problem
stringlengths
16
191
explanation
stringlengths
6
29k
type
stringlengths
3
136
What are the symptoms of Heart Murmur ?
People who have innocent (harmless) heart murmurs don't have any signs or symptoms other than the murmur itself. This is because innocent heart murmurs aren't caused by heart problems. People who have abnormal heart murmurs may have signs or symptoms of the heart problems causing the murmurs. These signs and symptoms may include: Poor eating and failure to grow normally (in infants) Shortness of breath, which may occur only with physical exertion Excessive sweating with minimal or no exertion Chest pain Dizziness or fainting A bluish color on the skin, especially on the fingertips and lips Chronic cough Swelling or sudden weight gain Enlarged liver Enlarged neck veins Signs and symptoms depend on the problem causing the heart murmur and its severity.
Heart Murmur
How to diagnose Heart Murmur ?
Doctors use a stethoscope to listen to heart sounds and hear heart murmurs. They may detect heart murmurs during routine checkups or while checking for another condition. If a congenital heart defect causes a murmur, it's often heard at birth or during infancy. Abnormal heart murmurs caused by other heart problems can be heard in patients of any age. Specialists Involved Primary care doctors usually refer people who have abnormal heart murmurs to cardiologists or pediatric cardiologists for further care and testing. Cardiologists are doctors who specialize in diagnosing and treating heart problems in adults. Pediatric cardiologists specialize in diagnosing and treating heart problems in children. Physical Exam Your doctor will carefully listen to your heart or your child's heart with a stethoscope to find out whether a murmur is innocent or abnormal. He or she will listen to the loudness, location, and timing of the murmur. This will help your doctor diagnose the cause of the murmur. Your doctor also may: Ask about your medical and family histories. Do a complete physical exam. He or she will look for signs of illness or physical problems. For example, your doctor may look for a bluish color on your skin. In infants, doctors may look for delayed growth and feeding problems. Ask about your symptoms, such as chest pain, shortness of breath (especially with physical exertion), dizziness, or fainting. Evaluating Heart Murmurs When evaluating a heart murmur, your doctor will pay attention to many things, such as: How faint or loud the sound is. Your doctor will grade the murmur on a scale of 1 to 6 (1 is very faint and 6 is very loud). When the sound occurs in the cycle of the heartbeat. Where the sound is heard in the chest and whether it also can be heard in the neck or back. Whether the sound has a high, medium, or low pitch. How long the sound lasts. How breathing, physical activity, or a change in body position affects the sound. Diagnostic Tests and Procedures If your doctor thinks you or your child has an abnormal heart murmur, he or she may recommend one or more of the following tests. Chest X Ray A chest x ray is a painless test that creates pictures of the structures inside your chest, such as your heart, lungs, and blood vessels. This test is done to find the cause of symptoms, such as shortness of breath and chest pain. EKG An EKG (electrocardiogram) is a simple test that detects and records the heart's electrical activity. An EKG shows how fast the heart is beating and its rhythm (steady or irregular). An EKG also records the strength and timing of electrical signals as they pass through each part of the heart. This test is used to detect and locate the source of heart problems. The results from an EKG also may be used to rule out certain heart problems. Echocardiography Echocardiography (EK-o-kar-de-OG-ra-fee), or echo, is a painless test that uses sound waves to create pictures of your heart. The test shows the size and shape of your heart and how well your heart's chambers and valves are working. Echo also can show areas of poor blood flow to the heart, areas of heart muscle that aren't contracting normally, and previous injury to the heart muscle caused by poor blood flow. There are several types of echo, including a stress echo. This test is done both before and after a stress test. During this test, you exercise to make your heart work hard and beat fast. If you cant exercise, you may be given medicine to make your heart work hard and beat fast. Echo is used to take pictures of your heart before you exercise and as soon as you finish. Stress echo shows whether you have decreased blood flow to your heart (a sign of coronary heart disease).
Heart Murmur
What are the treatments for Heart Murmur ?
A heart murmur isn't a disease. It's an extra or unusual sound heard during the heartbeat. Thus, murmurs themselves don't require treatment. However, if an underlying condition is causing a heart murmur, your doctor may recommend treatment for that condition. Innocent (Harmless) Heart Murmurs Healthy children who have innocent (harmless) heart murmurs don't need treatment. Their heart murmurs aren't caused by heart problems or other conditions. Pregnant women who have innocent heart murmurs due to extra blood volume also don't need treatment. Their heart murmurs should go away after pregnancy. Abnormal Heart Murmurs If you or your child has an abnormal heart murmur, your doctor will recommend treatment for the disease or condition causing the murmur. Some medical conditions, such as anemia or hyperthyroidism, can cause heart murmurs that aren't related to heart disease. Treating these conditions should make the heart murmur go away. If a congenital heart defect is causing a heart murmur, treatment will depend on the type and severity of the defect. Treatment may include medicines or surgery. For more information about treatments for congenital heart defects, go to the Health Topics Congenital Heart Defects article. If acquired heart valve disease is causing a heart murmur, treatment usually will depend on the type, amount, and severity of the disease. Currently, no medicines can cure heart valve disease. However, lifestyle changes and medicines can treat symptoms and help delay complications. Eventually, though, you may need surgery to repair or replace a faulty heart valve. For more information about treatments for heart valve disease, go to the Health Topics Heart Valve Disease article.
Heart Murmur
What is (are) Marfan Syndrome ?
Marfan syndrome is a condition in which your body's connective tissue is abnormal. Connective tissue helps support all parts of your body. It also helps control how your body grows and develops. Marfan syndrome most often affects the connective tissue of the heart and blood vessels, eyes, bones, lungs, and covering of the spinal cord. Because the condition affects many parts of the body, it can cause many complications. Sometimes the complications are life threatening. Overview Marfan syndrome is a genetic disorder. A mutation, or change, in the gene that controls how the body makes fibrillin causes Marfan syndrome. Fibrillin is a protein that plays a major role in your body's connective tissue. Most people who have Marfan syndrome inherit it from their parents. If you have Marfan syndrome, you have a 50 percent chance of passing the altered gene to each of your children. In about 1 in 4 cases, the mutation that causes Marfan syndrome is not inherited. Thus, the affected person is the first in his or her family to have the condition. Marfan syndrome often affects the long bones of the body. This can lead to signs, or traits, such as: A tall, thin build. Long arms, legs, fingers, and toes and flexible joints. A spine that curves to one side. This condition is called scoliosis (sko-le-O-sis). A chest that sinks in or sticks out. These conditions are called pectus excavatum (eks-ka-VA-tum) and pectus carinatum (ka-ri-NA-tum), respectively. Teeth that are too crowded. Flat feet. Marfan syndrome traits vary from person to person, even in the same family. Some people who have the condition have many traits, while others have few. The most serious complications of Marfan syndrome involve the heart and blood vessels. Marfan syndrome can affect the aorta, the main blood vessel that supplies oxygen-rich blood to the body. In Marfan syndrome, the aorta can stretch and grow weak. This condition is called aortic dilation (di-LA-shun) or aortic aneurysm (AN-u-rism). If the aorta stretches and grows weak, it may tear or burst and leak blood. This condition is called aortic dissection. It's very serious and can lead to severe heart problems or even death. Marfan syndrome has no cure, but treatments can help delay or prevent complications. Treatments include medicines, surgery, and other therapies. Limiting certain activities, or changing how you do them, may help reduce the risks to the aorta, eyes, and joints. The type of treatment you receive depends on how the condition is affecting your body. Outlook About 1 out of every 5,000 people in the United States has Marfan syndrome. Men, women, children, and people of all races can have the condition. Advances have been made in the early diagnosis and treatment of Marfan syndrome. It's now possible for people who have the condition to live longer and enjoy a good quality of life. Many people who have Marfan syndrome and are properly diagnosed and treated may live an average lifespan. Researchers continue to study the condition and look for better treatments.
Marfan Syndrome
What causes Marfan Syndrome ?
Marfan syndrome is a genetic disorder. A mutation, or change, in the gene that controls how the body makes fibrillin causes Marfan syndrome. Fibrillin is a protein that plays a major role in your body's connective tissue. Most people who have Marfan syndrome inherit it from their parents. If you have the condition, you have a 50 percent chance of passing the altered gene to each of your children. Sometimes Marfan syndrome isn't inherited. The mutation in the fibrillin gene occurs in the egg or sperm cells. If a child is conceived, the altered gene may be passed on to the child. The risk of that child's brothers or sisters having Marfan syndrome is low.
Marfan Syndrome
Who is at risk for Marfan Syndrome? ?
People at highest risk for Marfan syndrome are those who have a family history of the condition. If you have Marfan syndrome, you have a 50 percent chance of passing the altered gene to each of your children. Marfan syndrome affects about 1 out of every 5,000 people in the United States. Men, women, and children, and people of all races, can have the condition.
Marfan Syndrome
What are the symptoms of Marfan Syndrome ?
Marfan syndrome can affect many parts of the body. As a result, the signs and symptoms of the disorder vary from person to person, even in the same family. Marfan complications also vary, depending on how the condition affects your body. Marfan syndrome most often affects the connective tissue of the heart, eyes, bones, lungs, and covering of the spinal cord. This can cause many complications, some of which are life threatening. Marfan Traits Marfan syndrome often affects the long bones of the body. This can lead to signs, or traits, such as: A tall, thin build. Long arms, legs, fingers, and toes and flexible joints. A spine that curves to one side. This condition is called scoliosis. A chest that sinks in or sticks out. These conditions are called pectus excavatum and pectus carinatum, respectively. Teeth that are too crowded. Flat feet. Stretch marks on the skin also are a common trait in people who have Marfan syndrome. Stretch marks usually appear on the lower back, buttocks, shoulders, breasts, thighs, and abdomen. Not everyone who has these traits has Marfan syndrome. Some of these traits also are signs of other connective tissue disorders. Complications of Marfan Syndrome Heart and Blood Vessel Complications The most serious complications of Marfan syndrome involve the heart and blood vessels. Marfan syndrome can affect the aorta, the main blood vessel that supplies oxygen-rich blood to the body. In Marfan syndrome, the aorta can stretch and grow weak. This condition is called aortic dilation or aortic aneurysm. If the aorta stretches and grows weak, it may tear and leak blood. This condition, called aortic dissection, can lead to severe heart problems or even death. Aortic dissection can cause severe pain in either the front or back of the chest or abdomen. The pain can travel upward or downward. If you have symptoms of aortic dissection, call 911. Marfan syndrome also can cause problems with the heart's mitral (MI-trul) valve. This valve controls blood flow between the upper and lower chambers on the left side of the heart. Marfan syndrome can lead to mitral valve prolapse (MVP). MVP is a condition in which the flaps of the mitral valve are floppy and don't close tightly. MVP can cause shortness of breath, palpitations (pal-pi-TA-shuns), chest pain, and other symptoms. If you have MVP, your doctor may hear a heart murmur if he or she listens to your heart with a stethoscope. A heart murmur is an extra or unusual sound heard during the heartbeat. Eye Complications Marfan syndrome can cause many eye problems. A common problem in Marfan syndrome is a dislocated lens in one or both of the eyes. In this condition, the lens (the part of the eye that helps focus light) shifts up, down, or to the side. This can affect your eyesight. A dislocated lens often is the first sign that someone has Marfan syndrome. Other eye complications of Marfan syndrome include nearsightedness, early glaucoma (high pressure in the fluid in the eyes), and early cataracts (clouding of an eye's lens). A detached retina also can occur. Nervous System Complications Fluid surrounds your brain and spinal cord. A substance called dura covers the fluid. In Marfan syndrome, the dura can stretch and grow weak. This condition, called dural ectasia (ek-TA-ze-ah), can occur in people who have Marfan syndrome as they grow older. Eventually, the bones of the spine may wear away. Symptoms of this condition are lower back pain, abdominal pain, headache, and numbness in the legs. Lung Complications Marfan syndrome can cause sudden pneumothorax (noo-mo-THOR-aks), or collapsed lung. In this condition, air or gas builds up in the space between the lungs and chest wall. If enough air or gas builds up, a lung can collapse. The most common symptoms of a collapsed lung are sudden pain in one side of the lung and shortness of breath. Conditions such as scoliosis (a curved spine) and pectus excavatum (a chest that sinks in) can prevent the lungs from expanding fully. This can cause breathing problems. Marfan syndrome also can cause changes in the lung tissue, and it can lead to early emphysema (em-fi-SE-ma). Marfan syndrome also has been linked to sleep apnea. In people who have Marfan syndrome, the shape of the face, oral cavity, or teeth may increase the risk of sleep apnea. Sleep apnea causes one or more pauses in breathing or shallow breaths while you sleep. Breathing pauses can last from a few seconds to minutes. They often occur 5 to 30 times or more an hour. Typically, normal breathing then starts again, sometimes with a loud snort or choking sound.
Marfan Syndrome
How to diagnose Marfan Syndrome ?
Your doctor will diagnose Marfan syndrome based on your medical and family histories, a physical exam, and test results. He or she also will consult a set of guidelines called Ghent criteria, which are used to diagnose Marfan syndrome. Marfan syndrome can be hard to diagnose. This is because its signs, or traits, are the same as or similar to the signs of other connective tissue disorders. If you're diagnosed with Marfan syndrome, all of your first-degree relatives (for example, parents, siblings, and children) also should be checked for the disorder. This is because, even in families, the outward traits of Marfan syndrome may vary quite a bit. Specialists Involved Your family doctor or another type of doctor, such as an orthopedist (bone specialist), may notice certain traits that suggest Marfan syndrome. If so, your doctor will likely refer you to a geneticist or cardiologist. A geneticist is hereditary disease expert. A cardiologist is a heart specialist. These two types of specialists often have the most experience working with people who have Marfan syndrome. A geneticist will ask for medical information about you and your family. He or she will examine you and perhaps other members of your family. The geneticist also will coordinate your visits with other doctors, including a cardiologist, an ophthalmologist (eye specialist), and an orthopedist. After reviewing the medical findings, the geneticist will determine whether you have Marfan syndrome. Medical and Family Histories Your doctor will ask about your medical history and your family's medical history. For example, your doctor may ask whether: You've had heart disease, eye problems, or problems with your spine. These complications are common in people who have Marfan syndrome. You have shortness of breath, palpitations, or chest pain. These are common symptoms of heart or lung problems linked to Marfan syndrome. Any of your family members have Marfan syndrome, have died from heart problems, or have died suddenly. Physical Exam During the physical exam, your doctor will look for Marfan syndrome traits. For example, he or she may check the curve of your spine and the shape of your feet. Your doctor also will listen to your heart and lungs with a stethoscope. Diagnostic Tests Your doctor may recommend one or more of the following tests to help diagnose Marfan syndrome. Echocardiography Echocardiography (EK-o-kar-de-OG-ra-fee), or echo, is a painless test that uses sound waves to create pictures of your heart and blood vessels. This test shows the size and shape of your heart and the diameter of your aorta or other blood vessels. (The aorta is the main artery that carries oxygen-rich blood to your body.) Echo also shows how well your heart's chambers and valves are working. For people who have Marfan syndrome, echo mainly is used to check the heart's valves and aorta. Magnetic Resonance Imaging and Computed Tomography Scans Magnetic resonance imaging (MRI) is a test that uses radio waves and magnets to create detailed pictures of your organs and tissues. Computed tomography (CT) uses an x-ray machine to take clear, detailed pictures of your organs. MRI and CT scans are used to check your heart valves and aorta. These scans also are used to check for dural ectasia, a nervous system complication of Marfan syndrome. Slit-Lamp Exam For this test, an ophthalmologist (eye specialist) will use a microscope with a light to check your eyes. A slit-lamp exam can find out whether you have a dislocated lens, cataracts, or a detached retina. Genetic Testing In general, genetic testing involves blood tests to detect changes in genes. However, because many different genetic changes can cause Marfan syndrome, no single blood test can diagnose the condition. Ghent Criteria Because no single test can diagnose Marfan syndrome, doctors use a set of guidelines called Ghent criteria to help diagnose the condition. The Ghent criteria are divided into major criteria and minor criteria. Sometimes genetic testing is part of this evaluation. Major criteria include traits that are common in people who have Marfan syndrome. Minor criteria include traits that are common in many people. Doctors use a scoring system based on the number and type of Ghent criteria present to diagnose Marfan syndrome. Talk with your doctor about which traits you have and your likelihood of having Marfan syndrome.
Marfan Syndrome
What are the treatments for Marfan Syndrome ?
Marfan syndrome has no cure. However, treatments can help delay or prevent complications, especially when started early. Marfan syndrome can affect many parts of your body, including your heart, bones and joints, eyes, nervous system, and lungs. The type of treatment you receive will depend on your signs and symptoms. Heart Treatments Aortic dilation, or aortic aneurysm, is the most common and serious heart problem linked to Marfan syndrome. In this condition, the aortathe main artery that carries oxygen-rich blood to your bodystretches and grows weak. Medicines are used to try to slow the rate of aortic dilation. Surgery is used to replace the dilated segment of aorta before it tears. If you have Marfan syndrome, you'll need routine care and tests to check your heart valves and aorta. Medicines Beta blockers are medicines that help your heart beat slower and with less force. These medicines may help relieve strain on your aorta and slow the rate of aortic dilation. Some people have side effects from beta blockers, such as tiredness and nausea (feeling sick to your stomach). If side effects occur, your doctor may prescribe a calcium channel blocker or ACE inhibitor instead of a beta blocker. Both medicines help relieve stress on the aorta. Studies suggest that blocking a protein called TGF-beta may help prevent some of the effects of Marfan syndrome. Research shows that the medicine losartan may block the protein in other conditions. The National Heart, Lung, and Blood Institute currently is sponsoring a study comparing losartan to a beta blocker in children and adults who have Marfan syndrome. The study's goal is to find out which medicine, if either, is best at slowing the rate of aortic dilation. Surgery If your aorta stretches, it's more likely to tear (a condition called aortic dissection). To prevent this, your doctor may recommend surgery to repair or replace part of your aorta. Surgery may involve: A composite valve graft. For this surgery, part of the aorta and the aortic valve are removed. The aorta is replaced with a man-made tube called a graft. A man-made valve replaces the original valve. Aortic valve-sparing surgery. If your aortic valve is working well, your doctor may recommend valve-sparing surgery. For this surgery, your doctor replaces the enlarged part of your aorta with a graft. Your aortic valve is left in place. After aortic surgery, you may need medicines or followup tests. For example, after a composite valve graft, your doctor will prescribe medicines called anticoagulants, or "blood thinners." Blood thinners help prevent blood clots from forming on your man-made aortic valve. You'll need to take these medicines for the rest of your life. If you've had valve-sparing surgery, you'll only need to take blood thinners for a short time, as your doctor prescribes. If you've had a composite valve graft, you're at increased risk for endocarditis (EN-do-kar-DI-tis). This is an infection of the inner lining of your heart chambers and valves. Your doctor may recommend that you take antibiotics before certain medical or dental procedures that increase your risk of endocarditis. Your doctor also may advise you to continue taking beta blockers or other medicines after either type of aortic surgery. After surgery, you may have routine cardiac magnetic resonance imaging (MRI) or cardiac computed tomography (CT) scans to check your aorta. Cardiac MRI is a painless test that uses radio waves and magnets to created detailed pictures of your organs and tissues. Cardiac CT is a painless test that uses an x-ray machine to take clear, detailed pictures of your heart. Bone and Joint Treatments If you have scoliosis (a curved spine), your doctor may suggest a brace or other device to prevent the condition from getting worse. Severe cases of scoliosis may require surgery. Some people who have Marfan syndrome need surgery to repair a chest that sinks in or sticks out. This surgery is done to prevent the chest from pressing on the lungs and heart. Eye Treatments Marfan syndrome can lead to many eye problems, such as a dislocated lens, nearsightedness, early glaucoma (high pressure in the fluid in the eyes), and cataracts (clouding of an eye's lens). Glasses or contact lenses can help with some of these problems. Sometimes surgery is needed. Nervous System Treatments Marfan syndrome can lead to dural ectasia. In this condition, a substance called the dura (which covers the fluid around your brain and spinal cord) stretches and grows weak. This can cause the bones of the spine to wear away. Dural ectasia usually is treated with pain medicines. Lung Treatments Marfan syndrome may cause pneumothorax, or collapsed lung. In this condition, air or gas builds up in the space between the lungs and the chest wall. If the condition is minor, it may go away on its own. However, you may need to have a tube placed through your skin and chest wall to remove the air. Sometimes surgery is needed.
Marfan Syndrome
What is (are) Heart Palpitations ?
Palpitations (pal-pi-TA-shuns) are feelings that your heart is skipping a beat, fluttering, or beating too hard or too fast. You may have these feelings in your chest, throat, or neck. They can occur during activity or even when you're sitting still or lying down. Overview Many things can trigger palpitations, including: Strong emotions Vigorous physical activity Medicines such as diet pills and decongestants Caffeine, alcohol, nicotine, and illegal drugs Certain medical conditions, such as thyroid disease or anemia (uh-NEE-me-uh) These factors can make the heart beat faster or stronger than usual, or they can cause premature (extra) heartbeats. In these situations, the heart is still working normally. Thus, these palpitations usually are harmless. Some palpitations are symptoms of arrhythmias (ah-RITH-me-ahs). Arrhythmias are problems with the rate or rhythm of the heartbeat. Some arrhythmias are signs of heart conditions, such as heart attack, heart failure, heart valve disease, or heart muscle disease. However, less than half of the people who have palpitations have arrhythmias. You can take steps to reduce or prevent palpitations. Try to avoid things that trigger them (such as stress and stimulants) and treat related medical conditions. Outlook Palpitations are very common. They usually aren't serious or harmful, but they can be bothersome. If you have them, your doctor can decide whether you need treatment or ongoing care.
Heart Palpitations
What causes Heart Palpitations ?
Many things can cause palpitations. You may have these feelings even when your heart is beating normally or somewhat faster than normal. Most palpitations are harmless and often go away on their own. However, some palpitations are signs of a heart problem. Sometimes the cause of palpitations can't be found. If you start having palpitations, see your doctor to have them checked. Causes Not Related to Heart Problems Strong Emotions You may feel your heart pounding or racing during anxiety, fear, or stress. You also may have these feelings if you're having a panic attack. Vigorous Physical Activity Intense activity can make your heart feel like its beating too hard or too fast, even though it's working normally. Intense activity also can cause occasional premature (extra) heartbeats. Medical Conditions Some medical conditions can cause palpitations. These conditions can make the heart beat faster or stronger than usual. They also can cause premature (extra) heartbeats. Examples of these medical conditions include: An overactive thyroid A low blood sugar level Anemia Some types of low blood pressure Fever Dehydration (not enough fluid in the body) Hormonal Changes The hormonal changes that happen during pregnancy, menstruation, and the perimenopausal period may cause palpitations. The palpitations will likely improve or go away as these conditions go away or change. Some palpitations that occur during pregnancy may be due to anemia. Medicines and Stimulants Many medicines can trigger palpitations because they can make the heart beat faster or stronger than usual. Medicines also can cause premature (extra) heartbeats. Examples of these medicines include: Inhaled asthma medicines. Medicines to treat an underactive thyroid. Taking too much of these medicines can cause an overactive thyroid and lead to palpitations. Medicines to prevent arrhythmias. Medicines used to treat irregular heart rhythms can sometimes cause other irregular heart rhythms. Over-the-counter medicines that act as stimulants also may cause palpitations. These include decongestants (found in cough and cold medicines) and some herbal and nutritional supplements. Caffeine, nicotine (found in tobacco), alcohol, and illegal drugs (such as cocaine and amphetamines) also can cause palpitations. Causes Related to Heart Problems Some palpitations are symptoms of arrhythmias. Arrhythmias are problems with the rate or rhythm of the heartbeat. However, less than half of the people who have palpitations have arrhythmias. During an arrhythmia, the heart can beat too fast, too slow, or with an irregular rhythm. An arrhythmia happens if some part of the heart's electrical system doesn't work as it should. Palpitations are more likely to be related to an arrhythmia if you: Have had a heart attack or are at risk for one. Have coronary heart disease (CHD) or risk factors for CHD. Have other heart problems, such as heart failure, heart valve disease, or heart muscle disease. Have abnormal electrolyte levels. Electrolytes are minerals, such as potassium and sodium, found in blood and body fluids. They're vital for normal health and functioning of the body.
Heart Palpitations
Who is at risk for Heart Palpitations? ?
Some people may be more likely than others to have palpitations. People at increased risk include those who: Have anxiety or panic attacks, or people who are highly stressed Take certain medicines or stimulants Have certain medical conditions that aren't related to heart problems, such as an overactive thyroid Have certain heart problems, such as arrhythmias (irregular heartbeats), a previous heart attack, heart failure, heart valve disease, or heart muscle disease Women who are pregnant, menstruating, or perimenopausal also may be at higher risk for palpitations because of hormonal changes. Some palpitations that occur during pregnancy may be due to anemia. For more information about these risk factors, go to "What Causes Palpitations?"
Heart Palpitations
What are the symptoms of Heart Palpitations ?
Symptoms of palpitations include feelings that your heart is: Skipping a beat Fluttering Beating too hard or too fast You may have these feelings in your chest, throat, or neck. They can occur during activity or even when you're sitting still or lying down. Palpitations often are harmless, and your heart is working normally. However, these feelings can be a sign of a more serious problem if you also: Feel dizzy or confused Are light-headed, think you may faint, or do faint Have trouble breathing Have pain, pressure, or tightness in your chest, jaw, or arms Feel short of breath Have unusual sweating Your doctor may have already told you that your palpitations are harmless. Even so, see your doctor again if your palpitations: Start to occur more often or are more noticeable or bothersome Occur with other symptoms, such as those listed above Your doctor will want to check whether your palpitations are the symptom of a heart problem, such as an arrhythmia (irregular heartbeat).
Heart Palpitations
How to diagnose Heart Palpitations ?
First, your doctor will want to find out whether your palpitations are harmless or related to a heart problem. He or she will ask about your symptoms and medical history, do a physical exam, and recommend several basic tests. This information may point to a heart problem as the cause of your palpitations. If so, your doctor may recommend more tests. These tests will help show what the problem is, so your doctor can decide how to treat it. The cause of palpitations may be hard to diagnose, especially if symptoms don't occur regularly. Specialists Involved Several types of doctors may work with you to diagnose and treat your palpitations. These include a: Primary care doctor Cardiologist (a doctor who specializes in diagnosing and treating heart diseases and conditions) Electrophysiologist (a cardiologist who specializes in the heart's electrical system) Medical History Your doctor will ask questions about your palpitations, such as: When did they begin? How long do they last? How often do they occur? Do they start and stop suddenly? Does your heartbeat feel steady or irregular during the palpitations? Do other symptoms occur with the palpitations? Do your palpitations have a pattern? For example, do they occur when you exercise or drink coffee? Do they happen at a certain time of day? Your doctor also may ask about your use of caffeine, alcohol, supplements, and illegal drugs. Physical Exam Your doctor will take your pulse to find out how fast your heart is beating and whether its rhythm is normal. He or she also will use a stethoscope to listen to your heartbeat. Your doctor may look for signs of conditions that can cause palpitations, such as an overactive thyroid. Diagnostic Tests Often, the first test that's done is an EKG (electrocardiogram). This simple test records your heart's electrical activity. An EKG shows how fast your heart is beating and its rhythm (steady or irregular). It also records the strength and timing of electrical signals as they pass through your heart. Even if your EKG results are normal, you may still have a medical condition that's causing palpitations. If your doctor suspects this is the case, you may have blood tests to gather more information about your heart's structure, function, and electrical system. Holter or Event Monitor A standard EKG only records the heartbeat for a few seconds. It won't detect heart rhythm problems that don't happen during the test. To diagnose problems that come and go, your doctor may have you wear a Holter or event monitor. A Holter monitor records the hearts electrical activity for a full 24- or 48-hour period. You wear patches called electrodes on your chest. Wires connect the patches to a small, portable recorder. The recorder can be clipped to a belt, kept in a pocket, or hung around your neck. During the 24- or 48-hour period, you do your usual daily activities. You use a notebook to record any symptoms you have and the time they occur. You then return both the recorder and the notebook to your doctor to read the results. Your doctor can see how your heart was beating at the time you had symptoms. An event monitor is similar to a Holter monitor. You wear an event monitor while doing your normal activities. However, an event monitor only records your heart's electrical activity at certain times while you're wearing it. For many event monitors, you push a button to start the monitor when you feel symptoms. Other event monitors start automatically when they sense abnormal heart rhythms. You can wear an event monitor for weeks or until symptoms occur. Holter or Event Monitor Echocardiography Echocardiography uses sound waves to create a moving picture of your heart. The picture shows the size and shape of your heart and how well your heart chambers and valves are working. The test also can identify areas of poor blood flow to the heart, areas of heart muscle that aren't contracting normally, and previous injury to the heart muscle caused by poor blood flow. Stress Test Some heart problems are easier to diagnose when your heart is working hard and beating fast. During stress testing, you exercise to make your heart work hard and beat fast while heart tests are done. If you cant exercise, you may be given medicine to make your heart work hard and beat fast.
Heart Palpitations
What are the treatments for Heart Palpitations ?
Treatment for palpitations depends on their cause. Most palpitations are harmless and often go away on their own. In these cases, no treatment is needed. Avoiding Triggers Your palpitations may be harmless but bothersome. If so, your doctor may suggest avoiding things that trigger them. For examples, your doctor may advise you to: Reduce anxiety and stress. Anxiety and stress (including panic attacks) are a common cause of harmless palpitations. Relaxation exercises, yoga or tai chi, biofeedback or guided imagery, or aromatherapy may help you relax. Avoid or limit stimulants, such as caffeine, nicotine, or alcohol. Avoid illegal drugs, such as cocaine and amphetamines. Avoid medicines that act as stimulants, such as cough and cold medicines and some herbal and nutritional supplements. Treating Medical Conditions That May Cause Palpitations Work with your doctor to control medical conditions that can cause palpitations, such as an overactive thyroid. If you're taking medicine that's causing palpitations, your doctor will try to find a different medicine for you. If your palpitations are caused by an arrhythmia (irregular heartbeat), your doctor may recommend medicines or procedures to treat the problem. For more information, go to the Health Topics Arrhythmia article.
Heart Palpitations
How to prevent Heart Palpitations ?
You can take steps to prevent palpitations. Try to avoid things that trigger them. For example: Reduce anxiety and stress. Anxiety and stress (including panic attacks) are a common cause of harmless palpitations. Relaxation exercises, yoga or tai chi, biofeedback or guided imagery, or aromatherapy may help you relax. Avoid or limit stimulants, such as caffeine, nicotine, or alcohol. Avoid illegal drugs, such as cocaine and amphetamines. Avoid medicines that act as stimulants, such as cough and cold medicines and some herbal and nutritional supplements. Also, work with your doctor to treat medical conditions that can cause palpitations.
Heart Palpitations
What is (are) Thalassemias ?
Thalassemias (thal-a-SE-me-ahs) are inherited blood disorders. "Inherited" means that the disorder is passed from parents to children through genes. Thalassemias cause the body to make fewer healthy red blood cells and less hemoglobin (HEE-muh-glow-bin) than normal. Hemoglobin is an iron-rich protein in red blood cells. It carries oxygen to all parts of the body. Hemoglobin also carries carbon dioxide (a waste gas) from the body to the lungs, where it's exhaled. People who have thalassemias can have mild or severe anemia (uh-NEE-me-uh). Anemia is caused by a lower than normal number of red blood cells or not enough hemoglobin in the red blood cells. Overview Normal hemoglobin, also called hemoglobin A, has four protein chainstwo alpha globin and two beta globin. The two major types of thalassemia, alpha and beta, are named after defects in these protein chains. Four genes (two from each parent) are needed to make enough alpha globin protein chains. Alpha thalassemia trait occurs if one or two of the four genes are missing. If more than two genes are missing, moderate to severe anemia occurs. The most severe form of alpha thalassemia is called alpha thalassemia major or hydrops fetalis. Babies who have this disorder usually die before or shortly after birth. Two genes (one from each parent) are needed to make enough beta globin protein chains. Beta thalassemia occurs if one or both genes are altered. The severity of beta thalassemia depends on how much one or both genes are affected. If both genes are affected, the result is moderate to severe anemia. The severe form of beta thalassemia is known as thalassemia major or Cooley's anemia. Thalassemias affect males and females. The disorders occur most often among people of Italian, Greek, Middle Eastern, Southern Asian, and African descent. Severe forms usually are diagnosed in early childhood and are lifelong conditions. Doctors diagnose thalassemias using blood tests. The disorders are treated with blood transfusions, medicines, and other procedures. Outlook Treatments for thalassemias have improved over the years. People who have moderate or severe thalassemias are now living longer and have better quality of life. However, complications from thalassemias and their treatments are frequent. People who have moderate or severe thalassemias must closely follow their treatment plans. They need to take care of themselves to remain as healthy as possible.
Thalassemias
What causes Thalassemias ?
Your body makes three types of blood cells: red blood cells, white blood cells, and platelets (PLATE-lets). Red blood cells contain hemoglobin, an iron-rich protein that carries oxygen from your lungs to all parts of your body. Hemoglobin also carries carbon dioxide (a waste gas) from your body to your lungs, where it's exhaled. Hemoglobin has two kinds of protein chains: alpha globin and beta globin. If your body doesn't make enough of these protein chains or they're abnormal, red blood cells won't form correctly or carry enough oxygen. Your body won't work well if your red blood cells don't make enough healthy hemoglobin. Genes control how the body makes hemoglobin protein chains. When these genes are missing or altered, thalassemias occur. Thalassemias are inherited disordersthat is, they're passed from parents to children through genes. People who inherit faulty hemoglobin genes from one parent but normal genes from the other are called carriers. Carriers often have no signs of illness other than mild anemia. However, they can pass the faulty genes on to their children. People who have moderate to severe forms of thalassemia have inherited faulty genes from both parents. Alpha Thalassemias You need four genes (two from each parent) to make enough alpha globin protein chains. If one or more of the genes is missing, you'll have alpha thalassemia trait or disease. This means that your body doesn't make enough alpha globin protein. If you're only missing one gene, you're a "silent" carrier. This means you won't have any signs of illness. If you're missing two genes, you have alpha thalassemia trait (also called alpha thalassemia minor). You may have mild anemia. If you're missing three genes, you likely have hemoglobin H disease (which a blood test can detect). This form of thalassemia causes moderate to severe anemia. Very rarely, a baby is missing all four genes. This condition is called alpha thalassemia major or hydrops fetalis. Babies who have hydrops fetalis usually die before or shortly after birth. Example of an Inheritance Pattern for Alpha Thalassemia Beta Thalassemias You need two genes (one from each parent) to make enough beta globin protein chains. If one or both of these genes are altered, you'll have beta thalassemia. This means that your body wont make enough beta globin protein. If you have one altered gene, you're a carrier. This condition is called beta thalassemia trait or beta thalassemia minor. It causes mild anemia. If both genes are altered, you'll have beta thalassemia intermedia or beta thalassemia major (also called Cooley's anemia). The intermedia form of the disorder causes moderate anemia. The major form causes severe anemia. Example of an Inheritance Pattern for Beta Thalassemia
Thalassemias
Who is at risk for Thalassemias? ?
Family history and ancestry are the two risk factors for thalassemias. Family History Thalassemias are inheritedthat is, the genes for the disorders are passed from parents to their children. If your parents have missing or altered hemoglobin-making genes, you may have thalassemia. Ancestry Thalassemias occur most often among people of Italian, Greek, Middle Eastern, Southern Asian, and African descent.
Thalassemias
What are the symptoms of Thalassemias ?
A lack of oxygen in the bloodstream causes the signs and symptoms of thalassemias. The lack of oxygen occurs because the body doesn't make enough healthy red blood cells and hemoglobin. The severity of symptoms depends on the severity of the disorder. No Symptoms Alpha thalassemia silent carriers generally have no signs or symptoms of the disorder. The lack of alpha globin protein is so minor that the body's hemoglobin works normally. Mild Anemia People who have alpha or beta thalassemia trait can have mild anemia. However, many people who have these types of thalassemia have no signs or symptoms. Mild anemia can make you feel tired. Mild anemia caused by alpha thalassemia trait might be mistaken for iron-deficiency anemia. Mild to Moderate Anemia and Other Signs and Symptoms People who have beta thalassemia intermedia have mild to moderate anemia. They also may have other health problems, such as: Slowed growth and delayed puberty. Anemia can slow down a child's growth and development. Bone problems. Thalassemia may cause bone marrow to expand. Bone marrow is the spongy substance inside bones that makes blood cells. When bone marrow expands, the bones become wider than normal. They may become brittle and break easily. An enlarged spleen. The spleen is an organ that helps your body fight infection and remove unwanted material. When a person has thalassemia, the spleen has to work very hard. As a result, the spleen becomes larger than normal. This makes anemia worse. If the spleen becomes too large, it must be removed. Severe Anemia and Other Signs and Symptoms People who have hemoglobin H disease or beta thalassemia major (also called Cooley's anemia) have severe thalassemia. Signs and symptoms usually occur within the first 2years of life. They may include severe anemia and other health problems, such as: A pale and listless appearance Poor appetite Dark urine (a sign that red blood cells are breaking down) Slowed growth and delayed puberty Jaundice (a yellowish color of the skin or whites of the eyes) An enlarged spleen, liver, or heart Bone problems (especially with bones in the face) Complications of Thalassemias Better treatments now allow people who have moderate and severe thalassemias to live much longer. As a result, these people must cope with complications of these disorders that occur over time. Heart and Liver Diseases Regular blood transfusions are a standard treatment for thalassemias. Transfusions can cause iron to build up in the blood (iron overload). This can damage organs and tissues, especially the heart and liver. Heart disease caused by iron overload is the main cause of death in people who have thalassemias. Heart disease includes heart failure, arrhythmias (irregular heartbeats), and heart attack. Infection Among people who have thalassemias, infections are a key cause of illness and the second most common cause of death. People who have had their spleens removed are at even higher risk because they no longer have this infection-fighting organ. Osteoporosis Many people who have thalassemias have bone problems, including osteoporosis (OS-te-o-po-RO-sis). This is a condition in which bones are weak and brittle and break easily.
Thalassemias
How to diagnose Thalassemias ?
Doctors diagnose thalassemias using blood tests, including a complete blood count (CBC) and special hemoglobin tests. A CBC measures the amount of hemoglobin and the different kinds of blood cells, such as red blood cells, in a sample of blood. People who have thalassemias have fewer healthy red blood cells and less hemoglobin than normal in their blood. People who have alpha or beta thalassemia trait may have red blood cells that are smaller than normal. Hemoglobin tests measure the types of hemoglobin in a blood sample. People who have thalassemias have problems with the alpha or beta globin protein chains of hemoglobin. Moderate and severe thalassemias usually are diagnosed in early childhood. This is because signs and symptoms, including severe anemia, often occur within the first 2years of life. People who have milder forms of thalassemia might be diagnosed after a routine blood test shows they have anemia. Doctors might suspect thalassemia if a person has anemia and is a member of an ethnic group that's at increased risk for thalassemias. (For more information, go to "Who Is at Risk for Thalassemias?") Doctors also test the amount of iron in the blood to find out whether the anemia is due to iron deficiency or thalassemia. Iron-deficiency anemia occurs if the body doesn't have enough iron to make hemoglobin. The anemia in thalassemia occurs because of a problem with either the alpha globin or beta globin chains of hemoglobin, not because of a lack of iron. Because thalassemias are passed from parents to children through genes, family genetic studies also can help diagnose the disorder. These studies involve taking a family medical history and doing blood tests on family members. The tests will show whether any family members have missing or altered hemoglobin genes. If you know of family members who have thalassemias and you're thinking of having children, consider talking with your doctor and a genetic counselor. They can help determine your risk for passing the disorder to your children. If you're expecting a baby and you and your partner are thalassemia carriers, you may want to consider prenatal testing. Prenatal testing involves taking a sample of amniotic fluid or tissue from the placenta. (Amniotic fluid is the fluid in the sac surrounding a growing embryo. The placenta is the organ that attaches the umbilical cord to the mother's womb.) Tests done on the fluid or tissue can show whether your baby has thalassemia and how severe it might be.
Thalassemias
What are the treatments for Thalassemias ?
Treatments for thalassemias depend on the type and severity of the disorder. People who are carriers or who have alpha or beta thalassemia trait have mild or no symptoms. Theyll likely need little or no treatment. Doctors use three standard treatments for moderate and severe forms of thalassemia. These treatments include blood transfusions, iron chelation (ke-LAY-shun) therapy, and folic acid supplements. Other treatments have been developed or are being tested, but they're used much less often. Standard Treatments Blood Transfusions Transfusions of red blood cells are the main treatment for people who have moderate or severe thalassemias. This treatment gives you healthy red blood cells with normal hemoglobin. During a blood transfusion, a needle is used to insert an intravenous (IV) line into one of your blood vessels. Through this line, you receive healthy blood. The procedure usually takes 1 to 4 hours. Red blood cells live only for about 120 days. So, you may need repeated transfusions to maintain a healthy supply of red blood cells. If you have hemoglobin H disease or beta thalassemia intermedia, you may need blood transfusions on occasion. For example, you may have transfusions when you have an infection or other illness, or when your anemia is severe enough to cause tiredness. If you have beta thalassemia major (Cooley's anemia), youll likely need regular blood transfusions (often every 2 to 4 weeks). These transfusions will help you maintain normal hemoglobin and red blood cell levels. Blood transfusions allow you to feel better, enjoy normal activities, and live into adulthood. This treatment is lifesaving, but it's expensive and carries a risk of transmitting infections and viruses (for example, hepatitis). However, the risk is very low in the United States because of careful blood screening. For more information, go to the Health Topics Blood Transfusion article. Iron Chelation Therapy The hemoglobin in red blood cells is an iron-rich protein. Thus, regular blood transfusions can lead to a buildup of iron in the blood. This condition is called iron overload. It damages the liver, heart, and other parts of the body. To prevent this damage, doctors use iron chelation therapy to remove excess iron from the body. Two medicines are used for iron chelation therapy. Deferoxamine is a liquid medicine that's given slowly under the skin, usually with a small portable pump used overnight. This therapy takes time and can be mildly painful. Side effects include problems with vision and hearing. Deferasirox is a pill taken once daily. Side effects include headache, nausea (feeling sick to the stomach), vomiting, diarrhea, joint pain, and tiredness. Folic Acid Supplements Folic acid is a B vitamin that helps build healthy red blood cells. Your doctor may recommend folic acid supplements in addition to treatment with blood transfusions and/or iron chelation therapy. Other Treatments Other treatments for thalassemias have been developed or are being tested, but they're used much less often. Blood and Marrow Stem Cell Transplant A blood and marrow stem cell transplant replaces faulty stem cells with healthy ones from another person (a donor). Stem cells are the cells inside bone marrow that make red blood cells and other types of blood cells. A stem cell transplant is the only treatment that can cure thalassemia. But only a small number of people who have severe thalassemias are able to find a good donor match and have the risky procedure. For more information, go to the Health Topics Blood and Marrow Stem Cell Transplant article. Possible Future Treatments Researchers are working to find new treatments for thalassemias. For example, it might be possible someday to insert a normal hemoglobin gene into stem cells in bone marrow. This will allow people who have thalassemias to make their own healthy red blood cells and hemoglobin. Researchers also are studying ways to trigger a person's ability to make fetal hemoglobin after birth. This type of hemoglobin is found in fetuses and newborns. After birth, the body switches to making adult hemoglobin. Making more fetal hemoglobin might make up for the lack of healthy adult hemoglobin. Treating Complications Better treatments now allow people who have moderate and severe thalassemias to live longer. As a result, these people must cope with complications that occur over time. An important part of managing thalassemias is treating complications. Treatment might be needed for heart or liver diseases, infections, osteoporosis, and other health problems.
Thalassemias
How to prevent Thalassemias ?
You cant prevent thalassemias because theyre inherited (passed from parents to children through genes). However, prenatal tests can detect these blood disorders before birth. Family genetic studies may help find out whether people have missing or altered hemoglobin genes that cause thalassemias. (For more information, go to "How Are Thalassemias Diagnosed?") If you know of family members who have thalassemias and you're thinking of having children, consider talking with your doctor and a genetic counselor. They can help determine your risk for passing the disorder to your children.
Thalassemias
What is (are) Hemochromatosis ?
Hemochromatosis (HE-mo-kro-ma-TO-sis) is a disease in which too much iron builds up in your body (iron overload). Iron is a mineral found in many foods. Too much iron is toxic to your body. It can poison your organs and cause organ failure. In hemochromatosis, iron can build up in most of your body's organs, but especially in the liver, heart, and pancreas. Too much iron in the liver can cause an enlarged liver, liver failure, liver cancer, or cirrhosis (sir-RO-sis). Cirrhosis is scarring of the liver, which causes the organ to not work well. Too much iron in the heart can cause irregular heartbeats called arrhythmias (ah-RITH-me-ahs) and heart failure. Too much iron in the pancreas can lead to diabetes. If hemochromatosis isn't treated, it may even cause death. Overview The two types of hemochromatosis are primary and secondary. Primary hemochromatosis is caused by a defect in the genes that control how much iron you absorb from food. Secondary hemochromatosis usually is the result of another disease or condition that causes iron overload. Most people who have primary hemochromatosis inherit it from their parents. If you inherit two hemochromatosis genesone from each parentyou're at risk for iron overload and signs and symptoms of the disease. The two faulty genes cause your body to absorb more iron than usual from the foods you eat. Hemochromatosis is one of the most common genetic disorders in the United States. However, not everyone who has hemochromatosis has signs or symptoms of the disease. Estimates of how many people develop signs and symptoms vary greatly. Some estimates suggest that as many as half of all people who have the disease don't have signs or symptoms. The severity of hemochromatosis also varies. Some people don't have complications, even with high levels of iron in their bodies. Others have severe complications or die from the disease. Certain factors can affect the severity of the disease. For example, a high intake of vitamin C can make hemochromatosis worse. This is because vitamin C helps your body absorb iron from food. Alcohol use can worsen liver damage and cirrhosis caused by hemochromatosis. Conditions such as hepatitis also can further damage or weaken the liver. Outlook The outlook for people who have hemochromatosis largely depends on how much organ damage they have at the time of diagnosis. Early diagnosis and treatment of the disease are important. Treatment may help prevent, delay, or sometimes reverse complications of the disease. Treatment also may lead to better quality of life. For people who are diagnosed and treated early, a normal lifespan is possible. If left untreated, hemochromatosis can lead to severe organ damage and even death.
Hemochromatosis
What causes Hemochromatosis ?
The two types of hemochromatosis are primary and secondary. Each type has a different cause. Primary Hemochromatosis Primary hemochromatosis is caused by a defect in the genes that control how much iron you absorb from food. This form of the disease sometimes is called hereditary or classical hemochromatosis. Primary hemochromatosis is more common than the secondary form of the disease. The genes usually involved in primary hemochromatosis are called HFE genes. Faulty HFE genes cause the body to absorb too much iron. If you inherit two copies of the faulty HFE gene (one from each parent), you're at risk for iron overload and signs and symptoms of hemochromatosis. If you inherit one faulty HFE gene and one normal HFE gene, you're a hemochromatosis "carrier." Carriers usually don't develop the disease. However, they can pass the faulty gene on to their children. Estimates suggest that about 1 in 10 people in the United States are hemochromatosis carriers. If two parents are carriers of the faulty HFE gene, then each of their children has a 1 in 4 chance of inheriting two faulty HFE genes. Although less common, other faulty genes also can cause hemochromatosis. Researchers continue to study what changes to normal genes may cause the disease. Secondary Hemochromatosis Secondary hemochromatosis usually is the result of another disease or condition that causes iron overload. Examples of such diseases and conditions include: Certain types of anemia, such as thalassemias and sideroblastic anemia Atransferrinemia and aceruloplasminemiaboth are rare, inherited diseases Chronic liver diseases, such as chronic hepatitis C infection, alcoholic liver disease, or nonalcoholic steatohepatitis Other factors also can cause secondary hemochromatosis, including: Blood transfusions Oral iron pills or iron injections, with or without very high vitamin C intake (vitamin C helps your body absorb iron) Long-term kidney dialysis
Hemochromatosis
Who is at risk for Hemochromatosis? ?
Hemochromatosis is one of the most common genetic diseases in the United States. It's most common in Caucasians of Northern European descent. The disease is less common in African Americans, Hispanics, Asians, and American Indians. Primary hemochromatosis is more common in men than in women. Also, older people are more likely to develop the disease than younger people. In fact, signs and symptoms usually don't occur in men until they're 40 to 60 years old. In women, signs and symptoms usually don't occur until after the age of 50 (after menopause). Young children rarely develop hemochromatosis. Inheriting two faulty HFE genes (one from each parent) is the major risk factor for hemochromatosis. However, many people who have two copies of the faulty gene don't develop signs or symptoms of the disease. Alcoholism is another risk factor for hemochromatosis. A family history of certain diseases and conditions also puts you at higher risk for hemochromatosis. Examples of such diseases and conditions include heart attack, liver disease, diabetes, arthritis, and erectile dysfunction (impotence).
Hemochromatosis
What are the symptoms of Hemochromatosis ?
Hemochromatosis can affect many parts of the body and cause various signs and symptoms. Many of the signs and symptoms are similar to those of other diseases. Signs and symptoms of hemochromatosis usually don't occur until middle age. Women are more likely to have general symptoms first, such as fatigue (tiredness). In men, complications such as diabetes or cirrhosis (scarring of the liver) often are the first signs of the disease. Signs and symptoms also vary based on the severity of the disease. Common signs and symptoms of hemochromatosis include joint pain, fatigue, general weakness, weight loss, and stomach pain. Not everyone who has hemochromatosis has signs or symptoms of the disease. Estimates of how many people develop signs and symptoms vary greatly. Some estimates suggest that as many as half of all people who have the disease don't have signs or symptoms. Hemochromatosis Complications If hemochromatosis isn't found and treated early, iron builds up in your body and can lead to: Liver disease, including an enlarged liver, liver failure, liver cancer, or cirrhosis (scarring of the liver) Heart problems, including arrhythmias (irregular heartbeats) and heart failure Diabetes, especially in people who have a family history of diabetes Joint damage and pain, including arthritis Reproductive organ failure, such as erectile dysfunction (impotence), shrinkage of the testicles, and loss of sex drive in men, and absence of the menstrual cycle and early menopause in women Changes in skin color that make the skin look gray or bronze Underactive pituitary and thyroid glands Damage to the adrenal glands
Hemochromatosis
How to diagnose Hemochromatosis ?
Your doctor will diagnose hemochromatosis based on your medical and family histories, a physical exam, and the results from tests and procedures. The disease sometimes is detected while checking for other diseases or conditions, such as arthritis, liver disease, diabetes, heart disease, or erectile dysfunction (impotence). Specialists Involved Family doctors and internal medicine specialists may diagnose and treat hemochromatosis. Other doctors also may be involved in diagnosing and treating the disease, including: Hematologists (blood disease specialists) Cardiologists (heart specialists) Endocrinologists (gland system specialists) Hepatologists (liver specialists) Gastroenterologists (digestive tract specialists) Rheumatologists (specialists in diseases of the joints and tissues) Medical and Family Histories To learn about your medical and family histories, your doctor may ask: About your signs and symptoms, including when they started and their severity. Whether you take iron (pills or injections) with or without vitamin C supplements (vitamin C helps your body absorb iron from food). If so, your doctor may ask how much iron you take. This information can help him or her diagnose secondary hemochromatosis. Whether other members of your family have hemochromatosis. Whether other members of your family have a history of medical problems or diseases related to hemochromatosis. Physical Exam Your doctor will do a physical exam to check for signs and symptoms of hemochromatosis. He or she will listen to your heart for irregular heartbeats and check for arthritis, abnormal skin color, and an enlarged liver. Diagnostic Tests and Procedures Your doctor may recommend one or more tests or procedures to diagnose hemochromatosis. Blood Tests In hemochromatosis, the amount of iron in your body may be too high, even though the level of iron in your blood is normal. Certain blood tests can help your doctor find out how much iron is in your body. During these tests, a sample of blood is taken from your body. It's usually drawn from a vein in your arm using a needle. The procedure usually is quick and easy, although it may cause some short-term discomfort. The blood tests you have may include transferrin saturation (TS), serum ferritin level, and liver function tests. Transferrin is a protein that carries iron in the blood. The TS test shows how much iron the transferrin is carrying. This helps your doctor find out how much iron is in your body. Your doctor may test your serum ferritin level if your TS level is high. A serum ferritin level test shows how much iron is stored in your body's organs. A buildup of iron may suggest hemochromatosis. You may have liver function tests to check for damage to your liver. Liver damage may be a sign of hemochromatosis. If you have hemochromatosis, liver function tests may show the severity of the disease. Blood tests alone can't diagnose hemochromatosis. Thus, your doctor may recommend other tests as well. Liver Biopsy During a liver biopsy, your doctor numbs an area near your liver and then removes a small sample of liver tissue using a needle. The tissue is then looked at under a microscope. A liver biopsy can show how much iron is in your liver. This procedure also can help your doctor diagnose liver damage (for example, scarring and cancer). Liver biopsies are less common now than in the past. Magnetic Resonance Imaging Magnetic resonance imaging (MRI) is a safe test that uses radio waves, magnets, and a computer to create pictures of your organs. An MRI may be done to show the amount of iron in your liver. Superconducting Quantum Interference Device A superconducting quantum interference device (SQuID) is a machine that uses very sensitive magnets to measure the amount of iron in your liver. This machine is available at only a few medical centers. Genetic Testing Genetic testing can show whether you have a faulty HFE gene or genes. However, even if you do have two faulty HFE genes, the genetic test can't predict whether you'll develop signs and symptoms of hemochromatosis. Also, genetic testing may not detect other, less common faulty genes that also can cause hemochromatosis. There are two ways to do genetic testing. Cells can be collected from inside your mouth using a cotton swab, or a sample of blood can be drawn from a vein in your arm. People who have hemochromatosis (or a family history of it) and are planning to have children may want to consider genetic testing and counseling. Testing will help show whether one or both parents have faulty HFE genes. A genetic counselor also can help figure out the likelihood of the parents passing the faulty genes on to their children.
Hemochromatosis
What are the treatments for Hemochromatosis ?
Treatments for hemochromatosis include therapeutic phlebotomy (fleh-BOT-o-me), iron chelation (ke-LAY-shun) therapy, dietary changes, and treatment for complications. The goals of treating hemochromatosis include: Reducing the amount of iron in your body to normal levels Preventing or delaying organ damage from iron overload Treating complications of the disease Maintaining a normal amount of iron in your body for the rest of your life Therapeutic Phlebotomy Therapeutic phlebotomy is a procedure that removes blood (and iron) from your body. A needle is inserted into a vein, and your blood flows through an airtight tube into a sterile container or bag. The process is similar to donating blood; it can be done at blood donation centers, hospital donation centers, or a doctor's office. In the first stage of treatment, about 1 pint of blood is removed once or twice a week. After your iron levels return to normal, you may continue phlebotomy treatments. However, you may need them less oftentypically every 24 months. As long as treatment continues, which often is for the rest of your life, you'll need frequent blood tests to check your iron levels. Iron Chelation Therapy Iron chelation therapy uses medicine to remove excess iron from your body. This treatment is a good option for people who can't have routine blood removal. The medicine used in iron chelation therapy is either injected or taken orally (by mouth). Injected iron chelation therapy is done at a doctor's office. Oral iron chelation therapy can be done at home. Dietary Changes Your doctor may suggest that you change your diet if you have hemochromatosis. You may be advised to: Avoid taking iron, including iron pills, iron injections, or multivitamins that contain iron. Limit your intake of vitamin C. Vitamin C helps your body absorb iron from food. Talk with your doctor about how much vitamin C is safe for you. Avoid uncooked fish and shellfish. Some fish and shellfish contain bacteria that can cause infections in people who have chronic diseases, such as hemochromatosis. Limit alcohol intake. Drinking alcohol increases the risk of liver disease. It also can make existing liver disease worse. Treatment for Complications Your doctor may prescribe other treatments as needed for complications such as liver disease, heart problems, or diabetes.
Hemochromatosis
How to prevent Hemochromatosis ?
You can't prevent primary, or inherited, hemochromatosis. However, not everyone who inherits hemochromatosis genes develops symptoms or complications of the disease. In those who do, treatments can keep the disease from getting worse. Treatments include therapeutic phlebotomy, iron chelation therapy, dietary changes, and other treatments. For more information, go to "How Is Hemochromatosis Treated?" People who have hemochromatosis (or a family history of it) and are planning to have children may want to consider genetic testing and counseling. Testing will help show whether one or both parents have faulty HFE genes. A genetic counselor also can help figure out the likelihood of the parents passing the faulty genes on to their children.
Hemochromatosis
What is (are) Hemolytic Anemia ?
Hemolytic anemia (HEE-moh-lit-ick uh-NEE-me-uh) is a condition in which red blood cells are destroyed and removed from the bloodstream before their normal lifespan is over. Red blood cells are disc-shaped and look like doughnuts without holes in the center. These cells carry oxygen to your body. They also remove carbon dioxide (a waste product) from your body. Red blood cells are made in the bone marrowa sponge-like tissue inside the bones. They live for about 120 days in the bloodstream and then die. White blood cells and platelets (PLATE-lets) also are made in the bone marrow. White blood cells help fight infections. Platelets stick together to seal small cuts or breaks on blood vessel walls and stop bleeding. When blood cells die, the body's bone marrow makes more blood cells to replace them. However, in hemolytic anemia, the bone marrow can't make red blood cells fast enough to meet the body's needs. Hemolytic anemia can lead to many health problems, such as fatigue (tiredness), pain, irregular heartbeats called arrhythmias (ah-RITH-me-ahs), an enlarged heart, and heart failure. Overview Hemolytic anemia is a type of anemia. The term "anemia" usually refers to a condition in which the blood has a lower than normal number of red blood cells. Anemia also can occur if your red blood cells don't contain enough hemoglobin (HEE-muh-glow-bin). Hemoglobin is an iron-rich protein that carries oxygen from the lungs to the rest of the body. Anemia has three main causes: blood loss, lack of red blood cell production, or high rates of red blood cell destruction. Hemolytic anemia is caused by high rates of red blood cell destruction. Many diseases, conditions, and factors can cause the body to destroy its red blood cells. These causes can be inherited or acquired. "Inherited" means your parents passed the gene(s) for the condition on to you. "Acquired" means you aren't born with the condition, but you develop it. Sometimes the cause of hemolytic anemia isn't known. Outlook There are many types of hemolytic anemia. Treatment and outlook depend on what type you have and how severe it is. The condition can develop suddenly or slowly. Symptoms can range from mild to severe. Hemolytic anemia often can be successfully treated or controlled. Mild hemolytic anemia may need no treatment at all. Severe hemolytic anemia requires prompt and proper treatment, or it may be fatal. Inherited forms of hemolytic anemia are lifelong conditions that may require ongoing treatment. Acquired forms of hemolytic anemia may go away if the cause of the condition is found and corrected.
Hemolytic Anemia
What causes Hemolytic Anemia ?
The immediate cause of hemolytic anemia is the early destruction of red blood cells. This means that red blood cells are destroyed and removed from the bloodstream before their normal lifespan is over. Many diseases, conditions, and factors can cause the body to destroy its red blood cells. These causes can be inherited or acquired. "Inherited" means your parents passed the gene for the condition on to you. "Acquired" means you aren't born with the condition, but you develop it. Sometimes, the cause of hemolytic anemia isn't known. For more information about the specific causes of hemolytic anemia, go to "Types of Hemolytic Anemia." Inherited Hemolytic Anemias In inherited hemolytic anemias, the genes that control how red blood cells are made are faulty. You can get a faulty red blood cell gene from one or both of your parents. Different types of faulty genes cause different types of inherited hemolytic anemia. However, in each type, the body makes abnormal red blood cells. The problem with the red blood cells may involve the hemoglobin, cell membrane, or enzymes that maintain healthy red blood cells. The abnormal cells may be fragile and break down while moving through the bloodstream. If this happens, an organ called the spleen may remove the cell debris from the bloodstream. Acquired Hemolytic Anemias In acquired hemolytic anemias, the body makes normal red blood cells. However, a disease, condition, or other factor destroys the cells. Examples of conditions that can destroy the red blood cells include: Immune disorders Infections Reactions to medicines or blood transfusions Hypersplenism (HI-per-SPLEEN-izm; an enlarged spleen)
Hemolytic Anemia
Who is at risk for Hemolytic Anemia? ?
Hemolytic anemia can affect people of all ages and races and both sexes. Some types of hemolytic anemia are more likely to occur in certain populations than others. For example, glucose-6-phosphate dehydrogenase (G6PD) deficiency mostly affects males of African or Mediterranean descent. In the United States, the condition is more common among African Americans than Caucasians. In the United States, sickle cell anemia mainly affects African Americans.
Hemolytic Anemia
What are the symptoms of Hemolytic Anemia ?
The signs and symptoms of hemolytic anemia will depend on the type and severity of the disease. People who have mild hemolytic anemia often have no signs or symptoms. More severe hemolytic anemia may cause many signs and symptoms, and they may be serious. Many of the signs and symptoms of hemolytic anemia apply to all types of anemia. Signs and Symptoms of Anemia The most common symptom of all types of anemia is fatigue (tiredness). Fatigue occurs because your body doesn't have enough red blood cells to carry oxygen to its various parts. A low red blood cell count also can cause shortness of breath, dizziness, headache, coldness in your hands and feet, pale skin, and chest pain. A lack of red blood cells also means that your heart has to work harder to move oxygen-rich blood through your body. This can lead to arrhythmias (irregular heartbeats), a heart murmur, an enlarged heart, or even heart failure. Signs and Symptoms of Hemolytic Anemia Jaundice Jaundice refers to a yellowish color of the skin or whites of the eyes. When red blood cells die, they release hemoglobin into the bloodstream. The hemoglobin is broken down into a compound called bilirubin, which gives the skin and eyes a yellowish color. Bilirubin also causes urine to be dark yellow or brown. Pain in the Upper Abdomen Gallstones or an enlarged spleen may cause pain in the upper abdomen. High levels of bilirubin and cholesterol (from the breakdown of red blood cells) can form into stones in the gallbladder. These stones can be painful. The spleen is an organ in the abdomen that helps fight infection and filters out old or damaged blood cells. In hemolytic anemia, the spleen may be enlarged, which can be painful. Leg Ulcers and Pain In people who have sickle cell anemia, the sickle-shaped cells can clog small blood vessels and block blood flow. This can cause leg sores and pain throughout the body. A Severe Reaction to a Blood Transfusion You may develop hemolytic anemia due to a blood transfusion. This can happen if the transfused blood is a different blood type than your blood. Signs and symptoms of a severe reaction to a transfusion include fever, chills, low blood pressure, and shock. (Shock is a life-threatening condition that occurs if the body isn't getting enough blood flow.)
Hemolytic Anemia
How to diagnose Hemolytic Anemia ?
Your doctor will diagnose hemolytic anemia based on your medical and family histories, a physical exam, and test results. Specialists Involved Primary care doctors, such as a family doctor or pediatrician, may help diagnose and treat hemolytic anemia. Your primary care doctor also may refer you to a hematologist. This is a doctor who specializes in diagnosing and treating blood diseases and disorders. Doctors and clinics that specialize in treating inherited blood disorders, such as sickle cell anemia and thalassemias, also may be involved. If your hemolytic anemia is inherited, you may want to consult a genetic counselor. A counselor can help you understand your risk of having a child who has the condition. He or she also can explain the choices that are available to you. Medical and Family Histories To find the cause and severity of hemolytic anemia, your doctor may ask detailed questions about your symptoms, personal medical history, and your family medical history. He or she may ask whether: You or anyone in your family has had problems with anemia You've recently had any illnesses or medical conditions You take any medicines, and which ones You've been exposed to certain chemicals or substances You have an artificial heart valve or other medical device that could damage your red blood cells Physical Exam Your doctor will do a physical exam to check for signs of hemolytic anemia. He or she will try to find out how severe the condition is and what's causing it. The exam may include: Checking for jaundice (a yellowish color of the skin or whites of the eyes) Listening to your heart for rapid or irregular heartbeats Listening for rapid or uneven breathing Feeling your abdomen to check the size of your spleen Doing a pelvic and rectal exam to check for internal bleeding Diagnostic Tests and Procedures Many tests are used to diagnose hemolytic anemia. These tests can help confirm a diagnosis, look for a cause, and find out how severe the condition is. Complete Blood Count Often, the first test used to diagnose anemia is a complete blood count (CBC). The CBC measures many parts of your blood. This test checks your hemoglobin and hematocrit (hee-MAT-oh-crit) levels. Hemoglobin is an iron-rich protein in red blood cells that carries oxygen to the body. Hematocrit is a measure of how much space red blood cells take up in your blood. A low level of hemoglobin or hematocrit is a sign of anemia. The normal range of these levels may vary in certain racial and ethnic populations. Your doctor can explain your test results to you. The CBC also checks the number of red blood cells, white blood cells, and platelets in your blood. Abnormal results may be a sign of hemolytic anemia, a different blood disorder, an infection, or another condition. Finally, the CBC looks at mean corpuscular (kor-PUS-kyu-lar) volume (MCV). MCV is a measure of the average size of your red blood cells. The results may be a clue as to the cause of your anemia. Other Blood Tests If the CBC results confirm that you have anemia, you may need other blood tests to find out what type of anemia you have and how severe it is. Reticulocyte count. A reticulocyte (re-TIK-u-lo-site) count measures the number of young red blood cells in your blood. The test shows whether your bone marrow is making red blood cells at the correct rate. People who have hemolytic anemia usually have high reticulocyte counts because their bone marrow is working hard to replace the destroyed red blood cells. Peripheral smear. For this test, your doctor will look at your red blood cells through a microscope. Some types of hemolytic anemia change the normal shape of red blood cells. Coombs' test. This test can show whether your body is making antibodies (proteins) to destroy red blood cells. Haptoglobin, bilirubin, and liver function tests. When red blood cells break down, they release hemoglobin into the bloodstream. The hemoglobin combines with a chemical called haptoglobin. A low level of haptoglobin in the bloodstream is a sign of hemolytic anemia. Hemoglobin is broken down into a compound called bilirubin. High levels of bilirubin in the bloodstream may be a sign of hemolytic anemia. High levels of this compound also occur with some liver and gallbladder diseases. Thus, you may need liver function tests to find out what's causing the high bilirubin levels. Hemoglobin electrophoresis. This test looks at the different types of hemoglobin in your blood. It can help diagnose the type of anemia you have. Testing for paroxysmal nocturnal hemoglobinuria (PNH). In PNH, the red blood cells are missing certain proteins. The test for PNH can detect red blood cells that are missing these proteins. Osmotic fragility test. This test looks for red blood cells that are more fragile than normal. These cells may be a sign of hereditary spherocytosis (an inherited type of hemolytic anemia). Testing for glucose-6-phosphate dehydrogenase (G6PD) deficiency. In G6PD deficiency, the red blood cells are missing an important enzyme called G6PD. The test for G6PD deficiency looks for this enzyme in a sample of blood. Urine Test A urine test will look for the presence of free hemoglobin (a protein that carries oxygen in the blood) and iron. Bone Marrow Tests Bone marrow tests show whether your bone marrow is healthy and making enough blood cells. The two bone marrow tests are aspiration (as-pi-RA-shun) and biopsy. For a bone marrow aspiration, your doctor removes a small amount of fluid bone marrow through a needle. The sample is examined under a microscope to check for faulty cells. A bone marrow biopsy may be done at the same time as an aspiration or afterward. For this test, your doctor removes a small amount of bone marrow tissue through a needle. The tissue is examined to check the number and type of cells in the bone marrow. You may not need bone marrow tests if blood tests show what's causing your hemolytic anemia. Tests for Other Causes of Anemia Because anemia has many causes, you may have tests for conditions such as: Kidney failure Lead poisoning Vitamin or iron deficiency Newborn Testing for Sickle Cell Anemia and G6PD Deficiency All States mandate screening for sickle cell anemia as part of their newborn screening programs. Some States also mandate screening for G6PD deficiency. These inherited types of hemolytic anemia can be detected with routine blood tests. Diagnosing these conditions as early as possible is important so that children can get proper treatment.
Hemolytic Anemia
What are the treatments for Hemolytic Anemia ?
Treatments for hemolytic anemia include blood transfusions, medicines, plasmapheresis (PLAZ-meh-feh-RE-sis), surgery, blood and marrow stem cell transplants, and lifestyle changes. People who have mild hemolytic anemia may not need treatment, as long as the condition doesn't worsen. People who have severe hemolytic anemia usually need ongoing treatment. Severe hemolytic anemia can be fatal if it's not properly treated. Goals of Treatment The goals of treating hemolytic anemia include: Reducing or stopping the destruction of red blood cells Increasing the red blood cell count to an acceptable level Treating the underlying cause of the condition Treatment will depend on the type, cause, and severity of the hemolytic anemia you have. Your doctor also will consider your age, overall health, and medical history. If you have an inherited form of hemolytic anemia, it's a lifelong condition that may require ongoing treatment. If you have an acquired form of hemolytic anemia, it may go away if its cause can be found and corrected. Blood Transfusions Blood transfusions are used to treat severe or life-threatening hemolytic anemia. A blood transfusion is a common procedure in which blood is given to you through an intravenous (IV) line in one of your blood vessels. Transfusions require careful matching of donated blood with the recipient's blood. For more information, go to the Health Topics Blood Transfusion article. Medicines Medicines can improve some types of hemolytic anemia, especially autoimmune hemolytic anemia (AIHA). Corticosteroid medicines, such as prednisone, can stop your immune system from, or limit its ability to, make antibodies (proteins) against red blood cells. If you don't respond to corticosteroids, your doctor may prescribe other medicines to suppress your immune system. Examples include the medicines rituximab and cyclosporine. If you have severe sickle cell anemia, your doctor may recommend a medicine called hydroxyurea. This medicine prompts your body to make fetal hemoglobin. Fetal hemoglobin is the type of hemoglobin that newborns have. In people who have sickle cell anemia, fetal hemoglobin helps prevent red blood cells from sickling and improves anemia. Plasmapheresis Plasmapheresis is a procedure that removes antibodies from the blood. For this procedure, blood is taken from your body using a needle inserted into a vein. The plasma, which contains the antibodies, is separated from the rest of the blood. Then, plasma from a donor and the rest of the blood is put back in your body. This treatment may help if other treatments for immune hemolytic anemia don't work. Surgery Some people who have hemolytic anemia may need surgery to remove their spleens. The spleen is an organ in the abdomen. A healthy spleen helps fight infection and filters out old or damaged blood cells. An enlarged or diseased spleen may remove more red blood cells than normal, causing anemia. Removing the spleen can stop or reduce high rates of red blood cell destruction. Blood and Marrow Stem Cell Transplant In some types of hemolytic anemia, such as thalassemias, the bone marrow doesn't make enough healthy red blood cells. The red blood cells it does make may be destroyed before their normal lifespan is over. Blood and marrow stem cell transplants may be used to treat these types of hemolytic anemia. A blood and marrow stem cell transplant replaces damaged stem cells with healthy ones from another person (a donor). During the transplant, which is like a blood transfusion, you get donated stem cells through a tube placed in a vein. Once the stem cells are in your body, they travel to your bone marrow and begin making new blood cells. For more information, go to the Health Topics Blood and Marrow Stem Cell Transplant article. Lifestyle Changes If you have AIHA with cold-reactive antibodies, try to avoid cold temperatures. This can help prevent the breakdown of red blood cells. It's very important to protect your fingers, toes, and ears from the cold. To protect yourself, you can: Wear gloves or mittens when taking food out of the refrigerator or freezer. Wear a hat, scarf, and a coat with snug cuffs during cold weather. Turn down air conditioning or dress warmly while in air-conditioned spaces. Warm up the car before driving in cold weather. People born with glucose-6-phosphate dehydrogenase (G6PD) deficiency can avoid substances that may trigger anemia. For example, avoid fava beans, naphthalene (a substance found in some moth balls), and certain medicines (as your doctor advises).
Hemolytic Anemia
How to prevent Hemolytic Anemia ?
You can't prevent inherited types of hemolytic anemia. One exception is glucose-6-phosphate dehydrogenase (G6PD) deficiency. If you're born with G6PD deficiency, you can avoid substances that may trigger the condition. For example, avoid fava beans, naphthalene (a substance found in some moth balls), and certain medicines (as your doctor advises). Some types of acquired hemolytic anemia can be prevented. For example, reactions to blood transfusions, which can cause hemolytic anemia, can be prevented. This requires careful matching of blood types between the blood donor and the recipient. Prompt and proper prenatal care can help you avoid the problems of Rh incompatibility. This condition can occur during pregnancy if a woman has Rh-negative blood and her baby has Rh-positive blood. "Rh-negative" and "Rh-positive" refer to whether your blood has Rh factor. Rh factor is a protein on red blood cells. Rh incompatibility can lead to hemolytic anemia in a fetus or newborn.
Hemolytic Anemia
What is (are) Hypersensitivity Pneumonitis ?
Hypersensitivity pneumonitis (noo-mo-NI-tis), or HP, is a disease in which the lungs become inflamed from breathing in foreign substances, such as molds, dusts, and chemicals. These substances also are known as antigens (AN-tih-jens). People are exposed to antigens at home, while at work, and in other settings. However, most people who breathe in these substances don't develop HP. Overview To understand HP, it helps to understand how the lungs work. When you breathe, air passes through your nose and mouth into your windpipe. The air then travels to your lungs' air sacs. These sacs are called alveoli (al-VEE-uhl-eye). Small blood vessels called capillaries run through the walls of the air sacs. When air reaches the air sacs, the oxygen in the air passes through the air sac walls into the blood in the capillaries. The capillaries connect to a network of arteries and veins that move blood through your body. In HP, the air sacs become inflamed and may fill with fluid. This makes it harder for oxygen to pass through the air sacs and into the bloodstream. The two main types of HP are acute (short-term) and chronic (ongoing). Both types can develop as a result of repeatedly breathing in an antigen. Over time, your lungs can become sensitive to that antigen. If this happens, they'll become inflamed, which can lead to symptoms and may even cause long-term lung damage. With acute HP, symptoms usually occur within 29 hours of exposure to an antigen you're sensitive to. Acute HP can cause chills, body aches, coughing, and chest tightness. After hours or days of no contact with the antigen, symptoms usually go away. If acute HP isn't found and treated early, chronic HP may develop. Symptoms of chronic HP occur slowly, over months. Chronic HP can cause a worsening cough, shortness of breath with physical activity, fatigue (tiredness), and weight loss. Severe HP may cause clubbing (a widening and rounding of the tips of the fingers or toes). With chronic HP, symptoms may continue and/or worsen, even after avoiding the antigen. Sometimes, chronic HP can cause long-term lung damage, such as pulmonary fibrosis (PULL-mun-ary fi-BRO-sis). This is a condition in which tissue deep in your lungs becomes scarred over time. Outlook Avoiding or reducing your contact with antigens can help prevent and treat HP. For example, cleaning heating and ventilation filters can help reduce your contact with mold. Wetting compost prior to handling it can reduce contact with harmful dust. If HP is caught early, avoiding the antigen that caused it may be the only treatment you need. If you have chronic HP, your doctor may prescribe medicines to reduce lung inflammation. Researchers continue to study why some people develop HP after being exposed to antigens, while others don't. They're also looking for better ways to quickly pinpoint which antigens are causing HP in people who are believed to have the disease.
Hypersensitivity Pneumonitis
What causes Hypersensitivity Pneumonitis ?
Repeatedly breathing in foreign substances can cause hypersensitivity pneumonitis (HP). Examples of these substances include molds, dusts, and chemicals. (Mold often is the cause of HP.) These substances also are known as antigens. Over time, your lungs can become sensitive to antigens. If this happens, your lungs will become inflamed, which can lead to symptoms and may even cause long-term lung damage. Antigens may be found in the home, workplace, or in other settings. Antigens can come from many sources, such as: Bird droppings Humidifiers, heating systems, and hot tubs Liquid chemicals used in the landscaping and florist industries Moldy hay, straw, and grain Chemicals released during the production of plastics and electronics, and chemicals released during painting Mold released during lumber milling, construction, and wood stripping
Hypersensitivity Pneumonitis
Who is at risk for Hypersensitivity Pneumonitis? ?
People who repeatedly breathe in foreign substances are at risk for hypersensitivity pneumonitis (HP). These substances, which also are known as antigens, include molds, dusts, and chemicals. However, most people who breathe in these substances don't develop HP. People at increased risk include: Farm and dairy cattle workers People who use hot tubs often People who are exposed to molds or dusts from humidifiers, heating systems, or wet carpeting Bird fanciers (people who keep pet birds) and poultry handlers Florists and landscapers, especially those who use liquid chemicals on lawns and gardens People who work in grain and flour processing and loading Lumber milling, construction, wood stripping, and paper and wallboard workers People who make plastics or electronics, and those who paint or work with other chemicals
Hypersensitivity Pneumonitis
What are the symptoms of Hypersensitivity Pneumonitis ?
Signs and symptoms of hypersensitivity pneumonitis (HP) depend on whether the disease is acute (short-term) or chronic (ongoing). Acute Hypersensitivity Pneumonitis With acute HP, symptoms usually occur within 29 hours of exposure to an antigen you're sensitive to. (An antigen is a substance that your body reacts against, such as molds, dusts, and chemicals.) Acute HP can cause chills, body aches, coughing, and chest tightness. After hours or days of no contact with the antigen, symptoms usually go away. Chronic Hypersensitivity Pneumonitis If acute HP isn't found and treated early, chronic HP may develop. With chronic HP, symptoms occur slowly, over months. Chronic HP can cause a worsening cough, shortness of breath with physical activity, fatigue (tiredness), and weight loss. Some symptoms may continue and/or worsen, even after avoiding the antigen. Chronic HP can cause long-term lung damage, such as pulmonary fibrosis. This is a condition in which tissue deep in your lungs becomes scarred over time. Clubbing also may occur if HP is severe. Clubbing is the widening and rounding of the tips of the fingers or toes. A low level of oxygen in the blood causes this condition.
Hypersensitivity Pneumonitis
How to diagnose Hypersensitivity Pneumonitis ?
To diagnose hypersensitivity pneumonitis (HP), your doctor must pinpoint the antigen that's causing the disease and its source. (An antigen is a substance that your body reacts against, such as molds, dusts, and chemicals.) Your doctor will ask you detailed questions about: Your current and past jobs Your hobbies and leisure activities The types of places where you spend time Your exposure to damp and moldy places Your doctor also will do a physical exam and look at test results to diagnose HP. Physical Exam During the physical exam, your doctor will ask about your signs and symptoms, such as coughing and weight loss. Your doctor also will look for signs of HP. For example, he or she will listen to your lungs with a stethoscope for abnormal breathing sounds. HP can cause a crackling sound when you breathe. Your doctor also may look for signs of pulmonary fibrosis, a possible complication of chronic (ongoing) HP. Pulmonary fibrosis is a condition in which tissue deep in your lungs becomes scarred over time. Your doctor also may check for clubbing. Clubbing is the widening and rounding of the tips of the fingers or toes. A low level of oxygen in the blood causes this condition. Diagnostic Tests and Procedures To help diagnose HP, your doctor may recommend or more of the following tests or procedures. Chest X Ray or Chest Computed Tomography (CT) Scan A chest x ray and chest CT scan create pictures of the structures inside your chest, such as your heart, lungs, and blood vessels. These pictures can show signs of HP. Lung Function Tests Lung function tests measure how much air you can breathe in and out, how fast you can breathe air out, and how well your lungs can deliver oxygen to your blood. One of these tests is spirometry (spi-ROM-eh-tre). During this test, a technician will ask you to take a deep breath. Then, you'll blow as hard as you can into a tube connected to a small machine. The machine is called a spirometer. The machine measures how much air you breathe out. It also measures how fast you can blow air out. Pulse Oximetry This test measures the amount of oxygen in your blood. A small sensor is attached to your finger or ear. The sensor uses light to estimate how much oxygen is in your blood. Precipitin Test This blood test looks for antibodies (proteins) that your body creates in response to antigens. The presence of these proteins may suggest HP. Challenge Test During this test, you're re-exposed to the suspected antigen. Then, you'll be watched for signs and symptoms of HP. Bronchoscopy For bronchoscopy (bron-KOS-ko-pee), your doctor passes a thin, flexible tube through your nose (or sometimes your mouth), down your throat, and into your airways. At the tip of the tube are a light and mini-camera. This allows your doctor to see your windpipe and airways. Your doctor may insert forceps (a device used to grab or hold things) through the tube to collect a tissue sample. You'll be given medicine to make you relaxed and sleepy during the procedure. Bronchoalveolar Lavage During bronchoscopy, your doctor may inject a small amount of salt water (saline) through the tube into your lungs. This method is called bronchoalveolar lavage (BRONG-ko-al-VE-o-lar lah-VAHZH). This fluid washes the lungs and helps bring up cells from the airways and the area around the air sacs. Your doctor will look at these cells under a microscope. Surgical Lung Biopsy To confirm a diagnosis of HP, your doctor may do a surgical lung biopsy. Your doctor can use a biopsy to rule out other causes of symptoms and check the condition of your lungs. For a surgical lung biopsy, your doctor takes samples of lung tissue from several places in your lungs. He or she then looks at them under a microscope. Your doctor may use one of the following methods to get lung tissue samples. Video-assisted thoracoscopy (thor-ah-KOS-ko-pee). For this procedure, your doctor inserts a small, lighted tube with a camera (endoscope) into your chest through small cuts between your ribs. The endoscope provides a video image of your lungs and allows your doctor to collect tissue samples. This procedure is done in a hospital. You'll be given medicine to help you sleep through the procedure. Thoracotomy (thor-ah-KOT-o-me). For this procedure, your doctor removes a few small pieces of lung tissue through a cut in the chest wall between your ribs. Thoracotomy is done in a hospital. You'll be given medicine to help you sleep through the procedure.
Hypersensitivity Pneumonitis
What are the treatments for Hypersensitivity Pneumonitis ?
The best way to treat hypersensitivity pneumonitis (HP) is to avoid the antigen that caused it. (An antigen is a substance that your body reacts against, such as molds, dusts, and chemicals.) In acute (short-term) HP, symptoms usually go away once you're no longer in contact with the antigen. In chronic (ongoing) HP, you may need medicines to relieve your symptoms. People who have chronic HP may develop pulmonary fibrosis. This is a condition in which tissue deep in your lungs becomes scarred over time. People who have this condition may need further treatment, such as oxygen therapy and pulmonary rehabilitation (rehab). Avoiding Antigens Once the antigen that caused the HP and its source are found, you can take steps to avoid it. If HP is caught early, avoiding the antigen may be the only treatment you need. Avoiding an antigen may be easier at home than at work. For example, if your pet bird, moldy carpet, or hot tub is the source of the antigen, you can remove it from your home. If your heating system is the source of the antigen, you can have your system properly serviced. However, if the antigen is at work, you may need to talk with your supervisor about your condition and ways to protect yourself. For example, masks or personal respirators may help protect you from antigens in the air. (A personal respirator is a device that helps filter the air you breathe in.) Some people who have HP may need to move to a different home or change jobs to avoid antigens. After hurricanes, for example, some people have to move from their homes to avoid molds that could harm their lungs. However, moving and changing jobs sometimes isn't possible. Medicines and Other Treatments If you have chronic HP, your doctor may prescribe medicines called corticosteroids. These medicines reduce lung inflammation. Prednisone is an example of a corticosteroid. Long-term use of prednisone, especially at high doses, can cause serious side effects. Thus, if your doctor prescribes this medicine, he or she may reduce the dose over time. Examples of side effects from corticosteroids are increased risk of infections, high blood pressure, high blood sugar, and osteoporosis (thinning of the skin and bones). People who develop pulmonary fibrosis may need medicines, oxygen therapy, and/or pulmonary rehab. Pulmonary fibrosis is a condition in which tissue deep in your lungs becomes scarred over time. If you smoke, try to quit. Smoking can make HP symptoms worse and lead to other lung diseases. Talk with your doctor about programs and products that can help you quit. Also, try to avoid secondhand smoke.
Hypersensitivity Pneumonitis
What is (are) Cardiogenic Shock ?
Cardiogenic (kar-dee-oh-JE-nik) shock is a condition in which a suddenly weakened heart isn't able to pump enough blood to meet the body's needs. The condition is a medical emergency and is fatal if not treated right away. The most common cause of cardiogenic shock is damage to the heart muscle from a severe heart attack. However, not everyone who has a heart attack has cardiogenic shock. In fact, on average, only about 7 percent of people who have heart attacks develop the condition. If cardiogenic shock does occur, it's very dangerous. When people die from heart attacks in hospitals, cardiogenic shock is the most common cause of death. What Is Shock? The medical term "shock" refers to a state in which not enough blood and oxygen reach important organs in the body, such as the brain and kidneys. Shock causes very low blood pressure and may be life threatening. Shock can have many causes. Cardiogenic shock is only one type of shock. Other types of shock include hypovolemic (hy-po-vo-LEE-mik) shock and vasodilatory (VAZ-oh-DILE-ah-tor-e) shock. Hypovolemic shock is a condition in which the heart cant pump enough blood to the body because of severe blood loss. In vasodilatory shock, the blood vessels suddenly relax. When the blood vessels are too relaxed, blood pressure drops and blood flow becomes very low. Without enough blood pressure, blood and oxygen dont reach the bodys organs. A bacterial infection in the bloodstream, a severe allergic reaction, or damage to the nervous system (brain and nerves) may cause vasodilatory shock. When a person is in shock (from any cause), not enough blood and oxygen are reaching the body's organs. If shock lasts more than a few minutes, the lack of oxygen starts to damage the bodys organs. If shock isn't treated quickly, it can cause permanent organ damage or death. Some of the signs and symptoms of shock include: Confusion or lack of alertness Loss of consciousness A sudden and ongoing rapid heartbeat Sweating Pale skin A weak pulse Rapid breathing Decreased or no urine output Cool hands and feet If you think that you or someone else is in shock, call 911 right away for emergency treatment. Prompt medical care can save your life and prevent or limit damage to your bodys organs. Outlook In the past, almost no one survived cardiogenic shock. Now, about half of the people who go into cardiogenic shock survive. This is because of prompt recognition of symptoms and improved treatments, such as medicines and devices. These treatments can restore blood flow to the heart and help the heart pump better. In some cases, devices that take over the pumping function of the heart are used. Implanting these devices requires major surgery.
Cardiogenic Shock
What causes Cardiogenic Shock ?
Immediate Causes Cardiogenic shock occurs if the heart suddenly can't pump enough oxygen-rich blood to the body. The most common cause of cardiogenic shock is damage to the heart muscle from a severe heart attack. This damage prevents the hearts main pumping chamber, the left ventricle (VEN-trih-kul), from working well. As a result, the heart can't pump enough oxygen-rich blood to the rest of the body. In about 3 percent of cardiogenic shock cases, the hearts lower right chamber, the right ventricle, doesnt work well. This means the heart can't properly pump blood to the lungs, where it picks up oxygen to bring back to the heart and the rest of the body. Without enough oxygen-rich blood reaching the bodys major organs, many problems can occur. For example: Cardiogenic shock can cause death if the flow of oxygen-rich blood to the organs isn't restored quickly. This is why emergency medical treatment is required. If organs don't get enough oxygen-rich blood, they won't work well. Cells in the organs die, and the organs may never work well again. As some organs stop working, they may cause problems with other bodily functions. This, in turn, can worsen shock. For example: - If the kidneys aren't working well, the levels of important chemicals in the body change. This may cause the heart and other muscles to become even weaker, limiting blood flow even more. - If the liver isn't working well, the body stops making proteins that help the blood clot. This can lead to more bleeding if the shock is due to blood loss. If the kidneys aren't working well, the levels of important chemicals in the body change. This may cause the heart and other muscles to become even weaker, limiting blood flow even more. If the liver isn't working well, the body stops making proteins that help the blood clot. This can lead to more bleeding if the shock is due to blood loss. How well the brain, kidneys, and other organs recover will depend on how long a person is in shock. The less time a person is in shock, the less damage will occur to the organs. This is another reason why emergency treatment is so important. Underlying Causes The underlying causes of cardiogenic shock are conditions that weaken the heart and prevent it from pumping enough oxygen-rich blood to the body. Heart Attack Most heart attacks occur as a result of coronary heart disease (CHD). CHD is a condition in which a waxy substance called plaque (plak) narrows or blocks the coronary (heart) arteries. Plaque reduces blood flow to your heart muscle. It also makes it more likely that blood clots will form in your arteries. Blood clots can partially or completely block blood flow. Conditions Caused by Heart Attack Heart attacks can cause some serious heart conditions that can lead to cardiogenic shock. One example is ventricular septal rupture. This condition occurs if the wall that separates the ventricles (the hearts two lower chambers) breaks down. The breakdown happens because cells in the wall have died due to a heart attack. Without the wall to separate them, the ventricles cant pump properly. Heart attacks also can cause papillary muscle infarction or rupture. This condition occurs if the muscles that help anchor the heart valves stop working or break because a heart attack cuts off their blood supply. If this happens, blood doesn't flow correctly between the hearts chambers. This prevents the heart from pumping properly. Other Heart Conditions Serious heart conditions that may occur with or without a heart attack can cause cardiogenic shock. Examples include: Myocarditis (MI-o-kar-DI-tis). This is inflammation of the heart muscle. Endocarditis (EN-do-kar-DI-tis). This is an infection of the inner lining of the heart chambers and valves. Life-threatening arrhythmias (ah-RITH-me-ahs). These are problems with the rate or rhythm of the heartbeat. Pericardial tamponade (per-ih-KAR-de-al tam-po-NADE). This is too much fluid or blood around the heart. The fluid squeezes the heart muscle so it can't pump properly. Pulmonary Embolism Pulmonary embolism (PE) is a sudden blockage in a lung artery. This condition usually is caused by a blood clot that travels to the lung from a vein in the leg. PE can damage your heart and other organs in your body.
Cardiogenic Shock
Who is at risk for Cardiogenic Shock? ?
The most common risk factor for cardiogenic shock is having a heart attack. If you've had a heart attack, the following factors can further increase your risk for cardiogenic shock: Older age A history of heart attacks or heart failure Coronary heart disease that affects all of the hearts major blood vessels High blood pressure Diabetes Women who have heart attacks are at higher risk for cardiogenic shock than men who have heart attacks.
Cardiogenic Shock
What are the symptoms of Cardiogenic Shock ?
A lack of oxygen-rich blood reaching the brain, kidneys, skin, and other parts of the body causes the signs and symptoms of cardiogenic shock. Some of the typical signs and symptoms of shock usually include at least two or more of the following: Confusion or lack of alertness Loss of consciousness A sudden and ongoing rapid heartbeat Sweating Pale skin A weak pulse Rapid breathing Decreased or no urine output Cool hands and feet Any of these alone is unlikely to be a sign or symptom of shock. If you or someone else is having these signs and symptoms, call 911 right away for emergency treatment. Prompt medical care can save your life and prevent or limit organ damage.
Cardiogenic Shock
How to diagnose Cardiogenic Shock ?
The first step in diagnosing cardiogenic shock is to identify that a person is in shock. At that point, emergency treatment should begin. Once emergency treatment starts, doctors can look for the specific cause of the shock. If the reason for the shock is that the heart isn't pumping strongly enough, then the diagnosis is cardiogenic shock. Tests and Procedures To Diagnose Shock and Its Underlying Causes Blood Pressure Test Medical personnel can use a simple blood pressure cuff and stethoscope to check whether a person has very low blood pressure. This is the most common sign of shock. A blood pressure test can be done before the person goes to a hospital. Less serious conditions also can cause low blood pressure, such as fainting or taking certain medicines, such as those used to treat high blood pressure. EKG (Electrocardiogram) An EKG is a simple test that detects and records the heart's electrical activity. The test shows how fast the heart is beating and its rhythm (steady or irregular). An EKG also records the strength and timing of electrical signals as they pass through each part of the heart. Doctors use EKGs to diagnose severe heart attacks and monitor the heart's condition. Echocardiography Echocardiography (echo) uses sound waves to create a moving picture of the heart. The test provides information about the size and shape of the heart and how well the heart chambers and valves are working. Echo also can identify areas of poor blood flow to the heart, areas of heart muscle that aren't contracting normally, and previous injury to the heart muscle caused by poor blood flow. Chest X Ray A chest x ray takes pictures of organs and structures in the chest, including the heart, lungs, and blood vessels. This test shows whether the heart is enlarged or whether fluid is present in the lungs. These can be signs of cardiogenic shock. Cardiac Enzyme Test When cells in the heart die, they release enzymes into the blood. These enzymes are called markers or biomarkers. Measuring these markers can show whether the heart is damaged and the extent of the damage. Coronary Angiography Coronary angiography (an-jee-OG-ra-fee) is an x-ray exam of the heart and blood vessels. The doctor passes a catheter (a thin, flexible tube) through an artery in the leg or arm to the heart. The catheter can measure the pressure inside the heart chambers. Dye that can be seen on an x-ray image is injected into the bloodstream through the tip of the catheter. The dye lets the doctor study the flow of blood through the heart and blood vessels and see any blockages. Pulmonary Artery Catheterization For this procedure, a catheter is inserted into a vein in the arm or neck or near the collarbone. Then, the catheter is moved into the pulmonary artery. This artery connects the right side of the heart to the lungs. The catheter is used to check blood pressure in the pulmonary artery. If the blood pressure is too high or too low, treatment may be needed. Blood Tests Some blood tests also are used to help diagnose cardiogenic shock, including: Arterial blood gas measurement. For this test, a blood sample is taken from an artery. The sample is used to measure oxygen, carbon dioxide, and pH (acidity) levels in the blood. Certain levels of these substances are associated with shock. Tests that measure the function of various organs, such as the kidneys and liver. If these organs aren't working well, they may not be getting enough oxygen-rich blood. This could be a sign of cardiogenic shock.
Cardiogenic Shock
What are the treatments for Cardiogenic Shock ?
Cardiogenic shock is life threatening and requires emergency medical treatment. The condition usually is diagnosed after a person has been admitted to a hospital for a heart attack. If the person isn't already in a hospital, emergency treatment can start as soon as medical personnel arrive. The first goal of emergency treatment for cardiogenic shock is to improve the flow of blood and oxygen to the bodys organs. Sometimes both the shock and its cause are treated at the same time. For example, doctors may quickly open a blocked blood vessel that's damaging the heart. Often, this can get the patient out of shock with little or no additional treatment. Emergency Life Support Emergency life support treatment is needed for any type of shock. This treatment helps get oxygen-rich blood flowing to the brain, kidneys, and other organs. Restoring blood flow to the organs keeps the patient alive and may prevent long-term damage to the organs. Emergency life support treatment includes: Giving the patient extra oxygen to breathe so that more oxygen reaches the lungs, the heart, and the rest of the body. Providing breathing support if needed. A ventilator might be used to protect the airway and provide the patient with extra oxygen. A ventilator is a machine that supports breathing. Giving the patient fluids, including blood and blood products, through a needle inserted in a vein (when the shock is due to blood loss). This can help get more blood to major organs and the rest of the body. This treatment usually isnt used for cardiogenic shock because the heart can't pump the blood that's already in the body. Also, too much fluid is in the lungs, making it hard to breathe. Medicines During and after emergency life support treatment, doctors will try to find out whats causing the shock. If the reason for the shock is that the heart isn't pumping strongly enough, then the diagnosis is cardiogenic shock. Treatment for cardiogenic shock will depend on its cause. Doctors may prescribe medicines to: Prevent blood clots from forming Increase the force with which the heart muscle contracts Treat a heart attack Medical Devices Medical devices can help the heart pump and improve blood flow. Devices used to treat cardiogenic shock may include: An intra-aortic balloon pump. This device is placed in the aorta, the main blood vessel that carries blood from the heart to the body. A balloon at the tip of the device is inflated and deflated in a rhythm that matches the hearts pumping rhythm. This allows the weakened heart muscle to pump as much blood as it can, which helps get more blood to vital organs, such as the brain and kidneys. A left ventricular assist device (LVAD). This device is a battery-operated pump that takes over part of the hearts pumping action. An LVAD helps the heart pump blood to the body. This device may be used if damage to the left ventricle, the hearts main pumping chamber, is causing shock. Medical Procedures and Surgery Sometimes medicines and medical devices aren't enough to treat cardiogenic shock. Medical procedures and surgery can restore blood flow to the heart and the rest of the body, repair heart damage, and help keep a patient alive while he or she recovers from shock. Surgery also can improve the chances of long-term survival. Surgery done within 6 hours of the onset of shock symptoms has the greatest chance of improving survival. The types of procedures and surgery used to treat underlying causes of cardiogenic shock include: Percutaneous coronary intervention (PCI) and stents. PCI,also known as coronary angioplasty,is a procedure used to open narrowed or blocked coronary (heart) arteries and treat an ongoing heart attack. A stent is a small mesh tube that's placed in a coronary artery during PCI to help keep it open. Coronary artery bypass grafting. For this surgery, arteries or veins from other parts of the body are used to bypass (that is, go around) narrowed coronary arteries. This creates a new passage for oxygen-rich blood to reach the heart. Surgery to repair damaged heart valves. Surgery to repair a break in the wall that separates the hearts chambers. This break is called a septal rupture. Heart transplant. This type of surgery rarely is done during an emergency situation like cardiogenic shock because of other available options. Also, doctors need to do very careful testing to make sure a patient will benefit from a heart transplant and to find a matching heart from a donor. Still, in some cases, doctors may recommend a transplant if they feel it's the best way to improve a patient's chances of long-term survival.
Cardiogenic Shock
How to prevent Cardiogenic Shock ?
The best way to prevent cardiogenic shock is to lower your risk for coronary heart disease (CHD) and heart attack. (For more information, go to the National Heart, Lung, and Blood Institute's "Your Guide to a Healthy Heart.") If you already have CHD, its important to get ongoing treatment from a doctor who has experience treating heart problems. If you have a heart attack, you should get treatment right away to try to prevent cardiogenic shock and other possible complications. Act in time. Know the warning signs of a heart attack so you can act fast to get treatment. Many heart attack victims wait 2 hours or more after their symptoms begin before they seek medical help. Delays in treatment increase the risk of complications and death. If you think you're having a heart attack, call 911 for help. Don't drive yourself or have friends or family drive you to the hospital. Call an ambulance so that medical personnel can begin life-saving treatment on the way to the emergency room.
Cardiogenic Shock
What is (are) Aneurysm ?
An aneurysm (AN-u-rism) is a balloon-like bulge in an artery. Arteries are blood vessels that carry oxygen-rich blood to your body. Arteries have thick walls to withstand normal blood pressure. However, certain medical problems, genetic conditions, and trauma can damage or injure artery walls. The force of blood pushing against the weakened or injured walls can cause an aneurysm. An aneurysm can grow large and rupture (burst) or dissect. A rupture causes dangerous bleeding inside the body. A dissection is a split in one or more layers of the artery wall. The split causes bleeding into and along the layers of the artery wall. Both rupture and dissection often are fatal. Overview Most aneurysms occur in the aorta, the main artery that carries oxygen-rich blood from the heart to the body. The aorta goes through the chest and abdomen. An aneurysm that occurs in the chest portion of the aorta is called a thoracic (tho-RAS-ik) aortic aneurysm. An aneurysm that occurs in the abdominal portion of the aorta is called an abdominal aortic aneurysm. Aneurysms also can occur in other arteries, but these types of aneurysm are less common. This article focuses on aortic aneurysms. About 13,000 Americans die each year from aortic aneurysms. Most of the deaths result from rupture or dissection. Early diagnosis and treatment can help prevent rupture and dissection. However, aneurysms can develop and grow large before causing any symptoms. Thus, people who are at high risk for aneurysms can benefit from early, routine screening. Outlook Doctors often can successfully treat aortic aneurysms with medicines or surgery if theyre found in time. Medicines may be given to lower blood pressure, relax blood vessels, and reduce the risk of rupture. Large aortic aneurysms often can be repaired with surgery. During surgery, the weak or damaged portion of the aorta is replaced or reinforced.
Aneurysm
What causes Aneurysm ?
The force of blood pushing against the walls of an artery combined with damage or injury to the arterys walls can cause an aneurysm. Many conditions and factors can damage and weaken the walls of the aorta and cause aortic aneurysms. Examples include aging, smoking, high blood pressure, and atherosclerosis (ath-er-o-skler-O-sis). Atherosclerosis is the hardening and narrowing of the arteries due to the buildup of a waxy substance called plaque (plak). Rarely, infectionssuch as untreated syphilis (a sexually transmitted infection)can cause aortic aneurysms. Aortic aneurysms also can occur as a result of diseases that inflame the blood vessels, such as vasculitis (vas-kyu-LI-tis). A family history of aneurysms also may play a role in causing aortic aneurysms. In addition to the factors above, certain genetic conditions may cause thoracic aortic aneurysms (TAAs). Examples of these conditions include Marfan syndrome, Loeys-Dietz syndrome, Ehlers-Danlos syndrome (the vascular type), and Turner syndrome. These genetic conditions can weaken the bodys connective tissues and damage the aorta. People who have these conditions tend to develop aneurysms at a younger age than other people. Theyre also at higher risk for rupture and dissection. Trauma, such as a car accident, also can damage the walls of the aorta and lead to TAAs. Researchers continue to look for other causes of aortic aneurysms. For example, theyre looking for genetic mutations (changes in the genes) that may contribute to or cause aneurysms.
Aneurysm
Who is at risk for Aneurysm? ?
Certain factors put you at higher risk for an aortic aneurysm. These factors include: Male gender. Men are more likely than women to have aortic aneurysms. Age. The risk for abdominal aortic aneurysms increases as you get older. These aneurysms are more likely to occur in people who are aged 65 or older. Smoking. Smoking can damage and weaken the walls of the aorta. A family history of aortic aneurysms. People who have family histories of aortic aneurysms are at higher risk for the condition, and they may have aneurysms before the age of 65. A history of aneurysms in the arteries of the legs. Certain diseases and conditions that weaken the walls of the aorta. Examples include high blood pressure and atherosclerosis. Having a bicuspid aortic valve can raise the risk of having a thoracic aortic aneurysm. A bicuspid aortic valve has two leaflets instead of the typical three. Car accidents or trauma also can injure the arteries and increase the risk for aneurysms. If you have any of these risk factors, talk with your doctor about whether you need screening for aneurysms.
Aneurysm
What are the symptoms of Aneurysm ?
The signs and symptoms of an aortic aneurysm depend on the type and location of the aneurysm. Signs and symptoms also depend on whether the aneurysm has ruptured (burst) or is affecting other parts of the body. Aneurysms can develop and grow for years without causing any signs or symptoms. They often don't cause signs or symptoms until they rupture, grow large enough to press on nearby body parts, or block blood flow. Abdominal Aortic Aneurysms Most abdominal aortic aneurysms (AAAs) develop slowly over years. They often don't cause signs or symptoms unless they rupture. If you have an AAA, your doctor may feel a throbbing mass while checking your abdomen. When symptoms are present, they can include: A throbbing feeling in the abdomen Deep pain in your back or the side of your abdomen Steady, gnawing pain in your abdomen that lasts for hours or days If an AAA ruptures, symptoms may include sudden, severe pain in your lower abdomen and back; nausea (feeling sick to your stomach) and vomiting; constipation and problems with urination; clammy, sweaty skin; light-headedness; and a rapid heart rate when standing up. Internal bleeding from a ruptured AAA can send you into shock. Shock is a life-threatening condition in which blood pressure drops so low that the brain, kidneys, and other vital organs can't get enough blood to work well. Shock can be fatal if its not treated right away. Thoracic Aortic Aneurysms A thoracic aortic aneurysm (TAA) may not cause symptoms until it dissects or grows large. If you have symptoms, they may include: Pain in your jaw, neck, back, or chest Coughing and/or hoarseness Shortness of breath and/or trouble breathing or swallowing A dissection is a split in one or more layers of the artery wall. The split causes bleeding into and along the layers of the artery wall. If a TAA ruptures or dissects, you may feel sudden, severe, sharp or stabbing pain starting in your upper back and moving down into your abdomen. You may have pain in your chest and arms, and you can quickly go into shock. If you have any symptoms of TAA or aortic dissection, call 911. If left untreated, these conditions may lead to organ damage or death.
Aneurysm
How to diagnose Aneurysm ?
If you have an aortic aneurysm but no symptoms, your doctor may find it by chance during a routine physical exam. More often, doctors find aneurysms during tests done for other reasons, such as chest or abdominal pain. If you have an abdominal aortic aneurysm (AAA), your doctor may feel a throbbing mass in your abdomen. A rapidly growing aneurysm about to rupture (burst) can be tender and very painful when pressed. If you're overweight or obese, it may be hard for your doctor to feel even a large AAA. If you have an AAA, your doctor may hear rushing blood flow instead of the normal whooshing sound when listening to your abdomen with a stethoscope. Specialists Involved Your primary care doctor may refer you to a cardiothoracic or vascular surgeon for diagnosis and treatment of an aortic aneurysm. A cardiothoracic surgeon does surgery on the heart, lungs, and other organs and structures in the chest, including the aorta. A vascular surgeon does surgery on the aorta and other blood vessels, except those of the heart and brain. Diagnostic Tests and Procedures To diagnose and study an aneurysm, your doctor may recommend one or more of the following tests. Ultrasound and Echocardiography Ultrasound and echocardiography (echo) are simple, painless tests that use sound waves to create pictures of the structures inside your body. These tests can show the size of an aortic aneurysm, if one is found. Computed Tomography Scan A computed tomography scan, or CT scan, is a painless test that uses x rays to take clear, detailed pictures of your organs. During the test, your doctor will inject dye into a vein in your arm. The dye makes your arteries, including your aorta, visible on the CT scan pictures. Your doctor may recommend this test if he or she thinks you have an AAA or a thoracic aortic aneurysm (TAA). A CT scan can show the size and shape of an aneurysm. This test provides more detailed pictures than an ultrasound or echo. Magnetic Resonance Imaging Magnetic resonance imaging (MRI) uses magnets and radio waves to create pictures of the organs and structures in your body. This test works well for detecting aneurysms and pinpointing their size and exact location. Angiography Angiography (an-jee-OG-ra-fee) is a test that uses dye and special x rays to show the insides of your arteries. This test shows the amount of damage and blockage in blood vessels. Aortic angiography shows the inside of your aorta. The test may show the location and size of an aortic aneurysm.
Aneurysm
What are the treatments for Aneurysm ?
Aortic aneurysms are treated with medicines and surgery. Small aneurysms that are found early and arent causing symptoms may not need treatment. Other aneurysms need to be treated. The goals of treatment may include: Preventing the aneurysm from growing Preventing or reversing damage to other body structures Preventing or treating a rupture or dissection Allowing you to continue doing your normal daily activities Treatment for an aortic aneurysm is based on its size. Your doctor may recommend routine testing to make sure an aneurysm isn't getting bigger. This method usually is used for aneurysms that are smaller than 5 centimeters (about 2 inches) across. How often you need testing (for example, every few months or every year) is based on the size of the aneurysm and how fast it's growing. The larger it is and the faster it's growing, the more often you may need to be checked. Medicines If you have an aortic aneurysm, your doctor may prescribe medicines before surgery or instead of surgery. Medicines are used to lower blood pressure, relax blood vessels, and lower the risk that the aneurysm will rupture (burst). Beta blockers and calcium channel blockers are the medicines most commonly used. Surgery Your doctor may recommend surgery if your aneurysm is growing quickly or is at risk of rupture or dissection. The two main types of surgery to repair aortic aneurysms are open abdominal or open chest repair and endovascular repair. Open Abdominal or Open Chest Repair The standard and most common type of surgery for aortic aneurysms is open abdominal or open chest repair. This surgery involves a major incision (cut) in the abdomen or chest. General anesthesia (AN-es-THE-ze-ah) is used during this procedure. The term anesthesia refers to a loss of feeling and awareness. General anesthesia temporarily puts you to sleep. During the surgery, the aneurysm is removed. Then, the section of aorta is replaced with a graft made of material such as Dacron or Teflon. The surgery takes 3 to 6 hours; youll remain in the hospital for 5 to 8 days. If needed, repair of the aortic heart valve also may be done during open abdominal or open chest surgery. It often takes a month to recover from open abdominal or open chest surgery and return to full activity. Most patients make a full recovery. Endovascular Repair In endovascular repair, the aneurysm isn't removed. Instead, a graft is inserted into the aorta to strengthen it. Surgeons do this type of surgery using catheters (tubes) inserted into the arteries; it doesn't require surgically opening the chest or abdomen. General anesthesia is used during this procedure. The surgeon first inserts a catheter into an artery in the groin (upper thigh) and threads it to the aneurysm. Then, using an x ray to see the artery, the surgeon threads the graft (also called a stent graft) into the aorta to the aneurysm. The graft is then expanded inside the aorta and fastened in place to form a stable channel for blood flow. The graft reinforces the weakened section of the aorta. This helps prevent the aneurysm from rupturing. Endovascular Repair The illustration shows the placement of a stent graft in an aortic aneurysm. In figure A, a catheter is inserted into an artery in the groin (upper thigh). The catheter is threaded to the abdominal aorta, and the stent graft is released from the catheter. In figure B, the stent graft allows blood to flow through the aneurysm. The recovery time for endovascular repair is less than the recovery time for open abdominal or open chest repair. However, doctors cant repair all aortic aneurysms with endovascular repair. The location or size of an aneurysm may prevent the use of a stent graft.
Aneurysm
How to prevent Aneurysm ?
The best way to prevent an aortic aneurysm is to avoid the factors that put you at higher risk for one. You cant control all aortic aneurysm risk factors, but lifestyle changes can help you lower some risks. For example, if you smoke, try to quit. Talk with your doctor about programs and products that can help you quit smoking. Also, try to avoid secondhand smoke. For more information about how to quit smoking, go to the Diseases and Conditions Index (DCI) Smoking and Your Heart article. Another important lifestyle change is following a healthy diet. A healthy diet includes a variety of fruits, vegetables, and whole grains. It also includes lean meats, poultry, fish, beans, and fat-free or low-fat milk or milk products. A healthy diet is low in saturated fat, trans fat, cholesterol, sodium (salt), and added sugar. For more information about following a healthy diet, go to the National Heart, Lung, and Blood Institutes (NHLBIs) Aim for a Healthy Weight Web site, "Your Guide to a Healthy Heart," and "Your Guide to Lowering Your Blood Pressure With DASH." All of these resources include general information about healthy eating. Be as physically active as you can. Talk with your doctor about the amounts and types of physical activity that are safe for you. For more information about physical activity, go to the DCI Physical Activity and Your Heart article and the NHLBIs "Your Guide to Physical Activity and Your Heart." Work with your doctor to control medical conditions such as high blood pressure and high blood cholesterol. Follow your treatment plans and take all of your medicines as your doctor prescribes. Screening for Aneurysms Although you may not be able to prevent an aneurysm, early diagnosis and treatment can help prevent rupture and dissection. Aneurysms can develop and grow large before causing any signs or symptoms. Thus, people who are at high risk for aneurysms may benefit from early, routine screening. Your doctor may recommend routine screening if youre: A man between the ages of 65 and 75 who has ever smoked A man or woman between the ages of 65 and 75 who has a family history of aneurysms If youre at risk, but not in one of these high-risk groups, ask your doctor whether screening will benefit you.
Aneurysm
What is (are) Insomnia ?
Espaol Insomnia (in-SOM-ne-ah) is a common sleep disorder. People who have insomnia have trouble falling asleep, staying asleep, or both. As a result, they may get too little sleep or have poor-quality sleep. They may not feel refreshed when they wake up. Overview Insomnia can be acute (short-term) or chronic (ongoing). Acute insomnia is common and often is brought on by situations such as stress at work, family pressures, or a traumatic event. Acute insomnia lasts for days or weeks. Chronic insomnia lasts for a month or longer. Most cases of chronic insomnia are secondary, which means they are the symptom or side effect of some other problem. Certain medical conditions, medicines, sleep disorders, and substances can cause secondary insomnia. In contrast, primary insomnia isn't due to medical problems, medicines, or other substances. It is its own distinct disorder, and its cause isnt well understood. Many life changes can trigger primary insomnia, including long-lasting stress and emotional upset. Insomnia can cause daytime sleepiness and a lack of energy. It also can make you feel anxious, depressed, or irritable. You may have trouble focusing on tasks, paying attention, learning, and remembering. These problems can prevent you from doing your best at work or school. Insomnia also can cause other serious problems. For example, you may feel drowsy while driving, which could lead to an accident. Outlook Treating the underlying cause of secondary insomnia may resolve or improve the sleep problem, especially if you can correct the problem soon after it starts. For example, if caffeine is causing your insomnia, stopping or limiting your intake of the substance might make the insomnia go away. Lifestyle changes, including better sleep habits, often help relieve acute insomnia. For chronic insomnia, your doctor may recommend medicines or cognitive-behavioral therapy.
Insomnia
What causes Insomnia ?
Secondary Insomnia Secondary insomnia is the symptom or side effect of another problem. This type of insomnia often is a symptom of an emotional, neurological, or other medical or sleep disorder. Emotional disorders that can cause insomnia include depression, anxiety, and posttraumatic stress disorder. Alzheimer's disease and Parkinson's disease are examples of neurological disorders that can cause insomnia. Many other disorders or factors also can cause insomnia, such as: Conditions that cause chronic (ongoing) pain, such as arthritis and headache disorders Conditions that make it hard to breathe, such as asthma and heart failure An overactive thyroid Gastrointestinal disorders, such as heartburn Stroke Sleep disorders, such as restless legs syndrome and sleep-related breathing problems Menopause and hot flashes Secondary insomnia also can be a side effect of some medicines. For example, certain asthma medicines, such as theophylline, and some allergy and cold medicines can cause insomnia. Beta blockers also can cause the condition. These medicines are used to treat heart conditions. Commonly used substances also can cause insomnia. Examples include caffeine and other stimulants, tobacco and other nicotine products, and alcohol and other sedatives. Primary Insomnia Primary insomnia isn't a symptom or side effect of another medical condition. It is its own distinct disorder, and its cause isnt well understood. Primary insomnia usually lasts for at least 1 month. Many life changes can trigger primary insomnia. It may be due to major or long-lasting stress or emotional upset. Travel or other factors, such as work schedules that disrupt your sleep routine, also may trigger primary insomnia. Even if these issues are resolved, the insomnia may not go away. Trouble sleeping can persist because of habits formed to deal with the lack of sleep. These habits might include taking naps, worrying about sleep, and going to bed early. Researchers continue to try to find out whether some people are born with an increased risk for primary insomnia.
Insomnia
Who is at risk for Insomnia? ?
Insomnia is a common disorder. It affects women more often than men. The disorder can occur at any age. However, older adults are more likely to have insomnia than younger people. People who might be at increased risk for insomnia include those who: Have a lot of stress. Are depressed or have other emotional distress, such as divorce or death of a spouse. Have lower incomes. Work at night or have frequent major shifts in their work hours. Travel long distances with time changes. Have certain medical conditions or sleep disorders that can disrupt sleep. For more information, go to "What Causes Insomnia?" Have an inactive lifestyle. Young and middle-aged African Americans also might be at increased risk for insomnia. Research shows that, compared with Caucasian Americans, it takes African Americans longer to fall asleep. They also have lighter sleep, don't sleep as well, and take more naps. Sleep-related breathing problems also are more common among African Americans.
Insomnia
What are the symptoms of Insomnia ?
The main symptom of insomnia is trouble falling or staying asleep, which leads to lack of sleep. If you have insomnia, you may: Lie awake for a long time before you fall asleep Sleep for only short periods Be awake for much of the night Feel as if you haven't slept at all Wake up too early The lack of sleep can cause other symptoms. You may wake up feeling tired or not well-rested, and you may feel tired during the day. You also may have trouble focusing on tasks. Insomnia can cause you to feel anxious, depressed, or irritable. Insomnia also can affect your daily activities and cause serious problems. For example, you may feel drowsy while driving. Driver sleepiness (not related to alcohol) is responsible for almost 20 percent of all serious car crash injuries. Research also shows that insomnia raises older womens risk of falling. If insomnia is affecting your daily activities, talk with your doctor. Treatment may help you avoid symptoms and problems related to the disorder. Also, poor sleep may be a sign of other health problems. Finding and treating those problems could improve your overall health and sleep.
Insomnia
How to diagnose Insomnia ?
Your doctor will likely diagnose insomnia based on your medical and sleep histories and a physical exam. He or she also may recommend a sleep study. For example, you may have a sleep study if the cause of your insomnia is unclear. Medical History To find out what's causing your insomnia, your doctor may ask whether you: Have any new or ongoing health problems Have painful injuries or health conditions, such as arthritis Take any medicines, either over-the-counter or prescription Have symptoms or a history of depression, anxiety, or psychosis Are coping with highly stressful life events, such as divorce or death Your doctor also may ask questions about your work and leisure habits. For example, he or she may ask about your work and exercise routines; your use of caffeine, tobacco, and alcohol; and your long-distance travel history. Your answers can give clues about what's causing your insomnia. Your doctor also may ask whether you have any new or ongoing work or personal problems or other stresses in your life. Also, he or she may ask whether you have other family members who have sleep problems. Sleep History To get a better sense of your sleep problem, your doctor will ask you for details about your sleep habits. Before your visit, think about how to describe your problems, including: How often you have trouble sleeping and how long you've had the problem When you go to bed and get up on workdays and days off How long it takes you to fall asleep, how often you wake up at night, and how long it takes to fall back asleep Whether you snore loudly and often or wake up gasping or feeling out of breath How refreshed you feel when you wake up, and how tired you feel during the day How often you doze off or have trouble staying awake during routine tasks, especially driving To find out what's causing or worsening your insomnia, your doctor also may ask you: Whether you worry about falling asleep, staying asleep, or getting enough sleep What you eat or drink, and whether you take medicines before going to bed What routine you follow before going to bed What the noise level, lighting, and temperature are like where you sleep What distractions, such as a TV or computer, are in your bedroom To help your doctor, consider keeping a sleep diary for 1 or 2 weeks. Write down when you go to sleep, wake up, and take naps. (For example, you might note: Went to bed at 10 a.m.; woke up at 3 a.m. and couldn't fall back asleep; napped after work for 2 hours.) Also write down how much you sleep each night, as well as how sleepy you feel throughout the day. You can find a sample sleep diary in the National Heart, Lung, and Blood Institute's "Your Guide to Healthy Sleep." Physical Exam Your doctor will do a physical exam to rule out other medical problems that might cause insomnia. You also may need blood tests to check for thyroid problems or other conditions that can cause sleep problems. Sleep Study Your doctor may recommend a sleep study called a polysomnogram (PSG) if he or she thinks an underlying sleep disorder is causing your insomnia. Youll likely stay overnight at a sleep center for this study. The PSG records brain activity, eye movements, heart rate, and blood pressure. A PSG also records the amount of oxygen in your blood, how much air is moving through your nose while you breathe, snoring, and chest movements. The chest movements show whether you're making an effort to breathe.
Insomnia
What are the treatments for Insomnia ?
Lifestyle changes often can help relieve acute (short-term) insomnia. These changes might make it easier to fall asleep and stay asleep. A type of counseling called cognitive-behavioral therapy (CBT) can help relieve the anxiety linked to chronic (ongoing) insomnia. Anxiety tends to prolong insomnia. Several medicines also can help relieve insomnia and re-establish a regular sleep schedule. However, if your insomnia is the symptom or side effect of another problem, it's important to treat the underlying cause (if possible). Lifestyle Changes If you have insomnia, avoid substances that make it worse, such as: Caffeine, tobacco, and other stimulants. The effects of these substances can last as long as 8 hours. Certain over-the-counter and prescription medicines that can disrupt sleep (for example, some cold and allergy medicines). Talk with your doctor about which medicines won't disrupt your sleep. Alcohol. An alcoholic drink before bedtime might make it easier for you to fall asleep. However, alcohol triggers sleep that tends to be lighter than normal. This makes it more likely that you will wake up during the night. Try to adopt bedtime habits that make it easier to fall asleep and stay asleep. Follow a routine that helps you wind down and relax before bed. For example, read a book, listen to soothing music, or take a hot bath. Try to schedule your daily exercise at least 5 to 6 hours before going to bed. Don't eat heavy meals or drink a lot before bedtime. Make your bedroom sleep-friendly. Avoid bright lighting while winding down. Try to limit possible distractions, such as a TV, computer, or pet. Make sure the temperature of your bedroom is cool and comfortable. Your bedroom also should be dark and quiet. Go to sleep around the same time each night and wake up around the same time each morning, even on weekends. If you can, avoid night shifts, alternating schedules, or other things that may disrupt your sleep schedule. Cognitive-Behavioral Therapy CBT for insomnia targets the thoughts and actions that can disrupt sleep. This therapy encourages good sleep habits and uses several methods to relieve sleep anxiety. For example, relaxation techniques and biofeedback are used to reduce anxiety. These strategies help you better control your breathing, heart rate, muscles, and mood. CBT also aims to replace sleep anxiety with more positive thinking that links being in bed with being asleep. This method also teaches you what to do if you're unable to fall asleep within a reasonable time. CBT also may involve talking with a therapist one-on-one or in group sessions to help you consider your thoughts and feelings about sleep. This method may encourage you to describe thoughts racing through your mind in terms of how they look, feel, and sound. The goal is for your mind to settle down and stop racing. CBT also focuses on limiting the time you spend in bed while awake. This method involves setting a sleep schedule. At first, you will limit your total time in bed to the typical short length of time you're usually asleep. This schedule might make you even more tired because some of the allotted time in bed will be taken up by problems falling asleep. However, the resulting tiredness is intended to help you get to sleep more quickly. Over time, the length of time spent in bed is increased until you get a full night of sleep. For success with CBT, you may need to see a therapist who is skilled in this approach weekly over 2 to 3 months. CBT works as well as prescription medicine for many people who have chronic insomnia. It also may provide better long-term relief than medicine alone. For people who have insomnia and major depressive disorder, CBT combined with antidepression medicines has shown promise in relieving both conditions. Medicines Prescription Medicines Many prescription medicines are used to treat insomnia. Some are meant for short-term use, while others are meant for longer use. Talk to your doctor about the benefits and side effects of insomnia medicines. For example, insomnia medicines can help you fall asleep, but you may feel groggy in the morning after taking them. Rare side effects of these medicines include sleep eating, sleep walking, or driving while asleep. If you have side effects from an insomnia medicine, or if it doesn't work well, tell your doctor. He or she might prescribe a different medicine. Some insomnia medicines can be habit forming. Ask your doctor about the benefits and risks of insomnia medicines. Over-the-Counter Products Some over-the-counter (OTC) products claim to treat insomnia. These products include melatonin, L-tryptophan supplements, and valerian teas or extracts. The Food and Drug Administration doesn't regulate natural products and some food supplements. Thus, the dose and purity of these substances can vary. How well these products work and how safe they are isn't well understood. Some OTC products that contain antihistamines are sold as sleep aids. Although these products might make you sleepy, talk to your doctor before taking them. Antihistamines pose risks for some people. Also, these products may not offer the best treatment for your insomnia. Your doctor can advise you whether these products will benefit you.
Insomnia
What is (are) Von Willebrand Disease ?
Von Willebrand disease (VWD) is a bleeding disorder. It affects your blood's ability to clot. If your blood doesn't clot, you can have heavy, hard-to-stop bleeding after an injury. The bleeding can damage your internal organs. Rarely, the bleeding may even cause death. In VWD, you either have low levels of a certain protein in your blood or the protein doesn't work well. The protein is called von Willebrand factor, and it helps your blood clot. Normally, when one of your blood vessels is injured, you start to bleed. Small blood cell fragments called platelets (PLATE-lets) clump together to plug the hole in the blood vessel and stop the bleeding. Von Willebrand factor acts like glue to help the platelets stick together and form a blood clot. Von Willebrand factor also carries clotting factor VIII (8), another important protein that helps your blood clot. Factor VIII is the protein that's missing or doesn't work well in people who have hemophilia, another bleeding disorder. VWD is more common and usually milder than hemophilia. In fact, VWD is the most common inherited bleeding disorder. It occurs in about 1 out of every 100 to 1,000 people. VWD affects both males and females, while hemophilia mainly affects males. Types of von Willebrand Disease The three major types of VWD are called type 1, type 2, and type 3. Type 1 People who have type 1 VWD have low levels of von Willebrand factor and may have low levels of factor VIII. Type 1 is the mildest and most common form of VWD. About 3 out of 4 people who have VWD have type 1. Type 2 In type 2 VWD, the von Willebrand factor doesn't work well. Type 2 is divided into subtypes: 2A, 2B, 2M, and 2N. Different gene mutations (changes) cause each type, and each is treated differently. Thus, it's important to know the exact type of VWD that you have. Type 3 People who have type 3 VWD usually have no von Willebrand factor and low levels of factor VIII. Type 3 is the most serious form of VWD, but it's very rare. Overview Most people who have VWD have type 1, a mild form. This type usually doesn't cause life-threatening bleeding. You may need treatment only if you have surgery, tooth extraction, or trauma. Treatment includes medicines and medical therapies. Some people who have severe forms of VWD need emergency treatment to stop bleeding before it becomes life threatening. Early diagnosis is important. With the proper treatment plan, even people who have type 3 VWD can live normal, active lives.
Von Willebrand Disease
What causes Von Willebrand Disease ?
Von Willebrand disease (VWD) is almost always inherited. "Inherited" means that the disorder is passed from parents to children though genes. You can inherit type 1 or type 2 VWD if only one of your parents passes the gene on to you. You usually inherit type 3 VWD only if both of your parents pass the gene on to you. Your symptoms may be different from your parents' symptoms. Some people have the genes for the disorder but don't have symptoms. However, they still can pass the genes on to their children. Some people get VWD later in life as a result of other medical conditions. This type of VWD is called acquired von Willebrand syndrome.
Von Willebrand Disease
What are the symptoms of Von Willebrand Disease ?
The signs and symptoms of von Willebrand disease (VWD) depend on which type of the disorder you have. They also depend on how serious the disorder is. Many people have such mild symptoms that they don't know they have VWD. If you have type 1 or type 2 VWD, you may have the following mild-to-moderate bleeding symptoms: Frequent, large bruises from minor bumps or injuries Frequent or hard-to-stop nosebleeds Prolonged bleeding from the gums after a dental procedure Heavy or prolonged menstrual bleeding in women Blood in your stools from bleeding in your intestines or stomach Blood in your urine from bleeding in your kidneys or bladder Heavy bleeding after a cut or other accident Heavy bleeding after surgery People who have type 3 VWD may have all of the symptoms listed above and severe bleeding episodes for no reason. These bleeding episodes can be fatal if not treated right away. People who have type 3 VWD also may have bleeding into soft tissues or joints, causing severe pain and swelling. Heavy menstrual bleeding often is the main symptom of VWD in women. Doctors call this menorrhagia (men-o-RA-je-ah). They define it as: Bleeding with clots larger than about 1-inch in diameter Anemia (low red blood cell count) or low blood iron The need to change pads or tampons more than every hour However, just because a woman has heavy menstrual bleeding doesn't mean she has VWD.
Von Willebrand Disease
How to diagnose Von Willebrand Disease ?
Early diagnosis of von Willebrand disease (VWD) is important to make sure that you're treated and can live a normal, active life. Sometimes VWD is hard to diagnose. People who have type 1 or type 2 VWD may not have major bleeding problems. Thus, they may not be diagnosed unless they have heavy bleeding after surgery or some other trauma. On the other hand, type 3 VWD can cause major bleeding problems during infancy and childhood. So, children who have type 3 VWD usually are diagnosed during their first year of life. To find out whether you have VWD, your doctor will review your medical history and the results from a physical exam and tests. Medical History Your doctor will likely ask questions about your medical history and your family's medical history. He or she may ask about: Any bleeding from a small wound that lasted more than 15 minutes or started up again within the first 7 days following the injury. Any prolonged, heavy, or repeated bleeding that required medical care after surgery or dental extractions. Any bruising with little or no apparent trauma, especially if you could feel a lump under the bruise. Any nosebleeds that occurred for no known reason and lasted more than 10 minutes despite pressure on the nose, or any nosebleeds that needed medical attention. Any blood in your stools for no known reason. Any heavy menstrual bleeding (for women). This bleeding usually involves clots or lasts longer than 7 to 10 days. Any history of muscle or joint bleeding. Any medicines you've taken that might cause bleeding or increase the risk of bleeding. Examples include aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs), clopidogrel, warfarin, or heparin. Any history of liver or kidney disease, blood or bone marrow disease, or high or low blood platelet counts. Physical Exam Your doctor will do a physical exam to look for unusual bruising or other signs of recent bleeding. He or she also will look for signs of liver disease or anemia (a low red blood cell count). Diagnostic Tests No single test can diagnose VWD. Your doctor may recommend one or more blood tests to diagnose the disorder. These tests may include: Von Willebrand factor antigen. This test measures the amount of von Willebrand factor in your blood. Von Willebrand factor ristocetin (ris-to-SEE-tin) cofactor activity. This test shows how well your von Willebrand factor works. Factor VIII clotting activity. This test checks the clotting activity of factor VIII. Some people who have VWD have low levels of factor VIII activity, while others have normal levels. Von Willebrand factor multimers. This test is done if one or more of the first three tests are abnormal. It shows the structure of your von Willebrand factor. The test helps your doctor diagnose what type of VWD you have. Platelet function test. This test measures how well your platelets are working. You may have these tests more than once to confirm a diagnosis. Your doctor also may refer you to a hematologist to confirm the diagnosis and for followup care. A hematologist is a doctor who specializes in diagnosing and treating blood disorders.
Von Willebrand Disease
What are the treatments for Von Willebrand Disease ?
Treatment for von Willebrand disease (VWD) is based on the type of VWD you have and how severe it is. Most cases of VWD are mild, and you may need treatment only if you have surgery, tooth extraction, or an accident. Medicines are used to: Increase the amount of von Willebrand factor and factor VIII released into the bloodstream Replace von Willebrand factor Prevent the breakdown of blood clots Control heavy menstrual bleeding in women Specific Treatments One treatment for VWD is a man-made hormone called desmopressin. You usually take this hormone by injection or nasal spray. It makes your body release more von Willebrand factor and factor VIII into your bloodstream. Desmopressin works for most people who have type 1 VWD and for some people who have type 2 VWD. Another type of treatment is von Willebrand factor replacement therapy. This involves an infusion of concentrated von Willebrand factor and factor VIII into a vein in your arm. This treatment may be used if you: Can't take desmopressin or need extended treatment Have type 1 VWD that doesn't respond to desmopressin Have type 2 or type 3 VWD Antifibrinolytic (AN-te-fi-BRIN-o-LIT-ik) medicines also are used to treat VWD. These medicines help prevent the breakdown of blood clots. They're mostly used to stop bleeding after minor surgery, tooth extraction, or an injury. These medicines may be used alone or with desmopressin and replacement therapy. Fibrin glue is medicine that's placed directly on a wound to stop bleeding. Treatments for Women Treatments for women who have VWD with heavy menstrual bleeding include: Birth control pills. The hormones in these pills can increase the amount of von Willebrand factor and factor VIII in your blood. The hormones also can reduce menstrual blood loss. Birth control pills are the most recommended birth control method for women who have VWD. A levonorgestrel intrauterine device. This is a birth control device that contains the hormone progestin. The device is placed in the uterus (womb). Aminocaproic acid or tranexamic acid. These antifibrinolytic medicines can reduce bleeding by slowing the breakdown of blood clots. Desmopressin. For some women who are done having children or don't want children, endometrial ablation (EN-do-ME-tre-al ab-LA-shun) is done. This procedure destroys the lining of the uterus. It has been shown to reduce menstrual blood loss in women who have VWD. If you need a hysterectomy (HIS-ter-EK-to-me; surgical removal of the uterus) for another reason, this procedure will stop menstrual bleeding and possibly improve your quality of life. However, hysterectomy has its own risk of bleeding complications.
Von Willebrand Disease
What is (are) Rh Incompatibility ?
Rh incompatibility is a condition that occurs during pregnancy if a woman has Rh-negative blood and her baby has Rh-positive blood. "Rh-negative" and "Rh-positive" refer to whether your blood has Rh factor. Rh factor is a protein on red blood cells. If you have Rh factor, you're Rh-positive. If you don't have it, you're Rh-negative. Rh factor is inherited (passed from parents to children through the genes). Most people are Rh-positive. Whether you have Rh factor doesn't affect your general health. However, it can cause problems during pregnancy. Overview When you're pregnant, blood from your baby can cross into your bloodstream, especially during delivery. If you're Rh-negative and your baby is Rh-positive, your body will react to the baby's blood as a foreign substance. Your body will create antibodies (proteins) against the baby's Rh-positive blood. These antibodies usually don't cause problems during a first pregnancy. This is because the baby often is born before many of the antibodies develop. However, the antibodies stay in your body once they have formed. Thus, Rh incompatibility is more likely to cause problems in second or later pregnancies (if the baby is Rh-positive). The Rh antibodies can cross the placenta and attack the baby's red blood cells. This can lead to hemolytic anemia (HEE-moh-lit-ick uh-NEE-me-uh) in the baby. Hemolytic anemia is a condition in which red blood cells are destroyed faster than the body can replace them. Red blood cells carry oxygen to all parts of the body. Without enough red blood cells, your baby won't get enough oxygen. This can lead to serious problems. Severe hemolytic anemia may even be fatal to the child. Outlook With prompt and proper prenatal care and screening, you can prevent the problems of Rh incompatibility. Screening tests allow your doctor to find out early in your pregnancy whether you're at risk for the condition. If you're at risk, your doctor will carefully check on you and your baby throughout your pregnancy and prescribe treatment as needed. Injections of a medicine called Rh immune globulin can keep your body from making Rhantibodies. This medicine helps prevent the problems of Rh incompatibility. If you're Rh-negative, you'll need this medicine every time you have a baby with Rh-positive blood. Other events also can expose you to Rh-positive blood, which could affect a pregnancy. Examples include a miscarriage or blood transfusion. If you're treated with Rh immune globulin right after these events, you may be able to avoid Rh incompatibility during your next pregnancy.
Rh Incompatibility
What causes Rh Incompatibility ?
A difference in blood type between a pregnant woman and her baby causes Rh incompatibility. The condition occurs if a woman is Rh-negative and her baby is Rh-positive. When you're pregnant, blood from your baby can cross into your bloodstream, especially during delivery. If you're Rh-negative and your baby is Rh-positive, your body will react to the baby's blood as a foreign substance. Your body will create antibodies (proteins) against the baby's Rh-positive blood. These antibodies can cross the placenta and attack the baby's red blood cells. This can lead to hemolytic anemia in the baby. Rh incompatibility usually doesn't cause problems during a first pregnancy. The baby often is born before many of the antibodies develop. However, once you've formed Rh antibodies, they remain in your body. Thus, the condition is more likely to cause problems in second or later pregnancies (if the baby is Rh-positive). With each pregnancy, your body continues to make Rh antibodies. As a result, each Rh-positive baby you conceive becomes more at risk for serious problems, such as severe hemolytic anemia.
Rh Incompatibility
Who is at risk for Rh Incompatibility? ?
An Rh-negative woman who conceives a child with an Rh-positive man is at risk for Rhincompatibility. Rh factor is inherited (passed from parents to children through the genes). If you're Rh-negative and the father of your baby is Rh-positive, the baby has a 50 percent or more chance of having Rh-positive blood. Simple blood tests can show whether you and the father of your baby are Rh-positive or Rh-negative. If you're Rh-negative, your risk of problems from Rh incompatibility is higher if you were exposed to Rh-positive blood before the pregnancy. This may have happened during: An earlier pregnancy (usually during delivery). You also may have been exposed to Rh-positive blood if you had bleeding or abdominal trauma (for example, from a car accident) during the pregnancy. An ectopic pregnancy, a miscarriage, or an induced abortion. (An ectopic pregnancy is a pregnancy that starts outside of the uterus, or womb.) A mismatched blood transfusion or blood and marrow stem cell transplant. An injection or puncture with a needle or other object containing Rh-positive blood. Certain tests also can expose you to Rh-positive blood. Examples include amniocentesis (AM-ne-o-sen-TE-sis) and chorionic villus (ko-re-ON-ik VIL-us) sampling (CVS). Amniocentesis is a test that you may have during pregnancy. Your doctor uses a needle to remove a small amount of fluid from the sac around your baby. The fluid is then tested for various reasons. CVS also may be done during pregnancy. For this test, your doctor threads a thin tube through the vagina and cervix to the placenta. He or she removes a tissue sample from the placenta using gentle suction. The tissue sample is tested for various reasons. Unless you were treated with the medicine that prevents Rh antibodies (Rh immune globulin) after each of these events, you're at risk for Rh incompatibility during current and future pregnancies.
Rh Incompatibility
What are the symptoms of Rh Incompatibility ?
Rh incompatibility doesn't cause signs or symptoms in a pregnant woman. In a baby, the condition can lead to hemolytic anemia. Hemolytic anemia is a condition in which red blood cells are destroyed faster than the body can replace them. Red blood cells contain hemoglobin (HEE-muh-glow-bin), an iron-rich protein that carries oxygen to the body. Without enough red blood cells and hemoglobin, the baby won't get enough oxygen. Hemolytic anemia can cause mild to severe signs and symptoms in a newborn, such as jaundice and a buildup of fluid. Jaundice is a yellowish color of the skin and whites of the eyes. When red blood cells die, they release hemoglobin into the blood. The hemoglobin is broken down into a compound called bilirubin. This compound gives the skin and eyes a yellowish color. High levels of bilirubin can lead to brain damage in the baby. The buildup of fluid is a result of heart failure. Without enough hemoglobin-carrying red blood cells, the baby's heart has to work harder to move oxygen-rich blood through the body. This stress can lead to heart failure. Heart failure can cause fluid to build up in many parts of the body. When this occurs in a fetus or newborn, the condition is called hydrops fetalis (HI-drops fe-TAL-is). Severe hemolytic anemia can be fatal to a newborn at the time of birth or shortly after.
Rh Incompatibility
How to diagnose Rh Incompatibility ?
Rh incompatibility is diagnosed with blood tests. To find out whether a baby is developing hemolytic anemia and how serious it is, doctors may use more advanced tests, such as ultrasound. Specialists Involved An obstetrician will screen for Rh incompatibility. This is a doctor who specializes in treating pregnant women. The obstetrician also will monitor the pregnancy and the baby for problems related to hemolytic anemia. He or she also will oversee treatment to prevent problems with future pregnancies. A pediatrician or hematologist treats newborns who have hemolytic anemia and related problems. A pediatrician is a doctor who specializes in treating children. A hematologist is a doctor who specializes in treating people who have blood diseases and disorders. Diagnostic Tests If you're pregnant, your doctor will order a simple blood test at your first prenatal visit to learn whether you're Rh-positive or Rh-negative. If you're Rh-negative, you also may have another blood test called an antibody screen. This test shows whether you have Rh antibodies in your blood. If you do, it means that you were exposed to Rh-positive blood before and you're at risk for Rh incompatibility. If you're Rh-negative and you don't have Rh antibodies, your baby's father also will be tested to find out his Rh type. If he's Rh-negative too, the baby has no chance of having Rh-positive blood. Thus, there's no risk of Rh incompatibility. However, if the baby's father is Rh-positive, the baby has a 50 percent or more chance of having Rh-positive blood. As a result, you're at high risk of developing Rhincompatibility. If your baby's father is Rh-positive, or if it's not possible to find out his Rh status, your doctor may do a test called amniocentesis. For this test, your doctor inserts a hollow needle through your abdominal wall into your uterus. He or she removes a small amount of fluid from the sac around the baby. The fluid is tested to learn whether the baby is Rh-positive. (Rarely, an amniocentesis can expose you to Rh-positive blood). Your doctor also may use this test to measure bilirubin levels in your baby. Bilirubin builds up as a result of red blood cells dying too quickly. The higher the level of bilirubin is, the greater the chance that the baby has hemolytic anemia. If Rh incompatibility is known or suspected, you'll be tested for Rh antibodies one or more times during your pregnancy. This test often is done at least once at your sixth or seventh month of pregnancy. The results from this test also can suggest how severe the baby's hemolytic anemia has become. Higher levels of antibodies suggest more severe hemolytic anemia. To check your baby for hemolytic anemia, your doctor also may use a test called Doppler ultrasound. He or she will use this test to measure how fast blood is flowing through an artery in the baby's head. Doppler ultrasound uses sound waves to measure how fast blood is moving. The faster the blood flow is, the greater the risk of hemolytic anemia. This is because the anemia will cause the baby's heart to pump more blood.
Rh Incompatibility
What are the treatments for Rh Incompatibility ?
Rh incompatibility is treated with a medicine called Rh immune globulin. Treatment for a baby who has hemolytic anemia will vary based on the severity of the condition. Goals of Treatment The goals of treating Rh incompatibility are to ensure that your baby is healthy and to lower your risk for the condition in future pregnancies. Treatment for Rh Incompatibility If Rh incompatibility is diagnosed during your pregnancy, you'll receive Rh immune globulin in your seventh month of pregnancy and again within 72 hours of delivery. You also may receive Rh immune globulin if the risk of blood transfer between you and the baby is high (for example, if you've had a miscarriage, ectopic pregnancy, or bleeding during pregnancy). Rh immune globulin contains Rh antibodies that attach to the Rh-positive blood cells in your blood. When this happens, your body doesn't react to the baby's Rh-positive cells as a foreign substance. As a result, your body doesn't make Rh antibodies. Rh immune globulin must be given at the correct times to work properly. Once you have formed Rh antibodies, the medicine will no longer help. That's why a woman who has Rh-negative blood must be treated with the medicine with each pregnancy or any other event that allows her blood to mix with Rh-positive blood. Rh immune globulin is injected into the muscle of your arm or buttock. Side effects may include soreness at the injection site and a slight fever. The medicine also may be injected into a vein. Treatment for Hemolytic Anemia Several options are available for treating hemolytic anemia in a baby. In mild cases, no treatment may be needed. If treatment is needed, the baby may be given a medicine called erythropoietin and iron supplements. These treatments can prompt the body to make red blood cells. If the hemolytic anemia is severe, the baby may get a blood transfusion through the umbilical cord. If the hemolytic anemia is severe and the baby is almost full-term, your doctor may induce labor early. This allows the baby's doctor to begin treatment right away. A newborn who has severe anemia may be treated with a blood exchange transfusion. The procedure involves slowly removing the newborn's blood and replacing it with fresh blood or plasma from a donor. Newborns also may be treated with special lights to reduce the amount of bilirubin in their blood. These babies may have jaundice (a yellowish color of the skin and whites of the eyes). High levels of bilirubin cause jaundice. Reducing the blood's bilirubin level is important because high levels of this compound can cause brain damage. High levels of bilirubin often are seen in babies who have hemolytic anemia. This is because the compound forms when red blood cells break down.
Rh Incompatibility
How to prevent Rh Incompatibility ?
Rh incompatibility can be prevented with Rh immune globulin, as long as the medicine is given at the correct times. Once you have formed Rh antibodies, the medicine will no longer help. Thus, a woman who has Rh-negative blood must be treated with Rh immune globulin during and after each pregnancy or after any other event that allows her blood to mix with Rh-positive blood. Early prenatal care also can help prevent some of the problems linked to Rh incompatibility. For example, your doctor can find out early whether you're at risk for the condition. If you're at risk, your doctor can closely monitor your pregnancy. He or she will watch for signs of hemolytic anemia in your baby and provided treatment as needed.
Rh Incompatibility
What is (are) Sarcoidosis ?
Espaol Sarcoidosis (sar-koy-DO-sis) is a disease of unknown cause that leads to inflammation. This disease affects your bodys organs. Normally, your immune system defends your body against foreign or harmful substances. For example, it sends special cells to protect organs that are in danger. These cells release chemicals that recruit other cells to isolate and destroy the harmful substance. Inflammation occurs during this process. Once the harmful substance is gone, the cells and the inflammation go away. In people who have sarcoidosis, the inflammation doesn't go away. Instead, some of the immune system cells cluster to form lumps called granulomas (gran-yu-LO-mas) in various organs in your body. Overview Sarcoidosis can affect any organ in your body. However, it's more likely to affect some organs than others. The disease usually starts in the lungs, skin, and/or lymph nodes (especially the lymph nodes in your chest). Also, the disease often affects the eyes and liver. Although less common, sarcoidosis can affect the heart and brain, leading to serious complications. If many granulomas form in an organ, they can affect how the organ works. This can cause signs and symptoms. Signs and symptoms vary depending on which organs are affected. Many people who have sarcoidosis have no signs or symptoms or mild ones. Lofgren's syndrome is a classic set of signs and symptoms that is typical in some people who have sarcoidosis. Lofgren's syndrome may cause fever, enlarged lymph nodes, arthritis (usually in the ankles), and/or erythema nodosum (er-ih-THE-ma no-DO-sum). Erythema nodosum is a rash of red or reddish-purple bumps on your ankles and shins. The rash may be warm and tender to the touch. Treatment for sarcoidosis varies depending on which organs are affected. Your doctor may prescribe topical treatments and/or medicines to treat the disease. Not everyone who has sarcoidosis needs treatment. Outlook The outlook for sarcoidosis varies. Many people recover from the disease with few or no long-term problems. More than half of the people who have sarcoidosis have remission within 3 years of diagnosis. Remission means the disease isn't active, but it can return. Two-thirds of people who have the disease have remission within 10 years of diagnosis. People who have Lofgren's syndrome usually have remission. Relapse (return of the disease) 1 or more years after remission occurs in less than 5 percent of patients. Sarcoidosis leads to organ damage in about one-third of the people diagnosed with the disease. Damage may occur over many years and involve more than one organ. Rarely, sarcoidosis can be fatal. Death usually is the result of problems with the lungs, heart, or brain. Poor outcomes are more likely in people who have advanced disease and show little improvement from treatment. Certain people are at higher risk for poor outcomes from chronic (long-term) sarcoidosis. This includes people who have lung scarring, heart or brain complications, or lupus pernio (LU-pus PUR-ne-o). Lupus pernio is a serious skin condition that sarcoidosis may cause. Research is ongoing for new and better treatments for sarcoidosis.
Sarcoidosis
What causes Sarcoidosis ?
The cause of sarcoidosis isn't known. More than one factor may play a role in causing the disease. Some researchers think that sarcoidosis develops if your immune system responds to a trigger, such as bacteria, viruses, dust, or chemicals. Normally, your immune system defends your body against foreign or harmful substances. For example, it sends special cells to protect organs that are in danger. These cells release chemicals that recruit other cells to isolate and destroy the harmful substance. Inflammation occurs during this process. Once the harmful substance is gone, the cells and the inflammation go away. In people who have sarcoidosis, the inflammation doesn't go away. Instead, some of the immune system cells cluster to form lumps called granulomas in various organs in your body. Genetics also may play a role in sarcoidosis. Researchers believe that sarcoidosis occurs if: You have a certain gene or genes that raise your risk for the disease And You're exposed to something that triggers your immune system Triggers may vary depending on your genetic makeup. Certain genes may influence which organs are affected and the severity of your symptoms. Researchers continue to try to pinpoint the genes that are linked to sarcoidosis.
Sarcoidosis
Who is at risk for Sarcoidosis? ?
Sarcoidosis affects people of all ages and races. However, it's more common among African Americans and Northern Europeans. In the United States, the disease affects African Americans somewhat more often and more severely than Whites. Studies have shown that sarcoidosis tends to vary amongst ethnic groups. For example, eye problems related to the disease are more common in Japanese people. Lofgren's syndrome, a type of sarcoidosis, is more common in people of European descent. Lofgren's syndrome may involve fever, enlarged lymph nodes, arthritis (usually in the ankles), and/or erythema nodosum. Erythema nodosum is a rash of red or reddish-purple bumps on your ankles and shins. The rash may be warm and tender to the touch. Sarcoidosis is somewhat more common in women than in men. The disease usually develops between the ages of 20 and 50. People who have a family history of sarcoidosis also are at higher risk for the disease. Researchers have looked for a link between sarcoidosis and exposure to workplace and environmental factors. However, no clear link has been found.
Sarcoidosis
What are the symptoms of Sarcoidosis ?
Many people who have sarcoidosis have no signs or symptoms or mild ones. Often, the disease is found when a chest x ray is done for another reason (for example, to diagnose pneumonia). The signs and symptoms of sarcoidosis vary depending on which organs are affected. Signs and symptoms also may vary depending on your gender, age, and ethnic background. (For more information, go to "Who Is at Risk for Sarcoidosis?") Common Signs and Symptoms In both adults and children, sarcoidosis most often affects the lungs. If granulomas (inflamed lumps) form in your lungs, you may wheeze, cough, feel short of breath, or have chest pain. Or, you may have no symptoms at all. Some people who have sarcoidosis feel very tired, uneasy, or depressed. Night sweats and weight loss are common symptoms of the disease. Common signs and symptoms in children are fatigue (tiredness), loss of appetite, weight loss, bone and joint pain, and anemia. Children who are younger than 4 years old may have a distinct form of sarcoidosis. It may cause enlarged lymph nodes in the chest (which can be seen on chest x-ray pictures), skin lesions, and eye swelling or redness. Other Signs and Symptoms Sarcoidosis may affect your lymph nodes. The disease can cause enlarged lymph nodes that feel tender. Sarcoidosis usually affects the lymph nodes in your neck and chest. However, the disease also may affect the lymph nodes under your chin, in your armpits, or in your groin. Sarcoidosis can cause lumps, ulcers (sores), or areas of discolored skin. These areas may itch, but they don't hurt. These signs tend to appear on your back, arms, legs, and scalp. Sometimes they appear near your nose or eyes. These signs usually last a long time. Sarcoidosis may cause a more serious skin condition called lupus pernio. Disfiguring skin sores may affect your nose, nasal passages, cheeks, ears, eyelids, and fingers. These sores tend to be ongoing. They can return after treatment is over. Sarcoidosis also can cause eye problems. If you have sarcoidosis, having an annual eye exam is important. If you have changes in your vision and can't see as clearly or can't see color, call 911 or have someone drive you to the emergency room. You should call your doctor if you have any new eye symptoms, such as burning, itching, tearing, pain, or sensitivity to light. Signs and symptoms of sarcoidosis also may include an enlarged liver, spleen, or salivary glands. Although less common, sarcoidosis can affect the heart and brain. This can cause many symptoms, such as abnormal heartbeats, shortness of breath, headaches, and vision problems. If sarcoidosis affects the heart or brain, serious complications can occur. Lofgren's Syndrome Lofgren's syndrome is a classic set of signs and symptoms that occur in some people when they first have sarcoidosis. Signs and symptoms may include: Fever. This symptom only occurs in some people. Enlarged lymph nodes (which can be seen on a chest x ray). Arthritis, usually in the ankles. This symptom is more common in men than women. Erythema nodosum. This is a rash of red or reddish-purple bumps on your ankles and shins. The rash may be warm and tender to the touch. This symptom is more common in women than men. Sarcoidosis Signs and Symptoms
Sarcoidosis
How to diagnose Sarcoidosis ?
Your doctor will diagnose sarcoidosis based on your medical history, a physical exam, and test results. He or she will look for granulomas (inflamed lumps) in your organs. Your doctor also will try to rule out other possible causes of your symptoms. Medical History Your doctor may ask you detailed questions about your medical history. For example, he or she may ask whether you: Have a family history of sarcoidosis. Have had any jobs that may have raised your risk for the disease. Have ever been exposed to inhaled beryllium metal. (This type of metal is used to make aircrafts and weapons.) Have had contact with organic dust from birds or hay. Exposure to beryllium metal and organic dust can cause inflamed lumps in your lungs that look like the granulomas from sarcoidosis. However, these lumps are signs of other conditions. Physical Exam Your doctor will check you for signs and symptoms of sarcoidosis. Signs and symptoms may include red bumps on your skin; swollen lymph nodes; an enlarged liver, spleen, or salivary glands; or redness in your eyes. Your doctor also will check for other causes of your symptoms. Your doctor may listen to your lungs and heart. Abnormal breathing or heartbeat sounds could be a sign that sarcoidosis is affecting your lungs or heart. Diagnostic Tests You may have tests to confirm a diagnosis and to find out how sarcoidosis is affecting you. Tests include a chest x ray, lung function tests, biopsy, and other tests to assess organ damage. Chest X Ray A chest x ray is a painless test that creates pictures of the structures inside your chest, such as your heart and lungs. The test may show granulomas or enlarged lymph nodes in your chest. About 95 percent of people who have sarcoidosis have abnormal chest xrays. Lung Function Tests Lung function tests measure how much air you can breathe in and out, how fast you can breathe air out, and how well your lungs deliver oxygen to your blood. These tests can show whether sarcoidosis is affecting your lungs. Biopsy Your doctor may do a biopsy to confirm a diagnosis or rule out other causes of your symptoms. A biopsy involves taking a small sample of tissue from one of your affected organs. Usually, doctors try to biopsy the organs that are easiest to access. Examples include the skin, tear glands, or the lymph nodes that are just under the skin. If this isn't possible, your doctor may use a positron emission tomography (PET) scan to pinpoint areas for biopsy. For this test, a small amount of radioactive substance is injected into a vein, usually in your arm. The substance, which releases energy, travels through the blood and collects in organs or tissues. Special cameras detect the energy and convert it into three-dimensional (3D) pictures. If lung function tests or a chest x ray shows signs of sarcoidosis in your lungs, your doctor may do a bronchoscopy (bron-KOS-ko-pee) to get a small sample of lung tissue. During this procedure, a thin, flexible tube is passed through your nose (or sometimes your mouth), down your throat, and into the airways to reach your lung tissue. (For more information, go to the Health Topics Bronchoscopy article.) Other Tests To Assess Organ Damage You also may have other tests to assess organ damage and find out whether you need treatment. For example, your doctor may recommend blood tests and/or an EKG (electrocardiogram). If youre diagnosed with sarcoidosis, you should see an ophthalmologist (eye specialist), even if you dont have eye symptoms. In sarcoidosis, eye damage can occur without symptoms.
Sarcoidosis
What are the treatments for Sarcoidosis ?
Not everyone who has sarcoidosis needs treatment. Sometimes the disease goes away on its own. Whether you need treatment and what type of treatment you need depend on your signs and symptoms, which organs are affected, and whether those organs are working well. If the disease affects certain organssuch as your eyes, heart, or brainyou'll need treatment even if you don't have any symptoms. In either case, whether you have symptoms or not, you should see your doctor for ongoing care. He or she will want to check to make sure that the disease isn't damaging your organs. For example, you may need routine lung function tests to make sure that your lungs are working well. If the disease isn't worsening, your doctor may watch you closely to see whether the disease goes away on its own. If the disease does start to get worse, your doctor can prescribe treatment. The goals of treatment include: Relieving symptoms Improving organ function Controlling inflammation and reducing the size of granulomas (inflamed lumps) Preventing pulmonary fibrosis (lung scarring) if your lungs are affected Your doctor may prescribe topical treatments and/or medicines to treat the disease. Medicines Prednisone Prednisone, a type of steroid, is the main treatment for sarcoidosis. This medicine reduces inflammation. In most people, prednisone relieves symptoms within a couple of months. Although most people need to take prednisone for 12 months or longer, your doctor may lower the dose within a few months after you start the medicine. Long-term use of prednisone, especially at high doses, can cause serious side effects. Work with your doctor to decide whether the benefits of this medicine outweigh the risks. If your doctor prescribes this treatment, he or she will find the lowest dose that controls your disease. When you stop taking prednisone, you should cut back slowly (as your doctor advises). This will help prevent flareups of sarcoidosis. Cutting back slowly also allows your body to adjust to not having the medicine. If a relapse or flareup occurs after you stop taking prednisone, you may need a second round of treatment. If you remain stable for more than 1 year after stopping this treatment, the risk of relapse is low. Other Medicines Other medicines, besides prednisone, also are used to treat sarcoidosis. Examples include: Hydroxychloroquine or chloroquine (known as antimalarial medicines). These medicines work best for treating sarcoidosis that affects the skin or brain. Your doctor also may prescribe an antimalarial if you have a high level of calcium in your blood due to sarcoidosis. Medicines that suppress the immune system, such as methotrexate, azathioprine, or leflunomide. These medicines work best for treating sarcoidosis that affects your lungs, eyes, skin, or joints. Your doctor may prescribe these medicines if your sarcoidosis worsens while you're taking prednisone or if you can't handle prednisone's side effects. If you have Lofgren's syndrome with pain or fever, your doctor may prescribe nonsteroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen. If you're wheezing and coughing, you may need inhaled medicine to help open your airways. You take inhaled medicine using an inhaler. This device allows the medicine to go straight to your lungs. Anti-tumor necrosis factor drugs, originally developed to treat arthritis, are being studied to treat sarcoidosis. Ongoing Research Researchers continue to look for new and better treatments for sarcoidosis. They're currently studying treatments aimed at the immune system. Researchers also are studying antibiotics as a possible treatment for sarcoidosis that affects the skin. For more information about ongoing research, go to the Clinical Trials section of this article.
Sarcoidosis
What is (are) Respiratory Distress Syndrome ?
Respiratory distress syndrome (RDS) is a breathing disorder that affects newborns. RDS rarely occurs in full-term infants. The disorder is more common in premature infants born about 6 weeks or more before their due dates. RDS is more common in premature infants because their lungs aren't able to make enough surfactant (sur-FAK-tant). Surfactant is a liquid that coats the inside of the lungs. It helps keep them open so that infants can breathe in air once they're born. Without enough surfactant, the lungs collapse and the infant has to work hard to breathe. He or she might not be able to breathe in enough oxygen to support the body's organs. The lack of oxygen can damage the baby's brain and other organs if proper treatment isn't given. Most babies who develop RDS show signs of breathing problems and a lack of oxygen at birth or within the first few hours that follow. Overview RDS is a common lung disorder in premature infants. In fact, nearly all infants born before 28 weeks of pregnancy develop RDS. RDS might be an early phase of bronchopulmonary dysplasia (brong-ko-PUL-mo-nar-e dis-PLA-ze-ah), or BPD. This is another breathing disorder that affects premature babies. RDS usually develops in the first 24 hours after birth. If premature infants still have breathing problems by the time they reach their original due dates, they may be diagnosed with BPD. Some of the life-saving treatments used for RDS may cause BPD. Some infants who have RDS recover and never get BPD. Infants who do get BPD have lungs that are less developed or more damaged than the infants who recover. Infants who develop BPD usually have fewer healthy air sacs and tiny blood vessels in their lungs. Both the air sacs and the tiny blood vessels that support them are needed to breathe well. Outlook Due to improved treatments and medical advances, most infants who have RDS survive. However, these babies may need extra medical care after going home. Some babies have complications from RDS or its treatments. Serious complications include chronic (ongoing) breathing problems, such as asthma and BPD; blindness; and brain damage.
Respiratory Distress Syndrome
What causes Respiratory Distress Syndrome ?
The main cause of respiratory distress syndrome (RDS) is a lack of surfactant in the lungs. Surfactant is a liquid that coats the inside of the lungs. A fetus's lungs start making surfactant during the third trimester of pregnancy (weeks 26 through labor and delivery). The substance coats the insides of the air sacs in the lungs. This helps keep the lungs open so breathing can occur after birth. Without enough surfactant, the lungs will likely collapse when the infant exhales (breathes out). The infant then has to work harder to breathe. He or she might not be able to get enough oxygen to support the body's organs. Some full-term infants develop RDS because they have faulty genes that affect how their bodies make surfactant.
Respiratory Distress Syndrome
Who is at risk for Respiratory Distress Syndrome? ?
Certain factors may increase the risk that your infant will have respiratory distress syndrome (RDS). These factors include: Premature delivery. The earlier your baby is born, the greater his or her risk for RDS. Most cases of RDS occur in babies born before 28 weeks of pregnancy. Stress during your baby's delivery, especially if you lose a lot of blood. Infection. Your having diabetes. Your baby also is at greater risk for RDS if you require an emergency cesarean delivery (C-section) before your baby is full term. You may need an emergency C-section because of a condition, such as a detached placenta, that puts you or your infant at risk. Planned C-sections that occur before a baby's lungs have fully matured also can increase the risk of RDS. Your doctor can do tests before delivery that show whether it's likely that your baby's lungs are fully developed. These tests assess the age of the fetus or lung maturity.
Respiratory Distress Syndrome
What are the symptoms of Respiratory Distress Syndrome ?
Signs and symptoms of respiratory distress syndrome (RDS) usually occur at birth or within the first few hours that follow. They include: Rapid, shallow breathing Sharp pulling in of the chest below and between the ribs with each breath Grunting sounds Flaring of the nostrils The infant also may have pauses in breathing that last for a few seconds. This condition is called apnea (AP-ne-ah). Respiratory Distress Syndrome Complications Depending on the severity of an infant's RDS, he or she may develop other medical problems. Lung Complications Lung complications may include a collapsed lung (atelectasis), leakage of air from the lung into the chest cavity (pneumothorax), and bleeding in the lung (hemorrhage). Some of the life-saving treatments used for RDS may cause bronchopulmonary dysplasia, another breathing disorder. Blood and Blood Vessel Complications Infants who have RDS may develop sepsis, an infection of the bloodstream. This infection can be life threatening. Lack of oxygen may prevent a fetal blood vessel called the ductus arteriosus from closing after birth as it should. This condition is called patent ductus arteriosus, or PDA. The ductus arteriosus connects a lung artery to a heart artery. If it remains open, it can strain the heart and increase blood pressure in the lung arteries. Other Complications Complications of RDS also may include blindness and other eye problems and a bowel disease called necrotizing enterocolitis (EN-ter-o-ko-LI-tis). Infants who have severe RDS can develop kidney failure. Some infants who have RDS develop bleeding in the brain. This bleeding can delay mental development. It also can cause mental retardation or cerebral palsy.
Respiratory Distress Syndrome
How to diagnose Respiratory Distress Syndrome ?
Respiratory distress syndrome (RDS) is common in premature infants. Thus, doctors usually recognize and begin treating the disorder as soon as babies are born. Doctors also do several tests to rule out other conditions that could be causing an infant's breathing problems. The tests also can confirm that the doctors have diagnosed the condition correctly. The tests include: Chest x ray. A chest x ray creates a of the structures inside the chest, such as the heart and lungs. This test can show whether your infant has signs of RDS. A chest x ray also can detect problems, such as a collapsed lung, that may require urgent treatment. Blood tests. Blood tests are used to see whether an infant has enough oxygen in his or her blood. Blood tests also can help find out whether an infection is causing the infant's breathing problems. Echocardiography (echo). This test uses sound waves to create a moving picture of the heart. Echo is used to rule out heart defects as the cause of an infant's breathing problems.
Respiratory Distress Syndrome
What are the treatments for Respiratory Distress Syndrome ?
Treatment for respiratory distress syndrome (RDS) usually begins as soon as an infant is born, sometimes in the delivery room. Most infants who show signs of RDS are quickly moved to a neonatal intensive care unit (NICU). There they receive around-the-clock treatment from health care professionals who specialize in treating premature infants. The most important treatments for RDS are: Surfactant replacement therapy. Breathing support from a ventilator or nasal continuous positive airway pressure (NCPAP) machine. These machines help premature infants breathe better. Oxygen therapy. Surfactant Replacement Therapy Surfactant is a liquid that coats the inside of the lungs. It helps keep them open so that an infant can breathe in air once he or she is born. Babies who have RDS are given surfactant until their lungs are able to start making the substance on their own. Surfactant usually is given through a breathing tube. The tube allows the surfactant to go directly into the baby's lungs. Once the surfactant is given, the breathing tube is connected to a ventilator, or the baby may get breathing support from NCPAP. Surfactant often is given right after birth in the delivery room to try to prevent or treat RDS. It also may be given several times in the days that follow, until the baby is able to breathe better. Some women are given medicines called corticosteroids during pregnancy. These medicines can speed up surfactant production and lung development in a fetus. Even if you had these medicines, your infant may still need surfactant replacement therapy after birth. Breathing Support Infants who have RDS often need breathing support until their lungs start making enough surfactant. Until recently, a mechanical ventilator usually was used. The ventilator was connected to a breathing tube that ran through the infant's mouth or nose into the windpipe. Today, more and more infants are receiving breathing support from NCPAP. NCPAP gently pushes air into the baby's lungs through prongs placed in the infant's nostrils. Oxygen Therapy Infants who have breathing problems may get oxygen therapy. Oxygen is given through a ventilator or NCPAP machine, or through a tube in the nose. This treatment ensures that the infants' organs get enough oxygen to work well. For more information, go to the Health Topics Oxygen Therapy article. Other Treatments Other treatments for RDS include medicines, supportive therapy, and treatment for patent ductus arteriosus (PDA). PDA is a condition that affects some premature infants. Medicines Doctors often give antibiotics to infants who have RDS to control infections (if the doctors suspect that an infant has an infection). Supportive Therapy Treatment in the NICU helps limit stress on babies and meet their basic needs of warmth, nutrition, and protection. Such treatment may include: Using a radiant warmer or incubator to keep infants warm and reduce the risk of infection. Ongoing monitoring of blood pressure, heart rate, breathing, and temperature through sensors taped to the babies' bodies. Using sensors on fingers or toes to check the amount of oxygen in the infants' blood. Giving fluids and nutrients through needles or tubes inserted into the infants' veins. This helps prevent malnutrition and promotes growth. Nutrition is critical to the growth and development of the lungs. Later, babies may be given breast milk or infant formula through feeding tubes that are passed through their noses or mouths and into their throats. Checking fluid intake to make sure that fluid doesn't build up in the babies' lungs. Treatment for Patent Ductus Arteriosus PDA is a possible complication of RDS. In this condition, a fetal blood vessel called the ductus arteriosus doesn't close after birth as it should. The ductus arteriosus connects a lung artery to a heart artery. If it remains open, it can strain the heart and increase blood pressure in the lung arteries. PDA is treated with medicines, catheter procedures, and surgery. For more information, go to the Health Topics Patent Ductus Arteriosus article.
Respiratory Distress Syndrome
How to prevent Respiratory Distress Syndrome ?
Taking steps to ensure a healthy pregnancy might prevent your infant from being born before his or her lungs have fully developed. These steps include: Seeing your doctor regularly during your pregnancy Following a healthy diet Avoiding tobacco smoke, alcohol, and illegal drugs Managing any medical conditions you have Preventing infections If you're having a planned cesarean delivery (C-section), your doctor can do tests before delivery to show whether it's likely that your baby's lungs are fully developed. These tests assess the age of the fetus or lung maturity. Your doctor may give you injections of a corticosteroid medicine if he or she thinks you may give birth too early. This medicine can speed up surfactant production and development of the lungs, brain, and kidneys in your baby. Treatment with corticosteroids can reduce your baby's risk of respiratory distress syndrome (RDS). If the baby does develop RDS, it will probably be fairly mild. Corticosteroid treatment also can reduce the chances that your baby will have bleeding in the brain.
Respiratory Distress Syndrome
What is (are) Obesity Hypoventilation Syndrome ?
Obesity hypoventilation (HI-po-ven-tih-LA-shun) syndrome (OHS) is a breathing disorder that affects some obese people. In OHS, poor breathing results in too much carbon dioxide (hypoventilation) and too little oxygen in the blood (hypoxemia). OHS sometimes is called Pickwickian syndrome. Overview To understand OHS, it helps to understand how the lungs work. When you breathe, air passes through your nose and mouth into your windpipe. The air then travels to your lungs' air sacs. These sacs are called alveoli (al-VEE-uhl-eye). Small blood vessels called capillaries (KAP-ih-lare-ees) run through the walls of the air sacs. When air reaches the air sacs, oxygen passes through the air sac walls into the blood in the capillaries. At the same time, carbon dioxide moves from the capillaries into the air sacs. This process is called gas exchange. In people who have OHS, poor breathing prevents proper gas exchange. As a result, the level of carbon dioxide in the blood rises. Also, the level of oxygen in the blood drops. These changes can lead to serious health problems, such as leg edema (e-DE-mah), pulmonary hypertension (PULL-mun-ary HI-per-TEN-shun), cor pulmonale (pul-meh-NAL-e), and secondary erythrocytosis (eh-RITH-ro-si-TOE-sis). If left untreated, OHS can even be fatal. The cause of OHS isn't fully known. Researchers think that several factors may work together to cause the disorder. Many people who have OHS also have obstructive sleep apnea. Obstructive sleep apnea is a common disorder in which the airway collapses or is blocked during sleep. This causes pauses in breathing or shallow breaths while you sleep. Obstructive sleep apnea disrupts your sleep and causes you to feel very tired during the day. (For more information, go to the Health Topics Sleep Apnea article.) Outlook Doctors treat OHS in a number of ways. One way is with positive airway pressure (PAP) machines, which are used during sleep. PAP therapy uses mild air pressure to keep your airways open. Your doctor might recommend CPAP (continuous positive airway pressure) or BiPAP (bilevel positive airway pressure). If your doctor prescribes PAP therapy, you'll work with someone from a home equipment provider to select a CPAP or BiPAP machine. The home equipment provider will help you select a machine based on your prescription and the features that meet your needs. Other treatments for OHS include ventilator (VEN-til-a-tor) support and medicines. (A ventilator is a machine that supports breathing.) OHS occurs with obesity, so your doctor will likely recommend weight loss as part of your treatment plan. Successful weight loss often involves setting goals and making lifestyle changes, such as following a healthy diet and being physically active. OHS can lead to other serious health problems, so following your treatment plan is important. Your health care team, home equipment provider, and family can help you manage your treatment.
Obesity Hypoventilation Syndrome
What causes Obesity Hypoventilation Syndrome ?
Obesity hypoventilation syndrome (OHS) is a breathing disorder that affects some obese people. Why these people develop OHS isn't fully known. Researchers think that several factors may work together to cause OHS. These factors include: A respiratory (RES-pih-rah-tor-e) system that has to work harder than normal and perhaps differently because of excess body weight. (The respiratory system is a group of organs and tissues, including the lungs, that helps you breathe.) A slow response by the body to fix the problem of too much carbon dioxide and too little oxygen in the blood. The presence of sleep apnea, usually obstructive sleep apnea.
Obesity Hypoventilation Syndrome
Who is at risk for Obesity Hypoventilation Syndrome? ?
People who are obese are at risk for obesity hypoventilation syndrome (OHS). "Obesity" refers to having too much body fat. People who are obese have body weight that's greater than what is considered healthy for a certain height. The most useful measure of obesity is body mass index (BMI). BMI is calculated from your height and weight. In adults, a BMI of 30 or more is considered obese. You can use the National Heart, Lung, and Blood Institute's (NHLBI's) online BMI calculator to figure out your BMI, or your doctor can help you. If you are obese, you're at greater risk for OHS if your BMI is 40 or higher. You're also at greater risk if most of your excess weight is around your waist, rather than at your hips. This is referred to as "abdominal obesity." OHS tends to occur more often in men than women. At the time of diagnosis, most people are 40 to 60 years old.
Obesity Hypoventilation Syndrome
What are the symptoms of Obesity Hypoventilation Syndrome ?
Many of the signs and symptoms of obesity hypoventilation syndrome (OHS) are the same as those of obstructive sleep apnea. This is because many people who have OHS also have obstructive sleep apnea. One of the most common signs of obstructive sleep apnea is loud and chronic (ongoing) snoring. Pauses may occur in the snoring. Choking or gasping may follow the pauses. Other symptoms include: Daytime sleepiness Morning headaches Memory, learning, or concentration problems Feeling irritable or depressed, or having mood swings or personality changes You also may have rapid, shallow breathing. During a physical exam, your doctor might hear abnormal heart sounds while listening to your heart with a stethoscope. He or she also might notice that the opening to your throat is small and your neck is larger than normal. Complications of Obesity Hypoventilation Syndrome When left untreated, OHS can cause serious problems, such as: Leg edema, which is swelling in the legs caused by fluid in the body's tissues. Pulmonary hypertension, which is increased pressure in the pulmonary arteries. These arteries carry blood from your heart to your lungs to pick up oxygen. Cor pulmonale, which is failure of the right side of the heart. Secondary erythrocytosis, which is a condition in which the body makes too many red blood cells.
Obesity Hypoventilation Syndrome
How to diagnose Obesity Hypoventilation Syndrome ?
Obesity hypoventilation syndrome (OHS) is diagnosed based on your medical history, signs and symptoms, and test results. Specialists Involved A critical care specialist, pulmonologist (lung specialist), and/or sleep specialist may diagnose and treat your condition. A sleep specialist is a doctor who diagnoses and treats sleep problems. Examples of such doctors include lung and nerve specialists and ear, nose, and throat specialists. Other types of doctors also can be sleep specialists. Your health care team also may include: A registered dietitian or nutritionist to help you plan and follow a healthy diet. (Your primary care doctor also might oversee weight-loss treatment and progress.) An exercise physiologist or trainer to assess your fitness level and help create a physical activity plan that's safe for you. A bariatric surgeon if weight-loss surgery is an option for you. Medical History and Physical Exam Your doctor will ask about your signs and symptoms, such as loud snoring or daytime sleepiness. He or she also may ask about your use of alcohol and certain medicines, such as sedatives and narcotics. These substances can worsen OHS. During the physical exam, your doctor will listen to your heart with a stethoscope. He or she also will check to see whether another disease or condition could be the cause of your poor breathing. Diagnostic Tests In OHS, poor breathing leads to too much carbon dioxide and too little oxygen in the blood. An arterial blood gas test can measure the levels of these gases in your blood. For this test, a blood sample is taken from an artery, usually in your wrist. The sample is then sent to a laboratory, where the oxygen and carbon dioxide levels are measured. Other tests also can measure the carbon dioxide level or oxygen level in your blood. These tests include a serum bicarbonate test and pulse oximetry. A serum bicarbonate test measures the amount of carbon dioxide in the liquid part of your blood, called the serum. For this test, a blood sample is taken from a vein, usually in your wrist or hand. Pulse oximetry measures the level of oxygen in your blood. For this test, a small sensor is attached to your finger or ear. The sensor uses light to estimate how much oxygen is in your blood. Other Tests Your doctor may recommend other tests to help check for conditions and problems related to OHS. Polysomnogram A polysomnogram (PSG) is a type of sleep study. You usually have to stay overnight at a sleep center for a PSG. The test records brain activity, eye movements, heart rate, and blood pressure. A PSG also records the amount of oxygen in your blood, how much air is moving through your nose while you breathe, snoring, and chest movements. The chest movements show whether you're making an effort to breathe. Your doctor might use the PSG results to help diagnose sleep-related breathing disorders, such as sleep apnea. Lung Function Tests Lung function tests, also called pulmonary function tests, measure how well your lungs work. For example, these tests show: How much air you can take into your lungs. This amount is compared with that of other people your age, height, and sex. This allows your doctor to see whether you're in the normal range. How much air you can blow out of your lungs and how fast you can do it. How well your lungs deliver oxygen to your blood. The strength of your breathing muscles. Chest X Ray A chest x ray is a test that creates pictures of the structures inside your chest, such as your heart, lungs, and blood vessels. This test can help rule out other conditions that might be causing your signs and symptoms. EKG (Electrocardiogram) An EKG is a test that detects and records the heart's electrical activity. The test shows how fast the heart is beating and its rhythm (steady or irregular). An EKG also records the strength and timing of electrical signals as they pass through your heart. The results from an EKG might show whether OHS has affected your heart function. Other Tests A complete blood count (CBC) can show whether your body is making too many red blood cells as a result of OHS. A CBC measures many parts of your blood, including red blood cells. A toxicology screen is a group of tests that shows which medicines and drugs you've taken and how much of them you've taken. A blood or urine sample usually is collected for a toxicology screen.
Obesity Hypoventilation Syndrome
What are the treatments for Obesity Hypoventilation Syndrome ?
Treatments for obesity hypoventilation syndrome (OHS) include breathing support, weight loss, and medicines. The goals of treating OHS may include: Supporting and aiding your breathing Achieving major weight loss Treating underlying and related conditions Breathing Support Positive Airway Pressure Treatment for OHS often involves a machine that provides positive airway pressure (PAP) while you sleep. PAP therapy uses mild air pressure to keep your airways open. This treatment can help your body better maintain the carbon dioxide and oxygen levels in your blood. PAP therapy also can help relieve daytime sleepiness. Your doctor might recommend CPAP (continuous positive airway pressure) or BiPAP (bilevel positive airway pressure). CPAP provides continuous mild air pressure to keep your airways open. BiPAP works almost the same, but it changes the air pressure while you breathe in and out. The machines have three main parts: A mask or other device that fits over your nose or your nose and mouth. Straps keep the mask in place while you're wearing it. A tube that connects the mask to the machine's motor. A motor that blows air into the tube. Some machines have other features, such as heated humidifiers. The machines are small, lightweight, and fairly quiet. The noise they make is soft and rhythmic. Some people who have OHS receive extra oxygen as part of their PAP treatment. However, oxygen therapy alone isn't recommended as a treatment for OHS. PAP therapy also is used to treat obstructive sleep apnea. Many people who have OHS also have this common condition. If your doctor prescribes PAP therapy, you'll work with someone from a home equipment provider to select a CPAP or BiPAP machine. The home equipment provider will help you pick a machine based on your prescription and the features that meet your needs. Ventilator Support If you have severe OHS that requires treatment in a hospital, you might be put on a ventilator. A ventilator is a machine that supports breathing. This machine: Gets oxygen into your lungs Removes carbon dioxide from your body Helps you breathe easier A ventilator blows air, or air with extra oxygen, into the airways through a breathing tube. One end of the tube is inserted into your windpipe, and the other end is hooked to the ventilator. Usually, the breathing tube is put into your nose or mouth and then moved down into your throat. A tube placed like this is called an endotracheal (en-do-TRA-ke-al) tube. Endotracheal tubes are used only in a hospital setting. Sometimes the breathing tube is placed through a surgically made hole called a tracheostomy (TRA-ke-OS-toe-me). The hole goes through the front of your neck and into your windpipe. The procedure to make a tracheostomy usually is done in an operating room. You'll be given medicine so you won't feel any pain. The tracheostomy allows you to be on a ventilator in the hospital, in a long-term care facility, or at home. Talk with your doctor about how long you'll need ventilator support and whether you can receive treatment at home. For more information about ventilator support, go to the Health Topics Ventilator/Ventilator Support article. Weight Loss Your doctor will likely recommend weight loss as part of your treatment plan. Successful weight loss often involves setting goals and making lifestyle changes. For example, eating fewer calories and being physically active can help you lose weight. Medicines and weight-loss surgery might be an option if lifestyle changes aren't enough. Your doctor will advise you on the best weight-loss treatment for you. For more information about weight loss, go to the treatment section of the Health Topics Overweight and Obesity article. Medicines Your doctor may prescribe medicines to treat OHS (although this treatment is less common than others). Your doctor also may advise you to avoid certain substances and medicines that can worsen OHS. Examples include alcohol, sedatives, and narcotics. They can interfere with how well your body is able to maintain normal carbon dioxide and oxygen levels. If you're having surgery, make sure you tell your surgeon and health care team that you have OHS. Some medicines routinely used for surgery can worsen your condition.
Obesity Hypoventilation Syndrome
How to prevent Obesity Hypoventilation Syndrome ?
You can prevent obesity hypoventilation syndrome (OHS) by maintaining a healthy weight. However, not everyone who is obese develops OHS. Researchers don't fully know why only some people who are obese develop the condition. Adopting healthy habits can help you maintain a healthy weight. Many lifestyle habits begin during childhood. So, it's important to make following a healthy lifestyle a family goal. A healthy diet is an important part of a healthy lifestyle. A healthy diet includes a variety of vegetables and fruits. It also includes whole grains, fat-free or low-fat dairy products, and protein foods, such as lean meats, eggs, poultry without skin, seafood, nuts, seeds, beans, and peas. A healthy diet is low in sodium (salt), added sugars, solid fats, and refined grains. Solid fats are saturated fat and trans fatty acids. Refined grains come from processing whole grains, which results in a loss of nutrients (such as dietary fiber). Examples of refined grains include white rice and white bread. For more information about following a healthy diet, go to the National Heart, Lung, and Blood Institute's "Your Guide to Lowering Your Blood Pressure With DASH" and the U.S. Department of Agriculture's ChooseMyPlate.gov Web site. Both resources provide general information about healthy eating. To adopt other healthy lifestyle habits, follow these tips: Focus on portion size. Watch the portion sizes in fast food and other restaurants. The portions served often are enough for two or three people. Children's portion sizes should be smaller than those for adults. Cutting back on portion sizes will help you manage your calorie intake. Be physically active. Make personal and family time as active as possible. Find activities that everyone will enjoy. For example, go for a brisk walk, bike or rollerblade, or train together for a walk or run. Reduce screen time. Limit the use of TVs, computers, DVDs, and videogames; they cut back on the time for physical activity. Health experts recommend2 hours or less a day of screen time that's not work- or homework-related. Keep track of your weight and body mass index (BMI). BMI is calculated from your height and weight. In adults, a BMI of 30 or more is considered obese. You can use the NHLBI's online BMI calculator to figure out your BMI, or your doctor can help you. For more information, go to the prevention section of the Health Topics Overweight and Obesity article. Even if you have OHS, you might be able to prevent the condition from worsening. For example, avoid alcohol, sedatives, and narcotics. These substances can interfere with how well your body is able to maintain normal carbon dioxide and oxygen levels.
Obesity Hypoventilation Syndrome
What is (are) Cardiomyopathy ?
Cardiomyopathy refers to diseases of the heart muscle. These diseases have many causes, signs and symptoms, and treatments. In cardiomyopathy, the heart muscle becomes enlarged, thick, or rigid. In rare cases, the muscle tissue in the heart is replaced with scar tissue. As cardiomyopathy worsens, the heart becomes weaker. It's less able to pump blood through the body and maintain a normal electrical rhythm. This can lead to heart failure or irregular heartbeats called arrhythmias. In turn, heart failure can cause fluid to build up in the lungs, ankles, feet, legs, or abdomen. The weakening of the heart also can cause other complications, such as heart valve problems. Overview The types of cardiomyopathy are: Hypertrophic cardiomyopathy Dilated cardiomyopathy Restrictive cardiomyopathy Arrhythmogenic right ventricular dysplasia Unclassified cardiomyopathy Cardiomyopathy can be acquired or inherited. "Acquired" means you aren't born with the disease, but you develop it due to another disease, condition, or factor. "Inherited" means your parents passed the gene for the disease on to you. Many times, the cause of cardiomyopathy isn't known. Cardiomyopathy can affect people of all ages. However, people in certain age groups are more likely to have certain types of cardiomyopathy. This article focuses on cardiomyopathy in adults. Outlook Some people who have cardiomyopathy have no signs or symptoms and need no treatment. For other people, the disease develops quickly, symptoms are severe, and serious complications occur. Treatments for cardiomyopathy include lifestyle changes, medicines, surgery, implanted devices to correct arrhythmias, and a nonsurgical procedure. These treatments can control symptoms, reduce complications, and stop the disease from getting worse.
Cardiomyopathy
What causes Cardiomyopathy ?
Cardiomyopathy can be acquired or inherited. Acquired means you arent born with the disease, but you develop it due to another disease, condition, or factor. Inherited means your parents passed the gene for the disease on to you. Researchers continue to look for the genetic links to cardiomyopathy and to explore how these links cause or contribute to the various types of the disease. Many times, the cause of cardiomyopathy isnt known. This often is the case when the disease occurs in children. Hypertrophic Cardiomyopathy Hypertrophic cardiomyopathy usually is inherited. Its caused by a mutation or change in some of the genes in heart muscle proteins. Hypertrophic cardiomyopathy also can develop over time because of high blood pressure, aging, or other diseases, such as diabetes or thyroid disease. Sometimes the cause of the disease isnt known. Dilated Cardiomyopathy The cause of dilated cardiomyopathy often isnt known. About one-third of the people who have dilated cardiomyopathy inherit it from their parents. Certain diseases, conditions, and substances also can cause the disease, such as: Alcohol, especially if you also have a poor diet Certain toxins, such as poisons and heavy metals Complications during the last months of pregnancy Coronary heart disease, heart attack, high blood pressure, diabetes, thyroid disease, viral hepatitis, and HIV Illegal drugs, such as cocaine and amphetamines, and some medicines used to treat cancer Infections, especially viral infections that inflame the heart muscle Restrictive Cardiomyopathy Certain diseases, conditions, and factors can cause restrictive cardiomyopathy, including: Amyloidosis: A disease in which abnormal proteins build up in the bodys organs, including the heart Connective tissue disorders Hemochromatosis: A disease in which too much iron builds up in the body. The extra iron is toxic to the body and can damage the organs, including the heart. Sarcoidosis: A disease that causes inflammation and can affect various organs in the body. Researchers believe that an abnormal immune response may cause sarcoidosis. This abnormal response causes tiny lumps of cells to form in the bodys organs, including the heart. Some cancer treatments, such as radiation and chemotherapy Arrhythmogenic Right Ventricular Dysplasia Researchers think that arrhythmogenic right ventricular dysplasia is an inherited disease.
Cardiomyopathy
Who is at risk for Cardiomyopathy? ?
People of all ages and races can have cardiomyopathy. However, certain types of the disease are more common in certain groups. Dilated cardiomyopathy is more common in African Americans than Whites. This type of the disease also is more common in men than women. Teens and young adults are more likely than older people to have arrhythmogenic right ventricular dysplasia, although it's rare in both groups. Major Risk Factors Certain diseases, conditions, or factors can raise your risk for cardiomyopathy. Major risk factors include: A family history of cardiomyopathy, heart failure, or sudden cardiac arrest (SCA) A disease or condition that can lead to cardiomyopathy, such as coronary heart disease, heart attack, or a viral infection that inflames the heart muscle Diabetes or other metabolic diseases, or severe obesity Diseases that can damage the heart, such as hemochromatosis, sarcoidosis, or amyloidosis Long-term alcoholism Long-term high blood pressure Some people who have cardiomyopathy never have signs or symptoms. Thus, it's important to identify people who may be at high risk for the disease. This can help prevent future problems, such as serious arrhythmias (irregular heartbeats) or SCA.
Cardiomyopathy
What are the symptoms of Cardiomyopathy ?
Some people who have cardiomyopathy never have signs or symptoms. Others don't have signs or symptoms in the early stages of the disease. As cardiomyopathy worsens and the heart weakens, signs and symptoms of heart failure usually occur. These signs and symptoms include: Shortness of breath or trouble breathing, especially with physical exertion Fatigue (tiredness) Swelling in the ankles, feet, legs, abdomen, and veins in the neck Other signs and symptoms may include dizziness; light-headedness; fainting during physical activity; arrhythmias (irregular heartbeats); chest pain, especially after physical exertion or heavy meals; and heart murmurs. (Heart murmurs are extra or unusual sounds heard during a heartbeat.)
Cardiomyopathy
How to diagnose Cardiomyopathy ?
Your doctor will diagnose cardiomyopathy based on your medical and family histories, a physical exam, and the results from tests and procedures. Specialists Involved Often, a cardiologist or pediatric cardiologist diagnoses and treats cardiomyopathy. A cardiologist specializes in diagnosing and treating heart diseases. A pediatric cardiologist is a cardiologist who treats children. Medical and Family Histories Your doctor will want to learn about your medical history. He or she will want to know what signs and symptoms you have and how long you've had them. Your doctor also will want to know whether anyone in your family has had cardiomyopathy, heart failure, or sudden cardiac arrest. Physical Exam Your doctor will use a stethoscope to listen to your heart and lungs for sounds that may suggest cardiomyopathy. These sounds may even suggest a certain type of the disease. For example, the loudness, timing, and location of a heart murmur may suggest obstructive hypertrophic cardiomyopathy. A "crackling" sound in the lungs may be a sign of heart failure. (Heart failure often develops in the later stages of cardiomyopathy.) Physical signs also help your doctor diagnose cardiomyopathy. Swelling of the ankles, feet, legs, abdomen, or veins in your neck suggests fluid buildup, a sign of heart failure. Your doctor may notice signs and symptoms of cardiomyopathy during a routine exam. For example, he or she may hear a heart murmur, or you may have abnormal test results. Diagnostic Tests Your doctor may recommend one or more of the following tests to diagnose cardiomyopathy. Blood Tests During a blood test, a small amount of blood is taken from your body. It's often drawn from a vein in your arm using a needle. The procedure usually is quick and easy, although it may cause some short-term discomfort. Blood tests give your doctor information about your heart and help rule out other conditions. Chest X Ray A chest x ray takes pictures of the organs and structures inside your chest, such as your heart, lungs, and blood vessels. This test can show whether your heart is enlarged. A chest x ray also can show whether fluid is building up in your lungs. EKG (Electrocardiogram) An EKG is a simple test that records the heart's electrical activity. The test shows how fast the heart is beating and its rhythm (steady or irregular). An EKG also records the strength and timing of electrical signals as they pass through each part of the heart. This test is used to detect and study many heart problems, such as heart attacks, arrhythmias (irregular heartbeats), and heart failure. EKG results also can suggest other disorders that affect heart function. A standard EKG only records the heartbeat for a few seconds. It won't detect problems that don't happen during the test. To diagnose heart problems that come and go, your doctor may have you wear a portable EKG monitor. The two most common types of portable EKGs are Holter and event monitors. Holter and Event Monitors Holter and event monitors are small, portable devices. They record your heart's electrical activity while you do your normal daily activities. A Holter monitor records the heart's electrical activity for a full 24- or 48-hour period. An event monitor records your heart's electrical activity only at certain times while you're wearing it. For many event monitors, you push a button to start the monitor when you feel symptoms. Other event monitors start automatically when they sense abnormal heart rhythms. Echocardiography Echocardiography (echo) is a test that uses sound waves to create a moving picture of your heart. The picture shows how well your heart is working and its size and shape. There are several types of echo, including stress echo. This test is done as part of a stress test (see below). Stress echo can show whether you have decreased blood flow to your heart, a sign of coronary heart disease. Another type of echo is transesophageal (tranz-ih-sof-uh-JEE-ul) echo, or TEE. TEE provides a view of the back of the heart. For this test, a sound wave wand is put on the end of a special tube. The tube is gently passed down your throat and into your esophagus (the passage leading from your mouth to your stomach). Because this passage is right behind the heart, TEE can create detailed pictures of the heart's structures. Before TEE, you're given medicine to help you relax, and your throat is sprayed with numbing medicine. Stress Test Some heart problems are easier to diagnose when your heart is working hard and beating fast. During stress testing, you exercise (or are given medicine if you're unable to exercise) to make your heart work hard and beat fast while heart tests are done. These tests may include nuclear heart scanning, echo, and positron emission tomography (PET) scanning of the heart. Diagnostic Procedures You may have one or more medical procedures to confirm a diagnosis or to prepare for surgery (if surgery is planned). These procedures may include cardiac catheterization (KATH-e-ter-i-ZA-shun), coronary angiography (an-jee-OG-ra-fee), or myocardial (mi-o-KAR-de-al) biopsy. Cardiac Catheterization This procedure checks the pressure and blood flow in your heart's chambers. The procedure also allows your doctor to collect blood samples and look at your heart's arteries using x-ray imaging. During cardiac catheterization, a long, thin, flexible tube called a catheter is put into a blood vessel in your arm, groin (upper thigh), or neck and threaded to your heart. This allows your doctor to study the inside of your arteries for blockages. Coronary Angiography This procedure often is done with cardiac catheterization. During the procedure, dye that can be seen on an x ray is injected into your coronary arteries. The dye lets your doctor study blood flow through your heart and blood vessels. Dye also may be injected into your heart chambers. This allows your doctor to study the pumping function of your heart. Myocardial Biopsy For this procedure, your doctor removes a piece of your heart muscle. This can be done during cardiac catheterization. The heart muscle is studied under a microscope to see whether changes in cells have occurred. These changes may suggest cardiomyopathy. Myocardial biopsy is useful for diagnosing some types of cardiomyopathy. Genetic Testing Some types of cardiomyopathy run in families. Thus, your doctor may suggest genetic testing to look for the disease in your parents, brothers and sisters, or other family members. Genetic testing can show how the disease runs in families. It also can find out the chances of parents passing the genes for the disease on to their children. Genetic testing also may be useful if your doctor thinks you have cardiomyopathy, but you don't yet have signs or symptoms. If the test shows you have the disease, your doctor can start treatment early, when it may work best.
Cardiomyopathy