title
stringlengths
1
300
score
int64
0
8.54k
selftext
stringlengths
0
40k
created
timestamp[ns]
url
stringlengths
0
780
author
stringlengths
3
20
domain
stringlengths
0
82
edited
timestamp[ns]
gilded
int64
0
2
gildings
stringclasses
7 values
id
stringlengths
7
7
locked
bool
2 classes
media
stringlengths
646
1.8k
name
stringlengths
10
10
permalink
stringlengths
33
82
spoiler
bool
2 classes
stickied
bool
2 classes
thumbnail
stringlengths
4
213
ups
int64
0
8.54k
preview
stringlengths
301
5.01k
FUTURE OF CLOSED VS OPEN SOURCE AI
4
# I know room temperature iq andies will try to ERRM actually me and the cope after seeing chinese AI is just too much , but hear me out - innovation is good for everyone and better when its open sourced - Competition is good for end consumer - Any model that can reach state of the art results with massive cost reductinos is preferable period - Any model that is free and open source to use is preferable over closed and paid ones for big orgs and companies even if you are in your mom's basement you have no idea how quickly prices add up when you are inferencing a 2x expensive model and providing it to a million people - Chinese are more serious about open ness then US labs and this will pay off in the long run always (no matter who has better models Grok or Open AI or anyone else any open model can be improved by everyone and tested and improved upon very quick driving the cost down even more - More people are waking up to the idea of open soruce AI and privacy so any close labs will be at disadvantage in future , lack of trust is 100x with tech that is highly personlized like LLMs - Chinese will do everyting to keep this open source just to distrubt the market and Zuck also will keep llama open source for the time being so - Close AI labs can only win if their models are much much much more intelligent then open ones but cheaper to run then open models - Companies use llama instead of SOTA all the time because they are free and can be manipulated as you want and this will be the case untill the AI models are so cheap to run that using the API and using it in a company is just few dollars a day bill for the smartest model
2025-01-31T16:46:15
https://www.reddit.com/r/LocalLLaMA/comments/1iej3uf/future_of_closed_vs_open_source_ai/
bilalazhar72
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iej3uf
false
null
t3_1iej3uf
/r/LocalLLaMA/comments/1iej3uf/future_of_closed_vs_open_source_ai/
false
false
self
4
null
DeepSeek-R1 70B: Runs best on H100 clusters - Me: Spins up my 5-year-old PC ‘Yeah, that should be fine.
1
[removed]
2025-01-31T16:48:49
[deleted]
1970-01-01T00:00:00
0
{}
1iej61t
false
null
t3_1iej61t
/r/LocalLLaMA/comments/1iej61t/deepseekr1_70b_runs_best_on_h100_clusters_me/
false
false
default
1
null
Has anyone run R1 with flash attention?
10
I see a lot of posts about hacky R1 rigs, which is very interesting, but has anyone run it with flash attention on a long context yet? Llama.cpp has FA implemented for CPU so its compatible with the various hacky rigs. Curious about the performance and other characteristics at that scale.
2025-01-31T16:48:50
https://www.reddit.com/r/LocalLLaMA/comments/1iej62q/has_anyone_run_r1_with_flash_attention/
1ncehost
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iej62q
false
null
t3_1iej62q
/r/LocalLLaMA/comments/1iej62q/has_anyone_run_r1_with_flash_attention/
false
false
self
10
null
DeepSeek-R1 70B: Runs best on H100 clusters Me: Spins up my 10-year-old PC ‘Yeah, that should be fine.
1
2025-01-31T16:49:46
https://i.redd.it/f8f8424tzcge1.jpeg
Content-Cookie-7992
i.redd.it
1970-01-01T00:00:00
0
{}
1iej6wq
false
null
t3_1iej6wq
/r/LocalLLaMA/comments/1iej6wq/deepseekr1_70b_runs_best_on_h100_clusters_me/
false
false
https://b.thumbs.redditm…hKMkkWaDYbVk.jpg
1
{'enabled': True, 'images': [{'id': 'fJYjqRnC3HFR0diMxAEk1xRogCsbK9weZ9jTBQfCd3I', 'resolutions': [{'height': 137, 'url': 'https://preview.redd.it/f8f8424tzcge1.jpeg?width=108&crop=smart&auto=webp&s=47bdb96a256a5b9e789faf26ced4e0eb776c0e22', 'width': 108}, {'height': 274, 'url': 'https://preview.redd.it/f8f8424tzcge1.jpeg?width=216&crop=smart&auto=webp&s=693c4440ba7ad1e606baa511dca24f50fe4c3e5b', 'width': 216}, {'height': 407, 'url': 'https://preview.redd.it/f8f8424tzcge1.jpeg?width=320&crop=smart&auto=webp&s=517d2692fcf105bb09d564b45e990fe5da0a4af3', 'width': 320}], 'source': {'height': 636, 'url': 'https://preview.redd.it/f8f8424tzcge1.jpeg?auto=webp&s=28ece07c525e5136febc75b2e927bf257f5daa1a', 'width': 500}, 'variants': {}}]}
What is the best VS code AI extension?
9
What is the best AI VS code extension in your opinion? Which one do you use or used before? Why you switched and what extension you chosed to go with? I am mainly interested in autocompletion and preferably free. I use Codeium for autocompletion, it is absolutely free, but I think it is far from being best. Not sure which model it uses for autocompletion, probably gpt4 non o version. I heard that Cursor AI is great, but it's like an entire new code editor and I don't want to switch, even though it is based on VS code and very similar. Sometimes I use Deepseek V3 on their website, it really helps not just solving problems I encounter and can't solve myself, but also showing new ways to programm stuff, I look at it's code and learn new things. I think having Deepseek V3 as a code extension would be the best choice for me, since it is free and very capable in code, but I don't know such extension. So, what is the best VS code AI extension as of January 2025? Thanks in advance.
2025-01-31T16:51:21
https://www.reddit.com/r/LocalLLaMA/comments/1iej88m/what_is_the_best_vs_code_ai_extension/
SkylarNox
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iej88m
false
null
t3_1iej88m
/r/LocalLLaMA/comments/1iej88m/what_is_the_best_vs_code_ai_extension/
false
false
self
9
null
DeepSeek 8B gets surprised by the 3 R's in strawberry, but manages to do it
456
2025-01-31T16:54:33
https://i.redd.it/oemawg4i0dge1.png
Fusseldieb
i.redd.it
1970-01-01T00:00:00
0
{}
1iejazu
false
null
t3_1iejazu
/r/LocalLLaMA/comments/1iejazu/deepseek_8b_gets_surprised_by_the_3_rs_in/
false
false
https://b.thumbs.redditm…CpUqATp5TO2c.jpg
456
{'enabled': True, 'images': [{'id': 'K3klQArkoWma5_iljX7g-EP-EJNGBtNTBza5JoROye8', 'resolutions': [{'height': 68, 'url': 'https://preview.redd.it/oemawg4i0dge1.png?width=108&crop=smart&auto=webp&s=e6b489af57d724a9b55adb8d676dd19b364e20c1', 'width': 108}, {'height': 137, 'url': 'https://preview.redd.it/oemawg4i0dge1.png?width=216&crop=smart&auto=webp&s=406eb60a6906e83c98b2ffe6f279ac7ebd6f863a', 'width': 216}, {'height': 204, 'url': 'https://preview.redd.it/oemawg4i0dge1.png?width=320&crop=smart&auto=webp&s=d52527550ab7d884fc7469ecb3c553afbac77048', 'width': 320}, {'height': 408, 'url': 'https://preview.redd.it/oemawg4i0dge1.png?width=640&crop=smart&auto=webp&s=1c75d540a6d15cd68cdeabc673be92b5e657f0e0', 'width': 640}, {'height': 612, 'url': 'https://preview.redd.it/oemawg4i0dge1.png?width=960&crop=smart&auto=webp&s=52492aebbc744d3203494a06cc2a4a1ad83c72ed', 'width': 960}], 'source': {'height': 630, 'url': 'https://preview.redd.it/oemawg4i0dge1.png?auto=webp&s=eaca804013966a4654e8518dac8a7ce7bf6f14e3', 'width': 988}, 'variants': {}}]}
Is there a way to set up an AI to help me learn Levantine Arabic?
12
Hey guys, Beginner here so any help is appreciated. I’m learning Levantine Arabic and have a bunch of texts and short novels collected in pdf format. Is there a way I can set up a system where AI can teach me from these texts? Ive tried ChatGPT and some others - and while it’s good with more formal Arabic, I’d prefer to work from just the resources I collected for dialect. I’d also love to work from a local solution. Grateful to hear any ideas on how I might go about setting this up.
2025-01-31T17:12:02
https://www.reddit.com/r/LocalLLaMA/comments/1iejq8c/is_there_a_way_to_set_up_an_ai_to_help_me_learn/
MumblingManuscript
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iejq8c
false
null
t3_1iejq8c
/r/LocalLLaMA/comments/1iejq8c/is_there_a_way_to_set_up_an_ai_to_help_me_learn/
false
false
self
12
null
Can’t Get the RTX 5090? Don’t Wait—Grab a 3090 24GB for AI Work!
0
Struggling to get your hands on the RTX 5090? Don’t let your projects stall! I’ve got RTX 3090 24GB GPUs available to fill the gap. Perfect for AI tasks, model training, or any GPU-intensive work. telegram : sw141921
2025-01-31T17:13:20
https://www.reddit.com/r/LocalLLaMA/comments/1iejrem/cant_get_the_rtx_5090_dont_waitgrab_a_3090_24gb/
That_Mud7241
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iejrem
false
null
t3_1iejrem
/r/LocalLLaMA/comments/1iejrem/cant_get_the_rtx_5090_dont_waitgrab_a_3090_24gb/
false
false
self
0
null
DeepSeek Has Gotten OpenAI Fired Up
1
2025-01-31T17:14:26
https://www.wired.com/story/openai-deepseek-stargate-sam-altman/
murodbeck
wired.com
1970-01-01T00:00:00
0
{}
1iejscj
false
null
t3_1iejscj
/r/LocalLLaMA/comments/1iejscj/deepseek_has_gotten_openai_fired_up/
false
false
https://b.thumbs.redditm…CbSDJd2vVIeA.jpg
1
{'enabled': False, 'images': [{'id': '-3-hX50cLZrCCQhSaq3yFb3MEDB-tz6ezVMGNdNVXh4', 'resolutions': [{'height': 56, 'url': 'https://external-preview.redd.it/map-h2MC5IIGQURw1Q1XZe7gAe5CgX98hHaOoSHLArk.jpg?width=108&crop=smart&auto=webp&s=1234db86cb4718428c0b345a67d867ea2e8a5b8b', 'width': 108}, {'height': 113, 'url': 'https://external-preview.redd.it/map-h2MC5IIGQURw1Q1XZe7gAe5CgX98hHaOoSHLArk.jpg?width=216&crop=smart&auto=webp&s=0a06901e8bc3d15c00df15b1ec7674742358812a', 'width': 216}, {'height': 167, 'url': 'https://external-preview.redd.it/map-h2MC5IIGQURw1Q1XZe7gAe5CgX98hHaOoSHLArk.jpg?width=320&crop=smart&auto=webp&s=7f4e28bda5739736de26c2560e6aeda041fcd62b', 'width': 320}, {'height': 335, 'url': 'https://external-preview.redd.it/map-h2MC5IIGQURw1Q1XZe7gAe5CgX98hHaOoSHLArk.jpg?width=640&crop=smart&auto=webp&s=9047810332da96c8d583a19625b4c41d9c1c68e9', 'width': 640}, {'height': 502, 'url': 'https://external-preview.redd.it/map-h2MC5IIGQURw1Q1XZe7gAe5CgX98hHaOoSHLArk.jpg?width=960&crop=smart&auto=webp&s=5171dcef5439cd76862e8a9340ec7d3e8e162d98', 'width': 960}, {'height': 565, 'url': 'https://external-preview.redd.it/map-h2MC5IIGQURw1Q1XZe7gAe5CgX98hHaOoSHLArk.jpg?width=1080&crop=smart&auto=webp&s=7600fbb85b4e004729dc5dd5e8dfafb3cab5864b', 'width': 1080}], 'source': {'height': 670, 'url': 'https://external-preview.redd.it/map-h2MC5IIGQURw1Q1XZe7gAe5CgX98hHaOoSHLArk.jpg?auto=webp&s=56e618dcd5d671e43aae24e2856b1d263295b78f', 'width': 1280}, 'variants': {}}]}
call for (Q)LORA extractor development cooperation
1
Storing both Deepseek v3 and R1 on my phone for local inference sucks, so I'd like to have the R1 as an adapter to easily put on/off in llama-server/cli. Surely we could try reproducing one via distillation, but let's be more clever and implement *LORE-ADAPT* of [https://openreview.net/pdf?id=ebnyMCM63m](https://openreview.net/pdf?id=ebnyMCM63m), test and publish this hot tooling.
2025-01-31T17:16:06
https://www.reddit.com/r/LocalLLaMA/comments/1iejts2/call_for_qlora_extractor_development_cooperation/
uhuge
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iejts2
false
null
t3_1iejts2
/r/LocalLLaMA/comments/1iejts2/call_for_qlora_extractor_development_cooperation/
false
false
self
1
null
Is DeepSeek a violation of Scaling Laws?
0
Hey everyone, Something's been bugging me about DeepSeek that I haven't seen discussed yet. Aren't their results a direct violation of scaling laws? Think about it: * GPT-4 cost \~$100M to train * DeepSeek does the same (or better) for $5.6M * That's a 20x cost reduction while maintaining/exceeding performance Traditional scaling laws suggest you need proportional compute increases to get proportional performance gains. But DeepSeek just showed you can get GPT-4 level performance with a fraction of the resources. This feels like it breaks the fundamental relationship that scaling laws describe. It's not just more efficient training - it's a complete violation of the predicted compute-capability relationship. Am I missing something here? Would love to hear the community's thoughts on this. Does this mean scaling laws need to be revised, or are they just... wrong?
2025-01-31T17:17:39
https://www.reddit.com/r/LocalLLaMA/comments/1iejv4i/is_deepseek_a_violation_of_scaling_laws/
atlasspring
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iejv4i
false
null
t3_1iejv4i
/r/LocalLLaMA/comments/1iejv4i/is_deepseek_a_violation_of_scaling_laws/
false
false
self
0
null
How much bandwidth is required for tensor parallelism vs pipeline parallelism?
13
I'm thinking about running deepseek r1 on 24 rx 7900xtxs. I could get 8 gpus per node and 3 nodes. This allows for the attention heads to distribute on the 8 gpus and for 3x pipeline parallelism. I could use infiniband or 100g ethernet for the pipeline parallelism, but is it necessary? What bandwidth would I need? Is PCIE 4.0 enough for tensor parallelism for a 678B model?
2025-01-31T17:19:32
https://www.reddit.com/r/LocalLLaMA/comments/1iejwr9/how_much_bandwidth_is_required_for_tensor/
LeptinGhrelin
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iejwr9
false
null
t3_1iejwr9
/r/LocalLLaMA/comments/1iejwr9/how_much_bandwidth_is_required_for_tensor/
false
false
self
13
null
US should ‘steal’ China’s best AI talent to keep pace, Senate hears
1
2025-01-31T17:26:46
https://www.scmp.com/news/china/article/3296852/us-should-steal-chinas-best-ai-talent-keep-pace-senate-hears
bruhlmaocmonbro
scmp.com
1970-01-01T00:00:00
0
{}
1iek356
false
null
t3_1iek356
/r/LocalLLaMA/comments/1iek356/us_should_steal_chinas_best_ai_talent_to_keep/
false
false
https://a.thumbs.redditm…6K1QnSN2RGe8.jpg
1
{'enabled': False, 'images': [{'id': 'NCFq1NIN-WGnAIPF3JbqG_eCO0QRnPGhAHT2hrvuhQ4', 'resolutions': [{'height': 56, 'url': 'https://external-preview.redd.it/gVgjuHUvFo99KJSeB02ebk3APqexH-rxaBmEoBU28c0.jpg?width=108&crop=smart&auto=webp&s=e6c802648ce0afd59461ab52c9d717a499cd9fcb', 'width': 108}, {'height': 113, 'url': 'https://external-preview.redd.it/gVgjuHUvFo99KJSeB02ebk3APqexH-rxaBmEoBU28c0.jpg?width=216&crop=smart&auto=webp&s=6395380e666e7a0ddeb77aa89359797e9b5384f3', 'width': 216}, {'height': 168, 'url': 'https://external-preview.redd.it/gVgjuHUvFo99KJSeB02ebk3APqexH-rxaBmEoBU28c0.jpg?width=320&crop=smart&auto=webp&s=b0fb54e05f0e1908682d29764d54e0e08b318b08', 'width': 320}, {'height': 336, 'url': 'https://external-preview.redd.it/gVgjuHUvFo99KJSeB02ebk3APqexH-rxaBmEoBU28c0.jpg?width=640&crop=smart&auto=webp&s=16969e76e2c416a6efd135d6b393dcf5f4927e00', 'width': 640}, {'height': 504, 'url': 'https://external-preview.redd.it/gVgjuHUvFo99KJSeB02ebk3APqexH-rxaBmEoBU28c0.jpg?width=960&crop=smart&auto=webp&s=6e3861f5dbd6e7a6edf3713080ed6ff9d6658fa2', 'width': 960}, {'height': 567, 'url': 'https://external-preview.redd.it/gVgjuHUvFo99KJSeB02ebk3APqexH-rxaBmEoBU28c0.jpg?width=1080&crop=smart&auto=webp&s=afd2f319378f522735127607852681d9f70eb212', 'width': 1080}], 'source': {'height': 630, 'url': 'https://external-preview.redd.it/gVgjuHUvFo99KJSeB02ebk3APqexH-rxaBmEoBU28c0.jpg?auto=webp&s=99506623fa53f4a365716f381b88b7d500b2e630', 'width': 1200}, 'variants': {}}]}
Improving Reliability of Structured Outputs
1
Hey all, I'm running into some issues when trying to use structured outputs due to limitations on properties supported by OpenAI (see https://platform.openai.com/docs/guides/structured-outputs/some-type-specific-keywords-are-not-yet-supported#some-type-specific-keywords-are-not-yet-supported) This is particularly problematic for some of the array-related keywords (namely \`minItems\` and \`maxItems\`) Furthermore, the schema limitations mean that TS won't warn about this error at compile time - it has to be encountered at runtime. I'm assuming that the solution requires wrapping the schema input and converting it to a different format (e.g. an array with \`minItems\` & \`maxItems\` of 3 becomes \`{ item1: ..., item2: ..., item3 ...}\`) I was wondering if there's a library or GitHub gist of a solution out there for this problem?
2025-01-31T17:42:14
https://www.reddit.com/r/LocalLLaMA/comments/1iekgpv/improving_reliability_of_structured_outputs/
DoctorNootNoot
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iekgpv
false
null
t3_1iekgpv
/r/LocalLLaMA/comments/1iekgpv/improving_reliability_of_structured_outputs/
false
false
self
1
null
Issue with Local AI Models Displaying \boxed{} Instead of Rendering Content in Anything LLM -- Need Help
0
**TL;DR:** Just started with Local AI using Anything LLM & LM Studio but ran into an issue—models output `\boxed{}` instead of rendering boxed content. Switched to `\fbox{}`, but no change. Using Gemini for embeddings since it's free. How can I fix this? Hey guys! I have just got into Local AI stuff and I first tried using Ollama in CLI and it worked decently, I encountered some looping issues where the model would just print the same output again and again in one single go and it did not stop so I cleared that session and restarted and did not encounter that error again. But then I searched about GUI's for these models and stumbled upon Anything LLM and LM Studio. I started using these two in the last 4 hours and have encountered one problem, it never shows output in boxed form, like it just prints "\\boxed{ math stuff or some other stuff }" and it just ends. I am using gemini as embedding provider as it is free and I do not want to pay for other models. So, How do I solve this issue? I tried telling the model to use \\fbox instead of \\boxed and the output was still the same.
2025-01-31T17:47:52
https://www.reddit.com/r/LocalLLaMA/comments/1ieklfv/issue_with_local_ai_models_displaying_boxed/
that_chubby_guy
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieklfv
false
null
t3_1ieklfv
/r/LocalLLaMA/comments/1ieklfv/issue_with_local_ai_models_displaying_boxed/
false
false
self
0
null
What is the best open-source OCR that can handle both well written and handwritten text on docs?
7
Tesseract seems to be the best choice for printed text, but is basically useless for handwritten PaddleOCR and co. have the same issue docTR models don't seem to be enough? Transformer-based approachs promise a lot but dont quite deliver when its a mix of handwritten+printed (DTrOCR, HtOCR, GOT_OCR2...) The only great outputs I get are from multimodal vision based LLMs (Llama, Qwen and co.) on huggingface, but these are obviously heavier than standalone OCR models. Does anybody have/know a fast precise alternative that works on both printed and handwritten text for latin characters?
2025-01-31T18:02:28
https://www.reddit.com/r/LocalLLaMA/comments/1iekyid/what_is_the_best_opensource_ocr_that_can_handle/
tauri_mionZer0
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iekyid
false
null
t3_1iekyid
/r/LocalLLaMA/comments/1iekyid/what_is_the_best_opensource_ocr_that_can_handle/
false
false
self
7
null
Coding AI on macbook air M1
1
[removed]
2025-01-31T18:12:16
https://www.reddit.com/r/LocalLLaMA/comments/1iel76a/coding_ai_on_macbook_air_m1/
Noxi_FR
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iel76a
false
null
t3_1iel76a
/r/LocalLLaMA/comments/1iel76a/coding_ai_on_macbook_air_m1/
false
false
self
1
null
I combined web search with DeepSeek-R1-Llama-70B and made it API
1
[removed]
2025-01-31T18:19:35
https://www.reddit.com/r/LocalLLaMA/comments/1ieldi5/i_combined_web_search_with_deepseekr1llama70b_and/
sickleRunner
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieldi5
false
null
t3_1ieldi5
/r/LocalLLaMA/comments/1ieldi5/i_combined_web_search_with_deepseekr1llama70b_and/
false
false
self
1
null
What was the actual cost of training deepseek?
0
If the 6 million figure being todsed around everywhere was really just for its final bout of training, is there any reliable information about the actual cost from start to finish?
2025-01-31T18:22:36
https://www.reddit.com/r/LocalLLaMA/comments/1ielg85/what_was_the_actual_cost_of_training_deepseek/
DsDman
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ielg85
false
null
t3_1ielg85
/r/LocalLLaMA/comments/1ielg85/what_was_the_actual_cost_of_training_deepseek/
false
false
self
0
null
Tutorial: How to Run DeepSeek-R1 (671B) 1.58bit on Open WebUI
127
Hey guys! Daniel & I (Mike) at [Unsloth](https://github.com/unslothai/unsloth) collabed with Tim from [Open WebUI](https://github.com/open-webui/open-webui) to bring you this step-by-step on how to run the non-distilled DeepSeek-R1 Dynamic 1.58-bit model locally! This guide is summarized so I highly recommend you read the full guide (with pics) here: [https://docs.openwebui.com/tutorials/integrations/deepseekr1-dynamic/](https://docs.openwebui.com/tutorials/integrations/deepseekr1-dynamic/) # To Run DeepSeek-R1: **1. Install Llama.cpp** * Download prebuilt binaries or build from source following [this guide](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md). **2. Download the Model (1.58-bit, 131GB) from** [Unsloth](https://github.com/unslothai/unsloth) * Get the model from [Hugging Face](https://huggingface.co/unsloth/DeepSeek-R1-GGUF). * Use Python to download it programmatically: ​ from huggingface_hub import snapshot_download snapshot_download( repo_id="unsloth/DeepSeek-R1-GGUF", local_dir="DeepSeek-R1-GGUF", allow_patterns=["*UD-IQ1_S*"] ) * Once the download completes, you’ll find the model files in a directory structure like this: ​ DeepSeek-R1-GGUF/ ├── DeepSeek-R1-UD-IQ1_S/ │ ├── DeepSeek-R1-UD-IQ1_S-00001-of-00003.gguf │ ├── DeepSeek-R1-UD-IQ1_S-00002-of-00003.gguf │ ├── DeepSeek-R1-UD-IQ1_S-00003-of-00003.gguf * Ensure you know the path where the files are stored. **3. Install and Run Open WebUI** * If you don’t already have it installed, no worries! It’s a simple setup. Just follow the Open WebUI docs here: [https://docs.openwebui.com/](https://docs.openwebui.com/) * Once installed, start the application - we’ll connect it in a later step to interact with the DeepSeek-R1 model. **4. Start the Model Server with Llama.cpp** Now that the model is downloaded, the next step is to run it using Llama.cpp’s server mode. # 🛠️Before You Begin: 1. Locate the llama-server Binary 2. If you built Llama.cpp from source, the llama-server executable is located in:llama.cpp/build/bin Navigate to this directory using:cd \[path-to-llama-cpp\]/llama.cpp/build/bin Replace \[path-to-llama-cpp\] with your actual Llama.cpp directory. For example:cd \~/Documents/workspace/llama.cpp/build/bin 3. Point to Your Model Folder 4. Use the full path to the downloaded GGUF files.When starting the server, specify the first part of the split GGUF files (e.g., DeepSeek-R1-UD-IQ1\_S-00001-of-00003.gguf). # 🚀Start the Server Run the following command: ./llama-server \ --model /[your-directory]/DeepSeek-R1-GGUF/DeepSeek-R1-UD-IQ1_S/DeepSeek-R1-UD-IQ1_S-00001-of-00003.gguf \ --port 10000 \ --ctx-size 1024 \ --n-gpu-layers 40 > # Example (If Your Model is in /Users/tim/Documents/workspace): ./llama-server \ --model /Users/tim/Documents/workspace/DeepSeek-R1-GGUF/DeepSeek-R1-UD-IQ1_S/DeepSeek-R1-UD-IQ1_S-00001-of-00003.gguf \ --port 10000 \ --ctx-size 1024 \ --n-gpu-layers 40 ✅ Once running, the server will be available at: http://127.0.0.1:10000 🖥️ Llama.cpp Server Running [After running the command, you should see a message confirming the server is active and listening on port 10000.](https://preview.redd.it/erjbg5v5cbge1.png?width=3428&format=png&auto=webp&s=fff4de133562bb6f67076db17285860b7294f2ad) > **Step 5: Connect Llama.cpp to Open WebUI** 1. Open Admin Settings in Open WebUI. 2. Go to Connections > OpenAI Connections. 3. Add the following details: 4. URL → [http://127.0.0.1:10000/v1API](http://127.0.0.1:10000/v1API) Key → none # Adding Connection in Open WebUI > https://preview.redd.it/8eja3yugcbge1.png?width=3456&format=png&auto=webp&s=3d890d2ed9c7bb20f6b2293a84c9c294a16de0a2 # Notes * You don't need a GPU to run this model but it will make it faster especially when you have at least 24GB of VRAM. * Try to have a sum of RAM + VRAM = 120GB+ to get decent tokens/s If you have any questions please let us know and also - any suggestions are also welcome! Happy running folks! :)
2025-01-31T18:24:36
https://www.reddit.com/r/LocalLLaMA/comments/1ielhyu/tutorial_how_to_run_deepseekr1_671b_158bit_on/
yoracale
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ielhyu
false
null
t3_1ielhyu
/r/LocalLLaMA/comments/1ielhyu/tutorial_how_to_run_deepseekr1_671b_158bit_on/
false
false
https://b.thumbs.redditm…dE2_zHcm80Js.jpg
127
{'enabled': False, 'images': [{'id': 'oUAe34zUCLxMUIpYtOvOz6aYou2CnbtJjhJZ0bwJ6Jg', 'resolutions': [{'height': 56, 'url': 'https://external-preview.redd.it/GToYANeKQHKhFdKJjLK03Emv1ylZ0l8jeD1iuQJ8-dE.jpg?width=108&crop=smart&auto=webp&s=6481fbac644d8a96c2918c63e805d1c62e24cbe5', 'width': 108}, {'height': 113, 'url': 'https://external-preview.redd.it/GToYANeKQHKhFdKJjLK03Emv1ylZ0l8jeD1iuQJ8-dE.jpg?width=216&crop=smart&auto=webp&s=941b00cf4a68a70df266160fe06769bc2a817a41', 'width': 216}, {'height': 168, 'url': 'https://external-preview.redd.it/GToYANeKQHKhFdKJjLK03Emv1ylZ0l8jeD1iuQJ8-dE.jpg?width=320&crop=smart&auto=webp&s=e794c7cbf042b8d8e6fdd8f8c239e0f5cb398261', 'width': 320}, {'height': 336, 'url': 'https://external-preview.redd.it/GToYANeKQHKhFdKJjLK03Emv1ylZ0l8jeD1iuQJ8-dE.jpg?width=640&crop=smart&auto=webp&s=57fbf9c89972d5c31e3bd2d3354696be4e8d5b9d', 'width': 640}, {'height': 505, 'url': 'https://external-preview.redd.it/GToYANeKQHKhFdKJjLK03Emv1ylZ0l8jeD1iuQJ8-dE.jpg?width=960&crop=smart&auto=webp&s=557f9a403410be41c1438b6d2b1a2acd9d507da4', 'width': 960}, {'height': 568, 'url': 'https://external-preview.redd.it/GToYANeKQHKhFdKJjLK03Emv1ylZ0l8jeD1iuQJ8-dE.jpg?width=1080&crop=smart&auto=webp&s=989ea96f774aa62c199da9564be3b7b646db1494', 'width': 1080}], 'source': {'height': 834, 'url': 'https://external-preview.redd.it/GToYANeKQHKhFdKJjLK03Emv1ylZ0l8jeD1iuQJ8-dE.jpg?auto=webp&s=fb46a23aaa0ed1c5044eaea486ff79352cce2675', 'width': 1584}, 'variants': {}}]}
What are the best model per ram size?
4
Like the title says it would be cool to have a table listing the best model per ram size currently like: 8gb 16gb 24gb 32gb 40gb 64gb 128gb I will keep it updated with the response I get or even if you think about adding other dimensions, even if you tested only one bracket tell us so I can update it
2025-01-31T18:32:48
https://www.reddit.com/r/LocalLLaMA/comments/1ielp0b/what_are_the_best_model_per_ram_size/
InternalMode8159
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ielp0b
false
null
t3_1ielp0b
/r/LocalLLaMA/comments/1ielp0b/what_are_the_best_model_per_ram_size/
false
false
self
4
null
Performance difference
0
Hello Right now I’m using my gaming pc to host some models. I’m using a amd 7800xt but currently looking to get a new server just for other reasons but would also like to move my hosting into that machine. I would looking at running a p40 but with the new 5090 drop maybe the 3090 will come down I plan to run olama deep seek obviously and maybe a couple of other I mostly use it for school but just want to know the tokens/s the 7800xt is getting around 10-20 tk/s running 14b models just want to the the price difference because I can get two p40s right now for the price of one 3090(dual slot to fit in my case). (Sorry I know this is asked a lot)
2025-01-31T18:34:25
https://www.reddit.com/r/LocalLLaMA/comments/1ielqe8/performance_difference/
Rasr123105
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ielqe8
false
null
t3_1ielqe8
/r/LocalLLaMA/comments/1ielqe8/performance_difference/
false
false
self
0
null
Investors refusing to believe their investments are going to zero
0
https://preview.redd.it/…f6ceea7e0ca16d
2025-01-31T18:35:20
https://www.reddit.com/r/LocalLLaMA/comments/1ielr5b/investors_refusing_to_believe_their_investments/
atlasspring
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ielr5b
false
null
t3_1ielr5b
/r/LocalLLaMA/comments/1ielr5b/investors_refusing_to_believe_their_investments/
false
false
https://b.thumbs.redditm…MT3ByHBWvshA.jpg
0
null
I added Live Web Search on top of DeepSeek-R1-LLama-70b and made it API
53
2025-01-31T18:39:31
https://i.redd.it/0pguliybjdge1.png
sickleRunner
i.redd.it
1970-01-01T00:00:00
0
{}
1ielupk
false
null
t3_1ielupk
/r/LocalLLaMA/comments/1ielupk/i_added_live_web_search_on_top_of/
false
false
https://a.thumbs.redditm…3yeZOuAeBPu8.jpg
53
{'enabled': True, 'images': [{'id': 'iqNSJQHZBJQ0o5wgLL1it2n6vPfh-iWNxn6s2ETG2Zw', 'resolutions': [{'height': 72, 'url': 'https://preview.redd.it/0pguliybjdge1.png?width=108&crop=smart&auto=webp&s=b9a4d36a0930b4a98187b191235f057b53a6910d', 'width': 108}, {'height': 145, 'url': 'https://preview.redd.it/0pguliybjdge1.png?width=216&crop=smart&auto=webp&s=24cade41b40e3e6eecc07a7c7bc6439ab9918040', 'width': 216}, {'height': 214, 'url': 'https://preview.redd.it/0pguliybjdge1.png?width=320&crop=smart&auto=webp&s=b92c1ffc790804fbe78f3ca41e3fa09e09710f28', 'width': 320}, {'height': 429, 'url': 'https://preview.redd.it/0pguliybjdge1.png?width=640&crop=smart&auto=webp&s=9348eced5b7103939d1b6beb8b2ee81e5d8c3c83', 'width': 640}, {'height': 644, 'url': 'https://preview.redd.it/0pguliybjdge1.png?width=960&crop=smart&auto=webp&s=5420d5ae23d329e49b8fe7bdd0ba80030dee2f81', 'width': 960}], 'source': {'height': 677, 'url': 'https://preview.redd.it/0pguliybjdge1.png?auto=webp&s=0c0b3003cc20c0c396c633a693f5b1ef0fdb9b52', 'width': 1008}, 'variants': {}}]}
r1 shenanigans
1
2025-01-31T18:39:48
https://i.redd.it/qdgxtehbjdge1.png
diligentgrasshopper
i.redd.it
1970-01-01T00:00:00
0
{}
1ieluyt
false
null
t3_1ieluyt
/r/LocalLLaMA/comments/1ieluyt/r1_shenanigans/
false
false
https://a.thumbs.redditm…UIYiXgMYNSA0.jpg
1
{'enabled': True, 'images': [{'id': 'Opkh8RcJcGxznQA-pqxCiQigB-YXvf6JBOwmXcP8Mr0', 'resolutions': [{'height': 111, 'url': 'https://preview.redd.it/qdgxtehbjdge1.png?width=108&crop=smart&auto=webp&s=bc664216ae0faf9fe4079db66784a4150fc48ff2', 'width': 108}, {'height': 222, 'url': 'https://preview.redd.it/qdgxtehbjdge1.png?width=216&crop=smart&auto=webp&s=8349b709edc8384385e131becf1816efc2985420', 'width': 216}, {'height': 329, 'url': 'https://preview.redd.it/qdgxtehbjdge1.png?width=320&crop=smart&auto=webp&s=79330ffee0e9733f8718b6fb36883729c9c92e8c', 'width': 320}, {'height': 658, 'url': 'https://preview.redd.it/qdgxtehbjdge1.png?width=640&crop=smart&auto=webp&s=341f020011df0f244b4ed78ce9865286e127eb88', 'width': 640}, {'height': 987, 'url': 'https://preview.redd.it/qdgxtehbjdge1.png?width=960&crop=smart&auto=webp&s=dc6f10b8af054e81cb018a541093a01ae38b45e1', 'width': 960}, {'height': 1111, 'url': 'https://preview.redd.it/qdgxtehbjdge1.png?width=1080&crop=smart&auto=webp&s=073e746bf8a64b206a68934bc17c937097d9699f', 'width': 1080}], 'source': {'height': 2428, 'url': 'https://preview.redd.it/qdgxtehbjdge1.png?auto=webp&s=40e874dd7e70478f88d420ce47bfa58e43d63361', 'width': 2360}, 'variants': {}}]}
AI Tools as a Hiring Requirement? Just Saw a Job Post That Blew My Mind
1
[removed]
2025-01-31T18:52:32
https://www.reddit.com/r/LocalLLaMA/comments/1iem5xf/ai_tools_as_a_hiring_requirement_just_saw_a_job/
Far_Flamingo5333
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iem5xf
false
null
t3_1iem5xf
/r/LocalLLaMA/comments/1iem5xf/ai_tools_as_a_hiring_requirement_just_saw_a_job/
false
false
self
1
null
Deepseek Qwen and Llama confusion
5
I was wondering if anyone can explain to me like i'm a little kid why deepseek distilled versions use in some models Llama and in some of the Qwen? And how does it work, do they distill, make the model smaller and use a base stack of llama or qwen based on the model size and what are the implications? Does anyone know, thanks!
2025-01-31T18:55:22
https://www.reddit.com/r/LocalLLaMA/comments/1iem89u/deepseek_qwen_and_llama_confusion/
novus_nl
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iem89u
false
null
t3_1iem89u
/r/LocalLLaMA/comments/1iem89u/deepseek_qwen_and_llama_confusion/
false
false
self
5
null
What can I run with 56gb of VRAM?
2
I've currently got a rtx3090 and I'm thinking about making a purchase for a 5090 (if I can even get one) but I'm in the preliminary stages of figuring on what I can run. I am currently setting up a RAG pipeline and thinking of running phi4 (distilled?) just to ask some basic questions. I would like to supercharge this with a better model and more context by adding a 5090. I had a couple of questions though: 1) What is a good model for RAG if I suddenly have more vram? 2) What would be a good tradeoff for context/model capabilities? 3) Are you able to run the 5090 parallel to a 3090? There is no SLI any more but I don't think that matters anymore right? 4) Has the ability to undervolt the 3090/4090 been consistent and can we expect it from the 5090? The energy price running the 5090 scares me a bit. Thanks for your time!
2025-01-31T18:55:59
https://www.reddit.com/r/LocalLLaMA/comments/1iem8sn/what_can_i_run_with_56gb_of_vram/
JFHermes
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iem8sn
false
null
t3_1iem8sn
/r/LocalLLaMA/comments/1iem8sn/what_can_i_run_with_56gb_of_vram/
false
false
self
2
null
Is there any proof that deep seek was trained on Open AI’s data?
0
The past couple of days following Open AI’s accusation people have been focused on pointing out the irony relating to intellectual property since ChatGPT was trained on copyrighted data; accepting as fact almost that deep seek did distill OpenAI’s model but that this isn’t a problem. But is there any actual proof that this happened apart from a few Chinese IP addresses? I’m asking because regardless of moral standpoint this undermines the whole premise of the deep seek paper that an entirely new model could be trained for fewer than $5 million.
2025-01-31T18:57:06
https://www.reddit.com/r/LocalLLaMA/comments/1iem9q4/is_there_any_proof_that_deep_seek_was_trained_on/
Unusual_Guidance2095
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iem9q4
false
null
t3_1iem9q4
/r/LocalLLaMA/comments/1iem9q4/is_there_any_proof_that_deep_seek_was_trained_on/
false
false
self
0
null
What the actual hell
1
2025-01-31T19:07:54
https://www.reddit.com/gallery/1iemje3
diligentgrasshopper
reddit.com
1970-01-01T00:00:00
0
{}
1iemje3
false
null
t3_1iemje3
/r/LocalLLaMA/comments/1iemje3/what_the_actual_hell/
false
false
https://b.thumbs.redditm…XrAfSr74yOXo.jpg
1
null
Can we train the deepseek LLM with our data set?
1
[removed]
2025-01-31T19:16:19
https://www.reddit.com/r/LocalLLaMA/comments/1iemqpx/can_we_train_the_deepseek_llm_with_our_data_set/
IndependentNormal708
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iemqpx
false
null
t3_1iemqpx
/r/LocalLLaMA/comments/1iemqpx/can_we_train_the_deepseek_llm_with_our_data_set/
false
false
self
1
null
How to run an AWQ multimodal LLM (with SGLang)
1
Hi I am trying to run an AWQ quant model on SGLang Qwen/Qwen2-VL-72B-Instruct-AWQ (for testing currently on runpod). First I tried to split it between 2x A40 with this starting command: python3 -m sglang.launch_server \ --model-path Qwen/Qwen2-VL-72B-Instruct-AWQ \ --context-length 8192 \ --host 0.0.0.0 --port 8000 \ --chat-template chatml-llava \ --grammar-backend outlines \ --quantization awq_marlin \ --tp 2 It started, and with text-only requests through the /v1/chat/completions API endpoint, it works as expected. But once I've added an image, it throws this error: [2025-01-31 00:59:16 TP0] Scheduler hit an exception: Traceback (most recent call last): 09:59:16 File "/sgl-workspace/sglang/python/sglang/srt/managers/scheduler.py", line 1784, in run_scheduler_process 09:59:16 scheduler.event_loop_normal() 09:59:16 File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context 09:59:16 return func(*args, **kwargs) 09:59:16 File "/sgl-workspace/sglang/python/sglang/srt/managers/scheduler.py", line 471, in event_loop_normal 09:59:16 self.process_input_requests(recv_reqs) 09:59:16 File "/sgl-workspace/sglang/python/sglang/srt/managers/scheduler.py", line 579, in process_input_requests 09:59:16 output = self._request_dispatcher(recv_req) 09:59:16 File "/sgl-workspace/sglang/python/sglang/utils.py", line 374, in __call__ 09:59:16 return fn(obj) 09:59:16 File "/sgl-workspace/sglang/python/sglang/srt/managers/scheduler.py", line 649, in handle_generate_request 09:59:16 req.origin_input_ids = self.pad_input_ids_func( 09:59:16 File "/sgl-workspace/sglang/python/sglang/srt/models/qwen2_vl.py", line 412, in pad_input_ids 09:59:16 non_image_tokens = input_ids[: image_indices[image_cnt]] 09:59:16 IndexError: list index out of range 09:59:16 [2025-01-31 00:59:16] Received sigquit from a child process. It usually means the child failed. This is my curl request: curl --location 'https://xxxxxxxxx.proxy.runpod.net/v1/chat/completions' \ --header 'Content-Type: application/json' \ --data '{ "model": "Qwen/Qwen2-VL-72B-Instruct-AWQ", "messages": [ { "role": "user", "content": "prompt goes here...." }, { "role": "user", "content": [ { "type": "text", "text": "another one here..." }, { "type": "image_url", "image_url": { "url": "https://supersecreturltomy.com/image.jpg" } } ] } ], "max_tokens": 600, "temperature": 0.5, "response_format": { "type": "json_schema", "json_schema": { "name": "response", "schema": { "type": "object", "properties": { "corrected_text": { "type": "string" }, "changes_made": { "type": "array", "items": { "type": "string" } } }, "required": [ "corrected_text", "changes_made" ] } } } }' I've then tested it with the smaller model Qwen/Qwen2-VL-7B-Instruct-AWQ, deactivated --tp 2, and using the exact same request (including the image). With this model, everything works fine and I get the expected response. So I thought it might be because of the GPU split (--tp 2). So I tested it again with a single A100 and Qwen/Qwen2-VL-72B-Instruct-AWQ, but I still get the exact same error. --- Of course, I am a complete noob and have no real understanding of all this stuff. I am just doing my best to learn how everything works. I've tried searching (Google, Perplexity, and Reddit), but couldn't find a clear explanation why the smaller model works and the larger one doesn't. Can someone help me to understand this?
2025-01-31T19:16:25
https://www.reddit.com/r/LocalLLaMA/comments/1iemqtf/how_to_run_an_awq_multimodal_llm_with_sglang/
Stunning-Storage-587
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iemqtf
false
null
t3_1iemqtf
/r/LocalLLaMA/comments/1iemqtf/how_to_run_an_awq_multimodal_llm_with_sglang/
false
false
self
1
null
Quantifying MCQ questions on parameters like factual knowledge, concept depth etc
1
I am new to this so pardon me if I say some technically naive things. I have a repository of MCQ questions for a competitive exam. The questions have pretty defined reading material from where they lend most of the facts and concepts but the questions are framed in a way that requires you to use a lot of inferential reasoning and option elimination. I wanted to analyze all the questions by identifying the factual part of the question in the source material and quantifying the amount of "factuality" and "logic" for the questions. I certainly cannot expect LLMs to give me a consistent answer to such a query. Is there some way I can do it? I heard that there are embedding models that vectorize the semantic information of a text. I can do some manipulation on these vectors to quantify the "factuality" and "logic" but again will this be consistent across all the different questions?
2025-01-31T19:17:46
https://www.reddit.com/r/LocalLLaMA/comments/1iems0k/quantifying_mcq_questions_on_parameters_like/
No-Flight-2821
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iems0k
false
null
t3_1iems0k
/r/LocalLLaMA/comments/1iems0k/quantifying_mcq_questions_on_parameters_like/
false
false
self
1
null
The O3 mini is now available in two flavors.
9
https://preview.redd.it/…c42f08115ddb4f
2025-01-31T19:31:12
https://www.reddit.com/r/LocalLLaMA/comments/1ien3fv/the_o3_mini_is_now_available_in_two_flavors/
PerformanceRound7913
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ien3fv
false
null
t3_1ien3fv
/r/LocalLLaMA/comments/1ien3fv/the_o3_mini_is_now_available_in_two_flavors/
false
false
https://b.thumbs.redditm…TlRWJG3JrcKM.jpg
9
null
One of the most illuminating ways to assess these models to me so far
10
I would feed the model articles on social sciences findings which have innumerable contradictions and ask the model if it spots any contradiction. Social sciences are proliferate with sophistic studies like these. These articles could go like this: ”We find weak to no correlation between X and Y.” Then later, the article would phrase the findings in a much more headline-grabbing way, like this: ”Therefore X is much more likely to be Y.” It includes explicit contradictions within the text, so you don’t have to examine the methodologies, but it’s nonetheless phrased in compelling enough ways to dupe lay readers. So far, none of the LLMs seem able to spot the contradictions, despite being able to summarize the text. So to me it's not clear whether these models have "reasoning abilities".
2025-01-31T19:33:04
https://www.reddit.com/r/LocalLLaMA/comments/1ien50m/one_of_the_most_illuminating_ways_to_assess_these/
feixiangtaikong
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ien50m
false
null
t3_1ien50m
/r/LocalLLaMA/comments/1ien50m/one_of_the_most_illuminating_ways_to_assess_these/
false
false
self
10
null
NASA becomes latest federal agency to block China's DeepSeek on 'security and privacy concerns'
1
2025-01-31T19:33:50
https://www.cnbc.com/2025/01/31/nasa-becomes-latest-federal-agency-to-block-chinas-deepseek.html
fallingdowndizzyvr
cnbc.com
1970-01-01T00:00:00
0
{}
1ien5nd
false
null
t3_1ien5nd
/r/LocalLLaMA/comments/1ien5nd/nasa_becomes_latest_federal_agency_to_block/
false
false
https://b.thumbs.redditm…kiJMUlS5oFfs.jpg
1
{'enabled': False, 'images': [{'id': 'gsujgPXmEDYEbP88fVRkkIzwh7LFQTML-ui1otaXUvU', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/5vztcQH3Naz90UZeq4hREdIYCeAO3RfA03-l7Uy6Lsg.jpg?width=108&crop=smart&auto=webp&s=47a1a0ce40e91ad039ed9d866e8b1829396e9187', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/5vztcQH3Naz90UZeq4hREdIYCeAO3RfA03-l7Uy6Lsg.jpg?width=216&crop=smart&auto=webp&s=34f2c4549190706b0b83e2703ba02a63536399c4', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/5vztcQH3Naz90UZeq4hREdIYCeAO3RfA03-l7Uy6Lsg.jpg?width=320&crop=smart&auto=webp&s=0cf97e4e01d10b51afc3767adf5aa96871e4efdd', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/5vztcQH3Naz90UZeq4hREdIYCeAO3RfA03-l7Uy6Lsg.jpg?width=640&crop=smart&auto=webp&s=818eb6a54b9dbf3b8ff15b6aa431a0c8596df45e', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/5vztcQH3Naz90UZeq4hREdIYCeAO3RfA03-l7Uy6Lsg.jpg?width=960&crop=smart&auto=webp&s=6945b26e1d6a76a6ef00fbd9a166b931c534a85f', 'width': 960}, {'height': 607, 'url': 'https://external-preview.redd.it/5vztcQH3Naz90UZeq4hREdIYCeAO3RfA03-l7Uy6Lsg.jpg?width=1080&crop=smart&auto=webp&s=0e7b4858fa50532c66baa438da081b87eb44fa03', 'width': 1080}], 'source': {'height': 1080, 'url': 'https://external-preview.redd.it/5vztcQH3Naz90UZeq4hREdIYCeAO3RfA03-l7Uy6Lsg.jpg?auto=webp&s=fef5304b507fe8927c3c9f761a98ec8436ef9929', 'width': 1920}, 'variants': {}}]}
OpenC/crypto-gpt-o3-mini: Worth a look for AI + Crypto?
0
Hey everyone, I’ve been testing **OpenC/crypto-gpt-o3-mini**, an open-source AI model designed for crypto-related tasks. It’s optimized for processing blockchain data, analyzing transactions, and supporting DeFi/NFT/Web3 applications. Link huggingface: [https://huggingface.co/OpenC/crypto-gpt-o3-mini](https://huggingface.co/OpenC/crypto-gpt-o3-mini) A few things stand out: * It’s lightweight and runs efficiently on standard hardware. * It supports real-time blockchain data analysis. * It could be useful for automating transactions and on-chain analytics. I’m still exploring whether it’s actually useful for crypto projects or just another hyped-up model. Has anyone else tried it? Would love to hear your thoughts.
2025-01-31T19:36:56
https://www.reddit.com/r/LocalLLaMA/comments/1ien88y/openccryptogpto3mini_worth_a_look_for_ai_crypto/
Different_Prune_3529
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ien88y
false
null
t3_1ien88y
/r/LocalLLaMA/comments/1ien88y/openccryptogpto3mini_worth_a_look_for_ai_crypto/
false
false
self
0
{'enabled': False, 'images': [{'id': '4nCevzmecQS5Ukrg46UA31pob-nX7AkVwbbPS98I7nk', 'resolutions': [{'height': 58, 'url': 'https://external-preview.redd.it/Vx6Zhvq-cgvD5owlrd2FIgj5K7_0ITPbU1yz4N0Mho0.jpg?width=108&crop=smart&auto=webp&s=35dc78aa6c740218d5bb5572e62186d60ff00fec', 'width': 108}, {'height': 116, 'url': 'https://external-preview.redd.it/Vx6Zhvq-cgvD5owlrd2FIgj5K7_0ITPbU1yz4N0Mho0.jpg?width=216&crop=smart&auto=webp&s=a08aa2db35c2e22f3e01f09087aa72ff12d8ba28', 'width': 216}, {'height': 172, 'url': 'https://external-preview.redd.it/Vx6Zhvq-cgvD5owlrd2FIgj5K7_0ITPbU1yz4N0Mho0.jpg?width=320&crop=smart&auto=webp&s=0862e6b89cdc6702a43ae0ceffec8966bc0b6e76', 'width': 320}, {'height': 345, 'url': 'https://external-preview.redd.it/Vx6Zhvq-cgvD5owlrd2FIgj5K7_0ITPbU1yz4N0Mho0.jpg?width=640&crop=smart&auto=webp&s=9d9cec6a848dcf3c90f8703775d6ec19c5da922f', 'width': 640}, {'height': 518, 'url': 'https://external-preview.redd.it/Vx6Zhvq-cgvD5owlrd2FIgj5K7_0ITPbU1yz4N0Mho0.jpg?width=960&crop=smart&auto=webp&s=5d0f4b68964620d82902ea4f315b8af0ece94264', 'width': 960}, {'height': 583, 'url': 'https://external-preview.redd.it/Vx6Zhvq-cgvD5owlrd2FIgj5K7_0ITPbU1yz4N0Mho0.jpg?width=1080&crop=smart&auto=webp&s=9c5cdaf35dd53ba6db54a50e58f89254beb5cb23', 'width': 1080}], 'source': {'height': 648, 'url': 'https://external-preview.redd.it/Vx6Zhvq-cgvD5owlrd2FIgj5K7_0ITPbU1yz4N0Mho0.jpg?auto=webp&s=c957048f613d4ba357b47d8c4095f7095fb98f3f', 'width': 1200}, 'variants': {}}]}
Best Cloud VM for LoRA Fine-Tuning on a Budget?
1
[removed]
2025-01-31T19:38:52
https://www.reddit.com/r/LocalLLaMA/comments/1ien9vc/best_cloud_vm_for_lora_finetuning_on_a_budget/
Tiny_Yellow_7869
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ien9vc
false
null
t3_1ien9vc
/r/LocalLLaMA/comments/1ien9vc/best_cloud_vm_for_lora_finetuning_on_a_budget/
false
false
self
1
null
LlaMaCpp integration in Unreal Engine 5
1
[removed]
2025-01-31T19:40:04
https://www.reddit.com/r/LocalLLaMA/comments/1ienavc/llamacpp_integration_in_unreal_engine_5/
Soulshellgames
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ienavc
false
null
t3_1ienavc
/r/LocalLLaMA/comments/1ienavc/llamacpp_integration_in_unreal_engine_5/
false
false
self
1
null
Deepseek R1 is now hosted by Nvidia
655
NVIDIA just brought DeepSeek-R1 671-bn param model to NVIDIA NIM microservice on build.nvidia .com - The DeepSeek-R1 NIM microservice can deliver up to 3,872 tokens per second on a single NVIDIA HGX H200 system. - Using NVIDIA Hopper architecture, DeepSeek-R1 can deliver high-speed inference by leveraging FP8 Transformer Engines and 900 GB/s NVLink bandwidth for expert communication. - As usual with NVIDIA's NIM, its a enterprise-scale setu to securely experiment, and deploy AI agents with industry-standard APIs.
2025-01-31T19:44:44
https://i.redd.it/1zufl131vdge1.jpeg
Outrageous-Win-3244
i.redd.it
1970-01-01T00:00:00
0
{}
1ienetu
false
null
t3_1ienetu
/r/LocalLLaMA/comments/1ienetu/deepseek_r1_is_now_hosted_by_nvidia/
false
false
https://b.thumbs.redditm…5cQDv-i_vHeY.jpg
655
{'enabled': True, 'images': [{'id': 'XUzQAM9Zompr5_WUDmNa6g1s506Z7G8l0WIFMjOlUU8', 'resolutions': [{'height': 43, 'url': 'https://preview.redd.it/1zufl131vdge1.jpeg?width=108&crop=smart&auto=webp&s=d2b4fe17d46dcbc78e765f79d0dbdbc526a41441', 'width': 108}, {'height': 87, 'url': 'https://preview.redd.it/1zufl131vdge1.jpeg?width=216&crop=smart&auto=webp&s=82b85248c3501f20dcec0d42ea87797e1781a24d', 'width': 216}, {'height': 129, 'url': 'https://preview.redd.it/1zufl131vdge1.jpeg?width=320&crop=smart&auto=webp&s=926be036c0bc374304a77a78925cc47475fe9ba0', 'width': 320}, {'height': 258, 'url': 'https://preview.redd.it/1zufl131vdge1.jpeg?width=640&crop=smart&auto=webp&s=c70d8c80da395577b63301493ed66fac0dc6c408', 'width': 640}, {'height': 387, 'url': 'https://preview.redd.it/1zufl131vdge1.jpeg?width=960&crop=smart&auto=webp&s=5bc68068e9fbb05ccf48b67adebdf419087ad545', 'width': 960}, {'height': 435, 'url': 'https://preview.redd.it/1zufl131vdge1.jpeg?width=1080&crop=smart&auto=webp&s=1620ea7300a46477ec509baa8328c03e67a85db3', 'width': 1080}], 'source': {'height': 507, 'url': 'https://preview.redd.it/1zufl131vdge1.jpeg?auto=webp&s=c670948ae81277e97525409a628c40615d67b6a6', 'width': 1256}, 'variants': {}}]}
Reaction to Nvidia's recent showcase of their AI system
1
2025-01-31T19:49:39
https://www.youtube.com/watch?v=aDmblZMV43U
Typical-Interest-543
youtube.com
1970-01-01T00:00:00
0
{}
1ienj1c
false
{'oembed': {'author_name': 'Dallas Drapeau', 'author_url': 'https://www.youtube.com/@DallasDrap', 'height': 200, 'html': '<iframe width="356" height="200" src="https://www.youtube.com/embed/aDmblZMV43U?feature=oembed&enablejsapi=1" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen title="Game Devs React to Nvidia ACE @ UnrealFest"></iframe>', 'provider_name': 'YouTube', 'provider_url': 'https://www.youtube.com/', 'thumbnail_height': 360, 'thumbnail_url': 'https://i.ytimg.com/vi/aDmblZMV43U/hqdefault.jpg', 'thumbnail_width': 480, 'title': 'Game Devs React to Nvidia ACE @ UnrealFest', 'type': 'video', 'version': '1.0', 'width': 356}, 'type': 'youtube.com'}
t3_1ienj1c
/r/LocalLLaMA/comments/1ienj1c/reaction_to_nvidias_recent_showcase_of_their_ai/
false
false
https://b.thumbs.redditm…KmZ_6ejTD6jQ.jpg
1
{'enabled': False, 'images': [{'id': 'w5Lx_nmMRTjkfFVTBqjnvbO1tsxdldABkUlCAl_shE4', 'resolutions': [{'height': 81, 'url': 'https://external-preview.redd.it/AGpOKI8cmgBSOzAhLUhbtWg9UH7ngBzAiUNpGnP-GMQ.jpg?width=108&crop=smart&auto=webp&s=5f09c0e0b56d26409f95ae379e3722b5080133f0', 'width': 108}, {'height': 162, 'url': 'https://external-preview.redd.it/AGpOKI8cmgBSOzAhLUhbtWg9UH7ngBzAiUNpGnP-GMQ.jpg?width=216&crop=smart&auto=webp&s=03140b2e7794946237e24d77f237937b7575edc2', 'width': 216}, {'height': 240, 'url': 'https://external-preview.redd.it/AGpOKI8cmgBSOzAhLUhbtWg9UH7ngBzAiUNpGnP-GMQ.jpg?width=320&crop=smart&auto=webp&s=d89684d8770f6c0cde8af366f24c56a0c2052fa3', 'width': 320}], 'source': {'height': 360, 'url': 'https://external-preview.redd.it/AGpOKI8cmgBSOzAhLUhbtWg9UH7ngBzAiUNpGnP-GMQ.jpg?auto=webp&s=9efb3a4fa4108c530c4103d9e6c4279e8a91c2da', 'width': 480}, 'variants': {}}]}
Deek Seek way of thinking
0
Kept asking deepseek-r1-distill-qwen-1.5b "what are you?" and "What are you designed for" The model picks up a random piece of information and starts doing internal thinking and reasoning https://preview.redd.it/y2akgptexdge1.png?width=2342&format=png&auto=webp&s=c47e3762be1d5f62053ba8261c63d8683ef67b3b
2025-01-31T19:58:23
https://www.reddit.com/r/LocalLLaMA/comments/1ienqbg/deek_seek_way_of_thinking/
Better_Athlete_JJ
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ienqbg
false
null
t3_1ienqbg
/r/LocalLLaMA/comments/1ienqbg/deek_seek_way_of_thinking/
false
false
https://b.thumbs.redditm…7iYjsV4mAWHc.jpg
0
null
Simple web app to run local instances of R1
1
Ollama UI became out dated for R1, so made a simple Chat app for R1. It's distributed under AGPL. If there is enough demand I might change the license in future version. Outside of that enjoy. I plan on making it look nicer for formatting stuff later and what not or saved chats or rag. But this is something that fulfill my needs. Here is the repo. Its just a simple git clone and npm install. Default of the R1 LLAMA 8b distillation npm version is 10.8.1 [https://github.com/kodecreer/easy\_ai/tree/master](https://github.com/kodecreer/easy_ai/tree/master)
2025-01-31T20:04:40
https://www.reddit.com/r/LocalLLaMA/comments/1ienvtp/simple_web_app_to_run_local_instances_of_r1/
Temporary-Gene-3609
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ienvtp
false
null
t3_1ienvtp
/r/LocalLLaMA/comments/1ienvtp/simple_web_app_to_run_local_instances_of_r1/
false
false
self
1
{'enabled': False, 'images': [{'id': 'q_NR8MF8VZ0KyrcCclIOqZflCT_IeQe2p2-YtQ2z8h4', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/nKoHMa3iHUEADXyXW-lgYsLbaB-JvjFGxofUwVYBf2o.jpg?width=108&crop=smart&auto=webp&s=afce19ca90641dd9cd302031c416e6fad7ca9dbf', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/nKoHMa3iHUEADXyXW-lgYsLbaB-JvjFGxofUwVYBf2o.jpg?width=216&crop=smart&auto=webp&s=b73e6f2a14943ff1c0d117058346a190ceb079b3', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/nKoHMa3iHUEADXyXW-lgYsLbaB-JvjFGxofUwVYBf2o.jpg?width=320&crop=smart&auto=webp&s=92684f706d278a6e3008944303fbaab4a1903910', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/nKoHMa3iHUEADXyXW-lgYsLbaB-JvjFGxofUwVYBf2o.jpg?width=640&crop=smart&auto=webp&s=d5d5fe3e974210751bb7ecf6741a5d0c84a9d3e4', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/nKoHMa3iHUEADXyXW-lgYsLbaB-JvjFGxofUwVYBf2o.jpg?width=960&crop=smart&auto=webp&s=190a947a4ca0a6d51b8ac40ad1b1a372bc781815', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/nKoHMa3iHUEADXyXW-lgYsLbaB-JvjFGxofUwVYBf2o.jpg?width=1080&crop=smart&auto=webp&s=61876eec98bcd8f1f1e8abfd4f5de331afbfaeb5', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/nKoHMa3iHUEADXyXW-lgYsLbaB-JvjFGxofUwVYBf2o.jpg?auto=webp&s=07f18084c1dd0eacc193dfee49712d95fb014fcf', 'width': 1200}, 'variants': {}}]}
Cheapest way to run R1 locally?
5
I have got Ryzen 5600G, 16Gb ddr4 ram, 12gb RTX3060. This PC is obviously o potato. But if I upgrade to 128gb ram for example, will it work? I don't mind it being slow, just need to work
2025-01-31T20:14:42
https://www.reddit.com/r/LocalLLaMA/comments/1ieo4ik/cheapest_way_to_run_r1_locally/
Glass-Driver2160
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieo4ik
false
null
t3_1ieo4ik
/r/LocalLLaMA/comments/1ieo4ik/cheapest_way_to_run_r1_locally/
false
false
self
5
null
AGI
1
[removed]
2025-01-31T20:19:35
https://www.reddit.com/r/LocalLLaMA/comments/1ieo8nd/agi/
Fun_Spread_1802
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieo8nd
false
null
t3_1ieo8nd
/r/LocalLLaMA/comments/1ieo8nd/agi/
false
false
self
1
null
Need help with inference using unsloth
1
[removed]
2025-01-31T20:29:30
https://www.reddit.com/r/LocalLLaMA/comments/1ieoh2b/need_help_with_inference_using_unsloth/
rushat_bahi
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieoh2b
false
null
t3_1ieoh2b
/r/LocalLLaMA/comments/1ieoh2b/need_help_with_inference_using_unsloth/
false
false
self
1
null
Best model for book translation
5
I'm interested in Asian literature and lectures, however often there are no high-quality translations available. What would be a local model that can translate books (400-800 pages) consistently?
2025-01-31T20:32:18
https://www.reddit.com/r/LocalLLaMA/comments/1ieojg7/best_model_for_book_translation/
dasnabla
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieojg7
false
null
t3_1ieojg7
/r/LocalLLaMA/comments/1ieojg7/best_model_for_book_translation/
false
false
self
5
null
DeepSeek R1 takes #1 overall on a Creative Short Story Writing Benchmark
336
2025-01-31T20:38:45
https://i.redd.it/i2p0m8em4ege1.png
zero0_one1
i.redd.it
1970-01-01T00:00:00
0
{}
1ieooqe
false
null
t3_1ieooqe
/r/LocalLLaMA/comments/1ieooqe/deepseek_r1_takes_1_overall_on_a_creative_short/
false
false
https://b.thumbs.redditm…9l1VLDxoYY0g.jpg
336
{'enabled': True, 'images': [{'id': 'r0lZ7G_iu8uq97HCCkEnn2umetekmkVqGE9uhEEyNUc', 'resolutions': [{'height': 49, 'url': 'https://preview.redd.it/i2p0m8em4ege1.png?width=108&crop=smart&auto=webp&s=203d96b2eaa53b7a1d0215abaa35ac41288f6f57', 'width': 108}, {'height': 99, 'url': 'https://preview.redd.it/i2p0m8em4ege1.png?width=216&crop=smart&auto=webp&s=36a60d3da2e631cca84ff89f4f690f5efe880488', 'width': 216}, {'height': 147, 'url': 'https://preview.redd.it/i2p0m8em4ege1.png?width=320&crop=smart&auto=webp&s=953f8ec3e35af78f2d705052856f11ce560be157', 'width': 320}, {'height': 295, 'url': 'https://preview.redd.it/i2p0m8em4ege1.png?width=640&crop=smart&auto=webp&s=c4859ed3af650610750eb873e1231f2d526388ec', 'width': 640}, {'height': 443, 'url': 'https://preview.redd.it/i2p0m8em4ege1.png?width=960&crop=smart&auto=webp&s=a6541b1f5bdb4af55a99a802bb34a472517d46eb', 'width': 960}, {'height': 498, 'url': 'https://preview.redd.it/i2p0m8em4ege1.png?width=1080&crop=smart&auto=webp&s=68b3ae8643b31663e3312b78a7a30ca63689def5', 'width': 1080}], 'source': {'height': 600, 'url': 'https://preview.redd.it/i2p0m8em4ege1.png?auto=webp&s=177a12a65fd84fea67ea6aa6943ea83dd6901561', 'width': 1300}, 'variants': {}}]}
Relatively budget 671B R1 CPU inference workstation setup, 2-3T/s
63
I saw a post going over how to do Q2 R1 inference with a gaming rig by reading the weights directly from SSDs. It's a very neat technique and I would also like to share my experiences with CPU inference with a regular EPYC workstation setup. This setup has good memory capacity and relatively decent CPU inference performance, while also providing a great backbone for GPU or SSD expansions. Being a workstation rather than a server means this rig should be rather easily worked with and integrated into your bedroom. I am using a Q4KM GGUF and still experimenting with turning cores/CCDs/SMT on and off on my 7773X and trying different context lengths to better understand where the limit is at, but 3T/s seems to be the limit as everything is still extremely memory bandwidth starved. CPU: Any Milan EPYC over 32 cores should be okay. The price of these things varies greatly depending on the part number and if they are ES/QS/OEM/Production chips. I recommend buying an ES or OEM 64-core variant, some of them go for $500-$600. Some cheapest 32-core OEM models can go as low as $200-$300. Make sure you ask the seller CPU/board/BIOSver compatibility before purchasing. **Never buy Lenovo or DELL locked EPYC chips unless you know what you are doing!** They are never going to work on consumer motherboards. Rome EPYCs can also work since they also support DDR4 3200, but they aren't too much cheaper and have quite a bit lower CPU performance compared to Milan. There are several overclockable ES/OEM Rome chips out here such as 32 core ZS1711E3VIVG5  and 100-000000054-04. 64 core ZS1406E2VJUG5 and 100-000000053-04. I had both ZS1711 and 54-04 and it was super fun to tweak around and OC them to 3.7GHz all core, if you can find one at a reasonable price, they are also great options. Motherboard: H12SSL goes for around $500-600, and ROMED8-2T goes for $600-700. I recommend ROMED8-2T over H12SSL for the total 7x16 PCIe connectors rather than H12SSL's 5x16 + 2x8. DRAM: This is where most money should be spent. You will want to get 8 sticks of 64GB DDR4 3200MT/s RDIMM. **It has to be RDIMM (Registered DIMM), and it also has to be the same model of memory.** Each stick costs around $100-125, so in total you should spend $800-1000 on memory. This will give you 512GB capacity and 200GB/s bandwidth. The stick I got is HMAA8GR7AJR4N-XN, which works well with my ROMED8-2T. You don't have to pick from the QVL list of the motherboard vendor, just use it as a reference. 3200MT/s is not a strict requirement, if your budget is tight, you can go down to 2933 or 2666. Also, I would avoid 64GB LRDIMMs (Load Reduced DIMM). They are earlier DIMMs in DDR4 era when per DRAM chip density was still low, so each DRAM package has 2 or 4 chips packed inside (DDP or 3DS), the buffers on them are also additional points of failure. 128GB and 256GB LRDIMMs are the cutting edge for DDR4, but they are outrageously expensive and hard to find. 8x64GB is enough for Q4 inference. CPU cooler: I would limit the spending here to around $50. Any SP3 heatsink should be OK. If you bought 280W TDP CPUs, consider maybe getting better ones but there is no need to go above $100. PSU: This system should be a backbone for more GPUs to one day be installed. I would start with a pretty beefy one, maybe around 1200W ish. I think around $200 is a good spot to shop for. Storage: Any 2TB+ NVME SSD should be fairly flexible, they are fairly cheap these days. $100 Case: I recommend a full-tower with dual PSU support. I highly recommend Lianli's o11 and o11 XL family. They are quite pricy but done really well. $200 In conclusion, this whole setup should cost around $2000-2500 from scratch, not too much more expensive than a single 4090 nowadays. It can do Q4 R1 inference with usable context length and it's going to be a good starting point for future local inference. The 7 x16 PCIe gen 4 expansion provided is really handy and can do so much more once you can afford more GPUs. I am also looking into testing some old Xeons such as running dual E5v4s, they are dirt cheap right now. Will post some results once I have them running!
2025-01-31T20:43:05
https://www.reddit.com/r/LocalLLaMA/comments/1ieosbx/relatively_budget_671b_r1_cpu_inference/
xinranli
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieosbx
false
null
t3_1ieosbx
/r/LocalLLaMA/comments/1ieosbx/relatively_budget_671b_r1_cpu_inference/
false
false
self
63
null
Smallest, cheapest option for running local LLMs.
3
I have very limited space. My goal is to get something good enough running at 25 tokens/second minimum. I don’t want to spend more than $800 if possible. Would I be crazy to buy a M4 Mac mini? I think it will hit 25 tokens/second easily. And will be super small and power-efficient. I know I could get much better results with a discrete GPU, but that would be more space, power, and money. Willing to mess around with a Raspberry Pi or similar if there is any way to hit 25 tokens/second without breaking the bank. I already have a 16GB Pi 5. But even with the Pi as an option, I’m thinking I’ll wind up spending less if I go the Mac mini route. Would also be helpful to know which upgrades would be best worth my money on a Mac mini. Like if I get the base M4 chip but max out the RAM, what will bottleneck me first? As far as models, DeepSeek or Llama 3.x maybe and quantized but the largest I can fit in memory. Tbh I’ve only used these a little and I’m not sure how much I’m giving up in quality, but I want OpenAI out of my data.
2025-01-31T20:44:48
https://www.reddit.com/r/LocalLLaMA/comments/1ieotry/smallest_cheapest_option_for_running_local_llms/
moseschrute19
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieotry
false
null
t3_1ieotry
/r/LocalLLaMA/comments/1ieotry/smallest_cheapest_option_for_running_local_llms/
false
false
self
3
null
vLLM quantization performance: which kinds work best?
5
vLLM supports GGUF but the documentation seems to suggest that the speed will be better with AWQ. Does anyone have any experience with the current status? Is there a significant speed difference? It's easier to run GGUF models in the exact size that fits, and there aren't very many AWQ quantization in comparison. I'm trying to figure out if I need to start doing the AWQ quantization myself. Aphrodite builds on vLLM, so that might be another point of comparison.
2025-01-31T20:49:16
https://www.reddit.com/r/LocalLLaMA/comments/1ieoxk0/vllm_quantization_performance_which_kinds_work/
AutomataManifold
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieoxk0
false
null
t3_1ieoxk0
/r/LocalLLaMA/comments/1ieoxk0/vllm_quantization_performance_which_kinds_work/
false
false
self
5
null
Chatgpt scares me. Is it post-truth area?
1
[removed]
2025-01-31T20:49:17
https://www.reddit.com/r/LocalLLaMA/comments/1ieoxk8/chatgpt_scares_me_is_it_posttruth_area/
No_Afternoon_4260
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieoxk8
false
null
t3_1ieoxk8
/r/LocalLLaMA/comments/1ieoxk8/chatgpt_scares_me_is_it_posttruth_area/
false
false
self
1
null
Who is using DeepSeeks RL technique?
3
Curious who all has stated using their Reinforcement learning technique locally for use cases. What have you tried, how successful has it been?
2025-01-31T20:50:24
https://www.reddit.com/r/LocalLLaMA/comments/1ieoyim/who_is_using_deepseeks_rl_technique/
Vegetable_Sun_9225
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieoyim
false
null
t3_1ieoyim
/r/LocalLLaMA/comments/1ieoyim/who_is_using_deepseeks_rl_technique/
false
false
self
3
null
DeepSeek AI blocked by Italian authorities
295
2025-01-31T20:54:04
https://www.euronews.com/next/2025/01/31/deepseek-ai-blocked-by-italian-authorities-as-others-member-states-open-probes
ApprehensiveCook2236
euronews.com
1970-01-01T00:00:00
0
{}
1iep1i4
false
null
t3_1iep1i4
/r/LocalLLaMA/comments/1iep1i4/deepseek_ai_blocked_by_italian_authorities/
false
false
https://b.thumbs.redditm…SRQ-Y-DjBv2U.jpg
295
{'enabled': False, 'images': [{'id': 'AOiRP86KAYwnyvpycVKmjHypXwGmxU3rendzPON8X-w', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/cwVbdtxL_MOCraBvILhveGZjsoXBHPHOS4Ik8eBEAT4.jpg?width=108&crop=smart&auto=webp&s=7ee08b14560644f937f776a3e03a67565a5c81aa', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/cwVbdtxL_MOCraBvILhveGZjsoXBHPHOS4Ik8eBEAT4.jpg?width=216&crop=smart&auto=webp&s=c7a39d8b20e35f851768034465a05b3fe4e89c7c', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/cwVbdtxL_MOCraBvILhveGZjsoXBHPHOS4Ik8eBEAT4.jpg?width=320&crop=smart&auto=webp&s=a9af604009c8035a7bc7e5b55d3b952347e09cfb', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/cwVbdtxL_MOCraBvILhveGZjsoXBHPHOS4Ik8eBEAT4.jpg?width=640&crop=smart&auto=webp&s=c74e97f5b3d89f2b950da588950bdaa1d7f71e9d', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/cwVbdtxL_MOCraBvILhveGZjsoXBHPHOS4Ik8eBEAT4.jpg?width=960&crop=smart&auto=webp&s=4a8953023d5ce39373ca377206e1123828ae3550', 'width': 960}, {'height': 607, 'url': 'https://external-preview.redd.it/cwVbdtxL_MOCraBvILhveGZjsoXBHPHOS4Ik8eBEAT4.jpg?width=1080&crop=smart&auto=webp&s=04ee5a7056833db20b336f3dc7d8904056d1da23', 'width': 1080}], 'source': {'height': 675, 'url': 'https://external-preview.redd.it/cwVbdtxL_MOCraBvILhveGZjsoXBHPHOS4Ik8eBEAT4.jpg?auto=webp&s=294737a4153fc946c129da15b1ef61c09564d7e9', 'width': 1200}, 'variants': {}}]}
Is there a local "projects" feature?
3
Hey folks, I love using Claude's projects feature, and I wonder if there's any local solution to this. Note that this would have to be run entirely locally, not using a third party company that allows you to use a locally-served API. Thanks!
2025-01-31T20:57:03
https://www.reddit.com/r/LocalLLaMA/comments/1iep412/is_there_a_local_projects_feature/
Berberis
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iep412
false
null
t3_1iep412
/r/LocalLLaMA/comments/1iep412/is_there_a_local_projects_feature/
false
false
self
3
null
Add data to Deepseek?
2
Good afternoon: I'm wondering, is it possible to add "custom" data to Deepseek? I'm looking into setting it up for work but we have lots of custom, super specific stuff that I wouldn't expect it to know anything about. Is it possible to "teach" it? Is there a way to give it more info?
2025-01-31T21:06:41
https://www.reddit.com/r/LocalLLaMA/comments/1iepccv/add_data_to_deepseek/
rmp5s
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iepccv
false
null
t3_1iepccv
/r/LocalLLaMA/comments/1iepccv/add_data_to_deepseek/
false
false
self
2
null
Reasoning models struggling with this question based on Browser's Vault in Mario Party Jamboree. Wondering if it's a weakness or I'm just not phrasing the question/prompt correctly.
2
Was trying to explain to someone the value and odds of Browser's Vault in Mario Party Jamboree and thought, *hey! this would make a good question to ask a reasoning model!* So I did, and was shocked by the poor answers I was getting, and figure maybe it's me, maybe I'm not being clear, so I try to refine the question, and even feed the answer to the models (o1 and R1) but of the maybe 30 attempts R1 was the only one to get it right and only once, failing subsequent times using the same prompt. I even created a python script of the "game" have it analyze it and asks the same question based on the script and still no luck. Figure I come here and see what you guys think about the question, if it's me and the question is unclear and if there is a way to prompt it so the models can solve it correctly every time. **The question:** A guessing game where the player tries to identify two hidden numbers, each ranging from 1 to 9. The two numbers may be the same or different. In each turn, the player guesses both numbers, and the system provides feedback on whether they got one, both, or neither correct. The goal is to reveal both numbers and win the game. Game System At the start, the system randomly generates two hidden numbers, each between 1 and 9. The game proceeds in turns, with the player making a guess for both numbers each turn. The system checks the guess and provides feedback: If both numbers are correct, the player wins. If any of hidden number is correct, regardless of order, it is revealed, the player will know what that number is and the player continues guessing the remaining number. If neither is correct, the player keeps trying. The game ends when both numbers are revealed. Based on the logic of the game: What is the maximum number of turns a player would need to guess both hidden numbers if they try every possibility while keeping track of their previous guesses? Here is the py script: import random def main(): hidden_num1 = random.randint(1, 9) hidden_num2 = random.randint(1, 9) revealed1 = False revealed2 = False print("Welcome to the Two-Number Guessing Game!") print("Guess two numbers between 1 and 9. Try to guess both to win!\n") while True: try: guess1 = int(input("Enter your guess for the first number: ")) guess2 = int(input("Enter your guess for the second number: ")) except ValueError: print("Please enter valid integers between 1 and 9.\n") continue # Check guesses and update revealed status current_correct1, new_reveal1 = check_guess(guess1, hidden_num1, revealed1) current_correct2, new_reveal2 = check_guess(guess2, hidden_num2, revealed2) if current_correct1: revealed1 = True if current_correct2: revealed2 = True # Check win conditions if current_correct1 and current_correct2: print(f"\nCongratulations! You've guessed both numbers correctly! They were {hidden_num1} and {hidden_num2}. You win!") break if revealed1 and revealed2: print(f"\nBoth numbers have been revealed! They were {hidden_num1} and {hidden_num2}. You win!") break # Provide feedback correct_count = sum([current_correct1, current_correct2]) feedback = [] if new_reveal1: feedback.append(f"First number revealed: {hidden_num1}") if new_reveal2: feedback.append(f"Second number revealed: {hidden_num2}") if correct_count == 1 and not (new_reveal1 or new_reveal2): if current_correct1: feedback.append(f"First number correct ({hidden_num1})") else: feedback.append(f"Second number correct ({hidden_num2})") elif correct_count == 0: feedback.append("No correct guesses") print("\n" + "\n".join(feedback)) print_revealed_status(revealed1, revealed2, hidden_num1, hidden_num2) print() def check_guess(guess, hidden_num, revealed): if revealed: return (guess == hidden_num, False) return (guess == hidden_num, guess == hidden_num) def print_revealed_status(revealed1, revealed2, num1, num2): status = [] if revealed1: status.append(f"First number: {num1}") else: status.append("First number: _") if revealed2: status.append(f"Second number: {num2}") else: status.append("Second number: _") print("Current revealed status:", ", ".join(status)) if __name__ == "__main__": main() Answer is >!9 turns, any more and it's the player's inefficiency!<
2025-01-31T21:09:13
https://www.reddit.com/r/LocalLLaMA/comments/1iepekk/reasoning_models_struggling_with_this_question/
IamVeryBraves
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iepekk
false
null
t3_1iepekk
/r/LocalLLaMA/comments/1iepekk/reasoning_models_struggling_with_this_question/
false
false
self
2
null
He is still just llama
1
2025-01-31T21:17:35
https://i.redd.it/ybg64w9lbege1.jpeg
MarinatedPickachu
i.redd.it
1970-01-01T00:00:00
0
{}
1ieplr4
false
null
t3_1ieplr4
/r/LocalLLaMA/comments/1ieplr4/he_is_still_just_llama/
false
false
https://b.thumbs.redditm…Wx0-JYFCfHdU.jpg
1
{'enabled': True, 'images': [{'id': '39E1KsJdttVFjOC1DT3X4a3rv-QyGbjXA1OoaqQNyTk', 'resolutions': [{'height': 216, 'url': 'https://preview.redd.it/ybg64w9lbege1.jpeg?width=108&crop=smart&auto=webp&s=b2d5e40d1113cd91991f67bf23904f3c566a3f1e', 'width': 108}, {'height': 432, 'url': 'https://preview.redd.it/ybg64w9lbege1.jpeg?width=216&crop=smart&auto=webp&s=57b8da4168766c67a0922614af0085ed129bca1a', 'width': 216}, {'height': 640, 'url': 'https://preview.redd.it/ybg64w9lbege1.jpeg?width=320&crop=smart&auto=webp&s=dd99110e516d0cef798172b1910a7a958fb17569', 'width': 320}, {'height': 1280, 'url': 'https://preview.redd.it/ybg64w9lbege1.jpeg?width=640&crop=smart&auto=webp&s=6b68c088df9453be906c54ca3dadf23ee2e638e0', 'width': 640}, {'height': 1920, 'url': 'https://preview.redd.it/ybg64w9lbege1.jpeg?width=960&crop=smart&auto=webp&s=095040db3507de5590cd2d19293752d82b3e9bed', 'width': 960}], 'source': {'height': 2048, 'url': 'https://preview.redd.it/ybg64w9lbege1.jpeg?auto=webp&s=ea31f4d6f3d3b617b516e8a34f81e6e975d85ed5', 'width': 1024}, 'variants': {}}]}
UI where I can make 2 LLMs talk to each other with RAG and Document handling + display? Not Sillytavern please
1
[removed]
2025-01-31T21:27:07
https://www.reddit.com/r/LocalLLaMA/comments/1iepttp/ui_where_i_can_make_2_llms_talk_to_each_other/
WombatMask
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iepttp
false
null
t3_1iepttp
/r/LocalLLaMA/comments/1iepttp/ui_where_i_can_make_2_llms_talk_to_each_other/
false
false
self
1
null
The future of LLM performance isn't "self-reasoning" it's "self-loathing".
0
2025-01-31T21:34:56
https://i.redd.it/5zcwqw8ieege1.png
cmndr_spanky
i.redd.it
1970-01-01T00:00:00
0
{}
1ieq0di
false
null
t3_1ieq0di
/r/LocalLLaMA/comments/1ieq0di/the_future_of_llm_performance_isnt_selfreasoning/
false
false
https://b.thumbs.redditm…t17fqZNEdFjQ.jpg
0
{'enabled': True, 'images': [{'id': 'oZ0UjiqM_LhRa0QfgTLOHZ6R4iFez0jHwLn4_ndd198', 'resolutions': [{'height': 65, 'url': 'https://preview.redd.it/5zcwqw8ieege1.png?width=108&crop=smart&auto=webp&s=392d3b03fcb45e45217ef27fdd12a78c45e8b2b4', 'width': 108}, {'height': 131, 'url': 'https://preview.redd.it/5zcwqw8ieege1.png?width=216&crop=smart&auto=webp&s=52e5ac69daae0f74d6836d9ced0aad54a5db3741', 'width': 216}, {'height': 195, 'url': 'https://preview.redd.it/5zcwqw8ieege1.png?width=320&crop=smart&auto=webp&s=1a331fa638eb5a624501ad5b85a783a73619b465', 'width': 320}, {'height': 390, 'url': 'https://preview.redd.it/5zcwqw8ieege1.png?width=640&crop=smart&auto=webp&s=f9e802a89047d8ec7165e10e50edd05126138752', 'width': 640}, {'height': 585, 'url': 'https://preview.redd.it/5zcwqw8ieege1.png?width=960&crop=smart&auto=webp&s=2f74bf852d6a3cdd6119de1496973debf28a8b23', 'width': 960}, {'height': 658, 'url': 'https://preview.redd.it/5zcwqw8ieege1.png?width=1080&crop=smart&auto=webp&s=63d67b3814c377ce2ba58bf974415eb51421ab02', 'width': 1080}], 'source': {'height': 885, 'url': 'https://preview.redd.it/5zcwqw8ieege1.png?auto=webp&s=6b5bc72e48d6ed009538d45913db2d46ed365f35', 'width': 1451}, 'variants': {}}]}
anybody use the deepseek r1 from nvda?
1
[removed]
2025-01-31T21:35:00
https://www.reddit.com/r/LocalLLaMA/comments/1ieq0fv/anybody_use_the_deepseek_r1_from_nvda/
Junior-Education8608
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieq0fv
false
null
t3_1ieq0fv
/r/LocalLLaMA/comments/1ieq0fv/anybody_use_the_deepseek_r1_from_nvda/
false
false
self
1
{'enabled': False, 'images': [{'id': 'bDBtR3TunTkvgRYojn0XqDeBIKzBtXMLGIZO_q-cAwo', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/e_zd-58KsfInR61YXtvDdp1zboqyLfXLN5s93v6quM4.jpg?width=108&crop=smart&auto=webp&s=c62e8721a6e4db3bd3de8b812202e1da10dc4ae5', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/e_zd-58KsfInR61YXtvDdp1zboqyLfXLN5s93v6quM4.jpg?width=216&crop=smart&auto=webp&s=ac3752db1669ab9a59c2ba416726ac0f130fd414', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/e_zd-58KsfInR61YXtvDdp1zboqyLfXLN5s93v6quM4.jpg?width=320&crop=smart&auto=webp&s=2540776faaabafce1c5701494a84e4b621615932', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/e_zd-58KsfInR61YXtvDdp1zboqyLfXLN5s93v6quM4.jpg?width=640&crop=smart&auto=webp&s=f069a105b9b50511edf5cc1043929c743c4f1348', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/e_zd-58KsfInR61YXtvDdp1zboqyLfXLN5s93v6quM4.jpg?width=960&crop=smart&auto=webp&s=4e4fe7439c7043d1e4cf04a0b69d6b918fcd635e', 'width': 960}], 'source': {'height': 576, 'url': 'https://external-preview.redd.it/e_zd-58KsfInR61YXtvDdp1zboqyLfXLN5s93v6quM4.jpg?auto=webp&s=0913f080cae89f248bf191616652dde12c91f305', 'width': 1024}, 'variants': {}}]}
o3-mini?
3
I was about to ask a trivial question so I open the model selection to go with 4o, when a wild o3-mini appeared. Btw, this is using the android app. This is getting exciting
2025-01-31T21:41:39
https://i.redd.it/aior4ixvfege1.jpeg
jalbanesi
i.redd.it
1970-01-01T00:00:00
0
{}
1ieq5yp
false
null
t3_1ieq5yp
/r/LocalLLaMA/comments/1ieq5yp/o3mini/
false
false
https://b.thumbs.redditm…9ozwJIWyZVAw.jpg
3
{'enabled': True, 'images': [{'id': 'xP_FlnbBOaeK1joURxTW3N4Byf26AuMw_o_wk3VkKu4', 'resolutions': [{'height': 216, 'url': 'https://preview.redd.it/aior4ixvfege1.jpeg?width=108&crop=smart&auto=webp&s=298a9beb3d8444c49f7ccc528843821e39a09771', 'width': 108}, {'height': 432, 'url': 'https://preview.redd.it/aior4ixvfege1.jpeg?width=216&crop=smart&auto=webp&s=dd6a1fa364904570002a0b0ec9042286d5ca11b9', 'width': 216}, {'height': 640, 'url': 'https://preview.redd.it/aior4ixvfege1.jpeg?width=320&crop=smart&auto=webp&s=496a1dba83dc14d2bbbf16b787bcddb69da9fa21', 'width': 320}, {'height': 1280, 'url': 'https://preview.redd.it/aior4ixvfege1.jpeg?width=640&crop=smart&auto=webp&s=922866aa5e68851dea76b3264380aa7296c6f4f1', 'width': 640}, {'height': 1920, 'url': 'https://preview.redd.it/aior4ixvfege1.jpeg?width=960&crop=smart&auto=webp&s=832c5f43ca7c26109f0a5780aa898b73a7220cd0', 'width': 960}, {'height': 2160, 'url': 'https://preview.redd.it/aior4ixvfege1.jpeg?width=1080&crop=smart&auto=webp&s=544b8a254486cfadd4be75b3886b10af571a4130', 'width': 1080}], 'source': {'height': 2400, 'url': 'https://preview.redd.it/aior4ixvfege1.jpeg?auto=webp&s=ef6f61ee9ed9d45d10cf8e777c77338d7bc0d336', 'width': 1080}, 'variants': {}}]}
its not local but the new o3-mini from openAI just came available
1
[removed]
2025-01-31T21:48:04
https://www.reddit.com/r/LocalLLaMA/comments/1ieqbcn/its_not_local_but_the_new_o3mini_from_openai_just/
DHamov
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieqbcn
false
null
t3_1ieqbcn
/r/LocalLLaMA/comments/1ieqbcn/its_not_local_but_the_new_o3mini_from_openai_just/
false
false
https://b.thumbs.redditm…JhVKrKruMgVI.jpg
1
null
Is stacking 3090s the best for inference of mid size llms ?
3
I've been looking into the hardware side of running mid-size language models—like those in the 24B-70B parameter range. I'm curious about using multiple RTX 3090s for inference at a decent speed, but I’m not entirely sure if this is the optimal approach. The 3090 is relatively cost-effective compared to some of the enterprise-grade GPUs. However, is there a point where stacking 3090s becomes less efficient compared to investing in fewer, but more powerful, GPUs (like the A6000 or even A100 etc,,,)?
2025-01-31T21:51:19
https://www.reddit.com/r/LocalLLaMA/comments/1ieqe5w/is_stacking_3090s_the_best_for_inference_of_mid/
11TheM11
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieqe5w
false
null
t3_1ieqe5w
/r/LocalLLaMA/comments/1ieqe5w/is_stacking_3090s_the_best_for_inference_of_mid/
false
false
self
3
null
He is still just llama
1
[removed]
2025-01-31T22:03:25
[deleted]
1970-01-01T00:00:00
0
{}
1ieqohd
false
null
t3_1ieqohd
/r/LocalLLaMA/comments/1ieqohd/he_is_still_just_llama/
false
false
default
1
null
Running deepseek r1?
1
[removed]
2025-01-31T22:15:54
https://www.reddit.com/r/LocalLLaMA/comments/1ieqz0i/running_deepseek_r1/
Illustrious-Row6858
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieqz0i
false
null
t3_1ieqz0i
/r/LocalLLaMA/comments/1ieqz0i/running_deepseek_r1/
false
false
self
1
{'enabled': False, 'images': [{'id': 'OqAvtQ4tlA8vKt4R_1outxRodFTo7HM0fblhK0y5vrk', 'resolutions': [{'height': 108, 'url': 'https://external-preview.redd.it/cCXkGVCVnPScIWZm9HqARTG-ieEMdGHLlzWGG7wf-kE.jpg?width=108&crop=smart&auto=webp&s=8a480083ca56e1cbe810b428889ead7407dc79b0', 'width': 108}], 'source': {'height': 200, 'url': 'https://external-preview.redd.it/cCXkGVCVnPScIWZm9HqARTG-ieEMdGHLlzWGG7wf-kE.jpg?auto=webp&s=ac0c5a4567d2d1c72fdb480636106815d2b6b352', 'width': 200}, 'variants': {}}]}
Multiple Local Sessions
0
Got six non-GPU, small memory PCs on a LAN. I want to drop in a capable new machine running a LOCAL Llama model where I can additionally RAG a bunch of private data PDFs in one place. Prompt arrivals will be generally sparse, but there is still a good likelihood there will be overlap even with some sensible investment to keep token speed timely. Want it no-training simple on the PCs. Anyone have a suggestion on how to build a prompt/completion traffic cop/queue (or equivalent) so the desktop windows appear in-session 24x7 … accepting completion delays will occur during the overlaps?
2025-01-31T22:17:54
https://www.reddit.com/r/LocalLLaMA/comments/1ier0nc/multiple_local_sessions/
GaltEngineering
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ier0nc
false
null
t3_1ier0nc
/r/LocalLLaMA/comments/1ier0nc/multiple_local_sessions/
false
false
self
0
null
Running deepseek r1?
1
[removed]
2025-01-31T22:18:37
https://www.reddit.com/r/LocalLLaMA/comments/1ier19e/running_deepseek_r1/
Illustrious-Row6858
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ier19e
false
null
t3_1ier19e
/r/LocalLLaMA/comments/1ier19e/running_deepseek_r1/
false
false
self
1
null
How can I run an llm using cpu instead of GPU - running on mac m2 arm chips
0
Hello, I'm currently running mistral 7B with ollama locally. Connecting trough api(localhost) and looking to run difference instance to speed up the process. It's using a lot of ram and almost nothing from the cpu, should I switch to as modal that leverage more cpu or I can bring modification to force it to use my cpu [What I see when monitoring the llm running \(multiple threads\)](https://preview.redd.it/xj6yvm0wlege1.png?width=779&format=png&auto=webp&s=70d9e971678d3d700eea90ca8fc80b683f9000d4)
2025-01-31T22:21:08
https://www.reddit.com/r/LocalLLaMA/comments/1ier3fu/how_can_i_run_an_llm_using_cpu_instead_of_gpu/
voidwater1
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ier3fu
false
null
t3_1ier3fu
/r/LocalLLaMA/comments/1ier3fu/how_can_i_run_an_llm_using_cpu_instead_of_gpu/
false
false
https://b.thumbs.redditm…bI8AlFmGAErg.jpg
0
null
Deploy Deepseek R1 8B on AWS
0
2025-01-31T22:26:40
https://www.slashml.com/blog/host-deepseek-r1-on-aws
fazkan
slashml.com
1970-01-01T00:00:00
0
{}
1ier7z6
false
null
t3_1ier7z6
/r/LocalLLaMA/comments/1ier7z6/deploy_deepseek_r1_8b_on_aws/
false
false
https://b.thumbs.redditm…_9tagGJ7titw.jpg
0
{'enabled': False, 'images': [{'id': 'Z6gDJER1QkwrMgDfJwUyRpxiLulc2mHLGuqwWg6dgCQ', 'resolutions': [{'height': 108, 'url': 'https://external-preview.redd.it/t2kkIWlCHa7MLtBrx7LwgXZL-Qy5k5es5DbDaOa3mKA.jpg?width=108&crop=smart&auto=webp&s=d79b93293fd629ff751d33bf02cdb6a4c0697388', 'width': 108}, {'height': 216, 'url': 'https://external-preview.redd.it/t2kkIWlCHa7MLtBrx7LwgXZL-Qy5k5es5DbDaOa3mKA.jpg?width=216&crop=smart&auto=webp&s=82a9dd34852e1926cae84e5666887ca14678bf79', 'width': 216}, {'height': 320, 'url': 'https://external-preview.redd.it/t2kkIWlCHa7MLtBrx7LwgXZL-Qy5k5es5DbDaOa3mKA.jpg?width=320&crop=smart&auto=webp&s=256bc78266b5cbb8885d6357528072bb34fc1398', 'width': 320}, {'height': 640, 'url': 'https://external-preview.redd.it/t2kkIWlCHa7MLtBrx7LwgXZL-Qy5k5es5DbDaOa3mKA.jpg?width=640&crop=smart&auto=webp&s=b3ddb7433d2e52175b4b768b07fc105f921fe136', 'width': 640}, {'height': 960, 'url': 'https://external-preview.redd.it/t2kkIWlCHa7MLtBrx7LwgXZL-Qy5k5es5DbDaOa3mKA.jpg?width=960&crop=smart&auto=webp&s=2095528f67ecd41d79fce26c646df4bce0492247', 'width': 960}], 'source': {'height': 1024, 'url': 'https://external-preview.redd.it/t2kkIWlCHa7MLtBrx7LwgXZL-Qy5k5es5DbDaOa3mKA.jpg?auto=webp&s=738394dc73a151d3ee6e039e0169783a3498de25', 'width': 1024}, 'variants': {}}]}
Hardware provisioning challenges while selling local LLM apps to customers
2
I founded a startup that offers a suite of applications that leverages local AI (running on macbook or NVidia GPU enabled machines etc). People love the idea of running the AI locally and not having to worry about privacy or token counts. But our initial sales outreach efforts have shown that a huge percentage of users don't have a macbook or a GPU enabled notebook. I am offering them to bring their own GPUs or host my application on their VPCs. They seem to be a bit hesitant with the idea in theory, but I feel like this is a source of friction with customer onboarding. The product runs very smoothly on my macbook and my GPU enabled windows laptop. What are your thoughts on the practicality of local llm inferences. Is this something that can become mainstream? There are a lot of products that use ChatGPT or claude APIs today, but how do I convince customers to invest in a local setup?
2025-01-31T22:32:43
https://www.reddit.com/r/LocalLLaMA/comments/1iercuo/hardware_provisioning_challenges_while_selling/
__amberluz__
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iercuo
false
null
t3_1iercuo
/r/LocalLLaMA/comments/1iercuo/hardware_provisioning_challenges_while_selling/
false
false
self
2
null
Oh o3-mini you cheeky dawg . HELP ME Government Daddy HELP ME . DeepSeek IS STEALING MY DATA. Oh you knew this was gonna happen didn't you? Cry wolf before the other party does.
0
2025-01-31T22:38:35
https://i.redd.it/no8b17cppege1.png
Educational_Gap5867
i.redd.it
1970-01-01T00:00:00
0
{}
1ierhgm
false
null
t3_1ierhgm
/r/LocalLLaMA/comments/1ierhgm/oh_o3mini_you_cheeky_dawg_help_me_government/
true
false
spoiler
0
{'enabled': True, 'images': [{'id': 'BvGv6ub6p0Fh3HV5_5hkoXgT_JUIzOdH4aPbOnQ-CB8', 'resolutions': [{'height': 22, 'url': 'https://preview.redd.it/no8b17cppege1.png?width=108&crop=smart&auto=webp&s=d5952a64845dc29d8b8c20f1f1a7571425fe8635', 'width': 108}, {'height': 45, 'url': 'https://preview.redd.it/no8b17cppege1.png?width=216&crop=smart&auto=webp&s=d2e99031f3dec5dfd8257372537ead3d43083780', 'width': 216}, {'height': 68, 'url': 'https://preview.redd.it/no8b17cppege1.png?width=320&crop=smart&auto=webp&s=9c3fa999d51c267bfbaa58b1ab45935e29726bd5', 'width': 320}, {'height': 136, 'url': 'https://preview.redd.it/no8b17cppege1.png?width=640&crop=smart&auto=webp&s=9dd14796eb8bb1251379c460298bd142e1ddd6ce', 'width': 640}], 'source': {'height': 159, 'url': 'https://preview.redd.it/no8b17cppege1.png?auto=webp&s=f6dc47e8b0adf7493b168a24c185b7361a94282a', 'width': 747}, 'variants': {'obfuscated': {'resolutions': [{'height': 22, 'url': 'https://preview.redd.it/no8b17cppege1.png?width=108&crop=smart&blur=10&format=pjpg&auto=webp&s=ffd7610bd1d741640fc5c64d47c6c6676a0d9b6e', 'width': 108}, {'height': 45, 'url': 'https://preview.redd.it/no8b17cppege1.png?width=216&crop=smart&blur=21&format=pjpg&auto=webp&s=88d18aa76a12912069cef4ed8398ced479c918b9', 'width': 216}, {'height': 68, 'url': 'https://preview.redd.it/no8b17cppege1.png?width=320&crop=smart&blur=32&format=pjpg&auto=webp&s=677e1e7c702b718093432b5c1515e48c9e449789', 'width': 320}, {'height': 136, 'url': 'https://preview.redd.it/no8b17cppege1.png?width=640&crop=smart&blur=40&format=pjpg&auto=webp&s=1ecc31fe3d9e4c7fc8b268cbd11d55c746834735', 'width': 640}], 'source': {'height': 159, 'url': 'https://preview.redd.it/no8b17cppege1.png?blur=40&format=pjpg&auto=webp&s=d6f84aab8f564b7bb76f8567d710bce577299307', 'width': 747}}}}]}
Thoughts on running Polaris cards for local inference?
2
So I've been wanting to get a really really beefy AI setup since deepseek launched, and one thing that's just been going through my head is the RX 580 cards, they have 580gb each, they're around as old as the Tesla P100 so software support could not be there is my main worry especially for AMD, but you can find the 16gb version that was made for miners for 100 dollars online, the normal 8 gig version's 40 dollars and you can flash the BIOS pretty easily since I've done it before to tune the memory timings so I'm thinking about getting one of those and buying the VRAM chips separately and trying to solder them on and flash the 16gb card's bios, but yeah I was just wondering if this is something anyone else has been doing or thinking of doing since you can get 12 of those for (lower range assuming free VRAM so obviously not) 480-1200 dollars? and that's 192gb of vram in total, now I've always thought this was a bad idea because they don't have NVlink but I've been told the software for this over PCIe is fast enough now that people run models using even Nvidia and AMD cards mismatched and still manage to get the benefits of their combined memory so I'm just sorta thinking about why this is a bad idea or why you wouldn't really do this? I used to mine with these cards 24/7 so I can tell you straight to the face that power consumption is likely not even as high as two 3090s with a setup like this.
2025-01-31T22:39:28
https://www.reddit.com/r/LocalLLaMA/comments/1ieri5t/thoughts_on_running_polaris_cards_for_local/
Illustrious-Row6858
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieri5t
false
null
t3_1ieri5t
/r/LocalLLaMA/comments/1ieri5t/thoughts_on_running_polaris_cards_for_local/
false
false
self
2
null
OpenAI becoming open Ai?
21
https://preview.redd.it/…nt=share_button)
2025-01-31T22:43:45
https://www.reddit.com/r/LocalLLaMA/comments/1ierlm9/openai_becoming_open_ai/
ApprehensiveAd3629
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ierlm9
false
null
t3_1ierlm9
/r/LocalLLaMA/comments/1ierlm9/openai_becoming_open_ai/
false
false
https://b.thumbs.redditm…rSkzjsRHW-ho.jpg
21
null
How many parameters in Meta Ai, Gemini, ChatGPT chats?
0
I asked in Meta AI chat, and it says it has 70B parameters. But at Meta blog the link to meta chat says it is 405b. Meta chat: "I'm based on Llama 3, which has 3 model sizes: 8B, 70B, and 405B. I have 70B parameters, not 405B."
2025-01-31T22:48:28
https://www.reddit.com/r/LocalLLaMA/comments/1ierphz/how_many_parameters_in_meta_ai_gemini_chatgpt/
medgel
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ierphz
false
null
t3_1ierphz
/r/LocalLLaMA/comments/1ierphz/how_many_parameters_in_meta_ai_gemini_chatgpt/
false
false
self
0
null
LM studio crash
2
I have 7900xt. When i try to download the model on LM studio. the app crashes, gpu spikes to 100% then when i go back in to the app its says "timed out. please try to resume" and when i try it crashes again Dose any one know why? i have 7900xt 20gb vram and 16gb ram
2025-01-31T22:49:59
https://www.reddit.com/r/LocalLLaMA/comments/1ierqqc/lm_studio_crash/
JamesJackL
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ierqqc
false
null
t3_1ierqqc
/r/LocalLLaMA/comments/1ierqqc/lm_studio_crash/
false
false
self
2
null
Definition of a small LLM
1
[removed]
2025-01-31T22:51:01
https://www.reddit.com/r/LocalLLaMA/comments/1ierrjv/definition_of_a_small_llm/
as2307
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ierrjv
false
null
t3_1ierrjv
/r/LocalLLaMA/comments/1ierrjv/definition_of_a_small_llm/
false
false
self
1
null
Is there an orchestration for AIs?
2
I have a few models locally, each excelling at something. I wanna build a system where after I send a prompt, with maybe a file (like a csv or an image), it sends to the models and they each decide if they should do something about it or even ask other models. I could send an image and say "crop this image to include only what is relevant". Llava would tell what is important in this image and where and send the answer to llama and deepseek. Llama would call the tool to crop the image. Deepseek would summary e the description that llava gave. The example is far fetched maybe, it's just an example, each model could send messages to each othee I wanna orchestrate them to have my own local compound ai system. How should I go about it? I tried asking Perplexity but honestly even that can be mistaken at times. I haven't found an "AI orchestration", but if I came up with this idea, someone definelly took care of it already. If you wanna orchestrate docker containers, you use kubernets. For microservices, it's rabbitmq. What about compound AI?
2025-01-31T22:51:59
https://www.reddit.com/r/LocalLLaMA/comments/1iersbt/is_there_an_orchestration_for_ais/
Blender-Fan
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iersbt
false
null
t3_1iersbt
/r/LocalLLaMA/comments/1iersbt/is_there_an_orchestration_for_ais/
false
false
self
2
null
First PC from my Arc Cluster, 9 more to build...
0
2025-01-31T22:53:24
https://v.redd.it/074fm5e4sege1
Ragecommie
v.redd.it
1970-01-01T00:00:00
0
{}
1iertfy
false
{'reddit_video': {'bitrate_kbps': 5000, 'dash_url': 'https://v.redd.it/074fm5e4sege1/DASHPlaylist.mpd?a=1740956018%2CMWNiMmE3NGIzM2VlNzhiODcxZWE4MmVkNDFkN2Q1M2RjMTMwOTEzNzEwNmRkODVjYjVhYzRjMjc4NTFjMzVmOA%3D%3D&v=1&f=sd', 'duration': 23, 'fallback_url': 'https://v.redd.it/074fm5e4sege1/DASH_1080.mp4?source=fallback', 'has_audio': True, 'height': 1080, 'hls_url': 'https://v.redd.it/074fm5e4sege1/HLSPlaylist.m3u8?a=1740956018%2CM2UzNDBlMjg3YmYzM2MyN2JhYzc2NDA1M2NmZWUyYjhmYjBlMWVhMmFhYzhiZTA5MDYwMThjN2U4ZmNjMzc3ZQ%3D%3D&v=1&f=sd', 'is_gif': False, 'scrubber_media_url': 'https://v.redd.it/074fm5e4sege1/DASH_96.mp4', 'transcoding_status': 'completed', 'width': 1920}}
t3_1iertfy
/r/LocalLLaMA/comments/1iertfy/first_pc_from_my_arc_cluster_9_more_to_build/
false
false
https://external-preview…01fb90b52aff6515
0
{'enabled': False, 'images': [{'id': 'c3p6OHA1ZTRzZWdlMfrzokP8o8-VaDBwaAN1-Gf4sRqZjK1AWxSnrDgfSg-N', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/c3p6OHA1ZTRzZWdlMfrzokP8o8-VaDBwaAN1-Gf4sRqZjK1AWxSnrDgfSg-N.png?width=108&crop=smart&format=pjpg&auto=webp&s=084c5af25270e6993d79c9c8af4f6b5270fef022', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/c3p6OHA1ZTRzZWdlMfrzokP8o8-VaDBwaAN1-Gf4sRqZjK1AWxSnrDgfSg-N.png?width=216&crop=smart&format=pjpg&auto=webp&s=08dd7d4e47fb55a60c9b5cb90f0d20cb91d3d241', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/c3p6OHA1ZTRzZWdlMfrzokP8o8-VaDBwaAN1-Gf4sRqZjK1AWxSnrDgfSg-N.png?width=320&crop=smart&format=pjpg&auto=webp&s=6daba79e589b8e8fe7f00ed52612e80be033a1cd', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/c3p6OHA1ZTRzZWdlMfrzokP8o8-VaDBwaAN1-Gf4sRqZjK1AWxSnrDgfSg-N.png?width=640&crop=smart&format=pjpg&auto=webp&s=677feb7ffd4109b7e63ee5e64c4ccd3e0ed36d94', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/c3p6OHA1ZTRzZWdlMfrzokP8o8-VaDBwaAN1-Gf4sRqZjK1AWxSnrDgfSg-N.png?width=960&crop=smart&format=pjpg&auto=webp&s=2d31708783fd7af73fb23bee5479ad7c62f22ab6', 'width': 960}, {'height': 607, 'url': 'https://external-preview.redd.it/c3p6OHA1ZTRzZWdlMfrzokP8o8-VaDBwaAN1-Gf4sRqZjK1AWxSnrDgfSg-N.png?width=1080&crop=smart&format=pjpg&auto=webp&s=650e0317d5a57a8936aa64dcf791cd7f178f2fe1', 'width': 1080}], 'source': {'height': 1080, 'url': 'https://external-preview.redd.it/c3p6OHA1ZTRzZWdlMfrzokP8o8-VaDBwaAN1-Gf4sRqZjK1AWxSnrDgfSg-N.png?format=pjpg&auto=webp&s=5c5143527c19b7a1f821f56eeb65126a915b56f8', 'width': 1920}, 'variants': {}}]}
Is there more to mobile LLM apps than NSFW chat bots?
4
Seems like the mobile space for LLMs is denominated by red light district style apps. Anyone finding any sorta value that's not that on mobile?
2025-01-31T22:54:38
https://www.reddit.com/r/LocalLLaMA/comments/1ierug6/is_there_more_to_mobile_llm_apps_than_nsfw_chat/
Vegetable_Sun_9225
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ierug6
false
null
t3_1ierug6
/r/LocalLLaMA/comments/1ierug6/is_there_more_to_mobile_llm_apps_than_nsfw_chat/
false
false
nsfw
4
null
5090 Astral draws >620watts, future problem?
0
I cannot understand how 5090 Astral and 5090 suprim consistently draw >620 watts while gaming and is considered safe. I thought the cable can handle up to 600watts. If 24/7 long term, this could be a seeious issue, especially for AI models. What am I missing?
2025-01-31T22:57:46
https://www.reddit.com/r/LocalLLaMA/comments/1ierwxc/5090_astral_draws_620watts_future_problem/
Dry-Bunch-7448
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ierwxc
false
null
t3_1ierwxc
/r/LocalLLaMA/comments/1ierwxc/5090_astral_draws_620watts_future_problem/
false
false
self
0
null
Generating videos
1
[removed]
2025-01-31T23:00:01
https://www.reddit.com/r/LocalLLaMA/comments/1ieryph/generating_videos/
sKemo12
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieryph
false
null
t3_1ieryph
/r/LocalLLaMA/comments/1ieryph/generating_videos/
false
false
self
1
{'enabled': False, 'images': [{'id': 'yeHAmedlZveKaA1pAoQqzrYMSfteaUwlwFejl0q5_Cw', 'resolutions': [{'height': 81, 'url': 'https://external-preview.redd.it/Dyo5Vp5AIgldntYC0o3UWukvhIcRwuzDPrG5rATWd4k.jpg?width=108&crop=smart&auto=webp&s=4f1774d9ca04fb8b12fb5ca15ec7de716c915dfc', 'width': 108}, {'height': 162, 'url': 'https://external-preview.redd.it/Dyo5Vp5AIgldntYC0o3UWukvhIcRwuzDPrG5rATWd4k.jpg?width=216&crop=smart&auto=webp&s=a1d4dc86d5ec67a61920652c92ed19d4e5004713', 'width': 216}, {'height': 240, 'url': 'https://external-preview.redd.it/Dyo5Vp5AIgldntYC0o3UWukvhIcRwuzDPrG5rATWd4k.jpg?width=320&crop=smart&auto=webp&s=3747279f773c22307fea6714a2f0fee2663c8dd2', 'width': 320}], 'source': {'height': 360, 'url': 'https://external-preview.redd.it/Dyo5Vp5AIgldntYC0o3UWukvhIcRwuzDPrG5rATWd4k.jpg?auto=webp&s=64a1e6bd4e98535ee97e86070cc6779fe6de23a2', 'width': 480}, 'variants': {}}]}
Generating images/videos
1
[removed]
2025-01-31T23:02:49
https://www.reddit.com/r/LocalLLaMA/comments/1ies13d/generating_imagesvideos/
sKemo12
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ies13d
false
null
t3_1ies13d
/r/LocalLLaMA/comments/1ies13d/generating_imagesvideos/
false
false
self
1
null
GUYS ! We might have OpenAI back !!
0
2025-01-31T23:04:00
https://www.reddit.com/gallery/1ies230
citaman
reddit.com
1970-01-01T00:00:00
0
{}
1ies230
false
null
t3_1ies230
/r/LocalLLaMA/comments/1ies230/guys_we_might_have_openai_back/
false
false
https://a.thumbs.redditm…JBzs5v4Jm_m0.jpg
0
null
openai can be opening again
693
2025-01-31T23:09:00
https://i.redd.it/1oovs3vgvege1.jpeg
tensorsgo
i.redd.it
1970-01-01T00:00:00
0
{}
1ies630
false
null
t3_1ies630
/r/LocalLLaMA/comments/1ies630/openai_can_be_opening_again/
false
false
https://a.thumbs.redditm…9CU3GeI7mC00.jpg
693
{'enabled': True, 'images': [{'id': 'zvb4ywEG0mbs7VQywOgAVJELaHdLVdLZJbe86VqVK-s', 'resolutions': [{'height': 67, 'url': 'https://preview.redd.it/1oovs3vgvege1.jpeg?width=108&crop=smart&auto=webp&s=d557abef5cbc4b0e827baf7ae104346c53d27e19', 'width': 108}, {'height': 134, 'url': 'https://preview.redd.it/1oovs3vgvege1.jpeg?width=216&crop=smart&auto=webp&s=5fc78cdf2fc727107d26c6cc6b6ffa5bbbe2e081', 'width': 216}, {'height': 199, 'url': 'https://preview.redd.it/1oovs3vgvege1.jpeg?width=320&crop=smart&auto=webp&s=3d0c2733ee827440a413a172729b8dbaebd940b5', 'width': 320}, {'height': 398, 'url': 'https://preview.redd.it/1oovs3vgvege1.jpeg?width=640&crop=smart&auto=webp&s=acc945b69ba442d4e66865f5e83ab96ac9b83b7b', 'width': 640}], 'source': {'height': 530, 'url': 'https://preview.redd.it/1oovs3vgvege1.jpeg?auto=webp&s=2d0ffbbd37130d425d6f9630b7dd793068b271bd', 'width': 852}, 'variants': {}}]}
I asked Deepseek r1 why so many models have "strawberry" problem.
1
[removed]
2025-01-31T23:11:53
https://www.reddit.com/r/LocalLLaMA/comments/1ies8fm/i_asked_deepseek_r1_why_so_many_models_have/
Maximum-Ad-1070
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ies8fm
false
null
t3_1ies8fm
/r/LocalLLaMA/comments/1ies8fm/i_asked_deepseek_r1_why_so_many_models_have/
false
false
self
1
null
The new Mistral Small model is disappointing
78
I was super excited to see a brand new 24B model from Mistral but after actually using it for more than single-turn interaction... I just find it to be disappointing In my experience with the model it has a really hard time taking into account any information that is not crammed down its throat. It easily gets off track or confused For single-turn question -> response it's good. For conversation, or anything that requires paying attention to context, it shits the bed. I've quadruple-checked and I'm using the right prompt format and system prompt... Bonus question: Why is the rope theta value 100M? The model is not long context. I think this was a misstep in choosing the architecture Am I alone on this? Have any of you gotten it to work properly on tasks that require intelligence and instruction following? Cheers
2025-01-31T23:24:55
https://www.reddit.com/r/LocalLLaMA/comments/1iesirf/the_new_mistral_small_model_is_disappointing/
Master-Meal-77
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iesirf
false
null
t3_1iesirf
/r/LocalLLaMA/comments/1iesirf/the_new_mistral_small_model_is_disappointing/
false
false
self
78
null
They said what in the email?!
0
A
2025-01-31T23:29:12
https://www.reddit.com/r/LocalLLaMA/comments/1iesm44/they_said_what_in_the_email/
kannthu
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iesm44
false
null
t3_1iesm44
/r/LocalLLaMA/comments/1iesm44/they_said_what_in_the_email/
false
false
self
0
null
LLM feasibility of running on virtual memory
4
I'm wondering what the feasibility of running a LLM like the full DeepSeek R1 670b parameter model is on a high read/write speed M.2 card (12400MB/s read/11800MB/s write) in virtual memory. M.2 for speeds above : [https://www.newegg.com/gigabyte-2tb-aorus/p/N82E16820009046R?srsltid=AfmBOooLhBO8Lhd1C7Zxjv744-oc2TOogvR2QVbcsDjrmhvoVNIx\_5xY](https://www.newegg.com/gigabyte-2tb-aorus/p/N82E16820009046R?srsltid=AfmBOooLhBO8Lhd1C7Zxjv744-oc2TOogvR2QVbcsDjrmhvoVNIx_5xY) Is it possible, is it recommended and if it isn't possible what's the reason....I'm no expert and its a genuine question that I have no idea if it would work. Thanks in advance
2025-01-31T23:45:20
https://www.reddit.com/r/LocalLLaMA/comments/1iesypx/llm_feasibility_of_running_on_virtual_memory/
mgalbraith81
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iesypx
false
null
t3_1iesypx
/r/LocalLLaMA/comments/1iesypx/llm_feasibility_of_running_on_virtual_memory/
false
false
self
4
{'enabled': False, 'images': [{'id': '6F01iO1tpNIoN4m6EEydz8Rktk4INIt8yk8aEAmZYQ8', 'resolutions': [{'height': 81, 'url': 'https://external-preview.redd.it/eXrpNWocKzcGhCdhtzRhngLstAshF789Joakmqzrhpc.jpg?width=108&crop=smart&auto=webp&s=98ab888ff0f349157f125c3e6fbe1e7401c9ade0', 'width': 108}, {'height': 162, 'url': 'https://external-preview.redd.it/eXrpNWocKzcGhCdhtzRhngLstAshF789Joakmqzrhpc.jpg?width=216&crop=smart&auto=webp&s=407a90597fda280916ffeed3f4bcd3bc58d02a01', 'width': 216}, {'height': 240, 'url': 'https://external-preview.redd.it/eXrpNWocKzcGhCdhtzRhngLstAshF789Joakmqzrhpc.jpg?width=320&crop=smart&auto=webp&s=d765de506f7ace293684431ce2f1119b649bf4af', 'width': 320}, {'height': 480, 'url': 'https://external-preview.redd.it/eXrpNWocKzcGhCdhtzRhngLstAshF789Joakmqzrhpc.jpg?width=640&crop=smart&auto=webp&s=8319056b04d82fa6cb522c8799d6e1f80d8691d8', 'width': 640}], 'source': {'height': 480, 'url': 'https://external-preview.redd.it/eXrpNWocKzcGhCdhtzRhngLstAshF789Joakmqzrhpc.jpg?auto=webp&s=d1d33f352a22069a6b2f2dcf67a12c196835c433', 'width': 640}, 'variants': {}}]}
Now shows the chain of thought
1
[removed]
2025-01-31T23:45:31
https://www.reddit.com/r/LocalLLaMA/comments/1iesyv8/now_shows_the_chain_of_thought/
JumpyAbies
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iesyv8
false
null
t3_1iesyv8
/r/LocalLLaMA/comments/1iesyv8/now_shows_the_chain_of_thought/
false
false
https://b.thumbs.redditm…gg-R3hLFRizc.jpg
1
null
cloud hardware make more sense economically?
1
[removed]
2025-02-01T00:05:37
https://www.reddit.com/r/LocalLLaMA/comments/1ieteo2/cloud_hardware_make_more_sense_economically/
Pandalovebeer
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieteo2
false
null
t3_1ieteo2
/r/LocalLLaMA/comments/1ieteo2/cloud_hardware_make_more_sense_economically/
false
false
self
1
null
Deepseek R1 671b Running and Testing on a $2000 Local AI Server
9
2025-02-01T00:07:23
https://youtu.be/Tq_cmN4j2yY
bi4key
youtu.be
1970-01-01T00:00:00
0
{}
1ietg0s
false
{'oembed': {'author_name': 'Digital Spaceport', 'author_url': 'https://www.youtube.com/@DigitalSpaceport', 'height': 200, 'html': '<iframe width="356" height="200" src="https://www.youtube.com/embed/Tq_cmN4j2yY?feature=oembed&enablejsapi=1" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen title="Deepseek R1 671b Running and Testing on a $2000 Local AI Server"></iframe>', 'provider_name': 'YouTube', 'provider_url': 'https://www.youtube.com/', 'thumbnail_height': 360, 'thumbnail_url': 'https://i.ytimg.com/vi/Tq_cmN4j2yY/hqdefault.jpg', 'thumbnail_width': 480, 'title': 'Deepseek R1 671b Running and Testing on a $2000 Local AI Server', 'type': 'video', 'version': '1.0', 'width': 356}, 'type': 'youtube.com'}
t3_1ietg0s
/r/LocalLLaMA/comments/1ietg0s/deepseek_r1_671b_running_and_testing_on_a_2000/
false
false
https://b.thumbs.redditm…NZGLd7yr109U.jpg
9
{'enabled': False, 'images': [{'id': 'Eg489_47u5FWDAUR4-eyo4OOs9qaLavaZZvIViEvUx0', 'resolutions': [{'height': 81, 'url': 'https://external-preview.redd.it/wiRV_Ddh77ivzN6k6PXFVB0XXy_spTX4M8v2cdX_nu0.jpg?width=108&crop=smart&auto=webp&s=019191f77c309470ac9762bf9e1dfeb3fd526ef0', 'width': 108}, {'height': 162, 'url': 'https://external-preview.redd.it/wiRV_Ddh77ivzN6k6PXFVB0XXy_spTX4M8v2cdX_nu0.jpg?width=216&crop=smart&auto=webp&s=ce017a517216aa8adad99b9a14614e4af34b089f', 'width': 216}, {'height': 240, 'url': 'https://external-preview.redd.it/wiRV_Ddh77ivzN6k6PXFVB0XXy_spTX4M8v2cdX_nu0.jpg?width=320&crop=smart&auto=webp&s=72a936baa9bf08b6f3716c8853325142bae68091', 'width': 320}], 'source': {'height': 360, 'url': 'https://external-preview.redd.it/wiRV_Ddh77ivzN6k6PXFVB0XXy_spTX4M8v2cdX_nu0.jpg?auto=webp&s=140f711d6bb974bf506fd7d8e3e33c36db10142f', 'width': 480}, 'variants': {}}]}
Can someone please explain to me why its risky to run deepseek locally. I mean if I isolate it (on its own docker network) there is no way it gets out right?
0
Moatly what the title says. I feel like people have been pointing out that we dont really have a good understanding of this models origins however I generally trust anything open source. For what its worth I wouldnt even know where to start if I was going to validate its saftey based on its source. Is it best to spin up a isolated llama.cpp instance if I want to play with deepseek just to be on the safe side?
2025-02-01T00:11:13
https://www.reddit.com/r/LocalLLaMA/comments/1ietixy/can_someone_please_explain_to_me_why_its_risky_to/
EvolveOrDie1
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ietixy
false
null
t3_1ietixy
/r/LocalLLaMA/comments/1ietixy/can_someone_please_explain_to_me_why_its_risky_to/
false
false
self
0
null
Deepseek bitnet
104
2025-02-01T00:25:36
https://i.redd.it/cm74ybjy8fge1.jpeg
Thistleknot
i.redd.it
1970-01-01T00:00:00
0
{}
1iettv1
false
null
t3_1iettv1
/r/LocalLLaMA/comments/1iettv1/deepseek_bitnet/
false
false
https://b.thumbs.redditm…UFm55SEPY6Fk.jpg
104
{'enabled': True, 'images': [{'id': 'QICZUreJDa166FQh04uTU8XlRJu7Lzn1Jrdfc-Y-n00', 'resolutions': [{'height': 108, 'url': 'https://preview.redd.it/cm74ybjy8fge1.jpeg?width=108&crop=smart&auto=webp&s=ef163f936cb530537d496cb2362f24b2c7f3349f', 'width': 108}, {'height': 216, 'url': 'https://preview.redd.it/cm74ybjy8fge1.jpeg?width=216&crop=smart&auto=webp&s=bc6c8620435bc227eb616717a57550dbeef78e13', 'width': 216}, {'height': 320, 'url': 'https://preview.redd.it/cm74ybjy8fge1.jpeg?width=320&crop=smart&auto=webp&s=b5f487b4c0c89b15a52940c874bbbf0b73e917b4', 'width': 320}, {'height': 640, 'url': 'https://preview.redd.it/cm74ybjy8fge1.jpeg?width=640&crop=smart&auto=webp&s=cf896e28b8d16473f9f4db98d30877291e849edd', 'width': 640}, {'height': 960, 'url': 'https://preview.redd.it/cm74ybjy8fge1.jpeg?width=960&crop=smart&auto=webp&s=ba4c21a884976f174e819bb282d19d7c9cc2803e', 'width': 960}, {'height': 1080, 'url': 'https://preview.redd.it/cm74ybjy8fge1.jpeg?width=1080&crop=smart&auto=webp&s=770607525d0e3a5941ed45ab4bd6cc9b5a01fae3', 'width': 1080}], 'source': {'height': 1080, 'url': 'https://preview.redd.it/cm74ybjy8fge1.jpeg?auto=webp&s=8a7e4107363cd563ede599277684156e23b18b48', 'width': 1080}, 'variants': {}}]}
F5-TTS fine tuneed model Vs XTTS V2 for non english/chinese languages, like spanish, portuguese, french - which one is the best?
6
F5-TTS I was only training in English and Portuguese. There are finetunes in other languages. But, since the basic model has only 2 languages, is it worse than XTTSV2 for Romance languages?
2025-02-01T00:49:40
https://www.reddit.com/r/LocalLLaMA/comments/1ieubwx/f5tts_fine_tuneed_model_vs_xtts_v2_for_non/
More_Bid_2197
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ieubwx
false
null
t3_1ieubwx
/r/LocalLLaMA/comments/1ieubwx/f5tts_fine_tuneed_model_vs_xtts_v2_for_non/
false
false
self
6
null
My PC 10 seconds after I typed “ollama run deepseek-r1:671b”:
1,169
2025-02-01T01:11:25
https://i.redd.it/jixqkaabhfge1.gif
Porespellar
i.redd.it
1970-01-01T00:00:00
0
{}
1ieurv8
false
null
t3_1ieurv8
/r/LocalLLaMA/comments/1ieurv8/my_pc_10_seconds_after_i_typed_ollama_run/
false
false
https://b.thumbs.redditm…G_KmuRQIhvwM.jpg
1,169
{'enabled': True, 'images': [{'id': '2PIjI6tgb7x9DbgEp2pqr96RHGUqXFFm-ypvqXD_yQ4', 'resolutions': [{'height': 105, 'url': 'https://preview.redd.it/jixqkaabhfge1.gif?width=108&crop=smart&format=png8&s=c556a6f1caa7a86822be826548879d39da5486b8', 'width': 108}, {'height': 210, 'url': 'https://preview.redd.it/jixqkaabhfge1.gif?width=216&crop=smart&format=png8&s=999a170e4fe30aae9a3b5bec45a15c0269c3000b', 'width': 216}], 'source': {'height': 214, 'url': 'https://preview.redd.it/jixqkaabhfge1.gif?format=png8&s=8dd05c461c3efdff043b4d88cc5fc33c64cdb408', 'width': 220}, 'variants': {'gif': {'resolutions': [{'height': 105, 'url': 'https://preview.redd.it/jixqkaabhfge1.gif?width=108&crop=smart&s=a3ef20ab61e1321790229cb2a775c77da244db3b', 'width': 108}, {'height': 210, 'url': 'https://preview.redd.it/jixqkaabhfge1.gif?width=216&crop=smart&s=c67a878b6f732544b4693cf47d6dc14a8220e551', 'width': 216}], 'source': {'height': 214, 'url': 'https://preview.redd.it/jixqkaabhfge1.gif?s=b4d0645fe681102140fc4f0416269369dbba361f', 'width': 220}}, 'mp4': {'resolutions': [{'height': 105, 'url': 'https://preview.redd.it/jixqkaabhfge1.gif?width=108&format=mp4&s=0769c990b2bb4fed50d1be130e6cd6c2b8efdac4', 'width': 108}, {'height': 210, 'url': 'https://preview.redd.it/jixqkaabhfge1.gif?width=216&format=mp4&s=cd2cea5915afe4e854e79c1f82f9ae8c5ccdbf0b', 'width': 216}], 'source': {'height': 214, 'url': 'https://preview.redd.it/jixqkaabhfge1.gif?format=mp4&s=2d2d7afc955f99b9f08351c78e0bbda5fa0f1c97', 'width': 220}}}}]}
Im trying to run deep seek 7b but it's using cpu not gpu
1
i just got deep seek 7b and it runs but it's really slow compared to the smaller one and uses massive amount of cpu is there a way to offload it to my gpu instead
2025-02-01T01:29:50
https://www.reddit.com/r/LocalLLaMA/comments/1iev4wp/im_trying_to_run_deep_seek_7b_but_its_using_cpu/
Danie_nooboficial
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iev4wp
false
null
t3_1iev4wp
/r/LocalLLaMA/comments/1iev4wp/im_trying_to_run_deep_seek_7b_but_its_using_cpu/
false
false
self
1
null
Is it possible to run some quantized model of deepseek r1 32 b or deepseek r1 16b on a cheap hardware like - i5 rtx 2050 4gb vram 16 ram
1
Content
2025-02-01T02:00:47
https://www.reddit.com/r/LocalLLaMA/comments/1ievqa5/is_it_possible_to_run_some_quantized_model_of/
bhagwano-ka-bhagwan
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ievqa5
false
null
t3_1ievqa5
/r/LocalLLaMA/comments/1ievqa5/is_it_possible_to_run_some_quantized_model_of/
false
false
self
1
null
Is openai going open source because of Deepseek?
0
2025-02-01T02:01:19
https://i.redd.it/pkri2xl6qfge1.jpeg
bruhlmaocmonbro
i.redd.it
1970-01-01T00:00:00
0
{}
1ievqqp
false
null
t3_1ievqqp
/r/LocalLLaMA/comments/1ievqqp/is_openai_going_open_source_because_of_deepseek/
false
false
https://b.thumbs.redditm…iP3nl0ulQwUQ.jpg
0
{'enabled': True, 'images': [{'id': 'KbjeTPPQyXVSJtXnc7E5AywGRxREyc9s6kd4a0r9XNo', 'resolutions': [{'height': 173, 'url': 'https://preview.redd.it/pkri2xl6qfge1.jpeg?width=108&crop=smart&auto=webp&s=895e5693b0b31e4bbbc7d53678317cb83214c34b', 'width': 108}, {'height': 347, 'url': 'https://preview.redd.it/pkri2xl6qfge1.jpeg?width=216&crop=smart&auto=webp&s=a59472559ba88cb46ac540737f17bc98593d02ad', 'width': 216}, {'height': 514, 'url': 'https://preview.redd.it/pkri2xl6qfge1.jpeg?width=320&crop=smart&auto=webp&s=6df6824e85adc00cec3fbbfa8ddeed4373152c59', 'width': 320}, {'height': 1029, 'url': 'https://preview.redd.it/pkri2xl6qfge1.jpeg?width=640&crop=smart&auto=webp&s=622e1f9acb0f563a8202d6eb51f10c38d77e9bd9', 'width': 640}], 'source': {'height': 1200, 'url': 'https://preview.redd.it/pkri2xl6qfge1.jpeg?auto=webp&s=bea24dd8c50ca4fc19705bae4153db0dfc337109', 'width': 746}, 'variants': {}}]}
Help me choose a laptop for local experiments
1
[removed]
2025-02-01T02:33:04
https://www.reddit.com/r/LocalLLaMA/comments/1iewcbj/help_me_choose_a_laptop_for_local_experiments/
World_of_Reddit_21
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1iewcbj
false
null
t3_1iewcbj
/r/LocalLLaMA/comments/1iewcbj/help_me_choose_a_laptop_for_local_experiments/
false
false
self
1
null