|
--- |
|
dataset_info: |
|
- config_name: default |
|
features: |
|
- name: 1m |
|
sequence: |
|
sequence: |
|
sequence: |
|
sequence: uint8 |
|
- name: chm |
|
sequence: |
|
sequence: |
|
sequence: |
|
sequence: uint8 |
|
- name: rgb |
|
sequence: |
|
sequence: |
|
sequence: |
|
sequence: uint8 |
|
- name: metadata |
|
struct: |
|
- name: bounds |
|
sequence: float64 |
|
- name: epsg |
|
dtype: string |
|
- name: siteID |
|
dtype: string |
|
- name: timestamp |
|
sequence: string |
|
splits: |
|
- name: train |
|
num_bytes: 303349477315 |
|
num_examples: 35501 |
|
download_size: 240895951943 |
|
dataset_size: 303349477315 |
|
- config_name: satellogic |
|
features: |
|
- name: 1m |
|
sequence: |
|
sequence: |
|
sequence: |
|
sequence: uint8 |
|
- name: rgb |
|
sequence: |
|
sequence: |
|
sequence: |
|
sequence: uint8 |
|
- name: metadata |
|
struct: |
|
- name: bounds |
|
sequence: float64 |
|
- name: crs |
|
sequence: string |
|
- name: timestamp |
|
sequence: string |
|
splits: |
|
- name: train |
|
num_bytes: 3675346598134 |
|
num_examples: 2967663 |
|
download_size: 3528764568282 |
|
dataset_size: 3675346598134 |
|
- config_name: sentinel_1 |
|
features: |
|
- name: 10m |
|
sequence: |
|
sequence: |
|
sequence: |
|
sequence: uint8 |
|
- name: metadata |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1762041095796 |
|
num_examples: 1049466 |
|
download_size: 1487586838960 |
|
dataset_size: 1762041095796 |
|
- config_name: sentinel_2 |
|
features: |
|
- name: 10m |
|
sequence: |
|
sequence: |
|
sequence: |
|
sequence: uint8 |
|
- name: 20m |
|
sequence: |
|
sequence: |
|
sequence: |
|
sequence: uint8 |
|
- name: 40m |
|
sequence: |
|
sequence: |
|
sequence: |
|
sequence: uint8 |
|
- name: rgb |
|
sequence: |
|
sequence: |
|
sequence: |
|
sequence: uint8 |
|
- name: scl |
|
sequence: |
|
sequence: |
|
sequence: |
|
sequence: uint8 |
|
- name: metadata |
|
struct: |
|
- name: s3Path |
|
sequence: string |
|
- name: solarAngles |
|
sequence: string |
|
- name: tileGeometry |
|
sequence: string |
|
- name: timestamp |
|
sequence: string |
|
- name: viewIncidenceAngles |
|
sequence: string |
|
splits: |
|
- name: train |
|
num_bytes: 14967110614854 |
|
download_size: 12926621389874 |
|
dataset_size: 14967110614854 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- config_name: satellogic |
|
data_files: |
|
- split: train |
|
path: satellogic/**/train-* |
|
- config_name: sentinel_1 |
|
data_files: |
|
- split: train |
|
path: sentinel_1/train-* |
|
- config_name: sentinel_2 |
|
data_files: |
|
- split: train |
|
path: sentinel_2/**/train-* |
|
license: cc-by-4.0 |
|
--- |
|
<style> |
|
.prose :where(pre):not(:where([class~=not-prose] *)) { |
|
backgroun-color: "#e0e0e0"; |
|
</style> |
|
# EarthView dataset |
|
|
|
<!-- Dataset thumbnail --> |
|
 |
|
|
|
## Overview |
|
The **EarthView** Dataset is a comprehensive collection of multispectral earth imagery. The dataset is divided into four distinct subsets sourced from Satellogic, Sentinel-1, Sentinel-2, and NEON imagers, each providing unique data. |
|
|
|
The dataset is also available in [AWS Open Data registry](https://satellogic-earthview.s3.us-west-2.amazonaws.com/index.html). |
|
And you can play and [navigate Satellogic's dataset in this Colab notebook. ](https://colab.sandbox.google.com/github/satellogic/satellogic-earthview/blob/main/satellogic_earthview_exploration.ipynb) |
|
|
|
## Dataset Viewer |
|
Check the [EarthView Dataset Viewer](https://huggingface.co/spaces/satellogic/EarthView-Viewer) and [it's code](https://huggingface.co/spaces/satellogic/EarthView-Viewer/tree/main) for examples on how to access the images and navigate the dataset. |
|
|
|
[](https://satellogic-earthview-viewer.hf.space/) |
|
|
|
- [EarthView dataset](#earthview-dataset) |
|
- [Overview](#overview) |
|
- [Dataset Viewer](#dataset-viewer) |
|
- [Data Sources](#data-sources) |
|
- [Available Subsets](#available-subsets) |
|
- [Data Format](#data-format) |
|
- [Satellogic](#satellogic) |
|
- [Metadata](#metadata) |
|
- [Images](#images) |
|
- [Example (Jupyter Notebook)](#example-jupyter-notebook) |
|
- [Example (iterate)](#example-iterate) |
|
- [Sentinel-1](#sentinel-1) |
|
- [Metadata](#metadata-1) |
|
- [Images](#images-1) |
|
- [Example (Jupyter Notebook)](#example-jupyter-notebook-1) |
|
- [Neon](#neon) |
|
- [Metadata](#metadata-2) |
|
- [Images](#images-2) |
|
- [Example (Jupyter Notebook)](#example-jupyter-notebook-2) |
|
- [Sentinel-2](#sentinel-2) |
|
- [Metadata](#metadata-3) |
|
- [Images](#images-3) |
|
- [Example (Jupyter Notebook)](#example-jupyter-notebook-3) |
|
- [Known Issues](#known-issues) |
|
- [Citation](#citation) |
|
|
|
## Data Sources |
|
Each subset (AKA configuration) in the EarthView dataset includes samples representing specific patches of the Earth. Each source (satellite type) has different characteristics, so the details for the samples in each of the subsets are subtly different. We provide a very simple library to access the images in the subsets. |
|
|
|
## Available Subsets |
|
|
|
| Name | Samples | Unique locations | Products | Image Resolution | |
|
|--|--|--|--|--| |
|
| Satellogic | ~6 million | ~3 million | RGB | 1m | |
|
| | | | NIR (Near Infrared) | 1m |
|
| Neon | ~1 million | ~0.3 million | RGB | 0.1m | |
|
| | | | Canopy Height Model (Lidar)| 1m |
|
| | | | Hyperspectral (369 bands) | 1m |
|
| Sentinel-1 | ~5.2 million | ~1 million | SAR (mapped to RGB) | 10m (from 20m) |
|
| Sentinel-2 | ~10 million | ~1 million | RGB | 10m |
|
| | | | NIR | 10m |
|
| | | | NIR / Red Edge / SWIR | 20m |
|
| | | | Scene Classification Layer | 20m |
|
| | | | Coastal-Aerosol / Water Vapour / Cirrus | 40 (from 60m) |
|
|
|
## Data Format |
|
Each subset has some peculiarities and a specific data format in the dataset. Each item (sample) in the dataset is a dictionary with a `metadata` field and one or more entries for the different image products available, such as `rgb`, `chm`, `1m`, `10m` (see below). All of the image fields are 4D arrays where dimensions are REVISITS, BANDS, HEIGHT, WIDTH. |
|
|
|
We encourage you to use the supplied [`earthview` library](https://huggingface.co/spaces/satellogic/EarthView-Viewer/blob/main/earthview.py) to simplify accessing the dataset, metadata and images. (For now, download the single python file and place in the same directory as your scripts, or in Python's path) |
|
|
|
Bellow you'll find details for each subset |
|
|
|
### Satellogic |
|
#### Metadata |
|
| key | description | |
|
|--|--| |
|
| `bounds` | [x_min, y_min, x_max, y_max] (bottom-left corner and top-right corner coordinates in (easting, northing) format, WGS 84 / UTM). |
|
| | `[178191.0, 8248444.0, 178575.0, 8248828.0]` |
|
| `crs` | EPSG code |
|
| | `['EPSG:32723']` |
|
| `timestamp` | list of timestamps corresponding to the capture dates (only date is valid) |
|
| | `['2022-07-21T00:00:00']` |
|
| | `['2022-07-21T00:00:00', '2022-07-25T00:00:00']` |
|
|`count` | Number of re-visits for the location (not present in the dataset, generated by `items_to_images()`) |
|
| | 2 |
|
|
|
#### Images |
|
|
|
Satellogic images are captured with Satellogic's MarkIV satellite fleet. The payload produces RGB and NIR images at 1m native resolution (no PAN sharpening). Each sample in the dataset has 1 or 2 re-visits per location. |
|
|
|
| key | Product | Image Resolution | Size (pixels) | Bands | Re-samples | Data type | |
|
|--|--|--|--|--|--|--| |
|
| rgb | RGB | 1m | 384 x 384 | 3 | 1 or 2 | uint8 | |
|
| 1m | NIR | 1m | 384 x 384 | 1 | 1 or 2 | uint8 | |
|
|
|
Note: Despite data type being stored in uint64, values range between 0 and 255 (uint8). |
|
|
|
#### Example (Jupyter Notebook) |
|
<table border="1" style="border-collapse: inherit;" width="100%" bgcolor="#f0f0f0"><tr><td> |
|
|
|
```python |
|
import numpy as np |
|
import earthview as ev |
|
|
|
data = ev.load_dataset("satellogic", shards=[10]) # shard is optional |
|
sample = next(iter(data)) |
|
|
|
print(sample.keys()) |
|
print(np.array(sample['rgb']).shape) # RGB Data |
|
print(np.array(sample['1m']).shape) # NIR Data |
|
``` |
|
</td></tr></table> |
|
<table border="1" style="border-collapse: inherit;" width="100%" bgcolor="#f0f0f0"><tr><td> |
|
|
|
``` |
|
dict_keys(['1m', 'rgb', 'metadata']) |
|
(1, 3, 384, 384) |
|
(1, 1, 384, 384) |
|
``` |
|
</td></tr></table> |
|
<table border="1" style="border-collapse: inherit" width="100%" bgcolor="#f0f0f0"><tr><td> |
|
|
|
```python |
|
sample = ev.item_to_images("satellogic", sample) |
|
display(sample) |
|
display(*sample["rgb"]) |
|
display(*sample["1m"]) |
|
``` |
|
</td></tr></table> |
|
<table border="1" style="border-collapse: inherit" width="100%" bgcolor="#f0f0f0"><tr><td> |
|
|
|
``` |
|
{'1m': [<PIL.Image.Image image mode=L size=384x384>], |
|
'rgb': [<PIL.Image.Image image mode=RGB size=384x384>], |
|
'metadata': {'bounds': [[178191.0, 8248444.0, 178575.0, 8248828.0]], |
|
'crs': ['EPSG:32723'], |
|
'timestamp': ['2022-08-13T00:00:00']}} |
|
``` |
|
</td></tr></table> |
|
|
|
 |
|
|
|
 |
|
|
|
|
|
#### Example (iterate) |
|
</td></tr></table> |
|
<table border="1" style="border-collapse: inherit" width="100%" bgcolor="#f0f0f0"><tr><td> |
|
|
|
```python |
|
from itertools import islice |
|
import earthview as ev |
|
|
|
data = ev.load_dataset("satellogic", shards=[10]) # shard is optional |
|
datai = iter(data) |
|
for sample in islice(datai, 10): |
|
sample = ev.item_to_images("satellogic", sample) |
|
print(sample["metadata"]["bounds"]) |
|
sample["rgb"][0].show() |
|
|
|
``` |
|
</td></tr></table> |
|
|
|
### Sentinel-1 |
|
#### Metadata |
|
| key | description | |
|
|--|--| |
|
| `type` | `'Polygon'` Indicates the `coordinates` are the vertices of a Polygon |
|
| `coordinates` | Five coordinates of a closed Polygon. |
|
| | `[[[434520.0, 8715520.0], [438360.0, 8715520.0], [438360.0, 8711680.0], [434520.0, 8711680.0], [434520.0, 8715520.0]]]` |
|
| `crs` | EPSG code |
|
| | `'epsg:32736'` |
|
|`count` | Number of re-visits for the location (not present in the dataset, generated by `items_to_images()`) |
|
| | 6 |
|
|
|
#### Images |
|
|
|
Sentinel-1 carries a Synthetic Aperture Radar (SAR) payload. The data (imagery) produced has two channels, for vertical and horizontal polarization. The data in the dataset contains just the two channels, the images returned by `item_to_images()` implements a [standard mapping](https://gis.stackexchange.com/questions/400726/creating-composite-rgb-images-from-sentinel-1-channels) to return RGB images. (see the example below). Samples in the dataset contain varied numbers of re-visits per location. |
|
|
|
| key | Product | Image Resolution | Size (pixels) | Bands | Re-samples | Data type | |
|
|--|--|--|--|--|--|--| |
|
| 10m | RGB | 10m | 384 x 384 | 3 | 1 or more | uint8 | |
|
|
|
Note: Despite data type being stored in uint64, values range between 0 and 255 (uint8). |
|
|
|
#### Example (Jupyter Notebook) |
|
<table border="1" style="border-collapse: inherit;" width="100%" bgcolor="#f0f0f0"><tr><td> |
|
|
|
```python |
|
import numpy as np |
|
import earthview as ev |
|
|
|
data = ev.load_dataset("sentinel_1", shards=[88]) # shard is optional |
|
|
|
sample = next(iter(data)) |
|
|
|
print(sample.keys()) |
|
print(np.array(sample['rgb']).shape) # RGB Data |
|
print(np.array(sample['10m']).shape) # NIR Data |
|
``` |
|
</td></tr></table> |
|
<table border="1" style="border-collapse: inherit;" width="100%" bgcolor="#f0f0f0"><tr><td> |
|
|
|
``` |
|
dict_keys(['10m', 'metadata']) |
|
(6, 2, 384, 384) |
|
``` |
|
</td></tr></table> |
|
<table border="1" style="border-collapse: inherit;" width="100%" bgcolor="#f0f0f0"><tr><td> |
|
|
|
```python |
|
sample = ev.item_to_images("sentinel_1", sample) |
|
display(sample) |
|
display(*sample["10m"][:2]) |
|
``` |
|
</td></tr></table> |
|
<table border="1" style="border-collapse: inherit;" width="100%" bgcolor="#f0f0f0"><tr><td> |
|
|
|
``` |
|
{'10m': [<PIL.Image.Image image mode=RGB size=384x384>, |
|
<PIL.Image.Image image mode=RGB size=384x384>, |
|
<PIL.Image.Image image mode=RGB size=384x384>, |
|
<PIL.Image.Image image mode=RGB size=384x384>, |
|
<PIL.Image.Image image mode=RGB size=384x384>, |
|
<PIL.Image.Image image mode=RGB size=384x384>], |
|
'metadata': {'type': 'Polygon', |
|
'crs': 'epsg:32736', |
|
'coordinates': [[[434520.0, 8715520.0], |
|
[438360.0, 8715520.0], |
|
[438360.0, 8711680.0], |
|
[434520.0, 8711680.0], |
|
[434520.0, 8715520.0]]]}} |
|
``` |
|
</td></tr></table> |
|
|
|
 |
|
|
|
 |
|
|
|
### Neon |
|
|
|
In the dataset, the subset/configuration for NEON is called `default`, but when using the earthview library you should call it `neon`. |
|
|
|
#### Metadata |
|
| key | description | |
|
|--|--| |
|
| `bounds` | [x_min, y_min, x_max, y_max] (bottom-left corner and top-right corner coordinates in (easting, northing). |
|
| | `[-82.04138011662944, 29.634596313943526, -82.04071312100113, 29.635179014437973]` |
|
| `epsg` | EPSG code |
|
| | `'EPSG:32617'` (this is an error, coordinates are actually `'ESPG:4326'`, the library (earthview) solves it) |
|
| `timestamp` | list of timestamps corresponding to the capture dates (only date is valid) |
|
| | `['2018-01-01T00:00:00', '2019-01-01T00:00:00', '2021-01-01T00:00:00']` |
|
| `siteID` | `'OSBS'` for Ordway-Swisher Biological Station |
|
|`count` | Number of re-visits for the location (not present in the dataset, generated by `items_to_images()`) |
|
| | 3 |
|
|
|
#### Images |
|
|
|
The NEON subset is composed of very high resolution RGB images at 0.1m, 1m hyperspectral data (369 bands), and 1m Canopy Height Model out of a LIDAR sensor. Every sample in the dataset contains 3 re-visits. |
|
|
|
| key | Product | Image Resolution | Size (pixels) | Bands | Re-samples | Data type | |
|
|--|--|--|--|--|--|--| |
|
| rgb | RGB | 0.1m | 640 x 640 | 3 | 3 | uint8 | |
|
| chm | Canopy Height Model | 1m | 64 x 64 | 1 | 3 | uint8 | |
|
| 1m | Hyperspectral | 1m | 64 x 64 | 369 | 3 | uint8 | |
|
|
|
When using `item_to_images()` the Hyperspectral images are mapped, from the 369 bands to RGB using a meaningless mapping. Please, don't use it for anything else than an example. |
|
Note that images were stored in uint64, although values range between 0 and 255 (uint8). |
|
|
|
#### Example (Jupyter Notebook) |
|
<table border="1" style="border-collapse: inherit;" width="100%" bgcolor="#f0f0f0"><tr><td> |
|
|
|
```python |
|
import numpy as np |
|
import earthview as ev |
|
|
|
data = ev.load_dataset("neon", shards=[100]) # shard is optional |
|
|
|
sample = next(iter(data)) |
|
|
|
print(sample.keys()) |
|
print(np.array(sample['rgb']).shape) # RGB Data |
|
print(np.array(sample['chm']).shape) # Canopy Height |
|
print(np.array(sample['1m']).shape) # Hyperspectral |
|
``` |
|
</td></tr></table> |
|
<table border="1" style="border-collapse: inherit;" width="100%" bgcolor="#f0f0f0"><tr><td> |
|
|
|
``` |
|
dict_keys(['1m', 'chm', 'rgb', 'metadata']) |
|
(3, 3, 640, 640) |
|
(3, 1, 64, 64) |
|
(3, 369, 64, 64) |
|
``` |
|
</td></tr></table> |
|
<table border="1" style="border-collapse: inherit;" width="100%" bgcolor="#f0f0f0"><tr><td> |
|
|
|
```python |
|
sample = ev.item_to_images("neon", sample) |
|
display(sample) |
|
display(sample["rgb"][0]) |
|
display(sample["1m"][0]) |
|
display(sample["chm"][0]) |
|
``` |
|
</td></tr></table> |
|
<table border="1" style="border-collapse: inherit;" width="100%" bgcolor="#f0f0f0"><tr><td> |
|
|
|
``` |
|
{'1m': [<PIL.Image.Image image mode=RGB size=64x64>, |
|
<PIL.Image.Image image mode=RGB size=64x64>, |
|
<PIL.Image.Image image mode=RGB size=64x64>], |
|
'chm': [<PIL.Image.Image image mode=L size=64x64>, |
|
<PIL.Image.Image image mode=L size=64x64>, |
|
<PIL.Image.Image image mode=L size=64x64>], |
|
'rgb': [<PIL.Image.Image image mode=RGB size=640x640>, |
|
<PIL.Image.Image image mode=RGB size=640x640>, |
|
<PIL.Image.Image image mode=RGB size=640x640>], |
|
'metadata': {'bounds': [-82.04138011662944, |
|
29.634596313943526, |
|
-82.04071312100113, |
|
29.635179014437973], |
|
'epsg': 'ESPG:4326', |
|
'siteID': 'OSBS', |
|
'timestamp': ['2018-01-01T00:00:00', |
|
'2019-01-01T00:00:00', |
|
'2021-01-01T00:00:00']}} |
|
``` |
|
</td></tr></table> |
|
|
|
 |
|
|
|
 |
|
|
|
 |
|
|
|
### Sentinel 2 |
|
|
|
#### Metadata |
|
| key | description | |
|
|--|--| |
|
| `s3Path` | List of Sentinel 2 tiles. These are available in AWS Open Data Registry |
|
| | `['tiles/18/N/VF/2021/12/9/0',..., 'tiles/18/N/VF/2021/11/14/0']` |
|
| `solarAngles` | Solar angles in degrees |
|
| | `['{"azimuth": 140.394, "zenith": 30.3633}',..., '{"azimuth": 136.448, "zenith": 25.8697}']` |
|
| `tileGeometry` | `'Polygon'` geometry |
|
| | `['{"type": "Polygon", "crs": "epsg:32618", "coordinates": [[[430680.0, 4020.0], [434520.0, 4020.0], [434520.0, 180.0], [430680.0, 180.0], [430680.0, 4020.0]]]}']` |
|
| `timestamp` | timestamps |
|
| | `['2021-12-09T15:32:59.458Z',..., '2021-11-14T15:32:59.654Z']` |
|
|`viewIncidenceAngles` | View incidence angles in degrees |
|
| | `['{"azimuth": {"B02": 288.805, "B03": 291.359, "B04": 293.693, "B08": 290.083, "B05": 294.94, "B06": 296.189, "B07": 297.42, "B8A": 298.651, "B11": 295.947, "B12": 298.873, "B01": 299.813, "B09": 301.042}, "zenith": {"B02": 6.28651, "B03": 6.32378, "B04": 6.3693, "B08": 6.30356, "B05": 6.3982, "B06": 6.43049, "B07": 6.46563, "B8A": 6.50413, "B11": 6.42396, "B12": 6.51144, "B01": 6.54365, "B09": 6.58895}}', '{"azimuth": {"B02": 287.726, "B03": 290.233, "B04": 292.531, "B08": 288.98, "B05": 293.761, "B06": 294.998, "B07": 296.215, "B8A": 297.428, "B11": 294.722, "B12": 297.612, "B01": 298.585, "B09": 299.806}, "zenith": {"B02": 6.39968, "B03": 6.43145, "B04": 6.47169, "B08": 6.41401, "B05": 6.49769, "B06": 6.52711, "B07": 6.55927, "B8A": 6.59462, "B11": 6.52027, "B12": 6.60026, "B01": 6.6314, "B09": 6.67363}}',...,'{"azimuth": {"B02": 287.734, "B03": 290.267, "B04": 292.586, "B08": 289.001, "B05": 293.828, "B06": 295.078, "B07": 296.307, "B8A": 297.531, "B11": 294.8, "B12": 297.717, "B01": 298.699, "B09": 299.93}, "zenith": {"B02": 6.34038, "B03": 6.37228, "B04": 6.41274, "B08": 6.35475, "B05": 6.43893, "B06": 6.46856, "B07": 6.50099, "B8A": 6.53659, "B11": 6.46168, "B12": 6.54227, "B01": 6.57366, "B09": 6.61622}}']}` |
|
|`count` | Number of re-visits for the location (not present in the dataset, generated by `items_to_images()`) |
|
| | 10 |
|
|
|
#### Images |
|
|
|
Sentinel-2 carries a Multi-Spectral Instrument (MSI) payload. The data (imagery) produced contains 13 spectral bands across the visible, near-infrared (NIR), and shortwave infrared (SWIR) spectra. The data in the dataset includes these 13 bands. Samples in the dataset contain varied numbers of re-visits per location. |
|
|
|
| key | Product | Image Resolution | Size (pixels) | Bands | Re-samples | Data type | |
|
|--|--|--|--|--|--|--| |
|
| 10m | NIR | 10m | 384 x 384 | 1 | multiple | uint8 | |
|
| 20m | 20m bands | 20m | 192 x 192 | 6 | multiple | uint8 | |
|
| 40m | 60m bands | 10m | 96 x 96 | 2 | multiple | uint8 | |
|
| rgb | RGB | 10m | 384 x 384 | 3 | multiple | uint8 | |
|
| scl | SCL | 20m | 192 x 192 | 1 | multiple | uint8 | |
|
|
|
Note: Despite data type being stored in uint64, values range between 0 and 255 (uint8). |
|
|
|
#### Example (Jupyter Notebook) |
|
<table border="1" style="border-collapse: inherit;" width="100%" bgcolor="#f0f0f0"><tr><td> |
|
|
|
```python |
|
import numpy as np |
|
import earthview as ev |
|
|
|
data = ev.load_dataset("sentinel_2", shards=[88]) # shard is optional |
|
|
|
sample = next(iter(data)) |
|
|
|
print(sample.keys()) |
|
print(np.array(sample['10m']).shape) |
|
print(np.array(sample['20m']).shape) |
|
print(np.array(sample['40m']).shape) |
|
print(np.array(sample['rgb']).shape) |
|
print(np.array(sample['scl']).shape) |
|
``` |
|
</td></tr></table> |
|
<table border="1" style="border-collapse: inherit;" width="100%" bgcolor="#f0f0f0"><tr><td> |
|
|
|
``` |
|
dict_keys(['10m', '20m', '40m', 'rgb', 'scl', 'metadata']) |
|
(10, 1, 384, 384) |
|
(10, 6, 192, 192) |
|
(10, 2, 96, 96) |
|
(10, 3, 384, 384) |
|
(10, 1, 192, 192) |
|
``` |
|
</td></tr></table> |
|
<table border="1" style="border-collapse: inherit;" width="100%" bgcolor="#f0f0f0"><tr><td> |
|
|
|
```python |
|
sample = ev.item_to_images("sentinel_2", sample) |
|
display(sample) |
|
display(sample["10m"][0]) |
|
display(sample["rgb"][0]) |
|
``` |
|
</td></tr></table> |
|
<table border="1" style="border-collapse: inherit;" width="100%" bgcolor="#f0f0f0"><tr><td> |
|
|
|
``` |
|
{'10m': [<PIL.Image.Image image mode=L size=384x384>, |
|
<PIL.Image.Image image mode=L size=384x384>, |
|
<PIL.Image.Image image mode=L size=384x384>, |
|
<PIL.Image.Image image mode=L size=384x384>, |
|
<PIL.Image.Image image mode=L size=384x384>, |
|
<PIL.Image.Image image mode=L size=384x384>, |
|
<PIL.Image.Image image mode=L size=384x384>, |
|
<PIL.Image.Image image mode=L size=384x384>, |
|
<PIL.Image.Image image mode=L size=384x384>, |
|
<PIL.Image.Image image mode=L size=384x384>], |
|
'20m': [<PIL.Image.Image image mode=RGB size=192x192>, |
|
<PIL.Image.Image image mode=RGB size=192x192>, |
|
<PIL.Image.Image image mode=RGB size=192x192>, |
|
<PIL.Image.Image image mode=RGB size=192x192>, |
|
<PIL.Image.Image image mode=RGB size=192x192>, |
|
<PIL.Image.Image image mode=RGB size=192x192>, |
|
<PIL.Image.Image image mode=RGB size=192x192>, |
|
<PIL.Image.Image image mode=RGB size=192x192>, |
|
<PIL.Image.Image image mode=RGB size=192x192>, |
|
<PIL.Image.Image image mode=RGB size=192x192>], |
|
'40m': array([[[[ 4, 4, 4, ..., 115, 108, 102], |
|
[ 4, 4, 4, ..., 102, 95, 90], |
|
[ 4, 4, 4, ..., 89, 82, 76], |
|
..., |
|
[ 54, 54, 54, ..., 65, 65, 64], |
|
[ 54, 55, 56, ..., 63, 62, 62], |
|
[ 55, 56, 57, ..., 62, 60, 60]]]], dtype=uint8), |
|
'rgb': [<PIL.Image.Image image mode=RGB size=384x384>, |
|
<PIL.Image.Image image mode=RGB size=384x384>, |
|
<PIL.Image.Image image mode=RGB size=384x384>, |
|
<PIL.Image.Image image mode=RGB size=384x384>, |
|
<PIL.Image.Image image mode=RGB size=384x384>, |
|
<PIL.Image.Image image mode=RGB size=384x384>, |
|
<PIL.Image.Image image mode=RGB size=384x384>, |
|
<PIL.Image.Image image mode=RGB size=384x384>, |
|
<PIL.Image.Image image mode=RGB size=384x384>, |
|
<PIL.Image.Image image mode=RGB size=384x384>], |
|
'scl': [<PIL.Image.Image image mode=L size=192x192>, |
|
<PIL.Image.Image image mode=L size=192x192>, |
|
<PIL.Image.Image image mode=L size=192x192>, |
|
<PIL.Image.Image image mode=L size=192x192>, |
|
<PIL.Image.Image image mode=L size=192x192>, |
|
<PIL.Image.Image image mode=L size=192x192>, |
|
<PIL.Image.Image image mode=L size=192x192>, |
|
<PIL.Image.Image image mode=L size=192x192>, |
|
<PIL.Image.Image image mode=L size=192x192>, |
|
<PIL.Image.Image image mode=L size=192x192>], |
|
'metadata': {'s3Path': ['tiles/18/N/VF/2021/12/9/0', |
|
'tiles/18/N/VF/2021/10/25/0', |
|
'tiles/18/N/VF/2021/3/14/0', |
|
'tiles/18/N/VF/2021/6/12/0', |
|
'tiles/18/N/VF/2021/12/14/0', |
|
'tiles/18/N/VF/2021/11/19/0', |
|
'tiles/18/N/VF/2021/12/4/0', |
|
'tiles/18/N/VF/2021/9/5/0', |
|
'tiles/18/N/VF/2020/12/9/0', |
|
'tiles/18/N/VF/2021/11/14/0'], |
|
'solarAngles': [{'azimuth': 140.394, 'zenith': 30.3633}, |
|
{'azimuth': 124.852, 'zenith': 22.0045}, |
|
{'azimuth': 95.5396, 'zenith': 24.7237}, |
|
{'azimuth': 41.6202, 'zenith': 31.7255}, |
|
{'azimuth': 140.117, 'zenith': 31.0129}, |
|
{'azimuth': 138.058, 'zenith': 26.8774}, |
|
{'azimuth': 140.325, 'zenith': 29.6254}, |
|
{'azimuth': 73.0239, 'zenith': 22.8998}, |
|
{'azimuth': 140.382, 'zenith': 30.3984}, |
|
{'azimuth': 136.448, 'zenith': 25.8697}], |
|
'tileGeometry': [{'type': 'Polygon', |
|
'crs': 'epsg:32618', |
|
'coordinates': [[[430680.0, 4020.0], |
|
[434520.0, 4020.0], |
|
[434520.0, 180.0], |
|
[430680.0, 180.0], |
|
[430680.0, 4020.0]]]}], |
|
'timestamp': ['2021-12-09T15:32:59.458Z', |
|
'2021-10-25T15:33:02.398Z', |
|
'2021-03-14T15:33:00.373Z', |
|
'2021-06-12T15:33:01.436Z', |
|
'2021-12-14T15:32:54.854Z', |
|
'2021-11-19T15:33:00.970Z', |
|
'2021-12-04T15:32:56.151Z', |
|
'2021-09-05T15:32:57.392Z', |
|
'2020-12-09T15:32:58.492Z', |
|
'2021-11-14T15:32:59.654Z'], |
|
'viewIncidenceAngles': [{'azimuth': {'B02': 288.805, |
|
'B03': 291.359, |
|
'B04': 293.693, |
|
'B08': 290.083, |
|
'B05': 294.94, |
|
'B06': 296.189, |
|
'B07': 297.42, |
|
'B8A': 298.651, |
|
'B11': 295.947, |
|
'B12': 298.873, |
|
'B01': 299.813, |
|
'B09': 301.042}, |
|
'zenith': {'B02': 6.28651, |
|
'B03': 6.32378, |
|
'B04': 6.3693, |
|
'B08': 6.30356, |
|
'B05': 6.3982, |
|
'B06': 6.43049, |
|
'B07': 6.46563, |
|
'B8A': 6.50413, |
|
'B11': 6.42396, |
|
'B12': 6.51144, |
|
'B01': 6.54365, |
|
'B09': 6.58895}}, |
|
... |
|
{'azimuth': {'B02': 287.734, |
|
'B03': 290.267, |
|
'B04': 292.586, |
|
'B08': 289.001, |
|
'B05': 293.828, |
|
'B06': 295.078, |
|
'B07': 296.307, |
|
'B8A': 297.531, |
|
'B11': 294.8, |
|
'B12': 297.717, |
|
'B01': 298.699, |
|
'B09': 299.93}, |
|
'zenith': {'B02': 6.34038, |
|
'B03': 6.37228, |
|
'B04': 6.41274, |
|
'B08': 6.35475, |
|
'B05': 6.43893, |
|
'B06': 6.46856, |
|
'B07': 6.50099, |
|
'B8A': 6.53659, |
|
'B11': 6.46168, |
|
'B12': 6.54227, |
|
'B01': 6.57366, |
|
'B09': 6.61622}}], |
|
'count': 10}} |
|
``` |
|
</td></tr></table> |
|
|
|
 |
|
|
|
 |
|
|
|
|
|
## Known Issues |
|
* Satellogic timestamps are missing time information, only dates are provided. You can access full Satellogic sample timestamps in our STAC Catalog. Please visit our [Satellogic EarthView website](https://satellogic-earthview.s3.us-west-2.amazonaws.com/index.html) for more information. We additionally provide a notebook showing how to navigate through Satellogic dataset. <a href="https://colab.sandbox.google.com/github/satellogic/satellogic-earthview/blob/main/satellogic_earthview_exploration.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open in google colab"></a> |
|
|
|
## Citation |
|
|
|
To reference this work in your research or publications, please consider citing: |
|
|
|
|
|
``` |
|
@inproceedings{earthview2025, |
|
author={Velázquez, Diego and Rodríguez, Pau and Alonso, Sergio and Gonfaus, Josep M. and González, Jordi and, Richarte, Gerardo and Marín, Javier and Bengio, Yoshua and Lacoste, Alexandre}, |
|
booktitle={2025 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)}, |
|
title={EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision}, |
|
year={2025}} |
|
``` |
|
|