project
stringclasses 2
values | commit_id
stringlengths 40
40
| target
int64 0
1
| func
stringlengths 26
142k
| idx
int64 0
27.3k
|
---|---|---|---|---|
FFmpeg | 120119225a5363f89822addb472085631d2157bc | 1 | int avfilter_default_query_formats(AVFilterContext *ctx)
{
enum AVMediaType type = ctx->inputs [0] ? ctx->inputs [0]->type :
ctx->outputs[0] ? ctx->outputs[0]->type :
AVMEDIA_TYPE_VIDEO;
avfilter_set_common_formats(ctx, avfilter_all_formats(type));
return 0;
}
| 20,622 |
qemu | 6b37a23df98faa26391a93373930bfb15b943e00 | 1 | static void vhost_log_sync(MemoryListener *listener,
MemoryRegionSection *section)
{
struct vhost_dev *dev = container_of(listener, struct vhost_dev,
memory_listener);
hwaddr start_addr = section->offset_within_address_space;
hwaddr end_addr = start_addr + section->size;
vhost_sync_dirty_bitmap(dev, section, start_addr, end_addr);
}
| 20,624 |
FFmpeg | 0e6fd0f12f90ba6a2edf79a398186293f2ab6334 | 1 | static void put_codebook_header(PutBitContext * pb, codebook_t * cb) {
int i;
int ordered = 0;
put_bits(pb, 24, 0x564342); //magic
put_bits(pb, 16, cb->ndimentions);
put_bits(pb, 24, cb->nentries);
for (i = 1; i < cb->nentries; i++) if (cb->entries[i].len < cb->entries[i-1].len) break;
if (i == cb->nentries) ordered = 1;
put_bits(pb, 1, ordered);
if (ordered) {
int len = cb->entries[0].len;
put_bits(pb, 5, len);
i = 0;
while (i < cb->nentries) {
int j;
for (j = 0; j+i < cb->nentries; j++) if (cb->entries[j+i].len != len) break;
put_bits(pb, ilog(cb->nentries - i), j);
i += j;
len++;
}
} else {
int sparse = 0;
for (i = 0; i < cb->nentries; i++) if (!cb->entries[i].len) break;
if (i != cb->nentries) sparse = 1;
put_bits(pb, 1, sparse);
for (i = 0; i < cb->nentries; i++) {
if (sparse) put_bits(pb, 1, !!cb->entries[i].len);
if (cb->entries[i].len) put_bits(pb, 5, cb->entries[i].len - 1);
}
}
put_bits(pb, 4, cb->lookup);
if (cb->lookup) {
int tmp = cb_lookup_vals(cb->lookup, cb->ndimentions, cb->nentries);
int bits = ilog(cb->quantlist[0]);
for (i = 1; i < tmp; i++) bits = FFMAX(bits, ilog(cb->quantlist[i]));
put_float(pb, cb->min);
put_float(pb, cb->delta);
put_bits(pb, 4, bits - 1);
put_bits(pb, 1, cb->seq_p);
for (i = 0; i < tmp; i++) put_bits(pb, bits, cb->quantlist[i]);
}
}
| 20,625 |
qemu | c4237dfa635900e4d1cdc6038d5efe3507f45f0c | 1 | static int mig_save_device_dirty(QEMUFile *f, BlkMigDevState *bmds,
int is_async)
{
BlkMigBlock *blk;
int64_t total_sectors = bmds->total_sectors;
int64_t sector;
int nr_sectors;
int ret = -EIO;
for (sector = bmds->cur_dirty; sector < bmds->total_sectors;) {
blk_mig_lock();
if (bmds_aio_inflight(bmds, sector)) {
blk_mig_unlock();
bdrv_drain_all();
} else {
blk_mig_unlock();
}
if (bdrv_get_dirty(bmds->bs, bmds->dirty_bitmap, sector)) {
if (total_sectors - sector < BDRV_SECTORS_PER_DIRTY_CHUNK) {
nr_sectors = total_sectors - sector;
} else {
nr_sectors = BDRV_SECTORS_PER_DIRTY_CHUNK;
}
blk = g_new(BlkMigBlock, 1);
blk->buf = g_malloc(BLOCK_SIZE);
blk->bmds = bmds;
blk->sector = sector;
blk->nr_sectors = nr_sectors;
if (is_async) {
blk->iov.iov_base = blk->buf;
blk->iov.iov_len = nr_sectors * BDRV_SECTOR_SIZE;
qemu_iovec_init_external(&blk->qiov, &blk->iov, 1);
blk->aiocb = bdrv_aio_readv(bmds->bs, sector, &blk->qiov,
nr_sectors, blk_mig_read_cb, blk);
blk_mig_lock();
block_mig_state.submitted++;
bmds_set_aio_inflight(bmds, sector, nr_sectors, 1);
blk_mig_unlock();
} else {
ret = bdrv_read(bmds->bs, sector, blk->buf, nr_sectors);
if (ret < 0) {
goto error;
}
blk_send(f, blk);
g_free(blk->buf);
g_free(blk);
}
bdrv_reset_dirty(bmds->bs, sector, nr_sectors);
break;
}
sector += BDRV_SECTORS_PER_DIRTY_CHUNK;
bmds->cur_dirty = sector;
}
return (bmds->cur_dirty >= bmds->total_sectors);
error:
DPRINTF("Error reading sector %" PRId64 "\n", sector);
g_free(blk->buf);
g_free(blk);
return ret;
}
| 20,626 |
qemu | e163ae7b8f80dc4eb38445956929409601a8321c | 1 | void qbus_free(BusState *bus)
{
DeviceState *dev;
while ((dev = QLIST_FIRST(&bus->children)) != NULL) {
qdev_free(dev);
}
if (bus->parent) {
QLIST_REMOVE(bus, sibling);
bus->parent->num_child_bus--;
}
if (bus->qdev_allocated) {
qemu_free(bus);
}
} | 20,627 |
FFmpeg | 7da9f4523159670d577a2808d4481e64008a8894 | 1 | static void decode_v4_vector(CinepakEncContext *s, AVPicture *sub_pict, int *v4_vector, strip_info *info)
{
int i, x, y, entry_size = s->pix_fmt == AV_PIX_FMT_YUV420P ? 6 : 4;
for(i = y = 0; y < 4; y += 2) {
for(x = 0; x < 4; x += 2, i++) {
sub_pict->data[0][x + y*sub_pict->linesize[0]] = info->v4_codebook[v4_vector[i]*entry_size];
sub_pict->data[0][x+1 + y*sub_pict->linesize[0]] = info->v4_codebook[v4_vector[i]*entry_size+1];
sub_pict->data[0][x + (y+1)*sub_pict->linesize[0]] = info->v4_codebook[v4_vector[i]*entry_size+2];
sub_pict->data[0][x+1 + (y+1)*sub_pict->linesize[0]] = info->v4_codebook[v4_vector[i]*entry_size+3];
if(s->pix_fmt == AV_PIX_FMT_YUV420P) {
sub_pict->data[1][(x>>1) + (y>>1)*sub_pict->linesize[1]] = info->v4_codebook[v4_vector[i]*entry_size+4];
sub_pict->data[2][(x>>1) + (y>>1)*sub_pict->linesize[2]] = info->v4_codebook[v4_vector[i]*entry_size+5];
}
}
}
}
| 20,628 |
qemu | a9a72aeefbd3ef8bcbbeeccaf174ee10db2978ac | 1 | static const TPMDriverOps *tpm_driver_find_by_type(enum TpmType type)
{
int i;
for (i = 0; i < TPM_MAX_DRIVERS && be_drivers[i] != NULL; i++) {
if (be_drivers[i]->type == type) {
return be_drivers[i];
}
}
return NULL;
}
| 20,629 |
FFmpeg | 548459080b1bd698a2e475e5d177b6e7d2538537 | 1 | static int fic_decode_block(FICContext *ctx, GetBitContext *gb,
uint8_t *dst, int stride, int16_t *block, int *is_p)
{
int i, num_coeff;
/* Is it a skip block? */
if (get_bits1(gb)) {
*is_p = 1;
return 0;
}
memset(block, 0, sizeof(*block) * 64);
num_coeff = get_bits(gb, 7);
if (num_coeff > 64)
return AVERROR_INVALIDDATA;
for (i = 0; i < num_coeff; i++)
block[ff_zigzag_direct[i]] = get_se_golomb(gb) *
ctx->qmat[ff_zigzag_direct[i]];
fic_idct_put(dst, stride, block);
return 0;
}
| 20,630 |
FFmpeg | 2da0d70d5eebe42f9fcd27ee554419ebe2a5da06 | 1 | static inline void RENAME(yuv2yuv1)(int16_t *lumSrc, int16_t *chrSrc,
uint8_t *dest, uint8_t *uDest, uint8_t *vDest, long dstW, long chrDstW)
{
#ifdef HAVE_MMX
if(uDest != NULL)
{
asm volatile(
YSCALEYUV2YV121
:: "r" (chrSrc + chrDstW), "r" (uDest + chrDstW),
"g" (-chrDstW)
: "%"REG_a
);
asm volatile(
YSCALEYUV2YV121
:: "r" (chrSrc + 2048 + chrDstW), "r" (vDest + chrDstW),
"g" (-chrDstW)
: "%"REG_a
);
}
asm volatile(
YSCALEYUV2YV121
:: "r" (lumSrc + dstW), "r" (dest + dstW),
"g" (-dstW)
: "%"REG_a
);
#else
int i;
for(i=0; i<dstW; i++)
{
int val= lumSrc[i]>>7;
if(val&256){
if(val<0) val=0;
else val=255;
}
dest[i]= val;
}
if(uDest != NULL)
for(i=0; i<chrDstW; i++)
{
int u=chrSrc[i]>>7;
int v=chrSrc[i + 2048]>>7;
if((u|v)&256){
if(u<0) u=0;
else if (u>255) u=255;
if(v<0) v=0;
else if (v>255) v=255;
}
uDest[i]= u;
vDest[i]= v;
}
#endif
}
| 20,632 |
FFmpeg | 8a49d2bcbe7573bb4b765728b2578fac0d19763f | 1 | static int xan_decode_frame_type0(AVCodecContext *avctx)
{
XanContext *s = avctx->priv_data;
uint8_t *ybuf, *prev_buf, *src = s->scratch_buffer;
unsigned chroma_off, corr_off;
int cur, last;
int i, j;
int ret;
chroma_off = bytestream2_get_le32(&s->gb);
corr_off = bytestream2_get_le32(&s->gb);
if ((ret = xan_decode_chroma(avctx, chroma_off)) != 0)
return ret;
if (corr_off >= (s->gb.buffer_end - s->gb.buffer_start)) {
av_log(avctx, AV_LOG_WARNING, "Ignoring invalid correction block position\n");
corr_off = 0;
}
bytestream2_seek(&s->gb, 12, SEEK_SET);
ret = xan_unpack_luma(s, src, s->buffer_size >> 1);
if (ret) {
av_log(avctx, AV_LOG_ERROR, "Luma decoding failed\n");
return ret;
}
ybuf = s->y_buffer;
last = *src++;
ybuf[0] = last << 1;
for (j = 1; j < avctx->width - 1; j += 2) {
cur = (last + *src++) & 0x1F;
ybuf[j] = last + cur;
ybuf[j+1] = cur << 1;
last = cur;
}
ybuf[j] = last << 1;
prev_buf = ybuf;
ybuf += avctx->width;
for (i = 1; i < avctx->height; i++) {
last = ((prev_buf[0] >> 1) + *src++) & 0x1F;
ybuf[0] = last << 1;
for (j = 1; j < avctx->width - 1; j += 2) {
cur = ((prev_buf[j + 1] >> 1) + *src++) & 0x1F;
ybuf[j] = last + cur;
ybuf[j+1] = cur << 1;
last = cur;
}
ybuf[j] = last << 1;
prev_buf = ybuf;
ybuf += avctx->width;
}
if (corr_off) {
int dec_size;
bytestream2_seek(&s->gb, 8 + corr_off, SEEK_SET);
dec_size = xan_unpack(s, s->scratch_buffer, s->buffer_size);
if (dec_size < 0)
dec_size = 0;
for (i = 0; i < dec_size; i++)
s->y_buffer[i*2+1] = (s->y_buffer[i*2+1] + (s->scratch_buffer[i] << 1)) & 0x3F;
}
src = s->y_buffer;
ybuf = s->pic.data[0];
for (j = 0; j < avctx->height; j++) {
for (i = 0; i < avctx->width; i++)
ybuf[i] = (src[i] << 2) | (src[i] >> 3);
src += avctx->width;
ybuf += s->pic.linesize[0];
}
return 0;
}
| 20,633 |
qemu | 053965c7ff5b260672719884e644ce4117d01995 | 1 | static int raw_pread(BlockDriverState *bs, int64_t offset,
uint8_t *buf, int count)
{
BDRVRawState *s = bs->opaque;
int size, ret, shift, sum;
sum = 0;
if (s->aligned_buf != NULL) {
if (offset & 0x1ff) {
/* align offset on a 512 bytes boundary */
shift = offset & 0x1ff;
size = (shift + count + 0x1ff) & ~0x1ff;
if (size > ALIGNED_BUFFER_SIZE)
size = ALIGNED_BUFFER_SIZE;
ret = raw_pread_aligned(bs, offset - shift, s->aligned_buf, size);
if (ret < 0)
return ret;
size = 512 - shift;
if (size > count)
size = count;
memcpy(buf, s->aligned_buf + shift, size);
buf += size;
offset += size;
count -= size;
sum += size;
if (count == 0)
return sum;
}
if (count & 0x1ff || (uintptr_t) buf & 0x1ff) {
/* read on aligned buffer */
while (count) {
size = (count + 0x1ff) & ~0x1ff;
if (size > ALIGNED_BUFFER_SIZE)
size = ALIGNED_BUFFER_SIZE;
ret = raw_pread_aligned(bs, offset, s->aligned_buf, size);
if (ret < 0)
return ret;
size = ret;
if (size > count)
size = count;
memcpy(buf, s->aligned_buf, size);
buf += size;
offset += size;
count -= size;
sum += size;
}
return sum;
}
}
return raw_pread_aligned(bs, offset, buf, count) + sum;
}
| 20,634 |
FFmpeg | ac4b32df71bd932838043a4838b86d11e169707f | 1 | static av_always_inline int normal_limit(uint8_t *p, ptrdiff_t stride,
int E, int I)
{
LOAD_PIXELS
return simple_limit(p, stride, E) &&
FFABS(p3 - p2) <= I &&
FFABS(p2 - p1) <= I &&
FFABS(p1 - p0) <= I &&
FFABS(q3 - q2) <= I &&
FFABS(q2 - q1) <= I &&
FFABS(q1 - q0) <= I;
}
| 20,635 |
FFmpeg | 24057c83207d6ea8bfd824155ac37be8a33dfd0c | 0 | static int cmv_process_header(CmvContext *s, const uint8_t *buf, const uint8_t *buf_end)
{
int pal_start, pal_count, i, ret;
if(buf_end - buf < 16) {
av_log(s->avctx, AV_LOG_WARNING, "truncated header\n");
return AVERROR_INVALIDDATA;
}
s->width = AV_RL16(&buf[4]);
s->height = AV_RL16(&buf[6]);
ret = ff_set_dimensions(s->avctx, s->width, s->height);
if (ret < 0)
return ret;
s->avctx->time_base.num = 1;
s->avctx->time_base.den = AV_RL16(&buf[10]);
pal_start = AV_RL16(&buf[12]);
pal_count = AV_RL16(&buf[14]);
buf += 16;
for (i=pal_start; i<pal_start+pal_count && i<AVPALETTE_COUNT && buf_end - buf >= 3; i++) {
s->palette[i] = AV_RB24(buf);
buf += 3;
}
return 0;
}
| 20,636 |
FFmpeg | 609d5db8035c868be034892a33762779a40ab8b9 | 1 | void avformat_free_context(AVFormatContext *s)
{
int i;
if (!s)
return;
av_opt_free(s);
if (s->iformat && s->iformat->priv_class && s->priv_data)
av_opt_free(s->priv_data);
if (s->oformat && s->oformat->priv_class && s->priv_data)
av_opt_free(s->priv_data);
for (i = s->nb_streams - 1; i >= 0; i--) {
ff_free_stream(s, s->streams[i]);
}
for (i = s->nb_programs - 1; i >= 0; i--) {
av_dict_free(&s->programs[i]->metadata);
av_freep(&s->programs[i]->stream_index);
av_freep(&s->programs[i]);
}
av_freep(&s->programs);
av_freep(&s->priv_data);
while (s->nb_chapters--) {
av_dict_free(&s->chapters[s->nb_chapters]->metadata);
av_freep(&s->chapters[s->nb_chapters]);
}
av_freep(&s->chapters);
av_dict_free(&s->metadata);
av_freep(&s->streams);
av_freep(&s->internal);
av_free(s);
} | 20,637 |
qemu | 4f298a4b2957b7833bc607c951ca27c458d98d88 | 1 | static void get_sdr(IPMIBmcSim *ibs,
uint8_t *cmd, unsigned int cmd_len,
uint8_t *rsp, unsigned int *rsp_len,
unsigned int max_rsp_len)
{
unsigned int pos;
uint16_t nextrec;
struct ipmi_sdr_header *sdrh;
IPMI_CHECK_CMD_LEN(8);
if (cmd[6]) {
IPMI_CHECK_RESERVATION(2, ibs->sdr.reservation);
}
pos = 0;
if (sdr_find_entry(&ibs->sdr, cmd[4] | (cmd[5] << 8),
&pos, &nextrec)) {
rsp[2] = IPMI_CC_REQ_ENTRY_NOT_PRESENT;
return;
}
sdrh = (struct ipmi_sdr_header *) &ibs->sdr.sdr[pos];
if (cmd[6] > ipmi_sdr_length(sdrh)) {
rsp[2] = IPMI_CC_PARM_OUT_OF_RANGE;
return;
}
IPMI_ADD_RSP_DATA(nextrec & 0xff);
IPMI_ADD_RSP_DATA((nextrec >> 8) & 0xff);
if (cmd[7] == 0xff) {
cmd[7] = ipmi_sdr_length(sdrh) - cmd[6];
}
if ((cmd[7] + *rsp_len) > max_rsp_len) {
rsp[2] = IPMI_CC_CANNOT_RETURN_REQ_NUM_BYTES;
return;
}
memcpy(rsp + *rsp_len, ibs->sdr.sdr + pos + cmd[6], cmd[7]);
*rsp_len += cmd[7];
}
| 20,639 |
FFmpeg | 01ecb7172b684f1c4b3e748f95c5a9a494ca36ec | 1 | static float get_band_cost_NONE_mips(struct AACEncContext *s,
PutBitContext *pb, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
int *bits)
{
av_assert0(0);
return 0;
}
| 20,640 |
qemu | b533f658a98325d0e47b36113bd9f5bcc046fdae | 1 | static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
{
KVMState *s = kvm_state;
unsigned long size, allocated_size = 0;
KVMDirtyLog d;
KVMSlot *mem;
int ret = 0;
hwaddr start_addr = section->offset_within_address_space;
hwaddr end_addr = start_addr + int128_get64(section->size);
d.dirty_bitmap = NULL;
while (start_addr < end_addr) {
mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
if (mem == NULL) {
break;
}
/* XXX bad kernel interface alert
* For dirty bitmap, kernel allocates array of size aligned to
* bits-per-long. But for case when the kernel is 64bits and
* the userspace is 32bits, userspace can't align to the same
* bits-per-long, since sizeof(long) is different between kernel
* and user space. This way, userspace will provide buffer which
* may be 4 bytes less than the kernel will use, resulting in
* userspace memory corruption (which is not detectable by valgrind
* too, in most cases).
* So for now, let's align to 64 instead of HOST_LONG_BITS here, in
* a hope that sizeof(long) wont become >8 any time soon.
*/
size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
/*HOST_LONG_BITS*/ 64) / 8;
if (!d.dirty_bitmap) {
d.dirty_bitmap = g_malloc(size);
} else if (size > allocated_size) {
d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
}
allocated_size = size;
memset(d.dirty_bitmap, 0, allocated_size);
d.slot = mem->slot;
if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
DPRINTF("ioctl failed %d\n", errno);
ret = -1;
break;
}
kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
start_addr = mem->start_addr + mem->memory_size;
}
g_free(d.dirty_bitmap);
return ret;
}
| 20,641 |
FFmpeg | ac4b32df71bd932838043a4838b86d11e169707f | 1 | av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id,
const int bit_depth,
const int chroma_format_idc)
{
#undef FUNC
#undef FUNCC
#define FUNC(a, depth) a ## _ ## depth
#define FUNCC(a, depth) a ## _ ## depth ## _c
#define FUNCD(a) a ## _c
#define H264_PRED(depth) \
if(codec_id != AV_CODEC_ID_RV40){\
if(codec_id == AV_CODEC_ID_VP8) {\
h->pred4x4[VERT_PRED ]= FUNCD(pred4x4_vertical_vp8);\
h->pred4x4[HOR_PRED ]= FUNCD(pred4x4_horizontal_vp8);\
} else {\
h->pred4x4[VERT_PRED ]= FUNCC(pred4x4_vertical , depth);\
h->pred4x4[HOR_PRED ]= FUNCC(pred4x4_horizontal , depth);\
}\
h->pred4x4[DC_PRED ]= FUNCC(pred4x4_dc , depth);\
if(codec_id == AV_CODEC_ID_SVQ3)\
h->pred4x4[DIAG_DOWN_LEFT_PRED ]= FUNCD(pred4x4_down_left_svq3);\
else\
h->pred4x4[DIAG_DOWN_LEFT_PRED ]= FUNCC(pred4x4_down_left , depth);\
h->pred4x4[DIAG_DOWN_RIGHT_PRED]= FUNCC(pred4x4_down_right , depth);\
h->pred4x4[VERT_RIGHT_PRED ]= FUNCC(pred4x4_vertical_right , depth);\
h->pred4x4[HOR_DOWN_PRED ]= FUNCC(pred4x4_horizontal_down , depth);\
if (codec_id == AV_CODEC_ID_VP8) {\
h->pred4x4[VERT_LEFT_PRED ]= FUNCD(pred4x4_vertical_left_vp8);\
} else\
h->pred4x4[VERT_LEFT_PRED ]= FUNCC(pred4x4_vertical_left , depth);\
h->pred4x4[HOR_UP_PRED ]= FUNCC(pred4x4_horizontal_up , depth);\
if(codec_id != AV_CODEC_ID_VP8) {\
h->pred4x4[LEFT_DC_PRED ]= FUNCC(pred4x4_left_dc , depth);\
h->pred4x4[TOP_DC_PRED ]= FUNCC(pred4x4_top_dc , depth);\
h->pred4x4[DC_128_PRED ]= FUNCC(pred4x4_128_dc , depth);\
} else {\
h->pred4x4[TM_VP8_PRED ]= FUNCD(pred4x4_tm_vp8);\
h->pred4x4[DC_127_PRED ]= FUNCC(pred4x4_127_dc , depth);\
h->pred4x4[DC_129_PRED ]= FUNCC(pred4x4_129_dc , depth);\
h->pred4x4[VERT_VP8_PRED ]= FUNCC(pred4x4_vertical , depth);\
h->pred4x4[HOR_VP8_PRED ]= FUNCC(pred4x4_horizontal , depth);\
}\
}else{\
h->pred4x4[VERT_PRED ]= FUNCC(pred4x4_vertical , depth);\
h->pred4x4[HOR_PRED ]= FUNCC(pred4x4_horizontal , depth);\
h->pred4x4[DC_PRED ]= FUNCC(pred4x4_dc , depth);\
h->pred4x4[DIAG_DOWN_LEFT_PRED ]= FUNCD(pred4x4_down_left_rv40);\
h->pred4x4[DIAG_DOWN_RIGHT_PRED]= FUNCC(pred4x4_down_right , depth);\
h->pred4x4[VERT_RIGHT_PRED ]= FUNCC(pred4x4_vertical_right , depth);\
h->pred4x4[HOR_DOWN_PRED ]= FUNCC(pred4x4_horizontal_down , depth);\
h->pred4x4[VERT_LEFT_PRED ]= FUNCD(pred4x4_vertical_left_rv40);\
h->pred4x4[HOR_UP_PRED ]= FUNCD(pred4x4_horizontal_up_rv40);\
h->pred4x4[LEFT_DC_PRED ]= FUNCC(pred4x4_left_dc , depth);\
h->pred4x4[TOP_DC_PRED ]= FUNCC(pred4x4_top_dc , depth);\
h->pred4x4[DC_128_PRED ]= FUNCC(pred4x4_128_dc , depth);\
h->pred4x4[DIAG_DOWN_LEFT_PRED_RV40_NODOWN]= FUNCD(pred4x4_down_left_rv40_nodown);\
h->pred4x4[HOR_UP_PRED_RV40_NODOWN]= FUNCD(pred4x4_horizontal_up_rv40_nodown);\
h->pred4x4[VERT_LEFT_PRED_RV40_NODOWN]= FUNCD(pred4x4_vertical_left_rv40_nodown);\
}\
\
h->pred8x8l[VERT_PRED ]= FUNCC(pred8x8l_vertical , depth);\
h->pred8x8l[HOR_PRED ]= FUNCC(pred8x8l_horizontal , depth);\
h->pred8x8l[DC_PRED ]= FUNCC(pred8x8l_dc , depth);\
h->pred8x8l[DIAG_DOWN_LEFT_PRED ]= FUNCC(pred8x8l_down_left , depth);\
h->pred8x8l[DIAG_DOWN_RIGHT_PRED]= FUNCC(pred8x8l_down_right , depth);\
h->pred8x8l[VERT_RIGHT_PRED ]= FUNCC(pred8x8l_vertical_right , depth);\
h->pred8x8l[HOR_DOWN_PRED ]= FUNCC(pred8x8l_horizontal_down , depth);\
h->pred8x8l[VERT_LEFT_PRED ]= FUNCC(pred8x8l_vertical_left , depth);\
h->pred8x8l[HOR_UP_PRED ]= FUNCC(pred8x8l_horizontal_up , depth);\
h->pred8x8l[LEFT_DC_PRED ]= FUNCC(pred8x8l_left_dc , depth);\
h->pred8x8l[TOP_DC_PRED ]= FUNCC(pred8x8l_top_dc , depth);\
h->pred8x8l[DC_128_PRED ]= FUNCC(pred8x8l_128_dc , depth);\
\
if (chroma_format_idc <= 1) {\
h->pred8x8[VERT_PRED8x8 ]= FUNCC(pred8x8_vertical , depth);\
h->pred8x8[HOR_PRED8x8 ]= FUNCC(pred8x8_horizontal , depth);\
} else {\
h->pred8x8[VERT_PRED8x8 ]= FUNCC(pred8x16_vertical , depth);\
h->pred8x8[HOR_PRED8x8 ]= FUNCC(pred8x16_horizontal , depth);\
}\
if (codec_id != AV_CODEC_ID_VP8) {\
if (chroma_format_idc <= 1) {\
h->pred8x8[PLANE_PRED8x8]= FUNCC(pred8x8_plane , depth);\
} else {\
h->pred8x8[PLANE_PRED8x8]= FUNCC(pred8x16_plane , depth);\
}\
} else\
h->pred8x8[PLANE_PRED8x8]= FUNCD(pred8x8_tm_vp8);\
if(codec_id != AV_CODEC_ID_RV40 && codec_id != AV_CODEC_ID_VP8){\
if (chroma_format_idc <= 1) {\
h->pred8x8[DC_PRED8x8 ]= FUNCC(pred8x8_dc , depth);\
h->pred8x8[LEFT_DC_PRED8x8]= FUNCC(pred8x8_left_dc , depth);\
h->pred8x8[TOP_DC_PRED8x8 ]= FUNCC(pred8x8_top_dc , depth);\
h->pred8x8[ALZHEIMER_DC_L0T_PRED8x8 ]= FUNC(pred8x8_mad_cow_dc_l0t, depth);\
h->pred8x8[ALZHEIMER_DC_0LT_PRED8x8 ]= FUNC(pred8x8_mad_cow_dc_0lt, depth);\
h->pred8x8[ALZHEIMER_DC_L00_PRED8x8 ]= FUNC(pred8x8_mad_cow_dc_l00, depth);\
h->pred8x8[ALZHEIMER_DC_0L0_PRED8x8 ]= FUNC(pred8x8_mad_cow_dc_0l0, depth);\
} else {\
h->pred8x8[DC_PRED8x8 ]= FUNCC(pred8x16_dc , depth);\
h->pred8x8[LEFT_DC_PRED8x8]= FUNCC(pred8x16_left_dc , depth);\
h->pred8x8[TOP_DC_PRED8x8 ]= FUNCC(pred8x16_top_dc , depth);\
h->pred8x8[ALZHEIMER_DC_L0T_PRED8x8 ]= FUNC(pred8x16_mad_cow_dc_l0t, depth);\
h->pred8x8[ALZHEIMER_DC_0LT_PRED8x8 ]= FUNC(pred8x16_mad_cow_dc_0lt, depth);\
h->pred8x8[ALZHEIMER_DC_L00_PRED8x8 ]= FUNC(pred8x16_mad_cow_dc_l00, depth);\
h->pred8x8[ALZHEIMER_DC_0L0_PRED8x8 ]= FUNC(pred8x16_mad_cow_dc_0l0, depth);\
}\
}else{\
h->pred8x8[DC_PRED8x8 ]= FUNCD(pred8x8_dc_rv40);\
h->pred8x8[LEFT_DC_PRED8x8]= FUNCD(pred8x8_left_dc_rv40);\
h->pred8x8[TOP_DC_PRED8x8 ]= FUNCD(pred8x8_top_dc_rv40);\
if (codec_id == AV_CODEC_ID_VP8) {\
h->pred8x8[DC_127_PRED8x8]= FUNCC(pred8x8_127_dc , depth);\
h->pred8x8[DC_129_PRED8x8]= FUNCC(pred8x8_129_dc , depth);\
}\
}\
if (chroma_format_idc <= 1) {\
h->pred8x8[DC_128_PRED8x8 ]= FUNCC(pred8x8_128_dc , depth);\
} else {\
h->pred8x8[DC_128_PRED8x8 ]= FUNCC(pred8x16_128_dc , depth);\
}\
\
h->pred16x16[DC_PRED8x8 ]= FUNCC(pred16x16_dc , depth);\
h->pred16x16[VERT_PRED8x8 ]= FUNCC(pred16x16_vertical , depth);\
h->pred16x16[HOR_PRED8x8 ]= FUNCC(pred16x16_horizontal , depth);\
switch(codec_id){\
case AV_CODEC_ID_SVQ3:\
h->pred16x16[PLANE_PRED8x8 ]= FUNCD(pred16x16_plane_svq3);\
break;\
case AV_CODEC_ID_RV40:\
h->pred16x16[PLANE_PRED8x8 ]= FUNCD(pred16x16_plane_rv40);\
break;\
case AV_CODEC_ID_VP8:\
h->pred16x16[PLANE_PRED8x8 ]= FUNCD(pred16x16_tm_vp8);\
h->pred16x16[DC_127_PRED8x8]= FUNCC(pred16x16_127_dc , depth);\
h->pred16x16[DC_129_PRED8x8]= FUNCC(pred16x16_129_dc , depth);\
break;\
default:\
h->pred16x16[PLANE_PRED8x8 ]= FUNCC(pred16x16_plane , depth);\
break;\
}\
h->pred16x16[LEFT_DC_PRED8x8]= FUNCC(pred16x16_left_dc , depth);\
h->pred16x16[TOP_DC_PRED8x8 ]= FUNCC(pred16x16_top_dc , depth);\
h->pred16x16[DC_128_PRED8x8 ]= FUNCC(pred16x16_128_dc , depth);\
\
/* special lossless h/v prediction for h264 */ \
h->pred4x4_add [VERT_PRED ]= FUNCC(pred4x4_vertical_add , depth);\
h->pred4x4_add [ HOR_PRED ]= FUNCC(pred4x4_horizontal_add , depth);\
h->pred8x8l_add [VERT_PRED ]= FUNCC(pred8x8l_vertical_add , depth);\
h->pred8x8l_add [ HOR_PRED ]= FUNCC(pred8x8l_horizontal_add , depth);\
if (chroma_format_idc <= 1) {\
h->pred8x8_add [VERT_PRED8x8]= FUNCC(pred8x8_vertical_add , depth);\
h->pred8x8_add [ HOR_PRED8x8]= FUNCC(pred8x8_horizontal_add , depth);\
} else {\
h->pred8x8_add [VERT_PRED8x8]= FUNCC(pred8x16_vertical_add , depth);\
h->pred8x8_add [ HOR_PRED8x8]= FUNCC(pred8x16_horizontal_add , depth);\
}\
h->pred16x16_add[VERT_PRED8x8]= FUNCC(pred16x16_vertical_add , depth);\
h->pred16x16_add[ HOR_PRED8x8]= FUNCC(pred16x16_horizontal_add , depth);\
switch (bit_depth) {
case 9:
H264_PRED(9)
break;
case 10:
H264_PRED(10)
break;
default:
H264_PRED(8)
break;
}
if (ARCH_ARM) ff_h264_pred_init_arm(h, codec_id, bit_depth, chroma_format_idc);
if (ARCH_X86) ff_h264_pred_init_x86(h, codec_id, bit_depth, chroma_format_idc);
}
| 20,645 |
FFmpeg | 9dca02ee541120de2a96c387faed9a4e033a60fd | 1 | sigterm_handler(int sig)
{
received_sigterm = sig;
received_nb_signals++;
term_exit_sigsafe();
if(received_nb_signals > 3)
exit_program(123);
}
| 20,646 |
qemu | f1d3b99154138741161fc52f5a8c373bf71613c6 | 1 | static void pci_idx(void)
{
QVirtioPCIDevice *dev;
QPCIBus *bus;
QVirtQueuePCI *vqpci;
QGuestAllocator *alloc;
QVirtioBlkReq req;
void *addr;
uint64_t req_addr;
uint64_t capacity;
uint32_t features;
uint32_t free_head;
uint8_t status;
char *data;
bus = pci_test_start();
alloc = pc_alloc_init();
dev = virtio_blk_pci_init(bus, PCI_SLOT);
qpci_msix_enable(dev->pdev);
qvirtio_pci_set_msix_configuration_vector(dev, alloc, 0);
/* MSI-X is enabled */
addr = dev->addr + VIRTIO_PCI_CONFIG_OFF(true);
capacity = qvirtio_config_readq(&qvirtio_pci, &dev->vdev,
(uint64_t)(uintptr_t)addr);
g_assert_cmpint(capacity, ==, TEST_IMAGE_SIZE / 512);
features = qvirtio_get_features(&qvirtio_pci, &dev->vdev);
features = features & ~(QVIRTIO_F_BAD_FEATURE |
(1u << VIRTIO_RING_F_INDIRECT_DESC) |
(1u << VIRTIO_F_NOTIFY_ON_EMPTY) |
(1u << VIRTIO_BLK_F_SCSI));
qvirtio_set_features(&qvirtio_pci, &dev->vdev, features);
vqpci = (QVirtQueuePCI *)qvirtqueue_setup(&qvirtio_pci, &dev->vdev,
alloc, 0);
qvirtqueue_pci_msix_setup(dev, vqpci, alloc, 1);
qvirtio_set_driver_ok(&qvirtio_pci, &dev->vdev);
/* Write request */
req.type = VIRTIO_BLK_T_OUT;
req.ioprio = 1;
req.sector = 0;
req.data = g_malloc0(512);
strcpy(req.data, "TEST");
req_addr = virtio_blk_request(alloc, &req, 512);
g_free(req.data);
free_head = qvirtqueue_add(&vqpci->vq, req_addr, 16, false, true);
qvirtqueue_add(&vqpci->vq, req_addr + 16, 512, false, true);
qvirtqueue_add(&vqpci->vq, req_addr + 528, 1, true, false);
qvirtqueue_kick(&qvirtio_pci, &dev->vdev, &vqpci->vq, free_head);
qvirtio_wait_queue_isr(&qvirtio_pci, &dev->vdev, &vqpci->vq,
QVIRTIO_BLK_TIMEOUT_US);
/* Write request */
req.type = VIRTIO_BLK_T_OUT;
req.ioprio = 1;
req.sector = 1;
req.data = g_malloc0(512);
strcpy(req.data, "TEST");
req_addr = virtio_blk_request(alloc, &req, 512);
g_free(req.data);
/* Notify after processing the third request */
qvirtqueue_set_used_event(&vqpci->vq, 2);
free_head = qvirtqueue_add(&vqpci->vq, req_addr, 16, false, true);
qvirtqueue_add(&vqpci->vq, req_addr + 16, 512, false, true);
qvirtqueue_add(&vqpci->vq, req_addr + 528, 1, true, false);
qvirtqueue_kick(&qvirtio_pci, &dev->vdev, &vqpci->vq, free_head);
/* No notification expected */
status = qvirtio_wait_status_byte_no_isr(&qvirtio_pci, &dev->vdev,
&vqpci->vq, req_addr + 528,
QVIRTIO_BLK_TIMEOUT_US);
g_assert_cmpint(status, ==, 0);
guest_free(alloc, req_addr);
/* Read request */
req.type = VIRTIO_BLK_T_IN;
req.ioprio = 1;
req.sector = 1;
req.data = g_malloc0(512);
req_addr = virtio_blk_request(alloc, &req, 512);
g_free(req.data);
free_head = qvirtqueue_add(&vqpci->vq, req_addr, 16, false, true);
qvirtqueue_add(&vqpci->vq, req_addr + 16, 512, true, true);
qvirtqueue_add(&vqpci->vq, req_addr + 528, 1, true, false);
qvirtqueue_kick(&qvirtio_pci, &dev->vdev, &vqpci->vq, free_head);
qvirtio_wait_queue_isr(&qvirtio_pci, &dev->vdev, &vqpci->vq,
QVIRTIO_BLK_TIMEOUT_US);
status = readb(req_addr + 528);
g_assert_cmpint(status, ==, 0);
data = g_malloc0(512);
memread(req_addr + 16, data, 512);
g_assert_cmpstr(data, ==, "TEST");
g_free(data);
guest_free(alloc, req_addr);
/* End test */
guest_free(alloc, vqpci->vq.desc);
pc_alloc_uninit(alloc);
qpci_msix_disable(dev->pdev);
qvirtio_pci_device_disable(dev);
g_free(dev);
qpci_free_pc(bus);
test_end();
}
| 20,648 |
qemu | f8ed85ac992c48814d916d5df4d44f9a971c5de4 | 1 | static void ref405ep_init(MachineState *machine)
{
ram_addr_t ram_size = machine->ram_size;
const char *kernel_filename = machine->kernel_filename;
const char *kernel_cmdline = machine->kernel_cmdline;
const char *initrd_filename = machine->initrd_filename;
char *filename;
ppc4xx_bd_info_t bd;
CPUPPCState *env;
qemu_irq *pic;
MemoryRegion *bios;
MemoryRegion *sram = g_new(MemoryRegion, 1);
ram_addr_t bdloc;
MemoryRegion *ram_memories = g_malloc(2 * sizeof(*ram_memories));
hwaddr ram_bases[2], ram_sizes[2];
target_ulong sram_size;
long bios_size;
//int phy_addr = 0;
//static int phy_addr = 1;
target_ulong kernel_base, initrd_base;
long kernel_size, initrd_size;
int linux_boot;
int fl_idx, fl_sectors, len;
DriveInfo *dinfo;
MemoryRegion *sysmem = get_system_memory();
/* XXX: fix this */
memory_region_allocate_system_memory(&ram_memories[0], NULL, "ef405ep.ram",
0x08000000);
ram_bases[0] = 0;
ram_sizes[0] = 0x08000000;
memory_region_init(&ram_memories[1], NULL, "ef405ep.ram1", 0);
ram_bases[1] = 0x00000000;
ram_sizes[1] = 0x00000000;
ram_size = 128 * 1024 * 1024;
#ifdef DEBUG_BOARD_INIT
printf("%s: register cpu\n", __func__);
#endif
env = ppc405ep_init(sysmem, ram_memories, ram_bases, ram_sizes,
33333333, &pic, kernel_filename == NULL ? 0 : 1);
/* allocate SRAM */
sram_size = 512 * 1024;
memory_region_init_ram(sram, NULL, "ef405ep.sram", sram_size, &error_abort);
vmstate_register_ram_global(sram);
memory_region_add_subregion(sysmem, 0xFFF00000, sram);
/* allocate and load BIOS */
#ifdef DEBUG_BOARD_INIT
printf("%s: register BIOS\n", __func__);
#endif
fl_idx = 0;
#ifdef USE_FLASH_BIOS
dinfo = drive_get(IF_PFLASH, 0, fl_idx);
if (dinfo) {
BlockBackend *blk = blk_by_legacy_dinfo(dinfo);
bios_size = blk_getlength(blk);
fl_sectors = (bios_size + 65535) >> 16;
#ifdef DEBUG_BOARD_INIT
printf("Register parallel flash %d size %lx"
" at addr %lx '%s' %d\n",
fl_idx, bios_size, -bios_size,
blk_name(blk), fl_sectors);
#endif
pflash_cfi02_register((uint32_t)(-bios_size),
NULL, "ef405ep.bios", bios_size,
blk, 65536, fl_sectors, 1,
2, 0x0001, 0x22DA, 0x0000, 0x0000, 0x555, 0x2AA,
1);
fl_idx++;
} else
#endif
{
#ifdef DEBUG_BOARD_INIT
printf("Load BIOS from file\n");
#endif
bios = g_new(MemoryRegion, 1);
memory_region_init_ram(bios, NULL, "ef405ep.bios", BIOS_SIZE,
&error_abort);
vmstate_register_ram_global(bios);
if (bios_name == NULL)
bios_name = BIOS_FILENAME;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
bios_size = load_image(filename, memory_region_get_ram_ptr(bios));
g_free(filename);
if (bios_size < 0 || bios_size > BIOS_SIZE) {
error_report("Could not load PowerPC BIOS '%s'", bios_name);
exit(1);
}
bios_size = (bios_size + 0xfff) & ~0xfff;
memory_region_add_subregion(sysmem, (uint32_t)(-bios_size), bios);
} else if (!qtest_enabled() || kernel_filename != NULL) {
error_report("Could not load PowerPC BIOS '%s'", bios_name);
exit(1);
} else {
/* Avoid an uninitialized variable warning */
bios_size = -1;
}
memory_region_set_readonly(bios, true);
}
/* Register FPGA */
#ifdef DEBUG_BOARD_INIT
printf("%s: register FPGA\n", __func__);
#endif
ref405ep_fpga_init(sysmem, 0xF0300000);
/* Register NVRAM */
#ifdef DEBUG_BOARD_INIT
printf("%s: register NVRAM\n", __func__);
#endif
m48t59_init(NULL, 0xF0000000, 0, 8192, 1968, 8);
/* Load kernel */
linux_boot = (kernel_filename != NULL);
if (linux_boot) {
#ifdef DEBUG_BOARD_INIT
printf("%s: load kernel\n", __func__);
#endif
memset(&bd, 0, sizeof(bd));
bd.bi_memstart = 0x00000000;
bd.bi_memsize = ram_size;
bd.bi_flashstart = -bios_size;
bd.bi_flashsize = -bios_size;
bd.bi_flashoffset = 0;
bd.bi_sramstart = 0xFFF00000;
bd.bi_sramsize = sram_size;
bd.bi_bootflags = 0;
bd.bi_intfreq = 133333333;
bd.bi_busfreq = 33333333;
bd.bi_baudrate = 115200;
bd.bi_s_version[0] = 'Q';
bd.bi_s_version[1] = 'M';
bd.bi_s_version[2] = 'U';
bd.bi_s_version[3] = '\0';
bd.bi_r_version[0] = 'Q';
bd.bi_r_version[1] = 'E';
bd.bi_r_version[2] = 'M';
bd.bi_r_version[3] = 'U';
bd.bi_r_version[4] = '\0';
bd.bi_procfreq = 133333333;
bd.bi_plb_busfreq = 33333333;
bd.bi_pci_busfreq = 33333333;
bd.bi_opbfreq = 33333333;
bdloc = ppc405_set_bootinfo(env, &bd, 0x00000001);
env->gpr[3] = bdloc;
kernel_base = KERNEL_LOAD_ADDR;
/* now we can load the kernel */
kernel_size = load_image_targphys(kernel_filename, kernel_base,
ram_size - kernel_base);
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
printf("Load kernel size %ld at " TARGET_FMT_lx,
kernel_size, kernel_base);
/* load initrd */
if (initrd_filename) {
initrd_base = INITRD_LOAD_ADDR;
initrd_size = load_image_targphys(initrd_filename, initrd_base,
ram_size - initrd_base);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
} else {
initrd_base = 0;
initrd_size = 0;
}
env->gpr[4] = initrd_base;
env->gpr[5] = initrd_size;
if (kernel_cmdline != NULL) {
len = strlen(kernel_cmdline);
bdloc -= ((len + 255) & ~255);
cpu_physical_memory_write(bdloc, kernel_cmdline, len + 1);
env->gpr[6] = bdloc;
env->gpr[7] = bdloc + len;
} else {
env->gpr[6] = 0;
env->gpr[7] = 0;
}
env->nip = KERNEL_LOAD_ADDR;
} else {
kernel_base = 0;
kernel_size = 0;
initrd_base = 0;
initrd_size = 0;
bdloc = 0;
}
#ifdef DEBUG_BOARD_INIT
printf("bdloc " RAM_ADDR_FMT "\n", bdloc);
printf("%s: Done\n", __func__);
#endif
}
| 20,649 |
qemu | e076f3383b08a563d76c8beb9a716788a3987df9 | 1 | int bdrv_check(BlockDriverState *bs)
{
if (bs->drv->bdrv_check == NULL) {
return -ENOTSUP;
}
return bs->drv->bdrv_check(bs);
}
| 20,650 |
qemu | d2e9fd8f703203c2eeeed120b1ef6c3a6574e0ab | 1 | static always_inline void gen_op_arith_add(DisasContext *ctx, TCGv ret, TCGv arg1, TCGv arg2,
int add_ca, int compute_ca, int compute_ov)
{
TCGv t0, t1;
if ((!compute_ca && !compute_ov) ||
(!TCGV_EQUAL(ret,arg1) && !TCGV_EQUAL(ret, arg2))) {
t0 = ret;
t0 = tcg_temp_local_new();
}
if (add_ca) {
t1 = tcg_temp_local_new();
tcg_gen_andi_tl(t1, cpu_xer, (1 << XER_CA));
tcg_gen_shri_tl(t1, t1, XER_CA);
}
if (compute_ca && compute_ov) {
/* Start with XER CA and OV disabled, the most likely case */
tcg_gen_andi_tl(cpu_xer, cpu_xer, ~((1 << XER_CA) | (1 << XER_OV)));
} else if (compute_ca) {
/* Start with XER CA disabled, the most likely case */
tcg_gen_andi_tl(cpu_xer, cpu_xer, ~(1 << XER_CA));
} else if (compute_ov) {
/* Start with XER OV disabled, the most likely case */
tcg_gen_andi_tl(cpu_xer, cpu_xer, ~(1 << XER_OV));
}
tcg_gen_add_tl(t0, arg1, arg2);
if (compute_ca) {
gen_op_arith_compute_ca(ctx, t0, arg1, 0);
}
if (add_ca) {
tcg_gen_add_tl(t0, t0, t1);
gen_op_arith_compute_ca(ctx, t0, t1, 0);
tcg_temp_free(t1);
}
if (compute_ov) {
gen_op_arith_compute_ov(ctx, t0, arg1, arg2, 0);
}
if (unlikely(Rc(ctx->opcode) != 0))
gen_set_Rc0(ctx, t0);
if (!TCGV_EQUAL(t0, ret)) {
tcg_gen_mov_tl(ret, t0);
tcg_temp_free(t0);
}
} | 20,651 |
qemu | 1bab33ab4ab4702f53012551cad333beb270f30d | 1 | static void test_i440fx_pam(gconstpointer opaque)
{
const TestData *s = opaque;
QPCIBus *bus;
QPCIDevice *dev;
int i;
static struct {
uint32_t start;
uint32_t end;
} pam_area[] = {
{ 0, 0 }, /* Reserved */
{ 0xF0000, 0xFFFFF }, /* BIOS Area */
{ 0xC0000, 0xC3FFF }, /* Option ROM */
{ 0xC4000, 0xC7FFF }, /* Option ROM */
{ 0xC8000, 0xCBFFF }, /* Option ROM */
{ 0xCC000, 0xCFFFF }, /* Option ROM */
{ 0xD0000, 0xD3FFF }, /* Option ROM */
{ 0xD4000, 0xD7FFF }, /* Option ROM */
{ 0xD8000, 0xDBFFF }, /* Option ROM */
{ 0xDC000, 0xDFFFF }, /* Option ROM */
{ 0xE0000, 0xE3FFF }, /* BIOS Extension */
{ 0xE4000, 0xE7FFF }, /* BIOS Extension */
{ 0xE8000, 0xEBFFF }, /* BIOS Extension */
{ 0xEC000, 0xEFFFF }, /* BIOS Extension */
};
bus = test_start_get_bus(s);
dev = qpci_device_find(bus, QPCI_DEVFN(0, 0));
g_assert(dev != NULL);
for (i = 0; i < ARRAY_SIZE(pam_area); i++) {
if (pam_area[i].start == pam_area[i].end) {
continue;
}
g_test_message("Checking area 0x%05x..0x%05x",
pam_area[i].start, pam_area[i].end);
/* Switch to RE for the area */
pam_set(dev, i, PAM_RE);
/* Verify the RAM is all zeros */
g_assert(verify_area(pam_area[i].start, pam_area[i].end, 0));
/* Switch to WE for the area */
pam_set(dev, i, PAM_RE | PAM_WE);
/* Write out a non-zero mask to the full area */
write_area(pam_area[i].start, pam_area[i].end, 0x42);
#ifndef BROKEN
/* QEMU only supports a limited form of PAM */
/* Switch to !RE for the area */
pam_set(dev, i, PAM_WE);
/* Verify the area is not our mask */
g_assert(!verify_area(pam_area[i].start, pam_area[i].end, 0x42));
#endif
/* Verify the area is our new mask */
g_assert(verify_area(pam_area[i].start, pam_area[i].end, 0x42));
/* Write out a new mask */
write_area(pam_area[i].start, pam_area[i].end, 0x82);
#ifndef BROKEN
/* QEMU only supports a limited form of PAM */
/* Verify the area is not our mask */
g_assert(!verify_area(pam_area[i].start, pam_area[i].end, 0x82));
/* Switch to RE for the area */
pam_set(dev, i, PAM_RE | PAM_WE);
#endif
/* Verify the area is our new mask */
g_assert(verify_area(pam_area[i].start, pam_area[i].end, 0x82));
/* Reset area */
pam_set(dev, i, 0);
/* Verify the area is not our new mask */
g_assert(!verify_area(pam_area[i].start, pam_area[i].end, 0x82));
}
qtest_end();
} | 20,652 |
qemu | e976c6a1e40ad74d616a186d3b48b0ad8f5eb970 | 1 | static uint64_t alloc_cluster_offset(BlockDriverState *bs,
uint64_t offset,
int n_start, int n_end,
int *num)
{
BDRVQcowState *s = bs->opaque;
int l2_index, ret;
uint64_t l2_offset, *l2_table, cluster_offset;
int nb_available, nb_clusters, i = 0;
uint64_t start_sect;
ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
if (ret == 0)
return 0;
nb_clusters = size_to_clusters(s, n_end << 9);
if (nb_clusters > s->l2_size - l2_index)
nb_clusters = s->l2_size - l2_index;
cluster_offset = be64_to_cpu(l2_table[l2_index]);
/* We keep all QCOW_OFLAG_COPIED clusters */
if (cluster_offset & QCOW_OFLAG_COPIED) {
nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
&l2_table[l2_index], 0);
nb_available = nb_clusters << (s->cluster_bits - 9);
if (nb_available > n_end)
nb_available = n_end;
cluster_offset &= ~QCOW_OFLAG_COPIED;
goto out;
}
/* for the moment, multiple compressed clusters are not managed */
if (cluster_offset & QCOW_OFLAG_COMPRESSED)
nb_clusters = 1;
/* how many available clusters ? */
while (i < nb_clusters) {
int j;
i += count_contiguous_free_clusters(nb_clusters - i,
&l2_table[l2_index + i]);
cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
if ((cluster_offset & QCOW_OFLAG_COPIED) ||
(cluster_offset & QCOW_OFLAG_COMPRESSED))
break;
j = count_contiguous_clusters(nb_clusters - i, s->cluster_size,
&l2_table[l2_index + i], 0);
if (j)
free_any_clusters(bs, cluster_offset, j);
i += j;
if(be64_to_cpu(l2_table[l2_index + i]))
break;
}
nb_clusters = i;
/* allocate a new cluster */
cluster_offset = alloc_clusters(bs, nb_clusters * s->cluster_size);
/* we must initialize the cluster content which won't be
written */
nb_available = nb_clusters << (s->cluster_bits - 9);
if (nb_available > n_end)
nb_available = n_end;
/* copy content of unmodified sectors */
start_sect = (offset & ~(s->cluster_size - 1)) >> 9;
if (n_start) {
ret = copy_sectors(bs, start_sect, cluster_offset, 0, n_start);
if (ret < 0)
return 0;
}
if (nb_available & (s->cluster_sectors - 1)) {
uint64_t end = nb_available & ~(uint64_t)(s->cluster_sectors - 1);
ret = copy_sectors(bs, start_sect + end,
cluster_offset + (end << 9),
nb_available - end,
s->cluster_sectors);
if (ret < 0)
return 0;
}
/* update L2 table */
for (i = 0; i < nb_clusters; i++)
l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
(i << s->cluster_bits)) |
QCOW_OFLAG_COPIED);
if (bdrv_pwrite(s->hd,
l2_offset + l2_index * sizeof(uint64_t),
l2_table + l2_index,
nb_clusters * sizeof(uint64_t)) !=
nb_clusters * sizeof(uint64_t))
return 0;
out:
*num = nb_available - n_start;
return cluster_offset;
}
| 20,653 |
qemu | de50a20a4cc368d241d67c600f8c0f667186a8b5 | 1 | void bdrv_io_limits_enable(BlockDriverState *bs)
{
assert(!bs->io_limits_enabled);
throttle_init(&bs->throttle_state,
bdrv_get_aio_context(bs),
QEMU_CLOCK_VIRTUAL,
bdrv_throttle_read_timer_cb,
bdrv_throttle_write_timer_cb,
bs);
bs->io_limits_enabled = true;
}
| 20,654 |
FFmpeg | d8b33a99897f1faa8036fbdb6a6d48af9c10730f | 1 | static int tta_read_packet(AVFormatContext *s, AVPacket *pkt)
{
TTAContext *c = s->priv_data;
AVStream *st = s->streams[0];
int size, ret;
// FIXME!
if (c->currentframe > c->totalframes)
return -1;
size = st->index_entries[c->currentframe].size;
ret = av_get_packet(s->pb, pkt, size);
pkt->dts = st->index_entries[c->currentframe++].timestamp;
return ret;
}
| 20,655 |
FFmpeg | 687fae2b42f247e537afdb5b8d86e991d3fbb2db | 1 | static void stream_seek(VideoState *is, int64_t pos, int rel)
{
is->seek_pos = pos;
is->seek_req = 1;
is->seek_flags = rel < 0 ? AVSEEK_FLAG_BACKWARD : 0;
}
| 20,656 |
qemu | 60fe637bf0e4d7989e21e50f52526444765c63b4 | 1 | void ram_control_before_iterate(QEMUFile *f, uint64_t flags)
{
int ret = 0;
if (f->ops->before_ram_iterate) {
ret = f->ops->before_ram_iterate(f, f->opaque, flags);
if (ret < 0) {
qemu_file_set_error(f, ret);
}
}
}
| 20,658 |
qemu | 57c0eb1e0d6d8f01550d10cf08747f25cd537777 | 1 | static void spapr_tce_reset(DeviceState *dev)
{
sPAPRTCETable *tcet = SPAPR_TCE_TABLE(dev);
size_t table_size = tcet->nb_table * sizeof(uint64_t);
memset(tcet->table, 0, table_size);
}
| 20,660 |
FFmpeg | d885cc41e526284a1534e8c689175fe6ffba60e0 | 0 | static int mjpeg_decode_app(MJpegDecodeContext *s)
{
int len, id, i;
len = get_bits(&s->gb, 16);
if (len < 5)
return AVERROR_INVALIDDATA;
if (8 * len > get_bits_left(&s->gb))
return AVERROR_INVALIDDATA;
id = get_bits_long(&s->gb, 32);
id = av_be2ne32(id);
len -= 6;
if (s->avctx->debug & FF_DEBUG_STARTCODE)
av_log(s->avctx, AV_LOG_DEBUG, "APPx %8X\n", id);
/* Buggy AVID, it puts EOI only at every 10th frame. */
/* Also, this fourcc is used by non-avid files too, it holds some
information, but it's always present in AVID-created files. */
if (id == AV_RL32("AVI1")) {
/* structure:
4bytes AVI1
1bytes polarity
1bytes always zero
4bytes field_size
4bytes field_size_less_padding
*/
s->buggy_avid = 1;
i = get_bits(&s->gb, 8); len--;
av_log(s->avctx, AV_LOG_DEBUG, "polarity %d\n", i);
#if 0
skip_bits(&s->gb, 8);
skip_bits(&s->gb, 32);
skip_bits(&s->gb, 32);
len -= 10;
#endif
goto out;
}
// len -= 2;
if (id == AV_RL32("JFIF")) {
int t_w, t_h, v1, v2;
skip_bits(&s->gb, 8); /* the trailing zero-byte */
v1 = get_bits(&s->gb, 8);
v2 = get_bits(&s->gb, 8);
skip_bits(&s->gb, 8);
s->avctx->sample_aspect_ratio.num = get_bits(&s->gb, 16);
s->avctx->sample_aspect_ratio.den = get_bits(&s->gb, 16);
if (s->avctx->debug & FF_DEBUG_PICT_INFO)
av_log(s->avctx, AV_LOG_INFO,
"mjpeg: JFIF header found (version: %x.%x) SAR=%d/%d\n",
v1, v2,
s->avctx->sample_aspect_ratio.num,
s->avctx->sample_aspect_ratio.den);
t_w = get_bits(&s->gb, 8);
t_h = get_bits(&s->gb, 8);
if (t_w && t_h) {
/* skip thumbnail */
if (len -10 - (t_w * t_h * 3) > 0)
len -= t_w * t_h * 3;
}
len -= 10;
goto out;
}
if (id == AV_RL32("Adob") && (get_bits(&s->gb, 8) == 'e')) {
if (s->avctx->debug & FF_DEBUG_PICT_INFO)
av_log(s->avctx, AV_LOG_INFO, "mjpeg: Adobe header found\n");
skip_bits(&s->gb, 16); /* version */
skip_bits(&s->gb, 16); /* flags0 */
skip_bits(&s->gb, 16); /* flags1 */
skip_bits(&s->gb, 8); /* transform */
len -= 7;
goto out;
}
if (id == AV_RL32("LJIF")) {
if (s->avctx->debug & FF_DEBUG_PICT_INFO)
av_log(s->avctx, AV_LOG_INFO,
"Pegasus lossless jpeg header found\n");
skip_bits(&s->gb, 16); /* version ? */
skip_bits(&s->gb, 16); /* unknwon always 0? */
skip_bits(&s->gb, 16); /* unknwon always 0? */
skip_bits(&s->gb, 16); /* unknwon always 0? */
switch (get_bits(&s->gb, 8)) {
case 1:
s->rgb = 1;
s->pegasus_rct = 0;
break;
case 2:
s->rgb = 1;
s->pegasus_rct = 1;
break;
default:
av_log(s->avctx, AV_LOG_ERROR, "unknown colorspace\n");
}
len -= 9;
goto out;
}
/* Apple MJPEG-A */
if ((s->start_code == APP1) && (len > (0x28 - 8))) {
id = get_bits_long(&s->gb, 32);
id = av_be2ne32(id);
len -= 4;
/* Apple MJPEG-A */
if (id == AV_RL32("mjpg")) {
#if 0
skip_bits(&s->gb, 32); /* field size */
skip_bits(&s->gb, 32); /* pad field size */
skip_bits(&s->gb, 32); /* next off */
skip_bits(&s->gb, 32); /* quant off */
skip_bits(&s->gb, 32); /* huff off */
skip_bits(&s->gb, 32); /* image off */
skip_bits(&s->gb, 32); /* scan off */
skip_bits(&s->gb, 32); /* data off */
#endif
if (s->avctx->debug & FF_DEBUG_PICT_INFO)
av_log(s->avctx, AV_LOG_INFO, "mjpeg: Apple MJPEG-A header found\n");
}
}
out:
/* slow but needed for extreme adobe jpegs */
if (len < 0)
av_log(s->avctx, AV_LOG_ERROR,
"mjpeg: error, decode_app parser read over the end\n");
while (--len > 0)
skip_bits(&s->gb, 8);
return 0;
}
| 20,661 |
FFmpeg | 163854bca0e0c1b43831de7463ffa3ff9e6595ca | 0 | static int draw_text(AVFilterContext *ctx, AVFilterBufferRef *picref,
int width, int height)
{
DrawTextContext *dtext = ctx->priv;
uint32_t code = 0, prev_code = 0;
int x = 0, y = 0, i = 0, ret;
int text_height;
char *text = dtext->text;
uint8_t *p;
int str_w = 0, len;
int y_min = 32000, y_max = -32000;
FT_Vector delta;
Glyph *glyph = NULL, *prev_glyph = NULL;
Glyph dummy = { 0 };
time_t now = time(0);
struct tm ltime;
uint8_t *buf = dtext->expanded_text;
int buf_size = dtext->expanded_text_size;
if(dtext->basetime != AV_NOPTS_VALUE)
now= picref->pts*av_q2d(ctx->inputs[0]->time_base) + dtext->basetime/1000000;
if (!buf) {
buf_size = 2*strlen(dtext->text)+1;
buf = av_malloc(buf_size);
}
#if HAVE_LOCALTIME_R
localtime_r(&now, <ime);
#else
if(strchr(dtext->text, '%'))
ltime= *localtime(&now);
#endif
do {
*buf = 1;
if (strftime(buf, buf_size, dtext->text, <ime) != 0 || *buf == 0)
break;
buf_size *= 2;
} while ((buf = av_realloc(buf, buf_size)));
if (!buf)
return AVERROR(ENOMEM);
text = dtext->expanded_text = buf;
dtext->expanded_text_size = buf_size;
if ((len = strlen(text)) > dtext->nb_positions) {
if (!(dtext->positions =
av_realloc(dtext->positions, len*sizeof(*dtext->positions))))
return AVERROR(ENOMEM);
dtext->nb_positions = len;
}
x = dtext->x;
y = dtext->y;
/* load and cache glyphs */
for (i = 0, p = text; *p; i++) {
GET_UTF8(code, *p++, continue;);
/* get glyph */
dummy.code = code;
glyph = av_tree_find(dtext->glyphs, &dummy, glyph_cmp, NULL);
if (!glyph)
load_glyph(ctx, &glyph, code);
y_min = FFMIN(glyph->bbox.yMin, y_min);
y_max = FFMAX(glyph->bbox.yMax, y_max);
}
text_height = y_max - y_min;
/* compute and save position for each glyph */
glyph = NULL;
for (i = 0, p = text; *p; i++) {
GET_UTF8(code, *p++, continue;);
/* skip the \n in the sequence \r\n */
if (prev_code == '\r' && code == '\n')
continue;
prev_code = code;
if (is_newline(code)) {
str_w = FFMAX(str_w, x - dtext->x);
y += text_height;
x = dtext->x;
continue;
}
/* get glyph */
prev_glyph = glyph;
dummy.code = code;
glyph = av_tree_find(dtext->glyphs, &dummy, glyph_cmp, NULL);
/* kerning */
if (dtext->use_kerning && prev_glyph && glyph->code) {
FT_Get_Kerning(dtext->face, prev_glyph->code, glyph->code,
ft_kerning_default, &delta);
x += delta.x >> 6;
}
if (x + glyph->bbox.xMax >= width) {
str_w = FFMAX(str_w, x - dtext->x);
y += text_height;
x = dtext->x;
}
/* save position */
dtext->positions[i].x = x + glyph->bitmap_left;
dtext->positions[i].y = y - glyph->bitmap_top + y_max;
if (code == '\t') x = (x / dtext->tabsize + 1)*dtext->tabsize;
else x += glyph->advance;
}
str_w = FFMIN(width - dtext->x - 1, FFMAX(str_w, x - dtext->x));
y = FFMIN(y + text_height, height - 1);
/* draw box */
if (dtext->draw_box)
drawbox(picref, dtext->x, dtext->y, str_w, y-dtext->y,
dtext->box_line, dtext->pixel_step, dtext->boxcolor_rgba,
dtext->hsub, dtext->vsub, dtext->is_packed_rgb, dtext->rgba_map);
if (dtext->shadowx || dtext->shadowy) {
if ((ret = draw_glyphs(dtext, picref, width, height, dtext->shadowcolor_rgba,
dtext->shadowcolor, dtext->shadowx, dtext->shadowy)) < 0)
return ret;
}
if ((ret = draw_glyphs(dtext, picref, width, height, dtext->fontcolor_rgba,
dtext->fontcolor, 0, 0)) < 0)
return ret;
return 0;
}
| 20,663 |
qemu | c3e10c7b4377c1cbc0a4fbc12312c2cf41c0cda7 | 1 | void OPPROTO op_subfme_64 (void)
{
T0 = ~T0 + xer_ca - 1;
if (likely((uint64_t)T0 != (uint64_t)-1))
xer_ca = 1;
RETURN();
}
| 20,664 |
qemu | 3e9fab690d59ac15956c3733fe0794ce1ae4c4af | 1 | void qmp_block_set_io_throttle(const char *device, int64_t bps, int64_t bps_rd,
int64_t bps_wr, int64_t iops, int64_t iops_rd,
int64_t iops_wr, Error **errp)
{
ThrottleConfig cfg;
BlockDriverState *bs;
bs = bdrv_find(device);
if (!bs) {
error_set(errp, QERR_DEVICE_NOT_FOUND, device);
return;
}
memset(&cfg, 0, sizeof(cfg));
cfg.buckets[THROTTLE_BPS_TOTAL].avg = bps;
cfg.buckets[THROTTLE_BPS_READ].avg = bps_rd;
cfg.buckets[THROTTLE_BPS_WRITE].avg = bps_wr;
cfg.buckets[THROTTLE_OPS_TOTAL].avg = iops;
cfg.buckets[THROTTLE_OPS_READ].avg = iops_rd;
cfg.buckets[THROTTLE_OPS_WRITE].avg = iops_wr;
cfg.buckets[THROTTLE_BPS_TOTAL].max = 0;
cfg.buckets[THROTTLE_BPS_READ].max = 0;
cfg.buckets[THROTTLE_BPS_WRITE].max = 0;
cfg.buckets[THROTTLE_OPS_TOTAL].max = 0;
cfg.buckets[THROTTLE_OPS_READ].max = 0;
cfg.buckets[THROTTLE_OPS_WRITE].max = 0;
cfg.op_size = 0;
if (!check_throttle_config(&cfg, errp)) {
return;
}
if (!bs->io_limits_enabled && throttle_enabled(&cfg)) {
bdrv_io_limits_enable(bs);
} else if (bs->io_limits_enabled && !throttle_enabled(&cfg)) {
bdrv_io_limits_disable(bs);
}
if (bs->io_limits_enabled) {
bdrv_set_io_limits(bs, &cfg);
}
}
| 20,665 |
FFmpeg | f225003d17364cd38fd28f268ae2b29abd8e5024 | 1 | static inline void dxt3_block_internal(uint8_t *dst, ptrdiff_t stride,
const uint8_t *block)
{
int x, y;
uint32_t colors[4];
uint16_t color0 = AV_RL16(block + 8);
uint16_t color1 = AV_RL16(block + 10);
uint32_t code = AV_RL32(block + 12);
extract_color(colors, color0, color1, 1, 0);
for (y = 0; y < 4; y++) {
const uint16_t alpha_code = AV_RL16(block + 2 * y);
uint8_t alpha_values[4];
alpha_values[0] = ((alpha_code >> 0) & 0x0F) * 17;
alpha_values[1] = ((alpha_code >> 4) & 0x0F) * 17;
alpha_values[2] = ((alpha_code >> 8) & 0x0F) * 17;
alpha_values[3] = ((alpha_code >> 12) & 0x0F) * 17;
for (x = 0; x < 4; x++) {
uint8_t alpha = alpha_values[x];
uint32_t pixel = colors[code & 3] | (alpha << 24);
code >>= 2;
AV_WL32(dst + x * 4, pixel);
}
dst += stride;
}
}
| 20,666 |
qemu | 15fa08f8451babc88d733bd411d4c94976f9d0f8 | 1 | void tcg_func_start(TCGContext *s)
{
tcg_pool_reset(s);
s->nb_temps = s->nb_globals;
/* No temps have been previously allocated for size or locality. */
memset(s->free_temps, 0, sizeof(s->free_temps));
s->nb_labels = 0;
s->current_frame_offset = s->frame_start;
#ifdef CONFIG_DEBUG_TCG
s->goto_tb_issue_mask = 0;
#endif
s->gen_op_buf[0].next = 1;
s->gen_op_buf[0].prev = 0;
s->gen_next_op_idx = 1;
}
| 20,667 |
FFmpeg | 9e73f6d1f9a242ea0b2fdb3bf22890d2a4422be0 | 1 | static int find_unused_picture(MpegEncContext *s, int shared)
{
int i;
if (shared) {
for (i = 0; i < MAX_PICTURE_COUNT; i++) {
if (s->picture[i].f.data[0] == NULL)
return i;
}
} else {
for (i = 0; i < MAX_PICTURE_COUNT; i++) {
if (pic_is_unused(s, &s->picture[i]))
return i;
}
}
av_log(s->avctx, AV_LOG_FATAL,
"Internal error, picture buffer overflow\n");
/* We could return -1, but the codec would crash trying to draw into a
* non-existing frame anyway. This is safer than waiting for a random crash.
* Also the return of this is never useful, an encoder must only allocate
* as much as allowed in the specification. This has no relationship to how
* much libavcodec could allocate (and MAX_PICTURE_COUNT is always large
* enough for such valid streams).
* Plus, a decoder has to check stream validity and remove frames if too
* many reference frames are around. Waiting for "OOM" is not correct at
* all. Similarly, missing reference frames have to be replaced by
* interpolated/MC frames, anything else is a bug in the codec ...
*/
abort();
return -1;
}
| 20,668 |
FFmpeg | e00499eb4c80752b2c464f3a98bf0b6ce7b1e212 | 1 | static int xvid_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *picture, int *got_packet)
{
int xerr, i, ret, user_packet = !!pkt->data;
struct xvid_context *x = avctx->priv_data;
AVFrame *p = avctx->coded_frame;
int mb_width = (avctx->width + 15) / 16;
int mb_height = (avctx->height + 15) / 16;
char *tmp;
xvid_enc_frame_t xvid_enc_frame = { 0 };
xvid_enc_stats_t xvid_enc_stats = { 0 };
if ((ret = ff_alloc_packet2(avctx, pkt, mb_width*mb_height*MAX_MB_BYTES + FF_MIN_BUFFER_SIZE)) < 0)
return ret;
/* Start setting up the frame */
xvid_enc_frame.version = XVID_VERSION;
xvid_enc_stats.version = XVID_VERSION;
/* Let Xvid know where to put the frame. */
xvid_enc_frame.bitstream = pkt->data;
xvid_enc_frame.length = pkt->size;
/* Initialize input image fields */
if (avctx->pix_fmt != AV_PIX_FMT_YUV420P) {
av_log(avctx, AV_LOG_ERROR,
"Xvid: Color spaces other than 420P not supported\n");
return AVERROR(EINVAL);
}
xvid_enc_frame.input.csp = XVID_CSP_PLANAR; /* YUV420P */
for (i = 0; i < 4; i++) {
xvid_enc_frame.input.plane[i] = picture->data[i];
xvid_enc_frame.input.stride[i] = picture->linesize[i];
}
/* Encoder Flags */
xvid_enc_frame.vop_flags = x->vop_flags;
xvid_enc_frame.vol_flags = x->vol_flags;
xvid_enc_frame.motion = x->me_flags;
xvid_enc_frame.type =
picture->pict_type == AV_PICTURE_TYPE_I ? XVID_TYPE_IVOP :
picture->pict_type == AV_PICTURE_TYPE_P ? XVID_TYPE_PVOP :
picture->pict_type == AV_PICTURE_TYPE_B ? XVID_TYPE_BVOP :
XVID_TYPE_AUTO;
/* Pixel aspect ratio setting */
if (avctx->sample_aspect_ratio.num < 0 || avctx->sample_aspect_ratio.num > 255 ||
avctx->sample_aspect_ratio.den < 0 || avctx->sample_aspect_ratio.den > 255) {
av_log(avctx, AV_LOG_WARNING,
"Invalid pixel aspect ratio %i/%i, limit is 255/255 reducing\n",
avctx->sample_aspect_ratio.num, avctx->sample_aspect_ratio.den);
av_reduce(&avctx->sample_aspect_ratio.num, &avctx->sample_aspect_ratio.den,
avctx->sample_aspect_ratio.num, avctx->sample_aspect_ratio.den, 255);
}
xvid_enc_frame.par = XVID_PAR_EXT;
xvid_enc_frame.par_width = avctx->sample_aspect_ratio.num;
xvid_enc_frame.par_height = avctx->sample_aspect_ratio.den;
/* Quant Setting */
if (x->qscale)
xvid_enc_frame.quant = picture->quality / FF_QP2LAMBDA;
else
xvid_enc_frame.quant = 0;
/* Matrices */
xvid_enc_frame.quant_intra_matrix = x->intra_matrix;
xvid_enc_frame.quant_inter_matrix = x->inter_matrix;
/* Encode */
xerr = xvid_encore(x->encoder_handle, XVID_ENC_ENCODE,
&xvid_enc_frame, &xvid_enc_stats);
/* Two-pass log buffer swapping */
avctx->stats_out = NULL;
if (x->twopassbuffer) {
tmp = x->old_twopassbuffer;
x->old_twopassbuffer = x->twopassbuffer;
x->twopassbuffer = tmp;
x->twopassbuffer[0] = 0;
if (x->old_twopassbuffer[0] != 0) {
avctx->stats_out = x->old_twopassbuffer;
}
}
if (xerr > 0) {
*got_packet = 1;
p->quality = xvid_enc_stats.quant * FF_QP2LAMBDA;
if (xvid_enc_stats.type == XVID_TYPE_PVOP)
p->pict_type = AV_PICTURE_TYPE_P;
else if (xvid_enc_stats.type == XVID_TYPE_BVOP)
p->pict_type = AV_PICTURE_TYPE_B;
else if (xvid_enc_stats.type == XVID_TYPE_SVOP)
p->pict_type = AV_PICTURE_TYPE_S;
else
p->pict_type = AV_PICTURE_TYPE_I;
if (xvid_enc_frame.out_flags & XVID_KEYFRAME) {
p->key_frame = 1;
pkt->flags |= AV_PKT_FLAG_KEY;
if (x->quicktime_format)
return xvid_strip_vol_header(avctx, pkt,
xvid_enc_stats.hlength, xerr);
} else
p->key_frame = 0;
pkt->size = xerr;
return 0;
} else {
if (!user_packet)
av_free_packet(pkt);
if (!xerr)
return 0;
av_log(avctx, AV_LOG_ERROR,
"Xvid: Encoding Error Occurred: %i\n", xerr);
return AVERROR_EXTERNAL;
}
}
| 20,669 |
qemu | b3bc154098f211db7014de151c79b4234ae5029b | 1 | static void fdctrl_write_data (fdctrl_t *fdctrl, uint32_t value)
{
fdrive_t *cur_drv;
int pos;
/* Reset mode */
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
FLOPPY_ERROR("controller not ready for writing\n");
return;
}
fdctrl->dsr &= ~FD_DSR_PWRDOWN;
/* Is it write command time ? */
if (fdctrl->msr & FD_MSR_NONDMA) {
/* FIFO data write */
fdctrl->fifo[fdctrl->data_pos++] = value;
if (fdctrl->data_pos % FD_SECTOR_LEN == (FD_SECTOR_LEN - 1) ||
fdctrl->data_pos == fdctrl->data_len) {
cur_drv = get_cur_drv(fdctrl);
if (bdrv_write(cur_drv->bs, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) {
FLOPPY_ERROR("writing sector %d\n", fd_sector(cur_drv));
return;
}
if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
FLOPPY_DPRINTF("error seeking to next sector %d\n",
fd_sector(cur_drv));
return;
}
}
/* Switch from transfer mode to status mode
* then from status mode to command mode
*/
if (fdctrl->data_pos == fdctrl->data_len)
fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00);
return;
}
if (fdctrl->data_pos == 0) {
/* Command */
pos = command_to_handler[value & 0xff];
FLOPPY_DPRINTF("%s command\n", handlers[pos].name);
fdctrl->data_len = handlers[pos].parameters + 1;
}
FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
fdctrl->fifo[fdctrl->data_pos++] = value;
if (fdctrl->data_pos == fdctrl->data_len) {
/* We now have all parameters
* and will be able to treat the command
*/
if (fdctrl->data_state & FD_STATE_FORMAT) {
fdctrl_format_sector(fdctrl);
return;
}
pos = command_to_handler[fdctrl->fifo[0] & 0xff];
FLOPPY_DPRINTF("treat %s command\n", handlers[pos].name);
(*handlers[pos].handler)(fdctrl, handlers[pos].direction);
}
}
| 20,671 |
FFmpeg | 72dbc610be3272ba36603f78a39cc2d2d8fe0cc3 | 0 | void ff_avg_h264_qpel16_mc32_msa(uint8_t *dst, const uint8_t *src,
ptrdiff_t stride)
{
avc_luma_midh_qrt_and_aver_dst_16w_msa(src - (2 * stride) - 2,
stride, dst, stride, 16, 1);
}
| 20,672 |
qemu | 5839e53bbc0fec56021d758aab7610df421ed8c8 | 1 | static int vhdx_create_new_region_table(BlockDriverState *bs,
uint64_t image_size,
uint32_t block_size,
uint32_t sector_size,
uint32_t log_size,
bool use_zero_blocks,
VHDXImageType type,
uint64_t *metadata_offset)
{
int ret = 0;
uint32_t offset = 0;
void *buffer = NULL;
uint64_t bat_file_offset;
uint32_t bat_length;
BDRVVHDXState *s = NULL;
VHDXRegionTableHeader *region_table;
VHDXRegionTableEntry *rt_bat;
VHDXRegionTableEntry *rt_metadata;
assert(metadata_offset != NULL);
/* Populate enough of the BDRVVHDXState to be able to use the
* pre-existing BAT calculation, translation, and update functions */
s = g_malloc0(sizeof(BDRVVHDXState));
s->chunk_ratio = (VHDX_MAX_SECTORS_PER_BLOCK) *
(uint64_t) sector_size / (uint64_t) block_size;
s->sectors_per_block = block_size / sector_size;
s->virtual_disk_size = image_size;
s->block_size = block_size;
s->logical_sector_size = sector_size;
vhdx_set_shift_bits(s);
vhdx_calc_bat_entries(s);
/* At this point the VHDX state is populated enough for creation */
/* a single buffer is used so we can calculate the checksum over the
* entire 64KB block */
buffer = g_malloc0(VHDX_HEADER_BLOCK_SIZE);
region_table = buffer;
offset += sizeof(VHDXRegionTableHeader);
rt_bat = buffer + offset;
offset += sizeof(VHDXRegionTableEntry);
rt_metadata = buffer + offset;
region_table->signature = VHDX_REGION_SIGNATURE;
region_table->entry_count = 2; /* BAT and Metadata */
rt_bat->guid = bat_guid;
rt_bat->length = ROUND_UP(s->bat_entries * sizeof(VHDXBatEntry), MiB);
rt_bat->file_offset = ROUND_UP(VHDX_HEADER_SECTION_END + log_size, MiB);
s->bat_offset = rt_bat->file_offset;
rt_metadata->guid = metadata_guid;
rt_metadata->file_offset = ROUND_UP(rt_bat->file_offset + rt_bat->length,
MiB);
rt_metadata->length = 1 * MiB; /* min size, and more than enough */
*metadata_offset = rt_metadata->file_offset;
bat_file_offset = rt_bat->file_offset;
bat_length = rt_bat->length;
vhdx_region_header_le_export(region_table);
vhdx_region_entry_le_export(rt_bat);
vhdx_region_entry_le_export(rt_metadata);
vhdx_update_checksum(buffer, VHDX_HEADER_BLOCK_SIZE,
offsetof(VHDXRegionTableHeader, checksum));
/* The region table gives us the data we need to create the BAT,
* so do that now */
ret = vhdx_create_bat(bs, s, image_size, type, use_zero_blocks,
bat_file_offset, bat_length);
if (ret < 0) {
goto exit;
}
/* Now write out the region headers to disk */
ret = bdrv_pwrite(bs, VHDX_REGION_TABLE_OFFSET, buffer,
VHDX_HEADER_BLOCK_SIZE);
if (ret < 0) {
goto exit;
}
ret = bdrv_pwrite(bs, VHDX_REGION_TABLE2_OFFSET, buffer,
VHDX_HEADER_BLOCK_SIZE);
if (ret < 0) {
goto exit;
}
exit:
g_free(s);
g_free(buffer);
return ret;
}
| 20,673 |
qemu | 1bd075f29ea6d11853475c7c42734595720c3ac6 | 1 | iscsi_unmap_cb(struct iscsi_context *iscsi, int status,
void *command_data, void *opaque)
{
IscsiAIOCB *acb = opaque;
if (acb->canceled != 0) {
qemu_aio_release(acb);
scsi_free_scsi_task(acb->task);
acb->task = NULL;
return;
}
acb->status = 0;
if (status < 0) {
error_report("Failed to unmap data on iSCSI lun. %s",
iscsi_get_error(iscsi));
acb->status = -EIO;
}
iscsi_schedule_bh(acb);
scsi_free_scsi_task(acb->task);
acb->task = NULL;
}
| 20,674 |
qemu | 53593e90d13264dc88b3281ddf75ceaa641df05a | 1 | static void gen_wsr_prid(DisasContext *dc, uint32_t sr, TCGv_i32 v)
{
}
| 20,675 |
FFmpeg | f502583663eb2cacfd7f5bb29b39420a970d4fb4 | 1 | int ff_mpeg4_encode_picture_header(MpegEncContext *s, int picture_number)
{
int time_incr;
int time_div, time_mod;
if (s->pict_type == AV_PICTURE_TYPE_I) {
if (!(s->avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER)) {
if (s->strict_std_compliance < FF_COMPLIANCE_VERY_STRICT) // HACK, the reference sw is buggy
mpeg4_encode_visual_object_header(s);
if (s->strict_std_compliance < FF_COMPLIANCE_VERY_STRICT || picture_number == 0) // HACK, the reference sw is buggy
mpeg4_encode_vol_header(s, 0, 0);
}
if (!(s->workaround_bugs & FF_BUG_MS))
mpeg4_encode_gop_header(s);
}
s->partitioned_frame = s->data_partitioning && s->pict_type != AV_PICTURE_TYPE_B;
put_bits(&s->pb, 16, 0); /* vop header */
put_bits(&s->pb, 16, VOP_STARTCODE); /* vop header */
put_bits(&s->pb, 2, s->pict_type - 1); /* pict type: I = 0 , P = 1 */
time_div = FFUDIV(s->time, s->avctx->time_base.den);
time_mod = FFUMOD(s->time, s->avctx->time_base.den);
time_incr = time_div - s->last_time_base;
av_assert0(time_incr >= 0);
// This limits the frame duration to max 1 hour
if (time_incr > 3600) {
av_log(s->avctx, AV_LOG_ERROR, "time_incr %d too large\n", time_incr);
return AVERROR(EINVAL);
}
while (time_incr--)
put_bits(&s->pb, 1, 1);
put_bits(&s->pb, 1, 0);
put_bits(&s->pb, 1, 1); /* marker */
put_bits(&s->pb, s->time_increment_bits, time_mod); /* time increment */
put_bits(&s->pb, 1, 1); /* marker */
put_bits(&s->pb, 1, 1); /* vop coded */
if (s->pict_type == AV_PICTURE_TYPE_P) {
put_bits(&s->pb, 1, s->no_rounding); /* rounding type */
}
put_bits(&s->pb, 3, 0); /* intra dc VLC threshold */
if (!s->progressive_sequence) {
put_bits(&s->pb, 1, s->current_picture_ptr->f->top_field_first);
put_bits(&s->pb, 1, s->alternate_scan);
}
// FIXME sprite stuff
put_bits(&s->pb, 5, s->qscale);
if (s->pict_type != AV_PICTURE_TYPE_I)
put_bits(&s->pb, 3, s->f_code); /* fcode_for */
if (s->pict_type == AV_PICTURE_TYPE_B)
put_bits(&s->pb, 3, s->b_code); /* fcode_back */
return 0;
}
| 20,677 |
FFmpeg | 9ebe6e391071690dbee79a645c51b14bd55c2ff4 | 1 | static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale){
int v;
int i=0;
uint8_t state[CONTEXT_SIZE];
memset(state, 128, sizeof(state));
for(v=0; i<128 ; v++){
int len= get_symbol(c, state, 0) + 1;
if(len + i > 128) return -1;
while(len--){
quant_table[i] = scale*v;
i++;
//printf("%2d ",v);
//if(i%16==0) printf("\n");
}
}
for(i=1; i<128; i++){
quant_table[256-i]= -quant_table[i];
}
quant_table[128]= -quant_table[127];
return 2*v - 1;
}
| 20,678 |
FFmpeg | ddaf33f5bba59f013a4191a4b22ba83c420cce38 | 0 | static int parse_read_intervals(const char *intervals_spec)
{
int ret, n, i;
char *p, *spec = av_strdup(intervals_spec);
if (!spec)
return AVERROR(ENOMEM);
/* preparse specification, get number of intervals */
for (n = 0, p = spec; *p; p++)
if (*p == ',')
n++;
n++;
read_intervals = av_malloc(n * sizeof(*read_intervals));
if (!read_intervals) {
ret = AVERROR(ENOMEM);
goto end;
}
read_intervals_nb = n;
/* parse intervals */
p = spec;
for (i = 0; i < n; i++) {
char *next = strchr(p, ',');
if (next)
*next++ = 0;
read_intervals[i].id = i;
ret = parse_read_interval(p, &read_intervals[i]);
if (ret < 0) {
av_log(NULL, AV_LOG_ERROR, "Error parsing read interval #%d '%s'\n",
i, p);
goto end;
}
av_log(NULL, AV_LOG_VERBOSE, "Parsed log interval ");
log_read_interval(&read_intervals[i], NULL, AV_LOG_VERBOSE);
p = next;
av_assert0(i <= read_intervals_nb);
}
av_assert0(i == read_intervals_nb);
end:
av_free(spec);
return ret;
}
| 20,679 |
qemu | efec3dd631d94160288392721a5f9c39e50fb2bc | 1 | static void piix4_pm_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->no_hotplug = 1;
k->init = piix4_pm_initfn;
k->config_write = pm_write_config;
k->vendor_id = PCI_VENDOR_ID_INTEL;
k->device_id = PCI_DEVICE_ID_INTEL_82371AB_3;
k->revision = 0x03;
k->class_id = PCI_CLASS_BRIDGE_OTHER;
dc->desc = "PM";
dc->no_user = 1;
dc->vmsd = &vmstate_acpi;
dc->props = piix4_pm_properties;
}
| 20,680 |
qemu | 0188fadb7fe460d8c4c743372b1f7b25773e183e | 1 | static void setup_rt_frame_v1(int usig, struct target_sigaction *ka,
target_siginfo_t *info,
target_sigset_t *set, CPUARMState *env)
{
struct rt_sigframe_v1 *frame;
abi_ulong frame_addr = get_sigframe(ka, env, sizeof(*frame));
struct target_sigaltstack stack;
int i;
abi_ulong info_addr, uc_addr;
if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0))
return /* 1 */;
info_addr = frame_addr + offsetof(struct rt_sigframe_v1, info);
__put_user(info_addr, &frame->pinfo);
uc_addr = frame_addr + offsetof(struct rt_sigframe_v1, uc);
__put_user(uc_addr, &frame->puc);
copy_siginfo_to_user(&frame->info, info);
/* Clear all the bits of the ucontext we don't use. */
memset(&frame->uc, 0, offsetof(struct target_ucontext_v1, tuc_mcontext));
memset(&stack, 0, sizeof(stack));
__put_user(target_sigaltstack_used.ss_sp, &stack.ss_sp);
__put_user(target_sigaltstack_used.ss_size, &stack.ss_size);
__put_user(sas_ss_flags(get_sp_from_cpustate(env)), &stack.ss_flags);
memcpy(&frame->uc.tuc_stack, &stack, sizeof(stack));
setup_sigcontext(&frame->uc.tuc_mcontext, env, set->sig[0]);
for(i = 0; i < TARGET_NSIG_WORDS; i++) {
if (__put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]))
goto end;
}
setup_return(env, ka, &frame->retcode, frame_addr, usig,
frame_addr + offsetof(struct rt_sigframe_v1, retcode));
env->regs[1] = info_addr;
env->regs[2] = uc_addr;
end:
unlock_user_struct(frame, frame_addr, 1);
}
| 20,681 |
FFmpeg | 30f3e7b524cc31155db7a1b0057f651312f6341e | 0 | static int alac_decode_frame(AVCodecContext *avctx,
void *outbuffer, int *outputsize,
AVPacket *avpkt)
{
const uint8_t *inbuffer = avpkt->data;
int input_buffer_size = avpkt->size;
ALACContext *alac = avctx->priv_data;
int channels;
unsigned int outputsamples;
int hassize;
unsigned int readsamplesize;
int isnotcompressed;
uint8_t interlacing_shift;
uint8_t interlacing_leftweight;
int i, ch;
/* short-circuit null buffers */
if (!inbuffer || !input_buffer_size)
return -1;
init_get_bits(&alac->gb, inbuffer, input_buffer_size * 8);
channels = get_bits(&alac->gb, 3) + 1;
if (channels != avctx->channels) {
av_log(avctx, AV_LOG_ERROR, "frame header channel count mismatch\n");
return AVERROR_INVALIDDATA;
}
/* 2^result = something to do with output waiting.
* perhaps matters if we read > 1 frame in a pass?
*/
skip_bits(&alac->gb, 4);
skip_bits(&alac->gb, 12); /* unknown, skip 12 bits */
/* the output sample size is stored soon */
hassize = get_bits1(&alac->gb);
alac->extra_bits = get_bits(&alac->gb, 2) << 3;
/* whether the frame is compressed */
isnotcompressed = get_bits1(&alac->gb);
if (hassize) {
/* now read the number of samples as a 32bit integer */
outputsamples = get_bits_long(&alac->gb, 32);
if(outputsamples > alac->setinfo_max_samples_per_frame){
av_log(avctx, AV_LOG_ERROR, "outputsamples %d > %d\n", outputsamples, alac->setinfo_max_samples_per_frame);
return -1;
}
} else
outputsamples = alac->setinfo_max_samples_per_frame;
alac->bytespersample = channels * av_get_bytes_per_sample(avctx->sample_fmt);
if(outputsamples > *outputsize / alac->bytespersample){
av_log(avctx, AV_LOG_ERROR, "sample buffer too small\n");
return -1;
}
*outputsize = outputsamples * alac->bytespersample;
readsamplesize = alac->setinfo_sample_size - alac->extra_bits + channels - 1;
if (readsamplesize > MIN_CACHE_BITS) {
av_log(avctx, AV_LOG_ERROR, "readsamplesize too big (%d)\n", readsamplesize);
return -1;
}
if (!isnotcompressed) {
/* so it is compressed */
int16_t predictor_coef_table[MAX_CHANNELS][32];
int predictor_coef_num[MAX_CHANNELS];
int prediction_type[MAX_CHANNELS];
int prediction_quantitization[MAX_CHANNELS];
int ricemodifier[MAX_CHANNELS];
interlacing_shift = get_bits(&alac->gb, 8);
interlacing_leftweight = get_bits(&alac->gb, 8);
for (ch = 0; ch < channels; ch++) {
prediction_type[ch] = get_bits(&alac->gb, 4);
prediction_quantitization[ch] = get_bits(&alac->gb, 4);
ricemodifier[ch] = get_bits(&alac->gb, 3);
predictor_coef_num[ch] = get_bits(&alac->gb, 5);
/* read the predictor table */
for (i = 0; i < predictor_coef_num[ch]; i++)
predictor_coef_table[ch][i] = (int16_t)get_bits(&alac->gb, 16);
}
if (alac->extra_bits) {
for (i = 0; i < outputsamples; i++) {
for (ch = 0; ch < channels; ch++)
alac->extra_bits_buffer[ch][i] = get_bits(&alac->gb, alac->extra_bits);
}
}
for (ch = 0; ch < channels; ch++) {
bastardized_rice_decompress(alac,
alac->predicterror_buffer[ch],
outputsamples,
readsamplesize,
alac->setinfo_rice_initialhistory,
alac->setinfo_rice_kmodifier,
ricemodifier[ch] * alac->setinfo_rice_historymult / 4,
(1 << alac->setinfo_rice_kmodifier) - 1);
if (prediction_type[ch] == 0) {
/* adaptive fir */
predictor_decompress_fir_adapt(alac->predicterror_buffer[ch],
alac->outputsamples_buffer[ch],
outputsamples,
readsamplesize,
predictor_coef_table[ch],
predictor_coef_num[ch],
prediction_quantitization[ch]);
} else {
av_log(avctx, AV_LOG_ERROR, "FIXME: unhandled prediction type: %i\n", prediction_type[ch]);
/* I think the only other prediction type (or perhaps this is
* just a boolean?) runs adaptive fir twice.. like:
* predictor_decompress_fir_adapt(predictor_error, tempout, ...)
* predictor_decompress_fir_adapt(predictor_error, outputsamples ...)
* little strange..
*/
}
}
} else {
/* not compressed, easy case */
for (i = 0; i < outputsamples; i++) {
for (ch = 0; ch < channels; ch++) {
alac->outputsamples_buffer[ch][i] = get_sbits_long(&alac->gb,
alac->setinfo_sample_size);
}
}
alac->extra_bits = 0;
interlacing_shift = 0;
interlacing_leftweight = 0;
}
if (get_bits(&alac->gb, 3) != 7)
av_log(avctx, AV_LOG_ERROR, "Error : Wrong End Of Frame\n");
if (channels == 2 && interlacing_leftweight) {
decorrelate_stereo(alac->outputsamples_buffer, outputsamples,
interlacing_shift, interlacing_leftweight);
}
if (alac->extra_bits) {
append_extra_bits(alac->outputsamples_buffer, alac->extra_bits_buffer,
alac->extra_bits, alac->numchannels, outputsamples);
}
switch(alac->setinfo_sample_size) {
case 16:
if (channels == 2) {
interleave_stereo_16(alac->outputsamples_buffer, outbuffer,
outputsamples);
} else {
for (i = 0; i < outputsamples; i++) {
((int16_t*)outbuffer)[i] = alac->outputsamples_buffer[0][i];
}
}
break;
case 24:
if (channels == 2) {
interleave_stereo_24(alac->outputsamples_buffer, outbuffer,
outputsamples);
} else {
for (i = 0; i < outputsamples; i++)
((int32_t *)outbuffer)[i] = alac->outputsamples_buffer[0][i] << 8;
}
break;
}
if (input_buffer_size * 8 - get_bits_count(&alac->gb) > 8)
av_log(avctx, AV_LOG_ERROR, "Error : %d bits left\n", input_buffer_size * 8 - get_bits_count(&alac->gb));
return input_buffer_size;
}
| 20,682 |
qemu | 0b8b8753e4d94901627b3e86431230f2319215c4 | 1 | static int do_co_pwrite_zeroes(BlockBackend *blk, int64_t offset,
int64_t count, int flags, int64_t *total)
{
Coroutine *co;
CoWriteZeroes data = {
.blk = blk,
.offset = offset,
.count = count,
.total = total,
.flags = flags,
.done = false,
};
if (count >> BDRV_SECTOR_BITS > INT_MAX) {
return -ERANGE;
}
co = qemu_coroutine_create(co_pwrite_zeroes_entry);
qemu_coroutine_enter(co, &data);
while (!data.done) {
aio_poll(blk_get_aio_context(blk), true);
}
if (data.ret < 0) {
return data.ret;
} else {
return 1;
}
}
| 20,683 |
qemu | e23a1b33b53d25510320b26d9f154e19c6c99725 | 1 | static void idreg_init(target_phys_addr_t addr)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, "macio_idreg");
qdev_init(dev);
s = sysbus_from_qdev(dev);
sysbus_mmio_map(s, 0, addr);
cpu_physical_memory_write_rom(addr, idreg_data, sizeof(idreg_data));
}
| 20,684 |
qemu | 3bcb80f1af107c25bf8c255f3ca88ac467f27a1a | 1 | static void fdctrl_start_transfer (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
uint8_t kh, kt, ks;
int did_seek;
fdctrl->cur_drv = fdctrl->fifo[1] & 1;
cur_drv = get_cur_drv(fdctrl);
kt = fdctrl->fifo[2];
kh = fdctrl->fifo[3];
ks = fdctrl->fifo[4];
FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
fdctrl->cur_drv, kh, kt, ks,
_fd_sector(kh, kt, ks, cur_drv->last_sect));
did_seek = 0;
switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & 0x40)) {
case 2:
/* sect too big */
fdctrl_stop_transfer(fdctrl, 0x40, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 3:
/* track too big */
fdctrl_stop_transfer(fdctrl, 0x40, 0x80, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 4:
/* No seek enabled */
fdctrl_stop_transfer(fdctrl, 0x40, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 1:
did_seek = 1;
break;
default:
break;
}
/* Set the FIFO state */
fdctrl->data_dir = direction;
fdctrl->data_pos = 0;
FD_SET_STATE(fdctrl->data_state, FD_STATE_DATA); /* FIFO ready for data */
if (fdctrl->fifo[0] & 0x80)
fdctrl->data_state |= FD_STATE_MULTI;
else
fdctrl->data_state &= ~FD_STATE_MULTI;
if (did_seek)
fdctrl->data_state |= FD_STATE_SEEK;
else
fdctrl->data_state &= ~FD_STATE_SEEK;
if (fdctrl->fifo[5] == 00) {
fdctrl->data_len = fdctrl->fifo[8];
} else {
int tmp;
fdctrl->data_len = 128 << fdctrl->fifo[5];
tmp = (cur_drv->last_sect - ks + 1);
if (fdctrl->fifo[0] & 0x80)
tmp += cur_drv->last_sect;
fdctrl->data_len *= tmp;
}
fdctrl->eot = fdctrl->fifo[6];
if (fdctrl->dma_en) {
int dma_mode;
/* DMA transfer are enabled. Check if DMA channel is well programmed */
dma_mode = DMA_get_channel_mode(fdctrl->dma_chann);
dma_mode = (dma_mode >> 2) & 3;
FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
dma_mode, direction,
(128 << fdctrl->fifo[5]) *
(cur_drv->last_sect - ks + 1), fdctrl->data_len);
if (((direction == FD_DIR_SCANE || direction == FD_DIR_SCANL ||
direction == FD_DIR_SCANH) && dma_mode == 0) ||
(direction == FD_DIR_WRITE && dma_mode == 2) ||
(direction == FD_DIR_READ && dma_mode == 1)) {
/* No access is allowed until DMA transfer has completed */
fdctrl->state |= FD_CTRL_BUSY;
/* Now, we just have to wait for the DMA controller to
* recall us...
*/
DMA_hold_DREQ(fdctrl->dma_chann);
DMA_schedule(fdctrl->dma_chann);
return;
} else {
FLOPPY_ERROR("dma_mode=%d direction=%d\n", dma_mode, direction);
}
}
FLOPPY_DPRINTF("start non-DMA transfer\n");
/* IO based transfer: calculate len */
fdctrl_raise_irq(fdctrl, 0x00);
return;
}
| 20,685 |
qemu | 1f51470d044852592922f91000e741c381582cdc | 1 | int qemu_chr_open_msmouse(QemuOpts *opts, CharDriverState **_chr)
{
CharDriverState *chr;
chr = g_malloc0(sizeof(CharDriverState));
chr->chr_write = msmouse_chr_write;
chr->chr_close = msmouse_chr_close;
qemu_add_mouse_event_handler(msmouse_event, chr, 0, "QEMU Microsoft Mouse");
*_chr = chr;
return 0;
}
| 20,686 |
FFmpeg | 86e574928536ee5249d9cf4da9f5d8714611d706 | 0 | static char *var_read_string(AVIOContext *pb, int size)
{
int n;
char *str = av_malloc(size + 1);
if (!str)
return NULL;
n = avio_get_str(pb, size, str, size + 1);
if (n < size)
avio_skip(pb, size - n);
return str;
}
| 20,687 |
FFmpeg | 6c2dbff7f08ccbf69adb23ada48bb36ba796e772 | 0 | static char *ctime1(char *buf2, int buf_size)
{
time_t ti;
char *p;
ti = time(NULL);
p = ctime(&ti);
av_strlcpy(buf2, p, buf_size);
p = buf2 + strlen(p) - 1;
if (*p == '\n')
*p = '\0';
return buf2;
}
| 20,688 |
FFmpeg | 3be27e07d3c5239f6d53b86aebcd201f722df4d0 | 1 | void ff_convert_matrix(MpegEncContext *s, int (*qmat)[64],
uint16_t (*qmat16)[2][64],
const uint16_t *quant_matrix,
int bias, int qmin, int qmax, int intra)
{
FDCTDSPContext *fdsp = &s->fdsp;
int qscale;
int shift = 0;
for (qscale = qmin; qscale <= qmax; qscale++) {
int i;
int qscale2;
if (s->q_scale_type) qscale2 = ff_mpeg2_non_linear_qscale[qscale];
else qscale2 = qscale << 1;
if (fdsp->fdct == ff_jpeg_fdct_islow_8 ||
#if CONFIG_FAANDCT
fdsp->fdct == ff_faandct ||
#endif /* CONFIG_FAANDCT */
fdsp->fdct == ff_jpeg_fdct_islow_10) {
for (i = 0; i < 64; i++) {
const int j = s->idsp.idct_permutation[i];
int64_t den = (int64_t) qscale2 * quant_matrix[j];
/* 16 <= qscale * quant_matrix[i] <= 7905
* Assume x = ff_aanscales[i] * qscale * quant_matrix[i]
* 19952 <= x <= 249205026
* (1 << 36) / 19952 >= (1 << 36) / (x) >= (1 << 36) / 249205026
* 3444240 >= (1 << 36) / (x) >= 275 */
qmat[qscale][i] = (int)((UINT64_C(2) << QMAT_SHIFT) / den);
}
} else if (fdsp->fdct == ff_fdct_ifast) {
for (i = 0; i < 64; i++) {
const int j = s->idsp.idct_permutation[i];
int64_t den = ff_aanscales[i] * (int64_t) qscale2 * quant_matrix[j];
/* 16 <= qscale * quant_matrix[i] <= 7905
* Assume x = ff_aanscales[i] * qscale * quant_matrix[i]
* 19952 <= x <= 249205026
* (1 << 36) / 19952 >= (1 << 36) / (x) >= (1 << 36) / 249205026
* 3444240 >= (1 << 36) / (x) >= 275 */
qmat[qscale][i] = (int)((UINT64_C(2) << (QMAT_SHIFT + 14)) / den);
}
} else {
for (i = 0; i < 64; i++) {
const int j = s->idsp.idct_permutation[i];
int64_t den = (int64_t) qscale2 * quant_matrix[j];
/* We can safely suppose that 16 <= quant_matrix[i] <= 255
* Assume x = qscale * quant_matrix[i]
* So 16 <= x <= 7905
* so (1 << 19) / 16 >= (1 << 19) / (x) >= (1 << 19) / 7905
* so 32768 >= (1 << 19) / (x) >= 67 */
qmat[qscale][i] = (int)((UINT64_C(2) << QMAT_SHIFT) / den);
//qmat [qscale][i] = (1 << QMAT_SHIFT_MMX) /
// (qscale * quant_matrix[i]);
qmat16[qscale][0][i] = (2 << QMAT_SHIFT_MMX) / den;
if (qmat16[qscale][0][i] == 0 ||
qmat16[qscale][0][i] == 128 * 256)
qmat16[qscale][0][i] = 128 * 256 - 1;
qmat16[qscale][1][i] =
ROUNDED_DIV(bias << (16 - QUANT_BIAS_SHIFT),
qmat16[qscale][0][i]);
}
}
for (i = intra; i < 64; i++) {
int64_t max = 8191;
if (fdsp->fdct == ff_fdct_ifast) {
max = (8191LL * ff_aanscales[i]) >> 14;
}
while (((max * qmat[qscale][i]) >> shift) > INT_MAX) {
shift++;
}
}
}
if (shift) {
av_log(NULL, AV_LOG_INFO,
"Warning, QMAT_SHIFT is larger than %d, overflows possible\n",
QMAT_SHIFT - shift);
}
}
| 20,689 |
qemu | 42ed3727536ccf80c87942b3f04e7378fe90f107 | 1 | static void __attribute__((constructor)) coroutine_init(void)
{
if (!g_thread_supported()) {
g_thread_init(NULL);
}
coroutine_cond = g_cond_new();
} | 20,690 |
qemu | 864699227911909ef1e33ecf91bf3c900715a9b1 | 1 | static void loadvm_postcopy_handle_run_bh(void *opaque)
{
Error *local_err = NULL;
MigrationIncomingState *mis = opaque;
/* TODO we should move all of this lot into postcopy_ram.c or a shared code
* in migration.c
*/
cpu_synchronize_all_post_init();
qemu_announce_self();
/* Make sure all file formats flush their mutable metadata */
bdrv_invalidate_cache_all(&local_err);
if (local_err) {
error_report_err(local_err);
}
trace_loadvm_postcopy_handle_run_cpu_sync();
cpu_synchronize_all_post_init();
trace_loadvm_postcopy_handle_run_vmstart();
if (autostart) {
/* Hold onto your hats, starting the CPU */
vm_start();
} else {
/* leave it paused and let management decide when to start the CPU */
runstate_set(RUN_STATE_PAUSED);
}
qemu_bh_delete(mis->bh);
}
| 20,691 |
qemu | 857d4f46c31d2f4d57d2f0fad9dfb584262bf9b9 | 1 | static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
int64_t sector_num,
QEMUIOVector *qiov,
int nb_sectors,
BlockDriverCompletionFunc *cb,
void *opaque,
int is_write)
{
BlockDriverAIOCBSync *acb;
acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
acb->is_write = is_write;
acb->qiov = qiov;
acb->bounce = qemu_blockalign(bs, qiov->size);
acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
if (is_write) {
qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
} else {
acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
}
qemu_bh_schedule(acb->bh);
return &acb->common;
}
| 20,693 |
qemu | 7bc4f0846f5e15dad5a54490290241243b5a4416 | 1 | static int vnc_display_listen_addr(VncDisplay *vd,
SocketAddress *addr,
const char *name,
QIOChannelSocket ***lsock,
guint **lsock_tag,
size_t *nlsock,
Error **errp)
{
QIODNSResolver *resolver = qio_dns_resolver_get_instance();
SocketAddress **rawaddrs = NULL;
size_t nrawaddrs = 0;
Error *listenerr = NULL;
bool listening = false;
size_t i;
if (qio_dns_resolver_lookup_sync(resolver, addr, &nrawaddrs,
&rawaddrs, errp) < 0) {
return -1;
}
for (i = 0; i < nrawaddrs; i++) {
QIOChannelSocket *sioc = qio_channel_socket_new();
qio_channel_set_name(QIO_CHANNEL(sioc), name);
if (qio_channel_socket_listen_sync(
sioc, rawaddrs[i], listenerr == NULL ? &listenerr : NULL) < 0) {
continue;
}
listening = true;
(*nlsock)++;
*lsock = g_renew(QIOChannelSocket *, *lsock, *nlsock);
*lsock_tag = g_renew(guint, *lsock_tag, *nlsock);
(*lsock)[*nlsock - 1] = sioc;
(*lsock_tag)[*nlsock - 1] = 0;
}
for (i = 0; i < nrawaddrs; i++) {
qapi_free_SocketAddress(rawaddrs[i]);
}
g_free(rawaddrs);
if (listenerr) {
if (!listening) {
error_propagate(errp, listenerr);
return -1;
} else {
error_free(listenerr);
}
}
for (i = 0; i < *nlsock; i++) {
(*lsock_tag)[i] = qio_channel_add_watch(
QIO_CHANNEL((*lsock)[i]),
G_IO_IN, vnc_listen_io, vd, NULL);
}
return 0;
} | 20,694 |
FFmpeg | 409d1cd2c955485798f8b0b0147c2b899b9144ec | 1 | static av_cold int cook_decode_init(AVCodecContext *avctx)
{
COOKContext *q = avctx->priv_data;
const uint8_t *edata_ptr = avctx->extradata;
const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
int extradata_size = avctx->extradata_size;
int s = 0;
unsigned int channel_mask = 0;
int samples_per_frame;
int ret;
q->avctx = avctx;
/* Take care of the codec specific extradata. */
if (extradata_size < 8) {
av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
return AVERROR_INVALIDDATA;
}
av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
/* Take data from the AVCodecContext (RM container). */
if (!avctx->channels) {
av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
return AVERROR_INVALIDDATA;
}
/* Initialize RNG. */
av_lfg_init(&q->random_state, 0);
ff_audiodsp_init(&q->adsp);
while (edata_ptr < edata_ptr_end) {
/* 8 for mono, 16 for stereo, ? for multichannel
Swap to right endianness so we don't need to care later on. */
if (extradata_size >= 8) {
q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
samples_per_frame = bytestream_get_be16(&edata_ptr);
q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
extradata_size -= 8;
}
if (extradata_size >= 8) {
bytestream_get_be32(&edata_ptr); // Unknown unused
q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
extradata_size -= 8;
}
/* Initialize extradata related variables. */
q->subpacket[s].samples_per_channel = samples_per_frame / avctx->channels;
q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
/* Initialize default data states. */
q->subpacket[s].log2_numvector_size = 5;
q->subpacket[s].total_subbands = q->subpacket[s].subbands;
q->subpacket[s].num_channels = 1;
/* Initialize version-dependent variables */
av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
q->subpacket[s].cookversion);
q->subpacket[s].joint_stereo = 0;
switch (q->subpacket[s].cookversion) {
case MONO:
if (avctx->channels != 1) {
avpriv_request_sample(avctx, "Container channels != 1");
return AVERROR_PATCHWELCOME;
}
av_log(avctx, AV_LOG_DEBUG, "MONO\n");
break;
case STEREO:
if (avctx->channels != 1) {
q->subpacket[s].bits_per_subpdiv = 1;
q->subpacket[s].num_channels = 2;
}
av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
break;
case JOINT_STEREO:
if (avctx->channels != 2) {
avpriv_request_sample(avctx, "Container channels != 2");
return AVERROR_PATCHWELCOME;
}
av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
if (avctx->extradata_size >= 16) {
q->subpacket[s].total_subbands = q->subpacket[s].subbands +
q->subpacket[s].js_subband_start;
q->subpacket[s].joint_stereo = 1;
q->subpacket[s].num_channels = 2;
}
if (q->subpacket[s].samples_per_channel > 256) {
q->subpacket[s].log2_numvector_size = 6;
}
if (q->subpacket[s].samples_per_channel > 512) {
q->subpacket[s].log2_numvector_size = 7;
}
break;
case MC_COOK:
av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
if (extradata_size >= 4)
channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
if (av_get_channel_layout_nb_channels(q->subpacket[s].channel_mask) > 1) {
q->subpacket[s].total_subbands = q->subpacket[s].subbands +
q->subpacket[s].js_subband_start;
q->subpacket[s].joint_stereo = 1;
q->subpacket[s].num_channels = 2;
q->subpacket[s].samples_per_channel = samples_per_frame >> 1;
if (q->subpacket[s].samples_per_channel > 256) {
q->subpacket[s].log2_numvector_size = 6;
}
if (q->subpacket[s].samples_per_channel > 512) {
q->subpacket[s].log2_numvector_size = 7;
}
} else
q->subpacket[s].samples_per_channel = samples_per_frame;
break;
default:
avpriv_request_sample(avctx, "Cook version %d",
q->subpacket[s].cookversion);
return AVERROR_PATCHWELCOME;
}
if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
return AVERROR_INVALIDDATA;
} else
q->samples_per_channel = q->subpacket[0].samples_per_channel;
/* Initialize variable relations */
q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
/* Try to catch some obviously faulty streams, otherwise it might be exploitable */
if (q->subpacket[s].total_subbands > 53) {
avpriv_request_sample(avctx, "total_subbands > 53");
return AVERROR_PATCHWELCOME;
}
if ((q->subpacket[s].js_vlc_bits > 6) ||
(q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
return AVERROR_INVALIDDATA;
}
if (q->subpacket[s].subbands > 50) {
avpriv_request_sample(avctx, "subbands > 50");
return AVERROR_PATCHWELCOME;
}
q->subpacket[s].gains1.now = q->subpacket[s].gain_1;
q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
q->subpacket[s].gains2.now = q->subpacket[s].gain_3;
q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
q->num_subpackets++;
s++;
if (s > MAX_SUBPACKETS) {
avpriv_request_sample(avctx, "subpackets > %d", MAX_SUBPACKETS);
return AVERROR_PATCHWELCOME;
}
}
/* Generate tables */
init_pow2table();
init_gain_table(q);
init_cplscales_table(q);
if ((ret = init_cook_vlc_tables(q)))
return ret;
if (avctx->block_align >= UINT_MAX / 2)
return AVERROR(EINVAL);
/* Pad the databuffer with:
DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
AV_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
q->decoded_bytes_buffer =
av_mallocz(avctx->block_align
+ DECODE_BYTES_PAD1(avctx->block_align)
+ AV_INPUT_BUFFER_PADDING_SIZE);
if (!q->decoded_bytes_buffer)
return AVERROR(ENOMEM);
/* Initialize transform. */
if ((ret = init_cook_mlt(q)))
return ret;
/* Initialize COOK signal arithmetic handling */
if (1) {
q->scalar_dequant = scalar_dequant_float;
q->decouple = decouple_float;
q->imlt_window = imlt_window_float;
q->interpolate = interpolate_float;
q->saturate_output = saturate_output_float;
}
/* Try to catch some obviously faulty streams, otherwise it might be exploitable */
if (q->samples_per_channel != 256 && q->samples_per_channel != 512 &&
q->samples_per_channel != 1024) {
avpriv_request_sample(avctx, "samples_per_channel = %d",
q->samples_per_channel);
return AVERROR_PATCHWELCOME;
}
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
if (channel_mask)
avctx->channel_layout = channel_mask;
else
avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
#ifdef DEBUG
dump_cook_context(q);
#endif
return 0;
}
| 20,695 |
qemu | 6970c5ff13a47df7ce41b901a4459c587a03d16b | 1 | static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
int idx;
CPUState *cs;
CPUArchId *cpu_slot;
X86CPUTopoInfo topo;
X86CPU *cpu = X86_CPU(dev);
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
/* if APIC ID is not set, set it based on socket/core/thread properties */
if (cpu->apic_id == UNASSIGNED_APIC_ID) {
int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
if (cpu->socket_id < 0) {
error_setg(errp, "CPU socket-id is not set");
} else if (cpu->socket_id > max_socket) {
error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
cpu->socket_id, max_socket);
if (cpu->core_id < 0) {
error_setg(errp, "CPU core-id is not set");
} else if (cpu->core_id > (smp_cores - 1)) {
error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
cpu->core_id, smp_cores - 1);
if (cpu->thread_id < 0) {
error_setg(errp, "CPU thread-id is not set");
} else if (cpu->thread_id > (smp_threads - 1)) {
error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
cpu->thread_id, smp_threads - 1);
topo.pkg_id = cpu->socket_id;
topo.core_id = cpu->core_id;
topo.smt_id = cpu->thread_id;
cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
if (!cpu_slot) {
MachineState *ms = MACHINE(pcms);
x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
" APIC ID %" PRIu32 ", valid index range 0:%d",
topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
ms->possible_cpus->len - 1);
if (cpu_slot->cpu) {
error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
idx, cpu->apic_id);
/* if 'address' properties socket-id/core-id/thread-id are not set, set them
* so that machine_query_hotpluggable_cpus would show correct values
*/
/* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
* once -smp refactoring is complete and there will be CPU private
* CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
" 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
cpu->socket_id = topo.pkg_id;
if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
error_setg(errp, "property core-id: %u doesn't match set apic-id:"
" 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
cpu->core_id = topo.core_id;
if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
" 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
cpu->thread_id = topo.smt_id;
cs = CPU(cpu);
cs->cpu_index = idx;
numa_cpu_pre_plug(cpu_slot, dev, errp); | 20,696 |
qemu | eca1bdf415c454093dfc7eb983cd49287c043967 | 1 | void cpu_reset(CPUARMState *env)
{
uint32_t id;
id = env->cp15.c0_cpuid;
memset(env, 0, offsetof(CPUARMState, breakpoints));
if (id)
cpu_reset_model_id(env, id);
#if defined (CONFIG_USER_ONLY)
env->uncached_cpsr = ARM_CPU_MODE_USR;
env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
#else
/* SVC mode with interrupts disabled. */
env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
/* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
clear at reset. */
if (IS_M(env))
env->uncached_cpsr &= ~CPSR_I;
env->vfp.xregs[ARM_VFP_FPEXC] = 0;
env->cp15.c2_base_mask = 0xffffc000u;
#endif
env->regs[15] = 0;
tlb_flush(env, 1); | 20,699 |
qemu | f4658285f99473367dbbc34ce6970ec4637c2388 | 1 | static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
{
BlockDriver *drv = bs->drv;
BdrvTrackedRequest req;
int ret;
if (!drv) {
return -ENOMEDIUM;
if (bdrv_check_request(bs, sector_num, nb_sectors)) {
return -EIO;
/* throttling disk read I/O */
if (bs->io_limits_enabled) {
bdrv_io_limits_intercept(bs, false, nb_sectors);
tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
tracked_request_end(&req);
return ret; | 20,700 |
qemu | 21ce148c7ec71ee32834061355a5ecfd1a11f90f | 1 | static inline void cris_ftag_i(unsigned int x)
{
register unsigned int v asm("$r10") = x;
asm ("ftagi\t[%0]\n" : : "r" (v) );
}
| 20,701 |
qemu | 35f2fd04ce8bd3eaad4b7790abb19fa2a56d7314 | 1 | abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
int flags, int fd, abi_ulong offset)
{
abi_ulong ret, end, real_start, real_end, retaddr, host_offset, host_len;
mmap_lock();
#ifdef DEBUG_MMAP
{
printf("mmap: start=0x" TARGET_ABI_FMT_lx
" len=0x" TARGET_ABI_FMT_lx " prot=%c%c%c flags=",
start, len,
prot & PROT_READ ? 'r' : '-',
prot & PROT_WRITE ? 'w' : '-',
prot & PROT_EXEC ? 'x' : '-');
if (flags & MAP_FIXED)
printf("MAP_FIXED ");
if (flags & MAP_ANONYMOUS)
printf("MAP_ANON ");
switch(flags & MAP_TYPE) {
case MAP_PRIVATE:
printf("MAP_PRIVATE ");
break;
case MAP_SHARED:
printf("MAP_SHARED ");
break;
default:
printf("[MAP_TYPE=0x%x] ", flags & MAP_TYPE);
break;
}
printf("fd=%d offset=" TARGET_ABI_FMT_lx "\n", fd, offset);
}
#endif
if (offset & ~TARGET_PAGE_MASK) {
errno = EINVAL;
goto fail;
}
len = TARGET_PAGE_ALIGN(len);
if (len == 0)
goto the_end;
real_start = start & qemu_host_page_mask;
host_offset = offset & qemu_host_page_mask;
/* If the user is asking for the kernel to find a location, do that
before we truncate the length for mapping files below. */
if (!(flags & MAP_FIXED)) {
host_len = len + offset - host_offset;
host_len = HOST_PAGE_ALIGN(host_len);
start = mmap_find_vma(real_start, host_len);
if (start == (abi_ulong)-1) {
errno = ENOMEM;
goto fail;
}
}
/* When mapping files into a memory area larger than the file, accesses
to pages beyond the file size will cause a SIGBUS.
For example, if mmaping a file of 100 bytes on a host with 4K pages
emulating a target with 8K pages, the target expects to be able to
access the first 8K. But the host will trap us on any access beyond
4K.
When emulating a target with a larger page-size than the hosts, we
may need to truncate file maps at EOF and add extra anonymous pages
up to the targets page boundary. */
if ((qemu_real_host_page_size < TARGET_PAGE_SIZE)
&& !(flags & MAP_ANONYMOUS)) {
struct stat sb;
if (fstat (fd, &sb) == -1)
goto fail;
/* Are we trying to create a map beyond EOF?. */
if (offset + len > sb.st_size) {
/* If so, truncate the file map at eof aligned with
the hosts real pagesize. Additional anonymous maps
will be created beyond EOF. */
len = REAL_HOST_PAGE_ALIGN(sb.st_size - offset);
}
}
if (!(flags & MAP_FIXED)) {
unsigned long host_start;
void *p;
host_len = len + offset - host_offset;
host_len = HOST_PAGE_ALIGN(host_len);
/* Note: we prefer to control the mapping address. It is
especially important if qemu_host_page_size >
qemu_real_host_page_size */
p = mmap(g2h(start), host_len, prot,
flags | MAP_FIXED | MAP_ANONYMOUS, -1, 0);
if (p == MAP_FAILED)
goto fail;
/* update start so that it points to the file position at 'offset' */
host_start = (unsigned long)p;
if (!(flags & MAP_ANONYMOUS)) {
p = mmap(g2h(start), len, prot,
flags | MAP_FIXED, fd, host_offset);
if (p == MAP_FAILED) {
munmap(g2h(start), host_len);
goto fail;
}
host_start += offset - host_offset;
}
start = h2g(host_start);
} else {
if (start & ~TARGET_PAGE_MASK) {
errno = EINVAL;
goto fail;
}
end = start + len;
real_end = HOST_PAGE_ALIGN(end);
/*
* Test if requested memory area fits target address space
* It can fail only on 64-bit host with 32-bit target.
* On any other target/host host mmap() handles this error correctly.
*/
if ((unsigned long)start + len - 1 > (abi_ulong) -1) {
errno = EINVAL;
goto fail;
}
/* worst case: we cannot map the file because the offset is not
aligned, so we read it */
if (!(flags & MAP_ANONYMOUS) &&
(offset & ~qemu_host_page_mask) != (start & ~qemu_host_page_mask)) {
/* msync() won't work here, so we return an error if write is
possible while it is a shared mapping */
if ((flags & MAP_TYPE) == MAP_SHARED &&
(prot & PROT_WRITE)) {
errno = EINVAL;
goto fail;
}
retaddr = target_mmap(start, len, prot | PROT_WRITE,
MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);
if (retaddr == -1)
goto fail;
if (pread(fd, g2h(start), len, offset) == -1)
goto fail;
if (!(prot & PROT_WRITE)) {
ret = target_mprotect(start, len, prot);
assert(ret == 0);
}
goto the_end;
}
/* handle the start of the mapping */
if (start > real_start) {
if (real_end == real_start + qemu_host_page_size) {
/* one single host page */
ret = mmap_frag(real_start, start, end,
prot, flags, fd, offset);
if (ret == -1)
goto fail;
goto the_end1;
}
ret = mmap_frag(real_start, start, real_start + qemu_host_page_size,
prot, flags, fd, offset);
if (ret == -1)
goto fail;
real_start += qemu_host_page_size;
}
/* handle the end of the mapping */
if (end < real_end) {
ret = mmap_frag(real_end - qemu_host_page_size,
real_end - qemu_host_page_size, end,
prot, flags, fd,
offset + real_end - qemu_host_page_size - start);
if (ret == -1)
goto fail;
real_end -= qemu_host_page_size;
}
/* map the middle (easier) */
if (real_start < real_end) {
void *p;
unsigned long offset1;
if (flags & MAP_ANONYMOUS)
offset1 = 0;
else
offset1 = offset + real_start - start;
p = mmap(g2h(real_start), real_end - real_start,
prot, flags, fd, offset1);
if (p == MAP_FAILED)
goto fail;
}
}
the_end1:
page_set_flags(start, start + len, prot | PAGE_VALID);
the_end:
#ifdef DEBUG_MMAP
printf("ret=0x" TARGET_ABI_FMT_lx "\n", start);
page_dump(stdout);
printf("\n");
#endif
tb_invalidate_phys_range(start, start + len);
mmap_unlock();
return start;
fail:
mmap_unlock();
return -1;
}
| 20,702 |
qemu | 8a0548f94edecb96acb9b7fb9106ccc821c4996f | 1 | int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
{
return -EINVAL;
}
| 20,703 |
qemu | e25cad6921ef78c8e2b7a4f59b03545bd675a9ad | 1 | static bool remove_objects(BDRVSheepdogState *s)
{
int fd, i = 0, nr_objs = 0;
Error *local_err = NULL;
int ret = 0;
bool result = true;
SheepdogInode *inode = &s->inode;
fd = connect_to_sdog(s, &local_err);
if (fd < 0) {
error_report_err(local_err);
return false;
}
nr_objs = count_data_objs(inode);
while (i < nr_objs) {
int start_idx, nr_filled_idx;
while (i < nr_objs && !inode->data_vdi_id[i]) {
i++;
}
start_idx = i;
nr_filled_idx = 0;
while (i < nr_objs && nr_filled_idx < NR_BATCHED_DISCARD) {
if (inode->data_vdi_id[i]) {
inode->data_vdi_id[i] = 0;
nr_filled_idx++;
}
i++;
}
ret = write_object(fd, s->bs,
(char *)&inode->data_vdi_id[start_idx],
vid_to_vdi_oid(s->inode.vdi_id), inode->nr_copies,
(i - start_idx) * sizeof(uint32_t),
offsetof(struct SheepdogInode,
data_vdi_id[start_idx]),
false, s->cache_flags);
if (ret < 0) {
error_report("failed to discard snapshot inode.");
result = false;
goto out;
}
}
out:
closesocket(fd);
return result;
}
| 20,704 |
qemu | bdd81addf4033ce26e6cd180b060f63095f3ded9 | 1 | static int vfio_populate_device(VFIODevice *vbasedev)
{
VFIOINTp *intp, *tmp;
int i, ret = -1;
VFIOPlatformDevice *vdev =
container_of(vbasedev, VFIOPlatformDevice, vbasedev);
if (!(vbasedev->flags & VFIO_DEVICE_FLAGS_PLATFORM)) {
error_report("vfio: Um, this isn't a platform device");
return ret;
}
vdev->regions = g_new0(VFIORegion *, vbasedev->num_regions);
for (i = 0; i < vbasedev->num_regions; i++) {
struct vfio_region_info reg_info = { .argsz = sizeof(reg_info) };
VFIORegion *ptr;
vdev->regions[i] = g_malloc0(sizeof(VFIORegion));
ptr = vdev->regions[i];
reg_info.index = i;
ret = ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, ®_info);
if (ret) {
error_report("vfio: Error getting region %d info: %m", i);
goto reg_error;
}
ptr->flags = reg_info.flags;
ptr->size = reg_info.size;
ptr->fd_offset = reg_info.offset;
ptr->nr = i;
ptr->vbasedev = vbasedev;
trace_vfio_platform_populate_regions(ptr->nr,
(unsigned long)ptr->flags,
(unsigned long)ptr->size,
ptr->vbasedev->fd,
(unsigned long)ptr->fd_offset);
}
vdev->mmap_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
vfio_intp_mmap_enable, vdev);
QSIMPLEQ_INIT(&vdev->pending_intp_queue);
for (i = 0; i < vbasedev->num_irqs; i++) {
struct vfio_irq_info irq = { .argsz = sizeof(irq) };
irq.index = i;
ret = ioctl(vbasedev->fd, VFIO_DEVICE_GET_IRQ_INFO, &irq);
if (ret) {
error_printf("vfio: error getting device %s irq info",
vbasedev->name);
goto irq_err;
} else {
trace_vfio_platform_populate_interrupts(irq.index,
irq.count,
irq.flags);
intp = vfio_init_intp(vbasedev, irq);
if (!intp) {
error_report("vfio: Error installing IRQ %d up", i);
goto irq_err;
}
}
}
return 0;
irq_err:
timer_del(vdev->mmap_timer);
QLIST_FOREACH_SAFE(intp, &vdev->intp_list, next, tmp) {
QLIST_REMOVE(intp, next);
g_free(intp);
}
reg_error:
for (i = 0; i < vbasedev->num_regions; i++) {
g_free(vdev->regions[i]);
}
g_free(vdev->regions);
return ret;
}
| 20,705 |
FFmpeg | cdc48860a8cbb0080acc0732b2e1c689cea03777 | 1 | static int execute_decode_slices(H264Context *h, int context_count)
{
MpegEncContext *const s = &h->s;
AVCodecContext *const avctx = s->avctx;
H264Context *hx;
int i;
if (s->avctx->hwaccel ||
s->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU)
return 0;
if (context_count == 1) {
return decode_slice(avctx, &h);
} else {
for (i = 1; i < context_count; i++) {
hx = h->thread_context[i];
hx->s.err_recognition = avctx->err_recognition;
hx->s.error_count = 0;
hx->x264_build = h->x264_build;
}
avctx->execute(avctx, decode_slice, h->thread_context,
NULL, context_count, sizeof(void *));
/* pull back stuff from slices to master context */
hx = h->thread_context[context_count - 1];
s->mb_x = hx->s.mb_x;
s->mb_y = hx->s.mb_y;
s->droppable = hx->s.droppable;
s->picture_structure = hx->s.picture_structure;
for (i = 1; i < context_count; i++)
h->s.error_count += h->thread_context[i]->s.error_count;
}
return 0;
} | 20,706 |
qemu | 7797a73947d5c0e63dd5552b348cf66c384b4555 | 1 | void pcmcia_socket_register(PCMCIASocket *socket)
{
struct pcmcia_socket_entry_s *entry;
entry = g_malloc(sizeof(struct pcmcia_socket_entry_s));
entry->socket = socket;
entry->next = pcmcia_sockets;
pcmcia_sockets = entry;
}
| 20,707 |
FFmpeg | 0ecca7a49f8e254c12a3a1de048d738bfbb614c6 | 1 | static void encode_subband(SnowContext *s, SubBand *b, DWTELEM *src, DWTELEM *parent, int stride, int orientation){
// encode_subband_qtree(s, b, src, parent, stride, orientation);
// encode_subband_z0run(s, b, src, parent, stride, orientation);
encode_subband_c0run(s, b, src, parent, stride, orientation);
// encode_subband_dzr(s, b, src, parent, stride, orientation);
}
| 20,708 |
qemu | 6c1fef6b59563cc415f21e03f81539ed4b33ad90 | 1 | static void handle_s_without_atn(ESPState *s)
{
uint8_t buf[32];
int len;
if (s->dma && !s->dma_enabled) {
s->dma_cb = handle_s_without_atn;
return;
}
len = get_cmd(s, buf);
if (len) {
do_busid_cmd(s, buf, 0);
}
}
| 20,709 |
qemu | 79b78a6bd47722ce23bc74287cd6322756698f09 | 1 | static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
uint32_t node, Error **errp)
{
Error *local_err = NULL;
sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
PCDIMMDevice *dimm = PC_DIMM(dev);
PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
MemoryRegion *mr = ddc->get_memory_region(dimm);
uint64_t align = memory_region_get_alignment(mr);
uint64_t size = memory_region_size(mr);
uint64_t addr;
if (size % SPAPR_MEMORY_BLOCK_SIZE) {
error_setg(&local_err, "Hotplugged memory size must be a multiple of "
"%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
goto out;
}
pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
if (local_err) {
goto out;
}
addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
if (local_err) {
pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
goto out;
}
spapr_add_lmbs(dev, addr, size, node, &error_abort);
out:
error_propagate(errp, local_err);
}
| 20,710 |
FFmpeg | 3d3b603f7f834dad919a3334506a1e5414d7368a | 1 | static int a64multi_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *pict, int *got_packet)
{
A64Context *c = avctx->priv_data;
AVFrame *const p = (AVFrame *) & c->picture;
int frame;
int x, y;
int b_height;
int b_width;
int req_size, ret;
uint8_t *buf;
int *charmap = c->mc_charmap;
uint8_t *colram = c->mc_colram;
uint8_t *charset = c->mc_charset;
int *meta = c->mc_meta_charset;
int *best_cb = c->mc_best_cb;
int charset_size = 0x800 * (INTERLACED + 1);
int colram_size = 0x100 * c->mc_use_5col;
int screen_size;
if(CROP_SCREENS) {
b_height = FFMIN(avctx->height,C64YRES) >> 3;
b_width = FFMIN(avctx->width ,C64XRES) >> 3;
screen_size = b_width * b_height;
} else {
b_height = C64YRES >> 3;
b_width = C64XRES >> 3;
screen_size = 0x400;
}
/* no data, means end encoding asap */
if (!pict) {
/* all done, end encoding */
if (!c->mc_lifetime) return 0;
/* no more frames in queue, prepare to flush remaining frames */
if (!c->mc_frame_counter) {
c->mc_lifetime = 0;
}
/* still frames in queue so limit lifetime to remaining frames */
else c->mc_lifetime = c->mc_frame_counter;
/* still new data available */
} else {
/* fill up mc_meta_charset with data until lifetime exceeds */
if (c->mc_frame_counter < c->mc_lifetime) {
*p = *pict;
p->pict_type = AV_PICTURE_TYPE_I;
p->key_frame = 1;
to_meta_with_crop(avctx, p, meta + 32000 * c->mc_frame_counter);
c->mc_frame_counter++;
if (c->next_pts == AV_NOPTS_VALUE)
c->next_pts = pict->pts;
/* lifetime is not reached so wait for next frame first */
return 0;
}
}
/* lifetime reached so now convert X frames at once */
if (c->mc_frame_counter == c->mc_lifetime) {
req_size = 0;
/* any frames to encode? */
if (c->mc_lifetime) {
req_size = charset_size + c->mc_lifetime*(screen_size + colram_size);
if ((ret = ff_alloc_packet(pkt, req_size)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Error getting output packet of size %d.\n", req_size);
return ret;
}
buf = pkt->data;
/* calc optimal new charset + charmaps */
ff_init_elbg(meta, 32, 1000 * c->mc_lifetime, best_cb, CHARSET_CHARS, 50, charmap, &c->randctx);
ff_do_elbg (meta, 32, 1000 * c->mc_lifetime, best_cb, CHARSET_CHARS, 50, charmap, &c->randctx);
/* create colorram map and a c64 readable charset */
render_charset(avctx, charset, colram);
/* copy charset to buf */
memcpy(buf, charset, charset_size);
/* advance pointers */
buf += charset_size;
charset += charset_size;
}
/* write x frames to buf */
for (frame = 0; frame < c->mc_lifetime; frame++) {
/* copy charmap to buf. buf is uchar*, charmap is int*, so no memcpy here, sorry */
for (y = 0; y < b_height; y++) {
for (x = 0; x < b_width; x++) {
buf[y * b_width + x] = charmap[y * b_width + x];
}
}
/* advance pointers */
buf += screen_size;
req_size += screen_size;
/* compress and copy colram to buf */
if (c->mc_use_5col) {
a64_compress_colram(buf, charmap, colram);
/* advance pointers */
buf += colram_size;
req_size += colram_size;
}
/* advance to next charmap */
charmap += 1000;
}
AV_WB32(avctx->extradata + 4, c->mc_frame_counter);
AV_WB32(avctx->extradata + 8, charset_size);
AV_WB32(avctx->extradata + 12, screen_size + colram_size);
/* reset counter */
c->mc_frame_counter = 0;
pkt->pts = pkt->dts = c->next_pts;
c->next_pts = AV_NOPTS_VALUE;
pkt->size = req_size;
pkt->flags |= AV_PKT_FLAG_KEY;
*got_packet = !!req_size;
}
return 0;
}
| 20,711 |
FFmpeg | 23daee0dcc57b647b9d62d4c905e94acf0c6b8e0 | 1 | static av_always_inline void MPV_motion_internal(MpegEncContext *s,
uint8_t *dest_y, uint8_t *dest_cb,
uint8_t *dest_cr, int dir,
uint8_t **ref_picture,
op_pixels_func (*pix_op)[4],
qpel_mc_func (*qpix_op)[16], int is_mpeg12)
{
int dxy, mx, my, src_x, src_y, motion_x, motion_y;
int mb_x, mb_y, i;
uint8_t *ptr, *dest;
mb_x = s->mb_x;
mb_y = s->mb_y;
prefetch_motion(s, ref_picture, dir);
if(!is_mpeg12 && s->obmc && s->pict_type != AV_PICTURE_TYPE_B){
LOCAL_ALIGNED_8(int16_t, mv_cache, [4], [4][2]);
Picture *cur_frame = &s->current_picture;
const int xy= s->mb_x + s->mb_y*s->mb_stride;
const int mot_stride= s->b8_stride;
const int mot_xy= mb_x*2 + mb_y*2*mot_stride;
av_assert2(!s->mb_skipped);
AV_COPY32(mv_cache[1][1], cur_frame->motion_val[0][mot_xy ]);
AV_COPY32(mv_cache[1][2], cur_frame->motion_val[0][mot_xy + 1]);
AV_COPY32(mv_cache[2][1], cur_frame->motion_val[0][mot_xy + mot_stride ]);
AV_COPY32(mv_cache[2][2], cur_frame->motion_val[0][mot_xy + mot_stride + 1]);
AV_COPY32(mv_cache[3][1], cur_frame->motion_val[0][mot_xy + mot_stride ]);
AV_COPY32(mv_cache[3][2], cur_frame->motion_val[0][mot_xy + mot_stride + 1]);
if (mb_y == 0 || IS_INTRA(cur_frame->mb_type[xy - s->mb_stride])) {
AV_COPY32(mv_cache[0][1], mv_cache[1][1]);
AV_COPY32(mv_cache[0][2], mv_cache[1][2]);
}else{
AV_COPY32(mv_cache[0][1], cur_frame->motion_val[0][mot_xy - mot_stride ]);
AV_COPY32(mv_cache[0][2], cur_frame->motion_val[0][mot_xy - mot_stride + 1]);
}
if (mb_x == 0 || IS_INTRA(cur_frame->mb_type[xy - 1])) {
AV_COPY32(mv_cache[1][0], mv_cache[1][1]);
AV_COPY32(mv_cache[2][0], mv_cache[2][1]);
}else{
AV_COPY32(mv_cache[1][0], cur_frame->motion_val[0][mot_xy - 1]);
AV_COPY32(mv_cache[2][0], cur_frame->motion_val[0][mot_xy - 1 + mot_stride]);
}
if (mb_x + 1 >= s->mb_width || IS_INTRA(cur_frame->mb_type[xy + 1])) {
AV_COPY32(mv_cache[1][3], mv_cache[1][2]);
AV_COPY32(mv_cache[2][3], mv_cache[2][2]);
}else{
AV_COPY32(mv_cache[1][3], cur_frame->motion_val[0][mot_xy + 2]);
AV_COPY32(mv_cache[2][3], cur_frame->motion_val[0][mot_xy + 2 + mot_stride]);
}
mx = 0;
my = 0;
for(i=0;i<4;i++) {
const int x= (i&1)+1;
const int y= (i>>1)+1;
int16_t mv[5][2]= {
{mv_cache[y][x ][0], mv_cache[y][x ][1]},
{mv_cache[y-1][x][0], mv_cache[y-1][x][1]},
{mv_cache[y][x-1][0], mv_cache[y][x-1][1]},
{mv_cache[y][x+1][0], mv_cache[y][x+1][1]},
{mv_cache[y+1][x][0], mv_cache[y+1][x][1]}};
//FIXME cleanup
obmc_motion(s, dest_y + ((i & 1) * 8) + (i >> 1) * 8 * s->linesize,
ref_picture[0],
mb_x * 16 + (i & 1) * 8, mb_y * 16 + (i >>1) * 8,
pix_op[1],
mv);
mx += mv[0][0];
my += mv[0][1];
}
if(!CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY))
chroma_4mv_motion(s, dest_cb, dest_cr, ref_picture, pix_op[1], mx, my);
return;
}
switch(s->mv_type) {
case MV_TYPE_16X16:
if(s->mcsel){
if(s->real_sprite_warping_points==1){
gmc1_motion(s, dest_y, dest_cb, dest_cr,
ref_picture);
}else{
gmc_motion(s, dest_y, dest_cb, dest_cr,
ref_picture);
}
}else if(!is_mpeg12 && s->quarter_sample){
qpel_motion(s, dest_y, dest_cb, dest_cr,
0, 0, 0,
ref_picture, pix_op, qpix_op,
s->mv[dir][0][0], s->mv[dir][0][1], 16);
} else if (!is_mpeg12 && (CONFIG_WMV2_DECODER || CONFIG_WMV2_ENCODER) &&
s->mspel && s->codec_id == AV_CODEC_ID_WMV2) {
ff_mspel_motion(s, dest_y, dest_cb, dest_cr,
ref_picture, pix_op,
s->mv[dir][0][0], s->mv[dir][0][1], 16);
}else
{
mpeg_motion(s, dest_y, dest_cb, dest_cr, 0,
ref_picture, pix_op,
s->mv[dir][0][0], s->mv[dir][0][1], 16, mb_y);
}
break;
case MV_TYPE_8X8:
if (!is_mpeg12) {
mx = 0;
my = 0;
if(s->quarter_sample){
for(i=0;i<4;i++) {
motion_x = s->mv[dir][i][0];
motion_y = s->mv[dir][i][1];
dxy = ((motion_y & 3) << 2) | (motion_x & 3);
src_x = mb_x * 16 + (motion_x >> 2) + (i & 1) * 8;
src_y = mb_y * 16 + (motion_y >> 2) + (i >>1) * 8;
/* WARNING: do no forget half pels */
src_x = av_clip(src_x, -16, s->width);
if (src_x == s->width)
dxy &= ~3;
src_y = av_clip(src_y, -16, s->height);
if (src_y == s->height)
dxy &= ~12;
ptr = ref_picture[0] + (src_y * s->linesize) + (src_x);
if(s->flags&CODEC_FLAG_EMU_EDGE){
if( (unsigned)src_x > FFMAX(s->h_edge_pos - (motion_x&3) - 8, 0)
|| (unsigned)src_y > FFMAX(s->v_edge_pos - (motion_y&3) - 8, 0)){
s->vdsp.emulated_edge_mc(s->edge_emu_buffer, ptr,
s->linesize, 9, 9,
src_x, src_y,
s->h_edge_pos, s->v_edge_pos);
ptr= s->edge_emu_buffer;
}
}
dest = dest_y + ((i & 1) * 8) + (i >> 1) * 8 * s->linesize;
qpix_op[1][dxy](dest, ptr, s->linesize);
mx += s->mv[dir][i][0]/2;
my += s->mv[dir][i][1]/2;
}
}else{
for(i=0;i<4;i++) {
hpel_motion(s, dest_y + ((i & 1) * 8) + (i >> 1) * 8 * s->linesize,
ref_picture[0],
mb_x * 16 + (i & 1) * 8, mb_y * 16 + (i >>1) * 8,
pix_op[1],
s->mv[dir][i][0], s->mv[dir][i][1]);
mx += s->mv[dir][i][0];
my += s->mv[dir][i][1];
}
}
if(!CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY))
chroma_4mv_motion(s, dest_cb, dest_cr, ref_picture, pix_op[1], mx, my);
}
break;
case MV_TYPE_FIELD:
if (s->picture_structure == PICT_FRAME) {
if(!is_mpeg12 && s->quarter_sample){
for(i=0; i<2; i++){
qpel_motion(s, dest_y, dest_cb, dest_cr,
1, i, s->field_select[dir][i],
ref_picture, pix_op, qpix_op,
s->mv[dir][i][0], s->mv[dir][i][1], 8);
}
}else{
/* top field */
mpeg_motion_field(s, dest_y, dest_cb, dest_cr,
0, s->field_select[dir][0],
ref_picture, pix_op,
s->mv[dir][0][0], s->mv[dir][0][1], 8, mb_y);
/* bottom field */
mpeg_motion_field(s, dest_y, dest_cb, dest_cr,
1, s->field_select[dir][1],
ref_picture, pix_op,
s->mv[dir][1][0], s->mv[dir][1][1], 8, mb_y);
}
} else {
if(s->picture_structure != s->field_select[dir][0] + 1 && s->pict_type != AV_PICTURE_TYPE_B && !s->first_field){
ref_picture = s->current_picture_ptr->f.data;
}
mpeg_motion(s, dest_y, dest_cb, dest_cr,
s->field_select[dir][0],
ref_picture, pix_op,
s->mv[dir][0][0], s->mv[dir][0][1], 16, mb_y>>1);
}
break;
case MV_TYPE_16X8:
for(i=0; i<2; i++){
uint8_t ** ref2picture;
if(s->picture_structure == s->field_select[dir][i] + 1
|| s->pict_type == AV_PICTURE_TYPE_B || s->first_field){
ref2picture= ref_picture;
}else{
ref2picture = s->current_picture_ptr->f.data;
}
mpeg_motion(s, dest_y, dest_cb, dest_cr,
s->field_select[dir][i],
ref2picture, pix_op,
s->mv[dir][i][0], s->mv[dir][i][1] + 16*i, 8, mb_y>>1);
dest_y += 16*s->linesize;
dest_cb+= (16>>s->chroma_y_shift)*s->uvlinesize;
dest_cr+= (16>>s->chroma_y_shift)*s->uvlinesize;
}
break;
case MV_TYPE_DMV:
if(s->picture_structure == PICT_FRAME){
for(i=0; i<2; i++){
int j;
for(j=0; j<2; j++){
mpeg_motion_field(s, dest_y, dest_cb, dest_cr,
j, j^i, ref_picture, pix_op,
s->mv[dir][2*i + j][0],
s->mv[dir][2*i + j][1], 8, mb_y);
}
pix_op = s->hdsp.avg_pixels_tab;
}
}else{
for(i=0; i<2; i++){
mpeg_motion(s, dest_y, dest_cb, dest_cr,
s->picture_structure != i+1,
ref_picture, pix_op,
s->mv[dir][2*i][0],s->mv[dir][2*i][1],16, mb_y>>1);
// after put we make avg of the same block
pix_op=s->hdsp.avg_pixels_tab;
//opposite parity is always in the same frame if this is second field
if(!s->first_field){
ref_picture = s->current_picture_ptr->f.data;
}
}
}
break;
default: av_assert2(0);
}
}
| 20,713 |
qemu | decb471488dd9e7e7ab9957f120cb501c4489f63 | 1 | void ppc_store_sr (CPUPPCState *env, int srnum, target_ulong value)
{
LOG_MMU("%s: reg=%d " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__,
srnum, value, env->sr[srnum]);
#if defined(TARGET_PPC64)
if (env->mmu_model & POWERPC_MMU_64) {
uint64_t rb = 0, rs = 0;
/* ESID = srnum */
rb |= ((uint32_t)srnum & 0xf) << 28;
/* Set the valid bit */
rb |= 1 << 27;
/* Index = ESID */
rb |= (uint32_t)srnum;
/* VSID = VSID */
rs |= (value & 0xfffffff) << 12;
/* flags = flags */
rs |= ((value >> 27) & 0xf) << 9;
ppc_store_slb(env, rb, rs);
} else
#endif
if (env->sr[srnum] != value) {
env->sr[srnum] = value;
/* Invalidating 256MB of virtual memory in 4kB pages is way longer than
flusing the whole TLB. */
#if !defined(FLUSH_ALL_TLBS) && 0
{
target_ulong page, end;
/* Invalidate 256 MB of virtual memory */
page = (16 << 20) * srnum;
end = page + (16 << 20);
for (; page != end; page += TARGET_PAGE_SIZE)
tlb_flush_page(env, page);
}
#else
tlb_flush(env, 1);
#endif
}
}
| 20,714 |
FFmpeg | d1604b3de96575195b219028e2c4f08b2259aa7d | 1 | int ff_h264_decode_mb_cabac(H264Context *h) {
MpegEncContext * const s = &h->s;
int mb_xy;
int mb_type, partition_count, cbp = 0;
int dct8x8_allowed= h->pps.transform_8x8_mode;
int decode_chroma = h->sps.chroma_format_idc == 1 || h->sps.chroma_format_idc == 2;
const int pixel_shift = h->pixel_shift;
mb_xy = h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
if( h->slice_type_nos != AV_PICTURE_TYPE_I ) {
int skip;
/* a skipped mb needs the aff flag from the following mb */
if( FRAME_MBAFF && (s->mb_y&1)==1 && h->prev_mb_skipped )
skip = h->next_mb_skipped;
else
skip = decode_cabac_mb_skip( h, s->mb_x, s->mb_y );
/* read skip flags */
if( skip ) {
if( FRAME_MBAFF && (s->mb_y&1)==0 ){
s->current_picture.f.mb_type[mb_xy] = MB_TYPE_SKIP;
h->next_mb_skipped = decode_cabac_mb_skip( h, s->mb_x, s->mb_y+1 );
if(!h->next_mb_skipped)
h->mb_mbaff = h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
}
decode_mb_skip(h);
h->cbp_table[mb_xy] = 0;
h->chroma_pred_mode_table[mb_xy] = 0;
h->last_qscale_diff = 0;
return 0;
}
}
if(FRAME_MBAFF){
if( (s->mb_y&1) == 0 )
h->mb_mbaff =
h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
}
h->prev_mb_skipped = 0;
fill_decode_neighbors(h, -(MB_FIELD));
if( h->slice_type_nos == AV_PICTURE_TYPE_B ) {
int ctx = 0;
assert(h->slice_type_nos == AV_PICTURE_TYPE_B);
if( !IS_DIRECT( h->left_type[LTOP]-1 ) )
ctx++;
if( !IS_DIRECT( h->top_type-1 ) )
ctx++;
if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+ctx] ) ){
mb_type= 0; /* B_Direct_16x16 */
}else if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+3] ) ) {
mb_type= 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ); /* B_L[01]_16x16 */
}else{
int bits;
bits = get_cabac_noinline( &h->cabac, &h->cabac_state[27+4] ) << 3;
bits+= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 2;
bits+= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 1;
bits+= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
if( bits < 8 ){
mb_type= bits + 3; /* B_Bi_16x16 through B_L1_L0_16x8 */
}else if( bits == 13 ){
mb_type= decode_cabac_intra_mb_type(h, 32, 0);
goto decode_intra_mb;
}else if( bits == 14 ){
mb_type= 11; /* B_L1_L0_8x16 */
}else if( bits == 15 ){
mb_type= 22; /* B_8x8 */
}else{
bits= ( bits<<1 ) + get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
mb_type= bits - 4; /* B_L0_Bi_* through B_Bi_Bi_* */
}
}
partition_count= b_mb_type_info[mb_type].partition_count;
mb_type= b_mb_type_info[mb_type].type;
} else if( h->slice_type_nos == AV_PICTURE_TYPE_P ) {
if( get_cabac_noinline( &h->cabac, &h->cabac_state[14] ) == 0 ) {
/* P-type */
if( get_cabac_noinline( &h->cabac, &h->cabac_state[15] ) == 0 ) {
/* P_L0_D16x16, P_8x8 */
mb_type= 3 * get_cabac_noinline( &h->cabac, &h->cabac_state[16] );
} else {
/* P_L0_D8x16, P_L0_D16x8 */
mb_type= 2 - get_cabac_noinline( &h->cabac, &h->cabac_state[17] );
}
partition_count= p_mb_type_info[mb_type].partition_count;
mb_type= p_mb_type_info[mb_type].type;
} else {
mb_type= decode_cabac_intra_mb_type(h, 17, 0);
goto decode_intra_mb;
}
} else {
mb_type= decode_cabac_intra_mb_type(h, 3, 1);
if(h->slice_type == AV_PICTURE_TYPE_SI && mb_type)
mb_type--;
assert(h->slice_type_nos == AV_PICTURE_TYPE_I);
decode_intra_mb:
partition_count = 0;
cbp= i_mb_type_info[mb_type].cbp;
h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
mb_type= i_mb_type_info[mb_type].type;
}
if(MB_FIELD)
mb_type |= MB_TYPE_INTERLACED;
h->slice_table[ mb_xy ]= h->slice_num;
if(IS_INTRA_PCM(mb_type)) {
static const uint16_t mb_sizes[4] = {256,384,512,768};
const int mb_size = mb_sizes[h->sps.chroma_format_idc]*h->sps.bit_depth_luma >> 3;
const uint8_t *ptr;
// We assume these blocks are very rare so we do not optimize it.
// FIXME The two following lines get the bitstream position in the cabac
// decode, I think it should be done by a function in cabac.h (or cabac.c).
ptr= h->cabac.bytestream;
if(h->cabac.low&0x1) ptr--;
if(CABAC_BITS==16){
if(h->cabac.low&0x1FF) ptr--;
}
// The pixels are stored in the same order as levels in h->mb array.
memcpy(h->mb, ptr, mb_size); ptr+=mb_size;
ff_init_cabac_decoder(&h->cabac, ptr, h->cabac.bytestream_end - ptr);
// All blocks are present
h->cbp_table[mb_xy] = 0xf7ef;
h->chroma_pred_mode_table[mb_xy] = 0;
// In deblocking, the quantizer is 0
s->current_picture.f.qscale_table[mb_xy] = 0;
// All coeffs are present
memset(h->non_zero_count[mb_xy], 16, 48);
s->current_picture.f.mb_type[mb_xy] = mb_type;
h->last_qscale_diff = 0;
return 0;
}
if(MB_MBAFF){
h->ref_count[0] <<= 1;
h->ref_count[1] <<= 1;
}
fill_decode_caches(h, mb_type);
if( IS_INTRA( mb_type ) ) {
int i, pred_mode;
if( IS_INTRA4x4( mb_type ) ) {
if( dct8x8_allowed && get_cabac_noinline( &h->cabac, &h->cabac_state[399 + h->neighbor_transform_size] ) ) {
mb_type |= MB_TYPE_8x8DCT;
for( i = 0; i < 16; i+=4 ) {
int pred = pred_intra_mode( h, i );
int mode = decode_cabac_mb_intra4x4_pred_mode( h, pred );
fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
}
} else {
for( i = 0; i < 16; i++ ) {
int pred = pred_intra_mode( h, i );
h->intra4x4_pred_mode_cache[ scan8[i] ] = decode_cabac_mb_intra4x4_pred_mode( h, pred );
//av_log( s->avctx, AV_LOG_ERROR, "i4x4 pred=%d mode=%d\n", pred, h->intra4x4_pred_mode_cache[ scan8[i] ] );
}
}
write_back_intra_pred_mode(h);
if( ff_h264_check_intra4x4_pred_mode(h) < 0 ) return -1;
} else {
h->intra16x16_pred_mode= ff_h264_check_intra_pred_mode( h, h->intra16x16_pred_mode, 0 );
if( h->intra16x16_pred_mode < 0 ) return -1;
}
if(decode_chroma){
h->chroma_pred_mode_table[mb_xy] =
pred_mode = decode_cabac_mb_chroma_pre_mode( h );
pred_mode= ff_h264_check_intra_pred_mode( h, pred_mode, 1 );
if( pred_mode < 0 ) return -1;
h->chroma_pred_mode= pred_mode;
} else {
h->chroma_pred_mode= DC_128_PRED8x8;
}
} else if( partition_count == 4 ) {
int i, j, sub_partition_count[4], list, ref[2][4];
if( h->slice_type_nos == AV_PICTURE_TYPE_B ) {
for( i = 0; i < 4; i++ ) {
h->sub_mb_type[i] = decode_cabac_b_mb_sub_type( h );
sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
}
if( IS_DIRECT(h->sub_mb_type[0] | h->sub_mb_type[1] |
h->sub_mb_type[2] | h->sub_mb_type[3]) ) {
ff_h264_pred_direct_motion(h, &mb_type);
h->ref_cache[0][scan8[4]] =
h->ref_cache[1][scan8[4]] =
h->ref_cache[0][scan8[12]] =
h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
for( i = 0; i < 4; i++ )
fill_rectangle( &h->direct_cache[scan8[4*i]], 2, 2, 8, (h->sub_mb_type[i]>>1)&0xFF, 1 );
}
} else {
for( i = 0; i < 4; i++ ) {
h->sub_mb_type[i] = decode_cabac_p_mb_sub_type( h );
sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
}
}
for( list = 0; list < h->list_count; list++ ) {
for( i = 0; i < 4; i++ ) {
if(IS_DIRECT(h->sub_mb_type[i])) continue;
if(IS_DIR(h->sub_mb_type[i], 0, list)){
if( h->ref_count[list] > 1 ){
ref[list][i] = decode_cabac_mb_ref( h, list, 4*i );
if(ref[list][i] >= (unsigned)h->ref_count[list]){
av_log(s->avctx, AV_LOG_ERROR, "Reference %d >= %d\n", ref[list][i], h->ref_count[list]);
}
}else
ref[list][i] = 0;
} else {
ref[list][i] = -1;
}
h->ref_cache[list][ scan8[4*i]+1 ]=
h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
}
}
if(dct8x8_allowed)
dct8x8_allowed = get_dct8x8_allowed(h);
for(list=0; list<h->list_count; list++){
for(i=0; i<4; i++){
h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ];
if(IS_DIRECT(h->sub_mb_type[i])){
fill_rectangle(h->mvd_cache[list][scan8[4*i]], 2, 2, 8, 0, 2);
continue;
}
if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
const int sub_mb_type= h->sub_mb_type[i];
const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
for(j=0; j<sub_partition_count[i]; j++){
int mpx, mpy;
int mx, my;
const int index= 4*i + block_width*j;
int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
uint8_t (* mvd_cache)[2]= &h->mvd_cache[list][ scan8[index] ];
pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
DECODE_CABAC_MB_MVD( h, list, index)
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
if(IS_SUB_8X8(sub_mb_type)){
mv_cache[ 1 ][0]=
mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
mv_cache[ 1 ][1]=
mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
mvd_cache[ 1 ][0]=
mvd_cache[ 8 ][0]= mvd_cache[ 9 ][0]= mpx;
mvd_cache[ 1 ][1]=
mvd_cache[ 8 ][1]= mvd_cache[ 9 ][1]= mpy;
}else if(IS_SUB_8X4(sub_mb_type)){
mv_cache[ 1 ][0]= mx;
mv_cache[ 1 ][1]= my;
mvd_cache[ 1 ][0]= mpx;
mvd_cache[ 1 ][1]= mpy;
}else if(IS_SUB_4X8(sub_mb_type)){
mv_cache[ 8 ][0]= mx;
mv_cache[ 8 ][1]= my;
mvd_cache[ 8 ][0]= mpx;
mvd_cache[ 8 ][1]= mpy;
}
mv_cache[ 0 ][0]= mx;
mv_cache[ 0 ][1]= my;
mvd_cache[ 0 ][0]= mpx;
mvd_cache[ 0 ][1]= mpy;
}
}else{
fill_rectangle(h->mv_cache [list][ scan8[4*i] ], 2, 2, 8, 0, 4);
fill_rectangle(h->mvd_cache[list][ scan8[4*i] ], 2, 2, 8, 0, 2);
}
}
}
} else if( IS_DIRECT(mb_type) ) {
ff_h264_pred_direct_motion(h, &mb_type);
fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 2);
fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 2);
dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
} else {
int list, i;
if(IS_16X16(mb_type)){
for(list=0; list<h->list_count; list++){
if(IS_DIR(mb_type, 0, list)){
int ref;
if(h->ref_count[list] > 1){
ref= decode_cabac_mb_ref(h, list, 0);
if(ref >= (unsigned)h->ref_count[list]){
av_log(s->avctx, AV_LOG_ERROR, "Reference %d >= %d\n", ref, h->ref_count[list]);
}
}else
ref=0;
fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, ref, 1);
}
}
for(list=0; list<h->list_count; list++){
if(IS_DIR(mb_type, 0, list)){
int mx,my,mpx,mpy;
pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
DECODE_CABAC_MB_MVD( h, list, 0)
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
fill_rectangle(h->mvd_cache[list][ scan8[0] ], 4, 4, 8, pack8to16(mpx,mpy), 2);
fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
}
}
}
else if(IS_16X8(mb_type)){
for(list=0; list<h->list_count; list++){
for(i=0; i<2; i++){
if(IS_DIR(mb_type, i, list)){
int ref;
if(h->ref_count[list] > 1){
ref= decode_cabac_mb_ref( h, list, 8*i );
if(ref >= (unsigned)h->ref_count[list]){
av_log(s->avctx, AV_LOG_ERROR, "Reference %d >= %d\n", ref, h->ref_count[list]);
}
}else
ref=0;
fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, ref, 1);
}else
fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
}
}
for(list=0; list<h->list_count; list++){
for(i=0; i<2; i++){
if(IS_DIR(mb_type, i, list)){
int mx,my,mpx,mpy;
pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
DECODE_CABAC_MB_MVD( h, list, 8*i)
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack8to16(mpx,mpy), 2);
fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
}else{
fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 2);
fill_rectangle(h-> mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
}
}
}
}else{
assert(IS_8X16(mb_type));
for(list=0; list<h->list_count; list++){
for(i=0; i<2; i++){
if(IS_DIR(mb_type, i, list)){ //FIXME optimize
int ref;
if(h->ref_count[list] > 1){
ref= decode_cabac_mb_ref( h, list, 4*i );
if(ref >= (unsigned)h->ref_count[list]){
av_log(s->avctx, AV_LOG_ERROR, "Reference %d >= %d\n", ref, h->ref_count[list]);
}
}else
ref=0;
fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, ref, 1);
}else
fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
}
}
for(list=0; list<h->list_count; list++){
for(i=0; i<2; i++){
if(IS_DIR(mb_type, i, list)){
int mx,my,mpx,mpy;
pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
DECODE_CABAC_MB_MVD( h, list, 4*i)
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack8to16(mpx,mpy), 2);
fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
}else{
fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 2);
fill_rectangle(h-> mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
}
}
}
}
}
if( IS_INTER( mb_type ) ) {
h->chroma_pred_mode_table[mb_xy] = 0;
write_back_motion( h, mb_type );
}
if( !IS_INTRA16x16( mb_type ) ) {
cbp = decode_cabac_mb_cbp_luma( h );
if(decode_chroma)
cbp |= decode_cabac_mb_cbp_chroma( h ) << 4;
}
h->cbp_table[mb_xy] = h->cbp = cbp;
if( dct8x8_allowed && (cbp&15) && !IS_INTRA( mb_type ) ) {
mb_type |= MB_TYPE_8x8DCT * get_cabac_noinline( &h->cabac, &h->cabac_state[399 + h->neighbor_transform_size] );
}
/* It would be better to do this in fill_decode_caches, but we don't know
* the transform mode of the current macroblock there. */
if (CHROMA444 && IS_8x8DCT(mb_type)){
int i;
uint8_t *nnz_cache = h->non_zero_count_cache;
for (i = 0; i < 2; i++){
if (h->left_type[LEFT(i)] && !IS_8x8DCT(h->left_type[LEFT(i)])){
nnz_cache[3+8* 1 + 2*8*i]=
nnz_cache[3+8* 2 + 2*8*i]=
nnz_cache[3+8* 6 + 2*8*i]=
nnz_cache[3+8* 7 + 2*8*i]=
nnz_cache[3+8*11 + 2*8*i]=
nnz_cache[3+8*12 + 2*8*i]= IS_INTRA(mb_type) ? 64 : 0;
}
}
if (h->top_type && !IS_8x8DCT(h->top_type)){
uint32_t top_empty = CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040;
AV_WN32A(&nnz_cache[4+8* 0], top_empty);
AV_WN32A(&nnz_cache[4+8* 5], top_empty);
AV_WN32A(&nnz_cache[4+8*10], top_empty);
}
}
s->current_picture.f.mb_type[mb_xy] = mb_type;
if( cbp || IS_INTRA16x16( mb_type ) ) {
const uint8_t *scan, *scan8x8;
const uint32_t *qmul;
if(IS_INTERLACED(mb_type)){
scan8x8= s->qscale ? h->field_scan8x8 : h->field_scan8x8_q0;
scan= s->qscale ? h->field_scan : h->field_scan_q0;
}else{
scan8x8= s->qscale ? h->zigzag_scan8x8 : h->zigzag_scan8x8_q0;
scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
}
// decode_cabac_mb_dqp
if(get_cabac_noinline( &h->cabac, &h->cabac_state[60 + (h->last_qscale_diff != 0)])){
int val = 1;
int ctx= 2;
const int max_qp = 51 + 6*(h->sps.bit_depth_luma-8);
while( get_cabac_noinline( &h->cabac, &h->cabac_state[60 + ctx] ) ) {
ctx= 3;
val++;
if(val > 2*max_qp){ //prevent infinite loop
av_log(h->s.avctx, AV_LOG_ERROR, "cabac decode of qscale diff failed at %d %d\n", s->mb_x, s->mb_y);
}
}
if( val&0x01 )
val= (val + 1)>>1 ;
else
val= -((val + 1)>>1);
h->last_qscale_diff = val;
s->qscale += val;
if(((unsigned)s->qscale) > max_qp){
if(s->qscale<0) s->qscale+= max_qp+1;
else s->qscale-= max_qp+1;
}
h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
}else
h->last_qscale_diff=0;
decode_cabac_luma_residual(h, scan, scan8x8, pixel_shift, mb_type, cbp, 0);
if(CHROMA444){
decode_cabac_luma_residual(h, scan, scan8x8, pixel_shift, mb_type, cbp, 1);
decode_cabac_luma_residual(h, scan, scan8x8, pixel_shift, mb_type, cbp, 2);
} else if (CHROMA422) {
if( cbp&0x30 ){
int c;
for( c = 0; c < 2; c++ ) {
//av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-DC\n",c );
decode_cabac_residual_dc_422(h, h->mb + ((256 + 16*16*c) << pixel_shift), 3,
CHROMA_DC_BLOCK_INDEX + c,
chroma422_dc_scan, 8);
}
}
if( cbp&0x20 ) {
int c, i, i8x8;
for( c = 0; c < 2; c++ ) {
DCTELEM *mb = h->mb + (16*(16 + 16*c) << pixel_shift);
qmul = h->dequant4_coeff[c+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[c]];
for (i8x8 = 0; i8x8 < 2; i8x8++) {
for (i = 0; i < 4; i++) {
const int index = 16 + 16 * c + 8*i8x8 + i;
//av_log(s->avctx, AV_LOG_ERROR, "INTRA C%d-AC %d\n",c, index - 16);
decode_cabac_residual_nondc(h, mb, 4, index, scan + 1, qmul, 15);
mb += 16<<pixel_shift;
}
}
}
} else {
fill_rectangle(&h->non_zero_count_cache[scan8[16]], 4, 4, 8, 0, 1);
fill_rectangle(&h->non_zero_count_cache[scan8[32]], 4, 4, 8, 0, 1);
}
} else /* yuv420 */ {
if( cbp&0x30 ){
int c;
for( c = 0; c < 2; c++ ) {
//av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-DC\n",c );
decode_cabac_residual_dc(h, h->mb + ((256 + 16*16*c) << pixel_shift), 3, CHROMA_DC_BLOCK_INDEX+c, chroma_dc_scan, 4);
}
}
if( cbp&0x20 ) {
int c, i;
for( c = 0; c < 2; c++ ) {
qmul = h->dequant4_coeff[c+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[c]];
for( i = 0; i < 4; i++ ) {
const int index = 16 + 16 * c + i;
//av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-AC %d\n",c, index - 16 );
decode_cabac_residual_nondc(h, h->mb + (16*index << pixel_shift), 4, index, scan + 1, qmul, 15);
}
}
} else {
fill_rectangle(&h->non_zero_count_cache[scan8[16]], 4, 4, 8, 0, 1);
fill_rectangle(&h->non_zero_count_cache[scan8[32]], 4, 4, 8, 0, 1);
}
}
} else {
fill_rectangle(&h->non_zero_count_cache[scan8[ 0]], 4, 4, 8, 0, 1);
fill_rectangle(&h->non_zero_count_cache[scan8[16]], 4, 4, 8, 0, 1);
fill_rectangle(&h->non_zero_count_cache[scan8[32]], 4, 4, 8, 0, 1);
h->last_qscale_diff = 0;
}
s->current_picture.f.qscale_table[mb_xy] = s->qscale;
write_back_non_zero_count(h);
if(MB_MBAFF){
h->ref_count[0] >>= 1;
h->ref_count[1] >>= 1;
}
return 0;
} | 20,715 |
FFmpeg | 7f526efd17973ec6d2204f7a47b6923e2be31363 | 1 | static inline void RENAME(rgb32to15)(const uint8_t *src, uint8_t *dst, unsigned src_size)
{
const uint8_t *s = src;
const uint8_t *end;
#ifdef HAVE_MMX
const uint8_t *mm_end;
#endif
uint16_t *d = (uint16_t *)dst;
end = s + src_size;
#ifdef HAVE_MMX
mm_end = end - 15;
#if 1 //is faster only if multiplies are reasonable fast (FIXME figure out on which cpus this is faster, on Athlon its slightly faster)
asm volatile(
"movq %3, %%mm5 \n\t"
"movq %4, %%mm6 \n\t"
"movq %5, %%mm7 \n\t"
".balign 16 \n\t"
"1: \n\t"
PREFETCH" 32(%1) \n\t"
"movd (%1), %%mm0 \n\t"
"movd 4(%1), %%mm3 \n\t"
"punpckldq 8(%1), %%mm0 \n\t"
"punpckldq 12(%1), %%mm3 \n\t"
"movq %%mm0, %%mm1 \n\t"
"movq %%mm3, %%mm4 \n\t"
"pand %%mm6, %%mm0 \n\t"
"pand %%mm6, %%mm3 \n\t"
"pmaddwd %%mm7, %%mm0 \n\t"
"pmaddwd %%mm7, %%mm3 \n\t"
"pand %%mm5, %%mm1 \n\t"
"pand %%mm5, %%mm4 \n\t"
"por %%mm1, %%mm0 \n\t"
"por %%mm4, %%mm3 \n\t"
"psrld $6, %%mm0 \n\t"
"pslld $10, %%mm3 \n\t"
"por %%mm3, %%mm0 \n\t"
MOVNTQ" %%mm0, (%0) \n\t"
"add $16, %1 \n\t"
"add $8, %0 \n\t"
"cmp %2, %1 \n\t"
" jb 1b \n\t"
: "+r" (d), "+r"(s)
: "r" (mm_end), "m" (mask3215g), "m" (mask3216br), "m" (mul3215)
);
#else
__asm __volatile(PREFETCH" %0"::"m"(*src):"memory");
__asm __volatile(
"movq %0, %%mm7\n\t"
"movq %1, %%mm6\n\t"
::"m"(red_15mask),"m"(green_15mask));
while(s < mm_end)
{
__asm __volatile(
PREFETCH" 32%1\n\t"
"movd %1, %%mm0\n\t"
"movd 4%1, %%mm3\n\t"
"punpckldq 8%1, %%mm0\n\t"
"punpckldq 12%1, %%mm3\n\t"
"movq %%mm0, %%mm1\n\t"
"movq %%mm0, %%mm2\n\t"
"movq %%mm3, %%mm4\n\t"
"movq %%mm3, %%mm5\n\t"
"psrlq $3, %%mm0\n\t"
"psrlq $3, %%mm3\n\t"
"pand %2, %%mm0\n\t"
"pand %2, %%mm3\n\t"
"psrlq $6, %%mm1\n\t"
"psrlq $6, %%mm4\n\t"
"pand %%mm6, %%mm1\n\t"
"pand %%mm6, %%mm4\n\t"
"psrlq $9, %%mm2\n\t"
"psrlq $9, %%mm5\n\t"
"pand %%mm7, %%mm2\n\t"
"pand %%mm7, %%mm5\n\t"
"por %%mm1, %%mm0\n\t"
"por %%mm4, %%mm3\n\t"
"por %%mm2, %%mm0\n\t"
"por %%mm5, %%mm3\n\t"
"psllq $16, %%mm3\n\t"
"por %%mm3, %%mm0\n\t"
MOVNTQ" %%mm0, %0\n\t"
:"=m"(*d):"m"(*s),"m"(blue_15mask):"memory");
d += 4;
s += 16;
}
#endif
__asm __volatile(SFENCE:::"memory");
__asm __volatile(EMMS:::"memory");
#endif
while(s < end)
{
// FIXME on bigendian
const int src= *s; s += 4;
*d++ = ((src&0xFF)>>3) + ((src&0xF800)>>6) + ((src&0xF80000)>>9);
}
}
| 20,717 |
FFmpeg | bc426827492f6c741608af37e2eaab6c8072815d | 1 | static int mov_write_trailer(AVFormatContext *s)
{
MOVMuxContext *mov = s->priv_data;
AVIOContext *pb = s->pb;
int res = 0;
int i;
int64_t moov_pos = avio_tell(pb);
if (!(mov->flags & FF_MOV_FLAG_FRAGMENT)) {
/* Write size of mdat tag */
if (mov->mdat_size + 8 <= UINT32_MAX) {
avio_seek(pb, mov->mdat_pos, SEEK_SET);
avio_wb32(pb, mov->mdat_size + 8);
} else {
/* overwrite 'wide' placeholder atom */
avio_seek(pb, mov->mdat_pos - 8, SEEK_SET);
/* special value: real atom size will be 64 bit value after
* tag field */
avio_wb32(pb, 1);
ffio_wfourcc(pb, "mdat");
avio_wb64(pb, mov->mdat_size + 16);
}
avio_seek(pb, mov->reserved_moov_size ? mov->reserved_moov_pos : moov_pos, SEEK_SET);
mov_write_moov_tag(pb, mov, s);
if(mov->reserved_moov_size){
int64_t size= mov->reserved_moov_size - (avio_tell(pb) - mov->reserved_moov_pos);
if(size < 8){
av_log(s, AV_LOG_ERROR, "reserved_moov_size is too small, needed %"PRId64" additional\n", 8-size);
return -1;
}
avio_wb32(pb, size);
ffio_wfourcc(pb, "free");
for(i=0; i<size; i++)
avio_w8(pb, 0);
avio_seek(pb, moov_pos, SEEK_SET);
}
} else {
mov_flush_fragment(s);
mov_write_mfra_tag(pb, mov);
}
if (mov->chapter_track)
av_freep(&mov->tracks[mov->chapter_track].enc);
for (i=0; i<mov->nb_streams; i++) {
if (mov->tracks[i].tag == MKTAG('r','t','p',' '))
ff_mov_close_hinting(&mov->tracks[i]);
else if (mov->tracks[i].tag == MKTAG('t','m','c','d'))
av_freep(&mov->tracks[i].enc);
if (mov->flags & FF_MOV_FLAG_FRAGMENT &&
mov->tracks[i].vc1_info.struct_offset && s->pb->seekable) {
int64_t off = avio_tell(pb);
uint8_t buf[7];
if (mov_write_dvc1_structs(&mov->tracks[i], buf) >= 0) {
avio_seek(pb, mov->tracks[i].vc1_info.struct_offset, SEEK_SET);
avio_write(pb, buf, 7);
avio_seek(pb, off, SEEK_SET);
}
}
av_freep(&mov->tracks[i].cluster);
av_freep(&mov->tracks[i].frag_info);
if (mov->tracks[i].vos_len)
av_free(mov->tracks[i].vos_data);
}
avio_flush(pb);
av_freep(&mov->tracks);
return res;
}
| 20,718 |
FFmpeg | ebe3a41ea3b93579379b0460338ff511f9749602 | 1 | static void dvbsub_parse_region_segment(AVCodecContext *avctx,
const uint8_t *buf, int buf_size)
{
DVBSubContext *ctx = avctx->priv_data;
const uint8_t *buf_end = buf + buf_size;
int region_id, object_id;
int av_unused version;
DVBSubRegion *region;
DVBSubObject *object;
DVBSubObjectDisplay *display;
int fill;
if (buf_size < 10)
region_id = *buf++;
region = get_region(ctx, region_id);
if (!region) {
region = av_mallocz(sizeof(DVBSubRegion));
region->id = region_id;
region->version = -1;
region->next = ctx->region_list;
ctx->region_list = region;
}
version = ((*buf)>>4) & 15;
fill = ((*buf++) >> 3) & 1;
region->width = AV_RB16(buf);
buf += 2;
region->height = AV_RB16(buf);
buf += 2;
if (region->width * region->height != region->buf_size) {
av_free(region->pbuf);
region->buf_size = region->width * region->height;
region->pbuf = av_malloc(region->buf_size);
fill = 1;
region->dirty = 0;
}
region->depth = 1 << (((*buf++) >> 2) & 7);
if(region->depth<2 || region->depth>8){
av_log(avctx, AV_LOG_ERROR, "region depth %d is invalid\n", region->depth);
region->depth= 4;
}
region->clut = *buf++;
if (region->depth == 8) {
region->bgcolor = *buf++;
buf += 1;
} else {
buf += 1;
if (region->depth == 4)
region->bgcolor = (((*buf++) >> 4) & 15);
else
region->bgcolor = (((*buf++) >> 2) & 3);
}
av_dlog(avctx, "Region %d, (%dx%d)\n", region_id, region->width, region->height);
if (fill) {
memset(region->pbuf, region->bgcolor, region->buf_size);
av_dlog(avctx, "Fill region (%d)\n", region->bgcolor);
}
delete_region_display_list(ctx, region);
while (buf + 5 < buf_end) {
object_id = AV_RB16(buf);
buf += 2;
object = get_object(ctx, object_id);
if (!object) {
object = av_mallocz(sizeof(DVBSubObject));
object->id = object_id;
object->next = ctx->object_list;
ctx->object_list = object;
}
object->type = (*buf) >> 6;
display = av_mallocz(sizeof(DVBSubObjectDisplay));
display->object_id = object_id;
display->region_id = region_id;
display->x_pos = AV_RB16(buf) & 0xfff;
buf += 2;
display->y_pos = AV_RB16(buf) & 0xfff;
buf += 2;
if ((object->type == 1 || object->type == 2) && buf+1 < buf_end) {
display->fgcolor = *buf++;
display->bgcolor = *buf++;
}
display->region_list_next = region->display_list;
region->display_list = display;
display->object_list_next = object->display_list;
object->display_list = display;
}
} | 20,719 |
qemu | ad0b46e6ac769b187cb4dcf0065675ef8a198a5e | 1 | static int local_link(FsContext *ctx, V9fsPath *oldpath,
V9fsPath *dirpath, const char *name)
{
int ret;
V9fsString newpath;
char *buffer, *buffer1;
int serrno;
v9fs_string_init(&newpath);
v9fs_string_sprintf(&newpath, "%s/%s", dirpath->data, name);
buffer = rpath(ctx, oldpath->data);
buffer1 = rpath(ctx, newpath.data);
ret = link(buffer, buffer1);
g_free(buffer);
if (ret < 0) {
goto out;
}
/* now link the virtfs_metadata files */
if (ctx->export_flags & V9FS_SM_MAPPED_FILE) {
char *vbuffer, *vbuffer1;
/* Link the .virtfs_metadata files. Create the metada directory */
ret = local_create_mapped_attr_dir(ctx, newpath.data);
if (ret < 0) {
goto err_out;
}
vbuffer = local_mapped_attr_path(ctx, oldpath->data);
vbuffer1 = local_mapped_attr_path(ctx, newpath.data);
ret = link(vbuffer, vbuffer1);
g_free(vbuffer);
g_free(vbuffer1);
if (ret < 0 && errno != ENOENT) {
goto err_out;
}
}
goto out;
err_out:
serrno = errno;
remove(buffer1);
errno = serrno;
out:
g_free(buffer1);
v9fs_string_free(&newpath);
return ret;
}
| 20,721 |
qemu | 7c47959d0cb05db43014141a156ada0b6d53a750 | 1 | static int parse_str(StringInputVisitor *siv, const char *name, Error **errp)
{
char *str = (char *) siv->string;
long long start, end;
Range *cur;
char *endptr;
if (siv->ranges) {
return 0;
}
do {
errno = 0;
start = strtoll(str, &endptr, 0);
if (errno == 0 && endptr > str) {
if (*endptr == '\0') {
cur = g_malloc0(sizeof(*cur));
cur->begin = start;
cur->end = start + 1;
siv->ranges = g_list_insert_sorted_merged(siv->ranges, cur,
range_compare);
cur = NULL;
str = NULL;
} else if (*endptr == '-') {
str = endptr + 1;
errno = 0;
end = strtoll(str, &endptr, 0);
if (errno == 0 && endptr > str && start <= end &&
(start > INT64_MAX - 65536 ||
end < start + 65536)) {
if (*endptr == '\0') {
cur = g_malloc0(sizeof(*cur));
cur->begin = start;
cur->end = end + 1;
siv->ranges =
g_list_insert_sorted_merged(siv->ranges,
cur,
range_compare);
cur = NULL;
str = NULL;
} else if (*endptr == ',') {
str = endptr + 1;
cur = g_malloc0(sizeof(*cur));
cur->begin = start;
cur->end = end + 1;
siv->ranges =
g_list_insert_sorted_merged(siv->ranges,
cur,
range_compare);
cur = NULL;
} else {
goto error;
}
} else {
goto error;
}
} else if (*endptr == ',') {
str = endptr + 1;
cur = g_malloc0(sizeof(*cur));
cur->begin = start;
cur->end = start + 1;
siv->ranges = g_list_insert_sorted_merged(siv->ranges,
cur,
range_compare);
cur = NULL;
} else {
goto error;
}
} else {
goto error;
}
} while (str);
return 0;
error:
g_list_foreach(siv->ranges, free_range, NULL);
g_list_free(siv->ranges);
siv->ranges = NULL;
error_setg(errp, QERR_INVALID_PARAMETER_VALUE, name ? name : "null",
"an int64 value or range");
return -1;
}
| 20,723 |
FFmpeg | 82c252972b494402818aa07df5bdbac16111c09d | 0 | static av_cold int adpcm_encode_init(AVCodecContext *avctx)
{
ADPCMEncodeContext *s = avctx->priv_data;
uint8_t *extradata;
int i;
if (avctx->channels > 2)
return -1; /* only stereo or mono =) */
if (avctx->trellis && (unsigned)avctx->trellis > 16U) {
av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
return -1;
}
if (avctx->trellis) {
int frontier = 1 << avctx->trellis;
int max_paths = frontier * FREEZE_INTERVAL;
FF_ALLOC_OR_GOTO(avctx, s->paths,
max_paths * sizeof(*s->paths), error);
FF_ALLOC_OR_GOTO(avctx, s->node_buf,
2 * frontier * sizeof(*s->node_buf), error);
FF_ALLOC_OR_GOTO(avctx, s->nodep_buf,
2 * frontier * sizeof(*s->nodep_buf), error);
FF_ALLOC_OR_GOTO(avctx, s->trellis_hash,
65536 * sizeof(*s->trellis_hash), error);
}
avctx->bits_per_coded_sample = av_get_bits_per_sample(avctx->codec->id);
switch (avctx->codec->id) {
case CODEC_ID_ADPCM_IMA_WAV:
/* each 16 bits sample gives one nibble
and we have 4 bytes per channel overhead */
avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 /
(4 * avctx->channels) + 1;
/* seems frame_size isn't taken into account...
have to buffer the samples :-( */
avctx->block_align = BLKSIZE;
avctx->bits_per_coded_sample = 4;
break;
case CODEC_ID_ADPCM_IMA_QT:
avctx->frame_size = 64;
avctx->block_align = 34 * avctx->channels;
break;
case CODEC_ID_ADPCM_MS:
/* each 16 bits sample gives one nibble
and we have 7 bytes per channel overhead */
avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2;
avctx->block_align = BLKSIZE;
avctx->bits_per_coded_sample = 4;
avctx->extradata_size = 32;
extradata = avctx->extradata = av_malloc(avctx->extradata_size);
if (!extradata)
return AVERROR(ENOMEM);
bytestream_put_le16(&extradata, avctx->frame_size);
bytestream_put_le16(&extradata, 7); /* wNumCoef */
for (i = 0; i < 7; i++) {
bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff1[i] * 4);
bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff2[i] * 4);
}
break;
case CODEC_ID_ADPCM_YAMAHA:
avctx->frame_size = BLKSIZE * avctx->channels;
avctx->block_align = BLKSIZE;
break;
case CODEC_ID_ADPCM_SWF:
if (avctx->sample_rate != 11025 &&
avctx->sample_rate != 22050 &&
avctx->sample_rate != 44100) {
av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, "
"22050 or 44100\n");
goto error;
}
avctx->frame_size = 512 * (avctx->sample_rate / 11025);
break;
default:
goto error;
}
avctx->coded_frame = avcodec_alloc_frame();
avctx->coded_frame->key_frame= 1;
return 0;
error:
av_freep(&s->paths);
av_freep(&s->node_buf);
av_freep(&s->nodep_buf);
av_freep(&s->trellis_hash);
return -1;
}
| 20,724 |
qemu | a8170e5e97ad17ca169c64ba87ae2f53850dab4c | 0 | void *etraxfs_dmac_init(target_phys_addr_t base, int nr_channels)
{
struct fs_dma_ctrl *ctrl = NULL;
ctrl = g_malloc0(sizeof *ctrl);
ctrl->bh = qemu_bh_new(DMA_run, ctrl);
ctrl->nr_channels = nr_channels;
ctrl->channels = g_malloc0(sizeof ctrl->channels[0] * nr_channels);
memory_region_init_io(&ctrl->mmio, &dma_ops, ctrl, "etraxfs-dma",
nr_channels * 0x2000);
memory_region_add_subregion(get_system_memory(), base, &ctrl->mmio);
return ctrl;
}
| 20,727 |
qemu | 42a268c241183877192c376d03bd9b6d527407c7 | 0 | static inline void gen_cond_branch(DisasContext *dc, int cond)
{
int l1;
l1 = gen_new_label();
tcg_gen_brcond_tl(cond, cpu_R[dc->r0], cpu_R[dc->r1], l1);
gen_goto_tb(dc, 0, dc->pc + 4);
gen_set_label(l1);
gen_goto_tb(dc, 1, dc->pc + (sign_extend(dc->imm16 << 2, 16)));
dc->is_jmp = DISAS_TB_JUMP;
}
| 20,729 |
FFmpeg | ba91bf58cd8bab4de55ec31ffcdf6cc71f7e5e42 | 0 | static void RENAME(sws_init_swScale)(SwsContext *c)
{
enum PixelFormat srcFormat = c->srcFormat;
if (!(c->flags & SWS_BITEXACT)) {
if (c->flags & SWS_ACCURATE_RND) {
c->yuv2yuv1 = RENAME(yuv2yuv1_ar );
c->yuv2yuvX = RENAME(yuv2yuvX_ar );
switch (c->dstFormat) {
case PIX_FMT_RGB32: c->yuv2packedX = RENAME(yuv2rgb32_X_ar); break;
case PIX_FMT_BGR24: c->yuv2packedX = RENAME(yuv2bgr24_X_ar); break;
case PIX_FMT_RGB555: c->yuv2packedX = RENAME(yuv2rgb555_X_ar); break;
case PIX_FMT_RGB565: c->yuv2packedX = RENAME(yuv2rgb565_X_ar); break;
case PIX_FMT_YUYV422: c->yuv2packedX = RENAME(yuv2yuyv422_X_ar); break;
default: break;
}
} else {
c->yuv2yuv1 = RENAME(yuv2yuv1 );
c->yuv2yuvX = RENAME(yuv2yuvX );
switch (c->dstFormat) {
case PIX_FMT_RGB32: c->yuv2packedX = RENAME(yuv2rgb32_X); break;
case PIX_FMT_BGR24: c->yuv2packedX = RENAME(yuv2bgr24_X); break;
case PIX_FMT_RGB555: c->yuv2packedX = RENAME(yuv2rgb555_X); break;
case PIX_FMT_RGB565: c->yuv2packedX = RENAME(yuv2rgb565_X); break;
case PIX_FMT_YUYV422: c->yuv2packedX = RENAME(yuv2yuyv422_X); break;
default: break;
}
}
switch (c->dstFormat) {
case PIX_FMT_RGB32:
c->yuv2packed1 = RENAME(yuv2rgb32_1);
c->yuv2packed2 = RENAME(yuv2rgb32_2);
break;
case PIX_FMT_BGR24:
c->yuv2packed1 = RENAME(yuv2bgr24_1);
c->yuv2packed2 = RENAME(yuv2bgr24_2);
break;
case PIX_FMT_RGB555:
c->yuv2packed1 = RENAME(yuv2rgb555_1);
c->yuv2packed2 = RENAME(yuv2rgb555_2);
break;
case PIX_FMT_RGB565:
c->yuv2packed1 = RENAME(yuv2rgb565_1);
c->yuv2packed2 = RENAME(yuv2rgb565_2);
break;
case PIX_FMT_YUYV422:
c->yuv2packed1 = RENAME(yuv2yuyv422_1);
c->yuv2packed2 = RENAME(yuv2yuyv422_2);
break;
default:
break;
}
}
#if !COMPILE_TEMPLATE_MMX2
c->hScale = RENAME(hScale );
#endif /* !COMPILE_TEMPLATE_MMX2 */
// Use the new MMX scaler if the MMX2 one can't be used (it is faster than the x86 ASM one).
#if COMPILE_TEMPLATE_MMX2
if (c->flags & SWS_FAST_BILINEAR && c->canMMX2BeUsed)
{
c->hyscale_fast = RENAME(hyscale_fast);
c->hcscale_fast = RENAME(hcscale_fast);
} else {
#endif /* COMPILE_TEMPLATE_MMX2 */
c->hyscale_fast = NULL;
c->hcscale_fast = NULL;
#if COMPILE_TEMPLATE_MMX2
}
#endif /* COMPILE_TEMPLATE_MMX2 */
#if !COMPILE_TEMPLATE_MMX2
switch(srcFormat) {
case PIX_FMT_YUYV422 : c->chrToYV12 = RENAME(yuy2ToUV); break;
case PIX_FMT_UYVY422 : c->chrToYV12 = RENAME(uyvyToUV); break;
case PIX_FMT_NV12 : c->chrToYV12 = RENAME(nv12ToUV); break;
case PIX_FMT_NV21 : c->chrToYV12 = RENAME(nv21ToUV); break;
case PIX_FMT_GRAY16LE :
case PIX_FMT_YUV420P9LE:
case PIX_FMT_YUV422P10LE:
case PIX_FMT_YUV420P10LE:
case PIX_FMT_YUV420P16LE:
case PIX_FMT_YUV422P16LE:
case PIX_FMT_YUV444P16LE: c->hScale16= RENAME(hScale16); break;
}
#endif /* !COMPILE_TEMPLATE_MMX2 */
if (!c->chrSrcHSubSample) {
switch(srcFormat) {
case PIX_FMT_BGR24 : c->chrToYV12 = RENAME(bgr24ToUV); break;
case PIX_FMT_RGB24 : c->chrToYV12 = RENAME(rgb24ToUV); break;
default: break;
}
}
switch (srcFormat) {
#if !COMPILE_TEMPLATE_MMX2
case PIX_FMT_YUYV422 :
case PIX_FMT_Y400A :
c->lumToYV12 = RENAME(yuy2ToY); break;
case PIX_FMT_UYVY422 :
c->lumToYV12 = RENAME(uyvyToY); break;
#endif /* !COMPILE_TEMPLATE_MMX2 */
case PIX_FMT_BGR24 : c->lumToYV12 = RENAME(bgr24ToY); break;
case PIX_FMT_RGB24 : c->lumToYV12 = RENAME(rgb24ToY); break;
default: break;
}
#if !COMPILE_TEMPLATE_MMX2
if (c->alpPixBuf) {
switch (srcFormat) {
case PIX_FMT_Y400A : c->alpToYV12 = RENAME(yuy2ToY); break;
default: break;
}
}
#endif /* !COMPILE_TEMPLATE_MMX2 */
if(isAnyRGB(c->srcFormat))
c->hScale16= RENAME(hScale16);
}
| 20,730 |
qemu | f8e3cbd3b5d1c76ec295cfc8858fd696188c270d | 0 | static void tftp_handle_rrq(struct tftp_t *tp, int pktlen)
{
struct tftp_session *spt;
int s, k, n;
u_int8_t *src, *dst;
s = tftp_session_allocate(tp);
if (s < 0) {
return;
}
spt = &tftp_sessions[s];
src = tp->x.tp_buf;
dst = spt->filename;
n = pktlen - ((uint8_t *)&tp->x.tp_buf[0] - (uint8_t *)tp);
/* get name */
for (k = 0; k < n; k++) {
if (k < TFTP_FILENAME_MAX) {
dst[k] = src[k];
}
else {
return;
}
if (src[k] == '\0') {
break;
}
}
if (k >= n) {
return;
}
k++;
/* check mode */
if ((n - k) < 6) {
return;
}
if (memcmp(&src[k], "octet\0", 6) != 0) {
tftp_send_error(spt, 4, "Unsupported transfer mode", tp);
return;
}
k += 6; /* skipping octet */
/* do sanity checks on the filename */
if ((spt->filename[0] != '/')
|| (spt->filename[strlen((char *)spt->filename) - 1] == '/')
|| strstr((char *)spt->filename, "/../")) {
tftp_send_error(spt, 2, "Access violation", tp);
return;
}
/* only allow exported prefixes */
if (!tftp_prefix) {
tftp_send_error(spt, 2, "Access violation", tp);
return;
}
/* check if the file exists */
if (tftp_read_data(spt, 0, spt->filename, 0) < 0) {
tftp_send_error(spt, 1, "File not found", tp);
return;
}
if (src[n - 1] != 0) {
tftp_send_error(spt, 2, "Access violation", tp);
return;
}
while (k < n) {
const char *key, *value;
key = (char *)src + k;
k += strlen(key) + 1;
if (k >= n) {
tftp_send_error(spt, 2, "Access violation", tp);
return;
}
value = (char *)src + k;
k += strlen(value) + 1;
if (strcmp(key, "tsize") == 0) {
int tsize = atoi(value);
struct stat stat_p;
if (tsize == 0 && tftp_prefix) {
char buffer[1024];
int len;
len = snprintf(buffer, sizeof(buffer), "%s/%s",
tftp_prefix, spt->filename);
if (stat(buffer, &stat_p) == 0)
tsize = stat_p.st_size;
else {
tftp_send_error(spt, 1, "File not found", tp);
return;
}
}
tftp_send_oack(spt, "tsize", tsize, tp);
}
}
tftp_send_data(spt, 1, tp);
}
| 20,731 |
qemu | 1ea879e5580f63414693655fcf0328559cdce138 | 0 | static int waveformat_to_audio_settings (WAVEFORMATEX *wfx, audsettings_t *as)
{
if (wfx->wFormatTag != WAVE_FORMAT_PCM) {
dolog ("Invalid wave format, tag is not PCM, but %d\n",
wfx->wFormatTag);
return -1;
}
if (!wfx->nSamplesPerSec) {
dolog ("Invalid wave format, frequency is zero\n");
return -1;
}
as->freq = wfx->nSamplesPerSec;
switch (wfx->nChannels) {
case 1:
as->nchannels = 1;
break;
case 2:
as->nchannels = 2;
break;
default:
dolog (
"Invalid wave format, number of channels is not 1 or 2, but %d\n",
wfx->nChannels
);
return -1;
}
switch (wfx->wBitsPerSample) {
case 8:
as->fmt = AUD_FMT_U8;
break;
case 16:
as->fmt = AUD_FMT_S16;
break;
case 32:
as->fmt = AUD_FMT_S32;
break;
default:
dolog ("Invalid wave format, bits per sample is not "
"8, 16 or 32, but %d\n",
wfx->wBitsPerSample);
return -1;
}
return 0;
}
| 20,732 |
qemu | 5c8d6f008c0555b54cf10550fa86199a2cfabbca | 0 | void css_queue_crw(uint8_t rsc, uint8_t erc, int chain, uint16_t rsid)
{
CrwContainer *crw_cont;
trace_css_crw(rsc, erc, rsid, chain ? "(chained)" : "");
/* TODO: Maybe use a static crw pool? */
crw_cont = g_try_malloc0(sizeof(CrwContainer));
if (!crw_cont) {
channel_subsys.crws_lost = true;
return;
}
crw_cont->crw.flags = (rsc << 8) | erc;
if (chain) {
crw_cont->crw.flags |= CRW_FLAGS_MASK_C;
}
crw_cont->crw.rsid = rsid;
if (channel_subsys.crws_lost) {
crw_cont->crw.flags |= CRW_FLAGS_MASK_R;
channel_subsys.crws_lost = false;
}
QTAILQ_INSERT_TAIL(&channel_subsys.pending_crws, crw_cont, sibling);
if (channel_subsys.do_crw_mchk) {
channel_subsys.do_crw_mchk = false;
/* Inject crw pending machine check. */
s390_crw_mchk();
}
}
| 20,733 |
qemu | 0d82d0e8b98cf0ea03a45f8542d835ebd3a84cd3 | 0 | static int buffered_get_fd(void *opaque)
{
QEMUFileBuffered *s = opaque;
return qemu_get_fd(s->file);
}
| 20,734 |
qemu | 3d002df33eb034757d98e1ae529318f57df78f91 | 0 | size_t qemu_file_get_rate_limit(QEMUFile *f)
{
if (f->get_rate_limit)
return f->get_rate_limit(f->opaque);
return 0;
}
| 20,735 |
qemu | bf937a7965c1d1a6dce4f615d0ead2e2ab505004 | 0 | static uint8_t *csrhci_out_packet(struct csrhci_s *s, int len)
{
int off = s->out_start + s->out_len;
/* TODO: do the padding here, i.e. align len */
s->out_len += len;
if (off < FIFO_LEN) {
if (off + len > FIFO_LEN && (s->out_size = off + len) > FIFO_LEN * 2) {
fprintf(stderr, "%s: can't alloc %i bytes\n", __func__, len);
exit(-1);
}
return s->outfifo + off;
}
if (s->out_len > s->out_size) {
fprintf(stderr, "%s: can't alloc %i bytes\n", __func__, len);
exit(-1);
}
return s->outfifo + off - s->out_size;
}
| 20,736 |
qemu | c645d5acee0ae022534cb609184277ec2b4a8577 | 0 | static void test_dummy_createcmdl(void)
{
QemuOpts *opts;
DummyObject *dobj;
Error *err = NULL;
const char *params = TYPE_DUMMY \
",id=dev0," \
"bv=yes,sv=Hiss hiss hiss,av=platypus";
qemu_add_opts(&qemu_object_opts);
opts = qemu_opts_parse(&qemu_object_opts, params, true, &err);
g_assert(err == NULL);
g_assert(opts);
dobj = DUMMY_OBJECT(user_creatable_add_opts(opts, &err));
g_assert(err == NULL);
g_assert(dobj);
g_assert_cmpstr(dobj->sv, ==, "Hiss hiss hiss");
g_assert(dobj->bv == true);
g_assert(dobj->av == DUMMY_PLATYPUS);
user_creatable_del("dev0", &err);
g_assert(err == NULL);
error_free(err);
/*
* cmdline-parsing via qemu_opts_parse() results in a QemuOpts entry
* corresponding to the Object's ID to be added to the QemuOptsList
* for objects. To avoid having this entry conflict with future
* Objects using the same ID (which can happen in cases where
* qemu_opts_parse() is used to parse the object params, such as
* with hmp_object_add() at the time of this comment), we need to
* check for this in user_creatable_del() and remove the QemuOpts if
* it is present.
*
* FIXME: add an assert to verify that the QemuOpts is cleaned up
* once the corresponding cleanup code is added.
*/
}
| 20,737 |
qemu | c8256f9d23bba4fac3b0b6a9e6e3dc12362cbe0b | 0 | static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
CPUState *env;
qemu_irq *pic;
int index;
int iomemtype;
unsigned long flash_size;
if (!cpu_model)
cpu_model = "arm926";
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
pic = arm_pic_init_cpu(env);
/* For now we use a fixed - the original - RAM size */
cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
/* Catch various stuff not handled by separate subsystems */
iomemtype = cpu_register_io_memory(0, musicpal_readfn,
musicpal_writefn, env);
cpu_register_physical_memory(0x80000000, 0x10000, iomemtype);
pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
if (serial_hds[0])
serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
serial_hds[0], 1);
if (serial_hds[1])
serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
serial_hds[1], 1);
/* Register flash */
index = drive_get_index(IF_PFLASH, 0, 0);
if (index != -1) {
flash_size = bdrv_getlength(drives_table[index].bdrv);
if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
flash_size != 32*1024*1024) {
fprintf(stderr, "Invalid flash image size\n");
exit(1);
}
/*
* The original U-Boot accesses the flash at 0xFE000000 instead of
* 0xFF800000 (if there is 8 MB flash). So remap flash access if the
* image is smaller than 32 MB.
*/
pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
drives_table[index].bdrv, 0x10000,
(flash_size + 0xffff) >> 16,
MP_FLASH_SIZE_MAX / flash_size,
2, 0x00BF, 0x236D, 0x0000, 0x0000,
0x5555, 0x2AAA);
}
mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
musicpal_lcd_init(ds, MP_LCD_BASE);
qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
/*
* Wait a bit to catch menu button during U-Boot start-up
* (to trigger emergency update).
*/
sleep(1);
mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
mixer_i2c = musicpal_audio_init(MP_AUDIO_BASE, pic[MP_AUDIO_IRQ]);
musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
musicpal_binfo.kernel_filename = kernel_filename;
musicpal_binfo.kernel_cmdline = kernel_cmdline;
musicpal_binfo.initrd_filename = initrd_filename;
arm_load_kernel(env, &musicpal_binfo);
}
| 20,739 |
qemu | 7848c8d19f8556666df25044bbd5d8b29439c368 | 0 | void helper_sysenter(CPUX86State *env)
{
if (env->sysenter_cs == 0) {
raise_exception_err(env, EXCP0D_GPF, 0);
}
env->eflags &= ~(VM_MASK | IF_MASK | RF_MASK);
cpu_x86_set_cpl(env, 0);
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
cpu_x86_load_seg_cache(env, R_CS, env->sysenter_cs & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK |
DESC_L_MASK);
} else
#endif
{
cpu_x86_load_seg_cache(env, R_CS, env->sysenter_cs & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
}
cpu_x86_load_seg_cache(env, R_SS, (env->sysenter_cs + 8) & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK);
env->regs[R_ESP] = env->sysenter_esp;
env->eip = env->sysenter_eip;
}
| 20,740 |
qemu | 621ff94d5074d88253a5818c6b9c4db718fbfc65 | 0 | int bdrv_snapshot_load_tmp_by_id_or_name(BlockDriverState *bs,
const char *id_or_name,
Error **errp)
{
int ret;
Error *local_err = NULL;
ret = bdrv_snapshot_load_tmp(bs, id_or_name, NULL, &local_err);
if (ret == -ENOENT || ret == -EINVAL) {
error_free(local_err);
local_err = NULL;
ret = bdrv_snapshot_load_tmp(bs, NULL, id_or_name, &local_err);
}
if (local_err) {
error_propagate(errp, local_err);
}
return ret;
}
| 20,742 |
qemu | 2df2041036ee63ff9116631c6214e3ffb5f4bf45 | 0 | void vnc_init_state(VncState *vs)
{
vs->initialized = true;
VncDisplay *vd = vs->vd;
bool first_client = QTAILQ_EMPTY(&vd->clients);
vs->last_x = -1;
vs->last_y = -1;
vs->as.freq = 44100;
vs->as.nchannels = 2;
vs->as.fmt = AUD_FMT_S16;
vs->as.endianness = 0;
qemu_mutex_init(&vs->output_mutex);
vs->bh = qemu_bh_new(vnc_jobs_bh, vs);
QTAILQ_INSERT_TAIL(&vd->clients, vs, next);
if (first_client) {
vnc_update_server_surface(vd);
}
graphic_hw_update(vd->dcl.con);
vnc_write(vs, "RFB 003.008\n", 12);
vnc_flush(vs);
vnc_read_when(vs, protocol_version, 12);
reset_keys(vs);
if (vs->vd->lock_key_sync)
vs->led = qemu_add_led_event_handler(kbd_leds, vs);
vs->mouse_mode_notifier.notify = check_pointer_type_change;
qemu_add_mouse_mode_change_notifier(&vs->mouse_mode_notifier);
}
| 20,745 |
qemu | 25174055f428254427e7541139037eb9a34fc109 | 0 | void migrate_fd_error(MigrationState *s, const Error *error)
{
trace_migrate_fd_error(error ? error_get_pretty(error) : "");
assert(s->to_dst_file == NULL);
migrate_set_state(&s->state, MIGRATION_STATUS_SETUP,
MIGRATION_STATUS_FAILED);
if (!s->error) {
s->error = error_copy(error);
}
notifier_list_notify(&migration_state_notifiers, s);
}
| 20,746 |
qemu | 2e3883d03df167b15f2acc5345eb9a7e0150a062 | 0 | get_field (const unsigned char *data, enum floatformat_byteorders order,
unsigned int total_len, unsigned int start, unsigned int len)
{
unsigned long result;
unsigned int cur_byte;
int cur_bitshift;
/* Start at the least significant part of the field. */
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
if (order == floatformat_little)
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) - cur_byte - 1;
cur_bitshift =
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
result = *(data + cur_byte) >> (-cur_bitshift);
cur_bitshift += FLOATFORMAT_CHAR_BIT;
if (order == floatformat_little)
++cur_byte;
else
--cur_byte;
/* Move towards the most significant part of the field. */
while ((unsigned int) cur_bitshift < len)
{
if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
/* This is the last byte; zero out the bits which are not part of
this field. */
result |=
(*(data + cur_byte) & ((1 << (len - cur_bitshift)) - 1))
<< cur_bitshift;
else
result |= *(data + cur_byte) << cur_bitshift;
cur_bitshift += FLOATFORMAT_CHAR_BIT;
if (order == floatformat_little)
++cur_byte;
else
--cur_byte;
}
return result;
}
| 20,747 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.