|
|
|
|
|
r""" |
|
Two-dimensional variable-coefficient acoustics |
|
============================================== |
|
|
|
Solve the variable-coefficient acoustics equations in 2D: |
|
|
|
.. math:: |
|
p_t + K(x,y) (u_x + v_y) & = 0 \\ |
|
u_t + p_x / \rho(x,y) & = 0 \\ |
|
v_t + p_y / \rho(x,y) & = 0. |
|
|
|
Here p is the pressure, (u,v) is the velocity, :math:`K(x,y)` is the bulk modulus, |
|
and :math:`\rho(x,y)` is the density. |
|
|
|
This example shows how to solve a problem with variable coefficients. |
|
The left and right halves of the domain consist of different materials. |
|
""" |
|
|
|
from functools import partial |
|
|
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from skimage.transform import resize |
|
|
|
|
|
def create_maze(dim, seed): |
|
|
|
maze = np.ones((dim * 2 + 1, dim * 2 + 1)) |
|
|
|
|
|
x, y = (0, 0) |
|
maze[2 * x + 1, 2 * y + 1] = 0 |
|
|
|
|
|
stack = [(x, y)] |
|
while len(stack) > 0: |
|
x, y = stack[-1] |
|
|
|
|
|
directions = [(0, 1), (1, 0), (0, -1), (-1, 0)] |
|
directions = seed.permutation(directions) |
|
|
|
for dx, dy in directions: |
|
nx, ny = x + dx, y + dy |
|
if ( |
|
nx >= 0 |
|
and ny >= 0 |
|
and nx < dim |
|
and ny < dim |
|
and maze[2 * nx + 1, 2 * ny + 1] == 1 |
|
): |
|
maze[2 * nx + 1, 2 * ny + 1] = 0 |
|
maze[2 * x + 1 + dx, 2 * y + 1 + dy] = 0 |
|
stack.append((nx, ny)) |
|
break |
|
else: |
|
stack.pop() |
|
|
|
|
|
maze[1, 0] = 0 |
|
maze[-2, -1] = 0 |
|
|
|
return maze |
|
|
|
|
|
def setup( |
|
kernel_language="Fortran", |
|
use_petsc=False, |
|
outdir="./_output", |
|
solver_type="classic", |
|
time_integrator="SSP104", |
|
lim_type=2, |
|
disable_output=False, |
|
num_cells=(256, 256), |
|
seed=None, |
|
T_max=4.0, |
|
num_steps=201, |
|
): |
|
""" |
|
Example python script for solving the 2d acoustics equations. |
|
""" |
|
from clawpack import riemann |
|
|
|
if seed is None: |
|
seed = np.random.default_rng() |
|
if use_petsc: |
|
import clawpack.petclaw as pyclaw |
|
else: |
|
from clawpack import pyclaw |
|
|
|
if solver_type == "classic": |
|
solver = pyclaw.ClawSolver2D(riemann.vc_acoustics_2D) |
|
solver.dimensional_split = False |
|
solver.limiters = pyclaw.limiters.tvd.MC |
|
elif solver_type == "sharpclaw": |
|
solver = pyclaw.SharpClawSolver2D(riemann.vc_acoustics_2D) |
|
solver.time_integrator = time_integrator |
|
if time_integrator == "SSPLMMk2": |
|
solver.lmm_steps = 3 |
|
solver.cfl_max = 0.25 |
|
solver.cfl_desired = 0.24 |
|
|
|
solver.bc_lower[0] = pyclaw.BC.wall |
|
solver.bc_upper[0] = pyclaw.BC.extrap |
|
solver.bc_lower[1] = pyclaw.BC.wall |
|
solver.bc_upper[1] = pyclaw.BC.extrap |
|
solver.aux_bc_lower[0] = pyclaw.BC.wall |
|
solver.aux_bc_upper[0] = pyclaw.BC.extrap |
|
solver.aux_bc_lower[1] = pyclaw.BC.wall |
|
solver.aux_bc_upper[1] = pyclaw.BC.extrap |
|
|
|
x = pyclaw.Dimension(-1.0, 1.0, num_cells[0], name="x") |
|
y = pyclaw.Dimension(-1.0, 1.0, num_cells[1], name="y") |
|
domain = pyclaw.Domain([x, y]) |
|
|
|
num_eqn = 3 |
|
num_aux = 2 |
|
state = pyclaw.State(domain, num_eqn, num_aux) |
|
|
|
grid = state.grid |
|
X, Y = grid.p_centers |
|
|
|
def construct_maze_background(aux, seed, base_maze_low=3, base_maze_high=8): |
|
maze_size = seed.integers(base_maze_low, base_maze_high + 1) |
|
maze = create_maze(maze_size, seed) |
|
maze = resize(maze, (aux[0].shape[-2], aux[0].shape[-1]), order=0) |
|
rho = maze * 1e6 + 3 |
|
return rho |
|
|
|
rho = construct_maze_background(state.aux, seed) |
|
c = np.sqrt(4.0 / rho) |
|
state.aux[0, :, :] = rho |
|
state.aux[1, :, :] = c |
|
|
|
state.q[0, :, :] = 0.0 |
|
state.q[1, :, :] = 0.0 |
|
state.q[2, :, :] = 0.0 |
|
|
|
n_waves = seed.integers(1, 6) |
|
mask = rho < 100 |
|
for i in range(n_waves): |
|
center_pixel = seed.choice(rho[mask].shape[0]) |
|
x0 = X[mask][center_pixel] |
|
y0 = Y[mask][center_pixel] |
|
width = seed.uniform(0.01, 0.02) |
|
rad = seed.uniform(0.01, 0.04) |
|
intensity = seed.uniform(3.0, 5.0) |
|
|
|
r = np.sqrt((X - x0) ** 2 + (Y - y0) ** 2) |
|
|
|
state.q[0, :, :] += (np.abs(r - rad) <= width) * ( |
|
intensity + np.cos(np.pi * (r - rad) / width) |
|
) |
|
|
|
state.q[0][~mask] = 0.0 |
|
|
|
claw = pyclaw.Controller() |
|
claw.keep_copy = True |
|
if disable_output: |
|
claw.output_format = None |
|
claw.solution = pyclaw.Solution(state, domain) |
|
claw.solver = solver |
|
claw.outdir = outdir |
|
claw.tfinal = T_max |
|
claw.num_output_times = num_steps |
|
claw.write_aux_init = True |
|
claw.setplot = setplot |
|
claw.output_options = {"format": "binary"} |
|
if use_petsc: |
|
claw.output_options = {"format": "binary"} |
|
|
|
return claw |
|
|
|
|
|
def setplot(plotdata): |
|
""" |
|
Plot solution using VisClaw. |
|
|
|
This example shows how to mark an internal boundary on a 2D plot. |
|
""" |
|
|
|
from clawpack.visclaw import colormaps |
|
|
|
plotdata.clearfigures() |
|
|
|
|
|
plotfigure = plotdata.new_plotfigure(name="Pressure", figno=0) |
|
|
|
|
|
plotaxes = plotfigure.new_plotaxes() |
|
plotaxes.title = "Pressure" |
|
plotaxes.scaled = True |
|
plotaxes.afteraxes = mark_interface |
|
|
|
|
|
plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor") |
|
plotitem.plot_var = 0 |
|
plotitem.pcolor_cmap = colormaps.yellow_red_blue |
|
plotitem.add_colorbar = True |
|
plotitem.pcolor_cmin = 0.0 |
|
plotitem.pcolor_cmax = 1.0 |
|
|
|
|
|
plotfigure = plotdata.new_plotfigure(name="x-Velocity", figno=1) |
|
|
|
|
|
plotaxes = plotfigure.new_plotaxes() |
|
plotaxes.title = "u" |
|
plotaxes.afteraxes = mark_interface |
|
|
|
plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor") |
|
plotitem.plot_var = 1 |
|
plotitem.pcolor_cmap = colormaps.yellow_red_blue |
|
plotitem.add_colorbar = True |
|
plotitem.pcolor_cmin = -0.3 |
|
plotitem.pcolor_cmax = 0.3 |
|
|
|
return plotdata |
|
|
|
|
|
def mark_interface(current_data): |
|
plt.plot((0.0, 0.0), (-1.0, 1.0), "-k", linewidth=2) |
|
|
|
|
|
if __name__ == "__main__": |
|
from clawpack.pyclaw.util import run_app_from_main |
|
|
|
setup_wrapped = partial(setup, seed=np.random.default_rng(1)) |
|
output = run_app_from_main(setup_wrapped, setplot) |
|
|