the last residue of residue_ids. loop_json_filepath is a path to a JSON file using the JSON format for Rosetta loops files. This file identifies the insertion points of the sequence. fasta_filepath is a path to a FASTA file with one sequence. This sequence will be used as the sequence for the inserted residues (between the start and stop residues defined in loop_json_filepath). residue_ids is a list of PDB chain residues (columns 22-27 of ATOM lines in the PDB format). It is assumed that they are sequential although the logic does not depend on that. This list should have the length length as the sequence identified in the FASTA file. ''' # Parse the loop file loop_def = json.loads(read_file(loop_json_filepath)) assert(len(loop_def['LoopSet']) == 1) start_res = loop_def['LoopSet'][0]['start'] end_res = loop_def['LoopSet'][0]['stop'] start_res = PDB.ChainResidueID2String(start_res['chainID'], (str(start_res['resSeq']) + start_res['iCode']).strip()) end_res = PDB.ChainResidueID2String(end_res['chainID'], (str(end_res['resSeq']) + end_res['iCode']).strip()) assert(start_res in residue_ids) assert(end_res in residue_ids) # Parse the FASTA file and extract the sequence f = FASTA(read_file(fasta_filepath), strict = False) assert(len(f.get_sequences()) == 1) insertion_sequence = f.sequences[0][2] if not len(residue_ids) == len(insertion_sequence): raise Exception('The sequence in the FASTA file must have the same length as the list of residues.') # Create the insertion sequence (a sub-sequence of the FASTA sequence) # The post-condition is that the start and end residues are the first and last elements of kept_residues respectively kept_residues = [] insertion_residue_map = {} in_section = False found_end = False for x in range(len(residue_ids)): residue_id = residue_ids[x] if residue_id == start_res: in_section = True if in_section: kept_residues.append(residue_id) insertion_residue_map[residue_id] = insertion_sequence[x] if residue_id == end_res: found_end = True break if not kept_residues: raise Exception('The insertion sequence is empty (check the start and end residue ids).') if not found_end: raise Exception('The end residue was not encountered when iterating over the insertion sequence (check the start and end residue ids).') # Identify the start and end Residue objects try: start_res = self.residues[start_res[0]][start_res[1:]] end_res = self.residues[end_res[0]][end_res[1:]] except Exception, e: raise Exception('The start or end residue could not be found in the PDB file.') return self.add_backbone_atoms_linearly(start_res, end_res, kept_residues, insertion_residue_map)
[ "def", "add_backbone_atoms_linearly_from_loop_filepaths", "(", "self", ",", "loop_json_filepath", ",", "fasta_filepath", ",", "residue_ids", ")", ":", "# Parse the loop file", "loop_def", "=", "json", ".", "loads", "(", "read_file", "(", "loop_json_filepath", ")", ")", "assert", "(", "len", "(", "loop_def", "[", "'LoopSet'", "]", ")", "==", "1", ")", "start_res", "=", "loop_def", "[", "'LoopSet'", "]", "[", "0", "]", "[", "'start'", "]", "end_res", "=", "loop_def", "[", "'LoopSet'", "]", "[", "0", "]", "[", "'stop'", "]", "start_res", "=", "PDB", ".", "ChainResidueID2String", "(", "start_res", "[", "'chainID'", "]", ",", "(", "str", "(", "start_res", "[", "'resSeq'", "]", ")", "+", "start_res", "[", "'iCode'", "]", ")", ".", "strip", "(", ")", ")", "end_res", "=", "PDB", ".", "ChainResidueID2String", "(", "end_res", "[", "'chainID'", "]", ",", "(", "str", "(", "end_res", "[", "'resSeq'", "]", ")", "+", "end_res", "[", "'iCode'", "]", ")", ".", "strip", "(", ")", ")", "assert", "(", "start_res", "in", "residue_ids", ")", "assert", "(", "end_res", "in", "residue_ids", ")", "# Parse the FASTA file and extract the sequence", "f", "=", "FASTA", "(", "read_file", "(", "fasta_filepath", ")", ",", "strict", "=", "False", ")", "assert", "(", "len", "(", "f", ".", "get_sequences", "(", ")", ")", "==", "1", ")", "insertion_sequence", "=", "f", ".", "sequences", "[", "0", "]", "[", "2", "]", "if", "not", "len", "(", "residue_ids", ")", "==", "len", "(", "insertion_sequence", ")", ":", "raise", "Exception", "(", "'The sequence in the FASTA file must have the same length as the list of residues.'", ")", "# Create the insertion sequence (a sub-sequence of the FASTA sequence)", "# The post-condition is that the start and end residues are the first and last elements of kept_residues respectively", "kept_residues", "=", "[", "]", "insertion_residue_map", "=", "{", "}", "in_section", "=", "False", "found_end", "=", "False", "for", "x", "in", "range", "(", "len", "(", "residue_ids", ")", ")", ":", "residue_id", "=", "residue_ids", "[", "x", "]", "if", "residue_id", "==", "start_res", ":", "in_section", "=", "True", "if", "in_section", ":", "kept_residues", ".", "append", "(", "residue_id", ")", "insertion_residue_map", "[", "residue_id", "]", "=", "insertion_sequence", "[", "x", "]", "if", "residue_id", "==", "end_res", ":", "found_end", "=", "True", "break", "if", "not", "kept_residues", ":", "raise", "Exception", "(", "'The insertion sequence is empty (check the start and end residue ids).'", ")", "if", "not", "found_end", ":", "raise", "Exception", "(", "'The end residue was not encountered when iterating over the insertion sequence (check the start and end residue ids).'", ")", "# Identify the start and end Residue objects", "try", ":", "start_res", "=", "self", ".", "residues", "[", "start_res", "[", "0", "]", "]", "[", "start_res", "[", "1", ":", "]", "]", "end_res", "=", "self", ".", "residues", "[", "end_res", "[", "0", "]", "]", "[", "end_res", "[", "1", ":", "]", "]", "except", "Exception", ",", "e", ":", "raise", "Exception", "(", "'The start or end residue could not be found in the PDB file.'", ")", "return", "self", ".", "add_backbone_atoms_linearly", "(", "start_res", ",", "end_res", ",", "kept_residues", ",", "insertion_residue_map", ")" ]
A utility wrapper around add_backbone_atoms_linearly. Adds backbone atoms in a straight line from the first to the last residue of residue_ids. loop_json_filepath is a path to a JSON file using the JSON format for Rosetta loops files. This file identifies the insertion points of the sequence. fasta_filepath is a path to a FASTA file with one sequence. This sequence will be used as the sequence for the inserted residues (between the start and stop residues defined in loop_json_filepath). residue_ids is a list of PDB chain residues (columns 22-27 of ATOM lines in the PDB format). It is assumed that they are sequential although the logic does not depend on that. This list should have the length length as the sequence identified in the FASTA file.
[ "A", "utility", "wrapper", "around", "add_backbone_atoms_linearly", ".", "Adds", "backbone", "atoms", "in", "a", "straight", "line", "from", "the", "first", "to", "the", "last", "residue", "of", "residue_ids", "." ]
6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b
https://github.com/Kortemme-Lab/klab/blob/6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b/klab/bio/spackle.py#L46-L106
train
Kortemme-Lab/klab
klab/bio/spackle.py
Spackler.add_atoms_linearly
def add_atoms_linearly(self, start_atom, end_atom, new_atoms, jitterbug = 0.2): '''A low-level function which adds new_atoms between start_atom and end_atom. This function does not validate the input i.e. the calling functions are responsible for ensuring that the insertion makes sense. Returns the PDB file content with the new atoms added. These atoms are given fresh serial numbers, starting from the first serial number larger than the current serial numbers i.e. the ATOM serial numbers do not now necessarily increase in document order. The jitter adds some X, Y, Z variability to the new atoms. This is important in the Rosetta software suite when placing backbone atoms as colinearly placed atoms will break the dihedral angle calculations (the dihedral angle over 4 colinear atoms is undefined). ''' atom_name_map = { 'CA' : ' CA ', 'C' : ' C ', 'N' : ' N ', 'O' : ' O ', } assert(start_atom.residue.chain == end_atom.residue.chain) chain_id = start_atom.residue.chain # Initialize steps num_new_atoms = float(len(new_atoms)) X, Y, Z = start_atom.x, start_atom.y, start_atom.z x_step = (end_atom.x - X) / (num_new_atoms + 1.0) y_step = (end_atom.y - Y) / (num_new_atoms + 1.0) z_step = (end_atom.z - Z) / (num_new_atoms + 1.0) D = math.sqrt(x_step * x_step + y_step * y_step + z_step * z_step) jitter = 0 if jitterbug: jitter = (((x_step + y_step + z_step) / 3.0) * jitterbug) / D new_lines = [] next_serial_number = max(sorted(self.atoms.keys())) + 1 round = 0 for new_atom in new_atoms: X, Y, Z = X + x_step, Y + y_step, Z + z_step if jitter: if round % 3 == 0: X, Y = X + jitter, Y - jitter elif round % 3 == 1: Y, Z = Y + jitter, Z - jitter elif round % 3 == 2: Z, X = Z + jitter, X - jitter round += 1 residue_id, residue_type, atom_name = new_atom assert(len(residue_type) == 3) assert(len(residue_id) == 6) new_lines.append('ATOM {0} {1} {2} {3} {4:>8.3f}{5:>8.3f}{6:>8.3f} 1.00 0.00 '.format(str(next_serial_number).rjust(5), atom_name_map[atom_name], residue_type, residue_id, X, Y, Z)) next_serial_number += 1 new_pdb = [] in_start_residue = False for l in self.indexed_lines: if l[0] and l[3].serial_number == start_atom.serial_number: in_start_residue = True if in_start_residue and l[3].serial_number != start_atom.serial_number: new_pdb.extend(new_lines) #colortext.warning('\n'.join(new_lines)) in_start_residue = False if l[0]: #print(l[2]) new_pdb.append(l[2]) else: #print(l[1]) new_pdb.append(l[1]) return '\n'.join(new_pdb)
python
def add_atoms_linearly(self, start_atom, end_atom, new_atoms, jitterbug = 0.2): '''A low-level function which adds new_atoms between start_atom and end_atom. This function does not validate the input i.e. the calling functions are responsible for ensuring that the insertion makes sense. Returns the PDB file content with the new atoms added. These atoms are given fresh serial numbers, starting from the first serial number larger than the current serial numbers i.e. the ATOM serial numbers do not now necessarily increase in document order. The jitter adds some X, Y, Z variability to the new atoms. This is important in the Rosetta software suite when placing backbone atoms as colinearly placed atoms will break the dihedral angle calculations (the dihedral angle over 4 colinear atoms is undefined). ''' atom_name_map = { 'CA' : ' CA ', 'C' : ' C ', 'N' : ' N ', 'O' : ' O ', } assert(start_atom.residue.chain == end_atom.residue.chain) chain_id = start_atom.residue.chain # Initialize steps num_new_atoms = float(len(new_atoms)) X, Y, Z = start_atom.x, start_atom.y, start_atom.z x_step = (end_atom.x - X) / (num_new_atoms + 1.0) y_step = (end_atom.y - Y) / (num_new_atoms + 1.0) z_step = (end_atom.z - Z) / (num_new_atoms + 1.0) D = math.sqrt(x_step * x_step + y_step * y_step + z_step * z_step) jitter = 0 if jitterbug: jitter = (((x_step + y_step + z_step) / 3.0) * jitterbug) / D new_lines = [] next_serial_number = max(sorted(self.atoms.keys())) + 1 round = 0 for new_atom in new_atoms: X, Y, Z = X + x_step, Y + y_step, Z + z_step if jitter: if round % 3 == 0: X, Y = X + jitter, Y - jitter elif round % 3 == 1: Y, Z = Y + jitter, Z - jitter elif round % 3 == 2: Z, X = Z + jitter, X - jitter round += 1 residue_id, residue_type, atom_name = new_atom assert(len(residue_type) == 3) assert(len(residue_id) == 6) new_lines.append('ATOM {0} {1} {2} {3} {4:>8.3f}{5:>8.3f}{6:>8.3f} 1.00 0.00 '.format(str(next_serial_number).rjust(5), atom_name_map[atom_name], residue_type, residue_id, X, Y, Z)) next_serial_number += 1 new_pdb = [] in_start_residue = False for l in self.indexed_lines: if l[0] and l[3].serial_number == start_atom.serial_number: in_start_residue = True if in_start_residue and l[3].serial_number != start_atom.serial_number: new_pdb.extend(new_lines) #colortext.warning('\n'.join(new_lines)) in_start_residue = False if l[0]: #print(l[2]) new_pdb.append(l[2]) else: #print(l[1]) new_pdb.append(l[1]) return '\n'.join(new_pdb)
[ "def", "add_atoms_linearly", "(", "self", ",", "start_atom", ",", "end_atom", ",", "new_atoms", ",", "jitterbug", "=", "0.2", ")", ":", "atom_name_map", "=", "{", "'CA'", ":", "' CA '", ",", "'C'", ":", "' C '", ",", "'N'", ":", "' N '", ",", "'O'", ":", "' O '", ",", "}", "assert", "(", "start_atom", ".", "residue", ".", "chain", "==", "end_atom", ".", "residue", ".", "chain", ")", "chain_id", "=", "start_atom", ".", "residue", ".", "chain", "# Initialize steps", "num_new_atoms", "=", "float", "(", "len", "(", "new_atoms", ")", ")", "X", ",", "Y", ",", "Z", "=", "start_atom", ".", "x", ",", "start_atom", ".", "y", ",", "start_atom", ".", "z", "x_step", "=", "(", "end_atom", ".", "x", "-", "X", ")", "/", "(", "num_new_atoms", "+", "1.0", ")", "y_step", "=", "(", "end_atom", ".", "y", "-", "Y", ")", "/", "(", "num_new_atoms", "+", "1.0", ")", "z_step", "=", "(", "end_atom", ".", "z", "-", "Z", ")", "/", "(", "num_new_atoms", "+", "1.0", ")", "D", "=", "math", ".", "sqrt", "(", "x_step", "*", "x_step", "+", "y_step", "*", "y_step", "+", "z_step", "*", "z_step", ")", "jitter", "=", "0", "if", "jitterbug", ":", "jitter", "=", "(", "(", "(", "x_step", "+", "y_step", "+", "z_step", ")", "/", "3.0", ")", "*", "jitterbug", ")", "/", "D", "new_lines", "=", "[", "]", "next_serial_number", "=", "max", "(", "sorted", "(", "self", ".", "atoms", ".", "keys", "(", ")", ")", ")", "+", "1", "round", "=", "0", "for", "new_atom", "in", "new_atoms", ":", "X", ",", "Y", ",", "Z", "=", "X", "+", "x_step", ",", "Y", "+", "y_step", ",", "Z", "+", "z_step", "if", "jitter", ":", "if", "round", "%", "3", "==", "0", ":", "X", ",", "Y", "=", "X", "+", "jitter", ",", "Y", "-", "jitter", "elif", "round", "%", "3", "==", "1", ":", "Y", ",", "Z", "=", "Y", "+", "jitter", ",", "Z", "-", "jitter", "elif", "round", "%", "3", "==", "2", ":", "Z", ",", "X", "=", "Z", "+", "jitter", ",", "X", "-", "jitter", "round", "+=", "1", "residue_id", ",", "residue_type", ",", "atom_name", "=", "new_atom", "assert", "(", "len", "(", "residue_type", ")", "==", "3", ")", "assert", "(", "len", "(", "residue_id", ")", "==", "6", ")", "new_lines", ".", "append", "(", "'ATOM {0} {1} {2} {3} {4:>8.3f}{5:>8.3f}{6:>8.3f} 1.00 0.00 '", ".", "format", "(", "str", "(", "next_serial_number", ")", ".", "rjust", "(", "5", ")", ",", "atom_name_map", "[", "atom_name", "]", ",", "residue_type", ",", "residue_id", ",", "X", ",", "Y", ",", "Z", ")", ")", "next_serial_number", "+=", "1", "new_pdb", "=", "[", "]", "in_start_residue", "=", "False", "for", "l", "in", "self", ".", "indexed_lines", ":", "if", "l", "[", "0", "]", "and", "l", "[", "3", "]", ".", "serial_number", "==", "start_atom", ".", "serial_number", ":", "in_start_residue", "=", "True", "if", "in_start_residue", "and", "l", "[", "3", "]", ".", "serial_number", "!=", "start_atom", ".", "serial_number", ":", "new_pdb", ".", "extend", "(", "new_lines", ")", "#colortext.warning('\\n'.join(new_lines))", "in_start_residue", "=", "False", "if", "l", "[", "0", "]", ":", "#print(l[2])", "new_pdb", ".", "append", "(", "l", "[", "2", "]", ")", "else", ":", "#print(l[1])", "new_pdb", ".", "append", "(", "l", "[", "1", "]", ")", "return", "'\\n'", ".", "join", "(", "new_pdb", ")" ]
A low-level function which adds new_atoms between start_atom and end_atom. This function does not validate the input i.e. the calling functions are responsible for ensuring that the insertion makes sense. Returns the PDB file content with the new atoms added. These atoms are given fresh serial numbers, starting from the first serial number larger than the current serial numbers i.e. the ATOM serial numbers do not now necessarily increase in document order. The jitter adds some X, Y, Z variability to the new atoms. This is important in the Rosetta software suite when placing backbone atoms as colinearly placed atoms will break the dihedral angle calculations (the dihedral angle over 4 colinear atoms is undefined).
[ "A", "low", "-", "level", "function", "which", "adds", "new_atoms", "between", "start_atom", "and", "end_atom", ".", "This", "function", "does", "not", "validate", "the", "input", "i", ".", "e", ".", "the", "calling", "functions", "are", "responsible", "for", "ensuring", "that", "the", "insertion", "makes", "sense", "." ]
6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b
https://github.com/Kortemme-Lab/klab/blob/6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b/klab/bio/spackle.py#L222-L291
train
PBR/MQ2
MQ2/qtl.py
QTL.to_string
def to_string(self): """ Return the string as it should be presented in a MapChart input file. """ return '%s %s %s %s %s' % ( self.trait, self.start_position, self.peak_start_position, self.peak_stop_position, self.stop_position)
python
def to_string(self): """ Return the string as it should be presented in a MapChart input file. """ return '%s %s %s %s %s' % ( self.trait, self.start_position, self.peak_start_position, self.peak_stop_position, self.stop_position)
[ "def", "to_string", "(", "self", ")", ":", "return", "'%s %s %s %s %s'", "%", "(", "self", ".", "trait", ",", "self", ".", "start_position", ",", "self", ".", "peak_start_position", ",", "self", ".", "peak_stop_position", ",", "self", ".", "stop_position", ")" ]
Return the string as it should be presented in a MapChart input file.
[ "Return", "the", "string", "as", "it", "should", "be", "presented", "in", "a", "MapChart", "input", "file", "." ]
6d84dea47e6751333004743f588f03158e35c28d
https://github.com/PBR/MQ2/blob/6d84dea47e6751333004743f588f03158e35c28d/MQ2/qtl.py#L50-L57
train
aacanakin/glim
glim/cli.py
main
def main(): """ The single entry point to glim command line interface.Main method is called from pypi console_scripts key or by glim.py on root.This function initializes a new app given the glim commands and app commands if app exists. Usage ----- $ python glim/cli.py start $ python glim.py start (on root folder) """ # register the global parser preparser = argparse.ArgumentParser(description=description, add_help=False) preparser.add_argument('--env', '-e', dest='env', default='development', help='choose application environment') # parse existing options namespace, extra = preparser.parse_known_args() env = namespace.env # register the subparsers parser = argparse.ArgumentParser(parents=[preparser], description=description, add_help=True) subparsers = parser.add_subparsers(title='commands', help='commands') # initialize a command adapter with subparsers commandadapter = CommandAdapter(subparsers) # register glim commands commandadapter.register(glim.commands) # register app commands appcommands = import_module('app.commands', pass_errors=True) commandadapter.register(appcommands) app = None if paths.app_exists() is False: # check if a new app is being created new = True if 'new' in extra else False if ('help' in extra) or ('--help' in extra) or ('-h' in extra): help = True else: help = False if help: parser.print_help() exit() else: app = make_app(env, commandadapter) args = parser.parse_args() command = commandadapter.match(args) commandadapter.dispatch(command, app)
python
def main(): """ The single entry point to glim command line interface.Main method is called from pypi console_scripts key or by glim.py on root.This function initializes a new app given the glim commands and app commands if app exists. Usage ----- $ python glim/cli.py start $ python glim.py start (on root folder) """ # register the global parser preparser = argparse.ArgumentParser(description=description, add_help=False) preparser.add_argument('--env', '-e', dest='env', default='development', help='choose application environment') # parse existing options namespace, extra = preparser.parse_known_args() env = namespace.env # register the subparsers parser = argparse.ArgumentParser(parents=[preparser], description=description, add_help=True) subparsers = parser.add_subparsers(title='commands', help='commands') # initialize a command adapter with subparsers commandadapter = CommandAdapter(subparsers) # register glim commands commandadapter.register(glim.commands) # register app commands appcommands = import_module('app.commands', pass_errors=True) commandadapter.register(appcommands) app = None if paths.app_exists() is False: # check if a new app is being created new = True if 'new' in extra else False if ('help' in extra) or ('--help' in extra) or ('-h' in extra): help = True else: help = False if help: parser.print_help() exit() else: app = make_app(env, commandadapter) args = parser.parse_args() command = commandadapter.match(args) commandadapter.dispatch(command, app)
[ "def", "main", "(", ")", ":", "# register the global parser", "preparser", "=", "argparse", ".", "ArgumentParser", "(", "description", "=", "description", ",", "add_help", "=", "False", ")", "preparser", ".", "add_argument", "(", "'--env'", ",", "'-e'", ",", "dest", "=", "'env'", ",", "default", "=", "'development'", ",", "help", "=", "'choose application environment'", ")", "# parse existing options", "namespace", ",", "extra", "=", "preparser", ".", "parse_known_args", "(", ")", "env", "=", "namespace", ".", "env", "# register the subparsers", "parser", "=", "argparse", ".", "ArgumentParser", "(", "parents", "=", "[", "preparser", "]", ",", "description", "=", "description", ",", "add_help", "=", "True", ")", "subparsers", "=", "parser", ".", "add_subparsers", "(", "title", "=", "'commands'", ",", "help", "=", "'commands'", ")", "# initialize a command adapter with subparsers", "commandadapter", "=", "CommandAdapter", "(", "subparsers", ")", "# register glim commands", "commandadapter", ".", "register", "(", "glim", ".", "commands", ")", "# register app commands", "appcommands", "=", "import_module", "(", "'app.commands'", ",", "pass_errors", "=", "True", ")", "commandadapter", ".", "register", "(", "appcommands", ")", "app", "=", "None", "if", "paths", ".", "app_exists", "(", ")", "is", "False", ":", "# check if a new app is being created", "new", "=", "True", "if", "'new'", "in", "extra", "else", "False", "if", "(", "'help'", "in", "extra", ")", "or", "(", "'--help'", "in", "extra", ")", "or", "(", "'-h'", "in", "extra", ")", ":", "help", "=", "True", "else", ":", "help", "=", "False", "if", "help", ":", "parser", ".", "print_help", "(", ")", "exit", "(", ")", "else", ":", "app", "=", "make_app", "(", "env", ",", "commandadapter", ")", "args", "=", "parser", ".", "parse_args", "(", ")", "command", "=", "commandadapter", ".", "match", "(", "args", ")", "commandadapter", ".", "dispatch", "(", "command", ",", "app", ")" ]
The single entry point to glim command line interface.Main method is called from pypi console_scripts key or by glim.py on root.This function initializes a new app given the glim commands and app commands if app exists. Usage ----- $ python glim/cli.py start $ python glim.py start (on root folder)
[ "The", "single", "entry", "point", "to", "glim", "command", "line", "interface", ".", "Main", "method", "is", "called", "from", "pypi", "console_scripts", "key", "or", "by", "glim", ".", "py", "on", "root", ".", "This", "function", "initializes", "a", "new", "app", "given", "the", "glim", "commands", "and", "app", "commands", "if", "app", "exists", "." ]
71a20ac149a1292c0d6c1dc7414985ea51854f7a
https://github.com/aacanakin/glim/blob/71a20ac149a1292c0d6c1dc7414985ea51854f7a/glim/cli.py#L35-L96
train
aacanakin/glim
glim/cli.py
make_app
def make_app(env, commandadapter=None): """ Function creates an app given environment """ mconfig = import_module('app.config.%s' % env, pass_errors=True) if mconfig is None and paths.app_exists(): print(colored('Configuration for "%s" environment is not found' % env, 'red')) return None mstart = import_module('app.start') mroutes = import_module('app.routes') mcontrollers = import_module('app.controllers') before = mstart.before return Glim(commandadapter, mconfig, mroutes, mcontrollers, env, before)
python
def make_app(env, commandadapter=None): """ Function creates an app given environment """ mconfig = import_module('app.config.%s' % env, pass_errors=True) if mconfig is None and paths.app_exists(): print(colored('Configuration for "%s" environment is not found' % env, 'red')) return None mstart = import_module('app.start') mroutes = import_module('app.routes') mcontrollers = import_module('app.controllers') before = mstart.before return Glim(commandadapter, mconfig, mroutes, mcontrollers, env, before)
[ "def", "make_app", "(", "env", ",", "commandadapter", "=", "None", ")", ":", "mconfig", "=", "import_module", "(", "'app.config.%s'", "%", "env", ",", "pass_errors", "=", "True", ")", "if", "mconfig", "is", "None", "and", "paths", ".", "app_exists", "(", ")", ":", "print", "(", "colored", "(", "'Configuration for \"%s\" environment is not found'", "%", "env", ",", "'red'", ")", ")", "return", "None", "mstart", "=", "import_module", "(", "'app.start'", ")", "mroutes", "=", "import_module", "(", "'app.routes'", ")", "mcontrollers", "=", "import_module", "(", "'app.controllers'", ")", "before", "=", "mstart", ".", "before", "return", "Glim", "(", "commandadapter", ",", "mconfig", ",", "mroutes", ",", "mcontrollers", ",", "env", ",", "before", ")" ]
Function creates an app given environment
[ "Function", "creates", "an", "app", "given", "environment" ]
71a20ac149a1292c0d6c1dc7414985ea51854f7a
https://github.com/aacanakin/glim/blob/71a20ac149a1292c0d6c1dc7414985ea51854f7a/glim/cli.py#L98-L111
train
projectshift/shift-boiler
boiler/user/views_social.py
BaseSocial.callback
def callback(self): """ Generate callback url for provider """ next = request.args.get('next') or None endpoint = 'social.{}.handle'.format(self.provider) return url_for(endpoint, _external=True, next=next)
python
def callback(self): """ Generate callback url for provider """ next = request.args.get('next') or None endpoint = 'social.{}.handle'.format(self.provider) return url_for(endpoint, _external=True, next=next)
[ "def", "callback", "(", "self", ")", ":", "next", "=", "request", ".", "args", ".", "get", "(", "'next'", ")", "or", "None", "endpoint", "=", "'social.{}.handle'", ".", "format", "(", "self", ".", "provider", ")", "return", "url_for", "(", "endpoint", ",", "_external", "=", "True", ",", "next", "=", "next", ")" ]
Generate callback url for provider
[ "Generate", "callback", "url", "for", "provider" ]
8e6f3a3e4b9493fb6c8bd16bed160ede153bfb0b
https://github.com/projectshift/shift-boiler/blob/8e6f3a3e4b9493fb6c8bd16bed160ede153bfb0b/boiler/user/views_social.py#L48-L52
train
projectshift/shift-boiler
boiler/user/views_social.py
BaseSocial.next
def next(self): """ Where to redirect after authorization """ next = request.args.get('next') if next is None: params = self.default_redirect_params next = url_for(self.default_redirect_endpoint, **params) return next
python
def next(self): """ Where to redirect after authorization """ next = request.args.get('next') if next is None: params = self.default_redirect_params next = url_for(self.default_redirect_endpoint, **params) return next
[ "def", "next", "(", "self", ")", ":", "next", "=", "request", ".", "args", ".", "get", "(", "'next'", ")", "if", "next", "is", "None", ":", "params", "=", "self", ".", "default_redirect_params", "next", "=", "url_for", "(", "self", ".", "default_redirect_endpoint", ",", "*", "*", "params", ")", "return", "next" ]
Where to redirect after authorization
[ "Where", "to", "redirect", "after", "authorization" ]
8e6f3a3e4b9493fb6c8bd16bed160ede153bfb0b
https://github.com/projectshift/shift-boiler/blob/8e6f3a3e4b9493fb6c8bd16bed160ede153bfb0b/boiler/user/views_social.py#L60-L66
train
projectshift/shift-boiler
boiler/user/views_social.py
BaseHandle.dispatch_request
def dispatch_request(self): """ Handle redirect back from provider """ if current_user.is_authenticated: return redirect(self.next) # clear previous! if 'social_data' in session: del session['social_data'] res = self.app.authorized_response() if res is None: if self.flash: flash(self.auth_failed_msg, 'danger') return redirect(self.next) # retrieve profile data = self.get_profile_data(res) if data is None: if self.flash: flash(self.data_failed_msg, 'danger') return redirect(self.next) # attempt login try: ok = user_service.attempt_social_login(self.provider, data['id']) if ok: if self.flash: flash(self.logged_in_msg.format(self.provider), 'success') return redirect(self.logged_in) except x.AccountLocked as locked: msg = self.lock_msg.format(locked.locked_until) if self.flash: flash(msg, 'danger') url = url_for(self.lock_redirect, **self.lock_redirect_params) return redirect(url) except x.EmailNotConfirmed: return redirect(url_for(self.unconfirmed_email_endpoint)) # get data email = data.get('email') provider = data.get('provider') id = data.get('id') id_column = '{}_id'.format(provider) # user exists: add social id to profile user = user_service.first(email=email) if user: setattr(user, id_column, id) user_service.save(user) # no user: register if not user: cfg = current_app.config send_welcome = cfg.get('USER_SEND_WELCOME_MESSAGE') base_confirm_url = cfg.get('USER_BASE_EMAIL_CONFIRM_URL') if not base_confirm_url: endpoint = 'user.confirm.email.request' base_confirm_url = url_for(endpoint, _external=True) data = dict(email=email) data[id_column] = id user = user_service.register( user_data=data, send_welcome=send_welcome, base_confirm_url=base_confirm_url ) # email confirmed? if user_service.require_confirmation and not user.email_confirmed: return redirect(url_for(self.ok_endpoint, **self.ok_params)) # otherwise just login user_service.force_login(user) return redirect(self.force_login_redirect)
python
def dispatch_request(self): """ Handle redirect back from provider """ if current_user.is_authenticated: return redirect(self.next) # clear previous! if 'social_data' in session: del session['social_data'] res = self.app.authorized_response() if res is None: if self.flash: flash(self.auth_failed_msg, 'danger') return redirect(self.next) # retrieve profile data = self.get_profile_data(res) if data is None: if self.flash: flash(self.data_failed_msg, 'danger') return redirect(self.next) # attempt login try: ok = user_service.attempt_social_login(self.provider, data['id']) if ok: if self.flash: flash(self.logged_in_msg.format(self.provider), 'success') return redirect(self.logged_in) except x.AccountLocked as locked: msg = self.lock_msg.format(locked.locked_until) if self.flash: flash(msg, 'danger') url = url_for(self.lock_redirect, **self.lock_redirect_params) return redirect(url) except x.EmailNotConfirmed: return redirect(url_for(self.unconfirmed_email_endpoint)) # get data email = data.get('email') provider = data.get('provider') id = data.get('id') id_column = '{}_id'.format(provider) # user exists: add social id to profile user = user_service.first(email=email) if user: setattr(user, id_column, id) user_service.save(user) # no user: register if not user: cfg = current_app.config send_welcome = cfg.get('USER_SEND_WELCOME_MESSAGE') base_confirm_url = cfg.get('USER_BASE_EMAIL_CONFIRM_URL') if not base_confirm_url: endpoint = 'user.confirm.email.request' base_confirm_url = url_for(endpoint, _external=True) data = dict(email=email) data[id_column] = id user = user_service.register( user_data=data, send_welcome=send_welcome, base_confirm_url=base_confirm_url ) # email confirmed? if user_service.require_confirmation and not user.email_confirmed: return redirect(url_for(self.ok_endpoint, **self.ok_params)) # otherwise just login user_service.force_login(user) return redirect(self.force_login_redirect)
[ "def", "dispatch_request", "(", "self", ")", ":", "if", "current_user", ".", "is_authenticated", ":", "return", "redirect", "(", "self", ".", "next", ")", "# clear previous!", "if", "'social_data'", "in", "session", ":", "del", "session", "[", "'social_data'", "]", "res", "=", "self", ".", "app", ".", "authorized_response", "(", ")", "if", "res", "is", "None", ":", "if", "self", ".", "flash", ":", "flash", "(", "self", ".", "auth_failed_msg", ",", "'danger'", ")", "return", "redirect", "(", "self", ".", "next", ")", "# retrieve profile", "data", "=", "self", ".", "get_profile_data", "(", "res", ")", "if", "data", "is", "None", ":", "if", "self", ".", "flash", ":", "flash", "(", "self", ".", "data_failed_msg", ",", "'danger'", ")", "return", "redirect", "(", "self", ".", "next", ")", "# attempt login", "try", ":", "ok", "=", "user_service", ".", "attempt_social_login", "(", "self", ".", "provider", ",", "data", "[", "'id'", "]", ")", "if", "ok", ":", "if", "self", ".", "flash", ":", "flash", "(", "self", ".", "logged_in_msg", ".", "format", "(", "self", ".", "provider", ")", ",", "'success'", ")", "return", "redirect", "(", "self", ".", "logged_in", ")", "except", "x", ".", "AccountLocked", "as", "locked", ":", "msg", "=", "self", ".", "lock_msg", ".", "format", "(", "locked", ".", "locked_until", ")", "if", "self", ".", "flash", ":", "flash", "(", "msg", ",", "'danger'", ")", "url", "=", "url_for", "(", "self", ".", "lock_redirect", ",", "*", "*", "self", ".", "lock_redirect_params", ")", "return", "redirect", "(", "url", ")", "except", "x", ".", "EmailNotConfirmed", ":", "return", "redirect", "(", "url_for", "(", "self", ".", "unconfirmed_email_endpoint", ")", ")", "# get data", "email", "=", "data", ".", "get", "(", "'email'", ")", "provider", "=", "data", ".", "get", "(", "'provider'", ")", "id", "=", "data", ".", "get", "(", "'id'", ")", "id_column", "=", "'{}_id'", ".", "format", "(", "provider", ")", "# user exists: add social id to profile", "user", "=", "user_service", ".", "first", "(", "email", "=", "email", ")", "if", "user", ":", "setattr", "(", "user", ",", "id_column", ",", "id", ")", "user_service", ".", "save", "(", "user", ")", "# no user: register", "if", "not", "user", ":", "cfg", "=", "current_app", ".", "config", "send_welcome", "=", "cfg", ".", "get", "(", "'USER_SEND_WELCOME_MESSAGE'", ")", "base_confirm_url", "=", "cfg", ".", "get", "(", "'USER_BASE_EMAIL_CONFIRM_URL'", ")", "if", "not", "base_confirm_url", ":", "endpoint", "=", "'user.confirm.email.request'", "base_confirm_url", "=", "url_for", "(", "endpoint", ",", "_external", "=", "True", ")", "data", "=", "dict", "(", "email", "=", "email", ")", "data", "[", "id_column", "]", "=", "id", "user", "=", "user_service", ".", "register", "(", "user_data", "=", "data", ",", "send_welcome", "=", "send_welcome", ",", "base_confirm_url", "=", "base_confirm_url", ")", "# email confirmed?", "if", "user_service", ".", "require_confirmation", "and", "not", "user", ".", "email_confirmed", ":", "return", "redirect", "(", "url_for", "(", "self", ".", "ok_endpoint", ",", "*", "*", "self", ".", "ok_params", ")", ")", "# otherwise just login", "user_service", ".", "force_login", "(", "user", ")", "return", "redirect", "(", "self", ".", "force_login_redirect", ")" ]
Handle redirect back from provider
[ "Handle", "redirect", "back", "from", "provider" ]
8e6f3a3e4b9493fb6c8bd16bed160ede153bfb0b
https://github.com/projectshift/shift-boiler/blob/8e6f3a3e4b9493fb6c8bd16bed160ede153bfb0b/boiler/user/views_social.py#L106-L176
train
tech-pi/doufo
src/python/doufo/tensor/binary.py
project
def project(v, n): """ Project Vector v onto plane with normal vector n. """ return v - matmul(v, n) * n / (norm(n) ** 2.0)
python
def project(v, n): """ Project Vector v onto plane with normal vector n. """ return v - matmul(v, n) * n / (norm(n) ** 2.0)
[ "def", "project", "(", "v", ",", "n", ")", ":", "return", "v", "-", "matmul", "(", "v", ",", "n", ")", "*", "n", "/", "(", "norm", "(", "n", ")", "**", "2.0", ")" ]
Project Vector v onto plane with normal vector n.
[ "Project", "Vector", "v", "onto", "plane", "with", "normal", "vector", "n", "." ]
3d375fef30670597768a6eef809b75b4b1b5a3fd
https://github.com/tech-pi/doufo/blob/3d375fef30670597768a6eef809b75b4b1b5a3fd/src/python/doufo/tensor/binary.py#L36-L40
train
46elks/elkme
elkme/main.py
main
def main(): """Executed on run""" args = parse_args() if args.version: from .__init__ import __version__, __release_date__ print('elkme %s (release date %s)' % (__version__, __release_date__)) print('(c) 2015-2017 46elks AB <[email protected]>') print(small_elk) exit(0) conf, conf_status = config.init_config(args) if not conf_status[0]: errors.append(conf_status[1]) elif conf_status[1]: print(conf_status[1]) message = parse_message(args) if conf_status[1] and not message: # No message but the configuration file was stored sys.exit(0) try: elks_conn = Elks(auth = (conf['username'], conf['password']), api_url = conf.get('api_url')) except KeyError: errors.append('API keys not properly set. Please refer to ' + '`elkme --usage`, `elkme --help` or ' + 'https://46elks.github.io/elkme') if not message: print(USAGE, file=sys.stderr) exit(-1) for error in errors: print('[ERROR] {}'.format(error)) exit(-1) options = [] if args.flash: options.append('flashsms') try: send_sms(elks_conn, conf, message, length=args.length, options=options) except ElksException as e: print(e, file=sys.stderr)
python
def main(): """Executed on run""" args = parse_args() if args.version: from .__init__ import __version__, __release_date__ print('elkme %s (release date %s)' % (__version__, __release_date__)) print('(c) 2015-2017 46elks AB <[email protected]>') print(small_elk) exit(0) conf, conf_status = config.init_config(args) if not conf_status[0]: errors.append(conf_status[1]) elif conf_status[1]: print(conf_status[1]) message = parse_message(args) if conf_status[1] and not message: # No message but the configuration file was stored sys.exit(0) try: elks_conn = Elks(auth = (conf['username'], conf['password']), api_url = conf.get('api_url')) except KeyError: errors.append('API keys not properly set. Please refer to ' + '`elkme --usage`, `elkme --help` or ' + 'https://46elks.github.io/elkme') if not message: print(USAGE, file=sys.stderr) exit(-1) for error in errors: print('[ERROR] {}'.format(error)) exit(-1) options = [] if args.flash: options.append('flashsms') try: send_sms(elks_conn, conf, message, length=args.length, options=options) except ElksException as e: print(e, file=sys.stderr)
[ "def", "main", "(", ")", ":", "args", "=", "parse_args", "(", ")", "if", "args", ".", "version", ":", "from", ".", "__init__", "import", "__version__", ",", "__release_date__", "print", "(", "'elkme %s (release date %s)'", "%", "(", "__version__", ",", "__release_date__", ")", ")", "print", "(", "'(c) 2015-2017 46elks AB <[email protected]>'", ")", "print", "(", "small_elk", ")", "exit", "(", "0", ")", "conf", ",", "conf_status", "=", "config", ".", "init_config", "(", "args", ")", "if", "not", "conf_status", "[", "0", "]", ":", "errors", ".", "append", "(", "conf_status", "[", "1", "]", ")", "elif", "conf_status", "[", "1", "]", ":", "print", "(", "conf_status", "[", "1", "]", ")", "message", "=", "parse_message", "(", "args", ")", "if", "conf_status", "[", "1", "]", "and", "not", "message", ":", "# No message but the configuration file was stored", "sys", ".", "exit", "(", "0", ")", "try", ":", "elks_conn", "=", "Elks", "(", "auth", "=", "(", "conf", "[", "'username'", "]", ",", "conf", "[", "'password'", "]", ")", ",", "api_url", "=", "conf", ".", "get", "(", "'api_url'", ")", ")", "except", "KeyError", ":", "errors", ".", "append", "(", "'API keys not properly set. Please refer to '", "+", "'`elkme --usage`, `elkme --help` or '", "+", "'https://46elks.github.io/elkme'", ")", "if", "not", "message", ":", "print", "(", "USAGE", ",", "file", "=", "sys", ".", "stderr", ")", "exit", "(", "-", "1", ")", "for", "error", "in", "errors", ":", "print", "(", "'[ERROR] {}'", ".", "format", "(", "error", ")", ")", "exit", "(", "-", "1", ")", "options", "=", "[", "]", "if", "args", ".", "flash", ":", "options", ".", "append", "(", "'flashsms'", ")", "try", ":", "send_sms", "(", "elks_conn", ",", "conf", ",", "message", ",", "length", "=", "args", ".", "length", ",", "options", "=", "options", ")", "except", "ElksException", "as", "e", ":", "print", "(", "e", ",", "file", "=", "sys", ".", "stderr", ")" ]
Executed on run
[ "Executed", "on", "run" ]
6ebdce6f8ac852fc6f714d1f1b836f2777fece4e
https://github.com/46elks/elkme/blob/6ebdce6f8ac852fc6f714d1f1b836f2777fece4e/elkme/main.py#L48-L93
train
clement-alexandre/TotemBionet
totembionet/src/ggea/ggea.py
Graph._build_graph
def _build_graph(self) -> nx.DiGraph: """ Private method to build the graph from the model. """ digraph = nx.DiGraph() for state in self.model.all_states(): self._number_of_states += 1 for next_state in self.model.available_state(state): self._number_of_transitions += 1 digraph.add_edge( self._transform_state_to_string(state), self._transform_state_to_string(next_state) ) return digraph
python
def _build_graph(self) -> nx.DiGraph: """ Private method to build the graph from the model. """ digraph = nx.DiGraph() for state in self.model.all_states(): self._number_of_states += 1 for next_state in self.model.available_state(state): self._number_of_transitions += 1 digraph.add_edge( self._transform_state_to_string(state), self._transform_state_to_string(next_state) ) return digraph
[ "def", "_build_graph", "(", "self", ")", "->", "nx", ".", "DiGraph", ":", "digraph", "=", "nx", ".", "DiGraph", "(", ")", "for", "state", "in", "self", ".", "model", ".", "all_states", "(", ")", ":", "self", ".", "_number_of_states", "+=", "1", "for", "next_state", "in", "self", ".", "model", ".", "available_state", "(", "state", ")", ":", "self", ".", "_number_of_transitions", "+=", "1", "digraph", ".", "add_edge", "(", "self", ".", "_transform_state_to_string", "(", "state", ")", ",", "self", ".", "_transform_state_to_string", "(", "next_state", ")", ")", "return", "digraph" ]
Private method to build the graph from the model.
[ "Private", "method", "to", "build", "the", "graph", "from", "the", "model", "." ]
f37a2f9358c1ce49f21c4a868b904da5dcd4614f
https://github.com/clement-alexandre/TotemBionet/blob/f37a2f9358c1ce49f21c4a868b904da5dcd4614f/totembionet/src/ggea/ggea.py#L22-L33
train
clement-alexandre/TotemBionet
totembionet/src/ggea/ggea.py
Graph._transform_state_to_string
def _transform_state_to_string(self, state: State) -> str: """ Private method which transform a state to a string. Examples -------- The model contains 2 genes: operon = {0, 1, 2} mucuB = {0, 1} >>> graph._transform_state_to_string({operon: 1, mucuB: 0}) "10" >>> graph._transform_state_to_string({operon: 2, mucuB: 1}) "21" """ return ''.join(str(state[gene]) for gene in self.model.genes)
python
def _transform_state_to_string(self, state: State) -> str: """ Private method which transform a state to a string. Examples -------- The model contains 2 genes: operon = {0, 1, 2} mucuB = {0, 1} >>> graph._transform_state_to_string({operon: 1, mucuB: 0}) "10" >>> graph._transform_state_to_string({operon: 2, mucuB: 1}) "21" """ return ''.join(str(state[gene]) for gene in self.model.genes)
[ "def", "_transform_state_to_string", "(", "self", ",", "state", ":", "State", ")", "->", "str", ":", "return", "''", ".", "join", "(", "str", "(", "state", "[", "gene", "]", ")", "for", "gene", "in", "self", ".", "model", ".", "genes", ")" ]
Private method which transform a state to a string. Examples -------- The model contains 2 genes: operon = {0, 1, 2} mucuB = {0, 1} >>> graph._transform_state_to_string({operon: 1, mucuB: 0}) "10" >>> graph._transform_state_to_string({operon: 2, mucuB: 1}) "21"
[ "Private", "method", "which", "transform", "a", "state", "to", "a", "string", "." ]
f37a2f9358c1ce49f21c4a868b904da5dcd4614f
https://github.com/clement-alexandre/TotemBionet/blob/f37a2f9358c1ce49f21c4a868b904da5dcd4614f/totembionet/src/ggea/ggea.py#L35-L51
train
clement-alexandre/TotemBionet
totembionet/src/ggea/ggea.py
Graph.as_dot
def as_dot(self) -> str: """ Return as a string the dot version of the graph. """ return nx.drawing.nx_pydot.to_pydot(self._graph).to_string()
python
def as_dot(self) -> str: """ Return as a string the dot version of the graph. """ return nx.drawing.nx_pydot.to_pydot(self._graph).to_string()
[ "def", "as_dot", "(", "self", ")", "->", "str", ":", "return", "nx", ".", "drawing", ".", "nx_pydot", ".", "to_pydot", "(", "self", ".", "_graph", ")", ".", "to_string", "(", ")" ]
Return as a string the dot version of the graph.
[ "Return", "as", "a", "string", "the", "dot", "version", "of", "the", "graph", "." ]
f37a2f9358c1ce49f21c4a868b904da5dcd4614f
https://github.com/clement-alexandre/TotemBionet/blob/f37a2f9358c1ce49f21c4a868b904da5dcd4614f/totembionet/src/ggea/ggea.py#L65-L67
train
clement-alexandre/TotemBionet
totembionet/src/ggea/ggea.py
Graph.export_to_dot
def export_to_dot(self, filename: str = 'output') -> None: """ Export the graph to the dot file "filename.dot". """ with open(filename + '.dot', 'w') as output: output.write(self.as_dot())
python
def export_to_dot(self, filename: str = 'output') -> None: """ Export the graph to the dot file "filename.dot". """ with open(filename + '.dot', 'w') as output: output.write(self.as_dot())
[ "def", "export_to_dot", "(", "self", ",", "filename", ":", "str", "=", "'output'", ")", "->", "None", ":", "with", "open", "(", "filename", "+", "'.dot'", ",", "'w'", ")", "as", "output", ":", "output", ".", "write", "(", "self", ".", "as_dot", "(", ")", ")" ]
Export the graph to the dot file "filename.dot".
[ "Export", "the", "graph", "to", "the", "dot", "file", "filename", ".", "dot", "." ]
f37a2f9358c1ce49f21c4a868b904da5dcd4614f
https://github.com/clement-alexandre/TotemBionet/blob/f37a2f9358c1ce49f21c4a868b904da5dcd4614f/totembionet/src/ggea/ggea.py#L69-L72
train
speechinformaticslab/vfclust
vfclust/vfclust.py
get_duration_measures
def get_duration_measures(source_file_path, output_path=None, phonemic=False, semantic=False, quiet=False, similarity_file = None, threshold = None): """Parses input arguments and runs clustering algorithm. :param source_file_path: Required. Location of the .csv or .TextGrid file to be analyzed. :param output_path: Path to which to write the resultant csv file. If left None, path will be set to the source_file_path. If set to False, no file will be written. :param phonemic: The letter used for phonetic clustering. Note: should be False if semantic clustering is being used. :param semantic: The word category used for semantic clustering. Note: should be False if phonetic clustering is being used. :param quiet: Set to True if you want to suppress output to the screen during processing. :param similarity_file (optional): When doing semantic processing, this is the path of a file containing custom term similarity scores that will be used for clustering. If a custom file is used, the default LSA-based clustering will not be performed. :param threshold (optional): When doing semantic processing, this threshold is used in conjunction with a custom similarity file. The value is used as a semantic similarity cutoff in clustering. This argument is required if a custom similarity file is specified. This argument can also be used to override the built-in cluster/chain thresholds. :return data: A dictionary of measures derived by clustering the input response. """ #validate arguments here rather than where they're first passed in, in case this is used as a package args = Args() args.output_path = output_path args.phonemic = phonemic args.semantic = semantic args.source_file_path = source_file_path args.quiet = quiet args.similarity_file = similarity_file args.threshold = threshold args = validate_arguments(args) if args.phonemic: response_category = args.phonemic output_prefix = os.path.basename(args.source_file_path).split('.')[0] + "_vfclust_phonemic_" + args.phonemic elif args.semantic: response_category = args.semantic output_prefix = os.path.basename(args.source_file_path).split('.')[0] + "_vfclust_semantic_" + args.semantic else: response_category = "" output_prefix = "" if args.output_path: #want to output csv file target_file_path = os.path.join(args.output_path, output_prefix + '.csv') else: #no output to system target_file_path = False engine = VFClustEngine(response_category=response_category, response_file_path=args.source_file_path, target_file_path=target_file_path, quiet = args.quiet, similarity_file = args.similarity_file, threshold = args.threshold ) return dict(engine.measures)
python
def get_duration_measures(source_file_path, output_path=None, phonemic=False, semantic=False, quiet=False, similarity_file = None, threshold = None): """Parses input arguments and runs clustering algorithm. :param source_file_path: Required. Location of the .csv or .TextGrid file to be analyzed. :param output_path: Path to which to write the resultant csv file. If left None, path will be set to the source_file_path. If set to False, no file will be written. :param phonemic: The letter used for phonetic clustering. Note: should be False if semantic clustering is being used. :param semantic: The word category used for semantic clustering. Note: should be False if phonetic clustering is being used. :param quiet: Set to True if you want to suppress output to the screen during processing. :param similarity_file (optional): When doing semantic processing, this is the path of a file containing custom term similarity scores that will be used for clustering. If a custom file is used, the default LSA-based clustering will not be performed. :param threshold (optional): When doing semantic processing, this threshold is used in conjunction with a custom similarity file. The value is used as a semantic similarity cutoff in clustering. This argument is required if a custom similarity file is specified. This argument can also be used to override the built-in cluster/chain thresholds. :return data: A dictionary of measures derived by clustering the input response. """ #validate arguments here rather than where they're first passed in, in case this is used as a package args = Args() args.output_path = output_path args.phonemic = phonemic args.semantic = semantic args.source_file_path = source_file_path args.quiet = quiet args.similarity_file = similarity_file args.threshold = threshold args = validate_arguments(args) if args.phonemic: response_category = args.phonemic output_prefix = os.path.basename(args.source_file_path).split('.')[0] + "_vfclust_phonemic_" + args.phonemic elif args.semantic: response_category = args.semantic output_prefix = os.path.basename(args.source_file_path).split('.')[0] + "_vfclust_semantic_" + args.semantic else: response_category = "" output_prefix = "" if args.output_path: #want to output csv file target_file_path = os.path.join(args.output_path, output_prefix + '.csv') else: #no output to system target_file_path = False engine = VFClustEngine(response_category=response_category, response_file_path=args.source_file_path, target_file_path=target_file_path, quiet = args.quiet, similarity_file = args.similarity_file, threshold = args.threshold ) return dict(engine.measures)
[ "def", "get_duration_measures", "(", "source_file_path", ",", "output_path", "=", "None", ",", "phonemic", "=", "False", ",", "semantic", "=", "False", ",", "quiet", "=", "False", ",", "similarity_file", "=", "None", ",", "threshold", "=", "None", ")", ":", "#validate arguments here rather than where they're first passed in, in case this is used as a package", "args", "=", "Args", "(", ")", "args", ".", "output_path", "=", "output_path", "args", ".", "phonemic", "=", "phonemic", "args", ".", "semantic", "=", "semantic", "args", ".", "source_file_path", "=", "source_file_path", "args", ".", "quiet", "=", "quiet", "args", ".", "similarity_file", "=", "similarity_file", "args", ".", "threshold", "=", "threshold", "args", "=", "validate_arguments", "(", "args", ")", "if", "args", ".", "phonemic", ":", "response_category", "=", "args", ".", "phonemic", "output_prefix", "=", "os", ".", "path", ".", "basename", "(", "args", ".", "source_file_path", ")", ".", "split", "(", "'.'", ")", "[", "0", "]", "+", "\"_vfclust_phonemic_\"", "+", "args", ".", "phonemic", "elif", "args", ".", "semantic", ":", "response_category", "=", "args", ".", "semantic", "output_prefix", "=", "os", ".", "path", ".", "basename", "(", "args", ".", "source_file_path", ")", ".", "split", "(", "'.'", ")", "[", "0", "]", "+", "\"_vfclust_semantic_\"", "+", "args", ".", "semantic", "else", ":", "response_category", "=", "\"\"", "output_prefix", "=", "\"\"", "if", "args", ".", "output_path", ":", "#want to output csv file", "target_file_path", "=", "os", ".", "path", ".", "join", "(", "args", ".", "output_path", ",", "output_prefix", "+", "'.csv'", ")", "else", ":", "#no output to system", "target_file_path", "=", "False", "engine", "=", "VFClustEngine", "(", "response_category", "=", "response_category", ",", "response_file_path", "=", "args", ".", "source_file_path", ",", "target_file_path", "=", "target_file_path", ",", "quiet", "=", "args", ".", "quiet", ",", "similarity_file", "=", "args", ".", "similarity_file", ",", "threshold", "=", "args", ".", "threshold", ")", "return", "dict", "(", "engine", ".", "measures", ")" ]
Parses input arguments and runs clustering algorithm. :param source_file_path: Required. Location of the .csv or .TextGrid file to be analyzed. :param output_path: Path to which to write the resultant csv file. If left None, path will be set to the source_file_path. If set to False, no file will be written. :param phonemic: The letter used for phonetic clustering. Note: should be False if semantic clustering is being used. :param semantic: The word category used for semantic clustering. Note: should be False if phonetic clustering is being used. :param quiet: Set to True if you want to suppress output to the screen during processing. :param similarity_file (optional): When doing semantic processing, this is the path of a file containing custom term similarity scores that will be used for clustering. If a custom file is used, the default LSA-based clustering will not be performed. :param threshold (optional): When doing semantic processing, this threshold is used in conjunction with a custom similarity file. The value is used as a semantic similarity cutoff in clustering. This argument is required if a custom similarity file is specified. This argument can also be used to override the built-in cluster/chain thresholds. :return data: A dictionary of measures derived by clustering the input response.
[ "Parses", "input", "arguments", "and", "runs", "clustering", "algorithm", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L1597-L1666
train
speechinformaticslab/vfclust
vfclust/vfclust.py
ParsedResponse.create_from_textgrid
def create_from_textgrid(self,word_list): """ Fills the ParsedResponse object with a list of TextGrid.Word objects originally from a .TextGrid file. :param list word_list: List of TextGrid.Word objects corresponding to words/tokens in the subject response. Modifies: - self.timing_included: TextGrid files include timing information - self.unit_list: fills it with Unit objects derived from the word_list argument. If the type is 'SEMANTIC', the words in these units are automatically lemmatized and made into compound words where appropriate. """ self.timing_included = True for i, entry in enumerate(word_list): self.unit_list.append(Unit(entry, format="TextGrid", type=self.type, index_in_timed_response=i)) # combine compound words, remove pluralizations, etc if self.type == "SEMANTIC": self.lemmatize() self.tokenize()
python
def create_from_textgrid(self,word_list): """ Fills the ParsedResponse object with a list of TextGrid.Word objects originally from a .TextGrid file. :param list word_list: List of TextGrid.Word objects corresponding to words/tokens in the subject response. Modifies: - self.timing_included: TextGrid files include timing information - self.unit_list: fills it with Unit objects derived from the word_list argument. If the type is 'SEMANTIC', the words in these units are automatically lemmatized and made into compound words where appropriate. """ self.timing_included = True for i, entry in enumerate(word_list): self.unit_list.append(Unit(entry, format="TextGrid", type=self.type, index_in_timed_response=i)) # combine compound words, remove pluralizations, etc if self.type == "SEMANTIC": self.lemmatize() self.tokenize()
[ "def", "create_from_textgrid", "(", "self", ",", "word_list", ")", ":", "self", ".", "timing_included", "=", "True", "for", "i", ",", "entry", "in", "enumerate", "(", "word_list", ")", ":", "self", ".", "unit_list", ".", "append", "(", "Unit", "(", "entry", ",", "format", "=", "\"TextGrid\"", ",", "type", "=", "self", ".", "type", ",", "index_in_timed_response", "=", "i", ")", ")", "# combine compound words, remove pluralizations, etc", "if", "self", ".", "type", "==", "\"SEMANTIC\"", ":", "self", ".", "lemmatize", "(", ")", "self", ".", "tokenize", "(", ")" ]
Fills the ParsedResponse object with a list of TextGrid.Word objects originally from a .TextGrid file. :param list word_list: List of TextGrid.Word objects corresponding to words/tokens in the subject response. Modifies: - self.timing_included: TextGrid files include timing information - self.unit_list: fills it with Unit objects derived from the word_list argument. If the type is 'SEMANTIC', the words in these units are automatically lemmatized and made into compound words where appropriate.
[ "Fills", "the", "ParsedResponse", "object", "with", "a", "list", "of", "TextGrid", ".", "Word", "objects", "originally", "from", "a", ".", "TextGrid", "file", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L191-L211
train
speechinformaticslab/vfclust
vfclust/vfclust.py
ParsedResponse.lemmatize
def lemmatize(self): """Lemmatize all Units in self.unit_list. Modifies: - self.unit_list: converts the .text property into its lemmatized form. This method lemmatizes all inflected variants of permissible words to those words' respective canonical forms. This is done to ensure that each instance of a permissible word will correspond to a term vector with which semantic relatedness to other words' term vectors can be computed. (Term vectors were derived from a corpus in which inflected words were similarly lemmatized, meaning that , e.g., 'dogs' will not have a term vector to use for semantic relatedness computation.) """ for unit in self.unit_list: if lemmatizer.lemmatize(unit.text) in self.lemmas: unit.text = lemmatizer.lemmatize(unit.text)
python
def lemmatize(self): """Lemmatize all Units in self.unit_list. Modifies: - self.unit_list: converts the .text property into its lemmatized form. This method lemmatizes all inflected variants of permissible words to those words' respective canonical forms. This is done to ensure that each instance of a permissible word will correspond to a term vector with which semantic relatedness to other words' term vectors can be computed. (Term vectors were derived from a corpus in which inflected words were similarly lemmatized, meaning that , e.g., 'dogs' will not have a term vector to use for semantic relatedness computation.) """ for unit in self.unit_list: if lemmatizer.lemmatize(unit.text) in self.lemmas: unit.text = lemmatizer.lemmatize(unit.text)
[ "def", "lemmatize", "(", "self", ")", ":", "for", "unit", "in", "self", ".", "unit_list", ":", "if", "lemmatizer", ".", "lemmatize", "(", "unit", ".", "text", ")", "in", "self", ".", "lemmas", ":", "unit", ".", "text", "=", "lemmatizer", ".", "lemmatize", "(", "unit", ".", "text", ")" ]
Lemmatize all Units in self.unit_list. Modifies: - self.unit_list: converts the .text property into its lemmatized form. This method lemmatizes all inflected variants of permissible words to those words' respective canonical forms. This is done to ensure that each instance of a permissible word will correspond to a term vector with which semantic relatedness to other words' term vectors can be computed. (Term vectors were derived from a corpus in which inflected words were similarly lemmatized, meaning that , e.g., 'dogs' will not have a term vector to use for semantic relatedness computation.)
[ "Lemmatize", "all", "Units", "in", "self", ".", "unit_list", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L213-L229
train
speechinformaticslab/vfclust
vfclust/vfclust.py
ParsedResponse.tokenize
def tokenize(self): """Tokenizes all multiword names in the list of Units. Modifies: - (indirectly) self.unit_list, by combining words into compound words. This is done because many names may be composed of multiple words, e.g., 'grizzly bear'. In order to count the number of permissible words generated, and also to compute semantic relatedness between these multiword names and other names, multiword names must each be reduced to a respective single token. """ if not self.quiet: print print "Finding compound words..." # lists of animal names containing 2-5 separate words compound_word_dict = {} for compound_length in range(5,1,-1): compound_word_dict[compound_length] = [name for name in self.names if len(name.split()) == compound_length] current_index = 0 finished = False while not finished: for compound_length in range(5,1,-1): #[5, 4, 3, 2] if current_index + compound_length - 1 < len(self.unit_list): #don't want to overstep bounds of the list compound_word = "" #create compound word for word in self.unit_list[current_index:current_index + compound_length]: compound_word += " " + word.text compound_word = compound_word.strip() # remove initial white space #check if compound word is in list if compound_word in compound_word_dict[compound_length]: #if so, create the compound word self.make_compound_word(start_index = current_index, how_many = compound_length) current_index += 1 break else: #if no breaks for any number of words current_index += 1 if current_index >= len(self.unit_list): # check here instead of at the top in case # changing the unit list length introduces a bug finished = True
python
def tokenize(self): """Tokenizes all multiword names in the list of Units. Modifies: - (indirectly) self.unit_list, by combining words into compound words. This is done because many names may be composed of multiple words, e.g., 'grizzly bear'. In order to count the number of permissible words generated, and also to compute semantic relatedness between these multiword names and other names, multiword names must each be reduced to a respective single token. """ if not self.quiet: print print "Finding compound words..." # lists of animal names containing 2-5 separate words compound_word_dict = {} for compound_length in range(5,1,-1): compound_word_dict[compound_length] = [name for name in self.names if len(name.split()) == compound_length] current_index = 0 finished = False while not finished: for compound_length in range(5,1,-1): #[5, 4, 3, 2] if current_index + compound_length - 1 < len(self.unit_list): #don't want to overstep bounds of the list compound_word = "" #create compound word for word in self.unit_list[current_index:current_index + compound_length]: compound_word += " " + word.text compound_word = compound_word.strip() # remove initial white space #check if compound word is in list if compound_word in compound_word_dict[compound_length]: #if so, create the compound word self.make_compound_word(start_index = current_index, how_many = compound_length) current_index += 1 break else: #if no breaks for any number of words current_index += 1 if current_index >= len(self.unit_list): # check here instead of at the top in case # changing the unit list length introduces a bug finished = True
[ "def", "tokenize", "(", "self", ")", ":", "if", "not", "self", ".", "quiet", ":", "print", "print", "\"Finding compound words...\"", "# lists of animal names containing 2-5 separate words", "compound_word_dict", "=", "{", "}", "for", "compound_length", "in", "range", "(", "5", ",", "1", ",", "-", "1", ")", ":", "compound_word_dict", "[", "compound_length", "]", "=", "[", "name", "for", "name", "in", "self", ".", "names", "if", "len", "(", "name", ".", "split", "(", ")", ")", "==", "compound_length", "]", "current_index", "=", "0", "finished", "=", "False", "while", "not", "finished", ":", "for", "compound_length", "in", "range", "(", "5", ",", "1", ",", "-", "1", ")", ":", "#[5, 4, 3, 2]", "if", "current_index", "+", "compound_length", "-", "1", "<", "len", "(", "self", ".", "unit_list", ")", ":", "#don't want to overstep bounds of the list", "compound_word", "=", "\"\"", "#create compound word", "for", "word", "in", "self", ".", "unit_list", "[", "current_index", ":", "current_index", "+", "compound_length", "]", ":", "compound_word", "+=", "\" \"", "+", "word", ".", "text", "compound_word", "=", "compound_word", ".", "strip", "(", ")", "# remove initial white space", "#check if compound word is in list", "if", "compound_word", "in", "compound_word_dict", "[", "compound_length", "]", ":", "#if so, create the compound word", "self", ".", "make_compound_word", "(", "start_index", "=", "current_index", ",", "how_many", "=", "compound_length", ")", "current_index", "+=", "1", "break", "else", ":", "#if no breaks for any number of words", "current_index", "+=", "1", "if", "current_index", ">=", "len", "(", "self", ".", "unit_list", ")", ":", "# check here instead of at the top in case", "# changing the unit list length introduces a bug", "finished", "=", "True" ]
Tokenizes all multiword names in the list of Units. Modifies: - (indirectly) self.unit_list, by combining words into compound words. This is done because many names may be composed of multiple words, e.g., 'grizzly bear'. In order to count the number of permissible words generated, and also to compute semantic relatedness between these multiword names and other names, multiword names must each be reduced to a respective single token.
[ "Tokenizes", "all", "multiword", "names", "in", "the", "list", "of", "Units", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L232-L273
train
speechinformaticslab/vfclust
vfclust/vfclust.py
ParsedResponse.make_compound_word
def make_compound_word(self, start_index, how_many): """Combines two Units in self.unit_list to make a compound word token. :param int start_index: Index of first Unit in self.unit_list to be combined :param int how_many: Index of how many Units in self.unit_list to be combined. Modifies: - self.unit_list: Modifies the Unit corresponding to the first word in the compound word. Changes the .text property to include .text properties from subsequent Units, separted by underscores. Modifies the .original_text property to record each componentword separately. Modifies the .end_time property to be the .end_time of the final unit in the compound word. Finally, after extracting the text and timing information, it removes all units in the compound word except for the first. .. note: This method is only used with semantic processing, so we don't need to worry about the phonetic representation of Units. """ if not self.quiet: compound_word = "" for word in self.unit_list[start_index:start_index + how_many]: compound_word += " " + word.text print compound_word.strip(), "-->","_".join(compound_word.split()) #combine text for other_unit in range(1, how_many): self.unit_list[start_index].original_text.append(self.unit_list[start_index + other_unit].text) self.unit_list[start_index].text += "_" + self.unit_list[start_index + other_unit].text #start time is the same. End time is the end time of the LAST word self.unit_list[start_index].end_time = self.unit_list[start_index + how_many - 1].end_time #shorten unit_list self.unit_list = self.unit_list[:start_index + 1] + self.unit_list[start_index + how_many:]
python
def make_compound_word(self, start_index, how_many): """Combines two Units in self.unit_list to make a compound word token. :param int start_index: Index of first Unit in self.unit_list to be combined :param int how_many: Index of how many Units in self.unit_list to be combined. Modifies: - self.unit_list: Modifies the Unit corresponding to the first word in the compound word. Changes the .text property to include .text properties from subsequent Units, separted by underscores. Modifies the .original_text property to record each componentword separately. Modifies the .end_time property to be the .end_time of the final unit in the compound word. Finally, after extracting the text and timing information, it removes all units in the compound word except for the first. .. note: This method is only used with semantic processing, so we don't need to worry about the phonetic representation of Units. """ if not self.quiet: compound_word = "" for word in self.unit_list[start_index:start_index + how_many]: compound_word += " " + word.text print compound_word.strip(), "-->","_".join(compound_word.split()) #combine text for other_unit in range(1, how_many): self.unit_list[start_index].original_text.append(self.unit_list[start_index + other_unit].text) self.unit_list[start_index].text += "_" + self.unit_list[start_index + other_unit].text #start time is the same. End time is the end time of the LAST word self.unit_list[start_index].end_time = self.unit_list[start_index + how_many - 1].end_time #shorten unit_list self.unit_list = self.unit_list[:start_index + 1] + self.unit_list[start_index + how_many:]
[ "def", "make_compound_word", "(", "self", ",", "start_index", ",", "how_many", ")", ":", "if", "not", "self", ".", "quiet", ":", "compound_word", "=", "\"\"", "for", "word", "in", "self", ".", "unit_list", "[", "start_index", ":", "start_index", "+", "how_many", "]", ":", "compound_word", "+=", "\" \"", "+", "word", ".", "text", "print", "compound_word", ".", "strip", "(", ")", ",", "\"-->\"", ",", "\"_\"", ".", "join", "(", "compound_word", ".", "split", "(", ")", ")", "#combine text", "for", "other_unit", "in", "range", "(", "1", ",", "how_many", ")", ":", "self", ".", "unit_list", "[", "start_index", "]", ".", "original_text", ".", "append", "(", "self", ".", "unit_list", "[", "start_index", "+", "other_unit", "]", ".", "text", ")", "self", ".", "unit_list", "[", "start_index", "]", ".", "text", "+=", "\"_\"", "+", "self", ".", "unit_list", "[", "start_index", "+", "other_unit", "]", ".", "text", "#start time is the same. End time is the end time of the LAST word", "self", ".", "unit_list", "[", "start_index", "]", ".", "end_time", "=", "self", ".", "unit_list", "[", "start_index", "+", "how_many", "-", "1", "]", ".", "end_time", "#shorten unit_list", "self", ".", "unit_list", "=", "self", ".", "unit_list", "[", ":", "start_index", "+", "1", "]", "+", "self", ".", "unit_list", "[", "start_index", "+", "how_many", ":", "]" ]
Combines two Units in self.unit_list to make a compound word token. :param int start_index: Index of first Unit in self.unit_list to be combined :param int how_many: Index of how many Units in self.unit_list to be combined. Modifies: - self.unit_list: Modifies the Unit corresponding to the first word in the compound word. Changes the .text property to include .text properties from subsequent Units, separted by underscores. Modifies the .original_text property to record each componentword separately. Modifies the .end_time property to be the .end_time of the final unit in the compound word. Finally, after extracting the text and timing information, it removes all units in the compound word except for the first. .. note: This method is only used with semantic processing, so we don't need to worry about the phonetic representation of Units.
[ "Combines", "two", "Units", "in", "self", ".", "unit_list", "to", "make", "a", "compound", "word", "token", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L275-L310
train
speechinformaticslab/vfclust
vfclust/vfclust.py
ParsedResponse.remove_unit
def remove_unit(self, index): '''Removes the unit at the given index in self.unit_list. Does not modify any other units.''' if not self.quiet: print "Removing", self.unit_list[index].text self.unit_list.pop(index)
python
def remove_unit(self, index): '''Removes the unit at the given index in self.unit_list. Does not modify any other units.''' if not self.quiet: print "Removing", self.unit_list[index].text self.unit_list.pop(index)
[ "def", "remove_unit", "(", "self", ",", "index", ")", ":", "if", "not", "self", ".", "quiet", ":", "print", "\"Removing\"", ",", "self", ".", "unit_list", "[", "index", "]", ".", "text", "self", ".", "unit_list", ".", "pop", "(", "index", ")" ]
Removes the unit at the given index in self.unit_list. Does not modify any other units.
[ "Removes", "the", "unit", "at", "the", "given", "index", "in", "self", ".", "unit_list", ".", "Does", "not", "modify", "any", "other", "units", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L312-L316
train
speechinformaticslab/vfclust
vfclust/vfclust.py
ParsedResponse.combine_same_stem_units
def combine_same_stem_units(self, index): """Combines adjacent words with the same stem into a single unit. :param int index: Index of Unit in self.unit_list to be combined with the subsequent Unit. Modifies: - self.unit_list: Modifies the .original_text property of the Unit corresponding to the index. Changes the .end_time property to be the .end_time of the next Unit, as Units with the same stem are considered as single Unit inc lustering. Finally, after extracting the text and timing information, it removes the unit at index+1. """ if not self.quiet: combined_word = "" for word in self.unit_list[index:index + 2]: for original_word in word.original_text: combined_word += " " + original_word print combined_word.strip(), "-->","/".join(combined_word.split()) # edit word list to reflect what words are represented by this unit self.unit_list[index].original_text.append(self.unit_list[index + 1].text) #start time is the same. End time is the end time of the LAST word self.unit_list[index].end_time = self.unit_list[index + 1].end_time # remove word with duplicate stem self.unit_list.pop(index + 1)
python
def combine_same_stem_units(self, index): """Combines adjacent words with the same stem into a single unit. :param int index: Index of Unit in self.unit_list to be combined with the subsequent Unit. Modifies: - self.unit_list: Modifies the .original_text property of the Unit corresponding to the index. Changes the .end_time property to be the .end_time of the next Unit, as Units with the same stem are considered as single Unit inc lustering. Finally, after extracting the text and timing information, it removes the unit at index+1. """ if not self.quiet: combined_word = "" for word in self.unit_list[index:index + 2]: for original_word in word.original_text: combined_word += " " + original_word print combined_word.strip(), "-->","/".join(combined_word.split()) # edit word list to reflect what words are represented by this unit self.unit_list[index].original_text.append(self.unit_list[index + 1].text) #start time is the same. End time is the end time of the LAST word self.unit_list[index].end_time = self.unit_list[index + 1].end_time # remove word with duplicate stem self.unit_list.pop(index + 1)
[ "def", "combine_same_stem_units", "(", "self", ",", "index", ")", ":", "if", "not", "self", ".", "quiet", ":", "combined_word", "=", "\"\"", "for", "word", "in", "self", ".", "unit_list", "[", "index", ":", "index", "+", "2", "]", ":", "for", "original_word", "in", "word", ".", "original_text", ":", "combined_word", "+=", "\" \"", "+", "original_word", "print", "combined_word", ".", "strip", "(", ")", ",", "\"-->\"", ",", "\"/\"", ".", "join", "(", "combined_word", ".", "split", "(", ")", ")", "# edit word list to reflect what words are represented by this unit", "self", ".", "unit_list", "[", "index", "]", ".", "original_text", ".", "append", "(", "self", ".", "unit_list", "[", "index", "+", "1", "]", ".", "text", ")", "#start time is the same. End time is the end time of the LAST word", "self", ".", "unit_list", "[", "index", "]", ".", "end_time", "=", "self", ".", "unit_list", "[", "index", "+", "1", "]", ".", "end_time", "# remove word with duplicate stem", "self", ".", "unit_list", ".", "pop", "(", "index", "+", "1", ")" ]
Combines adjacent words with the same stem into a single unit. :param int index: Index of Unit in self.unit_list to be combined with the subsequent Unit. Modifies: - self.unit_list: Modifies the .original_text property of the Unit corresponding to the index. Changes the .end_time property to be the .end_time of the next Unit, as Units with the same stem are considered as single Unit inc lustering. Finally, after extracting the text and timing information, it removes the unit at index+1.
[ "Combines", "adjacent", "words", "with", "the", "same", "stem", "into", "a", "single", "unit", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L318-L347
train
speechinformaticslab/vfclust
vfclust/vfclust.py
ParsedResponse.display
def display(self): """Pretty-prints the ParsedResponse to the screen.""" table_list = [] table_list.append(("Text","Orig. Text","Start time","End time", "Phonetic")) for unit in self.unit_list: table_list.append((unit.text, "/".join(unit.original_text), unit.start_time, unit.end_time, unit.phonetic_representation)) print_table(table_list)
python
def display(self): """Pretty-prints the ParsedResponse to the screen.""" table_list = [] table_list.append(("Text","Orig. Text","Start time","End time", "Phonetic")) for unit in self.unit_list: table_list.append((unit.text, "/".join(unit.original_text), unit.start_time, unit.end_time, unit.phonetic_representation)) print_table(table_list)
[ "def", "display", "(", "self", ")", ":", "table_list", "=", "[", "]", "table_list", ".", "append", "(", "(", "\"Text\"", ",", "\"Orig. Text\"", ",", "\"Start time\"", ",", "\"End time\"", ",", "\"Phonetic\"", ")", ")", "for", "unit", "in", "self", ".", "unit_list", ":", "table_list", ".", "append", "(", "(", "unit", ".", "text", ",", "\"/\"", ".", "join", "(", "unit", ".", "original_text", ")", ",", "unit", ".", "start_time", ",", "unit", ".", "end_time", ",", "unit", ".", "phonetic_representation", ")", ")", "print_table", "(", "table_list", ")" ]
Pretty-prints the ParsedResponse to the screen.
[ "Pretty", "-", "prints", "the", "ParsedResponse", "to", "the", "screen", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L350-L361
train
speechinformaticslab/vfclust
vfclust/vfclust.py
ParsedResponse.generate_phonetic_representation
def generate_phonetic_representation(self, word): """ Returns a generated phonetic representation for a word. :param str word: a word to be phoneticized. :return: A list of phonemes representing the phoneticized word. This method is used for words for which there is no pronunication entry in the CMU dictionary. The function generates a pronunication for the word in the standard CMU format. This can then be converted to a compact phonetic representation using modify_phonetic_representation(). """ with NamedTemporaryFile() as temp_file: # Write the word to a temp file temp_file.write(word) #todo - clean up this messy t2p path t2pargs = [os.path.abspath(os.path.join(os.path.dirname(__file__),'t2p/t2p')), '-transcribe', os.path.join(data_path, 'cmudict.0.7a.tree'), temp_file.name] temp_file.seek(0) output, error = subprocess.Popen( t2pargs, stdout=subprocess.PIPE, stderr=subprocess.PIPE ).communicate() output = output.split() phonetic_representation = output[1:] return phonetic_representation
python
def generate_phonetic_representation(self, word): """ Returns a generated phonetic representation for a word. :param str word: a word to be phoneticized. :return: A list of phonemes representing the phoneticized word. This method is used for words for which there is no pronunication entry in the CMU dictionary. The function generates a pronunication for the word in the standard CMU format. This can then be converted to a compact phonetic representation using modify_phonetic_representation(). """ with NamedTemporaryFile() as temp_file: # Write the word to a temp file temp_file.write(word) #todo - clean up this messy t2p path t2pargs = [os.path.abspath(os.path.join(os.path.dirname(__file__),'t2p/t2p')), '-transcribe', os.path.join(data_path, 'cmudict.0.7a.tree'), temp_file.name] temp_file.seek(0) output, error = subprocess.Popen( t2pargs, stdout=subprocess.PIPE, stderr=subprocess.PIPE ).communicate() output = output.split() phonetic_representation = output[1:] return phonetic_representation
[ "def", "generate_phonetic_representation", "(", "self", ",", "word", ")", ":", "with", "NamedTemporaryFile", "(", ")", "as", "temp_file", ":", "# Write the word to a temp file", "temp_file", ".", "write", "(", "word", ")", "#todo - clean up this messy t2p path", "t2pargs", "=", "[", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "join", "(", "os", ".", "path", ".", "dirname", "(", "__file__", ")", ",", "'t2p/t2p'", ")", ")", ",", "'-transcribe'", ",", "os", ".", "path", ".", "join", "(", "data_path", ",", "'cmudict.0.7a.tree'", ")", ",", "temp_file", ".", "name", "]", "temp_file", ".", "seek", "(", "0", ")", "output", ",", "error", "=", "subprocess", ".", "Popen", "(", "t2pargs", ",", "stdout", "=", "subprocess", ".", "PIPE", ",", "stderr", "=", "subprocess", ".", "PIPE", ")", ".", "communicate", "(", ")", "output", "=", "output", ".", "split", "(", ")", "phonetic_representation", "=", "output", "[", "1", ":", "]", "return", "phonetic_representation" ]
Returns a generated phonetic representation for a word. :param str word: a word to be phoneticized. :return: A list of phonemes representing the phoneticized word. This method is used for words for which there is no pronunication entry in the CMU dictionary. The function generates a pronunication for the word in the standard CMU format. This can then be converted to a compact phonetic representation using modify_phonetic_representation().
[ "Returns", "a", "generated", "phonetic", "representation", "for", "a", "word", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L363-L392
train
speechinformaticslab/vfclust
vfclust/vfclust.py
ParsedResponse.modify_phonetic_representation
def modify_phonetic_representation(self, phonetic_representation): """ Returns a compact phonetic representation given a CMUdict-formatted representation. :param list phonetic_representation: a phonetic representation in standard CMUdict formatting, i.e. a list of phonemes like ['HH', 'EH0', 'L', 'OW1'] :returns: A string representing a custom phonetic representation, where each phoneme is mapped to a single ascii character. Changing the phonetic representation from a list to a string is useful for calculating phonetic simlarity scores. """ for i in range(len(phonetic_representation)): # Remove numerical stress indicators phonetic_representation[i] = re.sub('\d+', '', phonetic_representation[i]) multis = ['AA', 'AE', 'AH', 'AO', 'AW', 'AY', 'CH', 'DH', 'EH', 'ER', 'EY', 'HH', 'IH', 'IY', 'JH', 'NG', 'OW', 'OY', 'SH', 'TH', 'UH', 'UW', 'ZH'] singles = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w'] for i in range(len(phonetic_representation)): # Convert multicharacter phone symbols to arbitrary # single-character symbols if phonetic_representation[i] in multis: phonetic_representation[i] = singles[multis.index(phonetic_representation[i])] phonetic_representation = ''.join(phonetic_representation) return phonetic_representation
python
def modify_phonetic_representation(self, phonetic_representation): """ Returns a compact phonetic representation given a CMUdict-formatted representation. :param list phonetic_representation: a phonetic representation in standard CMUdict formatting, i.e. a list of phonemes like ['HH', 'EH0', 'L', 'OW1'] :returns: A string representing a custom phonetic representation, where each phoneme is mapped to a single ascii character. Changing the phonetic representation from a list to a string is useful for calculating phonetic simlarity scores. """ for i in range(len(phonetic_representation)): # Remove numerical stress indicators phonetic_representation[i] = re.sub('\d+', '', phonetic_representation[i]) multis = ['AA', 'AE', 'AH', 'AO', 'AW', 'AY', 'CH', 'DH', 'EH', 'ER', 'EY', 'HH', 'IH', 'IY', 'JH', 'NG', 'OW', 'OY', 'SH', 'TH', 'UH', 'UW', 'ZH'] singles = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w'] for i in range(len(phonetic_representation)): # Convert multicharacter phone symbols to arbitrary # single-character symbols if phonetic_representation[i] in multis: phonetic_representation[i] = singles[multis.index(phonetic_representation[i])] phonetic_representation = ''.join(phonetic_representation) return phonetic_representation
[ "def", "modify_phonetic_representation", "(", "self", ",", "phonetic_representation", ")", ":", "for", "i", "in", "range", "(", "len", "(", "phonetic_representation", ")", ")", ":", "# Remove numerical stress indicators", "phonetic_representation", "[", "i", "]", "=", "re", ".", "sub", "(", "'\\d+'", ",", "''", ",", "phonetic_representation", "[", "i", "]", ")", "multis", "=", "[", "'AA'", ",", "'AE'", ",", "'AH'", ",", "'AO'", ",", "'AW'", ",", "'AY'", ",", "'CH'", ",", "'DH'", ",", "'EH'", ",", "'ER'", ",", "'EY'", ",", "'HH'", ",", "'IH'", ",", "'IY'", ",", "'JH'", ",", "'NG'", ",", "'OW'", ",", "'OY'", ",", "'SH'", ",", "'TH'", ",", "'UH'", ",", "'UW'", ",", "'ZH'", "]", "singles", "=", "[", "'a'", ",", "'b'", ",", "'c'", ",", "'d'", ",", "'e'", ",", "'f'", ",", "'g'", ",", "'h'", ",", "'i'", ",", "'j'", ",", "'k'", ",", "'l'", ",", "'m'", ",", "'n'", ",", "'o'", ",", "'p'", ",", "'q'", ",", "'r'", ",", "'s'", ",", "'t'", ",", "'u'", ",", "'v'", ",", "'w'", "]", "for", "i", "in", "range", "(", "len", "(", "phonetic_representation", ")", ")", ":", "# Convert multicharacter phone symbols to arbitrary", "# single-character symbols", "if", "phonetic_representation", "[", "i", "]", "in", "multis", ":", "phonetic_representation", "[", "i", "]", "=", "singles", "[", "multis", ".", "index", "(", "phonetic_representation", "[", "i", "]", ")", "]", "phonetic_representation", "=", "''", ".", "join", "(", "phonetic_representation", ")", "return", "phonetic_representation" ]
Returns a compact phonetic representation given a CMUdict-formatted representation. :param list phonetic_representation: a phonetic representation in standard CMUdict formatting, i.e. a list of phonemes like ['HH', 'EH0', 'L', 'OW1'] :returns: A string representing a custom phonetic representation, where each phoneme is mapped to a single ascii character. Changing the phonetic representation from a list to a string is useful for calculating phonetic simlarity scores.
[ "Returns", "a", "compact", "phonetic", "representation", "given", "a", "CMUdict", "-", "formatted", "representation", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L394-L424
train
speechinformaticslab/vfclust
vfclust/vfclust.py
ParsedResponse.clean
def clean(self): """ Removes any Units that are not applicable given the current semantic or phonetic category. Modifies: - self.unit_list: Removes Units from this list that do not fit into the clustering category. it does by by either combining units to make compound words, combining units with the same stem, or eliminating units altogether if they do not conform to the category. If the type is phonetic, this method also generates phonetic clusters for all Unit objects in self.unit_list. This method performs three main tasks: 1. Removes words that do not conform to the clustering category (i.e. start with the wrong letter, or are not an animal). 2. Combine adjacent words with the same stem into a single unit. The NLTK Porter Stemmer is used for determining whether stems are the same. http://www.nltk.org/_modules/nltk/stem/porter.html 3. In the case of PHONETIC clustering, compute the phonetic representation of each unit. """ if not self.quiet: print print "Preprocessing input..." print "Raw response:" print self.display() if not self.quiet: print print "Cleaning words..." #weed out words not starting with the right letter or in the right category current_index = 0 while current_index < len(self.unit_list): word = self.unit_list[current_index].text if self.type == "PHONETIC": test = (word.startswith(self.letter_or_category) and #starts with required letter not word.endswith('-') and # Weed out word fragments '_' not in word and # Weed out, e.g., 'filledpause_um' word.lower() in self.english_words) #make sure the word is english elif self.type == "SEMANTIC": test = word in self.permissible_words if not test: #if test fails remove word self.remove_unit(index = current_index) else: # otherwise just increment, but check to see if you're at the end of the list current_index += 1 #combine words with the same stem current_index = 0 finished = False while current_index < len(self.unit_list) - 1: #don't combine for lists of length 0, 1 if stemmer.stem(self.unit_list[current_index].text) == \ stemmer.stem(self.unit_list[current_index + 1].text): #if same stem as next, merge next unit with current unit self.combine_same_stem_units(index = current_index) else: # if not same stem, increment index current_index += 1 #get phonetic representations if self.type == "PHONETIC": for unit in self.unit_list: word = unit.text #get phonetic representation if word in self.cmudict: # If word in CMUdict, get its phonetic representation phonetic_representation = self.cmudict[word] if word not in self.cmudict: # Else, generate a phonetic representation for it phonetic_representation = self.generate_phonetic_representation(word) phonetic_representation = self.modify_phonetic_representation(phonetic_representation) unit.phonetic_representation = phonetic_representation if not self.quiet: print print "Cleaned response:" print self.display()
python
def clean(self): """ Removes any Units that are not applicable given the current semantic or phonetic category. Modifies: - self.unit_list: Removes Units from this list that do not fit into the clustering category. it does by by either combining units to make compound words, combining units with the same stem, or eliminating units altogether if they do not conform to the category. If the type is phonetic, this method also generates phonetic clusters for all Unit objects in self.unit_list. This method performs three main tasks: 1. Removes words that do not conform to the clustering category (i.e. start with the wrong letter, or are not an animal). 2. Combine adjacent words with the same stem into a single unit. The NLTK Porter Stemmer is used for determining whether stems are the same. http://www.nltk.org/_modules/nltk/stem/porter.html 3. In the case of PHONETIC clustering, compute the phonetic representation of each unit. """ if not self.quiet: print print "Preprocessing input..." print "Raw response:" print self.display() if not self.quiet: print print "Cleaning words..." #weed out words not starting with the right letter or in the right category current_index = 0 while current_index < len(self.unit_list): word = self.unit_list[current_index].text if self.type == "PHONETIC": test = (word.startswith(self.letter_or_category) and #starts with required letter not word.endswith('-') and # Weed out word fragments '_' not in word and # Weed out, e.g., 'filledpause_um' word.lower() in self.english_words) #make sure the word is english elif self.type == "SEMANTIC": test = word in self.permissible_words if not test: #if test fails remove word self.remove_unit(index = current_index) else: # otherwise just increment, but check to see if you're at the end of the list current_index += 1 #combine words with the same stem current_index = 0 finished = False while current_index < len(self.unit_list) - 1: #don't combine for lists of length 0, 1 if stemmer.stem(self.unit_list[current_index].text) == \ stemmer.stem(self.unit_list[current_index + 1].text): #if same stem as next, merge next unit with current unit self.combine_same_stem_units(index = current_index) else: # if not same stem, increment index current_index += 1 #get phonetic representations if self.type == "PHONETIC": for unit in self.unit_list: word = unit.text #get phonetic representation if word in self.cmudict: # If word in CMUdict, get its phonetic representation phonetic_representation = self.cmudict[word] if word not in self.cmudict: # Else, generate a phonetic representation for it phonetic_representation = self.generate_phonetic_representation(word) phonetic_representation = self.modify_phonetic_representation(phonetic_representation) unit.phonetic_representation = phonetic_representation if not self.quiet: print print "Cleaned response:" print self.display()
[ "def", "clean", "(", "self", ")", ":", "if", "not", "self", ".", "quiet", ":", "print", "print", "\"Preprocessing input...\"", "print", "\"Raw response:\"", "print", "self", ".", "display", "(", ")", "if", "not", "self", ".", "quiet", ":", "print", "print", "\"Cleaning words...\"", "#weed out words not starting with the right letter or in the right category", "current_index", "=", "0", "while", "current_index", "<", "len", "(", "self", ".", "unit_list", ")", ":", "word", "=", "self", ".", "unit_list", "[", "current_index", "]", ".", "text", "if", "self", ".", "type", "==", "\"PHONETIC\"", ":", "test", "=", "(", "word", ".", "startswith", "(", "self", ".", "letter_or_category", ")", "and", "#starts with required letter", "not", "word", ".", "endswith", "(", "'-'", ")", "and", "# Weed out word fragments", "'_'", "not", "in", "word", "and", "# Weed out, e.g., 'filledpause_um'", "word", ".", "lower", "(", ")", "in", "self", ".", "english_words", ")", "#make sure the word is english", "elif", "self", ".", "type", "==", "\"SEMANTIC\"", ":", "test", "=", "word", "in", "self", ".", "permissible_words", "if", "not", "test", ":", "#if test fails remove word", "self", ".", "remove_unit", "(", "index", "=", "current_index", ")", "else", ":", "# otherwise just increment, but check to see if you're at the end of the list", "current_index", "+=", "1", "#combine words with the same stem", "current_index", "=", "0", "finished", "=", "False", "while", "current_index", "<", "len", "(", "self", ".", "unit_list", ")", "-", "1", ":", "#don't combine for lists of length 0, 1", "if", "stemmer", ".", "stem", "(", "self", ".", "unit_list", "[", "current_index", "]", ".", "text", ")", "==", "stemmer", ".", "stem", "(", "self", ".", "unit_list", "[", "current_index", "+", "1", "]", ".", "text", ")", ":", "#if same stem as next, merge next unit with current unit", "self", ".", "combine_same_stem_units", "(", "index", "=", "current_index", ")", "else", ":", "# if not same stem, increment index", "current_index", "+=", "1", "#get phonetic representations", "if", "self", ".", "type", "==", "\"PHONETIC\"", ":", "for", "unit", "in", "self", ".", "unit_list", ":", "word", "=", "unit", ".", "text", "#get phonetic representation", "if", "word", "in", "self", ".", "cmudict", ":", "# If word in CMUdict, get its phonetic representation", "phonetic_representation", "=", "self", ".", "cmudict", "[", "word", "]", "if", "word", "not", "in", "self", ".", "cmudict", ":", "# Else, generate a phonetic representation for it", "phonetic_representation", "=", "self", ".", "generate_phonetic_representation", "(", "word", ")", "phonetic_representation", "=", "self", ".", "modify_phonetic_representation", "(", "phonetic_representation", ")", "unit", ".", "phonetic_representation", "=", "phonetic_representation", "if", "not", "self", ".", "quiet", ":", "print", "print", "\"Cleaned response:\"", "print", "self", ".", "display", "(", ")" ]
Removes any Units that are not applicable given the current semantic or phonetic category. Modifies: - self.unit_list: Removes Units from this list that do not fit into the clustering category. it does by by either combining units to make compound words, combining units with the same stem, or eliminating units altogether if they do not conform to the category. If the type is phonetic, this method also generates phonetic clusters for all Unit objects in self.unit_list. This method performs three main tasks: 1. Removes words that do not conform to the clustering category (i.e. start with the wrong letter, or are not an animal). 2. Combine adjacent words with the same stem into a single unit. The NLTK Porter Stemmer is used for determining whether stems are the same. http://www.nltk.org/_modules/nltk/stem/porter.html 3. In the case of PHONETIC clustering, compute the phonetic representation of each unit.
[ "Removes", "any", "Units", "that", "are", "not", "applicable", "given", "the", "current", "semantic", "or", "phonetic", "category", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L426-L504
train
speechinformaticslab/vfclust
vfclust/vfclust.py
VFClustEngine.load_lsa_information
def load_lsa_information(self): """Loads a dictionary from disk that maps permissible words to their LSA term vectors.""" if not (49 < int(self.clustering_parameter) < 101): raise Exception('Only LSA dimensionalities in the range 50-100' + ' are supported.') if not self.quiet: print "Loading LSA term vectors..." #the protocol2 used the pickle highest protocol and this one is a smaller file with open(os.path.join(data_path, self.category + '_' + os.path.join('term_vector_dictionaries', 'term_vectors_dict' + str(self.clustering_parameter) + '_cpickle.dat')), 'rb') as infile: self.term_vectors = pickle.load(infile)
python
def load_lsa_information(self): """Loads a dictionary from disk that maps permissible words to their LSA term vectors.""" if not (49 < int(self.clustering_parameter) < 101): raise Exception('Only LSA dimensionalities in the range 50-100' + ' are supported.') if not self.quiet: print "Loading LSA term vectors..." #the protocol2 used the pickle highest protocol and this one is a smaller file with open(os.path.join(data_path, self.category + '_' + os.path.join('term_vector_dictionaries', 'term_vectors_dict' + str(self.clustering_parameter) + '_cpickle.dat')), 'rb') as infile: self.term_vectors = pickle.load(infile)
[ "def", "load_lsa_information", "(", "self", ")", ":", "if", "not", "(", "49", "<", "int", "(", "self", ".", "clustering_parameter", ")", "<", "101", ")", ":", "raise", "Exception", "(", "'Only LSA dimensionalities in the range 50-100'", "+", "' are supported.'", ")", "if", "not", "self", ".", "quiet", ":", "print", "\"Loading LSA term vectors...\"", "#the protocol2 used the pickle highest protocol and this one is a smaller file", "with", "open", "(", "os", ".", "path", ".", "join", "(", "data_path", ",", "self", ".", "category", "+", "'_'", "+", "os", ".", "path", ".", "join", "(", "'term_vector_dictionaries'", ",", "'term_vectors_dict'", "+", "str", "(", "self", ".", "clustering_parameter", ")", "+", "'_cpickle.dat'", ")", ")", ",", "'rb'", ")", "as", "infile", ":", "self", ".", "term_vectors", "=", "pickle", ".", "load", "(", "infile", ")" ]
Loads a dictionary from disk that maps permissible words to their LSA term vectors.
[ "Loads", "a", "dictionary", "from", "disk", "that", "maps", "permissible", "words", "to", "their", "LSA", "term", "vectors", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L766-L780
train
speechinformaticslab/vfclust
vfclust/vfclust.py
VFClustEngine.get_similarity_measures
def get_similarity_measures(self): """Helper function for computing similarity measures.""" if not self.quiet: print print "Computing", self.current_similarity_measure, "similarity..." self.compute_similarity_scores()
python
def get_similarity_measures(self): """Helper function for computing similarity measures.""" if not self.quiet: print print "Computing", self.current_similarity_measure, "similarity..." self.compute_similarity_scores()
[ "def", "get_similarity_measures", "(", "self", ")", ":", "if", "not", "self", ".", "quiet", ":", "print", "print", "\"Computing\"", ",", "self", ".", "current_similarity_measure", ",", "\"similarity...\"", "self", ".", "compute_similarity_scores", "(", ")" ]
Helper function for computing similarity measures.
[ "Helper", "function", "for", "computing", "similarity", "measures", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L783-L789
train
speechinformaticslab/vfclust
vfclust/vfclust.py
VFClustEngine.get_raw_counts
def get_raw_counts(self): """Determines counts for unique words, repetitions, etc using the raw text response. Adds the following measures to the self.measures dictionary: - COUNT_total_words: count of words (i.e. utterances with semantic content) spoken by the subject. Filled pauses, silences, coughs, breaths, words by the interviewer, etc. are all excluded from this count. - COUNT_permissible_words: Number of words spoken by the subject that qualify as a valid response according to the clustering criteria. Compound words are counted as a single word in SEMANTIC clustering, but as two words in PHONETIC clustering. This is implemented by tokenizing SEMANTIC clustering responses in the __init__ method before calling the current method. - COUNT_exact_repetitions: Number of words which repeat words spoken earlier in the response. Responses in SEMANTIC clustering are lemmatized before this function is called, so slight variations (dog, dogs) may be counted as exact responses. - COUNT_stem_repetitions: Number of words stems identical to words uttered earlier in the response, according to the Porter Stemmer. For example, 'sled' and 'sledding' have the same stem ('sled'), and 'sledding' would be counted as a stem repetition. - COUNT_examiner_words: Number of words uttered by the examiner. These start with "E_" in .TextGrid files. - COUNT_filled_pauses: Number of filled pauses uttered by the subject. These begin with "FILLEDPAUSE_" in the .TextGrid file. - COUNT_word_fragments: Number of word fragments uttered by the subject. These end with "-" in the .TextGrid file. - COUNT_asides: Words spoken by the subject that do not adhere to the test criteria are counted as asides, i.e. words that do not start with the appropriate letter or that do not represent an animal. - COUNT_unique_permissible_words: Number of works spoken by the subject, less asides, stem repetitions and exact repetitions. """ #for making the table at the end words = [] labels = [] words_said = set() # Words like "polar_bear" as one semantically but two phonetically # Uncategorizable words are counted as asides for unit in self.parsed_response: word = unit.text test = False if self.type == "PHONETIC": test = (word.startswith(self.letter) and "T_" not in word and "E_" not in word and "!" not in word and # Weed out tags "FILLEDPAUSE_" not in word and # Weed out filled pauses not word.endswith('-') and # Weed out false starts word.lower() in self.english_words) #weed out non-words elif self.type == "SEMANTIC": #automatically weed out all non-semantically-appropriate responses test = (word in self.permissible_words) if test: self.measures['COUNT_total_words'] += 1 self.measures['COUNT_permissible_words'] += 1 if any(word == w for w in words_said): self.measures['COUNT_exact_repetitions'] += 1 labels.append('EXACT REPETITION') elif any(stemmer.stem(word) == stemmer.stem(w) for w in words_said): self.measures['COUNT_stem_repetitions'] += 1 labels.append('STEM REPETITION') else: labels.append('PERMISSIBLE WORD') words_said.add(word) words.append(word) elif word.lower().startswith('e_'): self.measures['COUNT_examiner_words'] += 1 words.append(word) labels.append('EXAMINER WORD') elif word.endswith('-'): self.measures['COUNT_word_fragments'] += 1 words.append(word) labels.append('WORD FRAGMENT') elif word.lower().startswith('filledpause'): self.measures['COUNT_filled_pauses'] += 1 words.append(word) labels.append('FILLED PAUSE') elif word.lower() not in ['!sil', 't_noise', 't_cough', 't_lipsmack', 't_breath']: self.measures['COUNT_total_words'] += 1 self.measures['COUNT_asides'] += 1 words.append(word) labels.append('ASIDE') if not self.quiet: print print "Labels:" print_table([(word,label) for word,label in zip(words,labels)]) self.measures['COUNT_unique_permissible_words'] = \ self.measures['COUNT_permissible_words'] - \ self.measures['COUNT_exact_repetitions'] - \ self.measures['COUNT_stem_repetitions'] if not self.quiet: print print "Counts:" collection_measures = [x for x in self.measures if x.startswith("COUNT_")] collection_measures.sort() if not self.quiet: print_table([(k, str(self.measures[k])) for k in collection_measures])
python
def get_raw_counts(self): """Determines counts for unique words, repetitions, etc using the raw text response. Adds the following measures to the self.measures dictionary: - COUNT_total_words: count of words (i.e. utterances with semantic content) spoken by the subject. Filled pauses, silences, coughs, breaths, words by the interviewer, etc. are all excluded from this count. - COUNT_permissible_words: Number of words spoken by the subject that qualify as a valid response according to the clustering criteria. Compound words are counted as a single word in SEMANTIC clustering, but as two words in PHONETIC clustering. This is implemented by tokenizing SEMANTIC clustering responses in the __init__ method before calling the current method. - COUNT_exact_repetitions: Number of words which repeat words spoken earlier in the response. Responses in SEMANTIC clustering are lemmatized before this function is called, so slight variations (dog, dogs) may be counted as exact responses. - COUNT_stem_repetitions: Number of words stems identical to words uttered earlier in the response, according to the Porter Stemmer. For example, 'sled' and 'sledding' have the same stem ('sled'), and 'sledding' would be counted as a stem repetition. - COUNT_examiner_words: Number of words uttered by the examiner. These start with "E_" in .TextGrid files. - COUNT_filled_pauses: Number of filled pauses uttered by the subject. These begin with "FILLEDPAUSE_" in the .TextGrid file. - COUNT_word_fragments: Number of word fragments uttered by the subject. These end with "-" in the .TextGrid file. - COUNT_asides: Words spoken by the subject that do not adhere to the test criteria are counted as asides, i.e. words that do not start with the appropriate letter or that do not represent an animal. - COUNT_unique_permissible_words: Number of works spoken by the subject, less asides, stem repetitions and exact repetitions. """ #for making the table at the end words = [] labels = [] words_said = set() # Words like "polar_bear" as one semantically but two phonetically # Uncategorizable words are counted as asides for unit in self.parsed_response: word = unit.text test = False if self.type == "PHONETIC": test = (word.startswith(self.letter) and "T_" not in word and "E_" not in word and "!" not in word and # Weed out tags "FILLEDPAUSE_" not in word and # Weed out filled pauses not word.endswith('-') and # Weed out false starts word.lower() in self.english_words) #weed out non-words elif self.type == "SEMANTIC": #automatically weed out all non-semantically-appropriate responses test = (word in self.permissible_words) if test: self.measures['COUNT_total_words'] += 1 self.measures['COUNT_permissible_words'] += 1 if any(word == w for w in words_said): self.measures['COUNT_exact_repetitions'] += 1 labels.append('EXACT REPETITION') elif any(stemmer.stem(word) == stemmer.stem(w) for w in words_said): self.measures['COUNT_stem_repetitions'] += 1 labels.append('STEM REPETITION') else: labels.append('PERMISSIBLE WORD') words_said.add(word) words.append(word) elif word.lower().startswith('e_'): self.measures['COUNT_examiner_words'] += 1 words.append(word) labels.append('EXAMINER WORD') elif word.endswith('-'): self.measures['COUNT_word_fragments'] += 1 words.append(word) labels.append('WORD FRAGMENT') elif word.lower().startswith('filledpause'): self.measures['COUNT_filled_pauses'] += 1 words.append(word) labels.append('FILLED PAUSE') elif word.lower() not in ['!sil', 't_noise', 't_cough', 't_lipsmack', 't_breath']: self.measures['COUNT_total_words'] += 1 self.measures['COUNT_asides'] += 1 words.append(word) labels.append('ASIDE') if not self.quiet: print print "Labels:" print_table([(word,label) for word,label in zip(words,labels)]) self.measures['COUNT_unique_permissible_words'] = \ self.measures['COUNT_permissible_words'] - \ self.measures['COUNT_exact_repetitions'] - \ self.measures['COUNT_stem_repetitions'] if not self.quiet: print print "Counts:" collection_measures = [x for x in self.measures if x.startswith("COUNT_")] collection_measures.sort() if not self.quiet: print_table([(k, str(self.measures[k])) for k in collection_measures])
[ "def", "get_raw_counts", "(", "self", ")", ":", "#for making the table at the end", "words", "=", "[", "]", "labels", "=", "[", "]", "words_said", "=", "set", "(", ")", "# Words like \"polar_bear\" as one semantically but two phonetically", "# Uncategorizable words are counted as asides", "for", "unit", "in", "self", ".", "parsed_response", ":", "word", "=", "unit", ".", "text", "test", "=", "False", "if", "self", ".", "type", "==", "\"PHONETIC\"", ":", "test", "=", "(", "word", ".", "startswith", "(", "self", ".", "letter", ")", "and", "\"T_\"", "not", "in", "word", "and", "\"E_\"", "not", "in", "word", "and", "\"!\"", "not", "in", "word", "and", "# Weed out tags", "\"FILLEDPAUSE_\"", "not", "in", "word", "and", "# Weed out filled pauses", "not", "word", ".", "endswith", "(", "'-'", ")", "and", "# Weed out false starts", "word", ".", "lower", "(", ")", "in", "self", ".", "english_words", ")", "#weed out non-words", "elif", "self", ".", "type", "==", "\"SEMANTIC\"", ":", "#automatically weed out all non-semantically-appropriate responses", "test", "=", "(", "word", "in", "self", ".", "permissible_words", ")", "if", "test", ":", "self", ".", "measures", "[", "'COUNT_total_words'", "]", "+=", "1", "self", ".", "measures", "[", "'COUNT_permissible_words'", "]", "+=", "1", "if", "any", "(", "word", "==", "w", "for", "w", "in", "words_said", ")", ":", "self", ".", "measures", "[", "'COUNT_exact_repetitions'", "]", "+=", "1", "labels", ".", "append", "(", "'EXACT REPETITION'", ")", "elif", "any", "(", "stemmer", ".", "stem", "(", "word", ")", "==", "stemmer", ".", "stem", "(", "w", ")", "for", "w", "in", "words_said", ")", ":", "self", ".", "measures", "[", "'COUNT_stem_repetitions'", "]", "+=", "1", "labels", ".", "append", "(", "'STEM REPETITION'", ")", "else", ":", "labels", ".", "append", "(", "'PERMISSIBLE WORD'", ")", "words_said", ".", "add", "(", "word", ")", "words", ".", "append", "(", "word", ")", "elif", "word", ".", "lower", "(", ")", ".", "startswith", "(", "'e_'", ")", ":", "self", ".", "measures", "[", "'COUNT_examiner_words'", "]", "+=", "1", "words", ".", "append", "(", "word", ")", "labels", ".", "append", "(", "'EXAMINER WORD'", ")", "elif", "word", ".", "endswith", "(", "'-'", ")", ":", "self", ".", "measures", "[", "'COUNT_word_fragments'", "]", "+=", "1", "words", ".", "append", "(", "word", ")", "labels", ".", "append", "(", "'WORD FRAGMENT'", ")", "elif", "word", ".", "lower", "(", ")", ".", "startswith", "(", "'filledpause'", ")", ":", "self", ".", "measures", "[", "'COUNT_filled_pauses'", "]", "+=", "1", "words", ".", "append", "(", "word", ")", "labels", ".", "append", "(", "'FILLED PAUSE'", ")", "elif", "word", ".", "lower", "(", ")", "not", "in", "[", "'!sil'", ",", "'t_noise'", ",", "'t_cough'", ",", "'t_lipsmack'", ",", "'t_breath'", "]", ":", "self", ".", "measures", "[", "'COUNT_total_words'", "]", "+=", "1", "self", ".", "measures", "[", "'COUNT_asides'", "]", "+=", "1", "words", ".", "append", "(", "word", ")", "labels", ".", "append", "(", "'ASIDE'", ")", "if", "not", "self", ".", "quiet", ":", "print", "print", "\"Labels:\"", "print_table", "(", "[", "(", "word", ",", "label", ")", "for", "word", ",", "label", "in", "zip", "(", "words", ",", "labels", ")", "]", ")", "self", ".", "measures", "[", "'COUNT_unique_permissible_words'", "]", "=", "self", ".", "measures", "[", "'COUNT_permissible_words'", "]", "-", "self", ".", "measures", "[", "'COUNT_exact_repetitions'", "]", "-", "self", ".", "measures", "[", "'COUNT_stem_repetitions'", "]", "if", "not", "self", ".", "quiet", ":", "print", "print", "\"Counts:\"", "collection_measures", "=", "[", "x", "for", "x", "in", "self", ".", "measures", "if", "x", ".", "startswith", "(", "\"COUNT_\"", ")", "]", "collection_measures", ".", "sort", "(", ")", "if", "not", "self", ".", "quiet", ":", "print_table", "(", "[", "(", "k", ",", "str", "(", "self", ".", "measures", "[", "k", "]", ")", ")", "for", "k", "in", "collection_measures", "]", ")" ]
Determines counts for unique words, repetitions, etc using the raw text response. Adds the following measures to the self.measures dictionary: - COUNT_total_words: count of words (i.e. utterances with semantic content) spoken by the subject. Filled pauses, silences, coughs, breaths, words by the interviewer, etc. are all excluded from this count. - COUNT_permissible_words: Number of words spoken by the subject that qualify as a valid response according to the clustering criteria. Compound words are counted as a single word in SEMANTIC clustering, but as two words in PHONETIC clustering. This is implemented by tokenizing SEMANTIC clustering responses in the __init__ method before calling the current method. - COUNT_exact_repetitions: Number of words which repeat words spoken earlier in the response. Responses in SEMANTIC clustering are lemmatized before this function is called, so slight variations (dog, dogs) may be counted as exact responses. - COUNT_stem_repetitions: Number of words stems identical to words uttered earlier in the response, according to the Porter Stemmer. For example, 'sled' and 'sledding' have the same stem ('sled'), and 'sledding' would be counted as a stem repetition. - COUNT_examiner_words: Number of words uttered by the examiner. These start with "E_" in .TextGrid files. - COUNT_filled_pauses: Number of filled pauses uttered by the subject. These begin with "FILLEDPAUSE_" in the .TextGrid file. - COUNT_word_fragments: Number of word fragments uttered by the subject. These end with "-" in the .TextGrid file. - COUNT_asides: Words spoken by the subject that do not adhere to the test criteria are counted as asides, i.e. words that do not start with the appropriate letter or that do not represent an animal. - COUNT_unique_permissible_words: Number of works spoken by the subject, less asides, stem repetitions and exact repetitions.
[ "Determines", "counts", "for", "unique", "words", "repetitions", "etc", "using", "the", "raw", "text", "response", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L836-L934
train
speechinformaticslab/vfclust
vfclust/vfclust.py
VFClustEngine.compute_similarity_score
def compute_similarity_score(self, unit1, unit2): """ Returns the similarity score between two words. The type of similarity scoring method used depends on the currently active method and clustering type. :param unit1: Unit object corresponding to the first word. :type unit1: Unit :param unit2: Unit object corresponding to the second word. :type unit2: Unit :return: Number indicating degree of similarity of the two input words. The maximum value is 1, and a higher value indicates that the words are more similar. :rtype : Float The similarity method used depends both on the type of test being performed (SEMANTIC or PHONETIC) and the similarity method currently assigned to the self.current_similarity_measure property of the VFClustEngine object. The similarity measures used are the following: - PHONETIC/"phone": the phonetic similarity score (PSS) is calculated between the phonetic representations of the input units. It is equal to 1 minus the Levenshtein distance between two strings, normalized to the length of the longer string. The strings should be compact phonetic representations of the two words. (This method is a modification of a Levenshtein distance function available at http://hetland.org/coding/python/levenshtein.py.) - PHONETIC/"biphone": the binary common-biphone score (CBS) depends on whether two words share their initial and/or final biphone (i.e., set of two phonemes). A score of 1 indicates that two words have the same intial and/or final biphone; a score of 0 indicates that two words have neither the same initial nor final biphone. This is also calculated using the phonetic representation of the two words. - SEMANTIC/"lsa": a semantic relatedness score (SRS) is calculated as the COSINE of the respective term vectors for the first and second word in an LSA space of the specified clustering_parameter. Unlike the PHONETIC methods, this method uses the .text property of the input Unit objects. """ if self.type == "PHONETIC": word1 = unit1.phonetic_representation word2 = unit2.phonetic_representation if self.current_similarity_measure == "phone": word1_length, word2_length = len(word1), len(word2) if word1_length > word2_length: # Make sure n <= m, to use O(min(n,m)) space word1, word2 = word2, word1 word1_length, word2_length = word2_length, word1_length current = range(word1_length + 1) for i in range(1, word2_length + 1): previous, current = current, [i] + [0] * word1_length for j in range(1, word1_length + 1): add, delete = previous[j] + 1, current[j - 1] + 1 change = previous[j - 1] if word1[j - 1] != word2[i - 1]: change += 1 current[j] = min(add, delete, change) phonetic_similarity_score = 1 - current[word1_length] / word2_length return phonetic_similarity_score elif self.current_similarity_measure == "biphone": if word1[:2] == word2[:2] or word1[-2:] == word2[-2:]: common_biphone_score = 1 else: common_biphone_score = 0 return common_biphone_score elif self.type == "SEMANTIC": word1 = unit1.text word2 = unit2.text if self.current_similarity_measure == "lsa": w1_vec = self.term_vectors[word1] w2_vec = self.term_vectors[word2] # semantic_relatedness_score = (numpy.dot(w1_vec, w2_vec) / # numpy.linalg.norm(w1_vec) / # numpy.linalg.norm(w2_vec)) dot = sum([w1*w2 for w1,w2 in zip(w1_vec, w2_vec)]) norm1 = sqrt(sum([w*w for w in w1_vec])) norm2 = sqrt(sum([w*w for w in w2_vec])) semantic_relatedness_score = dot/(norm1 * norm2) return semantic_relatedness_score elif self.current_similarity_measure == "custom": #look it up in dict try: similarity = self.custom_similarity_scores[(word1,word2)] except KeyError: try: similarity = self.custom_similarity_scores[(word2,word1)] except KeyError: if word1 == word2: return self.same_word_similarity #if they're the same word, they pass. This should only happen when checking with # non-adjacent words in the same cluster else: return 0 #if words aren't found, they are defined as dissimilar return similarity return None
python
def compute_similarity_score(self, unit1, unit2): """ Returns the similarity score between two words. The type of similarity scoring method used depends on the currently active method and clustering type. :param unit1: Unit object corresponding to the first word. :type unit1: Unit :param unit2: Unit object corresponding to the second word. :type unit2: Unit :return: Number indicating degree of similarity of the two input words. The maximum value is 1, and a higher value indicates that the words are more similar. :rtype : Float The similarity method used depends both on the type of test being performed (SEMANTIC or PHONETIC) and the similarity method currently assigned to the self.current_similarity_measure property of the VFClustEngine object. The similarity measures used are the following: - PHONETIC/"phone": the phonetic similarity score (PSS) is calculated between the phonetic representations of the input units. It is equal to 1 minus the Levenshtein distance between two strings, normalized to the length of the longer string. The strings should be compact phonetic representations of the two words. (This method is a modification of a Levenshtein distance function available at http://hetland.org/coding/python/levenshtein.py.) - PHONETIC/"biphone": the binary common-biphone score (CBS) depends on whether two words share their initial and/or final biphone (i.e., set of two phonemes). A score of 1 indicates that two words have the same intial and/or final biphone; a score of 0 indicates that two words have neither the same initial nor final biphone. This is also calculated using the phonetic representation of the two words. - SEMANTIC/"lsa": a semantic relatedness score (SRS) is calculated as the COSINE of the respective term vectors for the first and second word in an LSA space of the specified clustering_parameter. Unlike the PHONETIC methods, this method uses the .text property of the input Unit objects. """ if self.type == "PHONETIC": word1 = unit1.phonetic_representation word2 = unit2.phonetic_representation if self.current_similarity_measure == "phone": word1_length, word2_length = len(word1), len(word2) if word1_length > word2_length: # Make sure n <= m, to use O(min(n,m)) space word1, word2 = word2, word1 word1_length, word2_length = word2_length, word1_length current = range(word1_length + 1) for i in range(1, word2_length + 1): previous, current = current, [i] + [0] * word1_length for j in range(1, word1_length + 1): add, delete = previous[j] + 1, current[j - 1] + 1 change = previous[j - 1] if word1[j - 1] != word2[i - 1]: change += 1 current[j] = min(add, delete, change) phonetic_similarity_score = 1 - current[word1_length] / word2_length return phonetic_similarity_score elif self.current_similarity_measure == "biphone": if word1[:2] == word2[:2] or word1[-2:] == word2[-2:]: common_biphone_score = 1 else: common_biphone_score = 0 return common_biphone_score elif self.type == "SEMANTIC": word1 = unit1.text word2 = unit2.text if self.current_similarity_measure == "lsa": w1_vec = self.term_vectors[word1] w2_vec = self.term_vectors[word2] # semantic_relatedness_score = (numpy.dot(w1_vec, w2_vec) / # numpy.linalg.norm(w1_vec) / # numpy.linalg.norm(w2_vec)) dot = sum([w1*w2 for w1,w2 in zip(w1_vec, w2_vec)]) norm1 = sqrt(sum([w*w for w in w1_vec])) norm2 = sqrt(sum([w*w for w in w2_vec])) semantic_relatedness_score = dot/(norm1 * norm2) return semantic_relatedness_score elif self.current_similarity_measure == "custom": #look it up in dict try: similarity = self.custom_similarity_scores[(word1,word2)] except KeyError: try: similarity = self.custom_similarity_scores[(word2,word1)] except KeyError: if word1 == word2: return self.same_word_similarity #if they're the same word, they pass. This should only happen when checking with # non-adjacent words in the same cluster else: return 0 #if words aren't found, they are defined as dissimilar return similarity return None
[ "def", "compute_similarity_score", "(", "self", ",", "unit1", ",", "unit2", ")", ":", "if", "self", ".", "type", "==", "\"PHONETIC\"", ":", "word1", "=", "unit1", ".", "phonetic_representation", "word2", "=", "unit2", ".", "phonetic_representation", "if", "self", ".", "current_similarity_measure", "==", "\"phone\"", ":", "word1_length", ",", "word2_length", "=", "len", "(", "word1", ")", ",", "len", "(", "word2", ")", "if", "word1_length", ">", "word2_length", ":", "# Make sure n <= m, to use O(min(n,m)) space", "word1", ",", "word2", "=", "word2", ",", "word1", "word1_length", ",", "word2_length", "=", "word2_length", ",", "word1_length", "current", "=", "range", "(", "word1_length", "+", "1", ")", "for", "i", "in", "range", "(", "1", ",", "word2_length", "+", "1", ")", ":", "previous", ",", "current", "=", "current", ",", "[", "i", "]", "+", "[", "0", "]", "*", "word1_length", "for", "j", "in", "range", "(", "1", ",", "word1_length", "+", "1", ")", ":", "add", ",", "delete", "=", "previous", "[", "j", "]", "+", "1", ",", "current", "[", "j", "-", "1", "]", "+", "1", "change", "=", "previous", "[", "j", "-", "1", "]", "if", "word1", "[", "j", "-", "1", "]", "!=", "word2", "[", "i", "-", "1", "]", ":", "change", "+=", "1", "current", "[", "j", "]", "=", "min", "(", "add", ",", "delete", ",", "change", ")", "phonetic_similarity_score", "=", "1", "-", "current", "[", "word1_length", "]", "/", "word2_length", "return", "phonetic_similarity_score", "elif", "self", ".", "current_similarity_measure", "==", "\"biphone\"", ":", "if", "word1", "[", ":", "2", "]", "==", "word2", "[", ":", "2", "]", "or", "word1", "[", "-", "2", ":", "]", "==", "word2", "[", "-", "2", ":", "]", ":", "common_biphone_score", "=", "1", "else", ":", "common_biphone_score", "=", "0", "return", "common_biphone_score", "elif", "self", ".", "type", "==", "\"SEMANTIC\"", ":", "word1", "=", "unit1", ".", "text", "word2", "=", "unit2", ".", "text", "if", "self", ".", "current_similarity_measure", "==", "\"lsa\"", ":", "w1_vec", "=", "self", ".", "term_vectors", "[", "word1", "]", "w2_vec", "=", "self", ".", "term_vectors", "[", "word2", "]", "# semantic_relatedness_score = (numpy.dot(w1_vec, w2_vec) /", "# numpy.linalg.norm(w1_vec) /", "# numpy.linalg.norm(w2_vec))", "dot", "=", "sum", "(", "[", "w1", "*", "w2", "for", "w1", ",", "w2", "in", "zip", "(", "w1_vec", ",", "w2_vec", ")", "]", ")", "norm1", "=", "sqrt", "(", "sum", "(", "[", "w", "*", "w", "for", "w", "in", "w1_vec", "]", ")", ")", "norm2", "=", "sqrt", "(", "sum", "(", "[", "w", "*", "w", "for", "w", "in", "w2_vec", "]", ")", ")", "semantic_relatedness_score", "=", "dot", "/", "(", "norm1", "*", "norm2", ")", "return", "semantic_relatedness_score", "elif", "self", ".", "current_similarity_measure", "==", "\"custom\"", ":", "#look it up in dict", "try", ":", "similarity", "=", "self", ".", "custom_similarity_scores", "[", "(", "word1", ",", "word2", ")", "]", "except", "KeyError", ":", "try", ":", "similarity", "=", "self", ".", "custom_similarity_scores", "[", "(", "word2", ",", "word1", ")", "]", "except", "KeyError", ":", "if", "word1", "==", "word2", ":", "return", "self", ".", "same_word_similarity", "#if they're the same word, they pass. This should only happen when checking with", "# non-adjacent words in the same cluster", "else", ":", "return", "0", "#if words aren't found, they are defined as dissimilar", "return", "similarity", "return", "None" ]
Returns the similarity score between two words. The type of similarity scoring method used depends on the currently active method and clustering type. :param unit1: Unit object corresponding to the first word. :type unit1: Unit :param unit2: Unit object corresponding to the second word. :type unit2: Unit :return: Number indicating degree of similarity of the two input words. The maximum value is 1, and a higher value indicates that the words are more similar. :rtype : Float The similarity method used depends both on the type of test being performed (SEMANTIC or PHONETIC) and the similarity method currently assigned to the self.current_similarity_measure property of the VFClustEngine object. The similarity measures used are the following: - PHONETIC/"phone": the phonetic similarity score (PSS) is calculated between the phonetic representations of the input units. It is equal to 1 minus the Levenshtein distance between two strings, normalized to the length of the longer string. The strings should be compact phonetic representations of the two words. (This method is a modification of a Levenshtein distance function available at http://hetland.org/coding/python/levenshtein.py.) - PHONETIC/"biphone": the binary common-biphone score (CBS) depends on whether two words share their initial and/or final biphone (i.e., set of two phonemes). A score of 1 indicates that two words have the same intial and/or final biphone; a score of 0 indicates that two words have neither the same initial nor final biphone. This is also calculated using the phonetic representation of the two words. - SEMANTIC/"lsa": a semantic relatedness score (SRS) is calculated as the COSINE of the respective term vectors for the first and second word in an LSA space of the specified clustering_parameter. Unlike the PHONETIC methods, this method uses the .text property of the input Unit objects.
[ "Returns", "the", "similarity", "score", "between", "two", "words", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L943-L1042
train
speechinformaticslab/vfclust
vfclust/vfclust.py
VFClustEngine.compute_similarity_scores
def compute_similarity_scores(self): """ Produce a list of similarity scores for each contiguous pair in a response. Calls compute_similarity_score method for every adjacent pair of words. The results are not used in clustering; this is merely to provide a visual representation to print to the screen. Modifies: - self.similarity_scores: Fills the list with similarity scores between adjacent words. At this point this list is never used outside of this method. """ for i,unit in enumerate(self.parsed_response): if i < len(self.parsed_response) - 1: next_unit = self.parsed_response[i + 1] self.similarity_scores.append(self.compute_similarity_score(unit, next_unit)) if not self.quiet: print self.current_similarity_measure, "similarity scores (adjacent) -- higher is closer:" table = [("Word 1", "Word 2", "Score")] + \ [(self.parsed_response[i].text, self.parsed_response[i + 1].text, "{0:.3f}".format(round(self.similarity_scores[i], 2))) for i in range(len(self.parsed_response)-1)] print_table(table)
python
def compute_similarity_scores(self): """ Produce a list of similarity scores for each contiguous pair in a response. Calls compute_similarity_score method for every adjacent pair of words. The results are not used in clustering; this is merely to provide a visual representation to print to the screen. Modifies: - self.similarity_scores: Fills the list with similarity scores between adjacent words. At this point this list is never used outside of this method. """ for i,unit in enumerate(self.parsed_response): if i < len(self.parsed_response) - 1: next_unit = self.parsed_response[i + 1] self.similarity_scores.append(self.compute_similarity_score(unit, next_unit)) if not self.quiet: print self.current_similarity_measure, "similarity scores (adjacent) -- higher is closer:" table = [("Word 1", "Word 2", "Score")] + \ [(self.parsed_response[i].text, self.parsed_response[i + 1].text, "{0:.3f}".format(round(self.similarity_scores[i], 2))) for i in range(len(self.parsed_response)-1)] print_table(table)
[ "def", "compute_similarity_scores", "(", "self", ")", ":", "for", "i", ",", "unit", "in", "enumerate", "(", "self", ".", "parsed_response", ")", ":", "if", "i", "<", "len", "(", "self", ".", "parsed_response", ")", "-", "1", ":", "next_unit", "=", "self", ".", "parsed_response", "[", "i", "+", "1", "]", "self", ".", "similarity_scores", ".", "append", "(", "self", ".", "compute_similarity_score", "(", "unit", ",", "next_unit", ")", ")", "if", "not", "self", ".", "quiet", ":", "print", "self", ".", "current_similarity_measure", ",", "\"similarity scores (adjacent) -- higher is closer:\"", "table", "=", "[", "(", "\"Word 1\"", ",", "\"Word 2\"", ",", "\"Score\"", ")", "]", "+", "[", "(", "self", ".", "parsed_response", "[", "i", "]", ".", "text", ",", "self", ".", "parsed_response", "[", "i", "+", "1", "]", ".", "text", ",", "\"{0:.3f}\"", ".", "format", "(", "round", "(", "self", ".", "similarity_scores", "[", "i", "]", ",", "2", ")", ")", ")", "for", "i", "in", "range", "(", "len", "(", "self", ".", "parsed_response", ")", "-", "1", ")", "]", "print_table", "(", "table", ")" ]
Produce a list of similarity scores for each contiguous pair in a response. Calls compute_similarity_score method for every adjacent pair of words. The results are not used in clustering; this is merely to provide a visual representation to print to the screen. Modifies: - self.similarity_scores: Fills the list with similarity scores between adjacent words. At this point this list is never used outside of this method.
[ "Produce", "a", "list", "of", "similarity", "scores", "for", "each", "contiguous", "pair", "in", "a", "response", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L1044-L1067
train
speechinformaticslab/vfclust
vfclust/vfclust.py
VFClustEngine.compute_pairwise_similarity_score
def compute_pairwise_similarity_score(self): """Computes the average pairwise similarity score between all pairs of Units. The pairwise similarity is calculated as the sum of similarity scores for all pairwise word pairs in a response -- except any pair composed of a word and itself -- divided by the total number of words in an attempt. I.e., the mean similarity for all pairwise word pairs. Adds the following measures to the self.measures dictionary: - COLLECTION_collection_pairwise_similarity_score_mean: mean of pairwise similarity scores .. todo: divide by (count-1)? """ pairs = [] all_scores = [] for i, unit in enumerate(self.parsed_response): for j, other_unit in enumerate(self.parsed_response): if i != j: pair = (i, j) rev_pair = (j, i) if pair not in pairs and rev_pair not in pairs: score = self.compute_similarity_score(unit, other_unit) pairs.append(pair) pairs.append(rev_pair) all_scores.append(score) #remove any "same word" from the mean all_scores = [i for i in all_scores if i != self.same_word_similarity] self.measures["COLLECTION_" + self.current_similarity_measure + "_pairwise_similarity_score_mean"] = get_mean( all_scores) \ if len(pairs) > 0 else 'NA'
python
def compute_pairwise_similarity_score(self): """Computes the average pairwise similarity score between all pairs of Units. The pairwise similarity is calculated as the sum of similarity scores for all pairwise word pairs in a response -- except any pair composed of a word and itself -- divided by the total number of words in an attempt. I.e., the mean similarity for all pairwise word pairs. Adds the following measures to the self.measures dictionary: - COLLECTION_collection_pairwise_similarity_score_mean: mean of pairwise similarity scores .. todo: divide by (count-1)? """ pairs = [] all_scores = [] for i, unit in enumerate(self.parsed_response): for j, other_unit in enumerate(self.parsed_response): if i != j: pair = (i, j) rev_pair = (j, i) if pair not in pairs and rev_pair not in pairs: score = self.compute_similarity_score(unit, other_unit) pairs.append(pair) pairs.append(rev_pair) all_scores.append(score) #remove any "same word" from the mean all_scores = [i for i in all_scores if i != self.same_word_similarity] self.measures["COLLECTION_" + self.current_similarity_measure + "_pairwise_similarity_score_mean"] = get_mean( all_scores) \ if len(pairs) > 0 else 'NA'
[ "def", "compute_pairwise_similarity_score", "(", "self", ")", ":", "pairs", "=", "[", "]", "all_scores", "=", "[", "]", "for", "i", ",", "unit", "in", "enumerate", "(", "self", ".", "parsed_response", ")", ":", "for", "j", ",", "other_unit", "in", "enumerate", "(", "self", ".", "parsed_response", ")", ":", "if", "i", "!=", "j", ":", "pair", "=", "(", "i", ",", "j", ")", "rev_pair", "=", "(", "j", ",", "i", ")", "if", "pair", "not", "in", "pairs", "and", "rev_pair", "not", "in", "pairs", ":", "score", "=", "self", ".", "compute_similarity_score", "(", "unit", ",", "other_unit", ")", "pairs", ".", "append", "(", "pair", ")", "pairs", ".", "append", "(", "rev_pair", ")", "all_scores", ".", "append", "(", "score", ")", "#remove any \"same word\" from the mean", "all_scores", "=", "[", "i", "for", "i", "in", "all_scores", "if", "i", "!=", "self", ".", "same_word_similarity", "]", "self", ".", "measures", "[", "\"COLLECTION_\"", "+", "self", ".", "current_similarity_measure", "+", "\"_pairwise_similarity_score_mean\"", "]", "=", "get_mean", "(", "all_scores", ")", "if", "len", "(", "pairs", ")", ">", "0", "else", "'NA'" ]
Computes the average pairwise similarity score between all pairs of Units. The pairwise similarity is calculated as the sum of similarity scores for all pairwise word pairs in a response -- except any pair composed of a word and itself -- divided by the total number of words in an attempt. I.e., the mean similarity for all pairwise word pairs. Adds the following measures to the self.measures dictionary: - COLLECTION_collection_pairwise_similarity_score_mean: mean of pairwise similarity scores .. todo: divide by (count-1)?
[ "Computes", "the", "average", "pairwise", "similarity", "score", "between", "all", "pairs", "of", "Units", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L1231-L1261
train
speechinformaticslab/vfclust
vfclust/vfclust.py
VFClustEngine.compute_collection_measures
def compute_collection_measures(self, no_singletons=False): """ Computes summaries of measures using the discovered collections. :param no_singletons: if True, omits collections of length 1 from all measures and includes "no_singletons_" in the measure name. Adds the following measures to the self.measures dictionary, prefaced by COLLECTION_(similarity_measure)_(collection_type)_: - count: number of collections - size_mean: mean size of collections - size_max: size of largest collection - switch_count: number of changes between clusters """ prefix = "COLLECTION_" + self.current_similarity_measure + "_" + self.current_collection_type + "_" if no_singletons: prefix += "no_singletons_" if no_singletons: collection_sizes_temp = [x for x in self.collection_sizes if x != 1] else: #include singletons collection_sizes_temp = self.collection_sizes self.measures[prefix + 'count'] = len(collection_sizes_temp) self.measures[prefix + 'size_mean'] = get_mean(collection_sizes_temp) \ if self.measures[prefix + 'count'] > 0 else 0 self.measures[prefix + 'size_max'] = max(collection_sizes_temp) \ if len(collection_sizes_temp) > 0 else 0 self.measures[prefix + 'switch_count'] = self.measures[prefix + 'count'] - 1
python
def compute_collection_measures(self, no_singletons=False): """ Computes summaries of measures using the discovered collections. :param no_singletons: if True, omits collections of length 1 from all measures and includes "no_singletons_" in the measure name. Adds the following measures to the self.measures dictionary, prefaced by COLLECTION_(similarity_measure)_(collection_type)_: - count: number of collections - size_mean: mean size of collections - size_max: size of largest collection - switch_count: number of changes between clusters """ prefix = "COLLECTION_" + self.current_similarity_measure + "_" + self.current_collection_type + "_" if no_singletons: prefix += "no_singletons_" if no_singletons: collection_sizes_temp = [x for x in self.collection_sizes if x != 1] else: #include singletons collection_sizes_temp = self.collection_sizes self.measures[prefix + 'count'] = len(collection_sizes_temp) self.measures[prefix + 'size_mean'] = get_mean(collection_sizes_temp) \ if self.measures[prefix + 'count'] > 0 else 0 self.measures[prefix + 'size_max'] = max(collection_sizes_temp) \ if len(collection_sizes_temp) > 0 else 0 self.measures[prefix + 'switch_count'] = self.measures[prefix + 'count'] - 1
[ "def", "compute_collection_measures", "(", "self", ",", "no_singletons", "=", "False", ")", ":", "prefix", "=", "\"COLLECTION_\"", "+", "self", ".", "current_similarity_measure", "+", "\"_\"", "+", "self", ".", "current_collection_type", "+", "\"_\"", "if", "no_singletons", ":", "prefix", "+=", "\"no_singletons_\"", "if", "no_singletons", ":", "collection_sizes_temp", "=", "[", "x", "for", "x", "in", "self", ".", "collection_sizes", "if", "x", "!=", "1", "]", "else", ":", "#include singletons", "collection_sizes_temp", "=", "self", ".", "collection_sizes", "self", ".", "measures", "[", "prefix", "+", "'count'", "]", "=", "len", "(", "collection_sizes_temp", ")", "self", ".", "measures", "[", "prefix", "+", "'size_mean'", "]", "=", "get_mean", "(", "collection_sizes_temp", ")", "if", "self", ".", "measures", "[", "prefix", "+", "'count'", "]", ">", "0", "else", "0", "self", ".", "measures", "[", "prefix", "+", "'size_max'", "]", "=", "max", "(", "collection_sizes_temp", ")", "if", "len", "(", "collection_sizes_temp", ")", ">", "0", "else", "0", "self", ".", "measures", "[", "prefix", "+", "'switch_count'", "]", "=", "self", ".", "measures", "[", "prefix", "+", "'count'", "]", "-", "1" ]
Computes summaries of measures using the discovered collections. :param no_singletons: if True, omits collections of length 1 from all measures and includes "no_singletons_" in the measure name. Adds the following measures to the self.measures dictionary, prefaced by COLLECTION_(similarity_measure)_(collection_type)_: - count: number of collections - size_mean: mean size of collections - size_max: size of largest collection - switch_count: number of changes between clusters
[ "Computes", "summaries", "of", "measures", "using", "the", "discovered", "collections", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L1264-L1296
train
speechinformaticslab/vfclust
vfclust/vfclust.py
VFClustEngine.compute_duration_measures
def compute_duration_measures(self): """ Helper function for computing measures derived from timing information. These are only computed if the response is textgrid with timing information. All times are in seconds. """ prefix = "TIMING_" + self.current_similarity_measure + "_" + self.current_collection_type + "_" if self.response_format == 'TextGrid': self.compute_response_vowel_duration("TIMING_") #prefixes don't need collection or measure type self.compute_response_continuant_duration("TIMING_") self.compute_between_collection_interval_duration(prefix) self.compute_within_collection_interval_duration(prefix) #these give different values depending on whether singleton clusters are counted or not self.compute_within_collection_vowel_duration(prefix, no_singletons = True) self.compute_within_collection_continuant_duration(prefix, no_singletons = True) self.compute_within_collection_vowel_duration(prefix, no_singletons = False) self.compute_within_collection_continuant_duration(prefix, no_singletons = False)
python
def compute_duration_measures(self): """ Helper function for computing measures derived from timing information. These are only computed if the response is textgrid with timing information. All times are in seconds. """ prefix = "TIMING_" + self.current_similarity_measure + "_" + self.current_collection_type + "_" if self.response_format == 'TextGrid': self.compute_response_vowel_duration("TIMING_") #prefixes don't need collection or measure type self.compute_response_continuant_duration("TIMING_") self.compute_between_collection_interval_duration(prefix) self.compute_within_collection_interval_duration(prefix) #these give different values depending on whether singleton clusters are counted or not self.compute_within_collection_vowel_duration(prefix, no_singletons = True) self.compute_within_collection_continuant_duration(prefix, no_singletons = True) self.compute_within_collection_vowel_duration(prefix, no_singletons = False) self.compute_within_collection_continuant_duration(prefix, no_singletons = False)
[ "def", "compute_duration_measures", "(", "self", ")", ":", "prefix", "=", "\"TIMING_\"", "+", "self", ".", "current_similarity_measure", "+", "\"_\"", "+", "self", ".", "current_collection_type", "+", "\"_\"", "if", "self", ".", "response_format", "==", "'TextGrid'", ":", "self", ".", "compute_response_vowel_duration", "(", "\"TIMING_\"", ")", "#prefixes don't need collection or measure type", "self", ".", "compute_response_continuant_duration", "(", "\"TIMING_\"", ")", "self", ".", "compute_between_collection_interval_duration", "(", "prefix", ")", "self", ".", "compute_within_collection_interval_duration", "(", "prefix", ")", "#these give different values depending on whether singleton clusters are counted or not", "self", ".", "compute_within_collection_vowel_duration", "(", "prefix", ",", "no_singletons", "=", "True", ")", "self", ".", "compute_within_collection_continuant_duration", "(", "prefix", ",", "no_singletons", "=", "True", ")", "self", ".", "compute_within_collection_vowel_duration", "(", "prefix", ",", "no_singletons", "=", "False", ")", "self", ".", "compute_within_collection_continuant_duration", "(", "prefix", ",", "no_singletons", "=", "False", ")" ]
Helper function for computing measures derived from timing information. These are only computed if the response is textgrid with timing information. All times are in seconds.
[ "Helper", "function", "for", "computing", "measures", "derived", "from", "timing", "information", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L1305-L1326
train
speechinformaticslab/vfclust
vfclust/vfclust.py
VFClustEngine.compute_response_vowel_duration
def compute_response_vowel_duration(self, prefix): """Computes mean vowel duration in entire response. :param str prefix: Prefix for the key entry in self.measures. Adds the following measures to the self.measures dictionary: - TIMING_(similarity_measure)_(collection_type)_response_vowel_duration_mean: average vowel duration of all vowels in the response. """ durations = [] for word in self.full_timed_response: if word.phones: for phone in word.phones: if phone.string in self.vowels: durations.append(phone.end - phone.start) self.measures[prefix + 'response_vowel_duration_mean'] = get_mean(durations) \ if len(durations) > 0 else 'NA' if not self.quiet: print "Mean response vowel duration:", self.measures[prefix + 'response_vowel_duration_mean']
python
def compute_response_vowel_duration(self, prefix): """Computes mean vowel duration in entire response. :param str prefix: Prefix for the key entry in self.measures. Adds the following measures to the self.measures dictionary: - TIMING_(similarity_measure)_(collection_type)_response_vowel_duration_mean: average vowel duration of all vowels in the response. """ durations = [] for word in self.full_timed_response: if word.phones: for phone in word.phones: if phone.string in self.vowels: durations.append(phone.end - phone.start) self.measures[prefix + 'response_vowel_duration_mean'] = get_mean(durations) \ if len(durations) > 0 else 'NA' if not self.quiet: print "Mean response vowel duration:", self.measures[prefix + 'response_vowel_duration_mean']
[ "def", "compute_response_vowel_duration", "(", "self", ",", "prefix", ")", ":", "durations", "=", "[", "]", "for", "word", "in", "self", ".", "full_timed_response", ":", "if", "word", ".", "phones", ":", "for", "phone", "in", "word", ".", "phones", ":", "if", "phone", ".", "string", "in", "self", ".", "vowels", ":", "durations", ".", "append", "(", "phone", ".", "end", "-", "phone", ".", "start", ")", "self", ".", "measures", "[", "prefix", "+", "'response_vowel_duration_mean'", "]", "=", "get_mean", "(", "durations", ")", "if", "len", "(", "durations", ")", ">", "0", "else", "'NA'", "if", "not", "self", ".", "quiet", ":", "print", "\"Mean response vowel duration:\"", ",", "self", ".", "measures", "[", "prefix", "+", "'response_vowel_duration_mean'", "]" ]
Computes mean vowel duration in entire response. :param str prefix: Prefix for the key entry in self.measures. Adds the following measures to the self.measures dictionary: - TIMING_(similarity_measure)_(collection_type)_response_vowel_duration_mean: average vowel duration of all vowels in the response.
[ "Computes", "mean", "vowel", "duration", "in", "entire", "response", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L1329-L1349
train
speechinformaticslab/vfclust
vfclust/vfclust.py
VFClustEngine.compute_between_collection_interval_duration
def compute_between_collection_interval_duration(self, prefix): """Calculates BETWEEN-collection intervals for the current collection and measure type and takes their mean. :param str prefix: Prefix for the key entry in self.measures. Negative intervals (for overlapping clusters) are counted as 0 seconds. Intervals are calculated as being the difference between the ending time of the last word in a collection and the start time of the first word in the subsequent collection. Note that these intervals are not necessarily silences, and may include asides, filled pauses, words from the examiner, etc. Adds the following measures to the self.measures dictionary: - TIMING_(similarity_measure)_(collection_type)_between_collection_interval_duration_mean: average interval duration separating clusters """ durations = [] # duration of each collection for collection in self.collection_list: # Entry, with timing, in timed_response for first word in collection start = collection[0].start_time # Entry, with timing, in timed_response for last word in collection end = collection[-1].end_time durations.append((start, end)) # calculation between-duration intervals interstices = [durations[i + 1][0] - durations[i][1] for i, d in enumerate(durations[:-1])] # Replace negative interstices (for overlapping clusters) with # interstices of duration 0 for i, entry in enumerate(interstices): if interstices[i] < 0: interstices[i] = 0 self.measures[prefix + 'between_collection_interval_duration_mean'] = get_mean(interstices) \ if len(interstices) > 0 else 'NA' if not self.quiet: print print self.current_similarity_measure + " between-" + self.current_collection_type + " durations" table = [(self.current_collection_type + " 1 (start,end)", "Interval", self.current_collection_type + " 2 (start,end)")] + \ [(str(d1), str(i1), str(d2)) for d1, i1, d2 in zip(durations[:-1], interstices, durations[1:])] print_table(table) print print "Mean " + self.current_similarity_measure + " between-" + self.current_collection_type + " duration", \ self.measures[prefix + 'between_collection_interval_duration_mean']
python
def compute_between_collection_interval_duration(self, prefix): """Calculates BETWEEN-collection intervals for the current collection and measure type and takes their mean. :param str prefix: Prefix for the key entry in self.measures. Negative intervals (for overlapping clusters) are counted as 0 seconds. Intervals are calculated as being the difference between the ending time of the last word in a collection and the start time of the first word in the subsequent collection. Note that these intervals are not necessarily silences, and may include asides, filled pauses, words from the examiner, etc. Adds the following measures to the self.measures dictionary: - TIMING_(similarity_measure)_(collection_type)_between_collection_interval_duration_mean: average interval duration separating clusters """ durations = [] # duration of each collection for collection in self.collection_list: # Entry, with timing, in timed_response for first word in collection start = collection[0].start_time # Entry, with timing, in timed_response for last word in collection end = collection[-1].end_time durations.append((start, end)) # calculation between-duration intervals interstices = [durations[i + 1][0] - durations[i][1] for i, d in enumerate(durations[:-1])] # Replace negative interstices (for overlapping clusters) with # interstices of duration 0 for i, entry in enumerate(interstices): if interstices[i] < 0: interstices[i] = 0 self.measures[prefix + 'between_collection_interval_duration_mean'] = get_mean(interstices) \ if len(interstices) > 0 else 'NA' if not self.quiet: print print self.current_similarity_measure + " between-" + self.current_collection_type + " durations" table = [(self.current_collection_type + " 1 (start,end)", "Interval", self.current_collection_type + " 2 (start,end)")] + \ [(str(d1), str(i1), str(d2)) for d1, i1, d2 in zip(durations[:-1], interstices, durations[1:])] print_table(table) print print "Mean " + self.current_similarity_measure + " between-" + self.current_collection_type + " duration", \ self.measures[prefix + 'between_collection_interval_duration_mean']
[ "def", "compute_between_collection_interval_duration", "(", "self", ",", "prefix", ")", ":", "durations", "=", "[", "]", "# duration of each collection", "for", "collection", "in", "self", ".", "collection_list", ":", "# Entry, with timing, in timed_response for first word in collection", "start", "=", "collection", "[", "0", "]", ".", "start_time", "# Entry, with timing, in timed_response for last word in collection", "end", "=", "collection", "[", "-", "1", "]", ".", "end_time", "durations", ".", "append", "(", "(", "start", ",", "end", ")", ")", "# calculation between-duration intervals", "interstices", "=", "[", "durations", "[", "i", "+", "1", "]", "[", "0", "]", "-", "durations", "[", "i", "]", "[", "1", "]", "for", "i", ",", "d", "in", "enumerate", "(", "durations", "[", ":", "-", "1", "]", ")", "]", "# Replace negative interstices (for overlapping clusters) with", "# interstices of duration 0", "for", "i", ",", "entry", "in", "enumerate", "(", "interstices", ")", ":", "if", "interstices", "[", "i", "]", "<", "0", ":", "interstices", "[", "i", "]", "=", "0", "self", ".", "measures", "[", "prefix", "+", "'between_collection_interval_duration_mean'", "]", "=", "get_mean", "(", "interstices", ")", "if", "len", "(", "interstices", ")", ">", "0", "else", "'NA'", "if", "not", "self", ".", "quiet", ":", "print", "print", "self", ".", "current_similarity_measure", "+", "\" between-\"", "+", "self", ".", "current_collection_type", "+", "\" durations\"", "table", "=", "[", "(", "self", ".", "current_collection_type", "+", "\" 1 (start,end)\"", ",", "\"Interval\"", ",", "self", ".", "current_collection_type", "+", "\" 2 (start,end)\"", ")", "]", "+", "[", "(", "str", "(", "d1", ")", ",", "str", "(", "i1", ")", ",", "str", "(", "d2", ")", ")", "for", "d1", ",", "i1", ",", "d2", "in", "zip", "(", "durations", "[", ":", "-", "1", "]", ",", "interstices", ",", "durations", "[", "1", ":", "]", ")", "]", "print_table", "(", "table", ")", "print", "print", "\"Mean \"", "+", "self", ".", "current_similarity_measure", "+", "\" between-\"", "+", "self", ".", "current_collection_type", "+", "\" duration\"", ",", "self", ".", "measures", "[", "prefix", "+", "'between_collection_interval_duration_mean'", "]" ]
Calculates BETWEEN-collection intervals for the current collection and measure type and takes their mean. :param str prefix: Prefix for the key entry in self.measures. Negative intervals (for overlapping clusters) are counted as 0 seconds. Intervals are calculated as being the difference between the ending time of the last word in a collection and the start time of the first word in the subsequent collection. Note that these intervals are not necessarily silences, and may include asides, filled pauses, words from the examiner, etc. Adds the following measures to the self.measures dictionary: - TIMING_(similarity_measure)_(collection_type)_between_collection_interval_duration_mean: average interval duration separating clusters
[ "Calculates", "BETWEEN", "-", "collection", "intervals", "for", "the", "current", "collection", "and", "measure", "type", "and", "takes", "their", "mean", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L1377-L1425
train
speechinformaticslab/vfclust
vfclust/vfclust.py
VFClustEngine.compute_within_collection_interval_duration
def compute_within_collection_interval_duration(self, prefix): """Calculates mean between-word duration WITHIN collections. :param str prefix: Prefix for the key entry in self.measures. Calculates the mean time between the end of each word in the collection and the beginning of the next word. Note that these times do not necessarily reflect pauses, as collection members could be separated by asides or other noises. Adds the following measures to the self.measures dictionary: - TIMING_(similarity_measure)_(collection_type)_within_collection_interval_duration_mean """ interstices = [] for cluster in self.collection_list: # Make sure cluster is not a singleton if len(cluster) > 1: for i in range(len(cluster)): if i != len(cluster) - 1: interstice = cluster[i+1].start_time - cluster[i].end_time interstices.append(interstice) self.measures[prefix + 'within_collection_interval_duration_mean'] = get_mean(interstices) \ if len(interstices) > 0 else 'NA' if not self.quiet: print "Mean within-" + self.current_similarity_measure + "-" + self.current_collection_type + \ " between-word duration:", self.measures[prefix + 'within_collection_interval_duration_mean']
python
def compute_within_collection_interval_duration(self, prefix): """Calculates mean between-word duration WITHIN collections. :param str prefix: Prefix for the key entry in self.measures. Calculates the mean time between the end of each word in the collection and the beginning of the next word. Note that these times do not necessarily reflect pauses, as collection members could be separated by asides or other noises. Adds the following measures to the self.measures dictionary: - TIMING_(similarity_measure)_(collection_type)_within_collection_interval_duration_mean """ interstices = [] for cluster in self.collection_list: # Make sure cluster is not a singleton if len(cluster) > 1: for i in range(len(cluster)): if i != len(cluster) - 1: interstice = cluster[i+1].start_time - cluster[i].end_time interstices.append(interstice) self.measures[prefix + 'within_collection_interval_duration_mean'] = get_mean(interstices) \ if len(interstices) > 0 else 'NA' if not self.quiet: print "Mean within-" + self.current_similarity_measure + "-" + self.current_collection_type + \ " between-word duration:", self.measures[prefix + 'within_collection_interval_duration_mean']
[ "def", "compute_within_collection_interval_duration", "(", "self", ",", "prefix", ")", ":", "interstices", "=", "[", "]", "for", "cluster", "in", "self", ".", "collection_list", ":", "# Make sure cluster is not a singleton", "if", "len", "(", "cluster", ")", ">", "1", ":", "for", "i", "in", "range", "(", "len", "(", "cluster", ")", ")", ":", "if", "i", "!=", "len", "(", "cluster", ")", "-", "1", ":", "interstice", "=", "cluster", "[", "i", "+", "1", "]", ".", "start_time", "-", "cluster", "[", "i", "]", ".", "end_time", "interstices", ".", "append", "(", "interstice", ")", "self", ".", "measures", "[", "prefix", "+", "'within_collection_interval_duration_mean'", "]", "=", "get_mean", "(", "interstices", ")", "if", "len", "(", "interstices", ")", ">", "0", "else", "'NA'", "if", "not", "self", ".", "quiet", ":", "print", "\"Mean within-\"", "+", "self", ".", "current_similarity_measure", "+", "\"-\"", "+", "self", ".", "current_collection_type", "+", "\" between-word duration:\"", ",", "self", ".", "measures", "[", "prefix", "+", "'within_collection_interval_duration_mean'", "]" ]
Calculates mean between-word duration WITHIN collections. :param str prefix: Prefix for the key entry in self.measures. Calculates the mean time between the end of each word in the collection and the beginning of the next word. Note that these times do not necessarily reflect pauses, as collection members could be separated by asides or other noises. Adds the following measures to the self.measures dictionary: - TIMING_(similarity_measure)_(collection_type)_within_collection_interval_duration_mean
[ "Calculates", "mean", "between", "-", "word", "duration", "WITHIN", "collections", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L1430-L1457
train
speechinformaticslab/vfclust
vfclust/vfclust.py
VFClustEngine.compute_within_collection_vowel_duration
def compute_within_collection_vowel_duration(self, prefix, no_singletons=False): """ Computes the mean duration of vowels from Units within clusters. :param str prefix: Prefix for the key entry in self.measures :param bool no_singletons: If False, excludes collections of length 1 from calculations and adds "no_singletons" to the prefix Adds the following measures to the self.measures dictionary: - TIMING_(similarity_measure)_(collection_type)_within_collection_vowel_duration_mean """ if no_singletons: min_size = 2 else: prefix += "no_singletons_" min_size = 1 durations = [] for cluster in self.collection_list: if len(cluster) >= min_size: for word in cluster: word = self.full_timed_response[word.index_in_timed_response] for phone in word.phones: if phone.string in self.vowels: durations.append(phone.end - phone.start) self.measures[prefix + 'within_collection_vowel_duration_mean'] = get_mean(durations) \ if len(durations) > 0 else 'NA' if not self.quiet: if no_singletons: print "Mean within-" + self.current_similarity_measure + "-" + self.current_collection_type + \ " vowel duration, excluding singletons:", \ self.measures[prefix + 'within_collection_vowel_duration_mean'] else: print "Mean within-" + self.current_similarity_measure + "-" + self.current_collection_type + \ " vowel duration, including singletons:", \ self.measures[prefix + 'within_collection_vowel_duration_mean']
python
def compute_within_collection_vowel_duration(self, prefix, no_singletons=False): """ Computes the mean duration of vowels from Units within clusters. :param str prefix: Prefix for the key entry in self.measures :param bool no_singletons: If False, excludes collections of length 1 from calculations and adds "no_singletons" to the prefix Adds the following measures to the self.measures dictionary: - TIMING_(similarity_measure)_(collection_type)_within_collection_vowel_duration_mean """ if no_singletons: min_size = 2 else: prefix += "no_singletons_" min_size = 1 durations = [] for cluster in self.collection_list: if len(cluster) >= min_size: for word in cluster: word = self.full_timed_response[word.index_in_timed_response] for phone in word.phones: if phone.string in self.vowels: durations.append(phone.end - phone.start) self.measures[prefix + 'within_collection_vowel_duration_mean'] = get_mean(durations) \ if len(durations) > 0 else 'NA' if not self.quiet: if no_singletons: print "Mean within-" + self.current_similarity_measure + "-" + self.current_collection_type + \ " vowel duration, excluding singletons:", \ self.measures[prefix + 'within_collection_vowel_duration_mean'] else: print "Mean within-" + self.current_similarity_measure + "-" + self.current_collection_type + \ " vowel duration, including singletons:", \ self.measures[prefix + 'within_collection_vowel_duration_mean']
[ "def", "compute_within_collection_vowel_duration", "(", "self", ",", "prefix", ",", "no_singletons", "=", "False", ")", ":", "if", "no_singletons", ":", "min_size", "=", "2", "else", ":", "prefix", "+=", "\"no_singletons_\"", "min_size", "=", "1", "durations", "=", "[", "]", "for", "cluster", "in", "self", ".", "collection_list", ":", "if", "len", "(", "cluster", ")", ">=", "min_size", ":", "for", "word", "in", "cluster", ":", "word", "=", "self", ".", "full_timed_response", "[", "word", ".", "index_in_timed_response", "]", "for", "phone", "in", "word", ".", "phones", ":", "if", "phone", ".", "string", "in", "self", ".", "vowels", ":", "durations", ".", "append", "(", "phone", ".", "end", "-", "phone", ".", "start", ")", "self", ".", "measures", "[", "prefix", "+", "'within_collection_vowel_duration_mean'", "]", "=", "get_mean", "(", "durations", ")", "if", "len", "(", "durations", ")", ">", "0", "else", "'NA'", "if", "not", "self", ".", "quiet", ":", "if", "no_singletons", ":", "print", "\"Mean within-\"", "+", "self", ".", "current_similarity_measure", "+", "\"-\"", "+", "self", ".", "current_collection_type", "+", "\" vowel duration, excluding singletons:\"", ",", "self", ".", "measures", "[", "prefix", "+", "'within_collection_vowel_duration_mean'", "]", "else", ":", "print", "\"Mean within-\"", "+", "self", ".", "current_similarity_measure", "+", "\"-\"", "+", "self", ".", "current_collection_type", "+", "\" vowel duration, including singletons:\"", ",", "self", ".", "measures", "[", "prefix", "+", "'within_collection_vowel_duration_mean'", "]" ]
Computes the mean duration of vowels from Units within clusters. :param str prefix: Prefix for the key entry in self.measures :param bool no_singletons: If False, excludes collections of length 1 from calculations and adds "no_singletons" to the prefix Adds the following measures to the self.measures dictionary: - TIMING_(similarity_measure)_(collection_type)_within_collection_vowel_duration_mean
[ "Computes", "the", "mean", "duration", "of", "vowels", "from", "Units", "within", "clusters", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L1461-L1498
train
speechinformaticslab/vfclust
vfclust/vfclust.py
VFClustEngine.print_output
def print_output(self): """ Outputs final list of measures to screen a csv file. The .csv file created has the same name as the input file, with "vfclust_TYPE_CATEGORY" appended to the filename, where TYPE indicates the type of task performed done (SEMANTIC or PHONETIC) and CATEGORY indicates the category requirement of the stimulus (i.e. 'f' or 'animals' for phonetic and semantic fluency test, respectively. """ if self.response_format == "csv": for key in self.measures: if "TIMING_" in key: self.measures[key] = "NA" if not self.quiet: print print self.type.upper() + " RESULTS:" keys = [e for e in self.measures if 'COUNT_' in e] keys.sort() print "Counts:" print_table([(entry, str(self.measures[entry])) for entry in keys]) keys = [e for e in self.measures if 'COLLECTION_' in e] keys.sort() print print "Collection measures:" print_table([(entry, str(self.measures[entry])) for entry in keys]) if self.response_format == "TextGrid": keys = [e for e in self.measures if 'TIMING_' in e] keys.sort() print print "Time-based measures:" print_table([(entry, str(self.measures[entry])) for entry in keys]) #write to CSV file if self.target_file: with open(self.target_file, 'w') as outfile: header = ['file_id'] + \ [self.type + "_" + e for e in self.measures if 'COUNT_' in e] + \ [self.type + "_" + e for e in self.measures if 'COLLECTION_' in e] + \ [self.type + "_" + e for e in self.measures if 'TIMING_' in e] writer = csv.writer(outfile, quoting=csv.QUOTE_MINIMAL) writer.writerow(header) #the split/join gets rid of the type appended just above writer.writerow([self.measures["file_id"]] + [self.measures["_".join(e.split('_')[1:])] for e in header[1:]])
python
def print_output(self): """ Outputs final list of measures to screen a csv file. The .csv file created has the same name as the input file, with "vfclust_TYPE_CATEGORY" appended to the filename, where TYPE indicates the type of task performed done (SEMANTIC or PHONETIC) and CATEGORY indicates the category requirement of the stimulus (i.e. 'f' or 'animals' for phonetic and semantic fluency test, respectively. """ if self.response_format == "csv": for key in self.measures: if "TIMING_" in key: self.measures[key] = "NA" if not self.quiet: print print self.type.upper() + " RESULTS:" keys = [e for e in self.measures if 'COUNT_' in e] keys.sort() print "Counts:" print_table([(entry, str(self.measures[entry])) for entry in keys]) keys = [e for e in self.measures if 'COLLECTION_' in e] keys.sort() print print "Collection measures:" print_table([(entry, str(self.measures[entry])) for entry in keys]) if self.response_format == "TextGrid": keys = [e for e in self.measures if 'TIMING_' in e] keys.sort() print print "Time-based measures:" print_table([(entry, str(self.measures[entry])) for entry in keys]) #write to CSV file if self.target_file: with open(self.target_file, 'w') as outfile: header = ['file_id'] + \ [self.type + "_" + e for e in self.measures if 'COUNT_' in e] + \ [self.type + "_" + e for e in self.measures if 'COLLECTION_' in e] + \ [self.type + "_" + e for e in self.measures if 'TIMING_' in e] writer = csv.writer(outfile, quoting=csv.QUOTE_MINIMAL) writer.writerow(header) #the split/join gets rid of the type appended just above writer.writerow([self.measures["file_id"]] + [self.measures["_".join(e.split('_')[1:])] for e in header[1:]])
[ "def", "print_output", "(", "self", ")", ":", "if", "self", ".", "response_format", "==", "\"csv\"", ":", "for", "key", "in", "self", ".", "measures", ":", "if", "\"TIMING_\"", "in", "key", ":", "self", ".", "measures", "[", "key", "]", "=", "\"NA\"", "if", "not", "self", ".", "quiet", ":", "print", "print", "self", ".", "type", ".", "upper", "(", ")", "+", "\" RESULTS:\"", "keys", "=", "[", "e", "for", "e", "in", "self", ".", "measures", "if", "'COUNT_'", "in", "e", "]", "keys", ".", "sort", "(", ")", "print", "\"Counts:\"", "print_table", "(", "[", "(", "entry", ",", "str", "(", "self", ".", "measures", "[", "entry", "]", ")", ")", "for", "entry", "in", "keys", "]", ")", "keys", "=", "[", "e", "for", "e", "in", "self", ".", "measures", "if", "'COLLECTION_'", "in", "e", "]", "keys", ".", "sort", "(", ")", "print", "print", "\"Collection measures:\"", "print_table", "(", "[", "(", "entry", ",", "str", "(", "self", ".", "measures", "[", "entry", "]", ")", ")", "for", "entry", "in", "keys", "]", ")", "if", "self", ".", "response_format", "==", "\"TextGrid\"", ":", "keys", "=", "[", "e", "for", "e", "in", "self", ".", "measures", "if", "'TIMING_'", "in", "e", "]", "keys", ".", "sort", "(", ")", "print", "print", "\"Time-based measures:\"", "print_table", "(", "[", "(", "entry", ",", "str", "(", "self", ".", "measures", "[", "entry", "]", ")", ")", "for", "entry", "in", "keys", "]", ")", "#write to CSV file", "if", "self", ".", "target_file", ":", "with", "open", "(", "self", ".", "target_file", ",", "'w'", ")", "as", "outfile", ":", "header", "=", "[", "'file_id'", "]", "+", "[", "self", ".", "type", "+", "\"_\"", "+", "e", "for", "e", "in", "self", ".", "measures", "if", "'COUNT_'", "in", "e", "]", "+", "[", "self", ".", "type", "+", "\"_\"", "+", "e", "for", "e", "in", "self", ".", "measures", "if", "'COLLECTION_'", "in", "e", "]", "+", "[", "self", ".", "type", "+", "\"_\"", "+", "e", "for", "e", "in", "self", ".", "measures", "if", "'TIMING_'", "in", "e", "]", "writer", "=", "csv", ".", "writer", "(", "outfile", ",", "quoting", "=", "csv", ".", "QUOTE_MINIMAL", ")", "writer", ".", "writerow", "(", "header", ")", "#the split/join gets rid of the type appended just above", "writer", ".", "writerow", "(", "[", "self", ".", "measures", "[", "\"file_id\"", "]", "]", "+", "[", "self", ".", "measures", "[", "\"_\"", ".", "join", "(", "e", ".", "split", "(", "'_'", ")", "[", "1", ":", "]", ")", "]", "for", "e", "in", "header", "[", "1", ":", "]", "]", ")" ]
Outputs final list of measures to screen a csv file. The .csv file created has the same name as the input file, with "vfclust_TYPE_CATEGORY" appended to the filename, where TYPE indicates the type of task performed done (SEMANTIC or PHONETIC) and CATEGORY indicates the category requirement of the stimulus (i.e. 'f' or 'animals' for phonetic and semantic fluency test, respectively.
[ "Outputs", "final", "list", "of", "measures", "to", "screen", "a", "csv", "file", "." ]
7ca733dea4782c828024765726cce65de095d33c
https://github.com/speechinformaticslab/vfclust/blob/7ca733dea4782c828024765726cce65de095d33c/vfclust/vfclust.py#L1546-L1593
train
inveniosoftware/invenio-pidrelations
invenio_pidrelations/contrib/versioning.py
PIDNodeVersioning.insert_child
def insert_child(self, child_pid, index=-1): """Insert a Version child PID.""" if child_pid.status != PIDStatus.REGISTERED: raise PIDRelationConsistencyError( "Version PIDs should have status 'REGISTERED'. Use " "insert_draft_child to insert 'RESERVED' draft PID.") with db.session.begin_nested(): # if there is a draft and "child" is inserted as the last version, # it should be inserted before the draft. draft = self.draft_child if draft and index == -1: index = self.index(draft) super(PIDNodeVersioning, self).insert_child(child_pid, index=index) self.update_redirect()
python
def insert_child(self, child_pid, index=-1): """Insert a Version child PID.""" if child_pid.status != PIDStatus.REGISTERED: raise PIDRelationConsistencyError( "Version PIDs should have status 'REGISTERED'. Use " "insert_draft_child to insert 'RESERVED' draft PID.") with db.session.begin_nested(): # if there is a draft and "child" is inserted as the last version, # it should be inserted before the draft. draft = self.draft_child if draft and index == -1: index = self.index(draft) super(PIDNodeVersioning, self).insert_child(child_pid, index=index) self.update_redirect()
[ "def", "insert_child", "(", "self", ",", "child_pid", ",", "index", "=", "-", "1", ")", ":", "if", "child_pid", ".", "status", "!=", "PIDStatus", ".", "REGISTERED", ":", "raise", "PIDRelationConsistencyError", "(", "\"Version PIDs should have status 'REGISTERED'. Use \"", "\"insert_draft_child to insert 'RESERVED' draft PID.\"", ")", "with", "db", ".", "session", ".", "begin_nested", "(", ")", ":", "# if there is a draft and \"child\" is inserted as the last version,", "# it should be inserted before the draft.", "draft", "=", "self", ".", "draft_child", "if", "draft", "and", "index", "==", "-", "1", ":", "index", "=", "self", ".", "index", "(", "draft", ")", "super", "(", "PIDNodeVersioning", ",", "self", ")", ".", "insert_child", "(", "child_pid", ",", "index", "=", "index", ")", "self", ".", "update_redirect", "(", ")" ]
Insert a Version child PID.
[ "Insert", "a", "Version", "child", "PID", "." ]
a49f3725cf595b663c5b04814280b231f88bc333
https://github.com/inveniosoftware/invenio-pidrelations/blob/a49f3725cf595b663c5b04814280b231f88bc333/invenio_pidrelations/contrib/versioning.py#L79-L92
train
inveniosoftware/invenio-pidrelations
invenio_pidrelations/contrib/versioning.py
PIDNodeVersioning.remove_child
def remove_child(self, child_pid): """Remove a Version child PID. Extends the base method call by redirecting from the parent to the last child. """ if child_pid.status == PIDStatus.RESERVED: raise PIDRelationConsistencyError( "Version PIDs should not have status 'RESERVED'. Use " "remove_draft_child to remove a draft PID.") with db.session.begin_nested(): super(PIDNodeVersioning, self).remove_child(child_pid, reorder=True) self.update_redirect()
python
def remove_child(self, child_pid): """Remove a Version child PID. Extends the base method call by redirecting from the parent to the last child. """ if child_pid.status == PIDStatus.RESERVED: raise PIDRelationConsistencyError( "Version PIDs should not have status 'RESERVED'. Use " "remove_draft_child to remove a draft PID.") with db.session.begin_nested(): super(PIDNodeVersioning, self).remove_child(child_pid, reorder=True) self.update_redirect()
[ "def", "remove_child", "(", "self", ",", "child_pid", ")", ":", "if", "child_pid", ".", "status", "==", "PIDStatus", ".", "RESERVED", ":", "raise", "PIDRelationConsistencyError", "(", "\"Version PIDs should not have status 'RESERVED'. Use \"", "\"remove_draft_child to remove a draft PID.\"", ")", "with", "db", ".", "session", ".", "begin_nested", "(", ")", ":", "super", "(", "PIDNodeVersioning", ",", "self", ")", ".", "remove_child", "(", "child_pid", ",", "reorder", "=", "True", ")", "self", ".", "update_redirect", "(", ")" ]
Remove a Version child PID. Extends the base method call by redirecting from the parent to the last child.
[ "Remove", "a", "Version", "child", "PID", "." ]
a49f3725cf595b663c5b04814280b231f88bc333
https://github.com/inveniosoftware/invenio-pidrelations/blob/a49f3725cf595b663c5b04814280b231f88bc333/invenio_pidrelations/contrib/versioning.py#L94-L107
train
inveniosoftware/invenio-pidrelations
invenio_pidrelations/contrib/versioning.py
PIDNodeVersioning.insert_draft_child
def insert_draft_child(self, child_pid): """Insert a draft child to versioning.""" if child_pid.status != PIDStatus.RESERVED: raise PIDRelationConsistencyError( "Draft child should have status 'RESERVED'") if not self.draft_child: with db.session.begin_nested(): super(PIDNodeVersioning, self).insert_child(child_pid, index=-1) else: raise PIDRelationConsistencyError( "Draft child already exists for this relation: {0}".format( self.draft_child))
python
def insert_draft_child(self, child_pid): """Insert a draft child to versioning.""" if child_pid.status != PIDStatus.RESERVED: raise PIDRelationConsistencyError( "Draft child should have status 'RESERVED'") if not self.draft_child: with db.session.begin_nested(): super(PIDNodeVersioning, self).insert_child(child_pid, index=-1) else: raise PIDRelationConsistencyError( "Draft child already exists for this relation: {0}".format( self.draft_child))
[ "def", "insert_draft_child", "(", "self", ",", "child_pid", ")", ":", "if", "child_pid", ".", "status", "!=", "PIDStatus", ".", "RESERVED", ":", "raise", "PIDRelationConsistencyError", "(", "\"Draft child should have status 'RESERVED'\"", ")", "if", "not", "self", ".", "draft_child", ":", "with", "db", ".", "session", ".", "begin_nested", "(", ")", ":", "super", "(", "PIDNodeVersioning", ",", "self", ")", ".", "insert_child", "(", "child_pid", ",", "index", "=", "-", "1", ")", "else", ":", "raise", "PIDRelationConsistencyError", "(", "\"Draft child already exists for this relation: {0}\"", ".", "format", "(", "self", ".", "draft_child", ")", ")" ]
Insert a draft child to versioning.
[ "Insert", "a", "draft", "child", "to", "versioning", "." ]
a49f3725cf595b663c5b04814280b231f88bc333
https://github.com/inveniosoftware/invenio-pidrelations/blob/a49f3725cf595b663c5b04814280b231f88bc333/invenio_pidrelations/contrib/versioning.py#L127-L140
train
inveniosoftware/invenio-pidrelations
invenio_pidrelations/contrib/versioning.py
PIDNodeVersioning.remove_draft_child
def remove_draft_child(self): """Remove the draft child from versioning.""" if self.draft_child: with db.session.begin_nested(): super(PIDNodeVersioning, self).remove_child(self.draft_child, reorder=True)
python
def remove_draft_child(self): """Remove the draft child from versioning.""" if self.draft_child: with db.session.begin_nested(): super(PIDNodeVersioning, self).remove_child(self.draft_child, reorder=True)
[ "def", "remove_draft_child", "(", "self", ")", ":", "if", "self", ".", "draft_child", ":", "with", "db", ".", "session", ".", "begin_nested", "(", ")", ":", "super", "(", "PIDNodeVersioning", ",", "self", ")", ".", "remove_child", "(", "self", ".", "draft_child", ",", "reorder", "=", "True", ")" ]
Remove the draft child from versioning.
[ "Remove", "the", "draft", "child", "from", "versioning", "." ]
a49f3725cf595b663c5b04814280b231f88bc333
https://github.com/inveniosoftware/invenio-pidrelations/blob/a49f3725cf595b663c5b04814280b231f88bc333/invenio_pidrelations/contrib/versioning.py#L142-L147
train
inveniosoftware/invenio-pidrelations
invenio_pidrelations/contrib/versioning.py
PIDNodeVersioning.update_redirect
def update_redirect(self): """Update the parent redirect to the current last child. This method should be called on the parent PID node. Use this method when the status of a PID changed (ex: draft changed from RESERVED to REGISTERED) """ if self.last_child: self._resolved_pid.redirect(self.last_child) elif any(map(lambda pid: pid.status not in [PIDStatus.DELETED, PIDStatus.REGISTERED, PIDStatus.RESERVED], super(PIDNodeVersioning, self).children.all())): raise PIDRelationConsistencyError( "Invalid relation state. Only REGISTERED, RESERVED " "and DELETED PIDs are supported." )
python
def update_redirect(self): """Update the parent redirect to the current last child. This method should be called on the parent PID node. Use this method when the status of a PID changed (ex: draft changed from RESERVED to REGISTERED) """ if self.last_child: self._resolved_pid.redirect(self.last_child) elif any(map(lambda pid: pid.status not in [PIDStatus.DELETED, PIDStatus.REGISTERED, PIDStatus.RESERVED], super(PIDNodeVersioning, self).children.all())): raise PIDRelationConsistencyError( "Invalid relation state. Only REGISTERED, RESERVED " "and DELETED PIDs are supported." )
[ "def", "update_redirect", "(", "self", ")", ":", "if", "self", ".", "last_child", ":", "self", ".", "_resolved_pid", ".", "redirect", "(", "self", ".", "last_child", ")", "elif", "any", "(", "map", "(", "lambda", "pid", ":", "pid", ".", "status", "not", "in", "[", "PIDStatus", ".", "DELETED", ",", "PIDStatus", ".", "REGISTERED", ",", "PIDStatus", ".", "RESERVED", "]", ",", "super", "(", "PIDNodeVersioning", ",", "self", ")", ".", "children", ".", "all", "(", ")", ")", ")", ":", "raise", "PIDRelationConsistencyError", "(", "\"Invalid relation state. Only REGISTERED, RESERVED \"", "\"and DELETED PIDs are supported.\"", ")" ]
Update the parent redirect to the current last child. This method should be called on the parent PID node. Use this method when the status of a PID changed (ex: draft changed from RESERVED to REGISTERED)
[ "Update", "the", "parent", "redirect", "to", "the", "current", "last", "child", "." ]
a49f3725cf595b663c5b04814280b231f88bc333
https://github.com/inveniosoftware/invenio-pidrelations/blob/a49f3725cf595b663c5b04814280b231f88bc333/invenio_pidrelations/contrib/versioning.py#L149-L166
train
adaptive-learning/proso-apps
proso_feedback/views.py
feedback
def feedback(request): """ Send feedback to the authors of the system. GET parameters: html turn on the HTML version of the API POST parameters (JSON): text: the main feedback content email (optional): user's e-mail username (optional): user's name """ if request.method == 'GET': return render(request, 'feedback_feedback.html', {}, help_text=feedback.__doc__) if request.method == 'POST': feedback_data = json_body(request.body.decode("utf-8")) feedback_data['user_agent'] = Session.objects.get_current_session().http_user_agent.content if not feedback_data.get('username'): feedback_data['username'] = request.user.username if not feedback_data.get('email'): feedback_data['email'] = request.user.email comment = Comment.objects.create( username=feedback_data['username'], email=feedback_data['email'], text=feedback_data['text']) if get_config('proso_feedback', 'send_emails', default=True): feedback_domain = get_config('proso_feedback', 'domain', required=True) feedback_to = get_config('proso_feedback', 'to', required=True) if is_likely_worthless(feedback_data): mail_from = 'spam@' + feedback_domain else: mail_from = 'feedback@' + feedback_domain text_content = render_to_string("emails/feedback.plain.txt", { "feedback": feedback_data, "user": request.user, }) html_content = render_to_string("emails/feedback.html", { "feedback": feedback_data, "user": request.user, }) subject = feedback_domain + ' feedback ' + str(comment.id) mail = EmailMultiAlternatives( subject, text_content, mail_from, feedback_to, ) mail.attach_alternative(html_content, "text/html") mail.send() LOGGER.debug("email sent %s\n", text_content) return HttpResponse('ok', status=201) else: return HttpResponseBadRequest("method %s is not allowed".format(request.method))
python
def feedback(request): """ Send feedback to the authors of the system. GET parameters: html turn on the HTML version of the API POST parameters (JSON): text: the main feedback content email (optional): user's e-mail username (optional): user's name """ if request.method == 'GET': return render(request, 'feedback_feedback.html', {}, help_text=feedback.__doc__) if request.method == 'POST': feedback_data = json_body(request.body.decode("utf-8")) feedback_data['user_agent'] = Session.objects.get_current_session().http_user_agent.content if not feedback_data.get('username'): feedback_data['username'] = request.user.username if not feedback_data.get('email'): feedback_data['email'] = request.user.email comment = Comment.objects.create( username=feedback_data['username'], email=feedback_data['email'], text=feedback_data['text']) if get_config('proso_feedback', 'send_emails', default=True): feedback_domain = get_config('proso_feedback', 'domain', required=True) feedback_to = get_config('proso_feedback', 'to', required=True) if is_likely_worthless(feedback_data): mail_from = 'spam@' + feedback_domain else: mail_from = 'feedback@' + feedback_domain text_content = render_to_string("emails/feedback.plain.txt", { "feedback": feedback_data, "user": request.user, }) html_content = render_to_string("emails/feedback.html", { "feedback": feedback_data, "user": request.user, }) subject = feedback_domain + ' feedback ' + str(comment.id) mail = EmailMultiAlternatives( subject, text_content, mail_from, feedback_to, ) mail.attach_alternative(html_content, "text/html") mail.send() LOGGER.debug("email sent %s\n", text_content) return HttpResponse('ok', status=201) else: return HttpResponseBadRequest("method %s is not allowed".format(request.method))
[ "def", "feedback", "(", "request", ")", ":", "if", "request", ".", "method", "==", "'GET'", ":", "return", "render", "(", "request", ",", "'feedback_feedback.html'", ",", "{", "}", ",", "help_text", "=", "feedback", ".", "__doc__", ")", "if", "request", ".", "method", "==", "'POST'", ":", "feedback_data", "=", "json_body", "(", "request", ".", "body", ".", "decode", "(", "\"utf-8\"", ")", ")", "feedback_data", "[", "'user_agent'", "]", "=", "Session", ".", "objects", ".", "get_current_session", "(", ")", ".", "http_user_agent", ".", "content", "if", "not", "feedback_data", ".", "get", "(", "'username'", ")", ":", "feedback_data", "[", "'username'", "]", "=", "request", ".", "user", ".", "username", "if", "not", "feedback_data", ".", "get", "(", "'email'", ")", ":", "feedback_data", "[", "'email'", "]", "=", "request", ".", "user", ".", "email", "comment", "=", "Comment", ".", "objects", ".", "create", "(", "username", "=", "feedback_data", "[", "'username'", "]", ",", "email", "=", "feedback_data", "[", "'email'", "]", ",", "text", "=", "feedback_data", "[", "'text'", "]", ")", "if", "get_config", "(", "'proso_feedback'", ",", "'send_emails'", ",", "default", "=", "True", ")", ":", "feedback_domain", "=", "get_config", "(", "'proso_feedback'", ",", "'domain'", ",", "required", "=", "True", ")", "feedback_to", "=", "get_config", "(", "'proso_feedback'", ",", "'to'", ",", "required", "=", "True", ")", "if", "is_likely_worthless", "(", "feedback_data", ")", ":", "mail_from", "=", "'spam@'", "+", "feedback_domain", "else", ":", "mail_from", "=", "'feedback@'", "+", "feedback_domain", "text_content", "=", "render_to_string", "(", "\"emails/feedback.plain.txt\"", ",", "{", "\"feedback\"", ":", "feedback_data", ",", "\"user\"", ":", "request", ".", "user", ",", "}", ")", "html_content", "=", "render_to_string", "(", "\"emails/feedback.html\"", ",", "{", "\"feedback\"", ":", "feedback_data", ",", "\"user\"", ":", "request", ".", "user", ",", "}", ")", "subject", "=", "feedback_domain", "+", "' feedback '", "+", "str", "(", "comment", ".", "id", ")", "mail", "=", "EmailMultiAlternatives", "(", "subject", ",", "text_content", ",", "mail_from", ",", "feedback_to", ",", ")", "mail", ".", "attach_alternative", "(", "html_content", ",", "\"text/html\"", ")", "mail", ".", "send", "(", ")", "LOGGER", ".", "debug", "(", "\"email sent %s\\n\"", ",", "text_content", ")", "return", "HttpResponse", "(", "'ok'", ",", "status", "=", "201", ")", "else", ":", "return", "HttpResponseBadRequest", "(", "\"method %s is not allowed\"", ".", "format", "(", "request", ".", "method", ")", ")" ]
Send feedback to the authors of the system. GET parameters: html turn on the HTML version of the API POST parameters (JSON): text: the main feedback content email (optional): user's e-mail username (optional): user's name
[ "Send", "feedback", "to", "the", "authors", "of", "the", "system", "." ]
8278c72e498d6ef8d392cc47b48473f4ec037142
https://github.com/adaptive-learning/proso-apps/blob/8278c72e498d6ef8d392cc47b48473f4ec037142/proso_feedback/views.py#L23-L79
train
adaptive-learning/proso-apps
proso_feedback/views.py
rating
def rating(request): """ Rate the current practice. GET parameters: html turn on the HTML version of the API POST parameters (JSON): value: one of the following numbers (how difficult questions are?): (1) too easy, (2) appropriate, (3) too difficult or one of the following numbers (how difficult questions should be?): (4) much easier (5) bit easier (6) the same (7) bit harder (8) much harder """ if request.method == 'GET': return render(request, 'feedback_rating.html', {}, help_text=rating.__doc__) if request.method == 'POST': data = json_body(request.body.decode("utf-8")) if data['value'] not in list(range(1, 9)): return render_json( request, {'error': _('The given value is not valid.'), 'error_type': 'invalid_value'}, template='feedback_json.html', status=400 ) rating_object = Rating( user=request.user, value=data['value'], ) rating_object.save() return HttpResponse('ok', status=201) else: return HttpResponseBadRequest("method %s is not allowed".format(request.method))
python
def rating(request): """ Rate the current practice. GET parameters: html turn on the HTML version of the API POST parameters (JSON): value: one of the following numbers (how difficult questions are?): (1) too easy, (2) appropriate, (3) too difficult or one of the following numbers (how difficult questions should be?): (4) much easier (5) bit easier (6) the same (7) bit harder (8) much harder """ if request.method == 'GET': return render(request, 'feedback_rating.html', {}, help_text=rating.__doc__) if request.method == 'POST': data = json_body(request.body.decode("utf-8")) if data['value'] not in list(range(1, 9)): return render_json( request, {'error': _('The given value is not valid.'), 'error_type': 'invalid_value'}, template='feedback_json.html', status=400 ) rating_object = Rating( user=request.user, value=data['value'], ) rating_object.save() return HttpResponse('ok', status=201) else: return HttpResponseBadRequest("method %s is not allowed".format(request.method))
[ "def", "rating", "(", "request", ")", ":", "if", "request", ".", "method", "==", "'GET'", ":", "return", "render", "(", "request", ",", "'feedback_rating.html'", ",", "{", "}", ",", "help_text", "=", "rating", ".", "__doc__", ")", "if", "request", ".", "method", "==", "'POST'", ":", "data", "=", "json_body", "(", "request", ".", "body", ".", "decode", "(", "\"utf-8\"", ")", ")", "if", "data", "[", "'value'", "]", "not", "in", "list", "(", "range", "(", "1", ",", "9", ")", ")", ":", "return", "render_json", "(", "request", ",", "{", "'error'", ":", "_", "(", "'The given value is not valid.'", ")", ",", "'error_type'", ":", "'invalid_value'", "}", ",", "template", "=", "'feedback_json.html'", ",", "status", "=", "400", ")", "rating_object", "=", "Rating", "(", "user", "=", "request", ".", "user", ",", "value", "=", "data", "[", "'value'", "]", ",", ")", "rating_object", ".", "save", "(", ")", "return", "HttpResponse", "(", "'ok'", ",", "status", "=", "201", ")", "else", ":", "return", "HttpResponseBadRequest", "(", "\"method %s is not allowed\"", ".", "format", "(", "request", ".", "method", ")", ")" ]
Rate the current practice. GET parameters: html turn on the HTML version of the API POST parameters (JSON): value: one of the following numbers (how difficult questions are?): (1) too easy, (2) appropriate, (3) too difficult or one of the following numbers (how difficult questions should be?): (4) much easier (5) bit easier (6) the same (7) bit harder (8) much harder
[ "Rate", "the", "current", "practice", "." ]
8278c72e498d6ef8d392cc47b48473f4ec037142
https://github.com/adaptive-learning/proso-apps/blob/8278c72e498d6ef8d392cc47b48473f4ec037142/proso_feedback/views.py#L83-L121
train
projectshift/shift-boiler
boiler/cli/colors.py
colour
def colour(colour, message, bold=False): """ Color a message """ return style(fg=colour, text=message, bold=bold)
python
def colour(colour, message, bold=False): """ Color a message """ return style(fg=colour, text=message, bold=bold)
[ "def", "colour", "(", "colour", ",", "message", ",", "bold", "=", "False", ")", ":", "return", "style", "(", "fg", "=", "colour", ",", "text", "=", "message", ",", "bold", "=", "bold", ")" ]
Color a message
[ "Color", "a", "message" ]
8e6f3a3e4b9493fb6c8bd16bed160ede153bfb0b
https://github.com/projectshift/shift-boiler/blob/8e6f3a3e4b9493fb6c8bd16bed160ede153bfb0b/boiler/cli/colors.py#L4-L6
train
kata198/QueryableList
QueryableList/Base.py
QueryableListBase.customFilter
def customFilter(self, filterFunc): ''' customFilter - Apply a custom filter to elements and return a QueryableList of matches @param filterFunc <lambda/function< - A lambda/function that is passed an item, and returns True if the item matches (will be returned), otherwise False. @return - A QueryableList object of the same type, with only the matching objects returned. ''' ret = self.__class__() for item in self: if filterFunc(item): ret.append(item) return ret
python
def customFilter(self, filterFunc): ''' customFilter - Apply a custom filter to elements and return a QueryableList of matches @param filterFunc <lambda/function< - A lambda/function that is passed an item, and returns True if the item matches (will be returned), otherwise False. @return - A QueryableList object of the same type, with only the matching objects returned. ''' ret = self.__class__() for item in self: if filterFunc(item): ret.append(item) return ret
[ "def", "customFilter", "(", "self", ",", "filterFunc", ")", ":", "ret", "=", "self", ".", "__class__", "(", ")", "for", "item", "in", "self", ":", "if", "filterFunc", "(", "item", ")", ":", "ret", ".", "append", "(", "item", ")", "return", "ret" ]
customFilter - Apply a custom filter to elements and return a QueryableList of matches @param filterFunc <lambda/function< - A lambda/function that is passed an item, and returns True if the item matches (will be returned), otherwise False. @return - A QueryableList object of the same type, with only the matching objects returned.
[ "customFilter", "-", "Apply", "a", "custom", "filter", "to", "elements", "and", "return", "a", "QueryableList", "of", "matches" ]
279286d46205ce8268af42e03b75820a7483fddb
https://github.com/kata198/QueryableList/blob/279286d46205ce8268af42e03b75820a7483fddb/QueryableList/Base.py#L152-L166
train
kata198/QueryableList
QueryableList/Base.py
QueryableListBase.sort_by
def sort_by(self, fieldName, reverse=False): ''' sort_by - Return a copy of this collection, sorted by the given fieldName. The fieldName is accessed the same way as other filtering, so it supports custom properties, etc. @param fieldName <str> - The name of the field on which to sort by @param reverse <bool> Default False - If True, list will be in reverse order. @return <QueryableList> - A QueryableList of the same type with the elements sorted based on arguments. ''' return self.__class__( sorted(self, key = lambda item : self._get_item_value(item, fieldName), reverse=reverse) )
python
def sort_by(self, fieldName, reverse=False): ''' sort_by - Return a copy of this collection, sorted by the given fieldName. The fieldName is accessed the same way as other filtering, so it supports custom properties, etc. @param fieldName <str> - The name of the field on which to sort by @param reverse <bool> Default False - If True, list will be in reverse order. @return <QueryableList> - A QueryableList of the same type with the elements sorted based on arguments. ''' return self.__class__( sorted(self, key = lambda item : self._get_item_value(item, fieldName), reverse=reverse) )
[ "def", "sort_by", "(", "self", ",", "fieldName", ",", "reverse", "=", "False", ")", ":", "return", "self", ".", "__class__", "(", "sorted", "(", "self", ",", "key", "=", "lambda", "item", ":", "self", ".", "_get_item_value", "(", "item", ",", "fieldName", ")", ",", "reverse", "=", "reverse", ")", ")" ]
sort_by - Return a copy of this collection, sorted by the given fieldName. The fieldName is accessed the same way as other filtering, so it supports custom properties, etc. @param fieldName <str> - The name of the field on which to sort by @param reverse <bool> Default False - If True, list will be in reverse order. @return <QueryableList> - A QueryableList of the same type with the elements sorted based on arguments.
[ "sort_by", "-", "Return", "a", "copy", "of", "this", "collection", "sorted", "by", "the", "given", "fieldName", "." ]
279286d46205ce8268af42e03b75820a7483fddb
https://github.com/kata198/QueryableList/blob/279286d46205ce8268af42e03b75820a7483fddb/QueryableList/Base.py#L180-L194
train
MacHu-GWU/sqlalchemy_mate-project
sqlalchemy_mate/credential.py
Credential.uri
def uri(self): """ Return sqlalchemy connect string URI. """ return self.uri_template.format( host=self.host, port="" if self.port is None else self.port, database=self.database, username=self.username, password="" if self.password is None else self.password, has_password="" if self.password is None else ":", has_port="" if self.port is None else ":", )
python
def uri(self): """ Return sqlalchemy connect string URI. """ return self.uri_template.format( host=self.host, port="" if self.port is None else self.port, database=self.database, username=self.username, password="" if self.password is None else self.password, has_password="" if self.password is None else ":", has_port="" if self.port is None else ":", )
[ "def", "uri", "(", "self", ")", ":", "return", "self", ".", "uri_template", ".", "format", "(", "host", "=", "self", ".", "host", ",", "port", "=", "\"\"", "if", "self", ".", "port", "is", "None", "else", "self", ".", "port", ",", "database", "=", "self", ".", "database", ",", "username", "=", "self", ".", "username", ",", "password", "=", "\"\"", "if", "self", ".", "password", "is", "None", "else", "self", ".", "password", ",", "has_password", "=", "\"\"", "if", "self", ".", "password", "is", "None", "else", "\":\"", ",", "has_port", "=", "\"\"", "if", "self", ".", "port", "is", "None", "else", "\":\"", ",", ")" ]
Return sqlalchemy connect string URI.
[ "Return", "sqlalchemy", "connect", "string", "URI", "." ]
946754744c8870f083fd7b4339fca15d1d6128b2
https://github.com/MacHu-GWU/sqlalchemy_mate-project/blob/946754744c8870f083fd7b4339fca15d1d6128b2/sqlalchemy_mate/credential.py#L46-L58
train
MacHu-GWU/sqlalchemy_mate-project
sqlalchemy_mate/credential.py
Credential.from_json
def from_json(cls, json_file, json_path=None, key_mapping=None): """ Load connection credential from json file. :param json_file: str, path to json file :param json_path: str, dot notation of the path to the credential dict. :param key_mapping: dict, map 'host', 'port', 'database', 'username', 'password' to custom alias, for example ``{'host': 'h', 'port': 'p', 'database': 'db', 'username': 'user', 'password': 'pwd'}``. This params are used to adapt any json data. :rtype: :return: Example: Your json file:: { "credentials": { "db1": { "h": "example.com", "p": 1234, "db": "test", "user": "admin", "pwd": "admin", }, "db2": { ... } } } Usage:: cred = Credential.from_json( "path-to-json-file", "credentials.db1", dict(host="h", port="p", database="db", username="user", password="pwd") ) """ cls._validate_key_mapping(key_mapping) with open(json_file, "rb") as f: data = json.loads(f.read().decode("utf-8")) return cls._from_json_data(data, json_path, key_mapping)
python
def from_json(cls, json_file, json_path=None, key_mapping=None): """ Load connection credential from json file. :param json_file: str, path to json file :param json_path: str, dot notation of the path to the credential dict. :param key_mapping: dict, map 'host', 'port', 'database', 'username', 'password' to custom alias, for example ``{'host': 'h', 'port': 'p', 'database': 'db', 'username': 'user', 'password': 'pwd'}``. This params are used to adapt any json data. :rtype: :return: Example: Your json file:: { "credentials": { "db1": { "h": "example.com", "p": 1234, "db": "test", "user": "admin", "pwd": "admin", }, "db2": { ... } } } Usage:: cred = Credential.from_json( "path-to-json-file", "credentials.db1", dict(host="h", port="p", database="db", username="user", password="pwd") ) """ cls._validate_key_mapping(key_mapping) with open(json_file, "rb") as f: data = json.loads(f.read().decode("utf-8")) return cls._from_json_data(data, json_path, key_mapping)
[ "def", "from_json", "(", "cls", ",", "json_file", ",", "json_path", "=", "None", ",", "key_mapping", "=", "None", ")", ":", "cls", ".", "_validate_key_mapping", "(", "key_mapping", ")", "with", "open", "(", "json_file", ",", "\"rb\"", ")", "as", "f", ":", "data", "=", "json", ".", "loads", "(", "f", ".", "read", "(", ")", ".", "decode", "(", "\"utf-8\"", ")", ")", "return", "cls", ".", "_from_json_data", "(", "data", ",", "json_path", ",", "key_mapping", ")" ]
Load connection credential from json file. :param json_file: str, path to json file :param json_path: str, dot notation of the path to the credential dict. :param key_mapping: dict, map 'host', 'port', 'database', 'username', 'password' to custom alias, for example ``{'host': 'h', 'port': 'p', 'database': 'db', 'username': 'user', 'password': 'pwd'}``. This params are used to adapt any json data. :rtype: :return: Example: Your json file:: { "credentials": { "db1": { "h": "example.com", "p": 1234, "db": "test", "user": "admin", "pwd": "admin", }, "db2": { ... } } } Usage:: cred = Credential.from_json( "path-to-json-file", "credentials.db1", dict(host="h", port="p", database="db", username="user", password="pwd") )
[ "Load", "connection", "credential", "from", "json", "file", "." ]
946754744c8870f083fd7b4339fca15d1d6128b2
https://github.com/MacHu-GWU/sqlalchemy_mate-project/blob/946754744c8870f083fd7b4339fca15d1d6128b2/sqlalchemy_mate/credential.py#L86-L127
train
MacHu-GWU/sqlalchemy_mate-project
sqlalchemy_mate/credential.py
Credential.from_s3_json
def from_s3_json(cls, bucket_name, key, json_path=None, key_mapping=None, aws_profile=None, aws_access_key_id=None, aws_secret_access_key=None, region_name=None): # pragma: no cover """ Load database credential from json on s3. :param bucket_name: str :param key: str :param aws_profile: if None, assume that you are using this from AWS cloud. (service on the same cloud doesn't need profile name) :param aws_access_key_id: str, not recommend to use :param aws_secret_access_key: str, not recommend to use :param region_name: str """ import boto3 ses = boto3.Session( aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, region_name=region_name, profile_name=aws_profile, ) s3 = ses.resource("s3") bucket = s3.Bucket(bucket_name) object = bucket.Object(key) data = json.loads(object.get()["Body"].read().decode("utf-8")) return cls._from_json_data(data, json_path, key_mapping)
python
def from_s3_json(cls, bucket_name, key, json_path=None, key_mapping=None, aws_profile=None, aws_access_key_id=None, aws_secret_access_key=None, region_name=None): # pragma: no cover """ Load database credential from json on s3. :param bucket_name: str :param key: str :param aws_profile: if None, assume that you are using this from AWS cloud. (service on the same cloud doesn't need profile name) :param aws_access_key_id: str, not recommend to use :param aws_secret_access_key: str, not recommend to use :param region_name: str """ import boto3 ses = boto3.Session( aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, region_name=region_name, profile_name=aws_profile, ) s3 = ses.resource("s3") bucket = s3.Bucket(bucket_name) object = bucket.Object(key) data = json.loads(object.get()["Body"].read().decode("utf-8")) return cls._from_json_data(data, json_path, key_mapping)
[ "def", "from_s3_json", "(", "cls", ",", "bucket_name", ",", "key", ",", "json_path", "=", "None", ",", "key_mapping", "=", "None", ",", "aws_profile", "=", "None", ",", "aws_access_key_id", "=", "None", ",", "aws_secret_access_key", "=", "None", ",", "region_name", "=", "None", ")", ":", "# pragma: no cover", "import", "boto3", "ses", "=", "boto3", ".", "Session", "(", "aws_access_key_id", "=", "aws_access_key_id", ",", "aws_secret_access_key", "=", "aws_secret_access_key", ",", "region_name", "=", "region_name", ",", "profile_name", "=", "aws_profile", ",", ")", "s3", "=", "ses", ".", "resource", "(", "\"s3\"", ")", "bucket", "=", "s3", ".", "Bucket", "(", "bucket_name", ")", "object", "=", "bucket", ".", "Object", "(", "key", ")", "data", "=", "json", ".", "loads", "(", "object", ".", "get", "(", ")", "[", "\"Body\"", "]", ".", "read", "(", ")", ".", "decode", "(", "\"utf-8\"", ")", ")", "return", "cls", ".", "_from_json_data", "(", "data", ",", "json_path", ",", "key_mapping", ")" ]
Load database credential from json on s3. :param bucket_name: str :param key: str :param aws_profile: if None, assume that you are using this from AWS cloud. (service on the same cloud doesn't need profile name) :param aws_access_key_id: str, not recommend to use :param aws_secret_access_key: str, not recommend to use :param region_name: str
[ "Load", "database", "credential", "from", "json", "on", "s3", "." ]
946754744c8870f083fd7b4339fca15d1d6128b2
https://github.com/MacHu-GWU/sqlalchemy_mate-project/blob/946754744c8870f083fd7b4339fca15d1d6128b2/sqlalchemy_mate/credential.py#L159-L188
train
MacHu-GWU/sqlalchemy_mate-project
sqlalchemy_mate/credential.py
Credential.from_env
def from_env(cls, prefix, kms_decrypt=False, aws_profile=None): """ Load database credential from env variable. - host: ENV.{PREFIX}_HOST - port: ENV.{PREFIX}_PORT - database: ENV.{PREFIX}_DATABASE - username: ENV.{PREFIX}_USERNAME - password: ENV.{PREFIX}_PASSWORD :param prefix: str :param kms_decrypt: bool :param aws_profile: str """ if len(prefix) < 1: raise ValueError("prefix can't be empty") if len(set(prefix).difference(set(string.ascii_uppercase + "_"))): raise ValueError("prefix can only use [A-Z] and '_'!") if not prefix.endswith("_"): prefix = prefix + "_" data = dict( host=os.getenv(prefix + "HOST"), port=os.getenv(prefix + "PORT"), database=os.getenv(prefix + "DATABASE"), username=os.getenv(prefix + "USERNAME"), password=os.getenv(prefix + "PASSWORD"), ) if kms_decrypt is True: # pragma: no cover import boto3 from base64 import b64decode if aws_profile is not None: kms = boto3.client("kms") else: ses = boto3.Session(profile_name=aws_profile) kms = ses.client("kms") def decrypt(kms, text): return kms.decrypt( CiphertextBlob=b64decode(text.encode("utf-8")) )["Plaintext"].decode("utf-8") data = { key: value if value is None else decrypt(kms, str(value)) for key, value in data.items() } return cls(**data)
python
def from_env(cls, prefix, kms_decrypt=False, aws_profile=None): """ Load database credential from env variable. - host: ENV.{PREFIX}_HOST - port: ENV.{PREFIX}_PORT - database: ENV.{PREFIX}_DATABASE - username: ENV.{PREFIX}_USERNAME - password: ENV.{PREFIX}_PASSWORD :param prefix: str :param kms_decrypt: bool :param aws_profile: str """ if len(prefix) < 1: raise ValueError("prefix can't be empty") if len(set(prefix).difference(set(string.ascii_uppercase + "_"))): raise ValueError("prefix can only use [A-Z] and '_'!") if not prefix.endswith("_"): prefix = prefix + "_" data = dict( host=os.getenv(prefix + "HOST"), port=os.getenv(prefix + "PORT"), database=os.getenv(prefix + "DATABASE"), username=os.getenv(prefix + "USERNAME"), password=os.getenv(prefix + "PASSWORD"), ) if kms_decrypt is True: # pragma: no cover import boto3 from base64 import b64decode if aws_profile is not None: kms = boto3.client("kms") else: ses = boto3.Session(profile_name=aws_profile) kms = ses.client("kms") def decrypt(kms, text): return kms.decrypt( CiphertextBlob=b64decode(text.encode("utf-8")) )["Plaintext"].decode("utf-8") data = { key: value if value is None else decrypt(kms, str(value)) for key, value in data.items() } return cls(**data)
[ "def", "from_env", "(", "cls", ",", "prefix", ",", "kms_decrypt", "=", "False", ",", "aws_profile", "=", "None", ")", ":", "if", "len", "(", "prefix", ")", "<", "1", ":", "raise", "ValueError", "(", "\"prefix can't be empty\"", ")", "if", "len", "(", "set", "(", "prefix", ")", ".", "difference", "(", "set", "(", "string", ".", "ascii_uppercase", "+", "\"_\"", ")", ")", ")", ":", "raise", "ValueError", "(", "\"prefix can only use [A-Z] and '_'!\"", ")", "if", "not", "prefix", ".", "endswith", "(", "\"_\"", ")", ":", "prefix", "=", "prefix", "+", "\"_\"", "data", "=", "dict", "(", "host", "=", "os", ".", "getenv", "(", "prefix", "+", "\"HOST\"", ")", ",", "port", "=", "os", ".", "getenv", "(", "prefix", "+", "\"PORT\"", ")", ",", "database", "=", "os", ".", "getenv", "(", "prefix", "+", "\"DATABASE\"", ")", ",", "username", "=", "os", ".", "getenv", "(", "prefix", "+", "\"USERNAME\"", ")", ",", "password", "=", "os", ".", "getenv", "(", "prefix", "+", "\"PASSWORD\"", ")", ",", ")", "if", "kms_decrypt", "is", "True", ":", "# pragma: no cover", "import", "boto3", "from", "base64", "import", "b64decode", "if", "aws_profile", "is", "not", "None", ":", "kms", "=", "boto3", ".", "client", "(", "\"kms\"", ")", "else", ":", "ses", "=", "boto3", ".", "Session", "(", "profile_name", "=", "aws_profile", ")", "kms", "=", "ses", ".", "client", "(", "\"kms\"", ")", "def", "decrypt", "(", "kms", ",", "text", ")", ":", "return", "kms", ".", "decrypt", "(", "CiphertextBlob", "=", "b64decode", "(", "text", ".", "encode", "(", "\"utf-8\"", ")", ")", ")", "[", "\"Plaintext\"", "]", ".", "decode", "(", "\"utf-8\"", ")", "data", "=", "{", "key", ":", "value", "if", "value", "is", "None", "else", "decrypt", "(", "kms", ",", "str", "(", "value", ")", ")", "for", "key", ",", "value", "in", "data", ".", "items", "(", ")", "}", "return", "cls", "(", "*", "*", "data", ")" ]
Load database credential from env variable. - host: ENV.{PREFIX}_HOST - port: ENV.{PREFIX}_PORT - database: ENV.{PREFIX}_DATABASE - username: ENV.{PREFIX}_USERNAME - password: ENV.{PREFIX}_PASSWORD :param prefix: str :param kms_decrypt: bool :param aws_profile: str
[ "Load", "database", "credential", "from", "env", "variable", "." ]
946754744c8870f083fd7b4339fca15d1d6128b2
https://github.com/MacHu-GWU/sqlalchemy_mate-project/blob/946754744c8870f083fd7b4339fca15d1d6128b2/sqlalchemy_mate/credential.py#L191-L241
train
MacHu-GWU/sqlalchemy_mate-project
sqlalchemy_mate/credential.py
Credential.to_dict
def to_dict(self): """ Convert credentials into a dict. """ return dict( host=self.host, port=self.port, database=self.database, username=self.username, password=self.password, )
python
def to_dict(self): """ Convert credentials into a dict. """ return dict( host=self.host, port=self.port, database=self.database, username=self.username, password=self.password, )
[ "def", "to_dict", "(", "self", ")", ":", "return", "dict", "(", "host", "=", "self", ".", "host", ",", "port", "=", "self", ".", "port", ",", "database", "=", "self", ".", "database", ",", "username", "=", "self", ".", "username", ",", "password", "=", "self", ".", "password", ",", ")" ]
Convert credentials into a dict.
[ "Convert", "credentials", "into", "a", "dict", "." ]
946754744c8870f083fd7b4339fca15d1d6128b2
https://github.com/MacHu-GWU/sqlalchemy_mate-project/blob/946754744c8870f083fd7b4339fca15d1d6128b2/sqlalchemy_mate/credential.py#L243-L253
train
gregoil/ipdbugger
ipdbugger/__init__.py
start_debugging
def start_debugging(): """Start a debugging session after catching an exception. This prints the traceback and start ipdb session in the frame of the error. """ exc_type, exc_value, exc_tb = sys.exc_info() # If the exception has been annotated to be re-raised, raise the exception if hasattr(exc_value, '_ipdbugger_let_raise'): raise_(*sys.exc_info()) print() for line in traceback.format_exception(exc_type, exc_value, exc_tb): print(colored(line, 'red'), end=' ') # Get the frame with the error. test_frame = sys._getframe(-1).f_back from ipdb.__main__ import wrap_sys_excepthook wrap_sys_excepthook() IPDBugger(exc_info=sys.exc_info()).set_trace(test_frame)
python
def start_debugging(): """Start a debugging session after catching an exception. This prints the traceback and start ipdb session in the frame of the error. """ exc_type, exc_value, exc_tb = sys.exc_info() # If the exception has been annotated to be re-raised, raise the exception if hasattr(exc_value, '_ipdbugger_let_raise'): raise_(*sys.exc_info()) print() for line in traceback.format_exception(exc_type, exc_value, exc_tb): print(colored(line, 'red'), end=' ') # Get the frame with the error. test_frame = sys._getframe(-1).f_back from ipdb.__main__ import wrap_sys_excepthook wrap_sys_excepthook() IPDBugger(exc_info=sys.exc_info()).set_trace(test_frame)
[ "def", "start_debugging", "(", ")", ":", "exc_type", ",", "exc_value", ",", "exc_tb", "=", "sys", ".", "exc_info", "(", ")", "# If the exception has been annotated to be re-raised, raise the exception", "if", "hasattr", "(", "exc_value", ",", "'_ipdbugger_let_raise'", ")", ":", "raise_", "(", "*", "sys", ".", "exc_info", "(", ")", ")", "print", "(", ")", "for", "line", "in", "traceback", ".", "format_exception", "(", "exc_type", ",", "exc_value", ",", "exc_tb", ")", ":", "print", "(", "colored", "(", "line", ",", "'red'", ")", ",", "end", "=", "' '", ")", "# Get the frame with the error.", "test_frame", "=", "sys", ".", "_getframe", "(", "-", "1", ")", ".", "f_back", "from", "ipdb", ".", "__main__", "import", "wrap_sys_excepthook", "wrap_sys_excepthook", "(", ")", "IPDBugger", "(", "exc_info", "=", "sys", ".", "exc_info", "(", ")", ")", ".", "set_trace", "(", "test_frame", ")" ]
Start a debugging session after catching an exception. This prints the traceback and start ipdb session in the frame of the error.
[ "Start", "a", "debugging", "session", "after", "catching", "an", "exception", "." ]
9575734ec26f6be86ae263496d50eb60bb988b21
https://github.com/gregoil/ipdbugger/blob/9575734ec26f6be86ae263496d50eb60bb988b21/ipdbugger/__init__.py#L85-L105
train
gregoil/ipdbugger
ipdbugger/__init__.py
get_last_lineno
def get_last_lineno(node): """Recursively find the last line number of the ast node.""" max_lineno = 0 if hasattr(node, "lineno"): max_lineno = node.lineno for _, field in ast.iter_fields(node): if isinstance(field, list): for value in field: if isinstance(value, ast.AST): max_lineno = max(max_lineno, get_last_lineno(value)) elif isinstance(field, ast.AST): max_lineno = max(max_lineno, get_last_lineno(field)) return max_lineno
python
def get_last_lineno(node): """Recursively find the last line number of the ast node.""" max_lineno = 0 if hasattr(node, "lineno"): max_lineno = node.lineno for _, field in ast.iter_fields(node): if isinstance(field, list): for value in field: if isinstance(value, ast.AST): max_lineno = max(max_lineno, get_last_lineno(value)) elif isinstance(field, ast.AST): max_lineno = max(max_lineno, get_last_lineno(field)) return max_lineno
[ "def", "get_last_lineno", "(", "node", ")", ":", "max_lineno", "=", "0", "if", "hasattr", "(", "node", ",", "\"lineno\"", ")", ":", "max_lineno", "=", "node", ".", "lineno", "for", "_", ",", "field", "in", "ast", ".", "iter_fields", "(", "node", ")", ":", "if", "isinstance", "(", "field", ",", "list", ")", ":", "for", "value", "in", "field", ":", "if", "isinstance", "(", "value", ",", "ast", ".", "AST", ")", ":", "max_lineno", "=", "max", "(", "max_lineno", ",", "get_last_lineno", "(", "value", ")", ")", "elif", "isinstance", "(", "field", ",", "ast", ".", "AST", ")", ":", "max_lineno", "=", "max", "(", "max_lineno", ",", "get_last_lineno", "(", "field", ")", ")", "return", "max_lineno" ]
Recursively find the last line number of the ast node.
[ "Recursively", "find", "the", "last", "line", "number", "of", "the", "ast", "node", "." ]
9575734ec26f6be86ae263496d50eb60bb988b21
https://github.com/gregoil/ipdbugger/blob/9575734ec26f6be86ae263496d50eb60bb988b21/ipdbugger/__init__.py#L271-L287
train
gregoil/ipdbugger
ipdbugger/__init__.py
IPDBugger.do_raise
def do_raise(self, arg): """Raise the last exception caught.""" self.do_continue(arg) # Annotating the exception for a continual re-raise _, exc_value, _ = self.exc_info exc_value._ipdbugger_let_raise = True raise_(*self.exc_info)
python
def do_raise(self, arg): """Raise the last exception caught.""" self.do_continue(arg) # Annotating the exception for a continual re-raise _, exc_value, _ = self.exc_info exc_value._ipdbugger_let_raise = True raise_(*self.exc_info)
[ "def", "do_raise", "(", "self", ",", "arg", ")", ":", "self", ".", "do_continue", "(", "arg", ")", "# Annotating the exception for a continual re-raise", "_", ",", "exc_value", ",", "_", "=", "self", ".", "exc_info", "exc_value", ".", "_ipdbugger_let_raise", "=", "True", "raise_", "(", "*", "self", ".", "exc_info", ")" ]
Raise the last exception caught.
[ "Raise", "the", "last", "exception", "caught", "." ]
9575734ec26f6be86ae263496d50eb60bb988b21
https://github.com/gregoil/ipdbugger/blob/9575734ec26f6be86ae263496d50eb60bb988b21/ipdbugger/__init__.py#L48-L56
train
gregoil/ipdbugger
ipdbugger/__init__.py
IPDBugger.do_retry
def do_retry(self, arg): """Rerun the previous command.""" prev_line = self.curframe.f_lineno - 1 # Make sure not to jump to the middle of the previous statement while True: try: self.curframe.f_lineno = prev_line break except ValueError: prev_line -= 1 self.do_jump(prev_line) self.do_continue(arg) return 1
python
def do_retry(self, arg): """Rerun the previous command.""" prev_line = self.curframe.f_lineno - 1 # Make sure not to jump to the middle of the previous statement while True: try: self.curframe.f_lineno = prev_line break except ValueError: prev_line -= 1 self.do_jump(prev_line) self.do_continue(arg) return 1
[ "def", "do_retry", "(", "self", ",", "arg", ")", ":", "prev_line", "=", "self", ".", "curframe", ".", "f_lineno", "-", "1", "# Make sure not to jump to the middle of the previous statement", "while", "True", ":", "try", ":", "self", ".", "curframe", ".", "f_lineno", "=", "prev_line", "break", "except", "ValueError", ":", "prev_line", "-=", "1", "self", ".", "do_jump", "(", "prev_line", ")", "self", ".", "do_continue", "(", "arg", ")", "return", "1" ]
Rerun the previous command.
[ "Rerun", "the", "previous", "command", "." ]
9575734ec26f6be86ae263496d50eb60bb988b21
https://github.com/gregoil/ipdbugger/blob/9575734ec26f6be86ae263496d50eb60bb988b21/ipdbugger/__init__.py#L58-L72
train
gregoil/ipdbugger
ipdbugger/__init__.py
IPDBugger.dispatch_line
def dispatch_line(self, frame): """Handle line action and return the next line callback.""" callback = TerminalPdb.dispatch_line(self, frame) # If the ipdb session ended, don't return a callback for the next line if self.stoplineno == -1: return None return callback
python
def dispatch_line(self, frame): """Handle line action and return the next line callback.""" callback = TerminalPdb.dispatch_line(self, frame) # If the ipdb session ended, don't return a callback for the next line if self.stoplineno == -1: return None return callback
[ "def", "dispatch_line", "(", "self", ",", "frame", ")", ":", "callback", "=", "TerminalPdb", ".", "dispatch_line", "(", "self", ",", "frame", ")", "# If the ipdb session ended, don't return a callback for the next line", "if", "self", ".", "stoplineno", "==", "-", "1", ":", "return", "None", "return", "callback" ]
Handle line action and return the next line callback.
[ "Handle", "line", "action", "and", "return", "the", "next", "line", "callback", "." ]
9575734ec26f6be86ae263496d50eb60bb988b21
https://github.com/gregoil/ipdbugger/blob/9575734ec26f6be86ae263496d50eb60bb988b21/ipdbugger/__init__.py#L74-L82
train
gregoil/ipdbugger
ipdbugger/__init__.py
ErrorsCatchTransformer.wrap_with_try
def wrap_with_try(self, node): """Wrap an ast node in a 'try' node to enter debug on exception.""" handlers = [] if self.ignore_exceptions is None: handlers.append(ast.ExceptHandler(type=None, name=None, body=[ast.Raise()])) else: ignores_nodes = self.ignore_exceptions handlers.append(ast.ExceptHandler(type=ast.Tuple(ignores_nodes, ast.Load()), name=None, body=[ast.Raise()])) if self.catch_exception is None or \ get_node_value(self.catch_exception) not in \ (get_node_value(ast_node) for ast_node in self.ignore_exceptions): call_extra_parameters = [] if IS_PYTHON_3 else [None, None] start_debug_cmd = ast.Expr( value=ast.Call(ast.Name("start_debugging", ast.Load()), [], [], *call_extra_parameters)) catch_exception_type = None if self.catch_exception is not None: catch_exception_type = self.catch_exception handlers.append(ast.ExceptHandler(type=catch_exception_type, name=None, body=[start_debug_cmd])) try_except_extra_params = {"finalbody": []} if IS_PYTHON_3 else {} new_node = self.ast_try_except(orelse=[], body=[node], handlers=handlers, **try_except_extra_params) return ast.copy_location(new_node, node)
python
def wrap_with_try(self, node): """Wrap an ast node in a 'try' node to enter debug on exception.""" handlers = [] if self.ignore_exceptions is None: handlers.append(ast.ExceptHandler(type=None, name=None, body=[ast.Raise()])) else: ignores_nodes = self.ignore_exceptions handlers.append(ast.ExceptHandler(type=ast.Tuple(ignores_nodes, ast.Load()), name=None, body=[ast.Raise()])) if self.catch_exception is None or \ get_node_value(self.catch_exception) not in \ (get_node_value(ast_node) for ast_node in self.ignore_exceptions): call_extra_parameters = [] if IS_PYTHON_3 else [None, None] start_debug_cmd = ast.Expr( value=ast.Call(ast.Name("start_debugging", ast.Load()), [], [], *call_extra_parameters)) catch_exception_type = None if self.catch_exception is not None: catch_exception_type = self.catch_exception handlers.append(ast.ExceptHandler(type=catch_exception_type, name=None, body=[start_debug_cmd])) try_except_extra_params = {"finalbody": []} if IS_PYTHON_3 else {} new_node = self.ast_try_except(orelse=[], body=[node], handlers=handlers, **try_except_extra_params) return ast.copy_location(new_node, node)
[ "def", "wrap_with_try", "(", "self", ",", "node", ")", ":", "handlers", "=", "[", "]", "if", "self", ".", "ignore_exceptions", "is", "None", ":", "handlers", ".", "append", "(", "ast", ".", "ExceptHandler", "(", "type", "=", "None", ",", "name", "=", "None", ",", "body", "=", "[", "ast", ".", "Raise", "(", ")", "]", ")", ")", "else", ":", "ignores_nodes", "=", "self", ".", "ignore_exceptions", "handlers", ".", "append", "(", "ast", ".", "ExceptHandler", "(", "type", "=", "ast", ".", "Tuple", "(", "ignores_nodes", ",", "ast", ".", "Load", "(", ")", ")", ",", "name", "=", "None", ",", "body", "=", "[", "ast", ".", "Raise", "(", ")", "]", ")", ")", "if", "self", ".", "catch_exception", "is", "None", "or", "get_node_value", "(", "self", ".", "catch_exception", ")", "not", "in", "(", "get_node_value", "(", "ast_node", ")", "for", "ast_node", "in", "self", ".", "ignore_exceptions", ")", ":", "call_extra_parameters", "=", "[", "]", "if", "IS_PYTHON_3", "else", "[", "None", ",", "None", "]", "start_debug_cmd", "=", "ast", ".", "Expr", "(", "value", "=", "ast", ".", "Call", "(", "ast", ".", "Name", "(", "\"start_debugging\"", ",", "ast", ".", "Load", "(", ")", ")", ",", "[", "]", ",", "[", "]", ",", "*", "call_extra_parameters", ")", ")", "catch_exception_type", "=", "None", "if", "self", ".", "catch_exception", "is", "not", "None", ":", "catch_exception_type", "=", "self", ".", "catch_exception", "handlers", ".", "append", "(", "ast", ".", "ExceptHandler", "(", "type", "=", "catch_exception_type", ",", "name", "=", "None", ",", "body", "=", "[", "start_debug_cmd", "]", ")", ")", "try_except_extra_params", "=", "{", "\"finalbody\"", ":", "[", "]", "}", "if", "IS_PYTHON_3", "else", "{", "}", "new_node", "=", "self", ".", "ast_try_except", "(", "orelse", "=", "[", "]", ",", "body", "=", "[", "node", "]", ",", "handlers", "=", "handlers", ",", "*", "*", "try_except_extra_params", ")", "return", "ast", ".", "copy_location", "(", "new_node", ",", "node", ")" ]
Wrap an ast node in a 'try' node to enter debug on exception.
[ "Wrap", "an", "ast", "node", "in", "a", "try", "node", "to", "enter", "debug", "on", "exception", "." ]
9575734ec26f6be86ae263496d50eb60bb988b21
https://github.com/gregoil/ipdbugger/blob/9575734ec26f6be86ae263496d50eb60bb988b21/ipdbugger/__init__.py#L134-L175
train
gregoil/ipdbugger
ipdbugger/__init__.py
ErrorsCatchTransformer.try_except_handler
def try_except_handler(self, node): """Handler for try except statement to ignore excepted exceptions.""" # List all excepted exception's names excepted_types = [] for handler in node.handlers: if handler.type is None: excepted_types = None break if isinstance(handler.type, ast.Tuple): excepted_types.extend([exception_type for exception_type in handler.type.elts]) else: excepted_types.append(handler.type) new_exception_list = self.ignore_exceptions if self.ignore_exceptions is not None: if excepted_types is None: new_exception_list = None else: new_exception_list = list(set(excepted_types + self.ignore_exceptions)) # Set the new ignore list, and save the old one old_exception_handlers, self.ignore_exceptions = \ self.ignore_exceptions, new_exception_list # Run recursively on all sub nodes with the new ignore list node.body = [self.visit(node_item) for node_item in node.body] # Revert changes from ignore list self.ignore_exceptions = old_exception_handlers
python
def try_except_handler(self, node): """Handler for try except statement to ignore excepted exceptions.""" # List all excepted exception's names excepted_types = [] for handler in node.handlers: if handler.type is None: excepted_types = None break if isinstance(handler.type, ast.Tuple): excepted_types.extend([exception_type for exception_type in handler.type.elts]) else: excepted_types.append(handler.type) new_exception_list = self.ignore_exceptions if self.ignore_exceptions is not None: if excepted_types is None: new_exception_list = None else: new_exception_list = list(set(excepted_types + self.ignore_exceptions)) # Set the new ignore list, and save the old one old_exception_handlers, self.ignore_exceptions = \ self.ignore_exceptions, new_exception_list # Run recursively on all sub nodes with the new ignore list node.body = [self.visit(node_item) for node_item in node.body] # Revert changes from ignore list self.ignore_exceptions = old_exception_handlers
[ "def", "try_except_handler", "(", "self", ",", "node", ")", ":", "# List all excepted exception's names", "excepted_types", "=", "[", "]", "for", "handler", "in", "node", ".", "handlers", ":", "if", "handler", ".", "type", "is", "None", ":", "excepted_types", "=", "None", "break", "if", "isinstance", "(", "handler", ".", "type", ",", "ast", ".", "Tuple", ")", ":", "excepted_types", ".", "extend", "(", "[", "exception_type", "for", "exception_type", "in", "handler", ".", "type", ".", "elts", "]", ")", "else", ":", "excepted_types", ".", "append", "(", "handler", ".", "type", ")", "new_exception_list", "=", "self", ".", "ignore_exceptions", "if", "self", ".", "ignore_exceptions", "is", "not", "None", ":", "if", "excepted_types", "is", "None", ":", "new_exception_list", "=", "None", "else", ":", "new_exception_list", "=", "list", "(", "set", "(", "excepted_types", "+", "self", ".", "ignore_exceptions", ")", ")", "# Set the new ignore list, and save the old one", "old_exception_handlers", ",", "self", ".", "ignore_exceptions", "=", "self", ".", "ignore_exceptions", ",", "new_exception_list", "# Run recursively on all sub nodes with the new ignore list", "node", ".", "body", "=", "[", "self", ".", "visit", "(", "node_item", ")", "for", "node_item", "in", "node", ".", "body", "]", "# Revert changes from ignore list", "self", ".", "ignore_exceptions", "=", "old_exception_handlers" ]
Handler for try except statement to ignore excepted exceptions.
[ "Handler", "for", "try", "except", "statement", "to", "ignore", "excepted", "exceptions", "." ]
9575734ec26f6be86ae263496d50eb60bb988b21
https://github.com/gregoil/ipdbugger/blob/9575734ec26f6be86ae263496d50eb60bb988b21/ipdbugger/__init__.py#L177-L210
train
gregoil/ipdbugger
ipdbugger/__init__.py
ErrorsCatchTransformer.visit_Call
def visit_Call(self, node): """Propagate 'debug' wrapper into inner function calls if needed. Args: node (ast.AST): node statement to surround. """ if self.depth == 0: return node if self.ignore_exceptions is None: ignore_exceptions = ast.Name("None", ast.Load()) else: ignore_exceptions = ast.List(self.ignore_exceptions, ast.Load()) catch_exception_type = self.catch_exception \ if self.catch_exception else "None" catch_exception = ast.Name(catch_exception_type, ast.Load()) depth = ast.Num(self.depth - 1 if self.depth > 0 else -1) debug_node_name = ast.Name("debug", ast.Load()) call_extra_parameters = [] if IS_PYTHON_3 else [None, None] node.func = ast.Call(debug_node_name, [node.func, ignore_exceptions, catch_exception, depth], [], *call_extra_parameters) return node
python
def visit_Call(self, node): """Propagate 'debug' wrapper into inner function calls if needed. Args: node (ast.AST): node statement to surround. """ if self.depth == 0: return node if self.ignore_exceptions is None: ignore_exceptions = ast.Name("None", ast.Load()) else: ignore_exceptions = ast.List(self.ignore_exceptions, ast.Load()) catch_exception_type = self.catch_exception \ if self.catch_exception else "None" catch_exception = ast.Name(catch_exception_type, ast.Load()) depth = ast.Num(self.depth - 1 if self.depth > 0 else -1) debug_node_name = ast.Name("debug", ast.Load()) call_extra_parameters = [] if IS_PYTHON_3 else [None, None] node.func = ast.Call(debug_node_name, [node.func, ignore_exceptions, catch_exception, depth], [], *call_extra_parameters) return node
[ "def", "visit_Call", "(", "self", ",", "node", ")", ":", "if", "self", ".", "depth", "==", "0", ":", "return", "node", "if", "self", ".", "ignore_exceptions", "is", "None", ":", "ignore_exceptions", "=", "ast", ".", "Name", "(", "\"None\"", ",", "ast", ".", "Load", "(", ")", ")", "else", ":", "ignore_exceptions", "=", "ast", ".", "List", "(", "self", ".", "ignore_exceptions", ",", "ast", ".", "Load", "(", ")", ")", "catch_exception_type", "=", "self", ".", "catch_exception", "if", "self", ".", "catch_exception", "else", "\"None\"", "catch_exception", "=", "ast", ".", "Name", "(", "catch_exception_type", ",", "ast", ".", "Load", "(", ")", ")", "depth", "=", "ast", ".", "Num", "(", "self", ".", "depth", "-", "1", "if", "self", ".", "depth", ">", "0", "else", "-", "1", ")", "debug_node_name", "=", "ast", ".", "Name", "(", "\"debug\"", ",", "ast", ".", "Load", "(", ")", ")", "call_extra_parameters", "=", "[", "]", "if", "IS_PYTHON_3", "else", "[", "None", ",", "None", "]", "node", ".", "func", "=", "ast", ".", "Call", "(", "debug_node_name", ",", "[", "node", ".", "func", ",", "ignore_exceptions", ",", "catch_exception", ",", "depth", "]", ",", "[", "]", ",", "*", "call_extra_parameters", ")", "return", "node" ]
Propagate 'debug' wrapper into inner function calls if needed. Args: node (ast.AST): node statement to surround.
[ "Propagate", "debug", "wrapper", "into", "inner", "function", "calls", "if", "needed", "." ]
9575734ec26f6be86ae263496d50eb60bb988b21
https://github.com/gregoil/ipdbugger/blob/9575734ec26f6be86ae263496d50eb60bb988b21/ipdbugger/__init__.py#L213-L241
train
PBR/MQ2
MQ2/plugins/csv_plugin.py
get_qtls_from_rqtl_data
def get_qtls_from_rqtl_data(matrix, lod_threshold): """ Retrieve the list of significants QTLs for the given input matrix and using the specified LOD threshold. This assumes one QTL per linkage group. :arg matrix, the MapQTL file read in memory :arg threshold, threshold used to determine if a given LOD value is reflective the presence of a QTL. """ t_matrix = list(zip(*matrix)) qtls = [['Trait', 'Linkage Group', 'Position', 'Exact marker', 'LOD']] # row 0: markers # row 1: chr # row 2: pos for row in t_matrix[3:]: lgroup = None max_lod = None peak = None cnt = 1 while cnt < len(row): if lgroup is None: lgroup = t_matrix[1][cnt] if lgroup == t_matrix[1][cnt]: if max_lod is None: max_lod = float(row[cnt]) if float(row[cnt]) > float(max_lod): max_lod = float(row[cnt]) peak = cnt else: if max_lod \ and float(max_lod) > float(lod_threshold) \ and peak: qtl = [row[0], # trait t_matrix[1][peak], # LG t_matrix[2][peak], # pos t_matrix[0][peak], # marker max_lod, # LOD value ] qtls.append(qtl) lgroup = None max_lod = None peak = cnt cnt = cnt + 1 return qtls
python
def get_qtls_from_rqtl_data(matrix, lod_threshold): """ Retrieve the list of significants QTLs for the given input matrix and using the specified LOD threshold. This assumes one QTL per linkage group. :arg matrix, the MapQTL file read in memory :arg threshold, threshold used to determine if a given LOD value is reflective the presence of a QTL. """ t_matrix = list(zip(*matrix)) qtls = [['Trait', 'Linkage Group', 'Position', 'Exact marker', 'LOD']] # row 0: markers # row 1: chr # row 2: pos for row in t_matrix[3:]: lgroup = None max_lod = None peak = None cnt = 1 while cnt < len(row): if lgroup is None: lgroup = t_matrix[1][cnt] if lgroup == t_matrix[1][cnt]: if max_lod is None: max_lod = float(row[cnt]) if float(row[cnt]) > float(max_lod): max_lod = float(row[cnt]) peak = cnt else: if max_lod \ and float(max_lod) > float(lod_threshold) \ and peak: qtl = [row[0], # trait t_matrix[1][peak], # LG t_matrix[2][peak], # pos t_matrix[0][peak], # marker max_lod, # LOD value ] qtls.append(qtl) lgroup = None max_lod = None peak = cnt cnt = cnt + 1 return qtls
[ "def", "get_qtls_from_rqtl_data", "(", "matrix", ",", "lod_threshold", ")", ":", "t_matrix", "=", "list", "(", "zip", "(", "*", "matrix", ")", ")", "qtls", "=", "[", "[", "'Trait'", ",", "'Linkage Group'", ",", "'Position'", ",", "'Exact marker'", ",", "'LOD'", "]", "]", "# row 0: markers", "# row 1: chr", "# row 2: pos", "for", "row", "in", "t_matrix", "[", "3", ":", "]", ":", "lgroup", "=", "None", "max_lod", "=", "None", "peak", "=", "None", "cnt", "=", "1", "while", "cnt", "<", "len", "(", "row", ")", ":", "if", "lgroup", "is", "None", ":", "lgroup", "=", "t_matrix", "[", "1", "]", "[", "cnt", "]", "if", "lgroup", "==", "t_matrix", "[", "1", "]", "[", "cnt", "]", ":", "if", "max_lod", "is", "None", ":", "max_lod", "=", "float", "(", "row", "[", "cnt", "]", ")", "if", "float", "(", "row", "[", "cnt", "]", ")", ">", "float", "(", "max_lod", ")", ":", "max_lod", "=", "float", "(", "row", "[", "cnt", "]", ")", "peak", "=", "cnt", "else", ":", "if", "max_lod", "and", "float", "(", "max_lod", ")", ">", "float", "(", "lod_threshold", ")", "and", "peak", ":", "qtl", "=", "[", "row", "[", "0", "]", ",", "# trait", "t_matrix", "[", "1", "]", "[", "peak", "]", ",", "# LG", "t_matrix", "[", "2", "]", "[", "peak", "]", ",", "# pos", "t_matrix", "[", "0", "]", "[", "peak", "]", ",", "# marker", "max_lod", ",", "# LOD value", "]", "qtls", ".", "append", "(", "qtl", ")", "lgroup", "=", "None", "max_lod", "=", "None", "peak", "=", "cnt", "cnt", "=", "cnt", "+", "1", "return", "qtls" ]
Retrieve the list of significants QTLs for the given input matrix and using the specified LOD threshold. This assumes one QTL per linkage group. :arg matrix, the MapQTL file read in memory :arg threshold, threshold used to determine if a given LOD value is reflective the presence of a QTL.
[ "Retrieve", "the", "list", "of", "significants", "QTLs", "for", "the", "given", "input", "matrix", "and", "using", "the", "specified", "LOD", "threshold", ".", "This", "assumes", "one", "QTL", "per", "linkage", "group", "." ]
6d84dea47e6751333004743f588f03158e35c28d
https://github.com/PBR/MQ2/blob/6d84dea47e6751333004743f588f03158e35c28d/MQ2/plugins/csv_plugin.py#L55-L100
train
projectshift/shift-boiler
boiler/user/session_interface.py
BoilerSessionInterface.save_session
def save_session(self, *args, **kwargs): """ Save session Skip setting session cookie if requested via g.stateless_sessions """ # do not send session cookie if g.get('stateless_sessions'): return # send cookie return super(BoilerSessionInterface, self).save_session( *args, **kwargs )
python
def save_session(self, *args, **kwargs): """ Save session Skip setting session cookie if requested via g.stateless_sessions """ # do not send session cookie if g.get('stateless_sessions'): return # send cookie return super(BoilerSessionInterface, self).save_session( *args, **kwargs )
[ "def", "save_session", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# do not send session cookie", "if", "g", ".", "get", "(", "'stateless_sessions'", ")", ":", "return", "# send cookie", "return", "super", "(", "BoilerSessionInterface", ",", "self", ")", ".", "save_session", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
Save session Skip setting session cookie if requested via g.stateless_sessions
[ "Save", "session", "Skip", "setting", "session", "cookie", "if", "requested", "via", "g", ".", "stateless_sessions" ]
8e6f3a3e4b9493fb6c8bd16bed160ede153bfb0b
https://github.com/projectshift/shift-boiler/blob/8e6f3a3e4b9493fb6c8bd16bed160ede153bfb0b/boiler/user/session_interface.py#L45-L59
train
brunato/lograptor
lograptor/channels.py
FileChannel.prune_old
def prune_old(self): """ Removes the directories that are older than a certain date. """ path = self.pubdir dirmask = self.dirmask expire = self.expire expire_limit = int(time.time()) - (86400 * expire) logger.info('Pruning directories older than %d days', expire) if not os.path.isdir(path): logger.warning('Dir %r not found -- skipping pruning', path) return for entry in os.listdir(path): logger.debug('Found: %r', entry) if os.path.isdir(os.path.join(path, entry)): try: stamp = time.mktime(time.strptime(entry, dirmask)) except ValueError as e: logger.info('Dir %r did not match dirmask %r: %r', entry, dirmask, e) logger.info('Skipping %r', entry) continue if stamp < expire_limit: shutil.rmtree(os.path.join(path, entry)) logger.info('File Publisher: Pruned old dir: %r', entry) else: logger.info('%r is still active', entry) else: logger.info('%r is not a directory. Skipping.', entry) logger.info('Finished with pruning')
python
def prune_old(self): """ Removes the directories that are older than a certain date. """ path = self.pubdir dirmask = self.dirmask expire = self.expire expire_limit = int(time.time()) - (86400 * expire) logger.info('Pruning directories older than %d days', expire) if not os.path.isdir(path): logger.warning('Dir %r not found -- skipping pruning', path) return for entry in os.listdir(path): logger.debug('Found: %r', entry) if os.path.isdir(os.path.join(path, entry)): try: stamp = time.mktime(time.strptime(entry, dirmask)) except ValueError as e: logger.info('Dir %r did not match dirmask %r: %r', entry, dirmask, e) logger.info('Skipping %r', entry) continue if stamp < expire_limit: shutil.rmtree(os.path.join(path, entry)) logger.info('File Publisher: Pruned old dir: %r', entry) else: logger.info('%r is still active', entry) else: logger.info('%r is not a directory. Skipping.', entry) logger.info('Finished with pruning')
[ "def", "prune_old", "(", "self", ")", ":", "path", "=", "self", ".", "pubdir", "dirmask", "=", "self", ".", "dirmask", "expire", "=", "self", ".", "expire", "expire_limit", "=", "int", "(", "time", ".", "time", "(", ")", ")", "-", "(", "86400", "*", "expire", ")", "logger", ".", "info", "(", "'Pruning directories older than %d days'", ",", "expire", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "path", ")", ":", "logger", ".", "warning", "(", "'Dir %r not found -- skipping pruning'", ",", "path", ")", "return", "for", "entry", "in", "os", ".", "listdir", "(", "path", ")", ":", "logger", ".", "debug", "(", "'Found: %r'", ",", "entry", ")", "if", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "path", ",", "entry", ")", ")", ":", "try", ":", "stamp", "=", "time", ".", "mktime", "(", "time", ".", "strptime", "(", "entry", ",", "dirmask", ")", ")", "except", "ValueError", "as", "e", ":", "logger", ".", "info", "(", "'Dir %r did not match dirmask %r: %r'", ",", "entry", ",", "dirmask", ",", "e", ")", "logger", ".", "info", "(", "'Skipping %r'", ",", "entry", ")", "continue", "if", "stamp", "<", "expire_limit", ":", "shutil", ".", "rmtree", "(", "os", ".", "path", ".", "join", "(", "path", ",", "entry", ")", ")", "logger", ".", "info", "(", "'File Publisher: Pruned old dir: %r'", ",", "entry", ")", "else", ":", "logger", ".", "info", "(", "'%r is still active'", ",", "entry", ")", "else", ":", "logger", ".", "info", "(", "'%r is not a directory. Skipping.'", ",", "entry", ")", "logger", ".", "info", "(", "'Finished with pruning'", ")" ]
Removes the directories that are older than a certain date.
[ "Removes", "the", "directories", "that", "are", "older", "than", "a", "certain", "date", "." ]
b1f09fe1b429ed15110610092704ef12d253f3c9
https://github.com/brunato/lograptor/blob/b1f09fe1b429ed15110610092704ef12d253f3c9/lograptor/channels.py#L512-L545
train
brunato/lograptor
lograptor/channels.py
FileChannel.send_report
def send_report(self, report_parts): """ Publish the report parts to local files. Each report part is a text with a title and specific extension. For html and plaintext sending the report part is unique, for csv send also the stats and unparsed string are plain text and report items are csv texts. """ logger.info('Checking and creating the report directory') report_parts = sorted( filter(lambda x: x.fmt in self.formats, report_parts), key=lambda x: self.formats.index(x.fmt) ) workdir = os.path.join(self.pubdir, self.dirname) if not os.path.isdir(workdir): try: os.makedirs(workdir) except OSError as e: logger.error('Error creating directory "{0}": {0}'.format(workdir, e)) return fmtname = '{0}-{1}-{2}.{3}' if len(report_parts) > 1 else '{0}-{2}.{3}' for i, text_part in enumerate(filter(lambda x: x.fmt in self.formats, report_parts)): filename = fmtname.format(self.filename, i, socket.gethostname(), text_part.ext) repfile = os.path.join(workdir, filename) logger.info('Dumping the report part %d into %r', i, repfile) fh = open(repfile, 'w') fh.write(text_part.text) fh.close() print('Report part saved in: %r' % repfile) if self.notify: logger.info('Creating an email message') email_address = self.config.get('main', 'email_address') smtp_server = self.config.get('main', 'smtp_server') publoc = os.path.join(self.pubroot, self.dirname) eml = MIMEText('New lograptor report is available at:\r\n{0}'.format(publoc)) eml['Subject'] = '{0} system events: {1} (report notification)'.format( socket.gethostname(), time.strftime('%c', time.localtime()) ) eml['Date'] = formatdate() eml['From'] = email_address eml['To'] = ', '.join(self.notify) eml['X-Mailer'] = u'{0}-{1}'.format(package_name, __version__) mail_message(smtp_server, eml.as_string(), email_address, self.notify) print('Notification mailed to: {0}'.format(','.join(self.notify))) if self.rawlogs: logfilename = '{0}.log'.format(self.filename) logfile = os.path.join(workdir, '{0}.gz'.format(logfilename)) logger.info('Gzipping logs and writing them to %r', logfilename) outfh = open(logfile, 'w+b') do_chunked_gzip(self.rawfh, outfh, logfilename) outfh.close() print('Gzipped logs saved in: {0}'.format(logfile)) # Purge old reports self.prune_old()
python
def send_report(self, report_parts): """ Publish the report parts to local files. Each report part is a text with a title and specific extension. For html and plaintext sending the report part is unique, for csv send also the stats and unparsed string are plain text and report items are csv texts. """ logger.info('Checking and creating the report directory') report_parts = sorted( filter(lambda x: x.fmt in self.formats, report_parts), key=lambda x: self.formats.index(x.fmt) ) workdir = os.path.join(self.pubdir, self.dirname) if not os.path.isdir(workdir): try: os.makedirs(workdir) except OSError as e: logger.error('Error creating directory "{0}": {0}'.format(workdir, e)) return fmtname = '{0}-{1}-{2}.{3}' if len(report_parts) > 1 else '{0}-{2}.{3}' for i, text_part in enumerate(filter(lambda x: x.fmt in self.formats, report_parts)): filename = fmtname.format(self.filename, i, socket.gethostname(), text_part.ext) repfile = os.path.join(workdir, filename) logger.info('Dumping the report part %d into %r', i, repfile) fh = open(repfile, 'w') fh.write(text_part.text) fh.close() print('Report part saved in: %r' % repfile) if self.notify: logger.info('Creating an email message') email_address = self.config.get('main', 'email_address') smtp_server = self.config.get('main', 'smtp_server') publoc = os.path.join(self.pubroot, self.dirname) eml = MIMEText('New lograptor report is available at:\r\n{0}'.format(publoc)) eml['Subject'] = '{0} system events: {1} (report notification)'.format( socket.gethostname(), time.strftime('%c', time.localtime()) ) eml['Date'] = formatdate() eml['From'] = email_address eml['To'] = ', '.join(self.notify) eml['X-Mailer'] = u'{0}-{1}'.format(package_name, __version__) mail_message(smtp_server, eml.as_string(), email_address, self.notify) print('Notification mailed to: {0}'.format(','.join(self.notify))) if self.rawlogs: logfilename = '{0}.log'.format(self.filename) logfile = os.path.join(workdir, '{0}.gz'.format(logfilename)) logger.info('Gzipping logs and writing them to %r', logfilename) outfh = open(logfile, 'w+b') do_chunked_gzip(self.rawfh, outfh, logfilename) outfh.close() print('Gzipped logs saved in: {0}'.format(logfile)) # Purge old reports self.prune_old()
[ "def", "send_report", "(", "self", ",", "report_parts", ")", ":", "logger", ".", "info", "(", "'Checking and creating the report directory'", ")", "report_parts", "=", "sorted", "(", "filter", "(", "lambda", "x", ":", "x", ".", "fmt", "in", "self", ".", "formats", ",", "report_parts", ")", ",", "key", "=", "lambda", "x", ":", "self", ".", "formats", ".", "index", "(", "x", ".", "fmt", ")", ")", "workdir", "=", "os", ".", "path", ".", "join", "(", "self", ".", "pubdir", ",", "self", ".", "dirname", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "workdir", ")", ":", "try", ":", "os", ".", "makedirs", "(", "workdir", ")", "except", "OSError", "as", "e", ":", "logger", ".", "error", "(", "'Error creating directory \"{0}\": {0}'", ".", "format", "(", "workdir", ",", "e", ")", ")", "return", "fmtname", "=", "'{0}-{1}-{2}.{3}'", "if", "len", "(", "report_parts", ")", ">", "1", "else", "'{0}-{2}.{3}'", "for", "i", ",", "text_part", "in", "enumerate", "(", "filter", "(", "lambda", "x", ":", "x", ".", "fmt", "in", "self", ".", "formats", ",", "report_parts", ")", ")", ":", "filename", "=", "fmtname", ".", "format", "(", "self", ".", "filename", ",", "i", ",", "socket", ".", "gethostname", "(", ")", ",", "text_part", ".", "ext", ")", "repfile", "=", "os", ".", "path", ".", "join", "(", "workdir", ",", "filename", ")", "logger", ".", "info", "(", "'Dumping the report part %d into %r'", ",", "i", ",", "repfile", ")", "fh", "=", "open", "(", "repfile", ",", "'w'", ")", "fh", ".", "write", "(", "text_part", ".", "text", ")", "fh", ".", "close", "(", ")", "print", "(", "'Report part saved in: %r'", "%", "repfile", ")", "if", "self", ".", "notify", ":", "logger", ".", "info", "(", "'Creating an email message'", ")", "email_address", "=", "self", ".", "config", ".", "get", "(", "'main'", ",", "'email_address'", ")", "smtp_server", "=", "self", ".", "config", ".", "get", "(", "'main'", ",", "'smtp_server'", ")", "publoc", "=", "os", ".", "path", ".", "join", "(", "self", ".", "pubroot", ",", "self", ".", "dirname", ")", "eml", "=", "MIMEText", "(", "'New lograptor report is available at:\\r\\n{0}'", ".", "format", "(", "publoc", ")", ")", "eml", "[", "'Subject'", "]", "=", "'{0} system events: {1} (report notification)'", ".", "format", "(", "socket", ".", "gethostname", "(", ")", ",", "time", ".", "strftime", "(", "'%c'", ",", "time", ".", "localtime", "(", ")", ")", ")", "eml", "[", "'Date'", "]", "=", "formatdate", "(", ")", "eml", "[", "'From'", "]", "=", "email_address", "eml", "[", "'To'", "]", "=", "', '", ".", "join", "(", "self", ".", "notify", ")", "eml", "[", "'X-Mailer'", "]", "=", "u'{0}-{1}'", ".", "format", "(", "package_name", ",", "__version__", ")", "mail_message", "(", "smtp_server", ",", "eml", ".", "as_string", "(", ")", ",", "email_address", ",", "self", ".", "notify", ")", "print", "(", "'Notification mailed to: {0}'", ".", "format", "(", "','", ".", "join", "(", "self", ".", "notify", ")", ")", ")", "if", "self", ".", "rawlogs", ":", "logfilename", "=", "'{0}.log'", ".", "format", "(", "self", ".", "filename", ")", "logfile", "=", "os", ".", "path", ".", "join", "(", "workdir", ",", "'{0}.gz'", ".", "format", "(", "logfilename", ")", ")", "logger", ".", "info", "(", "'Gzipping logs and writing them to %r'", ",", "logfilename", ")", "outfh", "=", "open", "(", "logfile", ",", "'w+b'", ")", "do_chunked_gzip", "(", "self", ".", "rawfh", ",", "outfh", ",", "logfilename", ")", "outfh", ".", "close", "(", ")", "print", "(", "'Gzipped logs saved in: {0}'", ".", "format", "(", "logfile", ")", ")", "# Purge old reports", "self", ".", "prune_old", "(", ")" ]
Publish the report parts to local files. Each report part is a text with a title and specific extension. For html and plaintext sending the report part is unique, for csv send also the stats and unparsed string are plain text and report items are csv texts.
[ "Publish", "the", "report", "parts", "to", "local", "files", ".", "Each", "report", "part", "is", "a", "text", "with", "a", "title", "and", "specific", "extension", ".", "For", "html", "and", "plaintext", "sending", "the", "report", "part", "is", "unique", "for", "csv", "send", "also", "the", "stats", "and", "unparsed", "string", "are", "plain", "text", "and", "report", "items", "are", "csv", "texts", "." ]
b1f09fe1b429ed15110610092704ef12d253f3c9
https://github.com/brunato/lograptor/blob/b1f09fe1b429ed15110610092704ef12d253f3c9/lograptor/channels.py#L562-L623
train
mardix/Mocha
mocha/utils.py
_InspectMethodsDecorators.parse
def parse(self): """ Return the list of string of all the decorators found """ self._parse(self.method) return list(set([deco for deco in self.decos if deco]))
python
def parse(self): """ Return the list of string of all the decorators found """ self._parse(self.method) return list(set([deco for deco in self.decos if deco]))
[ "def", "parse", "(", "self", ")", ":", "self", ".", "_parse", "(", "self", ".", "method", ")", "return", "list", "(", "set", "(", "[", "deco", "for", "deco", "in", "self", ".", "decos", "if", "deco", "]", ")", ")" ]
Return the list of string of all the decorators found
[ "Return", "the", "list", "of", "string", "of", "all", "the", "decorators", "found" ]
bce481cb31a0972061dd99bc548701411dcb9de3
https://github.com/mardix/Mocha/blob/bce481cb31a0972061dd99bc548701411dcb9de3/mocha/utils.py#L365-L370
train
trendels/rhino
rhino/response.py
filter_304_headers
def filter_304_headers(headers): """Filter a list of headers to include in a "304 Not Modified" response.""" return [(k, v) for k, v in headers if k.lower() not in _filter_from_304]
python
def filter_304_headers(headers): """Filter a list of headers to include in a "304 Not Modified" response.""" return [(k, v) for k, v in headers if k.lower() not in _filter_from_304]
[ "def", "filter_304_headers", "(", "headers", ")", ":", "return", "[", "(", "k", ",", "v", ")", "for", "k", ",", "v", "in", "headers", "if", "k", ".", "lower", "(", ")", "not", "in", "_filter_from_304", "]" ]
Filter a list of headers to include in a "304 Not Modified" response.
[ "Filter", "a", "list", "of", "headers", "to", "include", "in", "a", "304", "Not", "Modified", "response", "." ]
f1f0ef21b6080a2bd130b38b5bef163074c94aed
https://github.com/trendels/rhino/blob/f1f0ef21b6080a2bd130b38b5bef163074c94aed/rhino/response.py#L41-L43
train
trendels/rhino
rhino/response.py
response
def response(code, body='', etag=None, last_modified=None, expires=None, **kw): """Helper to build an HTTP response. Parameters: code : An integer status code. body : The response body. See `Response.__init__` for details. etag : A value for the ETag header. Double quotes will be added unless the string starts and ends with a double quote. last_modified : A value for the Last-Modified header as a datetime.datetime object or Unix timestamp. expires : A value for the Expires header as number of seconds, datetime.timedelta or datetime.datetime object. Note: a value of type int or float is interpreted as a number of seconds in the future, *not* as Unix timestamp. **kw : All other keyword arguments are interpreted as response headers. The names will be converted to header names by replacing underscores with hyphens and converting to title case (e.g. `x_powered_by` => `X-Powered-By`). """ if etag is not None: if not (etag[0] == '"' and etag[-1] == '"'): etag = '"%s"' % etag kw['etag'] = etag if last_modified is not None: kw['last_modified'] = datetime_to_httpdate(last_modified) if expires is not None: if isinstance(expires, datetime): kw['expires'] = datetime_to_httpdate(expires) else: kw['expires'] = timedelta_to_httpdate(expires) headers = [(k.replace('_', '-').title(), v) for k, v in sorted(kw.items())] return Response(code, headers, body)
python
def response(code, body='', etag=None, last_modified=None, expires=None, **kw): """Helper to build an HTTP response. Parameters: code : An integer status code. body : The response body. See `Response.__init__` for details. etag : A value for the ETag header. Double quotes will be added unless the string starts and ends with a double quote. last_modified : A value for the Last-Modified header as a datetime.datetime object or Unix timestamp. expires : A value for the Expires header as number of seconds, datetime.timedelta or datetime.datetime object. Note: a value of type int or float is interpreted as a number of seconds in the future, *not* as Unix timestamp. **kw : All other keyword arguments are interpreted as response headers. The names will be converted to header names by replacing underscores with hyphens and converting to title case (e.g. `x_powered_by` => `X-Powered-By`). """ if etag is not None: if not (etag[0] == '"' and etag[-1] == '"'): etag = '"%s"' % etag kw['etag'] = etag if last_modified is not None: kw['last_modified'] = datetime_to_httpdate(last_modified) if expires is not None: if isinstance(expires, datetime): kw['expires'] = datetime_to_httpdate(expires) else: kw['expires'] = timedelta_to_httpdate(expires) headers = [(k.replace('_', '-').title(), v) for k, v in sorted(kw.items())] return Response(code, headers, body)
[ "def", "response", "(", "code", ",", "body", "=", "''", ",", "etag", "=", "None", ",", "last_modified", "=", "None", ",", "expires", "=", "None", ",", "*", "*", "kw", ")", ":", "if", "etag", "is", "not", "None", ":", "if", "not", "(", "etag", "[", "0", "]", "==", "'\"'", "and", "etag", "[", "-", "1", "]", "==", "'\"'", ")", ":", "etag", "=", "'\"%s\"'", "%", "etag", "kw", "[", "'etag'", "]", "=", "etag", "if", "last_modified", "is", "not", "None", ":", "kw", "[", "'last_modified'", "]", "=", "datetime_to_httpdate", "(", "last_modified", ")", "if", "expires", "is", "not", "None", ":", "if", "isinstance", "(", "expires", ",", "datetime", ")", ":", "kw", "[", "'expires'", "]", "=", "datetime_to_httpdate", "(", "expires", ")", "else", ":", "kw", "[", "'expires'", "]", "=", "timedelta_to_httpdate", "(", "expires", ")", "headers", "=", "[", "(", "k", ".", "replace", "(", "'_'", ",", "'-'", ")", ".", "title", "(", ")", ",", "v", ")", "for", "k", ",", "v", "in", "sorted", "(", "kw", ".", "items", "(", ")", ")", "]", "return", "Response", "(", "code", ",", "headers", ",", "body", ")" ]
Helper to build an HTTP response. Parameters: code : An integer status code. body : The response body. See `Response.__init__` for details. etag : A value for the ETag header. Double quotes will be added unless the string starts and ends with a double quote. last_modified : A value for the Last-Modified header as a datetime.datetime object or Unix timestamp. expires : A value for the Expires header as number of seconds, datetime.timedelta or datetime.datetime object. Note: a value of type int or float is interpreted as a number of seconds in the future, *not* as Unix timestamp. **kw : All other keyword arguments are interpreted as response headers. The names will be converted to header names by replacing underscores with hyphens and converting to title case (e.g. `x_powered_by` => `X-Powered-By`).
[ "Helper", "to", "build", "an", "HTTP", "response", "." ]
f1f0ef21b6080a2bd130b38b5bef163074c94aed
https://github.com/trendels/rhino/blob/f1f0ef21b6080a2bd130b38b5bef163074c94aed/rhino/response.py#L362-L404
train
trendels/rhino
rhino/response.py
Response.body
def body(self): """Seralizes and returns the response body. On subsequent access, returns the cached value.""" if self._body is None: raw_body = self._raw_body if self._body_writer is None: self._body = raw_body() if callable(raw_body) else raw_body else: self._body = self._body_writer(raw_body) return self._body
python
def body(self): """Seralizes and returns the response body. On subsequent access, returns the cached value.""" if self._body is None: raw_body = self._raw_body if self._body_writer is None: self._body = raw_body() if callable(raw_body) else raw_body else: self._body = self._body_writer(raw_body) return self._body
[ "def", "body", "(", "self", ")", ":", "if", "self", ".", "_body", "is", "None", ":", "raw_body", "=", "self", ".", "_raw_body", "if", "self", ".", "_body_writer", "is", "None", ":", "self", ".", "_body", "=", "raw_body", "(", ")", "if", "callable", "(", "raw_body", ")", "else", "raw_body", "else", ":", "self", ".", "_body", "=", "self", ".", "_body_writer", "(", "raw_body", ")", "return", "self", ".", "_body" ]
Seralizes and returns the response body. On subsequent access, returns the cached value.
[ "Seralizes", "and", "returns", "the", "response", "body", "." ]
f1f0ef21b6080a2bd130b38b5bef163074c94aed
https://github.com/trendels/rhino/blob/f1f0ef21b6080a2bd130b38b5bef163074c94aed/rhino/response.py#L189-L200
train
trendels/rhino
rhino/response.py
Response.set_cookie
def set_cookie(self, key, value='', max_age=None, path='/', domain=None, secure=False, httponly=False, expires=None): """Set a response cookie. Parameters: key : The cookie name. value : The cookie value. max_age : The maximum age of the cookie in seconds, or as a datetime.timedelta object. path : Restrict the cookie to this path (default: '/'). domain : Restrict the cookie to his domain. secure : When True, instruct the client to only sent the cookie over HTTPS. httponly : When True, instruct the client to disallow javascript access to the cookie. expires : Another way of specifying the maximum age of the cookie. Accepts the same values as max_age (number of seconds, datetime.timedelta). Additionaly accepts a datetime.datetime object. Note: a value of type int or float is interpreted as a number of seconds in the future, *not* as Unix timestamp. """ key, value = key.encode('utf-8'), value.encode('utf-8') cookie = SimpleCookie({key: value}) m = cookie[key] if max_age is not None: if isinstance(max_age, timedelta): m['max-age'] = int(total_seconds(max_age)) else: m['max-age'] = int(max_age) if path is not None: m['path'] = path.encode('utf-8') if domain is not None: m['domain'] = domain.encode('utf-8') if secure: m['secure'] = True if httponly: m['httponly'] = True if expires is not None: # 'expires' expects an offset in seconds, like max-age if isinstance(expires, datetime): expires = total_seconds(expires - datetime.utcnow()) elif isinstance(expires, timedelta): expires = total_seconds(expires) m['expires'] = int(expires) self.headers.add_header('Set-Cookie', m.OutputString())
python
def set_cookie(self, key, value='', max_age=None, path='/', domain=None, secure=False, httponly=False, expires=None): """Set a response cookie. Parameters: key : The cookie name. value : The cookie value. max_age : The maximum age of the cookie in seconds, or as a datetime.timedelta object. path : Restrict the cookie to this path (default: '/'). domain : Restrict the cookie to his domain. secure : When True, instruct the client to only sent the cookie over HTTPS. httponly : When True, instruct the client to disallow javascript access to the cookie. expires : Another way of specifying the maximum age of the cookie. Accepts the same values as max_age (number of seconds, datetime.timedelta). Additionaly accepts a datetime.datetime object. Note: a value of type int or float is interpreted as a number of seconds in the future, *not* as Unix timestamp. """ key, value = key.encode('utf-8'), value.encode('utf-8') cookie = SimpleCookie({key: value}) m = cookie[key] if max_age is not None: if isinstance(max_age, timedelta): m['max-age'] = int(total_seconds(max_age)) else: m['max-age'] = int(max_age) if path is not None: m['path'] = path.encode('utf-8') if domain is not None: m['domain'] = domain.encode('utf-8') if secure: m['secure'] = True if httponly: m['httponly'] = True if expires is not None: # 'expires' expects an offset in seconds, like max-age if isinstance(expires, datetime): expires = total_seconds(expires - datetime.utcnow()) elif isinstance(expires, timedelta): expires = total_seconds(expires) m['expires'] = int(expires) self.headers.add_header('Set-Cookie', m.OutputString())
[ "def", "set_cookie", "(", "self", ",", "key", ",", "value", "=", "''", ",", "max_age", "=", "None", ",", "path", "=", "'/'", ",", "domain", "=", "None", ",", "secure", "=", "False", ",", "httponly", "=", "False", ",", "expires", "=", "None", ")", ":", "key", ",", "value", "=", "key", ".", "encode", "(", "'utf-8'", ")", ",", "value", ".", "encode", "(", "'utf-8'", ")", "cookie", "=", "SimpleCookie", "(", "{", "key", ":", "value", "}", ")", "m", "=", "cookie", "[", "key", "]", "if", "max_age", "is", "not", "None", ":", "if", "isinstance", "(", "max_age", ",", "timedelta", ")", ":", "m", "[", "'max-age'", "]", "=", "int", "(", "total_seconds", "(", "max_age", ")", ")", "else", ":", "m", "[", "'max-age'", "]", "=", "int", "(", "max_age", ")", "if", "path", "is", "not", "None", ":", "m", "[", "'path'", "]", "=", "path", ".", "encode", "(", "'utf-8'", ")", "if", "domain", "is", "not", "None", ":", "m", "[", "'domain'", "]", "=", "domain", ".", "encode", "(", "'utf-8'", ")", "if", "secure", ":", "m", "[", "'secure'", "]", "=", "True", "if", "httponly", ":", "m", "[", "'httponly'", "]", "=", "True", "if", "expires", "is", "not", "None", ":", "# 'expires' expects an offset in seconds, like max-age", "if", "isinstance", "(", "expires", ",", "datetime", ")", ":", "expires", "=", "total_seconds", "(", "expires", "-", "datetime", ".", "utcnow", "(", ")", ")", "elif", "isinstance", "(", "expires", ",", "timedelta", ")", ":", "expires", "=", "total_seconds", "(", "expires", ")", "m", "[", "'expires'", "]", "=", "int", "(", "expires", ")", "self", ".", "headers", ".", "add_header", "(", "'Set-Cookie'", ",", "m", ".", "OutputString", "(", ")", ")" ]
Set a response cookie. Parameters: key : The cookie name. value : The cookie value. max_age : The maximum age of the cookie in seconds, or as a datetime.timedelta object. path : Restrict the cookie to this path (default: '/'). domain : Restrict the cookie to his domain. secure : When True, instruct the client to only sent the cookie over HTTPS. httponly : When True, instruct the client to disallow javascript access to the cookie. expires : Another way of specifying the maximum age of the cookie. Accepts the same values as max_age (number of seconds, datetime.timedelta). Additionaly accepts a datetime.datetime object. Note: a value of type int or float is interpreted as a number of seconds in the future, *not* as Unix timestamp.
[ "Set", "a", "response", "cookie", "." ]
f1f0ef21b6080a2bd130b38b5bef163074c94aed
https://github.com/trendels/rhino/blob/f1f0ef21b6080a2bd130b38b5bef163074c94aed/rhino/response.py#L210-L259
train
trendels/rhino
rhino/response.py
Response.conditional_to
def conditional_to(self, request): """Return a response that is conditional to a given request. Returns the Response object unchanged, or a new Response object with a "304 Not Modified" status code. """ if not self.code == 200: return self request_headers = request.headers response_headers = self.headers if_none_match = request_headers.get('If-None-Match') if_modified_since = request_headers.get('If-Modified-Since') etag_ok, date_ok = False, False if if_none_match: etag = response_headers.get('ETag') if etag and match_etag(etag, if_none_match, weak=True): etag_ok = True if if_modified_since: last_modified = response_headers.get('Last-Modified') if last_modified: try: modified_ts = httpdate_to_timestamp(last_modified) last_valid_ts = httpdate_to_timestamp(if_modified_since) if modified_ts <= last_valid_ts: date_ok = True except: pass # Ignore invalid dates if if_none_match and not etag_ok: return self elif if_modified_since and not date_ok: return self elif etag_ok or date_ok: headers = filter_304_headers(self.headers.items()) if 'Date' not in self.headers: headers.append(('Date', datetime_to_httpdate(time.time()))) return Response(status=304, headers=headers, body='') return self
python
def conditional_to(self, request): """Return a response that is conditional to a given request. Returns the Response object unchanged, or a new Response object with a "304 Not Modified" status code. """ if not self.code == 200: return self request_headers = request.headers response_headers = self.headers if_none_match = request_headers.get('If-None-Match') if_modified_since = request_headers.get('If-Modified-Since') etag_ok, date_ok = False, False if if_none_match: etag = response_headers.get('ETag') if etag and match_etag(etag, if_none_match, weak=True): etag_ok = True if if_modified_since: last_modified = response_headers.get('Last-Modified') if last_modified: try: modified_ts = httpdate_to_timestamp(last_modified) last_valid_ts = httpdate_to_timestamp(if_modified_since) if modified_ts <= last_valid_ts: date_ok = True except: pass # Ignore invalid dates if if_none_match and not etag_ok: return self elif if_modified_since and not date_ok: return self elif etag_ok or date_ok: headers = filter_304_headers(self.headers.items()) if 'Date' not in self.headers: headers.append(('Date', datetime_to_httpdate(time.time()))) return Response(status=304, headers=headers, body='') return self
[ "def", "conditional_to", "(", "self", ",", "request", ")", ":", "if", "not", "self", ".", "code", "==", "200", ":", "return", "self", "request_headers", "=", "request", ".", "headers", "response_headers", "=", "self", ".", "headers", "if_none_match", "=", "request_headers", ".", "get", "(", "'If-None-Match'", ")", "if_modified_since", "=", "request_headers", ".", "get", "(", "'If-Modified-Since'", ")", "etag_ok", ",", "date_ok", "=", "False", ",", "False", "if", "if_none_match", ":", "etag", "=", "response_headers", ".", "get", "(", "'ETag'", ")", "if", "etag", "and", "match_etag", "(", "etag", ",", "if_none_match", ",", "weak", "=", "True", ")", ":", "etag_ok", "=", "True", "if", "if_modified_since", ":", "last_modified", "=", "response_headers", ".", "get", "(", "'Last-Modified'", ")", "if", "last_modified", ":", "try", ":", "modified_ts", "=", "httpdate_to_timestamp", "(", "last_modified", ")", "last_valid_ts", "=", "httpdate_to_timestamp", "(", "if_modified_since", ")", "if", "modified_ts", "<=", "last_valid_ts", ":", "date_ok", "=", "True", "except", ":", "pass", "# Ignore invalid dates", "if", "if_none_match", "and", "not", "etag_ok", ":", "return", "self", "elif", "if_modified_since", "and", "not", "date_ok", ":", "return", "self", "elif", "etag_ok", "or", "date_ok", ":", "headers", "=", "filter_304_headers", "(", "self", ".", "headers", ".", "items", "(", ")", ")", "if", "'Date'", "not", "in", "self", ".", "headers", ":", "headers", ".", "append", "(", "(", "'Date'", ",", "datetime_to_httpdate", "(", "time", ".", "time", "(", ")", ")", ")", ")", "return", "Response", "(", "status", "=", "304", ",", "headers", "=", "headers", ",", "body", "=", "''", ")", "return", "self" ]
Return a response that is conditional to a given request. Returns the Response object unchanged, or a new Response object with a "304 Not Modified" status code.
[ "Return", "a", "response", "that", "is", "conditional", "to", "a", "given", "request", "." ]
f1f0ef21b6080a2bd130b38b5bef163074c94aed
https://github.com/trendels/rhino/blob/f1f0ef21b6080a2bd130b38b5bef163074c94aed/rhino/response.py#L269-L311
train
assamite/creamas
creamas/examples/grid/ukko.py
_get_ukko_report
def _get_ukko_report(): '''Get Ukko's report from the fixed URL. ''' with urllib.request.urlopen(URL_UKKO_REPORT) as response: ret = str(response.read()) return ret
python
def _get_ukko_report(): '''Get Ukko's report from the fixed URL. ''' with urllib.request.urlopen(URL_UKKO_REPORT) as response: ret = str(response.read()) return ret
[ "def", "_get_ukko_report", "(", ")", ":", "with", "urllib", ".", "request", ".", "urlopen", "(", "URL_UKKO_REPORT", ")", "as", "response", ":", "ret", "=", "str", "(", "response", ".", "read", "(", ")", ")", "return", "ret" ]
Get Ukko's report from the fixed URL.
[ "Get", "Ukko", "s", "report", "from", "the", "fixed", "URL", "." ]
54dc3e31c97a3f938e58272f8ab80b6bcafeff58
https://github.com/assamite/creamas/blob/54dc3e31c97a3f938e58272f8ab80b6bcafeff58/creamas/examples/grid/ukko.py#L41-L46
train
assamite/creamas
creamas/examples/grid/ukko.py
get_nodes
def get_nodes(n=8, exclude=[], loop=None): '''Get Ukko nodes with the least amount of load. May return less than *n* nodes if there are not as many nodes available, the nodes are reserved or the nodes are on the exclude list. :param int n: Number of Ukko nodes to return. :param list exclude: Nodes to exclude from the returned list. :param loop: asyncio's event loop to test if each returned node is currently loggable. The test is done by trying to connect to the node with (async)ssh. :rtype list: :returns: Locations of Ukko nodes with the least amount of load ''' report = _get_ukko_report() nodes = _parse_ukko_report(report) ret = [] while len(ret) < n and len(nodes) > 0: node = nodes[0] if node not in exclude: reachable = True if loop is not None: reachable = loop.run_until_complete(_test_node(node)) if reachable: ret.append(node) nodes = nodes[1:] return ret
python
def get_nodes(n=8, exclude=[], loop=None): '''Get Ukko nodes with the least amount of load. May return less than *n* nodes if there are not as many nodes available, the nodes are reserved or the nodes are on the exclude list. :param int n: Number of Ukko nodes to return. :param list exclude: Nodes to exclude from the returned list. :param loop: asyncio's event loop to test if each returned node is currently loggable. The test is done by trying to connect to the node with (async)ssh. :rtype list: :returns: Locations of Ukko nodes with the least amount of load ''' report = _get_ukko_report() nodes = _parse_ukko_report(report) ret = [] while len(ret) < n and len(nodes) > 0: node = nodes[0] if node not in exclude: reachable = True if loop is not None: reachable = loop.run_until_complete(_test_node(node)) if reachable: ret.append(node) nodes = nodes[1:] return ret
[ "def", "get_nodes", "(", "n", "=", "8", ",", "exclude", "=", "[", "]", ",", "loop", "=", "None", ")", ":", "report", "=", "_get_ukko_report", "(", ")", "nodes", "=", "_parse_ukko_report", "(", "report", ")", "ret", "=", "[", "]", "while", "len", "(", "ret", ")", "<", "n", "and", "len", "(", "nodes", ")", ">", "0", ":", "node", "=", "nodes", "[", "0", "]", "if", "node", "not", "in", "exclude", ":", "reachable", "=", "True", "if", "loop", "is", "not", "None", ":", "reachable", "=", "loop", ".", "run_until_complete", "(", "_test_node", "(", "node", ")", ")", "if", "reachable", ":", "ret", ".", "append", "(", "node", ")", "nodes", "=", "nodes", "[", "1", ":", "]", "return", "ret" ]
Get Ukko nodes with the least amount of load. May return less than *n* nodes if there are not as many nodes available, the nodes are reserved or the nodes are on the exclude list. :param int n: Number of Ukko nodes to return. :param list exclude: Nodes to exclude from the returned list. :param loop: asyncio's event loop to test if each returned node is currently loggable. The test is done by trying to connect to the node with (async)ssh. :rtype list: :returns: Locations of Ukko nodes with the least amount of load
[ "Get", "Ukko", "nodes", "with", "the", "least", "amount", "of", "load", "." ]
54dc3e31c97a3f938e58272f8ab80b6bcafeff58
https://github.com/assamite/creamas/blob/54dc3e31c97a3f938e58272f8ab80b6bcafeff58/creamas/examples/grid/ukko.py#L60-L88
train
brunato/lograptor
lograptor/tui.py
get_unix_ioctl_terminal_size
def get_unix_ioctl_terminal_size(): """Get the terminal size of a UNIX terminal using the ioctl UNIX command.""" def ioctl_gwinsz(fd): try: import fcntl import termios import struct return struct.unpack('hh', fcntl.ioctl(fd, termios.TIOCGWINSZ, '1234')) except (IOError, OSError): return None cr = ioctl_gwinsz(0) or ioctl_gwinsz(1) or ioctl_gwinsz(2) if not cr: try: f = open(os.ctermid()) cr = ioctl_gwinsz(f.fileno()) f.close() except (IOError, OSError): pass if not cr: try: cr = (os.environ['LINES'], os.environ['COLUMNS']) except KeyError: return None return int(cr[1]), int(cr[0])
python
def get_unix_ioctl_terminal_size(): """Get the terminal size of a UNIX terminal using the ioctl UNIX command.""" def ioctl_gwinsz(fd): try: import fcntl import termios import struct return struct.unpack('hh', fcntl.ioctl(fd, termios.TIOCGWINSZ, '1234')) except (IOError, OSError): return None cr = ioctl_gwinsz(0) or ioctl_gwinsz(1) or ioctl_gwinsz(2) if not cr: try: f = open(os.ctermid()) cr = ioctl_gwinsz(f.fileno()) f.close() except (IOError, OSError): pass if not cr: try: cr = (os.environ['LINES'], os.environ['COLUMNS']) except KeyError: return None return int(cr[1]), int(cr[0])
[ "def", "get_unix_ioctl_terminal_size", "(", ")", ":", "def", "ioctl_gwinsz", "(", "fd", ")", ":", "try", ":", "import", "fcntl", "import", "termios", "import", "struct", "return", "struct", ".", "unpack", "(", "'hh'", ",", "fcntl", ".", "ioctl", "(", "fd", ",", "termios", ".", "TIOCGWINSZ", ",", "'1234'", ")", ")", "except", "(", "IOError", ",", "OSError", ")", ":", "return", "None", "cr", "=", "ioctl_gwinsz", "(", "0", ")", "or", "ioctl_gwinsz", "(", "1", ")", "or", "ioctl_gwinsz", "(", "2", ")", "if", "not", "cr", ":", "try", ":", "f", "=", "open", "(", "os", ".", "ctermid", "(", ")", ")", "cr", "=", "ioctl_gwinsz", "(", "f", ".", "fileno", "(", ")", ")", "f", ".", "close", "(", ")", "except", "(", "IOError", ",", "OSError", ")", ":", "pass", "if", "not", "cr", ":", "try", ":", "cr", "=", "(", "os", ".", "environ", "[", "'LINES'", "]", ",", "os", ".", "environ", "[", "'COLUMNS'", "]", ")", "except", "KeyError", ":", "return", "None", "return", "int", "(", "cr", "[", "1", "]", ")", ",", "int", "(", "cr", "[", "0", "]", ")" ]
Get the terminal size of a UNIX terminal using the ioctl UNIX command.
[ "Get", "the", "terminal", "size", "of", "a", "UNIX", "terminal", "using", "the", "ioctl", "UNIX", "command", "." ]
b1f09fe1b429ed15110610092704ef12d253f3c9
https://github.com/brunato/lograptor/blob/b1f09fe1b429ed15110610092704ef12d253f3c9/lograptor/tui.py#L94-L118
train
PBR/MQ2
MQ2/add_marker_to_qtls.py
add_marker_to_qtl
def add_marker_to_qtl(qtl, map_list): """Add the closest marker to the given QTL. :arg qtl: a row of the QTL list. :arg map_list: the genetic map containing the list of markers. """ closest = '' diff = None for marker in map_list: if qtl[1] == marker[1]: tmp_diff = float(qtl[2]) - float(marker[2]) if diff is None or abs(diff) > abs(tmp_diff): diff = tmp_diff closest = marker if closest != '': closest = closest[0] return closest
python
def add_marker_to_qtl(qtl, map_list): """Add the closest marker to the given QTL. :arg qtl: a row of the QTL list. :arg map_list: the genetic map containing the list of markers. """ closest = '' diff = None for marker in map_list: if qtl[1] == marker[1]: tmp_diff = float(qtl[2]) - float(marker[2]) if diff is None or abs(diff) > abs(tmp_diff): diff = tmp_diff closest = marker if closest != '': closest = closest[0] return closest
[ "def", "add_marker_to_qtl", "(", "qtl", ",", "map_list", ")", ":", "closest", "=", "''", "diff", "=", "None", "for", "marker", "in", "map_list", ":", "if", "qtl", "[", "1", "]", "==", "marker", "[", "1", "]", ":", "tmp_diff", "=", "float", "(", "qtl", "[", "2", "]", ")", "-", "float", "(", "marker", "[", "2", "]", ")", "if", "diff", "is", "None", "or", "abs", "(", "diff", ")", ">", "abs", "(", "tmp_diff", ")", ":", "diff", "=", "tmp_diff", "closest", "=", "marker", "if", "closest", "!=", "''", ":", "closest", "=", "closest", "[", "0", "]", "return", "closest" ]
Add the closest marker to the given QTL. :arg qtl: a row of the QTL list. :arg map_list: the genetic map containing the list of markers.
[ "Add", "the", "closest", "marker", "to", "the", "given", "QTL", "." ]
6d84dea47e6751333004743f588f03158e35c28d
https://github.com/PBR/MQ2/blob/6d84dea47e6751333004743f588f03158e35c28d/MQ2/add_marker_to_qtls.py#L38-L55
train
PBR/MQ2
MQ2/add_marker_to_qtls.py
add_marker_to_qtls
def add_marker_to_qtls(qtlfile, mapfile, outputfile='qtls_with_mk.csv'): """This function adds to a list of QTLs, the closest marker to the QTL peak. :arg qtlfile: a CSV list of all the QTLs found. The file should be structured as follow:: Trait, Linkage group, position, other columns The other columns will not matter as long as the first three columns are as such. :arg mapfile: a CSV representation of the map used for the QTL mapping analysis. The file should be structured as follow:: Marker, Linkage group, position :kwarg outputfile: the name of the output file in which the list of QTLs with their closest marker will be written. """ qtl_list = read_input_file(qtlfile, ',') map_list = read_input_file(mapfile, ',') if not qtl_list or not map_list: # pragma: no cover return qtl_list[0].append('Closest marker') qtls = [] qtls.append(qtl_list[0]) for qtl in qtl_list[1:]: qtl.append(add_marker_to_qtl(qtl, map_list)) qtls.append(qtl) LOG.info('- %s QTLs processed in %s' % (len(qtls), qtlfile)) write_matrix(outputfile, qtls)
python
def add_marker_to_qtls(qtlfile, mapfile, outputfile='qtls_with_mk.csv'): """This function adds to a list of QTLs, the closest marker to the QTL peak. :arg qtlfile: a CSV list of all the QTLs found. The file should be structured as follow:: Trait, Linkage group, position, other columns The other columns will not matter as long as the first three columns are as such. :arg mapfile: a CSV representation of the map used for the QTL mapping analysis. The file should be structured as follow:: Marker, Linkage group, position :kwarg outputfile: the name of the output file in which the list of QTLs with their closest marker will be written. """ qtl_list = read_input_file(qtlfile, ',') map_list = read_input_file(mapfile, ',') if not qtl_list or not map_list: # pragma: no cover return qtl_list[0].append('Closest marker') qtls = [] qtls.append(qtl_list[0]) for qtl in qtl_list[1:]: qtl.append(add_marker_to_qtl(qtl, map_list)) qtls.append(qtl) LOG.info('- %s QTLs processed in %s' % (len(qtls), qtlfile)) write_matrix(outputfile, qtls)
[ "def", "add_marker_to_qtls", "(", "qtlfile", ",", "mapfile", ",", "outputfile", "=", "'qtls_with_mk.csv'", ")", ":", "qtl_list", "=", "read_input_file", "(", "qtlfile", ",", "','", ")", "map_list", "=", "read_input_file", "(", "mapfile", ",", "','", ")", "if", "not", "qtl_list", "or", "not", "map_list", ":", "# pragma: no cover", "return", "qtl_list", "[", "0", "]", ".", "append", "(", "'Closest marker'", ")", "qtls", "=", "[", "]", "qtls", ".", "append", "(", "qtl_list", "[", "0", "]", ")", "for", "qtl", "in", "qtl_list", "[", "1", ":", "]", ":", "qtl", ".", "append", "(", "add_marker_to_qtl", "(", "qtl", ",", "map_list", ")", ")", "qtls", ".", "append", "(", "qtl", ")", "LOG", ".", "info", "(", "'- %s QTLs processed in %s'", "%", "(", "len", "(", "qtls", ")", ",", "qtlfile", ")", ")", "write_matrix", "(", "outputfile", ",", "qtls", ")" ]
This function adds to a list of QTLs, the closest marker to the QTL peak. :arg qtlfile: a CSV list of all the QTLs found. The file should be structured as follow:: Trait, Linkage group, position, other columns The other columns will not matter as long as the first three columns are as such. :arg mapfile: a CSV representation of the map used for the QTL mapping analysis. The file should be structured as follow:: Marker, Linkage group, position :kwarg outputfile: the name of the output file in which the list of QTLs with their closest marker will be written.
[ "This", "function", "adds", "to", "a", "list", "of", "QTLs", "the", "closest", "marker", "to", "the", "QTL", "peak", "." ]
6d84dea47e6751333004743f588f03158e35c28d
https://github.com/PBR/MQ2/blob/6d84dea47e6751333004743f588f03158e35c28d/MQ2/add_marker_to_qtls.py#L58-L87
train
kata198/QueryableList
QueryableList/Builder.py
QueryBuilder.addFilter
def addFilter(self, filterMethod=FILTER_METHOD_AND, **kwargs): ''' addFilter - Add a filter to this query. @param filterMethod <str> - The filter method to use (AND or OR), default: 'AND' @param additional args - Filter arguments. @see QueryableListBase.filter @raises ValueError if filterMethod is not one of known methods. ''' filterMethod = filterMethod.upper() if filterMethod not in FILTER_METHODS: raise ValueError('Unknown filter method, %s. Must be one of: %s' %(str(filterMethod), repr(FILTER_METHODS))) self.filters.append((filterMethod, kwargs))
python
def addFilter(self, filterMethod=FILTER_METHOD_AND, **kwargs): ''' addFilter - Add a filter to this query. @param filterMethod <str> - The filter method to use (AND or OR), default: 'AND' @param additional args - Filter arguments. @see QueryableListBase.filter @raises ValueError if filterMethod is not one of known methods. ''' filterMethod = filterMethod.upper() if filterMethod not in FILTER_METHODS: raise ValueError('Unknown filter method, %s. Must be one of: %s' %(str(filterMethod), repr(FILTER_METHODS))) self.filters.append((filterMethod, kwargs))
[ "def", "addFilter", "(", "self", ",", "filterMethod", "=", "FILTER_METHOD_AND", ",", "*", "*", "kwargs", ")", ":", "filterMethod", "=", "filterMethod", ".", "upper", "(", ")", "if", "filterMethod", "not", "in", "FILTER_METHODS", ":", "raise", "ValueError", "(", "'Unknown filter method, %s. Must be one of: %s'", "%", "(", "str", "(", "filterMethod", ")", ",", "repr", "(", "FILTER_METHODS", ")", ")", ")", "self", ".", "filters", ".", "append", "(", "(", "filterMethod", ",", "kwargs", ")", ")" ]
addFilter - Add a filter to this query. @param filterMethod <str> - The filter method to use (AND or OR), default: 'AND' @param additional args - Filter arguments. @see QueryableListBase.filter @raises ValueError if filterMethod is not one of known methods.
[ "addFilter", "-", "Add", "a", "filter", "to", "this", "query", "." ]
279286d46205ce8268af42e03b75820a7483fddb
https://github.com/kata198/QueryableList/blob/279286d46205ce8268af42e03b75820a7483fddb/QueryableList/Builder.py#L33-L47
train
kata198/QueryableList
QueryableList/Builder.py
QueryBuilder.execute
def execute(self, lst): ''' execute - Execute the series of filters, in order, on the provided list. @param lst <list/ A QueryableList type> - The list to filter. If you already know the types of items within the list, you can pick a QueryableList implementing class to get faster results. Otherwise, if a list type that does not extend QueryableListBase is provided, QueryableListMixed will be used (Supports both object-like and dict-like items) @return - QueryableList of results. If you provided #lst as a QueryableList type already, that same type will be returned. Otherwise, a QueryableListMixed will be returned. ''' from . import QueryableListMixed if not issubclass(lst.__class__, QueryableListBase): lst = QueryableListMixed(lst) filters = copy.copy(self.filters) nextFilter = filters.popleft() while nextFilter: (filterMethod, filterArgs) = nextFilter lst = self._applyFilter(lst, filterMethod, filterArgs) if len(lst) == 0: return lst try: nextFilter = filters.popleft() except: break return lst
python
def execute(self, lst): ''' execute - Execute the series of filters, in order, on the provided list. @param lst <list/ A QueryableList type> - The list to filter. If you already know the types of items within the list, you can pick a QueryableList implementing class to get faster results. Otherwise, if a list type that does not extend QueryableListBase is provided, QueryableListMixed will be used (Supports both object-like and dict-like items) @return - QueryableList of results. If you provided #lst as a QueryableList type already, that same type will be returned. Otherwise, a QueryableListMixed will be returned. ''' from . import QueryableListMixed if not issubclass(lst.__class__, QueryableListBase): lst = QueryableListMixed(lst) filters = copy.copy(self.filters) nextFilter = filters.popleft() while nextFilter: (filterMethod, filterArgs) = nextFilter lst = self._applyFilter(lst, filterMethod, filterArgs) if len(lst) == 0: return lst try: nextFilter = filters.popleft() except: break return lst
[ "def", "execute", "(", "self", ",", "lst", ")", ":", "from", ".", "import", "QueryableListMixed", "if", "not", "issubclass", "(", "lst", ".", "__class__", ",", "QueryableListBase", ")", ":", "lst", "=", "QueryableListMixed", "(", "lst", ")", "filters", "=", "copy", ".", "copy", "(", "self", ".", "filters", ")", "nextFilter", "=", "filters", ".", "popleft", "(", ")", "while", "nextFilter", ":", "(", "filterMethod", ",", "filterArgs", ")", "=", "nextFilter", "lst", "=", "self", ".", "_applyFilter", "(", "lst", ",", "filterMethod", ",", "filterArgs", ")", "if", "len", "(", "lst", ")", "==", "0", ":", "return", "lst", "try", ":", "nextFilter", "=", "filters", ".", "popleft", "(", ")", "except", ":", "break", "return", "lst" ]
execute - Execute the series of filters, in order, on the provided list. @param lst <list/ A QueryableList type> - The list to filter. If you already know the types of items within the list, you can pick a QueryableList implementing class to get faster results. Otherwise, if a list type that does not extend QueryableListBase is provided, QueryableListMixed will be used (Supports both object-like and dict-like items) @return - QueryableList of results. If you provided #lst as a QueryableList type already, that same type will be returned. Otherwise, a QueryableListMixed will be returned.
[ "execute", "-", "Execute", "the", "series", "of", "filters", "in", "order", "on", "the", "provided", "list", "." ]
279286d46205ce8268af42e03b75820a7483fddb
https://github.com/kata198/QueryableList/blob/279286d46205ce8268af42e03b75820a7483fddb/QueryableList/Builder.py#L65-L90
train
kata198/QueryableList
QueryableList/Builder.py
QueryBuilder.copy
def copy(self): ''' copy - Create a copy of this query. @return <QueryBuilder> - a copy of this query ''' ret = QueryBuilder() ret.filters = copy.copy(self.filters) return ret
python
def copy(self): ''' copy - Create a copy of this query. @return <QueryBuilder> - a copy of this query ''' ret = QueryBuilder() ret.filters = copy.copy(self.filters) return ret
[ "def", "copy", "(", "self", ")", ":", "ret", "=", "QueryBuilder", "(", ")", "ret", ".", "filters", "=", "copy", ".", "copy", "(", "self", ".", "filters", ")", "return", "ret" ]
copy - Create a copy of this query. @return <QueryBuilder> - a copy of this query
[ "copy", "-", "Create", "a", "copy", "of", "this", "query", "." ]
279286d46205ce8268af42e03b75820a7483fddb
https://github.com/kata198/QueryableList/blob/279286d46205ce8268af42e03b75820a7483fddb/QueryableList/Builder.py#L92-L100
train
kata198/QueryableList
QueryableList/Builder.py
QueryBuilder._applyFilter
def _applyFilter(lst, filterMethod, filterArgs): ''' _applyFilter - Applies the given filter method on a set of args private method - used by execute @return QueryableList - a QueryableList containing the elements of the resulting filter ''' if filterMethod == FILTER_METHOD_AND: return lst.filterAnd(**filterArgs) else: # ALready validated in addFIlter that type is AND or OR return lst.filterOr(**filterArgs)
python
def _applyFilter(lst, filterMethod, filterArgs): ''' _applyFilter - Applies the given filter method on a set of args private method - used by execute @return QueryableList - a QueryableList containing the elements of the resulting filter ''' if filterMethod == FILTER_METHOD_AND: return lst.filterAnd(**filterArgs) else: # ALready validated in addFIlter that type is AND or OR return lst.filterOr(**filterArgs)
[ "def", "_applyFilter", "(", "lst", ",", "filterMethod", ",", "filterArgs", ")", ":", "if", "filterMethod", "==", "FILTER_METHOD_AND", ":", "return", "lst", ".", "filterAnd", "(", "*", "*", "filterArgs", ")", "else", ":", "# ALready validated in addFIlter that type is AND or OR", "return", "lst", ".", "filterOr", "(", "*", "*", "filterArgs", ")" ]
_applyFilter - Applies the given filter method on a set of args private method - used by execute @return QueryableList - a QueryableList containing the elements of the resulting filter
[ "_applyFilter", "-", "Applies", "the", "given", "filter", "method", "on", "a", "set", "of", "args" ]
279286d46205ce8268af42e03b75820a7483fddb
https://github.com/kata198/QueryableList/blob/279286d46205ce8268af42e03b75820a7483fddb/QueryableList/Builder.py#L103-L114
train
Fire-Proof/cuepy
cuepy/cuepy.py
CorsairSDK._raise_corsair_error
def _raise_corsair_error(self, error=None, message=""): """ Raise error message based on the last reported error from the SDK :param error: specify error type :type error: int :param message: specify error message :type message: str """ if error is None: error = self.last_error() raise error(message)
python
def _raise_corsair_error(self, error=None, message=""): """ Raise error message based on the last reported error from the SDK :param error: specify error type :type error: int :param message: specify error message :type message: str """ if error is None: error = self.last_error() raise error(message)
[ "def", "_raise_corsair_error", "(", "self", ",", "error", "=", "None", ",", "message", "=", "\"\"", ")", ":", "if", "error", "is", "None", ":", "error", "=", "self", ".", "last_error", "(", ")", "raise", "error", "(", "message", ")" ]
Raise error message based on the last reported error from the SDK :param error: specify error type :type error: int :param message: specify error message :type message: str
[ "Raise", "error", "message", "based", "on", "the", "last", "reported", "error", "from", "the", "SDK" ]
5add7d62a31589bcdc7d2103c9c482bf718556ec
https://github.com/Fire-Proof/cuepy/blob/5add7d62a31589bcdc7d2103c9c482bf718556ec/cuepy/cuepy.py#L26-L37
train
Fire-Proof/cuepy
cuepy/cuepy.py
CorsairSDK.device_count
def device_count(self): """ Find amount of CUE devices :returns: amount of CUE devices :rtype: int """ device_count = get_device_count(self.corsair_sdk) if device_count == -1: self._raise_corsair_error() return device_count
python
def device_count(self): """ Find amount of CUE devices :returns: amount of CUE devices :rtype: int """ device_count = get_device_count(self.corsair_sdk) if device_count == -1: self._raise_corsair_error() return device_count
[ "def", "device_count", "(", "self", ")", ":", "device_count", "=", "get_device_count", "(", "self", ".", "corsair_sdk", ")", "if", "device_count", "==", "-", "1", ":", "self", ".", "_raise_corsair_error", "(", ")", "return", "device_count" ]
Find amount of CUE devices :returns: amount of CUE devices :rtype: int
[ "Find", "amount", "of", "CUE", "devices" ]
5add7d62a31589bcdc7d2103c9c482bf718556ec
https://github.com/Fire-Proof/cuepy/blob/5add7d62a31589bcdc7d2103c9c482bf718556ec/cuepy/cuepy.py#L48-L58
train
Fire-Proof/cuepy
cuepy/cuepy.py
CorsairSDK.led_id_from_char
def led_id_from_char(self, char): """ Get id of a led by the letter Only between A-Z :param char: Character to find led_id from :type char: str :returns: id for led :rtype: int """ led_id = get_led_id_for_key_name(self.corsair_sdk, bytes(char)) if led_id == 0: self._raise_corsair_error() return led_id
python
def led_id_from_char(self, char): """ Get id of a led by the letter Only between A-Z :param char: Character to find led_id from :type char: str :returns: id for led :rtype: int """ led_id = get_led_id_for_key_name(self.corsair_sdk, bytes(char)) if led_id == 0: self._raise_corsair_error() return led_id
[ "def", "led_id_from_char", "(", "self", ",", "char", ")", ":", "led_id", "=", "get_led_id_for_key_name", "(", "self", ".", "corsair_sdk", ",", "bytes", "(", "char", ")", ")", "if", "led_id", "==", "0", ":", "self", ".", "_raise_corsair_error", "(", ")", "return", "led_id" ]
Get id of a led by the letter Only between A-Z :param char: Character to find led_id from :type char: str :returns: id for led :rtype: int
[ "Get", "id", "of", "a", "led", "by", "the", "letter", "Only", "between", "A", "-", "Z" ]
5add7d62a31589bcdc7d2103c9c482bf718556ec
https://github.com/Fire-Proof/cuepy/blob/5add7d62a31589bcdc7d2103c9c482bf718556ec/cuepy/cuepy.py#L60-L73
train
Fire-Proof/cuepy
cuepy/cuepy.py
CorsairSDK.set_led
def set_led(self, led_id, color): """ Set color of an led :param led_id: id of led to set color :type led_id: int :param color: list of rgb values of new colors. eg. [255, 255, 255] :type color: list :returns: true if successful :rtype: bool """ if not set_leds_color(self.corsair_sdk, LedColor(led_id, *color)): self._raise_corsair_error() return True
python
def set_led(self, led_id, color): """ Set color of an led :param led_id: id of led to set color :type led_id: int :param color: list of rgb values of new colors. eg. [255, 255, 255] :type color: list :returns: true if successful :rtype: bool """ if not set_leds_color(self.corsair_sdk, LedColor(led_id, *color)): self._raise_corsair_error() return True
[ "def", "set_led", "(", "self", ",", "led_id", ",", "color", ")", ":", "if", "not", "set_leds_color", "(", "self", ".", "corsair_sdk", ",", "LedColor", "(", "led_id", ",", "*", "color", ")", ")", ":", "self", ".", "_raise_corsair_error", "(", ")", "return", "True" ]
Set color of an led :param led_id: id of led to set color :type led_id: int :param color: list of rgb values of new colors. eg. [255, 255, 255] :type color: list :returns: true if successful :rtype: bool
[ "Set", "color", "of", "an", "led" ]
5add7d62a31589bcdc7d2103c9c482bf718556ec
https://github.com/Fire-Proof/cuepy/blob/5add7d62a31589bcdc7d2103c9c482bf718556ec/cuepy/cuepy.py#L75-L88
train
Fire-Proof/cuepy
cuepy/cuepy.py
CorsairSDK.request_control
def request_control(self, device_id, access_mode=True): """ Request exclusive control of device :param device_id: id of device :type device_id: int :param access_mode: True=exclusive, False=shared :type access_mode: bool :returns: true if successful :rtype: bool """ if access_mode: if not request_control(self.corsair_sdk, device_id): self._raise_corsair_error() return True else: self.reload()
python
def request_control(self, device_id, access_mode=True): """ Request exclusive control of device :param device_id: id of device :type device_id: int :param access_mode: True=exclusive, False=shared :type access_mode: bool :returns: true if successful :rtype: bool """ if access_mode: if not request_control(self.corsair_sdk, device_id): self._raise_corsair_error() return True else: self.reload()
[ "def", "request_control", "(", "self", ",", "device_id", ",", "access_mode", "=", "True", ")", ":", "if", "access_mode", ":", "if", "not", "request_control", "(", "self", ".", "corsair_sdk", ",", "device_id", ")", ":", "self", ".", "_raise_corsair_error", "(", ")", "return", "True", "else", ":", "self", ".", "reload", "(", ")" ]
Request exclusive control of device :param device_id: id of device :type device_id: int :param access_mode: True=exclusive, False=shared :type access_mode: bool :returns: true if successful :rtype: bool
[ "Request", "exclusive", "control", "of", "device" ]
5add7d62a31589bcdc7d2103c9c482bf718556ec
https://github.com/Fire-Proof/cuepy/blob/5add7d62a31589bcdc7d2103c9c482bf718556ec/cuepy/cuepy.py#L101-L117
train
Fire-Proof/cuepy
cuepy/cuepy.py
CorsairSDK.device
def device(self, device_id, *args, **kwargs): """ Return a Device object based on id :param device_id: id of device :type device_id: int :param args: extra parameters :param kwargs: extra parameters :returns: Device object :rtype: Device """ return Device(device_id, self.corsair_sdk, self._corsair_sdk_path, *args, **kwargs)
python
def device(self, device_id, *args, **kwargs): """ Return a Device object based on id :param device_id: id of device :type device_id: int :param args: extra parameters :param kwargs: extra parameters :returns: Device object :rtype: Device """ return Device(device_id, self.corsair_sdk, self._corsair_sdk_path, *args, **kwargs)
[ "def", "device", "(", "self", ",", "device_id", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "Device", "(", "device_id", ",", "self", ".", "corsair_sdk", ",", "self", ".", "_corsair_sdk_path", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
Return a Device object based on id :param device_id: id of device :type device_id: int :param args: extra parameters :param kwargs: extra parameters :returns: Device object :rtype: Device
[ "Return", "a", "Device", "object", "based", "on", "id" ]
5add7d62a31589bcdc7d2103c9c482bf718556ec
https://github.com/Fire-Proof/cuepy/blob/5add7d62a31589bcdc7d2103c9c482bf718556ec/cuepy/cuepy.py#L146-L157
train
Fire-Proof/cuepy
cuepy/cuepy.py
Device.device_info
def device_info(self, device_id=None): """ Return device information, if device_id is not specified, return for this device :param device_id: id of device :type device_id: int :returns: dict containing information about device :rtype: dict """ if device_id is None: device_id = self.device_id return get_device_info(self.corsair_sdk, device_id)
python
def device_info(self, device_id=None): """ Return device information, if device_id is not specified, return for this device :param device_id: id of device :type device_id: int :returns: dict containing information about device :rtype: dict """ if device_id is None: device_id = self.device_id return get_device_info(self.corsair_sdk, device_id)
[ "def", "device_info", "(", "self", ",", "device_id", "=", "None", ")", ":", "if", "device_id", "is", "None", ":", "device_id", "=", "self", ".", "device_id", "return", "get_device_info", "(", "self", ".", "corsair_sdk", ",", "device_id", ")" ]
Return device information, if device_id is not specified, return for this device :param device_id: id of device :type device_id: int :returns: dict containing information about device :rtype: dict
[ "Return", "device", "information", "if", "device_id", "is", "not", "specified", "return", "for", "this", "device" ]
5add7d62a31589bcdc7d2103c9c482bf718556ec
https://github.com/Fire-Proof/cuepy/blob/5add7d62a31589bcdc7d2103c9c482bf718556ec/cuepy/cuepy.py#L187-L198
train
Kortemme-Lab/klab
klab/bio/uniprot.py
get_obsolete_acc_to_uniparc
def get_obsolete_acc_to_uniparc(acc): ''' Tries to determine the UniParc ID for obsolete ACCs which are not returned using uniprot_map. :param acc: The UniProt accession number. :return: The corresponding UniParc ID. Warning: This is a fragile function as the underlying website generation or URL could change. ''' contents = http_get('www.uniprot.org/uniparc/?query={0}'.format(acc)) mtchs = re.findall(r'"UPI[A-Z0-9]+?"', contents, re.DOTALL) uniparc_id = set([m[1:-1] for m in mtchs]) if len(uniparc_id) == 1: return uniparc_id.pop() elif len(uniparc_id) > 1: raise Exception('Multiple UPI identifiers found.') return None
python
def get_obsolete_acc_to_uniparc(acc): ''' Tries to determine the UniParc ID for obsolete ACCs which are not returned using uniprot_map. :param acc: The UniProt accession number. :return: The corresponding UniParc ID. Warning: This is a fragile function as the underlying website generation or URL could change. ''' contents = http_get('www.uniprot.org/uniparc/?query={0}'.format(acc)) mtchs = re.findall(r'"UPI[A-Z0-9]+?"', contents, re.DOTALL) uniparc_id = set([m[1:-1] for m in mtchs]) if len(uniparc_id) == 1: return uniparc_id.pop() elif len(uniparc_id) > 1: raise Exception('Multiple UPI identifiers found.') return None
[ "def", "get_obsolete_acc_to_uniparc", "(", "acc", ")", ":", "contents", "=", "http_get", "(", "'www.uniprot.org/uniparc/?query={0}'", ".", "format", "(", "acc", ")", ")", "mtchs", "=", "re", ".", "findall", "(", "r'\"UPI[A-Z0-9]+?\"'", ",", "contents", ",", "re", ".", "DOTALL", ")", "uniparc_id", "=", "set", "(", "[", "m", "[", "1", ":", "-", "1", "]", "for", "m", "in", "mtchs", "]", ")", "if", "len", "(", "uniparc_id", ")", "==", "1", ":", "return", "uniparc_id", ".", "pop", "(", ")", "elif", "len", "(", "uniparc_id", ")", ">", "1", ":", "raise", "Exception", "(", "'Multiple UPI identifiers found.'", ")", "return", "None" ]
Tries to determine the UniParc ID for obsolete ACCs which are not returned using uniprot_map. :param acc: The UniProt accession number. :return: The corresponding UniParc ID. Warning: This is a fragile function as the underlying website generation or URL could change.
[ "Tries", "to", "determine", "the", "UniParc", "ID", "for", "obsolete", "ACCs", "which", "are", "not", "returned", "using", "uniprot_map", "." ]
6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b
https://github.com/Kortemme-Lab/klab/blob/6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b/klab/bio/uniprot.py#L34-L49
train
Kortemme-Lab/klab
klab/bio/uniprot.py
get_common_PDB_IDs
def get_common_PDB_IDs(pdb_id, cache_dir = None, exception_on_failure = True): '''This function takes a PDB ID, maps it to UniProt ACCs, then returns the common set of PDB IDs related to those ACCs. The purpose is to find any PDB files related to pdb_id, particularly for complexes, such that the other PDB files contain identical sequences or mutant complexes.''' m = pdb_to_uniparc([pdb_id], cache_dir = cache_dir) UniProtACs = [] if pdb_id in m: for entry in m[pdb_id]: if entry.UniProtACs: UniProtACs.extend(entry.UniProtACs) elif exception_on_failure: raise Exception('No UniProtAC for one entry.Lookup failed.') elif exception_on_failure: raise Exception('Lookup failed.') if not UniProtACs: if exception_on_failure: raise Exception('Lookup failed.') else: return None common_set = set(uniprot_map('ACC', 'PDB_ID', [UniProtACs[0]], cache_dir = cache_dir).get(UniProtACs[0], [])) for acc in UniProtACs[1:]: common_set = common_set.intersection(set(uniprot_map('ACC', 'PDB_ID', [acc], cache_dir = cache_dir).get(acc, []))) return sorted(common_set)
python
def get_common_PDB_IDs(pdb_id, cache_dir = None, exception_on_failure = True): '''This function takes a PDB ID, maps it to UniProt ACCs, then returns the common set of PDB IDs related to those ACCs. The purpose is to find any PDB files related to pdb_id, particularly for complexes, such that the other PDB files contain identical sequences or mutant complexes.''' m = pdb_to_uniparc([pdb_id], cache_dir = cache_dir) UniProtACs = [] if pdb_id in m: for entry in m[pdb_id]: if entry.UniProtACs: UniProtACs.extend(entry.UniProtACs) elif exception_on_failure: raise Exception('No UniProtAC for one entry.Lookup failed.') elif exception_on_failure: raise Exception('Lookup failed.') if not UniProtACs: if exception_on_failure: raise Exception('Lookup failed.') else: return None common_set = set(uniprot_map('ACC', 'PDB_ID', [UniProtACs[0]], cache_dir = cache_dir).get(UniProtACs[0], [])) for acc in UniProtACs[1:]: common_set = common_set.intersection(set(uniprot_map('ACC', 'PDB_ID', [acc], cache_dir = cache_dir).get(acc, []))) return sorted(common_set)
[ "def", "get_common_PDB_IDs", "(", "pdb_id", ",", "cache_dir", "=", "None", ",", "exception_on_failure", "=", "True", ")", ":", "m", "=", "pdb_to_uniparc", "(", "[", "pdb_id", "]", ",", "cache_dir", "=", "cache_dir", ")", "UniProtACs", "=", "[", "]", "if", "pdb_id", "in", "m", ":", "for", "entry", "in", "m", "[", "pdb_id", "]", ":", "if", "entry", ".", "UniProtACs", ":", "UniProtACs", ".", "extend", "(", "entry", ".", "UniProtACs", ")", "elif", "exception_on_failure", ":", "raise", "Exception", "(", "'No UniProtAC for one entry.Lookup failed.'", ")", "elif", "exception_on_failure", ":", "raise", "Exception", "(", "'Lookup failed.'", ")", "if", "not", "UniProtACs", ":", "if", "exception_on_failure", ":", "raise", "Exception", "(", "'Lookup failed.'", ")", "else", ":", "return", "None", "common_set", "=", "set", "(", "uniprot_map", "(", "'ACC'", ",", "'PDB_ID'", ",", "[", "UniProtACs", "[", "0", "]", "]", ",", "cache_dir", "=", "cache_dir", ")", ".", "get", "(", "UniProtACs", "[", "0", "]", ",", "[", "]", ")", ")", "for", "acc", "in", "UniProtACs", "[", "1", ":", "]", ":", "common_set", "=", "common_set", ".", "intersection", "(", "set", "(", "uniprot_map", "(", "'ACC'", ",", "'PDB_ID'", ",", "[", "acc", "]", ",", "cache_dir", "=", "cache_dir", ")", ".", "get", "(", "acc", ",", "[", "]", ")", ")", ")", "return", "sorted", "(", "common_set", ")" ]
This function takes a PDB ID, maps it to UniProt ACCs, then returns the common set of PDB IDs related to those ACCs. The purpose is to find any PDB files related to pdb_id, particularly for complexes, such that the other PDB files contain identical sequences or mutant complexes.
[ "This", "function", "takes", "a", "PDB", "ID", "maps", "it", "to", "UniProt", "ACCs", "then", "returns", "the", "common", "set", "of", "PDB", "IDs", "related", "to", "those", "ACCs", ".", "The", "purpose", "is", "to", "find", "any", "PDB", "files", "related", "to", "pdb_id", "particularly", "for", "complexes", "such", "that", "the", "other", "PDB", "files", "contain", "identical", "sequences", "or", "mutant", "complexes", "." ]
6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b
https://github.com/Kortemme-Lab/klab/blob/6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b/klab/bio/uniprot.py#L892-L915
train
Kortemme-Lab/klab
klab/bio/uniprot.py
UniProtACEntry._parse_sequence_tag
def _parse_sequence_tag(self): '''Parses the sequence and atomic mass.''' #main_tags = self._dom.getElementsByTagName("uniprot") #assert(len(main_tags) == 1) #entry_tags = main_tags[0].getElementsByTagName("entry") #assert(len(entry_tags) == 1) #entry_tags[0] entry_tag = self.entry_tag # only get sequence tags that are direct children of the entry tag (sequence tags can also be children of entry.comment.conflict) sequence_tags = [child for child in entry_tag.childNodes if child.nodeType == child.ELEMENT_NODE and child.tagName == 'sequence'] assert(len(sequence_tags) == 1) sequence_tag = sequence_tags[0] # atomic mass, sequence, CRC64 digest self.atomic_mass = float(sequence_tag.getAttribute("mass")) self.sequence = "".join(sequence_tag.firstChild.nodeValue.strip().split("\n")) self.sequence_length = int(sequence_tag.getAttribute("length")) self.CRC64Digest = sequence_tag.getAttribute("checksum")
python
def _parse_sequence_tag(self): '''Parses the sequence and atomic mass.''' #main_tags = self._dom.getElementsByTagName("uniprot") #assert(len(main_tags) == 1) #entry_tags = main_tags[0].getElementsByTagName("entry") #assert(len(entry_tags) == 1) #entry_tags[0] entry_tag = self.entry_tag # only get sequence tags that are direct children of the entry tag (sequence tags can also be children of entry.comment.conflict) sequence_tags = [child for child in entry_tag.childNodes if child.nodeType == child.ELEMENT_NODE and child.tagName == 'sequence'] assert(len(sequence_tags) == 1) sequence_tag = sequence_tags[0] # atomic mass, sequence, CRC64 digest self.atomic_mass = float(sequence_tag.getAttribute("mass")) self.sequence = "".join(sequence_tag.firstChild.nodeValue.strip().split("\n")) self.sequence_length = int(sequence_tag.getAttribute("length")) self.CRC64Digest = sequence_tag.getAttribute("checksum")
[ "def", "_parse_sequence_tag", "(", "self", ")", ":", "#main_tags = self._dom.getElementsByTagName(\"uniprot\")", "#assert(len(main_tags) == 1)", "#entry_tags = main_tags[0].getElementsByTagName(\"entry\")", "#assert(len(entry_tags) == 1)", "#entry_tags[0]", "entry_tag", "=", "self", ".", "entry_tag", "# only get sequence tags that are direct children of the entry tag (sequence tags can also be children of entry.comment.conflict)", "sequence_tags", "=", "[", "child", "for", "child", "in", "entry_tag", ".", "childNodes", "if", "child", ".", "nodeType", "==", "child", ".", "ELEMENT_NODE", "and", "child", ".", "tagName", "==", "'sequence'", "]", "assert", "(", "len", "(", "sequence_tags", ")", "==", "1", ")", "sequence_tag", "=", "sequence_tags", "[", "0", "]", "# atomic mass, sequence, CRC64 digest", "self", ".", "atomic_mass", "=", "float", "(", "sequence_tag", ".", "getAttribute", "(", "\"mass\"", ")", ")", "self", ".", "sequence", "=", "\"\"", ".", "join", "(", "sequence_tag", ".", "firstChild", ".", "nodeValue", ".", "strip", "(", ")", ".", "split", "(", "\"\\n\"", ")", ")", "self", ".", "sequence_length", "=", "int", "(", "sequence_tag", ".", "getAttribute", "(", "\"length\"", ")", ")", "self", ".", "CRC64Digest", "=", "sequence_tag", ".", "getAttribute", "(", "\"checksum\"", ")" ]
Parses the sequence and atomic mass.
[ "Parses", "the", "sequence", "and", "atomic", "mass", "." ]
6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b
https://github.com/Kortemme-Lab/klab/blob/6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b/klab/bio/uniprot.py#L542-L560
train
joe513/django-cool-pagination
django_cool_paginator/templatetags/cool_paginate.py
cool_paginate
def cool_paginate(context, **kwargs) -> dict: """Main function for pagination process.""" names = ( 'size', 'next_name', 'previous_name', 'elastic', 'page_obj', ) return_dict = {name: value for name, value in zip(names, map(kwargs.get, names))} if context.get('request'): return_dict['request'] = context['request'] else: raise RequestNotExists( 'Unable to find request in your template context,' 'please make sure that you have the request context processor enabled' ) if not return_dict.get('page_obj'): if context.get('page_obj'): return_dict['page_obj'] = context['page_obj'] else: raise PageNotSpecified( 'You customized paginator standard name, ' "but haven't specified it in {% cool_paginate %} tag." ) if not return_dict.get('elastic'): return_dict['elastic'] = getattr(settings, 'COOL_PAGINATOR_ELASTIC', 10) return return_dict
python
def cool_paginate(context, **kwargs) -> dict: """Main function for pagination process.""" names = ( 'size', 'next_name', 'previous_name', 'elastic', 'page_obj', ) return_dict = {name: value for name, value in zip(names, map(kwargs.get, names))} if context.get('request'): return_dict['request'] = context['request'] else: raise RequestNotExists( 'Unable to find request in your template context,' 'please make sure that you have the request context processor enabled' ) if not return_dict.get('page_obj'): if context.get('page_obj'): return_dict['page_obj'] = context['page_obj'] else: raise PageNotSpecified( 'You customized paginator standard name, ' "but haven't specified it in {% cool_paginate %} tag." ) if not return_dict.get('elastic'): return_dict['elastic'] = getattr(settings, 'COOL_PAGINATOR_ELASTIC', 10) return return_dict
[ "def", "cool_paginate", "(", "context", ",", "*", "*", "kwargs", ")", "->", "dict", ":", "names", "=", "(", "'size'", ",", "'next_name'", ",", "'previous_name'", ",", "'elastic'", ",", "'page_obj'", ",", ")", "return_dict", "=", "{", "name", ":", "value", "for", "name", ",", "value", "in", "zip", "(", "names", ",", "map", "(", "kwargs", ".", "get", ",", "names", ")", ")", "}", "if", "context", ".", "get", "(", "'request'", ")", ":", "return_dict", "[", "'request'", "]", "=", "context", "[", "'request'", "]", "else", ":", "raise", "RequestNotExists", "(", "'Unable to find request in your template context,'", "'please make sure that you have the request context processor enabled'", ")", "if", "not", "return_dict", ".", "get", "(", "'page_obj'", ")", ":", "if", "context", ".", "get", "(", "'page_obj'", ")", ":", "return_dict", "[", "'page_obj'", "]", "=", "context", "[", "'page_obj'", "]", "else", ":", "raise", "PageNotSpecified", "(", "'You customized paginator standard name, '", "\"but haven't specified it in {% cool_paginate %} tag.\"", ")", "if", "not", "return_dict", ".", "get", "(", "'elastic'", ")", ":", "return_dict", "[", "'elastic'", "]", "=", "getattr", "(", "settings", ",", "'COOL_PAGINATOR_ELASTIC'", ",", "10", ")", "return", "return_dict" ]
Main function for pagination process.
[ "Main", "function", "for", "pagination", "process", "." ]
ed75a151a016aef0f5216fdb1e3610597872a3ef
https://github.com/joe513/django-cool-pagination/blob/ed75a151a016aef0f5216fdb1e3610597872a3ef/django_cool_paginator/templatetags/cool_paginate.py#L32-L65
train
projectshift/shift-boiler
boiler/timer/restart_timer.py
time_restarts
def time_restarts(data_path): """ When called will create a file and measure its mtime on restarts """ path = os.path.join(data_path, 'last_restarted') if not os.path.isfile(path): with open(path, 'a'): os.utime(path, None) last_modified = os.stat(path).st_mtime with open(path, 'a'): os.utime(path, None) now = os.stat(path).st_mtime dif = round(now - last_modified, 2) last_restart = datetime.fromtimestamp(now).strftime('%H:%M:%S') result = 'LAST RESTART WAS {} SECONDS AGO at {}'.format(dif, last_restart) print(style(fg='green', bg='red', text=result))
python
def time_restarts(data_path): """ When called will create a file and measure its mtime on restarts """ path = os.path.join(data_path, 'last_restarted') if not os.path.isfile(path): with open(path, 'a'): os.utime(path, None) last_modified = os.stat(path).st_mtime with open(path, 'a'): os.utime(path, None) now = os.stat(path).st_mtime dif = round(now - last_modified, 2) last_restart = datetime.fromtimestamp(now).strftime('%H:%M:%S') result = 'LAST RESTART WAS {} SECONDS AGO at {}'.format(dif, last_restart) print(style(fg='green', bg='red', text=result))
[ "def", "time_restarts", "(", "data_path", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "data_path", ",", "'last_restarted'", ")", "if", "not", "os", ".", "path", ".", "isfile", "(", "path", ")", ":", "with", "open", "(", "path", ",", "'a'", ")", ":", "os", ".", "utime", "(", "path", ",", "None", ")", "last_modified", "=", "os", ".", "stat", "(", "path", ")", ".", "st_mtime", "with", "open", "(", "path", ",", "'a'", ")", ":", "os", ".", "utime", "(", "path", ",", "None", ")", "now", "=", "os", ".", "stat", "(", "path", ")", ".", "st_mtime", "dif", "=", "round", "(", "now", "-", "last_modified", ",", "2", ")", "last_restart", "=", "datetime", ".", "fromtimestamp", "(", "now", ")", ".", "strftime", "(", "'%H:%M:%S'", ")", "result", "=", "'LAST RESTART WAS {} SECONDS AGO at {}'", ".", "format", "(", "dif", ",", "last_restart", ")", "print", "(", "style", "(", "fg", "=", "'green'", ",", "bg", "=", "'red'", ",", "text", "=", "result", ")", ")" ]
When called will create a file and measure its mtime on restarts
[ "When", "called", "will", "create", "a", "file", "and", "measure", "its", "mtime", "on", "restarts" ]
8e6f3a3e4b9493fb6c8bd16bed160ede153bfb0b
https://github.com/projectshift/shift-boiler/blob/8e6f3a3e4b9493fb6c8bd16bed160ede153bfb0b/boiler/timer/restart_timer.py#L6-L22
train
MacHu-GWU/sqlalchemy_mate-project
sqlalchemy_mate/pt.py
from_stmt
def from_stmt(stmt, engine, **kwargs): """ Execute a query in form of texture clause, return the result in form of :class:`PrettyTable`. :type stmt: TextClause :param stmt: :type engine: Engine :param engine: :rtype: PrettyTable """ result_proxy = engine.execute(stmt, **kwargs) return from_db_cursor(result_proxy.cursor)
python
def from_stmt(stmt, engine, **kwargs): """ Execute a query in form of texture clause, return the result in form of :class:`PrettyTable`. :type stmt: TextClause :param stmt: :type engine: Engine :param engine: :rtype: PrettyTable """ result_proxy = engine.execute(stmt, **kwargs) return from_db_cursor(result_proxy.cursor)
[ "def", "from_stmt", "(", "stmt", ",", "engine", ",", "*", "*", "kwargs", ")", ":", "result_proxy", "=", "engine", ".", "execute", "(", "stmt", ",", "*", "*", "kwargs", ")", "return", "from_db_cursor", "(", "result_proxy", ".", "cursor", ")" ]
Execute a query in form of texture clause, return the result in form of :class:`PrettyTable`. :type stmt: TextClause :param stmt: :type engine: Engine :param engine: :rtype: PrettyTable
[ "Execute", "a", "query", "in", "form", "of", "texture", "clause", "return", "the", "result", "in", "form", "of" ]
946754744c8870f083fd7b4339fca15d1d6128b2
https://github.com/MacHu-GWU/sqlalchemy_mate-project/blob/946754744c8870f083fd7b4339fca15d1d6128b2/sqlalchemy_mate/pt.py#L34-L49
train
Kortemme-Lab/klab
klab/benchmarking/analysis/ddg_monomeric_stability_analysis.py
BenchmarkRun.compute_stability_classification
def compute_stability_classification(self, predicted_data, record, dataframe_record): '''Calculate the stability classification for this case.''' stability_classification, stability_classication_x_cutoff, stability_classication_y_cutoff = None, self.stability_classication_x_cutoff, self.stability_classication_y_cutoff if record['DDG'] != None: stability_classification = fraction_correct([record['DDG']], [predicted_data[self.ddg_analysis_type]], x_cutoff = stability_classication_x_cutoff, y_cutoff = stability_classication_y_cutoff) stability_classification = int(stability_classification) assert(stability_classification == 0 or stability_classification == 1) dataframe_record['StabilityClassification'] = stability_classification
python
def compute_stability_classification(self, predicted_data, record, dataframe_record): '''Calculate the stability classification for this case.''' stability_classification, stability_classication_x_cutoff, stability_classication_y_cutoff = None, self.stability_classication_x_cutoff, self.stability_classication_y_cutoff if record['DDG'] != None: stability_classification = fraction_correct([record['DDG']], [predicted_data[self.ddg_analysis_type]], x_cutoff = stability_classication_x_cutoff, y_cutoff = stability_classication_y_cutoff) stability_classification = int(stability_classification) assert(stability_classification == 0 or stability_classification == 1) dataframe_record['StabilityClassification'] = stability_classification
[ "def", "compute_stability_classification", "(", "self", ",", "predicted_data", ",", "record", ",", "dataframe_record", ")", ":", "stability_classification", ",", "stability_classication_x_cutoff", ",", "stability_classication_y_cutoff", "=", "None", ",", "self", ".", "stability_classication_x_cutoff", ",", "self", ".", "stability_classication_y_cutoff", "if", "record", "[", "'DDG'", "]", "!=", "None", ":", "stability_classification", "=", "fraction_correct", "(", "[", "record", "[", "'DDG'", "]", "]", ",", "[", "predicted_data", "[", "self", ".", "ddg_analysis_type", "]", "]", ",", "x_cutoff", "=", "stability_classication_x_cutoff", ",", "y_cutoff", "=", "stability_classication_y_cutoff", ")", "stability_classification", "=", "int", "(", "stability_classification", ")", "assert", "(", "stability_classification", "==", "0", "or", "stability_classification", "==", "1", ")", "dataframe_record", "[", "'StabilityClassification'", "]", "=", "stability_classification" ]
Calculate the stability classification for this case.
[ "Calculate", "the", "stability", "classification", "for", "this", "case", "." ]
6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b
https://github.com/Kortemme-Lab/klab/blob/6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b/klab/benchmarking/analysis/ddg_monomeric_stability_analysis.py#L595-L602
train
Kortemme-Lab/klab
klab/benchmarking/analysis/ddg_monomeric_stability_analysis.py
BenchmarkRun.compute_absolute_error
def compute_absolute_error(self, predicted_data, record, dataframe_record): '''Calculate the absolute error for this case.''' absolute_error = abs(record['DDG'] - predicted_data[self.ddg_analysis_type]) dataframe_record['AbsoluteError'] = absolute_error
python
def compute_absolute_error(self, predicted_data, record, dataframe_record): '''Calculate the absolute error for this case.''' absolute_error = abs(record['DDG'] - predicted_data[self.ddg_analysis_type]) dataframe_record['AbsoluteError'] = absolute_error
[ "def", "compute_absolute_error", "(", "self", ",", "predicted_data", ",", "record", ",", "dataframe_record", ")", ":", "absolute_error", "=", "abs", "(", "record", "[", "'DDG'", "]", "-", "predicted_data", "[", "self", ".", "ddg_analysis_type", "]", ")", "dataframe_record", "[", "'AbsoluteError'", "]", "=", "absolute_error" ]
Calculate the absolute error for this case.
[ "Calculate", "the", "absolute", "error", "for", "this", "case", "." ]
6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b
https://github.com/Kortemme-Lab/klab/blob/6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b/klab/benchmarking/analysis/ddg_monomeric_stability_analysis.py#L605-L608
train
Kortemme-Lab/klab
klab/benchmarking/analysis/ddg_monomeric_stability_analysis.py
BenchmarkRun.count_residues
def count_residues(self, record, pdb_record): '''Count the number of residues in the chains for the case.''' mutations = self.get_record_mutations(record) pdb_chains = set([m['Chain'] for m in mutations]) assert(len(pdb_chains) == 1) # we expect monomeric cases pdb_chain = pdb_chains.pop() return len(pdb_record.get('Chains', {}).get(pdb_chain, {}).get('Sequence', ''))
python
def count_residues(self, record, pdb_record): '''Count the number of residues in the chains for the case.''' mutations = self.get_record_mutations(record) pdb_chains = set([m['Chain'] for m in mutations]) assert(len(pdb_chains) == 1) # we expect monomeric cases pdb_chain = pdb_chains.pop() return len(pdb_record.get('Chains', {}).get(pdb_chain, {}).get('Sequence', ''))
[ "def", "count_residues", "(", "self", ",", "record", ",", "pdb_record", ")", ":", "mutations", "=", "self", ".", "get_record_mutations", "(", "record", ")", "pdb_chains", "=", "set", "(", "[", "m", "[", "'Chain'", "]", "for", "m", "in", "mutations", "]", ")", "assert", "(", "len", "(", "pdb_chains", ")", "==", "1", ")", "# we expect monomeric cases", "pdb_chain", "=", "pdb_chains", ".", "pop", "(", ")", "return", "len", "(", "pdb_record", ".", "get", "(", "'Chains'", ",", "{", "}", ")", ".", "get", "(", "pdb_chain", ",", "{", "}", ")", ".", "get", "(", "'Sequence'", ",", "''", ")", ")" ]
Count the number of residues in the chains for the case.
[ "Count", "the", "number", "of", "residues", "in", "the", "chains", "for", "the", "case", "." ]
6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b
https://github.com/Kortemme-Lab/klab/blob/6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b/klab/benchmarking/analysis/ddg_monomeric_stability_analysis.py#L615-L621
train
Kortemme-Lab/klab
klab/benchmarking/analysis/ddg_monomeric_stability_analysis.py
BenchmarkRun.full_analysis
def full_analysis(self, analysis_set, output_directory, verbose = True, compile_pdf = True, quick_plots = False): '''Combines calculate_metrics, write_dataframe_to_csv, and plot''' if not os.path.isdir(output_directory): os.makedirs(output_directory) self.analysis_directory = output_directory self.calculate_metrics(analysis_set = analysis_set, analysis_directory = output_directory, verbose = verbose) self.write_dataframe_to_csv( os.path.join(output_directory, 'data.csv') ) # Return latex_report return self.plot(analysis_set = analysis_set, analysis_directory = output_directory, matplotlib_plots = True, verbose = verbose, compile_pdf = compile_pdf, quick_plots = quick_plots)
python
def full_analysis(self, analysis_set, output_directory, verbose = True, compile_pdf = True, quick_plots = False): '''Combines calculate_metrics, write_dataframe_to_csv, and plot''' if not os.path.isdir(output_directory): os.makedirs(output_directory) self.analysis_directory = output_directory self.calculate_metrics(analysis_set = analysis_set, analysis_directory = output_directory, verbose = verbose) self.write_dataframe_to_csv( os.path.join(output_directory, 'data.csv') ) # Return latex_report return self.plot(analysis_set = analysis_set, analysis_directory = output_directory, matplotlib_plots = True, verbose = verbose, compile_pdf = compile_pdf, quick_plots = quick_plots)
[ "def", "full_analysis", "(", "self", ",", "analysis_set", ",", "output_directory", ",", "verbose", "=", "True", ",", "compile_pdf", "=", "True", ",", "quick_plots", "=", "False", ")", ":", "if", "not", "os", ".", "path", ".", "isdir", "(", "output_directory", ")", ":", "os", ".", "makedirs", "(", "output_directory", ")", "self", ".", "analysis_directory", "=", "output_directory", "self", ".", "calculate_metrics", "(", "analysis_set", "=", "analysis_set", ",", "analysis_directory", "=", "output_directory", ",", "verbose", "=", "verbose", ")", "self", ".", "write_dataframe_to_csv", "(", "os", ".", "path", ".", "join", "(", "output_directory", ",", "'data.csv'", ")", ")", "# Return latex_report", "return", "self", ".", "plot", "(", "analysis_set", "=", "analysis_set", ",", "analysis_directory", "=", "output_directory", ",", "matplotlib_plots", "=", "True", ",", "verbose", "=", "verbose", ",", "compile_pdf", "=", "compile_pdf", ",", "quick_plots", "=", "quick_plots", ")" ]
Combines calculate_metrics, write_dataframe_to_csv, and plot
[ "Combines", "calculate_metrics", "write_dataframe_to_csv", "and", "plot" ]
6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b
https://github.com/Kortemme-Lab/klab/blob/6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b/klab/benchmarking/analysis/ddg_monomeric_stability_analysis.py#L792-L801
train
Kortemme-Lab/klab
klab/benchmarking/analysis/ddg_monomeric_stability_analysis.py
BenchmarkRun.get_unique_ajps
def get_unique_ajps( benchmark_runs ): """ Determines which join parameters are unique """ br_ajps = {} for br in benchmark_runs: for ajp in br.additional_join_parameters: if ajp not in br_ajps: br_ajps[ajp] = set() br_ajps[ajp].add( br.additional_join_parameters[ajp]['short_name'] ) unique_ajps = [] for ajp in br_ajps: if len( br_ajps[ajp] ) > 1: unique_ajps.append( ajp ) return unique_ajps
python
def get_unique_ajps( benchmark_runs ): """ Determines which join parameters are unique """ br_ajps = {} for br in benchmark_runs: for ajp in br.additional_join_parameters: if ajp not in br_ajps: br_ajps[ajp] = set() br_ajps[ajp].add( br.additional_join_parameters[ajp]['short_name'] ) unique_ajps = [] for ajp in br_ajps: if len( br_ajps[ajp] ) > 1: unique_ajps.append( ajp ) return unique_ajps
[ "def", "get_unique_ajps", "(", "benchmark_runs", ")", ":", "br_ajps", "=", "{", "}", "for", "br", "in", "benchmark_runs", ":", "for", "ajp", "in", "br", ".", "additional_join_parameters", ":", "if", "ajp", "not", "in", "br_ajps", ":", "br_ajps", "[", "ajp", "]", "=", "set", "(", ")", "br_ajps", "[", "ajp", "]", ".", "add", "(", "br", ".", "additional_join_parameters", "[", "ajp", "]", "[", "'short_name'", "]", ")", "unique_ajps", "=", "[", "]", "for", "ajp", "in", "br_ajps", ":", "if", "len", "(", "br_ajps", "[", "ajp", "]", ")", ">", "1", ":", "unique_ajps", ".", "append", "(", "ajp", ")", "return", "unique_ajps" ]
Determines which join parameters are unique
[ "Determines", "which", "join", "parameters", "are", "unique" ]
6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b
https://github.com/Kortemme-Lab/klab/blob/6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b/klab/benchmarking/analysis/ddg_monomeric_stability_analysis.py#L822-L836
train
Kortemme-Lab/klab
klab/benchmarking/analysis/ddg_monomeric_stability_analysis.py
BenchmarkRun.plot_optimum_prediction_fraction_correct_cutoffs_over_range
def plot_optimum_prediction_fraction_correct_cutoffs_over_range(self, analysis_set, min_stability_classication_x_cutoff, max_stability_classication_x_cutoff, suppress_plot = False, analysis_file_prefix = None, verbose = True): '''Plots the optimum cutoff for the predictions to maximize the fraction correct metric over a range of experimental cutoffs. Returns the average scalar corresponding to the best value of fraction correct over a range of cutoff values for the experimental cutoffs.''' # Filenames analysis_set_prefix = '' #if analysis_set: # analysis_set_prefix = '_{0}'.format(analysis_set) plot_filename = None if not suppress_plot: output_filename_prefix = '{0}{1}optimum_fraction_correct_at_varying_kcal_mol'.format(analysis_file_prefix, analysis_set_prefix) plot_filename = output_filename_prefix + '.png' csv_filename = output_filename_prefix + '.txt' # Create CSV input lines = ['ExperimentalCutoff,BestPredictionCutoff'] x_cutoff = min_stability_classication_x_cutoff x_values = [] y_values = [] avg_scale = 0 plot_graph = self.generate_plots and not(suppress_plot) while x_cutoff < max_stability_classication_x_cutoff + 0.1: max_value_cutoff, max_value, fraction_correct_range = self.determine_optimum_fraction_correct_cutoffs(analysis_set, self.dataframe, x_cutoff) if plot_graph: lines.append(','.join(map(str, (x_cutoff, max_value_cutoff)))) x_values.append(x_cutoff) y_values.append(max_value_cutoff) avg_scale += max_value_cutoff / x_cutoff x_cutoff += 0.1 if plot_graph: write_file(csv_filename, '\n'.join(lines)) # Determine the average scalar needed to fit the plot avg_scale = avg_scale / len(x_values) x_values = numpy.array(x_values) y_values = numpy.array(y_values) scalars = y_values / x_values average_scalar = numpy.mean(scalars) plot_label_1 = 'Scalar == %0.2f' % average_scalar plot_label_2 = 'sigma == %0.2f' % numpy.std(scalars) # Create plot if plot_graph: if not(os.path.exists(plot_filename) and not(self.recreate_graphs)): if verbose: self.log('Saving scatterplot to %s.' % plot_filename) self.log('Saving plot of approximate optimal fraction correct cutoffs over varying experimental cutoffs to %s.' % plot_filename) title = 'Optimum cutoff for fraction correct metric at varying experimental cutoffs' if analysis_set: title += ' for {0}'.format(analysis_set) r_script = '''library(ggplot2) library(gridExtra) library(scales) library(qualV) png('%(plot_filename)s', height=4096, width=4096, bg="white", res=600) plot_data <- read.csv('%(csv_filename)s', header=T) max_y = max(plot_data$BestPredictionCutoff) p <- ggplot(data = plot_data, aes(x = ExperimentalCutoff, y = BestPredictionCutoff)) + xlab("Experimental cutoff (kcal/mol)") + ylab("Optimal prediction cutoff (energy units)") + ggtitle("%(title)s") + geom_point() + geom_line() + geom_smooth() + geom_text(hjust=0, size=4, color="black", aes(0.5, max_y, fontface="plain", family = "sans", label="%(plot_label_1)s"), parse = T) + geom_text(hjust=0, size=4, color="black", aes(0.5, max_y - 0.5, fontface="plain", family = "sans", label="%(plot_label_2)s"), parse = T) p dev.off()''' RInterface._runRScript(r_script % locals()) return average_scalar, plot_filename
python
def plot_optimum_prediction_fraction_correct_cutoffs_over_range(self, analysis_set, min_stability_classication_x_cutoff, max_stability_classication_x_cutoff, suppress_plot = False, analysis_file_prefix = None, verbose = True): '''Plots the optimum cutoff for the predictions to maximize the fraction correct metric over a range of experimental cutoffs. Returns the average scalar corresponding to the best value of fraction correct over a range of cutoff values for the experimental cutoffs.''' # Filenames analysis_set_prefix = '' #if analysis_set: # analysis_set_prefix = '_{0}'.format(analysis_set) plot_filename = None if not suppress_plot: output_filename_prefix = '{0}{1}optimum_fraction_correct_at_varying_kcal_mol'.format(analysis_file_prefix, analysis_set_prefix) plot_filename = output_filename_prefix + '.png' csv_filename = output_filename_prefix + '.txt' # Create CSV input lines = ['ExperimentalCutoff,BestPredictionCutoff'] x_cutoff = min_stability_classication_x_cutoff x_values = [] y_values = [] avg_scale = 0 plot_graph = self.generate_plots and not(suppress_plot) while x_cutoff < max_stability_classication_x_cutoff + 0.1: max_value_cutoff, max_value, fraction_correct_range = self.determine_optimum_fraction_correct_cutoffs(analysis_set, self.dataframe, x_cutoff) if plot_graph: lines.append(','.join(map(str, (x_cutoff, max_value_cutoff)))) x_values.append(x_cutoff) y_values.append(max_value_cutoff) avg_scale += max_value_cutoff / x_cutoff x_cutoff += 0.1 if plot_graph: write_file(csv_filename, '\n'.join(lines)) # Determine the average scalar needed to fit the plot avg_scale = avg_scale / len(x_values) x_values = numpy.array(x_values) y_values = numpy.array(y_values) scalars = y_values / x_values average_scalar = numpy.mean(scalars) plot_label_1 = 'Scalar == %0.2f' % average_scalar plot_label_2 = 'sigma == %0.2f' % numpy.std(scalars) # Create plot if plot_graph: if not(os.path.exists(plot_filename) and not(self.recreate_graphs)): if verbose: self.log('Saving scatterplot to %s.' % plot_filename) self.log('Saving plot of approximate optimal fraction correct cutoffs over varying experimental cutoffs to %s.' % plot_filename) title = 'Optimum cutoff for fraction correct metric at varying experimental cutoffs' if analysis_set: title += ' for {0}'.format(analysis_set) r_script = '''library(ggplot2) library(gridExtra) library(scales) library(qualV) png('%(plot_filename)s', height=4096, width=4096, bg="white", res=600) plot_data <- read.csv('%(csv_filename)s', header=T) max_y = max(plot_data$BestPredictionCutoff) p <- ggplot(data = plot_data, aes(x = ExperimentalCutoff, y = BestPredictionCutoff)) + xlab("Experimental cutoff (kcal/mol)") + ylab("Optimal prediction cutoff (energy units)") + ggtitle("%(title)s") + geom_point() + geom_line() + geom_smooth() + geom_text(hjust=0, size=4, color="black", aes(0.5, max_y, fontface="plain", family = "sans", label="%(plot_label_1)s"), parse = T) + geom_text(hjust=0, size=4, color="black", aes(0.5, max_y - 0.5, fontface="plain", family = "sans", label="%(plot_label_2)s"), parse = T) p dev.off()''' RInterface._runRScript(r_script % locals()) return average_scalar, plot_filename
[ "def", "plot_optimum_prediction_fraction_correct_cutoffs_over_range", "(", "self", ",", "analysis_set", ",", "min_stability_classication_x_cutoff", ",", "max_stability_classication_x_cutoff", ",", "suppress_plot", "=", "False", ",", "analysis_file_prefix", "=", "None", ",", "verbose", "=", "True", ")", ":", "# Filenames", "analysis_set_prefix", "=", "''", "#if analysis_set:", "# analysis_set_prefix = '_{0}'.format(analysis_set)", "plot_filename", "=", "None", "if", "not", "suppress_plot", ":", "output_filename_prefix", "=", "'{0}{1}optimum_fraction_correct_at_varying_kcal_mol'", ".", "format", "(", "analysis_file_prefix", ",", "analysis_set_prefix", ")", "plot_filename", "=", "output_filename_prefix", "+", "'.png'", "csv_filename", "=", "output_filename_prefix", "+", "'.txt'", "# Create CSV input", "lines", "=", "[", "'ExperimentalCutoff,BestPredictionCutoff'", "]", "x_cutoff", "=", "min_stability_classication_x_cutoff", "x_values", "=", "[", "]", "y_values", "=", "[", "]", "avg_scale", "=", "0", "plot_graph", "=", "self", ".", "generate_plots", "and", "not", "(", "suppress_plot", ")", "while", "x_cutoff", "<", "max_stability_classication_x_cutoff", "+", "0.1", ":", "max_value_cutoff", ",", "max_value", ",", "fraction_correct_range", "=", "self", ".", "determine_optimum_fraction_correct_cutoffs", "(", "analysis_set", ",", "self", ".", "dataframe", ",", "x_cutoff", ")", "if", "plot_graph", ":", "lines", ".", "append", "(", "','", ".", "join", "(", "map", "(", "str", ",", "(", "x_cutoff", ",", "max_value_cutoff", ")", ")", ")", ")", "x_values", ".", "append", "(", "x_cutoff", ")", "y_values", ".", "append", "(", "max_value_cutoff", ")", "avg_scale", "+=", "max_value_cutoff", "/", "x_cutoff", "x_cutoff", "+=", "0.1", "if", "plot_graph", ":", "write_file", "(", "csv_filename", ",", "'\\n'", ".", "join", "(", "lines", ")", ")", "# Determine the average scalar needed to fit the plot", "avg_scale", "=", "avg_scale", "/", "len", "(", "x_values", ")", "x_values", "=", "numpy", ".", "array", "(", "x_values", ")", "y_values", "=", "numpy", ".", "array", "(", "y_values", ")", "scalars", "=", "y_values", "/", "x_values", "average_scalar", "=", "numpy", ".", "mean", "(", "scalars", ")", "plot_label_1", "=", "'Scalar == %0.2f'", "%", "average_scalar", "plot_label_2", "=", "'sigma == %0.2f'", "%", "numpy", ".", "std", "(", "scalars", ")", "# Create plot", "if", "plot_graph", ":", "if", "not", "(", "os", ".", "path", ".", "exists", "(", "plot_filename", ")", "and", "not", "(", "self", ".", "recreate_graphs", ")", ")", ":", "if", "verbose", ":", "self", ".", "log", "(", "'Saving scatterplot to %s.'", "%", "plot_filename", ")", "self", ".", "log", "(", "'Saving plot of approximate optimal fraction correct cutoffs over varying experimental cutoffs to %s.'", "%", "plot_filename", ")", "title", "=", "'Optimum cutoff for fraction correct metric at varying experimental cutoffs'", "if", "analysis_set", ":", "title", "+=", "' for {0}'", ".", "format", "(", "analysis_set", ")", "r_script", "=", "'''library(ggplot2)\nlibrary(gridExtra)\nlibrary(scales)\nlibrary(qualV)\n\npng('%(plot_filename)s', height=4096, width=4096, bg=\"white\", res=600)\nplot_data <- read.csv('%(csv_filename)s', header=T)\n\nmax_y = max(plot_data$BestPredictionCutoff)\np <- ggplot(data = plot_data, aes(x = ExperimentalCutoff, y = BestPredictionCutoff)) +\n xlab(\"Experimental cutoff (kcal/mol)\") +\n ylab(\"Optimal prediction cutoff (energy units)\") +\n ggtitle(\"%(title)s\") +\n geom_point() +\n geom_line() +\n geom_smooth() +\n geom_text(hjust=0, size=4, color=\"black\", aes(0.5, max_y, fontface=\"plain\", family = \"sans\", label=\"%(plot_label_1)s\"), parse = T) +\n geom_text(hjust=0, size=4, color=\"black\", aes(0.5, max_y - 0.5, fontface=\"plain\", family = \"sans\", label=\"%(plot_label_2)s\"), parse = T)\np\ndev.off()'''", "RInterface", ".", "_runRScript", "(", "r_script", "%", "locals", "(", ")", ")", "return", "average_scalar", ",", "plot_filename" ]
Plots the optimum cutoff for the predictions to maximize the fraction correct metric over a range of experimental cutoffs. Returns the average scalar corresponding to the best value of fraction correct over a range of cutoff values for the experimental cutoffs.
[ "Plots", "the", "optimum", "cutoff", "for", "the", "predictions", "to", "maximize", "the", "fraction", "correct", "metric", "over", "a", "range", "of", "experimental", "cutoffs", ".", "Returns", "the", "average", "scalar", "corresponding", "to", "the", "best", "value", "of", "fraction", "correct", "over", "a", "range", "of", "cutoff", "values", "for", "the", "experimental", "cutoffs", "." ]
6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b
https://github.com/Kortemme-Lab/klab/blob/6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b/klab/benchmarking/analysis/ddg_monomeric_stability_analysis.py#L1759-L1833
train