sasicodes commited on
Commit
e51b59a
·
verified ·
1 Parent(s): f024eb7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +249 -15
README.md CHANGED
@@ -1,24 +1,258 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  configs:
3
  - config_name: default
4
  data_files:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  - split: train_shard_035
6
  path: data/train_shard_035-*
7
  - split: train_shard_036
8
  path: data/train_shard_036-*
9
- dataset_info:
10
- features:
11
- - name: image
12
- dtype: image
13
- - name: text
14
- dtype: string
15
- splits:
16
- - name: train_shard_035
17
- num_bytes: 3055357770.0
18
- num_examples: 5000
19
- - name: train_shard_036
20
- num_bytes: 2964727872.0
21
- num_examples: 5000
22
- download_size: 6020012500
23
- dataset_size: 6020085642.0
 
 
 
24
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+
3
+ license: mit
4
+ dataset_info:
5
+ features:
6
+ - name: image
7
+ dtype: image
8
+ - name: text
9
+ dtype: string
10
+ splits:
11
+ - name: train_shard_000
12
+ num_bytes: 3084316377
13
+ num_examples: 5000
14
+ - name: train_shard_001
15
+ num_bytes: 3107698844
16
+ num_examples: 5000
17
+ - name: train_shard_002
18
+ num_bytes: 3105945625
19
+ num_examples: 5000
20
+ - name: train_shard_003
21
+ num_bytes: 3064000374
22
+ num_examples: 5000
23
+ - name: train_shard_004
24
+ num_bytes: 3086188608
25
+ num_examples: 5000
26
+ - name: train_shard_005
27
+ num_bytes: 3050610859
28
+ num_examples: 5000
29
+ - name: train_shard_006
30
+ num_bytes: 2913162440
31
+ num_examples: 5000
32
+ - name: train_shard_007
33
+ num_bytes: 2919830153
34
+ num_examples: 5000
35
+ - name: train_shard_008
36
+ num_bytes: 3038788195
37
+ num_examples: 5000
38
+ - name: train_shard_009
39
+ num_bytes: 3204065572
40
+ num_examples: 5000
41
+ - name: train_shard_010
42
+ num_bytes: 3068610931
43
+ num_examples: 5000
44
+ - name: train_shard_011
45
+ num_bytes: 2933208907
46
+ num_examples: 5000
47
+ - name: train_shard_012
48
+ num_bytes: 2891239225
49
+ num_examples: 5000
50
+ - name: train_shard_013
51
+ num_bytes: 3091212463
52
+ num_examples: 5000
53
+ - name: train_shard_014
54
+ num_bytes: 2921655324
55
+ num_examples: 5000
56
+ - name: train_shard_015
57
+ num_bytes: 2979943202
58
+ num_examples: 5000
59
+ - name: train_shard_016
60
+ num_bytes: 2868563209
61
+ num_examples: 5000
62
+ - name: train_shard_017
63
+ num_bytes: 3147002484
64
+ num_examples: 5000
65
+ - name: train_shard_018
66
+ num_bytes: 3104107514
67
+ num_examples: 5000
68
+ - name: train_shard_019
69
+ num_bytes: 2926535712.0
70
+ num_examples: 5000
71
+ - name: train_shard_020
72
+ num_bytes: 2990904342.0
73
+ num_examples: 5000
74
+ - name: train_shard_021
75
+ num_bytes: 3102893465.0
76
+ num_examples: 5000
77
+ - name: train_shard_022
78
+ num_bytes: 3059280331.0
79
+ num_examples: 5000
80
+ - name: train_shard_023
81
+ num_bytes: 3090584727.0
82
+ num_examples: 5000
83
+ - name: train_shard_024
84
+ num_bytes: 2926357592.0
85
+ num_examples: 5000
86
+ - name: train_shard_025
87
+ num_bytes: 2944175013.0
88
+ num_examples: 5000
89
+ - name: train_shard_026
90
+ num_bytes: 3007380998.0
91
+ num_examples: 5000
92
+ - name: train_shard_027
93
+ num_bytes: 3135483954.0
94
+ num_examples: 5000
95
+ - name: train_shard_028
96
+ num_bytes: 3025648842.0
97
+ num_examples: 5000
98
+ - name: train_shard_029
99
+ num_bytes: 2919552229.0
100
+ num_examples: 5000
101
+ - name: train_shard_030
102
+ num_bytes: 3060131937.0
103
+ num_examples: 5000
104
+ - name: train_shard_031
105
+ num_bytes: 3090467484.0
106
+ num_examples: 5000
107
+ - name: train_shard_032
108
+ num_bytes: 2873511036.0
109
+ num_examples: 5000
110
+ - name: train_shard_033
111
+ num_bytes: 2978930908.0
112
+ num_examples: 5000
113
+ - name: train_shard_034
114
+ num_bytes: 2919552229.0
115
+ num_examples: 5000
116
+ - name: train_shard_035
117
+ num_bytes: 3055357770
118
+ num_examples: 5000
119
+ download_size: 102710794870
120
+ dataset_size: 102711988876.0
121
  configs:
122
  - config_name: default
123
  data_files:
124
+ - split: train_shard_000
125
+ path: data/train_shard_000-*
126
+ - split: train_shard_001
127
+ path: data/train_shard_001-*
128
+ - split: train_shard_002
129
+ path: data/train_shard_002-*
130
+ - split: train_shard_003
131
+ path: data/train_shard_003-*
132
+ - split: train_shard_004
133
+ path: data/train_shard_004-*
134
+ - split: train_shard_005
135
+ path: data/train_shard_005-*
136
+ - split: train_shard_006
137
+ path: data/train_shard_006-*
138
+ - split: train_shard_007
139
+ path: data/train_shard_007-*
140
+ - split: train_shard_008
141
+ path: data/train_shard_008-*
142
+ - split: train_shard_009
143
+ path: data/train_shard_009-*
144
+ - split: train_shard_010
145
+ path: data/train_shard_010-*
146
+ - split: train_shard_011
147
+ path: data/train_shard_011-*
148
+ - split: train_shard_012
149
+ path: data/train_shard_012-*
150
+ - split: train_shard_013
151
+ path: data/train_shard_013-*
152
+ - split: train_shard_014
153
+ path: data/train_shard_014-*
154
+ - split: train_shard_015
155
+ path: data/train_shard_015-*
156
+ - split: train_shard_016
157
+ path: data/train_shard_016-*
158
+ - split: train_shard_017
159
+ path: data/train_shard_017-*
160
+ - split: train_shard_018
161
+ path: data/train_shard_018-*
162
+ - split: train_shard_019
163
+ path: data/train_shard_019-*
164
+ - split: train_shard_020
165
+ path: data/train_shard_020-*
166
+ - split: train_shard_021
167
+ path: data/train_shard_021-*
168
+ - split: train_shard_022
169
+ path: data/train_shard_022-*
170
+ - split: train_shard_023
171
+ path: data/train_shard_023-*
172
+ - split: train_shard_024
173
+ path: data/train_shard_024-*
174
+ - split: train_shard_025
175
+ path: data/train_shard_025-*
176
+ - split: train_shard_026
177
+ path: data/train_shard_026-*
178
+ - split: train_shard_027
179
+ path: data/train_shard_027-*
180
+ - split: train_shard_028
181
+ path: data/train_shard_028-*
182
+ - split: train_shard_029
183
+ path: data/train_shard_029-*
184
+ - split: train_shard_030
185
+ path: data/train_shard_030-*
186
+ - split: train_shard_031
187
+ path: data/train_shard_031-*
188
+ - split: train_shard_032
189
+ path: data/train_shard_032-*
190
+ - split: train_shard_033
191
+ path: data/train_shard_033-*
192
+ - split: train_shard_034
193
+ path: data/train_shard_034-*
194
  - split: train_shard_035
195
  path: data/train_shard_035-*
196
  - split: train_shard_036
197
  path: data/train_shard_036-*
198
+ - split: train_shard_037
199
+ path: data/train_shard_037-*
200
+ - split: train_shard_038
201
+ path: data/train_shard_038-*
202
+ - split: train_shard_039
203
+ path: data/train_shard_039-*
204
+ - split: train_shard_040
205
+ path: data/train_shard_040-*
206
+ pretty_name: tamily 1
207
+ language:
208
+ - ta
209
+ source_datasets:
210
+ - sasicodes/solvari-1
211
+ task_categories:
212
+ - image-to-text
213
+ tags:
214
+ - Vaṭṭeḻuttu
215
+
216
  ---
217
+
218
+ # Tamily-1: Ancient Tamil OCR Synthetic Dataset
219
+
220
+ ## Description
221
+
222
+ - **Repository:** [sasicodes/tamily-1](https://huggingface.co/datasets/sasicodes/tamily-1)
223
+ - **Point of Contact:** [@sasicodes](https://huggingface.co/sasicodes)
224
+
225
+ ### Summary
226
+
227
+ Tamily-1 is an ancient Tamil OCR synthetic dataset generated from the first 200,000 rows of [Solvari-1](https://huggingface.co/datasets/sasicodes/solvari-1), a large Tamil text corpus. The dataset contains rendered images of Tamil text with various augmentations and styles, making it suitable for training OCR models.
228
+
229
+ ### Fields
230
+
231
+ - `image`: PNG image of rendered Tamil text
232
+ - `text`: Original Tamil text
233
+
234
+ ### Data Splits
235
+
236
+ The dataset is split into shards of 5,000 samples each, named as `train_shard_XXX`.
237
+
238
+ Annotation process
239
+
240
+ Each text is rendered with:
241
+ - Random paper style (Palm Leaf, Pale Palm Leaf, Red Stone, White Stone, Paper)
242
+ - Random background style (No Lines, With Lines, Blurred, With Lines and Noise)
243
+ - Random augmentation (Rotation, Perspective, Stain, Ink Bleed)
244
+
245
+ ### License
246
+
247
+ MIT License
248
+
249
+ ```bibtex
250
+ @misc{tamily-1,
251
+ author = {sasicodes},
252
+ title = {Tamily-1: Ancient Tamil OCR Synthetic Dataset},
253
+ year = {2025},
254
+ publisher = {Hugging Face},
255
+ journal = {Hugging Face Hub},
256
+ howpublished = {\url{https://huggingface.co/datasets/sasicodes/tamily-1}}
257
+ }
258
+ ```