File size: 6,700 Bytes
bc01a3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#!/usr/bin/env python
# encoding: utf-8
r"""
Two-dimensional variable-coefficient acoustics
==============================================

Solve the variable-coefficient acoustics equations in 2D:

.. math::
    p_t + K(x,y) (u_x + v_y) & = 0 \\
    u_t + p_x / \rho(x,y) & = 0 \\
    v_t + p_y / \rho(x,y) & = 0.

Here p is the pressure, (u,v) is the velocity, :math:`K(x,y)` is the bulk modulus,
and :math:`\rho(x,y)` is the density.

This example shows how to solve a problem with variable coefficients.
The left and right halves of the domain consist of different materials.
"""

from functools import partial

import matplotlib.pyplot as plt
import numpy as np
from skimage.transform import resize


def create_maze(dim, seed):
    # Create a grid filled with walls
    maze = np.ones((dim * 2 + 1, dim * 2 + 1))

    # Define the starting point
    x, y = (0, 0)
    maze[2 * x + 1, 2 * y + 1] = 0

    # Initialize the stack with the starting point
    stack = [(x, y)]
    while len(stack) > 0:
        x, y = stack[-1]

        # Define possible directions
        directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]
        directions = seed.permutation(directions)

        for dx, dy in directions:
            nx, ny = x + dx, y + dy
            if (
                nx >= 0
                and ny >= 0
                and nx < dim
                and ny < dim
                and maze[2 * nx + 1, 2 * ny + 1] == 1
            ):
                maze[2 * nx + 1, 2 * ny + 1] = 0
                maze[2 * x + 1 + dx, 2 * y + 1 + dy] = 0
                stack.append((nx, ny))
                break
        else:
            stack.pop()

    # Create an entrance and an exit
    maze[1, 0] = 0
    maze[-2, -1] = 0

    return maze


def setup(
    kernel_language="Fortran",
    use_petsc=False,
    outdir="./_output",
    solver_type="classic",
    time_integrator="SSP104",
    lim_type=2,
    disable_output=False,
    num_cells=(256, 256),
    seed=None,
    T_max=4.0,
    num_steps=201,
):
    """
    Example python script for solving the 2d acoustics equations.
    """
    from clawpack import riemann

    if seed is None:
        seed = np.random.default_rng()
    if use_petsc:
        import clawpack.petclaw as pyclaw
    else:
        from clawpack import pyclaw

    if solver_type == "classic":
        solver = pyclaw.ClawSolver2D(riemann.vc_acoustics_2D)
        solver.dimensional_split = False
        solver.limiters = pyclaw.limiters.tvd.MC
    elif solver_type == "sharpclaw":
        solver = pyclaw.SharpClawSolver2D(riemann.vc_acoustics_2D)
        solver.time_integrator = time_integrator
        if time_integrator == "SSPLMMk2":
            solver.lmm_steps = 3
            solver.cfl_max = 0.25
            solver.cfl_desired = 0.24

    solver.bc_lower[0] = pyclaw.BC.wall
    solver.bc_upper[0] = pyclaw.BC.extrap
    solver.bc_lower[1] = pyclaw.BC.wall
    solver.bc_upper[1] = pyclaw.BC.extrap
    solver.aux_bc_lower[0] = pyclaw.BC.wall
    solver.aux_bc_upper[0] = pyclaw.BC.extrap
    solver.aux_bc_lower[1] = pyclaw.BC.wall
    solver.aux_bc_upper[1] = pyclaw.BC.extrap

    x = pyclaw.Dimension(-1.0, 1.0, num_cells[0], name="x")
    y = pyclaw.Dimension(-1.0, 1.0, num_cells[1], name="y")
    domain = pyclaw.Domain([x, y])

    num_eqn = 3
    num_aux = 2  # density, sound speed
    state = pyclaw.State(domain, num_eqn, num_aux)

    grid = state.grid
    X, Y = grid.p_centers

    def construct_maze_background(aux, seed, base_maze_low=3, base_maze_high=8):
        maze_size = seed.integers(base_maze_low, base_maze_high + 1)
        maze = create_maze(maze_size, seed)
        maze = resize(maze, (aux[0].shape[-2], aux[0].shape[-1]), order=0)
        rho = maze * 1e6 + 3
        return rho

    rho = construct_maze_background(state.aux, seed)
    c = np.sqrt(4.0 / rho)
    state.aux[0, :, :] = rho
    state.aux[1, :, :] = c

    state.q[0, :, :] = 0.0
    state.q[1, :, :] = 0.0
    state.q[2, :, :] = 0.0
    # Set initial condition
    n_waves = seed.integers(1, 6)
    mask = rho < 100
    for i in range(n_waves):
        center_pixel = seed.choice(rho[mask].shape[0])
        x0 = X[mask][center_pixel]
        y0 = Y[mask][center_pixel]
        width = seed.uniform(0.01, 0.02)
        rad = seed.uniform(0.01, 0.04)
        intensity = seed.uniform(3.0, 5.0)
        # x0 = -0.5; y0 = 0.
        r = np.sqrt((X - x0) ** 2 + (Y - y0) ** 2)
        # width = 0.1; rad = 0.25
        state.q[0, :, :] += (np.abs(r - rad) <= width) * (
            intensity + np.cos(np.pi * (r - rad) / width)
        )

    state.q[0][~mask] = 0.0

    claw = pyclaw.Controller()
    claw.keep_copy = True
    if disable_output:
        claw.output_format = None
    claw.solution = pyclaw.Solution(state, domain)
    claw.solver = solver
    claw.outdir = outdir
    claw.tfinal = T_max
    claw.num_output_times = num_steps
    claw.write_aux_init = True
    claw.setplot = setplot
    claw.output_options = {"format": "binary"}
    if use_petsc:
        claw.output_options = {"format": "binary"}

    return claw


def setplot(plotdata):
    """
    Plot solution using VisClaw.

    This example shows how to mark an internal boundary on a 2D plot.
    """

    from clawpack.visclaw import colormaps

    plotdata.clearfigures()  # clear any old figures,axes,items data

    # Figure for pressure
    plotfigure = plotdata.new_plotfigure(name="Pressure", figno=0)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Pressure"
    plotaxes.scaled = True  # so aspect ratio is 1
    plotaxes.afteraxes = mark_interface

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
    plotitem.plot_var = 0
    plotitem.pcolor_cmap = colormaps.yellow_red_blue
    plotitem.add_colorbar = True
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 1.0

    # Figure for x-velocity plot
    plotfigure = plotdata.new_plotfigure(name="x-Velocity", figno=1)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "u"
    plotaxes.afteraxes = mark_interface

    plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
    plotitem.plot_var = 1
    plotitem.pcolor_cmap = colormaps.yellow_red_blue
    plotitem.add_colorbar = True
    plotitem.pcolor_cmin = -0.3
    plotitem.pcolor_cmax = 0.3

    return plotdata


def mark_interface(current_data):
    plt.plot((0.0, 0.0), (-1.0, 1.0), "-k", linewidth=2)


if __name__ == "__main__":
    from clawpack.pyclaw.util import run_app_from_main

    setup_wrapped = partial(setup, seed=np.random.default_rng(1))
    output = run_app_from_main(setup_wrapped, setplot)