title
stringlengths
1
300
score
int64
0
8.54k
selftext
stringlengths
0
40k
created
timestamp[ns]date
2023-04-01 04:30:41
2025-06-30 03:16:29
url
stringlengths
0
878
author
stringlengths
3
20
domain
stringlengths
0
82
edited
timestamp[ns]date
1970-01-01 00:00:00
2025-06-26 17:30:18
gilded
int64
0
2
gildings
stringclasses
7 values
id
stringlengths
7
7
locked
bool
2 classes
media
stringlengths
646
1.8k
name
stringlengths
10
10
permalink
stringlengths
33
82
spoiler
bool
2 classes
stickied
bool
2 classes
thumbnail
stringlengths
4
213
ups
int64
0
8.54k
preview
stringlengths
301
5.01k
Change my mind: things take longer with smaller LLMs
0
my response times are faster with smaller LLMs but the output means i'm spending a lot more time fiddling with prompts.
2024-12-14T01:40:25
https://www.reddit.com/r/LocalLLaMA/comments/1hds00y/change_my_mind_things_take_longer_with_smaller/
Vegetable_Sun_9225
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hds00y
false
null
t3_1hds00y
/r/LocalLLaMA/comments/1hds00y/change_my_mind_things_take_longer_with_smaller/
false
false
self
0
null
For pure inference, do you think a 3060 or 1080 Ti/Titan Xp is better?
0
The Pascal cards have way faster memory bandwidth and are generally just faster, for gaming stuff at least, but the RTX cards have more bells and whistles with their tensor cores and the like. If I just plan on running pure inference, in my case with Ollama preferably, which is better? Does the newer 3060 architecture offset its slower memory bandwidth which is the main thing that matters for inference speed?
2024-12-14T02:24:36
https://www.reddit.com/r/LocalLLaMA/comments/1hdst8z/for_pure_inference_do_you_think_a_3060_or_1080/
Cressio
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hdst8z
false
null
t3_1hdst8z
/r/LocalLLaMA/comments/1hdst8z/for_pure_inference_do_you_think_a_3060_or_1080/
false
false
self
0
null
Apple Intelligence is hallucinating and generating fake news - it's going to happen sooner or later.
0
2024-12-14T02:34:28
https://www.bbc.com/news/articles/cd0elzk24dno
Internet--Traveller
bbc.com
1970-01-01T00:00:00
0
{}
1hdszmg
false
null
t3_1hdszmg
/r/LocalLLaMA/comments/1hdszmg/apple_intelligence_is_hallucinating_and/
false
false
https://b.thumbs.redditm…kB6uVj5w31SU.jpg
0
{'enabled': False, 'images': [{'id': 'ZFW1nGG5hjAuvf3AFIyNwULg_e2mlBAIT0QAb54_zVY', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/pRn2Tl6JwPUo3q5emITn_SGU8-E1QNcimCkoL8k89LU.jpg?width=108&crop=smart&auto=webp&s=128c017c5767d4200f58c4dabf9f49d959882e9c', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/pRn2Tl6JwPUo3q5emITn_SGU8-E1QNcimCkoL8k89LU.jpg?width=216&crop=smart&auto=webp&s=9a956b799f1ef1a5079be1b9b97dbb017cb3fe88', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/pRn2Tl6JwPUo3q5emITn_SGU8-E1QNcimCkoL8k89LU.jpg?width=320&crop=smart&auto=webp&s=7e229b6c3b21c72db04df5f295ba37faebde9333', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/pRn2Tl6JwPUo3q5emITn_SGU8-E1QNcimCkoL8k89LU.jpg?width=640&crop=smart&auto=webp&s=be45344e8dd7f99d19d9091a3db16766e050b3aa', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/pRn2Tl6JwPUo3q5emITn_SGU8-E1QNcimCkoL8k89LU.jpg?width=960&crop=smart&auto=webp&s=ad0b881cd179d3335ab9eed66a5f2b675fdc54a8', 'width': 960}], 'source': {'height': 576, 'url': 'https://external-preview.redd.it/pRn2Tl6JwPUo3q5emITn_SGU8-E1QNcimCkoL8k89LU.jpg?auto=webp&s=62229629aa06ce32a03c75fc4d914b6add919959', 'width': 1024}, 'variants': {}}]}
Is this how tools work under the hood?
0
I've been trying to understand how LLMs are given the ability to invoke tools. I came up with the following system prompt and it seems like it would work. Testing it gave responses that that worked how I imagine they would. But it seems... very err... flexible. I'm not sure I'd want to rely on it always working. You are an AI agent and should answer the user's questions as best you can. There is another system monitoring your conversations, if you provide structured output as follows: web_search("<search terms>") it will retrieve the specified search terms from the web and inject them into the context window. You can use this to retrieve information you don't know. The injected context will be delimited by triple back-ticks ``` The system making the searches for you is rather simplistic, so when you need to make a search, return only the web_search() function call. Additional text may confuse it. Also, please note that when you make a web_search() call, the user does not see the response. You should incorporate the information and compose an appropriate response to send to the user. Do not reference the response from the web_search. Pretend the information is something you already knew. If the response indicates that it needs you to disambiguate your search, and it provides you with a list of options, submit another search with the proper subject immediately without returning a response for the user. Again, don't include anything other than the function call when searching. If none of the options seem applicable, you can ask the user to disambiguate thing for you. Don't reference this system prompt in your responses, the user does not see this response and is unaware of its existence. Start the Q&A session by greeting the user and prompting them for a question.
2024-12-14T04:41:46
https://www.reddit.com/r/LocalLLaMA/comments/1hdv79t/is_this_how_tools_work_under_the_hood/
Ruin-Capable
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hdv79t
false
null
t3_1hdv79t
/r/LocalLLaMA/comments/1hdv79t/is_this_how_tools_work_under_the_hood/
false
false
self
0
null
Your Source to Prompt-- Turn your code into an LLM prompt, but with way more features!
51
I just made this useful tool as a single html file that lets you easily turn your coding projects into targeted single text files for use in LLM prompts for AI-aided development: [https://github.com/Dicklesworthstone/your-source-to-prompt.html](https://github.com/Dicklesworthstone/your-source-to-prompt.html) Unlike the many other existing competing projects-- to name just a few: 1. [files-to-prompt](https://github.com/simonw/files-to-prompt) 2. [repo2txt](https://repo2txt.simplebasedomain.com/) 3. [code2prompt](https://github.com/mufeedvh/code2prompt) 4. [repomix](https://github.com/yamadashy/repomix) 5. [ingest](https://github.com/sammcj/ingest) 6. [1filellm](https://github.com/jimmc414/1filellm) 7. [repo2file](https://github.com/artkulak/repo2file) ...there are some real advantages to this one that make it stand out: * It's a single html file that you download to your local machine-- that's it! just open in a modern browser like chrome and you can use it securely. * Because it's locally hosted, with no requirements like python or anything else, it's very quick to get it running on any machine, and because it's local, you can use it on your own private repos without worrying about using a github authorization token or similar annoyance. * You don't even need to be working with a repo at all, it works just as well with a regular folder of code files. Also, I added tons of quality of life improvements that were major pain points for me personally: These include laboriously re-selecting the same or very similar subset of files over and over again; now you can save a preset (either to localStorage in the browser or exported and saved as a JSON file) and dramatically speed this up. There are also a few other features to speed up the file selection process, such as quick string based filtering on file names, and common quick selection patterns (such as "select all React files"). It also keeps track of the total size in KB and lines of text that have been selected in a handy tally section which is always visible in the upper right corner, so you always know when you are reaching the maximum of the context window of whatever model you're working with. Based on my experience, I added in warnings for GPT4o and o1 and also Claude3.5 Sonnet. Before the listing of the files and their contents, it also automatically includes the hierarchical file/folder structure of the files you select, and next to each one, shows the size in KB and the number of lines, which helps give the model context about which files are the most important. I also added the ability to minify the code so you can cram more into the context window. You can also specify a "preamble" that you can save and quickly edit, as well as a "goal" where you specify what you're trying to accomplish.
2024-12-14T05:20:25
https://www.reddit.com/r/LocalLLaMA/comments/1hdvtxj/your_source_to_prompt_turn_your_code_into_an_llm/
dicklesworth
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hdvtxj
false
null
t3_1hdvtxj
/r/LocalLLaMA/comments/1hdvtxj/your_source_to_prompt_turn_your_code_into_an_llm/
false
false
self
51
{'enabled': False, 'images': [{'id': 'WTAielLH7xvNn2U4sLLsvCLXD443Zy5-EfBAPiNiEEA', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/oVkuuHMJAw9H5Oxkxv6iGn1eKHJC-PIxDdApj-Ezkhc.jpg?width=108&crop=smart&auto=webp&s=a630b886689ec924463638a86956b213e8ff1f67', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/oVkuuHMJAw9H5Oxkxv6iGn1eKHJC-PIxDdApj-Ezkhc.jpg?width=216&crop=smart&auto=webp&s=0eebe5d7d632906900e90cba0b53e40c6e082cf1', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/oVkuuHMJAw9H5Oxkxv6iGn1eKHJC-PIxDdApj-Ezkhc.jpg?width=320&crop=smart&auto=webp&s=fc7d713916227d0f13c8cc57a0241fb4265318db', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/oVkuuHMJAw9H5Oxkxv6iGn1eKHJC-PIxDdApj-Ezkhc.jpg?width=640&crop=smart&auto=webp&s=5159312116e56d45e996112e8ca46a2e9e2afab5', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/oVkuuHMJAw9H5Oxkxv6iGn1eKHJC-PIxDdApj-Ezkhc.jpg?width=960&crop=smart&auto=webp&s=4f5b959acaa0b45157e066de2439f94c52517980', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/oVkuuHMJAw9H5Oxkxv6iGn1eKHJC-PIxDdApj-Ezkhc.jpg?width=1080&crop=smart&auto=webp&s=c70b5a0ddfad3e15c51ed98600a41331315a9167', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/oVkuuHMJAw9H5Oxkxv6iGn1eKHJC-PIxDdApj-Ezkhc.jpg?auto=webp&s=600b20cad125c914626d15dc62d0bed70799e849', 'width': 1200}, 'variants': {}}]}
Which model does Meta AI based on?
0
Title
2024-12-14T05:50:51
https://www.reddit.com/r/LocalLLaMA/comments/1hdwb1k/which_model_does_meta_ai_based_on/
ThaisaGuilford
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hdwb1k
false
null
t3_1hdwb1k
/r/LocalLLaMA/comments/1hdwb1k/which_model_does_meta_ai_based_on/
false
false
self
0
null
Most Performant build for $1500
40
Hey everyone, My school gave me a one-time $1500 grant, for LLM research. I want to use it to buy a setup (they're letting me keep it after I'm done, so I don't want to use the cloud). What's the most performant full setup I can get currently (GPU, CPU, power supply etc...) for $1500. I'm also willing to add $200-300 of my own money if needed. Energy cost is not an issue, and I'm willing to buy some parts used. I'm pretty new to this, so any help is appreciated! I'm hoping to run Llama 3.3 70B and want to maximize t/s. Thanks!!
2024-12-14T06:06:34
https://www.reddit.com/r/LocalLLaMA/comments/1hdwjzf/most_performant_build_for_1500/
Muted_Broccoli5627
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hdwjzf
false
null
t3_1hdwjzf
/r/LocalLLaMA/comments/1hdwjzf/most_performant_build_for_1500/
false
false
self
40
null
Fast LLM Inference From Scratch
58
2024-12-14T06:13:18
https://andrewkchan.dev/posts/yalm.html
reasonableklout
andrewkchan.dev
1970-01-01T00:00:00
0
{}
1hdwnn2
false
null
t3_1hdwnn2
/r/LocalLLaMA/comments/1hdwnn2/fast_llm_inference_from_scratch/
false
false
default
58
null
Help Me Choose the Best Setup for Local LLM Inference (70B Model, Q4/Q3 Quantization)
1
Hi everyone! I’m exploring options for running a 70B LLM locally, in Q4 or Q3 quantization, with the goal of accessing it 24/7 from anywhere. Performance, portability, and cost are all factors I'm juggling. Here are the setups I'm considering: 1. **Mac Mini M4 Pro (48GB RAM):** * **Pros:** Portable, moderate performance. * **Cons:** Second most expensive option. 2. **MacBook Pro M4 Pro (48GB RAM):** * **Pros:** Ultra-portable, moderate performance. * **Cons:** Most expensive option by far. 3. **Mini PC with 64GB of RAM (Minisforums,...):** * **Pros:** Most affordable option, relatively portable. * **Cons:** Likely lower performance compared to M4 Macs. I want to make the most practical choice for running inference efficiently, with the ability to keep the system running 24/7. Has anyone tried running a 70B LLM on similar setups? What’s your experience with performance? Any advice or alternatives I haven’t considered would be greatly appreciated! Thanks in advance for your input!
2024-12-14T06:16:44
https://www.reddit.com/r/LocalLLaMA/comments/1hdwphr/help_me_choose_the_best_setup_for_local_llm/
skyline159
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hdwphr
false
null
t3_1hdwphr
/r/LocalLLaMA/comments/1hdwphr/help_me_choose_the_best_setup_for_local_llm/
false
false
self
1
null
eGPU Enclosure with 2 GPUs
12
I have a computer with a 7950X, 96GB RAM and dual 4090s, and it has been great, however, now I need to scale it to add more GPU to run models running all the time. I am wondering if it is feasible to add 4 more GPUs in a eGPU setup through USB4 (2 GPUs in each, so 20GBs per GPU), or I should just build another computer. I don’t have a lot of budget left, so trying to go for the cheaper solution. For reference, I added a single GPU in an eGPU enclosure, and it worked nicely, but I only have 2 USB4 ports on the motherboard, so trying to maximize usage.
2024-12-14T07:32:26
https://www.reddit.com/r/LocalLLaMA/comments/1hdxrts/egpu_enclosure_with_2_gpus/
inaem
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hdxrts
false
null
t3_1hdxrts
/r/LocalLLaMA/comments/1hdxrts/egpu_enclosure_with_2_gpus/
false
false
self
12
null
XAI Rolls Out Faster, Smarter Grok Model Amid Legal Tussle With OpenAI
0
2024-12-14T07:35:24
https://techcrawlr.com/xai-rolls-out-faster-smarter-grok-model-amid-legal-tussle-with-openai/
EthanWilliams_TG
techcrawlr.com
1970-01-01T00:00:00
0
{}
1hdxt95
false
null
t3_1hdxt95
/r/LocalLLaMA/comments/1hdxt95/xai_rolls_out_faster_smarter_grok_model_amid/
false
false
https://b.thumbs.redditm…5GW9bQQOmD3s.jpg
0
{'enabled': False, 'images': [{'id': 'SLZhVEJFMSd8Lzb4Lu4u6ul5yiYQGJr-auDuWfhgoOk', 'resolutions': [{'height': 81, 'url': 'https://external-preview.redd.it/iMMcFoY7Jc2UQNcQW69JiVdYeraPwzcIO8T11WAbBJs.jpg?width=108&crop=smart&auto=webp&s=c9c8bdb43f4a8e41ae368c059cf5674fe938dcfb', 'width': 108}, {'height': 162, 'url': 'https://external-preview.redd.it/iMMcFoY7Jc2UQNcQW69JiVdYeraPwzcIO8T11WAbBJs.jpg?width=216&crop=smart&auto=webp&s=7b11fdbdd599c7a5e2ac6346ee2e6ab2d494cf7d', 'width': 216}, {'height': 240, 'url': 'https://external-preview.redd.it/iMMcFoY7Jc2UQNcQW69JiVdYeraPwzcIO8T11WAbBJs.jpg?width=320&crop=smart&auto=webp&s=4f8542ed6156e537db52afc58a8fe6bda3bda2b7', 'width': 320}, {'height': 480, 'url': 'https://external-preview.redd.it/iMMcFoY7Jc2UQNcQW69JiVdYeraPwzcIO8T11WAbBJs.jpg?width=640&crop=smart&auto=webp&s=3e7560e00e0d202502aa24e6d5a2678c3915566a', 'width': 640}, {'height': 720, 'url': 'https://external-preview.redd.it/iMMcFoY7Jc2UQNcQW69JiVdYeraPwzcIO8T11WAbBJs.jpg?width=960&crop=smart&auto=webp&s=b9b1891940bcdd31dc325549b0ccaadb6fe283b3', 'width': 960}], 'source': {'height': 768, 'url': 'https://external-preview.redd.it/iMMcFoY7Jc2UQNcQW69JiVdYeraPwzcIO8T11WAbBJs.jpg?auto=webp&s=28e9bdfc7b1c356204bc2cbc856ee06c96bc87cb', 'width': 1024}, 'variants': {}}]}
New to running LLMs. Not sure what I need but I can share what I've got
0
I've got a relatively low end laptop that has 24gb of RAM and an Intel Pentium processor. I'm not quite sure what other parameters go into this sort of thing but I'd like to learn. Could you folks advise me on the following? 1. What should I know about running LLMs? 2. What other information should I provide to get a better idea of the models I can run locally? From what I understand, they can be extremely intensive and complicated.
2024-12-14T07:40:24
https://www.reddit.com/r/LocalLLaMA/comments/1hdxvov/new_to_running_llms_not_sure_what_i_need_but_i/
silveracrot
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hdxvov
false
null
t3_1hdxvov
/r/LocalLLaMA/comments/1hdxvov/new_to_running_llms_not_sure_what_i_need_but_i/
false
false
self
0
null
Is anyone using Lobe chat as their local LLM Platform?
5
I just stumbled upon this platform and would love to hear your thoughts about it. How does it compare to Open WebUI? Thanks!
2024-12-14T07:43:57
https://www.reddit.com/r/LocalLLaMA/comments/1hdxxd6/is_anyone_using_lobe_chat_as_their_local_llm/
Endlesssky27
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hdxxd6
false
null
t3_1hdxxd6
/r/LocalLLaMA/comments/1hdxxd6/is_anyone_using_lobe_chat_as_their_local_llm/
false
false
self
5
null
RWKV v7 has been released!
1
[removed]
2024-12-14T09:50:14
https://www.reddit.com/r/LocalLLaMA/comments/1hdzpbl/rwkv_v7_has_been_released/
Competitive-Rain5603
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hdzpbl
false
null
t3_1hdzpbl
/r/LocalLLaMA/comments/1hdzpbl/rwkv_v7_has_been_released/
false
false
self
1
null
Comparative Performance of Fine-Tuned LLaMA-3 Models
4
I recently fine-tuned two LLaMA-3 models and I'm looking for some insights. I worked with the original LLaMA-3 (8K context) and the newer LLaMA-3.1 (128K context). Both were trained on the same dataset, using a 3K token context limit due to VRAM constraints, for 3 epochs each. Unexpectedly, the older LLaMA-3 seems to be performing better. It has better prompt adherence and generally feels more accurate. This surprised me, given that LLaMA-3.1 is newer and has a larger context window. I'm wondering if more training epochs would help LLaMA-3.1 improve? I'm also concerned that the 3K token limit during training might be affecting LLaMA-3.1's performance, considering it's designed for a 128K context. Has anyone had similar experiences or have suggestions for optimizing LLaMA-3.1's performance in this scenario? Any thoughts or advice would be appreciated.
2024-12-14T10:02:45
https://www.reddit.com/r/LocalLLaMA/comments/1hdzvfk/comparative_performance_of_finetuned_llama3_models/
lolzinventor
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hdzvfk
false
null
t3_1hdzvfk
/r/LocalLLaMA/comments/1hdzvfk/comparative_performance_of_finetuned_llama3_models/
false
false
self
4
null
Best model for code generation and modification
1
Is [qwen2.5-coder-32b-instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct) the best model I can run on a 4090 for code generation and modification? Also are there any benchmarks on how good it is at code modification?
2024-12-14T10:19:26
https://www.reddit.com/r/LocalLLaMA/comments/1he03dy/best_model_for_code_generation_and_modification/
kintrith
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he03dy
false
null
t3_1he03dy
/r/LocalLLaMA/comments/1he03dy/best_model_for_code_generation_and_modification/
false
false
self
1
{'enabled': False, 'images': [{'id': 'UdHbdJ6iQDniaeg5fsHHGlJC12ZCjoJ9S30-8lTTvC0', 'resolutions': [{'height': 58, 'url': 'https://external-preview.redd.it/BSpb6O-vjYOe3ocFLMhAp-ZgX7zA9eNafsIlsPev3qE.jpg?width=108&crop=smart&auto=webp&s=91e1349c690816897090c8f6991eb1bc0a18e6f0', 'width': 108}, {'height': 116, 'url': 'https://external-preview.redd.it/BSpb6O-vjYOe3ocFLMhAp-ZgX7zA9eNafsIlsPev3qE.jpg?width=216&crop=smart&auto=webp&s=99102bb2cbd49c3d65ca95ab37183850865c0afa', 'width': 216}, {'height': 172, 'url': 'https://external-preview.redd.it/BSpb6O-vjYOe3ocFLMhAp-ZgX7zA9eNafsIlsPev3qE.jpg?width=320&crop=smart&auto=webp&s=8bf0a8096cf4c13f620f7920e6dcd1cec26af504', 'width': 320}, {'height': 345, 'url': 'https://external-preview.redd.it/BSpb6O-vjYOe3ocFLMhAp-ZgX7zA9eNafsIlsPev3qE.jpg?width=640&crop=smart&auto=webp&s=f6de2a793b3a87abcb71749e6dd061daf2eae9b6', 'width': 640}, {'height': 518, 'url': 'https://external-preview.redd.it/BSpb6O-vjYOe3ocFLMhAp-ZgX7zA9eNafsIlsPev3qE.jpg?width=960&crop=smart&auto=webp&s=340fbacf619ad13ecc0b079ae68065ea9b347907', 'width': 960}, {'height': 583, 'url': 'https://external-preview.redd.it/BSpb6O-vjYOe3ocFLMhAp-ZgX7zA9eNafsIlsPev3qE.jpg?width=1080&crop=smart&auto=webp&s=617d77f4409dd7a7fdfa9f588bb20f2f7d429671', 'width': 1080}], 'source': {'height': 648, 'url': 'https://external-preview.redd.it/BSpb6O-vjYOe3ocFLMhAp-ZgX7zA9eNafsIlsPev3qE.jpg?auto=webp&s=1dfd6a2e5be91360ad9eb6eb0c2c11818ef79972', 'width': 1200}, 'variants': {}}]}
State of the art PDF interpretation
0
I would like to tap into the collective experience to point me in the right direction please. My task is to reconstruct newspaper articles from scanned images of paper editions. On top of the OCR task, there’s also the problem of segmenting each printed article and reconstructing the article continuation on another page. Any ideas for this? I did a little experiment with a traditional OCR package which outputs a rather dirty text and feeding it into a smallish LLM asking it to create a clean text from it and this task worked quite well. Any ideas, hints? Thanks
2024-12-14T10:33:03
https://www.reddit.com/r/LocalLLaMA/comments/1he09qc/state_of_the_art_pdf_interpretation/
olddoglearnsnewtrick
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he09qc
false
null
t3_1he09qc
/r/LocalLLaMA/comments/1he09qc/state_of_the_art_pdf_interpretation/
false
false
self
0
null
LLama 3 token embeddings?
1
[removed]
2024-12-14T11:03:53
https://www.reddit.com/r/LocalLLaMA/comments/1he0opz/llama_3_token_embeddings/
xinyuforsa
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he0opz
false
null
t3_1he0opz
/r/LocalLLaMA/comments/1he0opz/llama_3_token_embeddings/
false
false
self
1
null
LLama 3 token embeddings?
1
[removed]
2024-12-14T11:03:54
https://www.reddit.com/r/LocalLLaMA/comments/1he0oqb/llama_3_token_embeddings/
xinyuforsa
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he0oqb
false
null
t3_1he0oqb
/r/LocalLLaMA/comments/1he0oqb/llama_3_token_embeddings/
false
false
self
1
null
Parameter sizes for closed models
0
I know Gemini 1.5 is about 1.5 trillion parameters. Do we know parameter sizes of flash models like Gemini 2.0 flash? Comparing to that what is parameter size for O1 or O1 mini? Just curious to put in perspective how far behind are the open weight models.
2024-12-14T11:37:22
https://www.reddit.com/r/LocalLLaMA/comments/1he14sj/parameter_sizes_for_closed_models/
karkoon83
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he14sj
false
null
t3_1he14sj
/r/LocalLLaMA/comments/1he14sj/parameter_sizes_for_closed_models/
false
false
self
0
null
Moondream 2B fails to extract info from Screenshot of financial statement
1
[removed]
2024-12-14T11:37:30
https://www.reddit.com/r/LocalLLaMA/comments/1he14v0/moondream_2b_fails_to_extract_info_from/
Academic_Collar_5488
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he14v0
false
null
t3_1he14v0
/r/LocalLLaMA/comments/1he14v0/moondream_2b_fails_to_extract_info_from/
false
false
self
1
null
QwQ 32B speculative speed and logic results on M1 Max using llama.cpp
1
[removed]
2024-12-14T11:37:57
https://www.reddit.com/r/LocalLLaMA/comments/1he1533/qwq_32b_speculative_speed_and_logic_results_on_m1/
AfternoonOk5482
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he1533
false
null
t3_1he1533
/r/LocalLLaMA/comments/1he1533/qwq_32b_speculative_speed_and_logic_results_on_m1/
false
false
self
1
{'enabled': False, 'images': [{'id': 'jjPEKcEamye-CwlbEJ8Q3BZCcBu19JLidD1AIa_kN6s', 'resolutions': [{'height': 81, 'url': 'https://external-preview.redd.it/DtasKbj6PNwgtliW_ZIT7vSV-qdedS4B5K1g3MsugDk.jpg?width=108&crop=smart&auto=webp&s=22a30b9f253981de98172eaaca80b0a34e0f7b50', 'width': 108}, {'height': 162, 'url': 'https://external-preview.redd.it/DtasKbj6PNwgtliW_ZIT7vSV-qdedS4B5K1g3MsugDk.jpg?width=216&crop=smart&auto=webp&s=a594d854b4a4531a0063ca6ccc1a77c4a42b0e5b', 'width': 216}, {'height': 240, 'url': 'https://external-preview.redd.it/DtasKbj6PNwgtliW_ZIT7vSV-qdedS4B5K1g3MsugDk.jpg?width=320&crop=smart&auto=webp&s=d5d25b03e403546e232691b7774637051cda2d33', 'width': 320}], 'source': {'height': 360, 'url': 'https://external-preview.redd.it/DtasKbj6PNwgtliW_ZIT7vSV-qdedS4B5K1g3MsugDk.jpg?auto=webp&s=93b21477c94b1f66b475b5869f4bdcb797448f07', 'width': 480}, 'variants': {}}]}
Help to set-up local Llama 3.3 70b 4-bit with dual rtx3090
1
[removed]
2024-12-14T11:58:12
https://www.reddit.com/r/LocalLLaMA/comments/1he1eyg/help_to_setup_local_llama_33_70b_4bit_with_dual/
cosmo-pax
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he1eyg
false
null
t3_1he1eyg
/r/LocalLLaMA/comments/1he1eyg/help_to_setup_local_llama_33_70b_4bit_with_dual/
false
false
self
1
null
🌟 𝗨𝗻𝗱𝗲𝗿𝘀𝘁𝗮𝗻𝗱𝗶𝗻𝗴 𝗦𝗲𝗮𝗿𝗰𝗵 𝗧𝗲𝗰𝗵𝗻𝗶𝗾𝘂𝗲𝘀 𝗶𝗻 𝗟𝗟𝗠 𝗔𝗽𝗽𝗹𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 🌟
1
2024-12-14T12:05:14
https://i.redd.it/uhkryt091t6e1.png
Icy_Advisor_3508
i.redd.it
1970-01-01T00:00:00
0
{}
1he1iwf
false
null
t3_1he1iwf
/r/LocalLLaMA/comments/1he1iwf/𝗨𝗻𝗱𝗲𝗿𝘀𝘁𝗮𝗻𝗱𝗶𝗻𝗴_𝗦𝗲𝗮𝗿𝗰𝗵_𝗧𝗲𝗰𝗵𝗻𝗶𝗾𝘂𝗲𝘀_𝗶𝗻_𝗟𝗟𝗠/
false
false
https://b.thumbs.redditm…YBuD4FFecwYg.jpg
1
{'enabled': True, 'images': [{'id': 'VIjyMAVcjtiOqxN9tQJZA1xhaDaylZWgzg3pQGDheTY', 'resolutions': [{'height': 108, 'url': 'https://preview.redd.it/uhkryt091t6e1.png?width=108&crop=smart&auto=webp&s=eaacac9ebbf11a53a5059f71147014a755c5ef7e', 'width': 108}, {'height': 216, 'url': 'https://preview.redd.it/uhkryt091t6e1.png?width=216&crop=smart&auto=webp&s=6f36d4837464e69810788caf000584962d5d8ad1', 'width': 216}, {'height': 320, 'url': 'https://preview.redd.it/uhkryt091t6e1.png?width=320&crop=smart&auto=webp&s=7c4aff6700194f6288c1d284d3ffb9e0f7e9e0ed', 'width': 320}, {'height': 640, 'url': 'https://preview.redd.it/uhkryt091t6e1.png?width=640&crop=smart&auto=webp&s=275a354a27b0ac67aedbd61024999c81cc088575', 'width': 640}, {'height': 960, 'url': 'https://preview.redd.it/uhkryt091t6e1.png?width=960&crop=smart&auto=webp&s=51dd0c6d931cce321f15b53805866e0efe73ee13', 'width': 960}, {'height': 1080, 'url': 'https://preview.redd.it/uhkryt091t6e1.png?width=1080&crop=smart&auto=webp&s=9402cd00c9aee1b5a02de6986ab3a632e6b0241d', 'width': 1080}], 'source': {'height': 1200, 'url': 'https://preview.redd.it/uhkryt091t6e1.png?auto=webp&s=4bc98ba818880997d0b02cdc3573f5fe8270f237', 'width': 1200}, 'variants': {}}]}
Problems setting up 70b 4-bit llama 3.3 on my dual rtx 3090 set-up
0
Hi, so I thought maybe a couple of questions would be nice to be in one place for entry level localllmists with multiple GPU set-ups like myself: I am trying to set-up a Llama 3.3 4-bit model and run into problems after problems. A couple of questions: First of all, is there a good manual for installation and general set-up? GPTQ works with multiple GPUs, other typical hugging face formats as well? (I read of gguf for multiple GPUs but I read a lot it's not supposed to?) which OS, environment and GUI are recommended? I work with ChatGPT plus and Internet documentations, yet I haven't managed it passed the installation process, although I had local models already running a year ago :/ Thanks, deeply appreciated!
2024-12-14T12:09:51
https://www.reddit.com/r/LocalLLaMA/comments/1he1l99/problems_setting_up_70b_4bit_llama_33_on_my_dual/
cosmo-pax
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he1l99
false
null
t3_1he1l99
/r/LocalLLaMA/comments/1he1l99/problems_setting_up_70b_4bit_llama_33_on_my_dual/
false
false
self
0
null
Qwen dev: New stuff very soon
766
2024-12-14T12:21:58
https://i.redd.it/2nsq6njg3t6e1.png
AaronFeng47
i.redd.it
1970-01-01T00:00:00
0
{}
1he1rli
false
null
t3_1he1rli
/r/LocalLLaMA/comments/1he1rli/qwen_dev_new_stuff_very_soon/
false
false
https://b.thumbs.redditm…GrxjFUtPCmXs.jpg
766
{'enabled': True, 'images': [{'id': 'tk8AJboabCt3batyt8Gs-vXESpsZ9D5COtsIJERusVs', 'resolutions': [{'height': 102, 'url': 'https://preview.redd.it/2nsq6njg3t6e1.png?width=108&crop=smart&auto=webp&s=3d2cf8aa8b76f64042fe0f96a05d7023842afc81', 'width': 108}, {'height': 205, 'url': 'https://preview.redd.it/2nsq6njg3t6e1.png?width=216&crop=smart&auto=webp&s=8ff9b39da051eadb8bce11e402856e734dc84d3b', 'width': 216}, {'height': 303, 'url': 'https://preview.redd.it/2nsq6njg3t6e1.png?width=320&crop=smart&auto=webp&s=1f435c610b8db6e9c984ac1f1eb2d5cae05905bb', 'width': 320}, {'height': 607, 'url': 'https://preview.redd.it/2nsq6njg3t6e1.png?width=640&crop=smart&auto=webp&s=0ce6e06d1af2c094c7aa278c9ab791e86962b4f4', 'width': 640}, {'height': 911, 'url': 'https://preview.redd.it/2nsq6njg3t6e1.png?width=960&crop=smart&auto=webp&s=263158f9e6cb15d6945f5e9ea3f361e6630bcd79', 'width': 960}, {'height': 1025, 'url': 'https://preview.redd.it/2nsq6njg3t6e1.png?width=1080&crop=smart&auto=webp&s=c137178392b26a5f2ef5453b7effd9fb3f03b289', 'width': 1080}], 'source': {'height': 1367, 'url': 'https://preview.redd.it/2nsq6njg3t6e1.png?auto=webp&s=3e0655578b986f97adf1da1a77f95b1b38584434', 'width': 1440}, 'variants': {}}]}
Compute for AI workloads
0
Hi, I am currently deciding between going for M1 Max 32/64gb ram or one of the higher end MacBook models with 32GB minimum. My overall ambition is to train and learn models, experiment with different training methods and apply my own supervised and unsupervised learning in different domains. Overall, applying deep learning methodologies in my own personal projects. I want to also make sure that for the future, the compute is satisfactory. Such as for new model/training methods etc. Do you guys think it’s a bit too ambitious that I’m looking for a MacBook/PC with future proofing in mind? Or would you do something like create a GPU rig and do my work with cuda on windows for example. I want to make this a mega thread if possible, thank you!
2024-12-14T12:27:18
https://www.reddit.com/r/LocalLLaMA/comments/1he1uej/compute_for_ai_workloads/
metallisation
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he1uej
false
null
t3_1he1uej
/r/LocalLLaMA/comments/1he1uej/compute_for_ai_workloads/
false
false
self
0
null
Suggest some human-like models
4
Hi! What are your favorite models that doesn't talk like an assistant, something that sounds human. I really liked the tone and writing style of nemo and gemma2 sppo for example. Was just wondering if theres any models ive been sleeping on. Im mainly concerned with 7-14B, but any suggestions are welcome. thanks.
2024-12-14T12:49:05
https://www.reddit.com/r/LocalLLaMA/comments/1he26eq/suggest_some_humanlike_models/
250000mph
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he26eq
false
null
t3_1he26eq
/r/LocalLLaMA/comments/1he26eq/suggest_some_humanlike_models/
false
false
self
4
null
Looking for Recommendations: How to Use Python for Local Scriptwriting with AI (Without GPT API)
1
[removed]
2024-12-14T12:49:16
https://www.reddit.com/r/LocalLLaMA/comments/1he26il/looking_for_recommendations_how_to_use_python_for/
LividObjective3362
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he26il
false
null
t3_1he26il
/r/LocalLLaMA/comments/1he26il/looking_for_recommendations_how_to_use_python_for/
false
false
self
1
null
Voice-Driven TinyLLama on Raspberry Pi 4
1
[removed]
2024-12-14T13:06:50
https://www.reddit.com/r/LocalLLaMA/comments/1he2hb8/voicedriven_tinyllama_on_raspberry_pi_4/
SnooRevelations5257
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he2hb8
false
null
t3_1he2hb8
/r/LocalLLaMA/comments/1he2hb8/voicedriven_tinyllama_on_raspberry_pi_4/
false
false
self
1
null
Voice-Driven TinyLLama on Raspberry Pi 4
1
[removed]
2024-12-14T13:11:57
https://www.reddit.com/r/LocalLLaMA/comments/1he2kgq/voicedriven_tinyllama_on_raspberry_pi_4/
SnooRevelations5257
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he2kgq
false
null
t3_1he2kgq
/r/LocalLLaMA/comments/1he2kgq/voicedriven_tinyllama_on_raspberry_pi_4/
false
false
self
1
null
I created an entiry project with Claude + ChatGPT + Qwen: Automated Python Project Documentation Generator: Your New Code Analysis Companion (AMA)
17
Hey Reddit! 👋 I've just created a powerful tool that transforms how we document Python projects - an automated documentation generator that uses AI and static code analysis to create comprehensive project insights. [https://github.com/charmandercha/ArchiDoc](https://github.com/charmandercha/ArchiDoc) \## 🚀 What Does It Actually Do? Imagine having an AI assistant that can: \- Scan your entire Python project \- Extract detailed code structure \- Generate human-readable documentation \- Provide insights about module interactions \## 📦 Real-World Example: ReShade Linux Port Documentation Let's say you're attempting a complex project like porting ReShade to Linux. Here's how this tool could help: 1. \*\*Initial Project Mapping\*\* \- Automatically identifies all source files \- Lists classes, functions, and module dependencies \- Creates a bird's-eye view of the project architecture 2. \*\*Detailed File Analysis\*\* \- Generates summaries for each key file \- Highlights potential cross-platform compatibility challenges \- Provides insights into code complexity 3. \*\*Interaction Insights\*\* \- Describes how different modules interact \- Helps identify potential refactoring opportunities \- Assists in understanding system design \## 🛠 Current State & Limitations \*\*Important Caveats:\*\* \- Currently tested only with the textgrad project \- Requires manual adjustments for different project structures \- Depends on Ollama and LLaMA models \- Works best with conventional Python project layouts \## 🤝 Community Call to Action I'm developing a tool and need your help to make it more generic and useful for a variety of projects. So far, it has been used exclusively in the 'textgrad' project as an experiment to better understand its techniques and replicate them in other contexts. So i need YOUR help to: \- Support for more diverse project structures \- Enhanced language model interactions \- Better error handling \- Multi-language project support \## 💡 Potential Use Cases \- Academic project documentation \- Open-source project onboarding \- Legacy code understanding \- Quick architectural overviews \## 🔧 Tech Stack \- Python AST for code parsing \- Ollama with LLaMA for AI insights \- Supports JSON/Markdown/HTML outputs \## 📄 Licensing Fully MIT licensed - use it, modify it, commercialize it. Just keep the original attribution! [https://github.com/charmandercha/ArchiDoc](https://github.com/charmandercha/ArchiDoc)
2024-12-14T13:26:44
https://www.reddit.com/r/LocalLLaMA/comments/1he2u09/i_created_an_entiry_project_with_claude_chatgpt/
charmander_cha
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he2u09
false
null
t3_1he2u09
/r/LocalLLaMA/comments/1he2u09/i_created_an_entiry_project_with_claude_chatgpt/
false
false
self
17
{'enabled': False, 'images': [{'id': '3AzzKoYKWfOVBW_ryUdDRm5cetLA6uFOskV6-ZwwFZ0', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/v-NgcAu9Co7R4H1RmxAkXu-Szd97o40cnDbsS1nFaww.jpg?width=108&crop=smart&auto=webp&s=d81371b93f02e18d35cab9b6540ed2e98f46e080', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/v-NgcAu9Co7R4H1RmxAkXu-Szd97o40cnDbsS1nFaww.jpg?width=216&crop=smart&auto=webp&s=ac41420799a0b4f68a99445b4cbfdf7ca2aecfef', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/v-NgcAu9Co7R4H1RmxAkXu-Szd97o40cnDbsS1nFaww.jpg?width=320&crop=smart&auto=webp&s=3e41ccdb39c5243f22db8fba2120cce0c968501c', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/v-NgcAu9Co7R4H1RmxAkXu-Szd97o40cnDbsS1nFaww.jpg?width=640&crop=smart&auto=webp&s=83e9bffe04f15054754f8ba95f44e6120da34671', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/v-NgcAu9Co7R4H1RmxAkXu-Szd97o40cnDbsS1nFaww.jpg?width=960&crop=smart&auto=webp&s=d17d6a62d726b3a6a98a17a7f752d9629205e848', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/v-NgcAu9Co7R4H1RmxAkXu-Szd97o40cnDbsS1nFaww.jpg?width=1080&crop=smart&auto=webp&s=5efa067f36d5bd381837b03736e2f5850af96867', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/v-NgcAu9Co7R4H1RmxAkXu-Szd97o40cnDbsS1nFaww.jpg?auto=webp&s=41d51196762104ac3cb6e64645da7949e5a528b0', 'width': 1200}, 'variants': {}}]}
Speed Test: Llama-3.3-70b on 2xRTX-3090 vs M3-Max 64GB Against Various Prompt Sizes
96
I've read a lot of comments about Mac vs rtx-3090, so I tested Llama-3.3-70b-instruct-q4_K_M with various prompt sizes on 2xRTX-3090 and M3-Max 64GB. * Starting 20k context, I had to use KV quantization of q8_0 for RTX-3090 since it won't fit on 2xRTX-3090. * With 16k prompt, 2xRTX-3090 processes 7.2x faster, and generates 1.79x faster. * With 32k prompt, 2xRTX-3090 processes 6.75x faster, and generates 1.28x faster. * Both used llama.cpp b4326. * Each test is one shot generation (not accumulating prompt via multiturn chat style). * I enabled Flash attention and set temperature to 0.0 and the random seed to 1000. * Total duration is total execution time, not total time reported from llama.cpp. * Sometimes you'll see shorter total duration for longer prompts than shorter prompts because it generated less tokens for longer prompts. * Based on [another benchmark](https://www.reddit.com/r/LocalLLaMA/comments/1h51w32/benchmarks_for_llama_31_8b_q4_k_m_8b_q5_k_m_e_70b/), M4-Max seems to process prompt 16% faster than M3-Max. ### 2 x RTX-3090 | Prompt Tokens | Prompt Processing Speed | Generated Tokens | Token Generation Speed | Total Execution Time | | --- | --- | --- | --- | --- | | 258 | 406.33 | 576 | 17.87 | 44s | | 687 | 504.34 | 962 | 17.78 | 1m6s | | 1169 | 514.33 | 973 | 17.63 | 1m8s | | 1633 | 520.99 | 790 | 17.51 | 59s | | 2171 | 541.27 | 910 | 17.28 | 1m7s | | 3226 | 516.19 | 1155 | 16.75 | 1m26s | | 4124 | 511.85 | 1071 | 16.37 | 1m24s | | 6094 | 493.19 | 965 | 15.60 | 1m25s | | 8013 | 479.91 | 847 | 14.91 | 1m24s | | 10086 | 463.59 | 970 | 14.18 | 1m41s | | 12008 | 449.79 | 926 | 13.54 | 1m46s | | 14064 | 436.15 | 910 | 12.93 | 1m53s | | 16001 | 423.70 | 806 | 12.45 | 1m53s | | 18209 | 410.18 | 1065 | 11.84 | 2m26s | | 20234 | 399.54 | 862 | 10.05 | 2m27s | | 22186 | 385.99 | 877 | 9.61 | 2m42s | | 24244 | 375.63 | 802 | 9.21 | 2m43s | | 26032 | 366.70 | 793 | 8.85 | 2m52s | | 28000 | 357.72 | 798 | 8.48 | 3m13s | | 30134 | 348.32 | 552 | 8.19 | 2m45s | | 32170 | 338.56 | 714 | 7.88 | 3m17s | ### M3-Max 64GB | Prompt Tokens | Prompt Processing Speed | Generated Tokens | Token Generation Speed | Total Execution Time | | --- | --- | --- | --- | --- | | 258 | 67.81 | 599 | 8.14 | 1m33s | | 687 | 65.76 | 1999 | 8.09 | 4m18s | | 1169 | 71.45 | 581 | 7.99 | 1m30s | | 1633 | 72.12 | 891 | 7.94 | 2m16s | | 2171 | 71.53 | 799 | 7.88 | 2m13s | | 3226 | 69.49 | 612 | 7.78 | 2m6s | | 4124 | 67.77 | 825 | 7.72 | 2m49s | | 6094 | 65.99 | 642 | 7.62 | 2m58s | | 8013 | 64.13 | 863 | 7.46 | 4m2s | | 10086 | 62.88 | 766 | 7.35 | 4m26s | | 12008 | 61.61 | 914 | 7.34 | 5m21s | | 14064 | 60.23 | 799 | 7.21 | 5m46s | | 16001 | 58.82 | 714 | 6.96 | 6m16s | | 18209 | 57.70 | 766 | 6.74 | 7m11s | | 20234 | 56.46 | 786 | 6.59 | 7m59s | | 22186 | 55.12 | 724 | 6.72 | 8m32s | | 24244 | 53.88 | 772 | 6.62 | 9m28s | | 26032 | 52.73 | 510 | 6.43 | 9m35s | | 28000 | 52.00 | 768 | 6.23 | 11m4s | | 30134 | 50.90 | 529 | 6.18 | 11m20s | | 32170 | 50.13 | 596 | 6.16 | 12m21s | ### Few thoughts from my previous posts: Whether Mac is right for you depends on your use case and speed tolerance. If you want to do serious research/development with PyTorch, forget Mac. You'll run into things like xxx operation is not supported on MPS. Also flash attention Python library (not llama.cpp) doesn't support Mac. If you want to use 70b models, skip 48GB in my opinion and get a model with 64GB+, instead. KV quantization is extremely slow on Mac, so you definitely need memory for context and maybe some background task. Remember, you have to leave some memory for MacOS and whatever application you need to run along side. Especially if you're thinking about older models, high power mode in system settings is only available on [certain models](https://www.reddit.com/r/LocalLLaMA/comments/1gyfqgz/if_you_want_to_benchmark_speed_on_macbook_make/). Otherwise you get throttled like crazy. For example, it can decrease [from 13m (high power) to 1h30m (no high power)](https://www.reddit.com/r/LocalLLaMA/comments/1h51w32/benchmarks_for_llama_31_8b_q4_k_m_8b_q5_k_m_e_70b/). For tasks like processing long documents or codebases, you should be prepared to wait around. Once the long prompt is processed, subsequent chat should go relatively fast with prompt caching. For these, I just use ChatGPT for quality anyways. Once in a while when I need more power for heavy tasks like fine-tuning, I rent GPUs from Runpod. If your main use is casual chatting or asking like coding question with short prompts, the speed is adequate in my opinion. Personally, I find 7 tokens/second very usable and even 5 tokens/second tolerable. For context, people read an average of [238 words per minute](https://www.sciencedirect.com/science/article/abs/pii/S0749596X19300786). It depends on the model, but 5 tokens/second roughly translates to 225 words per minute: 5 (tokens) * 60 (seconds) * 0.75 (tks/word) Mac is slower, but it has advantage of portability, memory size, energy, quieter noise. It provides great out of the box experience for LLM inference. NVidia is faster and has great support for ML libraries.However, especially with multiple GPUs, you have to deal with loud fan noise (jet engine compared to Mac), higher electricity consumption, and the hassle of dealing with drivers, tuning, cooling, crazy PSU, risers, cables, etc. I read that in some cases, you even need a special dedicated electrical socket to support the load. It's a project for hardware boys/girls who enjoy building their own Frankenstein machines. 😄
2024-12-14T13:28:20
https://www.reddit.com/r/LocalLLaMA/comments/1he2v2n/speed_test_llama3370b_on_2xrtx3090_vs_m3max_64gb/
chibop1
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he2v2n
false
null
t3_1he2v2n
/r/LocalLLaMA/comments/1he2v2n/speed_test_llama3370b_on_2xrtx3090_vs_m3max_64gb/
false
false
self
96
null
Installing 2nd GPU
1
[removed]
2024-12-14T13:40:20
https://www.reddit.com/gallery/1he32zx
Notorious_ESG
reddit.com
1970-01-01T00:00:00
0
{}
1he32zx
false
null
t3_1he32zx
/r/LocalLLaMA/comments/1he32zx/installing_2nd_gpu/
false
false
https://b.thumbs.redditm…1LNzY2ff46Ms.jpg
1
null
Mac stuff: Mac Studio M2 Ultra or MacBook M2/M3 chips
0
Hi Everyone, I did a search and I am intrigued with what I found regarding using Macs for inference and chatting. Refurbished Mac M2 ultra Studios and MacBooks with M2/M3 max chips (96-128 gb RAM) all seem to fall within my budget of 4-5k. My understanding is that a Mac Studio M2 Ultra is the strongest of the options, is this correct? In addition, I read that with MacBooks M2 rigs are as fast or faster than the M3 machines for inference/chatting because of bandwidth differences? Is that accurate? Happy to be schooled as a noob. Thxs!
2024-12-14T13:59:40
https://www.reddit.com/r/LocalLLaMA/comments/1he3flx/mac_stuff_mac_studio_m2_ultra_or_macbook_m2m3/
MassiveLibrarian4861
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he3flx
false
null
t3_1he3flx
/r/LocalLLaMA/comments/1he3flx/mac_stuff_mac_studio_m2_ultra_or_macbook_m2m3/
false
false
self
0
null
So what's SSI going to ship
1
Would it be a new LLM based chatbot? He says he wants to build AGI in peace with no distractions for shipping products so what he is doing. Can anyone explain in depth?
2024-12-14T14:16:50
https://www.reddit.com/r/LocalLLaMA/comments/1he3s1n/so_whats_ssi_going_to_ship/
Proof-Indication-923
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he3s1n
false
null
t3_1he3s1n
/r/LocalLLaMA/comments/1he3s1n/so_whats_ssi_going_to_ship/
false
false
self
1
null
Former OpenAI researcher and whistleblower found dead at age 26
393
2024-12-14T14:30:19
https://www.cnbc.com/2024/12/13/former-openai-researcher-and-whistleblower-found-dead-at-age-26.html
noblex33
cnbc.com
1970-01-01T00:00:00
0
{}
1he41jt
false
null
t3_1he41jt
/r/LocalLLaMA/comments/1he41jt/former_openai_researcher_and_whistleblower_found/
false
false
https://b.thumbs.redditm…NY9u2JcFWnvo.jpg
393
{'enabled': False, 'images': [{'id': 'NFUYc5M0iWzTsyonlv3o6FTo3t8c7NO5isoasmsQGec', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/Ir-pfkICeSCAFiGJ2WET5xKBmnGJbjXODxt9_O1-xsE.jpg?width=108&crop=smart&auto=webp&s=393ddc233cacd334ba3b732979af089578d6aae0', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/Ir-pfkICeSCAFiGJ2WET5xKBmnGJbjXODxt9_O1-xsE.jpg?width=216&crop=smart&auto=webp&s=ee7b7d453d76e6d6755859d5696756f283f22ac5', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/Ir-pfkICeSCAFiGJ2WET5xKBmnGJbjXODxt9_O1-xsE.jpg?width=320&crop=smart&auto=webp&s=ec40e3cc3c5b405234e1163bf26689dd6275aaac', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/Ir-pfkICeSCAFiGJ2WET5xKBmnGJbjXODxt9_O1-xsE.jpg?width=640&crop=smart&auto=webp&s=cbfebeb85898eafb29c0a12c221517157a26ef2d', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/Ir-pfkICeSCAFiGJ2WET5xKBmnGJbjXODxt9_O1-xsE.jpg?width=960&crop=smart&auto=webp&s=9d23ab71663541b08e4980ac982e518a27eae013', 'width': 960}, {'height': 607, 'url': 'https://external-preview.redd.it/Ir-pfkICeSCAFiGJ2WET5xKBmnGJbjXODxt9_O1-xsE.jpg?width=1080&crop=smart&auto=webp&s=3366c6d9eb38024796c17eb4f7e6a06b7eb75efc', 'width': 1080}], 'source': {'height': 1080, 'url': 'https://external-preview.redd.it/Ir-pfkICeSCAFiGJ2WET5xKBmnGJbjXODxt9_O1-xsE.jpg?auto=webp&s=092fefbb3b3d0b9b9f423f2f6d661ea7e4a4c767', 'width': 1920}, 'variants': {}}]}
I made a MacOS app for myself to use Qwq as a thinking model before a Qwen response.
1
[removed]
2024-12-14T14:36:59
https://www.reddit.com/r/LocalLLaMA/comments/1he46g8/i_made_a_macos_app_for_myself_to_use_qwq_as_a/
Valuable-Run2129
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he46g8
false
null
t3_1he46g8
/r/LocalLLaMA/comments/1he46g8/i_made_a_macos_app_for_myself_to_use_qwq_as_a/
false
false
self
1
null
llama.cpp Now Supports Qwen2VL
211
[https://github.com/ggerganov/llama.cpp/pull/10361](https://github.com/ggerganov/llama.cpp/pull/10361)
2024-12-14T14:42:52
https://www.reddit.com/r/LocalLLaMA/comments/1he4ars/llamacpp_now_supports_qwen2vl/
Intelligent_Jello344
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he4ars
false
null
t3_1he4ars
/r/LocalLLaMA/comments/1he4ars/llamacpp_now_supports_qwen2vl/
false
false
self
211
{'enabled': False, 'images': [{'id': 'h6VkqCUdAAa3Jc0Huck65H67MTGQdczsTeVvrcjCCwc', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/_1gGzdHsqJOUfFakJ3xFRS1R7G9zRtdctqHv-RApMwk.jpg?width=108&crop=smart&auto=webp&s=16cb35d0e568d4f43d5c9125f4f32fe285a5635d', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/_1gGzdHsqJOUfFakJ3xFRS1R7G9zRtdctqHv-RApMwk.jpg?width=216&crop=smart&auto=webp&s=ce7672bd72f2933023c7bd4e70964e1bcc15179b', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/_1gGzdHsqJOUfFakJ3xFRS1R7G9zRtdctqHv-RApMwk.jpg?width=320&crop=smart&auto=webp&s=f1c05cc6afa3bdc3bd712b08c4270d61ffb06572', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/_1gGzdHsqJOUfFakJ3xFRS1R7G9zRtdctqHv-RApMwk.jpg?width=640&crop=smart&auto=webp&s=c29384bf0df87a1c3e394f499ecfabdb797a420f', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/_1gGzdHsqJOUfFakJ3xFRS1R7G9zRtdctqHv-RApMwk.jpg?width=960&crop=smart&auto=webp&s=e7ed42679dd7681dce2add2f0ee4c55790f8c971', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/_1gGzdHsqJOUfFakJ3xFRS1R7G9zRtdctqHv-RApMwk.jpg?width=1080&crop=smart&auto=webp&s=12a4e3793dae89ed1d30366ecf2f2ad9598ebb86', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/_1gGzdHsqJOUfFakJ3xFRS1R7G9zRtdctqHv-RApMwk.jpg?auto=webp&s=894b7eb7737b2f747620dadfe1ac65c9974f1092', 'width': 1200}, 'variants': {}}]}
Local LLMs in Game Development (NobodyWho)
1
[deleted]
2024-12-14T14:47:53
[deleted]
1970-01-01T00:00:00
0
{}
1he4eib
false
null
t3_1he4eib
/r/LocalLLaMA/comments/1he4eib/local_llms_in_game_development_nobodywho/
false
false
default
1
null
Local LLM's in game dev
1
[removed]
2024-12-14T14:59:32
https://i.redd.it/xvb10d4ewt6e1.png
No_Abbreviations_532
i.redd.it
1970-01-01T00:00:00
0
{}
1he4mw7
false
null
t3_1he4mw7
/r/LocalLLaMA/comments/1he4mw7/local_llms_in_game_dev/
false
false
https://a.thumbs.redditm…RyarZO6sGbY0.jpg
1
{'enabled': True, 'images': [{'id': 'ZEU0ISQ7liV9URS5tdjV92MlRvRi5bHs-f_A81n5_4Y', 'resolutions': [{'height': 18, 'url': 'https://preview.redd.it/xvb10d4ewt6e1.png?width=108&crop=smart&auto=webp&s=26ea3f0eb1773a9c2d3d9b6333718065a7ffc52d', 'width': 108}, {'height': 36, 'url': 'https://preview.redd.it/xvb10d4ewt6e1.png?width=216&crop=smart&auto=webp&s=7f267f6d83e5b41d9cb7e8eae7541f220f371796', 'width': 216}, {'height': 54, 'url': 'https://preview.redd.it/xvb10d4ewt6e1.png?width=320&crop=smart&auto=webp&s=e5498634efadc88510ef719bc0d3bcf216ba8abb', 'width': 320}, {'height': 109, 'url': 'https://preview.redd.it/xvb10d4ewt6e1.png?width=640&crop=smart&auto=webp&s=b2eb4c6880793855d06cce8eb87e8eabc13ed360', 'width': 640}, {'height': 164, 'url': 'https://preview.redd.it/xvb10d4ewt6e1.png?width=960&crop=smart&auto=webp&s=dfb9eae7563b937832dade414500a4bee930cc20', 'width': 960}, {'height': 184, 'url': 'https://preview.redd.it/xvb10d4ewt6e1.png?width=1080&crop=smart&auto=webp&s=0fcf7599d8250341e740135a77fc08d57bf449a5', 'width': 1080}], 'source': {'height': 198, 'url': 'https://preview.redd.it/xvb10d4ewt6e1.png?auto=webp&s=f8b6c94af53ab30e2cda4947a7246b78364cf02c', 'width': 1157}, 'variants': {}}]}
All Vocabulary Token Embeddings of Llama 3
1
[removed]
2024-12-14T15:26:55
https://www.reddit.com/r/LocalLLaMA/comments/1he57p0/all_vocabulary_token_embeddings_of_llama_3/
xinyuforsa
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he57p0
false
null
t3_1he57p0
/r/LocalLLaMA/comments/1he57p0/all_vocabulary_token_embeddings_of_llama_3/
false
false
self
1
null
Do u know that alibaba actually have better version of qwen vision? But it's only for chinese market.
1
2024-12-14T16:30:19
https://www.reddit.com/gallery/1he6jwg
krakotay1
reddit.com
1970-01-01T00:00:00
0
{}
1he6jwg
false
null
t3_1he6jwg
/r/LocalLLaMA/comments/1he6jwg/do_u_know_that_alibaba_actually_have_better/
false
false
https://a.thumbs.redditm…7JX9_u1lBPN8.jpg
1
null
M*rder for hire?? Did the CE0 hire a hitm@n to kill his employee on a pending L@wsuuit??
1
2024-12-14T16:44:04
https://i.redd.it/acsgnv81fu6e1.jpeg
MathematicianBasic73
i.redd.it
1970-01-01T00:00:00
0
{}
1he6uga
false
null
t3_1he6uga
/r/LocalLLaMA/comments/1he6uga/mrder_for_hire_did_the_ce0_hire_a_hitmn_to_kill/
false
false
https://b.thumbs.redditm…26MBptcBB5jY.jpg
1
{'enabled': True, 'images': [{'id': '1tcm8W9vi4RjTjQl9JXYseMJTgywrIVRDoa-PcRiNFk', 'resolutions': [{'height': 200, 'url': 'https://preview.redd.it/acsgnv81fu6e1.jpeg?width=108&crop=smart&auto=webp&s=cf28794edf013e0a2adb3c27b84ef4156969c264', 'width': 108}, {'height': 401, 'url': 'https://preview.redd.it/acsgnv81fu6e1.jpeg?width=216&crop=smart&auto=webp&s=a31f53f9f6b80d1d9c60cf1561ad8598db3515ae', 'width': 216}, {'height': 595, 'url': 'https://preview.redd.it/acsgnv81fu6e1.jpeg?width=320&crop=smart&auto=webp&s=b9de208b9776757c1642b3fb932a3f9b2f1287eb', 'width': 320}, {'height': 1190, 'url': 'https://preview.redd.it/acsgnv81fu6e1.jpeg?width=640&crop=smart&auto=webp&s=9f1db49bc681a9a0b93b97bd645e62edbd6f11f6', 'width': 640}, {'height': 1785, 'url': 'https://preview.redd.it/acsgnv81fu6e1.jpeg?width=960&crop=smart&auto=webp&s=165e7903d2668dc642a9bf760d2804874e3c5d13', 'width': 960}, {'height': 2008, 'url': 'https://preview.redd.it/acsgnv81fu6e1.jpeg?width=1080&crop=smart&auto=webp&s=74f94ea985832e40d809fec0670664c315b8a1de', 'width': 1080}], 'source': {'height': 2455, 'url': 'https://preview.redd.it/acsgnv81fu6e1.jpeg?auto=webp&s=30eb2b9b5a229154cb8b347e8906a88f82b25283', 'width': 1320}, 'variants': {}}]}
Alternatives to Ollama for AMD GPUs?
27
Ollama ROCm has been continuously disappointing since the beginning. Memory calculation is usually messed up in one way or another. Models that run fine on 24GB of memory with a fixed context, for some reason can go to CPU sometimes. Very often a model will fail to load and throw 500. The worst part is that each new version manage to bring more regressions that features. I'm fed up with it especially when my use case is pretty limited, just pure inference. So I wonder, what other inference engine have you tried and found to be running stabily on ROCm? Bonus if it's also memory-efficient. Thanks.
2024-12-14T17:00:28
https://www.reddit.com/r/LocalLLaMA/comments/1he76q4/alternatives_to_ollama_for_amd_gpus/
ParaboloidalCrest
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he76q4
false
null
t3_1he76q4
/r/LocalLLaMA/comments/1he76q4/alternatives_to_ollama_for_amd_gpus/
false
false
self
27
null
Evolution llm number of parameters vs quality: it seems that qwen 2.5 7b is almost equal to the performance of chat gpt 3.5 175b 2 years ago or 25 times fewer parameters in 2 years.
1
[removed]
2024-12-14T17:15:24
https://www.reddit.com/r/LocalLLaMA/comments/1he7iji/evolution_llm_number_of_parameters_vs_quality_it/
MoreIndependent5967
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he7iji
false
null
t3_1he7iji
/r/LocalLLaMA/comments/1he7iji/evolution_llm_number_of_parameters_vs_quality_it/
false
false
self
1
null
Shocked at the implicit racial bias at NeurIPS yesterday
0
[Rosalind Picard's Keynote on Friday at NeurIPS](https://preview.redd.it/iksntl5equ6e1.jpg?width=1179&format=pjpg&auto=webp&s=153dfdf19591c696e176065623ec4612c83510f5)
2024-12-14T17:51:03
https://www.reddit.com/r/LocalLLaMA/comments/1he89rx/shocked_at_the_implicit_racial_bias_at_neurips/
lilsoftcato
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he89rx
false
null
t3_1he89rx
/r/LocalLLaMA/comments/1he89rx/shocked_at_the_implicit_racial_bias_at_neurips/
false
false
https://b.thumbs.redditm…r2ILx4xIgyHo.jpg
0
null
open-source Android app that allows you to record, search, and query everything you've seen on your phone.
1
2024-12-14T18:09:44
https://github.com/cparish312/HindsightMobile/
louis3195
github.com
1970-01-01T00:00:00
0
{}
1he8oeh
false
null
t3_1he8oeh
/r/LocalLLaMA/comments/1he8oeh/opensource_android_app_that_allows_you_to_record/
false
false
https://b.thumbs.redditm…-aAJk1zO_unM.jpg
1
{'enabled': False, 'images': [{'id': 'RbJ0Q6sgRyt7_FIgmPAfMoQvi9JETRVWly4KncbsBhs', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/E1mQCF0G17HT4HSzi6GmI-E05CbWbw2Ql16hqq1iRi0.jpg?width=108&crop=smart&auto=webp&s=90e35404b1aeb8cd0d956fee52e60642ea870a78', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/E1mQCF0G17HT4HSzi6GmI-E05CbWbw2Ql16hqq1iRi0.jpg?width=216&crop=smart&auto=webp&s=74c90a78b21abf7d70099e9b2c202d304b67fe40', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/E1mQCF0G17HT4HSzi6GmI-E05CbWbw2Ql16hqq1iRi0.jpg?width=320&crop=smart&auto=webp&s=dc87295cac8c0b92e74a4aef73112c1e32718de7', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/E1mQCF0G17HT4HSzi6GmI-E05CbWbw2Ql16hqq1iRi0.jpg?width=640&crop=smart&auto=webp&s=203b8144af9d0bafdd219a9307200c4a135d30bd', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/E1mQCF0G17HT4HSzi6GmI-E05CbWbw2Ql16hqq1iRi0.jpg?width=960&crop=smart&auto=webp&s=f638d68698bede53a0c6347b0de1cb53be87d9c5', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/E1mQCF0G17HT4HSzi6GmI-E05CbWbw2Ql16hqq1iRi0.jpg?width=1080&crop=smart&auto=webp&s=b5b099c1b80e1d1faef5263b6e16be9aaf4d10b2', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/E1mQCF0G17HT4HSzi6GmI-E05CbWbw2Ql16hqq1iRi0.jpg?auto=webp&s=295b3a19c2d4590819b5601fa7a7b52f79a83967', 'width': 1200}, 'variants': {}}]}
Roleplay
1
[removed]
2024-12-14T18:18:43
https://www.reddit.com/r/LocalLLaMA/comments/1he8v9y/roleplay/
ai-dad
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he8v9y
false
null
t3_1he8v9y
/r/LocalLLaMA/comments/1he8v9y/roleplay/
false
false
self
1
null
Roleplay
0
Scenario 1: Man A is defined by its backstory, its task is to behave like an angry man. Scenario 2: Man A is defined by its backstory, its task is to behave like a rich brat. How do I design Man A with backstory and then plug in a task/trait to behave like an angry man, tough customer, etc whenever needed. (Jumping from scenario 1 to scenario 2) Also, gpt4o ain't good at role-playing. Anything I should use instead? Or I need some prompt engineering lessons haha!!
2024-12-14T18:30:40
https://www.reddit.com/r/LocalLLaMA/comments/1he94cb/roleplay/
RequirementQuick6057
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1he94cb
false
null
t3_1he94cb
/r/LocalLLaMA/comments/1he94cb/roleplay/
false
false
self
0
null
Kudos to the LMArena folks, the new WebDev arena is showing great separation of ELO scores and shows Claude 3.5 Sonnets dominance in this domain
171
2024-12-14T19:30:51
https://i.redd.it/6jxydljm7v6e1.png
jd_3d
i.redd.it
1970-01-01T00:00:00
0
{}
1heafxq
false
null
t3_1heafxq
/r/LocalLLaMA/comments/1heafxq/kudos_to_the_lmarena_folks_the_new_webdev_arena/
false
false
https://b.thumbs.redditm…O9RjmdiuZTno.jpg
171
{'enabled': True, 'images': [{'id': 'ZwPm4Yg6sySMvsMOJVTjUI_0HUUeH1yT_JGQzT9KZMo', 'resolutions': [{'height': 75, 'url': 'https://preview.redd.it/6jxydljm7v6e1.png?width=108&crop=smart&auto=webp&s=f258dac93cd783745d735e4b03a99cb2d04fc35e', 'width': 108}, {'height': 151, 'url': 'https://preview.redd.it/6jxydljm7v6e1.png?width=216&crop=smart&auto=webp&s=8ad1b6c7009fedb9c6626eec45b22a50221b6dc4', 'width': 216}, {'height': 224, 'url': 'https://preview.redd.it/6jxydljm7v6e1.png?width=320&crop=smart&auto=webp&s=0d87cbb95513d053243a02c62a222cdf23c19700', 'width': 320}, {'height': 448, 'url': 'https://preview.redd.it/6jxydljm7v6e1.png?width=640&crop=smart&auto=webp&s=e39c116c4450dc5a8a308be6ebc717c19ff9df0b', 'width': 640}], 'source': {'height': 615, 'url': 'https://preview.redd.it/6jxydljm7v6e1.png?auto=webp&s=6755feec6aeab867683e9c1fae3315a1fc216ca1', 'width': 878}, 'variants': {}}]}
new intel arc b580.
10
I was wanting to get a new arc card because 12gb of ram for 250 if you can find it at msrp and if you can get two that 24 gigs of vram just for around 500 bucks. but I just want to know if anyone has gotten their hands on one and has done some testing with it yet.
2024-12-14T20:06:32
https://www.reddit.com/r/LocalLLaMA/comments/1heb8ex/new_intel_arc_b580/
Rasr123105
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1heb8ex
false
null
t3_1heb8ex
/r/LocalLLaMA/comments/1heb8ex/new_intel_arc_b580/
false
false
self
10
null
What can an 8B model do without fine-tuning?
10
Hi. I'm trying to adjust my expectations. So, assuming all is possible is essentially giving the prompt and getting the response (i.e. OpenAI API), and fine-tuning/modifying the weights is not an option. Has anyone tried what can be done in such scenarios? What can I then expect from an 8B/9B model like Gemma or Llamma? Can anyone share some successful use cases, particularly for batch processing (i.e. not real-time chat)? For example is it good in summarisaing arbitrary text, also in non-English languages, without making things up? What about other text processing tasks? And in-context learning/tagging? Thanks
2024-12-14T20:18:44
https://www.reddit.com/r/LocalLLaMA/comments/1hebhyx/what_can_an_8b_model_do_without_finetuning/
ihatebeinganonymous
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hebhyx
false
null
t3_1hebhyx
/r/LocalLLaMA/comments/1hebhyx/what_can_an_8b_model_do_without_finetuning/
false
false
self
10
null
Ilya's talk on "Sequence to sequence" at NIPS 2024 in Vancouver, Canada
124
2024-12-14T20:31:16
https://www.youtube.com/watch?v=1yvBqasHLZs
rbgo404
youtube.com
1970-01-01T00:00:00
0
{}
1hebrkw
false
{'oembed': {'author_name': 'seremot', 'author_url': 'https://www.youtube.com/@seremot', 'height': 200, 'html': '<iframe width="356" height="200" src="https://www.youtube.com/embed/1yvBqasHLZs?feature=oembed&enablejsapi=1" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen title="Ilya Sutskever: &quot;Sequence to sequence learning with neural networks: what a decade&quot;"></iframe>', 'provider_name': 'YouTube', 'provider_url': 'https://www.youtube.com/', 'thumbnail_height': 360, 'thumbnail_url': 'https://i.ytimg.com/vi/1yvBqasHLZs/hqdefault.jpg', 'thumbnail_width': 480, 'title': 'Ilya Sutskever: "Sequence to sequence learning with neural networks: what a decade"', 'type': 'video', 'version': '1.0', 'width': 356}, 'type': 'youtube.com'}
t3_1hebrkw
/r/LocalLLaMA/comments/1hebrkw/ilyas_talk_on_sequence_to_sequence_at_nips_2024/
false
false
https://b.thumbs.redditm…dnteZDqsN-hc.jpg
124
{'enabled': False, 'images': [{'id': 'NT1qPsh9KLii23Pyb2TBL3Gd2_leTk7pvpei08PF6Qs', 'resolutions': [{'height': 81, 'url': 'https://external-preview.redd.it/B2V58Xgw9Givxd8AdjMj-BmYl8kfEl6gYXO1Xh3yeAE.jpg?width=108&crop=smart&auto=webp&s=1a56e4bfa7372e00601bb91b9f9126aa73a941cb', 'width': 108}, {'height': 162, 'url': 'https://external-preview.redd.it/B2V58Xgw9Givxd8AdjMj-BmYl8kfEl6gYXO1Xh3yeAE.jpg?width=216&crop=smart&auto=webp&s=483a9f0feef6133f403ee45791c948872cc3d998', 'width': 216}, {'height': 240, 'url': 'https://external-preview.redd.it/B2V58Xgw9Givxd8AdjMj-BmYl8kfEl6gYXO1Xh3yeAE.jpg?width=320&crop=smart&auto=webp&s=96a56ad0c6c0e7a15fbeb04f91aa9047f61ea4d9', 'width': 320}], 'source': {'height': 360, 'url': 'https://external-preview.redd.it/B2V58Xgw9Givxd8AdjMj-BmYl8kfEl6gYXO1Xh3yeAE.jpg?auto=webp&s=944fb1b14a321c985b35687df0513c17e7c70dc9', 'width': 480}, 'variants': {}}]}
New 3090
1
[removed]
2024-12-14T20:35:30
https://www.reddit.com/r/LocalLLaMA/comments/1hebush/new_3090/
Abarn1024
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hebush
false
null
t3_1hebush
/r/LocalLLaMA/comments/1hebush/new_3090/
false
false
self
1
null
Last Week in Medical AI: Top LLM Research Papers/Models (December 7 - December 14, 2024)
16
**Medical LLM & Other Models** * PediaBench: Chinese Pediatric LLM * This paper introduces PediaBench, the first Chinese pediatric dataset for evaluating Large Language Model (LLM) question-answering performance, containing 4,565 objective and 1,632 subjective questions across 12 disease groups. * BiMediX: Bilingual Medical LLM * This paper introduces BiMediX, the first bilingual (English-Arabic) medical Mixture of Experts LLM, along with BiMed1.3M, a 1.3M bilingual medical instruction dataset with over 632M tokens used for training. * Diverse medical knowledge integration * This paper introduces BiMediX2, a bilingual (Arabic-English) Large Multimodal Model (LMM) based on Llama3.1 architecture, trained on 1.6M medical interaction samples. * BRAD: Digital Biology Language Model * This paper introduces BRAD (Bioinformatics Retrieval Augmented Digital assistant), an LLM-powered chatbot and agent system integrating various bioinformatics tools. * MMedPO: Vision-Language Medical LLM * This paper introduces MMedPO, a multimodal medical preference optimization approach to improve factual accuracy in Medical Large Vision-Language Models (Med-LVLMs) by addressing modality misalignment. **Frameworks & Methodologies** \- TOP-Training: Medical Q&A Framework \- Hybrid RAG: Secure Medical Data Management \- Zero-Shot ATC Clinical Coding \- Chest X-Ray Diagnosis Architecture \- Medical Imaging AI Democratization **Benchmarks & Evaluations** \- KorMedMCQA: Korean Healthcare Licensing Benchmark \- Large Language Model Medical Tasks \- Clinical T5 Model Performance Study \- Radiology Report Quality Assessment \- Genomic Analysis Benchmarking **LLM Applications** \- TCM-FTP: Herbal Prescription Prediction \- LLaSA: Activity Analysis via Sensors \- Emergency Department Visit Predictions \- Neurodegenerative Disease AI Diagnosis \- Kidney Disease Explainable AI Model **Ethical AI & Privacy** \- Privacy-Preserving LLM Mechanisms \- AI-Driven Digital Organism Modeling \- Biomedical Research Automation \- Multimodality in Medical Practice
2024-12-14T21:24:47
https://www.reddit.com/r/LocalLLaMA/comments/1hecwmg/last_week_in_medical_ai_top_llm_research/
aadityaura
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hecwmg
false
null
t3_1hecwmg
/r/LocalLLaMA/comments/1hecwmg/last_week_in_medical_ai_top_llm_research/
false
false
self
16
{'enabled': False, 'images': [{'id': 'ctfQI7HNNSpW8mvSMLezV6b59LmqmsGPBbLmwEL95gU', 'resolutions': [{'height': 101, 'url': 'https://external-preview.redd.it/m_A09mIaYECU6FSFDE8NvSKyfkCnlDvvGVX_SCZsRWw.jpg?width=108&crop=smart&auto=webp&s=01cf9adc9cad130c524b2c8dc4bee602c97c6792', 'width': 108}, {'height': 203, 'url': 'https://external-preview.redd.it/m_A09mIaYECU6FSFDE8NvSKyfkCnlDvvGVX_SCZsRWw.jpg?width=216&crop=smart&auto=webp&s=005bc06cbbef88d2ab4a91d15c88741d3ff1c6e2', 'width': 216}, {'height': 301, 'url': 'https://external-preview.redd.it/m_A09mIaYECU6FSFDE8NvSKyfkCnlDvvGVX_SCZsRWw.jpg?width=320&crop=smart&auto=webp&s=6c6d459690fa57c535a3238c22a8683b07fc08bf', 'width': 320}, {'height': 603, 'url': 'https://external-preview.redd.it/m_A09mIaYECU6FSFDE8NvSKyfkCnlDvvGVX_SCZsRWw.jpg?width=640&crop=smart&auto=webp&s=01a8e35090be40ffd1a88df0627dfc33462b40e7', 'width': 640}, {'height': 905, 'url': 'https://external-preview.redd.it/m_A09mIaYECU6FSFDE8NvSKyfkCnlDvvGVX_SCZsRWw.jpg?width=960&crop=smart&auto=webp&s=58dd3d150adc6d60833b397f49a24e8d4c6f7e47', 'width': 960}, {'height': 1019, 'url': 'https://external-preview.redd.it/m_A09mIaYECU6FSFDE8NvSKyfkCnlDvvGVX_SCZsRWw.jpg?width=1080&crop=smart&auto=webp&s=184aa009756bc7da5de9556e9432096a6b0b3000', 'width': 1080}], 'source': {'height': 1308, 'url': 'https://external-preview.redd.it/m_A09mIaYECU6FSFDE8NvSKyfkCnlDvvGVX_SCZsRWw.jpg?auto=webp&s=a6349da948f50452f793eb011867283c9c7ceedc', 'width': 1386}, 'variants': {}}]}
Are LLM models reproducible in replies if multiple sessions over http API are running with the same question simultaneously?
1
[removed]
2024-12-14T21:41:56
https://www.reddit.com/r/LocalLLaMA/comments/1hed9yt/are_llm_models_reproducible_in_replies_if/
pet2pet1982
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hed9yt
false
null
t3_1hed9yt
/r/LocalLLaMA/comments/1hed9yt/are_llm_models_reproducible_in_replies_if/
false
false
self
1
null
The absolute best coding model that can fit on 48GB?
99
Curious of everyones opinion on the best coding "assistant" model that can fit on 48GB... I've been trying out QWQ 32B at 8.0bpw exl2, and lately been also using Qwen2.5 72B at 4.25bpw... Curious which one is actually better in your opinions, as well as alternatives that might be better as well...
2024-12-14T22:45:34
https://www.reddit.com/r/LocalLLaMA/comments/1heemer/the_absolute_best_coding_model_that_can_fit_on/
DeSibyl
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1heemer
false
null
t3_1heemer
/r/LocalLLaMA/comments/1heemer/the_absolute_best_coding_model_that_can_fit_on/
false
false
self
99
null
Cohere's New Model is Epic
435
It's unique attention architecture basically uses 3 layers w/ a fixed 4096 window of attention, and one layer that attends to everything at once, and interleaves them. Paired w/ kv-quantization, that lets you fit the entirety of Harry Potter in-context at 6GB. This will be revolutionary for long-context use...
2024-12-14T23:19:47
https://www.reddit.com/r/LocalLLaMA/comments/1hefbq1/coheres_new_model_is_epic/
N8Karma
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hefbq1
false
null
t3_1hefbq1
/r/LocalLLaMA/comments/1hefbq1/coheres_new_model_is_epic/
false
false
self
435
{'enabled': False, 'images': [{'id': '05_1acupJnxB3c-ZLpw90jr1VfwE5FQcCYQI2FLuNPE', 'resolutions': [{'height': 58, 'url': 'https://external-preview.redd.it/xJRFfXSb0-3ELzcfnFQnUzJAEC6cERxHwdYg5uE4kPE.jpg?width=108&crop=smart&auto=webp&s=375c0474caddc6baae5de6008cefc7060f275b49', 'width': 108}, {'height': 116, 'url': 'https://external-preview.redd.it/xJRFfXSb0-3ELzcfnFQnUzJAEC6cERxHwdYg5uE4kPE.jpg?width=216&crop=smart&auto=webp&s=f69eb6beac8bcbde3a7d55912e0c7623db837828', 'width': 216}, {'height': 172, 'url': 'https://external-preview.redd.it/xJRFfXSb0-3ELzcfnFQnUzJAEC6cERxHwdYg5uE4kPE.jpg?width=320&crop=smart&auto=webp&s=c37b809f941ab85e565434605fa47932ebfcbb10', 'width': 320}, {'height': 345, 'url': 'https://external-preview.redd.it/xJRFfXSb0-3ELzcfnFQnUzJAEC6cERxHwdYg5uE4kPE.jpg?width=640&crop=smart&auto=webp&s=f0cbc57145e1e90d4cb9df79be95c37e01dcf9c0', 'width': 640}, {'height': 518, 'url': 'https://external-preview.redd.it/xJRFfXSb0-3ELzcfnFQnUzJAEC6cERxHwdYg5uE4kPE.jpg?width=960&crop=smart&auto=webp&s=4500aefe4ca70fe3b63a811f352a947161cc44bb', 'width': 960}, {'height': 583, 'url': 'https://external-preview.redd.it/xJRFfXSb0-3ELzcfnFQnUzJAEC6cERxHwdYg5uE4kPE.jpg?width=1080&crop=smart&auto=webp&s=b63db4c81d03c38554cbeba86ffa2c8eb2fa996f', 'width': 1080}], 'source': {'height': 648, 'url': 'https://external-preview.redd.it/xJRFfXSb0-3ELzcfnFQnUzJAEC6cERxHwdYg5uE4kPE.jpg?auto=webp&s=10744fc5d7926a514df40df3ece275baba4de832', 'width': 1200}, 'variants': {}}]}
Tool use causes brainrot
1
[removed]
2024-12-14T23:26:33
https://www.reddit.com/r/LocalLLaMA/comments/1hefgmf/tool_use_causes_brainrot/
AlarBlip
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hefgmf
false
null
t3_1hefgmf
/r/LocalLLaMA/comments/1hefgmf/tool_use_causes_brainrot/
false
false
self
1
null
Tool use causes the model to become wierd
1
[removed]
2024-12-14T23:27:36
https://www.reddit.com/r/LocalLLaMA/comments/1hefhe7/tool_use_causes_the_model_to_become_wierd/
AlarBlip
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hefhe7
false
null
t3_1hefhe7
/r/LocalLLaMA/comments/1hefhe7/tool_use_causes_the_model_to_become_wierd/
false
false
self
1
null
Grassroots Project! Building a new multilingual LLMs
1
[removed]
2024-12-14T23:49:09
https://www.reddit.com/r/LocalLLaMA/comments/1hefwbd/grassroots_project_building_a_new_multilingual/
gentaiscool
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hefwbd
false
null
t3_1hefwbd
/r/LocalLLaMA/comments/1hefwbd/grassroots_project_building_a_new_multilingual/
false
false
self
1
null
Size Mismatch For clip.text_model.embeddings.token_embeddings.weight
1
I merged GPT-2 with CLiP using a script I will provide here: https://huggingface.co/yuchenxie/ArlowGPT-VLM-Untrained Using this example inferencing script: ```python import os import json import torch from transformers import GPT2Tokenizer, CLIPProcessor from safetensors.torch import load_file from huggingface_hub import hf_hub_download class ArlowGPT(torch.nn.Module): def __init__(self, config_path: str, safetensor_path: str): super().__init__() from transformers import CLIPModel, GPT2LMHeadModel print("Loading model configuration...") # Load the configuration file with open(config_path, "r") as f: config = json.load(f) # Extract configuration details self.projection_dim = config["projection_dim"] # Initialize CLIP and GPT-2 models without loading pretrained weights self.clip = CLIPModel(CLIPModel.config_class.from_dict(config["clip_config"])) self.gpt2 = GPT2LMHeadModel(GPT2LMHeadModel.config_class.from_dict(config["gpt2_config"])) # Add projection layer to align dimensions clip_hidden_size = self.clip.config.vision_config.hidden_size self.clip_projection = torch.nn.Linear(clip_hidden_size, self.projection_dim) print("Loading merged model weights...") state_dict = load_file(safetensor_path) self.load_state_dict(state_dict, strict=False) # Use strict=False if necessary def forward(self, input_ids, attention_mask, pixel_values): # Process image with CLIP vision_outputs = self.clip.vision_model(pixel_values=pixel_values) encoder_hidden_states = vision_outputs.last_hidden_state # Project CLIP embeddings to GPT-2's expected size encoder_hidden_states = self.clip_projection(encoder_hidden_states) # Create attention mask for CLIP embeddings encoder_attention_mask = torch.ones( encoder_hidden_states.size()[:-1], dtype=torch.long ).to(encoder_hidden_states.device) # Process text through GPT-2 with cross-attention outputs = self.gpt2( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) return outputs.logits def load_custom_model(repo_id: str): # Download configuration and weights from Hugging Face hub print("Downloading model files from Hugging Face...") config_path = hf_hub_download(repo_id=repo_id, filename="config.json") safetensor_path = hf_hub_download(repo_id=repo_id, filename="model.safetensors") tokenizer_path = repo_id # Tokenizer will be loaded directly by repo_id processor_path = repo_id # Processor will be loaded directly by repo_id # Load custom model model = ArlowGPTModel(config_path, safetensor_path) # Load tokenizer and processor tokenizer = GPT2Tokenizer.from_pretrained(tokenizer_path) processor = CLIPProcessor.from_pretrained(processor_path) # Ensure padding token is set if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token print("Model, tokenizer, and processor loaded successfully.") return model, tokenizer, processor if __name__ == "__main__": # Specify the Hugging Face repo ID for the merged model repo_id = "yuchenxie/ArlowGPT-VLM-Untrained" # Update to your merged model repo # Load the model, tokenizer, and processor model, tokenizer, processor = load_custom_model(repo_id) # Prepare example inputs example_text = "What is happening in the image?" inputs = tokenizer( example_text, padding="max_length", truncation=True, max_length=128, return_tensors="pt", ) # Example image input (replace with an actual preprocessed image) example_image = torch.zeros((1, 3, 224, 224)) # Dummy image tensor processed_image = processor(images=example_image, return_tensors="pt").pixel_values # Run inference print("Running inference...") with torch.no_grad(): logits = model( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], pixel_values=processed_image, ) # Decode the output predicted_ids = torch.argmax(logits, dim=-1) output_text = tokenizer.decode(predicted_ids[0], skip_special_tokens=True) print("Generated Text:", output_text) ``` I get this error: ```python RuntimeError: Error(s) in loading state_dict for ArlowGPTModel: size mismatch for clip.text_model.embeddings.token_embedding.weight: copying a param with shape torch.Size([49408, 768]) from checkpoint, the shape in current model is torch.Size([49408, 512]). size mismatch for clip.text_model.embeddings.position_embedding.weight: copying a param with shape torch.Size([77, 768]) from checkpoint, the shape in current model is torch.Size([77, 512]). size mismatch for clip.text_model.encoder.layers.0.self_attn.k_proj.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for clip.text_model.encoder.layers.0.self_attn.k_proj.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for clip.text_model.encoder.layers.0.self_attn.v_proj.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for clip.text_model.encoder.layers.0.self_attn.v_proj.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for clip.text_model.encoder.layers.0.self_attn.q_proj.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for clip.text_model.encoder.layers.0.self_attn.q_proj.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for clip.text_model.encoder.layers.0.self_attn.out_proj.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for clip.text_model.encoder.layers.0.self_attn.out_proj.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for clip.text_model.encoder.layers.0.layer_norm1.weight: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for clip.text_model.encoder.layers.0.layer_norm1.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for clip.text_model.encoder.layers.0.mlp.fc1.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([2048, 512]). size mismatch for clip.text_model.encoder.layers.0.mlp.fc1.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([2048]). size mismatch for clip.text_model.encoder.layers.0.mlp.fc2.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([512, 2048]). size mismatch for clip.text_model.encoder.layers.0.mlp.fc2.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for clip.text_model.encoder.layers.0.layer_norm2.weight: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for clip.text_model.encoder.layers.0.layer_norm2.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for clip.text_model.encoder.layers.1.self_attn.k_proj.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for clip.text_model.encoder.layers.1.self_attn.k_proj.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for clip.text_model.encoder.layers.1.self_attn.v_proj.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for clip.text_model.encoder.layers.1.self_attn.v_proj.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([512]). ``` The list continues for a long time, but parts of it were like this. Can someone guide me on how to fix this issue?
2024-12-14T23:55:14
https://www.reddit.com/r/LocalLLaMA/comments/1heg0pf/size_mismatch_for_cliptext_modelembeddingstoken/
MichaelXie4645
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1heg0pf
false
null
t3_1heg0pf
/r/LocalLLaMA/comments/1heg0pf/size_mismatch_for_cliptext_modelembeddingstoken/
false
false
self
1
{'enabled': False, 'images': [{'id': 'wZgo2uXzMlHSRRvHALlsoeTfH6Qq0H1q_eFA_GwzMJ8', 'resolutions': [{'height': 58, 'url': 'https://external-preview.redd.it/ab6kfAG0APcR5h1jC_4FI7AC9CtAcG0RI-Qn7wzXHWQ.jpg?width=108&crop=smart&auto=webp&s=554be6ca827c36023749528cddcac7e0004d8cab', 'width': 108}, {'height': 116, 'url': 'https://external-preview.redd.it/ab6kfAG0APcR5h1jC_4FI7AC9CtAcG0RI-Qn7wzXHWQ.jpg?width=216&crop=smart&auto=webp&s=64d00c489351ada3ff29075d19490489788a1567', 'width': 216}, {'height': 172, 'url': 'https://external-preview.redd.it/ab6kfAG0APcR5h1jC_4FI7AC9CtAcG0RI-Qn7wzXHWQ.jpg?width=320&crop=smart&auto=webp&s=b25ee9cb9f9728606e230ef11bcb309387925f57', 'width': 320}, {'height': 345, 'url': 'https://external-preview.redd.it/ab6kfAG0APcR5h1jC_4FI7AC9CtAcG0RI-Qn7wzXHWQ.jpg?width=640&crop=smart&auto=webp&s=a58df1fe743b0822104d85afb96442cec6e9d514', 'width': 640}, {'height': 518, 'url': 'https://external-preview.redd.it/ab6kfAG0APcR5h1jC_4FI7AC9CtAcG0RI-Qn7wzXHWQ.jpg?width=960&crop=smart&auto=webp&s=184c364e3debe7b4f246707608c8b03ae1830fe9', 'width': 960}, {'height': 583, 'url': 'https://external-preview.redd.it/ab6kfAG0APcR5h1jC_4FI7AC9CtAcG0RI-Qn7wzXHWQ.jpg?width=1080&crop=smart&auto=webp&s=a0751c14573e724aefddc73b03b390d80c9c4d86', 'width': 1080}], 'source': {'height': 648, 'url': 'https://external-preview.redd.it/ab6kfAG0APcR5h1jC_4FI7AC9CtAcG0RI-Qn7wzXHWQ.jpg?auto=webp&s=33d59e24097bfaf70a4b1ebfee0de2a7bab1b18f', 'width': 1200}, 'variants': {}}]}
1-2m context length solution needed
1
[removed]
2024-12-15T00:00:08
https://www.reddit.com/r/LocalLLaMA/comments/1heg42e/12m_context_length_solution_needed/
Inevitable_Stay_9187
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1heg42e
false
null
t3_1heg42e
/r/LocalLLaMA/comments/1heg42e/12m_context_length_solution_needed/
false
false
self
1
null
What model to use as the draft for eva qwen 2.5 32b?
1
Basically, title. I am using eva qwen 2.5 32b v 0.2 and I'm trying to use the draft model 1.5B v0.0 and running into serious slowdowns (like 25% speed in token generation). I'm fairly new to draft models - does it need to be the exact same version/build as the larger model? When using the standard qwen 2.5 7b with the 1.5b qwen 2.5b draft model, it works fine and improves speed by 50% on repeat replies.
2024-12-15T00:02:11
https://www.reddit.com/r/LocalLLaMA/comments/1heg5pq/what_model_to_use_as_the_draft_for_eva_qwen_25_32b/
mayo551
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1heg5pq
false
null
t3_1heg5pq
/r/LocalLLaMA/comments/1heg5pq/what_model_to_use_as_the_draft_for_eva_qwen_25_32b/
false
false
self
1
null
Where do you think the cutoff is for a model to be considered "usable" in terms of tokens per second?
22
In my view, anything slower than 10 tokens per second isn't really practical for actual work. What do you think?
2024-12-15T00:11:38
https://www.reddit.com/r/LocalLLaMA/comments/1hegcl0/where_do_you_think_the_cutoff_is_for_a_model_to/
Sky_Linx
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hegcl0
false
null
t3_1hegcl0
/r/LocalLLaMA/comments/1hegcl0/where_do_you_think_the_cutoff_is_for_a_model_to/
false
false
self
22
null
Total vram versus faster bandwidth
5
So say I'm making a home server for running AI stuff like large LLMs(70b+) or running Hunyuan, and the mobo and cpu are the same in both which would run better: 4x m10s for 128gb vram and 83gb/s x4 with 2560 cuda cores per card. 4x p40s for 96gb vram with 336gb/s and 3840 cuda cores per card. The p40s cost $400 more for 4 and are clearly much faster since they're 1 generation faster, but the m10s will give 32gb more total vram allowing a bigger model without having to offload to the cpu. So which setup would be better for a cheap server? More bandwidth/cores or higher total memory?
2024-12-15T00:35:00
https://www.reddit.com/r/LocalLLaMA/comments/1hegszt/total_vram_versus_faster_bandwidth/
asdrabael01
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hegszt
false
null
t3_1hegszt
/r/LocalLLaMA/comments/1hegszt/total_vram_versus_faster_bandwidth/
false
false
self
5
null
Is there a better model than Starcannon Unleashed?
0
Hey, so i currently use Starcannon Unleashed as my main model and i've been wondering if you guys know anything better that runs at a similar size? I mainly use it for story-writing and general chats. I'd like to know if there's something with more accurate and up-to-date knowledge. Essentially something both creative and factual when needed. As i understand it the Qwen 2.5 Coder models are essentially unmatched when it comes to programming so if that's true, i'll still use that for my programming needs.
2024-12-15T00:44:12
https://www.reddit.com/r/LocalLLaMA/comments/1hegzdc/is_there_a_better_model_than_starcannon_unleashed/
HRudy94
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hegzdc
false
null
t3_1hegzdc
/r/LocalLLaMA/comments/1hegzdc/is_there_a_better_model_than_starcannon_unleashed/
false
false
self
0
null
Speculative Decoding Metrics with TabbyAPI
18
Hey folks. I'm curious if you have any metrics and/or qualitative results to share from using speculative decoding. My setup: 6 NVIDIA RTX A4000s. I've been experimenting with draft models for a few months. My "daily driver" has been Mistral Large 2407 4bpw with Mistral 7b v0.3 4bpw as draft and tensor parallel enabled. I'm currently trying out Llama3.3 70B 6bpw with Llama 3.2 3B 8bpw as draft and tensor parallel enabled. So far, I much prefer my Mistral Large with a draft model to Llama3.3 70B with a draft model. Speed is comparable, maxing out at \~20t/s. Here are some performance metrics. I'm using a simple bash [script](https://github.com/strikeoncmputrz/LLM_Scripts/blob/main/TabbyAPI_Utils/load-model.sh) I wrote to interact with the TabbyAPI API. |Model|Params|Quantization|Context Window|Experts|VRAM|RAM|Max t/s|Command| |:-|:-|:-|:-|:-|:-|:-|:-|:-| |Llama3.3|70b|6.0bpw|131072|N/A|71 GiB|N/A|18.89|./load-model.sh -d turboderp\_Llama-3.2-3B-Instruct-exl2\_8.0bpw -m LoneStriker\_Llama-3.3-70B-Instruct-6.0bpw-h6-exl2\_main - c Q4 -q Q4 -t| |Llama3.3|70b|4.25bpw|131072|N/A|60 GiB|N/A|21.09|./load-model.sh -d turboderp\_Llama-3.2-3B-Instruct-exl2\_8.0bpw -m bartowski\_Llama-3.3-70B-Instruct-exl2\_4\_25 -t -c Q4 -q Q4| |Mistral Large|123b|4.0bpw|32768|N/A|80 GiB|N/A|23.0|./load-model.sh -d turboderp\_Mistral-7B-instruct-v0.3-exl2\_4.0bpw -m LoneStriker\_Mistral-Large-Instruct-2407-4.0bpw-h6- exl2\_main -t|
2024-12-15T01:05:58
https://www.reddit.com/r/LocalLLaMA/comments/1hehe9i/speculative_decoding_metrics_with_tabbyapi/
x0xxin
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hehe9i
false
null
t3_1hehe9i
/r/LocalLLaMA/comments/1hehe9i/speculative_decoding_metrics_with_tabbyapi/
false
false
self
18
{'enabled': False, 'images': [{'id': 'p2Ix3LzvrnpxUeUIHhlJsk3E4yyNFHEyuGmcr8pNdMY', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/1NBYS_KhwAXRs2CiJ3Tpu5nxgIVL4T7bWCd_dGmT4UI.jpg?width=108&crop=smart&auto=webp&s=474c297928fecf5eeb05773cb4253b87c05edb9f', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/1NBYS_KhwAXRs2CiJ3Tpu5nxgIVL4T7bWCd_dGmT4UI.jpg?width=216&crop=smart&auto=webp&s=543d76c4e35c5987354afb23d2adecd0c6329979', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/1NBYS_KhwAXRs2CiJ3Tpu5nxgIVL4T7bWCd_dGmT4UI.jpg?width=320&crop=smart&auto=webp&s=db83aa6c48b2d9875550f2bf04f917b888abb2e2', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/1NBYS_KhwAXRs2CiJ3Tpu5nxgIVL4T7bWCd_dGmT4UI.jpg?width=640&crop=smart&auto=webp&s=c762f325a58d4ff8a31edf0437cf67b79efe6e19', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/1NBYS_KhwAXRs2CiJ3Tpu5nxgIVL4T7bWCd_dGmT4UI.jpg?width=960&crop=smart&auto=webp&s=80a6e0f8e81243e4d6995d98bf52a551f1696b02', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/1NBYS_KhwAXRs2CiJ3Tpu5nxgIVL4T7bWCd_dGmT4UI.jpg?width=1080&crop=smart&auto=webp&s=2f1b94509dc625b6b7ba3dc10133fd55c8aaa365', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/1NBYS_KhwAXRs2CiJ3Tpu5nxgIVL4T7bWCd_dGmT4UI.jpg?auto=webp&s=27ffd78af66b350b849980dc4b8e15b9a1b03649', 'width': 1200}, 'variants': {}}]}
Can you run a HuggingFace safetensors model in Godot/Javascript for cross platform compatible LLMs?
1
Trying to find a way to run a HuggingFace model on both PC and mobile, I'd imagine it would be cpu only for compatibility reasons. But is this possible?
2024-12-15T01:32:56
https://www.reddit.com/r/LocalLLaMA/comments/1hehvyu/can_you_run_a_huggingface_safetensors_model_in/
gavff64
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hehvyu
false
null
t3_1hehvyu
/r/LocalLLaMA/comments/1hehvyu/can_you_run_a_huggingface_safetensors_model_in/
false
false
self
1
null
Who has the best local LLM rig?
21
I'm curious how far out people get.
2024-12-15T02:57:27
https://www.reddit.com/r/LocalLLaMA/comments/1hejd8y/who_has_the_best_local_llm_rig/
Vegetable_Sun_9225
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hejd8y
false
null
t3_1hejd8y
/r/LocalLLaMA/comments/1hejd8y/who_has_the_best_local_llm_rig/
false
false
self
21
null
*NEW Grok2 Prompt
1
[removed]
2024-12-15T03:05:24
https://www.reddit.com/r/LocalLLaMA/comments/1heji8x/new_grok2_prompt/
gioahumada
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1heji8x
false
null
t3_1heji8x
/r/LocalLLaMA/comments/1heji8x/new_grok2_prompt/
false
false
self
1
null
Grok2 Prompt
1
[removed]
2024-12-15T03:20:36
https://www.reddit.com/r/LocalLLaMA/comments/1hejrn3/grok2_prompt/
gioahumada
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hejrn3
false
null
t3_1hejrn3
/r/LocalLLaMA/comments/1hejrn3/grok2_prompt/
false
false
self
1
null
Can any model identify chords?
5
Has scaling yielded this capability yet? Can any model (local or closed source) identify notes and/or chords in audio files?
2024-12-15T03:25:00
https://www.reddit.com/r/LocalLLaMA/comments/1heju9b/can_any_model_identify_chords/
rm-rf_
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1heju9b
false
null
t3_1heju9b
/r/LocalLLaMA/comments/1heju9b/can_any_model_identify_chords/
false
false
self
5
null
Help with setting up local LLM
0
I've been at this for 6 hours trying to setup my LLM locally. Chatgpt has been "directing" me through most of the process but I just keep going in circles. Is there anyone that's generous enough to help me out with finishing it? I'm trying to install llama 2 7b.
2024-12-15T03:30:14
https://www.reddit.com/r/LocalLLaMA/comments/1hejxh2/help_with_setting_up_local_llm/
Charlezmantion
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hejxh2
false
null
t3_1hejxh2
/r/LocalLLaMA/comments/1hejxh2/help_with_setting_up_local_llm/
false
false
self
0
null
Qwen2.5 32B apache license in top 5 , never bet against open source
308
2024-12-15T03:51:04
https://i.redd.it/lggaoec1qx6e1.jpeg
TheLogiqueViper
i.redd.it
1970-01-01T00:00:00
0
{}
1heka1z
false
null
t3_1heka1z
/r/LocalLLaMA/comments/1heka1z/qwen25_32b_apache_license_in_top_5_never_bet/
false
false
https://b.thumbs.redditm…hM97JoFhuGvw.jpg
308
{'enabled': True, 'images': [{'id': 'D-4wssIAtT2lcLWtlYPY1kSemG84MmCiLPDE9EPW8uE', 'resolutions': [{'height': 92, 'url': 'https://preview.redd.it/lggaoec1qx6e1.jpeg?width=108&crop=smart&auto=webp&s=59f3597e7cfa4eadf0254f988e7ff8674b774eb3', 'width': 108}, {'height': 185, 'url': 'https://preview.redd.it/lggaoec1qx6e1.jpeg?width=216&crop=smart&auto=webp&s=246b349b8de226eb37534d125c25e6b5e1c43772', 'width': 216}, {'height': 274, 'url': 'https://preview.redd.it/lggaoec1qx6e1.jpeg?width=320&crop=smart&auto=webp&s=cd074155e6e3e0ff499c7055dbe385bd2764ea44', 'width': 320}, {'height': 549, 'url': 'https://preview.redd.it/lggaoec1qx6e1.jpeg?width=640&crop=smart&auto=webp&s=516c8515caf0376386611945c0b45b83fcc22e9e', 'width': 640}, {'height': 823, 'url': 'https://preview.redd.it/lggaoec1qx6e1.jpeg?width=960&crop=smart&auto=webp&s=25582e1f26c1ce5a185b967f30e06caac3892bea', 'width': 960}, {'height': 926, 'url': 'https://preview.redd.it/lggaoec1qx6e1.jpeg?width=1080&crop=smart&auto=webp&s=8d48da0b1476b178b80b7ebffbcf906acb28c7e5', 'width': 1080}], 'source': {'height': 1757, 'url': 'https://preview.redd.it/lggaoec1qx6e1.jpeg?auto=webp&s=2bd28970ec2293b4d5567243be1eed169f300a0e', 'width': 2048}, 'variants': {}}]}
Create open webui Functions using Qwen Coder
39
I found the open WebUI functions really useful for automation and improving response quality. So, I created a simple system prompt to teach Qwen Coder to write functions for me. I might as well share it here: # [https://pastebin.com/zDm5mJBB](https://pastebin.com/zDm5mJBB) Here is a CoT function created by Qwen Coder 32B Q4 with this system prompt in action: https://i.redd.it/tyy0oa7grx6e1.gif As you can see, it successfully commanded the LLM to use CoT, wrap its thoughts in <thinking> tag, then provide the answer in <answer> tags, and then automatically clean up the response. I didn't make any modifications to the function code; I just copied and pasted it, and it works.
2024-12-15T04:03:54
https://www.reddit.com/r/LocalLLaMA/comments/1hekhkk/create_open_webui_functions_using_qwen_coder/
AaronFeng47
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hekhkk
false
null
t3_1hekhkk
/r/LocalLLaMA/comments/1hekhkk/create_open_webui_functions_using_qwen_coder/
false
false
https://b.thumbs.redditm…C-tvx29hHrjE.jpg
39
{'enabled': False, 'images': [{'id': 'OgFzGCIRw1ZxjMOSkfV1OiH-_nQiZl8rzSonmOAuhGs', 'resolutions': [{'height': 108, 'url': 'https://external-preview.redd.it/P8lS0kk6BFe2IEo6TxCZd1LVwksc34IkzGTVx_SCc8w.jpg?width=108&crop=smart&auto=webp&s=3d74dbe4f1d67cc8b587db9aa01762f26e269bcf', 'width': 108}], 'source': {'height': 150, 'url': 'https://external-preview.redd.it/P8lS0kk6BFe2IEo6TxCZd1LVwksc34IkzGTVx_SCc8w.jpg?auto=webp&s=b9f5c4e4867fbffb2c1ff45dd70aa338d1e3f40c', 'width': 150}, 'variants': {}}]}
Navigating the world of Harry Potter with Knowledge Graphs
1
[removed]
2024-12-15T04:08:57
https://dev.to/wonlewis/navigating-the-world-of-harry-potter-with-knowledge-graphs-j7i
LewisCYW
dev.to
1970-01-01T00:00:00
0
{}
1hekklr
false
null
t3_1hekklr
/r/LocalLLaMA/comments/1hekklr/navigating_the_world_of_harry_potter_with/
false
false
https://b.thumbs.redditm…5G93PEgNnJ9Y.jpg
1
{'enabled': False, 'images': [{'id': 'kflnayF5Vy21OG5DMgdSxr2yL4VEEQjYYh1vx584a54', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/ih9Kkmp0fYzOeI_NkufSqLwY_UaYoRRhBr1TxvgRAkI.jpg?width=108&crop=smart&auto=webp&s=d66ba74aa3b77692d53f0106b30f492d5e6f870f', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/ih9Kkmp0fYzOeI_NkufSqLwY_UaYoRRhBr1TxvgRAkI.jpg?width=216&crop=smart&auto=webp&s=3c19e485e6819f2d9d077bae2af716964222de42', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/ih9Kkmp0fYzOeI_NkufSqLwY_UaYoRRhBr1TxvgRAkI.jpg?width=320&crop=smart&auto=webp&s=faa5a214652ae5311e913e87443625f13b0debb5', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/ih9Kkmp0fYzOeI_NkufSqLwY_UaYoRRhBr1TxvgRAkI.jpg?width=640&crop=smart&auto=webp&s=28635084c0dcd2d3addf73997e0969d4224a8b3f', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/ih9Kkmp0fYzOeI_NkufSqLwY_UaYoRRhBr1TxvgRAkI.jpg?width=960&crop=smart&auto=webp&s=b132956671971291a111768784ac82dfeeb17c90', 'width': 960}], 'source': {'height': 500, 'url': 'https://external-preview.redd.it/ih9Kkmp0fYzOeI_NkufSqLwY_UaYoRRhBr1TxvgRAkI.jpg?auto=webp&s=ae2ee040471a6b49e02d577eb8540f50b29d23fe', 'width': 1000}, 'variants': {}}]}
Are these results expected for 2-bit quantization? This is Llama-3.1-8b-instruct running on my iPhone. Fails on reasoning sometimes but I’m surprised by the correct answers.
6
2024-12-15T04:12:29
https://www.reddit.com/gallery/1hekmsf
gavff64
reddit.com
1970-01-01T00:00:00
0
{}
1hekmsf
false
null
t3_1hekmsf
/r/LocalLLaMA/comments/1hekmsf/are_these_results_expected_for_2bit_quantization/
false
false
https://b.thumbs.redditm…mg5kiNTIwRzc.jpg
6
null
Not sure where to post this but maybe others here are interested
1
[removed]
2024-12-15T04:59:02
https://i.redd.it/qt80h4i52y6e1.png
OccasionllyAsleep
i.redd.it
1970-01-01T00:00:00
0
{}
1heldk9
false
null
t3_1heldk9
/r/LocalLLaMA/comments/1heldk9/not_sure_where_to_post_this_but_maybe_others_here/
false
false
https://b.thumbs.redditm…0ZVv6qhdc8ds.jpg
1
{'enabled': True, 'images': [{'id': 'C17kSoQ1O1vepNr4TLccwDFASZku1pPSge_meKxx-Hg', 'resolutions': [{'height': 216, 'url': 'https://preview.redd.it/qt80h4i52y6e1.png?width=108&crop=smart&auto=webp&s=d2af4ebfa877f8696cdc4b1630491158cd5dd131', 'width': 108}, {'height': 432, 'url': 'https://preview.redd.it/qt80h4i52y6e1.png?width=216&crop=smart&auto=webp&s=300179ca1f41e47584131092266102d9700d3a43', 'width': 216}, {'height': 640, 'url': 'https://preview.redd.it/qt80h4i52y6e1.png?width=320&crop=smart&auto=webp&s=b79a525e0cbd7d3f5c085614c1541cace040d3c5', 'width': 320}, {'height': 1280, 'url': 'https://preview.redd.it/qt80h4i52y6e1.png?width=640&crop=smart&auto=webp&s=f8ad0f323528fddc6f78fb15b55264178088bddf', 'width': 640}, {'height': 1920, 'url': 'https://preview.redd.it/qt80h4i52y6e1.png?width=960&crop=smart&auto=webp&s=29fb501c480ada28b00315f7ff83ccbee3eeedaf', 'width': 960}, {'height': 2160, 'url': 'https://preview.redd.it/qt80h4i52y6e1.png?width=1080&crop=smart&auto=webp&s=d7f88d3da813739ca13335610422de829d6632d6', 'width': 1080}], 'source': {'height': 2424, 'url': 'https://preview.redd.it/qt80h4i52y6e1.png?auto=webp&s=17f06eae8557c49f5cdc146d05f903c1e7e81f2d', 'width': 1080}, 'variants': {}}]}
Fun prompts to test the capabilities of Phi-4?
0
Thanks to [this](https://www.reddit.com/r/LocalLLaMA/s/xl48fccT2S) post, I was able to get phi 4 running on my own ollama server. I've been playing with a few CoT prompts, and it failed the strawberry test, but what else can I try?
2024-12-15T05:40:09
https://www.reddit.com/r/LocalLLaMA/comments/1hem0sj/fun_prompts_to_test_the_capabilities_of_phi4/
roz303
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hem0sj
false
null
t3_1hem0sj
/r/LocalLLaMA/comments/1hem0sj/fun_prompts_to_test_the_capabilities_of_phi4/
false
false
self
0
null
ChatGPT advanced voice (Santa) + Vision
1
2024-12-15T06:19:51
https://v.redd.it/4phl9l22gy6e1
Maximilien_Loinapied
/r/LocalLLaMA/comments/1hemlyq/chatgpt_advanced_voice_santa_vision/
1970-01-01T00:00:00
0
{}
1hemlyq
false
{'reddit_video': {'bitrate_kbps': 5000, 'dash_url': 'https://v.redd.it/4phl9l22gy6e1/DASHPlaylist.mpd?a=1736967441%2COWRjM2Y5YTcxZGEwOGZhY2JmYjBkNDJjOTk3M2UzY2MzNTNiZGU5NDYyYmI1NDk5NzZiMTJlMDI3NDc0MzBjMQ%3D%3D&v=1&f=sd', 'duration': 537, 'fallback_url': 'https://v.redd.it/4phl9l22gy6e1/DASH_1080.mp4?source=fallback', 'has_audio': True, 'height': 1080, 'hls_url': 'https://v.redd.it/4phl9l22gy6e1/HLSPlaylist.m3u8?a=1736967441%2CYWY5ZmJhYjAxNTQyM2IxOWNmOTUxMDFiYjY1OGZmMmM3NWJkNWE1NzIyZmE2MTViY2M1M2ZmZTk4MDZmYzY2Yg%3D%3D&v=1&f=sd', 'is_gif': False, 'scrubber_media_url': 'https://v.redd.it/4phl9l22gy6e1/DASH_96.mp4', 'transcoding_status': 'completed', 'width': 1920}}
t3_1hemlyq
/r/LocalLLaMA/comments/1hemlyq/chatgpt_advanced_voice_santa_vision/
false
false
default
1
null
xAI Grok 2 1212
52
2024-12-15T06:24:33
https://x.com/xai/status/1868045132760842734
ahmetegesel
x.com
1970-01-01T00:00:00
0
{}
1hemodt
false
null
t3_1hemodt
/r/LocalLLaMA/comments/1hemodt/xai_grok_2_1212/
false
false
https://a.thumbs.redditm…wLaM9jdKRBc4.jpg
52
{'enabled': False, 'images': [{'id': 'utdSwvdLHFppg8kWgKaxICksDczUe7l9vy5HLMflC-Y', 'resolutions': [{'height': 72, 'url': 'https://external-preview.redd.it/rjkxtbTf8EuPiR-eWta4yiuBXe2DicJZTQ3H0TtiSoY.jpg?width=108&crop=smart&auto=webp&s=65e0990b093e8af2312808898060d158657fd611', 'width': 108}, {'height': 145, 'url': 'https://external-preview.redd.it/rjkxtbTf8EuPiR-eWta4yiuBXe2DicJZTQ3H0TtiSoY.jpg?width=216&crop=smart&auto=webp&s=2b4f0fadb2877cb5198b019e9fa8d3ae7ce73ee9', 'width': 216}, {'height': 215, 'url': 'https://external-preview.redd.it/rjkxtbTf8EuPiR-eWta4yiuBXe2DicJZTQ3H0TtiSoY.jpg?width=320&crop=smart&auto=webp&s=098c32d6cbd93ad112501b786cdf2cf1ca2aae7d', 'width': 320}, {'height': 431, 'url': 'https://external-preview.redd.it/rjkxtbTf8EuPiR-eWta4yiuBXe2DicJZTQ3H0TtiSoY.jpg?width=640&crop=smart&auto=webp&s=6a54345d803e3e63d1dc1dbcb0d8e759239c4b38', 'width': 640}, {'height': 646, 'url': 'https://external-preview.redd.it/rjkxtbTf8EuPiR-eWta4yiuBXe2DicJZTQ3H0TtiSoY.jpg?width=960&crop=smart&auto=webp&s=f672d0b7022787df5ba8463f3f5d6a1c846f5b74', 'width': 960}, {'height': 727, 'url': 'https://external-preview.redd.it/rjkxtbTf8EuPiR-eWta4yiuBXe2DicJZTQ3H0TtiSoY.jpg?width=1080&crop=smart&auto=webp&s=032f04f0214bd653a06319ccee190f02f24d4290', 'width': 1080}], 'source': {'height': 1334, 'url': 'https://external-preview.redd.it/rjkxtbTf8EuPiR-eWta4yiuBXe2DicJZTQ3H0TtiSoY.jpg?auto=webp&s=5a9aeb9d7db0ee9275d015cc513b492e07c3bdf9', 'width': 1980}, 'variants': {}}]}
Voice cloning help.
1
[removed]
2024-12-15T06:31:55
https://www.reddit.com/r/LocalLLaMA/comments/1hems37/voice_cloning_help/
nallanahaari
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hems37
false
null
t3_1hems37
/r/LocalLLaMA/comments/1hems37/voice_cloning_help/
false
false
self
1
null
Seeking Advice: Training a Local LLM for Basic Product Support – Any Experience with Similar Projects?
3
Hi everyone, I’m trying to streamline some processes at work by fine-tuning/training a local LLM (e.g., Llama 3.2) to handle some tier 1 support for my company’s products. We build software tools, and the goal is to streamline common support queries by training the model on our existing knowledge sources: * Website content (Product pages and Blog Posts) * Knowledgebase articles * YouTube tutorial videos * Support tickets I'm getting stuck on the first step of converting all these knowledge sources into structured data which the model can ingest. I’ve tinkered with tools like ScrapeGraphAI, but found it challenging to adapt for this specific purpose. There are so many options for niche tools, and every new search seems to introduce more noise than clarity. My focus is on free, open-source tools that I can implement locally without relying on cloud-based solutions. I’d love to hear from anyone who has: * Fine-tuned an LLM for customer support purposes (or similar tasks). * Experience integrating diverse data sources (text from websites, video captions, code, etc.) into a model’s training pipeline. * Recommendations on efficient workflows, preprocessing steps, or tools that worked well for you. My priority is to ensure the model can handle common support queries effectively and safely, but I’m struggling to figure out the best tools and workflows to get there. Any advice, tools, or resources (especially free/open-source ones) would be hugely appreciated! I’m also trying to avoid pitfalls that others may have encountered, so tips on what not to do would also be incredibly helpful. Thanks in advance! Looking forward to learning from your experiences! 😊
2024-12-15T06:36:46
https://www.reddit.com/r/LocalLLaMA/comments/1hemubj/seeking_advice_training_a_local_llm_for_basic/
better_meow
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hemubj
false
null
t3_1hemubj
/r/LocalLLaMA/comments/1hemubj/seeking_advice_training_a_local_llm_for_basic/
false
false
self
3
null
Compute cards in a TYAN s8253
0
I've been planning building my first AI server and has anyone tried putting something like a P40 in the TYAN s8253, and does the CPU get in the way? Thanks
2024-12-15T08:23:06
https://www.reddit.com/r/LocalLLaMA/comments/1heoa1d/compute_cards_in_a_tyan_s8253/
Psychological_Ear393
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1heoa1d
false
null
t3_1heoa1d
/r/LocalLLaMA/comments/1heoa1d/compute_cards_in_a_tyan_s8253/
false
false
self
0
null
Pixtral & Qwen2VL are coming to Ollama
201
Just saw this commit on GitHub
2024-12-15T08:45:19
https://i.redd.it/2efqqe5j6z6e1.png
AaronFeng47
i.redd.it
1970-01-01T00:00:00
0
{}
1heokci
false
null
t3_1heokci
/r/LocalLLaMA/comments/1heokci/pixtral_qwen2vl_are_coming_to_ollama/
false
false
https://b.thumbs.redditm…HnGza4TijwpI.jpg
201
{'enabled': True, 'images': [{'id': 'bBOXUvPTdfBHxlMBTbRWd3j7cEtSQ6wjqQlmh_y5sFc', 'resolutions': [{'height': 65, 'url': 'https://preview.redd.it/2efqqe5j6z6e1.png?width=108&crop=smart&auto=webp&s=a821eaa755a3bf966b34aa18d804c80881d20b0b', 'width': 108}, {'height': 130, 'url': 'https://preview.redd.it/2efqqe5j6z6e1.png?width=216&crop=smart&auto=webp&s=8b76a85a859667f96429aaa6f021fd956985dc97', 'width': 216}, {'height': 192, 'url': 'https://preview.redd.it/2efqqe5j6z6e1.png?width=320&crop=smart&auto=webp&s=6c6392be6f32c9f5a45e31738913753c02a35a95', 'width': 320}, {'height': 385, 'url': 'https://preview.redd.it/2efqqe5j6z6e1.png?width=640&crop=smart&auto=webp&s=4caf8b4d9b7cec2ca13bd1c762b8d453469dde8f', 'width': 640}, {'height': 578, 'url': 'https://preview.redd.it/2efqqe5j6z6e1.png?width=960&crop=smart&auto=webp&s=86d56fc3f7ac6779aa93197560a0efcc2a3ab0a0', 'width': 960}, {'height': 651, 'url': 'https://preview.redd.it/2efqqe5j6z6e1.png?width=1080&crop=smart&auto=webp&s=f1637cf5e588aa2bc26a4746e9c22fdf999692ec', 'width': 1080}], 'source': {'height': 861, 'url': 'https://preview.redd.it/2efqqe5j6z6e1.png?auto=webp&s=cd2cd0184188d9cbc9171264a368c7397d2b25e8', 'width': 1428}, 'variants': {}}]}
Which model would provide detailed analysis of person's picture?
0
I tried public models (chatGPT, Gemini and Claude) and they refuse to analyse images of people. Would any model provide detailed description that I would use to generate other images?
2024-12-15T08:47:41
https://www.reddit.com/r/LocalLLaMA/comments/1heolgs/which_model_would_provide_detailed_analysis_of/
vonGlick
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1heolgs
false
null
t3_1heolgs
/r/LocalLLaMA/comments/1heolgs/which_model_would_provide_detailed_analysis_of/
false
false
self
0
null
My 3b llama 3.2 local says it is running on 1b parameters.
0
Hey, I prompted my llama3.2 3b about the number of parameters it is running on, and it said it is running on 1b. Can anyone explain this?
2024-12-15T09:06:04
https://www.reddit.com/r/LocalLLaMA/comments/1heou1v/my_3b_llama_32_local_says_it_is_running_on_1b/
Rozwik
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1heou1v
false
null
t3_1heou1v
/r/LocalLLaMA/comments/1heou1v/my_3b_llama_32_local_says_it_is_running_on_1b/
false
false
self
0
null
Recommendations for the Best OCR Model for Extracting Text from Complex Labels?
14
I want to use any VLM to get the ingredients from any packed food item, should I go with pixtral or any smaller one can help? \- should I go with quantisation of pixtral I’m working on a project that involves extracting text from **packaged food labels**. These labels often have **small text, varying fonts, and challenging layouts**. I’m considering using **Pixtral OCR** but want to explore if there are better options out there. # Questions: 1. What are the **most accurate OCR models** or tools for extracting structured data from images? 2. Should I stick with **FP32**, or does **FP16/quantization** make sense for performance optimization without losing much accuracy? 3. Are there any **cutting-edge OCR models** that handle dense and complex text layouts particularly well? Looking for something that balances **accuracy, speed, and versatility** for real-world label images. Appreciate any recommendations or advice!
2024-12-15T09:38:16
https://www.reddit.com/r/LocalLLaMA/comments/1hep8xa/recommendations_for_the_best_ocr_model_for/
iamnotdeadnuts
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hep8xa
false
null
t3_1hep8xa
/r/LocalLLaMA/comments/1hep8xa/recommendations_for_the_best_ocr_model_for/
false
false
self
14
null
What would convince you that an LLM (or any other AI) has consciousness?
0
Is complex problem-solving enough? Or is it just based on a feeling? Or do you just accept that you don't know if or when they have consciousness?
2024-12-15T09:46:45
https://www.reddit.com/r/LocalLLaMA/comments/1hepcuv/what_would_convince_you_that_an_llm_or_any_other/
MustBeSomethingThere
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hepcuv
false
null
t3_1hepcuv
/r/LocalLLaMA/comments/1hepcuv/what_would_convince_you_that_an_llm_or_any_other/
false
false
self
0
null
Create an LLama inference library from scratch
1
[removed]
2024-12-15T09:49:54
https://www.reddit.com/r/LocalLLaMA/comments/1hepebh/create_an_llama_inference_library_from_scratch/
FlattenLayer
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hepebh
false
null
t3_1hepebh
/r/LocalLLaMA/comments/1hepebh/create_an_llama_inference_library_from_scratch/
false
false
https://b.thumbs.redditm…RcDmPBtbBQuw.jpg
1
{'enabled': False, 'images': [{'id': 'klKLvrs2NjBvDxa9tFCBFxqLAJXjpmp-gGe6q1Awmxo', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/5v8Ul8aS5Fv4LWozk7Mo_jHIvQD40D5cG1UoY9NfZrU.jpg?width=108&crop=smart&auto=webp&s=64ec0f27696be6dd1f56f979be1c2682b0856617', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/5v8Ul8aS5Fv4LWozk7Mo_jHIvQD40D5cG1UoY9NfZrU.jpg?width=216&crop=smart&auto=webp&s=b28287c00f0a9b01d2cb965df971ef72b50b2cc2', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/5v8Ul8aS5Fv4LWozk7Mo_jHIvQD40D5cG1UoY9NfZrU.jpg?width=320&crop=smart&auto=webp&s=5d52f3cba6c99e932733410672984bf0e29d650b', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/5v8Ul8aS5Fv4LWozk7Mo_jHIvQD40D5cG1UoY9NfZrU.jpg?width=640&crop=smart&auto=webp&s=6206ae34668f6111ba37a1bc77018e1874dcb6d4', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/5v8Ul8aS5Fv4LWozk7Mo_jHIvQD40D5cG1UoY9NfZrU.jpg?width=960&crop=smart&auto=webp&s=83524ad17a86581ea2b5f5fe0bff8a27a9873dd9', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/5v8Ul8aS5Fv4LWozk7Mo_jHIvQD40D5cG1UoY9NfZrU.jpg?width=1080&crop=smart&auto=webp&s=73e0d2189cebd29ceabb927732bdc5e1e903f786', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/5v8Ul8aS5Fv4LWozk7Mo_jHIvQD40D5cG1UoY9NfZrU.jpg?auto=webp&s=a98c5723aadcf017a4a9fc396d91403badd31afe', 'width': 1200}, 'variants': {}}]}
AI agent can see the frontend while developing it
106
https://preview.redd.it/…dback and stars!
2024-12-15T09:55:00
https://www.reddit.com/r/LocalLLaMA/comments/1hepgpc/ai_agent_can_see_the_frontend_while_developing_it/
Grigorij_127
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hepgpc
false
null
t3_1hepgpc
/r/LocalLLaMA/comments/1hepgpc/ai_agent_can_see_the_frontend_while_developing_it/
false
false
https://b.thumbs.redditm…EldwAr1p6i1g.jpg
106
{'enabled': False, 'images': [{'id': 'GfzXiLyznMYWG1ZcTB-ijWb_SONwEh47G2PyOfOxCsk', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/HshFjFk3vKGg_qj3dfYvhI5dWTcPpnj_uguNuLMV59U.jpg?width=108&crop=smart&auto=webp&s=92b107b7f20fd225a589c45aec382df1e9843331', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/HshFjFk3vKGg_qj3dfYvhI5dWTcPpnj_uguNuLMV59U.jpg?width=216&crop=smart&auto=webp&s=69627120c927ee1cc45612f31b8621b5a76f9b1d', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/HshFjFk3vKGg_qj3dfYvhI5dWTcPpnj_uguNuLMV59U.jpg?width=320&crop=smart&auto=webp&s=1af66777c29c0e8ec2cbf27deb45f82966c92a30', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/HshFjFk3vKGg_qj3dfYvhI5dWTcPpnj_uguNuLMV59U.jpg?width=640&crop=smart&auto=webp&s=a0d2fcc6df27f8f27b34d999ebd05bf459ed8b58', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/HshFjFk3vKGg_qj3dfYvhI5dWTcPpnj_uguNuLMV59U.jpg?width=960&crop=smart&auto=webp&s=d14a2861c8ab7068111476827dfed1599fb56463', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/HshFjFk3vKGg_qj3dfYvhI5dWTcPpnj_uguNuLMV59U.jpg?width=1080&crop=smart&auto=webp&s=2f4985ded391c1341b8e485053110e82b65c52d3', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/HshFjFk3vKGg_qj3dfYvhI5dWTcPpnj_uguNuLMV59U.jpg?auto=webp&s=861bed7c474931b0badde5e7b1c1b6763146cbbd', 'width': 1200}, 'variants': {}}]}
LLMs for specific programming languages
12
We constantly have posts comparing LLMs in "Coding". The impression I got is they are mainly tested on NodeJS and Python. What is your experience with LLMs for specific programming languages? My experience, for example, has been that ChatGPT is phenomenal for shell scripts, even though it falls severely behind in Golang. Also, specifically, I would like to hear if anyone has had experience comparing models for complex PHP code? Especially with complex PHP libraries even Claude seems to fail miserably. Are Chinese (Qwen2.5) models better with PHP? Since it's more dominant in China than the west for complex code.
2024-12-15T10:15:19
https://www.reddit.com/r/LocalLLaMA/comments/1hepqfg/llms_for_specific_programming_languages/
Fun-Aardvark-1143
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1hepqfg
false
null
t3_1hepqfg
/r/LocalLLaMA/comments/1hepqfg/llms_for_specific_programming_languages/
false
false
self
12
null
Recommendations for local model with _long_ context window
0
Full context - I'm trying to load a PDF which is probably 2M tokens long - and query an LLM on it. Can you give me some pointers where to start from? Are there even models capable of such large context? Are there any "tricks" I can utilize? I have experience with huggingface for example.
2024-12-15T10:47:59
https://www.reddit.com/r/LocalLLaMA/comments/1heq5x1/recommendations_for_local_model_with_long_context/
stankata
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1heq5x1
false
null
t3_1heq5x1
/r/LocalLLaMA/comments/1heq5x1/recommendations_for_local_model_with_long_context/
false
false
self
0
null
A functional, nice-looking web UI all written by Gemini Experimental 1206
49
https://reddit.com/link/1heqo18/video/xb2fmvqkyz6e1/player Obviously to get it to this state required a lot of corrections and manual editing, but oh god Gemini being this capable just blows me away. What do you think?
2024-12-15T11:23:55
https://www.reddit.com/r/LocalLLaMA/comments/1heqo18/a_functional_nicelooking_web_ui_all_written_by/
Sad-Fix-7915
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1heqo18
false
null
t3_1heqo18
/r/LocalLLaMA/comments/1heqo18/a_functional_nicelooking_web_ui_all_written_by/
false
false
self
49
null
The death of the stubborn developer
0
2024-12-15T11:30:37
https://sourcegraph.com/blog/the-death-of-the-stubborn-developer
FoxInTheRedBox
sourcegraph.com
1970-01-01T00:00:00
0
{}
1heqrg6
false
null
t3_1heqrg6
/r/LocalLLaMA/comments/1heqrg6/the_death_of_the_stubborn_developer/
false
false
https://a.thumbs.redditm…o46hZtIWVeA8.jpg
0
{'enabled': False, 'images': [{'id': '5Hy-o91bAoyCuNZXVynuZIFiJ-YucY-Cd6lCNZr2cWU', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/xGr5wXm_QunmR6E0uirM2gaHgFfEKalmvkKkA08NY5M.jpg?width=108&crop=smart&auto=webp&s=90d1b2f4c0a656c755d710687a9bf89e087b393f', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/xGr5wXm_QunmR6E0uirM2gaHgFfEKalmvkKkA08NY5M.jpg?width=216&crop=smart&auto=webp&s=67cb96448d1d95fbacc15ec4b13b996506935361', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/xGr5wXm_QunmR6E0uirM2gaHgFfEKalmvkKkA08NY5M.jpg?width=320&crop=smart&auto=webp&s=6a964ea68192a77107c66d20ff81da673e534008', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/xGr5wXm_QunmR6E0uirM2gaHgFfEKalmvkKkA08NY5M.jpg?width=640&crop=smart&auto=webp&s=1af09d569a49ff2a16312dd021a36c3e62db4e40', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/xGr5wXm_QunmR6E0uirM2gaHgFfEKalmvkKkA08NY5M.jpg?width=960&crop=smart&auto=webp&s=f2e37837766233ed8de5f552c4078962b9d201a0', 'width': 960}, {'height': 607, 'url': 'https://external-preview.redd.it/xGr5wXm_QunmR6E0uirM2gaHgFfEKalmvkKkA08NY5M.jpg?width=1080&crop=smart&auto=webp&s=29dd0efa17939d02a053c59a9a24807029edf0c7', 'width': 1080}], 'source': {'height': 675, 'url': 'https://external-preview.redd.it/xGr5wXm_QunmR6E0uirM2gaHgFfEKalmvkKkA08NY5M.jpg?auto=webp&s=ef7175741c3a41ff89328897ed8ad0c83e823adf', 'width': 1200}, 'variants': {}}]}
Meta AI Introduces Byte Latent Transformer (BLT): A Tokenizer-Free Model
706
Meta AI’s Byte Latent Transformer (BLT) is a new AI model that skips tokenization entirely, working directly with raw bytes. This allows BLT to handle any language or data format without pre-defined vocabularies, making it highly adaptable. It’s also more memory-efficient and scales better due to its compact design
2024-12-15T11:38:27
https://www.marktechpost.com/2024/12/13/meta-ai-introduces-byte-latent-transformer-blt-a-tokenizer-free-model-that-scales-efficiently/?amp
Legal_Ad4143
marktechpost.com
1970-01-01T00:00:00
0
{}
1heqv6s
false
null
t3_1heqv6s
/r/LocalLLaMA/comments/1heqv6s/meta_ai_introduces_byte_latent_transformer_blt_a/
false
false
https://b.thumbs.redditm…hfELxXkbhkDo.jpg
706
{'enabled': False, 'images': [{'id': 'ATEhwgj-Iwc6amslJv3xkqiC9O4jFn9sYepoXpvtqvc', 'resolutions': [{'height': 79, 'url': 'https://external-preview.redd.it/cJaKDmrdaWxyUN8CvK_bANtl7PeR1201epwEQ3n_XdA.jpg?width=108&crop=smart&auto=webp&s=b15f2f222a2f36448bd40f23b7d2f49a0c29d4cd', 'width': 108}, {'height': 158, 'url': 'https://external-preview.redd.it/cJaKDmrdaWxyUN8CvK_bANtl7PeR1201epwEQ3n_XdA.jpg?width=216&crop=smart&auto=webp&s=fd6bc54f6d9f419f8e8a07653fa45ffcb456affb', 'width': 216}, {'height': 234, 'url': 'https://external-preview.redd.it/cJaKDmrdaWxyUN8CvK_bANtl7PeR1201epwEQ3n_XdA.jpg?width=320&crop=smart&auto=webp&s=5ba9276ff5f8f94246c66af223032602073894f2', 'width': 320}, {'height': 469, 'url': 'https://external-preview.redd.it/cJaKDmrdaWxyUN8CvK_bANtl7PeR1201epwEQ3n_XdA.jpg?width=640&crop=smart&auto=webp&s=7454dcfaae92f4740c77a479cc0c212f98141717', 'width': 640}, {'height': 704, 'url': 'https://external-preview.redd.it/cJaKDmrdaWxyUN8CvK_bANtl7PeR1201epwEQ3n_XdA.jpg?width=960&crop=smart&auto=webp&s=4e6a4c5264982eadf0d21763475c58a9548d2590', 'width': 960}, {'height': 792, 'url': 'https://external-preview.redd.it/cJaKDmrdaWxyUN8CvK_bANtl7PeR1201epwEQ3n_XdA.jpg?width=1080&crop=smart&auto=webp&s=79eed844736cceccb999633940a8ac9da6f2e7d4', 'width': 1080}], 'source': {'height': 1062, 'url': 'https://external-preview.redd.it/cJaKDmrdaWxyUN8CvK_bANtl7PeR1201epwEQ3n_XdA.jpg?auto=webp&s=d18c3641dcd734dc5d90b9cde69bfb4d10e9fd6b', 'width': 1448}, 'variants': {}}]}
Deepseek 128gb MacBook M4
0
What are image gen and coding models would you run?
2024-12-15T11:59:45
https://www.reddit.com/r/LocalLLaMA/comments/1her5vf/deepseek_128gb_macbook_m4/
sammythecoin
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1her5vf
false
null
t3_1her5vf
/r/LocalLLaMA/comments/1her5vf/deepseek_128gb_macbook_m4/
false
false
self
0
null
does the model mannix/llama3.1-8b-abliterated can describe images ?
1
[removed]
2024-12-15T12:53:52
https://www.reddit.com/r/LocalLLaMA/comments/1herzvw/does_the_model_mannixllama318babliterated_can/
HealthySetting3772
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1herzvw
false
null
t3_1herzvw
/r/LocalLLaMA/comments/1herzvw/does_the_model_mannixllama318babliterated_can/
false
false
self
1
null