Code
stringlengths
103
85.9k
Summary
sequencelengths
0
94
Please provide a description of the function:def set_flow_node_ref_list(self, value): if value is None or not isinstance(value, list): raise TypeError("FlowNodeRefList new value must be a list") else: for element in value: if not isinstance(element, str): raise TypeError("FlowNodeRefList elements in variable must be of String class") self.__flow_node_ref_list = value
[ "\n Setter for 'flow_node_ref' field.\n :param value - a new value of 'flow_node_ref' field. Must be a list of String objects (ID of referenced nodes).\n " ]
Please provide a description of the function:def set_child_lane_set(self, value): if value is None: self.__child_lane_set = value elif not isinstance(value, lane_set.LaneSet): raise TypeError("ChildLaneSet must be a LaneSet") else: self.__child_lane_set = value
[ "\n Setter for 'child_lane_set' field.\n :param value - a new value of 'child_lane_set' field. Must be an object of LaneSet type.\n " ]
Please provide a description of the function:def export_xml_file(self, directory, filename): bpmn_export.BpmnDiagramGraphExport.export_xml_file(directory, filename, self)
[ "\n Exports diagram inner graph to BPMN 2.0 XML file (with Diagram Interchange data).\n\n :param directory: strings representing output directory,\n :param filename: string representing output file name.\n " ]
Please provide a description of the function:def export_xml_file_no_di(self, directory, filename): bpmn_export.BpmnDiagramGraphExport.export_xml_file_no_di(directory, filename, self)
[ "\n Exports diagram inner graph to BPMN 2.0 XML file (without Diagram Interchange data).\n\n :param directory: strings representing output directory,\n :param filename: string representing output file name.\n " ]
Please provide a description of the function:def export_csv_file(self, directory, filename): bpmn_csv_export.BpmnDiagramGraphCsvExport.export_process_to_csv(self, directory, filename)
[ "\n Exports diagram inner graph to BPMN 2.0 XML file (with Diagram Interchange data).\n\n :param directory: strings representing output directory,\n :param filename: string representing output file name.\n " ]
Please provide a description of the function:def get_nodes(self, node_type=""): tmp_nodes = self.diagram_graph.nodes(True) if node_type == "": return tmp_nodes else: nodes = [] for node in tmp_nodes: if node[1][consts.Consts.type] == node_type: nodes.append(node) return nodes
[ "\n Gets all nodes of requested type. If no type is provided by user, all nodes in BPMN diagram graph are returned.\n Returns a dictionary, where key is an ID of node, value is a dictionary of all node attributes.\n\n :param node_type: string with valid BPMN XML tag name (e.g. 'task', 'sequenceFlow').\n " ]
Please provide a description of the function:def get_nodes_list_by_process_id(self, process_id): tmp_nodes = self.diagram_graph.nodes(True) nodes = [] for node in tmp_nodes: if node[1][consts.Consts.process] == process_id: nodes.append(node) return nodes
[ "\n Gets all nodes of requested type. If no type is provided by user, all nodes in BPMN diagram graph are returned.\n Returns a dictionary, where key is an ID of node, value is a dictionary of all node attributes.\n\n :param process_id: string object, representing an ID of parent process element.\n " ]
Please provide a description of the function:def get_node_by_id(self, node_id): tmp_nodes = self.diagram_graph.nodes(data=True) for node in tmp_nodes: if node[0] == node_id: return node
[ "\n Gets a node with requested ID.\n Returns a tuple, where first value is node ID, second - a dictionary of all node attributes.\n\n :param node_id: string with ID of node.\n " ]
Please provide a description of the function:def get_nodes_id_list_by_type(self, node_type): tmp_nodes = self.diagram_graph.nodes(data=True) id_list = [] for node in tmp_nodes: if node[1][consts.Consts.type] == node_type: id_list.append(node[0]) return id_list
[ "\n Get a list of node's id by requested type.\n Returns a list of ids\n\n :param node_type: string with valid BPMN XML tag name (e.g. 'task', 'sequenceFlow').\n " ]
Please provide a description of the function:def get_flow_by_id(self, flow_id): tmp_flows = self.diagram_graph.edges(data=True) for flow in tmp_flows: if flow[2][consts.Consts.id] == flow_id: return flow
[ "\n Gets an edge (flow) with requested ID.\n Returns a tuple, where first value is node ID, second - a dictionary of all node attributes.\n\n :param flow_id: string with edge ID.\n " ]
Please provide a description of the function:def get_flows_list_by_process_id(self, process_id): tmp_flows = self.diagram_graph.edges(data=True) flows = [] for flow in tmp_flows: if consts.Consts.process in flow[2] and flow[2][consts.Consts.process] == process_id: flows.append(flow) return flows
[ "\n Gets an edge (flow) with requested ID.\n Returns a tuple, where first value is node ID, second - a dictionary of all node attributes.\n\n :param process_id: string object, representing an ID of parent process element.\n " ]
Please provide a description of the function:def create_new_diagram_graph(self, diagram_name=""): self.__init__() diagram_id = BpmnDiagramGraph.id_prefix + str(uuid.uuid4()) self.diagram_attributes[consts.Consts.id] = diagram_id self.diagram_attributes[consts.Consts.name] = diagram_name
[ "\n Initializes a new BPMN diagram and sets up a basic diagram attributes.\n Accepts a user-defined values for following attributes:\n (Diagram element)\n\n - name - default value empty string.\n\n :param diagram_name: string type. Represents a user-defined value of 'BPMNDiagram' element\n attribute 'name'. Default value - empty string.\n " ]
Please provide a description of the function:def add_process_to_diagram(self, process_name="", process_is_closed=False, process_is_executable=False, process_type="None"): plane_id = BpmnDiagramGraph.id_prefix + str(uuid.uuid4()) process_id = BpmnDiagramGraph.id_prefix + str(uuid.uuid4()) self.process_elements[process_id] = {consts.Consts.name: process_name, consts.Consts.is_closed: "true" if process_is_closed else "false", consts.Consts.is_executable: "true" if process_is_executable else "false", consts.Consts.process_type: process_type} self.plane_attributes[consts.Consts.id] = plane_id self.plane_attributes[consts.Consts.bpmn_element] = process_id return process_id
[ "\n Adds a new process to diagram and corresponding participant\n process, diagram and plane\n\n Accepts a user-defined values for following attributes:\n (Process element)\n - isClosed - default value false,\n - isExecutable - default value false,\n - processType - default value None.\n\n :param process_name: string obejct, process name. Default value - empty string,\n :param process_is_closed: boolean type. Represents a user-defined value of 'process' element\n attribute 'isClosed'. Default value false,\n :param process_is_executable: boolean type. Represents a user-defined value of 'process' element\n attribute 'isExecutable'. Default value false,\n :param process_type: string type. Represents a user-defined value of 'process' element\n attribute 'procesType'. Default value \"None\",\n " ]
Please provide a description of the function:def add_flow_node_to_diagram(self, process_id, node_type, name, node_id=None): if node_id is None: node_id = BpmnDiagramGraph.id_prefix + str(uuid.uuid4()) self.diagram_graph.add_node(node_id) self.diagram_graph.node[node_id][consts.Consts.id] = node_id self.diagram_graph.node[node_id][consts.Consts.type] = node_type self.diagram_graph.node[node_id][consts.Consts.node_name] = name self.diagram_graph.node[node_id][consts.Consts.incoming_flow] = [] self.diagram_graph.node[node_id][consts.Consts.outgoing_flow] = [] self.diagram_graph.node[node_id][consts.Consts.process] = process_id # Adding some dummy constant values self.diagram_graph.node[node_id][consts.Consts.width] = "100" self.diagram_graph.node[node_id][consts.Consts.height] = "100" self.diagram_graph.node[node_id][consts.Consts.x] = "100" self.diagram_graph.node[node_id][consts.Consts.y] = "100" return node_id, self.diagram_graph.node[node_id]
[ "\n Helper function that adds a new Flow Node to diagram. It is used to add a new node of specified type.\n Adds a basic information inherited from Flow Node type.\n\n :param process_id: string object. ID of parent process,\n :param node_type: string object. Represents type of BPMN node passed to method,\n :param name: string object. Name of the node,\n :param node_id: string object. ID of node. Default value - None.\n " ]
Please provide a description of the function:def add_task_to_diagram(self, process_id, task_name="", node_id=None): return self.add_flow_node_to_diagram(process_id, consts.Consts.task, task_name, node_id)
[ "\n Adds a Task element to BPMN diagram.\n User-defined attributes:\n\n - name\n\n\n :param process_id: string object. ID of parent process,\n :param task_name: string object. Name of task,\n :param node_id: string object. ID of node. Default value - None.\n :return: a tuple, where first value is task ID, second a reference to created object.\n " ]
Please provide a description of the function:def add_subprocess_to_diagram(self, process_id, subprocess_name, is_expanded=False, triggered_by_event=False, node_id=None): subprocess_id, subprocess = self.add_flow_node_to_diagram(process_id, consts.Consts.subprocess, subprocess_name, node_id) self.diagram_graph.node[subprocess_id][consts.Consts.is_expanded] = "true" if is_expanded else "false" self.diagram_graph.node[subprocess_id][consts.Consts.triggered_by_event] = \ "true" if triggered_by_event else "false" return subprocess_id, subprocess
[ "\n Adds a SubProcess element to BPMN diagram.\n User-defined attributes:\n\n - name\n - triggered_by_event\n\n\n :param process_id: string object. ID of parent process,\n :param subprocess_name: string object. Name of subprocess,\n :param is_expanded: boolean value for attribute \"isExpanded\". Default value false,\n :param triggered_by_event: boolean value for attribute \"triggeredByEvent\". Default value false,\n :param node_id: string object. ID of node. Default value - None.\n :return: a tuple, where first value is subProcess ID, second a reference to created object.\n " ]
Please provide a description of the function:def add_start_event_to_diagram(self, process_id, start_event_name="", start_event_definition=None, parallel_multiple=False, is_interrupting=True, node_id=None): start_event_id, start_event = self.add_flow_node_to_diagram(process_id, consts.Consts.start_event, start_event_name, node_id) self.diagram_graph.node[start_event_id][consts.Consts.parallel_multiple] = \ "true" if parallel_multiple else "false" self.diagram_graph.node[start_event_id][consts.Consts.is_interrupting] = "true" if is_interrupting else "false" start_event_definitions = {"message": "messageEventDefinition", "timer": "timerEventDefinition", "conditional": "conditionalEventDefinition", "signal": "signalEventDefinition", "escalation": "escalationEventDefinition"} event_def_list = [] if start_event_definition == "message": event_def_list.append(BpmnDiagramGraph.add_event_definition_element("message", start_event_definitions)) elif start_event_definition == "timer": event_def_list.append(BpmnDiagramGraph.add_event_definition_element("timer", start_event_definitions)) elif start_event_definition == "conditional": event_def_list.append(BpmnDiagramGraph.add_event_definition_element("conditional", start_event_definitions)) elif start_event_definition == "signal": event_def_list.append(BpmnDiagramGraph.add_event_definition_element("signal", start_event_definitions)) elif start_event_definition == "escalation": event_def_list.append(BpmnDiagramGraph.add_event_definition_element("escalation", start_event_definitions)) self.diagram_graph.node[start_event_id][consts.Consts.event_definitions] = event_def_list return start_event_id, start_event
[ "\n Adds a StartEvent element to BPMN diagram.\n\n User-defined attributes:\n\n - name\n - parallel_multiple\n - is_interrupting\n - event definition (creates a special type of start event). Supported event definitions -\n * 'message': 'messageEventDefinition', \n * 'timer': 'timerEventDefinition', \n * 'signal': 'signalEventDefinition',\n * 'conditional': 'conditionalEventDefinition', \n * 'escalation': 'escalationEventDefinition'.\n\n :param process_id: string object. ID of parent process,\n :param start_event_name: string object. Name of start event,\n :param start_event_definition: list of event definitions. By default - empty,\n :param parallel_multiple: boolean value for attribute \"parallelMultiple\",\n :param is_interrupting: boolean value for attribute \"isInterrupting,\n :param node_id: string object. ID of node. Default value - None.\n\n :return: a tuple, where first value is startEvent ID, second a reference to created object.\n " ]
Please provide a description of the function:def add_end_event_to_diagram(self, process_id, end_event_name="", end_event_definition=None, node_id=None): end_event_id, end_event = self.add_flow_node_to_diagram(process_id, consts.Consts.end_event, end_event_name, node_id) end_event_definitions = {"terminate": "terminateEventDefinition", "escalation": "escalationEventDefinition", "message": "messageEventDefinition", "compensate": "compensateEventDefinition", "signal": "signalEventDefinition", "error": "errorEventDefinition"} event_def_list = [] if end_event_definition == "terminate": event_def_list.append(self.add_event_definition_element("terminate", end_event_definitions)) elif end_event_definition == "escalation": event_def_list.append(self.add_event_definition_element("escalation", end_event_definitions)) elif end_event_definition == "message": event_def_list.append(self.add_event_definition_element("message", end_event_definitions)) elif end_event_definition == "compensate": event_def_list.append(self.add_event_definition_element("compensate", end_event_definitions)) elif end_event_definition == "signal": event_def_list.append(self.add_event_definition_element("signal", end_event_definitions)) elif end_event_definition == "error": event_def_list.append(self.add_event_definition_element("error", end_event_definitions)) self.diagram_graph.node[end_event_id][consts.Consts.event_definitions] = event_def_list return end_event_id, end_event
[ "\n Adds an EndEvent element to BPMN diagram.\n User-defined attributes:\n\n - name\n - event definition (creates a special type of end event). Supported event definitions\n * `terminate`: 'terminateEventDefinition', \n * `signal`: 'signalEventDefinition', \n * `error`: 'errorEventDefinition',\n * `escalation`: 'escalationEventDefinition', \n * `message`: 'messageEventDefinition',\n * `compensate`: 'compensateEventDefinition'.\n\n :param process_id: string object. ID of parent process,\n :param end_event_name: string object. Name of end event,\n :param end_event_definition: list of event definitions. By default - empty.\n :param node_id: string object. ID of node. Default value - None.\n :return: a tuple, where first value is endEvent ID, second a reference to created object,\n " ]
Please provide a description of the function:def add_event_definition_element(event_type, event_definitions): event_def_id = BpmnDiagramGraph.id_prefix + str(uuid.uuid4()) event_def = {consts.Consts.id: event_def_id, consts.Consts.definition_type: event_definitions[event_type]} return event_def
[ "\n Helper function, that creates event definition element (special type of event) from given parameters.\n\n :param event_type: string object. Short name of required event definition,\n :param event_definitions: dictionary of event definitions. Key is a short name of event definition,\n value is a full name of event definition, as defined in BPMN 2.0 XML Schema.\n " ]
Please provide a description of the function:def add_gateway_to_diagram(self, process_id, gateway_type, gateway_name="", gateway_direction="Unspecified", node_id=None): gateway_id, gateway = self.add_flow_node_to_diagram(process_id, gateway_type, gateway_name, node_id) if not (gateway_direction in ("Unspecified", "Converging", "Diverging", "Mixed")): raise bpmn_exception.BpmnPythonError("Invalid value passed as gatewayDirection parameter. Value passed: " + gateway_direction) self.diagram_graph.node[gateway_id][consts.Consts.gateway_direction] = gateway_direction return gateway_id, gateway
[ "\n Adds an exclusiveGateway element to BPMN diagram.\n\n :param process_id: string object. ID of parent process,\n :param gateway_type: string object. Type of gateway to be added.\n :param gateway_name: string object. Name of exclusive gateway,\n :param gateway_direction: string object. Accepted values - \"Unspecified\", \"Converging\", \"Diverging\", \"Mixed\".\n Default value - \"Unspecified\",\n :param node_id: string object. ID of node. Default value - None.\n\n :return: a tuple, where first value is gateway ID, second a reference to created object.\n " ]
Please provide a description of the function:def add_exclusive_gateway_to_diagram(self, process_id, gateway_name="", gateway_direction="Unspecified", default=None, node_id=None): exclusive_gateway_id, exclusive_gateway = self.add_gateway_to_diagram(process_id, consts.Consts.exclusive_gateway, gateway_name=gateway_name, gateway_direction=gateway_direction, node_id=node_id) self.diagram_graph.node[exclusive_gateway_id][consts.Consts.default] = default return exclusive_gateway_id, exclusive_gateway
[ "\n Adds an exclusiveGateway element to BPMN diagram.\n\n :param process_id: string object. ID of parent process,\n :param gateway_name: string object. Name of exclusive gateway,\n :param gateway_direction: string object. Accepted values - \"Unspecified\", \"Converging\", \"Diverging\", \"Mixed\".\n Default value - \"Unspecified\".\n :param default: string object. ID of flow node, target of gateway default path. Default value - None,\n :param node_id: string object. ID of node. Default value - None.\n \n :return: a tuple, where first value is exculusiveGateway ID, second a reference to created object.\n " ]
Please provide a description of the function:def add_inclusive_gateway_to_diagram(self, process_id, gateway_name="", gateway_direction="Unspecified", default=None, node_id=None): inclusive_gateway_id, inclusive_gateway = self.add_gateway_to_diagram(process_id, consts.Consts.inclusive_gateway, gateway_name=gateway_name, gateway_direction=gateway_direction, node_id=node_id) self.diagram_graph.node[inclusive_gateway_id][consts.Consts.default] = default return inclusive_gateway_id, inclusive_gateway
[ "\n Adds an inclusiveGateway element to BPMN diagram.\n\n :param process_id: string object. ID of parent process,\n :param gateway_name: string object. Name of inclusive gateway,\n :param gateway_direction: string object. Accepted values - \"Unspecified\", \"Converging\", \"Diverging\", \"Mixed\".\n Default value - \"Unspecified\",\n :param default: string object. ID of flow node, target of gateway default path. Default value - None,\n :param node_id: string object. ID of node. Default value - None.\n\n :return: a tuple, where first value is inclusiveGateway ID, second a reference to created object.\n " ]
Please provide a description of the function:def add_parallel_gateway_to_diagram(self, process_id, gateway_name="", gateway_direction="Unspecified", node_id=None): parallel_gateway_id, parallel_gateway = self.add_gateway_to_diagram(process_id, consts.Consts.parallel_gateway, gateway_name=gateway_name, gateway_direction=gateway_direction, node_id=node_id) return parallel_gateway_id, parallel_gateway
[ "\n Adds an parallelGateway element to BPMN diagram.\n\n :param process_id: string object. ID of parent process,\n :param gateway_name: string object. Name of inclusive gateway,\n :param gateway_direction: string object. Accepted values - \"Unspecified\", \"Converging\", \"Diverging\", \"Mixed\".\n Default value - \"Unspecified\",\n :param node_id: string object. ID of node. Default value - None.\n\n :return: a tuple, where first value is parallelGateway ID, second a reference to created object.\n " ]
Please provide a description of the function:def add_sequence_flow_to_diagram(self, process_id, source_ref_id, target_ref_id, sequence_flow_name=""): sequence_flow_id = BpmnDiagramGraph.id_prefix + str(uuid.uuid4()) self.sequence_flows[sequence_flow_id] = {consts.Consts.name: sequence_flow_name, consts.Consts.source_ref: source_ref_id, consts.Consts.target_ref: target_ref_id} self.diagram_graph.add_edge(source_ref_id, target_ref_id) flow = self.diagram_graph[source_ref_id][target_ref_id] flow[consts.Consts.id] = sequence_flow_id flow[consts.Consts.name] = sequence_flow_name flow[consts.Consts.process] = process_id flow[consts.Consts.source_ref] = source_ref_id flow[consts.Consts.target_ref] = target_ref_id source_node = self.diagram_graph.node[source_ref_id] target_node = self.diagram_graph.node[target_ref_id] flow[consts.Consts.waypoints] = \ [(source_node[consts.Consts.x], source_node[consts.Consts.y]), (target_node[consts.Consts.x], target_node[consts.Consts.y])] # add target node (target_ref_id) as outgoing node from source node (source_ref_id) source_node[consts.Consts.outgoing_flow].append(sequence_flow_id) # add source node (source_ref_id) as incoming node to target node (target_ref_id) target_node[consts.Consts.incoming_flow].append(sequence_flow_id) return sequence_flow_id, flow
[ "\n Adds a SequenceFlow element to BPMN diagram.\n Requires that user passes a sourceRef and targetRef as parameters.\n User-defined attributes:\n\n - name\n\n :param process_id: string object. ID of parent process,\n :param source_ref_id: string object. ID of source node,\n :param target_ref_id: string object. ID of target node,\n :param sequence_flow_name: string object. Name of sequence flow.\n :return: a tuple, where first value is sequenceFlow ID, second a reference to created object.\n " ]
Please provide a description of the function:def get_nodes_positions(self): nodes = self.get_nodes() output = {} for node in nodes: output[node[0]] = (float(node[1][consts.Consts.x]), float(node[1][consts.Consts.y])) return output
[ "\n Getter method for nodes positions.\n\n :return: A dictionary with nodes as keys and positions as values\n " ]
Please provide a description of the function:def set_condition(self, value): if value is None or not isinstance(value, str): raise TypeError("Condition is required and must be set to a String") else: self.__condition = value
[ "\n Setter for 'condition' field.\n :param value - a new value of 'condition' field. Required field. Must be a String.\n " ]
Please provide a description of the function:def os_walk_pre_35(top, topdown=True, onerror=None, followlinks=False): islink, join, isdir = os.path.islink, os.path.join, os.path.isdir try: names = os.listdir(top) except OSError as err: if onerror is not None: onerror(err) return dirs, nondirs = [], [] for name in names: if isdir(join(top, name)): dirs.append(name) else: nondirs.append(name) if topdown: yield top, dirs, nondirs for name in dirs: new_path = join(top, name) if followlinks or not islink(new_path): for x in os_walk_pre_35(new_path, topdown, onerror, followlinks): yield x if not topdown: yield top, dirs, nondirs
[ "Pre Python 3.5 implementation of os.walk() that doesn't use scandir." ]
Please provide a description of the function:def create_tree(path, depth=DEPTH): os.mkdir(path) for i in range(NUM_FILES): filename = os.path.join(path, 'file{0:03}.txt'.format(i)) with open(filename, 'wb') as f: f.write(b'foo') if depth <= 1: return for i in range(NUM_DIRS): dirname = os.path.join(path, 'dir{0:03}'.format(i)) create_tree(dirname, depth - 1)
[ "Create a directory tree at path with given depth, and NUM_DIRS and\n NUM_FILES at each level.\n " ]
Please provide a description of the function:def get_tree_size(path): size = 0 try: for entry in scandir.scandir(path): if entry.is_symlink(): pass elif entry.is_dir(): size += get_tree_size(os.path.join(path, entry.name)) else: size += entry.stat().st_size except OSError: pass return size
[ "Return total size of all files in directory tree at path." ]
Please provide a description of the function:def unfold(tensor, mode): return np.moveaxis(tensor, mode, 0).reshape((tensor.shape[mode], -1))
[ "Returns the mode-`mode` unfolding of `tensor`.\n\n Parameters\n ----------\n tensor : ndarray\n mode : int\n\n Returns\n -------\n ndarray\n unfolded_tensor of shape ``(tensor.shape[mode], -1)``\n\n Author\n ------\n Jean Kossaifi <https://github.com/tensorly>\n " ]
Please provide a description of the function:def khatri_rao(matrices): n_columns = matrices[0].shape[1] n_factors = len(matrices) start = ord('a') common_dim = 'z' target = ''.join(chr(start + i) for i in range(n_factors)) source = ','.join(i+common_dim for i in target) operation = source+'->'+target+common_dim return np.einsum(operation, *matrices).reshape((-1, n_columns))
[ "Khatri-Rao product of a list of matrices.\n\n Parameters\n ----------\n matrices : list of ndarray\n\n Returns\n -------\n khatri_rao_product: matrix of shape ``(prod(n_i), m)``\n where ``prod(n_i) = prod([m.shape[0] for m in matrices])``\n i.e. the product of the number of rows of all the matrices in the\n product.\n\n Author\n ------\n Jean Kossaifi <https://github.com/tensorly>\n " ]
Please provide a description of the function:def soft_cluster_factor(factor): # copy factor of interest f = np.copy(factor) # cluster based on score of maximum absolute value cluster_ids = np.argmax(np.abs(f), axis=1) scores = f[range(f.shape[0]), cluster_ids] # resort within each cluster perm = [] for cluster in np.unique(cluster_ids): idx = np.where(cluster_ids == cluster)[0] perm += list(idx[np.argsort(scores[idx])][::-1]) return cluster_ids, perm
[ "Returns soft-clustering of data based on CP decomposition results.\n\n Parameters\n ----------\n data : ndarray, N x R matrix of nonnegative data\n Datapoints are held in rows, features are held in columns\n\n Returns\n -------\n cluster_ids : ndarray, vector of N integers in range(0, R)\n List of soft cluster assignments for each row of data matrix\n perm : ndarray, vector of N integers\n Permutation / ordering of the rows of data induced by the soft\n clustering.\n " ]
Please provide a description of the function:def tsp_linearize(data, niter=1000, metric='euclidean', **kwargs): # Compute pairwise distances between all datapoints N = data.shape[0] D = scipy.spatial.distance.pdist(data, metric=metric, **kwargs) # To solve the travelling salesperson problem with no return to the # original node we add a dummy node that has distance zero connections # to all other nodes. The dummy node is then removed after we've converged # to a solution. dist = np.zeros((N+1, N+1)) dist[:N, :N] = scipy.spatial.distance.squareform(D) # solve TSP perm, cost_hist = _solve_tsp(dist) # remove dummy node at position i i = np.argwhere(perm == N).ravel()[0] perm = np.hstack((perm[(i+1):], perm[:i])) return perm
[ "Sorts a matrix dataset to (approximately) solve the traveling\n salesperson problem. The matrix can be re-sorted so that sequential rows\n represent datapoints that are close to each other based on some\n user-defined distance metric. Uses 2-opt local search algorithm.\n\n Args\n ----\n data : ndarray, N x R matrix of data\n Datapoints are held in rows, features are held in columns\n\n Returns\n -------\n perm : ndarray, vector of N integers\n Permutation / ordering of the rows of data that approximately\n solves the travelling salesperson problem.\n " ]
Please provide a description of the function:def hclust_linearize(U): from scipy.cluster import hierarchy Z = hierarchy.ward(U) return hierarchy.leaves_list(hierarchy.optimal_leaf_ordering(Z, U))
[ "Sorts the rows of a matrix by hierarchical clustering.\n\n Parameters:\n U (ndarray) : matrix of data\n\n Returns:\n prm (ndarray) : permutation of the rows\n " ]
Please provide a description of the function:def reverse_segment(path, n1, n2): q = path.copy() if n2 > n1: q[n1:(n2+1)] = path[n1:(n2+1)][::-1] return q else: seg = np.hstack((path[n1:], path[:(n2+1)]))[::-1] brk = len(q) - n1 q[n1:] = seg[:brk] q[:(n2+1)] = seg[brk:] return q
[ "Reverse the nodes between n1 and n2.\n " ]
Please provide a description of the function:def _solve_tsp(dist, niter): # number of nodes N = dist.shape[0] # tsp path for quick calculation of cost ii = np.arange(N) jj = np.hstack((np.arange(1, N), 0)) # for each node, cache a sorted list of all other nodes in order of # increasing distance. dsort = [np.argsort(d) for d in dist] dsort = [d[d != i] for i, d in enumerate(dsort)] # randomly initialize path through graph path = np.random.permutation(N) idx = np.argsort(path) cost = np.sum(dist[path[ii], path[jj]]) # keep track of objective function over time cost_hist = [cost] # optimization loop node = 0 itercount = 0 n = 0 while n < N and itercount < niter: # count iterations itercount += 1 # we'll try breaking the connection i -> j i = path[node] j = path[(node+1) % N] # We are breaking i -> j so we can remove the cost of that connection. c = cost - dist[i, j] # Search over nodes k that are closer to j than i. for k in dsort[j]: # Can safely continue if dist[i,j] < dist[k,j] for the remaining k. if k == i: n += 1 break # Break connection k -> p. # Add connection j -> p. # Add connection i -> k. p = path[(idx[k]+1) % N] new_cost = c - dist[k, p] + dist[j, p] + dist[i, k] # If this swap improves the cost, implement it and move to next i. if new_cost < cost: path = reverse_segment(path, idx[j], idx[k]) idx = np.argsort(path) cost = new_cost # Restart from the begining of the graph. cost_hist.append(cost) n = 0 break # move to next node node = (node + 1) % N return path, cost_hist
[ "Solve travelling salesperson problem (TSP) by two-opt swapping.\n\n Params\n ------\n dist (ndarray) : distance matrix\n\n Returns\n -------\n path (ndarray) : permutation of nodes in graph (rows of dist matrix)\n " ]
Please provide a description of the function:def full(self): # Compute tensor unfolding along first mode unf = sci.dot(self.factors[0], khatri_rao(self.factors[1:]).T) # Inverse unfolding along first mode return sci.reshape(unf, self.shape)
[ "Converts KTensor to a dense ndarray." ]
Please provide a description of the function:def rebalance(self): # Compute norms along columns for each factor matrix norms = [sci.linalg.norm(f, axis=0) for f in self.factors] # Multiply norms across all modes lam = sci.multiply.reduce(norms) ** (1/self.ndim) # Update factors self.factors = [f * (lam / fn) for f, fn in zip(self.factors, norms)] return self
[ "Rescales factors across modes so that all norms match.\n " ]
Please provide a description of the function:def permute(self, idx): # Check that input is a true permutation if set(idx) != set(range(self.rank)): raise ValueError('Invalid permutation specified.') # Update factors self.factors = [f[:, idx] for f in self.factors] return self.factors
[ "Permutes the columns of the factor matrices inplace\n " ]
Please provide a description of the function:def kruskal_align(U, V, permute_U=False, permute_V=False): # Compute similarity matrices. unrm = [f / np.linalg.norm(f, axis=0) for f in U.factors] vnrm = [f / np.linalg.norm(f, axis=0) for f in V.factors] sim_matrices = [np.dot(u.T, v) for u, v in zip(unrm, vnrm)] cost = 1 - np.mean(np.abs(sim_matrices), axis=0) # Solve matching problem via Hungarian algorithm. indices = Munkres().compute(cost.copy()) prmU, prmV = zip(*indices) # Compute mean factor similarity given the optimal matching. similarity = np.mean(1 - cost[prmU, prmV]) # If U and V are of different ranks, identify unmatched factors. unmatched_U = list(set(range(U.rank)) - set(prmU)) unmatched_V = list(set(range(V.rank)) - set(prmV)) # If permuting both U and V, order factors from most to least similar. if permute_U and permute_V: idx = np.argsort(cost[prmU, prmV]) # If permute_U is False, then order the factors such that the ordering # for U is unchanged. elif permute_V: idx = np.argsort(prmU) # If permute_V is False, then order the factors such that the ordering # for V is unchanged. elif permute_U: idx = np.argsort(prmV) # If permute_U and permute_V are both False, then we are done and can # simply return the similarity. else: return similarity # Re-order the factor permutations. prmU = [prmU[i] for i in idx] prmV = [prmV[i] for i in idx] # Permute the factors. if permute_U: U.permute(prmU) if permute_V: V.permute(prmV) # Flip the signs of factors. flips = np.sign([F[prmU, prmV] for F in sim_matrices]) flips[0] *= np.prod(flips, axis=0) # always flip an even number of factors if permute_U: for i, f in enumerate(flips): U.factors[i] *= f elif permute_V: for i, f in enumerate(flips): V.factors[i] *= f # Return the similarity score return similarity
[ "Aligns two KTensors and returns a similarity score.\n\n Parameters\n ----------\n U : KTensor\n First kruskal tensor to align.\n V : KTensor\n Second kruskal tensor to align.\n permute_U : bool\n If True, modifies 'U' to align the KTensors (default is False).\n permute_V : bool\n If True, modifies 'V' to align the KTensors (default is False).\n\n Notes\n -----\n If both `permute_U` and `permute_V` are both set to True, then the\n factors are ordered from most to least similar. If only one is\n True then the factors on the modified KTensor are re-ordered to\n match the factors in the un-aligned KTensor.\n\n Returns\n -------\n similarity : float\n Similarity score between zero and one.\n " ]
Please provide a description of the function:def plot_objective(ensemble, partition='train', ax=None, jitter=0.1, scatter_kw=dict(), line_kw=dict()): if ax is None: ax = plt.gca() if partition == 'train': pass elif partition == 'test': raise NotImplementedError('Cross-validation is on the TODO list.') else: raise ValueError("partition must be 'train' or 'test'.") # compile statistics for plotting x, obj, min_obj = [], [], [] for rank in sorted(ensemble.results): # reconstruction errors for rank-r models o = ensemble.objectives(rank) obj.extend(o) x.extend(np.full(len(o), rank)) min_obj.append(min(o)) # add horizontal jitter ux = np.unique(x) x = np.array(x) + (np.random.rand(len(x))-0.5)*jitter # make plot ax.scatter(x, obj, **scatter_kw) ax.plot(ux, min_obj, **line_kw) ax.set_xlabel('model rank') ax.set_ylabel('objective') return ax
[ "Plots objective function as a function of model rank.\n\n Parameters\n ----------\n ensemble : Ensemble object\n holds optimization results across a range of model ranks\n partition : string, one of: {'train', 'test'}\n specifies whether to plot the objective function on the training\n data or the held-out test set.\n ax : matplotlib axis (optional)\n axis to plot on (defaults to current axis object)\n jitter : float (optional)\n amount of horizontal jitter added to scatterpoints (default=0.1)\n scatter_kw : dict (optional)\n keyword arguments for styling the scatterpoints\n line_kw : dict (optional)\n keyword arguments for styling the line\n " ]
Please provide a description of the function:def plot_similarity(ensemble, ax=None, jitter=0.1, scatter_kw=dict(), line_kw=dict()): if ax is None: ax = plt.gca() # compile statistics for plotting x, sim, mean_sim = [], [], [] for rank in sorted(ensemble.results): # reconstruction errors for rank-r models s = ensemble.similarities(rank)[1:] sim.extend(s) x.extend(np.full(len(s), rank)) mean_sim.append(np.mean(s)) # add horizontal jitter ux = np.unique(x) x = np.array(x) + (np.random.rand(len(x))-0.5)*jitter # make plot ax.scatter(x, sim, **scatter_kw) ax.plot(ux, mean_sim, **line_kw) ax.set_xlabel('model rank') ax.set_ylabel('model similarity') ax.set_ylim([0, 1.1]) return ax
[ "Plots similarity across optimization runs as a function of model rank.\n\n Parameters\n ----------\n ensemble : Ensemble object\n holds optimization results across a range of model ranks\n ax : matplotlib axis (optional)\n axis to plot on (defaults to current axis object)\n jitter : float (optional)\n amount of horizontal jitter added to scatterpoints (default=0.1)\n scatter_kw : dict (optional)\n keyword arguments for styling the scatterpoints\n line_kw : dict (optional)\n keyword arguments for styling the line\n\n References\n ----------\n Ulrike von Luxburg (2010). Clustering Stability: An Overview.\n Foundations and Trends in Machine Learning.\n https://arxiv.org/abs/1007.1075\n\n " ]
Please provide a description of the function:def plot_factors(U, plots='line', fig=None, axes=None, scatter_kw=dict(), line_kw=dict(), bar_kw=dict(), **kwargs): # ~~~~~~~~~~~~~ # PARSE OPTIONS # ~~~~~~~~~~~~~ kwargs.setdefault('figsize', (8, U.rank)) # parse optional inputs plots = _broadcast_arg(U, plots, str, 'plots') bar_kw = _broadcast_arg(U, bar_kw, dict, 'bar_kw') line_kw = _broadcast_arg(U, line_kw, dict, 'line_kw') scatter_kw = _broadcast_arg(U, scatter_kw, dict, 'scatter_kw') # default scatterplot options for sckw in scatter_kw: sckw.setdefault('edgecolor', 'none') sckw.setdefault('s', 10) # ~~~~~~~~~~~~~~ # SETUP SUBPLOTS # ~~~~~~~~~~~~~~ if fig is None and axes is None: fig, axes = plt.subplots(U.rank, U.ndim, **kwargs) # make sure axes is a 2d-array if U.rank == 1: axes = axes[None, :] # if axes are passed in, identify figure elif fig is None: fig = axes[0, 0].get_figure() # if figure is passed, identify axes else: axes = np.array(fig.get_axes(), dtype=object).reshape(U.rank, U.ndim) # main loop, plot each factor plot_obj = np.empty((U.rank, U.ndim), dtype=object) for r in range(U.rank): for i, f in enumerate(U): # start plots at 1 instead of zero x = np.arange(1, f.shape[0]+1) # determine type of plot if plots[i] == 'bar': plot_obj[r, i] = axes[r, i].bar(x, f[:, r], **bar_kw[i]) axes[r, i].set_xlim(0, f.shape[0]+1) elif plots[i] == 'scatter': plot_obj[r, i] = axes[r, i].scatter(x, f[:, r], **scatter_kw[i]) axes[r, i].set_xlim(0, f.shape[0]) elif plots[i] == 'line': plot_obj[r, i] = axes[r, i].plot(f[:, r], '-', **line_kw[i]) axes[r, i].set_xlim(0, f.shape[0]) else: raise ValueError('invalid plot type') # format axes axes[r, i].locator_params(nbins=4) axes[r, i].spines['top'].set_visible(False) axes[r, i].spines['right'].set_visible(False) axes[r, i].xaxis.set_tick_params(direction='out') axes[r, i].yaxis.set_tick_params(direction='out') axes[r, i].yaxis.set_ticks_position('left') axes[r, i].xaxis.set_ticks_position('bottom') # remove xticks on all but bottom row if r != U.rank-1: plt.setp(axes[r, i].get_xticklabels(), visible=False) # link y-axes within columns for i in range(U.ndim): yl = [a.get_ylim() for a in axes[:, i]] y0, y1 = min([y[0] for y in yl]), max([y[1] for y in yl]) [a.set_ylim((y0, y1)) for a in axes[:, i]] # format y-ticks for r in range(U.rank): for i in range(U.ndim): # only two labels ymin, ymax = np.round(axes[r, i].get_ylim(), 2) axes[r, i].set_ylim((ymin, ymax)) # remove decimals from labels if ymin.is_integer(): ymin = int(ymin) if ymax.is_integer(): ymax = int(ymax) # update plot axes[r, i].set_yticks([ymin, ymax]) plt.tight_layout() return fig, axes, plot_obj
[ "Plots a KTensor.\n\n Note: Each keyword option is broadcast to all modes of the KTensor. For\n example, if `U` is a 3rd-order tensor (i.e. `U.ndim == 3`) then\n `plot_factors(U, plots=['line','bar','scatter'])` plots all factors for the\n first mode as a line plot, the second as a bar plot, and the third mode as\n a scatterplot. But, thanks to broadcasting semantics,\n `plot_factors(U, color='line')` produces line plots for each mode.\n\n Parameters\n ----------\n U : KTensor\n Kruskal tensor to be plotted.\n\n plots : str or list\n One of {'bar','line','scatter'} to specify the type of plot for each\n factor. The default is 'line'.\n fig : matplotlib Figure object\n If provided, add plots to the specified figure. The figure must have a\n sufficient number of axes objects.\n axes : 2d numpy array of matplotlib Axes objects\n If provided, add plots to the specified figure.\n scatter_kw : dict or sequence of dicts\n Keyword arguments provided to scatterplots. If a single dict is\n provided, these options are broadcasted to all modes.\n line_kw : dict or sequence of dicts\n Keyword arguments provided to line plots. If a single dict is provided,\n these options are broadcasted to all modes.\n bar_kw : dict or sequence of dicts\n Keyword arguments provided to bar plots. If a single dict is provided,\n these options are broadcasted to all modes.\n **kwargs : dict\n Additional keyword parameters are passed to the `subplots(...)`\n function to specify options such as `figsize` and `gridspec_kw`. See\n `matplotlib.pyplot.subplots(...)` documentation for more info.\n " ]
Please provide a description of the function:def _broadcast_arg(U, arg, argtype, name): # if input is not iterable, broadcast it all dimensions of the tensor if arg is None or isinstance(arg, argtype): return [arg for _ in range(U.ndim)] # check if iterable input is valid elif np.iterable(arg): if len(arg) != U.ndim: raise ValueError('Parameter {} was specified as a sequence of ' 'incorrect length. The length must match the ' 'number of tensor dimensions ' '(U.ndim={})'.format(name, U.ndim)) elif not all([isinstance(a, argtype) for a in arg]): raise TypeError('Parameter {} specified as a sequence of ' 'incorrect type. ' 'Expected {}.'.format(name, argtype)) else: return arg # input is not iterable and is not the corrent type. else: raise TypeError('Parameter {} specified as a {}.' ' Expected {}.'.format(name, type(arg), argtype))
[ "Broadcasts plotting option `arg` to all factors.\n\n Args:\n U : KTensor\n arg : argument provided by the user\n argtype : expected type for arg\n name : name of the variable, used for error handling\n\n Returns:\n iterable version of arg of length U.ndim\n " ]
Please provide a description of the function:def _check_cpd_inputs(X, rank): if X.ndim < 3: raise ValueError("Array with X.ndim > 2 expected.") if rank <= 0 or not isinstance(rank, int): raise ValueError("Rank is invalid.")
[ "Checks that inputs to optimization function are appropriate.\n\n Parameters\n ----------\n X : ndarray\n Tensor used for fitting CP decomposition.\n rank : int\n Rank of low rank decomposition.\n\n Raises\n ------\n ValueError: If inputs are not suited for CP decomposition.\n " ]
Please provide a description of the function:def _get_initial_ktensor(init, X, rank, random_state, scale_norm=True): normX = linalg.norm(X) if scale_norm else None if init == 'randn': # TODO - match the norm of the initialization to the norm of X. U = randn_ktensor(X.shape, rank, norm=normX, random_state=random_state) elif init == 'rand': # TODO - match the norm of the initialization to the norm of X. U = rand_ktensor(X.shape, rank, norm=normX, random_state=random_state) elif isinstance(init, KTensor): U = init.copy() else: raise ValueError("Expected 'init' to either be a KTensor or a string " "specifying how to initialize optimization. Valid " "strings are ('randn', 'rand').") return U, normX
[ "\n Parameters\n ----------\n init : str\n Specifies type of initializations ('randn', 'rand')\n X : ndarray\n Tensor that the decomposition is fit to.\n rank : int\n Rank of decomposition\n random_state : RandomState or int\n Specifies seed for random number generator\n scale_norm : bool\n If True, norm is scaled to match X (default: True)\n\n Returns\n -------\n U : KTensor\n Initial factor matrices used optimization.\n normX : float\n Frobenious norm of tensor data.\n " ]
Please provide a description of the function:def still_optimizing(self): # Check if we need to give up on optimizing. if (self.iterations > self.max_iter) or (self.time_elapsed() > self.max_time): return False # Always optimize for at least 'min_iter' iterations. elif not hasattr(self, 'improvement') or (self.iterations < self.min_iter): return True # Check convergence. else: self.converged = self.improvement < self.tol return False if self.converged else True
[ "True unless converged or maximum iterations/time exceeded." ]
Please provide a description of the function:def _check_random_state(random_state): if random_state is None or isinstance(random_state, int): return sci.random.RandomState(random_state) elif isinstance(random_state, sci.random.RandomState): return random_state else: raise TypeError('Seed should be None, int or np.random.RandomState')
[ "Checks and processes user input for seeding random numbers.\n\n Parameters\n ----------\n random_state : int, RandomState instance or None\n If int, a RandomState instance is created with this integer seed.\n If RandomState instance, random_state is returned;\n If None, a RandomState instance is created with arbitrary seed.\n\n Returns\n -------\n scipy.random.RandomState instance\n\n Raises\n ------\n TypeError\n If ``random_state`` is not appropriately set.\n " ]
Please provide a description of the function:def randn_ktensor(shape, rank, norm=None, random_state=None): # Check input. rns = _check_random_state(random_state) # Draw low-rank factor matrices with i.i.d. Gaussian elements. factors = KTensor([rns.standard_normal((i, rank)) for i in shape]) return _rescale_tensor(factors, norm)
[ "\n Generates a random N-way tensor with rank R, where the entries are\n drawn from the standard normal distribution.\n\n Parameters\n ----------\n shape : tuple\n shape of the tensor\n\n rank : integer\n rank of the tensor\n\n norm : float or None, optional (defaults: None)\n If not None, the factor matrices are rescaled so that the Frobenius\n norm of the returned tensor is equal to ``norm``.\n\n random_state : integer, RandomState instance or None, optional (default ``None``)\n If integer, random_state is the seed used by the random number generator;\n If RandomState instance, random_state is the random number generator;\n If None, the random number generator is the RandomState instance used by np.random.\n\n\n Returns\n -------\n X : (I_1, ..., I_N) array_like\n N-way tensor with rank R.\n\n Example\n -------\n >>> # Create a rank-2 tensor of dimension 5x5x5:\n >>> import tensortools as tt\n >>> X = tt.randn_tensor((5,5,5), rank=2)\n\n " ]
Please provide a description of the function:def rand_ktensor(shape, rank, norm=None, random_state=None): # Check input. rns = _check_random_state(random_state) # Randomize low-rank factor matrices i.i.d. uniform random elements. factors = KTensor([rns.uniform(0.0, 1.0, size=(i, rank)) for i in shape]) return _rescale_tensor(factors, norm)
[ "\n Generates a random N-way tensor with rank R, where the entries are\n drawn from the standard uniform distribution in the interval [0.0,1].\n\n Parameters\n ----------\n shape : tuple\n shape of the tensor\n\n rank : integer\n rank of the tensor\n\n norm : float or None, optional (defaults: None)\n If not None, the factor matrices are rescaled so that the Frobenius\n norm of the returned tensor is equal to ``norm``.\n\n ktensor : bool\n If true, a KTensor object is returned, i.e., the components are in factored\n form ``[U_1, U_2, ... U_N]``; Otherwise an N-way array is returned.\n\n random_state : integer, RandomState instance or None, optional (default ``None``)\n If integer, random_state is the seed used by the random number generator;\n If RandomState instance, random_state is the random number generator;\n If None, the random number generator is the RandomState instance used by np.random.\n\n\n Returns\n -------\n X : (I_1, ..., I_N) array_like\n N-way tensor with rank R.\n\n Example\n -------\n >>> # Create a rank-2 tensor of dimension 5x5x5:\n >>> import tensortools as tt\n >>> X = tt.randn_tensor((5,5,5), rank=2)\n\n " ]
Please provide a description of the function:def mcp_als(X, rank, mask, random_state=None, init='randn', **options): # Check inputs. optim_utils._check_cpd_inputs(X, rank) # Initialize problem. U, _ = optim_utils._get_initial_ktensor(init, X, rank, random_state, scale_norm=False) result = FitResult(U, 'MCP_ALS', **options) normX = np.linalg.norm((X * mask)) # Main optimization loop. while result.still_optimizing: # Iterate over each tensor mode. for n in range(X.ndim): # i) Normalize factors to prevent singularities. U.rebalance() # ii) Unfold data and mask along the nth mode. unf = unfold(X, n) # i_n x N m = unfold(mask, n) # i_n x N # iii) Form Khatri-Rao product of factors matrices. components = [U[j] for j in range(X.ndim) if j != n] krt = khatri_rao(components).T # N x r # iv) Broadcasted solve of linear systems. # Left hand side of equations, R x R x X.shape[n] # Right hand side of equations, X.shape[n] x R x 1 lhs_stack = np.matmul(m[:, None, :] * krt[None, :, :], krt.T[None, :, :]) rhs_stack = np.dot(unf * m, krt.T)[:, :, None] # vi) Update factor. U[n] = np.linalg.solve(lhs_stack, rhs_stack).reshape(X.shape[n], rank) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update the optimization result, checks for convergence. # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute objective function # grams *= U[-1].T.dot(U[-1]) # obj = np.sqrt(np.sum(grams) - 2*sci.sum(p*U[-1]) + normX**2) / normX obj = linalg.norm(mask * (U.full() - X)) / normX # Update result result.update(obj) # Finalize and return the optimization result. return result.finalize()
[ "Fits CP Decomposition with missing data using Alternating Least Squares (ALS).\n\n Parameters\n ----------\n X : (I_1, ..., I_N) array_like\n A tensor with ``X.ndim >= 3``.\n\n rank : integer\n The `rank` sets the number of components to be computed.\n\n mask : (I_1, ..., I_N) array_like\n A binary tensor with the same shape as ``X``. All entries equal to zero\n correspond to held out or missing data in ``X``. All entries equal to\n one correspond to observed entries in ``X`` and the decomposition is\n fit to these datapoints.\n\n random_state : integer, ``RandomState``, or ``None``, optional (default ``None``)\n If integer, sets the seed of the random number generator;\n If RandomState instance, random_state is the random number generator;\n If None, use the RandomState instance used by ``numpy.random``.\n\n init : str, or KTensor, optional (default ``'randn'``).\n Specifies initial guess for KTensor factor matrices.\n If ``'randn'``, Gaussian random numbers are used to initialize.\n If ``'rand'``, uniform random numbers are used to initialize.\n If KTensor instance, a copy is made to initialize the optimization.\n\n options : dict, specifying fitting options.\n\n tol : float, optional (default ``tol=1E-5``)\n Stopping tolerance for reconstruction error.\n\n max_iter : integer, optional (default ``max_iter = 500``)\n Maximum number of iterations to perform before exiting.\n\n min_iter : integer, optional (default ``min_iter = 1``)\n Minimum number of iterations to perform before exiting.\n\n max_time : integer, optional (default ``max_time = np.inf``)\n Maximum computational time before exiting.\n\n verbose : bool ``{'True', 'False'}``, optional (default ``verbose=True``)\n Display progress.\n\n\n Returns\n -------\n result : FitResult instance\n Object which holds the fitted results. It provides the factor matrices\n in form of a KTensor, ``result.factors``.\n\n\n Notes\n -----\n Fitting CP decompositions with missing data can be exploited to perform\n cross-validation.\n\n References\n ----------\n Williams, A. H.\n \"Solving Least-Squares Regression with Missing Data.\"\n http://alexhwilliams.info/itsneuronalblog/2018/02/26/censored-lstsq/\n " ]
Please provide a description of the function:def ncp_bcd(X, rank, random_state=None, init='rand', **options): # Check inputs. optim_utils._check_cpd_inputs(X, rank) # Store norm of X for computing objective function. N = X.ndim # Initialize problem. U, normX = optim_utils._get_initial_ktensor(init, X, rank, random_state) result = FitResult(U, 'NCP_BCD', **options) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Block coordinate descent # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Um = U.copy() # Extrapolations of compoenents extraw = 1 # Used for extrapolation weight update weights_U = np.ones(N) # Extrapolation weights L = np.ones(N) # Lipschitz constants obj_bcd = 0.5 * normX**2 # Initial objective value # Main optimization loop. while result.still_optimizing: obj_bcd_old = obj_bcd # Old objective value U_old = U.copy() extraw_old = extraw for n in range(N): # Select all components, but U_n components = [U[j] for j in range(N) if j != n] # i) compute the N-1 gram matrices grams = sci.multiply.reduce([arr.T.dot(arr) for arr in components]) # Update gradient Lipschnitz constant L0 = L # Lipschitz constants L[n] = linalg.norm(grams, 2) # ii) Compute Khatri-Rao product kr = khatri_rao(components) p = unfold(X, n).dot( kr ) # Compute Gradient. grad = Um[n] .dot(grams) - p # Enforce nonnegativity (project onto nonnegative orthant). U[n] = sci.maximum(0.0, Um[n] - grad / L[n]) # Compute objective function and update optimization result. # grams *= U[X.ndim - 1].T.dot(U[X.ndim - 1]) # obj = np.sqrt(sci.sum(grams) - 2 * sci.sum(U[X.ndim - 1] * p) + normX**2) / normX obj = linalg.norm(X - U.full()) / normX result.update(obj) # Correction and extrapolation. grams *= U[N - 1].T.dot(U[N - 1]) obj_bcd = 0.5 * (sci.sum(grams) - 2 * sci.sum(U[N-1] * p) + normX**2 ) extraw = (1 + sci.sqrt(1 + 4 * extraw_old**2)) / 2.0 if obj_bcd >= obj_bcd_old: # restore previous A to make the objective nonincreasing Um = sci.copy(U_old) else: # apply extrapolation w = (extraw_old - 1.0) / extraw # Extrapolation weight for n in range(N): weights_U[n] = min(w, 1.0 * sci.sqrt( L0[n] / L[n] )) # choose smaller weights for convergence Um[n] = U[n] + weights_U[n] * (U[n] - U_old[n]) # extrapolation # Finalize and return the optimization result. return result.finalize()
[ "\n Fits nonnegative CP Decomposition using the Block Coordinate Descent (BCD)\n Method.\n\n Parameters\n ----------\n X : (I_1, ..., I_N) array_like\n A real array with nonnegative entries and ``X.ndim >= 3``.\n\n rank : integer\n The `rank` sets the number of components to be computed.\n\n random_state : integer, RandomState instance or None, optional (default ``None``)\n If integer, random_state is the seed used by the random number generator;\n If RandomState instance, random_state is the random number generator;\n If None, the random number generator is the RandomState instance used by np.random.\n\n init : str, or KTensor, optional (default ``'rand'``).\n Specifies initial guess for KTensor factor matrices.\n If ``'randn'``, Gaussian random numbers are used to initialize.\n If ``'rand'``, uniform random numbers are used to initialize.\n If KTensor instance, a copy is made to initialize the optimization.\n\n options : dict, specifying fitting options.\n\n tol : float, optional (default ``tol=1E-5``)\n Stopping tolerance for reconstruction error.\n\n max_iter : integer, optional (default ``max_iter = 500``)\n Maximum number of iterations to perform before exiting.\n\n min_iter : integer, optional (default ``min_iter = 1``)\n Minimum number of iterations to perform before exiting.\n\n max_time : integer, optional (default ``max_time = np.inf``)\n Maximum computational time before exiting.\n\n verbose : bool ``{'True', 'False'}``, optional (default ``verbose=True``)\n Display progress.\n\n\n Returns\n -------\n result : FitResult instance\n Object which holds the fitted results. It provides the factor matrices\n in form of a KTensor, ``result.factors``.\n\n\n Notes\n -----\n This implemenation is using the Block Coordinate Descent Method.\n\n\n References\n ----------\n Xu, Yangyang, and Wotao Yin. \"A block coordinate descent method for\n regularized multiconvex optimization with applications to\n negative tensor factorization and completion.\"\n SIAM Journal on imaging sciences 6.3 (2013): 1758-1789.\n\n\n Examples\n --------\n\n " ]
Please provide a description of the function:def ncp_hals(X, rank, random_state=None, init='rand', **options): # Check inputs. optim_utils._check_cpd_inputs(X, rank) # Initialize problem. U, normX = optim_utils._get_initial_ktensor(init, X, rank, random_state) result = FitResult(U, 'NCP_HALS', **options) # Store problem dimensions. normX = linalg.norm(X) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Iterate the HALS algorithm until convergence or maxiter is reached # i) compute the N gram matrices and multiply # ii) Compute Khatri-Rao product # iii) Update component U_1, U_2, ... U_N # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ while result.still_optimizing: violation = 0.0 for n in range(X.ndim): # Select all components, but U_n components = [U[j] for j in range(X.ndim) if j != n] # i) compute the N-1 gram matrices grams = sci.multiply.reduce([arr.T.dot(arr) for arr in components]) # ii) Compute Khatri-Rao product kr = khatri_rao(components) p = unfold(X, n).dot(kr) # iii) Update component U_n violation += _hals_update(U[n], grams, p) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update the optimization result, checks for convergence. # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute objective function # grams *= U[X.ndim - 1].T.dot(U[X.ndim - 1]) # obj = np.sqrt( (sci.sum(grams) - 2 * sci.sum(U[X.ndim - 1] * p) + normX**2)) / normX result.update(linalg.norm(X - U.full()) / normX) # end optimization loop, return result. return result.finalize()
[ "\n Fits nonnegtaive CP Decomposition using the Hierarcial Alternating Least\n Squares (HALS) Method.\n\n Parameters\n ----------\n X : (I_1, ..., I_N) array_like\n A real array with nonnegative entries and ``X.ndim >= 3``.\n\n rank : integer\n The `rank` sets the number of components to be computed.\n\n random_state : integer, RandomState instance or None, optional (default ``None``)\n If integer, random_state is the seed used by the random number generator;\n If RandomState instance, random_state is the random number generator;\n If None, the random number generator is the RandomState instance used by np.random.\n\n init : str, or KTensor, optional (default ``'rand'``).\n Specifies initial guess for KTensor factor matrices.\n If ``'randn'``, Gaussian random numbers are used to initialize.\n If ``'rand'``, uniform random numbers are used to initialize.\n If KTensor instance, a copy is made to initialize the optimization.\n\n options : dict, specifying fitting options.\n\n tol : float, optional (default ``tol=1E-5``)\n Stopping tolerance for reconstruction error.\n\n max_iter : integer, optional (default ``max_iter = 500``)\n Maximum number of iterations to perform before exiting.\n\n min_iter : integer, optional (default ``min_iter = 1``)\n Minimum number of iterations to perform before exiting.\n\n max_time : integer, optional (default ``max_time = np.inf``)\n Maximum computational time before exiting.\n\n verbose : bool ``{'True', 'False'}``, optional (default ``verbose=True``)\n Display progress.\n\n\n Returns\n -------\n result : FitResult instance\n Object which holds the fitted results. It provides the factor matrices\n in form of a KTensor, ``result.factors``.\n\n\n Notes\n -----\n This implemenation is using the Hierarcial Alternating Least Squares Method.\n\n\n References\n ----------\n Cichocki, Andrzej, and P. H. A. N. Anh-Huy. \"Fast local algorithms for\n large scale nonnegative matrix and tensor factorizations.\"\n IEICE transactions on fundamentals of electronics, communications and\n computer sciences 92.3: 708-721, 2009.\n\n Examples\n --------\n\n\n " ]
Please provide a description of the function:def cp_als(X, rank, random_state=None, init='randn', **options): # Check inputs. optim_utils._check_cpd_inputs(X, rank) # Initialize problem. U, normX = optim_utils._get_initial_ktensor(init, X, rank, random_state) result = FitResult(U, 'CP_ALS', **options) # Main optimization loop. while result.still_optimizing: # Iterate over each tensor mode. for n in range(X.ndim): # i) Normalize factors to prevent singularities. U.rebalance() # ii) Compute the N-1 gram matrices. components = [U[j] for j in range(X.ndim) if j != n] grams = sci.multiply.reduce([sci.dot(u.T, u) for u in components]) # iii) Compute Khatri-Rao product. kr = khatri_rao(components) # iv) Form normal equations and solve via Cholesky c = linalg.cho_factor(grams, overwrite_a=False) p = unfold(X, n).dot(kr) U[n] = linalg.cho_solve(c, p.T, overwrite_b=False).T # U[n] = linalg.solve(grams, unfold(X, n).dot(kr).T).T # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update the optimization result, checks for convergence. # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute objective function # grams *= U[-1].T.dot(U[-1]) # obj = np.sqrt(np.sum(grams) - 2*sci.sum(p*U[-1]) + normX**2) / normX obj = linalg.norm(U.full() - X) / normX # Update result result.update(obj) # Finalize and return the optimization result. return result.finalize()
[ "Fits CP Decomposition using Alternating Least Squares (ALS).\n\n Parameters\n ----------\n X : (I_1, ..., I_N) array_like\n A tensor with ``X.ndim >= 3``.\n\n rank : integer\n The `rank` sets the number of components to be computed.\n\n random_state : integer, ``RandomState``, or ``None``, optional (default ``None``)\n If integer, sets the seed of the random number generator;\n If RandomState instance, random_state is the random number generator;\n If None, use the RandomState instance used by ``numpy.random``.\n\n init : str, or KTensor, optional (default ``'randn'``).\n Specifies initial guess for KTensor factor matrices.\n If ``'randn'``, Gaussian random numbers are used to initialize.\n If ``'rand'``, uniform random numbers are used to initialize.\n If KTensor instance, a copy is made to initialize the optimization.\n\n options : dict, specifying fitting options.\n\n tol : float, optional (default ``tol=1E-5``)\n Stopping tolerance for reconstruction error.\n\n max_iter : integer, optional (default ``max_iter = 500``)\n Maximum number of iterations to perform before exiting.\n\n min_iter : integer, optional (default ``min_iter = 1``)\n Minimum number of iterations to perform before exiting.\n\n max_time : integer, optional (default ``max_time = np.inf``)\n Maximum computational time before exiting.\n\n verbose : bool ``{'True', 'False'}``, optional (default ``verbose=True``)\n Display progress.\n\n\n Returns\n -------\n result : FitResult instance\n Object which holds the fitted results. It provides the factor matrices\n in form of a KTensor, ``result.factors``.\n\n\n Notes\n -----\n Alternating Least Squares (ALS) is a very old and reliable method for\n fitting CP decompositions. This is likely a good first algorithm to try.\n\n\n References\n ----------\n Kolda, T. G. & Bader, B. W.\n \"Tensor Decompositions and Applications.\"\n SIAM Rev. 51 (2009): 455-500\n http://epubs.siam.org/doi/pdf/10.1137/07070111X\n\n Comon, Pierre & Xavier Luciani & Andre De Almeida.\n \"Tensor decompositions, alternating least squares and other tales.\"\n Journal of chemometrics 23 (2009): 393-405.\n http://onlinelibrary.wiley.com/doi/10.1002/cem.1236/abstract\n\n\n Examples\n --------\n\n ```\n import tensortools as tt\n I, J, K, R = 20, 20, 20, 4\n X = tt.randn_tensor(I, J, K, rank=R)\n tt.cp_als(X, rank=R)\n ```\n " ]
Please provide a description of the function:def fit(self, X, ranks, replicates=1, verbose=True): # Make ranks iterable if necessary. if not isinstance(ranks, collections.Iterable): ranks = (ranks,) # Iterate over model ranks, optimize multiple replicates at each rank. for r in ranks: # Initialize storage if r not in self.results: self.results[r] = [] # Display fitting progress. if verbose: itr = trange(replicates, desc='Fitting rank-{} models'.format(r), leave=False) else: itr = range(replicates) # Fit replicates. for i in itr: model_fit = self._fit_method(X, r, **self._fit_options) self.results[r].append(model_fit) # Print summary of results. if verbose: min_obj = min([res.obj for res in self.results[r]]) max_obj = max([res.obj for res in self.results[r]]) elapsed = sum([res.total_time for res in self.results[r]]) print('Rank-{} models: min obj, {:.2f}; ' 'max obj, {:.2f}; time to fit, ' '{:.1f}s'.format(r, min_obj, max_obj, elapsed)) # Sort results from lowest to largest loss. for r in ranks: idx = np.argsort([result.obj for result in self.results[r]]) self.results[r] = [self.results[r][i] for i in idx] # Align best model within each rank to best model of next larger rank. # Here r0 is the rank of the lower-dimensional model and r1 is the rank # of the high-dimensional model. for i in reversed(range(1, len(ranks))): r0, r1 = ranks[i-1], ranks[i] U = self.results[r0][0].factors V = self.results[r1][0].factors kruskal_align(U, V, permute_U=True) # For each rank, align everything to the best model for r in ranks: # store best factors U = self.results[r][0].factors # best model factors self.results[r][0].similarity = 1.0 # similarity to itself # align lesser fit models to best models for res in self.results[r][1:]: res.similarity = kruskal_align(U, res.factors, permute_V=True)
[ "\n Fits CP tensor decompositions for different choices of rank.\n\n Parameters\n ----------\n X : array_like\n Real tensor\n ranks : int, or iterable\n iterable specifying number of components in each model\n replicates: int\n number of models to fit at each rank\n verbose : bool\n If True, prints summaries and optimization progress.\n " ]
Please provide a description of the function:def objectives(self, rank): self._check_rank(rank) return [result.obj for result in self.results[rank]]
[ "Returns objective values of models with specified rank.\n " ]
Please provide a description of the function:def similarities(self, rank): self._check_rank(rank) return [result.similarity for result in self.results[rank]]
[ "Returns similarity scores for models with specified rank.\n " ]
Please provide a description of the function:def factors(self, rank): self._check_rank(rank) return [result.factors for result in self.results[rank]]
[ "Returns KTensor factors for models with specified rank.\n " ]
Please provide a description of the function:def commit(self): # Iterate on a new set, as we remove record during iteration from the # original one for record in set(self.dirty): values = {} for field in record._values_to_write: if record.id in record._values_to_write[field]: value = record._values_to_write[field].pop(record.id) values[field] = value # Store the value in the '_values' dictionary. This # operation is delegated to each field descriptor as some # values can not be stored "as is" (e.g. magic tuples of # 2many fields need to be converted) record.__class__.__dict__[field].store(record, value) record.write(values) self.dirty.remove(record)
[ "Commit dirty records to the server. This method is automatically\n called when the `auto_commit` option is set to `True` (default).\n It can be useful to set the former option to `False` to get better\n performance by reducing the number of RPC requests generated.\n\n With `auto_commit` set to `True` (default behaviour), each time a value\n is set on a record field a RPC request is sent to the server to update\n the record:\n\n .. doctest::\n\n >>> user = odoo.env.user\n >>> user.name = \"Joe\" # write({'name': \"Joe\"})\n >>> user.email = \"[email protected]\" # write({'email': \"[email protected]\"})\n\n With `auto_commit` set to `False`, changes on a record are sent all at\n once when calling the :func:`commit` method:\n\n .. doctest::\n\n >>> odoo.config['auto_commit'] = False\n >>> user = odoo.env.user\n >>> user.name = \"Joe\"\n >>> user.email = \"[email protected]\"\n >>> user in odoo.env.dirty\n True\n >>> odoo.env.commit() # write({'name': \"Joe\", 'email': \"[email protected]\"})\n >>> user in odoo.env.dirty\n False\n\n Only one RPC request is generated in the last case.\n " ]
Please provide a description of the function:def ref(self, xml_id): model, id_ = self._odoo.execute( 'ir.model.data', 'xmlid_to_res_model_res_id', xml_id, True) return self[model].browse(id_)
[ "Return the record corresponding to the given `xml_id` (also called\n external ID).\n Raise an :class:`RPCError <odoorpc.error.RPCError>` if no record\n is found.\n\n .. doctest::\n\n >>> odoo.env.ref('base.lang_en')\n Recordset('res.lang', [1])\n\n :return: a :class:`odoorpc.models.Model` instance (recordset)\n :raise: :class:`odoorpc.error.RPCError`\n " ]
Please provide a description of the function:def _create_model_class(self, model): cls_name = model.replace('.', '_') # Hack for Python 2 (no need to do this for Python 3) if sys.version_info[0] < 3: if isinstance(cls_name, unicode): cls_name = cls_name.encode('utf-8') # Retrieve server fields info and generate corresponding local fields attrs = { '_env': self, '_odoo': self._odoo, '_name': model, '_columns': {}, } fields_get = self._odoo.execute(model, 'fields_get') for field_name, field_data in fields_get.items(): if field_name not in FIELDS_RESERVED: Field = fields.generate_field(field_name, field_data) attrs['_columns'][field_name] = Field attrs[field_name] = Field # Case where no field 'name' exists, we generate one (which will be # in readonly mode) in purpose to be filled with the 'name_get' method if 'name' not in attrs['_columns']: field_data = {'type': 'text', 'string': 'Name', 'readonly': True} Field = fields.generate_field('name', field_data) attrs['_columns']['name'] = Field attrs['name'] = Field return type(cls_name, (Model,), attrs)
[ "Generate the model proxy class.\n\n :return: a :class:`odoorpc.models.Model` class\n " ]
Please provide a description of the function:def get_all(rc_file='~/.odoorpcrc'): conf = ConfigParser() conf.read([os.path.expanduser(rc_file)]) sessions = {} for name in conf.sections(): sessions[name] = { 'type': conf.get(name, 'type'), 'host': conf.get(name, 'host'), 'protocol': conf.get(name, 'protocol'), 'port': conf.getint(name, 'port'), 'timeout': conf.getfloat(name, 'timeout'), 'user': conf.get(name, 'user'), 'passwd': conf.get(name, 'passwd'), 'database': conf.get(name, 'database'), } return sessions
[ "Return all session configurations from the `rc_file` file.\n\n >>> import odoorpc\n >>> from pprint import pprint as pp\n >>> pp(odoorpc.session.get_all()) # doctest: +SKIP\n {'foo': {'database': 'db_name',\n 'host': 'localhost',\n 'passwd': 'password',\n 'port': 8069,\n 'protocol': 'jsonrpc',\n 'timeout': 120,\n 'type': 'ODOO',\n 'user': 'admin'},\n ...}\n\n .. doctest::\n :hide:\n\n >>> import odoorpc\n >>> session = '%s_session' % DB\n >>> odoo.save(session)\n >>> data = odoorpc.session.get_all()\n >>> data[session]['host'] == HOST\n True\n >>> data[session]['protocol'] == PROTOCOL\n True\n >>> data[session]['port'] == int(PORT)\n True\n >>> data[session]['database'] == DB\n True\n >>> data[session]['user'] == USER\n True\n >>> data[session]['passwd'] == PWD\n True\n >>> data[session]['type'] == 'ODOO'\n True\n " ]
Please provide a description of the function:def get(name, rc_file='~/.odoorpcrc'): conf = ConfigParser() conf.read([os.path.expanduser(rc_file)]) if not conf.has_section(name): raise ValueError( "'%s' session does not exist in %s" % (name, rc_file)) return { 'type': conf.get(name, 'type'), 'host': conf.get(name, 'host'), 'protocol': conf.get(name, 'protocol'), 'port': conf.getint(name, 'port'), 'timeout': conf.getfloat(name, 'timeout'), 'user': conf.get(name, 'user'), 'passwd': conf.get(name, 'passwd'), 'database': conf.get(name, 'database'), }
[ "Return the session configuration identified by `name`\n from the `rc_file` file.\n\n >>> import odoorpc\n >>> from pprint import pprint as pp\n >>> pp(odoorpc.session.get('foo')) # doctest: +SKIP\n {'database': 'db_name',\n 'host': 'localhost',\n 'passwd': 'password',\n 'port': 8069,\n 'protocol': 'jsonrpc',\n 'timeout': 120,\n 'type': 'ODOO',\n 'user': 'admin'}\n\n .. doctest::\n :hide:\n\n >>> import odoorpc\n >>> session = '%s_session' % DB\n >>> odoo.save(session)\n >>> data = odoorpc.session.get(session)\n >>> data['host'] == HOST\n True\n >>> data['protocol'] == PROTOCOL\n True\n >>> data['port'] == int(PORT)\n True\n >>> data['database'] == DB\n True\n >>> data['user'] == USER\n True\n >>> data['passwd'] == PWD\n True\n >>> data['type'] == 'ODOO'\n True\n\n :raise: `ValueError` (wrong session name)\n " ]
Please provide a description of the function:def save(name, data, rc_file='~/.odoorpcrc'): conf = ConfigParser() conf.read([os.path.expanduser(rc_file)]) if not conf.has_section(name): conf.add_section(name) for key in data: value = data[key] conf.set(name, key, str(value)) with open(os.path.expanduser(rc_file), 'w') as file_: os.chmod(os.path.expanduser(rc_file), stat.S_IREAD | stat.S_IWRITE) conf.write(file_)
[ "Save the `data` session configuration under the name `name`\n in the `rc_file` file.\n\n >>> import odoorpc\n >>> odoorpc.session.save(\n ... 'foo',\n ... {'type': 'ODOO', 'host': 'localhost', 'protocol': 'jsonrpc',\n ... 'port': 8069, 'timeout': 120, 'database': 'db_name'\n ... 'user': 'admin', 'passwd': 'password'}) # doctest: +SKIP\n\n .. doctest::\n :hide:\n\n >>> import odoorpc\n >>> session = '%s_session' % DB\n >>> odoorpc.session.save(\n ... session,\n ... {'type': 'ODOO', 'host': HOST, 'protocol': PROTOCOL,\n ... 'port': PORT, 'timeout': 120, 'database': DB,\n ... 'user': USER, 'passwd': PWD})\n " ]
Please provide a description of the function:def remove(name, rc_file='~/.odoorpcrc'): conf = ConfigParser() conf.read([os.path.expanduser(rc_file)]) if not conf.has_section(name): raise ValueError( "'%s' session does not exist in %s" % (name, rc_file)) conf.remove_section(name) with open(os.path.expanduser(rc_file), 'wb') as file_: conf.write(file_)
[ "Remove the session configuration identified by `name`\n from the `rc_file` file.\n\n >>> import odoorpc\n >>> odoorpc.session.remove('foo') # doctest: +SKIP\n\n .. doctest::\n :hide:\n\n >>> import odoorpc\n >>> session = '%s_session' % DB\n >>> odoorpc.session.remove(session)\n\n :raise: `ValueError` (wrong session name)\n " ]
Please provide a description of the function:def get_encodings(hint_encoding='utf-8'): fallbacks = { 'latin1': 'latin9', 'iso-8859-1': 'iso8859-15', 'cp1252': '1252', } if hint_encoding: yield hint_encoding if hint_encoding.lower() in fallbacks: yield fallbacks[hint_encoding.lower()] # some defaults (also taking care of pure ASCII) for charset in ['utf8', 'latin1', 'ascii']: if not hint_encoding or (charset.lower() != hint_encoding.lower()): yield charset from locale import getpreferredencoding prefenc = getpreferredencoding() if prefenc and prefenc.lower() != 'utf-8': yield prefenc prefenc = fallbacks.get(prefenc.lower()) if prefenc: yield prefenc
[ "Used to try different encoding.\n Function copied from Odoo 11.0 (odoo.loglevels.get_encodings).\n This piece of code is licensed under the LGPL-v3 and so it is compatible\n with the LGPL-v3 license of OdooRPC::\n\n - https://github.com/odoo/odoo/blob/11.0/LICENSE\n - https://github.com/odoo/odoo/blob/11.0/COPYRIGHT\n " ]
Please provide a description of the function:def get_json_log_data(data): log_data = data for param in LOG_HIDDEN_JSON_PARAMS: if param in data['params']: if log_data is data: log_data = copy.deepcopy(data) log_data['params'][param] = "**********" return log_data
[ "Returns a new `data` dictionary with hidden params\n for log purpose.\n " ]
Please provide a description of the function:def json(self, url, params): data = self._connector.proxy_json(url, params) if data.get('error'): raise error.RPCError( data['error']['data']['message'], data['error']) return data
[ "Low level method to execute JSON queries.\n It basically performs a request and raises an\n :class:`odoorpc.error.RPCError` exception if the response contains\n an error.\n\n You have to know the names of each parameter required by the function\n called, and set them in the `params` dictionary.\n\n Here an authentication request:\n\n .. doctest::\n :options: +SKIP\n\n >>> data = odoo.json(\n ... '/web/session/authenticate',\n ... {'db': 'db_name', 'login': 'admin', 'password': 'admin'})\n >>> from pprint import pprint\n >>> pprint(data)\n {'id': 645674382,\n 'jsonrpc': '2.0',\n 'result': {'db': 'db_name',\n 'session_id': 'fa740abcb91784b8f4750c5c5b14da3fcc782d11',\n 'uid': 1,\n 'user_context': {'lang': 'en_US',\n 'tz': 'Europe/Brussels',\n 'uid': 1},\n 'username': 'admin'}}\n\n .. doctest::\n :hide:\n\n >>> data = odoo.json(\n ... '/web/session/authenticate',\n ... {'db': DB, 'login': USER, 'password': PWD})\n >>> data['result']['db'] == DB\n True\n >>> data['result']['uid'] in [1, 2]\n True\n >>> data['result']['username'] == USER\n True\n\n And a call to the ``read`` method of the ``res.users`` model:\n\n .. doctest::\n :options: +SKIP\n\n >>> data = odoo.json(\n ... '/web/dataset/call',\n ... {'model': 'res.users', 'method': 'read',\n ... 'args': [[2], ['name']]})\n >>> from pprint import pprint\n >>> pprint(data)\n {'id': ...,\n 'jsonrpc': '2.0',\n 'result': [{'id': 2, 'name': 'Mitchell Admin'}]}\n\n *Python 2:*\n\n :return: a dictionary (JSON response)\n :raise: :class:`odoorpc.error.RPCError`\n :raise: `urllib2.HTTPError` (if `params` is not a dictionary)\n :raise: `urllib2.URLError` (connection error)\n\n *Python 3:*\n\n :return: a dictionary (JSON response)\n :raise: :class:`odoorpc.error.RPCError`\n :raise: `urllib.error.HTTPError` (if `params` is not a dictionary)\n :raise: `urllib.error.URLError` (connection error)\n " ]
Please provide a description of the function:def http(self, url, data=None, headers=None): return self._connector.proxy_http(url, data, headers)
[ "Low level method to execute raw HTTP queries.\n\n .. note::\n\n For low level JSON-RPC queries, see the more convenient\n :func:`odoorpc.ODOO.json` method instead.\n\n You have to know the names of each POST parameter required by the\n URL, and set them in the `data` string/buffer.\n The `data` argument must be built by yourself, following the expected\n URL parameters (with :func:`urllib.urlencode` function for simple\n parameters, or multipart/form-data structure to handle file upload).\n\n E.g., the HTTP raw query to get the company logo on `Odoo 12.0`:\n\n .. doctest::\n\n >>> response = odoo.http('web/binary/company_logo')\n >>> binary_data = response.read()\n\n *Python 2:*\n\n :return: `urllib.addinfourl`\n :raise: `urllib2.HTTPError`\n :raise: `urllib2.URLError` (connection error)\n\n *Python 3:*\n\n :return: `http.client.HTTPResponse`\n :raise: `urllib.error.HTTPError`\n :raise: `urllib.error.URLError` (connection error)\n " ]
Please provide a description of the function:def _check_logged_user(self): if not self._env or not self._password or not self._login: raise error.InternalError("Login required")
[ "Check if a user is logged. Otherwise, an error is raised." ]
Please provide a description of the function:def login(self, db, login='admin', password='admin'): # Get the user's ID and generate the corresponding user record data = self.json( '/web/session/authenticate', {'db': db, 'login': login, 'password': password}) uid = data['result']['uid'] if uid: context = data['result']['user_context'] self._env = Environment(self, db, uid, context=context) self._login = login self._password = password else: raise error.RPCError("Wrong login ID or password")
[ "Log in as the given `user` with the password `passwd` on the\n database `db`.\n\n .. doctest::\n :options: +SKIP\n\n >>> odoo.login('db_name', 'admin', 'admin')\n >>> odoo.env.user.name\n 'Administrator'\n\n *Python 2:*\n\n :raise: :class:`odoorpc.error.RPCError`\n :raise: `urllib2.URLError` (connection error)\n\n *Python 3:*\n\n :raise: :class:`odoorpc.error.RPCError`\n :raise: `urllib.error.URLError` (connection error)\n " ]
Please provide a description of the function:def logout(self): if not self._env: return False self.json('/web/session/destroy', {}) self._env = None self._login = None self._password = None return True
[ "Log out the user.\n\n >>> odoo.logout()\n True\n\n *Python 2:*\n\n :return: `True` if the operation succeed, `False` if no user was logged\n :raise: :class:`odoorpc.error.RPCError`\n :raise: `urllib2.URLError` (connection error)\n\n *Python 3:*\n\n :return: `True` if the operation succeed, `False` if no user was logged\n :raise: :class:`odoorpc.error.RPCError`\n :raise: `urllib.error.URLError` (connection error)\n " ]
Please provide a description of the function:def execute(self, model, method, *args): self._check_logged_user() # Execute the query args_to_send = [self.env.db, self.env.uid, self._password, model, method] args_to_send.extend(args) data = self.json( '/jsonrpc', {'service': 'object', 'method': 'execute', 'args': args_to_send}) return data.get('result')
[ "Execute the `method` of `model`.\n `*args` parameters varies according to the `method` used.\n\n .. doctest::\n :options: +SKIP\n\n >>> odoo.execute('res.partner', 'read', [1], ['name'])\n [{'id': 1, 'name': 'YourCompany'}]\n\n .. doctest::\n :hide:\n\n >>> data = odoo.execute('res.partner', 'read', [1], ['name'])\n >>> data[0]['id'] == 1\n True\n >>> data[0]['name'] == 'YourCompany'\n True\n\n *Python 2:*\n\n :return: the result returned by the `method` called\n :raise: :class:`odoorpc.error.RPCError`\n :raise: :class:`odoorpc.error.InternalError` (if not logged)\n :raise: `urllib2.URLError` (connection error)\n\n *Python 3:*\n\n :return: the result returned by the `method` called\n :raise: :class:`odoorpc.error.RPCError`\n :raise: :class:`odoorpc.error.InternalError` (if not logged)\n :raise: `urllib.error.URLError` (connection error)\n " ]
Please provide a description of the function:def exec_workflow(self, model, record_id, signal): if tools.v(self.version)[0] >= 11: raise DeprecationWarning( u"Workflows have been removed in Odoo >= 11.0") self._check_logged_user() # Execute the workflow query args_to_send = [self.env.db, self.env.uid, self._password, model, signal, record_id] data = self.json( '/jsonrpc', {'service': 'object', 'method': 'exec_workflow', 'args': args_to_send}) return data.get('result')
[ "Execute the workflow `signal` on\n the instance having the ID `record_id` of `model`.\n\n *Python 2:*\n\n :raise: :class:`odoorpc.error.RPCError`\n :raise: :class:`odoorpc.error.InternalError` (if not logged)\n :raise: `urllib2.URLError` (connection error)\n\n *Python 3:*\n\n :raise: :class:`odoorpc.error.RPCError`\n :raise: :class:`odoorpc.error.InternalError` (if not logged)\n :raise: `urllib.error.URLError` (connection error)\n " ]
Please provide a description of the function:def save(self, name, rc_file='~/.odoorpcrc'): self._check_logged_user() data = { 'type': self.__class__.__name__, 'host': self.host, 'protocol': self.protocol, 'port': self.port, 'timeout': self.config['timeout'], 'user': self._login, 'passwd': self._password, 'database': self.env.db, } session.save(name, data, rc_file)
[ "Save the current :class:`ODOO <odoorpc.ODOO>` instance (a `session`)\n inside `rc_file` (``~/.odoorpcrc`` by default). This session will be\n identified by `name`::\n\n >>> import odoorpc\n >>> odoo = odoorpc.ODOO('localhost', port=8069)\n >>> odoo.login('db_name', 'admin', 'admin')\n >>> odoo.save('foo')\n\n Use the :func:`list <odoorpc.ODOO.list>` class method to list all\n stored sessions, and the :func:`load <odoorpc.ODOO.load>` class method\n to retrieve an already-connected :class:`ODOO <odoorpc.ODOO>` instance.\n\n *Python 2:*\n\n :raise: :class:`odoorpc.error.InternalError` (if not logged)\n :raise: `IOError`\n\n *Python 3:*\n\n :raise: :class:`odoorpc.error.InternalError` (if not logged)\n :raise: `PermissionError`\n :raise: `FileNotFoundError`\n " ]
Please provide a description of the function:def load(cls, name, rc_file='~/.odoorpcrc'): data = session.get(name, rc_file) if data.get('type') != cls.__name__: raise error.InternalError( "'{0}' session is not of type '{1}'".format( name, cls.__name__)) odoo = cls( host=data['host'], protocol=data['protocol'], port=data['port'], timeout=data['timeout'], ) odoo.login( db=data['database'], login=data['user'], password=data['passwd']) return odoo
[ "Return a connected :class:`ODOO` session identified by `name`:\n\n .. doctest::\n :options: +SKIP\n\n >>> import odoorpc\n >>> odoo = odoorpc.ODOO.load('foo')\n\n Such sessions are stored with the\n :func:`save <odoorpc.ODOO.save>` method.\n\n *Python 2:*\n\n :raise: :class:`odoorpc.error.RPCError`\n :raise: `urllib2.URLError` (connection error)\n\n *Python 3:*\n\n :raise: :class:`odoorpc.error.RPCError`\n :raise: `urllib.error.URLError` (connection error)\n " ]
Please provide a description of the function:def list(cls, rc_file='~/.odoorpcrc'): sessions = session.get_all(rc_file) return [name for name in sessions if sessions[name].get('type') == cls.__name__]
[ "Return a list of all stored sessions available in the\n `rc_file` file:\n\n .. doctest::\n :options: +SKIP\n\n >>> import odoorpc\n >>> odoorpc.ODOO.list()\n ['foo', 'bar']\n\n Use the :func:`save <odoorpc.ODOO.save>` and\n :func:`load <odoorpc.ODOO.load>` methods to manage such sessions.\n\n *Python 2:*\n\n :raise: `IOError`\n\n *Python 3:*\n\n :raise: `PermissionError`\n :raise: `FileNotFoundError`\n " ]
Please provide a description of the function:def remove(cls, name, rc_file='~/.odoorpcrc'): data = session.get(name, rc_file) if data.get('type') != cls.__name__: raise error.InternalError( "'{0}' session is not of type '{1}'".format( name, cls.__name__)) return session.remove(name, rc_file)
[ "Remove the session identified by `name` from the `rc_file` file:\n\n .. doctest::\n :options: +SKIP\n\n >>> import odoorpc\n >>> odoorpc.ODOO.remove('foo')\n True\n\n *Python 2:*\n\n :raise: `ValueError` (if the session does not exist)\n :raise: `IOError`\n\n *Python 3:*\n\n :raise: `ValueError` (if the session does not exist)\n :raise: `PermissionError`\n :raise: `FileNotFoundError`\n " ]
Please provide a description of the function:def dump(self, password, db, format_='zip'): args = [password, db] if v(self._odoo.version)[0] >= 9: args.append(format_) data = self._odoo.json( '/jsonrpc', {'service': 'db', 'method': 'dump', 'args': args}) # Encode to bytes forced to be compatible with Python 3.2 # (its 'base64.standard_b64decode()' function only accepts bytes) result = encode2bytes(data['result']) content = base64.standard_b64decode(result) return io.BytesIO(content)
[ "Backup the `db` database. Returns the dump as a binary ZIP file\n containing the SQL dump file alongside the filestore directory (if any).\n\n >>> dump = odoo.db.dump('super_admin_passwd', 'prod') # doctest: +SKIP\n\n .. doctest::\n :hide:\n\n >>> dump = odoo.db.dump(SUPER_PWD, DB)\n\n If you get a timeout error, increase this one before performing the\n request:\n\n >>> timeout_backup = odoo.config['timeout']\n >>> odoo.config['timeout'] = 600 # Timeout set to 10 minutes\n >>> dump = odoo.db.dump('super_admin_passwd', 'prod') # doctest: +SKIP\n >>> odoo.config['timeout'] = timeout_backup\n\n Write it on the file system:\n\n .. doctest::\n :options: +SKIP\n\n >>> with open('dump.zip', 'wb') as dump_zip:\n ... dump_zip.write(dump.read())\n ...\n\n .. doctest::\n :hide:\n\n >>> with open('dump.zip', 'wb') as dump_zip:\n ... fileno = dump_zip.write(dump.read()) # Python 3\n ...\n\n You can manipulate the file with the `zipfile` module for instance:\n\n .. doctest::\n :options: +SKIP\n\n >>> import zipfile\n >>> zipfile.ZipFile('dump.zip').namelist()\n ['dump.sql',\n 'filestore/ef/ef2c882a36dbe90fc1e7e28d816ad1ac1464cfbb',\n 'filestore/dc/dcf00aacce882bbfd117c0277e514f829b4c5bf0',\n ...]\n\n .. doctest::\n :hide:\n\n >>> import zipfile\n >>> zipfile.ZipFile('dump.zip').namelist() # doctest: +NORMALIZE_WHITESPACE\n ['dump.sql'...'filestore/...'...]\n\n The super administrator password is required to perform this method.\n\n *Python 2:*\n\n :return: `io.BytesIO`\n :raise: :class:`odoorpc.error.RPCError` (access denied / wrong database)\n :raise: `urllib2.URLError` (connection error)\n\n *Python 3:*\n\n :return: `io.BytesIO`\n :raise: :class:`odoorpc.error.RPCError` (access denied / wrong database)\n :raise: `urllib.error.URLError` (connection error)\n " ]
Please provide a description of the function:def create(self, password, db, demo=False, lang='en_US', admin_password='admin'): self._odoo.json( '/jsonrpc', {'service': 'db', 'method': 'create_database', 'args': [password, db, demo, lang, admin_password]})
[ "Request the server to create a new database named `db`\n which will have `admin_password` as administrator password and\n localized with the `lang` parameter.\n You have to set the flag `demo` to `True` in order to insert\n demonstration data.\n\n >>> odoo.db.create('super_admin_passwd', 'prod', False, 'fr_FR', 'my_admin_passwd') # doctest: +SKIP\n\n If you get a timeout error, increase this one before performing the\n request:\n\n >>> timeout_backup = odoo.config['timeout']\n >>> odoo.config['timeout'] = 600 # Timeout set to 10 minutes\n >>> odoo.db.create('super_admin_passwd', 'prod', False, 'fr_FR', 'my_admin_passwd') # doctest: +SKIP\n >>> odoo.config['timeout'] = timeout_backup\n\n The super administrator password is required to perform this method.\n\n *Python 2:*\n\n :raise: :class:`odoorpc.error.RPCError` (access denied)\n :raise: `urllib2.URLError` (connection error)\n\n *Python 3:*\n\n :raise: :class:`odoorpc.error.RPCError` (access denied)\n :raise: `urllib.error.URLError` (connection error)\n " ]
Please provide a description of the function:def drop(self, password, db): if self._odoo._env and self._odoo._env.db == db: # Remove the existing session to avoid HTTP session error self._odoo.logout() data = self._odoo.json( '/jsonrpc', {'service': 'db', 'method': 'drop', 'args': [password, db]}) return data['result']
[ "Drop the `db` database. Returns `True` if the database was removed,\n `False` otherwise (database did not exist):\n\n >>> odoo.db.drop('super_admin_passwd', 'test') # doctest: +SKIP\n True\n\n The super administrator password is required to perform this method.\n\n *Python 2:*\n\n :return: `True` or `False`\n :raise: :class:`odoorpc.error.RPCError` (access denied)\n :raise: `urllib2.URLError` (connection error)\n\n *Python 3:*\n\n :return: `True` or `False`\n :raise: :class:`odoorpc.error.RPCError` (access denied)\n :raise: `urllib.error.URLError` (connection error)\n " ]
Please provide a description of the function:def duplicate(self, password, db, new_db): self._odoo.json( '/jsonrpc', {'service': 'db', 'method': 'duplicate_database', 'args': [password, db, new_db]})
[ "Duplicate `db' as `new_db`.\n\n >>> odoo.db.duplicate('super_admin_passwd', 'prod', 'test') # doctest: +SKIP\n\n The super administrator password is required to perform this method.\n\n *Python 2:*\n\n :raise: :class:`odoorpc.error.RPCError` (access denied / wrong database)\n :raise: `urllib2.URLError` (connection error)\n\n *Python 3:*\n\n :raise: :class:`odoorpc.error.RPCError` (access denied / wrong database)\n :raise: `urllib.error.URLError` (connection error)\n " ]
Please provide a description of the function:def restore(self, password, db, dump, copy=False): if dump.closed: raise error.InternalError("Dump file closed") b64_data = base64.standard_b64encode(dump.read()).decode() self._odoo.json( '/jsonrpc', {'service': 'db', 'method': 'restore', 'args': [password, db, b64_data, copy]})
[ "Restore the `dump` database into the new `db` database.\n The `dump` file object can be obtained with the\n :func:`dump <DB.dump>` method.\n If `copy` is set to `True`, the restored database will have a new UUID.\n\n >>> odoo.db.restore('super_admin_passwd', 'test', dump_file) # doctest: +SKIP\n\n If you get a timeout error, increase this one before performing the\n request:\n\n >>> timeout_backup = odoo.config['timeout']\n >>> odoo.config['timeout'] = 7200 # Timeout set to 2 hours\n >>> odoo.db.restore('super_admin_passwd', 'test', dump_file) # doctest: +SKIP\n >>> odoo.config['timeout'] = timeout_backup\n\n The super administrator password is required to perform this method.\n\n *Python 2:*\n\n :raise: :class:`odoorpc.error.RPCError`\n (access denied / database already exists)\n :raise: :class:`odoorpc.error.InternalError` (dump file closed)\n :raise: `urllib2.URLError` (connection error)\n\n *Python 3:*\n\n :raise: :class:`odoorpc.error.RPCError`\n (access denied / database already exists)\n :raise: :class:`odoorpc.error.InternalError` (dump file closed)\n :raise: `urllib.error.URLError` (connection error)\n " ]
Please provide a description of the function:def _get_proxies(self): proxy_json = jsonrpclib.ProxyJSON( self.host, self.port, self._timeout, ssl=self.ssl, deserialize=self.deserialize, opener=self._opener) proxy_http = jsonrpclib.ProxyHTTP( self.host, self.port, self._timeout, ssl=self.ssl, opener=self._opener) # Detect the server version if self.version is None: result = proxy_json('/web/webclient/version_info')['result'] if 'server_version' in result: self.version = result['server_version'] return proxy_json, proxy_http
[ "Returns the :class:`ProxyJSON <odoorpc.rpc.jsonrpclib.ProxyJSON>`\n and :class:`ProxyHTTP <odoorpc.rpc.jsonrpclib.ProxyHTTP>` instances\n corresponding to the server version used.\n " ]
Please provide a description of the function:def timeout(self, timeout): self._proxy_json._timeout = timeout self._proxy_http._timeout = timeout
[ "Set the timeout." ]
Please provide a description of the function:def is_int(value): if isinstance(value, bool): return False try: int(value) return True except (ValueError, TypeError): return False
[ "Return `True` if ``value`` is an integer." ]
Please provide a description of the function:def odoo_tuple_in(iterable): if not iterable: return False def is_odoo_tuple(elt): try: return elt[:1][0] in [1, 2, 3, 4, 5] \ or elt[:2] in [(6, 0), [6, 0], (0, 0), [0, 0]] except (TypeError, IndexError): return False return any(is_odoo_tuple(elt) for elt in iterable)
[ "Return `True` if `iterable` contains an expected tuple like\n ``(6, 0, IDS)`` (and so on).\n\n >>> odoo_tuple_in([0, 1, 2]) # Simple list\n False\n >>> odoo_tuple_in([(6, 0, [42])]) # List of tuples\n True\n >>> odoo_tuple_in([[1, 42]]) # List of lists\n True\n ", "Return `True` if `elt` is a Odoo special tuple." ]
Please provide a description of the function:def tuples2ids(tuples, ids): for value in tuples: if value[0] == 6 and value[2]: ids = value[2] elif value[0] == 5: ids[:] = [] elif value[0] == 4 and value[1] and value[1] not in ids: ids.append(value[1]) elif value[0] == 3 and value[1] and value[1] in ids: ids.remove(value[1]) return ids
[ "Update `ids` according to `tuples`, e.g. (3, 0, X), (4, 0, X)..." ]
Please provide a description of the function:def records2ids(iterable): def record2id(elt): if isinstance(elt, Model): return elt.id return elt return [record2id(elt) for elt in iterable]
[ "Replace records contained in `iterable` with their corresponding IDs:\n\n >>> groups = list(odoo.env.user.groups_id)\n >>> records2ids(groups)\n [1, 2, 3, 14, 17, 18, 19, 7, 8, 9, 5, 20, 21, 22, 23]\n ", "If `elt` is a record, return its ID." ]
Please provide a description of the function:def generate_field(name, data): assert 'type' in data field = TYPES_TO_FIELDS.get(data['type'], Unknown)(name, data) return field
[ "Generate a well-typed field according to the data dictionary supplied\n (obtained via the `fields_get' method of any models).\n " ]
Please provide a description of the function:def check_value(self, value): #if self.readonly: # raise error.Error( # "'{field_name}' field is readonly".format( # field_name=self.name)) if value and self.size: if not is_string(value): raise ValueError("Value supplied has to be a string") if len(value) > self.size: raise ValueError( "Lenght of the '{0}' is limited to {1}".format( self.name, self.size)) if not value and self.required: raise ValueError("'{0}' field is required".format(self.name)) return value
[ "Check the validity of a value for the field." ]
Please provide a description of the function:def store(self, record, value): record._values[self.name][record.id] = value
[ "Store the value in the record." ]
Please provide a description of the function:def store(self, record, value): if record._values[self.name].get(record.id): tuples2ids(value, record._values[self.name][record.id]) else: record._values[self.name][record.id] = tuples2ids(value, [])
[ "Store the value in the record." ]
Please provide a description of the function:def _check_relation(self, relation): selection = [val[0] for val in self.selection] if relation not in selection: raise ValueError( ("The value '{value}' supplied doesn't match with the possible" " values '{selection}' for the '{field_name}' field").format( value=relation, selection=selection, field_name=self.name, )) return relation
[ "Raise a `ValueError` if `relation` is not allowed among\n the possible values.\n " ]
Please provide a description of the function:def download(self, name, ids, datas=None, context=None): if context is None: context = self._odoo.env.context def check_report(name): report_model = 'ir.actions.report' if v(self._odoo.version)[0] < 11: report_model = 'ir.actions.report.xml' IrReport = self._odoo.env[report_model] report_ids = IrReport.search([('report_name', '=', name)]) report_id = report_ids and report_ids[0] or False if not report_id: raise ValueError("The report '%s' does not exist." % name) return report_id report_id = check_report(name) # Odoo >= 11.0 if v(self._odoo.version)[0] >= 11: IrReport = self._odoo.env['ir.actions.report'] report = IrReport.browse(report_id) response = report.with_context(context).render(ids, data=datas) content = response[0] # On the server the result is a bytes string, # but the RPC layer of Odoo returns it as a unicode string, # so we encode it again as bytes result = content.encode('latin1') return io.BytesIO(result) # Odoo < 11.0 else: args_to_send = [self._odoo.env.db, self._odoo.env.uid, self._odoo._password, name, ids, datas, context] data = self._odoo.json( '/jsonrpc', {'service': 'report', 'method': 'render_report', 'args': args_to_send}) if 'result' not in data and not data['result'].get('result'): raise ValueError("Received invalid data.") # Encode to bytes forced to be compatible with Python 3.2 # (its 'base64.standard_b64decode()' function only accepts bytes) result = encode2bytes(data['result']['result']) content = base64.standard_b64decode(result) return io.BytesIO(content)
[ "Download a report from the server and return it as a remote file.\n For instance, to download the \"Quotation / Order\" report of sale orders\n identified by the IDs ``[2, 3]``:\n\n .. doctest::\n :options: +SKIP\n\n >>> report = odoo.report.download('sale.report_saleorder', [2, 3])\n\n .. doctest::\n :hide:\n\n >>> report = odoo.report.download('sale.report_saleorder', [2])\n\n Write it on the file system:\n\n .. doctest::\n :options: +SKIP\n\n >>> with open('sale_orders.pdf', 'wb') as report_file:\n ... report_file.write(report.read())\n ...\n\n .. doctest::\n :hide:\n\n >>> with open('sale_orders.pdf', 'wb') as report_file:\n ... fileno = report_file.write(report.read()) # Python 3\n ...\n\n *Python 2:*\n\n :return: `io.BytesIO`\n :raise: :class:`odoorpc.error.RPCError` (wrong parameters)\n :raise: `ValueError` (received invalid data)\n :raise: `urllib2.URLError` (connection error)\n\n *Python 3:*\n\n :return: `io.BytesIO`\n :raise: :class:`odoorpc.error.RPCError` (wrong parameters)\n :raise: `ValueError` (received invalid data)\n :raise: `urllib.error.URLError` (connection error)\n " ]
Please provide a description of the function:def list(self): report_model = 'ir.actions.report' if v(self._odoo.version)[0] < 11: report_model = 'ir.actions.report.xml' IrReport = self._odoo.env[report_model] report_ids = IrReport.search([]) reports = IrReport.read( report_ids, ['name', 'model', 'report_name', 'report_type']) result = {} for report in reports: model = report.pop('model') report.pop('id') if model not in result: result[model] = [] result[model].append(report) return result
[ "List available reports from the server by returning a dictionary\n with reports classified by data model:\n\n .. doctest::\n :options: +SKIP\n\n >>> odoo.report.list()['account.invoice']\n [{'name': u'Duplicates',\n 'report_name': u'account.account_invoice_report_duplicate_main',\n 'report_type': u'qweb-pdf'},\n {'name': 'Invoices',\n 'report_type': 'qweb-pdf',\n 'report_name': 'account.report_invoice'}]\n\n .. doctest::\n :hide:\n\n >>> from pprint import pprint as pp\n >>> any(data['report_name'] == 'account.report_invoice'\n ... for data in odoo.report.list()['account.invoice'])\n True\n\n *Python 2:*\n\n :return: `list` of dictionaries\n :raise: `urllib2.URLError` (connection error)\n\n *Python 3:*\n\n :return: `list` of dictionaries\n :raise: `urllib.error.URLError` (connection error)\n " ]
Please provide a description of the function:def _browse(cls, env, ids, from_record=None, iterated=None): records = cls() records._env_local = env records._ids = _normalize_ids(ids) if iterated: records._values = iterated._values records._values_to_write = iterated._values_to_write else: records._from_record = from_record records._values = {} records._values_to_write = {} for field in cls._columns: records._values[field] = {} records._values_to_write[field] = {} records._init_values() return records
[ "Create an instance (a recordset) corresponding to `ids` and\n attached to `env`.\n\n `from_record` parameter is used when the recordset is related to a\n parent record, and as such can take the value of a tuple\n (record, field). This is useful to update the parent record when the\n current recordset is modified.\n\n `iterated` can take the value of an iterated recordset, and no extra\n RPC queries are made to generate the resulting record (recordset and\n its record share the same values).\n " ]
Please provide a description of the function:def with_context(cls, *args, **kwargs): context = dict(args[0] if args else cls.env.context, **kwargs) return cls.with_env(cls.env(context=context))
[ "Return a model (or recordset) equivalent to the current model\n (or recordset) attached to an environment with another context.\n The context is taken from the current environment or from the\n positional arguments `args` if given, and modified by `kwargs`.\n\n Thus, the following two examples are equivalent:\n\n .. doctest::\n\n >>> Product = odoo.env['product.product']\n >>> Product.with_context(lang='fr_FR')\n Model('product.product')\n\n .. doctest::\n\n >>> context = Product.env.context\n >>> Product.with_context(context, lang='fr_FR')\n Model('product.product')\n\n This method is very convenient for example to search records\n whatever their active status are (active/inactive):\n\n .. doctest::\n\n >>> all_product_ids = Product.with_context(active_test=False).search([])\n\n Or to update translations of a recordset:\n\n .. doctest::\n\n >>> product_en = Product.browse(1)\n >>> product_en.env.lang\n 'en_US'\n >>> product_en.name = \"My product\" # Update the english translation\n >>> product_fr = product_en.with_context(lang='fr_FR')\n >>> product_fr.env.lang\n 'fr_FR'\n >>> product_fr.name = \"Mon produit\" # Update the french translation\n " ]
Please provide a description of the function:def _with_context(self, *args, **kwargs): context = dict(args[0] if args else self.env.context, **kwargs) return self.with_env(self.env(context=context))
[ "As the `with_context` class method but for recordset." ]
Please provide a description of the function:def with_env(cls, env): new_cls = type(cls.__name__, cls.__bases__, dict(cls.__dict__)) new_cls._env = env return new_cls
[ "Return a model (or recordset) equivalent to the current model\n (or recordset) attached to `env`.\n " ]