acoustic_scattering_maze / generation /acoustics_2d_interface_maze.py
LTMeyer's picture
Add files using upload-large-folder tool
bc01a3c verified
#!/usr/bin/env python
# encoding: utf-8
r"""
Two-dimensional variable-coefficient acoustics
==============================================
Solve the variable-coefficient acoustics equations in 2D:
.. math::
p_t + K(x,y) (u_x + v_y) & = 0 \\
u_t + p_x / \rho(x,y) & = 0 \\
v_t + p_y / \rho(x,y) & = 0.
Here p is the pressure, (u,v) is the velocity, :math:`K(x,y)` is the bulk modulus,
and :math:`\rho(x,y)` is the density.
This example shows how to solve a problem with variable coefficients.
The left and right halves of the domain consist of different materials.
"""
from functools import partial
import matplotlib.pyplot as plt
import numpy as np
from skimage.transform import resize
def create_maze(dim, seed):
# Create a grid filled with walls
maze = np.ones((dim * 2 + 1, dim * 2 + 1))
# Define the starting point
x, y = (0, 0)
maze[2 * x + 1, 2 * y + 1] = 0
# Initialize the stack with the starting point
stack = [(x, y)]
while len(stack) > 0:
x, y = stack[-1]
# Define possible directions
directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]
directions = seed.permutation(directions)
for dx, dy in directions:
nx, ny = x + dx, y + dy
if (
nx >= 0
and ny >= 0
and nx < dim
and ny < dim
and maze[2 * nx + 1, 2 * ny + 1] == 1
):
maze[2 * nx + 1, 2 * ny + 1] = 0
maze[2 * x + 1 + dx, 2 * y + 1 + dy] = 0
stack.append((nx, ny))
break
else:
stack.pop()
# Create an entrance and an exit
maze[1, 0] = 0
maze[-2, -1] = 0
return maze
def setup(
kernel_language="Fortran",
use_petsc=False,
outdir="./_output",
solver_type="classic",
time_integrator="SSP104",
lim_type=2,
disable_output=False,
num_cells=(256, 256),
seed=None,
T_max=4.0,
num_steps=201,
):
"""
Example python script for solving the 2d acoustics equations.
"""
from clawpack import riemann
if seed is None:
seed = np.random.default_rng()
if use_petsc:
import clawpack.petclaw as pyclaw
else:
from clawpack import pyclaw
if solver_type == "classic":
solver = pyclaw.ClawSolver2D(riemann.vc_acoustics_2D)
solver.dimensional_split = False
solver.limiters = pyclaw.limiters.tvd.MC
elif solver_type == "sharpclaw":
solver = pyclaw.SharpClawSolver2D(riemann.vc_acoustics_2D)
solver.time_integrator = time_integrator
if time_integrator == "SSPLMMk2":
solver.lmm_steps = 3
solver.cfl_max = 0.25
solver.cfl_desired = 0.24
solver.bc_lower[0] = pyclaw.BC.wall
solver.bc_upper[0] = pyclaw.BC.extrap
solver.bc_lower[1] = pyclaw.BC.wall
solver.bc_upper[1] = pyclaw.BC.extrap
solver.aux_bc_lower[0] = pyclaw.BC.wall
solver.aux_bc_upper[0] = pyclaw.BC.extrap
solver.aux_bc_lower[1] = pyclaw.BC.wall
solver.aux_bc_upper[1] = pyclaw.BC.extrap
x = pyclaw.Dimension(-1.0, 1.0, num_cells[0], name="x")
y = pyclaw.Dimension(-1.0, 1.0, num_cells[1], name="y")
domain = pyclaw.Domain([x, y])
num_eqn = 3
num_aux = 2 # density, sound speed
state = pyclaw.State(domain, num_eqn, num_aux)
grid = state.grid
X, Y = grid.p_centers
def construct_maze_background(aux, seed, base_maze_low=3, base_maze_high=8):
maze_size = seed.integers(base_maze_low, base_maze_high + 1)
maze = create_maze(maze_size, seed)
maze = resize(maze, (aux[0].shape[-2], aux[0].shape[-1]), order=0)
rho = maze * 1e6 + 3
return rho
rho = construct_maze_background(state.aux, seed)
c = np.sqrt(4.0 / rho)
state.aux[0, :, :] = rho
state.aux[1, :, :] = c
state.q[0, :, :] = 0.0
state.q[1, :, :] = 0.0
state.q[2, :, :] = 0.0
# Set initial condition
n_waves = seed.integers(1, 6)
mask = rho < 100
for i in range(n_waves):
center_pixel = seed.choice(rho[mask].shape[0])
x0 = X[mask][center_pixel]
y0 = Y[mask][center_pixel]
width = seed.uniform(0.01, 0.02)
rad = seed.uniform(0.01, 0.04)
intensity = seed.uniform(3.0, 5.0)
# x0 = -0.5; y0 = 0.
r = np.sqrt((X - x0) ** 2 + (Y - y0) ** 2)
# width = 0.1; rad = 0.25
state.q[0, :, :] += (np.abs(r - rad) <= width) * (
intensity + np.cos(np.pi * (r - rad) / width)
)
state.q[0][~mask] = 0.0
claw = pyclaw.Controller()
claw.keep_copy = True
if disable_output:
claw.output_format = None
claw.solution = pyclaw.Solution(state, domain)
claw.solver = solver
claw.outdir = outdir
claw.tfinal = T_max
claw.num_output_times = num_steps
claw.write_aux_init = True
claw.setplot = setplot
claw.output_options = {"format": "binary"}
if use_petsc:
claw.output_options = {"format": "binary"}
return claw
def setplot(plotdata):
"""
Plot solution using VisClaw.
This example shows how to mark an internal boundary on a 2D plot.
"""
from clawpack.visclaw import colormaps
plotdata.clearfigures() # clear any old figures,axes,items data
# Figure for pressure
plotfigure = plotdata.new_plotfigure(name="Pressure", figno=0)
# Set up for axes in this figure:
plotaxes = plotfigure.new_plotaxes()
plotaxes.title = "Pressure"
plotaxes.scaled = True # so aspect ratio is 1
plotaxes.afteraxes = mark_interface
# Set up for item on these axes:
plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
plotitem.plot_var = 0
plotitem.pcolor_cmap = colormaps.yellow_red_blue
plotitem.add_colorbar = True
plotitem.pcolor_cmin = 0.0
plotitem.pcolor_cmax = 1.0
# Figure for x-velocity plot
plotfigure = plotdata.new_plotfigure(name="x-Velocity", figno=1)
# Set up for axes in this figure:
plotaxes = plotfigure.new_plotaxes()
plotaxes.title = "u"
plotaxes.afteraxes = mark_interface
plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
plotitem.plot_var = 1
plotitem.pcolor_cmap = colormaps.yellow_red_blue
plotitem.add_colorbar = True
plotitem.pcolor_cmin = -0.3
plotitem.pcolor_cmax = 0.3
return plotdata
def mark_interface(current_data):
plt.plot((0.0, 0.0), (-1.0, 1.0), "-k", linewidth=2)
if __name__ == "__main__":
from clawpack.pyclaw.util import run_app_from_main
setup_wrapped = partial(setup, seed=np.random.default_rng(1))
output = run_app_from_main(setup_wrapped, setplot)