project
stringclasses 2
values | commit_id
stringlengths 40
40
| target
int64 0
1
| func
stringlengths 26
142k
| idx
int64 0
27.3k
|
---|---|---|---|---|
qemu | 306a06e5f766acaf26b71397a5692c65b65a61c7 | 0 | block_crypto_open_opts_init(QCryptoBlockFormat format,
QemuOpts *opts,
Error **errp)
{
Visitor *v;
QCryptoBlockOpenOptions *ret = NULL;
Error *local_err = NULL;
ret = g_new0(QCryptoBlockOpenOptions, 1);
ret->format = format;
v = opts_visitor_new(opts);
visit_start_struct(v, NULL, NULL, 0, &local_err);
if (local_err) {
goto out;
}
switch (format) {
case Q_CRYPTO_BLOCK_FORMAT_LUKS:
visit_type_QCryptoBlockOptionsLUKS_members(
v, &ret->u.luks, &local_err);
break;
default:
error_setg(&local_err, "Unsupported block format %d", format);
break;
}
if (!local_err) {
visit_check_struct(v, &local_err);
}
visit_end_struct(v, NULL);
out:
if (local_err) {
error_propagate(errp, local_err);
qapi_free_QCryptoBlockOpenOptions(ret);
ret = NULL;
}
visit_free(v);
return ret;
}
| 14,810 |
qemu | 42a268c241183877192c376d03bd9b6d527407c7 | 0 | gen_intermediate_code_internal(CRISCPU *cpu, TranslationBlock *tb,
bool search_pc)
{
CPUState *cs = CPU(cpu);
CPUCRISState *env = &cpu->env;
uint32_t pc_start;
unsigned int insn_len;
int j, lj;
struct DisasContext ctx;
struct DisasContext *dc = &ctx;
uint32_t next_page_start;
target_ulong npc;
int num_insns;
int max_insns;
if (env->pregs[PR_VR] == 32) {
dc->decoder = crisv32_decoder;
dc->clear_locked_irq = 0;
} else {
dc->decoder = crisv10_decoder;
dc->clear_locked_irq = 1;
}
/* Odd PC indicates that branch is rexecuting due to exception in the
* delayslot, like in real hw.
*/
pc_start = tb->pc & ~1;
dc->cpu = cpu;
dc->tb = tb;
dc->is_jmp = DISAS_NEXT;
dc->ppc = pc_start;
dc->pc = pc_start;
dc->singlestep_enabled = cs->singlestep_enabled;
dc->flags_uptodate = 1;
dc->flagx_known = 1;
dc->flags_x = tb->flags & X_FLAG;
dc->cc_x_uptodate = 0;
dc->cc_mask = 0;
dc->update_cc = 0;
dc->clear_prefix = 0;
cris_update_cc_op(dc, CC_OP_FLAGS, 4);
dc->cc_size_uptodate = -1;
/* Decode TB flags. */
dc->tb_flags = tb->flags & (S_FLAG | P_FLAG | U_FLAG \
| X_FLAG | PFIX_FLAG);
dc->delayed_branch = !!(tb->flags & 7);
if (dc->delayed_branch) {
dc->jmp = JMP_INDIRECT;
} else {
dc->jmp = JMP_NOJMP;
}
dc->cpustate_changed = 0;
if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) {
qemu_log(
"srch=%d pc=%x %x flg=%" PRIx64 " bt=%x ds=%u ccs=%x\n"
"pid=%x usp=%x\n"
"%x.%x.%x.%x\n"
"%x.%x.%x.%x\n"
"%x.%x.%x.%x\n"
"%x.%x.%x.%x\n",
search_pc, dc->pc, dc->ppc,
(uint64_t)tb->flags,
env->btarget, (unsigned)tb->flags & 7,
env->pregs[PR_CCS],
env->pregs[PR_PID], env->pregs[PR_USP],
env->regs[0], env->regs[1], env->regs[2], env->regs[3],
env->regs[4], env->regs[5], env->regs[6], env->regs[7],
env->regs[8], env->regs[9],
env->regs[10], env->regs[11],
env->regs[12], env->regs[13],
env->regs[14], env->regs[15]);
qemu_log("--------------\n");
qemu_log("IN: %s\n", lookup_symbol(pc_start));
}
next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
lj = -1;
num_insns = 0;
max_insns = tb->cflags & CF_COUNT_MASK;
if (max_insns == 0) {
max_insns = CF_COUNT_MASK;
}
gen_tb_start(tb);
do {
check_breakpoint(env, dc);
if (search_pc) {
j = tcg_op_buf_count();
if (lj < j) {
lj++;
while (lj < j) {
tcg_ctx.gen_opc_instr_start[lj++] = 0;
}
}
if (dc->delayed_branch == 1) {
tcg_ctx.gen_opc_pc[lj] = dc->ppc | 1;
} else {
tcg_ctx.gen_opc_pc[lj] = dc->pc;
}
tcg_ctx.gen_opc_instr_start[lj] = 1;
tcg_ctx.gen_opc_icount[lj] = num_insns;
}
/* Pretty disas. */
LOG_DIS("%8.8x:\t", dc->pc);
if (num_insns + 1 == max_insns && (tb->cflags & CF_LAST_IO)) {
gen_io_start();
}
dc->clear_x = 1;
insn_len = dc->decoder(env, dc);
dc->ppc = dc->pc;
dc->pc += insn_len;
if (dc->clear_x) {
cris_clear_x_flag(dc);
}
num_insns++;
/* Check for delayed branches here. If we do it before
actually generating any host code, the simulator will just
loop doing nothing for on this program location. */
if (dc->delayed_branch) {
dc->delayed_branch--;
if (dc->delayed_branch == 0) {
if (tb->flags & 7) {
t_gen_mov_env_TN(dslot, tcg_const_tl(0));
}
if (dc->cpustate_changed || !dc->flagx_known
|| (dc->flags_x != (tb->flags & X_FLAG))) {
cris_store_direct_jmp(dc);
}
if (dc->clear_locked_irq) {
dc->clear_locked_irq = 0;
t_gen_mov_env_TN(locked_irq, tcg_const_tl(0));
}
if (dc->jmp == JMP_DIRECT_CC) {
int l1;
l1 = gen_new_label();
cris_evaluate_flags(dc);
/* Conditional jmp. */
tcg_gen_brcondi_tl(TCG_COND_EQ,
env_btaken, 0, l1);
gen_goto_tb(dc, 1, dc->jmp_pc);
gen_set_label(l1);
gen_goto_tb(dc, 0, dc->pc);
dc->is_jmp = DISAS_TB_JUMP;
dc->jmp = JMP_NOJMP;
} else if (dc->jmp == JMP_DIRECT) {
cris_evaluate_flags(dc);
gen_goto_tb(dc, 0, dc->jmp_pc);
dc->is_jmp = DISAS_TB_JUMP;
dc->jmp = JMP_NOJMP;
} else {
t_gen_cc_jmp(env_btarget, tcg_const_tl(dc->pc));
dc->is_jmp = DISAS_JUMP;
}
break;
}
}
/* If we are rexecuting a branch due to exceptions on
delay slots dont break. */
if (!(tb->pc & 1) && cs->singlestep_enabled) {
break;
}
} while (!dc->is_jmp && !dc->cpustate_changed
&& !tcg_op_buf_full()
&& !singlestep
&& (dc->pc < next_page_start)
&& num_insns < max_insns);
if (dc->clear_locked_irq) {
t_gen_mov_env_TN(locked_irq, tcg_const_tl(0));
}
npc = dc->pc;
if (tb->cflags & CF_LAST_IO)
gen_io_end();
/* Force an update if the per-tb cpu state has changed. */
if (dc->is_jmp == DISAS_NEXT
&& (dc->cpustate_changed || !dc->flagx_known
|| (dc->flags_x != (tb->flags & X_FLAG)))) {
dc->is_jmp = DISAS_UPDATE;
tcg_gen_movi_tl(env_pc, npc);
}
/* Broken branch+delayslot sequence. */
if (dc->delayed_branch == 1) {
/* Set env->dslot to the size of the branch insn. */
t_gen_mov_env_TN(dslot, tcg_const_tl(dc->pc - dc->ppc));
cris_store_direct_jmp(dc);
}
cris_evaluate_flags(dc);
if (unlikely(cs->singlestep_enabled)) {
if (dc->is_jmp == DISAS_NEXT) {
tcg_gen_movi_tl(env_pc, npc);
}
t_gen_raise_exception(EXCP_DEBUG);
} else {
switch (dc->is_jmp) {
case DISAS_NEXT:
gen_goto_tb(dc, 1, npc);
break;
default:
case DISAS_JUMP:
case DISAS_UPDATE:
/* indicate that the hash table must be used
to find the next TB */
tcg_gen_exit_tb(0);
break;
case DISAS_SWI:
case DISAS_TB_JUMP:
/* nothing more to generate */
break;
}
}
gen_tb_end(tb, num_insns);
if (search_pc) {
j = tcg_op_buf_count();
lj++;
while (lj <= j) {
tcg_ctx.gen_opc_instr_start[lj++] = 0;
}
} else {
tb->size = dc->pc - pc_start;
tb->icount = num_insns;
}
#ifdef DEBUG_DISAS
#if !DISAS_CRIS
if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) {
log_target_disas(env, pc_start, dc->pc - pc_start,
env->pregs[PR_VR]);
qemu_log("\nisize=%d osize=%d\n",
dc->pc - pc_start, tcg_op_buf_count());
}
#endif
#endif
}
| 14,811 |
qemu | f090c9d4ad5812fb92843d6470a1111c15190c4c | 0 | uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
{
int64_t v;
v = int64_to_float64(INT64_MIN STATUS_VAR);
v = float64_to_int64_round_to_zero((a + v) STATUS_VAR);
return v - INT64_MIN;
}
| 14,812 |
qemu | 259342d34dbdfb304374f569feec26317edd97c9 | 1 | static AHCIQState *ahci_boot(void)
{
AHCIQState *s;
const char *cli;
s = g_malloc0(sizeof(AHCIQState));
cli = "-drive if=none,id=drive0,file=%s,cache=writeback,serial=%s"
",format=raw"
" -M q35 "
"-device ide-hd,drive=drive0 "
"-global ide-hd.ver=%s";
s->parent = qtest_pc_boot(cli, tmp_path, "testdisk", "version");
/* Verify that we have an AHCI device present. */
s->dev = get_ahci_device(&s->fingerprint);
return s;
} | 14,815 |
FFmpeg | bd6610c3b39e24ff3c3745cdfc5c69450bc7b0e5 | 1 | static inline int parse_nal_units(AVCodecParserContext *s, const uint8_t *buf,
int buf_size, AVCodecContext *avctx)
{
HEVCParserContext *ctx = s->priv_data;
HEVCContext *h = &ctx->h;
GetBitContext *gb;
SliceHeader *sh = &h->sh;
HEVCParamSets *ps = &h->ps;
HEVCPacket *pkt = &ctx->pkt;
const uint8_t *buf_end = buf + buf_size;
int state = -1, i;
HEVCNAL *nal;
int is_global = buf == avctx->extradata;
if (!h->HEVClc)
h->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
if (!h->HEVClc)
return AVERROR(ENOMEM);
gb = &h->HEVClc->gb;
/* set some sane default values */
s->pict_type = AV_PICTURE_TYPE_I;
s->key_frame = 0;
s->picture_structure = AV_PICTURE_STRUCTURE_UNKNOWN;
h->avctx = avctx;
if (!buf_size)
return 0;
if (pkt->nals_allocated < 1) {
HEVCNAL *tmp = av_realloc_array(pkt->nals, 1, sizeof(*tmp));
if (!tmp)
return AVERROR(ENOMEM);
pkt->nals = tmp;
memset(pkt->nals, 0, sizeof(*tmp));
pkt->nals_allocated = 1;
}
nal = &pkt->nals[0];
for (;;) {
int src_length, consumed;
buf = avpriv_find_start_code(buf, buf_end, &state);
if (--buf + 2 >= buf_end)
break;
src_length = buf_end - buf;
h->nal_unit_type = (*buf >> 1) & 0x3f;
h->temporal_id = (*(buf + 1) & 0x07) - 1;
if (h->nal_unit_type <= NAL_CRA_NUT) {
// Do not walk the whole buffer just to decode slice segment header
if (src_length > 20)
src_length = 20;
}
consumed = ff_hevc_extract_rbsp(NULL, buf, src_length, nal);
if (consumed < 0)
return consumed;
init_get_bits8(gb, nal->data + 2, nal->size);
switch (h->nal_unit_type) {
case NAL_VPS:
ff_hevc_decode_nal_vps(gb, avctx, ps);
break;
case NAL_SPS:
ff_hevc_decode_nal_sps(gb, avctx, ps, 1);
break;
case NAL_PPS:
ff_hevc_decode_nal_pps(gb, avctx, ps);
break;
case NAL_SEI_PREFIX:
case NAL_SEI_SUFFIX:
ff_hevc_decode_nal_sei(h);
break;
case NAL_TRAIL_N:
case NAL_TRAIL_R:
case NAL_TSA_N:
case NAL_TSA_R:
case NAL_STSA_N:
case NAL_STSA_R:
case NAL_RADL_N:
case NAL_RADL_R:
case NAL_RASL_N:
case NAL_RASL_R:
case NAL_BLA_W_LP:
case NAL_BLA_W_RADL:
case NAL_BLA_N_LP:
case NAL_IDR_W_RADL:
case NAL_IDR_N_LP:
case NAL_CRA_NUT:
if (is_global) {
av_log(avctx, AV_LOG_ERROR, "Invalid NAL unit: %d\n", h->nal_unit_type);
return AVERROR_INVALIDDATA;
}
sh->first_slice_in_pic_flag = get_bits1(gb);
s->picture_structure = h->picture_struct;
s->field_order = h->picture_struct;
if (IS_IRAP(h)) {
s->key_frame = 1;
sh->no_output_of_prior_pics_flag = get_bits1(gb);
}
sh->pps_id = get_ue_golomb(gb);
if (sh->pps_id >= MAX_PPS_COUNT || !ps->pps_list[sh->pps_id]) {
av_log(avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
return AVERROR_INVALIDDATA;
}
ps->pps = (HEVCPPS*)ps->pps_list[sh->pps_id]->data;
if (ps->pps->sps_id >= MAX_SPS_COUNT || !ps->sps_list[ps->pps->sps_id]) {
av_log(avctx, AV_LOG_ERROR, "SPS id out of range: %d\n", ps->pps->sps_id);
return AVERROR_INVALIDDATA;
}
if (ps->sps != (HEVCSPS*)ps->sps_list[ps->pps->sps_id]->data) {
ps->sps = (HEVCSPS*)ps->sps_list[ps->pps->sps_id]->data;
ps->vps = (HEVCVPS*)ps->vps_list[ps->sps->vps_id]->data;
}
if (!sh->first_slice_in_pic_flag) {
int slice_address_length;
if (ps->pps->dependent_slice_segments_enabled_flag)
sh->dependent_slice_segment_flag = get_bits1(gb);
else
sh->dependent_slice_segment_flag = 0;
slice_address_length = av_ceil_log2_c(ps->sps->ctb_width *
ps->sps->ctb_height);
sh->slice_segment_addr = slice_address_length ? get_bits(gb, slice_address_length) : 0;
if (sh->slice_segment_addr >= ps->sps->ctb_width * ps->sps->ctb_height) {
av_log(avctx, AV_LOG_ERROR, "Invalid slice segment address: %u.\n",
sh->slice_segment_addr);
return AVERROR_INVALIDDATA;
}
} else
sh->dependent_slice_segment_flag = 0;
if (sh->dependent_slice_segment_flag)
break;
for (i = 0; i < ps->pps->num_extra_slice_header_bits; i++)
skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
sh->slice_type = get_ue_golomb(gb);
if (!(sh->slice_type == I_SLICE || sh->slice_type == P_SLICE ||
sh->slice_type == B_SLICE)) {
av_log(avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
sh->slice_type);
return AVERROR_INVALIDDATA;
}
s->pict_type = sh->slice_type == B_SLICE ? AV_PICTURE_TYPE_B :
sh->slice_type == P_SLICE ? AV_PICTURE_TYPE_P :
AV_PICTURE_TYPE_I;
if (ps->pps->output_flag_present_flag)
sh->pic_output_flag = get_bits1(gb);
if (ps->sps->separate_colour_plane_flag)
sh->colour_plane_id = get_bits(gb, 2);
if (!IS_IDR(h)) {
sh->pic_order_cnt_lsb = get_bits(gb, ps->sps->log2_max_poc_lsb);
s->output_picture_number = h->poc = ff_hevc_compute_poc(h, sh->pic_order_cnt_lsb);
} else
s->output_picture_number = h->poc = 0;
if (h->temporal_id == 0 &&
h->nal_unit_type != NAL_TRAIL_N &&
h->nal_unit_type != NAL_TSA_N &&
h->nal_unit_type != NAL_STSA_N &&
h->nal_unit_type != NAL_RADL_N &&
h->nal_unit_type != NAL_RASL_N &&
h->nal_unit_type != NAL_RADL_R &&
h->nal_unit_type != NAL_RASL_R)
h->pocTid0 = h->poc;
return 0; /* no need to evaluate the rest */
}
buf += consumed;
}
/* didn't find a picture! */
if (!is_global)
av_log(h->avctx, AV_LOG_ERROR, "missing picture in access unit\n");
return -1;
}
| 14,817 |
FFmpeg | 7cc84d241ba6ef8e27e4d057176a4ad385ad3d59 | 1 | static void decode_colskip(uint8_t* plane, int width, int height, int stride, VC9Context *v){
int x, y;
GetBitContext *gb = &v->s.gb;
for (x=0; x<width; x++){
if (!get_bits(gb, 1)) //colskip
for (y=0; y<height; y++)
plane[y*stride] = 0;
else
for (y=0; y<height; y++)
plane[y*stride] = get_bits(gb, 1);
plane ++;
}
}
| 14,820 |
qemu | faf7aaa9183d5f2029ada291837a8716e9be127b | 1 | gen_intermediate_code_internal (CPUState *env, TranslationBlock *tb,
int search_pc)
{
DisasContext ctx;
target_ulong pc_start;
uint16_t *gen_opc_end;
int j, lj = -1;
if (search_pc && loglevel)
fprintf (logfile, "search pc %d\n", search_pc);
pc_start = tb->pc;
gen_opc_end = gen_opc_buf + OPC_MAX_SIZE;
ctx.pc = pc_start;
ctx.saved_pc = -1;
ctx.tb = tb;
ctx.bstate = BS_NONE;
/* Restore delay slot state from the tb context. */
ctx.hflags = (uint32_t)tb->flags; /* FIXME: maybe use 64 bits here? */
restore_cpu_state(env, &ctx);
#if defined(CONFIG_USER_ONLY)
ctx.mem_idx = MIPS_HFLAG_UM;
#else
ctx.mem_idx = ctx.hflags & MIPS_HFLAG_KSU;
#endif
#ifdef DEBUG_DISAS
if (loglevel & CPU_LOG_TB_CPU) {
fprintf(logfile, "------------------------------------------------\n");
/* FIXME: This may print out stale hflags from env... */
cpu_dump_state(env, logfile, fprintf, 0);
}
#endif
#ifdef MIPS_DEBUG_DISAS
if (loglevel & CPU_LOG_TB_IN_ASM)
fprintf(logfile, "\ntb %p idx %d hflags %04x\n",
tb, ctx.mem_idx, ctx.hflags);
#endif
while (ctx.bstate == BS_NONE && gen_opc_ptr < gen_opc_end) {
if (env->nb_breakpoints > 0) {
for(j = 0; j < env->nb_breakpoints; j++) {
if (env->breakpoints[j] == ctx.pc) {
save_cpu_state(&ctx, 1);
ctx.bstate = BS_BRANCH;
gen_op_debug();
/* Include the breakpoint location or the tb won't
* be flushed when it must be. */
ctx.pc += 4;
goto done_generating;
}
}
}
if (search_pc) {
j = gen_opc_ptr - gen_opc_buf;
if (lj < j) {
lj++;
while (lj < j)
gen_opc_instr_start[lj++] = 0;
}
gen_opc_pc[lj] = ctx.pc;
gen_opc_hflags[lj] = ctx.hflags & MIPS_HFLAG_BMASK;
gen_opc_instr_start[lj] = 1;
}
ctx.opcode = ldl_code(ctx.pc);
decode_opc(env, &ctx);
ctx.pc += 4;
if (env->singlestep_enabled)
break;
if ((ctx.pc & (TARGET_PAGE_SIZE - 1)) == 0)
break;
#if defined (MIPS_SINGLE_STEP)
break;
#endif
}
if (env->singlestep_enabled) {
save_cpu_state(&ctx, ctx.bstate == BS_NONE);
gen_op_debug();
} else {
switch (ctx.bstate) {
case BS_STOP:
tcg_gen_helper_0_0(do_interrupt_restart);
gen_goto_tb(&ctx, 0, ctx.pc);
break;
case BS_NONE:
save_cpu_state(&ctx, 0);
gen_goto_tb(&ctx, 0, ctx.pc);
break;
case BS_EXCP:
tcg_gen_helper_0_0(do_interrupt_restart);
tcg_gen_exit_tb(0);
break;
case BS_BRANCH:
default:
break;
}
}
done_generating:
*gen_opc_ptr = INDEX_op_end;
if (search_pc) {
j = gen_opc_ptr - gen_opc_buf;
lj++;
while (lj <= j)
gen_opc_instr_start[lj++] = 0;
} else {
tb->size = ctx.pc - pc_start;
}
#ifdef DEBUG_DISAS
#if defined MIPS_DEBUG_DISAS
if (loglevel & CPU_LOG_TB_IN_ASM)
fprintf(logfile, "\n");
#endif
if (loglevel & CPU_LOG_TB_IN_ASM) {
fprintf(logfile, "IN: %s\n", lookup_symbol(pc_start));
target_disas(logfile, pc_start, ctx.pc - pc_start, 0);
fprintf(logfile, "\n");
}
if (loglevel & CPU_LOG_TB_CPU) {
fprintf(logfile, "---------------- %d %08x\n", ctx.bstate, ctx.hflags);
}
#endif
return 0;
}
| 14,821 |
qemu | ddcb73b7782cb6104479503faea04cc224f982b5 | 1 | e1000_autoneg_timer(void *opaque)
{
E1000State *s = opaque;
qemu_get_queue(s->nic)->link_down = false;
e1000_link_up(s);
s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
DBGOUT(PHY, "Auto negotiation is completed\n");
}
| 14,824 |
qemu | e0ef439588ce1ede747f82b77d893190c1cc9f4d | 1 | blkdebug_co_pwritev(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
QEMUIOVector *qiov, int flags)
{
BDRVBlkdebugState *s = bs->opaque;
BlkdebugRule *rule = NULL;
QSIMPLEQ_FOREACH(rule, &s->active_rules, active_next) {
uint64_t inject_offset = rule->options.inject.offset;
if (inject_offset == -1 ||
(inject_offset >= offset && inject_offset < offset + bytes))
{
break;
if (rule && rule->options.inject.error) {
return inject_error(bs, rule);
return bdrv_co_pwritev(bs->file, offset, bytes, qiov, flags); | 14,825 |
FFmpeg | 5a446bc88e49cc6400d0c646ca1eb540a727c9de | 1 | static void vc1_h_overlap_c(uint8_t* src, int stride)
{
int i;
int a, b, c, d;
int d1, d2;
int rnd = 1;
for(i = 0; i < 8; i++) {
a = src[-2];
b = src[-1];
c = src[0];
d = src[1];
d1 = (a - d + 3 + rnd) >> 3;
d2 = (a - d + b - c + 4 - rnd) >> 3;
src[-2] = a - d1;
src[-1] = b - d2;
src[0] = c + d2;
src[1] = d + d1;
src += stride;
rnd = !rnd;
}
}
| 14,826 |
FFmpeg | b4eb06d32535958d71568503cf886f448a5164ed | 1 | int ff_msmpeg4_decode_block(MpegEncContext * s, int16_t * block,
int n, int coded, const uint8_t *scan_table)
{
int level, i, last, run, run_diff;
int av_uninit(dc_pred_dir);
RLTable *rl;
RL_VLC_ELEM *rl_vlc;
int qmul, qadd;
if (s->mb_intra) {
qmul=1;
qadd=0;
/* DC coef */
level = msmpeg4_decode_dc(s, n, &dc_pred_dir);
if (level < 0){
av_log(s->avctx, AV_LOG_ERROR, "dc overflow- block: %d qscale: %d//\n", n, s->qscale);
if(s->inter_intra_pred) level=0;
else return -1;
}
if (n < 4) {
rl = &ff_rl_table[s->rl_table_index];
if(level > 256*s->y_dc_scale){
av_log(s->avctx, AV_LOG_ERROR, "dc overflow+ L qscale: %d//\n", s->qscale);
if(!s->inter_intra_pred) return -1;
}
} else {
rl = &ff_rl_table[3 + s->rl_chroma_table_index];
if(level > 256*s->c_dc_scale){
av_log(s->avctx, AV_LOG_ERROR, "dc overflow+ C qscale: %d//\n", s->qscale);
if(!s->inter_intra_pred) return -1;
}
}
block[0] = level;
run_diff = s->msmpeg4_version >= 4;
i = 0;
if (!coded) {
goto not_coded;
}
if (s->ac_pred) {
if (dc_pred_dir == 0)
scan_table = s->intra_v_scantable.permutated; /* left */
else
scan_table = s->intra_h_scantable.permutated; /* top */
} else {
scan_table = s->intra_scantable.permutated;
}
rl_vlc= rl->rl_vlc[0];
} else {
qmul = s->qscale << 1;
qadd = (s->qscale - 1) | 1;
i = -1;
rl = &ff_rl_table[3 + s->rl_table_index];
if(s->msmpeg4_version==2)
run_diff = 0;
else
run_diff = 1;
if (!coded) {
s->block_last_index[n] = i;
return 0;
}
if(!scan_table)
scan_table = s->inter_scantable.permutated;
rl_vlc= rl->rl_vlc[s->qscale];
}
{
OPEN_READER(re, &s->gb);
for(;;) {
UPDATE_CACHE(re, &s->gb);
GET_RL_VLC(level, run, re, &s->gb, rl_vlc, TEX_VLC_BITS, 2, 0);
if (level==0) {
int cache;
cache= GET_CACHE(re, &s->gb);
/* escape */
if (s->msmpeg4_version==1 || (cache&0x80000000)==0) {
if (s->msmpeg4_version==1 || (cache&0x40000000)==0) {
/* third escape */
if(s->msmpeg4_version!=1) LAST_SKIP_BITS(re, &s->gb, 2);
UPDATE_CACHE(re, &s->gb);
if(s->msmpeg4_version<=3){
last= SHOW_UBITS(re, &s->gb, 1); SKIP_CACHE(re, &s->gb, 1);
run= SHOW_UBITS(re, &s->gb, 6); SKIP_CACHE(re, &s->gb, 6);
level= SHOW_SBITS(re, &s->gb, 8);
SKIP_COUNTER(re, &s->gb, 1+6+8);
}else{
int sign;
last= SHOW_UBITS(re, &s->gb, 1); SKIP_BITS(re, &s->gb, 1);
if(!s->esc3_level_length){
int ll;
av_dlog(s->avctx, "ESC-3 %X at %d %d\n",
show_bits(&s->gb, 24), s->mb_x, s->mb_y);
if(s->qscale<8){
ll= SHOW_UBITS(re, &s->gb, 3); SKIP_BITS(re, &s->gb, 3);
if(ll==0){
ll= 8+SHOW_UBITS(re, &s->gb, 1); SKIP_BITS(re, &s->gb, 1);
}
}else{
ll=2;
while(ll<8 && SHOW_UBITS(re, &s->gb, 1)==0){
ll++;
SKIP_BITS(re, &s->gb, 1);
}
if(ll<8) SKIP_BITS(re, &s->gb, 1);
}
s->esc3_level_length= ll;
s->esc3_run_length= SHOW_UBITS(re, &s->gb, 2) + 3; SKIP_BITS(re, &s->gb, 2);
UPDATE_CACHE(re, &s->gb);
}
run= SHOW_UBITS(re, &s->gb, s->esc3_run_length);
SKIP_BITS(re, &s->gb, s->esc3_run_length);
sign= SHOW_UBITS(re, &s->gb, 1);
SKIP_BITS(re, &s->gb, 1);
level= SHOW_UBITS(re, &s->gb, s->esc3_level_length);
SKIP_BITS(re, &s->gb, s->esc3_level_length);
if(sign) level= -level;
}
#if 0 // waste of time / this will detect very few errors
{
const int abs_level= FFABS(level);
const int run1= run - rl->max_run[last][abs_level] - run_diff;
if(abs_level<=MAX_LEVEL && run<=MAX_RUN){
if(abs_level <= rl->max_level[last][run]){
av_log(s->avctx, AV_LOG_ERROR, "illegal 3. esc, vlc encoding possible\n");
return DECODING_AC_LOST;
}
if(abs_level <= rl->max_level[last][run]*2){
av_log(s->avctx, AV_LOG_ERROR, "illegal 3. esc, esc 1 encoding possible\n");
return DECODING_AC_LOST;
}
if(run1>=0 && abs_level <= rl->max_level[last][run1]){
av_log(s->avctx, AV_LOG_ERROR, "illegal 3. esc, esc 2 encoding possible\n");
return DECODING_AC_LOST;
}
}
}
#endif
//level = level * qmul + (level>0) * qadd - (level<=0) * qadd ;
if (level>0) level= level * qmul + qadd;
else level= level * qmul - qadd;
#if 0 // waste of time too :(
if(level>2048 || level<-2048){
av_log(s->avctx, AV_LOG_ERROR, "|level| overflow in 3. esc\n");
return DECODING_AC_LOST;
}
#endif
i+= run + 1;
if(last) i+=192;
#ifdef ERROR_DETAILS
if(run==66)
av_log(s->avctx, AV_LOG_ERROR, "illegal vlc code in ESC3 level=%d\n", level);
else if((i>62 && i<192) || i>192+63)
av_log(s->avctx, AV_LOG_ERROR, "run overflow in ESC3 i=%d run=%d level=%d\n", i, run, level);
#endif
} else {
/* second escape */
SKIP_BITS(re, &s->gb, 2);
GET_RL_VLC(level, run, re, &s->gb, rl_vlc, TEX_VLC_BITS, 2, 1);
i+= run + rl->max_run[run>>7][level/qmul] + run_diff; //FIXME opt indexing
level = (level ^ SHOW_SBITS(re, &s->gb, 1)) - SHOW_SBITS(re, &s->gb, 1);
LAST_SKIP_BITS(re, &s->gb, 1);
#ifdef ERROR_DETAILS
if(run==66)
av_log(s->avctx, AV_LOG_ERROR, "illegal vlc code in ESC2 level=%d\n", level);
else if((i>62 && i<192) || i>192+63)
av_log(s->avctx, AV_LOG_ERROR, "run overflow in ESC2 i=%d run=%d level=%d\n", i, run, level);
#endif
}
} else {
/* first escape */
SKIP_BITS(re, &s->gb, 1);
GET_RL_VLC(level, run, re, &s->gb, rl_vlc, TEX_VLC_BITS, 2, 1);
i+= run;
level = level + rl->max_level[run>>7][(run-1)&63] * qmul;//FIXME opt indexing
level = (level ^ SHOW_SBITS(re, &s->gb, 1)) - SHOW_SBITS(re, &s->gb, 1);
LAST_SKIP_BITS(re, &s->gb, 1);
#ifdef ERROR_DETAILS
if(run==66)
av_log(s->avctx, AV_LOG_ERROR, "illegal vlc code in ESC1 level=%d\n", level);
else if((i>62 && i<192) || i>192+63)
av_log(s->avctx, AV_LOG_ERROR, "run overflow in ESC1 i=%d run=%d level=%d\n", i, run, level);
#endif
}
} else {
i+= run;
level = (level ^ SHOW_SBITS(re, &s->gb, 1)) - SHOW_SBITS(re, &s->gb, 1);
LAST_SKIP_BITS(re, &s->gb, 1);
#ifdef ERROR_DETAILS
if(run==66)
av_log(s->avctx, AV_LOG_ERROR, "illegal vlc code level=%d\n", level);
else if((i>62 && i<192) || i>192+63)
av_log(s->avctx, AV_LOG_ERROR, "run overflow i=%d run=%d level=%d\n", i, run, level);
#endif
}
if (i > 62){
i-= 192;
if(i&(~63)){
const int left= get_bits_left(&s->gb);
if(((i+192 == 64 && level/qmul==-1) || !(s->err_recognition&(AV_EF_BITSTREAM|AV_EF_COMPLIANT))) && left>=0){
av_log(s->avctx, AV_LOG_ERROR, "ignoring overflow at %d %d\n", s->mb_x, s->mb_y);
i = 63;
break;
}else{
av_log(s->avctx, AV_LOG_ERROR, "ac-tex damaged at %d %d\n", s->mb_x, s->mb_y);
return -1;
}
}
block[scan_table[i]] = level;
break;
}
block[scan_table[i]] = level;
}
CLOSE_READER(re, &s->gb);
}
not_coded:
if (s->mb_intra) {
ff_mpeg4_pred_ac(s, block, n, dc_pred_dir);
if (s->ac_pred) {
i = 63; /* XXX: not optimal */
}
}
if(s->msmpeg4_version>=4 && i>0) i=63; //FIXME/XXX optimize
s->block_last_index[n] = i;
return 0;
}
| 14,827 |
FFmpeg | 7b588bb691644e1b3c168b99accf74248a24e3cf | 1 | static int svq1_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
SVQ1Context *s = avctx->priv_data;
AVFrame *cur = data;
uint8_t *current;
int result, i, x, y, width, height;
svq1_pmv *pmv;
/* initialize bit buffer */
init_get_bits(&s->gb, buf, buf_size * 8);
/* decode frame header */
s->frame_code = get_bits(&s->gb, 22);
if ((s->frame_code & ~0x70) || !(s->frame_code & 0x60))
return AVERROR_INVALIDDATA;
/* swap some header bytes (why?) */
if (s->frame_code != 0x20) {
uint32_t *src = (uint32_t *)(buf + 4);
for (i = 0; i < 4; i++)
src[i] = ((src[i] << 16) | (src[i] >> 16)) ^ src[7 - i];
}
result = svq1_decode_frame_header(avctx, cur);
if (result != 0) {
av_dlog(avctx, "Error in svq1_decode_frame_header %i\n", result);
return result;
}
result = ff_set_dimensions(avctx, s->width, s->height);
if (result < 0)
return result;
if ((avctx->skip_frame >= AVDISCARD_NONREF && s->nonref) ||
(avctx->skip_frame >= AVDISCARD_NONKEY &&
cur->pict_type != AV_PICTURE_TYPE_I) ||
avctx->skip_frame >= AVDISCARD_ALL)
return buf_size;
result = ff_get_buffer(avctx, cur, s->nonref ? 0 : AV_GET_BUFFER_FLAG_REF);
if (result < 0)
return result;
pmv = av_malloc((FFALIGN(s->width, 16) / 8 + 3) * sizeof(*pmv));
if (!pmv)
return AVERROR(ENOMEM);
/* decode y, u and v components */
for (i = 0; i < 3; i++) {
int linesize = cur->linesize[i];
if (i == 0) {
width = FFALIGN(s->width, 16);
height = FFALIGN(s->height, 16);
} else {
if (avctx->flags & CODEC_FLAG_GRAY)
break;
width = FFALIGN(s->width / 4, 16);
height = FFALIGN(s->height / 4, 16);
}
current = cur->data[i];
if (cur->pict_type == AV_PICTURE_TYPE_I) {
/* keyframe */
for (y = 0; y < height; y += 16) {
for (x = 0; x < width; x += 16) {
result = svq1_decode_block_intra(&s->gb, ¤t[x],
linesize);
if (result != 0) {
av_log(avctx, AV_LOG_INFO,
"Error in svq1_decode_block %i (keyframe)\n",
result);
goto err;
}
}
current += 16 * linesize;
}
} else {
/* delta frame */
uint8_t *previous = s->prev->data[i];
if (!previous ||
s->prev->width != s->width || s->prev->height != s->height) {
av_log(avctx, AV_LOG_ERROR, "Missing reference frame.\n");
result = AVERROR_INVALIDDATA;
goto err;
}
memset(pmv, 0, ((width / 8) + 3) * sizeof(svq1_pmv));
for (y = 0; y < height; y += 16) {
for (x = 0; x < width; x += 16) {
result = svq1_decode_delta_block(avctx, &s->hdsp,
&s->gb, ¤t[x],
previous, linesize,
pmv, x, y, width, height);
if (result != 0) {
av_dlog(avctx,
"Error in svq1_decode_delta_block %i\n",
result);
goto err;
}
}
pmv[0].x =
pmv[0].y = 0;
current += 16 * linesize;
}
}
}
if (!s->nonref) {
av_frame_unref(s->prev);
result = av_frame_ref(s->prev, cur);
if (result < 0)
goto err;
}
*got_frame = 1;
result = buf_size;
err:
av_free(pmv);
return result;
}
| 14,828 |
qemu | 549ce59e2b9ed7f41d2f88524bd5e01b0d7db2e9 | 0 | static void pci_get_node_name(char *nodename, int len, PCIDevice *dev)
{
int slot = PCI_SLOT(dev->devfn);
int func = PCI_FUNC(dev->devfn);
uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
const char *name;
name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
ccode & 0xff);
if (func != 0) {
snprintf(nodename, len, "%s@%x,%x", name, slot, func);
} else {
snprintf(nodename, len, "%s@%x", name, slot);
}
}
| 14,830 |
qemu | 4a1418e07bdcfaa3177739e04707ecaec75d89e1 | 0 | void kqemu_flush_page(CPUState *env, target_ulong addr)
{
LOG_INT("kqemu_flush_page: addr=" TARGET_FMT_lx "\n", addr);
if (nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH)
nb_pages_to_flush = KQEMU_FLUSH_ALL;
else
pages_to_flush[nb_pages_to_flush++] = addr;
}
| 14,831 |
qemu | 3b22c4707decb706b10ce023534f8b79413ff9fe | 0 | void helper_lcall_real_T0_T1(int shift, int next_eip)
{
int new_cs, new_eip;
uint32_t esp, esp_mask;
uint8_t *ssp;
new_cs = T0;
new_eip = T1;
esp = env->regs[R_ESP];
esp_mask = 0xffffffff;
if (!(env->segs[R_SS].flags & DESC_B_MASK))
esp_mask = 0xffff;
ssp = env->segs[R_SS].base;
if (shift) {
esp -= 4;
stl(ssp + (esp & esp_mask), env->segs[R_CS].selector);
esp -= 4;
stl(ssp + (esp & esp_mask), next_eip);
} else {
esp -= 2;
stw(ssp + (esp & esp_mask), env->segs[R_CS].selector);
esp -= 2;
stw(ssp + (esp & esp_mask), next_eip);
}
if (!(env->segs[R_SS].flags & DESC_B_MASK))
env->regs[R_ESP] = (env->regs[R_ESP] & ~0xffff) | (esp & 0xffff);
else
env->regs[R_ESP] = esp;
env->eip = new_eip;
env->segs[R_CS].selector = new_cs;
env->segs[R_CS].base = (uint8_t *)(new_cs << 4);
}
| 14,832 |
qemu | 891fb2cd4592b6fe76106a69e0ca40efbf82726a | 0 | static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
{
USBDevice *dev = s->ports[port].dev;
uint32_t *portsc = &s->portsc[port];
uint32_t orig;
if (s->companion_ports[port] == NULL)
return;
owner = owner & PORTSC_POWNER;
orig = *portsc & PORTSC_POWNER;
if (!(owner ^ orig)) {
return;
}
if (dev) {
usb_attach(&s->ports[port], NULL);
}
*portsc &= ~PORTSC_POWNER;
*portsc |= owner;
if (dev) {
usb_attach(&s->ports[port], dev);
}
}
| 14,833 |
qemu | b3db211f3c80bb996a704d665fe275619f728bd4 | 0 | static void test_visitor_out_native_list_str(TestOutputVisitorData *data,
const void *unused)
{
test_native_list(data, unused, USER_DEF_NATIVE_LIST_UNION_KIND_STRING);
}
| 14,834 |
qemu | a0efbf16604770b9d805bcf210ec29942321134f | 0 | PCIBus *i440fx_init(const char *host_type, const char *pci_type,
PCII440FXState **pi440fx_state,
int *piix3_devfn,
ISABus **isa_bus, qemu_irq *pic,
MemoryRegion *address_space_mem,
MemoryRegion *address_space_io,
ram_addr_t ram_size,
ram_addr_t below_4g_mem_size,
ram_addr_t above_4g_mem_size,
MemoryRegion *pci_address_space,
MemoryRegion *ram_memory)
{
DeviceState *dev;
PCIBus *b;
PCIDevice *d;
PCIHostState *s;
PIIX3State *piix3;
PCII440FXState *f;
unsigned i;
I440FXState *i440fx;
dev = qdev_create(NULL, host_type);
s = PCI_HOST_BRIDGE(dev);
b = pci_bus_new(dev, NULL, pci_address_space,
address_space_io, 0, TYPE_PCI_BUS);
s->bus = b;
object_property_add_child(qdev_get_machine(), "i440fx", OBJECT(dev), NULL);
qdev_init_nofail(dev);
d = pci_create_simple(b, 0, pci_type);
*pi440fx_state = I440FX_PCI_DEVICE(d);
f = *pi440fx_state;
f->system_memory = address_space_mem;
f->pci_address_space = pci_address_space;
f->ram_memory = ram_memory;
i440fx = I440FX_PCI_HOST_BRIDGE(dev);
i440fx->pci_hole.begin = below_4g_mem_size;
i440fx->pci_hole.end = IO_APIC_DEFAULT_ADDRESS;
/* setup pci memory mapping */
pc_pci_as_mapping_init(OBJECT(f), f->system_memory,
f->pci_address_space);
/* if *disabled* show SMRAM to all CPUs */
memory_region_init_alias(&f->smram_region, OBJECT(d), "smram-region",
f->pci_address_space, 0xa0000, 0x20000);
memory_region_add_subregion_overlap(f->system_memory, 0xa0000,
&f->smram_region, 1);
memory_region_set_enabled(&f->smram_region, true);
/* smram, as seen by SMM CPUs */
memory_region_init(&f->smram, OBJECT(d), "smram", 1ull << 32);
memory_region_set_enabled(&f->smram, true);
memory_region_init_alias(&f->low_smram, OBJECT(d), "smram-low",
f->ram_memory, 0xa0000, 0x20000);
memory_region_set_enabled(&f->low_smram, true);
memory_region_add_subregion(&f->smram, 0xa0000, &f->low_smram);
object_property_add_const_link(qdev_get_machine(), "smram",
OBJECT(&f->smram), &error_abort);
init_pam(dev, f->ram_memory, f->system_memory, f->pci_address_space,
&f->pam_regions[0], PAM_BIOS_BASE, PAM_BIOS_SIZE);
for (i = 0; i < 12; ++i) {
init_pam(dev, f->ram_memory, f->system_memory, f->pci_address_space,
&f->pam_regions[i+1], PAM_EXPAN_BASE + i * PAM_EXPAN_SIZE,
PAM_EXPAN_SIZE);
}
/* Xen supports additional interrupt routes from the PCI devices to
* the IOAPIC: the four pins of each PCI device on the bus are also
* connected to the IOAPIC directly.
* These additional routes can be discovered through ACPI. */
if (xen_enabled()) {
PCIDevice *pci_dev = pci_create_simple_multifunction(b,
-1, true, "PIIX3-xen");
piix3 = PIIX3_PCI_DEVICE(pci_dev);
pci_bus_irqs(b, xen_piix3_set_irq, xen_pci_slot_get_pirq,
piix3, XEN_PIIX_NUM_PIRQS);
} else {
PCIDevice *pci_dev = pci_create_simple_multifunction(b,
-1, true, "PIIX3");
piix3 = PIIX3_PCI_DEVICE(pci_dev);
pci_bus_irqs(b, piix3_set_irq, pci_slot_get_pirq, piix3,
PIIX_NUM_PIRQS);
pci_bus_set_route_irq_fn(b, piix3_route_intx_pin_to_irq);
}
piix3->pic = pic;
*isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(piix3), "isa.0"));
*piix3_devfn = piix3->dev.devfn;
ram_size = ram_size / 8 / 1024 / 1024;
if (ram_size > 255) {
ram_size = 255;
}
d->config[I440FX_COREBOOT_RAM_SIZE] = ram_size;
i440fx_update_memory_mappings(f);
return b;
}
| 14,835 |
qemu | bd269ebc82fbaa5fe7ce5bc7c1770ac8acecd884 | 0 | void qio_channel_socket_connect_async(QIOChannelSocket *ioc,
SocketAddressLegacy *addr,
QIOTaskFunc callback,
gpointer opaque,
GDestroyNotify destroy)
{
QIOTask *task = qio_task_new(
OBJECT(ioc), callback, opaque, destroy);
SocketAddressLegacy *addrCopy;
addrCopy = QAPI_CLONE(SocketAddressLegacy, addr);
/* socket_connect() does a non-blocking connect(), but it
* still blocks in DNS lookups, so we must use a thread */
trace_qio_channel_socket_connect_async(ioc, addr);
qio_task_run_in_thread(task,
qio_channel_socket_connect_worker,
addrCopy,
(GDestroyNotify)qapi_free_SocketAddressLegacy);
}
| 14,836 |
FFmpeg | d6604b29ef544793479d7fb4e05ef6622bb3e534 | 0 | static av_cold int targa_encode_close(AVCodecContext *avctx)
{
av_frame_free(&avctx->coded_frame);
return 0;
}
| 14,837 |
qemu | 5fb6c7a8b26eab1a22207d24b4784bd2b39ab54b | 0 | static int vnc_set_x509_credential_dir(VncDisplay *vs,
const char *certdir)
{
if (vnc_set_x509_credential(vs, certdir, X509_CA_CERT_FILE, &vs->x509cacert, 0) < 0)
goto cleanup;
if (vnc_set_x509_credential(vs, certdir, X509_CA_CRL_FILE, &vs->x509cacrl, 1) < 0)
goto cleanup;
if (vnc_set_x509_credential(vs, certdir, X509_SERVER_CERT_FILE, &vs->x509cert, 0) < 0)
goto cleanup;
if (vnc_set_x509_credential(vs, certdir, X509_SERVER_KEY_FILE, &vs->x509key, 0) < 0)
goto cleanup;
return 0;
cleanup:
qemu_free(vs->x509cacert);
qemu_free(vs->x509cacrl);
qemu_free(vs->x509cert);
qemu_free(vs->x509key);
vs->x509cacert = vs->x509cacrl = vs->x509cert = vs->x509key = NULL;
return -1;
}
| 14,838 |
qemu | 47d3df2387ed6927732584ffa4159c26d9f4dee8 | 0 | static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
{
return shared_page->vcpu_iodata[i].vp_eport;
}
| 14,839 |
qemu | 61007b316cd71ee7333ff7a0a749a8949527575f | 0 | int bdrv_flush_all(void)
{
BlockDriverState *bs = NULL;
int result = 0;
while ((bs = bdrv_next(bs))) {
AioContext *aio_context = bdrv_get_aio_context(bs);
int ret;
aio_context_acquire(aio_context);
ret = bdrv_flush(bs);
if (ret < 0 && !result) {
result = ret;
}
aio_context_release(aio_context);
}
return result;
}
| 14,841 |
qemu | 9bf3eb2ca542dd9306cb2e72fc68e02ba3e56e2e | 0 | static inline void gen_movcf_s (int fs, int fd, int cc, int tf)
{
uint32_t ccbit;
int cond;
TCGv r_tmp1 = tcg_temp_local_new(TCG_TYPE_I32);
TCGv fp0 = tcg_temp_local_new(TCG_TYPE_I32);
TCGv fp1 = tcg_temp_local_new(TCG_TYPE_I32);
int l1 = gen_new_label();
if (cc)
ccbit = 1 << (24 + cc);
else
ccbit = 1 << 23;
if (tf)
cond = TCG_COND_EQ;
else
cond = TCG_COND_NE;
gen_load_fpr32(fp0, fs);
gen_load_fpr32(fp1, fd);
tcg_gen_andi_i32(r_tmp1, fpu_fcr31, ccbit);
tcg_gen_brcondi_i32(cond, r_tmp1, 0, l1);
tcg_gen_mov_i32(fp1, fp0);
tcg_temp_free(fp0);
gen_set_label(l1);
tcg_temp_free(r_tmp1);
gen_store_fpr32(fp1, fd);
tcg_temp_free(fp1);
}
| 14,843 |
qemu | f7c11b535040df31cc8bc3b1f0c33f546073ee62 | 0 | static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
uint32_t val)
{
int dirty_flags;
dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
if (!(dirty_flags & CODE_DIRTY_FLAG)) {
#if !defined(CONFIG_USER_ONLY)
tb_invalidate_phys_page_fast(ram_addr, 4);
dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
#endif
}
stl_p(qemu_get_ram_ptr(ram_addr), val);
dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
/* we remove the notdirty callback only if the code has been
flushed */
if (dirty_flags == 0xff)
tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
}
| 14,844 |
qemu | c9e9e9c66cee9932fb28a41a4659aa421a7a3f78 | 0 | static void qcow2_invalidate_cache(BlockDriverState *bs, Error **errp)
{
BDRVQcow2State *s = bs->opaque;
int flags = s->flags;
QCryptoCipher *cipher = NULL;
QDict *options;
Error *local_err = NULL;
int ret;
/*
* Backing files are read-only which makes all of their metadata immutable,
* that means we don't have to worry about reopening them here.
*/
cipher = s->cipher;
s->cipher = NULL;
qcow2_close(bs);
bdrv_invalidate_cache(bs->file->bs, &local_err);
if (local_err) {
error_propagate(errp, local_err);
bs->drv = NULL;
return;
}
memset(s, 0, sizeof(BDRVQcow2State));
options = qdict_clone_shallow(bs->options);
flags &= ~BDRV_O_INACTIVE;
ret = qcow2_open(bs, options, flags, &local_err);
QDECREF(options);
if (local_err) {
error_propagate(errp, local_err);
error_prepend(errp, "Could not reopen qcow2 layer: ");
bs->drv = NULL;
return;
} else if (ret < 0) {
error_setg_errno(errp, -ret, "Could not reopen qcow2 layer");
bs->drv = NULL;
return;
}
s->cipher = cipher;
}
| 14,845 |
qemu | 27a69bb088bee6d4efea254659422fb9c751b3c7 | 0 | static inline void gen_evmwumiaa(DisasContext *ctx)
{
TCGv_i64 acc;
TCGv_i64 tmp;
if (unlikely(!ctx->spe_enabled)) {
gen_exception(ctx, POWERPC_EXCP_APU);
return;
}
gen_evmwumi(ctx); /* rD := rA * rB */
acc = tcg_temp_new_i64();
tmp = tcg_temp_new_i64();
/* tmp := rD */
gen_load_gpr64(tmp, rD(ctx->opcode));
/* Load acc */
tcg_gen_ld_i64(acc, cpu_env, offsetof(CPUState, spe_acc));
/* acc := tmp + acc */
tcg_gen_add_i64(acc, acc, tmp);
/* Store acc */
tcg_gen_st_i64(acc, cpu_env, offsetof(CPUState, spe_acc));
/* rD := acc */
gen_store_gpr64(rD(ctx->opcode), acc);
tcg_temp_free_i64(acc);
tcg_temp_free_i64(tmp);
}
| 14,847 |
qemu | 72cf2d4f0e181d0d3a3122e04129c58a95da713e | 0 | void qemu_system_reset(void)
{
QEMUResetEntry *re, *nre;
/* reset all devices */
TAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
re->func(re->opaque);
}
}
| 14,849 |
qemu | 55274a30522d0f542c1659386f01096b78669455 | 0 | static int cpu_can_run(CPUState *env)
{
if (env->stop)
return 0;
if (env->stopped)
return 0;
if (!vm_running)
return 0;
return 1;
}
| 14,851 |
qemu | 6aff24c6a61c6fec31e555c7748ba6085b7b2c06 | 0 | static void cpu_common_parse_features(const char *typename, char *features,
Error **errp)
{
char *featurestr; /* Single "key=value" string being parsed */
char *val;
static bool cpu_globals_initialized;
/* TODO: all callers of ->parse_features() need to be changed to
* call it only once, so we can remove this check (or change it
* to assert(!cpu_globals_initialized).
* Current callers of ->parse_features() are:
* - cpu_generic_init()
* - cpu_x86_create()
*/
if (cpu_globals_initialized) {
return;
}
cpu_globals_initialized = true;
featurestr = features ? strtok(features, ",") : NULL;
while (featurestr) {
val = strchr(featurestr, '=');
if (val) {
GlobalProperty *prop = g_new0(typeof(*prop), 1);
*val = 0;
val++;
prop->driver = typename;
prop->property = g_strdup(featurestr);
prop->value = g_strdup(val);
prop->errp = &error_fatal;
qdev_prop_register_global(prop);
} else {
error_setg(errp, "Expected key=value format, found %s.",
featurestr);
return;
}
featurestr = strtok(NULL, ",");
}
}
| 14,852 |
qemu | fd56e0612b6454a282fa6a953fdb09281a98c589 | 0 | static void ich9_lpc_update_apic(ICH9LPCState *lpc, int gsi)
{
int level = 0;
assert(gsi >= ICH9_LPC_PIC_NUM_PINS);
level |= pci_bus_get_irq_level(lpc->d.bus, ich9_gsi_to_pirq(gsi));
if (gsi == lpc->sci_gsi) {
level |= lpc->sci_level;
}
qemu_set_irq(lpc->gsi[gsi], level);
}
| 14,853 |
qemu | 380feaffb0fcc8e5f615ed8e86d2e93717a6f2c6 | 0 | static int32_t scsi_disk_emulate_command(SCSIRequest *req, uint8_t *buf)
{
SCSIDiskReq *r = DO_UPCAST(SCSIDiskReq, req, req);
SCSIDiskState *s = DO_UPCAST(SCSIDiskState, qdev, req->dev);
uint64_t nb_sectors;
uint8_t *outbuf;
int buflen;
switch (req->cmd.buf[0]) {
case INQUIRY:
case MODE_SENSE:
case MODE_SENSE_10:
case RESERVE:
case RESERVE_10:
case RELEASE:
case RELEASE_10:
case START_STOP:
case ALLOW_MEDIUM_REMOVAL:
case GET_CONFIGURATION:
case GET_EVENT_STATUS_NOTIFICATION:
case MECHANISM_STATUS:
case REQUEST_SENSE:
break;
default:
if (s->tray_open || !bdrv_is_inserted(s->qdev.conf.bs)) {
scsi_check_condition(r, SENSE_CODE(NO_MEDIUM));
return 0;
}
break;
}
if (!r->iov.iov_base) {
/*
* FIXME: we shouldn't return anything bigger than 4k, but the code
* requires the buffer to be as big as req->cmd.xfer in several
* places. So, do not allow CDBs with a very large ALLOCATION
* LENGTH. The real fix would be to modify scsi_read_data and
* dma_buf_read, so that they return data beyond the buflen
* as all zeros.
*/
if (req->cmd.xfer > 65536) {
goto illegal_request;
}
r->buflen = MAX(4096, req->cmd.xfer);
r->iov.iov_base = qemu_blockalign(s->qdev.conf.bs, r->buflen);
}
buflen = req->cmd.xfer;
outbuf = r->iov.iov_base;
switch (req->cmd.buf[0]) {
case TEST_UNIT_READY:
assert(!s->tray_open && bdrv_is_inserted(s->qdev.conf.bs));
break;
case INQUIRY:
buflen = scsi_disk_emulate_inquiry(req, outbuf);
if (buflen < 0) {
goto illegal_request;
}
break;
case MODE_SENSE:
case MODE_SENSE_10:
buflen = scsi_disk_emulate_mode_sense(r, outbuf);
if (buflen < 0) {
goto illegal_request;
}
break;
case READ_TOC:
buflen = scsi_disk_emulate_read_toc(req, outbuf);
if (buflen < 0) {
goto illegal_request;
}
break;
case RESERVE:
if (req->cmd.buf[1] & 1) {
goto illegal_request;
}
break;
case RESERVE_10:
if (req->cmd.buf[1] & 3) {
goto illegal_request;
}
break;
case RELEASE:
if (req->cmd.buf[1] & 1) {
goto illegal_request;
}
break;
case RELEASE_10:
if (req->cmd.buf[1] & 3) {
goto illegal_request;
}
break;
case START_STOP:
if (scsi_disk_emulate_start_stop(r) < 0) {
return 0;
}
break;
case ALLOW_MEDIUM_REMOVAL:
s->tray_locked = req->cmd.buf[4] & 1;
bdrv_lock_medium(s->qdev.conf.bs, req->cmd.buf[4] & 1);
break;
case READ_CAPACITY_10:
/* The normal LEN field for this command is zero. */
memset(outbuf, 0, 8);
bdrv_get_geometry(s->qdev.conf.bs, &nb_sectors);
if (!nb_sectors) {
scsi_check_condition(r, SENSE_CODE(LUN_NOT_READY));
return -1;
}
if ((req->cmd.buf[8] & 1) == 0 && req->cmd.lba) {
goto illegal_request;
}
nb_sectors /= s->qdev.blocksize / 512;
/* Returned value is the address of the last sector. */
nb_sectors--;
/* Remember the new size for read/write sanity checking. */
s->qdev.max_lba = nb_sectors;
/* Clip to 2TB, instead of returning capacity modulo 2TB. */
if (nb_sectors > UINT32_MAX) {
nb_sectors = UINT32_MAX;
}
outbuf[0] = (nb_sectors >> 24) & 0xff;
outbuf[1] = (nb_sectors >> 16) & 0xff;
outbuf[2] = (nb_sectors >> 8) & 0xff;
outbuf[3] = nb_sectors & 0xff;
outbuf[4] = 0;
outbuf[5] = 0;
outbuf[6] = s->qdev.blocksize >> 8;
outbuf[7] = 0;
buflen = 8;
break;
case REQUEST_SENSE:
/* Just return "NO SENSE". */
buflen = scsi_build_sense(NULL, 0, outbuf, r->buflen,
(req->cmd.buf[1] & 1) == 0);
break;
case MECHANISM_STATUS:
buflen = scsi_emulate_mechanism_status(s, outbuf);
if (buflen < 0) {
goto illegal_request;
}
break;
case GET_CONFIGURATION:
buflen = scsi_get_configuration(s, outbuf);
if (buflen < 0) {
goto illegal_request;
}
break;
case GET_EVENT_STATUS_NOTIFICATION:
buflen = scsi_get_event_status_notification(s, r, outbuf);
if (buflen < 0) {
goto illegal_request;
}
break;
case READ_DISC_INFORMATION:
buflen = scsi_read_disc_information(s, r, outbuf);
if (buflen < 0) {
goto illegal_request;
}
break;
case READ_DVD_STRUCTURE:
buflen = scsi_read_dvd_structure(s, r, outbuf);
if (buflen < 0) {
goto illegal_request;
}
break;
case SERVICE_ACTION_IN_16:
/* Service Action In subcommands. */
if ((req->cmd.buf[1] & 31) == SAI_READ_CAPACITY_16) {
DPRINTF("SAI READ CAPACITY(16)\n");
memset(outbuf, 0, req->cmd.xfer);
bdrv_get_geometry(s->qdev.conf.bs, &nb_sectors);
if (!nb_sectors) {
scsi_check_condition(r, SENSE_CODE(LUN_NOT_READY));
return -1;
}
if ((req->cmd.buf[14] & 1) == 0 && req->cmd.lba) {
goto illegal_request;
}
nb_sectors /= s->qdev.blocksize / 512;
/* Returned value is the address of the last sector. */
nb_sectors--;
/* Remember the new size for read/write sanity checking. */
s->qdev.max_lba = nb_sectors;
outbuf[0] = (nb_sectors >> 56) & 0xff;
outbuf[1] = (nb_sectors >> 48) & 0xff;
outbuf[2] = (nb_sectors >> 40) & 0xff;
outbuf[3] = (nb_sectors >> 32) & 0xff;
outbuf[4] = (nb_sectors >> 24) & 0xff;
outbuf[5] = (nb_sectors >> 16) & 0xff;
outbuf[6] = (nb_sectors >> 8) & 0xff;
outbuf[7] = nb_sectors & 0xff;
outbuf[8] = 0;
outbuf[9] = 0;
outbuf[10] = s->qdev.blocksize >> 8;
outbuf[11] = 0;
outbuf[12] = 0;
outbuf[13] = get_physical_block_exp(&s->qdev.conf);
/* set TPE bit if the format supports discard */
if (s->qdev.conf.discard_granularity) {
outbuf[14] = 0x80;
}
/* Protection, exponent and lowest lba field left blank. */
buflen = req->cmd.xfer;
break;
}
DPRINTF("Unsupported Service Action In\n");
goto illegal_request;
case SYNCHRONIZE_CACHE:
/* The request is used as the AIO opaque value, so add a ref. */
scsi_req_ref(&r->req);
bdrv_acct_start(s->qdev.conf.bs, &r->acct, 0, BDRV_ACCT_FLUSH);
r->req.aiocb = bdrv_aio_flush(s->qdev.conf.bs, scsi_aio_complete, r);
return 0;
case SEEK_10:
DPRINTF("Seek(10) (sector %" PRId64 ")\n", r->req.cmd.lba);
if (r->req.cmd.lba > s->qdev.max_lba) {
goto illegal_lba;
}
break;
case MODE_SELECT:
DPRINTF("Mode Select(6) (len %lu)\n", (long)r->req.cmd.xfer);
/* We don't support mode parameter changes.
Allow the mode parameter header + block descriptors only. */
if (r->req.cmd.xfer > 12) {
goto illegal_request;
}
break;
case MODE_SELECT_10:
DPRINTF("Mode Select(10) (len %lu)\n", (long)r->req.cmd.xfer);
/* We don't support mode parameter changes.
Allow the mode parameter header + block descriptors only. */
if (r->req.cmd.xfer > 16) {
goto illegal_request;
}
break;
case WRITE_SAME_10:
nb_sectors = lduw_be_p(&req->cmd.buf[7]);
goto write_same;
case WRITE_SAME_16:
nb_sectors = ldl_be_p(&req->cmd.buf[10]) & 0xffffffffULL;
write_same:
if (r->req.cmd.lba > s->qdev.max_lba) {
goto illegal_lba;
}
/*
* We only support WRITE SAME with the unmap bit set for now.
*/
if (!(req->cmd.buf[1] & 0x8)) {
goto illegal_request;
}
/* The request is used as the AIO opaque value, so add a ref. */
scsi_req_ref(&r->req);
r->req.aiocb = bdrv_aio_discard(s->qdev.conf.bs,
r->req.cmd.lba * (s->qdev.blocksize / 512),
nb_sectors * (s->qdev.blocksize / 512),
scsi_aio_complete, r);
return 0;
default:
DPRINTF("Unknown SCSI command (%2.2x)\n", buf[0]);
scsi_check_condition(r, SENSE_CODE(INVALID_OPCODE));
return 0;
}
assert(!r->req.aiocb);
r->iov.iov_len = MIN(buflen, req->cmd.xfer);
if (r->iov.iov_len == 0) {
scsi_req_complete(&r->req, GOOD);
}
if (r->req.cmd.mode == SCSI_XFER_TO_DEV) {
assert(r->iov.iov_len == req->cmd.xfer);
return -r->iov.iov_len;
} else {
return r->iov.iov_len;
}
illegal_request:
if (r->req.status == -1) {
scsi_check_condition(r, SENSE_CODE(INVALID_FIELD));
}
return 0;
illegal_lba:
scsi_check_condition(r, SENSE_CODE(LBA_OUT_OF_RANGE));
return 0;
}
| 14,855 |
qemu | b3db211f3c80bb996a704d665fe275619f728bd4 | 0 | static void qmp_input_start_list(Visitor *v, const char *name,
GenericList **list, size_t size, Error **errp)
{
QmpInputVisitor *qiv = to_qiv(v);
QObject *qobj = qmp_input_get_object(qiv, name, true, errp);
const QListEntry *entry;
if (!qobj) {
return;
}
if (qobject_type(qobj) != QTYPE_QLIST) {
if (list) {
*list = NULL;
}
error_setg(errp, QERR_INVALID_PARAMETER_TYPE, name ? name : "null",
"list");
return;
}
entry = qmp_input_push(qiv, qobj, list, errp);
if (list) {
if (entry) {
*list = g_malloc0(size);
} else {
*list = NULL;
}
}
}
| 14,856 |
qemu | 04095e5ff305fc25a214b52e005153af9d009d66 | 0 | static int pci_e1000_init(PCIDevice *pci_dev)
{
E1000State *d = DO_UPCAST(E1000State, dev, pci_dev);
uint8_t *pci_conf;
uint16_t checksum = 0;
int i;
uint8_t *macaddr;
pci_conf = d->dev.config;
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
pci_config_set_device_id(pci_conf, E1000_DEVID);
*(uint16_t *)(pci_conf+0x04) = cpu_to_le16(0x0407);
*(uint16_t *)(pci_conf+0x06) = cpu_to_le16(0x0010);
pci_conf[0x08] = 0x03;
pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
pci_conf[0x0c] = 0x10;
pci_conf[0x3d] = 1; // interrupt pin 0
d->mmio_index = cpu_register_io_memory(e1000_mmio_read,
e1000_mmio_write, d);
pci_register_bar((PCIDevice *)d, 0, PNPMMIO_SIZE,
PCI_ADDRESS_SPACE_MEM, e1000_mmio_map);
pci_register_bar((PCIDevice *)d, 1, IOPORT_SIZE,
PCI_ADDRESS_SPACE_IO, ioport_map);
memmove(d->eeprom_data, e1000_eeprom_template,
sizeof e1000_eeprom_template);
qemu_macaddr_default_if_unset(&d->conf.macaddr);
macaddr = d->conf.macaddr.a;
for (i = 0; i < 3; i++)
d->eeprom_data[i] = (macaddr[2*i+1]<<8) | macaddr[2*i];
for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
checksum += d->eeprom_data[i];
checksum = (uint16_t) EEPROM_SUM - checksum;
d->eeprom_data[EEPROM_CHECKSUM_REG] = checksum;
d->vc = qemu_new_vlan_client(NET_CLIENT_TYPE_NIC,
d->conf.vlan, d->conf.peer,
d->dev.qdev.info->name, d->dev.qdev.id,
e1000_can_receive, e1000_receive, NULL,
NULL, e1000_cleanup, d);
d->vc->link_status_changed = e1000_set_link_status;
qemu_format_nic_info_str(d->vc, macaddr);
vmstate_register(-1, &vmstate_e1000, d);
e1000_reset(d);
#if 0 /* rom bev support is broken -> can't load unconditionally */
if (!pci_dev->qdev.hotplugged) {
static int loaded = 0;
if (!loaded) {
rom_add_option("pxe-e1000.bin");
loaded = 1;
}
}
#endif
return 0;
}
| 14,857 |
qemu | c2b38b277a7882a592f4f2ec955084b2b756daaa | 0 | void qemu_clock_notify(QEMUClockType type)
{
QEMUTimerList *timer_list;
QEMUClock *clock = qemu_clock_ptr(type);
QLIST_FOREACH(timer_list, &clock->timerlists, list) {
timerlist_notify(timer_list);
}
}
| 14,858 |
FFmpeg | e3751aa6ec8147ab7ca2649d4daadf8d4dce27d5 | 0 | static void backward_filter(RA288Context *ractx)
{
float temp1[37]; // RTMP in the spec
float temp2[11]; // GPTPMP in the spec
do_hybrid_window(36, 40, 35, ractx->sp_block, temp1, ractx->sp_hist,
ractx->sp_rec, syn_window);
if (!eval_lpc_coeffs(temp1, ractx->sp_lpc, 36))
colmult(ractx->sp_lpc, ractx->sp_lpc, syn_bw_tab, 36);
do_hybrid_window(10, 8, 20, ractx->gain_block, temp2, ractx->gain_hist,
ractx->gain_rec, gain_window);
if (!eval_lpc_coeffs(temp2, ractx->gain_lpc, 10))
colmult(ractx->gain_lpc, ractx->gain_lpc, gain_bw_tab, 10);
}
| 14,859 |
qemu | 171cd1cdfff32a99855ec80ca8cab43384fe0600 | 0 | int target_mprotect(abi_ulong start, abi_ulong len, int prot)
{
abi_ulong end, host_start, host_end, addr;
int prot1, ret;
#ifdef DEBUG_MMAP
printf("mprotect: start=0x" TARGET_FMT_lx
"len=0x" TARGET_FMT_lx " prot=%c%c%c\n", start, len,
prot & PROT_READ ? 'r' : '-',
prot & PROT_WRITE ? 'w' : '-',
prot & PROT_EXEC ? 'x' : '-');
#endif
if ((start & ~TARGET_PAGE_MASK) != 0)
return -EINVAL;
len = TARGET_PAGE_ALIGN(len);
end = start + len;
if (end < start)
return -EINVAL;
if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
return -EINVAL;
if (len == 0)
return 0;
host_start = start & qemu_host_page_mask;
host_end = HOST_PAGE_ALIGN(end);
if (start > host_start) {
/* handle host page containing start */
prot1 = prot;
for(addr = host_start; addr < start; addr += TARGET_PAGE_SIZE) {
prot1 |= page_get_flags(addr);
}
if (host_end == host_start + qemu_host_page_size) {
for(addr = end; addr < host_end; addr += TARGET_PAGE_SIZE) {
prot1 |= page_get_flags(addr);
}
end = host_end;
}
ret = mprotect(g2h(host_start), qemu_host_page_size, prot1 & PAGE_BITS);
if (ret != 0)
return ret;
host_start += qemu_host_page_size;
}
if (end < host_end) {
prot1 = prot;
for(addr = end; addr < host_end; addr += TARGET_PAGE_SIZE) {
prot1 |= page_get_flags(addr);
}
ret = mprotect(g2h(host_end - qemu_host_page_size), qemu_host_page_size,
prot1 & PAGE_BITS);
if (ret != 0)
return ret;
host_end -= qemu_host_page_size;
}
/* handle the pages in the middle */
if (host_start < host_end) {
ret = mprotect(g2h(host_start), host_end - host_start, prot);
if (ret != 0)
return ret;
}
page_set_flags(start, start + len, prot | PAGE_VALID);
return 0;
}
| 14,860 |
qemu | 4fa4ce7107c6ec432f185307158c5df91ce54308 | 0 | static int local_open(FsContext *ctx, V9fsPath *fs_path,
int flags, V9fsFidOpenState *fs)
{
char buffer[PATH_MAX];
char *path = fs_path->data;
fs->fd = open(rpath(ctx, path, buffer), flags | O_NOFOLLOW);
return fs->fd;
}
| 14,861 |
qemu | 9e85cd5ce0d3fc99d910428c9fd9d267764d341b | 0 | void qmp_block_commit(const char *device,
bool has_base, const char *base,
bool has_top, const char *top,
bool has_backing_file, const char *backing_file,
bool has_speed, int64_t speed,
Error **errp)
{
BlockDriverState *bs;
BlockDriverState *base_bs, *top_bs;
Error *local_err = NULL;
/* This will be part of the QMP command, if/when the
* BlockdevOnError change for blkmirror makes it in
*/
BlockdevOnError on_error = BLOCKDEV_ON_ERROR_REPORT;
if (!has_speed) {
speed = 0;
}
/* drain all i/o before commits */
bdrv_drain_all();
/* Important Note:
* libvirt relies on the DeviceNotFound error class in order to probe for
* live commit feature versions; for this to work, we must make sure to
* perform the device lookup before any generic errors that may occur in a
* scenario in which all optional arguments are omitted. */
bs = bdrv_find(device);
if (!bs) {
error_set(errp, QERR_DEVICE_NOT_FOUND, device);
return;
}
if (bdrv_op_is_blocked(bs, BLOCK_OP_TYPE_COMMIT, errp)) {
return;
}
/* default top_bs is the active layer */
top_bs = bs;
if (has_top && top) {
if (strcmp(bs->filename, top) != 0) {
top_bs = bdrv_find_backing_image(bs, top);
}
}
if (top_bs == NULL) {
error_setg(errp, "Top image file %s not found", top ? top : "NULL");
return;
}
if (has_base && base) {
base_bs = bdrv_find_backing_image(top_bs, base);
} else {
base_bs = bdrv_find_base(top_bs);
}
if (base_bs == NULL) {
error_set(errp, QERR_BASE_NOT_FOUND, base ? base : "NULL");
return;
}
/* Do not allow attempts to commit an image into itself */
if (top_bs == base_bs) {
error_setg(errp, "cannot commit an image into itself");
return;
}
if (top_bs == bs) {
if (has_backing_file) {
error_setg(errp, "'backing-file' specified,"
" but 'top' is the active layer");
return;
}
commit_active_start(bs, base_bs, speed, on_error, block_job_cb,
bs, &local_err);
} else {
commit_start(bs, base_bs, top_bs, speed, on_error, block_job_cb, bs,
has_backing_file ? backing_file : NULL, &local_err);
}
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
}
| 14,862 |
qemu | 2d3735d3bf61d5c8e154a197a11535cc65044334 | 0 | void do_commit(Monitor *mon, const QDict *qdict)
{
const char *device = qdict_get_str(qdict, "device");
BlockDriverState *bs;
if (!strcmp(device, "all")) {
bdrv_commit_all();
} else {
bs = bdrv_find(device);
if (!bs) {
qerror_report(QERR_DEVICE_NOT_FOUND, device);
return;
}
bdrv_commit(bs);
}
}
| 14,863 |
qemu | b3db211f3c80bb996a704d665fe275619f728bd4 | 0 | static QmpOutputVisitor *to_qov(Visitor *v)
{
return container_of(v, QmpOutputVisitor, visitor);
}
| 14,864 |
FFmpeg | 6a786b15c34765ec00be3cd808dafbb041fd5881 | 0 | static void vc1_inv_trans_8x8_c(DCTELEM block[64])
{
int i;
register int t1,t2,t3,t4,t5,t6,t7,t8;
DCTELEM *src, *dst, temp[64];
src = block;
dst = temp;
for(i = 0; i < 8; i++){
t1 = 12 * (src[ 0] + src[32]) + 4;
t2 = 12 * (src[ 0] - src[32]) + 4;
t3 = 16 * src[16] + 6 * src[48];
t4 = 6 * src[16] - 16 * src[48];
t5 = t1 + t3;
t6 = t2 + t4;
t7 = t2 - t4;
t8 = t1 - t3;
t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
dst[0] = (t5 + t1) >> 3;
dst[1] = (t6 + t2) >> 3;
dst[2] = (t7 + t3) >> 3;
dst[3] = (t8 + t4) >> 3;
dst[4] = (t8 - t4) >> 3;
dst[5] = (t7 - t3) >> 3;
dst[6] = (t6 - t2) >> 3;
dst[7] = (t5 - t1) >> 3;
src += 1;
dst += 8;
}
src = temp;
dst = block;
for(i = 0; i < 8; i++){
t1 = 12 * (src[ 0] + src[32]) + 64;
t2 = 12 * (src[ 0] - src[32]) + 64;
t3 = 16 * src[16] + 6 * src[48];
t4 = 6 * src[16] - 16 * src[48];
t5 = t1 + t3;
t6 = t2 + t4;
t7 = t2 - t4;
t8 = t1 - t3;
t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
dst[ 0] = (t5 + t1) >> 7;
dst[ 8] = (t6 + t2) >> 7;
dst[16] = (t7 + t3) >> 7;
dst[24] = (t8 + t4) >> 7;
dst[32] = (t8 - t4 + 1) >> 7;
dst[40] = (t7 - t3 + 1) >> 7;
dst[48] = (t6 - t2 + 1) >> 7;
dst[56] = (t5 - t1 + 1) >> 7;
src++;
dst++;
}
}
| 14,866 |
FFmpeg | bcd7bf7eeb09a395cc01698842d1b8be9af483fc | 0 | static void avc_loopfilter_luma_intra_edge_ver_msa(uint8_t *data,
uint8_t alpha_in,
uint8_t beta_in,
uint32_t img_width)
{
uint8_t *src;
v16u8 alpha, beta, p0_asub_q0;
v16u8 is_less_than_alpha, is_less_than;
v16u8 is_less_than_beta, negate_is_less_than_beta;
v8i16 p2_r = { 0 };
v8i16 p1_r = { 0 };
v8i16 p0_r = { 0 };
v8i16 q0_r = { 0 };
v8i16 q1_r = { 0 };
v8i16 q2_r = { 0 };
v8i16 p2_l = { 0 };
v8i16 p1_l = { 0 };
v8i16 p0_l = { 0 };
v8i16 q0_l = { 0 };
v8i16 q1_l = { 0 };
v8i16 q2_l = { 0 };
v16u8 p3_org, p2_org, p1_org, p0_org, q0_org, q1_org, q2_org, q3_org;
v8i16 p1_org_r, p0_org_r, q0_org_r, q1_org_r;
v8i16 p1_org_l, p0_org_l, q0_org_l, q1_org_l;
v16i8 zero = { 0 };
v16u8 tmp_flag;
src = data - 4;
{
v16u8 row0, row1, row2, row3, row4, row5, row6, row7;
v16u8 row8, row9, row10, row11, row12, row13, row14, row15;
LOAD_8VECS_UB(src, img_width,
row0, row1, row2, row3, row4, row5, row6, row7);
LOAD_8VECS_UB(src + (8 * img_width), img_width,
row8, row9, row10, row11, row12, row13, row14, row15);
TRANSPOSE16x8_B_UB(row0, row1, row2, row3, row4, row5, row6, row7,
row8, row9, row10, row11, row12, row13, row14, row15,
p3_org, p2_org, p1_org, p0_org,
q0_org, q1_org, q2_org, q3_org);
}
p1_org_r = (v8i16) __msa_ilvr_b(zero, (v16i8) p1_org);
p0_org_r = (v8i16) __msa_ilvr_b(zero, (v16i8) p0_org);
q0_org_r = (v8i16) __msa_ilvr_b(zero, (v16i8) q0_org);
q1_org_r = (v8i16) __msa_ilvr_b(zero, (v16i8) q1_org);
p1_org_l = (v8i16) __msa_ilvl_b(zero, (v16i8) p1_org);
p0_org_l = (v8i16) __msa_ilvl_b(zero, (v16i8) p0_org);
q0_org_l = (v8i16) __msa_ilvl_b(zero, (v16i8) q0_org);
q1_org_l = (v8i16) __msa_ilvl_b(zero, (v16i8) q1_org);
/* if ( ((unsigned)ABS(p0-q0) < thresholds->alpha_in) &&
((unsigned)ABS(p1-p0) < thresholds->beta_in) &&
((unsigned)ABS(q1-q0) < thresholds->beta_in) ) */
{
v16u8 p1_asub_p0, q1_asub_q0;
p0_asub_q0 = __msa_asub_u_b(p0_org, q0_org);
p1_asub_p0 = __msa_asub_u_b(p1_org, p0_org);
q1_asub_q0 = __msa_asub_u_b(q1_org, q0_org);
alpha = (v16u8) __msa_fill_b(alpha_in);
beta = (v16u8) __msa_fill_b(beta_in);
is_less_than_alpha = (p0_asub_q0 < alpha);
is_less_than_beta = (p1_asub_p0 < beta);
is_less_than = is_less_than_beta & is_less_than_alpha;
is_less_than_beta = (q1_asub_q0 < beta);
is_less_than = is_less_than_beta & is_less_than;
}
if (!__msa_test_bz_v(is_less_than)) {
tmp_flag = alpha >> 2;
tmp_flag = tmp_flag + 2;
tmp_flag = (p0_asub_q0 < tmp_flag);
{
v16u8 p2_asub_p0;
p2_asub_p0 = __msa_asub_u_b(p2_org, p0_org);
is_less_than_beta = (p2_asub_p0 < beta);
}
is_less_than_beta = tmp_flag & is_less_than_beta;
negate_is_less_than_beta = __msa_xori_b(is_less_than_beta, 0xff);
is_less_than_beta = is_less_than_beta & is_less_than;
negate_is_less_than_beta = negate_is_less_than_beta & is_less_than;
/* right */
{
v16u8 is_less_than_beta_r;
is_less_than_beta_r =
(v16u8) __msa_sldi_b((v16i8) is_less_than_beta, zero, 8);
if (!__msa_test_bz_v(is_less_than_beta_r)) {
v8i16 p3_org_r;
p3_org_r = (v8i16) __msa_ilvr_b(zero, (v16i8) p3_org);
p2_r = (v8i16) __msa_ilvr_b(zero, (v16i8) p2_org);
AVC_LOOP_FILTER_P0P1P2_OR_Q0Q1Q2(p3_org_r, p0_org_r,
q0_org_r, p1_org_r,
p2_r, q1_org_r,
p0_r, p1_r, p2_r);
}
}
/* left */
{
v16u8 is_less_than_beta_l;
is_less_than_beta_l =
(v16u8) __msa_sldi_b(zero, (v16i8) is_less_than_beta, 8);
if (!__msa_test_bz_v(is_less_than_beta_l)) {
v8i16 p3_org_l;
p3_org_l = (v8i16) __msa_ilvl_b(zero, (v16i8) p3_org);
p2_l = (v8i16) __msa_ilvl_b(zero, (v16i8) p2_org);
AVC_LOOP_FILTER_P0P1P2_OR_Q0Q1Q2(p3_org_l, p0_org_l,
q0_org_l, p1_org_l,
p2_l, q1_org_l,
p0_l, p1_l, p2_l);
}
}
/* combine and store */
if (!__msa_test_bz_v(is_less_than_beta)) {
v16u8 p0, p2, p1;
p0 = (v16u8) __msa_pckev_b((v16i8) p0_l, (v16i8) p0_r);
p1 = (v16u8) __msa_pckev_b((v16i8) p1_l, (v16i8) p1_r);
p2 = (v16u8) __msa_pckev_b((v16i8) p2_l, (v16i8) p2_r);
p0_org = __msa_bmnz_v(p0_org, p0, is_less_than_beta);
p1_org = __msa_bmnz_v(p1_org, p1, is_less_than_beta);
p2_org = __msa_bmnz_v(p2_org, p2, is_less_than_beta);
}
/* right */
{
v16u8 negate_is_less_than_beta_r;
negate_is_less_than_beta_r =
(v16u8) __msa_sldi_b((v16i8) negate_is_less_than_beta, zero, 8);
if (!__msa_test_bz_v(negate_is_less_than_beta_r)) {
AVC_LOOP_FILTER_P0_OR_Q0(p0_org_r, q1_org_r, p1_org_r, p0_r);
}
}
/* left */
{
v16u8 negate_is_less_than_beta_l;
negate_is_less_than_beta_l =
(v16u8) __msa_sldi_b(zero, (v16i8) negate_is_less_than_beta, 8);
if (!__msa_test_bz_v(negate_is_less_than_beta_l)) {
AVC_LOOP_FILTER_P0_OR_Q0(p0_org_l, q1_org_l, p1_org_l, p0_l);
}
}
if (!__msa_test_bz_v(negate_is_less_than_beta)) {
v16u8 p0;
p0 = (v16u8) __msa_pckev_b((v16i8) p0_l, (v16i8) p0_r);
p0_org = __msa_bmnz_v(p0_org, p0, negate_is_less_than_beta);
}
{
v16u8 q2_asub_q0;
q2_asub_q0 = __msa_asub_u_b(q2_org, q0_org);
is_less_than_beta = (q2_asub_q0 < beta);
}
is_less_than_beta = is_less_than_beta & tmp_flag;
negate_is_less_than_beta = __msa_xori_b(is_less_than_beta, 0xff);
is_less_than_beta = is_less_than_beta & is_less_than;
negate_is_less_than_beta = negate_is_less_than_beta & is_less_than;
/* right */
{
v16u8 is_less_than_beta_r;
is_less_than_beta_r =
(v16u8) __msa_sldi_b((v16i8) is_less_than_beta, zero, 8);
if (!__msa_test_bz_v(is_less_than_beta_r)) {
v8i16 q3_org_r;
q3_org_r = (v8i16) __msa_ilvr_b(zero, (v16i8) q3_org);
q2_r = (v8i16) __msa_ilvr_b(zero, (v16i8) q2_org);
AVC_LOOP_FILTER_P0P1P2_OR_Q0Q1Q2(q3_org_r, q0_org_r,
p0_org_r, q1_org_r,
q2_r, p1_org_r,
q0_r, q1_r, q2_r);
}
}
/* left */
{
v16u8 is_less_than_beta_l;
is_less_than_beta_l =
(v16u8) __msa_sldi_b(zero, (v16i8) is_less_than_beta, 8);
if (!__msa_test_bz_v(is_less_than_beta_l)) {
v8i16 q3_org_l;
q3_org_l = (v8i16) __msa_ilvl_b(zero, (v16i8) q3_org);
q2_l = (v8i16) __msa_ilvl_b(zero, (v16i8) q2_org);
AVC_LOOP_FILTER_P0P1P2_OR_Q0Q1Q2(q3_org_l, q0_org_l,
p0_org_l, q1_org_l,
q2_l, p1_org_l,
q0_l, q1_l, q2_l);
}
}
/* combine and store */
if (!__msa_test_bz_v(is_less_than_beta)) {
v16u8 q0, q1, q2;
q0 = (v16u8) __msa_pckev_b((v16i8) q0_l, (v16i8) q0_r);
q1 = (v16u8) __msa_pckev_b((v16i8) q1_l, (v16i8) q1_r);
q2 = (v16u8) __msa_pckev_b((v16i8) q2_l, (v16i8) q2_r);
q0_org = __msa_bmnz_v(q0_org, q0, is_less_than_beta);
q1_org = __msa_bmnz_v(q1_org, q1, is_less_than_beta);
q2_org = __msa_bmnz_v(q2_org, q2, is_less_than_beta);
}
/* right */
{
v16u8 negate_is_less_than_beta_r;
negate_is_less_than_beta_r =
(v16u8) __msa_sldi_b((v16i8) negate_is_less_than_beta, zero, 8);
if (!__msa_test_bz_v(negate_is_less_than_beta_r)) {
AVC_LOOP_FILTER_P0_OR_Q0(q0_org_r, p1_org_r, q1_org_r, q0_r);
}
}
/* left */
{
v16u8 negate_is_less_than_beta_l;
negate_is_less_than_beta_l =
(v16u8) __msa_sldi_b(zero, (v16i8) negate_is_less_than_beta, 8);
if (!__msa_test_bz_v(negate_is_less_than_beta_l)) {
AVC_LOOP_FILTER_P0_OR_Q0(q0_org_l, p1_org_l, q1_org_l, q0_l);
}
}
if (!__msa_test_bz_v(negate_is_less_than_beta)) {
v16u8 q0;
q0 = (v16u8) __msa_pckev_b((v16i8) q0_l, (v16i8) q0_r);
q0_org = __msa_bmnz_v(q0_org, q0, negate_is_less_than_beta);
}
}
{
v16u8 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
uint32_t out0, out2;
uint16_t out1, out3;
tmp0 = (v16u8) __msa_ilvr_b((v16i8) p1_org, (v16i8) p2_org);
tmp1 = (v16u8) __msa_ilvr_b((v16i8) q0_org, (v16i8) p0_org);
tmp2 = (v16u8) __msa_ilvr_b((v16i8) q2_org, (v16i8) q1_org);
tmp3 = (v16u8) __msa_ilvr_h((v8i16) tmp1, (v8i16) tmp0);
tmp4 = (v16u8) __msa_ilvl_h((v8i16) tmp1, (v8i16) tmp0);
tmp0 = (v16u8) __msa_ilvl_b((v16i8) p1_org, (v16i8) p2_org);
tmp1 = (v16u8) __msa_ilvl_b((v16i8) q0_org, (v16i8) p0_org);
tmp5 = (v16u8) __msa_ilvl_b((v16i8) q2_org, (v16i8) q1_org);
tmp6 = (v16u8) __msa_ilvr_h((v8i16) tmp1, (v8i16) tmp0);
tmp7 = (v16u8) __msa_ilvl_h((v8i16) tmp1, (v8i16) tmp0);
src = data - 3;
out0 = __msa_copy_u_w((v4i32) tmp3, 0);
out1 = __msa_copy_u_h((v8i16) tmp2, 0);
out2 = __msa_copy_u_w((v4i32) tmp3, 1);
out3 = __msa_copy_u_h((v8i16) tmp2, 1);
STORE_WORD(src, out0);
STORE_HWORD((src + 4), out1);
src += img_width;
STORE_WORD(src, out2);
STORE_HWORD((src + 4), out3);
out0 = __msa_copy_u_w((v4i32) tmp3, 2);
out1 = __msa_copy_u_h((v8i16) tmp2, 2);
out2 = __msa_copy_u_w((v4i32) tmp3, 3);
out3 = __msa_copy_u_h((v8i16) tmp2, 3);
src += img_width;
STORE_WORD(src, out0);
STORE_HWORD((src + 4), out1);
src += img_width;
STORE_WORD(src, out2);
STORE_HWORD((src + 4), out3);
out0 = __msa_copy_u_w((v4i32) tmp4, 0);
out1 = __msa_copy_u_h((v8i16) tmp2, 4);
out2 = __msa_copy_u_w((v4i32) tmp4, 1);
out3 = __msa_copy_u_h((v8i16) tmp2, 5);
src += img_width;
STORE_WORD(src, out0);
STORE_HWORD((src + 4), out1);
src += img_width;
STORE_WORD(src, out2);
STORE_HWORD((src + 4), out3);
out0 = __msa_copy_u_w((v4i32) tmp4, 2);
out1 = __msa_copy_u_h((v8i16) tmp2, 6);
out2 = __msa_copy_u_w((v4i32) tmp4, 3);
out3 = __msa_copy_u_h((v8i16) tmp2, 7);
src += img_width;
STORE_WORD(src, out0);
STORE_HWORD((src + 4), out1);
src += img_width;
STORE_WORD(src, out2);
STORE_HWORD((src + 4), out3);
out0 = __msa_copy_u_w((v4i32) tmp6, 0);
out1 = __msa_copy_u_h((v8i16) tmp5, 0);
out2 = __msa_copy_u_w((v4i32) tmp6, 1);
out3 = __msa_copy_u_h((v8i16) tmp5, 1);
src += img_width;
STORE_WORD(src, out0);
STORE_HWORD((src + 4), out1);
src += img_width;
STORE_WORD(src, out2);
STORE_HWORD((src + 4), out3);
out0 = __msa_copy_u_w((v4i32) tmp6, 2);
out1 = __msa_copy_u_h((v8i16) tmp5, 2);
out2 = __msa_copy_u_w((v4i32) tmp6, 3);
out3 = __msa_copy_u_h((v8i16) tmp5, 3);
src += img_width;
STORE_WORD(src, out0);
STORE_HWORD((src + 4), out1);
src += img_width;
STORE_WORD(src, out2);
STORE_HWORD((src + 4), out3);
out0 = __msa_copy_u_w((v4i32) tmp7, 0);
out1 = __msa_copy_u_h((v8i16) tmp5, 4);
out2 = __msa_copy_u_w((v4i32) tmp7, 1);
out3 = __msa_copy_u_h((v8i16) tmp5, 5);
src += img_width;
STORE_WORD(src, out0);
STORE_HWORD((src + 4), out1);
src += img_width;
STORE_WORD(src, out2);
STORE_HWORD((src + 4), out3);
out0 = __msa_copy_u_w((v4i32) tmp7, 2);
out1 = __msa_copy_u_h((v8i16) tmp5, 6);
out2 = __msa_copy_u_w((v4i32) tmp7, 3);
out3 = __msa_copy_u_h((v8i16) tmp5, 7);
src += img_width;
STORE_WORD(src, out0);
STORE_HWORD((src + 4), out1);
src += img_width;
STORE_WORD(src, out2);
STORE_HWORD((src + 4), out3);
}
}
| 14,867 |
FFmpeg | 190f6135b48a97dadd7586f154640bec6468df1b | 0 | static int dshow_read_packet(AVFormatContext *s, AVPacket *pkt)
{
struct dshow_ctx *ctx = s->priv_data;
AVPacketList *pktl = NULL;
while (!pktl) {
WaitForSingleObject(ctx->mutex, INFINITE);
pktl = ctx->pktl;
if (pktl) {
*pkt = pktl->pkt;
ctx->pktl = ctx->pktl->next;
av_free(pktl);
ctx->curbufsize -= pkt->size;
}
ResetEvent(ctx->event);
ReleaseMutex(ctx->mutex);
if (!pktl) {
if (s->flags & AVFMT_FLAG_NONBLOCK) {
return AVERROR(EAGAIN);
} else {
WaitForSingleObject(ctx->event, INFINITE);
}
}
}
return pkt->size;
}
| 14,868 |
FFmpeg | f164228fd793766187ed3e68cb6d6e2fe3e77c04 | 0 | static void blend_image(AVFilterContext *ctx,
AVFilterBufferRef *dst, AVFilterBufferRef *src,
int x, int y)
{
OverlayContext *over = ctx->priv;
int i, j, k;
int width = src->video->w;
int height = src->video->h;
if (over->main_is_packed_rgb) {
uint8_t *dp = dst->data[0] + x * over->main_pix_step[0] +
y * dst->linesize[0];
uint8_t *sp = src->data[0];
uint8_t alpha; ///< the amount of overlay to blend on to main
const int dr = over->main_rgba_map[R];
const int dg = over->main_rgba_map[G];
const int db = over->main_rgba_map[B];
const int da = over->main_rgba_map[A];
const int dstep = over->main_pix_step[0];
const int sr = over->overlay_rgba_map[R];
const int sg = over->overlay_rgba_map[G];
const int sb = over->overlay_rgba_map[B];
const int sa = over->overlay_rgba_map[A];
const int sstep = over->overlay_pix_step[0];
const int main_has_alpha = over->main_has_alpha;
for (i = 0; i < height; i++) {
uint8_t *d = dp, *s = sp;
for (j = 0; j < width; j++) {
alpha = s[sa];
// if the main channel has an alpha channel, alpha has to be calculated
// to create an un-premultiplied (straight) alpha value
if (main_has_alpha && alpha != 0 && alpha != 255) {
uint8_t alpha_d = d[da];
alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d);
}
switch (alpha) {
case 0:
break;
case 255:
d[dr] = s[sr];
d[dg] = s[sg];
d[db] = s[sb];
break;
default:
// main_value = main_value * (1 - alpha) + overlay_value * alpha
// since alpha is in the range 0-255, the result must divided by 255
d[dr] = FAST_DIV255(d[dr] * (255 - alpha) + s[sr] * alpha);
d[dg] = FAST_DIV255(d[dg] * (255 - alpha) + s[sg] * alpha);
d[db] = FAST_DIV255(d[db] * (255 - alpha) + s[sb] * alpha);
}
if (main_has_alpha) {
switch (alpha) {
case 0:
break;
case 255:
d[da] = s[sa];
break;
default:
// apply alpha compositing: main_alpha += (1-main_alpha) * overlay_alpha
d[da] += FAST_DIV255((255 - d[da]) * s[sa]);
}
}
d += dstep;
s += sstep;
}
dp += dst->linesize[0];
sp += src->linesize[0];
}
} else {
const int main_has_alpha = over->main_has_alpha;
if (main_has_alpha) {
uint8_t *da = dst->data[3] + x * over->main_pix_step[3] +
y * dst->linesize[3];
uint8_t *sa = src->data[3];
uint8_t alpha; ///< the amount of overlay to blend on to main
for (i = 0; i < height; i++) {
uint8_t *d = da, *s = sa;
for (j = 0; j < width; j++) {
alpha = *s;
if (alpha != 0 && alpha != 255) {
uint8_t alpha_d = *d;
alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d);
}
switch (alpha) {
case 0:
break;
case 255:
*d = *s;
break;
default:
// apply alpha compositing: main_alpha += (1-main_alpha) * overlay_alpha
*d += FAST_DIV255((255 - *d) * *s);
}
d += 1;
s += 1;
}
da += dst->linesize[3];
sa += src->linesize[3];
}
}
for (i = 0; i < 3; i++) {
int hsub = i ? over->hsub : 0;
int vsub = i ? over->vsub : 0;
uint8_t *dp = dst->data[i] + (x >> hsub) +
(y >> vsub) * dst->linesize[i];
uint8_t *sp = src->data[i];
uint8_t *ap = src->data[3];
int wp = FFALIGN(width, 1<<hsub) >> hsub;
int hp = FFALIGN(height, 1<<vsub) >> vsub;
for (j = 0; j < hp; j++) {
uint8_t *d = dp, *s = sp, *a = ap;
for (k = 0; k < wp; k++) {
// average alpha for color components, improve quality
int alpha_v, alpha_h, alpha;
if (hsub && vsub && j+1 < hp && k+1 < wp) {
alpha = (a[0] + a[src->linesize[3]] +
a[1] + a[src->linesize[3]+1]) >> 2;
} else if (hsub || vsub) {
alpha_h = hsub && k+1 < wp ?
(a[0] + a[1]) >> 1 : a[0];
alpha_v = vsub && j+1 < hp ?
(a[0] + a[src->linesize[3]]) >> 1 : a[0];
alpha = (alpha_v + alpha_h) >> 1;
} else
alpha = a[0];
// if the main channel has an alpha channel, alpha has to be calculated
// to create an un-premultiplied (straight) alpha value
if (main_has_alpha && alpha != 0 && alpha != 255) {
// average alpha for color components, improve quality
uint8_t alpha_d;
if (hsub && vsub && j+1 < hp && k+1 < wp) {
alpha_d = (d[0] + d[src->linesize[3]] +
d[1] + d[src->linesize[3]+1]) >> 2;
} else if (hsub || vsub) {
alpha_h = hsub && k+1 < wp ?
(d[0] + d[1]) >> 1 : d[0];
alpha_v = vsub && j+1 < hp ?
(d[0] + d[src->linesize[3]]) >> 1 : d[0];
alpha_d = (alpha_v + alpha_h) >> 1;
} else
alpha_d = d[0];
alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d);
}
*d = FAST_DIV255(*d * (255 - alpha) + *s * alpha);
s++;
d++;
a += 1 << hsub;
}
dp += dst->linesize[i];
sp += src->linesize[i];
ap += (1 << vsub) * src->linesize[3];
}
}
}
}
| 14,869 |
FFmpeg | 56fc4cf04f9ed878cf8e159981f5d136af807973 | 0 | static void draw_mandelbrot(AVFilterContext *ctx, uint32_t *color, int linesize, int64_t pts)
{
MBContext *mb = ctx->priv;
int x,y,i, in_cidx=0, next_cidx=0, tmp_cidx;
double scale= mb->start_scale*pow(mb->end_scale/mb->start_scale, pts/mb->end_pts);
int use_zyklus=0;
fill_from_cache(ctx, NULL, &in_cidx, NULL, mb->start_y+scale*(-mb->h/2-0.5), scale);
for(y=0; y<mb->h; y++){
const double ci=mb->start_y+scale*(y-mb->h/2);
memset(color+linesize*y, 0, sizeof(*color)*mb->w);
fill_from_cache(ctx, color+linesize*y, &in_cidx, &next_cidx, ci, scale);
tmp_cidx= in_cidx;
fill_from_cache(ctx, color+linesize*y, &tmp_cidx, NULL, ci + scale/2, scale);
for(x=0; x<mb->w; x++){
const double cr=mb->start_x+scale*(x-mb->w/2);
double zr=cr;
double zi=ci;
uint32_t c=0;
double dv= mb->dither / (double)(1LL<<32);
mb->dither= mb->dither*1664525+1013904223;
if(color[x + y*linesize] & 0xFF000000)
continue;
use_zyklus= (x==0 || mb->inner!=BLACK ||color[x-1 + y*linesize] == 0xFF000000);
#define Z_Z2_C(outr,outi,inr,ini)\
outr= inr*inr - ini*ini + cr;\
outi= 2*inr*ini + ci;
#define Z_Z2_C_ZYKLUS(outr,outi,inr,ini, Z)\
Z_Z2_C(outr,outi,inr,ini)\
if(use_zyklus){\
if(Z && mb->zyklus[i>>1][0]==outr && mb->zyklus[i>>1][1]==outi)\
break;\
mb->zyklus[i][0]= outr;\
mb->zyklus[i][1]= outi;\
}
for(i=0; i<mb->maxiter-8; i++){
double t;
Z_Z2_C_ZYKLUS(t, zi, zr, zi, 0)
i++;
Z_Z2_C_ZYKLUS(zr, zi, t, zi, 1)
i++;
Z_Z2_C_ZYKLUS(t, zi, zr, zi, 0)
i++;
Z_Z2_C_ZYKLUS(zr, zi, t, zi, 1)
i++;
Z_Z2_C_ZYKLUS(t, zi, zr, zi, 0)
i++;
Z_Z2_C_ZYKLUS(zr, zi, t, zi, 1)
i++;
Z_Z2_C_ZYKLUS(t, zi, zr, zi, 0)
i++;
Z_Z2_C_ZYKLUS(zr, zi, t, zi, 1)
if(zr*zr + zi*zi > mb->bailout){
i-= FFMIN(7, i);
for(; i<mb->maxiter; i++){
zr= mb->zyklus[i][0];
zi= mb->zyklus[i][1];
if(zr*zr + zi*zi > mb->bailout){
switch(mb->outer){
case ITERATION_COUNT: zr = i; break;
case NORMALIZED_ITERATION_COUNT: zr= i + log2(log(mb->bailout) / log(zr*zr + zi*zi)); break;
}
c= lrintf((sin(zr)+1)*127) + lrintf((sin(zr/1.234)+1)*127)*256*256 + lrintf((sin(zr/100)+1)*127)*256;
break;
}
}
break;
}
}
if(!c){
if(mb->inner==PERIOD){
int j;
for(j=i-1; j; j--)
if(SQR(mb->zyklus[j][0]-zr) + SQR(mb->zyklus[j][1]-zi) < 0.0000000000000001)
break;
if(j){
c= i-j;
c= ((c<<5)&0xE0) + ((c<<16)&0xE000) + ((c<<27)&0xE00000);
}
}else if(mb->inner==CONVTIME){
c= floor(i*255.0/mb->maxiter+dv)*0x010101;
} else if(mb->inner==MINCOL){
int j;
double closest=9999;
int closest_index=0;
for(j=i-1; j>=0; j--)
if(SQR(mb->zyklus[j][0]) + SQR(mb->zyklus[j][1]) < closest){
closest= SQR(mb->zyklus[j][0]) + SQR(mb->zyklus[j][1]);
closest_index= j;
}
closest = sqrt(closest);
c= lrintf((mb->zyklus[closest_index][0]/closest+1)*127+dv) + lrintf((mb->zyklus[closest_index][1]/closest+1)*127+dv)*256;
}
}
c |= 0xFF000000;
color[x + y*linesize]= c;
if(next_cidx < mb->cache_allocated){
mb->next_cache[next_cidx ].p[0]= cr;
mb->next_cache[next_cidx ].p[1]= ci;
mb->next_cache[next_cidx++].val = c;
}
}
fill_from_cache(ctx, NULL, &in_cidx, &next_cidx, ci + scale/2, scale);
}
FFSWAP(void*, mb->next_cache, mb->point_cache);
mb->cache_used = next_cidx;
if(mb->cache_used == mb->cache_allocated)
av_log(0, AV_LOG_INFO, "Mandelbrot cache is too small!\n");
}
| 14,871 |
FFmpeg | 6e0d8c06c7af61859e8d7bc2351a607d8abeab75 | 0 | static void opt_mb_qmax(const char *arg)
{
video_mb_qmax = atoi(arg);
if (video_mb_qmax < 0 ||
video_mb_qmax > 31) {
fprintf(stderr, "qmax must be >= 1 and <= 31\n");
exit(1);
}
}
| 14,873 |
FFmpeg | 39d0567737cbce35239dddeabe35ae037cecf362 | 0 | static void create_vorbis_context(venc_context_t * venc, AVCodecContext * avccontext) {
codebook_t * cb;
floor_t * fc;
residue_t * rc;
mapping_t * mc;
int i, book;
venc->channels = avccontext->channels;
venc->sample_rate = avccontext->sample_rate;
venc->blocksize[0] = venc->blocksize[1] = 11;
venc->ncodebooks = 29;
venc->codebooks = av_malloc(sizeof(codebook_t) * venc->ncodebooks);
int codebook0[] = { 2, 10, 8, 14, 7, 12, 11, 14, 1, 5, 3, 7, 4, 9, 7, 13, };
int codebook1[] = { 1, 4, 2, 6, 3, 7, 5, 7, };
int codebook2[] = { 1, 5, 7, 21, 5, 8, 9, 21, 10, 9, 12, 20, 20, 16, 20, 20, 4, 8, 9, 20, 6, 8, 9, 20, 11, 11, 13, 20, 20, 15, 17, 20, 9, 11, 14, 20, 8, 10, 15, 20, 11, 13, 15, 20, 20, 20, 20, 20, 20, 20, 20, 20, 13, 20, 20, 20, 18, 18, 20, 20, 20, 20, 20, 20, 3, 6, 8, 20, 6, 7, 9, 20, 10, 9, 12, 20, 20, 20, 20, 20, 5, 7, 9, 20, 6, 6, 9, 20, 10, 9, 12, 20, 20, 20, 20, 20, 8, 10, 13, 20, 8, 9, 12, 20, 11, 10, 12, 20, 20, 20, 20, 20, 18, 20, 20, 20, 15, 17, 18, 20, 18, 17, 18, 20, 20, 20, 20, 20, 7, 10, 12, 20, 8, 9, 11, 20, 14, 13, 14, 20, 20, 20, 20, 20, 6, 9, 12, 20, 7, 8, 11, 20, 12, 11, 13, 20, 20, 20, 20, 20, 9, 11, 15, 20, 8, 10, 14, 20, 12, 11, 14, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 11, 16, 18, 20, 15, 15, 17, 20, 20, 17, 20, 20, 20, 20, 20, 20, 9, 14, 16, 20, 12, 12, 15, 20, 17, 15, 18, 20, 20, 20, 20, 20, 16, 19, 18, 20, 15, 16, 20, 20, 17, 17, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, };
int codebook3[] = { 2, 3, 7, 13, 4, 4, 7, 15, 8, 6, 9, 17, 21, 16, 15, 21, 2, 5, 7, 11, 5, 5, 7, 14, 9, 7, 10, 16, 17, 15, 16, 21, 4, 7, 10, 17, 7, 7, 9, 15, 11, 9, 11, 16, 21, 18, 15, 21, 18, 21, 21, 21, 15, 17, 17, 19, 21, 19, 18, 20, 21, 21, 21, 20, };
int codebook4[] = { 5, 5, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 7, 5, 7, 5, 7, 5, 7, 5, 8, 6, 8, 6, 8, 6, 9, 6, 9, 6, 10, 6, 10, 6, 11, 6, 11, 7, 11, 7, 12, 7, 12, 7, 12, 7, 12, 7, 12, 7, 12, 7, 12, 7, 12, 8, 13, 8, 12, 8, 12, 8, 13, 8, 13, 9, 13, 9, 13, 9, 13, 9, 12, 10, 12, 10, 13, 10, 14, 11, 14, 12, 14, 13, 14, 13, 14, 14, 15, 16, 15, 15, 15, 14, 15, 17, 21, 22, 22, 21, 22, 22, 22, 22, 22, 22, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, };
int codebook5[] = { 2, 5, 5, 4, 5, 4, 5, 4, 5, 4, 6, 5, 6, 5, 6, 5, 6, 5, 7, 5, 7, 6, 8, 6, 8, 6, 8, 6, 9, 6, 9, 6, };
int codebook6[] = { 8, 5, 8, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 9, 4, 8, 4, 8, 4, 9, 5, 9, 5, 9, 5, 9, 5, 9, 6, 10, 6, 10, 7, 10, 8, 11, 9, 11, 11, 12, 13, 12, 14, 13, 15, 13, 15, 14, 16, 14, 17, 15, 17, 15, 15, 16, 16, 15, 16, 16, 16, 15, 18, 16, 15, 17, 17, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, };
int codebook7[] = { 1, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 6, 7, 7, 7, 7, 8, 7, 8, 8, 9, 8, 10, 9, 10, 9, };
int codebook8[] = { 4, 3, 4, 3, 4, 4, 5, 4, 5, 4, 5, 5, 6, 5, 6, 5, 7, 5, 7, 6, 7, 6, 8, 7, 8, 7, 8, 7, 9, 8, 9, 9, 9, 9, 10, 10, 10, 11, 9, 12, 9, 12, 9, 15, 10, 14, 9, 13, 10, 13, 10, 12, 10, 12, 10, 13, 10, 12, 11, 13, 11, 14, 12, 13, 13, 14, 14, 13, 14, 15, 14, 16, 13, 13, 14, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 15, 15, };
int codebook9[] = { 4, 5, 4, 5, 3, 5, 3, 5, 3, 5, 4, 4, 4, 4, 5, 5, 5, };
int codebook10[] = { 3, 3, 4, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 5, 7, 5, 8, 6, 8, 6, 9, 7, 10, 7, 10, 8, 10, 8, 11, 9, 11, };
int codebook11[] = { 3, 7, 3, 8, 3, 10, 3, 8, 3, 9, 3, 8, 4, 9, 4, 9, 5, 9, 6, 10, 6, 9, 7, 11, 7, 12, 9, 13, 10, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, };
int codebook12[] = { 4, 5, 4, 5, 4, 5, 4, 5, 3, 5, 3, 5, 3, 5, 4, 5, 4, };
int codebook13[] = { 4, 2, 4, 2, 5, 3, 5, 4, 6, 6, 6, 7, 7, 8, 7, 8, 7, 8, 7, 9, 8, 9, 8, 9, 8, 10, 8, 11, 9, 12, 9, 12, };
int codebook14[] = { 2, 5, 2, 6, 3, 6, 4, 7, 4, 7, 5, 9, 5, 11, 6, 11, 6, 11, 7, 11, 6, 11, 6, 11, 9, 11, 8, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, };
int codebook15[] = { 5, 6, 11, 11, 11, 11, 10, 10, 12, 11, 5, 2, 11, 5, 6, 6, 7, 9, 11, 13, 13, 10, 7, 11, 6, 7, 8, 9, 10, 12, 11, 5, 11, 6, 8, 7, 9, 11, 14, 15, 11, 6, 6, 8, 4, 5, 7, 8, 10, 13, 10, 5, 7, 7, 5, 5, 6, 8, 10, 11, 10, 7, 7, 8, 6, 5, 5, 7, 9, 9, 11, 8, 8, 11, 8, 7, 6, 6, 7, 9, 12, 11, 10, 13, 9, 9, 7, 7, 7, 9, 11, 13, 12, 15, 12, 11, 9, 8, 8, 8, };
int codebook16[] = { 2, 4, 4, 0, 0, 0, 0, 0, 0, 5, 6, 6, 0, 0, 0, 0, 0, 0, 5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 6, 8, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 8, 8, 9, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 8, 8, 0, 0, 0, 0, 0, 0, 7, 9, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 8, 8, 0, 0, 0, 0, 0, 0, 8, 9, 9, 0, 0, 0, 0, 0, 0, 8, 9, 8, };
int codebook17[] = { 2, 5, 5, 0, 0, 0, 5, 5, 0, 0, 0, 5, 5, 0, 0, 0, 7, 8, 0, 0, 0, 0, 0, 0, 0, 5, 6, 6, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 10, 10, 0, 0, 0, 0, 0, 0, 0, 5, 6, 6, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 5, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 7, 7, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 10, 10, 0, 0, 0, 9, 9, 0, 0, 0, 9, 9, 0, 0, 0, 10, 10, 0, 0, 0, 0, 0, 0, 0, 8, 10, 10, 0, 0, 0, 9, 9, 0, 0, 0, 9, 9, 0, 0, 0, 10, 10, };
int codebook18[] = { 2, 4, 3, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 7, 9, 9, };
int codebook19[] = { 2, 3, 3, 6, 6, 0, 0, 0, 0, 0, 4, 4, 6, 6, 0, 0, 0, 0, 0, 4, 4, 6, 6, 0, 0, 0, 0, 0, 5, 5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 9, 9, };
int codebook20[] = { 1, 3, 4, 6, 6, 7, 7, 9, 9, 0, 5, 5, 7, 7, 7, 8, 9, 9, 0, 5, 5, 7, 7, 8, 8, 9, 9, 0, 7, 7, 8, 8, 8, 8, 10, 10, 0, 0, 0, 8, 8, 8, 8, 10, 10, 0, 0, 0, 9, 9, 9, 9, 10, 10, 0, 0, 0, 9, 9, 9, 9, 10, 10, 0, 0, 0, 10, 10, 10, 10, 11, 11, 0, 0, 0, 0, 0, 10, 10, 11, 11, };
int codebook21[] = { 2, 3, 3, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 11, 10, 0, 5, 5, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 0, 5, 5, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 0, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 0, 0, 0, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 11, 12, 0, 0, 0, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 12, 12, 0, 0, 0, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 12, 12, 0, 0, 0, 9, 9, 9, 9, 10, 10, 10, 10, 11, 10, 11, 11, 12, 12, 0, 0, 0, 0, 0, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 0, 0, 0, 0, 0, 9, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 0, 0, 0, 0, 0, 8, 8, 9, 9, 10, 10, 11, 11, 12, 11, 12, 12, 0, 0, 0, 0, 0, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 0, 0, 0, 0, 0, 0, 0, 10, 10, 10, 10, 11, 11, 12, 12, 13, 13, 0, 0, 0, 0, 0, 0, 0, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 0, 0, 0, 0, 0, 0, 0, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 0, 0, 0, 0, 0, 0, 0, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 12, 12, 12, 13, 13, 13, 13, };
int codebook22[] = { 1, 4, 4, 7, 6, 6, 7, 6, 6, 4, 7, 7, 10, 9, 9, 11, 9, 9, 4, 7, 7, 10, 9, 9, 11, 9, 9, 7, 10, 10, 11, 11, 10, 12, 11, 11, 6, 9, 9, 11, 10, 10, 11, 10, 10, 6, 9, 9, 11, 10, 10, 11, 10, 10, 7, 11, 11, 11, 11, 11, 12, 11, 11, 6, 9, 9, 11, 10, 10, 11, 10, 10, 6, 9, 9, 11, 10, 10, 11, 10, 10, };
int codebook23[] = { 2, 4, 4, 6, 6, 7, 7, 7, 7, 8, 8, 10, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8, 10, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8, 10, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 10, 10, 10, 7, 7, 8, 7, 8, 8, 8, 8, 10, 10, 10, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 7, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 9, 9, 8, 8, 9, 8, 10, 10, 10, 10, 10, 8, 8, 8, 8, 8, 8, };
int codebook24[] = { 1, 4, 4, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 6, 5, 5, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 7, 5, 5, 7, 7, 8, 8, 8, 8, 9, 9, 11, 10, 0, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 0, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 0, 12, 12, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 0, 13, 13, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 0, 0, 0, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 0, 0, 0, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 0, 0, 0, 14, 14, 11, 11, 11, 11, 12, 12, 13, 13, 0, 0, 0, 14, 14, 11, 11, 11, 11, 12, 12, 13, 13, 0, 0, 0, 0, 0, 12, 12, 12, 12, 13, 13, 14, 13, 0, 0, 0, 0, 0, 13, 13, 12, 12, 13, 12, 14, 13, };
int codebook25[] = { 2, 4, 4, 5, 5, 6, 5, 5, 5, 5, 6, 4, 5, 5, 5, 6, 5, 5, 5, 5, 6, 6, 6, 5, 5, };
int codebook26[] = { 1, 4, 4, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 4, 9, 8, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 2, 9, 7, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, };
int codebook27[] = { 1, 4, 4, 6, 6, 7, 7, 8, 7, 9, 9, 10, 10, 10, 10, 6, 5, 5, 7, 7, 8, 8, 10, 8, 11, 10, 12, 12, 13, 13, 6, 5, 5, 7, 7, 8, 8, 10, 9, 11, 11, 12, 12, 13, 12, 18, 8, 8, 8, 8, 9, 9, 10, 9, 11, 10, 12, 12, 13, 13, 18, 8, 8, 8, 8, 9, 9, 10, 10, 11, 11, 13, 12, 14, 13, 18, 11, 11, 9, 9, 10, 10, 11, 11, 11, 12, 13, 12, 13, 14, 18, 11, 11, 9, 8, 11, 10, 11, 11, 11, 11, 12, 12, 14, 13, 18, 18, 18, 10, 11, 10, 11, 12, 12, 12, 12, 13, 12, 14, 13, 18, 18, 18, 10, 11, 11, 9, 12, 11, 12, 12, 12, 13, 13, 13, 18, 18, 17, 14, 14, 11, 11, 12, 12, 13, 12, 14, 12, 14, 13, 18, 18, 18, 14, 14, 11, 10, 12, 9, 12, 13, 13, 13, 13, 13, 18, 18, 17, 16, 18, 13, 13, 12, 12, 13, 11, 14, 12, 14, 14, 17, 18, 18, 17, 18, 13, 12, 13, 10, 12, 11, 14, 14, 14, 14, 17, 18, 18, 18, 18, 15, 16, 12, 12, 13, 10, 14, 12, 14, 15, 18, 18, 18, 16, 17, 16, 14, 12, 11, 13, 10, 13, 13, 14, 15, };
int codebook28[] = { 2, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 10, 6, 6, 7, 7, 8, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9, 10, 10, 10, 11, 11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 11, 10, 11, 11, 11, 9, 9, 9, 9, 9, 9, 10, 10, 9, 9, 10, 9, 11, 10, 11, 11, 11, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 9, 11, 11, 11, 11, 11, 9, 9, 9, 9, 10, 10, 9, 9, 9, 9, 10, 9, 11, 11, 11, 11, 11, 11, 11, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 10, 9, 10, 10, 9, 10, 9, 9, 10, 9, 11, 10, 10, 11, 11, 11, 11, 9, 10, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 10, 10, 10, 9, 9, 10, 9, 10, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 9, 9, 9, 9, 9, 10, 10, 10, };
int codebook_sizes[] = { 16, 8, 256, 64, 128, 32, 96, 32, 96, 17, 32, 78, 17, 32, 78, 100, 1641, 443, 105, 68, 81, 289, 81, 121, 169, 25, 169, 225, 289, };
int * codebook_lens[] = { codebook0, codebook1, codebook2, codebook3, codebook4, codebook5, codebook6, codebook7,
codebook8, codebook9, codebook10, codebook11, codebook12, codebook13, codebook14, codebook15,
codebook16, codebook17, codebook18, codebook19, codebook20, codebook21, codebook22, codebook23,
codebook24, codebook25, codebook26, codebook27, codebook28, };
struct {
int lookup;
int dim;
float min;
float delta;
int real_len;
int * quant;
} cvectors[] = {
{ 1, 8, -1.0, 1.0, 6561,(int[]){ 1, 0, 2, } },
{ 1, 4, -2.0, 1.0, 625, (int[]){ 2, 1, 3, 0, 4, } },
{ 1, 4, -2.0, 1.0, 625, (int[]){ 2, 1, 3, 0, 4, } },
{ 1, 2, -4.0, 1.0, 81, (int[]){ 4, 3, 5, 2, 6, 1, 7, 0, 8, } },
{ 1, 2, -4.0, 1.0, 81, (int[]){ 4, 3, 5, 2, 6, 1, 7, 0, 8, } },
{ 1, 2, -8.0, 1.0, 289, (int[]){ 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, } },
{ 1, 4, -11.0, 11.0, 81, (int[]){ 1, 0, 2, } },
{ 1, 2, -5.0, 1.0, 121, (int[]){ 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, } },
{ 1, 2, -30.0, 5.0, 169, (int[]){ 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, } },
{ 1, 2, -2.0, 1.0, 25, (int[]){ 2, 1, 3, 0, 4, } },
{ 1, 2, -1530.0, 255.0, 169, (int[]){ 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12, } },
{ 1, 2, -119.0, 17.0, 225, (int[]){ 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, } },
{ 1, 2, -8.0, 1.0, 289, (int[]){ 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 0, 16, } },
};
// codebook 0..14 - floor1 book, values 0..255
// codebook 15 residue masterbook
// codebook 16..29 residue
for (book = 0; book < venc->ncodebooks; book++) {
cb = &venc->codebooks[book];
cb->nentries = codebook_sizes[book];
if (book < 16) {
cb->ndimentions = 2;
cb->min = 0.;
cb->delta = 0.;
cb->seq_p = 0;
cb->lookup = 0;
cb->quantlist = NULL;
} else {
int vals;
cb->seq_p = 0;
cb->nentries = cvectors[book - 16].real_len;
cb->ndimentions = cvectors[book - 16].dim;
cb->min = cvectors[book - 16].min;
cb->delta = cvectors[book - 16].delta;
cb->lookup = cvectors[book - 16].lookup;
vals = cb_lookup_vals(cb->lookup, cb->ndimentions, cb->nentries);
cb->quantlist = av_malloc(sizeof(int) * vals);
for (i = 0; i < vals; i++) cb->quantlist[i] = cvectors[book - 16].quant[i];
}
cb->entries = av_malloc(sizeof(cb_entry_t) * cb->nentries);
for (i = 0; i < cb->nentries; i++) {
if (i < codebook_sizes[book]) cb->entries[i].len = codebook_lens[book][i];
else cb->entries[i].len = 0;
}
ready_codebook(cb);
}
venc->nfloors = 1;
venc->floors = av_malloc(sizeof(floor_t) * venc->nfloors);
// just 1 floor
fc = &venc->floors[0];
fc->partitions = 8;
fc->partition_to_class = av_malloc(sizeof(int) * fc->partitions);
fc->nclasses = 0;
for (i = 0; i < fc->partitions; i++) {
int a[] = {0,1,2,2,3,3,4,4};
fc->partition_to_class[i] = a[i];
fc->nclasses = FFMAX(fc->nclasses, fc->partition_to_class[i]);
}
fc->nclasses++;
fc->classes = av_malloc(sizeof(floor_class_t) * fc->nclasses);
for (i = 0; i < fc->nclasses; i++) {
floor_class_t * c = &fc->classes[i];
int j, books;
int dim[] = {3,4,3,4,3};
int subclass[] = {0,1,1,2,2};
int masterbook[] = {0/*none*/,0,1,2,3};
int * nbooks[] = {
(int[]){ 4 },
(int[]){ 5, 6 },
(int[]){ 7, 8 },
(int[]){ -1, 9, 10, 11 },
(int[]){ -1, 12, 13, 14 },
};
c->dim = dim[i];
c->subclass = subclass[i];
c->masterbook = masterbook[i];
books = (1 << c->subclass);
c->books = av_malloc(sizeof(int) * books);
for (j = 0; j < books; j++) c->books[j] = nbooks[i][j];
}
fc->multiplier = 2;
fc->rangebits = venc->blocksize[0] - 1;
fc->values = 2;
for (i = 0; i < fc->partitions; i++)
fc->values += fc->classes[fc->partition_to_class[i]].dim;
fc->list = av_malloc(sizeof(floor_entry_t) * fc->values);
fc->list[0].x = 0;
fc->list[1].x = 1 << fc->rangebits;
for (i = 2; i < fc->values; i++) {
/*int a = i - 1;
int g = ilog(a);
assert(g <= fc->rangebits);
a ^= 1 << (g-1);
g = 1 << (fc->rangebits - g);
fc->list[i].x = g + a*2*g;*/
//int a[] = {14, 4, 58, 2, 8, 28, 90};
int a[] = {93,23,372,6,46,186,750,14,33,65,130,260,556,3,10,18,28,39,55,79,111,158,220,312,464,650,850};
fc->list[i].x = a[i - 2];
}
ready_floor(fc);
venc->nresidues = 1;
venc->residues = av_malloc(sizeof(residue_t) * venc->nresidues);
// single residue
rc = &venc->residues[0];
rc->type = 2;
rc->begin = 0;
rc->end = 1600;
rc->partition_size = 32;
rc->classifications = 10;
rc->classbook = 15;
rc->books = av_malloc(sizeof(int[8]) * rc->classifications);
for (i = 0; i < rc->classifications; i++) {
int a[10][8] = {
{ -1, -1, -1, -1, -1, -1, -1, -1, },
{ -1, -1, 16, -1, -1, -1, -1, -1, },
{ -1, -1, 17, -1, -1, -1, -1, -1, },
{ -1, -1, 18, -1, -1, -1, -1, -1, },
{ -1, -1, 19, -1, -1, -1, -1, -1, },
{ -1, -1, 20, -1, -1, -1, -1, -1, },
{ -1, -1, 21, -1, -1, -1, -1, -1, },
{ 22, 23, -1, -1, -1, -1, -1, -1, },
{ 24, 25, -1, -1, -1, -1, -1, -1, },
{ 26, 27, 28, -1, -1, -1, -1, -1, },
};
int j;
for (j = 0; j < 8; j++) rc->books[i][j] = a[i][j];
}
ready_residue(rc, venc);
venc->nmappings = 1;
venc->mappings = av_malloc(sizeof(mapping_t) * venc->nmappings);
// single mapping
mc = &venc->mappings[0];
mc->submaps = 1;
mc->mux = av_malloc(sizeof(int) * venc->channels);
for (i = 0; i < venc->channels; i++) mc->mux[i] = 0;
mc->floor = av_malloc(sizeof(int) * mc->submaps);
mc->residue = av_malloc(sizeof(int) * mc->submaps);
for (i = 0; i < mc->submaps; i++) {
mc->floor[i] = 0;
mc->residue[i] = 0;
}
mc->coupling_steps = venc->channels == 2 ? 1 : 0;
mc->magnitude = av_malloc(sizeof(int) * mc->coupling_steps);
mc->angle = av_malloc(sizeof(int) * mc->coupling_steps);
if (mc->coupling_steps) {
mc->magnitude[0] = 0;
mc->angle[0] = 1;
}
venc->nmodes = 1;
venc->modes = av_malloc(sizeof(vorbis_mode_t) * venc->nmodes);
// single mode
venc->modes[0].blockflag = 0;
venc->modes[0].mapping = 0;
venc->have_saved = 0;
venc->saved = av_malloc(sizeof(float) * venc->channels * (1 << venc->blocksize[1]) / 2);
venc->samples = av_malloc(sizeof(float) * venc->channels * (1 << venc->blocksize[1]));
venc->floor = av_malloc(sizeof(float) * venc->channels * (1 << venc->blocksize[1]) / 2);
venc->coeffs = av_malloc(sizeof(float) * venc->channels * (1 << venc->blocksize[1]) / 2);
venc->win[0] = ff_vorbis_vwin[venc->blocksize[0] - 6];
venc->win[1] = ff_vorbis_vwin[venc->blocksize[1] - 6];
ff_mdct_init(&venc->mdct[0], venc->blocksize[0], 0);
ff_mdct_init(&venc->mdct[1], venc->blocksize[1], 0);
}
| 14,874 |
qemu | 3c529d935923a70519557d420db1d5a09a65086a | 0 | static RawAIOCB *raw_aio_setup(BlockDriverState *bs,
int64_t sector_num, uint8_t *buf, int nb_sectors,
BlockDriverCompletionFunc *cb, void *opaque)
{
BDRVRawState *s = bs->opaque;
RawAIOCB *acb;
if (fd_open(bs) < 0)
return NULL;
acb = qemu_aio_get(bs, cb, opaque);
if (!acb)
return NULL;
acb->fd = raw_fd_pool_get(s);
acb->aiocb.aio_fildes = acb->fd;
acb->aiocb.aio_sigevent.sigev_signo = SIGUSR2;
acb->aiocb.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
acb->aiocb.aio_buf = buf;
if (nb_sectors < 0)
acb->aiocb.aio_nbytes = -nb_sectors;
else
acb->aiocb.aio_nbytes = nb_sectors * 512;
acb->aiocb.aio_offset = sector_num * 512;
acb->next = posix_aio_state->first_aio;
posix_aio_state->first_aio = acb;
return acb;
}
| 14,875 |
qemu | fd859081453f94c3cbd6527289e41b7fddbf645f | 0 | static uint32_t tpm_tis_data_read(TPMState *s, uint8_t locty)
{
TPMTISEmuState *tis = &s->s.tis;
uint32_t ret = TPM_TIS_NO_DATA_BYTE;
uint16_t len;
if ((tis->loc[locty].sts & TPM_TIS_STS_DATA_AVAILABLE)) {
len = tpm_tis_get_size_from_buffer(&tis->loc[locty].r_buffer);
ret = tis->loc[locty].r_buffer.buffer[tis->loc[locty].r_offset++];
if (tis->loc[locty].r_offset >= len) {
/* got last byte */
tis->loc[locty].sts = TPM_TIS_STS_VALID;
#ifdef RAISE_STS_IRQ
tpm_tis_raise_irq(s, locty, TPM_TIS_INT_STS_VALID);
#endif
}
DPRINTF("tpm_tis: tpm_tis_data_read byte 0x%02x [%d]\n",
ret, tis->loc[locty].r_offset-1);
}
return ret;
}
| 14,876 |
qemu | 9a78eead0c74333a394c0f7bbfc4423ac746fcd5 | 0 | cpu_x86_dump_seg_cache(CPUState *env, FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
const char *name, struct SegmentCache *sc)
{
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
cpu_fprintf(f, "%-3s=%04x %016" PRIx64 " %08x %08x", name,
sc->selector, sc->base, sc->limit, sc->flags);
} else
#endif
{
cpu_fprintf(f, "%-3s=%04x %08x %08x %08x", name, sc->selector,
(uint32_t)sc->base, sc->limit, sc->flags);
}
if (!(env->hflags & HF_PE_MASK) || !(sc->flags & DESC_P_MASK))
goto done;
cpu_fprintf(f, " DPL=%d ", (sc->flags & DESC_DPL_MASK) >> DESC_DPL_SHIFT);
if (sc->flags & DESC_S_MASK) {
if (sc->flags & DESC_CS_MASK) {
cpu_fprintf(f, (sc->flags & DESC_L_MASK) ? "CS64" :
((sc->flags & DESC_B_MASK) ? "CS32" : "CS16"));
cpu_fprintf(f, " [%c%c", (sc->flags & DESC_C_MASK) ? 'C' : '-',
(sc->flags & DESC_R_MASK) ? 'R' : '-');
} else {
cpu_fprintf(f, (sc->flags & DESC_B_MASK) ? "DS " : "DS16");
cpu_fprintf(f, " [%c%c", (sc->flags & DESC_E_MASK) ? 'E' : '-',
(sc->flags & DESC_W_MASK) ? 'W' : '-');
}
cpu_fprintf(f, "%c]", (sc->flags & DESC_A_MASK) ? 'A' : '-');
} else {
static const char *sys_type_name[2][16] = {
{ /* 32 bit mode */
"Reserved", "TSS16-avl", "LDT", "TSS16-busy",
"CallGate16", "TaskGate", "IntGate16", "TrapGate16",
"Reserved", "TSS32-avl", "Reserved", "TSS32-busy",
"CallGate32", "Reserved", "IntGate32", "TrapGate32"
},
{ /* 64 bit mode */
"<hiword>", "Reserved", "LDT", "Reserved", "Reserved",
"Reserved", "Reserved", "Reserved", "Reserved",
"TSS64-avl", "Reserved", "TSS64-busy", "CallGate64",
"Reserved", "IntGate64", "TrapGate64"
}
};
cpu_fprintf(f, "%s",
sys_type_name[(env->hflags & HF_LMA_MASK) ? 1 : 0]
[(sc->flags & DESC_TYPE_MASK)
>> DESC_TYPE_SHIFT]);
}
done:
cpu_fprintf(f, "\n");
}
| 14,877 |
qemu | 3dc6f8693694a649a9c83f1e2746565b47683923 | 0 | static int qemu_gluster_parse_uri(BlockdevOptionsGluster *gconf,
const char *filename)
{
SocketAddress *gsconf;
URI *uri;
QueryParams *qp = NULL;
bool is_unix = false;
int ret = 0;
uri = uri_parse(filename);
if (!uri) {
return -EINVAL;
}
gconf->server = g_new0(SocketAddressList, 1);
gconf->server->value = gsconf = g_new0(SocketAddress, 1);
/* transport */
if (!uri->scheme || !strcmp(uri->scheme, "gluster")) {
gsconf->type = SOCKET_ADDRESS_TYPE_INET;
} else if (!strcmp(uri->scheme, "gluster+tcp")) {
gsconf->type = SOCKET_ADDRESS_TYPE_INET;
} else if (!strcmp(uri->scheme, "gluster+unix")) {
gsconf->type = SOCKET_ADDRESS_TYPE_UNIX;
is_unix = true;
} else if (!strcmp(uri->scheme, "gluster+rdma")) {
gsconf->type = SOCKET_ADDRESS_TYPE_INET;
error_report("Warning: rdma feature is not supported, falling "
"back to tcp");
} else {
ret = -EINVAL;
goto out;
}
ret = parse_volume_options(gconf, uri->path);
if (ret < 0) {
goto out;
}
qp = query_params_parse(uri->query);
if (qp->n > 1 || (is_unix && !qp->n) || (!is_unix && qp->n)) {
ret = -EINVAL;
goto out;
}
if (is_unix) {
if (uri->server || uri->port) {
ret = -EINVAL;
goto out;
}
if (strcmp(qp->p[0].name, "socket")) {
ret = -EINVAL;
goto out;
}
gsconf->u.q_unix.path = g_strdup(qp->p[0].value);
} else {
gsconf->u.inet.host = g_strdup(uri->server ? uri->server : "localhost");
if (uri->port) {
gsconf->u.inet.port = g_strdup_printf("%d", uri->port);
} else {
gsconf->u.inet.port = g_strdup_printf("%d", GLUSTER_DEFAULT_PORT);
}
}
out:
if (qp) {
query_params_free(qp);
}
uri_free(uri);
return ret;
}
| 14,878 |
qemu | c4d9d19645a484298a67e9021060bc7c2b081d0f | 0 | static BlockDriverAIOCB *paio_submit(BlockDriverState *bs, HANDLE hfile,
int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
BlockDriverCompletionFunc *cb, void *opaque, int type)
{
RawWin32AIOData *acb = g_slice_new(RawWin32AIOData);
acb->bs = bs;
acb->hfile = hfile;
acb->aio_type = type;
if (qiov) {
acb->aio_iov = qiov->iov;
acb->aio_niov = qiov->niov;
}
acb->aio_nbytes = nb_sectors * 512;
acb->aio_offset = sector_num * 512;
trace_paio_submit(acb, opaque, sector_num, nb_sectors, type);
return thread_pool_submit_aio(aio_worker, acb, cb, opaque);
}
| 14,879 |
qemu | a8170e5e97ad17ca169c64ba87ae2f53850dab4c | 0 | static void special_write(void *opaque, target_phys_addr_t addr,
uint64_t val, unsigned size)
{
qemu_log("pci: special write cycle");
}
| 14,880 |
qemu | 149f54b53b7666a3facd45e86eece60ce7d3b114 | 0 | MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
{
PhysPageEntry lp = d->phys_map;
PhysPageEntry *p;
int i;
for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
if (lp.ptr == PHYS_MAP_NODE_NIL) {
return &phys_sections[phys_section_unassigned];
}
p = phys_map_nodes[lp.ptr];
lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
}
return &phys_sections[lp.ptr];
}
| 14,881 |
qemu | df3a429ae82c0f45becdfab105617701d75e0f05 | 0 | static inline int qemu_gluster_zerofill(struct glfs_fd *fd, int64_t offset,
int64_t size)
{
return glfs_zerofill(fd, offset, size);
}
| 14,882 |
qemu | df475d18d890572b8456ebff327bb9debee6289a | 0 | static void write_cont (void *opaque, uint32_t nport, uint32_t data)
{
struct dma_cont *d = opaque;
int iport, ichan;
iport = (nport >> d->dshift) & 0x0f;
switch (iport) {
case 8: /* command */
if (data && (data | CMD_NOT_SUPPORTED)) {
log ("command %#x not supported\n", data);
goto error;
}
d->command = data;
break;
case 9:
ichan = data & 3;
if (data & 4) {
d->status |= 1 << (ichan + 4);
}
else {
d->status &= ~(1 << (ichan + 4));
}
d->status &= ~(1 << ichan);
break;
case 0xa: /* single mask */
if (data & 4)
d->mask |= 1 << (data & 3);
else
d->mask &= ~(1 << (data & 3));
break;
case 0xb: /* mode */
{
ichan = data & 3;
#ifdef DEBUG_DMA
int op;
int ai;
int dir;
int opmode;
op = (data >> 2) & 3;
ai = (data >> 4) & 1;
dir = (data >> 5) & 1;
opmode = (data >> 6) & 3;
linfo ("ichan %d, op %d, ai %d, dir %d, opmode %d\n",
ichan, op, ai, dir, opmode);
#endif
d->regs[ichan].mode = data;
break;
}
case 0xc: /* clear flip flop */
d->flip_flop = 0;
break;
case 0xd: /* reset */
d->flip_flop = 0;
d->mask = ~0;
d->status = 0;
d->command = 0;
break;
case 0xe: /* clear mask for all channels */
d->mask = 0;
break;
case 0xf: /* write mask for all channels */
d->mask = data;
break;
default:
log ("dma: unknown iport %#x\n", iport);
goto error;
}
#ifdef DEBUG_DMA
if (0xc != iport) {
linfo ("nport %#06x, ichan % 2d, val %#06x\n",
nport, ichan, data);
}
#endif
return;
error:
abort ();
}
| 14,883 |
qemu | a4a1c70dc759e5b81627e96564f344ab43ea86eb | 0 | static void test_visitor_in_fail_list(TestInputVisitorData *data,
const void *unused)
{
int64_t i64 = -1;
Visitor *v;
/* Unvisited list tail */
v = visitor_input_test_init(data, "[ 1, 2, 3 ]");
visit_start_list(v, NULL, NULL, 0, &error_abort);
visit_type_int(v, NULL, &i64, &error_abort);
g_assert_cmpint(i64, ==, 1);
visit_type_int(v, NULL, &i64, &error_abort);
g_assert_cmpint(i64, ==, 2);
visit_end_list(v, NULL);
/* BUG: unvisited tail not reported; actually not reportable by design */
}
| 14,885 |
qemu | c21bbcfa3ff4f6dc49fb01080ef598851aa424dd | 0 | void qemu_console_copy(QEMUConsole *console, int src_x, int src_y,
int dst_x, int dst_y, int w, int h) {
if (active_console == console) {
if (console->ds->dpy_copy)
console->ds->dpy_copy(console->ds,
src_x, src_y, dst_x, dst_y, w, h);
else {
/* TODO */
console->ds->dpy_update(console->ds, dst_x, dst_y, w, h);
}
}
}
| 14,886 |
qemu | f02ca5cbeaf86038834c1953247a1579d7921927 | 0 | static inline void tcg_out_ldst(TCGContext *s, int ret, int addr, int offset, int op)
{
if (offset == (offset & 0xfff))
tcg_out32(s, op | INSN_RD(ret) | INSN_RS1(addr) |
INSN_IMM13(offset));
else
fprintf(stderr, "unimplemented %s with offset %d\n", __func__, offset);
}
| 14,888 |
qemu | 3a9d85491ed2be8158fe93041dcbb34c13dfdb05 | 0 | static int i440fx_initfn(PCIDevice *dev)
{
PCII440FXState *d = DO_UPCAST(PCII440FXState, dev, dev);
pci_config_set_vendor_id(d->dev.config, PCI_VENDOR_ID_INTEL);
pci_config_set_device_id(d->dev.config, PCI_DEVICE_ID_INTEL_82441);
d->dev.config[0x08] = 0x02; // revision
pci_config_set_class(d->dev.config, PCI_CLASS_BRIDGE_HOST);
d->dev.config[I440FX_SMRAM] = 0x02;
cpu_smm_register(&i440fx_set_smm, d);
return 0;
}
| 14,889 |
qemu | ac1970fbe8ad5a70174f462109ac0f6c7bf1bc43 | 0 | void cpu_register_physical_memory_log(MemoryRegionSection *section,
bool readonly)
{
MemoryRegionSection now = *section, remain = *section;
if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
|| (now.size < TARGET_PAGE_SIZE)) {
now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
- now.offset_within_address_space,
now.size);
register_subpage(&now);
remain.size -= now.size;
remain.offset_within_address_space += now.size;
remain.offset_within_region += now.size;
}
while (remain.size >= TARGET_PAGE_SIZE) {
now = remain;
if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
now.size = TARGET_PAGE_SIZE;
register_subpage(&now);
} else {
now.size &= TARGET_PAGE_MASK;
register_multipage(&now);
}
remain.size -= now.size;
remain.offset_within_address_space += now.size;
remain.offset_within_region += now.size;
}
now = remain;
if (now.size) {
register_subpage(&now);
}
}
| 14,891 |
qemu | c20fd872257fb9abd2ce99741937c0f65aa162b7 | 0 | static void virtio_blk_handle_flush(BlockRequest *blkreq, int *num_writes,
VirtIOBlockReq *req)
{
BlockDriverAIOCB *acb;
/*
* Make sure all outstanding writes are posted to the backing device.
*/
if (*num_writes > 0) {
do_multiwrite(req->dev->bs, blkreq, *num_writes);
}
*num_writes = 0;
acb = bdrv_aio_flush(req->dev->bs, virtio_blk_flush_complete, req);
if (!acb) {
virtio_blk_req_complete(req, VIRTIO_BLK_S_IOERR);
}
}
| 14,892 |
qemu | 2884cf5b934808f547b5268a51be631805c25857 | 0 | static void gd_update_cursor(VirtualConsole *vc)
{
GtkDisplayState *s = vc->s;
GdkWindow *window;
if (vc->type != GD_VC_GFX) {
return;
}
window = gtk_widget_get_window(GTK_WIDGET(vc->gfx.drawing_area));
if (s->full_screen || qemu_input_is_absolute() || gd_is_grab_active(s)) {
gdk_window_set_cursor(window, s->null_cursor);
} else {
gdk_window_set_cursor(window, NULL);
}
}
| 14,893 |
qemu | 42922105beb14c2fc58185ea022b9f72fb5465e9 | 0 | static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
{
bool page_aligned = false;
unsigned int n, begin;
const uint16_t block_size = s->blksize & 0x0fff;
uint32_t boundary_chk = 1 << (((s->blksize & 0xf000) >> 12) + 12);
uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
/* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
* possible stop at page boundary if initial address is not page aligned,
* allow them to work properly */
if ((s->sdmasysad % boundary_chk) == 0) {
page_aligned = true;
}
if (s->trnmod & SDHC_TRNS_READ) {
s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
SDHC_DAT_LINE_ACTIVE;
while (s->blkcnt) {
if (s->data_count == 0) {
for (n = 0; n < block_size; n++) {
s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
}
}
begin = s->data_count;
if (((boundary_count + begin) < block_size) && page_aligned) {
s->data_count = boundary_count + begin;
boundary_count = 0;
} else {
s->data_count = block_size;
boundary_count -= block_size - begin;
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
s->blkcnt--;
}
}
dma_memory_write(&address_space_memory, s->sdmasysad,
&s->fifo_buffer[begin], s->data_count - begin);
s->sdmasysad += s->data_count - begin;
if (s->data_count == block_size) {
s->data_count = 0;
}
if (page_aligned && boundary_count == 0) {
break;
}
}
} else {
s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
SDHC_DAT_LINE_ACTIVE;
while (s->blkcnt) {
begin = s->data_count;
if (((boundary_count + begin) < block_size) && page_aligned) {
s->data_count = boundary_count + begin;
boundary_count = 0;
} else {
s->data_count = block_size;
boundary_count -= block_size - begin;
}
dma_memory_read(&address_space_memory, s->sdmasysad,
&s->fifo_buffer[begin], s->data_count);
s->sdmasysad += s->data_count - begin;
if (s->data_count == block_size) {
for (n = 0; n < block_size; n++) {
sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
}
s->data_count = 0;
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
s->blkcnt--;
}
}
if (page_aligned && boundary_count == 0) {
break;
}
}
}
if (s->blkcnt == 0) {
sdhci_end_transfer(s);
} else {
if (s->norintstsen & SDHC_NISEN_DMA) {
s->norintsts |= SDHC_NIS_DMA;
}
sdhci_update_irq(s);
}
}
| 14,894 |
FFmpeg | 5d9e4eaa6d991718b24c7ce24318ee91419f593a | 0 | static int read_access_unit(AVCodecContext *avctx, void* data, int *data_size,
AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
MLPDecodeContext *m = avctx->priv_data;
GetBitContext gb;
unsigned int length, substr;
unsigned int substream_start;
unsigned int header_size = 4;
unsigned int substr_header_size = 0;
uint8_t substream_parity_present[MAX_SUBSTREAMS];
uint16_t substream_data_len[MAX_SUBSTREAMS];
uint8_t parity_bits;
if (buf_size < 4)
return 0;
length = (AV_RB16(buf) & 0xfff) * 2;
if (length > buf_size)
return -1;
init_get_bits(&gb, (buf + 4), (length - 4) * 8);
m->is_major_sync_unit = 0;
if (show_bits_long(&gb, 31) == (0xf8726fba >> 1)) {
if (read_major_sync(m, &gb) < 0)
goto error;
m->is_major_sync_unit = 1;
header_size += 28;
}
if (!m->params_valid) {
av_log(m->avctx, AV_LOG_WARNING,
"Stream parameters not seen; skipping frame.\n");
*data_size = 0;
return length;
}
substream_start = 0;
for (substr = 0; substr < m->num_substreams; substr++) {
int extraword_present, checkdata_present, end, nonrestart_substr;
extraword_present = get_bits1(&gb);
nonrestart_substr = get_bits1(&gb);
checkdata_present = get_bits1(&gb);
skip_bits1(&gb);
end = get_bits(&gb, 12) * 2;
substr_header_size += 2;
if (extraword_present) {
if (m->avctx->codec_id == CODEC_ID_MLP) {
av_log(m->avctx, AV_LOG_ERROR, "There must be no extraword for MLP.\n");
goto error;
}
skip_bits(&gb, 16);
substr_header_size += 2;
}
if (!(nonrestart_substr ^ m->is_major_sync_unit)) {
av_log(m->avctx, AV_LOG_ERROR, "Invalid nonrestart_substr.\n");
goto error;
}
if (end + header_size + substr_header_size > length) {
av_log(m->avctx, AV_LOG_ERROR,
"Indicated length of substream %d data goes off end of "
"packet.\n", substr);
end = length - header_size - substr_header_size;
}
if (end < substream_start) {
av_log(avctx, AV_LOG_ERROR,
"Indicated end offset of substream %d data "
"is smaller than calculated start offset.\n",
substr);
goto error;
}
if (substr > m->max_decoded_substream)
continue;
substream_parity_present[substr] = checkdata_present;
substream_data_len[substr] = end - substream_start;
substream_start = end;
}
parity_bits = ff_mlp_calculate_parity(buf, 4);
parity_bits ^= ff_mlp_calculate_parity(buf + header_size, substr_header_size);
if ((((parity_bits >> 4) ^ parity_bits) & 0xF) != 0xF) {
av_log(avctx, AV_LOG_ERROR, "Parity check failed.\n");
goto error;
}
buf += header_size + substr_header_size;
for (substr = 0; substr <= m->max_decoded_substream; substr++) {
SubStream *s = &m->substream[substr];
init_get_bits(&gb, buf, substream_data_len[substr] * 8);
m->matrix_changed = 0;
memset(m->filter_changed, 0, sizeof(m->filter_changed));
s->blockpos = 0;
do {
unsigned int ch;
if (get_bits1(&gb)) {
if (get_bits1(&gb)) {
/* A restart header should be present. */
if (read_restart_header(m, &gb, buf, substr) < 0)
goto next_substr;
s->restart_seen = 1;
}
if (!s->restart_seen) {
goto next_substr;
}
if (read_decoding_params(m, &gb, substr) < 0)
goto next_substr;
}
if (m->matrix_changed > 1) {
av_log(m->avctx, AV_LOG_ERROR, "Matrices may change only once per access unit.\n");
goto next_substr;
}
for (ch = 0; ch < s->max_channel; ch++)
if (m->filter_changed[ch][FIR] > 1 ||
m->filter_changed[ch][IIR] > 1) {
av_log(m->avctx, AV_LOG_ERROR, "Filters may change only once per access unit.\n");
goto next_substr;
}
if (!s->restart_seen) {
goto next_substr;
}
if (read_block_data(m, &gb, substr) < 0)
return -1;
if (get_bits_count(&gb) >= substream_data_len[substr] * 8)
goto substream_length_mismatch;
} while (!get_bits1(&gb));
skip_bits(&gb, (-get_bits_count(&gb)) & 15);
if (substream_data_len[substr] * 8 - get_bits_count(&gb) >= 32) {
int shorten_by;
if (get_bits(&gb, 16) != 0xD234)
return -1;
shorten_by = get_bits(&gb, 16);
if (m->avctx->codec_id == CODEC_ID_TRUEHD && shorten_by & 0x2000)
s->blockpos -= FFMIN(shorten_by & 0x1FFF, s->blockpos);
else if (m->avctx->codec_id == CODEC_ID_MLP && shorten_by != 0xD234)
return -1;
if (substr == m->max_decoded_substream)
av_log(m->avctx, AV_LOG_INFO, "End of stream indicated.\n");
}
if (substream_parity_present[substr]) {
uint8_t parity, checksum;
if (substream_data_len[substr] * 8 - get_bits_count(&gb) != 16)
goto substream_length_mismatch;
parity = ff_mlp_calculate_parity(buf, substream_data_len[substr] - 2);
checksum = ff_mlp_checksum8 (buf, substream_data_len[substr] - 2);
if ((get_bits(&gb, 8) ^ parity) != 0xa9 )
av_log(m->avctx, AV_LOG_ERROR, "Substream %d parity check failed.\n", substr);
if ( get_bits(&gb, 8) != checksum)
av_log(m->avctx, AV_LOG_ERROR, "Substream %d checksum failed.\n" , substr);
}
if (substream_data_len[substr] * 8 != get_bits_count(&gb)) {
goto substream_length_mismatch;
}
next_substr:
if (!s->restart_seen) {
av_log(m->avctx, AV_LOG_ERROR,
"No restart header present in substream %d.\n", substr);
}
buf += substream_data_len[substr];
}
rematrix_channels(m, m->max_decoded_substream);
if (output_data(m, m->max_decoded_substream, data, data_size) < 0)
return -1;
return length;
substream_length_mismatch:
av_log(m->avctx, AV_LOG_ERROR, "substream %d length mismatch\n", substr);
return -1;
error:
m->params_valid = 0;
return -1;
}
| 14,895 |
qemu | a03ef88f77af045a2eb9629b5ce774a3fb973c5e | 0 | static int coroutine_fn blkreplay_co_preadv(BlockDriverState *bs,
uint64_t offset, uint64_t bytes, QEMUIOVector *qiov, int flags)
{
uint64_t reqid = request_id++;
int ret = bdrv_co_preadv(bs->file->bs, offset, bytes, qiov, flags);
block_request_create(reqid, bs, qemu_coroutine_self());
qemu_coroutine_yield();
return ret;
}
| 14,896 |
qemu | 6482b0ffd12ce83810c10b1a3884a75eba2ade1a | 0 | void s390x_tod_timer(void *opaque)
{
S390CPU *cpu = opaque;
CPUS390XState *env = &cpu->env;
env->pending_int |= INTERRUPT_TOD;
cpu_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
}
| 14,897 |
qemu | 8360544a6d3a54df1fce80f55ba4ad075a8ded54 | 0 | static uint8_t qpci_spapr_io_readb(QPCIBus *bus, void *addr)
{
QPCIBusSPAPR *s = container_of(bus, QPCIBusSPAPR, bus);
uint64_t port = (uintptr_t)addr;
uint8_t v;
if (port < s->pio.size) {
v = readb(s->pio_cpu_base + port);
} else {
v = readb(s->mmio_cpu_base + port);
}
return v;
}
| 14,898 |
qemu | df3c286c53ac51e7267f2761c7a0c62e11b6e815 | 0 | static void bench_cb(void *opaque, int ret)
{
BenchData *b = opaque;
BlockAIOCB *acb;
if (ret < 0) {
error_report("Failed request: %s\n", strerror(-ret));
exit(EXIT_FAILURE);
}
if (b->in_flush) {
/* Just finished a flush with drained queue: Start next requests */
assert(b->in_flight == 0);
b->in_flush = false;
} else if (b->in_flight > 0) {
int remaining = b->n - b->in_flight;
b->n--;
b->in_flight--;
/* Time for flush? Drain queue if requested, then flush */
if (b->flush_interval && remaining % b->flush_interval == 0) {
if (!b->in_flight || !b->drain_on_flush) {
BlockCompletionFunc *cb;
if (b->drain_on_flush) {
b->in_flush = true;
cb = bench_cb;
} else {
cb = bench_undrained_flush_cb;
}
acb = blk_aio_flush(b->blk, cb, b);
if (!acb) {
error_report("Failed to issue flush request");
exit(EXIT_FAILURE);
}
}
if (b->drain_on_flush) {
return;
}
}
}
while (b->n > b->in_flight && b->in_flight < b->nrreq) {
if (b->write) {
acb = blk_aio_pwritev(b->blk, b->offset, b->qiov, 0,
bench_cb, b);
} else {
acb = blk_aio_preadv(b->blk, b->offset, b->qiov, 0,
bench_cb, b);
}
if (!acb) {
error_report("Failed to issue request");
exit(EXIT_FAILURE);
}
b->in_flight++;
b->offset += b->step;
b->offset %= b->image_size;
}
}
| 14,899 |
qemu | a3f1afb43a09e4577571c044c48f2ba9e6e4ad06 | 0 | static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
int64_t offset,
int64_t length,
uint64_t addend,
bool decrease,
enum qcow2_discard_type type)
{
BDRVQcowState *s = bs->opaque;
int64_t start, last, cluster_offset;
void *refcount_block = NULL;
int64_t old_table_index = -1;
int ret;
#ifdef DEBUG_ALLOC2
fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
" addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
addend);
#endif
if (length < 0) {
return -EINVAL;
} else if (length == 0) {
return 0;
}
if (decrease) {
qcow2_cache_set_dependency(bs, s->refcount_block_cache,
s->l2_table_cache);
}
start = start_of_cluster(s, offset);
last = start_of_cluster(s, offset + length - 1);
for(cluster_offset = start; cluster_offset <= last;
cluster_offset += s->cluster_size)
{
int block_index;
uint64_t refcount;
int64_t cluster_index = cluster_offset >> s->cluster_bits;
int64_t table_index = cluster_index >> s->refcount_block_bits;
/* Load the refcount block and allocate it if needed */
if (table_index != old_table_index) {
if (refcount_block) {
ret = qcow2_cache_put(bs, s->refcount_block_cache,
&refcount_block);
if (ret < 0) {
goto fail;
}
}
ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
if (ret < 0) {
goto fail;
}
}
old_table_index = table_index;
qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
refcount_block);
/* we can update the count and save it */
block_index = cluster_index & (s->refcount_block_size - 1);
refcount = s->get_refcount(refcount_block, block_index);
if (decrease ? (refcount - addend > refcount)
: (refcount + addend < refcount ||
refcount + addend > s->refcount_max))
{
ret = -EINVAL;
goto fail;
}
if (decrease) {
refcount -= addend;
} else {
refcount += addend;
}
if (refcount == 0 && cluster_index < s->free_cluster_index) {
s->free_cluster_index = cluster_index;
}
s->set_refcount(refcount_block, block_index, refcount);
if (refcount == 0 && s->discard_passthrough[type]) {
update_refcount_discard(bs, cluster_offset, s->cluster_size);
}
}
ret = 0;
fail:
if (!s->cache_discards) {
qcow2_process_discards(bs, ret);
}
/* Write last changed block to disk */
if (refcount_block) {
int wret;
wret = qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
if (wret < 0) {
return ret < 0 ? ret : wret;
}
}
/*
* Try do undo any updates if an error is returned (This may succeed in
* some cases like ENOSPC for allocating a new refcount block)
*/
if (ret < 0) {
int dummy;
dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
!decrease, QCOW2_DISCARD_NEVER);
(void)dummy;
}
return ret;
}
| 14,900 |
qemu | 3a1e8074d74ad2acbcedf28d35aebedc3573f19e | 0 | static void virtio_scsi_clear_aio(VirtIOSCSI *s)
{
VirtIOSCSICommon *vs = VIRTIO_SCSI_COMMON(s);
int i;
if (s->ctrl_vring) {
aio_set_event_notifier(s->ctx, &s->ctrl_vring->host_notifier,
false, NULL);
}
if (s->event_vring) {
aio_set_event_notifier(s->ctx, &s->event_vring->host_notifier,
false, NULL);
}
if (s->cmd_vrings) {
for (i = 0; i < vs->conf.num_queues && s->cmd_vrings[i]; i++) {
aio_set_event_notifier(s->ctx, &s->cmd_vrings[i]->host_notifier,
false, NULL);
}
}
}
| 14,901 |
qemu | a367467995d0528fe591d87ca2e437c7b7d7951b | 0 | create_iovec(BlockBackend *blk, QEMUIOVector *qiov, char **argv, int nr_iov,
int pattern)
{
size_t *sizes = g_new0(size_t, nr_iov);
size_t count = 0;
void *buf = NULL;
void *p;
int i;
for (i = 0; i < nr_iov; i++) {
char *arg = argv[i];
int64_t len;
len = cvtnum(arg);
if (len < 0) {
print_cvtnum_err(len, arg);
goto fail;
}
/* should be SIZE_T_MAX, but that doesn't exist */
if (len > INT_MAX) {
printf("Argument '%s' exceeds maximum size %d\n", arg, INT_MAX);
goto fail;
}
sizes[i] = len;
count += len;
}
qemu_iovec_init(qiov, nr_iov);
buf = p = qemu_io_alloc(blk, count, pattern);
for (i = 0; i < nr_iov; i++) {
qemu_iovec_add(qiov, p, sizes[i]);
p += sizes[i];
}
fail:
g_free(sizes);
return buf;
}
| 14,903 |
qemu | 4be746345f13e99e468c60acbd3a355e8183e3ce | 0 | static void pflash_update(pflash_t *pfl, int offset,
int size)
{
int offset_end;
if (pfl->bs) {
offset_end = offset + size;
/* round to sectors */
offset = offset >> 9;
offset_end = (offset_end + 511) >> 9;
bdrv_write(pfl->bs, offset, pfl->storage + (offset << 9),
offset_end - offset);
}
}
| 14,905 |
qemu | c169998802505c244b8bcad562633f29de7d74a4 | 0 | static int piix4_initfn(PCIDevice *d)
{
uint8_t *pci_conf;
isa_bus_new(&d->qdev);
register_savevm("PIIX4", 0, 2, piix_save, piix_load, d);
pci_conf = d->config;
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82371AB_0); // 82371AB/EB/MB PIIX4 PCI-to-ISA bridge
pci_config_set_class(pci_conf, PCI_CLASS_BRIDGE_ISA);
pci_conf[PCI_HEADER_TYPE] =
PCI_HEADER_TYPE_NORMAL | PCI_HEADER_TYPE_MULTI_FUNCTION; // header_type = PCI_multifunction, generic
piix4_dev = d;
piix4_reset(d);
qemu_register_reset(piix4_reset, d);
return 0;
}
| 14,906 |
qemu | f53a829bb9ef14be800556cbc02d8b20fc1050a7 | 0 | void nbd_client_session_detach_aio_context(NbdClientSession *client)
{
aio_set_fd_handler(bdrv_get_aio_context(client->bs), client->sock,
NULL, NULL, NULL);
}
| 14,907 |
qemu | 871d2f079661323a7645b388eb5ae8d7eeb3117c | 0 | static void fd_put_notify(void *opaque)
{
QEMUFileFD *s = opaque;
/* Remove writable callback and do a put notify */
qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
qemu_file_put_notify(s->file);
}
| 14,908 |
qemu | 2975725f6b3d634dbe924ea9d9f4d86b8a5b217d | 0 | int qemu_savevm_state_iterate(Monitor *mon, QEMUFile *f)
{
SaveStateEntry *se;
int ret = 1;
QTAILQ_FOREACH(se, &savevm_handlers, entry) {
if (se->save_live_state == NULL)
continue;
/* Section type */
qemu_put_byte(f, QEMU_VM_SECTION_PART);
qemu_put_be32(f, se->section_id);
ret = se->save_live_state(mon, f, QEMU_VM_SECTION_PART, se->opaque);
if (!ret) {
/* Do not proceed to the next vmstate before this one reported
completion of the current stage. This serializes the migration
and reduces the probability that a faster changing state is
synchronized over and over again. */
break;
}
}
if (ret != 0) {
return ret;
}
ret = qemu_file_get_error(f);
if (ret != 0) {
qemu_savevm_state_cancel(mon, f);
}
return ret;
}
| 14,909 |
qemu | 2c3b32d25620c26e26fd590c198ec6d9cf91da57 | 0 | int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m)
{
BDRVQcowState *s = bs->opaque;
uint64_t start, remaining;
uint64_t cluster_offset;
uint64_t cur_bytes;
int ret;
trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
n_start, n_end);
assert(n_start * BDRV_SECTOR_SIZE == offset_into_cluster(s, offset));
offset = start_of_cluster(s, offset);
again:
start = offset + (n_start << BDRV_SECTOR_BITS);
remaining = (n_end - n_start) << BDRV_SECTOR_BITS;
cluster_offset = 0;
*host_offset = 0;
/*
* Now start gathering as many contiguous clusters as possible:
*
* 1. Check for overlaps with in-flight allocations
*
* a) Overlap not in the first cluster -> shorten this request and let
* the caller handle the rest in its next loop iteration.
*
* b) Real overlaps of two requests. Yield and restart the search for
* contiguous clusters (the situation could have changed while we
* were sleeping)
*
* c) TODO: Request starts in the same cluster as the in-flight
* allocation ends. Shorten the COW of the in-fight allocation, set
* cluster_offset to write to the same cluster and set up the right
* synchronisation between the in-flight request and the new one.
*/
cur_bytes = remaining;
ret = handle_dependencies(bs, start, &cur_bytes);
if (ret == -EAGAIN) {
goto again;
} else if (ret < 0) {
return ret;
} else {
/* handle_dependencies() may have decreased cur_bytes (shortened
* the allocations below) so that the next dependency is processed
* correctly during the next loop iteration. */
}
/*
* 2. Count contiguous COPIED clusters.
*/
ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
if (ret < 0) {
return ret;
} else if (ret) {
if (!*host_offset) {
*host_offset = start_of_cluster(s, cluster_offset);
}
start += cur_bytes;
remaining -= cur_bytes;
cluster_offset += cur_bytes;
cur_bytes = remaining;
} else if (cur_bytes == 0) {
goto done;
}
/* If there is something left to allocate, do that now */
if (remaining == 0) {
goto done;
}
/*
* 3. If the request still hasn't completed, allocate new clusters,
* considering any cluster_offset of steps 1c or 2.
*/
ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
if (ret < 0) {
return ret;
} else if (ret) {
if (!*host_offset) {
*host_offset = start_of_cluster(s, cluster_offset);
}
start += cur_bytes;
remaining -= cur_bytes;
cluster_offset += cur_bytes;
}
/* Some cleanup work */
done:
*num = (n_end - n_start) - (remaining >> BDRV_SECTOR_BITS);
assert(*num > 0);
assert(*host_offset != 0);
return 0;
}
| 14,910 |
qemu | 521a580d2352ad30086babcabb91e6338e47cf62 | 0 | QemuConsole *graphic_console_init(DeviceState *dev, uint32_t head,
const GraphicHwOps *hw_ops,
void *opaque)
{
int width = 640;
int height = 480;
QemuConsole *s;
DisplayState *ds;
ds = get_alloc_displaystate();
trace_console_gfx_new();
s = new_console(ds, GRAPHIC_CONSOLE, head);
s->hw_ops = hw_ops;
s->hw = opaque;
if (dev) {
object_property_set_link(OBJECT(s), OBJECT(dev), "device",
&error_abort);
}
s->surface = qemu_create_displaysurface(width, height);
return s;
}
| 14,912 |
qemu | ac1970fbe8ad5a70174f462109ac0f6c7bf1bc43 | 0 | static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
enum device_endian endian)
{
uint8_t *ptr;
MemoryRegionSection *section;
section = phys_page_find(addr >> TARGET_PAGE_BITS);
if (!memory_region_is_ram(section->mr) || section->readonly) {
addr = memory_region_section_addr(section, addr);
if (memory_region_is_ram(section->mr)) {
section = &phys_sections[phys_section_rom];
}
#if defined(TARGET_WORDS_BIGENDIAN)
if (endian == DEVICE_LITTLE_ENDIAN) {
val = bswap16(val);
}
#else
if (endian == DEVICE_BIG_ENDIAN) {
val = bswap16(val);
}
#endif
io_mem_write(section->mr, addr, val, 2);
} else {
unsigned long addr1;
addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ memory_region_section_addr(section, addr);
/* RAM case */
ptr = qemu_get_ram_ptr(addr1);
switch (endian) {
case DEVICE_LITTLE_ENDIAN:
stw_le_p(ptr, val);
break;
case DEVICE_BIG_ENDIAN:
stw_be_p(ptr, val);
break;
default:
stw_p(ptr, val);
break;
}
invalidate_and_set_dirty(addr1, 2);
}
}
| 14,914 |
qemu | 92cb05574b7bd489be81f9c58497dc7dfe5d8859 | 0 | bool virtio_disk_is_eckd(void)
{
if (guessed_disk_nature) {
return (blk_cfg.blk_size == 4096);
}
return (blk_cfg.geometry.heads == 15)
&& (blk_cfg.geometry.sectors == 12)
&& (blk_cfg.blk_size == 4096);
}
| 14,915 |
qemu | d1fdf257d52822695f5ace6c586e059aa17d4b79 | 0 | static int nbd_send_option_request(QIOChannel *ioc, uint32_t opt,
uint32_t len, const char *data,
Error **errp)
{
nbd_option req;
QEMU_BUILD_BUG_ON(sizeof(req) != 16);
if (len == -1) {
req.length = len = strlen(data);
}
TRACE("Sending option request %" PRIu32", len %" PRIu32, opt, len);
stq_be_p(&req.magic, NBD_OPTS_MAGIC);
stl_be_p(&req.option, opt);
stl_be_p(&req.length, len);
if (write_sync(ioc, &req, sizeof(req), errp) < 0) {
error_prepend(errp, "Failed to send option request header");
return -1;
}
if (len && write_sync(ioc, (char *) data, len, errp) < 0) {
error_prepend(errp, "Failed to send option request data");
return -1;
}
return 0;
}
| 14,916 |
qemu | 88045ac55592cacc92567aa46cb6917854bf7241 | 0 | static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t val, size, addr;
uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
PCIDevice *dev = find_dev(spapr, buid, rtas_ld(args, 0));
if (!dev) {
rtas_st(rets, 0, -1);
return;
}
val = rtas_ld(args, 4);
size = rtas_ld(args, 3);
addr = rtas_pci_cfgaddr(rtas_ld(args, 0));
pci_host_config_write_common(dev, addr, pci_config_size(dev), val, size);
rtas_st(rets, 0, 0);
}
| 14,917 |
qemu | fc19f8a02e45c4d8ad24dd7eb374330b03dfc28e | 0 | static void *show_parts(void *arg)
{
char *device = arg;
int nbd;
/* linux just needs an open() to trigger
* the partition table update
* but remember to load the module with max_part != 0 :
* modprobe nbd max_part=63
*/
nbd = open(device, O_RDWR);
if (nbd != -1) {
close(nbd);
}
return NULL;
}
| 14,919 |
qemu | b80bb016d8c8e9d74345a90ab6dac1cb547904e0 | 0 | static TCGArg *tcg_constant_folding(TCGContext *s, uint16_t *tcg_opc_ptr,
TCGArg *args, TCGOpDef *tcg_op_defs)
{
int i, nb_ops, op_index, nb_temps, nb_globals, nb_call_args;
TCGOpcode op;
const TCGOpDef *def;
TCGArg *gen_args;
TCGArg tmp;
TCGCond cond;
/* Array VALS has an element for each temp.
If this temp holds a constant then its value is kept in VALS' element.
If this temp is a copy of other ones then this equivalence class'
representative is kept in VALS' element.
If this temp is neither copy nor constant then corresponding VALS'
element is unused. */
nb_temps = s->nb_temps;
nb_globals = s->nb_globals;
memset(temps, 0, nb_temps * sizeof(struct tcg_temp_info));
nb_ops = tcg_opc_ptr - gen_opc_buf;
gen_args = args;
for (op_index = 0; op_index < nb_ops; op_index++) {
op = gen_opc_buf[op_index];
def = &tcg_op_defs[op];
/* Do copy propagation */
if (!(def->flags & (TCG_OPF_CALL_CLOBBER | TCG_OPF_SIDE_EFFECTS))) {
assert(op != INDEX_op_call);
for (i = def->nb_oargs; i < def->nb_oargs + def->nb_iargs; i++) {
if (temps[args[i]].state == TCG_TEMP_COPY) {
args[i] = temps[args[i]].val;
}
}
}
/* For commutative operations make constant second argument */
switch (op) {
CASE_OP_32_64(add):
CASE_OP_32_64(mul):
CASE_OP_32_64(and):
CASE_OP_32_64(or):
CASE_OP_32_64(xor):
CASE_OP_32_64(eqv):
CASE_OP_32_64(nand):
CASE_OP_32_64(nor):
if (temps[args[1]].state == TCG_TEMP_CONST) {
tmp = args[1];
args[1] = args[2];
args[2] = tmp;
}
break;
CASE_OP_32_64(brcond):
if (temps[args[0]].state == TCG_TEMP_CONST
&& temps[args[1]].state != TCG_TEMP_CONST) {
tmp = args[0];
args[0] = args[1];
args[1] = tmp;
args[2] = tcg_swap_cond(args[2]);
}
break;
CASE_OP_32_64(setcond):
if (temps[args[1]].state == TCG_TEMP_CONST
&& temps[args[2]].state != TCG_TEMP_CONST) {
tmp = args[1];
args[1] = args[2];
args[2] = tmp;
args[3] = tcg_swap_cond(args[3]);
}
break;
CASE_OP_32_64(movcond):
cond = args[5];
if (temps[args[1]].state == TCG_TEMP_CONST
&& temps[args[2]].state != TCG_TEMP_CONST) {
tmp = args[1];
args[1] = args[2];
args[2] = tmp;
cond = tcg_swap_cond(cond);
}
/* For movcond, we canonicalize the "false" input reg to match
the destination reg so that the tcg backend can implement
a "move if true" operation. */
if (args[0] == args[3]) {
tmp = args[3];
args[3] = args[4];
args[4] = tmp;
cond = tcg_invert_cond(cond);
}
args[5] = cond;
default:
break;
}
/* Simplify expressions for "shift/rot r, 0, a => movi r, 0" */
switch (op) {
CASE_OP_32_64(shl):
CASE_OP_32_64(shr):
CASE_OP_32_64(sar):
CASE_OP_32_64(rotl):
CASE_OP_32_64(rotr):
if (temps[args[1]].state == TCG_TEMP_CONST
&& temps[args[1]].val == 0) {
gen_opc_buf[op_index] = op_to_movi(op);
tcg_opt_gen_movi(gen_args, args[0], 0, nb_temps, nb_globals);
args += 3;
gen_args += 2;
continue;
}
break;
default:
break;
}
/* Simplify expression for "op r, a, 0 => mov r, a" cases */
switch (op) {
CASE_OP_32_64(add):
CASE_OP_32_64(sub):
CASE_OP_32_64(shl):
CASE_OP_32_64(shr):
CASE_OP_32_64(sar):
CASE_OP_32_64(rotl):
CASE_OP_32_64(rotr):
CASE_OP_32_64(or):
CASE_OP_32_64(xor):
if (temps[args[1]].state == TCG_TEMP_CONST) {
/* Proceed with possible constant folding. */
break;
}
if (temps[args[2]].state == TCG_TEMP_CONST
&& temps[args[2]].val == 0) {
if ((temps[args[0]].state == TCG_TEMP_COPY
&& temps[args[0]].val == args[1])
|| args[0] == args[1]) {
gen_opc_buf[op_index] = INDEX_op_nop;
} else {
gen_opc_buf[op_index] = op_to_mov(op);
tcg_opt_gen_mov(gen_args, args[0], args[1],
nb_temps, nb_globals);
gen_args += 2;
}
args += 3;
continue;
}
break;
default:
break;
}
/* Simplify expression for "op r, a, 0 => movi r, 0" cases */
switch (op) {
CASE_OP_32_64(and):
CASE_OP_32_64(mul):
if ((temps[args[2]].state == TCG_TEMP_CONST
&& temps[args[2]].val == 0)) {
gen_opc_buf[op_index] = op_to_movi(op);
tcg_opt_gen_movi(gen_args, args[0], 0, nb_temps, nb_globals);
args += 3;
gen_args += 2;
continue;
}
break;
default:
break;
}
/* Simplify expression for "op r, a, a => mov r, a" cases */
switch (op) {
CASE_OP_32_64(or):
CASE_OP_32_64(and):
if (args[1] == args[2]) {
if (args[1] == args[0]) {
gen_opc_buf[op_index] = INDEX_op_nop;
} else {
gen_opc_buf[op_index] = op_to_mov(op);
tcg_opt_gen_mov(gen_args, args[0], args[1], nb_temps,
nb_globals);
gen_args += 2;
}
args += 3;
continue;
}
break;
default:
break;
}
/* Propagate constants through copy operations and do constant
folding. Constants will be substituted to arguments by register
allocator where needed and possible. Also detect copies. */
switch (op) {
CASE_OP_32_64(mov):
if ((temps[args[1]].state == TCG_TEMP_COPY
&& temps[args[1]].val == args[0])
|| args[0] == args[1]) {
args += 2;
gen_opc_buf[op_index] = INDEX_op_nop;
break;
}
if (temps[args[1]].state != TCG_TEMP_CONST) {
tcg_opt_gen_mov(gen_args, args[0], args[1],
nb_temps, nb_globals);
gen_args += 2;
args += 2;
break;
}
/* Source argument is constant. Rewrite the operation and
let movi case handle it. */
op = op_to_movi(op);
gen_opc_buf[op_index] = op;
args[1] = temps[args[1]].val;
/* fallthrough */
CASE_OP_32_64(movi):
tcg_opt_gen_movi(gen_args, args[0], args[1], nb_temps, nb_globals);
gen_args += 2;
args += 2;
break;
CASE_OP_32_64(not):
CASE_OP_32_64(neg):
CASE_OP_32_64(ext8s):
CASE_OP_32_64(ext8u):
CASE_OP_32_64(ext16s):
CASE_OP_32_64(ext16u):
case INDEX_op_ext32s_i64:
case INDEX_op_ext32u_i64:
if (temps[args[1]].state == TCG_TEMP_CONST) {
gen_opc_buf[op_index] = op_to_movi(op);
tmp = do_constant_folding(op, temps[args[1]].val, 0);
tcg_opt_gen_movi(gen_args, args[0], tmp, nb_temps, nb_globals);
} else {
reset_temp(args[0], nb_temps, nb_globals);
gen_args[0] = args[0];
gen_args[1] = args[1];
}
gen_args += 2;
args += 2;
break;
CASE_OP_32_64(add):
CASE_OP_32_64(sub):
CASE_OP_32_64(mul):
CASE_OP_32_64(or):
CASE_OP_32_64(and):
CASE_OP_32_64(xor):
CASE_OP_32_64(shl):
CASE_OP_32_64(shr):
CASE_OP_32_64(sar):
CASE_OP_32_64(rotl):
CASE_OP_32_64(rotr):
CASE_OP_32_64(andc):
CASE_OP_32_64(orc):
CASE_OP_32_64(eqv):
CASE_OP_32_64(nand):
CASE_OP_32_64(nor):
if (temps[args[1]].state == TCG_TEMP_CONST
&& temps[args[2]].state == TCG_TEMP_CONST) {
gen_opc_buf[op_index] = op_to_movi(op);
tmp = do_constant_folding(op, temps[args[1]].val,
temps[args[2]].val);
tcg_opt_gen_movi(gen_args, args[0], tmp, nb_temps, nb_globals);
gen_args += 2;
} else {
reset_temp(args[0], nb_temps, nb_globals);
gen_args[0] = args[0];
gen_args[1] = args[1];
gen_args[2] = args[2];
gen_args += 3;
}
args += 3;
break;
CASE_OP_32_64(setcond):
if (temps[args[1]].state == TCG_TEMP_CONST
&& temps[args[2]].state == TCG_TEMP_CONST) {
gen_opc_buf[op_index] = op_to_movi(op);
tmp = do_constant_folding_cond(op, temps[args[1]].val,
temps[args[2]].val, args[3]);
tcg_opt_gen_movi(gen_args, args[0], tmp, nb_temps, nb_globals);
gen_args += 2;
} else {
reset_temp(args[0], nb_temps, nb_globals);
gen_args[0] = args[0];
gen_args[1] = args[1];
gen_args[2] = args[2];
gen_args[3] = args[3];
gen_args += 4;
}
args += 4;
break;
CASE_OP_32_64(brcond):
if (temps[args[0]].state == TCG_TEMP_CONST
&& temps[args[1]].state == TCG_TEMP_CONST) {
if (do_constant_folding_cond(op, temps[args[0]].val,
temps[args[1]].val, args[2])) {
memset(temps, 0, nb_temps * sizeof(struct tcg_temp_info));
gen_opc_buf[op_index] = INDEX_op_br;
gen_args[0] = args[3];
gen_args += 1;
} else {
gen_opc_buf[op_index] = INDEX_op_nop;
}
} else {
memset(temps, 0, nb_temps * sizeof(struct tcg_temp_info));
reset_temp(args[0], nb_temps, nb_globals);
gen_args[0] = args[0];
gen_args[1] = args[1];
gen_args[2] = args[2];
gen_args[3] = args[3];
gen_args += 4;
}
args += 4;
break;
CASE_OP_32_64(movcond):
if (temps[args[1]].state == TCG_TEMP_CONST
&& temps[args[2]].state == TCG_TEMP_CONST) {
tmp = do_constant_folding_cond(op, temps[args[1]].val,
temps[args[2]].val, args[5]);
if (args[0] == args[4-tmp]
|| (temps[args[4-tmp]].state == TCG_TEMP_COPY
&& temps[args[4-tmp]].val == args[0])) {
gen_opc_buf[op_index] = INDEX_op_nop;
} else if (temps[args[4-tmp]].state == TCG_TEMP_CONST) {
gen_opc_buf[op_index] = op_to_movi(op);
tcg_opt_gen_movi(gen_args, args[0], temps[args[4-tmp]].val,
nb_temps, nb_globals);
gen_args += 2;
} else {
gen_opc_buf[op_index] = op_to_mov(op);
tcg_opt_gen_mov(gen_args, args[0], args[4-tmp],
nb_temps, nb_globals);
gen_args += 2;
}
} else {
reset_temp(args[0], nb_temps, nb_globals);
gen_args[0] = args[0];
gen_args[1] = args[1];
gen_args[2] = args[2];
gen_args[3] = args[3];
gen_args[4] = args[4];
gen_args[5] = args[5];
gen_args += 6;
}
args += 6;
break;
case INDEX_op_call:
nb_call_args = (args[0] >> 16) + (args[0] & 0xffff);
if (!(args[nb_call_args + 1] & (TCG_CALL_CONST | TCG_CALL_PURE))) {
for (i = 0; i < nb_globals; i++) {
reset_temp(i, nb_temps, nb_globals);
}
}
for (i = 0; i < (args[0] >> 16); i++) {
reset_temp(args[i + 1], nb_temps, nb_globals);
}
i = nb_call_args + 3;
while (i) {
*gen_args = *args;
args++;
gen_args++;
i--;
}
break;
default:
/* Default case: we do know nothing about operation so no
propagation is done. We trash everything if the operation
is the end of a basic block, otherwise we only trash the
output args. */
if (def->flags & TCG_OPF_BB_END) {
memset(temps, 0, nb_temps * sizeof(struct tcg_temp_info));
} else {
for (i = 0; i < def->nb_oargs; i++) {
reset_temp(args[i], nb_temps, nb_globals);
}
}
for (i = 0; i < def->nb_args; i++) {
gen_args[i] = args[i];
}
args += def->nb_args;
gen_args += def->nb_args;
break;
}
}
return gen_args;
}
| 14,920 |
qemu | 583d121520a81d07bacee7ebe9366d107c8b18b6 | 0 | static inline void tcg_out_sety(TCGContext *s, tcg_target_long val)
{
if (val == 0 || val == -1)
tcg_out32(s, WRY | INSN_IMM13(val));
else
fprintf(stderr, "unimplemented sety %ld\n", (long)val);
}
| 14,921 |
qemu | debaaa114a8877a939533ba846e64168fb287b7b | 0 | static void test_hba_spec(void)
{
AHCIQState *ahci;
ahci = ahci_boot();
ahci_pci_enable(ahci);
ahci_test_hba_spec(ahci);
ahci_shutdown(ahci);
}
| 14,922 |
qemu | 6868a420c519d74926ea814d48f6ce9beda35b98 | 0 | void pdu_free(V9fsPDU *pdu)
{
if (pdu) {
V9fsState *s = pdu->s;
/*
* Cancelled pdu are added back to the freelist
* by flush request .
*/
if (!pdu->cancelled) {
QLIST_REMOVE(pdu, next);
QLIST_INSERT_HEAD(&s->free_list, pdu, next);
}
}
}
| 14,923 |
FFmpeg | 5bca5f87d1a32669e0357790e0d0ad8a5c9c998b | 0 | static av_noinline void emulated_edge_mc_mmxext(uint8_t *buf, const uint8_t *src,
ptrdiff_t buf_stride,
ptrdiff_t src_stride,
int block_w, int block_h,
int src_x, int src_y, int w, int h)
{
emulated_edge_mc(buf, src, buf_stride, src_stride, block_w, block_h,
src_x, src_y, w, h, vfixtbl_mmx, &ff_emu_edge_vvar_mmx,
hfixtbl_mmxext, &ff_emu_edge_hvar_mmxext);
}
| 14,924 |
qemu | c54616608af442edf4cfb7397a1909c2653efba0 | 0 | static int token_is_operator(QObject *obj, char op)
{
const char *val;
if (token_get_type(obj) != JSON_OPERATOR) {
return 0;
}
val = token_get_value(obj);
return (val[0] == op) && (val[1] == 0);
}
| 14,925 |
qemu | 0db6e54a8a2c6e16780356422da671b71f862341 | 0 | static void mirror_start_job(BlockDriverState *bs, BlockDriverState *target,
const char *replaces,
int64_t speed, int64_t granularity,
int64_t buf_size,
BlockdevOnError on_source_error,
BlockdevOnError on_target_error,
BlockCompletionFunc *cb,
void *opaque, Error **errp,
const BlockJobDriver *driver,
bool is_none_mode, BlockDriverState *base)
{
MirrorBlockJob *s;
if (granularity == 0) {
/* Choose the default granularity based on the target file's cluster
* size, clamped between 4k and 64k. */
BlockDriverInfo bdi;
if (bdrv_get_info(target, &bdi) >= 0 && bdi.cluster_size != 0) {
granularity = MAX(4096, bdi.cluster_size);
granularity = MIN(65536, granularity);
} else {
granularity = 65536;
}
}
assert ((granularity & (granularity - 1)) == 0);
if ((on_source_error == BLOCKDEV_ON_ERROR_STOP ||
on_source_error == BLOCKDEV_ON_ERROR_ENOSPC) &&
!bdrv_iostatus_is_enabled(bs)) {
error_set(errp, QERR_INVALID_PARAMETER, "on-source-error");
return;
}
s = block_job_create(driver, bs, speed, cb, opaque, errp);
if (!s) {
return;
}
s->replaces = g_strdup(replaces);
s->on_source_error = on_source_error;
s->on_target_error = on_target_error;
s->target = target;
s->is_none_mode = is_none_mode;
s->base = base;
s->granularity = granularity;
s->buf_size = MAX(buf_size, granularity);
s->dirty_bitmap = bdrv_create_dirty_bitmap(bs, granularity, errp);
if (!s->dirty_bitmap) {
return;
}
bdrv_set_enable_write_cache(s->target, true);
bdrv_set_on_error(s->target, on_target_error, on_target_error);
bdrv_iostatus_enable(s->target);
s->common.co = qemu_coroutine_create(mirror_run);
trace_mirror_start(bs, s, s->common.co, opaque);
qemu_coroutine_enter(s->common.co, s);
}
| 14,926 |
qemu | 38e5756a614e9a492d1bb181166cd031bc87e159 | 0 | static void vnc_connect(VncDisplay *vd, QIOChannelSocket *sioc,
bool skipauth, bool websocket)
{
VncState *vs = g_new0(VncState, 1);
int i;
vs->sioc = sioc;
object_ref(OBJECT(vs->sioc));
vs->ioc = QIO_CHANNEL(sioc);
object_ref(OBJECT(vs->ioc));
vs->vd = vd;
buffer_init(&vs->input, "vnc-input/%p", sioc);
buffer_init(&vs->output, "vnc-output/%p", sioc);
buffer_init(&vs->jobs_buffer, "vnc-jobs_buffer/%p", sioc);
buffer_init(&vs->tight.tight, "vnc-tight/%p", sioc);
buffer_init(&vs->tight.zlib, "vnc-tight-zlib/%p", sioc);
buffer_init(&vs->tight.gradient, "vnc-tight-gradient/%p", sioc);
#ifdef CONFIG_VNC_JPEG
buffer_init(&vs->tight.jpeg, "vnc-tight-jpeg/%p", sioc);
#endif
#ifdef CONFIG_VNC_PNG
buffer_init(&vs->tight.png, "vnc-tight-png/%p", sioc);
#endif
buffer_init(&vs->zlib.zlib, "vnc-zlib/%p", sioc);
buffer_init(&vs->zrle.zrle, "vnc-zrle/%p", sioc);
buffer_init(&vs->zrle.fb, "vnc-zrle-fb/%p", sioc);
buffer_init(&vs->zrle.zlib, "vnc-zrle-zlib/%p", sioc);
if (skipauth) {
vs->auth = VNC_AUTH_NONE;
vs->subauth = VNC_AUTH_INVALID;
} else {
if (websocket) {
vs->auth = vd->ws_auth;
vs->subauth = VNC_AUTH_INVALID;
} else {
vs->auth = vd->auth;
vs->subauth = vd->subauth;
}
}
VNC_DEBUG("Client sioc=%p ws=%d auth=%d subauth=%d\n",
sioc, websocket, vs->auth, vs->subauth);
vs->lossy_rect = g_malloc0(VNC_STAT_ROWS * sizeof (*vs->lossy_rect));
for (i = 0; i < VNC_STAT_ROWS; ++i) {
vs->lossy_rect[i] = g_new0(uint8_t, VNC_STAT_COLS);
}
VNC_DEBUG("New client on socket %p\n", vs->sioc);
update_displaychangelistener(&vd->dcl, VNC_REFRESH_INTERVAL_BASE);
qio_channel_set_blocking(vs->ioc, false, NULL);
if (websocket) {
vs->websocket = 1;
if (vd->ws_tls) {
vs->ioc_tag = qio_channel_add_watch(
vs->ioc, G_IO_IN, vncws_tls_handshake_io, vs, NULL);
} else {
vs->ioc_tag = qio_channel_add_watch(
vs->ioc, G_IO_IN, vncws_handshake_io, vs, NULL);
}
} else {
vs->ioc_tag = qio_channel_add_watch(
vs->ioc, G_IO_IN, vnc_client_io, vs, NULL);
}
vnc_client_cache_addr(vs);
vnc_qmp_event(vs, QAPI_EVENT_VNC_CONNECTED);
vnc_set_share_mode(vs, VNC_SHARE_MODE_CONNECTING);
if (!vs->websocket) {
vnc_init_state(vs);
}
if (vd->num_connecting > vd->connections_limit) {
QTAILQ_FOREACH(vs, &vd->clients, next) {
if (vs->share_mode == VNC_SHARE_MODE_CONNECTING) {
vnc_disconnect_start(vs);
return;
}
}
}
}
| 14,927 |
qemu | 7859cc6e39bf86f890bb1c72fd9ba41deb6ce2e7 | 0 | static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
unsigned long start, unsigned long length)
{
unsigned long addr;
if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
if ((addr - start) < length) {
tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
}
}
}
| 14,928 |
qemu | 27a69bb088bee6d4efea254659422fb9c751b3c7 | 0 | static inline void gen_evmergehi(DisasContext *ctx)
{
if (unlikely(!ctx->spe_enabled)) {
gen_exception(ctx, POWERPC_EXCP_APU);
return;
}
#if defined(TARGET_PPC64)
TCGv t0 = tcg_temp_new();
TCGv t1 = tcg_temp_new();
tcg_gen_shri_tl(t0, cpu_gpr[rB(ctx->opcode)], 32);
tcg_gen_andi_tl(t1, cpu_gpr[rA(ctx->opcode)], 0xFFFFFFFF0000000ULL);
tcg_gen_or_tl(cpu_gpr[rD(ctx->opcode)], t0, t1);
tcg_temp_free(t0);
tcg_temp_free(t1);
#else
tcg_gen_mov_i32(cpu_gpr[rD(ctx->opcode)], cpu_gprh[rB(ctx->opcode)]);
tcg_gen_mov_i32(cpu_gprh[rD(ctx->opcode)], cpu_gprh[rA(ctx->opcode)]);
#endif
}
| 14,929 |
qemu | 9eaaf971683c99ed197fa1b7d1a3ca9baabfb3ee | 0 | static void simple_dict(void)
{
int i;
struct {
const char *encoded;
LiteralQObject decoded;
} test_cases[] = {
{
.encoded = "{\"foo\": 42, \"bar\": \"hello world\"}",
.decoded = QLIT_QDICT(((LiteralQDictEntry[]){
{ "foo", QLIT_QINT(42) },
{ "bar", QLIT_QSTR("hello world") },
{ }
})),
}, {
.encoded = "{}",
.decoded = QLIT_QDICT(((LiteralQDictEntry[]){
{ }
})),
}, {
.encoded = "{\"foo\": 43}",
.decoded = QLIT_QDICT(((LiteralQDictEntry[]){
{ "foo", QLIT_QINT(43) },
{ }
})),
},
{ }
};
for (i = 0; test_cases[i].encoded; i++) {
QObject *obj;
QString *str;
obj = qobject_from_json(test_cases[i].encoded);
g_assert(obj != NULL);
g_assert(qobject_type(obj) == QTYPE_QDICT);
g_assert(compare_litqobj_to_qobj(&test_cases[i].decoded, obj) == 1);
str = qobject_to_json(obj);
qobject_decref(obj);
obj = qobject_from_json(qstring_get_str(str));
g_assert(obj != NULL);
g_assert(qobject_type(obj) == QTYPE_QDICT);
g_assert(compare_litqobj_to_qobj(&test_cases[i].decoded, obj) == 1);
qobject_decref(obj);
QDECREF(str);
}
}
| 14,930 |
qemu | b97400caef60ccfb0bc81c59f8bd824c43a0d6c8 | 0 | static int local_open2(FsContext *fs_ctx, V9fsPath *dir_path, const char *name,
int flags, FsCred *credp)
{
char *path;
int fd = -1;
int err = -1;
int serrno = 0;
V9fsString fullname;
char buffer[PATH_MAX];
v9fs_string_init(&fullname);
v9fs_string_sprintf(&fullname, "%s/%s", dir_path->data, name);
path = fullname.data;
/* Determine the security model */
if (fs_ctx->fs_sm == SM_MAPPED) {
fd = open(rpath(fs_ctx, path, buffer), flags, SM_LOCAL_MODE_BITS);
if (fd == -1) {
err = fd;
goto out;
}
credp->fc_mode = credp->fc_mode|S_IFREG;
/* Set cleint credentials in xattr */
err = local_set_xattr(rpath(fs_ctx, path, buffer), credp);
if (err == -1) {
serrno = errno;
goto err_end;
}
} else if ((fs_ctx->fs_sm == SM_PASSTHROUGH) ||
(fs_ctx->fs_sm == SM_NONE)) {
fd = open(rpath(fs_ctx, path, buffer), flags, credp->fc_mode);
if (fd == -1) {
err = fd;
goto out;
}
err = local_post_create_passthrough(fs_ctx, path, credp);
if (err == -1) {
serrno = errno;
goto err_end;
}
}
err = fd;
goto out;
err_end:
close(fd);
remove(rpath(fs_ctx, path, buffer));
errno = serrno;
out:
v9fs_string_free(&fullname);
return err;
}
| 14,931 |
qemu | 9307c4c1d93939db9b04117b654253af5113dc21 | 0 | static void do_savevm(int argc, const char **argv)
{
if (argc != 2) {
help_cmd(argv[0]);
return;
}
if (qemu_savevm(argv[1]) < 0)
term_printf("I/O error when saving VM to '%s'\n", argv[1]);
}
| 14,932 |
qemu | a8cf66bb393ff420d40ae172a4c817bf2752918a | 0 | static void evaluate_flags_writeback(uint32_t flags)
{
int x;
/* Extended arithmetics, leave the z flag alone. */
x = env->cc_x;
if ((x || env->cc_op == CC_OP_ADDC)
&& flags & Z_FLAG)
env->cc_mask &= ~Z_FLAG;
/* all insn clear the x-flag except setf or clrf. */
env->pregs[PR_CCS] &= ~(env->cc_mask | X_FLAG);
flags &= env->cc_mask;
env->pregs[PR_CCS] |= flags;
}
| 14,934 |
FFmpeg | 0d21a84605bad4e75dacb8196e5859902ed36f01 | 0 | static int epzs_motion_search(MpegEncContext * s,
int *mx_ptr, int *my_ptr,
int P[5][2], int pred_x, int pred_y,
int xmin, int ymin, int xmax, int ymax, uint8_t * ref_picture)
{
int best[2]={0, 0};
int d, dmin;
UINT8 *new_pic, *old_pic;
const int pic_stride= s->linesize;
const int pic_xy= (s->mb_y*pic_stride + s->mb_x)*16;
UINT16 *mv_penalty= s->mv_penalty[s->f_code] + MAX_MV; // f_code of the prev frame
int quant= s->qscale; // qscale of the prev frame
const int shift= 1+s->quarter_sample;
new_pic = s->new_picture[0] + pic_xy;
old_pic = ref_picture + pic_xy;
dmin = pix_abs16x16(new_pic, old_pic, pic_stride);
if(dmin<Z_THRESHOLD){
*mx_ptr= 0;
*my_ptr= 0;
//printf("Z");
return dmin;
}
/* first line */
if ((s->mb_y == 0 || s->first_slice_line || s->first_gob_line)) {
CHECK_MV(P[1][0]>>shift, P[1][1]>>shift)
}else{
CHECK_MV(P[4][0]>>shift, P[4][1]>>shift)
if(dmin<Z_THRESHOLD){
*mx_ptr= P[4][0]>>shift;
*my_ptr= P[4][1]>>shift;
//printf("M\n");
return dmin;
}
CHECK_MV(P[1][0]>>shift, P[1][1]>>shift)
CHECK_MV(P[2][0]>>shift, P[2][1]>>shift)
CHECK_MV(P[3][0]>>shift, P[3][1]>>shift)
}
CHECK_MV(P[0][0]>>shift, P[0][1]>>shift)
//check(best[0],best[1],0, b0)
if(s->me_method==ME_EPZS)
dmin= small_diamond_search(s, best, dmin, new_pic, old_pic, pic_stride,
pred_x, pred_y, mv_penalty, quant, xmin, ymin, xmax, ymax, shift);
else
dmin= snake_search(s, best, dmin, new_pic, old_pic, pic_stride,
pred_x, pred_y, mv_penalty, quant, xmin, ymin, xmax, ymax, shift);
//check(best[0],best[1],0, b1)
*mx_ptr= best[0];
*my_ptr= best[1];
// printf("%d %d %d \n", best[0], best[1], dmin);
return dmin;
}
| 14,935 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.