abstract
stringlengths 0
122k
|
---|
Nosocomial infections caused by Acinetobacter spp. resistant to carbapenems are increasingly reported worldwide. Carbapenem-resistant Acinetobacter (CRA) is becoming a serious concern with increasing patient morbidity, mortality, and lengths of hospital stay. Therefore, the rapid detection of CRA is essential for epidemiological surveillance. Polymerase chain reaction (PCR) has been extensively used for the rapid identification of most pathogens. In this study, we have developed two multiplex real-time PCR assays to detect and differentiate A. baumannii and non-A. baumannii Acinetobacter spp, and common carbapenemase genes, including bla(NDM), bla(OXA-23-like), bla(OXA-40-like), bla(OXA-51-like), and bla(OXA-58-like). We demonstrate the potential utility of these assays for the direct detection of bla(NDM)-, bla(OXA-23-like)-, bla(OXA-40-like)-, bla(OXA-51-like)-, and bla(OXA-58-like)-positive CRA in clinical specimens. Primers were specifically designed, and two multiplex real-time PCR assays were developed: multiplex real-time PCR assay1 for the detection of Acinetobacter baumannii 16S–23S rRNA internal transcribed spacer sequence, the Acinetobacter recA gene, and class-B-metalloenzyme-encoding gene bla(NDM); and multiplex real-time PCR assay2 to detect class-D-oxacillinase-encoding genes (bla(OXA-23-like), bla(OXA-40-like), bla(OXA-51-like),and bla(OXA-58-like)). The assays were performed on an ABI Prism 7500 FAST Real-Time PCR System. CRA isolates were used to compare the assays with conventional PCR and sequencing. Known amounts of CRA cells were added to sputum and fecal specimens and used to test the multiplex real-time PCR assays. The results for target and nontarget amplification showed that the multiplex real-time PCR assays were specific, the limit of detection for each target was 10 copies per 20 μL reaction volume, the assays were linear over six log dilutions of the target genes (r(2) > 0.99), and the Ct values of the coefficients of variation for intra- and interassay reproducibility were less than 5%. The multiplex real-time PCR assays showed 100% concordance with conventional PCR when tested against 400 CRA isolates and their sensitivity for the target DNA in sputum and fecal specimens was 10(2) CFU/mL. Therefore, these novel multiplex real-time PCR assays allow the sensitive and specific characterization and differentiation of bla(NDM)-, bla(OXA-23-like)-, bla(OXA-40-like)-, bla(OXA-51-like)-, and bla(OXA-58-like)-positive CRA, making them potential tools for the direct detection of CRA in clinical specimens and the surveillance of nosocomial infections. |
Porcine epidemic diarrhea virus, a member of the family Coronaviridae, is an economically important pathogen that causes severe enteritis, vomiting, dehydration, and a high mortality rate, especially among suckling piglets. Here, we report the complete genome sequence (28,036 nucleotides [nt]) of a porcine epidemic diarrhea virus (PEDV) strain isolated in a novel outbreak in Shandong, China. |
Foamy viruses (FV) belong to the genus Spumavirus, which forms a distinct lineage in the Retroviridae family. Although the infection in natural hosts and zoonotic transmission to humans is asymptomatic, FVs can replicate well in human cells making it an attractive gene therapy vector candidate. Here we present cryo-electron microscopy and (cryo-)electron tomography ultrastructural data on purified prototype FV (PFV) and PFV infected cells. Mature PFV particles have a distinct morphology with a capsid of constant dimension as well as a less ordered shell of density between the capsid and the membrane likely formed by the Gag N-terminal domain and the cytoplasmic part of the Env leader peptide gp18(LP). The viral membrane contains trimeric Env glycoproteins partly arranged in interlocked hexagonal assemblies. In situ 3D reconstruction by subtomogram averaging of wild type Env and of a Env gp48(TM)- gp80(SU) cleavage site mutant showed a similar spike architecture as well as stabilization of the hexagonal lattice by clear connections between lower densities of neighboring trimers. Cryo-EM was employed to obtain a 9 Å resolution map of the glycoprotein in its pre-fusion state, which revealed extensive trimer interactions by the receptor binding subunit gp80(SU) at the top of the spike and three central helices derived from the fusion protein subunit gp48(TM). The lower part of Env, presumably composed of interlaced parts of gp48(TM), gp80(SU) and gp18(LP) anchors the spike at the membrane. We propose that the gp48(TM) density continues into three central transmembrane helices, which interact with three outer transmembrane helices derived from gp18(LP). Our ultrastructural data and 9 Å resolution glycoprotein structure provide important new insights into the molecular architecture of PFV and its distinct evolutionary relationship with other members of the Retroviridae. |
BACKGROUND: Our aim was to investigate the influence of FTS on human cellular and humoral immunity using a randomized controlled clinical study in esophageal cancer patients. METHODS: Between October 2013 and December 2014, 276 patients with esophageal cancer in our department were enrolled in the study. The patients were randomized into two groups: FTS pathway group and conventional pathway group. The postoperative hospital stay, hospitalization expenditure, and postoperative complications were recorded. The markers of inflammatory and immune function were measured before operation as well as on the 1st, 3rd, and 7th postoperative days (POD), including serum level of interleukin-6 (IL-6), C-reactive protein (CRP), serum globulin, immunoglobulin G (IgG), immunoglobulin M (IgM), immunoglobulin A (IgA) and lymphocyte subpopulations (CD3 lymphocytes, CD4 lymphocytes, CD8 lymphocytes and the CD4/CD8 ratio) in the patients between the two groups. RESULTS: In all, 260 patients completed the study: 128 in the FTS group and 132 in the conventional group. We found implementation of FTS pathway decreases postoperative length of stay and hospital charges (P < 0.05). In addition, inflammatory reactions, based on IL-6 and CRP levels, were less intense following FTS pathway compared to conventional pathway on POD1 and POD3 (P < 0.05). On POD1 and POD3, the levels of IgG, IgA, CD3 lymphocytes, CD4 lymphocytes and the CD4/CD8 ratio in FTS group were significantly higher than those in control group (All P < 0.05). However, there were no differences in the level of IgM and CD8 lymphocytes between the two groups. CONCLUSIONS: FTS improves postoperative clinical recovery and effectively inhibited release of inflammatory factors via the immune system after esophagectomy for esophageal cancer. TRIAL REGISTRATION: ChiCTR-TRC-13003562, the date of registration: August 29, 2013. |
The nucleoprotein (NP) of Ebola virus (EBOV) and Marburg virus (MARV) is an essential component of the viral ribonucleoprotein complex and significantly impacts replication and transcription of the viral RNA genome. Although NP is regarded as a promising antiviral druggable target, no chemical ligands have been reported to interact with EBOV NP or MARV NP. We identified two compounds from a traditional Chinese medicine Gancao (licorice root) that can bind both NPs by combining affinity mass spectrometry and metabolomics approaches. These two ligands, 18β-glycyrrhetinic acid and licochalcone A, were verified by defined compound mixture screens and further characterized with individual ligand binding assays. Accompanying biophysical analyses demonstrate that binding of 18β-glycyrrhetinic acid to EBOV NP significantly reduces protein thermal stability, induces formation of large NP oligomers, and disrupts the critical association of viral ssRNA with NP complexes whereas the compound showed no such activity on MARV NP. Our study has revealed the substantial potential of new analytical techniques in ligand discovery from natural herb resources. In addition, identification of a chemical ligand that influences the oligomeric state and RNA-binding function of EBOV NP sheds new light on antiviral drug development. |
Background Virus‐inducible reporter genes have been used as the basis of virus detection and quantitation assays for a number of viruses. A strategy for influenza A virus‐induction of a reporter gene was recently described. In this report, we describe the extension of this strategy to influenza B virus, the generation of stable cell lines with influenza A and B virus‐inducible reporter genes, and the use of these cells in various clinically relevant viral assays. Each of the cell lines described herein constitutively express an RNA transcript that contains a reporter gene coding region flanked by viral 5′‐ and 3′‐untranslated regions (UTR) and therefore mimics an influenza virus genomic segment. Upon infection of the cells with influenza virus the virus‐inducible reporter gene segment (VIRGS) is replicated and transcribed by the viral polymerase complex resulting in reporter gene expression. Findings Reporter gene induction occurs after infection with a number of laboratory strains and clinical isolates of influenza virus including several H5N1 strains. The induction is dose‐dependent and highly specific for influenza A or influenza B viruses. Conclusions These cell lines provide the basis of simple, rapid, and objective assays that involve virus quantitation such as determination of viral titer, assessment of antiviral susceptibility, and determination of antibody neutralization titer. These cell lines could be very useful for influenza virus researchers and vaccine manufacturers. |
Methyl bromide (CH3Br) is a colorless and odorless volatile gas, used as an insecticide, fire extinguisher, fumigant, and refrigerant. Although forbidden since 1987 for domestic use, it is still used in industry, for example, to fumigate agricultural fields which are for importation in the United States. Here is the case of a 74-year-old man who was accidentally exposed to methyl bromide after using an old fire extinguisher. Even though he finally survived, he developed a severe multiple organ failure and spent 2 months in intensive care unit. We present in this report all the difficulties we had to diagnose this unusual poisoning. |
Multiple sclerosis (MS) is an inflammatory disease in which myelin in the spinal cord is damaged. C-C chemokine receptor type 5 (CCR5) is implicated in immune cell migration and cytokine release in central nervous system (CNS). We investigated whether CCR5 plays a role in MS progression using a murine model, experimental autoimmune encephalomyelitis (EAE), in CCR5 deficient (CCR5(−/−)) mice. CCR5(−/−) and CCR5(+/+) (wild-type) mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG(35-55)) followed by pertussis toxin, after which EAE paralysis was scored for 28 days. We found that clinical scoring and EAE neuropathology were lower in CCR5(−/−) mice than CCR5(+/+) mice. Immune cells (CD3(+), CD4(+), CD8(+), B cell, NK cell and macrophages) infiltration and astrocytes/microglial activation were attenuated in CCR5(−/−) mice. Moreover, levels of IL-1β, TNF-α, IFN-γ and MCP-1 cytokine levels were decreased in CCR5(−/−) mice spinal cord. Myelin basic protein (MBP) and CNPase were increased while NG2 and O4 were decreased in CCR5(−/−) mice, indicating that demyelination was suppressed by CCR5 gene deletion. These findings suggest that CCR5 is likely participating in demyelination in the spinal cord the MS development, and that it could serve as an effective therapeutic target for the treatment of MS. |
The mucus-dwelling parasite Ostertagia ostertagi is one of the most important gastrointestinal nematodes in cattle. Our group has previously demonstrated the protective capacity of a vaccine against this parasite based on a native activation-associated secreted protein ASP1 (nASP) in combination with the saponin adjuvant QuilA. The aim of the current study was to analyse the effect of both antigen and adjuvant on the cellular and humoral vaccine-induced immune responses by comparing the native ASP to a recombinant version expressed in Pichia pastoris (pASP) and replacing QuilA by Al(OH)(3). Immunization of cattle with the protective nASP+QuilA vaccine was associated with antigen-induced proliferation of natural killer (NK) cells combined with IFN-γ secretion and the induction of a mixed IgG1/IgG2 antibody response. ASP-specific activation and proliferation of NK cells was also observed in mice following the same vaccination regime. Replacing QuilA by Al(OH)(3) or nASP by pASP significantly decreased the capacity of the vaccines to trigger both NK cell activation and antibody responses and failed to induce protection against a challenge infection. Reduction of the structurally anchoring disulphide bonds of the nASP completely abolished its ability to induce NK cell activation and antibody responses, highlighting the importance of protein conformation for the immunostimulatory activity. |
Please cite this paper as: Chander et al. (2012) Molecular and phylogenetic analysis of matrix gene of avian influenza viruses isolated from wild birds and live bird markets in the USA. Influenza and Other Respiratory Viruses 7(4), 513–520. Background Wild birds are the natural hosts for influenza A viruses (IAVs) and provide a niche for the maintenance of this virus. Objectives This study was undertaken to analyze nucleotide sequences of the matrix (M) gene of AIVs isolated from wild birds and live bird markets (LBMs) to index the changes occurring in this gene. Methods M‐gene of 229 avian influenza virus (AIV) isolates obtained from wild birds and LBMs was amplified and sequenced. Full‐length sequences (∼900 nt.) thus obtained were analyzed to identify changes that may be associated with resistance to adamantanes. Phylogenetic analysis of all sequences was performed using clustalw, and evolutionary distances were calculated by maximum composite likelihood method using mega (ver. 5.0) software. Results Twenty‐seven different viral subtypes were represented with H3N8 being the most dominant subtype in wild birds and H7N2 being the predominant subtype among isolates from LBMs. Phylogenetic analysis of the M‐gene showed a high degree of nucleotide sequence identity with US isolates of AIVs but not with those of Asian or European lineages. While none of the isolates from wild birds had any antiviral resistance–associated mutations, 17 LBM isolates carried polymorphisms known to cause reduced susceptibility to antiviral drugs (adamantanes). Of these 17 isolates, 16 had S31N change and one isolate had V27A mutation. Conclusions These results indicate independent evolution of M‐gene in the absence of any antiviral drugs leading to mutations causing resistance indicating the need for continued active surveillance of AIVs. |
Background The emergence of zoonotic viruses in domestic animals is a significant public health concern. Canine influenza virus (CIV) H3N2 is a virus that can infect companion animals and is, therefore, a potential public health concern. Objective This study investigated the inter‐ and intraspecies transmission of CIV among dogs, cats, and ferrets, under laboratory conditions, to determine whether transmission of the virus was possible between as well as within these domestic animal species. Method The transmission routes for inter‐ and intraspecies transmission were airborne and direct contact, respectively. Transmission was conducted through intranasal infection of dogs followed by exposure to either cats or ferrets and by comingling infected and naïve animals of the same species. Results The interspecies transmission of CIV H3N2 via airborne was only observed from dogs to cats and not from dogs to ferrets. However, direct intranasal infection of either cats or ferrets with CIV could induce influenza‐like clinical signs, viral shedding, and serological responses. Additionally, naïve cats and ferrets could be infected by CIV via direct contact with infected animals of the same species. Conclusion Cats appear to be another susceptible host of CIV H3N2, whereas ferrets are not likely natural hosts. The molecular‐based mechanism of interspecies and intraspecies transmission of CIV H3N2 should be further studied. |
Background Chloroquine is an inexpensive and widely available 9‐aminoquinolone used in the management of malaria. Recently, in vitro assays suggest that chloroquine may have utility in the treatment of several viral infections including influenza. Objectives We sought to test whether chloroquine is effective against influenza in vivo in relevant animal models. Methods The effectiveness of chloroquine at preventing or ameliorating influenza following viral challenge was assessed in established mouse and ferret disease models. Results Although active against influenza viruses in vitro, chloroquine did not prevent the weight loss associated with influenza virus infection in mice after challenge with viruses expressing an H1 or H3 hemagglutinin protein. Similarly, clinical signs and viral replication in the nose of ferrets were not altered by treatment. Conclusions Although in vitro results were promising, chloroquine was not effective as preventive therapy in vivo in standard mouse and ferret models of influenza virus infection. This dampens enthusiasm for the potential utility of the drug for humans with influenza. |
Background Recent studies have revealed the existence of genetic diversity in swine influenza viruses (SIVs) in the world. In Thailand, there has been a little information on the molecular characteristics of the SIVs since the first isolation of viruses of H1N1 and H3N2 subtypes in the late 1970s. Our previous study demonstrated that Thai H1N1 SIVs possessed the classical swine H1 and avian‐like swine N1 genes (Takemae et al., Proceedings of the Options for the Control of Influenza VI.2007;350–353). Objectives In the present study, we genetically characterized 12 SIVs including those of H1N1, H1N2 and H3N2 subtypes isolated between 2000 and 2005. Methods We determined the entire nucleotide sequences of the eight gene segments of those isolates. Results Phylogenetic analysis revealed the existence of nine distinct genotypes amongst the Thai SIVs. These genotypes arose from multiple introductions of classical swine, avian‐like swine and human viruses. The existence of two distinct sublineages within classical swine H1 and NS, avian‐like swine PA and M and human H3 and N2 genes of the Thai SIVs suggested that introduction of viruses of classical swine, avian‐like swine and human origins occurred twice respectively into the Thai pig population. The predominance of avian‐like swine genes amongst the Thai SIVs was evident. In particular, three polymerase (PB1, PB2 and PA) and matrix genes of avian‐like swine origin were retained in all the Thai SIVs examined. Conclusions These observations may suggest that genes of avian‐like swine lineages have some advantages to be maintained in pigs as seen in the SIVs established through multiple introductions in other regions. |
Background The threat posed by swine influenza viruses with potential to transmit from pig populations to other hosts, including humans, requires the development of new experimental systems to study different aspects of influenza infection. Ex vivo organ culture (EVOC) systems have been successfully used in the study of both human and animal respiratory pathogens. Objectives We aimed to develop an air interface EVOC using pig tracheas in the study of influenza infection demonstrating that tracheal explants can be effectively maintained in organ culture and support productive influenza infection. Methods Tracheal explants were maintained in the air interface EVOC system for 7 days. Histological characteristics were analysed with different staining protocols and co‐ordinated ciliary movement on the epithelial surface was evaluated through a bead clearance assay. Explants were infected with a swine H1N1 influenza virus. Influenza infection of epithelial cells was confirmed by immunohistochemistry and viral replication was quantified by plaque assays and real‐time RT‐PCR. Results Histological analysis and bead clearance assay showed that the tissue architecture of the explants was maintained for up to 7 days, while ciliary movement exhibited a gradual decrease after 4 days. Challenge with swine H1N1 influenza virus showed that the EVOC tracheal system shows histological changes consistent with in vivo influenza infection and supported productive viral replication over multiple cycles of infection. Conclusion The air interface EVOC system using pig trachea described here constitutes a useful biological tool with a wide range of applications in the study of influenza infection. |
Please cite this paper as: Ward et al. (2011) Annual influenza vaccination: coverage and attitudes of primary care staff in Australia. Influenza and Other Respiratory Viruses 5(2), 135–141. Background Annual influenza vaccination is recommended for all Australian health care workers (HCWs) including those working in primary health care. There is limited published data on coverage, workplace provision, attitudes and personal barriers to influenza vaccination amongst primary health care staff. The aim of this study was to contribute to the limited literature base in this important area by investigating these issues in the primary health care setting in New South Wales (NSW), Australia. Methods A postal survey was sent to general practitioners (GPs) and practice nurses (PNs) from inner city, semi‐urban and rural areas of NSW, Australia. There were 139 responses in total (response rate 36%) from 79 GPs (response rate 30%) and 60 PNs (response rate 46%). Results Reported influenza vaccination coverage in both 2007 and 2008 was greater than 70%, with GPs reporting higher coverage than PNs in both years. The main barriers identified were lack of awareness of vaccination recommendations for general practice staff and concern about adverse effects from the vaccine. Conclusions Rates of influenza vaccination coverage reported in this study were higher than in previous studies of hospital and institutional HCWs, though it is possible that the study design may have contributed to these higher results. Nevertheless, these findings highlight that more needs to be done to understand barriers to vaccination in this group, to inform the development of appropriate strategies to increase vaccination coverage in primary health care staff, with a special focus on PNs. |
Please cite this paper as: Boëlle P‐Y et al. (2011) Transmission parameters of the A/H1N1 (2009) influenza virus pandemic: a review. Influenza and Other Respiratory Viruses 5(5), 306–316. Background The new influenza virus A/H1N1 (2009), identified in mid‐2009, rapidly spread over the world. Estimating the transmissibility of this new virus was a public health priority. Methods We reviewed all studies presenting estimates of the serial interval or generation time and the reproduction number of the A/H1N1 (2009) virus infection. Results Thirteen studies documented the serial interval from household or close‐contact studies, with overall mean 3 days (95% CI: 2·4, 3·6); taking into account tertiary transmission reduced this estimate to 2·6 days. Model‐based estimates were more variable, from 1·9 to 6 days. Twenty‐four studies reported reproduction numbers for community‐based epidemics at the town or country level. The range was 1·2–3·1, with larger estimates reported at the beginning of the pandemic. Accounting for under‐reporting in the early period of the pandemic and limiting variation because of the choice of the generation time interval, the reproduction number was between 1·2 and 2·3 with median 1·5. Discussion The serial interval of A/H1N1 (2009) flu was typically short, with mean value similar to the seasonal flu. The estimates of the reproduction number were more variable. Compared with past influenza pandemics, the median reproduction number was similar (1968) or slightly smaller (1889, 1918, 1957). |
Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection. |
Canine parvovirus (CPV) reproduces by co-opting the resources of host cells, inevitably causing cytotoxic effects to the host cells. Feline kidney F81 cells are sensitive to CPV infection and show disparate growing statuses at different time points post-infection. This study analysed the response of F81 cells to CPV infection at successive infection time points by iTRAQ-based quantitative proteomics. Differentially expressed proteins (DEPs) during 60 h of infection and at selected time points post-infection were identified by an analysis of variance test and a two-tailed unpaired t test, respectively. DEPs with similar quantitative changes were clustered by hierarchical clustering and analysed by gene ontology enrichment, revealing that 12 h and 60 h post-infection were the optimal times to analyse the autonomous parvovirus replication and apoptosis processes, respectively. Using the Metacore(TM) database, 29 DEPs were enriched in a network involved in p53 regulation. Besides, a significantly enriched pathway suggests that the CPV-induced cytopathic effect was probably due to the deficiency of functional CFTR caused by CPV infection. This study uncovered the systemic changes in key cellular factors involved in CPV infection and help to understand the molecular mechanisms of the anti-cancer activity of CPV and the cytopathic effects induced by CPV infection. |
Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/Mute Swan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing. |
Listeria monocytogenes is an environmental saprophyte and facultative intracellular bacterial pathogen with a well-defined life-cycle that involves escape from a phagosome, rapid cytosolic growth, and ActA-dependent cell-to-cell spread, all of which are dependent on the master transcriptional regulator PrfA. The environmental cues that lead to temporal and spatial control of L. monocytogenes virulence gene expression are poorly understood. In this study, we took advantage of the robust up-regulation of ActA that occurs intracellularly and expressed Cre recombinase from the actA promoter and 5’ untranslated region in a strain in which loxP sites flanked essential genes, so that activation of actA led to bacterial death. Upon screening for transposon mutants that survived intracellularly, six genes were identified as necessary for ActA expression. Strikingly, most of the genes, including gshF, spxA1, yjbH, and ohrA, are predicted to play important roles in bacterial redox regulation. The mutants identified in the genetic selection fell into three broad categories: (1) those that failed to reach the cytosolic compartment; (2) mutants that entered the cytosol, but failed to activate the master virulence regulator PrfA; and (3) mutants that entered the cytosol and activated transcription of actA, but failed to synthesize it. The identification of mutants defective in vacuolar escape suggests that up-regulation of ActA occurs in the host cytosol and not the vacuole. Moreover, these results provide evidence for two non-redundant cytosolic cues; the first results in allosteric activation of PrfA via increased glutathione levels and transcriptional activation of actA while the second results in translational activation of actA and requires yjbH. Although the precise host cues have not yet been identified, we suggest that intracellular redox stress occurs as a consequence of both host and pathogen remodeling their metabolism upon infection. |
Zoonotic disease surveillance is typically triggered after animal pathogens have already infected humans. Are there ways to identify high-risk viruses before they emerge in humans? If so, then how and where can identifications be made and by what methods? These were the fundamental questions driving a workshop to examine the future of predictive surveillance for viruses that might jump from animals to infect humans. Virologists, ecologists and computational biologists from academia, federal government and non-governmental organizations discussed opportunities as well as obstacles to the prediction of species jumps using genetic and ecological data from viruses and their hosts, vectors and reservoirs. This workshop marked an important first step towards envisioning both scientific and organizational frameworks for this future capability. Canine parvoviruses as well as seasonal H3N2 and pandemic H1N1 influenza viruses are discussed as exemplars that suggest what to look for in anticipating species jumps. To answer the question of where to look, prospects for discovering emerging viruses among wildlife, bats, rodents, arthropod vectors and occupationally exposed humans are discussed. Finally, opportunities and obstacles are identified and accompanied by suggestions for how to look for species jumps. Taken together, these findings constitute the beginnings of a conceptual framework for achieving a virus surveillance capability that could predict future species jumps. |
The Ebola virus disease (EVD) epidemic in West Africa in 2013–2015 spread heterogeneously across the three hardest-hit countries Guinea, Liberia and Sierra Leone and the estimation of national transmission of EVD provides little information about local dynamics. To investigate district-level transmissibility of EVD, we applied a statistical modelling approach to estimate the basic reproduction number (R(0)) for each affected district and each country using weekly incident case numbers. We estimated growth rates during the early exponential phase of the outbreak using exponential regression of the case counts on the first eight weeks since onset. To take into account the heterogeneity between and within countries, we fitted a mixed effects model and calculated R(0) based on the predicted individual growth rates and the reported serial interval distribution. At district level, R(0) ranged from 0.36 (Dubréka) to 1.72 (Beyla) in Guinea, from 0.53 (Maryland) to 3.37 (Margibi) in Liberia and from 1.14 (Koinadugu) to 2.73 (Western Rural) in Sierra Leone. At national level, we estimated an R(0) of 0.97 (95% CI 0.77–1.18) for Guinea, 1.26 (95% CI 0.98–1.55) for Liberia and 1.66 (95% CI 1.32–2.00) for Sierra Leone. Socio-demographic variables related to urbanisation such as high population density and high wealth index were found positively associated with R(0) suggesting that the consequences of fast urban growth in West Africa may have contributed to the increased spread of EVD. |
BACKGROUND: The first government funded and sustainable dialysis unit was established in Ethiopia at Saint Paul’s Hospital Millennium Medical College (SPHMMC). This has led to the development of a unique cohort of patients about which very little is known. This study was conducted to describe the clinical profile and outcome of adult Acute Kidney Injury (AKI) patients treated with intermittent haemodialysis at the dialysis center of SPHMMC. METHODS: A retrospective review of clinical records of cases of AKI who required haemodialysis support during the time period from August 1, 2013 to February 1, 2015 was conducted. RESULTS: A total of 151 cases AKI requiring dialysis were included for the study. Overall, the patients were generally younger with a mean age of 36.7 years and thus with few premorbid conditions. The most common causes of AKI were hypovolemia (22.5 %), acute glomerulonephritis (AGN) (21.9 %) and pregnancy related causes (18.5 %). Nearly a third (29.1 %) of patients succumbed to the AKI. CONCLUSION: Infections, AGN, obstetric causes and nephrotoxins were the primary causes of dialysis requiring AKI. Most of these causes can be prevented with simple interventions such as health education on oral rehydration, quality prenatal and emergency obstetric care, appropriate management of infections and taking appropriate precautions when prescribing potentially nephrotoxic medications. |
Heat-labile enterotoxins (LT) of enterotoxigenic Escherichia coli (ETEC) are structurally and functionally related to cholera toxin (CT). LT-I toxins are plasmid-encoded and flanked by IS elements, while LT-II toxins of type II ETEC are chromosomally encoded with flanking genes that appear phage related. Here, I determined the complete genomic sequence of the locus for the LT-IIa type strain SA53, and show that the LT-IIa genes are encoded by a 51 239 bp lambdoid prophage integrated at the rac locus, the site of a defective prophage in E. coli K12 strains. Of 50 LT-IIa and LT-IIc, 46 prophages also encode one member of two novel two-gene ADP-ribosyltransferase toxin families that are both related to pertussis toxin, which I named eplBA or ealAB, respectively. The eplBA and ealAB genes are syntenic with the Shiga toxin loci in their lambdoid prophages of the enteric pathogen enterohemorrhagic E. coli. These novel AB(5) toxins show pertussis-toxin-like activity on tissue culture cells, and like pertussis toxin bind to sialic acid containing glycoprotein ligands. Type II ETEC are the first mucosal pathogens known to simultaneously produce two ADP-ribosylating toxins predicted to act on and modulate activity of both stimulatory and inhibitory alpha subunits of host cell heterotrimeric G-proteins. |
Avian influenza viruses sporadically cross the species barrier to mammals, including humans, in which they may cause epidemic disease. Recently such an epidemic occurred due to the emergence of avian influenza virus of the subtype H10N7 (Seal/H10N7) in harbor seals (Phoca vitulina). This epidemic caused high mortality in seals along the north-west coast of Europe and represented a potential risk for human health. To characterize the spectrum of lesions and to identify the target cells and viral distribution, findings in 16 harbor seals spontaneously infected with Seal/H10N7 are described. The seals had respiratory tract inflammation extending from the nasal cavity to bronchi associated with intralesional virus antigen in respiratory epithelial cells. Virus infection was restricted to the respiratory tract. The fatal outcome of the viral infection in seals was most likely caused by secondary bacterial infections. To investigate the pathogenic potential of H10N7 infection for humans, we inoculated the seal virus intratracheally into six ferrets and performed pathological and virological analyses at 3 and 7 days post inoculation. These experimentally inoculated ferrets displayed mild clinical signs, virus excretion from the pharynx and respiratory tract inflammation extending from bronchi to alveoli that was associated with virus antigen expression exclusively in the respiratory epithelium. Virus was isolated only from the respiratory tract. In conclusion, Seal/H10N7 infection in naturally infected harbor seals and experimentally infected ferrets shows that respiratory epithelial cells are the permissive cells for viral replication. Fatal outcome in seals was caused by secondary bacterial pneumonia similar to that in fatal human cases during influenza pandemics. Productive infection of ferrets indicates that seal/H10N7 may possess a zoonotic potential. This outbreak of LPAI from wild birds to seals demonstrates the risk of such occasions for mammals and thus humans. |
O1 Regulation of genes by telomere length over long distances Jerry W. Shay O2 The microtubule destabilizer KIF2A regulates the postnatal establishment of neuronal circuits in addition to prenatal cell survival, cell migration, and axon elongation, and its loss leading to malformation of cortical development and severe epilepsy Noriko Homma, Ruyun Zhou, Muhammad Imran Naseer, Adeel G. Chaudhary, Mohammed Al-Qahtani, Nobutaka Hirokawa O3 Integration of metagenomics and metabolomics in gut microbiome research Maryam Goudarzi, Albert J. Fornace Jr. O4 A unique integrated system to discern pathogenesis of central nervous system tumors Saleh Baeesa, Deema Hussain, Mohammed Bangash, Fahad Alghamdi, Hans-Juergen Schulten, Angel Carracedo, Ishaq Khan, Hanadi Qashqari, Nawal Madkhali, Mohamad Saka, Kulvinder S. Saini, Awatif Jamal, Jaudah Al-Maghrabi, Adel Abuzenadah, Adeel Chaudhary, Mohammed Al Qahtani, Ghazi Damanhouri O5 RPL27A is a target of miR-595 and deficiency contributes to ribosomal dysgenesis Heba Alkhatabi O6 Next generation DNA sequencing panels for haemostatic and platelet disorders and for Fanconi anaemia in routine diagnostic service Anne Goodeve, Laura Crookes, Nikolas Niksic, Nicholas Beauchamp O7 Targeted sequencing panels and their utilization in personalized medicine Adel M. Abuzenadah O8 International biobanking in the era of precision medicine Jim Vaught O9 Biobank and biodata for clinical and forensic applications Bruce Budowle, Mourad Assidi, Abdelbaset Buhmeida O10 Tissue microarray technique: a powerful adjunct tool for molecular profiling of solid tumors Jaudah Al-Maghrabi O11 The CEGMR biobanking unit: achievements, challenges and future plans Abdelbaset Buhmeida, Mourad Assidi, Leena Merdad O12 Phylomedicine of tumors Sudhir Kumar, Sayaka Miura, Karen Gomez O13 Clinical implementation of pharmacogenomics for colorectal cancer treatment Angel Carracedo, Mahmood Rasool O14 From association to causality: translation of GWAS findings for genomic medicine Ahmed Rebai O15 E-GRASP: an interactive database and web application for efficient analysis of disease-associated genetic information Sajjad Karim, Hend F Nour Eldin, Heba Abusamra, Elham M Alhathli, Nada Salem, Mohammed H Al-Qahtani, Sudhir Kumar O16 The supercomputer facility “AZIZ” at KAU: utility and future prospects Hossam Faheem O17 New research into the causes of male infertility Ashok Agarwa O18 The Klinefelter syndrome: recent progress in pathophysiology and management Eberhard Nieschlag, Joachim Wistuba, Oliver S. Damm, Mohd A. Beg, Taha A. Abdel-Meguid, Hisham A. Mosli, Osama S. Bajouh, Adel M. Abuzenadah, Mohammed H. Al-Qahtani O19 A new look to reproductive medicine in the era of genomics Serdar Coskun P1 Wnt signalling receptors expression in Saudi breast cancer patients Muhammad Abu-Elmagd, Abdelbaset Buhmeida, Ashraf Dallol, Jaudah Al-Maghrabi, Sahar Hakamy, Wejdan Al-Qahtani, Asia Al-Harbi, Shireen Hussain, Mourad Assidi, Mohammed Al-Qahtani, Adel Abuzenadah P2 Analysis of oxidative stress interactome during spermatogenesis: a systems biology approach to reproduction Burak Ozkosem, Rick DuBois P3 Interleukin-18 gene variants are strongly associated with idiopathic recurrent pregnancy loss. Safia S Messaoudi, Maryam T Dandana, Touhami Mahjoub, Wassim Y Almawi P4 Effect of environmental factors on gene-gene and gene-environment reactions: model and theoretical study applied to environmental interventions using genotype S. Abdalla, M. Nabil Al-Aama P5 Genomics and transcriptomic analysis of imatinib resistance in gastrointestinal stromal tumor Asmaa Elzawahry, Tsuyoshi Takahashi, Sachiyo Mimaki, Eisaku Furukawa, Rie Nakatsuka, Isao Kurosaka, Takahiko Nishigaki, Hiromi Nakamura, Satoshi Serada, Tetsuji Naka, Seiichi Hirota, Tatsuhiro Shibata, Katsuya Tsuchihara, Toshirou Nishida, Mamoru Kato P6 In-Silico analysis of putative HCV epitopes against Pakistani human leukocyte antigen background: an approach towards development of future vaccines for Pakistani population Sajid Mehmood, Naeem Mahmood Ashraf, Awais Asif, Muhammad Bilal, Malik Siddique Mehmood, Aadil Hussain P7 Inhibition of AChE and BuChE with the natural compounds of Bacopa monerri for the treatment of Alzheimer’s disease: a bioinformatics approach Qazi Mohammad Sajid Jamal, Mughees Uddin Siddiqui, Mohammad A. Alzohairy, Mohammad A. Al Karaawi P8 Her2 expression in urothelial cell carcinoma of the bladder in Saudi Arabia Taoufik Nedjadi, Jaudah Al-Maghrabi, Mourad Assidi, Heba Al-Khattabi, Adel Al-Ammari, Ahmed Al-Sayyad, Abdelbaset Buhmeida, Mohammed Al-Qahtani P9 Association of angiotensinogen single nucleotide polymorphisms with Preeclampsia in patients from North Africa Hédia Zitouni, Nozha Raguema, Marwa Ben Ali, Wided Malah, Raja Lfalah, Wassim Almawi, Touhami Mahjoub P10 Systems biology analysis reveals relations between normal skin, benign nevi and malignant melanoma Mohammed Elanbari, Andrey Ptitsyn P11 The apoptotic effect of thymoquinone in Jurkat cells Sana Mahjoub, Rabeb El Ghali, Bechir Achour, Nidhal Ben Amor, Mourad Assidi, Brahim N'siri, Hamid Morjani P12 Sonic hedgehog contributes in bladder cancer invasion in Saudi Arabia Taoufik Nedjadi, Adel Al-Ammari, Ahmed Al-Sayyad, Nada Salem, Esam Azhar, Jaudah Al-Maghrabi P13 Association of Interleukin 18 gene promoter polymorphisms - 607A/C and -137 G/C with colorectal cancer onset in a sample of Tunisian population Vera Chayeb, Maryam Dendena, Hedia Zitouni, Khedija Zouari-Limayem, Touhami Mahjoub P14 Pathological expression of interleukin-6, -11, leukemia inhibitory factor and their receptors in tubal gestation with and without tubal cytomegalovirus infection Bassem Refaat, Ahmed M Ashshi, Sarah A Batwa P15 Phenotypic and genetic profiling of avian pathogenic and human diarrhegenic Escherichia coli in Egypt Hazem Ramadan, Amal Awad, Ahmed Ateya P16 Cancer-targeting dual gene virotherapy as a promising therapeutic strategy for treatment of hepatocellular carcinoma Adel Galal Ahmed El-Shemi, Ahmad Ashshi, Mohammed Basalamah, Youjin Na, Chae-Ok YUN P17 Cancer dual gene therapy with oncolytic adenoviruses expressing TRAIL and IL-12 transgenes markedly eradicated human hepatocellular carcinoma both in vitro and in vivo Adel Galal Ahmed El-Shemi, Ahmad Ashshi, Mohammed Basalamah, Youjin Na, Chae-Ok Yun P18 Therapy with paricalcitol attenuates tumor growth and augments tumoricidal and anti-oncogenic effects of 5-fluorouracil on animal model of colon cancer Adel Galal El-Shemi, Bassem Refaat, Osama Kensara, Amr Abdelfattah P19 The effects of Rubus idaeus extract on normal human lymphocytes and cancer cell line Batol Imran Dheeb, Mohammed M. F. Al-Halbosiy, Rghad Kadhim Al lihabi, Basim Mohammed Khashman P20 Etanercept, a TNF-alpha inhibitor, alleviates mechanical hypersensitivity and spontaneous pain in a rat model of chemotherapy-induced neuropathic pain Djouhri, Laiche, Chaudhary Adeel, Nedjadi, Taoufik P21 Sleeping beauty mutagenesis system identified genes and neuronal transcription factor network involved in pediatric solid tumour (medulloblastoma) Hani Al-Afghani, Maria Łastowska, Haya H Al-Balool, Harsh Sheth, Emma Mercer, Jonathan M Coxhead, Chris PF Redfern, Heiko Peters, Alastair D Burt, Mauro Santibanez-Koref, Chris M Bacon, Louis Chesler, Alistair G Rust, David J Adams, Daniel Williamson, Steven C Clifford, Michael S Jackson P22 Involvement of interleukin-1 in vitiligo pathogenesis Mala Singh, Mohmmad Shoab Mansuri, Shahnawaz D. Jadeja, Hima Patel, Yogesh S. Marfatia, Rasheedunnisa Begum P23 Cytogenetics abnormalities in 12,884 referred population for chromosomal analysis and the role of FISH in refining the diagnosis (cytogenetic experience 2004-2013) Amal M Mohamed, Alaa K Kamel, Nivin A Helmy, Sayda A Hammad, Hesham F Kayed, Marwa I Shehab, Assad El Gerzawy, Maha M. Ead, Ola M Ead, Mona Mekkawy, Innas Mazen, Mona El-Ruby P24 Analysis of binding properties of angiotensin-converting enzyme 2 through in silico method S. M. A. Shahid, Qazi Mohammad Sajid Jamal, J. M. Arif, Mohtashim Lohani P25 Relationship of genetics markers cis and trans to the β-S globin gene with fetal hemoglobin expression in Tunisian sickle cell patients Moumni Imen, Chaouch Leila, Ouragini Houyem, Douzi Kais, Chaouachi Dorra Mellouli Fethi, Bejaoui Mohamed, Abbes Salem P26 Analysis of estrogen receptor alpha gene polymorphisms in breast cancer: link to genetic predisposition in Sudanese women Areeg Faggad, Amanuel T Gebreslasie, Hani Y Zaki, Badreldin E Abdalla P27 KCNQI gene polymorphism and its association with CVD and T2DM in the Saudi population Maha S AlShammari, Rhaya Al-Ali, Nader Al-Balawi , Mansour Al-Enazi, Ali Al-Muraikhi, Fadi Busaleh, Ali Al-Sahwan, Francis Borgio, Abdulazeez Sayyed, Amein Al-Ali, Sadananda Acharya P28 Clinical, neuroimaging and cytogenetic study of a patient with microcephaly capillary malformation syndrome Maha S. Zaki, Hala T. El-Bassyouni, Marwa I. Shehab P29 Altered expression of CD200R1 on dendritic cells of patients with inflammatory bowel diseases: in silico investigations and clinical evaluations Mohammed F. Elshal, Kaleemuddin M., Alia M. Aldahlawi, Omar Saadah, J. Philip McCoy P30 Development of real time PCR diagnostic protocol specific for the Saudi Arabian H1N1 viral strains Adel E El-Tarras, Nabil S Awad, Abdulla A Alharthi, Mohamed M M Ibrahim P31 Identification of novel genetic variations affecting Osteoarthritis patients Haneen S Alsehli, Ashraf Dallol, Abdullah M Gari, Mohammed M Abbas, Roaa A Kadam, Mazen M. Gari, Mohmmed H Alkaff, Adel M Abuzenadah, Mamdooh A Gari P32 An integrated database of GWAS SNVs and their evolutionary properties Heba Abusamra, Sajjad Karim, Hend F Nour eldin, Elham M Alhathli, Nada Salem, Sudhir Kumar, Mohammed H Al-Qahtani P33 Familial hypercholesterolemia in Saudi Arabia: prime time for a national registry and genetic analysis Fatima A. Moradi, Omran M. Rashidi, Zuhier A. Awan P34 Comparative genomics and network-based analyses of early hepatocellular carcinoma Ibrahim Hamza Kaya, Olfat Al-Harazi, Dilek Colak P35 A TALEN-based oncolytic viral vector approach to knock out ABCB1 gene mediated chemoresistance in cancer stem cells Nabila A Alkousi, Takis Athanasopoulos P36 Cartilage differentiation and gene expression of synovial fluid mesenchymal stem cells derived from osteoarthritis patients Afnan O Bahmaid, Etimad A Alhwait, Mamdooh A Gari, Haneen S Alsehli, Mohammed M Abbas, Mohammed H Alkaf, Roaa Kadam, Ashraf Dallol, Gauthaman Kalamegam P37 E-GRASP: Adding an evolutionary component to the genome-wide repository of associations (GRASP) resource Hend F Nour Eldin, Sajjad Karim, Heba Abusamra, Elham Alhathli, Nada Salem, Mohammed H Al-Qahtani, Sudhir Kumar P38 Screening of AGL gene mutation in Saudi family with glycogen storage disease Type III Salma N Alsayed, Fawziah H Aljohani, Samaher M Habeeb, Rawan A Almashali, Sulman Basit, Samia M Ahmed P39 High throughput proteomic data suggest modulation of cAMP dependent protein kinase A and mitochondrial function in infertile patients with varicocele Rakesh Sharma, Ashok Agarwal, Damayanthi Durairajanayagam, Luna Samanta, Muhammad Abu-Elmagd, Adel M. Abuzenadah, Edmund S. Sabanegh, Mourad Assidi, Mohammed Al-Qahtani P40 Significant protein profile alterations in men with primary and secondary infertility Ashok Agarwal, Rakesh Sharma, Luna Samanta, Damayanthi Durairajanayagam, Mourad Assidi, Muhammad Abu-Elmagd, Mohammed Al-Qahtani, Adel M. Abuzenadah, Edmund S. Sabanegh P41 Spermatozoa maturation in infertile patients involves compromised expression of heat shock proteins Luna Samanta, Ashok Agarwal, Rakesh Sharma, Zhihong Cui, Mourad Assidi, Adel M. Abuzenadah, Muhammad Abu-Elmagd, Mohammed Al-Qahtani P42 Array comparative genomic hybridization approach to search genomic answers for spontaneous recurrent abortion in Saudi Arabia Alaa A Alboogmi, Nuha A Alansari, Maha M Al-Quaiti, Fai T Ashgan, Afnan Bandah, Hasan S Jamal, Abdullraheem Rozi(,) Zeenat Mirza, Adel M Abuzenadah, Sajjad Karim, Mohammed H Al-Qahtani P43 Global gene expression profiling of Saudi kidney cancer patients Sajjad Karim, Hans-Juergen Schulten, Ahmad J Al Sayyad, Hasan MA Farsi, Jaudah A Al-Maghrabi, Zeenat Mirza, Reem Alotibi, Alaa Al-Ahmadi, Nuha A Alansari, Alaa A Albogmi, Maha M Al-Quaiti, Fai T Ashgan, Afnan Bandah, Mohammed H Al-Qahtani P44 Downregulated StAR gene and male reproductive dysfunction caused by nifedipine and ethosuximide Rasha A Ebiya, Samia M Darwish, Metwally M. Montaser P45 Clustering based gene expression feature selection method: A computational approach to enrich the classifier efficiency of differentially expressed genes Heba Abusamra, Vladimir B. Bajic P46 Prognostic significance of Osteopontin expression profile in colorectal carcinoma Jaudah Al-Maghrabi, Wafaey Gomaa, Mehenaz Hanbazazh, Mahmoud Al-Ahwal, Asia Al-Harbi, Wejdan Al-Qahtani, Saher Hakamy, Ghali Baba, Abdelbaset Buhmeida, Mohammed Al-Qahtani P47 High Glypican-3 expression pattern predicts longer disease-specific survival in colorectal carcinoma Jaudah Al-Maghrabi, Abdullah Al-Harbi, Mahmoud Al-Ahwal, Asia Al-Harbi, Wejdan Al-Qahtani, Sahar Hakamy, Ghalia Baba, Abdelbaset Buhmeida, Mohammed Al-Qahtani P48 An evolutionary re-assessment of GWAS single nucleotide variants implicated in the Cholesterol traits Elham M Alhathli, Sajjad Karim, Nada Salem, Hend Nour Eldin, Heba Abusamra, Sudhir Kumar, Mohammed H Al-Qahtani P49 Derivation and characterization of human Wharton’s jelly stem cells (hWJSCs) in vitro for future therapeutic applications Aisha A Alyamani, Gauthaman Kalamegam, Etimad A Alhwait, Mamdooh A Gari, Mohammed M Abbas, Mohammed H Alkaf, Haneen S Alsehli, Roaa A Kadam, Mohammed Al-Qahtani P50 Attitudes of healthcare students toward biomedical research in the post-genomic era Rawan Gadi, Abdelbaset Buhmeida, Mourad Assidi , Adeel Chaudhary, Leena Merdad P51 Evaluation of the immunomodulatory effects of thymoquinone on human bone marrow mesenchymal stem cells (BM-MSCs) from osteoarthritic patients Saadiah M Alfakeeh, Etimad A Alhwait, Mamdooh A Gari, Mohammed M Abbas, Mohammed H Alkaf, Haneen S Alsehli, Roaa Kadam, Gauthaman Kalamegam P52 Implication of IL-10 and IL-28 polymorphism with successful anti-HCV therapy and viral clearance Rubi Ghazala, Shilu Mathew, M.Haroon Hamed, Mourad Assidi, Mohammed Al-Qahtani, Ishtiaq Qadri P53 Selection of flavonoids against obesity protein (FTO) using in silico and in vitro approaches Shilu Mathew, Lobna Mira, Manal Shaabad, Shireen Hussain, Mourad Assidi, Muhammad Abu-Elmagd, Mohammed Al-Qahtani P54 Computational selection and in vitro validation of flavonoids as new antidepressant agents Shilu Mathew, Manal Shaabad, Lobna Mira, Shireen Hussain, Mourad Assidi, Muhammad Abu-Elmagd, Mohammed Al-Qahtani P55 In Silico prediction and prioritization of aging candidate genes associated with progressive telomere shortening Ahmed Rebai, Mourad Assidi, Abdelbaset Buhmeida, Muhammad Abu-Elmagd, Ashraf Dallol, Jerry W Shay P56 Identification of new cancer testis antigen genes in diverse types of malignant human tumour cells Mikhlid H Almutairi P57 More comprehensive forensic genetic marker analyses for accurate human remains identification using massively parallel sequencing (MPS) Angie Ambers, Jennifer Churchill, Jonathan King, Monika Stoljarova, Harrell Gill-King, Mourad Assidi, Muhammad Abu-Elmagd, Abdelbaset Buhmeida, Muhammad Al-Qatani, Bruce Budowle P58 Flow cytometry approach towards treatment men infertility in Saudi Arabia Muhammad Abu-Elmagd, Farid Ahmed, Ashraf Dallol, Mourad Assidi, Taha Abo Almagd, Sahar Hakamy, Ashok Agarwal, Muhammad Al-Qahtani, Adel Abuzenadah P59 Tissue microarray based validation of CyclinD1 expression in renal cell carcinoma of Saudi kidney patients Sajjad Karim, Hans-Juergen Schulten, Ahmad J Al Sayyad, Hasan MA Farsi, Jaudah A Al-Maghrabi, Abdelbaset Buhmaida, Zeenat Mirza, Reem Alotibi, Alaa Al-Ahmadi, Nuha A Alansari, Alaa A Albogmi, Maha M Al-Quaiti, Fai T Ashgan, Afnan Bandah, Mohammed H Al-Qahtani P60 Assessment of gold nanoparticles in molecular diagnostics and DNA damage studies Rukhsana Satar, Mahmood Rasool, Waseem Ahmad, Nazia Nazam, Mohamad I Lone, Muhammad I Naseer, Mohammad S Jamal, Syed K Zaidi, Peter N Pushparaj, Mohammad A Jafri, Shakeel A Ansari, Mohammed H Alqahtani P61 Surfing the biospecimen management and processing workflow at CEGMR Biobank Hanan Bashier, Abrar Al Qahtani, Shilu Mathew, Amal M. Nour, Heba Alkhatabi, Adel M. Abu Zenadah, Abdelbaset Buhmeida, Mourad Assidi, Muhammed Al Qahtani P62 Autism Spectrum Disorder: knowledge, attitude and awareness in Jeddah, Kingdom of Saudi Arabia Muhammad Faheem, Shilu Mathew, Shiny Mathew, Peter Natesan Pushparaj, Mohammad H. Al-Qahtani P63 Simultaneous genetic screening of the coagulation pathway genes using the Thromboscan targeted sequencing panel Hani A. Alhadrami, Ashraf Dallol, Adel Abuzenadah P64 Genome wide array comparative genomic hybridization analysis in patients with syndromic congenital heart defects Ibtessam R. Hussein, Adeel G. Chaudhary, Rima S Bader, Randa Bassiouni, Maha Alquaiti, Fai Ashgan, Hans Schulten, Mohamed Nabil Alama, Mohammad H. Al Qahtani P65 Toxocogenetic evaluation of 1, 2-Dichloroethane in bone marrow, blood and cells of immune system using conventional, molecular and flowcytometric approaches Mohammad I Lone, Nazia Nizam, Waseem Ahmad, Mohammad A Jafri, Mahmood Rasool, Shakeel A Ansari, Muhammed H Al-Qahtani P66 Molecular cytogenetic diagnosis of sexual development disorders in newborn: A case of ambiguous genitalia Eradah Alshihri, Muhammad Abu-Elmagd, Lina Alharbi, Mourad Assidi, Mohammed Al-Qahtani P67 Identification of disease specific gene expression clusters and pathways in hepatocellular carcinoma using In Silico methodologies Shilu Mathew, Peter Pushparaj Natesan, Muhammed Al Qahtani P68 Human Wharton’s Jelly stem cell conditioned medium inhibits primary ovarian cancer cells in vitro: Identification of probable targets and mechanisms using systems biology Gauthaman Kalamegam, Peter Natesan Pushparaj, Fazal Khan, Roaa Kadam, Farid Ahmed, Mourad Assidi, Khalid Hussain Wali Sait, Nisreen Anfinan, Mohammed Al Qahtani P69 Mutation spectrum of ASPM (Abnormal Spindle-like, Microcephaly-associated) gene in Saudi Arabian population Muhammad I Naseer, Adeel G Chaudhary, Mohammad S Jamal, Shilu Mathew, Lobna S Mira, Peter N Pushparaj, Shakeel A Ansari, Mahmood Rasool, Mohammed H AlQahtani P70 Identification and characterization of novel genes and mutations of primary microcephaly in Saudi Arabian population Muhammad I Naseer, Adeel G Chaudhary, Shilu Mathew, Lobna S Mira, Mohammad S Jamal, Sameera Sogaty, Randa I Bassiouni, Mahmood Rasool, Mohammed H AlQahtani P71 Molecular genetic analysis of hereditary nonpolyposis colorectal cancer (Lynch Syndrome) in Saudi Arabian population Mahmood Rasool, Shakeel A Ansari, Mohammad S Jamal, Peter N Pushparaj, Abdulrahman MS Sibiani, Waseem Ahmad, Abdelbaset Buhmeida, Mohammad A Jafri, Mohiuddin K Warsi, Muhammad I Naseer, Mohammed H Al-Qahtani P72 Function predication of hypothetical proteins from genome database of chlamydia trachomatis Rubi, Kundan Kumar, Ahmad AT Naqvi, Faizan Ahmad, Md I Hassan, Mohammad S Jamal, Mahmood Rasool, Mohammed H AlQahtani P73 Transcription factors as novel molecular targets for skin cancer Ashraf Ali, Jummanah Jarullah, Mahmood Rasool, Abdelbasit Buhmeida, Shahida Khan, Ghufrana Abdussami, Maryam Mahfooz, Mohammad A Kamal, Ghazi A Damanhouri, Mohammad S Jamal P74 An In Silico analysis of Plumbagin binding to apoptosis executioner: Caspase-3 and Caspase-7 Bushra Jarullah, Jummanah Jarullah, Mohammad SS Jarullah, Ashraf Ali, Mahmood Rasool, Mohammad S Jamal P75 Single cell genomics applications for preimplantation genetic screening optimization: Comparative analysis of whole genome amplification technologies Mourad Assidi, Muhammad Abu-Elmagd, Osama Bajouh, Peter Natesan Pushparaj, Mohammed Al-Qahtani, Adel Abuzenadah P76 ZFP36 regulates miRs-34a in anti-IgM triggered immature B cells Mohammad S Jamal, Jummanah Jarullah, Abdulah EA Mathkoor, Hashim MA Alsalmi, Anas MM Oun, Ghazi A Damanhauri, Mahmood Rasool, Mohammed H AlQahtani P77 Identification of a novel mutation in the STAMBP gene in a family with microcephaly-capillary malformation syndrome Muhammad I. Naseer, Mahmood Rasool, Sameera Sogaty, Adeel G. Chudhary, Yousif A. Abutalib, Daniele Merico, Susan Walker, Christian R. Marshall, Mehdi Zarrei, Stephen W. Scherer, Mohammad H. Al-Qahtani P78 Copy number variations in Saudi patients with intellectual disability and epilepsy Muhammad I. Naseer, Muhammad Faheem, Adeel G. Chaudhary, Mahmood Rasool, Gauthaman Kalamegam, Fai Talal Ashgan, Mourad Assidi, Farid Ahmed, Syed Kashif Zaidi, Mohammed M. Jan, Mohammad H. Al-Qahtani P79 Prognostic significance of CD44 expression profile in colorectal carcinoma Maryam Al-Zahrani, Sahira Lary, Sahar Hakamy, Ashraf Dallol, Mahmoud Al-Ahwal, Jaudah Al-Maghrabi, Emmanuel Dermitzakis, Adel Abuzenadah, Abdelbaset Buhmeida, Mohammed Al-Qahtani P80 Association of the endothelial nitric oxide synthase (eNOS) gene G894T polymorphism with hypertension risk and complications Abeer A Al-refai, Mona Saleh, Rehab I Yassien, Mahmmoud Kamel, Rabab M Habeb P81 SNPs array to screen genetic variation among diabetic patients Najlaa Filimban, Ashraf Dallol, Nadia Ghannam, Mohammed Al-Qahtani, Adel Mohammed Abuzenadah P82 Detection and genotyping of Helicobacter pylori among gastric cancer patients from Saudi Arabian population Fehmida Bibi, Sana Akhtar, Esam I. Azhar, Muhammad Yasir, Muhammad I. Nasser, Asif A. Jiman-Fatani, Ali Sawan P83 Antimicrobial drug resistance and molecular detection of susceptibility to Fluoroquinolones among clinical isolates of Salmonella species from Jeddah-Saudi Arabia Ruaa A Lahzah, Asho Ali P84 Identification of the toxic and virulence nature of MAP1138c protein of Mycobacterium avium subsp. paratuberculosis Syed A Hassan, Seyed E Hasnain, Iftikhar A Tayubi, Hamza A Abujabal, Alaa O Magrabi P85 In vitro and in silico evaluation of miR137 in human breast cancer Fazal Khan, Gauthaman Kalamegam, Peter Natesan Pushparaj, Adel Abuzenada, Taha Abduallah Kumosani, Elie Barbour, Mohammed Al-Qahtani P86 Auruka gene is over-expressed in Saudi breast cancer Manal Shabaad, Shilu Mathew, Ashraf Dallol, Adnan Merdad, Abdelbaset Buhmeida, Mohammed Al-Qahtani P87 The potential of immunogenomics in personalized healthcare Mourad Assidi, Muhammad Abu-Elmagd, Kalamegam Gauthaman, Mamdooh Gari, Adeel Chaudhary, Adel Abuzenadah, Peter Natesan Pushparaj, Mohammed Al-Qahtani P88 In Silico physiochemical and structural characterization of a putative ORF MAP0591 and its implication in the pathogenesis of Mycobacterium paratuberculosis in ruminants and humans Syed A Hassan, Iftikhar A Tayubi, Hani MA Aljahdali P89 Effects of heat shock on human bone marrow mesenchymal stem cells (BM-MSCs): Implications in regenerative medicine Reham Al Nono, Mamdooh Gari, Haneen Alsehli, Farid Ahmed, Mohammed Abbas, Gauthaman Kalamegam, Mohammed Al-Qahtani P90 In Silico analyses of the molecular targets of Resveratrol unravels its importance in mast cell mediated allergic responses Shilu Mathew, Fazal Khan, Mahmood Rasool, Mohammed Sarwar Jamal, Muhammad Imran Naseer, Zeenat Mirza, Sajjad Karim, Shakeel Ansari, Mourad Assidi, Gauthaman Kalamegam, Mamdooh Gari, Adeel Chaudhary, Adel Abuzenadah, Peter Natesan Pushparaj, Mohammed Al-Qahtani P91 Effects of environmental particulate matter on bone-marrow mesenchymal stem cells Muhammad Abu-Elmagd, Gauthaman Kalamegam, Roaa Kadam, Mansour A Alghamdi, Magdy Shamy, Max Costa, Mamdouh I Khoder, Mourad Assidi, Peter Natesan Pushparaj, Mamdooh Gari, Mohammed Al-Qahtani P92 Distinctive charge clusters in human virus proteomes Najla Kharrat, Sabrine Belmabrouk, Rania Abdelhedi, Riadh Benmarzoug, Mourad Assidi, Mohammed H. Al Qahtani, Ahmed Rebai P93 In vitro experimental model and approach in identification of new biomarkers of inflammatory forms of arthritis Ghazi Dhamanhouri, Peter Natesan Pushparaj, Abdelwahab Noorwali, Mohammad Khalid Alwasiyah, Afnan Bahamaid, Saadiah Alfakeeh, Aisha Alyamani, Haneen Alsehli, Mohammed Abbas, Mamdooh Gari, Ali Mobasheri, Gauthaman Kalamegam, Mohammed Al-Qahtani P94 Molecular docking of GABA(A) receptor subunit γ-2 with novel anti-epileptic compounds Muhammad Faheem, Shilu Mathew, Peter Natesan Pushparaj, Mohammad H. Al-Qahtani P95 Breast cancer knowledge, awareness, and practices among Saudi females residing in Jeddah Shilu Mathew, Muhammad Faheem, Shiny Mathew, Peter Natesan Pushparaj, Mohammad H. Al-Qahtani P96 Anti-inflammatory role of Sesamin by Attenuation of Iba1/TNF-α/ICAM-1/iNOS signaling in Diabetic Retinopathy Mohammad Sarwar Jamal, Syed Kashif Zaidi, Raziuddin Khan, Kanchan Bhatia, Mohammed H. Al-Qahtani, Saif Ahmad P97 Identification of drug lead molecule against vp35 protein of Ebola virus: An In-Silico approach Iftikhar AslamTayubi, Manish Tripathi, Syed Asif Hassan, Rahul Shrivastava P98 An approach to personalized medicine from SNP-calling through disease analysis using whole exome-sequencing of three sub-continental populations Iftikhar A Tayubi, Syed Hassan, Hamza A.S Abujabal P99 Low versus high frequency of Glucose –6 – Phosphate Dehydrogenase (G6PD) deficiency in urban against tribal population of Gujarat – A signal to natural selection Ishani Shah, Bushra Jarullah, Mohammad S Jamal, Jummanah Jarullah P100 Spontaneous preterm birth and single nucleotide gene polymorphisms: a recent update Ishfaq A Sheikh, Ejaz Ahmad, Mohammad S Jamal, Mohd Rehan, Muhammad Abu-Elmagd, Iftikhar A Tayubi, Samera F AlBasri, Osama S Bajouh, Rola F Turki, Adel M Abuzenadah, Ghazi A Damanhouri, Mohd A Beg, Mohammed Al-Qahtani P101 Prevalence of congenital heart diseases among Down syndrome cases in Saudi Arabia: role of molecular genetics in the pathogenesis Sahar AF Hammoudah, Khalid M AlHarbi, Lama M El-Attar, Ahmed MZ Darwish P102 Combinatorial efficacy of specific pathway inhibitors in breast cancer cells Sara M Ibrahim, Ashraf Dallol(,) Hani Choudhry, Adel Abuzenadah, Jalaludden Awlia, Adeel Chaudhary, Farid Ahmed, Mohammed Al-Qahtani P103 MiR-143 and miR-145 cluster as potential replacement medicine for the treatment of cancer Mohammad A Jafri, Muhammad Abu-Elmagd, Mourad Assidi, Mohammed Al-Qahtani P104 Metagenomic profile of gut microbiota during pregnancy in Saudi population Imran khan, Muhammad Yasir, Esam I. Azhar, Sameera Al-basri, Elie Barbour, Taha Kumosani P105 Exploration of anticancer targets of selected metabolites of Phoenix dactylifera L. using systems biological approaches Fazal Khan, Gauthaman Kalamegam, Peter Natesan Pushparaj, Adel Abuzenada, Taha Abduallah Kumosani, Elie Barbour P106 CD226 and CD40 gene polymorphism in susceptibility to Juvenile rheumatoid arthritis in Egyptian patients Heba M. EL Sayed, Eman A. Hafez P107 Paediatric exome sequencing in autism spectrum disorder ascertained in Saudi families Hans-Juergen Schulten, Aisha Hassan Elaimi, Ibtessam R Hussein, Randa Ibrahim Bassiouni, Mohammad Khalid Alwasiyah, Richard F Wintle, Adeel Chaudhary, Stephen W Scherer, Mohammed Al-Qahtani P108 Crystal structure of the complex formed between Phospholipase A(2) and the central core hydrophobic fragment of Alzheimer’s β- amyloid peptide: a reductionist approach Zeenat Mirza, Vikram Gopalakrishna Pillai, Sajjad Karim, Sujata Sharma, Punit Kaur, Alagiri Srinivasan, Tej P Singh, Mohammed Al-Qahtani P109 Differential expression profiling between meningiomas from female and male patients Reem Alotibi, Alaa Al-Ahmadi, Fatima Al-Adwani, Deema Hussein, Sajjad Karim, Mona Al-Sharif, Awatif Jamal, Fahad Al-Ghamdi, Jaudah Al-Maghrabi, Saleh S Baeesa, Mohammed Bangash, Adeel Chaudhary, Hans-Juergen Schulten, Mohammed Al-Qahtani P110 Neurospheres as models of early brain development and therapeutics Muhammad Faheem, Peter Natesan Pushparaj, Shilu Mathew, Taha Abdullah Kumosani, Gauthaman Kalamegam, Mohammed Al-Qahtani P111 Identification of a recurrent causative missense mutation p.(W577C) at the LDLR exon 12 in familial hypercholesterolemia affected Saudi families Faisal A Al-Allaf, Zainularifeen Abduljaleel, Abdullah Alashwal, Mohiuddin M. Taher, Abdellatif Bouazzaoui, Halah Abalkhail, Faisal A. Ba-Hammam, Mohammad Athar P112 Epithelial ovarian carcinoma (EOC): Systems oncological approach to identify diagnostic, prognostic and therapeutic biomarkers Gauthaman Kalamegam, Peter Natesan Pushparaj, Muhammad Abu-Elmagd, Farid Ahmed Khalid HussainWali Sait, Nisreen Anfinan, Mamdooh Gari, Adeel Chaudhary, Adel Abuzenadah, Mourad Assidi, Mohammed Al-Qahtani P113 Crohn’s disease phenotype in northern Tunisian population Naira Ben Mami, Yosr Z Haffani, Mouna Medhioub, Lamine Hamzaoui, Ameur Cherif, Msadok Azouz P114 Establishment of In Silico approaches to decipher the potential toxicity and mechanism of action of drug candidates and environmental agents Gauthaman Kalamegam, Fazal Khan, Shilu Mathew, Mohammed Imran Nasser, Mahmood Rasool, Farid Ahmed, Peter Natesan Pushparaj, Mohammed Al-Qahtani P115 1q Gain predicts poor prognosis marker for young breast cancer patients Shereen A Turkistany, Lina M Al-harbi, Ashraf Dallol, Jamal Sabir, Adeel Chaudhary, Adel Abuzenadah P116 Disorders of sex chromosomes in a diagnostic genomic medicine unit in Saudi Arabia: Prevalence, diagnosis and future guidelines Basmah Al-Madoudi, Bayan Al-Aslani, Khulud Al-Harbi, Rwan Al-Jahdali, Hanadi Qudaih, Emad Al Hamzy, Mourad Assidi, Mohammed Al Qahtani P117 Combination of WYE354 and Sunitinib demonstrate synergistic inhibition of acute myeloid leukemia in vitro Asad M Ilyas, Youssri Ahmed, Mamdooh Gari, Farid Ahmed, Mohammed Alqahtani P118 Integrated use of evolutionary information in GWAS reveals important SNPs in Asthma Nada Salem, Sajjad Karim, Elham M Alhathli, Heba Abusamra, Hend F Nour Eldin, Mohammed H Al-Qahtani, Sudhir Kumar P119 Assessment of BRAF, IDH1, IDH2, and EGFR mutations in a series of primary brain tumors Fatima Al-Adwani, Deema Hussein, Mona Al-Sharif, Awatif Jamal, Fahad Al-Ghamdi, Jaudah Al-Maghrabi, Saleh S Baeesa, Mohammed Bangash, Adeel Chaudhary, Mohammed Al-Qahtani, Hans-Juergen Schulten P120 Expression profiles distinguish oligodendrogliomas from glioblastoma multiformes with or without oligodendroglioma component Alaa Alamandi, Reem Alotibi, Deema Hussein, Sajjad Karim, Jaudah Al-Maghrabi, Fahad Al-Ghamdi, Awatif Jamal, Saleh S Baeesa, Mohammed Bangash, Adeel Chaudhary, Hans-Juergen Schulten, Mohammed Al-Qahtani P121 Hierarchical clustering in thyroid goiters and hyperplastic lesions Ohoud Subhi, Nadia Bagatian, Sajjad Karim, Adel Al-Johari, Osman Abdel Al-Hamour, Hosam Al-Aradati, Abdulmonem Al-Mutawa, Faisal Al-Mashat, Jaudah Al-Maghrabi, Hans-Juergen Schulten, Mohammad Al-Qahtani P122 Differential expression analysis in thyroiditis and papillary thyroid carcinomas with or without coexisting thyroiditis Nadia Bagatian, Ohoud Subhi, Sajjad Karim, Adel Al-Johari, Osman Abdel Al-Hamour, Abdulmonem Al-Mutawa, Hosam Al-Aradati, Faisal Al-Mashat, Mohammad Al-Qahtani, Hans-Juergen Schulten, Jaudah Al-Maghrabi P123 Metagenomic analysis of waste water microbiome in Sausdi Arabia Muhammad W shah, Muhammad Yasir, Esam I Azhar, Saad Al-Masoodi P124 Molecular characterization of Helicobacter pylori from faecal samples of Tunisian patients with gastric cancer Yosr Z Haffani, Msadok Azouz, Emna Khamla, Chaima Jlassi, Ahmed S. Masmoudi, Ameur Cherif, Lassaad Belbahri P125 Diagnostic application of the oncoscan(©) panel for the identification of hereditary cancer syndrome Shadi Al-Khayyat, Roba Attas, Atlal Abu-Sanad, Mohammed Abuzinadah, Adnan MerdadAshraf Dallol, Adeel Chaudhary, Mohammed Al-Qahtani, Adel Abuzenadah P126 Characterization of clinical and neurocognitive features in a family with a novel OGT gene missense mutation c. 1193G > A/ (p. Ala319Thr) Habib Bouazzi, Carlos Trujillo, Mohammad Khalid Alwasiyah, Mohammed Al-Qahtani P127 Case report: a rare homozygous deletion mutation of TMEM70 gene associated with 3-Methylglutaconic Aciduria and cataract in a Saudi patient Maha Alotaibi, Rami Nassir P128 Isolation and purification of antimicrobial milk proteins Ishfaq A Sheikh, Mohammad A Kamal, Essam H Jiffri, Ghulam M Ashraf, Mohd A Beg P129 Integrated analysis reveals association of ATP8B1 gene with colorectal cancer Mohammad A Aziz, Rizwan Ali, Mahmood Rasool, Mohammad S Jamal, Nusaibah samman, Ghufrana Abdussami, Sathish Periyasamy, Mohiuddin K Warsi, Mohammed Aldress, Majed Al Otaibi, Zeyad Al Yousef, Mohamed Boudjelal, Abdelbasit Buhmeida, Mohammed H Al-Qahtani, Ibrahim AlAbdulkarim P130 Implication of IL-10 and IL-28 polymorphism with successful anti-HCV therapy and viral clearance Rubi Ghazala, Shilu Mathew, M. Haroon Hamed, Mourad Assidi, Mohammed Al-Qahtani, Ishtiaq Qadri P131 Interactions of endocrine disruptor di-(2-ethylhexyl) phthalate (DEHP) and its metabolite mono-2-ethylhexyl phthalate (MEHP) with progesterone receptor Ishfaq A Sheikh, Muhammad Abu-Elmagd, Rola F Turki, Ghazi A Damanhouri, Mohd A. Beg P132 Association of HCV nucleotide polymorphism in the development of hepatocellular carcinoma Mohd Suhail, Abid Qureshi, Adil Jamal, Peter Natesan Pushparaj, Mohammad Al-Qahtani, Ishtiaq Qadri P133 Gene expression profiling by DNA microarrays in colon cancer treated with chelidonine alkaloid Mahmoud Z El-Readi, Safaa Y Eid, Michael Wink P134 Successful in vitro fertilization after eight failed trials Ahmed M. Isa, Lulu Alnuaim, Johara Almutawa, Basim Abu-Rafae, Saleh Alasiri, Saleh Binsaleh P135 Genetic sensitivity analysis using SCGE, cell cycle and mitochondrial membrane potential in OPs stressed leukocytes in Rattus norvegicus through flow cytometric input Nazia Nazam, Mohamad I Lone, Waseem Ahmad, Shakeel A Ansari, Mohamed H Alqahtani |
We screened a siRNA library targeting human tyrosine kinases in Huh-7 cells and identified c-terminal Src kinase (Csk) as one of the kinases involved in dengue virus replication. Knock-down of Csk expression by siRNAs or inhibition of Csk by an inhibitor reduced dengue virus RNA levels but did not affect viral entry. Csk partially colocalized with viral replication compartments. Dengue infection was drastically reduced in cells lacking the three ubiquitous src family kinases, Src, Fyn and Yes. Csk knock-down in these cells failed to block dengue virus replication suggesting that the effect of Csk is via regulation of Src family kinases. Csk was found to be hyper-phosphorylated during dengue infection and inhibition of protein kinase A led to a block in Csk phosphorylation and dengue virus replication. Overexpression studies suggest an important role for the kinase and SH3 domains in this process. Our results identified a novel role for Csk as a host tyrosine kinase involved in dengue virus replication and provide further insights into the role of host factors in dengue replication. |
BACKGROUND: A wide variety of probiotic products has been introduced into the market in the past decade. Research trends and activity on probiotics help understand how these products were evolved and their potential future role in medicine. The objective of this study was to assess the research activity on probiotics in pediatrics using bibliometric indicators and network visualization. METHODS: Original and review articles on probiotics in pediatrics published worldwide were retrieved from SciVerse, Scopus (1994–2014) and analyzed. VOSviewer was used for network visualization. RESULTS: The total number of documents published on probiotics in pediatrics was 2817. Research activity on probiotics in pediatrics showed approximately 90- fold increase during the study period. Approximately 22 % of published articles originated from USA and has the greatest share, however, Finland ranked first when data were stratified by population or income. The most productive institution in this field was Turku University in Finland with 82 (2.91 %) articles. Half of the prolific authors were also from Finland. Most of the published research activity appeared in Journal of Pediatric Gastroenterology and Nutrition. Most frequently encountered title terms include nutrition, infant formula, necrotizing enetrocolitis, allergy, and diarrhea. The total number of citations for the retreived documents documents was 70991, and the average citation per article was 25.20. CONCLUSIONS: Interest in probiotic research and its potential benefits in pediatric ailments is relatively recent but significantly increasing. Bibliometric analysis can be used as an indicator of the importance and growth of probiotic use in pediatrics. |
There is growing scientific and public recognition that human actions, directly and indirectly, have profoundly changed the Earth system, in a still accelerating process, increasingly called the “Anthropocene”. Planetary transformation, including of the atmosphere, climate, ecosystems and biodiversity, has enormous implications for human health, many of which are deeply disturbing, especially in low-income settings. A few health consequences of the Anthropocene have been partially recognized, including within environmental epidemiology, but their long-term consequences remain poorly understood and greatly under-rated. For example Syria could be a “sentinel” population, giving a glimpse to a much wider dystopian future. Health-Earth is a research network, co-founded in 2014, which seeks, with other groups, to catalyse a powerful curative response by the wider health community. This paper builds on a symposium presented by Health-Earth members at the 2015 conference of the International Society for Environmental Epidemiology. It reviews and synthesizes parts of the large literature relevant to the interaction between the changing Earth system and human health. It concludes that this topic should be prominent within future environmental epidemiology and public health. Created by our species, these challenges may be soluble, but solutions require far more understanding and resources than are currently being made available. |
Analysis of codon usage data has both practical and theoretical applications in understanding the basics of molecular biology. Differences in codon usage patterns among genes reflect variations in local base compositional biases and the intensity of natural selection. Recently, there have been several reports related to codon usage in fungi, but little is known about codon usage bias in Epichloë endophytes. The present study aimed to assess codon usage patterns and biases in 4870 sequences from Epichloë festucae, which may be helpful in revealing the constraint factors such as mutation or selection pressure and improving the bioreactor on the cloning, expression, and characterization of some special genes. The GC content with 56.41% is higher than the AT content (43.59%) in E. festucae. The results of neutrality and effective number of codons plot analyses showed that both mutational bias and natural selection play roles in shaping codon usage in this species. We found that gene length is strongly correlated with codon usage and may contribute to the codon usage patterns observed in genes. Nucleotide composition and gene expression levels also shape codon usage bias in E. festucae. E. festucae exhibits codon usage bias based on the relative synonymous codon usage (RSCU) values of 61 sense codons, with 25 codons showing an RSCU larger than 1. In addition, we identified 27 optimal codons that end in a G or C. |
To determine the effectiveness of immunization strategies used in therapeutic antibody or vaccine development, it is critical to assess the quality of immunization-induced polyclonal antibody responses. Here, we developed a workflow that uses sensitive methods to quantitatively and qualitatively assess immune responses against foreign antigens with regard to antibody binding affinity and epitope diversity. The application of such detailed assessments throughout an immunization campaign can significantly reduce the resources required to generate highly specific antibodies. Our workflow consists of the following two steps: 1) the use of surface plasmon resonance to quantify antigen-specific antibodies and evaluate their apparent binding affinities, and 2) the recovery of serum IgGs using an automated small scale purification system, followed by the determination of their epitope diversity using hydrogen deuterium exchange coupled with mass spectrometry. We showed that these methods were sensitive enough to detect antigen-specific IgGs in the nanogram/μl range and that they provided information for differentiating the antibody responses of the various immunized animals that could not be obtained by conventional methods. We also showed that this workflow can guide the selection of an animal that produces high affinity antibodies with a desired epitope coverage profile, resulting in the generation of potential therapeutic monoclonal antibody clones with desirable functional profiles. We postulate that this workflow will be an important tool in the development of effective vaccines to combat the highly sophisticated evasion mechanisms of pathogens. |
As of 20 May 2016 there have been 28,646 cases and 11,323 deaths resulting from the West African Ebola virus disease (EVD) outbreak reported to the World Health Organization. There continue to be sporadic flare-ups of EVD cases in West Africa. EVD presentation is nonspecific and characterized initially by onset of fatigue, myalgias, arthralgias, headache, and fever; this is followed several days later by anorexia, nausea, vomiting, diarrhea, and abdominal pain. Anorexia and gastrointestinal losses lead to dehydration, electrolyte abnormalities, and metabolic acidosis, and, in some patients, acute kidney injury. Hypoxia and ventilation failure occurs most often with severe illness and may be exacerbated by substantial fluid requirements for intravascular volume repletion and some degree of systemic capillary leak. Although minor bleeding manifestations are common, hypovolemic and septic shock complicated by multisystem organ dysfunction appear the most frequent causes of death. Males and females have been equally affected, with children (0–14 years of age) accounting for 19 %, young adults (15–44 years) 58 %, and older adults (≥45 years) 23 % of reported cases. While the current case fatality proportion in West Africa is approximately 40 %, it has varied substantially over time (highest near the outbreak onset) according to available resources (40–90 % mortality in West Africa compared to under 20 % in Western Europe and the USA), by age (near universal among neonates and high among older adults), and by Ebola viral load at admission. While there is no Ebola virus-specific therapy proven to be effective in clinical trials, mortality has been dramatically lower among EVD patients managed with supportive intensive care in highly resourced settings, allowing for the avoidance of hypovolemia, correction of electrolyte and metabolic abnormalities, and the provision of oxygen, ventilation, vasopressors, and dialysis when indicated. This experience emphasizes that, in addition to evaluating specific medical treatments, improving the global capacity to provide supportive critical care to patients with EVD may be the greatest opportunity to improve patient outcomes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13054-016-1325-2) contains supplementary material, which is available to authorized users. |
Influenza virus remains a threat because of its ability to evade vaccine-induced immune responses due to antigenic drift. Here, we describe the isolation, evolution, and structure of a broad-spectrum human monoclonal antibody (mAb), MEDI8852, effectively reacting with all influenza A hemagglutinin (HA) subtypes. MEDI8852 uses the heavy-chain VH6-1 gene and has higher potency and breadth when compared to other anti-stem antibodies. MEDI8852 is effective in mice and ferrets with a therapeutic window superior to that of oseltamivir. Crystallographic analysis of Fab alone or in complex with H5 or H7 HA proteins reveals that MEDI8852 binds through a coordinated movement of CDRs to a highly conserved epitope encompassing a hydrophobic groove in the fusion domain and a large portion of the fusion peptide, distinguishing it from other structurally characterized cross-reactive antibodies. The unprecedented breadth and potency of neutralization by MEDI8852 support its development as immunotherapy for influenza virus-infected humans. |
Influenza viruses (IVs) circulate seasonally and are a common cause of respiratory infections in pediatric and adult patients. Additionally, recurrent pandemics cause massive morbidity and mortality worldwide. Infection may result in rapid progressive viral pneumonia with fatal outcome. Since accurate treatment strategies are still missing, research refocuses attention to lung pathology and cellular crosstalk to develop new therapeutic options. Alveolar epithelial cells (AECs) play an important role in orchestrating the pulmonary antiviral host response. After IV infection they release a cascade of immune mediators, one of which is granulocyte and macrophage colony-stimulating factor (GM-CSF). GM-CSF is known to promote differentiation, activation and mobilization of myeloid cells. In the lung, GM-CSF drives immune functions of alveolar macrophages and dendritic cells (DCs) and also improves epithelial repair processes through direct interaction with AECs. During IV infection, AEC-derived GM-CSF shows a lung-protective effect that is also present after local GM-CSF application. This mini-review provides an overview on GM-CSF-modulated immune responses to IV pneumonia and its therapeutic potential in severe IV pneumonia. |
There is great interest in the development of Ab-inducing subunit vaccines targeting infections, including HIV, malaria, and Ebola. We previously reported that adenovirus vectored vaccines are potent in priming Ab responses, but uncertainty remains regarding the optimal approach for induction of humoral immune responses. In this study, using OVA as a model Ag, we assessed the magnitude of the primary and anamnestic Ag–specific IgG responses of mice to four clinically relevant vaccine formulations: replication-deficient adenovirus; modified vaccinia Ankara (a poxvirus); protein with alum; and protein in the squalene oil-in-water adjuvant Addavax. We then used flow cytometric assays capable of measuring total and Ag-specific germinal center (GC) B cell and follicular Th cell responses to compare the induction of these responses by the different formulations. We report that adenovirus vectored vaccines induce Ag insert–specific GC B cell and Ab responses of a magnitude comparable to those induced by a potent protein/squalene oil-in-water formulation whereas—despite a robust overall GC response—the insert-specific GC B cell and Ab responses induced by modified vaccinia Ankara were extremely weak. Ag-specific follicular Th cell responses to adenovirus vectored vaccines exceeded those induced by other platforms at day 7 after immunization. We found little evidence that innate immune activation by adenovirus may act as an adjuvant in such a manner that the humoral response to a recombinant protein may be enhanced by coadministering with an adenovirus lacking a transgene of interest. Overall, these studies provide further support for the use of replication-deficient adenoviruses to induce humoral responses. |
Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo. |
Bunyaviruses are enveloped viruses with a tripartite RNA genome that can pose a serious threat to animal and human health. Members of the Phlebovirus genus of the family Bunyaviridae are transmitted by mosquitos and ticks to humans and include highly pathogenic agents like Rift Valley fever virus (RVFV) and severe fever with thrombocytopenia syndrome virus (SFTSV) as well as viruses that do not cause disease in humans, like Uukuniemi virus (UUKV). Phleboviruses and other bunyaviruses use their envelope proteins, Gn and Gc, for entry into target cells and for assembly of progeny particles in infected cells. Thus, binding of Gn and Gc to cell surface factors promotes viral attachment and uptake into cells and exposure to endosomal low pH induces Gc-driven fusion of the viral and the vesicle membranes. Moreover, Gn and Gc facilitate virion incorporation of the viral genome via their intracellular domains and Gn and Gc interactions allow the formation of a highly ordered glycoprotein lattice on the virion surface. Studies conducted in the last decade provided important insights into the configuration of phlebovirus Gn and Gc proteins in the viral membrane, the cellular factors used by phleboviruses for entry and the mechanisms employed by phlebovirus Gc proteins for membrane fusion. Here, we will review our knowledge on the glycoprotein biogenesis and the role of Gn and Gc proteins in the phlebovirus replication cycle. |
The chicken upper respiratory tract is the portal of entry for respiratory pathogens, such as avian influenza virus (AIV). The presence of microorganisms is sensed by pathogen recognition receptors (such as Toll-like receptors (TLRs)) of the innate immune defenses. Innate responses are essential for subsequent induction of potent adaptive immune responses, but little information is available about innate antiviral responses of the chicken trachea. We hypothesized that TLR ligands induce innate antiviral responses in the chicken trachea. Tracheal organ cultures (TOC) were used to investigate localized innate responses to TLR ligands. Expression of candidate genes, which play a role in antiviral responses, was quantified. To confirm the antiviral responses of stimulated TOC, chicken macrophages were treated with supernatants from stimulated TOC, prior to infection with AIV. The results demonstrated that TLR ligands induced the expression of pro-inflammatory cytokines, type I interferons and interferon stimulated genes in the chicken trachea. In conclusion, TLR ligands induce functional antiviral responses in the chicken trachea, which may act against some pathogens, such as AIV. |
CF is caused by mutations of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) which is an anion selective transmembrane ion channel that mainly regulates chloride transport, expressed in the epithelia of various organs. Recently, we have demonstrated CFTR expression in the brain, the spinal cord and the sympathetic ganglia. This study aims to investigate the expression and distribution of CFTR in the ganglia of the human gastrointestinal tract. Fresh tissue and formalin-fixed paraffin-embedded normal gastrointestinal tract samples were collected from eleven surgical patients and five autopsy cases. Immunohistochemistry, in situ hybridization, laser-assisted microdissection and nested reverse transcriptase polymerase chain reaction were performed. Expression of CFTR protein and mRNA was detected in neurons of the ganglia of all segments of the human gastrointestinal tract examined, including the stomach, duodenum, jejunum, ileum, cecum, appendix, colon and rectum. The extensive expression of CFTR in the enteric ganglia suggests that CFTR may play a role in the physiology of the innervation of the gastro-intestinal tract. The presence of dysfunctional CFTRs in enteric ganglia could, to a certain extent, explain the gastrointestinal symptoms frequently experienced by CF patients. |
Crystallins are found widely in animal lenses and have important functions due to their refractive properties. In the coleoid cephalopods, a lens with a graded refractive index provides good vision and is required for survival. Cephalopod S-crystallin is thought to have evolved from glutathione S-transferase (GST) with various homologs differentially expressed in the lens. However, there is no direct structural information that helps to delineate the mechanisms by which S-crystallin could have evolved. Here we report the structural and biochemical characterization of novel S-crystallin-glutathione complex. The 2.35-Å crystal structure of a S-crystallin mutant from Octopus vulgaris reveals an active-site architecture that is different from that of GST. S-crystallin has a preference for glutathione binding, although almost lost its GST enzymatic activity. We’ve also identified four historical mutations that are able to produce a “GST-like” S-crystallin that has regained activity. This protein recapitulates the evolution of S-crystallin from GST. Protein stability studies suggest that S-crystallin is stabilized by glutathione binding to prevent its aggregation; this contrasts with GST-σ, which do not possess this protection. We suggest that a tradeoff between enzyme activity and the stability of the lens protein might have been one of the major driving force behind lens evolution. |
Owing to the reports of microcephaly as a consistent outcome in the fetuses of pregnant women infected with ZIKV in Brazil, Zika virus (ZIKV)—microcephaly etiomechanistic relationship has recently been implicated. Researchers, however, are still struggling to establish an embryological basis for this interesting causal handcuff. The present study reveals robust evidence in favor of a plausible ZIKV-microcephaly cause-effect liaison. The rationale is based on: (1) sequence homology between ZIKV genome and the response element of an early neural tube developmental marker “retinoic acid” in human DNA and (2) comprehensive similarities between the details of brain defects in ZIKV-microcephaly and retinoic acid embryopathy. Retinoic acid is considered as the earliest factor for regulating anteroposterior axis of neural tube and positioning of structures in developing brain through retinoic acid response elements (RARE) consensus sequence (5′–AGGTCA–3′) in promoter regions of retinoic acid-dependent genes. We screened genomic sequences of already reported virulent ZIKV strains (including those linked to microcephaly) and other viruses available in National Institute of Health genetic sequence database (GenBank) for the RARE consensus repeats and obtained results strongly bolstering our hypothesis that ZIKV strains associated with microcephaly may act through precipitation of dysregulation in retinoic acid-dependent genes by introducing extra stretches of RARE consensus sequence repeats in the genome of developing brain cells. Additional support to our hypothesis comes from our findings that screening of other viruses for RARE consensus sequence repeats is positive only for those known to display neurotropism and cause fetal brain defects (for which maternal-fetal transmission during developing stage may be required). The numbers of RARE sequence repeats appeared to match with the virulence of screened positive viruses. Although, bioinformatic evidence and embryological features are in favor of our hypothesis, additional studies including animal models are warranted to validate our proposition. Such studies are likely to unfold ZIKV-microcephaly association and may help in devising methods to combat it. |
Previously, we demonstrated that pyroptosis in alveolar macrophages (AMs) plays an essential role in lipopolysaccharide (LPS)-induced acute lung injury. However, the underlying mechanism remains largely unclear. Here, we show that the absence of interferon regulatory factor 1 (IRF-1) in genetic knock-out mice strongly abrogates pyroptosis in AMs and alleviates the LPS-induced lung injury and systemic inflammation. Our study demonstrates that IRF-1 contributes to caspase-1 activation and apoptosis-associated speck-like protein containing a caspase activation and recruitment domain pyroptosome formation in AMs and leads to downstream inflammatory cytokine release, including that of IL-1β, IL-18, and HMGB1. The nuclear translocation of IRF-1 is linked to the presence of toll-like receptor 4 (TLR4). Our findings suggest that pyroptosis and the downstream inflammatory response in AMs induced by LPS is a process that is dependent on TLR4-mediated up-regulation of IRF-1. In summary, IRF-1 plays a key role in controlling caspase-1-dependent pyroptosis and inflammation. |
The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were ~4300‐fold higher in C and CN lines than in N, but all accumulated ~150‐fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level of transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65–120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32‐fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000‐fold in CN; 7784 transcripts by up to 1400‐fold in N; and 5224 transcripts by as much as 2200‐fold in C. Transporter‐related transcripts were induced, and cell cycle‐associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT‐PCR. The mechanism underlying these large changes likely involves metabolite‐mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering. |
Invasive Aspergillosis (IA) is an opportunistic infection caused by Aspergillus, a ubiquitously present airborne pathogenic mold. A growing number of studies suggest a major host genetic component in disease susceptibility. Here, we evaluated whether 14 single-nucleotide polymorphisms within NFκB1, NFκB2, RelA, RelB, Rel, and IRF4 genes influence the risk of IA in a population of 834 high-risk patients (157 IA and 677 non-IA) recruited through a collaborative effort involving the aspBIOmics consortium and four European clinical institutions. No significant overall associations between selected SNPs and the risk of IA were found in this large cohort. Although a hematopoietic stem cell transplantation (HSCT)-stratified analysis revealed that carriers of the IRF4(rs12203592T/T) genotype had a six-fold increased risk of developing the infection when compared with those carrying the C allele (OR(REC) = 6.24, 95%CI 1.25–31.2, P = 0.026), the association of this variant with IA risk did not reach significance at experiment-wide significant threshold. In addition, we found an association of the IRF4(AATC) and IRF4(GGTC) haplotypes (not including the IRF4(rs12203592T) risk allele) with a decreased risk of IA but the magnitude of the association was similar to the one observed in the single-SNP analysis, which indicated that the haplotypic effect on IA risk was likely due to the IRF4(rs12203592) SNP. Finally, no evidence of significant interactions among the genetic markers tested and the risk of IA was found. These results suggest that the SNPs on the studied genes do not have a clinically relevant impact on the risk of developing IA. |
Current hemagglutinin (HA)-based seasonal influenza vaccines induce vaccine strain-specific neutralizing antibodies that usually fail to provide protection against mismatched circulating viruses. Inclusion in the vaccine of highly conserved internal proteins such as the nucleoprotein (NP) and the matrix protein 1 (M1) was shown previously to increase vaccine efficacy by eliciting cross-reactive T-cells. However, appropriate delivery systems are required for efficient priming of T-cell responses. In this study, we demonstrated that administration of novel self-amplifying mRNA (SAM(®)) vectors expressing influenza NP (SAM(NP)), M1 (SAM(M1)), and NP and M1 (SAM(M1-NP)) delivered with lipid nanoparticles (LNP) induced robust polyfunctional CD4 T helper 1 cells, while NP-containing SAM also induced cytotoxic CD8 T cells. Robust expansions of central memory (T(CM)) and effector memory (T(EM)) CD4 and CD8 T cells were also measured. An enhanced recruitment of NP-specific cytotoxic CD8 T cells was observed in the lungs of SAM(NP)-immunized mice after influenza infection that paralleled with reduced lung viral titers and pathology, and increased survival after homologous and heterosubtypic influenza challenge. Finally, we demonstrated for the first time that the co-administration of RNA (SAM(M1-NP)) and protein (monovalent inactivated influenza vaccine (MIIV)) was feasible, induced simultaneously NP-, M1- and HA-specific T cells and HA-specific neutralizing antibodies, and enhanced MIIV efficacy against a heterologous challenge. In conclusion, systemic administration of SAM vectors expressing conserved internal influenza antigens induced protective immune responses in mice, supporting the SAM(®) platform as another promising strategy for the development of broad-spectrum universal influenza vaccines. |
The structure of fitness landscapes is critical for understanding adaptive protein evolution. Previous empirical studies on fitness landscapes were confined to either the neighborhood around the wild type sequence, involving mostly single and double mutants, or a combinatorially complete subgraph involving only two amino acids at each site. In reality, the dimensionality of protein sequence space is higher (20(L)) and there may be higher-order interactions among more than two sites. Here we experimentally characterized the fitness landscape of four sites in protein GB1, containing 20(4) = 160,000 variants. We found that while reciprocal sign epistasis blocked many direct paths of adaptation, such evolutionary traps could be circumvented by indirect paths through genotype space involving gain and subsequent loss of mutations. These indirect paths alleviate the constraint on adaptive protein evolution, suggesting that the heretofore neglected dimensions of sequence space may change our views on how proteins evolve. DOI: http://dx.doi.org/10.7554/eLife.16965.001 |
In this study, we present representative human contact networks among Chinese college students. Unlike schools in the US, human contacts within Chinese colleges are extremely clustered, partly due to the highly organized lifestyle of Chinese college students. Simulations of influenza spreading across real contact networks are in good accordance with real influenza records; however, epidemic simulations across idealized scale-free or small-world networks show considerable overestimation of disease prevalence, thus challenging the widely-applied idealized human contact models in epidemiology. Furthermore, the special contact pattern within Chinese colleges results in disease spreading patterns distinct from those of the US schools. Remarkably, class cancelation, though simple, shows a mitigating power equal to quarantine/vaccination applied on ~25% of college students, which quantitatively explains its success in Chinese colleges during the SARS period. Our findings greatly facilitate reliable prediction of epidemic prevalence, and thus should help establishing effective strategies for respiratory infectious diseases control. |
The present study demonstrated the use of the Linear Quantitative Profiling Method (LQPM) to evaluate the quality of Alkaloids of Sophora flavescens (ASF) based on chromatographic fingerprints in an accurate, economical and fast way. Both linear qualitative and quantitative similarities were calculated in order to monitor the consistency of the samples. The results indicate that the linear qualitative similarity (LQLS) is not sufficiently discriminating due to the predominant presence of three alkaloid compounds (matrine, sophoridine and oxymatrine) in the test samples; however, the linear quantitative similarity (LQTS) was shown to be able to obviously identify the samples based on the difference in the quantitative content of all the chemical components. In addition, the fingerprint analysis was also supported by the quantitative analysis of three marker compounds. The LQTS was found to be highly correlated to the contents of the marker compounds, indicating that quantitative analysis of the marker compounds may be substituted with the LQPM based on the chromatographic fingerprints for the purpose of quantifying all chemicals of a complex sample system. Furthermore, once reference fingerprint (RFP) developed from a standard preparation in an immediate detection way and the composition similarities calculated out, LQPM could employ the classical mathematical model to effectively quantify the multiple components of ASF samples without any chemical standard. |
The proteasome is a central regulatory hub for intracellular signaling by degrading numerous signaling mediators. Immunoproteasomes are specialized types of proteasomes involved in shaping adaptive immune responses, but their role in innate immune signaling is still elusive. Here, we analyzed immunoproteasome function for polarization of alveolar macrophages, highly specialized tissue macrophages of the alveolar lung surface. Classical activation (M1 polarization) of primary alveolar macrophages by LPS/IFNγ transcriptionally induced all three immunoproteasome subunits, low molecular mass protein 2 (LMP2), LMP7 and multicatalytic endopeptidase complex-like 1, which was accompanied by increased immunoproteasome activity in M1 cells. Deficiency of LMP7 had no effect on the LPS/IFNγ-triggered M1 profile indicating that immunoproteasome function is dispensable for classical alveolar macrophage activation. In contrast, IL-4 triggered alternative (M2) activation of primary alveolar macrophages was accompanied by a transcriptionally independent amplified expression of LMP2 and LMP7 and an increase in immunoproteasome activity. Alveolar macrophages from LMP7 knockout mice disclosed a distorted M2 profile upon IL-4 stimulation as characterized by increased M2 marker gene expression and CCL17 cytokine release. Comparative transcriptome analysis revealed enrichment of IL-4-responsive genes and of genes involved in cellular response to defense, wounding and inflammation in LMP7-deficient alveolar macrophages indicating a distinct M2 inflammation resolving phenotype. Moreover, augmented M2 polarization was accompanied by amplified AKT/STAT6 activation and increased RNA and protein expression of the M2 master transcription factor interferon regulatory factor 4 in LMP7(−/−) alveolar macrophages. IL-13 stimulation of LMP7-deficient macrophages induced a similar M2-skewed profile indicative for augmented signaling via the IL-4 receptor α (IL4Rα). IL4Rα expression was generally elevated only on protein but not RNA level in LMP7(−/−) alveolar macrophages. Importantly, specific catalytic inhibition with an LMP7-specific proteasome inhibitor confirmed augmented IL-4-mediated M2 polarization of alveolar macrophages. Our results thus suggest a novel role of immunoproteasome function for regulating alternative activation of macrophages by limiting IL4Rα expression and signaling. |
LC3 has been used as a marker to locate autophagosomes. However, it is also well established that LC3 can localize on various membranous structures other than autophagosomes. We recently demonstrated that the LC3 conjugation system (ATG7, ATG3, and ATG12–ATG5-ATG16L1) is required to target LC3 and IFNG (interferon, gamma)-inducible GTPases to the parasitophorus vacuole membrane (PVM) of a protist parasite Toxoplasma gondii and consequently for IFNG to control T. gondii infection. Here we show that not only LC3, but also its homologs (GABARAP, GABARAPL1, and GABARAPL2) localize on the PVM of T. gondii in a conjugation-dependent manner. Knockout/knockdown of all LC3 homologs led to a significant reduction in targeting of the IFNG-inducible GTPases to the PVM of T. gondii and the IFNG-mediated control of T. gondii infection. Furthermore, when we relocated the ATG12–ATG5-ATG16L1 complex, which specifies the conjugation site of LC3 homologs, to alternative target membranes, the IFNG-inducible GTPases were targeted to the new target membranes rather than the PVM of T. gondii. These data suggest that the localization of LC3 homologs onto a membrane by the LC3 conjugation system is necessary and sufficient for targeting of the IFNG-inducible GTPases to the membrane, implying Targeting by AutophaGy proteins (TAG). Our data further suggest that the conjugation of ubiquitin-like LC3 homologs to the phospholipids of membranes may change the destiny of the membranes beyond degradation through lysosomal fusion, as the conjugation of ubiquitin to proteins changes the destiny of the proteins beyond proteasomal degradation. |
BACKGROUND: Most malignant lymphomas in HIV-patients are caused by reactivation of EBV-infection. Some lymphomas have a very rapid fulminant course. HHV-8 has also been reported to be a cause of lymphoma. The role of CMV in the development of lymphoma is not clear, though both CMV and HHV-8 have been reported in tissues adjacent to the tumour in Burkitt lymphoma patients. Here we present a patient with asymptomatic HIV infection, that contracted a primary cytomegalovirus (CMV) infection and human herpes virus 8 (HHV-8) infection. Three weeks before onset of symptoms the patient had unprotected sex which could be possible source of his CMV and also HHV-8 infection He deteriorated rapidly and died with a generalized anaplastic large cell lymphoma (ALCL). METHODS: A Caucasian homosexual male with asymptomatic human immunodeficiency virus (HIV) infection contracted a primary cytomegalovirus (CMV) infection and human herpes virus 8 (HHV-8) infection. He deteriorated rapidly and died with a generalized anaplastic large cell lymphoma (ALCL). Clinical and laboratory records were compiled. Immunohistochemistry was performed on lymphoid tissues, a liver biopsy, a bone marrow aspirate and the spleen during the illness and at autopsy. Serology and PCR for HIV, CMV, EBV, HHV-1–3 and 6–8 was performed on blood drawn during the course of disease. RESULTS: The patient presented with an acute primary CMV infection. Biopsies taken 2 weeks before death showed a small focus of ALCL in one lymph node of the neck. Autopsy demonstrated a massive infiltration of ALCL in lymph nodes, liver, spleen and bone marrow. Blood samples confirmed primary CMV- infection, a HHV-8 infection together with reactivation of Epstein- Barr-virus (EBV). CONCLUSION: Primary CMV-infection and concomitant HHV-8 infection correlated with reactivation of EBV. We propose that these two viruses influenced the development and progression of the lymphoma. Quantitative PCR blood analysis for EBV, CMV and HHV-8 could be valuable in diagnosis and treatment of this type of very rapidly developing lymphoma. It is also a reminder of the importance of prevention and prophylaxis of several infections by having protected sex. |
Drug induced exfoliative dermatitis (ED) are a group of rare and severe drug hypersensitivity reactions (DHR) involving skin and usually occurring from days to several weeks after drug exposure. Erythema multiforme (EM), Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are the main clinical presentations of drug induced ED. Overall, T cells are the central player of these immune-mediated drug reactions. Here we provide a systematic review on frequency, risk factors, pathogenesis, clinical features and management of patients with drug induced ED. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12948-016-0045-0) contains supplementary material, which is available to authorized users. |
OBJECTIVE: Pneumothorax should be considered a medical emergency and requires a high index of suspicion and prompt recognition and intervention. AIMS: The objective of the study was to evaluate cases developing pneumothorax following admission to a Pediatric Intensive Care Unit (PICU) over a 5-year period. SETTINGS AND DESIGN: Case notes of all PICU patients (n = 1298) were reviewed, revealing that 135 cases (10.4%) developed pneumothorax, and these were compared with those patients who did not. The most common tool for diagnosis used was chest X-ray followed by a clinical examination. SUBJECTS AND METHODS: Case notes of 1298 patients admitted in PICU over 1-year study. RESULTS: Patients with pneumothorax had higher mortality rate (P < 0.001), longer length of stay (P < 0.001), higher need for mechanical ventilation (MV) (P < 0.001), and were of younger age (P < 0.001), lower body weight (P < 0.001), higher pediatric index of mortality 2 score on admission (P < 0.001), higher pediatric logistic organ dysfunction score (P < 0.001), compared to their counterpart. Iatrogenic pneumothorax (IP) represented 95% of episodes of pneumothorax. The most common causes of IP were barotrauma secondary to MV, central vein catheter insertion, and other (69.6%, 13.2%, and 17.2%, respectively). Compared to ventilated patients without pneumothorax, ventilated patients who developed pneumothorax had a longer duration of MV care (P < 0.001) and higher nonconventional and high-frequency oscillatory ventilation settings (P < 0.001). CONCLUSIONS: This study demonstrated that pneumothorax is common in Alexandria University PICU patients, especially in those on MV and emphasized the importance of the strict application of protective lung strategies among ventilated patients to minimize the risk of pneumothorax. |
It has been well characterized that the neonatal Fc receptor (FcRn) transports maternal IgG to a fetus or newborn and protects IgG from degradation. We previously reported that FcRn is expressed in a model of normal porcine intestinal epithelial cells (IPEC-J2). Transmissible gastroenteritis is an acute enteric disease of swine that is caused by transmissible gastroenteritis virus (TGEV). How porcine FcRn (pFcRn) expression is regulated by pathogenic infection remains unknown. Our research shows that IPEC-J2 cells infected with TGEV had up-regulated pFcRn expression. In addition, the NF-κB signaling pathway was activated in IPEC-J2 cells by TGEV infection. Furthermore, treatment of TGEV-infected IPEC-J2 cells with the NF-κB-specific inhibitor BAY 11-7082 resulted in down-regulation of pFcRn expression. Transient transfection of pFcRn promoter luciferase report plasmids with overexpression of NF-κB p65 transcription factor enhanced the activation of the luciferase report plasmids. We identified four NF-κB transcription factor binding sites in the promoter region of this gene using luciferase reporter system, chromatin immunoprecipitation, electromobility shift assay, and supershift analysis. Together, the data provide the first evidence that TGEV infection up-regulates pFcRn expression via activation of NF-κB signaling. |
Microfluidic components and systems for rapid (<60 min), low-cost, convenient, field-deployable sequence-specific nucleic acid-based amplification tests (NAATs) are described. A microfluidic point-of-care (POC) diagnostics test to quantify HIV viral load from blood samples serves as a representative and instructive example to discuss the technical issues and capabilities of “lab on a chip” NAAT devices. A portable, miniaturized POC NAAT with performance comparable to conventional PCR (polymerase-chain reaction)-based tests in clinical laboratories can be realized with a disposable, palm-sized, plastic microfluidic chip in which: (1) nucleic acids (NAs) are extracted from relatively large (~mL) volume sample lysates using an embedded porous silica glass fiber or cellulose binding phase (“membrane”) to capture sample NAs in a flow-through, filtration mode; (2) NAs captured on the membrane are isothermally (~65 °C) amplified; (3) amplicon production is monitored by real-time fluorescence detection, such as with a smartphone CCD camera serving as a low-cost detector; and (4) paraffin-encapsulated, lyophilized reagents for temperature-activated release are pre-stored in the chip. Limits of Detection (LOD) better than 10(3) virons/sample can be achieved. A modified chip with conduits hosting a diffusion-mode amplification process provides a simple visual indicator to readily quantify sample NA template. In addition, a companion microfluidic device for extracting plasma from whole blood without a centrifuge, generating cell-free plasma for chip-based molecular diagnostics, is described. Extensions to a myriad of related applications including, for example, food testing, cancer screening, and insect genotyping are briefly surveyed. |
BACKGROUND: There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses) replication. METHODOLOGY/PRINCIPAL FINDINGS: Seventy-nine novel RNA binding proteins for dengue virus (DENV) were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated. CONCLUSIONS/SIGNIFICANCE: The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with DENV and reveals how DENV modulates and usurps cellular proteins for efficient amplification. |
Murine norovirus-1 (MNV-1) is known to subvert host cell division inducing an accumulation of cells in the G(0)/G(1) phase, creating conditions where viral replication is favored. This study identified that NS5 (VPg), is capable of inducing cell cycle arrest in the absence of viral replication or other viral proteins in an analogous manner to MNV-1 infection. NS5 expression induced an accumulation of cells in the G(0)/G(1) phase in an asynchronous population by inhibiting progression at the G(1)/S restriction point. Furthermore, NS5 expression resulted in a down-regulation of cyclin A expression in asynchronous cells and inhibited cyclin A expression in cells progressing from G(1) to S phase. The activity of NS5 on the host cell cycle occurs through an uncharacterized function. Amino acid substitutions of NS5(Y26A) and NS5(F123A) that inhibit the ability for NS5 to attach to RNA and recruit host eukaryotic translation initiation factors, respectively, retained the ability to induce an accumulation of cells in the G(0)/G(1) phase as identified for wild-type NS5. To the best of our knowledge, this is the first report of a VPg protein manipulating the host cell cycle. |
A1 One health advances and successes in comparative medicine and translational research Cheryl Stroud A2 Dendritic cell-targeted gorilla adenoviral vector for cancer vaccination for canine melanoma Igor Dmitriev, Elena Kashentseva, Jeffrey N. Bryan, David T. Curiel A3 Viroimmunotherapy for malignant melanoma in the companion dog model Jeffrey N. Bryan, David Curiel, Igor Dmitriev, Elena Kashentseva, Hans Rindt, Carol Reinero, Carolyn J. Henry A4 Of mice and men (and dogs!): development of a commercially licensed xenogeneic DNA vaccine for companion animals with malignant melanoma Philip J. Bergman A5 Successful immunotherapy with a recombinant HER2-expressing Listeria monocytogenes in dogs with spontaneous osteosarcoma paves the way for advances in pediatric osteosarcoma Nicola J. Mason, Josephine S. Gnanandarajah, Julie B. Engiles, Falon Gray, Danielle Laughlin, Anita Gaurnier-Hausser, Anu Wallecha, Margie Huebner, Yvonne Paterson A6 Human clinical development of ADXS-HER2 Daniel O’Connor A7 Leveraging use of data for both human and veterinary benefit Laura S. Treml A8 Biologic replacement of the knee: innovations and early clinical results James P. Stannard A9 Mizzou BioJoint Center: a translational success story James L. Cook A10 University and industry translational partnership: from the lab to commercialization Marc Jacobs A11 Beyond docking: an evolutionarily guided OneHealth approach to drug discovery Gerald J. Wyckoff, Lee Likins, Ubadah Sabbagh, Andrew Skaff A12 Challenges and opportunities for data applications in animal health: from precision medicine to precision husbandry Amado S. Guloy A13 A cloud-based programmable platform for health Harlen D. Hays A14 Comparative oncology: One Health in action Amy K. LeBlanc A15 Companion animal diseases bridge the translational gap for human neurodegenerative disease Joan R. Coates, Martin L. Katz, Leslie A. Lyons, Gayle C. Johnson, Gary S. Johnson, Dennis P. O’Brien A16 Duchenne muscular dystrophy gene therapy Dongsheng Duan A17 Polycystic kidney disease: cellular mechanisms to emerging therapies James P. Calvet A18 The domestic cat as a large animal model for polycystic kidney disease Leslie A. Lyons, Barbara Gandolfi A19 The support of basic and clinical research by the Polycystic Kidney Disease Foundation David A. Baron A20 Using naturally occurring large animal models of human disease to enable clinical translation: treatment of arthritis using autologous stromal vascular fraction in dogs Mark L. Weiss A21 Regulatory requirements regarding clinical use of human cells, tissues, and tissue-based products Debra A. Webster A22 Regenerative medicine approaches to Type 1 diabetes treatment Francis N. Karanu A23 The zoobiquity of canine diabetes mellitus, man’s best friend is a friend indeed-islet transplantation Edward J. Robb A24 One Medicine: a development model for cellular therapy of diabetes Robert J. Harman |
Gain-of-function (GOF) research involves experimentation that aims or is expected to (and/or, perhaps, actually does) increase the transmissibility and/or virulence of pathogens. Such research, when conducted by responsible scientists, usually aims to improve understanding of disease causing agents, their interaction with human hosts, and/or their potential to cause pandemics. The ultimate objective of such research is to better inform public health and preparedness efforts and/or development of medical countermeasures. Despite these important potential benefits, GOF research (GOFR) can pose risks regarding biosecurity and biosafety. In 2014 the administration of US President Barack Obama called for a “pause” on funding (and relevant research with existing US Government funding) of GOF experiments involving influenza, SARS, and MERS viruses in particular. With announcement of this pause, the US Government launched a “deliberative process” regarding risks and benefits of GOFR to inform future funding decisions—and the US National Science Advisory Board for Biosecurity (NSABB) was tasked with making recommendations to the US Government on this matter. As part of this deliberative process the National Institutes of Health commissioned this Ethical Analysis White Paper, requesting that it provide (1) review and summary of ethical literature on GOFR, (2) identification and analysis of existing ethical and decision-making frameworks relevant to (i) the evaluation of risks and benefits of GOFR, (ii) decision-making about the conduct of GOF studies, and (iii) the development of US policy regarding GOFR (especially with respect to funding of GOFR), and (3) development of an ethical and decision-making framework that may be considered by NSABB when analyzing information provided by GOFR risk-benefit assessment, and when crafting its final recommendations (especially regarding policy decisions about funding of GOFR in particular). The ethical and decision-making framework ultimately developed is based on the idea that there are numerous ethically relevant dimensions upon which any given case of GOFR can fare better or worse (as opposed to there being necessary conditions that are either satisfied or not satisfied, where all must be satisfied in order for a given case of GOFR to be considered ethically acceptable): research imperative, proportionality, minimization of risks, manageability of risks, justice, good governance (i.e., democracy), evidence, and international outlook and engagement. Rather than drawing a sharp bright line between GOFR studies that are ethically acceptable and those that are ethically unacceptable, this framework is designed to indicate where any given study would fall on an ethical spectrum—where imaginable cases of GOFR might range from those that are most ethically acceptable (perhaps even ethically praiseworthy or ethically obligatory), at one end of the spectrum, to those that are most ethically problematic or unacceptable (and thus should not be funded, or conducted), at the other. The aim should be that any GOFR pursued (and/or funded) should be as far as possible towards the former end of the spectrum. |
Renin angiotensin system (RAS) is a key hormonal system which regulates the cardiovascular function and is implicated in several autoimmune diseases. With the discovery of the angiotensin-converting enzyme 2 (ACE2), a protective axis of RAS namely ACE2/Ang-(1–7)/Mas that counteracts the deleterious ACE/AngII/AT1R axis has been established. This axis is emerging as a novel target to attenuate ocular inflammation. However, the underlying molecular mechanisms remain unclear. We investigated the hypothesis that enhancing the activity of the protective axis of RAS by subretinal delivery of an AAV8 (Y733F)-ACE2 vector would protect against the ocular inflammation in experimental autoimmune uveitis (EAU) mice through regulating the local immune responses. Our studies demonstrated that increased ACE2 expression exerts protective effects on inflammation in EAU mouse by modulating ocular immune responses, including the differentiation of Th1/Th17 cells and the polarization of M1/M2 macrophages; whereas the systemic immune responses appeared not affected. These effects were mediated by activating the Ang-(1–7)/Mas and inhibiting the MAPK, NF-κB and STAT3 signaling pathways. This proof-of-concept study suggests that activation of ocular ACE2/Ang-(1–7)/Mas axis with AAV gene transfer modulates local immune responses and may be a promising, long-lasting therapeutic strategy for refractory and recurrent uveitis, as well as other inflammatory eye diseases. |
Objective: The outbreak of the Ebola epidemic in West Africa in 2014 exerted enormous global public reaction via the Internet and social media. This study aimed to investigate and evaluate the public reaction to Ebola in China and identify the primitive correlation between possible influence factors caused by the outbreak of Ebola in West Africa and Chinese public attention via Internet surveillance. Methods: Baidu Index (BDI) and Sina Micro Index (SMI) were collected from their official websites, and the disease-related data were recorded from the websites of the World Health Organization (WHO), U.S. Centers for Disease Control and Prevention (CDC), and U.S. National Ministries of Health. The average BDI of Internet users in different regions were calculated to identify the public reaction to the Ebola outbreak. Spearman’s rank correlation was used to check the relationship of epidemic trends with BDI and SMI. Additionally, spatio-temporal analysis and autocorrelation analysis were performed to detect the clustered areas with the high attention to the topic of “Ebola”. The related news reports were collected from authoritative websites to identify potential patterns. Results: The BDI and the SMI for “Ebola” showed a similar fluctuating trend with a correlation coefficient = 0.9 (p < 0.05). The average BDI in Beijing, Tibet, and Shanghai was higher than other cities. However, the disease-related indicators did not identify potential correlation with both indices above. A hotspot area was detected in Tibet by local autocorrelation analysis. The most likely cluster identified by spatiotemporal cluster analysis was in the northeast regions of China with the relative risk (RR) of 2.26 (p ≤ 0.01) from 30 July to 14 August in 2014. Qualitative analysis indicated that negative news could lead to a continuous increase of the public’s attention until the appearance of a positive news report. Conclusions: Confronted with the risk of cross-border transmission of the infectious disease, online surveillance might be used as an innovative approach to perform public communication and health education through examining the public’s reaction and attitude. |
The 2014 outbreak of Ebola virus (EBOV) in Western Africa highlighted the need for anti-EBOV therapeutics. Clomiphene is a U.S. Food and Drug Administration (FDA)-approved drug that blocks EBOV entry and infection in cells and significantly protects EBOV-challenged mice. As provided, clomiphene is, approximately, a 60:40 mixture of two stereoisomers, enclomiphene and zuclomiphene. The pharmacokinetic properties of the two isomers vary, but both accumulate in the eye and male reproductive tract, tissues in which EBOV can persist. Here we compared the ability of clomiphene and its isomers to inhibit EBOV using viral-like particle (VLP) entry and transcription/replication-competent VLP (trVLP) assays. Clomiphene and its isomers inhibited the entry and infection of VLPs and trVLPs with similar potencies. This was demonstrated with VLPs bearing the glycoproteins from three filoviruses (EBOV Mayinga, EBOV Makona, and Marburg virus) and in two cell lines (293T/17 and Vero E6). Visual problems have been noted in EBOV survivors, and viral RNA has been isolated from semen up to nine months post-infection. Since the clomiphene isomers accumulate in these affected tissues, clomiphene or one of its isomers warrants consideration as an anti-EBOV agent, for example, to potentially help ameliorate symptoms in EBOV survivors. |
Monocyte chemoattractant protein-1 (MCP-1/CCL2)-mediated migration of monocytes is essential for immunological surveillance of tissues. During chikungunya virus (CHIKV) infection however, excessive production of MCP-1 has been linked to disease pathogenesis. High MCP-1 serum levels are detected during the viremic phase of CHIKV infection and correlate with the virus titre. In vitro CHIKV infection was also shown to stimulate MCP-1 production in whole blood; yet the role and the mechanism of MCP-1 production upon infection of human peripheral blood mononuclear cells remain unknown. Here we found that active CHIKV infection stimulated production of MCP-1 in monocytes. Importantly however, we found that communication with other leukocytes is crucial to yield MCP-1 by monocytes upon CHIKV infection. Indeed, blocking interferon-α/β receptor or the JAK1/JAK2 signalling downstream of the receptor abolished CHIKV-mediated MCP-1 production. Additionally, we show that despite the apparent correlation between IFN type I, CHIKV replication and MCP-1, modulating the levels of the chemokine did not influence CHIKV infection. In summary, our data disclose the complexity of MCP-1 regulation upon CHIKV infection and point to a crucial role of IFNβ in the chemokine secretion. We propose that balance between these soluble factors is imperative for an appropriate host response to CHIKV infection. |
Although vaccines and antibiotics could kill or inhibit microbes, many infectious diseases remain difficult to treat because of acquired resistance and adverse side effects. Nano-carriers-based technology has made significant progress for a long time and is introducing a new paradigm in drug delivery. However, it still has some challenges like lack of specificity toward targeting the infectious site. Nano-carriers utilized targeting ligands on their surface called ‘active target’ provide the promising way to solve the problems like accelerating drug delivery to infectious areas and preventing toxicity or side-effects. In this mini review, we demonstrate the recent studies using the active targeted strategy to kill or inhibit microbes. The four common nano-carriers (e.g. liposomes, nanoparticles, dendrimers and carbon nanotubes) delivering encapsulated drugs are introduced. |
We evaluated the impact of serum uric acid (SUA) on mortality in patients with chronic dialysis. A total of 4132 adult patients on dialysis were enrolled prospectively between August 2008 and September 2014. Among them, we included 1738 patients who maintained dialysis for at least 3 months and had available SUA in the database. We categorized the time averaged-SUA (TA-SUA) into 5 groups: <5.5, 5.5–6.4, 6.5–7.4, 7.5–8.4, and ≥8.5 mg/dL. Cox regression analysis was used to calculate the hazard ratio (HR) of all-cause mortality according to SUA group. The mean TA-SUA level was slightly higher in men than in women. Patients with lower TA-SUA level tended to have lower body mass index (BMI), phosphorus, serum albumin level, higher proportion of diabetes mellitus (DM), and higher proportion of malnourishment on the subjective global assessment (SGA). During a median follow-up of 43.9 months, 206 patients died. Patients with the highest SUA had a similar risk to the middle 3 TA-SUA groups, but the lowest TA-SUA group had a significantly elevated HR for mortality. The lowest TA-SUA group was significantly associated with increased all-cause mortality (adjusted HR, 1.720; 95% confidence interval, 1.007–2.937; P = 0.047) even after adjusting for demographic, comorbid, nutritional covariables, and medication use that could affect SUA levels. This association was prominent in patients with well nourishment on the SGA, a preserved serum albumin level, a higher BMI, and concomitant DM although these parameters had no significant interaction in the TA-SUA-mortality relationship except DM. In conclusion, a lower TA-SUA level <5.5 mg/dL predicted all-cause mortality in patients with chronic dialysis. |
The aim of the study was to comprehensively examine the efficacy and safety of noninvasive ventilation used at the pulmonary infection control (PIC) window for acute respiratory failure (ARF) in patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Seven electronic databases and relevant resources were searched to identify randomized controlled trials (RCTs) comparing patients using noninvasive ventilation at PIC window with those continuing receiving invasive ventilation. Retrieved citations were screened, risk of bias was assessed, and data were extracted by 2 independent review authors. Overall effect sizes were synthesized by using meta-analyses. Quality of evidence was rated by using Grading of Recommendations, Assessment, Development and Evaluation approach. A total of 17 trials involving 959 participants were included for this review. Compared with continuous invasive ventilation, noninvasive ventilation used at PIC window significantly reduced mortality, ventilator-associated pneumonia, weaning failures, reintubations, duration of invasive ventilation, total duration of mechanical ventilation, length of stay (LOS) in intensive care unit, and LOS in hospital as well as hospital costs. Of these, mortality significantly decreased (risk ratio = 0.27, 95% confidence interval: 0.17–0.42, P < 0.001) without significant heterogeneity (I(2) = 0%, P = 0.99). Quality of evidence regarding the 9 outcomes across the included studies was rated from moderate to low. Use of noninvasive ventilation at PIC window showed beneficial effects across identified trials for ARF in AECOPD patients. Considering the absence of high quality of available evidence and the uncertainty of long-term effect of this intervention, a weak recommendation for clinical practice was generated, and further well-designed and adequately powered RCTs are required to validate this conclusion. |
Few studies have assessed viral contamination in the rooms of hospital wards. This cross-sectional study evaluated the air and objects in patient-occupied rooms in pediatric wards for the presence of common respiratory viruses and Mycoplasma pneumoniae. Air samplers were placed at a short (60–80 cm) and long (320 cm) distance from the head of the beds of 58 pediatric patients, who were subsequently confirmed to be infected with enterovirus (n = 17), respiratory syncytial virus (RSV) (n = 13), influenza A virus (n = 13), adenovirus (n = 9), or M pneumoniae (n = 6). Swab samples were collected from the surfaces of 5 different types of objects in the patients’ rooms. All air and swab samples were analyzed via real-time quantitative polymerase chain reaction assay for the presence of the above pathogens. All pathogens except enterovirus were detected in the air, on the objects, or in both locations in the patients’ rooms. The detection rates of influenza A virus, adenovirus, and M pneumoniae for the long distance air sampling were 15%, 67%, and 17%, respectively. Both adenovirus and M pneumoniae were detected at very high rates, with high concentrations, on all sampled objects. The respiratory pathogens RSV, influenza A virus, adenovirus, and M pneumoniae were detected in the air and/or on the objects in the pediatric ward rooms. Appropriate infection control measures should be strictly implemented when caring for such patients. |
Malignant brain tumors continue to represent a devastating diagnosis with no real chance for cure. Despite an increasing list of potential salvage therapies, standard-of-care for these patients has not changed in over a decade. Immunotherapy has been seen as an exciting option, with the potential to offer specific and long lasting tumor clearance. The “gold standard” in immunotherapy has been the development of a tumor-specific CD8 T cell response to potentiate tumor clearance and immunological memory. While many advances have been made in the field of immunotherapy, few therapies have seen true success. Many of the same principles used to develop immunotherapy in tumors of the peripheral organs have been applied to brain tumor immunotherapy. The immune-specialized nature of the brain should call into question whether this approach is appropriate. Recent results from our own experiments require a rethinking of current dogma. Perhaps a CD8 T cell response is not sufficient for an organ as immunologically unique as the brain. Examination of previously elucidated principles of the brain’s immune-specialized status and known immunological preferences should generate discussion and experimentation to address the failure of current therapies. |
Adenovirus is a leading cause of respiratory infection in children. Salivirus/klassevirus was first identified as an etiologic agent of gastroenteritis and was never reported in respiratory infection cases. The case being discussed here caught our attention because, although it is a common respiratory infection, it was fatal, while similar cases were mild. In order to find potential causes in the fatal case, we describe the clinical diagnosis and treatment, the sequencing analysis of the salivirus/klassevirus, and the co-infectious adenovirus. Metagenomics sequencing was conducted on the samples from a nasopharyngeal swab of the children with adenovirus infection. Sequences were assembled using IDBA-ud (1.1.1); phylogenetic analysis was performed using MEGA 5.2. RT-PCR and quantitative PCR were performed to verify the existence of the virus in the samples. A nearly full genome of this new virus strain was obtained with 7633 nt encoding a polyprotein of 2331 aa. Meanwhile, it was detected specifically in the nasopharyngeal swab by RT-PCR. Further, homology analysis indicated that the virus has a closer relationship with Salivirus A strain in Shanghai (GU245894). Our study reports the first case of Human salivirus/klassevirus in respiratory specimens of a child with fatal adenovirus infection in Shenzhen, China. The finding and investigation of the virus will provide more useful information for the clinical diagnosis of unexplained lethal infection and expand our knowledge of the new family, salivirus/klassevirus in picornavirus. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11262-016-1361-7) contains supplementary material, which is available to authorized users. |
Angiotensin converting enzyme (ACE) 2 is a negative regulator of the renin angiotensin system (RAS) through its role to degrade angiotensin II. In rats with subtotal nephrectomy (STNx), adverse cardiac remodelling occurs despite elevated cardiac ACE2 activity. We hypothesised that diminazene aceturate (DIZE), which has been described as having an off-target effect to activate ACE2, would have beneficial cardiac effects in STNx rats. STNx led to hypertension, diastolic dysfunction, left ventricular hypertrophy, cardiac fibrosis, and increased cardiac ACE, ACE2, Ang II and Ang 1–7 levels. Cardiac gene expression of ADAM17 was also increased. In STNx, two-weeks of subcutaneous DIZE (15mg/kg/d) had no effect on blood pressure but improved diastolic dysfunction and cardiac fibrosis, reduced ADAM17 mRNA and shifted the cardiac RAS balance to a cardioprotective profile with reduced ACE and Ang II. There was no change in cardiac ACE2 activity or in cardiac Ang 1–7 levels with DIZE. In conclusion, our results suggest that DIZE exerts a protective effect on the heart under the pathological condition of kidney injury. This effect was not due to improved kidney function, a fall in blood pressure or a reduction in LVH but was associated with a reduction in cardiac ACE and cardiac Ang II levels. As in vitro studies showed no direct effect of DIZE on ACE2 or ACE activity, the precise mechanism of action of DIZE remains to be determined. |
A virus’ mutational robustness is described in terms of the strength and distribution of the mutational fitness effects, or MFE. The distribution of MFE is central to many questions in evolutionary theory and is a key parameter in models of molecular evolution. Here we define the mutational fitness effects in influenza A virus by generating 128 viruses, each with a single nucleotide mutation. In contrast to mutational scanning approaches, this strategy allowed us to unambiguously assign fitness values to individual mutations. The presence of each desired mutation and the absence of additional mutations were verified by next generation sequencing of each stock. A mutation was considered lethal only after we failed to rescue virus in three independent transfections. We measured the fitness of each viable mutant relative to the wild type by quantitative RT-PCR following direct competition on A549 cells. We found that 31.6% of the mutations in the genome-wide dataset were lethal and that the lethal fraction did not differ appreciably between the HA- and NA-encoding segments and the rest of the genome. Of the viable mutants, the fitness mean and standard deviation were 0.80 and 0.22 in the genome-wide dataset and best modeled as a beta distribution. The fitness impact of mutation was marginally lower in the segments coding for HA and NA (0.88 ± 0.16) than in the other 6 segments (0.78 ± 0.24), and their respective beta distributions had slightly different shape parameters. The results for influenza A virus are remarkably similar to our own analysis of CirSeq-derived fitness values from poliovirus and previously published data from other small, single stranded DNA and RNA viruses. These data suggest that genome size, and not nucleic acid type or mode of replication, is the main determinant of viral mutational fitness effects. |
Virus infection consists of entry, synthesis of macromolecular components, virus assembly and release. Understanding of the mechanisms underlying each event is necessary for the intervention of virus infection in human healthcare and agriculture. Here we report the visualization of Singapore grouper iridovirus (SGIV) assembly in the medaka haploid embryonic stem (ES) cell line HX1. SGIV is a highly infectious DNA virus that causes a massive loss in marine aquaculture. Ectopic expression of VP88GFP, a fusion between green fluorescent protein and the envelope protein VP088, did not compromise the ES cell properties and susceptibility to SGIV infection. Although VP88GFP disperses evenly in the cytoplasm of non-infected cells, it undergoes aggregation and redistribution in SGIV-infected cells. Real-time visualization revealed multiple key stages of VP88GFP redistribution and the dynamics of viral assembly site (VAS). Specifically, VP88GFP entry into and condensation in the VAS occurred within a 6-h duration, a similar duration was observed also for the release of VP88GFP-containing SGIV out of the cell. Taken together, VP088 is an excellent marker for visualizing the SGIV infection process. Our results provide new insight into macromolecular component recruitment and SGIV assembly. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13238-016-0292-3) contains supplementary material, which is available to authorized users. |
INTRODUCTION: Polymorphisms in the type III interferon IFN‐λ3 and the killer cell immunoglobulin‐like receptor (KIR) genes controlling the activity of natural killer (NK) cells can predict spontaneous resolution of acute hepatitis C virus (HCV) infection. We hypothesized that IFN‐λ3 polymorphism may modulate NK cell function during acute HCV. METHODS: We monitored the plasma levels of type III IFNs in relation to the phenotype and the function of NK cells in a cohort of people who inject drugs (PWID) during acute HCV infection with different outcomes. RESULTS: Early acute HCV was associated with high variability in type III IFNs plasma levels and the favorable IFN‐λ3 CC genotype was associated with higher viral loads. Reduced expression of Natural Killer Group Protein 2A (NKG2A) was associated with lower IFN‐λ3 plasma levels and the CC genotype. IFN‐γ production by NK cells was higher in individuals with the CC genotype during acute infection but this did not prevent viral persistence. IFN‐λ3 plasma levels did not correlate with function of NK cells and IFN‐λ3 prestimulation did not affect NK cell activation and function. CONCLUSIONS: These results suggest that IFN‐λ3 polymorphism indirectly influences NK cell phenotype and function during acute HCV but other factors may act in concert to determine the outcome of the infection. |
Autophagy is a catabolic process regulated by the orchestrated action of the autophagy-related (ATG) proteins. Recent work indicates that some of the ATG proteins also have autophagy-independent roles. Using an unbiased siRNA screen approach, we explored the extent of these unconventional functions of ATG proteins. We determined the effects of the depletion of each ATG proteome component on the replication of six different viruses. Our screen reveals that up to 36% of the ATG proteins significantly alter the replication of at least one virus in an unconventional fashion. Detailed analysis of two candidates revealed an undocumented role for ATG13 and FIP200 in picornavirus replication that is independent of their function in autophagy as part of the ULK complex. The high numbers of unveiled ATG gene-specific and pathogen-specific functions of the ATG proteins calls for caution in the interpretation of data, which rely solely on the depletion of a single ATG protein to specifically ablate autophagy. |
Autophagy-related (ATG) proteins have increasingly demonstrated functions other than cellular self-eating. In this issue, Mauthe et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201602046) conduct an unbiased RNA interference screen of the ATG proteome to reveal numerous noncanonical roles for ATG proteins during viral infection. |
Aging is a major risk factor for many neurodegenerative disorders. A key feature of aging biology that may underlie these diseases is cellular senescence. Senescent cells accumulate in tissues with age, undergo widespread changes in gene expression, and typically demonstrate altered, pro-inflammatory profiles. Astrocyte senescence has been implicated in neurodegenerative disease, and to better understand senescence-associated changes in astrocytes, we investigated changes in their transcriptome using RNA sequencing. Senescence was induced in human fetal astrocytes by transient oxidative stress. Brain-expressed genes, including those involved in neuronal development and differentiation, were downregulated in senescent astrocytes. Remarkably, several genes indicative of astrocytic responses to injury were also downregulated, including glial fibrillary acidic protein and genes involved in the processing and presentation of antigens by major histocompatibility complex class II proteins, while pro-inflammatory genes were upregulated. Overall, our findings suggest that senescence-related changes in the function of astrocytes may impact the pathogenesis of age-related brain disorders. |
INTRODUCTION: The aim of this review was to record systematically and assess the published literature relating to the occupational risk of influenza A (H1N1) infection among healthcare personnel during the 2009 pandemic. METHODS: The literature search was performed in June 2015. An update was carried out in May 2016. It was applied to the electronic databases EMBASE, MEDLINE, PsycINFO, PubMed, CINAHL and Google Scholar. The quality assessment was conducted with a tool using eight criteria. A meta-analysis was carried out to compute pooled effect estimates for influenza A (H1N1) infection. RESULTS: A total of 26 studies were included in the review, 15 studies met the criteria for the meta-analysis. After a sensitivity analysis the pooled analysis showed a significantly increased odds for influenza A (H1N1) infection for healthcare personnel compared to controls/comparisons (OR = 2.08, 95% CI = 1.73 to 2.51). The pooled prevalence rate for healthcare personnel alone was 6.3%. CONCLUSIONS: This review corroborates the assumption that healthcare personnel were particularly at risk of influenza A (H1N1) infection during the 2009 pandemic. Healthcare facilities should intensify their focus on strategies to prevent infections among healthcare personnel, especially during the first period of pandemics. |
N-myc oncogene amplification is associated but not present in all cases of high-risk neuroblastoma (NB). Since oncogene expression could often modulate sensitivity to oncolytic viruses, we wanted to examine if N-myc expression status would determine virotherapy efficacy to high-risk NB. We showed that induction of exogenous N-myc in a non-N-myc-amplified cell line background (TET-21N) increased susceptibility to oncolytic vesicular stomatitis virus (mutant VSVΔM51) and alleviated the type I IFN-induced antiviral state. Cells with basal N-myc, on the other hand, were less susceptible to virus-induced oncolysis and established a robust IFN-mediated antiviral state. The same effects were also observed in NB cell lines with and without N-myc amplification. Microarray analysis showed that N-myc overexpression in TET-21N cells downregulated IFN-stimulated genes (ISGs) with known antiviral functions. Furthermore, virus infection caused significant changes in global gene expression in TET-21N cells overexpressing N-myc. Such changes involved ISGs with various functions. Therefore, the present study showed that augmented susceptibility to VSVΔM51 by N-myc at least involves downregulation of ISGs with antiviral functions and alleviation of the IFN-stimulated antiviral state. Our studies suggest the potential utility of N-myc amplification/overexpression as a predictive biomarker of virotherapy response for high-risk NB using IFN-sensitive oncolytic viruses. |
Wild populations of the model organism Drosophila melanogaster experience highly heterogeneous environments over broad geographical ranges as well as over seasonal and annual timescales. Diapause is a primary adaptation to environmental heterogeneity, and in D. melanogaster the propensity to enter diapause varies predictably with latitude and season. Here we performed global transcriptomic profiling of naturally occurring variation in diapause expression elicited by short day photoperiod and moderately low temperature in two tissue types associated with neuroendocrine and endocrine signaling, heads, and ovaries. We show that diapause in D. melanogaster is an actively regulated phenotype at the transcriptional level, suggesting that diapause is not a simple physiological or reproductive quiescence. Differentially expressed genes and pathways are highly distinct in heads and ovaries, demonstrating that the diapause response is not uniform throughout the soma and suggesting that it may be comprised of functional modules associated with specific tissues. Genes downregulated in heads of diapausing flies are significantly enriched for clinally varying single nucleotide polymorphism (SNPs) and seasonally oscillating SNPs, consistent with the hypothesis that diapause is a driving phenotype of climatic adaptation. We also show that chromosome location-based coregulation of gene expression is present in the transcriptional regulation of diapause. Taken together, these results demonstrate that diapause is a complex phenotype actively regulated in multiple tissues, and support the hypothesis that natural variation in diapause propensity underlies adaptation to spatially and temporally varying selective pressures. |
BACKGROUND: Felid herpesvirus 1 (FHV-1) causes upper respiratory tract diseases in cats worldwide, including nasal and ocular discharge, conjunctivitis and oral ulceration. The nature and severity of disease can vary between clinical cases. Genetic determinants of virulence are likely to contribute to differences in the in vivo phenotype of FHV-1 isolates, but to date there have been limited studies investigating FHV-1 genetic diversity. This study used next generation sequencing to compare the genomes of contemporary Australian clinical isolates of FHV-1, vaccine isolates and historical clinical isolates, including isolates that predated the introduction of live attenuated vaccines into Australia. Analysis of the genome sequences aimed to assess the level of genetic diversity, identify potential genetic markers that could influence the in vivo phenotype of the isolates and examine the sequences for evidence of recombination. RESULTS: The full genome sequences of 26 isolates of FHV-1 were determined, including two vaccine isolates and 24 clinical isolates that were collected over a period of approximately 40 years. Analysis of the genome sequences revealed a remarkably low level of diversity (0.0–0.01 %) between the isolates. No potential genetic determinants of virulence were identified, but unique single nucleotide polymorphisms (SNPs) in the UL28 and UL44 genes were detected in the vaccine isolates that were not present in the clinical isolates. No evidence of FHV-1 recombination was detected using multiple methods of recombination detection, even though many of the isolates originated from cats housed in a shelter environment where high infective pressures were likely to exist. Evidence of displacement of dominant FHV-1 isolates with other (genetically distinct) FHV-1 isolates over time was observed amongst the isolates obtained from the shelter-housed animals. CONCLUSIONS: The results show that FHV-1 genomes are highly conserved. The lack of recombination detected in the FHV-1 genomes suggests that the risk of attenuated vaccines recombining to generate virulent field viruses is lower than has been suggested for some other herpesviruses. The SNPs detected only in the vaccine isolates offer the potential to develop PCR-based methods of differentiating vaccine and clinical isolates of FHV-1 in order to facilitate future epidemiological studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-3050-2) contains supplementary material, which is available to authorized users. |
Emerging diseases are a major challenge to public health. Revealing the evolutionary processes that allow novel pathogens to adapt to new hosts, also the potential barriers to host adaptation, is central to understanding the drivers of disease emergence. In particular, it is unclear how the genetics and ecology of pathogens interact to shape the likelihood of successful cross-species transmission. To better understand the determinants of host adaptation and emergence, we modelled key aspects of pathogen evolutionary dynamics at both intra- and inter-host scales, using parameter values similar to those observed in influenza virus. We considered the possibility of acquiring the necessary host adaptive mutations both before (‘off-the-shelf’ emergence) and after (‘tailor-made’ emergence) a virus is transmitted from a donor to a new recipient species. Under both scenarios, population bottlenecks at inter-host transmission act as a major barrier to host adaptation, greatly limiting the number of adaptive mutations that are able to cross the species barrier. In addition, virus emergence is hindered if the fitness valley between the donor and recipient hosts is either too steep or too shallow. Overall, our results reveal where in evolutionary parameter space a virus could adapt to and become transmissible in a new species. |
When controlling an emerging outbreak of an infectious disease, it is essential to know the key epidemiological parameters, such as the basic reproduction number R(0) and the control effort required to prevent a large outbreak. These parameters are estimated from the observed incidence of new cases and information about the infectious contact structures of the population in which the disease spreads. However, the relevant infectious contact structures for new, emerging infections are often unknown or hard to obtain. Here, we show that, for many common true underlying heterogeneous contact structures, the simplification to neglect such structures and instead assume that all contacts are made homogeneously in the whole population results in conservative estimates for R(0) and the required control effort. This means that robust control policies can be planned during the early stages of an outbreak, using such conservative estimates of the required control effort. |
A phylogeny has been calculated by maximum likelihood comparisons of the concatenated consensus protein sequences of 29 tobamoviruses shown to be non-recombinant. This phylogeny has statistically significant support throughout, including its basal branches. The viruses form eight lineages that are congruent with the taxonomy of the hosts from which each was first isolated and, with the exception of three of the twenty-nine species, all fall into three clusters that have either asterid or rosid or caryophyllid hosts (i.e. the major subdivisions of eudicotyledonous plants). A modified Mantel permutation test showed that the patristic distances of virus and host phylogenies are significantly correlated, especially when the three anomalously placed viruses are removed. When the internal branches of the virus phylogeny were collapsed the congruence decreased. The simplest explanation of this congruence of the virus and host phylogenies is that most tobamovirus lineages have co-diverged with their primary plant hosts for more than 110 million years, and only the brassica-infecting lineage originated from a major host switch from asterids to rosids. Their co-divergence seems to have been ‘fuzzy’ rather than ‘strict’, permitting viruses to switch hosts within major host clades. Our conclusions support those of a coalesence analysis of tobamovirus sequences, that used proxy node dating, but not a similar analysis of nucleotide sequences from dated samples, which concluded that the tobamoviruses originated only 100 thousand years ago. |
Emerging diseases may spread rapidly through dense and large urban contact networks, especially they are transmitted by the airborne route, before new vaccines can be made available. Airborne diseases may spread rapidly as people visit different indoor environments and are in frequent contact with others. We constructed a simple indoor contact model for an ideal city with 7 million people and 3 million indoor spaces, and estimated the probability and duration of contact between any two individuals during one day. To do this, we used data from actual censuses, social behavior surveys, building surveys, and ventilation measurements in Hong Kong to define eight population groups and seven indoor location groups. Our indoor contact model was integrated with an existing epidemiological Susceptible, Exposed, Infectious, and Recovered (SEIR) model to estimate disease spread and with the Wells-Riley equation to calculate local infection risks, resulting in an integrated indoor transmission network model. This model was used to estimate the probability of an infected individual infecting others in the city and to study the disease transmission dynamics. We predicted the infection probability of each sub-population under different ventilation systems in each location type in the case of a hypothetical airborne disease outbreak, which is assumed to have the same natural history and infectiousness as smallpox. We compared the effectiveness of controlling ventilation in each location type with other intervention strategies. We conclude that increasing building ventilation rates using methods such as natural ventilation in classrooms, offices, and homes is a relatively effective strategy for airborne diseases in a large city. |
Theiler´s murine encephalomyelitis virus (TMEV)-infection is a widely used animal model for studying demyelinating disorders, including multiple sclerosis (MS). The immunosuppressive cytokine Interleukin (IL)-10 counteracts hyperactive immune responses and critically controls immune homeostasis in infectious and autoimmune disorders. In order to investigate the effect of signaling via Interleukin-10 receptor (IL-10R) in infectious neurological diseases, TMEV-infected SJL mice were treated with IL-10R blocking antibody (Ab) in the acute and chronic phase of the disease. The findings demonstrate that (i) Ab-mediated IL-10 neutralization leads to progressive colitis with a reduction in Foxp3(+) regulatory T cells and increased numbers of CD8(+)CD44(+) memory T cells as well as activated CD4(+)CD69(+) and CD8(+)CD69(+) T cells in uninfected mice. (ii) Concurrent acute TMEV-infection worsened enteric disease-mediated by IL-10R neutralization. Virus-triggered effects were associated with an enhanced activation of CD4(+) T helper cells and CD8(+) cytotoxic T lymphocytes and augmented cytokine expression. By contrast, (iii) IL-10R neutralization during chronic TMEV-infection was not associated with enhanced peripheral immunopathology but an increased CD3(+) T cell influx in the spinal cord. IL-10R neutralization causes a breakdown in peripheral immune tolerance in genetically predisposed mice, which leads to immune-mediated colitis, resembling inflammatory bowel disease. Hyperactive immune state following IL-10R blockade is enhanced by central nervous system-restricted viral infection in a disease phase-dependent manner. |
Astrocytes are the major glial cell of the central nervous system (CNS), providing both metabolic and physical support to other neural cells. After injury, astrocytes become reactive and express a continuum of phenotypes which may be supportive or inhibitory to CNS repair. This review will focus on the ability of astrocytes to influence myelination in the context of specific secreted factors, cytokines and other neural cell targets within the CNS. In particular, we focus on how astrocytes provide energy and cholesterol to neurons, influence synaptogenesis, affect oligodendrocyte biology and instigate cross-talk between the many cellular components of the CNS. |
The ubiquitin-like protein ISG15 and its conjugation to proteins (ISGylation) are strongly induced by type I interferon. Influenza B virus encodes non-structural protein 1 (NS1B) that binds human ISG15 and provides an appropriate model for determining how ISGylation affects virus replication in human cells. Here using a recombinant virus encoding a NS1B protein defective in ISG15 binding, we show that NS1B counteracts ISGylation-mediated antiviral activity by binding and sequestering ISGylated viral proteins, primarily ISGylated viral nucleoprotein (NP), in infected cells. ISGylated NP that is not sequestered by mutant NS1B acts as a dominant-negative inhibitor of oligomerization of the more abundant unconjugated NP. Consequently formation of viral ribonucleoproteins that catalyse viral RNA synthesis is inhibited, causing decreased viral protein synthesis and virus replication. We verify that ISGylated NP is largely responsible for inhibition of viral RNA synthesis by generating recombinant viruses that lack known ISGylation sites in NP. |
Interferons (IFNs) exert their anti-viral effects by inducing the expression of hundreds of IFN-stimulated genes (ISGs). The activity of known ISGs is insufficient to account for the antiretroviral effects of IFN, suggesting that ISGs with antiretroviral activity are yet to be described. We constructed an arrayed library of ISGs from rhesus macaques and tested the ability of hundreds of individual macaque and human ISGs to inhibit early and late replication steps for 11 members of the retroviridae from various host species. These screens uncovered numerous ISGs with antiretroviral activity at both the early and late stages of virus replication. Detailed analyses of two antiretroviral ISGs indicate that indoleamine 2,3-dioxygenase 1 (IDO1) can inhibit retroviral replication by metabolite depletion while tripartite motif-56 (TRIM56) accentuates ISG induction by IFNα and inhibits the expression of late HIV-1 genes. Overall, these studies reveal numerous host proteins that mediate the antiretroviral activity of IFNs. |
Understanding the natural evolution and structural changes involved in broadly neutralizing antibody (bnAb) development holds great promise for improving the design of prophylactic influenza vaccines. Here we report an haemagglutinin (HA) stem-directed bnAb, 3I14, isolated from human memory B cells, that utilizes a heavy chain encoded by the IGHV3-30 germline gene. MAb 3I14 binds and neutralizes groups 1 and 2 influenza A viruses and protects mice from lethal challenge. Analysis of VH and VL germline back-mutants reveals binding to H3 and H1 but not H5, which supports the critical role of somatic hypermutation in broadening the bnAb response. Moreover, a single VLD94N mutation improves the affinity of 3I14 to H5 by nearly 10-fold. These data provide evidence that memory B cell evolution can expand the HA subtype specificity. Our results further suggest that establishing an optimized memory B cell pool should be an aim of ‘universal' influenza vaccine strategies. |
Respiratory syncytial virus (RSV) causes severe acute lower respiratory tract disease leading to numerous hospitalizations and deaths among the infant and elderly populations worldwide. There is no vaccine or a less effective drug available against RSV infections. Natural RSV infection stimulates the Th1 immune response and activates the production of neutralizing antibodies, while earlier vaccine trials that used UV-inactivated RSV exacerbated the disease due to the activation of the allergic Th2 response. With a focus on Th1 immunity, we developed a DNA vaccine containing the native RSV fusion (RSV F) protein and studied its immune response in BALB/c mice. High levels of RSV specific antibodies were induced during subsequent immunizations. The serum antibodies were able to neutralize RSV in vitro. The RSV inhibition by sera was also shown by immunofluorescence analyses. Antibody response of the RSV F DNA vaccine showed a strong Th1 response. Also, sera from RSV F immunized and RSV infected mice reduced the RSV infection by 50% and 80%, respectively. Our data evidently showed that the RSV F DNA vaccine activated the Th1 biased immune response and led to the production of neutralizing antibodies, which is the desired immune response required for protection from RSV infections. |
OBJECTIVES: Alarm over the reported high failure rates for metal-on-metal (MoM) hip implants as well as their potential for locally aggressive Adverse Reactions to Metal Debris (ARMDs) has prompted government agencies, internationally, to recommend the monitoring of patients with MoM hip implants. Some have advised that a blood ion level >7 µg/L indicates potential for ARMDs. We report a systematic review and meta-analysis of the performance of metal ion testing for ARMDs. METHODS: We searched MEDLINE and EMBASE to identify articles from which it was possible to reconstruct a 2 × 2 table. Two readers independently reviewed all articles and extracted data using explicit criteria. We computed a summary receiver operating curve using a Bayesian random-effects hierarchical model. RESULTS: Our literature search returned 575 unique articles; only six met inclusion criteria defined a priori. The discriminative capacity of ion tests was homogeneous across studies but that there was substantial cut-point heterogeneity. Our best estimate of the “true” area under curve (AUC) for metal ion testing is 0.615, with a 95% credible interval of 0.480 to 0.735, thus we can state that the probability that metal ion testing is actually clinically useful with an AUC ≥ 0.75 is 1.7%. CONCLUSION: Metal ion levels are not useful as a screening test for identifying high risk patients because ion testing will either lead to a large burden of false positive patients, or otherwise marginally modify the pre-test probability. With the availability of more accurate non-invasive tests, we did not find any evidence for using blood ion levels to diagnose symptomatic patients. Cite this article: M. Pahuta, J. M. Smolders, J. L. van Susante, J. Peck, P. R. Kim, P. E. Beaule. Blood metal ion levels are not a useful test for adverse reactions to metal debris: a systematic review and meta-analysis. Bone Joint Res 2016;5:379–386. DOI: 10.1302/2046-3758.59.BJR-2016-0027.R1. |
In order to investigate the mechanisms of persistent foot-and-mouth disease virus (FMDV) infection in cattle, transcriptome alterations associated with the FMDV carrier state were characterized using a bovine whole-transcriptome microarray. Eighteen cattle (8 vaccinated with a recombinant FMDV A vaccine, 10 non-vaccinated) were challenged with FMDV A(24) Cruzeiro, and the gene expression profiles of nasopharyngeal tissues collected between 21 and 35 days after challenge were compared between 11 persistently infected carriers and 7 non-carriers. Carriers and non-carriers were further compared to 2 naïve animals that had been neither vaccinated nor challenged. At a controlled false-discovery rate of 10% and a minimum difference in expression of 50%, 648 genes were differentially expressed between FMDV carriers and non-carriers, and most (467) had higher expression in carriers. Among these, genes associated with cellular proliferation and the immune response–such as chemokines, cytokines and genes regulating T and B cells–were significantly overrepresented. Differential gene expression was significantly correlated between non-vaccinated and vaccinated animals (biological correlation +0.97), indicating a similar transcriptome profile across these groups. Genes related to prostaglandin E(2) production and the induction of regulatory T cells were overexpressed in carriers. In contrast, tissues from non-carrier animals expressed higher levels of complement regulators and pro-apoptotic genes that could promote virus clearance. Based on these findings, we propose a working hypothesis for FMDV persistence in nasopharyngeal tissues of cattle, in which the virus may be maintained by an impairment of apoptosis and the local suppression of cell-mediated antiviral immunity by inducible regulatory T cells. |
Host shutoff is a common strategy used by viruses to repress cellular mRNA translation and concomitantly allow the efficient translation of viral mRNAs. Here we use RNA-sequencing and ribosome profiling to explore the mechanisms that are being utilized by the Influenza A virus (IAV) to induce host shutoff. We show that viral transcripts are not preferentially translated and instead the decline in cellular protein synthesis is mediated by viral takeover on the mRNA pool. Our measurements also uncover strong variability in the levels of cellular transcripts reduction, revealing that short transcripts are less affected by IAV. Interestingly, these mRNAs that are refractory to IAV infection are enriched in cell maintenance processes such as oxidative phosphorylation. Furthermore, we show that the continuous oxidative phosphorylation activity is important for viral propagation. Our results advance our understanding of IAV-induced shutoff, and suggest a mechanism that facilitates the translation of genes with important housekeeping functions. DOI: http://dx.doi.org/10.7554/eLife.18311.001 |
BACKGROUND: This study aimed to investigate the possible serum protein changes after endotoxin administration in healthy and choline-treated calves using proteomics. These results are expected to contribute to the understanding of the pathophysiological mechanisms of endotoxemia and the beneficial effect of choline administration in this clinical situation. METHODS: Healthy-calves (n = 20) were divided into 4 groups: Control, Choline treated (C), Lipopolysaccharide administered (LPS), and LPS + C. Control calves received 0.9 % NaCl injection. Calves in C and LPS + C groups received choline chloride (1 mg/kg/iv). Endotoxin (LPS) was injected (2 μg/kg/iv) to the calves in LPS and LPS + C groups. Serum samples were collected before and after the treatments. Differentially expressed proteins (> 1.5 fold-change relative to controls) were identified by LC-MS/MS. RESULTS: After LPS administration, 14 proteins increased, and 13 proteins decreased within 48 h as compared to controls. In the LPS group, there were significant increases in serum levels of ragulator complex protein (189-fold) and galectin-3-binding protein (10-fold), but transcription factor MafF and corticosteroid binding globulin were down regulated (≥ 5 fold). As compared with the LPS group, in LPS + C group, fibrinogen gamma-B-chain and antithrombin were up-regulated, while hemopexin and histone H4 were down-regulated. Choline treatment attenuated actin alpha cardiac muscle-1 overexpression after LPS. CONCLUSIONS: LPS administration produces changes in serum proteins associated with lipid metabolism, immune and inflammatory response, protein binding/transport, cell adhesion, venous thrombosis, cardiac contractility and blood coagulation. The administration of choline is associated with changes in proteins which can be related with its beneficial effect in this clinical situation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-016-0837-y) contains supplementary material, which is available to authorized users. |
The APETALA2 (AP2) genes represent the AP2 group within a large group of DNA-binding proteins called AP2/EREBP. The AP2 gene is functional and necessary for flower development, stem cell maintenance, and seed development, whereas the other members of AP2 group redundantly affect flowering time. Here we study the phylogeny of AP2 group genes in spermatophytes. Spermatophyte AP2 group genes can be classified into AP2 and TOE types, six clades, and we found that the AP2 group homologs in gymnosperms belong to the AP2 type, whereas TOE types are absent, which indicates the AP2 type gene are more ancient and TOE type was split out of AP2 type and losing the major function. In Brassicaceae, the expansion of AP2 and TOE type lead to the gene number of AP2 group were up to six. Purifying selection appears to have been the primary driving force of spermatophyte AP2 group evolution, although positive selection occurred in the AP2 clade. The transition from exon to intron of AtAP2 in Arabidopsis mutant leads to the loss of gene function and the same situation was found in AtTOE2. Combining this evolutionary analysis and published research, the results suggest that typical AP2 group genes may first appear in gymnosperms and diverged in angiosperms, following expansion of group members and functional differentiation. In angiosperms, AP2 genes (AP2 clade) inherited key functions from ancestors and other genes of AP2 group lost most function but just remained flowering time controlling in gene formation. In this study, the phylogenies of AP2 group genes in spermatophytes was analyzed, which supported the evidence for the research of gene functional evolution of AP2 group. |
The outcome of Mycobacterium tuberculosis infection and the immunological response to the bacillus Calmette-Guerin (BCG) vaccine are highly variable in humans. Deciphering the relative importance of host genetics, environment, and vaccine preparation for the efficacy of BCG has proven difficult in natural populations. We developed a model system that captures the breadth of immunological responses observed in outbred individual mice, which can be used to understand the contribution of host genetics to vaccine efficacy. This system employs a panel of highly diverse inbred mouse strains, consisting of the founders and recombinant progeny of the “Collaborative Cross” project. Unlike natural populations, the structure of this panel allows the serial evaluation of genetically identical individuals and the quantification of genotype-specific effects of interventions such as vaccination. When analyzed in the aggregate, our panel resembled natural populations in several important respects: the animals displayed a broad range of susceptibility to M. tuberculosis, differed in their immunological responses to infection, and were not durably protected by BCG vaccination. However, when analyzed at the genotype level, we found that these phenotypic differences were heritable. M. tuberculosis susceptibility varied between lines, from extreme sensitivity to progressive M. tuberculosis clearance. Similarly, only a minority of the genotypes was protected by vaccination. The efficacy of BCG was genetically separable from susceptibility to M. tuberculosis, and the lack of efficacy in the aggregate analysis was driven by nonresponsive lines that mounted a qualitatively distinct response to infection. These observations support an important role for host genetic diversity in determining BCG efficacy and provide a new resource to rationally develop more broadly efficacious vaccines. |
The TNF-α biological inhibitors have significantly improved the clinical outcomes of many autoimmune diseases, in particular rheumatoid arthritis. However, the practical uses are limited due to high costs and the risk of anti-drug antibody responses. Attempts to develop anti-TNF-α vaccines have generated encouraging data in animal models, however, data from clinical trials have not met expectations. In present study, we designed a TNF-α epitope-scaffold immunogen DTNF7 using the transmembrane domain of diphtheria toxin, named DTT as a scaffold. Molecular dynamics simulation shows that the grafted TNF-α epitope is entirely surface-exposed and presented in a native-like conformation while the rigid helical structure of DTT is minimally perturbed, thereby rendering the immunogen highly stable. Immunization of mice with alum formulated DTNF7 induced humoral responses against native TNF-α, and the antibody titer was sustained for more than 6 months, which supports a role of the universal CD4 T cell epitopes of DTT in breaking self-immune tolerance. In a mouse model of rheumatoid arthritis, DTNF7-alum vaccination markedly delayed the onset of collagen-induced arthritis, and reduced incidence as well as clinical score. DTT is presumed safe as an epitope carrier because a catalytic inactive mutant of diphtheria toxin, CRM197 has good clinical safety records as an active vaccine component. Taken all together, we show that DTT-based epitope vaccine is a promising strategy for prevention and treatment of autoimmune diseases. |
Sporadic human infections with the highly pathogenic avian influenza (HPAI) A (H5N6) virus have been reported in different provinces in China since April 2014. From June 2015 to January 2016, routine live poultry market (LPM) surveillance was conducted in Shenzhen, Guangdong Province. H5N6 viruses were not detected until November 2015. The H5N6 virus-positive rate increased markedly beginning in December 2015, and viruses were detected in LPMs in all districts of the city. Coincidently, two human cases with histories of poultry exposure developed symptoms and were diagnosed as H5N6-positive in Shenzhen during late December 2015 and early January 2016. Similar viruses were identified in environmental samples collected in the LPMs and the patients. In contrast to previously reported H5N6 viruses, viruses with six internal genes derived from the H9N2 or H7N9 viruses were detected in the present study. The increased H5N6 virus-positive rate in the LPMs and the subsequent human infections demonstrated that sustained LPM surveillance for avian influenza viruses provides an early warning for human infections. Interventions, such as LPM closures, should be immediately implemented to reduce the risk of human infection with the H5N6 virus when the virus is widely detected during LPM surveillance. |
The genus Sapovirus, in the family Caliciviridae, includes enteric viruses of humans and domestic animals. Information on sapovirus infection of wildlife is limited and is currently lacking for any free-ranging wildlife species in Africa. By screening a large number of predominantly fecal samples (n = 631) obtained from five carnivore species in the Serengeti ecosystem, East Africa, sapovirus RNA was detected in the spotted hyena (Crocuta crocuta, family Hyaenidae), African lion (Panthera leo, family Felidae), and bat-eared fox (Otocyon megalotis, family Canidae), but not in golden or silver-backed jackals (Canis aureus and C. mesomelas, respectively, family Canidae). A phylogenetic analysis based on partial RNA-dependent RNA polymerase (RdRp) gene sequences placed the sapovirus strains from African carnivores in a monophyletic group. Within this monophyletic group, sapovirus strains from spotted hyenas formed one independent sub-group, and those from bat-eared fox and African lion a second sub-group. The percentage nucleotide similarity between sapoviruses from African carnivores and those from other species was low (< 70.4%). Long-term monitoring of sapovirus in a population of individually known spotted hyenas from 2001 to 2012 revealed: i) a relatively high overall infection prevalence (34.8%); ii) the circulation of several genetically diverse variants; iii) large fluctuations in infection prevalence across years, indicative of outbreaks; iv) no significant difference in the likelihood of infection between animals in different age categories. The likelihood of sapovirus infection decreased with increasing hyena group size, suggesting an encounter reduction effect, but was independent of socially mediated ano-genital contact, or the extent of the area over which an individual roamed. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.