problem
stringlengths
16
191
explanation
stringlengths
6
29k
type
stringlengths
3
136
What is the outlook for Tabes Dorsalis ?
If left untreated, tabes dorsalis can lead to paralysis, dementia, and blindness. Existing nerve damage cannot be reversed.
Tabes Dorsalis
what research (or clinical trials) is being done for Tabes Dorsalis ?
The NINDS supports and conducts research on neurodegenerative disorders, such as tabes dorsalis, in an effort to find ways to prevent, treat, and, ultimately, cure these disorders.
Tabes Dorsalis
What is (are) Alexander Disease ?
Alexander disease is one of a group of neurological conditions known as the leukodystrophies, disorders that are the result of abnormalities in myelin, the white matter that protects nerve fibers in the brain. Alexander disease is a progressive and often fatal disease. The destruction of white matter is accompanied by the formation of Rosenthal fibers, which are abnormal clumps of protein that accumulate in non-neuronal cells of the brain called astrocytes. Rosenthal fibers are sometimes found in other disorders, but not in the same amount or area of the brain that are featured in Alexander disease. The infantile form is the most common type of Alexander disease. It has an onset during the first two years of life. Usually there are both mental and physical developmental delays, followed by the loss of developmental milestones, an abnormal increase in head size, and seizures. The juvenile form of Alexander disease is less common and has an onset between the ages of two and thirteen. These children may have excessive vomiting, difficulty swallowing and speaking, poor coordination, and loss of motor control. Adult-onset forms of Alexander disease are less common. The symptoms sometimes mimic those of Parkinsons disease or multiple sclerosis, or may present primarily as a psychiatric disorder. The disease occurs in both males and females, and there are no ethnic, racial, geographic, or cultural/economic differences in its distribution.
Alexander Disease
What are the treatments for Alexander Disease ?
There is no cure for Alexander disease, nor is there a standard course of treatment. Treatment of Alexander disease is symptomatic and supportive.
Alexander Disease
What is the outlook for Alexander Disease ?
The prognosis for individuals with Alexander disease is generally poor. Most children with the infantile form do not survive past the age of 6. Juvenile and adult onset forms of the disorder have a slower, more lengthy course.
Alexander Disease
what research (or clinical trials) is being done for Alexander Disease ?
Recent discoveries show that most individuals (approximately 90 percent) with Alexander disease have a mutation in the gene that makes glial fibrillary acidic protein (GFAP). GFAP is a normal component of the brain, but it is unclear how the mutations in this genecauses the disease. In most cases mutations occur spontaneously are not inherited from parents.A small number of people thought to have Alexander disease do not have identifiable mutations in GFAP, which leads researchers to believe that there may be other genetic or perhaps even non-genetic causes of Alexander disease. Current research is aimed at understanding the mechanisms by which the mutations cause disease, developing better animal models for the disorder, and exploring potential strategies for treatment. At present, there is no exact animal model for the disease; however, mice have been engineered to produce the same mutant forms of GFAP found in individuals with Alexander disease. These mice form Rosenthal fibers and have a predisposition for seizures, but do not yet mimic all features of human disease (such as the leukodystrophies). One clinical study is underway to identify biomarkers of disease severity or progression in samples of blood or cerebrospinal fluid. Such biomarkers, if found, would be a major advantage for evaluating the response to any treatments that are developed in the future.
Alexander Disease
What is (are) Ohtahara Syndrome ?
Ohtahara syndrome is a neurological disorder characterized by seizures. The disorder affects newborns, usually within the first three months of life (most often within the first 10 days) in the form of epileptic seizures. Infants have primarily tonic seizures, but may also experience partial seizures, and rarely, myoclonic seizures. Ohtahara syndrome is most commonly caused by metabolic disorders or structural damage in the brain, although the cause or causes for many cases cant be determined. Most infants with the disorder show significant underdevelopment of part or all of the cerebral hemispheres. The EEGs of infants with Ohtahara syndrome reveal a characteristic pattern of high voltage spike wave discharge followed by little activity. This pattern is known as burst suppression. Doctors have observed that boys are more often affected than girls.
Ohtahara Syndrome
What are the treatments for Ohtahara Syndrome ?
Antiepileptic drugs are used to control seizures, but are unfortunately not usually very effective for this disorder. Corticosteroids are occasionally helpful. In cases where there is a focal brain lesion (damage contained to one area of the brain) surgery may be beneficial. Other therapies are symptomatic and supportive.
Ohtahara Syndrome
What is the outlook for Ohtahara Syndrome ?
The course of Ohtahara syndrome is severely progressive. Seizures become more frequent, accompanied by delays in physical and cognitive development.Some children will die in infancy; others will survive but be profoundly handicapped. As they grow, some children will progress into other epileptic disorders such as West syndrome and Lennox-Gestaut syndrome.
Ohtahara Syndrome
what research (or clinical trials) is being done for Ohtahara Syndrome ?
The NINDS conducts and supports an extensive research program on seizures and seizure-related disorders. Much of this research is aimed at increasing scientific understanding of these disorders and finding ways to prevent, treat, and potentially cure them.
Ohtahara Syndrome
What is (are) Lissencephaly ?
Lissencephaly, which literally means "smooth brain," is a rare, gene-linked brain malformation characterized by the absence of normal convolutions (folds) in the cerebral cortex and an abnormally small head (microcephaly). In the usual condition of lissencephaly, children usually have a normal sized head at birth. In children with reduced head size at birth, the condition microlissencephaly is typically diagnosed. Lissencephaly is caused by defective neuronal migration during embryonic development, the process in which nerve cells move from their place of origin to their permanent location within the cerebral cortex gray matter. Symptoms of the disorder may include unusual facial appearance, difficulty swallowing, failure to thrive, muscle spasms, seizures, and severe psychomotor retardation. Hands, fingers, or toes may be deformed. Lissencephaly may be associated with other diseases including isolated lissencephaly sequence, Miller-Dieker syndrome, and Walker-Warburg syndrome. Sometimes it can be difficult to distinguish between these conditions clinically so consultation with national experts is recommended to help ensure correct diagnosis and possible molecular testing.
Lissencephaly
What are the treatments for Lissencephaly ?
There is no cure for lissencephaly, but children can show progress in their development over time. Supportive care may be needed to help with comfort, feeding, and nursing needs. Seizures may be particularly problematic but anticonvulsant medications can help. Progressive hydrocephalus (an excessive accumulation of cerebrospinal fluid in the brain) is very rare, seen only in the subtype of Walker-Warburg syndrome, but may require shunting. If feeding becomes difficult, a gastrostomy tube may be considered.
Lissencephaly
What is the outlook for Lissencephaly ?
The prognosis for children with lissencephaly depends on the degree of brain malformation. Many will die before the age of 10 years. The cause of death is usually aspiration of food or fluids, respiratory disease, or severe seizures. Some will survive, but show no significant development -- usually not beyond a 3- to 5-month-old level. Others may have near-normal development and intelligence. Because of this range, it is important to seek the opinion of specialists in lissencephaly and support from family groups with connection to these specialists.
Lissencephaly
what research (or clinical trials) is being done for Lissencephaly ?
The NINDS conducts and supports a wide range of studies that explore the complex systems of normal brain development, including neuronal migration. Recent studies have identified genes that are responsible for lissencephaly. The knowledge gained from these studies provides the foundation for developing treatments and preventive measures for neuronal migration disorders.
Lissencephaly
What is (are) CADASIL ?
CADASIL (Cerebral Autosomal Dominant Arteriopathy with Sub-cortical Infarcts and Leukoencephalopathy) is an inherited form of cerebrovascular disease that occurs when the thickening of blood vessel walls blocks the flow of blood to the brain. The disease primarily affects small blood vessels in the white matter of the brain. A mutation in the Notch3 gene alters the muscular walls in these small arteries. CADASIL is characterized by migraine headaches and multiple strokes progressing to dementia. Other symptoms include cognitive deterioration, seizures, vision problems, and psychiatric problems such as severe depression and changes in behavior and personality. Individuals may also be at higher risk of heart attack. Symptoms and disease onset vary widely, with signs typically appearing in the mid-30s. Some individuals may not show signs of the disease until later in life. CADASIL formerly known by several names, including hereditary multi-infarct dementia is one cause of vascular cognitive impairment (dementia caused by lack of blood to several areas of the brain). It is an autosomal dominant inheritance disorder, meaning that one parent carries and passes on the defective gene. Most individuals with CADASIL have a family history of the disorder. However, because the genetic test for CADASIL was not available before 2000, many cases were misdiagnosed as multiple sclerosis, Alzheimer's disease, or other neurodegenerative diseases.
CADASIL
What are the treatments for CADASIL ?
There is no treatment to halt this genetic disorder. Individuals are given supportive care. Migraine headaches may be treated by different drugs and a daily aspirin may reduce stroke and heart attack risk. Drug therapy for depression may be given. Affected individuals who smoke should quit as it can increase the risk of stroke in CADASIL. Other stroke risk factors such as hypertension, hyperlipidemia, diabetes, blood clotting disorders and obstructive sleep apnea also should be aggressively treated..
CADASIL
What is the outlook for CADASIL ?
Symptoms usually progress slowly. By age 65, the majority of persons with CADASIL have cognitive problems and dementia. Some will become dependent due to multiple strokes.
CADASIL
what research (or clinical trials) is being done for CADASIL ?
The National Institute of Neurological Disorders and Stroke (NINDS) conducts stroke research and clinical trials at its laboratories and clinics at the National Institutes of Health (NIH) and through grants to major medical institutions across the country. Scientists are currently studying different drugs to reduce cognitive problems seen in patients with CADASIL. Researchers are also looking at ways to overcome an over-reaction to hormones that lead to high blood pressure and poor blood supply in patients with CADASIL.
CADASIL
What is (are) Empty Sella Syndrome ?
Empty Sella Syndrome (ESS) is a disorder that involves the sella turcica, a bony structure at the base of the brain that surrounds and protects the pituitary gland. ESS is often discovered during radiological imaging tests for pituitary disorders. ESS occurs n up to 25 percent of the population.An individual with ESS may have no symptoms or may have symptoms resulting from partial or complete loss of pituitary function (including headaches, low sex drive, and impotence).There are two types of ESS: primary and secondary. Primary ESS happens when a small anatomical defect above the pituitary gland allows spinal fluid to partially or completely fill the sella turcica. This causes the gland to flatten out along the interior walls of the sella turcica cavity. Individuals with primary ESS may have high levels of the hormone prolactin, which can interfere with the normal function of the testicles and ovaries. Primary ESS is most common in adults and women, and is often associated with obesity and high blood pressure. In some instances the pituitary gland may be smaller than usual; this may be due to a condition called pseudotumor cerebri (which means "false brain tumor," brought on by high pressure within the skull), In rare instances this high fluid pressure can be associated with drainage of spinal fluid through the nose. Secondary ESS is the result of the pituitary gland regressing within the cavity after an injury, surgery, or radiation therapy. Individuals with secondary ESS can sometimes have symptoms that reflect the loss of pituitary functions, such as the ceasing of menstrual periods, infertility, fatigue, and intolerance to stress and infection. In children, ESS may be associated with early onset of puberty, growth hormone deficiency, pituitary tumors, or pituitary gland dysfunction. Magnetic resonance imaging (MRI) scans are useful in evaluating ESS and for identifying underlying disorders that may be the cause of high fluid pressure.
Empty Sella Syndrome
What are the treatments for Empty Sella Syndrome ?
Unless the syndrome results in other medical problems, treatment for endocrine dysfunction associated with pituitary malfunction is symptomatic and supportive. Individuals with primary ESS who have high levels of prolactin may be given bromocriptine. In some cases, particularly when spinal fluid drainage is observed, surgery may be needed.
Empty Sella Syndrome
What is the outlook for Empty Sella Syndrome ?
ESS is not a life-threatening condition. Most often, and particularly among those with primary ESS, the disorder does not cause health problems and does not affect life expectancy.
Empty Sella Syndrome
what research (or clinical trials) is being done for Empty Sella Syndrome ?
The mission of the National Institute of Neurological Disorders and Stroke (NINDS) is to seek fundamental knowledge about the brain and nervous system, and to use that knowledge to reduce the burden of neurological disease. The NINDS supports and conducts fundamental studies that explore the complex mechanisms of normal brain development and to better understand neurological conditions such as ESS. The knowledge gained from these fundamental studies helps researchers understand neurodevelopment and provides opportunities to more effectively treat and perhaps even prevent, such disorders.
Empty Sella Syndrome
What is (are) Primary Lateral Sclerosis ?
Primary lateral sclerosis (PLS) is a rare neuromuscular disease with slowly progressive weakness in voluntary muscle movement. PLS belongs to a group of disorders known as motor neuron diseases. PLS affects the upper motor neurons (also called corticospinal neurons) in the arms, legs, and face. It occurs when nerve cells in the motor regions of the cerebral cortex (the thin layer of cells covering the brain which is responsible for most higher level mental functions) gradually degenerate, causing movements to be slow and effortful. The disorder often affects the legs first, followed by the body, trunk, arms and hands, and, finally the bulbar muscles (muscles that control speech, swallowing, and chewing). Symptoms include weakness, muscle stiffness and spasticity, clumsiness, slowing of movement, and problems with balance and speech. PLS is more common in men than in women, with a varied gradual onset that generally occurs between ages 40 and 60. PLS progresses gradually over a number of years, or even decades. Scientists do not believe PLS has a simple hereditary cause. The diagnosis of PLS requires extensive testing to exclude other diseases. When symptoms begin, PLS may be mistaken for amyotrophic lateral sclerosis (ALS) or spastic paraplegia. Most neurologists follow an affected individual's clinical course for at least 3 to 4 years before making a diagnosis of PLS..
Primary Lateral Sclerosis
What are the treatments for Primary Lateral Sclerosis ?
Treatment for individuals with PLS is symptomatic. Muscle relaxants such as baclofen, tizanidine, and the benzodiazepines may reduce spasticity. Other drugs may relieve pain and antidepressants can help treat depression. Physical therapy, occupational therapy, and rehabilitation may prevent joint immobility and slow muscle weakness and atrophy. Assistive devices such as supports or braces, speech synthesizers, and wheelchairs ma help some people retain independence.. Speech therapy may be useful for those with involvement of the facial muscles.
Primary Lateral Sclerosis
What is the outlook for Primary Lateral Sclerosis ?
PLS is not fatal. There is no cure and the progression of symptoms varies. Some people may retain the ability to walk without assistance, but others eventually require wheelchairs, canes, or other assistive devices.
Primary Lateral Sclerosis
what research (or clinical trials) is being done for Primary Lateral Sclerosis ?
The NINDS conducts a broad range of research on neuromuscular disorders such as PLS. This research is aimed at developing techniques to diagnose, treat, prevent, and ultimately cure these devastating diseases.
Primary Lateral Sclerosis
What is (are) Lipoid Proteinosis ?
Lipoid proteinosis (LP) is a rare disease that affects the skin and the brain. Three distinctive features characterize the disease: a hoarse voice, unusual growths on the skin and mucus membranes, and damage to the temporal lobes or hippocampus of the brain. The symptoms of LP may begin as early as infancy with hoarseness or a weak cry, due to growths on the vocal cords. Skin lesions appear sometime in the next 3 years, leaving acne- or pox-like scars on the face, hands, and mucous membranes. The most characteristic symptom of LP is waxy, yellow, bead-like bumps along the upper and lower edges of the eyelids. Brain damage develops over time and is associated with the development of cognitive abilities and epileptic seizures. Damage to the amygdala, a part of the brain that regulates emotions and perceptions, leads to difficulties in discriminating facial expressions and in making realistic judgments about the trustworthiness of other people. LP is a hereditary disease that equally affects males and females. Nearly a quarter of all reported cases have been in the Afrikaner population of South Africa, but the disease is increasingly being reported from other parts of the world including India. The gene responsible for LP has recently been identified. It performs an unknown function in the skin related to the production of collagen.
Lipoid Proteinosis
What are the treatments for Lipoid Proteinosis ?
There is no cure for LP. Some doctors have had success treating the skin eruptions with oral steroid drugs and oral dimethyl sulphoxide (DMSO). Carbon dioxide laser surgery of thickened vocal cords and eyelid bumps has proved helpful in some studies. Dermabrasion may improve the appearance of the skin lesions. Seizures, if present, may be treated with anticonvulsants.
Lipoid Proteinosis
What is the outlook for Lipoid Proteinosis ?
Lipoid proteinosis has a stable or slowly progressive course. Children with LP may have behavioral or learning difficulties, along with seizures. Obstruction in the throat may require a tracheostomy. Mortality rates in infants and adults are slightly increased because of problems with throat obstructions and upper respiratory tract infections.
Lipoid Proteinosis
what research (or clinical trials) is being done for Lipoid Proteinosis ?
The National Institute of Neurological Disorders and Stroke (NINDS), and other institutes of the National Institutes of Health (NIH), conduct research related to neurological diseases such as lipoid proteinosis in laboratories at the NIH, and also support additional research through grants to major medical institutions across the country. Much of this research focuses on finding better ways to prevent, treat, and ultimately cure disorders, such as lipoid proteinosis.
Lipoid Proteinosis
What is (are) Parry-Romberg ?
Parry-Romberg syndrome is a rare disorder characterized by slowly progressive deterioration (atrophy) of the skin and soft tissues of half of the face (hemifacial atrophy), usually the left side. It is more common in females than in males. Initial facial changes usually involve the tissues above the upper jaw (maxilla) or between the nose and the upper corner of the lip (nasolabial fold) and subsequently progress to the angle of the mouth, areas around the eye, the brow, the ear, and the neck. The deterioration may also affect the tongue, the soft and fleshy part of the roof of the mouth, and the gums. The eye and cheek of the affected side may become sunken and facial hair may turn white and fall out (alopecia). In addition, the skin overlying affected areas may become darkly pigmented (hyperpigmentation) with, in some cases, areas of hyperpigmentation and patches of unpigmented skin (vitiligo). Parry-Romberg syndrome is also accompanied by neurological abnormalities including seizures and episodes of severe facial pain (trigeminal neuralgia). The onset of the disease usually begins between the ages of 5 and 15 years. The progression of the atrophy often lasts from 2 to 10 years, and then the process seems to enter a stable phase. Muscles in the face may atrophy and there may be bone loss in the facial bones. Problems with the retina and optic nerve may occur when the disease surrounds the eye.
Parry-Romberg
What are the treatments for Parry-Romberg ?
There is no cure and there are no treatments that can stop the progression of Parry-Romberg syndrome. Reconstructive or microvascular surgery may be needed to repair wasted tissue. The timing of surgical intervention is generally agreed to be the best following exhaustion of the disease course and completion of facial growth. Most surgeons will recommend a waiting period of one or two years before proceeding with reconstruction. Muscle or bone grafts may also be helpful. Other treatment is symptomatic and supportive.
Parry-Romberg
What is the outlook for Parry-Romberg ?
The prognosis for individuals with Parry-Romberg syndrome varies. In some cases, the atrophy ends before the entire face is affected. In mild cases, the disorder usually causes no disability other than cosmetic effects.
Parry-Romberg
what research (or clinical trials) is being done for Parry-Romberg ?
The NINDS supports research on neurological disorders such as Parry-Romberg syndrome with the goal of finding ways to prevent, treat, and cure them.
Parry-Romberg
What is (are) Adrenoleukodystrophy ?
X-linked Adrenoleukodystrophy (ALD) is one of a group of genetic disorders called the leukodystrophies that cause damage to the myelin sheath, an insulating membrane that surrounds nerve cells in the brain. Women have two X chromosomes and are the carriers of the disease, but since men only have one X chromosome and lack the protective effect of the extra X chromosome, they are more severely affected. People with X-ALD accumulate high levels of saturated, very long chain fatty acids (VLCFA) in the brain and adrenal cortex. The loss of myelin and the progressive dysfunction of the adrenal gland are the primary characteristics of X-ALD. While nearly all patients with X-ALD suffer from adrenal insufficiency, also known as Addison's disease, the neurological symptoms can begin either in childhood or in adulthood. The childhood cerebral form is the most severe, with onset between ages 4 and 10. The most common symptoms are usually behavioral changes such as abnormal withdrawal or aggression, poor memory, and poor school performance. Other symptoms include visual loss, learning disabilities, seizures, poorly articulated speech, difficulty swallowing, deafness, disturbances of gait and coordination, fatigue, intermittent vomiting, increased skin pigmentation, and progressive dementia. The milder adult-onset form is also known as adrenomyeloneuropathy (AMN), which typically begins between ages 21 and 35. Symptoms may include progressive stiffness, weakness or paralysis of the lower limbs, and ataxia. Although adult-onset ALD progresses more slowly than the classic childhood form, it can also result in deterioration of brain function. Almost half the women who are carriers of X-ALS will develop a milder form of AMN but almost never will develop symptoms seen in boys the X-ALD. X-ALD should not be confused with neonatal adrenoleukodsystrophy, which is a disease of newborns and young infants and belongs to the group of peroxisomal biogenesis disorders.
Adrenoleukodystrophy
What are the treatments for Adrenoleukodystrophy ?
Adrenal function must be tested periodically in all patients with ALD. Treatment with adrenal hormones can be lifesaving. Symptomatic and supportive treatments for ALD include physical therapy, psychological support, and special education. Recent evidence suggests that a mixture of oleic acid and erucic acid, known as "Lorenzo's Oil," administered to boys with X-ALD prior to symptom onset can prevent or delay the appearance of the childhood cerebral form It is not known whether Lorenzo's Oil will have any beneficial effects in AMN. Furthermore, Lorenzo's Oil has no beneficial effect in symptomatic boys with X-ALD. Bone marrow transplantations can provide long-term benefit to boys who have early evidence of the childhood cerebral form of X-ALD, but the procedure carries risk of mortality and morbidity and is not recommended for those whose symptoms are already severe or who have the adult-onset or neonatal forms.
Adrenoleukodystrophy
What is the outlook for Adrenoleukodystrophy ?
Prognosis for patients with childhood cerebral X-ALD is generally poor due to progressive neurological deterioration unless bone marrow transplantation is performed early. Death usually occurs within 1 to 10 years after the onset of symptoms. Adult-onset AMN will progress over decades.
Adrenoleukodystrophy
what research (or clinical trials) is being done for Adrenoleukodystrophy ?
The NINDS supports research on genetic disorders such as ALD. The aim of this research is to find ways to prevent, treat, and cure these disorders. Studies are currently underway to identify new biomarkers of disease progression and to determine which patients will develop the childhood cerebral form of X-ALD. A recent case study in Europe demonstrated that the combination of gene therapy with bone marrow transplantation, using the patient's own bone marrow cells, may arrest disease progression in childhood cerebral X-ALD. A therapeutic trail in the United States is currently being discussed with the U.S. Food and Drug Administration.
Adrenoleukodystrophy
What is (are) Aphasia ?
Aphasia is a neurological disorder caused by damage to the portions of the brain that are responsible for language production or processing. It may occur suddenly or progressively, depending on the type and location of brain tissue involved. Primary signs of the disorder include difficulty in expressing oneself when speaking, trouble understanding speech, and difficulty with reading and writing. Aphasia is not a disease, but a symptom of brain damage. Although it is primarily seen in individuals who have suffered a stroke, aphasia can also result from a brain tumor, infection, inflammation, head injury, or dementia that affect language-associated regions of the brain. It is estimated that about 1 million people in the United States today suffer from aphasia. The type and severity of language dysfunction depends on the precise location and extent of the damaged brain tissue. Generally, aphasia can be divided into four broad categories: (1) Expressive aphasia (also called Broca's aphasia) involves difficulty in conveying thoughts through speech or writing. The person knows what she/he wants to say, but cannot find the words he needs. (2) Receptive aphasia (Wernicke's aphasia) involves difficulty understanding spoken or written language. The individual hears the voice or sees the print but cannot make sense of the words. (3) Global aphasia results from severe and extensive damage to the language areas of the brain. People lose almost all language function, both comprehension and expression. They cannot speak or understand speech, nor can they read or write. (4) Indiivfduals with anomic or amnesia aphasia, the least severe form of aphasia, have difficulty in using the correct names for particular objects, people, places, or events.
Aphasia
What are the treatments for Aphasia ?
In some instances, an individual will completely recover from aphasia without treatment. In most cases, however, language therapy should begin as soon as possible and be tailored to the individual needs of the person. Rehabilitation with a speech pathologist involves extensive exercises in which individuals read, write, follow directions, and repeat what they hear. Computer-aided therapy may supplement standard language therapy.
Aphasia
What is the outlook for Aphasia ?
The outcome of aphasia is difficult to predict given the wide range of variability of the condition. Generally, people who are younger or have less extensive brain damage fare better. The location of the injury is also important and is another clue to prognosis. In general, people tend to recover skills in language comprehension more completely than those skills involving expression.
Aphasia
what research (or clinical trials) is being done for Aphasia ?
The National Institute of Neurological Disorders and Stroke and the National Institute on Deafness and Other Communication Disorders conduct and support a broad range of scientific investigations to increase our understanding of aphasia, find better treatments, and discover improved methods to restore lost function to people who have aphasia.
Aphasia
What is (are) Dermatomyositis ?
Dermatomyositis is one of a group of muscle diseases known as the inflammatory myopathies, which are characterized by chronic muscle inflammation accompanied by muscle weakness. Dermatomyositis cardinal symptom is a skin rash that precedes, accompanies, or follows progressive muscle weakness. The rash looks patchy, with purple or red discolorations, and characteristically develops on the eyelids and on muscles used to extend or straighten joints, including knuckles, elbows, knees, and toes. Red rashes may also occur on the face, neck, shoulders, upper chest, back, and other locations, and there may be swelling in the affected areas. The rash sometimes occurs without obvious muscle involvement. Adults with dermatomyositis may experience weight loss, a low-grade fever, inflamed lungs, and be sensitive to light such that the rash or muscle disease gets worse. Children and adults with dermatomyositis may develop calcium deposits, which appear as hard bumps under the skin or in the muscle (called calcinosis). Calcinosis most often occurs 1-3 years after the disease begins. These deposits are seen more often in children with dermatomyositis than in adults. In some cases of dermatomyositis, distal muscles (muscles located away from the trunk of the body, such as those in the forearms and around the ankles and wrists) may be affected as the disease progresses. Dermatomyositis may be associated with collagen-vascular or autoimmune diseases, such as lupus.
Dermatomyositis
What are the treatments for Dermatomyositis ?
There is no cure for dermatomyositis, but the symptoms can be treated. Options include medication, physical therapy, exercise, heat therapy (including microwave and ultrasound), orthotics and assistive devices, and rest. The standard treatment for dermatomyositis is a corticosteroid drug, given either in pill form or intravenously. Immunosuppressant drugs, such as azathioprine and methotrexate, may reduce inflammation in people who do not respond well to prednisone. Periodic treatment using intravenous immunoglobulin can also improve recovery. Other immunosuppressive agents used to treat the inflammation associated with dermatomyositis include cyclosporine A, cyclophosphamide, and tacrolimus. Physical therapy is usually recommended to prevent muscle atrophy and to regain muscle strength and range of motion. Many individuals with dermatomyositis may need a topical ointment, such as topical corticosteroids, for their skin disorder. They should wear a high-protection sunscreen and protective clothing. Surgery may be required to remove calcium deposits that cause nerve pain and recurrent infections.
Dermatomyositis
What is the outlook for Dermatomyositis ?
Most cases of dermatomyositis respond to therapy. The disease is usually more severe and resistant to therapy in individuals with cardiac or pulmonary problems.
Dermatomyositis
what research (or clinical trials) is being done for Dermatomyositis ?
The National Institute of Neurological Disorders and Stroke (NINDS) and other institutes of the National Institutes of Health (NIH) conduct research relating to dermatomyositis in laboratories at the NIH and support additional research through grants to major medical institutions across the country. Currently funded research is exploring patterns of gene expression among the inflammatory myopathies, the role of viral infection as a precursor to the disorders, and the safety and efficacy of various treatment regimens.
Dermatomyositis
What is (are) Coffin Lowry Syndrome ?
Coffin-Lowry syndrome is a rare genetic disorder characterized by craniofacial (head and facial) and skeletal abnormalities, delayed intellectual development, short stature, and hypotonia. Characteristic facial features may include an underdeveloped upper jaw bone (maxillary hypoplasia), a broad nose, protruding nostrils (nares), an abnormally prominent brow, down-slanting eyelid folds (palpebral fissures), widely spaced eyes (hypertelorism), large low-set ears, and unusually thick eyebrows. Skeletal abnormalities may include abnormal front-to-back and side-to-side curvature of the spine (kyphoscoliosis), unusual prominence of the breastbone (pigeon chest, or pectus carinatum), dental abnormalities, and short, hyperextensible, tapered fingers. Other features may include feeding and respiratory problems, developmental delay, hearing impairment, awkward gait, stimulus-induced drop episodes, and heart and kidney involvement. The disorder affects males and females in equal numbers, but symptoms are usually more severe in males. The disorder is caused by a defective gene, RSK2, which is found in 1996 on the X chromosome (Xp22.2-p22.1). Thus, the syndrome is typically more severe in males because males have only one X chromosome, while females have two. It is unclear how changes (mutations) in the DNA structure of the gene lead to the clinical findings.
Coffin Lowry Syndrome
What are the treatments for Coffin Lowry Syndrome ?
There is no cure and no standard course of treatment for Coffin-Lowry syndrome. Treatment is symptomatic and supportive, and may include physical and speech therapy and educational services.
Coffin Lowry Syndrome
What is the outlook for Coffin Lowry Syndrome ?
The prognosis for individuals with Coffin-Lowry syndrome varies depending on the severity of symptoms. Early intervention may improve the outlook for patients. Life span is reduced in some individuals with Coffin-Lowry syndrome.
Coffin Lowry Syndrome
what research (or clinical trials) is being done for Coffin Lowry Syndrome ?
The NINDS supports and conducts research on genetic disorders, such as Coffin-Lowry syndrome, in an effort to find ways to prevent, treat, and ultimately cure these disorders.
Coffin Lowry Syndrome
What is (are) Multi-Infarct Dementia ?
Multi-infarct dementia (MID) is a common cause of memory loss in the elderly. MID is caused by multiple strokes (disruption of blood flow to the brain). Disruption of blood flow leads to damaged brain tissue. Some of these strokes may occur without noticeable clinical symptoms. Doctors refer to these as silent strokes. An individual having asilent stroke may not even know it is happening, but over time, as more areas of the brain are damaged and more small blood vessels are blocked, the symptoms of MID begin to appear. MID can be diagnosed by an MRI or CT of the brain, along with a neurological examination. Symptoms include confusion or problems with short-term memory; wandering, or getting lost in familiar places; walking with rapid, shuffling steps; losing bladder or bowel control; laughing or crying inappropriately; having difficulty following instructions; and having problems counting money and making monetary transactions. MID, which typically begins between the ages of 60 and 75, affects men more often than women. Because the symptoms of MID are so similar to Alzheimers disease, it can be difficult for a doctor to make a firm diagnosis. Since the diseases often occur together, making a single diagnosis of one or the other is even more problematic.
Multi-Infarct Dementia
What are the treatments for Multi-Infarct Dementia ?
There is no treatment available to reverse brain damage that has been caused by a stroke. Treatment focuses on preventing future strokes by controlling or avoiding the diseases and medical conditions that put people at high risk for stroke: high blood pressure, diabetes, high cholesterol, and cardiovascular disease. The best treatment for MID is prevention early in life eating a healthy diet, exercising, not smoking, moderately using alcohol, and maintaining a healthy weight.
Multi-Infarct Dementia
What is the outlook for Multi-Infarct Dementia ?
The prognosis for individuals with MID is generally poor. The symptoms of the disorder may begin suddenly, often in a step-wise pattern after each small stroke. Some people with MID may even appear to improve for short periods of time, then decline after having more silent strokes. The disorder generally takes a downward course with intermittent periods of rapid deterioration. Death may occur from stroke, heart disease, pneumonia, or other infection.
Multi-Infarct Dementia
what research (or clinical trials) is being done for Multi-Infarct Dementia ?
The National Institute of Neurological Disorders and Stroke (NINDS) conducts research related to MID in its laboratories at the National Institutes of Health (NIH), and also supports additional research through grants to major medical institutions across the country. Much of this research focuses on finding better ways to prevent, treat, and ultimately cure the vascular dementias, such as MID.
Multi-Infarct Dementia
What is (are) Sandhoff Disease ?
Sandhoff disease is a rare, inherited lipid storage disorder that progressively destroys nerve cells in the brain and spinal cord. It is caused by a deficiency of the enzyme beta-hexosaminidase, which results in the harmful accumulation of certain fats (lipids) in the brain and other organs of the body. Sandhoff disease is a severe form of Tay-Sachs disease, the incidence of which had been particularly high in people of Eastern European and Ashkenazi Jewish descent, but Sandhoff disease is not limited to any ethnic group. Onset of the disorder usually occurs at 6 months of age. Neurological symptoms may include progressive nervous system deterioration, problems initiating and controlling muscles and movement, increased startle reaction to sound, early blindness, seizures, spasticity (non-voluntary and awkward movement), and myoclonus (shock-like contractions of a muscle. Other symptoms may include macrocephaly (an abnormally enlarged head), cherry-red spots in the eyes, frequent respiratory infections, doll-like facial appearance, and an enlarged liver and spleen. Each parent must carry the defective gene and pass it on to the child. Individuals who carry only one copy of the mutated gene typically do not show signs and symptoms of the disorder.
Sandhoff Disease
What are the treatments for Sandhoff Disease ?
There is no specific treatment for Sandhoff disease. Supportive treatment includes proper nutrition and hydration and keeping the airway open. Anticonvulsants may initially control seizures.
Sandhoff Disease
What is the outlook for Sandhoff Disease ?
The prognosis for individuals with Sandhoff disease is poor. Death usually occurs by age 3 and is generally caused by respiratory infections.
Sandhoff Disease
what research (or clinical trials) is being done for Sandhoff Disease ?
The mission of the National Institute of Neurological Disorders and Stroke (NINDS) is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease. The NINDS is a part of the National Institutes of Health, the largest supporter of biomedical research in the world. The NINDS, along with other NIH Institutes, supports the Lysosomal Disease Network, a network of centers that addresses some of the major challenges in the diagnosis, management, and therapy of rare diseases, including the lipid storage diseases. Research funded by the NINDS focuses on better understanding of how neurological deficits rise in lipid storage diseases and on the development of new treatments targeting disease mechanisms, including gene therapies, cell-based therapies, and pharmacological approaches. NINDS funded research on the gangliosidoses includes variations of magnetic resonance imaging to develop a biomarker (a sign that may indicate risk of a disease and improve diagnosis) to effectively evaluate brain biochemistry and disease progression, and expanding the use of virus-delivered gene therapy seen in an animal model of Tay-Sachs and Sandhoff diseases for use in humans.
Sandhoff Disease
What is (are) Moebius Syndrome ?
Moebius syndrome is a rare birth defect caused by the absence or underdevelopment of the 6th and 7th cranial nerves, which control eye movements and facial expression. Many of the other cranial nerves may also be affected, including the 3rd, 5th, 8th, 9th, 11th and 12th. The first symptom, present at birth, is an inability to suck. Other symptoms can include: feeding, swallowing, and choking problems; excessive drooling; crossed eyes; lack of facial expression; inability to smile; eye sensitivity; motor delays; high or cleft palate; hearing problems and speech difficulties. Children with Moebius syndrome are unable to move their eyes back and forth. Decreased numbers of muscle fibers have been reported. Deformities of the tongue, jaw, and limbs, such as clubfoot and missing or webbed fingers, may also occur. As children get older, lack of facial expression and inability to smile become the dominant visible symptoms. Approximately 30 to 40 percent of children with Moebius syndrome have some degree of autism. There are four recognized categories of Moebius syndrome: - Group I, characterized by small or absent brain stem nuclei that control the cranial nerves; - Group II, characterized by loss and degeneration of neurons in the facial peripheral nerve; - Group III, characterized by loss and degeneration of neurons and other brain cells, microscopic areas of damage, and hardened tissue in the brainstem nuclei, and, - Group IV, characterized by muscular symptoms in spite of a lack of lesions in the cranial nerve.
Moebius Syndrome
What are the treatments for Moebius Syndrome ?
There is no specific course of treatment for Moebius syndrome. Treatment is supportive and in accordance with symptoms. Infants may require feeding tubes or special bottles to maintain sufficient nutrition. Surgery may correct crossed eyes and improve limb and jaw deformities. Physical and speech therapy often improves motor skills and coordination, and leads to better control of speaking and eating abilities. Plastic reconstructive surgery may be beneficial in some individuals. Nerve and muscle transfers to the corners of the mouth have been performed to provide limited ability to smile.
Moebius Syndrome
What is the outlook for Moebius Syndrome ?
There is no cure for Moebius syndrome. In spite of the impairments that characterize the disorder, proper care and treatment give many individuals a normal life expectancy.
Moebius Syndrome
what research (or clinical trials) is being done for Moebius Syndrome ?
The NINDS conducts and supports a broad range of research on neurogenetic disorders, including Moebius syndrome. The goals of these studies are to develop improved techniques to diagnose, treat, and eventually cure these disorders.
Moebius Syndrome
What is (are) Stroke ?
A stroke occurs when the blood supply to part of the brain is suddenly interrupted or when a blood vessel in the brain bursts, spilling blood into the spaces surrounding brain cells. Brain cells die when they no longer receive oxygen and nutrients from the blood or there is sudden bleeding into or around the brain. The symptoms of a stroke include sudden numbness or weakness, especially on one side of the body; sudden confusion or trouble speaking or understanding speech; sudden trouble seeing in one or both eyes; sudden trouble with walking, dizziness, or loss of balance or coordination; or sudden severe headache with no known cause. There are two forms of stroke: ischemic - blockage of a blood vessel supplying the brain, and hemorrhagic - bleeding into or around the brain.
Stroke
What are the treatments for Stroke ?
Generally there are three treatment stages for stroke: prevention, therapy immediately after the stroke, and post-stroke rehabilitation. Therapies to prevent a first or recurrent stroke are based on treating an individual's underlying risk factors for stroke, such as hypertension, atrial fibrillation, and diabetes. Acute stroke therapies try to stop a stroke while it is happening by quickly dissolving the blood clot causing an ischemic stroke or by stopping the bleeding of a hemorrhagic stroke. Post-stroke rehabilitation helps individuals overcome disabilities that result from stroke damage. Medication or drug therapy is the most common treatment for stroke. The most popular classes of drugs used to prevent or treat stroke are antithrombotics (antiplatelet agents and anticoagulants) and thrombolytics.
Stroke
What is the outlook for Stroke ?
Although stroke is a disease of the brain, it can affect the entire body. A common disability that results from stroke is complete paralysis on one side of the body, called hemiplegia. A related disability that is not as debilitating as paralysis is one-sided weakness or hemiparesis. Stroke may cause problems with thinking, awareness, attention, learning, judgment, and memory. Stroke survivors often have problems understanding or forming speech. A stroke can lead to emotional problems. Stroke patients may have difficulty controlling their emotions or may express inappropriate emotions. Many stroke patients experience depression. Stroke survivors may also have numbness or strange sensations. The pain is often worse in the hands and feet and is made worse by movement and temperature changes, especially cold temperatures. Recurrent stroke is frequent; about 25 percent of people who recover from their first stroke will have another stroke within 5 years.
Stroke
what research (or clinical trials) is being done for Stroke ?
The National Institute of Neurological Disorders and Stroke (NINDS) conducts stroke research and clinical trials at its laboratories and clinics at the National Institutes of Health (NIH), and through grants to major medical institutions across the country. Currently, NINDS researchers are studying the mechanisms of stroke risk factors and the process of brain damage that results from stroke. Basic research has also focused on the genetics of stroke and stroke risk factors. Scientists are working to develop new and better ways to help the brain repair itself to restore important functions. New advances in imaging and rehabilitation have shown that the brain can compensate for function lost as a result of stroke.
Stroke
What is (are) Porencephaly ?
Porencephaly is an extremely rare disorder of the central nervous system in which a cyst or cavity filled with cerebrospinal fluid develops in the brain. It is usually the result of damage from stroke or infection after birth (the more common type), but it can also be caused by abnormal development before birth (which is inherited and less common). Diagnosis is usually made before an infant reaches his or her first birthday. Symptoms of porencephaly include delayed growth and development, spastic hemiplegia (slight or incomplete paralysis), hypotonia (low muscle tone), seizures (often infantile spasms), and macrocephaly (large head) or microcephaly (small head). Children with porencephaly may have poor or absent speech development, epilepsy, hydrocephalus (accumulation of fluid in the brain), spastic contractures (shrinkage or shortening of the muscles), and cognitive impairment.
Porencephaly
What are the treatments for Porencephaly ?
Treatment may include physical therapy, medication for seizures, and the placement of a shunt in the brain to remove excess fluid in the brain.
Porencephaly
What is the outlook for Porencephaly ?
The prognosis for children with porencephaly varies according to the location and extent of the cysts or cavities. Some children with this disorder develop only minor neurological problems and have normal intelligence, while others may be severely disabled and die before their second decade of life.
Porencephaly
what research (or clinical trials) is being done for Porencephaly ?
The National Institute of Neurological Disorders and Stroke (NINDS) and other institutes of the National Institutes of Health (NIH) conduct research related to porencephaly in laboratories at the NIH and also support additional research through grants to major medical institutions across the country. Much of this research explores the complex mechanisms of normal brain development. The knowledge gained from these fundamental studies will provide a foundation for developing ways to prevent porecephaly and the other cephalic disorders.
Porencephaly
What is (are) Megalencephaly ?
Megalencephaly, also called macrencephaly, is a condition in which an infant or child has an abnormally large, heavy, and usually malfunctioning brain. By definition, the brain weight is greater than average for the age and gender of the child. Head enlargement may be evident at birth or the head may become abnormally large in the early years of life. Megalencephaly is thought to be related to a disturbance in the regulation of cell production in the brain. In normal development, neuron proliferation - the process in which nerve cells divide to form new generations of cells - is regulated so that the correct number of cells is produced in the proper place at the appropriate time. In a megalencephalic brain, too many cells are produced either during development or progressively as part of another disorder, such as one of the neurofibromatoses or leukodystrophies. Symptoms of megalencephaly include delayed development, seizures, and corticospinal (brain cortex and spinal cord) dysfunction. Megalencephaly affects males more often than females. Unilateral megalencephaly or hemimegalencephaly is a rare condition that is characterized by the enlargement of one side of the brain. Children with this disorder may have a large, asymmetrical head accompanied by seizures, partial paralysis, and impaired cognitive development. Megalencephaly is different from macrocephaly (also called megacephaly or megalocephaly), which describes a big head, and which doesnt necessarily indicate abnormality. Large head size is passed down through the generations in some families.
Megalencephaly
What are the treatments for Megalencephaly ?
There is no standard treatment for megalencephaly. Treatment will depend upon the disorder with which the megalencephaly is associated and will address individual symptoms and disabilities.
Megalencephaly
What is the outlook for Megalencephaly ?
The prognosis for infants and children with megalencephaly depends upon the underlying cause and the associated neurological disorders. The prognosis for children with hemimegalencephaly is poor.
Megalencephaly
what research (or clinical trials) is being done for Megalencephaly ?
The National Institute of Neurological Disorders and Stroke (NINDS) and other institutes of the National Institutes of Health (NIH) conduct research related to megalencephaly in laboratories at the NIH and also support additional research through grants to major medical institutions across the country. Much of this research explores the complex mechanisms of normal brain development. The knowledge gained from these fundamental studies will provide a foundation for developing ways to prevent megalencephaly and the other cephalic disorders.
Megalencephaly
What is (are) Hydromyelia ?
Hydromyelia refers to an abnormal widening of the central canal of the spinal cord that creates a cavity in which cerebrospinal fluid (commonly known as spinal fluid) can accumulate. As spinal fluid builds up, it may put abnormal pressure on the spinal cord and damage nerve cells and their connections. Hydromyelia is sometimes used interchangeably with syringomyelia, the name for a condition that also involves cavitation in the spinal cord. In hydromyelia, the cavity that forms is connected to the fourth ventricle in the brain, and is almost always associated in infants and children with hydrocephalus or birth defects such as Chiari Malformation II and Dandy-Walker syndrome. Syringomyelia, however, features a closed cavity and occurs primarily in adults, the majority of whom have Chiari Malformation type 1 or have experienced spinal cord trauma. Symptoms, which may occur over time, include weakness of the hands and arms, stiffness in the legs; and sensory loss in the neck and arms. Some individuals have severe pain in the neck and arms. Diagnosis is made by magnetic resonance imaging (MRI), which reveals abnormalities in the anatomy of the spinal cord..
Hydromyelia
What are the treatments for Hydromyelia ?
Generally, physicians recommend surgery for children with hydromyelia if they have moderate or severe neurological deficits. Surgical treatment re-establishes the normal flow of spinal fluid.
Hydromyelia
What is the outlook for Hydromyelia ?
Surgery may permanently or temporarily relieve symptoms, but it can also cause a number of severe complications. In rare cases, hydromyelia may resolve on its own without any medical intervention.
Hydromyelia
what research (or clinical trials) is being done for Hydromyelia ?
The National Institute of Neurological Disorders and Stroke (NINDS) conducts research related to hydromyelia in its clinics and laboratories at The National Institutes of Health (NIH) and supports additional research through grants to major research institutions across the country. Much of this research focuses on finding better ways to prevent, treat, and ultimately cure abnormalities of the spinal cord such as hydromyelia.
Hydromyelia
What is (are) Joubert Syndrome ?
Joubert syndrome is a rare brain malformation characterized by the absence or underdevelopment of the cerebellar vermis- an area of the brain that controls balance and coordination -- as well as a malformed brain stem (molar tooth sign). The most common features of Joubert syndrome in infants include abnormally rapid breathing (hyperpnea), decreased muscle tone (hypotonia), abnormal eye movements, impaired intellectual development, and the inability to coordinate voluntary muscle movements (ataxia). Physical deformities may be present, such as extra fingers and toes (polydactyly), cleft lip or palate, and tongue abnormalities. Kidney and liver abnormalities can develop, and seizures may also occur. Many cases of Joubert syndrome appear to be sporadic (not inherited). In most other cases, Joubert syndrome is inherited in an autosomal recessive manner (meaning both parents must have a copy of the mutation) via mutation in at least 10 different genes, including NPHP1, AHI1, and CEP290.
Joubert Syndrome
What are the treatments for Joubert Syndrome ?
Treatment for Joubert syndrome is symptomatic and supportive. Infant stimulation and physical, occupational, and speech therapy may benefit some children. Infants with abnormal breathing patterns should be monitored. Screening for progressive eye, liver, and kidney complications associated with Joubert-related disorders should be performed on a regular basis.
Joubert Syndrome
What is the outlook for Joubert Syndrome ?
The prognosis for infants with Joubert syndrome depends on whether or not the cerebellar vermis is partially developed or entirely absent, as well as on the extent and severity of other organ involvement, such as the kidneys and liver. Some children have a mild form of the disorder, with minimal motor disability and good mental development, while others may have severe motor disability, moderate impaired mental development, and multi-organ impairments.
Joubert Syndrome
what research (or clinical trials) is being done for Joubert Syndrome ?
The NINDS supports research on the development of the nervous system and the cerebellum. This research is critical for increasing our understanding of Joubert syndrome, and for developing methods of treatment and prevention. NINDS, in conjunction with the NIH Office of Rare Disorders, sponsored a symposium on Joubert syndrome in 2002. Research priorities for the disorder were outlined at this meeting.
Joubert Syndrome
What is (are) Vasculitis Syndromes of the Central and Peripheral Nervous Systems ?
Vasculitis is an inflammation of blood vessels, which includes the veins, arteries, and capillaries. Inflammation occurs with infection or is thought to be due to a faulty immune system response. It also can be caused by other immune system disease, an allergic reaction to medicines or toxins, and by certain blood cancers. Vasculitic disorders can cause problems in any organ system, including the central (CNS) and peripheral (PNS) nervous systems. Vasculitis disorders, or syndromes, of the CNS and PNS are characterized by the presence of inflammatory cells in and around blood vessels, and secondary narrowing or blockage of the blood vessels that nourish the brain, spinal cord, or peripheral nerves. A vasculitic syndrome may begin suddenly or develop over time. Symptoms include headaches, especially a headache that doesnt go away; fever, rapid weight loss; confusion or forgetfulness leading to dementia; swelling of the brain, pain while chewing or swallowing; paralysis or numbness, usually in the arms or legs; and visual disturbances, such as double vision, blurred vision, or blindness Some of the better understood vasculitis syndromes are temporal arteritis (also called giant cell arteritis or cranial arteritis--a chronic inflammatory disorder of large blood vessels) and Takayasus disease, which affects larger aortas and may cause stoke.
Vasculitis Syndromes of the Central and Peripheral Nervous Systems
What are the treatments for Vasculitis Syndromes of the Central and Peripheral Nervous Systems ?
Treatment for a vasculitis syndrome depends upon the specific diagnosis, which can be difficult, as some diseases have similar symptoms of vasculitis. Most of the syndromes respond well to steroid drugs, such as prednisolone. Some may also require treatment with an immunosuppressive drug, such as cyclophosphamide. Aneurysms involved with vasculitis can be treated surgfically.
Vasculitis Syndromes of the Central and Peripheral Nervous Systems
What is the outlook for Vasculitis Syndromes of the Central and Peripheral Nervous Systems ?
The prognosis is dependent upon the specific syndrome, however, some of the syndromes are fatal if left untreated.
Vasculitis Syndromes of the Central and Peripheral Nervous Systems
what research (or clinical trials) is being done for Vasculitis Syndromes of the Central and Peripheral Nervous Systems ?
The mission of the National Institute of Neurological Disorders and Stroke (NINDS) is to seek fundamental knowledge of the brain and nervous system and to use that knowledge to reduce the burden of neurological disease. Several NINDS-funded investigators are studying blood vessel damage and cerebral blood flow as it relates to stroke. The NINDS also funds research on vascular cognitive impairment, which is an important contributor to aging-related cognitive decline and is the result of impaired performance of the brain's small blood vessels. Additionally, the NINDS and other institutes of the National Institutes of Health (NIH) conduct research relating to vasculitis syndromes in laboratories at the NIH and also support vasculitis research through grants to major medical institutions across the country. The NINDS supports The Vasculitis Clinical Research Consortium (VCRC), a network of academic medical centers, patient support organizations, and clinical research resources dedicated to conducting clinical research and improving the care of individuals with various vasculitis disorders.
Vasculitis Syndromes of the Central and Peripheral Nervous Systems
What is (are) Repetitive Motion Disorders ?
Repetitive motion disorders (RMDs) are a family of muscular conditions that result from repeated motions performed in the course of normal work or daily activities. RMDs include carpal tunnel syndrome, bursitis, tendonitis, epicondylitis, ganglion cyst, tenosynovitis, and trigger finger. RMDs are caused by too many uninterrupted repetitions of an activity or motion, unnatural or awkward motions such as twisting the arm or wrist, overexertion, incorrect posture, or muscle fatigue. RMDs occur most commonly in the hands, wrists, elbows, and shoulders, but can also happen in the neck, back, hips, knees, feet, legs, and ankles. The disorders are characterized by pain, tingling, numbness, visible swelling or redness of the affected area, and the loss of flexibility and strength. For some individuals, there may be no visible sign of injury, although they may find it hard to perform easy tasks Over time, RMDs can cause temporary or permanent damage to the soft tissues in the body -- such as the muscles, nerves, tendons, and ligaments - and compression of nerves or tissue. Generally, RMDs affect individuals who perform repetitive tasks such as assembly line work, meatpacking, sewing, playing musical instruments, and computer work. The disorders may also affect individuals who engage in activities such as carpentry, gardening, and tennis.
Repetitive Motion Disorders
What are the treatments for Repetitive Motion Disorders ?
Treatment for RMDs usually includes reducing or stopping the motions that cause symptoms. Options include taking breaks to give the affected area time to rest, and adopting stretching and relaxation exercises. Applying ice to the affected area and using medications such as pain relievers, cortisone, and anti-inflammatory drugs can reduce pain and swelling. Splints may be able to relieve pressure on the muscles and nerves. Physical therapy may relieve the soreness and pain in the muscles and joints. In rare cases, surgery may be required to relieve symptoms and prevent permanent damage. Some employers have developed ergonomic programs to help workers adjust their pace of work and arrange office equipment to minimize problems.
Repetitive Motion Disorders
What is the outlook for Repetitive Motion Disorders ?
Most individuals with RMDs recover completely and can avoid re-injury by changing the way they perform repetitive movements, the frequency with which they perform them, and the amount of time they rest between movements. Without treatment, RMDs may result in permanent injury and complete loss of function in the affected area.
Repetitive Motion Disorders
what research (or clinical trials) is being done for Repetitive Motion Disorders ?
Much of the on-going research on RMDs is aimed at prevention and rehabilitation. The National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) funds research on RMDs.
Repetitive Motion Disorders
What is (are) Stiff-Person Syndrome ?
Stiff-person syndrome (SPS) is a rare neurological disorder with features of an autoimmune disease. SPS is characterized by fluctuating muscle rigidity in the trunk and limbs and a heightened sensitivity to stimuli such as noise, touch, and emotional distress, which can set off muscle spasms. Abnormal postures, often hunched over and stiffened, are characteristic of the disorder. People with SPS can be too disabled to walk or move, or they are afraid to leave the house because street noises, such as the sound of a horn, can trigger spasms and falls. SPS affects twice as many women as men. It is frequently associated with other autoimmune diseases such as diabetes, thyroiditis, vitiligo, and pernicious anemia. Scientists dont yet understand what causes SPS, but research indicates that it is the result of an autoimmune response gone awry in the brain and spinal cord. The disorder is often misdiagnosed as Parkinsons disease, multiple sclerosis, fibromyalgia, psychosomatic illness, or anxiety and phobia. A definitive diagnosis can be made with a blood test that measures the level of glutamic acid decarboxylase (GAD) antibodies in the blood. People with SPS have elevated levels of GAD, an antibody that works against an enzyme involved in the synthesis of an important neurotransmitter in the brain.
Stiff-Person Syndrome
What are the treatments for Stiff-Person Syndrome ?
People with SPS respond to high doses of diazepam and several anti-convulsants, gabapentin and tiagabine. A recent study funded by the NINDS demonstrated the effectiveness of intravenous immunoglobulin (IVIg) treatment in reducing stiffness and lowering sensitivity to noise, touch, and stress in people with SPS.
Stiff-Person Syndrome
What is the outlook for Stiff-Person Syndrome ?
Treatment with IVIg, anti-anxiety drugs, muscle relaxants, anti-convulsants, and pain relievers will improve the symptoms of SPS, but will not cure the disorder. Most individuals with SPS have frequent falls and because they lack the normal defensive reflexes; injuries can be severe. With appropriate treatment, the symptoms are usually well controlled.
Stiff-Person Syndrome
what research (or clinical trials) is being done for Stiff-Person Syndrome ?
The National Institute of Neurological Disorders and Stroke (NINDS) conducts research related to SPS in its laboratories at the National Institutes of Health (NIH), and also supports additional research through grants to major medical institutions across the country. A study using the drug rituximab proved ineffective in treating individuals with the disorder. Current research is focused on understanding the cause of the disease and the role of the anti-GAD antibodies.
Stiff-Person Syndrome
What is (are) Lennox-Gastaut Syndrome ?
Lennox-Gastaut syndrome is a severe form of epilepsy. Seizures usually begin before 4 years of age. Seizure types, which vary among patients, include tonic (stiffening of the body, upward deviation of the eyes, dilation of the pupils, and altered respiratory patterns), atonic (brief loss of muscle tone and consciousness, causing abrupt falls), atypical absence (staring spells), and myoclonic (sudden muscle jerks). There may be periods of frequent seizures mixed with brief, relatively seizure-free periods. Most children with Lennox-Gastaut syndrome experience some degree of impaired intellectual functioning or information processing, along with developmental delays, and behavioral disturbances. Lennox-Gastaut syndrome can be caused by brain malformations, perinatal asphyxia, severe head injury, central nervous system infection and inherited degenerative or metabolic conditions. In 30-35 percent of cases, no cause can be found.
Lennox-Gastaut Syndrome
What are the treatments for Lennox-Gastaut Syndrome ?
Treatment for Lennox-Gastaut syndrome includes clobazam and anti-epileptic medications such as valproate, lamotrigine, felbamate, or topiramate. There is usually no single antiepileptic medication that will control seizures. Children who improve initially may later show tolerance to a drug or have uncontrollable seizures.
Lennox-Gastaut Syndrome
What is the outlook for Lennox-Gastaut Syndrome ?
The prognosis for individuals with Lennox-Gastaut syndrome varies. There is no cure for the disorder. Complete recovery, including freedom from seizures and normal development, is very unusual.
Lennox-Gastaut Syndrome
what research (or clinical trials) is being done for Lennox-Gastaut Syndrome ?
The NINDS conducts and supports a broad program of basic and clinical research on epilepsy including Lennox-Gastaut syndrome. These studies are aimed at finding the causes of these disorders, improving the diagnosis, and developing new medications and other therapies.
Lennox-Gastaut Syndrome
What is (are) Myasthenia Gravis ?
Myasthenia gravis is a chronic autoimmune neuromuscular disease characterized by varying degrees of weakness of the skeletal (voluntary) muscles of the body. Symptoms vary in type and intensity. The hallmark of myasthenia gravis is muscle weakness that increases during periods of activity and improves after periods of rest. Muscles that control eye and eyelid movements, facial expression, chewing, talking, and swallowing are often, but not always, involved. The muscles that control breathing and neck and limb movements may also be affected. Myasthenia gravis is caused by a defect in the transmission of nerve impulses to muscles. Normally when impulses travel down the nerve, the nerve endings release a neurotransmitter substance called acetylcholine. In myasthenia gravis, antibodies produced by the body's own immune system block, alter, or destroy the receptors for acetylcholine. The first noticeable symptoms of myasthenia gravis may be weakness of the eye muscles, difficulty in swallowing, or slurred speech. Myasthenia gravis is an autoimmune disease because the immune system--which normally protects the body from foreign organisms--mistakenly attacks itself.. It is not directly inherited nor is it contagious.
Myasthenia Gravis
What are the treatments for Myasthenia Gravis ?
Myasthenia gravis can be controlled. Some medications improve neuromuscular transmission and increase muscle strength, and some suppress the production of abnormal antibodies. These medications must be used with careful medical follow up because they may cause major side effects. Thymectomy, the surgical removal of the thymus gland (which often is abnormal in those with myasthenia gravis), improves symptoms in certain individuals Other therapies include plasmapheresis, a procedure in which abnormal antibodies are removed from the blood, and high-dose intravenous immune globulin, which temporarily modifies the immune system and provides the body with normal antibodies from donated blood.
Myasthenia Gravis