text
stringlengths
1
4.49k
code
stringlengths
1
5.46k
Update all multiples of p as false , i . e . non - prime
for ( int i = p * p ; i <= 100000 ; i += p ) prime [ i ] = false ; } } }
Returns number of subsequences of maximum length k and contains distinct primes
int distinctPrimeSubSeq ( int a [ ] , int n , int k ) { SieveOfEratosthenes ( ) ;
Store the primes in the given array
vector < int > primes ; for ( int i = 0 ; i < n ; i ++ ) { if ( prime [ a [ i ] ] ) primes . push_back ( a [ i ] ) ; } int l = primes . size ( ) ;
Sort the primes
sort ( primes . begin ( ) , primes . end ( ) ) ;
Store the frequencies of all the distinct primes
vector < int > b ; vector < int > dp ; int sum = 0 ; for ( int i = 0 ; i < l ; ) { int count = 1 , x = a [ i ] ; i ++ ; while ( i < l && a [ i ] == x ) { count ++ ; i ++ ; }
Store the frequency of primes
b . push_back ( count ) ; dp . push_back ( count ) ;
Store the sum of all frequencies
sum += count ; }
Store the length of subsequence at every instant
int of_length = 2 ; int len = dp . size ( ) ; int ans = 0 ; while ( of_length <= k ) {
Store the frequency
int freq = 0 ;
Store the previous count of updated DP
int prev = 0 ; for ( int i = 0 ; i < ( len - 1 ) ; i ++ ) { freq += dp [ i ] ; int j = sum - freq ;
Calculate total subsequences of current of_length
int subseq = b [ i ] * j ;
Add the number of subsequences to the answer
ans += subseq ;
Update the value in dp [ i ]
dp [ i ] = subseq ;
Store the updated dp [ i ]
prev += dp [ i ] ; } len -- ; sum = prev ; of_length ++ ; } ans += ( l + 1 ) ; return ans ; }
Driver Code
int main ( ) { int a [ ] = { 1 , 2 , 2 , 3 , 3 , 4 , 5 } ; int n = sizeof ( a ) / sizeof ( int ) ; int k = 3 ; cout << distinctPrimeSubSeq ( a , n , k ) ; return 0 ; }
C ++ implementation to find the minimum prizes required such that adjacent smaller elements gets less number of prizes
#include <bits/stdc++.h> NEW_LINE using namespace std ;
Function to find the minimum number of required such that adjacent smaller elements gets less number of prizes
int findMinPrizes ( int arr [ ] , int n ) { int totalPrizes = 0 , j , x , y ;
Loop to iterate over every elements of the array
for ( int i = 0 ; i < n ; i ++ ) { x = 1 ; j = i ;
Loop to find the consecutive smaller elements at left
while ( j > 0 && arr [ j ] > arr [ j - 1 ] ) { x ++ ; j -- ; } j = i ; y = 1 ;
Loop to find the consecutive smaller elements at right
while ( j < n - 1 && arr [ j ] > arr [ j + 1 ] ) { y ++ ; j ++ ; } totalPrizes += max ( { x , y } ) ; } cout << totalPrizes << endl ; return 0 ; }
Driver Code
int main ( ) { int arr [ ] = { 1 , 2 , 2 , 3 } ; int n = sizeof ( arr ) / sizeof ( arr [ 0 ] ) ; findMinPrizes ( arr , n ) ; }
C ++ implementation to count the number of ways to divide N in K groups such that each group has elements in range [ L , R ]
#include <bits/stdc++.h> NEW_LINE using namespace std ; const int mod = 1000000007 ;
DP Table
int dp [ 1000 ] [ 1000 ] ;
Function to count the number of ways to divide the number N in K groups such that each group has number of elements in range [ L , R ]
int calculate ( int pos , int left , int k , int L , int R ) {
Base Case
if ( pos == k ) { if ( left == 0 ) return 1 ; else return 0 ; }
if N is divides completely into less than k groups
if ( left == 0 ) return 0 ;
If the subproblem has been solved , use the value
if ( dp [ pos ] [ left ] != -1 ) return dp [ pos ] [ left ] ; int answer = 0 ;
put all possible values greater equal to prev
for ( int i = L ; i <= R ; i ++ ) { if ( i > left ) break ; answer = ( answer + calculate ( pos + 1 , left - i , k , L , R ) ) % mod ; } return dp [ pos ] [ left ] = answer ; }
Function to count the number of ways to divide the number N
int countWaystoDivide ( int n , int k , int L , int R ) {
Initialize DP Table as - 1
memset ( dp , -1 , sizeof ( dp ) ) ; return calculate ( 0 , n , k , L , R ) ; }
Driver Code
int main ( ) { int N = 12 ; int K = 3 ; int L = 1 ; int R = 5 ; cout << countWaystoDivide ( N , K , L , R ) ; return 0 ; }
C ++ program to represent N as the sum of minimum square numbers .
#include <bits/stdc++.h> NEW_LINE using namespace std ;
Function for finding minimum square numbers
vector < int > minSqrNum ( int n ) {
A [ i ] of array arr store minimum count of square number to get i
int arr [ n + 1 ] , k ;
sqrNum [ i ] store last square number to get i
int sqrNum [ n + 1 ] ; vector < int > v ;
Initialize
arr [ 0 ] = 0 ; sqrNum [ 0 ] = 0 ;
Find minimum count of square number for all value 1 to n
for ( int i = 1 ; i <= n ; i ++ ) {
In worst case it will be arr [ i - 1 ] + 1 we use all combination of a [ i - 1 ] and add 1
arr [ i ] = arr [ i - 1 ] + 1 ; sqrNum [ i ] = 1 ; k = 1 ;
Check for all square number less or equal to i
while ( k * k <= i ) {
if it gives less count then update it
if ( arr [ i ] > arr [ i - k * k ] + 1 ) { arr [ i ] = arr [ i - k * k ] + 1 ; sqrNum [ i ] = k * k ; } k ++ ; } }
Vector v stores optimum square number whose sum give N
while ( n > 0 ) { v . push_back ( sqrNum [ n ] ) ; n -= sqrNum [ n ] ; } return v ; }
Driver code
int main ( ) { int n = 10 ; vector < int > v ;
Calling function
v = minSqrNum ( n ) ;
Printing vector
for ( auto i = v . begin ( ) ; i != v . end ( ) ; i ++ ) { cout << * i ; if ( i + 1 != v . end ( ) ) cout << " ▁ + ▁ " ; } return 0 ; }