Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10M - 100M
Tags:
midjourney
License:
language: | |
- en | |
license: apache-2.0 | |
source_datasets: vivym/midjourney-messages | |
task_categories: | |
- text-generation | |
dataset_info: | |
- config_name: deduped | |
features: | |
- name: id | |
dtype: string | |
- name: channel_id | |
dtype: string | |
- name: text | |
dtype: string | |
splits: | |
- name: train | |
num_bytes: 2538669745.0 | |
num_examples: 14828769 | |
download_size: 1585207687 | |
dataset_size: 2538669745.0 | |
- config_name: default | |
features: | |
- name: id | |
dtype: string | |
- name: channel_id | |
dtype: string | |
- name: text | |
dtype: string | |
splits: | |
- name: train | |
num_bytes: 3575844717.3610477 | |
num_examples: 19716685 | |
download_size: 1514418407 | |
dataset_size: 3575844717.3610477 | |
configs: | |
- config_name: deduped | |
data_files: | |
- split: train | |
path: deduped/train-* | |
- config_name: default | |
data_files: | |
- split: train | |
path: data/train-* | |
tags: | |
- midjourney | |
# midjourney-messages-cleaned | |
This is [vivym/midjourney-messages](https://huggingface.co/datasets/vivym/midjourney-messages) but with the following cleaning steps: | |
- remove most columns (keep `id` columns for reference vs. original) | |
- Apply `clean-text` to all rows (_keep casing_) | |
- rename `content` to `text` (ffs) | |
- remove intermediate ID/tag (???) in angle brackets at the end, remove double asterisks `**` | |
- remove exact duplicate rows | |
## dataset structure | |
overall: | |
```python | |
DatasetDict({ | |
train: Dataset({ | |
features: ['id', 'channel_id', 'text'], | |
num_rows: 19738964 | |
}) | |
}) | |
``` | |
A single example looks like this: | |
```python | |
random.choice(dataset['train']) | |
{'id': '1108635049391308879', | |
'channel_id': '1008571088919343124', | |
'text': 'Warhammer 40k Chaos Space Marine with pink Armor and a guitar'} | |
``` | |
## details | |
585M GPT-4 tiktoken tokens. | |
``` | |
token_count | |
count 1.971668e+07 | |
mean 2.971651e+01 | |
std 3.875208e+01 | |
min 1.000000e+00 | |
25% 1.000000e+01 | |
50% 1.900000e+01 | |
75% 3.400000e+01 | |
max 2.077000e+03 | |
``` | |