Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,24 +1,258 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
configs:
|
3 |
- config_name: default
|
4 |
data_files:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
- split: train_shard_035
|
6 |
path: data/train_shard_035-*
|
7 |
- split: train_shard_036
|
8 |
path: data/train_shard_036-*
|
9 |
-
|
10 |
-
|
11 |
-
-
|
12 |
-
|
13 |
-
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
24 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
|
3 |
+
license: mit
|
4 |
+
dataset_info:
|
5 |
+
features:
|
6 |
+
- name: image
|
7 |
+
dtype: image
|
8 |
+
- name: text
|
9 |
+
dtype: string
|
10 |
+
splits:
|
11 |
+
- name: train_shard_000
|
12 |
+
num_bytes: 3084316377
|
13 |
+
num_examples: 5000
|
14 |
+
- name: train_shard_001
|
15 |
+
num_bytes: 3107698844
|
16 |
+
num_examples: 5000
|
17 |
+
- name: train_shard_002
|
18 |
+
num_bytes: 3105945625
|
19 |
+
num_examples: 5000
|
20 |
+
- name: train_shard_003
|
21 |
+
num_bytes: 3064000374
|
22 |
+
num_examples: 5000
|
23 |
+
- name: train_shard_004
|
24 |
+
num_bytes: 3086188608
|
25 |
+
num_examples: 5000
|
26 |
+
- name: train_shard_005
|
27 |
+
num_bytes: 3050610859
|
28 |
+
num_examples: 5000
|
29 |
+
- name: train_shard_006
|
30 |
+
num_bytes: 2913162440
|
31 |
+
num_examples: 5000
|
32 |
+
- name: train_shard_007
|
33 |
+
num_bytes: 2919830153
|
34 |
+
num_examples: 5000
|
35 |
+
- name: train_shard_008
|
36 |
+
num_bytes: 3038788195
|
37 |
+
num_examples: 5000
|
38 |
+
- name: train_shard_009
|
39 |
+
num_bytes: 3204065572
|
40 |
+
num_examples: 5000
|
41 |
+
- name: train_shard_010
|
42 |
+
num_bytes: 3068610931
|
43 |
+
num_examples: 5000
|
44 |
+
- name: train_shard_011
|
45 |
+
num_bytes: 2933208907
|
46 |
+
num_examples: 5000
|
47 |
+
- name: train_shard_012
|
48 |
+
num_bytes: 2891239225
|
49 |
+
num_examples: 5000
|
50 |
+
- name: train_shard_013
|
51 |
+
num_bytes: 3091212463
|
52 |
+
num_examples: 5000
|
53 |
+
- name: train_shard_014
|
54 |
+
num_bytes: 2921655324
|
55 |
+
num_examples: 5000
|
56 |
+
- name: train_shard_015
|
57 |
+
num_bytes: 2979943202
|
58 |
+
num_examples: 5000
|
59 |
+
- name: train_shard_016
|
60 |
+
num_bytes: 2868563209
|
61 |
+
num_examples: 5000
|
62 |
+
- name: train_shard_017
|
63 |
+
num_bytes: 3147002484
|
64 |
+
num_examples: 5000
|
65 |
+
- name: train_shard_018
|
66 |
+
num_bytes: 3104107514
|
67 |
+
num_examples: 5000
|
68 |
+
- name: train_shard_019
|
69 |
+
num_bytes: 2926535712.0
|
70 |
+
num_examples: 5000
|
71 |
+
- name: train_shard_020
|
72 |
+
num_bytes: 2990904342.0
|
73 |
+
num_examples: 5000
|
74 |
+
- name: train_shard_021
|
75 |
+
num_bytes: 3102893465.0
|
76 |
+
num_examples: 5000
|
77 |
+
- name: train_shard_022
|
78 |
+
num_bytes: 3059280331.0
|
79 |
+
num_examples: 5000
|
80 |
+
- name: train_shard_023
|
81 |
+
num_bytes: 3090584727.0
|
82 |
+
num_examples: 5000
|
83 |
+
- name: train_shard_024
|
84 |
+
num_bytes: 2926357592.0
|
85 |
+
num_examples: 5000
|
86 |
+
- name: train_shard_025
|
87 |
+
num_bytes: 2944175013.0
|
88 |
+
num_examples: 5000
|
89 |
+
- name: train_shard_026
|
90 |
+
num_bytes: 3007380998.0
|
91 |
+
num_examples: 5000
|
92 |
+
- name: train_shard_027
|
93 |
+
num_bytes: 3135483954.0
|
94 |
+
num_examples: 5000
|
95 |
+
- name: train_shard_028
|
96 |
+
num_bytes: 3025648842.0
|
97 |
+
num_examples: 5000
|
98 |
+
- name: train_shard_029
|
99 |
+
num_bytes: 2919552229.0
|
100 |
+
num_examples: 5000
|
101 |
+
- name: train_shard_030
|
102 |
+
num_bytes: 3060131937.0
|
103 |
+
num_examples: 5000
|
104 |
+
- name: train_shard_031
|
105 |
+
num_bytes: 3090467484.0
|
106 |
+
num_examples: 5000
|
107 |
+
- name: train_shard_032
|
108 |
+
num_bytes: 2873511036.0
|
109 |
+
num_examples: 5000
|
110 |
+
- name: train_shard_033
|
111 |
+
num_bytes: 2978930908.0
|
112 |
+
num_examples: 5000
|
113 |
+
- name: train_shard_034
|
114 |
+
num_bytes: 2919552229.0
|
115 |
+
num_examples: 5000
|
116 |
+
- name: train_shard_035
|
117 |
+
num_bytes: 3055357770
|
118 |
+
num_examples: 5000
|
119 |
+
download_size: 102710794870
|
120 |
+
dataset_size: 102711988876.0
|
121 |
configs:
|
122 |
- config_name: default
|
123 |
data_files:
|
124 |
+
- split: train_shard_000
|
125 |
+
path: data/train_shard_000-*
|
126 |
+
- split: train_shard_001
|
127 |
+
path: data/train_shard_001-*
|
128 |
+
- split: train_shard_002
|
129 |
+
path: data/train_shard_002-*
|
130 |
+
- split: train_shard_003
|
131 |
+
path: data/train_shard_003-*
|
132 |
+
- split: train_shard_004
|
133 |
+
path: data/train_shard_004-*
|
134 |
+
- split: train_shard_005
|
135 |
+
path: data/train_shard_005-*
|
136 |
+
- split: train_shard_006
|
137 |
+
path: data/train_shard_006-*
|
138 |
+
- split: train_shard_007
|
139 |
+
path: data/train_shard_007-*
|
140 |
+
- split: train_shard_008
|
141 |
+
path: data/train_shard_008-*
|
142 |
+
- split: train_shard_009
|
143 |
+
path: data/train_shard_009-*
|
144 |
+
- split: train_shard_010
|
145 |
+
path: data/train_shard_010-*
|
146 |
+
- split: train_shard_011
|
147 |
+
path: data/train_shard_011-*
|
148 |
+
- split: train_shard_012
|
149 |
+
path: data/train_shard_012-*
|
150 |
+
- split: train_shard_013
|
151 |
+
path: data/train_shard_013-*
|
152 |
+
- split: train_shard_014
|
153 |
+
path: data/train_shard_014-*
|
154 |
+
- split: train_shard_015
|
155 |
+
path: data/train_shard_015-*
|
156 |
+
- split: train_shard_016
|
157 |
+
path: data/train_shard_016-*
|
158 |
+
- split: train_shard_017
|
159 |
+
path: data/train_shard_017-*
|
160 |
+
- split: train_shard_018
|
161 |
+
path: data/train_shard_018-*
|
162 |
+
- split: train_shard_019
|
163 |
+
path: data/train_shard_019-*
|
164 |
+
- split: train_shard_020
|
165 |
+
path: data/train_shard_020-*
|
166 |
+
- split: train_shard_021
|
167 |
+
path: data/train_shard_021-*
|
168 |
+
- split: train_shard_022
|
169 |
+
path: data/train_shard_022-*
|
170 |
+
- split: train_shard_023
|
171 |
+
path: data/train_shard_023-*
|
172 |
+
- split: train_shard_024
|
173 |
+
path: data/train_shard_024-*
|
174 |
+
- split: train_shard_025
|
175 |
+
path: data/train_shard_025-*
|
176 |
+
- split: train_shard_026
|
177 |
+
path: data/train_shard_026-*
|
178 |
+
- split: train_shard_027
|
179 |
+
path: data/train_shard_027-*
|
180 |
+
- split: train_shard_028
|
181 |
+
path: data/train_shard_028-*
|
182 |
+
- split: train_shard_029
|
183 |
+
path: data/train_shard_029-*
|
184 |
+
- split: train_shard_030
|
185 |
+
path: data/train_shard_030-*
|
186 |
+
- split: train_shard_031
|
187 |
+
path: data/train_shard_031-*
|
188 |
+
- split: train_shard_032
|
189 |
+
path: data/train_shard_032-*
|
190 |
+
- split: train_shard_033
|
191 |
+
path: data/train_shard_033-*
|
192 |
+
- split: train_shard_034
|
193 |
+
path: data/train_shard_034-*
|
194 |
- split: train_shard_035
|
195 |
path: data/train_shard_035-*
|
196 |
- split: train_shard_036
|
197 |
path: data/train_shard_036-*
|
198 |
+
- split: train_shard_037
|
199 |
+
path: data/train_shard_037-*
|
200 |
+
- split: train_shard_038
|
201 |
+
path: data/train_shard_038-*
|
202 |
+
- split: train_shard_039
|
203 |
+
path: data/train_shard_039-*
|
204 |
+
- split: train_shard_040
|
205 |
+
path: data/train_shard_040-*
|
206 |
+
pretty_name: tamily 1
|
207 |
+
language:
|
208 |
+
- ta
|
209 |
+
source_datasets:
|
210 |
+
- sasicodes/solvari-1
|
211 |
+
task_categories:
|
212 |
+
- image-to-text
|
213 |
+
tags:
|
214 |
+
- Vaṭṭeḻuttu
|
215 |
+
|
216 |
---
|
217 |
+
|
218 |
+
# Tamily-1: Ancient Tamil OCR Synthetic Dataset
|
219 |
+
|
220 |
+
## Description
|
221 |
+
|
222 |
+
- **Repository:** [sasicodes/tamily-1](https://huggingface.co/datasets/sasicodes/tamily-1)
|
223 |
+
- **Point of Contact:** [@sasicodes](https://huggingface.co/sasicodes)
|
224 |
+
|
225 |
+
### Summary
|
226 |
+
|
227 |
+
Tamily-1 is an ancient Tamil OCR synthetic dataset generated from the first 200,000 rows of [Solvari-1](https://huggingface.co/datasets/sasicodes/solvari-1), a large Tamil text corpus. The dataset contains rendered images of Tamil text with various augmentations and styles, making it suitable for training OCR models.
|
228 |
+
|
229 |
+
### Fields
|
230 |
+
|
231 |
+
- `image`: PNG image of rendered Tamil text
|
232 |
+
- `text`: Original Tamil text
|
233 |
+
|
234 |
+
### Data Splits
|
235 |
+
|
236 |
+
The dataset is split into shards of 5,000 samples each, named as `train_shard_XXX`.
|
237 |
+
|
238 |
+
Annotation process
|
239 |
+
|
240 |
+
Each text is rendered with:
|
241 |
+
- Random paper style (Palm Leaf, Pale Palm Leaf, Red Stone, White Stone, Paper)
|
242 |
+
- Random background style (No Lines, With Lines, Blurred, With Lines and Noise)
|
243 |
+
- Random augmentation (Rotation, Perspective, Stain, Ink Bleed)
|
244 |
+
|
245 |
+
### License
|
246 |
+
|
247 |
+
MIT License
|
248 |
+
|
249 |
+
```bibtex
|
250 |
+
@misc{tamily-1,
|
251 |
+
author = {sasicodes},
|
252 |
+
title = {Tamily-1: Ancient Tamil OCR Synthetic Dataset},
|
253 |
+
year = {2025},
|
254 |
+
publisher = {Hugging Face},
|
255 |
+
journal = {Hugging Face Hub},
|
256 |
+
howpublished = {\url{https://huggingface.co/datasets/sasicodes/tamily-1}}
|
257 |
+
}
|
258 |
+
```
|