ast_errors
stringlengths
0
3.2k
d_id
int64
44
121k
id
int64
70
338k
n_whitespaces
int64
3
14k
path
stringlengths
8
134
n_words
int64
4
4.82k
n_identifiers
int64
1
131
random_cut
stringlengths
16
15.8k
commit_message
stringlengths
2
15.3k
fun_name
stringlengths
1
84
commit_id
stringlengths
40
40
repo
stringlengths
3
28
file_name
stringlengths
5
79
ast_levels
int64
6
31
nloc
int64
1
548
url
stringlengths
31
59
complexity
int64
1
66
token_counts
int64
6
2.13k
n_ast_errors
int64
0
28
vocab_size
int64
4
1.11k
n_ast_nodes
int64
15
19.2k
language
stringclasses
1 value
documentation
dict
code
stringlengths
101
62.2k
@pytest.mark.parametrize("criterion", ("poisson", "squared_error"))
75,307
258,587
483
sklearn/ensemble/tests/test_forest.py
247
50
def test_poisson_vs_mse(): rng = np.random.RandomState(42) n_train, n_test, n_features = 500, 500, 10 X = datasets.make_low_rank_matrix( n_samples=n_train + n_test, n_features=n_features, random_state=rng ) # We create a log-linear Poisson model and downscale coef as it will get # exponentiated. coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0) y = rng.poisson(lam=np.exp(X @ coef)) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=n_test, random_state=rng ) # We prevent some overfitting by setting min_samples_split=10. forest_poi = RandomForestRegressor( criterion="poisson", min_samples_leaf=10, max_features="sqrt", random_state=rng ) forest_mse = RandomForestRegressor( criterion="squared_error", min_samples_leaf=10, max_features="sqrt", random_state=rng, ) forest_poi.fit(X_train, y_train) forest_mse.fit(X_train, y_train) dummy = DummyRegressor(strategy="mean").fit(X_train, y_train)
FIX poisson proxy_impurity_improvement (#22191)
test_poisson_vs_mse
2b15b908c11b90a15253394b1a03bd535720d6ce
scikit-learn
test_forest.py
14
32
https://github.com/scikit-learn/scikit-learn.git
3
279
1
163
458
Python
{ "docstring": "Test that random forest with poisson criterion performs better than\n mse for a poisson target.\n\n There is a similar test for DecisionTreeRegressor.\n ", "language": "en", "n_whitespaces": 31, "n_words": 22, "vocab_size": 19 }
def test_poisson_vs_mse(): rng = np.random.RandomState(42) n_train, n_test, n_features = 500, 500, 10 X = datasets.make_low_rank_matrix( n_samples=n_train + n_test, n_features=n_features, random_state=rng ) # We create a log-linear Poisson model and downscale coef as it will get # exponentiated. coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0) y = rng.poisson(lam=np.exp(X @ coef)) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=n_test, random_state=rng ) # We prevent some overfitting by setting min_samples_split=10. forest_poi = RandomForestRegressor( criterion="poisson", min_samples_leaf=10, max_features="sqrt", random_state=rng ) forest_mse = RandomForestRegressor( criterion="squared_error", min_samples_leaf=10, max_features="sqrt", random_state=rng, ) forest_poi.fit(X_train, y_train) forest_mse.fit(X_train, y_train) dummy = DummyRegressor(strategy="mean").fit(X_train, y_train) for X, y, val in [(X_train, y_train, "train"), (X_test, y_test, "test")]: metric_poi = mean_poisson_deviance(y, forest_poi.predict(X)) # squared_error forest might produce non-positive predictions => clip # If y = 0 for those, the poisson deviance gets too good. # If we drew more samples, we would eventually get y > 0 and the # poisson deviance would explode, i.e. be undefined. Therefore, we do # not clip to a tiny value like 1e-15, but to 1e-6. This acts like a # small penalty to the non-positive predictions. metric_mse = mean_poisson_deviance( y, np.clip(forest_mse.predict(X), 1e-6, None) ) metric_dummy = mean_poisson_deviance(y, dummy.predict(X)) # As squared_error might correctly predict 0 in train set, its train # score can be better than Poisson. This is no longer the case for the # test set. But keep the above comment for clipping in mind. if val == "test": assert metric_poi < metric_mse assert metric_poi < 0.5 * metric_dummy @pytest.mark.parametrize("criterion", ("poisson", "squared_error"))
29,265
130,419
77
python/ray/autoscaler/_private/cli_logger.py
28
14
def _external_caller_info(): frame = inspect.currentframe() caller = frame levels = 0 while caller.f_code.co_filename == __file__: caller = caller.f_back
[CI] Format Python code with Black (#21975) See #21316 and #21311 for the motivation behind these changes.
_external_caller_info
7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065
ray
cli_logger.py
11
11
https://github.com/ray-project/ray.git
2
59
0
22
100
Python
{ "docstring": "Get the info from the caller frame.\n\n Used to override the logging function and line number with the correct\n ones. See the comment on _patched_makeRecord for more info.\n ", "language": "en", "n_whitespaces": 37, "n_words": 28, "vocab_size": 24 }
def _external_caller_info(): frame = inspect.currentframe() caller = frame levels = 0 while caller.f_code.co_filename == __file__: caller = caller.f_back levels += 1 return { "lineno": caller.f_lineno, "filename": os.path.basename(caller.f_code.co_filename), }
45,568
186,660
84
certbot-apache/certbot_apache/_internal/override_centos.py
27
11
def _try_restart_fedora(self) -> None: try: util.run_script(['systemctl', 'restart', 'httpd']) except errors.SubprocessError as err: raise errors.MisconfigurationError(str(err)) # Finish with actual config check to see if systemctl restart helped super().config_test()
Add typing to certbot.apache (#9071) * Add typing to certbot.apache Co-authored-by: Adrien Ferrand <[email protected]>
_try_restart_fedora
7d9e9a49005de7961e84d2a7c608db57dbab3046
certbot
override_centos.py
12
9
https://github.com/certbot/certbot.git
2
46
0
27
85
Python
{ "docstring": "\n Tries to restart httpd using systemctl to generate the self signed key pair.\n ", "language": "en", "n_whitespaces": 28, "n_words": 13, "vocab_size": 12 }
def _try_restart_fedora(self) -> None: try: util.run_script(['systemctl', 'restart', 'httpd']) except errors.SubprocessError as err: raise errors.MisconfigurationError(str(err)) # Finish with actual config check to see if systemctl restart helped super().config_test()
56,078
220,661
78
python3.10.4/Lib/asyncio/selector_events.py
25
11
async def sock_accept(self, sock): base_events._check_ssl_s
add python 3.10.4 for windows
sock_accept
8198943edd73a363c266633e1aa5b2a9e9c9f526
XX-Net
selector_events.py
10
7
https://github.com/XX-net/XX-Net.git
3
50
0
24
86
Python
{ "docstring": "Accept a connection.\n\n The socket must be bound to an address and listening for connections.\n The return value is a pair (conn, address) where conn is a new socket\n object usable to send and receive data on the connection, and address\n is the address bound to the socket on the other end of the connection.\n ", "language": "en", "n_whitespaces": 90, "n_words": 55, "vocab_size": 35 }
async def sock_accept(self, sock): base_events._check_ssl_socket(sock) if self._debug and sock.gettimeout() != 0: raise ValueError("the socket must be non-blocking") fut = self.create_future() self._sock_accept(fut, sock) return await fut
572
3,825
133
airbyte-integrations/connectors/source-facebook-marketing/unit_tests/test_base_insight_streams.py
37
12
def test_state(self, api, state): stream = AdsInsights( api=api, start_
🎉 🎉 Source FB Marketing: performance and reliability fixes (#9805) * Facebook Marketing performance improvement * add comments and little refactoring * fix integration tests with the new config * improve job status handling, limit concurrency to 10 * fix campaign jobs, refactor manager * big refactoring of async jobs, support random order of slices * update source _read_incremental to hook new state logic * fix issues with timeout * remove debugging and clean up, improve retry logic * merge changes from #8234 * fix call super _read_increment * generalize batch execution, add use_batch flag * improve coverage, do some refactoring of spec * update test, remove overrides of source * add split by AdSet * add smaller insights * fix end_date < start_date case * add account_id to PK * add notes * fix new streams * fix reversed incremental stream * update spec.json for SAT * upgrade CDK and bump version Co-authored-by: Dmytro Rezchykov <[email protected]> Co-authored-by: Eugene Kulak <[email protected]>
test_state
a3aae8017a0a40ff2006e2567f71dccb04c997a5
airbyte
test_base_insight_streams.py
11
12
https://github.com/airbytehq/airbyte.git
1
96
0
24
152
Python
{ "docstring": "State setter/getter should work with all combinations", "language": "en", "n_whitespaces": 6, "n_words": 7, "vocab_size": 7 }
def test_state(self, api, state): stream = AdsInsights( api=api, start_date=datetime(2010, 1, 1), end_date=datetime(2011, 1, 1), ) assert stream.state == {} stream.state = state actual_state = stream.state actual_state["slices"] = sorted(actual_state.get("slices", [])) state["slices"] = sorted(state.get("slices", [])) assert actual_state == state
19,288
96,187
25
src/sentry/search/events/builder.py
11
3
def get_snql_query(self) -> None: raise NotImplementedError("get_snql_
feat(MEP): Add initial framework for metric queries (#31649) - This adds a MetricsQueryBuilder, which works very similarily to our QueryBuilder, but with specific handlers for how metrics construct queries - This MetricsQueryBuilder does not yet construct snql queries, and will not because table queries will require multiple queries to construct similar table data - that is, if we want [transaction, p95, count_unique(user)], we need a query against distributions with [transaction, p95] followed by a second query for [transaction, count_unique(user)] against the sets table - This is so we can maintain a sortby
get_snql_query
cf30c11a194aa5e61d8d7c7fc506764f846fcf82
sentry
builder.py
8
4
https://github.com/getsentry/sentry.git
1
13
0
11
26
Python
{ "docstring": "Because metrics table queries need to make multiple requests per metric type this function cannot be\n inmplemented see run_query", "language": "en", "n_whitespaces": 25, "n_words": 19, "vocab_size": 19 }
def get_snql_query(self) -> None: raise NotImplementedError("get_snql_query cannot be implemented for MetricsQueryBuilder")
30,004
133,391
33
python/ray/util/sgd/torch/worker_group.py
12
8
def _validate(self, params): remote_worker_stats = [w.validate.remote(**params) for w in self.remote_workers]
[CI] Format Python code with Black (#21975) See #21316 and #21311 for the motivation behind these changes.
_validate
7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065
ray
worker_group.py
10
3
https://github.com/ray-project/ray.git
2
29
0
11
47
Python
{ "docstring": "Runs validation for each worker. Returns results as promises.", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 9 }
def _validate(self, params): remote_worker_stats = [w.validate.remote(**params) for w in self.remote_workers] return remote_worker_stats
23,404
108,967
508
lib/mpl_toolkits/mplot3d/axes3d.py
94
31
def set_aspect(self, aspect, adjustable=None, anchor=None, share=False): _api.check_in_list(('auto', 'equal', 'equalxy', 'equalyz', 'equalxz'), aspect=aspect) super().set_aspect( aspect='auto', adjustable=adjustable, anchor=anchor, share=share) if aspect in ('equal', 'equalxy', 'equalxz', 'equalyz'): if aspect == 'equal': axis_indices = [0, 1, 2] elif aspect == 'equalxy': axis_indices = [0, 1] elif aspect == 'equalxz': axis_indices = [0, 2] elif aspect == 'equalyz': axis_indices = [1, 2] view_intervals = np.array([self.xaxis.get_view_interval(), self.yaxis.get_view_interval(), self.zaxis.get_view_interval()]) mean = np.mean(view_intervals, axis=1) delta = np.max(np.ptp(view_intervals, axis=1)) deltas = delta * self._box_aspect / min(self._box_aspect) for i, set_lim in enumerate((self.set_xlim
Add equalxy, equalyz, equalxz aspect ratios Update docstrings
set_aspect
31d13198ecf6969b1b693c28a02b0805f3f20420
matplotlib
axes3d.py
16
25
https://github.com/matplotlib/matplotlib.git
8
255
0
65
399
Python
{ "docstring": "\n Set the aspect ratios.\n\n Parameters\n ----------\n aspect : {'auto', 'equal', 'equalxy', 'equalxz', 'equalyz'}\n Possible values:\n\n ========= ==================================================\n value description\n ========= ==================================================\n 'auto' automatic; fill the position rectangle with data.\n 'equal' adapt all the axes to have equal aspect ratios.\n 'equalxy' adapt the x and y axes to have equal aspect ratios.\n 'equalxz' adapt the x and z axes to have equal aspect ratios.\n 'equalyz' adapt the y and z axes to have equal aspect ratios.\n ========= ==================================================\n\n adjustable : None\n Currently ignored by Axes3D\n\n If not *None*, this defines which parameter will be adjusted to\n meet the required aspect. See `.set_adjustable` for further\n details.\n\n anchor : None or str or 2-tuple of float, optional\n If not *None*, this defines where the Axes will be drawn if there\n is extra space due to aspect constraints. The most common way to\n to specify the anchor are abbreviations of cardinal directions:\n\n ===== =====================\n value description\n ===== =====================\n 'C' centered\n 'SW' lower left corner\n 'S' middle of bottom edge\n 'SE' lower right corner\n etc.\n ===== =====================\n\n See `~.Axes.set_anchor` for further details.\n\n share : bool, default: False\n If ``True``, apply the settings to all shared Axes.\n\n See Also\n --------\n mpl_toolkits.mplot3d.axes3d.Axes3D.set_box_aspect\n ", "language": "en", "n_whitespaces": 630, "n_words": 195, "vocab_size": 117 }
def set_aspect(self, aspect, adjustable=None, anchor=None, share=False): _api.check_in_list(('auto', 'equal', 'equalxy', 'equalyz', 'equalxz'), aspect=aspect) super().set_aspect( aspect='auto', adjustable=adjustable, anchor=anchor, share=share) if aspect in ('equal', 'equalxy', 'equalxz', 'equalyz'): if aspect == 'equal': axis_indices = [0, 1, 2] elif aspect == 'equalxy': axis_indices = [0, 1] elif aspect == 'equalxz': axis_indices = [0, 2] elif aspect == 'equalyz': axis_indices = [1, 2] view_intervals = np.array([self.xaxis.get_view_interval(), self.yaxis.get_view_interval(), self.zaxis.get_view_interval()]) mean = np.mean(view_intervals, axis=1) delta = np.max(np.ptp(view_intervals, axis=1)) deltas = delta * self._box_aspect / min(self._box_aspect) for i, set_lim in enumerate((self.set_xlim3d, self.set_ylim3d, self.set_zlim3d)): if i in axis_indices: set_lim(mean[i] - deltas[i]/2., mean[i] + deltas[i]/2.)
54,713
217,315
77
python3.10.4/Lib/enum.py
16
7
def __getattr__(cls, name): if _is_dunder(name): raise AttributeError(name) try: return cl
add python 3.10.4 for windows
__getattr__
8198943edd73a363c266633e1aa5b2a9e9c9f526
XX-Net
enum.py
10
7
https://github.com/XX-net/XX-Net.git
3
38
0
14
62
Python
{ "docstring": "\n Return the enum member matching `name`\n\n We use __getattr__ instead of descriptors or inserting into the enum\n class' __dict__ in order to support `name` and `value` being both\n properties for enum members (which live in the class' __dict__) and\n enum members themselves.\n ", "language": "en", "n_whitespaces": 85, "n_words": 42, "vocab_size": 32 }
def __getattr__(cls, name): if _is_dunder(name): raise AttributeError(name) try: return cls._member_map_[name] except KeyError: raise AttributeError(name) from None
75,904
259,759
34
sklearn/cluster/tests/test_bisect_k_means.py
16
16
def test_n_clusters(n_clusters): rng = np.random.RandomState(0) X
FEA Bisecting K-Means (#20031) Co-authored-by: Gael Varoquaux <[email protected]> Co-authored-by: Tom Dupré la Tour <[email protected]> Co-authored-by: Julien Jerphanion <[email protected]> Co-authored-by: Jérémie du Boisberranger <[email protected]>
test_n_clusters
0822851f5cb17827939a7d7b4f8c84f43184ae89
scikit-learn
test_bisect_k_means.py
10
6
https://github.com/scikit-learn/scikit-learn.git
1
62
0
14
100
Python
{ "docstring": "Test if resulting labels are in range [0, n_clusters - 1].", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 11 }
def test_n_clusters(n_clusters): rng = np.random.RandomState(0) X = rng.rand(10, 2) bisect_means = BisectingKMeans(n_clusters=n_clusters, random_state=0) bisect_means.fit(X) assert_array_equal(np.unique(bisect_means.labels_), np.arange(n_clusters))
57,228
224,175
196
mkdocs/tests/structure/nav_tests.py
46
24
def test_nested_ungrouped_nav(self): nav_cfg = [ {'Home': 'index.md'}, {'Contact': 'about/contact.md'}, {'License Title': 'about/sub/license.md'}, ] expected = dedent( ) cfg = load_config(nav=nav_cfg, site_url='http://example.com/') fs = [ File(list(item.values())[0], cfg['docs_dir'], cfg['site_dir'], cfg['use_directory_urls']) for item in nav_cfg ]
Some manual changes ahead of formatting code with Black
test_nested_ungrouped_nav
372384d8102ddb4be6360f44d1bfddb8b45435a4
mkdocs
nav_tests.py
14
23
https://github.com/mkdocs/mkdocs.git
2
137
0
37
228
Python
{ "docstring": "\n Page(title='Home', url='/')\n Page(title='Contact', url='/about/contact/')\n Page(title='License Title', url='/about/sub/license/')\n ", "language": "en", "n_whitespaces": 52, "n_words": 7, "vocab_size": 7 }
def test_nested_ungrouped_nav(self): nav_cfg = [ {'Home': 'index.md'}, {'Contact': 'about/contact.md'}, {'License Title': 'about/sub/license.md'}, ] expected = dedent( ) cfg = load_config(nav=nav_cfg, site_url='http://example.com/') fs = [ File(list(item.values())[0], cfg['docs_dir'], cfg['site_dir'], cfg['use_directory_urls']) for item in nav_cfg ] files = Files(fs) site_navigation = get_navigation(files, cfg) self.assertEqual(str(site_navigation).strip(), expected) self.assertEqual(len(site_navigation.items), 3) self.assertEqual(len(site_navigation.pages), 3)
29,378
130,806
156
python/ray/node.py
32
14
def _get_log_file_names(self, name, unique=False): if unique: log_stdout = self._make_inc_temp( suffix=".out", prefix=name, directory_name=self._logs_dir ) log_stderr = self._make_inc_temp( suffix=".err", prefix=name, directory_name=self._logs_dir ) else: log_stdout = os.path.join(self._logs_dir, f"{name}.out") log_stderr = os.path.join(self._logs_dir, f"{name}.err") return log_stdout, log_stderr
[CI] Format Python code with Black (#21975) See #21316 and #21311 for the motivation behind these changes.
_get_log_file_names
7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065
ray
node.py
13
12
https://github.com/ray-project/ray.git
2
91
0
21
151
Python
{ "docstring": "Generate partially randomized filenames for log files.\n\n Args:\n name (str): descriptive string for this log file.\n unique (bool): if true, a counter will be attached to `name` to\n ensure the returned filename is not already used.\n\n Returns:\n A tuple of two file names for redirecting (stdout, stderr).\n ", "language": "en", "n_whitespaces": 116, "n_words": 47, "vocab_size": 43 }
def _get_log_file_names(self, name, unique=False): if unique: log_stdout = self._make_inc_temp( suffix=".out", prefix=name, directory_name=self._logs_dir ) log_stderr = self._make_inc_temp( suffix=".err", prefix=name, directory_name=self._logs_dir ) else: log_stdout = os.path.join(self._logs_dir, f"{name}.out") log_stderr = os.path.join(self._logs_dir, f"{name}.err") return log_stdout, log_stderr
56,302
221,263
74
python3.10.4/Lib/calendar.py
24
10
def yeardayscalendar(self, year, width=3): months = [ self.monthdayscalendar(year, i) for i in range(January, January+12) ] return [months[i:i+width] for i in range(0, len(months), width) ]
add python 3.10.4 for windows
yeardayscalendar
8198943edd73a363c266633e1aa5b2a9e9c9f526
XX-Net
calendar.py
11
6
https://github.com/XX-net/XX-Net.git
3
60
0
20
88
Python
{ "docstring": "\n Return the data for the specified year ready for formatting (similar to\n yeardatescalendar()). Entries in the week lists are day numbers.\n Day numbers outside this month are zero.\n ", "language": "en", "n_whitespaces": 57, "n_words": 28, "vocab_size": 24 }
def yeardayscalendar(self, year, width=3): months = [ self.monthdayscalendar(year, i) for i in range(January, January+12) ] return [months[i:i+width] for i in range(0, len(months), width) ]
51,877
207,141
81
tests/admin_filters/tests.py
28
15
def test_simplelistfilter_without_parameter(self): modeladmin = DecadeFilterBookAdminWithoutParameter(Book, site) request = self.request_factory.get("/", {}) request.user = self.alfred msg = "The list filter 'DecadeListFilterWithoutParameter' does not specify a 'parameter_name'." with self.assertRaisesMessage(ImproperlyConfigured, msg): modeladmin.get_changelist_instance(request)
Refs #33476 -- Reformatted code with Black.
test_simplelistfilter_without_parameter
9c19aff7c7561e3a82978a272ecdaad40dda5c00
django
tests.py
9
7
https://github.com/django/django.git
1
53
0
25
92
Python
{ "docstring": "\n Any SimpleListFilter must define a parameter_name.\n ", "language": "en", "n_whitespaces": 21, "n_words": 6, "vocab_size": 6 }
def test_simplelistfilter_without_parameter(self): modeladmin = DecadeFilterBookAdminWithoutParameter(Book, site) request = self.request_factory.get("/", {}) request.user = self.alfred msg = "The list filter 'DecadeListFilterWithoutParameter' does not specify a 'parameter_name'." with self.assertRaisesMessage(ImproperlyConfigured, msg): modeladmin.get_changelist_instance(request)
18,375
88,327
226
src/sentry/api/invite_helper.py
54
19
def from_session_or_email(cls, request, organization, email, instance=None, logger=None): invite_token, invite_member_id = get_invite_details(request) try: if invite_token and invite_member_id: om = OrganizationMember.objects.get(token=invite_token, id=invite_member_id) else: om = OrganizationMember.objects.get( email=email, organization=organization, user=None ) except OrganizationMember.DoesNotExist: # Unable to locate the pending organization member. Cannot setup # the invite helper. return None re
Move invite code functionality from cookie to session (#40905) Moves the invite functionality from cookies to the session. This is to harden the security of the platform. With the cookie approach, a client can manipulate the cookie value for `pending-invite` resulting in situations where an invite code can be reused.
from_session_or_email
565f971da955d57c754a47f5802fe9f9f7c66b39
sentry
invite_helper.py
14
14
https://github.com/getsentry/sentry.git
4
107
0
47
161
Python
{ "docstring": "\n Initializes the ApiInviteHelper by locating the pending organization\n member via the currently set pending invite details in the session, or\n via the passed email if no cookie is currently set.\n ", "language": "en", "n_whitespaces": 59, "n_words": 30, "vocab_size": 23 }
def from_session_or_email(cls, request, organization, email, instance=None, logger=None): invite_token, invite_member_id = get_invite_details(request) try: if invite_token and invite_member_id: om = OrganizationMember.objects.get(token=invite_token, id=invite_member_id) else: om = OrganizationMember.objects.get( email=email, organization=organization, user=None ) except OrganizationMember.DoesNotExist: # Unable to locate the pending organization member. Cannot setup # the invite helper. return None return cls( request=request, member_id=om.id, token=om.token, instance=instance, logger=logger )
89,278
290,159
48
tests/components/bluetooth/test_usage.py
20
10
async def test_multiple_bleak_scanner_instances(hass): install_multiple_bleak_catcher() instance = bleak.BleakScanner() assert isinstance(instance, HaBleakScannerWrapper) uninstall_multiple_bleak_catcher() with patch("bleak.get_platform_scanner_backend_type"): instance = bleak.BleakScanner() assert not isinstance(instance, HaBleakScannerWrapper)
Ensure we do not actually create a BleakScanner in the usage test (#81362) Avoids a failure when bluetooth is turned off when testing on macos: bleak.exc.BleakError: Bluetooth device is turned off
test_multiple_bleak_scanner_instances
ab14e55c052433e42224199798b026637614685f
core
test_usage.py
10
8
https://github.com/home-assistant/core.git
1
47
0
14
86
Python
{ "docstring": "Test creating multiple BleakScanners without an integration.", "language": "en", "n_whitespaces": 6, "n_words": 7, "vocab_size": 7 }
async def test_multiple_bleak_scanner_instances(hass): install_multiple_bleak_catcher() instance = bleak.BleakScanner() assert isinstance(instance, HaBleakScannerWrapper) uninstall_multiple_bleak_catcher() with patch("bleak.get_platform_scanner_backend_type"): instance = bleak.BleakScanner() assert not isinstance(instance, HaBleakScannerWrapper)
78,244
265,912
118
netbox/utilities/utils.py
59
17
def highlight_string(value, highlight, trim_pre=None, trim_post=None, trim_placeholder='...'): # Split value on highlight string try: pre, match, post = re.split(fr'({highlight})', value, maxsplit=1, flags=re.IGNORECASE) except ValueError: # Match not found return escape(value) # Trim pre/post sections to length if trim_pre and len(pre) > trim_pre: pre = trim_placeholder + pre[-trim_pre:] if trim_post and len(post) > trim_post: post = post[:trim_post] + trim_placeholder return f'{escape(pre)}<mark>{e
Closes #10560: New global search (#10676) * Initial work on new search backend * Clean up search backends * Return only the most relevant result per object * Clear any pre-existing cached entries on cache() * #6003: Implement global search functionality for custom field values * Tweak field weights & document guidance * Extend search() to accept a lookup type * Move get_registry() out of SearchBackend * Enforce object permissions when returning search results * Add indexers for remaining models * Avoid calling remove() on non-cacheable objects * Use new search backend by default * Extend search backend to filter by object type * Clean up search view form * Enable specifying lookup logic * Add indexes for value field * Remove object type selector from search bar * Introduce SearchTable and enable HTMX for results * Enable pagination * Remove legacy search backend * Cleanup * Use a UUID for CachedValue primary key * Refactoring search methods * Define max search results limit * Extend reindex command to support specifying particular models * Add clear() and size to SearchBackend * Optimize bulk caching performance * Highlight matched portion of field value * Performance improvements for reindexing * Started on search tests * Cleanup & docs * Documentation updates * Clean up SearchIndex * Flatten search registry to register by app_label.model_name * Clean up search backend classes * Clean up RestrictedGenericForeignKey and RestrictedPrefetch * Resolve migrations conflict
highlight_string
9628dead07ccef9608b32906aa8194bc948e5a09
netbox
utils.py
12
10
https://github.com/netbox-community/netbox.git
6
97
0
48
185
Python
{ "docstring": "\n Highlight a string within a string and optionally trim the pre/post portions of the original string.\n ", "language": "en", "n_whitespaces": 23, "n_words": 16, "vocab_size": 13 }
def highlight_string(value, highlight, trim_pre=None, trim_post=None, trim_placeholder='...'): # Split value on highlight string try: pre, match, post = re.split(fr'({highlight})', value, maxsplit=1, flags=re.IGNORECASE) except ValueError: # Match not found return escape(value) # Trim pre/post sections to length if trim_pre and len(pre) > trim_pre: pre = trim_placeholder + pre[-trim_pre:] if trim_post and len(post) > trim_post: post = post[:trim_post] + trim_placeholder return f'{escape(pre)}<mark>{escape(match)}</mark>{escape(post)}'
27,841
125,350
392
python/ray/_private/state.py
63
33
def node_table(self): self._check_connected() node_table = self.global_state_accessor.get_node_table() results = [] for node_info_item in node_table: item = gcs_utils.GcsNodeInfo.FromString(node_info_item) node_info = { "NodeID": ray._private.utils.binary_to_hex(item.node_id), "Alive": item.state == gcs_utils.GcsNodeInfo.GcsNodeState.Value("ALIVE"), "NodeManagerAddress": item.node_manager_address, "NodeManagerHostname": item.node_manager_hostname, "NodeManagerPort": item.node_manager_port, "ObjectManagerPort": item.object_manager_port, "ObjectStoreSocketName": item.object_store_socket_name, "RayletSocketName": item.raylet_socket_name, "MetricsExportPort": item.metrics_export_port, "NodeName": item.node_name, } node_info["alive"] = node_info["Alive"] node_info["Resources"] = ( {key: value for key, value in item.resources_total.items()} if node_info["Alive"] else {} ) results.append(node_info) return results
[Python]More efficient node_table() in state.py (#26760) This picks up https://github.com/ray-project/ray/pull/24088 The `get_node_table` already has resources of nodes, so we don't need to invoke `get_node_resource_info` for every node again. This change will reduce lots of rpc calls and make the api more efficient.
node_table
62288724b2b4add7ad9b12ff5299559caaa5fb55
ray
state.py
15
27
https://github.com/ray-project/ray.git
4
172
0
53
288
Python
{ "docstring": "Fetch and parse the Gcs node info table.\n\n Returns:\n Information about the node in the cluster.\n ", "language": "en", "n_whitespaces": 41, "n_words": 16, "vocab_size": 13 }
def node_table(self): self._check_connected() node_table = self.global_state_accessor.get_node_table() results = [] for node_info_item in node_table: item = gcs_utils.GcsNodeInfo.FromString(node_info_item) node_info = { "NodeID": ray._private.utils.binary_to_hex(item.node_id), "Alive": item.state == gcs_utils.GcsNodeInfo.GcsNodeState.Value("ALIVE"), "NodeManagerAddress": item.node_manager_address, "NodeManagerHostname": item.node_manager_hostname, "NodeManagerPort": item.node_manager_port, "ObjectManagerPort": item.object_manager_port, "ObjectStoreSocketName": item.object_store_socket_name, "RayletSocketName": item.raylet_socket_name, "MetricsExportPort": item.metrics_export_port, "NodeName": item.node_name, } node_info["alive"] = node_info["Alive"] node_info["Resources"] = ( {key: value for key, value in item.resources_total.items()} if node_info["Alive"] else {} ) results.append(node_info) return results
81,097
273,174
99
keras/layers/preprocessing/index_lookup.py
15
9
def vocabulary_size(self): if tf.executing_eagerly(): return ( int(self.lookup_table.size().numpy()) + self._token_start_index() ) else: return self.looku
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
vocabulary_size
84afc5193d38057e2e2badf9c889ea87d80d8fbf
keras
index_lookup.py
16
8
https://github.com/keras-team/keras.git
2
52
0
12
90
Python
{ "docstring": "Gets the current size of the layer's vocabulary.\n\n Returns:\n The integer size of the vocabulary, including optional mask and oov indices.\n ", "language": "en", "n_whitespaces": 44, "n_words": 21, "vocab_size": 17 }
def vocabulary_size(self): if tf.executing_eagerly(): return ( int(self.lookup_table.size().numpy()) + self._token_start_index() ) else: return self.lookup_table.size() + self._token_start_index()
53,812
215,095
114
tests/pytests/unit/modules/test_aixpkg.py
38
17
def test_version_with_invalid_names(): lslpp_mydog_out = ver_chk = MagicMock(return_value={"retcode": 1, "stdout": lslpp_mydog_out}) with patch.dict(aixpkg.__grains
Working tests for install
test_version_with_invalid_names
f1c37893caf90738288e789c3233ab934630254f
salt
test_aixpkg.py
12
31
https://github.com/saltstack/salt.git
1
92
0
33
161
Python
{ "docstring": "\n test version of packages\n lslpp: Fileset mydog not installed.\n\n\nState codes: \n A -- Applied. \n B -- Broken. \n C -- Committed. \n E -- EFIX Locked. \n O -- Obsolete. (partially migrated to newer version) \n ? -- Inconsistent State...Run lppchk -v. \n\nType codes: \n F -- Installp Fileset \n P -- Product \n C -- Component \n T -- Feature \n R -- RPM Package \n E -- Interim Fix \n", "language": "en", "n_whitespaces": 80, "n_words": 61, "vocab_size": 46 }
def test_version_with_invalid_names(): lslpp_mydog_out = ver_chk = MagicMock(return_value={"retcode": 1, "stdout": lslpp_mydog_out}) with patch.dict(aixpkg.__grains__, {"osarch": "PowerPC_POWER8"}), patch.dict( aixpkg.__salt__, {"cmd.run_all": ver_chk}, ): versions_checked = aixpkg.version( "mydog", versions_as_list=True, use_context=False ) assert ver_chk.call_count == 1 ver_chk.assert_called_with("lslpp -Lq mydog", python_shell=False) assert versions_checked == ""
7,878
43,222
13
tests/models/test_dagrun.py
7
4
def test_mapped_literal_length_increase_adds_additional_ti(dag_maker, session): with dag_make
Fix mapped task immutability after clear (#23667) We should be able to detect if the structure of mapped task has changed and verify the integrity. This PR ensures this Co-authored-by: Tzu-ping Chung <[email protected]>
test_mapped_literal_length_increase_adds_additional_ti
b692517ce3aafb276e9d23570e9734c30a5f3d1f
airflow
test_dagrun.py
11
29
https://github.com/apache/airflow.git
3
233
0
7
34
Python
{ "docstring": "Test that when the length of mapped literal increases, additional ti is added", "language": "en", "n_whitespaces": 12, "n_words": 13, "vocab_size": 13 }
def test_mapped_literal_length_increase_adds_additional_ti(dag_maker, session): with dag_maker(session=session) as dag:
19,263
96,012
87
tests/sentry/integrations/bitbucket/test_installed.py
31
20
def test_installed_without_username(self): # Remove username to simulate privacy mode del self.user_data_from_bitbucket["principal"]["username"] response = self.client.post(self.path, data=self.user_data_from_bitbucket) assert response.status_code == 200 integration = Integration.objects.get(provider=self.provider, external_id=self.client_key) assert integration.name == self.user_display_name assert integration.metadata == self
fix(bitbucket): Fix domain name (#31536) * fix(bitbucket): Fix domain name
test_installed_without_username
2790a30b7f6a6cffa2cd1aa69c678327a41a0664
sentry
test_installed.py
10
7
https://github.com/getsentry/sentry.git
1
76
0
26
122
Python
{ "docstring": "Test a user (not team) installation where the user has hidden their username from public view", "language": "en", "n_whitespaces": 15, "n_words": 16, "vocab_size": 15 }
def test_installed_without_username(self): # Remove username to simulate privacy mode del self.user_data_from_bitbucket["principal"]["username"] response = self.client.post(self.path, data=self.user_data_from_bitbucket) assert response.status_code == 200 integration = Integration.objects.get(provider=self.provider, external_id=self.client_key) assert integration.name == self.user_display_name assert integration.metadata == self.user_metadata
21,273
101,891
29
lib/gui/display.py
8
5
def _command_display(self, command):
Typing - lib.gui.display_command
_command_display
dab823a3eb7a5257cb1e0818ee10ed234d3de97f
faceswap
display.py
10
3
https://github.com/deepfakes/faceswap.git
1
20
0
8
39
Python
{ "docstring": " Build the relevant command specific tabs based on the incoming Faceswap command.\n\n Parameters\n ----------\n command: str\n The Faceswap command that is being executed\n ", "language": "en", "n_whitespaces": 63, "n_words": 23, "vocab_size": 20 }
def _command_display(self, command): build_tabs = getattr(self, f"_{command}_tabs") build_tabs()
13,532
63,924
49
.venv/lib/python3.8/site-packages/pip/_vendor/urllib3/_collections.py
13
7
def itermerged(self): for key in s
upd; format
itermerged
f638f5d0e6c8ebed0e69a6584bc7f003ec646580
transferlearning
_collections.py
13
4
https://github.com/jindongwang/transferlearning.git
2
39
0
13
66
Python
{ "docstring": "Iterate over all headers, merging duplicate ones together.", "language": "en", "n_whitespaces": 7, "n_words": 8, "vocab_size": 8 }
def itermerged(self): for key in self: val = self._container[key.lower()] yield val[0], ", ".join(val[1:])
57,167
224,020
19
mkdocs/structure/files.py
5
7
def get_file_from_path(self, path): return self.src_paths.get(os.path.normpath(path))
Remove spaces at the ends of docstrings, normalize quotes
get_file_from_path
e7f07cc82ab2be920ab426ba07456d8b2592714d
mkdocs
files.py
10
2
https://github.com/mkdocs/mkdocs.git
1
24
0
5
40
Python
{ "docstring": "Return a File instance with File.src_path equal to path.", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 9 }
def get_file_from_path(self, path): return self.src_paths.get(os.path.normpath(path))
@pytest.fixture
52,203
208,104
56
t/unit/conftest.py
23
11
def sleepdeprived(request): module = request.node.get_closest_marker( "sleepdeprived_patched_module").args[0] old_sleep, module.sleep = module.sleep, noop try: yield finally: module.sleep = old_sleep
Canvas Header Stamping (#7384) * Strip down the header-stamping PR to the basics. * Serialize groups. * Add groups to result backend meta data. * Fix spelling mistake. * Revert changes to canvas.py * Revert changes to app/base.py * Add stamping implementation to canvas.py * Send task to AMQP with groups. * Successfully pass single group to result. * _freeze_gid dict merge fixed * First draft of the visitor API. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * OptionsVisitor created * Fixed canvas.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Added test for simple test for chord and fixed chord implementation * Changed _IMMUTABLE_OPTIONS * Fixed chord interface * Fixed chord interface * Fixed chord interface * Fixed chord interface * Fixed list order * Fixed tests (stamp test and chord test), fixed order in groups * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fixed lint and elements * Changed implementation of stamp API and fix lint * Added documentation to Stamping API. Added chord with groups test * Implemented stamping inside replace and added test for an implementation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Added test additonal tests for chord, improved coverage * Added test additonal tests for chord, improved coverage * Added test additonal tests for chord, improved coverage * Splitted into subtests * Group stamping rollback * group.id is None fixed * Added integration test * Added integration test * apply_async fixed * Integration test and test_chord fixed * Lint fixed * chord freeze fixed * Minor fixes. * Chain apply_async fixed and tests fixed * lint fixed * Added integration test for chord * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * type -> isinstance * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Redo header stamping (#7341) * _freeze_gid dict merge fixed * OptionsVisitor created * Fixed canvas.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Added test for simple test for chord and fixed chord implementation * Changed _IMMUTABLE_OPTIONS * Fixed chord interface * Fixed chord interface * Fixed chord interface * Fixed chord interface * Fixed list order * Fixed tests (stamp test and chord test), fixed order in groups * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fixed lint and elements * Changed implementation of stamp API and fix lint * Added documentation to Stamping API. Added chord with groups test * Implemented stamping inside replace and added test for an implementation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Added test additonal tests for chord, improved coverage * Added test additonal tests for chord, improved coverage * Added test additonal tests for chord, improved coverage * Splitted into subtests * Group stamping rollback * group.id is None fixed * Added integration test * Added integration test * apply_async fixed * Integration test and test_chord fixed * Lint fixed * chord freeze fixed * Minor fixes. * Chain apply_async fixed and tests fixed * lint fixed * Added integration test for chord * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * type -> isinstance * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Omer Katz <[email protected]> * Added stamping mechanism * Manual stamping improved * flake8 fixed * Added subtests * Add comma. * Moved groups to stamps * Fixed chord and added test for that * Strip down the header-stamping PR to the basics. * Serialize groups. * Add groups to result backend meta data. * Fix spelling mistake. * Revert changes to canvas.py * Revert changes to app/base.py * Add stamping implementation to canvas.py * Send task to AMQP with groups. * Successfully pass single group to result. * _freeze_gid dict merge fixed * First draft of the visitor API. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * OptionsVisitor created * Fixed canvas.py * Added test for simple test for chord and fixed chord implementation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Changed _IMMUTABLE_OPTIONS * Fixed chord interface * Fixed chord interface * Fixed chord interface * Fixed chord interface * Fixed list order * Fixed tests (stamp test and chord test), fixed order in groups * Fixed lint and elements * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Changed implementation of stamp API and fix lint * Added documentation to Stamping API. Added chord with groups test * Implemented stamping inside replace and added test for an implementation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Added test additonal tests for chord, improved coverage * Added test additonal tests for chord, improved coverage * Added test additonal tests for chord, improved coverage * Splitted into subtests * Group stamping rollback * group.id is None fixed * Added integration test * Added integration test * apply_async fixed * Integration test and test_chord fixed * Lint fixed * chord freeze fixed * Minor fixes. * Chain apply_async fixed and tests fixed * lint fixed * Added integration test for chord * type -> isinstance * Added stamping mechanism * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Manual stamping improved * fail_ci_if_error uncommented * flake8 fixed * Added subtests * Changes * Add comma. * Fixed chord and added test for that * canvas.py fixed * Test chord.py fixed * Fixed stamped_headers * collections import fixed * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * collections import fixed * Update celery/backends/base.py Co-authored-by: Omer Katz <[email protected]> * ampq.py fixed * Refrain from using deprecated import path. * Fix test_complex_chain regression. Whenever we stamp a group we need to freeze it first if it wasn't already frozen. Somewhere along the line, the group id changed because we were freezing twice. This commit places the stamping operation after preparing the chain's steps which fixes the problem somehow. We don't know why yet. * Fixed integration tests * Fixed integration tests * Fixed integration tests * Fixed integration tests * Fixed issues with maybe_list. Add documentation * Fixed potential issue with integration tests * Fixed issues with _regen * Fixed issues with _regen * Fixed test_generator issues * Fixed _regen stamping * Fixed _regen stamping * Fixed TimeOut issue * Fixed TimeOut issue * Fixed TimeOut issue * Update docs/userguide/canvas.rst Co-authored-by: Omer Katz <[email protected]> * Fixed Couchbase * Better stamping intro * New GroupVisitor example * Adjust documentation. Co-authored-by: Naomi Elstein <[email protected]> Co-authored-by: Omer Katz <[email protected]> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Asif Saif Uddin <[email protected]> Co-authored-by: Omer Katz <[email protected]>
sleepdeprived
1c4ff33bd22cf94e297bd6449a06b5a30c2c1fbc
celery
conftest.py
11
8
https://github.com/celery/celery.git
2
42
1
19
83
Python
{ "docstring": "Mock sleep method in patched module to do nothing.\n\n Example:\n >>> import time\n >>> @pytest.mark.sleepdeprived_patched_module(time)\n >>> def test_foo(self, sleepdeprived):\n >>> pass\n ", "language": "en", "n_whitespaces": 59, "n_words": 21, "vocab_size": 18 }
def sleepdeprived(request): module = request.node.get_closest_marker( "sleepdeprived_patched_module").args[0] old_sleep, module.sleep = module.sleep, noop try: yield finally: module.sleep = old_sleep # Taken from # http://bitbucket.org/runeh/snippets/src/tip/missing_modules.py @pytest.fixture
20,985
101,575
112
lib/training/preview_tk.py
30
11
def _set_mouse_bindings(self) -> None: logger.debug("Binding mouse events") if system() == "Linux": self._canvas.tag_bind(self._canvas.image_id, "<Button-4>", self._on_bound_zoom) self._canvas.tag_bind
Training - Use custom preview pop-out
_set_mouse_bindings
7da2cc3dd266aabebf41a31384cc2e0e7e5af6e5
faceswap
preview_tk.py
12
15
https://github.com/deepfakes/faceswap.git
2
119
0
22
198
Python
{ "docstring": " Set the mouse bindings for interacting with the preview image\n\n Mousewheel: Zoom in and out\n Mouse click: Move image\n ", "language": "en", "n_whitespaces": 41, "n_words": 19, "vocab_size": 17 }
def _set_mouse_bindings(self) -> None: logger.debug("Binding mouse events") if system() == "Linux": self._canvas.tag_bind(self._canvas.image_id, "<Button-4>", self._on_bound_zoom) self._canvas.tag_bind(self._canvas.image_id, "<Button-5>", self._on_bound_zoom) else: self._canvas.tag_bind(self._canvas.image_id, "<MouseWheel>", self._on_bound_zoom) self._canvas.tag_bind(self._canvas.image_id, "<Button-1>", self._on_mouse_click) self._canvas.tag_bind(self._canvas.image_id, "<B1-Motion>", self._on_mouse_drag) logger.debug("Bound mouse events")
96,701
297,739
40
tests/helpers/test_area_registry.py
22
9
async def test_create_area_with_id_already_in_use(registry):
Add aliases to area registry items (#84294) * Add aliases to area registry items * Update test * Fix WS API
test_create_area_with_id_already_in_use
1a42bd5c4cb51ffbfcaf8d5389b80a228712ac81
core
test_area_registry.py
10
6
https://github.com/home-assistant/core.git
1
50
0
17
90
Python
{ "docstring": "Make sure that we can't create an area with a name already in use.", "language": "en", "n_whitespaces": 13, "n_words": 14, "vocab_size": 14 }
async def test_create_area_with_id_already_in_use(registry): area1 = registry.async_create("mock") updated_area1 = registry.async_update(area1.id, name="New Name") assert updated_area1.id == area1.id area2 = registry.async_create("mock") assert area2.id == "mock_2"
10,074
50,265
147
modules/image/text_to_image/disco_diffusion_ernievil_base/vit_b_16x/ernievil2/transformers/ernie_modeling.py
43
20
def forward(self, *args, **kwargs): labels = kwargs.pop('label
add disco_diffusion_ernievil_base
forward
ffcde21305c61d950a9f93e57e6180c9a9665b87
PaddleHub
ernie_modeling.py
12
12
https://github.com/PaddlePaddle/PaddleHub.git
3
99
0
32
160
Python
{ "docstring": "\n Args:\n labels (optional, `Variable` of shape [batch_size]):\n ground truth label id for each sentence\n Returns:\n loss (`Variable` of shape []):\n Cross entropy loss mean over batch\n if labels not set, returns None\n logits (`Variable` of shape [batch_size, hidden_size]):\n output logits of classifier\n ", "language": "en", "n_whitespaces": 157, "n_words": 42, "vocab_size": 33 }
def forward(self, *args, **kwargs): labels = kwargs.pop('labels', None) pooled, encoded = super(ErnieModelForSequenceClassification, self).forward(*args, **kwargs) hidden = self.dropout(pooled) logits = self.classifier(hidden) if labels is not None: if len(labels.shape) != 1: labels = labels.squeeze() loss = F.cross_entropy(logits, labels) else: loss = None return loss, logits
12,832
62,023
23
.venv/lib/python3.8/site-packages/pip/_vendor/distlib/locators.py
9
4
def _get_project(self, name): raise NotImplemen
upd; format
_get_project
f638f5d0e6c8ebed0e69a6584bc7f003ec646580
transferlearning
locators.py
8
2
https://github.com/jindongwang/transferlearning.git
1
13
0
9
25
Python
{ "docstring": "\n For a given project, get a dictionary mapping available versions to Distribution\n instances.\n\n This should be implemented in subclasses.\n\n If called from a locate() request, self.matcher will be set to a\n matcher for the requirement to satisfy, otherwise it will be None.\n ", "language": "en", "n_whitespaces": 85, "n_words": 42, "vocab_size": 34 }
def _get_project(self, name): raise NotImplementedError('Please implement in the subclass')
38,470
160,031
51
numpy/core/tests/test_multiarray.py
16
12
def test_pickle_empty(self): arr = np.array([]).reshape(999999, 0) pk_dmp = pickle.dumps(arr) pk_load = pickle.loads(pk_dmp) assert pk_load.size == 0
BUG: Fix unpickling an empty ndarray with a none-zero dimension (#21067) Changing num to the number of bytes in the input array, PyArray_NBYTES(self). Solves #21009. * Fixing nbyte size in methods.c:memcpy * Adding a test * Re-adding removed newline * Shrinking the test array to save memory
test_pickle_empty
935fe83ddaa3250d176bc848579ffdc4e1017090
numpy
test_multiarray.py
11
5
https://github.com/numpy/numpy.git
1
44
0
14
73
Python
{ "docstring": "Checking if an empty array pickled and un-pickled will not cause a\n segmentation fault", "language": "en", "n_whitespaces": 20, "n_words": 14, "vocab_size": 14 }
def test_pickle_empty(self): arr = np.array([]).reshape(999999, 0) pk_dmp = pickle.dumps(arr) pk_load = pickle.loads(pk_dmp) assert pk_load.size == 0
7,461
42,022
125
seaborn/_oldcore.py
46
8
def get_semantics(cls, kwargs, semantics=None): # TODO this should be get_variables since we have included x and y if semantics is None: semantics =
docs: fix typos (#2899) * Small typo fixes * Catch an additional typo Co-authored-by: Michael Waskom <[email protected]>
get_semantics
5910d6ef50196c8bd1f4ed40a5da202a39d7f62c
seaborn
_oldcore.py
11
8
https://github.com/mwaskom/seaborn.git
5
55
0
34
88
Python
{ "docstring": "Subset a dictionary arguments with known semantic variables.", "language": "en", "n_whitespaces": 7, "n_words": 8, "vocab_size": 8 }
def get_semantics(cls, kwargs, semantics=None): # TODO this should be get_variables since we have included x and y if semantics is None: semantics = cls.semantics variables = {} for key, val in kwargs.items(): if key in semantics and val is not None: variables[key] = val return variables
2,995
19,485
176
pipenv/utils/dependencies.py
72
37
def convert_deps_to_pip(deps, project=None, r=True, include_index=True): from pipenv.vendor.requirementslib.models.requirements import Requirement dependencies = [] for dep_name, dep in deps.items(): if project: project.clear_pipfile_cache() indexes = getattr(project, "pipfile_sources", []) if project is not None else [] new_dep = Requirement.from_pipfile(dep_name, dep) if new_dep.index: include_index = True req = new_dep.as_line(sources=indexes if include_index else None).strip() dependencies.append(req) if not r: return dependencies # Write requirements.txt to tmp directory. from pipenv.vendor.vistir.path import create_tracked_tempfile f = create_tracked_tempfile(suffix="-requirements.txt", delete=Fa
Code reorg utils into utils module reduces complexity (#4990) * Split apart the massive utils.py into a utils module
convert_deps_to_pip
3387881a6d4fc2d8bdc0f05c484cb2f7222acfb8
pipenv
dependencies.py
14
19
https://github.com/pypa/pipenv.git
7
167
0
55
266
Python
{ "docstring": "\"Converts a Pipfile-formatted dependency to a pip-formatted one.", "language": "en", "n_whitespaces": 7, "n_words": 8, "vocab_size": 7 }
def convert_deps_to_pip(deps, project=None, r=True, include_index=True): from pipenv.vendor.requirementslib.models.requirements import Requirement dependencies = [] for dep_name, dep in deps.items(): if project: project.clear_pipfile_cache() indexes = getattr(project, "pipfile_sources", []) if project is not None else [] new_dep = Requirement.from_pipfile(dep_name, dep) if new_dep.index: include_index = True req = new_dep.as_line(sources=indexes if include_index else None).strip() dependencies.append(req) if not r: return dependencies # Write requirements.txt to tmp directory. from pipenv.vendor.vistir.path import create_tracked_tempfile f = create_tracked_tempfile(suffix="-requirements.txt", delete=False) f.write("\n".join(dependencies).encode("utf-8")) f.close() return f.name
24,919
113,475
93
nni/algorithms/hpo/hyperband_advisor.py
25
9
def handle_trial_end(self, data): hyper_params = nni.load(data['hyper_params']) if self.is_created_in_previous_exp(hyper_params['parameter_id']): # The end of the recovered trial is ignored return self._handle_trial_end(hyper_params['parameter_id']) if data['trial_job_id']
[nas] fix issue introduced by the trial recovery feature (#5109)
handle_trial_end
bcc640c4e5e687a03fe21503692dad96e0b97fa7
nni
hyperband_advisor.py
10
7
https://github.com/microsoft/nni.git
3
60
0
24
105
Python
{ "docstring": "\n Parameters\n ----------\n data: dict()\n it has three keys: trial_job_id, event, hyper_params\n trial_job_id: the id generated by training service\n event: the job's state\n hyper_params: the hyperparameters (a string) generated and returned by tuner\n ", "language": "en", "n_whitespaces": 105, "n_words": 32, "vocab_size": 28 }
def handle_trial_end(self, data): hyper_params = nni.load(data['hyper_params']) if self.is_created_in_previous_exp(hyper_params['parameter_id']): # The end of the recovered trial is ignored return self._handle_trial_end(hyper_params['parameter_id']) if data['trial_job_id'] in self.job_id_para_id_map: del self.job_id_para_id_map[data['trial_job_id']]
56,021
220,508
115
python3.10.4/Lib/asyncio/futures.py
29
11
def _copy_future_state(source, dest): assert source.done() if dest.cancelled(): return assert not dest.done() if source.cancelled(): dest.cancel() else: exception = source.exception() if exception is not None: dest.set_exception(_convert_future_exc(exception)) else: result = source.result() dest.set_resul
add python 3.10.4 for windows
_copy_future_state
8198943edd73a363c266633e1aa5b2a9e9c9f526
XX-Net
futures.py
14
14
https://github.com/XX-net/XX-Net.git
4
80
0
22
138
Python
{ "docstring": "Internal helper to copy state from another Future.\n\n The other Future may be a concurrent.futures.Future.\n ", "language": "en", "n_whitespaces": 21, "n_words": 15, "vocab_size": 15 }
def _copy_future_state(source, dest): assert source.done() if dest.cancelled(): return assert not dest.done() if source.cancelled(): dest.cancel() else: exception = source.exception() if exception is not None: dest.set_exception(_convert_future_exc(exception)) else: result = source.result() dest.set_result(result)
76,648
261,047
80
sklearn/utils/tests/test_validation.py
41
16
def test_get_feature_names_invalid_dtypes(names, dtypes): pd =
MAINT Clean deprecation for 1.2: validation (#24493) * cln deprecations * cln * fix tst switch to pytest.raises
test_get_feature_names_invalid_dtypes
9f9f1684e91fbfffbc446f786a8c64628b752efb
scikit-learn
test_validation.py
11
9
https://github.com/scikit-learn/scikit-learn.git
1
74
0
34
123
Python
{ "docstring": "Get feature names errors when the feature names have mixed dtypes", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 9 }
def test_get_feature_names_invalid_dtypes(names, dtypes): pd = pytest.importorskip("pandas") X = pd.DataFrame([[1, 2], [4, 5], [5, 6]], columns=names) msg = re.escape( "Feature names only support names that are all strings. " f"Got feature names with dtypes: {dtypes}." ) with pytest.raises(TypeError, match=msg): names = _get_feature_names(X)
73,739
251,435
417
mitmproxy/platform/pf.py
133
17
def lookup(address, port, s): # We may get an ipv4-mapped ipv6 address here, e.g. ::ffff:127.0.0.1. # Those still appear as "127.0.0.1" in the table, so we need to strip the prefix. address = re.sub(r"^::ffff:(?=\d+.\d+.\d+.\d+$)", "", address) s = s.decode() # ALL tcp 192.168.1.13:57474 -> 23.205.82.58:443 ESTABLISHED:ESTABLISHED specv4 = f"{address}:{port}" # ALL tcp 2a01:e35:8bae:50f0:9d9b:ef0d:2de3:b733[58505] -> 2606:4700:30::681f:4ad0[443] ESTABLISHED:ESTABLISHED specv6 = f"{address}[{port}]" for i in s.split("\n"): if "ESTABLISHED:ESTABLISHED" in i and specv4 in i: s = i.split() if len(s) > 4: if sys.platform.startswith("freebsd"): # strip parentheses for FreeBSD pfctl s = s[3][1:-1].split(":") else: s = s[4].split(":") if len(s) == 2: return s[0], int(s[1]) elif "ESTABLISHED:ESTABLISHED" in i and specv6 in i: s = i.split() if len(s) > 4: s = s[4].split("[") port = s[1].split("]") port = port[0] return s[0], int(port) raise RuntimeError("Could not resolve original
make it black!
lookup
b3587b52b25077f68116b9852b041d33e7fc6601
mitmproxy
pf.py
19
23
https://github.com/mitmproxy/mitmproxy.git
10
200
0
82
358
Python
{ "docstring": "\n Parse the pfctl state output s, to look up the destination host\n matching the client (address, port).\n\n Returns an (address, port) tuple, or None.\n ", "language": "en", "n_whitespaces": 37, "n_words": 24, "vocab_size": 21 }
def lookup(address, port, s): # We may get an ipv4-mapped ipv6 address here, e.g. ::ffff:127.0.0.1. # Those still appear as "127.0.0.1" in the table, so we need to strip the prefix. address = re.sub(r"^::ffff:(?=\d+.\d+.\d+.\d+$)", "", address) s = s.decode() # ALL tcp 192.168.1.13:57474 -> 23.205.82.58:443 ESTABLISHED:ESTABLISHED specv4 = f"{address}:{port}" # ALL tcp 2a01:e35:8bae:50f0:9d9b:ef0d:2de3:b733[58505] -> 2606:4700:30::681f:4ad0[443] ESTABLISHED:ESTABLISHED specv6 = f"{address}[{port}]" for i in s.split("\n"): if "ESTABLISHED:ESTABLISHED" in i and specv4 in i: s = i.split() if len(s) > 4: if sys.platform.startswith("freebsd"): # strip parentheses for FreeBSD pfctl s = s[3][1:-1].split(":") else: s = s[4].split(":") if len(s) == 2: return s[0], int(s[1]) elif "ESTABLISHED:ESTABLISHED" in i and specv6 in i: s = i.split() if len(s) > 4: s = s[4].split("[") port = s[1].split("]") port = port[0] return s[0], int(port) raise RuntimeError("Could not resolve original destination.")
18,185
86,903
155
src/sentry/models/projectownership.py
51
19
def _hydrate_rules(cls, project_id, rules, type=OwnerRuleType.OWNERSHIP_RULE.value): owners = [owner for rule in r
feat(commit-context): Refactor Issue Owner auto-assignment (#40048) ## Objective: This PR refactors how we calculate the Issue Owners from Code Owners/Ownership Rules and who should get the auto-assignment. Auto Assignment will first go to the Suspect Committer (if it exists and the setting is on) then to Issue Owners (if it exists and the setting is on) then nothing. We will also store the rule that triggered the Issue Owner match in GroupOwner.
_hydrate_rules
712ba34a4d51be636396e70557aa3f99471814be
sentry
projectownership.py
14
12
https://github.com/getsentry/sentry.git
8
96
0
32
139
Python
{ "docstring": "\n Get the last matching rule to take the most precedence.\n ", "language": "en", "n_whitespaces": 25, "n_words": 10, "vocab_size": 9 }
def _hydrate_rules(cls, project_id, rules, type=OwnerRuleType.OWNERSHIP_RULE.value): owners = [owner for rule in rules for owner in rule.owners] actors = { key: val for key, val in resolve_actors({owner for owner in owners}, project_id).items() if val } result = [ (rule, ActorTuple.resolve_many([actors[owner] for owner in rule.owners]), type) for rule in rules ] return result
11,603
56,999
60
src/prefect/blocks/kubernetes.py
10
8
def activate(self) -> str: load_kube_config_from_dict( config_dict=s
add test coerage for get_api_client and activate
activate
8f3ffd09dc47bfd2af6a635cc04c640febffd519
prefect
kubernetes.py
9
11
https://github.com/PrefectHQ/prefect.git
1
29
0
10
48
Python
{ "docstring": "\n Convenience method for activating the k8s config stored in an instance of this block\n\n Returns current_context for sanity check\n ", "language": "en", "n_whitespaces": 41, "n_words": 19, "vocab_size": 18 }
def activate(self) -> str: load_kube_config_from_dict( config_dict=self.config, context=self.context, ) return self.current_context()
48,731
197,875
65
sympy/core/expr.py
18
8
def as_coeff_add(self, *deps) -> tuple[Expr, tuple[Expr, ...]]:
add some type hints to expr.py
as_coeff_add
675e6d6ca7aa63ce26f8aa0ca2467976b6570113
sympy
expr.py
12
35
https://github.com/sympy/sympy.git
3
49
0
15
77
Python
{ "docstring": "Return the tuple (c, args) where self is written as an Add, ``a``.\n\n c should be a Rational added to any terms of the Add that are\n independent of deps.\n\n args should be a tuple of all other terms of ``a``; args is empty\n if self is a Number or if self is independent of deps (when given).\n\n This should be used when you do not know if self is an Add or not but\n you want to treat self as an Add or if you want to process the\n individual arguments of the tail of self as an Add.\n\n - if you know self is an Add and want only the head, use self.args[0];\n - if you do not want to process the arguments of the tail but need the\n tail then use self.as_two_terms() which gives the head and tail.\n - if you want to split self into an independent and dependent parts\n use ``self.as_independent(*deps)``\n\n >>> from sympy import S\n >>> from sympy.abc import x, y\n >>> (S(3)).as_coeff_add()\n (3, ())\n >>> (3 + x).as_coeff_add()\n (3, (x,))\n >>> (3 + x + y).as_coeff_add(x)\n (y + 3, (x,))\n >>> (3 + y).as_coeff_add(x)\n (y + 3, ())\n\n ", "language": "en", "n_whitespaces": 360, "n_words": 195, "vocab_size": 91 }
def as_coeff_add(self, *deps) -> tuple[Expr, tuple[Expr, ...]]: if deps: if not self.has_free(*deps): return self, tuple() return S.Zero, (self,)
5,414
30,229
277
spotdl/console/web.py
112
19
def create_github_url(url): repo_only_url = re.compile( r"https:\/\/github\.com\/[a-z\d](?:[a-z\d]|-(?=[a-z\d])){0,38}\/[a-zA-Z0-9]+$" ) re_branch = re.compile("/(tree|blob)/(.+?)/") # Check if the given url is a url to a GitHub repo. If it is, tell the # user
update web code Co-Authored-By: Peyton Creery <[email protected]>
create_github_url
bbb7a02ef889134af71593102bc6f65035ab14cb
spotify-downloader
web.py
19
23
https://github.com/spotDL/spotify-downloader.git
3
111
0
71
198
Python
{ "docstring": "\n From the given url, produce a URL that is compatible with Github's REST API. Can handle blob or tree paths.\n ", "language": "en", "n_whitespaces": 27, "n_words": 20, "vocab_size": 20 }
def create_github_url(url): repo_only_url = re.compile( r"https:\/\/github\.com\/[a-z\d](?:[a-z\d]|-(?=[a-z\d])){0,38}\/[a-zA-Z0-9]+$" ) re_branch = re.compile("/(tree|blob)/(.+?)/") # Check if the given url is a url to a GitHub repo. If it is, tell the # user to use 'git clone' to download it if re.match(repo_only_url, url): print( "✘ The given url is a complete repository. Use 'git clone' to download the repository", "red", ) sys.exit() # extract the branch name from the given url (e.g master) branch = re_branch.search(url) if branch: download_dirs = url[branch.end() :] api_url = ( url[: branch.start()].replace("github.com", "api.github.com/repos", 1) + "/contents/" + download_dirs + "?ref=" + branch.group(2) ) return api_url, download_dirs raise ValueError("The given url is not a valid GitHub url") # Modification of https://github.com/sdushantha/gitdir/blob/master/gitdir/gitdir.py
75,819
259,555
12
sklearn/metrics/cluster/_supervised.py
6
4
def homogeneity_score(labels_true, labels_pred): return homogeneity_completeness_v_measure(labels_true, labels_pred)[0]
DOC Ensures that homogeneity_score passes numpydoc validation (#23006)
homogeneity_score
4253eace9893eb6aef36ca631e7978b6a8808fbc
scikit-learn
_supervised.py
8
2
https://github.com/scikit-learn/scikit-learn.git
1
18
0
6
29
Python
{ "docstring": "Homogeneity metric of a cluster labeling given a ground truth.\n\n A clustering result satisfies homogeneity if all of its clusters\n contain only data points which are members of a single class.\n\n This metric is independent of the absolute values of the labels:\n a permutation of the class or cluster label values won't change the\n score value in any way.\n\n This metric is not symmetric: switching ``label_true`` with ``label_pred``\n will return the :func:`completeness_score` which will be different in\n general.\n\n Read more in the :ref:`User Guide <homogeneity_completeness>`.\n\n Parameters\n ----------\n labels_true : int array, shape = [n_samples]\n Ground truth class labels to be used as a reference.\n\n labels_pred : array-like of shape (n_samples,)\n Cluster labels to evaluate.\n\n Returns\n -------\n homogeneity : float\n Score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling.\n\n See Also\n --------\n completeness_score : Completeness metric of cluster labeling.\n v_measure_score : V-Measure (NMI with arithmetic mean option).\n\n References\n ----------\n\n .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A\n conditional entropy-based external cluster evaluation measure\n <https://aclweb.org/anthology/D/D07/D07-1043.pdf>`_\n\n Examples\n --------\n\n Perfect labelings are homogeneous::\n\n >>> from sklearn.metrics.cluster import homogeneity_score\n >>> homogeneity_score([0, 0, 1, 1], [1, 1, 0, 0])\n 1.0\n\n Non-perfect labelings that further split classes into more clusters can be\n perfectly homogeneous::\n\n >>> print(\"%.6f\" % homogeneity_score([0, 0, 1, 1], [0, 0, 1, 2]))\n 1.000000\n >>> print(\"%.6f\" % homogeneity_score([0, 0, 1, 1], [0, 1, 2, 3]))\n 1.000000\n\n Clusters that include samples from different classes do not make for an\n homogeneous labeling::\n\n >>> print(\"%.6f\" % homogeneity_score([0, 0, 1, 1], [0, 1, 0, 1]))\n 0.0...\n >>> print(\"%.6f\" % homogeneity_score([0, 0, 1, 1], [0, 0, 0, 0]))\n 0.0...\n ", "language": "en", "n_whitespaces": 443, "n_words": 263, "vocab_size": 162 }
def homogeneity_score(labels_true, labels_pred): return homogeneity_completeness_v_measure(labels_true, labels_pred)[0]
49,376
199,720
62
sympy/polys/orthopolys.py
33
12
def dup_chebyshevt(n, K): if n
Restore domain elements in dup_* functions
dup_chebyshevt
3d30d00c37371f142e6a0e9dc5058752d8c9d401
sympy
orthopolys.py
15
7
https://github.com/sympy/sympy.git
3
83
0
26
123
Python
{ "docstring": "Low-level implementation of Chebyshev polynomials of the first kind.", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 8 }
def dup_chebyshevt(n, K): if n < 1: return [K.one] m2, m1 = [K.one], [K.one, K.zero] for i in range(2, n+1): m2, m1 = m1, dup_sub(dup_mul_ground(dup_lshift(m1, 1, K), K(2), K), m2, K) return m1
57,190
224,043
20
mkdocs/tests/base.py
8
8
def get_markdown_toc(markdown_source): md = markdown.Markdown(extensions=['toc
Remove spaces at the ends of docstrings, normalize quotes
get_markdown_toc
e7f07cc82ab2be920ab426ba07456d8b2592714d
mkdocs
base.py
11
4
https://github.com/mkdocs/mkdocs.git
1
28
0
8
50
Python
{ "docstring": "Return TOC generated by Markdown parser from Markdown source text.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 9 }
def get_markdown_toc(markdown_source): md = markdown.Markdown(extensions=['toc']) md.convert(markdown_source) return md.toc_tokens
16,673
77,547
53
wagtail/admin/widgets/chooser.py
10
6
def get_value_data_from_instance(self, instance):
Split out common logic from get_value_data
get_value_data_from_instance
39f7886a6f8ee98db7e73ce33d94c06139f35bd8
wagtail
chooser.py
11
5
https://github.com/wagtail/wagtail.git
1
28
0
10
49
Python
{ "docstring": "\n Given a model instance, return a value that we can pass to both the server-side template\n and the client-side rendering code (via telepath) that contains all the information needed\n for display. Typically this is a dict of id, title etc; it must be JSON-serialisable.\n ", "language": "en", "n_whitespaces": 73, "n_words": 44, "vocab_size": 39 }
def get_value_data_from_instance(self, instance): return { "id": instance.pk, "edit_url": AdminURLFinder().get_edit_url(instance), }
53,473
212,865
10,839
PySimpleGUI.py
4,824
131
def set_options(icon=None, button_color=None, element_size=(None, None), button_element_size=(None, None), margins=(None, None), element_padding=(None, None), auto_size_text=None, auto_size_buttons=None, font=None, border_width=None, slider_border_width=None, slider_relief=None, slider_orientation=None, autoclose_time=None, message_box_line_width=None, progress_meter_border_depth=None, progress_meter_style=None, progress_meter_relief=None, progress_meter_color=None, progress_meter_size=None, text_justification=None, background_color=None, element_background_color=None, text_element_background_color=None, input_elements_background_color=None, input_text_color=None, scrollbar_color=None, text_color=None, element_text_color=None, debug_win_size=(None, None), window_location=(None, None), error_button_color=(None, None), tooltip_time=None, tooltip_font=None, use_ttk_buttons=None, ttk_theme=None, suppress_error_popups=None, suppress_raise_key_errors=None, suppress_key_guessing=None,warn_button_key_duplicates=False, enable_treeview_869_patch=None, enable_mac_notitlebar_patch=None, use_custom_titlebar=None, titlebar_background_color=None, titlebar_text_color=None, titlebar_font=None, titlebar_icon=None, user_settings_path=None, pysimplegui_settings_path=None, pysimplegui_settings_filename=None, keep_on_top=None, dpi_awareness=None, scaling=None, disable_modal_windows=None, tooltip_offset=(None, None)): global DEFAULT_ELEMENT_SIZE global DEFAULT_BUTTON_ELEMENT_SIZE global DEFAULT_MARGINS # Margins for each LEFT/RIGHT margin is first term global DEFAULT_ELEMENT_PADDING # Padding between elements (row, col) in pixels global DEFAULT_AUTOSIZE_TEXT global DEFAULT_AUTOSIZE_BUTTONS global DEFAULT_FONT global DEFAULT_BORDER_WIDTH global DEFAULT_AUTOCLOSE_TIME global DEFAULT_BUTTON_COLOR global MESSAGE_BOX_LINE_WIDTH global DEFAULT_PROGRESS_BAR_BORDER_WIDTH global DEFAULT_PROGRESS_BAR_STYLE global DEFAULT_PROGRESS_BAR_RELIEF global DEFAULT_PROGRESS_BAR_COLOR global DEFAULT_PROGRESS_BAR_SIZE global DEFAULT_TEXT_JUSTIFICATION global DEFAULT_DEBUG_WINDOW_SIZE global DEFAULT_SLIDER_BORDER_WIDTH global DEFAULT_SLIDER_RELIEF global DEFAULT_SLIDER_ORIENTATION global DEFAULT_BACKGROUND_COLOR global DEFAULT_INPUT_ELEMENTS_COLOR global DEFAULT_ELEMENT_BACKGROUND_COLOR global DEFAULT_TEXT_ELEMENT_BACKGROUND_COLOR global DEFAULT_SCROLLBAR_COLOR global DEFAULT_TEXT_COLOR global DEFAULT_WINDOW_LOCATION global DEFAULT_ELEMENT_TEXT_COLOR global DEFAULT_INPUT_TEXT_COLOR global DEFAULT_TOOLTIP_TIME global DEFAULT_ERROR_BUTTON_COLOR global DEFAULT_TTK_THEME global USE_TTK_BUTTONS global TOOLTIP_FONT global SUPPRESS_ERROR_POPUPS global SUPPRESS_RAISE_KEY_ERRORS global SUPPRESS_KEY_GUESSING global WARN_DUPLICATE_BUTTON_KEY_ERRORS global ENABLE_TREEVIEW_869_PATCH global ENABLE_MAC_NOTITLEBAR_PATCH global USE_CUSTOM_TITLEBAR global CUSTOM_TITLEBAR_BACKGROUND_COLOR global CUSTOM_TITLEBAR_TEXT_COLOR global CUSTOM_TITLEBAR_ICON global CUSTOM_TITLEBAR_FONT global DEFAULT_USER_SETTINGS_PATH global DEFAULT_USER_SETTINGS_PYSIMPLEGUI_PATH global DEFAULT_USER_SETTINGS_PYSIMPLEGUI_FILENAME global DEFAULT_KEEP_ON_TOP global DEFAULT_SCALING global DEFAULT_MODAL_WINDOWS_ENABLED global DEFAULT_TOOLTIP_OFFSET global _pysimplegui_user_settings # global _my_windows if icon: Window._user_defined_icon = icon # _my_windows._user_defined_icon = icon if button_color != None: if button_color == COLOR_SYSTEM_DEFAULT: DEFAULT_BUTTON_COLOR = (COLOR_SYSTEM_DEFAULT, COLOR_SYSTEM_DEFAULT) else: DEFAULT_BUTTON_COLOR = button_color if element_size != (None, None): DEFAULT_ELEMENT_SIZE = element_size if button_element_size != (None, None): DEFAULT_BUTTON_ELEMENT_SIZE = button_element_size if margins != (None, None): DEFAULT_MARGINS = margins if element_padding != (None, None): DEFAULT_ELEMENT_PADDING = element_padding if auto_size_text != None: DEFAULT_AUTOSIZE_TEXT = auto_size_text if auto_size_buttons != None: DEFAULT_AUTOSIZE_BUTTONS = auto_size_buttons if font != None: DEFAULT_FONT = font if border_width != None: DEFAULT_BORDER_WIDTH = border_width if autoclose_time != None: DEFAULT_AUTOCLOSE_TIME = autoclose_time if message_box_line_width != None: MESSAGE_BOX_LINE_WIDTH = message_box_line_width if progress_meter_border_depth != None: DEFAULT_PROGRESS_BAR_BORDER_WIDTH = progress_meter_border_depth if progress_meter_style != None: warnings.warn('You can no longer set a progress bar style. All ttk styles must be the same for the window', UserWarning) # DEFAULT_PROGRESS_BAR_STYLE = progress_meter_style if progress_meter_relief != None: DEFAULT_PROGRESS_BAR_RELIEF = progress_meter_relief if progress_meter_color != None: DEFAULT_PROGRESS_BAR_COLOR = progress_meter_color if progress_meter_size != None: DEFAULT_PROGRESS_BAR_SIZE = progress_meter_size if slider_border_width != None: DEFAULT_SLIDER_BORDER_WIDTH = slider_border_width if slider_orientation != None: DEFAULT_SLIDER_ORIENTATION = slider_orientation if slider_relief != None: DEFAULT_SLIDER_RELIEF = slider_relief if text_justification != None: DEFAULT_TEXT_JUSTIFICATION = text_justification if background_color != None: DEFAULT_BACKGROUND_COLOR = background_color if text_element_background_color != None: DEFAULT_TEXT_ELEMENT_BACKGROUND_COLOR = text_element_background_color if input_elements_background_color != None: DEFAULT_INPUT_ELEMENTS_COLOR = input_elements_background_color if element_background_color != None: DEFAULT_ELEMENT_BACKGROUND_COLOR = element_background_color if window_location != (None, None): DEFAULT_WINDOW_LOCATION = window_location if debug_win_size != (None, None): DEFAULT_DEBUG_WINDOW_SIZE = debug_win_size if text_color != None: DEFAULT_TEXT_COLOR = text_color if scrollbar_color != None: DEFAULT_SCROLLBAR_COLOR = scrollbar_color if element_text_color != None: DEFAULT_ELEMENT_TEXT_COLOR = element_text_color if input_text_color is not None: DEFAULT_INPUT_TEXT_COLOR = input_text_color if tooltip_time is not None: DEFAULT_TOOLTIP_TIME = tooltip_time if error_button_color != (None, None): DEFAULT_ERROR_BUTTON_COLOR = error_button_color if ttk_theme is not None: DEFAULT_TTK_THEME = ttk_theme if use_ttk_buttons is not None: USE_TTK_BUTTONS = use_ttk_buttons if tooltip_font is not None: TOOLTIP_FONT = tooltip_font if suppress_error_popups is not None: SUPPRESS_ERROR_POPUPS = suppress_error_popups if suppress_raise_key_errors is not None: SUPPRESS_RAISE_KEY_ERRORS = suppress_raise_key_errors if suppress_key_guessing is not None: SUPPRESS_KEY_GUESSING = suppress_key_guessing if warn_button_key_duplicates is not None: WARN_DUPLICATE_BUTTON_KEY_ERRORS = warn_button_key_duplicates if enable_treeview_869_patch is not None: ENABLE_TREEVIEW_869_PATCH = enable_treeview_869_patch if enable_mac_notitlebar_patch is not None: ENABLE_MAC_NOTITLEBAR_PATCH = enable_mac_notitlebar_patch if use_custom_titlebar is not None: USE_CUSTOM_TITLEBAR = use_custom_titlebar if titlebar_background_color is not None: CUSTOM_TITLEBAR_BACKGROUND_COLOR = titlebar_background_color if titlebar_text_color is not None: CUSTOM_TITLEBAR_TEXT_COLOR = titlebar_text_color if titlebar_font is not None: CUSTOM_TITLEBAR_FONT = titlebar_font if titlebar_icon is not None: CUSTOM_TITLEBAR_ICON = titlebar_icon if user_settings_path is not None: DEFAULT_USER_SETTINGS_PATH = user_settings_path if pysimplegui_settings_path is not None: DEFAULT_USER_SETTINGS_PYSIMPLEGUI_PATH = pysimplegui_settings_path if pysimplegui_settings_filename is not None: DEFAULT_USER_SETTINGS_PYSIMPLEGUI_FILENAME = pysimplegui_settings_filename if pysimplegui_settings_filename is not None or pysimplegui_settings_filename is not None: _pysimplegui_user_settings = UserSettings(filename=DEFAULT_USER_SETTINGS_PYSIMPLEGUI_FILENAME, path=DEFAULT_USER_SETTINGS_PYSIMPLEGUI_PATH) if keep_on_top is not None: DEFAULT_KEEP_ON_TOP = keep_on_top if dpi_awareness is True: if running_windows(): if platform.release() == "7": ctypes.windll.user32.SetProcessDPIAware() elif platform.release() == "8" or platform.release() == "10": ctypes.windll.shcore.SetProcessDpiAwareness(1) if scaling is not None: DEFAULT_SCALING = scaling if disable_modal_windows is not None: DEFAULT_MODAL_WINDOWS_ENABLED = not disable_modal_windows if tooltip_offset != (None, None): DEFAULT_TOOLTIP_OFFSET = tooltip_offset return True # ----------------------------------------------------------------- # # .########.##.....##.########.##.....##.########..######. # ....##....##.....##.##.......###...###.##.......##....## # ....##....##.....##.##.......####.####.##.......##...... # ....##....#########.######...##.###.##.######....######. # ....##....##.....##.##.......##.....##.##.............## # ....##....##.....##.##.......##.....##.##.......##....## # ....##....##.....##.########.##.....##.########..######. # ----------------------------------------------------------------- # # The official Theme code #################### ChangeLookAndFeel ####################### # Predefined settings that will change the colors and styles # # of the elements. # ############################################################## LOOK_AND_FEEL_TABLE = { "SystemDefault": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": OFFICIAL_PYSIMPLEGUI_BUTTON_COLOR, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "SystemDefaultForReal": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": COLOR_SYSTEM_DEFAULT, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "SystemDefault1": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": COLOR_SYSTEM_DEFAULT, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "Material1": {"BACKGROUND": "#E3F2FD", "TEXT": "#000000", "INPUT": "#86A8FF", "TEXT_INPUT": "#000000", "SCROLL": "#86A8FF", "BUTTON": ("#FFFFFF", "#5079D3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 0, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#FF0266", "ACCENT2": "#FF5C93", "ACCENT3": "#C5003C", }, "Material2": {"BACKGROUND": "#FAFAFA", "TEXT": "#000000", "INPUT": "#004EA1", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#5EA7FF", "BUTTON": ("#FFFFFF", "#0079D3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 0, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#FF0266", "ACCENT2": "#FF5C93", "ACCENT3": "#C5003C", }, "Reddit": {"BACKGROUND": "#ffffff", "TEXT": "#1a1a1b", "INPUT": "#dae0e6", "TEXT_INPUT": "#222222", "SCROLL": "#a5a4a4", "BUTTON": ("#FFFFFF", "#0079d3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#ff5414", "ACCENT2": "#33a8ff", "ACCENT3": "#dbf0ff", }, "Topanga": {"BACKGROUND": "#282923", "TEXT": "#E7DB74", "INPUT": "#393a32", "TEXT_INPUT": "#E7C855", "SCROLL": "#E7C855", "BUTTON": ("#E7C855", "#284B5A"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#c15226", "ACCENT2": "#7a4d5f", "ACCENT3": "#889743", }, "GreenTan": {"BACKGROUND": "#9FB8AD", "TEXT": '#000000', "INPUT": "#F7F3EC", "TEXT_INPUT": "#000000", "SCROLL": "#F7F3EC", "BUTTON": ("#FFFFFF", "#475841"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Dark": {"BACKGROUND": "#404040", "TEXT": "#FFFFFF", "INPUT": "#4D4D4D", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#707070", "BUTTON": ("#FFFFFF", "#004F00"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen": {"BACKGROUND": "#B7CECE", "TEXT": "#000000", "INPUT": "#FDFFF7", "TEXT_INPUT": "#000000", "SCROLL": "#FDFFF7", "BUTTON": ("#FFFFFF", "#658268"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "ACCENT1": "#76506d", "ACCENT2": "#5148f1", "ACCENT3": "#0a1c84", "PROGRESS_DEPTH": 0, }, "Dark2": {"BACKGROUND": "#404040", "TEXT": "#FFFFFF", "INPUT": "#FFFFFF", "TEXT_INPUT": "#000000", "SCROLL": "#707070", "BUTTON": ("#FFFFFF", "#004F00"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Black": {"BACKGROUND": "#000000", "TEXT": "#FFFFFF", "INPUT": "#4D4D4D", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#707070", "BUTTON": ("#000000", "#FFFFFF"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Tan": {"BACKGROUND": "#fdf6e3", "TEXT": "#268bd1", "INPUT": "#eee8d5", "TEXT_INPUT": "#6c71c3", "SCROLL": "#eee8d5", "BUTTON": ("#FFFFFF", "#063542"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "TanBlue": {"BACKGROUND": "#e5dece", "TEXT": "#063289", "INPUT": "#f9f8f4", "TEXT_INPUT": "#242834", "SCROLL": "#eee8d5", "BUTTON": ("#FFFFFF", "#063289"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkTanBlue": {"BACKGROUND": "#242834", "TEXT": "#dfe6f8", "INPUT": "#97755c", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#a9afbb", "BUTTON": ("#FFFFFF", "#063289"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkAmber": {"BACKGROUND": "#2c2825", "TEXT": "#fdcb52", "INPUT": "#705e52", "TEXT_INPUT": "#fdcb52", "SCROLL": "#705e52", "BUTTON": ("#000000", "#fdcb52"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue": {"BACKGROUND": "#1a2835", "TEXT": "#d1ecff", "INPUT": "#335267", "TEXT_INPUT": "#acc2d0", "SCROLL": "#1b6497", "BUTTON": ("#000000", "#fafaf8"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1
Addition of tooltip_offset parm to set_options call (major hack to get around 8.6.12 problem). Backed out the experiments to try and fix new problem with Ubuntu
set_options
07bb93d47f01468660a01f42150e87e5cb08d546
PySimpleGUI
PySimpleGUI.py
16
14
https://github.com/PySimpleGUI/PySimpleGUI.git
1
255
0
1,112
19,192
Python
{ "docstring": "\n :param icon: Can be either a filename or Base64 value. For Windows if filename, it MUST be ICO format. For Linux, must NOT be ICO. Most portable is to use a Base64 of a PNG file. This works universally across all OS's\n :type icon: bytes | str\n :param button_color: Color of the button (text, background)\n :type button_color: (str, str) or str\n :param element_size: element size (width, height) in characters\n :type element_size: (int, int)\n :param button_element_size: Size of button\n :type button_element_size: (int, int)\n :param margins: (left/right, top/bottom) tkinter margins around outsize. Amount of pixels to leave inside the window's frame around the edges before your elements are shown.\n :type margins: (int, int)\n :param element_padding: Default amount of padding to put around elements in window (left/right, top/bottom) or ((left, right), (top, bottom))\n :type element_padding: (int, int) or ((int, int),(int,int))\n :param auto_size_text: True if the Widget should be shrunk to exactly fit the number of chars to show\n :type auto_size_text: bool\n :param auto_size_buttons: True if Buttons in this Window should be sized to exactly fit the text on this.\n :type auto_size_buttons: (bool)\n :param font: specifies the font family, size, etc. Tuple or Single string format 'name size styles'. Styles: italic * roman bold normal underline overstrike\n :type font: (str or (str, int[, str]) or None)\n :param border_width: width of border around element\n :type border_width: (int)\n :param slider_border_width: Width of the border around sliders\n :type slider_border_width: (int)\n :param slider_relief: Type of relief to use for sliders\n :type slider_relief: (str)\n :param slider_orientation: ???\n :type slider_orientation: ???\n :param autoclose_time: ???\n :type autoclose_time: ???\n :param message_box_line_width: ???\n :type message_box_line_width: ???\n :param progress_meter_border_depth: ???\n :type progress_meter_border_depth: ???\n :param progress_meter_style: You can no longer set a progress bar style. All ttk styles must be the same for the window\n :type progress_meter_style: ???\n :param progress_meter_relief:\n :type progress_meter_relief: ???\n :param progress_meter_color: ???\n :type progress_meter_color: ???\n :param progress_meter_size: ???\n :type progress_meter_size: ???\n :param text_justification: Default text justification for all Text Elements in window\n :type text_justification: 'left' | 'right' | 'center'\n :param background_color: color of background\n :type background_color: (str)\n :param element_background_color: element background color\n :type element_background_color: (str)\n :param text_element_background_color: text element background color\n :type text_element_background_color: (str)\n :param input_elements_background_color: Default color to use for the background of input elements\n :type input_elements_background_color: (str)\n :param input_text_color: Default color to use for the text for Input elements\n :type input_text_color: (str)\n :param scrollbar_color: Default color to use for the slider trough\n :type scrollbar_color: (str)\n :param text_color: color of the text\n :type text_color: (str)\n :param element_text_color: Default color to use for Text elements\n :type element_text_color: (str)\n :param debug_win_size: window size\n :type debug_win_size: (int, int)\n :param window_location: Default location to place windows. Not setting will center windows on the display\n :type window_location: (int, int) | None\n :param error_button_color: (Default = (None))\n :type error_button_color: ???\n :param tooltip_time: time in milliseconds to wait before showing a tooltip. Default is 400ms\n :type tooltip_time: (int)\n :param tooltip_font: font to use for all tooltips\n :type tooltip_font: str or Tuple[str, int] or Tuple[str, int, str]\n :param use_ttk_buttons: if True will cause all buttons to be ttk buttons\n :type use_ttk_buttons: (bool)\n :param ttk_theme: Theme to use with ttk widgets. Choices (on Windows) include - 'default', 'winnative', 'clam', 'alt', 'classic', 'vista', 'xpnative'\n :type ttk_theme: (str)\n :param suppress_error_popups: If True then error popups will not be shown if generated internally to PySimpleGUI\n :type suppress_error_popups: (bool)\n :param suppress_raise_key_errors: If True then key errors won't be raised (you'll still get popup error)\n :type suppress_raise_key_errors: (bool)\n :param suppress_key_guessing: If True then key errors won't try and find closest matches for you\n :type suppress_key_guessing: (bool)\n :param warn_button_key_duplicates: If True then duplicate Button Keys generate warnings (not recommended as they're expected)\n :type warn_button_key_duplicates: (bool) \n :param enable_treeview_869_patch: If True, then will use the treeview color patch for tk 8.6.9\n :type enable_treeview_869_patch: (bool)\n :param enable_mac_notitlebar_patch: If True then Windows with no titlebar use an alternative technique when tkinter version < 8.6.10\n :type enable_mac_notitlebar_patch: (bool)\n :param use_custom_titlebar: If True then a custom titlebar is used instead of the normal system titlebar\n :type use_custom_titlebar: (bool)\n :param titlebar_background_color: If custom titlebar indicated by use_custom_titlebar, then use this as background color\n :type titlebar_background_color: str | None\n :param titlebar_text_color: If custom titlebar indicated by use_custom_titlebar, then use this as text color\n :type titlebar_text_color: str | None\n :param titlebar_font: If custom titlebar indicated by use_custom_titlebar, then use this as title font\n :type titlebar_font: (str or (str, int[, str]) or None) | None\n :param titlebar_icon: If custom titlebar indicated by use_custom_titlebar, then use this as the icon (file or base64 bytes)\n :type titlebar_icon: bytes | str\n :param user_settings_path: default path for user_settings API calls. Expanded with os.path.expanduser so can contain ~ to represent user\n :type user_settings_path: (str)\n :param pysimplegui_settings_path: default path for the global PySimpleGUI user_settings\n :type pysimplegui_settings_path: (str)\n :param pysimplegui_settings_filename: default filename for the global PySimpleGUI user_settings\n :type pysimplegui_settings_filename: (str)\n :param keep_on_top: If True then all windows will automatically be set to keep_on_top=True\n :type keep_on_top: (bool)\n :param dpi_awareness: If True then will turn on DPI awareness (Windows only at the moment)\n :type dpi_awareness: (bool)\n :param scaling: Sets the default scaling for all windows including popups, etc.\n :type scaling: (float)\n :param disable_modal_windows: If True then all windows, including popups, will not be modal windows\n :type disable_modal_windows: (bool)\n :param tooltip_offset: Offset to use for tooltips as a tuple. These values will be added to the mouse location when the widget was entered.\n :type tooltip_offset: ((None, None) | (int, int))\n :return: None\n :rtype: None\n ", "language": "en", "n_whitespaces": 2847, "n_words": 889, "vocab_size": 356 }
def set_options(icon=None, button_color=None, element_size=(None, None), button_element_size=(None, None), margins=(None, None), element_padding=(None, None), auto_size_text=None, auto_size_buttons=None, font=None, border_width=None, slider_border_width=None, slider_relief=None, slider_orientation=None, autoclose_time=None, message_box_line_width=None, progress_meter_border_depth=None, progress_meter_style=None, progress_meter_relief=None, progress_meter_color=None, progress_meter_size=None, text_justification=None, background_color=None, element_background_color=None, text_element_background_color=None, input_elements_background_color=None, input_text_color=None, scrollbar_color=None, text_color=None, element_text_color=None, debug_win_size=(None, None), window_location=(None, None), error_button_color=(None, None), tooltip_time=None, tooltip_font=None, use_ttk_buttons=None, ttk_theme=None, suppress_error_popups=None, suppress_raise_key_errors=None, suppress_key_guessing=None,warn_button_key_duplicates=False, enable_treeview_869_patch=None, enable_mac_notitlebar_patch=None, use_custom_titlebar=None, titlebar_background_color=None, titlebar_text_color=None, titlebar_font=None, titlebar_icon=None, user_settings_path=None, pysimplegui_settings_path=None, pysimplegui_settings_filename=None, keep_on_top=None, dpi_awareness=None, scaling=None, disable_modal_windows=None, tooltip_offset=(None, None)): global DEFAULT_ELEMENT_SIZE global DEFAULT_BUTTON_ELEMENT_SIZE global DEFAULT_MARGINS # Margins for each LEFT/RIGHT margin is first term global DEFAULT_ELEMENT_PADDING # Padding between elements (row, col) in pixels global DEFAULT_AUTOSIZE_TEXT global DEFAULT_AUTOSIZE_BUTTONS global DEFAULT_FONT global DEFAULT_BORDER_WIDTH global DEFAULT_AUTOCLOSE_TIME global DEFAULT_BUTTON_COLOR global MESSAGE_BOX_LINE_WIDTH global DEFAULT_PROGRESS_BAR_BORDER_WIDTH global DEFAULT_PROGRESS_BAR_STYLE global DEFAULT_PROGRESS_BAR_RELIEF global DEFAULT_PROGRESS_BAR_COLOR global DEFAULT_PROGRESS_BAR_SIZE global DEFAULT_TEXT_JUSTIFICATION global DEFAULT_DEBUG_WINDOW_SIZE global DEFAULT_SLIDER_BORDER_WIDTH global DEFAULT_SLIDER_RELIEF global DEFAULT_SLIDER_ORIENTATION global DEFAULT_BACKGROUND_COLOR global DEFAULT_INPUT_ELEMENTS_COLOR global DEFAULT_ELEMENT_BACKGROUND_COLOR global DEFAULT_TEXT_ELEMENT_BACKGROUND_COLOR global DEFAULT_SCROLLBAR_COLOR global DEFAULT_TEXT_COLOR global DEFAULT_WINDOW_LOCATION global DEFAULT_ELEMENT_TEXT_COLOR global DEFAULT_INPUT_TEXT_COLOR global DEFAULT_TOOLTIP_TIME global DEFAULT_ERROR_BUTTON_COLOR global DEFAULT_TTK_THEME global USE_TTK_BUTTONS global TOOLTIP_FONT global SUPPRESS_ERROR_POPUPS global SUPPRESS_RAISE_KEY_ERRORS global SUPPRESS_KEY_GUESSING global WARN_DUPLICATE_BUTTON_KEY_ERRORS global ENABLE_TREEVIEW_869_PATCH global ENABLE_MAC_NOTITLEBAR_PATCH global USE_CUSTOM_TITLEBAR global CUSTOM_TITLEBAR_BACKGROUND_COLOR global CUSTOM_TITLEBAR_TEXT_COLOR global CUSTOM_TITLEBAR_ICON global CUSTOM_TITLEBAR_FONT global DEFAULT_USER_SETTINGS_PATH global DEFAULT_USER_SETTINGS_PYSIMPLEGUI_PATH global DEFAULT_USER_SETTINGS_PYSIMPLEGUI_FILENAME global DEFAULT_KEEP_ON_TOP global DEFAULT_SCALING global DEFAULT_MODAL_WINDOWS_ENABLED global DEFAULT_TOOLTIP_OFFSET global _pysimplegui_user_settings # global _my_windows if icon: Window._user_defined_icon = icon # _my_windows._user_defined_icon = icon if button_color != None: if button_color == COLOR_SYSTEM_DEFAULT: DEFAULT_BUTTON_COLOR = (COLOR_SYSTEM_DEFAULT, COLOR_SYSTEM_DEFAULT) else: DEFAULT_BUTTON_COLOR = button_color if element_size != (None, None): DEFAULT_ELEMENT_SIZE = element_size if button_element_size != (None, None): DEFAULT_BUTTON_ELEMENT_SIZE = button_element_size if margins != (None, None): DEFAULT_MARGINS = margins if element_padding != (None, None): DEFAULT_ELEMENT_PADDING = element_padding if auto_size_text != None: DEFAULT_AUTOSIZE_TEXT = auto_size_text if auto_size_buttons != None: DEFAULT_AUTOSIZE_BUTTONS = auto_size_buttons if font != None: DEFAULT_FONT = font if border_width != None: DEFAULT_BORDER_WIDTH = border_width if autoclose_time != None: DEFAULT_AUTOCLOSE_TIME = autoclose_time if message_box_line_width != None: MESSAGE_BOX_LINE_WIDTH = message_box_line_width if progress_meter_border_depth != None: DEFAULT_PROGRESS_BAR_BORDER_WIDTH = progress_meter_border_depth if progress_meter_style != None: warnings.warn('You can no longer set a progress bar style. All ttk styles must be the same for the window', UserWarning) # DEFAULT_PROGRESS_BAR_STYLE = progress_meter_style if progress_meter_relief != None: DEFAULT_PROGRESS_BAR_RELIEF = progress_meter_relief if progress_meter_color != None: DEFAULT_PROGRESS_BAR_COLOR = progress_meter_color if progress_meter_size != None: DEFAULT_PROGRESS_BAR_SIZE = progress_meter_size if slider_border_width != None: DEFAULT_SLIDER_BORDER_WIDTH = slider_border_width if slider_orientation != None: DEFAULT_SLIDER_ORIENTATION = slider_orientation if slider_relief != None: DEFAULT_SLIDER_RELIEF = slider_relief if text_justification != None: DEFAULT_TEXT_JUSTIFICATION = text_justification if background_color != None: DEFAULT_BACKGROUND_COLOR = background_color if text_element_background_color != None: DEFAULT_TEXT_ELEMENT_BACKGROUND_COLOR = text_element_background_color if input_elements_background_color != None: DEFAULT_INPUT_ELEMENTS_COLOR = input_elements_background_color if element_background_color != None: DEFAULT_ELEMENT_BACKGROUND_COLOR = element_background_color if window_location != (None, None): DEFAULT_WINDOW_LOCATION = window_location if debug_win_size != (None, None): DEFAULT_DEBUG_WINDOW_SIZE = debug_win_size if text_color != None: DEFAULT_TEXT_COLOR = text_color if scrollbar_color != None: DEFAULT_SCROLLBAR_COLOR = scrollbar_color if element_text_color != None: DEFAULT_ELEMENT_TEXT_COLOR = element_text_color if input_text_color is not None: DEFAULT_INPUT_TEXT_COLOR = input_text_color if tooltip_time is not None: DEFAULT_TOOLTIP_TIME = tooltip_time if error_button_color != (None, None): DEFAULT_ERROR_BUTTON_COLOR = error_button_color if ttk_theme is not None: DEFAULT_TTK_THEME = ttk_theme if use_ttk_buttons is not None: USE_TTK_BUTTONS = use_ttk_buttons if tooltip_font is not None: TOOLTIP_FONT = tooltip_font if suppress_error_popups is not None: SUPPRESS_ERROR_POPUPS = suppress_error_popups if suppress_raise_key_errors is not None: SUPPRESS_RAISE_KEY_ERRORS = suppress_raise_key_errors if suppress_key_guessing is not None: SUPPRESS_KEY_GUESSING = suppress_key_guessing if warn_button_key_duplicates is not None: WARN_DUPLICATE_BUTTON_KEY_ERRORS = warn_button_key_duplicates if enable_treeview_869_patch is not None: ENABLE_TREEVIEW_869_PATCH = enable_treeview_869_patch if enable_mac_notitlebar_patch is not None: ENABLE_MAC_NOTITLEBAR_PATCH = enable_mac_notitlebar_patch if use_custom_titlebar is not None: USE_CUSTOM_TITLEBAR = use_custom_titlebar if titlebar_background_color is not None: CUSTOM_TITLEBAR_BACKGROUND_COLOR = titlebar_background_color if titlebar_text_color is not None: CUSTOM_TITLEBAR_TEXT_COLOR = titlebar_text_color if titlebar_font is not None: CUSTOM_TITLEBAR_FONT = titlebar_font if titlebar_icon is not None: CUSTOM_TITLEBAR_ICON = titlebar_icon if user_settings_path is not None: DEFAULT_USER_SETTINGS_PATH = user_settings_path if pysimplegui_settings_path is not None: DEFAULT_USER_SETTINGS_PYSIMPLEGUI_PATH = pysimplegui_settings_path if pysimplegui_settings_filename is not None: DEFAULT_USER_SETTINGS_PYSIMPLEGUI_FILENAME = pysimplegui_settings_filename if pysimplegui_settings_filename is not None or pysimplegui_settings_filename is not None: _pysimplegui_user_settings = UserSettings(filename=DEFAULT_USER_SETTINGS_PYSIMPLEGUI_FILENAME, path=DEFAULT_USER_SETTINGS_PYSIMPLEGUI_PATH) if keep_on_top is not None: DEFAULT_KEEP_ON_TOP = keep_on_top if dpi_awareness is True: if running_windows(): if platform.release() == "7": ctypes.windll.user32.SetProcessDPIAware() elif platform.release() == "8" or platform.release() == "10": ctypes.windll.shcore.SetProcessDpiAwareness(1) if scaling is not None: DEFAULT_SCALING = scaling if disable_modal_windows is not None: DEFAULT_MODAL_WINDOWS_ENABLED = not disable_modal_windows if tooltip_offset != (None, None): DEFAULT_TOOLTIP_OFFSET = tooltip_offset return True # ----------------------------------------------------------------- # # .########.##.....##.########.##.....##.########..######. # ....##....##.....##.##.......###...###.##.......##....## # ....##....##.....##.##.......####.####.##.......##...... # ....##....#########.######...##.###.##.######....######. # ....##....##.....##.##.......##.....##.##.............## # ....##....##.....##.##.......##.....##.##.......##....## # ....##....##.....##.########.##.....##.########..######. # ----------------------------------------------------------------- # # The official Theme code #################### ChangeLookAndFeel ####################### # Predefined settings that will change the colors and styles # # of the elements. # ############################################################## LOOK_AND_FEEL_TABLE = { "SystemDefault": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": OFFICIAL_PYSIMPLEGUI_BUTTON_COLOR, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "SystemDefaultForReal": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": COLOR_SYSTEM_DEFAULT, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "SystemDefault1": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": COLOR_SYSTEM_DEFAULT, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "Material1": {"BACKGROUND": "#E3F2FD", "TEXT": "#000000", "INPUT": "#86A8FF", "TEXT_INPUT": "#000000", "SCROLL": "#86A8FF", "BUTTON": ("#FFFFFF", "#5079D3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 0, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#FF0266", "ACCENT2": "#FF5C93", "ACCENT3": "#C5003C", }, "Material2": {"BACKGROUND": "#FAFAFA", "TEXT": "#000000", "INPUT": "#004EA1", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#5EA7FF", "BUTTON": ("#FFFFFF", "#0079D3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 0, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#FF0266", "ACCENT2": "#FF5C93", "ACCENT3": "#C5003C", }, "Reddit": {"BACKGROUND": "#ffffff", "TEXT": "#1a1a1b", "INPUT": "#dae0e6", "TEXT_INPUT": "#222222", "SCROLL": "#a5a4a4", "BUTTON": ("#FFFFFF", "#0079d3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#ff5414", "ACCENT2": "#33a8ff", "ACCENT3": "#dbf0ff", }, "Topanga": {"BACKGROUND": "#282923", "TEXT": "#E7DB74", "INPUT": "#393a32", "TEXT_INPUT": "#E7C855", "SCROLL": "#E7C855", "BUTTON": ("#E7C855", "#284B5A"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#c15226", "ACCENT2": "#7a4d5f", "ACCENT3": "#889743", }, "GreenTan": {"BACKGROUND": "#9FB8AD", "TEXT": '#000000', "INPUT": "#F7F3EC", "TEXT_INPUT": "#000000", "SCROLL": "#F7F3EC", "BUTTON": ("#FFFFFF", "#475841"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Dark": {"BACKGROUND": "#404040", "TEXT": "#FFFFFF", "INPUT": "#4D4D4D", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#707070", "BUTTON": ("#FFFFFF", "#004F00"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen": {"BACKGROUND": "#B7CECE", "TEXT": "#000000", "INPUT": "#FDFFF7", "TEXT_INPUT": "#000000", "SCROLL": "#FDFFF7", "BUTTON": ("#FFFFFF", "#658268"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "ACCENT1": "#76506d", "ACCENT2": "#5148f1", "ACCENT3": "#0a1c84", "PROGRESS_DEPTH": 0, }, "Dark2": {"BACKGROUND": "#404040", "TEXT": "#FFFFFF", "INPUT": "#FFFFFF", "TEXT_INPUT": "#000000", "SCROLL": "#707070", "BUTTON": ("#FFFFFF", "#004F00"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Black": {"BACKGROUND": "#000000", "TEXT": "#FFFFFF", "INPUT": "#4D4D4D", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#707070", "BUTTON": ("#000000", "#FFFFFF"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Tan": {"BACKGROUND": "#fdf6e3", "TEXT": "#268bd1", "INPUT": "#eee8d5", "TEXT_INPUT": "#6c71c3", "SCROLL": "#eee8d5", "BUTTON": ("#FFFFFF", "#063542"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "TanBlue": {"BACKGROUND": "#e5dece", "TEXT": "#063289", "INPUT": "#f9f8f4", "TEXT_INPUT": "#242834", "SCROLL": "#eee8d5", "BUTTON": ("#FFFFFF", "#063289"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkTanBlue": {"BACKGROUND": "#242834", "TEXT": "#dfe6f8", "INPUT": "#97755c", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#a9afbb", "BUTTON": ("#FFFFFF", "#063289"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkAmber": {"BACKGROUND": "#2c2825", "TEXT": "#fdcb52", "INPUT": "#705e52", "TEXT_INPUT": "#fdcb52", "SCROLL": "#705e52", "BUTTON": ("#000000", "#fdcb52"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue": {"BACKGROUND": "#1a2835", "TEXT": "#d1ecff", "INPUT": "#335267", "TEXT_INPUT": "#acc2d0", "SCROLL": "#1b6497", "BUTTON": ("#000000", "#fafaf8"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Reds": {"BACKGROUND": "#280001", "TEXT": "#FFFFFF", "INPUT": "#d8d584", "TEXT_INPUT": "#000000", "SCROLL": "#763e00", "BUTTON": ("#000000", "#daad28"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Green": {"BACKGROUND": "#82a459", "TEXT": "#000000", "INPUT": "#d8d584", "TEXT_INPUT": "#000000", "SCROLL": "#e3ecf3", "BUTTON": ("#FFFFFF", "#517239"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "BluePurple": {"BACKGROUND": "#A5CADD", "TEXT": "#6E266E", "INPUT": "#E0F5FF", "TEXT_INPUT": "#000000", "SCROLL": "#E0F5FF", "BUTTON": ("#FFFFFF", "#303952"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Purple": {"BACKGROUND": "#B0AAC2", "TEXT": "#000000", "INPUT": "#F2EFE8", "SCROLL": "#F2EFE8", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#C2D4D8"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "BlueMono": {"BACKGROUND": "#AAB6D3", "TEXT": "#000000", "INPUT": "#F1F4FC", "SCROLL": "#F1F4FC", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#7186C7"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "GreenMono": {"BACKGROUND": "#A8C1B4", "TEXT": "#000000", "INPUT": "#DDE0DE", "SCROLL": "#E3E3E3", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#6D9F85"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "BrownBlue": {"BACKGROUND": "#64778d", "TEXT": "#FFFFFF", "INPUT": "#f0f3f7", "SCROLL": "#A6B2BE", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#283b5b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "BrightColors": {"BACKGROUND": "#b4ffb4", "TEXT": "#000000", "INPUT": "#ffff64", "SCROLL": "#ffb482", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#ffa0dc"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "NeutralBlue": {"BACKGROUND": "#92aa9d", "TEXT": "#000000", "INPUT": "#fcfff6", "SCROLL": "#fcfff6", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#d0dbbd"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Kayak": {"BACKGROUND": "#a7ad7f", "TEXT": "#000000", "INPUT": "#e6d3a8", "SCROLL": "#e6d3a8", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#5d907d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "SandyBeach": {"BACKGROUND": "#efeccb", "TEXT": "#012f2f", "INPUT": "#e6d3a8", "SCROLL": "#e6d3a8", "TEXT_INPUT": "#012f2f", "BUTTON": ("#FFFFFF", "#046380"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "TealMono": {"BACKGROUND": "#a8cfdd", "TEXT": "#000000", "INPUT": "#dfedf2", "SCROLL": "#dfedf2", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#183440"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Default": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": OFFICIAL_PYSIMPLEGUI_BUTTON_COLOR, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "Default1": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": COLOR_SYSTEM_DEFAULT, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "DefaultNoMoreNagging": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": OFFICIAL_PYSIMPLEGUI_BUTTON_COLOR, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "GrayGrayGray": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": COLOR_SYSTEM_DEFAULT, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "LightBlue": {"BACKGROUND": "#E3F2FD", "TEXT": "#000000", "INPUT": "#86A8FF", "TEXT_INPUT": "#000000", "SCROLL": "#86A8FF", "BUTTON": ("#FFFFFF", "#5079D3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 0, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#FF0266", "ACCENT2": "#FF5C93", "ACCENT3": "#C5003C", }, "LightGrey": {"BACKGROUND": "#FAFAFA", "TEXT": "#000000", "INPUT": "#004EA1", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#5EA7FF", "BUTTON": ("#FFFFFF", "#0079D3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 0, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#FF0266", "ACCENT2": "#FF5C93", "ACCENT3": "#C5003C", }, "LightGrey1": {"BACKGROUND": "#ffffff", "TEXT": "#1a1a1b", "INPUT": "#dae0e6", "TEXT_INPUT": "#222222", "SCROLL": "#a5a4a4", "BUTTON": ("#FFFFFF", "#0079d3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#ff5414", "ACCENT2": "#33a8ff", "ACCENT3": "#dbf0ff", }, "DarkBrown": {"BACKGROUND": "#282923", "TEXT": "#E7DB74", "INPUT": "#393a32", "TEXT_INPUT": "#E7C855", "SCROLL": "#E7C855", "BUTTON": ("#E7C855", "#284B5A"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#c15226", "ACCENT2": "#7a4d5f", "ACCENT3": "#889743", }, "LightGreen1": {"BACKGROUND": "#9FB8AD", "TEXT": "#000000", "INPUT": "#F7F3EC", "TEXT_INPUT": "#000000", "SCROLL": "#F7F3EC", "BUTTON": ("#FFFFFF", "#475841"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey": {"BACKGROUND": "#404040", "TEXT": "#FFFFFF", "INPUT": "#4D4D4D", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#707070", "BUTTON": ("#FFFFFF", "#004F00"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen2": {"BACKGROUND": "#B7CECE", "TEXT": "#000000", "INPUT": "#FDFFF7", "TEXT_INPUT": "#000000", "SCROLL": "#FDFFF7", "BUTTON": ("#FFFFFF", "#658268"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "ACCENT1": "#76506d", "ACCENT2": "#5148f1", "ACCENT3": "#0a1c84", "PROGRESS_DEPTH": 0, }, "DarkGrey1": {"BACKGROUND": "#404040", "TEXT": "#FFFFFF", "INPUT": "#FFFFFF", "TEXT_INPUT": "#000000", "SCROLL": "#707070", "BUTTON": ("#FFFFFF", "#004F00"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlack": {"BACKGROUND": "#000000", "TEXT": "#FFFFFF", "INPUT": "#4D4D4D", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#707070", "BUTTON": ("#000000", "#FFFFFF"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown": {"BACKGROUND": "#fdf6e3", "TEXT": "#268bd1", "INPUT": "#eee8d5", "TEXT_INPUT": "#6c71c3", "SCROLL": "#eee8d5", "BUTTON": ("#FFFFFF", "#063542"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown1": {"BACKGROUND": "#e5dece", "TEXT": "#063289", "INPUT": "#f9f8f4", "TEXT_INPUT": "#242834", "SCROLL": "#eee8d5", "BUTTON": ("#FFFFFF", "#063289"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue1": {"BACKGROUND": "#242834", "TEXT": "#dfe6f8", "INPUT": "#97755c", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#a9afbb", "BUTTON": ("#FFFFFF", "#063289"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBrown1": {"BACKGROUND": "#2c2825", "TEXT": "#fdcb52", "INPUT": "#705e52", "TEXT_INPUT": "#fdcb52", "SCROLL": "#705e52", "BUTTON": ("#000000", "#fdcb52"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue2": {"BACKGROUND": "#1a2835", "TEXT": "#d1ecff", "INPUT": "#335267", "TEXT_INPUT": "#acc2d0", "SCROLL": "#1b6497", "BUTTON": ("#000000", "#fafaf8"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBrown2": {"BACKGROUND": "#280001", "TEXT": "#FFFFFF", "INPUT": "#d8d584", "TEXT_INPUT": "#000000", "SCROLL": "#763e00", "BUTTON": ("#000000", "#daad28"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGreen": {"BACKGROUND": "#82a459", "TEXT": "#000000", "INPUT": "#d8d584", "TEXT_INPUT": "#000000", "SCROLL": "#e3ecf3", "BUTTON": ("#FFFFFF", "#517239"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBlue1": {"BACKGROUND": "#A5CADD", "TEXT": "#6E266E", "INPUT": "#E0F5FF", "TEXT_INPUT": "#000000", "SCROLL": "#E0F5FF", "BUTTON": ("#FFFFFF", "#303952"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightPurple": {"BACKGROUND": "#B0AAC2", "TEXT": "#000000", "INPUT": "#F2EFE8", "SCROLL": "#F2EFE8", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#C2D4D8"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBlue2": {"BACKGROUND": "#AAB6D3", "TEXT": "#000000", "INPUT": "#F1F4FC", "SCROLL": "#F1F4FC", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#7186C7"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen3": {"BACKGROUND": "#A8C1B4", "TEXT": "#000000", "INPUT": "#DDE0DE", "SCROLL": "#E3E3E3", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#6D9F85"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue3": {"BACKGROUND": "#64778d", "TEXT": "#FFFFFF", "INPUT": "#f0f3f7", "SCROLL": "#A6B2BE", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#283b5b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen4": {"BACKGROUND": "#b4ffb4", "TEXT": "#000000", "INPUT": "#ffff64", "SCROLL": "#ffb482", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#ffa0dc"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen5": {"BACKGROUND": "#92aa9d", "TEXT": "#000000", "INPUT": "#fcfff6", "SCROLL": "#fcfff6", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#d0dbbd"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown2": {"BACKGROUND": "#a7ad7f", "TEXT": "#000000", "INPUT": "#e6d3a8", "SCROLL": "#e6d3a8", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#5d907d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown3": {"BACKGROUND": "#efeccb", "TEXT": "#012f2f", "INPUT": "#e6d3a8", "SCROLL": "#e6d3a8", "TEXT_INPUT": "#012f2f", "BUTTON": ("#FFFFFF", "#046380"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBlue3": {"BACKGROUND": "#a8cfdd", "TEXT": "#000000", "INPUT": "#dfedf2", "SCROLL": "#dfedf2", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#183440"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown4": {"BACKGROUND": "#d7c79e", "TEXT": "#a35638", "INPUT": "#9dab86", "TEXT_INPUT": "#000000", "SCROLL": "#a35638", "BUTTON": ("#FFFFFF", "#a35638"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#a35638", "#9dab86", "#e08f62", "#d7c79e"], }, "DarkTeal": {"BACKGROUND": "#003f5c", "TEXT": "#fb5b5a", "INPUT": "#bc4873", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#bc4873", "BUTTON": ("#FFFFFF", "#fb5b5a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#003f5c", "#472b62", "#bc4873", "#fb5b5a"], }, "DarkPurple": {"BACKGROUND": "#472b62", "TEXT": "#fb5b5a", "INPUT": "#bc4873", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#bc4873", "BUTTON": ("#FFFFFF", "#472b62"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#003f5c", "#472b62", "#bc4873", "#fb5b5a"], }, "LightGreen6": {"BACKGROUND": "#eafbea", "TEXT": "#1f6650", "INPUT": "#6f9a8d", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#1f6650", "BUTTON": ("#FFFFFF", "#1f6650"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#1f6650", "#6f9a8d", "#ea5e5e", "#eafbea"], }, "DarkGrey2": {"BACKGROUND": "#2b2b28", "TEXT": "#f8f8f8", "INPUT": "#f1d6ab", "TEXT_INPUT": "#000000", "SCROLL": "#f1d6ab", "BUTTON": ("#2b2b28", "#e3b04b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#2b2b28", "#e3b04b", "#f1d6ab", "#f8f8f8"], }, "LightBrown6": {"BACKGROUND": "#f9b282", "TEXT": "#8f4426", "INPUT": "#de6b35", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#8f4426", "BUTTON": ("#FFFFFF", "#8f4426"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#8f4426", "#de6b35", "#64ccda", "#f9b282"], }, "DarkTeal1": {"BACKGROUND": "#396362", "TEXT": "#ffe7d1", "INPUT": "#f6c89f", "TEXT_INPUT": "#000000", "SCROLL": "#f6c89f", "BUTTON": ("#ffe7d1", "#4b8e8d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#396362", "#4b8e8d", "#f6c89f", "#ffe7d1"], }, "LightBrown7": {"BACKGROUND": "#f6c89f", "TEXT": "#396362", "INPUT": "#4b8e8d", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#396362", "BUTTON": ("#FFFFFF", "#396362"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#396362", "#4b8e8d", "#f6c89f", "#ffe7d1"], }, "DarkPurple1": {"BACKGROUND": "#0c093c", "TEXT": "#fad6d6", "INPUT": "#eea5f6", "TEXT_INPUT": "#000000", "SCROLL": "#eea5f6", "BUTTON": ("#FFFFFF", "#df42d1"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#0c093c", "#df42d1", "#eea5f6", "#fad6d6"], }, "DarkGrey3": {"BACKGROUND": "#211717", "TEXT": "#dfddc7", "INPUT": "#f58b54", "TEXT_INPUT": "#000000", "SCROLL": "#f58b54", "BUTTON": ("#dfddc7", "#a34a28"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#211717", "#a34a28", "#f58b54", "#dfddc7"], }, "LightBrown8": {"BACKGROUND": "#dfddc7", "TEXT": "#211717", "INPUT": "#a34a28", "TEXT_INPUT": "#dfddc7", "SCROLL": "#211717", "BUTTON": ("#dfddc7", "#a34a28"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#211717", "#a34a28", "#f58b54", "#dfddc7"], }, "DarkBlue4": {"BACKGROUND": "#494ca2", "TEXT": "#e3e7f1", "INPUT": "#c6cbef", "TEXT_INPUT": "#000000", "SCROLL": "#c6cbef", "BUTTON": ("#FFFFFF", "#8186d5"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#494ca2", "#8186d5", "#c6cbef", "#e3e7f1"], }, "LightBlue4": {"BACKGROUND": "#5c94bd", "TEXT": "#470938", "INPUT": "#1a3e59", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#470938", "BUTTON": ("#FFFFFF", "#470938"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#470938", "#1a3e59", "#5c94bd", "#f2d6eb"], }, "DarkTeal2": {"BACKGROUND": "#394a6d", "TEXT": "#c0ffb3", "INPUT": "#52de97", "TEXT_INPUT": "#000000", "SCROLL": "#52de97", "BUTTON": ("#c0ffb3", "#394a6d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#394a6d", "#3c9d9b", "#52de97", "#c0ffb3"], }, "DarkTeal3": {"BACKGROUND": "#3c9d9b", "TEXT": "#c0ffb3", "INPUT": "#52de97", "TEXT_INPUT": "#000000", "SCROLL": "#52de97", "BUTTON": ("#c0ffb3", "#394a6d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#394a6d", "#3c9d9b", "#52de97", "#c0ffb3"], }, "DarkPurple5": {"BACKGROUND": "#730068", "TEXT": "#f6f078", "INPUT": "#01d28e", "TEXT_INPUT": "#000000", "SCROLL": "#01d28e", "BUTTON": ("#f6f078", "#730068"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#730068", "#434982", "#01d28e", "#f6f078"], }, "DarkPurple2": {"BACKGROUND": "#202060", "TEXT": "#b030b0", "INPUT": "#602080", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#602080", "BUTTON": ("#FFFFFF", "#202040"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#202040", "#202060", "#602080", "#b030b0"], }, "DarkBlue5": {"BACKGROUND": "#000272", "TEXT": "#ff6363", "INPUT": "#a32f80", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#a32f80", "BUTTON": ("#FFFFFF", "#341677"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#000272", "#341677", "#a32f80", "#ff6363"], }, "LightGrey2": {"BACKGROUND": "#f6f6f6", "TEXT": "#420000", "INPUT": "#d4d7dd", "TEXT_INPUT": "#420000", "SCROLL": "#420000", "BUTTON": ("#420000", "#d4d7dd"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#420000", "#d4d7dd", "#eae9e9", "#f6f6f6"], }, "LightGrey3": {"BACKGROUND": "#eae9e9", "TEXT": "#420000", "INPUT": "#d4d7dd", "TEXT_INPUT": "#420000", "SCROLL": "#420000", "BUTTON": ("#420000", "#d4d7dd"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#420000", "#d4d7dd", "#eae9e9", "#f6f6f6"], }, "DarkBlue6": {"BACKGROUND": "#01024e", "TEXT": "#ff6464", "INPUT": "#8b4367", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#8b4367", "BUTTON": ("#FFFFFF", "#543864"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#01024e", "#543864", "#8b4367", "#ff6464"], }, "DarkBlue7": {"BACKGROUND": "#241663", "TEXT": "#eae7af", "INPUT": "#a72693", "TEXT_INPUT": "#eae7af", "SCROLL": "#a72693", "BUTTON": ("#eae7af", "#160f30"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#160f30", "#241663", "#a72693", "#eae7af"], }, "LightBrown9": {"BACKGROUND": "#f6d365", "TEXT": "#3a1f5d", "INPUT": "#c83660", "TEXT_INPUT": "#f6d365", "SCROLL": "#3a1f5d", "BUTTON": ("#f6d365", "#c83660"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3a1f5d", "#c83660", "#e15249", "#f6d365"], }, "DarkPurple3": {"BACKGROUND": "#6e2142", "TEXT": "#ffd692", "INPUT": "#e16363", "TEXT_INPUT": "#ffd692", "SCROLL": "#e16363", "BUTTON": ("#ffd692", "#943855"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#6e2142", "#943855", "#e16363", "#ffd692"], }, "LightBrown10": {"BACKGROUND": "#ffd692", "TEXT": "#6e2142", "INPUT": "#943855", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#6e2142", "BUTTON": ("#FFFFFF", "#6e2142"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#6e2142", "#943855", "#e16363", "#ffd692"], }, "DarkPurple4": {"BACKGROUND": "#200f21", "TEXT": "#f638dc", "INPUT": "#5a3d5c", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#5a3d5c", "BUTTON": ("#FFFFFF", "#382039"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#200f21", "#382039", "#5a3d5c", "#f638dc"], }, "LightBlue5": {"BACKGROUND": "#b2fcff", "TEXT": "#3e64ff", "INPUT": "#5edfff", "TEXT_INPUT": "#000000", "SCROLL": "#3e64ff", "BUTTON": ("#FFFFFF", "#3e64ff"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3e64ff", "#5edfff", "#b2fcff", "#ecfcff"], }, "DarkTeal4": {"BACKGROUND": "#464159", "TEXT": "#c7f0db", "INPUT": "#8bbabb", "TEXT_INPUT": "#000000", "SCROLL": "#8bbabb", "BUTTON": ("#FFFFFF", "#6c7b95"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#464159", "#6c7b95", "#8bbabb", "#c7f0db"], }, "LightTeal": {"BACKGROUND": "#c7f0db", "TEXT": "#464159", "INPUT": "#6c7b95", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#464159", "BUTTON": ("#FFFFFF", "#464159"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#464159", "#6c7b95", "#8bbabb", "#c7f0db"], }, "DarkTeal5": {"BACKGROUND": "#8bbabb", "TEXT": "#464159", "INPUT": "#6c7b95", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#464159", "BUTTON": ("#c7f0db", "#6c7b95"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#464159", "#6c7b95", "#8bbabb", "#c7f0db"], }, "LightGrey4": {"BACKGROUND": "#faf5ef", "TEXT": "#672f2f", "INPUT": "#99b19c", "TEXT_INPUT": "#672f2f", "SCROLL": "#672f2f", "BUTTON": ("#672f2f", "#99b19c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#672f2f", "#99b19c", "#d7d1c9", "#faf5ef"], }, "LightGreen7": {"BACKGROUND": "#99b19c", "TEXT": "#faf5ef", "INPUT": "#d7d1c9", "TEXT_INPUT": "#000000", "SCROLL": "#d7d1c9", "BUTTON": ("#FFFFFF", "#99b19c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#672f2f", "#99b19c", "#d7d1c9", "#faf5ef"], }, "LightGrey5": {"BACKGROUND": "#d7d1c9", "TEXT": "#672f2f", "INPUT": "#99b19c", "TEXT_INPUT": "#672f2f", "SCROLL": "#672f2f", "BUTTON": ("#FFFFFF", "#672f2f"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#672f2f", "#99b19c", "#d7d1c9", "#faf5ef"], }, "DarkBrown3": {"BACKGROUND": "#a0855b", "TEXT": "#f9f6f2", "INPUT": "#f1d6ab", "TEXT_INPUT": "#000000", "SCROLL": "#f1d6ab", "BUTTON": ("#FFFFFF", "#38470b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#38470b", "#a0855b", "#f1d6ab", "#f9f6f2"], }, "LightBrown11": {"BACKGROUND": "#f1d6ab", "TEXT": "#38470b", "INPUT": "#a0855b", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#38470b", "BUTTON": ("#f9f6f2", "#a0855b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#38470b", "#a0855b", "#f1d6ab", "#f9f6f2"], }, "DarkRed": {"BACKGROUND": "#83142c", "TEXT": "#f9d276", "INPUT": "#ad1d45", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#ad1d45", "BUTTON": ("#f9d276", "#ad1d45"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#44000d", "#83142c", "#ad1d45", "#f9d276"], }, "DarkTeal6": {"BACKGROUND": "#204969", "TEXT": "#fff7f7", "INPUT": "#dadada", "TEXT_INPUT": "#000000", "SCROLL": "#dadada", "BUTTON": ("#000000", "#fff7f7"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#204969", "#08ffc8", "#dadada", "#fff7f7"], }, "DarkBrown4": {"BACKGROUND": "#252525", "TEXT": "#ff0000", "INPUT": "#af0404", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#af0404", "BUTTON": ("#FFFFFF", "#252525"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#252525", "#414141", "#af0404", "#ff0000"], }, "LightYellow": {"BACKGROUND": "#f4ff61", "TEXT": "#27aa80", "INPUT": "#32ff6a", "TEXT_INPUT": "#000000", "SCROLL": "#27aa80", "BUTTON": ("#f4ff61", "#27aa80"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#27aa80", "#32ff6a", "#a8ff3e", "#f4ff61"], }, "DarkGreen1": {"BACKGROUND": "#2b580c", "TEXT": "#fdef96", "INPUT": "#f7b71d", "TEXT_INPUT": "#000000", "SCROLL": "#f7b71d", "BUTTON": ("#fdef96", "#2b580c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#2b580c", "#afa939", "#f7b71d", "#fdef96"], }, "LightGreen8": {"BACKGROUND": "#c8dad3", "TEXT": "#63707e", "INPUT": "#93b5b3", "TEXT_INPUT": "#000000", "SCROLL": "#63707e", "BUTTON": ("#FFFFFF", "#63707e"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#63707e", "#93b5b3", "#c8dad3", "#f2f6f5"], }, "DarkTeal7": {"BACKGROUND": "#248ea9", "TEXT": "#fafdcb", "INPUT": "#aee7e8", "TEXT_INPUT": "#000000", "SCROLL": "#aee7e8", "BUTTON": ("#000000", "#fafdcb"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#248ea9", "#28c3d4", "#aee7e8", "#fafdcb"], }, "DarkBlue8": {"BACKGROUND": "#454d66", "TEXT": "#d9d872", "INPUT": "#58b368", "TEXT_INPUT": "#000000", "SCROLL": "#58b368", "BUTTON": ("#000000", "#009975"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#009975", "#454d66", "#58b368", "#d9d872"], }, "DarkBlue9": {"BACKGROUND": "#263859", "TEXT": "#ff6768", "INPUT": "#6b778d", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#6b778d", "BUTTON": ("#ff6768", "#263859"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#17223b", "#263859", "#6b778d", "#ff6768"], }, "DarkBlue10": {"BACKGROUND": "#0028ff", "TEXT": "#f1f4df", "INPUT": "#10eaf0", "TEXT_INPUT": "#000000", "SCROLL": "#10eaf0", "BUTTON": ("#f1f4df", "#24009c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#24009c", "#0028ff", "#10eaf0", "#f1f4df"], }, "DarkBlue11": {"BACKGROUND": "#6384b3", "TEXT": "#e6f0b6", "INPUT": "#b8e9c0", "TEXT_INPUT": "#000000", "SCROLL": "#b8e9c0", "BUTTON": ("#e6f0b6", "#684949"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#684949", "#6384b3", "#b8e9c0", "#e6f0b6"], }, "DarkTeal8": {"BACKGROUND": "#71a0a5", "TEXT": "#212121", "INPUT": "#665c84", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#212121", "BUTTON": ("#fab95b", "#665c84"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#212121", "#665c84", "#71a0a5", "#fab95b"], }, "DarkRed1": {"BACKGROUND": "#c10000", "TEXT": "#eeeeee", "INPUT": "#dedede", "TEXT_INPUT": "#000000", "SCROLL": "#dedede", "BUTTON": ("#c10000", "#eeeeee"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#c10000", "#ff4949", "#dedede", "#eeeeee"], }, "LightBrown5": {"BACKGROUND": "#fff591", "TEXT": "#e41749", "INPUT": "#f5587b", "TEXT_INPUT": "#000000", "SCROLL": "#e41749", "BUTTON": ("#fff591", "#e41749"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#e41749", "#f5587b", "#ff8a5c", "#fff591"], }, "LightGreen9": {"BACKGROUND": "#f1edb3", "TEXT": "#3b503d", "INPUT": "#4a746e", "TEXT_INPUT": "#f1edb3", "SCROLL": "#3b503d", "BUTTON": ("#f1edb3", "#3b503d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3b503d", "#4a746e", "#c8cf94", "#f1edb3"], "DESCRIPTION": ["Green", "Turquoise", "Yellow"], }, "DarkGreen2": {"BACKGROUND": "#3b503d", "TEXT": "#f1edb3", "INPUT": "#c8cf94", "TEXT_INPUT": "#000000", "SCROLL": "#c8cf94", "BUTTON": ("#f1edb3", "#3b503d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3b503d", "#4a746e", "#c8cf94", "#f1edb3"], "DESCRIPTION": ["Green", "Turquoise", "Yellow"], }, "LightGray1": {"BACKGROUND": "#f2f2f2", "TEXT": "#222831", "INPUT": "#393e46", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#222831", "BUTTON": ("#f2f2f2", "#222831"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#222831", "#393e46", "#f96d00", "#f2f2f2"], "DESCRIPTION": ["#000000", "Grey", "Orange", "Grey", "Autumn"], }, "DarkGrey4": {"BACKGROUND": "#52524e", "TEXT": "#e9e9e5", "INPUT": "#d4d6c8", "TEXT_INPUT": "#000000", "SCROLL": "#d4d6c8", "BUTTON": ("#FFFFFF", "#9a9b94"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#52524e", "#9a9b94", "#d4d6c8", "#e9e9e5"], "DESCRIPTION": ["Grey", "Pastel", "Winter"], }, "DarkBlue12": {"BACKGROUND": "#324e7b", "TEXT": "#f8f8f8", "INPUT": "#86a6df", "TEXT_INPUT": "#000000", "SCROLL": "#86a6df", "BUTTON": ("#FFFFFF", "#5068a9"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#324e7b", "#5068a9", "#86a6df", "#f8f8f8"], "DESCRIPTION": ["Blue", "Grey", "Cold", "Winter"], }, "DarkPurple6": {"BACKGROUND": "#070739", "TEXT": "#e1e099", "INPUT": "#c327ab", "TEXT_INPUT": "#e1e099", "SCROLL": "#c327ab", "BUTTON": ("#e1e099", "#521477"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#070739", "#521477", "#c327ab", "#e1e099"], "DESCRIPTION": ["#000000", "Purple", "Yellow", "Dark"], }, "DarkPurple7": {"BACKGROUND": "#191930", "TEXT": "#B1B7C5", "INPUT": "#232B5C", "TEXT_INPUT": "#D0E3E7", "SCROLL": "#B1B7C5", "BUTTON": ("#272D38", "#B1B7C5"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue13": {"BACKGROUND": "#203562", "TEXT": "#e3e8f8", "INPUT": "#c0c5cd", "TEXT_INPUT": "#000000", "SCROLL": "#c0c5cd", "BUTTON": ("#FFFFFF", "#3e588f"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#203562", "#3e588f", "#c0c5cd", "#e3e8f8"], "DESCRIPTION": ["Blue", "Grey", "Wedding", "Cold"], }, "DarkBrown5": {"BACKGROUND": "#3c1b1f", "TEXT": "#f6e1b5", "INPUT": "#e2bf81", "TEXT_INPUT": "#000000", "SCROLL": "#e2bf81", "BUTTON": ("#3c1b1f", "#f6e1b5"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3c1b1f", "#b21e4b", "#e2bf81", "#f6e1b5"], "DESCRIPTION": ["Brown", "Red", "Yellow", "Warm"], }, "DarkGreen3": {"BACKGROUND": "#062121", "TEXT": "#eeeeee", "INPUT": "#e4dcad", "TEXT_INPUT": "#000000", "SCROLL": "#e4dcad", "BUTTON": ("#eeeeee", "#181810"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#062121", "#181810", "#e4dcad", "#eeeeee"], "DESCRIPTION": ["#000000", "#000000", "Brown", "Grey"], }, "DarkBlack1": {"BACKGROUND": "#181810", "TEXT": "#eeeeee", "INPUT": "#e4dcad", "TEXT_INPUT": "#000000", "SCROLL": "#e4dcad", "BUTTON": ("#FFFFFF", "#062121"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#062121", "#181810", "#e4dcad", "#eeeeee"], "DESCRIPTION": ["#000000", "#000000", "Brown", "Grey"], }, "DarkGrey5": {"BACKGROUND": "#343434", "TEXT": "#f3f3f3", "INPUT": "#e9dcbe", "TEXT_INPUT": "#000000", "SCROLL": "#e9dcbe", "BUTTON": ("#FFFFFF", "#8e8b82"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#343434", "#8e8b82", "#e9dcbe", "#f3f3f3"], "DESCRIPTION": ["Grey", "Brown"], }, "LightBrown12": {"BACKGROUND": "#8e8b82", "TEXT": "#f3f3f3", "INPUT": "#e9dcbe", "TEXT_INPUT": "#000000", "SCROLL": "#e9dcbe", "BUTTON": ("#f3f3f3", "#8e8b82"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#343434", "#8e8b82", "#e9dcbe", "#f3f3f3"], "DESCRIPTION": ["Grey", "Brown"], }, "DarkTeal9": {"BACKGROUND": "#13445a", "TEXT": "#fef4e8", "INPUT": "#446878", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#446878", "BUTTON": ("#fef4e8", "#446878"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#13445a", "#970747", "#446878", "#fef4e8"], "DESCRIPTION": ["Red", "Grey", "Blue", "Wedding", "Retro"], }, "DarkBlue14": {"BACKGROUND": "#21273d", "TEXT": "#f1f6f8", "INPUT": "#b9d4f1", "TEXT_INPUT": "#000000", "SCROLL": "#b9d4f1", "BUTTON": ("#FFFFFF", "#6a759b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#21273d", "#6a759b", "#b9d4f1", "#f1f6f8"], "DESCRIPTION": ["Blue", "#000000", "Grey", "Cold", "Winter"], }, "LightBlue6": {"BACKGROUND": "#f1f6f8", "TEXT": "#21273d", "INPUT": "#6a759b", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#21273d", "BUTTON": ("#f1f6f8", "#6a759b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#21273d", "#6a759b", "#b9d4f1", "#f1f6f8"], "DESCRIPTION": ["Blue", "#000000", "Grey", "Cold", "Winter"], }, "DarkGreen4": {"BACKGROUND": "#044343", "TEXT": "#e4e4e4", "INPUT": "#045757", "TEXT_INPUT": "#e4e4e4", "SCROLL": "#045757", "BUTTON": ("#e4e4e4", "#045757"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#222222", "#044343", "#045757", "#e4e4e4"], "DESCRIPTION": ["#000000", "Turquoise", "Grey", "Dark"], }, "DarkGreen5": {"BACKGROUND": "#1b4b36", "TEXT": "#e0e7f1", "INPUT": "#aebd77", "TEXT_INPUT": "#000000", "SCROLL": "#aebd77", "BUTTON": ("#FFFFFF", "#538f6a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#1b4b36", "#538f6a", "#aebd77", "#e0e7f1"], "DESCRIPTION": ["Green", "Grey"], }, "DarkTeal10": {"BACKGROUND": "#0d3446", "TEXT": "#d8dfe2", "INPUT": "#71adb5", "TEXT_INPUT": "#000000", "SCROLL": "#71adb5", "BUTTON": ("#FFFFFF", "#176d81"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#0d3446", "#176d81", "#71adb5", "#d8dfe2"], "DESCRIPTION": ["Grey", "Turquoise", "Winter", "Cold"], }, "DarkGrey6": {"BACKGROUND": "#3e3e3e", "TEXT": "#ededed", "INPUT": "#68868c", "TEXT_INPUT": "#ededed", "SCROLL": "#68868c", "BUTTON": ("#FFFFFF", "#405559"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3e3e3e", "#405559", "#68868c", "#ededed"], "DESCRIPTION": ["Grey", "Turquoise", "Winter"], }, "DarkTeal11": {"BACKGROUND": "#405559", "TEXT": "#ededed", "INPUT": "#68868c", "TEXT_INPUT": "#ededed", "SCROLL": "#68868c", "BUTTON": ("#ededed", "#68868c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3e3e3e", "#405559", "#68868c", "#ededed"], "DESCRIPTION": ["Grey", "Turquoise", "Winter"], }, "LightBlue7": {"BACKGROUND": "#9ed0e0", "TEXT": "#19483f", "INPUT": "#5c868e", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#19483f", "BUTTON": ("#FFFFFF", "#19483f"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#19483f", "#5c868e", "#ff6a38", "#9ed0e0"], "DESCRIPTION": ["Orange", "Blue", "Turquoise"], }, "LightGreen10": {"BACKGROUND": "#d8ebb5", "TEXT": "#205d67", "INPUT": "#639a67", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#205d67", "BUTTON": ("#d8ebb5", "#205d67"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#205d67", "#639a67", "#d9bf77", "#d8ebb5"], "DESCRIPTION": ["Blue", "Green", "Brown", "Vintage"], }, "DarkBlue15": {"BACKGROUND": "#151680", "TEXT": "#f1fea4", "INPUT": "#375fc0", "TEXT_INPUT": "#f1fea4", "SCROLL": "#375fc0", "BUTTON": ("#f1fea4", "#1c44ac"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#151680", "#1c44ac", "#375fc0", "#f1fea4"], "DESCRIPTION": ["Blue", "Yellow", "Cold"], }, "DarkBlue16": {"BACKGROUND": "#1c44ac", "TEXT": "#f1fea4", "INPUT": "#375fc0", "TEXT_INPUT": "#f1fea4", "SCROLL": "#375fc0", "BUTTON": ("#f1fea4", "#151680"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#151680", "#1c44ac", "#375fc0", "#f1fea4"], "DESCRIPTION": ["Blue", "Yellow", "Cold"], }, "DarkTeal12": {"BACKGROUND": "#004a7c", "TEXT": "#fafafa", "INPUT": "#e8f1f5", "TEXT_INPUT": "#000000", "SCROLL": "#e8f1f5", "BUTTON": ("#fafafa", "#005691"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#004a7c", "#005691", "#e8f1f5", "#fafafa"], "DESCRIPTION": ["Grey", "Blue", "Cold", "Winter"], }, "LightBrown13": {"BACKGROUND": "#ebf5ee", "TEXT": "#921224", "INPUT": "#bdc6b8", "TEXT_INPUT": "#921224", "SCROLL": "#921224", "BUTTON": ("#FFFFFF", "#921224"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#921224", "#bdc6b8", "#bce0da", "#ebf5ee"], "DESCRIPTION": ["Red", "Blue", "Grey", "Vintage", "Wedding"], }, "DarkBlue17": {"BACKGROUND": "#21294c", "TEXT": "#f9f2d7", "INPUT": "#f2dea8", "TEXT_INPUT": "#000000", "SCROLL": "#f2dea8", "BUTTON": ("#f9f2d7", "#141829"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#141829", "#21294c", "#f2dea8", "#f9f2d7"], "DESCRIPTION": ["#000000", "Blue", "Yellow"], }, "DarkBrown6": {"BACKGROUND": "#785e4d", "TEXT": "#f2eee3", "INPUT": "#baaf92", "TEXT_INPUT": "#000000", "SCROLL": "#baaf92", "BUTTON": ("#FFFFFF", "#785e4d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#785e4d", "#ff8426", "#baaf92", "#f2eee3"], "DESCRIPTION": ["Grey", "Brown", "Orange", "Autumn"], }, "DarkGreen6": {"BACKGROUND": "#5c715e", "TEXT": "#f2f9f1", "INPUT": "#ddeedf", "TEXT_INPUT": "#000000", "SCROLL": "#ddeedf", "BUTTON": ("#f2f9f1", "#5c715e"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#5c715e", "#b6cdbd", "#ddeedf", "#f2f9f1"], "DESCRIPTION": ["Grey", "Green", "Vintage"], }, "DarkGreen7": {"BACKGROUND": "#0C231E", "TEXT": "#efbe1c", "INPUT": "#153C33", "TEXT_INPUT": "#efbe1c", "SCROLL": "#153C33", "BUTTON": ("#efbe1c", "#153C33"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey7": {"BACKGROUND": "#4b586e", "TEXT": "#dddddd", "INPUT": "#574e6d", "TEXT_INPUT": "#dddddd", "SCROLL": "#574e6d", "BUTTON": ("#dddddd", "#43405d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#43405d", "#4b586e", "#574e6d", "#dddddd"], "DESCRIPTION": ["Grey", "Winter", "Cold"], }, "DarkRed2": {"BACKGROUND": "#ab1212", "TEXT": "#f6e4b5", "INPUT": "#cd3131", "TEXT_INPUT": "#f6e4b5", "SCROLL": "#cd3131", "BUTTON": ("#f6e4b5", "#ab1212"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#ab1212", "#1fad9f", "#cd3131", "#f6e4b5"], "DESCRIPTION": ["Turquoise", "Red", "Yellow"], }, "LightGrey6": {"BACKGROUND": "#e3e3e3", "TEXT": "#233142", "INPUT": "#455d7a", "TEXT_INPUT": "#e3e3e3", "SCROLL": "#233142", "BUTTON": ("#e3e3e3", "#455d7a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#233142", "#455d7a", "#f95959", "#e3e3e3"], "DESCRIPTION": ["#000000", "Blue", "Red", "Grey"], }, "HotDogStand": {"BACKGROUND": "red", "TEXT": "yellow", "INPUT": "yellow", "TEXT_INPUT": "#000000", "SCROLL": "yellow", "BUTTON": ("red", "yellow"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey8": {"BACKGROUND": "#19232D", "TEXT": "#ffffff", "INPUT": "#32414B", "TEXT_INPUT": "#ffffff", "SCROLL": "#505F69", "BUTTON": ("#ffffff", "#32414B"), "PROGRESS": ("#505F69", "#32414B"), "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey9": {"BACKGROUND": "#36393F", "TEXT": "#DCDDDE", "INPUT": "#40444B", "TEXT_INPUT": "#ffffff", "SCROLL": "#202225", "BUTTON": ("#202225", "#B9BBBE"), "PROGRESS": ("#202225", "#40444B"), "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey10": {"BACKGROUND": "#1c1e23", "TEXT": "#cccdcf", "INPUT": "#272a31", "TEXT_INPUT": "#8b9fde", "SCROLL": "#313641", "BUTTON": ("#f5f5f6", "#2e3d5a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey11": {"BACKGROUND": "#1c1e23", "TEXT": "#cccdcf", "INPUT": "#313641", "TEXT_INPUT": "#cccdcf", "SCROLL": "#313641", "BUTTON": ("#f5f5f6", "#313641"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey12": {"BACKGROUND": "#1c1e23", "TEXT": "#8b9fde", "INPUT": "#313641", "TEXT_INPUT": "#8b9fde", "SCROLL": "#313641", "BUTTON": ("#cccdcf", "#2e3d5a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey13": {"BACKGROUND": "#1c1e23", "TEXT": "#cccdcf", "INPUT": "#272a31", "TEXT_INPUT": "#cccdcf", "SCROLL": "#313641", "BUTTON": ("#8b9fde", "#313641"), "PROGRESS": ("#cccdcf", "#272a31"), "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey14": {"BACKGROUND": "#24292e", "TEXT": "#fafbfc", "INPUT": "#1d2125", "TEXT_INPUT": "#fafbfc", "SCROLL": "#1d2125", "BUTTON": ("#fafbfc", "#155398"), "PROGRESS": ("#155398", "#1d2125"), "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBrown7": {"BACKGROUND": "#2c2417", "TEXT": "#baa379", "INPUT": "#baa379", "TEXT_INPUT": "#000000", "SCROLL": "#392e1c", "BUTTON": ("#000000", "#baa379"), "PROGRESS": ("#baa379", "#453923"), "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "Python": {"BACKGROUND": "#3d7aab", "TEXT": "#ffde56", "INPUT": "#295273", "TEXT_INPUT": "#ffde56", "SCROLL": "#295273", "BUTTON": ("#ffde56", "#295273"), "PROGRESS": ("#ffde56", "#295273"), "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, }
52,179
208,027
432
celery/utils/imports.py
84
18
def find_module(module, path=None, imp=None): if imp is None: imp = import_module with cwd_in_path(): try: return imp(module) except I
Minor refactors, found by static analysis (#7587) * Remove deprecated methods in `celery.local.Proxy` * Collapse conditionals for readability * Remove unused parameter `uuid` * Remove unused import `ClusterOptions` * Remove dangerous mutable default argument Continues work from #5478 * Remove always `None` and unused global variable * Remove unreachable `elif` block * Consolidate import statements * Add missing parameter to `os._exit()` * Add missing assert statement * Remove unused global `WindowsError` * Use `mkstemp` instead of deprecated `mktemp` * No need for `for..else` constructs in loops that don't break In these cases where the loop returns or raises instead of breaking, it is simpler to just put the code that runs after the loop completes right after the loop instead. * Use the previously unused parameter `compat_modules` Previously this parameter was always overwritten by the value of `COMPAT_MODULES.get(name, ())`, which was very likely unintentional. * Remove unused local variable `tz` * Make `assert_received` actually check for `is_received` Previously, it called `is_accepted`, which was likely a copy-paste mistake from the `assert_accepted` method. * Use previously unused `args` and `kwargs` params Unlike other backends' `__reduce__` methods, the one from `RedisBackend` simply overwrites `args` and `kwargs` instead of adding to them. This change makes it more in line with other backends. * Update celery/backends/filesystem.py Co-authored-by: Gabriel Soldani <[email protected]> Co-authored-by: Asif Saif Uddin <[email protected]>
find_module
59263b0409e3f02dc16ca8a3bd1e42b5a3eba36d
celery
imports.py
20
20
https://github.com/celery/celery.git
7
105
0
61
185
Python
{ "docstring": "Version of :func:`imp.find_module` supporting dots.", "language": "en", "n_whitespaces": 4, "n_words": 5, "vocab_size": 5 }
def find_module(module, path=None, imp=None): if imp is None: imp = import_module with cwd_in_path(): try: return imp(module) except ImportError: # Raise a more specific error if the problem is that one of the # dot-separated segments of the module name is not a package. if '.' in module: parts = module.split('.') for i, part in enumerate(parts[:-1]): package = '.'.join(parts[:i + 1]) try: mpart = imp(package) except ImportError: # Break out and re-raise the original ImportError # instead. break try: mpart.__path__ except AttributeError: raise NotAPackage(package) raise
5,326
30,117
49
spotdl/utils/ffmpeg.py
24
7
def get_ffmpeg_path() -> Optional[Path]: # Check if ffmpeg is installed global_ffmpeg = shutil.which("ffmpeg") if global_ffmpeg: return Path(global_ffmpeg)
v4 init
get_ffmpeg_path
fa2ad657482aca9dc628e6d7062b8badf2706bb6
spotify-downloader
ffmpeg.py
9
9
https://github.com/spotDL/spotify-downloader.git
2
30
0
20
56
Python
{ "docstring": "\n Get path to global ffmpeg binary or a local ffmpeg binary.\n Or None if not found.\n ", "language": "en", "n_whitespaces": 26, "n_words": 16, "vocab_size": 15 }
def get_ffmpeg_path() -> Optional[Path]: # Check if ffmpeg is installed global_ffmpeg = shutil.which("ffmpeg") if global_ffmpeg: return Path(global_ffmpeg) # Get local ffmpeg path return get_local_ffmpeg()
81,158
273,959
44
keras/layers/rnn/legacy_cell_wrappers.py
12
8
def __call__(self, inputs, state, scope=None): return self._call_wrapped_cell( inputs, state, cell_call_fn=self.cell.__call__, scope=scope )
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
__call__
84afc5193d38057e2e2badf9c889ea87d80d8fbf
keras
legacy_cell_wrappers.py
10
4
https://github.com/keras-team/keras.git
1
35
0
10
51
Python
{ "docstring": "Runs the RNN cell step computation.\n\n We assume that the wrapped RNNCell is being built within its `__call__`\n method. We directly use the wrapped cell's `__call__` in the overridden\n wrapper `__call__` method.\n\n This allows to use the wrapped cell and the non-wrapped cell equivalently\n when using `__call__`.\n\n Args:\n inputs: A tensor with wrapped cell's input.\n state: A tensor or tuple of tensors with wrapped cell's state.\n scope: VariableScope for the subgraph created in the wrapped cells'\n `__call__`.\n\n Returns:\n A pair containing:\n\n - Output: A tensor with cell's output.\n - New state: A tensor or tuple of tensors with new wrapped cell's state.\n ", "language": "en", "n_whitespaces": 223, "n_words": 102, "vocab_size": 59 }
def __call__(self, inputs, state, scope=None): return self._call_wrapped_cell( inputs, state, cell_call_fn=self.cell.__call__, scope=scope )
84,781
284,531
462
openbb_terminal/portfolio/portfolio_model.py
38
20
def get_kurtosis(self) -> pd.DataFrame: vals = list() for period in portfolio_helper.PERIODS: vals.append( [ round( scipy.stats.kurtosis( portfolio_helper.filter_df_by_period(self.returns, period) ), 3, ), round( scipy.stats.skew( portfolio_helper.filter_df_by_period( self.benchmark_returns, period ) ), 3,
Portfolio improvements (#1818) * improve portfolio controller * improve menu ux with disabling command when port or bench are not loaded * allow custom reset with benchmark and portfolio loaded * bench needs portfolio loaded to use start date, reflect that * fix tests * allow to see sum of a portfolio holdings * add r-square to portfolio * add skewness of data * add kurtosis * add stats * allow perf command to select a period * add yearly returns to cumulative return plot * add individual rolling volatility * add individual rolling sharpe * add individual rolling sortino * add individual rolling beta * add period to cumulative returns * clean up on aisle 5 * minor fix * add volatility, sharpe ratio, sortino ratio and maximum drawdown ratio * remove duplicated metrics * check for portfolio and benchmark more modular * fix tests * remove sqrt(N) and N from sharpe and sortino calculations * allow hold to export raw data from tail * automatically add space before and after table * add portfolio holdings in percentage * fix relative dates to be more accurate * refactor metric command to allow to select a metric of interest and check different periods * fix cumulative return and implement new yearly return command * add daily returns graph * add distribution of daily returns command * add monthly returns command * add summary command with multiple metrics for a specific period * calculate yearly (out)performance * fix show * rbeta with benchmark of 1 * improve mret style * improve title of distribution * improve volatility * minor improvement in doc * improve mret and yret * tests * update portfolio content on hugo docs * fix ycrv hugo docs * Update _index.md * Update _index.md * Update _index.md * Update _index.md * Update _index.md * Update _index.md * Update _index.md * Update _index.md * Update _index.md * Update _index.md * Update _index.md * Update _index.md * Update _index.md * Update _index.md * fix issue Co-authored-by: Jeroen Bouma <[email protected]>
get_kurtosis
0e3b62e143c981d81fb46a7e7bb75f93d9159198
OpenBBTerminal
portfolio_model.py
17
31
https://github.com/OpenBB-finance/OpenBBTerminal.git
2
98
0
30
151
Python
{ "docstring": "Class method that retrieves kurtosis for portfolio and benchmark selected\n\n Returns\n -------\n pd.DataFrame\n DataFrame with kurtosis for portfolio and benchmark for different periods\n ", "language": "en", "n_whitespaces": 62, "n_words": 23, "vocab_size": 17 }
def get_kurtosis(self) -> pd.DataFrame: vals = list() for period in portfolio_helper.PERIODS: vals.append( [ round( scipy.stats.kurtosis( portfolio_helper.filter_df_by_period(self.returns, period) ), 3, ), round( scipy.stats.skew( portfolio_helper.filter_df_by_period( self.benchmark_returns, period ) ), 3, ), ] ) return pd.DataFrame( vals, index=portfolio_helper.PERIODS, columns=["Portfolio", "Benchmark"] )
80,341
269,933
1,932
keras/callbacks.py
230
39
def _save_model(self, epoch, batch, logs): logs = logs or {} if ( isinstance(self.save_freq, int) or self.epochs_since_last_save >= self.period ): # Block only when saving interval is reached. logs = tf_utils.sync_to_numpy_or_python_type(logs) self.epochs_since_last_save = 0 filepath = self._get_file_path(epoch, batch, logs) try: if self.save_best_only: current = logs.get(self.monitor) if current is None: logging.warning( "Can save best model only with %s available, " "skipping.", self.monitor, ) else: if self.monitor_op(current, self.best): if self.verbose > 0: io_utils.print_msg( f"\nEpoch {epoch + 1}: {self.monitor} improved " f"from {self.best:.5f} to {current:.5f}, " f"saving model to {filepath}" ) self.best = current if self.save_weights_only: self.model.save_weights( filepath, overwrite=True, options=self._options, ) else: self.model.save( filepath, overwrite=True, options=self._options, ) else: if self.verbose > 0: io_utils.print_msg( f"\nEpoch {epoch + 1}: " f"{self.monitor} did not improve from {self.best:.5f}" ) else: if self.verbose > 0: io_utils.print_msg( f"\nEpoch {epoch + 1}: saving model to {filepath}" ) if self.save_weights_only: self.model.save_weights( filepath, overwrite=True, options=self._options ) else: self.model.save( filepath, overwrite=True, options=self._options ) self._maybe_remove_file() except IsADirectoryError as e: # h5py 3.x raise IOError( "Please specify a non-directory filepath for " "ModelCheckpoint. Filepath used is an existing " f"directory: {filepath}" ) except IOError as e: # h5py 2.x # `e.errno` appears to be `None` so checking t
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
_save_model
84afc5193d38057e2e2badf9c889ea87d80d8fbf
keras
callbacks.py
25
73
https://github.com/keras-team/keras.git
15
306
0
123
579
Python
{ "docstring": "Saves the model.\n\n Args:\n epoch: the epoch this iteration is in.\n batch: the batch this iteration is in. `None` if the `save_freq`\n is set to `epoch`.\n logs: the `logs` dict passed in to `on_batch_end` or `on_epoch_end`.\n ", "language": "en", "n_whitespaces": 96, "n_words": 36, "vocab_size": 26 }
def _save_model(self, epoch, batch, logs): logs = logs or {} if ( isinstance(self.save_freq, int) or self.epochs_since_last_save >= self.period ): # Block only when saving interval is reached. logs = tf_utils.sync_to_numpy_or_python_type(logs) self.epochs_since_last_save = 0 filepath = self._get_file_path(epoch, batch, logs) try: if self.save_best_only: current = logs.get(self.monitor) if current is None: logging.warning( "Can save best model only with %s available, " "skipping.", self.monitor, ) else: if self.monitor_op(current, self.best): if self.verbose > 0: io_utils.print_msg( f"\nEpoch {epoch + 1}: {self.monitor} improved " f"from {self.best:.5f} to {current:.5f}, " f"saving model to {filepath}" ) self.best = current if self.save_weights_only: self.model.save_weights( filepath, overwrite=True, options=self._options, ) else: self.model.save( filepath, overwrite=True, options=self._options, ) else: if self.verbose > 0: io_utils.print_msg( f"\nEpoch {epoch + 1}: " f"{self.monitor} did not improve from {self.best:.5f}" ) else: if self.verbose > 0: io_utils.print_msg( f"\nEpoch {epoch + 1}: saving model to {filepath}" ) if self.save_weights_only: self.model.save_weights( filepath, overwrite=True, options=self._options ) else: self.model.save( filepath, overwrite=True, options=self._options ) self._maybe_remove_file() except IsADirectoryError as e: # h5py 3.x raise IOError( "Please specify a non-directory filepath for " "ModelCheckpoint. Filepath used is an existing " f"directory: {filepath}" ) except IOError as e: # h5py 2.x # `e.errno` appears to be `None` so checking the content of `e.args[0]`. if "is a directory" in str(e.args[0]).lower(): raise IOError( "Please specify a non-directory filepath for " "ModelCheckpoint. Filepath used is an existing " f"directory: f{filepath}" ) # Re-throw the error for any other causes. raise e
42,302
177,172
231
networkx/algorithms/approximation/steinertree.py
102
24
def steiner_tree(G, terminal_nodes, weight="weight", method=None): r if method is None: import warnings msg = ( "steiner_tree will change default method from 'kou' to 'mehlhorn'"
Add Mehlhorn Steiner approximations (#5629) * Add Wu et al. and Mehlhorn Steiner approximations * Change default steiner tree approximation method * Add missing space in error message * Changes as suggested * Fix Kou implementation * Bugfix and variable name change for Mehlhorn * Add failing test case for Wu Steiner tree * Add additional valid Steiner tree for test * Remove Wu et al implementation * Style change + remove unused code
steiner_tree
56032abfdff74aebe7e6adbaa711bf4fd6bd7826
networkx
steinertree.py
18
86
https://github.com/networkx/networkx.git
5
141
0
81
226
Python
{ "docstring": "Return an approximation to the minimum Steiner tree of a graph.\n\n The minimum Steiner tree of `G` w.r.t a set of `terminal_nodes` (also *S*)\n is a tree within `G` that spans those nodes and has minimum size (sum of\n edge weights) among all such trees.\n\n The approximation algorithm is specified with the `method` keyword\n argument. All three available algorithms produce a tree whose weight is\n within a (2 - (2 / l)) factor of the weight of the optimal Steiner tree,\n where *l* is the minimum number of leaf nodes across all possible Steiner\n trees.\n\n * `kou` [2]_ (runtime $O(|S| |V|^2)$) computes the minimum spanning tree of\n the subgraph of the metric closure of *G* induced by the terminal nodes,\n where the metric closure of *G* is the complete graph in which each edge is\n weighted by the shortest path distance between the nodes in *G*.\n * `mehlhorn` [3]_ (runtime $O(|E|+|V|\\log|V|)$) modifies Kou et al.'s\n algorithm, beginning by finding the closest terminal node for each\n non-terminal. This data is used to create a complete graph containing only\n the terminal nodes, in which edge is weighted with the shortest path\n distance between them. The algorithm then proceeds in the same way as Kou\n et al..\n\n Parameters\n ----------\n G : NetworkX graph\n\n terminal_nodes : list\n A list of terminal nodes for which minimum steiner tree is\n to be found.\n\n weight : string (default = 'weight')\n Use the edge attribute specified by this string as the edge weight.\n Any edge attribute not present defaults to 1.\n\n method : string, optional (default = 'kou')\n The algorithm to use to approximate the Steiner tree.\n Supported options: 'kou', 'mehlhorn'.\n Other inputs produce a ValueError.\n\n Returns\n -------\n NetworkX graph\n Approximation to the minimum steiner tree of `G` induced by\n `terminal_nodes` .\n\n Notes\n -----\n For multigraphs, the edge between two nodes with minimum weight is the\n edge put into the Steiner tree.\n\n\n References\n ----------\n .. [1] Steiner_tree_problem on Wikipedia.\n https://en.wikipedia.org/wiki/Steiner_tree_problem\n .. [2] Kou, L., G. Markowsky, and L. Berman. 1981.\n ‘A Fast Algorithm for Steiner Trees’.\n Acta Informatica 15 (2): 141–45.\n https://doi.org/10.1007/BF00288961.\n .. [3] Mehlhorn, Kurt. 1988.\n ‘A Faster Approximation Algorithm for the Steiner Problem in Graphs’.\n Information Processing Letters 27 (3): 125–28.\n https://doi.org/10.1016/0020-0190(88)90066-X.\n ", "language": "en", "n_whitespaces": 612, "n_words": 366, "vocab_size": 202 }
def steiner_tree(G, terminal_nodes, weight="weight", method=None): r if method is None: import warnings msg = ( "steiner_tree will change default method from 'kou' to 'mehlhorn'" "in version 3.2.\nSet the `method` kwarg to remove this warning." ) warnings.warn(msg, FutureWarning, stacklevel=4) method = "kou" try: algo = ALGORITHMS[method] except KeyError as e: msg = f"{method} is not a valid choice for an algorithm." raise ValueError(msg) from e edges = algo(G, terminal_nodes, weight) # For multigraph we should add the minimal weight edge keys if G.is_multigraph(): edges = ( (u, v, min(G[u][v], key=lambda k: G[u][v][k][weight])) for u, v in edges ) T = G.edge_subgraph(edges) return T
15,916
72,955
35
wagtail/api/v2/views.py
10
7
def find_object(self, queryset, request): if "id" in request.GET:
Reformat with black
find_object
d10f15e55806c6944827d801cd9c2d53f5da4186
wagtail
views.py
12
3
https://github.com/wagtail/wagtail.git
2
31
0
10
53
Python
{ "docstring": "\n Override this to implement more find methods.\n ", "language": "en", "n_whitespaces": 22, "n_words": 7, "vocab_size": 7 }
def find_object(self, queryset, request): if "id" in request.GET: return queryset.get(id=request.GET["id"])
39,421
163,372
57
pandas/core/dtypes/cast.py
21
8
def _maybe_infer_dtype_type(element): tipo = None if hasattr(element, "dtype"): tipo = element.dtype elif is_list_like(element): element = np.asarray(element) tipo =
CLN: assorted, privatize, easy issues (#45305)
maybe_infer_dtype_type
5ba7d714014ae8feaccc0dd4a98890828cf2832d
pandas
cast.py
11
8
https://github.com/pandas-dev/pandas.git
3
43
0
14
74
Python
{ "docstring": "\n Try to infer an object's dtype, for use in arithmetic ops.\n\n Uses `element.dtype` if that's available.\n Objects implementing the iterator protocol are cast to a NumPy array,\n and from there the array's type is used.\n\n Parameters\n ----------\n element : object\n Possibly has a `.dtype` attribute, and possibly the iterator\n protocol.\n\n Returns\n -------\n tipo : type\n\n Examples\n --------\n >>> from collections import namedtuple\n >>> Foo = namedtuple(\"Foo\", \"dtype\")\n >>> _maybe_infer_dtype_type(Foo(np.dtype(\"i8\")))\n dtype('int64')\n ", "language": "en", "n_whitespaces": 136, "n_words": 70, "vocab_size": 59 }
def _maybe_infer_dtype_type(element): tipo = None if hasattr(element, "dtype"): tipo = element.dtype elif is_list_like(element): element = np.asarray(element) tipo = element.dtype return tipo
108,472
309,776
107
tests/components/alexa/test_smart_home.py
59
11
def test_create_api_message_special(): request = get_new_request("Alexa.PowerController", "TurnOn") directive_header = request["directive"]["header"] directive_header.pop("correlationToken") directive = messages.AlexaDirective(request) msg = directive.response("testName", "testNameSpace")._response assert "event" in msg msg = msg["event"] assert msg["header"]["messageId"] is not None assert msg["header"]["messageId"] != directive_header["messageId"] assert "correlationToken" not in msg["header"] assert msg["header"]["name"] == "testName" assert msg["header"]["namespace"] == "testNameSpace" assert msg["header"]["payloadVersion"] == "3" assert msg["payload"] == {} assert "endpoint" not in msg
Fix comments in Alexa (#64289)
test_create_api_message_special
c109d59862d1e2e28e54160ee75f9465771e99eb
core
test_smart_home.py
10
16
https://github.com/home-assistant/core.git
1
133
0
36
252
Python
{ "docstring": "Create an API message response of a request with non defaults.", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 11 }
def test_create_api_message_special(): request = get_new_request("Alexa.PowerController", "TurnOn") directive_header = request["directive"]["header"] directive_header.pop("correlationToken") directive = messages.AlexaDirective(request) msg = directive.response("testName", "testNameSpace")._response assert "event" in msg msg = msg["event"] assert msg["header"]["messageId"] is not None assert msg["header"]["messageId"] != directive_header["messageId"] assert "correlationToken" not in msg["header"] assert msg["header"]["name"] == "testName" assert msg["header"]["namespace"] == "testNameSpace" assert msg["header"]["payloadVersion"] == "3" assert msg["payload"] == {} assert "endpoint" not in msg
6,012
32,880
43
tests/mixed_int8/test_mixed_int8.py
9
9
def tearDown(self): r del self.model_fp16 del self.model_8bit gc.collect() torch.c
`bitsandbytes` - `Linear8bitLt` integration into `transformers` models (#17901) * first commit * correct replace function * add final changes - works like charm! - cannot implement tests yet - tested * clean up a bit * add bitsandbytes dependencies * working version - added import function - added bitsandbytes utils file * small fix * small fix - fix import issue * fix import issues * Apply suggestions from code review Co-authored-by: Sylvain Gugger <[email protected]> * refactor a bit - move bitsandbytes utils to utils - change comments on functions * reformat docstring - reformat docstring on init_empty_weights_8bit * Update src/transformers/__init__.py Co-authored-by: Sylvain Gugger <[email protected]> * revert bad formatting * change to bitsandbytes * refactor a bit - remove init8bit since it is useless * more refactoring - fixed init empty weights issue - added threshold param * small hack to make it work * Update src/transformers/modeling_utils.py * Update src/transformers/modeling_utils.py * revmoe the small hack * modify utils file * make style + refactor a bit * create correctly device map * add correct dtype for device map creation * Apply suggestions from code review Co-authored-by: Sylvain Gugger <[email protected]> * apply suggestions - remove with torch.grad - do not rely on Python bool magic! * add docstring - add docstring for new kwargs * add docstring - comment `replace_8bit_linear` function - fix weird formatting * - added more documentation - added new utility function for memory footprint tracking - colab demo to add * few modifs - typo doc - force cast into float16 when load_in_8bit is enabled * added colab link * add test architecture + docstring a bit * refactor a bit testing class * make style + refactor a bit * enhance checks - add more checks - start writing saving test * clean up a bit * male style * add more details on doc * add more tests - still needs to fix 2 tests * replace by "or" - could not fix it from GitHub GUI Co-authored-by: Sylvain Gugger <[email protected]> * refactor a bit testing code + add readme * make style * fix import issue * Update src/transformers/modeling_utils.py Co-authored-by: Michael Benayoun <[email protected]> * add few comments * add more doctring + make style * more docstring * raise error when loaded in 8bit * make style * add warning if loaded on CPU * add small sanity check * fix small comment * add bitsandbytes on dockerfile * Improve documentation - improve documentation from comments * add few comments * slow tests pass on the VM but not on the CI VM * Fix merge conflict * make style * another test should pass on a multi gpu setup * fix bad import in testing file * Fix slow tests - remove dummy batches - no more CUDA illegal memory errors * odify dockerfile * Update docs/source/en/main_classes/model.mdx * Update Dockerfile * Update model.mdx * Update Dockerfile * Apply suggestions from code review * few modifications - lm head can stay on disk/cpu - change model name so that test pass * change test value - change test value to the correct output - torch bmm changed to baddmm in bloom modeling when merging * modify installation guidelines * Apply suggestions from code review Co-authored-by: Sylvain Gugger <[email protected]> * Apply suggestions from code review Co-authored-by: Sylvain Gugger <[email protected]> * Apply suggestions from code review Co-authored-by: Sylvain Gugger <[email protected]> * replace `n`by `name` * merge `load_in_8bit` and `low_cpu_mem_usage` * first try - keep the lm head in full precision * better check - check the attribute `base_model_prefix` instead of computing the number of parameters * added more tests * Update src/transformers/utils/bitsandbytes.py Co-authored-by: Sylvain Gugger <[email protected]> * Merge branch 'integration-8bit' of https://github.com/younesbelkada/transformers into integration-8bit * improve documentation - fix typos for installation - change title in the documentation Co-authored-by: Sylvain Gugger <[email protected]> Co-authored-by: Michael Benayoun <[email protected]>
tearDown
4a51075a96d2049f368b5f3dd6c0e9f08f599b62
transformers
test_mixed_int8.py
8
9
https://github.com/huggingface/transformers.git
1
27
0
8
46
Python
{ "docstring": "\n TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to\n avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27\n ", "language": "en", "n_whitespaces": 49, "n_words": 27, "vocab_size": 24 }
def tearDown(self): r del self.model_fp16 del self.model_8bit gc.collect() torch.cuda.empty_cache()
71,142
246,307
681
tests/rest/client/test_relations.py
226
32
def test_pagination_from_sync_and_messages(self): channel = self._send_relation(RelationTypes.ANNOTATION, "m.reaction", "A") self.assertEquals(200, channel.code, channel.json_body) annotation_id = channel.json_body["event_id"] # Send an event after the relation events. self.helper.send(self.room, body="Latest event", tok=self.user_token) # Request /sync, limiting it such that only the latest event is returned # (and not the relation). filter = urllib.parse.quote_plus( '{"room": {"timeline": {"limit": 1}}}'.encode() ) channel = self.make_request( "GET", f"/sync?filter={filter}", access_token=self.user_token ) self.assertEquals(200, channel.code, channel.json_body) room_timeline = channel.json_body["rooms"]["join"][self.room]["timeline"] sync_prev_batch = room_timeline["prev_batch"] self.assertIsNotNone(sync_prev_batch) # Ensure the relation event is not in the batch returned from /sync. self.assertNotIn( annotation_id, [ev["event_id"] for ev in room_timeline["events"]] ) # Request /messages, limiting it such that only the latest event is # returned (and not the relation). channel = self.make_request( "GET", f"/rooms/{self.room}/messages?dir=b&limit=1", access_token=self.user_token, ) self.assertEquals(200, channel.code, channel.json_body) messages_end = channel.json_body["end"] self.assertIsNotNone(messages_end) # Ensure the relation event is not in the chunk returned from /messages. self.assertNotIn( annotation_id, [ev["event_id"] for ev in channel.json_body["chunk"]] ) # Request /relations with the pagination tokens received from both the # /sync and /messages responses above, in turn. # # This is a tiny bit silly
Support pagination tokens from /sync and /messages in the relations API. (#11952)
test_pagination_from_sync_and_messages
df36945ff0e4a293a9dac0da07e2c94256835b32
synapse
test_relations.py
13
39
https://github.com/matrix-org/synapse.git
5
289
0
111
505
Python
{ "docstring": "Pagination tokens from /sync and /messages can be used to paginate /relations.", "language": "en", "n_whitespaces": 11, "n_words": 12, "vocab_size": 12 }
def test_pagination_from_sync_and_messages(self): channel = self._send_relation(RelationTypes.ANNOTATION, "m.reaction", "A") self.assertEquals(200, channel.code, channel.json_body) annotation_id = channel.json_body["event_id"] # Send an event after the relation events. self.helper.send(self.room, body="Latest event", tok=self.user_token) # Request /sync, limiting it such that only the latest event is returned # (and not the relation). filter = urllib.parse.quote_plus( '{"room": {"timeline": {"limit": 1}}}'.encode() ) channel = self.make_request( "GET", f"/sync?filter={filter}", access_token=self.user_token ) self.assertEquals(200, channel.code, channel.json_body) room_timeline = channel.json_body["rooms"]["join"][self.room]["timeline"] sync_prev_batch = room_timeline["prev_batch"] self.assertIsNotNone(sync_prev_batch) # Ensure the relation event is not in the batch returned from /sync. self.assertNotIn( annotation_id, [ev["event_id"] for ev in room_timeline["events"]] ) # Request /messages, limiting it such that only the latest event is # returned (and not the relation). channel = self.make_request( "GET", f"/rooms/{self.room}/messages?dir=b&limit=1", access_token=self.user_token, ) self.assertEquals(200, channel.code, channel.json_body) messages_end = channel.json_body["end"] self.assertIsNotNone(messages_end) # Ensure the relation event is not in the chunk returned from /messages. self.assertNotIn( annotation_id, [ev["event_id"] for ev in channel.json_body["chunk"]] ) # Request /relations with the pagination tokens received from both the # /sync and /messages responses above, in turn. # # This is a tiny bit silly since the client wouldn't know the parent ID # from the requests above; consider the parent ID to be known from a # previous /sync. for from_token in (sync_prev_batch, messages_end): channel = self.make_request( "GET", f"/_matrix/client/unstable/rooms/{self.room}/relations/{self.parent_id}?from={from_token}", access_token=self.user_token, ) self.assertEquals(200, channel.code, channel.json_body) # The relation should be in the returned chunk. self.assertIn( annotation_id, [ev["event_id"] for ev in channel.json_body["chunk"]] )
22,025
104,910
31
src/datasets/utils/streaming_download_manager.py
10
6
def download(self, url_or_urls): url_or_urls = map_nested(self._download, url_or_urls, map_tuple=True)
Add API code examples for Builder classes (#4313) * 📝 add examples for builder classes * 📝 apply quentin review
download
d1d4f1065fd4ab91b2c8682643dbd12f86d66fcd
datasets
streaming_download_manager.py
9
3
https://github.com/huggingface/datasets.git
1
24
0
9
38
Python
{ "docstring": "Download given url(s).\n\n Args:\n url_or_urls: url or `list`/`dict` of urls to download and extract. Each\n url is a `str`.\n\n Returns:\n downloaded_path(s): `str`, The downloaded paths matching the given input\n url_or_urls.\n\n Example:\n\n ```py\n >>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')\n ```\n ", "language": "en", "n_whitespaces": 138, "n_words": 37, "vocab_size": 35 }
def download(self, url_or_urls): url_or_urls = map_nested(self._download, url_or_urls, map_tuple=True) return url_or_urls
1,652
9,673
243
reconstruction/ostec/utils/generate_heatmap.py
148
20
def draw_gaussian(image, point, sigma): # Check if the gaussian is inside point[0] = round(point[0], 2) point[1] = round(point[1], 2) ul = [math.floor(point[0] - 7.5 * sigma), math.floor(point[1] - 7.5 * sigma)] br = [math.floor(point[0] + 7.5 * sigma), math.floor(point[1] + 7.5 * sigma)] if (ul[0] > image.shape[1] or ul[1] > image.shape[0] or br[0] < 1 or br[1] < 1): return image size = 15 * sigma + 1 g = _ga
Improved landmark differentiability by heatmaps.
draw_gaussian
2a8b181d4ddfc542d0784b8ea7341f09500ff299
insightface
generate_heatmap.py
15
21
https://github.com/deepinsight/insightface.git
6
469
0
86
667
Python
{ "docstring": " Draw gaussian circle at a point in an image.\n\n Args:\n image (np.array): An image of shape (H, W)\n point (np.array): The center point of the guassian circle\n sigma (float): Standard deviation of the gaussian kernel\n\n Returns:\n np.array: The image with the drawn gaussian.\n ", "language": "en", "n_whitespaces": 81, "n_words": 43, "vocab_size": 31 }
def draw_gaussian(image, point, sigma): # Check if the gaussian is inside point[0] = round(point[0], 2) point[1] = round(point[1], 2) ul = [math.floor(point[0] - 7.5 * sigma), math.floor(point[1] - 7.5 * sigma)] br = [math.floor(point[0] + 7.5 * sigma), math.floor(point[1] + 7.5 * sigma)] if (ul[0] > image.shape[1] or ul[1] > image.shape[0] or br[0] < 1 or br[1] < 1): return image size = 15 * sigma + 1 g = _gaussian(size, sigma=0.1) g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))] g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))] img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))] img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))] assert (g_x[0] > 0 and g_y[1] > 0) image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] = \ image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]] image[image > 1] = 1 return image # Adapted from: https://github.com/1adrianb/face-alignment/blob/master/face_alignment/api.py
56,422
221,530
54
python3.10.4/Lib/collections/__init__.py
15
4
def setdefault(self, key, default=None): if key in self: return self[key] self[key] = default return default
add python 3.10.4 for windows
setdefault
8198943edd73a363c266633e1aa5b2a9e9c9f526
XX-Net
__init__.py
8
5
https://github.com/XX-net/XX-Net.git
2
30
0
12
47
Python
{ "docstring": "Insert key with a value of default if key is not in the dictionary.\n\n Return the value for key if key is in the dictionary, else default.\n ", "language": "en", "n_whitespaces": 41, "n_words": 27, "vocab_size": 18 }
def setdefault(self, key, default=None): if key in self: return self[key] self[key] = default return default
40,398
169,203
28
web/pandas_web.py
7
5
def current_year(context): context["current_year"] = datetime.
WEB: Add new footer to web (#48557)
current_year
bbf17ea692e437cec908eae6759ffff8092fb42e
pandas
pandas_web.py
10
3
https://github.com/pandas-dev/pandas.git
1
22
0
7
40
Python
{ "docstring": "\n Add the current year to the context, so it can be used for the copyright\n note, or other places where it is needed.\n ", "language": "en", "n_whitespaces": 45, "n_words": 23, "vocab_size": 20 }
def current_year(context): context["current_year"] = datetime.datetime.now().year return context
505
3,627
98
airbyte-integrations/connectors/source-s3/source_s3/source_files_abstract/stream.py
37
12
def fileformatparser_map(self) -> Mapping[str, type]: return { "csv": CsvParser, "parquet": ParquetParser, } # TODO: make these user configurable in spec.json ab_additional_col = "_ab_additional_properties" ab_last_mod_col = "_ab_source_file_last_modified" ab_file_name_col = "_ab_source_file_url" airbyte_columns = [ab_additional_col, ab_last_mod_col, ab_file_name_col]
🐛 Source S3: Loading of files' metadata (#8252)
fileformatparser_map
91eff1dffdb04be968b6ee4ef8d8bbfeb2e882d0
airbyte
stream.py
8
6
https://github.com/airbytehq/airbyte.git
1
24
0
33
82
Python
{ "docstring": "Mapping where every key is equal 'filetype' and values are corresponding parser classes.", "language": "en", "n_whitespaces": 15, "n_words": 13, "vocab_size": 13 }
def fileformatparser_map(self) -> Mapping[str, type]: return { "csv": CsvParser, "parquet": ParquetParser, } # TODO: make these user configurable in spec.json ab_additional_col = "_ab_additional_properties" ab_last_mod_col = "_ab_source_file_last_modified" ab_file_name_col = "_ab_source_file_url" airbyte_columns = [ab_additional_col, ab_last_mod_col, ab_file_name_col] datetime_format_string = "%Y-%m-%dT%H:%M:%S%z"
36,553
156,094
57
dask/dataframe/core.py
18
9
def pivot_table(self, index=None, columns=None, values=None, aggfunc="mean"): from dask.dataframe.reshape import pivot_table return pivot_table( self, index=index, columns=colum
absolufy-imports - No relative - PEP8 (#8796) Conversation in https://github.com/dask/distributed/issues/5889
pivot_table
cccb9d8d8e33a891396b1275c2448c352ef40c27
dask
core.py
8
5
https://github.com/dask/dask.git
1
51
0
18
74
Python
{ "docstring": "\n Create a spreadsheet-style pivot table as a DataFrame. Target ``columns``\n must have category dtype to infer result's ``columns``.\n ``index``, ``columns``, ``values`` and ``aggfunc`` must be all scalar.\n\n Parameters\n ----------\n values : scalar\n column to aggregate\n index : scalar\n column to be index\n columns : scalar\n column to be columns\n aggfunc : {'mean', 'sum', 'count'}, default 'mean'\n\n Returns\n -------\n table : DataFrame\n ", "language": "en", "n_whitespaces": 186, "n_words": 61, "vocab_size": 43 }
def pivot_table(self, index=None, columns=None, values=None, aggfunc="mean"): from dask.dataframe.reshape import pivot_table return pivot_table( self, index=index, columns=columns, values=values, aggfunc=aggfunc )
31,314
138,092
141
python/ray/tune/tests/test_actor_reuse.py
42
19
def test_multi_trial_reuse_with_failing(ray_start_4_cpus_extra): os.environ["TUNE_MAX_PENDING_TRIALS_PG"] = "2" register_trainable("foo2", MyResettableClass) [trial1, trial2, trial3, trial4] = tune.run( "foo2", config={ "fail": tune.grid_search([False, True, False, False]), "id": -1, "sleep": 2, }, reuse_actors=True, resources_per_trial={"cpu": 2}, raise_on_failed_trial=False, ).trials assert trial1.last_result["num_resets"] == 0 assert trial3.last_result["num_resets
[air/tune] Internal resource management 2 - Ray Tune to use new Ray AIR resource manager (#30016) Includes/depends on #30777 TLDR: This PR refactors Ray Tune's resource management to use a central AIR resource management package instead of the tightly coupled PlacementGroupManager. Ray Tune's resource management currently uses a tightly coupled placement group manager. This leads to a number of shortcomings: - The tight coupling on the manager side (e.g. PG manager keeps track of trials) prevents re-usability - The tight coupling on the trial executor side prevents using different resource management strategies (e.g. shared or budget-based) - It's hard to test independently. Tests for the resource management require a simulated tune setup. To improve stability, extensibility, and maintainability, this PR moves the resource management logic into a central `ray.air.execution.resources` subpackage. The resource management has a simple API that works with `ResourceRequest`s and `AllocatedResources` to manage requested and assigned resources, respectively. The actual resource management can then be anything - per default it is a placement group based manager, but this PR also introduces a PoC budget-based manager that can be plugged in. The PR does not substantially change existing tests, so we can be certain that the new resource model is a fully compatible replacement for the old placement group manager. Signed-off-by: Kai Fricke <[email protected]>
test_multi_trial_reuse_with_failing
1510fb2cd631b2776092fb45ee4082e5e65f16f8
ray
test_actor_reuse.py
15
17
https://github.com/ray-project/ray.git
1
113
0
36
183
Python
{ "docstring": "Test that failing trial's actors are not reused.\n\n - 2 trials can run at the same time\n - Trial 1 succeeds, trial 2 fails\n - Trial 3 will be scheduled after trial 2 failed, so won't reuse actor\n - Trial 4 will be scheduled after trial 1 succeeded, so will reuse actor\n ", "language": "en", "n_whitespaces": 67, "n_words": 52, "vocab_size": 34 }
def test_multi_trial_reuse_with_failing(ray_start_4_cpus_extra): os.environ["TUNE_MAX_PENDING_TRIALS_PG"] = "2" register_trainable("foo2", MyResettableClass) [trial1, trial2, trial3, trial4] = tune.run( "foo2", config={ "fail": tune.grid_search([False, True, False, False]), "id": -1, "sleep": 2, }, reuse_actors=True, resources_per_trial={"cpu": 2}, raise_on_failed_trial=False, ).trials assert trial1.last_result["num_resets"] == 0 assert trial3.last_result["num_resets"] == 0 assert trial4.last_result["num_resets"] == 1
15,938
73,067
114
wagtail/contrib/forms/views.py
32
24
def dispatch(self, request, *args, **kwargs): page_id = kwargs.get("page_id") if not get_forms_for_user(self.request.user).filter(id=page_id).exists(): raise PermissionDenied self.page = get_object_or_404(Page, id=page_id).specific self.submissions = self.get_queryset() if self.request.method == "POST": self.handle_delete(self.submissions) return redirect(self.get_success_url(), page_id) return super().dispatch(request, *args, *
Reformat with black
dispatch
d10f15e55806c6944827d801cd9c2d53f5da4186
wagtail
views.py
14
10
https://github.com/wagtail/wagtail.git
3
112
0
27
182
Python
{ "docstring": "Check permissions, set the page and submissions, handle delete", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 9 }
def dispatch(self, request, *args, **kwargs): page_id = kwargs.get("page_id") if not get_forms_for_user(self.request.user).filter(id=page_id).exists(): raise PermissionDenied self.page = get_object_or_404(Page, id=page_id).specific self.submissions = self.get_queryset() if self.request.method == "POST": self.handle_delete(self.submissions) return redirect(self.get_success_url(), page_id) return super().dispatch(request, *args, **kwargs)
36,901
157,358
72
ldm/models/diffusion/ddpm.py
30
23
def _prior_bpd(self, x_start): batch_size = x_start.shape[0] t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) return mean_f
release more models
_prior_bpd
ca86da3a30c4e080d4db8c25fca73de843663cb4
stablediffusion
ddpm.py
12
6
https://github.com/Stability-AI/stablediffusion.git
1
90
0
27
127
Python
{ "docstring": "\n Get the prior KL term for the variational lower-bound, measured in\n bits-per-dim.\n This term can't be optimized, as it only depends on the encoder.\n :param x_start: the [N x C x ...] tensor of inputs.\n :return: a batch of [N] KL values (in bits), one per batch element.\n ", "language": "en", "n_whitespaces": 91, "n_words": 48, "vocab_size": 40 }
def _prior_bpd(self, x_start): batch_size = x_start.shape[0] t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) return mean_flat(kl_prior) / np.log(2.0)
39,660
165,326
39
pandas/tests/window/test_rolling.py
27
9
def test_rolling_non_monotonic(method, expected): # Based on an example found in computation.rst use_expanding = [True, False, True, False, True, True, True, True] df = DataFrame({"values": np.arange(len(use_expanding)) ** 2})
ENH: Rolling window with step size (GH-15354) (#45765)
test_rolling_non_monotonic
6caefb19f4d7c05451fafca182c6eb39fe9901ed
pandas
test_rolling.py
15
9
https://github.com/pandas-dev/pandas.git
1
100
0
22
72
Python
{ "docstring": "\n Make sure the (rare) branch of non-monotonic indices is covered by a test.\n\n output from 1.1.3 is assumed to be the expected output. Output of sum/mean has\n manually been verified.\n\n GH 36933.\n ", "language": "en", "n_whitespaces": 48, "n_words": 32, "vocab_size": 29 }
def test_rolling_non_monotonic(method, expected): # Based on an example found in computation.rst use_expanding = [True, False, True, False, True, True, True, True] df = DataFrame({"values": np.arange(len(use_expanding)) ** 2})
36,756
156,746
33
dask/array/core.py
12
7
def clip(self, min=None, max=None): from dask.array.ufunc import clip return cl
Don't include docs in ``Array`` methods, just refer to module docs (#9244) Co-authored-by: James Bourbeau <[email protected]>
clip
2820bae493a49cb1d0a6e376985c5473b8f04fa8
dask
core.py
7
3
https://github.com/dask/dask.git
1
31
0
11
46
Python
{ "docstring": "Return an array whose values are limited to ``[min, max]``.\n One of max or min must be given.\n\n Refer to :func:`dask.array.clip` for full documentation.\n\n See Also\n --------\n dask.array.clip : equivalent function\n ", "language": "en", "n_whitespaces": 73, "n_words": 31, "vocab_size": 30 }
def clip(self, min=None, max=None): from dask.array.ufunc import clip return clip(self, min, max)
77,311
262,675
105
TTS/tts/layers/overflow/common_layers.py
34
12
def _floor_std(self, std): r origi
Adding OverFlow (#2183) * Adding encoder * currently modifying hmm * Adding hmm * Adding overflow * Adding overflow setting up flat start * Removing runs * adding normalization parameters * Fixing models on same device * Training overflow and plotting evaluations * Adding inference * At the end of epoch the test sentences are coming on cpu instead of gpu * Adding figures from model during training to monitor * reverting tacotron2 training recipe * fixing inference on gpu for test sentences on config * moving helpers and texts within overflows source code * renaming to overflow * moving loss to the model file * Fixing the rename * Model training but not plotting the test config sentences's audios * Formatting logs * Changing model name to camelcase * Fixing test log * Fixing plotting bug * Adding some tests * Adding more tests to overflow * Adding all tests for overflow * making changes to camel case in config * Adding information about parameters and docstring * removing compute_mel_statistics moved statistic computation to the model instead * Added overflow in readme * Adding more test cases, now it doesn't saves transition_p like tensor and can be dumped as json
_floor_std
3b8b105b0d6539ac12972de94e0b2a5077fa1ce2
TTS
common_layers.py
10
16
https://github.com/coqui-ai/TTS.git
2
50
0
31
83
Python
{ "docstring": "\n It clamps the standard deviation to not to go below some level\n This removes the problem when the model tries to cheat for higher likelihoods by converting\n one of the gaussians to a point mass.\n\n Args:\n std (float Tensor): tensor containing the standard deviation to be\n ", "language": "en", "n_whitespaces": 93, "n_words": 46, "vocab_size": 36 }
def _floor_std(self, std): r original_tensor = std.clone().detach() std = torch.clamp(std, min=self.std_floor) if torch.any(original_tensor != std): print( "[*] Standard deviation was floored! The model is preventing overfitting, nothing serious to worry about" ) return std
13,247
63,314
1,003
.venv/lib/python3.8/site-packages/pip/_vendor/pyparsing.py
175
29
def asXML(self, doctag=None, namedItemsOnly=False, indent="", formatted=True): nl = "\n" out = [] namedItems = dict((v[1], k) for (k, vlist) in self.__tokdict.items() for v in vlist) nextLevelIndent = indent + " " # collapse out indents if formatting is not desired if not formatted: indent = "" nextLevelIndent = "" nl = "" selfTag = None if doctag is not None: selfTag = doctag else: if self.__name: selfTag = self.__name if not selfTag: if namedItemsOnly: return "" else: selfTag = "ITEM" out += [nl, indent, "<", selfTag, ">"] for i, res in enumerate(self.__toklist): if isinstance(res, ParseResults): if i in namedItems: out += [res.asXML(namedItems[i], namedItemsOnly and doctag is None, nextLevelIndent, formatted)] else: out += [res.asXML(None, namedItemsOnly and doctag is None, nextLevelIndent, formatted)] else: # individual token, see if there is a name for it resTag = None if i in namedIt
upd; format
asXML
f638f5d0e6c8ebed0e69a6584bc7f003ec646580
transferlearning
pyparsing.py
18
49
https://github.com/jindongwang/transferlearning.git
16
278
0
83
454
Python
{ "docstring": "\n (Deprecated) Returns the parse results as XML. Tags are created for tokens and lists that have defined results names.\n ", "language": "en", "n_whitespaces": 34, "n_words": 19, "vocab_size": 18 }
def asXML(self, doctag=None, namedItemsOnly=False, indent="", formatted=True): nl = "\n" out = [] namedItems = dict((v[1], k) for (k, vlist) in self.__tokdict.items() for v in vlist) nextLevelIndent = indent + " " # collapse out indents if formatting is not desired if not formatted: indent = "" nextLevelIndent = "" nl = "" selfTag = None if doctag is not None: selfTag = doctag else: if self.__name: selfTag = self.__name if not selfTag: if namedItemsOnly: return "" else: selfTag = "ITEM" out += [nl, indent, "<", selfTag, ">"] for i, res in enumerate(self.__toklist): if isinstance(res, ParseResults): if i in namedItems: out += [res.asXML(namedItems[i], namedItemsOnly and doctag is None, nextLevelIndent, formatted)] else: out += [res.asXML(None, namedItemsOnly and doctag is None, nextLevelIndent, formatted)] else: # individual token, see if there is a name for it resTag = None if i in namedItems: resTag = namedItems[i] if not resTag: if namedItemsOnly: continue else: resTag = "ITEM" xmlBodyText = _xml_escape(_ustr(res)) out += [nl, nextLevelIndent, "<", resTag, ">", xmlBodyText, "</", resTag, ">"] out += [nl, indent, "</", selfTag, ">"] return "".join(out)
19,283
96,149
22
src/sentry/models/group.py
8
5
def times_seen_with_pending(self) -> int:
fix(post_process): Fetch buffered `times_seen` values and add them to `Group.times_seen` (#31624) In `post_process_group` we process issue alert rules and also ignored groups. Both of these can have conditions that read from the `times_seen` value on the `Group`. The problem here is that updates to `times_seen` are buffered and only written every 45s or so. This means that most of the time when a `Group` goes through `post_process_group` it has an out of date `times_seen` value. For infrequently updated groups, this can just mean that the count is -1. But for high volume groups this could mean that we're considerably below the count. To improve this, we read the current value from buffers and store it as pending updates on the group. We then use this pending value when checking rules and snoozes in post process. There's a potential race condition here where we fetch the `Group`, and before we fetch the value from buffers it is cleared, and so we miss out on the update. This should be infrequent enough that it's not a problem, and either way we will be considerably more accurate most of the time.
times_seen_with_pending
09726d7fc95e53bb516e328fc1811fc9a0704cac
sentry
group.py
7
6
https://github.com/getsentry/sentry.git
1
16
0
8
28
Python
{ "docstring": "\n Returns `times_seen` with any additional pending updates from `buffers` added on. This value\n must be set first.\n ", "language": "en", "n_whitespaces": 39, "n_words": 17, "vocab_size": 17 }
def times_seen_with_pending(self) -> int: return self.times_seen + self.times_seen_pending
117,005
319,841
169
src/documents/tests/test_api.py
22
14
def test_api_create_storage_path(self): response = self.client.post( self.ENDPOINT, json.dumps( { "name": "A storage path", "path": "Somewhere/{asn}", }, ), content_
Adds invalid storage path format test
test_api_create_storage_path
d7f7d839f8a6b7d0378dda1e0744739748d71b9c
paperless-ngx
test_api.py
13
13
https://github.com/paperless-ngx/paperless-ngx.git
1
64
0
22
108
Python
{ "docstring": "\n GIVEN:\n - API request to create a storage paths\n WHEN:\n - API is called\n THEN:\n - Correct HTTP response\n - New storage path is created\n ", "language": "en", "n_whitespaces": 98, "n_words": 25, "vocab_size": 19 }
def test_api_create_storage_path(self): response = self.client.post( self.ENDPOINT, json.dumps( { "name": "A storage path", "path": "Somewhere/{asn}", }, ), content_type="application/json", ) self.assertEqual(response.status_code, 201) self.assertEqual(StoragePath.objects.count(), 2)
@pytest.mark.django_db
17,258
81,780
374
awx/main/tests/functional/models/test_workflow.py
63
31
def test_set_all_ask_for_prompts_true_from_post(self, post, organization, inventory, org_admin): r = post( url=reverse('api:workflow_job_template_list'), data=dict( name='workflow that tests ask_for prompts', organization=organization.id, inventory=inventory.id, job_tags='', skip_tags='', ask_inventory_on_launch=True, ask_labels_on_launch=True, ask_limit_on_launch=True, ask_scm_branch_on_launch=True,
adding prompt-to-launch field on Labels field in Workflow Templates; with necessary UI and testing changes Co-authored-by: Keith Grant <[email protected]>
test_set_all_ask_for_prompts_true_from_post
663ef2cc6413c0cdb26392bb046b37fe564fb546
awx
test_workflow.py
13
28
https://github.com/ansible/awx.git
1
151
1
44
234
Python
{ "docstring": "\n Tests behaviour and values of ask_for_* fields on WFJT via POST\n ", "language": "en", "n_whitespaces": 26, "n_words": 11, "vocab_size": 11 }
def test_set_all_ask_for_prompts_true_from_post(self, post, organization, inventory, org_admin): r = post( url=reverse('api:workflow_job_template_list'), data=dict( name='workflow that tests ask_for prompts', organization=organization.id, inventory=inventory.id, job_tags='', skip_tags='', ask_inventory_on_launch=True, ask_labels_on_launch=True, ask_limit_on_launch=True, ask_scm_branch_on_launch=True, ask_skip_tags_on_launch=True, ask_tags_on_launch=True, ask_variables_on_launch=True, ), user=org_admin, expect=201, ) wfjt = WorkflowJobTemplate.objects.get(id=r.data['id']) assert wfjt.ask_inventory_on_launch is True assert wfjt.ask_labels_on_launch is True assert wfjt.ask_limit_on_launch is True assert wfjt.ask_scm_branch_on_launch is True assert wfjt.ask_skip_tags_on_launch is True assert wfjt.ask_tags_on_launch is True assert wfjt.ask_variables_on_launch is True @pytest.mark.django_db
28,779
128,697
128
python/ray/_private/utils.py
60
15
def get_used_memory(): # Try to accurately figure out the memory usage if we are in a docker # container. docker_usage = None # For cgroups v1: memory_usage_filename = "/sys/fs/cgroup/memory/memory.stat" # For cgroups v2: memory_usage_filename
[core] update cgroup v1 memory usage calculation to ignore inactive (cache) files (#29103) Signed-off-by: Clarence Ng [email protected] Adjust used memory calculation for cgroup v1, to make it inline with how working set memory is calculated, which is what the cgroup oom killer uses. Before this change we include the rss and cache, and not discount the inactive / purgeable cache content. When we write to disk or object store it generates a large amount of page cache. If we don't discount this cache content it will result in over-counting, and hence trigger the ray oom killer earlier than what it should be.
get_used_memory
036225dec2d1f0d895043ca5f0aeeff377aa7fc7
ray
utils.py
15
12
https://github.com/ray-project/ray.git
4
76
0
44
139
Python
{ "docstring": "Return the currently used system memory in bytes\n\n Returns:\n The total amount of used memory\n ", "language": "en", "n_whitespaces": 28, "n_words": 15, "vocab_size": 13 }
def get_used_memory(): # Try to accurately figure out the memory usage if we are in a docker # container. docker_usage = None # For cgroups v1: memory_usage_filename = "/sys/fs/cgroup/memory/memory.stat" # For cgroups v2: memory_usage_filename_v2 = "/sys/fs/cgroup/memory.current" if os.path.exists(memory_usage_filename): docker_usage = get_cgroupv1_used_memory(memory_usage_filename) elif os.path.exists(memory_usage_filename_v2): with open(memory_usage_filename_v2, "r") as f: docker_usage = int(f.read()) if docker_usage is not None: return docker_usage return psutil.virtual_memory().used
80,703
271,128
161
keras/engine/data_adapter.py
71
7
def pack_x_y_sample_weight(x, y=None, sample_weight=None): if y is None: # For single x-input, we do no tuple wrapping since in this case # there is no ambiguity. This also makes NumPy and Dataset # consistent in that the user does not have to wrap their Dataset # data in an unnecessary tuple if not tf.nest.is_nested(x): return x else: return (x,) elif sample_weight is None: return (x, y)
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
pack_x_y_sample_weight
84afc5193d38057e2e2badf9c889ea87d80d8fbf
keras
data_adapter.py
11
10
https://github.com/keras-team/keras.git
4
60
0
53
97
Python
{ "docstring": "Packs user-provided data into a tuple.\n\n This is a convenience utility for packing data into the tuple formats\n that `Model.fit` uses.\n\n Standalone usage:\n\n >>> x = tf.ones((10, 1))\n >>> data = tf.keras.utils.pack_x_y_sample_weight(x)\n >>> isinstance(data, tf.Tensor)\n True\n >>> y = tf.ones((10, 1))\n >>> data = tf.keras.utils.pack_x_y_sample_weight(x, y)\n >>> isinstance(data, tuple)\n True\n >>> x, y = data\n\n Args:\n x: Features to pass to `Model`.\n y: Ground-truth targets to pass to `Model`.\n sample_weight: Sample weight for each element.\n\n Returns:\n Tuple in the format used in `Model.fit`.\n ", "language": "en", "n_whitespaces": 148, "n_words": 83, "vocab_size": 54 }
def pack_x_y_sample_weight(x, y=None, sample_weight=None): if y is None: # For single x-input, we do no tuple wrapping since in this case # there is no ambiguity. This also makes NumPy and Dataset # consistent in that the user does not have to wrap their Dataset # data in an unnecessary tuple if not tf.nest.is_nested(x): return x else: return (x,) elif sample_weight is None: return (x, y) else: return (x, y, sample_weight)
@pytest.mark.parametrize("solver", SOLVERS) @pytest.mark.parametrize("fit_intercept", [True, False])
76,232
260,408
209
sklearn/linear_model/_glm/tests/test_glm.py
91
40
def test_glm_regression_vstacked_X(solver, fit_intercept, glm_dataset): model, X, y, _, coef_with_intercept, coef_without_intercept, alpha = glm_dataset n_samples, n_features = X.shape params = dict( alpha=alpha, fit
TST tight tests for GLMs (#23619) Co-authored-by: Olivier Grisel <[email protected]>
test_glm_regression_vstacked_X
9d863aba2b6dab9c9cbbcf2f7c3b7a99b6ad168f
scikit-learn
test_glm.py
11
25
https://github.com/scikit-learn/scikit-learn.git
2
188
1
71
320
Python
{ "docstring": "Test that GLM converges for all solvers to correct solution on vstacked data.\n\n We work with a simple constructed data set with known solution.\n Fit on [X] with alpha is the same as fit on [X], [y]\n [X], [y] with 1 * alpha.\n It is the same alpha as the average loss stays the same.\n For wide X, [X', X'] is a singular matrix.\n ", "language": "en", "n_whitespaces": 126, "n_words": 64, "vocab_size": 48 }
def test_glm_regression_vstacked_X(solver, fit_intercept, glm_dataset): model, X, y, _, coef_with_intercept, coef_without_intercept, alpha = glm_dataset n_samples, n_features = X.shape params = dict( alpha=alpha, fit_intercept=fit_intercept, # solver=solver, # only lbfgs available tol=1e-12, max_iter=1000, ) model = clone(model).set_params(**params) X = X[:, :-1] # remove intercept X = np.concatenate((X, X), axis=0) assert np.linalg.matrix_rank(X) <= min(n_samples, n_features) y = np.r_[y, y] if fit_intercept: coef = coef_with_intercept intercept = coef[-1] coef = coef[:-1] else: coef = coef_without_intercept intercept = 0 model.fit(X, y) rtol = 3e-5 assert model.intercept_ == pytest.approx(intercept, rel=rtol) assert_allclose(model.coef_, coef, rtol=rtol) @pytest.mark.parametrize("solver", SOLVERS) @pytest.mark.parametrize("fit_intercept", [True, False])
48,348
197,115
41
sympy/tensor/tensor.py
8
5
def deprecate_data(): sympy_deprecation_warning( ,
Update the various tensor deprecations
deprecate_data
cba899d4137b0b65f6850120ee42cd4fcd4f9dbf
sympy
tensor.py
9
10
https://github.com/sympy/sympy.git
1
21
0
8
37
Python
{ "docstring": "\n The data attribute of TensorIndexType is deprecated. Use The\n replace_with_arrays() method instead.\n ", "language": "en", "n_whitespaces": 34, "n_words": 12, "vocab_size": 11 }
def deprecate_data(): sympy_deprecation_warning( , deprecated_since_version="1.4", active_deprecations_target="deprecated-tensorindextype-attrs", stacklevel=4, )
76,453
260,743
69
sklearn/preprocessing/_function_transformer.py
23
11
def fit(self, X, y=None): sel
MAINT Add parameter validation for `FunctionTransformer`. (#24180) Co-authored-by: Jérémie du Boisberranger <[email protected]>
fit
b85f799d0a7242aace8bffd5c8fd7cf3585340af
scikit-learn
_function_transformer.py
11
6
https://github.com/scikit-learn/scikit-learn.git
4
57
0
22
91
Python
{ "docstring": "Fit transformer by checking X.\n\n If ``validate`` is ``True``, ``X`` will be checked.\n\n Parameters\n ----------\n X : array-like, shape (n_samples, n_features)\n Input array.\n\n y : Ignored\n Not used, present here for API consistency by convention.\n\n Returns\n -------\n self : object\n FunctionTransformer class instance.\n ", "language": "en", "n_whitespaces": 139, "n_words": 43, "vocab_size": 40 }
def fit(self, X, y=None): self._validate_params() X = self._check_input(X, reset=True) if self.check_inverse and not (self.func is None or self.inverse_func is None): self._check_inverse_transform(X) return self
48,967
198,505
47
sympy/printing/dot.py
17
9
def styleof(expr, styles=default_styles): style = {} for typ, sty in styles: if isinstance(expr, typ): style
Code cleanup
styleof
9d58006fc0a23afcba38f641c9472917c436428a
sympy
dot.py
11
6
https://github.com/sympy/sympy.git
3
37
0
16
60
Python
{ "docstring": " Merge style dictionaries in order\n\n Examples\n ========\n\n >>> from sympy import Symbol, Basic, Expr, S\n >>> from sympy.printing.dot import styleof\n >>> styles = [(Basic, {'color': 'blue', 'shape': 'ellipse'}),\n ... (Expr, {'color': 'black'})]\n\n >>> styleof(Basic(S(1)), styles)\n {'color': 'blue', 'shape': 'ellipse'}\n\n >>> x = Symbol('x')\n >>> styleof(x + 1, styles) # this is an Expr\n {'color': 'black', 'shape': 'ellipse'}\n ", "language": "en", "n_whitespaces": 106, "n_words": 57, "vocab_size": 41 }
def styleof(expr, styles=default_styles): style = {} for typ, sty in styles: if isinstance(expr, typ): style.update(sty) return style
14,760
68,324
21
erpnext/support/report/first_response_time_for_issues/first_response_time_for_issues.py
36
10
def execute(filters=None): columns = [ {"fieldname": "creation_date
fix: bulk fix (~330) missing translations
execute
a896895a9e76a68ab055ce7871bb9d181d3fac15
erpnext
first_response_time_for_issues.py
12
25
https://github.com/frappe/erpnext.git
1
79
0
31
142
Python
{ "docstring": "\n\t\tSELECT\n\t\t\tdate(creation) as creation_date,\n\t\t\tavg(first_response_time) as avg_response_time\n\t\tFROM tabIssue\n\t\tWHERE\n\t\t\tdate(creation) between %s and %s\n\t\t\tand first_response_time > 0\n\t\tGROUP BY creation_date\n\t\tORDER BY creation_date desc\n\t", "language": "en", "n_whitespaces": 17, "n_words": 26, "vocab_size": 20 }
def execute(filters=None): columns = [ {"fieldname": "creation_date", "label": _("Date"), "fieldtype": "Date", "width": 300}, { "fieldname": "first_response_time", "fieldtype": "Duration", "label": _("First Response Time"), "width": 300, }, ] data = frappe.db.sql( , (filters.from_date, filters.to_date), ) return columns, data
2,931
19,295
278
PathPlanning/RRTStar/rrt_star.py
74
22
def choose_parent(self, new_node, near_inds): if not near_inds: return None # search nearest cost in near_inds costs = [] for i in near_inds: near_node = self.node_list[i] t_node = self.steer(near_node, new_node) if t_node and self.check_collision( t_node, self.obstacle_list, self.robot_radius):
Add optional robot radius to RRT/RRTStar path planners (#655) * Add optional robot radius to RRT/RRTStar path planners. * update __init__ and check_collision to include radius * during animation, if a robot radius is given then it is drawn * Add test for robot radius * Correct import error * Correct missing robot_radius errors * Address "expected 2 blank lines, found 1" error * Address "line too long" errors * Add missing argument description. * Remove collision_check_with_xy and replace with check_collision * Fix "missing whitespace after ','" error * Update PathPlanning/ClosedLoopRRTStar/closed_loop_rrt_star_car.py Co-authored-by: Atsushi Sakai <[email protected]> Co-authored-by: Atsushi Sakai <[email protected]>
choose_parent
b53fdf75f66ccb63b5cfaadaa81253d43f01805a
PythonRobotics
rrt_star.py
15
20
https://github.com/AtsushiSakai/PythonRobotics.git
6
138
0
53
224
Python
{ "docstring": "\n Computes the cheapest point to new_node contained in the list\n near_inds and set such a node as the parent of new_node.\n Arguments:\n --------\n new_node, Node\n randomly generated node with a path from its neared point\n There are not coalitions between this node and th tree.\n near_inds: list\n Indices of indices of the nodes what are near to new_node\n\n Returns.\n ------\n Node, a copy of new_node\n ", "language": "en", "n_whitespaces": 233, "n_words": 65, "vocab_size": 48 }
def choose_parent(self, new_node, near_inds): if not near_inds: return None # search nearest cost in near_inds costs = [] for i in near_inds: near_node = self.node_list[i] t_node = self.steer(near_node, new_node) if t_node and self.check_collision( t_node, self.obstacle_list, self.robot_radius): costs.append(self.calc_new_cost(near_node, new_node)) else: costs.append(float("inf")) # the cost of collision node min_cost = min(costs) if min_cost == float("inf"): print("There is no good path.(min_cost is inf)") return None min_ind = near_inds[costs.index(min_cost)] new_node = self.steer(self.node_list[min_ind], new_node) new_node.cost = min_cost return new_node
30,064
133,631
295
rllib/agents/a3c/tests/test_a3c.py
54
23
def test_a3c_compilation(self): config = a3c.DEFAULT_CONFIG.copy() config["num_workers"] = 2 config["num_envs_per_worker"] = 2 num_iterations = 1 # Test against all frameworks. for _ in framework_iterator(config, with_eager_tracing=True): for env in ["CartPole-v1", "Pendulum-v1", "PongDeterministic-v0"]: print("env={}".format(env)) config["model"]["use_lstm"] = env == "CartPole-v1" trainer = a3c.A3CTrainer(config=config, env=env) for i in range(num_iterations):
[CI] Format Python code with Black (#21975) See #21316 and #21311 for the motivation behind these changes.
test_a3c_compilation
7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065
ray
test_a3c.py
15
18
https://github.com/ray-project/ray.git
4
129
0
42
224
Python
{ "docstring": "Test whether an A3CTrainer can be built with both frameworks.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 10 }
def test_a3c_compilation(self): config = a3c.DEFAULT_CONFIG.copy() config["num_workers"] = 2 config["num_envs_per_worker"] = 2 num_iterations = 1 # Test against all frameworks. for _ in framework_iterator(config, with_eager_tracing=True): for env in ["CartPole-v1", "Pendulum-v1", "PongDeterministic-v0"]: print("env={}".format(env)) config["model"]["use_lstm"] = env == "CartPole-v1" trainer = a3c.A3CTrainer(config=config, env=env) for i in range(num_iterations): results = trainer.train() check_train_results(results) print(results) check_compute_single_action( trainer, include_state=config["model"]["use_lstm"] ) trainer.stop()
3,863
21,475
372
pipenv/patched/notpip/_vendor/distlib/_backport/tarfile.py
76
24
def extract(self, member, path="", set_attrs=True): self._check("r") if isinstance(member, str): tarinfo = self.getmember(member) else: tarinfo = member # Prepare the link target for makelink(). if tarinfo.islnk(): tarinfo._link_target = os.path.join(path, tar
Vendor in pip 22.1.2
extract
c69d55f7c82d5ae2cce542bcfb98d043ca4836a0
pipenv
tarfile.py
19
24
https://github.com/pypa/pipenv.git
8
170
0
52
279
Python
{ "docstring": "Extract a member from the archive to the current working directory,\n using its full name. Its file information is extracted as accurately\n as possible. `member' may be a filename or a TarInfo object. You can\n specify a different directory using `path'. File attributes (owner,\n mtime, mode) are set unless `set_attrs' is False.\n ", "language": "en", "n_whitespaces": 99, "n_words": 52, "vocab_size": 45 }
def extract(self, member, path="", set_attrs=True): self._check("r") if isinstance(member, str): tarinfo = self.getmember(member) else: tarinfo = member # Prepare the link target for makelink(). if tarinfo.islnk(): tarinfo._link_target = os.path.join(path, tarinfo.linkname) try: self._extract_member(tarinfo, os.path.join(path, tarinfo.name), set_attrs=set_attrs) except EnvironmentError as e: if self.errorlevel > 0: raise else: if e.filename is None: self._dbg(1, "tarfile: %s" % e.strerror) else: self._dbg(1, "tarfile: %s %r" % (e.strerror, e.filename)) except ExtractError as e: if self.errorlevel > 1: raise else: self._dbg(1, "tarfile: %s" % e)
5,604
30,465
32
tests/types/test_artist.py
17
8
def test_artist_from_string(): artist = Artist.from_search_term("artist:gorillaz") assert artist.name == "Gorillaz" assert artist.url == "http://open.spotify.com/artist/3AA28KZvwAUcZuOKwyblJQ"
Search album by string enhancement (#1663)
test_artist_from_string
57ce5c09ee1ac101f79962e59bd44a0396dfb76c
spotify-downloader
test_artist.py
9
5
https://github.com/spotDL/spotify-downloader.git
1
34
0
14
63
Python
{ "docstring": "\n Test if Artist class can be initialized from string.\n ", "language": "en", "n_whitespaces": 16, "n_words": 9, "vocab_size": 9 }
def test_artist_from_string(): artist = Artist.from_search_term("artist:gorillaz") assert artist.name == "Gorillaz" assert artist.url == "http://open.spotify.com/artist/3AA28KZvwAUcZuOKwyblJQ" assert len(artist.urls) > 1
35,134
151,776
382
freqtrade/freqai/RL/BaseEnvironment.py
117
37
def reset(self): # custom_info is used for episodic reports and tensorboard logging self.custom_info["Invalid"] = 0 self.custom_info["Hold"] = 0 self.custom_info["Unknown"] = 0 self.custom_info["pnl_factor"] = 0 self.custom_info["duration_factor"] = 0 self.custom_info["reward_exit"] = 0 self.custom_info["reward_hold"] = 0 for action in self.actions: self.custom_info[f"{action.name}"] = 0 self._done = False if self.starting_point is True: if self.rl_config.get('randomize_starting_position', False): length_of_data = int(self
reorganize/generalize tensorboard callback
reset
24766928baddfed919be1138a64d51cdbb0d3764
freqtrade
BaseEnvironment.py
14
31
https://github.com/freqtrade/freqtrade.git
4
259
0
73
427
Python
{ "docstring": "\n Reset is called at the beginning of every episode\n ", "language": "en", "n_whitespaces": 24, "n_words": 9, "vocab_size": 9 }
def reset(self): # custom_info is used for episodic reports and tensorboard logging self.custom_info["Invalid"] = 0 self.custom_info["Hold"] = 0 self.custom_info["Unknown"] = 0 self.custom_info["pnl_factor"] = 0 self.custom_info["duration_factor"] = 0 self.custom_info["reward_exit"] = 0 self.custom_info["reward_hold"] = 0 for action in self.actions: self.custom_info[f"{action.name}"] = 0 self._done = False if self.starting_point is True: if self.rl_config.get('randomize_starting_position', False): length_of_data = int(self._end_tick / 4) start_tick = random.randint(self.window_size + 1, length_of_data) self._start_tick = start_tick self._position_history = (self._start_tick * [None]) + [self._position] else: self._position_history = (self.window_size * [None]) + [self._position] self._current_tick = self._start_tick self._last_trade_tick = None self._position = Positions.Neutral self.total_reward = 0. self._total_profit = 1. # unit self.history = {} self.trade_history = [] self.portfolio_log_returns = np.zeros(len(self.prices)) self._profits = [(self._start_tick, 1)] self.close_trade_profit = [] self._total_unrealized_profit = 1 return self._get_observation()
13,841
65,288
22
erpnext/accounts/report/non_billed_report.py
44
22
def get_ordered_to_be_billed_data(args): doctype, party = args.get("doctype"), args.get("party") child_tab = doctype + " Item" precision = ( get_field_precision( frappe.get_meta(child_tab).get_field("billed_amt"), currency=get_default_currency() ) or 2 ) project_field = get_project_field(doctype, party) return frappe.db.sql( .format( parent_tab="tab" + doctype, child_tab="tab" + child_tab, precision=precision, party=party, date_field=args.get("date"), project_field=project_field, order=args.get("order"), order_by=args.get("order_by"), ) )
style: format code with black
get_ordered_to_be_billed_data
494bd9ef78313436f0424b918f200dab8fc7c20b
erpnext
non_billed_report.py
14
46
https://github.com/frappe/erpnext.git
2
125
0
35
208
Python
{ "docstring": "\n\t\tSelect\n\t\t\t`{parent_tab}`.name, `{parent_tab}`.{date_field},\n\t\t\t`{parent_tab}`.{party}, `{parent_tab}`.{party}_name,\n\t\t\t`{child_tab}`.item_code,\n\t\t\t`{child_tab}`.base_amount,\n\t\t\t(`{child_tab}`.billed_amt * ifnull(`{parent_tab}`.conversion_rate, 1)),\n\t\t\t(`{child_tab}`.base_rate * ifnull(`{child_tab}`.returned_qty, 0)),\n\t\t\t(`{child_tab}`.base_amount -\n\t\t\t(`{child_tab}`.billed_amt * ifnull(`{parent_tab}`.conversion_rate, 1)) -\n\t\t\t(`{child_tab}`.base_rate * ifnull(`{child_tab}`.returned_qty, 0))),\n\t\t\t`{child_tab}`.item_name, `{child_tab}`.description,\n\t\t\t{project_field}, `{parent_tab}`.company\n\t\tfrom\n\t\t\t`{parent_tab}`, `{child_tab}`\n\t\twhere\n\t\t\t`{parent_tab}`.name = `{child_tab}`.parent and `{parent_tab}`.docstatus = 1\n\t\t\tand `{parent_tab}`.status not in ('Closed', 'Completed')\n\t\t\tand `{child_tab}`.amount > 0\n\t\t\tand (`{child_tab}`.base_amount -\n\t\t\tround(`{child_tab}`.billed_amt * ifnull(`{parent_tab}`.conversion_rate, 1), {precision}) -\n\t\t\t(`{child_tab}`.base_rate * ifnull(`{child_tab}`.returned_qty, 0))) > 0\n\t\torder by\n\t\t\t`{parent_tab}`.{order} {order_by}\n\t\t", "language": "en", "n_whitespaces": 47, "n_words": 70, "vocab_size": 48 }
def get_ordered_to_be_billed_data(args): doctype, party = args.get("doctype"), args.get("party") child_tab = doctype + " Item" precision = ( get_field_precision( frappe.get_meta(child_tab).get_field("billed_amt"), currency=get_default_currency() ) or 2 ) project_field = get_project_field(doctype, party) return frappe.db.sql( .format( parent_tab="tab" + doctype, child_tab="tab" + child_tab, precision=precision, party=party, date_field=args.get("date"), project_field=project_field, order=args.get("order"), order_by=args.get("order_by"), ) )
32,811
142,825
73
python/ray/tune/execution/ray_trial_executor.py
19
6
def get_staged_trial(self): # TODO(xwjiang): This method should consider `self._cached_actor_pg`. for trial in self._staged_trials: if self._pg_m
[tune/structure] Introduce execution package (#26015) Execution-specific packages are moved to tune.execution. Co-authored-by: Xiaowei Jiang <[email protected]>
get_staged_trial
0959f44b6fc217a4f2766ed46a721eb79b067b2c
ray
ray_trial_executor.py
10
5
https://github.com/ray-project/ray.git
3
27
0
17
46
Python
{ "docstring": "Get a trial whose placement group was successfully staged.\n\n Can also return None if no trial is available.\n\n Returns:\n Trial object or None.\n\n ", "language": "en", "n_whitespaces": 55, "n_words": 23, "vocab_size": 22 }
def get_staged_trial(self): # TODO(xwjiang): This method should consider `self._cached_actor_pg`. for trial in self._staged_trials: if self._pg_manager.has_ready(trial): return trial return None
35,986
154,453
66
modin/core/dataframe/algebra/default2pandas/resample.py
12
10
def register(cls, func, squeeze_self=False, **kwargs): return super().regi
REFACTOR-#4942: remove call method in favor of register due to duplication (#4943) Signed-off-by: Myachev <[email protected]>
register
a6f47c8e1c27d85fc09926bb35c2f1a65a6d3e79
modin
resample.py
9
6
https://github.com/modin-project/modin.git
1
40
0
12
61
Python
{ "docstring": "\n Build function that do fallback to pandas and aggregate resampled data.\n\n Parameters\n ----------\n func : callable\n Aggregation function to execute under resampled frame.\n squeeze_self : bool, default: False\n Whether or not to squeeze frame before resampling.\n **kwargs : kwargs\n Additional arguments that will be passed to function builder.\n\n Returns\n -------\n callable\n Function that takes query compiler and does fallback to pandas to resample\n time-series data and apply aggregation on it.\n ", "language": "en", "n_whitespaces": 196, "n_words": 70, "vocab_size": 53 }
def register(cls, func, squeeze_self=False, **kwargs): return super().register( Resampler.build_resample(func, squeeze_self), fn_name=func.__name__, **kwargs )
51,208
205,775
540
django/db/models/query.py
117
33
def aggregate(self, *args, **kwargs): if self.query.distinct_fields: raise NotImplementedError("aggregate() + distinct(fields) not implemented.") self._validate_values_are_expressions( (*args, *kwar
Refs #33476 -- Reformatted code with Black.
aggregate
9c19aff7c7561e3a82978a272ecdaad40dda5c00
django
query.py
16
30
https://github.com/django/django.git
10
191
0
88
306
Python
{ "docstring": "\n Return a dictionary containing the calculations (aggregation)\n over the current queryset.\n\n If args is present the expression is passed as a kwarg using\n the Aggregate object's default alias.\n ", "language": "en", "n_whitespaces": 64, "n_words": 28, "vocab_size": 23 }
def aggregate(self, *args, **kwargs): if self.query.distinct_fields: raise NotImplementedError("aggregate() + distinct(fields) not implemented.") self._validate_values_are_expressions( (*args, *kwargs.values()), method_name="aggregate" ) for arg in args: # The default_alias property raises TypeError if default_alias # can't be set automatically or AttributeError if it isn't an # attribute. try: arg.default_alias except (AttributeError, TypeError): raise TypeError("Complex aggregates require an alias") kwargs[arg.default_alias] = arg query = self.query.chain() for (alias, aggregate_expr) in kwargs.items(): query.add_annotation(aggregate_expr, alias, is_summary=True) annotation = query.annotations[alias] if not annotation.contains_aggregate: raise TypeError("%s is not an aggregate expression" % alias) for expr in annotation.get_source_expressions(): if ( expr.contains_aggregate and isinstance(expr, Ref) and expr.refs in kwargs ): name = expr.refs raise exceptions.FieldError( "Cannot compute %s('%s'): '%s' is an aggregate" % (annotation.name, name, name) ) return query.get_aggregation(self.db, kwargs)
52,717
209,525
137
scapy/contrib/http2.py
51
7
def _detect_bytelen_from_str(s): # type: (str) -> int assert len(s) >= 2 tmp_len = len(s) i = 1 while orb(s[i]) & 0x80 > 0: i += 1 assert i < tmp_len, 'EINVAL: s: out-of-bound read: unfinished A
E275 - Missing whitespace after keyword (#3711) Co-authored-by: Alexander Aring <[email protected]> Co-authored-by: Anmol Sarma <[email protected]> Co-authored-by: antoine.torre <[email protected]> Co-authored-by: Antoine Vacher <[email protected]> Co-authored-by: Arnaud Ebalard <[email protected]> Co-authored-by: atlowl <[email protected]> Co-authored-by: Brian Bienvenu <[email protected]> Co-authored-by: Chris Packham <[email protected]> Co-authored-by: CQ <[email protected]> Co-authored-by: Daniel Collins <[email protected]> Co-authored-by: Federico Maggi <[email protected]> Co-authored-by: Florian Maury <[email protected]> Co-authored-by: _Frky <[email protected]> Co-authored-by: g-mahieux <[email protected]> Co-authored-by: gpotter2 <[email protected]> Co-authored-by: Guillaume Valadon <[email protected]> Co-authored-by: Hao Zheng <[email protected]> Co-authored-by: Haresh Khandelwal <[email protected]> Co-authored-by: Harri Hämäläinen <[email protected]> Co-authored-by: hecke <[email protected]> Co-authored-by: Jan Romann <[email protected]> Co-authored-by: Jan Sebechlebsky <[email protected]> Co-authored-by: jdiog0 <[email protected]> Co-authored-by: jockque <[email protected]> Co-authored-by: Julien Bedel <[email protected]> Co-authored-by: Keith Scott <[email protected]> Co-authored-by: Kfir Gollan <[email protected]> Co-authored-by: Lars Munch <[email protected]> Co-authored-by: ldp77 <[email protected]> Co-authored-by: Leonard Crestez <[email protected]> Co-authored-by: Marcel Patzlaff <[email protected]> Co-authored-by: Martijn Thé <[email protected]> Co-authored-by: Martine Lenders <[email protected]> Co-authored-by: Michael Farrell <[email protected]> Co-authored-by: Michał Mirosław <[email protected]> Co-authored-by: mkaliszan <[email protected]> Co-authored-by: mtury <[email protected]> Co-authored-by: Neale Ranns <[email protected]> Co-authored-by: Octavian Toader <[email protected]> Co-authored-by: Peter Eisenlohr <[email protected]> Co-authored-by: Phil <[email protected]> Co-authored-by: Pierre Lalet <[email protected]> Co-authored-by: Pierre Lorinquer <[email protected]> Co-authored-by: piersoh <[email protected]> Co-authored-by: plorinquer <[email protected]> Co-authored-by: pvinci <[email protected]> Co-authored-by: Rahul Jadhav <[email protected]> Co-authored-by: Robin Jarry <[email protected]> Co-authored-by: romain-perez <[email protected]> Co-authored-by: rperez <rperez@debian> Co-authored-by: Sabrina Dubroca <[email protected]> Co-authored-by: Sebastian Baar <[email protected]> Co-authored-by: sebastien mainand <[email protected]> Co-authored-by: smehner1 <[email protected]> Co-authored-by: speakinghedge <[email protected]> Co-authored-by: Steven Van Acker <[email protected]> Co-authored-by: Thomas Faivre <[email protected]> Co-authored-by: Tran Tien Dat <[email protected]> Co-authored-by: Wael Mahlous <[email protected]> Co-authored-by: waeva <[email protected]> Co-authored-by: Alexander Aring <[email protected]> Co-authored-by: Anmol Sarma <[email protected]> Co-authored-by: antoine.torre <[email protected]> Co-authored-by: Antoine Vacher <[email protected]> Co-authored-by: Arnaud Ebalard <[email protected]> Co-authored-by: atlowl <[email protected]> Co-authored-by: Brian Bienvenu <[email protected]> Co-authored-by: Chris Packham <[email protected]> Co-authored-by: CQ <[email protected]> Co-authored-by: Daniel Collins <[email protected]> Co-authored-by: Federico Maggi <[email protected]> Co-authored-by: Florian Maury <[email protected]> Co-authored-by: _Frky <[email protected]> Co-authored-by: g-mahieux <[email protected]> Co-authored-by: gpotter2 <[email protected]> Co-authored-by: Guillaume Valadon <[email protected]> Co-authored-by: Hao Zheng <[email protected]> Co-authored-by: Haresh Khandelwal <[email protected]> Co-authored-by: Harri Hämäläinen <[email protected]> Co-authored-by: hecke <[email protected]> Co-authored-by: Jan Romann <[email protected]> Co-authored-by: Jan Sebechlebsky <[email protected]> Co-authored-by: jdiog0 <[email protected]> Co-authored-by: jockque <[email protected]> Co-authored-by: Julien Bedel <[email protected]> Co-authored-by: Keith Scott <[email protected]> Co-authored-by: Kfir Gollan <[email protected]> Co-authored-by: Lars Munch <[email protected]> Co-authored-by: ldp77 <[email protected]> Co-authored-by: Leonard Crestez <[email protected]> Co-authored-by: Marcel Patzlaff <[email protected]> Co-authored-by: Martijn Thé <[email protected]> Co-authored-by: Martine Lenders <[email protected]> Co-authored-by: Michael Farrell <[email protected]> Co-authored-by: Michał Mirosław <[email protected]> Co-authored-by: mkaliszan <[email protected]> Co-authored-by: mtury <[email protected]> Co-authored-by: Neale Ranns <[email protected]> Co-authored-by: Octavian Toader <[email protected]> Co-authored-by: Peter Eisenlohr <[email protected]> Co-authored-by: Phil <[email protected]> Co-authored-by: Pierre Lalet <[email protected]> Co-authored-by: Pierre Lorinquer <[email protected]> Co-authored-by: piersoh <[email protected]> Co-authored-by: pvinci <[email protected]> Co-authored-by: Rahul Jadhav <[email protected]> Co-authored-by: Robin Jarry <[email protected]> Co-authored-by: romain-perez <[email protected]> Co-authored-by: rperez <rperez@debian> Co-authored-by: Sabrina Dubroca <[email protected]> Co-authored-by: Sebastian Baar <[email protected]> Co-authored-by: sebastien mainand <[email protected]> Co-authored-by: smehner1 <[email protected]> Co-authored-by: Steven Van Acker <[email protected]> Co-authored-by: Thomas Faivre <[email protected]> Co-authored-by: Tran Tien Dat <[email protected]> Co-authored-by: Wael Mahlous <[email protected]> Co-authored-by: waeva <[email protected]>
_detect_bytelen_from_str
08b1f9d67c8e716fd44036a027bdc90dcb9fcfdf
scapy
http2.py
10
10
https://github.com/secdev/scapy.git
2
55
0
37
93
Python
{ "docstring": " _detect_bytelen_from_str returns the length of the machine\n representation of an AbstractUVarIntField starting at the beginning\n of s and which is assumed to expand over multiple bytes\n (value > _max_prefix_value).\n\n :param str s: the string to parse. It is assumed that it is a multibyte int. # noqa: E501\n :return: The bytelength of the AbstractUVarIntField.\n :raises: AssertionError\n ", "language": "en", "n_whitespaces": 113, "n_words": 56, "vocab_size": 45 }
def _detect_bytelen_from_str(s): # type: (str) -> int assert len(s) >= 2 tmp_len = len(s) i = 1 while orb(s[i]) & 0x80 > 0: i += 1 assert i < tmp_len, 'EINVAL: s: out-of-bound read: unfinished AbstractUVarIntField detected' # noqa: E501 ret = i + 1 assert ret >= 0 return ret
14,597
67,696
4
erpnext/stock/doctype/purchase_receipt/test_purchase_receipt.py
10
7
def get_gl_entries(voucher_type, voucher_no): return frappe.db.sql( , (voucher_type, voucher_no)
style: format code with black
get_gl_entries
494bd9ef78313436f0424b918f200dab8fc7c20b
erpnext
test_purchase_receipt.py
8
8
https://github.com/frappe/erpnext.git
1
27
0
10
40
Python
{ "docstring": "select account, debit, credit, cost_center, is_cancelled\n\t\tfrom `tabGL Entry` where voucher_type=%s and voucher_no=%s\n\t\torder by account desc", "language": "en", "n_whitespaces": 14, "n_words": 17, "vocab_size": 17 }
def get_gl_entries(voucher_type, voucher_no): return frappe.db.sql( , (voucher_type, voucher_no), as_dict=1, )
53,681
213,618
17
ivy/core/random.py
11
7
def random_normal(mean=0.0, std=1.0, shape=None, dev=None, f=None): return _cur_framework(f=f).random_normal(mean,
renamed dev_str arg to dev for all methods.
random_normal
d743336b1f3654cd0315f380f43eed4116997c1d
ivy
random.py
10
2
https://github.com/unifyai/ivy.git
1
46
0
11
61
Python
{ "docstring": "\n Draws samples from a normal distribution.\n\n :param mean: The mean of the normal distribution to sample from. Default is 0.\n :type mean: float\n :param std: The standard deviation of the normal distribution to sample from. Default is 1.\n :type std: float\n :param shape: Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn.\n If size is None (default), a single value is returned.\n :param dev: device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc.\n :type dev: str\n :param f: Machine learning framework. Inferred from inputs if None.\n :type f: ml_framework, optional\n :return: Drawn samples from the parameterized uniform distribution.\n ", "language": "en", "n_whitespaces": 167, "n_words": 111, "vocab_size": 74 }
def random_normal(mean=0.0, std=1.0, shape=None, dev=None, f=None): return _cur_framework(f=f).random_normal(mean, std, shape, dev)
23,019
108,020
29
lib/matplotlib/texmanager.py
8
5
def get_font_preamble(cls): font_preamble, command = cls.
Move towards making texmanager stateless. Previously, TexManager needed to call get_font_config at a specific place in the middle of processing to update some internal attributes before proceeding with TeX source generation. Instead, move towards making TexManager stateless (except for caching), i.e. the user facing API should be thought of as a bunch of independently callable functions `make_tex()`, `make_dvi()`, etc. (they will probably stay as methods on a "empty" TexManager object for a long time for backcompat, in fact).
get_font_preamble
13147992b317c29c6e832ca7f6d05bf48aeb0718
matplotlib
texmanager.py
8
3
https://github.com/matplotlib/matplotlib.git
1
17
0
8
31
Python
{ "docstring": "\n Return a string containing font configuration for the tex preamble.\n ", "language": "en", "n_whitespaces": 25, "n_words": 10, "vocab_size": 10 }
def get_font_preamble(cls): font_preamble, command = cls._get_font_preamble_and_command() return font_preamble
30,836
136,154
755
rllib/utils/exploration/tests/test_explorations.py
147
30
def do_test_explorations(config, dummy_obs, prev_a=None, expected_mean_action=None): # Test all frameworks. for _ in framework_iterator(config): print(f"Algorithm={config.algo_class}") # Test for both the default Agent's exploration AND the `Random` # exploration class. for exploration in [None, "Random"]: local_config = config.copy() if exploration == "Random": local_config.exploration(exploration_config={"type": "Random"}) print("exploration={}".format(exploration or "default")) algo = local_config.build() # Make sure all actions drawn are the same, given same # observations. actions = [] for _ in range(25): actions.append( algo.compute_single_action( observation=dummy_obs, explore=Fal
[RLlib] AlgorithmConfig: Replace more occurrences of old config dicts; Make all Algorithms use the non-dict lookup for config properties. (#30096)
do_test_explorations
e715a8b7616f9f24839531fcefc1420f79ab13ec
ray
test_explorations.py
18
36
https://github.com/ray-project/ray.git
10
231
0
85
357
Python
{ "docstring": "Calls an Agent's `compute_actions` with different `explore` options.", "language": "en", "n_whitespaces": 7, "n_words": 8, "vocab_size": 8 }
def do_test_explorations(config, dummy_obs, prev_a=None, expected_mean_action=None): # Test all frameworks. for _ in framework_iterator(config): print(f"Algorithm={config.algo_class}") # Test for both the default Agent's exploration AND the `Random` # exploration class. for exploration in [None, "Random"]: local_config = config.copy() if exploration == "Random": local_config.exploration(exploration_config={"type": "Random"}) print("exploration={}".format(exploration or "default")) algo = local_config.build() # Make sure all actions drawn are the same, given same # observations. actions = [] for _ in range(25): actions.append( algo.compute_single_action( observation=dummy_obs, explore=False, prev_action=prev_a, prev_reward=1.0 if prev_a is not None else None, ) ) check(actions[-1], actions[0]) # Make sure actions drawn are different # (around some mean value), given constant observations. actions = [] for _ in range(500): actions.append( algo.compute_single_action( observation=dummy_obs, explore=True, prev_action=prev_a, prev_reward=1.0 if prev_a is not None else None, ) ) check( np.mean(actions), expected_mean_action if expected_mean_action is not None else 0.5, atol=0.4, ) # Check that the stddev is not 0.0 (values differ). check(np.std(actions), 0.0, false=True)
11,227
55,138
21
src/prefect/cli/base.py
9
9
def exit_with_success(message, **kwargs): kwargs.setdefault("style", "green") app.console.prin
Update `set` command; allow CLI `console` object to be patched
exit_with_success
c0cb1fee460c1bded9e3eb741ad7979402844bf8
prefect
base.py
8
4
https://github.com/PrefectHQ/prefect.git
1
35
0
9
61
Python
{ "docstring": "\n Utility to print a stylized success message and exit with a zero code\n ", "language": "en", "n_whitespaces": 20, "n_words": 13, "vocab_size": 12 }
def exit_with_success(message, **kwargs): kwargs.setdefault("style", "green") app.console.print(message, **kwargs) raise typer.Exit(0)
36,153
154,845
91
modin/_version.py
61
7
def get_keywords() -> Dict[str, str]: # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "$Format:%d$" git_full = "
REFACTOR-#5012: Add mypy checks for singleton files in base modin directory (#5013) Signed-off-by: Jonathan Shi <[email protected]>
get_keywords
446148dbf9b66debd0a0dbf9ce778253380d5921
modin
_version.py
9
7
https://github.com/modin-project/modin.git
1
38
0
51
76
Python
{ "docstring": "Get the keywords needed to look up the version information.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 9 }
def get_keywords() -> Dict[str, str]: # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "$Format:%d$" git_full = "$Format:%H$" git_date = "$Format:%ci$" keywords = {"refnames": git_refnames, "full": git_full, "date": git_date} return keywords
36,416
155,520
798
dask/array/slicing.py
299
71
def take(outname, inname, chunks, index, itemsize, axis=0): from .core import PerformanceWarning plan = slicing_plan(chunks[axis], index) if len(plan) >= len(chunks[axis]) * 10: factor = math.ceil(len(plan) / len(chunks[axis])) warnings.warn( "Slicing with an out-of-order index is generating %d " "times more chunks" % factor, PerformanceWarning, stacklevel=6, ) if not is_arraylike(index): index = np.asarray(index) # Check for chunks from the plan that would violate the user's # configured chunk size. nbytes = utils.parse_bytes(config.get("array.chunk-size")) other_chunks = [chunks[i] for i in range(len(chunks)) if i != axis] other_numel = np.prod([sum(x) for x in other_chunks]) if math.isnan(other_numel): warnsize = maxsize = math.inf else: maxsize = math.ceil(nbytes / (other_numel * itemsize)) warnsize = maxsize * 5 split = config.get("array.slicing.split-large-chunks", None) # Warn only when the default is not specified. warned = split is not None for _, index_list in plan: if not warned and len(index_list) > warnsize: msg = ( "Slicing is producing a large chunk. To accept the large\n" "chunk and silence this warning, set the option\n" " >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n" " ... array[indexer]\n\n" "To avoid creating the large chunks, set the option\n" " >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n" " ... array[indexer]" ) warnings.warn(msg, PerformanceWarning, stacklevel=6) warned = True where_index = [] index_lists = [] for where_idx, index_list in plan: index_length = len(index_list) if split and index_length > maxsize: index_sublist = np.array_split( index_list, math.ceil(index_length / maxsize) ) index_lists.extend(index_sublist) where_index.extend([where_idx] * len(index_sublist)) else: if not is_arraylike(index_list): index_list = np.array(index_list) index_lists.append(index_list) where_index.append(where_idx) dims = [range(len(bd)) for bd in chunks] indims = list(dims) indims[axis] = list(range(len(where_index))) keys = list(product([outname], *indims)) outdims = list(dims) outdims[axis] = where_index slices = [[colon] * len(bd) for bd in chunks] slices[axis] = index_lists slices = list(product(*slices)) inkeys = list(product([inname], *outdims)) values = [(getitem, inkey, slc) for inkey, slc in zip(inkeys, slices)] chunks2 = list(chunks) chunks2[axis] = tuple(map(len, index_lists)) dsk = dict(zip(keys, values)) return tuple(chunks2), dsk
DOC: normalize whitespace in doctests in slicing.py (#8512)
take
fa8dfede71677a2301d4cd602cf4b27af41cbc4f
dask
slicing.py
15
66
https://github.com/dask/dask.git
17
509
0
181
824
Python
{ "docstring": "Index array with an iterable of index\n\n Handles a single index by a single list\n\n Mimics ``np.take``\n\n >>> from pprint import pprint\n >>> chunks, dsk = take('y', 'x', [(20, 20, 20, 20)], [5, 1, 47, 3], 8, axis=0)\n >>> chunks\n ((2, 1, 1),)\n >>> pprint(dsk) # doctest: +ELLIPSIS\n {('y', 0): (<function getitem at ...>, ('x', 0), (array([5, 1]),)),\n ('y', 1): (<function getitem at ...>, ('x', 2), (array([7]),)),\n ('y', 2): (<function getitem at ...>, ('x', 0), (array([3]),))}\n\n When list is sorted we retain original block structure\n\n >>> chunks, dsk = take('y', 'x', [(20, 20, 20, 20)], [1, 3, 5, 47], 8, axis=0)\n >>> chunks\n ((3, 1),)\n >>> pprint(dsk) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE\n {('y', 0): (<function getitem at ...>,\n ('x', 0),\n (array([1, 3, 5]),)),\n ('y', 1): (<function getitem at ...>, ('x', 2), (array([7]),))}\n\n When any indexed blocks would otherwise grow larger than\n dask.config.array.chunk-size, we might split them,\n depending on the value of ``dask.config.slicing.split-large-chunks``.\n\n >>> import dask\n >>> with dask.config.set({\"array.slicing.split-large-chunks\": True}):\n ... chunks, dsk = take('y', 'x', [(1, 1, 1), (1000, 1000), (1000, 1000)],\n ... [0] + [1] * 6 + [2], axis=0, itemsize=8)\n >>> chunks\n ((1, 3, 3, 1), (1000, 1000), (1000, 1000))\n ", "language": "en", "n_whitespaces": 339, "n_words": 191, "vocab_size": 108 }
def take(outname, inname, chunks, index, itemsize, axis=0): from .core import PerformanceWarning plan = slicing_plan(chunks[axis], index) if len(plan) >= len(chunks[axis]) * 10: factor = math.ceil(len(plan) / len(chunks[axis])) warnings.warn( "Slicing with an out-of-order index is generating %d " "times more chunks" % factor, PerformanceWarning, stacklevel=6, ) if not is_arraylike(index): index = np.asarray(index) # Check for chunks from the plan that would violate the user's # configured chunk size. nbytes = utils.parse_bytes(config.get("array.chunk-size")) other_chunks = [chunks[i] for i in range(len(chunks)) if i != axis] other_numel = np.prod([sum(x) for x in other_chunks]) if math.isnan(other_numel): warnsize = maxsize = math.inf else: maxsize = math.ceil(nbytes / (other_numel * itemsize)) warnsize = maxsize * 5 split = config.get("array.slicing.split-large-chunks", None) # Warn only when the default is not specified. warned = split is not None for _, index_list in plan: if not warned and len(index_list) > warnsize: msg = ( "Slicing is producing a large chunk. To accept the large\n" "chunk and silence this warning, set the option\n" " >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n" " ... array[indexer]\n\n" "To avoid creating the large chunks, set the option\n" " >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n" " ... array[indexer]" ) warnings.warn(msg, PerformanceWarning, stacklevel=6) warned = True where_index = [] index_lists = [] for where_idx, index_list in plan: index_length = len(index_list) if split and index_length > maxsize: index_sublist = np.array_split( index_list, math.ceil(index_length / maxsize) ) index_lists.extend(index_sublist) where_index.extend([where_idx] * len(index_sublist)) else: if not is_arraylike(index_list): index_list = np.array(index_list) index_lists.append(index_list) where_index.append(where_idx) dims = [range(len(bd)) for bd in chunks] indims = list(dims) indims[axis] = list(range(len(where_index))) keys = list(product([outname], *indims)) outdims = list(dims) outdims[axis] = where_index slices = [[colon] * len(bd) for bd in chunks] slices[axis] = index_lists slices = list(product(*slices)) inkeys = list(product([inname], *outdims)) values = [(getitem, inkey, slc) for inkey, slc in zip(inkeys, slices)] chunks2 = list(chunks) chunks2[axis] = tuple(map(len, index_lists)) dsk = dict(zip(keys, values)) return tuple(chunks2), dsk
50,070
202,325
61
tests/contenttypes_tests/test_models.py
11
9
def test_multidb(self): ContentType.objects.clear_cache() with self.assertNumQueries(0, using="default"), self.assertNumQueries( 1, using="other" ): ContentType.objects.get_for_model(Author)
Refs #33476 -- Reformatted code with Black.
test_multidb
9c19aff7c7561e3a82978a272ecdaad40dda5c00
django
test_models.py
11
6
https://github.com/django/django.git
1
44
0
11
78
Python
{ "docstring": "\n When using multiple databases, ContentType.objects.get_for_model() uses\n db_for_read().\n ", "language": "en", "n_whitespaces": 29, "n_words": 7, "vocab_size": 7 }
def test_multidb(self): ContentType.objects.clear_cache() with self.assertNumQueries(0, using="default"), self.assertNumQueries( 1, using="other" ): ContentType.objects.get_for_model(Author)
84,312
282,822
151
gamestonk_terminal/econometrics/econometrics_model.py
103
31
def get_engle_granger_two_step_cointegration_test(y, x): warnings.simplefilter(action="ignore", category=FutureWarning) long_run_ols = sm.OLS(y, sm.add_constant(x)) warnings.simplefilter(action="default", category=FutureWarning) long_run_ols_fit = long_run_ols.fit() c, gamma = long_run_ols_fit.params z = long_run_ols_fit.resid short_run_ols = sm.OLS(y.diff().iloc[1:], (z.shift().iloc[1:])) short_run_ols_fit = short_run_ol
Econometrics notebooks API (#1462) * Add initial implementations of the API wrappers * Fix typos in docstrings * Fix typos an markdown linting errors in docs * Ditch using insecure eval in favor of secure getattr * Add GST notebooks API documentation * Add notebook screenshot to the GST API docs
get_engle_granger_two_step_cointegration_test
1b914d45e8575827c05a432d56846f5c5f2559c4
OpenBBTerminal
econometrics_model.py
13
12
https://github.com/OpenBB-finance/OpenBBTerminal.git
1
147
0
88
230
Python
{ "docstring": "Estimates long-run and short-run cointegration relationship for series y and x and apply\n the two-step Engle & Granger test for cointegration.\n\n Uses a 2-step process to first estimate coefficients for the long-run relationship\n y_t = c + gamma * x_t + z_t\n\n and then the short-term relationship,\n y_t - y_(t-1) = alpha * z_(t-1) + epsilon_t,\n\n with z the found residuals of the first equation.\n\n Then tests cointegration by Dickey-Fuller phi=1 vs phi < 1 in\n z_t = phi * z_(t-1) + eta_t\n\n If this implies phi < 1, the z series is stationary is concluded to be\n stationary, and thus the series y and x are concluded to be cointegrated.\n\n Parameters\n ----------\n y : pd.Series\n The first time series of the pair to analyse.\n\n x : pd.Series\n The second time series of the pair to analyse.\n\n Returns\n -------\n c : float\n The constant term in the long-run relationship y_t = c + gamma * x_t + z_t. This\n describes the static shift of y with respect to gamma * x.\n\n gamma : float\n The gamma term in the long-run relationship y_t = c + gamma * x_t + z_t. This\n describes the ratio between the const-shifted y and x.\n\n alpha : float\n The alpha term in the short-run relationship y_t - y_(t-1) = alpha * z_(t-1) + epsilon. This\n gives an indication of the strength of the error correction toward the long-run mean.\n\n z : pd.Series\n Series of residuals z_t from the long-run relationship y_t = c + gamma * x_t + z_t, representing\n the value of the error correction term.\n\n dfstat : float\n The Dickey Fuller test-statistic for phi = 1 vs phi < 1 in the second equation. A more\n negative value implies the existence of stronger cointegration.\n\n pvalue : float\n The p-value corresponding to the Dickey Fuller test-statistic. A lower value implies\n stronger rejection of no-cointegration, thus stronger evidence of cointegration.\n\n ", "language": "en", "n_whitespaces": 494, "n_words": 315, "vocab_size": 127 }
def get_engle_granger_two_step_cointegration_test(y, x): warnings.simplefilter(action="ignore", category=FutureWarning) long_run_ols = sm.OLS(y, sm.add_constant(x)) warnings.simplefilter(action="default", category=FutureWarning) long_run_ols_fit = long_run_ols.fit() c, gamma = long_run_ols_fit.params z = long_run_ols_fit.resid short_run_ols = sm.OLS(y.diff().iloc[1:], (z.shift().iloc[1:])) short_run_ols_fit = short_run_ols.fit() alpha = short_run_ols_fit.params[0] # NOTE: The p-value returned by the adfuller function assumes we do not estimate z # first, but test stationarity of an unestimated series directly. This assumption # should have limited effect for high N, however. Critical values taking this into # account more accurately are provided in e.g. McKinnon (1990) and Engle & Yoo (1987). adfstat, pvalue, _, _, _ = adfuller(z, maxlag=1, autolag=None) return c, gamma, alpha, z, adfstat, pvalue
51,823
206,982
44
tests/admin_changelist/tests.py
12
11
def test_deterministic_order_for_unordered_model(self): superuser = self._create_superuser("superuser") for counter in range(1, 51):
Refs #33476 -- Reformatted code with Black.
test_deterministic_order_for_unordered_model
9c19aff7c7561e3a82978a272ecdaad40dda5c00
django
tests.py
10
18
https://github.com/django/django.git
2
118
0
12
63
Python
{ "docstring": "\n The primary key is used in the ordering of the changelist's results to\n guarantee a deterministic order, even when the model doesn't have any\n default ordering defined (#17198).\n ", "language": "en", "n_whitespaces": 57, "n_words": 28, "vocab_size": 25 }
def test_deterministic_order_for_unordered_model(self): superuser = self._create_superuser("superuser") for counter in range(1, 51): UnorderedObject.objects.create(id=counter, bool=True)