signature
stringlengths 8
3.44k
| body
stringlengths 0
1.41M
| docstring
stringlengths 1
122k
| id
stringlengths 5
17
|
---|---|---|---|
def time_millis(): | return int(round(time.time() * <NUM_LIT:1000>))<EOL> | Returns current milliseconds since epoch | f2801:m0 |
def create_datapoint(value, timestamp=None, **tags): | if timestamp is None:<EOL><INDENT>timestamp = time_millis()<EOL><DEDENT>if type(timestamp) is datetime:<EOL><INDENT>timestamp = datetime_to_time_millis(timestamp)<EOL><DEDENT>item = { '<STR_LIT>': timestamp,<EOL>'<STR_LIT:value>': value }<EOL>if tags is not None:<EOL><INDENT>item['<STR_LIT>'] = tags<EOL><DEDENT>return item<EOL> | Creates a single datapoint dict with a value, timestamp and tags.
:param value: Value of the datapoint. Type depends on the id's MetricType
:param timestamp: Optional timestamp of the datapoint. Uses client current time if not set. Millisecond accuracy. Can be datetime instance also.
:param tags: Optional datapoint tags. Not to be confused with metric definition tags | f2801:m3 |
def create_metric(metric_type, metric_id, data): | if not isinstance(data, list):<EOL><INDENT>data = [data]<EOL><DEDENT>return { '<STR_LIT:type>': metric_type,'<STR_LIT:id>': metric_id, '<STR_LIT:data>': data }<EOL> | Create Hawkular-Metrics' submittable structure.
:param metric_type: MetricType to be matched (required)
:param metric_id: Exact string matching metric id
:param data: A datapoint or a list of datapoints created with create_datapoint(value, timestamp, tags) | f2801:m4 |
def create_percentiles_filter(*percentiles): | return '<STR_LIT:U+002C>'.join("<STR_LIT:%s>" % p for p in percentiles)<EOL> | Create percentiles filter from a list of float64 percentile values | f2801:m5 |
def create_tags_filter(**tags): | return HawkularMetricsClient._transform_tags(**tags)<EOL> | Transform a set of parameters to a tag query language filter | f2801:m6 |
def put(self, data): | if not isinstance(data, list):<EOL><INDENT>data = [data]<EOL><DEDENT>r = collections.defaultdict(list)<EOL>for d in data:<EOL><INDENT>metric_type = d.pop('<STR_LIT:type>', None)<EOL>if metric_type is None:<EOL><INDENT>raise HawkularError('<STR_LIT>')<EOL><DEDENT>r[metric_type].append(d)<EOL><DEDENT>for l in r:<EOL><INDENT>self._post(self._get_metrics_raw_url(self._get_url(l)), r[l],parse_json=False)<EOL><DEDENT> | Send multiple different metric_ids to the server in a single batch. Metrics can be a mixture
of types.
:param data: A dict or a list of dicts created with create_metric(metric_type, metric_id, datapoints) | f2801:c2:m11 |
def push(self, metric_type, metric_id, value, timestamp=None): | if type(timestamp) is datetime:<EOL><INDENT>timestamp = datetime_to_time_millis(timestamp)<EOL><DEDENT>item = create_metric(metric_type, metric_id, create_datapoint(value, timestamp))<EOL>self.put(item)<EOL> | Pushes a single metric_id, datapoint combination to the server.
This method is an assistant method for the put method by removing the need to
create data structures first.
:param metric_type: MetricType to be matched (required)
:param metric_id: Exact string matching metric id
:param value: Datapoint value (depending on the MetricType)
:param timestamp: Timestamp of the datapoint. If left empty, uses current client time. Can be milliseconds since epoch or datetime instance | f2801:c2:m12 |
def query_metric(self, metric_type, metric_id, start=None, end=None, **query_options): | if start is not None:<EOL><INDENT>if type(start) is datetime:<EOL><INDENT>query_options['<STR_LIT:start>'] = datetime_to_time_millis(start)<EOL><DEDENT>else:<EOL><INDENT>query_options['<STR_LIT:start>'] = start<EOL><DEDENT><DEDENT>if end is not None:<EOL><INDENT>if type(end) is datetime:<EOL><INDENT>query_options['<STR_LIT:end>'] = datetime_to_time_millis(end)<EOL><DEDENT>else:<EOL><INDENT>query_options['<STR_LIT:end>'] = end<EOL><DEDENT><DEDENT>return self._get(<EOL>self._get_metrics_raw_url(<EOL>self._get_metrics_single_url(metric_type, metric_id)),<EOL>**query_options)<EOL> | Query for metrics datapoints from the server.
:param metric_type: MetricType to be matched (required)
:param metric_id: Exact string matching metric id
:param start: Milliseconds since epoch or datetime instance
:param end: Milliseconds since epoch or datetime instance
:param query_options: For possible query_options, see the Hawkular-Metrics documentation. | f2801:c2:m13 |
def query_metric_stats(self, metric_type, metric_id=None, start=None, end=None, bucketDuration=None, **query_options): | if start is not None:<EOL><INDENT>if type(start) is datetime:<EOL><INDENT>query_options['<STR_LIT:start>'] = datetime_to_time_millis(start)<EOL><DEDENT>else:<EOL><INDENT>query_options['<STR_LIT:start>'] = start<EOL><DEDENT><DEDENT>if end is not None:<EOL><INDENT>if type(end) is datetime:<EOL><INDENT>query_options['<STR_LIT:end>'] = datetime_to_time_millis(end)<EOL><DEDENT>else:<EOL><INDENT>query_options['<STR_LIT:end>'] = end<EOL><DEDENT><DEDENT>if bucketDuration is not None:<EOL><INDENT>if type(bucketDuration) is timedelta:<EOL><INDENT>query_options['<STR_LIT>'] = timedelta_to_duration(bucketDuration)<EOL><DEDENT>else:<EOL><INDENT>query_options['<STR_LIT>'] = bucketDuration<EOL><DEDENT><DEDENT>if metric_id is not None:<EOL><INDENT>url = self._get_metrics_stats_url(self._get_metrics_single_url(metric_type, metric_id))<EOL><DEDENT>else:<EOL><INDENT>if len(query_options) < <NUM_LIT:0>:<EOL><INDENT>raise HawkularError('<STR_LIT>')<EOL><DEDENT>url = self._get_metrics_stats_url(self._get_url(metric_type))<EOL><DEDENT>return self._get(url, **query_options)<EOL> | Query for metric aggregates from the server. This is called buckets in the Hawkular-Metrics documentation.
:param metric_type: MetricType to be matched (required)
:param metric_id: Exact string matching metric id or None for tags matching only
:param start: Milliseconds since epoch or datetime instance
:param end: Milliseconds since epoch or datetime instance
:param bucketDuration: The timedelta or duration of buckets. Can be a string presentation or timedelta object
:param query_options: For possible query_options, see the Hawkular-Metrics documentation. | f2801:c2:m14 |
def query_metric_definition(self, metric_type, metric_id): | return self._get(self._get_metrics_single_url(metric_type, metric_id))<EOL> | Query definition of a single metric id.
:param metric_type: MetricType to be matched (required)
:param metric_id: Exact string matching metric id | f2801:c2:m15 |
def query_metric_definitions(self, metric_type=None, id_filter=None, **tags): | params = {}<EOL>if id_filter is not None:<EOL><INDENT>params['<STR_LIT:id>'] = id_filter<EOL><DEDENT>if metric_type is not None:<EOL><INDENT>params['<STR_LIT:type>'] = MetricType.short(metric_type)<EOL><DEDENT>if len(tags) > <NUM_LIT:0>:<EOL><INDENT>params['<STR_LIT>'] = self._transform_tags(**tags)<EOL><DEDENT>return self._get(self._get_url(), **params)<EOL> | Query available metric definitions.
:param metric_type: A MetricType to be queried. If left to None, matches all the MetricTypes
:param id_filter: Filter the id with regexp is tag filtering is used, otherwise a list of exact metric ids
:param tags: A dict of tag key/value pairs. Uses Hawkular-Metrics tag query language for syntax | f2801:c2:m16 |
def query_tag_values(self, metric_type=None, **tags): | tagql = self._transform_tags(**tags)<EOL>return self._get(self._get_metrics_tags_url(self._get_url(metric_type)) + '<STR_LIT>'.format(tagql))<EOL> | Query for possible tag values.
:param metric_type: A MetricType to be queried. If left to None, matches all the MetricTypes
:param tags: A dict of tag key/value pairs. Uses Hawkular-Metrics tag query language for syntax | f2801:c2:m17 |
def create_metric_definition(self, metric_type, metric_id, **tags): | item = { '<STR_LIT:id>': metric_id }<EOL>if len(tags) > <NUM_LIT:0>:<EOL><INDENT>data_retention = tags.pop('<STR_LIT>', None)<EOL>if data_retention is not None:<EOL><INDENT>item['<STR_LIT>'] = data_retention<EOL><DEDENT>if len(tags) > <NUM_LIT:0>:<EOL><INDENT>item['<STR_LIT>'] = tags<EOL><DEDENT><DEDENT>json_data = json.dumps(item, indent=<NUM_LIT:2>)<EOL>try:<EOL><INDENT>self._post(self._get_url(metric_type), json_data)<EOL><DEDENT>except HawkularError as e:<EOL><INDENT>if e.code == <NUM_LIT>:<EOL><INDENT>return False<EOL><DEDENT>raise e<EOL><DEDENT>return True<EOL> | Create metric definition with custom definition. **tags should be a set of tags, such as
units, env ..
:param metric_type: MetricType of the new definition
:param metric_id: metric_id is the string index of the created metric
:param tags: Key/Value tag values of the new metric | f2801:c2:m18 |
def query_metric_tags(self, metric_type, metric_id): | definition = self._get(self._get_metrics_tags_url(self._get_metrics_single_url(metric_type, metric_id)))<EOL>return definition<EOL> | Returns a list of tags in the metric definition.
:param metric_type: MetricType to be matched (required)
:param metric_id: Exact string matching metric id | f2801:c2:m19 |
def update_metric_tags(self, metric_type, metric_id, **tags): | self._put(self._get_metrics_tags_url(self._get_metrics_single_url(metric_type, metric_id)), tags, parse_json=False)<EOL> | Replace the metric_id's tags with given **tags
:param metric_type: MetricType to be matched (required)
:param metric_id: Exact string matching metric id
:param tags: Updated key/value tag values of the metric | f2801:c2:m20 |
def delete_metric_tags(self, metric_type, metric_id, **deleted_tags): | tags = self._transform_tags(**deleted_tags)<EOL>tags_url = self._get_metrics_tags_url(self._get_metrics_single_url(metric_type, metric_id)) + '<STR_LIT>'.format(tags)<EOL>self._delete(tags_url)<EOL> | Delete one or more tags from the metric definition.
:param metric_type: MetricType to be matched (required)
:param metric_id: Exact string matching metric id
:param deleted_tags: List of deleted tag names. Values can be set to anything | f2801:c2:m21 |
def query_tenants(self): | return self._get(self._get_tenants_url())<EOL> | Query available tenants and their information. | f2801:c2:m22 |
def create_tenant(self, tenant_id, retentions=None): | item = { '<STR_LIT:id>': tenant_id }<EOL>if retentions is not None:<EOL><INDENT>item['<STR_LIT>'] = retentions<EOL><DEDENT>self._post(self._get_tenants_url(), json.dumps(item, indent=<NUM_LIT:2>))<EOL> | Create a tenant. Currently nothing can be set (to be fixed after the master
version of Hawkular-Metrics has fixed implementation.
:param retentions: A set of retention settings, see Hawkular-Metrics documentation for more info | f2801:c2:m23 |
def delete_tenant(self, tenant_id): | self._delete(self._get_single_id_url(self._get_tenants_url(), tenant_id))<EOL> | Asynchronously deletes a tenant and all the data associated with the tenant.
:param tenant_id: Tenant id to be sent for deletion process | f2801:c2:m24 |
def __init__(self,<EOL>tenant_id,<EOL>host='<STR_LIT:localhost>',<EOL>port=<NUM_LIT>,<EOL>path=None,<EOL>scheme='<STR_LIT:http>',<EOL>cafile=None,<EOL>context=None,<EOL>token=None,<EOL>username=None,<EOL>password=None,<EOL>auto_set_legacy_api=True,<EOL>authtoken=None): | self.tenant_id = tenant_id<EOL>self.host = host<EOL>self.port = port<EOL>self.path = path<EOL>self.cafile = cafile<EOL>self.scheme = scheme<EOL>self.context = context<EOL>self.token = token<EOL>self.username = username<EOL>self.password = password<EOL>self.legacy_api = False<EOL>self.authtoken = authtoken<EOL>self._setup_path()<EOL>if auto_set_legacy_api:<EOL><INDENT>major, minor = self.query_semantic_version()<EOL>self.legacy_api = (major == <NUM_LIT:0> and minor < <NUM_LIT:16>)<EOL><DEDENT> | A new instance of HawkularClient is created with the following defaults:
host = localhost
port = 8080
path = hawkular-metrics
scheme = http
cafile = None
The url that is called by the client is:
{scheme}://{host}:{port}/{2}/ | f2802:c6:m0 |
def get(self, tags=[], trigger_ids=[]): | params = {}<EOL>if len(tags) > <NUM_LIT:0>:<EOL><INDENT>params['<STR_LIT>'] = '<STR_LIT:U+002C>'.join(tags)<EOL><DEDENT>if len(trigger_ids) > <NUM_LIT:0>:<EOL><INDENT>params['<STR_LIT>'] = '<STR_LIT:U+002C>'.join(trigger_ids)<EOL><DEDENT>url = self._service_url('<STR_LIT>', params=params)<EOL>triggers_dict = self._get(url)<EOL>return Trigger.list_to_object_list(triggers_dict)<EOL> | Get triggers with optional filtering. Querying without parameters returns all the trigger definitions.
:param tags: Fetch triggers with matching tags only. Use * to match all values.
:param trigger_ids: List of triggerIds to fetch | f2803:c13:m2 |
def create(self, trigger): | data = self._serialize_object(trigger)<EOL>if isinstance(trigger, FullTrigger):<EOL><INDENT>returned_dict = self._post(self._service_url(['<STR_LIT>', '<STR_LIT>']), data)<EOL>return FullTrigger(returned_dict)<EOL><DEDENT>else:<EOL><INDENT>returned_dict = self._post(self._service_url('<STR_LIT>'), data)<EOL>return Trigger(returned_dict)<EOL><DEDENT> | Create a new trigger.
:param trigger: FullTrigger or Trigger class to be created
:return: The created trigger | f2803:c13:m3 |
def update(self, trigger_id, full_trigger): | data = self._serialize_object(full_trigger)<EOL>rdict = self._put(self._service_url(['<STR_LIT>', '<STR_LIT>', trigger_id]), data)<EOL>return FullTrigger(rdict)<EOL> | Update an existing full trigger.
:param full_trigger: FullTrigger with conditions, dampenings and triggers
:type full_trigger: FullTrigger
:return: Updated FullTrigger definition | f2803:c13:m4 |
def delete(self, trigger_id): | self._delete(self._service_url(['<STR_LIT>', trigger_id]))<EOL> | Delete an existing standard or group member trigger.
This can not be used to delete a group trigger definition.
:param trigger_id: Trigger definition id to be deleted. | f2803:c13:m5 |
def single(self, trigger_id, full=False): | if full:<EOL><INDENT>returned_dict = self._get(self._service_url(['<STR_LIT>', '<STR_LIT>', trigger_id]))<EOL>return FullTrigger(returned_dict)<EOL><DEDENT>else:<EOL><INDENT>returned_dict = self._get(self._service_url(['<STR_LIT>', trigger_id]))<EOL>return Trigger(returned_dict)<EOL><DEDENT> | Get an existing (full) trigger definition.
:param trigger_id: Trigger definition id to be retrieved.
:param full: Fetch the full definition, default is False.
:return: Trigger of FullTrigger depending on the full parameter value. | f2803:c13:m6 |
def create_group(self, trigger): | data = self._serialize_object(trigger)<EOL>return Trigger(self._post(self._service_url(['<STR_LIT>', '<STR_LIT>']), data))<EOL> | Create a new group trigger.
:param trigger: Group member trigger to be created
:return: The created group Trigger | f2803:c13:m7 |
def group_members(self, group_id, include_orphans=False): | params = {'<STR_LIT>': str(include_orphans).lower()}<EOL>url = self._service_url(['<STR_LIT>', '<STR_LIT>', group_id, '<STR_LIT>'], params=params)<EOL>return Trigger.list_to_object_list(self._get(url))<EOL> | Find all group member trigger definitions
:param group_id: group trigger id
:param include_orphans: If True, include orphan members
:return: list of asociated group members as trigger objects | f2803:c13:m8 |
def update_group(self, group_id, trigger): | data = self._serialize_object(trigger)<EOL>self._put(self._service_url(['<STR_LIT>', '<STR_LIT>', group_id]), data, parse_json=False)<EOL> | Update an existing group trigger definition and its member definitions.
:param group_id: Group trigger id to be updated
:param trigger: Trigger object, the group trigger to be updated | f2803:c13:m9 |
def delete_group(self, group_id, keep_non_orphans=False, keep_orphans=False): | params = {'<STR_LIT>': str(keep_non_orphans).lower(), '<STR_LIT>': str(keep_orphans).lower()}<EOL>self._delete(self._service_url(['<STR_LIT>', '<STR_LIT>', group_id], params=params))<EOL> | Delete a group trigger
:param group_id: ID of the group trigger to delete
:param keep_non_orphans: if True converts the non-orphan member triggers to standard triggers
:param keep_orphans: if True converts the orphan member triggers to standard triggers | f2803:c13:m10 |
def create_group_member(self, member): | data = self._serialize_object(member)<EOL>return Trigger(self._post(self._service_url(['<STR_LIT>', '<STR_LIT>', '<STR_LIT>']), data))<EOL> | Create a new member trigger for a parent trigger.
:param member: Group member trigger to be created
:type member: GroupMemberInfo
:return: A member Trigger object | f2803:c13:m11 |
def set_group_conditions(self, group_id, conditions, trigger_mode=None): | data = self._serialize_object(conditions)<EOL>if trigger_mode is not None:<EOL><INDENT>url = self._service_url(['<STR_LIT>', '<STR_LIT>', group_id, '<STR_LIT>', trigger_mode])<EOL><DEDENT>else:<EOL><INDENT>url = self._service_url(['<STR_LIT>', '<STR_LIT>', group_id, '<STR_LIT>'])<EOL><DEDENT>response = self._put(url, data)<EOL>return Condition.list_to_object_list(response)<EOL> | Set the group conditions.
This replaces any existing conditions on the group and member conditions for all trigger modes.
:param group_id: Group to be updated
:param conditions: New conditions to replace old ones
:param trigger_mode: Optional TriggerMode used
:type conditions: GroupConditionsInfo
:type trigger_mode: TriggerMode
:return: The new Group conditions | f2803:c13:m12 |
def set_conditions(self, trigger_id, conditions, trigger_mode=None): | data = self._serialize_object(conditions)<EOL>if trigger_mode is not None:<EOL><INDENT>url = self._service_url(['<STR_LIT>', trigger_id, '<STR_LIT>', trigger_mode])<EOL><DEDENT>else:<EOL><INDENT>url = self._service_url(['<STR_LIT>', trigger_id, '<STR_LIT>'])<EOL><DEDENT>response = self._put(url, data)<EOL>return Condition.list_to_object_list(response)<EOL> | Set the conditions for the trigger.
This sets the conditions for all trigger modes, replacing existing conditions for all trigger modes.
:param trigger_id: The relevant Trigger definition id
:param trigger_mode: Optional Trigger mode
:param conditions: Collection of Conditions to set.
:type trigger_mode: TriggerMode
:type conditions: List of Condition
:return: The new conditions. | f2803:c13:m13 |
def conditions(self, trigger_id): | response = self._get(self._service_url(['<STR_LIT>', trigger_id, '<STR_LIT>']))<EOL>return Condition.list_to_object_list(response)<EOL> | Get all conditions for a specific trigger.
:param trigger_id: Trigger definition id to be retrieved
:return: list of condition objects | f2803:c13:m14 |
def dampenings(self, trigger_id, trigger_mode=None): | if trigger_mode is not None:<EOL><INDENT>url = self._service_url(['<STR_LIT>', trigger_id, '<STR_LIT>', '<STR_LIT>', trigger_mode])<EOL><DEDENT>else:<EOL><INDENT>url = self._service_url(['<STR_LIT>', trigger_id, '<STR_LIT>'])<EOL><DEDENT>data = self._get(url)<EOL>return Dampening.list_to_object_list(data)<EOL> | Get all Dampenings for a Trigger (1 Dampening per mode).
:param trigger_id: Trigger definition id to be retrieved.
:param trigger_mode: Optional TriggerMode which is only fetched
:type trigger_mode: TriggerMode
:return: List of Dampening objects | f2803:c13:m15 |
def create_dampening(self, trigger_id, dampening): | data = self._serialize_object(dampening)<EOL>url = self._service_url(['<STR_LIT>', trigger_id, '<STR_LIT>'])<EOL>return Dampening(self._post(url, data))<EOL> | Create a new dampening.
:param trigger_id: TriggerId definition attached to the dampening
:param dampening: Dampening definition to be created.
:type dampening: Dampening
:return: Created dampening | f2803:c13:m16 |
def delete_dampening(self, trigger_id, dampening_id): | self._delete(self._service_url(['<STR_LIT>', trigger_id, '<STR_LIT>', dampening_id]))<EOL> | Delete an existing dampening definition.
:param trigger_id: Trigger definition id for deletion.
:param dampening_id: Dampening definition id to be deleted. | f2803:c13:m17 |
def update_dampening(self, trigger_id, dampening_id): | data = self._serialize_object(dampening)<EOL>url = self._service_url(['<STR_LIT>', trigger_id, '<STR_LIT>', dampening_id])<EOL>return Dampening(self._put(url, data))<EOL> | Update an existing dampening definition.
Note that the trigger mode can not be changed using this method.
:param trigger_id: Trigger definition id targeted for update.
:param dampening_id: Dampening definition id to be updated.
:return: Updated Dampening | f2803:c13:m18 |
def create_group_dampening(self, group_id, dampening): | data = self._serialize_object(dampening)<EOL>url = self._service_url(['<STR_LIT>', '<STR_LIT>', group_id, '<STR_LIT>'])<EOL>return Dampening(self._post(url, data))<EOL> | Create a new group dampening
:param group_id: Group Trigger id attached to dampening
:param dampening: Dampening definition to be created.
:type dampening: Dampening
:return: Group Dampening created | f2803:c13:m19 |
def update_group_dampening(self, group_id, dampening_id, dampening): | data = self._serialize_object(dampening)<EOL>url = self._service_url(['<STR_LIT>', '<STR_LIT>', group_id, '<STR_LIT>', dampening_id])<EOL>return Dampening(self._put(url, data))<EOL> | Update an existing group dampening
:param group_id: Group Trigger id attached to dampening
:param dampening_id: id of the dampening to be updated
:return: Group Dampening created | f2803:c13:m20 |
def delete_group_dampening(self, group_id, dampening_id): | self._delete(self._service_url(['<STR_LIT>', '<STR_LIT>', group_id, '<STR_LIT>', dampening_id]))<EOL> | Delete an existing group dampening
:param group_id: Group Trigger id to be retrieved
:param dampening_id: id of the Dampening to be deleted | f2803:c13:m21 |
def set_group_member_orphan(self, member_id): | self._put(self._service_url(['<STR_LIT>', '<STR_LIT>', '<STR_LIT>', member_id, '<STR_LIT>']), data=None, parse_json=False)<EOL> | Make a non-orphan member trigger into an orphan.
:param member_id: Member Trigger id to be made an orphan. | f2803:c13:m22 |
def set_group_member_unorphan(self, member_id, unorphan_info): | data = self._serialize_object(unorphan_info)<EOL>data = self._service_url(['<STR_LIT>', '<STR_LIT>', '<STR_LIT>', member_id, '<STR_LIT>'])<EOL>return Trigger(self._put(url, data))<EOL> | Make an orphan member trigger into an group trigger.
:param member_id: Orphan Member Trigger id to be assigned into a group trigger
:param unorphan_info: Only context and dataIdMap are used when changing back to a non-orphan.
:type unorphan_info: UnorphanMemberInfo
:return: Trigger for the group | f2803:c13:m23 |
def enable(self, trigger_ids=[]): | trigger_ids = '<STR_LIT:U+002C>'.join(trigger_ids)<EOL>url = self._service_url(['<STR_LIT>', '<STR_LIT>'], params={'<STR_LIT>': trigger_ids, '<STR_LIT>': '<STR_LIT:true>'})<EOL>self._put(url, data=None, parse_json=False)<EOL> | Enable triggers.
:param trigger_ids: List of trigger definition ids to enable | f2803:c13:m24 |
def disable(self, trigger_ids=[]): | trigger_ids = '<STR_LIT:U+002C>'.join(trigger_ids)<EOL>url = self._service_url(['<STR_LIT>', '<STR_LIT>'], params={'<STR_LIT>': trigger_ids, '<STR_LIT>': '<STR_LIT:false>'})<EOL>self._put(url, data=None, parse_json=False)<EOL> | Disable triggers.
:param trigger_ids: List of trigger definition ids to disable | f2803:c13:m25 |
def enable_group(self, trigger_ids=[]): | trigger_ids = '<STR_LIT:U+002C>'.join(trigger_ids)<EOL>url = self._service_url(['<STR_LIT>', '<STR_LIT>', '<STR_LIT>'], params={'<STR_LIT>': trigger_ids, '<STR_LIT>': '<STR_LIT:true>'})<EOL>self._put(url, data=None, parse_json=False)<EOL> | Enable group triggers.
:param trigger_ids: List of group trigger definition ids to enable | f2803:c13:m26 |
def disable_group(self, trigger_ids=[]): | trigger_ids = '<STR_LIT:U+002C>'.join(trigger_ids)<EOL>url = self._service_url(['<STR_LIT>', '<STR_LIT>', '<STR_LIT>'], params={'<STR_LIT>': trigger_ids, '<STR_LIT>': '<STR_LIT:false>'})<EOL>self._put(url, data=None, parse_json=False)<EOL> | Disable group triggers.
:param trigger_ids: List of group trigger definition ids to disable | f2803:c13:m27 |
def isup(self): | return self.status == '<STR_LIT>'<EOL> | Returns if the alerting service is ready to accept requests.
:return: bool True if available | f2804:c0:m0 |
def isdistributed(self): | return self.distributed == '<STR_LIT:true>'<EOL> | Is the Alerting Service running in distributed mode or standalone.
:return: bool True if distributed | f2804:c0:m1 |
def __init__(self, **opts): | prop_defaults = {<EOL>"<STR_LIT>": '<STR_LIT>',<EOL>"<STR_LIT:host>": '<STR_LIT:localhost>',<EOL>"<STR_LIT:port>": <NUM_LIT>,<EOL>"<STR_LIT>": '<STR_LIT:http>',<EOL>"<STR_LIT:path>": None,<EOL>"<STR_LIT>": None,<EOL>"<STR_LIT>": None,<EOL>"<STR_LIT>": None,<EOL>"<STR_LIT:username>": None,<EOL>"<STR_LIT:password>": None,<EOL>"<STR_LIT>": None,<EOL>}<EOL>for (prop, default) in prop_defaults.items():<EOL><INDENT>setattr(self, prop, opts.get(prop, default))<EOL><DEDENT>super(HawkularAlertsClient, self)._setup_path()<EOL>self.triggers = AlertsTriggerClient(self)<EOL> | Available parameters:
tenant_id,
host='localhost',
port=8080,
path=None,
scheme='http',
cafile=None,
context=None,
token=None,
username=None,
password=None,
auto_set_legacy_api=True,
authtoken=None | f2804:c1:m0 |
def status(self): | orig_dict = self._get(self._service_url('<STR_LIT:status>'))<EOL>orig_dict['<STR_LIT>'] = orig_dict.pop('<STR_LIT>')<EOL>orig_dict['<STR_LIT>'] = orig_dict.pop('<STR_LIT>')<EOL>return Status(orig_dict)<EOL> | Get the status of Alerting Service
:return: Status object | f2804:c1:m1 |
@utils.memoize<EOL>def get(tickers, provider=None, common_dates=True, forward_fill=False,<EOL>clean_tickers=True, column_names=None, ticker_field_sep='<STR_LIT::>',<EOL>mrefresh=False, existing=None, **kwargs): | if provider is None:<EOL><INDENT>provider = DEFAULT_PROVIDER<EOL><DEDENT>tickers = utils.parse_arg(tickers)<EOL>data = {}<EOL>for ticker in tickers:<EOL><INDENT>t = ticker<EOL>f = None<EOL>bits = ticker.split(ticker_field_sep, <NUM_LIT:1>)<EOL>if len(bits) == <NUM_LIT:2>:<EOL><INDENT>t = bits[<NUM_LIT:0>]<EOL>f = bits[<NUM_LIT:1>]<EOL><DEDENT>if hasattr(provider, '<STR_LIT>'):<EOL><INDENT>data[ticker] = provider(ticker=t, field=f,<EOL>mrefresh=mrefresh, **kwargs)<EOL><DEDENT>else:<EOL><INDENT>data[ticker] = provider(ticker=t, field=f, **kwargs)<EOL><DEDENT><DEDENT>df = pd.DataFrame(data)<EOL>df = df[tickers]<EOL>if existing is not None:<EOL><INDENT>df = ffn.merge(existing, df)<EOL><DEDENT>if common_dates:<EOL><INDENT>df = df.dropna()<EOL><DEDENT>if forward_fill:<EOL><INDENT>df = df.fillna(method='<STR_LIT>')<EOL><DEDENT>if column_names:<EOL><INDENT>cnames = utils.parse_arg(column_names)<EOL>if len(cnames) != len(df.columns):<EOL><INDENT>raise ValueError(<EOL>'<STR_LIT>')<EOL><DEDENT>df.columns = cnames<EOL><DEDENT>elif clean_tickers:<EOL><INDENT>df.columns = map(utils.clean_ticker, df.columns)<EOL><DEDENT>return df<EOL> | Helper function for retrieving data as a DataFrame.
Args:
* tickers (list, string, csv string): Tickers to download.
* provider (function): Provider to use for downloading data.
By default it will be ffn.DEFAULT_PROVIDER if not provided.
* common_dates (bool): Keep common dates only? Drop na's.
* forward_fill (bool): forward fill values if missing. Only works
if common_dates is False, since common_dates will remove
all nan's, so no filling forward necessary.
* clean_tickers (bool): Should the tickers be 'cleaned' using
ffn.utils.clean_tickers? Basically remove non-standard
characters (^VIX -> vix) and standardize to lower case.
* column_names (list): List of column names if clean_tickers
is not satisfactory.
* ticker_field_sep (char): separator used to determine the
ticker and field. This is in case we want to specify
particular, non-default fields. For example, we might
want: AAPL:Low,AAPL:High,AAPL:Close. ':' is the separator.
* mrefresh (bool): Ignore memoization.
* existing (DataFrame): Existing DataFrame to append returns
to - used when we download from multiple sources
* kwargs: passed to provider | f2808:m0 |
@utils.memoize<EOL>def web(ticker, field=None, start=None, end=None,<EOL>mrefresh=False, source='<STR_LIT>'): | if source == '<STR_LIT>' and field is None:<EOL><INDENT>field = '<STR_LIT>'<EOL><DEDENT>tmp = _download_web(ticker, data_source=source,<EOL>start=start, end=end)<EOL>if tmp is None:<EOL><INDENT>raise ValueError('<STR_LIT>' % (ticker, field))<EOL><DEDENT>if field:<EOL><INDENT>return tmp[field]<EOL><DEDENT>else:<EOL><INDENT>return tmp<EOL><DEDENT> | Data provider wrapper around pandas.io.data provider. Provides
memoization. | f2808:m1 |
@utils.memoize<EOL>def _download_web(name, **kwargs): | return pdata.DataReader(name, **kwargs)<EOL> | Thin wrapper to enable memoization | f2808:m2 |
@utils.memoize<EOL>def csv(ticker, path='<STR_LIT>', field='<STR_LIT>', mrefresh=False, **kwargs): | <EOL>if '<STR_LIT>' not in kwargs:<EOL><INDENT>kwargs['<STR_LIT>'] = <NUM_LIT:0><EOL><DEDENT>if '<STR_LIT>' not in kwargs:<EOL><INDENT>kwargs['<STR_LIT>'] = True<EOL><DEDENT>df = pd.read_csv(path, **kwargs)<EOL>tf = ticker<EOL>if field is not '<STR_LIT>' and field is not None:<EOL><INDENT>tf = '<STR_LIT>' % (tf, field)<EOL><DEDENT>if tf not in df:<EOL><INDENT>raise ValueError('<STR_LIT>')<EOL><DEDENT>return df[tf]<EOL> | Data provider wrapper around pandas' read_csv. Provides memoization. | f2808:m4 |
def to_returns(prices): | return prices / prices.shift(<NUM_LIT:1>) - <NUM_LIT:1><EOL> | Calculates the simple arithmetic returns of a price series.
Formula is: (t1 / t0) - 1
Args:
* prices: Expects a price series | f2810:m0 |
def to_log_returns(prices): | return np.log(prices / prices.shift(<NUM_LIT:1>))<EOL> | Calculates the log returns of a price series.
Formula is: ln(p1/p0)
Args:
* prices: Expects a price series | f2810:m1 |
def to_price_index(returns, start=<NUM_LIT:100>): | return (returns.replace(to_replace=np.nan, value=<NUM_LIT:0>) + <NUM_LIT:1>).cumprod() * start<EOL> | Returns a price index given a series of returns.
Args:
* returns: Expects a return series
* start (number): Starting level
Assumes arithmetic returns.
Formula is: cumprod (1+r) | f2810:m2 |
def rebase(prices, value=<NUM_LIT:100>): | return prices / prices.iloc[<NUM_LIT:0>] * value<EOL> | Rebase all series to a given intial value.
This makes comparing/plotting different series
together easier.
Args:
* prices: Expects a price series
* value (number): starting value for all series. | f2810:m3 |
def calc_perf_stats(prices): | return PerformanceStats(prices)<EOL> | Calculates the performance statistics given an object.
The object should be a Series of prices.
A PerformanceStats object will be returned containing all the stats.
Args:
* prices (Series): Series of prices | f2810:m4 |
def calc_stats(prices): | if isinstance(prices, pd.Series):<EOL><INDENT>return PerformanceStats(prices)<EOL><DEDENT>elif isinstance(prices, pd.DataFrame):<EOL><INDENT>return GroupStats(*[prices[x] for x in prices.columns])<EOL><DEDENT>else:<EOL><INDENT>raise NotImplementedError('<STR_LIT>')<EOL><DEDENT> | Calculates performance stats of a given object.
If object is Series, a PerformanceStats object is
returned. If object is DataFrame, a GroupStats object
is returned.
Args:
* prices (Series, DataFrame): Set of prices | f2810:m5 |
def to_drawdown_series(prices): | <EOL>drawdown = prices.copy()<EOL>drawdown = drawdown.fillna(method='<STR_LIT>')<EOL>drawdown[np.isnan(drawdown)] = -np.Inf<EOL>roll_max = np.maximum.accumulate(drawdown)<EOL>drawdown = drawdown / roll_max - <NUM_LIT:1.><EOL>return drawdown<EOL> | Calculates the `drawdown <https://www.investopedia.com/terms/d/drawdown.asp>`_ series.
This returns a series representing a drawdown.
When the price is at all time highs, the drawdown
is 0. However, when prices are below high water marks,
the drawdown series = current / hwm - 1
The max drawdown can be obtained by simply calling .min()
on the result (since the drawdown series is negative)
Method ignores all gaps of NaN's in the price series.
Args:
* prices (Series or DataFrame): Series of prices. | f2810:m6 |
def calc_max_drawdown(prices): | return (prices / prices.expanding(min_periods=<NUM_LIT:1>).max()).min() - <NUM_LIT:1><EOL> | Calculates the max drawdown of a price series. If you want the
actual drawdown series, please use to_drawdown_series. | f2810:m7 |
def drawdown_details(drawdown, index_type=pd.DatetimeIndex): | is_zero = drawdown == <NUM_LIT:0><EOL>start = ~is_zero & is_zero.shift(<NUM_LIT:1>)<EOL>start = list(start[start == True].index) <EOL>end = is_zero & (~is_zero).shift(<NUM_LIT:1>)<EOL>end = list(end[end == True].index) <EOL>if len(start) is <NUM_LIT:0>:<EOL><INDENT>return None<EOL><DEDENT>if len(end) is <NUM_LIT:0>:<EOL><INDENT>end.append(drawdown.index[-<NUM_LIT:1>])<EOL><DEDENT>if start[<NUM_LIT:0>] > end[<NUM_LIT:0>]:<EOL><INDENT>start.insert(<NUM_LIT:0>, drawdown.index[<NUM_LIT:0>])<EOL><DEDENT>if start[-<NUM_LIT:1>] > end[-<NUM_LIT:1>]:<EOL><INDENT>end.append(drawdown.index[-<NUM_LIT:1>])<EOL><DEDENT>result = pd.DataFrame(<EOL>columns=('<STR_LIT>', '<STR_LIT>', '<STR_LIT>', '<STR_LIT>'),<EOL>index=range(<NUM_LIT:0>, len(start))<EOL>)<EOL>for i in range(<NUM_LIT:0>, len(start)):<EOL><INDENT>dd = drawdown[start[i]:end[i]].min()<EOL>if index_type is pd.DatetimeIndex:<EOL><INDENT>result.iloc[i] = (start[i], end[i], (end[i] - start[i]).days, dd)<EOL><DEDENT>else:<EOL><INDENT>result.iloc[i] = (start[i], end[i], (end[i] - start[i]), dd)<EOL><DEDENT><DEDENT>return result<EOL> | Returns a data frame with start, end, days (duration) and
drawdown for each drawdown in a drawdown series.
.. note::
days are actual calendar days, not trading days
Args:
* drawdown (pandas.Series): A drawdown Series
(can be obtained w/ drawdown(prices).
Returns:
* pandas.DataFrame -- A data frame with the following
columns: start, end, days, drawdown. | f2810:m8 |
def calc_cagr(prices): | start = prices.index[<NUM_LIT:0>]<EOL>end = prices.index[-<NUM_LIT:1>]<EOL>return (prices.iloc[-<NUM_LIT:1>] / prices.iloc[<NUM_LIT:0>]) ** (<NUM_LIT:1> / year_frac(start, end)) - <NUM_LIT:1><EOL> | Calculates the `CAGR (compound annual growth rate) <https://www.investopedia.com/terms/c/cagr.asp>`_ for a given price series.
Args:
* prices (pandas.Series): A Series of prices.
Returns:
* float -- cagr. | f2810:m9 |
def calc_risk_return_ratio(returns): | return calc_sharpe(returns)<EOL> | Calculates the return / risk ratio. Basically the
`Sharpe ratio <https://www.investopedia.com/terms/s/sharperatio.asp>`_ without factoring in the `risk-free rate <https://www.investopedia.com/terms/r/risk-freerate.asp>`_. | f2810:m10 |
def calc_sharpe(returns, rf=<NUM_LIT:0.>, nperiods=None, annualize=True): | if type(rf) is float and rf != <NUM_LIT:0> and nperiods is None:<EOL><INDENT>raise Exception('<STR_LIT>')<EOL><DEDENT>er = returns.to_excess_returns(rf, nperiods=nperiods)<EOL>std = np.std(returns, ddof=<NUM_LIT:1>)<EOL>res = np.divide(er.mean(), std)<EOL>if annualize:<EOL><INDENT>if nperiods is None:<EOL><INDENT>nperiods = <NUM_LIT:1><EOL><DEDENT>return res * np.sqrt(nperiods)<EOL><DEDENT>else:<EOL><INDENT>return res<EOL><DEDENT> | Calculates the `Sharpe ratio <https://www.investopedia.com/terms/s/sharperatio.asp>`_ (see `Sharpe vs. Sortino <https://www.investopedia.com/ask/answers/010815/what-difference-between-sharpe-ratio-and-sortino-ratio.asp>`_).
If rf is non-zero and a float, you must specify nperiods. In this case, rf is assumed
to be expressed in yearly (annualized) terms.
Args:
* returns (Series, DataFrame): Input return series
* rf (float, Series): `Risk-free rate <https://www.investopedia.com/terms/r/risk-freerate.asp>`_ expressed as a yearly (annualized) return or return series
* nperiods (int): Frequency of returns (252 for daily, 12 for monthly,
etc.) | f2810:m11 |
def calc_information_ratio(returns, benchmark_returns): | diff_rets = returns - benchmark_returns<EOL>diff_std = np.std(diff_rets, ddof=<NUM_LIT:1>)<EOL>if np.isnan(diff_std) or diff_std == <NUM_LIT:0>:<EOL><INDENT>return <NUM_LIT:0.0><EOL><DEDENT>return np.divide(diff_rets.mean(), diff_std)<EOL> | Calculates the `Information ratio <https://www.investopedia.com/terms/i/informationratio.asp>`_ (or `from Wikipedia <http://en.wikipedia.org/wiki/Information_ratio>`_). | f2810:m12 |
def calc_prob_mom(returns, other_returns): | return t.cdf(returns.calc_information_ratio(other_returns),<EOL>len(returns) - <NUM_LIT:1>)<EOL> | `Probabilistic momentum <http://cssanalytics.wordpress.com/2014/01/28/are-simple-momentum-strategies-too-dumb-introducing-probabilistic-momentum/>`_ (see `momentum investing <https://www.investopedia.com/terms/m/momentum_investing.asp>`_)
Basically the "probability or confidence that one asset
is going to outperform the other".
Source:
http://cssanalytics.wordpress.com/2014/01/28/are-simple-momentum-strategies-too-dumb-introducing-probabilistic-momentum/ # NOQA | f2810:m13 |
def calc_total_return(prices): | return (prices.iloc[-<NUM_LIT:1>] / prices.iloc[<NUM_LIT:0>]) - <NUM_LIT:1><EOL> | Calculates the total return of a series.
last / first - 1 | f2810:m14 |
def year_frac(start, end): | if start > end:<EOL><INDENT>raise ValueError('<STR_LIT>')<EOL><DEDENT>return (end - start).total_seconds() / (<NUM_LIT>)<EOL> | Similar to excel's yearfrac function. Returns
a year fraction between two dates (i.e. 1.53 years).
Approximation using the average number of seconds
in a year.
Args:
* start (datetime): start date
* end (datetime): end date | f2810:m15 |
def merge(*series): | dfs = []<EOL>for s in series:<EOL><INDENT>if isinstance(s, pd.DataFrame):<EOL><INDENT>dfs.append(s)<EOL><DEDENT>elif isinstance(s, pd.Series):<EOL><INDENT>tmpdf = pd.DataFrame({s.name: s})<EOL>dfs.append(tmpdf)<EOL><DEDENT>else:<EOL><INDENT>raise NotImplementedError('<STR_LIT>')<EOL><DEDENT><DEDENT>return pd.concat(dfs, axis=<NUM_LIT:1>)<EOL> | Merge Series and/or DataFrames together.
Returns a DataFrame. | f2810:m16 |
def drop_duplicate_cols(df): | names = set(df.columns)<EOL>for n in names:<EOL><INDENT>if len(df[n].shape) > <NUM_LIT:1>:<EOL><INDENT>sub = df[n]<EOL>sub.columns = ['<STR_LIT>' % (n, x) for x in range(sub.shape[<NUM_LIT:1>])]<EOL>keep = sub.count().idxmax()<EOL>del df[n]<EOL>df[n] = sub[keep]<EOL><DEDENT><DEDENT>return df<EOL> | Removes duplicate columns from a dataframe
and keeps column w/ longest history | f2810:m17 |
def to_monthly(series, method='<STR_LIT>', how='<STR_LIT:end>'): | return series.asfreq_actual('<STR_LIT:M>', method=method, how=how)<EOL> | Convenience method that wraps asfreq_actual
with 'M' param (method='ffill', how='end'). | f2810:m18 |
def asfreq_actual(series, freq, method='<STR_LIT>', how='<STR_LIT:end>', normalize=False): | orig = series<EOL>is_series = False<EOL>if isinstance(series, pd.Series):<EOL><INDENT>is_series = True<EOL>name = series.name if series.name else '<STR_LIT:data>'<EOL>orig = pd.DataFrame({name: series})<EOL><DEDENT>t = pd.concat([orig, pd.DataFrame({'<STR_LIT>': orig.index.values},<EOL>index=orig.index.values)], axis=<NUM_LIT:1>)<EOL>dts = t.asfreq(freq=freq, method=method, how=how,<EOL>normalize=normalize)['<STR_LIT>']<EOL>res = orig.loc[dts.values]<EOL>if is_series:<EOL><INDENT>return res[name]<EOL><DEDENT>else:<EOL><INDENT>return res<EOL><DEDENT> | Similar to pandas' asfreq but keeps the actual dates.
For example, if last data point in Jan is on the 29th,
that date will be used instead of the 31st. | f2810:m19 |
def calc_inv_vol_weights(returns): | <EOL>vol = np.divide(<NUM_LIT:1.>, np.std(returns, ddof=<NUM_LIT:1>))<EOL>vol[np.isinf(vol)] = np.NaN<EOL>volsum = vol.sum()<EOL>return np.divide(vol, volsum)<EOL> | Calculates weights proportional to inverse volatility of each column.
Returns weights that are inversely proportional to the column's
volatility resulting in a set of portfolio weights where each position
has the same level of volatility.
Note, that assets with returns all equal to NaN or 0 are excluded from
the portfolio (their weight is set to NaN).
Returns:
Series {col_name: weight} | f2810:m20 |
def calc_mean_var_weights(returns, weight_bounds=(<NUM_LIT:0.>, <NUM_LIT:1.>),<EOL>rf=<NUM_LIT:0.>,<EOL>covar_method='<STR_LIT>',<EOL>options=None): | def fitness(weights, exp_rets, covar, rf):<EOL><INDENT>mean = sum(exp_rets * weights)<EOL>var = np.dot(np.dot(weights, covar), weights)<EOL>util = (mean - rf) / np.sqrt(var)<EOL>return -util<EOL><DEDENT>n = len(returns.columns)<EOL>exp_rets = returns.mean()<EOL>if covar_method == '<STR_LIT>':<EOL><INDENT>covar = sklearn.covariance.ledoit_wolf(returns)[<NUM_LIT:0>]<EOL><DEDENT>elif covar_method == '<STR_LIT>':<EOL><INDENT>covar = returns.cov()<EOL><DEDENT>else:<EOL><INDENT>raise NotImplementedError('<STR_LIT>')<EOL><DEDENT>weights = np.ones([n]) / n<EOL>bounds = [weight_bounds for i in range(n)]<EOL>constraints = ({'<STR_LIT:type>': '<STR_LIT>', '<STR_LIT>': lambda W: sum(W) - <NUM_LIT:1.>})<EOL>optimized = minimize(fitness, weights, (exp_rets, covar, rf),<EOL>method='<STR_LIT>', constraints=constraints,<EOL>bounds=bounds, options=options)<EOL>if not optimized.success:<EOL><INDENT>raise Exception(optimized.message)<EOL><DEDENT>return pd.Series({returns.columns[i]: optimized.x[i] for i in range(n)})<EOL> | Calculates the mean-variance weights given a DataFrame of returns.
Args:
* returns (DataFrame): Returns for multiple securities.
* weight_bounds ((low, high)): Weigh limits for optimization.
* rf (float): `Risk-free rate <https://www.investopedia.com/terms/r/risk-freerate.asp>`_ used in utility calculation
* covar_method (str): Covariance matrix estimation method.
Currently supported:
- `ledoit-wolf <http://www.ledoit.net/honey.pdf>`_
- standard
* options (dict): options for minimizing, e.g. {'maxiter': 10000 }
Returns:
Series {col_name: weight} | f2810:m21 |
def _erc_weights_slsqp(<EOL>x0,<EOL>cov,<EOL>b,<EOL>maximum_iterations,<EOL>tolerance<EOL>): | def fitness(weights, covar):<EOL><INDENT>trc = weights * np.matmul(covar, weights)<EOL>n = len(trc)<EOL>sse = <NUM_LIT:0.><EOL>for i in range(n):<EOL><INDENT>for j in range(n):<EOL><INDENT>sse += np.abs(trc[i] - trc[j])<EOL><DEDENT><DEDENT>return sse<EOL><DEDENT>bounds = [(<NUM_LIT:0>,None) for i in range(len(x0))]<EOL>constraints = (<EOL>{<EOL>'<STR_LIT:type>': '<STR_LIT>',<EOL>'<STR_LIT>': lambda W: sum(W) - <NUM_LIT:1.><EOL>}<EOL>)<EOL>options = {<EOL>'<STR_LIT>':maximum_iterations<EOL>}<EOL>optimized = minimize(<EOL>fitness,<EOL>x0,<EOL>(cov),<EOL>method='<STR_LIT>',<EOL>constraints=constraints,<EOL>bounds=bounds,<EOL>options=options,<EOL>tol=tolerance<EOL>)<EOL>if not optimized.success:<EOL><INDENT>raise Exception(optimized.message)<EOL><DEDENT>return optimized.x<EOL> | Calculates the equal risk contribution / risk parity weights given
a DataFrame of returns.
Args:
* x0 (np.array): Starting asset weights.
* cov (np.array): covariance matrix.
* b (np.array): Risk target weights. By definition target total risk contributions are all equal which makes this redundant.
* maximum_iterations (int): Maximum iterations in iterative solutions.
* tolerance (float): Tolerance level in iterative solutions.
Returns:
np.array {weight}
You can read more about ERC at
http://thierry-roncalli.com/download/erc.pdf | f2810:m22 |
def _erc_weights_ccd(x0,<EOL>cov,<EOL>b,<EOL>maximum_iterations,<EOL>tolerance): | n = len(x0)<EOL>x = x0.copy()<EOL>var = np.diagonal(cov)<EOL>ctr = cov.dot(x)<EOL>sigma_x = np.sqrt(x.T.dot(ctr))<EOL>for iteration in range(maximum_iterations):<EOL><INDENT>for i in range(n):<EOL><INDENT>alpha = var[i]<EOL>beta = ctr[i] - x[i] * alpha<EOL>gamma = -b[i] * sigma_x<EOL>x_tilde = (-beta + np.sqrt(<EOL>beta * beta - <NUM_LIT:4> * alpha * gamma)) / (<NUM_LIT:2> * alpha)<EOL>x_i = x[i]<EOL>ctr = ctr - cov[i] * x_i + cov[i] * x_tilde<EOL>sigma_x = sigma_x * sigma_x - <NUM_LIT:2> * x_i * cov[i].dot(<EOL>x) + x_i * x_i * var[i]<EOL>x[i] = x_tilde<EOL>sigma_x = np.sqrt(sigma_x + <NUM_LIT:2> * x_tilde * cov[i].dot(<EOL>x) - x_tilde * x_tilde * var[i])<EOL><DEDENT>if np.power((x - x0) / x.sum(), <NUM_LIT:2>).sum() < tolerance:<EOL><INDENT>return x / x.sum()<EOL><DEDENT>x0 = x.copy()<EOL><DEDENT>raise ValueError('<STR_LIT>'.format(<EOL>maximum_iterations))<EOL> | Calculates the equal risk contribution / risk parity weights given
a DataFrame of returns.
Args:
* x0 (np.array): Starting asset weights.
* cov (np.array): covariance matrix.
* b (np.array): Risk target weights.
* maximum_iterations (int): Maximum iterations in iterative solutions.
* tolerance (float): Tolerance level in iterative solutions.
Returns:
np.array {weight}
Reference:
Griveau-Billion, Theophile and Richard, Jean-Charles and Roncalli,
Thierry, A Fast Algorithm for Computing High-Dimensional Risk Parity
Portfolios (2013).
Available at SSRN: https://ssrn.com/abstract=2325255 | f2810:m23 |
def calc_erc_weights(returns,<EOL>initial_weights=None,<EOL>risk_weights=None,<EOL>covar_method='<STR_LIT>',<EOL>risk_parity_method='<STR_LIT>',<EOL>maximum_iterations=<NUM_LIT:100>,<EOL>tolerance=<NUM_LIT>): | n = len(returns.columns)<EOL>if covar_method == '<STR_LIT>':<EOL><INDENT>covar = sklearn.covariance.ledoit_wolf(returns)[<NUM_LIT:0>]<EOL><DEDENT>elif covar_method == '<STR_LIT>':<EOL><INDENT>covar = returns.cov().values<EOL><DEDENT>else:<EOL><INDENT>raise NotImplementedError('<STR_LIT>')<EOL><DEDENT>if initial_weights is None:<EOL><INDENT>inv_vol = <NUM_LIT:1.> / np.sqrt(np.diagonal(covar))<EOL>initial_weights = inv_vol / inv_vol.sum()<EOL><DEDENT>if risk_weights is None:<EOL><INDENT>risk_weights = np.ones(n) / n<EOL><DEDENT>if risk_parity_method == '<STR_LIT>':<EOL><INDENT>erc_weights = _erc_weights_ccd(<EOL>initial_weights,<EOL>covar,<EOL>risk_weights,<EOL>maximum_iterations,<EOL>tolerance<EOL>)<EOL><DEDENT>elif risk_parity_method == '<STR_LIT>':<EOL><INDENT>erc_weights = _erc_weights_slsqp(<EOL>initial_weights,<EOL>covar,<EOL>risk_weights,<EOL>maximum_iterations,<EOL>tolerance<EOL>)<EOL><DEDENT>else:<EOL><INDENT>raise NotImplementedError('<STR_LIT>')<EOL><DEDENT>return pd.Series(erc_weights, index=returns.columns, name='<STR_LIT>')<EOL> | Calculates the equal risk contribution / risk parity weights given a
DataFrame of returns.
Args:
* returns (DataFrame): Returns for multiple securities.
* initial_weights (list): Starting asset weights [default inverse vol].
* risk_weights (list): Risk target weights [default equal weight].
* covar_method (str): Covariance matrix estimation method.
Currently supported:
- `ledoit-wolf <http://www.ledoit.net/honey.pdf>`_ [default]
- standard
* risk_parity_method (str): Risk parity estimation method.
Currently supported:
- ccd (cyclical coordinate descent)[default]
* maximum_iterations (int): Maximum iterations in iterative solutions.
* tolerance (float): Tolerance level in iterative solutions.
Returns:
Series {col_name: weight} | f2810:m24 |
def get_num_days_required(offset, period='<STR_LIT:d>', perc_required=<NUM_LIT>): | x = pd.to_datetime('<STR_LIT>')<EOL>delta = x - (x - offset)<EOL>days = delta.days * <NUM_LIT><EOL>if period == '<STR_LIT:d>':<EOL><INDENT>req = days * perc_required<EOL><DEDENT>elif period == '<STR_LIT:m>':<EOL><INDENT>req = (days / <NUM_LIT:20>) * perc_required<EOL><DEDENT>elif period == '<STR_LIT:y>':<EOL><INDENT>req = (days / <NUM_LIT>) * perc_required<EOL><DEDENT>else:<EOL><INDENT>raise NotImplementedError(<EOL>'<STR_LIT>')<EOL><DEDENT>return req<EOL> | Estimates the number of days required to assume that data is OK.
Helper function used to determine if there are enough "good" data
days over a given period.
Args:
* offset (DateOffset): Offset (lookback) period.
* period (str): Period string.
* perc_required (float): percentage of number of days
expected required. | f2810:m25 |
def calc_clusters(returns, n=None, plot=False): | <EOL>corr = returns.corr()<EOL>diss = <NUM_LIT:1> - corr<EOL>mds = sklearn.manifold.MDS(dissimilarity='<STR_LIT>')<EOL>xy = mds.fit_transform(diss)<EOL>def routine(k):<EOL><INDENT>km = sklearn.cluster.KMeans(n_clusters=k)<EOL>km_fit = km.fit(xy)<EOL>labels = km_fit.labels_<EOL>centers = km_fit.cluster_centers_<EOL>mappings = dict(zip(returns.columns, labels))<EOL>totss = <NUM_LIT:0><EOL>withinss = <NUM_LIT:0><EOL>avg = np.array([np.mean(xy[:, <NUM_LIT:0>]), np.mean(xy[:, <NUM_LIT:1>])])<EOL>for idx, lbl in enumerate(labels):<EOL><INDENT>withinss += sum((xy[idx] - centers[lbl]) ** <NUM_LIT:2>)<EOL>totss += sum((xy[idx] - avg) ** <NUM_LIT:2>)<EOL><DEDENT>pvar_expl = <NUM_LIT:1.0> - withinss / totss<EOL>return mappings, pvar_expl, labels<EOL><DEDENT>if n:<EOL><INDENT>result = routine(n)<EOL><DEDENT>else:<EOL><INDENT>n = len(returns.columns)<EOL>n1 = int(np.ceil(n * <NUM_LIT>))<EOL>for i in range(<NUM_LIT:2>, n1 + <NUM_LIT:1>):<EOL><INDENT>result = routine(i)<EOL>if result[<NUM_LIT:1>] > <NUM_LIT>:<EOL><INDENT>break<EOL><DEDENT><DEDENT><DEDENT>if plot:<EOL><INDENT>fig, ax = plt.subplots()<EOL>ax.scatter(xy[:, <NUM_LIT:0>], xy[:, <NUM_LIT:1>], c=result[<NUM_LIT:2>], s=<NUM_LIT>)<EOL>for i, txt in enumerate(returns.columns):<EOL><INDENT>ax.annotate(txt, (xy[i, <NUM_LIT:0>], xy[i, <NUM_LIT:1>]), size=<NUM_LIT>)<EOL><DEDENT><DEDENT>tmp = result[<NUM_LIT:0>]<EOL>inv_map = {}<EOL>for k, v in iteritems(tmp):<EOL><INDENT>inv_map[v] = inv_map.get(v, [])<EOL>inv_map[v].append(k)<EOL><DEDENT>return inv_map<EOL> | Calculates the clusters based on k-means
clustering.
Args:
* returns (pd.DataFrame): DataFrame of returns
* n (int): Specify # of clusters. If None, this
will be automatically determined
* plot (bool): Show plot?
Returns:
* dict with structure: {cluster# : [col names]} | f2810:m26 |
def calc_ftca(returns, threshold=<NUM_LIT:0.5>): | <EOL>i = <NUM_LIT:0><EOL>corr = returns.corr()<EOL>remain = list(corr.index.copy())<EOL>n = len(remain)<EOL>res = {}<EOL>while n > <NUM_LIT:0>:<EOL><INDENT>if n == <NUM_LIT:1>:<EOL><INDENT>i += <NUM_LIT:1><EOL>res[i] = remain<EOL>n = <NUM_LIT:0><EOL><DEDENT>else:<EOL><INDENT>cur_corr = corr[remain].loc[remain]<EOL>mc = cur_corr.mean().sort_values()<EOL>low = mc.index[<NUM_LIT:0>]<EOL>high = mc.index[-<NUM_LIT:1>]<EOL>if corr[high][low] > threshold:<EOL><INDENT>i += <NUM_LIT:1><EOL>res[i] = [low, high]<EOL>remain.remove(low)<EOL>remain.remove(high)<EOL>rmv = []<EOL>for x in remain:<EOL><INDENT>avg_corr = (corr[x][high] + corr[x][low]) / <NUM_LIT><EOL>if avg_corr > threshold:<EOL><INDENT>res[i].append(x)<EOL>rmv.append(x)<EOL><DEDENT><DEDENT>[remain.remove(x) for x in rmv]<EOL>n = len(remain)<EOL><DEDENT>else:<EOL><INDENT>i += <NUM_LIT:1><EOL>res[i] = [high]<EOL>remain.remove(high)<EOL>remain.remove(low)<EOL>rmv = []<EOL>for x in remain:<EOL><INDENT>if corr[x][high] > threshold:<EOL><INDENT>res[i].append(x)<EOL>rmv.append(x)<EOL><DEDENT><DEDENT>[remain.remove(x) for x in rmv]<EOL>i += <NUM_LIT:1><EOL>res[i] = [low]<EOL>rmv = []<EOL>for x in remain:<EOL><INDENT>if corr[x][low] > threshold:<EOL><INDENT>res[i].append(x)<EOL>rmv.append(x)<EOL><DEDENT><DEDENT>[remain.remove(x) for x in rmv]<EOL>n = len(remain)<EOL><DEDENT><DEDENT><DEDENT>return res<EOL> | Implementation of David Varadi's `Fast Threshold Clustering Algorithm (FTCA) <http://cssanalytics.wordpress.com/2013/11/26/fast-threshold-clustering-algorithm-ftca/>`_.
http://cssanalytics.wordpress.com/2013/11/26/fast-threshold-clustering-algorithm-ftca/ # NOQA
More stable than k-means for clustering purposes.
If you want more clusters, use a higher threshold.
Args:
* returns - expects a pandas dataframe of returns where
each column is the name of a given security.
* threshold (float): Threshold parameter - use higher value
for more clusters. Basically controls how similar
(correlated) series have to be.
Returns:
dict of cluster name (a number) and list of securities in cluster | f2810:m27 |
def limit_weights(weights, limit=<NUM_LIT:0.1>): | if <NUM_LIT:1.0> / limit > len(weights):<EOL><INDENT>raise ValueError('<STR_LIT>')<EOL><DEDENT>if isinstance(weights, dict):<EOL><INDENT>weights = pd.Series(weights)<EOL><DEDENT>if np.round(weights.sum(), <NUM_LIT:1>) != <NUM_LIT:1.0>:<EOL><INDENT>raise ValueError('<STR_LIT>'<EOL>% weights.sum())<EOL><DEDENT>res = np.round(weights.copy(), <NUM_LIT:4>)<EOL>to_rebalance = (res[res > limit] - limit).sum()<EOL>ok = res[res < limit]<EOL>ok += (ok / ok.sum()) * to_rebalance<EOL>res[res > limit] = limit<EOL>res[res < limit] = ok<EOL>if any(x > limit for x in res):<EOL><INDENT>return limit_weights(res, limit=limit)<EOL><DEDENT>return res<EOL> | Limits weights and redistributes excedent amount
proportionally.
ex:
- weights are {a: 0.7, b: 0.2, c: 0.1}
- call with limit=0.5
- excess 0.2 in a is ditributed to b and c
proportionally.
- result is {a: 0.5, b: 0.33, c: 0.167}
Args:
* weights (Series): A series describing the weights
* limit (float): Maximum weight allowed | f2810:m28 |
def random_weights(n, bounds=(<NUM_LIT:0.>, <NUM_LIT:1.>), total=<NUM_LIT:1.0>): | low = bounds[<NUM_LIT:0>]<EOL>high = bounds[<NUM_LIT:1>]<EOL>if high < low:<EOL><INDENT>raise ValueError('<STR_LIT>'<EOL>'<STR_LIT>')<EOL><DEDENT>if n * high < total or n * low > total:<EOL><INDENT>raise ValueError('<STR_LIT>')<EOL><DEDENT>w = [<NUM_LIT:0>] * n<EOL>tgt = -float(total)<EOL>for i in range(n):<EOL><INDENT>rn = n - i - <NUM_LIT:1><EOL>rhigh = rn * high<EOL>rlow = rn * low<EOL>lowb = max(-rhigh - tgt, low)<EOL>highb = min(-rlow - tgt, high)<EOL>rw = random.uniform(lowb, highb)<EOL>w[i] = rw<EOL>tgt += rw<EOL><DEDENT>random.shuffle(w)<EOL>return w<EOL> | Generate pseudo-random weights.
Returns a list of random weights that is of length
n, where each weight is in the range bounds, and
where the weights sum up to total.
Useful for creating random portfolios when benchmarking.
Args:
* n (int): number of random weights
* bounds ((low, high)): bounds for each weight
* total (float): total sum of the weights | f2810:m29 |
def plot_heatmap(data, title='<STR_LIT>', show_legend=True,<EOL>show_labels=True, label_fmt='<STR_LIT>',<EOL>vmin=None, vmax=None,<EOL>figsize=None, label_color='<STR_LIT:w>',<EOL>cmap='<STR_LIT>', **kwargs): | fig, ax = plt.subplots(figsize=figsize)<EOL>heatmap = ax.pcolor(data, vmin=vmin, vmax=vmax, cmap=cmap)<EOL>ax.invert_yaxis()<EOL>if title is not None:<EOL><INDENT>plt.title(title)<EOL><DEDENT>if show_legend:<EOL><INDENT>fig.colorbar(heatmap)<EOL><DEDENT>if show_labels:<EOL><INDENT>vals = data.values<EOL>for x in range(data.shape[<NUM_LIT:0>]):<EOL><INDENT>for y in range(data.shape[<NUM_LIT:1>]):<EOL><INDENT>plt.text(x + <NUM_LIT:0.5>, y + <NUM_LIT:0.5>, format(vals[y, x], label_fmt),<EOL>horizontalalignment='<STR_LIT>',<EOL>verticalalignment='<STR_LIT>',<EOL>color=label_color)<EOL><DEDENT><DEDENT><DEDENT>plt.yticks(np.arange(<NUM_LIT:0.5>, len(data.index), <NUM_LIT:1>), data.index)<EOL>plt.xticks(np.arange(<NUM_LIT:0.5>, len(data.columns), <NUM_LIT:1>), data.columns)<EOL>return plt<EOL> | Plot a heatmap using matplotlib's pcolor.
Args:
* data (DataFrame): DataFrame to plot. Usually small matrix (ex.
correlation matrix).
* title (string): Plot title
* show_legend (bool): Show color legend
* show_labels (bool): Show value labels
* label_fmt (str): Label format string
* vmin (float): Min value for scale
* vmax (float): Max value for scale
* cmap (string): Color map
* kwargs: Passed to matplotlib's pcolor | f2810:m30 |
def plot_corr_heatmap(data, **kwargs): | return plot_heatmap(data.corr(), vmin=-<NUM_LIT:1>, vmax=<NUM_LIT:1>, **kwargs)<EOL> | Plots the correlation heatmap for a given DataFrame. | f2810:m31 |
def rollapply(data, window, fn): | res = data.copy()<EOL>res[:] = np.nan<EOL>n = len(data)<EOL>if window > n:<EOL><INDENT>return res<EOL><DEDENT>for i in range(window - <NUM_LIT:1>, n):<EOL><INDENT>res.iloc[i] = fn(data.iloc[i - window + <NUM_LIT:1>:i + <NUM_LIT:1>])<EOL><DEDENT>return res<EOL> | Apply a function fn over a rolling window of size window.
Args:
* data (Series or DataFrame): Series or DataFrame
* window (int): Window size
* fn (function): Function to apply over the rolling window.
For a series, the return value is expected to be a single
number. For a DataFrame, it shuold return a new row.
Returns:
* Object of same dimensions as data | f2810:m32 |
def _winsorize_wrapper(x, limits): | if isinstance(x, pd.Series):<EOL><INDENT>if x.count() == <NUM_LIT:0>:<EOL><INDENT>return x<EOL><DEDENT>notnanx = ~np.isnan(x)<EOL>x[notnanx] = scipy.stats.mstats.winsorize(x[notnanx],<EOL>limits=limits)<EOL>return x<EOL><DEDENT>else:<EOL><INDENT>return scipy.stats.mstats.winsorize(x, limits=limits)<EOL><DEDENT> | Wraps scipy winsorize function to drop na's | f2810:m33 |
def winsorize(x, axis=<NUM_LIT:0>, limits=<NUM_LIT>): | <EOL>x = x.copy()<EOL>if isinstance(x, pd.DataFrame):<EOL><INDENT>return x.apply(_winsorize_wrapper, axis=axis, args=(limits, ))<EOL><DEDENT>else:<EOL><INDENT>return pd.Series(_winsorize_wrapper(x, limits).values,<EOL>index=x.index)<EOL><DEDENT> | `Winsorize <https://en.wikipedia.org/wiki/Winsorizing>`_ values based on limits | f2810:m34 |
def rescale(x, min=<NUM_LIT:0.>, max=<NUM_LIT:1.>, axis=<NUM_LIT:0>): | def innerfn(x, min, max):<EOL><INDENT>return np.interp(x, [np.min(x), np.max(x)], [min, max])<EOL><DEDENT>if isinstance(x, pd.DataFrame):<EOL><INDENT>return x.apply(innerfn, axis=axis, args=(min, max,))<EOL><DEDENT>else:<EOL><INDENT>return pd.Series(innerfn(x, min, max), index=x.index)<EOL><DEDENT> | Rescale values to fit a certain range [min, max] | f2810:m35 |
def annualize(returns, durations, one_year=<NUM_LIT>): | return np.power(<NUM_LIT:1.> + returns, <NUM_LIT:1.> / (durations / one_year)) - <NUM_LIT:1.><EOL> | Annualize returns using their respective durations.
Formula used is:
(1 + returns) ** (1 / (durations / one_year)) - 1 | f2810:m36 |
def deannualize(returns, nperiods): | return np.power(<NUM_LIT:1> + returns, <NUM_LIT:1.> / nperiods) - <NUM_LIT:1.><EOL> | Convert return expressed in annual terms on a different basis.
Args:
* returns (float, Series, DataFrame): Return(s)
* nperiods (int): Target basis, typically 252 for daily, 12 for
monthly, etc. | f2810:m37 |
def calc_sortino_ratio(returns, rf=<NUM_LIT:0.>, nperiods=None, annualize=True): | if type(rf) is float and rf != <NUM_LIT:0> and nperiods is None:<EOL><INDENT>raise Exception('<STR_LIT>')<EOL><DEDENT>er = returns.to_excess_returns(rf, nperiods=nperiods)<EOL>negative_returns = np.minimum(returns[<NUM_LIT:1>:], <NUM_LIT:0.>)<EOL>std = np.std(negative_returns, ddof=<NUM_LIT:1>)<EOL>res = np.divide(er.mean(), std)<EOL>if annualize:<EOL><INDENT>if nperiods is None:<EOL><INDENT>nperiods = <NUM_LIT:1><EOL><DEDENT>return res * np.sqrt(nperiods)<EOL><DEDENT>return res<EOL> | Calculates the `Sortino ratio <https://www.investopedia.com/terms/s/sortinoratio.asp>`_ given a series of returns (see `Sharpe vs. Sortino <https://www.investopedia.com/ask/answers/010815/what-difference-between-sharpe-ratio-and-sortino-ratio.asp>`_).
Args:
* returns (Series or DataFrame): Returns
* rf (float, Series): `Risk-free rate <https://www.investopedia.com/terms/r/risk-freerate.asp>`_ expressed in yearly (annualized) terms or return series.
* nperiods (int): Number of periods used for annualization. Must be
provided if rf is non-zero and rf is not a price series | f2810:m38 |
def to_excess_returns(returns, rf, nperiods=None): | if type(rf) is float and nperiods is not None:<EOL><INDENT>_rf = deannualize(rf, nperiods)<EOL><DEDENT>else:<EOL><INDENT>_rf = rf<EOL><DEDENT>return returns - _rf<EOL> | Given a series of returns, it will return the excess returns over rf.
Args:
* returns (Series, DataFrame): Returns
* rf (float, Series): `Risk-Free rate(s) <https://www.investopedia.com/terms/r/risk-freerate.asp>`_ expressed in annualized term or return series
* nperiods (int): Optional. If provided, will convert rf to different
frequency using deannualize only if rf is a float
Returns:
* excess_returns (Series, DataFrame): Returns - rf | f2810:m39 |
def calc_calmar_ratio(prices): | return np.divide(prices.calc_cagr(), abs(prices.calc_max_drawdown()))<EOL> | Calculates the `Calmar ratio <https://www.investopedia.com/terms/c/calmarratio.asp>`_ given a series of prices
Args:
* prices (Series, DataFrame): Price series | f2810:m40 |
def to_ulcer_index(prices): | dd = prices.to_drawdown_series()<EOL>return np.divide(np.sqrt(np.sum(np.power(dd, <NUM_LIT:2>))), dd.count())<EOL> | Converts from prices -> `Ulcer index <https://www.investopedia.com/terms/u/ulcerindex.asp>`_
See https://en.wikipedia.org/wiki/Ulcer_index
Args:
* prices (Series, DataFrame): Prices | f2810:m41 |
def to_ulcer_performance_index(prices, rf=<NUM_LIT:0.>, nperiods=None): | if type(rf) is float and rf != <NUM_LIT:0> and nperiods is None:<EOL><INDENT>raise Exception('<STR_LIT>')<EOL><DEDENT>er = prices.to_returns().to_excess_returns(rf, nperiods=nperiods)<EOL>return np.divide(er.mean(), prices.to_ulcer_index())<EOL> | Converts from prices -> `ulcer performance index <https://www.investopedia.com/terms/u/ulcerindex.asp>`_.
See https://en.wikipedia.org/wiki/Ulcer_index
Args:
* prices (Series, DataFrame): Prices
* rf (float, Series): `Risk-free rate of return <https://www.investopedia.com/terms/r/risk-freerate.asp>`_. Assumed to be expressed in
yearly (annualized) terms or return series
* nperiods (int): Used to deannualize rf if rf is provided (non-zero) | f2810:m42 |
def resample_returns(<EOL>returns,<EOL>func,<EOL>seed=<NUM_LIT:0>,<EOL>num_trials=<NUM_LIT:100><EOL>): | <EOL>if type(returns) is pd.Series:<EOL><INDENT>stats = pd.Series(index=range(num_trials))<EOL><DEDENT>elif type(returns) is pd.DataFrame:<EOL><INDENT>stats = pd.DataFrame(<EOL>index=range(num_trials),<EOL>columns=returns.columns<EOL>)<EOL><DEDENT>else:<EOL><INDENT>raise(TypeError("<STR_LIT>"))<EOL><DEDENT>n = returns.shape[<NUM_LIT:0>]<EOL>for i in range(num_trials):<EOL><INDENT>random_indices = resample(returns.index, n_samples=n, random_state=seed + i)<EOL>stats.loc[i] = func(returns.loc[random_indices])<EOL><DEDENT>return stats<EOL> | Resample the returns and calculate any statistic on every new sample.
https://en.wikipedia.org/wiki/Resampling_(statistics)
:param returns (Series, DataFrame): Returns
:param func: Given the resampled returns calculate a statistic
:param seed: Seed for random number generator
:param num_trials: Number of times to resample and run the experiment
:return: Series of resampled statistics | f2810:m43 |
def extend_pandas(): | PandasObject.to_returns = to_returns<EOL>PandasObject.to_log_returns = to_log_returns<EOL>PandasObject.to_price_index = to_price_index<EOL>PandasObject.rebase = rebase<EOL>PandasObject.calc_perf_stats = calc_perf_stats<EOL>PandasObject.to_drawdown_series = to_drawdown_series<EOL>PandasObject.calc_max_drawdown = calc_max_drawdown<EOL>PandasObject.calc_cagr = calc_cagr<EOL>PandasObject.calc_total_return = calc_total_return<EOL>PandasObject.as_percent = utils.as_percent<EOL>PandasObject.as_format = utils.as_format<EOL>PandasObject.to_monthly = to_monthly<EOL>PandasObject.asfreq_actual = asfreq_actual<EOL>PandasObject.drop_duplicate_cols = drop_duplicate_cols<EOL>PandasObject.calc_information_ratio = calc_information_ratio<EOL>PandasObject.calc_prob_mom = calc_prob_mom<EOL>PandasObject.calc_risk_return_ratio = calc_risk_return_ratio<EOL>PandasObject.calc_erc_weights = calc_erc_weights<EOL>PandasObject.calc_inv_vol_weights = calc_inv_vol_weights<EOL>PandasObject.calc_mean_var_weights = calc_mean_var_weights<EOL>PandasObject.calc_clusters = calc_clusters<EOL>PandasObject.calc_ftca = calc_ftca<EOL>PandasObject.calc_stats = calc_stats<EOL>PandasObject.plot_heatmap = plot_heatmap<EOL>PandasObject.plot_corr_heatmap = plot_corr_heatmap<EOL>PandasObject.rollapply = rollapply<EOL>PandasObject.winsorize = winsorize<EOL>PandasObject.rescale = rescale<EOL>PandasObject.calc_sortino_ratio = calc_sortino_ratio<EOL>PandasObject.calc_calmar_ratio = calc_calmar_ratio<EOL>PandasObject.calc_sharpe = calc_sharpe<EOL>PandasObject.to_excess_returns = to_excess_returns<EOL>PandasObject.to_ulcer_index = to_ulcer_index<EOL>PandasObject.to_ulcer_performance_index = to_ulcer_performance_index<EOL> | Extends pandas' PandasObject (Series, Series,
DataFrame) with some functions defined in this file.
This facilitates common functional composition used in quant
finance.
Ex:
prices.to_returns().dropna().calc_clusters()
(where prices would be a DataFrame) | f2810:m44 |
def set_riskfree_rate(self, rf): | self.rf = rf<EOL>self._update(self.prices)<EOL> | Set annual risk-free rate property and calculate properly annualized
monthly and daily rates. Then performance stats are recalculated.
Affects only this instance of the PerformanceStats.
Args:
* rf (float): Annual `risk-free rate <https://www.investopedia.com/terms/r/risk-freerate.asp>`_ | f2810:c0:m1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.