|
--- |
|
dataset_info: |
|
- config_name: data_mining |
|
features: |
|
- name: wikipedia_passage_concept_A |
|
dtype: string |
|
- name: concept_A |
|
dtype: string |
|
- name: wikipedia_passage_concept_B |
|
dtype: string |
|
- name: concept_B |
|
dtype: string |
|
- name: target |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 2356292 |
|
num_examples: 218 |
|
- name: test |
|
num_bytes: 906558 |
|
num_examples: 99 |
|
download_size: 564203 |
|
dataset_size: 3262850 |
|
- config_name: geometry |
|
features: |
|
- name: wikipedia_passage_concept_A |
|
dtype: string |
|
- name: concept_A |
|
dtype: string |
|
- name: wikipedia_passage_concept_B |
|
dtype: string |
|
- name: concept_B |
|
dtype: string |
|
- name: target |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 6705697 |
|
num_examples: 664 |
|
- name: test |
|
num_bytes: 2178281 |
|
num_examples: 200 |
|
download_size: 601925 |
|
dataset_size: 8883978 |
|
- config_name: physics |
|
features: |
|
- name: wikipedia_passage_concept_A |
|
dtype: string |
|
- name: concept_A |
|
dtype: string |
|
- name: wikipedia_passage_concept_B |
|
dtype: string |
|
- name: concept_B |
|
dtype: string |
|
- name: target |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 14566247 |
|
num_examples: 630 |
|
- name: test |
|
num_bytes: 4882943 |
|
num_examples: 200 |
|
download_size: 1965578 |
|
dataset_size: 19449190 |
|
- config_name: precalculus |
|
features: |
|
- name: wikipedia_passage_concept_A |
|
dtype: string |
|
- name: concept_A |
|
dtype: string |
|
- name: wikipedia_passage_concept_B |
|
dtype: string |
|
- name: concept_B |
|
dtype: string |
|
- name: target |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 12491149 |
|
num_examples: 816 |
|
- name: test |
|
num_bytes: 3261896 |
|
num_examples: 200 |
|
download_size: 1513563 |
|
dataset_size: 15753045 |
|
configs: |
|
- config_name: data_mining |
|
data_files: |
|
- split: train |
|
path: data_mining/train-* |
|
- split: test |
|
path: data_mining/test-* |
|
- config_name: geometry |
|
data_files: |
|
- split: train |
|
path: geometry/train-* |
|
- split: test |
|
path: geometry/test-* |
|
- config_name: physics |
|
data_files: |
|
- split: train |
|
path: physics/train-* |
|
- split: test |
|
path: physics/test-* |
|
- config_name: precalculus |
|
data_files: |
|
- split: train |
|
path: precalculus/train-* |
|
- split: test |
|
path: precalculus/test-* |
|
--- |
|
|
|
# Prerequisite RElation LEARNing (PRELEARN) |
|
|
|
Original Paper: https://ceur-ws.org/Vol-2765/paper164.pdf |
|
|
|
This dataset contains a collection of binary-labelled concept pairs (A,B) extracted from textbooks on four domains: **data mining**, **geometry**, **physics** and **precalculus**. |
|
Then, domain experts were asked to manually annotate if pairs of concepts showed a prerequisite relation or not, therefore the dataset consists of both positive and negative concept pairs. |
|
|
|
We obtained the data from the original repository, making only one modification: undersampling the training data, to have a balanced set. To evaluate generative models in in-context learning, it's essential to have a balanced distribution for sampling examples in a few-shot setting. The undersampling process was carried out randomly, and separately for each domain. |
|
|
|
## Example |
|
|
|
Here you can see the structure of the single sample in the present dataset. |
|
|
|
```json |
|
{ |
|
"concept_A": string, # text of the concept A |
|
"wikipedia_passage_concept_A": string, # paragraph of wikipedia corresponding to concept A |
|
"concept_B": string, # text of the concept B |
|
"wikipedia_passage_concept_B": string, # paragraph of wikipedia corresponding to concept B |
|
"target": int, # 0: B non è preconcetto di A, 1: B è preconcetto di A |
|
} |
|
``` |
|
|
|
## Statitics |
|
|
|
| PRELEARN Data Mining | 0 | 1 | |
|
| :--------: | :----: | :----: | |
|
| Training | 109 | 109 | |
|
| Test | 50 | 49 | |
|
|
|
| PRELEARN Physics | 0 | 1 | |
|
| :--------: | :----: | :----: | |
|
| Training | 315 | 315 | |
|
| Test | 100 | 100 | |
|
|
|
| PRELEARN Geometry | 0 | 1 | |
|
| :--------: | :----: | :----: | |
|
| Training | 332 | 332 | |
|
| Test | 100 | 100 | |
|
|
|
| PRELEARN Precalculus | 0 | 1 | |
|
| :--------: | :----: | :----: | |
|
| Training | 408 | 408 | |
|
| Test | 100 | 100 | |
|
|
|
## Proposed Prompts |
|
|
|
Here we will describe the prompt given to the model over which we will compute the perplexity score, as model's answer we will chose the prompt with lower perplexity. |
|
Moreover, for each subtask, we define a description that is prepended to the prompts, needed by the model to understand the task. |
|
|
|
Description of the task: "Dati due concetti A e B, indica se il primo concetto è un prerequisito per il secondo.\nIl concetto A è prerequisito per il concetto B, se per comprendere B devi prima aver compreso A.\nI seguenti concetti appartengono al dominio: {{domain}}.\n\n" |
|
|
|
### Cloze Style: |
|
|
|
Label (**B non è prerequisito di A**): "{{concept_B}} non è un prerequisito per {{concept_A}}" |
|
|
|
Label (**B è prerequisito di A**): "{{concept_B}} è un prerequisito per {{concept_A}}" |
|
|
|
### MCQA Style: |
|
|
|
``` |
|
Domanda: il concetto \"{{concept_B}}\" è un prerequisito per la comprensione del concetto \"{{concept_A}}\"? Rispondi sì o no: |
|
``` |
|
|
|
## Results |
|
|
|
The following results are given by the Cloze-style prompting over some english and italian-adapted LLMs. |
|
|
|
| PRELEARN (AVG) | ACCURACY (15-shots) | |
|
| :-----: | :--: | |
|
| Gemma-2B | 60.12 | |
|
| QWEN2-1.5B | 57.00 | |
|
| Mistral-7B | 64.50 | |
|
| ZEFIRO | 64.76 | |
|
| Llama-3-8B | 60.63 | |
|
| Llama-3-8B-IT | 63.76 | |
|
| ANITA | 63.77 | |
|
|
|
## Aknwoledge |
|
|
|
We would like to thank the authors of this resource for publicly releasing such an intriguing benchmark. |
|
|
|
Additionally, we extend our gratitude to the students of the [MNLP-2024 course](https://naviglinlp.blogspot.com/), whose first homework explored various interesting prompting strategies. |
|
|
|
The original dataset is freely available for download [link](https://live.european-language-grid.eu/catalogue/corpus/8084). |
|
|
|
## License |
|
|
|
The data come under the license [Creative Commons Attribution Non Commercial Share Alike 4.0 International](https://creativecommons.org/licenses/by-nc-sa/4.0/) |