Code
stringlengths 103
85.9k
| Summary
listlengths 0
94
|
---|---|
Please provide a description of the function:def discriminator1(ndf, no_bias=True, fix_gamma=True, eps=1e-5 + 1e-12):
'''First part of the discriminator which takes a 32x32 image as input
and output a convolutional feature map, this is required to calculate
the layer loss'''
BatchNorm = mx.sym.BatchNorm
data = mx.sym.Variable('data')
d1 = mx.sym.Convolution(data, name='d1', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=ndf, no_bias=no_bias)
dact1 = mx.sym.LeakyReLU(d1, name='dact1', act_type='leaky', slope=0.2)
d2 = mx.sym.Convolution(dact1, name='d2', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=ndf*2, no_bias=no_bias)
dbn2 = BatchNorm(d2, name='dbn2', fix_gamma=fix_gamma, eps=eps)
dact2 = mx.sym.LeakyReLU(dbn2, name='dact2', act_type='leaky', slope=0.2)
d3 = mx.sym.Convolution(dact2, name='d3', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=ndf*4, no_bias=no_bias)
dbn3 = BatchNorm(d3, name='dbn3', fix_gamma=fix_gamma, eps=eps)
dact3 = mx.sym.LeakyReLU(dbn3, name='dact3', act_type='leaky', slope=0.2)
return dact3 | []
|
Please provide a description of the function:def discriminator2(ndf, no_bias=True, fix_gamma=True, eps=1e-5 + 1e-12):
'''Second part of the discriminator which takes a 256x8x8 feature map as input
and generates the loss based on whether the input image was a real one or fake one'''
BatchNorm = mx.sym.BatchNorm
data = mx.sym.Variable('data')
label = mx.sym.Variable('label')
d4 = mx.sym.Convolution(data, name='d4', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=ndf*8, no_bias=no_bias)
dbn4 = BatchNorm(d4, name='dbn4', fix_gamma=fix_gamma, eps=eps)
dact4 = mx.sym.LeakyReLU(dbn4, name='dact4', act_type='leaky', slope=0.2)
h = mx.sym.Flatten(dact4)
d5 = mx.sym.FullyConnected(h, num_hidden=1, name="d5")
dloss = mx.sym.LogisticRegressionOutput(data=d5, label=label, name='dloss')
return dloss | []
|
Please provide a description of the function:def GaussianLogDensity(x, mu, log_var, name='GaussianLogDensity', EPSILON = 1e-6):
'''GaussianLogDensity loss calculation for layer wise loss
'''
c = mx.sym.ones_like(log_var)*2.0 * 3.1416
c = mx.symbol.log(c)
var = mx.sym.exp(log_var)
x_mu2 = mx.symbol.square(x - mu) # [Issue] not sure the dim works or not?
x_mu2_over_var = mx.symbol.broadcast_div(x_mu2, var + EPSILON)
log_prob = -0.5 * (c + log_var + x_mu2_over_var)
log_prob = mx.symbol.sum(log_prob, axis=1, name=name) # keep_dims=True,
return log_prob | []
|
Please provide a description of the function:def DiscriminatorLayerLoss():
'''Calculate the discriminator layer loss
'''
data = mx.sym.Variable('data')
label = mx.sym.Variable('label')
data = mx.sym.Flatten(data)
label = mx.sym.Flatten(label)
label = mx.sym.BlockGrad(label)
zeros = mx.sym.zeros_like(data)
output = -GaussianLogDensity(label, data, zeros)
dloss = mx.symbol.MakeLoss(mx.symbol.mean(output),name='lloss')
return dloss | []
|
Please provide a description of the function:def KLDivergenceLoss():
'''KLDivergenceLoss loss
'''
data = mx.sym.Variable('data')
mu1, lv1 = mx.sym.split(data, num_outputs=2, axis=0)
mu2 = mx.sym.zeros_like(mu1)
lv2 = mx.sym.zeros_like(lv1)
v1 = mx.sym.exp(lv1)
v2 = mx.sym.exp(lv2)
mu_diff_sq = mx.sym.square(mu1 - mu2)
dimwise_kld = .5 * (
(lv2 - lv1) + mx.symbol.broadcast_div(v1, v2) + mx.symbol.broadcast_div(mu_diff_sq, v2) - 1.)
KL = mx.symbol.sum(dimwise_kld, axis=1)
KLloss = mx.symbol.MakeLoss(mx.symbol.mean(KL),name='KLloss')
return KLloss | []
|
Please provide a description of the function:def get_data(path, activation):
'''Get the dataset
'''
data = []
image_names = []
for filename in os.listdir(path):
img = cv2.imread(os.path.join(path,filename), cv2.IMREAD_GRAYSCALE)
image_names.append(filename)
if img is not None:
data.append(img)
data = np.asarray(data)
if activation == 'sigmoid':
data = data.astype(np.float32)/(255.0)
elif activation == 'tanh':
data = data.astype(np.float32)/(255.0/2) - 1.0
data = data.reshape((data.shape[0], 1, data.shape[1], data.shape[2]))
np.random.seed(1234)
p = np.random.permutation(data.shape[0])
X = data[p]
return X, image_names | []
|
Please provide a description of the function:def fill_buf(buf, i, img, shape):
'''fill the ith grid of the buffer matrix with the values from the img
buf : buffer matrix
i : serial of the image in the 2D grid
img : image data
shape : ( height width depth ) of image'''
# grid height is a multiple of individual image height
m = buf.shape[0]/shape[0]
sx = (i%m)*shape[1]
sy = (i//m)*shape[0]
sx = int(sx)
sy = int(sy)
buf[sy:sy+shape[0], sx:sx+shape[1], :] = img | []
|
Please provide a description of the function:def visual(title, X, activation):
'''create a grid of images and save it as a final image
title : grid image name
X : array of images
'''
assert len(X.shape) == 4
X = X.transpose((0, 2, 3, 1))
if activation == 'sigmoid':
X = np.clip((X)*(255.0), 0, 255).astype(np.uint8)
elif activation == 'tanh':
X = np.clip((X+1.0)*(255.0/2.0), 0, 255).astype(np.uint8)
n = np.ceil(np.sqrt(X.shape[0]))
buff = np.zeros((int(n*X.shape[1]), int(n*X.shape[2]), int(X.shape[3])), dtype=np.uint8)
for i, img in enumerate(X):
fill_buf(buff, i, img, X.shape[1:3])
cv2.imwrite('%s.jpg' % (title), buff) | []
|
Please provide a description of the function:def train(dataset, nef, ndf, ngf, nc, batch_size, Z, lr, beta1, epsilon, ctx, check_point, g_dl_weight, output_path, checkpoint_path, data_path, activation,num_epoch, save_after_every, visualize_after_every, show_after_every):
'''adversarial training of the VAE
'''
#encoder
z_mu, z_lv, z = encoder(nef, Z, batch_size)
symE = mx.sym.Group([z_mu, z_lv, z])
#generator
symG = generator(ngf, nc, no_bias=True, fix_gamma=True, eps=1e-5 + 1e-12, z_dim = Z, activation=activation )
#discriminator
h = discriminator1(ndf)
dloss = discriminator2(ndf)
symD1 = h
symD2 = dloss
# ==============data==============
X_train, _ = get_data(data_path, activation)
train_iter = mx.io.NDArrayIter(X_train, batch_size=batch_size, shuffle=True)
rand_iter = RandIter(batch_size, Z)
label = mx.nd.zeros((batch_size,), ctx=ctx)
# =============module E=============
modE = mx.mod.Module(symbol=symE, data_names=('data',), label_names=None, context=ctx)
modE.bind(data_shapes=train_iter.provide_data)
modE.init_params(initializer=mx.init.Normal(0.02))
modE.init_optimizer(
optimizer='adam',
optimizer_params={
'learning_rate': lr,
'wd': 1e-6,
'beta1': beta1,
'epsilon': epsilon,
'rescale_grad': (1.0/batch_size)
})
mods = [modE]
# =============module G=============
modG = mx.mod.Module(symbol=symG, data_names=('rand',), label_names=None, context=ctx)
modG.bind(data_shapes=rand_iter.provide_data, inputs_need_grad=True)
modG.init_params(initializer=mx.init.Normal(0.02))
modG.init_optimizer(
optimizer='adam',
optimizer_params={
'learning_rate': lr,
'wd': 1e-6,
'beta1': beta1,
'epsilon': epsilon,
})
mods.append(modG)
# =============module D=============
modD1 = mx.mod.Module(symD1, label_names=[], context=ctx)
modD2 = mx.mod.Module(symD2, label_names=('label',), context=ctx)
modD = mx.mod.SequentialModule()
modD.add(modD1).add(modD2, take_labels=True, auto_wiring=True)
modD.bind(data_shapes=train_iter.provide_data,
label_shapes=[('label', (batch_size,))],
inputs_need_grad=True)
modD.init_params(initializer=mx.init.Normal(0.02))
modD.init_optimizer(
optimizer='adam',
optimizer_params={
'learning_rate': lr,
'wd': 1e-3,
'beta1': beta1,
'epsilon': epsilon,
'rescale_grad': (1.0/batch_size)
})
mods.append(modD)
# =============module DL=============
symDL = DiscriminatorLayerLoss()
modDL = mx.mod.Module(symbol=symDL, data_names=('data',), label_names=('label',), context=ctx)
modDL.bind(data_shapes=[('data', (batch_size,nef * 4,4,4))], ################################################################################################################################ fix 512 here
label_shapes=[('label', (batch_size,nef * 4,4,4))],
inputs_need_grad=True)
modDL.init_params(initializer=mx.init.Normal(0.02))
modDL.init_optimizer(
optimizer='adam',
optimizer_params={
'learning_rate': lr,
'wd': 0.,
'beta1': beta1,
'epsilon': epsilon,
'rescale_grad': (1.0/batch_size)
})
# =============module KL=============
symKL = KLDivergenceLoss()
modKL = mx.mod.Module(symbol=symKL, data_names=('data',), label_names=None, context=ctx)
modKL.bind(data_shapes=[('data', (batch_size*2,Z))],
inputs_need_grad=True)
modKL.init_params(initializer=mx.init.Normal(0.02))
modKL.init_optimizer(
optimizer='adam',
optimizer_params={
'learning_rate': lr,
'wd': 0.,
'beta1': beta1,
'epsilon': epsilon,
'rescale_grad': (1.0/batch_size)
})
mods.append(modKL)
def norm_stat(d):
return mx.nd.norm(d)/np.sqrt(d.size)
mon = mx.mon.Monitor(10, norm_stat, pattern=".*output|d1_backward_data", sort=True)
mon = None
if mon is not None:
for mod in mods:
pass
def facc(label, pred):
'''calculating prediction accuracy
'''
pred = pred.ravel()
label = label.ravel()
return ((pred > 0.5) == label).mean()
def fentropy(label, pred):
'''calculating binary cross-entropy loss
'''
pred = pred.ravel()
label = label.ravel()
return -(label*np.log(pred+1e-12) + (1.-label)*np.log(1.-pred+1e-12)).mean()
def kldivergence(label, pred):
'''calculating KL divergence loss
'''
mean, log_var = np.split(pred, 2, axis=0)
var = np.exp(log_var)
KLLoss = -0.5 * np.sum(1 + log_var - np.power(mean, 2) - var)
KLLoss = KLLoss / nElements
return KLLoss
mG = mx.metric.CustomMetric(fentropy)
mD = mx.metric.CustomMetric(fentropy)
mE = mx.metric.CustomMetric(kldivergence)
mACC = mx.metric.CustomMetric(facc)
print('Training...')
stamp = datetime.now().strftime('%Y_%m_%d-%H_%M')
# =============train===============
for epoch in range(num_epoch):
train_iter.reset()
for t, batch in enumerate(train_iter):
rbatch = rand_iter.next()
if mon is not None:
mon.tic()
modG.forward(rbatch, is_train=True)
outG = modG.get_outputs()
# update discriminator on fake
label[:] = 0
modD.forward(mx.io.DataBatch(outG, [label]), is_train=True)
modD.backward()
gradD11 = [[grad.copyto(grad.context) for grad in grads] for grads in modD1._exec_group.grad_arrays]
gradD12 = [[grad.copyto(grad.context) for grad in grads] for grads in modD2._exec_group.grad_arrays]
modD.update_metric(mD, [label])
modD.update_metric(mACC, [label])
#update discriminator on decoded
modE.forward(batch, is_train=True)
mu, lv, z = modE.get_outputs()
z = z.reshape((batch_size, Z, 1, 1))
sample = mx.io.DataBatch([z], label=None, provide_data = [('rand', (batch_size, Z, 1, 1))])
modG.forward(sample, is_train=True)
xz = modG.get_outputs()
label[:] = 0
modD.forward(mx.io.DataBatch(xz, [label]), is_train=True)
modD.backward()
#modD.update()
gradD21 = [[grad.copyto(grad.context) for grad in grads] for grads in modD1._exec_group.grad_arrays]
gradD22 = [[grad.copyto(grad.context) for grad in grads] for grads in modD2._exec_group.grad_arrays]
modD.update_metric(mD, [label])
modD.update_metric(mACC, [label])
# update discriminator on real
label[:] = 1
batch.label = [label]
modD.forward(batch, is_train=True)
lx = [out.copyto(out.context) for out in modD1.get_outputs()]
modD.backward()
for gradsr, gradsf, gradsd in zip(modD1._exec_group.grad_arrays, gradD11, gradD21):
for gradr, gradf, gradd in zip(gradsr, gradsf, gradsd):
gradr += 0.5 * (gradf + gradd)
for gradsr, gradsf, gradsd in zip(modD2._exec_group.grad_arrays, gradD12, gradD22):
for gradr, gradf, gradd in zip(gradsr, gradsf, gradsd):
gradr += 0.5 * (gradf + gradd)
modD.update()
modD.update_metric(mD, [label])
modD.update_metric(mACC, [label])
modG.forward(rbatch, is_train=True)
outG = modG.get_outputs()
label[:] = 1
modD.forward(mx.io.DataBatch(outG, [label]), is_train=True)
modD.backward()
diffD = modD1.get_input_grads()
modG.backward(diffD)
gradG1 = [[grad.copyto(grad.context) for grad in grads] for grads in modG._exec_group.grad_arrays]
mG.update([label], modD.get_outputs())
modG.forward(sample, is_train=True)
xz = modG.get_outputs()
label[:] = 1
modD.forward(mx.io.DataBatch(xz, [label]), is_train=True)
modD.backward()
diffD = modD1.get_input_grads()
modG.backward(diffD)
gradG2 = [[grad.copyto(grad.context) for grad in grads] for grads in modG._exec_group.grad_arrays]
mG.update([label], modD.get_outputs())
modG.forward(sample, is_train=True)
xz = modG.get_outputs()
modD1.forward(mx.io.DataBatch(xz, []), is_train=True)
outD1 = modD1.get_outputs()
modDL.forward(mx.io.DataBatch(outD1, lx), is_train=True)
modDL.backward()
dlGrad = modDL.get_input_grads()
modD1.backward(dlGrad)
diffD = modD1.get_input_grads()
modG.backward(diffD)
for grads, gradsG1, gradsG2 in zip(modG._exec_group.grad_arrays, gradG1, gradG2):
for grad, gradg1, gradg2 in zip(grads, gradsG1, gradsG2):
grad = g_dl_weight * grad + 0.5 * (gradg1 + gradg2)
modG.update()
mG.update([label], modD.get_outputs())
modG.forward(rbatch, is_train=True)
outG = modG.get_outputs()
label[:] = 1
modD.forward(mx.io.DataBatch(outG, [label]), is_train=True)
modD.backward()
diffD = modD1.get_input_grads()
modG.backward(diffD)
gradG1 = [[grad.copyto(grad.context) for grad in grads] for grads in modG._exec_group.grad_arrays]
mG.update([label], modD.get_outputs())
modG.forward(sample, is_train=True)
xz = modG.get_outputs()
label[:] = 1
modD.forward(mx.io.DataBatch(xz, [label]), is_train=True)
modD.backward()
diffD = modD1.get_input_grads()
modG.backward(diffD)
gradG2 = [[grad.copyto(grad.context) for grad in grads] for grads in modG._exec_group.grad_arrays]
mG.update([label], modD.get_outputs())
modG.forward(sample, is_train=True)
xz = modG.get_outputs()
modD1.forward(mx.io.DataBatch(xz, []), is_train=True)
outD1 = modD1.get_outputs()
modDL.forward(mx.io.DataBatch(outD1, lx), is_train=True)
modDL.backward()
dlGrad = modDL.get_input_grads()
modD1.backward(dlGrad)
diffD = modD1.get_input_grads()
modG.backward(diffD)
for grads, gradsG1, gradsG2 in zip(modG._exec_group.grad_arrays, gradG1, gradG2):
for grad, gradg1, gradg2 in zip(grads, gradsG1, gradsG2):
grad = g_dl_weight * grad + 0.5 * (gradg1 + gradg2)
modG.update()
mG.update([label], modD.get_outputs())
modG.forward(sample, is_train=True)
xz = modG.get_outputs()
#update generator
modD1.forward(mx.io.DataBatch(xz, []), is_train=True)
outD1 = modD1.get_outputs()
modDL.forward(mx.io.DataBatch(outD1, lx), is_train=True)
DLloss = modDL.get_outputs()
modDL.backward()
dlGrad = modDL.get_input_grads()
modD1.backward(dlGrad)
diffD = modD1.get_input_grads()
modG.backward(diffD)
#update encoder
nElements = batch_size
modKL.forward(mx.io.DataBatch([mx.ndarray.concat(mu,lv, dim=0)]), is_train=True)
KLloss = modKL.get_outputs()
modKL.backward()
gradKLLoss = modKL.get_input_grads()
diffG = modG.get_input_grads()
diffG = diffG[0].reshape((batch_size, Z))
modE.backward(mx.ndarray.split(gradKLLoss[0], num_outputs=2, axis=0) + [diffG])
modE.update()
pred = mx.ndarray.concat(mu,lv, dim=0)
mE.update([pred], [pred])
if mon is not None:
mon.toc_print()
t += 1
if t % show_after_every == 0:
print('epoch:', epoch, 'iter:', t, 'metric:', mACC.get(), mG.get(), mD.get(), mE.get(), KLloss[0].asnumpy(), DLloss[0].asnumpy())
mACC.reset()
mG.reset()
mD.reset()
mE.reset()
if epoch % visualize_after_every == 0:
visual(output_path +'gout'+str(epoch), outG[0].asnumpy(), activation)
visual(output_path + 'data'+str(epoch), batch.data[0].asnumpy(), activation)
if check_point and epoch % save_after_every == 0:
print('Saving...')
modG.save_params(checkpoint_path + '/%s_G-%04d.params'%(dataset, epoch))
modD.save_params(checkpoint_path + '/%s_D-%04d.params'%(dataset, epoch))
modE.save_params(checkpoint_path + '/%s_E-%04d.params'%(dataset, epoch)) | []
|
Please provide a description of the function:def create_and_validate_dir(data_dir):
'''Creates/Validates dir
'''
if data_dir != "":
if not os.path.exists(data_dir):
try:
logging.info('create directory %s', data_dir)
os.makedirs(data_dir)
except OSError as exc:
if exc.errno != errno.EEXIST:
raise OSError('failed to create ' + data_dir) | []
|
Please provide a description of the function:def parse_args():
'''Parse args
'''
parser = argparse.ArgumentParser(description='Train and Test an Adversarial Variatiional Encoder')
parser.add_argument('--train', help='train the network', action='store_true')
parser.add_argument('--test', help='test the network', action='store_true')
parser.add_argument('--save_embedding', help='saves the shape embedding of each input image', action='store_true')
parser.add_argument('--dataset', help='dataset name', default='caltech', type=str)
parser.add_argument('--activation', help='activation i.e. sigmoid or tanh', default='sigmoid', type=str)
parser.add_argument('--training_data_path', help='training data path', default='datasets/caltech101/data/images32x32', type=str)
parser.add_argument('--testing_data_path', help='testing data path', default='datasets/caltech101/test_data', type=str)
parser.add_argument('--pretrained_encoder_path', help='pretrained encoder model path', default='checkpoints32x32_sigmoid/caltech_E-0045.params', type=str)
parser.add_argument('--pretrained_generator_path', help='pretrained generator model path', default='checkpoints32x32_sigmoid/caltech_G-0045.params', type=str)
parser.add_argument('--output_path', help='output path for the generated images', default='outputs32x32_sigmoid', type=str)
parser.add_argument('--embedding_path', help='output path for the generated embeddings', default='outputs32x32_sigmoid', type=str)
parser.add_argument('--checkpoint_path', help='checkpoint saving path ', default='checkpoints32x32_sigmoid', type=str)
parser.add_argument('--nef', help='encoder filter count in the first layer', default=64, type=int)
parser.add_argument('--ndf', help='discriminator filter count in the first layer', default=64, type=int)
parser.add_argument('--ngf', help='generator filter count in the second last layer', default=64, type=int)
parser.add_argument('--nc', help='generator filter count in the last layer i.e. 1 for grayscale image, 3 for RGB image', default=1, type=int)
parser.add_argument('--batch_size', help='batch size, keep it 1 during testing', default=64, type=int)
parser.add_argument('--Z', help='embedding size', default=100, type=int)
parser.add_argument('--lr', help='learning rate', default=0.0002, type=float)
parser.add_argument('--beta1', help='beta1 for adam optimizer', default=0.5, type=float)
parser.add_argument('--epsilon', help='epsilon for adam optimizer', default=1e-5, type=float)
parser.add_argument('--g_dl_weight', help='discriminator layer loss weight', default=1e-1, type=float)
parser.add_argument('--gpu', help='gpu index', default=0, type=int)
parser.add_argument('--use_cpu', help='use cpu', action='store_true')
parser.add_argument('--num_epoch', help='number of maximum epochs ', default=45, type=int)
parser.add_argument('--save_after_every', help='save checkpoint after every this number of epochs ', default=5, type=int)
parser.add_argument('--visualize_after_every', help='save output images after every this number of epochs', default=5, type=int)
parser.add_argument('--show_after_every', help='show metrics after this number of iterations', default=10, type=int)
args = parser.parse_args()
return args | []
|
Please provide a description of the function:def get_rmse_log(net, X_train, y_train):
num_train = X_train.shape[0]
clipped_preds = nd.clip(net(X_train), 1, float('inf'))
return np.sqrt(2 * nd.sum(square_loss(
nd.log(clipped_preds), nd.log(y_train))).asscalar() / num_train) | [
"Gets root mse between the logarithms of the prediction and the truth."
]
|
Please provide a description of the function:def get_net():
net = gluon.nn.Sequential()
with net.name_scope():
net.add(gluon.nn.Dense(50, activation="relu"))
net.add(gluon.nn.Dense(1))
net.initialize()
return net | [
"Gets a neural network. Better results are obtained with modifications."
]
|
Please provide a description of the function:def train(net, X_train, y_train, epochs, verbose_epoch, learning_rate,
weight_decay, batch_size):
dataset_train = gluon.data.ArrayDataset(X_train, y_train)
data_iter_train = gluon.data.DataLoader(dataset_train, batch_size,
shuffle=True)
trainer = gluon.Trainer(net.collect_params(), 'adam',
{'learning_rate': learning_rate,
'wd': weight_decay})
net.initialize(force_reinit=True)
for epoch in range(epochs):
for data, label in data_iter_train:
with autograd.record():
output = net(data)
loss = square_loss(output, label)
loss.backward()
trainer.step(batch_size)
avg_loss = get_rmse_log(net, X_train, y_train)
if epoch > verbose_epoch:
print("Epoch %d, train loss: %f" % (epoch, avg_loss))
return avg_loss | [
"Trains the model."
]
|
Please provide a description of the function:def k_fold_cross_valid(k, epochs, verbose_epoch, X_train, y_train,
learning_rate, weight_decay, batch_size):
assert k > 1
fold_size = X_train.shape[0] // k
train_loss_sum = 0.0
test_loss_sum = 0.0
for test_idx in range(k):
X_val_test = X_train[test_idx * fold_size: (test_idx + 1) *
fold_size, :]
y_val_test = y_train[test_idx * fold_size: (test_idx + 1) * fold_size]
val_train_defined = False
for i in range(k):
if i != test_idx:
X_cur_fold = X_train[i * fold_size: (i + 1) * fold_size, :]
y_cur_fold = y_train[i * fold_size: (i + 1) * fold_size]
if not val_train_defined:
X_val_train = X_cur_fold
y_val_train = y_cur_fold
val_train_defined = True
else:
X_val_train = nd.concat(X_val_train, X_cur_fold, dim=0)
y_val_train = nd.concat(y_val_train, y_cur_fold, dim=0)
net = get_net()
train_loss = train(net, X_val_train, y_val_train, epochs, verbose_epoch,
learning_rate, weight_decay, batch_size)
train_loss_sum += train_loss
test_loss = get_rmse_log(net, X_val_test, y_val_test)
print("Test loss: %f" % test_loss)
test_loss_sum += test_loss
return train_loss_sum / k, test_loss_sum / k | [
"Conducts k-fold cross validation for the model."
]
|
Please provide a description of the function:def learn(epochs, verbose_epoch, X_train, y_train, test, learning_rate,
weight_decay, batch_size):
net = get_net()
_ = train(net, X_train, y_train, epochs, verbose_epoch, learning_rate,
weight_decay, batch_size)
preds = net(X_test).asnumpy()
test['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
submission = pd.concat([test['Id'], test['SalePrice']], axis=1)
submission.to_csv('submission.csv', index=False) | [
"Trains the model and predicts on the test data set."
]
|
Please provide a description of the function:def capsnet(batch_size, n_class, num_routing, recon_loss_weight):
# data.shape = [batch_size, 1, 28, 28]
data = mx.sym.Variable('data')
input_shape = (1, 28, 28)
# Conv2D layer
# net.shape = [batch_size, 256, 20, 20]
conv1 = mx.sym.Convolution(data=data,
num_filter=256,
kernel=(9, 9),
layout='NCHW',
name='conv1')
conv1 = mx.sym.Activation(data=conv1, act_type='relu', name='conv1_act')
# net.shape = [batch_size, 256, 6, 6]
primarycaps = primary_caps(data=conv1,
dim_vector=8,
n_channels=32,
kernel=(9, 9),
strides=[2, 2],
name='primarycaps')
primarycaps.infer_shape(data=(batch_size, 1, 28, 28))
# CapsuleLayer
kernel_initializer = mx.init.Xavier(rnd_type='uniform', factor_type='avg', magnitude=3)
bias_initializer = mx.init.Zero()
digitcaps = CapsuleLayer(num_capsule=10,
dim_vector=16,
batch_size=batch_size,
kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer,
num_routing=num_routing)(primarycaps)
# out_caps : (batch_size, 10)
out_caps = mx.sym.sqrt(data=mx.sym.sum(mx.sym.square(digitcaps), 2))
out_caps.infer_shape(data=(batch_size, 1, 28, 28))
y = mx.sym.Variable('softmax_label', shape=(batch_size,))
y_onehot = mx.sym.one_hot(y, n_class)
y_reshaped = mx.sym.Reshape(data=y_onehot, shape=(batch_size, -4, n_class, -1))
y_reshaped.infer_shape(softmax_label=(batch_size,))
# inputs_masked : (batch_size, 16)
inputs_masked = mx.sym.linalg_gemm2(y_reshaped, digitcaps, transpose_a=True)
inputs_masked = mx.sym.Reshape(data=inputs_masked, shape=(-3, 0))
x_recon = mx.sym.FullyConnected(data=inputs_masked, num_hidden=512, name='x_recon')
x_recon = mx.sym.Activation(data=x_recon, act_type='relu', name='x_recon_act')
x_recon = mx.sym.FullyConnected(data=x_recon, num_hidden=1024, name='x_recon2')
x_recon = mx.sym.Activation(data=x_recon, act_type='relu', name='x_recon_act2')
x_recon = mx.sym.FullyConnected(data=x_recon, num_hidden=np.prod(input_shape), name='x_recon3')
x_recon = mx.sym.Activation(data=x_recon, act_type='sigmoid', name='x_recon_act3')
data_flatten = mx.sym.flatten(data=data)
squared_error = mx.sym.square(x_recon-data_flatten)
recon_error = mx.sym.mean(squared_error)
recon_error_stopped = recon_error
recon_error_stopped = mx.sym.BlockGrad(recon_error_stopped)
loss = mx.symbol.MakeLoss((1-recon_loss_weight)*margin_loss(y_onehot, out_caps)+recon_loss_weight*recon_error)
out_caps_blocked = out_caps
out_caps_blocked = mx.sym.BlockGrad(out_caps_blocked)
return mx.sym.Group([out_caps_blocked, loss, recon_error_stopped]) | [
"Create CapsNet"
]
|
Please provide a description of the function:def do_training(num_epoch, optimizer, kvstore, learning_rate, model_prefix, decay):
summary_writer = SummaryWriter(args.tblog_dir)
lr_scheduler = SimpleLRScheduler(learning_rate)
optimizer_params = {'lr_scheduler': lr_scheduler}
module.init_params()
module.init_optimizer(kvstore=kvstore,
optimizer=optimizer,
optimizer_params=optimizer_params)
n_epoch = 0
while True:
if n_epoch >= num_epoch:
break
train_iter.reset()
val_iter.reset()
loss_metric.reset()
for n_batch, data_batch in enumerate(train_iter):
module.forward_backward(data_batch)
module.update()
module.update_metric(loss_metric, data_batch.label)
loss_metric.get_batch_log(n_batch)
train_acc, train_loss, train_recon_err = loss_metric.get_name_value()
loss_metric.reset()
for n_batch, data_batch in enumerate(val_iter):
module.forward(data_batch)
module.update_metric(loss_metric, data_batch.label)
loss_metric.get_batch_log(n_batch)
val_acc, val_loss, val_recon_err = loss_metric.get_name_value()
summary_writer.add_scalar('train_acc', train_acc, n_epoch)
summary_writer.add_scalar('train_loss', train_loss, n_epoch)
summary_writer.add_scalar('train_recon_err', train_recon_err, n_epoch)
summary_writer.add_scalar('val_acc', val_acc, n_epoch)
summary_writer.add_scalar('val_loss', val_loss, n_epoch)
summary_writer.add_scalar('val_recon_err', val_recon_err, n_epoch)
print('Epoch[%d] train acc: %.4f loss: %.6f recon_err: %.6f' % (n_epoch, train_acc, train_loss,
train_recon_err))
print('Epoch[%d] val acc: %.4f loss: %.6f recon_err: %.6f' % (n_epoch, val_acc, val_loss, val_recon_err))
print('SAVE CHECKPOINT')
module.save_checkpoint(prefix=model_prefix, epoch=n_epoch)
n_epoch += 1
lr_scheduler.learning_rate = learning_rate * (decay ** n_epoch) | [
"Perform CapsNet training"
]
|
Please provide a description of the function:def _shuffle(data, idx):
shuffle_data = []
for idx_k, idx_v in data:
shuffle_data.append((idx_k, mx.ndarray.array(idx_v.asnumpy()[idx], idx_v.context)))
return shuffle_data | [
"Shuffle the data."
]
|
Please provide a description of the function:def update(self, labels, preds):
batch_sum_metric = 0
batch_num_inst = 0
for label, pred_outcaps in zip(labels[0], preds[0]):
label_np = int(label.asnumpy())
pred_label = int(np.argmax(pred_outcaps.asnumpy()))
batch_sum_metric += int(label_np == pred_label)
batch_num_inst += 1
batch_loss = preds[1].asnumpy()
recon_loss = preds[2].asnumpy()
self.sum_metric += batch_sum_metric
self.num_inst += batch_num_inst
self.loss += batch_loss
self.recon_loss += recon_loss
self.batch_sum_metric = batch_sum_metric
self.batch_num_inst = batch_num_inst
self.batch_loss = batch_loss
self.n_batch += 1 | [
"Update the hyper-parameters and loss of CapsNet"
]
|
Please provide a description of the function:def reset(self):
# shuffle data
if self.is_train:
np.random.shuffle(self.idx)
self.data = _shuffle(self.data, self.idx)
self.label = _shuffle(self.label, self.idx)
if self.last_batch_handle == 'roll_over' and self.cursor > self.num_data:
self.cursor = -self.batch_size + (self.cursor % self.num_data) % self.batch_size
else:
self.cursor = -self.batch_size | [
"Reset class MNISTCustomIter(mx.io.NDArrayIter):"
]
|
Please provide a description of the function:def next(self):
if self.iter_next():
if self.is_train:
data_raw_list = self.getdata()
data_shifted = []
for data_raw in data_raw_list[0]:
data_shifted.append(random_shift(data_raw.asnumpy(), 0.1, 0.1))
return mx.io.DataBatch(data=[mx.nd.array(data_shifted)], label=self.getlabel(),
pad=self.getpad(), index=None)
else:
return mx.io.DataBatch(data=self.getdata(), label=self.getlabel(), pad=self.getpad(), index=None)
else:
raise StopIteration | [
"Generate next of iterator"
]
|
Please provide a description of the function:def get(self, attr):
if self._attr:
ret = self._attr.copy()
if attr:
ret.update(attr)
return ret
else:
return attr if attr else {} | [
"\n Get the attribute dict given the attribute set by the symbol.\n\n Parameters\n ----------\n attr : dict of string to string\n The attribute passed in by user during symbol creation.\n\n Returns\n -------\n attr : dict of string to string\n Updated attributes to add other scope related attributes.\n "
]
|
Please provide a description of the function:def _create_sparse_kvstore(kvstore):
# always update on kvstore
update_on_kvstore = True
if isinstance(kvstore, kvs.KVStore):
kv = kvstore
elif isinstance(kvstore, str):
kv = kvs.create(kvstore)
else:
raise TypeError("Cannot create '%s' KVStore with row_sparse parameters. "
"The type must be KVStore or str." % kvstore)
return (kv, update_on_kvstore) | [
"Create kvstore assuming some parameters' storage types are row_sparse.\n\n Parameters\n ----------\n kvstore : KVStore or str\n The kvstore.\n\n Returns\n -------\n kvstore : KVStore\n update_on_kvstore : bool. Always True.\n "
]
|
Please provide a description of the function:def _create_kvstore(kvstore, num_device, arg_params):
update_on_kvstore = bool(int(os.getenv('MXNET_UPDATE_ON_KVSTORE', "1")))
if kvstore is None:
kv = None
elif isinstance(kvstore, kvs.KVStore):
kv = kvstore
elif isinstance(kvstore, str):
# create kvstore using the string type
if num_device == 1 and 'dist' not in kvstore:
# no need to use kv for single device and single machine
kv = None
else:
kv = kvs.create(kvstore)
if kvstore == 'local':
# automatically select a proper local
max_size = max(np.prod(param.shape) for param in
arg_params.values())
if max_size > 1024 * 1024 * 16:
update_on_kvstore = False
else:
raise TypeError('kvstore must be KVStore, str or None')
if kv is None:
update_on_kvstore = False
return (kv, update_on_kvstore) | [
"Create kvstore\n This function select and create a proper kvstore if given the kvstore type.\n\n Parameters\n ----------\n kvstore : KVStore or str\n The kvstore.\n num_device : int\n The number of devices\n arg_params : dict of str to `NDArray`.\n Model parameter, dict of name to `NDArray` of net's weights.\n "
]
|
Please provide a description of the function:def _initialize_kvstore(kvstore, param_arrays, arg_params, param_names, update_on_kvstore):
for idx, param_on_devs in enumerate(param_arrays):
name = param_names[idx]
kvstore.init(name, arg_params[name])
if update_on_kvstore:
kvstore.pull(name, param_on_devs, priority=-idx) | [
"Initialize kvstore"
]
|
Please provide a description of the function:def _update_params_on_kvstore_nccl(param_arrays, grad_arrays, kvstore, param_names):
valid_indices = [index for index, grad_list in
enumerate(grad_arrays) if grad_list[0] is not None]
valid_grad_arrays = [grad_arrays[i] for i in valid_indices]
valid_param_arrays = [param_arrays[i] for i in valid_indices]
valid_param_names = [param_names[i] for i in valid_indices]
size = len(valid_grad_arrays)
start = 0
# Use aggregation by default only with NCCL
default_batch = '16'
batch = int(os.getenv('MXNET_UPDATE_AGGREGATION_SIZE', default_batch))
while start < size:
end = start + batch if start + batch < size else size
# push gradient, priority is negative index
kvstore.push(valid_param_names[start:end], valid_grad_arrays[start:end], priority=-start)
# pull back the weights
kvstore.pull(valid_param_names[start:end], valid_param_arrays[start:end], priority=-start)
start = end | [
"Perform update of param_arrays from grad_arrays on NCCL kvstore."
]
|
Please provide a description of the function:def _update_params_on_kvstore(param_arrays, grad_arrays, kvstore, param_names):
for index, pair in enumerate(zip(param_arrays, grad_arrays)):
arg_list, grad_list = pair
if grad_list[0] is None:
continue
name = param_names[index]
# push gradient, priority is negative index
kvstore.push(name, grad_list, priority=-index)
# pull back the weights
kvstore.pull(name, arg_list, priority=-index) | [
"Perform update of param_arrays from grad_arrays on kvstore."
]
|
Please provide a description of the function:def _update_params(param_arrays, grad_arrays, updater, num_device,
kvstore=None, param_names=None):
updates = [[] for _ in range(num_device)]
for i, pair in enumerate(zip(param_arrays, grad_arrays)):
arg_list, grad_list = pair
if grad_list[0] is None:
continue
index = i
if kvstore:
name = param_names[index]
# push gradient, priority is negative index
kvstore.push(name, grad_list, priority=-index)
# pull back the sum gradients, to the same locations.
kvstore.pull(name, grad_list, priority=-index)
for k, p in enumerate(zip(arg_list, grad_list)):
# faked an index here, to make optimizer create diff
# state for the same index but on diff devs, TODO(mli)
# use a better solution later
w, g = p
updates[k].append((index*num_device+k, g, w))
for dev_updates in updates:
# update params if param_arrays and grad_arrays are not empty
if dev_updates:
i, w, g = zip(*dev_updates)
updater(i, w, g) | [
"Perform update of param_arrays from grad_arrays not on kvstore."
]
|
Please provide a description of the function:def _multiple_callbacks(callbacks, *args, **kwargs):
if isinstance(callbacks, list):
for cb in callbacks:
cb(*args, **kwargs)
return
if callbacks:
callbacks(*args, **kwargs) | [
"Sends args and kwargs to any configured callbacks.\n This handles the cases where the 'callbacks' variable\n is ``None``, a single function, or a list.\n "
]
|
Please provide a description of the function:def _train_multi_device(symbol, ctx, arg_names, param_names, aux_names,
arg_params, aux_params,
begin_epoch, end_epoch, epoch_size, optimizer,
kvstore, update_on_kvstore,
train_data, eval_data=None, eval_metric=None,
epoch_end_callback=None, batch_end_callback=None,
logger=None, work_load_list=None, monitor=None,
eval_end_callback=None,
eval_batch_end_callback=None, sym_gen=None):
if logger is None:
logger = logging
executor_manager = DataParallelExecutorManager(symbol=symbol,
sym_gen=sym_gen,
ctx=ctx,
train_data=train_data,
param_names=param_names,
arg_names=arg_names,
aux_names=aux_names,
work_load_list=work_load_list,
logger=logger)
if monitor:
executor_manager.install_monitor(monitor)
executor_manager.set_params(arg_params, aux_params)
if not update_on_kvstore:
updater = get_updater(optimizer)
else:
kvstore.set_optimizer(optimizer)
if kvstore:
_initialize_kvstore(kvstore=kvstore,
param_arrays=executor_manager.param_arrays,
arg_params=arg_params,
param_names=executor_manager.param_names,
update_on_kvstore=update_on_kvstore)
# Now start training
train_data.reset()
for epoch in range(begin_epoch, end_epoch):
# Training phase
tic = time.time()
eval_metric.reset()
nbatch = 0
# Iterate over training data.
while True:
do_reset = True
for data_batch in train_data:
executor_manager.load_data_batch(data_batch)
if monitor is not None:
monitor.tic()
executor_manager.forward(is_train=True)
executor_manager.backward()
if update_on_kvstore:
if 'nccl' in kvstore.type:
_update_params_on_kvstore_nccl(executor_manager.param_arrays,
executor_manager.grad_arrays,
kvstore, executor_manager.param_names)
else:
_update_params_on_kvstore(executor_manager.param_arrays,
executor_manager.grad_arrays,
kvstore, executor_manager.param_names)
else:
_update_params(executor_manager.param_arrays,
executor_manager.grad_arrays,
updater=updater,
num_device=len(ctx),
kvstore=kvstore,
param_names=executor_manager.param_names)
if monitor is not None:
monitor.toc_print()
# evaluate at end, so we can lazy copy
executor_manager.update_metric(eval_metric, data_batch.label)
nbatch += 1
# batch callback (for print purpose)
if batch_end_callback is not None:
batch_end_params = BatchEndParam(epoch=epoch,
nbatch=nbatch,
eval_metric=eval_metric,
locals=locals())
_multiple_callbacks(batch_end_callback, batch_end_params)
# this epoch is done possibly earlier
if epoch_size is not None and nbatch >= epoch_size:
do_reset = False
break
if do_reset:
logger.info('Epoch[%d] Resetting Data Iterator', epoch)
train_data.reset()
# this epoch is done
if epoch_size is None or nbatch >= epoch_size:
break
toc = time.time()
logger.info('Epoch[%d] Time cost=%.3f', epoch, (toc - tic))
if epoch_end_callback or epoch + 1 == end_epoch:
executor_manager.copy_to(arg_params, aux_params)
_multiple_callbacks(epoch_end_callback, epoch, symbol, arg_params, aux_params)
# evaluation
if eval_data:
eval_metric.reset()
eval_data.reset()
total_num_batch = 0
for i, eval_batch in enumerate(eval_data):
executor_manager.load_data_batch(eval_batch)
executor_manager.forward(is_train=False)
executor_manager.update_metric(eval_metric, eval_batch.label)
if eval_batch_end_callback is not None:
batch_end_params = BatchEndParam(epoch=epoch,
nbatch=i,
eval_metric=eval_metric,
locals=locals())
_multiple_callbacks(eval_batch_end_callback, batch_end_params)
total_num_batch += 1
if eval_end_callback is not None:
eval_end_params = BatchEndParam(epoch=epoch,
nbatch=total_num_batch,
eval_metric=eval_metric,
locals=locals())
_multiple_callbacks(eval_end_callback, eval_end_params)
eval_data.reset() | [
"Internal training function on multiple devices.\n This function will also work for single device as well.\n\n Parameters\n ----------\n symbol : Symbol\n The network configuration.\n ctx : list of Context\n The training devices.\n arg_names: list of str\n Name of all arguments of the network.\n param_names: list of str\n Name of all trainable parameters of the network.\n aux_names: list of str\n Name of all auxiliary states of the network.\n arg_params : dict of str to NDArray\n Model parameter, dict of name to NDArray of net's weights.\n aux_params : dict of str to NDArray\n Model parameter, dict of name to NDArray of net's auxiliary states.\n begin_epoch : int\n The begining training epoch.\n end_epoch : int\n The end training epoch.\n epoch_size : int, optional\n Number of batches in a epoch. In default, it is set to\n ``ceil(num_train_examples / batch_size)``.\n optimizer : Optimizer\n The optimization algorithm\n train_data : DataIter\n Training data iterator.\n eval_data : DataIter\n Validation data iterator.\n eval_metric : EvalMetric\n An evaluation function or a list of evaluation functions.\n epoch_end_callback : callable(epoch, symbol, arg_params, aux_states)\n A callback that is invoked at end of each epoch.\n This can be used to checkpoint model each epoch.\n batch_end_callback : callable(BatchEndParams)\n A callback that is invoked at end of each batch.\n This can be used to measure speed, get result from evaluation metric. etc.\n kvstore : KVStore\n The KVStore.\n update_on_kvstore : bool\n Whether or not perform weight updating on kvstore.\n logger : logging logger\n When not specified, default logger will be used.\n work_load_list : list of float or int, optional\n The list of work load for different devices,\n in the same order as ``ctx``.\n monitor : Monitor, optional\n Monitor installed to executor,\n for monitoring outputs, weights, and gradients for debugging.\n Notes\n -----\n - This function will inplace update the NDArrays in `arg_params` and `aux_states`.\n "
]
|
Please provide a description of the function:def save_checkpoint(prefix, epoch, symbol, arg_params, aux_params):
if symbol is not None:
symbol.save('%s-symbol.json' % prefix)
save_dict = {('arg:%s' % k) : v.as_in_context(cpu()) for k, v in arg_params.items()}
save_dict.update({('aux:%s' % k) : v.as_in_context(cpu()) for k, v in aux_params.items()})
param_name = '%s-%04d.params' % (prefix, epoch)
nd.save(param_name, save_dict)
logging.info('Saved checkpoint to \"%s\"', param_name) | [
"Checkpoint the model data into file.\n\n Parameters\n ----------\n prefix : str\n Prefix of model name.\n epoch : int\n The epoch number of the model.\n symbol : Symbol\n The input Symbol.\n arg_params : dict of str to NDArray\n Model parameter, dict of name to NDArray of net's weights.\n aux_params : dict of str to NDArray\n Model parameter, dict of name to NDArray of net's auxiliary states.\n Notes\n -----\n - ``prefix-symbol.json`` will be saved for symbol.\n - ``prefix-epoch.params`` will be saved for parameters.\n "
]
|
Please provide a description of the function:def load_checkpoint(prefix, epoch):
symbol = sym.load('%s-symbol.json' % prefix)
save_dict = nd.load('%s-%04d.params' % (prefix, epoch))
arg_params = {}
aux_params = {}
for k, v in save_dict.items():
tp, name = k.split(':', 1)
if tp == 'arg':
arg_params[name] = v
if tp == 'aux':
aux_params[name] = v
return (symbol, arg_params, aux_params) | [
"Load model checkpoint from file.\n\n Parameters\n ----------\n prefix : str\n Prefix of model name.\n epoch : int\n Epoch number of model we would like to load.\n\n Returns\n -------\n symbol : Symbol\n The symbol configuration of computation network.\n arg_params : dict of str to NDArray\n Model parameter, dict of name to NDArray of net's weights.\n aux_params : dict of str to NDArray\n Model parameter, dict of name to NDArray of net's auxiliary states.\n\n Notes\n -----\n - Symbol will be loaded from ``prefix-symbol.json``.\n - Parameters will be loaded from ``prefix-epoch.params``.\n "
]
|
Please provide a description of the function:def _check_arguments(self):
if self.argument_checked:
return
assert(self.symbol is not None)
self.argument_checked = True
# check if symbol contain duplicated names.
_check_arguments(self.symbol)
# rematch parameters to delete useless ones
if self.allow_extra_params:
if self.arg_params:
arg_names = set(self.symbol.list_arguments())
self.arg_params = {k : v for k, v in self.arg_params.items()
if k in arg_names}
if self.aux_params:
aux_names = set(self.symbol.list_auxiliary_states())
self.aux_params = {k : v for k, v in self.aux_params.items()
if k in aux_names} | [
"verify the argument of the default symbol and user provided parameters"
]
|
Please provide a description of the function:def _init_params(self, inputs, overwrite=False):
inputs = [x if isinstance(x, DataDesc) else DataDesc(*x) for x in inputs]
input_shapes = {item.name: item.shape for item in inputs}
arg_shapes, _, aux_shapes = self.symbol.infer_shape(**input_shapes)
assert arg_shapes is not None
input_dtypes = {item.name: item.dtype for item in inputs}
arg_dtypes, _, aux_dtypes = self.symbol.infer_type(**input_dtypes)
assert arg_dtypes is not None
arg_names = self.symbol.list_arguments()
input_names = input_shapes.keys()
param_names = [key for key in arg_names if key not in input_names]
aux_names = self.symbol.list_auxiliary_states()
param_name_attrs = [x for x in zip(arg_names, arg_shapes, arg_dtypes)
if x[0] in param_names]
arg_params = {k : nd.zeros(shape=s, dtype=t)
for k, s, t in param_name_attrs}
aux_name_attrs = [x for x in zip(aux_names, aux_shapes, aux_dtypes)
if x[0] in aux_names]
aux_params = {k : nd.zeros(shape=s, dtype=t)
for k, s, t in aux_name_attrs}
for k, v in arg_params.items():
if self.arg_params and k in self.arg_params and (not overwrite):
arg_params[k][:] = self.arg_params[k][:]
else:
self.initializer(k, v)
for k, v in aux_params.items():
if self.aux_params and k in self.aux_params and (not overwrite):
aux_params[k][:] = self.aux_params[k][:]
else:
self.initializer(k, v)
self.arg_params = arg_params
self.aux_params = aux_params
return (arg_names, list(param_names), aux_names) | [
"Initialize weight parameters and auxiliary states."
]
|
Please provide a description of the function:def _init_predictor(self, input_shapes, type_dict=None):
shapes = {name: self.arg_params[name].shape for name in self.arg_params}
shapes.update(dict(input_shapes))
if self._pred_exec is not None:
arg_shapes, _, _ = self.symbol.infer_shape(**shapes)
assert arg_shapes is not None, "Incomplete input shapes"
pred_shapes = [x.shape for x in self._pred_exec.arg_arrays]
if arg_shapes == pred_shapes:
return
# for now only use the first device
pred_exec = self.symbol.simple_bind(
self.ctx[0], grad_req='null', type_dict=type_dict, **shapes)
pred_exec.copy_params_from(self.arg_params, self.aux_params)
_check_arguments(self.symbol)
self._pred_exec = pred_exec | [
"Initialize the predictor module for running prediction."
]
|
Please provide a description of the function:def _init_iter(self, X, y, is_train):
if isinstance(X, (np.ndarray, nd.NDArray)):
if y is None:
if is_train:
raise ValueError('y must be specified when X is numpy.ndarray')
else:
y = np.zeros(X.shape[0])
if not isinstance(y, (np.ndarray, nd.NDArray)):
raise TypeError('y must be ndarray when X is numpy.ndarray')
if X.shape[0] != y.shape[0]:
raise ValueError("The numbers of data points and labels not equal")
if y.ndim == 2 and y.shape[1] == 1:
y = y.flatten()
if y.ndim != 1:
raise ValueError("Label must be 1D or 2D (with 2nd dimension being 1)")
if is_train:
return io.NDArrayIter(X, y, min(X.shape[0], self.numpy_batch_size),
shuffle=is_train, last_batch_handle='roll_over')
else:
return io.NDArrayIter(X, y, min(X.shape[0], self.numpy_batch_size), shuffle=False)
if not isinstance(X, io.DataIter):
raise TypeError('X must be DataIter, NDArray or numpy.ndarray')
return X | [
"Initialize the iterator given input."
]
|
Please provide a description of the function:def _init_eval_iter(self, eval_data):
if eval_data is None:
return eval_data
if isinstance(eval_data, (tuple, list)) and len(eval_data) == 2:
if eval_data[0] is not None:
if eval_data[1] is None and isinstance(eval_data[0], io.DataIter):
return eval_data[0]
input_data = (np.array(eval_data[0]) if isinstance(eval_data[0], list)
else eval_data[0])
input_label = (np.array(eval_data[1]) if isinstance(eval_data[1], list)
else eval_data[1])
return self._init_iter(input_data, input_label, is_train=True)
else:
raise ValueError("Eval data is NONE")
if not isinstance(eval_data, io.DataIter):
raise TypeError('Eval data must be DataIter, or ' \
'NDArray/numpy.ndarray/list pair (i.e. tuple/list of length 2)')
return eval_data | [
"Initialize the iterator given eval_data."
]
|
Please provide a description of the function:def predict(self, X, num_batch=None, return_data=False, reset=True):
X = self._init_iter(X, None, is_train=False)
if reset:
X.reset()
data_shapes = X.provide_data
data_names = [x[0] for x in data_shapes]
type_dict = dict((key, value.dtype) for (key, value) in self.arg_params.items())
for x in X.provide_data:
if isinstance(x, DataDesc):
type_dict[x.name] = x.dtype
else:
type_dict[x[0]] = mx_real_t
self._init_predictor(data_shapes, type_dict)
batch_size = X.batch_size
data_arrays = [self._pred_exec.arg_dict[name] for name in data_names]
output_list = [[] for _ in range(len(self._pred_exec.outputs))]
if return_data:
data_list = [[] for _ in X.provide_data]
label_list = [[] for _ in X.provide_label]
i = 0
for batch in X:
_load_data(batch, data_arrays)
self._pred_exec.forward(is_train=False)
padded = batch.pad
real_size = batch_size - padded
for o_list, o_nd in zip(output_list, self._pred_exec.outputs):
o_list.append(o_nd[0:real_size].asnumpy())
if return_data:
for j, x in enumerate(batch.data):
data_list[j].append(x[0:real_size].asnumpy())
for j, x in enumerate(batch.label):
label_list[j].append(x[0:real_size].asnumpy())
i += 1
if num_batch is not None and i == num_batch:
break
outputs = [np.concatenate(x) for x in output_list]
if len(outputs) == 1:
outputs = outputs[0]
if return_data:
data = [np.concatenate(x) for x in data_list]
label = [np.concatenate(x) for x in label_list]
if len(data) == 1:
data = data[0]
if len(label) == 1:
label = label[0]
return outputs, data, label
else:
return outputs | [
"Run the prediction, always only use one device.\n\n Parameters\n ----------\n X : mxnet.DataIter\n num_batch : int or None\n The number of batch to run. Go though all batches if ``None``.\n Returns\n -------\n y : numpy.ndarray or a list of numpy.ndarray if the network has multiple outputs.\n The predicted value of the output.\n "
]
|
Please provide a description of the function:def score(self, X, eval_metric='acc', num_batch=None, batch_end_callback=None, reset=True):
# setup metric
if not isinstance(eval_metric, metric.EvalMetric):
eval_metric = metric.create(eval_metric)
X = self._init_iter(X, None, is_train=False)
if reset:
X.reset()
data_shapes = X.provide_data
data_names = [x[0] for x in data_shapes]
type_dict = dict((key, value.dtype) for (key, value) in self.arg_params.items())
for x in X.provide_data:
if isinstance(x, DataDesc):
type_dict[x.name] = x.dtype
else:
type_dict[x[0]] = mx_real_t
self._init_predictor(data_shapes, type_dict)
data_arrays = [self._pred_exec.arg_dict[name] for name in data_names]
for i, batch in enumerate(X):
if num_batch is not None and i == num_batch:
break
_load_data(batch, data_arrays)
self._pred_exec.forward(is_train=False)
eval_metric.update(batch.label, self._pred_exec.outputs)
if batch_end_callback is not None:
batch_end_params = BatchEndParam(epoch=0,
nbatch=i,
eval_metric=eval_metric,
locals=locals())
_multiple_callbacks(batch_end_callback, batch_end_params)
return eval_metric.get()[1] | [
"Run the model given an input and calculate the score\n as assessed by an evaluation metric.\n\n Parameters\n ----------\n X : mxnet.DataIter\n eval_metric : metric.metric\n The metric for calculating score.\n num_batch : int or None\n The number of batches to run. Go though all batches if ``None``.\n Returns\n -------\n s : float\n The final score.\n "
]
|
Please provide a description of the function:def fit(self, X, y=None, eval_data=None, eval_metric='acc',
epoch_end_callback=None, batch_end_callback=None, kvstore='local', logger=None,
work_load_list=None, monitor=None, eval_end_callback=LogValidationMetricsCallback(),
eval_batch_end_callback=None):
data = self._init_iter(X, y, is_train=True)
eval_data = self._init_eval_iter(eval_data)
if self.sym_gen:
self.symbol = self.sym_gen(data.default_bucket_key) # pylint: disable=no-member
self._check_arguments()
self.kwargs["sym"] = self.symbol
arg_names, param_names, aux_names = \
self._init_params(data.provide_data+data.provide_label)
# setup metric
if not isinstance(eval_metric, metric.EvalMetric):
eval_metric = metric.create(eval_metric)
# create kvstore
(kvstore, update_on_kvstore) = _create_kvstore(
kvstore, len(self.ctx), self.arg_params)
param_idx2name = {}
if update_on_kvstore:
param_idx2name.update(enumerate(param_names))
else:
for i, n in enumerate(param_names):
for k in range(len(self.ctx)):
param_idx2name[i*len(self.ctx)+k] = n
self.kwargs["param_idx2name"] = param_idx2name
# init optmizer
if isinstance(self.optimizer, str):
batch_size = data.batch_size
if kvstore and 'dist' in kvstore.type and '_async' not in kvstore.type:
batch_size *= kvstore.num_workers
optimizer = opt.create(self.optimizer,
rescale_grad=(1.0/batch_size),
**(self.kwargs))
elif isinstance(self.optimizer, opt.Optimizer):
if not optimizer.idx2name:
optimizer.idx2name = param_idx2name.copy()
optimizer = self.optimizer
# do training
_train_multi_device(self.symbol, self.ctx, arg_names, param_names, aux_names,
self.arg_params, self.aux_params,
begin_epoch=self.begin_epoch, end_epoch=self.num_epoch,
epoch_size=self.epoch_size,
optimizer=optimizer,
train_data=data, eval_data=eval_data,
eval_metric=eval_metric,
epoch_end_callback=epoch_end_callback,
batch_end_callback=batch_end_callback,
kvstore=kvstore, update_on_kvstore=update_on_kvstore,
logger=logger, work_load_list=work_load_list, monitor=monitor,
eval_end_callback=eval_end_callback,
eval_batch_end_callback=eval_batch_end_callback,
sym_gen=self.sym_gen) | [
"Fit the model.\n\n Parameters\n ----------\n X : DataIter, or numpy.ndarray/NDArray\n Training data. If `X` is a `DataIter`, the name or (if name not available)\n the position of its outputs should match the corresponding variable\n names defined in the symbolic graph.\n y : numpy.ndarray/NDArray, optional\n Training set label.\n If X is ``numpy.ndarray`` or `NDArray`, `y` is required to be set.\n While y can be 1D or 2D (with 2nd dimension as 1), its first dimension must be\n the same as `X`, i.e. the number of data points and labels should be equal.\n eval_data : DataIter or numpy.ndarray/list/NDArray pair\n If eval_data is numpy.ndarray/list/NDArray pair,\n it should be ``(valid_data, valid_label)``.\n eval_metric : metric.EvalMetric or str or callable\n The evaluation metric. This could be the name of evaluation metric\n or a custom evaluation function that returns statistics\n based on a minibatch.\n epoch_end_callback : callable(epoch, symbol, arg_params, aux_states)\n A callback that is invoked at end of each epoch.\n This can be used to checkpoint model each epoch.\n batch_end_callback: callable(epoch)\n A callback that is invoked at end of each batch for purposes of printing.\n kvstore: KVStore or str, optional\n The KVStore or a string kvstore type: 'local', 'dist_sync', 'dist_async'\n In default uses 'local', often no need to change for single machiine.\n logger : logging logger, optional\n When not specified, default logger will be used.\n work_load_list : float or int, optional\n The list of work load for different devices,\n in the same order as `ctx`.\n\n Note\n ----\n KVStore behavior\n - 'local', multi-devices on a single machine, will automatically choose best type.\n - 'dist_sync', multiple machines communicating via BSP.\n - 'dist_async', multiple machines with asynchronous communication.\n "
]
|
Please provide a description of the function:def save(self, prefix, epoch=None):
if epoch is None:
epoch = self.num_epoch
assert epoch is not None
save_checkpoint(prefix, epoch, self.symbol, self.arg_params, self.aux_params) | [
"Checkpoint the model checkpoint into file.\n You can also use `pickle` to do the job if you only work on Python.\n The advantage of `load` and `save` (as compared to `pickle`) is that\n the resulting file can be loaded from other MXNet language bindings.\n One can also directly `load`/`save` from/to cloud storage(S3, HDFS)\n\n Parameters\n ----------\n prefix : str\n Prefix of model name.\n\n Notes\n -----\n - ``prefix-symbol.json`` will be saved for symbol.\n - ``prefix-epoch.params`` will be saved for parameters.\n "
]
|
Please provide a description of the function:def load(prefix, epoch, ctx=None, **kwargs):
symbol, arg_params, aux_params = load_checkpoint(prefix, epoch)
return FeedForward(symbol, ctx=ctx,
arg_params=arg_params, aux_params=aux_params,
begin_epoch=epoch,
**kwargs) | [
"Load model checkpoint from file.\n\n Parameters\n ----------\n prefix : str\n Prefix of model name.\n epoch : int\n epoch number of model we would like to load.\n ctx : Context or list of Context, optional\n The device context of training and prediction.\n kwargs : dict\n Other parameters for model, including `num_epoch`, optimizer and `numpy_batch_size`.\n\n Returns\n -------\n model : FeedForward\n The loaded model that can be used for prediction.\n\n Notes\n -----\n - ``prefix-symbol.json`` will be saved for symbol.\n - ``prefix-epoch.params`` will be saved for parameters.\n "
]
|
Please provide a description of the function:def create(symbol, X, y=None, ctx=None,
num_epoch=None, epoch_size=None, optimizer='sgd', initializer=Uniform(0.01),
eval_data=None, eval_metric='acc',
epoch_end_callback=None, batch_end_callback=None,
kvstore='local', logger=None, work_load_list=None,
eval_end_callback=LogValidationMetricsCallback(),
eval_batch_end_callback=None, **kwargs):
model = FeedForward(symbol, ctx=ctx, num_epoch=num_epoch,
epoch_size=epoch_size,
optimizer=optimizer, initializer=initializer, **kwargs)
model.fit(X, y, eval_data=eval_data, eval_metric=eval_metric,
epoch_end_callback=epoch_end_callback,
batch_end_callback=batch_end_callback,
kvstore=kvstore,
logger=logger,
work_load_list=work_load_list,
eval_end_callback=eval_end_callback,
eval_batch_end_callback=eval_batch_end_callback)
return model | [
"Functional style to create a model.\n This function is more consistent with functional\n languages such as R, where mutation is not allowed.\n\n Parameters\n ----------\n symbol : Symbol\n The symbol configuration of a computation network.\n X : DataIter\n Training data.\n y : numpy.ndarray, optional\n If `X` is a ``numpy.ndarray``, `y` must be set.\n ctx : Context or list of Context, optional\n The device context of training and prediction.\n To use multi-GPU training, pass in a list of GPU contexts.\n num_epoch : int, optional\n The number of training epochs(epochs).\n epoch_size : int, optional\n Number of batches in a epoch. In default, it is set to\n ``ceil(num_train_examples / batch_size)``.\n optimizer : str or Optimizer, optional\n The name of the chosen optimizer, or an optimizer object, used for training.\n initializer : initializer function, optional\n The initialization scheme used.\n eval_data : DataIter or numpy.ndarray pair\n If `eval_set` is ``numpy.ndarray`` pair, it should\n be (`valid_data`, `valid_label`).\n eval_metric : metric.EvalMetric or str or callable\n The evaluation metric. Can be the name of an evaluation metric\n or a custom evaluation function that returns statistics\n based on a minibatch.\n epoch_end_callback : callable(epoch, symbol, arg_params, aux_states)\n A callback that is invoked at end of each epoch.\n This can be used to checkpoint model each epoch.\n batch_end_callback: callable(epoch)\n A callback that is invoked at end of each batch for print purposes.\n kvstore: KVStore or str, optional\n The KVStore or a string kvstore type: 'local', 'dist_sync', 'dis_async'.\n Defaults to 'local', often no need to change for single machine.\n logger : logging logger, optional\n When not specified, default logger will be used.\n work_load_list : list of float or int, optional\n The list of work load for different devices,\n in the same order as `ctx`.\n "
]
|
Please provide a description of the function:def build_save_containers(platforms, registry, load_cache) -> int:
from joblib import Parallel, delayed
if len(platforms) == 0:
return 0
platform_results = Parallel(n_jobs=PARALLEL_BUILDS, backend="multiprocessing")(
delayed(_build_save_container)(platform, registry, load_cache)
for platform in platforms)
is_error = False
for platform_result in platform_results:
if platform_result is not None:
logging.error('Failed to generate %s', platform_result)
is_error = True
return 1 if is_error else 0 | [
"\n Entry point to build and upload all built dockerimages in parallel\n :param platforms: List of platforms\n :param registry: Docker registry name\n :param load_cache: Load cache before building\n :return: 1 if error occurred, 0 otherwise\n "
]
|
Please provide a description of the function:def _build_save_container(platform, registry, load_cache) -> Optional[str]:
docker_tag = build_util.get_docker_tag(platform=platform, registry=registry)
# Preload cache
if load_cache:
load_docker_cache(registry=registry, docker_tag=docker_tag)
# Start building
logging.debug('Building %s as %s', platform, docker_tag)
try:
# Increase the number of retries for building the cache.
image_id = build_util.build_docker(docker_binary='docker', platform=platform, registry=registry, num_retries=10, no_cache=False)
logging.info('Built %s as %s', docker_tag, image_id)
# Push cache to registry
_upload_image(registry=registry, docker_tag=docker_tag, image_id=image_id)
return None
except Exception:
logging.exception('Unexpected exception during build of %s', docker_tag)
return platform | [
"\n Build image for passed platform and upload the cache to the specified S3 bucket\n :param platform: Platform\n :param registry: Docker registry name\n :param load_cache: Load cache before building\n :return: Platform if failed, None otherwise\n "
]
|
Please provide a description of the function:def _upload_image(registry, docker_tag, image_id) -> None:
# We don't have to retag the image since it is already in the right format
logging.info('Uploading %s (%s) to %s', docker_tag, image_id, registry)
push_cmd = ['docker', 'push', docker_tag]
subprocess.check_call(push_cmd) | [
"\n Upload the passed image by id, tag it with docker tag and upload to S3 bucket\n :param registry: Docker registry name\n :param docker_tag: Docker tag\n :param image_id: Image id\n :return: None\n "
]
|
Please provide a description of the function:def _login_dockerhub():
dockerhub_credentials = _get_dockerhub_credentials()
logging.info('Logging in to DockerHub')
# We use password-stdin instead of --password to avoid leaking passwords in case of an error.
# This method will produce the following output:
# > WARNING! Your password will be stored unencrypted in /home/jenkins_slave/.docker/config.json.
# > Configure a credential helper to remove this warning. See
# > https://docs.docker.com/engine/reference/commandline/login/#credentials-store
# Since we consider the restricted slaves a secure environment, that's fine. Also, using this will require
# third party applications which would need a review first as well.
p = subprocess.run(['docker', 'login', '--username', dockerhub_credentials['username'], '--password-stdin'],
stdout=subprocess.PIPE, input=str.encode(dockerhub_credentials['password']))
logging.info(p.stdout)
logging.info('Successfully logged in to DockerHub') | [
"\n Login to the Docker Hub account\n :return: None\n "
]
|
Please provide a description of the function:def load_docker_cache(registry, docker_tag) -> None:
# We don't have to retag the image since it's already in the right format
if not registry:
return
assert docker_tag
logging.info('Loading Docker cache for %s from %s', docker_tag, registry)
pull_cmd = ['docker', 'pull', docker_tag]
# Don't throw an error if the image does not exist
subprocess.run(pull_cmd, timeout=DOCKER_CACHE_TIMEOUT_MINS*60)
logging.info('Successfully pulled docker cache') | [
"\n Load the precompiled docker cache from the registry\n :param registry: Docker registry name\n :param docker_tag: Docker tag to load\n :return: None\n "
]
|
Please provide a description of the function:def delete_local_docker_cache(docker_tag):
history_cmd = ['docker', 'history', '-q', docker_tag]
try:
image_ids_b = subprocess.check_output(history_cmd)
image_ids_str = image_ids_b.decode('utf-8').strip()
layer_ids = [id.strip() for id in image_ids_str.split('\n') if id != '<missing>']
delete_cmd = ['docker', 'image', 'rm', '--force']
delete_cmd.extend(layer_ids)
subprocess.check_call(delete_cmd)
except subprocess.CalledProcessError as error:
# Could be caused by the image not being present
logging.debug('Error during local cache deletion %s', error) | [
"\n Delete the local docker cache for the entire docker image chain\n :param docker_tag: Docker tag\n :return: None\n "
]
|
Please provide a description of the function:def main() -> int:
# We need to be in the same directory than the script so the commands in the dockerfiles work as
# expected. But the script can be invoked from a different path
base = os.path.split(os.path.realpath(__file__))[0]
os.chdir(base)
logging.getLogger().setLevel(logging.DEBUG)
logging.getLogger('botocore').setLevel(logging.INFO)
logging.getLogger('boto3').setLevel(logging.INFO)
logging.getLogger('urllib3').setLevel(logging.INFO)
logging.getLogger('s3transfer').setLevel(logging.INFO)
def script_name() -> str:
return os.path.split(sys.argv[0])[1]
logging.basicConfig(format='{}: %(asctime)-15s %(message)s'.format(script_name()))
parser = argparse.ArgumentParser(description="Utility for preserving and loading Docker cache", epilog="")
parser.add_argument("--docker-registry",
help="Docker hub registry name",
type=str,
required=True)
args = parser.parse_args()
platforms = build_util.get_platforms()
try:
_login_dockerhub()
return build_save_containers(platforms=platforms, registry=args.docker_registry, load_cache=True)
finally:
_logout_dockerhub() | [
"\n Utility to create and publish the Docker cache to Docker Hub\n :return:\n "
]
|
Please provide a description of the function:def get_chinese_text():
if not os.path.isdir("data/"):
os.system("mkdir data/")
if (not os.path.exists('data/pos.txt')) or \
(not os.path.exists('data/neg')):
os.system("wget -q https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/example/chinese_text.zip "
"-P data/")
os.chdir("./data")
os.system("unzip -u chinese_text.zip")
os.chdir("..") | [
"Download the chinese_text dataset and unzip it"
]
|
Please provide a description of the function:def load_data_and_labels():
# download dataset
get_chinese_text()
# Load data from files
positive_examples = list(codecs.open("./data/pos.txt", "r", "utf-8").readlines())
positive_examples = [s.strip() for s in positive_examples]
positive_examples = [pe for pe in positive_examples if len(pe) < 100]
negative_examples = list(codecs.open("./data/neg.txt", "r", "utf-8").readlines())
negative_examples = [s.strip() for s in negative_examples]
negative_examples = [ne for ne in negative_examples if len(ne) < 100]
# Split by words
x_text = positive_examples + negative_examples
# x_text = [clean_str(sent) for sent in x_text]
x_text = [list(s) for s in x_text]
# Generate labels
positive_labels = [[0, 1] for _ in positive_examples]
negative_labels = [[1, 0] for _ in negative_examples]
y = np.concatenate([positive_labels, negative_labels], 0)
return [x_text, y] | [
"Loads MR polarity data from files, splits the data into words and generates labels.\n Returns split sentences and labels.\n "
]
|
Please provide a description of the function:def reset(self):
if getattr(self, 'num', None) is None:
self.num_inst = 0
self.sum_metric = 0.0
else:
self.num_inst = [0] * self.num
self.sum_metric = [0.0] * self.num | [
"\n override reset behavior\n "
]
|
Please provide a description of the function:def reset_local(self):
if getattr(self, 'num', None) is None:
self.num_inst = 0
self.sum_metric = 0.0
else:
self.num_inst = [0] * self.num
self.sum_metric = [0.0] * self.num | [
"\n override reset behavior\n "
]
|
Please provide a description of the function:def update(self, labels, preds):
# get generated multi label from network
cls_prob = preds[0].asnumpy()
loc_loss = preds[1].asnumpy()
cls_label = preds[2].asnumpy()
valid_count = np.sum(cls_label >= 0)
# overall accuracy & object accuracy
label = cls_label.flatten()
mask = np.where(label >= 0)[0]
indices = np.int64(label[mask])
prob = cls_prob.transpose((0, 2, 1)).reshape((-1, cls_prob.shape[1]))
prob = prob[mask, indices]
self.sum_metric[0] += (-np.log(prob + self.eps)).sum()
self.num_inst[0] += valid_count
# smoothl1loss
self.sum_metric[1] += np.sum(loc_loss)
self.num_inst[1] += valid_count | [
"\n Implementation of updating metrics\n "
]
|
Please provide a description of the function:def get(self):
if self.num is None:
if self.num_inst == 0:
return (self.name, float('nan'))
else:
return (self.name, self.sum_metric / self.num_inst)
else:
names = ['%s'%(self.name[i]) for i in range(self.num)]
values = [x / y if y != 0 else float('nan') \
for x, y in zip(self.sum_metric, self.num_inst)]
return (names, values) | [
"Get the current evaluation result.\n Override the default behavior\n\n Returns\n -------\n name : str\n Name of the metric.\n value : float\n Value of the evaluation.\n "
]
|
Please provide a description of the function:def dqn_sym_nips(action_num, data=None, name='dqn'):
if data is None:
net = mx.symbol.Variable('data')
else:
net = data
net = mx.symbol.Convolution(data=net, name='conv1', kernel=(8, 8), stride=(4, 4), num_filter=16)
net = mx.symbol.Activation(data=net, name='relu1', act_type="relu")
net = mx.symbol.Convolution(data=net, name='conv2', kernel=(4, 4), stride=(2, 2), num_filter=32)
net = mx.symbol.Activation(data=net, name='relu2', act_type="relu")
net = mx.symbol.Flatten(data=net)
net = mx.symbol.FullyConnected(data=net, name='fc3', num_hidden=256)
net = mx.symbol.Activation(data=net, name='relu3', act_type="relu")
net = mx.symbol.FullyConnected(data=net, name='fc4', num_hidden=action_num)
net = mx.symbol.Custom(data=net, name=name, op_type='DQNOutput')
return net | [
"Structure of the Deep Q Network in the NIPS 2013 workshop paper:\n Playing Atari with Deep Reinforcement Learning (https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf)\n\n Parameters\n ----------\n action_num : int\n data : mxnet.sym.Symbol, optional\n name : str, optional\n "
]
|
Please provide a description of the function:def _monitor_callback_wrapper(callback):
def callback_handle(name, array, _):
callback(name, array)
return callback_handle | [
"A wrapper for the user-defined handle.",
" ctypes function "
]
|
Please provide a description of the function:def _get_dict(names, ndarrays):
nset = set()
for nm in names:
if nm in nset:
raise ValueError('Duplicate names detected, %s' % str(names))
nset.add(nm)
return dict(zip(names, ndarrays)) | [
"Get the dictionary given name and ndarray pairs."
]
|
Please provide a description of the function:def _get_outputs(self):
out_size = mx_uint()
handles = ctypes.POINTER(NDArrayHandle)()
check_call(_LIB.MXExecutorOutputs(self.handle,
ctypes.byref(out_size), ctypes.byref(handles)))
num_output = out_size.value
outputs = [_ndarray_cls(NDArrayHandle(handles[i])) for i in range(num_output)]
return outputs | [
"List all the output NDArray.\n\n Returns\n -------\n A list of ndarray bound to the heads of executor.\n "
]
|
Please provide a description of the function:def forward(self, is_train=False, **kwargs):
if len(kwargs) != 0:
arg_dict = self.arg_dict
for name, array in kwargs.items():
if not isinstance(array, (NDArray, np.ndarray)):
raise ValueError('only accept keyword argument of NDArrays and numpy.ndarray')
if name not in arg_dict:
raise TypeError('Unknown argument %s' % name)
if arg_dict[name].shape != array.shape:
raise ValueError('Shape not match! Argument %s, need: %s, received: %s'
%(name, str(arg_dict[name].shape), str(array.shape)))
arg_dict[name][:] = array
check_call(_LIB.MXExecutorForward(
self.handle,
ctypes.c_int(int(is_train))))
return self.outputs | [
"Calculate the outputs specified by the bound symbol.\n\n Parameters\n ----------\n is_train: bool, optional\n Whether this forward is for evaluation purpose. If True,\n a backward call is expected to follow.\n\n **kwargs\n Additional specification of input arguments.\n\n Examples\n --------\n >>> # doing forward by specifying data\n >>> texec.forward(is_train=True, data=mydata)\n >>> # doing forward by not specifying things, but copy to the executor before hand\n >>> mydata.copyto(texec.arg_dict['data'])\n >>> texec.forward(is_train=True)\n >>> # doing forward by specifying data and get outputs\n >>> outputs = texec.forward(is_train=True, data=mydata)\n >>> print(outputs[0].asnumpy())\n "
]
|
Please provide a description of the function:def backward(self, out_grads=None, is_train=True):
if out_grads is None:
out_grads = []
elif isinstance(out_grads, NDArray):
out_grads = [out_grads]
elif isinstance(out_grads, dict):
out_grads = [out_grads[k] for k in self._symbol.list_outputs()]
for obj in out_grads:
if not isinstance(obj, NDArray):
raise TypeError("inputs must be NDArray")
ndarray = c_handle_array(out_grads)
check_call(_LIB.MXExecutorBackwardEx(
self.handle,
mx_uint(len(out_grads)),
ndarray,
ctypes.c_int(is_train))) | [
"Do backward pass to get the gradient of arguments.\n\n Parameters\n ----------\n out_grads : NDArray or list of NDArray or dict of str to NDArray, optional\n Gradient on the outputs to be propagated back.\n This parameter is only needed when bind is called\n on outputs that are not a loss function.\n is_train : bool, default True\n Whether this backward is for training or inference. Note that in rare\n cases you want to call backward with is_train=False to get gradient\n during inference.\n\n\n Examples\n --------\n >>> # Example for binding on loss function symbol, which gives the loss value of the model.\n >>> # Equivalently it gives the head gradient for backward pass.\n >>> # In this example the built-in SoftmaxOutput is used as loss function.\n >>> # MakeLoss can be used to define customized loss function symbol.\n >>> net = mx.sym.Variable('data')\n >>> net = mx.sym.FullyConnected(net, name='fc', num_hidden=6)\n >>> net = mx.sym.Activation(net, name='relu', act_type=\"relu\")\n >>> net = mx.sym.SoftmaxOutput(net, name='softmax')\n\n >>> args = {'data': mx.nd.ones((1, 4)), 'fc_weight': mx.nd.ones((6, 4)),\n >>> 'fc_bias': mx.nd.array((1, 4, 4, 4, 5, 6)), 'softmax_label': mx.nd.ones((1))}\n >>> args_grad = {'fc_weight': mx.nd.zeros((6, 4)), 'fc_bias': mx.nd.zeros((6))}\n >>> texec = net.bind(ctx=mx.cpu(), args=args, args_grad=args_grad)\n >>> out = texec.forward(is_train=True)[0].copy()\n >>> print out.asnumpy()\n [[ 0.00378404 0.07600445 0.07600445 0.07600445 0.20660152 0.5616011 ]]\n >>> texec.backward()\n >>> print(texec.grad_arrays[1].asnumpy())\n [[ 0.00378404 0.00378404 0.00378404 0.00378404]\n [-0.92399555 -0.92399555 -0.92399555 -0.92399555]\n [ 0.07600445 0.07600445 0.07600445 0.07600445]\n [ 0.07600445 0.07600445 0.07600445 0.07600445]\n [ 0.20660152 0.20660152 0.20660152 0.20660152]\n [ 0.5616011 0.5616011 0.5616011 0.5616011 ]]\n >>>\n >>> # Example for binding on non-loss function symbol.\n >>> # Here the binding symbol is neither built-in loss function\n >>> # nor customized loss created by MakeLoss.\n >>> # As a result the head gradient is not automatically provided.\n >>> a = mx.sym.Variable('a')\n >>> b = mx.sym.Variable('b')\n >>> # c is not a loss function symbol\n >>> c = 2 * a + b\n >>> args = {'a': mx.nd.array([1,2]), 'b':mx.nd.array([2,3])}\n >>> args_grad = {'a': mx.nd.zeros((2)), 'b': mx.nd.zeros((2))}\n >>> texec = c.bind(ctx=mx.cpu(), args=args, args_grad=args_grad)\n >>> out = texec.forward(is_train=True)[0].copy()\n >>> print(out.asnumpy())\n [ 4. 7.]\n >>> # out_grads is the head gradient in backward pass.\n >>> # Here we define 'c' as loss function.\n >>> # Then 'out' is passed as head gradient of backward pass.\n >>> texec.backward(out)\n >>> print(texec.grad_arrays[0].asnumpy())\n [ 8. 14.]\n >>> print(texec.grad_arrays[1].asnumpy())\n [ 4. 7.]\n "
]
|
Please provide a description of the function:def set_monitor_callback(self, callback, monitor_all=False):
cb_type = ctypes.CFUNCTYPE(None, ctypes.c_char_p, NDArrayHandle, ctypes.c_void_p)
self._monitor_callback = cb_type(_monitor_callback_wrapper(callback))
check_call(_LIB.MXExecutorSetMonitorCallbackEX(
self.handle,
self._monitor_callback,
None,
ctypes.c_int(monitor_all))) | [
"Install callback for monitor.\n\n Parameters\n ----------\n callback : function\n Takes a string and an NDArrayHandle.\n monitor_all : bool, default False\n If true, monitor both input and output, otherwise monitor output only.\n\n Examples\n --------\n >>> def mon_callback(*args, **kwargs):\n >>> print(\"Do your stuff here.\")\n >>>\n >>> texe.set_monitor_callback(mon_callback)\n "
]
|
Please provide a description of the function:def arg_dict(self):
if self._arg_dict is None:
self._arg_dict = Executor._get_dict(
self._symbol.list_arguments(), self.arg_arrays)
return self._arg_dict | [
"Get dictionary representation of argument arrrays.\n\n Returns\n -------\n arg_dict : dict of str to NDArray\n The dictionary that maps the names of arguments to NDArrays.\n\n Raises\n ------\n ValueError : if there are duplicated names in the arguments.\n "
]
|
Please provide a description of the function:def grad_dict(self):
if self._grad_dict is None:
self._grad_dict = Executor._get_dict(
self._symbol.list_arguments(), self.grad_arrays)
return self._grad_dict | [
"Get dictionary representation of gradient arrays.\n\n Returns\n -------\n grad_dict : dict of str to NDArray\n The dictionary that maps name of arguments to gradient arrays.\n "
]
|
Please provide a description of the function:def aux_dict(self):
if self._aux_dict is None:
self._aux_dict = Executor._get_dict(
self._symbol.list_auxiliary_states(), self.aux_arrays)
return self._aux_dict | [
"Get dictionary representation of auxiliary states arrays.\n\n Returns\n -------\n aux_dict : dict of str to NDArray\n The dictionary that maps name of auxiliary states to NDArrays.\n\n Raises\n ------\n ValueError : if there are duplicated names in the auxiliary states.\n "
]
|
Please provide a description of the function:def output_dict(self):
if self._output_dict is None:
self._output_dict = Executor._get_dict(
self._symbol.list_outputs(), self.outputs)
return self._output_dict | [
"Get dictionary representation of output arrays.\n\n Returns\n -------\n output_dict : dict of str to NDArray\n The dictionary that maps name of output names to NDArrays.\n\n Raises\n ------\n ValueError : if there are duplicated names in the outputs.\n "
]
|
Please provide a description of the function:def copy_params_from(self, arg_params, aux_params=None, allow_extra_params=False):
for name, array in arg_params.items():
if name in self.arg_dict:
dst = self.arg_dict[name]
array.astype(dst.dtype).copyto(dst)
elif not allow_extra_params:
raise ValueError('Find name \"%s\" that is not in the arguments' % name)
if aux_params is None:
return
for name, array in aux_params.items():
if name in self.aux_dict:
dst = self.aux_dict[name]
array.astype(dst.dtype).copyto(dst)
elif not allow_extra_params:
raise ValueError('Find name %s that is not in the auxiliary states' % name) | [
"Copy parameters from arg_params, aux_params into executor's internal array.\n\n Parameters\n ----------\n arg_params : dict of str to NDArray\n Parameters, dict of name to NDArray of arguments.\n\n aux_params : dict of str to NDArray, optional\n Parameters, dict of name to NDArray of auxiliary states.\n\n allow_extra_params : boolean, optional\n Whether allow extra parameters that are not needed by symbol.\n If this is True, no error will be thrown when arg_params or aux_params\n contain extra parameters that is not needed by the executor.\n\n Raises\n ------\n ValueError\n If there is additional parameters in the dict but ``allow_extra_params=False``.\n\n Examples\n --------\n >>> # set parameters with existing model checkpoint\n >>> model_prefix = 'mx_mlp'\n >>> sym, arg_params, aux_params = mx.model.load_checkpoint(model_prefix, 0)\n >>> texec.copy_params_from(arg_params, aux_params)\n "
]
|
Please provide a description of the function:def reshape(self, partial_shaping=False, allow_up_sizing=False, **kwargs):
# pylint: disable=too-many-branches
provided_arg_shape_data = [] # shape data
# argument shape index in sdata,
# e.g. [sdata[indptr[0]], sdata[indptr[1]]) is the shape of the first arg
provided_arg_shape_idx = [0]
provided_arg_shape_names = [] # provided argument names
for k, v in kwargs.items():
if isinstance(v, tuple):
provided_arg_shape_names.append(k)
provided_arg_shape_data.extend(v)
provided_arg_shape_idx.append(len(provided_arg_shape_data))
ctx_map_keys = []
ctx_map_dev_types = []
ctx_map_dev_ids = []
if self._group2ctx:
for key, val in self._group2ctx.items():
ctx_map_keys.append(key)
ctx_map_dev_types.append(val.device_typeid)
ctx_map_dev_ids.append(val.device_id)
handle = ExecutorHandle()
shared_handle = self.handle
num_in_args = ctypes.c_uint()
in_arg_handles = ctypes.POINTER(NDArrayHandle)()
arg_grad_handles = ctypes.POINTER(NDArrayHandle)()
num_aux_states = ctypes.c_uint()
aux_state_handles = ctypes.POINTER(NDArrayHandle)()
check_call(_LIB.MXExecutorReshapeEx(ctypes.c_int(int(partial_shaping)),
ctypes.c_int(int(allow_up_sizing)),
ctypes.c_int(self._ctx.device_typeid),
ctypes.c_int(self._ctx.device_id),
mx_uint(len(ctx_map_keys)),
c_str_array(ctx_map_keys),
c_array_buf(ctypes.c_int,
py_array('i', ctx_map_dev_types)),
c_array_buf(ctypes.c_int,
py_array('i', ctx_map_dev_ids)),
mx_uint(len(provided_arg_shape_names)),
c_str_array(provided_arg_shape_names),
c_array_buf(mx_int,
py_array('i', provided_arg_shape_data)),
c_array_buf(mx_uint,
py_array('I', provided_arg_shape_idx)),
ctypes.byref(num_in_args),
ctypes.byref(in_arg_handles),
ctypes.byref(arg_grad_handles),
ctypes.byref(num_aux_states),
ctypes.byref(aux_state_handles),
shared_handle,
ctypes.byref(handle)))
arg_arrays = [_ndarray_cls(NDArrayHandle(in_arg_handles[i]))
for i in range(num_in_args.value)]
grad_arrays = [_ndarray_cls(NDArrayHandle(arg_grad_handles[i]))
if arg_grad_handles[i] is not None
else None for i in range(num_in_args.value)]
aux_arrays = [_ndarray_cls(NDArrayHandle(aux_state_handles[i]))
for i in range(num_aux_states.value)]
executor = Executor(handle, self._symbol, self._ctx, self._grad_req, self._group2ctx)
executor.arg_arrays = arg_arrays
executor.grad_arrays = grad_arrays
executor.aux_arrays = aux_arrays
return executor | [
"Return a new executor with the same symbol and shared memory,\n but different input/output shapes.\n For runtime reshaping, variable length sequences, etc.\n The returned executor shares state with the current one,\n and cannot be used in parallel with it.\n\n Parameters\n ----------\n partial_shaping : bool\n Whether to allow changing the shape of unspecified arguments.\n allow_up_sizing : bool\n Whether to allow allocating new ndarrays that's larger than the original.\n kwargs : dict of string to tuple of int\n New shape for arguments.\n\n Returns\n -------\n exec : Executor\n A new executor that shares memory with self.\n\n Examples\n --------\n >>> a = mx.sym.Variable('a')\n >>> b = mx.sym.Variable('b')\n >>> c = 2 * a + b\n >>> texec = c.bind(mx.cpu(), {'a': mx.nd.zeros((2, 1)), 'b': mx.nd.ones((2,1))})\n >>> new_shape = {'a': (4, 2), 'b': (4, 2)}\n >>> texec.reshape(allow_up_sizing=True, **new_shape)\n "
]
|
Please provide a description of the function:def debug_str(self):
debug_str = ctypes.c_char_p()
check_call(_LIB.MXExecutorPrint(
self.handle, ctypes.byref(debug_str)))
return py_str(debug_str.value) | [
"Get a debug string about internal execution plan.\n\n Returns\n -------\n debug_str : string\n Debug string of the executor.\n\n Examples\n --------\n >>> a = mx.sym.Variable('a')\n >>> b = mx.sym.sin(a)\n >>> c = 2 * a + b\n >>> texec = c.bind(mx.cpu(), {'a': mx.nd.array([1,2]), 'b':mx.nd.array([2,3])})\n >>> print(texec.debug_str())\n Symbol Outputs:\n\t output[0]=_plus0(0)\n Variable:a\n --------------------\n Op:_mul_scalar, Name=_mulscalar0\n Inputs:\n\t arg[0]=a(0) version=0\n Attrs:\n\t scalar=2\n --------------------\n Op:sin, Name=sin0\n Inputs:\n\t arg[0]=a(0) version=0\n --------------------\n Op:elemwise_add, Name=_plus0\n Inputs:\n\t arg[0]=_mulscalar0(0)\n\t arg[1]=sin0(0)\n Total 0 MB allocated\n Total 11 TempSpace resource requested\n "
]
|
Please provide a description of the function:def parse_voc_rec(filename):
import xml.etree.ElementTree as ET
tree = ET.parse(filename)
objects = []
for obj in tree.findall('object'):
obj_dict = dict()
obj_dict['name'] = obj.find('name').text
obj_dict['difficult'] = int(obj.find('difficult').text)
bbox = obj.find('bndbox')
obj_dict['bbox'] = [int(bbox.find('xmin').text),
int(bbox.find('ymin').text),
int(bbox.find('xmax').text),
int(bbox.find('ymax').text)]
objects.append(obj_dict)
return objects | [
"\n parse pascal voc record into a dictionary\n :param filename: xml file path\n :return: list of dict\n "
]
|
Please provide a description of the function:def voc_eval(detpath, annopath, imageset_file, classname, cache_dir, ovthresh=0.5, use_07_metric=False):
if not os.path.isdir(cache_dir):
os.mkdir(cache_dir)
cache_file = os.path.join(cache_dir, 'annotations.pkl')
with open(imageset_file, 'r') as f:
lines = f.readlines()
image_filenames = [x.strip() for x in lines]
# load annotations from cache
if not os.path.isfile(cache_file):
recs = {}
for ind, image_filename in enumerate(image_filenames):
recs[image_filename] = parse_voc_rec(annopath.format(image_filename))
if ind % 100 == 0:
print('reading annotations for {:d}/{:d}'.format(ind + 1, len(image_filenames)))
print('saving annotations cache to {:s}'.format(cache_file))
with open(cache_file, 'wb') as f:
pickle.dump(recs, f)
else:
with open(cache_file, 'rb') as f:
recs = pickle.load(f)
# extract objects in :param classname:
class_recs = {}
npos = 0
for image_filename in image_filenames:
objects = [obj for obj in recs[image_filename] if obj['name'] == classname]
bbox = np.array([x['bbox'] for x in objects])
difficult = np.array([x['difficult'] for x in objects]).astype(np.bool)
det = [False] * len(objects) # stand for detected
npos = npos + sum(~difficult)
class_recs[image_filename] = {'bbox': bbox,
'difficult': difficult,
'det': det}
# read detections
detfile = detpath.format(classname)
with open(detfile, 'r') as f:
lines = f.readlines()
splitlines = [x.strip().split(' ') for x in lines]
image_ids = [x[0] for x in splitlines]
confidence = np.array([float(x[1]) for x in splitlines])
bbox = np.array([[float(z) for z in x[2:]] for x in splitlines])
# sort by confidence
sorted_inds = np.argsort(-confidence)
sorted_scores = np.sort(-confidence)
bbox = bbox[sorted_inds, :]
image_ids = [image_ids[x] for x in sorted_inds]
# go down detections and mark true positives and false positives
nd = len(image_ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
for d in range(nd):
r = class_recs[image_ids[d]]
bb = bbox[d, :].astype(float)
ovmax = -np.inf
bbgt = r['bbox'].astype(float)
if bbgt.size > 0:
# compute overlaps
# intersection
ixmin = np.maximum(bbgt[:, 0], bb[0])
iymin = np.maximum(bbgt[:, 1], bb[1])
ixmax = np.minimum(bbgt[:, 2], bb[2])
iymax = np.minimum(bbgt[:, 3], bb[3])
iw = np.maximum(ixmax - ixmin + 1., 0.)
ih = np.maximum(iymax - iymin + 1., 0.)
inters = iw * ih
# union
uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
(bbgt[:, 2] - bbgt[:, 0] + 1.) *
(bbgt[:, 3] - bbgt[:, 1] + 1.) - inters)
overlaps = inters / uni
ovmax = np.max(overlaps)
jmax = np.argmax(overlaps)
if ovmax > ovthresh:
if not r['difficult'][jmax]:
if not r['det'][jmax]:
tp[d] = 1.
r['det'][jmax] = 1
else:
fp[d] = 1.
else:
fp[d] = 1.
# compute precision recall
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / float(npos)
# avoid division by zero in case first detection matches a difficult ground ruth
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = voc_ap(rec, prec, use_07_metric)
return rec, prec, ap | [
"\n pascal voc evaluation\n :param detpath: detection results detpath.format(classname)\n :param annopath: annotations annopath.format(classname)\n :param imageset_file: text file containing list of images\n :param classname: category name\n :param cache_dir: caching annotations\n :param ovthresh: overlap threshold\n :param use_07_metric: whether to use voc07's 11 point ap computation\n :return: rec, prec, ap\n "
]
|
Please provide a description of the function:def register(op_name):
def wrapper(func):
try:
import onnx as _
MXNetGraph.registry_[op_name] = func
except ImportError:
pass
return func
return wrapper | [
"Register operators",
"Helper function to map functions"
]
|
Please provide a description of the function:def convert_layer(node, **kwargs):
op = str(node["op"])
if op not in MXNetGraph.registry_:
raise AttributeError("No conversion function registered for op type %s yet." % op)
convert_func = MXNetGraph.registry_[op]
return convert_func(node, **kwargs) | [
"Convert MXNet layer to ONNX"
]
|
Please provide a description of the function:def split_params(sym, params):
arg_params = {}
aux_params = {}
for args in sym.list_arguments():
if args in params:
arg_params.update({args: nd.array(params[args])})
for aux in sym.list_auxiliary_states():
if aux in params:
aux_params.update({aux: nd.array(params[aux])})
return arg_params, aux_params | [
"Helper function to split params dictionary into args and aux params\n\n Parameters\n ----------\n sym : :class:`~mxnet.symbol.Symbol`\n MXNet symbol object\n params : dict of ``str`` to :class:`~mxnet.ndarray.NDArray`\n Dict of converted parameters stored in ``mxnet.ndarray.NDArray`` format\n\n Returns\n -------\n arg_params : dict of ``str`` to :class:`~mxnet.ndarray.NDArray`\n Dict of converted parameters stored in ``mxnet.ndarray.NDArray`` format\n aux_params : dict of ``str`` to :class:`~mxnet.ndarray.NDArray`\n Dict of converted parameters stored in ``mxnet.ndarray.NDArray`` format\n "
]
|
Please provide a description of the function:def get_outputs(sym, params, in_shape, in_label):
# remove any input listed in params from sym.list_inputs() and bind them to the input shapes provided
# by user. Also remove in_label, which is the name of the label symbol that may have been used
# as the label for loss during training.
inputs = {n: tuple(s) for n, s in zip([n for n in sym.list_inputs() if n not in params and n != in_label],
in_shape)}
# Add params and their shape to list of inputs
inputs.update({n: v.shape for n, v in params.items() if n in sym.list_inputs()})
# Provide input data as well as input params to infer_shape()
_, out_shapes, _ = sym.infer_shape(**inputs)
out_names = list()
for name in sym.list_outputs():
if name.endswith('_output'):
out_names.append(name[:-len('_output')])
else:
logging.info("output '%s' does not end with '_output'", name)
out_names.append(name)
assert len(out_shapes) == len(out_names)
# bind output shapes with output names
graph_outputs = {n: s for n, s in zip(out_names, out_shapes)}
return graph_outputs | [
" Infer output shapes and return dictionary of output name to shape\n\n :param :class:`~mxnet.symbol.Symbol` sym: symbol to perform infer shape on\n :param dic of (str, nd.NDArray) params:\n :param list of tuple(int, ...) in_shape: list of all input shapes\n :param in_label: name of label typically used in loss that may be left in graph. This name is\n removed from list of inputs required by symbol\n :return: dictionary of output name to shape\n :rtype: dict of (str, tuple(int, ...))\n "
]
|
Please provide a description of the function:def convert_weights_to_numpy(weights_dict):
return dict([(k.replace("arg:", "").replace("aux:", ""), v.asnumpy())
for k, v in weights_dict.items()]) | [
"Convert weights to numpy"
]
|
Please provide a description of the function:def create_onnx_graph_proto(self, sym, params, in_shape, in_type, verbose=False):
try:
from onnx import (checker, helper, NodeProto, ValueInfoProto, TensorProto)
from onnx.helper import make_tensor_value_info
except ImportError:
raise ImportError("Onnx and protobuf need to be installed. "
+ "Instructions to install - https://github.com/onnx/onnx")
# When MXNet model is saved to json file , MXNet adds a node for label.
# The name of this node is, name of the last node + "_label" ( i.e if last node
# name is "Softmax", this node will have a name "Softmax_label". Also, the new node
# will always be second last node in the json graph.
# Deriving the output_label name.
output_label = sym.get_internals()[len(sym.get_internals()) - 1].name + "_label"
weights = MXNetGraph.convert_weights_to_numpy(params)
mx_graph = json.loads(sym.tojson())["nodes"]
initializer = []
all_processed_nodes = []
onnx_processed_nodes = []
onnx_processed_inputs = []
onnx_processed_outputs = []
index_lookup = []
# Determine output shape
graph_outputs = MXNetGraph.get_outputs(sym, params, in_shape, output_label)
graph_input_idx = 0
for idx, node in enumerate(mx_graph):
op = node["op"]
name = node["name"]
if verbose:
logging.info("Converting idx: %d, op: %s, name: %s", idx, op, name)
# A node is an input node if its op_name is "null" and is not
# in params dict
if op == "null" and name not in params:
# Handling graph input
# Skipping output_label node, as this node is not part of graph
# Refer "output_label" assignment above for more details.
if name == output_label:
continue
converted = MXNetGraph.convert_layer(
node,
is_input=True,
mx_graph=mx_graph,
weights=weights,
in_shape=in_shape[graph_input_idx],
in_type=in_type,
proc_nodes=all_processed_nodes,
initializer=initializer,
index_lookup=index_lookup)
graph_input_idx += 1
else:
# Handling graph layers
converted = MXNetGraph.convert_layer(
node,
is_input=False,
mx_graph=mx_graph,
weights=weights,
in_shape=in_shape,
in_type=in_type,
proc_nodes=all_processed_nodes,
initializer=initializer,
index_lookup=index_lookup,
idx=idx
)
if isinstance(converted, list):
# Iterate for all converted nodes
for converted_node in converted:
# If converted node is ValueInfoProto, add it in inputs
if isinstance(converted_node, ValueInfoProto):
onnx_processed_inputs.append(converted_node)
# If converted node is NodeProto, add it in processed nodes list
elif isinstance(converted_node, NodeProto):
onnx_processed_nodes.append(converted_node)
# some operators have multiple outputs,
# therefore, check all output node names
node_names = list(converted_node.output)
for nodename in node_names:
if nodename in graph_outputs:
onnx_processed_outputs.append(
make_tensor_value_info(
name=nodename,
elem_type=in_type,
shape=graph_outputs[nodename]
)
)
if verbose:
logging.info("Output node is: %s", nodename)
elif isinstance(converted_node, TensorProto):
raise ValueError("Did not expect TensorProto")
else:
raise ValueError("node is of an unrecognized type: %s" % type(node))
all_processed_nodes.append(converted_node)
if idx > 0:
# Handling extra node added to the graph if the MXNet model was
# saved to json file,
# refer "output_label" initialization above for more details.
# if extra node was added then prev_index to the last node is adjusted.
if idx == (len(mx_graph) - 1) and \
mx_graph[len(mx_graph)-2]["name"] == output_label:
prev_index = index_lookup[idx - 2]
else:
prev_index = index_lookup[idx - 1]
index_lookup.append(prev_index+len(converted))
else:
index_lookup.append(len(converted) - 1)
else:
logging.info("Operator converter function should always return a list")
graph = helper.make_graph(
onnx_processed_nodes,
"mxnet_converted_model",
onnx_processed_inputs,
onnx_processed_outputs
)
graph.initializer.extend(initializer)
checker.check_graph(graph)
return graph | [
"Convert MXNet graph to ONNX graph\n\n Parameters\n ----------\n sym : :class:`~mxnet.symbol.Symbol`\n MXNet symbol object\n params : dict of ``str`` to :class:`~mxnet.ndarray.NDArray`\n Dict of converted parameters stored in ``mxnet.ndarray.NDArray`` format\n in_shape : List of tuple\n Input shape of the model e.g [(1,3,224,224)]\n in_type : data type\n Input data type e.g. np.float32\n verbose : Boolean\n If true will print logs of the model conversion\n\n Returns\n -------\n graph : GraphProto\n ONNX graph\n "
]
|
Please provide a description of the function:def get_lr_scheduler(learning_rate, lr_refactor_step, lr_refactor_ratio,
num_example, batch_size, begin_epoch):
assert lr_refactor_ratio > 0
iter_refactor = [int(r) for r in lr_refactor_step.split(',') if r.strip()]
if lr_refactor_ratio >= 1:
return (learning_rate, None)
else:
lr = learning_rate
epoch_size = num_example // batch_size
for s in iter_refactor:
if begin_epoch >= s:
lr *= lr_refactor_ratio
if lr != learning_rate:
logging.getLogger().info("Adjusted learning rate to {} for epoch {}".format(lr, begin_epoch))
steps = [epoch_size * (x - begin_epoch) for x in iter_refactor if x > begin_epoch]
if not steps:
return (lr, None)
lr_scheduler = mx.lr_scheduler.MultiFactorScheduler(step=steps, factor=lr_refactor_ratio)
return (lr, lr_scheduler) | [
"\n Compute learning rate and refactor scheduler\n\n Parameters:\n ---------\n learning_rate : float\n original learning rate\n lr_refactor_step : comma separated str\n epochs to change learning rate\n lr_refactor_ratio : float\n lr *= ratio at certain steps\n num_example : int\n number of training images, used to estimate the iterations given epochs\n batch_size : int\n training batch size\n begin_epoch : int\n starting epoch\n\n Returns:\n ---------\n (learning_rate, mx.lr_scheduler) as tuple\n "
]
|
Please provide a description of the function:def train_net(net, train_path, num_classes, batch_size,
data_shape, mean_pixels, resume, finetune, pretrained, epoch,
prefix, ctx, begin_epoch, end_epoch, frequent, learning_rate,
momentum, weight_decay, lr_refactor_step, lr_refactor_ratio,
freeze_layer_pattern='',
num_example=10000, label_pad_width=350,
nms_thresh=0.45, force_nms=False, ovp_thresh=0.5,
use_difficult=False, class_names=None,
voc07_metric=False, nms_topk=400, force_suppress=False,
train_list="", val_path="", val_list="", iter_monitor=0,
monitor_pattern=".*", log_file=None, kv_store=None):
# set up logger
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
if log_file:
fh = logging.FileHandler(log_file)
logger.addHandler(fh)
# check args
if isinstance(data_shape, int):
data_shape = (3, data_shape, data_shape)
assert len(data_shape) == 3 and data_shape[0] == 3
prefix += '_' + net + '_' + str(data_shape[1])
if isinstance(mean_pixels, (int, float)):
mean_pixels = [mean_pixels, mean_pixels, mean_pixels]
assert len(mean_pixels) == 3, "must provide all RGB mean values"
train_iter = DetRecordIter(train_path, batch_size, data_shape, mean_pixels=mean_pixels,
label_pad_width=label_pad_width, path_imglist=train_list, **cfg.train)
if val_path:
val_iter = DetRecordIter(val_path, batch_size, data_shape, mean_pixels=mean_pixels,
label_pad_width=label_pad_width, path_imglist=val_list, **cfg.valid)
else:
val_iter = None
# load symbol
net = get_symbol_train(net, data_shape[1], num_classes=num_classes,
nms_thresh=nms_thresh, force_suppress=force_suppress, nms_topk=nms_topk)
# define layers with fixed weight/bias
if freeze_layer_pattern.strip():
re_prog = re.compile(freeze_layer_pattern)
fixed_param_names = [name for name in net.list_arguments() if re_prog.match(name)]
else:
fixed_param_names = None
# load pretrained or resume from previous state
ctx_str = '('+ ','.join([str(c) for c in ctx]) + ')'
if resume > 0:
logger.info("Resume training with {} from epoch {}"
.format(ctx_str, resume))
_, args, auxs = mx.model.load_checkpoint(prefix, resume)
begin_epoch = resume
elif finetune > 0:
logger.info("Start finetuning with {} from epoch {}"
.format(ctx_str, finetune))
_, args, auxs = mx.model.load_checkpoint(prefix, finetune)
begin_epoch = finetune
# the prediction convolution layers name starts with relu, so it's fine
fixed_param_names = [name for name in net.list_arguments() \
if name.startswith('conv')]
elif pretrained:
logger.info("Start training with {} from pretrained model {}"
.format(ctx_str, pretrained))
_, args, auxs = mx.model.load_checkpoint(pretrained, epoch)
args = convert_pretrained(pretrained, args)
else:
logger.info("Experimental: start training from scratch with {}"
.format(ctx_str))
args = None
auxs = None
fixed_param_names = None
# helper information
if fixed_param_names:
logger.info("Freezed parameters: [" + ','.join(fixed_param_names) + ']')
# init training module
mod = mx.mod.Module(net, label_names=('label',), logger=logger, context=ctx,
fixed_param_names=fixed_param_names)
# fit parameters
batch_end_callback = mx.callback.Speedometer(train_iter.batch_size, frequent=frequent)
epoch_end_callback = mx.callback.do_checkpoint(prefix)
learning_rate, lr_scheduler = get_lr_scheduler(learning_rate, lr_refactor_step,
lr_refactor_ratio, num_example, batch_size, begin_epoch)
optimizer_params={'learning_rate':learning_rate,
'momentum':momentum,
'wd':weight_decay,
'lr_scheduler':lr_scheduler,
'clip_gradient':None,
'rescale_grad': 1.0 / len(ctx) if len(ctx) > 0 else 1.0 }
monitor = mx.mon.Monitor(iter_monitor, pattern=monitor_pattern) if iter_monitor > 0 else None
# run fit net, every n epochs we run evaluation network to get mAP
if voc07_metric:
valid_metric = VOC07MApMetric(ovp_thresh, use_difficult, class_names, pred_idx=3)
else:
valid_metric = MApMetric(ovp_thresh, use_difficult, class_names, pred_idx=3)
# create kvstore when there are gpus
kv = mx.kvstore.create(kv_store) if kv_store else None
mod.fit(train_iter,
val_iter,
eval_metric=MultiBoxMetric(),
validation_metric=valid_metric,
batch_end_callback=batch_end_callback,
epoch_end_callback=epoch_end_callback,
optimizer='sgd',
optimizer_params=optimizer_params,
begin_epoch=begin_epoch,
num_epoch=end_epoch,
initializer=mx.init.Xavier(),
arg_params=args,
aux_params=auxs,
allow_missing=True,
monitor=monitor,
kvstore=kv) | [
"\n Wrapper for training phase.\n\n Parameters:\n ----------\n net : str\n symbol name for the network structure\n train_path : str\n record file path for training\n num_classes : int\n number of object classes, not including background\n batch_size : int\n training batch-size\n data_shape : int or tuple\n width/height as integer or (3, height, width) tuple\n mean_pixels : tuple of floats\n mean pixel values for red, green and blue\n resume : int\n resume from previous checkpoint if > 0\n finetune : int\n fine-tune from previous checkpoint if > 0\n pretrained : str\n prefix of pretrained model, including path\n epoch : int\n load epoch of either resume/finetune/pretrained model\n prefix : str\n prefix for saving checkpoints\n ctx : [mx.cpu()] or [mx.gpu(x)]\n list of mxnet contexts\n begin_epoch : int\n starting epoch for training, should be 0 if not otherwise specified\n end_epoch : int\n end epoch of training\n frequent : int\n frequency to print out training status\n learning_rate : float\n training learning rate\n momentum : float\n trainig momentum\n weight_decay : float\n training weight decay param\n lr_refactor_ratio : float\n multiplier for reducing learning rate\n lr_refactor_step : comma separated integers\n at which epoch to rescale learning rate, e.g. '30, 60, 90'\n freeze_layer_pattern : str\n regex pattern for layers need to be fixed\n num_example : int\n number of training images\n label_pad_width : int\n force padding training and validation labels to sync their label widths\n nms_thresh : float\n non-maximum suppression threshold for validation\n force_nms : boolean\n suppress overlaped objects from different classes\n train_list : str\n list file path for training, this will replace the embeded labels in record\n val_path : str\n record file path for validation\n val_list : str\n list file path for validation, this will replace the embeded labels in record\n iter_monitor : int\n monitor internal stats in networks if > 0, specified by monitor_pattern\n monitor_pattern : str\n regex pattern for monitoring network stats\n log_file : str\n log to file if enabled\n "
]
|
Please provide a description of the function:def imagenet50(display=False, resolution=224):
prefix = github_data_url + "imagenet50_"
X = np.load(cache(prefix + "%sx%s.npy" % (resolution, resolution))).astype(np.float32)
y = np.loadtxt(cache(prefix + "labels.csv"))
return X, y | [
" This is a set of 50 images representative of ImageNet images.\n\n This dataset was collected by randomly finding a working ImageNet link and then pasting the\n original ImageNet image into Google image search restricted to images licensed for reuse. A\n similar image (now with rights to reuse) was downloaded as a rough replacment for the original\n ImageNet image. The point is to have a random sample of ImageNet for use as a background\n distribution for explaining models trained on ImageNet data.\n\n Note that because the images are only rough replacements the labels might no longer be correct.\n "
]
|
Please provide a description of the function:def boston(display=False):
d = sklearn.datasets.load_boston()
df = pd.DataFrame(data=d.data, columns=d.feature_names) # pylint: disable=E1101
return df, d.target | [
" Return the boston housing data in a nice package. "
]
|
Please provide a description of the function:def imdb(display=False):
with open(cache(github_data_url + "imdb_train.txt")) as f:
data = f.readlines()
y = np.ones(25000, dtype=np.bool)
y[:12500] = 0
return data, y | [
" Return the clssic IMDB sentiment analysis training data in a nice package.\n\n Full data is at: http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz\n Paper to cite when using the data is: http://www.aclweb.org/anthology/P11-1015\n "
]
|
Please provide a description of the function:def communitiesandcrime(display=False):
raw_data = pd.read_csv(
cache(github_data_url + "CommViolPredUnnormalizedData.txt"),
na_values="?"
)
# find the indices where the total violent crimes are known
valid_inds = np.where(np.invert(np.isnan(raw_data.iloc[:,-2])))[0]
y = np.array(raw_data.iloc[valid_inds,-2], dtype=np.float)
# extract the predictive features and remove columns with missing values
X = raw_data.iloc[valid_inds,5:-18]
valid_cols = np.where(np.isnan(X.values).sum(0) == 0)[0]
X = X.iloc[:,valid_cols]
return X, y | [
" Predict total number of non-violent crimes per 100K popuation.\n\n This dataset is from the classic UCI Machine Learning repository:\n https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized\n "
]
|
Please provide a description of the function:def diabetes(display=False):
d = sklearn.datasets.load_diabetes()
df = pd.DataFrame(data=d.data, columns=d.feature_names) # pylint: disable=E1101
return df, d.target | [
" Return the diabetes data in a nice package. "
]
|
Please provide a description of the function:def iris(display=False):
d = sklearn.datasets.load_iris()
df = pd.DataFrame(data=d.data, columns=d.feature_names) # pylint: disable=E1101
if display:
return df, [d.target_names[v] for v in d.target] # pylint: disable=E1101
else:
return df, d.target | [
" Return the classic iris data in a nice package. "
]
|
Please provide a description of the function:def adult(display=False):
dtypes = [
("Age", "float32"), ("Workclass", "category"), ("fnlwgt", "float32"),
("Education", "category"), ("Education-Num", "float32"), ("Marital Status", "category"),
("Occupation", "category"), ("Relationship", "category"), ("Race", "category"),
("Sex", "category"), ("Capital Gain", "float32"), ("Capital Loss", "float32"),
("Hours per week", "float32"), ("Country", "category"), ("Target", "category")
]
raw_data = pd.read_csv(
cache(github_data_url + "adult.data"),
names=[d[0] for d in dtypes],
na_values="?",
dtype=dict(dtypes)
)
data = raw_data.drop(["Education"], axis=1) # redundant with Education-Num
filt_dtypes = list(filter(lambda x: not (x[0] in ["Target", "Education"]), dtypes))
data["Target"] = data["Target"] == " >50K"
rcode = {
"Not-in-family": 0,
"Unmarried": 1,
"Other-relative": 2,
"Own-child": 3,
"Husband": 4,
"Wife": 5
}
for k, dtype in filt_dtypes:
if dtype == "category":
if k == "Relationship":
data[k] = np.array([rcode[v.strip()] for v in data[k]])
else:
data[k] = data[k].cat.codes
if display:
return raw_data.drop(["Education", "Target", "fnlwgt"], axis=1), data["Target"].values
else:
return data.drop(["Target", "fnlwgt"], axis=1), data["Target"].values | [
" Return the Adult census data in a nice package. "
]
|
Please provide a description of the function:def nhanesi(display=False):
X = pd.read_csv(cache(github_data_url + "NHANESI_subset_X.csv"))
y = pd.read_csv(cache(github_data_url + "NHANESI_subset_y.csv"))["y"]
if display:
X_display = X.copy()
X_display["Sex"] = ["Male" if v == 1 else "Female" for v in X["Sex"]]
return X_display, np.array(y)
else:
return X, np.array(y) | [
" A nicely packaged version of NHANES I data with surivival times as labels.\n "
]
|
Please provide a description of the function:def cric(display=False):
X = pd.read_csv(cache(github_data_url + "CRIC_time_4yearESRD_X.csv"))
y = np.loadtxt(cache(github_data_url + "CRIC_time_4yearESRD_y.csv"))
if display:
X_display = X.copy()
return X_display, y
else:
return X, y | [
" A nicely packaged version of CRIC data with progression to ESRD within 4 years as the label.\n "
]
|
Please provide a description of the function:def corrgroups60(display=False):
# set a constant seed
old_seed = np.random.seed()
np.random.seed(0)
# generate dataset with known correlation
N = 1000
M = 60
# set one coefficent from each group of 3 to 1
beta = np.zeros(M)
beta[0:30:3] = 1
# build a correlation matrix with groups of 3 tightly correlated features
C = np.eye(M)
for i in range(0,30,3):
C[i,i+1] = C[i+1,i] = 0.99
C[i,i+2] = C[i+2,i] = 0.99
C[i+1,i+2] = C[i+2,i+1] = 0.99
f = lambda X: np.matmul(X, beta)
# Make sure the sample correlation is a perfect match
X_start = np.random.randn(N, M)
X_centered = X_start - X_start.mean(0)
Sigma = np.matmul(X_centered.T, X_centered) / X_centered.shape[0]
W = np.linalg.cholesky(np.linalg.inv(Sigma)).T
X_white = np.matmul(X_centered, W.T)
assert np.linalg.norm(np.corrcoef(np.matmul(X_centered, W.T).T) - np.eye(M)) < 1e-6 # ensure this decorrelates the data
# create the final data
X_final = np.matmul(X_white, np.linalg.cholesky(C).T)
X = X_final
y = f(X) + np.random.randn(N) * 1e-2
# restore the previous numpy random seed
np.random.seed(old_seed)
return pd.DataFrame(X), y | [
" Correlated Groups 60\n \n A simulated dataset with tight correlations among distinct groups of features.\n "
]
|
Please provide a description of the function:def independentlinear60(display=False):
# set a constant seed
old_seed = np.random.seed()
np.random.seed(0)
# generate dataset with known correlation
N = 1000
M = 60
# set one coefficent from each group of 3 to 1
beta = np.zeros(M)
beta[0:30:3] = 1
f = lambda X: np.matmul(X, beta)
# Make sure the sample correlation is a perfect match
X_start = np.random.randn(N, M)
X = X_start - X_start.mean(0)
y = f(X) + np.random.randn(N) * 1e-2
# restore the previous numpy random seed
np.random.seed(old_seed)
return pd.DataFrame(X), y | [
" A simulated dataset with tight correlations among distinct groups of features.\n "
]
|
Please provide a description of the function:def rank():
rank_data_url = 'https://raw.githubusercontent.com/Microsoft/LightGBM/master/examples/lambdarank/'
x_train, y_train = sklearn.datasets.load_svmlight_file(cache(rank_data_url + 'rank.train'))
x_test, y_test = sklearn.datasets.load_svmlight_file(cache(rank_data_url + 'rank.test'))
q_train = np.loadtxt(cache(rank_data_url + 'rank.train.query'))
q_test = np.loadtxt(cache(rank_data_url + 'rank.test.query'))
return x_train, y_train, x_test, y_test, q_train, q_test | [
" Ranking datasets from lightgbm repository.\n "
]
|
Please provide a description of the function:def batch_remove_retrain(nmask_train, nmask_test, X_train, y_train, X_test, y_test, attr_train, attr_test, model_generator, metric):
warnings.warn("The retrain based measures can incorrectly evaluate models in some cases!")
X_train, X_test = to_array(X_train, X_test)
# how many features to mask
assert X_train.shape[1] == X_test.shape[1]
# mask nmask top features for each explanation
X_train_tmp = X_train.copy()
X_train_mean = X_train.mean(0)
tie_breaking_noise = const_rand(X_train.shape[1]) * 1e-6
for i in range(len(y_train)):
if nmask_train[i] > 0:
ordering = np.argsort(-attr_train[i, :] + tie_breaking_noise)
X_train_tmp[i, ordering[:nmask_train[i]]] = X_train_mean[ordering[:nmask_train[i]]]
X_test_tmp = X_test.copy()
for i in range(len(y_test)):
if nmask_test[i] > 0:
ordering = np.argsort(-attr_test[i, :] + tie_breaking_noise)
X_test_tmp[i, ordering[:nmask_test[i]]] = X_train_mean[ordering[:nmask_test[i]]]
# train the model with all the given features masked
model_masked = model_generator()
model_masked.fit(X_train_tmp, y_train)
yp_test_masked = model_masked.predict(X_test_tmp)
return metric(y_test, yp_test_masked) | [
" An approximation of holdout that only retraines the model once.\n\n This is alse called ROAR (RemOve And Retrain) in work by Google. It is much more computationally\n efficient that the holdout method because it masks the most important features in every sample\n and then retrains the model once, instead of retraining the model for every test sample like\n the holdout metric.\n "
]
|
Please provide a description of the function:def keep_retrain(nkeep, X_train, y_train, X_test, y_test, attr_test, model_generator, metric, trained_model, random_state):
warnings.warn("The retrain based measures can incorrectly evaluate models in some cases!")
# see if we match the last cached call
global _keep_cache
args = (X_train, y_train, X_test, y_test, model_generator, metric)
cache_match = False
if "args" in _keep_cache:
if all(a is b for a,b in zip(_keep_cache["args"], args)) and np.all(_keep_cache["attr_test"] == attr_test):
cache_match = True
X_train, X_test = to_array(X_train, X_test)
# how many features to mask
assert X_train.shape[1] == X_test.shape[1]
# this is the model we will retrain many times
model_masked = model_generator()
# keep nkeep top features and re-train the model for each test explanation
X_train_tmp = np.zeros(X_train.shape)
X_test_tmp = np.zeros(X_test.shape)
yp_masked_test = np.zeros(y_test.shape)
tie_breaking_noise = const_rand(X_train.shape[1]) * 1e-6
last_nkeep = _keep_cache.get("nkeep", None)
last_yp_masked_test = _keep_cache.get("yp_masked_test", None)
for i in tqdm(range(len(y_test)), "Retraining for the 'keep' metric"):
if cache_match and last_nkeep[i] == nkeep[i]:
yp_masked_test[i] = last_yp_masked_test[i]
elif nkeep[i] == attr_test.shape[1]:
yp_masked_test[i] = trained_model.predict(X_test[i:i+1])[0]
else:
# mask out the most important features for this test instance
X_train_tmp[:] = X_train
X_test_tmp[:] = X_test
ordering = np.argsort(-attr_test[i,:] + tie_breaking_noise)
X_train_tmp[:,ordering[nkeep[i]:]] = X_train[:,ordering[nkeep[i]:]].mean()
X_test_tmp[i,ordering[nkeep[i]:]] = X_train[:,ordering[nkeep[i]:]].mean()
# retrain the model and make a prediction
model_masked.fit(X_train_tmp, y_train)
yp_masked_test[i] = model_masked.predict(X_test_tmp[i:i+1])[0]
# save our results so the next call to us can be faster when there is redundancy
_keep_cache["nkeep"] = nkeep
_keep_cache["yp_masked_test"] = yp_masked_test
_keep_cache["attr_test"] = attr_test
_keep_cache["args"] = args
return metric(y_test, yp_masked_test) | [
" The model is retrained for each test sample with the non-important features set to a constant.\n\n If you want to know how important a set of features is you can ask how the model would be\n different if only those features had existed. To determine this we can mask the other features\n across the entire training and test datasets, then retrain the model. If we apply compare the\n output of this retrained model to the original model we can see the effect produced by only\n knowning the important features. Since for individualized explanation methods each test sample\n has a different set of most important features we need to retrain the model for every test sample\n to get the change in model performance when a specified fraction of the most important features\n are retained.\n "
]
|
Please provide a description of the function:def keep_mask(nkeep, X_train, y_train, X_test, y_test, attr_test, model_generator, metric, trained_model, random_state):
X_train, X_test = to_array(X_train, X_test)
# how many features to mask
assert X_train.shape[1] == X_test.shape[1]
# keep nkeep top features for each test explanation
X_test_tmp = X_test.copy()
yp_masked_test = np.zeros(y_test.shape)
tie_breaking_noise = const_rand(X_train.shape[1], random_state) * 1e-6
mean_vals = X_train.mean(0)
for i in range(len(y_test)):
if nkeep[i] < X_test.shape[1]:
ordering = np.argsort(-attr_test[i,:] + tie_breaking_noise)
X_test_tmp[i,ordering[nkeep[i]:]] = mean_vals[ordering[nkeep[i]:]]
yp_masked_test = trained_model.predict(X_test_tmp)
return metric(y_test, yp_masked_test) | [
" The model is revaluated for each test sample with the non-important features set to their mean.\n "
]
|
Please provide a description of the function:def keep_impute(nkeep, X_train, y_train, X_test, y_test, attr_test, model_generator, metric, trained_model, random_state):
X_train, X_test = to_array(X_train, X_test)
# how many features to mask
assert X_train.shape[1] == X_test.shape[1]
# keep nkeep top features for each test explanation
C = np.cov(X_train.T)
C += np.eye(C.shape[0]) * 1e-6
X_test_tmp = X_test.copy()
yp_masked_test = np.zeros(y_test.shape)
tie_breaking_noise = const_rand(X_train.shape[1], random_state) * 1e-6
mean_vals = X_train.mean(0)
for i in range(len(y_test)):
if nkeep[i] < X_test.shape[1]:
ordering = np.argsort(-attr_test[i,:] + tie_breaking_noise)
observe_inds = ordering[:nkeep[i]]
impute_inds = ordering[nkeep[i]:]
# impute missing data assuming it follows a multivariate normal distribution
Coo_inv = np.linalg.inv(C[observe_inds,:][:,observe_inds])
Cio = C[impute_inds,:][:,observe_inds]
impute = mean_vals[impute_inds] + Cio @ Coo_inv @ (X_test[i, observe_inds] - mean_vals[observe_inds])
X_test_tmp[i, impute_inds] = impute
yp_masked_test = trained_model.predict(X_test_tmp)
return metric(y_test, yp_masked_test) | [
" The model is revaluated for each test sample with the non-important features set to an imputed value.\n\n Note that the imputation is done using a multivariate normality assumption on the dataset. This depends on\n being able to estimate the full data covariance matrix (and inverse) accuractly. So X_train.shape[0] should\n be significantly bigger than X_train.shape[1].\n "
]
|
Please provide a description of the function:def keep_resample(nkeep, X_train, y_train, X_test, y_test, attr_test, model_generator, metric, trained_model, random_state):
# why broken? overwriting?
X_train, X_test = to_array(X_train, X_test)
# how many features to mask
assert X_train.shape[1] == X_test.shape[1]
# how many samples to take
nsamples = 100
# keep nkeep top features for each test explanation
N,M = X_test.shape
X_test_tmp = np.tile(X_test, [1, nsamples]).reshape(nsamples * N, M)
tie_breaking_noise = const_rand(M) * 1e-6
inds = sklearn.utils.resample(np.arange(N), n_samples=nsamples, random_state=random_state)
for i in range(N):
if nkeep[i] < M:
ordering = np.argsort(-attr_test[i,:] + tie_breaking_noise)
X_test_tmp[i*nsamples:(i+1)*nsamples, ordering[nkeep[i]:]] = X_train[inds, :][:, ordering[nkeep[i]:]]
yp_masked_test = trained_model.predict(X_test_tmp)
yp_masked_test = np.reshape(yp_masked_test, (N, nsamples)).mean(1) # take the mean output over all samples
return metric(y_test, yp_masked_test) | [
" The model is revaluated for each test sample with the non-important features set to resample background values.\n "
]
|
Please provide a description of the function:def local_accuracy(X_train, y_train, X_test, y_test, attr_test, model_generator, metric, trained_model):
X_train, X_test = to_array(X_train, X_test)
# how many features to mask
assert X_train.shape[1] == X_test.shape[1]
# keep nkeep top features and re-train the model for each test explanation
yp_test = trained_model.predict(X_test)
return metric(yp_test, strip_list(attr_test).sum(1)) | [
" The how well do the features plus a constant base rate sum up to the model output.\n "
]
|
Please provide a description of the function:def const_rand(size, seed=23980):
old_seed = np.random.seed()
np.random.seed(seed)
out = np.random.rand(size)
np.random.seed(old_seed)
return out | [
" Generate a random array with a fixed seed.\n "
]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.