problem
stringlengths
16
191
explanation
stringlengths
6
29k
type
stringlengths
3
136
What is (are) deoxyguanosine kinase deficiency ?
Deoxyguanosine kinase deficiency is an inherited disorder that can cause liver disease and neurological problems. Researchers have described two forms of this disorder. The majority of affected individuals have the more severe form, which is called hepatocerebral because of the serious problems it causes in the liver and brain. Newborns with the hepatocerebral form of deoxyguanosine kinase deficiency may have a buildup of lactic acid in the body (lactic acidosis) within the first few days after birth. They may also have weakness, behavior changes such as poor feeding and decreased activity, and vomiting. Affected newborns sometimes have low blood sugar (hypoglycemia) as a result of liver dysfunction. During the first few weeks of life they begin showing other signs of liver disease which may result in liver failure. They also develop progressive neurological problems including very weak muscle tone (severe hypotonia), abnormal eye movements (nystagmus) and the loss of skills they had previously acquired (developmental regression). Children with this form of the disorder usually do not survive past the age of 2 years. Some individuals with deoxyguanosine kinase deficiency have a milder form of the disorder without severe neurological problems. Liver disease is the primary symptom of this form of the disorder, generally becoming evident during infancy or childhood. Occasionally it first appears after an illness such as a viral infection. Affected individuals may also develop kidney problems. Mild hypotonia is the only neurological effect associated with this form of the disorder.
deoxyguanosine kinase deficiency
How many people are affected by deoxyguanosine kinase deficiency ?
The prevalence of deoxyguanosine kinase deficiency is unknown. Approximately 100 affected individuals have been identified.
deoxyguanosine kinase deficiency
What are the genetic changes related to deoxyguanosine kinase deficiency ?
The DGUOK gene provides instructions for making the enzyme deoxyguanosine kinase. This enzyme plays a critical role in mitochondria, which are structures within cells that convert the energy from food into a form that cells can use. Mitochondria each contain a small amount of DNA, known as mitochondrial DNA or mtDNA, which is essential for the normal function of these structures. Deoxyguanosine kinase is involved in producing and maintaining the building blocks of mitochondrial DNA. Mutations in the DGUOK gene reduce or eliminate the activity of the deoxyguanosine kinase enzyme. Reduced enzyme activity leads to problems with the production and maintenance of mitochondrial DNA. A reduction in the amount of mitochondrial DNA (known as mitochondrial DNA depletion) impairs mitochondrial function in many of the body's cells and tissues. These problems lead to the neurological and liver dysfunction associated with deoxyguanosine kinase deficiency.
deoxyguanosine kinase deficiency
Is deoxyguanosine kinase deficiency inherited ?
Deoxyguanosine kinase deficiency is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. In most cases, the parents of an individual with this condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.
deoxyguanosine kinase deficiency
What are the treatments for deoxyguanosine kinase deficiency ?
These resources address the diagnosis or management of deoxyguanosine kinase deficiency: - Gene Review: Gene Review: DGUOK-Related Mitochondrial DNA Depletion Syndrome, Hepatocerebral Form - Genetic Testing Registry: Mitochondrial DNA-depletion syndrome 3, hepatocerebral - MedlinePlus Encyclopedia: Hypotonia These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
deoxyguanosine kinase deficiency
What is (are) X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia ?
X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia (typically known by the acronym XMEN) is a disorder that affects the immune system in males. In XMEN, certain types of immune system cells called T cells are reduced in number or do not function properly. Normally these cells recognize foreign invaders, such as viruses, bacteria, and fungi, and are then turned on (activated) to attack these invaders in order to prevent infection and illness. Because males with XMEN do not have enough functional T cells, they have frequent infections, such as ear infections, sinus infections, and pneumonia. In particular, affected individuals are vulnerable to the Epstein-Barr virus (EBV). EBV is a very common virus that infects more than 90 percent of the general population and in most cases goes unnoticed. Normally, after initial infection, EBV remains in the body for the rest of a person's life. However, the virus is generally inactive (latent) because it is controlled by T cells. In males with XMEN, however, the T cells cannot control the virus, and EBV infection can lead to cancers of immune system cells (lymphomas). The word "neoplasia" in the condition name refers to these lymphomas; neoplasia is a general term meaning abnormal growths of tissue. The EBV infection itself usually does not cause any other symptoms in males with XMEN, and affected individuals may not come to medical attention until they develop lymphoma.
X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia
How many people are affected by X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia ?
The prevalence of XMEN is unknown. Only a few affected individuals have been described in the medical literature.
X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia
What are the genetic changes related to X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia ?
XMEN is caused by mutations in the MAGT1 gene. This gene provides instructions for making a protein called a magnesium transporter, which moves charged atoms (ions) of magnesium (Mg2+) into certain T cells. Specifically, the magnesium transporter produced from the MAGT1 gene is active in CD8+ T cells, which are especially important in controlling viral infections such as the Epstein-Barr virus (EBV). These cells normally take in magnesium when they detect a foreign invader, and the magnesium is involved in activating the T cell's response. Researchers suggest that magnesium transport may also be involved in the production of another type of T cell called helper T cells (CD4+ T cells) in a gland called the thymus. CD4+ T cells direct and assist the functions of the immune system by influencing the activities of other immune system cells. Mutations in the MAGT1 gene impair the magnesium transporter's function, reducing the amount of magnesium that gets into T cells. This magnesium deficiency prevents the efficient activation of the T cells to target EBV and other infections. Uncontrolled EBV infection increases the likelihood of developing lymphoma. Impaired production of CD4+ T cells resulting from abnormal magnesium transport likely accounts for the deficiency of this type of T cell in people with XMEN, contributing to the decreased ability to prevent infection and illness.
X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia
Is X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia inherited ?
This condition is inherited in an X-linked recessive pattern. The gene associated with this condition is located on the X chromosome, which is one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. In females (who have two X chromosomes), a mutation would have to occur in both copies of the gene to cause the disorder. Because it is unlikely that females will have two altered copies of this gene, males are affected by X-linked recessive disorders much more frequently than females. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons.
X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia
What are the treatments for X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia ?
These resources address the diagnosis or management of XMEN: - MedlinePlus Encyclopedia: Epstein-Barr Virus Test - MedlinePlus Encyclopedia: T Cell Count These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia
What is (are) xeroderma pigmentosum ?
Xeroderma pigmentosum, which is commonly known as XP, is an inherited condition characterized by an extreme sensitivity to ultraviolet (UV) rays from sunlight. This condition mostly affects the eyes and areas of skin exposed to the sun. Some affected individuals also have problems involving the nervous system. The signs of xeroderma pigmentosum usually appear in infancy or early childhood. Many affected children develop a severe sunburn after spending just a few minutes in the sun. The sunburn causes redness and blistering that can last for weeks. Other affected children do not get sunburned with minimal sun exposure, but instead tan normally. By age 2, almost all children with xeroderma pigmentosum develop freckling of the skin in sun-exposed areas (such as the face, arms, and lips); this type of freckling rarely occurs in young children without the disorder. In affected individuals, exposure to sunlight often causes dry skin (xeroderma) and changes in skin coloring (pigmentation). This combination of features gives the condition its name, xeroderma pigmentosum. People with xeroderma pigmentosum have a greatly increased risk of developing skin cancer. Without sun protection, about half of children with this condition develop their first skin cancer by age 10. Most people with xeroderma pigmentosum develop multiple skin cancers during their lifetime. These cancers occur most often on the face, lips, and eyelids. Cancer can also develop on the scalp, in the eyes, and on the tip of the tongue. Studies suggest that people with xeroderma pigmentosum may also have an increased risk of other types of cancer, including brain tumors. Additionally, affected individuals who smoke cigarettes have a significantly increased risk of lung cancer. The eyes of people with xeroderma pigmentosum may be painfully sensitive to UV rays from the sun. If the eyes are not protected from the sun, they may become bloodshot and irritated, and the clear front covering of the eyes (the cornea) may become cloudy. In some people, the eyelashes fall out and the eyelids may be thin and turn abnormally inward or outward. In addition to an increased risk of eye cancer, xeroderma pigmentosum is associated with noncancerous growths on the eye. Many of these eye abnormalities can impair vision. About 30 percent of people with xeroderma pigmentosum develop progressive neurological abnormalities in addition to problems involving the skin and eyes. These abnormalities can include hearing loss, poor coordination, difficulty walking, movement problems, loss of intellectual function, difficulty swallowing and talking, and seizures. When these neurological problems occur, they tend to worsen with time. Researchers have identified at least eight inherited forms of xeroderma pigmentosum: complementation group A (XP-A) through complementation group G (XP-G) plus a variant type (XP-V). The types are distinguished by their genetic cause. All of the types increase skin cancer risk, although some are more likely than others to be associated with neurological abnormalities.
xeroderma pigmentosum
How many people are affected by xeroderma pigmentosum ?
Xeroderma pigmentosum is a rare disorder; it is estimated to affect about 1 in 1 million people in the United States and Europe. The condition is more common in Japan, North Africa, and the Middle East.
xeroderma pigmentosum
What are the genetic changes related to xeroderma pigmentosum ?
Xeroderma pigmentosum is caused by mutations in genes that are involved in repairing damaged DNA. DNA can be damaged by UV rays from the sun and by toxic chemicals such as those found in cigarette smoke. Normal cells are usually able to fix DNA damage before it causes problems. However, in people with xeroderma pigmentosum, DNA damage is not repaired normally. As more abnormalities form in DNA, cells malfunction and eventually become cancerous or die. Many of the genes related to xeroderma pigmentosum are part of a DNA-repair process known as nucleotide excision repair (NER). The proteins produced from these genes play a variety of roles in this process. They recognize DNA damage, unwind regions of DNA where the damage has occurred, snip out (excise) the abnormal sections, and replace the damaged areas with the correct DNA. Inherited abnormalities in the NER-related genes prevent cells from carrying out one or more of these steps. The POLH gene also plays a role in protecting cells from UV-induced DNA damage, although it is not involved in NER; mutations in this gene cause the variant type of xeroderma pigmentosum. The major features of xeroderma pigmentosum result from a buildup of unrepaired DNA damage. When UV rays damage genes that control cell growth and division, cells can either die or grow too fast and in an uncontrolled way. Unregulated cell growth can lead to the development of cancerous tumors. Neurological abnormalities are also thought to result from an accumulation of DNA damage, although the brain is not exposed to UV rays. Researchers suspect that other factors damage DNA in nerve cells. It is unclear why some people with xeroderma pigmentosum develop neurological abnormalities and others do not. Inherited mutations in at least eight genes have been found to cause xeroderma pigmentosum. More than half of all cases in the United States result from mutations in the XPC, ERCC2, or POLH genes. Mutations in the other genes generally account for a smaller percentage of cases.
xeroderma pigmentosum
Is xeroderma pigmentosum inherited ?
This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.
xeroderma pigmentosum
What are the treatments for xeroderma pigmentosum ?
These resources address the diagnosis or management of xeroderma pigmentosum: - American Cancer Society: How are Squamous and Basal Cell Skin Cancer Diagnosed? - American Cancer Society: How is Melanoma Diagnosed? - Gene Review: Gene Review: Xeroderma Pigmentosum - Genetic Testing Registry: Xeroderma pigmentosum - Genetic Testing Registry: Xeroderma pigmentosum, complementation group b - Genetic Testing Registry: Xeroderma pigmentosum, group C - Genetic Testing Registry: Xeroderma pigmentosum, group D - Genetic Testing Registry: Xeroderma pigmentosum, group E - Genetic Testing Registry: Xeroderma pigmentosum, group F - Genetic Testing Registry: Xeroderma pigmentosum, group G - Genetic Testing Registry: Xeroderma pigmentosum, type 1 - Genetic Testing Registry: Xeroderma pigmentosum, variant type - MedlinePlus Encyclopedia: Xeroderma Pigmentosum - National Cancer Institute: Melanoma Treatment - National Cancer Institute: Skin Cancer Treatment - Xeroderma Pigmentosum Society, Inc.: Beta Carotene - Xeroderma Pigmentosum Society, Inc.: Ultraviolet Radiation and Protection These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
xeroderma pigmentosum
What is (are) Baller-Gerold syndrome ?
Baller-Gerold syndrome is a rare condition characterized by the premature fusion of certain skull bones (craniosynostosis) and abnormalities of bones in the arms and hands. People with Baller-Gerold syndrome have prematurely fused skull bones, most often along the coronal suture, the growth line that goes over the head from ear to ear. Other sutures of the skull may be fused as well. These changes result in an abnormally shaped head, a prominent forehead, and bulging eyes with shallow eye sockets (ocular proptosis). Other distinctive facial features can include widely spaced eyes (hypertelorism), a small mouth, and a saddle-shaped or underdeveloped nose. Bone abnormalities in the hands include missing fingers (oligodactyly) and malformed or absent thumbs. Partial or complete absence of bones in the forearm is also common. Together, these hand and arm abnormalities are called radial ray malformations. People with Baller-Gerold syndrome may have a variety of additional signs and symptoms including slow growth beginning in infancy, small stature, and malformed or missing kneecaps (patellae). A skin rash often appears on the arms and legs a few months after birth. This rash spreads over time, causing patchy changes in skin coloring, areas of thinning skin (atrophy), and small clusters of blood vessels just under the skin (telangiectases). These chronic skin problems are collectively known as poikiloderma. The varied signs and symptoms of Baller-Gerold syndrome overlap with features of other disorders, namely Rothmund-Thomson syndrome and RAPADILINO syndrome. These syndromes are also characterized by radial ray defects, skeletal abnormalities, and slow growth. All of these conditions can be caused by mutations in the same gene. Based on these similarities, researchers are investigating whether Baller-Gerold syndrome, Rothmund-Thomson syndrome, and RAPADILINO syndrome are separate disorders or part of a single syndrome with overlapping signs and symptoms.
Baller-Gerold syndrome
How many people are affected by Baller-Gerold syndrome ?
The prevalence of Baller-Gerold syndrome is unknown, but this rare condition probably affects fewer than 1 per million people. Fewer than 40 cases have been reported in the medical literature.
Baller-Gerold syndrome
What are the genetic changes related to Baller-Gerold syndrome ?
Mutations in the RECQL4 gene cause some cases of Baller-Gerold syndrome. This gene provides instructions for making one member of a protein family called RecQ helicases. Helicases are enzymes that bind to DNA and temporarily unwind the two spiral strands (double helix) of the DNA molecule. This unwinding is necessary for copying (replicating) DNA in preparation for cell division, and for repairing damaged DNA. The RECQL4 protein helps stabilize genetic information in the body's cells and plays a role in replicating and repairing DNA. Mutations in the RECQL4 gene prevent cells from producing any RECQL4 protein or change the way the protein is pieced together, which disrupts its usual function. A shortage of this protein may prevent normal DNA replication and repair, causing widespread damage to a person's genetic information over time. It is unclear how a loss of this protein's activity leads to the signs and symptoms of Baller-Gerold syndrome. This condition has been associated with prenatal (before birth) exposure to a drug called sodium valproate. This medication is used to treat epilepsy and certain psychiatric disorders. Some infants whose mothers took sodium valproate during pregnancy were born with the characteristic features of Baller-Gerold syndrome, such as an unusual skull shape, distinctive facial features, and abnormalities of the arms and hands. However, it is unclear if exposure to the medication caused the condition.
Baller-Gerold syndrome
Is Baller-Gerold syndrome inherited ?
This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.
Baller-Gerold syndrome
What are the treatments for Baller-Gerold syndrome ?
These resources address the diagnosis or management of Baller-Gerold syndrome: - Gene Review: Gene Review: Baller-Gerold Syndrome - Genetic Testing Registry: Baller-Gerold syndrome - MedlinePlus Encyclopedia: Craniosynostosis - MedlinePlus Encyclopedia: Skull of a Newborn (image) These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
Baller-Gerold syndrome
What is (are) Koolen-de Vries syndrome ?
Koolen-de Vries syndrome is a disorder characterized by developmental delay and mild to moderate intellectual disability. People with this disorder typically have a disposition that is described as cheerful, sociable, and cooperative. They usually have weak muscle tone (hypotonia) in childhood. About half have recurrent seizures (epilepsy). Affected individuals often have distinctive facial features including a high, broad forehead; droopy eyelids (ptosis); a narrowing of the eye openings (blepharophimosis); outer corners of the eyes that point upward (upward-slanting palpebral fissures); skin folds covering the inner corner of the eyes (epicanthal folds); a bulbous nose; and prominent ears. Males with Koolen-de Vries syndrome often have undescended testes (cryptorchidism). Defects in the walls between the chambers of the heart (septal defects) or other cardiac abnormalities, kidney problems, and skeletal anomalies such as foot deformities occur in some affected individuals.
Koolen-de Vries syndrome
How many people are affected by Koolen-de Vries syndrome ?
The prevalence of Koolen-de Vries syndrome is estimated to be 1 in 16,000. However, the underlying genetic cause is often not identified in people with intellectual disability, so this condition is likely underdiagnosed.
Koolen-de Vries syndrome
What are the genetic changes related to Koolen-de Vries syndrome ?
Koolen-de Vries syndrome is caused by genetic changes that eliminate the function of one copy of the KANSL1 gene in each cell. Most affected individuals are missing a small amount of genetic material, including the KANSL1 gene, from one copy of chromosome 17. This type of genetic abnormality is called a microdeletion. A small number of individuals with Koolen-de Vries syndrome do not have a chromosome 17 microdeletion but instead have a mutation within the KANSL1 gene that causes one copy of the gene to be nonfunctional. The microdeletion that causes Koolen-de Vries syndrome occurs on the long (q) arm of chromosome 17 at a location designated q21.31. While the exact size of the deletion varies among affected individuals, most are missing a sequence of about 500,000 DNA building blocks (base pairs) containing several genes. However, because individuals with KANSL1 gene mutations have the same signs and symptoms as those with the microdeletion, researchers have concluded that the loss of this gene accounts for the features of this disorder. The KANSL1 gene provides instructions for making a protein that helps regulate gene activity (expression) by modifying chromatin. Chromatin is the complex of DNA and protein that packages DNA into chromosomes. The protein produced from the KANSL1 gene is found in most organs and tissues of the body before birth and throughout life. By its involvement in controlling the activity of other genes, this protein plays an important role in the development and function of many parts of the body. Loss of one copy of this gene impairs normal development and function, but the relationship of KANSL1 gene loss to the specific signs and symptoms of Koolen-de Vries syndrome is unclear.
Koolen-de Vries syndrome
Is Koolen-de Vries syndrome inherited ?
Koolen-de Vries syndrome is considered an autosomal dominant condition because a deletion or mutation affecting one copy of the KANSL1 gene in each cell is sufficient to cause the disorder. In most cases, the disorder is not inherited. The genetic change occurs most often as a random event during the formation of reproductive cells (eggs and sperm) or in early fetal development. Affected people typically have no history of the disorder in their family. While it is possible for them to pass the condition on to their children, no individuals with Koolen-de Vries syndrome have been known to reproduce. Most people with Koolen-de Vries syndrome caused by a deletion have had at least one parent with a common variant of the 17q21.31 region of chromosome 17 called the H2 lineage. This variant is found in 20 percent of people of European and Middle Eastern descent, although it is rare in other populations. In the H2 lineage, a 900 kb segment of DNA, which includes the region deleted in most cases of Koolen-de Vries syndrome, has undergone an inversion. An inversion involves two breaks in a chromosome; the resulting piece of DNA is reversed and reinserted into the chromosome. People with the H2 lineage have no health problems related to the inversion. However, genetic material can be lost or duplicated when the inversion is passed to the next generation. Other, unknown factors are thought to play a role in this process. So while the inversion is very common, only an extremely small percentage of parents with the inversion have a child affected by Koolen-de Vries syndrome.
Koolen-de Vries syndrome
What are the treatments for Koolen-de Vries syndrome ?
These resources address the diagnosis or management of Koolen-de Vries syndrome: - Gene Review: Gene Review: KANSL1-Related Intellectual Disability Syndrome - Genetic Testing Registry: Koolen-de Vries syndrome These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
Koolen-de Vries syndrome
What is (are) sudden infant death with dysgenesis of the testes syndrome ?
Sudden infant death with dysgenesis of the testes syndrome (SIDDT) is a rare condition that is fatal in the first year of life; its major features include abnormalities of the reproductive system in males, feeding difficulties, and breathing problems. Infants with SIDDT who are genetically male, with one X chromosome and one Y chromosome in each cell, have underdeveloped or abnormal testes. They may also have external genitalia that appear female or that do not look clearly male or clearly female (ambiguous genitalia). In affected infants who are genetically female, with two X chromosomes in each cell, development of the internal and external reproductive organs is normal. SIDDT is associated with abnormal development of the brain, particularly the brainstem, which is the part of the brain that is connected to the spinal cord. The brainstem regulates many basic body functions, including heart rate, breathing, eating, and sleeping. It also relays information about movement and the senses between the brain and the rest of the body. Many features of SIDDT appear to be related to brainstem malfunction, including a slow or uneven heart rate, abnormal breathing patterns, difficulty controlling body temperature, unusual tongue and eye movements, abnormal reflexes, seizures, and feeding difficulties. Affected infants also have an unusual cry that has been described as similar to the bleating of a goat, which is probably a result of abnormal nerve connections between the brain and the voicebox (larynx). The brainstem abnormalities lead to death in the first year of life, when affected infants suddenly stop breathing or their heart stops beating (cardiorespiratory arrest).
sudden infant death with dysgenesis of the testes syndrome
How many people are affected by sudden infant death with dysgenesis of the testes syndrome ?
SIDDT has been diagnosed in more than 20 infants from a single Old Order Amish community in Pennsylvania. The condition has not been reported outside this community.
sudden infant death with dysgenesis of the testes syndrome
What are the genetic changes related to sudden infant death with dysgenesis of the testes syndrome ?
A single mutation in the TSPYL1 gene has caused all identified cases of SIDDT. This gene provides instructions for making a protein called TSPY-like 1, whose function is unknown. Based on its role in SIDDT, researchers propose that TSPY-like 1 is involved in the development of the male reproductive system and the brain. The TSPYL1 gene mutation that causes SIDDT eliminates the function of TSPY-like 1. The loss of this protein's function appears to cause the major features of the disorder by disrupting the normal development of the male reproductive system and the brain, particularly the brainstem. Research findings suggest that mutations in the TSPYL1 gene are not associated with sudden infant death syndrome (SIDS) in the general population. SIDS is a major cause of death in children younger than 1 year.
sudden infant death with dysgenesis of the testes syndrome
Is sudden infant death with dysgenesis of the testes syndrome inherited ?
This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.
sudden infant death with dysgenesis of the testes syndrome
What are the treatments for sudden infant death with dysgenesis of the testes syndrome ?
These resources address the diagnosis or management of SIDDT: - Clinic for Special Children (Strasburg, Pennsylvania) - Genetic Testing Registry: Sudden infant death with dysgenesis of the testes syndrome These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
sudden infant death with dysgenesis of the testes syndrome
What is (are) mitochondrial membrane protein-associated neurodegeneration ?
Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a disorder of the nervous system. The condition typically begins in childhood or early adulthood and worsens (progresses) over time. MPAN commonly begins with difficulty walking. As the condition progresses, affected individuals usually develop other movement problems, including muscle stiffness (spasticity) and involuntary muscle cramping (dystonia). Many people with MPAN have a pattern of movement abnormalities known as parkinsonism. These abnormalities include unusually slow movement (bradykinesia), muscle rigidity, involuntary trembling (tremors), and an inability to hold the body upright and balanced (postural instability). Other neurological problems that occur in individuals with MPAN include degeneration of the nerve cells that carry visual information from the eyes to the brain (optic atrophy), which can impair vision; problems with speech (dysarthria); difficulty swallowing (dysphagia); and, in later stages of the condition, an inability to control the bowels or the flow of urine (incontinence). Additionally, affected individuals may experience a loss of intellectual function (dementia) and psychiatric symptoms such as behavioral problems, mood swings, hyperactivity, and depression. MPAN is characterized by an abnormal buildup of iron in certain regions of the brain. Because of these deposits, MPAN is considered part of a group of conditions known as neurodegeneration with brain iron accumulation (NBIA).
mitochondrial membrane protein-associated neurodegeneration
How many people are affected by mitochondrial membrane protein-associated neurodegeneration ?
MPAN is a rare condition that is estimated to affect less than 1 in 1 million people.
mitochondrial membrane protein-associated neurodegeneration
What are the genetic changes related to mitochondrial membrane protein-associated neurodegeneration ?
Mutations in the C19orf12 gene cause MPAN. The protein produced from this gene is found in the membrane of cellular structures called mitochondria, which are the energy-producing centers of the cell. Although its function is unknown, researchers suggest that the C19orf12 protein plays a role in the maintenance of fat (lipid) molecules, a process known as lipid homeostasis. The gene mutations that cause this condition lead to an altered C19orf12 protein that likely has little or no function. It is unclear how these genetic changes lead to the neurological problems associated with MPAN. Researchers are working to determine whether there is a link between problems with lipid homeostasis and brain iron accumulation and how these abnormalities might contribute to the features of this disorder.
mitochondrial membrane protein-associated neurodegeneration
Is mitochondrial membrane protein-associated neurodegeneration inherited ?
This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.
mitochondrial membrane protein-associated neurodegeneration
What are the treatments for mitochondrial membrane protein-associated neurodegeneration ?
These resources address the diagnosis or management of mitochondrial membrane protein-associated neurodegeneration: - Gene Review: Gene Review: Mitochondrial Membrane Protein-Associated Neurodegeneration - Gene Review: Gene Review: Neurodegeneration with Brain Iron Accumulation Disorders Overview - Genetic Testing Registry: Neurodegeneration with brain iron accumulation 4 - Spastic Paraplegia Foundation: Treatments and Therapies These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
mitochondrial membrane protein-associated neurodegeneration
What is (are) adolescent idiopathic scoliosis ?
Adolescent idiopathic scoliosis is an abnormal curvature of the spine that appears in late childhood or adolescence. Instead of growing straight, the spine develops a side-to-side curvature, usually in an elongated "S" or "C" shape; the bones of the spine are also slightly twisted or rotated. Adolescent idiopathic scoliosis appears during the adolescent growth spurt, a time when children are growing rapidly. In many cases the abnormal spinal curve is stable, although in some children the curve is progressive (meaning it becomes more severe over time). For unknown reasons, severe and progressive curves occur more frequently in girls than in boys. However, mild spinal curvature is equally common in girls and boys. Mild scoliosis generally does not cause pain, problems with movement, or difficulty breathing. It may only be diagnosed if it is noticed during a regular physical examination or a scoliosis screening at school. The most common signs of the condition include a tilt or unevenness (asymmetry) in the shoulders, hips, or waist, or having one leg that appears longer than the other. A small percentage of affected children develop more severe, pronounced spinal curvature. Scoliosis can occur as a feature of other conditions, including a variety of genetic syndromes. However, adolescent idiopathic scoliosis typically occurs by itself, without signs and symptoms affecting other parts of the body.
adolescent idiopathic scoliosis
How many people are affected by adolescent idiopathic scoliosis ?
Adolescent idiopathic scoliosis is the most common spinal abnormality in children. It affects an estimated 2 to 3 percent of children in the U.S.
adolescent idiopathic scoliosis
What are the genetic changes related to adolescent idiopathic scoliosis ?
The term "idiopathic" means that the cause of this condition is unknown. Adolescent idiopathic scoliosis probably results from a combination of genetic and environmental factors. Studies suggest that the abnormal spinal curvature may be related to hormonal problems, abnormal bone or muscle growth, nervous system abnormalities, or other factors that have not been identified. Researchers suspect that many genes are involved in adolescent idiopathic scoliosis. Some of these genes likely contribute to causing the disorder, while others play a role in determining the severity of spinal curvature and whether the curve is stable or progressive. Although many genes have been studied, few clear and consistent genetic associations with adolescent idiopathic scoliosis have been identified.
adolescent idiopathic scoliosis
Is adolescent idiopathic scoliosis inherited ?
Adolescent idiopathic scoliosis can be sporadic, which means it occurs in people without a family history of the condition, or it can cluster in families. The inheritance pattern of adolescent idiopathic scoliosis is unclear because many genetic and environmental factors appear to be involved. However, having a close relative (such as a parent or sibling) with adolescent idiopathic scoliosis increases a child's risk of developing the condition.
adolescent idiopathic scoliosis
What are the treatments for adolescent idiopathic scoliosis ?
These resources address the diagnosis or management of adolescent idiopathic scoliosis: - Genetic Testing Registry: Scoliosis, idiopathic 1 - Genetic Testing Registry: Scoliosis, idiopathic 2 - Genetic Testing Registry: Scoliosis, idiopathic 3 - National Scoliosis Foundation: FAQs - Scoliosis Research Society: Find A Specialist - Scoliosis Research Society: For Adolescents These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
adolescent idiopathic scoliosis
What is (are) neuroferritinopathy ?
Neuroferritinopathy is a disorder in which iron gradually accumulates in the brain. Certain brain regions that help control movement (basal ganglia) are particularly affected. People with neuroferritinopathy have progressive problems with movement that begin at about age 40. These movement problems can include involuntary jerking motions (chorea), rhythmic shaking (tremor), difficulty coordinating movements (ataxia), or uncontrolled tensing of muscles (dystonia). Symptoms of the disorder may be more apparent on one side of the body than on the other. Affected individuals may also have difficulty swallowing (dysphagia) and speaking (dysarthria). Intelligence is unaffected in most people with neuroferritinopathy, but some individuals develop a gradual decline in thinking and reasoning abilities (dementia). Personality changes such as reduced inhibitions and difficulty controlling emotions may also occur as the disorder progresses.
neuroferritinopathy
How many people are affected by neuroferritinopathy ?
The prevalence of neuroferritinopathy is unknown. Fewer than 100 individuals with this disorder have been reported.
neuroferritinopathy
What are the genetic changes related to neuroferritinopathy ?
Mutations in the FTL gene cause neuroferritinopathy. The FTL gene provides instructions for making the ferritin light chain, which is one part (subunit) of a protein called ferritin. Ferritin stores and releases iron in cells. Each ferritin molecule can hold as many as 4,500 iron atoms. This storage capacity allows ferritin to regulate the amount of iron in the cells and tissues. Mutations in the FTL gene that cause neuroferritinopathy are believed to reduce ferritin's ability to store iron, resulting in the release of excess iron in nerve cells (neurons) of the brain. The cells may respond by producing more ferritin in an attempt to handle the free iron. Excess iron and ferritin accumulate in the brain, particularly in the basal ganglia, resulting in the movement problems and other neurological changes seen in neuroferritinopathy.
neuroferritinopathy
Is neuroferritinopathy inherited ?
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In most cases, an affected person inherits the mutation from one affected parent. Other cases may result from new mutations in the gene. These cases occur in people with no history of the disorder in their family.
neuroferritinopathy
What are the treatments for neuroferritinopathy ?
These resources address the diagnosis or management of neuroferritinopathy: - Gene Review: Gene Review: Neuroferritinopathy - Genetic Testing Registry: Neuroferritinopathy These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
neuroferritinopathy
What is (are) hereditary hemochromatosis ?
Hereditary hemochromatosis is a disorder that causes the body to absorb too much iron from the diet. The excess iron is stored in the body's tissues and organs, particularly the skin, heart, liver, pancreas, and joints. Because humans cannot increase the excretion of iron, excess iron can overload and eventually damage tissues and organs. For this reason, hereditary hemochromatosis is also called an iron overload disorder. Early symptoms of hereditary hemochromatosis are nonspecific and may include fatigue, joint pain, abdominal pain, and loss of sex drive. Later signs and symptoms can include arthritis, liver disease, diabetes, heart abnormalities, and skin discoloration. The appearance and progression of symptoms can be affected by environmental and lifestyle factors such as the amount of iron in the diet, alcohol use, and infections. Hereditary hemochromatosis is classified by type depending on the age of onset and other factors such as genetic cause and mode of inheritance. Type 1, the most common form of the disorder, and type 4 (also called ferroportin disease) begin in adulthood. Men with type 1 or type 4 hemochromatosis typically develop symptoms between the ages of 40 and 60, and women usually develop symptoms after menopause. Type 2 hemochromatosis is a juvenile-onset disorder. Iron accumulation begins early in life, and symptoms may appear in childhood. By age 20, decreased or absent secretion of sex hormones is evident. Females usually begin menstruation in a normal manner, but menses stop after a few years. Males may experience delayed puberty or symptoms related to a shortage of sex hormones. If the disorder is untreated, heart disease becomes evident by age 30. The onset of type 3 hemochromatosis is usually intermediate between types 1 and 2. Symptoms of type 3 hemochromatosis generally begin before age 30.
hereditary hemochromatosis
How many people are affected by hereditary hemochromatosis ?
Type 1 hemochromatosis is one of the most common genetic disorders in the United States, affecting about 1 million people. It most often affects people of Northern European descent. The other types of hemochromatosis are considered rare and have been studied in only a small number of families worldwide.
hereditary hemochromatosis
What are the genetic changes related to hereditary hemochromatosis ?
Mutations in the HAMP, HFE, HFE2, SLC40A1, and TFR2 genes cause hereditary hemochromatosis. Type 1 hemochromatosis results from mutations in the HFE gene, and type 2 hemochromatosis results from mutations in either the HFE2 or HAMP gene. Mutations in the TFR2 gene cause type 3 hemochromatosis, and mutations in the SLC40A1 gene cause type 4 hemochromatosis. The proteins produced from these genes play important roles in regulating the absorption, transport, and storage of iron. Mutations in any of these genes impair the control of iron absorption during digestion and alter the distribution of iron to other parts of the body. As a result, iron accumulates in tissues and organs, which can disrupt their normal functions.
hereditary hemochromatosis
Is hereditary hemochromatosis inherited ?
Types 1, 2, and 3 hemochromatosis are inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. Most often, the parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene but do not show signs and symptoms of the condition. Type 4 hemochromatosis is distinguished by its autosomal dominant inheritance pattern. With this type of inheritance, one copy of the altered gene in each cell is sufficient to cause the disorder. In most cases, an affected person has one parent with the condition.
hereditary hemochromatosis
What are the treatments for hereditary hemochromatosis ?
These resources address the diagnosis or management of hereditary hemochromatosis: - Gene Review: Gene Review: HFE-Associated Hereditary Hemochromatosis - Gene Review: Gene Review: Juvenile Hereditary Hemochromatosis - Gene Review: Gene Review: TFR2-Related Hereditary Hemochromatosis - GeneFacts: Hereditary Hemochromatosis: Diagnosis - GeneFacts: Hereditary Hemochromatosis: Management - Genetic Testing Registry: Hemochromatosis type 1 - Genetic Testing Registry: Hemochromatosis type 2A - Genetic Testing Registry: Hemochromatosis type 3 - Genetic Testing Registry: Hemochromatosis type 4 - MedlinePlus Encyclopedia: Hemochromatosis These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
hereditary hemochromatosis
What is (are) metatropic dysplasia ?
Metatropic dysplasia is a skeletal disorder characterized by short stature (dwarfism) with other skeletal abnormalities. The term "metatropic" is derived from the Greek word "metatropos," which means "changing patterns." This name reflects the fact that the skeletal abnormalities associated with the condition change over time. Affected infants are born with a narrow chest and unusually short arms and legs with dumbbell-shaped long bones. Beginning in early childhood, people with this condition develop abnormal side-to-side and front-to-back curvature of the spine (scoliosis and kyphosis, often called kyphoscoliosis when they occur together). The curvature worsens with time and tends to be resistant to treatment. Because of the severe kyphoscoliosis, affected individuals may ultimately have a very short torso in relation to the length of their arms and legs. Some people with metatropic dysplasia are born with an elongated tailbone known as a coccygeal tail; it is made of a tough but flexible tissue called cartilage. The coccygeal tail usually shrinks over time. Other skeletal problems associated with metatropic dysplasia include flattened bones of the spine (platyspondyly); excessive movement of spinal bones in the neck that can damage the spinal cord; either a sunken chest (pectus excavatum) or a protruding chest (pectus carinatum); and joint deformities called contractures that restrict the movement of joints in the shoulders, elbows, hips, and knees. Beginning early in life, affected individuals can also develop a degenerative form of arthritis that causes joint pain and further restricts movement. The signs and symptoms of metatropic dysplasia can vary from relatively mild to life-threatening. In the most severe cases, the narrow chest and spinal abnormalities prevent the lungs from expanding fully, which restricts breathing. Researchers formerly recognized several distinct forms of metatropic dysplasia based on the severity of the condition's features. The forms included a mild type, a classic type, and a lethal type. However, all of these forms are now considered to be part of a single condition with a spectrum of overlapping signs and symptoms.
metatropic dysplasia
How many people are affected by metatropic dysplasia ?
Metatropic dysplasia is a rare disease; its exact prevalence is unknown. More than 80 affected individuals have been reported in the scientific literature.
metatropic dysplasia
What are the genetic changes related to metatropic dysplasia ?
Metatropic dysplasia is caused by mutations in the TRPV4 gene, which provides instructions for making a protein that acts as a calcium channel. The TRPV4 channel transports positively charged calcium atoms (calcium ions) across cell membranes and into cells. The channel is found in many types of cells, but little is known about its function. Studies suggest that it plays a role in the normal development of cartilage and bone. This role would help explain why TRPV4 gene mutations cause the skeletal abnormalities characteristic of metatropic dysplasia. Mutations in the TRPV4 gene appear to overactivate the channel, increasing the flow of calcium ions into cells. However, it remains unclear how changes in the activity of the calcium channel lead to the specific features of the condition.
metatropic dysplasia
Is metatropic dysplasia inherited ?
Metatropic dysplasia is considered an autosomal dominant disorder because one mutated copy of the TRPV4 gene in each cell is sufficient to cause the condition. Most cases of metatropic dysplasia are caused by new mutations in the gene and occur in people with no history of the disorder in their family. In a few reported cases, an affected person has inherited the condition from an affected parent. In the past, it was thought that the lethal type of metatropic dysplasia had an autosomal recessive pattern of inheritance, in which both copies of the gene in each cell have mutations. However, more recent research has confirmed that all metatropic dysplasia has an autosomal dominant pattern of inheritance.
metatropic dysplasia
What are the treatments for metatropic dysplasia ?
These resources address the diagnosis or management of metatropic dysplasia: - Gene Review: Gene Review: TRPV4-Associated Disorders - Genetic Testing Registry: Metatrophic dysplasia These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
metatropic dysplasia
What is (are) Weaver syndrome ?
Weaver syndrome is a condition that involves tall stature with or without a large head size (macrocephaly), a variable degree of intellectual disability (usually mild), and characteristic facial features. These features can include a broad forehead; widely spaced eyes (hypertelorism); large, low-set ears; a dimpled chin, and a small lower jaw (micrognathia). People with Weaver syndrome can also have joint deformities called contractures that restrict the movement of affected joints. The contractures may particularly affect the fingers and toes, resulting in permanently bent digits (camptodactyly). Other features of this disorder can include abnormal curvature of the spine (kyphoscoliosis); muscle tone that is either reduced (hypotonia) or increased (hypertonia); loose, saggy skin; and a soft-outpouching around the belly-button (umbilical hernia). Some affected individuals have abnormalities in the folds (gyri) of the brain, which can be seen by medical imaging; the relationship between these brain abnormalities and the intellectual disability associated with Weaver syndrome is unclear. Researchers suggest that people with Weaver syndrome may have an increased risk of developing cancer, in particular a slightly increased risk of developing a tumor called neuroblastoma in early childhood, but the small number of affected individuals makes it difficult to determine the exact risk.
Weaver syndrome
How many people are affected by Weaver syndrome ?
The prevalence of Weaver syndrome is unknown. About 50 affected individuals have been described in the medical literature.
Weaver syndrome
What are the genetic changes related to Weaver syndrome ?
Weaver syndrome is usually caused by mutations in the EZH2 gene. The EZH2 gene provides instructions for making a type of enzyme called a histone methyltransferase. Histone methyltransferases modify proteins called histones, which are structural proteins that attach (bind) to DNA and give chromosomes their shape. By adding a molecule called a methyl group to histones (methylation), histone methyltransferases can turn off the activity of certain genes, which is an essential process in normal development. It is unclear how mutations in the EZH2 gene result in the abnormalities characteristic of Weaver syndrome.
Weaver syndrome
Is Weaver syndrome inherited ?
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. Most cases result from new mutations in the gene and occur in people with no history of the disorder in their family. In a small number of cases, an affected person inherits the mutation from one affected parent.
Weaver syndrome
What are the treatments for Weaver syndrome ?
These resources address the diagnosis or management of Weaver syndrome: - Genetic Testing Registry: Weaver syndrome These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
Weaver syndrome
What is (are) hereditary neuralgic amyotrophy ?
Hereditary neuralgic amyotrophy is a disorder characterized by episodes of severe pain and muscle wasting (amyotrophy) in one or both shoulders and arms. Neuralgic pain is felt along the path of one or more nerves and often has no obvious physical cause. The network of nerves involved in hereditary neuralgic amyotrophy, called the brachial plexus, controls movement and sensation in the shoulders and arms. People with hereditary neuralgic amyotrophy usually begin experiencing attacks in their twenties, but episodes have occurred as early as the age of 1 year in some individuals. The attacks may be spontaneous or triggered by stress such as strenuous exercise, childbirth, surgery, exposure to cold, infections, immunizations, or emotional disturbance. While the frequency of the episodes tends to decrease with age, affected individuals are often left with residual problems, such as chronic pain and impaired movement, that accumulate over time. Typically an attack begins with severe pain on one or both sides of the body; right-sided involvement is most common. The pain may be difficult to control with medication and usually lasts about a month. Within a period of time ranging from a few hours to a couple of weeks, the muscles in the affected area begin to weaken and waste away (atrophy), and movement becomes difficult. Muscle wasting may cause changes in posture or in the appearance of the shoulder, back, and arm. In particular, weak shoulder muscles tend to make the shoulder blades (scapulae) "stick out" from the back, a common sign known as scapular winging. Additional features of hereditary neuralgic amyotrophy may include decreased sensation (hypoesthesia) and abnormal sensations in the skin such as numbness or tingling (paresthesias). Areas other than the shoulder and arm may also be involved. In a few affected families, individuals with hereditary neuralgic amyotrophy also have unusual physical characteristics including short stature, excess skin folds on the neck and arms, an opening in the roof of the mouth (cleft palate), a split in the soft flap of tissue that hangs from the back of the mouth (bifid uvula), and partially webbed or fused fingers or toes (partial syndactyly). They may also have distinctive facial features including eyes set close together (ocular hypotelorism), a narrow opening of the eyelids (short palpebral fissures) with a skin fold covering the inner corner of the eye (epicanthal fold), a long nasal bridge, a narrow mouth, and differences between one side of the face and the other (facial asymmetry).
hereditary neuralgic amyotrophy
How many people are affected by hereditary neuralgic amyotrophy ?
Hereditary neuralgic amyotrophy is a rare disorder, but its specific prevalence is unknown. Approximately 200 families affected by the disorder have been identified worldwide.
hereditary neuralgic amyotrophy
What are the genetic changes related to hereditary neuralgic amyotrophy ?
Mutations in the SEPT9 gene cause hereditary neuralgic amyotrophy. The SEPT9 gene provides instructions for making a protein called septin-9, which is part of a group of proteins called septins. Septins are involved in a process called cytokinesis, which is the step in cell division when the fluid inside the cell (cytoplasm) divides to form two separate cells. The SEPT9 gene seems to be turned on (active) in cells throughout the body. Approximately 15 slightly different versions (isoforms) of the septin-9 protein may be produced from this gene. Some types of cells make certain isoforms, while other cell types produce other isoforms. However, the specific distribution of these isoforms in the body's tissues is not well understood. Septin-9 isoforms interact with other septin proteins to perform some of their functions. Mutations in the SEPT9 gene may change the sequence of protein building blocks (amino acids) in certain septin-9 isoforms in ways that interfere with their function. These mutations may also change the distribution of septin-9 isoforms and their interactions with other septin proteins in some of the body's tissues. This change in the functioning of septin proteins seems to particularly affect the brachial plexus, but the reason for this is unknown. Because many of the triggers for hereditary neuralgic amyotrophy also affect the immune system, researchers believe that an autoimmune reaction may be involved in this disorder. However, the relation between SEPT9 mutations and immune function is unclear. Autoimmune disorders occur when the immune system malfunctions and attacks the body's own tissues and organs. An autoimmune attack on the nerves in the brachial plexus likely results in the signs and symptoms of hereditary neuralgic amyotrophy. At least 15 percent of families affected by hereditary neuralgic amyotrophy do not have SEPT9 gene mutations. In these cases, the disorder is believed to be caused by mutations in a gene that has not been identified.
hereditary neuralgic amyotrophy
Is hereditary neuralgic amyotrophy inherited ?
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder.
hereditary neuralgic amyotrophy
What are the treatments for hereditary neuralgic amyotrophy ?
These resources address the diagnosis or management of hereditary neuralgic amyotrophy: - Gene Review: Gene Review: Hereditary Neuralgic Amyotrophy - Genetic Testing Registry: Hereditary neuralgic amyotrophy These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
hereditary neuralgic amyotrophy
What is (are) psoriatic arthritis ?
Psoriatic arthritis is a condition involving joint inflammation (arthritis) that usually occurs in combination with a skin disorder called psoriasis. Psoriasis is a chronic inflammatory condition characterized by patches of red, irritated skin that are often covered by flaky white scales. People with psoriasis may also have changes in their fingernails and toenails, such as nails that become pitted or ridged, crumble, or separate from the nail beds. Signs and symptoms of psoriatic arthritis include stiff, painful joints with redness, heat, and swelling in the surrounding tissues. When the hands and feet are affected, swelling and redness may result in a "sausage-like" appearance of the fingers or toes (dactylitis). In most people with psoriatic arthritis, psoriasis appears before joint problems develop. Psoriasis typically begins during adolescence or young adulthood, and psoriatic arthritis usually occurs between the ages of 30 and 50. However, both conditions may occur at any age. In a small number of cases, psoriatic arthritis develops in the absence of noticeable skin changes. Psoriatic arthritis may be difficult to distinguish from other forms of arthritis, particularly when skin changes are minimal or absent. Nail changes and dactylitis are two features that are characteristic of psoriatic arthritis, although they do not occur in all cases. Psoriatic arthritis is categorized into five types: distal interphalangeal predominant, asymmetric oligoarticular, symmetric polyarthritis, spondylitis, and arthritis mutilans. The distal interphalangeal predominant type affects mainly the ends of the fingers and toes. The distal interphalangeal joints are those closest to the nails. Nail changes are especially frequent with this form of psoriatic arthritis. The asymmetric oligoarticular and symmetric polyarthritis types are the most common forms of psoriatic arthritis. The asymmetric oligoarticular type of psoriatic arthritis involves different joints on each side of the body, while the symmetric polyarthritis form affects the same joints on each side. Any joint in the body may be affected in these forms of the disorder, and symptoms range from mild to severe. Some individuals with psoriatic arthritis have joint involvement that primarily involves spondylitis, which is inflammation in the joints between the vertebrae in the spine. Symptoms of this form of the disorder involve pain and stiffness in the back or neck, and movement is often impaired. Joints in the arms, legs, hands, and feet may also be involved. The most severe and least common type of psoriatic arthritis is called arthritis mutilans. Fewer than 5 percent of individuals with psoriatic arthritis have this form of the disorder. Arthritis mutilans involves severe inflammation that damages the joints in the hands and feet, resulting in deformation and movement problems. Bone loss (osteolysis) at the joints may lead to shortening (telescoping) of the fingers and toes. Neck and back pain may also occur.
psoriatic arthritis
How many people are affected by psoriatic arthritis ?
Psoriatic arthritis affects an estimated 24 in 10,000 people. Between 5 and 10 percent of people with psoriasis develop psoriatic arthritis, according to most estimates. Some studies suggest a figure as high as 30 percent. Psoriasis itself is a common disorder, affecting approximately 2 to 3 percent of the population worldwide.
psoriatic arthritis
What are the genetic changes related to psoriatic arthritis ?
The specific cause of psoriatic arthritis is unknown. Its signs and symptoms result from excessive inflammation in and around the joints. Inflammation occurs when the immune system sends signaling molecules and white blood cells to a site of injury or disease to fight microbial invaders and facilitate tissue repair. When this has been accomplished, the body ordinarily stops the inflammatory response to prevent damage to its own cells and tissues. Mechanical stress on the joints, such as occurs in movement, may result in an excessive inflammatory response in people with psoriatic arthritis. The reasons for this excessive inflammatory response are unclear. Researchers have identified changes in several genes that may influence the risk of developing psoriatic arthritis. The most well-studied of these genes belong to a family of genes called the human leukocyte antigen (HLA) complex. The HLA complex helps the immune system distinguish the body's own proteins from proteins made by foreign invaders (such as viruses and bacteria). Each HLA gene has many different normal variations, allowing each person's immune system to react to a wide range of foreign proteins. Variations of several HLA genes seem to affect the risk of developing psoriatic arthritis, as well as the type, severity, and progression of the condition. Variations in several other genes have also been associated with psoriatic arthritis. Many of these genes are thought to play roles in immune system function. However, variations in these genes probably make only a small contribution to the overall risk of developing psoriatic arthritis. Other genetic and environmental factors are also likely to influence a person's chances of developing this disorder.
psoriatic arthritis
Is psoriatic arthritis inherited ?
This condition has an unknown inheritance pattern. Approximately 40 percent of affected individuals have at least one close family member with psoriasis or psoriatic arthritis.
psoriatic arthritis
What are the treatments for psoriatic arthritis ?
These resources address the diagnosis or management of psoriatic arthritis: - American Society for Surgery of the Hand - Genetic Testing Registry: Psoriatic arthritis, susceptibility to - The Johns Hopkins Arthritis Center These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
psoriatic arthritis
What is (are) beta-ureidopropionase deficiency ?
Beta-ureidopropionase deficiency is a disorder that causes excessive amounts of molecules called N-carbamyl-beta-aminoisobutyric acid and N-carbamyl-beta-alanine to be released in the urine. Neurological problems ranging from mild to severe also occur in some affected individuals. People with beta-ureidopropionase deficiency can have low muscle tone (hypotonia), seizures, speech difficulties, developmental delay, intellectual disability, and autistic behaviors that affect communication and social interaction. Some people with this condition have an abnormally small head size (microcephaly); they may also have brain abnormalities that can be seen with medical imaging. Deterioration of the optic nerve, which carries visual information from the eyes to the brain, can lead to vision loss in this condition. In some people with beta-ureidopropionase deficiency, the disease causes no neurological problems and can only be diagnosed by laboratory testing.
beta-ureidopropionase deficiency
How many people are affected by beta-ureidopropionase deficiency ?
The prevalence of beta-ureidopropionase deficiency is unknown. A small number of affected individuals from populations around the world have been described in the medical literature. In Japan, the prevalence of beta-ureidopropionase deficiency has been estimated as 1 in 6,000 people. Researchers suggest that in many affected individuals with absent or mild neurological problems, the condition may never be diagnosed.
beta-ureidopropionase deficiency
What are the genetic changes related to beta-ureidopropionase deficiency ?
Beta-ureidopropionase deficiency is caused by mutations in the UPB1 gene, which provides instructions for making an enzyme called beta-ureidopropionase. This enzyme is involved in the breakdown of molecules called pyrimidines, which are building blocks of DNA and its chemical cousin RNA. The beta-ureidopropionase enzyme is involved in the last step of the process that breaks down pyrimidines. This step converts N-carbamyl-beta-aminoisobutyric acid to beta-aminoisobutyric acid and also breaks down N-carbamyl-beta-alanine to beta-alanine, ammonia, and carbon dioxide. Both beta-aminoisobutyric acid and beta-alanine are thought to play roles in the nervous system. Beta-aminoisobutyric acid increases the production of a protein called leptin, which has been found to help protect brain cells from damage caused by toxins, inflammation, and other factors. Research suggests that beta-alanine is involved in sending signals between nerve cells (synaptic transmission) and in controlling the level of a chemical messenger (neurotransmitter) called dopamine. UPB1 gene mutations can reduce or eliminate beta-ureidopropionase enzyme activity. Loss of this enzyme function reduces the production of beta-aminoisobutyric acid and beta-alanine, and leads to an excess of their precursor molecules, N-carbamyl-beta-aminoisobutyric acid and N-carbamyl-beta-alanine, which are released in the urine. Reduced production of beta-aminoisobutyric acid and beta-alanine may impair the function of these molecules in the nervous system, leading to neurological problems in some people with beta-ureidopropionase deficiency. The extent of the reduction in enzyme activity caused by a particular UPB1 gene mutation, along with other genetic and environmental factors, may determine whether people with beta-ureidopropionase deficiency develop neurological problems and the severity of these problems.
beta-ureidopropionase deficiency
Is beta-ureidopropionase deficiency inherited ?
This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.
beta-ureidopropionase deficiency
What are the treatments for beta-ureidopropionase deficiency ?
These resources address the diagnosis or management of beta-ureidopropionase deficiency: - Genetic Testing Registry: Deficiency of beta-ureidopropionase These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
beta-ureidopropionase deficiency
What is (are) congenital diaphragmatic hernia ?
Congenital diaphragmatic hernia is a defect in the diaphragm. The diaphragm, which is composed of muscle and other fibrous tissue, separates the organs in the abdomen from those in the chest. Abnormal development of the diaphragm before birth leads to defects ranging from a thinned area in the diaphragm to its complete absence. An absent or partially formed diaphragm results in an abnormal opening (hernia) that allows the stomach and intestines to move into the chest cavity and crowd the heart and lungs. This crowding can lead to underdevelopment of the lungs (pulmonary hypoplasia), potentially resulting in life-threatening breathing difficulties that are apparent from birth. In 5 to 10 percent of affected individuals, signs and symptoms of congenital diaphragmatic hernia appear later in life and may include breathing problems or abdominal pain from protrusion of the intestine into the chest cavity. In about 1 percent of cases, congenital diaphragmatic hernia has no symptoms; it may be detected incidentally when medical imaging is done for other reasons. Congenital diaphragmatic hernias are often classified by their position. A Bochdalek hernia is a defect in the side or back of the diaphragm. Between 80 and 90 percent of congenital diaphragmatic hernias are of this type. A Morgnani hernia is a defect involving the front part of the diaphragm. This type of congenital diaphragmatic hernia, which accounts for approximately 2 percent of cases, is less likely to cause severe symptoms at birth. Other types of congenital diaphragmatic hernia, such as those affecting the central region of the diaphragm, or those in which the diaphragm muscle is absent with only a thin membrane in its place, are rare.
congenital diaphragmatic hernia
How many people are affected by congenital diaphragmatic hernia ?
Congenital diaphragmatic hernia affects approximately 1 in 2,500 newborns.
congenital diaphragmatic hernia
What are the genetic changes related to congenital diaphragmatic hernia ?
Congenital diaphragmatic hernia has many different causes. In 10 to 15 percent of affected individuals, the condition appears as a feature of a disorder that affects many body systems, called a syndrome. Donnai-Barrow syndrome, Fryns syndrome, and Pallister-Killian mosaic syndrome are among several syndromes in which congenital diaphragmatic hernia may occur. Some of these syndromes are caused by changes in single genes, and others are caused by chromosomal abnormalities that affect several genes. About 25 percent of individuals with congenital diaphragmatic hernia that is not associated with a known syndrome also have abnormalities of one or more major body systems. Affected body systems can include the heart, brain, skeleton, intestines, genitals, kidneys, or eyes. In these individuals, the multiple abnormalities likely result from a common underlying disruption in development that affects more than one area of the body, but the specific mechanism responsible for this disruption is not clear. Approximately 50 to 60 percent of congenital diaphragmatic hernia cases are isolated, which means that affected individuals have no other major malformations. More than 80 percent of individuals with congenital diaphragmatic hernia have no known genetic syndrome or chromosomal abnormality. In these cases, the cause of the condition is unknown. Researchers are studying changes in several genes involved in the development of the diaphragm as possible causes of congenital diaphragmatic hernia. Some of these genes are transcription factors, which provide instructions for making proteins that help control the activity of particular genes (gene expression). Others provide instructions for making proteins involved in cell structure or the movement (migration) of cells in the embryo. Environmental factors that influence development before birth may also increase the risk of congenital diaphragmatic hernia, but these environmental factors have not been identified.
congenital diaphragmatic hernia
Is congenital diaphragmatic hernia inherited ?
Isolated congenital diaphragmatic hernia is rarely inherited. In almost all cases, there is only one affected individual in a family. When congenital diaphragmatic hernia occurs as a feature of a genetic syndrome or chromosomal abnormality, it may cluster in families according to the inheritance pattern for that condition.
congenital diaphragmatic hernia
What are the treatments for congenital diaphragmatic hernia ?
These resources address the diagnosis or management of congenital diaphragmatic hernia: - Boston Children's Hospital - Children's Hospital of Philadelphia - Columbia University Medical Center: DHREAMS - Columbia University Medical Center: Hernia Repair - Gene Review: Gene Review: Congenital Diaphragmatic Hernia Overview - Genetic Testing Registry: Congenital diaphragmatic hernia - Genetic Testing Registry: Diaphragmatic hernia 2 - Genetic Testing Registry: Diaphragmatic hernia 3 - MedlinePlus Encyclopedia: Diaphragmatic Hernia Repair - Seattle Children's Hospital: Treatment of Congenital Diaphragmatic Hernia - University of California, San Francisco Fetal Treatment Center: Congenital Diaphragmatic Hernia - University of Michigan Health System These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
congenital diaphragmatic hernia
What is (are) Miyoshi myopathy ?
Miyoshi myopathy is a muscle disorder that primarily affects muscles away from the center of the body (distal muscles), such as those in the legs. During early to mid-adulthood, affected individuals typically begin to experience muscle weakness and wasting (atrophy) in one or both calves. If only one leg is affected, the calves appear different in size (asymmetrical). Calf weakness can make it difficult to stand on tiptoe. As Miyoshi myopathy slowly progresses, the muscle weakness and atrophy spread up the leg to the muscles in the thigh and buttock. Eventually, affected individuals may have difficulty climbing stairs or walking for an extended period of time. Some people with Miyoshi myopathy may eventually need wheelchair assistance. Rarely, the upper arm or shoulder muscles are mildly affected in Miyoshi myopathy. In a few cases, abnormal heart rhythms (arrhythmias) have developed. Individuals with Miyoshi myopathy have highly elevated levels of an enzyme called creatine kinase (CK) in their blood, which often indicates muscle disease.
Miyoshi myopathy
How many people are affected by Miyoshi myopathy ?
The exact prevalence of Miyoshi myopathy is unknown. In Japan, where the condition was first described, it is estimated to affect 1 in 440,000 individuals.
Miyoshi myopathy
What are the genetic changes related to Miyoshi myopathy ?
Miyoshi myopathy is caused by mutations in the DYSF or ANO5 gene. When this condition is caused by ANO5 gene mutations it is sometimes referred to as distal anoctaminopathy. The DYSF and ANO5 genes provide instructions for making proteins primarily found in muscles that are used for movement (skeletal muscles). The protein produced from the DYSF gene, called dysferlin, is found in the thin membrane called the sarcolemma that surrounds muscle fibers. Dysferlin is thought to aid in repairing the sarcolemma when it becomes damaged or torn due to muscle strain. The ANO5 gene provides instructions for making a protein called anoctamin-5. This protein is located within the membrane of a cell structure called the endoplasmic reticulum, which is involved in protein production, processing, and transport. Anoctamin-5 is thought to act as a channel, allowing charged chlorine atoms (chloride ions) to flow in and out of the endoplasmic reticulum. The regulation of chloride flow within muscle cells plays a role in controlling muscle tensing (contraction) and relaxation. DYSF or ANO5 gene mutations often result in a decrease or elimination of the corresponding protein. A lack of dysferlin leads to a reduced ability to repair damage done to the sarcolemma of muscle fibers. As a result, damage accumulates and leads to atrophy of the muscle fiber. It is unclear why this damage leads to the specific pattern of weakness and atrophy that is characteristic of Miyoshi myopathy. The effects of the loss of anoctamin-5 are also unclear. While chloride is necessary for normal muscle function, it is unknown how a lack of this chloride channel causes the signs and symptoms of Miyoshi myopathy.
Miyoshi myopathy
Is Miyoshi myopathy inherited ?
This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.
Miyoshi myopathy
What are the treatments for Miyoshi myopathy ?
These resources address the diagnosis or management of Miyoshi myopathy: - Gene Review: Gene Review: ANO5-Related Muscle Diseases - Gene Review: Gene Review: Dysferlinopathy - Genetic Testing Registry: Miyoshi muscular dystrophy 1 - Genetic Testing Registry: Miyoshi muscular dystrophy 3 These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
Miyoshi myopathy
What is (are) Coats plus syndrome ?
Coats plus syndrome is an inherited condition characterized by an eye disorder called Coats disease plus abnormalities of the brain, bones, gastrointestinal system, and other parts of the body. Coats disease affects the retina, which is the tissue at the back of the eye that detects light and color. The disorder causes blood vessels in the retina to be abnormally enlarged (dilated) and twisted. The abnormal vessels leak fluid, which can eventually cause the layers of the retina to separate (retinal detachment). These eye abnormalities often result in vision loss. People with Coats plus syndrome also have brain abnormalities including abnormal deposits of calcium (calcification), the development of fluid-filled pockets called cysts, and loss of a type of brain tissue known as white matter (leukodystrophy). These brain abnormalities worsen over time, causing slow growth, movement disorders, seizures, and a decline in intellectual function. Other features of Coats plus syndrome include low bone density (osteopenia), which causes bones to be fragile and break easily, and a shortage of red blood cells (anemia), which can lead to unusually pale skin (pallor) and extreme tiredness (fatigue). Affected individuals can also have serious or life-threatening complications including abnormal bleeding in the gastrointestinal tract, high blood pressure in the vein that supplies blood to the liver (portal hypertension), and liver failure. Less common features of Coats plus syndrome can include sparse, prematurely gray hair; malformations of the fingernails and toenails; and abnormalities of skin coloring (pigmentation), such as light brown patches called caf-au-lait spots. Coats plus syndrome and a disorder called leukoencephalopathy with calcifications and cysts (LCC; also called Labrune syndrome) have sometimes been grouped together under the umbrella term cerebroretinal microangiopathy with calcifications and cysts (CRMCC) because they feature very similar brain abnormalities. However, researchers recently found that Coats plus syndrome and LCC have different genetic causes, and they are now generally described as separate disorders instead of variants of a single condition.
Coats plus syndrome
How many people are affected by Coats plus syndrome ?
Coats plus syndrome appears to be a rare disorder. Its prevalence is unknown.
Coats plus syndrome
What are the genetic changes related to Coats plus syndrome ?
Coats plus syndrome results from mutations in the CTC1 gene. This gene provides instructions for making a protein that plays an important role in structures known as telomeres, which are found at the ends of chromosomes. Telomeres are short, repetitive segments of DNA that help protect chromosomes from abnormally sticking together or breaking down (degrading). In most cells, telomeres become progressively shorter as the cell divides. After a certain number of cell divisions, the telomeres become so short that they trigger the cell to stop dividing or to self-destruct (undergo apoptosis). The CTC1 protein works as part of a group of proteins known as the CST complex, which is involved in the copying (replication) of telomeres. The CST complex helps prevent telomeres from being degraded in some cells as the cells divide. Mutations in the CTC1 gene impair the function of the CST complex, which affects the replication of telomeres. However, it is unclear how CTC1 gene mutations impact telomere structure and function. Some studies have found that people with CTC1 gene mutations have abnormally short telomeres, while other studies have found no change in telomere length. Researchers are working to determine how telomeres are different in people with CTC1 gene mutations and how these changes could underlie the varied signs and symptoms of Coats plus syndrome.
Coats plus syndrome
Is Coats plus syndrome inherited ?
This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.
Coats plus syndrome
What are the treatments for Coats plus syndrome ?
These resources address the diagnosis or management of Coats plus syndrome: - Genetic Testing Registry: Cerebroretinal microangiopathy with calcifications and cysts These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
Coats plus syndrome
What is (are) Duchenne and Becker muscular dystrophy ?
Muscular dystrophies are a group of genetic conditions characterized by progressive muscle weakness and wasting (atrophy). The Duchenne and Becker types of muscular dystrophy are two related conditions that primarily affect skeletal muscles, which are used for movement, and heart (cardiac) muscle. These forms of muscular dystrophy occur almost exclusively in males. Duchenne and Becker muscular dystrophies have similar signs and symptoms and are caused by different mutations in the same gene. The two conditions differ in their severity, age of onset, and rate of progression. In boys with Duchenne muscular dystrophy, muscle weakness tends to appear in early childhood and worsen rapidly. Affected children may have delayed motor skills, such as sitting, standing, and walking. They are usually wheelchair-dependent by adolescence. The signs and symptoms of Becker muscular dystrophy are usually milder and more varied. In most cases, muscle weakness becomes apparent later in childhood or in adolescence and worsens at a much slower rate. Both the Duchenne and Becker forms of muscular dystrophy are associated with a heart condition called cardiomyopathy. This form of heart disease weakens the cardiac muscle, preventing the heart from pumping blood efficiently. In both Duchenne and Becker muscular dystrophy, cardiomyopathy typically begins in adolescence. Later, the heart muscle becomes enlarged, and the heart problems develop into a condition known as dilated cardiomyopathy. Signs and symptoms of dilated cardiomyopathy can include an irregular heartbeat (arrhythmia), shortness of breath, extreme tiredness (fatigue), and swelling of the legs and feet. These heart problems worsen rapidly and become life-threatening in many cases. Males with Duchenne muscular dystrophy typically live into their twenties, while males with Becker muscular dystrophy can survive into their forties or beyond. A related condition called DMD-associated dilated cardiomyopathy is a form of heart disease caused by mutations in the same gene as Duchenne and Becker muscular dystrophy, and it is sometimes classified as subclinical Becker muscular dystrophy. People with DMD-associated dilated cardiomyopathy typically do not have any skeletal muscle weakness or wasting, although they may have subtle changes in their skeletal muscle cells that are detectable through laboratory testing.
Duchenne and Becker muscular dystrophy
How many people are affected by Duchenne and Becker muscular dystrophy ?
Duchenne and Becker muscular dystrophies together affect 1 in 3,500 to 5,000 newborn males worldwide. Between 400 and 600 boys in the United States are born with these conditions each year.
Duchenne and Becker muscular dystrophy
What are the genetic changes related to Duchenne and Becker muscular dystrophy ?
Mutations in the DMD gene cause the Duchenne and Becker forms of muscular dystrophy. The DMD gene provides instructions for making a protein called dystrophin. This protein is located primarily in skeletal and cardiac muscle, where it helps stabilize and protect muscle fibers. Dystrophin may also play a role in chemical signaling within cells. Mutations in the DMD gene alter the structure or function of dystrophin or prevent any functional dystrophin from being produced. Muscle cells without enough of this protein become damaged as muscles repeatedly contract and relax with use. The damaged fibers weaken and die over time, leading to the muscle weakness and heart problems characteristic of Duchenne and Becker muscular dystrophies. Mutations that lead to an abnormal version of dystrophin that retains some function usually cause Becker muscular dystrophy, while mutations that prevent the production of any functional dystrophin tend to cause Duchenne muscular dystrophy. Because Duchenne and Becker muscular dystrophies result from faulty or missing dystrophin, these conditions are classified as dystrophinopathies.
Duchenne and Becker muscular dystrophy
Is Duchenne and Becker muscular dystrophy inherited ?
This condition is inherited in an X-linked recessive pattern. The gene associated with this condition is located on the X chromosome, which is one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. In females (who have two X chromosomes), a mutation would have to occur in both copies of the gene to cause the disorder. Because it is unlikely that females will have two altered copies of this gene, males are affected by X-linked recessive disorders much more frequently than females. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons. In about two-thirds of cases, an affected male inherits the mutation from his mother, who carries one altered copy of the DMD gene. The other one-third of cases probably result from new mutations in the gene in affected males and are not inherited. In X-linked recessive inheritance, a female with one mutated copy of the gene in each cell is called a carrier. She can pass on the altered gene but usually does not experience signs and symptoms of the disorder. Occasionally, however, females who carry a DMD gene mutation may have muscle weakness and cramping. These symptoms are typically milder than the severe muscle weakness and atrophy seen in affected males. Females who carry a DMD gene mutation also have an increased risk of developing heart abnormalities including cardiomyopathy.
Duchenne and Becker muscular dystrophy
What are the treatments for Duchenne and Becker muscular dystrophy ?
These resources address the diagnosis or management of Duchenne and Becker muscular dystrophy: - Gene Review: Gene Review: Dilated Cardiomyopathy Overview - Gene Review: Gene Review: Dystrophinopathies - Genetic Testing Registry: Becker muscular dystrophy - Genetic Testing Registry: Duchenne muscular dystrophy - Genomics Education Programme (UK) - MedlinePlus Encyclopedia: Becker Muscular Dystrophy - MedlinePlus Encyclopedia: Dilated Cardiomyopathy - MedlinePlus Encyclopedia: Duchenne Muscular Dystrophy These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
Duchenne and Becker muscular dystrophy
What is (are) Nicolaides-Baraitser syndrome ?
Nicolaides-Baraitser syndrome is a condition that affects many body systems. Affected individuals can have a wide variety of signs and symptoms, but the most common are sparse scalp hair, small head size (microcephaly), distinct facial features, short stature, prominent finger joints, unusually short fingers and toes (brachydactyly), recurrent seizures (epilepsy), and moderate to severe intellectual disability with impaired language development. In people with Nicolaides-Baraitser syndrome, the sparse scalp hair is often noticeable in infancy. The amount of hair decreases over time, but the growth rate and texture of the hair that is present is normal. Affected adults generally have very little hair. In rare cases, the amount of scalp hair increases over time. As affected individuals age, their eyebrows may become less full, but their eyelashes almost always remain normal. At birth, the hair on the face may be abnormally thick (hypertrichosis) but thins out over time. Most affected individuals grow slowly, resulting in short stature and microcephaly. Sometimes, growth before birth is unusually slow. The characteristic facial features of people with Nicolaides-Baraitser syndrome include a triangular face, deep-set eyes, a thin nasal bridge, wide nostrils, a pointed nasal tip, and a thick lower lip. Many affected individuals have a lack of fat under the skin (subcutaneous fat) of the face, which may cause premature wrinkling. Throughout their bodies, people with Nicolaides-Baraitser syndrome may have pale skin with veins that are visible on the skin surface due to the lack of subcutaneous fat. In people with Nicolaides-Baraitser syndrome, a lack of subcutaneous fat in the hands makes the finger joints appear larger than normal. Over time, the fingertips become broad and oval shaped. Additionally, there is a wide gap between the first and second toes (known as a sandal gap). Most people with Nicolaides-Baraitser syndrome have epilepsy, which often begins in infancy. Affected individuals can experience multiple seizure types, and the seizures can be difficult to control with medication. Almost everyone with Nicolaides-Baraitser syndrome has moderate to severe intellectual disability. Early developmental milestones, such as crawling and walking, are often normally achieved, but further development is limited, and language development is severely impaired. At least one-third of affected individuals never develop speech, while others lose their verbal communication over time. People with this condition are often described as having a happy demeanor and being very friendly, although they can exhibit moments of aggression and temper tantrums. Other signs and symptoms of Nicolaides-Baraitser syndrome include an inflammatory skin disorder called eczema. About half of individuals with Nicolaides-Baraitser syndrome have a soft out-pouching around the belly-button (umbilical hernia) or lower abdomen (inguinal hernia). Some affected individuals have dental abnormalities such as widely spaced teeth, delayed eruption of teeth, and absent teeth (hypodontia). Most affected males have undescended testes (cryptorchidism) and females may have underdeveloped breasts. Nearly half of individuals with Nicolaides-Baraitser syndrome have feeding problems.
Nicolaides-Baraitser syndrome
How many people are affected by Nicolaides-Baraitser syndrome ?
Nicolaides-Baraitser syndrome is likely a rare condition; approximately 75 cases have been reported in the scientific literature.
Nicolaides-Baraitser syndrome
What are the genetic changes related to Nicolaides-Baraitser syndrome ?
Nicolaides-Baraitser syndrome is caused by mutations in the SMARCA2 gene. This gene provides instructions for making one piece (subunit) of a group of similar protein complexes known as SWI/SNF complexes. These complexes regulate gene activity (expression) by a process known as chromatin remodeling. Chromatin is the network of DNA and proteins that packages DNA into chromosomes. The structure of chromatin can be changed (remodeled) to alter how tightly DNA is packaged. Chromatin remodeling is one way gene expression is regulated during development; when DNA is tightly packed, gene expression is lower than when DNA is loosely packed. To provide energy for chromatin remodeling, the SMARCA2 protein uses a molecule called ATP. The SMARCA2 gene mutations that cause Nicolaides-Baraitser syndrome result in the production of an altered protein that interferes with the normal function of the SWI/SNF complexes. These altered proteins are able to form SWI/SNF complexes, but the complexes are nonfunctional. As a result, they cannot participate in chromatin remodeling. Disturbance of this regulatory process alters the activity of many genes, which likely explains the diverse signs and symptoms of Nicolaides-Baraitser syndrome.
Nicolaides-Baraitser syndrome
Is Nicolaides-Baraitser syndrome inherited ?
Nicolaides-Baraitser syndrome follows an autosomal dominant pattern of inheritance, which means one copy of the altered gene in each cell is sufficient to cause the disorder. All cases of this condition result from new (de novo) mutations in the gene that occur during the formation of reproductive cells (eggs or sperm) or in early embryonic development. These cases occur in people with no history of the disorder in their family.
Nicolaides-Baraitser syndrome
What are the treatments for Nicolaides-Baraitser syndrome ?
These resources address the diagnosis or management of Nicolaides-Baraitser syndrome: - Gene Review: Gene Review: Nicolaides-Baraitser Syndrome - Genetic Testing Registry: Nicolaides-Baraitser syndrome These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care
Nicolaides-Baraitser syndrome