title
stringlengths 1
300
| score
int64 0
8.54k
| selftext
stringlengths 0
40k
| created
timestamp[ns]date 2023-04-01 04:30:41
2025-06-30 03:16:29
⌀ | url
stringlengths 0
878
| author
stringlengths 3
20
| domain
stringlengths 0
82
| edited
timestamp[ns]date 1970-01-01 00:00:00
2025-06-26 17:30:18
| gilded
int64 0
2
| gildings
stringclasses 7
values | id
stringlengths 7
7
| locked
bool 2
classes | media
stringlengths 646
1.8k
⌀ | name
stringlengths 10
10
| permalink
stringlengths 33
82
| spoiler
bool 2
classes | stickied
bool 2
classes | thumbnail
stringlengths 4
213
| ups
int64 0
8.54k
| preview
stringlengths 301
5.01k
⌀ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C# Flash Card Generator | 4 | I'm posting this here mainly as an example app for the .NET lovers out there. Public domain.
[https://github.com/dpmm99/Faxtract](https://github.com/dpmm99/Faxtract) is a rather simple ASP .NET web app using LLamaSharp (a llama.cpp wrapper) to perform batched inference. It accepts PDF, HTML, or TXT files and breaks them into fairly small chunks, but you can use the Extra Context checkbox to add a course, chapter title, page title, or whatever context you think would keep the generated flash cards consistent.
A few screenshots:
[Upload form and inference progress display](https://preview.redd.it/33ovon2np05f1.png?width=1945&format=png&auto=webp&s=cfa2ee2fdd2585f641fd5db8eca3b02252c41c41)
[Download button and chunks\/generated flash card counts display](https://preview.redd.it/793ui5mrp05f1.png?width=662&format=png&auto=webp&s=c859c8ed78928e5f219404082e36a35faef2bbb1)
[Reviewing a chunk and its generated flash cards](https://preview.redd.it/ddfkskv3q05f1.png?width=994&format=png&auto=webp&s=86629c7df7c4b0df4a98665e843a63a9ec2f4e0a)
| 2025-06-05T02:18:51 | https://www.reddit.com/r/LocalLLaMA/comments/1l3nwic/c_flash_card_generator/ | DeProgrammer99 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3nwic | false | null | t3_1l3nwic | /r/LocalLLaMA/comments/1l3nwic/c_flash_card_generator/ | false | false | 4 | {'enabled': False, 'images': [{'id': '10b2-ooZ8CZCLvFOgXbLZsmIJN6kUoVbLr_2vI7ULxU', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/mvZNRhrCH_xoYiPx_UuqAthbYQIcuBybXiRVHoZ3gFg.jpg?width=108&crop=smart&auto=webp&s=5eff254bb0b42cc53e93411a86e03f95d8e2162c', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/mvZNRhrCH_xoYiPx_UuqAthbYQIcuBybXiRVHoZ3gFg.jpg?width=216&crop=smart&auto=webp&s=d2985f30ed054140db14e9934dde7bfd74154b49', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/mvZNRhrCH_xoYiPx_UuqAthbYQIcuBybXiRVHoZ3gFg.jpg?width=320&crop=smart&auto=webp&s=49e6bee9a4ae907f3908fb9d8de2188609705816', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/mvZNRhrCH_xoYiPx_UuqAthbYQIcuBybXiRVHoZ3gFg.jpg?width=640&crop=smart&auto=webp&s=7a3775d446e57051ccbe22e92dd4b437faad1c6e', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/mvZNRhrCH_xoYiPx_UuqAthbYQIcuBybXiRVHoZ3gFg.jpg?width=960&crop=smart&auto=webp&s=351b53b79f9ff2316de179d205b7b28a9715b5fe', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/mvZNRhrCH_xoYiPx_UuqAthbYQIcuBybXiRVHoZ3gFg.jpg?width=1080&crop=smart&auto=webp&s=f29dd640d2374498f0d5a27adb5b8172c4a29a17', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/mvZNRhrCH_xoYiPx_UuqAthbYQIcuBybXiRVHoZ3gFg.jpg?auto=webp&s=e2f1052109aa638a6670f4ca4b01ec5b67d24e23', 'width': 1200}, 'variants': {}}]} |
|
Local AI smart speaker | 7 | I was wondering if there were any low cost options for a Bluetooth speaker/microphone to connect to my server for voice chat with a local llm. Can an old echo or something be repurposed? | 2025-06-05T02:53:13 | https://www.reddit.com/r/LocalLLaMA/comments/1l3ok95/local_ai_smart_speaker/ | Llamapants | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3ok95 | false | null | t3_1l3ok95 | /r/LocalLLaMA/comments/1l3ok95/local_ai_smart_speaker/ | false | false | self | 7 | null |
why aren’t we seeing more real products built with local LLMs? | 1 | [removed] | 2025-06-05T02:55:38 | https://www.reddit.com/r/LocalLLaMA/comments/1l3olw3/why_arent_we_seeing_more_real_products_built_with/ | mindfulbyte | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3olw3 | false | null | t3_1l3olw3 | /r/LocalLLaMA/comments/1l3olw3/why_arent_we_seeing_more_real_products_built_with/ | false | false | self | 1 | null |
why isn’t anyone building legit tools with local LLMs? | 54 | asked this in a recent comment but curious what others think.
i could be missing it, but why aren’t more niche on device products being built? not talking wrappers or playgrounds, i mean real, useful tools powered by local LLMs.
models are getting small enough, 3B and below is workable for a lot of tasks.
the potential upside is clear to me, so what’s the blocker? compute? distribution? user experience? | 2025-06-05T03:00:37 | https://www.reddit.com/r/LocalLLaMA/comments/1l3op8b/why_isnt_anyone_building_legit_tools_with_local/ | mindfulbyte | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3op8b | false | null | t3_1l3op8b | /r/LocalLLaMA/comments/1l3op8b/why_isnt_anyone_building_legit_tools_with_local/ | false | false | self | 54 | null |
HP Z440 5x GPU build | 6 | Hello everyone,
I was about to build a very expensive machine with brand new epyc milan CPU and romed8-2t in a mining rack with 5 3090s mounted via risers since I couldn’t find any used epyc CPUs or motherboards here in india.
Had a spare Z440 and it has 2 x16 slots and 1 x8 slot.
Q.1 Is this a good idea? Z440 was the cheapest x99 system around here.
Q.2 Can I split x16s to x8x8 and mount 5 GPUs at x8 pcie 3 speeds on a Z440?
I was planning to put this in a 18U rack with pcie extensions coming out of Z440 chassis and somehow mounting the GPUs in the rack.
Q.3 What’s the best way of mounting the GPUs above the chassis? I would also need at least 1 external PSU to be mounted somewhere outside the chassis. | 2025-06-05T03:15:30 | https://www.reddit.com/r/LocalLLaMA/comments/1l3oz8o/hp_z440_5x_gpu_build/ | BeeNo7094 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3oz8o | false | null | t3_1l3oz8o | /r/LocalLLaMA/comments/1l3oz8o/hp_z440_5x_gpu_build/ | false | false | self | 6 | null |
OpenAI should open source GPT3.5 turbo | 124 | Dont have a real point here, just the title, food for thought.
I think it would be a pretty cool thing to do. at this point it's extremely out of date, so they wouldn't be loosing any "edge", it would just be a cool thing to do/have and would be a nice throwback.
openAI's 10th year anniversary is coming up in december, would be a pretty cool thing to do, just sayin. | 2025-06-05T03:18:48 | https://www.reddit.com/r/LocalLLaMA/comments/1l3p1f0/openai_should_open_source_gpt35_turbo/ | Expensive-Apricot-25 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3p1f0 | false | null | t3_1l3p1f0 | /r/LocalLLaMA/comments/1l3p1f0/openai_should_open_source_gpt35_turbo/ | false | false | self | 124 | null |
Qwen3 235B Q2_K_L Repeats Letters Despite Penalties. | 1 | My intended use case is as a backend for cline. For this, I am using the Qwen3 235B Q2_K_L model. I keep encountering repetition issues (specifically, endless repetition of the last letter), even after adding penalty parameters. I’m not sure if my launch method is correct—here’s my current launch command:
```
./llama-server.exe -m "E:\Qwen3-235B-A22B-GGUF\Q2_K_L\Qwen3-235B-A22B-Q2_K_L-00001-of-00002.gguf" -c 2048 -ngl 95 --no-mmap --dry-multiplier 0.8 --dry-base 1.75 --dry-allowed-length 2 --temp 0.6 --min-p 0.01 --top-p 0.9 --presence-penalty 1.5 --frequency-penalty 1.0
```
Any suggestions? Thanks! | 2025-06-05T04:06:36 | https://www.reddit.com/r/LocalLLaMA/comments/1l3pwjg/qwen3_235b_q2_k_l_repeats_letters_despite/ | realJoeTrump | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3pwjg | false | null | t3_1l3pwjg | /r/LocalLLaMA/comments/1l3pwjg/qwen3_235b_q2_k_l_repeats_letters_despite/ | false | false | self | 1 | null |
Niche Q but want to ask in an active community: what’s the cheapest transcription tool for audio that contains medical terminology? | 1 | [removed] | 2025-06-05T04:29:11 | https://www.reddit.com/r/LocalLLaMA/comments/1l3qaia/niche_q_but_want_to_ask_in_an_active_community/ | adrenalinsufficiency | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3qaia | false | null | t3_1l3qaia | /r/LocalLLaMA/comments/1l3qaia/niche_q_but_want_to_ask_in_an_active_community/ | false | false | self | 1 | null |
RTX PRO 6000 machine for 12k? | 12 | Hi,
Is there a company that sells a complete machine (cpu, ram, gpu, drive, motherboard, case, power supply, etc all wired up) with RTX 6000 Pro for 12k USD or less?
The card itself is around 7-8k I think, which leaves 4k for the other components. Is this economically possible?
Bonus point: The machine supports adding another rtx 6000 gpu in the future to get 2x96 GB of vram.
| 2025-06-05T04:37:26 | https://www.reddit.com/r/LocalLLaMA/comments/1l3qfhh/rtx_pro_6000_machine_for_12k/ | Amgadoz | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3qfhh | false | null | t3_1l3qfhh | /r/LocalLLaMA/comments/1l3qfhh/rtx_pro_6000_machine_for_12k/ | false | false | self | 12 | null |
how good is local llm compared with claude / chatgpt? | 0 | just curious is it worth the effort to set up local llm | 2025-06-05T05:03:15 | https://www.reddit.com/r/LocalLLaMA/comments/1l3qvbu/how_good_is_local_llm_compared_with_claude_chatgpt/ | anonymous_2600 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3qvbu | false | null | t3_1l3qvbu | /r/LocalLLaMA/comments/1l3qvbu/how_good_is_local_llm_compared_with_claude_chatgpt/ | false | false | self | 0 | null |
Dealing with tool_calls hallucinations | 5 | Hi all,
I have a specific prompt to output to json but for some reason the llm decides to use a made up tool call. Llama.cpp using qwen 30b
How do you handle these things? Tried passing an empty array to tools: [] and begged the llm to not use tool calls.
Driving me mad! | 2025-06-05T05:06:31 | https://www.reddit.com/r/LocalLLaMA/comments/1l3qxas/dealing_with_tool_calls_hallucinations/ | EstebanGee | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3qxas | false | null | t3_1l3qxas | /r/LocalLLaMA/comments/1l3qxas/dealing_with_tool_calls_hallucinations/ | false | false | self | 5 | null |
Deal of the century - or atleast great value for money | 0 | [https://www.ebay.com/str/ipowerresaleinc](https://www.ebay.com/str/ipowerresaleinc) | 2025-06-05T05:56:37 | https://www.reddit.com/r/LocalLLaMA/comments/1l3rps3/deal_of_the_century_or_atleast_great_value_for/ | weight_matrix | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3rps3 | false | null | t3_1l3rps3 | /r/LocalLLaMA/comments/1l3rps3/deal_of_the_century_or_atleast_great_value_for/ | false | false | self | 0 | null |
Mix and Match | 2 | I have a 4070 super in my current computer, I still have an old 3060ti from my last upgrade, is it compatible to run at the same time as my 4070 to add more vram? | 2025-06-05T06:08:03 | https://www.reddit.com/r/LocalLLaMA/comments/1l3rwit/mix_and_match/ | Doomkeepzor | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3rwit | false | null | t3_1l3rwit | /r/LocalLLaMA/comments/1l3rwit/mix_and_match/ | false | false | self | 2 | null |
Interactive Results Browser for Misguided Attention Eval | 6 | Thanks to Gemini 2.5 pro, there is now an[ interactive results browser](https://cpldcpu.github.io/MisguidedAttention/) for the [misguided attention eval](https://github.com/cpldcpu/MisguidedAttention).
The last wave of new models got significantly better at correctly resonding to the prompts. Especially reasoning models.
Currently, DS-R1-0528 is leading the pack.
Claude Opus 4 is almost at the top of the chart even in non-thinking mode. I haven't run it in thinking mode yet (it's not available on openrouter), but I assume that it would jump ahead. | 2025-06-05T06:24:23 | https://www.reddit.com/r/LocalLLaMA/comments/1l3s5wh/interactive_results_browser_for_misguided/ | cpldcpu | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3s5wh | false | null | t3_1l3s5wh | /r/LocalLLaMA/comments/1l3s5wh/interactive_results_browser_for_misguided/ | false | false | self | 6 | null |
Need your Feedback | 1 | [removed] | 2025-06-05T07:08:37 | https://www.reddit.com/r/LocalLLaMA/comments/1l3su8c/need_your_feedback/ | Careless_Werewolf148 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3su8c | false | null | t3_1l3su8c | /r/LocalLLaMA/comments/1l3su8c/need_your_feedback/ | false | false | self | 1 | null |
Easiest way to access multiple Social Medias with LLMs | 1 | [removed] | 2025-06-05T07:36:30 | https://www.reddit.com/r/LocalLLaMA/comments/1l3t9a7/easiest_way_to_access_multiple_social_medias_with/ | Ok_GreyMatter | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3t9a7 | false | null | t3_1l3t9a7 | /r/LocalLLaMA/comments/1l3t9a7/easiest_way_to_access_multiple_social_medias_with/ | false | false | self | 1 | null |
VLLM with 4x7900xtx with Qwen3-235B-A22B-UD-Q2_K_XL | 20 | Hello Reddit!
Our "AI" computer now has 4x RTX 7900 XTX and 1x RTX 7800 XT.
Llama-server works well, and we successfully launched Qwen3-235B-A22B-UD-Q2\_K\_XL with a 40,960 context length.
|GPU|Backend|Input |OutPut|
|:-|:-|:-|:-|
|4x7900 xtx|HIP llama-server, -fa|160 t/s (356 tokens)|20 t/s (328 tokens)|
|4x7900 xtx|HIP llama-server, -fa --parallel 2 for 2 request in one time|130 t/s (58t/s + 72t//s)|13.5 t/s (7t/s + 6.5t/s)|
|3x7900 xtx + 1x7800xt|HIP llama-server, -fa|...|16-18 token/s|
**Question to discuss:**
Is it possible to run this model from Unsloth AI faster using VLLM on amd or no ways to launch GGUF?
Can we offload layers to each GPU in a smarter way?
If you've run a similar model (even on different GPUs), please share your results.
If you're considering setting up a test (perhaps even on AMD hardware), feel free to ask any relevant questions here. | 2025-06-05T07:41:40 | https://www.reddit.com/r/LocalLLaMA/comments/1l3tby7/vllm_with_4x7900xtx_with_qwen3235ba22budq2_k_xl/ | djdeniro | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3tby7 | false | null | t3_1l3tby7 | /r/LocalLLaMA/comments/1l3tby7/vllm_with_4x7900xtx_with_qwen3235ba22budq2_k_xl/ | false | false | self | 20 | null |
Best TTS | 1 | [removed] | 2025-06-05T08:39:35 | https://www.reddit.com/r/LocalLLaMA/comments/1l3u59g/best_tts/ | SmoothRock54 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3u59g | false | null | t3_1l3u59g | /r/LocalLLaMA/comments/1l3u59g/best_tts/ | false | false | self | 1 | null |
I organized a 100-game Town of Salem competition featuring best models as players. Game logs are available too. | 113 | As many of you probably know, Town of Salem is a popular game. If you don't know what I'm talking about, you can read the game_rules.yaml in the repo. My personal preference has always been to moderate rather than play among friends. Two weeks ago, I had the idea to make LLMs play this game to have fun and see who is the best. Imo, this is a great way to measure LLM capabilities across several crucial areas: contextual understanding, managing information privacy, developing sophisticated strategies, employing deception, and demonstrating persuasive skills. I'll be sharing charts based on a simulation of 100 games.
For a deeper dive into the methodology, more detailed results and more charts, please visit the repo https://github.com/summersonnn/Town-Of-Salem-with-LLMs
Total dollars spent: ~60$ - half of which spent on new Claude models. Looking at the results, I see those 30$ spent for nothing :D
Vampire points are calculated as follows :
- If vampires win and a vampire is alive at the end, that vampire earns 1 point
- If vampires win but the vampire is dead, they receive 0.5 points
Peasant survival rate is calculated as follows: sum the total number of rounds survived across all games that this model/player has participated in and divide by the total number of rounds played in those same games.
Win Ratios are self-explanatory.
Quick observations:
- New Deepseek, even the distilled Qwen is very good at this game.
- Claude models and Grok are worst
- GPT 4.1 is also very successful.
- Gemini models are average in general but performs best when peasant
Overall win ratios:
- Vampires win ratio: 34/100 : 34%
- Peasants win ratio: 45/100 : 45%
- Clown win ratio: 21/100 : 21% | 2025-06-05T08:43:52 | https://www.reddit.com/gallery/1l3u7e9 | kyazoglu | reddit.com | 1970-01-01T00:00:00 | 0 | {} | 1l3u7e9 | false | null | t3_1l3u7e9 | /r/LocalLLaMA/comments/1l3u7e9/i_organized_a_100game_town_of_salem_competition/ | false | false | 113 | null |
|
Aider & Full Automation: Seeking direct system command execution (not just simulation) | 1 | [removed] | 2025-06-05T09:56:51 | https://www.reddit.com/r/LocalLLaMA/comments/1l3v9h8/aider_full_automation_seeking_direct_system/ | dewijones92 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3v9h8 | false | null | t3_1l3v9h8 | /r/LocalLLaMA/comments/1l3v9h8/aider_full_automation_seeking_direct_system/ | false | false | self | 1 | null |
On Prem LLM plug-and-play ‘package’ for SME organisational context | 1 | [removed] | 2025-06-05T10:03:36 | https://www.reddit.com/r/LocalLLaMA/comments/1l3vdht/on_prem_llm_plugandplay_package_for_sme/ | jon18476 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3vdht | false | null | t3_1l3vdht | /r/LocalLLaMA/comments/1l3vdht/on_prem_llm_plugandplay_package_for_sme/ | false | false | self | 1 | null |
AI Linter VS Code suggestions | 3 | What is a good extension to use a local model as a linter? I do not want AI generated code, I only want the AI to act as a linter and say, “hey, you seem to be missing a zero in the integer here.” And obvious problems like that, but problems not so obvious a normal linter can find them. Ideally it would be able to trigger a warning at a line in the code and not open a big chat box for all problems which can be annoying to shuffle through | 2025-06-05T10:26:43 | https://www.reddit.com/r/LocalLLaMA/comments/1l3vqut/ai_linter_vs_code_suggestions/ | DoggoChann | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3vqut | false | null | t3_1l3vqut | /r/LocalLLaMA/comments/1l3vqut/ai_linter_vs_code_suggestions/ | false | false | self | 3 | null |
New embedding model "Qwen3-Embedding-0.6B-GGUF" just dropped. | 446 | Anyone tested it yet? | 2025-06-05T10:30:53 | https://huggingface.co/Qwen/Qwen3-Embedding-0.6B-GGUF | Proto_Particle | huggingface.co | 1970-01-01T00:00:00 | 0 | {} | 1l3vt95 | false | null | t3_1l3vt95 | /r/LocalLLaMA/comments/1l3vt95/new_embedding_model_qwen3embedding06bgguf_just/ | false | false | 446 | {'enabled': False, 'images': [{'id': '9lpKpNoi91vS1Idczeb6luvGh4vi0sY883cTturjqzg', 'resolutions': [{'height': 58, 'url': 'https://external-preview.redd.it/nCFCX9SJ8G9lwL3THBeDPCNNzee25aFLCHH5cPLrrSM.jpg?width=108&crop=smart&auto=webp&s=16056ab3be753d66bcf5da3487a64235e037e0bd', 'width': 108}, {'height': 116, 'url': 'https://external-preview.redd.it/nCFCX9SJ8G9lwL3THBeDPCNNzee25aFLCHH5cPLrrSM.jpg?width=216&crop=smart&auto=webp&s=b565036ed6db93d73fcb86d373914a121f97fe52', 'width': 216}, {'height': 172, 'url': 'https://external-preview.redd.it/nCFCX9SJ8G9lwL3THBeDPCNNzee25aFLCHH5cPLrrSM.jpg?width=320&crop=smart&auto=webp&s=56126acbf70aacb9484e9a9dccb53e4c66f70cfc', 'width': 320}, {'height': 345, 'url': 'https://external-preview.redd.it/nCFCX9SJ8G9lwL3THBeDPCNNzee25aFLCHH5cPLrrSM.jpg?width=640&crop=smart&auto=webp&s=7073b11dd8c3ebaa999dbf1000e83f46f243a01e', 'width': 640}, {'height': 518, 'url': 'https://external-preview.redd.it/nCFCX9SJ8G9lwL3THBeDPCNNzee25aFLCHH5cPLrrSM.jpg?width=960&crop=smart&auto=webp&s=7141d4e2bd90e33294f2fa1db4e5c6e39c5191c4', 'width': 960}, {'height': 583, 'url': 'https://external-preview.redd.it/nCFCX9SJ8G9lwL3THBeDPCNNzee25aFLCHH5cPLrrSM.jpg?width=1080&crop=smart&auto=webp&s=b2466dcb9bab61917a29d7db8e2c4ab7a4a040c7', 'width': 1080}], 'source': {'height': 648, 'url': 'https://external-preview.redd.it/nCFCX9SJ8G9lwL3THBeDPCNNzee25aFLCHH5cPLrrSM.jpg?auto=webp&s=5c03e37e24bfc64a46af77d13a4674cb1a580a49', 'width': 1200}, 'variants': {}}]} |
|
Enterprise AI agents | 1 | [removed] | 2025-06-05T10:35:49 | https://www.reddit.com/r/LocalLLaMA/comments/1l3vw33/enterprise_ai_agents/ | yecohn | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3vw33 | false | null | t3_1l3vw33 | /r/LocalLLaMA/comments/1l3vw33/enterprise_ai_agents/ | false | false | self | 1 | null |
Check out this new VSCode Extension! Query multiple BitNet servers from within GitHub Copilot via the Model Context Protocol all locally! | 4 | [https://marketplace.visualstudio.com/items?itemName=nftea-gallery.bitnet-vscode-extension](https://marketplace.visualstudio.com/items?itemName=nftea-gallery.bitnet-vscode-extension)
[https://marketplace.visualstudio.com/items?itemName=nftea-gallery.bitnet-vscode-extension](https://marketplace.visualstudio.com/items?itemName=nftea-gallery.bitnet-vscode-extension) | 2025-06-05T11:17:31 | https://www.reddit.com/r/LocalLLaMA/comments/1l3wloi/check_out_this_new_vscode_extension_query/ | ufos1111 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3wloi | false | null | t3_1l3wloi | /r/LocalLLaMA/comments/1l3wloi/check_out_this_new_vscode_extension_query/ | false | false | self | 4 | null |
Best simple model for local fine tuning? | 19 | Back in the day I used to use gpt2 but tensorflow has moved on and it's not longer properly supported. Are there any good replacements?
I don't need an excellent model at all, something as simple and weak as gpt2 is ideal (I would much rather faster training). It'll be unlearning all its written language anyways: I'm tackling a similar project to the guy a while back that generated Pokemon sprites fine-tuning gpt2. | 2025-06-05T11:17:53 | https://www.reddit.com/r/LocalLLaMA/comments/1l3wlwy/best_simple_model_for_local_fine_tuning/ | Lucario1296 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3wlwy | false | null | t3_1l3wlwy | /r/LocalLLaMA/comments/1l3wlwy/best_simple_model_for_local_fine_tuning/ | false | false | self | 19 | null |
Best locall LLM for C++ | 1 | [removed] | 2025-06-05T11:40:01 | https://www.reddit.com/r/LocalLLaMA/comments/1l3x05o/best_locall_llm_for_c/ | ayx03 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3x05o | false | null | t3_1l3x05o | /r/LocalLLaMA/comments/1l3x05o/best_locall_llm_for_c/ | false | false | self | 1 | null |
BAIDU joined huggingface | 201 | 2025-06-05T11:52:51 | https://huggingface.co/baidu | jacek2023 | huggingface.co | 1970-01-01T00:00:00 | 0 | {} | 1l3x8fr | false | null | t3_1l3x8fr | /r/LocalLLaMA/comments/1l3x8fr/baidu_joined_huggingface/ | false | false | default | 201 | {'enabled': False, 'images': [{'id': 'VBByCdkzVD7PWV8lNUdba_RoNhzl4Gw0LZW9JEZN8Oc', 'resolutions': [{'height': 58, 'url': 'https://external-preview.redd.it/TwIi1dX9vW7A-ld45UUpPdNNrb7BMww9X7rSHaojGsI.jpg?width=108&crop=smart&auto=webp&s=955a4c0e5b5e1785d28a0180fefa4dc08b8be3a0', 'width': 108}, {'height': 116, 'url': 'https://external-preview.redd.it/TwIi1dX9vW7A-ld45UUpPdNNrb7BMww9X7rSHaojGsI.jpg?width=216&crop=smart&auto=webp&s=e4ae9c4139b8e45290d05fbbdc4c7bcf5efb4c9a', 'width': 216}, {'height': 172, 'url': 'https://external-preview.redd.it/TwIi1dX9vW7A-ld45UUpPdNNrb7BMww9X7rSHaojGsI.jpg?width=320&crop=smart&auto=webp&s=2ed0ed92de4cc91b64546d6b5bdd4c80538a86fb', 'width': 320}, {'height': 345, 'url': 'https://external-preview.redd.it/TwIi1dX9vW7A-ld45UUpPdNNrb7BMww9X7rSHaojGsI.jpg?width=640&crop=smart&auto=webp&s=0a3f62b0c8292740628b458cf229341a596cbebe', 'width': 640}, {'height': 518, 'url': 'https://external-preview.redd.it/TwIi1dX9vW7A-ld45UUpPdNNrb7BMww9X7rSHaojGsI.jpg?width=960&crop=smart&auto=webp&s=cb4d58ff90a6425cdbb9fa5d41bbc89770667b62', 'width': 960}, {'height': 583, 'url': 'https://external-preview.redd.it/TwIi1dX9vW7A-ld45UUpPdNNrb7BMww9X7rSHaojGsI.jpg?width=1080&crop=smart&auto=webp&s=98c4808587cfba6d670e4124eeb731b0902381b2', 'width': 1080}], 'source': {'height': 648, 'url': 'https://external-preview.redd.it/TwIi1dX9vW7A-ld45UUpPdNNrb7BMww9X7rSHaojGsI.jpg?auto=webp&s=1f15ddda1e9829830d2761b56f2578d158cf51b0', 'width': 1200}, 'variants': {}}]} |
|
Looking for Advice: Best LLM/Embedding Models for Precise Document Retrieval (Product Standards) | 3 | Hi everyone,
I’m working on a chatbot for my company to help colleagues quickly find answers in a set of about 60 very similar marketing standards. The documents are all formatted quite similarly, and the main challenge is that when users ask specific questions, the retrieval often pulls the *wrong* standard—or sometimes answers from related but incorrect documents.
I’ve tried building a simple RAG pipeline using nomic-embed-text for embeddings and Llama 3.1 or Gemma3:4b as the LLM (all running locally via Streamlit so everyone in the company network can use it). I’ve also experimented with adding a reranker, but it only helps to a certain extent.
I’m not an expert in LLMs or information retrieval (just learning as I go!), so I’m looking for advice from people with more experience:
* What models or techniques would you recommend for **improving the accuracy of retrieval**, especially when the documents are very similar in structure and content?
* Are there specific embedding models or LLMs that perform better for legal/standards texts and can handle fine-grained distinctions between similar documents?
* Is there a different approach I should consider (metadata, custom chunking, etc.)?
Any advice or pointers (even things you think are obvious!) would be hugely appreciated. Thanks a lot in advance for your help! | 2025-06-05T12:29:06 | https://www.reddit.com/r/LocalLLaMA/comments/1l3xxpw/looking_for_advice_best_llmembedding_models_for/ | Hooches | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3xxpw | false | null | t3_1l3xxpw | /r/LocalLLaMA/comments/1l3xxpw/looking_for_advice_best_llmembedding_models_for/ | false | false | self | 3 | null |
Non-reasoning Qwen3-235B worse than maverick? Is this experience real with you guys? | 3 | [Intelligence Index Qwen3-235B-nothink beaten by Maverick?](https://preview.redd.it/8e3jqpw4t35f1.png?width=4092&format=png&auto=webp&s=d577dadbcfa9968158c76ae2e2c387bc4ec5dc0e)
Is this experienced by you guys?
[Wtf](https://preview.redd.it/c55h532zt35f1.png?width=4092&format=png&auto=webp&s=f87c9ae0b0f143791621f7520c9b01fe9750349e)
[Aider Polygot has very different results???? Idk what to trust now man](https://preview.redd.it/y4k0rnl0u35f1.png?width=1960&format=png&auto=webp&s=1219a0a1aa94946f75f3934836c8b6332852af9f)
Please share your results when using qwen3 models for coding. | 2025-06-05T12:46:31 | https://www.reddit.com/r/LocalLLaMA/comments/1l3yamg/nonreasoning_qwen3235b_worse_than_maverick_is/ | True_Requirement_891 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3yamg | false | null | t3_1l3yamg | /r/LocalLLaMA/comments/1l3yamg/nonreasoning_qwen3235b_worse_than_maverick_is/ | false | false | 3 | null |
|
Qwen3-32b /nothink or qwen3-14b /think? | 18 | What has been your experience and what are the pro/cons? | 2025-06-05T12:58:31 | https://www.reddit.com/r/LocalLLaMA/comments/1l3yjeb/qwen332b_nothink_or_qwen314b_think/ | GreenTreeAndBlueSky | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3yjeb | false | null | t3_1l3yjeb | /r/LocalLLaMA/comments/1l3yjeb/qwen332b_nothink_or_qwen314b_think/ | false | false | self | 18 | null |
4090 boards with 48gb Ram - will there ever be an upgrade service? | 6 | I keep seeing these cards being sold in china, but I haven't seen anything about being able to upgrade an existing card. Are these Chinese cards just fitted with higher capacity RAM chips and a different BIOS or are there PCB level differences? Does anyone think there's a chance a service will be offered to upgrade these cards? | 2025-06-05T13:00:07 | https://www.reddit.com/r/LocalLLaMA/comments/1l3ykjn/4090_boards_with_48gb_ram_will_there_ever_be_an/ | thisisnotdave | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3ykjn | false | null | t3_1l3ykjn | /r/LocalLLaMA/comments/1l3ykjn/4090_boards_with_48gb_ram_will_there_ever_be_an/ | false | false | self | 6 | null |
Approach for developing / designing UI | 1 | [removed] | 2025-06-05T13:05:09 | https://www.reddit.com/r/LocalLLaMA/comments/1l3yos6/approach_for_developing_designing_ui/ | Suspicious_Dress_350 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3yos6 | false | null | t3_1l3yos6 | /r/LocalLLaMA/comments/1l3yos6/approach_for_developing_designing_ui/ | false | false | self | 1 | null |
Best world knowledge model that can run on your phone | 39 | I basically want Internet-level knowledge when my phone is not connected to the internet (camping etc). I've heard good things about Gemma 2 2b for creative writing. But is it still the best model for things like world knowledge?
Questions like:
- How to identify different clam species
- How to clean clam that you caught
- Easy clam recipes while camping
(Can you tell I'm planning to go clamming while camping?)
Or others like:
- When is low tide typically in June in X location
- Good restaurants near X campsite
- is it okay to put food inside my car overnight when camping in a place with bears?
Etc | 2025-06-05T13:22:38 | https://www.reddit.com/r/LocalLLaMA/comments/1l3z2m3/best_world_knowledge_model_that_can_run_on_your/ | clavidk | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3z2m3 | false | null | t3_1l3z2m3 | /r/LocalLLaMA/comments/1l3z2m3/best_world_knowledge_model_that_can_run_on_your/ | false | false | self | 39 | null |
Help me please :) | 1 | [removed] | 2025-06-05T13:44:53 | https://www.reddit.com/r/LocalLLaMA/comments/1l3zkky/help_me_please/ | MackPheson | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3zkky | false | null | t3_1l3zkky | /r/LocalLLaMA/comments/1l3zkky/help_me_please/ | false | false | self | 1 | null |
Help with audio visualization | 1 | [removed] | 2025-06-05T13:46:28 | https://www.reddit.com/r/LocalLLaMA/comments/1l3zlxa/help_with_audio_visualization/ | MackPheson | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l3zlxa | false | null | t3_1l3zlxa | /r/LocalLLaMA/comments/1l3zlxa/help_with_audio_visualization/ | false | false | self | 1 | null |
Does newest LM Studio not have Playground tab anymore on Windows | 1 | [removed] | 2025-06-05T14:02:59 | bilderbergman | i.redd.it | 1970-01-01T00:00:00 | 0 | {} | 1l3zzn1 | false | null | t3_1l3zzn1 | /r/LocalLLaMA/comments/1l3zzn1/does_newest_lm_studio_not_have_playground_tab/ | false | false | default | 1 | {'enabled': True, 'images': [{'id': 'hc458irz745f1', 'resolutions': [{'height': 143, 'url': 'https://preview.redd.it/hc458irz745f1.jpeg?width=108&crop=smart&auto=webp&s=ae2ee222df92cab003f27e00eee0d296c4e28bbb', 'width': 108}, {'height': 287, 'url': 'https://preview.redd.it/hc458irz745f1.jpeg?width=216&crop=smart&auto=webp&s=d373e153b5bdfb8e453d9771c45f5762d136fb2a', 'width': 216}, {'height': 426, 'url': 'https://preview.redd.it/hc458irz745f1.jpeg?width=320&crop=smart&auto=webp&s=6700cfd10e88704788821ca35abbcd356769a992', 'width': 320}, {'height': 852, 'url': 'https://preview.redd.it/hc458irz745f1.jpeg?width=640&crop=smart&auto=webp&s=ab48acbe08697cfd066b7a2fc19030834d8a965c', 'width': 640}, {'height': 1278, 'url': 'https://preview.redd.it/hc458irz745f1.jpeg?width=960&crop=smart&auto=webp&s=0b8b4e90e8be4ea77b64277a4521b5ce338789d4', 'width': 960}, {'height': 1438, 'url': 'https://preview.redd.it/hc458irz745f1.jpeg?width=1080&crop=smart&auto=webp&s=9585b871c6dad513d1fe3fb4a0fd971265d24c6b', 'width': 1080}], 'source': {'height': 4624, 'url': 'https://preview.redd.it/hc458irz745f1.jpeg?auto=webp&s=4b347be024ac571530ae10ae2365f257c699324c', 'width': 3472}, 'variants': {}}]} |
|
Building my first AI project (IDE + LLM). How can I protect the idea and deploy it as a total beginner? 🇨🇦 | 1 | [removed] | 2025-06-05T14:04:55 | https://www.reddit.com/r/LocalLLaMA/comments/1l401dw/building_my_first_ai_project_ide_llm_how_can_i/ | Business-Opinion7579 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l401dw | false | null | t3_1l401dw | /r/LocalLLaMA/comments/1l401dw/building_my_first_ai_project_ide_llm_how_can_i/ | false | false | self | 1 | null |
Best LLM for a RTX 5090 + 64 GB RAM | 1 | [removed] | 2025-06-05T14:09:51 | https://www.reddit.com/r/LocalLLaMA/comments/1l405nq/best_llm_for_a_rtx_5090_64_gb_ram/ | tomxposed | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l405nq | false | null | t3_1l405nq | /r/LocalLLaMA/comments/1l405nq/best_llm_for_a_rtx_5090_64_gb_ram/ | false | false | self | 1 | null |
I wrote a little script to automate commit messages | 20 | I wrote a little script to automate commit messages
This might be pretty lame, but this is the first time I've actually done any scripting with LLMs to do some task for me. This is just for a personal project git repo, so the stakes are as low as can be for the accuracy of these commit messages. I feel like this is a big upgrade over the quality of my usual messages for a project like this.
I found that the outputs for qwen3 8b Q4\_K\_M were much better than gemma3 4b Q4\_K\_M, possibly to nobody's suprise.
I hope this might be of use to someone out there!
```bash
#! /bin/bash
NO_CONFIRM=false
if [[ "$1" == "-y" ]]; then
NO_CONFIRM=true
fi
diff_output=$(git diff --staged)
echo
if [ -z "${diff_output}" ]; then
if $NO_CONFIRM; then
git add *
else
read -p "No files staged. Add all and proceed? [y/n] " -n 1 -r
if [[ $REPLY =~ ^[Yy]$ ]]; then
git add *
else
exit 1
fi
fi
fi
diff_output=$(git diff --staged)
prompt="\no-think [INSTRUCTIONS] Write a git commit message for this diff output in the form of a bulleted list, describing the changes to each individual file. Do not include ANY formatting e.g. bold text (**). [DIFF]: $diff_output"
response=$(echo "$prompt" | ollama.exe run qwen3)
message=$(echo "$response" | sed -e '/<think>/d' -e '/<\/think>/d' -e "/^$/d")
git status
echo "Commit message:"
echo "$message"
echo
if $NO_CONFIRM; then
echo "$message" | git commit -qF -
git push
else
read -p "Proceed with commit? [y/n] " -n 1 -r
echo
if [[ $REPLY =~ ^[Yy]$ ]]; then
echo "$message" | git commit -qF -
git push
else
git reset HEAD -- .
fi
fi
``` | 2025-06-05T14:12:44 | aiueka | i.redd.it | 1970-01-01T00:00:00 | 0 | {} | 1l40835 | false | null | t3_1l40835 | /r/LocalLLaMA/comments/1l40835/i_wrote_a_little_script_to_automate_commit/ | false | false | default | 20 | {'enabled': True, 'images': [{'id': 'shflqezx845f1', 'resolutions': [{'height': 58, 'url': 'https://preview.redd.it/shflqezx845f1.png?width=108&crop=smart&auto=webp&s=7d3e445d65a5f1a124433b2066a0eb1feea84392', 'width': 108}, {'height': 116, 'url': 'https://preview.redd.it/shflqezx845f1.png?width=216&crop=smart&auto=webp&s=2b52ba6d912f0374935556b3f2813b27b6cd4f01', 'width': 216}, {'height': 172, 'url': 'https://preview.redd.it/shflqezx845f1.png?width=320&crop=smart&auto=webp&s=8f055c85c59c4ad487d9af6cb7adfab23caec2ec', 'width': 320}, {'height': 345, 'url': 'https://preview.redd.it/shflqezx845f1.png?width=640&crop=smart&auto=webp&s=09c22a37fa5f9d3263e4a2b024a47d3237e987fb', 'width': 640}, {'height': 517, 'url': 'https://preview.redd.it/shflqezx845f1.png?width=960&crop=smart&auto=webp&s=de8b486b352142726914734c2f25b5ca9272581f', 'width': 960}], 'source': {'height': 546, 'url': 'https://preview.redd.it/shflqezx845f1.png?auto=webp&s=0b8cc88ba48e72f6a1f220d9302e3e143a3815f5', 'width': 1012}, 'variants': {}}]} |
|
Hybrid setup for reasoning | 9 | I want to make for myself a chat assistant that would use qwen3 8b for reasoning tokens and then stop when it gets the end of thought token, then feed that to qwen3 30b for the rest. The idea being that i dont mind reading while the text is being generated but dont like to wait for it to load. I know there is no free luch and performance will be reduced. Has anybody tried this? Is it a bad idea? | 2025-06-05T14:22:32 | https://www.reddit.com/r/LocalLLaMA/comments/1l40gij/hybrid_setup_for_reasoning/ | GreenTreeAndBlueSky | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l40gij | false | null | t3_1l40gij | /r/LocalLLaMA/comments/1l40gij/hybrid_setup_for_reasoning/ | false | false | self | 9 | null |
What's the cheapest setup for running full Deepseek R1 | 110 | Looking how DeepSeek is performing I'm thinking of setting it up locally.
What's the cheapest way for setting it up locally so it will have reasonable performance?(10-15t/s?)
I was thinking about 2x Epyc with DDR4 3200, because prices seem reasonable right now for 1TB of RAM - but I'm not sure about the performance.
What do you think? | 2025-06-05T14:25:05 | https://www.reddit.com/r/LocalLLaMA/comments/1l40ip8/whats_the_cheapest_setup_for_running_full/ | Wooden_Yam1924 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l40ip8 | false | null | t3_1l40ip8 | /r/LocalLLaMA/comments/1l40ip8/whats_the_cheapest_setup_for_running_full/ | false | false | self | 110 | null |
What are the biggest pain points when evaluating AI agents ? | 1 | [removed] | 2025-06-05T14:58:59 | https://www.reddit.com/r/LocalLLaMA/comments/1l41cc8/what_are_the_biggest_pain_points_when_evaluating/ | NoAdministration4196 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l41cc8 | false | null | t3_1l41cc8 | /r/LocalLLaMA/comments/1l41cc8/what_are_the_biggest_pain_points_when_evaluating/ | false | false | self | 1 | null |
Programming using LLMs is the damnedest thing… | 1 | [removed] | 2025-06-05T14:59:36 | https://www.reddit.com/r/LocalLLaMA/comments/1l41cx7/programming_using_llms_is_the_damnedest_thing/ | ETBiggs | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l41cx7 | false | null | t3_1l41cx7 | /r/LocalLLaMA/comments/1l41cx7/programming_using_llms_is_the_damnedest_thing/ | false | false | self | 1 | null |
AI agent evaluation painpoints for developers | 1 | [removed] | 2025-06-05T15:01:37 | https://www.reddit.com/r/LocalLLaMA/comments/1l41eyp/ai_agent_evaluation_painpoints_for_developers/ | NoAdministration4196 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l41eyp | false | null | t3_1l41eyp | /r/LocalLLaMA/comments/1l41eyp/ai_agent_evaluation_painpoints_for_developers/ | false | false | self | 1 | null |
DeepSeek’s new R1-0528-Qwen3-8B is the most intelligent 8B parameter model yet, but not by much: Alibaba’s own Qwen3 8B is just one point behind | 114 | 2025-06-05T15:12:32 | https://www.reddit.com/r/LocalLLaMA/comments/1l41p1x/deepseeks_new_r10528qwen38b_is_the_most/ | ApprehensiveAd3629 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l41p1x | false | null | t3_1l41p1x | /r/LocalLLaMA/comments/1l41p1x/deepseeks_new_r10528qwen38b_is_the_most/ | false | false | 114 | {'enabled': False, 'images': [{'id': 'qa-h-2yE89JD5_ETAyW_L2wANYsMBO04I2h5j3k3Q58', 'resolutions': [{'height': 53, 'url': 'https://external-preview.redd.it/wWklwlAOa2ZfKIhxn9DXW0SWlAhj78brp-TpzL-wtyA.jpg?width=108&crop=smart&auto=webp&s=796695bf5a1404fa79da19be8121139c127b807d', 'width': 108}, {'height': 107, 'url': 'https://external-preview.redd.it/wWklwlAOa2ZfKIhxn9DXW0SWlAhj78brp-TpzL-wtyA.jpg?width=216&crop=smart&auto=webp&s=9d1b25253b9589b5156e5c0e2f777b9203673a31', 'width': 216}, {'height': 159, 'url': 'https://external-preview.redd.it/wWklwlAOa2ZfKIhxn9DXW0SWlAhj78brp-TpzL-wtyA.jpg?width=320&crop=smart&auto=webp&s=30495d5de0552bd0119d39aa16929ef1460c7264', 'width': 320}, {'height': 319, 'url': 'https://external-preview.redd.it/wWklwlAOa2ZfKIhxn9DXW0SWlAhj78brp-TpzL-wtyA.jpg?width=640&crop=smart&auto=webp&s=dc64a51336980d22549a47b3a4f8a6f231537058', 'width': 640}, {'height': 479, 'url': 'https://external-preview.redd.it/wWklwlAOa2ZfKIhxn9DXW0SWlAhj78brp-TpzL-wtyA.jpg?width=960&crop=smart&auto=webp&s=9362bc7b039d471bd445a50102d44b475026b5b9', 'width': 960}, {'height': 538, 'url': 'https://external-preview.redd.it/wWklwlAOa2ZfKIhxn9DXW0SWlAhj78brp-TpzL-wtyA.jpg?width=1080&crop=smart&auto=webp&s=73d915e749cc2f19a47c72c7aed035e9c1bb3ca8', 'width': 1080}], 'source': {'height': 1022, 'url': 'https://external-preview.redd.it/wWklwlAOa2ZfKIhxn9DXW0SWlAhj78brp-TpzL-wtyA.jpg?auto=webp&s=b1f7ea2aceb25d9ab8bf876c467073d7c35d964d', 'width': 2048}, 'variants': {}}]} |
||
Looking for UI that can store and reference characters easily | 3 | I am a relative neophyte to locally run llms I've been using them for storytelling but obviously they get confused after they get close to character limit. I've just started playing around with silly tavern via oobabooga which seems like a popular option, but are there any other uis that are relatively easy to set up to reference multiple characters on their names or identifiers being used? | 2025-06-05T16:00:20 | https://www.reddit.com/r/LocalLLaMA/comments/1l42woy/looking_for_ui_that_can_store_and_reference/ | Haddock | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l42woy | false | null | t3_1l42woy | /r/LocalLLaMA/comments/1l42woy/looking_for_ui_that_can_store_and_reference/ | false | false | self | 3 | null |
Sarvam AI (indian startup) is likely pulling of massive "download farming" in HF | 1 | [removed] | 2025-06-05T16:19:45 | https://www.reddit.com/r/LocalLLaMA/comments/1l43emc/sarvam_ai_indian_startup_is_likely_pulling_of/ | Ortho-BenzoPhenone | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l43emc | false | null | t3_1l43emc | /r/LocalLLaMA/comments/1l43emc/sarvam_ai_indian_startup_is_likely_pulling_of/ | false | false | 1 | null |
|
New LLM trained to reason on chemistry from language: first step towards scientific agents | 1 | [removed] | 2025-06-05T16:22:42 | https://x.com/andrewwhite01/status/1930652479039099072 | clefourrier | x.com | 1970-01-01T00:00:00 | 0 | {} | 1l43hb1 | false | null | t3_1l43hb1 | /r/LocalLLaMA/comments/1l43hb1/new_llm_trained_to_reason_on_chemistry_from/ | false | false | default | 1 | null |
New LLM trained to reason on chemistry from language: first step towards scientific agents | 51 | Some interesting tricks in the paper to make it good at a specific scientific domain, has cool applications like retrosynthesis (how do I get to this molecule) or reaction prediction (what do I get from A + B?), and everything is open source ! | 2025-06-05T16:24:29 | https://www.nature.com/articles/d41586-025-01753-1 | clefourrier | nature.com | 1970-01-01T00:00:00 | 0 | {} | 1l43ivu | false | null | t3_1l43ivu | /r/LocalLLaMA/comments/1l43ivu/new_llm_trained_to_reason_on_chemistry_from/ | false | false | default | 51 | {'enabled': False, 'images': [{'id': 'h8pBBOTpdLNMV6niaV1bR_1yNoR-3Ky7Xs63nebLUdw', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/yIrTUZRJVfTjMLKREn3vBHXx0YcQC6rt4cf6CzSytrI.jpg?width=108&crop=smart&auto=webp&s=16b3e1b2125dfb444423e69d3215eab0aa80c41e', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/yIrTUZRJVfTjMLKREn3vBHXx0YcQC6rt4cf6CzSytrI.jpg?width=216&crop=smart&auto=webp&s=5deaa480416462e5e86ac1397db79bc27273bcbf', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/yIrTUZRJVfTjMLKREn3vBHXx0YcQC6rt4cf6CzSytrI.jpg?width=320&crop=smart&auto=webp&s=2259b32bc8a9956a6fd91bb6426c0687e9a8c33c', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/yIrTUZRJVfTjMLKREn3vBHXx0YcQC6rt4cf6CzSytrI.jpg?width=640&crop=smart&auto=webp&s=f877daf31e434fc6283e2be76580fd135a8593dc', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/yIrTUZRJVfTjMLKREn3vBHXx0YcQC6rt4cf6CzSytrI.jpg?width=960&crop=smart&auto=webp&s=0d62420dcdd28379358619760728aaee1d934546', 'width': 960}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/yIrTUZRJVfTjMLKREn3vBHXx0YcQC6rt4cf6CzSytrI.jpg?auto=webp&s=b5c2ac2d38ed194e8ca7df0e75a8100b1efb070b', 'width': 1066}, 'variants': {}}]} |
How can I connect to a local LLM from my iPhone? | 10 | I've got LM Studio running on my PC and I'm wondering if anyone knows a way to connect to it from iPhone? I've looked around and tried several apps but haven't found one that lets you specify the API URL. | 2025-06-05T16:48:58 | https://www.reddit.com/r/LocalLLaMA/comments/1l4450t/how_can_i_connect_to_a_local_llm_from_my_iphone/ | NonYa_exe | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4450t | false | null | t3_1l4450t | /r/LocalLLaMA/comments/1l4450t/how_can_i_connect_to_a_local_llm_from_my_iphone/ | false | false | self | 10 | null |
Mac Air M2 users or lower. What’s the optimal model/tool to run to get started with LocalLLaMa | 1 | [removed] | 2025-06-05T16:55:14 | https://www.reddit.com/r/LocalLLaMA/comments/1l44agk/mac_air_m2_users_or_lower_whats_the_optimal/ | picturpoet | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l44agk | false | null | t3_1l44agk | /r/LocalLLaMA/comments/1l44agk/mac_air_m2_users_or_lower_whats_the_optimal/ | false | false | self | 1 | null |
Sparse Transformers: Run 2x faster LLM with 30% lesser memory | 496 | We have built fused operator kernels for structured contextual sparsity based on the amazing works of LLM in a Flash (Apple) and Deja Vu (Zichang et al). We avoid loading and computing activations with feed forward layer weights whose outputs will eventually be zeroed out.
The result? We are seeing **5X faster MLP** layer performance in transformers with **50% lesser memory** consumption avoiding the sleeping nodes in every token prediction. For Llama 3.2, Feed forward layers accounted for 30% of total weights and forward pass computation resulting in 1.6-1.8x increase in throughput:
Sparse LLaMA 3.2 3B vs LLaMA 3.2 3B (on HuggingFace Implementation):
- Time to First Token (TTFT): 1.51× faster (1.209s → 0.803s)
- Output Generation Speed: 1.79× faster (0.7 → 1.2 tokens/sec)
- Total Throughput: 1.78× faster (0.7 → 1.3 tokens/sec)
- Memory Usage: 26.4% reduction (6.125GB → 4.15GB)
Please find the operator kernels with differential weight caching open sourced at github/sparse\_transformers.
PS: We will be actively adding kernels for int8, CUDA and sparse attention. | 2025-06-05T17:07:31 | https://github.com/NimbleEdge/sparse_transformers | Economy-Mud-6626 | github.com | 1970-01-01T00:00:00 | 0 | {} | 1l44lw8 | false | null | t3_1l44lw8 | /r/LocalLLaMA/comments/1l44lw8/sparse_transformers_run_2x_faster_llm_with_30/ | false | false | 496 | {'enabled': False, 'images': [{'id': '1on1N3jH_bYn3YHPp1eKzmiBavqd33UEWggC4ESEjWE', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/XkyXf73h0xcotkA0Ymuqhjk48O0f-bM4vEg5RHnYOlk.jpg?width=108&crop=smart&auto=webp&s=374d8947fd517973f24741b4a1ef65d5035daeb2', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/XkyXf73h0xcotkA0Ymuqhjk48O0f-bM4vEg5RHnYOlk.jpg?width=216&crop=smart&auto=webp&s=15dc9c2660e35fac1e298f63a71bb823cf49e410', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/XkyXf73h0xcotkA0Ymuqhjk48O0f-bM4vEg5RHnYOlk.jpg?width=320&crop=smart&auto=webp&s=77cced607d44badabae0b7097da0b49ef30e4582', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/XkyXf73h0xcotkA0Ymuqhjk48O0f-bM4vEg5RHnYOlk.jpg?width=640&crop=smart&auto=webp&s=780bf00a530e24b1353ea10dfe3ec2b41b58fe56', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/XkyXf73h0xcotkA0Ymuqhjk48O0f-bM4vEg5RHnYOlk.jpg?width=960&crop=smart&auto=webp&s=26027758979d996094e72a0adb72f45359a00a08', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/XkyXf73h0xcotkA0Ymuqhjk48O0f-bM4vEg5RHnYOlk.jpg?width=1080&crop=smart&auto=webp&s=2f6f12635728d261058c8d3fc9371fb450807ddf', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/XkyXf73h0xcotkA0Ymuqhjk48O0f-bM4vEg5RHnYOlk.jpg?auto=webp&s=c7897c298cb9d10ad72a4ae3275e112551ce2e29', 'width': 1200}, 'variants': {}}]} |
|
how are BERT models used in anomaly detection? | 1 | [removed] | 2025-06-05T17:39:42 | https://www.reddit.com/r/LocalLLaMA/comments/1l45g68/how_are_bert_models_used_in_anomaly_detection/ | sybau6969 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l45g68 | false | null | t3_1l45g68 | /r/LocalLLaMA/comments/1l45g68/how_are_bert_models_used_in_anomaly_detection/ | false | false | self | 1 | null |
What's your local LLM agent set-up for coding? Looking for suggestions and workflows. | 1 | [removed] | 2025-06-05T17:49:05 | https://www.reddit.com/r/LocalLLaMA/comments/1l45oyh/whats_your_local_llm_agent_setup_for_coding/ | accountforHW | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l45oyh | false | null | t3_1l45oyh | /r/LocalLLaMA/comments/1l45oyh/whats_your_local_llm_agent_setup_for_coding/ | false | false | self | 1 | null |
What's the best model for playing a role right now , that will fit on 8gbvram? | 2 | I'm not looking for anything that tends to talk naughty on purpose, but unrestricted is probably best anyway. I just want to be able to tell it, You are character x, your backstory is y, and then feed it with a conversation history to this point and have it reliably take on it's role. I have other safeguards in place to make sure it conforms but I want the best at being creative with it's given role. I'm basically going to have two or more talk to each other but instead of one shot , i want each of them to only come up with the dialog or actions for the character they are told they are. | 2025-06-05T17:49:13 | https://www.reddit.com/r/LocalLLaMA/comments/1l45p2d/whats_the_best_model_for_playing_a_role_right_now/ | opUserZero | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l45p2d | false | null | t3_1l45p2d | /r/LocalLLaMA/comments/1l45p2d/whats_the_best_model_for_playing_a_role_right_now/ | false | false | self | 2 | null |
smollm is crazy | 0 | 2025-06-05T18:14:57 | https://v.redd.it/l1u09vctg55f1 | 3d_printing_kid | v.redd.it | 1970-01-01T00:00:00 | 0 | {} | 1l46d96 | false | {'reddit_video': {'bitrate_kbps': 1200, 'dash_url': 'https://v.redd.it/l1u09vctg55f1/DASHPlaylist.mpd?a=1751739310%2CN2MwYWIzNDBkZWRhNjdlZDE5OWUxNzI0MjIzNDU2OWEyYmU3OGI2NGVhNmVkNmY5NjNhMTgwNTc0YWE0ZWY1Yw%3D%3D&v=1&f=sd', 'duration': 248, 'fallback_url': 'https://v.redd.it/l1u09vctg55f1/DASH_480.mp4?source=fallback', 'has_audio': True, 'height': 480, 'hls_url': 'https://v.redd.it/l1u09vctg55f1/HLSPlaylist.m3u8?a=1751739310%2COTZiM2E1MzY0OTY1ODEzNDQ1ZDVkNGI1YzM3OTEzNDRiYmI1OTczNDMxMzMwMGZhZjRiZWU0YzVhNzY2NzEzMQ%3D%3D&v=1&f=sd', 'is_gif': False, 'scrubber_media_url': 'https://v.redd.it/l1u09vctg55f1/DASH_96.mp4', 'transcoding_status': 'completed', 'width': 850}} | t3_1l46d96 | /r/LocalLLaMA/comments/1l46d96/smollm_is_crazy/ | false | false | 0 | {'enabled': False, 'images': [{'id': 'Nm91OHV2Y3RnNTVmMYC1oXT879drMGhz7A_iST_bdDJ62X2-qbCshqC67I28', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/Nm91OHV2Y3RnNTVmMYC1oXT879drMGhz7A_iST_bdDJ62X2-qbCshqC67I28.png?width=108&crop=smart&format=pjpg&auto=webp&s=62b3ffc701ba66c8f9f03681676e828618f01293', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/Nm91OHV2Y3RnNTVmMYC1oXT879drMGhz7A_iST_bdDJ62X2-qbCshqC67I28.png?width=216&crop=smart&format=pjpg&auto=webp&s=b3d7a4aa2484c7fca92a8fde82b0c425cfadb762', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/Nm91OHV2Y3RnNTVmMYC1oXT879drMGhz7A_iST_bdDJ62X2-qbCshqC67I28.png?width=320&crop=smart&format=pjpg&auto=webp&s=2a73d4b378fbde33ebe9de8f23b35d99d3eeabfa', 'width': 320}, {'height': 361, 'url': 'https://external-preview.redd.it/Nm91OHV2Y3RnNTVmMYC1oXT879drMGhz7A_iST_bdDJ62X2-qbCshqC67I28.png?width=640&crop=smart&format=pjpg&auto=webp&s=938d5c26572ad8a869005dcac8dc8626d83b0c05', 'width': 640}, {'height': 541, 'url': 'https://external-preview.redd.it/Nm91OHV2Y3RnNTVmMYC1oXT879drMGhz7A_iST_bdDJ62X2-qbCshqC67I28.png?width=960&crop=smart&format=pjpg&auto=webp&s=18c09ea8b6e93ca7a592d735482c7ef44ad307d4', 'width': 960}, {'height': 609, 'url': 'https://external-preview.redd.it/Nm91OHV2Y3RnNTVmMYC1oXT879drMGhz7A_iST_bdDJ62X2-qbCshqC67I28.png?width=1080&crop=smart&format=pjpg&auto=webp&s=4bfb52db175ccbadb7b41d0e1aef62b2a84bd99e', 'width': 1080}], 'source': {'height': 632, 'url': 'https://external-preview.redd.it/Nm91OHV2Y3RnNTVmMYC1oXT879drMGhz7A_iST_bdDJ62X2-qbCshqC67I28.png?format=pjpg&auto=webp&s=0fd936e4074b23cded79fe27a7aec1e9fc5cb42a', 'width': 1120}, 'variants': {}}]} |
||
M🐢st Efficient RAG Framework for Offline Local Rag? | 1 | [removed] | 2025-06-05T18:36:33 | https://www.reddit.com/r/LocalLLaMA/comments/1l46wsw/mst_efficient_rag_framework_for_offline_local_rag/ | taper_fade | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l46wsw | false | null | t3_1l46wsw | /r/LocalLLaMA/comments/1l46wsw/mst_efficient_rag_framework_for_offline_local_rag/ | false | false | self | 1 | null |
M🐢st Efficient RAG Framework for Offline Local Rag? | 1 | [removed] | 2025-06-05T18:37:53 | https://www.reddit.com/r/LocalLLaMA/comments/1l46xww/mst_efficient_rag_framework_for_offline_local_rag/ | taper_fade | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l46xww | false | null | t3_1l46xww | /r/LocalLLaMA/comments/1l46xww/mst_efficient_rag_framework_for_offline_local_rag/ | false | false | self | 1 | null |
1000(!!!)tps. Deepinfra went wild on Maverick throughput. | 3 | 2025-06-05T18:54:07 | temirulan | i.redd.it | 1970-01-01T00:00:00 | 0 | {} | 1l47clk | false | null | t3_1l47clk | /r/LocalLLaMA/comments/1l47clk/1000tps_deepinfra_went_wild_on_maverick_throughput/ | false | false | default | 3 | {'enabled': True, 'images': [{'id': '52bm64zxn55f1', 'resolutions': [{'height': 42, 'url': 'https://preview.redd.it/52bm64zxn55f1.jpeg?width=108&crop=smart&auto=webp&s=0d188dbe2d73d6411779816164703db9a59587ef', 'width': 108}, {'height': 85, 'url': 'https://preview.redd.it/52bm64zxn55f1.jpeg?width=216&crop=smart&auto=webp&s=37183a43524b2e9126c5ebb8b9470562f357c9e6', 'width': 216}, {'height': 126, 'url': 'https://preview.redd.it/52bm64zxn55f1.jpeg?width=320&crop=smart&auto=webp&s=5096638c0dc207969399f0953cb9d5345da354ea', 'width': 320}, {'height': 252, 'url': 'https://preview.redd.it/52bm64zxn55f1.jpeg?width=640&crop=smart&auto=webp&s=3f7f8f7e69536aea1547387ba6ee23d40848e77f', 'width': 640}, {'height': 378, 'url': 'https://preview.redd.it/52bm64zxn55f1.jpeg?width=960&crop=smart&auto=webp&s=ebacf3e2fe3c8506cede74b9fa8c5e2ab7b7ef99', 'width': 960}, {'height': 425, 'url': 'https://preview.redd.it/52bm64zxn55f1.jpeg?width=1080&crop=smart&auto=webp&s=1bcdac3ab75e4fb93a3f1338b20343464d64a2bc', 'width': 1080}], 'source': {'height': 803, 'url': 'https://preview.redd.it/52bm64zxn55f1.jpeg?auto=webp&s=84e5965472ff8d71ae76013fe4b2c7ec755f0e59', 'width': 2036}, 'variants': {}}]} |
||
Is Qwen the new face of local LLMs? | 75 | The Qwen team has been killing it. Every new model is a heavy hitter and every new model becomes SOTA for that category. I've been seeing way more fine tunes of Qwen models than LLaMa lately. LocalQwen coming soon lol? | 2025-06-05T18:54:52 | https://www.reddit.com/r/LocalLLaMA/comments/1l47dav/is_qwen_the_new_face_of_local_llms/ | Due-Employee4744 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l47dav | false | null | t3_1l47dav | /r/LocalLLaMA/comments/1l47dav/is_qwen_the_new_face_of_local_llms/ | false | false | self | 75 | null |
With 8gb vram: qwen3 8b q6 or 32b iq1? | 4 | Both end up being about the same size and fit just enough on the vram provided the kv cache is offloaded. I tried looking for performance of models at equal memory footprint but was unable to. Any advice is much appreciated. | 2025-06-05T18:57:34 | https://www.reddit.com/r/LocalLLaMA/comments/1l47fv0/with_8gb_vram_qwen3_8b_q6_or_32b_iq1/ | GreenTreeAndBlueSky | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l47fv0 | false | null | t3_1l47fv0 | /r/LocalLLaMA/comments/1l47fv0/with_8gb_vram_qwen3_8b_q6_or_32b_iq1/ | false | false | self | 4 | null |
Fine tune result problem | 1 | [removed] | 2025-06-05T19:03:24 | https://www.reddit.com/r/LocalLLaMA/comments/1l47lks/fine_tune_result_problem/ | ithe1975 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l47lks | false | null | t3_1l47lks | /r/LocalLLaMA/comments/1l47lks/fine_tune_result_problem/ | false | false | self | 1 | null |
1000(!!!) tps on Maverick by Deepinfra | 1 | [removed] | 2025-06-05T19:14:04 | temirulan | i.redd.it | 1970-01-01T00:00:00 | 0 | {} | 1l47vbf | false | null | t3_1l47vbf | /r/LocalLLaMA/comments/1l47vbf/1000_tps_on_maverick_by_deepinfra/ | false | false | default | 1 | {'enabled': True, 'images': [{'id': 'pmzccp0ir55f1', 'resolutions': [{'height': 42, 'url': 'https://preview.redd.it/pmzccp0ir55f1.jpeg?width=108&crop=smart&auto=webp&s=3bbb2ca6449dc0870bf1cf7a599f5e625978b6a3', 'width': 108}, {'height': 85, 'url': 'https://preview.redd.it/pmzccp0ir55f1.jpeg?width=216&crop=smart&auto=webp&s=0eb1bc14c5c28ed329949708e47fa7017b944f01', 'width': 216}, {'height': 126, 'url': 'https://preview.redd.it/pmzccp0ir55f1.jpeg?width=320&crop=smart&auto=webp&s=921ae65052f07a4c2cb17a8c14860353c5d6c81c', 'width': 320}, {'height': 252, 'url': 'https://preview.redd.it/pmzccp0ir55f1.jpeg?width=640&crop=smart&auto=webp&s=7c88f85f6d27185b8ebf3479c291da11ade3b5ee', 'width': 640}, {'height': 378, 'url': 'https://preview.redd.it/pmzccp0ir55f1.jpeg?width=960&crop=smart&auto=webp&s=6f1189fdec005d48b24e08d4c0e9ea066f0be762', 'width': 960}, {'height': 425, 'url': 'https://preview.redd.it/pmzccp0ir55f1.jpeg?width=1080&crop=smart&auto=webp&s=0e661e111770c5f354b481daa3a2cabb71574b79', 'width': 1080}], 'source': {'height': 803, 'url': 'https://preview.redd.it/pmzccp0ir55f1.jpeg?auto=webp&s=1c7e7e01094c5c2ae57cf364c413161053a7aaed', 'width': 2036}, 'variants': {}}]} |
|
Is it dumb to build a server with 7x 5060 Ti? | 13 | I'm considering putting together a system with 7x 5060 Ti to get the most cost-effective VRAM. This will have to be an open frame with riser cables and an Epyc server motherboard with 7 PCIe slots.
The idea was to have capacity for medium size models that exceed 24GB but fit in \~100GB VRAM. I think I can put this machine together for between $10k and $15k.
For simplicity I was going to go with Windows and Ollama. Inference speed is not critical but crawling along at CPU speeds is not going to be viable.
I don't really know what I'm doing. Is this dumb?
Go ahead and roast my plan as long as you can propose something better. | 2025-06-05T19:33:32 | https://www.reddit.com/r/LocalLLaMA/comments/1l48cnk/is_it_dumb_to_build_a_server_with_7x_5060_ti/ | vector76 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l48cnk | false | null | t3_1l48cnk | /r/LocalLLaMA/comments/1l48cnk/is_it_dumb_to_build_a_server_with_7x_5060_ti/ | false | false | self | 13 | null |
Model defaults Benchmark - latest version of {technology}. | 0 | API endpoints, opinionated frameworks, available SDK methods.
From agentic coding/vibe coding perspective - heavily fine tuned models stubbornly enforce outdated solutions.
Is there any project/benchmark that lets users subscribe to model updates?
- Anthropics models not knowing what MCP is,
- Gemini 2.5 pro enforcing 1.5 pro and outdated Gemini api,
- Models using outdated defaults tend to generate too much boilerplate or using breaking libraries.
For most of boilerplate I'd like AI to write for me I'd rather use -5 IQ model that use desired tech stack instead of +10 IQ which will try to force me to using outdated solutions.
Simple QA and asking for latest versions of libraries usually helps but maybe there is something that can solve this problem better?
lmsys webdev arena skewed models towards generating childish gradients. Lately labs focused on reasoning benchmarks promising AGI while what we really need is those obvious and time consuming parts.
Starting from the most popular like:
Latest Linux kernel, latest language versions, kubernetes/container techs, frameworks nextjs/Django/symphony/ror, web servers, reverse proxies, databases, up to latest model versions.
is there any benchmark that checks that?
With option to $ to get notified when new models knowing particular set of technologies appear?
| 2025-06-05T19:58:47 | https://www.reddit.com/r/LocalLLaMA/comments/1l48yz9/model_defaults_benchmark_latest_version_of/ | secopsml | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l48yz9 | false | null | t3_1l48yz9 | /r/LocalLLaMA/comments/1l48yz9/model_defaults_benchmark_latest_version_of/ | false | false | self | 0 | null |
What is the best way to sell a RTX 6000 Pro blackwell (new) and the average going price? | 0 | 2025-06-05T20:09:35 | traderjay_toronto | i.redd.it | 1970-01-01T00:00:00 | 0 | {} | 1l498jv | false | null | t3_1l498jv | /r/LocalLLaMA/comments/1l498jv/what_is_the_best_way_to_sell_a_rtx_6000_pro/ | false | false | default | 0 | {'enabled': True, 'images': [{'id': 'f9is7bfe165f1', 'resolutions': [{'height': 53, 'url': 'https://preview.redd.it/f9is7bfe165f1.jpeg?width=108&crop=smart&auto=webp&s=e49e7f1e682f1e8f2af40c9a5a1cf15c4c9df896', 'width': 108}, {'height': 107, 'url': 'https://preview.redd.it/f9is7bfe165f1.jpeg?width=216&crop=smart&auto=webp&s=726b9376717407b30d74f36e3d6df496ae99a635', 'width': 216}, {'height': 158, 'url': 'https://preview.redd.it/f9is7bfe165f1.jpeg?width=320&crop=smart&auto=webp&s=69b872d96615e5707c0034284e29b03f2b00e690', 'width': 320}, {'height': 317, 'url': 'https://preview.redd.it/f9is7bfe165f1.jpeg?width=640&crop=smart&auto=webp&s=459da3b6ba1fee7a98a572f7149ef320ec43e3c7', 'width': 640}, {'height': 476, 'url': 'https://preview.redd.it/f9is7bfe165f1.jpeg?width=960&crop=smart&auto=webp&s=f21f0b37b10fa766f23007a663139033d208bf57', 'width': 960}, {'height': 535, 'url': 'https://preview.redd.it/f9is7bfe165f1.jpeg?width=1080&crop=smart&auto=webp&s=abd2670200c97e696f4d79acab78ff8afe20235e', 'width': 1080}], 'source': {'height': 564, 'url': 'https://preview.redd.it/f9is7bfe165f1.jpeg?auto=webp&s=b75e49bbc0eb2bd06b0e0b245c3bd26e9964d952', 'width': 1137}, 'variants': {}}]} |
||
Mac Studio Ultra vs RTX Pro on thread ripper | 1 | [removed] | 2025-06-05T20:24:39 | https://www.reddit.com/r/LocalLLaMA/comments/1l49m2k/mac_studio_ultra_vs_rtx_pro_on_thread_ripper/ | Dry-Vermicelli-682 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l49m2k | false | null | t3_1l49m2k | /r/LocalLLaMA/comments/1l49m2k/mac_studio_ultra_vs_rtx_pro_on_thread_ripper/ | false | false | self | 1 | null |
Embeddings vs Reasoning vs Thinking Models? | 1 | Please explain me in plain English the difference between these types of models from the training perspective. Also what use cases are best solved by each type? | 2025-06-05T20:35:18 | https://www.reddit.com/r/LocalLLaMA/comments/1l49viu/embeddings_vs_reasoning_vs_thinking_models/ | cloudcreator | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l49viu | false | null | t3_1l49viu | /r/LocalLLaMA/comments/1l49viu/embeddings_vs_reasoning_vs_thinking_models/ | false | false | self | 1 | null |
[R] Model-Preserving Adaptive Rounding | 1 | [removed] | 2025-06-05T20:44:06 | https://www.reddit.com/r/LocalLLaMA/comments/1l4a3d2/r_modelpreserving_adaptive_rounding/ | tsengalb99 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4a3d2 | false | null | t3_1l4a3d2 | /r/LocalLLaMA/comments/1l4a3d2/r_modelpreserving_adaptive_rounding/ | false | false | self | 1 | null |
Looking for Advice- Starting point running Local LLM/Training | 1 | [removed] | 2025-06-05T21:08:19 | https://www.reddit.com/r/LocalLLaMA/comments/1l4aopo/looking_for_advice_starting_point_running_local/ | Ok-Cup-608 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4aopo | false | null | t3_1l4aopo | /r/LocalLLaMA/comments/1l4aopo/looking_for_advice_starting_point_running_local/ | false | false | self | 1 | null |
Looking for Advice- Starting point GPU | 1 | [removed] | 2025-06-05T21:10:08 | https://www.reddit.com/r/LocalLLaMA/comments/1l4aqbm/looking_for_advice_starting_point_gpu/ | Ok-Cup-608 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4aqbm | false | null | t3_1l4aqbm | /r/LocalLLaMA/comments/1l4aqbm/looking_for_advice_starting_point_gpu/ | false | false | self | 1 | null |
Qwen3-32B is absolutely awesome | 1 | [removed] | 2025-06-05T21:11:59 | https://www.reddit.com/r/LocalLLaMA/comments/1l4arx4/qwen332b_is_absolutely_awesome/ | gtresselt | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4arx4 | false | null | t3_1l4arx4 | /r/LocalLLaMA/comments/1l4arx4/qwen332b_is_absolutely_awesome/ | false | false | self | 1 | null |
Much lower performance for Mistral-Small 24B on RTX 3090 and from deepinfra API | 1 | Hi friends, I was using deepinfra API and find that [mistralai/Mistral-Small-24B-Instruct-2501](https://deepinfra.com/mistralai/Mistral-Small-24B-Instruct-2501?version=010d42b0ae15e140bf9c5e02ca88273b9c257a89) is a very useful model. But when I deployed the Q4 quantized version on my RTX 3090, it does not work as good. I doubt the performance degradation is because of the quantization, because deepinfra is using the original version, but still want to confirm.
If yes, this is very disappointing to me coz the only reason I purchase the GPU is that I thought I could have this level of local AI to do many fun things. It turns out that those quantized 32b models can not handle any serious tasks (like read some long articles and extract useful information)... | 2025-06-05T21:42:16 | https://www.reddit.com/r/LocalLLaMA/comments/1l4biki/much_lower_performance_for_mistralsmall_24b_on/ | rumboll | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4biki | false | null | t3_1l4biki | /r/LocalLLaMA/comments/1l4biki/much_lower_performance_for_mistralsmall_24b_on/ | false | false | self | 1 | {'enabled': False, 'images': [{'id': 'amgfYGwa2WrQh6GXm5VGkqwQoIMx_3FzVvXwxN_upLs', 'resolutions': [{'height': 108, 'url': 'https://external-preview.redd.it/A5gAnz2ZdeDVSXFGTXKEP95JRpka9aH-VUOZQCnvxRk.jpg?width=108&crop=smart&auto=webp&s=3318ee60bc67fe35f858ef342ae3ae7487f5b278', 'width': 108}, {'height': 216, 'url': 'https://external-preview.redd.it/A5gAnz2ZdeDVSXFGTXKEP95JRpka9aH-VUOZQCnvxRk.jpg?width=216&crop=smart&auto=webp&s=a6cb90b95a9254175f5524b906f4d0b5b60f5aad', 'width': 216}, {'height': 320, 'url': 'https://external-preview.redd.it/A5gAnz2ZdeDVSXFGTXKEP95JRpka9aH-VUOZQCnvxRk.jpg?width=320&crop=smart&auto=webp&s=b54029881de946e57c8e8fa895f7268b63241c49', 'width': 320}, {'height': 640, 'url': 'https://external-preview.redd.it/A5gAnz2ZdeDVSXFGTXKEP95JRpka9aH-VUOZQCnvxRk.jpg?width=640&crop=smart&auto=webp&s=143cc5ebddee3c2916c786c4f1b313eb2394e884', 'width': 640}], 'source': {'height': 768, 'url': 'https://external-preview.redd.it/A5gAnz2ZdeDVSXFGTXKEP95JRpka9aH-VUOZQCnvxRk.jpg?auto=webp&s=cf7473297b286c301b34de822c7b761008fb7b5d', 'width': 768}, 'variants': {}}]} |
How Fast can I run models. | 0 | I'm running image processing with gemma 3 27b and getting structured outputs as response, but my present pipeline is awfully slow (I use huggingface for the most part and lmformatenforcer), it processes a batch of 32 images in 5-10 minutes when I get a response of atmax 256 tokens per image. Now this is running on 4 A100 40 gig chips.
This seems awfully slow and suboptimal. Can people share some codebooks and benchmark times for image processing, and should I shift to sglang? I cannot use the latest version of VLLM in my uni's compute cluster. | 2025-06-05T21:53:00 | https://www.reddit.com/r/LocalLLaMA/comments/1l4brna/how_fast_can_i_run_models/ | feelin-lonely-1254 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4brna | false | null | t3_1l4brna | /r/LocalLLaMA/comments/1l4brna/how_fast_can_i_run_models/ | false | false | self | 0 | null |
iOS app to talk (voice) to self-hosted LLMs | 1 | [App Store link](https://apps.apple.com/app/apple-store/id6737482921?pt=127100219&ct=r-locallama&mt=8) | 2025-06-05T22:05:46 | https://v.redd.it/gwaw7821m65f1 | lostmsu | v.redd.it | 1970-01-01T00:00:00 | 0 | {} | 1l4c2hv | false | {'reddit_video': {'bitrate_kbps': 2400, 'dash_url': 'https://v.redd.it/gwaw7821m65f1/DASHPlaylist.mpd?a=1751753163%2CZjVjOGY1NWEzY2I3NDA2NDE2Zjg2YzZiZTg4M2I0MzY1ZTI0MGM3OGI5YjcwOWE2N2NiMWM2NjVkYmRhM2ZjMg%3D%3D&v=1&f=sd', 'duration': 43, 'fallback_url': 'https://v.redd.it/gwaw7821m65f1/DASH_720.mp4?source=fallback', 'has_audio': True, 'height': 720, 'hls_url': 'https://v.redd.it/gwaw7821m65f1/HLSPlaylist.m3u8?a=1751753163%2CZDgxMTY4OWU2Y2JiZGMxMGYwOGYyYjdlMWUyOWNlMWJiYzI2MzA5NzM4MTUzMDZmNDUyY2E4ZGVhNzQ4MzdjMA%3D%3D&v=1&f=sd', 'is_gif': False, 'scrubber_media_url': 'https://v.redd.it/gwaw7821m65f1/DASH_96.mp4', 'transcoding_status': 'completed', 'width': 1280}} | t3_1l4c2hv | /r/LocalLLaMA/comments/1l4c2hv/ios_app_to_talk_voice_to_selfhosted_llms/ | false | false | 1 | {'enabled': False, 'images': [{'id': 'c3FmcW83MjFtNjVmMWZeSLuSW_UpsoL8BF3Jy7Fb26rc0Xywrz63KN15RsFb', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/c3FmcW83MjFtNjVmMWZeSLuSW_UpsoL8BF3Jy7Fb26rc0Xywrz63KN15RsFb.png?width=108&crop=smart&format=pjpg&auto=webp&s=07c6f539b1eccc3d360f252b8c4ec3d101f9c258', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/c3FmcW83MjFtNjVmMWZeSLuSW_UpsoL8BF3Jy7Fb26rc0Xywrz63KN15RsFb.png?width=216&crop=smart&format=pjpg&auto=webp&s=ffd7cd8dedaef331a8c0c045e2776f822454fd8e', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/c3FmcW83MjFtNjVmMWZeSLuSW_UpsoL8BF3Jy7Fb26rc0Xywrz63KN15RsFb.png?width=320&crop=smart&format=pjpg&auto=webp&s=963c5195f2b1da4244833610fe6c4653f4ffa340', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/c3FmcW83MjFtNjVmMWZeSLuSW_UpsoL8BF3Jy7Fb26rc0Xywrz63KN15RsFb.png?width=640&crop=smart&format=pjpg&auto=webp&s=f0ae5ebd9a2a5c6671c6b3c1b0ef6326b3b618df', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/c3FmcW83MjFtNjVmMWZeSLuSW_UpsoL8BF3Jy7Fb26rc0Xywrz63KN15RsFb.png?width=960&crop=smart&format=pjpg&auto=webp&s=2c4f78a6c35c6ac90aed82781d534e0bc148836c', 'width': 960}, {'height': 607, 'url': 'https://external-preview.redd.it/c3FmcW83MjFtNjVmMWZeSLuSW_UpsoL8BF3Jy7Fb26rc0Xywrz63KN15RsFb.png?width=1080&crop=smart&format=pjpg&auto=webp&s=4e41db0f3ed23f0bba3083987977eeac7b5d0dea', 'width': 1080}], 'source': {'height': 720, 'url': 'https://external-preview.redd.it/c3FmcW83MjFtNjVmMWZeSLuSW_UpsoL8BF3Jy7Fb26rc0Xywrz63KN15RsFb.png?format=pjpg&auto=webp&s=4e7fe7e33c207c12177149c91992ea440f3d7355', 'width': 1280}, 'variants': {}}]} |
|
iOS app to talk (voice) to self-hosted LLMs | 2 | 2025-06-05T22:06:50 | https://v.redd.it/j5f97gebm65f1 | lostmsu | v.redd.it | 1970-01-01T00:00:00 | 0 | {} | 1l4c3ds | false | {'reddit_video': {'bitrate_kbps': 2400, 'dash_url': 'https://v.redd.it/j5f97gebm65f1/DASHPlaylist.mpd?a=1751753223%2CMTQzNmFjN2Y4MThkOTAzOTg0ZjcxMmM3OGQ5OWU1ZDFjZDRkNDYxYjg5ZTYwZWQ5OWJmMjY5NGY0ZjJkMjFiNQ%3D%3D&v=1&f=sd', 'duration': 43, 'fallback_url': 'https://v.redd.it/j5f97gebm65f1/DASH_720.mp4?source=fallback', 'has_audio': True, 'height': 720, 'hls_url': 'https://v.redd.it/j5f97gebm65f1/HLSPlaylist.m3u8?a=1751753223%2CYWQwZGYxMWRhMTA1MTBmYWVlM2I5MWJhZDA2YWY1MTgzYzAwMTAxMTA1MDQyZjBkMTA3MTFjNmRmYjI4YmFiOA%3D%3D&v=1&f=sd', 'is_gif': False, 'scrubber_media_url': 'https://v.redd.it/j5f97gebm65f1/DASH_96.mp4', 'transcoding_status': 'completed', 'width': 1280}} | t3_1l4c3ds | /r/LocalLLaMA/comments/1l4c3ds/ios_app_to_talk_voice_to_selfhosted_llms/ | false | false | 2 | {'enabled': False, 'images': [{'id': 'bWx4aHJiZWJtNjVmMWZeSLuSW_UpsoL8BF3Jy7Fb26rc0Xywrz63KN15RsFb', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/bWx4aHJiZWJtNjVmMWZeSLuSW_UpsoL8BF3Jy7Fb26rc0Xywrz63KN15RsFb.png?width=108&crop=smart&format=pjpg&auto=webp&s=0e7c96637ab67e6bc63fffcf4374884539f75ee0', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/bWx4aHJiZWJtNjVmMWZeSLuSW_UpsoL8BF3Jy7Fb26rc0Xywrz63KN15RsFb.png?width=216&crop=smart&format=pjpg&auto=webp&s=ff4afbba02a27972f7c053150456be2147062c3f', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/bWx4aHJiZWJtNjVmMWZeSLuSW_UpsoL8BF3Jy7Fb26rc0Xywrz63KN15RsFb.png?width=320&crop=smart&format=pjpg&auto=webp&s=40a91dfb8b3b6ca80e2ca8b1c290f9c2d75a9c45', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/bWx4aHJiZWJtNjVmMWZeSLuSW_UpsoL8BF3Jy7Fb26rc0Xywrz63KN15RsFb.png?width=640&crop=smart&format=pjpg&auto=webp&s=41cc0ad6d5247dc274215853904ffc9c081f01aa', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/bWx4aHJiZWJtNjVmMWZeSLuSW_UpsoL8BF3Jy7Fb26rc0Xywrz63KN15RsFb.png?width=960&crop=smart&format=pjpg&auto=webp&s=0c24651c5a7b54b292c317953695558df33b633f', 'width': 960}, {'height': 607, 'url': 'https://external-preview.redd.it/bWx4aHJiZWJtNjVmMWZeSLuSW_UpsoL8BF3Jy7Fb26rc0Xywrz63KN15RsFb.png?width=1080&crop=smart&format=pjpg&auto=webp&s=de87b76abd71ecf7c231b264bcd1e767e20643a8', 'width': 1080}], 'source': {'height': 720, 'url': 'https://external-preview.redd.it/bWx4aHJiZWJtNjVmMWZeSLuSW_UpsoL8BF3Jy7Fb26rc0Xywrz63KN15RsFb.png?format=pjpg&auto=webp&s=699d2adc069e2e87d21bb5c09937d8386f6d330c', 'width': 1280}, 'variants': {}}]} |
||
Step-by-step GraphRAG tutorial for multi-hop QA - from the RAG_Techniques repo (16K+ stars) | 60 | Many people asked for this! Now I have a new step-by-step tutorial on **GraphRAG** in my **RAG\_Techniques** repo on GitHub (16K+ stars), one of the world’s leading RAG resources packed with hands-on tutorials for different techniques.
**Why do we need this?**
Regular RAG cannot answer hard questions like:
*“How did the protagonist defeat the villain’s assistant?”* (Harry Potter and Quirrell)
It cannot connect information across multiple steps.
**How does it work?**
It combines vector search with graph reasoning.
It uses only vector databases - no need for separate graph databases.
It finds entities and relationships, expands connections using math, and uses AI to pick the right answers.
**What you will learn**
* Turn text into entities, relationships and passages for vector storage
* Build two types of search (entity search and relationship search)
* Use math matrices to find connections between data points
* Use AI prompting to choose the best relationships
* Handle complex questions that need multiple logical steps
* Compare results: Graph RAG vs simple RAG with real examples
**Full notebook available here:**
[GraphRAG with vector search and multi-step reasoning](https://github.com/NirDiamant/RAG_TECHNIQUES/blob/main/all_rag_techniques/graphrag_with_milvus_vectordb.ipynb) | 2025-06-05T22:08:08 | https://www.reddit.com/r/LocalLLaMA/comments/1l4c4hh/stepbystep_graphrag_tutorial_for_multihop_qa_from/ | Nir777 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4c4hh | false | null | t3_1l4c4hh | /r/LocalLLaMA/comments/1l4c4hh/stepbystep_graphrag_tutorial_for_multihop_qa_from/ | false | false | self | 60 | {'enabled': False, 'images': [{'id': '5R8NiYOchlJmm8fWG-mcHa7WZPElNUSt07Y6VYeJE6Y', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/FX9dUlXm1lJTuauNBIZBuXGNPgFZRyMezMHbvw0SgZc.jpg?width=108&crop=smart&auto=webp&s=732a922b7387388ae884f9b9fab8442f071bea63', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/FX9dUlXm1lJTuauNBIZBuXGNPgFZRyMezMHbvw0SgZc.jpg?width=216&crop=smart&auto=webp&s=623f10ffde882378b1df82039dcdb5ec2b54bf8f', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/FX9dUlXm1lJTuauNBIZBuXGNPgFZRyMezMHbvw0SgZc.jpg?width=320&crop=smart&auto=webp&s=f4b499d4df06be83cc3fbe8b9a722f838fce1285', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/FX9dUlXm1lJTuauNBIZBuXGNPgFZRyMezMHbvw0SgZc.jpg?width=640&crop=smart&auto=webp&s=2d29109c5a6531fa495b91078b544b2eef487b50', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/FX9dUlXm1lJTuauNBIZBuXGNPgFZRyMezMHbvw0SgZc.jpg?width=960&crop=smart&auto=webp&s=6084a02b8c4985757229f5680edc45deeca200fd', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/FX9dUlXm1lJTuauNBIZBuXGNPgFZRyMezMHbvw0SgZc.jpg?width=1080&crop=smart&auto=webp&s=283301ad7679c37513bf67912c60d88b9bb9a33c', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/FX9dUlXm1lJTuauNBIZBuXGNPgFZRyMezMHbvw0SgZc.jpg?auto=webp&s=138cc5970316e08ddda1a633f2b47032519b249e', 'width': 1200}, 'variants': {}}]} |
Do LLMs have opinions? | 0 | Or do they simply just mirror our inputs, and adhere to instructions in system prompts while mimicking the data from training/fine-tuning?
Like people say that LLMs are shown to hold liberal views, but is that not just because the dominant part of the training data is expressions of people holding such views? | 2025-06-05T22:17:32 | https://www.reddit.com/r/LocalLLaMA/comments/1l4cc2e/do_llms_have_opinions/ | WeAllFuckingFucked | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4cc2e | false | null | t3_1l4cc2e | /r/LocalLLaMA/comments/1l4cc2e/do_llms_have_opinions/ | false | false | self | 0 | null |
Open sourcing SERAX a file format built specifically for AI data generation | 1 | [removed] | 2025-06-05T22:29:34 | https://www.reddit.com/r/LocalLLaMA/comments/1l4clui/open_sourcing_serax_a_file_format_built/ | VantigeAI | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4clui | false | null | t3_1l4clui | /r/LocalLLaMA/comments/1l4clui/open_sourcing_serax_a_file_format_built/ | false | false | self | 1 | null |
Open sourcing SERAX a file format built specifically for AI data generation | 1 | [removed] | 2025-06-05T22:44:49 | https://www.reddit.com/r/LocalLLaMA/comments/1l4cxy6/open_sourcing_serax_a_file_format_built/ | VantigeAI | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4cxy6 | false | null | t3_1l4cxy6 | /r/LocalLLaMA/comments/1l4cxy6/open_sourcing_serax_a_file_format_built/ | false | false | self | 1 | null |
New Quantization Paper: Model-Preserving Adaptive Rounding | 1 | [removed] | 2025-06-05T22:50:45 | https://www.reddit.com/r/LocalLLaMA/comments/1l4d2qe/new_quantization_paper_modelpreserving_adaptive/ | tsengalb99 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4d2qe | false | null | t3_1l4d2qe | /r/LocalLLaMA/comments/1l4d2qe/new_quantization_paper_modelpreserving_adaptive/ | false | false | self | 1 | null |
Did avian.io go under? | 0 | Cannot get response from the support and all API requests have been failing for weeks. | 2025-06-05T22:57:54 | https://www.reddit.com/r/LocalLLaMA/comments/1l4d8dn/did_avianio_go_under/ | punkpeye | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4d8dn | false | null | t3_1l4d8dn | /r/LocalLLaMA/comments/1l4d8dn/did_avianio_go_under/ | false | false | self | 0 | null |
A little gpu poor man needing some help | 12 | Hello my dear friends of opensource llms. I unfortunately encountered a situation to which I can't find any solution. I want to use tensor parallelism with exl2, as i have two rtx 3060. But exl2 quantization only uses on gpu by design, which results in oom errors for me. If somebody could convert the qwen long (https://huggingface.co/Tongyi-Zhiwen/QwenLong-L1-32B) into exl 2 around 4-4.5 bpw, I'd come in my pants. | 2025-06-05T22:57:58 | https://www.reddit.com/r/LocalLLaMA/comments/1l4d8fc/a_little_gpu_poor_man_needing_some_help/ | Flashy_Management962 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4d8fc | false | null | t3_1l4d8fc | /r/LocalLLaMA/comments/1l4d8fc/a_little_gpu_poor_man_needing_some_help/ | false | false | self | 12 | {'enabled': False, 'images': [{'id': 'jP7Lx5njiL0YGj9UteZAtC6ujAbqS9hzjcauwjE7bRY', 'resolutions': [{'height': 58, 'url': 'https://external-preview.redd.it/6xt2dj6pF7ujB6ey8kvUmE-zcpCNrm-RJmVvkmzTjsI.jpg?width=108&crop=smart&auto=webp&s=da5cdf62b7adb5dfd525dd4e7ce5816b62d18d96', 'width': 108}, {'height': 116, 'url': 'https://external-preview.redd.it/6xt2dj6pF7ujB6ey8kvUmE-zcpCNrm-RJmVvkmzTjsI.jpg?width=216&crop=smart&auto=webp&s=8a9f03079a710dff1b73949ed860efa8fa3eea4d', 'width': 216}, {'height': 172, 'url': 'https://external-preview.redd.it/6xt2dj6pF7ujB6ey8kvUmE-zcpCNrm-RJmVvkmzTjsI.jpg?width=320&crop=smart&auto=webp&s=587a4f1905cc9f9855ab27efa7232a127cf05184', 'width': 320}, {'height': 345, 'url': 'https://external-preview.redd.it/6xt2dj6pF7ujB6ey8kvUmE-zcpCNrm-RJmVvkmzTjsI.jpg?width=640&crop=smart&auto=webp&s=9f4152dceb2123eba108beb3d2eb34236ce69da1', 'width': 640}, {'height': 518, 'url': 'https://external-preview.redd.it/6xt2dj6pF7ujB6ey8kvUmE-zcpCNrm-RJmVvkmzTjsI.jpg?width=960&crop=smart&auto=webp&s=277df9a364feb1445582568d8069d9679e517f0c', 'width': 960}, {'height': 583, 'url': 'https://external-preview.redd.it/6xt2dj6pF7ujB6ey8kvUmE-zcpCNrm-RJmVvkmzTjsI.jpg?width=1080&crop=smart&auto=webp&s=31841d7a94efb48945d2c209a2c2063e22c2fa28', 'width': 1080}], 'source': {'height': 648, 'url': 'https://external-preview.redd.it/6xt2dj6pF7ujB6ey8kvUmE-zcpCNrm-RJmVvkmzTjsI.jpg?auto=webp&s=fb4b42baebd4105b0587fab3e4925f6ec9b2cecf', 'width': 1200}, 'variants': {}}]} |
Align text with audio | 0 | Hi, I have an audio generated using OpenAi’s TTS API and I have a raw transcript.
Is there a practical way to generate SRT or ASS captions with timestamps without processing the audio file?
I am currently using Whisper library to generate captions, but it takes 16 seconds to process the audio file. | 2025-06-06T00:02:43 | https://www.reddit.com/r/LocalLLaMA/comments/1l4ekah/align_text_with_audio/ | Terrible_Dimension66 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4ekah | false | null | t3_1l4ekah | /r/LocalLLaMA/comments/1l4ekah/align_text_with_audio/ | false | false | self | 0 | null |
OpenThinker3 7B released | 1 | [https://huggingface.co/open-thoughts/OpenThinker3-7B](https://huggingface.co/open-thoughts/OpenThinker3-7B)
[https://huggingface.co/bartowski/open-thoughts\_OpenThinker3-7B-GGUF](https://huggingface.co/bartowski/open-thoughts_OpenThinker3-7B-GGUF) | 2025-06-06T00:26:02 | https://www.reddit.com/r/LocalLLaMA/comments/1l4f1f6/openthinker3_7b_released/ | jacek2023 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4f1f6 | false | null | t3_1l4f1f6 | /r/LocalLLaMA/comments/1l4f1f6/openthinker3_7b_released/ | false | false | self | 1 | {'enabled': False, 'images': [{'id': 'aa7mY1LSqAx_HZNaXVUa4ki0ZQltBVxg310whTh9EG0', 'resolutions': [{'height': 58, 'url': 'https://external-preview.redd.it/YqXUfGELS3s8NgpI8N8mcy9tyckDXxgiRMqaMOwQmJ4.jpg?width=108&crop=smart&auto=webp&s=4ec479e9c6bcd24dad79b5f1a3efc6ba88a44783', 'width': 108}, {'height': 116, 'url': 'https://external-preview.redd.it/YqXUfGELS3s8NgpI8N8mcy9tyckDXxgiRMqaMOwQmJ4.jpg?width=216&crop=smart&auto=webp&s=d985bbd741496854a37f573182d5fc3d928d4151', 'width': 216}, {'height': 172, 'url': 'https://external-preview.redd.it/YqXUfGELS3s8NgpI8N8mcy9tyckDXxgiRMqaMOwQmJ4.jpg?width=320&crop=smart&auto=webp&s=1510580e18faee06c1d14255a0993a90068d91cf', 'width': 320}, {'height': 345, 'url': 'https://external-preview.redd.it/YqXUfGELS3s8NgpI8N8mcy9tyckDXxgiRMqaMOwQmJ4.jpg?width=640&crop=smart&auto=webp&s=1ab990150292f2bdad4b94e6edd98b1d4d23036e', 'width': 640}, {'height': 518, 'url': 'https://external-preview.redd.it/YqXUfGELS3s8NgpI8N8mcy9tyckDXxgiRMqaMOwQmJ4.jpg?width=960&crop=smart&auto=webp&s=e608805653212118a52186d6efc06eafec887356', 'width': 960}, {'height': 583, 'url': 'https://external-preview.redd.it/YqXUfGELS3s8NgpI8N8mcy9tyckDXxgiRMqaMOwQmJ4.jpg?width=1080&crop=smart&auto=webp&s=537dad8cfe997564ca3ec93ae3136288bba73ad4', 'width': 1080}], 'source': {'height': 648, 'url': 'https://external-preview.redd.it/YqXUfGELS3s8NgpI8N8mcy9tyckDXxgiRMqaMOwQmJ4.jpg?auto=webp&s=aa212abfdf8286c696c52351531692c732c3caad', 'width': 1200}, 'variants': {}}]} |
OpenThinker3 released | 216 | [https://huggingface.co/open-thoughts/OpenThinker3-7B](https://huggingface.co/open-thoughts/OpenThinker3-7B)
[https://huggingface.co/bartowski/open-thoughts\_OpenThinker3-7B-GGUF](https://huggingface.co/bartowski/open-thoughts_OpenThinker3-7B-GGUF) | 2025-06-06T00:26:49 | https://www.reddit.com/r/LocalLLaMA/comments/1l4f1yp/openthinker3_released/ | jacek2023 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4f1yp | false | null | t3_1l4f1yp | /r/LocalLLaMA/comments/1l4f1yp/openthinker3_released/ | false | false | self | 216 | {'enabled': False, 'images': [{'id': 'aa7mY1LSqAx_HZNaXVUa4ki0ZQltBVxg310whTh9EG0', 'resolutions': [{'height': 58, 'url': 'https://external-preview.redd.it/YqXUfGELS3s8NgpI8N8mcy9tyckDXxgiRMqaMOwQmJ4.jpg?width=108&crop=smart&auto=webp&s=4ec479e9c6bcd24dad79b5f1a3efc6ba88a44783', 'width': 108}, {'height': 116, 'url': 'https://external-preview.redd.it/YqXUfGELS3s8NgpI8N8mcy9tyckDXxgiRMqaMOwQmJ4.jpg?width=216&crop=smart&auto=webp&s=d985bbd741496854a37f573182d5fc3d928d4151', 'width': 216}, {'height': 172, 'url': 'https://external-preview.redd.it/YqXUfGELS3s8NgpI8N8mcy9tyckDXxgiRMqaMOwQmJ4.jpg?width=320&crop=smart&auto=webp&s=1510580e18faee06c1d14255a0993a90068d91cf', 'width': 320}, {'height': 345, 'url': 'https://external-preview.redd.it/YqXUfGELS3s8NgpI8N8mcy9tyckDXxgiRMqaMOwQmJ4.jpg?width=640&crop=smart&auto=webp&s=1ab990150292f2bdad4b94e6edd98b1d4d23036e', 'width': 640}, {'height': 518, 'url': 'https://external-preview.redd.it/YqXUfGELS3s8NgpI8N8mcy9tyckDXxgiRMqaMOwQmJ4.jpg?width=960&crop=smart&auto=webp&s=e608805653212118a52186d6efc06eafec887356', 'width': 960}, {'height': 583, 'url': 'https://external-preview.redd.it/YqXUfGELS3s8NgpI8N8mcy9tyckDXxgiRMqaMOwQmJ4.jpg?width=1080&crop=smart&auto=webp&s=537dad8cfe997564ca3ec93ae3136288bba73ad4', 'width': 1080}], 'source': {'height': 648, 'url': 'https://external-preview.redd.it/YqXUfGELS3s8NgpI8N8mcy9tyckDXxgiRMqaMOwQmJ4.jpg?auto=webp&s=aa212abfdf8286c696c52351531692c732c3caad', 'width': 1200}, 'variants': {}}]} |
What happened to WizardLM-2 8x22b? | 74 | I was mildly intrigued when I saw /u/SomeOddCodeGuy [mention that](https://old.reddit.com/r/LocalLLaMA/comments/1cvw3s5/my_personal_guide_for_developing_software_with_ai/):
> I prefer local AI models for various reasons, and [the quality of some like WizardLM-2 8x22b are on par with ChatGPT 4](https://prollm.toqan.ai/leaderboard), but use what you have available and feel most comfortable with.
There's a Microsoft HF page that is now [empty](https://huggingface.co/collections/microsoft/wizardlm-661d403f71e6c8257dbd598a), with a history showing that a model once existed but appears to have been deleted.
This is an old model now, so not really looking to fire it up and use it, but does anyone know what happened to get it taken down? | 2025-06-06T00:58:45 | https://www.reddit.com/r/LocalLLaMA/comments/1l4fo3x/what_happened_to_wizardlm2_8x22b/ | RobotRobotWhatDoUSee | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4fo3x | false | null | t3_1l4fo3x | /r/LocalLLaMA/comments/1l4fo3x/what_happened_to_wizardlm2_8x22b/ | false | false | self | 74 | null |
Turn based two model critique for rounds to refine answer - any examples or FOSS projects? | 1 | I felt like I heard of someone making a pipeline of lets say code prime fib in python as a prompt, it is served by model1, model ones answer then feeds to model2 to critique, This back and forth goes on for int turns to hopefully come back with a better answer than just one model answering.
It's similar to what thinking models do but broken down. Is this worth testing for local hosting, potentially for offline Coding with AI? Good idea to test, already been tested? | 2025-06-06T01:31:21 | https://www.reddit.com/r/LocalLLaMA/comments/1l4gb6s/turn_based_two_model_critique_for_rounds_to/ | HilLiedTroopsDied | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4gb6s | false | null | t3_1l4gb6s | /r/LocalLLaMA/comments/1l4gb6s/turn_based_two_model_critique_for_rounds_to/ | false | false | self | 1 | null |
Smallest llm that can help in text rearrangement | 1 | Ive been using a translation model. Need a smallest llm that can just rearrange the output text acc to language needs | 2025-06-06T02:07:20 | https://www.reddit.com/r/LocalLLaMA/comments/1l4gzzw/smallest_llm_that_can_help_in_text_rearrangement/ | Away_Expression_3713 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4gzzw | false | null | t3_1l4gzzw | /r/LocalLLaMA/comments/1l4gzzw/smallest_llm_that_can_help_in_text_rearrangement/ | false | false | self | 1 | null |
Is ddr5/pcie5 necessary for a rtx pro 6000 workstation? | 0 | For a PC that uses rtx pro 6000 as its gpu, do you think ddr5 ram and pcie 5.0 are necessary to fully utilize the gpu?
What about SSD speed and RAID?
And since pro 6000 doesn’t support nvlink, is it reasonable to have two pro 6000s on the motherboard and let them bridge through pcie?
We know that ddr4 and pcie4 components can be cheaper, what do you think?
| 2025-06-06T02:25:13 | https://www.reddit.com/r/LocalLLaMA/comments/1l4hccw/is_ddr5pcie5_necessary_for_a_rtx_pro_6000/ | SpecialistPear755 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4hccw | false | null | t3_1l4hccw | /r/LocalLLaMA/comments/1l4hccw/is_ddr5pcie5_necessary_for_a_rtx_pro_6000/ | false | false | self | 0 | null |
Llama 3.3:70B on HP Z2 Mini G1a works, but…. | 1 | [removed] | 2025-06-06T02:54:15 | walkerb1972 | i.redd.it | 1970-01-01T00:00:00 | 0 | {} | 1l4hw13 | false | null | t3_1l4hw13 | /r/LocalLLaMA/comments/1l4hw13/llama_3370b_on_hp_z2_mini_g1a_works_but/ | false | false | default | 1 | {'enabled': True, 'images': [{'id': '93yvq9cl185f1', 'resolutions': [{'height': 81, 'url': 'https://preview.redd.it/93yvq9cl185f1.jpeg?width=108&crop=smart&auto=webp&s=60b3c86cbde14f1f5332f66616652850c1c1fb01', 'width': 108}, {'height': 162, 'url': 'https://preview.redd.it/93yvq9cl185f1.jpeg?width=216&crop=smart&auto=webp&s=a268469930d25fe384dcbf69d88aea85d6452889', 'width': 216}, {'height': 240, 'url': 'https://preview.redd.it/93yvq9cl185f1.jpeg?width=320&crop=smart&auto=webp&s=e9e7aa8ecd6ece1bc62092a717b4d67ce9f5a7f0', 'width': 320}, {'height': 480, 'url': 'https://preview.redd.it/93yvq9cl185f1.jpeg?width=640&crop=smart&auto=webp&s=e136ea7ed94698d6644567da3b63e0688c15e623', 'width': 640}, {'height': 720, 'url': 'https://preview.redd.it/93yvq9cl185f1.jpeg?width=960&crop=smart&auto=webp&s=e83f48da0306f2cce4f8116bb2194dc47b8a2dde', 'width': 960}, {'height': 810, 'url': 'https://preview.redd.it/93yvq9cl185f1.jpeg?width=1080&crop=smart&auto=webp&s=5cd86bc778885d151cbff11fde3b6932ac47b275', 'width': 1080}], 'source': {'height': 3024, 'url': 'https://preview.redd.it/93yvq9cl185f1.jpeg?auto=webp&s=c71264be715a3b44332286c0c7e0b544697b250d', 'width': 4032}, 'variants': {}}]} |
|
How to share an open source project to this sub without getting filtered? | 0 | [removed] | 2025-06-06T03:09:15 | https://www.reddit.com/r/LocalLLaMA/comments/1l4i5xn/how_to_share_an_open_source_project_to_this_sub/ | VantigeAI | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4i5xn | false | null | t3_1l4i5xn | /r/LocalLLaMA/comments/1l4i5xn/how_to_share_an_open_source_project_to_this_sub/ | false | false | self | 0 | null |
Best general purpose LLM for an 8GB 3060? | 3 | Hey everyone,
I’m running a local LLM setup on a home server with a 3060 (8GB VRAM), using Ollama and OpenWebUI. Just after some advice on what the best general-purpose model would be for this kind of hardware.
Mainly using it for general chat, coding help, and a bit of local data processing. Priorities are good performance, low VRAM use, and relatively strong output quality without massive context windows or plugins.
I’ve looked at a few like Gemma, Mistral, DeepSeek, etc., but not sure which format or quant level gives the best balance on this GPU.
Anyone got suggestions for a model + quant combo that works well on a 3060?
Cheers! | 2025-06-06T03:14:52 | https://www.reddit.com/r/LocalLLaMA/comments/1l4i9st/best_general_purpose_llm_for_an_8gb_3060/ | DisgustingBlackChimp | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4i9st | false | null | t3_1l4i9st | /r/LocalLLaMA/comments/1l4i9st/best_general_purpose_llm_for_an_8gb_3060/ | false | false | self | 3 | null |
MiniCPM4: Ultra-Efficient LLMs on End Devices | 65 | Randomly saw this -- no models yet. | 2025-06-06T03:40:56 | https://huggingface.co/collections/openbmb/minicpm-4-6841ab29d180257e940baa9b | adefa | huggingface.co | 1970-01-01T00:00:00 | 0 | {} | 1l4irk9 | false | null | t3_1l4irk9 | /r/LocalLLaMA/comments/1l4irk9/minicpm4_ultraefficient_llms_on_end_devices/ | false | false | default | 65 | {'enabled': False, 'images': [{'id': 'urN7B2TlaIBWXNq4r0fZnMUhUh2UrMvsfjcXAUJ2oTc', 'resolutions': [{'height': 58, 'url': 'https://external-preview.redd.it/QvrTYBQgDHPkgT3IRbnKHNb-1zHcP8AdJT7CXsvRCqg.jpg?width=108&crop=smart&auto=webp&s=0b6dcb95f5889fe301fc6ee42ce2d2a1ba53781e', 'width': 108}, {'height': 116, 'url': 'https://external-preview.redd.it/QvrTYBQgDHPkgT3IRbnKHNb-1zHcP8AdJT7CXsvRCqg.jpg?width=216&crop=smart&auto=webp&s=4f75a687dba9c41d1941a847b8648b77bee26295', 'width': 216}, {'height': 172, 'url': 'https://external-preview.redd.it/QvrTYBQgDHPkgT3IRbnKHNb-1zHcP8AdJT7CXsvRCqg.jpg?width=320&crop=smart&auto=webp&s=5abfeeea208ec6b067391b582d5884fe1c61172f', 'width': 320}, {'height': 345, 'url': 'https://external-preview.redd.it/QvrTYBQgDHPkgT3IRbnKHNb-1zHcP8AdJT7CXsvRCqg.jpg?width=640&crop=smart&auto=webp&s=a5b96b807c9e088b046df65be2f64ac04b84e550', 'width': 640}, {'height': 518, 'url': 'https://external-preview.redd.it/QvrTYBQgDHPkgT3IRbnKHNb-1zHcP8AdJT7CXsvRCqg.jpg?width=960&crop=smart&auto=webp&s=97f2bd5abc29d8ebe6a2b8fecf6ff58aecb73104', 'width': 960}, {'height': 583, 'url': 'https://external-preview.redd.it/QvrTYBQgDHPkgT3IRbnKHNb-1zHcP8AdJT7CXsvRCqg.jpg?width=1080&crop=smart&auto=webp&s=e66ec6a3a865f8cd2ddce4cdbdb07271dc68e7b0', 'width': 1080}], 'source': {'height': 648, 'url': 'https://external-preview.redd.it/QvrTYBQgDHPkgT3IRbnKHNb-1zHcP8AdJT7CXsvRCqg.jpg?auto=webp&s=90698c3fdd98260e38284ddb004ed9da396c94a6', 'width': 1200}, 'variants': {}}]} |
anyone encountered this problem where f5 tts gives file with no sound ? | 4 | 2025-06-06T03:53:52 | SnooDrawings7547 | i.redd.it | 1970-01-01T00:00:00 | 0 | {} | 1l4izz4 | false | null | t3_1l4izz4 | /r/LocalLLaMA/comments/1l4izz4/anyone_encountered_this_problem_where_f5_tts/ | false | false | default | 4 | {'enabled': True, 'images': [{'id': '0jhn08f6c85f1', 'resolutions': [{'height': 45, 'url': 'https://preview.redd.it/0jhn08f6c85f1.png?width=108&crop=smart&auto=webp&s=27af8367c4f71e952d866534963581a7684833e3', 'width': 108}, {'height': 91, 'url': 'https://preview.redd.it/0jhn08f6c85f1.png?width=216&crop=smart&auto=webp&s=193178baac6ed607799499cf65acb8112e6a68cc', 'width': 216}, {'height': 135, 'url': 'https://preview.redd.it/0jhn08f6c85f1.png?width=320&crop=smart&auto=webp&s=9860b64083c092e9a946737c4d2114dee1251b0b', 'width': 320}, {'height': 271, 'url': 'https://preview.redd.it/0jhn08f6c85f1.png?width=640&crop=smart&auto=webp&s=d0650204c45ec7086215ff04ef383a4a26550f18', 'width': 640}, {'height': 406, 'url': 'https://preview.redd.it/0jhn08f6c85f1.png?width=960&crop=smart&auto=webp&s=5277ef740b35bfaa136ca4f69d80fd95de8c33a2', 'width': 960}, {'height': 457, 'url': 'https://preview.redd.it/0jhn08f6c85f1.png?width=1080&crop=smart&auto=webp&s=45f3d3770b6224db94deb5214c14a17259c01838', 'width': 1080}], 'source': {'height': 639, 'url': 'https://preview.redd.it/0jhn08f6c85f1.png?auto=webp&s=a23ae45a4504f94d8adbc73a58a63dcb1696c65d', 'width': 1509}, 'variants': {}}]} |
||
Thinking about switching from cloud based AI to sth more local | 1 | [removed] | 2025-06-06T03:57:32 | [deleted] | 1970-01-01T00:00:00 | 0 | {} | 1l4j2dy | false | null | t3_1l4j2dy | /r/LocalLLaMA/comments/1l4j2dy/thinking_about_switching_from_cloud_based_ai_to/ | false | false | default | 1 | null |
||
Private LLM For Company | 1 | [removed] | 2025-06-06T04:34:36 | https://www.reddit.com/r/LocalLLaMA/comments/1l4jqtr/private_llm_for_company/ | Acataleptic23 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4jqtr | false | null | t3_1l4jqtr | /r/LocalLLaMA/comments/1l4jqtr/private_llm_for_company/ | false | false | self | 1 | null |
Do we need a new programming language optimized for AI to write code? | 1 | [removed] | 2025-06-06T04:37:36 | https://www.reddit.com/r/LocalLLaMA/comments/1l4jsnb/do_we_need_a_new_programming_language_optimized/ | ggeezz12 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4jsnb | false | null | t3_1l4jsnb | /r/LocalLLaMA/comments/1l4jsnb/do_we_need_a_new_programming_language_optimized/ | false | false | self | 1 | null |
Model-Preserving Adaptive Rounding | 1 | [removed] | 2025-06-06T05:12:41 | https://www.reddit.com/r/LocalLLaMA/comments/1l4ke2z/modelpreserving_adaptive_rounding/ | tsengalb99 | self.LocalLLaMA | 1970-01-01T00:00:00 | 0 | {} | 1l4ke2z | false | null | t3_1l4ke2z | /r/LocalLLaMA/comments/1l4ke2z/modelpreserving_adaptive_rounding/ | false | false | self | 1 | null |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.