abstract
stringlengths 0
122k
|
---|
With the exception of Reston and Bombali viruses, the marburgviruses and ebolaviruses (family Filoviridae) cause outbreaks of viral hemorrhagic fever in sub-Saharan Africa. The Egyptian rousette bat (ERB) is a natural reservoir host for the marburgviruses and evidence suggests that bats are also natural reservoirs for the ebolaviruses. Although the search for the natural reservoirs of the ebolaviruses has largely involved serosurveillance of the bat population, there are no validated serological assays to screen bat sera for ebolavirus-specific IgG antibodies. Here, we generate filovirus-specific antisera by prime-boost immunization of groups of captive ERBs with all seven known culturable filoviruses. After validating a system of filovirus-specific indirect ELISAs utilizing infectious-based virus antigens for detection of virus-specific IgG antibodies from bat sera, we assess the level of serological cross-reactivity between the virus-specific antisera and heterologous filovirus antigens. This data is then used to generate a filovirus antibody fingerprint that can predict which of the filovirus species in the system is most antigenically similar to the species responsible for past infection. Our filovirus IgG indirect ELISA system will be a critical tool for identifying bat species with high ebolavirus seroprevalence rates to target for longitudinal studies aimed at establishing natural reservoir host-ebolavirus relationships. |
Pollination syndromes describe recurring adaptation to selection imposed by distinct pollinators. We tested for pollination syndromes in Merianieae (Melastomataceae), which contain bee‐ (buzz‐), hummingbird‐, flowerpiercer‐, passerine‐, bat‐ and rodent‐pollinated species. Further, we explored trait changes correlated with the repeated shifts away from buzz‐pollination, which represents an ‘adaptive plateau’ in Melastomataceae. We used random forest analyses to identify key traits associated with the different pollinators of 19 Merianieae species and estimated the pollination syndromes of 42 more species. We employed morphospace analyses to compare the morphological diversity (disparity) among syndromes. We identified three pollination syndromes (‘buzz‐bee’, ‘mixed‐vertebrate’ and ‘passerine’), characterized by different pollen expulsion mechanisms and reward types, but not by traditional syndrome characters. Further, we found that ‘efficiency’ rather than ‘attraction’ traits were important for syndrome circumscription. Contrary to syndrome theory, our study supports the pooling of different pollinators (hummingbirds, bats, rodents and flowerpiercers) into the ‘mixed‐vertebrate’ syndrome, and we found that disparity was highest in the ‘buzz‐bee’ syndrome. We conclude that the highly adaptive buzz‐pollination system may have prevented shifts towards classical pollination syndromes, but provided the starting point for the evolution of a novel set of distinct syndromes, all having retained multifunctional stamens that provide pollen expulsion, reward and attraction. |
Bats are the second most diverse mammalian group, playing keystone roles in ecosystems but also act as reservoir hosts for numerous pathogens. Due to their colonial habits which implies close contacts between individuals, bats are often parasitized by multiple species of micro- and macroparasites. The particular ecology, behavior, and environment of bat species may shape patterns of intra- and interspecific pathogen transmission, as well as the presence of specific vectorial organisms. This review synthetizes information on a multi-level parasitic system: bats, bat flies and their microparasites. Bat flies (Diptera: Nycteribiidae and Streblidae) are obligate, hematophagous ectoparasites of bats consisting of ~500 described species. Diverse parasitic organisms have been detected in bat flies including bacteria, blood parasites, fungi, and viruses, which suggest their vectorial potential. We discuss the ecological epidemiology of microparasites, their potential physiological effects on both bats and bat flies, and potential research perspectives in the domain of bat pathogens. For simplicity, we use the term microparasite throughout this review, yet it remains unclear whether some bacteria are parasites or symbionts of their bat fly hosts. |
BACKGROUND: Community-acquired pneumonia (CAP) is a leading cause of morbidity and mortality worldwide. Antibiotics are losing their effectiveness due to the emerging infectious diseases, the scarcity of novel antibiotics, and the contributions of antibiotic misuse and overuse to resistance. Characterization of the lipidomic response to pneumonia and exploring the “lipidomic phenotype” can provide new insight into the underlying mechanisms of pathogenesis and potential avenues for diagnostic and therapeutic treatments. METHODS: Lipid profiles of bronchoalveolar lavage fluid (BALF) samples were generated through untargeted lipidomic profiling analysis using high-performance liquid chromatography with mass spectrometry (HPLC-MS). Principal component analysis (PCA) was applied to identify possible sources of variations among samples. Partitioning clustering analysis (k-means) was employed to evaluate the existence of distinct lipidomic clusters. RESULTS: PCA showed that BALF lipidomes differed significantly between CAP (n = 52) and controls (n = 68, including 35 healthy volunteers and 33 patients with non-infectious lung diseases); while no clear separation was found between severe CAP and non-severe CAP cases. Lactosylceramides were the most prominently elevated lipid constituent in CAP. Clustering analysis revealed three separate lipid profiles; subjects in each cluster exhibited significant differences in disease severity, incidence of hypoxemia, percentages of phagocytes in BALF, and serum concentrations of albumin and total cholesterol (all p < 0.05). In addition, SM (d34:1) was negatively related to macrophage (adjusted r = − 0.462, p < 0.0001) and PE (18:1p/20:4) was positively correlated with polymorphonuclear neutrophil (PMN) percentages of BALF (adjusted r = 0.541, p < 0.0001). The 30-day mortality did not differ amongst three clusters (p < 0.05). CONCLUSIONS: Our data suggest that specific lower airway lipid composition is related to different intensities of host inflammatory responses, and may contribute to functionally relevant shifts in disease pathogenesis in CAP individuals. These findings argue for the need to tailor therapy based on specific lipid profiles and related inflammatory status. TRIAL REGISTRATION: ClinicalTrials.gov (NCT03093220). Registered on 28 March 2017 (retrospectively registered). ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12931-019-1028-8) contains supplementary material, which is available to authorized users. |
In 2012, the genome of a novel rhabdovirus, Bas-Congo virus (BASV), was discovered in the acute-phase serum of a Congolese patient with presumed viral hemorrhagic fever. In the absence of a replicating virus isolate, fulfilling Koch’s postulates to determine whether BASV is indeed a human virus and/or pathogen has been impossible. However, experiments with vesiculoviral particles pseudotyped with Bas-Congo glycoprotein suggested that BASV particles can enter cells from multiple animals, including humans. In 2015, genomes of two related viruses, Ekpoma virus 1 (EKV-1) and Ekpoma virus 2 (EKV-2), were detected in human sera in Nigeria. Isolates could not be obtained. Phylogenetic analyses led to the classification of BASV, EKV-1, and EKV-2 in the same genus, Tibrovirus, together with five biting midge-borne rhabdoviruses [i.e., Beatrice Hill virus (BHV), Bivens Arm virus (BAV), Coastal Plains virus (CPV), Sweetwater Branch virus (SWBV), and Tibrogargan virus (TIBV)] not known to infect humans. Using individual recombinant vesiculoviruses expressing the glycoproteins of all eight known tibroviruses and more than 75 cell lines representing different animal species, we demonstrate that the glycoproteins of all tibroviruses can mediate vesiculovirus particle entry into human, bat, nonhuman primate, cotton rat, boa constrictor, and Asian tiger mosquito cells. Using four of five isolated authentic tibroviruses (i.e., BAV, CPV, SWBV, and TIBV), our experiments indicate that many cell types may be partially resistant to tibrovirus replication after virion cell entry. Consequently, experimental data solely obtained from experiments using tibrovirus surrogate systems (e.g., vesiculoviral pseudotypes, recombinant vesiculoviruses) cannot be used to predict whether BASV, or any other tibrovirus, infects humans. |
Ciliocytophthoria (CCP) defines a degenerative process of the ciliated cells consequent to viral infections, and it is characterized by typical morphological changes. We evaluated the distinct and characteristic phases of CCP, by means of the optical microscopy of the nasal mucosa (nasal cytology), in 20 patients (12 males and 8 females; aged between 18 and 40 years). Three phases of CCP by nasal cytology are detected. This outcome confirms that CCP represents a sign of suffering nasal epithelial cell. (www.actabiomedica.it) |
BACKGROUND: Human metapneumovirus (hMPV) is a Paramyxovirus known to cause acute respiratory tract infections in children and young adults. To date, there is no study from the Aseer region of Saudi Arabia determining the proportion and severity of hMPV infection among pediatric hospitalized patients with respiratory infections. OBJECTIVES: The objective of this study is to determine the presence of hMPV antigens in the nasopharyngeal secretions of pediatric patients hospitalized with respiratory tract infections in the Aseer region of Saudi Arabia. MATERIALS AND METHODS: This prospective, serological hospital-based study included all pediatric patients who were admitted to Aseer Central Hospital, Abha, Saudi Arabia, from July 2016 to November 2017 with upper and/or lower respiratory tract infections. Basic demographics of patients and their clinical data on and after admission were recorded. Direct fluorescent antibody assay was used to detect the presence of hMPV antigens in the obtained nasopharyngeal secretion specimens. RESULTS: During the study, 91 pediatric patients were hospitalized due to upper and/or lower respiratory tract infections, of which 9.9% were positive for hMPV. These patients were aged 9 months to 16 years, were from Abha city or its surrounding localities and were mostly (77.8%) hospitalized during autumn or winter. The most common diagnosis on admission was bronchopneumonia (55.5%) and aspiration pneumonia (22.2%), and some patients also had underlying chronic conditions such as chronic heart disease (22.2%) and bronchial asthma (11.1%). CONCLUSIONS: The results obtained indicated that hMPV is a potential etiologic factor for the commonly occurring acute respiratory infections in hospitalized children from the Aseer region of Saudi Arabia. hMPV infection was also found to be associated with complicated respiratory conditions such as bronchopneumonia, chronic heart disease and bronchial asthma. |
Defective viral genomes of the copy-back type (cbDVGs) are the primary initiators of the antiviral immune response during infection with respiratory syncytial virus (RSV) both in vitro and in vivo. However, the mechanism governing cbDVG generation remains unknown, thereby limiting our ability to manipulate cbDVG content in order to modulate the host response to infection. Here we report a specific genomic signal that mediates the generation of a subset of RSV cbDVG species. Using a customized bioinformatics tool, we identified regions in the RSV genome frequently used to generate cbDVGs during infection. We then created a minigenome system to validate the function of one of these sequences and to determine if specific nucleotides were essential for cbDVG generation at that position. Further, we created a recombinant virus unable to produce a subset of cbDVGs due to mutations introduced in this sequence. The identified sequence was also found as a site for cbDVG generation during natural RSV infections, and common cbDVGs originated at this sequence were found among samples from various infected patients. These data demonstrate that sequences encoded in the viral genome determine the location of cbDVG formation and, therefore, the generation of cbDVGs is not a stochastic process. These findings open the possibility of genetically manipulating cbDVG formation to modulate infection outcome. |
BACKGROUND: Leptospirosis or Weil’s disease is caused by pathogenic spirochete bacteria called Leptospira. It is considered the most common zoonosis in the world and is usually transmitted by urine of rodents and dogs with an incubation time of 7–14 days. The clinical spectrum ranges from a subclinical infection to a fulminant septic course. CASE PRESENTATION: Here, we report the case of a German patient with acute pancreatitis associated with Leptospira interrogans causing fulminant septic shock. The patient was successfully treated with intravenous antibiotics and left the hospital fully recovered after 18 days. CONCLUSIONS: To our knowledge, this is the first case of leptospirosis with acute pancreatitis as the leading clinical manifestation in Central Europe. Serologic and molecular genetic tests for leptospirosis should be considered, if no other causes for pancreatitis can be identified. |
Background: The Ebola epidemic in West Africa caused global fear and stirred up worldwide preparedness activities in countries sharing borders with those affected, and in geographically far-away countries such as Iceland. Objective: To describe and analyse Ebola preparedness activities within the Icelandic healthcare system, and to explore the perspectives and experiences of managers and frontline health workers. Methods: A qualitative case study, based on semi-structured interviews with 21 staff members in the national Ebola Treatment Team, Emergency Room at Landspitali University Hospital, and managers of the response team. Results: Contextual factors such as culture and demography influenced preparedness, and contributed to the positive state of mind of participants, and ingenuity in using available resources for preparedness. While participants believed they were ready to take on the task of Ebola, they also had doubts about the chances of Ebola ever reaching Iceland. Yet, factors such as fear of Ebola and the perceived stigma associated with caring for a potentially infected Ebola patient, influenced the preparation process and resulted in plans for specific precautions by staff to secure the safety of their families. There were also concerns about the teamwork and lack of commitment by some during training. Being a ‘tiny’ nation was seen as both an asset and a weakness in the preparation process. Honest information sharing and scenario-based training contributed to increased confidence amongst participants in the response plans. Conclusions: Communication and training were important for preparedness of health staff in Iceland, in order to receive, admit, and treat a patient suspected of having Ebola, while doubts prevailed on staff capacity to properly do so. For optimal preparedness, likely scenarios for future global security health threats need to be repeatedly enacted, and areas plagued by poverty and fragile healthcare systems require global support. |
Stroke attracts neutrophils to the injured brain tissue where they can damage the integrity of the blood–brain barrier and exacerbate the lesion. However, the mechanisms involved in neutrophil transmigration, location and accumulation in the ischemic brain are not fully elucidated. Neutrophils can reach the perivascular spaces of brain vessels after crossing the endothelial cell layer and endothelial basal lamina of post-capillary venules, or migrating from the leptomeninges following pial vessel extravasation and/or a suggested translocation from the skull bone marrow. Based on previous observations of microglia phagocytosing neutrophils recruited to the ischemic brain lesion, we hypothesized that microglial cells might control neutrophil accumulation in the injured brain. We studied a model of permanent occlusion of the middle cerebral artery in mice, including microglia- and neutrophil-reporter mice. Using various in vitro and in vivo strategies to impair microglial function or to eliminate microglia by targeting colony stimulating factor 1 receptor (CSF1R), this study demonstrates that microglial phagocytosis of neutrophils has fundamental consequences for the ischemic tissue. We found that reactive microglia engulf neutrophils at the periphery of the ischemic lesion, whereas local microglial cell loss and dystrophy occurring in the ischemic core are associated with the accumulation of neutrophils first in perivascular spaces and later in the parenchyma. Accordingly, microglia depletion by long-term treatment with a CSF1R inhibitor increased the numbers of neutrophils and enlarged the ischemic lesion. Hence, microglial phagocytic function sets a critical line of defense against the vascular and tissue damaging capacity of neutrophils in brain ischemia. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00401-018-1954-4) contains supplementary material, which is available to authorized users. |
During human immunodeficiency virus (HIV) infection, type I interferon (IFN-I) signaling induces an antiviral state that includes the production of restriction factors that inhibit virus replication, thereby limiting the infection. As seen in other viral infections, type I IFN can also increase systemic immune activation which, in HIV disease, is one of the strongest predictors of disease progression to acquired immune deficiency syndrome (AIDS) and non-AIDS morbidity and mortality. Moreover, IFN-I is associated with CD4 T cell depletion and attenuation of antigen-specific T cell responses. Therefore, therapeutic manipulation of IFN-I signaling to improve HIV disease outcome is a source of much interest and debate in the field. Recent studies have highlighted the importance of timing (acute vs. chronic infection) and have suggested that specific targeting of type I IFNs and their subtypes may help harness the beneficial roles of the IFN-I system while avoiding its deleterious activities. |
Infection of cattle by bovine herpesvirus 1 (BoHV-1) can culminate in upper respiratory tract disorders, conjunctivitis, or genital disorders. Infection also consistently leads to transient immune-suppression. BoHV-1 is the number one infectious agent in cattle that is associated with abortions in cattle. BoHV-1, as other α-herpesvirinae subfamily members, establishes latency in sensory neurons. Stressful stimuli, mimicked by the synthetic corticosteroid dexamethasone, consistently induce reactivation from latency in latently infected calves and rabbits. Increased corticosteroid levels due to stress have a two-pronged effect on reactivation from latency by: (1) directly stimulating viral gene expression and replication, and (2) impairing antiviral immune responses, thus enhancing virus spread and transmission. BoHV-1 encodes several proteins, bICP0, bICP27, gG, UL49.5, and VP8, which interfere with key antiviral innate immune responses in the absence of other viral genes. Furthermore, the ability of BoHV-1 to infect lymphocytes and induce apoptosis, in particular CD4+ T cells, has negative impacts on immune responses during acute infection. BoHV-1 induced immune-suppression can initiate the poly-microbial disorder known as bovine respiratory disease complex, which costs the US cattle industry more than one billion dollars annually. Furthermore, interfering with antiviral responses may promote viral spread to ovaries and the developing fetus, thus enhancing reproductive issues associated with BoHV-1 infection of cows or pregnant cows. The focus of this review is to describe the known mechanisms, direct and indirect, by which BoHV-1 interferes with antiviral immune responses during the course of infection. |
Volatile anesthetics have been shown to reduce lung resistance through dilation of constricted airways. In this study, we hypothesized that diffusion of inhaled anesthetics from airway lumen to smooth muscle would yield significant bronchodilation in vivo, and systemic recirculation would not be necessary to reduce lung resistance (R(L)) and elastance (E(L)) during sustained bronchoconstriction. To test this hypothesis, we designed a delivery system for precise timing of inhaled volatile anesthetics during the course of a positive pressure breath. We compared changes in R(L), E(L), and anatomic dead space (V(D)) in canines (N = 5) during pharmacologically induced bronchoconstriction with intravenous methacholine, and following treatments with: (1) targeted anesthetic delivery to V(D) and (2) continuous anesthetic delivery throughout inspiration. Both sevoflurane and isoflurane were used during each delivery regimen. Compared to continuous delivery, targeted delivery resulted in significantly lower doses of delivered anesthetic and decreased end-expiratory concentrations. However, we did not detect significant reductions in R(L) or E(L) for either anesthetic delivery regimen. This lack of response may have resulted from an insufficient dose of the anesthetic to cause bronchodilation, or from the preferential distribution of air flow with inhaled anesthetic delivery to less constricted, unobstructed regions of the lung, thereby enhancing airway heterogeneity and increasing apparent R(L) and E(L). |
Influenza A virus (IAV) enters cells by binding to sialic acid on the cell surface. To accomplish this while avoiding immobilization by sialic acid in host mucus, viruses rely on a balance between the receptor-binding protein hemagglutinin (HA) and the receptor-cleaving protein neuraminidase (NA). Although genetic aspects of this balance are well-characterized, little is known about how the spatial organization of these proteins in the viral envelope may contribute. Using site-specific fluorescent labeling and super-resolution microscopy, we show that HA and NA are asymmetrically distributed on the surface of filamentous viruses, creating a spatial organization of binding and cleaving activities that causes viruses to step consistently away from their NA-rich pole. This Brownian ratchet-like diffusion produces persistent directional mobility that resolves the virus’s conflicting needs to both penetrate mucus and stably attach to the underlying cells, potentially contributing to the prevalence of the filamentous phenotype in clinical isolates of IAV. |
Background: Bioaerosols are a major concern for public health and sampling for exposure assessment purposes is challenging. The nasopharyngeal region could be a potent carrier of long-term bioaerosol exposure agents. This study aimed to evaluate the correlation between nasopharyngeal bacterial flora of swine workers and the swine barns bioaerosol biodiversity. Methods: Air samples from eight swine barns as well as nasopharyngeal swabs from pig workers (n = 25) and from a non-exposed control group (n = 29) were sequenced using 16S rRNA gene high-throughput sequencing. Wastewater treatment plants were used as the industrial, low-dust, non-agricultural environment control to validate the microbial link between the bioaerosol content (air) and the nasopharynxes of workers. Results: A multivariate analysis showed air samples and nasopharyngeal flora of pig workers cluster together, compared to the non-exposed control group. The significance was confirmed with the PERMANOVA statistical test (p-value of 0.0001). Unlike the farm environment, nasopharynx samples from wastewater workers did not cluster with air samples from wastewater treatment plants. The difference in the microbial community of nasopharynx of swine workers and a control group suggest that swine workers are carriers of germs found in bioaerosols. Conclusion: Nasopharynx sampling and microbiota could be used as a proxy of air sampling for exposure assessment studies or for the determination of exposure markers in highly contaminated agricultural environments. |
In several lately published studies, the association between single-nucleotide polymorphism (SNP, rs12252) of IFITM3 and the risk of influenza is inconsistent. To further understand the association between the SNP of IFITM3 and the risk of influenza, we searched related studies in five databases including PubMed published earlier than 9 November 2017. Ten sets of data from nine studies were included and data were analysed by Revman 5.0 and Stata 12.0 in our updated meta-analysis, which represented 1365 patients and 5425 no-influenza controls from four different ethnicities. Here strong association between rs12252 and influenza was found in all four genetic models. The significant differences in the allelic model (C vs. T: odds ratio (OR) = 1.35, 95% confidence interval (CI) (1.03–1.79), P = 0.03) and homozygote model (CC vs. TT: OR = 10.63, 95% CI (3.39–33.33), P < 0.00001) in the Caucasian subgroup were discovered, which is very novel and striking. Also novel discoveries were found in the allelic model (C vs. T: OR = 1.37, 95% CI (1.08–1.73), P = 0.009), dominant model (CC + CT vs. TT: OR = 1.48, 95% CI (1.08–2.02), P = 0.01) and homozygote model (CC vs. TT: OR = 2.84, 95% CI (1.36–5.92), P = 0.005) when we compared patients with mild influenza with healthy individuals. Our meta-analysis suggests that single-nucleotide T to C polymorphism of IFITM3 associated with increasingly risk of severe and mild influenza in both Asian and Caucasian populations. |
Vaccinia virus (VACV) has numerous immune evasion strategies, including multiple mechanisms of inhibition of interferon regulatory factor 3 (IRF-3), nuclear factor κB (NF-κB), and type I interferon (IFN) signaling. Here, we use highly multiplexed proteomics to quantify ∼9,000 cellular proteins and ∼80% of viral proteins at seven time points throughout VACV infection. A total of 265 cellular proteins are downregulated >2-fold by VACV, including putative natural killer cell ligands and IFN-stimulated genes. Two-thirds of these viral targets, including class II histone deacetylase 5 (HDAC5), are degraded proteolytically during infection. In follow-up analysis, we demonstrate that HDAC5 restricts replication of both VACV and herpes simplex virus type 1. By generating a protein-based temporal classification of VACV gene expression, we identify protein C6, a multifunctional IFN antagonist, as being necessary and sufficient for proteasomal degradation of HDAC5. Our approach thus identifies both a host antiviral factor and a viral mechanism of innate immune evasion. |
The aim of this article is to provide a detailed description of the SWEDE-I cohort, a prospective study designed to investigate work-related risk factors for transmission of viral infections. A total of 2,237 subjects aged 25–64, working and residing in Eskilstuna (central Sweden), enrolled in the study in August 2011. They filled in five detailed questionnaires including information on demography, personal characteristics, work tasks, work place, contact patterns, family structure, health status, physical activity and diet. During a 9-month follow-up period, the participants self-reported—via internet or telephone—any onset of fever, upper respiratory tract infection, or gastroenteritis immediately as they occurred. For each disease episode, the participants were asked to submit a self-sampled nasal swab for viral diagnosis. In total, 1,733 disease reports were recorded and 1,843 nasal swabs were received, of which 48% tested positive for one or more of 14 analyzed viruses. The cohort has been used to date to study diet, sleep and physical activity as determinants for upper respiratory tract infections. Analyses of contact patterns and occupational circumstances as risk factors for the transmission of infections are ongoing. The SWEDE-I study should be seen as a first pioneering effort to provide new insight in the epidemiology and prevention of viral infections. Potential joint collaborations can be discussed with the principal investigators. |
Remdesivir (GS-5734) is a 1′-cyano-substituted adenosine nucleotide analogue prodrug that shows broad-spectrum antiviral activity against several RNA viruses. This compound is currently under clinical development for the treatment of Ebola virus disease (EVD). While antiviral effects have been demonstrated in cell culture and in non-human primates, the mechanism of action of Ebola virus (EBOV) inhibition for remdesivir remains to be fully elucidated. The EBOV RNA-dependent RNA polymerase (RdRp) complex was recently expressed and purified, enabling biochemical studies with the relevant triphosphate (TP) form of remdesivir and its presumptive target. In this study, we confirmed that remdesivir-TP is able to compete for incorporation with adenosine triphosphate (ATP). Enzyme kinetics revealed that EBOV RdRp and respiratory syncytial virus (RSV) RdRp incorporate ATP and remdesivir-TP with similar efficiencies. The selectivity of ATP against remdesivir-TP is ~4 for EBOV RdRp and ~3 for RSV RdRp. In contrast, purified human mitochondrial RNA polymerase (h-mtRNAP) effectively discriminates against remdesivir-TP with a selectivity value of ~500-fold. For EBOV RdRp, the incorporated inhibitor at position i does not affect the ensuing nucleotide incorporation event at position i+1. For RSV RdRp, we measured a ~6-fold inhibition at position i+1 although RNA synthesis was not terminated. Chain termination was in both cases delayed and was seen predominantly at position i+5. This pattern is specific to remdesivir-TP and its 1′-cyano modification. Compounds with modifications at the 2′-position show different patterns of inhibition. While 2′-C-methyl-ATP is not incorporated, ara-ATP acts as a non-obligate chain terminator and prevents nucleotide incorporation at position i+1. Taken together, our biochemical data indicate that the major contribution to EBOV RNA synthesis inhibition by remdesivir can be ascribed to delayed chain termination. The long distance of five residues between the incorporated nucleotide analogue and its inhibitory effect warrant further investigation. |
Chikungunya virus (CHIKV) has caused extensive outbreaks in several countries within the Americas, Asia, Oceanic/Pacific Islands, and Europe. In humans, CHIKV infections cause a debilitating disease with acute febrile illness and long-term polyarthralgia. Acute and chronic symptoms impose a major economic burden to health systems and contribute to poverty in affected countries. An efficacious vaccine would be an important step towards decreasing the disease burden caused by CHIKV infection. Despite no licensed vaccine is yet available for CHIKV, there is strong evidence of effective asymptomatic viral clearance due to neutralising antibodies against the viral structural proteins. We have designed viral-vectored vaccines to express the structural proteins of CHIKV, using the replication-deficient chimpanzee adenoviral platform, ChAdOx1. Expression of the CHIKV antigens results in the formation of chikungunya virus-like particles. Our vaccines induce high frequencies of anti-chikungunya specific T-cell responses as well as high titres of anti-CHIKV E2 antibodies with high capacity for in vitro neutralisation. Our results indicate the potential for further clinical development of the ChAdOx1 vaccine platform in CHIKV vaccinology. |
BACKGROUND: Telocytes play key roles in maintenance of organ/tissue function and prevention of organ injury. However, there are great challenges to investigate telocytes functions using primary telocytes, due to the difficulties of isolation, identification, and stability. The present study aims at constructing continuous cell strain of mouse lung telocyte cell line with stable characters by gene modification and investigating biological behaviors and responses of gene-modified telocytes to inflammation. METHODS: Mouse primary lung telocytes were isolated and identified using immune-labeling markers and immunoelectron microscopy. Primary telocytes were transformed with Simian vacuolating virus 40 small and large T antigen (SV40). Biological characters, behaviors morphology, and proliferation of those gene-modified telocytes were defined and monitored dynamically for 50 generations, as compared with primary lung telocytes. Cell cycle of mouse primary lung telocytes or gene-modified telocytes was detected by flow cytometry. RESULTS: Gene modified telocytes of generations 5, 10, 30 and 50 were observed with telopodes and also showed CD34 and ckit positive. Multiple cellular morphology were also observed on telocyte cell-line under monitor of celliq and enhanced cell proliferation were showed. SV40 transduction was also reduced apoptosis and increased the ratio of S and G2 phases in telocyte cell-line. CONCLUSION: We successfully constructed mouse lung telocyte cell-line which maintained the biological properties and behaviors as primary telocytes and could responses to inflammation induced by LPS. Thus, gene-modified lung telocytes, Telocyte Line, would provide a cell tool for researchers exploring the roles and applications of telocytes involved in physiological and pathological states in future. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12967-019-1870-y) contains supplementary material, which is available to authorized users. |
Without viral envelope proteins, viruses cannot enter cells to start infection. As the major viral proteins present on the surface of virions, viral envelope proteins are a prominent target of the host immune system in preventing and ultimately eliminating viral infection. In addition to the well-appreciated adaptive immunity that produces envelope protein-specific antibodies and T cell responses, recent studies have begun to unveil a rich layer of host innate immune mechanisms restricting viral entry. This review focuses on the exciting progress that has been made in this new direction of research, by discussing various known examples of host restriction of viral entry, and diverse viral countering strategies, in particular, the emerging role of viral envelope proteins in evading host innate immune suppression. We will also highlight the effective cooperation between innate and adaptive immunity to achieve the synergistic control of viral infection by targeting viral envelope protein and checking viral escape. Given that many of the related findings were made with HIV-1, we will use HIV-1 as the model virus to illustrate the basic principles and molecular mechanisms on host restriction targeting HIV-1 envelope protein. |
Pertussis is an under-recognized cause of neonatal morbidity and mortality. To review information on the epidemiology and disease burden of neonatal pertussis in South and Southeast Asian countries, a systematic literature review of three bibliographic databases was undertaken. Peer-reviewed original studies on neonatal pertussis epidemiology and burden published since 2000, with a geographical scope limited to South and Southeast Asian countries, were included. Data were systematically extracted based on parameters defined a priori. Our findings show that the burden of neonatal pertussis and its complications is substantial. An increase in the number of pertussis cases has been noted since early 2000, ranging from 61 to 92.9% in infants 0–3 months old. The most common symptoms an infant is likely to present with are cough with or without paroxysms, cyanosis, apnea, tachypnea, difficulty in breathing and leukocytosis. In addition, it can lead to hospitalization (length of stay: 5–7 days), complications (e.g., pneumonia, seizures) and mortality ranging from 5.6 to 14.7%. Other observations indicate that diagnosis is challenging because of non-specific clinical symptoms. Specifically, for obstetricians and gynecologists, the information available for making informed decisions on the prevention of neonatal pertussis is unreliable. Maternal immunization against pertussis during late stages of pregnancy has proven to be efficacious and well tolerated. A high burden of neonatal pertussis, as well as its complications, is observed in South and Southeast Asian countries. There is a need to intensify efforts to protect this vulnerable population with maternal vaccination. Funding: GlaxoSmithKline Biologicals SA Plain Language Summary: Plain language summary available for this article. Please see Fig. 1 and the following link: https://doi.org/10.6084/m9.figshare.7951187. |
Hepatitis C virus (HCV) infection is the main cause of chronic hepatitis, affecting an estimated 150 million people worldwide. Initial exposure to HCV is most often followed by chronic hepatitis, with only a minority of individuals spontaneously clearing the virus. The induction of sustained and broadly directed HCV-specific CD4(+) and CD8(+) T cell responses, together with neutralizing antibodies (nAb), and specific genetic polymorphism have been associated with spontaneous resolution of the infection. However, due to its high variability, HCV is able to overwhelm the host immune response through the rapid acquisition of mutations in the epitopes targeted by T cells and neutralizing antibodies. In this context, immune-mediated pressure represents the main force in driving HCV evolution. This review summarizes the data on HCV diversity and the current state of knowledge about the contributions of antibodies, T cells, and host genetic polymorphism in driving HCV evolution in vivo. |
Transforming growth factor-β receptor II (TGFBR2), the type II receptor of the TGF-β/SMA- and MAD-related protein (SMAD) signaling pathway, plays a crucial role in TGF-β signal transduction and is regulated by multiple factors. Nevertheless, the modulation of the non-coding RNA involved in the process of TGFBR2 expression in ovaries is not well studied. In our study, we isolated and characterized the 3′-untranslated region (UTR) of the porcine TGFBR2 gene and microRNA-1306 (miR-1306) was identified as the functional miRNA that targets TGFBR2 in porcine granulosa cells (GCs). Functional analysis showed that miR-1306 promotes apoptosis of GCs as well as attenuating the TGF-β/SMAD signaling pathway targeting and impairing TGFBR2 in GCs. Moreover, we identified the miR-1306 core promoter and found three potential SMAD4-binding elements (SBEs). Luciferase and chromatin immunoprecipitation (ChIP) assays revealed that the transcription factor SMAD4 directly binds to the miR-1306 core promoter and inhibits its transcriptional activity. Furthermore, the TGF-β/SMAD signaling pathway is modulated by SMAD4 positive feedback via inhibition of miR-1306 expression in GCs. Collectively, our findings provide evidence of an epigenetic mechanism that modulates as well as mediates the feedback regulation of the classical TGF-β/SMAD signaling pathway in GCs from porcine ovaries. |
Investigating adaptive potential and understanding the relative roles of selection and genetic drift in populations of endangered species are essential in conservation. Major histocompatibility complex (MHC) genes characterized by spectacular polymorphism and fitness association have become valuable adaptive markers. Herein we investigate the variation of all MHC class I and II genes across seven populations of an endangered bird, the crested ibis, of which all current individuals are offspring of only two pairs. We inferred seven multilocus haplotypes from linked alleles in the Core Region and revealed structural variation of the class II region that probably evolved through unequal crossing over. Based on the low polymorphism, structural variation, strong linkage, and extensive shared alleles, we applied the MHC haplotypes in population analysis. The genetic variation and population structure at MHC haplotypes are generally concordant with those expected from microsatellites, underlining the predominant role of genetic drift in shaping MHC variation in the bottlenecked populations. Nonetheless, some populations showed elevated differentiation at MHC, probably due to limited gene flow. The seven populations were significantly differentiated into three groups and some groups exhibited genetic monomorphism, which can be attributed to founder effects. We therefore propose various strategies for future conservation and management. |
BACKGROUND: Acute diarrhea is a common clinical presentation of dogs. The effect of specific anti‐diarrheal probiotic pastes (ADPPs) in the management of acute, uncomplicated diarrhea in dogs is unknown. HYPOTHESIS: Administration of an ADPP containing Enterococcus faecium 4b1707 will improve the clinical outcome of acute, uncomplicated diarrhea in dogs compared to placebo. ANIMALS: One hundred forty‐eight client‐owned dogs with acute diarrhea as the main clinical sign. METHODS: Double‐blinded, placebo‐controlled, randomized, blocked, multicenter clinical field study conducted at 14 primary care veterinary practices in the United Kingdom and Ireland. RESULTS: The ADPP was associated with better clinical outcome compared to placebo in dogs with acute, uncomplicated diarrhea. Dogs in the ADPP group had a significantly shorter duration of diarrhea (ADPP: median, 32 hours; 95% confidence interval [CI], 2‐118; n = 51; Placebo: median, 47 hours; 95% CI, 4‐167; n = 58; P = .008) and the rate of resolution of diarrhea was 1.60 times faster in the ADPP group than in the Placebo group (ratio, 1.60; 95% CI, 1.08‐2.44; P = .02). Fewer dogs required additional medical intervention (AMI) for non‐improvement or worsening in the ADPP group compared to the Placebo group (3.5% of dogs and 14.8% of dogs, respectively), with a relative risk of 0.88 (P = .04; AMI, ADPP, 3.5%, 2/57 dogs; Placebo, 14.8%, 9/61 dogs; relative risk, 0.88; 95% CI, 0.77‐0.99). CONCLUSION AND CLINICAL IMPORTANCE: The ADPP may accelerate resolution of acute diarrhea in dogs and decrease the requirement for AMI. |
The development of a safe and effective tetravalent dengue vaccine that elicits protection against all dengue virus (DENV) serotypes is urgently needed. The consensus sequence of the ectodomain of envelope (E) protein of DENV (cE80) has been examined as an immunogen previously. In the current study, a cE80 DNA (D) vaccine was constructed and evaluated in conjunction with the cE80 protein (P) vaccine to examine whether both vaccines used together can further improve the immune responses. The cE80 DNA vaccine was administrated using either a homologous (DNA alone, DDD) or heterologous (DNA prime-protein boost: DDP or DPP) regimen, and evaluated for immunogenicity and protective efficacy in mice. Among the three DNA-based immunization regimens tested, DDP immunization is the optimal immunization regimen that elicited the greatest systemic immune response and conferred protection against all four DENV serotypes. This work provides innovative ideas for the development of consensus E-based dengue vaccines and the testing of optimal immunization regimens. |
In vivo experiments in animal models of disease are of crucial importance for viral tropism and pathogenesis studies. However, these experiments must be complemented with in vitro and ex vivo experiments. Here, we describe a protocol for the preparation and ex vivo infection of lung slices from different mammalian host species with various respiratory paramyxoviruses expressing fluorescent reporter proteins, and suggest follow-up experiments including immunohistochemistry, flow cytometry and confocal microscopy. |
In ostriches, the population densities resulting from intensive rearing increases susceptibility to pathogens such as mycoplasmas. In addition to good management practices, vaccination offers an attractive alternative for controlling mycoplasma infections in food animals, instead of using antibiotics, which often leave unacceptable residues. The use of live attenuated vaccines, however, carry the concern of reversion to virulence or genetic recombination with field strains. Currently there are no commercially available vaccines against ostrich-infecting mycoplasmas and this study therefore set out to develop and evaluate the use of a DNA vaccine against mycoplasma infections in ostriches using an OppA protein as antigen. To this end, the oppA gene of “Mycoplasma nasistruthionis sp. nov.” str. Ms03 was cloned into two DNA vaccine expression vectors after codon correction by site-directed mutagenesis. Three-months-old ostriches were then vaccinated intramuscularly at different doses followed by a booster vaccination after 6 weeks. The ability of the DNA vaccines to elicit an anti-OppA antibody response was evaluated by ELISA using the recombinant OppA protein of Ms03 as coating antigen. A statistically significant anti-OppA antibody response could be detected after administration of a booster vaccination indicating that the OppA protein was successfully immunogenic. The responses were also both dose and vector dependent. In conclusion, the DNA vaccines were able to elicit an immune response in ostriches and can therefore be viewed as an option for the development of vaccines against mycoplasma infections. |
INTRODUCTION: Better characterisation of the epidemiological data on respiratory viral infections among people with acute respiratory tract infection (ARTI) can help to implement efficient strategies to curb the burden of ARTI in Africa. We will conduct a systematic review and meta-analysis to determine the prevalence and factors associated with respiratory viral infection in people of all ages with ARTI residing in Africa. METHODS: This work will include cross-sectional studies published between January 1, 2000 and December 31, 2017, without any language restriction, on populations residing in African countries. We will consider studies that reported the prevalence of respiratory viruses in people with ARTI confirmed by a polymerase chain reaction technique. We will be searching PubMed, Embase, African Journals Online, Web of Science, and Global Index Medicus. The selection of relevant studies, extraction of data, and evaluation of the quality of the articles will be carried out independently by two review authors, and the discrepancies will be resolved by consensus or intervention of a third author. The heterogeneity of the studies will be assessed using the χ(2) test on Cochrane’s Q statistic. Publication bias will be assessed by the Egger test. Studies will be pooled using a random-effect meta-analysis model. Results will be presented by age group and sub-region of Africa. Using meta-regression models, we will identify factors associated with viral infections in people with ARTI. DISCUSSION: This systematic review and meta-analysis is based on published data and therefore does not require ethical approval. This work will serve as a basis for the development of strategies for prevention and control ARTI in Africa and will also serve to identify data gaps and guide future investigations. The final report will be published in peer-reviewed journals as a scientific article and presented in workshops, conferences, and scientific conferences. SYSTEMATIC REVIEW REGISTRATION: PROSPERO, CRD42018088261. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13643-019-1037-1) contains supplementary material, which is available to authorized users. |
BACKGROUND: Influenza continues to pose a serious threat to human health worldwide. For this reason, detecting influenza infection patterns is critical. However, as the epidemic spread of influenza occurs sporadically and rapidly, it is not easy to estimate the future variance of influenza virus infection. Furthermore, accumulating influenza related data is not easy, because the type of data that is associated with influenza is very limited. For these reasons, identifying useful data and building a prediction model with these data are necessary steps toward predicting if the number of patients will increase or decrease. On the Internet, numerous press releases are published every day that reflect currently pending issues. RESULTS: In this research, we collected Internet articles related to infectious diseases from the Centre for Health Protection (CHP), which is maintained the by Hong Kong Department of Health, to see if news text data could be used to predict the spread of influenza. In total, 7769 articles related to infectious diseases published from 2004 January to 2018 January were collected. We evaluated the predictive ability of article text data from the period of 2013–2018 for each of the weekly time horizons. The support vector machine (SVM) model was used for prediction in order to examine the use of information embedded in the web articles and detect the pattern of influenza spread variance. The prediction result using news text data with SVM exhibited a mean accuracy of 86.7 % on predicting whether weekly ILI patient ratio would increase or decrease, and a root mean square error of 0.611 on estimating the weekly ILI patient ratio. CONCLUSIONS: In order to remedy the problems of conventional data, using news articles can be a suitable choice, because they can help estimate if ILI patient ratio will increase or decrease as well as how many patients will be affected, as shown in the result of research. Thus, advancements in research on using news articles for influenza prediction should continue to be pursed, as the result showed acceptable performance as compared to existing influenza prediction researches. |
Porcine reproductive and respiratory syndrome virus (PRRSV) causes immune dysregulation during the Critical Window of Immunological Development. We hypothesize that thymocyte development is altered by infected thymic antigen presenting cells (TAPCs) in the fetal/neonatal thymus that interact with double-positive thymocytes causing an acute deficiency of T cells that produces “holes” in the T cell repertoire allowing for poor recognition of PRRSV and other neonatal pathogens. The deficiency may be the result of random elimination of PRRSV-specific T cells or the generation of T cells that accept PRRSV epitopes as self-antigens. Loss of helper T cells for virus neutralizing (VN) epitopes can result in the failure of selection for B cells in lymph node germinal centers capable of producing high affinity VN antibodies. Generation of cytotoxic and regulatory T cells may also be impaired. Similar to infections with LDV, LCMV, MCMV, HIV-1 and trypanosomes, the host responds to the deficiency of pathogen-specific T cells and perhaps regulatory T cells, by “last ditch” polyclonal B cell activation. In colostrum-deprived PRRSV-infected isolator piglets, this results in hypergammaglobulinemia, which we believe to be a “red herring” that detracts attention from the thymic atrophy story, but leads to our second independent hypothesis. Since hypergammaglobulinemia has not been reported in PRRSV-infected conventionally-reared piglets, we hypothesize that this is due to the down-regulatory effect of passive maternal IgG and cytokines in porcine colostrum, especially TGFβ which stimulates development of regulatory T cells (Tregs). |
Pathogen detection, identification, and tracking is shifting from non-molecular methods, DNA fingerprinting methods, and single gene methods to methods relying on whole genomes. Viral Ebola and influenza genome data are being used for real-time tracking, while food-borne bacterial pathogen outbreaks and hospital outbreaks are investigated using whole genomes in the UK, Canada, the USA and the other countries. Also, plant pathogen genomes are starting to be used to investigate plant disease epidemics such as the wheat blast outbreak in Bangladesh. While these genome-based approaches provide never-seen advantages over all previous approaches with regard to public health and biosecurity, they also come with new vulnerabilities and risks with regard to cybersecurity. The more we rely on genome databases, the more likely these databases will become targets for cyber-attacks to interfere with public health and biosecurity systems by compromising their integrity, taking them hostage, or manipulating the data they contain. Also, while there is the potential to collect pathogen genomic data from infected individuals or agricultural and food products during disease outbreaks to improve disease modeling and forecast, how to protect the privacy of individuals, growers, and retailers is another major cyberbiosecurity challenge. As data become linkable to other data sources, individuals and groups become identifiable and potential malicious activities targeting those identified become feasible. Here, we define a number of potential cybersecurity weaknesses in today's pathogen genome databases to raise awareness, and we provide potential solutions to strengthen cyberbiosecurity during the development of the next generation of pathogen genome databases. |
Viral defense at mucosal sites depends on interferons (IFN) and IFN stimulated genes (ISGs), either of which may be constitutively expressed to maintain an “antiviral state” (AVS). However, the mechanisms that govern the AVS are poorly defined. Using a BEAS-2B respiratory epithelial cell line deficient in IRF1, we demonstrate higher susceptibility to infection with vesicular stomatitis virus (VSV) and influenza virus. IRF1-mediated restriction of VSV is IFN-independent, as blockade of types I and III IFNs and JAK-STAT signaling before infection did not affect VSV infection of either parent or IRF1 KO cells. Transcriptome analysis revealed that IRF1 regulates constitutive expression of ~300 genes, including antiviral ISGs: OAS2, BST2, and RNASEL and knockdown of any of these IRF1-dependent genes increased VSV infection. Additionally, IRF1 enhances rapid expression of IFNβ and IFNλ after stimulation with poly I:C and also regulates ISG expression. Mechanistically, IRF1 enhances recruitment of BRD4 to promotor-enhancer regions of ISGs for rapid expression and maintains levels of histone H3K4me1 for optimal constitutive expression. Finally, IRF1 also regulates constitutive expression of TLR2 and TLR3 and promotes signaling through these pattern recognition receptors (PRR). These data reveal multiple roles for IRF1 toward effective anti-viral responses by maintaining IFN-independent constitutive expression of anti-viral ISGs and supporting early IFN-dependent responses to PRR stimulation. |
Adoptive transfer of regulatory T cells (FOXP3(+) Tregs) has been developed as a potential curative immune therapy to prevent and treat autoimmune and graft-versus-host diseases (GVHD). A major limitation that has hindered the use of Treg immunotherapy in humans is the difficulty of consistently isolating and obtaining highly purified Tregs after ex vivo expansion. Methods: We isolated bona fide Tregs from expansion cultures based on their selective surface expression of latency-associated peptide (LAP). The TCR Vβ diversity and intracellular cytokine production of Tregs were determined by flow cytometer. The TSDR methylation was determined by epigenetic human FOXP3 qPCR Assay. Their in vitro and in vivo potency was confirmed with suppression assay and humanized xenogeneic GVHD (xGVHD) murine model, respectively. Results: LAP(+) repurification results in >90% LAP(+)FOXP3(+) Tregs, leaving behind FOXP3(-) and FOXP3(+) nonTregs within the LAP(-) population. After 4-week expansion, the LAP(+) Tregs were >1 billion cells, highly suppressive and anergic in vitro, >90% demethylated in the TSDR and able to maintain TCR Vβ diversity. In the xGVHD model, exogenous CD25(-)PBMC administered alone results in a median survival of 32 days. The co-transfer of LAP(+) Tregs increased median survival to 47 days, while the LAP parent (CD25(+)) and LAP(-) nonTregs had median survival of 39 and 31 days, respectively. Conclusions: These preclinical data together provide evidence that LAP(+) Tregs are highly purified with fully suppressive function for cell therapy. This population results in a more effective and safer product for immunotherapy to treat GVHD and provides the necessary preclinical data for transition into a clinical trial with LAP(+) Tregs to prevent or treat GVHD and other autoimmune diseases. |
The biology of autophagy in health and disease conditions has been intensively analyzed for decades. Several potential interventions can induce autophagy in preclinical research; however, none of these interventions are ready for translation to clinical practice yet. The topic of the current review is the molecular regulation of autophagy by glucagon, glucagon-like peptide (GLP)-1 and the GLP-1-degrading enzyme dipeptidyl peptidase-4 (DPP-4). Glucagon is a well-known polypeptide that induces autophagy. In contrast, GLP-1 has been shown to inhibit glucagon secretion; GLP-1 also has been related to the induction of autophagy. DPP-4 inhibitors can induce autophagy in a GLP-1–dependent manner, but other diverse effects could be relevant. Here, we analyze the distinct molecular regulation of autophagy by glucagon, GLP-1, and DPP-4 inhibitors. Additionally, the potential contribution to autophagy by glucagon and GLP-1 after bariatric surgery is discussed. |
Disturbed balance between microbiota, epithelial cells, and resident immune cells within the intestine contributes to inflammatory bowel disease (IBD) pathogenesis. The Citrobacter rodentium-induced colitis mouse model has been well documented. This model allows the analysis of host responses to enteric bacteria and facilitates improved understanding of the potential mechanisms of IBD pathogenesis. The current study evaluated the effects of dietary 30 mg/kg quercetin supplementation on C. rodentium-induced experimental colitis in C57BL/6 mice. Following dietary quercetin supplementation, the mice were infected with 5 × 10(8) CFU C. rodentium, and the pathological effects of C. rodentium were measured. The results showed that quercetin alleviated the effects of C. rodentium-induced colitis, suppressed the production of pro-inflammatory cytokines, such as interleukin (IL)-17, tumor necrosis factor alpha, and IL-6 (p < 0.05), and promoted the production of IL-10 in the colon tissues (p < 0.05). Quercetin supplementation also enhanced the populations of Bacteroides, Bifidobacterium, Lactobacillus, and Clostridia and significantly reduced those of Fusobacterium and Enterococcus (p < 0.05). These findings indicate that dietary quercetin exerts therapeutic effects on C. rodentium-induced colitis, probably due to quercetin’s ability to suppress pro-inflammatory cytokines and/or modify gut microbiota. Thus, these results suggest that quercetin supplementation is effective in controlling C. rodentium-induced inflammation. |
BACKGROUND: Leishmaniasis is a parasitic disease caused by a protozoan of the Leishmania genus, and is considered a neglected tropical disease. It still remains a main public health concern at global level and in Arab world mainly in low-income countries. Therefore, this study was designed to evaluate the Arab world’s growing contribution to global leishmaniasis research. METHODS: This study describes a bibliometric review of all leishmaniasis research publications published between January 1998 and December 2017 indexed on the Scopus database. RESULTS: The total number of publications published at global level was 17,570 papers, which achieves an average annual productivity of 878.50 papers publications. Brazil was responsible for the greatest output with the total number of publications of 3865 followed by the Unites States (n = 2729), India (n = 2119), the United Kingdom (n = 1363), and Spain (n = 1274). By limiting the analysis to the publications that have been published by Arab world, the research productivity was 993 papers, which represents 5.65% of total research output at global level in research regarding leishmaniasis. Tunisia was responsible for the greatest output from Arab world with the total number of publications of 297 followed by Sudan (n = 192), Saudi Arabia (n = 131), Morocco (n = 119) and Egypt (n = 67). Since 1998, the growth of publications on leishmaniasis fluctuates, overall showing a rising trend in both global and Arab world. There is a highly significant correlation between publication productivity related to leishmaniasis at global level and the Arab world (r = 0.936; p-value< 0.001). Leishmaniasis treatment, intracellular mechanism of infection, and lifecycle of leishmania are the major current hot topics for the research in this subject at global level and the Arab world. CONCLUSIONS: The current study presents a novel review of the current Arab leishmaniasis-related research, and how these results are related to worldwide output. In comparison to the global research output, the Arab world produced less leishmaniasis research. The data presented in the current study by this innovative approach may serve relevant researchers to direct the global leishmaniasis research to Arab counties in which leishmaniasis is endemic. |
Epitope-targeted HIV vaccine design seeks to focus antibody responses to broadly neutralizing antibody (bnAb) sites by sequential immunization. A chimpanzee simian immunodeficiency virus (SIV) envelope (Env) shares a single bnAb site, the variable loop 2 (V2)-apex, with HIV, suggesting its possible utility in an HIV immunization strategy. Here, we generate a chimpanzee SIV Env trimer, MT145K, which displays selective binding to HIV V2-apex bnAbs and precursor versions, but no binding to other HIV specificities. We determine the structure of the MT145K trimer by cryo-EM and show that its architecture is remarkably similar to HIV Env. Immunization of an HIV V2-apex bnAb precursor Ab-expressing knockin mouse with the chimpanzee MT145K trimer induces HIV V2-specific neutralizing responses. Subsequent boosting with an HIV trimer cocktail induces responses that exhibit some virus cross-neutralization. Overall, the chimpanzee MT145K trimer behaves as expected from design both in vitro and in vivo and is an attractive potential component of a sequential immunization regimen to induce V2-apex bnAbs. |
Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne bunyavirus, can cause a life-threatening hemorrhagic syndrome in humans but not in its animal host. The virus is widely distributed throughout southeastern Europe, the Middle East, Africa, and Asia. Disease management has proven difficult and there are no broadly licensed vaccines or therapeutics. Recombinant vesicular stomatitis viruses (rVSV) expressing foreign glycoproteins (GP) have shown promise as experimental vaccines for several viral hemorrhagic fevers. Here, we developed and assessed a replication competent rVSV vector expressing the CCHFV glycoprotein precursor (GPC), which encodes CCHFV structural glycoproteins. This construct drives strong expression of CCHFV-GP, in vitro. Using these vectors, we vaccinated STAT-1 knock-out mice, an animal model for CCHFV. The vector was tolerated and 100% efficacious against challenge from a clinical strain of CCHFV. Anti-CCHFV-GP IgG and neutralizing antibody titers were observed in surviving animals. This study demonstrates that a rVSV expressing only the CCHFV-GP has the potential to serve as a replication competent vaccine platform against CCHF infections. |
It is well established that chronic heavy alcohol drinking (CHD) results in significant organ damage, increased susceptibility to infections, and poor outcomes following injury. In contrast, chronic moderate drinking (CMD) has been associated with improved cardiovascular health and immunity. These differential outcomes have been linked to alterations in both innate and adaptive branches of the immune system; however, the mechanisms remain poorly understood. To address this question, we determined the impact of chronic drinking on the transcriptional and functional responses of peripheral blood mononuclear cells (PBMC) collected from male rhesus macaques classified as CMD or CHD after 12 months of voluntary ethanol self-administration. Our analysis suggests that chronic alcohol drinking, regardless of dose alters resting transcriptomes of PBMC, with the largest impact seen in innate immune cells. These transcriptional changes are partially explained by alterations in microRNA profiles. Additionally, chronic alcohol drinking is associated with a dose dependent heightened inflammatory profiled at resting and following LPS stimulation. Moreover, we observed a dose-dependent shift in the kinetics of transcriptional responses to LPS. These findings may explain the dichotomy in clinical and immunological outcomes observed with moderate versus heavy alcohol drinking. |
PURPOSE: Irreversible electroporation (IRE) has been demonstrated to be a safe and effective method for locally advanced pancreatic cancer (LAPC). The aim of this study was to evaluate the immunomodulatory effect after IRE and to evaluate the prognostic value of variations of the immune parameters in LAPC patients after IRE. METHODS: Peripheral blood samples of 34 patients were obtained preoperatively and on the third day (D3) and seventh day (D7) after IRE, respectively. The phenotypes of lymphocytes were analyzed by flow cytometry, and dynamic changes of serum levels of cytokines, complement, and immunoglobulin were assayed by enzyme-linked immunosorbent assay. Receiver operating characteristic (ROC) curve and concordance index (C-index) were used to compare the survival predictive ability. RESULTS: There was a transitory decrease followed by a steady increase for CD4(+) T cell, CD8(+) T cell, NK cell, IL-2, C3, C4, and IgG while a reverse trend was detected for Treg cell, IL-6, and IL10 after IRE. The alteration of CD8(+) T cell between D3 and D7 was identified as a prognostic factor for both overall survival (OS) and progression-free survival (PFS). The values of ROC curve (AUC) and C-indexes of the alteration of CD8(+) T cell for OS and PFS were 0.816 and 0.773 and 0.816 and 0.639, respectively, which were larger than those of other immune or inflammation-based indexes. CONCLUSIONS: This study presented the first evidence of IRE-based immunomodulatory in patients with LAPC. The alteration of CD8(+) T cell between D3 and D7 showed relatively good performance and could be used as an effective tool for prognostic evaluation for LAPC patients after IRE. |
BACKGROUND: An estimated 3.9 billion individuals live in a location endemic for common mosquito-borne diseases. The emergence of Zika virus in South America in 2015 marked the largest known Zika outbreak and caused hundreds of thousands of infections. Internet data have shown promise in identifying human behaviors relevant for tracking and understanding other diseases. OBJECTIVE: Using Twitter posts regarding the 2015-16 Zika virus outbreak, we sought to identify and describe considerations and self-disclosures of a specific behavior change relevant to the spread of disease—travel cancellation. If this type of behavior is identifiable in Twitter, this approach may provide an additional source of data for disease modeling. METHODS: We combined keyword filtering and machine learning classification to identify first-person reactions to Zika in 29,386 English-language tweets in the context of travel, including considerations and reports of travel cancellation. We further explored demographic, network, and linguistic characteristics of users who change their behavior compared with control groups. RESULTS: We found differences in the demographics, social networks, and linguistic patterns of 1567 individuals identified as changing or considering changing travel behavior in response to Zika as compared with a control sample of Twitter users. We found significant differences between geographic areas in the United States, significantly more discussion by women than men, and some evidence of differences in levels of exposure to Zika-related information. CONCLUSIONS: Our findings have implications for informing the ways in which public health organizations communicate with the public on social media, and the findings contribute to our understanding of the ways in which the public perceives and acts on risks of emerging infectious diseases. |
Aging increases the risk of various diseases. The main goal of aging research is to find therapies that attenuate aging and alleviate aging-related diseases. In this study, we screened a natural product library for geroprotective compounds using Werner syndrome (WS) human mesenchymal stem cells (hMSCs), a premature aging model that we recently established. Ten candidate compounds were identified and quercetin was investigated in detail due to its leading effects. Mechanistic studies revealed that quercetin alleviated senescence via the enhancement of cell proliferation and restoration of heterochromatin architecture in WS hMSCs. RNA-sequencing analysis revealed the transcriptional commonalities and differences in the geroprotective effects by quercetin and Vitamin C. Besides WS hMSCs, quercetin also attenuated cellular senescence in Hutchinson-Gilford progeria syndrome (HGPS) and physiological-aging hMSCs. Taken together, our study identifies quercetin as a geroprotective agent against accelerated and natural aging in hMSCs, providing a potential therapeutic intervention for treating age-associated disorders. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s13238-018-0567-y) contains supplementary material, which is available to authorized users. |
Knowledge of etiology causes of diarrheal illness is essential for development and implementation of public health measures to prevent and control this disease syndrome. There are few published studies examining diarrhea in children aged <5 years in Iraq. This study aims to investigate the occurrences and epidemiology of selected bacterial (Salmonella spp. and Campylobacter spp.), viral (adenovirus, norovirus GI and GII, and astrovirus), and parasitic (Entamoeba spp. and Giardia spp.) agents in stool samples from 155 child diarrheal cases enrolled between March and August 2017, in a hospital-based cross-sectional study in Thi-Qar, southeastern Iraq. Using molecular techniques and sequence-based characterization, adenovirus was the most frequently detected enteropathogen (53/155 (34.2%)), followed by Salmonella spp. (23/155 (14.8%)), Entamoeba spp. (21/155 (13.5%)), and Campylobacter spp. (17/155 (10.9%)). Mixed infection with Salmonella spp. and Campylobacter spp. was evident, and the same was revealed between various enteric viruses, particularly adenovirus and norovirus. The most frequent co-infection pattern was between adenovirus and Campylobacter spp., in seven cases (7/155 (4.5%)). Whole-genome sequencing-derived typing data for Salmonella isolates (n = 23) revealed that sequence type 49 was the most prevalent in this sample set (15/23 (65.2%)). To the best of our knowledge, this study provides the first report on detection and identification of floR, bla(CARB-2), and mphA antimicrobial resistance genes in Salmonella isolated from children in the Middle East region. Logistic regression analysis pointed to few enteropathogen-specific correlations between child age, household water source, and breastfeeding patterns in relation to the outcome of detection of individual enteropathogens. This study presents the first published molecular investigation of multiple enteropathogens among children <5 years of age in Iraq. Our data provide supporting evidence for planning of childhood diarrhea management programs. It is important to build on this study and develop future longitudinal case-control research in order to elaborate the epidemiology of enteropathogens in childhood diarrhea in Iraq. |
AIM: Bile salt export pump (BSEP) have been confirmed to play an important role for bile acid canalicular export in the treatment of cholestasis. In this study, we investigated the stimulatory effect of emodin on BSEP signaling pathway in cholestasis. METHODS: Cell and animal experiments were given different concentrations of emodin. The BSEP upstream molecule farnesoid X receptor was down-regulated by small interfering RNA (siRNA) technology or guggulsterones and up-regulated by lentivirus or GW4064. Real-time PCR and Western blotting was employed to detect the mRNA and protein levels of BSEP in LO2 cell, rat primary hepatocytes and liver tissue. Immunohistochemistry (IHC) was used to examine the expression of BSEP in liver tissues. Rat liver function and pathological changes of liver tissue were performed by biochemical test and hematoxylin and eosin (HE) staining. RESULTS: Emodin could increase the mRNA and protein expression of BSEP and FXR. When down-regulating farnesoid X receptor expression with the siRNA or inhibitor guggulsterones, and up-regulating farnesoid X receptor expression with the lentivirus or agonist GW4064, emodin could increase the mRNA level of BSEP and FXR and the protein level of BSEP, FXR1, and FXR2. Emodin also had a notable effect on rat primary hepatocytes experiment, rat pathological manifestation, BSEP, FXR1, and FXR2 positive staining in liver tissues and the test of liver function. CONCLUSION: Emodin has a protective effect and a rescue activity on cholestasis via stimulating FXR/BSEP pathways in promoting the canalicular export of accumulated bile. |
Bovine leukemia virus (BLV) causes enzootic bovine leukosis (EBL), a condition that threatens the sustainability of the livestock industry. A fluorescent loop-mediated isothermal amplification (fLAMP) assay targeting BLV env sequences was developed and used to evaluate 100 bovine blood samples. Compared with a conventional real-time PCR (rPCR) assay, the fLAMP assay achieved 87.3% (62/71) sensitivity and 100% (29/29) specificity. The rPCR assay took 65 min, while the fLAMP assay took 8 min to 30 min from the beginning of DNA amplification to final judgement with a comparable limit of detection. The fLAMP is a potential tool for the rapid and simple diagnosis of BLV infection to supplement ELISA testing and can be used by local laboratories and slaughterhouses without special equipment. |
In 2010, Yemen started the surveillance for severe acute respiratory infections (SARIs) by establishing 2 sentinel sites in Sana’a and Aden city. This study aims to determine the proportions of influenza and noninfluenza viruses among SARI patients and to determine the severity of SARI and its associated factors. The data of SARI patients who were admitted to SARI surveillance sites at Al Johory hospital in Sana’a and Al Wahdah hospital in Aden city during the period 2011-2016 were analyzed. The proportions of positive influenza viruses (type A, B) and noninfluenza viruses (respiratory syncytial, adenovirus, human parainfluenza, and human metapneumovirus), intensive care unit (ICU) admission rate, and fatality rate among SARI patients were calculated. A total of 1811 of SARI patients were admitted during 2011-2016. Of those, 78% were <15 years old. A total of 89 (5%) patients had influenza viruses and 655 (36%) had noninfluenza viruses. The overall ICU admission rate was 40% and the case-fatality rate was 8%. Infection by influenza type (A, B) and mixed (adenovirus, human parainfluenza) was significantly associated with lower ICU admission. Age <15 years old, infection with influenza B, pre-existence of chronic diseases, and admission to Aden site were significantly associated with higher fatality rate among patients. In conclusion; SARI patients in Yemen had a high ICU admission and case-fatality rates. Influenza type B, chronic diseases, and admission to Aden site are associated with higher fatality rate. Expanding surveillance sites and panel of laboratory tests to involve other pathogens will help to provide accurate diagnosis for SARI etiology and give more comprehensive picture. Training staff for SARI case management will help to reduce severe outcomes. |
Pteropine orthoreoviruses (PRV) are emerging bat-borne viruses with proven zoonotic transmission. We recently demonstrated human exposure to PRV in Singapore, which together with previous reports from Malaysia and Vietnam suggest that human infection of PRV may occur periodically in the region. This raises the question whether bats are the only sources of human infection. In this study, we screened 517 cynomolgus macaques caught in Singapore for evidence of exposure to PRV3M (also known as Melaka virus), which was first isolated from human patients in Melaka, Malaysia. We found that 67 serum samples were PRV3M positive by ELISA and 34 were also positive by virus neutralization assay. To investigate whether monkeys could act as hosts for PRV transmission, we experimentally infected cynomolgus macaques with PRV3M and housed these animals with uninfected monkeys. Although no clinical signs of infection were observed in infected animals, viral RNA was detected in nasal and rectal swabs and all infected macaques seroconverted. Additionally, one of the uninfected animals seroconverted, implying active shedding and transmission of PRV3M. We provide evidence that PRV exposure in the macaque population in Singapore occurs at a relatively high prevalence and this study suggests that cynomolgus macaques may be an intermediate or reservoir host for PRVs. |
BACKGROUND: Trauma leads to a complex inflammatory cascade that induces both immune activation and a refractory immune state in parallel. Although both components are deemed necessary for recovery, the balance is tight and easily lost. Losing the balance can lead to life-threatening infectious complications as well as long-term immunosuppression with recurrent infections. Neutrophils are known to play a key role in these processes. Therefore, this review focuses on neutrophil characteristics and function after trauma and how these features can be used to identify trauma patients at risk for infectious complications. RESULTS: Distinct neutrophil subtypes exist that play their own role in the recovery and/or development of infectious complications after trauma. Furthermore, the refractory immune state is related to the risk of infectious complications. These findings change the initial concepts of the immune response after trauma and give rise to new biomarkers for monitoring and predicting inflammatory complications in severely injured patients. CONCLUSION: For early recognition of patients at risk, the immune system should be monitored. Several neutrophil biomarkers show promising results and analysis of these markers has become accessible to such extent that they can be used for point-of-care decision making after trauma. |
Modified vaccinia virus Ankara (MVA) is the leading poxvirus vector for development of vaccines against diverse infectious diseases. This distinction is based on high expression of proteins and good immunogenicity despite an inability to assemble infectious progeny in human cells, which together promote efficacy and safety. Nevertheless, the basis for the host-range restriction is unknown despite past systematic attempts to identify the relevant missing viral gene(s). The search for host-range factors is exacerbated by the large number of deletions, truncations and mutations that occurred during the long passage history of MVA in chicken embryo fibroblasts. By whole genome sequencing of a panel of recombinant host-range extended (HRE) MVAs generated by marker rescue with 40 kbp segments of vaccinia virus DNA, we identified serine protease inhibitor 1 (SPI-1) as one of several candidate host-range factors present in those viruses that gained the ability to replicate in human cells. Electron microscopy revealed that the interruption of morphogenesis in human cells infected with MVA occurred at a similar stage as that of a vaccinia virus strain WR SPI-1 deletion mutant. Moreover, the introduction of the SPI-1 gene into the MVA genome led to more than a 2-log enhancement of virus spread in human diploid MRC-5 cells, whereas deletion of the gene diminished the spread of HRE viruses by similar extents. Furthermore, MRC-5 cells stably expressing SPI-1 also enhanced replication of MVA. A role for additional host range genes was suggested by the restoration of MVA replication to a lower level relative to HRE viruses, particularly in other human cell lines. Although multiple sequence alignments revealed genetic changes in addition to SPI-1 common to the HRE MVAs, no evidence for their host-range function was found by analysis thus far. Our finding that SPI-1 is host range factor for MVA should simplify use of high throughput RNAi or CRISPR/Cas single gene methods to identify additional viral and human restriction elements. |
Antimicrobial resistance (AMR) is one of the latest issues to galvanise political and financial investment as an emerging global health threat. This paper explores the construction of AMR as a problem, following three lines of analysis. First, an examination of some of the ways in which AMR has become an object for action—through defining, counting and projecting it. Following Lakoff’s work on emerging infectious diseases, the paper illustrates that while an ‘actuarial’ approach to AMR may be challenging to stabilise due to definitional and logistical issues, it has been successfully stabilised through a ‘sentinel’ approach that emphasises the threat of AMR. Second, the paper draws out a contrast between the way AMR is formulated in terms of a problem of connectedness—a ‘One Health’ issue—and the frequent solutions to AMR being focused on individual behaviour. The paper suggests that AMR presents an opportunity to take seriously connections, scale and systems but that this effort is undermined by the prevailing tendency to reduce health issues to matters for individual responsibility. Third, the paper takes AMR as a moment of infrastructural inversion (Bowker and Star) when antimicrobials and the work they do are rendered more visible. This leads to the proposal of antibiotics as infrastructure—part of the woodwork that we take for granted, and entangled with our ways of doing life, in particular modern life. These explorations render visible the ways social, economic and political frames continue to define AMR and how it may be acted upon, which opens up possibilities for reconfiguring AMR research and action. |
Liver failure with hemophagocytic lymphohistiocytosis (HLH) is a life-threatening syndrome with high mortality. The aim of this study was to decipher clinical and laboratory characteristics of hemophagocytic lymphohistiocytosis after definite diagnosis of liver failure and to provide clues for early diagnosis and treatment of HLH in patients with liver failure. Eleven patients diagnosed with liver failure and HLH were retrospectively investigated in this study. All patients presented with jaundice, persistent high-grade fever, pancytopenia, splenomegaly, evidence of hemophagocytes in the bone marrow and laboratory abnormalities indicating HLH. The average interval from the earliest diagnosis of liver failure to a definitive diagnosis of HLH was 17.27 days. Six (54.55%) patients died during follow-up. For patients with liver failure after admission and subsequently definitively diagnosed with HLH, bilirubin and INR were significantly decreased. HLH is definitely diagnosed at an intermediate or late stage when patients have already suffered from liver failure. The initial dose of glucocorticoid (methylprednisolone) was decreased to 1–1.5 mg/kg/d and gradually reduced thereafter. In conclusion, for patients with liver failure, HLH should be screened as early as possible upon persistent fever, splenomegaly and unexplained pancytopenia. For patients with liver failure and HLH, the dosage of glucocorticoid should be reduced to avoid serious side effects. |
A hallmark of translation in human immunodeficiency virus type 1 (HIV-1) is a –1 programmed ribosome frameshifting event that produces the Gag-Pol fusion polyprotein. The constant Gag to Gag-Pol ratio is essential for the virion structure and infectivity. Here we show that the frameshifting efficiency is modulated by Leu-tRNA(Leu) that reads the UUA codon at the mRNA slippery site. This tRNA(Leu) isoacceptor is particularly rare in human cell lines derived from T-lymphocytes, the cells that are targeted by HIV-1. When UUA decoding is delayed, the frameshifting follows an alternative route, which maintains the Gag to Gag-Pol ratio constant. A second potential slippery site downstream of the first one is normally inefficient but can also support –1-frameshifting when altered by a compensatory resistance mutation in response to current antiviral drug therapy. Together these different regimes allow the virus to maintain a constant –1-frameshifting efficiency to ensure successful virus propagation. |
BACKGROUND: Idiopathic pulmonary fibrosis is characterized by loss of lung epithelial cells and inexorable progression of fibrosis with no effective and approved treatments. The distal airway stem/progenitor cells (DASCs) have been shown to have potent regenerative capacity after lung injury. In this work, we aimed to define the role of mouse DASCs (mDASCs) in response to bleomycin-induced lung fibrosis in mice. METHODS: The mDASCs were isolated, expanded in vitro, and labeled with GFP by lentiviral infection. The labeled mDASCs were intratracheally instilled into bleomycin-induced pulmonary fibrosis mice on day 7. Pathological change, collagen content, α-SMA expression, lung function, and mortality rate were assessed at 7, 14, and 21 days after bleomycin administration. Tissue section and direct fluorescence staining was used to show the distribution and differentiation of mDASCs in lung. RESULTS: The transplanted mDASCs could incorporate, proliferate, and differentiate into type I pneumocytes in bleomycin-injured lung. They also inhibited fibrogenesis by attenuating the deposition of collagen and expression of α-SMA. In addition, mDASCs improved pulmonary function and reduce mortality in bleomycin-induced pulmonary fibrosis mice. CONCLUSIONS: The data strongly suggest that mDASCs could ameliorate bleomycin-induced pulmonary fibrosis by promotion of lung regeneration and inhibition of lung fibrogenesis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13287-019-1257-2) contains supplementary material, which is available to authorized users. |
Here's the best of the rest: summary reviews of relevant papers from the top respiratory and general medical journals worldwide. Journalwatch@pcrj is produced by the PCRJ Editors-in-Chief – reviews were selected and written by Dr Paul Stephenson and edited by Professor Aziz Sheikh. Each summary contains the name of the first author, the title of the paper, the Vancouver reference and/or doi number, and a link to the abstract of the paper. In the majority of cases these are subscription journals, so to view the full text you will need to subscribe to the journal or pay to view on an individual article basis. These reviews were originally published by the Doctors.net.uk Journal Watch service, which covers other specialties as well as respiratory medicine. Doctors.net.uk is the largest network of GMC-registered doctors in the UK. To find out about membership, click on Doctors.net.uk. The opinions expressed herein may not necessarily reflect the views of the authors of the original articles. |
INTRODUCTION: The earthquake is one of the most natural catastrophic crises that can cause a lot of casualties. Considering an earthquake-prone country, Iran is ranked as one of the world's most dangerous countries OBJECTIVE: In this article, we describe the actions taken by emergency medical service (EMS) after the earthquake in Kermanshah, Varzaghan, and Bam and compared the strengths and weaknesses of the emergency response program and the limitations and challenges of this system in dealing with these major crises. METHOD: This study is a cross-sectional study that compares some of the information and findings related to three earthquakes that occurred in Iran, including Bam, Varzaghan and Sarpol-e-Zahab earthquakes. The data reported in the present article is descriptive and is based on various independent sources such as National Emergency Operation Center, Local Emergency Operations Center (EOC), the EMS of the country, the World Health Organization, the United Nations, the statistics website, the Forensic Data website, the International Institute of Seismology and Earthquake Engineering, conferences and personal interviews. To ensure the credibility of the information, the authors reported data that had been verified by two or more sources. RESULTS: The characteristics of the geographic area of the 3 earthquakes has been described. Post-earthquake response activities were described in details in subheadings including rapid warning and response, surge capacity plan, rapid response teams, emergency medical teams, increasing the capacity of health facilities, increasing transfer capacity, and handling, transportation and distribution of injuries. CONCLUSION: In the recent earthquake, had been occurred in Sarpol-e-Zahab, the health response of the country was largely satisfactory. The existence of structures such as EOC at various levels, the unified incident command system, emergency operations plan, and Medical Care Monitoring Center are among the most important reasons for satisfactory performance. |
The term “acute phase response” (APR) is referred to a nonspecific and complex reaction of an organism that occurs shortly after any tissue damage, such as infection, trauma, neoplasia, inflammation, and stress. The APR can be identified and monitored with some laboratory tests, such as the concentration of several plasma proteins, the acute phase proteins (APPs). The APPs are components of the non-specific innate immune response, and their plasma concentration is proportional to the severity and/or the extent of tissue damage. The evaluation of health status of marine mammals is difficult because the classical clinical signs of illness used for human and domestic animals are difficult to recognize and understand. For this reason, in the past years, several efforts were done to identify laboratory markers of disease in these animals. The APPs have demonstrated their role as early markers of inflammation in veterinary medicine, thus several APPs were tested in marine mammals, such as C-reactive protein (CRP), serum amyloid-A (SAA), and Haptoglobin (Hp). However, the difficulty to extrapolate the knowledge about APPs in one species to another, the lack of specie-specific reagents, the absence of data about negative APPs have hampered their extent use in marine mammals. Herein, the state of art of APPs in marine mammals is reviewed, with particular attention to pre-analytical and analytical factors that should be taken into account in validation and interpretation of APPs assays. Moreover, the current application, potential utility and the future developments of APPs in marine mammals is highlighted and discussed. |
Interleukin-1, an inflammatory cytokine, is considered to have diverse physiological functions and pathological significances and play an important role in health and disease. In this decade, interleukin-1 family members have been expanding and evidence is accumulating that highlights the importance of interleukin-1 in linking innate immunity with a broad spectrum of diseases beyond inflammatory diseases. In this review, we look back on the definition of “inflammation” in traditional general pathology and discuss new insights into interleukin-1 in view of its history and the molecular bases of diseases, as well as current progress in therapeutics. |
BACKGROUND: Digital health programs, which encompass the subsectors of health information technology, mobile health, electronic health, telehealth, and telemedicine, have the potential to generate “big data.” OBJECTIVE: Our aim is to evaluate two digital health programs in India—the maternal mobile messaging service (Kilkari) and the mobile training resource for frontline health workers (Mobile Academy). We illustrate possible applications of machine learning for public health practitioners that can be applied to generate evidence on program effectiveness and improve implementation. Kilkari is an outbound service that delivers weekly gestational age–appropriate audio messages about pregnancy, childbirth, and childcare directly to families on their mobile phones, starting from the second trimester of pregnancy until the child is one year old. Mobile Academy is an Interactive Voice Response audio training course for accredited social health activists (ASHAs) in India. METHODS: Study participants include pregnant and postpartum women (Kilkari) as well as frontline health workers (Mobile Academy) across 13 states in India. Data elements are drawn from system-generated databases used in the routine implementation of programs to provide users with health information. We explain the structure and elements of the extracted data and the proposed process for their linkage. We then outline the various steps to be undertaken to evaluate and select final algorithms for identifying gaps in data quality, poor user performance, predictors for call receipt, user listening levels, and linkages between early listening and continued engagement. RESULTS: The project has obtained the necessary approvals for the use of data in accordance with global standards for handling personal data. The results are expected to be published in August/September 2019. CONCLUSIONS: Rigorous evaluations of digital health programs are limited, and few have included applications of machine learning. By describing the steps to be undertaken in the application of machine learning approaches to the analysis of routine system-generated data, we aim to demystify the use of machine learning not only in evaluating digital health education programs but in improving their performance. Where articles on analysis offer an explanation of the final model selected, here we aim to emphasize the process, thereby illustrating to program implementors and evaluators with limited exposure to machine learning its relevance and potential use within the context of broader program implementation and evaluation. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/11456 |
Regulation of proteolysis plays a critical role in a myriad of important cellular processes. The key to better understanding the mechanisms that control this process is to identify the specific substrates that each protease targets. To address this, we have developed iProt-Sub, a powerful bioinformatics tool for the accurate prediction of protease-specific substrates and their cleavage sites. Importantly, iProt-Sub represents a significantly advanced version of its successful predecessor, PROSPER. It provides optimized cleavage site prediction models with better prediction performance and coverage for more species-specific proteases (4 major protease families and 38 different proteases). iProt-Sub integrates heterogeneous sequence and structural features and uses a two-step feature selection procedure to further remove redundant and irrelevant features in an effort to improve the cleavage site prediction accuracy. Features used by iProt-Sub are encoded by 11 different sequence encoding schemes, including local amino acid sequence profile, secondary structure, solvent accessibility and native disorder, which will allow a more accurate representation of the protease specificity of approximately 38 proteases and training of the prediction models. Benchmarking experiments using cross-validation and independent tests showed that iProt-Sub is able to achieve a better performance than several existing generic tools. We anticipate that iProt-Sub will be a powerful tool for proteome-wide prediction of protease-specific substrates and their cleavage sites, and will facilitate hypothesis-driven functional interrogation of protease-specific substrate cleavage and proteolytic events. |
Health planners use forecasts of key metrics associated with influenza-like illness (ILI); near-term weekly incidence, week of season onset, week of peak, and intensity of peak. Here, we describe our participation in a weekly prospective ILI forecasting challenge for the United States for the 2016-17 season and subsequent evaluation of our performance. We implemented a metapopulation model framework with 32 model variants. Variants differed from each other in their assumptions about: the force-of-infection (FOI); use of uninformative priors; the use of discounted historical data for not-yet-observed time points; and the treatment of regions as either independent or coupled. Individual model variants were chosen subjectively as the basis for our weekly forecasts; however, a subset of coupled models were only available part way through the season. Most frequently, during the 2016-17 season, we chose; FOI variants with both school vacations and humidity terms; uninformative priors; the inclusion of discounted historical data for not-yet-observed time points; and coupled regions (when available). Our near-term weekly forecasts substantially over-estimated incidence early in the season when coupled models were not available. However, our forecast accuracy improved in absolute terms and relative to other teams once coupled solutions were available. In retrospective analysis, we found that the 2016-17 season was not typical: on average, coupled models performed better when fit without historically augmented data. Also, we tested a simple ensemble model for the 2016-17 season and found that it underperformed our subjective choice for all forecast targets. In this study, we were able to improve accuracy during a prospective forecasting exercise by coupling dynamics between regions. Although reduction of forecast subjectivity should be a long-term goal, some degree of human intervention is likely to improve forecast accuracy in the medium-term in parallel with the systematic consideration of more sophisticated ensemble approaches. |
Oncogenic human papillomaviruses (HPV) are small DNA viruses that infect keratinocytes. After HPV binding to cell surface receptors, a cascade of molecular interactions mediates the infectious cellular internalization of virus particles. Aside from the virus itself, important molecular players involved in virus entry include the tetraspanin CD151 and the epidermal growth factor receptor (EGFR). To date, it is unknown how these components are coordinated in space and time. Here, we studied plasma membrane dynamics of CD151 and EGFR and the HPV16 capsid during the early phase of infection. We find that the proteinase ADAM17 activates the extracellular signal-regulated kinases (ERK1/2) pathway by the shedding of growth factors which triggers the formation of an endocytic entry platform. Infectious endocytic entry platforms carrying virus particles consist of two-fold larger CD151 domains containing the EGFR. Our finding clearly dissects initial virus binding from ADAM17-dependent assembly of a HPV/CD151/EGFR entry platform. |
Amoebiasis is a parasitic disease that causes thousands of deaths every year, its adverse effects and resistance to conventional treatments have led to the search of new treatment options, as well as the development of novel screening methods. In this work, we implemented a 3D model of intestine and liver slices from hamsters that were infected ex vivo with virulent E. histolytica trophozoites. Results show preserved histology in both uninfected tissues as well as ulcerations, destruction of the epithelial cells, and inflammatory reaction in intestine slices and formation of micro abscesses, and the presence of amoebae in the sinusoidal spaces and in the interior of central veins in liver slices. The three chemically synthetized compounds T-001, T-011, and T-016, which act as amoebicides in vitro, were active in both infected tissues, as they decreased the number of trophozoites, and provoked death by disintegration of the amoeba, similar to metronidazole. However, compound T-011 induced signs of cytotoxicity to liver slices. Our results suggest that ex vivo cultures of precision-cut intestinal and liver slices represent a reliable 3D approach to evaluate novel amoebicidal compounds, and to simultaneously detect their toxicity, while reducing the number of experimental animals commonly required by other model systems. |
Animal experiments are widely used in preclinical medical research with the goal of disease modeling and exploration of novel therapeutic approaches. In the context of sepsis and septic shock, the translation into clinical practice has been disappointing. Classical animal models of septic shock usually involve one-sex-one-age animal models, mostly in mice or rats, contrasting with the heterogeneous population of septic shock patients. Many other factors limit the reliability of preclinical models and may contribute to preclinical research failure in critical care, including the host specificity of several pathogens, the fact that laboratory animals are raised in pathogen-free facilities and that organ support techniques are either absent or minimal. Advanced animal models have been developed with the aim of improving the clinical translatability of experimental findings. So-called animal ICUs refer to the preclinical investigation of adult or even aged animals of either sex, using—in case of rats and mice—miniaturized equipment allowing for reproducing an ICU environment at a small animal scale and integrating chronic comorbidities to more closely reflect the clinical conditions studied. Strength and limitations of preclinical animal models designed to decipher the mechanisms involved in septic cardiomyopathy are discussed. This article reviews the current status and the challenges of setting up an animal ICU. |
Targeted therapy is currently limited for patients with hepatocellular carcinoma (HCC) due to the lack of suitable targets. Kinases play pivotal roles in many cellular biological processes, whereas dysregulation of kinases may lead to various diseases, particularly cancer. However, the role of kinases in HCC malignancy remains unclear. In this study, we employed a kinome small interfering RNA (siRNA) library, comprising 710 kinase-related genes, to screen whether any kinases were essential for cell proliferation in various HCC cell lines. Through a kinome siRNA library screening, we found that MAP3K7 was a crucial gene for HCC cell proliferation. Pharmacological or genetic ablation of MAP3K7 diminished the growth, migration, and invasion of HCC cells, including primary HCC cells. Stable knockdown of MAP3K7 attenuated tumor formation in a spheroid cell culture model and tumor xenograft mouse model. In addition, silencing MAP3K7 reduced the phosphorylation and expression of mammalian target of rapamycin (mTOR) in HCC cells. MAP3K7 expression was positively correlated with mTOR expression in tumors of patients with HCC. Higher co-expression of MAP3K7 and mTOR was significantly associated with poor prognosis of HCC. Taken together, our results revealed that the MAP3K7-mTOR axis might promote tumorigenesis and malignancy, which provides a potential marker or therapeutic target for HCC patients. |
Harnessing the power of the immune system to recognize and eliminate cancer cells is a longtime exploration. In the past decade, monoclonal antibody (mAb)-based immune checkpoint blockade (ICB) and chimeric antigen receptor T (CAR-T) cell therapy have proven to be safe and effective in hematologic malignancies. Despite the unprecedented success of ICB and CAR-T therapy, only a subset of patients can benefit partially due to immune dysfunction and lack of appropriate targets. Here, we review the preclinical and clinical advances of CTLA-4 and PD-L1/PD-1-based ICB and CD19-specific CAR-T cell therapy in hematologic malignancies. We also discuss the basic research and ongoing clinical trials on emerging immune checkpoints (Galectin-9/Tim-3, CD70/CD27, LAG-3, and LILRBs) and on new targets for CAR-T cell therapy (CD22, CD33, CD123, BCMA, CD38, and CD138) for the treatment of hematologic malignancies. |
Commercial poultry are continually exposed to, frequently pathogenic, microorganisms, usually via mucosal surfaces such as the intestinal mucosa. Thus, understanding host–microbe interactions is vital. Many of these microorganisms may have no or limited contact with the host, while most of those interacting more meaningfully with the host will be dealt with by the innate immune response. Fundamentally, poultry have evolved to have immune responses that are generally appropriate and adequate for their acquired microbiomes, although this is challenged by commercial production practices. Innate immune cells and their functions, encompassing inflammatory responses, create the context for neutralising the stimulus and initiating resolution. Dysregulated inflammatory responses can be detrimental but, being a highly conserved biological process, inflammation is critical for host defence. Heterogeneity and functional plasticity of innate immune cells is underappreciated and offers the potential for (gut) health interventions, perhaps including exogenous opportunities to influence immune cell metabolism and thus function. New approaches could focus on identifying and enhancing decisive but less harmful immune processes, improving the efficiency of innate immune cells (e.g., targeted, efficient microbial killing) and promoting phenotypes that drive resolution of inflammation. Breeding strategies and suitable exogenous interventions offer potential solutions to enhance poultry gut health, performance and welfare. |
AIM: Chloroquine is an antimalarial drug used in the treatment of Plasmodium vivax malaria. Three methods to quantify chloroquine and its metabolite in blood matrices were developed and validated. METHODOLOGY & RESULTS: Different high-throughput extraction techniques were used to recover the drugs from whole blood (50 μl), plasma (100 μl) and dried blood spots (15 μl as punched discs) followed by quantification with LC–MS/MS. The intra- and inter-batch precisions were below 15%, and thus meet regulatory acceptance criteria. CONCLUSION: The developed methods demonstrated satisfactory validation performance with high sensitivity and selectivity. The assays used simple and easy to automate extraction techniques. All methods were reliable with robust performance and demonstrated to be suitable to implement into high-throughput routine analysis of clinical pharmacokinetic samples. |
Human norovirus (HuNoV) is responsible for more than 95% of outbreaks of acute nonbacterial gastroenteritis worldwide. Despite major efforts, there are no vaccines or effective therapeutic interventions against this virus. Chicken immunoglobulin Y (IgY)-based passive immunization has been shown to be an effective strategy to prevent and treat many enteric viral diseases. Here, we developed a highly efficient bioreactor to generate high titers of HuNoV-specific IgY in chicken yolks using a recombinant vesicular stomatitis virus expressing HuNoV capsid protein (rVSV-VP1) as an antigen. We first demonstrated that HuNoV VP1 protein was highly expressed in chicken cells infected by rVSV-VP1. Subsequently, we found that White Leghorn hens immunized intramuscularly with rVSV-VP1 triggered a high level of HuNoV-specific yolk IgY antibodies. The purified yolk IgY was efficiently recognized by HuNoV virus-like particles (VLPs). Importantly, HuNoV-specific IgY efficiently blocked the binding of HuNoV VLPs to all three types (A, B, and O) of histo-blood group antigens (HBGAs), the attachment factors for HuNoV. In addition, the receptor blocking activity of IgY remained stable at temperature below 70 °C and at pH ranging from 4 to 9. Thus, immunization of hens with VSV-VP1 could be a cost-effective and practical strategy for large-scale production of anti-HuNoV IgY antibodies for potential use as prophylactic and therapeutic treatment against HuNoV infection. |
Ebola virus (EBOV) disease can result in a range of symptoms anywhere from virtually asymptomatic to severe hemorrhagic fever during acute infection. Additionally, spans of asymptomatic persistence in recovering survivors is possible, during which transmission of the virus may occur. In acute infection, substantial cytokine storm and bystander lymphocyte apoptosis take place, resulting in uncontrolled, systemic inflammation in affected individuals. Recently, studies have demonstrated the presence of EBOV proteins VP40, glycoprotein (GP), and nucleoprotein (NP) packaged into extracellular vesicles (EVs) during infection. EVs containing EBOV proteins have been shown to induce apoptosis in recipient immune cells, as well as contain pro-inflammatory cytokines. In this manuscript, we review the current field of knowledge on EBOV EVs including the mechanisms of their biogenesis, their cargo and their effects in recipient cells. Furthermore, we discuss some of the effects that may be induced by EBOV EVs that have not yet been characterized and highlight the remaining questions and future directions. |
Norovirus is the most common cause of non-bacterial gastroenteritis and is a burden worldwide. The increasing norovirus diversity is currently categorized into at least 10 genogroups which are further classified into more than 40 genotypes. In addition to humans, norovirus can infect a broad range of hosts including livestock, pets, and wild animals, e.g., marine mammals and bats. Little is known about norovirus infections in most non-human hosts, but the close genetic relatedness between some animal and human noroviruses coupled with lack of understanding where newly appearing human norovirus genotypes and variants are emerging from has led to the hypothesis that norovirus may not be host restricted and might be able to jump the species barrier. We have systematically reviewed the literature to describe the diversity, prevalence, and geographic distribution of noroviruses found in animals, and the pathology associated with infection. We further discuss the evidence that exists for or against interspecies transmission including surveillance data and data from in vitro and in vivo experiments. |
Polyamines are small positively-charged molecules abundant in eukaryotic cells that are crucial to RNA virus replication. In eukaryotic cells, polyamines facilitate processes such as transcription, translation, and DNA replication, and viruses similarly rely on polyamines to facilitate transcription and translation. Whether polyamines function at additional stages in viral replication remains poorly understood. Picornaviruses, including Coxsackievirus B3 (CVB3), are sensitive to polyamine depletion both in vitro and in vivo; however, precisely how polyamine function in picornavirus infection has not been described. Here, we describe CVB3 mutants that arise with passage in polyamine-depleted conditions. We observe mutations in the 2A and 3C proteases, and we find that these mutant proteases confer resistance to polyamine depletion. Using a split luciferase reporter system to measure protease activity, we determined that polyamines facilitate viral protease activity. We further observe that the 2A and 3C protease mutations enhance reporter protease activity in polyamine-depleted conditions. Finally, we find that these mutations promote cleavage of cellular eIF4G during infection of polyamine-depleted cells. In sum, our results suggest that polyamines are crucial to protease function during picornavirus infection. Further, these data highlight viral proteases as potential antiviral targets and highlight how CVB3 may overcome polyamine-depleting antiviral therapies. |
Annual seasonal influenza epidemics of variable severity result in significant morbidity and mortality in the United States (U.S.) and worldwide. In temperate climate countries, including the U.S., influenza activity peaks during the winter months. Annual influenza vaccination is recommended for all persons in the U.S. aged 6 months and older, and among those at increased risk for influenza-related complications in other parts of the world (e.g. young children, elderly). Observational studies have reported effectiveness of influenza vaccination to reduce the risks of severe disease requiring hospitalization, intensive care unit admission, and death. A diagnosis of influenza should be considered in critically ill patients admitted with complications such as exacerbation of underlying chronic comorbidities, community-acquired pneumonia, and respiratory failure during influenza season. Molecular tests are recommended for influenza testing of respiratory specimens in hospitalized patients. Antigen detection assays are not recommended in critically ill patients because of lower sensitivity; negative results of these tests should not be used to make clinical decisions, and respiratory specimens should be tested for influenza by molecular assays. Because critically ill patients with lower respiratory tract disease may have cleared influenza virus in the upper respiratory tract, but have prolonged influenza viral replication in the lower respiratory tract, an endotracheal aspirate (preferentially) or bronchoalveolar lavage fluid specimen (if collected for other diagnostic purposes) should be tested by molecular assay for detection of influenza viruses. Observational studies have reported that antiviral treatment of critically ill adult influenza patients with a neuraminidase inhibitor is associated with survival benefit. Since earlier initiation of antiviral treatment is associated with the greatest clinical benefit, standard-dose oseltamivir (75 mg twice daily in adults) for enteric administration is recommended as soon as possible as it is well absorbed in critically ill patients. Based upon observational data that suggest harms, adjunctive corticosteroid treatment is currently not recommended for children or adults hospitalized with influenza, including critically ill patients, unless clinically indicated for another reason, such as treatment of asthma or COPD exacerbation, or septic shock. A number of pharmaceutical agents are in development for treatment of severe influenza. |
A magnesium complex (1) featuring a bidentate aminopyridinato ligand is a remarkably selective catalyst for the dehydrocoupling of amine‐boranes. This reaction proceeds to completion with low catalyst loadings (1 mol %) under mild conditions (60 °C), exceeding previously reported s‐block systems in terms of selectivity, rate, and turnover number (TON). Mechanistic studies by in situ NMR analysis reveals the reaction to be first order in both catalyst and substrate. A reaction mechanism is proposed to account for these findings, with the high TON of the catalyst attributed to the bidentate nature of the ligand, which allows for reversible deprotonation of the substrate and regeneration of 1 as a stable resting state. |
We are constantly exposed to infectious diseases, and they cause millions of deaths per year. The World Health Organization (WHO) estimates that antibiotic resistance could cause 10 million deaths per year by 2050. Multidrug-resistant bacteria are the cause of infection in at least one in three people suffering from septicemia. While antibiotics are powerful agents against infectious diseases, the alarming increase in antibiotic resistance is of great concern. Alternatives are desperately needed, and nanotechnology provides a great opportunity to develop novel approaches for the treatment of infectious diseases. One of the most important factors in the prognosis of an infection caused by an antibiotic resistant bacteria is an early and rigorous diagnosis, jointly with the use of novel therapeutic systems that can specifically target the pathogen and limit the selection of resistant strains. Nanodiamonds can be used as antimicrobial agents due to some of their properties including size, shape, and biocompatibility, which make them highly suitable for the development of efficient and tailored nanotherapies, including vaccines or drug delivery systems. In this review, we discuss the beneficial findings made in the nanodiamonds field, focusing on diagnosis and treatment of infectious diseases. We also highlight the innovative platform that nanodiamonds confer for vaccine improvement, drug delivery, and shuttle systems, as well as their role in the generation of faster and more sensitive clinical diagnosis. |
BACKGROUND: Nematodes are among the most diverse and abundant metazoans on Earth, but research on them has been biased toward parasitic taxa and model organisms. Free-living nematodes, particularly from the clades Enoplia and Dorylaimia, have been underrepresented in genome-scale phylogenetic analyses to date, leading to poor resolution of deep relationships within the phylum. RESULTS: We supplemented publicly available data by sequencing transcriptomes of nine free-living nematodes and two important outgroups and conducted a phylum-wide phylogenomic analysis including a total of 108 nematodes. Analysis of a dataset generated using a conservative orthology inference strategy resulted in a matrix with a high proportion of missing data and moderate to weak support for branching within and placement of Enoplia. A less conservative orthology inference approach recovered more genes and resulted in higher support for the deepest splits within Nematoda, recovering Enoplia as the sister taxon to the rest of Nematoda. Relationships within major clades were similar to those found in previously published studies based on 18S rDNA. CONCLUSIONS: Expanded transcriptome sequencing of free-living nematodes has contributed to better resolution among deep nematode lineages, though the dataset is still strongly biased toward parasites. Inclusion of more free-living nematodes in future phylogenomic analyses will allow a clearer understanding of many interesting aspects of nematode evolution, such as morphological and molecular adaptations to parasitism and whether nematodes originated in a marine or terrestrial environment. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12862-019-1444-x) contains supplementary material, which is available to authorized users. |
Maintenance of epigenetic modifiers is of utmost importance to preserve the epigenome and consequently appropriate cellular functioning. Here, we analyzed Polycomb group protein (PcG) complex integrity in response to heat shock (HS). Upon HS, various Polycomb Repressive Complex (PRC)1 and PRC2 subunits, including CBX proteins, but also other chromatin regulators, are found to accumulate in the nucleolus. In parallel, binding of PRC1/2 to target genes is strongly reduced, coinciding with a dramatic loss of H2AK119ub and H3K27me3 marks. Nucleolar-accumulated CBX proteins are immobile, but remarkably both CBX protein accumulation and loss of PRC1/2 epigenetic marks are reversible. This post-heat shock recovery of pan-nuclear CBX protein localization and reinstallation of epigenetic marks is HSP70 dependent. Our findings demonstrate that the nucleolus is an essential protein quality control center, which is indispensable for recovery of epigenetic regulators and maintenance of the epigenome after heat shock. |
BACKGROUND: For many survivors of acute respiratory distress syndrome (ARDS), the process from discharge from intensive care unit (ICU) to recovery is long and difficult. However, healthcare use after discharge from ICU has received only little attention by research. This study sets out to investigate the extent of ambulatory and stationary healthcare use among survivors of ARDS in Germany (multicenter DACAPO cohort) and to analyze predictors of stationary healthcare use. RESULTS: A total of 396 survivors of ARDS provided data at 1 year after discharge from ICU. Fifty percent of 1-year survivors were hospitalized for 48 days or longer after discharge from ICU, with 10% spending more than six out of 12 months in stationary care. The duration of hospitalization increased significantly by the length of the initial ICU stay. All participants reported at least one outpatient visit (including visits to general practitioners), and 50% contacted four or more different medical specialties within the first year after discharge from ICU. CONCLUSIONS: For most of the patients, the first year after ARDS is characterized by an extensive amount of healthcare utilization, especially with regard to stationary health care. These findings shed light on the substantial morbidity of patients after ARDS and contribute to a better understanding of the situation of patients following discharge from ICU. |
Many emerging arboviruses are not transmitted by traditional mosquito vectors, but by lesser-studied arthropods such as ticks, midges, and sand flies. Small RNA (sRNA) silencing pathways are the main antiviral defence mechanism for arthropods, which lack adaptive immunity. Non-retroviral integrated RNA virus sequences (NIRVS) are one potential source of sRNAs which comprise these pathways. NIRVS are remnants of past germline RNA viral infections, where viral cDNA integrates into the host genome and is vertically transmitted. In Aedes mosquitoes, NIRVS are widespread and produce PIWI-interacting RNAs (piRNAs). These are hypothesised to target incoming viral transcripts to modulate viral titre, perhaps rendering the organism a more efficient arbovirus vector. To explore the NIRVS landscape in alternative arbovirus vectors, we validated the NIRVS landscape in Aedes spp. and then identified novel NIRVS in six medically relevant arthropods and also in Drosophila melanogaster. We identified novel NIRVS in Phlebotomus papatasi, Culicoides sonorensis, Rhipicephalus microplus, Anopheles gambiae, Culex quinquefasciatus, and Ixodes scapularis. Due to their unexpected abundance, we further characterised NIRVS in the blacklegged tick I. scapularis (n = 143). Interestingly, NIRVS are not enriched in R. microplus, another hard tick, suggesting this is an Ixodes-specific adaptation. I. scapularis NIRVS are enriched in bunya- and orthomyxo-like sequences, reflecting that ticks are a dominant host for these virus groups. Unlike in mosquitoes, I. scapularis NIRVS are more commonly derived from the non-structural region (replicase) of negative-sense viruses, as opposed to structural regions (e.g. glycoprotein). Like other arthropods, I. scapularis NIRVS preferentially integrate into genomic piRNA clusters, and serve as a template for primary piRNA production in the commonly used embryonic I. scapularis ISE6 cell line. Interestingly, we identified a two-fold enrichment of non-long terminal repeat (non-LTR) retrotransposons, in genomic proximity to NIRVS, contrasting with studeis in Ae. aegypti, where LTR retrotransposons are instead associated with NIRVS formation. We characterised NIRVS phylogeny and integration patterns in the important vector, I. scapularis, revealing they are distinct from those in Aedes spp. Future studies will explore the possible antiviral mechanism conferred by NIRVS to I. scapularis,which may help the transmission of pathogenic arboviruses. Finally, this study explored NIRVS as an untapped wealth of viral diversity in arthropods. |
BACKGROUND: Pediatric ARDS still represents a difficult challenge in Pediatric Intensive Care Units (PICU). Among different treatments proposed, exogenous surfactant showed conflicting results. Aim of this multicenter retrospective observational study was to evaluate whether poractant alfa use in pediatric ARDS might improve gas exchange in children less than 2 years old, according to a shared protocol. METHODS: The study was carried out in fourteen Italian PICUs after dissemination of a standardized protocol for surfactant administration within the Italian PICU network. The protocol provides the administration of surfactant (50 mg/kg) divided in two doses: the first dose is used as a bronchoalveolar lavage while the second as supplementation. Blood gas exchange variations before and after surfactant use were recorded. RESULTS: Sixty-nine children, age 0–24 months, affected by Acute Respiratory Distress Syndrome treated with exogenous porcine surfactant were enrolled. Data collection consisted of patient demographics, respiratory variables and arterial blood gas analysis. The most frequent reasons for PICU admission were acute respiratory failure, mainly bronchiolitis and pneumonia, and septic shock. Fifty-four children (78.3%) had severe ARDS (define by oxygen arterial pressure and inspired oxygen fraction ratio (P/F) < 100), 15 (21.7%) had moderate ARDS (100 < P/F < 200). PO(2), P/F, Oxygenation Index (OI) and pH showed a significant improvement after surfactant use with respect to baseline (p < 0.001 at each included time-point for each parameter). No significant difference in blood gas variations were observed among four different subgroups of diseases (bronchiolitis, pneumonia, septic shock and others). Overall, 11 children died (15.9%) and among these, 10 (90.9%) had complex chronic conditions. Two children (18.2%) died while being treated with Extracorporeal Membrane Oxygenation (ECMO). Mortality for severe pARDS was 20.4%. CONCLUSION: The use of porcine Surfactant improves oxygenation, P/F ratio, OI and pH in a population of children with moderate or severe pARDS caused by multiple diseases. A shared protocol seems to be a good option to obtain the same criteria of enrollment among different PICUs and define a unique way of use and administration of the drug for future studies. |
BACKGROUND: Experimental inoculation is an important tool for common cold and asthma research. Producing rhinovirus (RV) inocula from nasal secretions has required prolonged observation of the virus donor to exclude extraneous pathogens. We produced a RV-A16 inoculum using reverse genetics and determined the dose necessary to cause moderate colds in seronegative volunteers. METHODS: The consensus sequence of RV-A16 from a previous inoculum was cloned, and inoculum virus was produced using reverse genetics techniques. After safety testing, volunteers were inoculated with either RV-A16 (n = 26) or placebo (n = 10), Jackson cold scores were recorded, and nasal secretions were tested for shedding of RV-A16 ribonucleic acid. RESULTS: The reverse genetics process produced infectious virus that was neutralized by specific antisera and had a mutation rate similar to conventional virus growth techniques. The 1000 median tissue culture infectious dose (TCID(50)) dose produced moderate colds in most individuals with effects similar to that of a previously tested conventional RV-A16 inoculum. CONCLUSIONS: Reverse genetics techniques produced a RV-A16 inoculum that can cause clinical colds in seronegative volunteers, and they also serve as a stable source of virus for laboratory use. The recombinant production procedures eliminate the need to derive seed virus from nasal secretions, thus precluding introduction of extraneous pathogens through this route. |
ADP-ribosylation is a reversible chemical modification catalysed by ADP-ribosyltransferases such as PARPs that utilize nicotinamide adenine dinucleotide (NAD(+)) as a cofactor to transfer monomer or polymers of ADP-ribose nucleotide onto macromolecular targets such as proteins and DNA. ADP-ribosylation plays an important role in several biological processes such as DNA repair, transcription, chromatin remodelling, host-virus interactions, cellular stress response and many more. Using biochemical methods we identify RNA as a novel target of reversible mono-ADP-ribosylation. We demonstrate that the human PARPs - PARP10, PARP11 and PARP15 as well as a highly diverged PARP homologue TRPT1, ADP-ribosylate phosphorylated ends of RNA. We further reveal that ADP-ribosylation of RNA mediated by PARP10 and TRPT1 can be efficiently reversed by several cellular ADP-ribosylhydrolases (PARG, TARG1, MACROD1, MACROD2 and ARH3), as well as by MACROD-like hydrolases from VEEV and SARS viruses. Finally, we show that TRPT1 and MACROD homologues in bacteria possess activities equivalent to the human proteins. Our data suggest that RNA ADP-ribosylation may represent a widespread and physiologically relevant form of reversible ADP-ribosylation signalling. |
Autophagy, a highly regulated degradative process that promotes cellular homeostasis, is increasingly recognised as a fundamental component of the cellular response against viral infection. In this study, we investigated the role of autophagy during Junín virus (JUNV) multiplication using human A549 cells. We found that JUNV infection induces an increment of the LC3-II/LC3-I ratio, an accumulation of punctate pattern in RFP-LC3-transfected cells and the colocalisation of viral nucleoprotein and LC3 protein, suggesting autophagosome formation. JUNV infection also induced the degradation of the autophagy receptor p62, suggesting that complete autophagic flux was triggered. In addition, we showed that inhibition of autophagy with bafilomycin A1 or 3-methyladenine significantly reduces viral multiplication. Moreover, viral yield was increased when autophagy was induced using rapamycin. Furthermore, JUNV infection induced the colocalisation of p62, ATG16, RAB5, RAB7A and LAMP1 with the autophagosomal LC3 protein. That suggests that phagosomes undergo the maturation process during viral infection. Finally, we demonstrated that siRNA experiments targeting essential autophagy genes (ATG5, ATG7 and Beclin 1) reduce viral protein synthesis and viral yield. Overall, our results indicate that JUNV activates host autophagy machinery enhancing its multiplication. |
PURPOSE: In Kawasaki disease (KD) patients, coronary artery complications, incomplete and refractory types occur more frequently in patients with streptococcal or other bacterial/viral infections. Recently, we observed a higher incidence of coronary lesions in KD patients with high anti-streptolysin O (ASO) titer. Therefore, we hypothesized that KD patients diagnosed with concurrent streptococcal infection have poor prognoses, with respect to treatment response and development of coronary artery lesions. METHODS: A retrospective review was performed in 723 patients with KD who were admitted to 2 major hospitals between June 2010 and September 2017. RESULTS: Among 723 patients with KD, 11 initially showed an elevated ASO titer (>320 IU/mL) or elevated follow-up ASO titer after treatment. Of these patients, 5 showed no response to the first intravenous immunoglobulin treatment, 3 had abnormalities of the coronary arteries. This is a significantly higher proportion of patients with a high ASO titer (n=3, 27.3%) than those with a normal ASO titer (n=53 [7.4%], P=0.047). A severe clinical course was seen in 81.8% of patients in the high ASO group versus 14.5% of patients in the normal ASO group. CONCLUSION: It is not certain whether acute streptococcal infection may cause KD, but this study revealed that KD with high ASO titers showed higher rates of severe clinical course. It may be helpful to analyze concurrent streptococcal infection in patients with a severe clinical course. |
The use of chemicals around the globe in different industries has increased tremendously, affecting the health of people. The modern world intends to replace these noxious chemicals with environmental friendly products for the betterment of life on the planet. Establishing enzymatic processes in spite of chemical processes has been a prime objective of scientists. Various enzymes, specifically microbial proteases, are the most essentially used in different corporate sectors, such as textile, detergent, leather, feed, waste, and others. Proteases with respect to physiological and commercial roles hold a pivotal position. As they are performing synthetic and degradative functions, proteases are found ubiquitously, such as in plants, animals, and microbes. Among different producers of proteases, Bacillus sp. are mostly commercially exploited microbes for proteases. Proteases are successfully considered as an alternative to chemicals and an eco-friendly indicator for nature or the surroundings. The evolutionary relationship among acidic, neutral, and alkaline proteases has been analyzed based on their protein sequences, but there remains a lack of information that regulates the diversity in their specificity. Researchers are looking for microbial proteases as they can tolerate harsh conditions, ways to prevent autoproteolytic activity, stability in optimum pH, and substrate specificity. The current review focuses on the comparison among different proteases and the current problems faced during production and application at the industrial level. Deciphering these issues would enable us to promote microbial proteases economically and commercially around the world. |
Individuals chronically infected with HIV-1 harbor complex viral populations within their bloodstreams. Recently, it has come to light that when these people infect others, the new infection is typically established by only one or a small number of virions from within this complex viral swarm. An important goal is to characterize the biological properties of HIV-1 virions that seed and exist early in new human infections because these are potentially the only viruses against which a prophylactic HIV-1 vaccine would need to elicit protection. This includes understanding how the Envelope (Env) protein of these virions interacts with the T-cell receptor CD4, which supports attachment and entry of HIV-1 into target cells. We examined early HIV-1 isolates for their ability to infect cells via the CD4 receptor of 15 different primate species. Primates were the original source of HIV-1 and now serve as valuable animal models for studying HIV-1. We find that most primary isolates of HIV-1 from the blood, including early isolates, are highly selective and enter cells through some primate CD4 receptor orthologs but not others. This phenotype is remarkably consistent, regardless of route of transmission, viral subtype, or time of isolation post infection. We show that the weak CD4 binding affinity of blood-derived HIV-1 isolates is what makes them sensitive to the small sequence differences in CD4 from one primate species to the next. To substantiate this, we engineered an early HIV-1 Env to have high, medium, or low binding affinity to CD4, and we show that it loses the ability to enter cells via the CD4 receptor of many primate species as the binding affinity gets weaker. Based on the phenotype of selective use of primate CD4, we find that weak CD4 binding appears to be a nearly universal property of HIV-1 circulating in the bloodstream. Therefore, weak binding to CD4 must be a selected and important property in the biology of HIV-1 in the body. We identify six primate species that encode CD4 receptors that fully support the entry of early HIV-1 isolates despite their low binding affinity for CD4. These findings will help inform long-standing efforts to model HIV-1 transmission and early disease in primates. |
Streptococcus agalactiae (Group B Streptococcus, GBS) normally colonizes healthy adults but can cause invasive disease, such as meningitis, in the newborn. To gain access to the central nervous system, GBS must interact with and penetrate brain or meningeal blood vessels; however, the exact mechanisms are still being elucidated. Here, we investigate the contribution of BspC, an antigen I/II family adhesin, to the pathogenesis of GBS meningitis. Disruption of the bspC gene reduced GBS adherence to human cerebral microvascular endothelial cells (hCMEC), while heterologous expression of BspC in non-adherent Lactococcus lactis conferred bacterial attachment. In a murine model of hematogenous meningitis, mice infected with ΔbspC mutants exhibited lower mortality as well as decreased brain bacterial counts and inflammatory infiltrate compared to mice infected with WT GBS strains. Further, BspC was both necessary and sufficient to induce neutrophil chemokine expression. We determined that BspC interacts with the host cytoskeleton component vimentin and confirmed this interaction using a bacterial two-hybrid assay, microscale thermophoresis, immunofluorescent staining, and imaging flow cytometry. Vimentin null mice were protected from WT GBS infection and also exhibited less inflammatory cytokine production in brain tissue. These results suggest that BspC and the vimentin interaction is critical for the pathogenesis of GBS meningitis. |
Plasmodium vivax parasites preferentially invade reticulocyte cells in a multistep process that is still poorly understood. In this study, we used ex vivo invasion assays and population genetic analyses to investigate the involvement of complement receptor 1 (CR1) in P. vivax invasion. First, we observed that P. vivax invasion of reticulocytes was consistently reduced when CR1 surface expression was reduced through enzymatic cleavage, in the presence of naturally low-CR1-expressing cells compared with high-CR1-expressing cells, and with the addition of soluble CR1, a known inhibitor of P. falciparum invasion. Immuno-precipitation experiments with P. vivax Reticulocyte Binding Proteins showed no evidence of complex formation. In addition, analysis of CR1 genetic data for worldwide human populations with different exposure to malaria parasites show significantly higher frequency of CR1 alleles associated with low receptor expression on the surface of RBCs and higher linkage disequilibrium in human populations exposed to P. vivax malaria compared with unexposed populations. These results are consistent with a positive selection of low-CR1-expressing alleles in vivax-endemic areas. Collectively, our findings demonstrate that CR1 availability on the surface of RBCs modulates P. vivax invasion. The identification of new molecular interactions is crucial to guiding the rational development of new therapeutic interventions against vivax malaria. |
BACKGROUND: In summer 2014, an autochthonous outbreak of dengue occurred in Tokyo, Japan, in which Yoyogi Park acted as the focal area of transmission. Recognizing the outbreak, concerted efforts were made to control viral spread, which included mosquito control, public announcement of the outbreak, and a total ban on entering the park. We sought to assess the effectiveness of these control measures. METHODOLOGY/PRINCIPAL FINDINGS: We used a mathematical model to describe the transmission dynamics. Using dates of exposure and illness onset, we categorized cases into three groups according to the availability of these datasets. The infection process was parametrically modeled by generation, and convolution of the infection process and the incubation period was fitted to the data. By estimating the effective reproduction number, we determined that the effect of dengue risk communication together with mosquito control from 28 August 2014 was insufficiently large to lower the reproduction number to below 1. However, once Yoyogi Park was closed on 4 September, the value of the effective reproduction number began to fall below 1, and the associated relative reduction in the effective reproduction number was estimated to be 20%–60%. The mean incubation period was an estimated 5.8 days. CONCLUSIONS/SIGNIFICANCE: Regardless of the assumed number of generations of cases, the combined effect of mosquito control, risk communication, and park closure appeared to be successful in interrupting the chain of dengue transmission in Tokyo. |
The Golgi apparatus is a membrane-bound organelle that serves as the center for trafficking and processing of proteins and lipids. To perform these functions, the Golgi forms a multilayer stacked structure held by GRASP55 and GRASP65 trans-oligomers and perhaps their binding partners. Depletion of GRASP proteins disrupts Golgi stack formation and impairs critical functions of the Golgi, such as accurate protein glycosylation and sorting. However, how Golgi destruction affects other cellular activities is so far unknown. Here, we report that depletion of GRASP proteins reduces cell attachment and migration. Interestingly, GRASP depletion reduces the protein level of α5β1 integrin, the major cell adhesion molecule at the surface of HeLa and MDA-MB-231 cells, due to decreased integrin protein synthesis. GRASP depletion also increases cell growth and total protein synthesis. These new findings enrich our understanding on the role of the Golgi in cell physiology and provide a potential target for treating protein-trafficking disorders. |
The H9N2 subtype of avian influenza A viruses (AIV) has spread among domestic poultry and wild birds worldwide. H9N2 AIV is sporadically transmitted to humans from avian species. A total of 42 laboratory‐confirmed cases of non‐fatal human infection with the Eurasian Y280 and G1 lineages have been reported in China, Hong Kong, Bangladesh and Egypt since 1997. H9N2 AIV infections in poultry have become endemic in Asia and the Middle East and are a major source of viral internal genes for other AIV subtypes, such that continuous monitoring of H9N2 AIV is recommended. In this study, a new, one‐step, real‐time RT‐PCR assay was developed to detect two major Eurasian H9 lineages of AIV capable of causing human infection. The sensitivity of this assay was determined using in vitro‐transcribed RNA, and the detection limit was approximately 3 copies/reaction. In this assay, no cross‐reactivity was observed against RNA from H1–15 subtypes of influenza A viruses, influenza B viruses and other viral respiratory pathogens. In addition, this assay could detect the H9 hemagglutinin (HA) gene from artificially reconstituted clinical samples spiked with H9N2 virus without any non‐specific reactions. Therefore, this assay is highly sensitive and specific for H9 HA detection. The assay is useful both for diagnostic purposes in cases of suspected human infection with influenza H9N2 viruses and for the surveillance of both avian and human influenza viruses. |
Tularemia is a severe infectious zoonotic disease caused by Francisella tularensis. Although F. tularensis is considered to be a potential biological weapon due to its high infectivity and mortality rate, no vaccine has been currently licensed. Recently, we reported that F. tularensis SCHU P9 derived ΔpdpC strain lacking the pathogenicity determinant protein C gene conferred stable and good protection in a mouse lethal model. In this study, the protective effect of ΔpdpC was evaluated using a monkey lethal model. Two cynomolgus macaques (Macaca fascicularis) intratracheally challenged with the virulent strain SCHU P9 were euthanized on 7 and 11 days post-challenge after the development of severe clinical signs. The bacterial replication in alveolar macrophages and type II epithelial cells in the lungs would cause severe pneumonia accompanied by necrosis. Conversely, two animals subcutaneously immunized with ΔpdpC survived 3 weeks after SCHU P9 challenge. Though one of the two animals developed mild symptoms of tularemia, bacterial replication was limited in the respiratory organs, which may be due to a high level of humoral and cellular immune responses against F. tularensis. These results suggest that the ΔpdpC mutant would be a safe and promising candidate as a live attenuated tularemia vaccine. |
BACKGROUND: Religious mass gatherings (MGs) have always been an integral part of our society. At the outset, mass-gathering events provide challenging settings to plan a suitable emergency public health response. Published studies basically talk about retrospective reviews, case studies of the public health preparedness, or health care provided at individual events. Developing an understanding of the variables associated with MGs is the first step for public health managers. Risk assessment (RA) is a crucial part of pre-event planning as it helps foresee potential risks. Based on RA, one can develop preventive measures and ensure that the infrastructure to control the potential problems is in place. This study is an attempt to systemize RA process during MG events in a country that is culturally rich but with poor resources to handle such events. A RA tool will be developed for planning and management of religious MG events of India. METHODS/DESIGN: Various strategies will be used to develop the risk assessment tool (RA tool). Extensive review of literature clubbed with key informant interviews will be done in order to identify the risk variables and decide the domains and items of the tool. Further, this tool will be developed as a mobile-based application. The feasibility of the mobile-based RA tool will be tested in real-time MG event in one part of the country. Concurrently in the same event, a community survey of residents and visitors will be done in order to assess public perceptions of public health and environmental risks associated with MG events. DISCUSSION: The findings of this study will provide insights into the public health and environmental concerns that need to be considered if preventive strategies and intervention programs are to be designed for MG events. A “RA Tool,” which can be used in the planning and management of MG events by the public health managers will strengthen the existing health systems preparedness plans for MGs. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.