project
stringclasses 2
values | commit_id
stringlengths 40
40
| target
int64 0
1
| func
stringlengths 26
142k
| idx
int64 0
27.3k
|
---|---|---|---|---|
qemu | a6baa60807f88ba7d97b1787797fb58882ccbfb9 | 0 | static BlockStats *bdrv_query_stats(BlockBackend *blk,
const BlockDriverState *bs,
bool query_backing)
{
BlockStats *s;
s = bdrv_query_bds_stats(bs, query_backing);
if (blk) {
s->has_device = true;
s->device = g_strdup(blk_name(blk));
bdrv_query_blk_stats(s->stats, blk);
}
return s;
}
| 22,118 |
qemu | 285f7a62e464eac97e472ba6803ddede1e6c459e | 0 | ip_init(void)
{
ipq.ip_link.next = ipq.ip_link.prev = &ipq.ip_link;
ip_id = tt.tv_sec & 0xffff;
udp_init();
tcp_init();
}
| 22,120 |
qemu | bf55b7afce53718ef96f4e6616da62c0ccac37dd | 0 | static IOMMUTLBEntry typhoon_translate_iommu(MemoryRegion *iommu, hwaddr addr,
bool is_write)
{
TyphoonPchip *pchip = container_of(iommu, TyphoonPchip, iommu);
IOMMUTLBEntry ret;
int i;
if (addr <= 0xffffffffu) {
/* Single-address cycle. */
/* Check for the Window Hole, inhibiting matching. */
if ((pchip->ctl & 0x20)
&& addr >= 0x80000
&& addr <= 0xfffff) {
goto failure;
}
/* Check the first three windows. */
for (i = 0; i < 3; ++i) {
if (window_translate(&pchip->win[i], addr, &ret)) {
goto success;
}
}
/* Check the fourth window for DAC disable. */
if ((pchip->win[3].wba & 0x80000000000ull) == 0
&& window_translate(&pchip->win[3], addr, &ret)) {
goto success;
}
} else {
/* Double-address cycle. */
if (addr >= 0x10000000000ull && addr < 0x20000000000ull) {
/* Check for the DMA monster window. */
if (pchip->ctl & 0x40) {
/* See 10.1.4.4; in particular <39:35> is ignored. */
make_iommu_tlbe(0, 0x007ffffffffull, &ret);
goto success;
}
}
if (addr >= 0x80000000000ull && addr <= 0xfffffffffffull) {
/* Check the fourth window for DAC enable and window enable. */
if ((pchip->win[3].wba & 0x80000000001ull) == 0x80000000001ull) {
uint64_t pte_addr;
pte_addr = pchip->win[3].tba & 0x7ffc00000ull;
pte_addr |= (addr & 0xffffe000u) >> 10;
if (pte_translate(pte_addr, &ret)) {
goto success;
}
}
}
}
failure:
ret = (IOMMUTLBEntry) { .perm = IOMMU_NONE };
success:
return ret;
}
| 22,121 |
qemu | 17b74b98676aee5bc470b173b1e528d2fce2cf18 | 0 | void json_prop_str(QJSON *json, const char *name, const char *str)
{
json_emit_element(json, name);
qstring_append_chr(json->str, '"');
qstring_append(json->str, str);
qstring_append_chr(json->str, '"');
}
| 22,122 |
FFmpeg | b88be742fac7a77a8095e8155ba8790db4b77568 | 1 | static void encode_signal_range(VC2EncContext *s)
{
int idx;
AVCodecContext *avctx = s->avctx;
const AVPixFmtDescriptor *fmt = av_pix_fmt_desc_get(avctx->pix_fmt);
const int depth = fmt->comp[0].depth;
if (depth == 8 && avctx->color_range == AVCOL_RANGE_JPEG) {
idx = 1;
s->bpp = 1;
s->diff_offset = 128;
} else if (depth == 8 && (avctx->color_range == AVCOL_RANGE_MPEG ||
avctx->color_range == AVCOL_RANGE_UNSPECIFIED)) {
idx = 2;
s->bpp = 1;
s->diff_offset = 128;
} else if (depth == 10) {
idx = 3;
s->bpp = 2;
s->diff_offset = 512;
} else {
idx = 4;
s->bpp = 2;
s->diff_offset = 2048;
}
put_bits(&s->pb, 1, !s->strict_compliance);
if (!s->strict_compliance)
put_vc2_ue_uint(&s->pb, idx);
}
| 22,123 |
FFmpeg | 8bd1f1a4c8e591e92e7f4933a89fe5de72e5563f | 1 | static av_cold int tta_decode_init(AVCodecContext * avctx)
{
TTAContext *s = avctx->priv_data;
int i;
s->avctx = avctx;
// 30bytes includes a seektable with one frame
if (avctx->extradata_size < 30)
return -1;
init_get_bits(&s->gb, avctx->extradata, avctx->extradata_size * 8);
if (show_bits_long(&s->gb, 32) == AV_RL32("TTA1"))
{
/* signature */
skip_bits(&s->gb, 32);
s->format = get_bits(&s->gb, 16);
if (s->format > 2) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid format\n");
return -1;
if (s->format == FORMAT_ENCRYPTED) {
av_log_missing_feature(s->avctx, "Encrypted TTA", 0);
return AVERROR(EINVAL);
avctx->channels = s->channels = get_bits(&s->gb, 16);
avctx->bits_per_coded_sample = get_bits(&s->gb, 16);
s->bps = (avctx->bits_per_coded_sample + 7) / 8;
avctx->sample_rate = get_bits_long(&s->gb, 32);
s->data_length = get_bits_long(&s->gb, 32);
skip_bits(&s->gb, 32); // CRC32 of header
switch(s->bps) {
case 2:
avctx->sample_fmt = AV_SAMPLE_FMT_S16;
avctx->bits_per_raw_sample = 16;
break;
case 3:
avctx->sample_fmt = AV_SAMPLE_FMT_S32;
avctx->bits_per_raw_sample = 24;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Invalid/unsupported sample format.\n");
// prevent overflow
if (avctx->sample_rate > 0x7FFFFF) {
av_log(avctx, AV_LOG_ERROR, "sample_rate too large\n");
return AVERROR(EINVAL);
s->frame_length = 256 * avctx->sample_rate / 245;
s->last_frame_length = s->data_length % s->frame_length;
s->total_frames = s->data_length / s->frame_length +
(s->last_frame_length ? 1 : 0);
av_log(s->avctx, AV_LOG_DEBUG, "format: %d chans: %d bps: %d rate: %d block: %d\n",
s->format, avctx->channels, avctx->bits_per_coded_sample, avctx->sample_rate,
avctx->block_align);
av_log(s->avctx, AV_LOG_DEBUG, "data_length: %d frame_length: %d last: %d total: %d\n",
s->data_length, s->frame_length, s->last_frame_length, s->total_frames);
// FIXME: seek table
for (i = 0; i < s->total_frames; i++)
skip_bits(&s->gb, 32);
skip_bits(&s->gb, 32); // CRC32 of seektable
if(s->frame_length >= UINT_MAX / (s->channels * sizeof(int32_t))){
av_log(avctx, AV_LOG_ERROR, "frame_length too large\n");
return -1;
if (s->bps == 2) {
s->decode_buffer = av_mallocz(sizeof(int32_t)*s->frame_length*s->channels);
if (!s->decode_buffer)
return AVERROR(ENOMEM);
s->ch_ctx = av_malloc(avctx->channels * sizeof(*s->ch_ctx));
if (!s->ch_ctx) {
av_freep(&s->decode_buffer);
return AVERROR(ENOMEM);
} else {
av_log(avctx, AV_LOG_ERROR, "Wrong extradata present\n");
return -1;
avcodec_get_frame_defaults(&s->frame);
avctx->coded_frame = &s->frame;
return 0; | 22,125 |
qemu | cc05c43ad942165ecc6ffd39e41991bee43af044 | 1 | static void memory_region_write_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask)
{
uint64_t tmp;
if (mr->flush_coalesced_mmio) {
qemu_flush_coalesced_mmio_buffer();
}
tmp = (*value >> shift) & mask;
trace_memory_region_ops_write(mr, addr, tmp, size);
mr->ops->write(mr->opaque, addr, tmp, size);
}
| 22,126 |
qemu | e4f4fb1eca795e36f363b4647724221e774523c1 | 1 | static void kvm_ioapic_class_init(ObjectClass *klass, void *data)
{
IOAPICCommonClass *k = IOAPIC_COMMON_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
k->realize = kvm_ioapic_realize;
k->pre_save = kvm_ioapic_get;
k->post_load = kvm_ioapic_put;
dc->reset = kvm_ioapic_reset;
dc->props = kvm_ioapic_properties;
} | 22,127 |
qemu | 1b435b10324fe9937f254bb00718f78d5e50837a | 1 | void qemu_bh_cancel(QEMUBH *bh)
{
QEMUBH **pbh;
if (bh->scheduled) {
pbh = &first_bh;
while (*pbh != bh)
pbh = &(*pbh)->next;
*pbh = bh->next;
bh->scheduled = 0;
}
}
| 22,128 |
FFmpeg | 7cbbc4f7e7ffdb874a25e269ac92f7bb161c5b83 | 1 | static int parse_ffconfig(const char *filename)
{
FILE *f;
char line[1024];
char cmd[64];
char arg[1024];
const char *p;
int val, errors, line_num;
FFStream **last_stream, *stream, *redirect;
FFStream **last_feed, *feed, *s;
AVCodecContext audio_enc, video_enc;
enum AVCodecID audio_id, video_id;
f = fopen(filename, "r");
if (!f) {
perror(filename);
return -1;
}
errors = 0;
line_num = 0;
first_stream = NULL;
last_stream = &first_stream;
first_feed = NULL;
last_feed = &first_feed;
stream = NULL;
feed = NULL;
redirect = NULL;
audio_id = AV_CODEC_ID_NONE;
video_id = AV_CODEC_ID_NONE;
#define ERROR(...) report_config_error(filename, line_num, &errors, __VA_ARGS__)
for(;;) {
if (fgets(line, sizeof(line), f) == NULL)
break;
line_num++;
p = line;
while (av_isspace(*p))
p++;
if (*p == '\0' || *p == '#')
continue;
get_arg(cmd, sizeof(cmd), &p);
if (!av_strcasecmp(cmd, "Port")) {
get_arg(arg, sizeof(arg), &p);
val = atoi(arg);
if (val < 1 || val > 65536) {
ERROR("Invalid_port: %s\n", arg);
}
my_http_addr.sin_port = htons(val);
} else if (!av_strcasecmp(cmd, "BindAddress")) {
get_arg(arg, sizeof(arg), &p);
if (resolve_host(&my_http_addr.sin_addr, arg) != 0) {
ERROR("%s:%d: Invalid host/IP address: %s\n", arg);
}
} else if (!av_strcasecmp(cmd, "NoDaemon")) {
// do nothing here, its the default now
} else if (!av_strcasecmp(cmd, "RTSPPort")) {
get_arg(arg, sizeof(arg), &p);
val = atoi(arg);
if (val < 1 || val > 65536) {
ERROR("%s:%d: Invalid port: %s\n", arg);
}
my_rtsp_addr.sin_port = htons(atoi(arg));
} else if (!av_strcasecmp(cmd, "RTSPBindAddress")) {
get_arg(arg, sizeof(arg), &p);
if (resolve_host(&my_rtsp_addr.sin_addr, arg) != 0) {
ERROR("Invalid host/IP address: %s\n", arg);
}
} else if (!av_strcasecmp(cmd, "MaxHTTPConnections")) {
get_arg(arg, sizeof(arg), &p);
val = atoi(arg);
if (val < 1 || val > 65536) {
ERROR("Invalid MaxHTTPConnections: %s\n", arg);
}
nb_max_http_connections = val;
} else if (!av_strcasecmp(cmd, "MaxClients")) {
get_arg(arg, sizeof(arg), &p);
val = atoi(arg);
if (val < 1 || val > nb_max_http_connections) {
ERROR("Invalid MaxClients: %s\n", arg);
} else {
nb_max_connections = val;
}
} else if (!av_strcasecmp(cmd, "MaxBandwidth")) {
int64_t llval;
get_arg(arg, sizeof(arg), &p);
llval = strtoll(arg, NULL, 10);
if (llval < 10 || llval > 10000000) {
ERROR("Invalid MaxBandwidth: %s\n", arg);
} else
max_bandwidth = llval;
} else if (!av_strcasecmp(cmd, "CustomLog")) {
if (!ffserver_debug)
get_arg(logfilename, sizeof(logfilename), &p);
} else if (!av_strcasecmp(cmd, "<Feed")) {
/*********************************************/
/* Feed related options */
char *q;
if (stream || feed) {
ERROR("Already in a tag\n");
} else {
feed = av_mallocz(sizeof(FFStream));
get_arg(feed->filename, sizeof(feed->filename), &p);
q = strrchr(feed->filename, '>');
if (*q)
*q = '\0';
for (s = first_feed; s; s = s->next) {
if (!strcmp(feed->filename, s->filename)) {
ERROR("Feed '%s' already registered\n", s->filename);
}
}
feed->fmt = av_guess_format("ffm", NULL, NULL);
/* defaut feed file */
snprintf(feed->feed_filename, sizeof(feed->feed_filename),
"/tmp/%s.ffm", feed->filename);
feed->feed_max_size = 5 * 1024 * 1024;
feed->is_feed = 1;
feed->feed = feed; /* self feeding :-) */
/* add in stream list */
*last_stream = feed;
last_stream = &feed->next;
/* add in feed list */
*last_feed = feed;
last_feed = &feed->next_feed;
}
} else if (!av_strcasecmp(cmd, "Launch")) {
if (feed) {
int i;
feed->child_argv = av_mallocz(64 * sizeof(char *));
for (i = 0; i < 62; i++) {
get_arg(arg, sizeof(arg), &p);
if (!arg[0])
break;
feed->child_argv[i] = av_strdup(arg);
}
feed->child_argv[i] = av_asprintf("http://%s:%d/%s",
(my_http_addr.sin_addr.s_addr == INADDR_ANY) ? "127.0.0.1" :
inet_ntoa(my_http_addr.sin_addr),
ntohs(my_http_addr.sin_port), feed->filename);
}
} else if (!av_strcasecmp(cmd, "ReadOnlyFile")) {
if (feed) {
get_arg(feed->feed_filename, sizeof(feed->feed_filename), &p);
feed->readonly = 1;
} else if (stream) {
get_arg(stream->feed_filename, sizeof(stream->feed_filename), &p);
}
} else if (!av_strcasecmp(cmd, "File")) {
if (feed) {
get_arg(feed->feed_filename, sizeof(feed->feed_filename), &p);
} else if (stream)
get_arg(stream->feed_filename, sizeof(stream->feed_filename), &p);
} else if (!av_strcasecmp(cmd, "Truncate")) {
if (feed) {
get_arg(arg, sizeof(arg), &p);
feed->truncate = strtod(arg, NULL);
}
} else if (!av_strcasecmp(cmd, "FileMaxSize")) {
if (feed) {
char *p1;
double fsize;
get_arg(arg, sizeof(arg), &p);
p1 = arg;
fsize = strtod(p1, &p1);
switch(av_toupper(*p1)) {
case 'K':
fsize *= 1024;
break;
case 'M':
fsize *= 1024 * 1024;
break;
case 'G':
fsize *= 1024 * 1024 * 1024;
break;
}
feed->feed_max_size = (int64_t)fsize;
if (feed->feed_max_size < FFM_PACKET_SIZE*4) {
ERROR("Feed max file size is too small, must be at least %d\n", FFM_PACKET_SIZE*4);
}
}
} else if (!av_strcasecmp(cmd, "</Feed>")) {
if (!feed) {
ERROR("No corresponding <Feed> for </Feed>\n");
}
feed = NULL;
} else if (!av_strcasecmp(cmd, "<Stream")) {
/*********************************************/
/* Stream related options */
char *q;
if (stream || feed) {
ERROR("Already in a tag\n");
} else {
FFStream *s;
stream = av_mallocz(sizeof(FFStream));
get_arg(stream->filename, sizeof(stream->filename), &p);
q = strrchr(stream->filename, '>');
if (q)
*q = '\0';
for (s = first_stream; s; s = s->next) {
if (!strcmp(stream->filename, s->filename)) {
ERROR("Stream '%s' already registered\n", s->filename);
}
}
stream->fmt = ffserver_guess_format(NULL, stream->filename, NULL);
avcodec_get_context_defaults3(&video_enc, NULL);
avcodec_get_context_defaults3(&audio_enc, NULL);
audio_id = AV_CODEC_ID_NONE;
video_id = AV_CODEC_ID_NONE;
if (stream->fmt) {
audio_id = stream->fmt->audio_codec;
video_id = stream->fmt->video_codec;
}
*last_stream = stream;
last_stream = &stream->next;
}
} else if (!av_strcasecmp(cmd, "Feed")) {
get_arg(arg, sizeof(arg), &p);
if (stream) {
FFStream *sfeed;
sfeed = first_feed;
while (sfeed != NULL) {
if (!strcmp(sfeed->filename, arg))
break;
sfeed = sfeed->next_feed;
}
if (!sfeed)
ERROR("feed '%s' not defined\n", arg);
else
stream->feed = sfeed;
}
} else if (!av_strcasecmp(cmd, "Format")) {
get_arg(arg, sizeof(arg), &p);
if (stream) {
if (!strcmp(arg, "status")) {
stream->stream_type = STREAM_TYPE_STATUS;
stream->fmt = NULL;
} else {
stream->stream_type = STREAM_TYPE_LIVE;
/* jpeg cannot be used here, so use single frame jpeg */
if (!strcmp(arg, "jpeg"))
strcpy(arg, "mjpeg");
stream->fmt = ffserver_guess_format(arg, NULL, NULL);
if (!stream->fmt) {
ERROR("Unknown Format: %s\n", arg);
}
}
if (stream->fmt) {
audio_id = stream->fmt->audio_codec;
video_id = stream->fmt->video_codec;
}
}
} else if (!av_strcasecmp(cmd, "InputFormat")) {
get_arg(arg, sizeof(arg), &p);
if (stream) {
stream->ifmt = av_find_input_format(arg);
if (!stream->ifmt) {
ERROR("Unknown input format: %s\n", arg);
}
}
} else if (!av_strcasecmp(cmd, "FaviconURL")) {
if (stream && stream->stream_type == STREAM_TYPE_STATUS) {
get_arg(stream->feed_filename, sizeof(stream->feed_filename), &p);
} else {
ERROR("FaviconURL only permitted for status streams\n");
}
} else if (!av_strcasecmp(cmd, "Author")) {
if (stream)
get_arg(stream->author, sizeof(stream->author), &p);
} else if (!av_strcasecmp(cmd, "Comment")) {
if (stream)
get_arg(stream->comment, sizeof(stream->comment), &p);
} else if (!av_strcasecmp(cmd, "Copyright")) {
if (stream)
get_arg(stream->copyright, sizeof(stream->copyright), &p);
} else if (!av_strcasecmp(cmd, "Title")) {
if (stream)
get_arg(stream->title, sizeof(stream->title), &p);
} else if (!av_strcasecmp(cmd, "Preroll")) {
get_arg(arg, sizeof(arg), &p);
if (stream)
stream->prebuffer = atof(arg) * 1000;
} else if (!av_strcasecmp(cmd, "StartSendOnKey")) {
if (stream)
stream->send_on_key = 1;
} else if (!av_strcasecmp(cmd, "AudioCodec")) {
get_arg(arg, sizeof(arg), &p);
audio_id = opt_codec(arg, AVMEDIA_TYPE_AUDIO);
if (audio_id == AV_CODEC_ID_NONE) {
ERROR("Unknown AudioCodec: %s\n", arg);
}
} else if (!av_strcasecmp(cmd, "VideoCodec")) {
get_arg(arg, sizeof(arg), &p);
video_id = opt_codec(arg, AVMEDIA_TYPE_VIDEO);
if (video_id == AV_CODEC_ID_NONE) {
ERROR("Unknown VideoCodec: %s\n", arg);
}
} else if (!av_strcasecmp(cmd, "MaxTime")) {
get_arg(arg, sizeof(arg), &p);
if (stream)
stream->max_time = atof(arg) * 1000;
} else if (!av_strcasecmp(cmd, "AudioBitRate")) {
get_arg(arg, sizeof(arg), &p);
if (stream)
audio_enc.bit_rate = lrintf(atof(arg) * 1000);
} else if (!av_strcasecmp(cmd, "AudioChannels")) {
get_arg(arg, sizeof(arg), &p);
if (stream)
audio_enc.channels = atoi(arg);
} else if (!av_strcasecmp(cmd, "AudioSampleRate")) {
get_arg(arg, sizeof(arg), &p);
if (stream)
audio_enc.sample_rate = atoi(arg);
} else if (!av_strcasecmp(cmd, "AudioQuality")) {
get_arg(arg, sizeof(arg), &p);
if (stream) {
// audio_enc.quality = atof(arg) * 1000;
}
} else if (!av_strcasecmp(cmd, "VideoBitRateRange")) {
if (stream) {
int minrate, maxrate;
get_arg(arg, sizeof(arg), &p);
if (sscanf(arg, "%d-%d", &minrate, &maxrate) == 2) {
video_enc.rc_min_rate = minrate * 1000;
video_enc.rc_max_rate = maxrate * 1000;
} else {
ERROR("Incorrect format for VideoBitRateRange -- should be <min>-<max>: %s\n", arg);
}
}
} else if (!av_strcasecmp(cmd, "Debug")) {
if (stream) {
get_arg(arg, sizeof(arg), &p);
video_enc.debug = strtol(arg,0,0);
}
} else if (!av_strcasecmp(cmd, "Strict")) {
if (stream) {
get_arg(arg, sizeof(arg), &p);
video_enc.strict_std_compliance = atoi(arg);
}
} else if (!av_strcasecmp(cmd, "VideoBufferSize")) {
if (stream) {
get_arg(arg, sizeof(arg), &p);
video_enc.rc_buffer_size = atoi(arg) * 8*1024;
}
} else if (!av_strcasecmp(cmd, "VideoBitRateTolerance")) {
if (stream) {
get_arg(arg, sizeof(arg), &p);
video_enc.bit_rate_tolerance = atoi(arg) * 1000;
}
} else if (!av_strcasecmp(cmd, "VideoBitRate")) {
get_arg(arg, sizeof(arg), &p);
if (stream) {
video_enc.bit_rate = atoi(arg) * 1000;
}
} else if (!av_strcasecmp(cmd, "VideoSize")) {
get_arg(arg, sizeof(arg), &p);
if (stream) {
av_parse_video_size(&video_enc.width, &video_enc.height, arg);
if ((video_enc.width % 16) != 0 ||
(video_enc.height % 16) != 0) {
ERROR("Image size must be a multiple of 16\n");
}
}
} else if (!av_strcasecmp(cmd, "VideoFrameRate")) {
get_arg(arg, sizeof(arg), &p);
if (stream) {
AVRational frame_rate;
if (av_parse_video_rate(&frame_rate, arg) < 0) {
ERROR("Incorrect frame rate: %s\n", arg);
} else {
video_enc.time_base.num = frame_rate.den;
video_enc.time_base.den = frame_rate.num;
}
}
} else if (!av_strcasecmp(cmd, "PixelFormat")) {
get_arg(arg, sizeof(arg), &p);
if (stream) {
video_enc.pix_fmt = av_get_pix_fmt(arg);
if (video_enc.pix_fmt == AV_PIX_FMT_NONE) {
ERROR("Unknown pixel format: %s\n", arg);
}
}
} else if (!av_strcasecmp(cmd, "VideoGopSize")) {
get_arg(arg, sizeof(arg), &p);
if (stream)
video_enc.gop_size = atoi(arg);
} else if (!av_strcasecmp(cmd, "VideoIntraOnly")) {
if (stream)
video_enc.gop_size = 1;
} else if (!av_strcasecmp(cmd, "VideoHighQuality")) {
if (stream)
video_enc.mb_decision = FF_MB_DECISION_BITS;
} else if (!av_strcasecmp(cmd, "Video4MotionVector")) {
if (stream) {
video_enc.mb_decision = FF_MB_DECISION_BITS; //FIXME remove
video_enc.flags |= CODEC_FLAG_4MV;
}
} else if (!av_strcasecmp(cmd, "AVOptionVideo") ||
!av_strcasecmp(cmd, "AVOptionAudio")) {
char arg2[1024];
AVCodecContext *avctx;
int type;
get_arg(arg, sizeof(arg), &p);
get_arg(arg2, sizeof(arg2), &p);
if (!av_strcasecmp(cmd, "AVOptionVideo")) {
avctx = &video_enc;
type = AV_OPT_FLAG_VIDEO_PARAM;
} else {
avctx = &audio_enc;
type = AV_OPT_FLAG_AUDIO_PARAM;
}
if (ffserver_opt_default(arg, arg2, avctx, type|AV_OPT_FLAG_ENCODING_PARAM)) {
ERROR("Error setting %s option to %s %s\n", cmd, arg, arg2);
}
} else if (!av_strcasecmp(cmd, "AVPresetVideo") ||
!av_strcasecmp(cmd, "AVPresetAudio")) {
AVCodecContext *avctx;
int type;
get_arg(arg, sizeof(arg), &p);
if (!av_strcasecmp(cmd, "AVPresetVideo")) {
avctx = &video_enc;
video_enc.codec_id = video_id;
type = AV_OPT_FLAG_VIDEO_PARAM;
} else {
avctx = &audio_enc;
audio_enc.codec_id = audio_id;
type = AV_OPT_FLAG_AUDIO_PARAM;
}
if (ffserver_opt_preset(arg, avctx, type|AV_OPT_FLAG_ENCODING_PARAM, &audio_id, &video_id)) {
ERROR("AVPreset error: %s\n", arg);
}
} else if (!av_strcasecmp(cmd, "VideoTag")) {
get_arg(arg, sizeof(arg), &p);
if ((strlen(arg) == 4) && stream)
video_enc.codec_tag = MKTAG(arg[0], arg[1], arg[2], arg[3]);
} else if (!av_strcasecmp(cmd, "BitExact")) {
if (stream)
video_enc.flags |= CODEC_FLAG_BITEXACT;
} else if (!av_strcasecmp(cmd, "DctFastint")) {
if (stream)
video_enc.dct_algo = FF_DCT_FASTINT;
} else if (!av_strcasecmp(cmd, "IdctSimple")) {
if (stream)
video_enc.idct_algo = FF_IDCT_SIMPLE;
} else if (!av_strcasecmp(cmd, "Qscale")) {
get_arg(arg, sizeof(arg), &p);
if (stream) {
video_enc.flags |= CODEC_FLAG_QSCALE;
video_enc.global_quality = FF_QP2LAMBDA * atoi(arg);
}
} else if (!av_strcasecmp(cmd, "VideoQDiff")) {
get_arg(arg, sizeof(arg), &p);
if (stream) {
video_enc.max_qdiff = atoi(arg);
if (video_enc.max_qdiff < 1 || video_enc.max_qdiff > 31) {
ERROR("VideoQDiff out of range\n");
}
}
} else if (!av_strcasecmp(cmd, "VideoQMax")) {
get_arg(arg, sizeof(arg), &p);
if (stream) {
video_enc.qmax = atoi(arg);
if (video_enc.qmax < 1 || video_enc.qmax > 31) {
ERROR("VideoQMax out of range\n");
}
}
} else if (!av_strcasecmp(cmd, "VideoQMin")) {
get_arg(arg, sizeof(arg), &p);
if (stream) {
video_enc.qmin = atoi(arg);
if (video_enc.qmin < 1 || video_enc.qmin > 31) {
ERROR("VideoQMin out of range\n");
}
}
} else if (!av_strcasecmp(cmd, "LumiMask")) {
get_arg(arg, sizeof(arg), &p);
if (stream)
video_enc.lumi_masking = atof(arg);
} else if (!av_strcasecmp(cmd, "DarkMask")) {
get_arg(arg, sizeof(arg), &p);
if (stream)
video_enc.dark_masking = atof(arg);
} else if (!av_strcasecmp(cmd, "NoVideo")) {
video_id = AV_CODEC_ID_NONE;
} else if (!av_strcasecmp(cmd, "NoAudio")) {
audio_id = AV_CODEC_ID_NONE;
} else if (!av_strcasecmp(cmd, "ACL")) {
parse_acl_row(stream, feed, NULL, p, filename, line_num);
} else if (!av_strcasecmp(cmd, "DynamicACL")) {
if (stream) {
get_arg(stream->dynamic_acl, sizeof(stream->dynamic_acl), &p);
}
} else if (!av_strcasecmp(cmd, "RTSPOption")) {
get_arg(arg, sizeof(arg), &p);
if (stream) {
av_freep(&stream->rtsp_option);
stream->rtsp_option = av_strdup(arg);
}
} else if (!av_strcasecmp(cmd, "MulticastAddress")) {
get_arg(arg, sizeof(arg), &p);
if (stream) {
if (resolve_host(&stream->multicast_ip, arg) != 0) {
ERROR("Invalid host/IP address: %s\n", arg);
}
stream->is_multicast = 1;
stream->loop = 1; /* default is looping */
}
} else if (!av_strcasecmp(cmd, "MulticastPort")) {
get_arg(arg, sizeof(arg), &p);
if (stream)
stream->multicast_port = atoi(arg);
} else if (!av_strcasecmp(cmd, "MulticastTTL")) {
get_arg(arg, sizeof(arg), &p);
if (stream)
stream->multicast_ttl = atoi(arg);
} else if (!av_strcasecmp(cmd, "NoLoop")) {
if (stream)
stream->loop = 0;
} else if (!av_strcasecmp(cmd, "</Stream>")) {
if (!stream) {
ERROR("No corresponding <Stream> for </Stream>\n");
} else {
if (stream->feed && stream->fmt && strcmp(stream->fmt->name, "ffm") != 0) {
if (audio_id != AV_CODEC_ID_NONE) {
audio_enc.codec_type = AVMEDIA_TYPE_AUDIO;
audio_enc.codec_id = audio_id;
add_codec(stream, &audio_enc);
}
if (video_id != AV_CODEC_ID_NONE) {
video_enc.codec_type = AVMEDIA_TYPE_VIDEO;
video_enc.codec_id = video_id;
add_codec(stream, &video_enc);
}
}
stream = NULL;
}
} else if (!av_strcasecmp(cmd, "<Redirect")) {
/*********************************************/
char *q;
if (stream || feed || redirect) {
ERROR("Already in a tag\n");
} else {
redirect = av_mallocz(sizeof(FFStream));
*last_stream = redirect;
last_stream = &redirect->next;
get_arg(redirect->filename, sizeof(redirect->filename), &p);
q = strrchr(redirect->filename, '>');
if (*q)
*q = '\0';
redirect->stream_type = STREAM_TYPE_REDIRECT;
}
} else if (!av_strcasecmp(cmd, "URL")) {
if (redirect)
get_arg(redirect->feed_filename, sizeof(redirect->feed_filename), &p);
} else if (!av_strcasecmp(cmd, "</Redirect>")) {
if (!redirect) {
ERROR("No corresponding <Redirect> for </Redirect>\n");
} else {
if (!redirect->feed_filename[0]) {
ERROR("No URL found for <Redirect>\n");
}
redirect = NULL;
}
} else if (!av_strcasecmp(cmd, "LoadModule")) {
ERROR("Loadable modules no longer supported\n");
} else {
ERROR("Incorrect keyword: '%s'\n", cmd);
}
}
#undef ERROR
fclose(f);
if (errors)
return -1;
else
return 0;
}
| 22,129 |
FFmpeg | 39d607e5bbc25ad9629683702b510e865434ef21 | 1 | static void updateMMXDitherTables(SwsContext *c, int dstY, int lumBufIndex, int chrBufIndex,
int lastInLumBuf, int lastInChrBuf)
{
const int dstH= c->dstH;
const int flags= c->flags;
int16_t **lumPixBuf= c->lumPixBuf;
int16_t **chrUPixBuf= c->chrUPixBuf;
int16_t **chrVPixBuf= c->chrVPixBuf;
int16_t **alpPixBuf= c->alpPixBuf;
const int vLumBufSize= c->vLumBufSize;
const int vChrBufSize= c->vChrBufSize;
int16_t *vLumFilterPos= c->vLumFilterPos;
int16_t *vChrFilterPos= c->vChrFilterPos;
int16_t *vLumFilter= c->vLumFilter;
int16_t *vChrFilter= c->vChrFilter;
int32_t *lumMmxFilter= c->lumMmxFilter;
int32_t *chrMmxFilter= c->chrMmxFilter;
int32_t av_unused *alpMmxFilter= c->alpMmxFilter;
const int vLumFilterSize= c->vLumFilterSize;
const int vChrFilterSize= c->vChrFilterSize;
const int chrDstY= dstY>>c->chrDstVSubSample;
const int firstLumSrcY= vLumFilterPos[dstY]; //First line needed as input
const int firstChrSrcY= vChrFilterPos[chrDstY]; //First line needed as input
c->blueDither= ff_dither8[dstY&1];
if (c->dstFormat == PIX_FMT_RGB555 || c->dstFormat == PIX_FMT_BGR555)
c->greenDither= ff_dither8[dstY&1];
else
c->greenDither= ff_dither4[dstY&1];
c->redDither= ff_dither8[(dstY+1)&1];
if (dstY < dstH - 2) {
const int16_t **lumSrcPtr= (const int16_t **) lumPixBuf + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize;
const int16_t **chrUSrcPtr= (const int16_t **) chrUPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize;
const int16_t **chrVSrcPtr= (const int16_t **) chrVPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize;
const int16_t **alpSrcPtr= (CONFIG_SWSCALE_ALPHA && alpPixBuf) ? (const int16_t **) alpPixBuf + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize : NULL;
int i;
if (flags & SWS_ACCURATE_RND) {
int s= APCK_SIZE / 8;
for (i=0; i<vLumFilterSize; i+=2) {
*(const void**)&lumMmxFilter[s*i ]= lumSrcPtr[i ];
*(const void**)&lumMmxFilter[s*i+APCK_PTR2/4 ]= lumSrcPtr[i+(vLumFilterSize>1)];
lumMmxFilter[s*i+APCK_COEF/4 ]=
lumMmxFilter[s*i+APCK_COEF/4+1]= vLumFilter[dstY*vLumFilterSize + i ]
+ (vLumFilterSize>1 ? vLumFilter[dstY*vLumFilterSize + i + 1]<<16 : 0);
if (CONFIG_SWSCALE_ALPHA && alpPixBuf) {
*(const void**)&alpMmxFilter[s*i ]= alpSrcPtr[i ];
*(const void**)&alpMmxFilter[s*i+APCK_PTR2/4 ]= alpSrcPtr[i+(vLumFilterSize>1)];
alpMmxFilter[s*i+APCK_COEF/4 ]=
alpMmxFilter[s*i+APCK_COEF/4+1]= lumMmxFilter[s*i+APCK_COEF/4 ];
}
}
for (i=0; i<vChrFilterSize; i+=2) {
*(const void**)&chrMmxFilter[s*i ]= chrUSrcPtr[i ];
*(const void**)&chrMmxFilter[s*i+APCK_PTR2/4 ]= chrUSrcPtr[i+(vChrFilterSize>1)];
chrMmxFilter[s*i+APCK_COEF/4 ]=
chrMmxFilter[s*i+APCK_COEF/4+1]= vChrFilter[chrDstY*vChrFilterSize + i ]
+ (vChrFilterSize>1 ? vChrFilter[chrDstY*vChrFilterSize + i + 1]<<16 : 0);
}
} else {
for (i=0; i<vLumFilterSize; i++) {
*(const void**)&lumMmxFilter[4*i+0]= lumSrcPtr[i];
lumMmxFilter[4*i+2]=
lumMmxFilter[4*i+3]=
((uint16_t)vLumFilter[dstY*vLumFilterSize + i])*0x10001;
if (CONFIG_SWSCALE_ALPHA && alpPixBuf) {
*(const void**)&alpMmxFilter[4*i+0]= alpSrcPtr[i];
alpMmxFilter[4*i+2]=
alpMmxFilter[4*i+3]= lumMmxFilter[4*i+2];
}
}
for (i=0; i<vChrFilterSize; i++) {
*(const void**)&chrMmxFilter[4*i+0]= chrUSrcPtr[i];
chrMmxFilter[4*i+2]=
chrMmxFilter[4*i+3]=
((uint16_t)vChrFilter[chrDstY*vChrFilterSize + i])*0x10001;
}
}
}
}
| 22,130 |
FFmpeg | 08b098169be079c4f124a351fda6764fbcd10e79 | 1 | static inline int decode_alpha_block(const SHQContext *s, GetBitContext *gb, uint8_t last_alpha[16], uint8_t *dest, int linesize)
{
uint8_t block[128];
int i = 0, x, y;
memset(block, 0, sizeof(block));
{
OPEN_READER(re, gb);
for ( ;; ) {
int run, level;
UPDATE_CACHE_LE(re, gb);
GET_VLC(run, re, gb, ff_dc_alpha_run_vlc_le.table, ALPHA_VLC_BITS, 2);
if (run == 128) break;
i += run;
if (i >= 128)
return AVERROR_INVALIDDATA;
UPDATE_CACHE_LE(re, gb);
GET_VLC(level, re, gb, ff_dc_alpha_level_vlc_le.table, ALPHA_VLC_BITS, 2);
block[i++] = level;
}
CLOSE_READER(re, gb);
}
for (y = 0; y < 8; y++) {
for (x = 0; x < 16; x++) {
last_alpha[x] -= block[y * 16 + x];
}
memcpy(dest, last_alpha, 16);
dest += linesize;
}
return 0;
}
| 22,131 |
FFmpeg | eea064aea610ea41b5bda0b62dac56be536af9aa | 0 | static int dvbsub_read_4bit_string(uint8_t *destbuf, int dbuf_len,
const uint8_t **srcbuf, int buf_size,
int non_mod, uint8_t *map_table)
{
GetBitContext gb;
int bits;
int run_length;
int pixels_read = 0;
init_get_bits(&gb, *srcbuf, buf_size << 3);
while (get_bits_count(&gb) < buf_size << 3 && pixels_read < dbuf_len) {
bits = get_bits(&gb, 4);
if (bits) {
if (non_mod != 1 || bits != 1) {
if (map_table)
*destbuf++ = map_table[bits];
else
*destbuf++ = bits;
}
pixels_read++;
} else {
bits = get_bits1(&gb);
if (bits == 0) {
run_length = get_bits(&gb, 3);
if (run_length == 0) {
(*srcbuf) += (get_bits_count(&gb) + 7) >> 3;
return pixels_read;
}
run_length += 2;
if (map_table)
bits = map_table[0];
else
bits = 0;
while (run_length-- > 0 && pixels_read < dbuf_len) {
*destbuf++ = bits;
pixels_read++;
}
} else {
bits = get_bits1(&gb);
if (bits == 0) {
run_length = get_bits(&gb, 2) + 4;
bits = get_bits(&gb, 4);
if (non_mod == 1 && bits == 1)
pixels_read += run_length;
else {
if (map_table)
bits = map_table[bits];
while (run_length-- > 0 && pixels_read < dbuf_len) {
*destbuf++ = bits;
pixels_read++;
}
}
} else {
bits = get_bits(&gb, 2);
if (bits == 2) {
run_length = get_bits(&gb, 4) + 9;
bits = get_bits(&gb, 4);
if (non_mod == 1 && bits == 1)
pixels_read += run_length;
else {
if (map_table)
bits = map_table[bits];
while (run_length-- > 0 && pixels_read < dbuf_len) {
*destbuf++ = bits;
pixels_read++;
}
}
} else if (bits == 3) {
run_length = get_bits(&gb, 8) + 25;
bits = get_bits(&gb, 4);
if (non_mod == 1 && bits == 1)
pixels_read += run_length;
else {
if (map_table)
bits = map_table[bits];
while (run_length-- > 0 && pixels_read < dbuf_len) {
*destbuf++ = bits;
pixels_read++;
}
}
} else if (bits == 1) {
pixels_read += 2;
if (map_table)
bits = map_table[0];
else
bits = 0;
if (pixels_read <= dbuf_len) {
*destbuf++ = bits;
*destbuf++ = bits;
}
} else {
if (map_table)
bits = map_table[0];
else
bits = 0;
*destbuf++ = bits;
pixels_read ++;
}
}
}
}
}
if (get_bits(&gb, 8))
av_log(0, AV_LOG_ERROR, "DVBSub error: line overflow\n");
(*srcbuf) += (get_bits_count(&gb) + 7) >> 3;
return pixels_read;
}
| 22,133 |
FFmpeg | 3b9dd906d18f4cd801ceedd20d800a7e53074be9 | 0 | static void copy_block(uint16_t *pdest, uint16_t *psrc, int block_size, int pitch)
{
int y;
for (y = 0; y != block_size; y++, pdest += pitch, psrc += pitch)
memcpy(pdest, psrc, block_size * sizeof(pdest[0]));
}
| 22,134 |
FFmpeg | e706e2e775730db5dfa9103628cd70704dd13cef | 0 | static int ffm2_read_header(AVFormatContext *s)
{
FFMContext *ffm = s->priv_data;
AVStream *st;
AVIOContext *pb = s->pb;
AVCodecContext *codec, *dummy_codec = NULL;
AVCodecParameters *codecpar;
const AVCodecDescriptor *codec_desc;
int ret;
int f_main = 0, f_cprv = -1, f_stvi = -1, f_stau = -1;
AVCodec *enc;
char *buffer;
ffm->packet_size = avio_rb32(pb);
if (ffm->packet_size != FFM_PACKET_SIZE) {
av_log(s, AV_LOG_ERROR, "Invalid packet size %d, expected size was %d\n",
ffm->packet_size, FFM_PACKET_SIZE);
ret = AVERROR_INVALIDDATA;
goto fail;
}
ffm->write_index = avio_rb64(pb);
/* get also filesize */
if (pb->seekable) {
ffm->file_size = avio_size(pb);
if (ffm->write_index && 0)
adjust_write_index(s);
} else {
ffm->file_size = (UINT64_C(1) << 63) - 1;
}
dummy_codec = avcodec_alloc_context3(NULL);
while(!avio_feof(pb)) {
unsigned id = avio_rb32(pb);
unsigned size = avio_rb32(pb);
int64_t next = avio_tell(pb) + size;
char rc_eq_buf[128];
if(!id)
break;
switch(id) {
case MKBETAG('M', 'A', 'I', 'N'):
if (f_main++) {
ret = AVERROR(EINVAL);
goto fail;
}
avio_rb32(pb); /* nb_streams */
avio_rb32(pb); /* total bitrate */
break;
case MKBETAG('C', 'O', 'M', 'M'):
f_cprv = f_stvi = f_stau = 0;
st = avformat_new_stream(s, NULL);
if (!st) {
ret = AVERROR(ENOMEM);
goto fail;
}
avpriv_set_pts_info(st, 64, 1, 1000000);
codec = st->codec;
codecpar = st->codecpar;
/* generic info */
codecpar->codec_id = avio_rb32(pb);
codec_desc = avcodec_descriptor_get(codecpar->codec_id);
if (!codec_desc) {
av_log(s, AV_LOG_ERROR, "Invalid codec id: %d\n", codecpar->codec_id);
codecpar->codec_id = AV_CODEC_ID_NONE;
ret = AVERROR_INVALIDDATA;
goto fail;
}
codecpar->codec_type = avio_r8(pb);
if (codecpar->codec_type != codec_desc->type) {
av_log(s, AV_LOG_ERROR, "Codec type mismatch: expected %d, found %d\n",
codec_desc->type, codecpar->codec_type);
codecpar->codec_id = AV_CODEC_ID_NONE;
codecpar->codec_type = AVMEDIA_TYPE_UNKNOWN;
ret = AVERROR_INVALIDDATA;
goto fail;
}
codecpar->bit_rate = avio_rb32(pb);
if (codecpar->bit_rate < 0) {
av_log(codec, AV_LOG_ERROR, "Invalid bit rate %"PRId64"\n", codecpar->bit_rate);
ret = AVERROR_INVALIDDATA;
goto fail;
}
codec->flags = avio_rb32(pb);
codec->flags2 = avio_rb32(pb);
codec->debug = avio_rb32(pb);
if (codec->flags & AV_CODEC_FLAG_GLOBAL_HEADER) {
int size = avio_rb32(pb);
if (size < 0 || size >= FF_MAX_EXTRADATA_SIZE) {
av_log(s, AV_LOG_ERROR, "Invalid extradata size %d\n", size);
ret = AVERROR_INVALIDDATA;
goto fail;
}
codecpar->extradata = av_mallocz(size + AV_INPUT_BUFFER_PADDING_SIZE);
if (!codecpar->extradata)
return AVERROR(ENOMEM);
codecpar->extradata_size = size;
avio_read(pb, codecpar->extradata, size);
}
break;
case MKBETAG('S', 'T', 'V', 'I'):
if (f_stvi++) {
ret = AVERROR(EINVAL);
goto fail;
}
codec->time_base.num = avio_rb32(pb);
codec->time_base.den = avio_rb32(pb);
if (codec->time_base.num <= 0 || codec->time_base.den <= 0) {
av_log(s, AV_LOG_ERROR, "Invalid time base %d/%d\n",
codec->time_base.num, codec->time_base.den);
ret = AVERROR_INVALIDDATA;
goto fail;
}
codecpar->width = avio_rb16(pb);
codecpar->height = avio_rb16(pb);
ret = av_image_check_size(codecpar->width, codecpar->height, 0, s);
if (ret < 0)
goto fail;
avio_rb16(pb); // gop_size
codecpar->format = avio_rb32(pb);
if (!av_pix_fmt_desc_get(codecpar->format)) {
av_log(s, AV_LOG_ERROR, "Invalid pix fmt id: %d\n", codecpar->format);
codecpar->format = AV_PIX_FMT_NONE;
goto fail;
}
avio_r8(pb); // qmin
avio_r8(pb); // qmax
avio_r8(pb); // max_qdiff
avio_rb16(pb); // qcompress / 10000.0
avio_rb16(pb); // qblur / 10000.0
avio_rb32(pb); // bit_rate_tolerance
avio_get_str(pb, INT_MAX, rc_eq_buf, sizeof(rc_eq_buf));
avio_rb32(pb); // rc_max_rate
avio_rb32(pb); // rc_min_rate
avio_rb32(pb); // rc_buffer_size
avio_rb64(pb); // i_quant_factor
avio_rb64(pb); // b_quant_factor
avio_rb64(pb); // i_quant_offset
avio_rb64(pb); // b_quant_offset
avio_rb32(pb); // dct_algo
avio_rb32(pb); // strict_std_compliance
avio_rb32(pb); // max_b_frames
avio_rb32(pb); // mpeg_quant
avio_rb32(pb); // intra_dc_precision
avio_rb32(pb); // me_method
avio_rb32(pb); // mb_decision
avio_rb32(pb); // nsse_weight
avio_rb32(pb); // frame_skip_cmp
avio_rb64(pb); // rc_buffer_aggressivity
codecpar->codec_tag = avio_rb32(pb);
avio_r8(pb); // thread_count
avio_rb32(pb); // coder_type
avio_rb32(pb); // me_cmp
avio_rb32(pb); // me_subpel_quality
avio_rb32(pb); // me_range
avio_rb32(pb); // keyint_min
avio_rb32(pb); // scenechange_threshold
avio_rb32(pb); // b_frame_strategy
avio_rb64(pb); // qcompress
avio_rb64(pb); // qblur
avio_rb32(pb); // max_qdiff
avio_rb32(pb); // refs
break;
case MKBETAG('S', 'T', 'A', 'U'):
if (f_stau++) {
ret = AVERROR(EINVAL);
goto fail;
}
codecpar->sample_rate = avio_rb32(pb);
VALIDATE_PARAMETER(sample_rate, "sample rate", codecpar->sample_rate < 0)
codecpar->channels = avio_rl16(pb);
VALIDATE_PARAMETER(channels, "number of channels", codecpar->channels < 0)
codecpar->frame_size = avio_rl16(pb);
VALIDATE_PARAMETER(frame_size, "frame size", codecpar->frame_size < 0)
break;
case MKBETAG('C', 'P', 'R', 'V'):
if (f_cprv++) {
ret = AVERROR(EINVAL);
goto fail;
}
enc = avcodec_find_encoder(codecpar->codec_id);
if (enc && enc->priv_data_size && enc->priv_class) {
buffer = av_malloc(size + 1);
if (!buffer) {
ret = AVERROR(ENOMEM);
goto fail;
}
avio_get_str(pb, size, buffer, size + 1);
if ((ret = ffm_append_recommended_configuration(st, &buffer)) < 0)
goto fail;
}
break;
case MKBETAG('S', '2', 'V', 'I'):
if (f_stvi++ || !size) {
ret = AVERROR(EINVAL);
goto fail;
}
buffer = av_malloc(size);
if (!buffer) {
ret = AVERROR(ENOMEM);
goto fail;
}
avio_get_str(pb, INT_MAX, buffer, size);
// The lack of AVOptions support in AVCodecParameters makes this back and forth copying needed
avcodec_parameters_to_context(dummy_codec, codecpar);
av_set_options_string(dummy_codec, buffer, "=", ",");
avcodec_parameters_from_context(codecpar, dummy_codec);
if ((ret = ffm_append_recommended_configuration(st, &buffer)) < 0)
goto fail;
break;
case MKBETAG('S', '2', 'A', 'U'):
if (f_stau++ || !size) {
ret = AVERROR(EINVAL);
goto fail;
}
buffer = av_malloc(size);
if (!buffer) {
ret = AVERROR(ENOMEM);
goto fail;
}
avio_get_str(pb, INT_MAX, buffer, size);
// The lack of AVOptions support in AVCodecParameters makes this back and forth copying needed
avcodec_parameters_to_context(dummy_codec, codecpar);
av_set_options_string(dummy_codec, buffer, "=", ",");
avcodec_parameters_from_context(codecpar, dummy_codec);
if ((ret = ffm_append_recommended_configuration(st, &buffer)) < 0)
goto fail;
break;
}
avio_seek(pb, next, SEEK_SET);
}
/* get until end of block reached */
while ((avio_tell(pb) % ffm->packet_size) != 0 && !pb->eof_reached)
avio_r8(pb);
/* init packet demux */
ffm->packet_ptr = ffm->packet;
ffm->packet_end = ffm->packet;
ffm->frame_offset = 0;
ffm->dts = 0;
ffm->read_state = READ_HEADER;
ffm->first_packet = 1;
avcodec_free_context(&dummy_codec);
return 0;
fail:
avcodec_free_context(&dummy_codec);
return ret;
}
| 22,135 |
FFmpeg | f1ffb01ee9fd3a15c395c3cf6ff362ac5cd668d0 | 0 | static double get_audio_clock(VideoState *is)
{
double pts;
int hw_buf_size, bytes_per_sec;
pts = is->audio_clock;
hw_buf_size = audio_write_get_buf_size(is);
bytes_per_sec = 0;
if (is->audio_st) {
bytes_per_sec = is->audio_st->codec->sample_rate *
2 * is->audio_st->codec->channels;
}
if (bytes_per_sec)
pts -= (double)hw_buf_size / bytes_per_sec;
return pts;
}
| 22,136 |
FFmpeg | 7f4ec4364bc4a73036660c1c6a3c4801db524e9e | 0 | uint8_t *ff_stream_new_side_data(AVStream *st, enum AVPacketSideDataType type,
int size)
{
AVPacketSideData *sd, *tmp;
int i;
uint8_t *data = av_malloc(size);
if (!data)
return NULL;
for (i = 0; i < st->nb_side_data; i++) {
sd = &st->side_data[i];
if (sd->type == type) {
av_freep(&sd->data);
sd->data = data;
sd->size = size;
return sd->data;
}
}
tmp = av_realloc_array(st->side_data, st->nb_side_data + 1, sizeof(*tmp));
if (!tmp) {
av_freep(&data);
return NULL;
}
st->side_data = tmp;
st->nb_side_data++;
sd = &st->side_data[st->nb_side_data - 1];
sd->type = type;
sd->data = data;
sd->size = size;
return data;
}
| 22,138 |
qemu | 42a268c241183877192c376d03bd9b6d527407c7 | 0 | static void tcg_out_movcond32(TCGContext *s, TCGCond cond, TCGArg dest,
TCGArg c1, TCGArg c2, int const_c2,
TCGArg v1)
{
tcg_out_cmp(s, c1, c2, const_c2, 0);
if (have_cmov) {
tcg_out_modrm(s, OPC_CMOVCC | tcg_cond_to_jcc[cond], dest, v1);
} else {
int over = gen_new_label();
tcg_out_jxx(s, tcg_cond_to_jcc[tcg_invert_cond(cond)], over, 1);
tcg_out_mov(s, TCG_TYPE_I32, dest, v1);
tcg_out_label(s, over, s->code_ptr);
}
}
| 22,139 |
qemu | 850f49de9b57511dcaf2cd7e45059f8f38fadf3b | 0 | qcrypto_block_luks_open(QCryptoBlock *block,
QCryptoBlockOpenOptions *options,
const char *optprefix,
QCryptoBlockReadFunc readfunc,
void *opaque,
unsigned int flags,
Error **errp)
{
QCryptoBlockLUKS *luks;
Error *local_err = NULL;
int ret = 0;
size_t i;
ssize_t rv;
uint8_t *masterkey = NULL;
size_t masterkeylen;
char *ivgen_name, *ivhash_name;
QCryptoCipherMode ciphermode;
QCryptoCipherAlgorithm cipheralg;
QCryptoIVGenAlgorithm ivalg;
QCryptoCipherAlgorithm ivcipheralg;
QCryptoHashAlgorithm hash;
QCryptoHashAlgorithm ivhash;
char *password = NULL;
if (!(flags & QCRYPTO_BLOCK_OPEN_NO_IO)) {
if (!options->u.luks.key_secret) {
error_setg(errp, "Parameter '%skey-secret' is required for cipher",
optprefix ? optprefix : "");
return -1;
}
password = qcrypto_secret_lookup_as_utf8(
options->u.luks.key_secret, errp);
if (!password) {
return -1;
}
}
luks = g_new0(QCryptoBlockLUKS, 1);
block->opaque = luks;
/* Read the entire LUKS header, minus the key material from
* the underlying device */
rv = readfunc(block, 0,
(uint8_t *)&luks->header,
sizeof(luks->header),
opaque,
errp);
if (rv < 0) {
ret = rv;
goto fail;
}
/* The header is always stored in big-endian format, so
* convert everything to native */
be16_to_cpus(&luks->header.version);
be32_to_cpus(&luks->header.payload_offset);
be32_to_cpus(&luks->header.key_bytes);
be32_to_cpus(&luks->header.master_key_iterations);
for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
be32_to_cpus(&luks->header.key_slots[i].active);
be32_to_cpus(&luks->header.key_slots[i].iterations);
be32_to_cpus(&luks->header.key_slots[i].key_offset);
be32_to_cpus(&luks->header.key_slots[i].stripes);
}
if (memcmp(luks->header.magic, qcrypto_block_luks_magic,
QCRYPTO_BLOCK_LUKS_MAGIC_LEN) != 0) {
error_setg(errp, "Volume is not in LUKS format");
ret = -EINVAL;
goto fail;
}
if (luks->header.version != QCRYPTO_BLOCK_LUKS_VERSION) {
error_setg(errp, "LUKS version %" PRIu32 " is not supported",
luks->header.version);
ret = -ENOTSUP;
goto fail;
}
/*
* The cipher_mode header contains a string that we have
* to further parse, of the format
*
* <cipher-mode>-<iv-generator>[:<iv-hash>]
*
* eg cbc-essiv:sha256, cbc-plain64
*/
ivgen_name = strchr(luks->header.cipher_mode, '-');
if (!ivgen_name) {
ret = -EINVAL;
error_setg(errp, "Unexpected cipher mode string format %s",
luks->header.cipher_mode);
goto fail;
}
*ivgen_name = '\0';
ivgen_name++;
ivhash_name = strchr(ivgen_name, ':');
if (!ivhash_name) {
ivhash = 0;
} else {
*ivhash_name = '\0';
ivhash_name++;
ivhash = qcrypto_block_luks_hash_name_lookup(ivhash_name,
&local_err);
if (local_err) {
ret = -ENOTSUP;
error_propagate(errp, local_err);
goto fail;
}
}
ciphermode = qcrypto_block_luks_cipher_mode_lookup(luks->header.cipher_mode,
&local_err);
if (local_err) {
ret = -ENOTSUP;
error_propagate(errp, local_err);
goto fail;
}
cipheralg = qcrypto_block_luks_cipher_name_lookup(luks->header.cipher_name,
ciphermode,
luks->header.key_bytes,
&local_err);
if (local_err) {
ret = -ENOTSUP;
error_propagate(errp, local_err);
goto fail;
}
hash = qcrypto_block_luks_hash_name_lookup(luks->header.hash_spec,
&local_err);
if (local_err) {
ret = -ENOTSUP;
error_propagate(errp, local_err);
goto fail;
}
ivalg = qcrypto_block_luks_ivgen_name_lookup(ivgen_name,
&local_err);
if (local_err) {
ret = -ENOTSUP;
error_propagate(errp, local_err);
goto fail;
}
if (ivalg == QCRYPTO_IVGEN_ALG_ESSIV) {
if (!ivhash_name) {
ret = -EINVAL;
error_setg(errp, "Missing IV generator hash specification");
goto fail;
}
ivcipheralg = qcrypto_block_luks_essiv_cipher(cipheralg,
ivhash,
&local_err);
if (local_err) {
ret = -ENOTSUP;
error_propagate(errp, local_err);
goto fail;
}
} else {
/* Note we parsed the ivhash_name earlier in the cipher_mode
* spec string even with plain/plain64 ivgens, but we
* will ignore it, since it is irrelevant for these ivgens.
* This is for compat with dm-crypt which will silently
* ignore hash names with these ivgens rather than report
* an error about the invalid usage
*/
ivcipheralg = cipheralg;
}
if (!(flags & QCRYPTO_BLOCK_OPEN_NO_IO)) {
/* Try to find which key slot our password is valid for
* and unlock the master key from that slot.
*/
if (qcrypto_block_luks_find_key(block,
password,
cipheralg, ciphermode,
hash,
ivalg,
ivcipheralg,
ivhash,
&masterkey, &masterkeylen,
readfunc, opaque,
errp) < 0) {
ret = -EACCES;
goto fail;
}
/* We have a valid master key now, so can setup the
* block device payload decryption objects
*/
block->kdfhash = hash;
block->niv = qcrypto_cipher_get_iv_len(cipheralg,
ciphermode);
block->ivgen = qcrypto_ivgen_new(ivalg,
ivcipheralg,
ivhash,
masterkey, masterkeylen,
errp);
if (!block->ivgen) {
ret = -ENOTSUP;
goto fail;
}
block->cipher = qcrypto_cipher_new(cipheralg,
ciphermode,
masterkey, masterkeylen,
errp);
if (!block->cipher) {
ret = -ENOTSUP;
goto fail;
}
}
block->payload_offset = luks->header.payload_offset *
QCRYPTO_BLOCK_LUKS_SECTOR_SIZE;
luks->cipher_alg = cipheralg;
luks->cipher_mode = ciphermode;
luks->ivgen_alg = ivalg;
luks->ivgen_hash_alg = ivhash;
luks->hash_alg = hash;
g_free(masterkey);
g_free(password);
return 0;
fail:
g_free(masterkey);
qcrypto_cipher_free(block->cipher);
qcrypto_ivgen_free(block->ivgen);
g_free(luks);
g_free(password);
return ret;
}
| 22,141 |
qemu | 8cc580f6a0d8c0e2f590c1472cf5cd8e51761760 | 0 | static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, bool is64)
{
TCGReg datalo, datahi, addrlo;
TCGReg addrhi __attribute__((unused));
TCGMemOpIdx oi;
TCGMemOp opc;
#if defined(CONFIG_SOFTMMU)
int mem_index;
TCGMemOp s_bits;
tcg_insn_unit *label_ptr[2];
#endif
datalo = *args++;
datahi = (TCG_TARGET_REG_BITS == 32 && is64 ? *args++ : 0);
addrlo = *args++;
addrhi = (TARGET_LONG_BITS > TCG_TARGET_REG_BITS ? *args++ : 0);
oi = *args++;
opc = get_memop(oi);
#if defined(CONFIG_SOFTMMU)
mem_index = get_mmuidx(oi);
s_bits = opc & MO_SIZE;
tcg_out_tlb_load(s, addrlo, addrhi, mem_index, s_bits,
label_ptr, offsetof(CPUTLBEntry, addr_read));
/* TLB Hit. */
tcg_out_qemu_ld_direct(s, datalo, datahi, TCG_REG_L1, -1, 0, 0, opc);
/* Record the current context of a load into ldst label */
add_qemu_ldst_label(s, true, oi, datalo, datahi, addrlo, addrhi,
s->code_ptr, label_ptr);
#else
{
int32_t offset = GUEST_BASE;
TCGReg base = addrlo;
int index = -1;
int seg = 0;
/* For a 32-bit guest, the high 32 bits may contain garbage.
We can do this with the ADDR32 prefix if we're not using
a guest base, or when using segmentation. Otherwise we
need to zero-extend manually. */
if (GUEST_BASE == 0 || guest_base_flags) {
seg = guest_base_flags;
offset = 0;
if (TCG_TARGET_REG_BITS > TARGET_LONG_BITS) {
seg |= P_ADDR32;
}
} else if (TCG_TARGET_REG_BITS == 64) {
if (TARGET_LONG_BITS == 32) {
tcg_out_ext32u(s, TCG_REG_L0, base);
base = TCG_REG_L0;
}
if (offset != GUEST_BASE) {
tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_L1, GUEST_BASE);
index = TCG_REG_L1;
offset = 0;
}
}
tcg_out_qemu_ld_direct(s, datalo, datahi,
base, index, offset, seg, opc);
}
#endif
}
| 22,144 |
qemu | 26a83ad0e793465b74a8b06a65f2f6fdc5615413 | 0 | void memory_region_init_io(MemoryRegion *mr,
const MemoryRegionOps *ops,
void *opaque,
const char *name,
uint64_t size)
{
memory_region_init(mr, name, size);
mr->ops = ops;
mr->opaque = opaque;
mr->terminates = true;
mr->backend_registered = false;
}
| 22,145 |
qemu | b2bedb214469af55179d907a60cd67fed6b0779e | 0 | static uint32_t bonito_spciconf_readw(void *opaque, target_phys_addr_t addr)
{
PCIBonitoState *s = opaque;
uint32_t pciaddr;
uint16_t status;
DPRINTF("bonito_spciconf_readw "TARGET_FMT_plx" \n", addr);
assert((addr&0x1)==0);
pciaddr = bonito_sbridge_pciaddr(s, addr);
if (pciaddr == 0xffffffff) {
return 0xffff;
}
/* set the pci address in s->config_reg */
s->pcihost->config_reg = (pciaddr) | (1u << 31);
/* clear PCI_STATUS_REC_MASTER_ABORT and PCI_STATUS_REC_TARGET_ABORT */
status = pci_get_word(s->dev.config + PCI_STATUS);
status &= ~(PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT);
pci_set_word(s->dev.config + PCI_STATUS, status);
return pci_data_read(s->pcihost->bus, s->pcihost->config_reg, 2);
}
| 22,146 |
qemu | a8170e5e97ad17ca169c64ba87ae2f53850dab4c | 0 | static uint64_t uart_read(void *opaque, target_phys_addr_t offset,
unsigned size)
{
UartState *s = (UartState *)opaque;
uint32_t c = 0;
offset >>= 2;
if (offset >= R_MAX) {
return 0;
} else if (offset == R_TX_RX) {
uart_read_rx_fifo(s, &c);
return c;
}
return s->r[offset];
}
| 22,147 |
FFmpeg | ac47e014bbaf5163871a8beb7522015e0bc27615 | 0 | static int adts_write_packet(AVFormatContext *s, AVPacket *pkt)
{
ADTSContext *adts = s->priv_data;
AVIOContext *pb = s->pb;
uint8_t buf[ADTS_HEADER_SIZE];
if (!pkt->size)
return 0;
if (adts->write_adts) {
ff_adts_write_frame_header(adts, buf, pkt->size, adts->pce_size);
avio_write(pb, buf, ADTS_HEADER_SIZE);
if (adts->pce_size) {
avio_write(pb, adts->pce_data, adts->pce_size);
adts->pce_size = 0;
}
}
avio_write(pb, pkt->data, pkt->size);
avio_flush(pb);
return 0;
}
| 22,148 |
qemu | f6b4fc8b23b1154577c72937b70e565716bb0a60 | 0 | static int check_opts(QemuOptsList *opts_list, QDict *args)
{
assert(!opts_list->desc->name);
return 0;
}
| 22,149 |
qemu | b3ce84fea466f3bca2ff85d158744f00c0f429bd | 0 | static int qdev_add_one_global(QemuOpts *opts, void *opaque)
{
GlobalProperty *g;
ObjectClass *oc;
g = g_malloc0(sizeof(*g));
g->driver = qemu_opt_get(opts, "driver");
g->property = qemu_opt_get(opts, "property");
g->value = qemu_opt_get(opts, "value");
oc = object_class_dynamic_cast(object_class_by_name(g->driver),
TYPE_DEVICE);
if (oc) {
DeviceClass *dc = DEVICE_CLASS(oc);
if (dc->hotpluggable) {
/* If hotpluggable then skip not_used checking. */
g->not_used = false;
} else {
/* Maybe a typo. */
g->not_used = true;
}
} else {
/* Maybe a typo. */
g->not_used = true;
}
qdev_prop_register_global(g);
return 0;
}
| 22,150 |
qemu | 65c0f1e9558c7c762cdb333406243fff1d687117 | 0 | static QObject *parse_array(JSONParserContext *ctxt, QList **tokens, va_list *ap)
{
QList *list = NULL;
QObject *token, *peek;
QList *working = qlist_copy(*tokens);
token = qlist_pop(working);
if (token == NULL) {
goto out;
}
if (!token_is_operator(token, '[')) {
goto out;
}
qobject_decref(token);
token = NULL;
list = qlist_new();
peek = qlist_peek(working);
if (peek == NULL) {
parse_error(ctxt, NULL, "premature EOI");
goto out;
}
if (!token_is_operator(peek, ']')) {
QObject *obj;
obj = parse_value(ctxt, &working, ap);
if (obj == NULL) {
parse_error(ctxt, token, "expecting value");
goto out;
}
qlist_append_obj(list, obj);
token = qlist_pop(working);
if (token == NULL) {
parse_error(ctxt, NULL, "premature EOI");
goto out;
}
while (!token_is_operator(token, ']')) {
if (!token_is_operator(token, ',')) {
parse_error(ctxt, token, "expected separator in list");
goto out;
}
qobject_decref(token);
token = NULL;
obj = parse_value(ctxt, &working, ap);
if (obj == NULL) {
parse_error(ctxt, token, "expecting value");
goto out;
}
qlist_append_obj(list, obj);
token = qlist_pop(working);
if (token == NULL) {
parse_error(ctxt, NULL, "premature EOI");
goto out;
}
}
qobject_decref(token);
token = NULL;
} else {
token = qlist_pop(working);
qobject_decref(token);
token = NULL;
}
QDECREF(*tokens);
*tokens = working;
return QOBJECT(list);
out:
qobject_decref(token);
QDECREF(working);
QDECREF(list);
return NULL;
}
| 22,152 |
qemu | b08d0ea0446aa91f373c9df4254ba3bc4ee84098 | 0 | static int scsi_disk_emulate_command(SCSIDiskReq *r)
{
SCSIRequest *req = &r->req;
SCSIDiskState *s = DO_UPCAST(SCSIDiskState, qdev, req->dev);
uint64_t nb_sectors;
uint8_t *outbuf;
int buflen = 0;
if (!r->iov.iov_base) {
/*
* FIXME: we shouldn't return anything bigger than 4k, but the code
* requires the buffer to be as big as req->cmd.xfer in several
* places. So, do not allow CDBs with a very large ALLOCATION
* LENGTH. The real fix would be to modify scsi_read_data and
* dma_buf_read, so that they return data beyond the buflen
* as all zeros.
*/
if (req->cmd.xfer > 65536) {
goto illegal_request;
}
r->buflen = MAX(4096, req->cmd.xfer);
r->iov.iov_base = qemu_blockalign(s->qdev.conf.bs, r->buflen);
}
outbuf = r->iov.iov_base;
switch (req->cmd.buf[0]) {
case TEST_UNIT_READY:
assert(!s->tray_open && bdrv_is_inserted(s->qdev.conf.bs));
break;
case INQUIRY:
buflen = scsi_disk_emulate_inquiry(req, outbuf);
if (buflen < 0) {
goto illegal_request;
}
break;
case MODE_SENSE:
case MODE_SENSE_10:
buflen = scsi_disk_emulate_mode_sense(r, outbuf);
if (buflen < 0) {
goto illegal_request;
}
break;
case READ_TOC:
buflen = scsi_disk_emulate_read_toc(req, outbuf);
if (buflen < 0) {
goto illegal_request;
}
break;
case RESERVE:
if (req->cmd.buf[1] & 1) {
goto illegal_request;
}
break;
case RESERVE_10:
if (req->cmd.buf[1] & 3) {
goto illegal_request;
}
break;
case RELEASE:
if (req->cmd.buf[1] & 1) {
goto illegal_request;
}
break;
case RELEASE_10:
if (req->cmd.buf[1] & 3) {
goto illegal_request;
}
break;
case START_STOP:
if (scsi_disk_emulate_start_stop(r) < 0) {
return -1;
}
break;
case ALLOW_MEDIUM_REMOVAL:
s->tray_locked = req->cmd.buf[4] & 1;
bdrv_lock_medium(s->qdev.conf.bs, req->cmd.buf[4] & 1);
break;
case READ_CAPACITY_10:
/* The normal LEN field for this command is zero. */
memset(outbuf, 0, 8);
bdrv_get_geometry(s->qdev.conf.bs, &nb_sectors);
if (!nb_sectors) {
scsi_check_condition(r, SENSE_CODE(LUN_NOT_READY));
return -1;
}
if ((req->cmd.buf[8] & 1) == 0 && req->cmd.lba) {
goto illegal_request;
}
nb_sectors /= s->qdev.blocksize / 512;
/* Returned value is the address of the last sector. */
nb_sectors--;
/* Remember the new size for read/write sanity checking. */
s->qdev.max_lba = nb_sectors;
/* Clip to 2TB, instead of returning capacity modulo 2TB. */
if (nb_sectors > UINT32_MAX) {
nb_sectors = UINT32_MAX;
}
outbuf[0] = (nb_sectors >> 24) & 0xff;
outbuf[1] = (nb_sectors >> 16) & 0xff;
outbuf[2] = (nb_sectors >> 8) & 0xff;
outbuf[3] = nb_sectors & 0xff;
outbuf[4] = 0;
outbuf[5] = 0;
outbuf[6] = s->qdev.blocksize >> 8;
outbuf[7] = 0;
buflen = 8;
break;
case REQUEST_SENSE:
/* Just return "NO SENSE". */
buflen = scsi_build_sense(NULL, 0, outbuf, r->buflen,
(req->cmd.buf[1] & 1) == 0);
break;
case MECHANISM_STATUS:
buflen = scsi_emulate_mechanism_status(s, outbuf);
if (buflen < 0) {
goto illegal_request;
}
break;
case GET_CONFIGURATION:
buflen = scsi_get_configuration(s, outbuf);
if (buflen < 0) {
goto illegal_request;
}
break;
case GET_EVENT_STATUS_NOTIFICATION:
buflen = scsi_get_event_status_notification(s, r, outbuf);
if (buflen < 0) {
goto illegal_request;
}
break;
case READ_DISC_INFORMATION:
buflen = scsi_read_disc_information(s, r, outbuf);
if (buflen < 0) {
goto illegal_request;
}
break;
case READ_DVD_STRUCTURE:
buflen = scsi_read_dvd_structure(s, r, outbuf);
if (buflen < 0) {
goto illegal_request;
}
break;
case SERVICE_ACTION_IN_16:
/* Service Action In subcommands. */
if ((req->cmd.buf[1] & 31) == SAI_READ_CAPACITY_16) {
DPRINTF("SAI READ CAPACITY(16)\n");
memset(outbuf, 0, req->cmd.xfer);
bdrv_get_geometry(s->qdev.conf.bs, &nb_sectors);
if (!nb_sectors) {
scsi_check_condition(r, SENSE_CODE(LUN_NOT_READY));
return -1;
}
if ((req->cmd.buf[14] & 1) == 0 && req->cmd.lba) {
goto illegal_request;
}
nb_sectors /= s->qdev.blocksize / 512;
/* Returned value is the address of the last sector. */
nb_sectors--;
/* Remember the new size for read/write sanity checking. */
s->qdev.max_lba = nb_sectors;
outbuf[0] = (nb_sectors >> 56) & 0xff;
outbuf[1] = (nb_sectors >> 48) & 0xff;
outbuf[2] = (nb_sectors >> 40) & 0xff;
outbuf[3] = (nb_sectors >> 32) & 0xff;
outbuf[4] = (nb_sectors >> 24) & 0xff;
outbuf[5] = (nb_sectors >> 16) & 0xff;
outbuf[6] = (nb_sectors >> 8) & 0xff;
outbuf[7] = nb_sectors & 0xff;
outbuf[8] = 0;
outbuf[9] = 0;
outbuf[10] = s->qdev.blocksize >> 8;
outbuf[11] = 0;
outbuf[12] = 0;
outbuf[13] = get_physical_block_exp(&s->qdev.conf);
/* set TPE bit if the format supports discard */
if (s->qdev.conf.discard_granularity) {
outbuf[14] = 0x80;
}
/* Protection, exponent and lowest lba field left blank. */
buflen = req->cmd.xfer;
break;
}
DPRINTF("Unsupported Service Action In\n");
goto illegal_request;
case SYNCHRONIZE_CACHE:
/* The request is used as the AIO opaque value, so add a ref. */
scsi_req_ref(&r->req);
bdrv_acct_start(s->qdev.conf.bs, &r->acct, 0, BDRV_ACCT_FLUSH);
r->req.aiocb = bdrv_aio_flush(s->qdev.conf.bs, scsi_aio_complete, r);
return 0;
case SEEK_10:
DPRINTF("Seek(10) (sector %" PRId64 ")\n", r->req.cmd.lba);
if (r->req.cmd.lba > s->qdev.max_lba) {
goto illegal_lba;
}
break;
#if 0
case MODE_SELECT:
DPRINTF("Mode Select(6) (len %lu)\n", (long)r->req.cmd.xfer);
/* We don't support mode parameter changes.
Allow the mode parameter header + block descriptors only. */
if (r->req.cmd.xfer > 12) {
goto illegal_request;
}
break;
case MODE_SELECT_10:
DPRINTF("Mode Select(10) (len %lu)\n", (long)r->req.cmd.xfer);
/* We don't support mode parameter changes.
Allow the mode parameter header + block descriptors only. */
if (r->req.cmd.xfer > 16) {
goto illegal_request;
}
break;
#endif
case WRITE_SAME_10:
nb_sectors = lduw_be_p(&req->cmd.buf[7]);
goto write_same;
case WRITE_SAME_16:
nb_sectors = ldl_be_p(&req->cmd.buf[10]) & 0xffffffffULL;
write_same:
if (r->req.cmd.lba > s->qdev.max_lba) {
goto illegal_lba;
}
/*
* We only support WRITE SAME with the unmap bit set for now.
*/
if (!(req->cmd.buf[1] & 0x8)) {
goto illegal_request;
}
/* The request is used as the AIO opaque value, so add a ref. */
scsi_req_ref(&r->req);
r->req.aiocb = bdrv_aio_discard(s->qdev.conf.bs,
r->req.cmd.lba * (s->qdev.blocksize / 512),
nb_sectors * (s->qdev.blocksize / 512),
scsi_aio_complete, r);
return 0;
default:
scsi_check_condition(r, SENSE_CODE(INVALID_OPCODE));
return -1;
}
assert(r->sector_count == 0);
buflen = MIN(buflen, req->cmd.xfer);
return buflen;
illegal_request:
if (r->req.status == -1) {
scsi_check_condition(r, SENSE_CODE(INVALID_FIELD));
}
return -1;
illegal_lba:
scsi_check_condition(r, SENSE_CODE(LBA_OUT_OF_RANGE));
return 0;
}
| 22,153 |
qemu | 80376c3fc2c38fdd45354e4b0eb45031f35587ed | 0 | void qbus_create_inplace(BusState *bus, BusInfo *info,
DeviceState *parent, const char *name)
{
char *buf;
int i,len;
bus->info = info;
bus->parent = parent;
if (name) {
/* use supplied name */
bus->name = qemu_strdup(name);
} else if (parent && parent->id) {
/* parent device has id -> use it for bus name */
len = strlen(parent->id) + 16;
buf = qemu_malloc(len);
snprintf(buf, len, "%s.%d", parent->id, parent->num_child_bus);
bus->name = buf;
} else {
/* no id -> use lowercase bus type for bus name */
len = strlen(info->name) + 16;
buf = qemu_malloc(len);
len = snprintf(buf, len, "%s.%d", info->name,
parent ? parent->num_child_bus : 0);
for (i = 0; i < len; i++)
buf[i] = qemu_tolower(buf[i]);
bus->name = buf;
}
QLIST_INIT(&bus->children);
if (parent) {
QLIST_INSERT_HEAD(&parent->child_bus, bus, sibling);
parent->num_child_bus++;
}
}
| 22,154 |
qemu | a3f1afb43a09e4577571c044c48f2ba9e6e4ad06 | 0 | int qcow2_cache_put(BlockDriverState *bs, Qcow2Cache *c, void **table)
{
int i = qcow2_cache_get_table_idx(bs, c, *table);
if (c->entries[i].offset == 0) {
return -ENOENT;
}
c->entries[i].ref--;
*table = NULL;
if (c->entries[i].ref == 0) {
c->entries[i].lru_counter = ++c->lru_counter;
}
assert(c->entries[i].ref >= 0);
return 0;
}
| 22,156 |
qemu | cd42d5b23691ad73edfd6dbcfc935a960a9c5a65 | 0 | void gen_intermediate_code_internal(LM32CPU *cpu,
TranslationBlock *tb, bool search_pc)
{
CPUState *cs = CPU(cpu);
CPULM32State *env = &cpu->env;
struct DisasContext ctx, *dc = &ctx;
uint16_t *gen_opc_end;
uint32_t pc_start;
int j, lj;
uint32_t next_page_start;
int num_insns;
int max_insns;
pc_start = tb->pc;
dc->features = cpu->features;
dc->num_breakpoints = cpu->num_breakpoints;
dc->num_watchpoints = cpu->num_watchpoints;
dc->tb = tb;
gen_opc_end = tcg_ctx.gen_opc_buf + OPC_MAX_SIZE;
dc->is_jmp = DISAS_NEXT;
dc->pc = pc_start;
dc->singlestep_enabled = cs->singlestep_enabled;
if (pc_start & 3) {
qemu_log_mask(LOG_GUEST_ERROR,
"unaligned PC=%x. Ignoring lowest bits.\n", pc_start);
pc_start &= ~3;
}
next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
lj = -1;
num_insns = 0;
max_insns = tb->cflags & CF_COUNT_MASK;
if (max_insns == 0) {
max_insns = CF_COUNT_MASK;
}
gen_tb_start();
do {
check_breakpoint(env, dc);
if (search_pc) {
j = tcg_ctx.gen_opc_ptr - tcg_ctx.gen_opc_buf;
if (lj < j) {
lj++;
while (lj < j) {
tcg_ctx.gen_opc_instr_start[lj++] = 0;
}
}
tcg_ctx.gen_opc_pc[lj] = dc->pc;
tcg_ctx.gen_opc_instr_start[lj] = 1;
tcg_ctx.gen_opc_icount[lj] = num_insns;
}
/* Pretty disas. */
LOG_DIS("%8.8x:\t", dc->pc);
if (num_insns + 1 == max_insns && (tb->cflags & CF_LAST_IO)) {
gen_io_start();
}
decode(dc, cpu_ldl_code(env, dc->pc));
dc->pc += 4;
num_insns++;
} while (!dc->is_jmp
&& tcg_ctx.gen_opc_ptr < gen_opc_end
&& !cs->singlestep_enabled
&& !singlestep
&& (dc->pc < next_page_start)
&& num_insns < max_insns);
if (tb->cflags & CF_LAST_IO) {
gen_io_end();
}
if (unlikely(cs->singlestep_enabled)) {
if (dc->is_jmp == DISAS_NEXT) {
tcg_gen_movi_tl(cpu_pc, dc->pc);
}
t_gen_raise_exception(dc, EXCP_DEBUG);
} else {
switch (dc->is_jmp) {
case DISAS_NEXT:
gen_goto_tb(dc, 1, dc->pc);
break;
default:
case DISAS_JUMP:
case DISAS_UPDATE:
/* indicate that the hash table must be used
to find the next TB */
tcg_gen_exit_tb(0);
break;
case DISAS_TB_JUMP:
/* nothing more to generate */
break;
}
}
gen_tb_end(tb, num_insns);
*tcg_ctx.gen_opc_ptr = INDEX_op_end;
if (search_pc) {
j = tcg_ctx.gen_opc_ptr - tcg_ctx.gen_opc_buf;
lj++;
while (lj <= j) {
tcg_ctx.gen_opc_instr_start[lj++] = 0;
}
} else {
tb->size = dc->pc - pc_start;
tb->icount = num_insns;
}
#ifdef DEBUG_DISAS
if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) {
qemu_log("\n");
log_target_disas(env, pc_start, dc->pc - pc_start, 0);
qemu_log("\nisize=%d osize=%td\n",
dc->pc - pc_start, tcg_ctx.gen_opc_ptr -
tcg_ctx.gen_opc_buf);
}
#endif
}
| 22,157 |
qemu | 3ab493de4c524926bb75b04765b644f9189ccf01 | 0 | void helper_lsl(void)
{
unsigned int selector, limit;
uint32_t e1, e2;
CC_SRC = cc_table[CC_OP].compute_all() & ~CC_Z;
selector = T0 & 0xffff;
if (load_segment(&e1, &e2, selector) != 0)
return;
limit = (e1 & 0xffff) | (e2 & 0x000f0000);
if (e2 & (1 << 23))
limit = (limit << 12) | 0xfff;
T1 = limit;
CC_SRC |= CC_Z;
}
| 22,158 |
FFmpeg | ce2f9fdb0a92956aedfa2c564d1374a2f1eebfbd | 0 | static int parse_optional_info(DCACoreDecoder *s)
{
DCAContext *dca = s->avctx->priv_data;
int ret = -1;
// Time code stamp
if (s->ts_present)
skip_bits_long(&s->gb, 32);
// Auxiliary data
if (s->aux_present && (ret = parse_aux_data(s)) < 0
&& (s->avctx->err_recognition & AV_EF_EXPLODE))
return ret;
if (ret < 0)
s->prim_dmix_embedded = 0;
// Core extensions
if (s->ext_audio_present && !dca->core_only) {
int sync_pos = FFMIN(s->frame_size / 4, s->gb.size_in_bits / 32) - 1;
int last_pos = get_bits_count(&s->gb) / 32;
int size, dist;
// Search for extension sync words aligned on 4-byte boundary. Search
// must be done backwards from the end of core frame to work around
// sync word aliasing issues.
switch (s->ext_audio_type) {
case EXT_AUDIO_XCH:
if (dca->request_channel_layout)
break;
// The distance between XCH sync word and end of the core frame
// must be equal to XCH frame size. Off by one error is allowed for
// compatibility with legacy bitstreams. Minimum XCH frame size is
// 96 bytes. AMODE and PCHS are further checked to reduce
// probability of alias sync detection.
for (; sync_pos >= last_pos; sync_pos--) {
if (AV_RB32(s->gb.buffer + sync_pos * 4) == DCA_SYNCWORD_XCH) {
s->gb.index = (sync_pos + 1) * 32;
size = get_bits(&s->gb, 10) + 1;
dist = s->frame_size - sync_pos * 4;
if (size >= 96
&& (size == dist || size - 1 == dist)
&& get_bits(&s->gb, 7) == 0x08) {
s->xch_pos = get_bits_count(&s->gb);
break;
}
}
}
if (s->avctx->err_recognition & AV_EF_EXPLODE) {
av_log(s->avctx, AV_LOG_ERROR, "XCH sync word not found\n");
return AVERROR_INVALIDDATA;
}
break;
case EXT_AUDIO_X96:
// The distance between X96 sync word and end of the core frame
// must be equal to X96 frame size. Minimum X96 frame size is 96
// bytes.
for (; sync_pos >= last_pos; sync_pos--) {
if (AV_RB32(s->gb.buffer + sync_pos * 4) == DCA_SYNCWORD_X96) {
s->gb.index = (sync_pos + 1) * 32;
size = get_bits(&s->gb, 12) + 1;
dist = s->frame_size - sync_pos * 4;
if (size >= 96 && size == dist) {
s->x96_pos = get_bits_count(&s->gb);
break;
}
}
}
if (s->avctx->err_recognition & AV_EF_EXPLODE) {
av_log(s->avctx, AV_LOG_ERROR, "X96 sync word not found\n");
return AVERROR_INVALIDDATA;
}
break;
case EXT_AUDIO_XXCH:
if (dca->request_channel_layout)
break;
// XXCH frame header CRC must be valid. Minimum XXCH frame header
// size is 11 bytes.
for (; sync_pos >= last_pos; sync_pos--) {
if (AV_RB32(s->gb.buffer + sync_pos * 4) == DCA_SYNCWORD_XXCH) {
s->gb.index = (sync_pos + 1) * 32;
size = get_bits(&s->gb, 6) + 1;
if (size >= 11 &&
!ff_dca_check_crc(&s->gb, (sync_pos + 1) * 32,
sync_pos * 32 + size * 8)) {
s->xxch_pos = sync_pos * 32;
break;
}
}
}
if (s->avctx->err_recognition & AV_EF_EXPLODE) {
av_log(s->avctx, AV_LOG_ERROR, "XXCH sync word not found\n");
return AVERROR_INVALIDDATA;
}
break;
}
}
return 0;
}
| 22,159 |
qemu | dd673288a8ff73ad77fcc1c255486d2466a772e1 | 0 | static void apic_reset_common(DeviceState *d)
{
APICCommonState *s = DO_UPCAST(APICCommonState, busdev.qdev, d);
APICCommonClass *info = APIC_COMMON_GET_CLASS(s);
bool bsp;
bsp = cpu_is_bsp(s->cpu_env);
s->apicbase = 0xfee00000 |
(bsp ? MSR_IA32_APICBASE_BSP : 0) | MSR_IA32_APICBASE_ENABLE;
s->vapic_paddr = 0;
info->vapic_base_update(s);
apic_init_reset(d);
if (bsp) {
/*
* LINT0 delivery mode on CPU #0 is set to ExtInt at initialization
* time typically by BIOS, so PIC interrupt can be delivered to the
* processor when local APIC is enabled.
*/
s->lvt[APIC_LVT_LINT0] = 0x700;
}
}
| 22,160 |
qemu | 4a9f9cb24de52e93aae7539a004dd20314ca1c0c | 0 | uint32_t HELPER(neon_max_f32)(uint32_t a, uint32_t b)
{
float32 f0 = make_float32(a);
float32 f1 = make_float32(b);
return (float32_compare_quiet(f0, f1, NFS) == 1) ? a : b;
}
| 22,161 |
qemu | 973e7170dddefb491a48df5cba33b2ae151013a0 | 1 | static void virtqueue_map_desc(unsigned int *p_num_sg, hwaddr *addr, struct iovec *iov,
unsigned int max_num_sg, bool is_write,
hwaddr pa, size_t sz)
{
unsigned num_sg = *p_num_sg;
assert(num_sg <= max_num_sg);
if (!sz) {
error_report("virtio: zero sized buffers are not allowed");
while (sz) {
hwaddr len = sz;
if (num_sg == max_num_sg) {
error_report("virtio: too many write descriptors in indirect table");
iov[num_sg].iov_base = cpu_physical_memory_map(pa, &len, is_write);
iov[num_sg].iov_len = len;
addr[num_sg] = pa;
sz -= len;
pa += len;
num_sg++;
*p_num_sg = num_sg; | 22,162 |
qemu | 60fe637bf0e4d7989e21e50f52526444765c63b4 | 1 | void tcp_start_outgoing_migration(MigrationState *s, const char *host_port, Error **errp)
{
inet_nonblocking_connect(host_port, tcp_wait_for_connect, s, errp);
}
| 22,163 |
FFmpeg | 369cb092ecbbaff20bb0a2a1d60536c3bc04a8f0 | 1 | static void generate_silence(uint8_t* buf, enum AVSampleFormat sample_fmt, size_t size)
{
int fill_char = 0x00;
if (sample_fmt == AV_SAMPLE_FMT_U8)
fill_char = 0x80;
memset(buf, fill_char, size);
}
| 22,164 |
qemu | 53593e90d13264dc88b3281ddf75ceaa641df05a | 1 | static void gen_check_sr(DisasContext *dc, uint32_t sr)
{
if (!xtensa_option_bits_enabled(dc->config, sregnames[sr].opt_bits)) {
if (sregnames[sr].name) {
qemu_log("SR %s is not configured\n", sregnames[sr].name);
} else {
qemu_log("SR %d is not implemented\n", sr);
}
gen_exception_cause(dc, ILLEGAL_INSTRUCTION_CAUSE);
}
}
| 22,165 |
qemu | 4f4321c11ff6e98583846bfd6f0e81954924b003 | 1 | static int bt_hid_out(struct bt_hid_device_s *s)
{
USBPacket p;
if (s->data_type == BT_DATA_OUTPUT) {
p.pid = USB_TOKEN_OUT;
p.devep = 1;
p.data = s->dataout.buffer;
p.len = s->dataout.len;
s->dataout.len = s->usbdev->info->handle_data(s->usbdev, &p);
return s->dataout.len;
}
if (s->data_type == BT_DATA_FEATURE) {
/* XXX:
* does this send a USB_REQ_CLEAR_FEATURE/USB_REQ_SET_FEATURE
* or a SET_REPORT? */
p.devep = 0;
}
return -1;
}
| 22,166 |
qemu | 65a8e1f6413a0f6f79894da710b5d6d43361d27d | 1 | size_t mptsas_config_manufacturing_1(MPTSASState *s, uint8_t **data, int address)
{
/* VPD - all zeros */
return MPTSAS_CONFIG_PACK(1, MPI_CONFIG_PAGETYPE_MANUFACTURING, 0x00,
"s256");
}
| 22,168 |
qemu | 082c6681b6c4af0035d9dad34a4a784be8c21dbe | 0 | static void init_proc_620 (CPUPPCState *env)
{
gen_spr_ne_601(env);
gen_spr_620(env);
/* Time base */
gen_tbl(env);
/* Hardware implementation registers */
/* XXX : not implemented */
spr_register(env, SPR_HID0, "HID0",
SPR_NOACCESS, SPR_NOACCESS,
&spr_read_generic, &spr_write_generic,
0x00000000);
/* Memory management */
gen_low_BATs(env);
gen_high_BATs(env);
init_excp_620(env);
env->dcache_line_size = 64;
env->icache_line_size = 64;
/* Allocate hardware IRQ controller */
ppc6xx_irq_init(env);
}
| 22,169 |
qemu | 2d1a35bef0ed96b3f23535e459c552414ccdbafd | 0 | static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
{
KVMState *s = kvm_state;
KVMSlot *mem, old;
int err;
MemoryRegion *mr = section->mr;
bool log_dirty = memory_region_is_logging(mr);
bool writeable = !mr->readonly && !mr->rom_device;
bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
hwaddr start_addr = section->offset_within_address_space;
ram_addr_t size = int128_get64(section->size);
void *ram = NULL;
unsigned delta;
/* kvm works in page size chunks, but the function may be called
with sub-page size and unaligned start address. Pad the start
address to next and truncate size to previous page boundary. */
delta = (TARGET_PAGE_SIZE - (start_addr & ~TARGET_PAGE_MASK));
delta &= ~TARGET_PAGE_MASK;
if (delta > size) {
return;
}
start_addr += delta;
size -= delta;
size &= TARGET_PAGE_MASK;
if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
return;
}
if (!memory_region_is_ram(mr)) {
if (writeable || !kvm_readonly_mem_allowed) {
return;
} else if (!mr->romd_mode) {
/* If the memory device is not in romd_mode, then we actually want
* to remove the kvm memory slot so all accesses will trap. */
add = false;
}
}
ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
while (1) {
mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
if (!mem) {
break;
}
if (add && start_addr >= mem->start_addr &&
(start_addr + size <= mem->start_addr + mem->memory_size) &&
(ram - start_addr == mem->ram - mem->start_addr)) {
/* The new slot fits into the existing one and comes with
* identical parameters - update flags and done. */
kvm_slot_dirty_pages_log_change(mem, log_dirty);
return;
}
old = *mem;
if ((mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || s->migration_log) {
kvm_physical_sync_dirty_bitmap(section);
}
/* unregister the overlapping slot */
mem->memory_size = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
__func__, strerror(-err));
abort();
}
/* Workaround for older KVM versions: we can't join slots, even not by
* unregistering the previous ones and then registering the larger
* slot. We have to maintain the existing fragmentation. Sigh.
*
* This workaround assumes that the new slot starts at the same
* address as the first existing one. If not or if some overlapping
* slot comes around later, we will fail (not seen in practice so far)
* - and actually require a recent KVM version. */
if (s->broken_set_mem_region &&
old.start_addr == start_addr && old.memory_size < size && add) {
mem = kvm_alloc_slot(s);
mem->memory_size = old.memory_size;
mem->start_addr = old.start_addr;
mem->ram = old.ram;
mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error updating slot: %s\n", __func__,
strerror(-err));
abort();
}
start_addr += old.memory_size;
ram += old.memory_size;
size -= old.memory_size;
continue;
}
/* register prefix slot */
if (old.start_addr < start_addr) {
mem = kvm_alloc_slot(s);
mem->memory_size = start_addr - old.start_addr;
mem->start_addr = old.start_addr;
mem->ram = old.ram;
mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering prefix slot: %s\n",
__func__, strerror(-err));
#ifdef TARGET_PPC
fprintf(stderr, "%s: This is probably because your kernel's " \
"PAGE_SIZE is too big. Please try to use 4k " \
"PAGE_SIZE!\n", __func__);
#endif
abort();
}
}
/* register suffix slot */
if (old.start_addr + old.memory_size > start_addr + size) {
ram_addr_t size_delta;
mem = kvm_alloc_slot(s);
mem->start_addr = start_addr + size;
size_delta = mem->start_addr - old.start_addr;
mem->memory_size = old.memory_size - size_delta;
mem->ram = old.ram + size_delta;
mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering suffix slot: %s\n",
__func__, strerror(-err));
abort();
}
}
}
/* in case the KVM bug workaround already "consumed" the new slot */
if (!size) {
return;
}
if (!add) {
return;
}
mem = kvm_alloc_slot(s);
mem->memory_size = size;
mem->start_addr = start_addr;
mem->ram = ram;
mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering slot: %s\n", __func__,
strerror(-err));
abort();
}
}
| 22,170 |
FFmpeg | a7e7417c41c2c85495b74074b96989c5d68bae22 | 0 | void ff_ac3_bit_alloc_calc_psd(int8_t *exp, int start, int end, int16_t *psd,
int16_t *band_psd)
{
int bin, j, k, end1, v;
/* exponent mapping to PSD */
for(bin=start;bin<end;bin++) {
psd[bin]=(3072 - (exp[bin] << 7));
}
/* PSD integration */
j=start;
k=bin_to_band_tab[start];
do {
v = psd[j++];
end1 = FFMIN(band_start_tab[k+1], end);
for (; j < end1; j++) {
/* logadd */
int adr = FFMIN(FFABS(v - psd[j]) >> 1, 255);
v = FFMAX(v, psd[j]) + ff_ac3_log_add_tab[adr];
}
band_psd[k]=v;
k++;
} while (end > band_start_tab[k]);
}
| 22,171 |
qemu | 5e755519ac9d867f7da13f58a9d0c262db82e14c | 0 | static void gen_flt3_ldst (DisasContext *ctx, uint32_t opc, int fd,
int fs, int base, int index)
{
const char *opn = "extended float load/store";
int store = 0;
/* All of those work only on 64bit FPUs. */
gen_op_cp1_64bitmode();
if (base == 0) {
if (index == 0)
gen_op_reset_T0();
else
GEN_LOAD_REG_TN(T0, index);
} else if (index == 0) {
GEN_LOAD_REG_TN(T0, base);
} else {
GEN_LOAD_REG_TN(T0, base);
GEN_LOAD_REG_TN(T1, index);
gen_op_addr_add();
}
/* Don't do NOP if destination is zero: we must perform the actual
* memory access
*/
switch (opc) {
case OPC_LWXC1:
op_ldst(lwc1);
GEN_STORE_FTN_FREG(fd, WT0);
opn = "lwxc1";
break;
case OPC_LDXC1:
op_ldst(ldc1);
GEN_STORE_FTN_FREG(fd, DT0);
opn = "ldxc1";
break;
case OPC_LUXC1:
op_ldst(luxc1);
GEN_STORE_FTN_FREG(fd, DT0);
opn = "luxc1";
break;
case OPC_SWXC1:
GEN_LOAD_FREG_FTN(WT0, fs);
op_ldst(swc1);
opn = "swxc1";
store = 1;
break;
case OPC_SDXC1:
GEN_LOAD_FREG_FTN(DT0, fs);
op_ldst(sdc1);
opn = "sdxc1";
store = 1;
break;
case OPC_SUXC1:
GEN_LOAD_FREG_FTN(DT0, fs);
op_ldst(suxc1);
opn = "suxc1";
store = 1;
break;
default:
MIPS_INVAL(opn);
generate_exception(ctx, EXCP_RI);
return;
}
MIPS_DEBUG("%s %s, %s(%s)", opn, fregnames[store ? fs : fd],
regnames[index], regnames[base]);
}
| 22,172 |
qemu | 680c1c6fd73c0cb3971938944936f18bbb7bad1b | 0 | static DeviceState *apic_init(void *env, uint8_t apic_id)
{
DeviceState *dev;
SysBusDevice *d;
static int apic_mapped;
dev = qdev_create(NULL, "apic");
qdev_prop_set_uint8(dev, "id", apic_id);
qdev_prop_set_ptr(dev, "cpu_env", env);
qdev_init_nofail(dev);
d = sysbus_from_qdev(dev);
/* XXX: mapping more APICs at the same memory location */
if (apic_mapped == 0) {
/* NOTE: the APIC is directly connected to the CPU - it is not
on the global memory bus. */
/* XXX: what if the base changes? */
sysbus_mmio_map(d, 0, MSI_ADDR_BASE);
apic_mapped = 1;
}
msi_supported = true;
return dev;
}
| 22,173 |
qemu | f287b2c2d4d20d35880ab6dca44bda0476e67dce | 0 | abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
abi_long arg2, abi_long arg3, abi_long arg4,
abi_long arg5, abi_long arg6, abi_long arg7,
abi_long arg8)
{
abi_long ret;
struct stat st;
struct statfs stfs;
void *p;
#ifdef DEBUG
gemu_log("syscall %d", num);
#endif
if(do_strace)
print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6);
switch(num) {
case TARGET_NR_exit:
#ifdef CONFIG_USE_NPTL
/* In old applications this may be used to implement _exit(2).
However in threaded applictions it is used for thread termination,
and _exit_group is used for application termination.
Do thread termination if we have more then one thread. */
/* FIXME: This probably breaks if a signal arrives. We should probably
be disabling signals. */
if (first_cpu->next_cpu) {
TaskState *ts;
CPUArchState **lastp;
CPUArchState *p;
cpu_list_lock();
lastp = &first_cpu;
p = first_cpu;
while (p && p != (CPUArchState *)cpu_env) {
lastp = &p->next_cpu;
p = p->next_cpu;
}
/* If we didn't find the CPU for this thread then something is
horribly wrong. */
if (!p)
abort();
/* Remove the CPU from the list. */
*lastp = p->next_cpu;
cpu_list_unlock();
ts = ((CPUArchState *)cpu_env)->opaque;
if (ts->child_tidptr) {
put_user_u32(0, ts->child_tidptr);
sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX,
NULL, NULL, 0);
}
thread_env = NULL;
object_delete(OBJECT(ENV_GET_CPU(cpu_env)));
g_free(ts);
pthread_exit(NULL);
}
#endif
#ifdef TARGET_GPROF
_mcleanup();
#endif
gdb_exit(cpu_env, arg1);
_exit(arg1);
ret = 0; /* avoid warning */
break;
case TARGET_NR_read:
if (arg3 == 0)
ret = 0;
else {
if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
goto efault;
ret = get_errno(read(arg1, p, arg3));
unlock_user(p, arg2, ret);
}
break;
case TARGET_NR_write:
if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
goto efault;
ret = get_errno(write(arg1, p, arg3));
unlock_user(p, arg2, 0);
break;
case TARGET_NR_open:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(do_open(cpu_env, p,
target_to_host_bitmask(arg2, fcntl_flags_tbl),
arg3));
unlock_user(p, arg1, 0);
break;
#if defined(TARGET_NR_openat) && defined(__NR_openat)
case TARGET_NR_openat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(sys_openat(arg1,
path(p),
target_to_host_bitmask(arg3, fcntl_flags_tbl),
arg4));
unlock_user(p, arg2, 0);
break;
#endif
case TARGET_NR_close:
ret = get_errno(close(arg1));
break;
case TARGET_NR_brk:
ret = do_brk(arg1);
break;
case TARGET_NR_fork:
ret = get_errno(do_fork(cpu_env, SIGCHLD, 0, 0, 0, 0));
break;
#ifdef TARGET_NR_waitpid
case TARGET_NR_waitpid:
{
int status;
ret = get_errno(waitpid(arg1, &status, arg3));
if (!is_error(ret) && arg2 && ret
&& put_user_s32(host_to_target_waitstatus(status), arg2))
goto efault;
}
break;
#endif
#ifdef TARGET_NR_waitid
case TARGET_NR_waitid:
{
siginfo_t info;
info.si_pid = 0;
ret = get_errno(waitid(arg1, arg2, &info, arg4));
if (!is_error(ret) && arg3 && info.si_pid != 0) {
if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
goto efault;
host_to_target_siginfo(p, &info);
unlock_user(p, arg3, sizeof(target_siginfo_t));
}
}
break;
#endif
#ifdef TARGET_NR_creat /* not on alpha */
case TARGET_NR_creat:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(creat(p, arg2));
unlock_user(p, arg1, 0);
break;
#endif
case TARGET_NR_link:
{
void * p2;
p = lock_user_string(arg1);
p2 = lock_user_string(arg2);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(link(p, p2));
unlock_user(p2, arg2, 0);
unlock_user(p, arg1, 0);
}
break;
#if defined(TARGET_NR_linkat) && defined(__NR_linkat)
case TARGET_NR_linkat:
{
void * p2 = NULL;
if (!arg2 || !arg4)
goto efault;
p = lock_user_string(arg2);
p2 = lock_user_string(arg4);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(sys_linkat(arg1, p, arg3, p2, arg5));
unlock_user(p, arg2, 0);
unlock_user(p2, arg4, 0);
}
break;
#endif
case TARGET_NR_unlink:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(unlink(p));
unlock_user(p, arg1, 0);
break;
#if defined(TARGET_NR_unlinkat) && defined(__NR_unlinkat)
case TARGET_NR_unlinkat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(sys_unlinkat(arg1, p, arg3));
unlock_user(p, arg2, 0);
break;
#endif
case TARGET_NR_execve:
{
char **argp, **envp;
int argc, envc;
abi_ulong gp;
abi_ulong guest_argp;
abi_ulong guest_envp;
abi_ulong addr;
char **q;
int total_size = 0;
argc = 0;
guest_argp = arg2;
for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
if (get_user_ual(addr, gp))
goto efault;
if (!addr)
break;
argc++;
}
envc = 0;
guest_envp = arg3;
for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
if (get_user_ual(addr, gp))
goto efault;
if (!addr)
break;
envc++;
}
argp = alloca((argc + 1) * sizeof(void *));
envp = alloca((envc + 1) * sizeof(void *));
for (gp = guest_argp, q = argp; gp;
gp += sizeof(abi_ulong), q++) {
if (get_user_ual(addr, gp))
goto execve_efault;
if (!addr)
break;
if (!(*q = lock_user_string(addr)))
goto execve_efault;
total_size += strlen(*q) + 1;
}
*q = NULL;
for (gp = guest_envp, q = envp; gp;
gp += sizeof(abi_ulong), q++) {
if (get_user_ual(addr, gp))
goto execve_efault;
if (!addr)
break;
if (!(*q = lock_user_string(addr)))
goto execve_efault;
total_size += strlen(*q) + 1;
}
*q = NULL;
/* This case will not be caught by the host's execve() if its
page size is bigger than the target's. */
if (total_size > MAX_ARG_PAGES * TARGET_PAGE_SIZE) {
ret = -TARGET_E2BIG;
goto execve_end;
}
if (!(p = lock_user_string(arg1)))
goto execve_efault;
ret = get_errno(execve(p, argp, envp));
unlock_user(p, arg1, 0);
goto execve_end;
execve_efault:
ret = -TARGET_EFAULT;
execve_end:
for (gp = guest_argp, q = argp; *q;
gp += sizeof(abi_ulong), q++) {
if (get_user_ual(addr, gp)
|| !addr)
break;
unlock_user(*q, addr, 0);
}
for (gp = guest_envp, q = envp; *q;
gp += sizeof(abi_ulong), q++) {
if (get_user_ual(addr, gp)
|| !addr)
break;
unlock_user(*q, addr, 0);
}
}
break;
case TARGET_NR_chdir:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(chdir(p));
unlock_user(p, arg1, 0);
break;
#ifdef TARGET_NR_time
case TARGET_NR_time:
{
time_t host_time;
ret = get_errno(time(&host_time));
if (!is_error(ret)
&& arg1
&& put_user_sal(host_time, arg1))
goto efault;
}
break;
#endif
case TARGET_NR_mknod:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(mknod(p, arg2, arg3));
unlock_user(p, arg1, 0);
break;
#if defined(TARGET_NR_mknodat) && defined(__NR_mknodat)
case TARGET_NR_mknodat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(sys_mknodat(arg1, p, arg3, arg4));
unlock_user(p, arg2, 0);
break;
#endif
case TARGET_NR_chmod:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(chmod(p, arg2));
unlock_user(p, arg1, 0);
break;
#ifdef TARGET_NR_break
case TARGET_NR_break:
goto unimplemented;
#endif
#ifdef TARGET_NR_oldstat
case TARGET_NR_oldstat:
goto unimplemented;
#endif
case TARGET_NR_lseek:
ret = get_errno(lseek(arg1, arg2, arg3));
break;
#if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
/* Alpha specific */
case TARGET_NR_getxpid:
((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
ret = get_errno(getpid());
break;
#endif
#ifdef TARGET_NR_getpid
case TARGET_NR_getpid:
ret = get_errno(getpid());
break;
#endif
case TARGET_NR_mount:
{
/* need to look at the data field */
void *p2, *p3;
p = lock_user_string(arg1);
p2 = lock_user_string(arg2);
p3 = lock_user_string(arg3);
if (!p || !p2 || !p3)
ret = -TARGET_EFAULT;
else {
/* FIXME - arg5 should be locked, but it isn't clear how to
* do that since it's not guaranteed to be a NULL-terminated
* string.
*/
if ( ! arg5 )
ret = get_errno(mount(p, p2, p3, (unsigned long)arg4, NULL));
else
ret = get_errno(mount(p, p2, p3, (unsigned long)arg4, g2h(arg5)));
}
unlock_user(p, arg1, 0);
unlock_user(p2, arg2, 0);
unlock_user(p3, arg3, 0);
break;
}
#ifdef TARGET_NR_umount
case TARGET_NR_umount:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(umount(p));
unlock_user(p, arg1, 0);
break;
#endif
#ifdef TARGET_NR_stime /* not on alpha */
case TARGET_NR_stime:
{
time_t host_time;
if (get_user_sal(host_time, arg1))
goto efault;
ret = get_errno(stime(&host_time));
}
break;
#endif
case TARGET_NR_ptrace:
goto unimplemented;
#ifdef TARGET_NR_alarm /* not on alpha */
case TARGET_NR_alarm:
ret = alarm(arg1);
break;
#endif
#ifdef TARGET_NR_oldfstat
case TARGET_NR_oldfstat:
goto unimplemented;
#endif
#ifdef TARGET_NR_pause /* not on alpha */
case TARGET_NR_pause:
ret = get_errno(pause());
break;
#endif
#ifdef TARGET_NR_utime
case TARGET_NR_utime:
{
struct utimbuf tbuf, *host_tbuf;
struct target_utimbuf *target_tbuf;
if (arg2) {
if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
goto efault;
tbuf.actime = tswapal(target_tbuf->actime);
tbuf.modtime = tswapal(target_tbuf->modtime);
unlock_user_struct(target_tbuf, arg2, 0);
host_tbuf = &tbuf;
} else {
host_tbuf = NULL;
}
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(utime(p, host_tbuf));
unlock_user(p, arg1, 0);
}
break;
#endif
case TARGET_NR_utimes:
{
struct timeval *tvp, tv[2];
if (arg2) {
if (copy_from_user_timeval(&tv[0], arg2)
|| copy_from_user_timeval(&tv[1],
arg2 + sizeof(struct target_timeval)))
goto efault;
tvp = tv;
} else {
tvp = NULL;
}
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(utimes(p, tvp));
unlock_user(p, arg1, 0);
}
break;
#if defined(TARGET_NR_futimesat) && defined(__NR_futimesat)
case TARGET_NR_futimesat:
{
struct timeval *tvp, tv[2];
if (arg3) {
if (copy_from_user_timeval(&tv[0], arg3)
|| copy_from_user_timeval(&tv[1],
arg3 + sizeof(struct target_timeval)))
goto efault;
tvp = tv;
} else {
tvp = NULL;
}
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(sys_futimesat(arg1, path(p), tvp));
unlock_user(p, arg2, 0);
}
break;
#endif
#ifdef TARGET_NR_stty
case TARGET_NR_stty:
goto unimplemented;
#endif
#ifdef TARGET_NR_gtty
case TARGET_NR_gtty:
goto unimplemented;
#endif
case TARGET_NR_access:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(access(path(p), arg2));
unlock_user(p, arg1, 0);
break;
#if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
case TARGET_NR_faccessat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(sys_faccessat(arg1, p, arg3));
unlock_user(p, arg2, 0);
break;
#endif
#ifdef TARGET_NR_nice /* not on alpha */
case TARGET_NR_nice:
ret = get_errno(nice(arg1));
break;
#endif
#ifdef TARGET_NR_ftime
case TARGET_NR_ftime:
goto unimplemented;
#endif
case TARGET_NR_sync:
sync();
ret = 0;
break;
case TARGET_NR_kill:
ret = get_errno(kill(arg1, target_to_host_signal(arg2)));
break;
case TARGET_NR_rename:
{
void *p2;
p = lock_user_string(arg1);
p2 = lock_user_string(arg2);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(rename(p, p2));
unlock_user(p2, arg2, 0);
unlock_user(p, arg1, 0);
}
break;
#if defined(TARGET_NR_renameat) && defined(__NR_renameat)
case TARGET_NR_renameat:
{
void *p2;
p = lock_user_string(arg2);
p2 = lock_user_string(arg4);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(sys_renameat(arg1, p, arg3, p2));
unlock_user(p2, arg4, 0);
unlock_user(p, arg2, 0);
}
break;
#endif
case TARGET_NR_mkdir:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(mkdir(p, arg2));
unlock_user(p, arg1, 0);
break;
#if defined(TARGET_NR_mkdirat) && defined(__NR_mkdirat)
case TARGET_NR_mkdirat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(sys_mkdirat(arg1, p, arg3));
unlock_user(p, arg2, 0);
break;
#endif
case TARGET_NR_rmdir:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(rmdir(p));
unlock_user(p, arg1, 0);
break;
case TARGET_NR_dup:
ret = get_errno(dup(arg1));
break;
case TARGET_NR_pipe:
ret = do_pipe(cpu_env, arg1, 0, 0);
break;
#ifdef TARGET_NR_pipe2
case TARGET_NR_pipe2:
ret = do_pipe(cpu_env, arg1,
target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
break;
#endif
case TARGET_NR_times:
{
struct target_tms *tmsp;
struct tms tms;
ret = get_errno(times(&tms));
if (arg1) {
tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
if (!tmsp)
goto efault;
tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
}
if (!is_error(ret))
ret = host_to_target_clock_t(ret);
}
break;
#ifdef TARGET_NR_prof
case TARGET_NR_prof:
goto unimplemented;
#endif
#ifdef TARGET_NR_signal
case TARGET_NR_signal:
goto unimplemented;
#endif
case TARGET_NR_acct:
if (arg1 == 0) {
ret = get_errno(acct(NULL));
} else {
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(acct(path(p)));
unlock_user(p, arg1, 0);
}
break;
#ifdef TARGET_NR_umount2 /* not on alpha */
case TARGET_NR_umount2:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(umount2(p, arg2));
unlock_user(p, arg1, 0);
break;
#endif
#ifdef TARGET_NR_lock
case TARGET_NR_lock:
goto unimplemented;
#endif
case TARGET_NR_ioctl:
ret = do_ioctl(arg1, arg2, arg3);
break;
case TARGET_NR_fcntl:
ret = do_fcntl(arg1, arg2, arg3);
break;
#ifdef TARGET_NR_mpx
case TARGET_NR_mpx:
goto unimplemented;
#endif
case TARGET_NR_setpgid:
ret = get_errno(setpgid(arg1, arg2));
break;
#ifdef TARGET_NR_ulimit
case TARGET_NR_ulimit:
goto unimplemented;
#endif
#ifdef TARGET_NR_oldolduname
case TARGET_NR_oldolduname:
goto unimplemented;
#endif
case TARGET_NR_umask:
ret = get_errno(umask(arg1));
break;
case TARGET_NR_chroot:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(chroot(p));
unlock_user(p, arg1, 0);
break;
case TARGET_NR_ustat:
goto unimplemented;
case TARGET_NR_dup2:
ret = get_errno(dup2(arg1, arg2));
break;
#if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
case TARGET_NR_dup3:
ret = get_errno(dup3(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_getppid /* not on alpha */
case TARGET_NR_getppid:
ret = get_errno(getppid());
break;
#endif
case TARGET_NR_getpgrp:
ret = get_errno(getpgrp());
break;
case TARGET_NR_setsid:
ret = get_errno(setsid());
break;
#ifdef TARGET_NR_sigaction
case TARGET_NR_sigaction:
{
#if defined(TARGET_ALPHA)
struct target_sigaction act, oact, *pact = 0;
struct target_old_sigaction *old_act;
if (arg2) {
if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
goto efault;
act._sa_handler = old_act->_sa_handler;
target_siginitset(&act.sa_mask, old_act->sa_mask);
act.sa_flags = old_act->sa_flags;
act.sa_restorer = 0;
unlock_user_struct(old_act, arg2, 0);
pact = &act;
}
ret = get_errno(do_sigaction(arg1, pact, &oact));
if (!is_error(ret) && arg3) {
if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
goto efault;
old_act->_sa_handler = oact._sa_handler;
old_act->sa_mask = oact.sa_mask.sig[0];
old_act->sa_flags = oact.sa_flags;
unlock_user_struct(old_act, arg3, 1);
}
#elif defined(TARGET_MIPS)
struct target_sigaction act, oact, *pact, *old_act;
if (arg2) {
if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
goto efault;
act._sa_handler = old_act->_sa_handler;
target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
act.sa_flags = old_act->sa_flags;
unlock_user_struct(old_act, arg2, 0);
pact = &act;
} else {
pact = NULL;
}
ret = get_errno(do_sigaction(arg1, pact, &oact));
if (!is_error(ret) && arg3) {
if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
goto efault;
old_act->_sa_handler = oact._sa_handler;
old_act->sa_flags = oact.sa_flags;
old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
old_act->sa_mask.sig[1] = 0;
old_act->sa_mask.sig[2] = 0;
old_act->sa_mask.sig[3] = 0;
unlock_user_struct(old_act, arg3, 1);
}
#else
struct target_old_sigaction *old_act;
struct target_sigaction act, oact, *pact;
if (arg2) {
if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
goto efault;
act._sa_handler = old_act->_sa_handler;
target_siginitset(&act.sa_mask, old_act->sa_mask);
act.sa_flags = old_act->sa_flags;
act.sa_restorer = old_act->sa_restorer;
unlock_user_struct(old_act, arg2, 0);
pact = &act;
} else {
pact = NULL;
}
ret = get_errno(do_sigaction(arg1, pact, &oact));
if (!is_error(ret) && arg3) {
if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
goto efault;
old_act->_sa_handler = oact._sa_handler;
old_act->sa_mask = oact.sa_mask.sig[0];
old_act->sa_flags = oact.sa_flags;
old_act->sa_restorer = oact.sa_restorer;
unlock_user_struct(old_act, arg3, 1);
}
#endif
}
break;
#endif
case TARGET_NR_rt_sigaction:
{
#if defined(TARGET_ALPHA)
struct target_sigaction act, oact, *pact = 0;
struct target_rt_sigaction *rt_act;
/* ??? arg4 == sizeof(sigset_t). */
if (arg2) {
if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1))
goto efault;
act._sa_handler = rt_act->_sa_handler;
act.sa_mask = rt_act->sa_mask;
act.sa_flags = rt_act->sa_flags;
act.sa_restorer = arg5;
unlock_user_struct(rt_act, arg2, 0);
pact = &act;
}
ret = get_errno(do_sigaction(arg1, pact, &oact));
if (!is_error(ret) && arg3) {
if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0))
goto efault;
rt_act->_sa_handler = oact._sa_handler;
rt_act->sa_mask = oact.sa_mask;
rt_act->sa_flags = oact.sa_flags;
unlock_user_struct(rt_act, arg3, 1);
}
#else
struct target_sigaction *act;
struct target_sigaction *oact;
if (arg2) {
if (!lock_user_struct(VERIFY_READ, act, arg2, 1))
goto efault;
} else
act = NULL;
if (arg3) {
if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
ret = -TARGET_EFAULT;
goto rt_sigaction_fail;
}
} else
oact = NULL;
ret = get_errno(do_sigaction(arg1, act, oact));
rt_sigaction_fail:
if (act)
unlock_user_struct(act, arg2, 0);
if (oact)
unlock_user_struct(oact, arg3, 1);
#endif
}
break;
#ifdef TARGET_NR_sgetmask /* not on alpha */
case TARGET_NR_sgetmask:
{
sigset_t cur_set;
abi_ulong target_set;
sigprocmask(0, NULL, &cur_set);
host_to_target_old_sigset(&target_set, &cur_set);
ret = target_set;
}
break;
#endif
#ifdef TARGET_NR_ssetmask /* not on alpha */
case TARGET_NR_ssetmask:
{
sigset_t set, oset, cur_set;
abi_ulong target_set = arg1;
sigprocmask(0, NULL, &cur_set);
target_to_host_old_sigset(&set, &target_set);
sigorset(&set, &set, &cur_set);
sigprocmask(SIG_SETMASK, &set, &oset);
host_to_target_old_sigset(&target_set, &oset);
ret = target_set;
}
break;
#endif
#ifdef TARGET_NR_sigprocmask
case TARGET_NR_sigprocmask:
{
#if defined(TARGET_ALPHA)
sigset_t set, oldset;
abi_ulong mask;
int how;
switch (arg1) {
case TARGET_SIG_BLOCK:
how = SIG_BLOCK;
break;
case TARGET_SIG_UNBLOCK:
how = SIG_UNBLOCK;
break;
case TARGET_SIG_SETMASK:
how = SIG_SETMASK;
break;
default:
ret = -TARGET_EINVAL;
goto fail;
}
mask = arg2;
target_to_host_old_sigset(&set, &mask);
ret = get_errno(sigprocmask(how, &set, &oldset));
if (!is_error(ret)) {
host_to_target_old_sigset(&mask, &oldset);
ret = mask;
((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */
}
#else
sigset_t set, oldset, *set_ptr;
int how;
if (arg2) {
switch (arg1) {
case TARGET_SIG_BLOCK:
how = SIG_BLOCK;
break;
case TARGET_SIG_UNBLOCK:
how = SIG_UNBLOCK;
break;
case TARGET_SIG_SETMASK:
how = SIG_SETMASK;
break;
default:
ret = -TARGET_EINVAL;
goto fail;
}
if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
goto efault;
target_to_host_old_sigset(&set, p);
unlock_user(p, arg2, 0);
set_ptr = &set;
} else {
how = 0;
set_ptr = NULL;
}
ret = get_errno(sigprocmask(how, set_ptr, &oldset));
if (!is_error(ret) && arg3) {
if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
goto efault;
host_to_target_old_sigset(p, &oldset);
unlock_user(p, arg3, sizeof(target_sigset_t));
}
#endif
}
break;
#endif
case TARGET_NR_rt_sigprocmask:
{
int how = arg1;
sigset_t set, oldset, *set_ptr;
if (arg2) {
switch(how) {
case TARGET_SIG_BLOCK:
how = SIG_BLOCK;
break;
case TARGET_SIG_UNBLOCK:
how = SIG_UNBLOCK;
break;
case TARGET_SIG_SETMASK:
how = SIG_SETMASK;
break;
default:
ret = -TARGET_EINVAL;
goto fail;
}
if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
goto efault;
target_to_host_sigset(&set, p);
unlock_user(p, arg2, 0);
set_ptr = &set;
} else {
how = 0;
set_ptr = NULL;
}
ret = get_errno(sigprocmask(how, set_ptr, &oldset));
if (!is_error(ret) && arg3) {
if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
goto efault;
host_to_target_sigset(p, &oldset);
unlock_user(p, arg3, sizeof(target_sigset_t));
}
}
break;
#ifdef TARGET_NR_sigpending
case TARGET_NR_sigpending:
{
sigset_t set;
ret = get_errno(sigpending(&set));
if (!is_error(ret)) {
if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
goto efault;
host_to_target_old_sigset(p, &set);
unlock_user(p, arg1, sizeof(target_sigset_t));
}
}
break;
#endif
case TARGET_NR_rt_sigpending:
{
sigset_t set;
ret = get_errno(sigpending(&set));
if (!is_error(ret)) {
if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
goto efault;
host_to_target_sigset(p, &set);
unlock_user(p, arg1, sizeof(target_sigset_t));
}
}
break;
#ifdef TARGET_NR_sigsuspend
case TARGET_NR_sigsuspend:
{
sigset_t set;
#if defined(TARGET_ALPHA)
abi_ulong mask = arg1;
target_to_host_old_sigset(&set, &mask);
#else
if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
goto efault;
target_to_host_old_sigset(&set, p);
unlock_user(p, arg1, 0);
#endif
ret = get_errno(sigsuspend(&set));
}
break;
#endif
case TARGET_NR_rt_sigsuspend:
{
sigset_t set;
if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
goto efault;
target_to_host_sigset(&set, p);
unlock_user(p, arg1, 0);
ret = get_errno(sigsuspend(&set));
}
break;
case TARGET_NR_rt_sigtimedwait:
{
sigset_t set;
struct timespec uts, *puts;
siginfo_t uinfo;
if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
goto efault;
target_to_host_sigset(&set, p);
unlock_user(p, arg1, 0);
if (arg3) {
puts = &uts;
target_to_host_timespec(puts, arg3);
} else {
puts = NULL;
}
ret = get_errno(sigtimedwait(&set, &uinfo, puts));
if (!is_error(ret) && arg2) {
if (!(p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 0)))
goto efault;
host_to_target_siginfo(p, &uinfo);
unlock_user(p, arg2, sizeof(target_siginfo_t));
}
}
break;
case TARGET_NR_rt_sigqueueinfo:
{
siginfo_t uinfo;
if (!(p = lock_user(VERIFY_READ, arg3, sizeof(target_sigset_t), 1)))
goto efault;
target_to_host_siginfo(&uinfo, p);
unlock_user(p, arg1, 0);
ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
}
break;
#ifdef TARGET_NR_sigreturn
case TARGET_NR_sigreturn:
/* NOTE: ret is eax, so not transcoding must be done */
ret = do_sigreturn(cpu_env);
break;
#endif
case TARGET_NR_rt_sigreturn:
/* NOTE: ret is eax, so not transcoding must be done */
ret = do_rt_sigreturn(cpu_env);
break;
case TARGET_NR_sethostname:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(sethostname(p, arg2));
unlock_user(p, arg1, 0);
break;
case TARGET_NR_setrlimit:
{
int resource = target_to_host_resource(arg1);
struct target_rlimit *target_rlim;
struct rlimit rlim;
if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
goto efault;
rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
unlock_user_struct(target_rlim, arg2, 0);
ret = get_errno(setrlimit(resource, &rlim));
}
break;
case TARGET_NR_getrlimit:
{
int resource = target_to_host_resource(arg1);
struct target_rlimit *target_rlim;
struct rlimit rlim;
ret = get_errno(getrlimit(resource, &rlim));
if (!is_error(ret)) {
if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
goto efault;
target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
unlock_user_struct(target_rlim, arg2, 1);
}
}
break;
case TARGET_NR_getrusage:
{
struct rusage rusage;
ret = get_errno(getrusage(arg1, &rusage));
if (!is_error(ret)) {
host_to_target_rusage(arg2, &rusage);
}
}
break;
case TARGET_NR_gettimeofday:
{
struct timeval tv;
ret = get_errno(gettimeofday(&tv, NULL));
if (!is_error(ret)) {
if (copy_to_user_timeval(arg1, &tv))
goto efault;
}
}
break;
case TARGET_NR_settimeofday:
{
struct timeval tv;
if (copy_from_user_timeval(&tv, arg1))
goto efault;
ret = get_errno(settimeofday(&tv, NULL));
}
break;
#if defined(TARGET_NR_select) && !defined(TARGET_S390X) && !defined(TARGET_S390)
case TARGET_NR_select:
{
struct target_sel_arg_struct *sel;
abi_ulong inp, outp, exp, tvp;
long nsel;
if (!lock_user_struct(VERIFY_READ, sel, arg1, 1))
goto efault;
nsel = tswapal(sel->n);
inp = tswapal(sel->inp);
outp = tswapal(sel->outp);
exp = tswapal(sel->exp);
tvp = tswapal(sel->tvp);
unlock_user_struct(sel, arg1, 0);
ret = do_select(nsel, inp, outp, exp, tvp);
}
break;
#endif
#ifdef TARGET_NR_pselect6
case TARGET_NR_pselect6:
{
abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
fd_set rfds, wfds, efds;
fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
struct timespec ts, *ts_ptr;
/*
* The 6th arg is actually two args smashed together,
* so we cannot use the C library.
*/
sigset_t set;
struct {
sigset_t *set;
size_t size;
} sig, *sig_ptr;
abi_ulong arg_sigset, arg_sigsize, *arg7;
target_sigset_t *target_sigset;
n = arg1;
rfd_addr = arg2;
wfd_addr = arg3;
efd_addr = arg4;
ts_addr = arg5;
ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
if (ret) {
goto fail;
}
ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
if (ret) {
goto fail;
}
ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
if (ret) {
goto fail;
}
/*
* This takes a timespec, and not a timeval, so we cannot
* use the do_select() helper ...
*/
if (ts_addr) {
if (target_to_host_timespec(&ts, ts_addr)) {
goto efault;
}
ts_ptr = &ts;
} else {
ts_ptr = NULL;
}
/* Extract the two packed args for the sigset */
if (arg6) {
sig_ptr = &sig;
sig.size = _NSIG / 8;
arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
if (!arg7) {
goto efault;
}
arg_sigset = tswapal(arg7[0]);
arg_sigsize = tswapal(arg7[1]);
unlock_user(arg7, arg6, 0);
if (arg_sigset) {
sig.set = &set;
if (arg_sigsize != sizeof(*target_sigset)) {
/* Like the kernel, we enforce correct size sigsets */
ret = -TARGET_EINVAL;
goto fail;
}
target_sigset = lock_user(VERIFY_READ, arg_sigset,
sizeof(*target_sigset), 1);
if (!target_sigset) {
goto efault;
}
target_to_host_sigset(&set, target_sigset);
unlock_user(target_sigset, arg_sigset, 0);
} else {
sig.set = NULL;
}
} else {
sig_ptr = NULL;
}
ret = get_errno(sys_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
ts_ptr, sig_ptr));
if (!is_error(ret)) {
if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
goto efault;
if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
goto efault;
if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
goto efault;
if (ts_addr && host_to_target_timespec(ts_addr, &ts))
goto efault;
}
}
break;
#endif
case TARGET_NR_symlink:
{
void *p2;
p = lock_user_string(arg1);
p2 = lock_user_string(arg2);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(symlink(p, p2));
unlock_user(p2, arg2, 0);
unlock_user(p, arg1, 0);
}
break;
#if defined(TARGET_NR_symlinkat) && defined(__NR_symlinkat)
case TARGET_NR_symlinkat:
{
void *p2;
p = lock_user_string(arg1);
p2 = lock_user_string(arg3);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(sys_symlinkat(p, arg2, p2));
unlock_user(p2, arg3, 0);
unlock_user(p, arg1, 0);
}
break;
#endif
#ifdef TARGET_NR_oldlstat
case TARGET_NR_oldlstat:
goto unimplemented;
#endif
case TARGET_NR_readlink:
{
void *p2, *temp;
p = lock_user_string(arg1);
p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
if (!p || !p2)
ret = -TARGET_EFAULT;
else {
if (strncmp((const char *)p, "/proc/self/exe", 14) == 0) {
char real[PATH_MAX];
temp = realpath(exec_path,real);
ret = (temp==NULL) ? get_errno(-1) : strlen(real) ;
snprintf((char *)p2, arg3, "%s", real);
}
else
ret = get_errno(readlink(path(p), p2, arg3));
}
unlock_user(p2, arg2, ret);
unlock_user(p, arg1, 0);
}
break;
#if defined(TARGET_NR_readlinkat) && defined(__NR_readlinkat)
case TARGET_NR_readlinkat:
{
void *p2;
p = lock_user_string(arg2);
p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(sys_readlinkat(arg1, path(p), p2, arg4));
unlock_user(p2, arg3, ret);
unlock_user(p, arg2, 0);
}
break;
#endif
#ifdef TARGET_NR_uselib
case TARGET_NR_uselib:
goto unimplemented;
#endif
#ifdef TARGET_NR_swapon
case TARGET_NR_swapon:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(swapon(p, arg2));
unlock_user(p, arg1, 0);
break;
#endif
case TARGET_NR_reboot:
if (!(p = lock_user_string(arg4)))
goto efault;
ret = reboot(arg1, arg2, arg3, p);
unlock_user(p, arg4, 0);
break;
#ifdef TARGET_NR_readdir
case TARGET_NR_readdir:
goto unimplemented;
#endif
#ifdef TARGET_NR_mmap
case TARGET_NR_mmap:
#if (defined(TARGET_I386) && defined(TARGET_ABI32)) || defined(TARGET_ARM) || \
defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
|| defined(TARGET_S390X)
{
abi_ulong *v;
abi_ulong v1, v2, v3, v4, v5, v6;
if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
goto efault;
v1 = tswapal(v[0]);
v2 = tswapal(v[1]);
v3 = tswapal(v[2]);
v4 = tswapal(v[3]);
v5 = tswapal(v[4]);
v6 = tswapal(v[5]);
unlock_user(v, arg1, 0);
ret = get_errno(target_mmap(v1, v2, v3,
target_to_host_bitmask(v4, mmap_flags_tbl),
v5, v6));
}
#else
ret = get_errno(target_mmap(arg1, arg2, arg3,
target_to_host_bitmask(arg4, mmap_flags_tbl),
arg5,
arg6));
#endif
break;
#endif
#ifdef TARGET_NR_mmap2
case TARGET_NR_mmap2:
#ifndef MMAP_SHIFT
#define MMAP_SHIFT 12
#endif
ret = get_errno(target_mmap(arg1, arg2, arg3,
target_to_host_bitmask(arg4, mmap_flags_tbl),
arg5,
arg6 << MMAP_SHIFT));
break;
#endif
case TARGET_NR_munmap:
ret = get_errno(target_munmap(arg1, arg2));
break;
case TARGET_NR_mprotect:
{
TaskState *ts = ((CPUArchState *)cpu_env)->opaque;
/* Special hack to detect libc making the stack executable. */
if ((arg3 & PROT_GROWSDOWN)
&& arg1 >= ts->info->stack_limit
&& arg1 <= ts->info->start_stack) {
arg3 &= ~PROT_GROWSDOWN;
arg2 = arg2 + arg1 - ts->info->stack_limit;
arg1 = ts->info->stack_limit;
}
}
ret = get_errno(target_mprotect(arg1, arg2, arg3));
break;
#ifdef TARGET_NR_mremap
case TARGET_NR_mremap:
ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
break;
#endif
/* ??? msync/mlock/munlock are broken for softmmu. */
#ifdef TARGET_NR_msync
case TARGET_NR_msync:
ret = get_errno(msync(g2h(arg1), arg2, arg3));
break;
#endif
#ifdef TARGET_NR_mlock
case TARGET_NR_mlock:
ret = get_errno(mlock(g2h(arg1), arg2));
break;
#endif
#ifdef TARGET_NR_munlock
case TARGET_NR_munlock:
ret = get_errno(munlock(g2h(arg1), arg2));
break;
#endif
#ifdef TARGET_NR_mlockall
case TARGET_NR_mlockall:
ret = get_errno(mlockall(arg1));
break;
#endif
#ifdef TARGET_NR_munlockall
case TARGET_NR_munlockall:
ret = get_errno(munlockall());
break;
#endif
case TARGET_NR_truncate:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(truncate(p, arg2));
unlock_user(p, arg1, 0);
break;
case TARGET_NR_ftruncate:
ret = get_errno(ftruncate(arg1, arg2));
break;
case TARGET_NR_fchmod:
ret = get_errno(fchmod(arg1, arg2));
break;
#if defined(TARGET_NR_fchmodat) && defined(__NR_fchmodat)
case TARGET_NR_fchmodat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(sys_fchmodat(arg1, p, arg3));
unlock_user(p, arg2, 0);
break;
#endif
case TARGET_NR_getpriority:
/* Note that negative values are valid for getpriority, so we must
differentiate based on errno settings. */
errno = 0;
ret = getpriority(arg1, arg2);
if (ret == -1 && errno != 0) {
ret = -host_to_target_errno(errno);
break;
}
#ifdef TARGET_ALPHA
/* Return value is the unbiased priority. Signal no error. */
((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0;
#else
/* Return value is a biased priority to avoid negative numbers. */
ret = 20 - ret;
#endif
break;
case TARGET_NR_setpriority:
ret = get_errno(setpriority(arg1, arg2, arg3));
break;
#ifdef TARGET_NR_profil
case TARGET_NR_profil:
goto unimplemented;
#endif
case TARGET_NR_statfs:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(statfs(path(p), &stfs));
unlock_user(p, arg1, 0);
convert_statfs:
if (!is_error(ret)) {
struct target_statfs *target_stfs;
if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
goto efault;
__put_user(stfs.f_type, &target_stfs->f_type);
__put_user(stfs.f_bsize, &target_stfs->f_bsize);
__put_user(stfs.f_blocks, &target_stfs->f_blocks);
__put_user(stfs.f_bfree, &target_stfs->f_bfree);
__put_user(stfs.f_bavail, &target_stfs->f_bavail);
__put_user(stfs.f_files, &target_stfs->f_files);
__put_user(stfs.f_ffree, &target_stfs->f_ffree);
__put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
__put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
__put_user(stfs.f_namelen, &target_stfs->f_namelen);
__put_user(stfs.f_frsize, &target_stfs->f_frsize);
memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
unlock_user_struct(target_stfs, arg2, 1);
}
break;
case TARGET_NR_fstatfs:
ret = get_errno(fstatfs(arg1, &stfs));
goto convert_statfs;
#ifdef TARGET_NR_statfs64
case TARGET_NR_statfs64:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(statfs(path(p), &stfs));
unlock_user(p, arg1, 0);
convert_statfs64:
if (!is_error(ret)) {
struct target_statfs64 *target_stfs;
if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
goto efault;
__put_user(stfs.f_type, &target_stfs->f_type);
__put_user(stfs.f_bsize, &target_stfs->f_bsize);
__put_user(stfs.f_blocks, &target_stfs->f_blocks);
__put_user(stfs.f_bfree, &target_stfs->f_bfree);
__put_user(stfs.f_bavail, &target_stfs->f_bavail);
__put_user(stfs.f_files, &target_stfs->f_files);
__put_user(stfs.f_ffree, &target_stfs->f_ffree);
__put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
__put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
__put_user(stfs.f_namelen, &target_stfs->f_namelen);
__put_user(stfs.f_frsize, &target_stfs->f_frsize);
memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
unlock_user_struct(target_stfs, arg3, 1);
}
break;
case TARGET_NR_fstatfs64:
ret = get_errno(fstatfs(arg1, &stfs));
goto convert_statfs64;
#endif
#ifdef TARGET_NR_ioperm
case TARGET_NR_ioperm:
goto unimplemented;
#endif
#ifdef TARGET_NR_socketcall
case TARGET_NR_socketcall:
ret = do_socketcall(arg1, arg2);
break;
#endif
#ifdef TARGET_NR_accept
case TARGET_NR_accept:
ret = do_accept(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_bind
case TARGET_NR_bind:
ret = do_bind(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_connect
case TARGET_NR_connect:
ret = do_connect(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_getpeername
case TARGET_NR_getpeername:
ret = do_getpeername(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_getsockname
case TARGET_NR_getsockname:
ret = do_getsockname(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_getsockopt
case TARGET_NR_getsockopt:
ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5);
break;
#endif
#ifdef TARGET_NR_listen
case TARGET_NR_listen:
ret = get_errno(listen(arg1, arg2));
break;
#endif
#ifdef TARGET_NR_recv
case TARGET_NR_recv:
ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
break;
#endif
#ifdef TARGET_NR_recvfrom
case TARGET_NR_recvfrom:
ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
break;
#endif
#ifdef TARGET_NR_recvmsg
case TARGET_NR_recvmsg:
ret = do_sendrecvmsg(arg1, arg2, arg3, 0);
break;
#endif
#ifdef TARGET_NR_send
case TARGET_NR_send:
ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0);
break;
#endif
#ifdef TARGET_NR_sendmsg
case TARGET_NR_sendmsg:
ret = do_sendrecvmsg(arg1, arg2, arg3, 1);
break;
#endif
#ifdef TARGET_NR_sendto
case TARGET_NR_sendto:
ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
break;
#endif
#ifdef TARGET_NR_shutdown
case TARGET_NR_shutdown:
ret = get_errno(shutdown(arg1, arg2));
break;
#endif
#ifdef TARGET_NR_socket
case TARGET_NR_socket:
ret = do_socket(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_socketpair
case TARGET_NR_socketpair:
ret = do_socketpair(arg1, arg2, arg3, arg4);
break;
#endif
#ifdef TARGET_NR_setsockopt
case TARGET_NR_setsockopt:
ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
break;
#endif
case TARGET_NR_syslog:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
unlock_user(p, arg2, 0);
break;
case TARGET_NR_setitimer:
{
struct itimerval value, ovalue, *pvalue;
if (arg2) {
pvalue = &value;
if (copy_from_user_timeval(&pvalue->it_interval, arg2)
|| copy_from_user_timeval(&pvalue->it_value,
arg2 + sizeof(struct target_timeval)))
goto efault;
} else {
pvalue = NULL;
}
ret = get_errno(setitimer(arg1, pvalue, &ovalue));
if (!is_error(ret) && arg3) {
if (copy_to_user_timeval(arg3,
&ovalue.it_interval)
|| copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
&ovalue.it_value))
goto efault;
}
}
break;
case TARGET_NR_getitimer:
{
struct itimerval value;
ret = get_errno(getitimer(arg1, &value));
if (!is_error(ret) && arg2) {
if (copy_to_user_timeval(arg2,
&value.it_interval)
|| copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
&value.it_value))
goto efault;
}
}
break;
case TARGET_NR_stat:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(stat(path(p), &st));
unlock_user(p, arg1, 0);
goto do_stat;
case TARGET_NR_lstat:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(lstat(path(p), &st));
unlock_user(p, arg1, 0);
goto do_stat;
case TARGET_NR_fstat:
{
ret = get_errno(fstat(arg1, &st));
do_stat:
if (!is_error(ret)) {
struct target_stat *target_st;
if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
goto efault;
memset(target_st, 0, sizeof(*target_st));
__put_user(st.st_dev, &target_st->st_dev);
__put_user(st.st_ino, &target_st->st_ino);
__put_user(st.st_mode, &target_st->st_mode);
__put_user(st.st_uid, &target_st->st_uid);
__put_user(st.st_gid, &target_st->st_gid);
__put_user(st.st_nlink, &target_st->st_nlink);
__put_user(st.st_rdev, &target_st->st_rdev);
__put_user(st.st_size, &target_st->st_size);
__put_user(st.st_blksize, &target_st->st_blksize);
__put_user(st.st_blocks, &target_st->st_blocks);
__put_user(st.st_atime, &target_st->target_st_atime);
__put_user(st.st_mtime, &target_st->target_st_mtime);
__put_user(st.st_ctime, &target_st->target_st_ctime);
unlock_user_struct(target_st, arg2, 1);
}
}
break;
#ifdef TARGET_NR_olduname
case TARGET_NR_olduname:
goto unimplemented;
#endif
#ifdef TARGET_NR_iopl
case TARGET_NR_iopl:
goto unimplemented;
#endif
case TARGET_NR_vhangup:
ret = get_errno(vhangup());
break;
#ifdef TARGET_NR_idle
case TARGET_NR_idle:
goto unimplemented;
#endif
#ifdef TARGET_NR_syscall
case TARGET_NR_syscall:
ret = do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
arg6, arg7, arg8, 0);
break;
#endif
case TARGET_NR_wait4:
{
int status;
abi_long status_ptr = arg2;
struct rusage rusage, *rusage_ptr;
abi_ulong target_rusage = arg4;
if (target_rusage)
rusage_ptr = &rusage;
else
rusage_ptr = NULL;
ret = get_errno(wait4(arg1, &status, arg3, rusage_ptr));
if (!is_error(ret)) {
if (status_ptr && ret) {
status = host_to_target_waitstatus(status);
if (put_user_s32(status, status_ptr))
goto efault;
}
if (target_rusage)
host_to_target_rusage(target_rusage, &rusage);
}
}
break;
#ifdef TARGET_NR_swapoff
case TARGET_NR_swapoff:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(swapoff(p));
unlock_user(p, arg1, 0);
break;
#endif
case TARGET_NR_sysinfo:
{
struct target_sysinfo *target_value;
struct sysinfo value;
ret = get_errno(sysinfo(&value));
if (!is_error(ret) && arg1)
{
if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
goto efault;
__put_user(value.uptime, &target_value->uptime);
__put_user(value.loads[0], &target_value->loads[0]);
__put_user(value.loads[1], &target_value->loads[1]);
__put_user(value.loads[2], &target_value->loads[2]);
__put_user(value.totalram, &target_value->totalram);
__put_user(value.freeram, &target_value->freeram);
__put_user(value.sharedram, &target_value->sharedram);
__put_user(value.bufferram, &target_value->bufferram);
__put_user(value.totalswap, &target_value->totalswap);
__put_user(value.freeswap, &target_value->freeswap);
__put_user(value.procs, &target_value->procs);
__put_user(value.totalhigh, &target_value->totalhigh);
__put_user(value.freehigh, &target_value->freehigh);
__put_user(value.mem_unit, &target_value->mem_unit);
unlock_user_struct(target_value, arg1, 1);
}
}
break;
#ifdef TARGET_NR_ipc
case TARGET_NR_ipc:
ret = do_ipc(arg1, arg2, arg3, arg4, arg5, arg6);
break;
#endif
#ifdef TARGET_NR_semget
case TARGET_NR_semget:
ret = get_errno(semget(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_semop
case TARGET_NR_semop:
ret = get_errno(do_semop(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_semctl
case TARGET_NR_semctl:
ret = do_semctl(arg1, arg2, arg3, (union target_semun)(abi_ulong)arg4);
break;
#endif
#ifdef TARGET_NR_msgctl
case TARGET_NR_msgctl:
ret = do_msgctl(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_msgget
case TARGET_NR_msgget:
ret = get_errno(msgget(arg1, arg2));
break;
#endif
#ifdef TARGET_NR_msgrcv
case TARGET_NR_msgrcv:
ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5);
break;
#endif
#ifdef TARGET_NR_msgsnd
case TARGET_NR_msgsnd:
ret = do_msgsnd(arg1, arg2, arg3, arg4);
break;
#endif
#ifdef TARGET_NR_shmget
case TARGET_NR_shmget:
ret = get_errno(shmget(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_shmctl
case TARGET_NR_shmctl:
ret = do_shmctl(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_shmat
case TARGET_NR_shmat:
ret = do_shmat(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_shmdt
case TARGET_NR_shmdt:
ret = do_shmdt(arg1);
break;
#endif
case TARGET_NR_fsync:
ret = get_errno(fsync(arg1));
break;
case TARGET_NR_clone:
#if defined(TARGET_SH4) || defined(TARGET_ALPHA)
ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
#elif defined(TARGET_CRIS)
ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg4, arg5));
#elif defined(TARGET_S390X)
ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
#else
ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
#endif
break;
#ifdef __NR_exit_group
/* new thread calls */
case TARGET_NR_exit_group:
#ifdef TARGET_GPROF
_mcleanup();
#endif
gdb_exit(cpu_env, arg1);
ret = get_errno(exit_group(arg1));
break;
#endif
case TARGET_NR_setdomainname:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(setdomainname(p, arg2));
unlock_user(p, arg1, 0);
break;
case TARGET_NR_uname:
/* no need to transcode because we use the linux syscall */
{
struct new_utsname * buf;
if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
goto efault;
ret = get_errno(sys_uname(buf));
if (!is_error(ret)) {
/* Overrite the native machine name with whatever is being
emulated. */
strcpy (buf->machine, cpu_to_uname_machine(cpu_env));
/* Allow the user to override the reported release. */
if (qemu_uname_release && *qemu_uname_release)
strcpy (buf->release, qemu_uname_release);
}
unlock_user_struct(buf, arg1, 1);
}
break;
#ifdef TARGET_I386
case TARGET_NR_modify_ldt:
ret = do_modify_ldt(cpu_env, arg1, arg2, arg3);
break;
#if !defined(TARGET_X86_64)
case TARGET_NR_vm86old:
goto unimplemented;
case TARGET_NR_vm86:
ret = do_vm86(cpu_env, arg1, arg2);
break;
#endif
#endif
case TARGET_NR_adjtimex:
goto unimplemented;
#ifdef TARGET_NR_create_module
case TARGET_NR_create_module:
#endif
case TARGET_NR_init_module:
case TARGET_NR_delete_module:
#ifdef TARGET_NR_get_kernel_syms
case TARGET_NR_get_kernel_syms:
#endif
goto unimplemented;
case TARGET_NR_quotactl:
goto unimplemented;
case TARGET_NR_getpgid:
ret = get_errno(getpgid(arg1));
break;
case TARGET_NR_fchdir:
ret = get_errno(fchdir(arg1));
break;
#ifdef TARGET_NR_bdflush /* not on x86_64 */
case TARGET_NR_bdflush:
goto unimplemented;
#endif
#ifdef TARGET_NR_sysfs
case TARGET_NR_sysfs:
goto unimplemented;
#endif
case TARGET_NR_personality:
ret = get_errno(personality(arg1));
break;
#ifdef TARGET_NR_afs_syscall
case TARGET_NR_afs_syscall:
goto unimplemented;
#endif
#ifdef TARGET_NR__llseek /* Not on alpha */
case TARGET_NR__llseek:
{
int64_t res;
#if !defined(__NR_llseek)
res = lseek(arg1, ((uint64_t)arg2 << 32) | arg3, arg5);
if (res == -1) {
ret = get_errno(res);
} else {
ret = 0;
}
#else
ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
#endif
if ((ret == 0) && put_user_s64(res, arg4)) {
goto efault;
}
}
break;
#endif
case TARGET_NR_getdents:
#if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
{
struct target_dirent *target_dirp;
struct linux_dirent *dirp;
abi_long count = arg3;
dirp = malloc(count);
if (!dirp) {
ret = -TARGET_ENOMEM;
goto fail;
}
ret = get_errno(sys_getdents(arg1, dirp, count));
if (!is_error(ret)) {
struct linux_dirent *de;
struct target_dirent *tde;
int len = ret;
int reclen, treclen;
int count1, tnamelen;
count1 = 0;
de = dirp;
if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
goto efault;
tde = target_dirp;
while (len > 0) {
reclen = de->d_reclen;
tnamelen = reclen - offsetof(struct linux_dirent, d_name);
assert(tnamelen >= 0);
treclen = tnamelen + offsetof(struct target_dirent, d_name);
assert(count1 + treclen <= count);
tde->d_reclen = tswap16(treclen);
tde->d_ino = tswapal(de->d_ino);
tde->d_off = tswapal(de->d_off);
memcpy(tde->d_name, de->d_name, tnamelen);
de = (struct linux_dirent *)((char *)de + reclen);
len -= reclen;
tde = (struct target_dirent *)((char *)tde + treclen);
count1 += treclen;
}
ret = count1;
unlock_user(target_dirp, arg2, ret);
}
free(dirp);
}
#else
{
struct linux_dirent *dirp;
abi_long count = arg3;
if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
goto efault;
ret = get_errno(sys_getdents(arg1, dirp, count));
if (!is_error(ret)) {
struct linux_dirent *de;
int len = ret;
int reclen;
de = dirp;
while (len > 0) {
reclen = de->d_reclen;
if (reclen > len)
break;
de->d_reclen = tswap16(reclen);
tswapls(&de->d_ino);
tswapls(&de->d_off);
de = (struct linux_dirent *)((char *)de + reclen);
len -= reclen;
}
}
unlock_user(dirp, arg2, ret);
}
#endif
break;
#if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
case TARGET_NR_getdents64:
{
struct linux_dirent64 *dirp;
abi_long count = arg3;
if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
goto efault;
ret = get_errno(sys_getdents64(arg1, dirp, count));
if (!is_error(ret)) {
struct linux_dirent64 *de;
int len = ret;
int reclen;
de = dirp;
while (len > 0) {
reclen = de->d_reclen;
if (reclen > len)
break;
de->d_reclen = tswap16(reclen);
tswap64s((uint64_t *)&de->d_ino);
tswap64s((uint64_t *)&de->d_off);
de = (struct linux_dirent64 *)((char *)de + reclen);
len -= reclen;
}
}
unlock_user(dirp, arg2, ret);
}
break;
#endif /* TARGET_NR_getdents64 */
#if defined(TARGET_NR__newselect) || defined(TARGET_S390X)
#ifdef TARGET_S390X
case TARGET_NR_select:
#else
case TARGET_NR__newselect:
#endif
ret = do_select(arg1, arg2, arg3, arg4, arg5);
break;
#endif
#if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
# ifdef TARGET_NR_poll
case TARGET_NR_poll:
# endif
# ifdef TARGET_NR_ppoll
case TARGET_NR_ppoll:
# endif
{
struct target_pollfd *target_pfd;
unsigned int nfds = arg2;
int timeout = arg3;
struct pollfd *pfd;
unsigned int i;
target_pfd = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_pollfd) * nfds, 1);
if (!target_pfd)
goto efault;
pfd = alloca(sizeof(struct pollfd) * nfds);
for(i = 0; i < nfds; i++) {
pfd[i].fd = tswap32(target_pfd[i].fd);
pfd[i].events = tswap16(target_pfd[i].events);
}
# ifdef TARGET_NR_ppoll
if (num == TARGET_NR_ppoll) {
struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
target_sigset_t *target_set;
sigset_t _set, *set = &_set;
if (arg3) {
if (target_to_host_timespec(timeout_ts, arg3)) {
unlock_user(target_pfd, arg1, 0);
goto efault;
}
} else {
timeout_ts = NULL;
}
if (arg4) {
target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1);
if (!target_set) {
unlock_user(target_pfd, arg1, 0);
goto efault;
}
target_to_host_sigset(set, target_set);
} else {
set = NULL;
}
ret = get_errno(sys_ppoll(pfd, nfds, timeout_ts, set, _NSIG/8));
if (!is_error(ret) && arg3) {
host_to_target_timespec(arg3, timeout_ts);
}
if (arg4) {
unlock_user(target_set, arg4, 0);
}
} else
# endif
ret = get_errno(poll(pfd, nfds, timeout));
if (!is_error(ret)) {
for(i = 0; i < nfds; i++) {
target_pfd[i].revents = tswap16(pfd[i].revents);
}
}
unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
}
break;
#endif
case TARGET_NR_flock:
/* NOTE: the flock constant seems to be the same for every
Linux platform */
ret = get_errno(flock(arg1, arg2));
break;
case TARGET_NR_readv:
{
int count = arg3;
struct iovec *vec;
vec = alloca(count * sizeof(struct iovec));
if (lock_iovec(VERIFY_WRITE, vec, arg2, count, 0) < 0)
goto efault;
ret = get_errno(readv(arg1, vec, count));
unlock_iovec(vec, arg2, count, 1);
}
break;
case TARGET_NR_writev:
{
int count = arg3;
struct iovec *vec;
vec = alloca(count * sizeof(struct iovec));
if (lock_iovec(VERIFY_READ, vec, arg2, count, 1) < 0)
goto efault;
ret = get_errno(writev(arg1, vec, count));
unlock_iovec(vec, arg2, count, 0);
}
break;
case TARGET_NR_getsid:
ret = get_errno(getsid(arg1));
break;
#if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
case TARGET_NR_fdatasync:
ret = get_errno(fdatasync(arg1));
break;
#endif
case TARGET_NR__sysctl:
/* We don't implement this, but ENOTDIR is always a safe
return value. */
ret = -TARGET_ENOTDIR;
break;
case TARGET_NR_sched_getaffinity:
{
unsigned int mask_size;
unsigned long *mask;
/*
* sched_getaffinity needs multiples of ulong, so need to take
* care of mismatches between target ulong and host ulong sizes.
*/
if (arg2 & (sizeof(abi_ulong) - 1)) {
ret = -TARGET_EINVAL;
break;
}
mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
mask = alloca(mask_size);
ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
if (!is_error(ret)) {
if (copy_to_user(arg3, mask, ret)) {
goto efault;
}
}
}
break;
case TARGET_NR_sched_setaffinity:
{
unsigned int mask_size;
unsigned long *mask;
/*
* sched_setaffinity needs multiples of ulong, so need to take
* care of mismatches between target ulong and host ulong sizes.
*/
if (arg2 & (sizeof(abi_ulong) - 1)) {
ret = -TARGET_EINVAL;
break;
}
mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
mask = alloca(mask_size);
if (!lock_user_struct(VERIFY_READ, p, arg3, 1)) {
goto efault;
}
memcpy(mask, p, arg2);
unlock_user_struct(p, arg2, 0);
ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
}
break;
case TARGET_NR_sched_setparam:
{
struct sched_param *target_schp;
struct sched_param schp;
if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1))
goto efault;
schp.sched_priority = tswap32(target_schp->sched_priority);
unlock_user_struct(target_schp, arg2, 0);
ret = get_errno(sched_setparam(arg1, &schp));
}
break;
case TARGET_NR_sched_getparam:
{
struct sched_param *target_schp;
struct sched_param schp;
ret = get_errno(sched_getparam(arg1, &schp));
if (!is_error(ret)) {
if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0))
goto efault;
target_schp->sched_priority = tswap32(schp.sched_priority);
unlock_user_struct(target_schp, arg2, 1);
}
}
break;
case TARGET_NR_sched_setscheduler:
{
struct sched_param *target_schp;
struct sched_param schp;
if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1))
goto efault;
schp.sched_priority = tswap32(target_schp->sched_priority);
unlock_user_struct(target_schp, arg3, 0);
ret = get_errno(sched_setscheduler(arg1, arg2, &schp));
}
break;
case TARGET_NR_sched_getscheduler:
ret = get_errno(sched_getscheduler(arg1));
break;
case TARGET_NR_sched_yield:
ret = get_errno(sched_yield());
break;
case TARGET_NR_sched_get_priority_max:
ret = get_errno(sched_get_priority_max(arg1));
break;
case TARGET_NR_sched_get_priority_min:
ret = get_errno(sched_get_priority_min(arg1));
break;
case TARGET_NR_sched_rr_get_interval:
{
struct timespec ts;
ret = get_errno(sched_rr_get_interval(arg1, &ts));
if (!is_error(ret)) {
host_to_target_timespec(arg2, &ts);
}
}
break;
case TARGET_NR_nanosleep:
{
struct timespec req, rem;
target_to_host_timespec(&req, arg1);
ret = get_errno(nanosleep(&req, &rem));
if (is_error(ret) && arg2) {
host_to_target_timespec(arg2, &rem);
}
}
break;
#ifdef TARGET_NR_query_module
case TARGET_NR_query_module:
goto unimplemented;
#endif
#ifdef TARGET_NR_nfsservctl
case TARGET_NR_nfsservctl:
goto unimplemented;
#endif
case TARGET_NR_prctl:
switch (arg1) {
case PR_GET_PDEATHSIG:
{
int deathsig;
ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5));
if (!is_error(ret) && arg2
&& put_user_ual(deathsig, arg2)) {
goto efault;
}
break;
}
#ifdef PR_GET_NAME
case PR_GET_NAME:
{
void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
if (!name) {
goto efault;
}
ret = get_errno(prctl(arg1, (unsigned long)name,
arg3, arg4, arg5));
unlock_user(name, arg2, 16);
break;
}
case PR_SET_NAME:
{
void *name = lock_user(VERIFY_READ, arg2, 16, 1);
if (!name) {
goto efault;
}
ret = get_errno(prctl(arg1, (unsigned long)name,
arg3, arg4, arg5));
unlock_user(name, arg2, 0);
break;
}
#endif
default:
/* Most prctl options have no pointer arguments */
ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5));
break;
}
break;
#ifdef TARGET_NR_arch_prctl
case TARGET_NR_arch_prctl:
#if defined(TARGET_I386) && !defined(TARGET_ABI32)
ret = do_arch_prctl(cpu_env, arg1, arg2);
break;
#else
goto unimplemented;
#endif
#endif
#ifdef TARGET_NR_pread
case TARGET_NR_pread:
if (regpairs_aligned(cpu_env))
arg4 = arg5;
if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
goto efault;
ret = get_errno(pread(arg1, p, arg3, arg4));
unlock_user(p, arg2, ret);
break;
case TARGET_NR_pwrite:
if (regpairs_aligned(cpu_env))
arg4 = arg5;
if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
goto efault;
ret = get_errno(pwrite(arg1, p, arg3, arg4));
unlock_user(p, arg2, 0);
break;
#endif
#ifdef TARGET_NR_pread64
case TARGET_NR_pread64:
if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
goto efault;
ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
unlock_user(p, arg2, ret);
break;
case TARGET_NR_pwrite64:
if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
goto efault;
ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
unlock_user(p, arg2, 0);
break;
#endif
case TARGET_NR_getcwd:
if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
goto efault;
ret = get_errno(sys_getcwd1(p, arg2));
unlock_user(p, arg1, ret);
break;
case TARGET_NR_capget:
goto unimplemented;
case TARGET_NR_capset:
goto unimplemented;
case TARGET_NR_sigaltstack:
#if defined(TARGET_I386) || defined(TARGET_ARM) || defined(TARGET_MIPS) || \
defined(TARGET_SPARC) || defined(TARGET_PPC) || defined(TARGET_ALPHA) || \
defined(TARGET_M68K) || defined(TARGET_S390X) || defined(TARGET_OPENRISC)
ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUArchState *)cpu_env));
break;
#else
goto unimplemented;
#endif
case TARGET_NR_sendfile:
goto unimplemented;
#ifdef TARGET_NR_getpmsg
case TARGET_NR_getpmsg:
goto unimplemented;
#endif
#ifdef TARGET_NR_putpmsg
case TARGET_NR_putpmsg:
goto unimplemented;
#endif
#ifdef TARGET_NR_vfork
case TARGET_NR_vfork:
ret = get_errno(do_fork(cpu_env, CLONE_VFORK | CLONE_VM | SIGCHLD,
0, 0, 0, 0));
break;
#endif
#ifdef TARGET_NR_ugetrlimit
case TARGET_NR_ugetrlimit:
{
struct rlimit rlim;
int resource = target_to_host_resource(arg1);
ret = get_errno(getrlimit(resource, &rlim));
if (!is_error(ret)) {
struct target_rlimit *target_rlim;
if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
goto efault;
target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
unlock_user_struct(target_rlim, arg2, 1);
}
break;
}
#endif
#ifdef TARGET_NR_truncate64
case TARGET_NR_truncate64:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
unlock_user(p, arg1, 0);
break;
#endif
#ifdef TARGET_NR_ftruncate64
case TARGET_NR_ftruncate64:
ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
break;
#endif
#ifdef TARGET_NR_stat64
case TARGET_NR_stat64:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(stat(path(p), &st));
unlock_user(p, arg1, 0);
if (!is_error(ret))
ret = host_to_target_stat64(cpu_env, arg2, &st);
break;
#endif
#ifdef TARGET_NR_lstat64
case TARGET_NR_lstat64:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(lstat(path(p), &st));
unlock_user(p, arg1, 0);
if (!is_error(ret))
ret = host_to_target_stat64(cpu_env, arg2, &st);
break;
#endif
#ifdef TARGET_NR_fstat64
case TARGET_NR_fstat64:
ret = get_errno(fstat(arg1, &st));
if (!is_error(ret))
ret = host_to_target_stat64(cpu_env, arg2, &st);
break;
#endif
#if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) && \
(defined(__NR_fstatat64) || defined(__NR_newfstatat))
#ifdef TARGET_NR_fstatat64
case TARGET_NR_fstatat64:
#endif
#ifdef TARGET_NR_newfstatat
case TARGET_NR_newfstatat:
#endif
if (!(p = lock_user_string(arg2)))
goto efault;
#ifdef __NR_fstatat64
ret = get_errno(sys_fstatat64(arg1, path(p), &st, arg4));
#else
ret = get_errno(sys_newfstatat(arg1, path(p), &st, arg4));
#endif
if (!is_error(ret))
ret = host_to_target_stat64(cpu_env, arg3, &st);
break;
#endif
case TARGET_NR_lchown:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
unlock_user(p, arg1, 0);
break;
#ifdef TARGET_NR_getuid
case TARGET_NR_getuid:
ret = get_errno(high2lowuid(getuid()));
break;
#endif
#ifdef TARGET_NR_getgid
case TARGET_NR_getgid:
ret = get_errno(high2lowgid(getgid()));
break;
#endif
#ifdef TARGET_NR_geteuid
case TARGET_NR_geteuid:
ret = get_errno(high2lowuid(geteuid()));
break;
#endif
#ifdef TARGET_NR_getegid
case TARGET_NR_getegid:
ret = get_errno(high2lowgid(getegid()));
break;
#endif
case TARGET_NR_setreuid:
ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
break;
case TARGET_NR_setregid:
ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
break;
case TARGET_NR_getgroups:
{
int gidsetsize = arg1;
target_id *target_grouplist;
gid_t *grouplist;
int i;
grouplist = alloca(gidsetsize * sizeof(gid_t));
ret = get_errno(getgroups(gidsetsize, grouplist));
if (gidsetsize == 0)
break;
if (!is_error(ret)) {
target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 2, 0);
if (!target_grouplist)
goto efault;
for(i = 0;i < ret; i++)
target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
unlock_user(target_grouplist, arg2, gidsetsize * 2);
}
}
break;
case TARGET_NR_setgroups:
{
int gidsetsize = arg1;
target_id *target_grouplist;
gid_t *grouplist;
int i;
grouplist = alloca(gidsetsize * sizeof(gid_t));
target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 2, 1);
if (!target_grouplist) {
ret = -TARGET_EFAULT;
goto fail;
}
for(i = 0;i < gidsetsize; i++)
grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
unlock_user(target_grouplist, arg2, 0);
ret = get_errno(setgroups(gidsetsize, grouplist));
}
break;
case TARGET_NR_fchown:
ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
break;
#if defined(TARGET_NR_fchownat) && defined(__NR_fchownat)
case TARGET_NR_fchownat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(sys_fchownat(arg1, p, low2highuid(arg3), low2highgid(arg4), arg5));
unlock_user(p, arg2, 0);
break;
#endif
#ifdef TARGET_NR_setresuid
case TARGET_NR_setresuid:
ret = get_errno(setresuid(low2highuid(arg1),
low2highuid(arg2),
low2highuid(arg3)));
break;
#endif
#ifdef TARGET_NR_getresuid
case TARGET_NR_getresuid:
{
uid_t ruid, euid, suid;
ret = get_errno(getresuid(&ruid, &euid, &suid));
if (!is_error(ret)) {
if (put_user_u16(high2lowuid(ruid), arg1)
|| put_user_u16(high2lowuid(euid), arg2)
|| put_user_u16(high2lowuid(suid), arg3))
goto efault;
}
}
break;
#endif
#ifdef TARGET_NR_getresgid
case TARGET_NR_setresgid:
ret = get_errno(setresgid(low2highgid(arg1),
low2highgid(arg2),
low2highgid(arg3)));
break;
#endif
#ifdef TARGET_NR_getresgid
case TARGET_NR_getresgid:
{
gid_t rgid, egid, sgid;
ret = get_errno(getresgid(&rgid, &egid, &sgid));
if (!is_error(ret)) {
if (put_user_u16(high2lowgid(rgid), arg1)
|| put_user_u16(high2lowgid(egid), arg2)
|| put_user_u16(high2lowgid(sgid), arg3))
goto efault;
}
}
break;
#endif
case TARGET_NR_chown:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
unlock_user(p, arg1, 0);
break;
case TARGET_NR_setuid:
ret = get_errno(setuid(low2highuid(arg1)));
break;
case TARGET_NR_setgid:
ret = get_errno(setgid(low2highgid(arg1)));
break;
case TARGET_NR_setfsuid:
ret = get_errno(setfsuid(arg1));
break;
case TARGET_NR_setfsgid:
ret = get_errno(setfsgid(arg1));
break;
#ifdef TARGET_NR_lchown32
case TARGET_NR_lchown32:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(lchown(p, arg2, arg3));
unlock_user(p, arg1, 0);
break;
#endif
#ifdef TARGET_NR_getuid32
case TARGET_NR_getuid32:
ret = get_errno(getuid());
break;
#endif
#if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
/* Alpha specific */
case TARGET_NR_getxuid:
{
uid_t euid;
euid=geteuid();
((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
}
ret = get_errno(getuid());
break;
#endif
#if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
/* Alpha specific */
case TARGET_NR_getxgid:
{
uid_t egid;
egid=getegid();
((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
}
ret = get_errno(getgid());
break;
#endif
#if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
/* Alpha specific */
case TARGET_NR_osf_getsysinfo:
ret = -TARGET_EOPNOTSUPP;
switch (arg1) {
case TARGET_GSI_IEEE_FP_CONTROL:
{
uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env);
/* Copied from linux ieee_fpcr_to_swcr. */
swcr = (fpcr >> 35) & SWCR_STATUS_MASK;
swcr |= (fpcr >> 36) & SWCR_MAP_DMZ;
swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV
| SWCR_TRAP_ENABLE_DZE
| SWCR_TRAP_ENABLE_OVF);
swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF
| SWCR_TRAP_ENABLE_INE);
swcr |= (fpcr >> 47) & SWCR_MAP_UMZ;
swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO;
if (put_user_u64 (swcr, arg2))
goto efault;
ret = 0;
}
break;
/* case GSI_IEEE_STATE_AT_SIGNAL:
-- Not implemented in linux kernel.
case GSI_UACPROC:
-- Retrieves current unaligned access state; not much used.
case GSI_PROC_TYPE:
-- Retrieves implver information; surely not used.
case GSI_GET_HWRPB:
-- Grabs a copy of the HWRPB; surely not used.
*/
}
break;
#endif
#if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
/* Alpha specific */
case TARGET_NR_osf_setsysinfo:
ret = -TARGET_EOPNOTSUPP;
switch (arg1) {
case TARGET_SSI_IEEE_FP_CONTROL:
{
uint64_t swcr, fpcr, orig_fpcr;
if (get_user_u64 (swcr, arg2)) {
goto efault;
}
orig_fpcr = cpu_alpha_load_fpcr(cpu_env);
fpcr = orig_fpcr & FPCR_DYN_MASK;
/* Copied from linux ieee_swcr_to_fpcr. */
fpcr |= (swcr & SWCR_STATUS_MASK) << 35;
fpcr |= (swcr & SWCR_MAP_DMZ) << 36;
fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV
| SWCR_TRAP_ENABLE_DZE
| SWCR_TRAP_ENABLE_OVF)) << 48;
fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF
| SWCR_TRAP_ENABLE_INE)) << 57;
fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0);
fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41;
cpu_alpha_store_fpcr(cpu_env, fpcr);
ret = 0;
}
break;
case TARGET_SSI_IEEE_RAISE_EXCEPTION:
{
uint64_t exc, fpcr, orig_fpcr;
int si_code;
if (get_user_u64(exc, arg2)) {
goto efault;
}
orig_fpcr = cpu_alpha_load_fpcr(cpu_env);
/* We only add to the exception status here. */
fpcr = orig_fpcr | ((exc & SWCR_STATUS_MASK) << 35);
cpu_alpha_store_fpcr(cpu_env, fpcr);
ret = 0;
/* Old exceptions are not signaled. */
fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK);
/* If any exceptions set by this call,
and are unmasked, send a signal. */
si_code = 0;
if ((fpcr & (FPCR_INE | FPCR_INED)) == FPCR_INE) {
si_code = TARGET_FPE_FLTRES;
}
if ((fpcr & (FPCR_UNF | FPCR_UNFD)) == FPCR_UNF) {
si_code = TARGET_FPE_FLTUND;
}
if ((fpcr & (FPCR_OVF | FPCR_OVFD)) == FPCR_OVF) {
si_code = TARGET_FPE_FLTOVF;
}
if ((fpcr & (FPCR_DZE | FPCR_DZED)) == FPCR_DZE) {
si_code = TARGET_FPE_FLTDIV;
}
if ((fpcr & (FPCR_INV | FPCR_INVD)) == FPCR_INV) {
si_code = TARGET_FPE_FLTINV;
}
if (si_code != 0) {
target_siginfo_t info;
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = si_code;
info._sifields._sigfault._addr
= ((CPUArchState *)cpu_env)->pc;
queue_signal((CPUArchState *)cpu_env, info.si_signo, &info);
}
}
break;
/* case SSI_NVPAIRS:
-- Used with SSIN_UACPROC to enable unaligned accesses.
case SSI_IEEE_STATE_AT_SIGNAL:
case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
-- Not implemented in linux kernel
*/
}
break;
#endif
#ifdef TARGET_NR_osf_sigprocmask
/* Alpha specific. */
case TARGET_NR_osf_sigprocmask:
{
abi_ulong mask;
int how;
sigset_t set, oldset;
switch(arg1) {
case TARGET_SIG_BLOCK:
how = SIG_BLOCK;
break;
case TARGET_SIG_UNBLOCK:
how = SIG_UNBLOCK;
break;
case TARGET_SIG_SETMASK:
how = SIG_SETMASK;
break;
default:
ret = -TARGET_EINVAL;
goto fail;
}
mask = arg2;
target_to_host_old_sigset(&set, &mask);
sigprocmask(how, &set, &oldset);
host_to_target_old_sigset(&mask, &oldset);
ret = mask;
}
break;
#endif
#ifdef TARGET_NR_getgid32
case TARGET_NR_getgid32:
ret = get_errno(getgid());
break;
#endif
#ifdef TARGET_NR_geteuid32
case TARGET_NR_geteuid32:
ret = get_errno(geteuid());
break;
#endif
#ifdef TARGET_NR_getegid32
case TARGET_NR_getegid32:
ret = get_errno(getegid());
break;
#endif
#ifdef TARGET_NR_setreuid32
case TARGET_NR_setreuid32:
ret = get_errno(setreuid(arg1, arg2));
break;
#endif
#ifdef TARGET_NR_setregid32
case TARGET_NR_setregid32:
ret = get_errno(setregid(arg1, arg2));
break;
#endif
#ifdef TARGET_NR_getgroups32
case TARGET_NR_getgroups32:
{
int gidsetsize = arg1;
uint32_t *target_grouplist;
gid_t *grouplist;
int i;
grouplist = alloca(gidsetsize * sizeof(gid_t));
ret = get_errno(getgroups(gidsetsize, grouplist));
if (gidsetsize == 0)
break;
if (!is_error(ret)) {
target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
if (!target_grouplist) {
ret = -TARGET_EFAULT;
goto fail;
}
for(i = 0;i < ret; i++)
target_grouplist[i] = tswap32(grouplist[i]);
unlock_user(target_grouplist, arg2, gidsetsize * 4);
}
}
break;
#endif
#ifdef TARGET_NR_setgroups32
case TARGET_NR_setgroups32:
{
int gidsetsize = arg1;
uint32_t *target_grouplist;
gid_t *grouplist;
int i;
grouplist = alloca(gidsetsize * sizeof(gid_t));
target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
if (!target_grouplist) {
ret = -TARGET_EFAULT;
goto fail;
}
for(i = 0;i < gidsetsize; i++)
grouplist[i] = tswap32(target_grouplist[i]);
unlock_user(target_grouplist, arg2, 0);
ret = get_errno(setgroups(gidsetsize, grouplist));
}
break;
#endif
#ifdef TARGET_NR_fchown32
case TARGET_NR_fchown32:
ret = get_errno(fchown(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_setresuid32
case TARGET_NR_setresuid32:
ret = get_errno(setresuid(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_getresuid32
case TARGET_NR_getresuid32:
{
uid_t ruid, euid, suid;
ret = get_errno(getresuid(&ruid, &euid, &suid));
if (!is_error(ret)) {
if (put_user_u32(ruid, arg1)
|| put_user_u32(euid, arg2)
|| put_user_u32(suid, arg3))
goto efault;
}
}
break;
#endif
#ifdef TARGET_NR_setresgid32
case TARGET_NR_setresgid32:
ret = get_errno(setresgid(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_getresgid32
case TARGET_NR_getresgid32:
{
gid_t rgid, egid, sgid;
ret = get_errno(getresgid(&rgid, &egid, &sgid));
if (!is_error(ret)) {
if (put_user_u32(rgid, arg1)
|| put_user_u32(egid, arg2)
|| put_user_u32(sgid, arg3))
goto efault;
}
}
break;
#endif
#ifdef TARGET_NR_chown32
case TARGET_NR_chown32:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(chown(p, arg2, arg3));
unlock_user(p, arg1, 0);
break;
#endif
#ifdef TARGET_NR_setuid32
case TARGET_NR_setuid32:
ret = get_errno(setuid(arg1));
break;
#endif
#ifdef TARGET_NR_setgid32
case TARGET_NR_setgid32:
ret = get_errno(setgid(arg1));
break;
#endif
#ifdef TARGET_NR_setfsuid32
case TARGET_NR_setfsuid32:
ret = get_errno(setfsuid(arg1));
break;
#endif
#ifdef TARGET_NR_setfsgid32
case TARGET_NR_setfsgid32:
ret = get_errno(setfsgid(arg1));
break;
#endif
case TARGET_NR_pivot_root:
goto unimplemented;
#ifdef TARGET_NR_mincore
case TARGET_NR_mincore:
{
void *a;
ret = -TARGET_EFAULT;
if (!(a = lock_user(VERIFY_READ, arg1,arg2, 0)))
goto efault;
if (!(p = lock_user_string(arg3)))
goto mincore_fail;
ret = get_errno(mincore(a, arg2, p));
unlock_user(p, arg3, ret);
mincore_fail:
unlock_user(a, arg1, 0);
}
break;
#endif
#ifdef TARGET_NR_arm_fadvise64_64
case TARGET_NR_arm_fadvise64_64:
{
/*
* arm_fadvise64_64 looks like fadvise64_64 but
* with different argument order
*/
abi_long temp;
temp = arg3;
arg3 = arg4;
arg4 = temp;
}
#endif
#if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_arm_fadvise64_64) || defined(TARGET_NR_fadvise64)
#ifdef TARGET_NR_fadvise64_64
case TARGET_NR_fadvise64_64:
#endif
#ifdef TARGET_NR_fadvise64
case TARGET_NR_fadvise64:
#endif
#ifdef TARGET_S390X
switch (arg4) {
case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
case 6: arg4 = POSIX_FADV_DONTNEED; break;
case 7: arg4 = POSIX_FADV_NOREUSE; break;
default: break;
}
#endif
ret = -posix_fadvise(arg1, arg2, arg3, arg4);
break;
#endif
#ifdef TARGET_NR_madvise
case TARGET_NR_madvise:
/* A straight passthrough may not be safe because qemu sometimes
turns private flie-backed mappings into anonymous mappings.
This will break MADV_DONTNEED.
This is a hint, so ignoring and returning success is ok. */
ret = get_errno(0);
break;
#endif
#if TARGET_ABI_BITS == 32
case TARGET_NR_fcntl64:
{
int cmd;
struct flock64 fl;
struct target_flock64 *target_fl;
#ifdef TARGET_ARM
struct target_eabi_flock64 *target_efl;
#endif
cmd = target_to_host_fcntl_cmd(arg2);
if (cmd == -TARGET_EINVAL) {
ret = cmd;
break;
}
switch(arg2) {
case TARGET_F_GETLK64:
#ifdef TARGET_ARM
if (((CPUARMState *)cpu_env)->eabi) {
if (!lock_user_struct(VERIFY_READ, target_efl, arg3, 1))
goto efault;
fl.l_type = tswap16(target_efl->l_type);
fl.l_whence = tswap16(target_efl->l_whence);
fl.l_start = tswap64(target_efl->l_start);
fl.l_len = tswap64(target_efl->l_len);
fl.l_pid = tswap32(target_efl->l_pid);
unlock_user_struct(target_efl, arg3, 0);
} else
#endif
{
if (!lock_user_struct(VERIFY_READ, target_fl, arg3, 1))
goto efault;
fl.l_type = tswap16(target_fl->l_type);
fl.l_whence = tswap16(target_fl->l_whence);
fl.l_start = tswap64(target_fl->l_start);
fl.l_len = tswap64(target_fl->l_len);
fl.l_pid = tswap32(target_fl->l_pid);
unlock_user_struct(target_fl, arg3, 0);
}
ret = get_errno(fcntl(arg1, cmd, &fl));
if (ret == 0) {
#ifdef TARGET_ARM
if (((CPUARMState *)cpu_env)->eabi) {
if (!lock_user_struct(VERIFY_WRITE, target_efl, arg3, 0))
goto efault;
target_efl->l_type = tswap16(fl.l_type);
target_efl->l_whence = tswap16(fl.l_whence);
target_efl->l_start = tswap64(fl.l_start);
target_efl->l_len = tswap64(fl.l_len);
target_efl->l_pid = tswap32(fl.l_pid);
unlock_user_struct(target_efl, arg3, 1);
} else
#endif
{
if (!lock_user_struct(VERIFY_WRITE, target_fl, arg3, 0))
goto efault;
target_fl->l_type = tswap16(fl.l_type);
target_fl->l_whence = tswap16(fl.l_whence);
target_fl->l_start = tswap64(fl.l_start);
target_fl->l_len = tswap64(fl.l_len);
target_fl->l_pid = tswap32(fl.l_pid);
unlock_user_struct(target_fl, arg3, 1);
}
}
break;
case TARGET_F_SETLK64:
case TARGET_F_SETLKW64:
#ifdef TARGET_ARM
if (((CPUARMState *)cpu_env)->eabi) {
if (!lock_user_struct(VERIFY_READ, target_efl, arg3, 1))
goto efault;
fl.l_type = tswap16(target_efl->l_type);
fl.l_whence = tswap16(target_efl->l_whence);
fl.l_start = tswap64(target_efl->l_start);
fl.l_len = tswap64(target_efl->l_len);
fl.l_pid = tswap32(target_efl->l_pid);
unlock_user_struct(target_efl, arg3, 0);
} else
#endif
{
if (!lock_user_struct(VERIFY_READ, target_fl, arg3, 1))
goto efault;
fl.l_type = tswap16(target_fl->l_type);
fl.l_whence = tswap16(target_fl->l_whence);
fl.l_start = tswap64(target_fl->l_start);
fl.l_len = tswap64(target_fl->l_len);
fl.l_pid = tswap32(target_fl->l_pid);
unlock_user_struct(target_fl, arg3, 0);
}
ret = get_errno(fcntl(arg1, cmd, &fl));
break;
default:
ret = do_fcntl(arg1, arg2, arg3);
break;
}
break;
}
#endif
#ifdef TARGET_NR_cacheflush
case TARGET_NR_cacheflush:
/* self-modifying code is handled automatically, so nothing needed */
ret = 0;
break;
#endif
#ifdef TARGET_NR_security
case TARGET_NR_security:
goto unimplemented;
#endif
#ifdef TARGET_NR_getpagesize
case TARGET_NR_getpagesize:
ret = TARGET_PAGE_SIZE;
break;
#endif
case TARGET_NR_gettid:
ret = get_errno(gettid());
break;
#ifdef TARGET_NR_readahead
case TARGET_NR_readahead:
#if TARGET_ABI_BITS == 32
if (regpairs_aligned(cpu_env)) {
arg2 = arg3;
arg3 = arg4;
arg4 = arg5;
}
ret = get_errno(readahead(arg1, ((off64_t)arg3 << 32) | arg2, arg4));
#else
ret = get_errno(readahead(arg1, arg2, arg3));
#endif
break;
#endif
#ifdef CONFIG_ATTR
#ifdef TARGET_NR_setxattr
case TARGET_NR_listxattr:
case TARGET_NR_llistxattr:
{
void *p, *b = 0;
if (arg2) {
b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
if (!b) {
ret = -TARGET_EFAULT;
break;
}
}
p = lock_user_string(arg1);
if (p) {
if (num == TARGET_NR_listxattr) {
ret = get_errno(listxattr(p, b, arg3));
} else {
ret = get_errno(llistxattr(p, b, arg3));
}
} else {
ret = -TARGET_EFAULT;
}
unlock_user(p, arg1, 0);
unlock_user(b, arg2, arg3);
break;
}
case TARGET_NR_flistxattr:
{
void *b = 0;
if (arg2) {
b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
if (!b) {
ret = -TARGET_EFAULT;
break;
}
}
ret = get_errno(flistxattr(arg1, b, arg3));
unlock_user(b, arg2, arg3);
break;
}
case TARGET_NR_setxattr:
case TARGET_NR_lsetxattr:
{
void *p, *n, *v = 0;
if (arg3) {
v = lock_user(VERIFY_READ, arg3, arg4, 1);
if (!v) {
ret = -TARGET_EFAULT;
break;
}
}
p = lock_user_string(arg1);
n = lock_user_string(arg2);
if (p && n) {
if (num == TARGET_NR_setxattr) {
ret = get_errno(setxattr(p, n, v, arg4, arg5));
} else {
ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
}
} else {
ret = -TARGET_EFAULT;
}
unlock_user(p, arg1, 0);
unlock_user(n, arg2, 0);
unlock_user(v, arg3, 0);
}
break;
case TARGET_NR_fsetxattr:
{
void *n, *v = 0;
if (arg3) {
v = lock_user(VERIFY_READ, arg3, arg4, 1);
if (!v) {
ret = -TARGET_EFAULT;
break;
}
}
n = lock_user_string(arg2);
if (n) {
ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
} else {
ret = -TARGET_EFAULT;
}
unlock_user(n, arg2, 0);
unlock_user(v, arg3, 0);
}
break;
case TARGET_NR_getxattr:
case TARGET_NR_lgetxattr:
{
void *p, *n, *v = 0;
if (arg3) {
v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
if (!v) {
ret = -TARGET_EFAULT;
break;
}
}
p = lock_user_string(arg1);
n = lock_user_string(arg2);
if (p && n) {
if (num == TARGET_NR_getxattr) {
ret = get_errno(getxattr(p, n, v, arg4));
} else {
ret = get_errno(lgetxattr(p, n, v, arg4));
}
} else {
ret = -TARGET_EFAULT;
}
unlock_user(p, arg1, 0);
unlock_user(n, arg2, 0);
unlock_user(v, arg3, arg4);
}
break;
case TARGET_NR_fgetxattr:
{
void *n, *v = 0;
if (arg3) {
v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
if (!v) {
ret = -TARGET_EFAULT;
break;
}
}
n = lock_user_string(arg2);
if (n) {
ret = get_errno(fgetxattr(arg1, n, v, arg4));
} else {
ret = -TARGET_EFAULT;
}
unlock_user(n, arg2, 0);
unlock_user(v, arg3, arg4);
}
break;
case TARGET_NR_removexattr:
case TARGET_NR_lremovexattr:
{
void *p, *n;
p = lock_user_string(arg1);
n = lock_user_string(arg2);
if (p && n) {
if (num == TARGET_NR_removexattr) {
ret = get_errno(removexattr(p, n));
} else {
ret = get_errno(lremovexattr(p, n));
}
} else {
ret = -TARGET_EFAULT;
}
unlock_user(p, arg1, 0);
unlock_user(n, arg2, 0);
}
break;
case TARGET_NR_fremovexattr:
{
void *n;
n = lock_user_string(arg2);
if (n) {
ret = get_errno(fremovexattr(arg1, n));
} else {
ret = -TARGET_EFAULT;
}
unlock_user(n, arg2, 0);
}
break;
#endif
#endif /* CONFIG_ATTR */
#ifdef TARGET_NR_set_thread_area
case TARGET_NR_set_thread_area:
#if defined(TARGET_MIPS)
((CPUMIPSState *) cpu_env)->tls_value = arg1;
ret = 0;
break;
#elif defined(TARGET_CRIS)
if (arg1 & 0xff)
ret = -TARGET_EINVAL;
else {
((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
ret = 0;
}
break;
#elif defined(TARGET_I386) && defined(TARGET_ABI32)
ret = do_set_thread_area(cpu_env, arg1);
break;
#else
goto unimplemented_nowarn;
#endif
#endif
#ifdef TARGET_NR_get_thread_area
case TARGET_NR_get_thread_area:
#if defined(TARGET_I386) && defined(TARGET_ABI32)
ret = do_get_thread_area(cpu_env, arg1);
#else
goto unimplemented_nowarn;
#endif
#endif
#ifdef TARGET_NR_getdomainname
case TARGET_NR_getdomainname:
goto unimplemented_nowarn;
#endif
#ifdef TARGET_NR_clock_gettime
case TARGET_NR_clock_gettime:
{
struct timespec ts;
ret = get_errno(clock_gettime(arg1, &ts));
if (!is_error(ret)) {
host_to_target_timespec(arg2, &ts);
}
break;
}
#endif
#ifdef TARGET_NR_clock_getres
case TARGET_NR_clock_getres:
{
struct timespec ts;
ret = get_errno(clock_getres(arg1, &ts));
if (!is_error(ret)) {
host_to_target_timespec(arg2, &ts);
}
break;
}
#endif
#ifdef TARGET_NR_clock_nanosleep
case TARGET_NR_clock_nanosleep:
{
struct timespec ts;
target_to_host_timespec(&ts, arg3);
ret = get_errno(clock_nanosleep(arg1, arg2, &ts, arg4 ? &ts : NULL));
if (arg4)
host_to_target_timespec(arg4, &ts);
break;
}
#endif
#if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
case TARGET_NR_set_tid_address:
ret = get_errno(set_tid_address((int *)g2h(arg1)));
break;
#endif
#if defined(TARGET_NR_tkill) && defined(__NR_tkill)
case TARGET_NR_tkill:
ret = get_errno(sys_tkill((int)arg1, target_to_host_signal(arg2)));
break;
#endif
#if defined(TARGET_NR_tgkill) && defined(__NR_tgkill)
case TARGET_NR_tgkill:
ret = get_errno(sys_tgkill((int)arg1, (int)arg2,
target_to_host_signal(arg3)));
break;
#endif
#ifdef TARGET_NR_set_robust_list
case TARGET_NR_set_robust_list:
goto unimplemented_nowarn;
#endif
#if defined(TARGET_NR_utimensat) && defined(__NR_utimensat)
case TARGET_NR_utimensat:
{
struct timespec *tsp, ts[2];
if (!arg3) {
tsp = NULL;
} else {
target_to_host_timespec(ts, arg3);
target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec));
tsp = ts;
}
if (!arg2)
ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
else {
if (!(p = lock_user_string(arg2))) {
ret = -TARGET_EFAULT;
goto fail;
}
ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
unlock_user(p, arg2, 0);
}
}
break;
#endif
#if defined(CONFIG_USE_NPTL)
case TARGET_NR_futex:
ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6);
break;
#endif
#if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
case TARGET_NR_inotify_init:
ret = get_errno(sys_inotify_init());
break;
#endif
#ifdef CONFIG_INOTIFY1
#if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
case TARGET_NR_inotify_init1:
ret = get_errno(sys_inotify_init1(arg1));
break;
#endif
#endif
#if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
case TARGET_NR_inotify_add_watch:
p = lock_user_string(arg2);
ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
unlock_user(p, arg2, 0);
break;
#endif
#if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
case TARGET_NR_inotify_rm_watch:
ret = get_errno(sys_inotify_rm_watch(arg1, arg2));
break;
#endif
#if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
case TARGET_NR_mq_open:
{
struct mq_attr posix_mq_attr;
p = lock_user_string(arg1 - 1);
if (arg4 != 0)
copy_from_user_mq_attr (&posix_mq_attr, arg4);
ret = get_errno(mq_open(p, arg2, arg3, &posix_mq_attr));
unlock_user (p, arg1, 0);
}
break;
case TARGET_NR_mq_unlink:
p = lock_user_string(arg1 - 1);
ret = get_errno(mq_unlink(p));
unlock_user (p, arg1, 0);
break;
case TARGET_NR_mq_timedsend:
{
struct timespec ts;
p = lock_user (VERIFY_READ, arg2, arg3, 1);
if (arg5 != 0) {
target_to_host_timespec(&ts, arg5);
ret = get_errno(mq_timedsend(arg1, p, arg3, arg4, &ts));
host_to_target_timespec(arg5, &ts);
}
else
ret = get_errno(mq_send(arg1, p, arg3, arg4));
unlock_user (p, arg2, arg3);
}
break;
case TARGET_NR_mq_timedreceive:
{
struct timespec ts;
unsigned int prio;
p = lock_user (VERIFY_READ, arg2, arg3, 1);
if (arg5 != 0) {
target_to_host_timespec(&ts, arg5);
ret = get_errno(mq_timedreceive(arg1, p, arg3, &prio, &ts));
host_to_target_timespec(arg5, &ts);
}
else
ret = get_errno(mq_receive(arg1, p, arg3, &prio));
unlock_user (p, arg2, arg3);
if (arg4 != 0)
put_user_u32(prio, arg4);
}
break;
/* Not implemented for now... */
/* case TARGET_NR_mq_notify: */
/* break; */
case TARGET_NR_mq_getsetattr:
{
struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
ret = 0;
if (arg3 != 0) {
ret = mq_getattr(arg1, &posix_mq_attr_out);
copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
}
if (arg2 != 0) {
copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
ret |= mq_setattr(arg1, &posix_mq_attr_in, &posix_mq_attr_out);
}
}
break;
#endif
#ifdef CONFIG_SPLICE
#ifdef TARGET_NR_tee
case TARGET_NR_tee:
{
ret = get_errno(tee(arg1,arg2,arg3,arg4));
}
break;
#endif
#ifdef TARGET_NR_splice
case TARGET_NR_splice:
{
loff_t loff_in, loff_out;
loff_t *ploff_in = NULL, *ploff_out = NULL;
if(arg2) {
get_user_u64(loff_in, arg2);
ploff_in = &loff_in;
}
if(arg4) {
get_user_u64(loff_out, arg2);
ploff_out = &loff_out;
}
ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
}
break;
#endif
#ifdef TARGET_NR_vmsplice
case TARGET_NR_vmsplice:
{
int count = arg3;
struct iovec *vec;
vec = alloca(count * sizeof(struct iovec));
if (lock_iovec(VERIFY_READ, vec, arg2, count, 1) < 0)
goto efault;
ret = get_errno(vmsplice(arg1, vec, count, arg4));
unlock_iovec(vec, arg2, count, 0);
}
break;
#endif
#endif /* CONFIG_SPLICE */
#ifdef CONFIG_EVENTFD
#if defined(TARGET_NR_eventfd)
case TARGET_NR_eventfd:
ret = get_errno(eventfd(arg1, 0));
break;
#endif
#if defined(TARGET_NR_eventfd2)
case TARGET_NR_eventfd2:
ret = get_errno(eventfd(arg1, arg2));
break;
#endif
#endif /* CONFIG_EVENTFD */
#if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
case TARGET_NR_fallocate:
#if TARGET_ABI_BITS == 32
ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
target_offset64(arg5, arg6)));
#else
ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
#endif
break;
#endif
#if defined(CONFIG_SYNC_FILE_RANGE)
#if defined(TARGET_NR_sync_file_range)
case TARGET_NR_sync_file_range:
#if TARGET_ABI_BITS == 32
#if defined(TARGET_MIPS)
ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
target_offset64(arg5, arg6), arg7));
#else
ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
target_offset64(arg4, arg5), arg6));
#endif /* !TARGET_MIPS */
#else
ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
#endif
break;
#endif
#if defined(TARGET_NR_sync_file_range2)
case TARGET_NR_sync_file_range2:
/* This is like sync_file_range but the arguments are reordered */
#if TARGET_ABI_BITS == 32
ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
target_offset64(arg5, arg6), arg2));
#else
ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
#endif
break;
#endif
#endif
#if defined(CONFIG_EPOLL)
#if defined(TARGET_NR_epoll_create)
case TARGET_NR_epoll_create:
ret = get_errno(epoll_create(arg1));
break;
#endif
#if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
case TARGET_NR_epoll_create1:
ret = get_errno(epoll_create1(arg1));
break;
#endif
#if defined(TARGET_NR_epoll_ctl)
case TARGET_NR_epoll_ctl:
{
struct epoll_event ep;
struct epoll_event *epp = 0;
if (arg4) {
struct target_epoll_event *target_ep;
if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
goto efault;
}
ep.events = tswap32(target_ep->events);
/* The epoll_data_t union is just opaque data to the kernel,
* so we transfer all 64 bits across and need not worry what
* actual data type it is.
*/
ep.data.u64 = tswap64(target_ep->data.u64);
unlock_user_struct(target_ep, arg4, 0);
epp = &ep;
}
ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp));
break;
}
#endif
#if defined(TARGET_NR_epoll_pwait) && defined(CONFIG_EPOLL_PWAIT)
#define IMPLEMENT_EPOLL_PWAIT
#endif
#if defined(TARGET_NR_epoll_wait) || defined(IMPLEMENT_EPOLL_PWAIT)
#if defined(TARGET_NR_epoll_wait)
case TARGET_NR_epoll_wait:
#endif
#if defined(IMPLEMENT_EPOLL_PWAIT)
case TARGET_NR_epoll_pwait:
#endif
{
struct target_epoll_event *target_ep;
struct epoll_event *ep;
int epfd = arg1;
int maxevents = arg3;
int timeout = arg4;
target_ep = lock_user(VERIFY_WRITE, arg2,
maxevents * sizeof(struct target_epoll_event), 1);
if (!target_ep) {
goto efault;
}
ep = alloca(maxevents * sizeof(struct epoll_event));
switch (num) {
#if defined(IMPLEMENT_EPOLL_PWAIT)
case TARGET_NR_epoll_pwait:
{
target_sigset_t *target_set;
sigset_t _set, *set = &_set;
if (arg5) {
target_set = lock_user(VERIFY_READ, arg5,
sizeof(target_sigset_t), 1);
if (!target_set) {
unlock_user(target_ep, arg2, 0);
goto efault;
}
target_to_host_sigset(set, target_set);
unlock_user(target_set, arg5, 0);
} else {
set = NULL;
}
ret = get_errno(epoll_pwait(epfd, ep, maxevents, timeout, set));
break;
}
#endif
#if defined(TARGET_NR_epoll_wait)
case TARGET_NR_epoll_wait:
ret = get_errno(epoll_wait(epfd, ep, maxevents, timeout));
break;
#endif
default:
ret = -TARGET_ENOSYS;
}
if (!is_error(ret)) {
int i;
for (i = 0; i < ret; i++) {
target_ep[i].events = tswap32(ep[i].events);
target_ep[i].data.u64 = tswap64(ep[i].data.u64);
}
}
unlock_user(target_ep, arg2, ret * sizeof(struct target_epoll_event));
break;
}
#endif
#endif
#ifdef TARGET_NR_prlimit64
case TARGET_NR_prlimit64:
{
/* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
struct target_rlimit64 *target_rnew, *target_rold;
struct host_rlimit64 rnew, rold, *rnewp = 0;
if (arg3) {
if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
goto efault;
}
rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
rnew.rlim_max = tswap64(target_rnew->rlim_max);
unlock_user_struct(target_rnew, arg3, 0);
rnewp = &rnew;
}
ret = get_errno(sys_prlimit64(arg1, arg2, rnewp, arg4 ? &rold : 0));
if (!is_error(ret) && arg4) {
if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
goto efault;
}
target_rold->rlim_cur = tswap64(rold.rlim_cur);
target_rold->rlim_max = tswap64(rold.rlim_max);
unlock_user_struct(target_rold, arg4, 1);
}
break;
}
#endif
default:
unimplemented:
gemu_log("qemu: Unsupported syscall: %d\n", num);
#if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list)
unimplemented_nowarn:
#endif
ret = -TARGET_ENOSYS;
break;
}
fail:
#ifdef DEBUG
gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret);
#endif
if(do_strace)
print_syscall_ret(num, ret);
return ret;
efault:
ret = -TARGET_EFAULT;
goto fail;
}
| 22,174 |
qemu | 67a0fd2a9bca204d2b39f910a97c7137636a0715 | 0 | static int64_t coroutine_fn vmdk_co_get_block_status(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, int *pnum)
{
BDRVVmdkState *s = bs->opaque;
int64_t index_in_cluster, n, ret;
uint64_t offset;
VmdkExtent *extent;
extent = find_extent(s, sector_num, NULL);
if (!extent) {
return 0;
}
qemu_co_mutex_lock(&s->lock);
ret = get_cluster_offset(bs, extent, NULL,
sector_num * 512, false, &offset,
0, 0);
qemu_co_mutex_unlock(&s->lock);
switch (ret) {
case VMDK_ERROR:
ret = -EIO;
break;
case VMDK_UNALLOC:
ret = 0;
break;
case VMDK_ZEROED:
ret = BDRV_BLOCK_ZERO;
break;
case VMDK_OK:
ret = BDRV_BLOCK_DATA;
if (extent->file == bs->file && !extent->compressed) {
ret |= BDRV_BLOCK_OFFSET_VALID | offset;
}
break;
}
index_in_cluster = vmdk_find_index_in_cluster(extent, sector_num);
n = extent->cluster_sectors - index_in_cluster;
if (n > nb_sectors) {
n = nb_sectors;
}
*pnum = n;
return ret;
}
| 22,175 |
qemu | 698feb5e13a2d763369909ce33f2bd7a7c1c11c0 | 0 | static void vfio_listener_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
VFIOContainer *container = container_of(listener, VFIOContainer, listener);
hwaddr iova, end;
Int128 llend, llsize;
void *vaddr;
int ret;
VFIOHostDMAWindow *hostwin;
bool hostwin_found;
if (vfio_listener_skipped_section(section)) {
trace_vfio_listener_region_add_skip(
section->offset_within_address_space,
section->offset_within_address_space +
int128_get64(int128_sub(section->size, int128_one())));
return;
}
if (unlikely((section->offset_within_address_space & ~TARGET_PAGE_MASK) !=
(section->offset_within_region & ~TARGET_PAGE_MASK))) {
error_report("%s received unaligned region", __func__);
return;
}
iova = TARGET_PAGE_ALIGN(section->offset_within_address_space);
llend = int128_make64(section->offset_within_address_space);
llend = int128_add(llend, section->size);
llend = int128_and(llend, int128_exts64(TARGET_PAGE_MASK));
if (int128_ge(int128_make64(iova), llend)) {
return;
}
end = int128_get64(int128_sub(llend, int128_one()));
if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
VFIOHostDMAWindow *hostwin;
hwaddr pgsize = 0;
/* For now intersections are not allowed, we may relax this later */
QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
if (ranges_overlap(hostwin->min_iova,
hostwin->max_iova - hostwin->min_iova + 1,
section->offset_within_address_space,
int128_get64(section->size))) {
ret = -1;
goto fail;
}
}
ret = vfio_spapr_create_window(container, section, &pgsize);
if (ret) {
goto fail;
}
vfio_host_win_add(container, section->offset_within_address_space,
section->offset_within_address_space +
int128_get64(section->size) - 1, pgsize);
}
hostwin_found = false;
QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
if (hostwin->min_iova <= iova && end <= hostwin->max_iova) {
hostwin_found = true;
break;
}
}
if (!hostwin_found) {
error_report("vfio: IOMMU container %p can't map guest IOVA region"
" 0x%"HWADDR_PRIx"..0x%"HWADDR_PRIx,
container, iova, end);
ret = -EFAULT;
goto fail;
}
memory_region_ref(section->mr);
if (memory_region_is_iommu(section->mr)) {
VFIOGuestIOMMU *giommu;
trace_vfio_listener_region_add_iommu(iova, end);
/*
* FIXME: For VFIO iommu types which have KVM acceleration to
* avoid bouncing all map/unmaps through qemu this way, this
* would be the right place to wire that up (tell the KVM
* device emulation the VFIO iommu handles to use).
*/
giommu = g_malloc0(sizeof(*giommu));
giommu->iommu = section->mr;
giommu->iommu_offset = section->offset_within_address_space -
section->offset_within_region;
giommu->container = container;
giommu->n.notify = vfio_iommu_map_notify;
giommu->n.notifier_flags = IOMMU_NOTIFIER_ALL;
QLIST_INSERT_HEAD(&container->giommu_list, giommu, giommu_next);
memory_region_register_iommu_notifier(giommu->iommu, &giommu->n);
memory_region_iommu_replay(giommu->iommu, &giommu->n, false);
return;
}
/* Here we assume that memory_region_is_ram(section->mr)==true */
vaddr = memory_region_get_ram_ptr(section->mr) +
section->offset_within_region +
(iova - section->offset_within_address_space);
trace_vfio_listener_region_add_ram(iova, end, vaddr);
llsize = int128_sub(llend, int128_make64(iova));
ret = vfio_dma_map(container, iova, int128_get64(llsize),
vaddr, section->readonly);
if (ret) {
error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", "
"0x%"HWADDR_PRIx", %p) = %d (%m)",
container, iova, int128_get64(llsize), vaddr, ret);
goto fail;
}
return;
fail:
/*
* On the initfn path, store the first error in the container so we
* can gracefully fail. Runtime, there's not much we can do other
* than throw a hardware error.
*/
if (!container->initialized) {
if (!container->error) {
container->error = ret;
}
} else {
hw_error("vfio: DMA mapping failed, unable to continue");
}
}
| 22,176 |
qemu | a5a08302d44a8b1a8c5819b1411002f85bb5f847 | 0 | static void niagara_init(MachineState *machine)
{
NiagaraBoardState *s = g_new(NiagaraBoardState, 1);
DriveInfo *dinfo = drive_get_next(IF_PFLASH);
MemoryRegion *sysmem = get_system_memory();
/* init CPUs */
sparc64_cpu_devinit(machine->cpu_model, "Sun UltraSparc T1",
NIAGARA_PROM_BASE);
/* set up devices */
memory_region_allocate_system_memory(&s->hv_ram, NULL, "sun4v-hv.ram",
NIAGARA_HV_RAM_SIZE);
memory_region_add_subregion(sysmem, NIAGARA_HV_RAM_BASE, &s->hv_ram);
memory_region_allocate_system_memory(&s->partition_ram, NULL,
"sun4v-partition.ram",
machine->ram_size);
memory_region_add_subregion(sysmem, NIAGARA_PARTITION_RAM_BASE,
&s->partition_ram);
memory_region_allocate_system_memory(&s->nvram, NULL,
"sun4v.nvram", NIAGARA_NVRAM_SIZE);
memory_region_add_subregion(sysmem, NIAGARA_NVRAM_BASE, &s->nvram);
memory_region_allocate_system_memory(&s->md_rom, NULL,
"sun4v-md.rom", NIAGARA_MD_ROM_SIZE);
memory_region_add_subregion(sysmem, NIAGARA_MD_ROM_BASE, &s->md_rom);
memory_region_allocate_system_memory(&s->hv_rom, NULL,
"sun4v-hv.rom", NIAGARA_HV_ROM_SIZE);
memory_region_add_subregion(sysmem, NIAGARA_HV_ROM_BASE, &s->hv_rom);
memory_region_allocate_system_memory(&s->prom, NULL,
"sun4v.prom", PROM_SIZE_MAX);
memory_region_add_subregion(sysmem, NIAGARA_PROM_BASE, &s->prom);
add_rom_or_fail("nvram1", NIAGARA_NVRAM_BASE);
add_rom_or_fail("1up-md.bin", NIAGARA_MD_ROM_BASE);
add_rom_or_fail("1up-hv.bin", NIAGARA_HV_ROM_BASE);
add_rom_or_fail("reset.bin", NIAGARA_PROM_BASE);
add_rom_or_fail("q.bin", NIAGARA_PROM_BASE + NIAGARA_Q_OFFSET);
add_rom_or_fail("openboot.bin", NIAGARA_PROM_BASE + NIAGARA_OBP_OFFSET);
/* the virtual ramdisk is kind of initrd, but it resides
outside of the partition RAM */
if (dinfo) {
BlockBackend *blk = blk_by_legacy_dinfo(dinfo);
int size = blk_getlength(blk);
if (size > 0) {
memory_region_allocate_system_memory(&s->vdisk_ram, NULL,
"sun4v_vdisk.ram", size);
memory_region_add_subregion(get_system_memory(),
NIAGARA_VDISK_BASE, &s->vdisk_ram);
dinfo->is_default = 1;
rom_add_file_fixed(blk_bs(blk)->filename, NIAGARA_VDISK_BASE, -1);
} else {
fprintf(stderr, "qemu: could not load ram disk '%s'\n",
blk_bs(blk)->filename);
exit(1);
}
}
serial_mm_init(sysmem, NIAGARA_UART_BASE, 0, NULL, 115200,
serial_hds[0], DEVICE_BIG_ENDIAN);
empty_slot_init(NIAGARA_IOBBASE, NIAGARA_IOBSIZE);
sun4v_rtc_init(NIAGARA_RTC_BASE);
}
| 22,177 |
qemu | be1fea9bc286f64c6c995bb0d7145a0b738aeddb | 0 | static int virtqueue_num_heads(VirtQueue *vq, unsigned int idx)
{
uint16_t num_heads = vring_avail_idx(vq) - idx;
/* Check it isn't doing very strange things with descriptor numbers. */
if (num_heads > vq->vring.num) {
error_report("Guest moved used index from %u to %u",
idx, vring_avail_idx(vq));
exit(1);
}
/* On success, callers read a descriptor at vq->last_avail_idx.
* Make sure descriptor read does not bypass avail index read. */
if (num_heads) {
smp_rmb();
}
return num_heads;
}
| 22,178 |
qemu | 45a50b1668822c23afc2a89f724654e176518bc4 | 0 | static void load_linux(void *fw_cfg,
target_phys_addr_t option_rom,
const char *kernel_filename,
const char *initrd_filename,
const char *kernel_cmdline,
target_phys_addr_t max_ram_size)
{
uint16_t protocol;
uint32_t gpr[8];
uint16_t seg[6];
uint16_t real_seg;
int setup_size, kernel_size, initrd_size = 0, cmdline_size;
uint32_t initrd_max;
uint8_t header[8192];
target_phys_addr_t real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
FILE *f, *fi;
char *vmode;
/* Align to 16 bytes as a paranoia measure */
cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
/* load the kernel header */
f = fopen(kernel_filename, "rb");
if (!f || !(kernel_size = get_file_size(f)) ||
fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
MIN(ARRAY_SIZE(header), kernel_size)) {
fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
kernel_filename, strerror(errno));
exit(1);
}
/* kernel protocol version */
#if 0
fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
#endif
if (ldl_p(header+0x202) == 0x53726448)
protocol = lduw_p(header+0x206);
else {
/* This looks like a multiboot kernel. If it is, let's stop
treating it like a Linux kernel. */
if (load_multiboot(fw_cfg, f, kernel_filename,
initrd_filename, kernel_cmdline, header))
return;
protocol = 0;
}
if (protocol < 0x200 || !(header[0x211] & 0x01)) {
/* Low kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x10000;
} else if (protocol < 0x202) {
/* High but ancient kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x100000;
} else {
/* High and recent kernel */
real_addr = 0x10000;
cmdline_addr = 0x20000;
prot_addr = 0x100000;
}
#if 0
fprintf(stderr,
"qemu: real_addr = 0x" TARGET_FMT_plx "\n"
"qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
"qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
real_addr,
cmdline_addr,
prot_addr);
#endif
/* highest address for loading the initrd */
if (protocol >= 0x203)
initrd_max = ldl_p(header+0x22c);
else
initrd_max = 0x37ffffff;
if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
/* kernel command line */
pstrcpy_targphys(cmdline_addr, 4096, kernel_cmdline);
if (protocol >= 0x202) {
stl_p(header+0x228, cmdline_addr);
} else {
stw_p(header+0x20, 0xA33F);
stw_p(header+0x22, cmdline_addr-real_addr);
}
/* handle vga= parameter */
vmode = strstr(kernel_cmdline, "vga=");
if (vmode) {
unsigned int video_mode;
/* skip "vga=" */
vmode += 4;
if (!strncmp(vmode, "normal", 6)) {
video_mode = 0xffff;
} else if (!strncmp(vmode, "ext", 3)) {
video_mode = 0xfffe;
} else if (!strncmp(vmode, "ask", 3)) {
video_mode = 0xfffd;
} else {
video_mode = strtol(vmode, NULL, 0);
}
stw_p(header+0x1fa, video_mode);
}
/* loader type */
/* High nybble = B reserved for Qemu; low nybble is revision number.
If this code is substantially changed, you may want to consider
incrementing the revision. */
if (protocol >= 0x200)
header[0x210] = 0xB0;
/* heap */
if (protocol >= 0x201) {
header[0x211] |= 0x80; /* CAN_USE_HEAP */
stw_p(header+0x224, cmdline_addr-real_addr-0x200);
}
/* load initrd */
if (initrd_filename) {
if (protocol < 0x200) {
fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
exit(1);
}
fi = fopen(initrd_filename, "rb");
if (!fi) {
fprintf(stderr, "qemu: could not load initial ram disk '%s': %s\n",
initrd_filename, strerror(errno));
exit(1);
}
initrd_size = get_file_size(fi);
initrd_addr = (initrd_max-initrd_size) & ~4095;
if (!fread_targphys_ok(initrd_addr, initrd_size, fi)) {
fprintf(stderr, "qemu: read error on initial ram disk '%s': %s\n",
initrd_filename, strerror(errno));
exit(1);
}
fclose(fi);
stl_p(header+0x218, initrd_addr);
stl_p(header+0x21c, initrd_size);
}
/* store the finalized header and load the rest of the kernel */
cpu_physical_memory_write(real_addr, header, ARRAY_SIZE(header));
setup_size = header[0x1f1];
if (setup_size == 0)
setup_size = 4;
setup_size = (setup_size+1)*512;
/* Size of protected-mode code */
kernel_size -= (setup_size > ARRAY_SIZE(header)) ? setup_size : ARRAY_SIZE(header);
/* In case we have read too much already, copy that over */
if (setup_size < ARRAY_SIZE(header)) {
cpu_physical_memory_write(prot_addr, header + setup_size, ARRAY_SIZE(header) - setup_size);
prot_addr += (ARRAY_SIZE(header) - setup_size);
setup_size = ARRAY_SIZE(header);
}
if (!fread_targphys_ok(real_addr + ARRAY_SIZE(header),
setup_size - ARRAY_SIZE(header), f) ||
!fread_targphys_ok(prot_addr, kernel_size, f)) {
fprintf(stderr, "qemu: read error on kernel '%s'\n",
kernel_filename);
exit(1);
}
fclose(f);
/* generate bootsector to set up the initial register state */
real_seg = real_addr >> 4;
seg[0] = seg[2] = seg[3] = seg[4] = seg[4] = real_seg;
seg[1] = real_seg+0x20; /* CS */
memset(gpr, 0, sizeof gpr);
gpr[4] = cmdline_addr-real_addr-16; /* SP (-16 is paranoia) */
option_rom_setup_reset(real_addr, setup_size);
option_rom_setup_reset(prot_addr, kernel_size);
option_rom_setup_reset(cmdline_addr, cmdline_size);
if (initrd_filename)
option_rom_setup_reset(initrd_addr, initrd_size);
generate_bootsect(option_rom, gpr, seg, 0);
}
| 22,179 |
qemu | ddcd55316fb2851e144e719171621ad2816487dc | 0 | void qemu_boot_set(const char *boot_order, Error **errp)
{
Error *local_err = NULL;
if (!boot_set_handler) {
error_setg(errp, "no function defined to set boot device list for"
" this architecture");
return;
}
validate_bootdevices(boot_order, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (boot_set_handler(boot_set_opaque, boot_order)) {
error_setg(errp, "setting boot device list failed");
return;
}
}
| 22,180 |
qemu | ac531cb6e542b1e61d668604adf9dc5306a948c0 | 0 | START_TEST(qdict_get_test)
{
QInt *qi;
QObject *obj;
const int value = -42;
const char *key = "test";
qdict_put(tests_dict, key, qint_from_int(value));
obj = qdict_get(tests_dict, key);
fail_unless(obj != NULL);
qi = qobject_to_qint(obj);
fail_unless(qint_get_int(qi) == value);
}
| 22,181 |
FFmpeg | d8edf1b515ae9fbcea2103305241d130c16e1003 | 0 | static void rv40_h_loop_filter(uint8_t *src, int stride, int dmode,
int lim_q1, int lim_p1,
int alpha, int beta, int beta2, int chroma, int edge){
rv40_adaptive_loop_filter(src, stride, 1, dmode, lim_q1, lim_p1,
alpha, beta, beta2, chroma, edge);
}
| 22,182 |
qemu | bd269ebc82fbaa5fe7ce5bc7c1770ac8acecd884 | 0 | static int qio_dns_resolver_lookup_sync_nop(QIODNSResolver *resolver,
SocketAddressLegacy *addr,
size_t *naddrs,
SocketAddressLegacy ***addrs,
Error **errp)
{
*naddrs = 1;
*addrs = g_new0(SocketAddressLegacy *, 1);
(*addrs)[0] = QAPI_CLONE(SocketAddressLegacy, addr);
return 0;
}
| 22,183 |
qemu | 9359a58b122187964d7465d48165680eadbf69d3 | 0 | static uint64_t ehci_opreg_read(void *ptr, hwaddr addr,
unsigned size)
{
EHCIState *s = ptr;
uint32_t val;
val = s->opreg[addr >> 2];
trace_usb_ehci_opreg_read(addr + s->opregbase, addr2str(addr), val);
return val;
}
| 22,185 |
qemu | 4eb938102b3d533e142de23e255e46da1326fc5a | 0 | static void qemu_fflush(QEMUFile *f)
{
int ret = 0;
if (!f->ops->put_buffer) {
return;
}
if (f->is_write && f->buf_index > 0) {
ret = f->ops->put_buffer(f->opaque, f->buf, f->buf_offset, f->buf_index);
if (ret >= 0) {
f->buf_offset += f->buf_index;
}
f->buf_index = 0;
}
if (ret < 0) {
qemu_file_set_error(f, ret);
}
}
| 22,186 |
qemu | a8170e5e97ad17ca169c64ba87ae2f53850dab4c | 0 | static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
uint64_t value, unsigned size)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
if (size != 4) {
return omap_badwidth_write32(opaque, addr, value);
}
switch (addr) {
case 0x00: /* CTRL */
s->mpui_ctrl = value & 0x007fffff;
break;
case 0x04: /* DEBUG_ADDR */
case 0x08: /* DEBUG_DATA */
case 0x0c: /* DEBUG_FLAG */
case 0x10: /* STATUS */
/* Not in OMAP310 */
case 0x14: /* DSP_STATUS */
OMAP_RO_REG(addr);
case 0x18: /* DSP_BOOT_CONFIG */
case 0x1c: /* DSP_MPUI_CONFIG */
break;
default:
OMAP_BAD_REG(addr);
}
}
| 22,188 |
qemu | 35b0f237205dc6a5c9aa3eae14f19ef4d37dafcd | 0 | static void sdl_mouse_mode_change(Notifier *notify, void *data)
{
if (kbd_mouse_is_absolute()) {
if (!absolute_enabled) {
sdl_hide_cursor();
if (gui_grab) {
sdl_grab_end();
}
absolute_enabled = 1;
}
} else if (absolute_enabled) {
sdl_show_cursor();
absolute_enabled = 0;
}
}
| 22,191 |
FFmpeg | d629f3edaa39b48ac92ac5e5ae8440e35805b792 | 0 | static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
{
int category_index[128];
int quant_index_table[102];
int category[128];
int ret;
memset(&category, 0, sizeof(category));
memset(&category_index, 0, sizeof(category_index));
if ((ret = decode_envelope(q, p, quant_index_table)) < 0)
return ret;
q->num_vectors = get_bits(&q->gb, p->log2_numvector_size);
categorize(q, p, quant_index_table, category, category_index);
expand_category(q, category, category_index);
decode_vectors(q, p, category, quant_index_table, mlt_buffer);
return 0;
}
| 22,193 |
qemu | a8170e5e97ad17ca169c64ba87ae2f53850dab4c | 0 | static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
uint64_t value, unsigned size)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
uint16_t diff;
omap_clk clk;
static const char *clkschemename[8] = {
"fully synchronous", "fully asynchronous", "synchronous scalable",
"mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
};
if (size != 2) {
return omap_badwidth_write16(opaque, addr, value);
}
switch (addr) {
case 0x00: /* ARM_CKCTL */
diff = s->clkm.arm_ckctl ^ value;
s->clkm.arm_ckctl = value & 0x7fff;
omap_clkm_ckctl_update(s, diff, value);
return;
case 0x04: /* ARM_IDLECT1 */
diff = s->clkm.arm_idlect1 ^ value;
s->clkm.arm_idlect1 = value & 0x0fff;
omap_clkm_idlect1_update(s, diff, value);
return;
case 0x08: /* ARM_IDLECT2 */
diff = s->clkm.arm_idlect2 ^ value;
s->clkm.arm_idlect2 = value & 0x07ff;
omap_clkm_idlect2_update(s, diff, value);
return;
case 0x0c: /* ARM_EWUPCT */
s->clkm.arm_ewupct = value & 0x003f;
return;
case 0x10: /* ARM_RSTCT1 */
diff = s->clkm.arm_rstct1 ^ value;
s->clkm.arm_rstct1 = value & 0x0007;
if (value & 9) {
qemu_system_reset_request();
s->clkm.cold_start = 0xa;
}
if (diff & ~value & 4) { /* DSP_RST */
omap_mpui_reset(s);
omap_tipb_bridge_reset(s->private_tipb);
omap_tipb_bridge_reset(s->public_tipb);
}
if (diff & 2) { /* DSP_EN */
clk = omap_findclk(s, "dsp_ck");
omap_clk_canidle(clk, (~value >> 1) & 1);
}
return;
case 0x14: /* ARM_RSTCT2 */
s->clkm.arm_rstct2 = value & 0x0001;
return;
case 0x18: /* ARM_SYSST */
if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
s->clkm.clocking_scheme = (value >> 11) & 7;
printf("%s: clocking scheme set to %s\n", __FUNCTION__,
clkschemename[s->clkm.clocking_scheme]);
}
s->clkm.cold_start &= value & 0x3f;
return;
case 0x1c: /* ARM_CKOUT1 */
diff = s->clkm.arm_ckout1 ^ value;
s->clkm.arm_ckout1 = value & 0x003f;
omap_clkm_ckout1_update(s, diff, value);
return;
case 0x20: /* ARM_CKOUT2 */
default:
OMAP_BAD_REG(addr);
}
}
| 22,194 |
FFmpeg | fea471347218be0b8d1313b8f14ea9512e555d76 | 0 | static int cuvid_test_dummy_decoder(AVCodecContext *avctx,
const CUVIDPARSERPARAMS *cuparseinfo,
int probed_width,
int probed_height)
{
CuvidContext *ctx = avctx->priv_data;
CUVIDDECODECREATEINFO cuinfo;
CUvideodecoder cudec = 0;
int ret = 0;
memset(&cuinfo, 0, sizeof(cuinfo));
cuinfo.CodecType = cuparseinfo->CodecType;
cuinfo.ChromaFormat = cudaVideoChromaFormat_420;
cuinfo.OutputFormat = cudaVideoSurfaceFormat_NV12;
cuinfo.ulWidth = probed_width;
cuinfo.ulHeight = probed_height;
cuinfo.ulTargetWidth = cuinfo.ulWidth;
cuinfo.ulTargetHeight = cuinfo.ulHeight;
cuinfo.target_rect.left = 0;
cuinfo.target_rect.top = 0;
cuinfo.target_rect.right = cuinfo.ulWidth;
cuinfo.target_rect.bottom = cuinfo.ulHeight;
cuinfo.ulNumDecodeSurfaces = ctx->nb_surfaces;
cuinfo.ulNumOutputSurfaces = 1;
cuinfo.ulCreationFlags = cudaVideoCreate_PreferCUVID;
cuinfo.bitDepthMinus8 = 0;
cuinfo.DeinterlaceMode = cudaVideoDeinterlaceMode_Weave;
ret = CHECK_CU(ctx->cvdl->cuvidCreateDecoder(&cudec, &cuinfo));
if (ret < 0)
return ret;
ret = CHECK_CU(ctx->cvdl->cuvidDestroyDecoder(cudec));
if (ret < 0)
return ret;
return 0;
}
| 22,195 |
qemu | a22313deca720e038ebc5805cf451b3a685d29ce | 0 | static void vfio_intp_inject_pending_lockheld(VFIOINTp *intp)
{
trace_vfio_platform_intp_inject_pending_lockheld(intp->pin,
event_notifier_get_fd(&intp->interrupt));
intp->state = VFIO_IRQ_ACTIVE;
/* trigger the virtual IRQ */
qemu_set_irq(intp->qemuirq, 1);
}
| 22,196 |
qemu | 7466bc49107fbd84336ba680f860d5eadd6def13 | 0 | void qemu_spice_display_resize(SimpleSpiceDisplay *ssd)
{
dprint(1, "%s:\n", __FUNCTION__);
pthread_mutex_lock(&ssd->lock);
memset(&ssd->dirty, 0, sizeof(ssd->dirty));
qemu_pf_conv_put(ssd->conv);
ssd->conv = NULL;
pthread_mutex_unlock(&ssd->lock);
qemu_spice_destroy_host_primary(ssd);
qemu_spice_create_host_primary(ssd);
pthread_mutex_lock(&ssd->lock);
memset(&ssd->dirty, 0, sizeof(ssd->dirty));
ssd->notify++;
pthread_mutex_unlock(&ssd->lock);
}
| 22,197 |
qemu | 539de1246d355d3b8aa33fb7cde732352d8827c7 | 0 | void qemu_savevm_state_cancel(Monitor *mon, QEMUFile *f)
{
SaveStateEntry *se;
QTAILQ_FOREACH(se, &savevm_handlers, entry) {
if (se->save_live_state) {
se->save_live_state(mon, f, -1, se->opaque);
}
}
}
| 22,198 |
qemu | 72cf2d4f0e181d0d3a3122e04129c58a95da713e | 0 | VLANState *qemu_find_vlan(int id, int allocate)
{
VLANState **pvlan, *vlan;
for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
if (vlan->id == id)
return vlan;
}
if (!allocate) {
return NULL;
}
vlan = qemu_mallocz(sizeof(VLANState));
vlan->id = id;
TAILQ_INIT(&vlan->send_queue);
vlan->next = NULL;
pvlan = &first_vlan;
while (*pvlan != NULL)
pvlan = &(*pvlan)->next;
*pvlan = vlan;
return vlan;
}
| 22,199 |
qemu | e4603fe139e2161464d7e75faa3a650e31f057fc | 0 | static int qcow2_amend_options(BlockDriverState *bs, QemuOpts *opts,
BlockDriverAmendStatusCB *status_cb)
{
BDRVQcowState *s = bs->opaque;
int old_version = s->qcow_version, new_version = old_version;
uint64_t new_size = 0;
const char *backing_file = NULL, *backing_format = NULL;
bool lazy_refcounts = s->use_lazy_refcounts;
const char *compat = NULL;
uint64_t cluster_size = s->cluster_size;
bool encrypt;
int ret;
QemuOptDesc *desc = opts->list->desc;
while (desc && desc->name) {
if (!qemu_opt_find(opts, desc->name)) {
/* only change explicitly defined options */
desc++;
continue;
}
if (!strcmp(desc->name, BLOCK_OPT_COMPAT_LEVEL)) {
compat = qemu_opt_get(opts, BLOCK_OPT_COMPAT_LEVEL);
if (!compat) {
/* preserve default */
} else if (!strcmp(compat, "0.10")) {
new_version = 2;
} else if (!strcmp(compat, "1.1")) {
new_version = 3;
} else {
fprintf(stderr, "Unknown compatibility level %s.\n", compat);
return -EINVAL;
}
} else if (!strcmp(desc->name, BLOCK_OPT_PREALLOC)) {
fprintf(stderr, "Cannot change preallocation mode.\n");
return -ENOTSUP;
} else if (!strcmp(desc->name, BLOCK_OPT_SIZE)) {
new_size = qemu_opt_get_size(opts, BLOCK_OPT_SIZE, 0);
} else if (!strcmp(desc->name, BLOCK_OPT_BACKING_FILE)) {
backing_file = qemu_opt_get(opts, BLOCK_OPT_BACKING_FILE);
} else if (!strcmp(desc->name, BLOCK_OPT_BACKING_FMT)) {
backing_format = qemu_opt_get(opts, BLOCK_OPT_BACKING_FMT);
} else if (!strcmp(desc->name, BLOCK_OPT_ENCRYPT)) {
encrypt = qemu_opt_get_bool(opts, BLOCK_OPT_ENCRYPT,
s->crypt_method);
if (encrypt != !!s->crypt_method) {
fprintf(stderr, "Changing the encryption flag is not "
"supported.\n");
return -ENOTSUP;
}
} else if (!strcmp(desc->name, BLOCK_OPT_CLUSTER_SIZE)) {
cluster_size = qemu_opt_get_size(opts, BLOCK_OPT_CLUSTER_SIZE,
cluster_size);
if (cluster_size != s->cluster_size) {
fprintf(stderr, "Changing the cluster size is not "
"supported.\n");
return -ENOTSUP;
}
} else if (!strcmp(desc->name, BLOCK_OPT_LAZY_REFCOUNTS)) {
lazy_refcounts = qemu_opt_get_bool(opts, BLOCK_OPT_LAZY_REFCOUNTS,
lazy_refcounts);
} else if (!strcmp(desc->name, BLOCK_OPT_REFCOUNT_BITS)) {
error_report("Cannot change refcount entry width");
return -ENOTSUP;
} else {
/* if this assertion fails, this probably means a new option was
* added without having it covered here */
assert(false);
}
desc++;
}
if (new_version != old_version) {
if (new_version > old_version) {
/* Upgrade */
s->qcow_version = new_version;
ret = qcow2_update_header(bs);
if (ret < 0) {
s->qcow_version = old_version;
return ret;
}
} else {
ret = qcow2_downgrade(bs, new_version, status_cb);
if (ret < 0) {
return ret;
}
}
}
if (backing_file || backing_format) {
ret = qcow2_change_backing_file(bs, backing_file ?: bs->backing_file,
backing_format ?: bs->backing_format);
if (ret < 0) {
return ret;
}
}
if (s->use_lazy_refcounts != lazy_refcounts) {
if (lazy_refcounts) {
if (s->qcow_version < 3) {
fprintf(stderr, "Lazy refcounts only supported with compatibility "
"level 1.1 and above (use compat=1.1 or greater)\n");
return -EINVAL;
}
s->compatible_features |= QCOW2_COMPAT_LAZY_REFCOUNTS;
ret = qcow2_update_header(bs);
if (ret < 0) {
s->compatible_features &= ~QCOW2_COMPAT_LAZY_REFCOUNTS;
return ret;
}
s->use_lazy_refcounts = true;
} else {
/* make image clean first */
ret = qcow2_mark_clean(bs);
if (ret < 0) {
return ret;
}
/* now disallow lazy refcounts */
s->compatible_features &= ~QCOW2_COMPAT_LAZY_REFCOUNTS;
ret = qcow2_update_header(bs);
if (ret < 0) {
s->compatible_features |= QCOW2_COMPAT_LAZY_REFCOUNTS;
return ret;
}
s->use_lazy_refcounts = false;
}
}
if (new_size) {
ret = bdrv_truncate(bs, new_size);
if (ret < 0) {
return ret;
}
}
return 0;
}
| 22,200 |
qemu | c2b38b277a7882a592f4f2ec955084b2b756daaa | 0 | void aio_set_event_notifier(AioContext *ctx,
EventNotifier *e,
bool is_external,
EventNotifierHandler *io_notify,
AioPollFn *io_poll)
{
AioHandler *node;
qemu_lockcnt_lock(&ctx->list_lock);
QLIST_FOREACH(node, &ctx->aio_handlers, node) {
if (node->e == e && !node->deleted) {
break;
}
}
/* Are we deleting the fd handler? */
if (!io_notify) {
if (node) {
g_source_remove_poll(&ctx->source, &node->pfd);
/* aio_poll is in progress, just mark the node as deleted */
if (qemu_lockcnt_count(&ctx->list_lock)) {
node->deleted = 1;
node->pfd.revents = 0;
} else {
/* Otherwise, delete it for real. We can't just mark it as
* deleted because deleted nodes are only cleaned up after
* releasing the list_lock.
*/
QLIST_REMOVE(node, node);
g_free(node);
}
}
} else {
if (node == NULL) {
/* Alloc and insert if it's not already there */
node = g_new0(AioHandler, 1);
node->e = e;
node->pfd.fd = (uintptr_t)event_notifier_get_handle(e);
node->pfd.events = G_IO_IN;
node->is_external = is_external;
QLIST_INSERT_HEAD_RCU(&ctx->aio_handlers, node, node);
g_source_add_poll(&ctx->source, &node->pfd);
}
/* Update handler with latest information */
node->io_notify = io_notify;
}
qemu_lockcnt_unlock(&ctx->list_lock);
aio_notify(ctx);
}
| 22,202 |
qemu | b4ea86649915eca5551a5166f76e7a9d9032de50 | 0 | static int ehci_state_fetchqtd(EHCIQueue *q)
{
EHCIqtd qtd;
EHCIPacket *p;
int again = 0;
get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &qtd,
sizeof(EHCIqtd) >> 2);
ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &qtd);
p = QTAILQ_FIRST(&q->packets);
if (p != NULL) {
if (p->qtdaddr != q->qtdaddr ||
(!NLPTR_TBIT(p->qtd.next) && (p->qtd.next != qtd.next)) ||
(!NLPTR_TBIT(p->qtd.altnext) && (p->qtd.altnext != qtd.altnext)) ||
p->qtd.bufptr[0] != qtd.bufptr[0]) {
ehci_cancel_queue(q);
ehci_trace_guest_bug(q->ehci, "guest updated active QH or qTD");
p = NULL;
} else {
p->qtd = qtd;
ehci_qh_do_overlay(q);
}
}
if (!(qtd.token & QTD_TOKEN_ACTIVE)) {
if (p != NULL) {
/* transfer canceled by guest (clear active) */
ehci_cancel_queue(q);
p = NULL;
}
ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
again = 1;
} else if (p != NULL) {
switch (p->async) {
case EHCI_ASYNC_NONE:
case EHCI_ASYNC_INITIALIZED:
/* Not yet executed (MULT), or previously nacked (int) packet */
ehci_set_state(q->ehci, q->async, EST_EXECUTE);
break;
case EHCI_ASYNC_INFLIGHT:
/* Unfinished async handled packet, go horizontal */
ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
break;
case EHCI_ASYNC_FINISHED:
/*
* We get here when advqueue moves to a packet which is already
* finished, which can happen with packets queued up by fill_queue
*/
ehci_set_state(q->ehci, q->async, EST_EXECUTING);
break;
}
again = 1;
} else {
p = ehci_alloc_packet(q);
p->qtdaddr = q->qtdaddr;
p->qtd = qtd;
ehci_set_state(q->ehci, q->async, EST_EXECUTE);
again = 1;
}
return again;
}
| 22,203 |
qemu | ca7eb1848bb06d9b75784d7760b83c7b0beb1102 | 0 | int net_init_hubport(const NetClientOptions *opts, const char *name,
NetClientState *peer)
{
const NetdevHubPortOptions *hubport;
assert(opts->kind == NET_CLIENT_OPTIONS_KIND_HUBPORT);
hubport = opts->hubport;
if (peer) {
return -EINVAL;
}
net_hub_add_port(hubport->hubid, name);
return 0;
}
| 22,204 |
qemu | 72cf2d4f0e181d0d3a3122e04129c58a95da713e | 0 | int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
{
#if defined(TARGET_HAS_ICE)
CPUBreakpoint *bp;
TAILQ_FOREACH(bp, &env->breakpoints, entry) {
if (bp->pc == pc && bp->flags == flags) {
cpu_breakpoint_remove_by_ref(env, bp);
return 0;
}
}
return -ENOENT;
#else
return -ENOSYS;
#endif
}
| 22,205 |
FFmpeg | 091bc6ca8c643bfece2c70ff2404c7b31574e1f1 | 0 | static void mm_decode_inter(MmContext * s, int half_horiz, int half_vert, const uint8_t *buf, int buf_size)
{
const int data_ptr = 2 + AV_RL16(&buf[0]);
int d, r, y;
d = data_ptr; r = 2; y = 0;
while(r < data_ptr) {
int i, j;
int length = buf[r] & 0x7f;
int x = buf[r+1] + ((buf[r] & 0x80) << 1);
r += 2;
if (length==0) {
y += x;
continue;
}
for(i=0; i<length; i++) {
for(j=0; j<8; j++) {
int replace = (buf[r+i] >> (7-j)) & 1;
if (replace) {
int color = buf[d];
s->frame.data[0][y*s->frame.linesize[0] + x] = color;
if (half_horiz)
s->frame.data[0][y*s->frame.linesize[0] + x + 1] = color;
if (half_vert) {
s->frame.data[0][(y+1)*s->frame.linesize[0] + x] = color;
if (half_horiz)
s->frame.data[0][(y+1)*s->frame.linesize[0] + x + 1] = color;
}
d++;
}
x += half_horiz ? 2 : 1;
}
}
r += length;
y += half_vert ? 2 : 1;
}
}
| 22,206 |
qemu | 7d1476898fd58d6ae5c054e6afddf18c335d9d89 | 0 | static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s)
{
s->sssr &= ~(0xf << 12); /* Clear RFL */
s->sssr &= ~(0xf << 8); /* Clear TFL */
s->sssr &= ~SSSR_TNF;
if (s->enable) {
s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
s->sssr |= SSSR_RFS;
else
s->sssr &= ~SSSR_RFS;
if (0 <= SSCR1_TFT(s->sscr[1]))
s->sssr |= SSSR_TFS;
else
s->sssr &= ~SSSR_TFS;
if (s->rx_level)
s->sssr |= SSSR_RNE;
else
s->sssr &= ~SSSR_RNE;
s->sssr |= SSSR_TNF;
}
pxa2xx_ssp_int_update(s);
}
| 22,207 |
qemu | a8170e5e97ad17ca169c64ba87ae2f53850dab4c | 0 | static void grlib_apbuart_write(void *opaque, target_phys_addr_t addr,
uint64_t value, unsigned size)
{
UART *uart = opaque;
unsigned char c = 0;
addr &= 0xff;
/* Unit registers */
switch (addr) {
case DATA_OFFSET:
case DATA_OFFSET + 3: /* When only one byte write */
c = value & 0xFF;
qemu_chr_fe_write(uart->chr, &c, 1);
return;
case STATUS_OFFSET:
/* Read Only */
return;
case CONTROL_OFFSET:
uart->control = value;
return;
case SCALER_OFFSET:
/* Not supported */
return;
default:
break;
}
trace_grlib_apbuart_writel_unknown(addr, value);
}
| 22,208 |
qemu | 1ac157da77c863b62b1d2f467626a440d57cf17d | 0 | int cpu_x86_handle_mmu_fault(CPUX86State *env, uint32_t addr,
int is_write, int is_user, int is_softmmu)
{
uint8_t *pde_ptr, *pte_ptr;
uint32_t pde, pte, virt_addr, ptep;
int error_code, is_dirty, prot, page_size, ret;
unsigned long paddr, vaddr, page_offset;
#if defined(DEBUG_MMU)
printf("MMU fault: addr=0x%08x w=%d u=%d eip=%08x\n",
addr, is_write, is_user, env->eip);
#endif
if (env->user_mode_only) {
/* user mode only emulation */
error_code = 0;
goto do_fault;
}
if (!(env->cr[0] & CR0_PG_MASK)) {
pte = addr;
virt_addr = addr & TARGET_PAGE_MASK;
prot = PROT_READ | PROT_WRITE;
page_size = 4096;
goto do_mapping;
}
/* page directory entry */
pde_ptr = phys_ram_base +
(((env->cr[3] & ~0xfff) + ((addr >> 20) & ~3)) & a20_mask);
pde = ldl_raw(pde_ptr);
if (!(pde & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
/* if PSE bit is set, then we use a 4MB page */
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
if (is_user) {
if (!(pde & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(pde & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) && (pde & PG_USER_MASK) &&
is_write && !(pde & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pde & PG_DIRTY_MASK);
if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
pde |= PG_ACCESSED_MASK;
if (is_dirty)
pde |= PG_DIRTY_MASK;
stl_raw(pde_ptr, pde);
}
pte = pde & ~0x003ff000; /* align to 4MB */
ptep = pte;
page_size = 4096 * 1024;
virt_addr = addr & ~0x003fffff;
} else {
if (!(pde & PG_ACCESSED_MASK)) {
pde |= PG_ACCESSED_MASK;
stl_raw(pde_ptr, pde);
}
/* page directory entry */
pte_ptr = phys_ram_base +
(((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask);
pte = ldl_raw(pte_ptr);
if (!(pte & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
/* combine pde and pte user and rw protections */
ptep = pte & pde;
if (is_user) {
if (!(ptep & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) && (ptep & PG_USER_MASK) &&
is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pte & PG_DIRTY_MASK);
if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
pte |= PG_ACCESSED_MASK;
if (is_dirty)
pte |= PG_DIRTY_MASK;
stl_raw(pte_ptr, pte);
}
page_size = 4096;
virt_addr = addr & ~0xfff;
}
/* the page can be put in the TLB */
prot = PROT_READ;
if (pte & PG_DIRTY_MASK) {
/* only set write access if already dirty... otherwise wait
for dirty access */
if (is_user) {
if (ptep & PG_RW_MASK)
prot |= PROT_WRITE;
} else {
if (!(env->cr[0] & CR0_WP_MASK) || !(ptep & PG_USER_MASK) ||
(ptep & PG_RW_MASK))
prot |= PROT_WRITE;
}
}
do_mapping:
pte = pte & a20_mask;
/* Even if 4MB pages, we map only one 4KB page in the cache to
avoid filling it too fast */
page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
paddr = (pte & TARGET_PAGE_MASK) + page_offset;
vaddr = virt_addr + page_offset;
ret = tlb_set_page(env, vaddr, paddr, prot, is_user, is_softmmu);
return ret;
do_fault_protect:
error_code = PG_ERROR_P_MASK;
do_fault:
env->cr[2] = addr;
env->error_code = (is_write << PG_ERROR_W_BIT) | error_code;
if (is_user)
env->error_code |= PG_ERROR_U_MASK;
return 1;
}
| 22,209 |
qemu | 7e2515e87c41e2e658aaed466e11cbdf1ea8bcb1 | 0 | static void term_delete_char(void)
{
if (term_cmd_buf_index < term_cmd_buf_size) {
memmove(term_cmd_buf + term_cmd_buf_index,
term_cmd_buf + term_cmd_buf_index + 1,
term_cmd_buf_size - term_cmd_buf_index - 1);
term_cmd_buf_size--;
}
}
| 22,210 |
qemu | bab482d7405f9fe3cac9c213d60f9ca9442c047b | 0 | static void sch_handle_start_func(SubchDev *sch, ORB *orb)
{
PMCW *p = &sch->curr_status.pmcw;
SCSW *s = &sch->curr_status.scsw;
int path;
int ret;
bool suspend_allowed;
/* Path management: In our simple css, we always choose the only path. */
path = 0x80;
if (!(s->ctrl & SCSW_ACTL_SUSP)) {
/* Start Function triggered via ssch, i.e. we have an ORB */
s->cstat = 0;
s->dstat = 0;
/* Look at the orb and try to execute the channel program. */
assert(orb != NULL); /* resume does not pass an orb */
p->intparm = orb->intparm;
if (!(orb->lpm & path)) {
/* Generate a deferred cc 3 condition. */
s->flags |= SCSW_FLAGS_MASK_CC;
s->ctrl &= ~SCSW_CTRL_MASK_STCTL;
s->ctrl |= (SCSW_STCTL_ALERT | SCSW_STCTL_STATUS_PEND);
return;
}
sch->ccw_fmt_1 = !!(orb->ctrl0 & ORB_CTRL0_MASK_FMT);
s->flags |= (sch->ccw_fmt_1) ? SCSW_FLAGS_MASK_FMT : 0;
sch->ccw_no_data_cnt = 0;
suspend_allowed = !!(orb->ctrl0 & ORB_CTRL0_MASK_SPND);
} else {
/* Start Function resumed via rsch, i.e. we don't have an
* ORB */
s->ctrl &= ~(SCSW_ACTL_SUSP | SCSW_ACTL_RESUME_PEND);
/* The channel program had been suspended before. */
suspend_allowed = true;
}
sch->last_cmd_valid = false;
do {
ret = css_interpret_ccw(sch, sch->channel_prog, suspend_allowed);
switch (ret) {
case -EAGAIN:
/* ccw chain, continue processing */
break;
case 0:
/* success */
s->ctrl &= ~SCSW_ACTL_START_PEND;
s->ctrl &= ~SCSW_CTRL_MASK_STCTL;
s->ctrl |= SCSW_STCTL_PRIMARY | SCSW_STCTL_SECONDARY |
SCSW_STCTL_STATUS_PEND;
s->dstat = SCSW_DSTAT_CHANNEL_END | SCSW_DSTAT_DEVICE_END;
s->cpa = sch->channel_prog + 8;
break;
case -EIO:
/* I/O errors, status depends on specific devices */
break;
case -ENOSYS:
/* unsupported command, generate unit check (command reject) */
s->ctrl &= ~SCSW_ACTL_START_PEND;
s->dstat = SCSW_DSTAT_UNIT_CHECK;
/* Set sense bit 0 in ecw0. */
sch->sense_data[0] = 0x80;
s->ctrl &= ~SCSW_CTRL_MASK_STCTL;
s->ctrl |= SCSW_STCTL_PRIMARY | SCSW_STCTL_SECONDARY |
SCSW_STCTL_ALERT | SCSW_STCTL_STATUS_PEND;
s->cpa = sch->channel_prog + 8;
break;
case -EFAULT:
/* memory problem, generate channel data check */
s->ctrl &= ~SCSW_ACTL_START_PEND;
s->cstat = SCSW_CSTAT_DATA_CHECK;
s->ctrl &= ~SCSW_CTRL_MASK_STCTL;
s->ctrl |= SCSW_STCTL_PRIMARY | SCSW_STCTL_SECONDARY |
SCSW_STCTL_ALERT | SCSW_STCTL_STATUS_PEND;
s->cpa = sch->channel_prog + 8;
break;
case -EBUSY:
/* subchannel busy, generate deferred cc 1 */
s->flags &= ~SCSW_FLAGS_MASK_CC;
s->flags |= (1 << 8);
s->ctrl &= ~SCSW_CTRL_MASK_STCTL;
s->ctrl |= SCSW_STCTL_ALERT | SCSW_STCTL_STATUS_PEND;
break;
case -EINPROGRESS:
/* channel program has been suspended */
s->ctrl &= ~SCSW_ACTL_START_PEND;
s->ctrl |= SCSW_ACTL_SUSP;
break;
default:
/* error, generate channel program check */
s->ctrl &= ~SCSW_ACTL_START_PEND;
s->cstat = SCSW_CSTAT_PROG_CHECK;
s->ctrl &= ~SCSW_CTRL_MASK_STCTL;
s->ctrl |= SCSW_STCTL_PRIMARY | SCSW_STCTL_SECONDARY |
SCSW_STCTL_ALERT | SCSW_STCTL_STATUS_PEND;
s->cpa = sch->channel_prog + 8;
break;
}
} while (ret == -EAGAIN);
}
| 22,211 |
qemu | c09f4cb2b3243085a86aee3c7ed4f31c77e4db87 | 0 | QEMUFile *qemu_fopen_ops_buffered(MigrationState *migration_state)
{
QEMUFileBuffered *s;
s = g_malloc0(sizeof(*s));
s->migration_state = migration_state;
s->xfer_limit = migration_state->bandwidth_limit / 10;
s->file = qemu_fopen_ops(s, &buffered_file_ops);
s->timer = qemu_new_timer_ms(rt_clock, buffered_rate_tick, s);
qemu_mod_timer(s->timer, qemu_get_clock_ms(rt_clock) + 100);
return s->file;
}
| 22,212 |
qemu | 03f4995781a64e106e6f73864a1e9c4163dac53b | 0 | static int walk_memory_regions_1(struct walk_memory_regions_data *data,
abi_ulong base, int level, void **lp)
{
abi_ulong pa;
int i, rc;
if (*lp == NULL) {
return walk_memory_regions_end(data, base, 0);
}
if (level == 0) {
PageDesc *pd = *lp;
for (i = 0; i < L2_SIZE; ++i) {
int prot = pd[i].flags;
pa = base | (i << TARGET_PAGE_BITS);
if (prot != data->prot) {
rc = walk_memory_regions_end(data, pa, prot);
if (rc != 0) {
return rc;
}
}
}
} else {
void **pp = *lp;
for (i = 0; i < L2_SIZE; ++i) {
pa = base | ((abi_ulong)i <<
(TARGET_PAGE_BITS + L2_BITS * level));
rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
if (rc != 0) {
return rc;
}
}
}
return 0;
}
| 22,214 |
qemu | 2374e73edafff0586cbfb67c333c5a7588f81fd5 | 0 | void helper_ldq_data(uint64_t t0, uint64_t t1)
{
ldq_data(t1, t0);
}
| 22,215 |
qemu | c1568af597d71b2171c9b2ffffb336c2fdee205e | 0 | static int v9fs_do_open2(V9fsState *s, V9fsCreateState *vs)
{
FsCred cred;
int flags;
cred_init(&cred);
cred.fc_uid = vs->fidp->uid;
cred.fc_mode = vs->perm & 0777;
flags = omode_to_uflags(vs->mode) | O_CREAT;
return s->ops->open2(&s->ctx, vs->fullname.data, flags, &cred);
}
| 22,216 |
FFmpeg | d1adad3cca407f493c3637e20ecd4f7124e69212 | 0 | static inline void RENAME(vu9_to_vu12)(const uint8_t *src1, const uint8_t *src2,
uint8_t *dst1, uint8_t *dst2,
long width, long height,
long srcStride1, long srcStride2,
long dstStride1, long dstStride2)
{
x86_reg y;
long x,w,h;
w=width/2; h=height/2;
#if COMPILE_TEMPLATE_MMX
__asm__ volatile(
PREFETCH" %0 \n\t"
PREFETCH" %1 \n\t"
::"m"(*(src1+srcStride1)),"m"(*(src2+srcStride2)):"memory");
#endif
for (y=0;y<h;y++) {
const uint8_t* s1=src1+srcStride1*(y>>1);
uint8_t* d=dst1+dstStride1*y;
x=0;
#if COMPILE_TEMPLATE_MMX
for (;x<w-31;x+=32) {
__asm__ volatile(
PREFETCH" 32%1 \n\t"
"movq %1, %%mm0 \n\t"
"movq 8%1, %%mm2 \n\t"
"movq 16%1, %%mm4 \n\t"
"movq 24%1, %%mm6 \n\t"
"movq %%mm0, %%mm1 \n\t"
"movq %%mm2, %%mm3 \n\t"
"movq %%mm4, %%mm5 \n\t"
"movq %%mm6, %%mm7 \n\t"
"punpcklbw %%mm0, %%mm0 \n\t"
"punpckhbw %%mm1, %%mm1 \n\t"
"punpcklbw %%mm2, %%mm2 \n\t"
"punpckhbw %%mm3, %%mm3 \n\t"
"punpcklbw %%mm4, %%mm4 \n\t"
"punpckhbw %%mm5, %%mm5 \n\t"
"punpcklbw %%mm6, %%mm6 \n\t"
"punpckhbw %%mm7, %%mm7 \n\t"
MOVNTQ" %%mm0, %0 \n\t"
MOVNTQ" %%mm1, 8%0 \n\t"
MOVNTQ" %%mm2, 16%0 \n\t"
MOVNTQ" %%mm3, 24%0 \n\t"
MOVNTQ" %%mm4, 32%0 \n\t"
MOVNTQ" %%mm5, 40%0 \n\t"
MOVNTQ" %%mm6, 48%0 \n\t"
MOVNTQ" %%mm7, 56%0"
:"=m"(d[2*x])
:"m"(s1[x])
:"memory");
}
#endif
for (;x<w;x++) d[2*x]=d[2*x+1]=s1[x];
}
for (y=0;y<h;y++) {
const uint8_t* s2=src2+srcStride2*(y>>1);
uint8_t* d=dst2+dstStride2*y;
x=0;
#if COMPILE_TEMPLATE_MMX
for (;x<w-31;x+=32) {
__asm__ volatile(
PREFETCH" 32%1 \n\t"
"movq %1, %%mm0 \n\t"
"movq 8%1, %%mm2 \n\t"
"movq 16%1, %%mm4 \n\t"
"movq 24%1, %%mm6 \n\t"
"movq %%mm0, %%mm1 \n\t"
"movq %%mm2, %%mm3 \n\t"
"movq %%mm4, %%mm5 \n\t"
"movq %%mm6, %%mm7 \n\t"
"punpcklbw %%mm0, %%mm0 \n\t"
"punpckhbw %%mm1, %%mm1 \n\t"
"punpcklbw %%mm2, %%mm2 \n\t"
"punpckhbw %%mm3, %%mm3 \n\t"
"punpcklbw %%mm4, %%mm4 \n\t"
"punpckhbw %%mm5, %%mm5 \n\t"
"punpcklbw %%mm6, %%mm6 \n\t"
"punpckhbw %%mm7, %%mm7 \n\t"
MOVNTQ" %%mm0, %0 \n\t"
MOVNTQ" %%mm1, 8%0 \n\t"
MOVNTQ" %%mm2, 16%0 \n\t"
MOVNTQ" %%mm3, 24%0 \n\t"
MOVNTQ" %%mm4, 32%0 \n\t"
MOVNTQ" %%mm5, 40%0 \n\t"
MOVNTQ" %%mm6, 48%0 \n\t"
MOVNTQ" %%mm7, 56%0"
:"=m"(d[2*x])
:"m"(s2[x])
:"memory");
}
#endif
for (;x<w;x++) d[2*x]=d[2*x+1]=s2[x];
}
#if COMPILE_TEMPLATE_MMX
__asm__(
EMMS" \n\t"
SFENCE" \n\t"
::: "memory"
);
#endif
}
| 22,217 |
qemu | cea5f9a28faa528b6b1b117c9ab2d8828f473fef | 0 | static TranslationBlock *tb_find_slow(target_ulong pc,
target_ulong cs_base,
uint64_t flags)
{
TranslationBlock *tb, **ptb1;
unsigned int h;
tb_page_addr_t phys_pc, phys_page1, phys_page2;
target_ulong virt_page2;
tb_invalidated_flag = 0;
/* find translated block using physical mappings */
phys_pc = get_page_addr_code(env, pc);
phys_page1 = phys_pc & TARGET_PAGE_MASK;
phys_page2 = -1;
h = tb_phys_hash_func(phys_pc);
ptb1 = &tb_phys_hash[h];
for(;;) {
tb = *ptb1;
if (!tb)
goto not_found;
if (tb->pc == pc &&
tb->page_addr[0] == phys_page1 &&
tb->cs_base == cs_base &&
tb->flags == flags) {
/* check next page if needed */
if (tb->page_addr[1] != -1) {
virt_page2 = (pc & TARGET_PAGE_MASK) +
TARGET_PAGE_SIZE;
phys_page2 = get_page_addr_code(env, virt_page2);
if (tb->page_addr[1] == phys_page2)
goto found;
} else {
goto found;
}
}
ptb1 = &tb->phys_hash_next;
}
not_found:
/* if no translated code available, then translate it now */
tb = tb_gen_code(env, pc, cs_base, flags, 0);
found:
/* Move the last found TB to the head of the list */
if (likely(*ptb1)) {
*ptb1 = tb->phys_hash_next;
tb->phys_hash_next = tb_phys_hash[h];
tb_phys_hash[h] = tb;
}
/* we add the TB in the virtual pc hash table */
env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
return tb;
}
| 22,218 |
qemu | a8170e5e97ad17ca169c64ba87ae2f53850dab4c | 0 | static int megasas_init_firmware(MegasasState *s, MegasasCmd *cmd)
{
uint32_t pa_hi, pa_lo;
target_phys_addr_t iq_pa, initq_size;
struct mfi_init_qinfo *initq;
uint32_t flags;
int ret = MFI_STAT_OK;
pa_lo = le32_to_cpu(cmd->frame->init.qinfo_new_addr_lo);
pa_hi = le32_to_cpu(cmd->frame->init.qinfo_new_addr_hi);
iq_pa = (((uint64_t) pa_hi << 32) | pa_lo);
trace_megasas_init_firmware((uint64_t)iq_pa);
initq_size = sizeof(*initq);
initq = cpu_physical_memory_map(iq_pa, &initq_size, 0);
if (!initq || initq_size != sizeof(*initq)) {
trace_megasas_initq_map_failed(cmd->index);
s->event_count++;
ret = MFI_STAT_MEMORY_NOT_AVAILABLE;
goto out;
}
s->reply_queue_len = le32_to_cpu(initq->rq_entries) & 0xFFFF;
if (s->reply_queue_len > s->fw_cmds) {
trace_megasas_initq_mismatch(s->reply_queue_len, s->fw_cmds);
s->event_count++;
ret = MFI_STAT_INVALID_PARAMETER;
goto out;
}
pa_lo = le32_to_cpu(initq->rq_addr_lo);
pa_hi = le32_to_cpu(initq->rq_addr_hi);
s->reply_queue_pa = ((uint64_t) pa_hi << 32) | pa_lo;
pa_lo = le32_to_cpu(initq->ci_addr_lo);
pa_hi = le32_to_cpu(initq->ci_addr_hi);
s->consumer_pa = ((uint64_t) pa_hi << 32) | pa_lo;
pa_lo = le32_to_cpu(initq->pi_addr_lo);
pa_hi = le32_to_cpu(initq->pi_addr_hi);
s->producer_pa = ((uint64_t) pa_hi << 32) | pa_lo;
s->reply_queue_head = ldl_le_phys(s->producer_pa);
s->reply_queue_tail = ldl_le_phys(s->consumer_pa);
flags = le32_to_cpu(initq->flags);
if (flags & MFI_QUEUE_FLAG_CONTEXT64) {
s->flags |= MEGASAS_MASK_USE_QUEUE64;
}
trace_megasas_init_queue((unsigned long)s->reply_queue_pa,
s->reply_queue_len, s->reply_queue_head,
s->reply_queue_tail, flags);
megasas_reset_frames(s);
s->fw_state = MFI_FWSTATE_OPERATIONAL;
out:
if (initq) {
cpu_physical_memory_unmap(initq, initq_size, 0, 0);
}
return ret;
}
| 22,219 |
qemu | a8170e5e97ad17ca169c64ba87ae2f53850dab4c | 0 | static void pmac_ide_writel (void *opaque,
target_phys_addr_t addr, uint32_t val)
{
MACIOIDEState *d = opaque;
addr = (addr & 0xFFF) >> 4;
val = bswap32(val);
if (addr == 0) {
ide_data_writel(&d->bus, 0, val);
}
}
| 22,220 |
qemu | 51b19ebe4320f3dcd93cea71235c1219318ddfd2 | 0 | static void control_out(VirtIODevice *vdev, VirtQueue *vq)
{
VirtQueueElement elem;
VirtIOSerial *vser;
uint8_t *buf;
size_t len;
vser = VIRTIO_SERIAL(vdev);
len = 0;
buf = NULL;
while (virtqueue_pop(vq, &elem)) {
size_t cur_len;
cur_len = iov_size(elem.out_sg, elem.out_num);
/*
* Allocate a new buf only if we didn't have one previously or
* if the size of the buf differs
*/
if (cur_len > len) {
g_free(buf);
buf = g_malloc(cur_len);
len = cur_len;
}
iov_to_buf(elem.out_sg, elem.out_num, 0, buf, cur_len);
handle_control_message(vser, buf, cur_len);
virtqueue_push(vq, &elem, 0);
}
g_free(buf);
virtio_notify(vdev, vq);
}
| 22,221 |
qemu | e0c270d946dc8efd723129b6a9d956b3084b55b1 | 1 | static int disas_thumb2_insn(CPUARMState *env, DisasContext *s, uint16_t insn_hw1)
{
uint32_t insn, imm, shift, offset;
uint32_t rd, rn, rm, rs;
TCGv_i32 tmp;
TCGv_i32 tmp2;
TCGv_i32 tmp3;
TCGv_i32 addr;
TCGv_i64 tmp64;
int op;
int shiftop;
int conds;
int logic_cc;
if (!(arm_feature(env, ARM_FEATURE_THUMB2)
|| arm_feature (env, ARM_FEATURE_M))) {
/* Thumb-1 cores may need to treat bl and blx as a pair of
16-bit instructions to get correct prefetch abort behavior. */
insn = insn_hw1;
if ((insn & (1 << 12)) == 0) {
ARCH(5);
/* Second half of blx. */
offset = ((insn & 0x7ff) << 1);
tmp = load_reg(s, 14);
tcg_gen_addi_i32(tmp, tmp, offset);
tcg_gen_andi_i32(tmp, tmp, 0xfffffffc);
tmp2 = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp2, s->pc | 1);
store_reg(s, 14, tmp2);
gen_bx(s, tmp);
return 0;
}
if (insn & (1 << 11)) {
/* Second half of bl. */
offset = ((insn & 0x7ff) << 1) | 1;
tmp = load_reg(s, 14);
tcg_gen_addi_i32(tmp, tmp, offset);
tmp2 = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp2, s->pc | 1);
store_reg(s, 14, tmp2);
gen_bx(s, tmp);
return 0;
}
if ((s->pc & ~TARGET_PAGE_MASK) == 0) {
/* Instruction spans a page boundary. Implement it as two
16-bit instructions in case the second half causes an
prefetch abort. */
offset = ((int32_t)insn << 21) >> 9;
tcg_gen_movi_i32(cpu_R[14], s->pc + 2 + offset);
return 0;
}
/* Fall through to 32-bit decode. */
}
insn = arm_lduw_code(env, s->pc, s->bswap_code);
s->pc += 2;
insn |= (uint32_t)insn_hw1 << 16;
if ((insn & 0xf800e800) != 0xf000e800) {
ARCH(6T2);
}
rn = (insn >> 16) & 0xf;
rs = (insn >> 12) & 0xf;
rd = (insn >> 8) & 0xf;
rm = insn & 0xf;
switch ((insn >> 25) & 0xf) {
case 0: case 1: case 2: case 3:
/* 16-bit instructions. Should never happen. */
abort();
case 4:
if (insn & (1 << 22)) {
/* Other load/store, table branch. */
if (insn & 0x01200000) {
/* Load/store doubleword. */
if (rn == 15) {
addr = tcg_temp_new_i32();
tcg_gen_movi_i32(addr, s->pc & ~3);
} else {
addr = load_reg(s, rn);
}
offset = (insn & 0xff) * 4;
if ((insn & (1 << 23)) == 0)
offset = -offset;
if (insn & (1 << 24)) {
tcg_gen_addi_i32(addr, addr, offset);
offset = 0;
}
if (insn & (1 << 20)) {
/* ldrd */
tmp = tcg_temp_new_i32();
tcg_gen_qemu_ld32u(tmp, addr, IS_USER(s));
store_reg(s, rs, tmp);
tcg_gen_addi_i32(addr, addr, 4);
tmp = tcg_temp_new_i32();
tcg_gen_qemu_ld32u(tmp, addr, IS_USER(s));
store_reg(s, rd, tmp);
} else {
/* strd */
tmp = load_reg(s, rs);
tcg_gen_qemu_st32(tmp, addr, IS_USER(s));
tcg_temp_free_i32(tmp);
tcg_gen_addi_i32(addr, addr, 4);
tmp = load_reg(s, rd);
tcg_gen_qemu_st32(tmp, addr, IS_USER(s));
tcg_temp_free_i32(tmp);
}
if (insn & (1 << 21)) {
/* Base writeback. */
if (rn == 15)
goto illegal_op;
tcg_gen_addi_i32(addr, addr, offset - 4);
store_reg(s, rn, addr);
} else {
tcg_temp_free_i32(addr);
}
} else if ((insn & (1 << 23)) == 0) {
/* Load/store exclusive word. */
addr = tcg_temp_local_new_i32();
load_reg_var(s, addr, rn);
tcg_gen_addi_i32(addr, addr, (insn & 0xff) << 2);
if (insn & (1 << 20)) {
gen_load_exclusive(s, rs, 15, addr, 2);
} else {
gen_store_exclusive(s, rd, rs, 15, addr, 2);
}
tcg_temp_free_i32(addr);
} else if ((insn & (7 << 5)) == 0) {
/* Table Branch. */
if (rn == 15) {
addr = tcg_temp_new_i32();
tcg_gen_movi_i32(addr, s->pc);
} else {
addr = load_reg(s, rn);
}
tmp = load_reg(s, rm);
tcg_gen_add_i32(addr, addr, tmp);
if (insn & (1 << 4)) {
/* tbh */
tcg_gen_add_i32(addr, addr, tmp);
tcg_temp_free_i32(tmp);
tmp = tcg_temp_new_i32();
tcg_gen_qemu_ld16u(tmp, addr, IS_USER(s));
} else { /* tbb */
tcg_temp_free_i32(tmp);
tmp = tcg_temp_new_i32();
tcg_gen_qemu_ld8u(tmp, addr, IS_USER(s));
}
tcg_temp_free_i32(addr);
tcg_gen_shli_i32(tmp, tmp, 1);
tcg_gen_addi_i32(tmp, tmp, s->pc);
store_reg(s, 15, tmp);
} else {
int op2 = (insn >> 6) & 0x3;
op = (insn >> 4) & 0x3;
switch (op2) {
case 0:
goto illegal_op;
case 1:
/* Load/store exclusive byte/halfword/doubleword */
if (op == 2) {
goto illegal_op;
}
ARCH(7);
break;
case 2:
/* Load-acquire/store-release */
if (op == 3) {
goto illegal_op;
}
/* Fall through */
case 3:
/* Load-acquire/store-release exclusive */
ARCH(8);
break;
}
addr = tcg_temp_local_new_i32();
load_reg_var(s, addr, rn);
if (!(op2 & 1)) {
if (insn & (1 << 20)) {
tmp = tcg_temp_new_i32();
switch (op) {
case 0: /* ldab */
tcg_gen_qemu_ld8u(tmp, addr, IS_USER(s));
break;
case 1: /* ldah */
tcg_gen_qemu_ld16u(tmp, addr, IS_USER(s));
break;
case 2: /* lda */
tcg_gen_qemu_ld32u(tmp, addr, IS_USER(s));
break;
default:
abort();
}
store_reg(s, rs, tmp);
} else {
tmp = load_reg(s, rs);
switch (op) {
case 0: /* stlb */
tcg_gen_qemu_st8(tmp, addr, IS_USER(s));
break;
case 1: /* stlh */
tcg_gen_qemu_st16(tmp, addr, IS_USER(s));
break;
case 2: /* stl */
tcg_gen_qemu_st32(tmp, addr, IS_USER(s));
break;
default:
abort();
}
tcg_temp_free_i32(tmp);
}
} else if (insn & (1 << 20)) {
gen_load_exclusive(s, rs, rd, addr, op);
} else {
gen_store_exclusive(s, rm, rs, rd, addr, op);
}
tcg_temp_free_i32(addr);
}
} else {
/* Load/store multiple, RFE, SRS. */
if (((insn >> 23) & 1) == ((insn >> 24) & 1)) {
/* RFE, SRS: not available in user mode or on M profile */
if (IS_USER(s) || IS_M(env)) {
goto illegal_op;
}
if (insn & (1 << 20)) {
/* rfe */
addr = load_reg(s, rn);
if ((insn & (1 << 24)) == 0)
tcg_gen_addi_i32(addr, addr, -8);
/* Load PC into tmp and CPSR into tmp2. */
tmp = tcg_temp_new_i32();
tcg_gen_qemu_ld32u(tmp, addr, 0);
tcg_gen_addi_i32(addr, addr, 4);
tmp2 = tcg_temp_new_i32();
tcg_gen_qemu_ld32u(tmp2, addr, 0);
if (insn & (1 << 21)) {
/* Base writeback. */
if (insn & (1 << 24)) {
tcg_gen_addi_i32(addr, addr, 4);
} else {
tcg_gen_addi_i32(addr, addr, -4);
}
store_reg(s, rn, addr);
} else {
tcg_temp_free_i32(addr);
}
gen_rfe(s, tmp, tmp2);
} else {
/* srs */
gen_srs(s, (insn & 0x1f), (insn & (1 << 24)) ? 1 : 2,
insn & (1 << 21));
}
} else {
int i, loaded_base = 0;
TCGv_i32 loaded_var;
/* Load/store multiple. */
addr = load_reg(s, rn);
offset = 0;
for (i = 0; i < 16; i++) {
if (insn & (1 << i))
offset += 4;
}
if (insn & (1 << 24)) {
tcg_gen_addi_i32(addr, addr, -offset);
}
TCGV_UNUSED_I32(loaded_var);
for (i = 0; i < 16; i++) {
if ((insn & (1 << i)) == 0)
continue;
if (insn & (1 << 20)) {
/* Load. */
tmp = tcg_temp_new_i32();
tcg_gen_qemu_ld32u(tmp, addr, IS_USER(s));
if (i == 15) {
gen_bx(s, tmp);
} else if (i == rn) {
loaded_var = tmp;
loaded_base = 1;
} else {
store_reg(s, i, tmp);
}
} else {
/* Store. */
tmp = load_reg(s, i);
tcg_gen_qemu_st32(tmp, addr, IS_USER(s));
tcg_temp_free_i32(tmp);
}
tcg_gen_addi_i32(addr, addr, 4);
}
if (loaded_base) {
store_reg(s, rn, loaded_var);
}
if (insn & (1 << 21)) {
/* Base register writeback. */
if (insn & (1 << 24)) {
tcg_gen_addi_i32(addr, addr, -offset);
}
/* Fault if writeback register is in register list. */
if (insn & (1 << rn))
goto illegal_op;
store_reg(s, rn, addr);
} else {
tcg_temp_free_i32(addr);
}
}
}
break;
case 5:
op = (insn >> 21) & 0xf;
if (op == 6) {
/* Halfword pack. */
tmp = load_reg(s, rn);
tmp2 = load_reg(s, rm);
shift = ((insn >> 10) & 0x1c) | ((insn >> 6) & 0x3);
if (insn & (1 << 5)) {
/* pkhtb */
if (shift == 0)
shift = 31;
tcg_gen_sari_i32(tmp2, tmp2, shift);
tcg_gen_andi_i32(tmp, tmp, 0xffff0000);
tcg_gen_ext16u_i32(tmp2, tmp2);
} else {
/* pkhbt */
if (shift)
tcg_gen_shli_i32(tmp2, tmp2, shift);
tcg_gen_ext16u_i32(tmp, tmp);
tcg_gen_andi_i32(tmp2, tmp2, 0xffff0000);
}
tcg_gen_or_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
store_reg(s, rd, tmp);
} else {
/* Data processing register constant shift. */
if (rn == 15) {
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, 0);
} else {
tmp = load_reg(s, rn);
}
tmp2 = load_reg(s, rm);
shiftop = (insn >> 4) & 3;
shift = ((insn >> 6) & 3) | ((insn >> 10) & 0x1c);
conds = (insn & (1 << 20)) != 0;
logic_cc = (conds && thumb2_logic_op(op));
gen_arm_shift_im(tmp2, shiftop, shift, logic_cc);
if (gen_thumb2_data_op(s, op, conds, 0, tmp, tmp2))
goto illegal_op;
tcg_temp_free_i32(tmp2);
if (rd != 15) {
store_reg(s, rd, tmp);
} else {
tcg_temp_free_i32(tmp);
}
}
break;
case 13: /* Misc data processing. */
op = ((insn >> 22) & 6) | ((insn >> 7) & 1);
if (op < 4 && (insn & 0xf000) != 0xf000)
goto illegal_op;
switch (op) {
case 0: /* Register controlled shift. */
tmp = load_reg(s, rn);
tmp2 = load_reg(s, rm);
if ((insn & 0x70) != 0)
goto illegal_op;
op = (insn >> 21) & 3;
logic_cc = (insn & (1 << 20)) != 0;
gen_arm_shift_reg(tmp, op, tmp2, logic_cc);
if (logic_cc)
gen_logic_CC(tmp);
store_reg_bx(env, s, rd, tmp);
break;
case 1: /* Sign/zero extend. */
tmp = load_reg(s, rm);
shift = (insn >> 4) & 3;
/* ??? In many cases it's not necessary to do a
rotate, a shift is sufficient. */
if (shift != 0)
tcg_gen_rotri_i32(tmp, tmp, shift * 8);
op = (insn >> 20) & 7;
switch (op) {
case 0: gen_sxth(tmp); break;
case 1: gen_uxth(tmp); break;
case 2: gen_sxtb16(tmp); break;
case 3: gen_uxtb16(tmp); break;
case 4: gen_sxtb(tmp); break;
case 5: gen_uxtb(tmp); break;
default: goto illegal_op;
}
if (rn != 15) {
tmp2 = load_reg(s, rn);
if ((op >> 1) == 1) {
gen_add16(tmp, tmp2);
} else {
tcg_gen_add_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
}
store_reg(s, rd, tmp);
break;
case 2: /* SIMD add/subtract. */
op = (insn >> 20) & 7;
shift = (insn >> 4) & 7;
if ((op & 3) == 3 || (shift & 3) == 3)
goto illegal_op;
tmp = load_reg(s, rn);
tmp2 = load_reg(s, rm);
gen_thumb2_parallel_addsub(op, shift, tmp, tmp2);
tcg_temp_free_i32(tmp2);
store_reg(s, rd, tmp);
break;
case 3: /* Other data processing. */
op = ((insn >> 17) & 0x38) | ((insn >> 4) & 7);
if (op < 4) {
/* Saturating add/subtract. */
tmp = load_reg(s, rn);
tmp2 = load_reg(s, rm);
if (op & 1)
gen_helper_double_saturate(tmp, cpu_env, tmp);
if (op & 2)
gen_helper_sub_saturate(tmp, cpu_env, tmp2, tmp);
else
gen_helper_add_saturate(tmp, cpu_env, tmp, tmp2);
tcg_temp_free_i32(tmp2);
} else {
tmp = load_reg(s, rn);
switch (op) {
case 0x0a: /* rbit */
gen_helper_rbit(tmp, tmp);
break;
case 0x08: /* rev */
tcg_gen_bswap32_i32(tmp, tmp);
break;
case 0x09: /* rev16 */
gen_rev16(tmp);
break;
case 0x0b: /* revsh */
gen_revsh(tmp);
break;
case 0x10: /* sel */
tmp2 = load_reg(s, rm);
tmp3 = tcg_temp_new_i32();
tcg_gen_ld_i32(tmp3, cpu_env, offsetof(CPUARMState, GE));
gen_helper_sel_flags(tmp, tmp3, tmp, tmp2);
tcg_temp_free_i32(tmp3);
tcg_temp_free_i32(tmp2);
break;
case 0x18: /* clz */
gen_helper_clz(tmp, tmp);
break;
default:
goto illegal_op;
}
}
store_reg(s, rd, tmp);
break;
case 4: case 5: /* 32-bit multiply. Sum of absolute differences. */
op = (insn >> 4) & 0xf;
tmp = load_reg(s, rn);
tmp2 = load_reg(s, rm);
switch ((insn >> 20) & 7) {
case 0: /* 32 x 32 -> 32 */
tcg_gen_mul_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
if (rs != 15) {
tmp2 = load_reg(s, rs);
if (op)
tcg_gen_sub_i32(tmp, tmp2, tmp);
else
tcg_gen_add_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
break;
case 1: /* 16 x 16 -> 32 */
gen_mulxy(tmp, tmp2, op & 2, op & 1);
tcg_temp_free_i32(tmp2);
if (rs != 15) {
tmp2 = load_reg(s, rs);
gen_helper_add_setq(tmp, cpu_env, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
break;
case 2: /* Dual multiply add. */
case 4: /* Dual multiply subtract. */
if (op)
gen_swap_half(tmp2);
gen_smul_dual(tmp, tmp2);
if (insn & (1 << 22)) {
/* This subtraction cannot overflow. */
tcg_gen_sub_i32(tmp, tmp, tmp2);
} else {
/* This addition cannot overflow 32 bits;
* however it may overflow considered as a signed
* operation, in which case we must set the Q flag.
*/
gen_helper_add_setq(tmp, cpu_env, tmp, tmp2);
}
tcg_temp_free_i32(tmp2);
if (rs != 15)
{
tmp2 = load_reg(s, rs);
gen_helper_add_setq(tmp, cpu_env, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
break;
case 3: /* 32 * 16 -> 32msb */
if (op)
tcg_gen_sari_i32(tmp2, tmp2, 16);
else
gen_sxth(tmp2);
tmp64 = gen_muls_i64_i32(tmp, tmp2);
tcg_gen_shri_i64(tmp64, tmp64, 16);
tmp = tcg_temp_new_i32();
tcg_gen_trunc_i64_i32(tmp, tmp64);
tcg_temp_free_i64(tmp64);
if (rs != 15)
{
tmp2 = load_reg(s, rs);
gen_helper_add_setq(tmp, cpu_env, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
break;
case 5: case 6: /* 32 * 32 -> 32msb (SMMUL, SMMLA, SMMLS) */
tmp64 = gen_muls_i64_i32(tmp, tmp2);
if (rs != 15) {
tmp = load_reg(s, rs);
if (insn & (1 << 20)) {
tmp64 = gen_addq_msw(tmp64, tmp);
} else {
tmp64 = gen_subq_msw(tmp64, tmp);
}
}
if (insn & (1 << 4)) {
tcg_gen_addi_i64(tmp64, tmp64, 0x80000000u);
}
tcg_gen_shri_i64(tmp64, tmp64, 32);
tmp = tcg_temp_new_i32();
tcg_gen_trunc_i64_i32(tmp, tmp64);
tcg_temp_free_i64(tmp64);
break;
case 7: /* Unsigned sum of absolute differences. */
gen_helper_usad8(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
if (rs != 15) {
tmp2 = load_reg(s, rs);
tcg_gen_add_i32(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
}
break;
}
store_reg(s, rd, tmp);
break;
case 6: case 7: /* 64-bit multiply, Divide. */
op = ((insn >> 4) & 0xf) | ((insn >> 16) & 0x70);
tmp = load_reg(s, rn);
tmp2 = load_reg(s, rm);
if ((op & 0x50) == 0x10) {
/* sdiv, udiv */
if (!arm_feature(env, ARM_FEATURE_THUMB_DIV)) {
goto illegal_op;
}
if (op & 0x20)
gen_helper_udiv(tmp, tmp, tmp2);
else
gen_helper_sdiv(tmp, tmp, tmp2);
tcg_temp_free_i32(tmp2);
store_reg(s, rd, tmp);
} else if ((op & 0xe) == 0xc) {
/* Dual multiply accumulate long. */
if (op & 1)
gen_swap_half(tmp2);
gen_smul_dual(tmp, tmp2);
if (op & 0x10) {
tcg_gen_sub_i32(tmp, tmp, tmp2);
} else {
tcg_gen_add_i32(tmp, tmp, tmp2);
}
tcg_temp_free_i32(tmp2);
/* BUGFIX */
tmp64 = tcg_temp_new_i64();
tcg_gen_ext_i32_i64(tmp64, tmp);
tcg_temp_free_i32(tmp);
gen_addq(s, tmp64, rs, rd);
gen_storeq_reg(s, rs, rd, tmp64);
tcg_temp_free_i64(tmp64);
} else {
if (op & 0x20) {
/* Unsigned 64-bit multiply */
tmp64 = gen_mulu_i64_i32(tmp, tmp2);
} else {
if (op & 8) {
/* smlalxy */
gen_mulxy(tmp, tmp2, op & 2, op & 1);
tcg_temp_free_i32(tmp2);
tmp64 = tcg_temp_new_i64();
tcg_gen_ext_i32_i64(tmp64, tmp);
tcg_temp_free_i32(tmp);
} else {
/* Signed 64-bit multiply */
tmp64 = gen_muls_i64_i32(tmp, tmp2);
}
}
if (op & 4) {
/* umaal */
gen_addq_lo(s, tmp64, rs);
gen_addq_lo(s, tmp64, rd);
} else if (op & 0x40) {
/* 64-bit accumulate. */
gen_addq(s, tmp64, rs, rd);
}
gen_storeq_reg(s, rs, rd, tmp64);
tcg_temp_free_i64(tmp64);
}
break;
}
break;
case 6: case 7: case 14: case 15:
/* Coprocessor. */
if (((insn >> 24) & 3) == 3) {
/* Translate into the equivalent ARM encoding. */
insn = (insn & 0xe2ffffff) | ((insn & (1 << 28)) >> 4) | (1 << 28);
if (disas_neon_data_insn(env, s, insn))
goto illegal_op;
} else {
if (insn & (1 << 28))
goto illegal_op;
if (disas_coproc_insn (env, s, insn))
goto illegal_op;
}
break;
case 8: case 9: case 10: case 11:
if (insn & (1 << 15)) {
/* Branches, misc control. */
if (insn & 0x5000) {
/* Unconditional branch. */
/* signextend(hw1[10:0]) -> offset[:12]. */
offset = ((int32_t)insn << 5) >> 9 & ~(int32_t)0xfff;
/* hw1[10:0] -> offset[11:1]. */
offset |= (insn & 0x7ff) << 1;
/* (~hw2[13, 11] ^ offset[24]) -> offset[23,22]
offset[24:22] already have the same value because of the
sign extension above. */
offset ^= ((~insn) & (1 << 13)) << 10;
offset ^= ((~insn) & (1 << 11)) << 11;
if (insn & (1 << 14)) {
/* Branch and link. */
tcg_gen_movi_i32(cpu_R[14], s->pc | 1);
}
offset += s->pc;
if (insn & (1 << 12)) {
/* b/bl */
gen_jmp(s, offset);
} else {
/* blx */
offset &= ~(uint32_t)2;
/* thumb2 bx, no need to check */
gen_bx_im(s, offset);
}
} else if (((insn >> 23) & 7) == 7) {
/* Misc control */
if (insn & (1 << 13))
goto illegal_op;
if (insn & (1 << 26)) {
/* Secure monitor call (v6Z) */
goto illegal_op; /* not implemented. */
} else {
op = (insn >> 20) & 7;
switch (op) {
case 0: /* msr cpsr. */
if (IS_M(env)) {
tmp = load_reg(s, rn);
addr = tcg_const_i32(insn & 0xff);
gen_helper_v7m_msr(cpu_env, addr, tmp);
tcg_temp_free_i32(addr);
tcg_temp_free_i32(tmp);
gen_lookup_tb(s);
break;
}
/* fall through */
case 1: /* msr spsr. */
if (IS_M(env))
goto illegal_op;
tmp = load_reg(s, rn);
if (gen_set_psr(s,
msr_mask(env, s, (insn >> 8) & 0xf, op == 1),
op == 1, tmp))
goto illegal_op;
break;
case 2: /* cps, nop-hint. */
if (((insn >> 8) & 7) == 0) {
gen_nop_hint(s, insn & 0xff);
}
/* Implemented as NOP in user mode. */
if (IS_USER(s))
break;
offset = 0;
imm = 0;
if (insn & (1 << 10)) {
if (insn & (1 << 7))
offset |= CPSR_A;
if (insn & (1 << 6))
offset |= CPSR_I;
if (insn & (1 << 5))
offset |= CPSR_F;
if (insn & (1 << 9))
imm = CPSR_A | CPSR_I | CPSR_F;
}
if (insn & (1 << 8)) {
offset |= 0x1f;
imm |= (insn & 0x1f);
}
if (offset) {
gen_set_psr_im(s, offset, 0, imm);
}
break;
case 3: /* Special control operations. */
ARCH(7);
op = (insn >> 4) & 0xf;
switch (op) {
case 2: /* clrex */
gen_clrex(s);
break;
case 4: /* dsb */
case 5: /* dmb */
case 6: /* isb */
/* These execute as NOPs. */
break;
default:
goto illegal_op;
}
break;
case 4: /* bxj */
/* Trivial implementation equivalent to bx. */
tmp = load_reg(s, rn);
gen_bx(s, tmp);
break;
case 5: /* Exception return. */
if (IS_USER(s)) {
goto illegal_op;
}
if (rn != 14 || rd != 15) {
goto illegal_op;
}
tmp = load_reg(s, rn);
tcg_gen_subi_i32(tmp, tmp, insn & 0xff);
gen_exception_return(s, tmp);
break;
case 6: /* mrs cpsr. */
tmp = tcg_temp_new_i32();
if (IS_M(env)) {
addr = tcg_const_i32(insn & 0xff);
gen_helper_v7m_mrs(tmp, cpu_env, addr);
tcg_temp_free_i32(addr);
} else {
gen_helper_cpsr_read(tmp, cpu_env);
}
store_reg(s, rd, tmp);
break;
case 7: /* mrs spsr. */
/* Not accessible in user mode. */
if (IS_USER(s) || IS_M(env))
goto illegal_op;
tmp = load_cpu_field(spsr);
store_reg(s, rd, tmp);
break;
}
}
} else {
/* Conditional branch. */
op = (insn >> 22) & 0xf;
/* Generate a conditional jump to next instruction. */
s->condlabel = gen_new_label();
gen_test_cc(op ^ 1, s->condlabel);
s->condjmp = 1;
/* offset[11:1] = insn[10:0] */
offset = (insn & 0x7ff) << 1;
/* offset[17:12] = insn[21:16]. */
offset |= (insn & 0x003f0000) >> 4;
/* offset[31:20] = insn[26]. */
offset |= ((int32_t)((insn << 5) & 0x80000000)) >> 11;
/* offset[18] = insn[13]. */
offset |= (insn & (1 << 13)) << 5;
/* offset[19] = insn[11]. */
offset |= (insn & (1 << 11)) << 8;
/* jump to the offset */
gen_jmp(s, s->pc + offset);
}
} else {
/* Data processing immediate. */
if (insn & (1 << 25)) {
if (insn & (1 << 24)) {
if (insn & (1 << 20))
goto illegal_op;
/* Bitfield/Saturate. */
op = (insn >> 21) & 7;
imm = insn & 0x1f;
shift = ((insn >> 6) & 3) | ((insn >> 10) & 0x1c);
if (rn == 15) {
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, 0);
} else {
tmp = load_reg(s, rn);
}
switch (op) {
case 2: /* Signed bitfield extract. */
imm++;
if (shift + imm > 32)
goto illegal_op;
if (imm < 32)
gen_sbfx(tmp, shift, imm);
break;
case 6: /* Unsigned bitfield extract. */
imm++;
if (shift + imm > 32)
goto illegal_op;
if (imm < 32)
gen_ubfx(tmp, shift, (1u << imm) - 1);
break;
case 3: /* Bitfield insert/clear. */
if (imm < shift)
goto illegal_op;
imm = imm + 1 - shift;
if (imm != 32) {
tmp2 = load_reg(s, rd);
tcg_gen_deposit_i32(tmp, tmp2, tmp, shift, imm);
tcg_temp_free_i32(tmp2);
}
break;
case 7:
goto illegal_op;
default: /* Saturate. */
if (shift) {
if (op & 1)
tcg_gen_sari_i32(tmp, tmp, shift);
else
tcg_gen_shli_i32(tmp, tmp, shift);
}
tmp2 = tcg_const_i32(imm);
if (op & 4) {
/* Unsigned. */
if ((op & 1) && shift == 0)
gen_helper_usat16(tmp, cpu_env, tmp, tmp2);
else
gen_helper_usat(tmp, cpu_env, tmp, tmp2);
} else {
/* Signed. */
if ((op & 1) && shift == 0)
gen_helper_ssat16(tmp, cpu_env, tmp, tmp2);
else
gen_helper_ssat(tmp, cpu_env, tmp, tmp2);
}
tcg_temp_free_i32(tmp2);
break;
}
store_reg(s, rd, tmp);
} else {
imm = ((insn & 0x04000000) >> 15)
| ((insn & 0x7000) >> 4) | (insn & 0xff);
if (insn & (1 << 22)) {
/* 16-bit immediate. */
imm |= (insn >> 4) & 0xf000;
if (insn & (1 << 23)) {
/* movt */
tmp = load_reg(s, rd);
tcg_gen_ext16u_i32(tmp, tmp);
tcg_gen_ori_i32(tmp, tmp, imm << 16);
} else {
/* movw */
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, imm);
}
} else {
/* Add/sub 12-bit immediate. */
if (rn == 15) {
offset = s->pc & ~(uint32_t)3;
if (insn & (1 << 23))
offset -= imm;
else
offset += imm;
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, offset);
} else {
tmp = load_reg(s, rn);
if (insn & (1 << 23))
tcg_gen_subi_i32(tmp, tmp, imm);
else
tcg_gen_addi_i32(tmp, tmp, imm);
}
}
store_reg(s, rd, tmp);
}
} else {
int shifter_out = 0;
/* modified 12-bit immediate. */
shift = ((insn & 0x04000000) >> 23) | ((insn & 0x7000) >> 12);
imm = (insn & 0xff);
switch (shift) {
case 0: /* XY */
/* Nothing to do. */
break;
case 1: /* 00XY00XY */
imm |= imm << 16;
break;
case 2: /* XY00XY00 */
imm |= imm << 16;
imm <<= 8;
break;
case 3: /* XYXYXYXY */
imm |= imm << 16;
imm |= imm << 8;
break;
default: /* Rotated constant. */
shift = (shift << 1) | (imm >> 7);
imm |= 0x80;
imm = imm << (32 - shift);
shifter_out = 1;
break;
}
tmp2 = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp2, imm);
rn = (insn >> 16) & 0xf;
if (rn == 15) {
tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, 0);
} else {
tmp = load_reg(s, rn);
}
op = (insn >> 21) & 0xf;
if (gen_thumb2_data_op(s, op, (insn & (1 << 20)) != 0,
shifter_out, tmp, tmp2))
goto illegal_op;
tcg_temp_free_i32(tmp2);
rd = (insn >> 8) & 0xf;
if (rd != 15) {
store_reg(s, rd, tmp);
} else {
tcg_temp_free_i32(tmp);
}
}
}
break;
case 12: /* Load/store single data item. */
{
int postinc = 0;
int writeback = 0;
int user;
if ((insn & 0x01100000) == 0x01000000) {
if (disas_neon_ls_insn(env, s, insn))
goto illegal_op;
break;
}
op = ((insn >> 21) & 3) | ((insn >> 22) & 4);
if (rs == 15) {
if (!(insn & (1 << 20))) {
goto illegal_op;
}
if (op != 2) {
/* Byte or halfword load space with dest == r15 : memory hints.
* Catch them early so we don't emit pointless addressing code.
* This space is a mix of:
* PLD/PLDW/PLI, which we implement as NOPs (note that unlike
* the ARM encodings, PLDW space doesn't UNDEF for non-v7MP
* cores)
* unallocated hints, which must be treated as NOPs
* UNPREDICTABLE space, which we NOP or UNDEF depending on
* which is easiest for the decoding logic
* Some space which must UNDEF
*/
int op1 = (insn >> 23) & 3;
int op2 = (insn >> 6) & 0x3f;
if (op & 2) {
goto illegal_op;
}
if (rn == 15) {
/* UNPREDICTABLE, unallocated hint or
* PLD/PLDW/PLI (literal)
*/
return 0;
}
if (op1 & 1) {
return 0; /* PLD/PLDW/PLI or unallocated hint */
}
if ((op2 == 0) || ((op2 & 0x3c) == 0x30)) {
return 0; /* PLD/PLDW/PLI or unallocated hint */
}
/* UNDEF space, or an UNPREDICTABLE */
return 1;
}
}
user = IS_USER(s);
if (rn == 15) {
addr = tcg_temp_new_i32();
/* PC relative. */
/* s->pc has already been incremented by 4. */
imm = s->pc & 0xfffffffc;
if (insn & (1 << 23))
imm += insn & 0xfff;
else
imm -= insn & 0xfff;
tcg_gen_movi_i32(addr, imm);
} else {
addr = load_reg(s, rn);
if (insn & (1 << 23)) {
/* Positive offset. */
imm = insn & 0xfff;
tcg_gen_addi_i32(addr, addr, imm);
} else {
imm = insn & 0xff;
switch ((insn >> 8) & 0xf) {
case 0x0: /* Shifted Register. */
shift = (insn >> 4) & 0xf;
if (shift > 3) {
tcg_temp_free_i32(addr);
goto illegal_op;
}
tmp = load_reg(s, rm);
if (shift)
tcg_gen_shli_i32(tmp, tmp, shift);
tcg_gen_add_i32(addr, addr, tmp);
tcg_temp_free_i32(tmp);
break;
case 0xc: /* Negative offset. */
tcg_gen_addi_i32(addr, addr, -imm);
break;
case 0xe: /* User privilege. */
tcg_gen_addi_i32(addr, addr, imm);
user = 1;
break;
case 0x9: /* Post-decrement. */
imm = -imm;
/* Fall through. */
case 0xb: /* Post-increment. */
postinc = 1;
writeback = 1;
break;
case 0xd: /* Pre-decrement. */
imm = -imm;
/* Fall through. */
case 0xf: /* Pre-increment. */
tcg_gen_addi_i32(addr, addr, imm);
writeback = 1;
break;
default:
tcg_temp_free_i32(addr);
goto illegal_op;
}
}
}
if (insn & (1 << 20)) {
/* Load. */
tmp = tcg_temp_new_i32();
switch (op) {
case 0:
tcg_gen_qemu_ld8u(tmp, addr, user);
break;
case 4:
tcg_gen_qemu_ld8s(tmp, addr, user);
break;
case 1:
tcg_gen_qemu_ld16u(tmp, addr, user);
break;
case 5:
tcg_gen_qemu_ld16s(tmp, addr, user);
break;
case 2:
tcg_gen_qemu_ld32u(tmp, addr, user);
break;
default:
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(addr);
goto illegal_op;
}
if (rs == 15) {
gen_bx(s, tmp);
} else {
store_reg(s, rs, tmp);
}
} else {
/* Store. */
tmp = load_reg(s, rs);
switch (op) {
case 0:
tcg_gen_qemu_st8(tmp, addr, user);
break;
case 1:
tcg_gen_qemu_st16(tmp, addr, user);
break;
case 2:
tcg_gen_qemu_st32(tmp, addr, user);
break;
default:
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(addr);
goto illegal_op;
}
tcg_temp_free_i32(tmp);
}
if (postinc)
tcg_gen_addi_i32(addr, addr, imm);
if (writeback) {
store_reg(s, rn, addr);
} else {
tcg_temp_free_i32(addr);
}
}
break;
default:
goto illegal_op;
}
return 0;
illegal_op:
return 1;
} | 22,224 |
FFmpeg | 159ab4625bd3641e79b564335be8069dca881978 | 1 | static int hevc_decode_nal_units(const uint8_t *buf, int buf_size, HEVCParamSets *ps,
int is_nalff, int nal_length_size, void *logctx)
{
int i;
int ret = 0;
H2645Packet pkt = { 0 };
ret = ff_h2645_packet_split(&pkt, buf, buf_size, logctx, is_nalff, nal_length_size, AV_CODEC_ID_HEVC, 1);
if (ret < 0) {
goto done;
}
for (i = 0; i < pkt.nb_nals; i++) {
H2645NAL *nal = &pkt.nals[i];
/* ignore everything except parameter sets and VCL NALUs */
switch (nal->type) {
case HEVC_NAL_VPS: ff_hevc_decode_nal_vps(&nal->gb, logctx, ps); break;
case HEVC_NAL_SPS: ff_hevc_decode_nal_sps(&nal->gb, logctx, ps, 1); break;
case HEVC_NAL_PPS: ff_hevc_decode_nal_pps(&nal->gb, logctx, ps); break;
default:
av_log(logctx, AV_LOG_VERBOSE, "Ignoring NAL type %d in extradata\n", nal->type);
break;
}
}
done:
ff_h2645_packet_uninit(&pkt);
return ret;
}
| 22,225 |
qemu | d6f723b513a0c3c4e58343b7c52a2f9850861fa0 | 1 | static void test_qemu_strtoll_full_max(void)
{
const char *str = g_strdup_printf("%lld", LLONG_MAX);
int64_t res;
int err;
err = qemu_strtoll(str, NULL, 0, &res);
g_assert_cmpint(err, ==, 0);
g_assert_cmpint(res, ==, LLONG_MAX);
}
| 22,227 |
qemu | b53ccc30c40df52d192e469a86c188a8649c6df3 | 1 | static int dump_init(DumpState *s, int fd, bool paging, bool has_filter,
int64_t begin, int64_t length, Error **errp)
{
CPUState *cpu;
int nr_cpus;
Error *err = NULL;
int ret;
if (runstate_is_running()) {
vm_stop(RUN_STATE_SAVE_VM);
s->resume = true;
} else {
s->resume = false;
}
/* If we use KVM, we should synchronize the registers before we get dump
* info or physmap info.
*/
cpu_synchronize_all_states();
nr_cpus = 0;
CPU_FOREACH(cpu) {
nr_cpus++;
}
s->errp = errp;
s->fd = fd;
s->has_filter = has_filter;
s->begin = begin;
s->length = length;
guest_phys_blocks_init(&s->guest_phys_blocks);
guest_phys_blocks_append(&s->guest_phys_blocks);
s->start = get_start_block(s);
if (s->start == -1) {
error_set(errp, QERR_INVALID_PARAMETER, "begin");
goto cleanup;
}
/* get dump info: endian, class and architecture.
* If the target architecture is not supported, cpu_get_dump_info() will
* return -1.
*/
ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks);
if (ret < 0) {
error_set(errp, QERR_UNSUPPORTED);
goto cleanup;
}
s->note_size = cpu_get_note_size(s->dump_info.d_class,
s->dump_info.d_machine, nr_cpus);
if (s->note_size < 0) {
error_set(errp, QERR_UNSUPPORTED);
goto cleanup;
}
/* get memory mapping */
memory_mapping_list_init(&s->list);
if (paging) {
qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, &err);
if (err != NULL) {
error_propagate(errp, err);
goto cleanup;
}
} else {
qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks);
}
s->nr_cpus = nr_cpus;
s->page_size = TARGET_PAGE_SIZE;
s->page_shift = ffs(s->page_size) - 1;
get_max_mapnr(s);
uint64_t tmp;
tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT), s->page_size);
s->len_dump_bitmap = tmp * s->page_size;
if (s->has_filter) {
memory_mapping_filter(&s->list, s->begin, s->length);
}
/*
* calculate phdr_num
*
* the type of ehdr->e_phnum is uint16_t, so we should avoid overflow
*/
s->phdr_num = 1; /* PT_NOTE */
if (s->list.num < UINT16_MAX - 2) {
s->phdr_num += s->list.num;
s->have_section = false;
} else {
s->have_section = true;
s->phdr_num = PN_XNUM;
s->sh_info = 1; /* PT_NOTE */
/* the type of shdr->sh_info is uint32_t, so we should avoid overflow */
if (s->list.num <= UINT32_MAX - 1) {
s->sh_info += s->list.num;
} else {
s->sh_info = UINT32_MAX;
}
}
if (s->dump_info.d_class == ELFCLASS64) {
if (s->have_section) {
s->memory_offset = sizeof(Elf64_Ehdr) +
sizeof(Elf64_Phdr) * s->sh_info +
sizeof(Elf64_Shdr) + s->note_size;
} else {
s->memory_offset = sizeof(Elf64_Ehdr) +
sizeof(Elf64_Phdr) * s->phdr_num + s->note_size;
}
} else {
if (s->have_section) {
s->memory_offset = sizeof(Elf32_Ehdr) +
sizeof(Elf32_Phdr) * s->sh_info +
sizeof(Elf32_Shdr) + s->note_size;
} else {
s->memory_offset = sizeof(Elf32_Ehdr) +
sizeof(Elf32_Phdr) * s->phdr_num + s->note_size;
}
}
return 0;
cleanup:
guest_phys_blocks_free(&s->guest_phys_blocks);
if (s->resume) {
vm_start();
}
return -1;
}
| 22,228 |
qemu | 354fb471bd5faf527f3fa25388b8cffa6bd937d0 | 1 | static void crs_replace_with_free_ranges(GPtrArray *ranges,
uint64_t start, uint64_t end)
{
GPtrArray *free_ranges = g_ptr_array_new_with_free_func(crs_range_free);
uint64_t free_base = start;
int i;
g_ptr_array_sort(ranges, crs_range_compare);
for (i = 0; i < ranges->len; i++) {
CrsRangeEntry *used = g_ptr_array_index(ranges, i);
if (free_base < used->base) {
crs_range_insert(free_ranges, free_base, used->base - 1);
}
free_base = used->limit + 1;
}
if (free_base < end) {
crs_range_insert(free_ranges, free_base, end);
}
g_ptr_array_set_size(ranges, 0);
for (i = 0; i < free_ranges->len; i++) {
g_ptr_array_add(ranges, g_ptr_array_index(free_ranges, i));
}
g_ptr_array_free(free_ranges, false);
}
| 22,229 |
qemu | eefa3d8ef649f9055611361e2201cca49f8c3433 | 1 | static ssize_t qio_channel_websock_decode_payload(QIOChannelWebsock *ioc,
Error **errp)
{
size_t i;
size_t payload_len;
uint32_t *payload32;
if (!ioc->payload_remain) {
error_setg(errp,
"Decoding payload but no bytes of payload remain");
return -1;
}
/* If we aren't at the end of the payload, then drop
* off the last bytes, so we're always multiple of 4
* for purpose of unmasking, except at end of payload
*/
if (ioc->encinput.offset < ioc->payload_remain) {
payload_len = ioc->encinput.offset - (ioc->encinput.offset % 4);
} else {
payload_len = ioc->payload_remain;
}
if (payload_len == 0) {
return QIO_CHANNEL_ERR_BLOCK;
}
ioc->payload_remain -= payload_len;
/* unmask frame */
/* process 1 frame (32 bit op) */
payload32 = (uint32_t *)ioc->encinput.buffer;
for (i = 0; i < payload_len / 4; i++) {
payload32[i] ^= ioc->mask.u;
}
/* process the remaining bytes (if any) */
for (i *= 4; i < payload_len; i++) {
ioc->encinput.buffer[i] ^= ioc->mask.c[i % 4];
}
buffer_reserve(&ioc->rawinput, payload_len);
buffer_append(&ioc->rawinput, ioc->encinput.buffer, payload_len);
buffer_advance(&ioc->encinput, payload_len);
return payload_len;
}
| 22,230 |
FFmpeg | 21234c835d2d003d390d462b6e1b2622e7b02c39 | 1 | static int load_sofa(AVFilterContext *ctx, char *filename, int *samplingrate)
{
struct SOFAlizerContext *s = ctx->priv;
/* variables associated with content of SOFA file: */
int ncid, n_dims, n_vars, n_gatts, n_unlim_dim_id, status;
char data_delay_dim_name[NC_MAX_NAME];
float *sp_a, *sp_e, *sp_r, *data_ir;
char *sofa_conventions;
char dim_name[NC_MAX_NAME]; /* names of netCDF dimensions */
size_t *dim_length; /* lengths of netCDF dimensions */
char *text;
unsigned int sample_rate;
int data_delay_dim_id[2];
int samplingrate_id;
int data_delay_id;
int n_samples;
int m_dim_id = -1;
int n_dim_id = -1;
int data_ir_id;
size_t att_len;
int m_dim;
int *data_delay;
int sp_id;
int i, ret;
s->sofa.ncid = 0;
status = nc_open(filename, NC_NOWRITE, &ncid); /* open SOFA file read-only */
if (status != NC_NOERR) {
av_log(ctx, AV_LOG_ERROR, "Can't find SOFA-file '%s'\n", filename);
return AVERROR(EINVAL);
}
/* get number of dimensions, vars, global attributes and Id of unlimited dimensions: */
nc_inq(ncid, &n_dims, &n_vars, &n_gatts, &n_unlim_dim_id);
/* -- get number of measurements ("M") and length of one IR ("N") -- */
dim_length = av_malloc_array(n_dims, sizeof(*dim_length));
if (!dim_length) {
nc_close(ncid);
return AVERROR(ENOMEM);
}
for (i = 0; i < n_dims; i++) { /* go through all dimensions of file */
nc_inq_dim(ncid, i, (char *)&dim_name, &dim_length[i]); /* get dimensions */
if (!strncmp("M", (const char *)&dim_name, 1)) /* get ID of dimension "M" */
m_dim_id = i;
if (!strncmp("N", (const char *)&dim_name, 1)) /* get ID of dimension "N" */
n_dim_id = i;
}
if ((m_dim_id == -1) || (n_dim_id == -1)) { /* dimension "M" or "N" couldn't be found */
av_log(ctx, AV_LOG_ERROR, "Can't find required dimensions in SOFA file.\n");
av_freep(&dim_length);
nc_close(ncid);
return AVERROR(EINVAL);
}
n_samples = dim_length[n_dim_id]; /* get length of one IR */
m_dim = dim_length[m_dim_id]; /* get number of measurements */
av_freep(&dim_length);
/* -- check file type -- */
/* get length of attritube "Conventions" */
status = nc_inq_attlen(ncid, NC_GLOBAL, "Conventions", &att_len);
if (status != NC_NOERR) {
av_log(ctx, AV_LOG_ERROR, "Can't get length of attribute \"Conventions\".\n");
nc_close(ncid);
return AVERROR_INVALIDDATA;
}
/* check whether file is SOFA file */
text = av_malloc(att_len + 1);
if (!text) {
nc_close(ncid);
return AVERROR(ENOMEM);
}
nc_get_att_text(ncid, NC_GLOBAL, "Conventions", text);
*(text + att_len) = 0;
if (strncmp("SOFA", text, 4)) {
av_log(ctx, AV_LOG_ERROR, "Not a SOFA file!\n");
av_freep(&text);
nc_close(ncid);
return AVERROR(EINVAL);
}
av_freep(&text);
status = nc_inq_attlen(ncid, NC_GLOBAL, "License", &att_len);
if (status == NC_NOERR) {
text = av_malloc(att_len + 1);
if (text) {
nc_get_att_text(ncid, NC_GLOBAL, "License", text);
*(text + att_len) = 0;
av_log(ctx, AV_LOG_INFO, "SOFA file License: %s\n", text);
av_freep(&text);
}
}
status = nc_inq_attlen(ncid, NC_GLOBAL, "SourceDescription", &att_len);
if (status == NC_NOERR) {
text = av_malloc(att_len + 1);
if (text) {
nc_get_att_text(ncid, NC_GLOBAL, "SourceDescription", text);
*(text + att_len) = 0;
av_log(ctx, AV_LOG_INFO, "SOFA file SourceDescription: %s\n", text);
av_freep(&text);
}
}
status = nc_inq_attlen(ncid, NC_GLOBAL, "Comment", &att_len);
if (status == NC_NOERR) {
text = av_malloc(att_len + 1);
if (text) {
nc_get_att_text(ncid, NC_GLOBAL, "Comment", text);
*(text + att_len) = 0;
av_log(ctx, AV_LOG_INFO, "SOFA file Comment: %s\n", text);
av_freep(&text);
}
}
status = nc_inq_attlen(ncid, NC_GLOBAL, "SOFAConventions", &att_len);
if (status != NC_NOERR) {
av_log(ctx, AV_LOG_ERROR, "Can't get length of attribute \"SOFAConventions\".\n");
nc_close(ncid);
return AVERROR_INVALIDDATA;
}
sofa_conventions = av_malloc(att_len + 1);
if (!sofa_conventions) {
nc_close(ncid);
return AVERROR(ENOMEM);
}
nc_get_att_text(ncid, NC_GLOBAL, "SOFAConventions", sofa_conventions);
*(sofa_conventions + att_len) = 0;
if (strncmp("SimpleFreeFieldHRIR", sofa_conventions, att_len)) {
av_log(ctx, AV_LOG_ERROR, "Not a SimpleFreeFieldHRIR file!\n");
av_freep(&sofa_conventions);
nc_close(ncid);
return AVERROR(EINVAL);
}
av_freep(&sofa_conventions);
/* -- get sampling rate of HRTFs -- */
/* read ID, then value */
status = nc_inq_varid(ncid, "Data.SamplingRate", &samplingrate_id);
status += nc_get_var_uint(ncid, samplingrate_id, &sample_rate);
if (status != NC_NOERR) {
av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.SamplingRate.\n");
nc_close(ncid);
return AVERROR(EINVAL);
}
*samplingrate = sample_rate; /* remember sampling rate */
/* -- allocate memory for one value for each measurement position: -- */
sp_a = s->sofa.sp_a = av_malloc_array(m_dim, sizeof(float));
sp_e = s->sofa.sp_e = av_malloc_array(m_dim, sizeof(float));
sp_r = s->sofa.sp_r = av_malloc_array(m_dim, sizeof(float));
/* delay and IR values required for each ear and measurement position: */
data_delay = s->sofa.data_delay = av_calloc(m_dim, 2 * sizeof(int));
data_ir = s->sofa.data_ir = av_malloc_array(m_dim * n_samples, sizeof(float) * 2);
if (!data_delay || !sp_a || !sp_e || !sp_r || !data_ir) {
/* if memory could not be allocated */
close_sofa(&s->sofa);
return AVERROR(ENOMEM);
}
/* get impulse responses (HRTFs): */
/* get corresponding ID */
status = nc_inq_varid(ncid, "Data.IR", &data_ir_id);
status += nc_get_var_float(ncid, data_ir_id, data_ir); /* read and store IRs */
if (status != NC_NOERR) {
av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.IR!\n");
ret = AVERROR(EINVAL);
goto error;
}
/* get source positions of the HRTFs in the SOFA file: */
status = nc_inq_varid(ncid, "SourcePosition", &sp_id); /* get corresponding ID */
status += nc_get_vara_float(ncid, sp_id, (size_t[2]){ 0, 0 } ,
(size_t[2]){ m_dim, 1}, sp_a); /* read & store azimuth angles */
status += nc_get_vara_float(ncid, sp_id, (size_t[2]){ 0, 1 } ,
(size_t[2]){ m_dim, 1}, sp_e); /* read & store elevation angles */
status += nc_get_vara_float(ncid, sp_id, (size_t[2]){ 0, 2 } ,
(size_t[2]){ m_dim, 1}, sp_r); /* read & store radii */
if (status != NC_NOERR) { /* if any source position variable coudn't be read */
av_log(ctx, AV_LOG_ERROR, "Couldn't read SourcePosition.\n");
ret = AVERROR(EINVAL);
goto error;
}
/* read Data.Delay, check for errors and fit it to data_delay */
status = nc_inq_varid(ncid, "Data.Delay", &data_delay_id);
status += nc_inq_vardimid(ncid, data_delay_id, &data_delay_dim_id[0]);
status += nc_inq_dimname(ncid, data_delay_dim_id[0], data_delay_dim_name);
if (status != NC_NOERR) {
av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.Delay.\n");
ret = AVERROR(EINVAL);
goto error;
}
/* Data.Delay dimension check */
/* dimension of Data.Delay is [I R]: */
if (!strncmp(data_delay_dim_name, "I", 2)) {
/* check 2 characters to assure string is 0-terminated after "I" */
int delay[2]; /* delays get from SOFA file: */
av_log(ctx, AV_LOG_DEBUG, "Data.Delay has dimension [I R]\n");
status = nc_get_var_int(ncid, data_delay_id, &delay[0]);
if (status != NC_NOERR) {
av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.Delay\n");
ret = AVERROR(EINVAL);
goto error;
}
int *data_delay_r = data_delay + m_dim;
for (i = 0; i < m_dim; i++) { /* extend given dimension [I R] to [M R] */
/* assign constant delay value for all measurements to data_delay fields */
data_delay[i] = delay[0];
data_delay_r[i] = delay[1];
}
/* dimension of Data.Delay is [M R] */
} else if (!strncmp(data_delay_dim_name, "M", 2)) {
av_log(ctx, AV_LOG_ERROR, "Data.Delay in dimension [M R]\n");
/* get delays from SOFA file: */
status = nc_get_var_int(ncid, data_delay_id, data_delay);
if (status != NC_NOERR) {
av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.Delay\n");
ret = AVERROR(EINVAL);
goto error;
}
} else { /* dimension of Data.Delay is neither [I R] nor [M R] */
av_log(ctx, AV_LOG_ERROR, "Data.Delay does not have the required dimensions [I R] or [M R].\n");
ret = AVERROR(EINVAL);
goto error;
}
/* save information in SOFA struct: */
s->sofa.m_dim = m_dim; /* no. measurement positions */
s->sofa.n_samples = n_samples; /* length on one IR */
s->sofa.ncid = ncid; /* netCDF ID of SOFA file */
nc_close(ncid); /* close SOFA file */
return 0;
error:
close_sofa(&s->sofa);
return ret;
}
| 22,231 |
qemu | c408d27a42318227092128b04cca555f78cf703d | 1 | static void create_flash(const VirtBoardInfo *vbi)
{
/* Create two flash devices to fill the VIRT_FLASH space in the memmap.
* Any file passed via -bios goes in the first of these.
*/
hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
char *nodename;
if (bios_name) {
char *fn;
int image_size;
if (drive_get(IF_PFLASH, 0, 0)) {
error_report("The contents of the first flash device may be "
"specified with -bios or with -drive if=pflash... "
"but you cannot use both options at once");
exit(1);
}
fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (!fn) {
error_report("Could not find ROM image '%s'", bios_name);
exit(1);
}
image_size = load_image_targphys(fn, flashbase, flashsize);
g_free(fn);
if (image_size < 0) {
error_report("Could not load ROM image '%s'", bios_name);
exit(1);
}
g_free(fn);
}
create_one_flash("virt.flash0", flashbase, flashsize);
create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, flashbase, 2, flashsize,
2, flashbase + flashsize, 2, flashsize);
qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
g_free(nodename);
}
| 22,232 |
qemu | cc413a39355ed910f22f8f0be5e233c08a0773a0 | 1 | void mips_malta_init(QEMUMachineInitArgs *args)
{
ram_addr_t ram_size = args->ram_size;
const char *cpu_model = args->cpu_model;
const char *kernel_filename = args->kernel_filename;
const char *kernel_cmdline = args->kernel_cmdline;
const char *initrd_filename = args->initrd_filename;
char *filename;
pflash_t *fl;
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *ram = g_new(MemoryRegion, 1);
MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
target_long bios_size = FLASH_SIZE;
const size_t smbus_eeprom_size = 8 * 256;
uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
int64_t kernel_entry;
PCIBus *pci_bus;
ISABus *isa_bus;
MIPSCPU *cpu;
CPUMIPSState *env;
qemu_irq *isa_irq;
qemu_irq *cpu_exit_irq;
int piix4_devfn;
i2c_bus *smbus;
int i;
DriveInfo *dinfo;
DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
DriveInfo *fd[MAX_FD];
int fl_idx = 0;
int fl_sectors = bios_size >> 16;
int be;
DeviceState *dev = qdev_create(NULL, TYPE_MIPS_MALTA);
MaltaState *s = MIPS_MALTA(dev);
qdev_init_nofail(dev);
/* Make sure the first 3 serial ports are associated with a device. */
for(i = 0; i < 3; i++) {
if (!serial_hds[i]) {
char label[32];
snprintf(label, sizeof(label), "serial%d", i);
serial_hds[i] = qemu_chr_new(label, "null", NULL);
}
}
/* init CPUs */
if (cpu_model == NULL) {
#ifdef TARGET_MIPS64
cpu_model = "20Kc";
#else
cpu_model = "24Kf";
#endif
}
for (i = 0; i < smp_cpus; i++) {
cpu = cpu_mips_init(cpu_model);
if (cpu == NULL) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
env = &cpu->env;
/* Init internal devices */
cpu_mips_irq_init_cpu(env);
cpu_mips_clock_init(env);
qemu_register_reset(main_cpu_reset, cpu);
}
cpu = MIPS_CPU(first_cpu);
env = &cpu->env;
/* allocate RAM */
if (ram_size > (256 << 20)) {
fprintf(stderr,
"qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
((unsigned int)ram_size / (1 << 20)));
exit(1);
}
memory_region_init_ram(ram, NULL, "mips_malta.ram", ram_size);
vmstate_register_ram_global(ram);
memory_region_add_subregion(system_memory, 0, ram);
/* generate SPD EEPROM data */
generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
#ifdef TARGET_WORDS_BIGENDIAN
be = 1;
#else
be = 0;
#endif
/* FPGA */
/* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
malta_fpga_init(system_memory, FPGA_ADDRESS, env->irq[4], serial_hds[2]);
/* Load firmware in flash / BIOS. */
dinfo = drive_get(IF_PFLASH, 0, fl_idx);
#ifdef DEBUG_BOARD_INIT
if (dinfo) {
printf("Register parallel flash %d size " TARGET_FMT_lx " at "
"addr %08llx '%s' %x\n",
fl_idx, bios_size, FLASH_ADDRESS,
bdrv_get_device_name(dinfo->bdrv), fl_sectors);
}
#endif
fl = pflash_cfi01_register(FLASH_ADDRESS, NULL, "mips_malta.bios",
BIOS_SIZE, dinfo ? dinfo->bdrv : NULL,
65536, fl_sectors,
4, 0x0000, 0x0000, 0x0000, 0x0000, be);
bios = pflash_cfi01_get_memory(fl);
fl_idx++;
if (kernel_filename) {
/* Write a small bootloader to the flash location. */
loaderparams.ram_size = ram_size;
loaderparams.kernel_filename = kernel_filename;
loaderparams.kernel_cmdline = kernel_cmdline;
loaderparams.initrd_filename = initrd_filename;
kernel_entry = load_kernel();
write_bootloader(env, memory_region_get_ram_ptr(bios), kernel_entry);
} else {
/* Load firmware from flash. */
if (!dinfo) {
/* Load a BIOS image. */
if (bios_name == NULL) {
bios_name = BIOS_FILENAME;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
bios_size = load_image_targphys(filename, FLASH_ADDRESS,
BIOS_SIZE);
g_free(filename);
} else {
bios_size = -1;
}
if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
!kernel_filename && !qtest_enabled()) {
error_report("Could not load MIPS bios '%s', and no "
"-kernel argument was specified", bios_name);
exit(1);
}
}
/* In little endian mode the 32bit words in the bios are swapped,
a neat trick which allows bi-endian firmware. */
#ifndef TARGET_WORDS_BIGENDIAN
{
uint32_t *end, *addr = rom_ptr(FLASH_ADDRESS);
if (!addr) {
addr = memory_region_get_ram_ptr(bios);
}
end = (void *)addr + MIN(bios_size, 0x3e0000);
while (addr < end) {
bswap32s(addr);
addr++;
}
}
#endif
}
/*
* Map the BIOS at a 2nd physical location, as on the real board.
* Copy it so that we can patch in the MIPS revision, which cannot be
* handled by an overlapping region as the resulting ROM code subpage
* regions are not executable.
*/
memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE);
if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
FLASH_ADDRESS, BIOS_SIZE)) {
memcpy(memory_region_get_ram_ptr(bios_copy),
memory_region_get_ram_ptr(bios), BIOS_SIZE);
}
memory_region_set_readonly(bios_copy, true);
memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
/* Board ID = 0x420 (Malta Board with CoreLV) */
stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
/* Init internal devices */
cpu_mips_irq_init_cpu(env);
cpu_mips_clock_init(env);
/*
* We have a circular dependency problem: pci_bus depends on isa_irq,
* isa_irq is provided by i8259, i8259 depends on ISA, ISA depends
* on piix4, and piix4 depends on pci_bus. To stop the cycle we have
* qemu_irq_proxy() adds an extra bit of indirection, allowing us
* to resolve the isa_irq -> i8259 dependency after i8259 is initialized.
*/
isa_irq = qemu_irq_proxy(&s->i8259, 16);
/* Northbridge */
pci_bus = gt64120_register(isa_irq);
/* Southbridge */
ide_drive_get(hd, MAX_IDE_BUS);
piix4_devfn = piix4_init(pci_bus, &isa_bus, 80);
/* Interrupt controller */
/* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
s->i8259 = i8259_init(isa_bus, env->irq[2]);
isa_bus_irqs(isa_bus, s->i8259);
pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
pci_create_simple(pci_bus, piix4_devfn + 2, "piix4-usb-uhci");
smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100,
isa_get_irq(NULL, 9), NULL, 0, NULL);
smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
g_free(smbus_eeprom_buf);
pit = pit_init(isa_bus, 0x40, 0, NULL);
cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
DMA_init(0, cpu_exit_irq);
/* Super I/O */
isa_create_simple(isa_bus, "i8042");
rtc_init(isa_bus, 2000, NULL);
serial_isa_init(isa_bus, 0, serial_hds[0]);
serial_isa_init(isa_bus, 1, serial_hds[1]);
if (parallel_hds[0])
parallel_init(isa_bus, 0, parallel_hds[0]);
for(i = 0; i < MAX_FD; i++) {
fd[i] = drive_get(IF_FLOPPY, 0, i);
}
fdctrl_init_isa(isa_bus, fd);
/* Network card */
network_init(pci_bus);
/* Optional PCI video card */
pci_vga_init(pci_bus);
} | 22,233 |
qemu | 36ad0e948e15d8d86c8dec1c17a8588d87b0107d | 1 | static qemu_irq *ppce500_init_mpic(PPCE500Params *params, MemoryRegion *ccsr,
qemu_irq **irqs)
{
QemuOptsList *list;
qemu_irq *mpic;
DeviceState *dev = NULL;
SysBusDevice *s;
int i;
mpic = g_new(qemu_irq, 256);
if (kvm_enabled()) {
bool irqchip_allowed = true, irqchip_required = false;
list = qemu_find_opts("machine");
if (!QTAILQ_EMPTY(&list->head)) {
irqchip_allowed = qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
"kernel_irqchip", true);
irqchip_required = qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
"kernel_irqchip", false);
}
if (irqchip_allowed) {
dev = ppce500_init_mpic_kvm(params, irqs);
}
if (irqchip_required && !dev) {
fprintf(stderr, "%s: irqchip requested but unavailable\n",
__func__);
abort();
}
}
if (!dev) {
dev = ppce500_init_mpic_qemu(params, irqs);
}
for (i = 0; i < 256; i++) {
mpic[i] = qdev_get_gpio_in(dev, i);
}
s = SYS_BUS_DEVICE(dev);
memory_region_add_subregion(ccsr, MPC8544_MPIC_REGS_OFFSET,
s->mmio[0].memory);
return mpic;
}
| 22,234 |
qemu | bac658d1a4dc9dd637b2eb5006abda137071f17f | 1 | static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
DeviceState *dev)
{
#define CAST(type, obj, name) \
((type *)object_dynamic_cast(OBJECT(obj), (name)))
SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
if (d) {
void *spapr = CAST(void, bus->parent, "spapr-vscsi");
VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
if (spapr) {
/*
* Replace "channel@0/disk@0,0" with "disk@8000000000000000":
* We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
* in the top 16 bits of the 64-bit LUN
*/
unsigned id = 0x8000 | (d->id << 8) | d->lun;
return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
(uint64_t)id << 48);
} else if (virtio) {
/*
* We use SRP luns of the form 01000000 | (target << 8) | lun
* in the top 32 bits of the 64-bit LUN
* Note: the quote above is from SLOF and it is wrong,
* the actual binding is:
* swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
*/
unsigned id = 0x1000000 | (d->id << 16) | d->lun;
return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
(uint64_t)id << 32);
} else if (usb) {
/*
* We use SRP luns of the form 01000000 | (usb-port << 16) | lun
* in the top 32 bits of the 64-bit LUN
*/
unsigned usb_port = atoi(usb->port->path);
unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
(uint64_t)id << 32);
/*
* SLOF probes the USB devices, and if it recognizes that the device is a
* storage device, it changes its name to "storage" instead of "usb-host",
* and additionally adds a child node for the SCSI LUN, so the correct
* boot path in SLOF is something like .../storage@1/disk@xxx" instead.
*/
if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
if (usb_host_dev_is_scsi_storage(usbdev)) {
return g_strdup_printf("storage@%s/disk", usbdev->port->path);
if (phb) {
/* Replace "pci" with "pci@800000020000000" */
return g_strdup_printf("pci@%"PRIX64, phb->buid);
if (vsc) {
/* Same logic as virtio above */
unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
/* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
return NULL;
| 22,235 |
qemu | 60fe637bf0e4d7989e21e50f52526444765c63b4 | 1 | static int qemu_rdma_alloc_qp(RDMAContext *rdma)
{
struct ibv_qp_init_attr attr = { 0 };
int ret;
attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
attr.cap.max_recv_wr = 3;
attr.cap.max_send_sge = 1;
attr.cap.max_recv_sge = 1;
attr.send_cq = rdma->cq;
attr.recv_cq = rdma->cq;
attr.qp_type = IBV_QPT_RC;
ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
if (ret) {
return -1;
}
rdma->qp = rdma->cm_id->qp;
return 0;
}
| 22,237 |
qemu | 6d5d23b00709510d55711661c7ca41408fd9934e | 1 | static void qio_channel_websock_handshake_process(QIOChannelWebsock *ioc,
char *buffer,
Error **errp)
{
QIOChannelWebsockHTTPHeader hdrs[32];
size_t nhdrs = G_N_ELEMENTS(hdrs);
const char *protocols = NULL, *version = NULL, *key = NULL,
*host = NULL, *connection = NULL, *upgrade = NULL;
nhdrs = qio_channel_websock_extract_headers(ioc, buffer, hdrs, nhdrs, errp);
if (!nhdrs) {
return;
}
protocols = qio_channel_websock_find_header(
hdrs, nhdrs, QIO_CHANNEL_WEBSOCK_HEADER_PROTOCOL);
if (!protocols) {
error_setg(errp, "Missing websocket protocol header data");
goto bad_request;
}
version = qio_channel_websock_find_header(
hdrs, nhdrs, QIO_CHANNEL_WEBSOCK_HEADER_VERSION);
if (!version) {
error_setg(errp, "Missing websocket version header data");
goto bad_request;
}
key = qio_channel_websock_find_header(
hdrs, nhdrs, QIO_CHANNEL_WEBSOCK_HEADER_KEY);
if (!key) {
error_setg(errp, "Missing websocket key header data");
goto bad_request;
}
host = qio_channel_websock_find_header(
hdrs, nhdrs, QIO_CHANNEL_WEBSOCK_HEADER_HOST);
if (!host) {
error_setg(errp, "Missing websocket host header data");
goto bad_request;
}
connection = qio_channel_websock_find_header(
hdrs, nhdrs, QIO_CHANNEL_WEBSOCK_HEADER_CONNECTION);
if (!connection) {
error_setg(errp, "Missing websocket connection header data");
goto bad_request;
}
upgrade = qio_channel_websock_find_header(
hdrs, nhdrs, QIO_CHANNEL_WEBSOCK_HEADER_UPGRADE);
if (!upgrade) {
error_setg(errp, "Missing websocket upgrade header data");
goto bad_request;
}
if (!g_strrstr(protocols, QIO_CHANNEL_WEBSOCK_PROTOCOL_BINARY)) {
error_setg(errp, "No '%s' protocol is supported by client '%s'",
QIO_CHANNEL_WEBSOCK_PROTOCOL_BINARY, protocols);
goto bad_request;
}
if (!g_str_equal(version, QIO_CHANNEL_WEBSOCK_SUPPORTED_VERSION)) {
error_setg(errp, "Version '%s' is not supported by client '%s'",
QIO_CHANNEL_WEBSOCK_SUPPORTED_VERSION, version);
goto bad_request;
}
if (strlen(key) != QIO_CHANNEL_WEBSOCK_CLIENT_KEY_LEN) {
error_setg(errp, "Key length '%zu' was not as expected '%d'",
strlen(key), QIO_CHANNEL_WEBSOCK_CLIENT_KEY_LEN);
goto bad_request;
}
if (strcasecmp(connection, QIO_CHANNEL_WEBSOCK_CONNECTION_UPGRADE) != 0) {
error_setg(errp, "No connection upgrade requested '%s'", connection);
goto bad_request;
}
if (strcasecmp(upgrade, QIO_CHANNEL_WEBSOCK_UPGRADE_WEBSOCKET) != 0) {
error_setg(errp, "Incorrect upgrade method '%s'", upgrade);
goto bad_request;
}
qio_channel_websock_handshake_send_res_ok(ioc, key, errp);
return;
bad_request:
qio_channel_websock_handshake_send_res_err(
ioc, QIO_CHANNEL_WEBSOCK_HANDSHAKE_RES_BAD_REQUEST);
}
| 22,238 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.