problem
stringlengths 16
191
| explanation
stringlengths 6
29k
⌀ | type
stringlengths 3
136
⌀ |
---|---|---|
What is (are) cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy ? | Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy, commonly known as CARASIL, is an inherited condition that causes stroke and other impairments. Abnormalities affecting the brain and other parts of the nervous system become apparent in an affected person's twenties or thirties. Often, muscle stiffness (spasticity) in the legs and problems with walking are the first signs of the disorder. About half of affected individuals have a stroke or similar episode before age 40. As the disease progresses, most people with CARASIL also develop mood and personality changes, a decline in thinking ability (dementia), memory loss, and worsening problems with movement. Other characteristic features of CARASIL include premature hair loss (alopecia) and attacks of low back pain. The hair loss often begins during adolescence and is limited to the scalp. Back pain, which develops in early to mid-adulthood, results from the breakdown (degeneration) of the discs that separate the bones of the spine (vertebrae) from one another. The signs and symptoms of CARASIL worsen slowly with time. Over the course of several years, affected individuals become less able to control their emotions and communicate with others. They increasingly require help with personal care and other activities of daily living; after a few years, they become unable to care for themselves. Most affected individuals die within a decade after signs and symptoms first appear, although few people with the disease have survived for 20 to 30 years. | cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy |
How many people are affected by cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy ? | CARASIL appears to be a rare condition. It has been identified in about 50 people, primarily in Japan and China. | cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy |
What are the genetic changes related to cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy ? | CARASIL is caused by mutations in the HTRA1 gene. This gene provides instructions for making an enzyme that is found in many of the body's organs and tissues. One of the major functions of the HTRA1 enzyme is to regulate signaling by proteins in the transforming growth factor-beta (TGF-) family. TGF- signaling is essential for many critical cell functions. It also plays an important role in the formation of new blood vessels (angiogenesis). In people with CARASIL, mutations in the HTRA1 gene prevent the effective regulation of TGF- signaling. Researchers suspect that abnormally increased TGF- signaling alters the structure of small blood vessels, particularly in the brain. These blood vessel abnormalities (described as arteriopathy) greatly increase the risk of stroke and lead to the death of nerve cells (neurons) in many areas of the brain. Dysregulation of TGF- signaling may also underlie the hair loss and back pain seen in people with CARASIL, although the relationship between abnormal TGF- signaling and these features is less clear. | cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy |
Is cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy inherited ? | As its name suggests, this condition is inherited in an autosomal recessive pattern. Autosomal recessive inheritance means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy |
What are the treatments for cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy ? | These resources address the diagnosis or management of CARASIL: - Gene Review: Gene Review: CARASIL - Genetic Testing Registry: Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy |
What is (are) generalized arterial calcification of infancy ? | Generalized arterial calcification of infancy (GACI) is a disorder affecting the circulatory system that becomes apparent before birth or within the first few months of life. It is characterized by abnormal accumulation of the mineral calcium (calcification) in the walls of the blood vessels that carry blood from the heart to the rest of the body (the arteries). This calcification often occurs along with thickening of the lining of the arterial walls (the intima). These changes lead to narrowing (stenosis) and stiffness of the arteries, which forces the heart to work harder to pump blood. As a result, heart failure may develop in affected individuals, with signs and symptoms including difficulty breathing, accumulation of fluid (edema) in the extremities, a bluish appearance of the skin or lips (cyanosis), severe high blood pressure (hypertension), and an enlarged heart (cardiomegaly). People with GACI may also have calcification in other organs and tissues, particularly around the joints. In addition, they may have hearing loss or softening and weakening of the bones (rickets). Some individuals with GACI also develop features similar to those of another disorder called pseudoxanthoma elasticum (PXE). PXE is characterized by the accumulation of calcium and other minerals (mineralization) in elastic fibers, which are a component of connective tissue. Connective tissue provides strength and flexibility to structures throughout the body. Features characteristic of PXE that also occur in GACI include yellowish bumps called papules on the underarms and other areas of skin that touch when a joint bends (flexor areas); and abnormalities called angioid streaks affecting tissue at the back of the eye, which can be detected during an eye examination. As a result of the cardiovascular problems associated with GACI, individuals with this condition often do not survive past infancy, with death typically caused by a heart attack or stroke. However, affected individuals who survive their first six months, known as the critical period, can live into adolescence or early adulthood. | generalized arterial calcification of infancy |
How many people are affected by generalized arterial calcification of infancy ? | The prevalence of GACI has been estimated to be about 1 in 391,000. At least 200 affected individuals have been described in the medical literature. | generalized arterial calcification of infancy |
What are the genetic changes related to generalized arterial calcification of infancy ? | In about two-thirds of cases, GACI is caused by mutations in the ENPP1 gene. This gene provides instructions for making a protein that helps break down a molecule called adenosine triphosphate (ATP), specifically when it is found outside the cell (extracellular). Extracellular ATP is quickly broken down into other molecules called adenosine monophosphate (AMP) and pyrophosphate. Pyrophosphate is important in controlling calcification and other mineralization in the body. Mutations in the ENPP1 gene are thought to result in reduced availability of pyrophosphate, leading to excessive calcification in the body and causing the signs and symptoms of GACI. GACI can also be caused by mutations in the ABCC6 gene. This gene provides instructions for making a protein called MRP6, also known as the ABCC6 protein. This protein is found primarily in the liver and kidneys, with small amounts in other tissues such as the skin, stomach, blood vessels, and eyes. MRP6 is thought to transport certain substances across the cell membrane; however, the substances have not been identified. Some studies suggest that the MRP6 protein stimulates the release of ATP from cells through an unknown mechanism, allowing it to be broken down into AMP and pyrophosphate and helping to control deposition of calcium and other minerals in the body as described above. Other studies suggest that a substance transported by MRP6 is involved in the breakdown of ATP. This unidentified substance is thought to help prevent mineralization of tissues. Mutations in the ABCC6 gene lead to an absent or nonfunctional MRP6 protein. It is unclear how a lack of properly functioning MRP6 protein leads to GACI. This shortage may impair the release of ATP from cells. As a result, little pyrophosphate is produced, and calcium accumulates in the blood vessels and other tissues affected by GACI. Alternatively, a lack of functioning MRP6 may impair the transport of a substance that would normally prevent mineralization, leading to the abnormal accumulation of calcium characteristic of GACI. Some people with GACI do not have mutations in the ENPP1 or ABCC6 gene. In these affected individuals, the cause of the disorder is unknown. | generalized arterial calcification of infancy |
Is generalized arterial calcification of infancy inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | generalized arterial calcification of infancy |
What are the treatments for generalized arterial calcification of infancy ? | These resources address the diagnosis or management of GACI: - Gene Review: Gene Review: Generalized Arterial Calcification of Infancy - Genetic Testing Registry: Generalized arterial calcification of infancy 2 These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | generalized arterial calcification of infancy |
What is (are) otopalatodigital syndrome type 1 ? | Otopalatodigital syndrome type 1 is a disorder primarily involving abnormalities in skeletal development. It is a member of a group of related conditions called otopalatodigital spectrum disorders, which also includes otopalatodigital syndrome type 2, frontometaphyseal dysplasia, and Melnick-Needles syndrome. In general, these disorders involve hearing loss caused by malformations in the tiny bones in the ears (ossicles), problems in the development of the roof of the mouth (palate), and skeletal abnormalities involving the fingers and/or toes (digits). Otopalatodigital syndrome type 1 is usually the mildest of the otopalatodigital spectrum disorders. People with this condition usually have characteristic facial features including wide-set and downward-slanting eyes; prominent brow ridges; and a small, flat nose. Affected individuals also have hearing loss and chest deformities. They have abnormalities of the fingers and toes, such as blunt, square-shaped (spatulate) fingertips; shortened thumbs and big toes; and unusually long second toes. Affected individuals may be born with an opening in the roof of the mouth (a cleft palate). They may have mildly bowed limbs, and limited range of motion in some joints. People with otopalatodigital syndrome type 1 may be somewhat shorter than other members of their family. Males with this disorder often have more severe signs and symptoms than do females, who may show only the characteristic facial features. | otopalatodigital syndrome type 1 |
How many people are affected by otopalatodigital syndrome type 1 ? | Otopalatodigital syndrome type 1 is a rare disorder, affecting fewer than 1 in every 100,000 individuals. Its specific incidence is unknown. | otopalatodigital syndrome type 1 |
What are the genetic changes related to otopalatodigital syndrome type 1 ? | Mutations in the FLNA gene cause otopalatodigital syndrome type 1. The FLNA gene provides instructions for producing the protein filamin A, which helps build the network of protein filaments (cytoskeleton) that gives structure to cells and allows them to change shape and move. Filamin A binds to another protein called actin, and helps the actin to form the branching network of filaments that make up the cytoskeleton. Filamin A also links actin to many other proteins to perform various functions within the cell. A small number of mutations in the FLNA gene have been identified in people with otopalatodigital syndrome type 1. The mutations all result in changes to the filamin A protein in the region that binds to actin. The mutations responsible for otopalatodigital syndrome type 1 are described as "gain-of-function" because they appear to enhance the activity of the filamin A protein or give the protein a new, atypical function. Researchers believe that the mutations may change the way the filamin A protein helps regulate processes involved in skeletal development, but it is not known how changes in the protein relate to the specific signs and symptoms of otopalatodigital syndrome type 1. | otopalatodigital syndrome type 1 |
Is otopalatodigital syndrome type 1 inherited ? | This condition is inherited in an X-linked dominant pattern. The gene associated with this condition is located on the X chromosome, which is one of the two sex chromosomes. In females (who have two X chromosomes), a mutation in one of the two copies of the gene in each cell is sufficient to cause the disorder. In males (who have only one X chromosome), a mutation in the only copy of the gene in each cell causes the disorder. In most cases, males experience more severe symptoms of the disorder than females. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons. | otopalatodigital syndrome type 1 |
What are the treatments for otopalatodigital syndrome type 1 ? | These resources address the diagnosis or management of otopalatodigital syndrome type 1: - Gene Review: Gene Review: Otopalatodigital Spectrum Disorders - Genetic Testing Registry: Oto-palato-digital syndrome, type I These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | otopalatodigital syndrome type 1 |
What is (are) oculodentodigital dysplasia ? | Oculodentodigital dysplasia is a condition that affects many parts of the body, particularly the eyes (oculo-), teeth (dento-), and fingers (digital). Common features in people with this condition are small eyes (microphthalmia) and other eye abnormalities that can lead to vision loss. Affected individuals also frequently have tooth abnormalities, such as small or missing teeth, weak enamel, multiple cavities, and early tooth loss. Other common features of this condition include a thin nose and webbing of the skin (syndactyly) between the fourth and fifth fingers. Less common features of oculodentodigital dysplasia include sparse hair growth (hypotrichosis), brittle nails, an unusual curvature of the fingers (camptodactyly), syndactyly of the toes, small head size (microcephaly), and an opening in the roof of the mouth (cleft palate). Some affected individuals experience neurological problems such as a lack of bladder or bowel control, difficulty coordinating movements (ataxia), abnormal muscle stiffness (spasticity), hearing loss, and impaired speech (dysarthria). A few people with oculodentodigital dysplasia also have a skin condition called palmoplantar keratoderma. Palmoplantar keratoderma causes the skin on the palms and the soles of the feet to become thick, scaly, and calloused. Some features of oculodentodigital dysplasia are evident at birth, while others become apparent with age. | oculodentodigital dysplasia |
How many people are affected by oculodentodigital dysplasia ? | The exact incidence of oculodentodigital dysplasia is unknown. It has been diagnosed in fewer than 1,000 people worldwide. More cases are likely undiagnosed. | oculodentodigital dysplasia |
What are the genetic changes related to oculodentodigital dysplasia ? | Mutations in the GJA1 gene cause oculodentodigital dysplasia. The GJA1 gene provides instructions for making a protein called connexin43. This protein forms one part (a subunit) of channels called gap junctions, which allow direct communication between cells. Gap junctions formed by connexin43 proteins are found in many tissues throughout the body. GJA1 gene mutations result in abnormal connexin43 proteins. Channels formed with abnormal proteins are often permanently closed. Some mutations prevent connexin43 proteins from traveling to the cell surface where they are needed to form channels between cells. Impaired functioning of these channels disrupts cell-to-cell communication, which likely interferes with normal cell growth and cell specialization, processes that determine the shape and function of many different parts of the body. These developmental problems cause the signs and symptoms of oculodentodigital dysplasia. | oculodentodigital dysplasia |
Is oculodentodigital dysplasia inherited ? | Most cases of oculodentodigital dysplasia are inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In some cases, an affected person inherits the mutation from one affected parent. Other cases result from new mutations in the gene and occur in people with no history of the disorder in their family. Less commonly, oculodentodigital dysplasia can be inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. Fewer than ten cases of autosomal recessive oculodentodigital dysplasia have been reported. | oculodentodigital dysplasia |
What are the treatments for oculodentodigital dysplasia ? | These resources address the diagnosis or management of oculodentodigital dysplasia: - Genetic Testing Registry: Oculodentodigital dysplasia - MedlinePlus Encyclopedia: Webbing of the fingers or toes - UC Davis Children's Hospital: Cleft and Craniofacial Reconstruction These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | oculodentodigital dysplasia |
What is (are) succinic semialdehyde dehydrogenase deficiency ? | Succinic semialdehyde dehydrogenase deficiency is a disorder that can cause a variety of neurological problems. People with this condition typically have developmental delay, especially involving speech development; intellectual disability; and decreased muscle tone (hypotonia) soon after birth. About half of those affected experience seizures, difficulty coordinating movements (ataxia), decreased reflexes (hyporeflexia), and behavioral problems. The most common behavioral problems associated with this condition are sleep disturbances, hyperactivity, difficulty maintaining attention, and anxiety. Less frequently, affected individuals may have increased aggression, hallucinations, obsessive-compulsive disorder (OCD), and self-injurious behavior, including biting and head banging. People with this condition can also have problems controlling eye movements. Less common features of succinic semialdehyde dehydrogenase deficiency include uncontrollable movements of the limbs (choreoathetosis), involuntary tensing of the muscles (dystonia), muscle twitches (myoclonus), and a progressive worsening of ataxia. | succinic semialdehyde dehydrogenase deficiency |
How many people are affected by succinic semialdehyde dehydrogenase deficiency ? | Approximately 350 people with succinic semialdehyde dehydrogenase deficiency have been reported worldwide. | succinic semialdehyde dehydrogenase deficiency |
What are the genetic changes related to succinic semialdehyde dehydrogenase deficiency ? | Mutations in the ALDH5A1 gene cause succinic semialdehyde dehydrogenase deficiency. The ALDH5A1 gene provides instructions for producing the succinic semialdehyde dehydrogenase enzyme. This enzyme is involved in the breakdown of a chemical that transmits signals in the brain (neurotransmitter) called gamma-amino butyric acid (GABA). The primary role of GABA is to prevent the brain from being overloaded with too many signals. A shortage (deficiency) of succinic semialdehyde dehydrogenase leads to an increase in the amount of GABA and a related molecule called gamma-hydroxybutyrate (GHB) in the body, particularly the brain and spinal cord (central nervous system). It is unclear how an increase in GABA and GHB causes developmental delay, seizures, and other signs and symptoms of succinic semialdehyde dehydrogenase deficiency. | succinic semialdehyde dehydrogenase deficiency |
Is succinic semialdehyde dehydrogenase deficiency inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | succinic semialdehyde dehydrogenase deficiency |
What are the treatments for succinic semialdehyde dehydrogenase deficiency ? | These resources address the diagnosis or management of succinic semialdehyde dehydrogenase deficiency: - Gene Review: Gene Review: Succinic Semialdehyde Dehydrogenase Deficiency - Genetic Testing Registry: Succinate-semialdehyde dehydrogenase deficiency - MedlinePlus Encyclopedia: Hyperactivity These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | succinic semialdehyde dehydrogenase deficiency |
What is (are) Muenke syndrome ? | Muenke syndrome is a condition characterized by the premature closure of certain bones of the skull (craniosynostosis) during development, which affects the shape of the head and face. Many people with this disorder have a premature fusion of skull bones along the coronal suture, the growth line which goes over the head from ear to ear. Other parts of the skull may be malformed as well. These changes can result in an abnormally shaped head, wide-set eyes, and flattened cheekbones. About 5 percent of affected individuals have an enlarged head (macrocephaly). People with Muenke syndrome may also have mild abnormalities of the hands or feet, and hearing loss has been observed in some cases. Most people with this condition have normal intellect, but developmental delay and learning disabilities are possible. The signs and symptoms of Muenke syndrome vary among affected people, and some findings overlap with those seen in other craniosynostosis syndromes. Between 6 percent and 7 percent of people with the gene mutation associated with Muenke syndrome do not have any of the characteristic features of the disorder. | Muenke syndrome |
How many people are affected by Muenke syndrome ? | Muenke syndrome occurs in about 1 in 30,000 newborns. This condition accounts for an estimated 8 percent of all cases of craniosynostosis. | Muenke syndrome |
What are the genetic changes related to Muenke syndrome ? | Mutations in the FGFR3 gene cause Muenke syndrome. The FGFR3 gene provides instructions for making a protein that is involved in the development and maintenance of bone and brain tissue. A single mutation in the FGFR3 gene is responsible for Muenke syndrome. This mutation causes the FGFR3 protein to be overly active, which interferes with normal bone growth and allows the bones of the skull to fuse before they should. | Muenke syndrome |
Is Muenke syndrome inherited ? | This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. | Muenke syndrome |
What are the treatments for Muenke syndrome ? | These resources address the diagnosis or management of Muenke syndrome: - Gene Review: Gene Review: FGFR-Related Craniosynostosis Syndromes - Gene Review: Gene Review: Muenke Syndrome - Genetic Testing Registry: Muenke syndrome - MedlinePlus Encyclopedia: Craniosynostosis These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Muenke syndrome |
What is (are) autoimmune Addison disease ? | Autoimmune Addison disease affects the function of the adrenal glands, which are small hormone-producing glands located on top of each kidney. It is classified as an autoimmune disorder because it results from a malfunctioning immune system that attacks the adrenal glands. As a result, the production of several hormones is disrupted, which affects many body systems. The signs and symptoms of autoimmune Addison disease can begin at any time, although they most commonly begin between ages 30 and 50. Common features of this condition include extreme tiredness (fatigue), nausea, decreased appetite, and weight loss. In addition, many affected individuals have low blood pressure (hypotension), which can lead to dizziness when standing up quickly; muscle cramps; and a craving for salty foods. A characteristic feature of autoimmune Addison disease is abnormally dark areas of skin (hyperpigmentation), especially in regions that experience a lot of friction, such as the armpits, elbows, knuckles, and palm creases. The lips and the inside lining of the mouth can also be unusually dark. Because of an imbalance of hormones involved in development of sexual characteristics, women with this condition may lose their underarm and pubic hair. Other signs and symptoms of autoimmune Addison disease include low levels of sugar (hypoglycemia) and sodium (hyponatremia) and high levels of potassium (hyperkalemia) in the blood. Affected individuals may also have a shortage of red blood cells (anemia) and an increase in the number of white blood cells (lymphocytosis), particularly those known as eosinophils (eosinophilia). Autoimmune Addison disease can lead to a life-threatening adrenal crisis, characterized by vomiting, abdominal pain, back or leg cramps, and severe hypotension leading to shock. The adrenal crisis is often triggered by a stressor, such as surgery, trauma, or infection. Individuals with autoimmune Addison disease or their family members often have another autoimmune disorder, most commonly autoimmune thyroid disease or type 1 diabetes. | autoimmune Addison disease |
How many people are affected by autoimmune Addison disease ? | Addison disease affects approximately 11 to 14 in 100,000 people of European descent. The autoimmune form of the disorder is the most common form in developed countries, accounting for up to 90 percent of cases. | autoimmune Addison disease |
What are the genetic changes related to autoimmune Addison disease ? | The cause of autoimmune Addison disease is complex and not completely understood. A combination of environmental and genetic factors plays a role in the disorder, and changes in multiple genes are thought to affect the risk of developing the condition. The genes that have been associated with autoimmune Addison disease participate in the body's immune response. The most commonly associated genes belong to a family of genes called the human leukocyte antigen (HLA) complex. The HLA complex helps the immune system distinguish the body's own proteins from proteins made by foreign invaders (such as viruses and bacteria). Each HLA gene has many different normal variations, allowing each person's immune system to react to a wide range of foreign proteins. The most well-known risk factor for autoimmune Addison disease is a variant of the HLA-DRB1 gene called HLA-DRB1*04:04. This and other disease-associated HLA gene variants likely contribute to an inappropriate immune response that leads to autoimmune Addison disease, although the mechanism is unknown. Normally, the immune system responds only to proteins made by foreign invaders, not to the body's own proteins. In autoimmune Addison disease, however, an immune response is triggered by a normal adrenal gland protein, typically a protein called 21-hydroxylase. This protein plays a key role in producing certain hormones in the adrenal glands. The prolonged immune attack triggered by 21-hydroxylase damages the adrenal glands (specifically the outer layers of the glands known, collectively, as the adrenal cortex), preventing hormone production. A shortage of adrenal hormones (adrenal insufficiency) disrupts several normal functions in the body, leading to hypoglycemia, hyponatremia, hypotension, muscle cramps, skin hyperpigmentation and other features of autoimmune Addison disease. Rarely, Addison disease is not caused by an autoimmune reaction. Other causes include infections that damage the adrenal glands, such as tuberculosis, or tumors in the adrenal glands. Addison disease can also be one of several features of other genetic conditions, including X-linked adrenoleukodystrophy and autoimmune polyglandular syndrome, type 1, which are caused by mutations in other genes. | autoimmune Addison disease |
Is autoimmune Addison disease inherited ? | A predisposition to develop autoimmune Addison disease is passed through generations in families, but the inheritance pattern is unknown. | autoimmune Addison disease |
What are the treatments for autoimmune Addison disease ? | These resources address the diagnosis or management of autoimmune Addison disease: - Genetic Testing Registry: Addison's disease - MedlinePlus Encyclopedia: Addison's Disease These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | autoimmune Addison disease |
What is (are) peroxisomal acyl-CoA oxidase deficiency ? | Peroxisomal acyl-CoA oxidase deficiency is a disorder that causes deterioration of nervous system functions (neurodegeneration) beginning in infancy. Newborns with peroxisomal acyl-CoA oxidase deficiency have weak muscle tone (hypotonia) and seizures. They may have unusual facial features, including widely spaced eyes (hypertelorism), a low nasal bridge, and low-set ears. Extra fingers or toes (polydactyly) or an enlarged liver (hepatomegaly) also occur in some affected individuals. Most babies with peroxisomal acyl-CoA oxidase deficiency learn to walk and begin speaking, but they experience a gradual loss of these skills (developmental regression), usually beginning between the ages of 1 and 3. As the condition gets worse, affected children develop exaggerated reflexes (hyperreflexia), increased muscle tone (hypertonia), more severe and recurrent seizures (epilepsy), and loss of vision and hearing. Most children with peroxisomal acyl-CoA oxidase deficiency do not survive past early childhood. | peroxisomal acyl-CoA oxidase deficiency |
How many people are affected by peroxisomal acyl-CoA oxidase deficiency ? | Peroxisomal acyl-CoA oxidase deficiency is a rare disorder. Its prevalence is unknown. Only a few dozen cases have been described in the medical literature. | peroxisomal acyl-CoA oxidase deficiency |
What are the genetic changes related to peroxisomal acyl-CoA oxidase deficiency ? | Peroxisomal acyl-CoA oxidase deficiency is caused by mutations in the ACOX1 gene, which provides instructions for making an enzyme called peroxisomal straight-chain acyl-CoA oxidase. This enzyme is found in sac-like cell structures (organelles) called peroxisomes, which contain a variety of enzymes that break down many different substances. The peroxisomal straight-chain acyl-CoA oxidase enzyme plays a role in the breakdown of certain fat molecules called very long-chain fatty acids (VLCFAs). Specifically, it is involved in the first step of a process called the peroxisomal fatty acid beta-oxidation pathway. This process shortens the VLCFA molecules by two carbon atoms at a time until the VLCFAs are converted to a molecule called acetyl-CoA, which is transported out of the peroxisomes for reuse by the cell. ACOX1 gene mutations prevent the peroxisomal straight-chain acyl-CoA oxidase enzyme from breaking down VLCFAs efficiently. As a result, these fatty acids accumulate in the body. It is unclear exactly how VLCFA accumulation leads to the specific features of peroxisomal acyl-CoA oxidase deficiency. However, researchers suggest that the abnormal fatty acid accumulation triggers inflammation in the nervous system that leads to the breakdown of myelin, which is the covering that protects nerves and promotes the efficient transmission of nerve impulses. Destruction of myelin leads to a loss of myelin-containing tissue (white matter) in the brain and spinal cord; loss of white matter is described as leukodystrophy. Leukodystrophy is likely involved in the development of the neurological abnormalities that occur in peroxisomal acyl-CoA oxidase deficiency. | peroxisomal acyl-CoA oxidase deficiency |
Is peroxisomal acyl-CoA oxidase deficiency inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | peroxisomal acyl-CoA oxidase deficiency |
What are the treatments for peroxisomal acyl-CoA oxidase deficiency ? | These resources address the diagnosis or management of peroxisomal acyl-CoA oxidase deficiency: - Gene Review: Gene Review: Leukodystrophy Overview - Genetic Testing Registry: Pseudoneonatal adrenoleukodystrophy These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | peroxisomal acyl-CoA oxidase deficiency |
What is (are) familial dilated cardiomyopathy ? | Familial dilated cardiomyopathy is a genetic form of heart disease. It occurs when heart (cardiac) muscle becomes stretched out in at least one chamber of the heart, causing the open area of the chamber to become enlarged (dilated). As a result, the heart is unable to pump blood as efficiently as usual. Eventually, all four chambers of the heart become dilated as the cardiac muscle tries to increase the amount of blood being pumped through the heart. However, as the cardiac muscle becomes increasingly thin and weakened, it is less able to pump blood. Over time, this condition results in heart failure. It usually takes many years for symptoms of familial dilated cardiomyopathy to appear. They typically begin in mid-adulthood, but can occur at any time from infancy to late adulthood. Signs and symptoms of familial dilated cardiomyopathy can include an irregular heartbeat (arrhythmia), shortness of breath (dyspnea), extreme tiredness (fatigue), fainting episodes (syncope), and swelling of the legs and feet. In some cases, the first sign of the disorder is sudden cardiac death. The severity of the condition varies among affected individuals, even in members of the same family. | familial dilated cardiomyopathy |
How many people are affected by familial dilated cardiomyopathy ? | It is estimated that 750,000 people in the United States have dilated cardiomyopathy; roughly half of these cases are familial. | familial dilated cardiomyopathy |
What are the genetic changes related to familial dilated cardiomyopathy ? | Mutations in more than 30 genes have been found to cause familial dilated cardiomyopathy. These genes provide instructions for making proteins that are found in cardiac muscle cells called cardiomyocytes. Many of these proteins play important roles in the contraction of the cardiac muscle through their association with cell structures called sarcomeres. Sarcomeres are the basic units of muscle contraction; they are made of proteins that generate the mechanical force needed for muscles to contract. Many other proteins associated with familial dilated cardiomyopathy make up the structural framework (the cytoskeleton) of cardiomyocytes. The remaining proteins play various roles within cardiomyocytes to ensure their proper functioning. Mutations in one gene, TTN, account for approximately 20 percent of cases of familial dilated cardiomyopathy. The TTN gene provides instructions for making a protein called titin, which is found in the sarcomeres of many types of muscle cells, including cardiomyocytes. Titin has several functions within sarcomeres. One of its most important jobs is to provide structure, flexibility, and stability to these cell structures. Titin also plays a role in chemical signaling and in assembling new sarcomeres. The TTN gene mutations that cause familial dilated cardiomyopathy result in the production of an abnormally short titin protein. It is unclear how the altered protein causes familial dilated cardiomyopathy, but it is likely that it impairs sarcomere function and disrupts chemical signaling. It is unclear how mutations in the other genes cause familial dilated cardiomyopathy. It is likely that the changes impair cardiomyocyte function and reduce the ability of these cells to contract, weakening and thinning cardiac muscle. People with familial dilated cardiomyopathy often do not have an identified mutation in any of the known associated genes. The cause of the condition in these individuals is unknown. Familial dilated cardiomyopathy is described as nonsyndromic or isolated because it typically affects only the heart. However, dilated cardiomyopathy can also occur as part of syndromes that affect other organs and tissues in the body. These forms of the condition are described as syndromic and are caused by mutations in other genes. Additionally, there are many nongenetic causes of dilated cardiomyopathy, including viral infection and chronic alcohol abuse. | familial dilated cardiomyopathy |
Is familial dilated cardiomyopathy inherited ? | Familial dilated cardiomyopathy has different inheritance patterns depending on the gene involved. In 80 to 90 percent of cases, familial dilated cardiomyopathy is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In most cases, an affected person inherits the mutation from one affected parent. However, some people who inherit the altered gene never develop features of familial dilated cardiomyopathy. (This situation is known as reduced penetrance.) Other cases result from new mutations in the gene and occur in people with no history of the disorder in their family. In rare instances, this condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. In other rare cases, this condition is inherited in an X-linked pattern. In these cases, the gene associated with this condition is located on the X chromosome, which is one of the two sex chromosomes. In females (who have two X chromosomes), a mutation in one of the two copies of the gene in each cell increases the risk of developing heart disease, but females with such a mutation may not develop familial dilated cardiomyopathy. In males (who have only one X chromosome), a mutation in the only copy of the gene in each cell causes familial dilated cardiomyopathy. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons. | familial dilated cardiomyopathy |
What are the treatments for familial dilated cardiomyopathy ? | These resources address the diagnosis or management of familial dilated cardiomyopathy: - Cincinnati Children's Hospital - Gene Review: Gene Review: Dilated Cardiomyopathy Overview - Gene Review: Gene Review: Dystrophinopathies - Gene Review: Gene Review: LMNA-Related Dilated Cardiomyopathy - MedlinePlus Encyclopedia: Dilated Cardiomyopathy - National Heart, Lung, and Blood Institute: How Is Cardiomyopathy Treated? - Seattle Children's Hospital: Cardiomyopathy Treatment Options - The Sarcomeric Human Cardiomyopathies Registry (ShaRe) These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | familial dilated cardiomyopathy |
What is (are) McKusick-Kaufman syndrome ? | McKusick-Kaufman syndrome is a condition that affects the development of the hands and feet, heart, and reproductive system. It is characterized by a combination of three features: extra fingers and/or toes (polydactyly), heart defects, and genital abnormalities. Most females with McKusick-Kaufman syndrome are born with a genital abnormality called hydrometrocolpos, which is a large accumulation of fluid in the pelvis. Hydrometrocolpos results from a blockage of the vagina before birth, which can occur if part of the vagina fails to develop (vaginal agenesis) or if a membrane blocks the opening of the vagina. This blockage allows fluid to build up in the vagina and uterus, stretching these organs and leading to a fluid-filled mass. Genital abnormalities in males with McKusick-Kaufman syndrome can include placement of the urethral opening on the underside of the penis (hypospadias), a downward-curving penis (chordee), and undescended testes (cryptorchidism). The signs and symptoms of McKusick-Kaufman syndrome overlap significantly with those of another genetic disorder, Bardet-Biedl syndrome. Bardet-Biedl syndrome has several features that are not seen in McKusick-Kaufman syndrome, however. These include vision loss, delayed development, obesity, and kidney (renal) failure. Because some of these features are not apparent at birth, the two conditions can be difficult to tell apart in infancy and early childhood. | McKusick-Kaufman syndrome |
How many people are affected by McKusick-Kaufman syndrome ? | This condition was first described in the Old Order Amish population, where it affects an estimated 1 in 10,000 people. The incidence of McKusick-Kaufman syndrome in non-Amish populations is unknown. | McKusick-Kaufman syndrome |
What are the genetic changes related to McKusick-Kaufman syndrome ? | Mutations in the MKKS gene cause McKusick-Kaufman syndrome. This gene provides instructions for making a protein that plays an important role in the formation of the limbs, heart, and reproductive system. The protein's structure suggests that it may act as a chaperonin, which is a type of protein that helps fold other proteins. Proteins must be folded into the correct 3-dimensional shape to perform their usual functions in the body. Although the structure of the MKKS protein is similar to that of a chaperonin, some recent studies have suggested that protein folding may not be this protein's primary function. Researchers speculate that the MKKS protein also may be involved in transporting other proteins within the cell. The mutations that underlie McKusick-Kaufman syndrome alter the structure of the MKKS protein. Although the altered protein disrupts the development of several parts of the body before birth, it is unclear how MKKS mutations lead to the specific features of this disorder. | McKusick-Kaufman syndrome |
Is McKusick-Kaufman syndrome inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | McKusick-Kaufman syndrome |
What are the treatments for McKusick-Kaufman syndrome ? | These resources address the diagnosis or management of McKusick-Kaufman syndrome: - Gene Review: Gene Review: McKusick-Kaufman Syndrome - Genetic Testing Registry: McKusick Kaufman syndrome - MedlinePlus Encyclopedia: Polydactyly These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | McKusick-Kaufman syndrome |
What is (are) piebaldism ? | Piebaldism is a condition characterized by the absence of cells called melanocytes in certain areas of the skin and hair. Melanocytes produce the pigment melanin, which contributes to hair, eye, and skin color. The absence of melanocytes leads to patches of skin and hair that are lighter than normal. Approximately 90 percent of affected individuals have a white section of hair near their front hairline (a white forelock). The eyelashes, the eyebrows, and the skin under the forelock may also be unpigmented. People with piebaldism usually have other unpigmented patches of skin, typically appearing symmetrically on both sides of the body. There may be spots or patches of pigmented skin within or around the borders of the unpigmented areas. In most cases, the unpigmented areas are present at birth and do not increase in size or number. The unpigmented patches are at increased risk of sunburn and skin cancer related to excessive sun exposure. Some people with piebaldism are self-conscious about the appearance of the unpigmented patches, which may be more noticeable in darker-skinned people. Aside from these potential issues, this condition has no effect on the health of the affected individual. | piebaldism |
How many people are affected by piebaldism ? | The prevalence of piebaldism is unknown. | piebaldism |
What are the genetic changes related to piebaldism ? | Piebaldism can be caused by mutations in the KIT and SNAI2 genes. Piebaldism may also be a feature of other conditions, such as Waardenburg syndrome; these conditions have other genetic causes and additional signs and symptoms. The KIT gene provides instructions for making a protein that is involved in signaling within cells. KIT protein signaling is important for the development of certain cell types, including melanocytes. The KIT gene mutations responsible for piebaldism lead to a nonfunctional KIT protein. The loss of KIT signaling is thought to disrupt the growth and division (proliferation) and movement (migration) of melanocytes during development, resulting in patches of skin that lack pigmentation. The SNAI2 gene (often called SLUG) provides instructions for making a protein called snail 2. Research indicates that the snail 2 protein is required during embryonic growth for the development of cells called neural crest cells. Neural crest cells migrate from the developing spinal cord to specific regions in the embryo and give rise to many tissues and cell types, including melanocytes. The snail 2 protein probably plays a role in the formation and survival of melanocytes. SNAI2 gene mutations that cause piebaldism probably reduce the production of the snail 2 protein. Shortage of the snail 2 protein may disrupt the development of melanocytes in certain areas of the skin and hair, causing the patchy loss of pigment. Piebaldism is sometimes mistaken for another condition called vitiligo, which also causes unpigmented patches of skin. People are not born with vitiligo, but acquire it later in life, and it is not caused by specific genetic mutations. For unknown reasons, in people with vitiligo the immune system appears to damage the melanocytes in the skin. | piebaldism |
Is piebaldism inherited ? | This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. | piebaldism |
What are the treatments for piebaldism ? | These resources address the diagnosis or management of piebaldism: - Genetic Testing Registry: Partial albinism These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | piebaldism |
What is (are) essential tremor ? | Essential tremor is a movement disorder that causes involuntary, rhythmic shaking (tremor), especially in the hands. It is distinguished from tremor that results from other disorders or known causes, such as Parkinson disease or head trauma. Essential tremor usually occurs alone, without other neurological signs or symptoms. However, some experts think that essential tremor can include additional features, such as mild balance problems. Essential tremor usually occurs with movements and can occur during many different types of activities, such as eating, drinking, or writing. Essential tremor can also occur when the muscles are opposing gravity, such as when the hands are extended. It is usually not evident at rest. In addition to the hands and arms, muscles of the trunk, face, head, and neck may also exhibit tremor in this disorder; the legs and feet are less often involved. Head tremor may appear as a "yes-yes" or "no-no" movement while the affected individual is seated or standing. In some people with essential tremor, the tremor may affect the voice (vocal tremor). Essential tremor does not shorten the lifespan. However, it may interfere with fine motor skills such as using eating utensils, writing, shaving, or applying makeup, and in some cases these and other activities of daily living can be greatly impaired. Symptoms of essential tremor may be aggravated by emotional stress, anxiety, fatigue, hunger, caffeine, cigarette smoking, or temperature extremes. Essential tremor may appear at any age but is most common in the elderly. Some studies have suggested that people with essential tremor have a higher than average risk of developing neurological conditions including Parkinson disease or sensory problems such as hearing loss, especially in individuals whose tremor appears after age 65. | essential tremor |
How many people are affected by essential tremor ? | Essential tremor is a common disorder, affecting up to 10 million people in the United States. Estimates of its prevalence vary widely because several other disorders, as well as other factors such as certain medications, can result in similar tremors. In addition, mild cases are often not brought to medical attention, or may not be detected in clinical exams that do not include the particular circumstances in which an individual's tremor occurs. Severe cases are often misdiagnosed as Parkinson disease. | essential tremor |
What are the genetic changes related to essential tremor ? | The causes of essential tremor are unknown. Researchers are studying several areas (loci) on particular chromosomes that may be linked to essential tremor, but no specific genetic associations have been confirmed. Several genes as well as environmental factors likely help determine an individual's risk of developing this complex condition. The specific changes in the nervous system that account for the signs and symptoms of essential tremor are unknown. | essential tremor |
Is essential tremor inherited ? | Essential tremor can be passed through generations in families, but the inheritance pattern varies. In most affected families, essential tremor appears to be inherited in an autosomal dominant pattern, which means one copy of an altered gene in each cell is sufficient to cause the disorder, although no genes that cause essential tremor have been identified. In other families, the inheritance pattern is unclear. Essential tremor may also appear in people with no history of the disorder in their family. In some families, some individuals have essential tremor while others have other movement disorders, such as involuntary muscle tensing (dystonia). The potential genetic connection between essential tremor and other movement disorders is an active area of research. | essential tremor |
What are the treatments for essential tremor ? | These resources address the diagnosis or management of essential tremor: - Genetic Testing Registry: Hereditary essential tremor 1 - Johns Hopkins Movement Disorders Center - MedlinePlus Encyclopedia: Essential Tremor These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | essential tremor |
What is (are) pyruvate carboxylase deficiency ? | Pyruvate carboxylase deficiency is an inherited disorder that causes lactic acid and other potentially toxic compounds to accumulate in the blood. High levels of these substances can damage the body's organs and tissues, particularly in the nervous system. Researchers have identified at least three types of pyruvate carboxylase deficiency, which are distinguished by the severity of their signs and symptoms. Type A, which has been identified mostly in people from North America, has moderately severe symptoms that begin in infancy. Characteristic features include developmental delay and a buildup of lactic acid in the blood (lactic acidosis). Increased acidity in the blood can lead to vomiting, abdominal pain, extreme tiredness (fatigue), muscle weakness, and difficulty breathing. In some cases, episodes of lactic acidosis are triggered by an illness or periods without food (fasting). Children with pyruvate carboxylase deficiency type A typically survive only into early childhood. Pyruvate carboxylase deficiency type B has life-threatening signs and symptoms that become apparent shortly after birth. This form of the condition has been reported mostly in Europe, particularly France. Affected infants have severe lactic acidosis, a buildup of ammonia in the blood (hyperammonemia), and liver failure. They experience neurological problems including weak muscle tone (hypotonia), abnormal movements, seizures, and coma. Infants with this form of the condition usually survive for less than 3 months after birth. A milder form of pyruvate carboxylase deficiency, sometimes called type C, has also been described. This type is characterized by slightly increased levels of lactic acid in the blood and minimal signs and symptoms affecting the nervous system. | pyruvate carboxylase deficiency |
How many people are affected by pyruvate carboxylase deficiency ? | Pyruvate carboxylase deficiency is a rare condition, with an estimated incidence of 1 in 250,000 births worldwide. This disorder appears to be much more common in some Algonkian Indian tribes in eastern Canada. | pyruvate carboxylase deficiency |
What are the genetic changes related to pyruvate carboxylase deficiency ? | Mutations in the PC gene cause pyruvate carboxylase deficiency. The PC gene provides instructions for making an enzyme called pyruvate carboxylase. This enzyme is active in mitochondria, which are the energy-producing centers within cells. It is involved in several important cellular functions including the generation of glucose, a simple sugar that is the body's main energy source. Pyruvate carboxylase also plays a role in the formation of the protective sheath that surrounds certain nerve cells (myelin) and the production of brain chemicals called neurotransmitters. Mutations in the PC gene reduce the amount of pyruvate carboxylase in cells or disrupt the enzyme's activity. The missing or altered enzyme cannot carry out its essential role in generating glucose, which impairs the body's ability to make energy in mitochondria. Additionally, a loss of pyruvate carboxylase allows potentially toxic compounds such as lactic acid and ammonia to build up and damage organs and tissues. Researchers suggest that the loss of pyruvate carboxylase function in the nervous system, particularly the role of the enzyme in myelin formation and neurotransmitter production, also contributes to the neurologic features of pyruvate carboxylase deficiency. | pyruvate carboxylase deficiency |
Is pyruvate carboxylase deficiency inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | pyruvate carboxylase deficiency |
What are the treatments for pyruvate carboxylase deficiency ? | These resources address the diagnosis or management of pyruvate carboxylase deficiency: - Gene Review: Gene Review: Pyruvate Carboxylase Deficiency - Genetic Testing Registry: Pyruvate carboxylase deficiency These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | pyruvate carboxylase deficiency |
What is (are) iron-refractory iron deficiency anemia ? | Iron-refractory iron deficiency anemia is one of many types of anemia, which is a group of conditions characterized by a shortage of healthy red blood cells. This shortage prevents the blood from carrying an adequate supply of oxygen to the body's tissues. Iron-refractory iron deficiency anemia results from an inadequate amount (deficiency) of iron in the bloodstream. It is described as "iron-refractory" because the condition is totally resistant (refractory) to treatment with iron given orally and partially resistant to iron given in other ways, such as intravenously (by IV). In people with this form of anemia, red blood cells are abnormally small (microcytic) and pale (hypochromic). The symptoms of iron-refractory iron deficiency anemia can include tiredness (fatigue), weakness, pale skin, and other complications. These symptoms are most pronounced during childhood, although they tend to be mild. Affected individuals usually have normal growth and development. | iron-refractory iron deficiency anemia |
How many people are affected by iron-refractory iron deficiency anemia ? | Although iron deficiency anemia is relatively common, the prevalence of the iron-refractory form of the disease is unknown. At least 50 cases have been described in the medical literature. Researchers suspect that iron-refractory iron deficiency anemia is underdiagnosed because affected individuals with very mild symptoms may never come to medical attention. | iron-refractory iron deficiency anemia |
What are the genetic changes related to iron-refractory iron deficiency anemia ? | Mutations in the TMPRSS6 gene cause iron-refractory iron deficiency anemia. This gene provides instructions for making a protein called matriptase-2, which helps regulate iron levels in the body. TMPRSS6 gene mutations reduce or eliminate functional matriptase-2, which disrupts iron regulation and leads to a shortage of iron in the bloodstream. Iron is an essential component of hemoglobin, which is the molecule in red blood cells that carries oxygen. When not enough iron is available in the bloodstream, less hemoglobin is produced, causing red blood cells to be abnormally small and pale. The abnormal cells cannot carry oxygen effectively to the body's cells and tissues, which leads to fatigue, weakness, and other symptoms of anemia. | iron-refractory iron deficiency anemia |
Is iron-refractory iron deficiency anemia inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | iron-refractory iron deficiency anemia |
What are the treatments for iron-refractory iron deficiency anemia ? | These resources address the diagnosis or management of iron-refractory iron deficiency anemia: - National Heart, Lung, and Blood Institute: How is Anemia Diagnosed? - National Heart, Lung, and Blood Institute: How is Anemia Treated? These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | iron-refractory iron deficiency anemia |
What is (are) Greenberg dysplasia ? | Greenberg dysplasia is a severe condition characterized by specific bone abnormalities in the developing fetus. This condition is fatal before birth. The bones of affected individuals do not develop properly, causing a distinctive spotted appearance called moth-eaten bone, which is visible on x-ray images. In addition, the bones have abnormal calcium deposits (ectopic calcification). Affected individuals have extremely short bones in the arms and legs and abnormally flat vertebrae (platyspondyly). Other skeletal abnormalities may include short ribs and extra fingers (polydactyly). In addition, affected fetuses have extensive swelling of the body caused by fluid accumulation (hydrops fetalis). Greenberg dysplasia is also called hydrops-ectopic calcification-moth-eaten skeletal dysplasia (HEM), which reflects the condition's most common features. | Greenberg dysplasia |
How many people are affected by Greenberg dysplasia ? | Greenberg dysplasia is a very rare condition. Approximately ten cases have been reported in the scientific literature. | Greenberg dysplasia |
What are the genetic changes related to Greenberg dysplasia ? | Mutations in the LBR gene cause Greenberg dysplasia. This gene provides instructions for making a protein called the lamin B receptor. One region of this protein, called the sterol reductase domain, plays an important role in the production (synthesis) of cholesterol. Cholesterol is a type of fat that is produced in the body and obtained from foods that come from animals: eggs, meat, fish, and dairy products. Cholesterol is necessary for normal embryonic development and has important functions both before and after birth. Cholesterol is an important component of cell membranes and the protective substance covering nerve cells (myelin). Additionally, cholesterol plays a role in the production of certain hormones and digestive acids. During cholesterol synthesis, the sterol reductase function of the lamin B receptor allows the protein to perform one of several steps that convert a molecule called lanosterol to cholesterol. LBR gene mutations involved in Greenberg dysplasia lead to loss of the sterol reductase function of the lamin B receptor, and research suggests that this loss causes the condition. Absence of the sterol reductase function disrupts the normal synthesis of cholesterol within cells. This absence may also allow potentially toxic byproducts of cholesterol synthesis to build up in the body's tissues. Researchers suspect that low cholesterol levels or an accumulation of other substances disrupts the growth and development of many parts of the body. It is not known, however, how a disturbance of cholesterol synthesis leads to the specific features of Greenberg dysplasia. | Greenberg dysplasia |
Is Greenberg dysplasia inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | Greenberg dysplasia |
What are the treatments for Greenberg dysplasia ? | These resources address the diagnosis or management of Greenberg dysplasia: - Genetic Testing Registry: Greenberg dysplasia - Lurie Children's Hospital of Chicago: Fetal Skeletal Dysplasia These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Greenberg dysplasia |
What is (are) long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency ? | Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency is a rare condition that prevents the body from converting certain fats to energy, particularly during periods without food (fasting). Signs and symptoms of LCHAD deficiency typically appear during infancy or early childhood and can include feeding difficulties, lack of energy (lethargy), low blood sugar (hypoglycemia), weak muscle tone (hypotonia), liver problems, and abnormalities in the light-sensitive tissue at the back of the eye (retina). Later in childhood, people with this condition may experience muscle pain, breakdown of muscle tissue, and a loss of sensation in their arms and legs (peripheral neuropathy). Individuals with LCHAD deficiency are also at risk for serious heart problems, breathing difficulties, coma, and sudden death. Problems related to LCHAD deficiency can be triggered by periods of fasting or by illnesses such as viral infections. This disorder is sometimes mistaken for Reye syndrome, a severe disorder that may develop in children while they appear to be recovering from viral infections such as chicken pox or flu. Most cases of Reye syndrome are associated with the use of aspirin during these viral infections. | long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency |
How many people are affected by long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency ? | The incidence of LCHAD deficiency is unknown. One estimate, based on a Finnish population, indicates that 1 in 62,000 pregnancies is affected by this disorder. In the United States, the incidence is probably much lower. | long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency |
What are the genetic changes related to long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency ? | Mutations in the HADHA gene cause LCHAD deficiency. The HADHA gene provides instructions for making part of an enzyme complex called mitochondrial trifunctional protein. This enzyme complex functions in mitochondria, the energy-producing centers within cells. As the name suggests, mitochondrial trifunctional protein contains three enzymes that each perform a different function. This enzyme complex is required to break down (metabolize) a group of fats called long-chain fatty acids. Long-chain fatty acids are found in foods such as milk and certain oils. These fatty acids are stored in the body's fat tissues. Fatty acids are a major source of energy for the heart and muscles. During periods of fasting, fatty acids are also an important energy source for the liver and other tissues. Mutations in the HADHA gene that cause LCHAD deficiency disrupt one of the functions of this enzyme complex. These mutations prevent the normal processing of long-chain fatty acids from food and body fat. As a result, these fatty acids are not converted to energy, which can lead to some features of this disorder, such as lethargy and hypoglycemia. Long-chain fatty acids or partially metabolized fatty acids may also build up and damage the liver, heart, muscles, and retina. This abnormal buildup causes the other signs and symptoms of LCHAD deficiency. | long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency |
Is long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency |
What are the treatments for long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency ? | These resources address the diagnosis or management of LCHAD deficiency: - Baby's First Test - Genetic Testing Registry: Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency - MedlinePlus Encyclopedia: Hypoglycemia - MedlinePlus Encyclopedia: Peripheral Neuropathy These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency |
What is (are) autosomal dominant congenital stationary night blindness ? | Autosomal dominant congenital stationary night blindness is a disorder of the retina, which is the specialized tissue at the back of the eye that detects light and color. People with this condition typically have difficulty seeing and distinguishing objects in low light (night blindness). For example, they are not able to identify road signs at night and some people cannot see stars in the night sky. Affected individuals have normal daytime vision and typically do not have other vision problems related to this disorder. The night blindness associated with this condition is congenital, which means it is present from birth. This vision impairment tends to remain stable (stationary); it does not worsen over time. | autosomal dominant congenital stationary night blindness |
How many people are affected by autosomal dominant congenital stationary night blindness ? | Autosomal dominant congenital stationary night blindness is likely a rare disease; however, its prevalence is unknown. | autosomal dominant congenital stationary night blindness |
What are the genetic changes related to autosomal dominant congenital stationary night blindness ? | Mutations in the RHO, GNAT1, or PDE6B gene cause autosomal dominant congenital stationary night blindness. The proteins produced from these genes are necessary for normal vision, particularly in low-light conditions. These proteins are found in specialized light receptor cells in the retina called rods. Rods transmit visual signals from the eye to the brain when light is dim. The RHO gene provides instructions for making a protein called rhodopsin, which is turned on (activated) by light entering the eye. Rhodopsin then attaches (binds) to and activates the protein produced from the GNAT1 gene, alpha ()-transducin. The -transducin protein then triggers the activation of a protein called cGMP-PDE, which is made up of multiple parts (subunits) including a subunit produced from the PDE6B gene. Activated cGMP-PDE triggers a series of chemical reactions that create electrical signals. These signals are transmitted from rod cells to the brain, where they are interpreted as vision. Mutations in the RHO, GNAT1, or PDE6B gene disrupt the normal signaling that occurs within rod cells. As a result, the rods cannot effectively transmit signals to the brain, leading to a lack of visual perception in low light. | autosomal dominant congenital stationary night blindness |
Is autosomal dominant congenital stationary night blindness inherited ? | This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. | autosomal dominant congenital stationary night blindness |
What are the treatments for autosomal dominant congenital stationary night blindness ? | These resources address the diagnosis or management of autosomal dominant congenital stationary night blindness: - Genetic Testing Registry: Congenital stationary night blindness These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | autosomal dominant congenital stationary night blindness |
What is (are) X-linked intellectual disability, Siderius type ? | X-linked intellectual disability, Siderius type is a condition characterized by mild to moderate intellectual disability that affects only males. Affected boys often have delayed development of motor skills such as walking, and their speech may be delayed. Individuals with X-linked intellectual disability, Siderius type frequently also have an opening in the lip (cleft lip) with an opening in the roof of the mouth (cleft palate). A cleft can occur on one or both sides of the upper lip. Some boys and men with this condition have distinctive facial features, including a long face, a sloping forehead, a broad nasal bridge, a prominent bone in the lower forehead (supraorbital ridge), and outside corners of the eyes that point upward (upslanting palpebral fissures). Affected individuals may also have low-set ears and large hands. | X-linked intellectual disability, Siderius type |
How many people are affected by X-linked intellectual disability, Siderius type ? | While X-linked intellectual disability of all types and causes is relatively common, with a prevalence of 1 in 600 to 1,000 males, the prevalence of the Siderius type is unknown. Only a few affected families have been described in the scientific literature. | X-linked intellectual disability, Siderius type |
What are the genetic changes related to X-linked intellectual disability, Siderius type ? | X-linked intellectual disability, Siderius type is caused by mutations in the PHF8 gene. This gene provides instructions for making a protein that is found in the nucleus of cells, particularly in brain cells before and just after birth. The PHF8 protein attaches (binds) to complexes called chromatin to regulate the activity (expression) of other genes. Chromatin is the network of DNA and protein that packages DNA into chromosomes. Binding with the PHF8 protein is part of the process that changes the structure of chromatin (chromatin remodeling) to alter how tightly regions of DNA are packaged. Chromatin remodeling is one way gene expression is regulated; when DNA is tightly packed, gene expression is often lower than when DNA is loosely packed. Most PHF8 gene mutations lead to an abnormally short protein that gets transported out of the cell's nucleus. Outside of the nucleus, the PHF8 protein cannot interact with chromatin to regulate gene expression. While the exact disease mechanism is unknown, it is likely that a lack of PHF8 protein in the nucleus of brain cells before birth prevents chromatin remodeling, altering the normal expression of genes involved in intellectual function and formation of structures along the midline of the skull. This altered gene expression leads to intellectual disability, cleft lip and palate, and the other features of X-linked intellectual disability, Siderius type. | X-linked intellectual disability, Siderius type |
Is X-linked intellectual disability, Siderius type inherited ? | This condition is inherited in an X-linked recessive pattern. The gene associated with this condition is located on the X chromosome, which is one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. In females (who have two X chromosomes), a mutation would have to occur in both copies of the gene to cause the disorder. Because it is unlikely that females will have two altered copies of this gene, males are affected by X-linked recessive disorders much more frequently than females. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons. | X-linked intellectual disability, Siderius type |
What are the treatments for X-linked intellectual disability, Siderius type ? | These resources address the diagnosis or management of X-linked intellectual disability, Siderius type: - Cincinnati Children's Hospital: Cleft Lip / Cleft Palate Bottle Feeding - Cleveland Clinic: Cleft Lip & Palate Surgery - Genetic Testing Registry: Siderius X-linked mental retardation syndrome - Nemours Children's Health System: Cleft Lip and Palate These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | X-linked intellectual disability, Siderius type |
What is (are) fatty acid hydroxylase-associated neurodegeneration ? | Fatty acid hydroxylase-associated neurodegeneration (FAHN) is a progressive disorder of the nervous system (neurodegeneration) characterized by problems with movement and vision that begin during childhood or adolescence. Changes in the way a person walks (gait) and frequent falls are usually the first noticeable signs of FAHN. Affected individuals gradually develop extreme muscle stiffness (spasticity) and exaggerated reflexes. They typically have involuntary muscle cramping (dystonia), problems with coordination and balance (ataxia), or both. The movement problems worsen over time, and some people with this condition eventually require wheelchair assistance. People with FAHN often develop vision problems, which occur due to deterioration (atrophy) of the nerves that carry information from the eyes to the brain (the optic nerves) and difficulties with the muscles that control eye movement. Affected individuals may have a loss of sharp vision (reduced visual acuity), decreased field of vision, impaired color perception, eyes that do not look in the same direction (strabismus), rapid involuntary eye movements (nystagmus), or difficulty moving the eyes intentionally (supranuclear gaze palsy). Speech impairment (dysarthria) also occurs in FAHN, and severely affected individuals may lose the ability to speak. People with this disorder may also have difficulty chewing or swallowing (dysphagia). In severe cases, they may develop malnutrition and require a feeding tube. The swallowing difficulties can lead to a bacterial lung infection called aspiration pneumonia, which can be life-threatening. As the disorder progresses, some affected individuals experience seizures and a decline in intellectual function. Magnetic resonance imaging (MRI) of the brain in people with FAHN shows signs of iron accumulation, especially in an area of the brain called the globus pallidus, which is involved in regulating movement. Similar patterns of iron accumulation are seen in certain other neurological disorders such as infantile neuroaxonal dystrophy and pantothenate kinase-associated neurodegeneration. All these conditions belong to a class of disorders called neurodegeneration with brain iron accumulation (NBIA). | fatty acid hydroxylase-associated neurodegeneration |
How many people are affected by fatty acid hydroxylase-associated neurodegeneration ? | FAHN is a rare disorder; only a few dozen cases have been reported. | fatty acid hydroxylase-associated neurodegeneration |
What are the genetic changes related to fatty acid hydroxylase-associated neurodegeneration ? | Mutations in the FA2H gene cause FAHN. The FA2H gene provides instructions for making an enzyme called fatty acid 2-hydroxylase. This enzyme modifies fatty acids, which are building blocks used to make fats (lipids). Specifically, fatty acid 2-hydroxylase adds a single oxygen atom to a hydrogen atom at a particular point on a fatty acid to create a 2-hydroxylated fatty acid. Certain 2-hydroxylated fatty acids are important in forming normal myelin; myelin is the protective covering that insulates nerves and ensures the rapid transmission of nerve impulses. The part of the brain and spinal cord that contains myelin is called white matter. The FA2H gene mutations that cause FAHN reduce or eliminate the function of the fatty acid 2-hydroxylase enzyme. Reduction of this enzyme's function may result in abnormal myelin that is prone to deterioration (demyelination), leading to a loss of white matter (leukodystrophy). Leukodystrophy is likely involved in the development of the movement problems and other neurological abnormalities that occur in FAHN. Iron accumulation in the brain is probably also involved, although it is unclear how FA2H gene mutations lead to the buildup of iron. People with FA2H gene mutations and some of the movement problems seen in FAHN were once classified as having a separate disorder called spastic paraplegia 35. People with mutations in this gene resulting in intellectual decline and optic nerve atrophy were said to have a disorder called FA2H-related leukodystrophy. However, these conditions are now generally considered to be forms of FAHN. | fatty acid hydroxylase-associated neurodegeneration |
Is fatty acid hydroxylase-associated neurodegeneration inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | fatty acid hydroxylase-associated neurodegeneration |
What are the treatments for fatty acid hydroxylase-associated neurodegeneration ? | These resources address the diagnosis or management of fatty acid hydroxylase-associated neurodegeneration: - Gene Review: Gene Review: Fatty Acid Hydroxylase-Associated Neurodegeneration - Genetic Testing Registry: Spastic paraplegia 35 These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | fatty acid hydroxylase-associated neurodegeneration |
What is (are) hystrix-like ichthyosis with deafness ? | Hystrix-like ichthyosis with deafness (HID) is a disorder characterized by dry, scaly skin (ichthyosis) and hearing loss that is usually profound. Hystrix-like means resembling a porcupine; in this type of ichthyosis, the scales may be thick and spiky, giving the appearance of porcupine quills. Newborns with HID typically develop reddened skin. The skin abnormalities worsen over time, and the ichthyosis eventually covers most of the body, although the palms of the hands and soles of the feet are usually only mildly affected. Breaks in the skin may occur and in severe cases can lead to life-threatening infections. Affected individuals have an increased risk of developing a type of skin cancer called squamous cell carcinoma, which can also affect mucous membranes such as the inner lining of the mouth. People with HID may also have patchy hair loss caused by scarring on particular areas of skin. | hystrix-like ichthyosis with deafness |
How many people are affected by hystrix-like ichthyosis with deafness ? | HID is a rare disorder. Its prevalence is unknown. | hystrix-like ichthyosis with deafness |
What are the genetic changes related to hystrix-like ichthyosis with deafness ? | HID is caused by mutations in the GJB2 gene. This gene provides instructions for making a protein called gap junction beta 2, more commonly known as connexin 26. Connexin 26 is a member of the connexin protein family. Connexin proteins form channels called gap junctions that permit the transport of nutrients, charged atoms (ions), and signaling molecules between neighboring cells that are in contact with each other. Gap junctions made with connexin 26 transport potassium ions and certain small molecules. Connexin 26 is found in cells throughout the body, including the inner ear and the skin. In the inner ear, channels made from connexin 26 are found in a snail-shaped structure called the cochlea. These channels may help to maintain the proper level of potassium ions required for the conversion of sound waves to electrical nerve impulses. This conversion is essential for normal hearing. In addition, connexin 26 may be involved in the maturation of certain cells in the cochlea. Connexin 26 also plays a role in the growth and maturation of the outermost layer of skin (the epidermis). At least one GJB2 gene mutation has been identified in people with HID. This mutation changes a single protein building block (amino acid) in connexin 26. The mutation is thought to result in channels that constantly leak ions, which impairs the health of the cells and increases cell death. Death of cells in the skin and the inner ear may underlie the signs and symptoms of HID. Because the GJB2 gene mutation identified in people with HID also occurs in keratitis-ichthyosis-deafness syndrome (KID syndrome), a disorder with similar features and the addition of eye abnormalities, many researchers categorize KID syndrome and HID as a single disorder, which they call KID/HID. It is not known why some people with this mutation have eye problems while others do not. | hystrix-like ichthyosis with deafness |
Is hystrix-like ichthyosis with deafness inherited ? | This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In some cases, an affected person inherits the mutation from one affected parent. Other cases result from new mutations in the gene and occur in people with no history of the disorder in their family. | hystrix-like ichthyosis with deafness |
What are the treatments for hystrix-like ichthyosis with deafness ? | These resources address the diagnosis or management of hystrix-like ichthyosis with deafness: - Foundation for Ichthyosis and Related Skin Types: Ichthyosis Hystrix - Genetic Testing Registry: Hystrix-like ichthyosis with deafness These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | hystrix-like ichthyosis with deafness |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.