Code
stringlengths
103
85.9k
Summary
listlengths
0
94
Please provide a description of the function:def QA_user_sign_up(name, password, client): coll = client.user if (coll.find({'username': name}).count() > 0): print(name) QA_util_log_info('user name is already exist') return False else: return True
[ "只做check! 具体逻辑需要在自己的函数中实现\n\n 参见:QAWEBSERVER中的实现\n \n Arguments:\n name {[type]} -- [description]\n password {[type]} -- [description]\n client {[type]} -- [description]\n \n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def warp(self, order): # 因为成交模式对时间的封装 if order.order_model == ORDER_MODEL.MARKET: if order.frequence is FREQUENCE.DAY: # exact_time = str(datetime.datetime.strptime( # str(order.datetime), '%Y-%m-%d %H-%M-%S') + datetime.timedelta(day=1)) order.date = order.datetime[0:10] order.datetime = '{} 09:30:00'.format(order.date) elif order.frequence in [FREQUENCE.ONE_MIN, FREQUENCE.FIVE_MIN, FREQUENCE.FIFTEEN_MIN, FREQUENCE.THIRTY_MIN, FREQUENCE.SIXTY_MIN]: exact_time = str( datetime.datetime .strptime(str(order.datetime), '%Y-%m-%d %H:%M:%S') + datetime.timedelta(minutes=1) ) order.date = exact_time[0:10] order.datetime = exact_time self.market_data = self.get_market(order) if self.market_data is None: return order order.price = ( float(self.market_data["high"]) + float(self.market_data["low"]) ) * 0.5 elif order.order_model == ORDER_MODEL.NEXT_OPEN: try: exact_time = str( datetime.datetime .strptime(str(order.datetime), '%Y-%m-%d %H-%M-%S') + datetime.timedelta(day=1) ) order.date = exact_time[0:10] order.datetime = '{} 09:30:00'.format(order.date) except: order.datetime = '{} 15:00:00'.format(order.date) self.market_data = self.get_market(order) if self.market_data is None: return order order.price = float(self.market_data["close"]) elif order.order_model == ORDER_MODEL.CLOSE: try: order.datetime = self.market_data.datetime except: if len(str(order.datetime)) == 19: pass else: order.datetime = '{} 15:00:00'.format(order.date) self.market_data = self.get_market(order) if self.market_data is None: return order order.price = float(self.market_data["close"]) elif order.order_model == ORDER_MODEL.STRICT: '加入严格模式' if order.frequence is FREQUENCE.DAY: exact_time = str( datetime.datetime .strptime(order.datetime, '%Y-%m-%d %H-%M-%S') + datetime.timedelta(day=1) ) order.date = exact_time[0:10] order.datetime = '{} 09:30:00'.format(order.date) elif order.frequence in [FREQUENCE.ONE_MIN, FREQUENCE.FIVE_MIN, FREQUENCE.FIFTEEN_MIN, FREQUENCE.THIRTY_MIN, FREQUENCE.SIXTY_MIN]: exact_time = str( datetime.datetime .strptime(order.datetime, '%Y-%m-%d %H-%M-%S') + datetime.timedelta(minute=1) ) order.date = exact_time[0:10] order.datetime = exact_time self.market_data = self.get_market(order) if self.market_data is None: return order if order.towards == 1: order.price = float(self.market_data["high"]) else: order.price = float(self.market_data["low"]) return order
[ "对order/market的封装\n\n [description]\n\n Arguments:\n order {[type]} -- [description]\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def get_filename(): return [(l[0],l[1]) for l in [line.strip().split(",") for line in requests.get(FINANCIAL_URL).text.strip().split('\n')]]
[ "\n get_filename\n " ]
Please provide a description of the function:def download_financialzip(): result = get_filename() res = [] for item, md5 in result: if item in os.listdir(download_path) and md5==QA_util_file_md5('{}{}{}'.format(download_path,os.sep,item)): print('FILE {} is already in {}'.format(item, download_path)) else: print('CURRENTLY GET/UPDATE {}'.format(item[0:12])) r = requests.get('http://down.tdx.com.cn:8001/fin/{}'.format(item)) file = '{}{}{}'.format(download_path, os.sep, item) with open(file, "wb") as code: code.write(r.content) res.append(item) return res
[ "\n 会创建一个download/文件夹\n " ]
Please provide a description of the function:def get_df(self, data_file): crawler = QAHistoryFinancialCrawler() with open(data_file, 'rb') as df: data = crawler.parse(download_file=df) return crawler.to_df(data)
[ "\n 读取历史财务数据文件,并返回pandas结果 , 类似gpcw20171231.zip格式,具体字段含义参考\n\n https://github.com/rainx/pytdx/issues/133\n\n :param data_file: 数据文件地址, 数据文件类型可以为 .zip 文件,也可以为解压后的 .dat\n :return: pandas DataFrame格式的历史财务数据\n " ]
Please provide a description of the function:def QA_fetch_get_sh_margin(date): if date in trade_date_sse: data= pd.read_excel(_sh_url.format(QA_util_date_str2int (date)), 1).assign(date=date).assign(sse='sh') data.columns=['code','name','leveraged_balance','leveraged_buyout','leveraged_payoff','margin_left','margin_sell','margin_repay','date','sse'] return data else: pass
[ "return shanghai margin data\n\n Arguments:\n date {str YYYY-MM-DD} -- date format\n\n Returns:\n pandas.DataFrame -- res for margin data\n " ]
Please provide a description of the function:def QA_fetch_get_sz_margin(date): if date in trade_date_sse: return pd.read_excel(_sz_url.format(date)).assign(date=date).assign(sse='sz')
[ "return shenzhen margin data\n\n Arguments:\n date {str YYYY-MM-DD} -- date format\n\n Returns:\n pandas.DataFrame -- res for margin data\n " ]
Please provide a description of the function:def upcoming_data(self, broker, data): ''' 更新市场数据 broker 为名字, data 是市场数据 被 QABacktest 中run 方法调用 upcoming_data ''' # main thread' # if self.running_time is not None and self.running_time!= data.datetime[0]: # for item in self.broker.keys(): # self._settle(item) self.running_time = data.datetime[0] for account in self.session.values(): account.run(QA_Event( event_type=ENGINE_EVENT.UPCOMING_DATA, # args 附加的参数 market_data=data, broker_name=broker, send_order=self.insert_order, # 🛠todo insert_order = insert_order query_data=self.query_data_no_wait, query_order=self.query_order, query_assets=self.query_assets, query_trade=self.query_trade ))
[]
Please provide a description of the function:def start_order_threading(self): self.if_start_orderthreading = True self.order_handler.if_start_orderquery = True self.trade_engine.create_kernel('ORDER', daemon=True) self.trade_engine.start_kernel('ORDER') self.sync_order_and_deal()
[ "开启查询子线程(实盘中用)\n " ]
Please provide a description of the function:def login(self, broker_name, account_cookie, account=None): res = False if account is None: if account_cookie not in self.session.keys(): self.session[account_cookie] = QA_Account( account_cookie=account_cookie, broker=broker_name ) if self.sync_account(broker_name, account_cookie): res = True if self.if_start_orderthreading and res: # self.order_handler.subscribe( self.session[account_cookie], self.broker[broker_name] ) else: if account_cookie not in self.session.keys(): account.broker = broker_name self.session[account_cookie] = account if self.sync_account(broker_name, account_cookie): res = True if self.if_start_orderthreading and res: # self.order_handler.subscribe( account, self.broker[broker_name] ) if res: return res else: try: self.session.pop(account_cookie) except: pass return False
[ "login 登录到交易前置\n\n 2018-07-02 在实盘中,登录到交易前置后,需要同步资产状态\n\n Arguments:\n broker_name {[type]} -- [description]\n account_cookie {[type]} -- [description]\n\n Keyword Arguments:\n account {[type]} -- [description] (default: {None})\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def sync_account(self, broker_name, account_cookie): try: if isinstance(self.broker[broker_name], QA_BacktestBroker): pass else: self.session[account_cookie].sync_account( self.broker[broker_name].query_positions(account_cookie) ) return True except Exception as e: print(e) return False
[ "同步账户信息\n\n Arguments:\n broker_id {[type]} -- [description]\n account_cookie {[type]} -- [description]\n " ]
Please provide a description of the function:def _trade(self, event): "内部函数" print('==================================market enging: trade') print(self.order_handler.order_queue.pending) print('==================================') self.order_handler._trade() print('done')
[]
Please provide a description of the function:def settle_order(self): if self.if_start_orderthreading: self.order_handler.run( QA_Event( event_type=BROKER_EVENT.SETTLE, event_queue=self.trade_engine.kernels_dict['ORDER'].queue ) )
[ "交易前置结算\n\n 1. 回测: 交易队列清空,待交易队列标记SETTLE\n 2. 账户每日结算\n 3. broker结算更新\n " ]
Please provide a description of the function:def QA_util_to_json_from_pandas(data): if 'datetime' in data.columns: data.datetime = data.datetime.apply(str) if 'date' in data.columns: data.date = data.date.apply(str) return json.loads(data.to_json(orient='records'))
[ "需要对于datetime 和date 进行转换, 以免直接被变成了时间戳" ]
Please provide a description of the function:def QA_util_code_tostr(code): if isinstance(code, int): return "{:>06d}".format(code) if isinstance(code, str): # 聚宽股票代码格式 '600000.XSHG' # 掘金股票代码格式 'SHSE.600000' # Wind股票代码格式 '600000.SH' # 天软股票代码格式 'SH600000' if len(code) == 6: return code if len(code) == 8: # 天软数据 return code[-6:] if len(code) == 9: return code[:6] if len(code) == 11: if code[0] in ["S"]: return code.split(".")[1] return code.split(".")[0] raise ValueError("错误的股票代码格式") if isinstance(code, list): return QA_util_code_to_str(code[0])
[ "\n 将所有沪深股票从数字转化到6位的代码\n\n 因为有时候在csv等转换的时候,诸如 000001的股票会变成office强制转化成数字1\n\n " ]
Please provide a description of the function:def QA_util_code_tolist(code, auto_fill=True): if isinstance(code, str): if auto_fill: return [QA_util_code_tostr(code)] else: return [code] elif isinstance(code, list): if auto_fill: return [QA_util_code_tostr(item) for item in code] else: return [item for item in code]
[ "转换code==> list\n\n Arguments:\n code {[type]} -- [description]\n\n Keyword Arguments:\n auto_fill {bool} -- 是否自动补全(一般是用于股票/指数/etf等6位数,期货不适用) (default: {True})\n\n Returns:\n [list] -- [description]\n " ]
Please provide a description of the function:def subscribe_strategy( self, strategy_id: str, last: int, today=datetime.date.today(), cost_coins=10 ): if self.coins > cost_coins: order_id = str(uuid.uuid1()) self._subscribed_strategy[strategy_id] = { 'lasttime': last, 'start': str(today), 'strategy_id': strategy_id, 'end': QA_util_get_next_day( QA_util_get_real_date(str(today), towards=1), last ), 'status': 'running', 'uuid': order_id } self.coins -= cost_coins self.coins_history.append( [ cost_coins, strategy_id, str(today), last, order_id, 'subscribe' ] ) return True, order_id else: # return QAERROR. return False, 'Not Enough Coins'
[ "订阅一个策略\n\n 会扣减你的积分\n\n Arguments:\n strategy_id {str} -- [description]\n last {int} -- [description]\n\n Keyword Arguments:\n today {[type]} -- [description] (default: {datetime.date.today()})\n cost_coins {int} -- [description] (default: {10})\n " ]
Please provide a description of the function:def unsubscribe_stratgy(self, strategy_id): today = datetime.date.today() order_id = str(uuid.uuid1()) if strategy_id in self._subscribed_strategy.keys(): self._subscribed_strategy[strategy_id]['status'] = 'canceled' self.coins_history.append( [0, strategy_id, str(today), 0, order_id, 'unsubscribe'] )
[ "取消订阅某一个策略\n\n Arguments:\n strategy_id {[type]} -- [description]\n " ]
Please provide a description of the function:def subscribing_strategy(self): res = self.subscribed_strategy.assign( remains=self.subscribed_strategy.end.apply( lambda x: pd.Timestamp(x) - pd.Timestamp(datetime.date.today()) ) ) #res['left'] = res['end_time'] # res['remains'] res.assign( status=res['remains'].apply( lambda x: 'running' if x > datetime.timedelta(days=0) else 'timeout' ) ) return res.query('status=="running"')
[ "订阅一个策略\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def new_portfolio(self, portfolio_cookie=None): ''' 根据 self.user_cookie 创建一个 portfolio :return: 如果存在 返回 新建的 QA_Portfolio 如果已经存在 返回 这个portfolio ''' _portfolio = QA_Portfolio( user_cookie=self.user_cookie, portfolio_cookie=portfolio_cookie ) if _portfolio.portfolio_cookie not in self.portfolio_list.keys(): self.portfolio_list[_portfolio.portfolio_cookie] = _portfolio return _portfolio else: print( " prortfolio with user_cookie ", self.user_cookie, " already exist!!" ) return self.portfolio_list[portfolio_cookie]
[]
Please provide a description of the function:def get_account(self, portfolio_cookie: str, account_cookie: str): try: return self.portfolio_list[portfolio_cookie][account_cookie] except: return None
[ "直接从二级目录拿到account\n\n Arguments:\n portfolio_cookie {str} -- [description]\n account_cookie {str} -- [description]\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def generate_simpleaccount(self): if len(self.portfolio_list.keys()) < 1: po = self.new_portfolio() else: po = list(self.portfolio_list.values())[0] ac = po.new_account() return ac, po
[ "make a simple account with a easier way\n 如果当前user中没有创建portfolio, 则创建一个portfolio,并用此portfolio创建一个account\n 如果已有一个或多个portfolio,则使用第一个portfolio来创建一个account\n " ]
Please provide a description of the function:def register_account(self, account, portfolio_cookie=None): ''' 注册一个account到portfolio组合中 account 也可以是一个策略类,实现其 on_bar 方法 :param account: 被注册的account :return: ''' # 查找 portfolio if len(self.portfolio_list.keys()) < 1: po = self.new_portfolio() elif portfolio_cookie is not None: po = self.portfolio_list[portfolio_cookie] else: po = list(self.portfolio_list.values())[0] # 把account 添加到 portfolio中去 po.add_account(account) return (po, account)
[]
Please provide a description of the function:def save(self): if self.wechat_id is not None: self.client.update( {'wechat_id': self.wechat_id}, {'$set': self.message}, upsert=True ) else: self.client.update( { 'username': self.username, 'password': self.password }, {'$set': self.message}, upsert=True ) # user ==> portfolio 的存储 # account的存储在 portfolio.save ==> account.save 中 for portfolio in list(self.portfolio_list.values()): portfolio.save()
[ "\n 将QA_USER的信息存入数据库\n\n ATTENTION:\n\n 在save user的时候, 需要同时调用 user/portfolio/account链条上所有的实例化类 同时save\n\n " ]
Please provide a description of the function:def sync(self): if self.wechat_id is not None: res = self.client.find_one({'wechat_id': self.wechat_id}) else: res = self.client.find_one( { 'username': self.username, 'password': self.password } ) if res is None: if self.client.find_one({'username': self.username}) is None: self.client.insert_one(self.message) return self else: raise RuntimeError('账户名已存在且账户密码不匹配') else: self.reload(res) return self
[ "基于账户/密码去sync数据库\n " ]
Please provide a description of the function:def reload(self, message): self.phone = message.get('phone') self.level = message.get('level') self.utype = message.get('utype') self.coins = message.get('coins') self.wechat_id = message.get('wechat_id') self.coins_history = message.get('coins_history') self.money = message.get('money') self._subscribed_strategy = message.get('subuscribed_strategy') self._subscribed_code = message.get('subscribed_code') self.username = message.get('username') self.password = message.get('password') self.user_cookie = message.get('user_cookie') # portfolio_list = [item['portfolio_cookie'] for item in DATABASE.portfolio.find( {'user_cookie': self.user_cookie}, {'portfolio_cookie': 1, '_id': 0})] # portfolio_list = message.get('portfolio_list') if len(portfolio_list) > 0: self.portfolio_list = dict( zip( portfolio_list, [ QA_Portfolio( user_cookie=self.user_cookie, portfolio_cookie=item ) for item in portfolio_list ] ) ) else: self.portfolio_list = {}
[ "恢复方法\n\n Arguments:\n message {[type]} -- [description]\n " ]
Please provide a description of the function:def QA_util_format_date2str(cursor_date): if isinstance(cursor_date, datetime.datetime): cursor_date = str(cursor_date)[:10] elif isinstance(cursor_date, str): try: cursor_date = str(pd.Timestamp(cursor_date))[:10] except: raise ValueError('请输入正确的日期格式, 建议 "%Y-%m-%d"') elif isinstance(cursor_date, int): cursor_date = str(pd.Timestamp("{:<014d}".format(cursor_date)))[:10] else: raise ValueError('请输入正确的日期格式,建议 "%Y-%m-%d"') return cursor_date
[ "\n 对输入日期进行格式化处理,返回格式为 \"%Y-%m-%d\" 格式字符串\n 支持格式包括:\n 1. str: \"%Y%m%d\" \"%Y%m%d%H%M%S\", \"%Y%m%d %H:%M:%S\",\n \"%Y-%m-%d\", \"%Y-%m-%d %H:%M:%S\", \"%Y-%m-%d %H%M%S\"\n 2. datetime.datetime\n 3. pd.Timestamp\n 4. int -> 自动在右边加 0 然后转换,譬如 '20190302093' --> \"2019-03-02\"\n\n :param cursor_date: str/datetime.datetime/int 日期或时间\n :return: str 返回字符串格式日期\n " ]
Please provide a description of the function:def QA_util_get_next_trade_date(cursor_date, n=1): cursor_date = QA_util_format_date2str(cursor_date) if cursor_date in trade_date_sse: # 如果指定日期为交易日 return QA_util_date_gap(cursor_date, n, "gt") real_pre_trade_date = QA_util_get_real_date(cursor_date) return QA_util_date_gap(real_pre_trade_date, n, "gt")
[ "\n 得到下 n 个交易日 (不包含当前交易日)\n :param date:\n :param n:\n " ]
Please provide a description of the function:def QA_util_get_pre_trade_date(cursor_date, n=1): cursor_date = QA_util_format_date2str(cursor_date) if cursor_date in trade_date_sse: return QA_util_date_gap(cursor_date, n, "lt") real_aft_trade_date = QA_util_get_real_date(cursor_date) return QA_util_date_gap(real_aft_trade_date, n, "lt")
[ "\n 得到前 n 个交易日 (不包含当前交易日)\n :param date:\n :param n:\n " ]
Please provide a description of the function:def QA_util_if_tradetime( _time=datetime.datetime.now(), market=MARKET_TYPE.STOCK_CN, code=None ): '时间是否交易' _time = datetime.datetime.strptime(str(_time)[0:19], '%Y-%m-%d %H:%M:%S') if market is MARKET_TYPE.STOCK_CN: if QA_util_if_trade(str(_time.date())[0:10]): if _time.hour in [10, 13, 14]: return True elif _time.hour in [ 9 ] and _time.minute >= 15: # 修改成9:15 加入 9:15-9:30的盘前竞价时间 return True elif _time.hour in [11] and _time.minute <= 30: return True else: return False else: return False elif market is MARKET_TYPE.FUTURE_CN: date_today=str(_time.date()) date_yesterday=str((_time-datetime.timedelta(days=1)).date()) is_today_open=QA_util_if_trade(date_today) is_yesterday_open=QA_util_if_trade(date_yesterday) #考虑周六日的期货夜盘情况 if is_today_open==False: #可能是周六或者周日 if is_yesterday_open==False or (_time.hour > 2 or _time.hour == 2 and _time.minute > 30): return False shortName = "" # i , p for i in range(len(code)): ch = code[i] if ch.isdigit(): # ch >= 48 and ch <= 57: break shortName += code[i].upper() period = [ [9, 0, 10, 15], [10, 30, 11, 30], [13, 30, 15, 0] ] if (shortName in ["IH", 'IF', 'IC']): period = [ [9, 30, 11, 30], [13, 0, 15, 0] ] elif (shortName in ["T", "TF"]): period = [ [9, 15, 11, 30], [13, 0, 15, 15] ] if 0<=_time.weekday<=4: for i in range(len(period)): p = period[i] if ((_time.hour > p[0] or (_time.hour == p[0] and _time.minute >= p[1])) and (_time.hour < p[2] or (_time.hour == p[2] and _time.minute < p[3]))): return True #最新夜盘时间表_2019.03.29 nperiod = [ [ ['AU', 'AG', 'SC'], [21, 0, 2, 30] ], [ ['CU', 'AL', 'ZN', 'PB', 'SN', 'NI'], [21, 0, 1, 0] ], [ ['RU', 'RB', 'HC', 'BU','FU','SP'], [21, 0, 23, 0] ], [ ['A', 'B', 'Y', 'M', 'JM', 'J', 'P', 'I', 'L', 'V', 'PP', 'EG', 'C', 'CS'], [21, 0, 23, 0] ], [ ['SR', 'CF', 'RM', 'MA', 'TA', 'ZC', 'FG', 'IO', 'CY'], [21, 0, 23, 30] ], ] for i in range(len(nperiod)): for j in range(len(nperiod[i][0])): if nperiod[i][0][j] == shortName: p = nperiod[i][1] condA = _time.hour > p[0] or (_time.hour == p[0] and _time.minute >= p[1]) condB = _time.hour < p[2] or (_time.hour == p[2] and _time.minute < p[3]) # in one day if p[2] >= p[0]: if ((_time.weekday >= 0 and _time.weekday <= 4) and condA and condB): return True else: if (((_time.weekday >= 0 and _time.weekday <= 4) and condA) or ((_time.weekday >= 1 and _time.weekday <= 5) and condB)): return True return False return False
[]
Please provide a description of the function:def QA_util_get_real_date(date, trade_list=trade_date_sse, towards=-1): date = str(date)[0:10] if towards == 1: while date not in trade_list: date = str( datetime.datetime.strptime(str(date)[0:10], '%Y-%m-%d') + datetime.timedelta(days=1) )[0:10] else: return str(date)[0:10] elif towards == -1: while date not in trade_list: date = str( datetime.datetime.strptime(str(date)[0:10], '%Y-%m-%d') - datetime.timedelta(days=1) )[0:10] else: return str(date)[0:10]
[ "\n 获取真实的交易日期,其中,第三个参数towards是表示向前/向后推\n towards=1 日期向后迭代\n towards=-1 日期向前迭代\n @ yutiansut\n\n " ]
Please provide a description of the function:def QA_util_get_real_datelist(start, end): real_start = QA_util_get_real_date(start, trade_date_sse, 1) real_end = QA_util_get_real_date(end, trade_date_sse, -1) if trade_date_sse.index(real_start) > trade_date_sse.index(real_end): return None, None else: return (real_start, real_end)
[ "\n 取数据的真实区间,返回的时候用 start,end=QA_util_get_real_datelist\n @yutiansut\n 2017/8/10\n\n 当start end中间没有交易日 返回None, None\n @yutiansut/ 2017-12-19\n " ]
Please provide a description of the function:def QA_util_get_trade_range(start, end): '给出交易具体时间' start, end = QA_util_get_real_datelist(start, end) if start is not None: return trade_date_sse[trade_date_sse .index(start):trade_date_sse.index(end) + 1:1] else: return None
[]
Please provide a description of the function:def QA_util_get_trade_gap(start, end): '返回start_day到end_day中间有多少个交易天 算首尾' start, end = QA_util_get_real_datelist(start, end) if start is not None: return trade_date_sse.index(end) + 1 - trade_date_sse.index(start) else: return 0
[]
Please provide a description of the function:def QA_util_date_gap(date, gap, methods): ''' :param date: 字符串起始日 类型 str eg: 2018-11-11 :param gap: 整数 间隔多数个交易日 :param methods: gt大于 ,gte 大于等于, 小于lt ,小于等于lte , 等于=== :return: 字符串 eg:2000-01-01 ''' try: if methods in ['>', 'gt']: return trade_date_sse[trade_date_sse.index(date) + gap] elif methods in ['>=', 'gte']: return trade_date_sse[trade_date_sse.index(date) + gap - 1] elif methods in ['<', 'lt']: return trade_date_sse[trade_date_sse.index(date) - gap] elif methods in ['<=', 'lte']: return trade_date_sse[trade_date_sse.index(date) - gap + 1] elif methods in ['==', '=', 'eq']: return date except: return 'wrong date'
[]
Please provide a description of the function:def QA_util_get_trade_datetime(dt=datetime.datetime.now()): #dt= datetime.datetime.now() if QA_util_if_trade(str(dt.date())) and dt.time() < datetime.time(15, 0, 0): return str(dt.date()) else: return QA_util_get_real_date(str(dt.date()), trade_date_sse, 1)
[ "交易的真实日期\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def QA_util_get_order_datetime(dt): #dt= datetime.datetime.now() dt = datetime.datetime.strptime(str(dt)[0:19], '%Y-%m-%d %H:%M:%S') if QA_util_if_trade(str(dt.date())) and dt.time() < datetime.time(15, 0, 0): return str(dt) else: # print('before') # print(QA_util_date_gap(str(dt.date()),1,'lt')) return '{} {}'.format( QA_util_date_gap(str(dt.date()), 1, 'lt'), dt.time() )
[ "委托的真实日期\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def QA_util_future_to_tradedatetime(real_datetime): if len(str(real_datetime)) >= 19: dt = datetime.datetime.strptime( str(real_datetime)[0:19], '%Y-%m-%d %H:%M:%S' ) return dt if dt.time( ) < datetime.time(21, 0) else QA_util_get_next_datetime(dt, 1) elif len(str(real_datetime)) == 16: dt = datetime.datetime.strptime( str(real_datetime)[0:16], '%Y-%m-%d %H:%M' ) return dt if dt.time( ) < datetime.time(21, 0) else QA_util_get_next_datetime(dt, 1)
[ "输入是真实交易时间,返回按期货交易所规定的时间* 适用于tb/文华/博弈的转换\n\n Arguments:\n real_datetime {[type]} -- [description]\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def QA_util_future_to_realdatetime(trade_datetime): if len(str(trade_datetime)) == 19: dt = datetime.datetime.strptime( str(trade_datetime)[0:19], '%Y-%m-%d %H:%M:%S' ) return dt if dt.time( ) < datetime.time(21, 0) else QA_util_get_last_datetime(dt, 1) elif len(str(trade_datetime)) == 16: dt = datetime.datetime.strptime( str(trade_datetime)[0:16], '%Y-%m-%d %H:%M' ) return dt if dt.time( ) < datetime.time(21, 0) else QA_util_get_last_datetime(dt, 1)
[ "输入是交易所规定的时间,返回真实时间*适用于通达信的时间转换\n\n Arguments:\n trade_datetime {[type]} -- [description]\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def QA_util_make_hour_index(day, type_='1h'): if QA_util_if_trade(day) is True: return pd.date_range( str(day) + ' 09:30:00', str(day) + ' 11:30:00', freq=type_, closed='right' ).append( pd.date_range( str(day) + ' 13:00:00', str(day) + ' 15:00:00', freq=type_, closed='right' ) ) else: return pd.DataFrame(['No trade'])
[ "创建股票的小时线的index\n\n Arguments:\n day {[type]} -- [description]\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def QA_util_time_gap(time, gap, methods, type_): '分钟线回测的时候的gap' min_len = int(240 / int(str(type_).split('min')[0])) day_gap = math.ceil(gap / min_len) if methods in ['>', 'gt']: data = pd.concat( [ pd.DataFrame(QA_util_make_min_index(day, type_)) for day in trade_date_sse[trade_date_sse.index( str( datetime.datetime.strptime(time, '%Y-%m-%d %H:%M:%S').date() ) ):trade_date_sse.index( str( datetime.datetime.strptime(time, '%Y-%m-%d %H:%M:%S').date() ) ) + day_gap + 1] ] ).reset_index() return np.asarray( data[data[0] > time].head(gap)[0].apply(lambda x: str(x)) ).tolist()[-1] elif methods in ['>=', 'gte']: data = pd.concat( [ pd.DataFrame(QA_util_make_min_index(day, type_)) for day in trade_date_sse[trade_date_sse.index( str( datetime.datetime.strptime(time, '%Y-%m-%d %H:%M:%S').date() ) ):trade_date_sse.index( str( datetime.datetime.strptime(time, '%Y-%m-%d %H:%M:%S').date() ) ) + day_gap + 1] ] ).reset_index() return np.asarray( data[data[0] >= time].head(gap)[0].apply(lambda x: str(x)) ).tolist()[-1] elif methods in ['<', 'lt']: data = pd.concat( [ pd.DataFrame(QA_util_make_min_index(day, type_)) for day in trade_date_sse[trade_date_sse.index( str( datetime.datetime.strptime(time, '%Y-%m-%d %H:%M:%S').date() ) ) - day_gap:trade_date_sse.index( str( datetime.datetime.strptime(time, '%Y-%m-%d %H:%M:%S').date() ) ) + 1] ] ).reset_index() return np.asarray( data[data[0] < time].tail(gap)[0].apply(lambda x: str(x)) ).tolist()[0] elif methods in ['<=', 'lte']: data = pd.concat( [ pd.DataFrame(QA_util_make_min_index(day, type_)) for day in trade_date_sse[trade_date_sse.index( str( datetime.datetime.strptime(time, '%Y-%m-%d %H:%M:%S').date() ) ) - day_gap:trade_date_sse.index( str( datetime.datetime.strptime(time, '%Y-%m-%d %H:%M:%S').date() ) ) + 1] ] ).reset_index() return np.asarray( data[data[0] <= time].tail(gap)[0].apply(lambda x: str(x)) ).tolist()[0] elif methods in ['==', '=', 'eq']: return time
[]
Please provide a description of the function:def QA_util_save_csv(data, name, column=None, location=None): # 重写了一下保存的模式 # 增加了对于可迭代对象的判断 2017/8/10 assert isinstance(data, list) if location is None: path = './' + str(name) + '.csv' else: path = location + str(name) + '.csv' with open(path, 'w', newline='') as f: csvwriter = csv.writer(f) if column is None: pass else: csvwriter.writerow(column) for item in data: if isinstance(item, list): csvwriter.writerow(item) else: csvwriter.writerow([item])
[ "\n QA_util_save_csv(data,name,column,location)\n\n 将list保存成csv\n 第一个参数是list\n 第二个参数是要保存的名字\n 第三个参数是行的名称(可选)\n 第四个是保存位置(可选)\n\n @yutiansut\n " ]
Please provide a description of the function:def query_positions(self, accounts): try: data = self.call("positions", {'client': accounts}) if data is not None: cash_part = data.get('subAccounts', {}).get('人民币', False) if cash_part: cash_available = cash_part.get('可用金额', cash_part.get('可用')) position_part = data.get('dataTable', False) if position_part: res = data.get('dataTable', False) if res: hold_headers = res['columns'] hold_headers = [ cn_en_compare[item] for item in hold_headers ] hold_available = pd.DataFrame( res['rows'], columns=hold_headers ) if len(hold_available) == 1 and hold_available.amount[0] in [ None, '', 0 ]: hold_available = pd.DataFrame( data=None, columns=hold_headers ) return { 'cash_available': cash_available, 'hold_available': hold_available.assign( amount=hold_available.amount.apply(float) ).loc[:, ['code', 'amount']].set_index('code').amount } else: print(data) return False, 'None ACCOUNT' except: return False
[ "查询现金和持仓\n\n Arguments:\n accounts {[type]} -- [description]\n\n Returns:\n dict-- {'cash_available':xxx,'hold_available':xxx}\n " ]
Please provide a description of the function:def query_clients(self): try: data = self.call("clients", {'client': 'None'}) if len(data) > 0: return pd.DataFrame(data).drop( ['commandLine', 'processId'], axis=1 ) else: return pd.DataFrame( None, columns=[ 'id', 'name', 'windowsTitle', 'accountInfo', 'status' ] ) except Exception as e: return False, e
[ "查询clients\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def query_orders(self, accounts, status='filled'): try: data = self.call("orders", {'client': accounts, 'status': status}) if data is not None: orders = data.get('dataTable', False) order_headers = orders['columns'] if ('成交状态' in order_headers or '状态说明' in order_headers) and ('备注' in order_headers): order_headers[order_headers.index('备注')] = '废弃' order_headers = [cn_en_compare[item] for item in order_headers] order_all = pd.DataFrame( orders['rows'], columns=order_headers ).assign(account_cookie=accounts) order_all.towards = order_all.towards.apply( lambda x: trade_towards_cn_en[x] ) if 'order_time' in order_headers: # 这是order_status order_all['status'] = order_all.status.apply( lambda x: order_status_cn_en[x] ) if 'order_date' not in order_headers: order_all.order_time = order_all.order_time.apply( lambda x: QA_util_get_order_datetime( dt='{} {}'.format(datetime.date.today(), x) ) ) else: order_all = order_all.assign( order_time=order_all.order_date .apply(QA_util_date_int2str) + ' ' + order_all.order_time ) if 'trade_time' in order_headers: order_all.trade_time = order_all.trade_time.apply( lambda x: '{} {}'.format(datetime.date.today(), x) ) if status is 'filled': return order_all.loc[:, self.dealstatus_headers].set_index( ['account_cookie', 'realorder_id'] ).sort_index() else: return order_all.loc[:, self.orderstatus_headers].set_index( ['account_cookie', 'realorder_id'] ).sort_index() else: print('response is None') return False except Exception as e: print(e) return False
[ "查询订单\n\n Arguments:\n accounts {[type]} -- [description]\n\n Keyword Arguments:\n status {str} -- 'open' 待成交 'filled' 成交 (default: {'filled'})\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def send_order( self, accounts, code='000001', price=9, amount=100, order_direction=ORDER_DIRECTION.BUY, order_model=ORDER_MODEL.LIMIT ): try: #print(code, price, amount) return self.call_post( 'orders', { 'client': accounts, "action": 'BUY' if order_direction == 1 else 'SELL', "symbol": code, "type": order_model, "priceType": 0 if order_model == ORDER_MODEL.LIMIT else 4, "price": price, "amount": amount } ) except json.decoder.JSONDecodeError: print(RuntimeError('TRADE ERROR')) return None
[ "[summary]\n\n Arguments:\n accounts {[type]} -- [description]\n code {[type]} -- [description]\n price {[type]} -- [description]\n amount {[type]} -- [description]\n\n Keyword Arguments:\n order_direction {[type]} -- [description] (default: {ORDER_DIRECTION.BUY})\n order_model {[type]} -- [description] (default: {ORDER_MODEL.LIMIT})\n\n\n\n priceType 可选择: 上海交易所:\n\n 0 - 限价委托\n 4 - 五档即时成交剩余撤销\n 6 - 五档即时成交剩余转限\n\n 深圳交易所:\n\n 0 - 限价委托\n 1 - 对手方最优价格委托\n 2 - 本方最优价格委托\n 3 - 即时成交剩余撤销委托\n 4 - 五档即时成交剩余撤销\n 5 - 全额成交或撤销委托\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def get_indicator(self, time, code, indicator_name=None): try: return self.data.loc[(pd.Timestamp(time), code), indicator_name] except: raise ValueError('CANNOT FOUND THIS DATE&CODE')
[ "\n 获取某一时间的某一只股票的指标\n " ]
Please provide a description of the function:def get_timerange(self, start, end, code=None): try: return self.data.loc[(slice(pd.Timestamp(start), pd.Timestamp(end)), slice(code)), :] except: return ValueError('CANNOT FOUND THIS TIME RANGE')
[ "\n 获取某一段时间的某一只股票的指标\n " ]
Please provide a description of the function:def QA_SU_save_stock_terminated(client=DATABASE): ''' 获取已经被终止上市的股票列表,数据从上交所获取,目前只有在上海证券交易所交易被终止的股票。 collection: code:股票代码 name:股票名称 oDate:上市日期 tDate:终止上市日期 :param client: :return: None ''' # 🛠todo 已经失效从wind 资讯里获取 # 这个函数已经失效 print("!!! tushare 这个函数已经失效!!!") df = QATs.get_terminated() #df = QATs.get_suspended() print( " Get stock terminated from tushare,stock count is %d (终止上市股票列表)" % len(df) ) coll = client.stock_terminated client.drop_collection(coll) json_data = json.loads(df.reset_index().to_json(orient='records')) coll.insert(json_data) print(" 保存终止上市股票列表 到 stock_terminated collection, OK")
[]
Please provide a description of the function:def QA_SU_save_stock_info_tushare(client=DATABASE): ''' 获取 股票的 基本信息,包含股票的如下信息 code,代码 name,名称 industry,所属行业 area,地区 pe,市盈率 outstanding,流通股本(亿) totals,总股本(亿) totalAssets,总资产(万) liquidAssets,流动资产 fixedAssets,固定资产 reserved,公积金 reservedPerShare,每股公积金 esp,每股收益 bvps,每股净资 pb,市净率 timeToMarket,上市日期 undp,未分利润 perundp, 每股未分配 rev,收入同比(%) profit,利润同比(%) gpr,毛利率(%) npr,净利润率(%) holders,股东人数 add by tauruswang 在命令行工具 quantaxis 中输入 save stock_info_tushare 中的命令 :param client: :return: ''' df = QATs.get_stock_basics() print(" Get stock info from tushare,stock count is %d" % len(df)) coll = client.stock_info_tushare client.drop_collection(coll) json_data = json.loads(df.reset_index().to_json(orient='records')) coll.insert(json_data) print(" Save data to stock_info_tushare collection, OK")
[]
Please provide a description of the function:def QA_SU_save_stock_day(client=DATABASE, ui_log=None, ui_progress=None): ''' save stock_day 保存日线数据 :param client: :param ui_log: 给GUI qt 界面使用 :param ui_progress: 给GUI qt 界面使用 :param ui_progress_int_value: 给GUI qt 界面使用 ''' stock_list = QA_fetch_get_stock_list() # TODO: 重命名stock_day_ts coll_stock_day = client.stock_day_ts coll_stock_day.create_index( [("code", pymongo.ASCENDING), ("date_stamp", pymongo.ASCENDING)] ) err = [] num_stocks = len(stock_list) for index, ts_code in enumerate(stock_list): QA_util_log_info('The {} of Total {}'.format(index, num_stocks)) strProgressToLog = 'DOWNLOAD PROGRESS {} {}'.format( str(float(index / num_stocks * 100))[0:4] + '%', ui_log ) intProgressToLog = int(float(index / num_stocks * 100)) QA_util_log_info( strProgressToLog, ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=intProgressToLog ) _saving_work(ts_code, coll_stock_day, ui_log=ui_log, err=err) # 日线行情每分钟内最多调取200次,超过5000积分无限制 time.sleep(0.005) if len(err) < 1: QA_util_log_info('SUCCESS save stock day ^_^', ui_log) else: QA_util_log_info('ERROR CODE \n ', ui_log) QA_util_log_info(err, ui_log)
[]
Please provide a description of the function:def QA_util_dict_remove_key(dicts, key): if isinstance(key, list): for item in key: try: dicts.pop(item) except: pass else: try: dicts.pop(key) except: pass return dicts
[ "\n 输入一个dict 返回删除后的\n " ]
Please provide a description of the function:def QA_util_sql_async_mongo_setting(uri='mongodb://localhost:27017/quantaxis'): # loop = asyncio.new_event_loop() # asyncio.set_event_loop(loop) try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) # async def client(): return AsyncIOMotorClient(uri, io_loop=loop)
[ "异步mongo示例\n\n Keyword Arguments:\n uri {str} -- [description] (default: {'mongodb://localhost:27017/quantaxis'})\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def add_account(self, account): 'portfolio add a account/stratetgy' if account.account_cookie not in self.account_list: if self.cash_available > account.init_cash: account.portfolio_cookie = self.portfolio_cookie account.user_cookie = self.user_cookie self.cash.append(self.cash_available - account.init_cash) self.account_list.append(account.account_cookie) account.save() return account else: pass
[]
Please provide a description of the function:def drop_account(self, account_cookie): if account_cookie in self.account_list: res = self.account_list.remove(account_cookie) self.cash.append( self.cash[-1] + self.get_account_by_cookie(res).init_cash) return True else: raise RuntimeError( 'account {} is not in the portfolio'.format(account_cookie) )
[ "删除一个account\n\n Arguments:\n account_cookie {[type]} -- [description]\n\n Raises:\n RuntimeError -- [description]\n " ]
Please provide a description of the function:def new_account( self, account_cookie=None, init_cash=1000000, market_type=MARKET_TYPE.STOCK_CN, *args, **kwargs ): if account_cookie is None: # 如果组合的cash_available>创建新的account所需cash if self.cash_available >= init_cash: temp = QA_Account( user_cookie=self.user_cookie, portfolio_cookie=self.portfolio_cookie, init_cash=init_cash, market_type=market_type, *args, **kwargs ) if temp.account_cookie not in self.account_list: #self.accounts[temp.account_cookie] = temp self.account_list.append(temp.account_cookie) temp.save() self.cash.append(self.cash_available - init_cash) return temp else: return self.new_account() else: if self.cash_available >= init_cash: if account_cookie not in self.account_list: acc = QA_Account( portfolio_cookie=self.portfolio_cookie, user_cookie=self.user_cookie, init_cash=init_cash, market_type=market_type, account_cookie=account_cookie, *args, **kwargs ) acc.save() self.account_list.append(acc.account_cookie) self.cash.append(self.cash_available - init_cash) return acc else: return self.get_account_by_cookie(account_cookie)
[ "创建一个新的Account\n\n Keyword Arguments:\n account_cookie {[type]} -- [description] (default: {None})\n\n Returns:\n [type] -- [description]\n ", "创建新的account\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def get_account_by_cookie(self, cookie): ''' 'give the account_cookie and return the account/strategy back' :param cookie: :return: QA_Account with cookie if in dict None not in list ''' try: return QA_Account( account_cookie=cookie, user_cookie=self.user_cookie, portfolio_cookie=self.portfolio_cookie, auto_reload=True ) except: QA_util_log_info('Can not find this account') return None
[]
Please provide a description of the function:def get_account(self, account): ''' check the account whether in the protfolio dict or not :param account: QA_Account :return: QA_Account if in dict None not in list ''' try: return self.get_account_by_cookie(account.account_cookie) except: QA_util_log_info( 'Can not find this account with cookies %s' % account.account_cookie ) return None
[]
Please provide a description of the function:def message(self): return { 'user_cookie': self.user_cookie, 'portfolio_cookie': self.portfolio_cookie, 'account_list': list(self.account_list), 'init_cash': self.init_cash, 'cash': self.cash, 'history': self.history }
[ "portfolio 的cookie\n " ]
Please provide a description of the function:def send_order( self, account_cookie: str, code=None, amount=None, time=None, towards=None, price=None, money=None, order_model=None, amount_model=None, *args, **kwargs ): return self.get_account_by_cookie(account_cookie).send_order( code=code, amount=amount, time=time, towards=towards, price=price, money=money, order_model=order_model, amount_model=amount_model )
[ "基于portfolio对子账户下单\n\n Arguments:\n account_cookie {str} -- [description]\n\n Keyword Arguments:\n code {[type]} -- [description] (default: {None})\n amount {[type]} -- [description] (default: {None})\n time {[type]} -- [description] (default: {None})\n towards {[type]} -- [description] (default: {None})\n price {[type]} -- [description] (default: {None})\n money {[type]} -- [description] (default: {None})\n order_model {[type]} -- [description] (default: {None})\n amount_model {[type]} -- [description] (default: {None})\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def save(self): self.client.update( { 'portfolio_cookie': self.portfolio_cookie, 'user_cookie': self.user_cookie }, {'$set': self.message}, upsert=True )
[ "存储过程\n " ]
Please provide a description of the function:def market_value(self): if self.account.daily_hold is not None: if self.if_fq: return ( self.market_data.to_qfq().pivot('close').fillna( method='ffill' ) * self.account.daily_hold.apply(abs) ).fillna(method='ffill') else: return ( self.market_data.pivot('close').fillna(method='ffill') * self.account.daily_hold.apply(abs) ).fillna(method='ffill') else: return None
[ "每日每个股票持仓市值表\n\n Returns:\n pd.DataFrame -- 市值表\n " ]
Please provide a description of the function:def max_dropback(self): return round( float( max( [ (self.assets.iloc[idx] - self.assets.iloc[idx::].min()) / self.assets.iloc[idx] for idx in range(len(self.assets)) ] ) ), 2 )
[ "最大回撤\n " ]
Please provide a description of the function:def total_commission(self): return float( -abs(round(self.account.history_table.commission.sum(), 2)) )
[ "总手续费\n " ]
Please provide a description of the function:def total_tax(self): return float(-abs(round(self.account.history_table.tax.sum(), 2)))
[ "总印花税\n\n " ]
Please provide a description of the function:def profit_construct(self): return { 'total_buyandsell': round( self.profit_money - self.total_commission - self.total_tax, 2 ), 'total_tax': self.total_tax, 'total_commission': self.total_commission, 'total_profit': self.profit_money }
[ "利润构成\n\n Returns:\n dict -- 利润构成表\n " ]
Please provide a description of the function:def profit_money(self): return float(round(self.assets.iloc[-1] - self.assets.iloc[0], 2))
[ "盈利额\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def annualize_return(self): return round( float(self.calc_annualize_return(self.assets, self.time_gap)), 2 )
[ "年化收益\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def benchmark_data(self): return self.fetch[self.benchmark_type]( self.benchmark_code, self.account.start_date, self.account.end_date )
[ "\n 基准组合的行情数据(一般是组合,可以调整)\n " ]
Please provide a description of the function:def benchmark_assets(self): return ( self.benchmark_data.close / float(self.benchmark_data.close.iloc[0]) * float(self.assets[0]) )
[ "\n 基准组合的账户资产队列\n " ]
Please provide a description of the function:def benchmark_annualize_return(self): return round( float( self.calc_annualize_return( self.benchmark_assets, self.time_gap ) ), 2 )
[ "基准组合的年化收益\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def beta(self): try: res = round( float( self.calc_beta( self.profit_pct.dropna(), self.benchmark_profitpct.dropna() ) ), 2 ) except: print('贝塔计算错误。。') res = 0 return res
[ "\n beta比率 组合的系统性风险\n " ]
Please provide a description of the function:def alpha(self): return round( float( self.calc_alpha( self.annualize_return, self.benchmark_annualize_return, self.beta, 0.05 ) ), 2 )
[ "\n alpha比率 与市场基准收益无关的超额收益率\n " ]
Please provide a description of the function:def sharpe(self): return round( float( self.calc_sharpe(self.annualize_return, self.volatility, 0.05) ), 2 )
[ "\n 夏普比率\n\n " ]
Please provide a description of the function:def plot_assets_curve(self, length=14, height=12): plt.style.use('ggplot') plt.figure(figsize=(length, height)) plt.subplot(211) plt.title('BASIC INFO', fontsize=12) plt.axis([0, length, 0, 0.6]) plt.axis('off') i = 0 for item in ['account_cookie', 'portfolio_cookie', 'user_cookie']: plt.text( i, 0.5, '{} : {}'.format(item, self.message[item]), fontsize=10, rotation=0, wrap=True ) i += (length / 2.8) i = 0 for item in ['benchmark_code', 'time_gap', 'max_dropback']: plt.text( i, 0.4, '{} : {}'.format(item, self.message[item]), fontsize=10, ha='left', rotation=0, wrap=True ) i += (length / 2.8) i = 0 for item in ['annualize_return', 'bm_annualizereturn', 'profit']: plt.text( i, 0.3, '{} : {} %'.format(item, self.message.get(item, 0) * 100), fontsize=10, ha='left', rotation=0, wrap=True ) i += length / 2.8 i = 0 for item in ['init_cash', 'last_assets', 'volatility']: plt.text( i, 0.2, '{} : {} '.format(item, self.message[item]), fontsize=10, ha='left', rotation=0, wrap=True ) i += length / 2.8 i = 0 for item in ['alpha', 'beta', 'sharpe']: plt.text( i, 0.1, '{} : {}'.format(item, self.message[item]), ha='left', fontsize=10, rotation=0, wrap=True ) i += length / 2.8 plt.subplot(212) self.assets.plot() self.benchmark_assets.xs(self.benchmark_code, level=1).plot() asset_p = mpatches.Patch( color='red', label='{}'.format(self.account.account_cookie) ) asset_b = mpatches.Patch( label='benchmark {}'.format(self.benchmark_code) ) plt.legend(handles=[asset_p, asset_b], loc=0) plt.title('ASSET AND BENCKMARK') return plt
[ "\n 资金曲线叠加图\n @Roy T.Burns 2018/05/29 修改百分比显示错误\n " ]
Please provide a description of the function:def plot_signal(self, start=None, end=None): start = self.account.start_date if start is None else start end = self.account.end_date if end is None else end _, ax = plt.subplots(figsize=(20, 18)) sns.heatmap( self.account.trade.reset_index().drop( 'account_cookie', axis=1 ).set_index('datetime').loc[start:end], cmap="YlGnBu", linewidths=0.05, ax=ax ) ax.set_title( 'SIGNAL TABLE --ACCOUNT: {}'.format(self.account.account_cookie) ) ax.set_xlabel('Code') ax.set_ylabel('DATETIME') return plt
[ "\n 使用热力图画出买卖信号\n " ]
Please provide a description of the function:def pnl_lifo(self): X = dict( zip( self.target.code, [LifoQueue() for i in range(len(self.target.code))] ) ) pair_table = [] for _, data in self.target.history_table_min.iterrows(): while True: if X[data.code].qsize() == 0: X[data.code].put((data.datetime, data.amount, data.price)) break else: l = X[data.code].get() if (l[1] * data.amount) < 0: # 原有多仓/ 平仓 或者原有空仓/平仓 if abs(l[1]) > abs(data.amount): temp = (l[0], l[1] + data.amount, l[2]) X[data.code].put_nowait(temp) if data.amount < 0: pair_table.append( [ data.code, data.datetime, l[0], abs(data.amount), data.price, l[2] ] ) break else: pair_table.append( [ data.code, l[0], data.datetime, abs(data.amount), l[2], data.price ] ) break elif abs(l[1]) < abs(data.amount): data.amount = data.amount + l[1] if data.amount < 0: pair_table.append( [ data.code, data.datetime, l[0], l[1], data.price, l[2] ] ) else: pair_table.append( [ data.code, l[0], data.datetime, l[1], l[2], data.price ] ) else: if data.amount < 0: pair_table.append( [ data.code, data.datetime, l[0], abs(data.amount), data.price, l[2] ] ) break else: pair_table.append( [ data.code, l[0], data.datetime, abs(data.amount), l[2], data.price ] ) break else: X[data.code].put_nowait(l) X[data.code].put_nowait( (data.datetime, data.amount, data.price) ) break pair_title = [ 'code', 'sell_date', 'buy_date', 'amount', 'sell_price', 'buy_price' ] pnl = pd.DataFrame(pair_table, columns=pair_title).set_index('code') pnl = pnl.assign( unit=pnl.code.apply(lambda x: self.market_preset.get_unit(x)), pnl_ratio=(pnl.sell_price / pnl.buy_price) - 1, sell_date=pd.to_datetime(pnl.sell_date), buy_date=pd.to_datetime(pnl.buy_date) ) pnl = pnl.assign( pnl_money=(pnl.sell_price - pnl.buy_price) * pnl.amount * pnl.unit, hold_gap=abs(pnl.sell_date - pnl.buy_date), if_buyopen=(pnl.sell_date - pnl.buy_date) > datetime.timedelta(days=0) ) pnl = pnl.assign( openprice=pnl.if_buyopen.apply( lambda pnl: 1 if pnl else 0) * pnl.buy_price + pnl.if_buyopen.apply(lambda pnl: 0 if pnl else 1) * pnl.sell_price, opendate=pnl.if_buyopen.apply( lambda pnl: 1 if pnl else 0) * pnl.buy_date.map(str) + pnl.if_buyopen.apply(lambda pnl: 0 if pnl else 1) * pnl.sell_date.map(str), closeprice=pnl.if_buyopen.apply( lambda pnl: 0 if pnl else 1) * pnl.buy_price + pnl.if_buyopen.apply(lambda pnl: 1 if pnl else 0) * pnl.sell_price, closedate=pnl.if_buyopen.apply( lambda pnl: 0 if pnl else 1) * pnl.buy_date.map(str) + pnl.if_buyopen.apply(lambda pnl: 1 if pnl else 0) * pnl.sell_date.map(str)) return pnl.set_index('code')
[ "\n 使用后进先出法配对成交记录\n " ]
Please provide a description of the function:def plot_pnlratio(self): plt.scatter(x=self.pnl.sell_date.apply(str), y=self.pnl.pnl_ratio) plt.gcf().autofmt_xdate() return plt
[ "\n 画出pnl比率散点图\n " ]
Please provide a description of the function:def plot_pnlmoney(self): plt.scatter(x=self.pnl.sell_date.apply(str), y=self.pnl.pnl_money) plt.gcf().autofmt_xdate() return plt
[ "\n 画出pnl盈亏额散点图\n " ]
Please provide a description of the function:def win_rate(self): data = self.pnl try: return round(len(data.query('pnl_money>0')) / len(data), 2) except ZeroDivisionError: return 0
[ "胜率\n\n 胜率\n 盈利次数/总次数\n " ]
Please provide a description of the function:def next_time(self, asc=False): _time = time.localtime(time.time() + self.next()) if asc: return time.asctime(_time) return time.mktime(_time)
[ "Get the local time of the next schedule time this job will run.\n :param bool asc: Format the result with ``time.asctime()``\n :returns: The epoch time or string representation of the epoch time that\n the job should be run next\n " ]
Please provide a description of the function:def QA_fetch_get_future_transaction_realtime(package, code): Engine = use(package) if package in ['tdx', 'pytdx']: return Engine.QA_fetch_get_future_transaction_realtime(code) else: return 'Unsupport packages'
[ "\n 期货实时tick\n " ]
Please provide a description of the function:def QA_indicator_MA(DataFrame,*args,**kwargs): CLOSE = DataFrame['close'] return pd.DataFrame({'MA{}'.format(N): MA(CLOSE, N) for N in list(args)})
[ "MA\n \n Arguments:\n DataFrame {[type]} -- [description]\n \n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def QA_indicator_MACD(DataFrame, short=12, long=26, mid=9): CLOSE = DataFrame['close'] DIF = EMA(CLOSE, short)-EMA(CLOSE, long) DEA = EMA(DIF, mid) MACD = (DIF-DEA)*2 return pd.DataFrame({'DIF': DIF, 'DEA': DEA, 'MACD': MACD})
[ "\n MACD CALC\n " ]
Please provide a description of the function:def QA_indicator_DMI(DataFrame, M1=14, M2=6): HIGH = DataFrame.high LOW = DataFrame.low CLOSE = DataFrame.close OPEN = DataFrame.open TR = SUM(MAX(MAX(HIGH-LOW, ABS(HIGH-REF(CLOSE, 1))), ABS(LOW-REF(CLOSE, 1))), M1) HD = HIGH-REF(HIGH, 1) LD = REF(LOW, 1)-LOW DMP = SUM(IFAND(HD>0,HD>LD,HD,0), M1) DMM = SUM(IFAND(LD>0,LD>HD,LD,0), M1) DI1 = DMP*100/TR DI2 = DMM*100/TR ADX = MA(ABS(DI2-DI1)/(DI1+DI2)*100, M2) ADXR = (ADX+REF(ADX, M2))/2 return pd.DataFrame({ 'DI1': DI1, 'DI2': DI2, 'ADX': ADX, 'ADXR': ADXR })
[ "\n 趋向指标 DMI\n " ]
Please provide a description of the function:def QA_indicator_PBX(DataFrame, N1=3, N2=5, N3=8, N4=13, N5=18, N6=24): '瀑布线' C = DataFrame['close'] PBX1 = (EMA(C, N1) + EMA(C, 2 * N1) + EMA(C, 4 * N1)) / 3 PBX2 = (EMA(C, N2) + EMA(C, 2 * N2) + EMA(C, 4 * N2)) / 3 PBX3 = (EMA(C, N3) + EMA(C, 2 * N3) + EMA(C, 4 * N3)) / 3 PBX4 = (EMA(C, N4) + EMA(C, 2 * N4) + EMA(C, 4 * N4)) / 3 PBX5 = (EMA(C, N5) + EMA(C, 2 * N5) + EMA(C, 4 * N5)) / 3 PBX6 = (EMA(C, N6) + EMA(C, 2 * N6) + EMA(C, 4 * N6)) / 3 DICT = {'PBX1': PBX1, 'PBX2': PBX2, 'PBX3': PBX3, 'PBX4': PBX4, 'PBX5': PBX5, 'PBX6': PBX6} return pd.DataFrame(DICT)
[]
Please provide a description of the function:def QA_indicator_DMA(DataFrame, M1=10, M2=50, M3=10): CLOSE = DataFrame.close DDD = MA(CLOSE, M1) - MA(CLOSE, M2) AMA = MA(DDD, M3) return pd.DataFrame({ 'DDD': DDD, 'AMA': AMA })
[ "\n 平均线差 DMA\n " ]
Please provide a description of the function:def QA_indicator_MTM(DataFrame, N=12, M=6): '动量线' C = DataFrame.close mtm = C - REF(C, N) MTMMA = MA(mtm, M) DICT = {'MTM': mtm, 'MTMMA': MTMMA} return pd.DataFrame(DICT)
[]
Please provide a description of the function:def QA_indicator_EXPMA(DataFrame, P1=5, P2=10, P3=20, P4=60): CLOSE = DataFrame.close MA1 = EMA(CLOSE, P1) MA2 = EMA(CLOSE, P2) MA3 = EMA(CLOSE, P3) MA4 = EMA(CLOSE, P4) return pd.DataFrame({ 'MA1': MA1, 'MA2': MA2, 'MA3': MA3, 'MA4': MA4 })
[ " 指数平均线 EXPMA" ]
Please provide a description of the function:def QA_indicator_CHO(DataFrame, N1=10, N2=20, M=6): HIGH = DataFrame.high LOW = DataFrame.low CLOSE = DataFrame.close VOL = DataFrame.volume MID = SUM(VOL*(2*CLOSE-HIGH-LOW)/(HIGH+LOW), 0) CHO = MA(MID, N1)-MA(MID, N2) MACHO = MA(CHO, M) return pd.DataFrame({ 'CHO': CHO, 'MACHO': MACHO })
[ "\n 佳庆指标 CHO\n " ]
Please provide a description of the function:def QA_indicator_BIAS(DataFrame, N1, N2, N3): '乖离率' CLOSE = DataFrame['close'] BIAS1 = (CLOSE - MA(CLOSE, N1)) / MA(CLOSE, N1) * 100 BIAS2 = (CLOSE - MA(CLOSE, N2)) / MA(CLOSE, N2) * 100 BIAS3 = (CLOSE - MA(CLOSE, N3)) / MA(CLOSE, N3) * 100 DICT = {'BIAS1': BIAS1, 'BIAS2': BIAS2, 'BIAS3': BIAS3} return pd.DataFrame(DICT)
[]
Please provide a description of the function:def QA_indicator_ROC(DataFrame, N=12, M=6): '变动率指标' C = DataFrame['close'] roc = 100 * (C - REF(C, N)) / REF(C, N) ROCMA = MA(roc, M) DICT = {'ROC': roc, 'ROCMA': ROCMA} return pd.DataFrame(DICT)
[]
Please provide a description of the function:def QA_indicator_CCI(DataFrame, N=14): typ = (DataFrame['high'] + DataFrame['low'] + DataFrame['close']) / 3 cci = ((typ - MA(typ, N)) / (0.015 * AVEDEV(typ, N))) a = 100 b = -100 return pd.DataFrame({ 'CCI': cci, 'a': a, 'b': b })
[ "\n TYP:=(HIGH+LOW+CLOSE)/3;\n CCI:(TYP-MA(TYP,N))/(0.015*AVEDEV(TYP,N));\n " ]
Please provide a description of the function:def QA_indicator_WR(DataFrame, N, N1): '威廉指标' HIGH = DataFrame['high'] LOW = DataFrame['low'] CLOSE = DataFrame['close'] WR1 = 100 * (HHV(HIGH, N) - CLOSE) / (HHV(HIGH, N) - LLV(LOW, N)) WR2 = 100 * (HHV(HIGH, N1) - CLOSE) / (HHV(HIGH, N1) - LLV(LOW, N1)) DICT = {'WR1': WR1, 'WR2': WR2} return pd.DataFrame(DICT)
[]
Please provide a description of the function:def QA_indicator_OSC(DataFrame, N=20, M=6): C = DataFrame['close'] OS = (C - MA(C, N)) * 100 MAOSC = EMA(OS, M) DICT = {'OSC': OS, 'MAOSC': MAOSC} return pd.DataFrame(DICT)
[ "变动速率线\n\n 震荡量指标OSC,也叫变动速率线。属于超买超卖类指标,是从移动平均线原理派生出来的一种分析指标。\n\n 它反应当日收盘价与一段时间内平均收盘价的差离值,从而测出股价的震荡幅度。\n\n 按照移动平均线原理,根据OSC的值可推断价格的趋势,如果远离平均线,就很可能向平均线回归。\n " ]
Please provide a description of the function:def QA_indicator_RSI(DataFrame, N1=12, N2=26, N3=9): '相对强弱指标RSI1:SMA(MAX(CLOSE-LC,0),N1,1)/SMA(ABS(CLOSE-LC),N1,1)*100;' CLOSE = DataFrame['close'] LC = REF(CLOSE, 1) RSI1 = SMA(MAX(CLOSE - LC, 0), N1) / SMA(ABS(CLOSE - LC), N1) * 100 RSI2 = SMA(MAX(CLOSE - LC, 0), N2) / SMA(ABS(CLOSE - LC), N2) * 100 RSI3 = SMA(MAX(CLOSE - LC, 0), N3) / SMA(ABS(CLOSE - LC), N3) * 100 DICT = {'RSI1': RSI1, 'RSI2': RSI2, 'RSI3': RSI3} return pd.DataFrame(DICT)
[]
Please provide a description of the function:def QA_indicator_ADTM(DataFrame, N=23, M=8): '动态买卖气指标' HIGH = DataFrame.high LOW = DataFrame.low OPEN = DataFrame.open DTM = IF(OPEN > REF(OPEN, 1), MAX((HIGH - OPEN), (OPEN - REF(OPEN, 1))), 0) DBM = IF(OPEN < REF(OPEN, 1), MAX((OPEN - LOW), (OPEN - REF(OPEN, 1))), 0) STM = SUM(DTM, N) SBM = SUM(DBM, N) ADTM1 = IF(STM > SBM, (STM - SBM) / STM, IF(STM != SBM, (STM - SBM) / SBM, 0)) MAADTM = MA(ADTM1, M) DICT = {'ADTM': ADTM1, 'MAADTM': MAADTM} return pd.DataFrame(DICT)
[]
Please provide a description of the function:def QA_indicator_ASI(DataFrame, M1=26, M2=10): CLOSE = DataFrame['close'] HIGH = DataFrame['high'] LOW = DataFrame['low'] OPEN = DataFrame['open'] LC = REF(CLOSE, 1) AA = ABS(HIGH - LC) BB = ABS(LOW-LC) CC = ABS(HIGH - REF(LOW, 1)) DD = ABS(LC - REF(OPEN, 1)) R = IFAND(AA > BB, AA > CC, AA+BB/2+DD/4, IFAND(BB > CC, BB > AA, BB+AA/2+DD/4, CC+DD/4)) X = (CLOSE - LC + (CLOSE - OPEN) / 2 + LC - REF(OPEN, 1)) SI = 16*X/R*MAX(AA, BB) ASI = SUM(SI, M1) ASIT = MA(ASI, M2) return pd.DataFrame({ 'ASI': ASI, 'ASIT': ASIT })
[ "\n LC=REF(CLOSE,1);\n AA=ABS(HIGH-LC);\n BB=ABS(LOW-LC);\n CC=ABS(HIGH-REF(LOW,1));\n DD=ABS(LC-REF(OPEN,1));\n R=IF(AA>BB AND AA>CC,AA+BB/2+DD/4,IF(BB>CC AND BB>AA,BB+AA/2+DD/4,CC+DD/4));\n X=(CLOSE-LC+(CLOSE-OPEN)/2+LC-REF(OPEN,1));\n SI=16*X/R*MAX(AA,BB);\n ASI:SUM(SI,M1);\n ASIT:MA(ASI,M2);\n " ]
Please provide a description of the function:def QA_indicator_OBV(DataFrame): VOL = DataFrame.volume CLOSE = DataFrame.close return pd.DataFrame({ 'OBV': np.cumsum(IF(CLOSE > REF(CLOSE, 1), VOL, IF(CLOSE < REF(CLOSE, 1), -VOL, 0)))/10000 })
[ "能量潮" ]
Please provide a description of the function:def QA_indicator_BOLL(DataFrame, N=20, P=2): '布林线' C = DataFrame['close'] boll = MA(C, N) UB = boll + P * STD(C, N) LB = boll - P * STD(C, N) DICT = {'BOLL': boll, 'UB': UB, 'LB': LB} return pd.DataFrame(DICT)
[]