title
stringlengths
1
300
score
int64
0
8.54k
selftext
stringlengths
0
40k
created
timestamp[ns]
url
stringlengths
0
780
author
stringlengths
3
20
domain
stringlengths
0
82
edited
timestamp[ns]
gilded
int64
0
2
gildings
stringclasses
7 values
id
stringlengths
7
7
locked
bool
2 classes
media
stringlengths
646
1.8k
name
stringlengths
10
10
permalink
stringlengths
33
82
spoiler
bool
2 classes
stickied
bool
2 classes
thumbnail
stringlengths
4
213
ups
int64
0
8.54k
preview
stringlengths
301
5.01k
Nvidia cuts FP8 training performance in half on RTX 40 and 50 series GPUs
430
According to their new RTX Blackwell GPU architecture whitepaper, Nvidia appears to have cut FP8 training performance in half on RTX 40 and 50 series GPUs after DeepSeek successfully trained their SOTA V3 and R1 models using FP8. In their original Ada Lovelace whitepaper, table 2 in Appendix A shows the 4090 having **660.6 TFlops** of FP8 with FP32 accumulate without sparsity, which is the same as FP8 with FP16 accumulate. The new Blackwell paper shows half the performance for the 4090 at just **330.3 TFlops** of FP8 with FP32 accumulate, and the 5090 has just **419 TFlops** vs **838 TFlops** for FP8 with FP16 accumulate. FP32 accumulate is a must when it comes to training because FP16 doesn't have the necessary precision and dynamic range required. If this isn't a mistake, then it means Nvidia lobotomized their Geforce lineup to further dissuade us from using them for AI/ML training, and it could potentially be reversible for the RTX 40 series at least, as this was likely done through a driver update. This is quite unfortunate but not unexpected as Nvidia has a known history of artificially limiting Geforce GPUs for AI training since the Turing architecture, while their Quadro and datacenter GPUs continue to have the full performance. https://preview.redd.it/x3qfea1352ge1.jpg?width=2007&format=pjpg&auto=webp&s=6c20a53057eb2bf15bbf65db4900af638fef9955 https://preview.redd.it/lk3ch91352ge1.jpg?width=1934&format=pjpg&auto=webp&s=d267c0312fe0be00175e616512101dce69113134 Sources: RTX Blackwell GPU Architecture Whitepaper: [https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf](https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf) RTX Ada Lovelace GPU Architecture Whitepaper: [https://images.nvidia.com/aem-dam/Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-v2.1.pdf](https://images.nvidia.com/aem-dam/Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-v2.1.pdf)
2025-01-30T04:22:34
https://www.reddit.com/r/LocalLLaMA/comments/1ideaxu/nvidia_cuts_fp8_training_performance_in_half_on/
Emergency-Map9861
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ideaxu
false
null
t3_1ideaxu
/r/LocalLLaMA/comments/1ideaxu/nvidia_cuts_fp8_training_performance_in_half_on/
false
false
https://b.thumbs.redditm…47AlZAVKy8LM.jpg
430
null
What is the best around 12-15B param models for coding?
3
I have been using the qwen 2.5 14B for this so far. Is it amongst the best in this class? Have also installed DeepSeek V2 Lite instruct which is 16B params large, would it be better, if yes are these the best in this class?
2025-01-30T04:26:25
https://www.reddit.com/r/LocalLLaMA/comments/1idedqn/what_is_the_best_around_1215b_param_models_for/
LibraryComplex
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idedqn
false
null
t3_1idedqn
/r/LocalLLaMA/comments/1idedqn/what_is_the_best_around_1215b_param_models_for/
false
false
self
3
null
Latitude is so slow on self hosting on M3
1
[removed]
2025-01-30T04:46:02
https://www.reddit.com/r/LocalLLaMA/comments/1idergk/latitude_is_so_slow_on_self_hosting_on_m3/
addimo
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idergk
false
null
t3_1idergk
/r/LocalLLaMA/comments/1idergk/latitude_is_so_slow_on_self_hosting_on_m3/
false
false
self
1
null
Looks like there is finally more info on Arx-0.3
3
https://x.com/appliedgeneral/status/1884738566645018932?s=46
2025-01-30T04:47:19
https://www.reddit.com/r/LocalLLaMA/comments/1ides7x/looks_like_there_is_finally_more_info_on_arx03/
AccountantDry2483
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ides7x
false
null
t3_1ides7x
/r/LocalLLaMA/comments/1ides7x/looks_like_there_is_finally_more_info_on_arx03/
false
false
self
3
{'enabled': False, 'images': [{'id': 'qYUt47r28LYZrUAQwtLdKfDBw1fMLM90cVeENOv8fJM', 'resolutions': [{'height': 108, 'url': 'https://external-preview.redd.it/1BJsv_tpvQ3X_0BasdVPtytz-BUqCJ3SYWENcBWpuqo.jpg?width=108&crop=smart&auto=webp&s=a36e2ed0e52838c4e724590b523b521ca224c650', 'width': 108}], 'source': {'height': 200, 'url': 'https://external-preview.redd.it/1BJsv_tpvQ3X_0BasdVPtytz-BUqCJ3SYWENcBWpuqo.jpg?auto=webp&s=58e5c1b851193cbaa9385b9a99c4e94a9c9d3976', 'width': 200}, 'variants': {}}]}
I asked DeepSeek if our data is shared with the Chinese government, and they said, "Yes"
1
2025-01-30T04:51:07
https://www.youtube.com/watch?v=17LDxEMT4q8
ThalyaSparkle
youtube.com
1970-01-01T00:00:00
0
{}
1ideupf
false
{'oembed': {'author_name': 'BigSmilesMovies', 'author_url': 'https://www.youtube.com/@BigSmilesMovies', 'height': 200, 'html': '<iframe width="356" height="200" src="https://www.youtube.com/embed/17LDxEMT4q8?feature=oembed&enablejsapi=1" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen title="DeepSeek Says Chinese Govt Has Access to your Data"></iframe>', 'provider_name': 'YouTube', 'provider_url': 'https://www.youtube.com/', 'thumbnail_height': 360, 'thumbnail_url': 'https://i.ytimg.com/vi/17LDxEMT4q8/hqdefault.jpg', 'thumbnail_width': 480, 'title': 'DeepSeek Says Chinese Govt Has Access to your Data', 'type': 'video', 'version': '1.0', 'width': 356}, 'type': 'youtube.com'}
t3_1ideupf
/r/LocalLLaMA/comments/1ideupf/i_asked_deepseek_if_our_data_is_shared_with_the/
false
false
https://b.thumbs.redditm…SA0gsS8JUtlA.jpg
1
{'enabled': False, 'images': [{'id': 'NhUivaqJt9bRpbeAQQXEMVMmwDttYXsOHXaKUKDCl4Q', 'resolutions': [{'height': 81, 'url': 'https://external-preview.redd.it/MC9HKloDrYQ1CEi4Z0fHOgU2MxShB8t1Rha8hQLzeFU.jpg?width=108&crop=smart&auto=webp&s=b7b93dc3864cab134ac4cb2fedd72baf84a54a91', 'width': 108}, {'height': 162, 'url': 'https://external-preview.redd.it/MC9HKloDrYQ1CEi4Z0fHOgU2MxShB8t1Rha8hQLzeFU.jpg?width=216&crop=smart&auto=webp&s=f243224f3d62ad64943949fe8625699066c6f012', 'width': 216}, {'height': 240, 'url': 'https://external-preview.redd.it/MC9HKloDrYQ1CEi4Z0fHOgU2MxShB8t1Rha8hQLzeFU.jpg?width=320&crop=smart&auto=webp&s=5ada10611acae05461a9c9497c4f4f9983c19167', 'width': 320}], 'source': {'height': 360, 'url': 'https://external-preview.redd.it/MC9HKloDrYQ1CEi4Z0fHOgU2MxShB8t1Rha8hQLzeFU.jpg?auto=webp&s=eda5f072bece32b751634e9eedf806877e3d025f', 'width': 480}, 'variants': {}}]}
Reach Sam Altman
1
[removed]
2025-01-30T04:57:43
https://www.reddit.com/r/LocalLLaMA/comments/1idez4a/reach_sam_altman/
Vegetable-College353
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idez4a
false
null
t3_1idez4a
/r/LocalLLaMA/comments/1idez4a/reach_sam_altman/
false
false
self
1
null
Microsoft yesterday: DeepSeek illegally stole OpenAI's intellectual property.😤 Microsoft today: DeepSeek is now available on our AI platforms and welcome everyone trying it.🤩
1
2025-01-30T05:00:41
https://i.redd.it/wd6gf2kdc2ge1.jpeg
bruhlmaocmonbro
i.redd.it
1970-01-01T00:00:00
0
{}
1idf19s
false
null
t3_1idf19s
/r/LocalLLaMA/comments/1idf19s/microsoft_yesterday_deepseek_illegally_stole/
false
false
https://a.thumbs.redditm…qasg5TVzbpU8.jpg
1
{'enabled': True, 'images': [{'id': '2-WiKJMFdXghVHLr9WzGyOVSFhp688A8LgKbcmLiwEg', 'resolutions': [{'height': 126, 'url': 'https://preview.redd.it/wd6gf2kdc2ge1.jpeg?width=108&crop=smart&auto=webp&s=730b26da70fef44576d2f0b5bef09ed3613f6619', 'width': 108}, {'height': 252, 'url': 'https://preview.redd.it/wd6gf2kdc2ge1.jpeg?width=216&crop=smart&auto=webp&s=5ef0d3a1121fa854ee44eedc8e7f57b475137048', 'width': 216}, {'height': 373, 'url': 'https://preview.redd.it/wd6gf2kdc2ge1.jpeg?width=320&crop=smart&auto=webp&s=4edafbc002ba11837e718b5c1a2f128881b6df77', 'width': 320}, {'height': 746, 'url': 'https://preview.redd.it/wd6gf2kdc2ge1.jpeg?width=640&crop=smart&auto=webp&s=858604ad99803d38ca5ab33247ac6132e1c6310d', 'width': 640}, {'height': 1120, 'url': 'https://preview.redd.it/wd6gf2kdc2ge1.jpeg?width=960&crop=smart&auto=webp&s=3d6ee5554e592df9e8ce8bd872a4a180cbf0d9e5', 'width': 960}, {'height': 1260, 'url': 'https://preview.redd.it/wd6gf2kdc2ge1.jpeg?width=1080&crop=smart&auto=webp&s=85377551ea8386d1844fe350cc221e66e5603d2d', 'width': 1080}], 'source': {'height': 1365, 'url': 'https://preview.redd.it/wd6gf2kdc2ge1.jpeg?auto=webp&s=4241102c06b0ca365152330381498633585f3c67', 'width': 1170}, 'variants': {}}]}
Roo Code 3.3.6 Released - Meet the Powerful "New Task" Tool
1
[removed]
2025-01-30T05:02:21
https://www.reddit.com/r/LocalLLaMA/comments/1idf2nf/roo_code_336_released_meet_the_powerful_new_task/
hannesrudolph
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idf2nf
false
null
t3_1idf2nf
/r/LocalLLaMA/comments/1idf2nf/roo_code_336_released_meet_the_powerful_new_task/
false
false
self
1
null
Which version of R1 can I run on 2xA100 computer?
1
[removed]
2025-01-30T05:05:13
https://www.reddit.com/r/LocalLLaMA/comments/1idf4nx/which_version_of_r1_can_i_run_on_2xa100_computer/
sobolanul11
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idf4nx
false
null
t3_1idf4nx
/r/LocalLLaMA/comments/1idf4nx/which_version_of_r1_can_i_run_on_2xa100_computer/
false
false
self
1
null
Is the Qwen-2.5 Max on chat and API different?
1
[removed]
2025-01-30T05:14:42
https://www.reddit.com/r/LocalLLaMA/comments/1idfaxn/is_the_qwen25_max_on_chat_and_api_different/
lazylurker999
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idfaxn
false
null
t3_1idfaxn
/r/LocalLLaMA/comments/1idfaxn/is_the_qwen25_max_on_chat_and_api_different/
false
false
self
1
null
New to LocalLLAma and Need help
1
[removed]
2025-01-30T05:18:07
https://www.reddit.com/r/LocalLLaMA/comments/1idfd7h/new_to_localllama_and_need_help/
AsrielPlay52
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idfd7h
false
null
t3_1idfd7h
/r/LocalLLaMA/comments/1idfd7h/new_to_localllama_and_need_help/
false
false
self
1
null
R1 Reasoning Effort for the Open-Webui
5
https://reddit.com/link/1idflkk/video/q1vfq9n1h2ge1/player
2025-01-30T05:30:45
https://www.reddit.com/r/LocalLLaMA/comments/1idflkk/r1_reasoning_effort_for_the_openwebui/
onil_gova
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idflkk
false
null
t3_1idflkk
/r/LocalLLaMA/comments/1idflkk/r1_reasoning_effort_for_the_openwebui/
false
false
self
5
null
Any reviews or thoughts on msi 5090 ventus.
1
[removed]
2025-01-30T05:33:17
https://www.reddit.com/r/LocalLLaMA/comments/1idfn8w/any_reviews_or_thoughts_on_msi_5090_ventus/
Dry-Bunch-7448
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idfn8w
false
null
t3_1idfn8w
/r/LocalLLaMA/comments/1idfn8w/any_reviews_or_thoughts_on_msi_5090_ventus/
false
false
self
1
null
Autopen: a text editor for exploring language model behaviour
1
[removed]
2025-01-30T05:35:40
https://www.reddit.com/r/LocalLLaMA/comments/1idfovf/autopen_a_text_editor_for_exploring_language/
disposableoranges
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idfovf
false
null
t3_1idfovf
/r/LocalLLaMA/comments/1idfovf/autopen_a_text_editor_for_exploring_language/
false
false
self
1
{'enabled': False, 'images': [{'id': 'LybIDHfltM2oNpSwYOw3Csfh7ZCRUUvtC6WpBtV6YtY', 'resolutions': [{'height': 74, 'url': 'https://external-preview.redd.it/IjNNmv9dhtQ685O6AbgLltThHYVrbg6SO55yhI_iOcI.png?width=108&crop=smart&auto=webp&s=f477d0a97c379f1c0efa47b5e93920e221f59897', 'width': 108}, {'height': 149, 'url': 'https://external-preview.redd.it/IjNNmv9dhtQ685O6AbgLltThHYVrbg6SO55yhI_iOcI.png?width=216&crop=smart&auto=webp&s=bc8ddd16444d2e27a04e6b4d334822ebc8d92541', 'width': 216}, {'height': 221, 'url': 'https://external-preview.redd.it/IjNNmv9dhtQ685O6AbgLltThHYVrbg6SO55yhI_iOcI.png?width=320&crop=smart&auto=webp&s=3130143fff8060777d9f9e8dbfbb5e84c54b3f4e', 'width': 320}, {'height': 443, 'url': 'https://external-preview.redd.it/IjNNmv9dhtQ685O6AbgLltThHYVrbg6SO55yhI_iOcI.png?width=640&crop=smart&auto=webp&s=ea1003303a45faa97620ac8668edc97c47552eea', 'width': 640}, {'height': 664, 'url': 'https://external-preview.redd.it/IjNNmv9dhtQ685O6AbgLltThHYVrbg6SO55yhI_iOcI.png?width=960&crop=smart&auto=webp&s=2e5701642a36e3c61cb0973aee81f00efc144a7f', 'width': 960}, {'height': 747, 'url': 'https://external-preview.redd.it/IjNNmv9dhtQ685O6AbgLltThHYVrbg6SO55yhI_iOcI.png?width=1080&crop=smart&auto=webp&s=a24baa7595b33c030b02b22dd6727de2c2fd2518', 'width': 1080}], 'source': {'height': 1046, 'url': 'https://external-preview.redd.it/IjNNmv9dhtQ685O6AbgLltThHYVrbg6SO55yhI_iOcI.png?auto=webp&s=bc82017e39cc92d8aa9f1ab3517e2658ed13b28a', 'width': 1511}, 'variants': {}}]}
Which version of R1 can I run on 2xA100 computer?
0
I would need a bit of help setting up R1 on my 2xA100 machine. I have 160gb video ram and 256 gb of system memory. What version of R1 can I run? Is there a tutorial on how to set it up (running Ubuntu on the machine) and access it via API? Should I use Oobaabooga?
2025-01-30T05:44:05
https://www.reddit.com/r/LocalLLaMA/comments/1idfuip/which_version_of_r1_can_i_run_on_2xa100_computer/
Significant_Bike9759
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idfuip
false
null
t3_1idfuip
/r/LocalLLaMA/comments/1idfuip/which_version_of_r1_can_i_run_on_2xa100_computer/
false
false
self
0
null
I'm promoting running local LLM in my country
0
So I can tank Nvidia and AMD stock. 🤣🤣
2025-01-30T06:01:18
https://www.reddit.com/r/LocalLLaMA/comments/1idg5wh/im_promoting_running_local_llm_in_my_country/
Reasonable-Climate66
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idg5wh
false
null
t3_1idg5wh
/r/LocalLLaMA/comments/1idg5wh/im_promoting_running_local_llm_in_my_country/
false
false
self
0
null
5 Open Source Small Language Models (SLMs) and Their Use Cases
1
[removed]
2025-01-30T06:03:31
https://www.reddit.com/r/LocalLLaMA/comments/1idg7ai/5_open_source_small_language_models_slms_and/
0xhbam
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idg7ai
false
null
t3_1idg7ai
/r/LocalLLaMA/comments/1idg7ai/5_open_source_small_language_models_slms_and/
false
false
self
1
null
OpenAI Furious DeepSeek Might Have Stolen All the Data OpenAI Stole From Us
1
[removed]
2025-01-30T06:15:57
https://www.404media.co/openai-furious-deepseek-might-have-stolen-all-the-data-openai-stole-from-us/?fbclid=PAY2xjawIH-B5leHRuA2FlbQIxMQABpmVKvuKJWUrbRQKplSX6cz10QTwr7dAU2qKAs02SC0Bj0nvMIobr_Eysdw_aem_1dUK39P8sjjFzkM95HUXrw
cern_unnosi
404media.co
1970-01-01T00:00:00
0
{}
1idgffe
false
null
t3_1idgffe
/r/LocalLLaMA/comments/1idgffe/openai_furious_deepseek_might_have_stolen_all_the/
false
false
https://b.thumbs.redditm…f8k59ZoWwW9U.jpg
1
{'enabled': False, 'images': [{'id': 'qP5WzHXAeHERL_94FJOWikcgk-lAKrN1hxioVDY-R8U', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/ad5A3Aby7q78-LvckYlzZrTjSyKk5Hz7IV2YnncN75A.jpg?width=108&crop=smart&auto=webp&s=966489df927e644000c7544f915f811cc0356b9c', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/ad5A3Aby7q78-LvckYlzZrTjSyKk5Hz7IV2YnncN75A.jpg?width=216&crop=smart&auto=webp&s=e59440d164a89b38700b63cbed2b206cee90d11e', 'width': 216}, {'height': 179, 'url': 'https://external-preview.redd.it/ad5A3Aby7q78-LvckYlzZrTjSyKk5Hz7IV2YnncN75A.jpg?width=320&crop=smart&auto=webp&s=ee33d9382ed23dd993ec58b55ec97f327e759475', 'width': 320}, {'height': 358, 'url': 'https://external-preview.redd.it/ad5A3Aby7q78-LvckYlzZrTjSyKk5Hz7IV2YnncN75A.jpg?width=640&crop=smart&auto=webp&s=cb23d117939c035c9fb3ea7d4358370143b8fe1b', 'width': 640}, {'height': 538, 'url': 'https://external-preview.redd.it/ad5A3Aby7q78-LvckYlzZrTjSyKk5Hz7IV2YnncN75A.jpg?width=960&crop=smart&auto=webp&s=06ffd3ec235740e378537c8fd81f1b75bba8e0c9', 'width': 960}, {'height': 605, 'url': 'https://external-preview.redd.it/ad5A3Aby7q78-LvckYlzZrTjSyKk5Hz7IV2YnncN75A.jpg?width=1080&crop=smart&auto=webp&s=e8e35b76d6ee4fa48656363fe1c5185487a89e44', 'width': 1080}], 'source': {'height': 673, 'url': 'https://external-preview.redd.it/ad5A3Aby7q78-LvckYlzZrTjSyKk5Hz7IV2YnncN75A.jpg?auto=webp&s=8fce363e24195ee9cfe96e859d18be73008c82fb', 'width': 1200}, 'variants': {}}]}
High-end Desktop GPU (4090/5090) vs Server Setup?
1
[removed]
2025-01-30T06:17:03
https://www.reddit.com/r/LocalLLaMA/comments/1idgg50/highend_desktop_gpu_40905090_vs_server_setup/
ImportantSpeed7224
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idgg50
false
null
t3_1idgg50
/r/LocalLLaMA/comments/1idgg50/highend_desktop_gpu_40905090_vs_server_setup/
false
false
self
1
null
So this is what it comes down to?
0
2025-01-30T06:21:00
https://i.redd.it/fhhynp2lq2ge1.jpeg
Glanble
i.redd.it
1970-01-01T00:00:00
0
{}
1idgiq9
false
null
t3_1idgiq9
/r/LocalLLaMA/comments/1idgiq9/so_this_is_what_it_comes_down_to/
false
false
https://b.thumbs.redditm…LPY-5AWuC2cI.jpg
0
{'enabled': True, 'images': [{'id': 'UbjeCQv3DsQaJeewrVxWk8c2aMX6Hb9uwt35b2ZiQgo', 'resolutions': [{'height': 125, 'url': 'https://preview.redd.it/fhhynp2lq2ge1.jpeg?width=108&crop=smart&auto=webp&s=d8263981c357348e34487c7dbe2c3250502defa4', 'width': 108}, {'height': 251, 'url': 'https://preview.redd.it/fhhynp2lq2ge1.jpeg?width=216&crop=smart&auto=webp&s=6d8a1f978b011a92e1faed2d417d8c1ab80a6e7e', 'width': 216}, {'height': 371, 'url': 'https://preview.redd.it/fhhynp2lq2ge1.jpeg?width=320&crop=smart&auto=webp&s=b7f229b4a8f1ac8ab3f92818aece303ce9360c09', 'width': 320}, {'height': 743, 'url': 'https://preview.redd.it/fhhynp2lq2ge1.jpeg?width=640&crop=smart&auto=webp&s=71bd586d6d1bc7af05423faf15de35874e6a3226', 'width': 640}, {'height': 1115, 'url': 'https://preview.redd.it/fhhynp2lq2ge1.jpeg?width=960&crop=smart&auto=webp&s=fa4ee1c65899bf0f619b917058c449e5f3f991b3', 'width': 960}, {'height': 1255, 'url': 'https://preview.redd.it/fhhynp2lq2ge1.jpeg?width=1080&crop=smart&auto=webp&s=ab956afd340c7b1b9867dba88ab609310e346d0f', 'width': 1080}], 'source': {'height': 1312, 'url': 'https://preview.redd.it/fhhynp2lq2ge1.jpeg?auto=webp&s=643cf70df297ce63829a7405de93ad9f6ab0bfb9', 'width': 1129}, 'variants': {}}]}
Beginner Friendly Python tutorials for Agentic AI using different frameworks.
1
[removed]
2025-01-30T06:31:37
https://www.reddit.com/r/LocalLLaMA/comments/1idgp5z/beginner_friendly_python_tutorials_for_agentic_ai/
IntelligentCreme3407
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idgp5z
false
null
t3_1idgp5z
/r/LocalLLaMA/comments/1idgp5z/beginner_friendly_python_tutorials_for_agentic_ai/
false
false
self
1
{'enabled': False, 'images': [{'id': 'T3KT0gWpxh02N5Aa-eIX05scsWapFNNv1I7FNkx9W4A', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/GlZa8ExU_BZAQXxTB7TWIRLETpekE-QLrK3J9JdCGfg.jpg?width=108&crop=smart&auto=webp&s=937b93d1b3956e3d9b7b107c30d9b56fea5d6b30', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/GlZa8ExU_BZAQXxTB7TWIRLETpekE-QLrK3J9JdCGfg.jpg?width=216&crop=smart&auto=webp&s=3c8589c15525041bdc09541d48ccb43cda580dde', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/GlZa8ExU_BZAQXxTB7TWIRLETpekE-QLrK3J9JdCGfg.jpg?width=320&crop=smart&auto=webp&s=e18de4af73fd22aa84ca3d78142fb194ce9cb71f', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/GlZa8ExU_BZAQXxTB7TWIRLETpekE-QLrK3J9JdCGfg.jpg?width=640&crop=smart&auto=webp&s=a5ee0daaa19a32f4b08321e21c7e1c35dfc320dc', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/GlZa8ExU_BZAQXxTB7TWIRLETpekE-QLrK3J9JdCGfg.jpg?width=960&crop=smart&auto=webp&s=c04f5d174649a3750f18297546102bbda7cee053', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/GlZa8ExU_BZAQXxTB7TWIRLETpekE-QLrK3J9JdCGfg.jpg?width=1080&crop=smart&auto=webp&s=31e2e235a6e2444a2a392ae1711cb3c775c9431c', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/GlZa8ExU_BZAQXxTB7TWIRLETpekE-QLrK3J9JdCGfg.jpg?auto=webp&s=7b8dca1ba92e00cb6d01031ce6baf99af4ee0f59', 'width': 1200}, 'variants': {}}]}
DeepSeek Says chinese govt have access to your data
1
[removed]
2025-01-30T06:33:22
[deleted]
1970-01-01T00:00:00
0
{}
1idgq8y
false
{'oembed': {'author_name': 'BigSmilesMovies', 'author_url': 'https://www.youtube.com/@BigSmilesMovies', 'height': 200, 'html': '<iframe width="356" height="200" src="https://www.youtube.com/embed/17LDxEMT4q8?feature=oembed&enablejsapi=1" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen title="DeepSeek Says Chinese Govt Has Access to your Data"></iframe>', 'provider_name': 'YouTube', 'provider_url': 'https://www.youtube.com/', 'thumbnail_height': 360, 'thumbnail_url': 'https://i.ytimg.com/vi/17LDxEMT4q8/hqdefault.jpg', 'thumbnail_width': 480, 'title': 'DeepSeek Says Chinese Govt Has Access to your Data', 'type': 'video', 'version': '1.0', 'width': 356}, 'type': 'youtube.com'}
t3_1idgq8y
/r/LocalLLaMA/comments/1idgq8y/deepseek_says_chinese_govt_have_access_to_your/
false
false
default
1
null
What are you *actually* using R1 for?
121
Honest question. I see the hype around R1, and I’ve even downloaded and played with a couple distills myself. It’s definitely an achievement, if not for the models, then for the paper and detailed publication of the training methodology. No argument there. However, I’m having difficulty understanding the mad rush to download and use these models. They are reasoning models, and as such, all they want to do is output long chains of thought full of /think tokens to solve a problem, even if the problem is simple, e.g. 2+2. As such, my assumption is they aren’t meant to be used for quick daily interactions like GPT-4o and company, but rather only to solve complex problems. So I ask, what are you actually doing with R1 (other than toy “how many R’s in strawberry” reasoning problems) that you were previously doing with other models? What value have they added to your daily workload? I’m honestly curious, as maybe I have a misconception about their utility.
2025-01-30T06:35:23
https://www.reddit.com/r/LocalLLaMA/comments/1idgrh4/what_are_you_actually_using_r1_for/
PataFunction
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idgrh4
false
null
t3_1idgrh4
/r/LocalLLaMA/comments/1idgrh4/what_are_you_actually_using_r1_for/
false
false
self
121
null
Handling split tables in PDFs
1
[removed]
2025-01-30T06:50:40
https://www.reddit.com/r/LocalLLaMA/comments/1idh0lb/handling_split_tables_in_pdfs/
MacaronExcellent4772
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idh0lb
false
null
t3_1idh0lb
/r/LocalLLaMA/comments/1idh0lb/handling_split_tables_in_pdfs/
false
false
self
1
null
YuE Music Generator GGUF - Will try soon!
33
Hey guys! I just found a quantized version of YuE on Huggingface: https://huggingface.co/tensorblock/YuE-s1-7B-anneal-en-cot-GGUF Will try soon and revert bsck if I can make a full song on 32GB VRAM 😍 Anyone tested it yet?
2025-01-30T07:01:04
https://www.reddit.com/r/LocalLLaMA/comments/1idh6su/yue_music_generator_gguf_will_try_soon/
quantier
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idh6su
false
null
t3_1idh6su
/r/LocalLLaMA/comments/1idh6su/yue_music_generator_gguf_will_try_soon/
false
false
self
33
{'enabled': False, 'images': [{'id': 'TbBISFRQiekt1K9gWpwrIXeP-_TbdshkmMiu66Y8OBQ', 'resolutions': [{'height': 58, 'url': 'https://external-preview.redd.it/nrZ1KusXbREGbgO5POZUp6FxQswG9Zr789bgBePc5tM.jpg?width=108&crop=smart&auto=webp&s=2226cea9f54536b713a14679d9a8d13616e36733', 'width': 108}, {'height': 116, 'url': 'https://external-preview.redd.it/nrZ1KusXbREGbgO5POZUp6FxQswG9Zr789bgBePc5tM.jpg?width=216&crop=smart&auto=webp&s=2581fef4e4f9c40338d2d4251f2b9f9826dbcce6', 'width': 216}, {'height': 172, 'url': 'https://external-preview.redd.it/nrZ1KusXbREGbgO5POZUp6FxQswG9Zr789bgBePc5tM.jpg?width=320&crop=smart&auto=webp&s=64640055f421d5d1f51e7ec504cf009309803c50', 'width': 320}, {'height': 345, 'url': 'https://external-preview.redd.it/nrZ1KusXbREGbgO5POZUp6FxQswG9Zr789bgBePc5tM.jpg?width=640&crop=smart&auto=webp&s=3d6ad0212e8f6f936ca425a4d936c6bbb7aa32c8', 'width': 640}, {'height': 518, 'url': 'https://external-preview.redd.it/nrZ1KusXbREGbgO5POZUp6FxQswG9Zr789bgBePc5tM.jpg?width=960&crop=smart&auto=webp&s=89c258a00926749a8796ad292a0b59927c230849', 'width': 960}, {'height': 583, 'url': 'https://external-preview.redd.it/nrZ1KusXbREGbgO5POZUp6FxQswG9Zr789bgBePc5tM.jpg?width=1080&crop=smart&auto=webp&s=866873f78930d4956c4af4179c2f95326be97c59', 'width': 1080}], 'source': {'height': 648, 'url': 'https://external-preview.redd.it/nrZ1KusXbREGbgO5POZUp6FxQswG9Zr789bgBePc5tM.jpg?auto=webp&s=a26b3c6b4d545f8ab1fe096ecf02d3fe0fbc6581', 'width': 1200}, 'variants': {}}]}
Handling split tables in PDFs
1
[removed]
2025-01-30T07:02:04
https://www.reddit.com/r/LocalLLaMA/comments/1idh7js/handling_split_tables_in_pdfs/
MacaronExcellent4772
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idh7js
false
null
t3_1idh7js
/r/LocalLLaMA/comments/1idh7js/handling_split_tables_in_pdfs/
false
false
self
1
null
Handling split tables in PDFs
1
I'm currently working on a project where I am trying to build a rag agent on top of a pdf that contains a budget table. The problem here is that is not whole and is split between two pages. For eg, the first two rows are in page 2 and the rest is continued on page 3. I've used llama parse to handle the pof parsing since it came out to be the better when compared with PyPDF. I've tried to build QA pipeline on the parsed chunks using llama3 but it's not able to capture the table as a whole. Has anyone encountered this issue? I'm actively looking into this and l'd appreciate if you can add your suggestions on how to get around this. TIA.
2025-01-30T07:03:12
https://www.reddit.com/r/LocalLLaMA/comments/1idh8a9/handling_split_tables_in_pdfs/
Admirable-Session648
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idh8a9
false
null
t3_1idh8a9
/r/LocalLLaMA/comments/1idh8a9/handling_split_tables_in_pdfs/
false
false
self
1
null
Combining GPUs vs 1 expensive GPU?
8
In where I am at, I can find 3060 12GB at $500, but the cheapest 3090 24GB I can find is $3000. (All my local currency). This makes me think, I saw some rig video where people put 4x3090, does that means I can buy 6x3060 at the price of 1x3090, and it will perform significantly better on LLM/SD because of the much larger VRAM? Or is there something that 3090 has and using multiple 3060 still cannot catch on? Also when I browse the web, there are topics about how VRAM cannot be combined and any model using more than 12GB will just overflow, vs some other topics that say VRAM can be combined. I am confused on what is actually valid, and hope to seek some validations. I am very new to the space so would appreciate any advice/comment.
2025-01-30T07:08:24
https://www.reddit.com/r/LocalLLaMA/comments/1idhbcv/combining_gpus_vs_1_expensive_gpu/
jimmyspinsggez
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idhbcv
false
null
t3_1idhbcv
/r/LocalLLaMA/comments/1idhbcv/combining_gpus_vs_1_expensive_gpu/
false
false
self
8
null
LLM Hardware Calculator
1
Can anyone here link me to an LLM hardware sizing calculator? Something that takes in parameters like: 1) Model 2) Quantization 3)T/s 4) Context 5) GPU or CPU inferencing option and then suggests hardware requirements.
2025-01-30T07:28:48
https://www.reddit.com/r/LocalLLaMA/comments/1idhnb2/llm_hardware_calculator/
heybigeyes123
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idhnb2
false
null
t3_1idhnb2
/r/LocalLLaMA/comments/1idhnb2/llm_hardware_calculator/
false
false
self
1
null
Lightweight Semantic Search for Docs and Structured Data
2
Just published a functional preview of a portable semantic search tool that you can use with your local LMs: [https://github.com/Independent-AI-Labs/local-super-agents/tree/main/hype](https://github.com/Independent-AI-Labs/local-super-agents/tree/main/hype) Although still quite basic, it's optimized for consumer hardware and has a built-in benchmark for you to flex your x3Ds and Gen5 SSDs with! Multiple term fuzzy matching clocks at about 5M rows / second on high-end desktop systems, but I'm sure we can top that with a bit of planned improvements. Love to hear what you guys use for on-device document RAG and other similar use cases.
2025-01-30T07:39:19
https://www.reddit.com/r/LocalLLaMA/comments/1idhtd1/lightweight_semantic_search_for_docs_and/
Ragecommie
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idhtd1
false
null
t3_1idhtd1
/r/LocalLLaMA/comments/1idhtd1/lightweight_semantic_search_for_docs_and/
false
false
self
2
{'enabled': False, 'images': [{'id': '-6Wbd56rnbZhCMSZaQYdBdMa4SkBbTpi2a-6UuqZ8DI', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/ndLI5HlH2OBtaQQywJWrEf0zQ3yvFCj2vaoy87GZytM.jpg?width=108&crop=smart&auto=webp&s=a2865380df77aebd6d33f12c8a50da4c98912c0f', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/ndLI5HlH2OBtaQQywJWrEf0zQ3yvFCj2vaoy87GZytM.jpg?width=216&crop=smart&auto=webp&s=0f54e9b7c9c8aa2492d0f9281f4df21a6e5a62b1', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/ndLI5HlH2OBtaQQywJWrEf0zQ3yvFCj2vaoy87GZytM.jpg?width=320&crop=smart&auto=webp&s=05922d1a88c3161f71f9b48152a55419c7d2e6ba', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/ndLI5HlH2OBtaQQywJWrEf0zQ3yvFCj2vaoy87GZytM.jpg?width=640&crop=smart&auto=webp&s=0a82a0e3bc0ebeb80330e5b933cc902f59ef100b', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/ndLI5HlH2OBtaQQywJWrEf0zQ3yvFCj2vaoy87GZytM.jpg?width=960&crop=smart&auto=webp&s=e62a1d8e072f70d182f4f888b22b396e0d20738f', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/ndLI5HlH2OBtaQQywJWrEf0zQ3yvFCj2vaoy87GZytM.jpg?width=1080&crop=smart&auto=webp&s=2dcd0fdaf3d63847f2a690c796cffc2ba7cba772', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/ndLI5HlH2OBtaQQywJWrEf0zQ3yvFCj2vaoy87GZytM.jpg?auto=webp&s=d3d3d706a6e71183d6968aa75654e5d5be8dbecd', 'width': 1200}, 'variants': {}}]}
I did a very short perplexity test with DeepSeek R1 with different numbers of experts and also some of the distilled models
3
First: This test only ran 8 blocks (out of ~560) so it should be taken with a massive grain of salt. I'd say based on my experience running perplexity on models you usually don't end up with something completely different from the trend at the beginning but it's definitely not impossible. You also shouldn't compare perplexity here with other unrelated models, perplexity probably isn't a very fair test for chain of thought models since they don't get to do any thinking. Experts | PPL -|- 8 | 3.4155, 4.2311, 3.0817, 2.8601, 2.6933, 2.5792, 2.5123, 2.5239 16 | 3.5350, 4.3594, 3.0307, 2.8619, 2.7227, 2.6664, 2.6288, 2.6568 6 | 3.4227, 4.2400, 3.1610, 2.9933, 2.8307, 2.7110, 2.6253, 2.6488 4 | 3.5790, 4.5984, 3.5135, 3.4490, 3.2952, 3.2563, 3.1883, 3.2978 VMv2 | 4.6217, 6.3318, 4.8642, 3.6984, 3.0867, 2.8033, 2.6044, 2.5547 3 | 3.9209, 4.9318, 4.0944, 4.2450, 4.2071, 4.3095, 4.3150, 4.6082 LR170B | 4.1261, 4.9672, 5.0192, 5.1777, 5.3557, 5.6300, 5.8582, 6.2350 QR132B | 5.9082, 7.5575, 6.0677, 5.0672, 4.8776, 4.8903, 4.7712, 4.7167 2 | 6.2387, 7.7455 Legend: * Normal = DeepSeek-R1-UD-IQ1_M - https://unsloth.ai/blog/deepseekr1-dynamic * `LR170B` = DeepSeek-R1-Distill-Llama-70B-Q5_K_M * `QR132B` = DeepSeek-R1-Distill-Qwen-32B-Q6_K * `VMv2` = Virtuoso-Medium-v2-Q6_K (32B model) - https://huggingface.co/arcee-ai/Virtuoso-Medium-v2-GGUF Table sorted by average PPL, lower PPL is better. Perplexity test run with block size 512. You can override the number of experts for the llama.cpp commandline apps (`llama-cli`, `llama-perplexity`, etc) using `--override-kv deepseek2.expert_used_count=int:4` or whatever.This is only meaningful on actual MoE models, not the distills. Again, this really isn't a scientific test, at most it should be considered a place to start discussion. To the extent that we can actually trust these results, the full DS model even with very aggressive quantization seems to beat the normal distills until you limit it to 2 experts. The Virtuoso Medium V2 distill looks pretty strong, ending up between full DS R1 with 3 and 4 experts. I tried with 10 and 12 experts and generating perplexity failed with NaNs.
2025-01-30T08:00:48
https://www.reddit.com/r/LocalLLaMA/comments/1idi5cr/i_did_a_very_short_perplexity_test_with_deepseek/
alwaysbeblepping
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idi5cr
false
null
t3_1idi5cr
/r/LocalLLaMA/comments/1idi5cr/i_did_a_very_short_perplexity_test_with_deepseek/
false
false
self
3
null
Has Anyone Successfully Fine-Tuned Whisper for a Local Language?
6
Hi everyone, I am fairly new to AI and coding, and I’m curious about fine-tuning OpenAI’s Whisper model to improve its accuracy for a local language. Has anyone here successfully fine-tuned Whisper? If so, how did you do it? What tools, frameworks, or techniques did you use? Would transfer learning or some other method work best? I tried doing it my self on colab but I coulddnt seem to make it work, to begin with I just used common voices from Mozilla to see if it was even possible, maybe it is my limitation, but just wanted to ask if anyone have done it and could guide me a bit :) I’d really appreciate any insights, experiences, or resources that could help! Thanks in advance!
2025-01-30T08:01:05
https://www.reddit.com/r/LocalLLaMA/comments/1idi5j1/has_anyone_successfully_finetuned_whisper_for_a/
jumnopol
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idi5j1
false
null
t3_1idi5j1
/r/LocalLLaMA/comments/1idi5j1/has_anyone_successfully_finetuned_whisper_for_a/
false
false
self
6
null
Can an LLM be customized to act as a chatbot?
0
Greetings, Is it possible to make an LLM act as a guider to my website? We have plenty of sections and thousands of pre-written and customizable documents (single page documents, nothing complicated). Could I feed the LLM all of the sections (alongside their their purpose) and all of the contracts/documents so that it can recommend one on the fly rather make the client search through the entire database? Is there such service that'd suit my use case? Like can just tell it "You are a \[X\] entity's chatbot. Your purpose is to do \[X\]. When you enumerate documents, wrap them with <doc> </doc> so my front-end can detect it and present it" and somewhere I can upload all of the knowledge base/documents I have (or give it access to my database?). What service and model size would satisfy these requirements? Would hosting it myself even be feasible?
2025-01-30T08:13:56
https://www.reddit.com/r/LocalLLaMA/comments/1idicks/can_an_llm_be_customized_to_act_as_a_chatbot/
Nervous-Positive-431
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idicks
false
null
t3_1idicks
/r/LocalLLaMA/comments/1idicks/can_an_llm_be_customized_to_act_as_a_chatbot/
false
false
self
0
null
Handling split tables in PDFs
6
I'm currently working on a project where I am trying to build a rag agent on top of a pdf that contains a budget table. The problem here is that is not whole and is split between two pages. For eg, the first two rows are in page 2 and the rest is continued on page 3. I've used llama parse to handle the pof parsing since it came out to be the better when compared with PyPDF. I've tried to build QA pipeline on the parsed chunks using llama3 but it's not able to capture the table as a whole. Has anyone encountered this issue? I'm actively looking into this and l'd appreciate if you can add your suggestions on how to get around this. TIA.
2025-01-30T08:19:14
https://www.reddit.com/r/LocalLLaMA/comments/1idiffn/handling_split_tables_in_pdfs/
MacaronExcellent4772
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idiffn
false
null
t3_1idiffn
/r/LocalLLaMA/comments/1idiffn/handling_split_tables_in_pdfs/
false
false
self
6
null
Advice for generating test cases on smaller models
1
[removed]
2025-01-30T08:26:11
https://www.reddit.com/r/LocalLLaMA/comments/1idiii6/advice_for_generating_test_cases_on_smaller_models/
KarimAbdelQader
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idiii6
false
null
t3_1idiii6
/r/LocalLLaMA/comments/1idiii6/advice_for_generating_test_cases_on_smaller_models/
false
false
self
1
null
The real DeepSeek-R1 schematic
21
https://i.redd.it/cpj3a0cpe3ge1.gif Forget flashy headlines, here's the actual DeepSeek-R1 schematic. It cannot be explained in one news headline or 1 paragraph. We need deep videos and hands on modules to truly understand the DeepSeek-R1 pipeline.
2025-01-30T08:35:54
https://www.reddit.com/r/LocalLLaMA/comments/1idimum/the_real_deepseekr1_schematic/
OtherRaisin3426
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idimum
false
null
t3_1idimum
/r/LocalLLaMA/comments/1idimum/the_real_deepseekr1_schematic/
false
false
https://b.thumbs.redditm…KD8Y3yLkwLIg.jpg
21
null
Deep Seek Trick I recently discovered!
0
https://preview.redd.it/…deepest respect)
2025-01-30T08:40:47
https://www.reddit.com/r/LocalLLaMA/comments/1idip0c/deep_seek_trick_i_recently_discovered/
iam_wizard
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idip0c
false
null
t3_1idip0c
/r/LocalLLaMA/comments/1idip0c/deep_seek_trick_i_recently_discovered/
false
false
https://a.thumbs.redditm…qb9x5IRYPXA4.jpg
0
null
Would you fund open research?
1
[removed] [View Poll](https://www.reddit.com/poll/1idiun7)
2025-01-30T08:53:17
https://www.reddit.com/r/LocalLLaMA/comments/1idiun7/would_you_fund_open_research/
StevenSamAI
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idiun7
false
null
t3_1idiun7
/r/LocalLLaMA/comments/1idiun7/would_you_fund_open_research/
false
false
self
1
null
What about 1 TB Sys RAM system with the 7995WX to run LLMs ?
30
Today, I tried running the DeepSeek R1 2.58-bit Quant version on a 24 vCPU, 192 GB RAM server without a GPU. I achieved a speed of about 11 tokens/second in the pg512 test. Meanwhile, four A40 GPUs produced around 33 tokens/second. This got me thinking about a possible setup. For my personal needs, 11 tokens/second seems adequate. However, for a very large LLM such as R1 Q8\_0, which requires 700 GB of VRAM, one would typically need eight A100 GPUs (H100s are even more expensive) and would also have to offload some layers to the CPU. That setup costs around $177,840. In contrast, a Ryzen Threadripper PRO 7995WX costs around $11,500, and 1 TB of RAM is about $2,400, so the total would be roughly $14,000—about twelve times cheaper. Of course, the inference speed would be significantly slower, and performance might suffer as the context window grows, but it’s still feasible to own a personal system. I’m new to LLMs, so I’d love to hear any additional thoughts or suggestions.
2025-01-30T08:53:33
https://www.reddit.com/r/LocalLLaMA/comments/1idiurl/what_about_1_tb_sys_ram_system_with_the_7995wx_to/
MatrixEternal
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idiurl
false
null
t3_1idiurl
/r/LocalLLaMA/comments/1idiurl/what_about_1_tb_sys_ram_system_with_the_7995wx_to/
false
false
self
30
null
The Mac M2 Ultra faster than 2xH100s in running Deepseek R1 IQ1_S.
1
Over on the llama.cpp github, people have been benchmarking R1 IQ1_s. The M2 Ultra is faster than two H100s for TG. The M2 Ultra gets 13.88t/s. 2xH100 gets 11.53t/s. That's surprising. As for PP processing, that's all over the place on the 2xH100s. From 0.41 to 137.66. For the M2 Ultra it's 24.05. https://github.com/ggerganov/llama.cpp/issues/11474
2025-01-30T08:54:23
https://www.reddit.com/r/LocalLLaMA/comments/1idiv5m/the_mac_m2_ultra_faster_than_2xh100s_in_running/
fallingdowndizzyvr
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idiv5m
false
null
t3_1idiv5m
/r/LocalLLaMA/comments/1idiv5m/the_mac_m2_ultra_faster_than_2xh100s_in_running/
false
false
self
1
{'enabled': False, 'images': [{'id': 'TYQ9m_pCrgsy8AFhXDiHnOgvgkbnGkWnHwvMukfCyh0', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/n-jN5tf67feziDuR34Ds_KqdYWGR7nMT4qV8D9TY21w.jpg?width=108&crop=smart&auto=webp&s=7ea56a965b2ec920d90bcdca3f57e6dd2c224742', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/n-jN5tf67feziDuR34Ds_KqdYWGR7nMT4qV8D9TY21w.jpg?width=216&crop=smart&auto=webp&s=a1a86127caf3dba4f6b460bb259a771498e644d4', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/n-jN5tf67feziDuR34Ds_KqdYWGR7nMT4qV8D9TY21w.jpg?width=320&crop=smart&auto=webp&s=33f8da2c59c7201663ffe450280f8c6d1785b813', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/n-jN5tf67feziDuR34Ds_KqdYWGR7nMT4qV8D9TY21w.jpg?width=640&crop=smart&auto=webp&s=b01c4b4be1f88b62ce270ca22c56f84c2a12cea4', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/n-jN5tf67feziDuR34Ds_KqdYWGR7nMT4qV8D9TY21w.jpg?width=960&crop=smart&auto=webp&s=f845610125ce9dc0d27e7f13a31e86fdb3c904ef', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/n-jN5tf67feziDuR34Ds_KqdYWGR7nMT4qV8D9TY21w.jpg?width=1080&crop=smart&auto=webp&s=578c4b8245b03dafb85effbe1a3fc2808fe8f374', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/n-jN5tf67feziDuR34Ds_KqdYWGR7nMT4qV8D9TY21w.jpg?auto=webp&s=80c0ec6992ab70024df04486991b0c66b03f2a6a', 'width': 1200}, 'variants': {}}]}
The Mac M2 Ultra is faster than 2xH100s in running Deepseek R1 IQ1_S.
71
Over on the llama.cpp github, people have been benchmarking R1 IQ1_s. The M2 Ultra is faster than two H100s for TG. The M2 Ultra gets 13.88t/s. 2xH100 gets 11.53t/s. That's surprising. As for PP processing, that's all over the place on the 2xH100s. From 0.41 to 137.66. For the M2 Ultra it's 24.05. https://github.com/ggerganov/llama.cpp/issues/11474
2025-01-30T08:55:42
https://www.reddit.com/r/LocalLLaMA/comments/1idivqe/the_mac_m2_ultra_is_faster_than_2xh100s_in/
fallingdowndizzyvr
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idivqe
false
null
t3_1idivqe
/r/LocalLLaMA/comments/1idivqe/the_mac_m2_ultra_is_faster_than_2xh100s_in/
false
false
self
71
{'enabled': False, 'images': [{'id': 'TYQ9m_pCrgsy8AFhXDiHnOgvgkbnGkWnHwvMukfCyh0', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/n-jN5tf67feziDuR34Ds_KqdYWGR7nMT4qV8D9TY21w.jpg?width=108&crop=smart&auto=webp&s=7ea56a965b2ec920d90bcdca3f57e6dd2c224742', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/n-jN5tf67feziDuR34Ds_KqdYWGR7nMT4qV8D9TY21w.jpg?width=216&crop=smart&auto=webp&s=a1a86127caf3dba4f6b460bb259a771498e644d4', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/n-jN5tf67feziDuR34Ds_KqdYWGR7nMT4qV8D9TY21w.jpg?width=320&crop=smart&auto=webp&s=33f8da2c59c7201663ffe450280f8c6d1785b813', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/n-jN5tf67feziDuR34Ds_KqdYWGR7nMT4qV8D9TY21w.jpg?width=640&crop=smart&auto=webp&s=b01c4b4be1f88b62ce270ca22c56f84c2a12cea4', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/n-jN5tf67feziDuR34Ds_KqdYWGR7nMT4qV8D9TY21w.jpg?width=960&crop=smart&auto=webp&s=f845610125ce9dc0d27e7f13a31e86fdb3c904ef', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/n-jN5tf67feziDuR34Ds_KqdYWGR7nMT4qV8D9TY21w.jpg?width=1080&crop=smart&auto=webp&s=578c4b8245b03dafb85effbe1a3fc2808fe8f374', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/n-jN5tf67feziDuR34Ds_KqdYWGR7nMT4qV8D9TY21w.jpg?auto=webp&s=80c0ec6992ab70024df04486991b0c66b03f2a6a', 'width': 1200}, 'variants': {}}]}
PSA #2: No, R1 isn't telling you to talk about something else.
1
[removed]
2025-01-30T08:58:48
[deleted]
1970-01-01T00:00:00
0
{}
1idix3n
false
null
t3_1idix3n
/r/LocalLLaMA/comments/1idix3n/psa_2_no_r1_isnt_telling_you_to_talk_about/
false
false
default
1
null
How to prepare datasets to fine tuning deepseek reasoning model?
1
[removed]
2025-01-30T09:12:42
https://www.reddit.com/r/LocalLLaMA/comments/1idj3ds/how_to_prepare_datasets_to_fine_tuning_deepseek/
Present-Tourist6487
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idj3ds
false
null
t3_1idj3ds
/r/LocalLLaMA/comments/1idj3ds/how_to_prepare_datasets_to_fine_tuning_deepseek/
false
false
self
1
null
R1 hallucinating
1
[removed]
2025-01-30T09:17:08
https://i.redd.it/4z4e8685m3ge1.png
thatoneploomer
i.redd.it
1970-01-01T00:00:00
0
{}
1idj5g0
false
null
t3_1idj5g0
/r/LocalLLaMA/comments/1idj5g0/r1_hallucinating/
false
false
https://b.thumbs.redditm…gVz6Dv0RZVKw.jpg
1
{'enabled': True, 'images': [{'id': '_Ya0GhGR1BBADT9yD-wL0Fha3sJ8Qj6zJNctFNoIGSc', 'resolutions': [{'height': 27, 'url': 'https://preview.redd.it/4z4e8685m3ge1.png?width=108&crop=smart&auto=webp&s=e33244caa7e991b66f996cdc8f45290140eff149', 'width': 108}, {'height': 54, 'url': 'https://preview.redd.it/4z4e8685m3ge1.png?width=216&crop=smart&auto=webp&s=dcae7fd0161f8a672289e16f91dff1a9373bc890', 'width': 216}, {'height': 80, 'url': 'https://preview.redd.it/4z4e8685m3ge1.png?width=320&crop=smart&auto=webp&s=2463f88db77d092a8d325b531d110d17b8ef5a1d', 'width': 320}, {'height': 160, 'url': 'https://preview.redd.it/4z4e8685m3ge1.png?width=640&crop=smart&auto=webp&s=441c5989fd56d785dea946af7ece13a6294cce60', 'width': 640}], 'source': {'height': 206, 'url': 'https://preview.redd.it/4z4e8685m3ge1.png?auto=webp&s=aa3a8e3d8765c5790c5e272197f17d24d3f562b2', 'width': 819}, 'variants': {}}]}
KV cache performance - unexpected issue
5
Hi, I'm trying to implement a simple decoder-only llm, for educational purpose, and have been struggling with some issue related to KV caching. For some reason, the below implementation results in **lower** performances when using the KV caching. Profiling the code reveals that despite slightly faster matmuls (both for kqv generation and for the actual self attention mechanism), the read/write slicings of the KV cache actually makes the whole thing slower. Am I doing something really dumb, here ? I implemented the KV cache as a circular buffer, and I have k/v cache for each SelfAttention heads class SelfAttentionHead(torch.nn.Module): def __init__(self, head_size): super().__init__() self.head_size = head_size self.key = torch.nn.Linear(n_embedding, head_size, bias=False) self.query = torch.nn.Linear(n_embedding, head_size, bias=False) self.value = torch.nn.Linear(n_embedding, head_size, bias=False) self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) self.register_buffer('k_cache', torch.zeros(0)) self.register_buffer('v_cache', torch.zeros(0)) self.last_index = None self.use_cache = False def train(self, mode=True): super().train(mode) if(mode==False): self.use_cache = True self.last_index = None self.k_cache = torch.zeros(0, device=device) self.v_cache = torch.zeros(0, device=device) torch.cuda.empty_cache() else: self.use_cache = False self.k_cache = torch.zeros(0, device=device) self.v_cache = torch.zeros(0, device=device) torch.cuda.empty_cache() def eval(self): super().eval() self.use_cache = True self.last_index = None self.k_cache = torch.zeros(0, device=device) self.v_cache = torch.zeros(0, device=device) torch.cuda.empty_cache() def forward(self, x): B, T, _ = x.shape if self.use_cache: x_new = x[:,-1,:] if(self.k_cache.shape[0] == 0 and self.v_cache.shape[0] == 0): self.k_cache = torch.zeros(size=[B,block_size,self.head_size], device=device) self.v_cache = torch.zeros(size=[B,block_size,self.head_size], device=device) k_new = self.key(x_new) #batch_size, 1, head_size q_new = self.query(x_new) # batch_size, 1, head_size v_new = self.value(x_new) # batch_size, 1, head_size if(self.last_index is None): self.last_index = 0 else: self.last_index += 1 update_index = self.last_index % block_size self.k_cache[:,update_index,:] = k_new self.v_cache[:,update_index,:] = v_new #Retrieve appropriate K, V by fetching the KV cache valid_start = max(0,self.last_index-block_size+1) cache_indices = torch.arange(valid_start, self.last_index+1, device=device) % block_size K = self.k_cache[:, cache_indices, :] V = self.v_cache[:, cache_indices, :] QKt = (q_new @ K.transpose(-1,-2)) * self.head_size**-0.5 QKt[:,T:,:] = float('-inf') wei = F.softmax(QKt, dim=-1) out = wei @ V return out else: k = self.key(x) # batch_size, block_size, head_size q = self.query(x) # batch_size, block_size, head_size v = self.value(x) # batch_size, block_size, head_size if (self.last_index is None): self.last_index = 0 else: self.last_index += 1 update_index = self.last_index % block_size QKt = (q @ k.transpose(-1, -2)) * (self.head_size**-0.5) wei = QKt.masked_fill(self.tril[:T, :T] == 0, float('-inf')) wei = F.softmax(wei, dim=-1) out = wei @ v return out
2025-01-30T09:29:06
https://www.reddit.com/r/LocalLLaMA/comments/1idjavc/kv_cache_performance_unexpected_issue/
henker92
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idjavc
false
null
t3_1idjavc
/r/LocalLLaMA/comments/1idjavc/kv_cache_performance_unexpected_issue/
false
false
self
5
null
Query
1
[removed]
2025-01-30T09:43:09
https://www.reddit.com/r/LocalLLaMA/comments/1idjh52/query/
Master-Article7603
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idjh52
false
null
t3_1idjh52
/r/LocalLLaMA/comments/1idjh52/query/
false
false
self
1
null
Did I cause the DeepSeek outage?
0
2025-01-30T09:48:29
https://www.reddit.com/gallery/1idjjly
ConcernedCitizen_KM
reddit.com
1970-01-01T00:00:00
0
{}
1idjjly
false
null
t3_1idjjly
/r/LocalLLaMA/comments/1idjjly/did_i_cause_the_deepseek_outage/
false
false
https://a.thumbs.redditm…n6qPHFd2UDJ4.jpg
0
null
GRPO for VLMs?
1
Is there any example of using the huggingface GRPO trainer for VLMs? I'm not sure how to format my dataset to use it with a VLM.
2025-01-30T09:56:40
https://www.reddit.com/r/LocalLLaMA/comments/1idjnd5/grpo_for_vlms/
LiquidGunay
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idjnd5
false
null
t3_1idjnd5
/r/LocalLLaMA/comments/1idjnd5/grpo_for_vlms/
false
false
self
1
null
Deepseek are clever fuckers
0
I wrote this about how Deepseek is pushing decision makers in large financial institutions to seriously consider running their own models instead of calling out to Microsoft, Amazon & Google [https://blog.helix.ml/p/you-should-run-local-models-run-deepseek](https://blog.helix.ml/p/you-should-run-local-models-run-deepseek)
2025-01-30T10:02:40
https://www.reddit.com/r/LocalLLaMA/comments/1idjqdt/deepseek_are_clever_fuckers/
lewqfu
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idjqdt
false
null
t3_1idjqdt
/r/LocalLLaMA/comments/1idjqdt/deepseek_are_clever_fuckers/
false
false
self
0
{'enabled': False, 'images': [{'id': 'ruPKh6HgyDP2Z8-L_wBICT12by0jgIL_JyoMmHHMsZM', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/1pepvrwiuHUWlcPJD5z4WbLOZG_XPnrDopuby_LY1pg.jpg?width=108&crop=smart&auto=webp&s=fb54a193bd0a19669fae503f3c3c81fb8b91259d', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/1pepvrwiuHUWlcPJD5z4WbLOZG_XPnrDopuby_LY1pg.jpg?width=216&crop=smart&auto=webp&s=d12141f7cb9f8c919cd65026e4914e98e0eda913', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/1pepvrwiuHUWlcPJD5z4WbLOZG_XPnrDopuby_LY1pg.jpg?width=320&crop=smart&auto=webp&s=53c877a7d6785637fccb2264cab87aa93b3a1211', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/1pepvrwiuHUWlcPJD5z4WbLOZG_XPnrDopuby_LY1pg.jpg?width=640&crop=smart&auto=webp&s=cbbf749e5d3bfde3c5390e856b0091ef0a9f98db', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/1pepvrwiuHUWlcPJD5z4WbLOZG_XPnrDopuby_LY1pg.jpg?width=960&crop=smart&auto=webp&s=8b6e920580a0a136c1247165318f4e71208b9714', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/1pepvrwiuHUWlcPJD5z4WbLOZG_XPnrDopuby_LY1pg.jpg?width=1080&crop=smart&auto=webp&s=a307552a277e3bb781cd739653208fe65474bf98', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/1pepvrwiuHUWlcPJD5z4WbLOZG_XPnrDopuby_LY1pg.jpg?auto=webp&s=75c63502e14384108a5180bbec663b4780e39dec', 'width': 1200}, 'variants': {}}]}
Took long enough
0
2025-01-30T10:05:12
https://i.redd.it/lgypv886u3ge1.png
Own_Bet_9292
i.redd.it
1970-01-01T00:00:00
0
{}
1idjrjh
false
null
t3_1idjrjh
/r/LocalLLaMA/comments/1idjrjh/took_long_enough/
false
false
https://b.thumbs.redditm…WnfYKtaQ5jAs.jpg
0
{'enabled': True, 'images': [{'id': 'P8RFaxhcW77jdnposcqVJ6f5brxCn33chr86nI0o7gs', 'resolutions': [{'height': 53, 'url': 'https://preview.redd.it/lgypv886u3ge1.png?width=108&crop=smart&auto=webp&s=f7b28a2f9656cac8205adb5e9aea9cf70fc514e8', 'width': 108}, {'height': 107, 'url': 'https://preview.redd.it/lgypv886u3ge1.png?width=216&crop=smart&auto=webp&s=4abd15c9d4b69855267131d0771aec051f8ca96a', 'width': 216}, {'height': 158, 'url': 'https://preview.redd.it/lgypv886u3ge1.png?width=320&crop=smart&auto=webp&s=fa0f0f67c9caa56e4eac4f784b91ba3eff76a753', 'width': 320}, {'height': 317, 'url': 'https://preview.redd.it/lgypv886u3ge1.png?width=640&crop=smart&auto=webp&s=8799cf9306584f6a4ac5b7efa277d7f92f39bf2c', 'width': 640}, {'height': 476, 'url': 'https://preview.redd.it/lgypv886u3ge1.png?width=960&crop=smart&auto=webp&s=8f57e650c4f7ff7e01b1233caa70d6c6be653545', 'width': 960}, {'height': 535, 'url': 'https://preview.redd.it/lgypv886u3ge1.png?width=1080&crop=smart&auto=webp&s=1d11808902210c7f509489253bb5b0a7ef015c60', 'width': 1080}], 'source': {'height': 759, 'url': 'https://preview.redd.it/lgypv886u3ge1.png?auto=webp&s=549c7f5e09d88a4bcb4c7dacbb5238ceb942d61b', 'width': 1530}, 'variants': {}}]}
how to use Ollama with C++
1
[removed]
2025-01-30T10:14:40
https://www.reddit.com/r/LocalLLaMA/comments/1idjw04/how_to_use_ollama_with_c/
Reasonable-Falcon470
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idjw04
false
null
t3_1idjw04
/r/LocalLLaMA/comments/1idjw04/how_to_use_ollama_with_c/
false
false
self
1
null
how to use Ollama with C++
1
[removed]
2025-01-30T10:16:45
https://www.reddit.com/r/LocalLLaMA/comments/1idjwyw/how_to_use_ollama_with_c/
Reasonable-Falcon470
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idjwyw
false
null
t3_1idjwyw
/r/LocalLLaMA/comments/1idjwyw/how_to_use_ollama_with_c/
false
false
self
1
null
An Interesting Watch: DeepSeek vs. Open AI - The State of AI w/ Emad Mostaque & Salim Ismail
0
I believe that Emad in this podcast does a good job of explaining why Deepseek R1 is actually an engineering revolution to training models. [https://www.youtube.com/watch?v=lY8Ja00PCQM](https://www.youtube.com/watch?v=lY8Ja00PCQM)
2025-01-30T10:34:05
https://www.reddit.com/r/LocalLLaMA/comments/1idk5ad/an_interesting_watch_deepseek_vs_open_ai_the/
Iory1998
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idk5ad
false
null
t3_1idk5ad
/r/LocalLLaMA/comments/1idk5ad/an_interesting_watch_deepseek_vs_open_ai_the/
false
false
self
0
{'enabled': False, 'images': [{'id': 'M8OUnhiUUgZmNFjolvfAdQaWhAsWGwDsXQ-eQxtlTJ4', 'resolutions': [{'height': 81, 'url': 'https://external-preview.redd.it/8vQbz5p0b128mv30HLtu4dKQJAbTw__cuP9z7k2LBwE.jpg?width=108&crop=smart&auto=webp&s=2cbc5116e2b73de88ff46668cf4fd93242454000', 'width': 108}, {'height': 162, 'url': 'https://external-preview.redd.it/8vQbz5p0b128mv30HLtu4dKQJAbTw__cuP9z7k2LBwE.jpg?width=216&crop=smart&auto=webp&s=389d7542e28a0c12d285eac9d7670892885b6f38', 'width': 216}, {'height': 240, 'url': 'https://external-preview.redd.it/8vQbz5p0b128mv30HLtu4dKQJAbTw__cuP9z7k2LBwE.jpg?width=320&crop=smart&auto=webp&s=2ddd88a09b5a753dca099c15d68998bf2b955835', 'width': 320}], 'source': {'height': 360, 'url': 'https://external-preview.redd.it/8vQbz5p0b128mv30HLtu4dKQJAbTw__cuP9z7k2LBwE.jpg?auto=webp&s=992b4f64f010bccc658fa1576b18340fc6ce6f54', 'width': 480}, 'variants': {}}]}
Deep seek on frustrated #deepseek
0
2025-01-30T10:36:27
https://i.redd.it/mhunm2ka04ge1.jpeg
NormalPitch5769
i.redd.it
1970-01-01T00:00:00
0
{}
1idk6fu
false
null
t3_1idk6fu
/r/LocalLLaMA/comments/1idk6fu/deep_seek_on_frustrated_deepseek/
false
false
https://b.thumbs.redditm…7W5zrUC4039w.jpg
0
{'enabled': True, 'images': [{'id': 'eUqXREOV1LLIYoSYODFi1xqNZHhkUT1oVxxG8z4M5Y0', 'resolutions': [{'height': 144, 'url': 'https://preview.redd.it/mhunm2ka04ge1.jpeg?width=108&crop=smart&auto=webp&s=331dd36bcdd66814f4f48680cf1f13867e3ef873', 'width': 108}, {'height': 288, 'url': 'https://preview.redd.it/mhunm2ka04ge1.jpeg?width=216&crop=smart&auto=webp&s=f9040d8be1cebdff6101b3ae799da8ed3ab204fb', 'width': 216}, {'height': 426, 'url': 'https://preview.redd.it/mhunm2ka04ge1.jpeg?width=320&crop=smart&auto=webp&s=37295d86114feaa0be23a6dc6f333f22b678d023', 'width': 320}, {'height': 853, 'url': 'https://preview.redd.it/mhunm2ka04ge1.jpeg?width=640&crop=smart&auto=webp&s=fbdd82bbf8245c4973f6d752136320d79a958192', 'width': 640}, {'height': 1280, 'url': 'https://preview.redd.it/mhunm2ka04ge1.jpeg?width=960&crop=smart&auto=webp&s=1495fc5eed831042d6c2b46c72eb723754d28789', 'width': 960}, {'height': 1440, 'url': 'https://preview.redd.it/mhunm2ka04ge1.jpeg?width=1080&crop=smart&auto=webp&s=cf07d8e5d2559687696e46577ca5f8317e470416', 'width': 1080}], 'source': {'height': 4032, 'url': 'https://preview.redd.it/mhunm2ka04ge1.jpeg?auto=webp&s=4f6573deda85adb5ec6d7d2e939a11a0caf3f15a', 'width': 3024}, 'variants': {}}]}
Built a Lightning-Fast DeepSeek RAG Chatbot – Reads PDFs, Uses FAISS, and Runs on GPU! 🚀
8
2025-01-30T10:38:01
https://github.com/SaiAkhil066/DeepSeek-RAG-Chatbot.git
akhilpanja
github.com
1970-01-01T00:00:00
0
{}
1idk78y
false
null
t3_1idk78y
/r/LocalLLaMA/comments/1idk78y/built_a_lightningfast_deepseek_rag_chatbot_reads/
false
false
https://b.thumbs.redditm…3akK60pG1adY.jpg
8
{'enabled': False, 'images': [{'id': '-c5qad-_Gb_G2gZc_Ayzpk4CYHrHMEhQ0REkCoX2Knc', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/tUx5_IJmvUr2ThZPtrihHQ9kI5AASNBWXyd4_vSU98g.jpg?width=108&crop=smart&auto=webp&s=20411351a332548f281d01fa3dbd669e1ed58a7e', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/tUx5_IJmvUr2ThZPtrihHQ9kI5AASNBWXyd4_vSU98g.jpg?width=216&crop=smart&auto=webp&s=b2085472ae41ace2aef8042bef17418309d9b9f8', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/tUx5_IJmvUr2ThZPtrihHQ9kI5AASNBWXyd4_vSU98g.jpg?width=320&crop=smart&auto=webp&s=fa8df1680efa5efc035d783e638d733b4d2a267a', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/tUx5_IJmvUr2ThZPtrihHQ9kI5AASNBWXyd4_vSU98g.jpg?width=640&crop=smart&auto=webp&s=d5062c7b85ff0d68e2cb22c69a986c14fb86fc50', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/tUx5_IJmvUr2ThZPtrihHQ9kI5AASNBWXyd4_vSU98g.jpg?width=960&crop=smart&auto=webp&s=11fceccce9fe4f58b4fdccb4fe7f752ee9340b39', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/tUx5_IJmvUr2ThZPtrihHQ9kI5AASNBWXyd4_vSU98g.jpg?width=1080&crop=smart&auto=webp&s=505576f45a67851f84b3c345613d5c8e25fe6e55', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/tUx5_IJmvUr2ThZPtrihHQ9kI5AASNBWXyd4_vSU98g.jpg?auto=webp&s=254288463996a9109c7af6caa966b073164937c6', 'width': 1200}, 'variants': {}}]}
ZeroCoT: a simple method to bootstrap CoT from zero
18
Author: @BlinkDL_AI https://x.com/BlinkDL_AI/status/1884768989743882276
2025-01-30T10:50:10
https://i.redd.it/0jtwa3nq24ge1.png
AaronFeng47
i.redd.it
1970-01-01T00:00:00
0
{}
1idkdan
false
null
t3_1idkdan
/r/LocalLLaMA/comments/1idkdan/zerocot_a_simple_method_to_bootstrap_cot_from_zero/
false
false
https://b.thumbs.redditm…yJnZXZQpp-iM.jpg
18
{'enabled': True, 'images': [{'id': 'JDd1ZkOlHnVIZiTV6CGAGg3dLhb8if-4R3Lcmvx2x_g', 'resolutions': [{'height': 75, 'url': 'https://preview.redd.it/0jtwa3nq24ge1.png?width=108&crop=smart&auto=webp&s=94c33081032b50552a7622920c8bbeafc07e7f42', 'width': 108}, {'height': 150, 'url': 'https://preview.redd.it/0jtwa3nq24ge1.png?width=216&crop=smart&auto=webp&s=6814f8db079b1cd9a7bdc82a177540feb5f67112', 'width': 216}, {'height': 222, 'url': 'https://preview.redd.it/0jtwa3nq24ge1.png?width=320&crop=smart&auto=webp&s=0ba7223dbd7526ee3c30c44d01930e4426733f1a', 'width': 320}, {'height': 445, 'url': 'https://preview.redd.it/0jtwa3nq24ge1.png?width=640&crop=smart&auto=webp&s=266146fde56b15038f4b881fa361d78640dff652', 'width': 640}, {'height': 668, 'url': 'https://preview.redd.it/0jtwa3nq24ge1.png?width=960&crop=smart&auto=webp&s=ab14a8ea529c4aa3714fb7614a213484d59bad58', 'width': 960}, {'height': 751, 'url': 'https://preview.redd.it/0jtwa3nq24ge1.png?width=1080&crop=smart&auto=webp&s=730b6d25358793fd30d2f4d3c6aa174f16b4169a', 'width': 1080}], 'source': {'height': 1042, 'url': 'https://preview.redd.it/0jtwa3nq24ge1.png?auto=webp&s=8812b6243d4d760f842dc43d5cdef6f723380ce1', 'width': 1497}, 'variants': {}}]}
DeepSeek now refuses marketing tasks?
0
2025-01-30T10:56:15
https://i.redd.it/fxr9k9ur34ge1.png
omnisvosscio
i.redd.it
1970-01-01T00:00:00
0
{}
1idkg5m
false
null
t3_1idkg5m
/r/LocalLLaMA/comments/1idkg5m/deepseek_now_refuses_marketing_tasks/
false
false
https://a.thumbs.redditm…fcD-v4oVnIe0.jpg
0
{'enabled': True, 'images': [{'id': 'meJELUoGxzgfX2HsNQ4mQcXfkWig7j9WEFB-FsfXMHg', 'resolutions': [{'height': 18, 'url': 'https://preview.redd.it/fxr9k9ur34ge1.png?width=108&crop=smart&auto=webp&s=40eaff2407aa8b19a430ab278e400216befe4b5a', 'width': 108}, {'height': 36, 'url': 'https://preview.redd.it/fxr9k9ur34ge1.png?width=216&crop=smart&auto=webp&s=94a5ecb098e9b14b52939c38ec5140b134761d53', 'width': 216}, {'height': 53, 'url': 'https://preview.redd.it/fxr9k9ur34ge1.png?width=320&crop=smart&auto=webp&s=c4f9829f6f9080a95a75a9f7fd56aaa20af34478', 'width': 320}, {'height': 107, 'url': 'https://preview.redd.it/fxr9k9ur34ge1.png?width=640&crop=smart&auto=webp&s=9069696a4c8870ee2f4e0c0a082c908e8845eeb6', 'width': 640}, {'height': 160, 'url': 'https://preview.redd.it/fxr9k9ur34ge1.png?width=960&crop=smart&auto=webp&s=493b33779fb5d11e2436c4178ffb8175bf16b04c', 'width': 960}, {'height': 180, 'url': 'https://preview.redd.it/fxr9k9ur34ge1.png?width=1080&crop=smart&auto=webp&s=cff2f98244bcbae06e745e64a1c0a49fd5c66ae2', 'width': 1080}], 'source': {'height': 286, 'url': 'https://preview.redd.it/fxr9k9ur34ge1.png?auto=webp&s=7fcf09dc689d10f405f98a136300860f37b340bd', 'width': 1710}, 'variants': {}}]}
PSA: your 7B/14B/32B/70B "R1" is NOT DeepSeek.
1
[removed]
2025-01-30T11:06:14
https://www.reddit.com/r/LocalLLaMA/comments/1idklhv/psa_your_7b14b32b70b_r1_is_not_deepseek/
Zalathustra
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idklhv
false
null
t3_1idklhv
/r/LocalLLaMA/comments/1idklhv/psa_your_7b14b32b70b_r1_is_not_deepseek/
false
false
self
1
null
Deepseek brought retards here
65
Our locallama community is (or was) a highly technical community not talking about trends (shit like langchain, politicis etc). Right now it's mostly people showing screesnhots of deepseek chat and other hype. I hope the hype is over soon and I start seeing highly technical content here again
2025-01-30T11:10:41
https://www.reddit.com/r/LocalLLaMA/comments/1idknoy/deepseek_brought_retards_here/
Armym
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idknoy
false
null
t3_1idknoy
/r/LocalLLaMA/comments/1idknoy/deepseek_brought_retards_here/
false
false
self
65
null
The absolute state of things
1
[removed]
2025-01-30T11:11:16
https://www.reddit.com/r/LocalLLaMA/comments/1idknyy/the_absolute_state_of_things/
Zalathustra
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idknyy
false
null
t3_1idknyy
/r/LocalLLaMA/comments/1idknyy/the_absolute_state_of_things/
false
false
self
1
null
Qwen LLM page not loading in Firefox, because of the DuckDuckGo Extension
1
[removed]
2025-01-30T11:16:57
https://www.reddit.com/r/LocalLLaMA/comments/1idkqul/qwen_llm_page_not_loading_in_firefox_because_of/
Significant-Owl2580
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idkqul
false
null
t3_1idkqul
/r/LocalLLaMA/comments/1idkqul/qwen_llm_page_not_loading_in_firefox_because_of/
false
false
self
1
null
COS(M+O)S: Curiosity and RL-Enhanced MCTS for Exploring Story Space via Language Models
1
2025-01-30T11:17:23
https://v.redd.it/fwnfxmgd74ge1
cosmos-llm
v.redd.it
1970-01-01T00:00:00
0
{}
1idkr2y
false
{'reddit_video': {'bitrate_kbps': 5000, 'dash_url': 'https://v.redd.it/fwnfxmgd74ge1/DASHPlaylist.mpd?a=1740827859%2CNWQyMjY4OGVmNDI1ZDZlOWMxNzRhYzY1ZWI3ZGVjNDI5N2JlZmI4NjdhOGJjNTIzZmRlMDNhODQzM2NmY2U4Ng%3D%3D&v=1&f=sd', 'duration': 66, 'fallback_url': 'https://v.redd.it/fwnfxmgd74ge1/DASH_1080.mp4?source=fallback', 'has_audio': False, 'height': 1080, 'hls_url': 'https://v.redd.it/fwnfxmgd74ge1/HLSPlaylist.m3u8?a=1740827859%2CY2FiZDJjNWI3NDdhM2U3YzkxOWE1ODEzOTFhZGRmOTA5MmM4ZGQyOTdmMzk4OTI4MjAyOWQyOWFiOWNmMTQ5Yw%3D%3D&v=1&f=sd', 'is_gif': False, 'scrubber_media_url': 'https://v.redd.it/fwnfxmgd74ge1/DASH_96.mp4', 'transcoding_status': 'completed', 'width': 1920}}
t3_1idkr2y
/r/LocalLLaMA/comments/1idkr2y/cosmos_curiosity_and_rlenhanced_mcts_for/
false
false
https://external-preview…318b6057d394a1d5
1
{'enabled': False, 'images': [{'id': 'ZDdsaXV3Z2Q3NGdlMRKOnAQhI4ITm2Pm_w-pI6dsSPy0LvriPTXAm2mk3rur', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/ZDdsaXV3Z2Q3NGdlMRKOnAQhI4ITm2Pm_w-pI6dsSPy0LvriPTXAm2mk3rur.png?width=108&crop=smart&format=pjpg&auto=webp&s=3892b40d0b4fc68b1e8148d6a4062a2012413e5d', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/ZDdsaXV3Z2Q3NGdlMRKOnAQhI4ITm2Pm_w-pI6dsSPy0LvriPTXAm2mk3rur.png?width=216&crop=smart&format=pjpg&auto=webp&s=5214d3ad976719a1da0060ef6b7729d00668aa18', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/ZDdsaXV3Z2Q3NGdlMRKOnAQhI4ITm2Pm_w-pI6dsSPy0LvriPTXAm2mk3rur.png?width=320&crop=smart&format=pjpg&auto=webp&s=88826f4db0f456bb26c24b68481f8f9636441a92', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/ZDdsaXV3Z2Q3NGdlMRKOnAQhI4ITm2Pm_w-pI6dsSPy0LvriPTXAm2mk3rur.png?width=640&crop=smart&format=pjpg&auto=webp&s=a352cbc50980aef635d6da5d1fc94637ed38a3ce', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/ZDdsaXV3Z2Q3NGdlMRKOnAQhI4ITm2Pm_w-pI6dsSPy0LvriPTXAm2mk3rur.png?width=960&crop=smart&format=pjpg&auto=webp&s=819d2a1c3cd98173fc72cc27376044705e413f6a', 'width': 960}, {'height': 607, 'url': 'https://external-preview.redd.it/ZDdsaXV3Z2Q3NGdlMRKOnAQhI4ITm2Pm_w-pI6dsSPy0LvriPTXAm2mk3rur.png?width=1080&crop=smart&format=pjpg&auto=webp&s=7fd10336cb0eee1fe5905e3395f0aef2b6f593a0', 'width': 1080}], 'source': {'height': 1080, 'url': 'https://external-preview.redd.it/ZDdsaXV3Z2Q3NGdlMRKOnAQhI4ITm2Pm_w-pI6dsSPy0LvriPTXAm2mk3rur.png?format=pjpg&auto=webp&s=de5931eae677333aa479e74fc4d1fcce799ec476', 'width': 1920}, 'variants': {}}]}
Inline Image Generation w/ Stable Diffusion
1
If anyone's interested, I just added image generation support to the Mac version of my LLM frontend. You can generate images by just asking the model, or by using /image. The smaller models will sometimes say they can't create images, but if you push them on it they will ;). Currently working on adding this to the iOS and visionOS apps, but it's a little less straightforward. I've also added support for some of the DeepSeek models. If anyone is interested on collaborating on this project DM me!
2025-01-30T11:22:11
https://www.reddit.com/r/LocalLLaMA/comments/1idktml/inline_image_generation_w_stable_diffusion/
kenech_io
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idktml
false
null
t3_1idktml
/r/LocalLLaMA/comments/1idktml/inline_image_generation_w_stable_diffusion/
false
false
self
1
null
Can we use Llama 3.3-70B-instruct as a base model for creating model like DeepSeek R1
0
I think I have figured out a way that can train open source LLMs like llama 3.3 to get the performance like DeepSeek-R1. My approach is this: ✅ Llama 3.3 Fine-Tuning ✅ Matroid Constraint Optimization for Logical Structuring ✅ Reinforcement Learning with Self-Verification ✅ Evaluation Against DeepSeek-R1 ✅ Optimized Deployment with INT4 Quantization
2025-01-30T11:26:04
https://www.reddit.com/r/LocalLLaMA/comments/1idkvlw/can_we_use_llama_3370binstruct_as_a_base_model/
Secure_Echo_971
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idkvlw
false
null
t3_1idkvlw
/r/LocalLLaMA/comments/1idkvlw/can_we_use_llama_3370binstruct_as_a_base_model/
false
false
self
0
{'enabled': False, 'images': [{'id': 'nkhh65ujo5BznFJFojoMPaKjGuLSpPj6KGhRov-ykOg', 'resolutions': [{'height': 108, 'url': 'https://external-preview.redd.it/0-fRWqjlLadVXj5pfYp4_Oe3xgBWE-_rdjVSn7hlohI.jpg?width=108&crop=smart&auto=webp&s=f34d2dfdbbfa7de0f1956f186fd8430ee96a1a55', 'width': 108}, {'height': 216, 'url': 'https://external-preview.redd.it/0-fRWqjlLadVXj5pfYp4_Oe3xgBWE-_rdjVSn7hlohI.jpg?width=216&crop=smart&auto=webp&s=2817183828c9747b960cb2e55c59cfa41f4f9ded', 'width': 216}], 'source': {'height': 260, 'url': 'https://external-preview.redd.it/0-fRWqjlLadVXj5pfYp4_Oe3xgBWE-_rdjVSn7hlohI.jpg?auto=webp&s=ed5da41e2c4cee7a9e495c8291ecf5604f0e169d', 'width': 260}, 'variants': {}}]}
Running deepseek v3 model in Open WebUI
1
[removed]
2025-01-30T11:29:35
https://www.reddit.com/r/LocalLLaMA/comments/1idkxhn/running_deepseek_v3_model_in_open_webui/
quantimx
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idkxhn
false
null
t3_1idkxhn
/r/LocalLLaMA/comments/1idkxhn/running_deepseek_v3_model_in_open_webui/
false
false
self
1
null
The cheapest way to run Openwebui
2
Hi I want to run Openwebui in the online server how can i do it with cheapest way? which online service is suitsble for me? i willl be the only one using it but i want to acces from any device
2025-01-30T11:31:09
https://www.reddit.com/r/LocalLLaMA/comments/1idkyds/the_cheapest_way_to_run_openwebui/
pifmu
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idkyds
false
null
t3_1idkyds
/r/LocalLLaMA/comments/1idkyds/the_cheapest_way_to_run_openwebui/
false
false
self
2
null
Help me understand why the better version is cheaper to use.
0
Why is the 32B version cheaper than the 14B version on Openrouter ?? https://preview.redd.it/4p8rk3epb4ge1.png?width=679&format=png&auto=webp&s=1f01cfc791914b8feb1eb0345bb575943224c408
2025-01-30T11:41:08
https://www.reddit.com/r/LocalLLaMA/comments/1idl3ln/help_me_understand_why_the_better_version_is/
-x-Spike-x-
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idl3ln
false
null
t3_1idl3ln
/r/LocalLLaMA/comments/1idl3ln/help_me_understand_why_the_better_version_is/
false
false
https://b.thumbs.redditm…kA2qnYpbLhRE.jpg
0
null
Can we get back to actually talking about LLMs instead of circlejerking about Deepseek?
1
[removed]
2025-01-30T11:43:19
https://www.reddit.com/r/LocalLLaMA/comments/1idl4q2/can_we_get_back_to_actually_talking_about_llms/
MerePotato
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idl4q2
false
null
t3_1idl4q2
/r/LocalLLaMA/comments/1idl4q2/can_we_get_back_to_actually_talking_about_llms/
false
false
self
1
null
Can we get back to actually talking about LLMs instead of kneeling at the altar of Deepseek?
1
[removed]
2025-01-30T11:45:28
https://www.reddit.com/r/LocalLLaMA/comments/1idl5wb/can_we_get_back_to_actually_talking_about_llms/
MerePotato
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idl5wb
false
null
t3_1idl5wb
/r/LocalLLaMA/comments/1idl5wb/can_we_get_back_to_actually_talking_about_llms/
false
false
self
1
null
Can we get back to actually talking about LLMs instead of circlejerking about Deepseek?
1
[removed]
2025-01-30T11:47:07
https://www.reddit.com/r/LocalLLaMA/comments/1idl6sr/can_we_get_back_to_actually_talking_about_llms/
MerePotato
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idl6sr
false
null
t3_1idl6sr
/r/LocalLLaMA/comments/1idl6sr/can_we_get_back_to_actually_talking_about_llms/
false
false
self
1
null
Can we get back to actually talking about LLMs now?
1
[removed]
2025-01-30T11:49:49
[deleted]
1970-01-01T00:00:00
0
{}
1idl8bd
false
null
t3_1idl8bd
/r/LocalLLaMA/comments/1idl8bd/can_we_get_back_to_actually_talking_about_llms_now/
false
false
default
1
null
Can we get back to actually talking about LLMs now?
1
[removed]
2025-01-30T11:50:41
https://www.reddit.com/r/LocalLLaMA/comments/1idl8tp/can_we_get_back_to_actually_talking_about_llms_now/
MerePotato
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idl8tp
false
null
t3_1idl8tp
/r/LocalLLaMA/comments/1idl8tp/can_we_get_back_to_actually_talking_about_llms_now/
false
false
self
1
null
Processing Whisper transcription via an local LLM
1
[removed]
2025-01-30T11:56:20
https://www.reddit.com/r/LocalLLaMA/comments/1idlbxj/processing_whisper_transcription_via_an_local_llm/
Separate-Power-1881
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idlbxj
false
null
t3_1idlbxj
/r/LocalLLaMA/comments/1idlbxj/processing_whisper_transcription_via_an_local_llm/
false
false
self
1
null
What really happened
1
2025-01-30T11:56:28
https://i.redd.it/lq33rwihe4ge1.jpeg
Crazy_Ninja6559
i.redd.it
1970-01-01T00:00:00
0
{}
1idlbzy
false
null
t3_1idlbzy
/r/LocalLLaMA/comments/1idlbzy/what_really_happened/
false
false
https://b.thumbs.redditm…cjUy-Vr9NVPI.jpg
1
{'enabled': True, 'images': [{'id': 'aHkvI30QE0onEulXJLg1H-tQwC6mueShJy1JCuvzWbU', 'resolutions': [{'height': 125, 'url': 'https://preview.redd.it/lq33rwihe4ge1.jpeg?width=108&crop=smart&auto=webp&s=7f3cda3505e0e9bc9c155589aeabb06175519b64', 'width': 108}, {'height': 250, 'url': 'https://preview.redd.it/lq33rwihe4ge1.jpeg?width=216&crop=smart&auto=webp&s=b221b7dc56f1d655928eecc85c9ca506474e1ece', 'width': 216}, {'height': 371, 'url': 'https://preview.redd.it/lq33rwihe4ge1.jpeg?width=320&crop=smart&auto=webp&s=f34c04820a4824fdcc27ff9bca165c48c4505b5c', 'width': 320}, {'height': 743, 'url': 'https://preview.redd.it/lq33rwihe4ge1.jpeg?width=640&crop=smart&auto=webp&s=262844feb659ba8b36dec630cd89a9ce5ee0b5ac', 'width': 640}], 'source': {'height': 813, 'url': 'https://preview.redd.it/lq33rwihe4ge1.jpeg?auto=webp&s=7a2d9a70df52b773ab59c09ad121f5accebcba6d', 'width': 700}, 'variants': {}}]}
DeepSeek-R1 for Cline over ai.azure
1
[removed]
2025-01-30T12:03:14
https://www.reddit.com/r/LocalLLaMA/comments/1idlg0m/deepseekr1_for_cline_over_aiazure/
BudgetDelivery
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idlg0m
false
null
t3_1idlg0m
/r/LocalLLaMA/comments/1idlg0m/deepseekr1_for_cline_over_aiazure/
false
false
https://b.thumbs.redditm…zkIuiDatJ3lI.jpg
1
null
GPT4All/LMStudio - Do any companies actually use their enterprise offering?
2
I saw that GPT4All/LMStudio both have enterprise versions (at least they have one of those "contact us" forms). But I'm wondering if you've actually heard of any enterprises that have formally provisioned these apps to their employees? And if so, what was the reason? Like why did that enterprise decide not to self-host an internal AI service (which would also avoid sending sensitive data to OpenAI or whatever)? On another note, I can *maybe* see middle managers telling their direct team to use GPT4All/LocalLlama, as a workaround to their slow/backward enterprise blocking ChatGPT but also not having any other internal solution yet. But even that feels like a stretch - like does anyone know any middle managers that have actually gone out of their way to buy a handful of seats for GPT4All/LMStudio? I imagine 99.9% of people/teams in that situation just use their personal ChatGPT, sending that enterprise data to OpenAI without the enterprise knowing lol.
2025-01-30T12:06:05
https://www.reddit.com/r/LocalLLaMA/comments/1idlhn3/gpt4alllmstudio_do_any_companies_actually_use/
intofuture
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idlhn3
false
null
t3_1idlhn3
/r/LocalLLaMA/comments/1idlhn3/gpt4alllmstudio_do_any_companies_actually_use/
false
false
self
2
null
PSA #3: mass-reporting actual informative posts won't make you less wrong.
1
[removed]
2025-01-30T12:06:17
https://www.reddit.com/r/LocalLLaMA/comments/1idlhr6/psa_3_massreporting_actual_informative_posts_wont/
Zalathustra
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idlhr6
false
null
t3_1idlhr6
/r/LocalLLaMA/comments/1idlhr6/psa_3_massreporting_actual_informative_posts_wont/
false
false
self
1
null
Okay, this is a test.
1
At this point I'm wondering if *everything* I post gets insta-nuked.
2025-01-30T12:07:29
https://www.reddit.com/r/LocalLLaMA/comments/1idligf/okay_this_is_a_test/
Zalathustra
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idligf
false
null
t3_1idligf
/r/LocalLLaMA/comments/1idligf/okay_this_is_a_test/
false
false
self
1
null
COS(M+O)S: 3B LLM + MCTS Approaches 70B-Level Plot Quality Using Curiosity-Based Rewards
1
2025-01-30T12:12:39
https://v.redd.it/7xa35t09h4ge1
Busy_Talk8788
v.redd.it
1970-01-01T00:00:00
0
{}
1idlljo
false
{'reddit_video': {'bitrate_kbps': 5000, 'dash_url': 'https://v.redd.it/7xa35t09h4ge1/DASHPlaylist.mpd?a=1740831173%2CMzVlZTZmMDM4NzNlYzc2Mzk0MzIyZDVhMTczZDRlYWZlMWQ1NjU2NDJiMzhkZTc5M2IzODg0N2IyOTFjN2U1Mg%3D%3D&v=1&f=sd', 'duration': 66, 'fallback_url': 'https://v.redd.it/7xa35t09h4ge1/DASH_1080.mp4?source=fallback', 'has_audio': False, 'height': 1080, 'hls_url': 'https://v.redd.it/7xa35t09h4ge1/HLSPlaylist.m3u8?a=1740831173%2CM2I2ZWIzNGRmNThmNGMwNGYyNTBlMWE1ZTk4YTNjMzljOTJiZWUyYTQ0ZjA1MzgzZGI3NjZiZGJkOGIyMTBkMQ%3D%3D&v=1&f=sd', 'is_gif': False, 'scrubber_media_url': 'https://v.redd.it/7xa35t09h4ge1/DASH_96.mp4', 'transcoding_status': 'completed', 'width': 1920}}
t3_1idlljo
/r/LocalLLaMA/comments/1idlljo/cosmos_3b_llm_mcts_approaches_70blevel_plot/
false
false
https://external-preview…5df8729817432ba2
1
{'enabled': False, 'images': [{'id': 'ejM1c3JyMDloNGdlMRKOnAQhI4ITm2Pm_w-pI6dsSPy0LvriPTXAm2mk3rur', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/ejM1c3JyMDloNGdlMRKOnAQhI4ITm2Pm_w-pI6dsSPy0LvriPTXAm2mk3rur.png?width=108&crop=smart&format=pjpg&auto=webp&s=534d1dcbb2590bdc65c40b9d5f2362ac584b03cd', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/ejM1c3JyMDloNGdlMRKOnAQhI4ITm2Pm_w-pI6dsSPy0LvriPTXAm2mk3rur.png?width=216&crop=smart&format=pjpg&auto=webp&s=817f23cf72e86db63bed79970d7865c7a1313cbf', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/ejM1c3JyMDloNGdlMRKOnAQhI4ITm2Pm_w-pI6dsSPy0LvriPTXAm2mk3rur.png?width=320&crop=smart&format=pjpg&auto=webp&s=71c28ce58716881bd117c0570922ffdec27bc095', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/ejM1c3JyMDloNGdlMRKOnAQhI4ITm2Pm_w-pI6dsSPy0LvriPTXAm2mk3rur.png?width=640&crop=smart&format=pjpg&auto=webp&s=d4acb1468058188143b4cdfdeaa4a4462dfebf91', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/ejM1c3JyMDloNGdlMRKOnAQhI4ITm2Pm_w-pI6dsSPy0LvriPTXAm2mk3rur.png?width=960&crop=smart&format=pjpg&auto=webp&s=4a485789dcb1d24e071ac17178d7683a3df46cab', 'width': 960}, {'height': 607, 'url': 'https://external-preview.redd.it/ejM1c3JyMDloNGdlMRKOnAQhI4ITm2Pm_w-pI6dsSPy0LvriPTXAm2mk3rur.png?width=1080&crop=smart&format=pjpg&auto=webp&s=c425dfb5586a2ca29d9d6c13c80f88df69d159d6', 'width': 1080}], 'source': {'height': 1080, 'url': 'https://external-preview.redd.it/ejM1c3JyMDloNGdlMRKOnAQhI4ITm2Pm_w-pI6dsSPy0LvriPTXAm2mk3rur.png?format=pjpg&auto=webp&s=492da648aad844853521f99cf3df28bc22171529', 'width': 1920}, 'variants': {}}]}
PSA #3: mass-reporting actual informative posts won't make you less wrong
1
[removed]
2025-01-30T12:13:53
[deleted]
1970-01-01T00:00:00
0
{}
1idlman
false
null
t3_1idlman
/r/LocalLLaMA/comments/1idlman/psa_3_massreporting_actual_informative_posts_wont/
false
false
default
1
null
Ok but can your western AI do this?
15
2025-01-30T12:24:39
https://www.reddit.com/gallery/1idlskj
CH1997H
reddit.com
1970-01-01T00:00:00
0
{}
1idlskj
false
null
t3_1idlskj
/r/LocalLLaMA/comments/1idlskj/ok_but_can_your_western_ai_do_this/
false
false
https://b.thumbs.redditm…l-5ikjXUoq4s.jpg
15
null
Fantastic summary of DeepSeek R1 and why it's such a big deal by Computerphile
51
2025-01-30T12:26:30
https://youtu.be/gY4Z-9QlZ64
CrasHthe2nd
youtu.be
1970-01-01T00:00:00
0
{}
1idltqu
false
{'oembed': {'author_name': 'Computerphile', 'author_url': 'https://www.youtube.com/@Computerphile', 'height': 200, 'html': '<iframe width="356" height="200" src="https://www.youtube.com/embed/gY4Z-9QlZ64?feature=oembed&enablejsapi=1" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen title="DeepSeek is a Game Changer for AI - Computerphile"></iframe>', 'provider_name': 'YouTube', 'provider_url': 'https://www.youtube.com/', 'thumbnail_height': 360, 'thumbnail_url': 'https://i.ytimg.com/vi/gY4Z-9QlZ64/hqdefault.jpg', 'thumbnail_width': 480, 'title': 'DeepSeek is a Game Changer for AI - Computerphile', 'type': 'video', 'version': '1.0', 'width': 356}, 'type': 'youtube.com'}
t3_1idltqu
/r/LocalLLaMA/comments/1idltqu/fantastic_summary_of_deepseek_r1_and_why_its_such/
false
false
https://b.thumbs.redditm…yfOlAKiZGYUs.jpg
51
{'enabled': False, 'images': [{'id': 'Wn2kiBZHDMLn03EgGflQIb76p5zfnNEnnh4QN6lEANc', 'resolutions': [{'height': 81, 'url': 'https://external-preview.redd.it/-2yTeJWjY7Xy7hJ5TsvAGSJhZsAdkXzGD9s5XXxFxaY.jpg?width=108&crop=smart&auto=webp&s=3ac19c06fe541eb32127cfa72cdd53b793d1a758', 'width': 108}, {'height': 162, 'url': 'https://external-preview.redd.it/-2yTeJWjY7Xy7hJ5TsvAGSJhZsAdkXzGD9s5XXxFxaY.jpg?width=216&crop=smart&auto=webp&s=e0733481dc381025bd9a4ebde5ccf97a4a69bf35', 'width': 216}, {'height': 240, 'url': 'https://external-preview.redd.it/-2yTeJWjY7Xy7hJ5TsvAGSJhZsAdkXzGD9s5XXxFxaY.jpg?width=320&crop=smart&auto=webp&s=1d8f45dbff9232c0291f5891b3546986242e2cef', 'width': 320}], 'source': {'height': 360, 'url': 'https://external-preview.redd.it/-2yTeJWjY7Xy7hJ5TsvAGSJhZsAdkXzGD9s5XXxFxaY.jpg?auto=webp&s=10b155b4eeffcd498aad986ea9e82b3081af9ae0', 'width': 480}, 'variants': {}}]}
Is this scene the reason why DeepSeek's logo is a whale? The CoT...
1
2025-01-30T12:26:32
https://www.youtube.com/watch?v=Qrv9c-udCrg
Extraaltodeus
youtube.com
1970-01-01T00:00:00
0
{}
1idltsc
false
{'oembed': {'author_name': 'BadfishKoo', 'author_url': 'https://www.youtube.com/@BadfishKoo', 'height': 200, 'html': '<iframe width="356" height="200" src="https://www.youtube.com/embed/Qrv9c-udCrg?feature=oembed&enablejsapi=1" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen title="The Hitchhikers Guide to the Galaxy - The Whale"></iframe>', 'provider_name': 'YouTube', 'provider_url': 'https://www.youtube.com/', 'thumbnail_height': 360, 'thumbnail_url': 'https://i.ytimg.com/vi/Qrv9c-udCrg/hqdefault.jpg', 'thumbnail_width': 480, 'title': 'The Hitchhikers Guide to the Galaxy - The Whale', 'type': 'video', 'version': '1.0', 'width': 356}, 'type': 'youtube.com'}
t3_1idltsc
/r/LocalLLaMA/comments/1idltsc/is_this_scene_the_reason_why_deepseeks_logo_is_a/
false
false
https://b.thumbs.redditm…H0Xor_5ESGzk.jpg
1
{'enabled': False, 'images': [{'id': 'DsVX_7uLI1WfHSPM6aYJytJxTP1MbwDj5wHb6IgWaq0', 'resolutions': [{'height': 81, 'url': 'https://external-preview.redd.it/yJi-kiAjc3CAZuCi79JCHCVJ32Bgf0-aiCJJyF0JmgE.jpg?width=108&crop=smart&auto=webp&s=e0bab4d7aac6555d3f2578787abd6deac1cd3893', 'width': 108}, {'height': 162, 'url': 'https://external-preview.redd.it/yJi-kiAjc3CAZuCi79JCHCVJ32Bgf0-aiCJJyF0JmgE.jpg?width=216&crop=smart&auto=webp&s=7052f04af207186152f7d32ee3a72abbed785b55', 'width': 216}, {'height': 240, 'url': 'https://external-preview.redd.it/yJi-kiAjc3CAZuCi79JCHCVJ32Bgf0-aiCJJyF0JmgE.jpg?width=320&crop=smart&auto=webp&s=9afde55987154450f048bbdfb3326f43136b75b6', 'width': 320}], 'source': {'height': 360, 'url': 'https://external-preview.redd.it/yJi-kiAjc3CAZuCi79JCHCVJ32Bgf0-aiCJJyF0JmgE.jpg?auto=webp&s=453021f354374495e1386842005b80afc6c0ccc0', 'width': 480}, 'variants': {}}]}
Exploring User Privacy in Ollama: Are Local LLMs Truly Private?
0
I've spent the past couple of days looking into Ollama. Findings are listed at the beginning of the article, technical breakdown and hardening methods below. [https://loopbreaker.substack.com/p/exploring-user-privacy-in-ollama](https://loopbreaker.substack.com/p/exploring-user-privacy-in-ollama)
2025-01-30T12:35:18
https://www.reddit.com/r/LocalLLaMA/comments/1idlz1x/exploring_user_privacy_in_ollama_are_local_llms/
WasJohnTitorReal
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idlz1x
false
null
t3_1idlz1x
/r/LocalLLaMA/comments/1idlz1x/exploring_user_privacy_in_ollama_are_local_llms/
false
false
self
0
{'enabled': False, 'images': [{'id': 'KztZ6JntfL0mpDV9f4jCgbPxRNJATHrec-lt_RBrFDs', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/9gc8Z3GsmWEe9WQXWeUdaleuypPNbMdrY1zXdtW6OnQ.jpg?width=108&crop=smart&auto=webp&s=cf386a7a5bb1009a886b10be49c5e1355f1ba12f', 'width': 108}, {'height': 120, 'url': 'https://external-preview.redd.it/9gc8Z3GsmWEe9WQXWeUdaleuypPNbMdrY1zXdtW6OnQ.jpg?width=216&crop=smart&auto=webp&s=c196d4e1ca0ffdb081eeac8e73673a5ba05bf5ca', 'width': 216}, {'height': 177, 'url': 'https://external-preview.redd.it/9gc8Z3GsmWEe9WQXWeUdaleuypPNbMdrY1zXdtW6OnQ.jpg?width=320&crop=smart&auto=webp&s=9d140782c688c7b145a1cc79eca318ef378ababc', 'width': 320}, {'height': 355, 'url': 'https://external-preview.redd.it/9gc8Z3GsmWEe9WQXWeUdaleuypPNbMdrY1zXdtW6OnQ.jpg?width=640&crop=smart&auto=webp&s=69c1607879dbc5914eee44fa40c75af7a8c4ce73', 'width': 640}, {'height': 533, 'url': 'https://external-preview.redd.it/9gc8Z3GsmWEe9WQXWeUdaleuypPNbMdrY1zXdtW6OnQ.jpg?width=960&crop=smart&auto=webp&s=e076d312fb0929c3191b757e316b533e21d06324', 'width': 960}, {'height': 600, 'url': 'https://external-preview.redd.it/9gc8Z3GsmWEe9WQXWeUdaleuypPNbMdrY1zXdtW6OnQ.jpg?width=1080&crop=smart&auto=webp&s=f780ec93e5868fcb97e2a374683270931f65e466', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/9gc8Z3GsmWEe9WQXWeUdaleuypPNbMdrY1zXdtW6OnQ.jpg?auto=webp&s=84a200a6ac5484b2461922aebb1a92f982c3bf8a', 'width': 1080}, 'variants': {}}]}
'agentic' library for scraping websites
0
Hi, I am searching for a library to scrape websites using local LLMs. Basically what I desire is the ability of: 1. broadly define a task (e.g. search for new about X) 2. give a target domain (and possibly a max number of links to follow within that domain) 3. Put relevant data in the LLM and get structured data out I know there are several options to get the structured data, but I am not aware of libraries covering all three aspects. Any suggestions, along with a (local) LLM to be used in combination (7-14B)?
2025-01-30T12:56:07
https://www.reddit.com/r/LocalLLaMA/comments/1idmc51/agentic_library_for_scraping_websites/
BenXavier
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idmc51
false
null
t3_1idmc51
/r/LocalLLaMA/comments/1idmc51/agentic_library_for_scraping_websites/
false
false
self
0
null
Local AI to transcribe videos?
1
Hey folks. Quick question. I have not worked with any multimodal stuff yet. Is there a good local model/interface to transcribe videos (or the audio tracks from videos?) I have something like 80 hours of video which I'd like to search for certain proper names. As you may understand from my other threads, I am not a developer, so I am more looking for a 'smart user' solution (can run scripts someone else wrote, navigate an interface, etc). I can strip the audio from the videos down to MP3 if I need to (but would be great to not have to). Thank you!
2025-01-30T12:58:32
https://www.reddit.com/r/LocalLLaMA/comments/1idmdlf/local_ai_to_transcribe_videos/
Intelligent-Gift4519
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idmdlf
false
null
t3_1idmdlf
/r/LocalLLaMA/comments/1idmdlf/local_ai_to_transcribe_videos/
false
false
self
1
null
Model to train troubleshooting document
2
I have a bunch of troubleshooting documents and API documents, and i want to train a model to answer troubleshooting questions and api related questions. Some of the documents contain screenshots. Which model would be suitable for that kind of data? I’ll be running on 4070 Super 12G.
2025-01-30T13:03:43
https://www.reddit.com/r/LocalLLaMA/comments/1idmh8o/model_to_train_troubleshooting_document/
Confident-Mistake400
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idmh8o
false
null
t3_1idmh8o
/r/LocalLLaMA/comments/1idmh8o/model_to_train_troubleshooting_document/
false
false
self
2
null
Will Quantum Computers make LLMs better?
0
I am a heavy LLM user, but I have a very superficial knowledge of how LLMs work. I think they use probability to predict what to say next. Quantum computers, from what I understand, can go through many different outcomes very quickly depending on the problem. Does this mean Quantum computers will be useful for LLMs?
2025-01-30T13:08:20
https://www.reddit.com/r/LocalLLaMA/comments/1idmkaf/will_quantum_computers_make_llms_better/
Mysterious_Comb9550
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idmkaf
false
null
t3_1idmkaf
/r/LocalLLaMA/comments/1idmkaf/will_quantum_computers_make_llms_better/
false
false
self
0
null
Meet Lumigator: Your Tool to Model Selection
16
2025-01-30T13:09:09
https://blog.mozilla.ai/lumigator-is-here-2/
ab2377
blog.mozilla.ai
1970-01-01T00:00:00
0
{}
1idmktj
false
null
t3_1idmktj
/r/LocalLLaMA/comments/1idmktj/meet_lumigator_your_tool_to_model_selection/
false
false
https://b.thumbs.redditm…ima_I2o7t9rA.jpg
16
{'enabled': False, 'images': [{'id': 'NM674NWJKaBnCL72_ZttpWM-PREHBzwJ4OFOUBS7QlM', 'resolutions': [{'height': 53, 'url': 'https://external-preview.redd.it/tV6ZWhwUBkpHY8BxkRsUtbte_afeAUNybUzSyDQKxKI.jpg?width=108&crop=smart&auto=webp&s=6c59a598cf0176c36fa61cf408186e14b17b3b57', 'width': 108}, {'height': 106, 'url': 'https://external-preview.redd.it/tV6ZWhwUBkpHY8BxkRsUtbte_afeAUNybUzSyDQKxKI.jpg?width=216&crop=smart&auto=webp&s=f88c74995295c72c7cda1ee7853aafd77df662ac', 'width': 216}, {'height': 158, 'url': 'https://external-preview.redd.it/tV6ZWhwUBkpHY8BxkRsUtbte_afeAUNybUzSyDQKxKI.jpg?width=320&crop=smart&auto=webp&s=0912a1b96cec981a6fbb88a73300755881ae60c6', 'width': 320}, {'height': 316, 'url': 'https://external-preview.redd.it/tV6ZWhwUBkpHY8BxkRsUtbte_afeAUNybUzSyDQKxKI.jpg?width=640&crop=smart&auto=webp&s=cd98f5b59267054dbf1db0c9cf7e0fbc03df623d', 'width': 640}, {'height': 474, 'url': 'https://external-preview.redd.it/tV6ZWhwUBkpHY8BxkRsUtbte_afeAUNybUzSyDQKxKI.jpg?width=960&crop=smart&auto=webp&s=46ec56e4a3efe931471160def4d38e0b32e7321b', 'width': 960}, {'height': 533, 'url': 'https://external-preview.redd.it/tV6ZWhwUBkpHY8BxkRsUtbte_afeAUNybUzSyDQKxKI.jpg?width=1080&crop=smart&auto=webp&s=761d3cf2b191724b8e0162eae1ef32b85a8666cf', 'width': 1080}], 'source': {'height': 593, 'url': 'https://external-preview.redd.it/tV6ZWhwUBkpHY8BxkRsUtbte_afeAUNybUzSyDQKxKI.jpg?auto=webp&s=3db380b49d9e7065e2dd4783b829acd56881a803', 'width': 1200}, 'variants': {}}]}
What it's like to use DeepSeek with -200 social credit
1
2025-01-30T13:15:01
https://i.redd.it/ylz1c1wfs4ge1.png
Content_Trouble_
i.redd.it
1970-01-01T00:00:00
0
{}
1idmork
false
null
t3_1idmork
/r/LocalLLaMA/comments/1idmork/what_its_like_to_use_deepseek_with_200_social/
false
false
https://b.thumbs.redditm…JOYD-bCp8mes.jpg
1
{'enabled': True, 'images': [{'id': 'K-0m3Yf87wWU5LVyYYvFsR5KYxSrA_XCK5vCENHhC1c', 'resolutions': [{'height': 80, 'url': 'https://preview.redd.it/ylz1c1wfs4ge1.png?width=108&crop=smart&auto=webp&s=0b844b5f46e0a715a14a2cd1f83dead31185ce0c', 'width': 108}, {'height': 160, 'url': 'https://preview.redd.it/ylz1c1wfs4ge1.png?width=216&crop=smart&auto=webp&s=a63372ef7e959c370c3e9473157547dcb3ed5a88', 'width': 216}, {'height': 238, 'url': 'https://preview.redd.it/ylz1c1wfs4ge1.png?width=320&crop=smart&auto=webp&s=f3f6c0bddc474985959fb5982db545b5f22f4390', 'width': 320}, {'height': 476, 'url': 'https://preview.redd.it/ylz1c1wfs4ge1.png?width=640&crop=smart&auto=webp&s=18217632e7b8c1bf1ef318d9c20678598bce8708', 'width': 640}, {'height': 714, 'url': 'https://preview.redd.it/ylz1c1wfs4ge1.png?width=960&crop=smart&auto=webp&s=d98d91f9468157bdfec1c91b36abc59f57aa1729', 'width': 960}, {'height': 803, 'url': 'https://preview.redd.it/ylz1c1wfs4ge1.png?width=1080&crop=smart&auto=webp&s=4616fcb66452269d806f0cfd69542d0608594e34', 'width': 1080}], 'source': {'height': 1277, 'url': 'https://preview.redd.it/ylz1c1wfs4ge1.png?auto=webp&s=b05cf7c8052b87d3201e06258dffa1fc49d9ab9a', 'width': 1716}, 'variants': {}}]}
Memory allocation for MoE's.
5
Sup, so... when loading a model exceeds your vram capacity, it spills into your regular ram, creating a bottleneck since part of the active interference happens with data pulled from said ram. Since MoE's split up their cognitive work into internal specialists, wouldn't it make sense to let a model decide, before or during inference, what specialists to prioritize and swap into vram? Is that already a thing? If not; wouldn't it help massively speed up inference on MoE's like R1, that could fit into ram for the bulk of it, and run its specialists on GPU memory? Those 37B of MoE would fit into higher end GPU setups, and depending on what tradeoff between intelligence and context length you need, you can quant your way to your optimal setup.
2025-01-30T13:18:20
https://www.reddit.com/r/LocalLLaMA/comments/1idmr0n/memory_allocation_for_moes/
GirthusThiccus
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idmr0n
false
null
t3_1idmr0n
/r/LocalLLaMA/comments/1idmr0n/memory_allocation_for_moes/
false
false
self
5
null
best llm model for code review
1
[removed]
2025-01-30T13:21:53
https://www.reddit.com/r/LocalLLaMA/comments/1idmtfl/best_llm_model_for_code_review/
Hedi-AI
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idmtfl
false
null
t3_1idmtfl
/r/LocalLLaMA/comments/1idmtfl/best_llm_model_for_code_review/
false
false
self
1
null
why deepseek is not working today?
1
[removed]
2025-01-30T13:25:30
https://www.reddit.com/r/LocalLLaMA/comments/1idmvug/why_deepseek_is_not_working_today/
Fit-Business-7912
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idmvug
false
null
t3_1idmvug
/r/LocalLLaMA/comments/1idmvug/why_deepseek_is_not_working_today/
false
false
self
1
null
Running FULL Deepseek-R1 671B 2.51-bit quants locally at 7token/s setup
1
[removed]
2025-01-30T13:31:33
https://www.reddit.com/r/LocalLLaMA/comments/1idmzzx/running_full_deepseekr1_671b_251bit_quants/
lyc8503
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idmzzx
false
null
t3_1idmzzx
/r/LocalLLaMA/comments/1idmzzx/running_full_deepseekr1_671b_251bit_quants/
false
false
https://b.thumbs.redditm…i3J_s_qlrBoI.jpg
1
null
CPU-only DeepSeek-R1 671B local infer at 7token/s (2.51-bit quant)
1
[removed]
2025-01-30T13:39:31
https://www.reddit.com/r/LocalLLaMA/comments/1idn5oz/cpuonly_deepseekr1_671b_local_infer_at_7tokens/
lyc8503
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idn5oz
false
null
t3_1idn5oz
/r/LocalLLaMA/comments/1idn5oz/cpuonly_deepseekr1_671b_local_infer_at_7tokens/
false
false
self
1
{'enabled': False, 'images': [{'id': 'uTH7CSuJT7xESL5xe7-CfxFMSg_JTf4Nma4bQtm-hmo', 'resolutions': [{'height': 83, 'url': 'https://external-preview.redd.it/TQ3QORamhKoNE3D3kKn-aUsnWW5gT_p24MVwsipPPLs.jpg?width=108&crop=smart&auto=webp&s=e3cd0740d84b19d7a2f89abe699010990f86feba', 'width': 108}, {'height': 166, 'url': 'https://external-preview.redd.it/TQ3QORamhKoNE3D3kKn-aUsnWW5gT_p24MVwsipPPLs.jpg?width=216&crop=smart&auto=webp&s=8f5f44e359aeedaabbccbc32ce33767386f46c66', 'width': 216}, {'height': 246, 'url': 'https://external-preview.redd.it/TQ3QORamhKoNE3D3kKn-aUsnWW5gT_p24MVwsipPPLs.jpg?width=320&crop=smart&auto=webp&s=2c7283aa3b6fb2f53d23b42ab2a81687cd0cb89d', 'width': 320}, {'height': 492, 'url': 'https://external-preview.redd.it/TQ3QORamhKoNE3D3kKn-aUsnWW5gT_p24MVwsipPPLs.jpg?width=640&crop=smart&auto=webp&s=eae05015ec695280f7aec2dd5e5959755977ca83', 'width': 640}, {'height': 739, 'url': 'https://external-preview.redd.it/TQ3QORamhKoNE3D3kKn-aUsnWW5gT_p24MVwsipPPLs.jpg?width=960&crop=smart&auto=webp&s=961c74461a7f004a24e74fcfbd31f7ffd5328f85', 'width': 960}, {'height': 831, 'url': 'https://external-preview.redd.it/TQ3QORamhKoNE3D3kKn-aUsnWW5gT_p24MVwsipPPLs.jpg?width=1080&crop=smart&auto=webp&s=47c4e7fa92f45dddf33f34f3105efa57e20c158d', 'width': 1080}], 'source': {'height': 1107, 'url': 'https://external-preview.redd.it/TQ3QORamhKoNE3D3kKn-aUsnWW5gT_p24MVwsipPPLs.jpg?auto=webp&s=06a6d7e68b81b39bb13f7081ea313fe02f2a2edf', 'width': 1438}, 'variants': {}}]}
Bing-style meltdowns in Open-Source projects?
6
Do we know what ultimately caused Bing/Sydney to have such seemingly-emotional breakdowns back in the early days of Bing?  Wasn't it supposed to be just a GPT wrapper/base?  Did they fine tune it with bad data (maybe leftover Tay interaction data)?  Maybe RLHF over-rewarding more emotional sounding content? I don't believe there were any microsoft papers that addressed the issue -- have we observed anything else remotely like that in the open source models? Really curious about what was being attempted and didn't work out. Of course now one can induce such behavior on purpose as RP via prompting or few-shot examples trivially, but as back then this was accidental I'm just curious if there were bumps on the road that can be reproduced/studied.
2025-01-30T13:39:52
https://www.reddit.com/r/LocalLLaMA/comments/1idn5x5/bingstyle_meltdowns_in_opensource_projects/
Legumbrero
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idn5x5
false
null
t3_1idn5x5
/r/LocalLLaMA/comments/1idn5x5/bingstyle_meltdowns_in_opensource_projects/
false
false
self
6
null
Slow on local?
1
[removed]
2025-01-30T13:41:04
https://i.redd.it/1qob5p68x4ge1.png
MangyanCoding
i.redd.it
1970-01-01T00:00:00
0
{}
1idn6u0
false
null
t3_1idn6u0
/r/LocalLLaMA/comments/1idn6u0/slow_on_local/
false
false
https://b.thumbs.redditm…Lo1iNkw96T4k.jpg
1
{'enabled': True, 'images': [{'id': 'PqoTZTSOM7VEjLM11ng7Up1ZJdEX_9p7E7jDrapATYc', 'resolutions': [{'height': 81, 'url': 'https://preview.redd.it/1qob5p68x4ge1.png?width=108&crop=smart&auto=webp&s=6128c5881f8b30626555069f1d549d3f9b45494a', 'width': 108}, {'height': 162, 'url': 'https://preview.redd.it/1qob5p68x4ge1.png?width=216&crop=smart&auto=webp&s=d1ad3c9f315dbfac0e666e0f9c7bc0c8e331436e', 'width': 216}, {'height': 240, 'url': 'https://preview.redd.it/1qob5p68x4ge1.png?width=320&crop=smart&auto=webp&s=667bb887084c10204e3110d474890f0deecf04ab', 'width': 320}, {'height': 480, 'url': 'https://preview.redd.it/1qob5p68x4ge1.png?width=640&crop=smart&auto=webp&s=c9f847c6065161ede3b4e9929630aeb21b6b5f0e', 'width': 640}, {'height': 720, 'url': 'https://preview.redd.it/1qob5p68x4ge1.png?width=960&crop=smart&auto=webp&s=a2b26cbe5235e92cf26faa4f5eef05137018950c', 'width': 960}, {'height': 811, 'url': 'https://preview.redd.it/1qob5p68x4ge1.png?width=1080&crop=smart&auto=webp&s=178bf34c71ec5c8b7455645df24fd699ea9e2af3', 'width': 1080}], 'source': {'height': 811, 'url': 'https://preview.redd.it/1qob5p68x4ge1.png?auto=webp&s=6d3a39283de8f09fcd478fb8a8a8135178e643c9', 'width': 1080}, 'variants': {}}]}
Chinese AI Chatbot (DeepSeek or Qwen)! Are They Really Worth Their Claims?
1
2025-01-30T13:41:29
https://tweaklibrary.com/chinese-ai-chatbot-deepseek-vs-qwen-vs-chatgpt/
ankush011
tweaklibrary.com
1970-01-01T00:00:00
0
{}
1idn75o
false
null
t3_1idn75o
/r/LocalLLaMA/comments/1idn75o/chinese_ai_chatbot_deepseek_or_qwen_are_they/
false
false
https://b.thumbs.redditm…4ovV--5p9QzY.jpg
1
{'enabled': False, 'images': [{'id': 'qYs-9ptQtqNS94DP2aNv6dEmVTgW8h1qSAWQVPIKpv0', 'resolutions': [{'height': 67, 'url': 'https://external-preview.redd.it/9OcCpZUoEYyQpLWaY1XAyltbaaojggqR3qr4X4vxnIE.jpg?width=108&crop=smart&auto=webp&s=cb2b6d0b91e91ed318a9b95680c6db44c04c7bae', 'width': 108}, {'height': 135, 'url': 'https://external-preview.redd.it/9OcCpZUoEYyQpLWaY1XAyltbaaojggqR3qr4X4vxnIE.jpg?width=216&crop=smart&auto=webp&s=02c8aea4dceaf3e27395f0452447d50d01f17382', 'width': 216}, {'height': 200, 'url': 'https://external-preview.redd.it/9OcCpZUoEYyQpLWaY1XAyltbaaojggqR3qr4X4vxnIE.jpg?width=320&crop=smart&auto=webp&s=02d0bfbf1eff1f72db1d7dbcad6704b9bd1739df', 'width': 320}, {'height': 400, 'url': 'https://external-preview.redd.it/9OcCpZUoEYyQpLWaY1XAyltbaaojggqR3qr4X4vxnIE.jpg?width=640&crop=smart&auto=webp&s=0ad3f9c0ac4d2ed02b5173c6213be61f3d822d17', 'width': 640}, {'height': 600, 'url': 'https://external-preview.redd.it/9OcCpZUoEYyQpLWaY1XAyltbaaojggqR3qr4X4vxnIE.jpg?width=960&crop=smart&auto=webp&s=720fef40235f895ad637ffbdd464d9f405c159f7', 'width': 960}, {'height': 675, 'url': 'https://external-preview.redd.it/9OcCpZUoEYyQpLWaY1XAyltbaaojggqR3qr4X4vxnIE.jpg?width=1080&crop=smart&auto=webp&s=b0cae6e27ca62fd37624f3391fc85c49f536b062', 'width': 1080}], 'source': {'height': 750, 'url': 'https://external-preview.redd.it/9OcCpZUoEYyQpLWaY1XAyltbaaojggqR3qr4X4vxnIE.jpg?auto=webp&s=a2bf3e04eaa6549ae42b2cc2b247da2d1ccc8200', 'width': 1200}, 'variants': {}}]}
CPU-only DeepSeek-R1 671B local infer at 7token/s (2.51-bit quant)
1
[removed]
2025-01-30T13:41:37
https://www.reddit.com/r/LocalLLaMA/comments/1idn79c/cpuonly_deepseekr1_671b_local_infer_at_7tokens/
lyc8503
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idn79c
false
null
t3_1idn79c
/r/LocalLLaMA/comments/1idn79c/cpuonly_deepseekr1_671b_local_infer_at_7tokens/
false
false
self
1
{'enabled': False, 'images': [{'id': 'uTH7CSuJT7xESL5xe7-CfxFMSg_JTf4Nma4bQtm-hmo', 'resolutions': [{'height': 83, 'url': 'https://external-preview.redd.it/TQ3QORamhKoNE3D3kKn-aUsnWW5gT_p24MVwsipPPLs.jpg?width=108&crop=smart&auto=webp&s=e3cd0740d84b19d7a2f89abe699010990f86feba', 'width': 108}, {'height': 166, 'url': 'https://external-preview.redd.it/TQ3QORamhKoNE3D3kKn-aUsnWW5gT_p24MVwsipPPLs.jpg?width=216&crop=smart&auto=webp&s=8f5f44e359aeedaabbccbc32ce33767386f46c66', 'width': 216}, {'height': 246, 'url': 'https://external-preview.redd.it/TQ3QORamhKoNE3D3kKn-aUsnWW5gT_p24MVwsipPPLs.jpg?width=320&crop=smart&auto=webp&s=2c7283aa3b6fb2f53d23b42ab2a81687cd0cb89d', 'width': 320}, {'height': 492, 'url': 'https://external-preview.redd.it/TQ3QORamhKoNE3D3kKn-aUsnWW5gT_p24MVwsipPPLs.jpg?width=640&crop=smart&auto=webp&s=eae05015ec695280f7aec2dd5e5959755977ca83', 'width': 640}, {'height': 739, 'url': 'https://external-preview.redd.it/TQ3QORamhKoNE3D3kKn-aUsnWW5gT_p24MVwsipPPLs.jpg?width=960&crop=smart&auto=webp&s=961c74461a7f004a24e74fcfbd31f7ffd5328f85', 'width': 960}, {'height': 831, 'url': 'https://external-preview.redd.it/TQ3QORamhKoNE3D3kKn-aUsnWW5gT_p24MVwsipPPLs.jpg?width=1080&crop=smart&auto=webp&s=47c4e7fa92f45dddf33f34f3105efa57e20c158d', 'width': 1080}], 'source': {'height': 1107, 'url': 'https://external-preview.redd.it/TQ3QORamhKoNE3D3kKn-aUsnWW5gT_p24MVwsipPPLs.jpg?auto=webp&s=06a6d7e68b81b39bb13f7081ea313fe02f2a2edf', 'width': 1438}, 'variants': {}}]}
Deepseek r1 distilled with tools support, when?
3
It would be awesome if these distilled models supported tools. Anyone knows if they are gonna do this?
2025-01-30T13:44:42
https://www.reddit.com/r/LocalLLaMA/comments/1idn9hc/deepseek_r1_distilled_with_tools_support_when/
cypherbits
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1idn9hc
false
null
t3_1idn9hc
/r/LocalLLaMA/comments/1idn9hc/deepseek_r1_distilled_with_tools_support_when/
false
false
self
3
null