project
stringclasses 2
values | commit_id
stringlengths 40
40
| target
int64 0
1
| func
stringlengths 26
142k
| idx
int64 0
27.3k
|
---|---|---|---|---|
qemu | bec1631100323fac0900aea71043d5c4e22fc2fa | 0 | static void tcg_out_br(TCGContext *s, int label_index)
{
TCGLabel *l = &s->labels[label_index];
uint64_t imm;
/* We pay attention here to not modify the branch target by reading
the existing value and using it again. This ensure that caches and
memory are kept coherent during retranslation. */
if (l->has_value) {
imm = l->u.value_ptr - s->code_ptr;
} else {
imm = get_reloc_pcrel21b_slot2(s->code_ptr);
tcg_out_reloc(s, s->code_ptr, R_IA64_PCREL21B, label_index, 0);
}
tcg_out_bundle(s, mmB,
INSN_NOP_M,
INSN_NOP_M,
tcg_opc_b1(TCG_REG_P0, OPC_BR_SPTK_MANY_B1, imm));
}
| 18,104 |
qemu | ea776abca628d855e03c4929da3864985afd8aae | 0 | static uint32_t virtio_blk_get_features(VirtIODevice *vdev, uint32_t features)
{
VirtIOBlock *s = to_virtio_blk(vdev);
features |= (1 << VIRTIO_BLK_F_SEG_MAX);
features |= (1 << VIRTIO_BLK_F_GEOMETRY);
features |= (1 << VIRTIO_BLK_F_TOPOLOGY);
features |= (1 << VIRTIO_BLK_F_BLK_SIZE);
features |= (1 << VIRTIO_BLK_F_SCSI);
features |= (1 << VIRTIO_BLK_F_CONFIG_WCE);
if (bdrv_enable_write_cache(s->bs))
features |= (1 << VIRTIO_BLK_F_WCE);
if (bdrv_is_read_only(s->bs))
features |= 1 << VIRTIO_BLK_F_RO;
return features;
}
| 18,105 |
FFmpeg | 53c05b1eacd5f7dbfa3651b45e797adaea0a5ff8 | 0 | static inline void write_back_non_zero_count(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
int n;
for( n = 0; n < 16+4+4; n++ )
h->non_zero_count[mb_xy][n] = h->non_zero_count_cache[scan8[n]];
}
| 18,106 |
qemu | 4be746345f13e99e468c60acbd3a355e8183e3ce | 0 | static void lm32_evr_init(MachineState *machine)
{
const char *cpu_model = machine->cpu_model;
const char *kernel_filename = machine->kernel_filename;
LM32CPU *cpu;
CPULM32State *env;
DriveInfo *dinfo;
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
qemu_irq *cpu_irq, irq[32];
ResetInfo *reset_info;
int i;
/* memory map */
hwaddr flash_base = 0x04000000;
size_t flash_sector_size = 256 * 1024;
size_t flash_size = 32 * 1024 * 1024;
hwaddr ram_base = 0x08000000;
size_t ram_size = 64 * 1024 * 1024;
hwaddr timer0_base = 0x80002000;
hwaddr uart0_base = 0x80006000;
hwaddr timer1_base = 0x8000a000;
int uart0_irq = 0;
int timer0_irq = 1;
int timer1_irq = 3;
reset_info = g_malloc0(sizeof(ResetInfo));
if (cpu_model == NULL) {
cpu_model = "lm32-full";
}
cpu = cpu_lm32_init(cpu_model);
if (cpu == NULL) {
fprintf(stderr, "qemu: unable to find CPU '%s'\n", cpu_model);
exit(1);
}
env = &cpu->env;
reset_info->cpu = cpu;
reset_info->flash_base = flash_base;
memory_region_init_ram(phys_ram, NULL, "lm32_evr.sdram", ram_size,
&error_abort);
vmstate_register_ram_global(phys_ram);
memory_region_add_subregion(address_space_mem, ram_base, phys_ram);
dinfo = drive_get(IF_PFLASH, 0, 0);
/* Spansion S29NS128P */
pflash_cfi02_register(flash_base, NULL, "lm32_evr.flash", flash_size,
dinfo ? blk_bs(blk_by_legacy_dinfo(dinfo)) : NULL,
flash_sector_size, flash_size / flash_sector_size,
1, 2, 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
/* create irq lines */
cpu_irq = qemu_allocate_irqs(cpu_irq_handler, cpu, 1);
env->pic_state = lm32_pic_init(*cpu_irq);
for (i = 0; i < 32; i++) {
irq[i] = qdev_get_gpio_in(env->pic_state, i);
}
sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
/* make sure juart isn't the first chardev */
env->juart_state = lm32_juart_init();
reset_info->bootstrap_pc = flash_base;
if (kernel_filename) {
uint64_t entry;
int kernel_size;
kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
1, ELF_MACHINE, 0);
reset_info->bootstrap_pc = entry;
if (kernel_size < 0) {
kernel_size = load_image_targphys(kernel_filename, ram_base,
ram_size);
reset_info->bootstrap_pc = ram_base;
}
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
}
qemu_register_reset(main_cpu_reset, reset_info);
}
| 18,107 |
qemu | f17fd4fdf0df3d2f3444399d04c38d22b9a3e1b7 | 0 | static void test_qemu_strtosz_trailing(void)
{
const char *str;
char *endptr = NULL;
int64_t res;
str = "123xxx";
res = qemu_strtosz_MiB(str, &endptr);
g_assert_cmpint(res, ==, 123 * M_BYTE);
g_assert(endptr == str + 3);
res = qemu_strtosz(str, NULL);
g_assert_cmpint(res, ==, -EINVAL);
str = "1kiB";
res = qemu_strtosz(str, &endptr);
g_assert_cmpint(res, ==, 1024);
g_assert(endptr == str + 2);
res = qemu_strtosz(str, NULL);
g_assert_cmpint(res, ==, -EINVAL);
}
| 18,108 |
qemu | 28213cb6a61a724e2cb1e3a76d2bb17aa0ce9b36 | 0 | build_header(BIOSLinker *linker, GArray *table_data,
AcpiTableHeader *h, const char *sig, int len, uint8_t rev,
const char *oem_id, const char *oem_table_id)
{
memcpy(&h->signature, sig, 4);
h->length = cpu_to_le32(len);
h->revision = rev;
if (oem_id) {
strncpy((char *)h->oem_id, oem_id, sizeof h->oem_id);
} else {
memcpy(h->oem_id, ACPI_BUILD_APPNAME6, 6);
}
if (oem_table_id) {
strncpy((char *)h->oem_table_id, oem_table_id, sizeof(h->oem_table_id));
} else {
memcpy(h->oem_table_id, ACPI_BUILD_APPNAME4, 4);
memcpy(h->oem_table_id + 4, sig, 4);
}
h->oem_revision = cpu_to_le32(1);
memcpy(h->asl_compiler_id, ACPI_BUILD_APPNAME4, 4);
h->asl_compiler_revision = cpu_to_le32(1);
h->checksum = 0;
/* Checksum to be filled in by Guest linker */
bios_linker_loader_add_checksum(linker, ACPI_BUILD_TABLE_FILE,
h, len, &h->checksum);
}
| 18,109 |
qemu | 03fc0548b70393b0c8d43703591a9e34fb8e3123 | 0 | static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args,
const int *const_args)
{
uint8_t *old_code_ptr = s->code_ptr;
tcg_out_op_t(s, opc);
switch (opc) {
case INDEX_op_exit_tb:
tcg_out64(s, args[0]);
break;
case INDEX_op_goto_tb:
if (s->tb_jmp_offset) {
/* Direct jump method. */
assert(args[0] < ARRAY_SIZE(s->tb_jmp_offset));
s->tb_jmp_offset[args[0]] = s->code_ptr - s->code_buf;
tcg_out32(s, 0);
} else {
/* Indirect jump method. */
TODO();
}
assert(args[0] < ARRAY_SIZE(s->tb_next_offset));
s->tb_next_offset[args[0]] = s->code_ptr - s->code_buf;
break;
case INDEX_op_br:
tci_out_label(s, args[0]);
break;
case INDEX_op_call:
tcg_out_ri(s, const_args[0], args[0]);
break;
case INDEX_op_setcond_i32:
tcg_out_r(s, args[0]);
tcg_out_r(s, args[1]);
tcg_out_ri32(s, const_args[2], args[2]);
tcg_out8(s, args[3]); /* condition */
break;
#if TCG_TARGET_REG_BITS == 32
case INDEX_op_setcond2_i32:
/* setcond2_i32 cond, t0, t1_low, t1_high, t2_low, t2_high */
tcg_out_r(s, args[0]);
tcg_out_r(s, args[1]);
tcg_out_r(s, args[2]);
tcg_out_ri32(s, const_args[3], args[3]);
tcg_out_ri32(s, const_args[4], args[4]);
tcg_out8(s, args[5]); /* condition */
break;
#elif TCG_TARGET_REG_BITS == 64
case INDEX_op_setcond_i64:
tcg_out_r(s, args[0]);
tcg_out_r(s, args[1]);
tcg_out_ri64(s, const_args[2], args[2]);
tcg_out8(s, args[3]); /* condition */
break;
#endif
case INDEX_op_movi_i32:
TODO(); /* Handled by tcg_out_movi? */
break;
case INDEX_op_ld8u_i32:
case INDEX_op_ld8s_i32:
case INDEX_op_ld16u_i32:
case INDEX_op_ld16s_i32:
case INDEX_op_ld_i32:
case INDEX_op_st8_i32:
case INDEX_op_st16_i32:
case INDEX_op_st_i32:
case INDEX_op_ld8u_i64:
case INDEX_op_ld8s_i64:
case INDEX_op_ld16u_i64:
case INDEX_op_ld16s_i64:
case INDEX_op_ld32u_i64:
case INDEX_op_ld32s_i64:
case INDEX_op_ld_i64:
case INDEX_op_st8_i64:
case INDEX_op_st16_i64:
case INDEX_op_st32_i64:
case INDEX_op_st_i64:
tcg_out_r(s, args[0]);
tcg_out_r(s, args[1]);
assert(args[2] == (uint32_t)args[2]);
tcg_out32(s, args[2]);
break;
case INDEX_op_add_i32:
case INDEX_op_sub_i32:
case INDEX_op_mul_i32:
case INDEX_op_and_i32:
case INDEX_op_andc_i32: /* Optional (TCG_TARGET_HAS_andc_i32). */
case INDEX_op_eqv_i32: /* Optional (TCG_TARGET_HAS_eqv_i32). */
case INDEX_op_nand_i32: /* Optional (TCG_TARGET_HAS_nand_i32). */
case INDEX_op_nor_i32: /* Optional (TCG_TARGET_HAS_nor_i32). */
case INDEX_op_or_i32:
case INDEX_op_orc_i32: /* Optional (TCG_TARGET_HAS_orc_i32). */
case INDEX_op_xor_i32:
case INDEX_op_shl_i32:
case INDEX_op_shr_i32:
case INDEX_op_sar_i32:
case INDEX_op_rotl_i32: /* Optional (TCG_TARGET_HAS_rot_i32). */
case INDEX_op_rotr_i32: /* Optional (TCG_TARGET_HAS_rot_i32). */
tcg_out_r(s, args[0]);
tcg_out_ri32(s, const_args[1], args[1]);
tcg_out_ri32(s, const_args[2], args[2]);
break;
case INDEX_op_deposit_i32: /* Optional (TCG_TARGET_HAS_deposit_i32). */
tcg_out_r(s, args[0]);
tcg_out_r(s, args[1]);
tcg_out_r(s, args[2]);
assert(args[3] <= UINT8_MAX);
tcg_out8(s, args[3]);
assert(args[4] <= UINT8_MAX);
tcg_out8(s, args[4]);
break;
#if TCG_TARGET_REG_BITS == 64
case INDEX_op_mov_i64:
case INDEX_op_movi_i64:
TODO();
break;
case INDEX_op_add_i64:
case INDEX_op_sub_i64:
case INDEX_op_mul_i64:
case INDEX_op_and_i64:
case INDEX_op_andc_i64: /* Optional (TCG_TARGET_HAS_andc_i64). */
case INDEX_op_eqv_i64: /* Optional (TCG_TARGET_HAS_eqv_i64). */
case INDEX_op_nand_i64: /* Optional (TCG_TARGET_HAS_nand_i64). */
case INDEX_op_nor_i64: /* Optional (TCG_TARGET_HAS_nor_i64). */
case INDEX_op_or_i64:
case INDEX_op_orc_i64: /* Optional (TCG_TARGET_HAS_orc_i64). */
case INDEX_op_xor_i64:
case INDEX_op_shl_i64:
case INDEX_op_shr_i64:
case INDEX_op_sar_i64:
/* TODO: Implementation of rotl_i64, rotr_i64 missing in tci.c. */
case INDEX_op_rotl_i64: /* Optional (TCG_TARGET_HAS_rot_i64). */
case INDEX_op_rotr_i64: /* Optional (TCG_TARGET_HAS_rot_i64). */
tcg_out_r(s, args[0]);
tcg_out_ri64(s, const_args[1], args[1]);
tcg_out_ri64(s, const_args[2], args[2]);
break;
case INDEX_op_deposit_i64: /* Optional (TCG_TARGET_HAS_deposit_i64). */
tcg_out_r(s, args[0]);
tcg_out_r(s, args[1]);
tcg_out_r(s, args[2]);
assert(args[3] <= UINT8_MAX);
tcg_out8(s, args[3]);
assert(args[4] <= UINT8_MAX);
tcg_out8(s, args[4]);
break;
case INDEX_op_div_i64: /* Optional (TCG_TARGET_HAS_div_i64). */
case INDEX_op_divu_i64: /* Optional (TCG_TARGET_HAS_div_i64). */
case INDEX_op_rem_i64: /* Optional (TCG_TARGET_HAS_div_i64). */
case INDEX_op_remu_i64: /* Optional (TCG_TARGET_HAS_div_i64). */
TODO();
break;
case INDEX_op_div2_i64: /* Optional (TCG_TARGET_HAS_div2_i64). */
case INDEX_op_divu2_i64: /* Optional (TCG_TARGET_HAS_div2_i64). */
TODO();
break;
case INDEX_op_brcond_i64:
tcg_out_r(s, args[0]);
tcg_out_ri64(s, const_args[1], args[1]);
tcg_out8(s, args[2]); /* condition */
tci_out_label(s, args[3]);
break;
case INDEX_op_bswap16_i64: /* Optional (TCG_TARGET_HAS_bswap16_i64). */
case INDEX_op_bswap32_i64: /* Optional (TCG_TARGET_HAS_bswap32_i64). */
case INDEX_op_bswap64_i64: /* Optional (TCG_TARGET_HAS_bswap64_i64). */
case INDEX_op_not_i64: /* Optional (TCG_TARGET_HAS_not_i64). */
case INDEX_op_neg_i64: /* Optional (TCG_TARGET_HAS_neg_i64). */
case INDEX_op_ext8s_i64: /* Optional (TCG_TARGET_HAS_ext8s_i64). */
case INDEX_op_ext8u_i64: /* Optional (TCG_TARGET_HAS_ext8u_i64). */
case INDEX_op_ext16s_i64: /* Optional (TCG_TARGET_HAS_ext16s_i64). */
case INDEX_op_ext16u_i64: /* Optional (TCG_TARGET_HAS_ext16u_i64). */
case INDEX_op_ext32s_i64: /* Optional (TCG_TARGET_HAS_ext32s_i64). */
case INDEX_op_ext32u_i64: /* Optional (TCG_TARGET_HAS_ext32u_i64). */
#endif /* TCG_TARGET_REG_BITS == 64 */
case INDEX_op_neg_i32: /* Optional (TCG_TARGET_HAS_neg_i32). */
case INDEX_op_not_i32: /* Optional (TCG_TARGET_HAS_not_i32). */
case INDEX_op_ext8s_i32: /* Optional (TCG_TARGET_HAS_ext8s_i32). */
case INDEX_op_ext16s_i32: /* Optional (TCG_TARGET_HAS_ext16s_i32). */
case INDEX_op_ext8u_i32: /* Optional (TCG_TARGET_HAS_ext8u_i32). */
case INDEX_op_ext16u_i32: /* Optional (TCG_TARGET_HAS_ext16u_i32). */
case INDEX_op_bswap16_i32: /* Optional (TCG_TARGET_HAS_bswap16_i32). */
case INDEX_op_bswap32_i32: /* Optional (TCG_TARGET_HAS_bswap32_i32). */
tcg_out_r(s, args[0]);
tcg_out_r(s, args[1]);
break;
case INDEX_op_div_i32: /* Optional (TCG_TARGET_HAS_div_i32). */
case INDEX_op_divu_i32: /* Optional (TCG_TARGET_HAS_div_i32). */
case INDEX_op_rem_i32: /* Optional (TCG_TARGET_HAS_div_i32). */
case INDEX_op_remu_i32: /* Optional (TCG_TARGET_HAS_div_i32). */
tcg_out_r(s, args[0]);
tcg_out_ri32(s, const_args[1], args[1]);
tcg_out_ri32(s, const_args[2], args[2]);
break;
case INDEX_op_div2_i32: /* Optional (TCG_TARGET_HAS_div2_i32). */
case INDEX_op_divu2_i32: /* Optional (TCG_TARGET_HAS_div2_i32). */
TODO();
break;
#if TCG_TARGET_REG_BITS == 32
case INDEX_op_add2_i32:
case INDEX_op_sub2_i32:
tcg_out_r(s, args[0]);
tcg_out_r(s, args[1]);
tcg_out_r(s, args[2]);
tcg_out_r(s, args[3]);
tcg_out_r(s, args[4]);
tcg_out_r(s, args[5]);
break;
case INDEX_op_brcond2_i32:
tcg_out_r(s, args[0]);
tcg_out_r(s, args[1]);
tcg_out_ri32(s, const_args[2], args[2]);
tcg_out_ri32(s, const_args[3], args[3]);
tcg_out8(s, args[4]); /* condition */
tci_out_label(s, args[5]);
break;
case INDEX_op_mulu2_i32:
tcg_out_r(s, args[0]);
tcg_out_r(s, args[1]);
tcg_out_r(s, args[2]);
tcg_out_r(s, args[3]);
break;
#endif
case INDEX_op_brcond_i32:
tcg_out_r(s, args[0]);
tcg_out_ri32(s, const_args[1], args[1]);
tcg_out8(s, args[2]); /* condition */
tci_out_label(s, args[3]);
break;
case INDEX_op_qemu_ld8u:
case INDEX_op_qemu_ld8s:
case INDEX_op_qemu_ld16u:
case INDEX_op_qemu_ld16s:
case INDEX_op_qemu_ld32:
#if TCG_TARGET_REG_BITS == 64
case INDEX_op_qemu_ld32s:
case INDEX_op_qemu_ld32u:
#endif
tcg_out_r(s, *args++);
tcg_out_r(s, *args++);
#if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
tcg_out_r(s, *args++);
#endif
#ifdef CONFIG_SOFTMMU
tcg_out_i(s, *args);
#endif
break;
case INDEX_op_qemu_ld64:
tcg_out_r(s, *args++);
#if TCG_TARGET_REG_BITS == 32
tcg_out_r(s, *args++);
#endif
tcg_out_r(s, *args++);
#if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
tcg_out_r(s, *args++);
#endif
#ifdef CONFIG_SOFTMMU
tcg_out_i(s, *args);
#endif
break;
case INDEX_op_qemu_st8:
case INDEX_op_qemu_st16:
case INDEX_op_qemu_st32:
tcg_out_r(s, *args++);
tcg_out_r(s, *args++);
#if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
tcg_out_r(s, *args++);
#endif
#ifdef CONFIG_SOFTMMU
tcg_out_i(s, *args);
#endif
break;
case INDEX_op_qemu_st64:
tcg_out_r(s, *args++);
#if TCG_TARGET_REG_BITS == 32
tcg_out_r(s, *args++);
#endif
tcg_out_r(s, *args++);
#if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
tcg_out_r(s, *args++);
#endif
#ifdef CONFIG_SOFTMMU
tcg_out_i(s, *args);
#endif
break;
case INDEX_op_end:
TODO();
break;
default:
fprintf(stderr, "Missing: %s\n", tcg_op_defs[opc].name);
tcg_abort();
}
old_code_ptr[1] = s->code_ptr - old_code_ptr;
}
| 18,110 |
qemu | 1510168e273a12a56e3bd4488b4b2904f5138e09 | 0 | static int usbredir_check_filter(USBRedirDevice *dev)
{
if (dev->interface_info.interface_count == 0) {
ERROR("No interface info for device\n");
goto error;
}
if (dev->filter_rules) {
if (!usbredirparser_peer_has_cap(dev->parser,
usb_redir_cap_connect_device_version)) {
ERROR("Device filter specified and peer does not have the "
"connect_device_version capability\n");
goto error;
}
if (usbredirfilter_check(
dev->filter_rules,
dev->filter_rules_count,
dev->device_info.device_class,
dev->device_info.device_subclass,
dev->device_info.device_protocol,
dev->interface_info.interface_class,
dev->interface_info.interface_subclass,
dev->interface_info.interface_protocol,
dev->interface_info.interface_count,
dev->device_info.vendor_id,
dev->device_info.product_id,
dev->device_info.device_version_bcd,
0) != 0) {
goto error;
}
}
return 0;
error:
usbredir_device_disconnect(dev);
if (usbredirparser_peer_has_cap(dev->parser, usb_redir_cap_filter)) {
usbredirparser_send_filter_reject(dev->parser);
usbredirparser_do_write(dev->parser);
}
return -1;
}
| 18,112 |
qemu | f1c2dc7c866a939c39c14729290a21309a1c8a38 | 0 | int spapr_allocate_irq_block(int num, bool lsi)
{
int first = -1;
int i;
for (i = 0; i < num; ++i) {
int irq;
irq = spapr_allocate_irq(0, lsi);
if (!irq) {
return -1;
}
if (0 == i) {
first = irq;
}
/* If the above doesn't create a consecutive block then that's
* an internal bug */
assert(irq == (first + i));
}
return first;
}
| 18,113 |
qemu | 6e4e6f0d403b1fb25f9dfdbe17754c643997753d | 0 | static void vfio_realize(PCIDevice *pdev, Error **errp)
{
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
VFIODevice *vbasedev_iter;
VFIOGroup *group;
char *tmp, group_path[PATH_MAX], *group_name;
Error *err = NULL;
ssize_t len;
struct stat st;
int groupid;
int i, ret;
if (!vdev->vbasedev.sysfsdev) {
if (!(~vdev->host.domain || ~vdev->host.bus ||
~vdev->host.slot || ~vdev->host.function)) {
error_setg(errp, "No provided host device");
error_append_hint(errp, "Use -vfio-pci,host=DDDD:BB:DD.F "
"or -vfio-pci,sysfsdev=PATH_TO_DEVICE\n");
return;
}
vdev->vbasedev.sysfsdev =
g_strdup_printf("/sys/bus/pci/devices/%04x:%02x:%02x.%01x",
vdev->host.domain, vdev->host.bus,
vdev->host.slot, vdev->host.function);
}
if (stat(vdev->vbasedev.sysfsdev, &st) < 0) {
error_setg_errno(errp, errno, "no such host device");
error_prepend(errp, ERR_PREFIX, vdev->vbasedev.sysfsdev);
return;
}
vdev->vbasedev.name = g_strdup(basename(vdev->vbasedev.sysfsdev));
vdev->vbasedev.ops = &vfio_pci_ops;
vdev->vbasedev.type = VFIO_DEVICE_TYPE_PCI;
tmp = g_strdup_printf("%s/iommu_group", vdev->vbasedev.sysfsdev);
len = readlink(tmp, group_path, sizeof(group_path));
g_free(tmp);
if (len <= 0 || len >= sizeof(group_path)) {
error_setg_errno(errp, len < 0 ? errno : ENAMETOOLONG,
"no iommu_group found");
goto error;
}
group_path[len] = 0;
group_name = basename(group_path);
if (sscanf(group_name, "%d", &groupid) != 1) {
error_setg_errno(errp, errno, "failed to read %s", group_path);
goto error;
}
trace_vfio_realize(vdev->vbasedev.name, groupid);
group = vfio_get_group(groupid, pci_device_iommu_address_space(pdev), errp);
if (!group) {
goto error;
}
QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
if (strcmp(vbasedev_iter->name, vdev->vbasedev.name) == 0) {
error_setg(errp, "device is already attached");
vfio_put_group(group);
goto error;
}
}
ret = vfio_get_device(group, vdev->vbasedev.name, &vdev->vbasedev, errp);
if (ret) {
vfio_put_group(group);
goto error;
}
vfio_populate_device(vdev, &err);
if (err) {
error_propagate(errp, err);
goto error;
}
/* Get a copy of config space */
ret = pread(vdev->vbasedev.fd, vdev->pdev.config,
MIN(pci_config_size(&vdev->pdev), vdev->config_size),
vdev->config_offset);
if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) {
ret = ret < 0 ? -errno : -EFAULT;
error_setg_errno(errp, -ret, "failed to read device config space");
goto error;
}
/* vfio emulates a lot for us, but some bits need extra love */
vdev->emulated_config_bits = g_malloc0(vdev->config_size);
/* QEMU can choose to expose the ROM or not */
memset(vdev->emulated_config_bits + PCI_ROM_ADDRESS, 0xff, 4);
/*
* The PCI spec reserves vendor ID 0xffff as an invalid value. The
* device ID is managed by the vendor and need only be a 16-bit value.
* Allow any 16-bit value for subsystem so they can be hidden or changed.
*/
if (vdev->vendor_id != PCI_ANY_ID) {
if (vdev->vendor_id >= 0xffff) {
error_setg(errp, "invalid PCI vendor ID provided");
goto error;
}
vfio_add_emulated_word(vdev, PCI_VENDOR_ID, vdev->vendor_id, ~0);
trace_vfio_pci_emulated_vendor_id(vdev->vbasedev.name, vdev->vendor_id);
} else {
vdev->vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID);
}
if (vdev->device_id != PCI_ANY_ID) {
if (vdev->device_id > 0xffff) {
error_setg(errp, "invalid PCI device ID provided");
goto error;
}
vfio_add_emulated_word(vdev, PCI_DEVICE_ID, vdev->device_id, ~0);
trace_vfio_pci_emulated_device_id(vdev->vbasedev.name, vdev->device_id);
} else {
vdev->device_id = pci_get_word(pdev->config + PCI_DEVICE_ID);
}
if (vdev->sub_vendor_id != PCI_ANY_ID) {
if (vdev->sub_vendor_id > 0xffff) {
error_setg(errp, "invalid PCI subsystem vendor ID provided");
goto error;
}
vfio_add_emulated_word(vdev, PCI_SUBSYSTEM_VENDOR_ID,
vdev->sub_vendor_id, ~0);
trace_vfio_pci_emulated_sub_vendor_id(vdev->vbasedev.name,
vdev->sub_vendor_id);
}
if (vdev->sub_device_id != PCI_ANY_ID) {
if (vdev->sub_device_id > 0xffff) {
error_setg(errp, "invalid PCI subsystem device ID provided");
goto error;
}
vfio_add_emulated_word(vdev, PCI_SUBSYSTEM_ID, vdev->sub_device_id, ~0);
trace_vfio_pci_emulated_sub_device_id(vdev->vbasedev.name,
vdev->sub_device_id);
}
/* QEMU can change multi-function devices to single function, or reverse */
vdev->emulated_config_bits[PCI_HEADER_TYPE] =
PCI_HEADER_TYPE_MULTI_FUNCTION;
/* Restore or clear multifunction, this is always controlled by QEMU */
if (vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) {
vdev->pdev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION;
} else {
vdev->pdev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION;
}
/*
* Clear host resource mapping info. If we choose not to register a
* BAR, such as might be the case with the option ROM, we can get
* confusing, unwritable, residual addresses from the host here.
*/
memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24);
memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4);
vfio_pci_size_rom(vdev);
vfio_msix_early_setup(vdev, &err);
if (err) {
error_propagate(errp, err);
goto error;
}
vfio_bars_setup(vdev);
ret = vfio_add_capabilities(vdev, errp);
if (ret) {
goto out_teardown;
}
if (vdev->vga) {
vfio_vga_quirk_setup(vdev);
}
for (i = 0; i < PCI_ROM_SLOT; i++) {
vfio_bar_quirk_setup(vdev, i);
}
if (!vdev->igd_opregion &&
vdev->features & VFIO_FEATURE_ENABLE_IGD_OPREGION) {
struct vfio_region_info *opregion;
if (vdev->pdev.qdev.hotplugged) {
error_setg(errp,
"cannot support IGD OpRegion feature on hotplugged "
"device");
goto out_teardown;
}
ret = vfio_get_dev_region_info(&vdev->vbasedev,
VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion);
if (ret) {
error_setg_errno(errp, -ret,
"does not support requested IGD OpRegion feature");
goto out_teardown;
}
ret = vfio_pci_igd_opregion_init(vdev, opregion, errp);
g_free(opregion);
if (ret) {
goto out_teardown;
}
}
/* QEMU emulates all of MSI & MSIX */
if (pdev->cap_present & QEMU_PCI_CAP_MSIX) {
memset(vdev->emulated_config_bits + pdev->msix_cap, 0xff,
MSIX_CAP_LENGTH);
}
if (pdev->cap_present & QEMU_PCI_CAP_MSI) {
memset(vdev->emulated_config_bits + pdev->msi_cap, 0xff,
vdev->msi_cap_size);
}
if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) {
vdev->intx.mmap_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
vfio_intx_mmap_enable, vdev);
pci_device_set_intx_routing_notifier(&vdev->pdev, vfio_intx_update);
ret = vfio_intx_enable(vdev, errp);
if (ret) {
goto out_teardown;
}
}
vfio_register_err_notifier(vdev);
vfio_register_req_notifier(vdev);
vfio_setup_resetfn_quirk(vdev);
return;
out_teardown:
pci_device_set_intx_routing_notifier(&vdev->pdev, NULL);
vfio_teardown_msi(vdev);
vfio_bars_exit(vdev);
error:
error_prepend(errp, ERR_PREFIX, vdev->vbasedev.name);
}
| 18,115 |
qemu | d9f62dde1303286b24ac8ce88be27e2b9b9c5f46 | 0 | static void qmp_input_push(QmpInputVisitor *qiv, QObject *obj, Error **errp)
{
GHashTable *h;
StackObject *tos = &qiv->stack[qiv->nb_stack];
assert(obj);
if (qiv->nb_stack >= QIV_STACK_SIZE) {
error_setg(errp, "An internal buffer overran");
return;
}
tos->obj = obj;
assert(!tos->h);
assert(!tos->entry);
if (qiv->strict && qobject_type(obj) == QTYPE_QDICT) {
h = g_hash_table_new(g_str_hash, g_str_equal);
qdict_iter(qobject_to_qdict(obj), qdict_add_key, h);
tos->h = h;
} else if (qobject_type(obj) == QTYPE_QLIST) {
tos->entry = qlist_first(qobject_to_qlist(obj));
tos->first = true;
}
qiv->nb_stack++;
}
| 18,116 |
FFmpeg | bf606334ad5ba9180d9a13682504bb1d7cb6ba3a | 0 | static int hls_read_packet(AVFormatContext *s, AVPacket *pkt)
{
HLSContext *c = s->priv_data;
int ret, i, minvariant = -1;
if (c->first_packet) {
recheck_discard_flags(s, 1);
c->first_packet = 0;
}
start:
c->end_of_segment = 0;
for (i = 0; i < c->n_variants; i++) {
struct variant *var = c->variants[i];
/* Make sure we've got one buffered packet from each open variant
* stream */
if (var->needed && !var->pkt.data) {
while (1) {
int64_t ts_diff;
AVStream *st;
ret = av_read_frame(var->ctx, &var->pkt);
if (ret < 0) {
if (!url_feof(&var->pb))
return ret;
reset_packet(&var->pkt);
break;
} else {
if (c->first_timestamp == AV_NOPTS_VALUE)
c->first_timestamp = var->pkt.dts;
}
if (c->seek_timestamp == AV_NOPTS_VALUE)
break;
if (var->pkt.dts == AV_NOPTS_VALUE) {
c->seek_timestamp = AV_NOPTS_VALUE;
break;
}
st = var->ctx->streams[var->pkt.stream_index];
ts_diff = av_rescale_rnd(var->pkt.dts, AV_TIME_BASE,
st->time_base.den, AV_ROUND_DOWN) -
c->seek_timestamp;
if (ts_diff >= 0 && (c->seek_flags & AVSEEK_FLAG_ANY ||
var->pkt.flags & AV_PKT_FLAG_KEY)) {
c->seek_timestamp = AV_NOPTS_VALUE;
break;
}
}
}
/* Check if this stream has the packet with the lowest dts */
if (var->pkt.data) {
struct variant *minvar = c->variants[minvariant];
if (minvariant < 0 ||
av_compare_ts(var->pkt.dts, var->ctx->streams[var->pkt.stream_index]->time_base,
minvar->pkt.dts, minvar->ctx->streams[minvar->pkt.stream_index]->time_base) > 0)
minvariant = i;
}
}
if (c->end_of_segment) {
if (recheck_discard_flags(s, 0))
goto start;
}
/* If we got a packet, return it */
if (minvariant >= 0) {
*pkt = c->variants[minvariant]->pkt;
pkt->stream_index += c->variants[minvariant]->stream_offset;
reset_packet(&c->variants[minvariant]->pkt);
return 0;
}
return AVERROR_EOF;
}
| 18,117 |
qemu | bd269ebc82fbaa5fe7ce5bc7c1770ac8acecd884 | 0 | static int qio_dns_resolver_lookup_sync_inet(QIODNSResolver *resolver,
SocketAddressLegacy *addr,
size_t *naddrs,
SocketAddressLegacy ***addrs,
Error **errp)
{
struct addrinfo ai, *res, *e;
InetSocketAddress *iaddr = addr->u.inet.data;
char port[33];
char uaddr[INET6_ADDRSTRLEN + 1];
char uport[33];
int rc;
Error *err = NULL;
size_t i;
*naddrs = 0;
*addrs = NULL;
memset(&ai, 0, sizeof(ai));
ai.ai_flags = AI_PASSIVE;
if (iaddr->has_numeric && iaddr->numeric) {
ai.ai_flags |= AI_NUMERICHOST | AI_NUMERICSERV;
}
ai.ai_family = inet_ai_family_from_address(iaddr, &err);
ai.ai_socktype = SOCK_STREAM;
if (err) {
error_propagate(errp, err);
return -1;
}
if (iaddr->host == NULL) {
error_setg(errp, "host not specified");
return -1;
}
if (iaddr->port != NULL) {
pstrcpy(port, sizeof(port), iaddr->port);
} else {
port[0] = '\0';
}
rc = getaddrinfo(strlen(iaddr->host) ? iaddr->host : NULL,
strlen(port) ? port : NULL, &ai, &res);
if (rc != 0) {
error_setg(errp, "address resolution failed for %s:%s: %s",
iaddr->host, port, gai_strerror(rc));
return -1;
}
for (e = res; e != NULL; e = e->ai_next) {
(*naddrs)++;
}
*addrs = g_new0(SocketAddressLegacy *, *naddrs);
/* create socket + bind */
for (i = 0, e = res; e != NULL; i++, e = e->ai_next) {
SocketAddressLegacy *newaddr = g_new0(SocketAddressLegacy, 1);
InetSocketAddress *newiaddr = g_new0(InetSocketAddress, 1);
newaddr->u.inet.data = newiaddr;
newaddr->type = SOCKET_ADDRESS_LEGACY_KIND_INET;
getnameinfo((struct sockaddr *)e->ai_addr, e->ai_addrlen,
uaddr, INET6_ADDRSTRLEN, uport, 32,
NI_NUMERICHOST | NI_NUMERICSERV);
*newiaddr = (InetSocketAddress){
.host = g_strdup(uaddr),
.port = g_strdup(uport),
.has_numeric = true,
.numeric = true,
.has_to = iaddr->has_to,
.to = iaddr->to,
.has_ipv4 = false,
.has_ipv6 = false,
};
(*addrs)[i] = newaddr;
}
freeaddrinfo(res);
return 0;
}
| 18,118 |
qemu | 7241f532c3adbebfc8689b878aec3f244043d147 | 0 | void helper_vmrun(target_ulong addr)
{
uint32_t event_inj;
uint32_t int_ctl;
if (loglevel & CPU_LOG_TB_IN_ASM)
fprintf(logfile,"vmrun! " TARGET_FMT_lx "\n", addr);
env->vm_vmcb = addr;
regs_to_env();
/* save the current CPU state in the hsave page */
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.base), env->gdt.base);
stl_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit), env->gdt.limit);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.base), env->idt.base);
stl_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.limit), env->idt.limit);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr0), env->cr[0]);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr2), env->cr[2]);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr3), env->cr[3]);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr4), env->cr[4]);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr8), env->cr[8]);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr6), env->dr[6]);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr7), env->dr[7]);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.efer), env->efer);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rflags), compute_eflags());
SVM_SAVE_SEG(env->vm_hsave, segs[R_ES], es);
SVM_SAVE_SEG(env->vm_hsave, segs[R_CS], cs);
SVM_SAVE_SEG(env->vm_hsave, segs[R_SS], ss);
SVM_SAVE_SEG(env->vm_hsave, segs[R_DS], ds);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rip), EIP);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rsp), ESP);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rax), EAX);
/* load the interception bitmaps so we do not need to access the
vmcb in svm mode */
/* We shift all the intercept bits so we can OR them with the TB
flags later on */
env->intercept = (ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept)) << INTERCEPT_INTR) | INTERCEPT_SVM_MASK;
env->intercept_cr_read = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_cr_read));
env->intercept_cr_write = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_cr_write));
env->intercept_dr_read = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_dr_read));
env->intercept_dr_write = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_dr_write));
env->intercept_exceptions = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_exceptions));
env->gdt.base = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base));
env->gdt.limit = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit));
env->idt.base = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.base));
env->idt.limit = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit));
/* clear exit_info_2 so we behave like the real hardware */
stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), 0);
cpu_x86_update_cr0(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr0)));
cpu_x86_update_cr4(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr4)));
cpu_x86_update_cr3(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr3)));
env->cr[2] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr2));
int_ctl = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl));
if (int_ctl & V_INTR_MASKING_MASK) {
env->cr[8] = int_ctl & V_TPR_MASK;
cpu_set_apic_tpr(env, env->cr[8]);
if (env->eflags & IF_MASK)
env->hflags |= HF_HIF_MASK;
}
#ifdef TARGET_X86_64
env->efer = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.efer));
env->hflags &= ~HF_LMA_MASK;
if (env->efer & MSR_EFER_LMA)
env->hflags |= HF_LMA_MASK;
#endif
env->eflags = 0;
load_eflags(ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rflags)),
~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
CC_OP = CC_OP_EFLAGS;
CC_DST = 0xffffffff;
SVM_LOAD_SEG(env->vm_vmcb, ES, es);
SVM_LOAD_SEG(env->vm_vmcb, CS, cs);
SVM_LOAD_SEG(env->vm_vmcb, SS, ss);
SVM_LOAD_SEG(env->vm_vmcb, DS, ds);
EIP = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rip));
env->eip = EIP;
ESP = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rsp));
EAX = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rax));
env->dr[7] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr7));
env->dr[6] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr6));
cpu_x86_set_cpl(env, ldub_phys(env->vm_vmcb + offsetof(struct vmcb, save.cpl)));
/* FIXME: guest state consistency checks */
switch(ldub_phys(env->vm_vmcb + offsetof(struct vmcb, control.tlb_ctl))) {
case TLB_CONTROL_DO_NOTHING:
break;
case TLB_CONTROL_FLUSH_ALL_ASID:
/* FIXME: this is not 100% correct but should work for now */
tlb_flush(env, 1);
break;
}
helper_stgi();
regs_to_env();
/* maybe we need to inject an event */
event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj));
if (event_inj & SVM_EVTINJ_VALID) {
uint8_t vector = event_inj & SVM_EVTINJ_VEC_MASK;
uint16_t valid_err = event_inj & SVM_EVTINJ_VALID_ERR;
uint32_t event_inj_err = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err));
stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), event_inj & ~SVM_EVTINJ_VALID);
if (loglevel & CPU_LOG_TB_IN_ASM)
fprintf(logfile, "Injecting(%#hx): ", valid_err);
/* FIXME: need to implement valid_err */
switch (event_inj & SVM_EVTINJ_TYPE_MASK) {
case SVM_EVTINJ_TYPE_INTR:
env->exception_index = vector;
env->error_code = event_inj_err;
env->exception_is_int = 1;
env->exception_next_eip = -1;
if (loglevel & CPU_LOG_TB_IN_ASM)
fprintf(logfile, "INTR");
break;
case SVM_EVTINJ_TYPE_NMI:
env->exception_index = vector;
env->error_code = event_inj_err;
env->exception_is_int = 1;
env->exception_next_eip = EIP;
if (loglevel & CPU_LOG_TB_IN_ASM)
fprintf(logfile, "NMI");
break;
case SVM_EVTINJ_TYPE_EXEPT:
env->exception_index = vector;
env->error_code = event_inj_err;
env->exception_is_int = 0;
env->exception_next_eip = -1;
if (loglevel & CPU_LOG_TB_IN_ASM)
fprintf(logfile, "EXEPT");
break;
case SVM_EVTINJ_TYPE_SOFT:
env->exception_index = vector;
env->error_code = event_inj_err;
env->exception_is_int = 1;
env->exception_next_eip = EIP;
if (loglevel & CPU_LOG_TB_IN_ASM)
fprintf(logfile, "SOFT");
break;
}
if (loglevel & CPU_LOG_TB_IN_ASM)
fprintf(logfile, " %#x %#x\n", env->exception_index, env->error_code);
}
if ((int_ctl & V_IRQ_MASK) || (env->intercept & INTERCEPT_VINTR)) {
env->interrupt_request |= CPU_INTERRUPT_VIRQ;
}
cpu_loop_exit();
}
| 18,119 |
qemu | 4295e15aa730a95003a3639d6dad2eb1e65a59e2 | 0 | void qxl_spice_update_area(PCIQXLDevice *qxl, uint32_t surface_id,
struct QXLRect *area, struct QXLRect *dirty_rects,
uint32_t num_dirty_rects,
uint32_t clear_dirty_region,
qxl_async_io async)
{
if (async == QXL_SYNC) {
qxl->ssd.worker->update_area(qxl->ssd.worker, surface_id, area,
dirty_rects, num_dirty_rects, clear_dirty_region);
} else {
#if SPICE_INTERFACE_QXL_MINOR >= 1
spice_qxl_update_area_async(&qxl->ssd.qxl, surface_id, area,
clear_dirty_region, 0);
#else
abort();
#endif
}
}
| 18,120 |
qemu | 1ea879e5580f63414693655fcf0328559cdce138 | 0 | static int audio_validate_settings (audsettings_t *as)
{
int invalid;
invalid = as->nchannels != 1 && as->nchannels != 2;
invalid |= as->endianness != 0 && as->endianness != 1;
switch (as->fmt) {
case AUD_FMT_S8:
case AUD_FMT_U8:
case AUD_FMT_S16:
case AUD_FMT_U16:
case AUD_FMT_S32:
case AUD_FMT_U32:
break;
default:
invalid = 1;
break;
}
invalid |= as->freq <= 0;
return invalid ? -1 : 0;
}
| 18,121 |
qemu | 70bca53ffb811ea59dc090b3ca7825cf0bf346a7 | 0 | const ppc_def_t *kvmppc_host_cpu_def(void)
{
uint32_t host_pvr = mfpvr();
const ppc_def_t *base_spec;
ppc_def_t *spec;
uint32_t vmx = kvmppc_get_vmx();
uint32_t dfp = kvmppc_get_dfp();
base_spec = ppc_find_by_pvr(host_pvr);
spec = g_malloc0(sizeof(*spec));
memcpy(spec, base_spec, sizeof(*spec));
/* Now fix up the spec with information we can query from the host */
alter_insns(&spec->insns_flags, PPC_ALTIVEC, vmx > 0);
alter_insns(&spec->insns_flags2, PPC2_VSX, vmx > 1);
alter_insns(&spec->insns_flags2, PPC2_DFP, dfp);
return spec;
}
| 18,122 |
qemu | e3845e7c47cc3eaf35305c9c0f9d55ca3840b49b | 0 | I2CBus *piix4_pm_init(PCIBus *bus, int devfn, uint32_t smb_io_base,
qemu_irq sci_irq, qemu_irq smi_irq,
int kvm_enabled, FWCfgState *fw_cfg,
DeviceState **piix4_pm)
{
DeviceState *dev;
PIIX4PMState *s;
dev = DEVICE(pci_create(bus, devfn, TYPE_PIIX4_PM));
qdev_prop_set_uint32(dev, "smb_io_base", smb_io_base);
if (piix4_pm) {
*piix4_pm = dev;
}
s = PIIX4_PM(dev);
s->irq = sci_irq;
s->smi_irq = smi_irq;
s->kvm_enabled = kvm_enabled;
if (xen_enabled()) {
s->use_acpi_pci_hotplug = false;
}
qdev_init_nofail(dev);
if (fw_cfg) {
uint8_t suspend[6] = {128, 0, 0, 129, 128, 128};
suspend[3] = 1 | ((!s->disable_s3) << 7);
suspend[4] = s->s4_val | ((!s->disable_s4) << 7);
fw_cfg_add_file(fw_cfg, "etc/system-states", g_memdup(suspend, 6), 6);
}
return s->smb.smbus;
}
| 18,123 |
qemu | b2bedb214469af55179d907a60cd67fed6b0779e | 0 | static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
{
int i;
double rate;
/* make attack rate & decay rate tables */
for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
for (i = 4;i <= 60;i++){
rate = OPL->freqbase; /* frequency rate */
if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */
rate *= (double)(EG_ENT<<ENV_BITS);
OPL->AR_TABLE[i] = rate / ARRATE;
OPL->DR_TABLE[i] = rate / DRRATE;
}
for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
{
OPL->AR_TABLE[i] = EG_AED-1;
OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
}
#if 0
for (i = 0;i < 64 ;i++){ /* make for overflow area */
LOG(LOG_WAR,("rate %2d , ar %f ms , dr %f ms \n",i,
((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
}
#endif
}
| 18,124 |
qemu | f4b618360e5a81b097e2e35d52011bec3c63af68 | 0 | static int colo_packet_compare_all(Packet *spkt, Packet *ppkt)
{
trace_colo_compare_main("compare all");
return colo_packet_compare(ppkt, spkt);
}
| 18,125 |
qemu | a8170e5e97ad17ca169c64ba87ae2f53850dab4c | 0 | static uint64_t fw_cfg_data_mem_read(void *opaque, target_phys_addr_t addr,
unsigned size)
{
return fw_cfg_read(opaque);
}
| 18,126 |
FFmpeg | 87b041e0f099e5ae2d0ba2d2ebb7c9963b26ac54 | 0 | static void mov_write_uuidprof_tag(ByteIOContext *pb, AVFormatContext *s)
{
AVCodecContext *VideoCodec = s->streams[0]->codec;
AVCodecContext *AudioCodec = s->streams[1]->codec;
int AudioRate = AudioCodec->sample_rate;
int FrameRate = ((VideoCodec->time_base.den) * (0x10000))/ (VideoCodec->time_base.num);
int audio_kbitrate= AudioCodec->bit_rate / 1000;
int video_kbitrate= FFMIN(VideoCodec->bit_rate / 1000, 800 - audio_kbitrate);
put_be32(pb, 0x94 ); /* size */
put_tag(pb, "uuid");
put_tag(pb, "PROF");
put_be32(pb, 0x21d24fce ); /* 96 bit UUID */
put_be32(pb, 0xbb88695c );
put_be32(pb, 0xfac9c740 );
put_be32(pb, 0x0 ); /* ? */
put_be32(pb, 0x3 ); /* 3 sections ? */
put_be32(pb, 0x14 ); /* size */
put_tag(pb, "FPRF");
put_be32(pb, 0x0 ); /* ? */
put_be32(pb, 0x0 ); /* ? */
put_be32(pb, 0x0 ); /* ? */
put_be32(pb, 0x2c ); /* size */
put_tag(pb, "APRF"); /* audio */
put_be32(pb, 0x0 );
put_be32(pb, 0x2 ); /* TrackID */
put_tag(pb, "mp4a");
put_be32(pb, 0x20f );
put_be32(pb, 0x0 );
put_be32(pb, audio_kbitrate);
put_be32(pb, audio_kbitrate);
put_be32(pb, AudioRate );
put_be32(pb, AudioCodec->channels );
put_be32(pb, 0x34 ); /* size */
put_tag(pb, "VPRF"); /* video */
put_be32(pb, 0x0 );
put_be32(pb, 0x1 ); /* TrackID */
put_tag(pb, "mp4v");
put_be32(pb, 0x103 );
put_be32(pb, 0x0 );
put_be32(pb, video_kbitrate);
put_be32(pb, video_kbitrate);
put_be32(pb, FrameRate);
put_be32(pb, FrameRate);
put_be16(pb, VideoCodec->width);
put_be16(pb, VideoCodec->height);
put_be32(pb, 0x010001); /* ? */
}
| 18,128 |
qemu | d3c348b6e3af3598bfcb755d59f8f4de80a2228a | 0 | static void xilinx_spips_reset(DeviceState *d)
{
XilinxSPIPS *s = XILINX_SPIPS(d);
int i;
for (i = 0; i < XLNX_SPIPS_R_MAX; i++) {
s->regs[i] = 0;
}
fifo8_reset(&s->rx_fifo);
fifo8_reset(&s->rx_fifo);
/* non zero resets */
s->regs[R_CONFIG] |= MODEFAIL_GEN_EN;
s->regs[R_SLAVE_IDLE_COUNT] = 0xFF;
s->regs[R_TX_THRES] = 1;
s->regs[R_RX_THRES] = 1;
/* FIXME: move magic number definition somewhere sensible */
s->regs[R_MOD_ID] = 0x01090106;
s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET;
s->link_state = 1;
s->link_state_next = 1;
s->link_state_next_when = 0;
s->snoop_state = SNOOP_CHECKING;
s->cmd_dummies = 0;
s->man_start_com = false;
xilinx_spips_update_ixr(s);
xilinx_spips_update_cs_lines(s);
}
| 18,131 |
FFmpeg | e87190f5d20d380608f792ceb14d0def1d80e24b | 0 | static void show_chapters(WriterContext *w, AVFormatContext *fmt_ctx)
{
int i;
writer_print_section_header(w, SECTION_ID_CHAPTERS);
for (i = 0; i < fmt_ctx->nb_chapters; i++) {
AVChapter *chapter = fmt_ctx->chapters[i];
writer_print_section_header(w, SECTION_ID_CHAPTER);
print_int("id", chapter->id);
print_q ("time_base", chapter->time_base, '/');
print_int("start", chapter->start);
print_time("start_time", chapter->start, &chapter->time_base);
print_int("end", chapter->end);
print_time("end_time", chapter->end, &chapter->time_base);
show_tags(w, chapter->metadata, SECTION_ID_CHAPTER_TAGS);
writer_print_section_footer(w);
}
writer_print_section_footer(w);
}
| 18,132 |
qemu | e1833e1f96456fd8fc17463246fe0b2050e68efb | 0 | static void spr_write_403_pbr (void *opaque, int sprn)
{
DisasContext *ctx = opaque;
gen_op_store_403_pb(sprn - SPR_403_PBL1);
RET_STOP(ctx);
}
| 18,134 |
qemu | db1e80ee2ed6fc9eb6b203873b39752144f5577f | 0 | static int vhdx_create_new_metadata(BlockDriverState *bs,
uint64_t image_size,
uint32_t block_size,
uint32_t sector_size,
uint64_t metadata_offset,
VHDXImageType type)
{
int ret = 0;
uint32_t offset = 0;
void *buffer = NULL;
void *entry_buffer;
VHDXMetadataTableHeader *md_table;
VHDXMetadataTableEntry *md_table_entry;
/* Metadata entries */
VHDXFileParameters *mt_file_params;
VHDXVirtualDiskSize *mt_virtual_size;
VHDXPage83Data *mt_page83;
VHDXVirtualDiskLogicalSectorSize *mt_log_sector_size;
VHDXVirtualDiskPhysicalSectorSize *mt_phys_sector_size;
entry_buffer = g_malloc0(VHDX_METADATA_ENTRY_BUFFER_SIZE);
mt_file_params = entry_buffer;
offset += sizeof(VHDXFileParameters);
mt_virtual_size = entry_buffer + offset;
offset += sizeof(VHDXVirtualDiskSize);
mt_page83 = entry_buffer + offset;
offset += sizeof(VHDXPage83Data);
mt_log_sector_size = entry_buffer + offset;
offset += sizeof(VHDXVirtualDiskLogicalSectorSize);
mt_phys_sector_size = entry_buffer + offset;
mt_file_params->block_size = cpu_to_le32(block_size);
if (type == VHDX_TYPE_FIXED) {
mt_file_params->data_bits |= VHDX_PARAMS_LEAVE_BLOCKS_ALLOCED;
cpu_to_le32s(&mt_file_params->data_bits);
}
vhdx_guid_generate(&mt_page83->page_83_data);
cpu_to_leguids(&mt_page83->page_83_data);
mt_virtual_size->virtual_disk_size = cpu_to_le64(image_size);
mt_log_sector_size->logical_sector_size = cpu_to_le32(sector_size);
mt_phys_sector_size->physical_sector_size = cpu_to_le32(sector_size);
buffer = g_malloc0(VHDX_HEADER_BLOCK_SIZE);
md_table = buffer;
md_table->signature = VHDX_METADATA_SIGNATURE;
md_table->entry_count = 5;
vhdx_metadata_header_le_export(md_table);
/* This will reference beyond the reserved table portion */
offset = 64 * KiB;
md_table_entry = buffer + sizeof(VHDXMetadataTableHeader);
md_table_entry[0].item_id = file_param_guid;
md_table_entry[0].offset = offset;
md_table_entry[0].length = sizeof(VHDXFileParameters);
md_table_entry[0].data_bits |= VHDX_META_FLAGS_IS_REQUIRED;
offset += md_table_entry[0].length;
vhdx_metadata_entry_le_export(&md_table_entry[0]);
md_table_entry[1].item_id = virtual_size_guid;
md_table_entry[1].offset = offset;
md_table_entry[1].length = sizeof(VHDXVirtualDiskSize);
md_table_entry[1].data_bits |= VHDX_META_FLAGS_IS_REQUIRED |
VHDX_META_FLAGS_IS_VIRTUAL_DISK;
offset += md_table_entry[1].length;
vhdx_metadata_entry_le_export(&md_table_entry[1]);
md_table_entry[2].item_id = page83_guid;
md_table_entry[2].offset = offset;
md_table_entry[2].length = sizeof(VHDXPage83Data);
md_table_entry[2].data_bits |= VHDX_META_FLAGS_IS_REQUIRED |
VHDX_META_FLAGS_IS_VIRTUAL_DISK;
offset += md_table_entry[2].length;
vhdx_metadata_entry_le_export(&md_table_entry[2]);
md_table_entry[3].item_id = logical_sector_guid;
md_table_entry[3].offset = offset;
md_table_entry[3].length = sizeof(VHDXVirtualDiskLogicalSectorSize);
md_table_entry[3].data_bits |= VHDX_META_FLAGS_IS_REQUIRED |
VHDX_META_FLAGS_IS_VIRTUAL_DISK;
offset += md_table_entry[3].length;
vhdx_metadata_entry_le_export(&md_table_entry[3]);
md_table_entry[4].item_id = phys_sector_guid;
md_table_entry[4].offset = offset;
md_table_entry[4].length = sizeof(VHDXVirtualDiskPhysicalSectorSize);
md_table_entry[4].data_bits |= VHDX_META_FLAGS_IS_REQUIRED |
VHDX_META_FLAGS_IS_VIRTUAL_DISK;
vhdx_metadata_entry_le_export(&md_table_entry[4]);
ret = bdrv_pwrite(bs, metadata_offset, buffer, VHDX_HEADER_BLOCK_SIZE);
if (ret < 0) {
goto exit;
}
ret = bdrv_pwrite(bs, metadata_offset + (64 * KiB), entry_buffer,
VHDX_METADATA_ENTRY_BUFFER_SIZE);
if (ret < 0) {
goto exit;
}
exit:
g_free(buffer);
g_free(entry_buffer);
return ret;
}
| 18,135 |
qemu | 031380d8770d2df6c386e4aeabd412007d3ebd54 | 0 | create_iovec(QEMUIOVector *qiov, char **argv, int nr_iov, int pattern)
{
size_t *sizes = calloc(nr_iov, sizeof(size_t));
size_t count = 0;
void *buf = NULL;
void *p;
int i;
for (i = 0; i < nr_iov; i++) {
char *arg = argv[i];
int64_t len;
len = cvtnum(arg);
if (len < 0) {
printf("non-numeric length argument -- %s\n", arg);
goto fail;
}
/* should be SIZE_T_MAX, but that doesn't exist */
if (len > INT_MAX) {
printf("too large length argument -- %s\n", arg);
goto fail;
}
if (len & 0x1ff) {
printf("length argument %" PRId64
" is not sector aligned\n", len);
goto fail;
}
sizes[i] = len;
count += len;
}
qemu_iovec_init(qiov, nr_iov);
buf = p = qemu_io_alloc(count, pattern);
for (i = 0; i < nr_iov; i++) {
qemu_iovec_add(qiov, p, sizes[i]);
p += sizes[i];
}
fail:
free(sizes);
return buf;
}
| 18,136 |
qemu | eb700029c7836798046191d62d595363d92c84d4 | 0 | void net_tx_pkt_reset(struct NetTxPkt *pkt)
{
int i;
/* no assert, as reset can be called before tx_pkt_init */
if (!pkt) {
return;
}
memset(&pkt->virt_hdr, 0, sizeof(pkt->virt_hdr));
g_free(pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base);
pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base = NULL;
assert(pkt->vec);
for (i = NET_TX_PKT_L2HDR_FRAG;
i < pkt->payload_frags + NET_TX_PKT_PL_START_FRAG; i++) {
pkt->vec[i].iov_len = 0;
}
pkt->payload_len = 0;
pkt->payload_frags = 0;
assert(pkt->raw);
for (i = 0; i < pkt->raw_frags; i++) {
assert(pkt->raw[i].iov_base);
cpu_physical_memory_unmap(pkt->raw[i].iov_base, pkt->raw[i].iov_len,
false, pkt->raw[i].iov_len);
pkt->raw[i].iov_len = 0;
}
pkt->raw_frags = 0;
pkt->hdr_len = 0;
pkt->packet_type = 0;
pkt->l4proto = 0;
}
| 18,137 |
qemu | 51dcdbd319f8d46834d8155defc8d384a9958a73 | 0 | static void tcg_s390_program_interrupt(CPUS390XState *env, uint32_t code,
int ilen)
{
#ifdef CONFIG_TCG
trigger_pgm_exception(env, code, ilen);
cpu_loop_exit(CPU(s390_env_get_cpu(env)));
#else
g_assert_not_reached();
#endif
}
| 18,139 |
qemu | 76abe4071d111a9ca6dcc9b9689a831c39ffa718 | 0 | static int vpc_open(BlockDriverState *bs, QDict *options, int flags,
Error **errp)
{
BDRVVPCState *s = bs->opaque;
int i;
VHDFooter *footer;
VHDDynDiskHeader *dyndisk_header;
uint8_t buf[HEADER_SIZE];
uint32_t checksum;
int disk_type = VHD_DYNAMIC;
int ret;
ret = bdrv_pread(bs->file, 0, s->footer_buf, HEADER_SIZE);
if (ret < 0) {
goto fail;
}
footer = (VHDFooter *) s->footer_buf;
if (strncmp(footer->creator, "conectix", 8)) {
int64_t offset = bdrv_getlength(bs->file);
if (offset < 0) {
ret = offset;
goto fail;
} else if (offset < HEADER_SIZE) {
ret = -EINVAL;
goto fail;
}
/* If a fixed disk, the footer is found only at the end of the file */
ret = bdrv_pread(bs->file, offset-HEADER_SIZE, s->footer_buf,
HEADER_SIZE);
if (ret < 0) {
goto fail;
}
if (strncmp(footer->creator, "conectix", 8)) {
ret = -EMEDIUMTYPE;
goto fail;
}
disk_type = VHD_FIXED;
}
checksum = be32_to_cpu(footer->checksum);
footer->checksum = 0;
if (vpc_checksum(s->footer_buf, HEADER_SIZE) != checksum)
fprintf(stderr, "block-vpc: The header checksum of '%s' is "
"incorrect.\n", bs->filename);
/* Write 'checksum' back to footer, or else will leave it with zero. */
footer->checksum = be32_to_cpu(checksum);
// The visible size of a image in Virtual PC depends on the geometry
// rather than on the size stored in the footer (the size in the footer
// is too large usually)
bs->total_sectors = (int64_t)
be16_to_cpu(footer->cyls) * footer->heads * footer->secs_per_cyl;
/* images created with disk2vhd report a far higher virtual size
* than expected with the cyls * heads * sectors_per_cyl formula.
* use the footer->size instead if the image was created with
* disk2vhd.
*/
if (!strncmp(footer->creator_app, "d2v", 4)) {
bs->total_sectors = be64_to_cpu(footer->size) / BDRV_SECTOR_SIZE;
}
/* Allow a maximum disk size of approximately 2 TB */
if (bs->total_sectors >= 65535LL * 255 * 255) {
ret = -EFBIG;
goto fail;
}
if (disk_type == VHD_DYNAMIC) {
ret = bdrv_pread(bs->file, be64_to_cpu(footer->data_offset), buf,
HEADER_SIZE);
if (ret < 0) {
goto fail;
}
dyndisk_header = (VHDDynDiskHeader *) buf;
if (strncmp(dyndisk_header->magic, "cxsparse", 8)) {
ret = -EINVAL;
goto fail;
}
s->block_size = be32_to_cpu(dyndisk_header->block_size);
s->bitmap_size = ((s->block_size / (8 * 512)) + 511) & ~511;
s->max_table_entries = be32_to_cpu(dyndisk_header->max_table_entries);
s->pagetable = g_malloc(s->max_table_entries * 4);
s->bat_offset = be64_to_cpu(dyndisk_header->table_offset);
ret = bdrv_pread(bs->file, s->bat_offset, s->pagetable,
s->max_table_entries * 4);
if (ret < 0) {
goto fail;
}
s->free_data_block_offset =
(s->bat_offset + (s->max_table_entries * 4) + 511) & ~511;
for (i = 0; i < s->max_table_entries; i++) {
be32_to_cpus(&s->pagetable[i]);
if (s->pagetable[i] != 0xFFFFFFFF) {
int64_t next = (512 * (int64_t) s->pagetable[i]) +
s->bitmap_size + s->block_size;
if (next > s->free_data_block_offset) {
s->free_data_block_offset = next;
}
}
}
if (s->free_data_block_offset > bdrv_getlength(bs->file)) {
error_setg(errp, "block-vpc: free_data_block_offset points after "
"the end of file. The image has been truncated.");
ret = -EINVAL;
goto fail;
}
s->last_bitmap_offset = (int64_t) -1;
#ifdef CACHE
s->pageentry_u8 = g_malloc(512);
s->pageentry_u32 = s->pageentry_u8;
s->pageentry_u16 = s->pageentry_u8;
s->last_pagetable = -1;
#endif
}
qemu_co_mutex_init(&s->lock);
/* Disable migration when VHD images are used */
error_set(&s->migration_blocker,
QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
"vpc", bs->device_name, "live migration");
migrate_add_blocker(s->migration_blocker);
return 0;
fail:
g_free(s->pagetable);
#ifdef CACHE
g_free(s->pageentry_u8);
#endif
return ret;
}
| 18,140 |
qemu | 7385ac0ba2456159a52b9b2cbb5f6c71921d0c23 | 0 | static always_inline void check_mips_mt(CPUState *env, DisasContext *ctx)
{
if (unlikely(!(env->CP0_Config3 & (1 << CP0C3_MT))))
generate_exception(ctx, EXCP_RI);
}
| 18,141 |
FFmpeg | b46a77f19ddc4b2b5fa3187835ceb602a5244e24 | 0 | static void dxva_adjust_hwframes(AVCodecContext *avctx, AVHWFramesContext *frames_ctx)
{
FFDXVASharedContext *sctx = DXVA_SHARED_CONTEXT(avctx);
int surface_alignment, num_surfaces;
frames_ctx->format = sctx->pix_fmt;
/* decoding MPEG-2 requires additional alignment on some Intel GPUs,
but it causes issues for H.264 on certain AMD GPUs..... */
if (avctx->codec_id == AV_CODEC_ID_MPEG2VIDEO)
surface_alignment = 32;
/* the HEVC DXVA2 spec asks for 128 pixel aligned surfaces to ensure
all coding features have enough room to work with */
else if (avctx->codec_id == AV_CODEC_ID_HEVC)
surface_alignment = 128;
else
surface_alignment = 16;
/* 4 base work surfaces */
num_surfaces = 4;
/* add surfaces based on number of possible refs */
if (avctx->codec_id == AV_CODEC_ID_H264 || avctx->codec_id == AV_CODEC_ID_HEVC)
num_surfaces += 16;
else
num_surfaces += 2;
/* add extra surfaces for frame threading */
if (avctx->active_thread_type & FF_THREAD_FRAME)
num_surfaces += avctx->thread_count;
frames_ctx->sw_format = avctx->sw_pix_fmt == AV_PIX_FMT_YUV420P10 ?
AV_PIX_FMT_P010 : AV_PIX_FMT_NV12;
frames_ctx->width = FFALIGN(avctx->coded_width, surface_alignment);
frames_ctx->height = FFALIGN(avctx->coded_height, surface_alignment);
frames_ctx->initial_pool_size = num_surfaces;
#if CONFIG_DXVA2
if (frames_ctx->format == AV_PIX_FMT_DXVA2_VLD) {
AVDXVA2FramesContext *frames_hwctx = frames_ctx->hwctx;
frames_hwctx->surface_type = DXVA2_VideoDecoderRenderTarget;
}
#endif
#if CONFIG_D3D11VA
if (frames_ctx->format == AV_PIX_FMT_D3D11) {
AVD3D11VAFramesContext *frames_hwctx = frames_ctx->hwctx;
frames_hwctx->BindFlags |= D3D11_BIND_DECODER;
}
#endif
}
| 18,143 |
qemu | c0f4ce7751f0b9a9a7815f931a09a6c3de127cee | 0 | USBDevice *usb_msd_init(const char *filename)
{
MSDState *s;
BlockDriverState *bdrv;
BlockDriver *drv = NULL;
const char *p1;
char fmt[32];
p1 = strchr(filename, ':');
if (p1++) {
const char *p2;
if (strstart(filename, "format=", &p2)) {
int len = MIN(p1 - p2, sizeof(fmt));
pstrcpy(fmt, len, p2);
drv = bdrv_find_format(fmt);
if (!drv) {
printf("invalid format %s\n", fmt);
return NULL;
}
} else if (*filename != ':') {
printf("unrecognized USB mass-storage option %s\n", filename);
return NULL;
}
filename = p1;
}
if (!*filename) {
printf("block device specification needed\n");
return NULL;
}
s = qemu_mallocz(sizeof(MSDState));
bdrv = bdrv_new("usb");
if (bdrv_open2(bdrv, filename, 0, drv) < 0)
goto fail;
if (qemu_key_check(bdrv, filename))
goto fail;
s->bs = bdrv;
s->dev.speed = USB_SPEED_FULL;
s->dev.handle_packet = usb_generic_handle_packet;
s->dev.handle_reset = usb_msd_handle_reset;
s->dev.handle_control = usb_msd_handle_control;
s->dev.handle_data = usb_msd_handle_data;
s->dev.handle_destroy = usb_msd_handle_destroy;
snprintf(s->dev.devname, sizeof(s->dev.devname), "QEMU USB MSD(%.16s)",
filename);
s->scsi_dev = scsi_disk_init(bdrv, 0, usb_msd_command_complete, s);
usb_msd_handle_reset((USBDevice *)s);
return (USBDevice *)s;
fail:
qemu_free(s);
return NULL;
}
| 18,144 |
qemu | 260fecf13b0d30621dc88da03dc1b502b7358c6b | 0 | static bool append_open_options(QDict *d, BlockDriverState *bs)
{
const QDictEntry *entry;
QemuOptDesc *desc;
bool found_any = false;
for (entry = qdict_first(bs->options); entry;
entry = qdict_next(bs->options, entry))
{
/* Only take options for this level */
if (strchr(qdict_entry_key(entry), '.')) {
continue;
}
/* And exclude all non-driver-specific options */
for (desc = bdrv_runtime_opts.desc; desc->name; desc++) {
if (!strcmp(qdict_entry_key(entry), desc->name)) {
break;
}
}
if (desc->name) {
continue;
}
qobject_incref(qdict_entry_value(entry));
qdict_put_obj(d, qdict_entry_key(entry), qdict_entry_value(entry));
found_any = true;
}
return found_any;
}
| 18,145 |
qemu | c52ab08aee6f7d4717fc6b517174043126bd302f | 0 | static void gen_eob(DisasContext *s)
{
gen_eob_inhibit_irq(s, false);
}
| 18,147 |
qemu | e3e09d87c6e69c2da684d5aacabe3124ebcb6f8e | 0 | hwaddr s390_cpu_get_phys_page_debug(CPUState *cs, vaddr vaddr)
{
S390CPU *cpu = S390_CPU(cs);
CPUS390XState *env = &cpu->env;
target_ulong raddr;
int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
int old_exc = cs->exception_index;
uint64_t asc = env->psw.mask & PSW_MASK_ASC;
/* 31-Bit mode */
if (!(env->psw.mask & PSW_MASK_64)) {
vaddr &= 0x7fffffff;
}
mmu_translate(env, vaddr, 2, asc, &raddr, &prot);
cs->exception_index = old_exc;
return raddr;
}
| 18,148 |
qemu | 307b7715d0256c95444cada36a02882e46bada2f | 0 | void spapr_drc_detach(sPAPRDRConnector *drc, DeviceState *d, Error **errp)
{
trace_spapr_drc_detach(spapr_drc_index(drc));
/* if we've signalled device presence to the guest, or if the guest
* has gone ahead and configured the device (via manually-executed
* device add via drmgr in guest, namely), we need to wait
* for the guest to quiesce the device before completing detach.
* Otherwise, we can assume the guest hasn't seen it and complete the
* detach immediately. Note that there is a small race window
* just before, or during, configuration, which is this context
* refers mainly to fetching the device tree via RTAS.
* During this window the device access will be arbitrated by
* associated DRC, which will simply fail the RTAS calls as invalid.
* This is recoverable within guest and current implementations of
* drmgr should be able to cope.
*/
if (!drc->signalled && !drc->configured) {
/* if the guest hasn't seen the device we can't rely on it to
* set it back to an isolated state via RTAS, so do it here manually
*/
drc->isolation_state = SPAPR_DR_ISOLATION_STATE_ISOLATED;
}
if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) {
trace_spapr_drc_awaiting_isolated(spapr_drc_index(drc));
drc->awaiting_release = true;
return;
}
if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI &&
drc->allocation_state != SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
trace_spapr_drc_awaiting_unusable(spapr_drc_index(drc));
drc->awaiting_release = true;
return;
}
if (drc->awaiting_allocation) {
drc->awaiting_release = true;
trace_spapr_drc_awaiting_allocation(spapr_drc_index(drc));
return;
}
drc->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
/* Calling release callbacks based on spapr_drc_type(drc). */
switch (spapr_drc_type(drc)) {
case SPAPR_DR_CONNECTOR_TYPE_CPU:
spapr_core_release(drc->dev);
break;
case SPAPR_DR_CONNECTOR_TYPE_PCI:
spapr_phb_remove_pci_device_cb(drc->dev);
break;
case SPAPR_DR_CONNECTOR_TYPE_LMB:
spapr_lmb_release(drc->dev);
break;
case SPAPR_DR_CONNECTOR_TYPE_PHB:
case SPAPR_DR_CONNECTOR_TYPE_VIO:
default:
g_assert(false);
}
drc->awaiting_release = false;
g_free(drc->fdt);
drc->fdt = NULL;
drc->fdt_start_offset = 0;
object_property_del(OBJECT(drc), "device", NULL);
drc->dev = NULL;
}
| 18,151 |
qemu | 5a3d7b23ba41b4884b43b6bc936ea18f999d5c6b | 0 | static XICSState *try_create_xics(const char *type, int nr_servers,
int nr_irqs)
{
DeviceState *dev;
dev = qdev_create(NULL, type);
qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
if (qdev_init(dev) < 0) {
return NULL;
}
return XICS(dev);
}
| 18,152 |
qemu | b931bfbf042983f311b3b09894d8030b2755a638 | 0 | static void vhost_user_stop(VhostUserState *s)
{
if (vhost_user_running(s)) {
vhost_net_cleanup(s->vhost_net);
}
s->vhost_net = 0;
}
| 18,153 |
qemu | c10c9d96158ce4d05f4325e64c0ce6a5fcd64b8b | 0 | static int blk_check_byte_request(BlockBackend *blk, int64_t offset,
size_t size)
{
int64_t len;
if (size > INT_MAX) {
return -EIO;
}
if (!blk_is_available(blk)) {
return -ENOMEDIUM;
}
len = blk_getlength(blk);
if (len < 0) {
return len;
}
if (offset < 0) {
return -EIO;
}
if (offset > len || len - offset < size) {
return -EIO;
}
return 0;
}
| 18,155 |
qemu | e1833e1f96456fd8fc17463246fe0b2050e68efb | 0 | static void spr_write_ibatl_h (void *opaque, int sprn)
{
DisasContext *ctx = opaque;
gen_op_store_ibatl((sprn - SPR_IBAT4L) / 2);
RET_STOP(ctx);
}
| 18,156 |
qemu | c39ce112b60ffafbaf700853e32bea74cbb2c148 | 0 | static int vscsi_queue_cmd(VSCSIState *s, vscsi_req *req)
{
union srp_iu *srp = &req->iu.srp;
SCSIDevice *sdev;
int n, id, lun;
vscsi_decode_id_lun(be64_to_cpu(srp->cmd.lun), &id, &lun);
/* Qemu vs. linux issue with LUNs to be sorted out ... */
sdev = (id < 8 && lun < 16) ? s->bus.devs[id] : NULL;
if (!sdev) {
dprintf("VSCSI: Command for id %d with no drive\n", id);
if (srp->cmd.cdb[0] == INQUIRY) {
vscsi_inquiry_no_target(s, req);
} else {
vscsi_makeup_sense(s, req, ILLEGAL_REQUEST, 0x24, 0x00);
vscsi_send_rsp(s, req, CHECK_CONDITION, 0, 0);
} return 1;
}
req->lun = lun;
req->sreq = scsi_req_new(sdev, req->qtag, lun, req);
n = scsi_req_enqueue(req->sreq, srp->cmd.cdb);
dprintf("VSCSI: Queued command tag 0x%x CMD 0x%x ID %d LUN %d ret: %d\n",
req->qtag, srp->cmd.cdb[0], id, lun, n);
if (n) {
/* Transfer direction must be set before preprocessing the
* descriptors
*/
req->writing = (n < 1);
/* Preprocess RDMA descriptors */
vscsi_preprocess_desc(req);
/* Get transfer direction and initiate transfer */
if (n > 0) {
req->data_len = n;
} else if (n < 0) {
req->data_len = -n;
}
scsi_req_continue(req->sreq);
}
/* Don't touch req here, it may have been recycled already */
return 0;
}
| 18,157 |
qemu | 0ed93d84edabc7656f5c998ae1a346fe8b94ca54 | 0 | int coroutine_fn laio_co_submit(BlockDriverState *bs, LinuxAioState *s, int fd,
uint64_t offset, QEMUIOVector *qiov, int type)
{
int ret;
struct qemu_laiocb laiocb = {
.co = qemu_coroutine_self(),
.nbytes = qiov->size,
.ctx = s,
.is_read = (type == QEMU_AIO_READ),
.qiov = qiov,
};
ret = laio_do_submit(fd, &laiocb, offset, type);
if (ret < 0) {
return ret;
}
qemu_coroutine_yield();
return laiocb.ret;
}
| 18,158 |
qemu | 51b19ebe4320f3dcd93cea71235c1219318ddfd2 | 0 | static void balloon_stats_poll_cb(void *opaque)
{
VirtIOBalloon *s = opaque;
VirtIODevice *vdev = VIRTIO_DEVICE(s);
if (!balloon_stats_supported(s)) {
/* re-schedule */
balloon_stats_change_timer(s, s->stats_poll_interval);
return;
}
virtqueue_push(s->svq, &s->stats_vq_elem, s->stats_vq_offset);
virtio_notify(vdev, s->svq);
}
| 18,160 |
qemu | a89f364ae8740dfc31b321eed9ee454e996dc3c1 | 0 | static void pxa2xx_mm_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
PXA2xxState *s = (PXA2xxState *) opaque;
switch (addr) {
case MDCNFG ... SA1110:
if ((addr & 3) == 0) {
s->mm_regs[addr >> 2] = value;
break;
}
default:
printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
break;
}
}
| 18,162 |
qemu | 92c0bba9a95739c92e959fe478cb1acb92fa5446 | 0 | static void omap_l4_io_writeh(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
unsigned int i = (addr - OMAP2_L4_BASE) >> TARGET_PAGE_BITS;
return omap_l4_io_writeh_fn[i](omap_l4_io_opaque[i], addr, value);
}
| 18,163 |
qemu | 1f4ad7d3b8f7162ec0471506d86f57a5d77b8f76 | 0 | BlockBackend *blk_new_open(const char *filename, const char *reference,
QDict *options, int flags, Error **errp)
{
BlockBackend *blk;
BlockDriverState *bs;
uint64_t perm;
/* blk_new_open() is mainly used in .bdrv_create implementations and the
* tools where sharing isn't a concern because the BDS stays private, so we
* just request permission according to the flags.
*
* The exceptions are xen_disk and blockdev_init(); in these cases, the
* caller of blk_new_open() doesn't make use of the permissions, but they
* shouldn't hurt either. We can still share everything here because the
* guest devices will add their own blockers if they can't share. */
perm = BLK_PERM_CONSISTENT_READ;
if (flags & BDRV_O_RDWR) {
perm |= BLK_PERM_WRITE;
}
if (flags & BDRV_O_RESIZE) {
perm |= BLK_PERM_RESIZE;
}
blk = blk_new(perm, BLK_PERM_ALL);
bs = bdrv_open(filename, reference, options, flags, errp);
if (!bs) {
blk_unref(blk);
return NULL;
}
blk->root = bdrv_root_attach_child(bs, "root", &child_root,
perm, BLK_PERM_ALL, blk, errp);
if (!blk->root) {
bdrv_unref(bs);
blk_unref(blk);
return NULL;
}
return blk;
}
| 18,164 |
FFmpeg | 87e8788680e16c51f6048af26f3f7830c35207a5 | 0 | static int mpc_probe(AVProbeData *p)
{
const uint8_t *d = p->buf;
if (p->buf_size < 32)
return 0;
if (d[0] == 'M' && d[1] == 'P' && d[2] == '+' && (d[3] == 0x17 || d[3] == 0x7))
return AVPROBE_SCORE_MAX;
if (d[0] == 'I' && d[1] == 'D' && d[2] == '3')
return AVPROBE_SCORE_MAX / 2;
return 0;
}
| 18,165 |
FFmpeg | 0a39c9ac0bfd7345fe676b4e2707d9cec3cbb553 | 0 | av_cold void ff_hpeldsp_init_x86(HpelDSPContext *c, int flags)
{
int cpu_flags = av_get_cpu_flags();
if (INLINE_MMX(cpu_flags))
hpeldsp_init_mmx(c, flags);
if (EXTERNAL_AMD3DNOW(cpu_flags))
hpeldsp_init_3dnow(c, flags);
if (EXTERNAL_MMXEXT(cpu_flags))
hpeldsp_init_mmxext(c, flags);
if (EXTERNAL_SSE2_FAST(cpu_flags))
hpeldsp_init_sse2_fast(c, flags);
if (CONFIG_VP3_DECODER)
ff_hpeldsp_vp3_init_x86(c, cpu_flags, flags);
}
| 18,166 |
FFmpeg | 5d75730c58f72918a41bb5abda4b448ecdd4273c | 0 | static int guess_ni_flag(AVFormatContext *s)
{
int i;
int64_t last_start = 0;
int64_t first_end = INT64_MAX;
int64_t oldpos = avio_tell(s->pb);
int *idx;
int64_t min_pos, pos;
for (i = 0; i < s->nb_streams; i++) {
AVStream *st = s->streams[i];
int n = st->nb_index_entries;
unsigned int size;
if (n <= 0)
continue;
if (n >= 2) {
int64_t pos = st->index_entries[0].pos;
avio_seek(s->pb, pos + 4, SEEK_SET);
size = avio_rl32(s->pb);
if (pos + size > st->index_entries[1].pos)
last_start = INT64_MAX;
}
if (st->index_entries[0].pos > last_start)
last_start = st->index_entries[0].pos;
if (st->index_entries[n - 1].pos < first_end)
first_end = st->index_entries[n - 1].pos;
}
avio_seek(s->pb, oldpos, SEEK_SET);
if (last_start > first_end)
return 1;
idx= av_calloc(s->nb_streams, sizeof(*idx));
if (!idx)
return 0;
for (min_pos=pos=0; min_pos!=INT64_MAX; pos= min_pos+1LU) {
int64_t max_dts = INT64_MIN/2, min_dts= INT64_MAX/2;
min_pos = INT64_MAX;
for (i=0; i<s->nb_streams; i++) {
AVStream *st = s->streams[i];
AVIStream *ast = st->priv_data;
int n= st->nb_index_entries;
while (idx[i]<n && st->index_entries[idx[i]].pos < pos)
idx[i]++;
if (idx[i] < n) {
min_dts = FFMIN(min_dts, av_rescale_q(st->index_entries[idx[i]].timestamp/FFMAX(ast->sample_size, 1), st->time_base, AV_TIME_BASE_Q));
min_pos = FFMIN(min_pos, st->index_entries[idx[i]].pos);
}
if (idx[i])
max_dts = FFMAX(max_dts, av_rescale_q(st->index_entries[idx[i]-1].timestamp/FFMAX(ast->sample_size, 1), st->time_base, AV_TIME_BASE_Q));
}
if (max_dts - min_dts > 2*AV_TIME_BASE) {
av_free(idx);
return 1;
}
}
av_free(idx);
return 0;
}
| 18,167 |
FFmpeg | 57d77b3963ce1023eaf5ada8cba58b9379405cc8 | 0 | int av_opencl_buffer_read_image(uint8_t **dst_data, int *plane_size, int plane_num,
cl_mem src_cl_buf, size_t cl_buffer_size)
{
int i,buffer_size = 0,ret = 0;
uint8_t *temp;
void *mapped;
cl_int status;
if ((unsigned int)plane_num > 8) {
return AVERROR(EINVAL);
}
for (i = 0;i < plane_num;i++) {
buffer_size += plane_size[i];
}
if (buffer_size > cl_buffer_size) {
av_log(&openclutils, AV_LOG_ERROR, "Cannot write image to CPU buffer: OpenCL buffer too small\n");
return AVERROR(EINVAL);
}
mapped = clEnqueueMapBuffer(gpu_env.command_queue, src_cl_buf,
CL_TRUE,CL_MAP_READ, 0, buffer_size,
0, NULL, NULL, &status);
if (status != CL_SUCCESS) {
av_log(&openclutils, AV_LOG_ERROR, "Could not map OpenCL buffer: %s\n", opencl_errstr(status));
return AVERROR_EXTERNAL;
}
temp = mapped;
if (ret >= 0) {
for (i = 0;i < plane_num;i++) {
memcpy(dst_data[i], temp, plane_size[i]);
temp += plane_size[i];
}
}
status = clEnqueueUnmapMemObject(gpu_env.command_queue, src_cl_buf, mapped, 0, NULL, NULL);
if (status != CL_SUCCESS) {
av_log(&openclutils, AV_LOG_ERROR, "Could not unmap OpenCL buffer: %s\n", opencl_errstr(status));
return AVERROR_EXTERNAL;
}
return 0;
}
| 18,168 |
FFmpeg | 6ba5cbc699e77cae66bb719354fa142114b64eab | 0 | static void rtsp_cmd_describe(HTTPContext *c, const char *url)
{
FFStream *stream;
char path1[1024];
const char *path;
uint8_t *content;
int content_length, len;
struct sockaddr_in my_addr;
/* find which url is asked */
url_split(NULL, 0, NULL, 0, NULL, path1, sizeof(path1), url);
path = path1;
if (*path == '/')
path++;
for(stream = first_stream; stream != NULL; stream = stream->next) {
if (!stream->is_feed && stream->fmt == &rtp_mux &&
!strcmp(path, stream->filename)) {
goto found;
}
}
/* no stream found */
rtsp_reply_error(c, RTSP_STATUS_SERVICE); /* XXX: right error ? */
return;
found:
/* prepare the media description in sdp format */
/* get the host IP */
len = sizeof(my_addr);
getsockname(c->fd, (struct sockaddr *)&my_addr, &len);
content_length = prepare_sdp_description(stream, &content, my_addr.sin_addr);
if (content_length < 0) {
rtsp_reply_error(c, RTSP_STATUS_INTERNAL);
return;
}
rtsp_reply_header(c, RTSP_STATUS_OK);
url_fprintf(c->pb, "Content-Type: application/sdp\r\n");
url_fprintf(c->pb, "Content-Length: %d\r\n", content_length);
url_fprintf(c->pb, "\r\n");
put_buffer(c->pb, content, content_length);
}
| 18,169 |
FFmpeg | 1ec83d9a9e472f485897ac92bad9631d551a8c5b | 0 | static char *shorts2str(int *sp, int count, const char *sep)
{
int i;
char *ap, *ap0;
if (!sep) sep = ", ";
ap = av_malloc((5 + strlen(sep)) * count);
if (!ap)
return NULL;
ap0 = ap;
ap[0] = '\0';
for (i = 0; i < count; i++) {
int l = snprintf(ap, 5 + strlen(sep), "%d%s", sp[i], sep);
ap += l;
}
ap0[strlen(ap0) - strlen(sep)] = '\0';
return ap0;
}
| 18,170 |
qemu | 60fe637bf0e4d7989e21e50f52526444765c63b4 | 1 | uint64_t blk_mig_bytes_transferred(void)
{
BlkMigDevState *bmds;
uint64_t sum = 0;
blk_mig_lock();
QSIMPLEQ_FOREACH(bmds, &block_mig_state.bmds_list, entry) {
sum += bmds->completed_sectors;
}
blk_mig_unlock();
return sum << BDRV_SECTOR_BITS;
}
| 18,173 |
FFmpeg | 6e42e6c4b410dbef8b593c2d796a5dad95f89ee4 | 1 | void palette8torgb16(const uint8_t *src, uint8_t *dst, long num_pixels, const uint8_t *palette)
{
long i;
for(i=0; i<num_pixels; i++)
((uint16_t *)dst)[i] = ((uint16_t *)palette)[ src[i] ];
}
| 18,174 |
qemu | e23a1b33b53d25510320b26d9f154e19c6c99725 | 1 | RTCState *rtc_init(int base_year)
{
ISADevice *dev;
dev = isa_create("mc146818rtc");
qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
qdev_init(&dev->qdev);
return DO_UPCAST(RTCState, dev, dev);
}
| 18,176 |
FFmpeg | 0953736b7e97f6e121a0587a95434bf1857a27da | 1 | static int headroom(int *la)
{
int l;
if (*la == 0) {
return 31;
}
l = 30 - av_log2(FFABS(*la));
*la <<= l;
return l;
}
| 18,177 |
FFmpeg | b25e84b7399bd91605596b67d761d3464dbe8a6e | 1 | static int decode_nal_unit(HEVCContext *s, const uint8_t *nal, int length)
{
HEVCLocalContext *lc = &s->HEVClc;
GetBitContext *gb = &lc->gb;
int ctb_addr_ts, ret;
ret = init_get_bits8(gb, nal, length);
if (ret < 0)
return ret;
ret = hls_nal_unit(s);
if (ret < 0) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n",
s->nal_unit_type);
if (s->avctx->err_recognition & AV_EF_EXPLODE)
return ret;
return 0;
} else if (!ret)
return 0;
switch (s->nal_unit_type) {
case NAL_VPS:
ret = ff_hevc_decode_nal_vps(s);
if (ret < 0)
return ret;
break;
case NAL_SPS:
ret = ff_hevc_decode_nal_sps(s);
if (ret < 0)
return ret;
break;
case NAL_PPS:
ret = ff_hevc_decode_nal_pps(s);
if (ret < 0)
return ret;
break;
case NAL_SEI_PREFIX:
case NAL_SEI_SUFFIX:
ret = ff_hevc_decode_nal_sei(s);
if (ret < 0)
return ret;
break;
case NAL_TRAIL_R:
case NAL_TRAIL_N:
case NAL_TSA_N:
case NAL_TSA_R:
case NAL_STSA_N:
case NAL_STSA_R:
case NAL_BLA_W_LP:
case NAL_BLA_W_RADL:
case NAL_BLA_N_LP:
case NAL_IDR_W_RADL:
case NAL_IDR_N_LP:
case NAL_CRA_NUT:
case NAL_RADL_N:
case NAL_RADL_R:
case NAL_RASL_N:
case NAL_RASL_R:
ret = hls_slice_header(s);
if (ret < 0)
return ret;
if (s->max_ra == INT_MAX) {
if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) {
s->max_ra = s->poc;
} else {
if (IS_IDR(s))
s->max_ra = INT_MIN;
if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) &&
s->poc <= s->max_ra) {
s->is_decoded = 0;
break;
} else {
if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra)
s->max_ra = INT_MIN;
if (s->sh.first_slice_in_pic_flag) {
ret = hevc_frame_start(s);
if (ret < 0)
return ret;
} else if (!s->ref) {
av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
if (!s->sh.dependent_slice_segment_flag &&
s->sh.slice_type != I_SLICE) {
ret = ff_hevc_slice_rpl(s);
if (ret < 0) {
av_log(s->avctx, AV_LOG_WARNING,
"Error constructing the reference lists for the current slice.\n");
if (s->avctx->err_recognition & AV_EF_EXPLODE)
return ret;
ctb_addr_ts = hls_slice_data(s);
if (ctb_addr_ts >= (s->sps->ctb_width * s->sps->ctb_height)) {
s->is_decoded = 1;
if ((s->pps->transquant_bypass_enable_flag ||
(s->sps->pcm.loop_filter_disable_flag && s->sps->pcm_enabled_flag)) &&
s->sps->sao_enabled)
restore_tqb_pixels(s);
if (ctb_addr_ts < 0)
return ctb_addr_ts;
break;
case NAL_EOS_NUT:
case NAL_EOB_NUT:
s->seq_decode = (s->seq_decode + 1) & 0xff;
s->max_ra = INT_MAX;
break;
case NAL_AUD:
case NAL_FD_NUT:
break;
default:
av_log(s->avctx, AV_LOG_INFO,
"Skipping NAL unit %d\n", s->nal_unit_type);
return 0; | 18,178 |
qemu | c5633d998a27502ad8cc10c2d46f91b02555ae7a | 1 | static void xen_read_physmap(XenIOState *state)
{
XenPhysmap *physmap = NULL;
unsigned int len, num, i;
char path[80], *value = NULL;
char **entries = NULL;
snprintf(path, sizeof(path),
"/local/domain/0/device-model/%d/physmap", xen_domid);
entries = xs_directory(state->xenstore, 0, path, &num);
if (entries == NULL)
return;
for (i = 0; i < num; i++) {
physmap = g_malloc(sizeof (XenPhysmap));
physmap->phys_offset = strtoull(entries[i], NULL, 16);
snprintf(path, sizeof(path),
"/local/domain/0/device-model/%d/physmap/%s/start_addr",
xen_domid, entries[i]);
value = xs_read(state->xenstore, 0, path, &len);
if (value == NULL) {
free(physmap);
continue;
}
physmap->start_addr = strtoull(value, NULL, 16);
free(value);
snprintf(path, sizeof(path),
"/local/domain/0/device-model/%d/physmap/%s/size",
xen_domid, entries[i]);
value = xs_read(state->xenstore, 0, path, &len);
if (value == NULL) {
free(physmap);
continue;
}
physmap->size = strtoull(value, NULL, 16);
free(value);
snprintf(path, sizeof(path),
"/local/domain/0/device-model/%d/physmap/%s/name",
xen_domid, entries[i]);
physmap->name = xs_read(state->xenstore, 0, path, &len);
QLIST_INSERT_HEAD(&state->physmap, physmap, list);
}
free(entries);
}
| 18,180 |
qemu | c919297379e9980c2bcc4d2053addbc1fd6d762b | 1 | static int img_map(int argc, char **argv)
{
int c;
OutputFormat output_format = OFORMAT_HUMAN;
BlockBackend *blk;
BlockDriverState *bs;
const char *filename, *fmt, *output;
int64_t length;
MapEntry curr = { .length = 0 }, next;
int ret = 0;
bool image_opts = false;
fmt = NULL;
output = NULL;
for (;;) {
int option_index = 0;
static const struct option long_options[] = {
{"help", no_argument, 0, 'h'},
{"format", required_argument, 0, 'f'},
{"output", required_argument, 0, OPTION_OUTPUT},
{"object", required_argument, 0, OPTION_OBJECT},
{"image-opts", no_argument, 0, OPTION_IMAGE_OPTS},
{0, 0, 0, 0}
};
c = getopt_long(argc, argv, "f:h",
long_options, &option_index);
if (c == -1) {
break;
}
switch (c) {
case '?':
case 'h':
help();
break;
case 'f':
fmt = optarg;
break;
case OPTION_OUTPUT:
output = optarg;
break;
case OPTION_OBJECT: {
QemuOpts *opts;
opts = qemu_opts_parse_noisily(&qemu_object_opts,
optarg, true);
if (!opts) {
return 1;
}
} break;
case OPTION_IMAGE_OPTS:
image_opts = true;
break;
}
}
if (optind != argc - 1) {
error_exit("Expecting one image file name");
}
filename = argv[optind];
if (output && !strcmp(output, "json")) {
output_format = OFORMAT_JSON;
} else if (output && !strcmp(output, "human")) {
output_format = OFORMAT_HUMAN;
} else if (output) {
error_report("--output must be used with human or json as argument.");
return 1;
}
if (qemu_opts_foreach(&qemu_object_opts,
user_creatable_add_opts_foreach,
NULL, NULL)) {
return 1;
}
blk = img_open(image_opts, filename, fmt, 0, false, false);
if (!blk) {
return 1;
}
bs = blk_bs(blk);
if (output_format == OFORMAT_HUMAN) {
printf("%-16s%-16s%-16s%s\n", "Offset", "Length", "Mapped to", "File");
}
length = blk_getlength(blk);
while (curr.start + curr.length < length) {
int64_t nsectors_left;
int64_t sector_num;
int n;
sector_num = (curr.start + curr.length) >> BDRV_SECTOR_BITS;
/* Probe up to 1 GiB at a time. */
nsectors_left = DIV_ROUND_UP(length, BDRV_SECTOR_SIZE) - sector_num;
n = MIN(1 << (30 - BDRV_SECTOR_BITS), nsectors_left);
ret = get_block_status(bs, sector_num, n, &next);
if (ret < 0) {
error_report("Could not read file metadata: %s", strerror(-ret));
goto out;
}
if (entry_mergeable(&curr, &next)) {
curr.length += next.length;
continue;
}
if (curr.length > 0) {
dump_map_entry(output_format, &curr, &next);
}
curr = next;
}
dump_map_entry(output_format, &curr, NULL);
out:
blk_unref(blk);
return ret < 0;
}
| 18,181 |
FFmpeg | 0726b2d1ea4343698ff603cc32b824f5bce952c5 | 1 | static int jpeg_read_close(AVFormatContext *s1)
{
JpegContext *s = s1->priv_data;
av_free(s);
return 0;
}
| 18,182 |
qemu | c61e684e44272f2acb2bef34cf2aa234582a73a9 | 1 | static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
BlockDriverState *base,
int64_t sector_num,
int nb_sectors,
int *pnum,
BlockDriverState **file)
{
BlockDriverState *p;
int64_t ret = 0;
assert(bs != base);
for (p = bs; p != base; p = backing_bs(p)) {
ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
break;
}
/* [sector_num, pnum] unallocated on this layer, which could be only
* the first part of [sector_num, nb_sectors]. */
nb_sectors = MIN(nb_sectors, *pnum);
}
return ret;
}
| 18,184 |
FFmpeg | ca203e9985cd2dcf42a0c0853940850d3a8edf3a | 1 | static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
AacPsyContext *pctx;
float bark;
int i, j, g, start;
float prev, minscale, minath, minsnr, pe_min;
int chan_bitrate = ctx->avctx->bit_rate / ((ctx->avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : ctx->avctx->channels);
const int bandwidth = ctx->avctx->cutoff ? ctx->avctx->cutoff : AAC_CUTOFF(ctx->avctx);
const float num_bark = calc_bark((float)bandwidth);
ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext));
if (!ctx->model_priv_data)
return AVERROR(ENOMEM);
pctx = (AacPsyContext*) ctx->model_priv_data;
pctx->global_quality = (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) * 0.01f;
if (ctx->avctx->flags & CODEC_FLAG_QSCALE) {
/* Use the target average bitrate to compute spread parameters */
chan_bitrate = (int)(chan_bitrate / 120.0 * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120));
}
pctx->chan_bitrate = chan_bitrate;
pctx->frame_bits = FFMIN(2560, chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate);
pctx->pe.min = 8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
pctx->pe.max = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
ctx->bitres.size = 6144 - pctx->frame_bits;
ctx->bitres.size -= ctx->bitres.size % 8;
pctx->fill_level = ctx->bitres.size;
minath = ath(3410 - 0.733 * ATH_ADD, ATH_ADD);
for (j = 0; j < 2; j++) {
AacPsyCoeffs *coeffs = pctx->psy_coef[j];
const uint8_t *band_sizes = ctx->bands[j];
float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f);
float avg_chan_bits = chan_bitrate * (j ? 128.0f : 1024.0f) / ctx->avctx->sample_rate;
/* reference encoder uses 2.4% here instead of 60% like the spec says */
float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark;
float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L;
/* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */
float en_spread_hi = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1;
i = 0;
prev = 0.0;
for (g = 0; g < ctx->num_bands[j]; g++) {
i += band_sizes[g];
bark = calc_bark((i-1) * line_to_frequency);
coeffs[g].barks = (bark + prev) / 2.0;
prev = bark;
}
for (g = 0; g < ctx->num_bands[j] - 1; g++) {
AacPsyCoeffs *coeff = &coeffs[g];
float bark_width = coeffs[g+1].barks - coeffs->barks;
coeff->spread_low[0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_LOW);
coeff->spread_hi [0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_HI);
coeff->spread_low[1] = pow(10.0, -bark_width * en_spread_low);
coeff->spread_hi [1] = pow(10.0, -bark_width * en_spread_hi);
pe_min = bark_pe * bark_width;
minsnr = exp2(pe_min / band_sizes[g]) - 1.5f;
coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB);
}
start = 0;
for (g = 0; g < ctx->num_bands[j]; g++) {
minscale = ath(start * line_to_frequency, ATH_ADD);
for (i = 1; i < band_sizes[g]; i++)
minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD));
coeffs[g].ath = minscale - minath;
start += band_sizes[g];
}
}
pctx->ch = av_mallocz_array(ctx->avctx->channels, sizeof(AacPsyChannel));
if (!pctx->ch) {
av_freep(&ctx->model_priv_data);
return AVERROR(ENOMEM);
}
lame_window_init(pctx, ctx->avctx);
return 0;
}
| 18,185 |
FFmpeg | 82d705e245050c1040321022e200969f9c3ff9c3 | 1 | static av_cold int nvenc_encode_init(AVCodecContext *avctx)
{
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS encode_session_params = { 0 };
NV_ENC_PRESET_CONFIG preset_config = { 0 };
CUcontext cu_context_curr;
CUresult cu_res;
GUID encoder_preset = NV_ENC_PRESET_HQ_GUID;
GUID codec;
NVENCSTATUS nv_status = NV_ENC_SUCCESS;
AVCPBProperties *cpb_props;
int surfaceCount = 0;
int i, num_mbs;
int isLL = 0;
int lossless = 0;
int res = 0;
int dw, dh;
int qp_inter_p;
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
if (!nvenc_dyload_nvenc(avctx))
return AVERROR_EXTERNAL;
ctx->last_dts = AV_NOPTS_VALUE;
ctx->encode_config.version = NV_ENC_CONFIG_VER;
ctx->init_encode_params.version = NV_ENC_INITIALIZE_PARAMS_VER;
preset_config.version = NV_ENC_PRESET_CONFIG_VER;
preset_config.presetCfg.version = NV_ENC_CONFIG_VER;
encode_session_params.version = NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS_VER;
encode_session_params.apiVersion = NVENCAPI_VERSION;
if (ctx->gpu >= dl_fn->nvenc_device_count) {
av_log(avctx, AV_LOG_FATAL, "Requested GPU %d, but only %d GPUs are available!\n", ctx->gpu, dl_fn->nvenc_device_count);
res = AVERROR(EINVAL);
goto error;
}
ctx->cu_context = NULL;
cu_res = dl_fn->cu_ctx_create(&ctx->cu_context, 4, dl_fn->nvenc_devices[ctx->gpu]); // CU_CTX_SCHED_BLOCKING_SYNC=4, avoid CPU spins
if (cu_res != CUDA_SUCCESS) {
av_log(avctx, AV_LOG_FATAL, "Failed creating CUDA context for NVENC: 0x%x\n", (int)cu_res);
res = AVERROR_EXTERNAL;
goto error;
}
cu_res = dl_fn->cu_ctx_pop_current(&cu_context_curr);
if (cu_res != CUDA_SUCCESS) {
av_log(avctx, AV_LOG_FATAL, "Failed popping CUDA context: 0x%x\n", (int)cu_res);
res = AVERROR_EXTERNAL;
goto error;
}
encode_session_params.device = ctx->cu_context;
encode_session_params.deviceType = NV_ENC_DEVICE_TYPE_CUDA;
nv_status = p_nvenc->nvEncOpenEncodeSessionEx(&encode_session_params, &ctx->nvencoder);
if (nv_status != NV_ENC_SUCCESS) {
ctx->nvencoder = NULL;
av_log(avctx, AV_LOG_FATAL, "OpenEncodeSessionEx failed: 0x%x\n", (int)nv_status);
res = AVERROR_EXTERNAL;
goto error;
}
if (ctx->preset) {
if (!strcmp(ctx->preset, "slow")) {
encoder_preset = NV_ENC_PRESET_HQ_GUID;
ctx->twopass = 1;
} else if (!strcmp(ctx->preset, "medium")) {
encoder_preset = NV_ENC_PRESET_HQ_GUID;
ctx->twopass = 0;
} else if (!strcmp(ctx->preset, "fast")) {
encoder_preset = NV_ENC_PRESET_HP_GUID;
ctx->twopass = 0;
} else if (!strcmp(ctx->preset, "hq")) {
encoder_preset = NV_ENC_PRESET_HQ_GUID;
} else if (!strcmp(ctx->preset, "hp")) {
encoder_preset = NV_ENC_PRESET_HP_GUID;
} else if (!strcmp(ctx->preset, "bd")) {
encoder_preset = NV_ENC_PRESET_BD_GUID;
} else if (!strcmp(ctx->preset, "ll")) {
encoder_preset = NV_ENC_PRESET_LOW_LATENCY_DEFAULT_GUID;
isLL = 1;
} else if (!strcmp(ctx->preset, "llhp")) {
encoder_preset = NV_ENC_PRESET_LOW_LATENCY_HP_GUID;
isLL = 1;
} else if (!strcmp(ctx->preset, "llhq")) {
encoder_preset = NV_ENC_PRESET_LOW_LATENCY_HQ_GUID;
isLL = 1;
} else if (!strcmp(ctx->preset, "lossless")) {
encoder_preset = NV_ENC_PRESET_LOSSLESS_DEFAULT_GUID;
lossless = 1;
} else if (!strcmp(ctx->preset, "losslesshp")) {
encoder_preset = NV_ENC_PRESET_LOSSLESS_HP_GUID;
lossless = 1;
} else if (!strcmp(ctx->preset, "default")) {
encoder_preset = NV_ENC_PRESET_DEFAULT_GUID;
} else {
av_log(avctx, AV_LOG_FATAL, "Preset \"%s\" is unknown! Supported presets: slow, medium, fast, hp, hq, bd, ll, llhp, llhq, lossless, losslesshp, default\n", ctx->preset);
res = AVERROR(EINVAL);
goto error;
}
}
if (ctx->twopass < 0) {
ctx->twopass = isLL;
}
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
codec = NV_ENC_CODEC_H264_GUID;
break;
case AV_CODEC_ID_H265:
codec = NV_ENC_CODEC_HEVC_GUID;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unknown codec name\n");
res = AVERROR(EINVAL);
goto error;
}
nv_status = p_nvenc->nvEncGetEncodePresetConfig(ctx->nvencoder, codec, encoder_preset, &preset_config);
if (nv_status != NV_ENC_SUCCESS) {
av_log(avctx, AV_LOG_FATAL, "GetEncodePresetConfig failed: 0x%x\n", (int)nv_status);
res = AVERROR_EXTERNAL;
goto error;
}
ctx->init_encode_params.encodeGUID = codec;
ctx->init_encode_params.encodeHeight = avctx->height;
ctx->init_encode_params.encodeWidth = avctx->width;
if (avctx->sample_aspect_ratio.num && avctx->sample_aspect_ratio.den &&
(avctx->sample_aspect_ratio.num != 1 || avctx->sample_aspect_ratio.num != 1)) {
av_reduce(&dw, &dh,
avctx->width * avctx->sample_aspect_ratio.num,
avctx->height * avctx->sample_aspect_ratio.den,
1024 * 1024);
ctx->init_encode_params.darHeight = dh;
ctx->init_encode_params.darWidth = dw;
} else {
ctx->init_encode_params.darHeight = avctx->height;
ctx->init_encode_params.darWidth = avctx->width;
}
// De-compensate for hardware, dubiously, trying to compensate for
// playback at 704 pixel width.
if (avctx->width == 720 &&
(avctx->height == 480 || avctx->height == 576)) {
av_reduce(&dw, &dh,
ctx->init_encode_params.darWidth * 44,
ctx->init_encode_params.darHeight * 45,
1024 * 1024);
ctx->init_encode_params.darHeight = dh;
ctx->init_encode_params.darWidth = dw;
}
ctx->init_encode_params.frameRateNum = avctx->time_base.den;
ctx->init_encode_params.frameRateDen = avctx->time_base.num * avctx->ticks_per_frame;
num_mbs = ((avctx->width + 15) >> 4) * ((avctx->height + 15) >> 4);
ctx->max_surface_count = (num_mbs >= 8160) ? 32 : 48;
if (ctx->buffer_delay >= ctx->max_surface_count)
ctx->buffer_delay = ctx->max_surface_count - 1;
ctx->init_encode_params.enableEncodeAsync = 0;
ctx->init_encode_params.enablePTD = 1;
ctx->init_encode_params.presetGUID = encoder_preset;
ctx->init_encode_params.encodeConfig = &ctx->encode_config;
memcpy(&ctx->encode_config, &preset_config.presetCfg, sizeof(ctx->encode_config));
ctx->encode_config.version = NV_ENC_CONFIG_VER;
if (avctx->refs >= 0) {
/* 0 means "let the hardware decide" */
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
ctx->encode_config.encodeCodecConfig.h264Config.maxNumRefFrames = avctx->refs;
break;
case AV_CODEC_ID_H265:
ctx->encode_config.encodeCodecConfig.hevcConfig.maxNumRefFramesInDPB = avctx->refs;
break;
/* Earlier switch/case will return if unknown codec is passed. */
}
}
if (avctx->gop_size > 0) {
if (avctx->max_b_frames >= 0) {
/* 0 is intra-only, 1 is I/P only, 2 is one B Frame, 3 two B frames, and so on. */
ctx->encode_config.frameIntervalP = avctx->max_b_frames + 1;
}
ctx->encode_config.gopLength = avctx->gop_size;
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
ctx->encode_config.encodeCodecConfig.h264Config.idrPeriod = avctx->gop_size;
break;
case AV_CODEC_ID_H265:
ctx->encode_config.encodeCodecConfig.hevcConfig.idrPeriod = avctx->gop_size;
break;
/* Earlier switch/case will return if unknown codec is passed. */
}
} else if (avctx->gop_size == 0) {
ctx->encode_config.frameIntervalP = 0;
ctx->encode_config.gopLength = 1;
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
ctx->encode_config.encodeCodecConfig.h264Config.idrPeriod = 1;
break;
case AV_CODEC_ID_H265:
ctx->encode_config.encodeCodecConfig.hevcConfig.idrPeriod = 1;
break;
/* Earlier switch/case will return if unknown codec is passed. */
}
}
/* when there're b frames, set dts offset */
if (ctx->encode_config.frameIntervalP >= 2)
ctx->last_dts = -2;
if (avctx->bit_rate > 0) {
ctx->encode_config.rcParams.averageBitRate = avctx->bit_rate;
} else if (ctx->encode_config.rcParams.averageBitRate > 0) {
ctx->encode_config.rcParams.maxBitRate = ctx->encode_config.rcParams.averageBitRate;
}
if (avctx->rc_max_rate > 0)
ctx->encode_config.rcParams.maxBitRate = avctx->rc_max_rate;
if (lossless) {
if (avctx->codec->id == AV_CODEC_ID_H264)
ctx->encode_config.encodeCodecConfig.h264Config.qpPrimeYZeroTransformBypassFlag = 1;
ctx->encode_config.rcParams.rateControlMode = NV_ENC_PARAMS_RC_CONSTQP;
ctx->encode_config.rcParams.constQP.qpInterB = 0;
ctx->encode_config.rcParams.constQP.qpInterP = 0;
ctx->encode_config.rcParams.constQP.qpIntra = 0;
avctx->qmin = -1;
avctx->qmax = -1;
} else if (ctx->cbr) {
if (!ctx->twopass) {
ctx->encode_config.rcParams.rateControlMode = NV_ENC_PARAMS_RC_CBR;
} else {
ctx->encode_config.rcParams.rateControlMode = NV_ENC_PARAMS_RC_2_PASS_QUALITY;
if (avctx->codec->id == AV_CODEC_ID_H264) {
ctx->encode_config.encodeCodecConfig.h264Config.adaptiveTransformMode = NV_ENC_H264_ADAPTIVE_TRANSFORM_ENABLE;
ctx->encode_config.encodeCodecConfig.h264Config.fmoMode = NV_ENC_H264_FMO_DISABLE;
}
}
if (avctx->codec->id == AV_CODEC_ID_H264) {
ctx->encode_config.encodeCodecConfig.h264Config.outputBufferingPeriodSEI = 1;
ctx->encode_config.encodeCodecConfig.h264Config.outputPictureTimingSEI = 1;
} else if(avctx->codec->id == AV_CODEC_ID_H265) {
ctx->encode_config.encodeCodecConfig.hevcConfig.outputBufferingPeriodSEI = 1;
ctx->encode_config.encodeCodecConfig.hevcConfig.outputPictureTimingSEI = 1;
}
} else if (avctx->global_quality > 0) {
ctx->encode_config.rcParams.rateControlMode = NV_ENC_PARAMS_RC_CONSTQP;
ctx->encode_config.rcParams.constQP.qpInterB = avctx->global_quality;
ctx->encode_config.rcParams.constQP.qpInterP = avctx->global_quality;
ctx->encode_config.rcParams.constQP.qpIntra = avctx->global_quality;
avctx->qmin = -1;
avctx->qmax = -1;
} else {
if (avctx->qmin >= 0 && avctx->qmax >= 0) {
ctx->encode_config.rcParams.enableMinQP = 1;
ctx->encode_config.rcParams.enableMaxQP = 1;
ctx->encode_config.rcParams.minQP.qpInterB = avctx->qmin;
ctx->encode_config.rcParams.minQP.qpInterP = avctx->qmin;
ctx->encode_config.rcParams.minQP.qpIntra = avctx->qmin;
ctx->encode_config.rcParams.maxQP.qpInterB = avctx->qmax;
ctx->encode_config.rcParams.maxQP.qpInterP = avctx->qmax;
ctx->encode_config.rcParams.maxQP.qpIntra = avctx->qmax;
qp_inter_p = (avctx->qmax + 3 * avctx->qmin) / 4; // biased towards Qmin
if (ctx->twopass) {
ctx->encode_config.rcParams.rateControlMode = NV_ENC_PARAMS_RC_2_PASS_VBR;
if (avctx->codec->id == AV_CODEC_ID_H264) {
ctx->encode_config.encodeCodecConfig.h264Config.adaptiveTransformMode = NV_ENC_H264_ADAPTIVE_TRANSFORM_ENABLE;
ctx->encode_config.encodeCodecConfig.h264Config.fmoMode = NV_ENC_H264_FMO_DISABLE;
}
} else {
ctx->encode_config.rcParams.rateControlMode = NV_ENC_PARAMS_RC_VBR_MINQP;
}
} else {
qp_inter_p = 26; // default to 26
if (ctx->twopass) {
ctx->encode_config.rcParams.rateControlMode = NV_ENC_PARAMS_RC_2_PASS_VBR;
} else {
ctx->encode_config.rcParams.rateControlMode = NV_ENC_PARAMS_RC_VBR;
}
}
ctx->encode_config.rcParams.enableInitialRCQP = 1;
ctx->encode_config.rcParams.initialRCQP.qpInterP = qp_inter_p;
if(avctx->i_quant_factor != 0.0 && avctx->b_quant_factor != 0.0) {
ctx->encode_config.rcParams.initialRCQP.qpIntra = av_clip(
qp_inter_p * fabs(avctx->i_quant_factor) + avctx->i_quant_offset, 0, 51);
ctx->encode_config.rcParams.initialRCQP.qpInterB = av_clip(
qp_inter_p * fabs(avctx->b_quant_factor) + avctx->b_quant_offset, 0, 51);
} else {
ctx->encode_config.rcParams.initialRCQP.qpIntra = qp_inter_p;
ctx->encode_config.rcParams.initialRCQP.qpInterB = qp_inter_p;
}
}
if (avctx->rc_buffer_size > 0) {
ctx->encode_config.rcParams.vbvBufferSize = avctx->rc_buffer_size;
} else if (ctx->encode_config.rcParams.averageBitRate > 0) {
ctx->encode_config.rcParams.vbvBufferSize = 2 * ctx->encode_config.rcParams.averageBitRate;
}
if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
ctx->encode_config.frameFieldMode = NV_ENC_PARAMS_FRAME_FIELD_MODE_FIELD;
} else {
ctx->encode_config.frameFieldMode = NV_ENC_PARAMS_FRAME_FIELD_MODE_FRAME;
}
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
ctx->encode_config.encodeCodecConfig.h264Config.h264VUIParameters.colourMatrix = avctx->colorspace;
ctx->encode_config.encodeCodecConfig.h264Config.h264VUIParameters.colourPrimaries = avctx->color_primaries;
ctx->encode_config.encodeCodecConfig.h264Config.h264VUIParameters.transferCharacteristics = avctx->color_trc;
ctx->encode_config.encodeCodecConfig.h264Config.h264VUIParameters.videoFullRangeFlag = (avctx->color_range == AVCOL_RANGE_JPEG
|| avctx->pix_fmt == AV_PIX_FMT_YUVJ420P || avctx->pix_fmt == AV_PIX_FMT_YUVJ422P || avctx->pix_fmt == AV_PIX_FMT_YUVJ444P);
ctx->encode_config.encodeCodecConfig.h264Config.h264VUIParameters.colourDescriptionPresentFlag =
(avctx->colorspace != 2 || avctx->color_primaries != 2 || avctx->color_trc != 2);
ctx->encode_config.encodeCodecConfig.h264Config.h264VUIParameters.videoSignalTypePresentFlag =
(ctx->encode_config.encodeCodecConfig.h264Config.h264VUIParameters.colourDescriptionPresentFlag
|| ctx->encode_config.encodeCodecConfig.h264Config.h264VUIParameters.videoFormat != 5
|| ctx->encode_config.encodeCodecConfig.h264Config.h264VUIParameters.videoFullRangeFlag != 0);
ctx->encode_config.encodeCodecConfig.h264Config.sliceMode = 3;
ctx->encode_config.encodeCodecConfig.h264Config.sliceModeData = 1;
ctx->encode_config.encodeCodecConfig.h264Config.disableSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 1 : 0;
ctx->encode_config.encodeCodecConfig.h264Config.repeatSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 0 : 1;
ctx->encode_config.encodeCodecConfig.h264Config.outputAUD = 1;
if (!ctx->profile && !lossless) {
switch (avctx->profile) {
case FF_PROFILE_H264_HIGH_444_PREDICTIVE:
ctx->encode_config.profileGUID = NV_ENC_H264_PROFILE_HIGH_444_GUID;
break;
case FF_PROFILE_H264_BASELINE:
ctx->encode_config.profileGUID = NV_ENC_H264_PROFILE_BASELINE_GUID;
break;
case FF_PROFILE_H264_MAIN:
ctx->encode_config.profileGUID = NV_ENC_H264_PROFILE_MAIN_GUID;
break;
case FF_PROFILE_H264_HIGH:
case FF_PROFILE_UNKNOWN:
ctx->encode_config.profileGUID = NV_ENC_H264_PROFILE_HIGH_GUID;
break;
default:
av_log(avctx, AV_LOG_WARNING, "Unsupported profile requested, falling back to high\n");
ctx->encode_config.profileGUID = NV_ENC_H264_PROFILE_HIGH_GUID;
break;
}
} else if(!lossless) {
if (!strcmp(ctx->profile, "high")) {
ctx->encode_config.profileGUID = NV_ENC_H264_PROFILE_HIGH_GUID;
avctx->profile = FF_PROFILE_H264_HIGH;
} else if (!strcmp(ctx->profile, "main")) {
ctx->encode_config.profileGUID = NV_ENC_H264_PROFILE_MAIN_GUID;
avctx->profile = FF_PROFILE_H264_MAIN;
} else if (!strcmp(ctx->profile, "baseline")) {
ctx->encode_config.profileGUID = NV_ENC_H264_PROFILE_BASELINE_GUID;
avctx->profile = FF_PROFILE_H264_BASELINE;
} else if (!strcmp(ctx->profile, "high444p")) {
ctx->encode_config.profileGUID = NV_ENC_H264_PROFILE_HIGH_444_GUID;
avctx->profile = FF_PROFILE_H264_HIGH_444_PREDICTIVE;
} else {
av_log(avctx, AV_LOG_FATAL, "Profile \"%s\" is unknown! Supported profiles: high, main, baseline\n", ctx->profile);
res = AVERROR(EINVAL);
goto error;
}
}
// force setting profile as high444p if input is AV_PIX_FMT_YUV444P
if (avctx->pix_fmt == AV_PIX_FMT_YUV444P) {
ctx->encode_config.profileGUID = NV_ENC_H264_PROFILE_HIGH_444_GUID;
avctx->profile = FF_PROFILE_H264_HIGH_444_PREDICTIVE;
}
ctx->encode_config.encodeCodecConfig.h264Config.chromaFormatIDC = avctx->profile == FF_PROFILE_H264_HIGH_444_PREDICTIVE ? 3 : 1;
if (ctx->level) {
res = input_string_to_uint32(avctx, nvenc_h264_level_pairs, ctx->level, &ctx->encode_config.encodeCodecConfig.h264Config.level);
if (res) {
av_log(avctx, AV_LOG_FATAL, "Level \"%s\" is unknown! Supported levels: auto, 1, 1b, 1.1, 1.2, 1.3, 2, 2.1, 2.2, 3, 3.1, 3.2, 4, 4.1, 4.2, 5, 5.1\n", ctx->level);
goto error;
}
} else {
ctx->encode_config.encodeCodecConfig.h264Config.level = NV_ENC_LEVEL_AUTOSELECT;
}
break;
case AV_CODEC_ID_H265:
ctx->encode_config.encodeCodecConfig.hevcConfig.hevcVUIParameters.colourMatrix = avctx->colorspace;
ctx->encode_config.encodeCodecConfig.hevcConfig.hevcVUIParameters.colourPrimaries = avctx->color_primaries;
ctx->encode_config.encodeCodecConfig.hevcConfig.hevcVUIParameters.transferCharacteristics = avctx->color_trc;
ctx->encode_config.encodeCodecConfig.hevcConfig.hevcVUIParameters.videoFullRangeFlag = (avctx->color_range == AVCOL_RANGE_JPEG
|| avctx->pix_fmt == AV_PIX_FMT_YUVJ420P || avctx->pix_fmt == AV_PIX_FMT_YUVJ422P || avctx->pix_fmt == AV_PIX_FMT_YUVJ444P);
ctx->encode_config.encodeCodecConfig.hevcConfig.hevcVUIParameters.colourDescriptionPresentFlag =
(avctx->colorspace != 2 || avctx->color_primaries != 2 || avctx->color_trc != 2);
ctx->encode_config.encodeCodecConfig.hevcConfig.hevcVUIParameters.videoSignalTypePresentFlag =
(ctx->encode_config.encodeCodecConfig.hevcConfig.hevcVUIParameters.colourDescriptionPresentFlag
|| ctx->encode_config.encodeCodecConfig.hevcConfig.hevcVUIParameters.videoFormat != 5
|| ctx->encode_config.encodeCodecConfig.hevcConfig.hevcVUIParameters.videoFullRangeFlag != 0);
ctx->encode_config.encodeCodecConfig.hevcConfig.sliceMode = 3;
ctx->encode_config.encodeCodecConfig.hevcConfig.sliceModeData = 1;
ctx->encode_config.encodeCodecConfig.hevcConfig.disableSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 1 : 0;
ctx->encode_config.encodeCodecConfig.hevcConfig.repeatSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 0 : 1;
ctx->encode_config.encodeCodecConfig.hevcConfig.outputAUD = 1;
/* No other profile is supported in the current SDK version 5 */
ctx->encode_config.profileGUID = NV_ENC_HEVC_PROFILE_MAIN_GUID;
avctx->profile = FF_PROFILE_HEVC_MAIN;
if (ctx->level) {
res = input_string_to_uint32(avctx, nvenc_hevc_level_pairs, ctx->level, &ctx->encode_config.encodeCodecConfig.hevcConfig.level);
if (res) {
av_log(avctx, AV_LOG_FATAL, "Level \"%s\" is unknown! Supported levels: auto, 1, 2, 2.1, 3, 3.1, 4, 4.1, 5, 5.1, 5.2, 6, 6.1, 6.2\n", ctx->level);
goto error;
}
} else {
ctx->encode_config.encodeCodecConfig.hevcConfig.level = NV_ENC_LEVEL_AUTOSELECT;
}
if (ctx->tier) {
if (!strcmp(ctx->tier, "main")) {
ctx->encode_config.encodeCodecConfig.hevcConfig.tier = NV_ENC_TIER_HEVC_MAIN;
} else if (!strcmp(ctx->tier, "high")) {
ctx->encode_config.encodeCodecConfig.hevcConfig.tier = NV_ENC_TIER_HEVC_HIGH;
} else {
av_log(avctx, AV_LOG_FATAL, "Tier \"%s\" is unknown! Supported tiers: main, high\n", ctx->tier);
res = AVERROR(EINVAL);
goto error;
}
}
break;
/* Earlier switch/case will return if unknown codec is passed. */
}
nv_status = p_nvenc->nvEncInitializeEncoder(ctx->nvencoder, &ctx->init_encode_params);
if (nv_status != NV_ENC_SUCCESS) {
av_log(avctx, AV_LOG_FATAL, "InitializeEncoder failed: 0x%x\n", (int)nv_status);
res = AVERROR_EXTERNAL;
goto error;
}
ctx->input_surfaces = av_malloc(ctx->max_surface_count * sizeof(*ctx->input_surfaces));
if (!ctx->input_surfaces) {
res = AVERROR(ENOMEM);
goto error;
}
ctx->output_surfaces = av_malloc(ctx->max_surface_count * sizeof(*ctx->output_surfaces));
if (!ctx->output_surfaces) {
res = AVERROR(ENOMEM);
goto error;
}
for (surfaceCount = 0; surfaceCount < ctx->max_surface_count; ++surfaceCount) {
NV_ENC_CREATE_INPUT_BUFFER allocSurf = { 0 };
NV_ENC_CREATE_BITSTREAM_BUFFER allocOut = { 0 };
allocSurf.version = NV_ENC_CREATE_INPUT_BUFFER_VER;
allocOut.version = NV_ENC_CREATE_BITSTREAM_BUFFER_VER;
allocSurf.width = (avctx->width + 31) & ~31;
allocSurf.height = (avctx->height + 31) & ~31;
allocSurf.memoryHeap = NV_ENC_MEMORY_HEAP_SYSMEM_CACHED;
switch (avctx->pix_fmt) {
case AV_PIX_FMT_YUV420P:
allocSurf.bufferFmt = NV_ENC_BUFFER_FORMAT_YV12_PL;
break;
case AV_PIX_FMT_NV12:
allocSurf.bufferFmt = NV_ENC_BUFFER_FORMAT_NV12_PL;
break;
case AV_PIX_FMT_YUV444P:
allocSurf.bufferFmt = NV_ENC_BUFFER_FORMAT_YUV444_PL;
break;
default:
av_log(avctx, AV_LOG_FATAL, "Invalid input pixel format\n");
res = AVERROR(EINVAL);
goto error;
}
nv_status = p_nvenc->nvEncCreateInputBuffer(ctx->nvencoder, &allocSurf);
if (nv_status != NV_ENC_SUCCESS) {
av_log(avctx, AV_LOG_FATAL, "CreateInputBuffer failed\n");
res = AVERROR_EXTERNAL;
goto error;
}
ctx->input_surfaces[surfaceCount].lockCount = 0;
ctx->input_surfaces[surfaceCount].input_surface = allocSurf.inputBuffer;
ctx->input_surfaces[surfaceCount].format = allocSurf.bufferFmt;
ctx->input_surfaces[surfaceCount].width = allocSurf.width;
ctx->input_surfaces[surfaceCount].height = allocSurf.height;
/* 1MB is large enough to hold most output frames. NVENC increases this automaticaly if it's not enough. */
allocOut.size = 1024 * 1024;
allocOut.memoryHeap = NV_ENC_MEMORY_HEAP_SYSMEM_CACHED;
nv_status = p_nvenc->nvEncCreateBitstreamBuffer(ctx->nvencoder, &allocOut);
if (nv_status != NV_ENC_SUCCESS) {
av_log(avctx, AV_LOG_FATAL, "CreateBitstreamBuffer failed\n");
ctx->output_surfaces[surfaceCount++].output_surface = NULL;
res = AVERROR_EXTERNAL;
goto error;
}
ctx->output_surfaces[surfaceCount].output_surface = allocOut.bitstreamBuffer;
ctx->output_surfaces[surfaceCount].size = allocOut.size;
ctx->output_surfaces[surfaceCount].busy = 0;
}
if (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) {
uint32_t outSize = 0;
char tmpHeader[256];
NV_ENC_SEQUENCE_PARAM_PAYLOAD payload = { 0 };
payload.version = NV_ENC_SEQUENCE_PARAM_PAYLOAD_VER;
payload.spsppsBuffer = tmpHeader;
payload.inBufferSize = sizeof(tmpHeader);
payload.outSPSPPSPayloadSize = &outSize;
nv_status = p_nvenc->nvEncGetSequenceParams(ctx->nvencoder, &payload);
if (nv_status != NV_ENC_SUCCESS) {
av_log(avctx, AV_LOG_FATAL, "GetSequenceParams failed\n");
goto error;
}
avctx->extradata_size = outSize;
avctx->extradata = av_mallocz(outSize + AV_INPUT_BUFFER_PADDING_SIZE);
if (!avctx->extradata) {
res = AVERROR(ENOMEM);
goto error;
}
memcpy(avctx->extradata, tmpHeader, outSize);
}
if (ctx->encode_config.frameIntervalP > 1)
avctx->has_b_frames = 2;
if (ctx->encode_config.rcParams.averageBitRate > 0)
avctx->bit_rate = ctx->encode_config.rcParams.averageBitRate;
cpb_props = ff_add_cpb_side_data(avctx);
if (!cpb_props)
return AVERROR(ENOMEM);
cpb_props->max_bitrate = ctx->encode_config.rcParams.maxBitRate;
cpb_props->avg_bitrate = avctx->bit_rate;
cpb_props->buffer_size = ctx->encode_config.rcParams.vbvBufferSize;
return 0;
error:
for (i = 0; i < surfaceCount; ++i) {
p_nvenc->nvEncDestroyInputBuffer(ctx->nvencoder, ctx->input_surfaces[i].input_surface);
if (ctx->output_surfaces[i].output_surface)
p_nvenc->nvEncDestroyBitstreamBuffer(ctx->nvencoder, ctx->output_surfaces[i].output_surface);
}
if (ctx->nvencoder)
p_nvenc->nvEncDestroyEncoder(ctx->nvencoder);
if (ctx->cu_context)
dl_fn->cu_ctx_destroy(ctx->cu_context);
nvenc_unload_nvenc(avctx);
ctx->nvencoder = NULL;
ctx->cu_context = NULL;
return res;
}
| 18,186 |
FFmpeg | 7f526efd17973ec6d2204f7a47b6923e2be31363 | 1 | static inline void RENAME(yuv422ptoyuy2)(const uint8_t *ysrc, const uint8_t *usrc, const uint8_t *vsrc, uint8_t *dst,
unsigned int width, unsigned int height,
int lumStride, int chromStride, int dstStride)
{
RENAME(yuvPlanartoyuy2)(ysrc, usrc, vsrc, dst, width, height, lumStride, chromStride, dstStride, 1);
}
| 18,188 |
qemu | 4c315c27661502a0813b129e41c0bf640c34a8d6 | 1 | static void digic_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = digic_realize;
} | 18,189 |
qemu | ee83d41466ab393d82d9abf57b9ec24d4e6633be | 1 | vcard_emul_mirror_card(VReader *vreader)
{
/*
* lookup certs using the C_FindObjects. The Stan Cert handle won't give
* us the real certs until we log in.
*/
PK11GenericObject *firstObj, *thisObj;
int cert_count;
unsigned char **certs;
int *cert_len;
VCardKey **keys;
PK11SlotInfo *slot;
PRBool ret;
slot = vcard_emul_reader_get_slot(vreader);
if (slot == NULL) {
return NULL;
}
firstObj = PK11_FindGenericObjects(slot, CKO_CERTIFICATE);
if (firstObj == NULL) {
return NULL;
}
/* count the certs */
cert_count = 0;
for (thisObj = firstObj; thisObj;
thisObj = PK11_GetNextGenericObject(thisObj)) {
cert_count++;
}
if (cert_count == 0) {
PK11_DestroyGenericObjects(firstObj);
return NULL;
}
/* allocate the arrays */
ret = vcard_emul_alloc_arrays(&certs, &cert_len, &keys, cert_count);
if (ret == PR_FALSE) {
return NULL;
}
/* fill in the arrays */
cert_count = 0;
for (thisObj = firstObj; thisObj;
thisObj = PK11_GetNextGenericObject(thisObj)) {
SECItem derCert;
CERTCertificate *cert;
SECStatus rv;
rv = PK11_ReadRawAttribute(PK11_TypeGeneric, thisObj,
CKA_VALUE, &derCert);
if (rv != SECSuccess) {
continue;
}
/* create floating temp cert. This gives us a cert structure even if
* the token isn't logged in */
cert = CERT_NewTempCertificate(CERT_GetDefaultCertDB(), &derCert,
NULL, PR_FALSE, PR_TRUE);
SECITEM_FreeItem(&derCert, PR_FALSE);
if (cert == NULL) {
continue;
}
certs[cert_count] = cert->derCert.data;
cert_len[cert_count] = cert->derCert.len;
keys[cert_count] = vcard_emul_make_key(slot, cert);
cert_count++;
CERT_DestroyCertificate(cert); /* key obj still has a reference */
}
/* now create the card */
return vcard_emul_make_card(vreader, certs, cert_len, keys, cert_count);
}
| 18,190 |
qemu | 7d1b0095bff7157e856d1d0e6c4295641ced2752 | 1 | static void gen_neon_trn_u8(TCGv t0, TCGv t1)
{
TCGv rd, tmp;
rd = new_tmp();
tmp = new_tmp();
tcg_gen_shli_i32(rd, t0, 8);
tcg_gen_andi_i32(rd, rd, 0xff00ff00);
tcg_gen_andi_i32(tmp, t1, 0x00ff00ff);
tcg_gen_or_i32(rd, rd, tmp);
tcg_gen_shri_i32(t1, t1, 8);
tcg_gen_andi_i32(t1, t1, 0x00ff00ff);
tcg_gen_andi_i32(tmp, t0, 0xff00ff00);
tcg_gen_or_i32(t1, t1, tmp);
tcg_gen_mov_i32(t0, rd);
dead_tmp(tmp);
dead_tmp(rd);
}
| 18,192 |
FFmpeg | 7f526efd17973ec6d2204f7a47b6923e2be31363 | 1 | static inline void RENAME(rgb15to32)(const uint8_t *src, uint8_t *dst, unsigned src_size)
{
const uint16_t *end;
#ifdef HAVE_MMX
const uint16_t *mm_end;
#endif
uint8_t *d = (uint8_t *)dst;
const uint16_t *s = (const uint16_t *)src;
end = s + src_size/2;
#ifdef HAVE_MMX
__asm __volatile(PREFETCH" %0"::"m"(*s):"memory");
__asm __volatile("pxor %%mm7,%%mm7\n\t":::"memory");
mm_end = end - 3;
while(s < mm_end)
{
__asm __volatile(
PREFETCH" 32%1\n\t"
"movq %1, %%mm0\n\t"
"movq %1, %%mm1\n\t"
"movq %1, %%mm2\n\t"
"pand %2, %%mm0\n\t"
"pand %3, %%mm1\n\t"
"pand %4, %%mm2\n\t"
"psllq $3, %%mm0\n\t"
"psrlq $2, %%mm1\n\t"
"psrlq $7, %%mm2\n\t"
"movq %%mm0, %%mm3\n\t"
"movq %%mm1, %%mm4\n\t"
"movq %%mm2, %%mm5\n\t"
"punpcklwd %%mm7, %%mm0\n\t"
"punpcklwd %%mm7, %%mm1\n\t"
"punpcklwd %%mm7, %%mm2\n\t"
"punpckhwd %%mm7, %%mm3\n\t"
"punpckhwd %%mm7, %%mm4\n\t"
"punpckhwd %%mm7, %%mm5\n\t"
"psllq $8, %%mm1\n\t"
"psllq $16, %%mm2\n\t"
"por %%mm1, %%mm0\n\t"
"por %%mm2, %%mm0\n\t"
"psllq $8, %%mm4\n\t"
"psllq $16, %%mm5\n\t"
"por %%mm4, %%mm3\n\t"
"por %%mm5, %%mm3\n\t"
MOVNTQ" %%mm0, %0\n\t"
MOVNTQ" %%mm3, 8%0\n\t"
:"=m"(*d)
:"m"(*s),"m"(mask15b),"m"(mask15g),"m"(mask15r)
:"memory");
d += 16;
s += 4;
}
__asm __volatile(SFENCE:::"memory");
__asm __volatile(EMMS:::"memory");
#endif
while(s < end)
{
#if 0 //slightly slower on athlon
int bgr= *s++;
*((uint32_t*)d)++ = ((bgr&0x1F)<<3) + ((bgr&0x3E0)<<6) + ((bgr&0x7C00)<<9);
#else
//FIXME this is very likely wrong for bigendian (and the following converters too)
register uint16_t bgr;
bgr = *s++;
#ifdef WORDS_BIGENDIAN
*d++ = 0;
*d++ = (bgr&0x1F)<<3;
*d++ = (bgr&0x3E0)>>2;
*d++ = (bgr&0x7C00)>>7;
#else
*d++ = (bgr&0x1F)<<3;
*d++ = (bgr&0x3E0)>>2;
*d++ = (bgr&0x7C00)>>7;
*d++ = 0;
#endif
#endif
}
}
| 18,193 |
qemu | 33848ceed79679b5c9e558b768447af2614b8db2 | 1 | static int xio3130_upstream_initfn(PCIDevice *d)
{
PCIEPort *p = PCIE_PORT(d);
int rc;
Error *err = NULL;
pci_bridge_initfn(d, TYPE_PCIE_BUS);
pcie_port_init_reg(d);
rc = msi_init(d, XIO3130_MSI_OFFSET, XIO3130_MSI_NR_VECTOR,
XIO3130_MSI_SUPPORTED_FLAGS & PCI_MSI_FLAGS_64BIT,
XIO3130_MSI_SUPPORTED_FLAGS & PCI_MSI_FLAGS_MASKBIT, &err);
if (rc < 0) {
assert(rc == -ENOTSUP);
error_report_err(err);
goto err_bridge;
}
rc = pci_bridge_ssvid_init(d, XIO3130_SSVID_OFFSET,
XIO3130_SSVID_SVID, XIO3130_SSVID_SSID);
if (rc < 0) {
goto err_bridge;
}
rc = pcie_cap_init(d, XIO3130_EXP_OFFSET, PCI_EXP_TYPE_UPSTREAM,
p->port);
if (rc < 0) {
goto err_msi;
}
pcie_cap_flr_init(d);
pcie_cap_deverr_init(d);
rc = pcie_aer_init(d, XIO3130_AER_OFFSET, PCI_ERR_SIZEOF);
if (rc < 0) {
goto err;
}
return 0;
err:
pcie_cap_exit(d);
err_msi:
msi_uninit(d);
err_bridge:
pci_bridge_exitfn(d);
return rc;
}
| 18,196 |
qemu | f5946dbab388050da6d9343978a38c81cce0508d | 1 | int qemu_register_machine(QEMUMachine *m)
{
TypeInfo ti = {
.name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL),
.parent = TYPE_MACHINE,
.class_init = machine_class_init,
.class_data = (void *)m,
};
type_register(&ti);
return 0;
}
| 18,197 |
qemu | 60fe637bf0e4d7989e21e50f52526444765c63b4 | 1 | int64_t migrate_xbzrle_cache_size(void)
{
MigrationState *s;
s = migrate_get_current();
return s->xbzrle_cache_size;
}
| 18,198 |
qemu | 5706db1deb061ee9affdcea81e59c4c2cad7c41e | 1 | static int line_out_init (HWVoiceOut *hw, struct audsettings *as)
{
SpiceVoiceOut *out = container_of (hw, SpiceVoiceOut, hw);
struct audsettings settings;
#if SPICE_INTERFACE_PLAYBACK_MAJOR > 1 || SPICE_INTERFACE_PLAYBACK_MINOR >= 3
settings.freq = spice_server_get_best_playback_rate(NULL);
#else
settings.freq = SPICE_INTERFACE_PLAYBACK_FREQ;
#endif
settings.nchannels = SPICE_INTERFACE_PLAYBACK_CHAN;
settings.fmt = AUD_FMT_S16;
settings.endianness = AUDIO_HOST_ENDIANNESS;
audio_pcm_init_info (&hw->info, &settings);
hw->samples = LINE_OUT_SAMPLES;
out->active = 0;
out->sin.base.sif = &playback_sif.base;
qemu_spice_add_interface (&out->sin.base);
#if SPICE_INTERFACE_PLAYBACK_MAJOR > 1 || SPICE_INTERFACE_PLAYBACK_MINOR >= 3
spice_server_set_playback_rate(&out->sin, settings.freq);
#endif
return 0;
}
| 18,199 |
FFmpeg | 80ca19f766aea8f4724aac1b3faa772d25163c8a | 0 | static int ipvideo_decode_block_opcode_0xD(IpvideoContext *s)
{
int y;
unsigned char P[2];
/* 4-color block encoding: each 4x4 block is a different color */
CHECK_STREAM_PTR(4);
for (y = 0; y < 8; y++) {
if (!(y & 3)) {
P[0] = *s->stream_ptr++;
P[1] = *s->stream_ptr++;
}
memset(s->pixel_ptr, P[0], 4);
memset(s->pixel_ptr + 4, P[1], 4);
s->pixel_ptr += s->stride;
}
/* report success */
return 0;
}
| 18,201 |
qemu | 2d7ad7c05e762d5b10a57eba9af1bb6b41700854 | 1 | void socket_listen_cleanup(int fd, Error **errp)
{
SocketAddress *addr;
addr = socket_local_address(fd, errp);
if (addr->type == SOCKET_ADDRESS_TYPE_UNIX
&& addr->u.q_unix.path) {
if (unlink(addr->u.q_unix.path) < 0 && errno != ENOENT) {
error_setg_errno(errp, errno,
"Failed to unlink socket %s",
addr->u.q_unix.path);
qapi_free_SocketAddress(addr);
| 18,204 |
qemu | 3d3efba020da1de57a715e2087cf761ed0ad0904 | 1 | int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
{
int ret;
sigset_t val;
sigset_t *temp = NULL;
CPUState *cpu = thread_cpu;
TaskState *ts = (TaskState *)cpu->opaque;
bool segv_was_blocked = ts->sigsegv_blocked;
if (set) {
bool has_sigsegv = sigismember(set, SIGSEGV);
val = *set;
temp = &val;
sigdelset(temp, SIGSEGV);
switch (how) {
case SIG_BLOCK:
if (has_sigsegv) {
ts->sigsegv_blocked = true;
}
break;
case SIG_UNBLOCK:
if (has_sigsegv) {
ts->sigsegv_blocked = false;
}
break;
case SIG_SETMASK:
ts->sigsegv_blocked = has_sigsegv;
break;
default:
g_assert_not_reached();
}
}
ret = sigprocmask(how, temp, oldset);
if (oldset && segv_was_blocked) {
sigaddset(oldset, SIGSEGV);
}
return ret;
}
| 18,205 |
FFmpeg | 2cbe6bac0337939f023bd1c37a9c455e6d535f3a | 1 | static int process_work_frame(AVFilterContext *ctx)
{
FrameRateContext *s = ctx->priv;
int64_t work_pts;
int interpolate;
int ret;
if (!s->f1)
return 0;
if (!s->f0 && !s->flush)
return 0;
work_pts = s->start_pts + av_rescale_q(s->n, av_inv_q(s->dest_frame_rate), s->dest_time_base);
if (work_pts >= s->pts1 && !s->flush)
return 0;
if (!s->f0) {
s->work = av_frame_clone(s->f1);
} else {
if (work_pts >= s->pts1 + s->delta && s->flush)
return 0;
interpolate = av_rescale(work_pts - s->pts0, s->max, s->delta);
ff_dlog(ctx, "process_work_frame() interpolate:%d/%d\n", interpolate, s->max);
if (interpolate > s->interp_end) {
s->work = av_frame_clone(s->f1);
} else if (interpolate < s->interp_start) {
s->work = av_frame_clone(s->f0);
} else {
ret = blend_frames(ctx, interpolate);
if (ret < 0)
return ret;
if (ret == 0)
s->work = av_frame_clone(interpolate > (s->max >> 1) ? s->f1 : s->f0);
}
}
if (!s->work)
return AVERROR(ENOMEM);
s->work->pts = work_pts;
s->n++;
return 1;
}
| 18,206 |
FFmpeg | 83b2b34d06e74cc8775ba3d833f9782505e17539 | 1 | int ff_h2645_packet_split(H2645Packet *pkt, const uint8_t *buf, int length,
void *logctx, int is_nalff, int nal_length_size,
enum AVCodecID codec_id)
{
int consumed, ret = 0;
const uint8_t *next_avc = buf + (is_nalff ? 0 : length);
pkt->nb_nals = 0;
while (length >= 4) {
H2645NAL *nal;
int extract_length = 0;
int skip_trailing_zeros = 1;
/*
* Only parse an AVC1 length field if one is expected at the current
* buffer position. There are unfortunately streams with multiple
* NAL units covered by the length field. Those NAL units are delimited
* by Annex B start code prefixes. ff_h2645_extract_rbsp() detects it
* correctly and consumes only the first NAL unit. The additional NAL
* units are handled here in the Annex B parsing code.
*/
if (buf == next_avc) {
int i;
for (i = 0; i < nal_length_size; i++)
extract_length = (extract_length << 8) | buf[i];
if (extract_length > length) {
av_log(logctx, AV_LOG_ERROR,
"Invalid NAL unit size (%d > %d).\n",
extract_length, length);
return AVERROR_INVALIDDATA;
}
buf += nal_length_size;
length -= nal_length_size;
// keep track of the next AVC1 length field
next_avc = buf + extract_length;
} else {
/*
* expected to return immediately except for streams with mixed
* NAL unit coding
*/
int buf_index = find_next_start_code(buf, next_avc);
buf += buf_index;
length -= buf_index;
/*
* break if an AVC1 length field is expected at the current buffer
* position
*/
if (buf == next_avc)
continue;
if (length > 0) {
extract_length = length;
} else if (pkt->nb_nals == 0) {
av_log(logctx, AV_LOG_ERROR, "No NAL unit found\n");
return AVERROR_INVALIDDATA;
} else {
break;
}
}
if (pkt->nals_allocated < pkt->nb_nals + 1) {
int new_size = pkt->nals_allocated + 1;
H2645NAL *tmp = av_realloc_array(pkt->nals, new_size, sizeof(*tmp));
if (!tmp)
return AVERROR(ENOMEM);
pkt->nals = tmp;
memset(pkt->nals + pkt->nals_allocated, 0,
(new_size - pkt->nals_allocated) * sizeof(*tmp));
pkt->nals_allocated = new_size;
}
nal = &pkt->nals[pkt->nb_nals++];
consumed = ff_h2645_extract_rbsp(buf, extract_length, nal);
if (consumed < 0)
return consumed;
/* see commit 3566042a0 */
if (consumed < length - 3 &&
buf[consumed] == 0x00 && buf[consumed + 1] == 0x00 &&
buf[consumed + 2] == 0x01 && buf[consumed + 3] == 0xE0)
skip_trailing_zeros = 0;
nal->size_bits = get_bit_length(nal, skip_trailing_zeros);
ret = init_get_bits(&nal->gb, nal->data, nal->size_bits);
if (ret < 0)
return ret;
if (codec_id == AV_CODEC_ID_HEVC)
ret = hevc_parse_nal_header(nal, logctx);
else
ret = h264_parse_nal_header(nal, logctx);
if (ret <= 0) {
if (ret < 0) {
av_log(logctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n",
nal->type);
}
pkt->nb_nals--;
}
buf += consumed;
length -= consumed;
}
return 0;
}
| 18,207 |
qemu | c5a49c63fa26e8825ad101dfe86339ae4c216539 | 1 | static void gen_check_interrupts(DisasContext *dc)
{
if (dc->tb->cflags & CF_USE_ICOUNT) {
gen_io_start();
}
gen_helper_check_interrupts(cpu_env);
if (dc->tb->cflags & CF_USE_ICOUNT) {
gen_io_end();
}
}
| 18,208 |
qemu | 60fe637bf0e4d7989e21e50f52526444765c63b4 | 1 | static void put_buffer(QEMUFile *f, void *pv, size_t size)
{
uint8_t *v = pv;
qemu_put_buffer(f, v, size);
}
| 18,209 |
qemu | 2d896b454a0e19ec4c1ddbb0e0b65b7e54fcedf3 | 1 | static void boston_lcd_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
BostonState *s = opaque;
switch (size) {
case 8:
s->lcd_content[(addr + 7) & 0x7] = val >> 56;
s->lcd_content[(addr + 6) & 0x7] = val >> 48;
s->lcd_content[(addr + 5) & 0x7] = val >> 40;
s->lcd_content[(addr + 4) & 0x7] = val >> 32;
/* fall through */
case 4:
s->lcd_content[(addr + 3) & 0x7] = val >> 24;
s->lcd_content[(addr + 2) & 0x7] = val >> 16;
/* fall through */
case 2:
s->lcd_content[(addr + 1) & 0x7] = val >> 8;
/* fall through */
case 1:
s->lcd_content[(addr + 0) & 0x7] = val;
break;
}
qemu_chr_fe_printf(&s->lcd_display,
"\r%-8.8s", s->lcd_content);
}
| 18,210 |
qemu | b3af1bc9d21e6bec7dfd283d91b465c9f815b6d6 | 1 | int qemu_loadvm_state(QEMUFile *f)
{
QLIST_HEAD(, LoadStateEntry) loadvm_handlers =
QLIST_HEAD_INITIALIZER(loadvm_handlers);
LoadStateEntry *le, *new_le;
Error *local_err = NULL;
uint8_t section_type;
unsigned int v;
int ret;
int file_error_after_eof = -1;
if (qemu_savevm_state_blocked(&local_err)) {
error_report_err(local_err);
return -EINVAL;
}
v = qemu_get_be32(f);
if (v != QEMU_VM_FILE_MAGIC) {
error_report("Not a migration stream");
return -EINVAL;
}
v = qemu_get_be32(f);
if (v == QEMU_VM_FILE_VERSION_COMPAT) {
error_report("SaveVM v2 format is obsolete and don't work anymore");
return -ENOTSUP;
}
if (v != QEMU_VM_FILE_VERSION) {
error_report("Unsupported migration stream version");
return -ENOTSUP;
}
while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) {
uint32_t instance_id, version_id, section_id;
SaveStateEntry *se;
char idstr[257];
int len;
trace_qemu_loadvm_state_section(section_type);
switch (section_type) {
case QEMU_VM_SECTION_START:
case QEMU_VM_SECTION_FULL:
/* Read section start */
section_id = qemu_get_be32(f);
len = qemu_get_byte(f);
qemu_get_buffer(f, (uint8_t *)idstr, len);
idstr[len] = 0;
instance_id = qemu_get_be32(f);
version_id = qemu_get_be32(f);
trace_qemu_loadvm_state_section_startfull(section_id, idstr,
instance_id, version_id);
/* Find savevm section */
se = find_se(idstr, instance_id);
if (se == NULL) {
error_report("Unknown savevm section or instance '%s' %d",
idstr, instance_id);
ret = -EINVAL;
goto out;
}
/* Validate version */
if (version_id > se->version_id) {
error_report("savevm: unsupported version %d for '%s' v%d",
version_id, idstr, se->version_id);
ret = -EINVAL;
goto out;
}
/* Add entry */
le = g_malloc0(sizeof(*le));
le->se = se;
le->section_id = section_id;
le->version_id = version_id;
QLIST_INSERT_HEAD(&loadvm_handlers, le, entry);
ret = vmstate_load(f, le->se, le->version_id);
if (ret < 0) {
error_report("error while loading state for instance 0x%x of"
" device '%s'", instance_id, idstr);
goto out;
}
break;
case QEMU_VM_SECTION_PART:
case QEMU_VM_SECTION_END:
section_id = qemu_get_be32(f);
trace_qemu_loadvm_state_section_partend(section_id);
QLIST_FOREACH(le, &loadvm_handlers, entry) {
if (le->section_id == section_id) {
break;
}
}
if (le == NULL) {
error_report("Unknown savevm section %d", section_id);
ret = -EINVAL;
goto out;
}
ret = vmstate_load(f, le->se, le->version_id);
if (ret < 0) {
error_report("error while loading state section id %d(%s)",
section_id, le->se->idstr);
goto out;
}
break;
default:
error_report("Unknown savevm section type %d", section_type);
ret = -EINVAL;
goto out;
}
}
file_error_after_eof = qemu_file_get_error(f);
/*
* Try to read in the VMDESC section as well, so that dumping tools that
* intercept our migration stream have the chance to see it.
*/
if (qemu_get_byte(f) == QEMU_VM_VMDESCRIPTION) {
uint32_t size = qemu_get_be32(f);
uint8_t *buf = g_malloc(0x1000);
while (size > 0) {
uint32_t read_chunk = MIN(size, 0x1000);
qemu_get_buffer(f, buf, read_chunk);
size -= read_chunk;
}
g_free(buf);
}
cpu_synchronize_all_post_init();
ret = 0;
out:
QLIST_FOREACH_SAFE(le, &loadvm_handlers, entry, new_le) {
QLIST_REMOVE(le, entry);
g_free(le);
}
if (ret == 0) {
/* We may not have a VMDESC section, so ignore relative errors */
ret = file_error_after_eof;
}
return ret;
}
| 18,212 |
qemu | 8be7e7e4c72c048b90e3482557954a24bba43ba7 | 1 | int inet_connect(const char *str, bool block, Error **errp)
{
QemuOpts *opts;
int sock = -1;
opts = qemu_opts_create(&dummy_opts, NULL, 0);
if (inet_parse(opts, str) == 0) {
if (block) {
qemu_opt_set(opts, "block", "on");
}
sock = inet_connect_opts(opts, errp);
} else {
error_set(errp, QERR_SOCKET_CREATE_FAILED);
}
qemu_opts_del(opts);
return sock;
}
| 18,213 |
qemu | 44b6789299a8acca3f25331bc411055cafc7bb06 | 1 | static void blkverify_verify_readv(BlkverifyAIOCB *acb)
{
ssize_t offset = qemu_iovec_compare(acb->qiov, &acb->raw_qiov);
if (offset != -1) {
blkverify_err(acb, "contents mismatch in sector %" PRId64,
acb->sector_num + (int64_t)(offset / BDRV_SECTOR_SIZE));
}
}
| 18,214 |
qemu | d9bce9d99f4656ae0b0127f7472db9067b8f84ab | 1 | void do_subfo (void)
{
T2 = T0;
T0 = T1 - T0;
if (likely(!(((~T2) ^ T1 ^ (-1)) & ((~T2) ^ T0) & (1 << 31)))) {
xer_ov = 0;
} else {
xer_so = 1;
xer_ov = 1;
}
RETURN();
}
| 18,215 |
FFmpeg | 57ec555e8ef3c5ef1d77d48dc7cc868e56ddadc9 | 1 | static void png_filter_row(DSPContext *dsp, uint8_t *dst, int filter_type,
uint8_t *src, uint8_t *top, int size, int bpp)
{
int i;
switch(filter_type) {
case PNG_FILTER_VALUE_NONE:
memcpy(dst, src, size);
break;
case PNG_FILTER_VALUE_SUB:
dsp->diff_bytes(dst, src, src-bpp, size);
memcpy(dst, src, bpp);
break;
case PNG_FILTER_VALUE_UP:
dsp->diff_bytes(dst, src, top, size);
break;
case PNG_FILTER_VALUE_AVG:
for(i = 0; i < bpp; i++)
dst[i] = src[i] - (top[i] >> 1);
for(; i < size; i++)
dst[i] = src[i] - ((src[i-bpp] + top[i]) >> 1);
break;
case PNG_FILTER_VALUE_PAETH:
for(i = 0; i < bpp; i++)
dst[i] = src[i] - top[i];
sub_png_paeth_prediction(dst+i, src+i, top+i, size-i, bpp);
break;
}
}
| 18,216 |
qemu | d3d74d6fe095e2e49d030e0c163cecfb9c20f1d4 | 1 | static void handle_9p_output(VirtIODevice *vdev, VirtQueue *vq)
{
V9fsVirtioState *v = (V9fsVirtioState *)vdev;
V9fsState *s = &v->state;
V9fsPDU *pdu;
ssize_t len;
while ((pdu = pdu_alloc(s))) {
struct {
uint32_t size_le;
uint8_t id;
uint16_t tag_le;
} QEMU_PACKED out;
VirtQueueElement *elem;
elem = virtqueue_pop(vq, sizeof(VirtQueueElement));
if (!elem) {
pdu_free(pdu);
break;
}
BUG_ON(elem->out_num == 0 || elem->in_num == 0);
QEMU_BUILD_BUG_ON(sizeof(out) != 7);
v->elems[pdu->idx] = elem;
len = iov_to_buf(elem->out_sg, elem->out_num, 0,
&out, sizeof(out));
BUG_ON(len != sizeof(out));
pdu->size = le32_to_cpu(out.size_le);
pdu->id = out.id;
pdu->tag = le16_to_cpu(out.tag_le);
qemu_co_queue_init(&pdu->complete);
pdu_submit(pdu);
}
}
| 18,218 |
qemu | 8297be80f7cf71e09617669a8bd8b2836dcfd4c3 | 0 | static void add_keysym(char *line, int keysym, int keycode, kbd_layout_t *k) {
if (keysym < MAX_NORMAL_KEYCODE) {
trace_keymap_add("normal", keysym, keycode, line);
k->keysym2keycode[keysym] = keycode;
} else {
if (k->extra_count >= MAX_EXTRA_COUNT) {
fprintf(stderr, "Warning: Could not assign keysym %s (0x%x)"
" because of memory constraints.\n", line, keysym);
} else {
trace_keymap_add("extra", keysym, keycode, line);
k->keysym2keycode_extra[k->extra_count].
keysym = keysym;
k->keysym2keycode_extra[k->extra_count].
keycode = keycode;
k->extra_count++;
}
}
}
| 18,219 |
qemu | 4fa4ce7107c6ec432f185307158c5df91ce54308 | 0 | static int local_unlinkat(FsContext *ctx, V9fsPath *dir,
const char *name, int flags)
{
int ret;
V9fsString fullname;
char buffer[PATH_MAX];
v9fs_string_init(&fullname);
v9fs_string_sprintf(&fullname, "%s/%s", dir->data, name);
if (ctx->export_flags & V9FS_SM_MAPPED_FILE) {
if (flags == AT_REMOVEDIR) {
/*
* If directory remove .virtfs_metadata contained in the
* directory
*/
snprintf(buffer, ARRAY_SIZE(buffer), "%s/%s/%s", ctx->fs_root,
fullname.data, VIRTFS_META_DIR);
ret = remove(buffer);
if (ret < 0 && errno != ENOENT) {
/*
* We didn't had the .virtfs_metadata file. May be file created
* in non-mapped mode ?. Ignore ENOENT.
*/
goto err_out;
}
}
/*
* Now remove the name from parent directory
* .virtfs_metadata directory.
*/
ret = remove(local_mapped_attr_path(ctx, fullname.data, buffer));
if (ret < 0 && errno != ENOENT) {
/*
* We didn't had the .virtfs_metadata file. May be file created
* in non-mapped mode ?. Ignore ENOENT.
*/
goto err_out;
}
}
/* Remove the name finally */
ret = remove(rpath(ctx, fullname.data, buffer));
err_out:
v9fs_string_free(&fullname);
return ret;
}
| 18,222 |
FFmpeg | 9dfd89b831f7c5a11b6406164e0d6d65c0392d24 | 0 | static int dnxhd_init_vlc(DNXHDEncContext *ctx)
{
int i, j, level, run;
int max_level = 1<<(ctx->cid_table->bit_depth+2);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits, max_level*4*sizeof(*ctx->vlc_bits) , fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2, fail);
FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, 63, fail);
ctx->vlc_codes += max_level*2;
ctx->vlc_bits += max_level*2;
for (level = -max_level; level < max_level; level++) {
for (run = 0; run < 2; run++) {
int index = (level<<1)|run;
int sign, offset = 0, alevel = level;
MASK_ABS(sign, alevel);
if (alevel > 64) {
offset = (alevel-1)>>6;
alevel -= offset<<6;
}
for (j = 0; j < 257; j++) {
if (ctx->cid_table->ac_level[j] >> 1 == alevel &&
(!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
(!run || (ctx->cid_table->ac_run_flag [j] && run))) {
assert(!ctx->vlc_codes[index]);
if (alevel) {
ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
} else {
ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
}
break;
}
}
assert(!alevel || j < 257);
if (offset) {
ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
}
}
}
for (i = 0; i < 62; i++) {
int run = ctx->cid_table->run[i];
assert(run < 63);
ctx->run_codes[run] = ctx->cid_table->run_codes[i];
ctx->run_bits [run] = ctx->cid_table->run_bits[i];
}
return 0;
fail:
return -1;
}
| 18,223 |
qemu | 46c5874e9cd752ed8ded31af03472edd8fc3efc1 | 0 | static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
sPAPREnvironment *spapr,
uint32_t token,
uint32_t nargs,
target_ulong args,
uint32_t nret,
target_ulong rets)
{
uint32_t config_addr = rtas_ld(args, 0);
uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
sPAPRPHBState *phb = NULL;
PCIDevice *pdev = NULL;
spapr_pci_msi *msi;
/* Find sPAPRPHBState */
phb = find_phb(spapr, buid);
if (phb) {
pdev = find_dev(spapr, buid, config_addr);
}
if (!phb || !pdev) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
/* Find device descriptor and start IRQ */
msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
trace_spapr_pci_msi("Failed to return vector", config_addr);
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
intr_src_num = msi->first_irq + ioa_intr_num;
trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
intr_src_num);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
rtas_st(rets, 1, intr_src_num);
rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
}
| 18,224 |
qemu | 36778660d7fd0748a6129916e47ecedd67bdb758 | 0 | void ppc_hash64_set_sdr1(PowerPCCPU *cpu, target_ulong value,
Error **errp)
{
CPUPPCState *env = &cpu->env;
target_ulong htabsize = value & SDR_64_HTABSIZE;
env->spr[SPR_SDR1] = value;
if (htabsize > 28) {
error_setg(errp,
"Invalid HTABSIZE 0x" TARGET_FMT_lx" stored in SDR1",
htabsize);
htabsize = 28;
}
env->htab_mask = (1ULL << (htabsize + 18 - 7)) - 1;
env->htab_base = value & SDR_64_HTABORG;
}
| 18,225 |
qemu | 550830f9351291c585c963204ad9127998b1c1ce | 0 | static coroutine_fn int cow_co_write(BlockDriverState *bs, int64_t sector_num,
const uint8_t *buf, int nb_sectors)
{
int ret;
BDRVCowState *s = bs->opaque;
qemu_co_mutex_lock(&s->lock);
ret = cow_write(bs, sector_num, buf, nb_sectors);
qemu_co_mutex_unlock(&s->lock);
return ret;
}
| 18,226 |
qemu | 9646f4927faf68e8690588c2fd6dc9834c440b58 | 0 | static void x86_cpu_reset(CPUState *s)
{
X86CPU *cpu = X86_CPU(s);
X86CPUClass *xcc = X86_CPU_GET_CLASS(cpu);
CPUX86State *env = &cpu->env;
target_ulong cr4;
uint64_t xcr0;
int i;
xcc->parent_reset(s);
memset(env, 0, offsetof(CPUX86State, end_reset_fields));
tlb_flush(s, 1);
env->old_exception = -1;
/* init to reset state */
env->hflags2 |= HF2_GIF_MASK;
cpu_x86_update_cr0(env, 0x60000010);
env->a20_mask = ~0x0;
env->smbase = 0x30000;
env->idt.limit = 0xffff;
env->gdt.limit = 0xffff;
env->ldt.limit = 0xffff;
env->ldt.flags = DESC_P_MASK | (2 << DESC_TYPE_SHIFT);
env->tr.limit = 0xffff;
env->tr.flags = DESC_P_MASK | (11 << DESC_TYPE_SHIFT);
cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK |
DESC_R_MASK | DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
env->eip = 0xfff0;
env->regs[R_EDX] = env->cpuid_version;
env->eflags = 0x2;
/* FPU init */
for (i = 0; i < 8; i++) {
env->fptags[i] = 1;
}
cpu_set_fpuc(env, 0x37f);
env->mxcsr = 0x1f80;
/* All units are in INIT state. */
env->xstate_bv = 0;
env->pat = 0x0007040600070406ULL;
env->msr_ia32_misc_enable = MSR_IA32_MISC_ENABLE_DEFAULT;
memset(env->dr, 0, sizeof(env->dr));
env->dr[6] = DR6_FIXED_1;
env->dr[7] = DR7_FIXED_1;
cpu_breakpoint_remove_all(s, BP_CPU);
cpu_watchpoint_remove_all(s, BP_CPU);
cr4 = 0;
xcr0 = XSTATE_FP_MASK;
#ifdef CONFIG_USER_ONLY
/* Enable all the features for user-mode. */
if (env->features[FEAT_1_EDX] & CPUID_SSE) {
xcr0 |= XSTATE_SSE_MASK;
}
for (i = 2; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
const ExtSaveArea *esa = &x86_ext_save_areas[i];
if ((env->features[esa->feature] & esa->bits) == esa->bits) {
xcr0 |= 1ull << i;
}
}
if (env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE) {
cr4 |= CR4_OSFXSR_MASK | CR4_OSXSAVE_MASK;
}
if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_FSGSBASE) {
cr4 |= CR4_FSGSBASE_MASK;
}
#endif
env->xcr0 = xcr0;
cpu_x86_update_cr4(env, cr4);
/*
* SDM 11.11.5 requires:
* - IA32_MTRR_DEF_TYPE MSR.E = 0
* - IA32_MTRR_PHYSMASKn.V = 0
* All other bits are undefined. For simplification, zero it all.
*/
env->mtrr_deftype = 0;
memset(env->mtrr_var, 0, sizeof(env->mtrr_var));
memset(env->mtrr_fixed, 0, sizeof(env->mtrr_fixed));
#if !defined(CONFIG_USER_ONLY)
/* We hard-wire the BSP to the first CPU. */
apic_designate_bsp(cpu->apic_state, s->cpu_index == 0);
s->halted = !cpu_is_bsp(cpu);
if (kvm_enabled()) {
kvm_arch_reset_vcpu(cpu);
}
#endif
}
| 18,227 |
qemu | bec1631100323fac0900aea71043d5c4e22fc2fa | 0 | static void tcg_out_brcond2 (TCGContext *s, const TCGArg *args,
const int *const_args)
{
tcg_out_cmp2(s, args, const_args);
tcg_out_bc(s, BC | BI(7, CR_EQ) | BO_COND_TRUE, args[5]);
}
| 18,228 |
qemu | 7bba83bf80eae9c9e323319ff40d0ca477b0a77a | 0 | static int net_rx_ok(NetClientState *nc)
{
struct XenNetDev *netdev = qemu_get_nic_opaque(nc);
RING_IDX rc, rp;
if (netdev->xendev.be_state != XenbusStateConnected) {
return 0;
}
rc = netdev->rx_ring.req_cons;
rp = netdev->rx_ring.sring->req_prod;
xen_rmb();
if (rc == rp || RING_REQUEST_CONS_OVERFLOW(&netdev->rx_ring, rc)) {
xen_be_printf(&netdev->xendev, 2, "%s: no rx buffers (%d/%d)\n",
__FUNCTION__, rc, rp);
return 0;
}
return 1;
}
| 18,229 |
qemu | 03f4995781a64e106e6f73864a1e9c4163dac53b | 0 | static void page_flush_tb_1(int level, void **lp)
{
int i;
if (*lp == NULL) {
return;
}
if (level == 0) {
PageDesc *pd = *lp;
for (i = 0; i < L2_SIZE; ++i) {
pd[i].first_tb = NULL;
invalidate_page_bitmap(pd + i);
}
} else {
void **pp = *lp;
for (i = 0; i < L2_SIZE; ++i) {
page_flush_tb_1(level - 1, pp + i);
}
}
}
| 18,230 |
qemu | 8f577d3d29996ad5c60ac6419881557183806d8b | 0 | static void disas_sparc_insn(DisasContext * dc)
{
unsigned int insn, opc, rs1, rs2, rd;
insn = ldl_code(dc->pc);
opc = GET_FIELD(insn, 0, 1);
rd = GET_FIELD(insn, 2, 6);
switch (opc) {
case 0: /* branches/sethi */
{
unsigned int xop = GET_FIELD(insn, 7, 9);
int32_t target;
switch (xop) {
#ifdef TARGET_SPARC64
case 0x1: /* V9 BPcc */
{
int cc;
target = GET_FIELD_SP(insn, 0, 18);
target = sign_extend(target, 18);
target <<= 2;
cc = GET_FIELD_SP(insn, 20, 21);
if (cc == 0)
do_branch(dc, target, insn, 0);
else if (cc == 2)
do_branch(dc, target, insn, 1);
else
goto illegal_insn;
goto jmp_insn;
}
case 0x3: /* V9 BPr */
{
target = GET_FIELD_SP(insn, 0, 13) |
(GET_FIELD_SP(insn, 20, 21) << 14);
target = sign_extend(target, 16);
target <<= 2;
rs1 = GET_FIELD(insn, 13, 17);
gen_movl_reg_T0(rs1);
do_branch_reg(dc, target, insn);
goto jmp_insn;
}
case 0x5: /* V9 FBPcc */
{
int cc = GET_FIELD_SP(insn, 20, 21);
if (gen_trap_ifnofpu(dc))
goto jmp_insn;
target = GET_FIELD_SP(insn, 0, 18);
target = sign_extend(target, 19);
target <<= 2;
do_fbranch(dc, target, insn, cc);
goto jmp_insn;
}
#else
case 0x7: /* CBN+x */
{
goto ncp_insn;
}
#endif
case 0x2: /* BN+x */
{
target = GET_FIELD(insn, 10, 31);
target = sign_extend(target, 22);
target <<= 2;
do_branch(dc, target, insn, 0);
goto jmp_insn;
}
case 0x6: /* FBN+x */
{
if (gen_trap_ifnofpu(dc))
goto jmp_insn;
target = GET_FIELD(insn, 10, 31);
target = sign_extend(target, 22);
target <<= 2;
do_fbranch(dc, target, insn, 0);
goto jmp_insn;
}
case 0x4: /* SETHI */
#define OPTIM
#if defined(OPTIM)
if (rd) { // nop
#endif
uint32_t value = GET_FIELD(insn, 10, 31);
gen_movl_imm_T0(value << 10);
gen_movl_T0_reg(rd);
#if defined(OPTIM)
}
#endif
break;
case 0x0: /* UNIMPL */
default:
goto illegal_insn;
}
break;
}
break;
case 1:
/*CALL*/ {
target_long target = GET_FIELDs(insn, 2, 31) << 2;
#ifdef TARGET_SPARC64
if (dc->pc == (uint32_t)dc->pc) {
gen_op_movl_T0_im(dc->pc);
} else {
gen_op_movq_T0_im64(dc->pc >> 32, dc->pc);
}
#else
gen_op_movl_T0_im(dc->pc);
#endif
gen_movl_T0_reg(15);
target += dc->pc;
gen_mov_pc_npc(dc);
dc->npc = target;
}
goto jmp_insn;
case 2: /* FPU & Logical Operations */
{
unsigned int xop = GET_FIELD(insn, 7, 12);
if (xop == 0x3a) { /* generate trap */
int cond;
rs1 = GET_FIELD(insn, 13, 17);
gen_movl_reg_T0(rs1);
if (IS_IMM) {
rs2 = GET_FIELD(insn, 25, 31);
#if defined(OPTIM)
if (rs2 != 0) {
#endif
gen_movl_simm_T1(rs2);
gen_op_add_T1_T0();
#if defined(OPTIM)
}
#endif
} else {
rs2 = GET_FIELD(insn, 27, 31);
#if defined(OPTIM)
if (rs2 != 0) {
#endif
gen_movl_reg_T1(rs2);
gen_op_add_T1_T0();
#if defined(OPTIM)
}
#endif
}
cond = GET_FIELD(insn, 3, 6);
if (cond == 0x8) {
save_state(dc);
gen_op_trap_T0();
} else if (cond != 0) {
#ifdef TARGET_SPARC64
/* V9 icc/xcc */
int cc = GET_FIELD_SP(insn, 11, 12);
flush_T2(dc);
save_state(dc);
if (cc == 0)
gen_cond[0][cond]();
else if (cc == 2)
gen_cond[1][cond]();
else
goto illegal_insn;
#else
flush_T2(dc);
save_state(dc);
gen_cond[0][cond]();
#endif
gen_op_trapcc_T0();
}
gen_op_next_insn();
gen_op_movl_T0_0();
gen_op_exit_tb();
dc->is_br = 1;
goto jmp_insn;
} else if (xop == 0x28) {
rs1 = GET_FIELD(insn, 13, 17);
switch(rs1) {
case 0: /* rdy */
#ifndef TARGET_SPARC64
case 0x01 ... 0x0e: /* undefined in the SPARCv8
manual, rdy on the microSPARC
II */
case 0x0f: /* stbar in the SPARCv8 manual,
rdy on the microSPARC II */
case 0x10 ... 0x1f: /* implementation-dependent in the
SPARCv8 manual, rdy on the
microSPARC II */
#endif
gen_op_movtl_T0_env(offsetof(CPUSPARCState, y));
gen_movl_T0_reg(rd);
break;
#ifdef TARGET_SPARC64
case 0x2: /* V9 rdccr */
gen_op_rdccr();
gen_movl_T0_reg(rd);
break;
case 0x3: /* V9 rdasi */
gen_op_movl_T0_env(offsetof(CPUSPARCState, asi));
gen_movl_T0_reg(rd);
break;
case 0x4: /* V9 rdtick */
gen_op_rdtick();
gen_movl_T0_reg(rd);
break;
case 0x5: /* V9 rdpc */
if (dc->pc == (uint32_t)dc->pc) {
gen_op_movl_T0_im(dc->pc);
} else {
gen_op_movq_T0_im64(dc->pc >> 32, dc->pc);
}
gen_movl_T0_reg(rd);
break;
case 0x6: /* V9 rdfprs */
gen_op_movl_T0_env(offsetof(CPUSPARCState, fprs));
gen_movl_T0_reg(rd);
break;
case 0xf: /* V9 membar */
break; /* no effect */
case 0x13: /* Graphics Status */
if (gen_trap_ifnofpu(dc))
goto jmp_insn;
gen_op_movtl_T0_env(offsetof(CPUSPARCState, gsr));
gen_movl_T0_reg(rd);
break;
case 0x17: /* Tick compare */
gen_op_movtl_T0_env(offsetof(CPUSPARCState, tick_cmpr));
gen_movl_T0_reg(rd);
break;
case 0x18: /* System tick */
gen_op_rdstick();
gen_movl_T0_reg(rd);
break;
case 0x19: /* System tick compare */
gen_op_movtl_T0_env(offsetof(CPUSPARCState, stick_cmpr));
gen_movl_T0_reg(rd);
break;
case 0x10: /* Performance Control */
case 0x11: /* Performance Instrumentation Counter */
case 0x12: /* Dispatch Control */
case 0x14: /* Softint set, WO */
case 0x15: /* Softint clear, WO */
case 0x16: /* Softint write */
#endif
default:
goto illegal_insn;
}
#if !defined(CONFIG_USER_ONLY)
} else if (xop == 0x29) { /* rdpsr / UA2005 rdhpr */
#ifndef TARGET_SPARC64
if (!supervisor(dc))
goto priv_insn;
gen_op_rdpsr();
#else
if (!hypervisor(dc))
goto priv_insn;
rs1 = GET_FIELD(insn, 13, 17);
switch (rs1) {
case 0: // hpstate
// gen_op_rdhpstate();
break;
case 1: // htstate
// gen_op_rdhtstate();
break;
case 3: // hintp
gen_op_movl_T0_env(offsetof(CPUSPARCState, hintp));
break;
case 5: // htba
gen_op_movl_T0_env(offsetof(CPUSPARCState, htba));
break;
case 6: // hver
gen_op_movl_T0_env(offsetof(CPUSPARCState, hver));
break;
case 31: // hstick_cmpr
gen_op_movl_env_T0(offsetof(CPUSPARCState, hstick_cmpr));
break;
default:
goto illegal_insn;
}
#endif
gen_movl_T0_reg(rd);
break;
} else if (xop == 0x2a) { /* rdwim / V9 rdpr */
if (!supervisor(dc))
goto priv_insn;
#ifdef TARGET_SPARC64
rs1 = GET_FIELD(insn, 13, 17);
switch (rs1) {
case 0: // tpc
gen_op_rdtpc();
break;
case 1: // tnpc
gen_op_rdtnpc();
break;
case 2: // tstate
gen_op_rdtstate();
break;
case 3: // tt
gen_op_rdtt();
break;
case 4: // tick
gen_op_rdtick();
break;
case 5: // tba
gen_op_movtl_T0_env(offsetof(CPUSPARCState, tbr));
break;
case 6: // pstate
gen_op_rdpstate();
break;
case 7: // tl
gen_op_movl_T0_env(offsetof(CPUSPARCState, tl));
break;
case 8: // pil
gen_op_movl_T0_env(offsetof(CPUSPARCState, psrpil));
break;
case 9: // cwp
gen_op_rdcwp();
break;
case 10: // cansave
gen_op_movl_T0_env(offsetof(CPUSPARCState, cansave));
break;
case 11: // canrestore
gen_op_movl_T0_env(offsetof(CPUSPARCState, canrestore));
break;
case 12: // cleanwin
gen_op_movl_T0_env(offsetof(CPUSPARCState, cleanwin));
break;
case 13: // otherwin
gen_op_movl_T0_env(offsetof(CPUSPARCState, otherwin));
break;
case 14: // wstate
gen_op_movl_T0_env(offsetof(CPUSPARCState, wstate));
break;
case 16: // UA2005 gl
gen_op_movl_T0_env(offsetof(CPUSPARCState, gl));
break;
case 26: // UA2005 strand status
if (!hypervisor(dc))
goto priv_insn;
gen_op_movl_T0_env(offsetof(CPUSPARCState, ssr));
break;
case 31: // ver
gen_op_movtl_T0_env(offsetof(CPUSPARCState, version));
break;
case 15: // fq
default:
goto illegal_insn;
}
#else
gen_op_movl_T0_env(offsetof(CPUSPARCState, wim));
#endif
gen_movl_T0_reg(rd);
break;
} else if (xop == 0x2b) { /* rdtbr / V9 flushw */
#ifdef TARGET_SPARC64
gen_op_flushw();
#else
if (!supervisor(dc))
goto priv_insn;
gen_op_movtl_T0_env(offsetof(CPUSPARCState, tbr));
gen_movl_T0_reg(rd);
#endif
break;
#endif
} else if (xop == 0x34) { /* FPU Operations */
if (gen_trap_ifnofpu(dc))
goto jmp_insn;
gen_op_clear_ieee_excp_and_FTT();
rs1 = GET_FIELD(insn, 13, 17);
rs2 = GET_FIELD(insn, 27, 31);
xop = GET_FIELD(insn, 18, 26);
switch (xop) {
case 0x1: /* fmovs */
gen_op_load_fpr_FT0(rs2);
gen_op_store_FT0_fpr(rd);
break;
case 0x5: /* fnegs */
gen_op_load_fpr_FT1(rs2);
gen_op_fnegs();
gen_op_store_FT0_fpr(rd);
break;
case 0x9: /* fabss */
gen_op_load_fpr_FT1(rs2);
gen_op_fabss();
gen_op_store_FT0_fpr(rd);
break;
case 0x29: /* fsqrts */
gen_op_load_fpr_FT1(rs2);
gen_op_fsqrts();
gen_op_store_FT0_fpr(rd);
break;
case 0x2a: /* fsqrtd */
gen_op_load_fpr_DT1(DFPREG(rs2));
gen_op_fsqrtd();
gen_op_store_DT0_fpr(DFPREG(rd));
break;
case 0x2b: /* fsqrtq */
goto nfpu_insn;
case 0x41:
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fadds();
gen_op_store_FT0_fpr(rd);
break;
case 0x42:
gen_op_load_fpr_DT0(DFPREG(rs1));
gen_op_load_fpr_DT1(DFPREG(rs2));
gen_op_faddd();
gen_op_store_DT0_fpr(DFPREG(rd));
break;
case 0x43: /* faddq */
goto nfpu_insn;
case 0x45:
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fsubs();
gen_op_store_FT0_fpr(rd);
break;
case 0x46:
gen_op_load_fpr_DT0(DFPREG(rs1));
gen_op_load_fpr_DT1(DFPREG(rs2));
gen_op_fsubd();
gen_op_store_DT0_fpr(DFPREG(rd));
break;
case 0x47: /* fsubq */
goto nfpu_insn;
case 0x49:
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fmuls();
gen_op_store_FT0_fpr(rd);
break;
case 0x4a:
gen_op_load_fpr_DT0(DFPREG(rs1));
gen_op_load_fpr_DT1(DFPREG(rs2));
gen_op_fmuld();
gen_op_store_DT0_fpr(rd);
break;
case 0x4b: /* fmulq */
goto nfpu_insn;
case 0x4d:
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fdivs();
gen_op_store_FT0_fpr(rd);
break;
case 0x4e:
gen_op_load_fpr_DT0(DFPREG(rs1));
gen_op_load_fpr_DT1(DFPREG(rs2));
gen_op_fdivd();
gen_op_store_DT0_fpr(DFPREG(rd));
break;
case 0x4f: /* fdivq */
goto nfpu_insn;
case 0x69:
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fsmuld();
gen_op_store_DT0_fpr(DFPREG(rd));
break;
case 0x6e: /* fdmulq */
goto nfpu_insn;
case 0xc4:
gen_op_load_fpr_FT1(rs2);
gen_op_fitos();
gen_op_store_FT0_fpr(rd);
break;
case 0xc6:
gen_op_load_fpr_DT1(DFPREG(rs2));
gen_op_fdtos();
gen_op_store_FT0_fpr(rd);
break;
case 0xc7: /* fqtos */
goto nfpu_insn;
case 0xc8:
gen_op_load_fpr_FT1(rs2);
gen_op_fitod();
gen_op_store_DT0_fpr(DFPREG(rd));
break;
case 0xc9:
gen_op_load_fpr_FT1(rs2);
gen_op_fstod();
gen_op_store_DT0_fpr(DFPREG(rd));
break;
case 0xcb: /* fqtod */
goto nfpu_insn;
case 0xcc: /* fitoq */
goto nfpu_insn;
case 0xcd: /* fstoq */
goto nfpu_insn;
case 0xce: /* fdtoq */
goto nfpu_insn;
case 0xd1:
gen_op_load_fpr_FT1(rs2);
gen_op_fstoi();
gen_op_store_FT0_fpr(rd);
break;
case 0xd2:
gen_op_load_fpr_DT1(rs2);
gen_op_fdtoi();
gen_op_store_FT0_fpr(rd);
break;
case 0xd3: /* fqtoi */
goto nfpu_insn;
#ifdef TARGET_SPARC64
case 0x2: /* V9 fmovd */
gen_op_load_fpr_DT0(DFPREG(rs2));
gen_op_store_DT0_fpr(DFPREG(rd));
break;
case 0x6: /* V9 fnegd */
gen_op_load_fpr_DT1(DFPREG(rs2));
gen_op_fnegd();
gen_op_store_DT0_fpr(DFPREG(rd));
break;
case 0xa: /* V9 fabsd */
gen_op_load_fpr_DT1(DFPREG(rs2));
gen_op_fabsd();
gen_op_store_DT0_fpr(DFPREG(rd));
break;
case 0x81: /* V9 fstox */
gen_op_load_fpr_FT1(rs2);
gen_op_fstox();
gen_op_store_DT0_fpr(DFPREG(rd));
break;
case 0x82: /* V9 fdtox */
gen_op_load_fpr_DT1(DFPREG(rs2));
gen_op_fdtox();
gen_op_store_DT0_fpr(DFPREG(rd));
break;
case 0x84: /* V9 fxtos */
gen_op_load_fpr_DT1(DFPREG(rs2));
gen_op_fxtos();
gen_op_store_FT0_fpr(rd);
break;
case 0x88: /* V9 fxtod */
gen_op_load_fpr_DT1(DFPREG(rs2));
gen_op_fxtod();
gen_op_store_DT0_fpr(DFPREG(rd));
break;
case 0x3: /* V9 fmovq */
case 0x7: /* V9 fnegq */
case 0xb: /* V9 fabsq */
case 0x83: /* V9 fqtox */
case 0x8c: /* V9 fxtoq */
goto nfpu_insn;
#endif
default:
goto illegal_insn;
}
} else if (xop == 0x35) { /* FPU Operations */
#ifdef TARGET_SPARC64
int cond;
#endif
if (gen_trap_ifnofpu(dc))
goto jmp_insn;
gen_op_clear_ieee_excp_and_FTT();
rs1 = GET_FIELD(insn, 13, 17);
rs2 = GET_FIELD(insn, 27, 31);
xop = GET_FIELD(insn, 18, 26);
#ifdef TARGET_SPARC64
if ((xop & 0x11f) == 0x005) { // V9 fmovsr
cond = GET_FIELD_SP(insn, 14, 17);
gen_op_load_fpr_FT0(rd);
gen_op_load_fpr_FT1(rs2);
rs1 = GET_FIELD(insn, 13, 17);
gen_movl_reg_T0(rs1);
flush_T2(dc);
gen_cond_reg(cond);
gen_op_fmovs_cc();
gen_op_store_FT0_fpr(rd);
break;
} else if ((xop & 0x11f) == 0x006) { // V9 fmovdr
cond = GET_FIELD_SP(insn, 14, 17);
gen_op_load_fpr_DT0(rd);
gen_op_load_fpr_DT1(rs2);
flush_T2(dc);
rs1 = GET_FIELD(insn, 13, 17);
gen_movl_reg_T0(rs1);
gen_cond_reg(cond);
gen_op_fmovs_cc();
gen_op_store_DT0_fpr(rd);
break;
} else if ((xop & 0x11f) == 0x007) { // V9 fmovqr
goto nfpu_insn;
}
#endif
switch (xop) {
#ifdef TARGET_SPARC64
case 0x001: /* V9 fmovscc %fcc0 */
cond = GET_FIELD_SP(insn, 14, 17);
gen_op_load_fpr_FT0(rd);
gen_op_load_fpr_FT1(rs2);
flush_T2(dc);
gen_fcond[0][cond]();
gen_op_fmovs_cc();
gen_op_store_FT0_fpr(rd);
break;
case 0x002: /* V9 fmovdcc %fcc0 */
cond = GET_FIELD_SP(insn, 14, 17);
gen_op_load_fpr_DT0(rd);
gen_op_load_fpr_DT1(rs2);
flush_T2(dc);
gen_fcond[0][cond]();
gen_op_fmovd_cc();
gen_op_store_DT0_fpr(rd);
break;
case 0x003: /* V9 fmovqcc %fcc0 */
goto nfpu_insn;
case 0x041: /* V9 fmovscc %fcc1 */
cond = GET_FIELD_SP(insn, 14, 17);
gen_op_load_fpr_FT0(rd);
gen_op_load_fpr_FT1(rs2);
flush_T2(dc);
gen_fcond[1][cond]();
gen_op_fmovs_cc();
gen_op_store_FT0_fpr(rd);
break;
case 0x042: /* V9 fmovdcc %fcc1 */
cond = GET_FIELD_SP(insn, 14, 17);
gen_op_load_fpr_DT0(rd);
gen_op_load_fpr_DT1(rs2);
flush_T2(dc);
gen_fcond[1][cond]();
gen_op_fmovd_cc();
gen_op_store_DT0_fpr(rd);
break;
case 0x043: /* V9 fmovqcc %fcc1 */
goto nfpu_insn;
case 0x081: /* V9 fmovscc %fcc2 */
cond = GET_FIELD_SP(insn, 14, 17);
gen_op_load_fpr_FT0(rd);
gen_op_load_fpr_FT1(rs2);
flush_T2(dc);
gen_fcond[2][cond]();
gen_op_fmovs_cc();
gen_op_store_FT0_fpr(rd);
break;
case 0x082: /* V9 fmovdcc %fcc2 */
cond = GET_FIELD_SP(insn, 14, 17);
gen_op_load_fpr_DT0(rd);
gen_op_load_fpr_DT1(rs2);
flush_T2(dc);
gen_fcond[2][cond]();
gen_op_fmovd_cc();
gen_op_store_DT0_fpr(rd);
break;
case 0x083: /* V9 fmovqcc %fcc2 */
goto nfpu_insn;
case 0x0c1: /* V9 fmovscc %fcc3 */
cond = GET_FIELD_SP(insn, 14, 17);
gen_op_load_fpr_FT0(rd);
gen_op_load_fpr_FT1(rs2);
flush_T2(dc);
gen_fcond[3][cond]();
gen_op_fmovs_cc();
gen_op_store_FT0_fpr(rd);
break;
case 0x0c2: /* V9 fmovdcc %fcc3 */
cond = GET_FIELD_SP(insn, 14, 17);
gen_op_load_fpr_DT0(rd);
gen_op_load_fpr_DT1(rs2);
flush_T2(dc);
gen_fcond[3][cond]();
gen_op_fmovd_cc();
gen_op_store_DT0_fpr(rd);
break;
case 0x0c3: /* V9 fmovqcc %fcc3 */
goto nfpu_insn;
case 0x101: /* V9 fmovscc %icc */
cond = GET_FIELD_SP(insn, 14, 17);
gen_op_load_fpr_FT0(rd);
gen_op_load_fpr_FT1(rs2);
flush_T2(dc);
gen_cond[0][cond]();
gen_op_fmovs_cc();
gen_op_store_FT0_fpr(rd);
break;
case 0x102: /* V9 fmovdcc %icc */
cond = GET_FIELD_SP(insn, 14, 17);
gen_op_load_fpr_DT0(rd);
gen_op_load_fpr_DT1(rs2);
flush_T2(dc);
gen_cond[0][cond]();
gen_op_fmovd_cc();
gen_op_store_DT0_fpr(rd);
break;
case 0x103: /* V9 fmovqcc %icc */
goto nfpu_insn;
case 0x181: /* V9 fmovscc %xcc */
cond = GET_FIELD_SP(insn, 14, 17);
gen_op_load_fpr_FT0(rd);
gen_op_load_fpr_FT1(rs2);
flush_T2(dc);
gen_cond[1][cond]();
gen_op_fmovs_cc();
gen_op_store_FT0_fpr(rd);
break;
case 0x182: /* V9 fmovdcc %xcc */
cond = GET_FIELD_SP(insn, 14, 17);
gen_op_load_fpr_DT0(rd);
gen_op_load_fpr_DT1(rs2);
flush_T2(dc);
gen_cond[1][cond]();
gen_op_fmovd_cc();
gen_op_store_DT0_fpr(rd);
break;
case 0x183: /* V9 fmovqcc %xcc */
goto nfpu_insn;
#endif
case 0x51: /* V9 %fcc */
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
#ifdef TARGET_SPARC64
gen_fcmps[rd & 3]();
#else
gen_op_fcmps();
#endif
break;
case 0x52: /* V9 %fcc */
gen_op_load_fpr_DT0(DFPREG(rs1));
gen_op_load_fpr_DT1(DFPREG(rs2));
#ifdef TARGET_SPARC64
gen_fcmpd[rd & 3]();
#else
gen_op_fcmpd();
#endif
break;
case 0x53: /* fcmpq */
goto nfpu_insn;
case 0x55: /* fcmpes, V9 %fcc */
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
#ifdef TARGET_SPARC64
gen_fcmpes[rd & 3]();
#else
gen_op_fcmpes();
#endif
break;
case 0x56: /* fcmped, V9 %fcc */
gen_op_load_fpr_DT0(DFPREG(rs1));
gen_op_load_fpr_DT1(DFPREG(rs2));
#ifdef TARGET_SPARC64
gen_fcmped[rd & 3]();
#else
gen_op_fcmped();
#endif
break;
case 0x57: /* fcmpeq */
goto nfpu_insn;
default:
goto illegal_insn;
}
#if defined(OPTIM)
} else if (xop == 0x2) {
// clr/mov shortcut
rs1 = GET_FIELD(insn, 13, 17);
if (rs1 == 0) {
// or %g0, x, y -> mov T1, x; mov y, T1
if (IS_IMM) { /* immediate */
rs2 = GET_FIELDs(insn, 19, 31);
gen_movl_simm_T1(rs2);
} else { /* register */
rs2 = GET_FIELD(insn, 27, 31);
gen_movl_reg_T1(rs2);
}
gen_movl_T1_reg(rd);
} else {
gen_movl_reg_T0(rs1);
if (IS_IMM) { /* immediate */
// or x, #0, y -> mov T1, x; mov y, T1
rs2 = GET_FIELDs(insn, 19, 31);
if (rs2 != 0) {
gen_movl_simm_T1(rs2);
gen_op_or_T1_T0();
}
} else { /* register */
// or x, %g0, y -> mov T1, x; mov y, T1
rs2 = GET_FIELD(insn, 27, 31);
if (rs2 != 0) {
gen_movl_reg_T1(rs2);
gen_op_or_T1_T0();
}
}
gen_movl_T0_reg(rd);
}
#endif
#ifdef TARGET_SPARC64
} else if (xop == 0x25) { /* sll, V9 sllx */
rs1 = GET_FIELD(insn, 13, 17);
gen_movl_reg_T0(rs1);
if (IS_IMM) { /* immediate */
rs2 = GET_FIELDs(insn, 20, 31);
gen_movl_simm_T1(rs2);
} else { /* register */
rs2 = GET_FIELD(insn, 27, 31);
gen_movl_reg_T1(rs2);
}
if (insn & (1 << 12))
gen_op_sllx();
else
gen_op_sll();
gen_movl_T0_reg(rd);
} else if (xop == 0x26) { /* srl, V9 srlx */
rs1 = GET_FIELD(insn, 13, 17);
gen_movl_reg_T0(rs1);
if (IS_IMM) { /* immediate */
rs2 = GET_FIELDs(insn, 20, 31);
gen_movl_simm_T1(rs2);
} else { /* register */
rs2 = GET_FIELD(insn, 27, 31);
gen_movl_reg_T1(rs2);
}
if (insn & (1 << 12))
gen_op_srlx();
else
gen_op_srl();
gen_movl_T0_reg(rd);
} else if (xop == 0x27) { /* sra, V9 srax */
rs1 = GET_FIELD(insn, 13, 17);
gen_movl_reg_T0(rs1);
if (IS_IMM) { /* immediate */
rs2 = GET_FIELDs(insn, 20, 31);
gen_movl_simm_T1(rs2);
} else { /* register */
rs2 = GET_FIELD(insn, 27, 31);
gen_movl_reg_T1(rs2);
}
if (insn & (1 << 12))
gen_op_srax();
else
gen_op_sra();
gen_movl_T0_reg(rd);
#endif
} else if (xop < 0x36) {
rs1 = GET_FIELD(insn, 13, 17);
gen_movl_reg_T0(rs1);
if (IS_IMM) { /* immediate */
rs2 = GET_FIELDs(insn, 19, 31);
gen_movl_simm_T1(rs2);
} else { /* register */
rs2 = GET_FIELD(insn, 27, 31);
gen_movl_reg_T1(rs2);
}
if (xop < 0x20) {
switch (xop & ~0x10) {
case 0x0:
if (xop & 0x10)
gen_op_add_T1_T0_cc();
else
gen_op_add_T1_T0();
break;
case 0x1:
gen_op_and_T1_T0();
if (xop & 0x10)
gen_op_logic_T0_cc();
break;
case 0x2:
gen_op_or_T1_T0();
if (xop & 0x10)
gen_op_logic_T0_cc();
break;
case 0x3:
gen_op_xor_T1_T0();
if (xop & 0x10)
gen_op_logic_T0_cc();
break;
case 0x4:
if (xop & 0x10)
gen_op_sub_T1_T0_cc();
else
gen_op_sub_T1_T0();
break;
case 0x5:
gen_op_andn_T1_T0();
if (xop & 0x10)
gen_op_logic_T0_cc();
break;
case 0x6:
gen_op_orn_T1_T0();
if (xop & 0x10)
gen_op_logic_T0_cc();
break;
case 0x7:
gen_op_xnor_T1_T0();
if (xop & 0x10)
gen_op_logic_T0_cc();
break;
case 0x8:
if (xop & 0x10)
gen_op_addx_T1_T0_cc();
else
gen_op_addx_T1_T0();
break;
#ifdef TARGET_SPARC64
case 0x9: /* V9 mulx */
gen_op_mulx_T1_T0();
break;
#endif
case 0xa:
gen_op_umul_T1_T0();
if (xop & 0x10)
gen_op_logic_T0_cc();
break;
case 0xb:
gen_op_smul_T1_T0();
if (xop & 0x10)
gen_op_logic_T0_cc();
break;
case 0xc:
if (xop & 0x10)
gen_op_subx_T1_T0_cc();
else
gen_op_subx_T1_T0();
break;
#ifdef TARGET_SPARC64
case 0xd: /* V9 udivx */
gen_op_udivx_T1_T0();
break;
#endif
case 0xe:
gen_op_udiv_T1_T0();
if (xop & 0x10)
gen_op_div_cc();
break;
case 0xf:
gen_op_sdiv_T1_T0();
if (xop & 0x10)
gen_op_div_cc();
break;
default:
goto illegal_insn;
}
gen_movl_T0_reg(rd);
} else {
switch (xop) {
case 0x20: /* taddcc */
gen_op_tadd_T1_T0_cc();
gen_movl_T0_reg(rd);
break;
case 0x21: /* tsubcc */
gen_op_tsub_T1_T0_cc();
gen_movl_T0_reg(rd);
break;
case 0x22: /* taddcctv */
save_state(dc);
gen_op_tadd_T1_T0_ccTV();
gen_movl_T0_reg(rd);
break;
case 0x23: /* tsubcctv */
save_state(dc);
gen_op_tsub_T1_T0_ccTV();
gen_movl_T0_reg(rd);
break;
case 0x24: /* mulscc */
gen_op_mulscc_T1_T0();
gen_movl_T0_reg(rd);
break;
#ifndef TARGET_SPARC64
case 0x25: /* sll */
gen_op_sll();
gen_movl_T0_reg(rd);
break;
case 0x26: /* srl */
gen_op_srl();
gen_movl_T0_reg(rd);
break;
case 0x27: /* sra */
gen_op_sra();
gen_movl_T0_reg(rd);
break;
#endif
case 0x30:
{
switch(rd) {
case 0: /* wry */
gen_op_xor_T1_T0();
gen_op_movtl_env_T0(offsetof(CPUSPARCState, y));
break;
#ifndef TARGET_SPARC64
case 0x01 ... 0x0f: /* undefined in the
SPARCv8 manual, nop
on the microSPARC
II */
case 0x10 ... 0x1f: /* implementation-dependent
in the SPARCv8
manual, nop on the
microSPARC II */
break;
#else
case 0x2: /* V9 wrccr */
gen_op_xor_T1_T0();
gen_op_wrccr();
break;
case 0x3: /* V9 wrasi */
gen_op_xor_T1_T0();
gen_op_movl_env_T0(offsetof(CPUSPARCState, asi));
break;
case 0x6: /* V9 wrfprs */
gen_op_xor_T1_T0();
gen_op_movl_env_T0(offsetof(CPUSPARCState, fprs));
save_state(dc);
gen_op_next_insn();
gen_op_movl_T0_0();
gen_op_exit_tb();
dc->is_br = 1;
break;
case 0xf: /* V9 sir, nop if user */
#if !defined(CONFIG_USER_ONLY)
if (supervisor(dc))
gen_op_sir();
#endif
break;
case 0x13: /* Graphics Status */
if (gen_trap_ifnofpu(dc))
goto jmp_insn;
gen_op_xor_T1_T0();
gen_op_movtl_env_T0(offsetof(CPUSPARCState, gsr));
break;
case 0x17: /* Tick compare */
#if !defined(CONFIG_USER_ONLY)
if (!supervisor(dc))
goto illegal_insn;
#endif
gen_op_xor_T1_T0();
gen_op_movtl_env_T0(offsetof(CPUSPARCState, tick_cmpr));
gen_op_wrtick_cmpr();
break;
case 0x18: /* System tick */
#if !defined(CONFIG_USER_ONLY)
if (!supervisor(dc))
goto illegal_insn;
#endif
gen_op_xor_T1_T0();
gen_op_wrstick();
break;
case 0x19: /* System tick compare */
#if !defined(CONFIG_USER_ONLY)
if (!supervisor(dc))
goto illegal_insn;
#endif
gen_op_xor_T1_T0();
gen_op_movtl_env_T0(offsetof(CPUSPARCState, stick_cmpr));
gen_op_wrstick_cmpr();
break;
case 0x10: /* Performance Control */
case 0x11: /* Performance Instrumentation Counter */
case 0x12: /* Dispatch Control */
case 0x14: /* Softint set */
case 0x15: /* Softint clear */
case 0x16: /* Softint write */
#endif
default:
goto illegal_insn;
}
}
break;
#if !defined(CONFIG_USER_ONLY)
case 0x31: /* wrpsr, V9 saved, restored */
{
if (!supervisor(dc))
goto priv_insn;
#ifdef TARGET_SPARC64
switch (rd) {
case 0:
gen_op_saved();
break;
case 1:
gen_op_restored();
break;
case 2: /* UA2005 allclean */
case 3: /* UA2005 otherw */
case 4: /* UA2005 normalw */
case 5: /* UA2005 invalw */
// XXX
default:
goto illegal_insn;
}
#else
gen_op_xor_T1_T0();
gen_op_wrpsr();
save_state(dc);
gen_op_next_insn();
gen_op_movl_T0_0();
gen_op_exit_tb();
dc->is_br = 1;
#endif
}
break;
case 0x32: /* wrwim, V9 wrpr */
{
if (!supervisor(dc))
goto priv_insn;
gen_op_xor_T1_T0();
#ifdef TARGET_SPARC64
switch (rd) {
case 0: // tpc
gen_op_wrtpc();
break;
case 1: // tnpc
gen_op_wrtnpc();
break;
case 2: // tstate
gen_op_wrtstate();
break;
case 3: // tt
gen_op_wrtt();
break;
case 4: // tick
gen_op_wrtick();
break;
case 5: // tba
gen_op_movtl_env_T0(offsetof(CPUSPARCState, tbr));
break;
case 6: // pstate
gen_op_wrpstate();
save_state(dc);
gen_op_next_insn();
gen_op_movl_T0_0();
gen_op_exit_tb();
dc->is_br = 1;
break;
case 7: // tl
gen_op_movl_env_T0(offsetof(CPUSPARCState, tl));
break;
case 8: // pil
gen_op_movl_env_T0(offsetof(CPUSPARCState, psrpil));
break;
case 9: // cwp
gen_op_wrcwp();
break;
case 10: // cansave
gen_op_movl_env_T0(offsetof(CPUSPARCState, cansave));
break;
case 11: // canrestore
gen_op_movl_env_T0(offsetof(CPUSPARCState, canrestore));
break;
case 12: // cleanwin
gen_op_movl_env_T0(offsetof(CPUSPARCState, cleanwin));
break;
case 13: // otherwin
gen_op_movl_env_T0(offsetof(CPUSPARCState, otherwin));
break;
case 14: // wstate
gen_op_movl_env_T0(offsetof(CPUSPARCState, wstate));
break;
case 16: // UA2005 gl
gen_op_movl_env_T0(offsetof(CPUSPARCState, gl));
break;
case 26: // UA2005 strand status
if (!hypervisor(dc))
goto priv_insn;
gen_op_movl_env_T0(offsetof(CPUSPARCState, ssr));
break;
default:
goto illegal_insn;
}
#else
gen_op_wrwim();
#endif
}
break;
case 0x33: /* wrtbr, UA2005 wrhpr */
{
#ifndef TARGET_SPARC64
if (!supervisor(dc))
goto priv_insn;
gen_op_xor_T1_T0();
gen_op_movtl_env_T0(offsetof(CPUSPARCState, tbr));
#else
if (!hypervisor(dc))
goto priv_insn;
gen_op_xor_T1_T0();
switch (rd) {
case 0: // hpstate
// XXX gen_op_wrhpstate();
save_state(dc);
gen_op_next_insn();
gen_op_movl_T0_0();
gen_op_exit_tb();
dc->is_br = 1;
break;
case 1: // htstate
// XXX gen_op_wrhtstate();
break;
case 3: // hintp
gen_op_movl_env_T0(offsetof(CPUSPARCState, hintp));
break;
case 5: // htba
gen_op_movl_env_T0(offsetof(CPUSPARCState, htba));
break;
case 31: // hstick_cmpr
gen_op_movtl_env_T0(offsetof(CPUSPARCState, hstick_cmpr));
gen_op_wrhstick_cmpr();
break;
case 6: // hver readonly
default:
goto illegal_insn;
}
#endif
}
break;
#endif
#ifdef TARGET_SPARC64
case 0x2c: /* V9 movcc */
{
int cc = GET_FIELD_SP(insn, 11, 12);
int cond = GET_FIELD_SP(insn, 14, 17);
if (IS_IMM) { /* immediate */
rs2 = GET_FIELD_SPs(insn, 0, 10);
gen_movl_simm_T1(rs2);
}
else {
rs2 = GET_FIELD_SP(insn, 0, 4);
gen_movl_reg_T1(rs2);
}
gen_movl_reg_T0(rd);
flush_T2(dc);
if (insn & (1 << 18)) {
if (cc == 0)
gen_cond[0][cond]();
else if (cc == 2)
gen_cond[1][cond]();
else
goto illegal_insn;
} else {
gen_fcond[cc][cond]();
}
gen_op_mov_cc();
gen_movl_T0_reg(rd);
break;
}
case 0x2d: /* V9 sdivx */
gen_op_sdivx_T1_T0();
gen_movl_T0_reg(rd);
break;
case 0x2e: /* V9 popc */
{
if (IS_IMM) { /* immediate */
rs2 = GET_FIELD_SPs(insn, 0, 12);
gen_movl_simm_T1(rs2);
// XXX optimize: popc(constant)
}
else {
rs2 = GET_FIELD_SP(insn, 0, 4);
gen_movl_reg_T1(rs2);
}
gen_op_popc();
gen_movl_T0_reg(rd);
}
case 0x2f: /* V9 movr */
{
int cond = GET_FIELD_SP(insn, 10, 12);
rs1 = GET_FIELD(insn, 13, 17);
flush_T2(dc);
gen_movl_reg_T0(rs1);
gen_cond_reg(cond);
if (IS_IMM) { /* immediate */
rs2 = GET_FIELD_SPs(insn, 0, 9);
gen_movl_simm_T1(rs2);
}
else {
rs2 = GET_FIELD_SP(insn, 0, 4);
gen_movl_reg_T1(rs2);
}
gen_movl_reg_T0(rd);
gen_op_mov_cc();
gen_movl_T0_reg(rd);
break;
}
#endif
default:
goto illegal_insn;
}
}
} else if (xop == 0x36) { /* UltraSparc shutdown, VIS, V8 CPop1 */
#ifdef TARGET_SPARC64
int opf = GET_FIELD_SP(insn, 5, 13);
rs1 = GET_FIELD(insn, 13, 17);
rs2 = GET_FIELD(insn, 27, 31);
if (gen_trap_ifnofpu(dc))
goto jmp_insn;
switch (opf) {
case 0x000: /* VIS I edge8cc */
case 0x001: /* VIS II edge8n */
case 0x002: /* VIS I edge8lcc */
case 0x003: /* VIS II edge8ln */
case 0x004: /* VIS I edge16cc */
case 0x005: /* VIS II edge16n */
case 0x006: /* VIS I edge16lcc */
case 0x007: /* VIS II edge16ln */
case 0x008: /* VIS I edge32cc */
case 0x009: /* VIS II edge32n */
case 0x00a: /* VIS I edge32lcc */
case 0x00b: /* VIS II edge32ln */
// XXX
goto illegal_insn;
case 0x010: /* VIS I array8 */
gen_movl_reg_T0(rs1);
gen_movl_reg_T1(rs2);
gen_op_array8();
gen_movl_T0_reg(rd);
break;
case 0x012: /* VIS I array16 */
gen_movl_reg_T0(rs1);
gen_movl_reg_T1(rs2);
gen_op_array16();
gen_movl_T0_reg(rd);
break;
case 0x014: /* VIS I array32 */
gen_movl_reg_T0(rs1);
gen_movl_reg_T1(rs2);
gen_op_array32();
gen_movl_T0_reg(rd);
break;
case 0x018: /* VIS I alignaddr */
gen_movl_reg_T0(rs1);
gen_movl_reg_T1(rs2);
gen_op_alignaddr();
gen_movl_T0_reg(rd);
break;
case 0x019: /* VIS II bmask */
case 0x01a: /* VIS I alignaddrl */
// XXX
goto illegal_insn;
case 0x020: /* VIS I fcmple16 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fcmple16();
gen_op_store_DT0_fpr(rd);
break;
case 0x022: /* VIS I fcmpne16 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fcmpne16();
gen_op_store_DT0_fpr(rd);
break;
case 0x024: /* VIS I fcmple32 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fcmple32();
gen_op_store_DT0_fpr(rd);
break;
case 0x026: /* VIS I fcmpne32 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fcmpne32();
gen_op_store_DT0_fpr(rd);
break;
case 0x028: /* VIS I fcmpgt16 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fcmpgt16();
gen_op_store_DT0_fpr(rd);
break;
case 0x02a: /* VIS I fcmpeq16 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fcmpeq16();
gen_op_store_DT0_fpr(rd);
break;
case 0x02c: /* VIS I fcmpgt32 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fcmpgt32();
gen_op_store_DT0_fpr(rd);
break;
case 0x02e: /* VIS I fcmpeq32 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fcmpeq32();
gen_op_store_DT0_fpr(rd);
break;
case 0x031: /* VIS I fmul8x16 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fmul8x16();
gen_op_store_DT0_fpr(rd);
break;
case 0x033: /* VIS I fmul8x16au */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fmul8x16au();
gen_op_store_DT0_fpr(rd);
break;
case 0x035: /* VIS I fmul8x16al */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fmul8x16al();
gen_op_store_DT0_fpr(rd);
break;
case 0x036: /* VIS I fmul8sux16 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fmul8sux16();
gen_op_store_DT0_fpr(rd);
break;
case 0x037: /* VIS I fmul8ulx16 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fmul8ulx16();
gen_op_store_DT0_fpr(rd);
break;
case 0x038: /* VIS I fmuld8sux16 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fmuld8sux16();
gen_op_store_DT0_fpr(rd);
break;
case 0x039: /* VIS I fmuld8ulx16 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fmuld8ulx16();
gen_op_store_DT0_fpr(rd);
break;
case 0x03a: /* VIS I fpack32 */
case 0x03b: /* VIS I fpack16 */
case 0x03d: /* VIS I fpackfix */
case 0x03e: /* VIS I pdist */
// XXX
goto illegal_insn;
case 0x048: /* VIS I faligndata */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_faligndata();
gen_op_store_DT0_fpr(rd);
break;
case 0x04b: /* VIS I fpmerge */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fpmerge();
gen_op_store_DT0_fpr(rd);
break;
case 0x04c: /* VIS II bshuffle */
// XXX
goto illegal_insn;
case 0x04d: /* VIS I fexpand */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fexpand();
gen_op_store_DT0_fpr(rd);
break;
case 0x050: /* VIS I fpadd16 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fpadd16();
gen_op_store_DT0_fpr(rd);
break;
case 0x051: /* VIS I fpadd16s */
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fpadd16s();
gen_op_store_FT0_fpr(rd);
break;
case 0x052: /* VIS I fpadd32 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fpadd32();
gen_op_store_DT0_fpr(rd);
break;
case 0x053: /* VIS I fpadd32s */
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fpadd32s();
gen_op_store_FT0_fpr(rd);
break;
case 0x054: /* VIS I fpsub16 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fpsub16();
gen_op_store_DT0_fpr(rd);
break;
case 0x055: /* VIS I fpsub16s */
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fpsub16s();
gen_op_store_FT0_fpr(rd);
break;
case 0x056: /* VIS I fpsub32 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fpadd32();
gen_op_store_DT0_fpr(rd);
break;
case 0x057: /* VIS I fpsub32s */
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fpsub32s();
gen_op_store_FT0_fpr(rd);
break;
case 0x060: /* VIS I fzero */
gen_op_movl_DT0_0();
gen_op_store_DT0_fpr(rd);
break;
case 0x061: /* VIS I fzeros */
gen_op_movl_FT0_0();
gen_op_store_FT0_fpr(rd);
break;
case 0x062: /* VIS I fnor */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fnor();
gen_op_store_DT0_fpr(rd);
break;
case 0x063: /* VIS I fnors */
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fnors();
gen_op_store_FT0_fpr(rd);
break;
case 0x064: /* VIS I fandnot2 */
gen_op_load_fpr_DT1(rs1);
gen_op_load_fpr_DT0(rs2);
gen_op_fandnot();
gen_op_store_DT0_fpr(rd);
break;
case 0x065: /* VIS I fandnot2s */
gen_op_load_fpr_FT1(rs1);
gen_op_load_fpr_FT0(rs2);
gen_op_fandnots();
gen_op_store_FT0_fpr(rd);
break;
case 0x066: /* VIS I fnot2 */
gen_op_load_fpr_DT1(rs2);
gen_op_fnot();
gen_op_store_DT0_fpr(rd);
break;
case 0x067: /* VIS I fnot2s */
gen_op_load_fpr_FT1(rs2);
gen_op_fnot();
gen_op_store_FT0_fpr(rd);
break;
case 0x068: /* VIS I fandnot1 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fandnot();
gen_op_store_DT0_fpr(rd);
break;
case 0x069: /* VIS I fandnot1s */
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fandnots();
gen_op_store_FT0_fpr(rd);
break;
case 0x06a: /* VIS I fnot1 */
gen_op_load_fpr_DT1(rs1);
gen_op_fnot();
gen_op_store_DT0_fpr(rd);
break;
case 0x06b: /* VIS I fnot1s */
gen_op_load_fpr_FT1(rs1);
gen_op_fnot();
gen_op_store_FT0_fpr(rd);
break;
case 0x06c: /* VIS I fxor */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fxor();
gen_op_store_DT0_fpr(rd);
break;
case 0x06d: /* VIS I fxors */
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fxors();
gen_op_store_FT0_fpr(rd);
break;
case 0x06e: /* VIS I fnand */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fnand();
gen_op_store_DT0_fpr(rd);
break;
case 0x06f: /* VIS I fnands */
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fnands();
gen_op_store_FT0_fpr(rd);
break;
case 0x070: /* VIS I fand */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fand();
gen_op_store_DT0_fpr(rd);
break;
case 0x071: /* VIS I fands */
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fands();
gen_op_store_FT0_fpr(rd);
break;
case 0x072: /* VIS I fxnor */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fxnor();
gen_op_store_DT0_fpr(rd);
break;
case 0x073: /* VIS I fxnors */
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fxnors();
gen_op_store_FT0_fpr(rd);
break;
case 0x074: /* VIS I fsrc1 */
gen_op_load_fpr_DT0(rs1);
gen_op_store_DT0_fpr(rd);
break;
case 0x075: /* VIS I fsrc1s */
gen_op_load_fpr_FT0(rs1);
gen_op_store_FT0_fpr(rd);
break;
case 0x076: /* VIS I fornot2 */
gen_op_load_fpr_DT1(rs1);
gen_op_load_fpr_DT0(rs2);
gen_op_fornot();
gen_op_store_DT0_fpr(rd);
break;
case 0x077: /* VIS I fornot2s */
gen_op_load_fpr_FT1(rs1);
gen_op_load_fpr_FT0(rs2);
gen_op_fornots();
gen_op_store_FT0_fpr(rd);
break;
case 0x078: /* VIS I fsrc2 */
gen_op_load_fpr_DT0(rs2);
gen_op_store_DT0_fpr(rd);
break;
case 0x079: /* VIS I fsrc2s */
gen_op_load_fpr_FT0(rs2);
gen_op_store_FT0_fpr(rd);
break;
case 0x07a: /* VIS I fornot1 */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_fornot();
gen_op_store_DT0_fpr(rd);
break;
case 0x07b: /* VIS I fornot1s */
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fornots();
gen_op_store_FT0_fpr(rd);
break;
case 0x07c: /* VIS I for */
gen_op_load_fpr_DT0(rs1);
gen_op_load_fpr_DT1(rs2);
gen_op_for();
gen_op_store_DT0_fpr(rd);
break;
case 0x07d: /* VIS I fors */
gen_op_load_fpr_FT0(rs1);
gen_op_load_fpr_FT1(rs2);
gen_op_fors();
gen_op_store_FT0_fpr(rd);
break;
case 0x07e: /* VIS I fone */
gen_op_movl_DT0_1();
gen_op_store_DT0_fpr(rd);
break;
case 0x07f: /* VIS I fones */
gen_op_movl_FT0_1();
gen_op_store_FT0_fpr(rd);
break;
case 0x080: /* VIS I shutdown */
case 0x081: /* VIS II siam */
// XXX
goto illegal_insn;
default:
goto illegal_insn;
}
#else
goto ncp_insn;
#endif
} else if (xop == 0x37) { /* V8 CPop2, V9 impdep2 */
#ifdef TARGET_SPARC64
goto illegal_insn;
#else
goto ncp_insn;
#endif
#ifdef TARGET_SPARC64
} else if (xop == 0x39) { /* V9 return */
rs1 = GET_FIELD(insn, 13, 17);
save_state(dc);
gen_movl_reg_T0(rs1);
if (IS_IMM) { /* immediate */
rs2 = GET_FIELDs(insn, 19, 31);
#if defined(OPTIM)
if (rs2) {
#endif
gen_movl_simm_T1(rs2);
gen_op_add_T1_T0();
#if defined(OPTIM)
}
#endif
} else { /* register */
rs2 = GET_FIELD(insn, 27, 31);
#if defined(OPTIM)
if (rs2) {
#endif
gen_movl_reg_T1(rs2);
gen_op_add_T1_T0();
#if defined(OPTIM)
}
#endif
}
gen_op_restore();
gen_mov_pc_npc(dc);
gen_op_check_align_T0_3();
gen_op_movl_npc_T0();
dc->npc = DYNAMIC_PC;
goto jmp_insn;
#endif
} else {
rs1 = GET_FIELD(insn, 13, 17);
gen_movl_reg_T0(rs1);
if (IS_IMM) { /* immediate */
rs2 = GET_FIELDs(insn, 19, 31);
#if defined(OPTIM)
if (rs2) {
#endif
gen_movl_simm_T1(rs2);
gen_op_add_T1_T0();
#if defined(OPTIM)
}
#endif
} else { /* register */
rs2 = GET_FIELD(insn, 27, 31);
#if defined(OPTIM)
if (rs2) {
#endif
gen_movl_reg_T1(rs2);
gen_op_add_T1_T0();
#if defined(OPTIM)
}
#endif
}
switch (xop) {
case 0x38: /* jmpl */
{
if (rd != 0) {
#ifdef TARGET_SPARC64
if (dc->pc == (uint32_t)dc->pc) {
gen_op_movl_T1_im(dc->pc);
} else {
gen_op_movq_T1_im64(dc->pc >> 32, dc->pc);
}
#else
gen_op_movl_T1_im(dc->pc);
#endif
gen_movl_T1_reg(rd);
}
gen_mov_pc_npc(dc);
gen_op_check_align_T0_3();
gen_op_movl_npc_T0();
dc->npc = DYNAMIC_PC;
}
goto jmp_insn;
#if !defined(CONFIG_USER_ONLY) && !defined(TARGET_SPARC64)
case 0x39: /* rett, V9 return */
{
if (!supervisor(dc))
goto priv_insn;
gen_mov_pc_npc(dc);
gen_op_check_align_T0_3();
gen_op_movl_npc_T0();
dc->npc = DYNAMIC_PC;
gen_op_rett();
}
goto jmp_insn;
#endif
case 0x3b: /* flush */
gen_op_flush_T0();
break;
case 0x3c: /* save */
save_state(dc);
gen_op_save();
gen_movl_T0_reg(rd);
break;
case 0x3d: /* restore */
save_state(dc);
gen_op_restore();
gen_movl_T0_reg(rd);
break;
#if !defined(CONFIG_USER_ONLY) && defined(TARGET_SPARC64)
case 0x3e: /* V9 done/retry */
{
switch (rd) {
case 0:
if (!supervisor(dc))
goto priv_insn;
dc->npc = DYNAMIC_PC;
dc->pc = DYNAMIC_PC;
gen_op_done();
goto jmp_insn;
case 1:
if (!supervisor(dc))
goto priv_insn;
dc->npc = DYNAMIC_PC;
dc->pc = DYNAMIC_PC;
gen_op_retry();
goto jmp_insn;
default:
goto illegal_insn;
}
}
break;
#endif
default:
goto illegal_insn;
}
}
break;
}
break;
case 3: /* load/store instructions */
{
unsigned int xop = GET_FIELD(insn, 7, 12);
rs1 = GET_FIELD(insn, 13, 17);
save_state(dc);
gen_movl_reg_T0(rs1);
if (xop == 0x3c || xop == 0x3e)
{
rs2 = GET_FIELD(insn, 27, 31);
gen_movl_reg_T1(rs2);
}
else if (IS_IMM) { /* immediate */
rs2 = GET_FIELDs(insn, 19, 31);
#if defined(OPTIM)
if (rs2 != 0) {
#endif
gen_movl_simm_T1(rs2);
gen_op_add_T1_T0();
#if defined(OPTIM)
}
#endif
} else { /* register */
rs2 = GET_FIELD(insn, 27, 31);
#if defined(OPTIM)
if (rs2 != 0) {
#endif
gen_movl_reg_T1(rs2);
gen_op_add_T1_T0();
#if defined(OPTIM)
}
#endif
}
if (xop < 4 || (xop > 7 && xop < 0x14 && xop != 0x0e) ||
(xop > 0x17 && xop <= 0x1d ) ||
(xop > 0x2c && xop <= 0x33) || xop == 0x1f || xop == 0x3d) {
switch (xop) {
case 0x0: /* load word */
#ifdef CONFIG_USER_ONLY
gen_op_check_align_T0_3();
#endif
#ifndef TARGET_SPARC64
gen_op_ldst(ld);
#else
gen_op_ldst(lduw);
#endif
break;
case 0x1: /* load unsigned byte */
gen_op_ldst(ldub);
break;
case 0x2: /* load unsigned halfword */
#ifdef CONFIG_USER_ONLY
gen_op_check_align_T0_1();
#endif
gen_op_ldst(lduh);
break;
case 0x3: /* load double word */
gen_op_check_align_T0_7();
if (rd & 1)
goto illegal_insn;
gen_op_ldst(ldd);
gen_movl_T0_reg(rd + 1);
break;
case 0x9: /* load signed byte */
gen_op_ldst(ldsb);
break;
case 0xa: /* load signed halfword */
#ifdef CONFIG_USER_ONLY
gen_op_check_align_T0_1();
#endif
gen_op_ldst(ldsh);
break;
case 0xd: /* ldstub -- XXX: should be atomically */
gen_op_ldst(ldstub);
break;
case 0x0f: /* swap register with memory. Also atomically */
#ifdef CONFIG_USER_ONLY
gen_op_check_align_T0_3();
#endif
gen_movl_reg_T1(rd);
gen_op_ldst(swap);
break;
#if !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64)
case 0x10: /* load word alternate */
#ifndef TARGET_SPARC64
if (IS_IMM)
goto illegal_insn;
if (!supervisor(dc))
goto priv_insn;
#elif CONFIG_USER_ONLY
gen_op_check_align_T0_3();
#endif
gen_ld_asi(insn, 4, 0);
break;
case 0x11: /* load unsigned byte alternate */
#ifndef TARGET_SPARC64
if (IS_IMM)
goto illegal_insn;
if (!supervisor(dc))
goto priv_insn;
#endif
gen_ld_asi(insn, 1, 0);
break;
case 0x12: /* load unsigned halfword alternate */
#ifndef TARGET_SPARC64
if (IS_IMM)
goto illegal_insn;
if (!supervisor(dc))
goto priv_insn;
#elif CONFIG_USER_ONLY
gen_op_check_align_T0_1();
#endif
gen_ld_asi(insn, 2, 0);
break;
case 0x13: /* load double word alternate */
#ifndef TARGET_SPARC64
if (IS_IMM)
goto illegal_insn;
if (!supervisor(dc))
goto priv_insn;
#endif
if (rd & 1)
goto illegal_insn;
gen_op_check_align_T0_7();
gen_ldda_asi(insn);
gen_movl_T0_reg(rd + 1);
break;
case 0x19: /* load signed byte alternate */
#ifndef TARGET_SPARC64
if (IS_IMM)
goto illegal_insn;
if (!supervisor(dc))
goto priv_insn;
#endif
gen_ld_asi(insn, 1, 1);
break;
case 0x1a: /* load signed halfword alternate */
#ifndef TARGET_SPARC64
if (IS_IMM)
goto illegal_insn;
if (!supervisor(dc))
goto priv_insn;
#elif CONFIG_USER_ONLY
gen_op_check_align_T0_1();
#endif
gen_ld_asi(insn, 2, 1);
break;
case 0x1d: /* ldstuba -- XXX: should be atomically */
#ifndef TARGET_SPARC64
if (IS_IMM)
goto illegal_insn;
if (!supervisor(dc))
goto priv_insn;
#endif
gen_ldstub_asi(insn);
break;
case 0x1f: /* swap reg with alt. memory. Also atomically */
#ifndef TARGET_SPARC64
if (IS_IMM)
goto illegal_insn;
if (!supervisor(dc))
goto priv_insn;
#elif CONFIG_USER_ONLY
gen_op_check_align_T0_3();
#endif
gen_movl_reg_T1(rd);
gen_swap_asi(insn);
break;
#ifndef TARGET_SPARC64
case 0x30: /* ldc */
case 0x31: /* ldcsr */
case 0x33: /* lddc */
goto ncp_insn;
#endif
#endif
#ifdef TARGET_SPARC64
case 0x08: /* V9 ldsw */
#ifdef CONFIG_USER_ONLY
gen_op_check_align_T0_3();
#endif
gen_op_ldst(ldsw);
break;
case 0x0b: /* V9 ldx */
gen_op_check_align_T0_7();
gen_op_ldst(ldx);
break;
case 0x18: /* V9 ldswa */
#ifdef CONFIG_USER_ONLY
gen_op_check_align_T0_3();
#endif
gen_ld_asi(insn, 4, 1);
break;
case 0x1b: /* V9 ldxa */
gen_op_check_align_T0_7();
gen_ld_asi(insn, 8, 0);
break;
case 0x2d: /* V9 prefetch, no effect */
goto skip_move;
case 0x30: /* V9 ldfa */
#ifdef CONFIG_USER_ONLY
gen_op_check_align_T0_3();
#endif
gen_ldf_asi(insn, 4);
goto skip_move;
case 0x33: /* V9 lddfa */
gen_op_check_align_T0_3();
gen_ldf_asi(insn, 8);
goto skip_move;
case 0x3d: /* V9 prefetcha, no effect */
goto skip_move;
case 0x32: /* V9 ldqfa */
goto nfpu_insn;
#endif
default:
goto illegal_insn;
}
gen_movl_T1_reg(rd);
#ifdef TARGET_SPARC64
skip_move: ;
#endif
} else if (xop >= 0x20 && xop < 0x24) {
if (gen_trap_ifnofpu(dc))
goto jmp_insn;
switch (xop) {
case 0x20: /* load fpreg */
#ifdef CONFIG_USER_ONLY
gen_op_check_align_T0_3();
#endif
gen_op_ldst(ldf);
gen_op_store_FT0_fpr(rd);
break;
case 0x21: /* load fsr */
#ifdef CONFIG_USER_ONLY
gen_op_check_align_T0_3();
#endif
gen_op_ldst(ldf);
gen_op_ldfsr();
break;
case 0x22: /* load quad fpreg */
goto nfpu_insn;
case 0x23: /* load double fpreg */
gen_op_check_align_T0_7();
gen_op_ldst(lddf);
gen_op_store_DT0_fpr(DFPREG(rd));
break;
default:
goto illegal_insn;
}
} else if (xop < 8 || (xop >= 0x14 && xop < 0x18) || \
xop == 0xe || xop == 0x1e) {
gen_movl_reg_T1(rd);
switch (xop) {
case 0x4:
#ifdef CONFIG_USER_ONLY
gen_op_check_align_T0_3();
#endif
gen_op_ldst(st);
break;
case 0x5:
gen_op_ldst(stb);
break;
case 0x6:
#ifdef CONFIG_USER_ONLY
gen_op_check_align_T0_1();
#endif
gen_op_ldst(sth);
break;
case 0x7:
if (rd & 1)
goto illegal_insn;
gen_op_check_align_T0_7();
flush_T2(dc);
gen_movl_reg_T2(rd + 1);
gen_op_ldst(std);
break;
#if !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64)
case 0x14:
#ifndef TARGET_SPARC64
if (IS_IMM)
goto illegal_insn;
if (!supervisor(dc))
goto priv_insn;
#endif
#ifdef CONFIG_USER_ONLY
gen_op_check_align_T0_3();
#endif
gen_st_asi(insn, 4);
break;
case 0x15:
#ifndef TARGET_SPARC64
if (IS_IMM)
goto illegal_insn;
if (!supervisor(dc))
goto priv_insn;
#endif
gen_st_asi(insn, 1);
break;
case 0x16:
#ifndef TARGET_SPARC64
if (IS_IMM)
goto illegal_insn;
if (!supervisor(dc))
goto priv_insn;
#endif
#ifdef CONFIG_USER_ONLY
gen_op_check_align_T0_1();
#endif
gen_st_asi(insn, 2);
break;
case 0x17:
#ifndef TARGET_SPARC64
if (IS_IMM)
goto illegal_insn;
if (!supervisor(dc))
goto priv_insn;
#endif
if (rd & 1)
goto illegal_insn;
gen_op_check_align_T0_7();
flush_T2(dc);
gen_movl_reg_T2(rd + 1);
gen_stda_asi(insn);
break;
#endif
#ifdef TARGET_SPARC64
case 0x0e: /* V9 stx */
gen_op_check_align_T0_7();
gen_op_ldst(stx);
break;
case 0x1e: /* V9 stxa */
gen_op_check_align_T0_7();
gen_st_asi(insn, 8);
break;
#endif
default:
goto illegal_insn;
}
} else if (xop > 0x23 && xop < 0x28) {
if (gen_trap_ifnofpu(dc))
goto jmp_insn;
switch (xop) {
case 0x24:
#ifdef CONFIG_USER_ONLY
gen_op_check_align_T0_3();
#endif
gen_op_load_fpr_FT0(rd);
gen_op_ldst(stf);
break;
case 0x25: /* stfsr, V9 stxfsr */
#ifdef CONFIG_USER_ONLY
gen_op_check_align_T0_3();
#endif
gen_op_stfsr();
gen_op_ldst(stf);
break;
#if !defined(CONFIG_USER_ONLY)
case 0x26: /* stdfq */
if (!supervisor(dc))
goto priv_insn;
if (gen_trap_ifnofpu(dc))
goto jmp_insn;
goto nfq_insn;
#endif
case 0x27:
gen_op_check_align_T0_7();
gen_op_load_fpr_DT0(DFPREG(rd));
gen_op_ldst(stdf);
break;
default:
goto illegal_insn;
}
} else if (xop > 0x33 && xop < 0x3f) {
switch (xop) {
#ifdef TARGET_SPARC64
case 0x34: /* V9 stfa */
#ifdef CONFIG_USER_ONLY
gen_op_check_align_T0_3();
#endif
gen_op_load_fpr_FT0(rd);
gen_stf_asi(insn, 4);
break;
case 0x37: /* V9 stdfa */
gen_op_check_align_T0_3();
gen_op_load_fpr_DT0(DFPREG(rd));
gen_stf_asi(insn, 8);
break;
case 0x3c: /* V9 casa */
#ifdef CONFIG_USER_ONLY
gen_op_check_align_T0_3();
#endif
flush_T2(dc);
gen_movl_reg_T2(rd);
gen_cas_asi(insn);
gen_movl_T1_reg(rd);
break;
case 0x3e: /* V9 casxa */
gen_op_check_align_T0_7();
flush_T2(dc);
gen_movl_reg_T2(rd);
gen_casx_asi(insn);
gen_movl_T1_reg(rd);
break;
case 0x36: /* V9 stqfa */
goto nfpu_insn;
#else
case 0x34: /* stc */
case 0x35: /* stcsr */
case 0x36: /* stdcq */
case 0x37: /* stdc */
goto ncp_insn;
#endif
default:
goto illegal_insn;
}
}
else
goto illegal_insn;
}
break;
}
/* default case for non jump instructions */
if (dc->npc == DYNAMIC_PC) {
dc->pc = DYNAMIC_PC;
gen_op_next_insn();
} else if (dc->npc == JUMP_PC) {
/* we can do a static jump */
gen_branch2(dc, dc->jump_pc[0], dc->jump_pc[1]);
dc->is_br = 1;
} else {
dc->pc = dc->npc;
dc->npc = dc->npc + 4;
}
jmp_insn:
return;
illegal_insn:
save_state(dc);
gen_op_exception(TT_ILL_INSN);
dc->is_br = 1;
return;
#if !defined(CONFIG_USER_ONLY)
priv_insn:
save_state(dc);
gen_op_exception(TT_PRIV_INSN);
dc->is_br = 1;
return;
#endif
nfpu_insn:
save_state(dc);
gen_op_fpexception_im(FSR_FTT_UNIMPFPOP);
dc->is_br = 1;
return;
#if !defined(CONFIG_USER_ONLY)
nfq_insn:
save_state(dc);
gen_op_fpexception_im(FSR_FTT_SEQ_ERROR);
dc->is_br = 1;
return;
#endif
#ifndef TARGET_SPARC64
ncp_insn:
save_state(dc);
gen_op_exception(TT_NCP_INSN);
dc->is_br = 1;
return;
#endif
}
| 18,233 |
qemu | f8ad4a89e99848a554b0049d7a612f5a585b7231 | 0 | static int local_set_xattr(const char *path, FsCred *credp)
{
int err;
if (credp->fc_uid != -1) {
err = setxattr(path, "user.virtfs.uid", &credp->fc_uid, sizeof(uid_t),
0);
if (err) {
return err;
}
}
if (credp->fc_gid != -1) {
err = setxattr(path, "user.virtfs.gid", &credp->fc_gid, sizeof(gid_t),
0);
if (err) {
return err;
}
}
if (credp->fc_mode != -1) {
err = setxattr(path, "user.virtfs.mode", &credp->fc_mode,
sizeof(mode_t), 0);
if (err) {
return err;
}
}
if (credp->fc_rdev != -1) {
err = setxattr(path, "user.virtfs.rdev", &credp->fc_rdev,
sizeof(dev_t), 0);
if (err) {
return err;
}
}
return 0;
}
| 18,235 |
qemu | 5d98bf8f38c17a348ab6e8af196088cd4953acd0 | 0 | void gen_intermediate_code(CPUARMState *env, TranslationBlock *tb)
{
ARMCPU *cpu = arm_env_get_cpu(env);
CPUState *cs = CPU(cpu);
DisasContext dc1, *dc = &dc1;
target_ulong pc_start;
target_ulong next_page_start;
int num_insns;
int max_insns;
/* generate intermediate code */
/* The A64 decoder has its own top level loop, because it doesn't need
* the A32/T32 complexity to do with conditional execution/IT blocks/etc.
*/
if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
gen_intermediate_code_a64(cpu, tb);
return;
}
pc_start = tb->pc;
dc->tb = tb;
dc->is_jmp = DISAS_NEXT;
dc->pc = pc_start;
dc->singlestep_enabled = cs->singlestep_enabled;
dc->condjmp = 0;
dc->aarch64 = 0;
/* If we are coming from secure EL0 in a system with a 32-bit EL3, then
* there is no secure EL1, so we route exceptions to EL3.
*/
dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
!arm_el_is_aa64(env, 3);
dc->thumb = ARM_TBFLAG_THUMB(tb->flags);
dc->bswap_code = ARM_TBFLAG_BSWAP_CODE(tb->flags);
dc->condexec_mask = (ARM_TBFLAG_CONDEXEC(tb->flags) & 0xf) << 1;
dc->condexec_cond = ARM_TBFLAG_CONDEXEC(tb->flags) >> 4;
dc->mmu_idx = ARM_TBFLAG_MMUIDX(tb->flags);
dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
#if !defined(CONFIG_USER_ONLY)
dc->user = (dc->current_el == 0);
#endif
dc->ns = ARM_TBFLAG_NS(tb->flags);
dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(tb->flags);
dc->vfp_enabled = ARM_TBFLAG_VFPEN(tb->flags);
dc->vec_len = ARM_TBFLAG_VECLEN(tb->flags);
dc->vec_stride = ARM_TBFLAG_VECSTRIDE(tb->flags);
dc->c15_cpar = ARM_TBFLAG_XSCALE_CPAR(tb->flags);
dc->cp_regs = cpu->cp_regs;
dc->features = env->features;
/* Single step state. The code-generation logic here is:
* SS_ACTIVE == 0:
* generate code with no special handling for single-stepping (except
* that anything that can make us go to SS_ACTIVE == 1 must end the TB;
* this happens anyway because those changes are all system register or
* PSTATE writes).
* SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
* emit code for one insn
* emit code to clear PSTATE.SS
* emit code to generate software step exception for completed step
* end TB (as usual for having generated an exception)
* SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
* emit code to generate a software step exception
* end the TB
*/
dc->ss_active = ARM_TBFLAG_SS_ACTIVE(tb->flags);
dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(tb->flags);
dc->is_ldex = false;
dc->ss_same_el = false; /* Can't be true since EL_d must be AArch64 */
cpu_F0s = tcg_temp_new_i32();
cpu_F1s = tcg_temp_new_i32();
cpu_F0d = tcg_temp_new_i64();
cpu_F1d = tcg_temp_new_i64();
cpu_V0 = cpu_F0d;
cpu_V1 = cpu_F1d;
/* FIXME: cpu_M0 can probably be the same as cpu_V0. */
cpu_M0 = tcg_temp_new_i64();
next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
num_insns = 0;
max_insns = tb->cflags & CF_COUNT_MASK;
if (max_insns == 0) {
max_insns = CF_COUNT_MASK;
}
if (max_insns > TCG_MAX_INSNS) {
max_insns = TCG_MAX_INSNS;
}
gen_tb_start(tb);
tcg_clear_temp_count();
/* A note on handling of the condexec (IT) bits:
*
* We want to avoid the overhead of having to write the updated condexec
* bits back to the CPUARMState for every instruction in an IT block. So:
* (1) if the condexec bits are not already zero then we write
* zero back into the CPUARMState now. This avoids complications trying
* to do it at the end of the block. (For example if we don't do this
* it's hard to identify whether we can safely skip writing condexec
* at the end of the TB, which we definitely want to do for the case
* where a TB doesn't do anything with the IT state at all.)
* (2) if we are going to leave the TB then we call gen_set_condexec()
* which will write the correct value into CPUARMState if zero is wrong.
* This is done both for leaving the TB at the end, and for leaving
* it because of an exception we know will happen, which is done in
* gen_exception_insn(). The latter is necessary because we need to
* leave the TB with the PC/IT state just prior to execution of the
* instruction which caused the exception.
* (3) if we leave the TB unexpectedly (eg a data abort on a load)
* then the CPUARMState will be wrong and we need to reset it.
* This is handled in the same way as restoration of the
* PC in these situations; we save the value of the condexec bits
* for each PC via tcg_gen_insn_start(), and restore_state_to_opc()
* then uses this to restore them after an exception.
*
* Note that there are no instructions which can read the condexec
* bits, and none which can write non-static values to them, so
* we don't need to care about whether CPUARMState is correct in the
* middle of a TB.
*/
/* Reset the conditional execution bits immediately. This avoids
complications trying to do it at the end of the block. */
if (dc->condexec_mask || dc->condexec_cond)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, 0);
store_cpu_field(tmp, condexec_bits);
}
do {
tcg_gen_insn_start(dc->pc,
(dc->condexec_cond << 4) | (dc->condexec_mask >> 1));
num_insns++;
#ifdef CONFIG_USER_ONLY
/* Intercept jump to the magic kernel page. */
if (dc->pc >= 0xffff0000) {
/* We always get here via a jump, so know we are not in a
conditional execution block. */
gen_exception_internal(EXCP_KERNEL_TRAP);
dc->is_jmp = DISAS_UPDATE;
break;
}
#else
if (dc->pc >= 0xfffffff0 && arm_dc_feature(dc, ARM_FEATURE_M)) {
/* We always get here via a jump, so know we are not in a
conditional execution block. */
gen_exception_internal(EXCP_EXCEPTION_EXIT);
dc->is_jmp = DISAS_UPDATE;
break;
}
#endif
if (unlikely(!QTAILQ_EMPTY(&cs->breakpoints))) {
CPUBreakpoint *bp;
QTAILQ_FOREACH(bp, &cs->breakpoints, entry) {
if (bp->pc == dc->pc) {
gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
/* Advance PC so that clearing the breakpoint will
invalidate this TB. */
dc->pc += 2;
goto done_generating;
}
}
}
if (num_insns == max_insns && (tb->cflags & CF_LAST_IO)) {
gen_io_start();
}
if (dc->ss_active && !dc->pstate_ss) {
/* Singlestep state is Active-pending.
* If we're in this state at the start of a TB then either
* a) we just took an exception to an EL which is being debugged
* and this is the first insn in the exception handler
* b) debug exceptions were masked and we just unmasked them
* without changing EL (eg by clearing PSTATE.D)
* In either case we're going to take a swstep exception in the
* "did not step an insn" case, and so the syndrome ISV and EX
* bits should be zero.
*/
assert(num_insns == 1);
gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
default_exception_el(dc));
goto done_generating;
}
if (dc->thumb) {
disas_thumb_insn(env, dc);
if (dc->condexec_mask) {
dc->condexec_cond = (dc->condexec_cond & 0xe)
| ((dc->condexec_mask >> 4) & 1);
dc->condexec_mask = (dc->condexec_mask << 1) & 0x1f;
if (dc->condexec_mask == 0) {
dc->condexec_cond = 0;
}
}
} else {
unsigned int insn = arm_ldl_code(env, dc->pc, dc->bswap_code);
dc->pc += 4;
disas_arm_insn(dc, insn);
}
if (dc->condjmp && !dc->is_jmp) {
gen_set_label(dc->condlabel);
dc->condjmp = 0;
}
if (tcg_check_temp_count()) {
fprintf(stderr, "TCG temporary leak before "TARGET_FMT_lx"\n",
dc->pc);
}
/* Translation stops when a conditional branch is encountered.
* Otherwise the subsequent code could get translated several times.
* Also stop translation when a page boundary is reached. This
* ensures prefetch aborts occur at the right place. */
} while (!dc->is_jmp && !tcg_op_buf_full() &&
!cs->singlestep_enabled &&
!singlestep &&
!dc->ss_active &&
dc->pc < next_page_start &&
num_insns < max_insns);
if (tb->cflags & CF_LAST_IO) {
if (dc->condjmp) {
/* FIXME: This can theoretically happen with self-modifying
code. */
cpu_abort(cs, "IO on conditional branch instruction");
}
gen_io_end();
}
/* At this stage dc->condjmp will only be set when the skipped
instruction was a conditional branch or trap, and the PC has
already been written. */
if (unlikely(cs->singlestep_enabled || dc->ss_active)) {
/* Make sure the pc is updated, and raise a debug exception. */
if (dc->condjmp) {
gen_set_condexec(dc);
if (dc->is_jmp == DISAS_SWI) {
gen_ss_advance(dc);
gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb),
default_exception_el(dc));
} else if (dc->is_jmp == DISAS_HVC) {
gen_ss_advance(dc);
gen_exception(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2);
} else if (dc->is_jmp == DISAS_SMC) {
gen_ss_advance(dc);
gen_exception(EXCP_SMC, syn_aa32_smc(), 3);
} else if (dc->ss_active) {
gen_step_complete_exception(dc);
} else {
gen_exception_internal(EXCP_DEBUG);
}
gen_set_label(dc->condlabel);
}
if (dc->condjmp || !dc->is_jmp) {
gen_set_pc_im(dc, dc->pc);
dc->condjmp = 0;
}
gen_set_condexec(dc);
if (dc->is_jmp == DISAS_SWI && !dc->condjmp) {
gen_ss_advance(dc);
gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb),
default_exception_el(dc));
} else if (dc->is_jmp == DISAS_HVC && !dc->condjmp) {
gen_ss_advance(dc);
gen_exception(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2);
} else if (dc->is_jmp == DISAS_SMC && !dc->condjmp) {
gen_ss_advance(dc);
gen_exception(EXCP_SMC, syn_aa32_smc(), 3);
} else if (dc->ss_active) {
gen_step_complete_exception(dc);
} else {
/* FIXME: Single stepping a WFI insn will not halt
the CPU. */
gen_exception_internal(EXCP_DEBUG);
}
} else {
/* While branches must always occur at the end of an IT block,
there are a few other things that can cause us to terminate
the TB in the middle of an IT block:
- Exception generating instructions (bkpt, swi, undefined).
- Page boundaries.
- Hardware watchpoints.
Hardware breakpoints have already been handled and skip this code.
*/
gen_set_condexec(dc);
switch(dc->is_jmp) {
case DISAS_NEXT:
gen_goto_tb(dc, 1, dc->pc);
break;
default:
case DISAS_JUMP:
case DISAS_UPDATE:
/* indicate that the hash table must be used to find the next TB */
tcg_gen_exit_tb(0);
break;
case DISAS_TB_JUMP:
/* nothing more to generate */
break;
case DISAS_WFI:
gen_helper_wfi(cpu_env);
/* The helper doesn't necessarily throw an exception, but we
* must go back to the main loop to check for interrupts anyway.
*/
tcg_gen_exit_tb(0);
break;
case DISAS_WFE:
gen_helper_wfe(cpu_env);
break;
case DISAS_YIELD:
gen_helper_yield(cpu_env);
break;
case DISAS_SWI:
gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb),
default_exception_el(dc));
break;
case DISAS_HVC:
gen_exception(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2);
break;
case DISAS_SMC:
gen_exception(EXCP_SMC, syn_aa32_smc(), 3);
break;
}
if (dc->condjmp) {
gen_set_label(dc->condlabel);
gen_set_condexec(dc);
gen_goto_tb(dc, 1, dc->pc);
dc->condjmp = 0;
}
}
done_generating:
gen_tb_end(tb, num_insns);
#ifdef DEBUG_DISAS
if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) {
qemu_log("----------------\n");
qemu_log("IN: %s\n", lookup_symbol(pc_start));
log_target_disas(cs, pc_start, dc->pc - pc_start,
dc->thumb | (dc->bswap_code << 1));
qemu_log("\n");
}
#endif
tb->size = dc->pc - pc_start;
tb->icount = num_insns;
}
| 18,236 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.