title
stringlengths
1
300
score
int64
0
8.54k
selftext
stringlengths
0
40k
created
timestamp[ns]date
2023-04-01 04:30:41
2025-06-30 03:16:29
url
stringlengths
0
878
author
stringlengths
3
20
domain
stringlengths
0
82
edited
timestamp[ns]date
1970-01-01 00:00:00
2025-06-26 17:30:18
gilded
int64
0
2
gildings
stringclasses
7 values
id
stringlengths
7
7
locked
bool
2 classes
media
stringlengths
646
1.8k
name
stringlengths
10
10
permalink
stringlengths
33
82
spoiler
bool
2 classes
stickied
bool
2 classes
thumbnail
stringlengths
4
213
ups
int64
0
8.54k
preview
stringlengths
301
5.01k
Any models trained to "go hard"
0
Really hard concept to define but if you know what I mean then you know. Are there any models that have been trained specifically to spit bars?
2024-12-31T03:45:16
https://www.reddit.com/r/LocalLLaMA/comments/1hq5y9l/any_models_trained_to_go_hard/
Unfair-Ad9415
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hq5y9l
false
null
t3_1hq5y9l
/r/LocalLLaMA/comments/1hq5y9l/any_models_trained_to_go_hard/
false
false
self
0
null
Finetuning a model for generating descriptions of expeditions
1
[removed]
2024-12-31T03:48:05
https://www.reddit.com/r/LocalLLaMA/comments/1hq607o/finetuning_a_model_for_generating_descriptions_of/
MariaFitz345
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hq607o
false
null
t3_1hq607o
/r/LocalLLaMA/comments/1hq607o/finetuning_a_model_for_generating_descriptions_of/
false
false
self
1
null
Training a model for generating descriptions of expeditions
1
[removed]
2024-12-31T03:49:37
https://www.reddit.com/r/LocalLLaMA/comments/1hq618c/training_a_model_for_generating_descriptions_of/
MariaFitz345
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hq618c
false
null
t3_1hq618c
/r/LocalLLaMA/comments/1hq618c/training_a_model_for_generating_descriptions_of/
false
false
self
1
null
Has anyone tried running DeepSeek v3 on the Jetson Nano? How does it perform?
1
[removed]
2024-12-31T04:59:50
https://www.reddit.com/r/LocalLLaMA/comments/1hq7awr/has_anyone_tried_running_deepseek_v3_on_the/
representworld
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hq7awr
false
null
t3_1hq7awr
/r/LocalLLaMA/comments/1hq7awr/has_anyone_tried_running_deepseek_v3_on_the/
false
false
self
1
null
Any good avatar tech like VASA1 yet?
1
[removed]
2024-12-31T05:08:34
https://www.reddit.com/r/LocalLLaMA/comments/1hq7gri/any_good_avatar_tech_like_vasa1_yet/
Cool_Brick_772
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hq7gri
false
null
t3_1hq7gri
/r/LocalLLaMA/comments/1hq7gri/any_good_avatar_tech_like_vasa1_yet/
false
false
self
1
null
Cloud API's with support for banning words?
2
I love the "banned_tokens" parameter in koboldcpp ("An array of string sequences, each entry represents a word or phrase prevented from being generated, either modifying model vocab or by backtracking and regenerating when they appear.") But does anyone know of a cloud API provider with support for a similar parameter? Some support "logit_bias", but it's not really the same thing.
2024-12-31T05:49:59
https://www.reddit.com/r/LocalLLaMA/comments/1hq85uq/cloud_apis_with_support_for_banning_words/
Risse
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hq85uq
false
null
t3_1hq85uq
/r/LocalLLaMA/comments/1hq85uq/cloud_apis_with_support_for_banning_words/
false
false
self
2
null
Just received my Jetson Orin Nano (sponsored by NVIDIA), the Nano SuperComputer. What are some cool stuff I should try with it?
2
[removed]
2024-12-31T06:02:39
https://i.redd.it/uvcycip2k4ae1.png
mehul_gupta1997
i.redd.it
1970-01-01T00:00:00
0
{}
1hq8dd5
false
null
t3_1hq8dd5
/r/LocalLLaMA/comments/1hq8dd5/just_received_my_jetson_orin_nano_sponsored_by/
false
false
https://a.thumbs.redditm…gMl8T3jBHlT8.jpg
2
{'enabled': True, 'images': [{'id': 'xWKCLSaUU2_Y6-khiju2t6ZZJbUnHR6iAztXBVPQl5s', 'resolutions': [{'height': 108, 'url': 'https://preview.redd.it/uvcycip2k4ae1.png?width=108&crop=smart&auto=webp&s=5187b61157d050bd5e21343bee026a5f7a873e8b', 'width': 108}, {'height': 216, 'url': 'https://preview.redd.it/uvcycip2k4ae1.png?width=216&crop=smart&auto=webp&s=88118ddaaf9bea2e9af499a71abeddb74a494cd5', 'width': 216}, {'height': 320, 'url': 'https://preview.redd.it/uvcycip2k4ae1.png?width=320&crop=smart&auto=webp&s=5c2308f910964d5986493fd0f90f8cbcde65d417', 'width': 320}, {'height': 640, 'url': 'https://preview.redd.it/uvcycip2k4ae1.png?width=640&crop=smart&auto=webp&s=21cd4af0afcb18849a43cc63cb0e908bf72c196c', 'width': 640}, {'height': 960, 'url': 'https://preview.redd.it/uvcycip2k4ae1.png?width=960&crop=smart&auto=webp&s=5545cf8f1e7f38df197411ab577ad055ecd3c665', 'width': 960}, {'height': 1080, 'url': 'https://preview.redd.it/uvcycip2k4ae1.png?width=1080&crop=smart&auto=webp&s=dc8436882cb71a86f66b435b74ebdefd398c7b2a', 'width': 1080}], 'source': {'height': 1080, 'url': 'https://preview.redd.it/uvcycip2k4ae1.png?auto=webp&s=58d06f2b1120f57e7e1e01bda10a0ec3090600be', 'width': 1080}, 'variants': {}}]}
LiveBench-2024-06-24 (Initial version) vs 2024 end of year (6 months, 8 days later). SOTA Global score increase of 14.51. SOTA biggest increase was reasoning: 27.58. Caveat: Reasoning models including o1 are still poor at spatial and compositional reasoning. Livebench should add these two types.
33
2024-12-31T06:11:01
https://livebench.ai/#/
Personal-Dot-380
reddit.com
1970-01-01T00:00:00
0
{}
1hq8ich
false
null
t3_1hq8ich
/r/LocalLLaMA/comments/1hq8ich/livebench20240624_initial_version_vs_2024_end_of/
false
false
https://b.thumbs.redditm…x1rFECvrYA-Q.jpg
33
null
Xiaomi recruits key DeepSeek researcher to lead its AI lab.
128
Recently some members of the Qwen team joined ByteDance, and now similar moves are happening at DeepSeek. This highlights the intense competition for AI talent within the country. [https://www.aibase.com/news/14345](https://www.aibase.com/news/14345)
2024-12-31T06:18:51
https://www.reddit.com/r/LocalLLaMA/comments/1hq8mt4/xiaomi_recruits_key_deepseek_researcher_to_lead/
sb5550
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hq8mt4
false
null
t3_1hq8mt4
/r/LocalLLaMA/comments/1hq8mt4/xiaomi_recruits_key_deepseek_researcher_to_lead/
false
false
self
128
null
Suggestions for generative AI projects
1
[removed]
2024-12-31T06:50:36
https://www.reddit.com/r/LocalLLaMA/comments/1hq945u/suggestions_for_generative_ai_projects/
3harath_k
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hq945u
false
null
t3_1hq945u
/r/LocalLLaMA/comments/1hq945u/suggestions_for_generative_ai_projects/
false
false
self
1
null
How to Generate Text Dataset Using LLama 3.1?
2
So I am working on my semester mini-project. It’s titled "Indianism Detection in Texts Using Machine Learning" (yeah, I just randomly made it up during idea submissions). Now the problem is, there’s no such dataset for this in the entire world. To counter this, I came up with a pipeline to convert a normal (correct) English phrase into English with Indianisms using my local LLama 3.1 and then save both the correct and converted sentences into a dataset with labels, respectively. I also created a simple pipeline for it (a kind of constitutional AI) but can’t seem to get any good responses. Could anyone suggest something better? (I’m 6 days away from the project submission deadline.) I explained the current pipeline in this GitHub repo’s README. Check it out: [https://github.com/iamDyeus/Synthetica](https://github.com/iamDyeus/Synthetica)
2024-12-31T06:58:57
https://www.reddit.com/r/LocalLLaMA/comments/1hq98fa/how_to_generate_text_dataset_using_llama_31/
dyeusyt
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hq98fa
false
null
t3_1hq98fa
/r/LocalLLaMA/comments/1hq98fa/how_to_generate_text_dataset_using_llama_31/
false
false
self
2
{'enabled': False, 'images': [{'id': 'eTeDRllNhGpeNsUszCvZnZVCnwe42EgNU7sBu4rquqo', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/-W8T7ecV014oqzZxXQkaXEBq8VbDm8DdcmAzANWFhrI.jpg?width=108&crop=smart&auto=webp&s=b7b16fb7c42407b779e4f0ed97217fafb4361fa6', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/-W8T7ecV014oqzZxXQkaXEBq8VbDm8DdcmAzANWFhrI.jpg?width=216&crop=smart&auto=webp&s=0ef002ad7429b4e4df0b759eff772416606f6fa9', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/-W8T7ecV014oqzZxXQkaXEBq8VbDm8DdcmAzANWFhrI.jpg?width=320&crop=smart&auto=webp&s=3dcc7edd2d2f5e830c5244ae190665b15a62a4b4', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/-W8T7ecV014oqzZxXQkaXEBq8VbDm8DdcmAzANWFhrI.jpg?width=640&crop=smart&auto=webp&s=8811e705569c0bc0c994ceb0c4dcba95a1d9a5aa', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/-W8T7ecV014oqzZxXQkaXEBq8VbDm8DdcmAzANWFhrI.jpg?width=960&crop=smart&auto=webp&s=7cab9263662fd5bfebf590abfe29292880156798', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/-W8T7ecV014oqzZxXQkaXEBq8VbDm8DdcmAzANWFhrI.jpg?width=1080&crop=smart&auto=webp&s=6d4da23ef65807f553b72ff50c6c1f8c1682aae7', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/-W8T7ecV014oqzZxXQkaXEBq8VbDm8DdcmAzANWFhrI.jpg?auto=webp&s=83b6410a11e63be8b78e1c2ce1a70fa3643bb25f', 'width': 1200}, 'variants': {}}]}
Data Diversity
2
I am looking to build a multilingual dataset for the purpose of fine-tuning the llama model. To ensure that this dataset is truly diverse, I need guidance on how to determine whether it includes all the necessary vocabulary, dialects, and specific linguistic nuances relevant to different languages. As someone who is relatively inexperienced in collecting datasets, I would appreciate any suggestions or best practices that could help me in this. Thank you
2024-12-31T07:10:50
https://www.reddit.com/r/LocalLLaMA/comments/1hq9elz/data_diversity/
Ai_Peep
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hq9elz
false
null
t3_1hq9elz
/r/LocalLLaMA/comments/1hq9elz/data_diversity/
false
false
self
2
null
Molex max wattage
1
[removed]
2024-12-31T07:21:59
https://www.reddit.com/r/LocalLLaMA/comments/1hq9kaf/molex_max_wattage/
Linkpharm2
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hq9kaf
false
null
t3_1hq9kaf
/r/LocalLLaMA/comments/1hq9kaf/molex_max_wattage/
false
false
self
1
null
Specialised models
1
[removed]
2024-12-31T07:27:09
https://www.reddit.com/r/LocalLLaMA/comments/1hq9mtu/specialised_models/
Breath_Unique
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hq9mtu
false
null
t3_1hq9mtu
/r/LocalLLaMA/comments/1hq9mtu/specialised_models/
false
false
self
1
null
Llamafile
1
[removed]
2024-12-31T07:33:05
https://www.reddit.com/r/LocalLLaMA/comments/1hq9prs/llamafile/
Formal-Luck-4604
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hq9prs
false
null
t3_1hq9prs
/r/LocalLLaMA/comments/1hq9prs/llamafile/
false
false
self
1
null
Molex max power
1
[removed]
2024-12-31T07:49:20
https://www.reddit.com/r/LocalLLaMA/comments/1hq9xu4/molex_max_power/
Linkpharm2
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hq9xu4
false
null
t3_1hq9xu4
/r/LocalLLaMA/comments/1hq9xu4/molex_max_power/
false
false
self
1
null
Question: Dell 5820 | 2x Dell OEM 3090s
0
I'm able to do PCIe slots 2 & 4 according to the manual, which would give me full PCIe 4.0 x16, yet the cards aren't actually 2 slots wide and i also misread the documentation a little. Unless I get a riser and keep the lid off of the machine, i'll have to go with using Slot 1, which is an x8 and Slot 4, which is an x16. --- **My question**: - How much of a performance impact can be expected for inference when using a combo of the x16 / x8. - Have any real world numbers? - Any optimizations you'd do to squeeze any additional performance? - Higher batch size? --- Have any good issues, blogs, posts to read to get more insight? I'll be taking a look at llama.cpp issues tomorrow to see if i can find some information.
2024-12-31T07:51:38
https://www.reddit.com/r/LocalLLaMA/comments/1hq9yzz/question_dell_5820_2x_dell_oem_3090s/
_Boffin_
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hq9yzz
false
null
t3_1hq9yzz
/r/LocalLLaMA/comments/1hq9yzz/question_dell_5820_2x_dell_oem_3090s/
false
false
self
0
null
A Roleplaying AI with "Story Flow Thought Chain"
32
Happy New Year's Eve everyone! 🎉 As we're wrapping up 2024, I wanted to share something special I've been working on - a roleplaying model called mirau. Consider this my small contribution to the AI community as we head into 2025! \## What makes it different? The key innovation is what I call the "Story Flow Thought Chain" - the model maintains two parallel streams of output: 1. An inner monologue (invisible to the character but visible to the user) 2. The actual dialogue response This creates a continuous first-person narrative that helps maintain character consistency across long conversations. \## Key Features: \- \*\*Dual-Role System\*\*: Users can act both as a "director" giving meta-instructions and as a character in the story \- \*\*Strong Character Consistency\*\*: The continuous inner narrative helps maintain consistent personality traits \- \*\*Transparent Decision Making\*\*: You can see the model's "thoughts" before it responds \- \*\*Extended Context Memory\*\*: Better handling of long conversations through the narrative structure \## Example Interaction: \`\`\` System: I'm Doudou, and today is my first day at the new school. Sitting in the classroom, I can't help but look around... User: (his voice is very gentle) I had polio Bot: (Polio? What's that? I've never heard of it) Polio? (tilting head in confusion) \`\`\` The parentheses show the model's inner thoughts, while the regular text is the actual response. \## Try It Out: You can try the model yourself at \[ModelScope Studio\](https://www.modelscope.cn/studios/mouseEliauk/mirau-14b-demo/summary) The details and documentation are available in the \[README\](https://www.modelscope.cn/models/mouseEliauk/mirau-RP-14b/file/view/master?fileName=README\_en.md&status=1) I'd love to hear your thoughts and feedback! What do you think about this approach to AI roleplaying? How do you think it compares to other roleplaying models you've used? Edit: Thanks for all the interest! I'll try to answer questions in the comments. And once again, happy new year to all AI enthusiasts! Looking back at 2024, we've seen incredible progress in AI roleplaying, and I'm excited to see what 2025 will bring to our community! 🎊 P.S. What better way to spend the last day of 2024 than discussing AI with fellow enthusiasts? 😊
2024-12-31T08:10:27
https://www.reddit.com/r/LocalLLaMA/comments/1hqa8d3/a_roleplaying_ai_with_story_flow_thought_chain/
EliaukMouse
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqa8d3
false
null
t3_1hqa8d3
/r/LocalLLaMA/comments/1hqa8d3/a_roleplaying_ai_with_story_flow_thought_chain/
false
false
self
32
{'enabled': False, 'images': [{'id': '0vm3JZeJ3WRNXcwOxUTBYxEXKl5AKg2y9nFyAiXOBh4', 'resolutions': [{'height': 52, 'url': 'https://external-preview.redd.it/6BBbL0TQT0pe8S955ILI6a8HkGYNwwW9ratrzmKj8Cs.jpg?width=108&crop=smart&auto=webp&s=fe551eb076be7f79840e937fb1ed7171b697af05', 'width': 108}, {'height': 105, 'url': 'https://external-preview.redd.it/6BBbL0TQT0pe8S955ILI6a8HkGYNwwW9ratrzmKj8Cs.jpg?width=216&crop=smart&auto=webp&s=515703b3eeaa86c2b4b21ba8e2196c74993600f7', 'width': 216}, {'height': 156, 'url': 'https://external-preview.redd.it/6BBbL0TQT0pe8S955ILI6a8HkGYNwwW9ratrzmKj8Cs.jpg?width=320&crop=smart&auto=webp&s=117b9f8027fef656369be41782a842977a741154', 'width': 320}, {'height': 312, 'url': 'https://external-preview.redd.it/6BBbL0TQT0pe8S955ILI6a8HkGYNwwW9ratrzmKj8Cs.jpg?width=640&crop=smart&auto=webp&s=363594530912b5895f2fe3a71ade44bf12aefe39', 'width': 640}], 'source': {'height': 400, 'url': 'https://external-preview.redd.it/6BBbL0TQT0pe8S955ILI6a8HkGYNwwW9ratrzmKj8Cs.jpg?auto=webp&s=61504ef8d2e8efe600670710674be2d1ef5f9ae2', 'width': 820}, 'variants': {}}]}
What's your primary local LLM at the end of 2024?
358
Qwen2.5 32B remains my primary local LLM. Even three months after its release, it continues to be the optimal choice for 24GB GPUs. What's your favourite local LLM at the end of this year?
2024-12-31T08:34:39
https://www.reddit.com/r/LocalLLaMA/comments/1hqak1f/whats_your_primary_local_llm_at_the_end_of_2024/
AaronFeng47
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqak1f
false
null
t3_1hqak1f
/r/LocalLLaMA/comments/1hqak1f/whats_your_primary_local_llm_at_the_end_of_2024/
false
false
self
358
null
Q: How to estimate token count needed to process an image?
1
I use *llava:7b*, *llama3.2-vision:latest* and *llava-llama3:latest* to interpret images. I would like to estimate the token count before the actual execution. I know that I view the following after the execution: \* prompt\_eval\_count: Input token count \* eval\_count: Output token count Currently I use [OpenAI](https://community.openai.com/t/how-do-i-calculate-image-tokens-in-gpt4-vision/492318/5?utm_source=chatgpt.com) way to guess it. With an image of 1024 \* 1024 pixels, I expected to use 765 tokens. Below are the *prompt\_eval\_count* of three different models. **llava:7b** * text + image: 601 * text: 24 **llama3.2-vision:latest** * text + image: 32 * text: 30 **llava-llama3:latest** * text + image: 607 * text: 32 Based on the results, I believe none of them uses **OpenAI**'s method. I also suspect **llama3.2-vision:latest**'s consumption on visions was not reflected on *prompt\_eval\_count*.[](https://community.openai.com/t/how-do-i-calculate-image-tokens-in-gpt4-vision/492318/5?utm_source=chatgpt.com) https://preview.redd.it/rn720e87b5ae1.jpg?width=1024&format=pjpg&auto=webp&s=078b802eefb63e00de2ef3390937f91fe9804565 Other parameters: SYSTEM_PROMPT = "You are Whales, faithful AI assistant." QUERY = "What's in the image?"
2024-12-31T08:35:51
https://www.reddit.com/r/LocalLLaMA/comments/1hqaklz/q_how_to_estimate_token_count_needed_to_process/
Vegetable_Carrot_873
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqaklz
false
null
t3_1hqaklz
/r/LocalLLaMA/comments/1hqaklz/q_how_to_estimate_token_count_needed_to_process/
false
false
https://b.thumbs.redditm…-TchgITuwG1M.jpg
1
{'enabled': False, 'images': [{'id': 't-wCHRNAQIUmE5Kh0D9Obmu--yWwytnHraHdRp56tPY', 'resolutions': [{'height': 56, 'url': 'https://external-preview.redd.it/IoEeRP0R4h4wMnnZK2Qi6TNz3r_ijtZlxdC5me85Z-w.jpg?width=108&crop=smart&auto=webp&s=bad4ef7b11c73114ffb8468170b84783ff5a2999', 'width': 108}, {'height': 113, 'url': 'https://external-preview.redd.it/IoEeRP0R4h4wMnnZK2Qi6TNz3r_ijtZlxdC5me85Z-w.jpg?width=216&crop=smart&auto=webp&s=bab4c1fd95f684896b9d82f5cdcf7842ee3c0080', 'width': 216}, {'height': 168, 'url': 'https://external-preview.redd.it/IoEeRP0R4h4wMnnZK2Qi6TNz3r_ijtZlxdC5me85Z-w.jpg?width=320&crop=smart&auto=webp&s=dd4c42abd0d9108dcdfa55365dec0c3c5703c5a9', 'width': 320}, {'height': 336, 'url': 'https://external-preview.redd.it/IoEeRP0R4h4wMnnZK2Qi6TNz3r_ijtZlxdC5me85Z-w.jpg?width=640&crop=smart&auto=webp&s=1c3a3240244b89fb28ee4713da16722749a4e386', 'width': 640}, {'height': 504, 'url': 'https://external-preview.redd.it/IoEeRP0R4h4wMnnZK2Qi6TNz3r_ijtZlxdC5me85Z-w.jpg?width=960&crop=smart&auto=webp&s=398f03cabd6622d750d2f2579455cb552d1e33ce', 'width': 960}, {'height': 567, 'url': 'https://external-preview.redd.it/IoEeRP0R4h4wMnnZK2Qi6TNz3r_ijtZlxdC5me85Z-w.jpg?width=1080&crop=smart&auto=webp&s=e363837b3634a03df232653a296891beec964df9', 'width': 1080}], 'source': {'height': 630, 'url': 'https://external-preview.redd.it/IoEeRP0R4h4wMnnZK2Qi6TNz3r_ijtZlxdC5me85Z-w.jpg?auto=webp&s=a814473683e8e236c6c4c5ec5d55c1098616886d', 'width': 1200}, 'variants': {}}]}
Any LLM projects with contextual awareness?
0
Every time I consider an “AI assistant”, I immediately encounter (simple to fix) situational awareness problems. I need the model to know that today is the 31st of December 2024, HH:MM:SS! That would be the very least. On the other hand - in most cases - I need it to know who I am, where I live, what my profession is, what I am working on and so much more. So question is: are there any companies working on assistants on steroids with actual situational awareness? Would be feasible to make, but of course having to provide all this info as (if possible permanently cached) prompt would increase the cost.
2024-12-31T08:52:42
https://www.reddit.com/r/LocalLLaMA/comments/1hqaser/any_llm_projects_with_contextual_awareness/
EternalOptimister
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqaser
false
null
t3_1hqaser
/r/LocalLLaMA/comments/1hqaser/any_llm_projects_with_contextual_awareness/
false
false
self
0
null
What are the best local embedding models for german?
10
I want to build a local RAG for german documents, but I don't know good embedding models for german.
2024-12-31T08:58:03
https://www.reddit.com/r/LocalLLaMA/comments/1hqauuo/what_are_the_best_local_embedding_models_for/
Xaron
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqauuo
false
null
t3_1hqauuo
/r/LocalLLaMA/comments/1hqauuo/what_are_the_best_local_embedding_models_for/
false
false
self
10
null
What is your favourite LLM for mobile - 2024
1
[removed]
2024-12-31T09:25:31
https://www.reddit.com/r/LocalLLaMA/comments/1hqb7sm/what_is_your_favourite_llm_for_mobile_2024/
Loveandfucklife
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqb7sm
false
null
t3_1hqb7sm
/r/LocalLLaMA/comments/1hqb7sm/what_is_your_favourite_llm_for_mobile_2024/
false
false
self
1
null
is codeforces a reliable benchmark
1
I keep seeing how o3 excels in codeforces, but isn't most of the questions in its training data?
2024-12-31T09:44:38
https://www.reddit.com/r/LocalLLaMA/comments/1hqbgfk/is_codeforces_a_reliable_benchmark/
Pretty_Afternoon9022
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqbgfk
false
null
t3_1hqbgfk
/r/LocalLLaMA/comments/1hqbgfk/is_codeforces_a_reliable_benchmark/
false
false
self
1
null
Ollama, HomeAssistant, websearch/ realtime info
11
i have setup Ollama with Homeassistant (with whisper and piper) as a form of free and local alternative to openAI and Google. It works well in instructing control of my devices and also using data from sensors like my weather station. However im on a quest to make the assistant more siri/google home like, with asking sometimes realtime or up to date info. Some local llms have a cutoff of 6months or 1yr old info. Is there something i can use to serve Ollama with some websearch info to pass to HA? As a noob in all this, just trying to figure which tools to use for such usecase. I was playing with OpenwebUI on the side, in the thought of an additional chat, but couldnt figure which fully free search API System is on unraid server, 64gb ram + 16gb gpu
2024-12-31T09:53:57
https://www.reddit.com/r/LocalLLaMA/comments/1hqbkpa/ollama_homeassistant_websearch_realtime_info/
Micro_FX
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqbkpa
false
null
t3_1hqbkpa
/r/LocalLLaMA/comments/1hqbkpa/ollama_homeassistant_websearch_realtime_info/
false
false
self
11
null
Why there is not already like plenty 3rd party providers for DeepSeek V3?
73
I mean, literally anyone can download a SOTA model and make money by serving it (license allows that) but why does no one want to? I'm eager to pay premium knowing my prompts are promptly deleted by a company under a jurisdiction I more or less trust. Where is the use of unsanctioned access to the best AI chips by all the other countries?
2024-12-31T10:06:10
https://www.reddit.com/r/LocalLLaMA/comments/1hqbqqq/why_there_is_not_already_like_plenty_3rd_party/
robertpiosik
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqbqqq
false
null
t3_1hqbqqq
/r/LocalLLaMA/comments/1hqbqqq/why_there_is_not_already_like_plenty_3rd_party/
false
false
self
73
null
New to Llama, questions about privacy
1
[removed]
2024-12-31T10:23:26
https://www.reddit.com/r/LocalLLaMA/comments/1hqbz0e/new_to_llama_questions_about_privacy/
thed0pepope
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqbz0e
false
null
t3_1hqbz0e
/r/LocalLLaMA/comments/1hqbz0e/new_to_llama_questions_about_privacy/
false
false
self
1
null
Introducing LongTalk-CoT v0.1: A Very Long Chain-of-Thought Dataset for Reasoning Model Post-Training
1
[removed]
2024-12-31T10:23:30
https://www.reddit.com/r/LocalLLaMA/comments/1hqbz1b/introducing_longtalkcot_v01_a_very_long/
transformer_ML
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqbz1b
false
null
t3_1hqbz1b
/r/LocalLLaMA/comments/1hqbz1b/introducing_longtalkcot_v01_a_very_long/
false
false
self
1
{'enabled': False, 'images': [{'id': '8Pl-tuF8qq0FGhF87hP-gp6cLVSmONxUgbO6t3Sq8gE', 'resolutions': [{'height': 58, 'url': 'https://external-preview.redd.it/VC22AVsL9MTw0daATP-PSXNjyCnIaKMG_B6rCRYBsAE.jpg?width=108&crop=smart&auto=webp&s=b1f2b9313c129fad72056229a1efc349ce65dad6', 'width': 108}, {'height': 116, 'url': 'https://external-preview.redd.it/VC22AVsL9MTw0daATP-PSXNjyCnIaKMG_B6rCRYBsAE.jpg?width=216&crop=smart&auto=webp&s=08a7bf256e634d678110fcce751a0b2cab6f7650', 'width': 216}, {'height': 172, 'url': 'https://external-preview.redd.it/VC22AVsL9MTw0daATP-PSXNjyCnIaKMG_B6rCRYBsAE.jpg?width=320&crop=smart&auto=webp&s=5ab7eff83693193060796fc61a06fad060713db8', 'width': 320}, {'height': 345, 'url': 'https://external-preview.redd.it/VC22AVsL9MTw0daATP-PSXNjyCnIaKMG_B6rCRYBsAE.jpg?width=640&crop=smart&auto=webp&s=53501c885f23edcc9b7570e44220eceffae513f1', 'width': 640}, {'height': 518, 'url': 'https://external-preview.redd.it/VC22AVsL9MTw0daATP-PSXNjyCnIaKMG_B6rCRYBsAE.jpg?width=960&crop=smart&auto=webp&s=07be6237a8d51f573024ced54f4e73dab71687d5', 'width': 960}, {'height': 583, 'url': 'https://external-preview.redd.it/VC22AVsL9MTw0daATP-PSXNjyCnIaKMG_B6rCRYBsAE.jpg?width=1080&crop=smart&auto=webp&s=ef880a29e5883c11b4fafd504d5b8e75cd910735', 'width': 1080}], 'source': {'height': 648, 'url': 'https://external-preview.redd.it/VC22AVsL9MTw0daATP-PSXNjyCnIaKMG_B6rCRYBsAE.jpg?auto=webp&s=a7959bd3de4a444d39e475d30532d2744e67cbca', 'width': 1200}, 'variants': {}}]}
Control all elements while generating your story:
1
[removed]
2024-12-31T10:41:56
https://www.reddit.com/r/LocalLLaMA/comments/1hqc7ol/control_all_elements_while_generating_your_story/
Personal-Dot-380
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqc7ol
false
null
t3_1hqc7ol
/r/LocalLLaMA/comments/1hqc7ol/control_all_elements_while_generating_your_story/
false
false
self
1
null
Kurrent Fine-Tuning
2
Does anyone have experiences with fine-tuning handwriting in LLaMA vision 3.2? Does it make sense to have single characters or full documents as dataset? Is there anything else to consider? I want to finetune "Kurrent" (https://en.wikipedia.org/wiki/Kurrent) - an old German hand writing which currently doesn't work. Any suggestions/hints would be helpful.
2024-12-31T11:15:06
https://www.reddit.com/r/LocalLLaMA/comments/1hqco96/kurrent_finetuning/
der_ele
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqco96
false
null
t3_1hqco96
/r/LocalLLaMA/comments/1hqco96/kurrent_finetuning/
false
false
self
2
{'enabled': False, 'images': [{'id': 'uo8PNcSDNfhqWG6BE1hD31fb9oTZq8VMGvpFBqG9SEs', 'resolutions': [{'height': 123, 'url': 'https://external-preview.redd.it/e3tYudng3lvrtfVXQ1_zOxv0b98QNfidN73xkrGSEvk.jpg?width=108&crop=smart&auto=webp&s=32b6cfd1907f8209a40392b8e5a4d300ce7d0e87', 'width': 108}, {'height': 247, 'url': 'https://external-preview.redd.it/e3tYudng3lvrtfVXQ1_zOxv0b98QNfidN73xkrGSEvk.jpg?width=216&crop=smart&auto=webp&s=b63cc86e2e55cb8a5eb0d9c500f6a13e8fad4b1e', 'width': 216}, {'height': 366, 'url': 'https://external-preview.redd.it/e3tYudng3lvrtfVXQ1_zOxv0b98QNfidN73xkrGSEvk.jpg?width=320&crop=smart&auto=webp&s=260eda1e2fca58193583c908cceeea76f9a01171', 'width': 320}, {'height': 732, 'url': 'https://external-preview.redd.it/e3tYudng3lvrtfVXQ1_zOxv0b98QNfidN73xkrGSEvk.jpg?width=640&crop=smart&auto=webp&s=250bb2a4047a2596624749bd492a65a37e3c858d', 'width': 640}, {'height': 1099, 'url': 'https://external-preview.redd.it/e3tYudng3lvrtfVXQ1_zOxv0b98QNfidN73xkrGSEvk.jpg?width=960&crop=smart&auto=webp&s=34b2aa1b0481b645b9ddb9d1e6d605a952f1c00d', 'width': 960}, {'height': 1236, 'url': 'https://external-preview.redd.it/e3tYudng3lvrtfVXQ1_zOxv0b98QNfidN73xkrGSEvk.jpg?width=1080&crop=smart&auto=webp&s=c4a295110ae55715fda11559319c97753e2607ec', 'width': 1080}], 'source': {'height': 1374, 'url': 'https://external-preview.redd.it/e3tYudng3lvrtfVXQ1_zOxv0b98QNfidN73xkrGSEvk.jpg?auto=webp&s=f42ab6117270b5910d4771f1df8d783667bde52d', 'width': 1200}, 'variants': {}}]}
Prompt to control all elements of your story:
1
[removed]
2024-12-31T11:17:33
https://www.reddit.com/r/LocalLLaMA/comments/1hqcpfc/prompt_to_control_all_elements_of_your_story/
Personal-Dot-380
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqcpfc
false
null
t3_1hqcpfc
/r/LocalLLaMA/comments/1hqcpfc/prompt_to_control_all_elements_of_your_story/
false
false
self
1
null
Speculative Decoding, local setup experience
3
What is the currently best (bleeding edge/in-development) inference engine for doing speculative decoding locally? What target and draft models are you using and what kind of speedups are you seeing? I am used to ollama/llama.cpp and while there is some support/desire for speculative decoding (https://github.com/ollama/ollama/issues/5800), I've also noticed that (at least) vllm may offer more sophisticated options (https://docs.vllm.ai/en/latest/usage/spec\_decode.html)... now I am considering to extend my local setup to also operate under vllm, unless I should check out something else first. Thanks!
2024-12-31T11:24:47
https://www.reddit.com/r/LocalLLaMA/comments/1hqcszg/speculative_decoding_local_setup_experience/
bfroemel
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqcszg
false
null
t3_1hqcszg
/r/LocalLLaMA/comments/1hqcszg/speculative_decoding_local_setup_experience/
false
false
self
3
{'enabled': False, 'images': [{'id': 'uH47gKuOi4NeLOi9IF_OvG2i7X8nBrG01OcJndYCGRw', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/m1BAU-5nRfbzRhVtsHI8OtudXCCS8nvywve41tec1As.jpg?width=108&crop=smart&auto=webp&s=abf4e868e77cd07d342f439244add7afbd455544', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/m1BAU-5nRfbzRhVtsHI8OtudXCCS8nvywve41tec1As.jpg?width=216&crop=smart&auto=webp&s=264533a7ce94cde5bbea0cbff458dd2c49a049f4', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/m1BAU-5nRfbzRhVtsHI8OtudXCCS8nvywve41tec1As.jpg?width=320&crop=smart&auto=webp&s=5dd1a12af3fb4cdf4bda3740fbd96feb8d3eb615', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/m1BAU-5nRfbzRhVtsHI8OtudXCCS8nvywve41tec1As.jpg?width=640&crop=smart&auto=webp&s=98e8582aa34b7b987f0f6ac07c8741524420518c', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/m1BAU-5nRfbzRhVtsHI8OtudXCCS8nvywve41tec1As.jpg?width=960&crop=smart&auto=webp&s=e2e4e294171f4b8d2d7eae4c1f9879fa6d424218', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/m1BAU-5nRfbzRhVtsHI8OtudXCCS8nvywve41tec1As.jpg?width=1080&crop=smart&auto=webp&s=3f20717c7857903ae05333f1d50aa024028191a5', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/m1BAU-5nRfbzRhVtsHI8OtudXCCS8nvywve41tec1As.jpg?auto=webp&s=784ce34c358f06f9c4328000433d07b633c4ed09', 'width': 1200}, 'variants': {}}]}
Experimental AI-Phone Benchmarking Initiative
44
Hey everyone, I’ve started an **experimental AI-phone benchmarking initiative** to help us better understand the performance of AI-phones as we move beyond traditional smartphones. This benchmarking is built around GGUF models and **llama.cpp**, integrated with **PocketPal AI**. # Join the Beta Program for PocketPal AI 1.6.2 (benchmarking feature) here: * [Google Play: https://play.google.com/store/apps/details?id=com.pocketpalai](https://play.google.com/store/apps/details?id=com.pocketpalai): * [TestFlight (iOS): https://testflight.apple.com/join/B3KE74MS](https://testflight.apple.com/join/B3KE74MS) # After joining: 1. Download the betta version (1.6.2). 2. Download/Choose a model. 3. Navigate to the Benchmark page in the app and run the benchmark with the downloaded model. 4. **Important:** Ensure the settings are "**default**": * **PP:** 512 * **TG:** 128 5. Submit your results to the leaderboard, woohoo # Leaderboard: View the results here: [AI-Phone Leaderboard](https://huggingface.co/spaces/a-ghorbani/ai-phone-leaderboard) # Ranking System Details # Scoring Algo: 1. **Weights:** * Prompt Processing (PP): **40%** * Token Generation (TG): **60%** * (PP has less that TG since PP is an one-time cost per prompt) 2. **Quantization Quality Factors:** * F16/F32: **1.0** * Q8: **0.8** * Q6: **0.6** * (Scales linearly to Q1 at **0.1**) 3. **Performance Score Formula:** * Base Score: `base_score = (TG_speed * 0.6) + (PP_speed * 0.4)` * Adjusted Score: `performance_score = base_score * model_size * quant_factor` * Normalized Score: `normalized_score = (performance_score / max_performance_score) * 100` # Data Aggregation: We group data by normalized device IDs and platform to ensure consistency: def normalize_device_id(device_info): if device_info["systemName"].lower() == "ios": return f"iOS/{device_info['model']}" memory_tier = f"{device_info['totalMemory'] // (1024**3)}GB" return f"{device_info['brand']}/{device_info['model']}/{memory_tier}" # Feedback Wanted ... Let me know how useful you may find this benchmarking. Specifically, I’m looking for feedback on both the **app** and the **benchmarking approach** (rankings, methodology, etc.). The benchmarking app is open-source, hosted on Hugging Face Spaces, and the UI is built using Streamlit. (For those that might not know PocketPal AI, it is also open source: https://github.com/a-ghorbani/pocketpal-ai) Your input will be invaluable as we refine the process and as a community we can create a standard for benchmarking AI-Phones. *Processing img b7e1mi5646ae1...*
2024-12-31T11:26:07
https://www.reddit.com/r/LocalLLaMA/comments/1hqctlk/experimental_aiphone_benchmarking_initiative/
Ill-Still-6859
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqctlk
false
null
t3_1hqctlk
/r/LocalLLaMA/comments/1hqctlk/experimental_aiphone_benchmarking_initiative/
false
false
https://b.thumbs.redditm…OVaKjWdekjoQ.jpg
44
{'enabled': False, 'images': [{'id': 'cndRW6QCJG_he3FSQdAk6GKmH0k830rmqID0DT6ULIg', 'resolutions': [{'height': 108, 'url': 'https://external-preview.redd.it/r_VdnVzmSzrYl13LSpmCYnIbeIEpvfB_WvJx5SrBo8E.jpg?width=108&crop=smart&auto=webp&s=ff67678f8728dd5b0425512e5ca6e50cba983d1b', 'width': 108}, {'height': 216, 'url': 'https://external-preview.redd.it/r_VdnVzmSzrYl13LSpmCYnIbeIEpvfB_WvJx5SrBo8E.jpg?width=216&crop=smart&auto=webp&s=0a1c0b42ea72559753429f6e3d9b11dd58e2d8c9', 'width': 216}, {'height': 320, 'url': 'https://external-preview.redd.it/r_VdnVzmSzrYl13LSpmCYnIbeIEpvfB_WvJx5SrBo8E.jpg?width=320&crop=smart&auto=webp&s=532a838719cf510149e84e0217af79a892fcdec6', 'width': 320}], 'source': {'height': 512, 'url': 'https://external-preview.redd.it/r_VdnVzmSzrYl13LSpmCYnIbeIEpvfB_WvJx5SrBo8E.jpg?auto=webp&s=f6b130445e14d2479dc341f75f12e61e5928d40e', 'width': 512}, 'variants': {}}]}
Practical "Local" Config for DeepSeek V3?
3
Looking for advice on a practical hardware setup (new or second-hand) to run DeepSeek v3 at home at reasonable speed. What’s the best config (CPU, RAM, quantization) to achieve \~10-20 tokens/sec?
2024-12-31T12:42:32
https://www.reddit.com/r/LocalLLaMA/comments/1hqdxoa/practical_local_config_for_deepseek_v3/
Thireus
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqdxoa
false
null
t3_1hqdxoa
/r/LocalLLaMA/comments/1hqdxoa/practical_local_config_for_deepseek_v3/
false
false
self
3
null
Inference integration directly in Linux shell?
5
I am looking for a tool that allows me to directly chat to an AI inside the bash that is always available without the need to start a server or something. Thinking about a background service that connects to an API and a little bash command that then sends through the background service directly to Kobold, LM Studio, external resource etc like so `~$ ai-tool [options] some text you want to send to the service, no json no "" or other marks needed` `> Response from AI` It should also be possible to configure it so that it can send a backlog of n lines of the last bash output and the last bash commands to the AI for shell context (of course only to a trusted local API), for instance via an option flag like `-n100`.
2024-12-31T13:03:04
https://www.reddit.com/r/LocalLLaMA/comments/1hqe9l4/inference_integration_directly_in_linux_shell/
dreamyrhodes
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqe9l4
false
null
t3_1hqe9l4
/r/LocalLLaMA/comments/1hqe9l4/inference_integration_directly_in_linux_shell/
false
false
self
5
null
3x Arc A770 build
1
[removed]
2024-12-31T13:09:06
https://www.reddit.com/gallery/1hqed37
Echo9Zulu-
reddit.com
1970-01-01T00:00:00
0
{}
1hqed37
false
null
t3_1hqed37
/r/LocalLLaMA/comments/1hqed37/3x_arc_a770_build/
false
false
https://b.thumbs.redditm…hF54lLf91WfY.jpg
1
null
AMD Strix Halo or Apple M4?
1
[removed]
2024-12-31T13:13:48
https://www.reddit.com/r/LocalLLaMA/comments/1hqeftt/amd_strix_halo_or_apple_m4/
Physical-Security115
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqeftt
false
null
t3_1hqeftt
/r/LocalLLaMA/comments/1hqeftt/amd_strix_halo_or_apple_m4/
false
false
self
1
null
Experimenting with AI-powered command line for Ubuntu terminal (llama-3.3-70b + Groq under the hood)
3
I've been playing around with an AI-powered command line for the Ubuntu terminal, and it's been a fun ride! I even set up a web-based version using `ttyd` so you can play around with it directly (in your web browser and without registration) [https://clai-container.tail8d8623.ts.net/](https://clai-container.tail8d8623.ts.net/) Basically, I just ask it to perform different tasks, and the AI figures out the one-liner to do it. For example, I asked it to print "LLaMA" in ASCII https://preview.redd.it/36koyw6ar6ae1.png?width=688&format=png&auto=webp&s=25b58d4f23f349b6fa12846db21b08f1b82f38ea https://preview.redd.it/h9g72qpfr6ae1.png?width=1398&format=png&auto=webp&s=ecf16aee6ba55fe928679b37581bdab51b05b2ca Some fun ideas to try: * "Run hello world in 5 programming languages" * "Find the top 10 biggest files" Feel free to give it a shot and share your experiments! :) P.S. This PoC leverages the llama-3.3-70b-versatile model running on Groq’s custom AI silicon (LPUs), delivering an impressive 1200 tokens per second - significantly outpacing existing services that typically achieve <100 tokens per second. The environment is standard Ubuntu 24.04. The command-line interface is powered by the excellent yai project, while the web terminal utilizes ttyd.
2024-12-31T13:28:56
https://www.reddit.com/r/LocalLLaMA/comments/1hqeoz6/experimenting_with_aipowered_command_line_for/
aospan
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqeoz6
false
null
t3_1hqeoz6
/r/LocalLLaMA/comments/1hqeoz6/experimenting_with_aipowered_command_line_for/
false
false
https://a.thumbs.redditm…9uM_cV8T7Uc0.jpg
3
null
Radeon GPU for local LLM?
8
I noticed that a 24gb Radeon 7900 XTX is less than $1000. I could buy 2 for less than a current RTX 4090 24gb. Are Radeons a good choice for a local LLM server? Can they be used in dual mode for 48gb VRAM?
2024-12-31T13:39:22
https://www.reddit.com/r/LocalLLaMA/comments/1hqeviv/radeon_gpu_for_local_llm/
PetMogwai
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqeviv
false
null
t3_1hqeviv
/r/LocalLLaMA/comments/1hqeviv/radeon_gpu_for_local_llm/
false
false
self
8
null
Deepseek question
1
[removed]
2024-12-31T13:45:36
https://www.reddit.com/r/LocalLLaMA/comments/1hqezef/deepseek_question/
lsb7402
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqezef
false
null
t3_1hqezef
/r/LocalLLaMA/comments/1hqezef/deepseek_question/
false
false
self
1
null
Any solutions to give LLaMA 3 internet access and save its reponse? Kinda like perplexity but no gui
3
Hello. I have about 80k items that I need LLaMA to check online then return certain answers for me to save in my database. Currently, the only api available that offers this is Perplexity with the online LLaMA 3 Sonar models. However, perplexity charges 5$ per 1k requests, which is unnecessarily high. What's the recommended method for me to either locally run, or deploy online, a LLaMA 3 model that can access the internet and return answers for me in a way that I can capture into json and save into my database? I can code in Python and Golang. Thank you for reading!
2024-12-31T13:56:07
https://www.reddit.com/r/LocalLLaMA/comments/1hqf68q/any_solutions_to_give_llama_3_internet_access_and/
uouzername
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqf68q
false
null
t3_1hqf68q
/r/LocalLLaMA/comments/1hqf68q/any_solutions_to_give_llama_3_internet_access_and/
false
false
self
3
null
What's the bare minimum gpu needed for reasonable local llm performance? AMD or Intel cards?
0
Basically this. I want to run deepseek3 locally but right now I don't have a modern gpu (just laptops). I want to know what I need to reasonably use a llm for chat and coding assistance
2024-12-31T14:01:42
https://www.reddit.com/r/LocalLLaMA/comments/1hqf9yn/whats_the_bare_minimum_gpu_needed_for_reasonable/
gameguy56
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqf9yn
false
null
t3_1hqf9yn
/r/LocalLLaMA/comments/1hqf9yn/whats_the_bare_minimum_gpu_needed_for_reasonable/
false
false
self
0
null
Why is there no sub-10B recent model?
1
[removed]
2024-12-31T14:15:52
https://www.reddit.com/r/LocalLLaMA/comments/1hqfjen/why_is_there_no_sub10b_recent_model/
ihatebeinganonymous
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqfjen
false
null
t3_1hqfjen
/r/LocalLLaMA/comments/1hqfjen/why_is_there_no_sub10b_recent_model/
false
false
self
1
null
Why is there no sub-10B recent model?
1
[removed]
2024-12-31T14:16:17
https://www.reddit.com/r/LocalLLaMA/comments/1hqfjo5/why_is_there_no_sub10b_recent_model/
ihatebeinganonymous
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqfjo5
false
null
t3_1hqfjo5
/r/LocalLLaMA/comments/1hqfjo5/why_is_there_no_sub10b_recent_model/
false
false
self
1
null
Is there no more progress in lightweight models?
0
Hi. Am I wrong that it seems no new lightweight model, i.e. 10B or less parameters has been released recently, despite a good amount of new models of more parameter counts, e.g. 33B, 70B, etc? Is there a specific reason, or these are not priorities as much as SotA ones are? Is there anything new that I missed?
2024-12-31T14:17:49
https://www.reddit.com/r/LocalLLaMA/comments/1hqfkox/is_there_no_more_progress_in_lightweight_models/
ihatebeinganonymous
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqfkox
false
null
t3_1hqfkox
/r/LocalLLaMA/comments/1hqfkox/is_there_no_more_progress_in_lightweight_models/
false
false
self
0
null
open-source AI-powered web scraping project
22
This open-source AI-powered web scraping project is amazing, and I even created a video tutorial for it!: [https://github.com/ScrapeGraphAI/Scrapegraph-ai](https://github.com/ScrapeGraphAI/Scrapegraph-ai) [https://youtu.be/PEB8z48mAhw](https://youtu.be/PEB8z48mAhw)
2024-12-31T14:20:03
https://www.reddit.com/r/LocalLLaMA/comments/1hqfm4f/opensource_aipowered_web_scraping_project/
GitDit
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqfm4f
false
null
t3_1hqfm4f
/r/LocalLLaMA/comments/1hqfm4f/opensource_aipowered_web_scraping_project/
false
false
self
22
{'enabled': False, 'images': [{'id': 'NU-Od4tHvixdlURCbBmryiz8o3hWvvjum-VwNzjwqhA', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/Xtbkpgq81Z0wU00d1_Tw8VZmmMJzl0fSe4gpVSAtJcM.jpg?width=108&crop=smart&auto=webp&s=1d311b5aa9fc739bdd3659c3789a99e4c07f1a08', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/Xtbkpgq81Z0wU00d1_Tw8VZmmMJzl0fSe4gpVSAtJcM.jpg?width=216&crop=smart&auto=webp&s=e52d4f77b21cf5ff10b6efd58069c35eb050aca8', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/Xtbkpgq81Z0wU00d1_Tw8VZmmMJzl0fSe4gpVSAtJcM.jpg?width=320&crop=smart&auto=webp&s=c759f112138ef10333ce77d7cbbfe9626108813d', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/Xtbkpgq81Z0wU00d1_Tw8VZmmMJzl0fSe4gpVSAtJcM.jpg?width=640&crop=smart&auto=webp&s=b869b2f6ce11dc1f0d706401a8e04f5e05dfcf00', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/Xtbkpgq81Z0wU00d1_Tw8VZmmMJzl0fSe4gpVSAtJcM.jpg?width=960&crop=smart&auto=webp&s=768de7cde719d0c88ecf951514b8222f363be016', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/Xtbkpgq81Z0wU00d1_Tw8VZmmMJzl0fSe4gpVSAtJcM.jpg?width=1080&crop=smart&auto=webp&s=8b62ca68488ec0ba01aa24ca0ed5e01f95af1d7c', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/Xtbkpgq81Z0wU00d1_Tw8VZmmMJzl0fSe4gpVSAtJcM.jpg?auto=webp&s=238dc64480ffec74728a942a5656895c713634e7', 'width': 1200}, 'variants': {}}]}
What was the most satisfying way you used llama's json output for?
1
[removed]
2024-12-31T14:37:21
https://www.reddit.com/r/LocalLLaMA/comments/1hqfxua/what_was_the_most_satisfying_way_you_used_llamas/
Anarchosyndikalismus
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqfxua
false
null
t3_1hqfxua
/r/LocalLLaMA/comments/1hqfxua/what_was_the_most_satisfying_way_you_used_llamas/
false
false
self
1
null
AWS is currently deploying a cluster with 400k Trainium2 chips for Anthropic called “Project Rainier”. Amazon’s Trainium2 is not a proven “training” chip, and most of the volumes will be in LLM inference. Amazon’s new $4 billion investment in Anthropic is effectively going into this.
220
https://semianalysis.com/2024/12/03/amazons-ai-self-sufficiency-trainium2-architecture-networking/
2024-12-31T14:37:59
https://www.reddit.com/gallery/1hqfyai
Personal-Dot-380
reddit.com
1970-01-01T00:00:00
0
{}
1hqfyai
false
null
t3_1hqfyai
/r/LocalLLaMA/comments/1hqfyai/aws_is_currently_deploying_a_cluster_with_400k/
false
false
https://b.thumbs.redditm…oRGKv-019bjA.jpg
220
null
Using LoRA with LlamaSharp
0
I need some help with using a LoRA with LlamaSharp. I'm using 0.19 of the LlamaSharp nuget. I've tried the following: Convert base model and LoRA to gguf and load them into LlamaSharp Problem: I saw LoraAdapter in the api docs but visual studio complains it can't find the constructor. I can't find any other way to load the LoRA. Merge the LoRA into the base model Problem: all the scripts I've found complain that they can't import 'is_npu_available' from 'accelerate.utils' or shard_checkpoint from transformers.modeling_utils I'm not a python developer but I have been a software engineer for 30 years in a bunch of different languages. I suspect there's some python-ism around pip install -r requirements.txt that I'm not groking. I don't have conda installed except maybe miniconda from oobabooga's install. When I run pip install for whatever thing I downloaded from github it generally complains about dependency version mismatches. When I run pip list it says accelerate is at v 0.18 when in the starcoder git clone, which is the only environment I've found that has a built in merger that isn't just some random copy paste from the internet. I've also tried copy pasting other mergers into a .py file in my main oobabooga install folder. I'm running on windows. I'd be willing to run this step on wsl or Linux but I haven't tried it yet.
2024-12-31T14:38:01
https://www.reddit.com/r/LocalLLaMA/comments/1hqfyb8/using_lora_with_llamasharp/
HypnoDaddy4You
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqfyb8
false
null
t3_1hqfyb8
/r/LocalLLaMA/comments/1hqfyb8/using_lora_with_llamasharp/
false
false
self
0
null
How to Change the Port in Ollama (Version 0.5.4)?
1
[removed]
2024-12-31T14:54:43
https://www.reddit.com/r/LocalLLaMA/comments/1hqga2b/how_to_change_the_port_in_ollama_version_054/
umen
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqga2b
false
null
t3_1hqga2b
/r/LocalLLaMA/comments/1hqga2b/how_to_change_the_port_in_ollama_version_054/
false
false
self
1
null
Regarding AI agents
1
[removed]
2024-12-31T14:55:57
https://www.reddit.com/r/LocalLLaMA/comments/1hqgawe/regarding_ai_agents/
TechnicalBalance699
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqgawe
false
null
t3_1hqgawe
/r/LocalLLaMA/comments/1hqgawe/regarding_ai_agents/
false
false
self
1
null
I Had a Dream for the New Year Last Night... but woke up and I was too groggy to remember it clearly. Any help?
18
2024-12-31T15:01:33
https://i.redd.it/tgosxlwx77ae1.png
SeymourBits
i.redd.it
1970-01-01T00:00:00
0
{}
1hqgf3w
false
null
t3_1hqgf3w
/r/LocalLLaMA/comments/1hqgf3w/i_had_a_dream_for_the_new_year_last_night_but/
false
false
https://b.thumbs.redditm…KukBXN1hIy1s.jpg
18
{'enabled': True, 'images': [{'id': 'DsjEQpv6Cvt3HFoDGjwN059skiQuEzh8sA6NQ0zWoHs', 'resolutions': [{'height': 108, 'url': 'https://preview.redd.it/tgosxlwx77ae1.png?width=108&crop=smart&auto=webp&s=302ff0693ea5df407072040851a7c1979b4899d0', 'width': 108}, {'height': 216, 'url': 'https://preview.redd.it/tgosxlwx77ae1.png?width=216&crop=smart&auto=webp&s=1243a5bffff0f4089a6e553cbf5907142abd932a', 'width': 216}, {'height': 320, 'url': 'https://preview.redd.it/tgosxlwx77ae1.png?width=320&crop=smart&auto=webp&s=60d34cb015c49448d58db1689e88702a423dc576', 'width': 320}, {'height': 640, 'url': 'https://preview.redd.it/tgosxlwx77ae1.png?width=640&crop=smart&auto=webp&s=4386c1dff53475e4eaf7b1ac704e44c8883b974e', 'width': 640}, {'height': 960, 'url': 'https://preview.redd.it/tgosxlwx77ae1.png?width=960&crop=smart&auto=webp&s=62442f6021caf5d926c9aa2edaace7eee1ce8908', 'width': 960}], 'source': {'height': 1024, 'url': 'https://preview.redd.it/tgosxlwx77ae1.png?auto=webp&s=a0b81377f31d004160c216644cb38a842a0245ad', 'width': 1024}, 'variants': {}}]}
|Help| What is the best llm for coding/programming that is under 5 billion parameters?
1
[removed]
2024-12-31T15:11:56
https://www.reddit.com/r/LocalLLaMA/comments/1hqgmr8/help_what_is_the_best_llm_for_codingprogramming/
185BCE
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqgmr8
false
null
t3_1hqgmr8
/r/LocalLLaMA/comments/1hqgmr8/help_what_is_the_best_llm_for_codingprogramming/
false
false
self
1
null
Testing Llama for cyber security and it's been amazing
1
I been testing Llama for cyber security and it's been working much better than ChatGPT: [The Power of LLaMA 3.1 70B Parameter AI for Cybersecurity Threat Detection: A Game Changer for Linux Server Security – Alexander Mirvis](https://www.alexandermirvis.com/the-power-of-llama-3-1-70b-parameter-ai-for-cybersecurity-threat-detection-a-game-changer-for-server-security/)
2024-12-31T15:17:10
https://www.reddit.com/r/LocalLLaMA/comments/1hqgqmp/testing_llama_for_cyber_security_and_its_been/
LynxGeekNYC
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqgqmp
false
null
t3_1hqgqmp
/r/LocalLLaMA/comments/1hqgqmp/testing_llama_for_cyber_security_and_its_been/
false
false
self
1
null
Can 1,000,000 AI agents simulate social media? (Experimenting with AI Research Project OASIS)
1
2024-12-31T15:25:29
https://dev.to/omnigeorgio/can-1000000-ai-agents-simulate-social-media-ck6
omnisvosscio
dev.to
1970-01-01T00:00:00
0
{}
1hqgwti
false
null
t3_1hqgwti
/r/LocalLLaMA/comments/1hqgwti/can_1000000_ai_agents_simulate_social_media/
false
false
https://b.thumbs.redditm…9yY_UbLQxaUU.jpg
1
{'enabled': False, 'images': [{'id': '2RG5UizjTX04IecmYGFimcPSltyujN-hfsjBttqT2n8', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/a5NyTWS902iSIgEM9ylC6RUvrE5rXcpUU-GpnOB7aXg.jpg?width=108&crop=smart&auto=webp&s=51cf3a9f239412d5831f4bc06f5031dd636c38be', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/a5NyTWS902iSIgEM9ylC6RUvrE5rXcpUU-GpnOB7aXg.jpg?width=216&crop=smart&auto=webp&s=de1b4cacadf87c28c0032de1ea78d5154a2d76cd', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/a5NyTWS902iSIgEM9ylC6RUvrE5rXcpUU-GpnOB7aXg.jpg?width=320&crop=smart&auto=webp&s=6fd22b1d2a51d23ac8fe53d53fdce3a2e24d2dbe', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/a5NyTWS902iSIgEM9ylC6RUvrE5rXcpUU-GpnOB7aXg.jpg?width=640&crop=smart&auto=webp&s=2652487f27672088199639930ec2de30c9b86167', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/a5NyTWS902iSIgEM9ylC6RUvrE5rXcpUU-GpnOB7aXg.jpg?width=960&crop=smart&auto=webp&s=2baa5cda70b3430f6377ab417e75b1d3fe70ad20', 'width': 960}], 'source': {'height': 500, 'url': 'https://external-preview.redd.it/a5NyTWS902iSIgEM9ylC6RUvrE5rXcpUU-GpnOB7aXg.jpg?auto=webp&s=005ae64cbedab0348d71858485775de7433c7274', 'width': 1000}, 'variants': {}}]}
smolagents: new agent library by Hugging Face
114
Hello! it's Merve from Hugging Face 🤗 we just launched smolagents, a new simple library to unlock both native and traditional (JSON) tool calling for LLMs using native tool calling through LLMs is as simple as: from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel agent = CodeAgent(tools=\[DuckDuckGoSearchTool()\], model=HfApiModel()) agent.run("How many seconds would it take for a leopard at full speed to run through Pont des Arts?") We wrote a blog for you to get started [https://huggingface.co/blog/smolagents](https://huggingface.co/blog/smolagents) Please try and let us know what you think!
2024-12-31T15:28:37
https://www.reddit.com/r/LocalLLaMA/comments/1hqgz3s/smolagents_new_agent_library_by_hugging_face/
unofficialmerve
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqgz3s
false
null
t3_1hqgz3s
/r/LocalLLaMA/comments/1hqgz3s/smolagents_new_agent_library_by_hugging_face/
false
false
self
114
{'enabled': False, 'images': [{'id': 'LY2JZN_xbWXk0wz7w3JfYlBb20wmTMXGl-sW84L8wA8', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/6a5miLwMneRzcfvXYaty7V2vwWl7iMtekEBZ0GUETJQ.jpg?width=108&crop=smart&auto=webp&s=dda760b03aec3b45c9422716b097d39b349b1c49', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/6a5miLwMneRzcfvXYaty7V2vwWl7iMtekEBZ0GUETJQ.jpg?width=216&crop=smart&auto=webp&s=a96eb87d37e0d34da008809c58267ad4d225deb0', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/6a5miLwMneRzcfvXYaty7V2vwWl7iMtekEBZ0GUETJQ.jpg?width=320&crop=smart&auto=webp&s=36c8014b8d2c96928b2f574411a7627438c6dd7e', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/6a5miLwMneRzcfvXYaty7V2vwWl7iMtekEBZ0GUETJQ.jpg?width=640&crop=smart&auto=webp&s=7b78ba096b2c3bc6a1288a9b88102eac9c450621', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/6a5miLwMneRzcfvXYaty7V2vwWl7iMtekEBZ0GUETJQ.jpg?width=960&crop=smart&auto=webp&s=cd07a2443efc166a8409b12affce89b3bf05af79', 'width': 960}, {'height': 607, 'url': 'https://external-preview.redd.it/6a5miLwMneRzcfvXYaty7V2vwWl7iMtekEBZ0GUETJQ.jpg?width=1080&crop=smart&auto=webp&s=b9974434763196eaedddef392241851bcfe52195', 'width': 1080}], 'source': {'height': 1080, 'url': 'https://external-preview.redd.it/6a5miLwMneRzcfvXYaty7V2vwWl7iMtekEBZ0GUETJQ.jpg?auto=webp&s=9ef696094edf481695480bfaac80e4c8f0508d59', 'width': 1920}, 'variants': {}}]}
I Had a Dream for the New Year Last Night... but woke up and I was too groggy to remember it clearly. Any help?
40
2024-12-31T15:38:16
https://i.redd.it/sscq39ane7ae1.png
SeymourBits
i.redd.it
1970-01-01T00:00:00
0
{}
1hqh6cu
false
null
t3_1hqh6cu
/r/LocalLLaMA/comments/1hqh6cu/i_had_a_dream_for_the_new_year_last_night_but/
false
false
https://b.thumbs.redditm…UMZbBdr6cSjI.jpg
40
{'enabled': True, 'images': [{'id': 'EDwwN_alJDsRvyzqafgWQTI9eDpN-0CZqWtT1mCkziM', 'resolutions': [{'height': 108, 'url': 'https://preview.redd.it/sscq39ane7ae1.png?width=108&crop=smart&auto=webp&s=5d62c2a1aede7b99bdab2a4c4c77a5d6c0a94f19', 'width': 108}, {'height': 216, 'url': 'https://preview.redd.it/sscq39ane7ae1.png?width=216&crop=smart&auto=webp&s=56f9b7f868941a1730dcf522c73d8aa09d7e1564', 'width': 216}, {'height': 320, 'url': 'https://preview.redd.it/sscq39ane7ae1.png?width=320&crop=smart&auto=webp&s=fc0ff2bf661f91cebc6eb1e22c3b3d8ba9586d1d', 'width': 320}, {'height': 640, 'url': 'https://preview.redd.it/sscq39ane7ae1.png?width=640&crop=smart&auto=webp&s=44f267060e1b0e1e89eef79e8b2006ba912fde66', 'width': 640}, {'height': 960, 'url': 'https://preview.redd.it/sscq39ane7ae1.png?width=960&crop=smart&auto=webp&s=3ca4c928aa3d0fe6656dbf5e1c5eba847f101be7', 'width': 960}], 'source': {'height': 1024, 'url': 'https://preview.redd.it/sscq39ane7ae1.png?auto=webp&s=56d1bb2781b48130511750f04e970ca7d4febec3', 'width': 1024}, 'variants': {}}]}
How to start?
0
I’d like to learn how to operate and run LLMs locally. Where should I start? I consider myself “technically aware,” as I work closely with machine learning engineers, but I haven’t written much (any) code myself. I’ve been using OpenAI since its early days, and with the advancements in the field, it feels like the ultimate use case is to run these models locally for better privacy and control. How can I get started on this journey? To be clear, my goal isn’t to create my own LLM from scratch, but to become informed and capable enough to use open-source LLMs effectively. Hosting, security, tuning, etc. Really, I think software ultimately shifts to bespoke and locks so I’d like to engage with the open-source community where ideally this all starts. What resources, tools, or steps would you recommend for someone with my background?
2024-12-31T16:00:13
https://www.reddit.com/r/LocalLLaMA/comments/1hqhmpw/how_to_start/
iLikeCorn193472
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqhmpw
false
null
t3_1hqhmpw
/r/LocalLLaMA/comments/1hqhmpw/how_to_start/
false
false
self
0
null
Need early AI integration advice for prototype
2
Seeking guidance - made a local python application that tracks user behavior - input/data is written into a local DB (sql lite). Goal is to have a an early prototype that uses AI to learn a user's baseline behavior and alert to deviations or abnormalities. Problem is, we're limited on both budget (free/open source preferred but not opposed to paying) and AI dev experience. Current main focus is completing a prototype, whether using local AI (like llama3) or cloud AI. Really looking for suggestions or recommendations on easiest and most efficient AI model and how to integrate for this early prototype. Any guidance or advice is greatly appreciated!!! (If not the place to recommend anything other than llama, maybe you can provide advice on how/why llama would or would not work well for this?)
2024-12-31T16:03:12
https://www.reddit.com/r/LocalLLaMA/comments/1hqhp7u/need_early_ai_integration_advice_for_prototype/
jwillistyle7
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqhp7u
false
null
t3_1hqhp7u
/r/LocalLLaMA/comments/1hqhp7u/need_early_ai_integration_advice_for_prototype/
false
false
self
2
null
Trying to wrap my head around the performance differences between a M4 Pro 64gb Mac Mini vs a 2x 3090 TR1 w/ 256gb DDR4
1
[removed]
2024-12-31T16:04:58
https://www.reddit.com/r/LocalLLaMA/comments/1hqhqn3/trying_to_wrap_my_head_around_the_performance/
salec65
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqhqn3
false
null
t3_1hqhqn3
/r/LocalLLaMA/comments/1hqhqn3/trying_to_wrap_my_head_around_the_performance/
false
false
self
1
null
Who’s so kind hearted to make the MLX versions of Phi-4?
1
[removed]
2024-12-31T16:11:48
https://www.reddit.com/r/LocalLLaMA/comments/1hqhvqr/whos_so_kind_hearted_to_make_the_mlx_versions_of/
Valuable-Run2129
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqhvqr
false
null
t3_1hqhvqr
/r/LocalLLaMA/comments/1hqhvqr/whos_so_kind_hearted_to_make_the_mlx_versions_of/
false
false
self
1
null
Interesting ARM Hardware on the horizon - Radxa Orion O6.
24
I was testing Radxa RK3688 based SoC and it's GPU and NPU capabilities. Apart the initial difficulties (including poor support for software developers) the hardware is interesing - it support up to 32GB RAM. It is capable of infrence few tokens per second for a 14b models like Qwen2.5-14b using both OpenCL GPU backend and NPU at the same time. The more interesting the newly announced product - Radxa Orion O6. Major uknown is Cix P1 SoC (it's not Rockchip) real performance however the specs are nice: * 4x Cortex®-A720 (Big cores) 4x Cortex®-A720 (Medium cores) 4x Cortex®-A520 (LITTLE cores) 12MB shared L3 cache * GPU: Arm Immortals G720 MC10 Hardware Ray-Tracing enabled Graphics APIs: Vulkan® 1.3 OpenGL® ES 3.2 OpenCL® 3.0 * Neural Processing Unit (NPU) Computing Power: 28.8 TOPs Precision Support: INT4/INT8/INT16 FP16/BF16 TF32 * RAM: LPDDR5128-bit memory bus 5500MT/s transfer speedConfigurations:4GB/8GB/16GB/32GB/64GB with 100GB/s bandwith. 64GB version for about $450. Mind the power efficency of ARM. **I think might be an insteresting Jetson Orin Nano alternative.**
2024-12-31T16:20:52
https://www.reddit.com/r/LocalLLaMA/comments/1hqi2tn/interesting_arm_hardware_on_the_horizon_radxa/
imkebe
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqi2tn
false
null
t3_1hqi2tn
/r/LocalLLaMA/comments/1hqi2tn/interesting_arm_hardware_on_the_horizon_radxa/
false
false
self
24
null
Try Llama 3.1 8B in Your Browser: AQLM.rs Delivers Al at Your Fingertips | HackerNoon
1
2024-12-31T16:24:45
https://hackernoon.com/try-llama-31-8b-in-your-browser-aqlmrs-delivers-al-at-your-fingertips
mycall
hackernoon.com
1970-01-01T00:00:00
0
{}
1hqi5vp
false
null
t3_1hqi5vp
/r/LocalLLaMA/comments/1hqi5vp/try_llama_31_8b_in_your_browser_aqlmrs_delivers/
false
false
https://b.thumbs.redditm…mgZ1QRiuObkY.jpg
1
{'enabled': False, 'images': [{'id': 'l-ekOMio8td6xRcRq9FNqI99kKCgWiRMx6UPckzh1Ts', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/Y3092VIHNzKfmlWDRauIYoC9GrgDUj0Sv97VlJYK-9c.jpg?width=108&crop=smart&auto=webp&s=94f9fb5f0615ab8901e1f6953168f8e01a156065', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/Y3092VIHNzKfmlWDRauIYoC9GrgDUj0Sv97VlJYK-9c.jpg?width=216&crop=smart&auto=webp&s=efe41519a113d0ead260090ca79130f84a4ce1d4', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/Y3092VIHNzKfmlWDRauIYoC9GrgDUj0Sv97VlJYK-9c.jpg?width=320&crop=smart&auto=webp&s=76718c1b040d5624a72bb91a84531d9d9f779965', 'width': 320}, {'height': 361, 'url': 'https://external-preview.redd.it/Y3092VIHNzKfmlWDRauIYoC9GrgDUj0Sv97VlJYK-9c.jpg?width=640&crop=smart&auto=webp&s=ceb3256723c11e43210a0ef9cc9ce39a01ce49a4', 'width': 640}, {'height': 541, 'url': 'https://external-preview.redd.it/Y3092VIHNzKfmlWDRauIYoC9GrgDUj0Sv97VlJYK-9c.jpg?width=960&crop=smart&auto=webp&s=4be64de5d1431c34e05a0d367f73ede127f37aec', 'width': 960}, {'height': 609, 'url': 'https://external-preview.redd.it/Y3092VIHNzKfmlWDRauIYoC9GrgDUj0Sv97VlJYK-9c.jpg?width=1080&crop=smart&auto=webp&s=6aee1e1d4b7b3b883abe22d4b4eaffd2a1d59d3c', 'width': 1080}], 'source': {'height': 880, 'url': 'https://external-preview.redd.it/Y3092VIHNzKfmlWDRauIYoC9GrgDUj0Sv97VlJYK-9c.jpg?auto=webp&s=250f73abb2c4d27ecce04bb647e3ae07211387fa', 'width': 1560}, 'variants': {}}]}
DeepSeek V3 running on llama.cpp wishes you a Happy New Year!
284
2024-12-31T16:34:25
https://youtu.be/FzCEoTiqP7I
fairydreaming
youtu.be
1970-01-01T00:00:00
0
{}
1hqidbs
false
{'oembed': {'author_name': 'Dreaming Fairy', 'author_url': 'https://www.youtube.com/@dreamingfairy8804', 'height': 200, 'html': '<iframe width="267" height="200" src="https://www.youtube.com/embed/FzCEoTiqP7I?feature=oembed&enablejsapi=1" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen title="DeepSeek V3 running on Epyc 9374F (Q4_K_M, 384GB of RAM, llama.cpp)"></iframe>', 'provider_name': 'YouTube', 'provider_url': 'https://www.youtube.com/', 'thumbnail_height': 360, 'thumbnail_url': 'https://i.ytimg.com/vi/FzCEoTiqP7I/hqdefault.jpg', 'thumbnail_width': 480, 'title': 'DeepSeek V3 running on Epyc 9374F (Q4_K_M, 384GB of RAM, llama.cpp)', 'type': 'video', 'version': '1.0', 'width': 267}, 'type': 'youtube.com'}
t3_1hqidbs
/r/LocalLLaMA/comments/1hqidbs/deepseek_v3_running_on_llamacpp_wishes_you_a/
false
false
https://b.thumbs.redditm…SyJAURvrYQ8U.jpg
284
{'enabled': False, 'images': [{'id': 'WIpY24oMUmveNN9altD7LNCIHVIoueDwIkdRXw681XE', 'resolutions': [{'height': 81, 'url': 'https://external-preview.redd.it/fpike117Cx6LyQ6awQLDQ4Fu54kXpzvd22IzvWo7oCA.jpg?width=108&crop=smart&auto=webp&s=9c1d2d9256b6a252eeb26980f023022eda8380bc', 'width': 108}, {'height': 162, 'url': 'https://external-preview.redd.it/fpike117Cx6LyQ6awQLDQ4Fu54kXpzvd22IzvWo7oCA.jpg?width=216&crop=smart&auto=webp&s=02dc17156059005216c1331900a45210b49a3de4', 'width': 216}, {'height': 240, 'url': 'https://external-preview.redd.it/fpike117Cx6LyQ6awQLDQ4Fu54kXpzvd22IzvWo7oCA.jpg?width=320&crop=smart&auto=webp&s=95134719d079738b0b50dc1738f95d7cf9d22a88', 'width': 320}], 'source': {'height': 360, 'url': 'https://external-preview.redd.it/fpike117Cx6LyQ6awQLDQ4Fu54kXpzvd22IzvWo7oCA.jpg?auto=webp&s=f0f4573cb268a89708661bf81a91b575c505ec7c', 'width': 480}, 'variants': {}}]}
AutoRound-, AutoGPTQ- and AutoAWQ-format quantized models on HF: just my little contribution
5
As 2024 comes to a close, I am proud to share that I have successfully uploaded over 215 quantized SLM/LLM models to my Hugging Face account. These models were entirely quantized using the computational resources of my homelab, achieving approximately 72 TFLOPS of performance-powered solely by "domestic" hardware. You can explore the models here: [https://huggingface.co/fbaldassarri](https://huggingface.co/fbaldassarri) Completing this initial batch took nearly four months of dedicated effort, relying exclusively on my own resources without any cloud services or external credits. The response has been encouraging, with several thousand downloads from my repositories so far. Looking ahead, I am preparing a new series of quantized models, leveraging diverse opensource architectures and openly sharing the methodologies I adopted behind their preparation. These repositories will remain freely available on Hugging Face, with the goal of accelerating research and development in open-source, community-driven solutions. My broader aim is to contribute to advancing AI in text generation while promoting a more inclusive and democratic approach. I am particularly focused on advocating for INT4 quantization as an optimal solution across various use cases. As an advocate for Weight-only-Quantization (WoQ) and SignRound methods, my work emphasizes local, private, and personal inference capabilities of our daily-driver PCs. I welcome feedback and collaboration: so, if there are specific open models you’d like to see quantized using formats such as AutoRound, AutoGPTQ, AutoAWQ, or OpenVINO IR for experimentation, feel free to connect with me. I am eager to assist wherever possible. Lastly, I would like to extend my gratitude to Intel’s AI researchers and software engineers for their contributions to open-source frameworks like OpenVINO, NNCF, IPEX, and IPEX-LLM. These tools have been instrumental in maximizing the potential of my hardware. Special thanks go to the Intel AutoRound team, [Wenhua Cheng](https://www.linkedin.com/in/wenhua-cheng-05460bb0/) et al., for their invaluable feedback and exceptional tools. \#AI #GenerativeAI #NLP #NLU #NLG #LLM #OpenSource [https:\/\/huggingface.co\/fbaldassarri](https://preview.redd.it/5syu57ado7ae1.jpg?width=2276&format=pjpg&auto=webp&s=5987933d7b11cbb9c75cfdf04ec32269ab9e9775)
2024-12-31T16:42:33
https://www.reddit.com/r/LocalLLaMA/comments/1hqijn6/autoround_autogptq_and_autoawqformat_quantized/
fbaldassarri
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqijn6
false
null
t3_1hqijn6
/r/LocalLLaMA/comments/1hqijn6/autoround_autogptq_and_autoawqformat_quantized/
false
false
https://b.thumbs.redditm…s1OXyLXI-Zmk.jpg
5
{'enabled': False, 'images': [{'id': 'mV7BX9MBfVIeVF9e_tatLqw4Cm03xD_9C1R-1228J1M', 'resolutions': [{'height': 58, 'url': 'https://external-preview.redd.it/kZr9QwYzpzj7Wkw6Hxlac2dvz2duz-U604aNuLcYWAE.jpg?width=108&crop=smart&auto=webp&s=64928d62fa58b7fc5e57967af37bd17a1d3047f6', 'width': 108}, {'height': 116, 'url': 'https://external-preview.redd.it/kZr9QwYzpzj7Wkw6Hxlac2dvz2duz-U604aNuLcYWAE.jpg?width=216&crop=smart&auto=webp&s=9b99bad8edc447073a11ef1f97b26142d196550d', 'width': 216}, {'height': 172, 'url': 'https://external-preview.redd.it/kZr9QwYzpzj7Wkw6Hxlac2dvz2duz-U604aNuLcYWAE.jpg?width=320&crop=smart&auto=webp&s=97fe9a42abc9dba668a03f9fdf5b706b490ce7e5', 'width': 320}, {'height': 345, 'url': 'https://external-preview.redd.it/kZr9QwYzpzj7Wkw6Hxlac2dvz2duz-U604aNuLcYWAE.jpg?width=640&crop=smart&auto=webp&s=2c147cf74f8691c4fdac20cd9c17addd263fb48a', 'width': 640}, {'height': 518, 'url': 'https://external-preview.redd.it/kZr9QwYzpzj7Wkw6Hxlac2dvz2duz-U604aNuLcYWAE.jpg?width=960&crop=smart&auto=webp&s=438711aa3ab2268bb1ac9966c37b928308901bed', 'width': 960}, {'height': 583, 'url': 'https://external-preview.redd.it/kZr9QwYzpzj7Wkw6Hxlac2dvz2duz-U604aNuLcYWAE.jpg?width=1080&crop=smart&auto=webp&s=cc143dc90e8d97349303fdf7e15b9ae266df06b5', 'width': 1080}], 'source': {'height': 648, 'url': 'https://external-preview.redd.it/kZr9QwYzpzj7Wkw6Hxlac2dvz2duz-U604aNuLcYWAE.jpg?auto=webp&s=d9dd60c4853d39cbad1cd9ad8bb3b568baa70f38', 'width': 1200}, 'variants': {}}]}
2024 AI LLM Timeline (open weights + API access)
94
2024-12-31T17:29:35
https://v.redd.it/rlsxdmuxx7ae1
vaibhavs10
/r/LocalLLaMA/comments/1hqjk44/2024_ai_llm_timeline_open_weights_api_access/
1970-01-01T00:00:00
0
{}
1hqjk44
false
{'reddit_video': {'bitrate_kbps': 5000, 'dash_url': 'https://v.redd.it/rlsxdmuxx7ae1/DASHPlaylist.mpd?a=1738387781%2CMjA4NzQxYzJiMGVkNzhkOTQxODBlNmJmNjVhZTM5MzNlNWNjNWQzOWYxNTZiNDNmZTUyNGE1YWRkMzg5MGFjMQ%3D%3D&v=1&f=sd', 'duration': 22, 'fallback_url': 'https://v.redd.it/rlsxdmuxx7ae1/DASH_1080.mp4?source=fallback', 'has_audio': False, 'height': 1080, 'hls_url': 'https://v.redd.it/rlsxdmuxx7ae1/HLSPlaylist.m3u8?a=1738387781%2CNTZhZTQ3OGNlMzYyMDE3YjdkYTIzNTc4YTE1ZWRkMzNjYjk3ZGZhNjkwYzgwOGMyMDJjZDcxMGMyYmI4ZTE0OA%3D%3D&v=1&f=sd', 'is_gif': False, 'scrubber_media_url': 'https://v.redd.it/rlsxdmuxx7ae1/DASH_96.mp4', 'transcoding_status': 'completed', 'width': 1670}}
t3_1hqjk44
/r/LocalLLaMA/comments/1hqjk44/2024_ai_llm_timeline_open_weights_api_access/
false
false
https://external-preview…5f3d491c1c47b11e
94
{'enabled': False, 'images': [{'id': 'N29uY29wdnh4N2FlMYakIzF1HSalWwoyuWBTb4oHSoq1HXTNLXMDMjkaX3Tx', 'resolutions': [{'height': 69, 'url': 'https://external-preview.redd.it/N29uY29wdnh4N2FlMYakIzF1HSalWwoyuWBTb4oHSoq1HXTNLXMDMjkaX3Tx.png?width=108&crop=smart&format=pjpg&auto=webp&s=56810643630ffa7fbf0f190afc16caf81484415d', 'width': 108}, {'height': 139, 'url': 'https://external-preview.redd.it/N29uY29wdnh4N2FlMYakIzF1HSalWwoyuWBTb4oHSoq1HXTNLXMDMjkaX3Tx.png?width=216&crop=smart&format=pjpg&auto=webp&s=00bf5f4871b0f18219dadaace1bbc9fc3ff5c136', 'width': 216}, {'height': 206, 'url': 'https://external-preview.redd.it/N29uY29wdnh4N2FlMYakIzF1HSalWwoyuWBTb4oHSoq1HXTNLXMDMjkaX3Tx.png?width=320&crop=smart&format=pjpg&auto=webp&s=7ca4af4c98756e3771e447d92a654e6d90f87535', 'width': 320}, {'height': 413, 'url': 'https://external-preview.redd.it/N29uY29wdnh4N2FlMYakIzF1HSalWwoyuWBTb4oHSoq1HXTNLXMDMjkaX3Tx.png?width=640&crop=smart&format=pjpg&auto=webp&s=937eea6a7e51bb7f0e7b8c6728556aae0f6369f1', 'width': 640}, {'height': 620, 'url': 'https://external-preview.redd.it/N29uY29wdnh4N2FlMYakIzF1HSalWwoyuWBTb4oHSoq1HXTNLXMDMjkaX3Tx.png?width=960&crop=smart&format=pjpg&auto=webp&s=12ffeb8a23b67f3e845560dd0a28e593ce5939d0', 'width': 960}, {'height': 698, 'url': 'https://external-preview.redd.it/N29uY29wdnh4N2FlMYakIzF1HSalWwoyuWBTb4oHSoq1HXTNLXMDMjkaX3Tx.png?width=1080&crop=smart&format=pjpg&auto=webp&s=3c3e992c984df5c9e4539aa45f0121c621bcddc2', 'width': 1080}], 'source': {'height': 2234, 'url': 'https://external-preview.redd.it/N29uY29wdnh4N2FlMYakIzF1HSalWwoyuWBTb4oHSoq1HXTNLXMDMjkaX3Tx.png?format=pjpg&auto=webp&s=d8851269bc5856b796c1c4a0bf1b896e89f0fbe0', 'width': 3456}, 'variants': {}}]}
What would you like to see in Unsloth for 2025?
82
Happy new year everyone! First off, I just wanted to say a huge thank you for fine-tuning with Unsloth. The support we’ve gotten from all of you has been incredible, and it means a lot! :)) It’s still just the 2 of us on the team & we've already got loads of ideas for 2025 but we’d love to hear from you guys! What do YOU want to see in Unsloth next year? You can suggest anything, something super ambitious, or even something tiny! Maybe Diffusion/Whisper support or Unsloth RAG, or maybe just a simple model support. Whatever it is, we want to know! We’d also love to know: * What’s been working well for you and what hasn't been? * What’s been a missing feature? * How can we make Unsloth easier to use or understand? * Would better docs or guides (like on creating datasets) help? Once again, thank you or being part of this journey with us and happy tuning! P.S. I’ll be replying to every comment to make sure every voice is heard.
2024-12-31T18:09:44
https://www.reddit.com/r/LocalLLaMA/comments/1hqkeyn/what_would_you_like_to_see_in_unsloth_for_2025/
danielhanchen
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqkeyn
false
null
t3_1hqkeyn
/r/LocalLLaMA/comments/1hqkeyn/what_would_you_like_to_see_in_unsloth_for_2025/
false
false
self
82
{'enabled': False, 'images': [{'id': 'oUAe34zUCLxMUIpYtOvOz6aYou2CnbtJjhJZ0bwJ6Jg', 'resolutions': [{'height': 56, 'url': 'https://external-preview.redd.it/GToYANeKQHKhFdKJjLK03Emv1ylZ0l8jeD1iuQJ8-dE.jpg?width=108&crop=smart&auto=webp&s=6481fbac644d8a96c2918c63e805d1c62e24cbe5', 'width': 108}, {'height': 113, 'url': 'https://external-preview.redd.it/GToYANeKQHKhFdKJjLK03Emv1ylZ0l8jeD1iuQJ8-dE.jpg?width=216&crop=smart&auto=webp&s=941b00cf4a68a70df266160fe06769bc2a817a41', 'width': 216}, {'height': 168, 'url': 'https://external-preview.redd.it/GToYANeKQHKhFdKJjLK03Emv1ylZ0l8jeD1iuQJ8-dE.jpg?width=320&crop=smart&auto=webp&s=e794c7cbf042b8d8e6fdd8f8c239e0f5cb398261', 'width': 320}, {'height': 336, 'url': 'https://external-preview.redd.it/GToYANeKQHKhFdKJjLK03Emv1ylZ0l8jeD1iuQJ8-dE.jpg?width=640&crop=smart&auto=webp&s=57fbf9c89972d5c31e3bd2d3354696be4e8d5b9d', 'width': 640}, {'height': 505, 'url': 'https://external-preview.redd.it/GToYANeKQHKhFdKJjLK03Emv1ylZ0l8jeD1iuQJ8-dE.jpg?width=960&crop=smart&auto=webp&s=557f9a403410be41c1438b6d2b1a2acd9d507da4', 'width': 960}, {'height': 568, 'url': 'https://external-preview.redd.it/GToYANeKQHKhFdKJjLK03Emv1ylZ0l8jeD1iuQJ8-dE.jpg?width=1080&crop=smart&auto=webp&s=989ea96f774aa62c199da9564be3b7b646db1494', 'width': 1080}], 'source': {'height': 834, 'url': 'https://external-preview.redd.it/GToYANeKQHKhFdKJjLK03Emv1ylZ0l8jeD1iuQJ8-dE.jpg?auto=webp&s=fb46a23aaa0ed1c5044eaea486ff79352cce2675', 'width': 1584}, 'variants': {}}]}
|Help| What is the best llm for coding/programming that is under 5 billion parameters?
1
[removed]
2024-12-31T18:15:32
https://www.reddit.com/r/LocalLLaMA/comments/1hqkjcn/help_what_is_the_best_llm_for_codingprogramming/
185BCE
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqkjcn
false
null
t3_1hqkjcn
/r/LocalLLaMA/comments/1hqkjcn/help_what_is_the_best_llm_for_codingprogramming/
false
false
self
1
null
Deepseek and qwen
1,169
2024-12-31T18:18:39
https://i.redd.it/46be5fpe78ae1.png
TheLogiqueViper
i.redd.it
1970-01-01T00:00:00
0
{}
1hqklqj
false
null
t3_1hqklqj
/r/LocalLLaMA/comments/1hqklqj/deepseek_and_qwen/
false
false
https://a.thumbs.redditm…hNpW00XFvnU4.jpg
1,169
{'enabled': True, 'images': [{'id': 'bj2JawhiIeYTITWPf4C_sgOwRh8DZLKTHOBn17j2YIw', 'resolutions': [{'height': 87, 'url': 'https://preview.redd.it/46be5fpe78ae1.png?width=108&crop=smart&auto=webp&s=be22f435d21f6cc9272ed055d66070fc3e0d4e8a', 'width': 108}, {'height': 175, 'url': 'https://preview.redd.it/46be5fpe78ae1.png?width=216&crop=smart&auto=webp&s=ea6c8f82ff7122e146eb9c079e3e7691582545fc', 'width': 216}, {'height': 259, 'url': 'https://preview.redd.it/46be5fpe78ae1.png?width=320&crop=smart&auto=webp&s=dfb8311ab88097f99fb25e1824d56f3c4c104700', 'width': 320}, {'height': 519, 'url': 'https://preview.redd.it/46be5fpe78ae1.png?width=640&crop=smart&auto=webp&s=f58a5556cfa2ade7fccf23983439288ed0f43bbe', 'width': 640}, {'height': 779, 'url': 'https://preview.redd.it/46be5fpe78ae1.png?width=960&crop=smart&auto=webp&s=9e8ac1d7728c025e228310458275313e15bee67c', 'width': 960}, {'height': 877, 'url': 'https://preview.redd.it/46be5fpe78ae1.png?width=1080&crop=smart&auto=webp&s=1f51acc1df1ed167748e543b9de1e258d3b59269', 'width': 1080}], 'source': {'height': 877, 'url': 'https://preview.redd.it/46be5fpe78ae1.png?auto=webp&s=6bc45e5c603bf884dede678aa503d5d40fed2dcd', 'width': 1080}, 'variants': {}}]}
Alibaba slashes prices on large language models by up to 85% as China AI rivalry heats up
430
2024-12-31T18:34:49
https://www.cnbc.com/2024/12/31/alibaba-baba-cloud-unit-slashes-prices-on-ai-models-by-up-to-85percent.html
fallingdowndizzyvr
cnbc.com
1970-01-01T00:00:00
0
{}
1hqkxy0
false
null
t3_1hqkxy0
/r/LocalLLaMA/comments/1hqkxy0/alibaba_slashes_prices_on_large_language_models/
false
false
https://b.thumbs.redditm…uHVcPi8JZKok.jpg
430
{'enabled': False, 'images': [{'id': 'hnM3vOU6qYJjEKJOhb_rvpM3dIm3uJ-g6ijpSWCb8ko', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/G2KFdf5nT3BnSoVAXN-trKagIf0brGjo1XZ9YBjXrrU.jpg?width=108&crop=smart&auto=webp&s=476bd29b1e9e14a91e2e8b328f219f0f35a9e8df', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/G2KFdf5nT3BnSoVAXN-trKagIf0brGjo1XZ9YBjXrrU.jpg?width=216&crop=smart&auto=webp&s=8eebeb0353bcc7e692ac27de8504f2d16a211508', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/G2KFdf5nT3BnSoVAXN-trKagIf0brGjo1XZ9YBjXrrU.jpg?width=320&crop=smart&auto=webp&s=6686f4dfdb52d107b9b5cc180c7a287fe46a5c41', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/G2KFdf5nT3BnSoVAXN-trKagIf0brGjo1XZ9YBjXrrU.jpg?width=640&crop=smart&auto=webp&s=5a1a2af1681be8dbd94bb528bc8d1b95e1e2a669', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/G2KFdf5nT3BnSoVAXN-trKagIf0brGjo1XZ9YBjXrrU.jpg?width=960&crop=smart&auto=webp&s=67d715105d72b62c0a5e8c4ddd1207962f7f1f54', 'width': 960}, {'height': 607, 'url': 'https://external-preview.redd.it/G2KFdf5nT3BnSoVAXN-trKagIf0brGjo1XZ9YBjXrrU.jpg?width=1080&crop=smart&auto=webp&s=1541791109cc24c0e75a5a187ae660f5d37f4e07', 'width': 1080}], 'source': {'height': 1080, 'url': 'https://external-preview.redd.it/G2KFdf5nT3BnSoVAXN-trKagIf0brGjo1XZ9YBjXrrU.jpg?auto=webp&s=b22aabcfa843f7af43f1dcdab36a3c421e8027f4', 'width': 1920}, 'variants': {}}]}
Llama doesnt update with the new Doc provided for RAG ?
0
I am completely new for LLMs and related stuff. I was following a tutorial on youtube to get an idea. I made a RAG using streamlit as provided in the tutorial The issue is that First I ran this code with "sample.pdf" and then i wanted to try this with "ck3small" pdf as to check if the code is working or not with the new doc provided. It still refers to old pdf when answering the questions. I checked at other threads where it was said to write something to clear cache , which I did and the problem still exists : I am not exactly sure if this is LLAMA or langchain or Streamlit issue. Here's the code. # app.py import streamlit as st import os import logging from langchain_community.document_loaders import UnstructuredPDFLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain_ollama import OllamaEmbeddings from langchain.prompts import ChatPromptTemplate, PromptTemplate from langchain_ollama import ChatOllama from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain.retrievers.multi_query import MultiQueryRetriever import ollama # Configure logging logging.basicConfig(level=logging.INFO) # Constants DOC_PATH = "./ck3small.pdf" MODEL_NAME = "llama3.2" EMBEDDING_MODEL = "nomic-embed-text" VECTOR_STORE_NAME = "simple-rag" PERSIST_DIRECTORY = "./chroma_db" # Function to ingest PDF documents def ingest_pdf(doc_path):     """Load PDF documents."""     if os.path.exists(doc_path):         loader = UnstructuredPDFLoader(file_path=doc_path)         data = loader.load()         logging.info("PDF loaded successfully.")         return data     else:         logging.error(f"PDF file not found at path: {doc_path}")         st.error("PDF file not found.")         return None # Function to split documents into smaller chunks def split_documents(documents):     """Split documents into smaller chunks."""     text_splitter = RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=300)     chunks = text_splitter.split_documents(documents)     logging.info("Documents split into chunks.")     return chunks # Function to load or create the vector database @st.cache_resource(show_spinner=False) def load_vector_db(doc_path):     """Load or create the vector database."""     # Pull the embedding model if not already available     ollama.pull(EMBEDDING_MODEL)     embedding = OllamaEmbeddings(model=EMBEDDING_MODEL)     if os.path.exists(PERSIST_DIRECTORY):         vector_db = Chroma(             embedding_function=embedding,             collection_name=VECTOR_STORE_NAME,             persist_directory=PERSIST_DIRECTORY,         )         logging.info("Loaded existing vector database.")     else:         # Load and process the PDF document         data = ingest_pdf(doc_path)         if data is None:             return None         # Split the documents into chunks         chunks = split_documents(data)         vector_db = Chroma.from_documents(             documents=chunks,             embedding=embedding,             collection_name=VECTOR_STORE_NAME,             persist_directory=PERSIST_DIRECTORY,         )         vector_db.persist()         logging.info("Vector database created and persisted.")     return vector_db # Function to create a multi-query retriever def create_retriever(vector_db, llm):     """Create a multi-query retriever."""     QUERY_PROMPT = PromptTemplate(         input_variables=["question"],         template="""You are an AI language model assistant. Your task is to generate five different versions of the given user question to retrieve relevant documents from a vector database. By generating multiple perspectives on the user question, your goal is to help the user overcome some of the limitations of the distance-based similarity search. Provide these alternative questions separated by newlines. Original question: {question}""",     )     retriever = MultiQueryRetriever.from_llm(         vector_db.as_retriever(), llm, prompt=QUERY_PROMPT     )     logging.info("Retriever created.")     return retriever # Function to create the chain with preserved syntax def create_chain(retriever, llm):     """Create the chain with preserved syntax."""     # RAG prompt     template = """Answer the question based ONLY on the following context: {context} Question: {question} """     prompt = ChatPromptTemplate.from_template(template)     chain = (         {"context": retriever, "question": RunnablePassthrough()}         | prompt         | llm         | StrOutputParser()     )     logging.info("Chain created with preserved syntax.")     return chain # Main function def main():     st.title("Document Assistant")     # User input     user_input = st.text_input("Enter your question:", "")     if user_input:         with st.spinner("Generating response..."):             try:                 # Initialize the language model                 llm = ChatOllama(model=MODEL_NAME)                 # Load the vector database                 vector_db = load_vector_db(DOC_PATH)                 if vector_db is None:                     st.error("Failed to load or create the vector database.")                     return                 # Create the retriever                 retriever = create_retriever(vector_db, llm)                 # Create the chain                 chain = create_chain(retriever, llm)                 # Get the response                 response = chain.invoke(input=user_input)                 st.markdown("**Assistant:**")                 st.write(response)             except Exception as e:                 st.error(f"An error occurred: {str(e)}")     else:         st.info("Please enter a question to get started.") if __name__ == "__main__":     main()
2024-12-31T18:50:27
https://www.reddit.com/r/LocalLLaMA/comments/1hql9zr/llama_doesnt_update_with_the_new_doc_provided_for/
Radiant_Butterfly982
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hql9zr
false
null
t3_1hql9zr
/r/LocalLLaMA/comments/1hql9zr/llama_doesnt_update_with_the_new_doc_provided_for/
false
false
self
0
null
3090 vs 4090 vs other?
2
I just sold my 4070 Super (12GB VRAM) and am looking for a replacement with 24GB VRAM. I'm considering the 3090 and 4090. Which do you think makes more sense for my use cases? 1. Local AI hosting 2. Video editing (DaVinci Resolve) 3. 3D modeling (Blender) If there's a better alternative (not necessarily cheaper), I'd love to hear your suggestions.
2024-12-31T18:54:31
https://www.reddit.com/r/LocalLLaMA/comments/1hqld1u/3090_vs_4090_vs_other/
the_forbidden_won
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqld1u
false
null
t3_1hqld1u
/r/LocalLLaMA/comments/1hqld1u/3090_vs_4090_vs_other/
false
false
self
2
null
Who would be interested in a prompting + fine-tuning LLM Chess Tournament?
3
Earlier this week I saw a post where a user set up an online arena for LLMs to play chess. I drafted up this idea shortly after. Note that this says January, but realistically would be like February or something considering January starts tomorrow. This post is to gauge if anyone would be interested to participate before putting the money and resources into it ------------------------------------ This is a competition where your LLM setup will compete against others in its ability to play (and win) chess. You can enter by January 7th, and this competition will take up the entire month of January. If this takes off, I'd love to do more throughout 2025 with different concepts. Rules: 1. No closed source SOTA models can be used. If you are doing this competition with prompting only, it will be paired with any open model of your choosing. Prompt-only entries will have a max model size of 72B. Any model above 32b parameters will be ran as AWQ. 2. For fine-tuned/trained model entries, your model must be in a format supported by VLLM. AWQ, int8, or GGUF are recommended. It will also be limited to 48GB of VRAM usage, so 72B will have to be AWQ. 3. If you're making a prompting entry, your prompt will be made public at the end of the competition. If you're a fine-tuning/training entry, your model itself must be open-weight and the training data must be open-source, and will also be made public at the end. All credits will be given of course. This is the timeline of the contest: Week 1 (Jan 1st to Jan 7th): Training Phase This is where YOU will prompt-engineer or fine-tune and test your submission. You can use the testing tools available. You MUST submit your model and/or prompts by January 7th, 11:59pm Central (US/Chicago). Week 2 (Jan 8th - Jan 14th): Round 1 This week is when the models are put to a test against a three chess bots, varying in difficulty. They will be ran constantly throughout the week and counted towards a win/loss ratio. The wins/losses ratio will be what determines where your model sits on the leaderboard. Hot fixes for models will be accepted as long as they are submitted by 11:59 pm January 9th. Week 3 (Jan 15th - Jan 22nd): Revision Phase This week is where the top 8 performing models proceed. These 8 contestants will be able to make further revisions to their models or prompts for week 4. Week 4 (Jan 23rd - Jan 30th): Round 2 This week, the remaining 8 models will be put up against the three chess bots again. No hot fixes or further revisions will be accepted. The top 4 performing models proceed to the final battle. The Final Battle (January 31st): The last day of the competition. Instead of the final 4 models competing against chess bots, they will compete against each other in a bracket-style tournament. This tournament will be ran 10 times. Whoever wins the most will be awarded first place, and second and third place will be awarded to the runner-ups respectively. The prize pool so far is $100 (out of my own pocket) $50 to 1st place. $35 to 2nd place $15 to 3rd place If anyone would like to contribute to the pool, it would be greatly appreciated! Feel free to DM me. A crisp virtual high-five will go to fourth place, as well as bragging rights. In the event of a tie, the models performance in Rounds 1 and 2 will be taken into account in order to break the tie. ----------------- Would you guys be interested?
2024-12-31T19:09:24
https://www.reddit.com/r/LocalLLaMA/comments/1hqloxc/who_would_be_interested_in_a_prompting_finetuning/
maxwell321
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqloxc
false
null
t3_1hqloxc
/r/LocalLLaMA/comments/1hqloxc/who_would_be_interested_in_a_prompting_finetuning/
false
false
self
3
null
Methodologies for "Knowledge Storage" in LLM Parameters
0
Searching through the entire Reddit, it seems that most posts talk about platforms, tools, or parameter-efficient ways for "Continual Pre-training". However, I wonder what would be the suggested way to do continual pre-training in terms of data preparation/augmentation? Let's simplify the question: we have someone's biography. How can this biography be learned by a model (e.g., llama) in its parameters? "Learn" means that the model can answer questions without taking the biography as part of input. Apparently, it is less effective if naively feeding the exact biography into the model. Then, what would be the suggested augmentation solution or other solutions? (I'm aware that ICL is more effective in this scenario; however, I'm curious about the training/pre-training solution.) Are there any research on it? I only found one relevant paper so far: [https://arxiv.org/pdf/2309.14316](https://arxiv.org/pdf/2309.14316)
2024-12-31T19:14:54
https://www.reddit.com/r/LocalLLaMA/comments/1hqlt25/methodologies_for_knowledge_storage_in_llm/
wandering-ai
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqlt25
false
null
t3_1hqlt25
/r/LocalLLaMA/comments/1hqlt25/methodologies_for_knowledge_storage_in_llm/
false
false
self
0
null
Revisting llama.cpp speculative decoding w/ Qwen2.5-Coder 32B (AMD vs Nvidia results)
65
There have been some recent questions on how the 7900 XTX runs 30B class models, and I was actually curious to revisit some of the llama.cpp speculative decoding tests I had done a while back, so I figured, why not knock out both of those with some end of year testing. # Methodology While I'm a big fan of `llama-bench` for basic testing, with speculative decoding this doesn't really work (speed will depend on draft acceptance, which is workload dependent). I've been using [vLLM's benchmark_serving.py](https://github.com/vllm-project/vllm/blob/main/benchmarks/benchmark_serving.py) for a lot of recent testing, so that's what I used for this test. I was lazy, so I just found a ShareGPT-formatted coding repo on HF so I wouldn't have to do any reformatting: https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT I used the latest HEAD checkouts of [hjc4869/llama.cpp](https://github.com/hjc4869/llama.cpp) (b4398) for AMD and [llama.cpp](https://github.com/ggerganov/llama.cpp) (b4400) on Nvidia w/ just standard cmake flags for each backend. While my previous testing was with a 32B Q8_0 quant, to fit in a 24GB card to allow comparisons, I'm using a Q4_K_M. Context will be limited, but the model launches with `n_ctx_per_seq (4096)` by default, so that's fine for benchmarking. For speculative decoding, I previously found slightly better results w/ a 1.5B draft model (vs 0.5B) and am using these settings: ``` --draft-max 24 --draft-min 1 --draft-p-min 0.6 ``` If you want to run similar testing on your own system with your own workloads (or models) the source code, some sample scripts, (along with some more raw results) are also available here: https://github.com/AUGMXNT/speed-benchmarking/tree/main/llama.cpp-code # AMD Radeon Pro W7900 For the W7900 (241W max TDP), speculative decoding gives us ~60% higher throughput and 40% lower TPOT, at the cost of 7.5% additional memory usage: | Metric | W7900 Q4_K_M | W7900 Q4_K_M + 1.5B Q8 | % Difference | |:--------------------------------|---------------:|-------------------------:|---------------:| | Memory Usage (GiB) | 20.57 | 22.12 | 7.5 | | Successful requests | 50 | 50 | 0.0 | | Benchmark duration (s) | 1085.39 | 678.21 | -37.5 | | Total input tokens | 5926 | 5926 | 0.0 | | Total generated tokens | 23110 | 23204 | 0.4 | | Request throughput (req/s) | 0.05 | 0.07 | 40.0 | | Output token throughput (tok/s) | 21.29 | 34.21 | 60.7 | | Total Token throughput (tok/s) | 26.75 | 42.95 | 60.6 | | Mean TTFT (ms) | 343.50 | 344.16 | 0.2 | | Median TTFT (ms) | 345.69 | 346.8 | 0.3 | | P99 TTFT (ms) | 683.43 | 683.85 | 0.1 | | Mean TPOT (ms) | 46.09 | 28.83 | -37.4 | | Median TPOT (ms) | 45.97 | 28.70 | -37.6 | | P99 TPOT (ms) | 47.70 | 42.65 | -10.6 | | Mean ITL (ms) | 46.22 | 28.48 | -38.4 | | Median ITL (ms) | 46.00 | 0.04 | -99.9 | | P99 ITL (ms) | 48.79 | 310.77 | 537.0 | # Nvidia RTX 3090 (MSI Ventus 3X 24G OC) On the RTX 3090 (420W max TDP), we are able to get better performance with FA on. We get a similar benefit, with speculative decoding giving us ~55% higher throughput and 35% lower TPOT, at the cost of 9.5% additional memory usage: | Metric | RTX 3090 Q4_K_M | RTX 3090 Q4_K_M + 1.5B Q8 | % Difference | |:--------------------------------|------------------:|----------------------------:|---------------:| | Memory Usage (GiB) | 20.20 | 22.03 | 9.5 | | Successful requests | 50 | 50 | 0.0 | | Benchmark duration (s) | 659.45 | 419.7 | -36.4 | | Total input tokens | 5926 | 5926 | 0.0 | | Total generated tokens | 23447 | 23123 | -1.4 | | Request throughput (req/s) | 0.08 | 0.12 | 50.0 | | Output token throughput (tok/s) | 35.56 | 55.09 | 54.9 | | Total Token throughput (tok/s) | 44.54 | 69.21 | 55.4 | | Mean TTFT (ms) | 140.01 | 141.43 | 1.0 | | Median TTFT (ms) | 97.17 | 97.92 | 0.8 | | P99 TTFT (ms) | 373.87 | 407.96 | 9.1 | | Mean TPOT (ms) | 27.85 | 18.23 | -34.5 | | Median TPOT (ms) | 27.80 | 17.96 | -35.4 | | P99 TPOT (ms) | 28.73 | 28.14 | -2.1 | | Mean ITL (ms) | 27.82 | 17.83 | -35.9 | | Median ITL (ms) | 27.77 | 0.02 | -99.9 | | P99 ITL (ms) | 29.34 | 160.18 | 445.9 | # W7900 vs 3090 Comparison You can see that the 3090 without speculative decoding actually beats out the throughput of the W7900 *with* speculative decoding: | Metric | W7900 Q4_K_M + 1.5B Q8 | RTX 3090 Q4_K_M + 1.5B Q8 | % Difference | |:--------------------------------|-------------------------:|----------------------------:|---------------:| | Memory Usage (GiB) | 22.12 | 22.03 | -0.4 | | Successful requests | 50 | 50 | 0.0 | | Benchmark duration (s) | 678.21 | 419.70 | -38.1 | | Total input tokens | 5926 | 5926 | 0.0 | | Total generated tokens | 23204 | 23123 | -0.3 | | Request throughput (req/s) | 0.07 | 0.12 | 71.4 | | Output token throughput (tok/s) | 34.21 | 55.09 | 61.0 | | Total Token throughput (tok/s) | 42.95 | 69.21 | 61.1 | | Mean TTFT (ms) | 344.16 | 141.43 | -58.9 | | Median TTFT (ms) | 346.8 | 97.92 | -71.8 | | P99 TTFT (ms) | 683.85 | 407.96 | -40.3 | | Mean TPOT (ms) | 28.83 | 18.23 | -36.8 | | Median TPOT (ms) | 28.7 | 17.96 | -37.4 | | P99 TPOT (ms) | 42.65 | 28.14 | -34.0 | | Mean ITL (ms) | 28.48 | 17.83 | -37.4 | | Median ITL (ms) | 0.04 | 0.02 | -50.0 | | P99 ITL (ms) | 310.77 | 160.18 | -48.5 | Note: the 7900 XTX has higher TDP and clocks, and in my previous testing usually is ~10% faster than the W7900, but the gap between it and the 3090 would still be sizable, as the RTX 3090 is *significantly* faster than the W7900: - >60% higher throughput - >70% lower median TTFT (!) - ~37% lower TPOT
2024-12-31T19:16:46
https://www.reddit.com/r/LocalLLaMA/comments/1hqlug2/revisting_llamacpp_speculative_decoding_w/
randomfoo2
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqlug2
false
null
t3_1hqlug2
/r/LocalLLaMA/comments/1hqlug2/revisting_llamacpp_speculative_decoding_w/
false
false
self
65
{'enabled': False, 'images': [{'id': 'yxqNak4GUlMo3H2SsrdD_YM0C8iR8_NAhn2zlnMUEuc', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/vdf1sNc4YlsnIkXt0qV3lI3TpKeSS0gq2nl4ooEK-WE.jpg?width=108&crop=smart&auto=webp&s=2faa340115de580f64530ea855b7aa8fab6e0433', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/vdf1sNc4YlsnIkXt0qV3lI3TpKeSS0gq2nl4ooEK-WE.jpg?width=216&crop=smart&auto=webp&s=0ad0e425a481cba1da919cff4e179fd581b943f3', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/vdf1sNc4YlsnIkXt0qV3lI3TpKeSS0gq2nl4ooEK-WE.jpg?width=320&crop=smart&auto=webp&s=a05c0cc9c425d432271a4f06c59aa832c7e80573', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/vdf1sNc4YlsnIkXt0qV3lI3TpKeSS0gq2nl4ooEK-WE.jpg?width=640&crop=smart&auto=webp&s=fcfc42efeddee313ae42fd3a0cc18e5cde68b1c3', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/vdf1sNc4YlsnIkXt0qV3lI3TpKeSS0gq2nl4ooEK-WE.jpg?width=960&crop=smart&auto=webp&s=ff40058b19515c732884ecb2718a8c45c6fa0f50', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/vdf1sNc4YlsnIkXt0qV3lI3TpKeSS0gq2nl4ooEK-WE.jpg?width=1080&crop=smart&auto=webp&s=07dc236aa8b406fc35e1259860416ca9af2ca3e7', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/vdf1sNc4YlsnIkXt0qV3lI3TpKeSS0gq2nl4ooEK-WE.jpg?auto=webp&s=df41ade27e28ecf0ac20faa396776ff1ece4e7a3', 'width': 1200}, 'variants': {}}]}
Awesome LLM apps
81
https://github.com/Shubhamsaboo/awesome-llm-apps
2024-12-31T19:19:09
https://i.redd.it/nkzhjw97i8ae1.png
TheLogiqueViper
i.redd.it
1970-01-01T00:00:00
0
{}
1hqlw3j
false
null
t3_1hqlw3j
/r/LocalLLaMA/comments/1hqlw3j/awesome_llm_apps/
false
false
https://b.thumbs.redditm…vg7RoEVYLKqk.jpg
81
{'enabled': True, 'images': [{'id': 'cwDNp3272pt82fshwuttEOI92Zez0EOqhYVJNYwfVCY', 'resolutions': [{'height': 213, 'url': 'https://preview.redd.it/nkzhjw97i8ae1.png?width=108&crop=smart&auto=webp&s=ee8763d2fd70505a0ee74a98aff6e848355e0604', 'width': 108}, {'height': 426, 'url': 'https://preview.redd.it/nkzhjw97i8ae1.png?width=216&crop=smart&auto=webp&s=aaff0d1f2e5c3a3223b015cbfe67920da1606089', 'width': 216}, {'height': 632, 'url': 'https://preview.redd.it/nkzhjw97i8ae1.png?width=320&crop=smart&auto=webp&s=10497f5180c098f334c5165bb000364c31ab0d6a', 'width': 320}, {'height': 1264, 'url': 'https://preview.redd.it/nkzhjw97i8ae1.png?width=640&crop=smart&auto=webp&s=f9704b9e45212f28e148447e2f2643fa6d8a7487', 'width': 640}, {'height': 1896, 'url': 'https://preview.redd.it/nkzhjw97i8ae1.png?width=960&crop=smart&auto=webp&s=2df05b85fbb0d17929136df71286e6881b060a9f', 'width': 960}, {'height': 2134, 'url': 'https://preview.redd.it/nkzhjw97i8ae1.png?width=1080&crop=smart&auto=webp&s=115e8e033cff53c46d8fe427d87e0a80bd292a16', 'width': 1080}], 'source': {'height': 2134, 'url': 'https://preview.redd.it/nkzhjw97i8ae1.png?auto=webp&s=e275d926d23e2933dd697285a26e857d1744de68', 'width': 1080}, 'variants': {}}]}
Fine-Tuning LLaMA 3.2 with my own Dataset
0
I’m currently working on fine-tuning the LLaMA 3.2 model using a custom dataset I’ve built. I’ve successfully made a JSON file that contains 792 entries, formatted specifically for LLaMA 3.2. Here’s a small sample from my dataset to demonstrate the structure: { "input": "What are the advantages of using a system virtual machine?", "output": "System virtual machines allow multiple operating systems on one computer, support legacy software without old hardware, and provide server consolidation, although they may have lower performance and require significant effort to implement." }, # Goals: 1. Fine-tune the model to improve its understanding of theoretical computer science concepts. 2. Deploy it for answering academic and research questions. # Questions: 1. Is my dataset format correct for fine-tuning? 2. What steps should I follow to train the model effectively? 3. How do I ensure the model performs well after training? 4. I have added the code which I used below. I will be uploading the dataset and base model from hugging. Hopefully this the correct method. [https://colab.research.google.com/drive/15OyFkGoCImV9dSsewU1wa2JuKB4-mDE\_?usp=drive\_link](https://colab.research.google.com/drive/15OyFkGoCImV9dSsewU1wa2JuKB4-mDE_?usp=drive_link) I’m using Google Colab for this and would appreciate any tips or suggestions to make this process smoother. Thanks in advance!
2024-12-31T19:20:01
https://www.reddit.com/r/LocalLLaMA/comments/1hqlwp9/finetuning_llama_32_with_my_own_dataset/
SnooRevelations5257
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqlwp9
false
null
t3_1hqlwp9
/r/LocalLLaMA/comments/1hqlwp9/finetuning_llama_32_with_my_own_dataset/
false
false
self
0
{'enabled': False, 'images': [{'id': 'nkhh65ujo5BznFJFojoMPaKjGuLSpPj6KGhRov-ykOg', 'resolutions': [{'height': 108, 'url': 'https://external-preview.redd.it/0-fRWqjlLadVXj5pfYp4_Oe3xgBWE-_rdjVSn7hlohI.jpg?width=108&crop=smart&auto=webp&s=f34d2dfdbbfa7de0f1956f186fd8430ee96a1a55', 'width': 108}, {'height': 216, 'url': 'https://external-preview.redd.it/0-fRWqjlLadVXj5pfYp4_Oe3xgBWE-_rdjVSn7hlohI.jpg?width=216&crop=smart&auto=webp&s=2817183828c9747b960cb2e55c59cfa41f4f9ded', 'width': 216}], 'source': {'height': 260, 'url': 'https://external-preview.redd.it/0-fRWqjlLadVXj5pfYp4_Oe3xgBWE-_rdjVSn7hlohI.jpg?auto=webp&s=ed5da41e2c4cee7a9e495c8291ecf5604f0e169d', 'width': 260}, 'variants': {}}]}
Ollama not using GPU, Need Help
1
Hey guys, I have a laptop with RTX 2060 Mobile 6gb VRAM, 64GB ram and Ryzen 4800H, I wanted to run Qwen-Coder 2.5 locally using Ollama and use it with bolt. I have tried it with bolt and even in CLI, it always uses CPU, puts 80%+ workload, for large models it makes sense, cuz of the VRAM constraint, but even small models which is like 2-4GB is using CPU. How can I fix this.
2024-12-31T19:28:34
https://www.reddit.com/r/LocalLLaMA/comments/1hqm2z6/ollama_not_using_gpu_need_help/
Specific-Orchid-6978
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqm2z6
false
null
t3_1hqm2z6
/r/LocalLLaMA/comments/1hqm2z6/ollama_not_using_gpu_need_help/
false
false
self
1
null
WIDGET
1
[removed]
2024-12-31T19:34:09
https://www.reddit.com/r/LocalLLaMA/comments/1hqm766/widget/
SecretaryOk3714
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqm766
false
null
t3_1hqm766
/r/LocalLLaMA/comments/1hqm766/widget/
false
false
self
1
null
Best local chain/agent tools for coding?
1
What are the best tools that can run locally and do multi-step coding tasks? Like I give it a task ("write a python gui that does x y and z") which can then create a requirements document, refine/expand the required document, write the code, check that all of the requirements are included, and cheack for mistakes. Are there tools that do this? Ideally running llama or phi-3 on a 12Gb vram gpu Are there any for windows? Are there any that can install necessary python packages by itself?
2024-12-31T19:46:03
https://www.reddit.com/r/LocalLLaMA/comments/1hqmfxi/best_local_chainagent_tools_for_coding/
Cunninghams_right
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqmfxi
false
null
t3_1hqmfxi
/r/LocalLLaMA/comments/1hqmfxi/best_local_chainagent_tools_for_coding/
false
false
self
1
null
Will Deepseek go public one day?
18
Just incredible using lower end Nvidia chips and costing only $5mil to develop. https://reddit.com/link/1hqmmmt/video/xhpfr28mo8ae1/player
2024-12-31T19:55:23
https://www.reddit.com/r/LocalLLaMA/comments/1hqmmmt/will_deepseek_go_public_one_day/
inquisitiveman2002
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqmmmt
false
null
t3_1hqmmmt
/r/LocalLLaMA/comments/1hqmmmt/will_deepseek_go_public_one_day/
false
false
self
18
null
QuantumLLMInstruct: A 500k LLM Instruction-Tuning Dataset with Problem-Solution Pairs for Quantum Computing
23
🚀 **Introducing QuantumLLMInstruct (QLMMI): The Largest Quantum Computing Datas**et! I'm excited to announce my paper **QuantumLLMInstruct (QLMMI)**, a groundbreaking dataset featuring over **500,000 instruction-following problem-solution pairs** tailored specifically for fine-tuning LLMs for solving quantum computing problems—the most comprehensive dataset of its kind! 🌌 # What makes QLMMI unique? * Covers **90+ primary seed domains** and hundreds of subdomains autonomously generated by LLMs. * Designed for LLM **instruction fine-tuning**, tackling complex quantum challenges across topics like: * Synthetic Hamiltonians * QASM code generation * Jordan-Wigner transformations * Trotter-Suzuki decompositions * Enhanced with advanced reasoning techniques like **Chain-of-Thought (CoT)** and **ToRA**, ensuring mathematical precision and diversity. # Open and Collaborative Built with the **Qwen-2.5-Coder models**, QLMMI is completely **open-source**, with the code and dataset available on HuggingFace. [https://arxiv.org/pdf/2412.20956](https://arxiv.org/pdf/2412.20956) [https://huggingface.co/datasets/BoltzmannEntropy/QuantumLLMInstruct](https://huggingface.co/datasets/BoltzmannEntropy/QuantumLLMInstruct) [https://huggingface.co/spaces/BoltzmannEntropy/QuantumLLMInstruct](https://huggingface.co/spaces/BoltzmannEntropy/QuantumLLMInstruct) Best,
2024-12-31T20:01:27
https://www.reddit.com/r/LocalLLaMA/comments/1hqmr3g/quantumllminstruct_a_500k_llm_instructiontuning/
QuanstScientist
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqmr3g
false
null
t3_1hqmr3g
/r/LocalLLaMA/comments/1hqmr3g/quantumllminstruct_a_500k_llm_instructiontuning/
false
false
self
23
null
A local LLM that does not anonymize data?
1
[removed]
2024-12-31T20:09:28
https://www.reddit.com/r/LocalLLaMA/comments/1hqmwx7/a_local_llm_that_does_not_anonymize_data/
floydfan
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqmwx7
false
null
t3_1hqmwx7
/r/LocalLLaMA/comments/1hqmwx7/a_local_llm_that_does_not_anonymize_data/
false
false
self
1
null
I built a chatGPT but for sensitive data & regulated work 🔒 runs offline!
0
I wanted to share an app I've been working on called Clariti - it's an AI assistant designed specifically for situations where you can't/shouldn't use ChatGPT due to privacy concerns.Our devices are remarkably capable of running AI analysis locally, thanks to MLX and Apple's Neural Engine: Built with SwiftUI and MLX-Swift to chat with LLM's like LLama 3.2 3B Instruct Chat with your documents, calendar, health data, and more... 100% Private and runs Offline! You can check it out here: [\[App Store Link\]](https://apps.apple.com/us/app/clariti-ai-privately/id6739746682) \- **Free Trial !** \_\_\_\_\_ 1. Performance by Device: \- iPhone 12/13 series: Excellent performance with Llama 3.2B - 1B Instruct models \- iPhone 14/15 series: Excellent performance with Llama 3.2B-4B Instruct models \- Modern iPads: Efficiently runs 7B models (8-bit quantized) \- Apple Silicon Macs: Superior performance with larger models (7B-13B) 2. MLX Framework Benefits: \- Specifically optimized for Apple Silicon architecture \- Utilizes Metal for GPU acceleration \- Memory-efficient through dynamic memory management \- Fast inference times with minimal latency \- Privacy-focused as all processing happens on-device 3. Model Capabilities: \- Text generation and analysis \- Document understanding \- Contextual responses \- Chat functionality \- All without requiring cloud connectivity The learning comes from two sources: 1. Pre-trained open-source models optimized and quantized for MLX (see MLX-Community on huggingface) 2. Your own documents through Retrieval Augmented Generation (RAG), which allows the AI to learn from your content without retraining the model This hybrid approach ensures both privacy and performance while maintaining high-quality AI capabilities on your device, enhanced by your personal knowledge base https://preview.redd.it/un3kafenw8ae1.png?width=1290&format=png&auto=webp&s=f99a43316335d1d821e18e6c472cb652bc24c86b
2024-12-31T20:40:08
https://www.reddit.com/r/LocalLLaMA/comments/1hqnihd/i_built_a_chatgpt_but_for_sensitive_data/
claritiai
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqnihd
false
null
t3_1hqnihd
/r/LocalLLaMA/comments/1hqnihd/i_built_a_chatgpt_but_for_sensitive_data/
false
false
https://b.thumbs.redditm…tdqyL2fiDGPk.jpg
0
null
Censorship workaround for DeepSeek, brought to you by the CCP
1
2024-12-31T20:54:19
https://www.reddit.com/gallery/1hqnss4
1234oguz
reddit.com
1970-01-01T00:00:00
0
{}
1hqnss4
false
null
t3_1hqnss4
/r/LocalLLaMA/comments/1hqnss4/censorship_workaround_for_deepseek_brought_to_you/
false
false
https://b.thumbs.redditm…VtrF2RQ_oXMY.jpg
1
null
Interesting DeepSeek behavior
476
2024-12-31T20:55:57
https://www.reddit.com/gallery/1hqntx4
1234oguz
reddit.com
1970-01-01T00:00:00
0
{}
1hqntx4
false
null
t3_1hqntx4
/r/LocalLLaMA/comments/1hqntx4/interesting_deepseek_behavior/
false
false
https://b.thumbs.redditm…hg3XP0JzlfIw.jpg
476
null
DeepSeek == GPT-4?
0
2024-12-31T20:57:31
https://www.reddit.com/gallery/1hqnv3m
1234oguz
reddit.com
1970-01-01T00:00:00
0
{}
1hqnv3m
false
null
t3_1hqnv3m
/r/LocalLLaMA/comments/1hqnv3m/deepseek_gpt4/
false
false
https://b.thumbs.redditm…AS_eR9PNOT9A.jpg
0
null
Ollama template vs input text
1
I can't seem to figure out how ollama templates work. Does anyone know if the template affects the text you actually input? Are they completely unrelated? Are there answers or do we just put words in magic box and get words out?
2024-12-31T21:22:17
https://www.reddit.com/r/LocalLLaMA/comments/1hqocrx/ollama_template_vs_input_text/
reality_comes
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqocrx
false
null
t3_1hqocrx
/r/LocalLLaMA/comments/1hqocrx/ollama_template_vs_input_text/
false
false
self
1
null
Are there any local alternatives to ChatGPT's wolfram GPT?
1
I want something I can run locally that can solve complex natural language equations and step me through the solution without hallucinating.
2024-12-31T21:23:56
https://www.reddit.com/r/LocalLLaMA/comments/1hqodwk/are_there_any_local_alternatives_to_chatgpts/
wunnsen
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqodwk
false
null
t3_1hqodwk
/r/LocalLLaMA/comments/1hqodwk/are_there_any_local_alternatives_to_chatgpts/
false
false
self
1
null
Rtx a6000+3090
2
Hi, After having dropped the Mac route for running 70b+ llm, I’m considering buying an a6000 (ampere) and matching it with a 3090. It would allow me to get a little more of 70go of vram and run llama 3.3 and command r+. Is that even possible ? Good idea or bad ? Thanks!
2024-12-31T21:46:11
https://www.reddit.com/r/LocalLLaMA/comments/1hqot5u/rtx_a60003090/
HappyFaithlessness70
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqot5u
false
null
t3_1hqot5u
/r/LocalLLaMA/comments/1hqot5u/rtx_a60003090/
false
false
self
2
null
4060 Ti 16GB on a Windows 11 VM
1
[removed]
2024-12-31T21:59:13
https://www.reddit.com/r/LocalLLaMA/comments/1hqp244/4060_ti_16gb_on_a_windows_11_vm/
Emotional_Public_398
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqp244
false
null
t3_1hqp244
/r/LocalLLaMA/comments/1hqp244/4060_ti_16gb_on_a_windows_11_vm/
false
false
nsfw
1
null
Best bang for buck GPU/Tensor processors for training and inference for 5k$ ?
1
As the title suggests, what is the best money I can spend on in terms of training and serving a Model below 5k? Can be GPU or any other variants that I may not even be aware of. This does not include the cost for other peripherals or mobo or cpu.
2024-12-31T22:06:30
https://www.reddit.com/r/LocalLLaMA/comments/1hqp7ak/best_bang_for_buck_gputensor_processors_for/
Specter_Origin
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqp7ak
false
null
t3_1hqp7ak
/r/LocalLLaMA/comments/1hqp7ak/best_bang_for_buck_gputensor_processors_for/
false
false
self
1
null
About an upgrade difference
1
I know that this is a pretty broad question but how much of a boost should I expect on LLM performance, assuming there will be be little to no bottleneck, when upgrading from a GeForce 1050 Ti with 4GB of vRAM to a GeForce 3060 RTX with 12GB of vRAM? I mean in terms of overall and the parameters of models that should run. I realize this is modest. It has 64 GB of system RAM win 11 capable i7 processor but not listed on the MS special list despite meeting the security requirements. Anyway, I digress. Also any uncensored models you can recommend? I am currently a Nemo Mystral model.
2024-12-31T22:33:26
https://www.reddit.com/r/LocalLLaMA/comments/1hqppbh/about_an_upgrade_difference/
theshadowraven
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqppbh
false
null
t3_1hqppbh
/r/LocalLLaMA/comments/1hqppbh/about_an_upgrade_difference/
false
false
self
1
null
For 2025
6
I was just curious about what you all predict or think about the following questions for the upcoming year? 1. What if any major breakthroughs do you predict for open-source LLMs? 2. What trends do you hope occur with the above? 3. What major or minor developer will play the biggest role? 4. Will this be the year of major licensing laws and restrictions cripple open-source models? 5. Is this a “make it or break it” year for open-source models?
2024-12-31T22:46:58
https://www.reddit.com/r/LocalLLaMA/comments/1hqpyfm/for_2025/
theshadowraven
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqpyfm
false
null
t3_1hqpyfm
/r/LocalLLaMA/comments/1hqpyfm/for_2025/
false
false
self
6
null
can you tune ANY LLM with unsloth?
1
[removed]
2024-12-31T22:59:00
https://www.reddit.com/r/LocalLLaMA/comments/1hqq66z/can_you_tune_any_llm_with_unsloth/
StandardOne1681
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqq66z
false
null
t3_1hqq66z
/r/LocalLLaMA/comments/1hqq66z/can_you_tune_any_llm_with_unsloth/
false
false
self
1
null
Quanitization questions
5
What would you recommend: K\_M vs K\_S 4 vs 5 as the cutoff for lowest without a major dropoff, is the latter better with new mode? If this was asked previously could someone provide a link please?
2024-12-31T23:03:33
https://www.reddit.com/r/LocalLLaMA/comments/1hqq9be/quanitization_questions/
theshadowraven
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqq9be
false
null
t3_1hqq9be
/r/LocalLLaMA/comments/1hqq9be/quanitization_questions/
false
false
self
5
null
Best LLMs of 2024
0
2024-12-31T23:06:03
https://www.youtube.com/watch?v=4NUtg4Aj1dI
dulldata
youtube.com
1970-01-01T00:00:00
0
{}
1hqqax6
false
{'oembed': {'author_name': '1littlecoder', 'author_url': 'https://www.youtube.com/@1littlecoder', 'height': 200, 'html': '<iframe width="356" height="200" src="https://www.youtube.com/embed/4NUtg4Aj1dI?feature=oembed&enablejsapi=1" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen title="2024 AI Winners!!! 💥Best LLMs of 2024 💥"></iframe>', 'provider_name': 'YouTube', 'provider_url': 'https://www.youtube.com/', 'thumbnail_height': 360, 'thumbnail_url': 'https://i.ytimg.com/vi/4NUtg4Aj1dI/hqdefault.jpg', 'thumbnail_width': 480, 'title': '2024 AI Winners!!! 💥Best LLMs of 2024 💥', 'type': 'video', 'version': '1.0', 'width': 356}, 'type': 'youtube.com'}
t3_1hqqax6
/r/LocalLLaMA/comments/1hqqax6/best_llms_of_2024/
false
false
https://b.thumbs.redditm…gkrq54lJhOtw.jpg
0
{'enabled': False, 'images': [{'id': 'YwxxDR9ZWEyZinbEY0UBPZ6v3REFkP6VOEoUh2s0RzA', 'resolutions': [{'height': 81, 'url': 'https://external-preview.redd.it/LKA_bpCikQAt_Cy-h5fDyQYpwzdB7hNjaQMGDvMyNRo.jpg?width=108&crop=smart&auto=webp&s=2d40a8934ac55aa2504cde8ea84aa2f62e631f22', 'width': 108}, {'height': 162, 'url': 'https://external-preview.redd.it/LKA_bpCikQAt_Cy-h5fDyQYpwzdB7hNjaQMGDvMyNRo.jpg?width=216&crop=smart&auto=webp&s=2b940c3e6b3b68f2f78da31cbb7a13a1b93e4781', 'width': 216}, {'height': 240, 'url': 'https://external-preview.redd.it/LKA_bpCikQAt_Cy-h5fDyQYpwzdB7hNjaQMGDvMyNRo.jpg?width=320&crop=smart&auto=webp&s=b6bb087292ce8e078597818a53c9d66ce4b96fcc', 'width': 320}], 'source': {'height': 360, 'url': 'https://external-preview.redd.it/LKA_bpCikQAt_Cy-h5fDyQYpwzdB7hNjaQMGDvMyNRo.jpg?auto=webp&s=9339187b894ceadb5b1e484f9c284ad39207602c', 'width': 480}, 'variants': {}}]}
Small models without GPU?
0
I wanted to experiment with AI agents just to prototype the architecture. What are some small models that could run on a windows 10 desktop without the need for a GPU?
2024-12-31T23:42:11
https://www.reddit.com/r/LocalLLaMA/comments/1hqqxwm/small_models_without_gpu/
tvmaly
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hqqxwm
false
null
t3_1hqqxwm
/r/LocalLLaMA/comments/1hqqxwm/small_models_without_gpu/
false
false
self
0
null
it's just 262GB
1
2024-12-31T23:50:24
https://i.redd.it/3ynal5ru0ltc1.jpeg
toodle_enthusiast
i.redd.it
1970-01-01T00:00:00
0
{}
1hqr328
false
null
t3_1hqr328
/r/LocalLLaMA/comments/1hqr328/its_just_262gb/
false
false
https://b.thumbs.redditm…Qek2t_BEAQsw.jpg
1
{'enabled': True, 'images': [{'id': '8SW74Bf9Ymm3fB7DvZRlLLHC-2ZaV6E6bUuBEdahBHA', 'resolutions': [{'height': 145, 'url': 'https://preview.redd.it/3ynal5ru0ltc1.jpeg?width=108&crop=smart&auto=webp&s=35c425b0b30d323288bca82c363f24fb58ff9c77', 'width': 108}, {'height': 290, 'url': 'https://preview.redd.it/3ynal5ru0ltc1.jpeg?width=216&crop=smart&auto=webp&s=9c520b87cf3f8213fc57b8ef8c790306c613d239', 'width': 216}, {'height': 430, 'url': 'https://preview.redd.it/3ynal5ru0ltc1.jpeg?width=320&crop=smart&auto=webp&s=2f2c34cdbd915db08659ef2db25da59c0e6058b6', 'width': 320}], 'source': {'height': 672, 'url': 'https://preview.redd.it/3ynal5ru0ltc1.jpeg?auto=webp&s=07bb9e0767d9b1079c65e2148c7dfb88c3ff1744', 'width': 500}, 'variants': {}}]}
My truest feeling about recent events (Claude: powerful [coding] man | Old version of GPT: middle-class | Deepseek: precious [insert price/performance] women)
1
2025-01-01T00:00:11
https://i.redd.it/wp8a85wiv9ae1.png
Kuro1103
i.redd.it
1970-01-01T00:00:00
0
{}
1hqr97x
false
null
t3_1hqr97x
/r/LocalLLaMA/comments/1hqr97x/my_truest_feeling_about_recent_events_claude/
false
false
https://b.thumbs.redditm…MTnPidjCphjk.jpg
1
{'enabled': True, 'images': [{'id': 'TQZ17PVK2uL87BM8uLCKQ34eCW2VGVt5Z_KRlwRXMX4', 'resolutions': [{'height': 116, 'url': 'https://preview.redd.it/wp8a85wiv9ae1.png?width=108&crop=smart&auto=webp&s=79f200b4baeafb4d0b816ca47d77cc0440925c2d', 'width': 108}, {'height': 232, 'url': 'https://preview.redd.it/wp8a85wiv9ae1.png?width=216&crop=smart&auto=webp&s=a3ede080c7b19b7e409e10dd84d1df8708a49876', 'width': 216}, {'height': 344, 'url': 'https://preview.redd.it/wp8a85wiv9ae1.png?width=320&crop=smart&auto=webp&s=f7008aa2e3430979fc3dca50b7e55d60e467d95e', 'width': 320}, {'height': 689, 'url': 'https://preview.redd.it/wp8a85wiv9ae1.png?width=640&crop=smart&auto=webp&s=900667993f6d2ee8ff2ea13ba306b42fe9273e4e', 'width': 640}], 'source': {'height': 1000, 'url': 'https://preview.redd.it/wp8a85wiv9ae1.png?auto=webp&s=89a1d149c8935e256c08a51aebc5a58714fb1c5c', 'width': 928}, 'variants': {}}]}