date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~agents~test_initialize.py
"""Test the initialize module.""" from langchain.agents.agent_types import AgentType from langchain.agents.initialize import initialize_agent from langchain.tools.base import tool from tests.unit_tests.llms.fake_llm import FakeLLM @tool def my_tool(query: str) -> str: """A fake tool.""" return "fake tool" def test_initialize_agent_with_str_agent_type() -> None: """Test initialize_agent with a string.""" fake_llm = FakeLLM() agent_executor = initialize_agent( [my_tool], fake_llm, "zero-shot-react-description" # type: ignore ) assert agent_executor.agent._agent_type == AgentType.ZERO_SHOT_REACT_DESCRIPTION assert isinstance(agent_executor.tags, list) assert "zero-shot-react-description" in agent_executor.tags
[ "A fake tool." ]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~llms~test_replicate.py
"""Test Replicate API wrapper.""" from langchain.callbacks.manager import CallbackManager from langchain.llms.replicate import Replicate from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler TEST_MODEL = "replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5" # noqa: E501 def test_replicate_call() -> None: """Test simple non-streaming call to Replicate.""" llm = Replicate(model=TEST_MODEL) output = llm("What is LangChain") assert output assert isinstance(output, str) def test_replicate_streaming_call() -> None: """Test streaming call to Replicate.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) llm = Replicate(streaming=True, callback_manager=callback_manager, model=TEST_MODEL) output = llm("What is LangChain") assert output assert isinstance(output, str) def test_replicate_model_kwargs() -> None: """Test simple non-streaming call to Replicate.""" llm = Replicate( model=TEST_MODEL, model_kwargs={"max_length": 100, "temperature": 0.01} ) long_output = llm("What is LangChain") llm = Replicate( model=TEST_MODEL, model_kwargs={"max_length": 10, "temperature": 0.01} ) short_output = llm("What is LangChain") assert len(short_output) < len(long_output) assert llm.model_kwargs == {"max_length": 10, "temperature": 0.01} def test_replicate_input() -> None: llm = Replicate(model=TEST_MODEL, input={"max_length": 10}) assert llm.model_kwargs == {"max_length": 10}
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~embeddings~gpt4all.py
from typing import Any, Dict, List from langchain.pydantic_v1 import BaseModel, root_validator from langchain.schema.embeddings import Embeddings class GPT4AllEmbeddings(BaseModel, Embeddings): """GPT4All embedding models. To use, you should have the gpt4all python package installed Example: .. code-block:: python from langchain.embeddings import GPT4AllEmbeddings embeddings = GPT4AllEmbeddings() """ client: Any #: :meta private: @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that GPT4All library is installed.""" try: from gpt4all import Embed4All values["client"] = Embed4All() except ImportError: raise ImportError( "Could not import gpt4all library. " "Please install the gpt4all library to " "use this embedding model: pip install gpt4all" ) return values def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed a list of documents using GPT4All. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ embeddings = [self.client.embed(text) for text in texts] return [list(map(float, e)) for e in embeddings] def embed_query(self, text: str) -> List[float]: """Embed a query using GPT4All. Args: text: The text to embed. Returns: Embeddings for the text. """ return self.embed_documents([text])[0]
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~chat_loaders~test_telegram.py
"""Test the telegram chat loader.""" import pathlib import tempfile import zipfile from typing import Sequence import pytest from langchain.chat_loaders import telegram, utils from langchain.schema import AIMessage, BaseMessage, HumanMessage def _assert_messages_are_equal( actual_messages: Sequence[BaseMessage], expected_messages: Sequence[BaseMessage], ) -> None: assert len(actual_messages) == len(expected_messages) for actual, expected in zip(actual_messages, expected_messages): assert actual.content == expected.content assert ( actual.additional_kwargs["sender"] == expected.additional_kwargs["sender"] ) def _check_telegram_chat_loader(path: str) -> None: _data_dir = pathlib.Path(__file__).parent / "data" source_path = _data_dir / path # Create a zip file from the directory in a temp directory with tempfile.TemporaryDirectory() as temp_dir_: temp_dir = pathlib.Path(temp_dir_) if path.endswith(".zip"): # Make a new zip file zip_path = temp_dir / "telegram_chat.zip" with zipfile.ZipFile(zip_path, "w") as zip_file: original_path = _data_dir / path.replace(".zip", "") for file_path in original_path.iterdir(): zip_file.write(file_path, arcname=file_path.name) source_path = zip_path loader = telegram.TelegramChatLoader(str(source_path)) chat_sessions_ = loader.lazy_load() chat_sessions_ = utils.merge_chat_runs(chat_sessions_) chat_sessions = list( utils.map_ai_messages(chat_sessions_, sender="Batman & Robin") ) assert len(chat_sessions) == 1 session = chat_sessions[0] assert len(session["messages"]) > 0 assert session["messages"][0].content == "i refuse to converse with you" expected_content = [ HumanMessage( content="i refuse to converse with you", additional_kwargs={ "sender": "Jimmeny Marvelton", "events": [{"message_time": "23.08.2023 13:11:23 UTC-08:00"}], }, ), AIMessage( content="Hi nemesis", additional_kwargs={ "sender": "Batman & Robin", "events": [{"message_time": "23.08.2023 13:13:20 UTC-08:00"}], }, ), HumanMessage( content="we meet again\n\nyou will not trick me this time", additional_kwargs={ "sender": "Jimmeny Marvelton", "events": [{"message_time": "23.08.2023 13:15:35 UTC-08:00"}], }, ), ] _assert_messages_are_equal(session["messages"], expected_content) @pytest.mark.parametrize( "path", [ "telegram_chat_json", "telegram_chat_json.zip", "telegram_chat_json/result.json", ], ) def test_telegram_chat_loader(path: str) -> None: _check_telegram_chat_loader(path) @pytest.mark.skip(reason="requires bs4 but marking it as such doesn't seem to work") @pytest.mark.parametrize( "path", [ "telegram_chat_json", "telegram_chat_json.zip", "telegram_chat_json/result.json", ], ) def test_telegram_chat_loader_html(path: str) -> None: _check_telegram_chat_loader(path)
[ "we meet again\n\nyou will not trick me this time", "i refuse to converse with you", "Hi nemesis" ]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~retrievers~self_query~test_redis.py
from typing import Dict, Tuple import pytest from langchain.chains.query_constructor.ir import ( Comparator, Comparison, Operation, Operator, StructuredQuery, ) from langchain.retrievers.self_query.redis import RedisTranslator from langchain.vectorstores.redis.filters import ( RedisFilterExpression, RedisNum, RedisTag, RedisText, ) from langchain.vectorstores.redis.schema import ( NumericFieldSchema, RedisModel, TagFieldSchema, TextFieldSchema, ) @pytest.fixture def translator() -> RedisTranslator: schema = RedisModel( text=[TextFieldSchema(name="bar")], numeric=[NumericFieldSchema(name="foo")], tag=[TagFieldSchema(name="tag")], ) return RedisTranslator(schema) @pytest.mark.parametrize( ("comp", "expected"), [ ( Comparison(comparator=Comparator.LT, attribute="foo", value=1), RedisNum("foo") < 1, ), ( Comparison(comparator=Comparator.LIKE, attribute="bar", value="baz*"), RedisText("bar") % "baz*", ), ( Comparison( comparator=Comparator.CONTAIN, attribute="tag", value=["blue", "green"] ), RedisTag("tag") == ["blue", "green"], ), ], ) def test_visit_comparison( translator: RedisTranslator, comp: Comparison, expected: RedisFilterExpression ) -> None: comp = Comparison(comparator=Comparator.LT, attribute="foo", value=1) expected = RedisNum("foo") < 1 actual = translator.visit_comparison(comp) assert str(expected) == str(actual) def test_visit_operation(translator: RedisTranslator) -> None: op = Operation( operator=Operator.AND, arguments=[ Comparison(comparator=Comparator.LT, attribute="foo", value=2), Comparison(comparator=Comparator.EQ, attribute="bar", value="baz"), Comparison(comparator=Comparator.EQ, attribute="tag", value="high"), ], ) expected = (RedisNum("foo") < 2) & ( (RedisText("bar") == "baz") & (RedisTag("tag") == "high") ) actual = translator.visit_operation(op) assert str(expected) == str(actual) def test_visit_structured_query_no_filter(translator: RedisTranslator) -> None: query = "What is the capital of France?" structured_query = StructuredQuery( query=query, filter=None, ) expected: Tuple[str, Dict] = (query, {}) actual = translator.visit_structured_query(structured_query) assert expected == actual def test_visit_structured_query_comparison(translator: RedisTranslator) -> None: query = "What is the capital of France?" comp = Comparison(comparator=Comparator.GTE, attribute="foo", value=2) structured_query = StructuredQuery( query=query, filter=comp, ) expected_filter = RedisNum("foo") >= 2 actual_query, actual_filter = translator.visit_structured_query(structured_query) assert actual_query == query assert str(actual_filter["filter"]) == str(expected_filter) def test_visit_structured_query_operation(translator: RedisTranslator) -> None: query = "What is the capital of France?" op = Operation( operator=Operator.OR, arguments=[ Comparison(comparator=Comparator.EQ, attribute="foo", value=2), Comparison(comparator=Comparator.CONTAIN, attribute="bar", value="baz"), ], ) structured_query = StructuredQuery( query=query, filter=op, ) expected_filter = (RedisNum("foo") == 2) | (RedisText("bar") == "baz") actual_query, actual_filter = translator.visit_structured_query(structured_query) assert actual_query == query assert str(actual_filter["filter"]) == str(expected_filter)
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~output_parsers~test_combining_parser.py
"""Test in memory docstore.""" from langchain.output_parsers.combining import CombiningOutputParser from langchain.output_parsers.regex import RegexParser from langchain.output_parsers.structured import ResponseSchema, StructuredOutputParser DEF_EXPECTED_RESULT = { "answer": "Paris", "source": "https://en.wikipedia.org/wiki/France", "confidence": "A", "explanation": "Paris is the capital of France according to Wikipedia.", } DEF_README = """```json { "answer": "Paris", "source": "https://en.wikipedia.org/wiki/France" } ``` //Confidence: A, Explanation: Paris is the capital of France according to Wikipedia.""" def test_combining_dict_result() -> None: """Test combining result.""" parsers = [ StructuredOutputParser( response_schemas=[ ResponseSchema( name="answer", description="answer to the user's question" ), ResponseSchema( name="source", description="source used to answer the user's question", ), ] ), RegexParser( regex=r"Confidence: (A|B|C), Explanation: (.*)", output_keys=["confidence", "explanation"], default_output_key="noConfidence", ), ] combining_parser = CombiningOutputParser(parsers=parsers) result_dict = combining_parser.parse(DEF_README) assert DEF_EXPECTED_RESULT == result_dict
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~document_loaders~test_larksuite.py
from langchain.document_loaders.larksuite import LarkSuiteDocLoader DOMAIN = "" ACCESS_TOKEN = "" DOCUMENT_ID = "" def test_larksuite_doc_loader() -> None: """Test LarkSuite (FeiShu) document loader.""" loader = LarkSuiteDocLoader(DOMAIN, ACCESS_TOKEN, DOCUMENT_ID) docs = loader.load() assert len(docs) == 1 assert docs[0].page_content is not None
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~llms~test_petals.py
"""Test Petals API wrapper.""" from langchain.llms.petals import Petals def test_gooseai_call() -> None: """Test valid call to gooseai.""" llm = Petals(max_new_tokens=10) output = llm("Say foo:") assert isinstance(output, str)
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~embeddings~test_embaas.py
"""Test embaas embeddings.""" import responses from langchain.embeddings.embaas import EMBAAS_API_URL, EmbaasEmbeddings def test_embaas_embed_documents() -> None: """Test embaas embeddings with multiple texts.""" texts = ["foo bar", "bar foo", "foo"] embedding = EmbaasEmbeddings() output = embedding.embed_documents(texts) assert len(output) == 3 assert len(output[0]) == 1024 assert len(output[1]) == 1024 assert len(output[2]) == 1024 def test_embaas_embed_query() -> None: """Test embaas embeddings with multiple texts.""" text = "foo" embeddings = EmbaasEmbeddings() output = embeddings.embed_query(text) assert len(output) == 1024 def test_embaas_embed_query_instruction() -> None: """Test embaas embeddings with a different instruction.""" text = "Test" instruction = "query" embeddings = EmbaasEmbeddings(instruction=instruction) output = embeddings.embed_query(text) assert len(output) == 1024 def test_embaas_embed_query_model() -> None: """Test embaas embeddings with a different model.""" text = "Test" model = "instructor-large" instruction = "Represent the query for retrieval" embeddings = EmbaasEmbeddings(model=model, instruction=instruction) output = embeddings.embed_query(text) assert len(output) == 768 @responses.activate def test_embaas_embed_documents_response() -> None: """Test embaas embeddings with multiple texts.""" responses.add( responses.POST, EMBAAS_API_URL, json={"data": [{"embedding": [0.0] * 1024}]}, status=200, ) text = "asd" embeddings = EmbaasEmbeddings() output = embeddings.embed_query(text) assert len(output) == 1024
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~llms~test_huggingface_text_gen_inference.py
from langchain.llms import HuggingFaceTextGenInference def test_invocation_params_stop_sequences() -> None: llm = HuggingFaceTextGenInference() assert llm._default_params["stop_sequences"] == [] runtime_stop = None assert llm._invocation_params(runtime_stop)["stop_sequences"] == [] assert llm._default_params["stop_sequences"] == [] runtime_stop = ["stop"] assert llm._invocation_params(runtime_stop)["stop_sequences"] == ["stop"] assert llm._default_params["stop_sequences"] == [] llm = HuggingFaceTextGenInference(stop_sequences=["."]) runtime_stop = ["stop"] assert llm._invocation_params(runtime_stop)["stop_sequences"] == [".", "stop"] assert llm._default_params["stop_sequences"] == ["."]
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~chat_models~test_vertexai.py
"""Test Vertex AI API wrapper. In order to run this test, you need to install VertexAI SDK (that is is the private preview) and be whitelisted to list the models themselves: In order to run this test, you need to install VertexAI SDK pip install google-cloud-aiplatform>=1.25.0 Your end-user credentials would be used to make the calls (make sure you've run `gcloud auth login` first). """ from typing import Optional from unittest.mock import MagicMock, Mock, patch import pytest from langchain.chat_models import ChatVertexAI from langchain.chat_models.vertexai import _parse_chat_history, _parse_examples from langchain.schema import LLMResult from langchain.schema.messages import AIMessage, HumanMessage, SystemMessage @pytest.mark.parametrize("model_name", [None, "codechat-bison", "chat-bison"]) def test_vertexai_instantiation(model_name: str) -> None: if model_name: model = ChatVertexAI(model_name=model_name) else: model = ChatVertexAI() assert model._llm_type == "vertexai" assert model.model_name == model.client._model_id @pytest.mark.scheduled @pytest.mark.parametrize("model_name", [None, "codechat-bison", "chat-bison"]) def test_vertexai_single_call(model_name: str) -> None: if model_name: model = ChatVertexAI(model_name=model_name) else: model = ChatVertexAI() message = HumanMessage(content="Hello") response = model([message]) assert isinstance(response, AIMessage) assert isinstance(response.content, str) def test_candidates() -> None: model = ChatVertexAI(model_name="chat-bison@001", temperature=0.3, n=2) message = HumanMessage(content="Hello") response = model.generate(messages=[[message]]) assert isinstance(response, LLMResult) assert len(response.generations) == 1 assert len(response.generations[0]) == 2 @pytest.mark.scheduled @pytest.mark.asyncio async def test_vertexai_agenerate() -> None: model = ChatVertexAI(temperature=0) message = HumanMessage(content="Hello") response = await model.agenerate([[message]]) assert isinstance(response, LLMResult) assert isinstance(response.generations[0][0].message, AIMessage) # type: ignore sync_response = model.generate([[message]]) assert response.generations[0][0] == sync_response.generations[0][0] @pytest.mark.scheduled def test_vertexai_single_call_with_context() -> None: model = ChatVertexAI() raw_context = ( "My name is Ned. You are my personal assistant. My favorite movies " "are Lord of the Rings and Hobbit." ) question = ( "Hello, could you recommend a good movie for me to watch this evening, please?" ) context = SystemMessage(content=raw_context) message = HumanMessage(content=question) response = model([context, message]) assert isinstance(response, AIMessage) assert isinstance(response.content, str) @pytest.mark.scheduled def test_vertexai_single_call_with_examples() -> None: model = ChatVertexAI() raw_context = "My name is Ned. You are my personal assistant." question = "2+2" text_question, text_answer = "4+4", "8" inp = HumanMessage(content=text_question) output = AIMessage(content=text_answer) context = SystemMessage(content=raw_context) message = HumanMessage(content=question) response = model([context, message], examples=[inp, output]) assert isinstance(response, AIMessage) assert isinstance(response.content, str) @pytest.mark.scheduled @pytest.mark.parametrize("model_name", [None, "codechat-bison", "chat-bison"]) def test_vertexai_single_call_with_history(model_name: str) -> None: if model_name: model = ChatVertexAI(model_name=model_name) else: model = ChatVertexAI() text_question1, text_answer1 = "How much is 2+2?", "4" text_question2 = "How much is 3+3?" message1 = HumanMessage(content=text_question1) message2 = AIMessage(content=text_answer1) message3 = HumanMessage(content=text_question2) response = model([message1, message2, message3]) assert isinstance(response, AIMessage) assert isinstance(response.content, str) def test_parse_chat_history_correct() -> None: from vertexai.language_models import ChatMessage text_context = ( "My name is Ned. You are my personal assistant. My " "favorite movies are Lord of the Rings and Hobbit." ) context = SystemMessage(content=text_context) text_question = ( "Hello, could you recommend a good movie for me to watch this evening, please?" ) question = HumanMessage(content=text_question) text_answer = ( "Sure, You might enjoy The Lord of the Rings: The Fellowship of the Ring " "(2001): This is the first movie in the Lord of the Rings trilogy." ) answer = AIMessage(content=text_answer) history = _parse_chat_history([context, question, answer, question, answer]) assert history.context == context.content assert len(history.history) == 4 assert history.history == [ ChatMessage(content=text_question, author="user"), ChatMessage(content=text_answer, author="bot"), ChatMessage(content=text_question, author="user"), ChatMessage(content=text_answer, author="bot"), ] def test_vertexai_single_call_fails_no_message() -> None: chat = ChatVertexAI() with pytest.raises(ValueError) as exc_info: _ = chat([]) assert ( str(exc_info.value) == "You should provide at least one message to start the chat!" ) @pytest.mark.parametrize("stop", [None, "stop1"]) def test_vertexai_args_passed(stop: Optional[str]) -> None: response_text = "Goodbye" user_prompt = "Hello" prompt_params = { "max_output_tokens": 1, "temperature": 10000.0, "top_k": 10, "top_p": 0.5, } # Mock the library to ensure the args are passed correctly with patch( "vertexai.language_models._language_models.ChatModel.start_chat" ) as start_chat: mock_response = MagicMock() mock_response.candidates = [Mock(text=response_text)] mock_chat = MagicMock() start_chat.return_value = mock_chat mock_send_message = MagicMock(return_value=mock_response) mock_chat.send_message = mock_send_message model = ChatVertexAI(**prompt_params) message = HumanMessage(content=user_prompt) if stop: response = model([message], stop=[stop]) else: response = model([message]) assert response.content == response_text mock_send_message.assert_called_once_with(user_prompt, candidate_count=1) expected_stop_sequence = [stop] if stop else None start_chat.assert_called_once_with( context=None, message_history=[], **prompt_params, stop_sequences=expected_stop_sequence ) def test_parse_examples_correct() -> None: from vertexai.language_models import InputOutputTextPair text_question = ( "Hello, could you recommend a good movie for me to watch this evening, please?" ) question = HumanMessage(content=text_question) text_answer = ( "Sure, You might enjoy The Lord of the Rings: The Fellowship of the Ring " "(2001): This is the first movie in the Lord of the Rings trilogy." ) answer = AIMessage(content=text_answer) examples = _parse_examples([question, answer, question, answer]) assert len(examples) == 2 assert examples == [ InputOutputTextPair(input_text=text_question, output_text=text_answer), InputOutputTextPair(input_text=text_question, output_text=text_answer), ] def test_parse_examples_failes_wrong_sequence() -> None: with pytest.raises(ValueError) as exc_info: _ = _parse_examples([AIMessage(content="a")]) print(str(exc_info.value)) assert ( str(exc_info.value) == "Expect examples to have an even amount of messages, got 1." )
[ "{'max_output_tokens': 1, 'temperature': 10000.0, 'top_k': 10, 'top_p': 0.5}", "a", "My name is Ned. You are my personal assistant.", "2+2", "Hello", "How much is 3+3?" ]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~chat_models~test_google_palm.py
"""Test Google PaLM Chat API wrapper. Note: This test must be run with the GOOGLE_API_KEY environment variable set to a valid API key. """ import pytest from langchain.chat_models import ChatGooglePalm from langchain.schema import ( ChatGeneration, ChatResult, LLMResult, ) from langchain.schema.messages import BaseMessage, HumanMessage, SystemMessage def test_chat_google_palm() -> None: """Test Google PaLM Chat API wrapper.""" chat = ChatGooglePalm() message = HumanMessage(content="Hello") response = chat([message]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_chat_google_palm_system_message() -> None: """Test Google PaLM Chat API wrapper with system message.""" chat = ChatGooglePalm() system_message = SystemMessage(content="You are to chat with the user.") human_message = HumanMessage(content="Hello") response = chat([system_message, human_message]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_chat_google_palm_generate() -> None: """Test Google PaLM Chat API wrapper with generate.""" chat = ChatGooglePalm(n=2, temperature=1.0) message = HumanMessage(content="Hello") response = chat.generate([[message], [message]]) assert isinstance(response, LLMResult) assert len(response.generations) == 2 for generations in response.generations: assert len(generations) == 2 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content def test_chat_google_palm_multiple_completions() -> None: """Test Google PaLM Chat API wrapper with multiple completions.""" # The API de-dupes duplicate responses, so set temperature higher. This # could be a flakey test though... chat = ChatGooglePalm(n=5, temperature=1.0) message = HumanMessage(content="Hello") response = chat._generate([message]) assert isinstance(response, ChatResult) assert len(response.generations) == 5 for generation in response.generations: assert isinstance(generation.message, BaseMessage) assert isinstance(generation.message.content, str) @pytest.mark.asyncio async def test_async_chat_google_palm() -> None: """Test async generation.""" chat = ChatGooglePalm(n=2, temperature=1.0) message = HumanMessage(content="Hello") response = await chat.agenerate([[message], [message]]) assert isinstance(response, LLMResult) assert len(response.generations) == 2 for generations in response.generations: assert len(generations) == 2 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content
[ "Hello", "You are to chat with the user." ]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~retrievers~google_vertex_ai_search.py
"""Retriever wrapper for Google Vertex AI Search.""" from __future__ import annotations from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence from langchain.callbacks.manager import CallbackManagerForRetrieverRun from langchain.pydantic_v1 import BaseModel, Extra, Field, root_validator from langchain.schema import BaseRetriever, Document from langchain.utilities.vertexai import get_client_info from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: from google.api_core.client_options import ClientOptions from google.cloud.discoveryengine_v1beta import ( ConversationalSearchServiceClient, SearchRequest, SearchResult, SearchServiceClient, ) class _BaseGoogleVertexAISearchRetriever(BaseModel): project_id: str """Google Cloud Project ID.""" data_store_id: str """Vertex AI Search data store ID.""" location_id: str = "global" """Vertex AI Search data store location.""" serving_config_id: str = "default_config" """Vertex AI Search serving config ID.""" credentials: Any = None """The default custom credentials (google.auth.credentials.Credentials) to use when making API calls. If not provided, credentials will be ascertained from the environment.""" engine_data_type: int = Field(default=0, ge=0, le=2) """ Defines the Vertex AI Search data type 0 - Unstructured data 1 - Structured data 2 - Website data (with Advanced Website Indexing) """ @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validates the environment.""" try: from google.cloud import discoveryengine_v1beta # noqa: F401 except ImportError as exc: raise ImportError( "google.cloud.discoveryengine is not installed." "Please install it with pip install " "google-cloud-discoveryengine>=0.11.0" ) from exc try: from google.api_core.exceptions import InvalidArgument # noqa: F401 except ImportError as exc: raise ImportError( "google.api_core.exceptions is not installed. " "Please install it with pip install google-api-core" ) from exc values["project_id"] = get_from_dict_or_env(values, "project_id", "PROJECT_ID") try: # For backwards compatibility search_engine_id = get_from_dict_or_env( values, "search_engine_id", "SEARCH_ENGINE_ID" ) if search_engine_id: import warnings warnings.warn( "The `search_engine_id` parameter is deprecated. Use `data_store_id` instead.", # noqa: E501 DeprecationWarning, ) values["data_store_id"] = search_engine_id except: # noqa: E722 pass values["data_store_id"] = get_from_dict_or_env( values, "data_store_id", "DATA_STORE_ID" ) return values @property def client_options(self) -> "ClientOptions": from google.api_core.client_options import ClientOptions return ClientOptions( api_endpoint=f"{self.location_id}-discoveryengine.googleapis.com" if self.location_id != "global" else None ) def _convert_structured_search_response( self, results: Sequence[SearchResult] ) -> List[Document]: """Converts a sequence of search results to a list of LangChain documents.""" import json from google.protobuf.json_format import MessageToDict documents: List[Document] = [] for result in results: document_dict = MessageToDict( result.document._pb, preserving_proto_field_name=True ) documents.append( Document( page_content=json.dumps(document_dict.get("struct_data", {})), metadata={"id": document_dict["id"], "name": document_dict["name"]}, ) ) return documents def _convert_unstructured_search_response( self, results: Sequence[SearchResult], chunk_type: str ) -> List[Document]: """Converts a sequence of search results to a list of LangChain documents.""" from google.protobuf.json_format import MessageToDict documents: List[Document] = [] for result in results: document_dict = MessageToDict( result.document._pb, preserving_proto_field_name=True ) derived_struct_data = document_dict.get("derived_struct_data") if not derived_struct_data: continue doc_metadata = document_dict.get("struct_data", {}) doc_metadata["id"] = document_dict["id"] if chunk_type not in derived_struct_data: continue for chunk in derived_struct_data[chunk_type]: doc_metadata["source"] = derived_struct_data.get("link", "") if chunk_type == "extractive_answers": doc_metadata["source"] += f":{chunk.get('pageNumber', '')}" documents.append( Document( page_content=chunk.get("content", ""), metadata=doc_metadata ) ) return documents def _convert_website_search_response( self, results: Sequence[SearchResult] ) -> List[Document]: """Converts a sequence of search results to a list of LangChain documents.""" from google.protobuf.json_format import MessageToDict documents: List[Document] = [] for result in results: document_dict = MessageToDict( result.document._pb, preserving_proto_field_name=True ) derived_struct_data = document_dict.get("derived_struct_data") if not derived_struct_data: continue doc_metadata = document_dict.get("struct_data", {}) doc_metadata["id"] = document_dict["id"] doc_metadata["source"] = derived_struct_data.get("link", "") chunk_type = "extractive_answers" if chunk_type not in derived_struct_data: continue for chunk in derived_struct_data[chunk_type]: documents.append( Document( page_content=chunk.get("content", ""), metadata=doc_metadata ) ) if not documents: print( f"No {chunk_type} could be found.\n" "Make sure that your data store is using Advanced Website Indexing.\n" "https://cloud.google.com/generative-ai-app-builder/docs/about-advanced-features#advanced-website-indexing" # noqa: E501 ) return documents class GoogleVertexAISearchRetriever(BaseRetriever, _BaseGoogleVertexAISearchRetriever): """`Google Vertex AI Search` retriever. For a detailed explanation of the Vertex AI Search concepts and configuration parameters, refer to the product documentation. https://cloud.google.com/generative-ai-app-builder/docs/enterprise-search-introduction """ filter: Optional[str] = None """Filter expression.""" get_extractive_answers: bool = False """If True return Extractive Answers, otherwise return Extractive Segments.""" max_documents: int = Field(default=5, ge=1, le=100) """The maximum number of documents to return.""" max_extractive_answer_count: int = Field(default=1, ge=1, le=5) """The maximum number of extractive answers returned in each search result. At most 5 answers will be returned for each SearchResult. """ max_extractive_segment_count: int = Field(default=1, ge=1, le=1) """The maximum number of extractive segments returned in each search result. Currently one segment will be returned for each SearchResult. """ query_expansion_condition: int = Field(default=1, ge=0, le=2) """Specification to determine under which conditions query expansion should occur. 0 - Unspecified query expansion condition. In this case, server behavior defaults to disabled 1 - Disabled query expansion. Only the exact search query is used, even if SearchResponse.total_size is zero. 2 - Automatic query expansion built by the Search API. """ spell_correction_mode: int = Field(default=2, ge=0, le=2) """Specification to determine under which conditions query expansion should occur. 0 - Unspecified spell correction mode. In this case, server behavior defaults to auto. 1 - Suggestion only. Search API will try to find a spell suggestion if there is any and put in the `SearchResponse.corrected_query`. The spell suggestion will not be used as the search query. 2 - Automatic spell correction built by the Search API. Search will be based on the corrected query if found. """ _client: SearchServiceClient _serving_config: str class Config: """Configuration for this pydantic object.""" extra = Extra.ignore arbitrary_types_allowed = True underscore_attrs_are_private = True def __init__(self, **kwargs: Any) -> None: """Initializes private fields.""" try: from google.cloud.discoveryengine_v1beta import SearchServiceClient except ImportError as exc: raise ImportError( "google.cloud.discoveryengine is not installed." "Please install it with pip install google-cloud-discoveryengine" ) from exc super().__init__(**kwargs) # For more information, refer to: # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store self._client = SearchServiceClient( credentials=self.credentials, client_options=self.client_options, client_info=get_client_info(module="vertex-ai-search"), ) self._serving_config = self._client.serving_config_path( project=self.project_id, location=self.location_id, data_store=self.data_store_id, serving_config=self.serving_config_id, ) def _create_search_request(self, query: str) -> SearchRequest: """Prepares a SearchRequest object.""" from google.cloud.discoveryengine_v1beta import SearchRequest query_expansion_spec = SearchRequest.QueryExpansionSpec( condition=self.query_expansion_condition, ) spell_correction_spec = SearchRequest.SpellCorrectionSpec( mode=self.spell_correction_mode ) if self.engine_data_type == 0: if self.get_extractive_answers: extractive_content_spec = ( SearchRequest.ContentSearchSpec.ExtractiveContentSpec( max_extractive_answer_count=self.max_extractive_answer_count, ) ) else: extractive_content_spec = ( SearchRequest.ContentSearchSpec.ExtractiveContentSpec( max_extractive_segment_count=self.max_extractive_segment_count, ) ) content_search_spec = SearchRequest.ContentSearchSpec( extractive_content_spec=extractive_content_spec ) elif self.engine_data_type == 1: content_search_spec = None elif self.engine_data_type == 2: content_search_spec = SearchRequest.ContentSearchSpec( extractive_content_spec=SearchRequest.ContentSearchSpec.ExtractiveContentSpec( max_extractive_answer_count=self.max_extractive_answer_count, ) ) else: raise NotImplementedError( "Only data store type 0 (Unstructured), 1 (Structured)," "or 2 (Website with Advanced Indexing) are supported currently." + f" Got {self.engine_data_type}" ) return SearchRequest( query=query, filter=self.filter, serving_config=self._serving_config, page_size=self.max_documents, content_search_spec=content_search_spec, query_expansion_spec=query_expansion_spec, spell_correction_spec=spell_correction_spec, ) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: """Get documents relevant for a query.""" from google.api_core.exceptions import InvalidArgument search_request = self._create_search_request(query) try: response = self._client.search(search_request) except InvalidArgument as exc: raise type(exc)( exc.message + " This might be due to engine_data_type not set correctly." ) if self.engine_data_type == 0: chunk_type = ( "extractive_answers" if self.get_extractive_answers else "extractive_segments" ) documents = self._convert_unstructured_search_response( response.results, chunk_type ) elif self.engine_data_type == 1: documents = self._convert_structured_search_response(response.results) elif self.engine_data_type == 2: documents = self._convert_website_search_response(response.results) else: raise NotImplementedError( "Only data store type 0 (Unstructured), 1 (Structured)," "or 2 (Website with Advanced Indexing) are supported currently." + f" Got {self.engine_data_type}" ) return documents class GoogleVertexAIMultiTurnSearchRetriever( BaseRetriever, _BaseGoogleVertexAISearchRetriever ): """`Google Vertex AI Search` retriever for multi-turn conversations.""" conversation_id: str = "-" """Vertex AI Search Conversation ID.""" _client: ConversationalSearchServiceClient _serving_config: str class Config: """Configuration for this pydantic object.""" extra = Extra.ignore arbitrary_types_allowed = True underscore_attrs_are_private = True def __init__(self, **kwargs: Any): super().__init__(**kwargs) from google.cloud.discoveryengine_v1beta import ( ConversationalSearchServiceClient, ) self._client = ConversationalSearchServiceClient( credentials=self.credentials, client_options=self.client_options, client_info=get_client_info(module="vertex-ai-search"), ) self._serving_config = self._client.serving_config_path( project=self.project_id, location=self.location_id, data_store=self.data_store_id, serving_config=self.serving_config_id, ) if self.engine_data_type == 1: raise NotImplementedError( "Data store type 1 (Structured)" "is not currently supported for multi-turn search." + f" Got {self.engine_data_type}" ) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: """Get documents relevant for a query.""" from google.cloud.discoveryengine_v1beta import ( ConverseConversationRequest, TextInput, ) request = ConverseConversationRequest( name=self._client.conversation_path( self.project_id, self.location_id, self.data_store_id, self.conversation_id, ), serving_config=self._serving_config, query=TextInput(input=query), ) response = self._client.converse_conversation(request) if self.engine_data_type == 2: return self._convert_website_search_response(response.search_results) return self._convert_unstructured_search_response( response.search_results, "extractive_answers" ) class GoogleCloudEnterpriseSearchRetriever(GoogleVertexAISearchRetriever): """`Google Vertex Search API` retriever alias for backwards compatibility. DEPRECATED: Use `GoogleVertexAISearchRetriever` instead. """ def __init__(self, **data: Any): import warnings warnings.warn( "GoogleCloudEnterpriseSearchRetriever is deprecated, use GoogleVertexAISearchRetriever", # noqa: E501 DeprecationWarning, ) super().__init__(**data)
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~example_generator.py
"""Keep here for backwards compatibility.""" from langchain.chains.example_generator import generate_example __all__ = ["generate_example"]
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~utilities~loading.py
from langchain.utils.loading import try_load_from_hub # For backwards compatibility __all__ = ["try_load_from_hub"]
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~chains~test_retrieval_qa_with_sources.py
"""Test RetrievalQA functionality.""" from langchain.chains import RetrievalQAWithSourcesChain from langchain.chains.loading import load_chain from langchain.document_loaders import DirectoryLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.llms import OpenAI from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS def test_retrieval_qa_with_sources_chain_saving_loading(tmp_path: str) -> None: """Test saving and loading.""" loader = DirectoryLoader("docs/extras/modules/", glob="*.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() docsearch = FAISS.from_documents(texts, embeddings) qa = RetrievalQAWithSourcesChain.from_llm( llm=OpenAI(), retriever=docsearch.as_retriever() ) result = qa("What did the president say about Ketanji Brown Jackson?") assert "question" in result.keys() assert "answer" in result.keys() assert "sources" in result.keys() file_path = str(tmp_path) + "/RetrievalQAWithSourcesChain.yaml" qa.save(file_path=file_path) qa_loaded = load_chain(file_path, retriever=docsearch.as_retriever()) assert qa_loaded == qa qa2 = RetrievalQAWithSourcesChain.from_chain_type( llm=OpenAI(), retriever=docsearch.as_retriever(), chain_type="stuff" ) result2 = qa2("What did the president say about Ketanji Brown Jackson?") assert "question" in result2.keys() assert "answer" in result2.keys() assert "sources" in result2.keys()
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~vectorstores~test_tair.py
"""Test tair functionality.""" from langchain.docstore.document import Document from langchain.vectorstores.tair import Tair from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings def test_tair() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = Tair.from_texts( texts, FakeEmbeddings(), tair_url="redis://localhost:6379" ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")]
[]
2024-01-10
RohanDey02/langchain
libs~experimental~langchain_experimental~autonomous_agents~hugginggpt~hugginggpt.py
from typing import List from langchain.base_language import BaseLanguageModel from langchain.tools.base import BaseTool from langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator import ( load_response_generator, ) from langchain_experimental.autonomous_agents.hugginggpt.task_executor import ( TaskExecutor, ) from langchain_experimental.autonomous_agents.hugginggpt.task_planner import ( load_chat_planner, ) class HuggingGPT: def __init__(self, llm: BaseLanguageModel, tools: List[BaseTool]): self.llm = llm self.tools = tools self.chat_planner = load_chat_planner(llm) self.response_generator = load_response_generator(llm) self.task_executor: TaskExecutor def run(self, input: str) -> str: plan = self.chat_planner.plan(inputs={"input": input, "hf_tools": self.tools}) self.task_executor = TaskExecutor(plan) self.task_executor.run() response = self.response_generator.generate( {"task_execution": self.task_executor} ) return response
[]
2024-01-10
RohanDey02/langchain
libs~experimental~langchain_experimental~comprehend_moderation~toxicity.py
import asyncio import importlib from typing import Any, List, Optional from langchain_experimental.comprehend_moderation.base_moderation_exceptions import ( ModerationToxicityError, ) class ComprehendToxicity: def __init__( self, client: Any, callback: Optional[Any] = None, unique_id: Optional[str] = None, chain_id: Optional[str] = None, ) -> None: self.client = client self.moderation_beacon = { "moderation_chain_id": chain_id, "moderation_type": "Toxicity", "moderation_status": "LABELS_NOT_FOUND", } self.callback = callback self.unique_id = unique_id def _toxicity_init_validate(self, max_size: int) -> Any: """ Validate and initialize toxicity processing configuration. Args: max_size (int): Maximum sentence size defined in the configuration object. Raises: Exception: If the maximum sentence size exceeds the 5KB limit. Note: This function ensures that the NLTK punkt tokenizer is downloaded if not already present. Returns: None """ if max_size > 1024 * 5: raise Exception("The sentence length should not exceed 5KB.") try: nltk = importlib.import_module("nltk") nltk.data.find("tokenizers/punkt") return nltk except ImportError: raise ModuleNotFoundError( "Could not import nltk python package. " "Please install it with `pip install nltk`." ) except LookupError: nltk.download("punkt") def _split_paragraph( self, prompt_value: str, max_size: int = 1024 * 4 ) -> List[List[str]]: """ Split a paragraph into chunks of sentences, respecting the maximum size limit. Args: paragraph (str): The input paragraph to be split into chunks. max_size (int, optional): The maximum size limit in bytes for each chunk. Defaults to 1024. Returns: List[List[str]]: A list of chunks, where each chunk is a list of sentences. Note: This function validates the maximum sentence size based on service limits using the 'toxicity_init_validate' function. It uses the NLTK sentence tokenizer to split the paragraph into sentences. Example: paragraph = "This is a sample paragraph. It contains multiple sentences. ..." chunks = split_paragraph(paragraph, max_size=2048) """ # validate max. sentence size based on Service limits nltk = self._toxicity_init_validate(max_size) sentences = nltk.sent_tokenize(prompt_value) chunks = list() # type: ignore current_chunk = list() # type: ignore current_size = 0 for sentence in sentences: sentence_size = len(sentence.encode("utf-8")) # If adding a new sentence exceeds max_size # or current_chunk has 10 sentences, start a new chunk if (current_size + sentence_size > max_size) or (len(current_chunk) >= 10): if current_chunk: # Avoid appending empty chunks chunks.append(current_chunk) current_chunk = [] current_size = 0 current_chunk.append(sentence) current_size += sentence_size # Add any remaining sentences if current_chunk: chunks.append(current_chunk) return chunks def validate(self, prompt_value: str, config: Any = None) -> str: """ Check the toxicity of a given text prompt using AWS Comprehend service and apply actions based on configuration. Args: prompt_value (str): The text content to be checked for toxicity. config (Dict[str, Any]): Configuration for toxicity checks and actions. Returns: str: The original prompt_value if allowed or no toxicity found. Raises: ValueError: If the prompt contains toxic labels and cannot be processed based on the configuration. """ chunks = self._split_paragraph(prompt_value=prompt_value) for sentence_list in chunks: segments = [{"Text": sentence} for sentence in sentence_list] response = self.client.detect_toxic_content( TextSegments=segments, LanguageCode="en" ) if self.callback and self.callback.toxicity_callback: self.moderation_beacon["moderation_input"] = segments # type: ignore self.moderation_beacon["moderation_output"] = response toxicity_found = False threshold = config.get("threshold") toxicity_labels = config.get("labels") if not toxicity_labels: for item in response["ResultList"]: for label in item["Labels"]: if label["Score"] >= threshold: toxicity_found = True break else: for item in response["ResultList"]: for label in item["Labels"]: if ( label["Name"] in toxicity_labels and label["Score"] >= threshold ): toxicity_found = True break if self.callback and self.callback.toxicity_callback: if toxicity_found: self.moderation_beacon["moderation_status"] = "LABELS_FOUND" asyncio.create_task( self.callback.on_after_toxicity( self.moderation_beacon, self.unique_id ) ) if toxicity_found: raise ModerationToxicityError return prompt_value
[]
2024-01-10
RohanDey02/langchain
libs~cli~tests~test_utils.py
import pytest from langchain_cli.utils.git import parse_dependency_string, DependencySource from langchain_cli.constants import ( DEFAULT_GIT_REPO, DEFAULT_GIT_SUBDIRECTORY, DEFAULT_GIT_REF, ) def test_dependency_string() -> None: assert parse_dependency_string( "git+ssh://[email protected]/efriis/myrepo.git" ) == DependencySource( git="ssh://[email protected]/efriis/myrepo.git", ref=None, subdirectory=None, ) assert parse_dependency_string( "git+https://github.com/efriis/myrepo.git#subdirectory=src" ) == DependencySource( git="https://github.com/efriis/myrepo.git", subdirectory="src", ref=None, ) assert parse_dependency_string( "git+ssh://[email protected]:efriis/myrepo.git#develop" ) == DependencySource( git="ssh://[email protected]:efriis/myrepo.git", ref="develop", subdirectory=None ) # also support a slash in ssh assert parse_dependency_string( "git+ssh://[email protected]/efriis/myrepo.git#develop" ) == DependencySource( git="ssh://[email protected]/efriis/myrepo.git", ref="develop", subdirectory=None ) # looks like poetry supports both an @ and a # assert parse_dependency_string( "git+ssh://[email protected]:efriis/myrepo.git@develop" ) == DependencySource( git="ssh://[email protected]:efriis/myrepo.git", ref="develop", subdirectory=None ) assert parse_dependency_string("simple-pirate") == DependencySource( git=DEFAULT_GIT_REPO, subdirectory=f"{DEFAULT_GIT_SUBDIRECTORY}/simple-pirate", ref=DEFAULT_GIT_REF, ) def test_dependency_string_both() -> None: assert parse_dependency_string( "git+https://github.com/efriis/myrepo.git@branch#subdirectory=src" ) == DependencySource( git="https://github.com/efriis/myrepo.git", subdirectory="src", ref="branch", ) def test_dependency_string_invalids() -> None: # expect error for wrong order with pytest.raises(ValueError): parse_dependency_string( "git+https://github.com/efriis/myrepo.git#subdirectory=src@branch" ) # expect error for @subdirectory def test_dependency_string_edge_case() -> None: # weird unsolvable edge case of # git+ssh://a@b # this could be a ssh dep with user=a, and default ref # or a ssh dep at a with ref=b. # in this case, assume the first case (be greedy with the '@') assert parse_dependency_string("git+ssh://a@b") == DependencySource( git="ssh://a@b", subdirectory=None, ref=None, ) # weird one that is actually valid assert parse_dependency_string( "git+https://github.com/efriis/myrepo.git@subdirectory=src" ) == DependencySource( git="https://github.com/efriis/myrepo.git", subdirectory=None, ref="subdirectory=src", )
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~chains~test_hyde.py
"""Test HyDE.""" from typing import Any, List, Optional import numpy as np from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chains.hyde.base import HypotheticalDocumentEmbedder from langchain.chains.hyde.prompts import PROMPT_MAP from langchain.llms.base import BaseLLM from langchain.schema import Generation, LLMResult from langchain.schema.embeddings import Embeddings class FakeEmbeddings(Embeddings): """Fake embedding class for tests.""" def embed_documents(self, texts: List[str]) -> List[List[float]]: """Return random floats.""" return [list(np.random.uniform(0, 1, 10)) for _ in range(10)] def embed_query(self, text: str) -> List[float]: """Return random floats.""" return list(np.random.uniform(0, 1, 10)) class FakeLLM(BaseLLM): """Fake LLM wrapper for testing purposes.""" n: int = 1 def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: return LLMResult(generations=[[Generation(text="foo") for _ in range(self.n)]]) async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: return LLMResult(generations=[[Generation(text="foo") for _ in range(self.n)]]) def get_num_tokens(self, text: str) -> int: """Return number of tokens.""" return len(text.split()) @property def _llm_type(self) -> str: """Return type of llm.""" return "fake" def test_hyde_from_llm() -> None: """Test loading HyDE from all prompts.""" for key in PROMPT_MAP: embedding = HypotheticalDocumentEmbedder.from_llm( FakeLLM(), FakeEmbeddings(), key ) embedding.embed_query("foo") def test_hyde_from_llm_with_multiple_n() -> None: """Test loading HyDE from all prompts.""" for key in PROMPT_MAP: embedding = HypotheticalDocumentEmbedder.from_llm( FakeLLM(n=8), FakeEmbeddings(), key ) embedding.embed_query("foo")
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~indexes~test_hashed_document.py
import pytest from langchain.indexes._api import _HashedDocument from langchain.schema import Document def test_hashed_document_hashing() -> None: hashed_document = _HashedDocument( uid="123", page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) assert isinstance(hashed_document.hash_, str) def test_hashing_with_missing_content() -> None: """Check that ValueError is raised if page_content is missing.""" with pytest.raises(ValueError): _HashedDocument( metadata={"key": "value"}, ) def test_uid_auto_assigned_to_hash() -> None: """Test uid is auto-assigned to the hashed_document hash.""" hashed_document = _HashedDocument( page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) assert hashed_document.uid == hashed_document.hash_ def test_to_document() -> None: """Test to_document method.""" hashed_document = _HashedDocument( page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) doc = hashed_document.to_document() assert isinstance(doc, Document) assert doc.page_content == "Lorem ipsum dolor sit amet" assert doc.metadata == {"key": "value"} def test_from_document() -> None: """Test from document class method.""" document = Document( page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) hashed_document = _HashedDocument.from_document(document) # hash should be deterministic assert hashed_document.hash_ == "fd1dc827-051b-537d-a1fe-1fa043e8b276" assert hashed_document.uid == hashed_document.hash_
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~document_loaders~test_etherscan.py
import os import pytest from langchain.document_loaders import EtherscanLoader if "ETHERSCAN_API_KEY" in os.environ: etherscan_key_set = True api_key = os.environ["ETHERSCAN_API_KEY"] else: etherscan_key_set = False @pytest.mark.skipif(not etherscan_key_set, reason="Etherscan API key not provided.") def test_get_normal_transaction() -> None: account_address = "0x9dd134d14d1e65f84b706d6f205cd5b1cd03a46b" loader = EtherscanLoader(account_address) result = loader.load() assert len(result) > 0, "No transactions returned" @pytest.mark.skipif(not etherscan_key_set, reason="Etherscan API key not provided.") def test_get_internal_transaction() -> None: account_address = "0x9dd134d14d1e65f84b706d6f205cd5b1cd03a46b" loader = EtherscanLoader(account_address, filter="internal_transaction") result = loader.load() assert len(result) > 0, "No transactions returned" @pytest.mark.skipif(not etherscan_key_set, reason="Etherscan API key not provided.") def test_get_erc20_transaction() -> None: account_address = "0x9dd134d14d1e65f84b706d6f205cd5b1cd03a46b" loader = EtherscanLoader(account_address, filter="erc20_transaction") result = loader.load() assert len(result) > 0, "No transactions returned" @pytest.mark.skipif(not etherscan_key_set, reason="Etherscan API key not provided.") def test_get_erc721_transaction() -> None: account_address = "0x9dd134d14d1e65f84b706d6f205cd5b1cd03a46b" loader = EtherscanLoader(account_address, filter="erc721_transaction") result = loader.load() assert len(result) > 0, "No transactions returned" @pytest.mark.skipif(not etherscan_key_set, reason="Etherscan API key not provided.") def test_get_erc1155_transaction() -> None: account_address = "0x9dd134d14d1e65f84b706d6f205cd5b1cd03a46b" loader = EtherscanLoader(account_address, filter="erc1155_transaction") result = loader.load() assert len(result) == 1, "Wrong transactions returned" assert result[0].page_content == "", "Wrong transactions returned" @pytest.mark.skipif(not etherscan_key_set, reason="Etherscan API key not provided.") def test_get_eth_balance() -> None: account_address = "0x9dd134d14d1e65f84b706d6f205cd5b1cd03a46b" loader = EtherscanLoader(account_address, filter="eth_balance") result = loader.load() assert len(result) > 0, "No transactions returned" @pytest.mark.skipif(not etherscan_key_set, reason="Etherscan API key not provided.") def test_invalid_filter() -> None: account_address = "0x9dd134d14d1e65f84b706d6f205cd5b1cd03a46b" with pytest.raises(ValueError) as error_invalid_filter: EtherscanLoader(account_address, filter="internal_saction") assert str(error_invalid_filter.value) == "Invalid filter internal_saction"
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~memory~summary_buffer.py
from typing import Any, Dict, List from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.summary import SummarizerMixin from langchain.pydantic_v1 import root_validator from langchain.schema.messages import BaseMessage, get_buffer_string class ConversationSummaryBufferMemory(BaseChatMemory, SummarizerMixin): """Buffer with summarizer for storing conversation memory.""" max_token_limit: int = 2000 moving_summary_buffer: str = "" memory_key: str = "history" @property def buffer(self) -> List[BaseMessage]: return self.chat_memory.messages @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" buffer = self.buffer if self.moving_summary_buffer != "": first_messages: List[BaseMessage] = [ self.summary_message_cls(content=self.moving_summary_buffer) ] buffer = first_messages + buffer if self.return_messages: final_buffer: Any = buffer else: final_buffer = get_buffer_string( buffer, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix ) return {self.memory_key: final_buffer} @root_validator() def validate_prompt_input_variables(cls, values: Dict) -> Dict: """Validate that prompt input variables are consistent.""" prompt_variables = values["prompt"].input_variables expected_keys = {"summary", "new_lines"} if expected_keys != set(prompt_variables): raise ValueError( "Got unexpected prompt input variables. The prompt expects " f"{prompt_variables}, but it should have {expected_keys}." ) return values def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" super().save_context(inputs, outputs) self.prune() def prune(self) -> None: """Prune buffer if it exceeds max token limit""" buffer = self.chat_memory.messages curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) if curr_buffer_length > self.max_token_limit: pruned_memory = [] while curr_buffer_length > self.max_token_limit: pruned_memory.append(buffer.pop(0)) curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) self.moving_summary_buffer = self.predict_new_summary( pruned_memory, self.moving_summary_buffer ) def clear(self) -> None: """Clear memory contents.""" super().clear() self.moving_summary_buffer = ""
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~load~test_load.py
"""Test for Serializable base class""" import pytest from langchain.chains.llm import LLMChain from langchain.llms.openai import OpenAI from langchain.load.dump import dumpd, dumps from langchain.load.load import load, loads from langchain.prompts.prompt import PromptTemplate class NotSerializable: pass @pytest.mark.requires("openai") def test_loads_openai_llm() -> None: llm = OpenAI(model="davinci", temperature=0.5, openai_api_key="hello") llm_string = dumps(llm) llm2 = loads(llm_string, secrets_map={"OPENAI_API_KEY": "hello"}) assert llm2 == llm assert dumps(llm2) == llm_string assert isinstance(llm2, OpenAI) @pytest.mark.requires("openai") def test_loads_llmchain() -> None: llm = OpenAI(model="davinci", temperature=0.5, openai_api_key="hello") prompt = PromptTemplate.from_template("hello {name}!") chain = LLMChain(llm=llm, prompt=prompt) chain_string = dumps(chain) chain2 = loads(chain_string, secrets_map={"OPENAI_API_KEY": "hello"}) assert chain2 == chain assert dumps(chain2) == chain_string assert isinstance(chain2, LLMChain) assert isinstance(chain2.llm, OpenAI) assert isinstance(chain2.prompt, PromptTemplate) @pytest.mark.requires("openai") def test_loads_llmchain_env() -> None: import os has_env = "OPENAI_API_KEY" in os.environ if not has_env: os.environ["OPENAI_API_KEY"] = "env_variable" llm = OpenAI(model="davinci", temperature=0.5) prompt = PromptTemplate.from_template("hello {name}!") chain = LLMChain(llm=llm, prompt=prompt) chain_string = dumps(chain) chain2 = loads(chain_string) assert chain2 == chain assert dumps(chain2) == chain_string assert isinstance(chain2, LLMChain) assert isinstance(chain2.llm, OpenAI) assert isinstance(chain2.prompt, PromptTemplate) if not has_env: del os.environ["OPENAI_API_KEY"] @pytest.mark.requires("openai") def test_loads_llmchain_with_non_serializable_arg() -> None: llm = OpenAI( model="davinci", temperature=0.5, openai_api_key="hello", client=NotSerializable, ) prompt = PromptTemplate.from_template("hello {name}!") chain = LLMChain(llm=llm, prompt=prompt) chain_string = dumps(chain, pretty=True) with pytest.raises(NotImplementedError): loads(chain_string, secrets_map={"OPENAI_API_KEY": "hello"}) @pytest.mark.requires("openai") def test_load_openai_llm() -> None: llm = OpenAI(model="davinci", temperature=0.5, openai_api_key="hello") llm_obj = dumpd(llm) llm2 = load(llm_obj, secrets_map={"OPENAI_API_KEY": "hello"}) assert llm2 == llm assert dumpd(llm2) == llm_obj assert isinstance(llm2, OpenAI) @pytest.mark.requires("openai") def test_load_llmchain() -> None: llm = OpenAI(model="davinci", temperature=0.5, openai_api_key="hello") prompt = PromptTemplate.from_template("hello {name}!") chain = LLMChain(llm=llm, prompt=prompt) chain_obj = dumpd(chain) chain2 = load(chain_obj, secrets_map={"OPENAI_API_KEY": "hello"}) assert chain2 == chain assert dumpd(chain2) == chain_obj assert isinstance(chain2, LLMChain) assert isinstance(chain2.llm, OpenAI) assert isinstance(chain2.prompt, PromptTemplate) @pytest.mark.requires("openai") def test_load_llmchain_env() -> None: import os has_env = "OPENAI_API_KEY" in os.environ if not has_env: os.environ["OPENAI_API_KEY"] = "env_variable" llm = OpenAI(model="davinci", temperature=0.5) prompt = PromptTemplate.from_template("hello {name}!") chain = LLMChain(llm=llm, prompt=prompt) chain_obj = dumpd(chain) chain2 = load(chain_obj) assert chain2 == chain assert dumpd(chain2) == chain_obj assert isinstance(chain2, LLMChain) assert isinstance(chain2.llm, OpenAI) assert isinstance(chain2.prompt, PromptTemplate) if not has_env: del os.environ["OPENAI_API_KEY"] @pytest.mark.requires("openai") def test_load_llmchain_with_non_serializable_arg() -> None: llm = OpenAI( model="davinci", temperature=0.5, openai_api_key="hello", client=NotSerializable, ) prompt = PromptTemplate.from_template("hello {name}!") chain = LLMChain(llm=llm, prompt=prompt) chain_obj = dumpd(chain) with pytest.raises(NotImplementedError): load(chain_obj, secrets_map={"OPENAI_API_KEY": "hello"})
[ "hello {name}!" ]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~llms~anthropic.py
import re import warnings from typing import ( Any, AsyncIterator, Callable, Dict, Iterator, List, Mapping, Optional, Union, ) from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import LLM from langchain.pydantic_v1 import Field, SecretStr, root_validator from langchain.schema.language_model import BaseLanguageModel from langchain.schema.output import GenerationChunk from langchain.schema.prompt import PromptValue from langchain.utils import ( check_package_version, get_from_dict_or_env, get_pydantic_field_names, ) from langchain.utils.utils import build_extra_kwargs def _to_secret(value: Union[SecretStr, str]) -> SecretStr: """Convert a string to a SecretStr if needed.""" if isinstance(value, SecretStr): return value return SecretStr(value) class _AnthropicCommon(BaseLanguageModel): client: Any = None #: :meta private: async_client: Any = None #: :meta private: model: str = Field(default="claude-2", alias="model_name") """Model name to use.""" max_tokens_to_sample: int = Field(default=256, alias="max_tokens") """Denotes the number of tokens to predict per generation.""" temperature: Optional[float] = None """A non-negative float that tunes the degree of randomness in generation.""" top_k: Optional[int] = None """Number of most likely tokens to consider at each step.""" top_p: Optional[float] = None """Total probability mass of tokens to consider at each step.""" streaming: bool = False """Whether to stream the results.""" default_request_timeout: Optional[float] = None """Timeout for requests to Anthropic Completion API. Default is 600 seconds.""" anthropic_api_url: Optional[str] = None anthropic_api_key: Optional[SecretStr] = None HUMAN_PROMPT: Optional[str] = None AI_PROMPT: Optional[str] = None count_tokens: Optional[Callable[[str], int]] = None model_kwargs: Dict[str, Any] = Field(default_factory=dict) @root_validator(pre=True) def build_extra(cls, values: Dict) -> Dict: extra = values.get("model_kwargs", {}) all_required_field_names = get_pydantic_field_names(cls) values["model_kwargs"] = build_extra_kwargs( extra, values, all_required_field_names ) return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["anthropic_api_key"] = _to_secret( get_from_dict_or_env(values, "anthropic_api_key", "ANTHROPIC_API_KEY") ) # Get custom api url from environment. values["anthropic_api_url"] = get_from_dict_or_env( values, "anthropic_api_url", "ANTHROPIC_API_URL", default="https://api.anthropic.com", ) try: import anthropic check_package_version("anthropic", gte_version="0.3") values["client"] = anthropic.Anthropic( base_url=values["anthropic_api_url"], api_key=values["anthropic_api_key"].get_secret_value(), timeout=values["default_request_timeout"], ) values["async_client"] = anthropic.AsyncAnthropic( base_url=values["anthropic_api_url"], api_key=values["anthropic_api_key"].get_secret_value(), timeout=values["default_request_timeout"], ) values["HUMAN_PROMPT"] = anthropic.HUMAN_PROMPT values["AI_PROMPT"] = anthropic.AI_PROMPT values["count_tokens"] = values["client"].count_tokens except ImportError: raise ImportError( "Could not import anthropic python package. " "Please it install it with `pip install anthropic`." ) return values @property def _default_params(self) -> Mapping[str, Any]: """Get the default parameters for calling Anthropic API.""" d = { "max_tokens_to_sample": self.max_tokens_to_sample, "model": self.model, } if self.temperature is not None: d["temperature"] = self.temperature if self.top_k is not None: d["top_k"] = self.top_k if self.top_p is not None: d["top_p"] = self.top_p return {**d, **self.model_kwargs} @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{}, **self._default_params} def _get_anthropic_stop(self, stop: Optional[List[str]] = None) -> List[str]: if not self.HUMAN_PROMPT or not self.AI_PROMPT: raise NameError("Please ensure the anthropic package is loaded") if stop is None: stop = [] # Never want model to invent new turns of Human / Assistant dialog. stop.extend([self.HUMAN_PROMPT]) return stop class Anthropic(LLM, _AnthropicCommon): """Anthropic large language models. To use, you should have the ``anthropic`` python package installed, and the environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python import anthropic from langchain.llms import Anthropic model = Anthropic(model="<model_name>", anthropic_api_key="my-api-key") # Simplest invocation, automatically wrapped with HUMAN_PROMPT # and AI_PROMPT. response = model("What are the biggest risks facing humanity?") # Or if you want to use the chat mode, build a few-shot-prompt, or # put words in the Assistant's mouth, use HUMAN_PROMPT and AI_PROMPT: raw_prompt = "What are the biggest risks facing humanity?" prompt = f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}" response = model(prompt) """ class Config: """Configuration for this pydantic object.""" allow_population_by_field_name = True arbitrary_types_allowed = True @root_validator() def raise_warning(cls, values: Dict) -> Dict: """Raise warning that this class is deprecated.""" warnings.warn( "This Anthropic LLM is deprecated. " "Please use `from langchain.chat_models import ChatAnthropic` instead" ) return values @property def _llm_type(self) -> str: """Return type of llm.""" return "anthropic-llm" def _wrap_prompt(self, prompt: str) -> str: if not self.HUMAN_PROMPT or not self.AI_PROMPT: raise NameError("Please ensure the anthropic package is loaded") if prompt.startswith(self.HUMAN_PROMPT): return prompt # Already wrapped. # Guard against common errors in specifying wrong number of newlines. corrected_prompt, n_subs = re.subn(r"^\n*Human:", self.HUMAN_PROMPT, prompt) if n_subs == 1: return corrected_prompt # As a last resort, wrap the prompt ourselves to emulate instruct-style. return f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT} Sure, here you go:\n" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: r"""Call out to Anthropic's completion endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python prompt = "What are the biggest risks facing humanity?" prompt = f"\n\nHuman: {prompt}\n\nAssistant:" response = model(prompt) """ if self.streaming: completion = "" for chunk in self._stream( prompt=prompt, stop=stop, run_manager=run_manager, **kwargs ): completion += chunk.text return completion stop = self._get_anthropic_stop(stop) params = {**self._default_params, **kwargs} response = self.client.completions.create( prompt=self._wrap_prompt(prompt), stop_sequences=stop, **params, ) return response.completion def convert_prompt(self, prompt: PromptValue) -> str: return self._wrap_prompt(prompt.to_string()) async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to Anthropic's completion endpoint asynchronously.""" if self.streaming: completion = "" async for chunk in self._astream( prompt=prompt, stop=stop, run_manager=run_manager, **kwargs ): completion += chunk.text return completion stop = self._get_anthropic_stop(stop) params = {**self._default_params, **kwargs} response = await self.async_client.completions.create( prompt=self._wrap_prompt(prompt), stop_sequences=stop, **params, ) return response.completion def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: r"""Call Anthropic completion_stream and return the resulting generator. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: A generator representing the stream of tokens from Anthropic. Example: .. code-block:: python prompt = "Write a poem about a stream." prompt = f"\n\nHuman: {prompt}\n\nAssistant:" generator = anthropic.stream(prompt) for token in generator: yield token """ stop = self._get_anthropic_stop(stop) params = {**self._default_params, **kwargs} for token in self.client.completions.create( prompt=self._wrap_prompt(prompt), stop_sequences=stop, stream=True, **params ): chunk = GenerationChunk(text=token.completion) yield chunk if run_manager: run_manager.on_llm_new_token(chunk.text, chunk=chunk) async def _astream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[GenerationChunk]: r"""Call Anthropic completion_stream and return the resulting generator. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: A generator representing the stream of tokens from Anthropic. Example: .. code-block:: python prompt = "Write a poem about a stream." prompt = f"\n\nHuman: {prompt}\n\nAssistant:" generator = anthropic.stream(prompt) for token in generator: yield token """ stop = self._get_anthropic_stop(stop) params = {**self._default_params, **kwargs} async for token in await self.async_client.completions.create( prompt=self._wrap_prompt(prompt), stop_sequences=stop, stream=True, **params, ): chunk = GenerationChunk(text=token.completion) yield chunk if run_manager: await run_manager.on_llm_new_token(chunk.text, chunk=chunk) def get_num_tokens(self, text: str) -> int: """Calculate number of tokens.""" if not self.count_tokens: raise NameError("Please ensure the anthropic package is loaded") return self.count_tokens(text)
[ "None" ]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~document_loaders~test_excel.py
import os from pathlib import Path from langchain.document_loaders import UnstructuredExcelLoader EXAMPLE_DIRECTORY = file_path = Path(__file__).parent.parent / "examples" def test_unstructured_excel_loader() -> None: """Test unstructured loader.""" file_path = os.path.join(EXAMPLE_DIRECTORY, "stanley-cups.xlsx") loader = UnstructuredExcelLoader(str(file_path)) docs = loader.load() assert len(docs) == 1
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~utilities~test_graphql.py
import json import pytest import responses from langchain.utilities.graphql import GraphQLAPIWrapper TEST_ENDPOINT = "http://testserver/graphql" # Mock GraphQL response for testing MOCK_RESPONSE = { "data": { "allUsers": [{"name": "Alice"}], "__schema": { "queryType": {"name": "Query"}, "types": [ { "kind": "OBJECT", "name": "Query", "fields": [ { "name": "allUsers", "args": [], "type": { "kind": "NON_NULL", "name": None, "ofType": { "kind": "OBJECT", "name": "allUsers", "ofType": None, }, }, } ], "inputFields": None, "interfaces": [], "enumValues": None, "possibleTypes": None, }, { "kind": "SCALAR", "name": "String", }, { "kind": "OBJECT", "name": "allUsers", "description": None, "fields": [ { "name": "name", "description": None, "args": [], "type": { "kind": "NON_NULL", "name": None, "ofType": { "kind": "SCALAR", "name": "String", "ofType": None, }, }, }, ], "inputFields": None, "interfaces": [], "enumValues": None, "possibleTypes": None, }, { "kind": "SCALAR", "name": "Boolean", }, ], }, } } @pytest.mark.requires("gql", "requests_toolbelt") @responses.activate def test_run() -> None: responses.add(responses.POST, TEST_ENDPOINT, json=MOCK_RESPONSE, status=200) query = "query { allUsers { name } }" graphql_wrapper = GraphQLAPIWrapper( graphql_endpoint=TEST_ENDPOINT, custom_headers={"Authorization": "Bearer testtoken"}, ) result = graphql_wrapper.run(query) expected_result = json.dumps(MOCK_RESPONSE["data"], indent=2) assert result == expected_result
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~vectorstores~test_elastic_vector_search.py
"""Test ElasticSearch functionality.""" import logging import os import uuid from typing import Generator, List, Union import pytest from langchain.docstore.document import Document from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings logging.basicConfig(level=logging.DEBUG) """ cd tests/integration_tests/vectorstores/docker-compose docker-compose -f elasticsearch.yml up """ class TestElasticsearch: @classmethod def setup_class(cls) -> None: if not os.getenv("OPENAI_API_KEY"): raise ValueError("OPENAI_API_KEY environment variable is not set") @pytest.fixture(scope="class", autouse=True) def elasticsearch_url(self) -> Union[str, Generator[str, None, None]]: """Return the elasticsearch url.""" from elasticsearch import Elasticsearch url = "http://localhost:9200" yield url es = Elasticsearch(hosts=url) # Clear all indexes index_names = es.indices.get(index="_all").keys() for index_name in index_names: # print(index_name) es.indices.delete(index=index_name) def test_similarity_search_without_metadata(self, elasticsearch_url: str) -> None: """Test end to end construction and search without metadata.""" texts = ["foo", "bar", "baz"] docsearch = ElasticVectorSearch.from_texts( texts, FakeEmbeddings(), elasticsearch_url=elasticsearch_url ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] @pytest.mark.skip( reason="Docker build has no ssl certs. Enable this test when testing with ssl." ) def test_similarity_search_with_ssl_verify(self, elasticsearch_url: str) -> None: """Test end to end construction and search with ssl verify.""" ssl_verify = { "verify_certs": True, "basic_auth": ("ES_USER", "ES_PASSWORD"), "ca_certs": "ES_CA_CERTS_PATH", } texts = ["foo", "bar", "baz"] docsearch = ElasticVectorSearch.from_texts( texts, FakeEmbeddings(), elasticsearch_url="http://localhost:9200", ssl_verify=ssl_verify, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] def test_similarity_search_with_metadata(self, elasticsearch_url: str) -> None: """Test end to end construction and search with metadata.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = ElasticVectorSearch.from_texts( texts, FakeEmbeddings(), metadatas=metadatas, elasticsearch_url=elasticsearch_url, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={"page": 0})] @pytest.mark.vcr(ignore_localhost=True) def test_default_index_from_documents( self, documents: List[Document], embedding_openai: OpenAIEmbeddings, elasticsearch_url: str, ) -> None: """This test checks the construction of a default ElasticSearch index using the 'from_documents'.""" elastic_vector_search = ElasticVectorSearch.from_documents( documents=documents, embedding=embedding_openai, elasticsearch_url=elasticsearch_url, ) search_result = elastic_vector_search.similarity_search("sharks") assert len(search_result) != 0 @pytest.mark.vcr(ignore_localhost=True) def test_custom_index_from_documents( self, documents: List[Document], embedding_openai: OpenAIEmbeddings, elasticsearch_url: str, ) -> None: """This test checks the construction of a custom ElasticSearch index using the 'from_documents'.""" from elasticsearch import Elasticsearch index_name = f"custom_index_{uuid.uuid4().hex}" elastic_vector_search = ElasticVectorSearch.from_documents( documents=documents, embedding=embedding_openai, elasticsearch_url=elasticsearch_url, index_name=index_name, ) es = Elasticsearch(hosts=elasticsearch_url) index_names = es.indices.get(index="_all").keys() assert index_name in index_names search_result = elastic_vector_search.similarity_search("sharks") assert len(search_result) != 0 @pytest.mark.vcr(ignore_localhost=True) def test_custom_index_add_documents( self, documents: List[Document], embedding_openai: OpenAIEmbeddings, elasticsearch_url: str, ) -> None: """This test checks the construction of a custom ElasticSearch index using the 'add_documents'.""" from elasticsearch import Elasticsearch index_name = f"custom_index_{uuid.uuid4().hex}" elastic_vector_search = ElasticVectorSearch( embedding=embedding_openai, elasticsearch_url=elasticsearch_url, index_name=index_name, ) es = Elasticsearch(hosts=elasticsearch_url) elastic_vector_search.add_documents(documents) index_names = es.indices.get(index="_all").keys() assert index_name in index_names search_result = elastic_vector_search.similarity_search("sharks") assert len(search_result) != 0 def test_custom_index_add_documents_to_exists_store(self) -> None: # TODO: implement it pass
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~callbacks~test_run_collector.py
"""Test the run collector.""" import uuid from langchain.callbacks import collect_runs from tests.unit_tests.llms.fake_llm import FakeLLM def test_collect_runs() -> None: llm = FakeLLM(queries={"hi": "hello"}, sequential_responses=True) with collect_runs() as cb: llm.predict("hi") assert cb.traced_runs assert len(cb.traced_runs) == 1 assert isinstance(cb.traced_runs[0].id, uuid.UUID) assert cb.traced_runs[0].inputs == {"prompts": ["hi"]}
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~smith~evaluation~test_string_run_evaluator.py
"""Tests for the string run evaluator.""" from unittest.mock import MagicMock from langchain.evaluation import criteria from langchain.smith.evaluation.string_run_evaluator import ( ChainStringRunMapper, StringRunEvaluatorChain, ) from tests.unit_tests.llms import fake_llm def test_evaluate_run() -> None: run_mapper = ChainStringRunMapper() example_mapper = MagicMock() string_evaluator = criteria.CriteriaEvalChain.from_llm(fake_llm.FakeLLM()) evaluator = StringRunEvaluatorChain( run_mapper=run_mapper, example_mapper=example_mapper, name="test_evaluator", string_evaluator=string_evaluator, ) run = MagicMock() example = MagicMock() res = evaluator.evaluate_run(run, example) assert str(res.comment).startswith("Error evaluating run ") assert res.key == string_evaluator.evaluation_name
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~document_loaders~test_gitbook.py
from typing import Optional import pytest from langchain.document_loaders.gitbook import GitbookLoader class TestGitbookLoader: @pytest.mark.parametrize( "web_page, load_all_paths, base_url, expected_web_path", [ ("https://example.com/page1", False, None, "https://example.com/page1"), ( "https://example.com/", True, "https://example.com", "https://example.com/sitemap.xml", ), ], ) def test_init( self, web_page: str, load_all_paths: bool, base_url: Optional[str], expected_web_path: str, ) -> None: loader = GitbookLoader( web_page, load_all_paths=load_all_paths, base_url=base_url ) print(loader.__dict__) assert ( loader.base_url == (base_url or web_page)[:-1] if (base_url or web_page).endswith("/") else (base_url or web_page) ) assert loader.web_path == expected_web_path assert loader.load_all_paths == load_all_paths @pytest.mark.parametrize( "web_page, expected_number_results", [("https://platform-docs.opentargets.org/getting-started", 1)], ) def test_load_single_page( self, web_page: str, expected_number_results: int ) -> None: loader = GitbookLoader(web_page) result = loader.load() assert len(result) == expected_number_results @pytest.mark.parametrize("web_page", [("https://platform-docs.opentargets.org/")]) def test_load_multiple_pages(self, web_page: str) -> None: loader = GitbookLoader(web_page, load_all_paths=True) result = loader.load() print(len(result)) assert len(result) > 10
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~llms~gpt4all.py
from functools import partial from typing import Any, Dict, List, Mapping, Optional, Set from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.pydantic_v1 import Extra, Field, root_validator class GPT4All(LLM): """GPT4All language models. To use, you should have the ``gpt4all`` python package installed, the pre-trained model file, and the model's config information. Example: .. code-block:: python from langchain.llms import GPT4All model = GPT4All(model="./models/gpt4all-model.bin", n_threads=8) # Simplest invocation response = model("Once upon a time, ") """ model: str """Path to the pre-trained GPT4All model file.""" backend: Optional[str] = Field(None, alias="backend") max_tokens: int = Field(200, alias="max_tokens") """Token context window.""" n_parts: int = Field(-1, alias="n_parts") """Number of parts to split the model into. If -1, the number of parts is automatically determined.""" seed: int = Field(0, alias="seed") """Seed. If -1, a random seed is used.""" f16_kv: bool = Field(False, alias="f16_kv") """Use half-precision for key/value cache.""" logits_all: bool = Field(False, alias="logits_all") """Return logits for all tokens, not just the last token.""" vocab_only: bool = Field(False, alias="vocab_only") """Only load the vocabulary, no weights.""" use_mlock: bool = Field(False, alias="use_mlock") """Force system to keep model in RAM.""" embedding: bool = Field(False, alias="embedding") """Use embedding mode only.""" n_threads: Optional[int] = Field(4, alias="n_threads") """Number of threads to use.""" n_predict: Optional[int] = 256 """The maximum number of tokens to generate.""" temp: Optional[float] = 0.7 """The temperature to use for sampling.""" top_p: Optional[float] = 0.1 """The top-p value to use for sampling.""" top_k: Optional[int] = 40 """The top-k value to use for sampling.""" echo: Optional[bool] = False """Whether to echo the prompt.""" stop: Optional[List[str]] = [] """A list of strings to stop generation when encountered.""" repeat_last_n: Optional[int] = 64 "Last n tokens to penalize" repeat_penalty: Optional[float] = 1.18 """The penalty to apply to repeated tokens.""" n_batch: int = Field(8, alias="n_batch") """Batch size for prompt processing.""" streaming: bool = False """Whether to stream the results or not.""" allow_download: bool = False """If model does not exist in ~/.cache/gpt4all/, download it.""" device: Optional[str] = Field("cpu", alias="device") """Device name: cpu, gpu, nvidia, intel, amd or DeviceName.""" client: Any = None #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @staticmethod def _model_param_names() -> Set[str]: return { "max_tokens", "n_predict", "top_k", "top_p", "temp", "n_batch", "repeat_penalty", "repeat_last_n", } def _default_params(self) -> Dict[str, Any]: return { "max_tokens": self.max_tokens, "n_predict": self.n_predict, "top_k": self.top_k, "top_p": self.top_p, "temp": self.temp, "n_batch": self.n_batch, "repeat_penalty": self.repeat_penalty, "repeat_last_n": self.repeat_last_n, } @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in the environment.""" try: from gpt4all import GPT4All as GPT4AllModel except ImportError: raise ImportError( "Could not import gpt4all python package. " "Please install it with `pip install gpt4all`." ) full_path = values["model"] model_path, delimiter, model_name = full_path.rpartition("/") model_path += delimiter values["client"] = GPT4AllModel( model_name, model_path=model_path or None, model_type=values["backend"], allow_download=values["allow_download"], device=values["device"], ) if values["n_threads"] is not None: # set n_threads values["client"].model.set_thread_count(values["n_threads"]) try: values["backend"] = values["client"].model_type except AttributeError: # The below is for compatibility with GPT4All Python bindings <= 0.2.3. values["backend"] = values["client"].model.model_type return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model": self.model, **self._default_params(), **{ k: v for k, v in self.__dict__.items() if k in self._model_param_names() }, } @property def _llm_type(self) -> str: """Return the type of llm.""" return "gpt4all" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: r"""Call out to GPT4All's generate method. Args: prompt: The prompt to pass into the model. stop: A list of strings to stop generation when encountered. Returns: The string generated by the model. Example: .. code-block:: python prompt = "Once upon a time, " response = model(prompt, n_predict=55) """ text_callback = None if run_manager: text_callback = partial(run_manager.on_llm_new_token, verbose=self.verbose) text = "" params = {**self._default_params(), **kwargs} for token in self.client.generate(prompt, **params): if text_callback: text_callback(token) text += token if stop is not None: text = enforce_stop_tokens(text, stop) return text
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~retrievers~document_compressors~test_embeddings_filter.py
"""Integration test for embedding-based relevant doc filtering.""" import numpy as np from langchain.document_transformers.embeddings_redundant_filter import ( _DocumentWithState, ) from langchain.embeddings import OpenAIEmbeddings from langchain.retrievers.document_compressors import EmbeddingsFilter from langchain.schema import Document def test_embeddings_filter() -> None: texts = [ "What happened to all of my cookies?", "I wish there were better Italian restaurants in my neighborhood.", "My favorite color is green", ] docs = [Document(page_content=t) for t in texts] embeddings = OpenAIEmbeddings() relevant_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.75) actual = relevant_filter.compress_documents(docs, "What did I say about food?") assert len(actual) == 2 assert len(set(texts[:2]).intersection([d.page_content for d in actual])) == 2 def test_embeddings_filter_with_state() -> None: texts = [ "What happened to all of my cookies?", "I wish there were better Italian restaurants in my neighborhood.", "My favorite color is green", ] query = "What did I say about food?" embeddings = OpenAIEmbeddings() embedded_query = embeddings.embed_query(query) state = {"embedded_doc": np.zeros(len(embedded_query))} docs = [_DocumentWithState(page_content=t, state=state) for t in texts] docs[-1].state = {"embedded_doc": embedded_query} relevant_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.75) actual = relevant_filter.compress_documents(docs, query) assert len(actual) == 1 assert texts[-1] == actual[0].page_content
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~retrievers~self_query~test_milvus.py
from typing import Dict, Tuple from langchain.chains.query_constructor.ir import ( Comparator, Comparison, Operation, Operator, StructuredQuery, ) from langchain.retrievers.self_query.milvus import MilvusTranslator DEFAULT_TRANSLATOR = MilvusTranslator() def test_visit_comparison() -> None: comp = Comparison(comparator=Comparator.LT, attribute="foo", value=4) expected = "( foo < 4 )" actual = DEFAULT_TRANSLATOR.visit_comparison(comp) assert expected == actual def test_visit_operation() -> None: # Non-Unary operator op = Operation( operator=Operator.AND, arguments=[ Comparison(comparator=Comparator.LT, attribute="foo", value=2), Comparison(comparator=Comparator.EQ, attribute="bar", value="baz"), Comparison(comparator=Comparator.LT, attribute="abc", value="4"), ], ) expected = '(( foo < 2 ) and ( bar == "baz" ) ' 'and ( abc < "4" ))' actual = DEFAULT_TRANSLATOR.visit_operation(op) assert expected == actual # Unary operator: normal execution op = Operation( operator=Operator.NOT, arguments=[ Comparison(comparator=Comparator.LT, attribute="foo", value=2), ], ) expected = "not(( foo < 2 ))" actual = DEFAULT_TRANSLATOR.visit_operation(op) assert expected == actual # Unary operator: error op = Operation( operator=Operator.NOT, arguments=[ Comparison(comparator=Comparator.LT, attribute="foo", value=2), Comparison(comparator=Comparator.EQ, attribute="bar", value="baz"), Comparison(comparator=Comparator.LT, attribute="abc", value="4"), ], ) try: DEFAULT_TRANSLATOR.visit_operation(op) except ValueError as e: assert str(e) == '"not" can have only one argument in Milvus' else: assert False, "Expected exception not raised" # No exception -> test failed def test_visit_structured_query() -> None: query = "What is the capital of France?" structured_query = StructuredQuery( query=query, filter=None, ) expected: Tuple[str, Dict] = (query, {}) actual = DEFAULT_TRANSLATOR.visit_structured_query(structured_query) assert expected == actual comp = Comparison(comparator=Comparator.LT, attribute="foo", value=454) structured_query = StructuredQuery( query=query, filter=comp, ) expected = ( query, {"expr": "( foo < 454 )"}, ) actual = DEFAULT_TRANSLATOR.visit_structured_query(structured_query) assert expected == actual op = Operation( operator=Operator.AND, arguments=[ Comparison(comparator=Comparator.LT, attribute="foo", value=2), Comparison(comparator=Comparator.EQ, attribute="bar", value="baz"), Comparison(comparator=Comparator.LT, attribute="abc", value=50), ], ) structured_query = StructuredQuery( query=query, filter=op, ) expected = ( query, {"expr": "(( foo < 2 ) " 'and ( bar == "baz" ) ' "and ( abc < 50 ))"}, ) actual = DEFAULT_TRANSLATOR.visit_structured_query(structured_query) assert expected == actual
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~vectorstores~azure_cosmos_db.py
from __future__ import annotations import logging from enum import Enum from typing import ( TYPE_CHECKING, Any, Dict, Generator, Iterable, List, Optional, Tuple, TypeVar, Union, ) import numpy as np from langchain.docstore.document import Document from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance if TYPE_CHECKING: from pymongo.collection import Collection from langchain.schema.embeddings import Embeddings # Before Python 3.11 native StrEnum is not available class CosmosDBSimilarityType(str, Enum): """Cosmos DB Similarity Type as enumerator.""" COS = "COS" """CosineSimilarity""" IP = "IP" """inner - product""" L2 = "L2" """Euclidean distance""" CosmosDBDocumentType = TypeVar("CosmosDBDocumentType", bound=Dict[str, Any]) logger = logging.getLogger(__name__) DEFAULT_INSERT_BATCH_SIZE = 128 class AzureCosmosDBVectorSearch(VectorStore): """`Azure Cosmos DB for MongoDB vCore` vector store. To use, you should have both: - the ``pymongo`` python package installed - a connection string associated with a MongoDB VCore Cluster Example: . code-block:: python from langchain.vectorstores import AzureCosmosDBVectorSearch from langchain.embeddings.openai import OpenAIEmbeddings from pymongo import MongoClient mongo_client = MongoClient("<YOUR-CONNECTION-STRING>") collection = mongo_client["<db_name>"]["<collection_name>"] embeddings = OpenAIEmbeddings() vectorstore = AzureCosmosDBVectorSearch(collection, embeddings) """ def __init__( self, collection: Collection[CosmosDBDocumentType], embedding: Embeddings, *, index_name: str = "vectorSearchIndex", text_key: str = "textContent", embedding_key: str = "vectorContent", ): """Constructor for AzureCosmosDBVectorSearch Args: collection: MongoDB collection to add the texts to. embedding: Text embedding model to use. index_name: Name of the Atlas Search index. text_key: MongoDB field that will contain the text for each document. embedding_key: MongoDB field that will contain the embedding for each document. """ self._collection = collection self._embedding = embedding self._index_name = index_name self._text_key = text_key self._embedding_key = embedding_key @property def embeddings(self) -> Embeddings: return self._embedding def get_index_name(self) -> str: """Returns the index name Returns: Returns the index name """ return self._index_name @classmethod def from_connection_string( cls, connection_string: str, namespace: str, embedding: Embeddings, **kwargs: Any, ) -> AzureCosmosDBVectorSearch: """Creates an Instance of AzureCosmosDBVectorSearch from a Connection String Args: connection_string: The MongoDB vCore instance connection string namespace: The namespace (database.collection) embedding: The embedding utility **kwargs: Dynamic keyword arguments Returns: an instance of the vector store """ try: from pymongo import MongoClient except ImportError: raise ImportError( "Could not import pymongo, please install it with " "`pip install pymongo`." ) client: MongoClient = MongoClient(connection_string) db_name, collection_name = namespace.split(".") collection = client[db_name][collection_name] return cls(collection, embedding, **kwargs) def index_exists(self) -> bool: """Verifies if the specified index name during instance construction exists on the collection Returns: Returns True on success and False if no such index exists on the collection """ cursor = self._collection.list_indexes() index_name = self._index_name for res in cursor: current_index_name = res.pop("name") if current_index_name == index_name: return True return False def delete_index(self) -> None: """Deletes the index specified during instance construction if it exists""" if self.index_exists(): self._collection.drop_index(self._index_name) # Raises OperationFailure on an error (e.g. trying to drop # an index that does not exist) def create_index( self, num_lists: int = 100, dimensions: int = 1536, similarity: CosmosDBSimilarityType = CosmosDBSimilarityType.COS, ) -> dict[str, Any]: """Creates an index using the index name specified at instance construction Setting the numLists parameter correctly is important for achieving good accuracy and performance. Since the vector store uses IVF as the indexing strategy, you should create the index only after you have loaded a large enough sample documents to ensure that the centroids for the respective buckets are faily distributed. We recommend that numLists is set to documentCount/1000 for up to 1 million documents and to sqrt(documentCount) for more than 1 million documents. As the number of items in your database grows, you should tune numLists to be larger in order to achieve good latency performance for vector search. If you're experimenting with a new scenario or creating a small demo, you can start with numLists set to 1 to perform a brute-force search across all vectors. This should provide you with the most accurate results from the vector search, however be aware that the search speed and latency will be slow. After your initial setup, you should go ahead and tune the numLists parameter using the above guidance. Args: num_lists: This integer is the number of clusters that the inverted file (IVF) index uses to group the vector data. We recommend that numLists is set to documentCount/1000 for up to 1 million documents and to sqrt(documentCount) for more than 1 million documents. Using a numLists value of 1 is akin to performing brute-force search, which has limited performance dimensions: Number of dimensions for vector similarity. The maximum number of supported dimensions is 2000 similarity: Similarity metric to use with the IVF index. Possible options are: - CosmosDBSimilarityType.COS (cosine distance), - CosmosDBSimilarityType.L2 (Euclidean distance), and - CosmosDBSimilarityType.IP (inner product). Returns: An object describing the created index """ # prepare the command create_index_commands = { "createIndexes": self._collection.name, "indexes": [ { "name": self._index_name, "key": {"vectorContent": "cosmosSearch"}, "cosmosSearchOptions": { "kind": "vector-ivf", "numLists": num_lists, "similarity": similarity, "dimensions": dimensions, }, } ], } # retrieve the database object current_database = self._collection.database # invoke the command from the database object create_index_responses: dict[str, Any] = current_database.command( create_index_commands ) return create_index_responses def add_texts( self, texts: Iterable[str], metadatas: Optional[List[Dict[str, Any]]] = None, **kwargs: Any, ) -> List: batch_size = kwargs.get("batch_size", DEFAULT_INSERT_BATCH_SIZE) _metadatas: Union[List, Generator] = metadatas or ({} for _ in texts) texts_batch = [] metadatas_batch = [] result_ids = [] for i, (text, metadata) in enumerate(zip(texts, _metadatas)): texts_batch.append(text) metadatas_batch.append(metadata) if (i + 1) % batch_size == 0: result_ids.extend(self._insert_texts(texts_batch, metadatas_batch)) texts_batch = [] metadatas_batch = [] if texts_batch: result_ids.extend(self._insert_texts(texts_batch, metadatas_batch)) return result_ids def _insert_texts(self, texts: List[str], metadatas: List[Dict[str, Any]]) -> List: """Used to Load Documents into the collection Args: texts: The list of documents strings to load metadatas: The list of metadata objects associated with each document Returns: """ # If the text is empty, then exit early if not texts: return [] # Embed and create the documents embeddings = self._embedding.embed_documents(texts) to_insert = [ {self._text_key: t, self._embedding_key: embedding, **m} for t, m, embedding in zip(texts, metadatas, embeddings) ] # insert the documents in Cosmos DB insert_result = self._collection.insert_many(to_insert) # type: ignore return insert_result.inserted_ids @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection: Optional[Collection[CosmosDBDocumentType]] = None, **kwargs: Any, ) -> AzureCosmosDBVectorSearch: if collection is None: raise ValueError("Must provide 'collection' named parameter.") vectorstore = cls(collection, embedding, **kwargs) vectorstore.add_texts(texts, metadatas=metadatas) return vectorstore def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]: if ids is None: raise ValueError("No document ids provided to delete.") for document_id in ids: self.delete_document_by_id(document_id) return True def delete_document_by_id(self, document_id: Optional[str] = None) -> None: """Removes a Specific Document by Id Args: document_id: The document identifier """ try: from bson.objectid import ObjectId except ImportError as e: raise ImportError( "Unable to import bson, please install with `pip install bson`." ) from e if document_id is None: raise ValueError("No document id provided to delete.") self._collection.delete_one({"_id": ObjectId(document_id)}) def _similarity_search_with_score( self, embeddings: List[float], k: int = 4 ) -> List[Tuple[Document, float]]: """Returns a list of documents with their scores Args: embeddings: The query vector k: the number of documents to return Returns: A list of documents closest to the query vector """ pipeline: List[dict[str, Any]] = [ { "$search": { "cosmosSearch": { "vector": embeddings, "path": self._embedding_key, "k": k, }, "returnStoredSource": True, } }, { "$project": { "similarityScore": {"$meta": "searchScore"}, "document": "$$ROOT", } }, ] cursor = self._collection.aggregate(pipeline) docs = [] for res in cursor: score = res.pop("similarityScore") document_object_field = res.pop("document") text = document_object_field.pop(self._text_key) docs.append( (Document(page_content=text, metadata=document_object_field), score) ) return docs def similarity_search_with_score( self, query: str, k: int = 4 ) -> List[Tuple[Document, float]]: embeddings = self._embedding.embed_query(query) docs = self._similarity_search_with_score(embeddings=embeddings, k=k) return docs def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: docs_and_scores = self.similarity_search_with_score(query, k=k) return [doc for doc, _ in docs_and_scores] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: # Retrieves the docs with similarity scores # sorted by similarity scores in DESC order docs = self._similarity_search_with_score(embedding, k=fetch_k) # Re-ranks the docs using MMR mmr_doc_indexes = maximal_marginal_relevance( np.array(embedding), [doc.metadata[self._embedding_key] for doc, _ in docs], k=k, lambda_mult=lambda_mult, ) mmr_docs = [docs[i][0] for i in mmr_doc_indexes] return mmr_docs def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: # compute the embeddings vector from the query string embeddings = self._embedding.embed_query(query) docs = self.max_marginal_relevance_search_by_vector( embeddings, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult ) return docs
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~embeddings~bedrock.py
import asyncio import json import os from functools import partial from typing import Any, Dict, List, Optional from langchain.pydantic_v1 import BaseModel, Extra, root_validator from langchain.schema.embeddings import Embeddings class BedrockEmbeddings(BaseModel, Embeddings): """Bedrock embedding models. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Bedrock service. """ """ Example: .. code-block:: python from langchain.bedrock_embeddings import BedrockEmbeddings region_name ="us-east-1" credentials_profile_name = "default" model_id = "amazon.titan-embed-text-v1" be = BedrockEmbeddings( credentials_profile_name=credentials_profile_name, region_name=region_name, model_id=model_id ) """ client: Any #: :meta private: """Bedrock client.""" region_name: Optional[str] = None """The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config in case it is not provided here. """ credentials_profile_name: Optional[str] = None """The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html """ model_id: str = "amazon.titan-embed-text-v1" """Id of the model to call, e.g., amazon.titan-embed-text-v1, this is equivalent to the modelId property in the list-foundation-models api""" model_kwargs: Optional[Dict] = None """Keyword arguments to pass to the model.""" endpoint_url: Optional[str] = None """Needed if you don't want to default to us-east-1 endpoint""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that AWS credentials to and python package exists in environment.""" if values["client"] is not None: return values try: import boto3 if values["credentials_profile_name"] is not None: session = boto3.Session(profile_name=values["credentials_profile_name"]) else: # use default credentials session = boto3.Session() client_params = {} if values["region_name"]: client_params["region_name"] = values["region_name"] if values["endpoint_url"]: client_params["endpoint_url"] = values["endpoint_url"] values["client"] = session.client("bedrock-runtime", **client_params) except ImportError: raise ModuleNotFoundError( "Could not import boto3 python package. " "Please install it with `pip install boto3`." ) except Exception as e: raise ValueError( "Could not load credentials to authenticate with AWS client. " "Please check that credentials in the specified " "profile name are valid." ) from e return values def _embedding_func(self, text: str) -> List[float]: """Call out to Bedrock embedding endpoint.""" # replace newlines, which can negatively affect performance. text = text.replace(os.linesep, " ") _model_kwargs = self.model_kwargs or {} input_body = {**_model_kwargs, "inputText": text} body = json.dumps(input_body) try: response = self.client.invoke_model( body=body, modelId=self.model_id, accept="application/json", contentType="application/json", ) response_body = json.loads(response.get("body").read()) return response_body.get("embedding") except Exception as e: raise ValueError(f"Error raised by inference endpoint: {e}") def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a Bedrock model. Args: texts: The list of texts to embed Returns: List of embeddings, one for each text. """ results = [] for text in texts: response = self._embedding_func(text) results.append(response) return results def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a Bedrock model. Args: text: The text to embed. Returns: Embeddings for the text. """ return self._embedding_func(text) async def aembed_query(self, text: str) -> List[float]: """Asynchronous compute query embeddings using a Bedrock model. Args: text: The text to embed. Returns: Embeddings for the text. """ return await asyncio.get_running_loop().run_in_executor( None, partial(self.embed_query, text) ) async def aembed_documents(self, texts: List[str]) -> List[List[float]]: """Asynchronous compute doc embeddings using a Bedrock model. Args: texts: The list of texts to embed Returns: List of embeddings, one for each text. """ result = await asyncio.gather(*[self.aembed_query(text) for text in texts]) return list(result)
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~llms~test_titan_takeoff_pro.py
"""Test Titan Takeoff wrapper.""" import responses from langchain.llms.titan_takeoff_pro import TitanTakeoffPro @responses.activate def test_titan_takeoff_pro_call() -> None: """Test valid call to Titan Takeoff.""" url = "http://localhost:3000/generate" responses.add(responses.POST, url, json={"message": "2 + 2 is 4"}, status=200) # response = requests.post(url) llm = TitanTakeoffPro() output = llm("What is 2 + 2?") assert isinstance(output, str)
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~prompts~test_loading.py
"""Test loading functionality.""" import os from contextlib import contextmanager from pathlib import Path from typing import Iterator import pytest from langchain.output_parsers import RegexParser from langchain.prompts.few_shot import FewShotPromptTemplate from langchain.prompts.loading import load_prompt from langchain.prompts.prompt import PromptTemplate EXAMPLE_DIR = Path("tests/unit_tests/examples").absolute() @contextmanager def change_directory(dir: Path) -> Iterator: """Change the working directory to the right folder.""" origin = Path().absolute() try: os.chdir(dir) yield finally: os.chdir(origin) def test_loading_from_YAML() -> None: """Test loading from yaml file.""" prompt = load_prompt(EXAMPLE_DIR / "simple_prompt.yaml") expected_prompt = PromptTemplate( input_variables=["adjective", "content"], template="Tell me a {adjective} joke about {content}.", ) assert prompt == expected_prompt def test_loading_from_JSON() -> None: """Test loading from json file.""" prompt = load_prompt(EXAMPLE_DIR / "simple_prompt.json") expected_prompt = PromptTemplate( input_variables=["adjective", "content"], template="Tell me a {adjective} joke about {content}.", ) assert prompt == expected_prompt def test_loading_jinja_from_JSON() -> None: """Test that loading jinja2 format prompts from JSON raises ValueError.""" prompt_path = EXAMPLE_DIR / "jinja_injection_prompt.json" with pytest.raises(ValueError, match=".*can lead to arbitrary code execution.*"): load_prompt(prompt_path) def test_loading_jinja_from_YAML() -> None: """Test that loading jinja2 format prompts from YAML raises ValueError.""" prompt_path = EXAMPLE_DIR / "jinja_injection_prompt.yaml" with pytest.raises(ValueError, match=".*can lead to arbitrary code execution.*"): load_prompt(prompt_path) def test_saving_loading_round_trip(tmp_path: Path) -> None: """Test equality when saving and loading a prompt.""" simple_prompt = PromptTemplate( input_variables=["adjective", "content"], template="Tell me a {adjective} joke about {content}.", ) simple_prompt.save(file_path=tmp_path / "prompt.yaml") loaded_prompt = load_prompt(tmp_path / "prompt.yaml") assert loaded_prompt == simple_prompt few_shot_prompt = FewShotPromptTemplate( input_variables=["adjective"], prefix="Write antonyms for the following words.", example_prompt=PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ), examples=[ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}, ], suffix="Input: {adjective}\nOutput:", ) few_shot_prompt.save(file_path=tmp_path / "few_shot.yaml") loaded_prompt = load_prompt(tmp_path / "few_shot.yaml") assert loaded_prompt == few_shot_prompt def test_loading_with_template_as_file() -> None: """Test loading when the template is a file.""" with change_directory(EXAMPLE_DIR): prompt = load_prompt("simple_prompt_with_template_file.json") expected_prompt = PromptTemplate( input_variables=["adjective", "content"], template="Tell me a {adjective} joke about {content}.", ) assert prompt == expected_prompt def test_loading_few_shot_prompt_from_yaml() -> None: """Test loading few shot prompt from yaml.""" with change_directory(EXAMPLE_DIR): prompt = load_prompt("few_shot_prompt.yaml") expected_prompt = FewShotPromptTemplate( input_variables=["adjective"], prefix="Write antonyms for the following words.", example_prompt=PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ), examples=[ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}, ], suffix="Input: {adjective}\nOutput:", ) assert prompt == expected_prompt def test_loading_few_shot_prompt_from_json() -> None: """Test loading few shot prompt from json.""" with change_directory(EXAMPLE_DIR): prompt = load_prompt("few_shot_prompt.json") expected_prompt = FewShotPromptTemplate( input_variables=["adjective"], prefix="Write antonyms for the following words.", example_prompt=PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ), examples=[ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}, ], suffix="Input: {adjective}\nOutput:", ) assert prompt == expected_prompt def test_loading_few_shot_prompt_when_examples_in_config() -> None: """Test loading few shot prompt when the examples are in the config.""" with change_directory(EXAMPLE_DIR): prompt = load_prompt("few_shot_prompt_examples_in.json") expected_prompt = FewShotPromptTemplate( input_variables=["adjective"], prefix="Write antonyms for the following words.", example_prompt=PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ), examples=[ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}, ], suffix="Input: {adjective}\nOutput:", ) assert prompt == expected_prompt def test_loading_few_shot_prompt_example_prompt() -> None: """Test loading few shot when the example prompt is in its own file.""" with change_directory(EXAMPLE_DIR): prompt = load_prompt("few_shot_prompt_example_prompt.json") expected_prompt = FewShotPromptTemplate( input_variables=["adjective"], prefix="Write antonyms for the following words.", example_prompt=PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ), examples=[ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}, ], suffix="Input: {adjective}\nOutput:", ) assert prompt == expected_prompt def test_loading_with_output_parser() -> None: with change_directory(EXAMPLE_DIR): prompt = load_prompt("prompt_with_output_parser.json") expected_template = "Given the following question and student answer, provide a correct answer and score the student answer.\nQuestion: {question}\nStudent Answer: {student_answer}\nCorrect Answer:" # noqa: E501 expected_prompt = PromptTemplate( input_variables=["question", "student_answer"], output_parser=RegexParser( regex="(.*?)\nScore: (.*)", output_keys=["answer", "score"], ), template=expected_template, ) assert prompt == expected_prompt
[ "simple_prompt.yaml", "few_shot_prompt.json", "few_shot_prompt_examples_in.json", "(.*?)\nScore: (.*)", "prompt_with_output_parser.json", "Input: {adjective}\nOutput:", "simple_prompt_with_template_file.json", "content", "answer", "few_shot_prompt_example_prompt.json", "prompt.yaml", "Input: {input}\nOutput: {output}", "question", "input", "simple_prompt.json", "Given the following question and student answer, provide a correct answer and score the student answer.\nQuestion: {question}\nStudent Answer: {student_answer}\nCorrect Answer:", "few_shot_prompt.yaml", "few_shot.yaml", "jinja_injection_prompt.json", "student_answer", "Write antonyms for the following words.", "jinja_injection_prompt.yaml", "Tell me a {adjective} joke about {content}." ]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~llms~bittensor.py
import http.client import json import ssl from typing import Any, List, Mapping, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM class NIBittensorLLM(LLM): """NIBittensor LLMs NIBittensorLLM is created by Neural Internet (https://neuralinternet.ai/), powered by Bittensor, a decentralized network full of different AI models. To analyze API_KEYS and logs of your usage visit https://api.neuralinternet.ai/api-keys https://api.neuralinternet.ai/logs Example: .. code-block:: python from langchain.llms import NIBittensorLLM llm = NIBittensorLLM() """ system_prompt: Optional[str] """Provide system prompt that you want to supply it to model before every prompt""" top_responses: Optional[int] = 0 """Provide top_responses to get Top N miner responses on one request.May get delayed Don't use in Production""" @property def _llm_type(self) -> str: return "NIBittensorLLM" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """ Wrapper around the bittensor top miner models. Its built by Neural Internet. Call the Neural Internet's BTVEP Server and return the output. Parameters (optional): system_prompt(str): A system prompt defining how your model should respond. top_responses(int): Total top miner responses to retrieve from Bittensor protocol. Return: The generated response(s). Example: .. code-block:: python from langchain.llms import NIBittensorLLM llm = NIBittensorLLM(system_prompt="Act like you are programmer with \ 5+ years of experience.") """ # Creating HTTPS connection with SSL context = ssl.create_default_context() context.check_hostname = True conn = http.client.HTTPSConnection("test.neuralinternet.ai", context=context) # Sanitizing User Input before passing to API. if isinstance(self.top_responses, int): top_n = min(100, self.top_responses) else: top_n = 0 default_prompt = "You are an assistant which is created by Neural Internet(NI) \ in decentralized network named as a Bittensor." if self.system_prompt is None: system_prompt = ( default_prompt + " Your task is to provide accurate response based on user prompt" ) else: system_prompt = default_prompt + str(self.system_prompt) # Retrieving API KEY to pass into header of each request conn.request("GET", "/admin/api-keys/") api_key_response = conn.getresponse() api_keys_data = ( api_key_response.read().decode("utf-8").replace("\n", "").replace("\t", "") ) api_keys_json = json.loads(api_keys_data) api_key = api_keys_json[0]["api_key"] # Creating Header and getting top benchmark miner uids headers = { "Content-Type": "application/json", "Authorization": f"Bearer {api_key}", "Endpoint-Version": "2023-05-19", } conn.request("GET", "/top_miner_uids", headers=headers) miner_response = conn.getresponse() miner_data = ( miner_response.read().decode("utf-8").replace("\n", "").replace("\t", "") ) uids = json.loads(miner_data) # Condition for benchmark miner response if isinstance(uids, list) and uids and not top_n: for uid in uids: try: payload = json.dumps( { "uids": [uid], "messages": [ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}, ], } ) conn.request("POST", "/chat", payload, headers) init_response = conn.getresponse() init_data = ( init_response.read() .decode("utf-8") .replace("\n", "") .replace("\t", "") ) init_json = json.loads(init_data) if "choices" not in init_json: continue reply = init_json["choices"][0]["message"]["content"] conn.close() return reply except Exception: continue # For top miner based on bittensor response try: payload = json.dumps( { "top_n": top_n, "messages": [ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}, ], } ) conn.request("POST", "/chat", payload, headers) response = conn.getresponse() utf_string = ( response.read().decode("utf-8").replace("\n", "").replace("\t", "") ) if top_n: conn.close() return utf_string json_resp = json.loads(utf_string) reply = json_resp["choices"][0]["message"]["content"] conn.close() return reply except Exception as e: conn.request("GET", f"/error_msg?e={e}&p={prompt}", headers=headers) return "Sorry I am unable to provide response now, Please try again later." @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "system_prompt": self.system_prompt, "top_responses": self.top_responses, }
[ "You are an assistant which is created by Neural Internet(NI) in decentralized network named as a Bittensor.", "default_prompt + str(self.system_prompt)", "You are an assistant which is created by Neural Internet(NI) in decentralized network named as a Bittensor. Your task is to provide accurate response based on user prompt" ]
2024-01-10
RohanDey02/langchain
libs~experimental~tests~unit_tests~test_smartllm.py
"""Test SmartLLM.""" from langchain.chat_models import FakeListChatModel from langchain.llms import FakeListLLM from langchain.prompts.prompt import PromptTemplate from langchain_experimental.smart_llm import SmartLLMChain def test_ideation() -> None: # test that correct responses are returned responses = ["Idea 1", "Idea 2", "Idea 3"] llm = FakeListLLM(responses=responses) prompt = PromptTemplate( input_variables=["product"], template="What is a good name for a company that makes {product}?", ) chain = SmartLLMChain(llm=llm, prompt=prompt) prompt_value, _ = chain.prep_prompts({"product": "socks"}) chain.history.question = prompt_value.to_string() results = chain._ideate() assert results == responses # test that correct number of responses are returned for i in range(1, 5): responses = [f"Idea {j+1}" for j in range(i)] llm = FakeListLLM(responses=responses) chain = SmartLLMChain(llm=llm, prompt=prompt, n_ideas=i) prompt_value, _ = chain.prep_prompts({"product": "socks"}) chain.history.question = prompt_value.to_string() results = chain._ideate() assert len(results) == i def test_critique() -> None: response = "Test Critique" llm = FakeListLLM(responses=[response]) prompt = PromptTemplate( input_variables=["product"], template="What is a good name for a company that makes {product}?", ) chain = SmartLLMChain(llm=llm, prompt=prompt, n_ideas=2) prompt_value, _ = chain.prep_prompts({"product": "socks"}) chain.history.question = prompt_value.to_string() chain.history.ideas = ["Test Idea 1", "Test Idea 2"] result = chain._critique() assert result == response def test_resolver() -> None: response = "Test resolution" llm = FakeListLLM(responses=[response]) prompt = PromptTemplate( input_variables=["product"], template="What is a good name for a company that makes {product}?", ) chain = SmartLLMChain(llm=llm, prompt=prompt, n_ideas=2) prompt_value, _ = chain.prep_prompts({"product": "socks"}) chain.history.question = prompt_value.to_string() chain.history.ideas = ["Test Idea 1", "Test Idea 2"] chain.history.critique = "Test Critique" result = chain._resolve() assert result == response def test_all_steps() -> None: joke = "Why did the chicken cross the Mobius strip?" response = "Resolution response" ideation_llm = FakeListLLM(responses=["Ideation response" for _ in range(20)]) critique_llm = FakeListLLM(responses=["Critique response" for _ in range(20)]) resolver_llm = FakeListLLM(responses=[response for _ in range(20)]) prompt = PromptTemplate( input_variables=["joke"], template="Explain this joke to me: {joke}?", ) chain = SmartLLMChain( ideation_llm=ideation_llm, critique_llm=critique_llm, resolver_llm=resolver_llm, prompt=prompt, ) result = chain(joke) assert result["joke"] == joke assert result["resolution"] == response def test_intermediate_output() -> None: joke = "Why did the chicken cross the Mobius strip?" llm = FakeListLLM(responses=[f"Response {i+1}" for i in range(5)]) prompt = PromptTemplate( input_variables=["joke"], template="Explain this joke to me: {joke}?", ) chain = SmartLLMChain(llm=llm, prompt=prompt, return_intermediate_steps=True) result = chain(joke) assert result["joke"] == joke assert result["ideas"] == [f"Response {i+1}" for i in range(3)] assert result["critique"] == "Response 4" assert result["resolution"] == "Response 5" def test_all_steps_with_chat_model() -> None: joke = "Why did the chicken cross the Mobius strip?" response = "Resolution response" ideation_llm = FakeListChatModel(responses=["Ideation response" for _ in range(20)]) critique_llm = FakeListChatModel(responses=["Critique response" for _ in range(20)]) resolver_llm = FakeListChatModel(responses=[response for _ in range(20)]) prompt = PromptTemplate( input_variables=["joke"], template="Explain this joke to me: {joke}?", ) chain = SmartLLMChain( ideation_llm=ideation_llm, critique_llm=critique_llm, resolver_llm=resolver_llm, prompt=prompt, ) result = chain(joke) assert result["joke"] == joke assert result["resolution"] == response
[ "Explain this joke to me: {joke}?", "What is a good name for a company that makes {product}?" ]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~callbacks~manager.py
from __future__ import annotations import asyncio import functools import logging import os import uuid from concurrent.futures import ThreadPoolExecutor from contextlib import asynccontextmanager, contextmanager from contextvars import ContextVar from typing import ( TYPE_CHECKING, Any, AsyncGenerator, Coroutine, Dict, Generator, List, Optional, Sequence, Type, TypeVar, Union, cast, ) from uuid import UUID from langsmith.run_helpers import get_run_tree_context from tenacity import RetryCallState from langchain.callbacks.base import ( BaseCallbackHandler, BaseCallbackManager, Callbacks, ChainManagerMixin, LLMManagerMixin, RetrieverManagerMixin, RunManagerMixin, ToolManagerMixin, ) from langchain.callbacks.openai_info import OpenAICallbackHandler from langchain.callbacks.stdout import StdOutCallbackHandler from langchain.callbacks.tracers import run_collector from langchain.callbacks.tracers.langchain import ( LangChainTracer, ) from langchain.callbacks.tracers.langchain_v1 import LangChainTracerV1, TracerSessionV1 from langchain.callbacks.tracers.stdout import ConsoleCallbackHandler from langchain.callbacks.tracers.wandb import WandbTracer from langchain.schema import ( AgentAction, AgentFinish, Document, LLMResult, ) from langchain.schema.messages import BaseMessage, get_buffer_string from langchain.schema.output import ChatGenerationChunk, GenerationChunk if TYPE_CHECKING: from langsmith import Client as LangSmithClient logger = logging.getLogger(__name__) openai_callback_var: ContextVar[Optional[OpenAICallbackHandler]] = ContextVar( "openai_callback", default=None ) tracing_callback_var: ContextVar[ Optional[LangChainTracerV1] ] = ContextVar( # noqa: E501 "tracing_callback", default=None ) wandb_tracing_callback_var: ContextVar[ Optional[WandbTracer] ] = ContextVar( # noqa: E501 "tracing_wandb_callback", default=None ) tracing_v2_callback_var: ContextVar[ Optional[LangChainTracer] ] = ContextVar( # noqa: E501 "tracing_callback_v2", default=None ) run_collector_var: ContextVar[ Optional[run_collector.RunCollectorCallbackHandler] ] = ContextVar( # noqa: E501 "run_collector", default=None ) def _get_debug() -> bool: from langchain.globals import get_debug return get_debug() @contextmanager def get_openai_callback() -> Generator[OpenAICallbackHandler, None, None]: """Get the OpenAI callback handler in a context manager. which conveniently exposes token and cost information. Returns: OpenAICallbackHandler: The OpenAI callback handler. Example: >>> with get_openai_callback() as cb: ... # Use the OpenAI callback handler """ cb = OpenAICallbackHandler() openai_callback_var.set(cb) yield cb openai_callback_var.set(None) @contextmanager def tracing_enabled( session_name: str = "default", ) -> Generator[TracerSessionV1, None, None]: """Get the Deprecated LangChainTracer in a context manager. Args: session_name (str, optional): The name of the session. Defaults to "default". Returns: TracerSessionV1: The LangChainTracer session. Example: >>> with tracing_enabled() as session: ... # Use the LangChainTracer session """ cb = LangChainTracerV1() session = cast(TracerSessionV1, cb.load_session(session_name)) tracing_callback_var.set(cb) yield session tracing_callback_var.set(None) @contextmanager def wandb_tracing_enabled( session_name: str = "default", ) -> Generator[None, None, None]: """Get the WandbTracer in a context manager. Args: session_name (str, optional): The name of the session. Defaults to "default". Returns: None Example: >>> with wandb_tracing_enabled() as session: ... # Use the WandbTracer session """ cb = WandbTracer() wandb_tracing_callback_var.set(cb) yield None wandb_tracing_callback_var.set(None) @contextmanager def tracing_v2_enabled( project_name: Optional[str] = None, *, example_id: Optional[Union[str, UUID]] = None, tags: Optional[List[str]] = None, client: Optional[LangSmithClient] = None, ) -> Generator[LangChainTracer, None, None]: """Instruct LangChain to log all runs in context to LangSmith. Args: project_name (str, optional): The name of the project. Defaults to "default". example_id (str or UUID, optional): The ID of the example. Defaults to None. tags (List[str], optional): The tags to add to the run. Defaults to None. Returns: None Example: >>> with tracing_v2_enabled(): ... # LangChain code will automatically be traced You can use this to fetch the LangSmith run URL: >>> with tracing_v2_enabled() as cb: ... chain.invoke("foo") ... run_url = cb.get_run_url() """ if isinstance(example_id, str): example_id = UUID(example_id) cb = LangChainTracer( example_id=example_id, project_name=project_name, tags=tags, client=client, ) tracing_v2_callback_var.set(cb) yield cb tracing_v2_callback_var.set(None) @contextmanager def collect_runs() -> Generator[run_collector.RunCollectorCallbackHandler, None, None]: """Collect all run traces in context. Returns: run_collector.RunCollectorCallbackHandler: The run collector callback handler. Example: >>> with collect_runs() as runs_cb: chain.invoke("foo") run_id = runs_cb.traced_runs[0].id """ cb = run_collector.RunCollectorCallbackHandler() run_collector_var.set(cb) yield cb run_collector_var.set(None) @contextmanager def trace_as_chain_group( group_name: str, callback_manager: Optional[CallbackManager] = None, *, inputs: Optional[Dict[str, Any]] = None, project_name: Optional[str] = None, example_id: Optional[Union[str, UUID]] = None, run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, ) -> Generator[CallbackManagerForChainGroup, None, None]: """Get a callback manager for a chain group in a context manager. Useful for grouping different calls together as a single run even if they aren't composed in a single chain. Args: group_name (str): The name of the chain group. callback_manager (CallbackManager, optional): The callback manager to use. inputs (Dict[str, Any], optional): The inputs to the chain group. project_name (str, optional): The name of the project. Defaults to None. example_id (str or UUID, optional): The ID of the example. Defaults to None. run_id (UUID, optional): The ID of the run. tags (List[str], optional): The inheritable tags to apply to all runs. Defaults to None. Returns: CallbackManagerForChainGroup: The callback manager for the chain group. Example: .. code-block:: python llm_input = "Foo" with trace_as_chain_group("group_name", inputs={"input": llm_input}) as manager: # Use the callback manager for the chain group res = llm.predict(llm_input, callbacks=manager) manager.on_chain_end({"output": res}) """ # noqa: E501 cb = cast( Callbacks, [ LangChainTracer( project_name=project_name, example_id=example_id, ) ] if callback_manager is None else callback_manager, ) cm = CallbackManager.configure( inheritable_callbacks=cb, inheritable_tags=tags, ) run_manager = cm.on_chain_start({"name": group_name}, inputs or {}, run_id=run_id) child_cm = run_manager.get_child() group_cm = CallbackManagerForChainGroup( child_cm.handlers, child_cm.inheritable_handlers, child_cm.parent_run_id, parent_run_manager=run_manager, tags=child_cm.tags, inheritable_tags=child_cm.inheritable_tags, metadata=child_cm.metadata, inheritable_metadata=child_cm.inheritable_metadata, ) try: yield group_cm except Exception as e: if not group_cm.ended: run_manager.on_chain_error(e) raise e else: if not group_cm.ended: run_manager.on_chain_end({}) @asynccontextmanager async def atrace_as_chain_group( group_name: str, callback_manager: Optional[AsyncCallbackManager] = None, *, inputs: Optional[Dict[str, Any]] = None, project_name: Optional[str] = None, example_id: Optional[Union[str, UUID]] = None, run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, ) -> AsyncGenerator[AsyncCallbackManagerForChainGroup, None]: """Get an async callback manager for a chain group in a context manager. Useful for grouping different async calls together as a single run even if they aren't composed in a single chain. Args: group_name (str): The name of the chain group. callback_manager (AsyncCallbackManager, optional): The async callback manager to use, which manages tracing and other callback behavior. project_name (str, optional): The name of the project. Defaults to None. example_id (str or UUID, optional): The ID of the example. Defaults to None. run_id (UUID, optional): The ID of the run. tags (List[str], optional): The inheritable tags to apply to all runs. Defaults to None. Returns: AsyncCallbackManager: The async callback manager for the chain group. Example: .. code-block:: python llm_input = "Foo" async with atrace_as_chain_group("group_name", inputs={"input": llm_input}) as manager: # Use the async callback manager for the chain group res = await llm.apredict(llm_input, callbacks=manager) await manager.on_chain_end({"output": res}) """ # noqa: E501 cb = cast( Callbacks, [ LangChainTracer( project_name=project_name, example_id=example_id, ) ] if callback_manager is None else callback_manager, ) cm = AsyncCallbackManager.configure(inheritable_callbacks=cb, inheritable_tags=tags) run_manager = await cm.on_chain_start( {"name": group_name}, inputs or {}, run_id=run_id ) child_cm = run_manager.get_child() group_cm = AsyncCallbackManagerForChainGroup( child_cm.handlers, child_cm.inheritable_handlers, child_cm.parent_run_id, parent_run_manager=run_manager, tags=child_cm.tags, inheritable_tags=child_cm.inheritable_tags, metadata=child_cm.metadata, inheritable_metadata=child_cm.inheritable_metadata, ) try: yield group_cm except Exception as e: if not group_cm.ended: await run_manager.on_chain_error(e) raise e else: if not group_cm.ended: await run_manager.on_chain_end({}) def handle_event( handlers: List[BaseCallbackHandler], event_name: str, ignore_condition_name: Optional[str], *args: Any, **kwargs: Any, ) -> None: """Generic event handler for CallbackManager. Note: This function is used by langserve to handle events. Args: handlers: The list of handlers that will handle the event event_name: The name of the event (e.g., "on_llm_start") ignore_condition_name: Name of the attribute defined on handler that if True will cause the handler to be skipped for the given event *args: The arguments to pass to the event handler **kwargs: The keyword arguments to pass to the event handler """ coros: List[Coroutine[Any, Any, Any]] = [] try: message_strings: Optional[List[str]] = None for handler in handlers: try: if ignore_condition_name is None or not getattr( handler, ignore_condition_name ): event = getattr(handler, event_name)(*args, **kwargs) if asyncio.iscoroutine(event): coros.append(event) except NotImplementedError as e: if event_name == "on_chat_model_start": if message_strings is None: message_strings = [get_buffer_string(m) for m in args[1]] handle_event( [handler], "on_llm_start", "ignore_llm", args[0], message_strings, *args[2:], **kwargs, ) else: handler_name = handler.__class__.__name__ logger.warning( f"NotImplementedError in {handler_name}.{event_name}" f" callback: {repr(e)}" ) except Exception as e: logger.warning( f"Error in {handler.__class__.__name__}.{event_name} callback:" f" {repr(e)}" ) if handler.raise_error: raise e finally: if coros: try: # Raises RuntimeError if there is no current event loop. asyncio.get_running_loop() loop_running = True except RuntimeError: loop_running = False if loop_running: # If we try to submit this coroutine to the running loop # we end up in a deadlock, as we'd have gotten here from a # running coroutine, which we cannot interrupt to run this one. # The solution is to create a new loop in a new thread. with ThreadPoolExecutor(1) as executor: executor.submit(_run_coros, coros).result() else: _run_coros(coros) def _run_coros(coros: List[Coroutine[Any, Any, Any]]) -> None: if hasattr(asyncio, "Runner"): # Python 3.11+ # Run the coroutines in a new event loop, taking care to # - install signal handlers # - run pending tasks scheduled by `coros` # - close asyncgens and executors # - close the loop with asyncio.Runner() as runner: # Run the coroutine, get the result for coro in coros: runner.run(coro) # Run pending tasks scheduled by coros until they are all done while pending := asyncio.all_tasks(runner.get_loop()): runner.run(asyncio.wait(pending)) else: # Before Python 3.11 we need to run each coroutine in a new event loop # as the Runner api is not available. for coro in coros: asyncio.run(coro) async def _ahandle_event_for_handler( handler: BaseCallbackHandler, event_name: str, ignore_condition_name: Optional[str], *args: Any, **kwargs: Any, ) -> None: try: if ignore_condition_name is None or not getattr(handler, ignore_condition_name): event = getattr(handler, event_name) if asyncio.iscoroutinefunction(event): await event(*args, **kwargs) else: if handler.run_inline: event(*args, **kwargs) else: await asyncio.get_event_loop().run_in_executor( None, functools.partial(event, *args, **kwargs) ) except NotImplementedError as e: if event_name == "on_chat_model_start": message_strings = [get_buffer_string(m) for m in args[1]] await _ahandle_event_for_handler( handler, "on_llm_start", "ignore_llm", args[0], message_strings, *args[2:], **kwargs, ) else: logger.warning( f"NotImplementedError in {handler.__class__.__name__}.{event_name}" f" callback: {repr(e)}" ) except Exception as e: logger.warning( f"Error in {handler.__class__.__name__}.{event_name} callback:" f" {repr(e)}" ) if handler.raise_error: raise e async def ahandle_event( handlers: List[BaseCallbackHandler], event_name: str, ignore_condition_name: Optional[str], *args: Any, **kwargs: Any, ) -> None: """Generic event handler for AsyncCallbackManager. Note: This function is used by langserve to handle events. Args: handlers: The list of handlers that will handle the event event_name: The name of the event (e.g., "on_llm_start") ignore_condition_name: Name of the attribute defined on handler that if True will cause the handler to be skipped for the given event *args: The arguments to pass to the event handler **kwargs: The keyword arguments to pass to the event handler """ for handler in [h for h in handlers if h.run_inline]: await _ahandle_event_for_handler( handler, event_name, ignore_condition_name, *args, **kwargs ) await asyncio.gather( *( _ahandle_event_for_handler( handler, event_name, ignore_condition_name, *args, **kwargs ) for handler in handlers if not handler.run_inline ) ) BRM = TypeVar("BRM", bound="BaseRunManager") class BaseRunManager(RunManagerMixin): """Base class for run manager (a bound callback manager).""" def __init__( self, *, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, ) -> None: """Initialize the run manager. Args: run_id (UUID): The ID of the run. handlers (List[BaseCallbackHandler]): The list of handlers. inheritable_handlers (List[BaseCallbackHandler]): The list of inheritable handlers. parent_run_id (UUID, optional): The ID of the parent run. Defaults to None. tags (Optional[List[str]]): The list of tags. inheritable_tags (Optional[List[str]]): The list of inheritable tags. metadata (Optional[Dict[str, Any]]): The metadata. inheritable_metadata (Optional[Dict[str, Any]]): The inheritable metadata. """ self.run_id = run_id self.handlers = handlers self.inheritable_handlers = inheritable_handlers self.parent_run_id = parent_run_id self.tags = tags or [] self.inheritable_tags = inheritable_tags or [] self.metadata = metadata or {} self.inheritable_metadata = inheritable_metadata or {} @classmethod def get_noop_manager(cls: Type[BRM]) -> BRM: """Return a manager that doesn't perform any operations. Returns: BaseRunManager: The noop manager. """ return cls( run_id=uuid.uuid4(), handlers=[], inheritable_handlers=[], tags=[], inheritable_tags=[], metadata={}, inheritable_metadata={}, ) class RunManager(BaseRunManager): """Sync Run Manager.""" def on_text( self, text: str, **kwargs: Any, ) -> Any: """Run when text is received. Args: text (str): The received text. Returns: Any: The result of the callback. """ handle_event( self.handlers, "on_text", None, text, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) def on_retry( self, retry_state: RetryCallState, **kwargs: Any, ) -> None: handle_event( self.handlers, "on_retry", "ignore_retry", retry_state, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) class ParentRunManager(RunManager): """Sync Parent Run Manager.""" def get_child(self, tag: Optional[str] = None) -> CallbackManager: """Get a child callback manager. Args: tag (str, optional): The tag for the child callback manager. Defaults to None. Returns: CallbackManager: The child callback manager. """ manager = CallbackManager(handlers=[], parent_run_id=self.run_id) manager.set_handlers(self.inheritable_handlers) manager.add_tags(self.inheritable_tags) manager.add_metadata(self.inheritable_metadata) if tag is not None: manager.add_tags([tag], False) return manager class AsyncRunManager(BaseRunManager): """Async Run Manager.""" async def on_text( self, text: str, **kwargs: Any, ) -> Any: """Run when text is received. Args: text (str): The received text. Returns: Any: The result of the callback. """ await ahandle_event( self.handlers, "on_text", None, text, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) async def on_retry( self, retry_state: RetryCallState, **kwargs: Any, ) -> None: await ahandle_event( self.handlers, "on_retry", "ignore_retry", retry_state, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) class AsyncParentRunManager(AsyncRunManager): """Async Parent Run Manager.""" def get_child(self, tag: Optional[str] = None) -> AsyncCallbackManager: """Get a child callback manager. Args: tag (str, optional): The tag for the child callback manager. Defaults to None. Returns: AsyncCallbackManager: The child callback manager. """ manager = AsyncCallbackManager(handlers=[], parent_run_id=self.run_id) manager.set_handlers(self.inheritable_handlers) manager.add_tags(self.inheritable_tags) manager.add_metadata(self.inheritable_metadata) if tag is not None: manager.add_tags([tag], False) return manager class CallbackManagerForLLMRun(RunManager, LLMManagerMixin): """Callback manager for LLM run.""" def on_llm_new_token( self, token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, **kwargs: Any, ) -> None: """Run when LLM generates a new token. Args: token (str): The new token. """ handle_event( self.handlers, "on_llm_new_token", "ignore_llm", token=token, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, chunk=chunk, **kwargs, ) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Run when LLM ends running. Args: response (LLMResult): The LLM result. """ handle_event( self.handlers, "on_llm_end", "ignore_llm", response, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) def on_llm_error( self, error: BaseException, **kwargs: Any, ) -> None: """Run when LLM errors. Args: error (Exception or KeyboardInterrupt): The error. """ handle_event( self.handlers, "on_llm_error", "ignore_llm", error, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) class AsyncCallbackManagerForLLMRun(AsyncRunManager, LLMManagerMixin): """Async callback manager for LLM run.""" async def on_llm_new_token( self, token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, **kwargs: Any, ) -> None: """Run when LLM generates a new token. Args: token (str): The new token. """ await ahandle_event( self.handlers, "on_llm_new_token", "ignore_llm", token, chunk=chunk, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) async def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Run when LLM ends running. Args: response (LLMResult): The LLM result. """ await ahandle_event( self.handlers, "on_llm_end", "ignore_llm", response, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) async def on_llm_error( self, error: BaseException, **kwargs: Any, ) -> None: """Run when LLM errors. Args: error (Exception or KeyboardInterrupt): The error. """ await ahandle_event( self.handlers, "on_llm_error", "ignore_llm", error, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) class CallbackManagerForChainRun(ParentRunManager, ChainManagerMixin): """Callback manager for chain run.""" def on_chain_end(self, outputs: Union[Dict[str, Any], Any], **kwargs: Any) -> None: """Run when chain ends running. Args: outputs (Union[Dict[str, Any], Any]): The outputs of the chain. """ handle_event( self.handlers, "on_chain_end", "ignore_chain", outputs, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) def on_chain_error( self, error: BaseException, **kwargs: Any, ) -> None: """Run when chain errors. Args: error (Exception or KeyboardInterrupt): The error. """ handle_event( self.handlers, "on_chain_error", "ignore_chain", error, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: """Run when agent action is received. Args: action (AgentAction): The agent action. Returns: Any: The result of the callback. """ handle_event( self.handlers, "on_agent_action", "ignore_agent", action, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> Any: """Run when agent finish is received. Args: finish (AgentFinish): The agent finish. Returns: Any: The result of the callback. """ handle_event( self.handlers, "on_agent_finish", "ignore_agent", finish, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) class AsyncCallbackManagerForChainRun(AsyncParentRunManager, ChainManagerMixin): """Async callback manager for chain run.""" async def on_chain_end( self, outputs: Union[Dict[str, Any], Any], **kwargs: Any ) -> None: """Run when chain ends running. Args: outputs (Union[Dict[str, Any], Any]): The outputs of the chain. """ await ahandle_event( self.handlers, "on_chain_end", "ignore_chain", outputs, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) async def on_chain_error( self, error: BaseException, **kwargs: Any, ) -> None: """Run when chain errors. Args: error (Exception or KeyboardInterrupt): The error. """ await ahandle_event( self.handlers, "on_chain_error", "ignore_chain", error, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) async def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: """Run when agent action is received. Args: action (AgentAction): The agent action. Returns: Any: The result of the callback. """ await ahandle_event( self.handlers, "on_agent_action", "ignore_agent", action, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) async def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> Any: """Run when agent finish is received. Args: finish (AgentFinish): The agent finish. Returns: Any: The result of the callback. """ await ahandle_event( self.handlers, "on_agent_finish", "ignore_agent", finish, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) class CallbackManagerForToolRun(ParentRunManager, ToolManagerMixin): """Callback manager for tool run.""" def on_tool_end( self, output: str, **kwargs: Any, ) -> None: """Run when tool ends running. Args: output (str): The output of the tool. """ handle_event( self.handlers, "on_tool_end", "ignore_agent", output, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) def on_tool_error( self, error: BaseException, **kwargs: Any, ) -> None: """Run when tool errors. Args: error (Exception or KeyboardInterrupt): The error. """ handle_event( self.handlers, "on_tool_error", "ignore_agent", error, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) class AsyncCallbackManagerForToolRun(AsyncParentRunManager, ToolManagerMixin): """Async callback manager for tool run.""" async def on_tool_end(self, output: str, **kwargs: Any) -> None: """Run when tool ends running. Args: output (str): The output of the tool. """ await ahandle_event( self.handlers, "on_tool_end", "ignore_agent", output, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) async def on_tool_error( self, error: BaseException, **kwargs: Any, ) -> None: """Run when tool errors. Args: error (Exception or KeyboardInterrupt): The error. """ await ahandle_event( self.handlers, "on_tool_error", "ignore_agent", error, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) class CallbackManagerForRetrieverRun(ParentRunManager, RetrieverManagerMixin): """Callback manager for retriever run.""" def on_retriever_end( self, documents: Sequence[Document], **kwargs: Any, ) -> None: """Run when retriever ends running.""" handle_event( self.handlers, "on_retriever_end", "ignore_retriever", documents, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) def on_retriever_error( self, error: BaseException, **kwargs: Any, ) -> None: """Run when retriever errors.""" handle_event( self.handlers, "on_retriever_error", "ignore_retriever", error, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) class AsyncCallbackManagerForRetrieverRun( AsyncParentRunManager, RetrieverManagerMixin, ): """Async callback manager for retriever run.""" async def on_retriever_end( self, documents: Sequence[Document], **kwargs: Any ) -> None: """Run when retriever ends running.""" await ahandle_event( self.handlers, "on_retriever_end", "ignore_retriever", documents, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) async def on_retriever_error( self, error: BaseException, **kwargs: Any, ) -> None: """Run when retriever errors.""" await ahandle_event( self.handlers, "on_retriever_error", "ignore_retriever", error, run_id=self.run_id, parent_run_id=self.parent_run_id, tags=self.tags, **kwargs, ) class CallbackManager(BaseCallbackManager): """Callback manager that handles callbacks from LangChain.""" def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any, ) -> List[CallbackManagerForLLMRun]: """Run when LLM starts running. Args: serialized (Dict[str, Any]): The serialized LLM. prompts (List[str]): The list of prompts. run_id (UUID, optional): The ID of the run. Defaults to None. Returns: List[CallbackManagerForLLMRun]: A callback manager for each prompt as an LLM run. """ managers = [] for prompt in prompts: run_id_ = uuid.uuid4() handle_event( self.handlers, "on_llm_start", "ignore_llm", serialized, [prompt], run_id=run_id_, parent_run_id=self.parent_run_id, tags=self.tags, metadata=self.metadata, **kwargs, ) managers.append( CallbackManagerForLLMRun( run_id=run_id_, handlers=self.handlers, inheritable_handlers=self.inheritable_handlers, parent_run_id=self.parent_run_id, tags=self.tags, inheritable_tags=self.inheritable_tags, metadata=self.metadata, inheritable_metadata=self.inheritable_metadata, ) ) return managers def on_chat_model_start( self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any, ) -> List[CallbackManagerForLLMRun]: """Run when LLM starts running. Args: serialized (Dict[str, Any]): The serialized LLM. messages (List[List[BaseMessage]]): The list of messages. run_id (UUID, optional): The ID of the run. Defaults to None. Returns: List[CallbackManagerForLLMRun]: A callback manager for each list of messages as an LLM run. """ managers = [] for message_list in messages: run_id_ = uuid.uuid4() handle_event( self.handlers, "on_chat_model_start", "ignore_chat_model", serialized, [message_list], run_id=run_id_, parent_run_id=self.parent_run_id, tags=self.tags, metadata=self.metadata, **kwargs, ) managers.append( CallbackManagerForLLMRun( run_id=run_id_, handlers=self.handlers, inheritable_handlers=self.inheritable_handlers, parent_run_id=self.parent_run_id, tags=self.tags, inheritable_tags=self.inheritable_tags, metadata=self.metadata, inheritable_metadata=self.inheritable_metadata, ) ) return managers def on_chain_start( self, serialized: Dict[str, Any], inputs: Union[Dict[str, Any], Any], run_id: Optional[UUID] = None, **kwargs: Any, ) -> CallbackManagerForChainRun: """Run when chain starts running. Args: serialized (Dict[str, Any]): The serialized chain. inputs (Union[Dict[str, Any], Any]): The inputs to the chain. run_id (UUID, optional): The ID of the run. Defaults to None. Returns: CallbackManagerForChainRun: The callback manager for the chain run. """ if run_id is None: run_id = uuid.uuid4() handle_event( self.handlers, "on_chain_start", "ignore_chain", serialized, inputs, run_id=run_id, parent_run_id=self.parent_run_id, tags=self.tags, metadata=self.metadata, **kwargs, ) return CallbackManagerForChainRun( run_id=run_id, handlers=self.handlers, inheritable_handlers=self.inheritable_handlers, parent_run_id=self.parent_run_id, tags=self.tags, inheritable_tags=self.inheritable_tags, metadata=self.metadata, inheritable_metadata=self.inheritable_metadata, ) def on_tool_start( self, serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> CallbackManagerForToolRun: """Run when tool starts running. Args: serialized (Dict[str, Any]): The serialized tool. input_str (str): The input to the tool. run_id (UUID, optional): The ID of the run. Defaults to None. parent_run_id (UUID, optional): The ID of the parent run. Defaults to None. Returns: CallbackManagerForToolRun: The callback manager for the tool run. """ if run_id is None: run_id = uuid.uuid4() handle_event( self.handlers, "on_tool_start", "ignore_agent", serialized, input_str, run_id=run_id, parent_run_id=self.parent_run_id, tags=self.tags, metadata=self.metadata, **kwargs, ) return CallbackManagerForToolRun( run_id=run_id, handlers=self.handlers, inheritable_handlers=self.inheritable_handlers, parent_run_id=self.parent_run_id, tags=self.tags, inheritable_tags=self.inheritable_tags, metadata=self.metadata, inheritable_metadata=self.inheritable_metadata, ) def on_retriever_start( self, serialized: Dict[str, Any], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> CallbackManagerForRetrieverRun: """Run when retriever starts running.""" if run_id is None: run_id = uuid.uuid4() handle_event( self.handlers, "on_retriever_start", "ignore_retriever", serialized, query, run_id=run_id, parent_run_id=self.parent_run_id, tags=self.tags, metadata=self.metadata, **kwargs, ) return CallbackManagerForRetrieverRun( run_id=run_id, handlers=self.handlers, inheritable_handlers=self.inheritable_handlers, parent_run_id=self.parent_run_id, tags=self.tags, inheritable_tags=self.inheritable_tags, metadata=self.metadata, inheritable_metadata=self.inheritable_metadata, ) @classmethod def configure( cls, inheritable_callbacks: Callbacks = None, local_callbacks: Callbacks = None, verbose: bool = False, inheritable_tags: Optional[List[str]] = None, local_tags: Optional[List[str]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, local_metadata: Optional[Dict[str, Any]] = None, ) -> CallbackManager: """Configure the callback manager. Args: inheritable_callbacks (Optional[Callbacks], optional): The inheritable callbacks. Defaults to None. local_callbacks (Optional[Callbacks], optional): The local callbacks. Defaults to None. verbose (bool, optional): Whether to enable verbose mode. Defaults to False. inheritable_tags (Optional[List[str]], optional): The inheritable tags. Defaults to None. local_tags (Optional[List[str]], optional): The local tags. Defaults to None. inheritable_metadata (Optional[Dict[str, Any]], optional): The inheritable metadata. Defaults to None. local_metadata (Optional[Dict[str, Any]], optional): The local metadata. Defaults to None. Returns: CallbackManager: The configured callback manager. """ return _configure( cls, inheritable_callbacks, local_callbacks, verbose, inheritable_tags, local_tags, inheritable_metadata, local_metadata, ) class CallbackManagerForChainGroup(CallbackManager): """Callback manager for the chain group.""" def __init__( self, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler] | None = None, parent_run_id: UUID | None = None, *, parent_run_manager: CallbackManagerForChainRun, **kwargs: Any, ) -> None: super().__init__( handlers, inheritable_handlers, parent_run_id, **kwargs, ) self.parent_run_manager = parent_run_manager self.ended = False def on_chain_end(self, outputs: Union[Dict[str, Any], Any], **kwargs: Any) -> None: """Run when traced chain group ends. Args: outputs (Union[Dict[str, Any], Any]): The outputs of the chain. """ self.ended = True return self.parent_run_manager.on_chain_end(outputs, **kwargs) def on_chain_error( self, error: BaseException, **kwargs: Any, ) -> None: """Run when chain errors. Args: error (Exception or KeyboardInterrupt): The error. """ self.ended = True return self.parent_run_manager.on_chain_error(error, **kwargs) class AsyncCallbackManager(BaseCallbackManager): """Async callback manager that handles callbacks from LangChain.""" @property def is_async(self) -> bool: """Return whether the handler is async.""" return True async def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any, ) -> List[AsyncCallbackManagerForLLMRun]: """Run when LLM starts running. Args: serialized (Dict[str, Any]): The serialized LLM. prompts (List[str]): The list of prompts. run_id (UUID, optional): The ID of the run. Defaults to None. Returns: List[AsyncCallbackManagerForLLMRun]: The list of async callback managers, one for each LLM Run corresponding to each prompt. """ tasks = [] managers = [] for prompt in prompts: run_id_ = uuid.uuid4() tasks.append( ahandle_event( self.handlers, "on_llm_start", "ignore_llm", serialized, [prompt], run_id=run_id_, parent_run_id=self.parent_run_id, tags=self.tags, metadata=self.metadata, **kwargs, ) ) managers.append( AsyncCallbackManagerForLLMRun( run_id=run_id_, handlers=self.handlers, inheritable_handlers=self.inheritable_handlers, parent_run_id=self.parent_run_id, tags=self.tags, inheritable_tags=self.inheritable_tags, metadata=self.metadata, inheritable_metadata=self.inheritable_metadata, ) ) await asyncio.gather(*tasks) return managers async def on_chat_model_start( self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any, ) -> List[AsyncCallbackManagerForLLMRun]: """Run when LLM starts running. Args: serialized (Dict[str, Any]): The serialized LLM. messages (List[List[BaseMessage]]): The list of messages. run_id (UUID, optional): The ID of the run. Defaults to None. Returns: List[AsyncCallbackManagerForLLMRun]: The list of async callback managers, one for each LLM Run corresponding to each inner message list. """ tasks = [] managers = [] for message_list in messages: run_id_ = uuid.uuid4() tasks.append( ahandle_event( self.handlers, "on_chat_model_start", "ignore_chat_model", serialized, [message_list], run_id=run_id_, parent_run_id=self.parent_run_id, tags=self.tags, metadata=self.metadata, **kwargs, ) ) managers.append( AsyncCallbackManagerForLLMRun( run_id=run_id_, handlers=self.handlers, inheritable_handlers=self.inheritable_handlers, parent_run_id=self.parent_run_id, tags=self.tags, inheritable_tags=self.inheritable_tags, metadata=self.metadata, inheritable_metadata=self.inheritable_metadata, ) ) await asyncio.gather(*tasks) return managers async def on_chain_start( self, serialized: Dict[str, Any], inputs: Union[Dict[str, Any], Any], run_id: Optional[UUID] = None, **kwargs: Any, ) -> AsyncCallbackManagerForChainRun: """Run when chain starts running. Args: serialized (Dict[str, Any]): The serialized chain. inputs (Union[Dict[str, Any], Any]): The inputs to the chain. run_id (UUID, optional): The ID of the run. Defaults to None. Returns: AsyncCallbackManagerForChainRun: The async callback manager for the chain run. """ if run_id is None: run_id = uuid.uuid4() await ahandle_event( self.handlers, "on_chain_start", "ignore_chain", serialized, inputs, run_id=run_id, parent_run_id=self.parent_run_id, tags=self.tags, metadata=self.metadata, **kwargs, ) return AsyncCallbackManagerForChainRun( run_id=run_id, handlers=self.handlers, inheritable_handlers=self.inheritable_handlers, parent_run_id=self.parent_run_id, tags=self.tags, inheritable_tags=self.inheritable_tags, metadata=self.metadata, inheritable_metadata=self.inheritable_metadata, ) async def on_tool_start( self, serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> AsyncCallbackManagerForToolRun: """Run when tool starts running. Args: serialized (Dict[str, Any]): The serialized tool. input_str (str): The input to the tool. run_id (UUID, optional): The ID of the run. Defaults to None. parent_run_id (UUID, optional): The ID of the parent run. Defaults to None. Returns: AsyncCallbackManagerForToolRun: The async callback manager for the tool run. """ if run_id is None: run_id = uuid.uuid4() await ahandle_event( self.handlers, "on_tool_start", "ignore_agent", serialized, input_str, run_id=run_id, parent_run_id=self.parent_run_id, tags=self.tags, metadata=self.metadata, **kwargs, ) return AsyncCallbackManagerForToolRun( run_id=run_id, handlers=self.handlers, inheritable_handlers=self.inheritable_handlers, parent_run_id=self.parent_run_id, tags=self.tags, inheritable_tags=self.inheritable_tags, metadata=self.metadata, inheritable_metadata=self.inheritable_metadata, ) async def on_retriever_start( self, serialized: Dict[str, Any], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> AsyncCallbackManagerForRetrieverRun: """Run when retriever starts running.""" if run_id is None: run_id = uuid.uuid4() await ahandle_event( self.handlers, "on_retriever_start", "ignore_retriever", serialized, query, run_id=run_id, parent_run_id=self.parent_run_id, tags=self.tags, metadata=self.metadata, **kwargs, ) return AsyncCallbackManagerForRetrieverRun( run_id=run_id, handlers=self.handlers, inheritable_handlers=self.inheritable_handlers, parent_run_id=self.parent_run_id, tags=self.tags, inheritable_tags=self.inheritable_tags, metadata=self.metadata, inheritable_metadata=self.inheritable_metadata, ) @classmethod def configure( cls, inheritable_callbacks: Callbacks = None, local_callbacks: Callbacks = None, verbose: bool = False, inheritable_tags: Optional[List[str]] = None, local_tags: Optional[List[str]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, local_metadata: Optional[Dict[str, Any]] = None, ) -> AsyncCallbackManager: """Configure the async callback manager. Args: inheritable_callbacks (Optional[Callbacks], optional): The inheritable callbacks. Defaults to None. local_callbacks (Optional[Callbacks], optional): The local callbacks. Defaults to None. verbose (bool, optional): Whether to enable verbose mode. Defaults to False. inheritable_tags (Optional[List[str]], optional): The inheritable tags. Defaults to None. local_tags (Optional[List[str]], optional): The local tags. Defaults to None. inheritable_metadata (Optional[Dict[str, Any]], optional): The inheritable metadata. Defaults to None. local_metadata (Optional[Dict[str, Any]], optional): The local metadata. Defaults to None. Returns: AsyncCallbackManager: The configured async callback manager. """ return _configure( cls, inheritable_callbacks, local_callbacks, verbose, inheritable_tags, local_tags, inheritable_metadata, local_metadata, ) class AsyncCallbackManagerForChainGroup(AsyncCallbackManager): """Async callback manager for the chain group.""" def __init__( self, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler] | None = None, parent_run_id: UUID | None = None, *, parent_run_manager: AsyncCallbackManagerForChainRun, **kwargs: Any, ) -> None: super().__init__( handlers, inheritable_handlers, parent_run_id, **kwargs, ) self.parent_run_manager = parent_run_manager self.ended = False async def on_chain_end( self, outputs: Union[Dict[str, Any], Any], **kwargs: Any ) -> None: """Run when traced chain group ends. Args: outputs (Union[Dict[str, Any], Any]): The outputs of the chain. """ self.ended = True await self.parent_run_manager.on_chain_end(outputs, **kwargs) async def on_chain_error( self, error: BaseException, **kwargs: Any, ) -> None: """Run when chain errors. Args: error (Exception or KeyboardInterrupt): The error. """ self.ended = True await self.parent_run_manager.on_chain_error(error, **kwargs) T = TypeVar("T", CallbackManager, AsyncCallbackManager) def env_var_is_set(env_var: str) -> bool: """Check if an environment variable is set. Args: env_var (str): The name of the environment variable. Returns: bool: True if the environment variable is set, False otherwise. """ return env_var in os.environ and os.environ[env_var] not in ( "", "0", "false", "False", ) def _configure( callback_manager_cls: Type[T], inheritable_callbacks: Callbacks = None, local_callbacks: Callbacks = None, verbose: bool = False, inheritable_tags: Optional[List[str]] = None, local_tags: Optional[List[str]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, local_metadata: Optional[Dict[str, Any]] = None, ) -> T: """Configure the callback manager. Args: callback_manager_cls (Type[T]): The callback manager class. inheritable_callbacks (Optional[Callbacks], optional): The inheritable callbacks. Defaults to None. local_callbacks (Optional[Callbacks], optional): The local callbacks. Defaults to None. verbose (bool, optional): Whether to enable verbose mode. Defaults to False. inheritable_tags (Optional[List[str]], optional): The inheritable tags. Defaults to None. local_tags (Optional[List[str]], optional): The local tags. Defaults to None. inheritable_metadata (Optional[Dict[str, Any]], optional): The inheritable metadata. Defaults to None. local_metadata (Optional[Dict[str, Any]], optional): The local metadata. Defaults to None. Returns: T: The configured callback manager. """ run_tree = get_run_tree_context() parent_run_id = None if run_tree is None else getattr(run_tree, "id") callback_manager = callback_manager_cls(handlers=[], parent_run_id=parent_run_id) if inheritable_callbacks or local_callbacks: if isinstance(inheritable_callbacks, list) or inheritable_callbacks is None: inheritable_callbacks_ = inheritable_callbacks or [] callback_manager = callback_manager_cls( handlers=inheritable_callbacks_.copy(), inheritable_handlers=inheritable_callbacks_.copy(), parent_run_id=parent_run_id, ) else: callback_manager = callback_manager_cls( handlers=inheritable_callbacks.handlers.copy(), inheritable_handlers=inheritable_callbacks.inheritable_handlers.copy(), parent_run_id=inheritable_callbacks.parent_run_id, tags=inheritable_callbacks.tags.copy(), inheritable_tags=inheritable_callbacks.inheritable_tags.copy(), metadata=inheritable_callbacks.metadata.copy(), inheritable_metadata=inheritable_callbacks.inheritable_metadata.copy(), ) local_handlers_ = ( local_callbacks if isinstance(local_callbacks, list) else (local_callbacks.handlers if local_callbacks else []) ) for handler in local_handlers_: callback_manager.add_handler(handler, False) if inheritable_tags or local_tags: callback_manager.add_tags(inheritable_tags or []) callback_manager.add_tags(local_tags or [], False) if inheritable_metadata or local_metadata: callback_manager.add_metadata(inheritable_metadata or {}) callback_manager.add_metadata(local_metadata or {}, False) tracer = tracing_callback_var.get() wandb_tracer = wandb_tracing_callback_var.get() open_ai = openai_callback_var.get() tracing_enabled_ = ( env_var_is_set("LANGCHAIN_TRACING") or tracer is not None or env_var_is_set("LANGCHAIN_HANDLER") ) wandb_tracing_enabled_ = ( env_var_is_set("LANGCHAIN_WANDB_TRACING") or wandb_tracer is not None ) tracer_v2 = tracing_v2_callback_var.get() tracing_v2_enabled_ = ( env_var_is_set("LANGCHAIN_TRACING_V2") or tracer_v2 is not None ) tracer_project = getattr( run_tree, "session_name", os.environ.get( "LANGCHAIN_PROJECT", os.environ.get("LANGCHAIN_SESSION", "default") ), ) run_collector_ = run_collector_var.get() debug = _get_debug() if ( verbose or debug or tracing_enabled_ or tracing_v2_enabled_ or wandb_tracing_enabled_ or open_ai is not None ): if verbose and not any( isinstance(handler, StdOutCallbackHandler) for handler in callback_manager.handlers ): if debug: pass else: callback_manager.add_handler(StdOutCallbackHandler(), False) if debug and not any( isinstance(handler, ConsoleCallbackHandler) for handler in callback_manager.handlers ): callback_manager.add_handler(ConsoleCallbackHandler(), True) if tracing_enabled_ and not any( isinstance(handler, LangChainTracerV1) for handler in callback_manager.handlers ): if tracer: callback_manager.add_handler(tracer, True) else: handler = LangChainTracerV1() handler.load_session(tracer_project) callback_manager.add_handler(handler, True) if wandb_tracing_enabled_ and not any( isinstance(handler, WandbTracer) for handler in callback_manager.handlers ): if wandb_tracer: callback_manager.add_handler(wandb_tracer, True) else: handler = WandbTracer() callback_manager.add_handler(handler, True) if tracing_v2_enabled_ and not any( isinstance(handler, LangChainTracer) for handler in callback_manager.handlers ): if tracer_v2: callback_manager.add_handler(tracer_v2, True) else: try: handler = LangChainTracer(project_name=tracer_project) callback_manager.add_handler(handler, True) except Exception as e: logger.warning( "Unable to load requested LangChainTracer." " To disable this warning," " unset the LANGCHAIN_TRACING_V2 environment variables.", e, ) if open_ai is not None and not any( handler is open_ai # direct pointer comparison for handler in callback_manager.handlers ): callback_manager.add_handler(open_ai, True) if run_collector_ is not None and not any( handler is run_collector_ # direct pointer comparison for handler in callback_manager.handlers ): callback_manager.add_handler(run_collector_, False) return callback_manager
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~agents~agent_toolkits~playwright~toolkit.py
"""Playwright web browser toolkit.""" from __future__ import annotations from typing import TYPE_CHECKING, List, Optional, Type, cast from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.pydantic_v1 import Extra, root_validator from langchain.tools.base import BaseTool from langchain.tools.playwright.base import ( BaseBrowserTool, lazy_import_playwright_browsers, ) from langchain.tools.playwright.click import ClickTool from langchain.tools.playwright.current_page import CurrentWebPageTool from langchain.tools.playwright.extract_hyperlinks import ExtractHyperlinksTool from langchain.tools.playwright.extract_text import ExtractTextTool from langchain.tools.playwright.get_elements import GetElementsTool from langchain.tools.playwright.navigate import NavigateTool from langchain.tools.playwright.navigate_back import NavigateBackTool if TYPE_CHECKING: from playwright.async_api import Browser as AsyncBrowser from playwright.sync_api import Browser as SyncBrowser else: try: # We do this so pydantic can resolve the types when instantiating from playwright.async_api import Browser as AsyncBrowser from playwright.sync_api import Browser as SyncBrowser except ImportError: pass class PlayWrightBrowserToolkit(BaseToolkit): """Toolkit for PlayWright browser tools. **Security Note**: This toolkit provides code to control a web-browser. Careful if exposing this toolkit to end-users. The tools in the toolkit are capable of navigating to arbitrary webpages, clicking on arbitrary elements, and extracting arbitrary text and hyperlinks from webpages. Specifically, by default this toolkit allows navigating to: - Any URL (including any internal network URLs) - And local files If exposing to end-users, consider limiting network access to the server that hosts the agent; in addition, consider it is advised to create a custom NavigationTool wht an args_schema that limits the URLs that can be navigated to (e.g., only allow navigating to URLs that start with a particular prefix). Remember to scope permissions to the minimal permissions necessary for the application. If the default tool selection is not appropriate for the application, consider creating a custom toolkit with the appropriate tools. See https://python.langchain.com/docs/security for more information. """ sync_browser: Optional["SyncBrowser"] = None async_browser: Optional["AsyncBrowser"] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator def validate_imports_and_browser_provided(cls, values: dict) -> dict: """Check that the arguments are valid.""" lazy_import_playwright_browsers() if values.get("async_browser") is None and values.get("sync_browser") is None: raise ValueError("Either async_browser or sync_browser must be specified.") return values def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" tool_classes: List[Type[BaseBrowserTool]] = [ ClickTool, NavigateTool, NavigateBackTool, ExtractTextTool, ExtractHyperlinksTool, GetElementsTool, CurrentWebPageTool, ] tools = [ tool_cls.from_browser( sync_browser=self.sync_browser, async_browser=self.async_browser ) for tool_cls in tool_classes ] return cast(List[BaseTool], tools) @classmethod def from_browser( cls, sync_browser: Optional[SyncBrowser] = None, async_browser: Optional[AsyncBrowser] = None, ) -> PlayWrightBrowserToolkit: """Instantiate the toolkit.""" # This is to raise a better error than the forward ref ones Pydantic would have lazy_import_playwright_browsers() return cls(sync_browser=sync_browser, async_browser=async_browser)
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~tools~powerbi~test_powerbi.py
def test_power_bi_can_be_imported() -> None: """Test that powerbi tools can be imported. The goal of this test is to verify that langchain users will not get import errors when loading powerbi related code if they don't have optional dependencies installed. """ from langchain.tools.powerbi.tool import QueryPowerBITool # noqa from langchain.agents.agent_toolkits import PowerBIToolkit, create_pbi_agent # noqa from langchain.utilities.powerbi import PowerBIDataset # noqa
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~llms~huggingface_pipeline.py
from __future__ import annotations import importlib.util import logging from typing import Any, List, Mapping, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import BaseLLM from langchain.llms.utils import enforce_stop_tokens from langchain.pydantic_v1 import Extra from langchain.schema import Generation, LLMResult DEFAULT_MODEL_ID = "gpt2" DEFAULT_TASK = "text-generation" VALID_TASKS = ("text2text-generation", "text-generation", "summarization") DEFAULT_BATCH_SIZE = 4 logger = logging.getLogger(__name__) class HuggingFacePipeline(BaseLLM): """HuggingFace Pipeline API. To use, you should have the ``transformers`` python package installed. Only supports `text-generation`, `text2text-generation` and `summarization` for now. Example using from_model_id: .. code-block:: python from langchain.llms import HuggingFacePipeline hf = HuggingFacePipeline.from_model_id( model_id="gpt2", task="text-generation", pipeline_kwargs={"max_new_tokens": 10}, ) Example passing pipeline in directly: .. code-block:: python from langchain.llms import HuggingFacePipeline from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10 ) hf = HuggingFacePipeline(pipeline=pipe) """ pipeline: Any #: :meta private: model_id: str = DEFAULT_MODEL_ID """Model name to use.""" model_kwargs: Optional[dict] = None """Keyword arguments passed to the model.""" pipeline_kwargs: Optional[dict] = None """Keyword arguments passed to the pipeline.""" batch_size: int = DEFAULT_BATCH_SIZE """Batch size to use when passing multiple documents to generate.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @classmethod def from_model_id( cls, model_id: str, task: str, device: Optional[int] = -1, model_kwargs: Optional[dict] = None, pipeline_kwargs: Optional[dict] = None, batch_size: int = DEFAULT_BATCH_SIZE, **kwargs: Any, ) -> HuggingFacePipeline: """Construct the pipeline object from model_id and task.""" try: from transformers import ( AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, ) from transformers import pipeline as hf_pipeline except ImportError: raise ValueError( "Could not import transformers python package. " "Please install it with `pip install transformers`." ) _model_kwargs = model_kwargs or {} tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs) try: if task == "text-generation": model = AutoModelForCausalLM.from_pretrained(model_id, **_model_kwargs) elif task in ("text2text-generation", "summarization"): model = AutoModelForSeq2SeqLM.from_pretrained(model_id, **_model_kwargs) else: raise ValueError( f"Got invalid task {task}, " f"currently only {VALID_TASKS} are supported" ) except ImportError as e: raise ValueError( f"Could not load the {task} model due to missing dependencies." ) from e if ( getattr(model, "is_loaded_in_4bit", False) or getattr(model, "is_loaded_in_8bit", False) ) and device is not None: logger.warning( f"Setting the `device` argument to None from {device} to avoid " "the error caused by attempting to move the model that was already " "loaded on the GPU using the Accelerate module to the same or " "another device." ) device = None if device is not None and importlib.util.find_spec("torch") is not None: import torch cuda_device_count = torch.cuda.device_count() if device < -1 or (device >= cuda_device_count): raise ValueError( f"Got device=={device}, " f"device is required to be within [-1, {cuda_device_count})" ) if device < 0 and cuda_device_count > 0: logger.warning( "Device has %d GPUs available. " "Provide device={deviceId} to `from_model_id` to use available" "GPUs for execution. deviceId is -1 (default) for CPU and " "can be a positive integer associated with CUDA device id.", cuda_device_count, ) if "trust_remote_code" in _model_kwargs: _model_kwargs = { k: v for k, v in _model_kwargs.items() if k != "trust_remote_code" } _pipeline_kwargs = pipeline_kwargs or {} pipeline = hf_pipeline( task=task, model=model, tokenizer=tokenizer, device=device, batch_size=batch_size, model_kwargs=_model_kwargs, **_pipeline_kwargs, ) if pipeline.task not in VALID_TASKS: raise ValueError( f"Got invalid task {pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) return cls( pipeline=pipeline, model_id=model_id, model_kwargs=_model_kwargs, pipeline_kwargs=_pipeline_kwargs, batch_size=batch_size, **kwargs, ) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model_id": self.model_id, "model_kwargs": self.model_kwargs, "pipeline_kwargs": self.pipeline_kwargs, } @property def _llm_type(self) -> str: return "huggingface_pipeline" def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: # List to hold all results text_generations: List[str] = [] for i in range(0, len(prompts), self.batch_size): batch_prompts = prompts[i : i + self.batch_size] # Process batch of prompts responses = self.pipeline(batch_prompts) # Process each response in the batch for j, response in enumerate(responses): if isinstance(response, list): # if model returns multiple generations, pick the top one response = response[0] if self.pipeline.task == "text-generation": try: from transformers.pipelines.text_generation import ReturnType remove_prompt = ( self.pipeline._postprocess_params.get("return_type") != ReturnType.NEW_TEXT ) except Exception as e: logger.warning( f"Unable to extract pipeline return_type. " f"Received error:\n\n{e}" ) remove_prompt = True if remove_prompt: text = response["generated_text"][len(batch_prompts[j]) :] else: text = response["generated_text"] elif self.pipeline.task == "text2text-generation": text = response["generated_text"] elif self.pipeline.task == "summarization": text = response["summary_text"] else: raise ValueError( f"Got invalid task {self.pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) if stop: # Enforce stop tokens text = enforce_stop_tokens(text, stop) # Append the processed text to results text_generations.append(text) return LLMResult( generations=[[Generation(text=text)] for text in text_generations] )
[ "True", "return_type" ]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~adapters~test_openai.py
from typing import Any import openai import pytest from langchain.adapters import openai as lcopenai def _test_no_stream(**kwargs: Any) -> None: result = openai.ChatCompletion.create(**kwargs) lc_result = lcopenai.ChatCompletion.create(**kwargs) if isinstance(lc_result, dict): if isinstance(result, dict): result_dict = result["choices"][0]["message"].to_dict_recursive() lc_result_dict = lc_result["choices"][0]["message"] assert result_dict == lc_result_dict return def _test_stream(**kwargs: Any) -> None: result = [] for c in openai.ChatCompletion.create(**kwargs): result.append(c["choices"][0]["delta"].to_dict_recursive()) lc_result = [] for c in lcopenai.ChatCompletion.create(**kwargs): lc_result.append(c["choices"][0]["delta"]) assert result == lc_result async def _test_async(**kwargs: Any) -> None: result = await openai.ChatCompletion.acreate(**kwargs) lc_result = await lcopenai.ChatCompletion.acreate(**kwargs) if isinstance(lc_result, dict): if isinstance(result, dict): result_dict = result["choices"][0]["message"].to_dict_recursive() lc_result_dict = lc_result["choices"][0]["message"] assert result_dict == lc_result_dict return async def _test_astream(**kwargs: Any) -> None: result = [] async for c in await openai.ChatCompletion.acreate(**kwargs): result.append(c["choices"][0]["delta"].to_dict_recursive()) lc_result = [] async for c in await lcopenai.ChatCompletion.acreate(**kwargs): lc_result.append(c["choices"][0]["delta"]) assert result == lc_result FUNCTIONS = [ { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, } ] async def _test_module(**kwargs: Any) -> None: _test_no_stream(**kwargs) await _test_async(**kwargs) _test_stream(stream=True, **kwargs) await _test_astream(stream=True, **kwargs) @pytest.mark.asyncio async def test_normal_call() -> None: await _test_module( messages=[{"role": "user", "content": "hi"}], model="gpt-3.5-turbo", temperature=0, ) @pytest.mark.asyncio async def test_function_calling() -> None: await _test_module( messages=[{"role": "user", "content": "whats the weather in boston"}], model="gpt-3.5-turbo", functions=FUNCTIONS, temperature=0, ) @pytest.mark.asyncio async def test_answer_with_function_calling() -> None: await _test_module( messages=[ {"role": "user", "content": "say hi, then whats the weather in boston"} ], model="gpt-3.5-turbo", functions=FUNCTIONS, temperature=0, )
[ "say hi, then whats the weather in boston", "hi", "whats the weather in boston" ]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~vectorstores~usearch.py
from __future__ import annotations from typing import Any, Dict, Iterable, List, Optional, Tuple import numpy as np from langchain.docstore.base import AddableMixin, Docstore from langchain.docstore.document import Document from langchain.docstore.in_memory import InMemoryDocstore from langchain.schema.embeddings import Embeddings from langchain.schema.vectorstore import VectorStore def dependable_usearch_import() -> Any: """ Import usearch if available, otherwise raise error. """ try: import usearch.index except ImportError: raise ImportError( "Could not import usearch python package. " "Please install it with `pip install usearch` " ) return usearch.index class USearch(VectorStore): """`USearch` vector store. To use, you should have the ``usearch`` python package installed. """ def __init__( self, embedding: Embeddings, index: Any, docstore: Docstore, ids: List[str], ): """Initialize with necessary components.""" self.embedding = embedding self.index = index self.docstore = docstore self.ids = ids def add_texts( self, texts: Iterable[str], metadatas: Optional[List[Dict]] = None, ids: Optional[np.ndarray] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of unique IDs. Returns: List of ids from adding the texts into the vectorstore. """ if not isinstance(self.docstore, AddableMixin): raise ValueError( "If trying to add texts, the underlying docstore should support " f"adding items, which {self.docstore} does not" ) embeddings = self.embedding.embed_documents(list(texts)) documents = [] for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} documents.append(Document(page_content=text, metadata=metadata)) last_id = int(self.ids[-1]) + 1 if ids is None: ids = np.array([str(last_id + id) for id, _ in enumerate(texts)]) self.index.add(np.array(ids), np.array(embeddings)) self.docstore.add(dict(zip(ids, documents))) self.ids.extend(ids) return ids.tolist() def similarity_search_with_score( self, query: str, k: int = 4, ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of documents most similar to the query with distance. """ query_embedding = self.embedding.embed_query(query) matches = self.index.search(np.array(query_embedding), k) docs_with_scores: List[Tuple[Document, float]] = [] for id, score in zip(matches.keys, matches.distances): doc = self.docstore.search(str(id)) if not isinstance(doc, Document): raise ValueError(f"Could not find document for id {id}, got {doc}") docs_with_scores.append((doc, score)) return docs_with_scores def similarity_search( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ query_embedding = self.embedding.embed_query(query) matches = self.index.search(np.array(query_embedding), k) docs: List[Document] = [] for id in matches.keys: doc = self.docstore.search(str(id)) if not isinstance(doc, Document): raise ValueError(f"Could not find document for id {id}, got {doc}") docs.append(doc) return docs @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[Dict]] = None, ids: Optional[np.ndarray] = None, metric: str = "cos", **kwargs: Any, ) -> USearch: """Construct USearch wrapper from raw documents. This is a user friendly interface that: 1. Embeds documents. 2. Creates an in memory docstore 3. Initializes the USearch database This is intended to be a quick way to get started. Example: .. code-block:: python from langchain.vectorstores import USearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() usearch = USearch.from_texts(texts, embeddings) """ embeddings = embedding.embed_documents(texts) documents: List[Document] = [] if ids is None: ids = np.array([str(id) for id, _ in enumerate(texts)]) for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} documents.append(Document(page_content=text, metadata=metadata)) docstore = InMemoryDocstore(dict(zip(ids, documents))) usearch = dependable_usearch_import() index = usearch.Index(ndim=len(embeddings[0]), metric=metric) index.add(np.array(ids), np.array(embeddings)) return cls(embedding, index, docstore, ids.tolist())
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~agents~agent_toolkits~multion~toolkit.py
"""MultiOn agent.""" from __future__ import annotations from typing import List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.multion.create_session import MultionCreateSession from langchain.tools.multion.update_session import MultionUpdateSession class MultionToolkit(BaseToolkit): """Toolkit for interacting with the Browser Agent. **Security Note**: This toolkit contains tools that interact with the user's browser via the multion API which grants an agent access to the user's browser. Please review the documentation for the multion API to understand the security implications of using this toolkit. See https://python.langchain.com/docs/security for more information. """ class Config: """Pydantic config.""" arbitrary_types_allowed = True def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return [MultionCreateSession(), MultionUpdateSession()]
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~document_loaders~word_document.py
"""Loads word documents.""" import os import tempfile from abc import ABC from typing import List from urllib.parse import urlparse import requests from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.document_loaders.unstructured import UnstructuredFileLoader class Docx2txtLoader(BaseLoader, ABC): """Load `DOCX` file using `docx2txt` and chunks at character level. Defaults to check for local file, but if the file is a web path, it will download it to a temporary file, and use that, then clean up the temporary file after completion """ def __init__(self, file_path: str): """Initialize with file path.""" self.file_path = file_path if "~" in self.file_path: self.file_path = os.path.expanduser(self.file_path) # If the file is a web path, download it to a temporary file, and use that if not os.path.isfile(self.file_path) and self._is_valid_url(self.file_path): r = requests.get(self.file_path) if r.status_code != 200: raise ValueError( "Check the url of your file; returned status code %s" % r.status_code ) self.web_path = self.file_path self.temp_file = tempfile.NamedTemporaryFile() self.temp_file.write(r.content) self.file_path = self.temp_file.name elif not os.path.isfile(self.file_path): raise ValueError("File path %s is not a valid file or url" % self.file_path) def __del__(self) -> None: if hasattr(self, "temp_file"): self.temp_file.close() def load(self) -> List[Document]: """Load given path as single page.""" import docx2txt return [ Document( page_content=docx2txt.process(self.file_path), metadata={"source": self.file_path}, ) ] @staticmethod def _is_valid_url(url: str) -> bool: """Check if the url is valid.""" parsed = urlparse(url) return bool(parsed.netloc) and bool(parsed.scheme) class UnstructuredWordDocumentLoader(UnstructuredFileLoader): """Load `Microsoft Word` file using `Unstructured`. Works with both .docx and .doc files. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples -------- from langchain.document_loaders import UnstructuredWordDocumentLoader loader = UnstructuredWordDocumentLoader( "example.docx", mode="elements", strategy="fast", ) docs = loader.load() References ---------- https://unstructured-io.github.io/unstructured/bricks.html#partition-docx """ def _get_elements(self) -> List: from unstructured.__version__ import __version__ as __unstructured_version__ from unstructured.file_utils.filetype import FileType, detect_filetype unstructured_version = tuple( [int(x) for x in __unstructured_version__.split(".")] ) # NOTE(MthwRobinson) - magic will raise an import error if the libmagic # system dependency isn't installed. If it's not installed, we'll just # check the file extension try: import magic # noqa: F401 is_doc = detect_filetype(self.file_path) == FileType.DOC except ImportError: _, extension = os.path.splitext(str(self.file_path)) is_doc = extension == ".doc" if is_doc and unstructured_version < (0, 4, 11): raise ValueError( f"You are on unstructured version {__unstructured_version__}. " "Partitioning .doc files is only supported in unstructured>=0.4.11. " "Please upgrade the unstructured package and try again." ) if is_doc: from unstructured.partition.doc import partition_doc return partition_doc(filename=self.file_path, **self.unstructured_kwargs) else: from unstructured.partition.docx import partition_docx return partition_docx(filename=self.file_path, **self.unstructured_kwargs)
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~smith~evaluation~config.py
"""Configuration for run evaluators.""" from typing import Any, Dict, List, Optional, Union from langsmith import RunEvaluator from langchain.evaluation.criteria.eval_chain import CRITERIA_TYPE from langchain.evaluation.embedding_distance.base import ( EmbeddingDistance as EmbeddingDistanceEnum, ) from langchain.evaluation.schema import EvaluatorType, StringEvaluator from langchain.evaluation.string_distance.base import ( StringDistance as StringDistanceEnum, ) from langchain.pydantic_v1 import BaseModel, Field from langchain.schema.embeddings import Embeddings from langchain.schema.language_model import BaseLanguageModel from langchain.schema.prompt_template import BasePromptTemplate class EvalConfig(BaseModel): """Configuration for a given run evaluator. Parameters ---------- evaluator_type : EvaluatorType The type of evaluator to use. Methods ------- get_kwargs() Get the keyword arguments for the evaluator configuration. """ evaluator_type: EvaluatorType def get_kwargs(self) -> Dict[str, Any]: """Get the keyword arguments for the load_evaluator call. Returns ------- Dict[str, Any] The keyword arguments for the load_evaluator call. """ kwargs = {} for field, val in self: if field == "evaluator_type": continue elif val is None: continue kwargs[field] = val return kwargs class RunEvalConfig(BaseModel): """Configuration for a run evaluation. Parameters ---------- evaluators : List[Union[EvaluatorType, EvalConfig]] Configurations for which evaluators to apply to the dataset run. Each can be the string of an :class:`EvaluatorType <langchain.evaluation.schema.EvaluatorType>`, such as EvaluatorType.QA, the evaluator type string ("qa"), or a configuration for a given evaluator (e.g., :class:`RunEvalConfig.QA <langchain.smith.evaluation.config.RunEvalConfig.QA>`). custom_evaluators : Optional[List[Union[RunEvaluator, StringEvaluator]]] Custom evaluators to apply to the dataset run. reference_key : Optional[str] The key in the dataset run to use as the reference string. If not provided, it will be inferred automatically. prediction_key : Optional[str] The key from the traced run's outputs dictionary to use to represent the prediction. If not provided, it will be inferred automatically. input_key : Optional[str] The key from the traced run's inputs dictionary to use to represent the input. If not provided, it will be inferred automatically. eval_llm : Optional[BaseLanguageModel] The language model to pass to any evaluators that use a language model. """ # noqa: E501 evaluators: List[Union[EvaluatorType, str, EvalConfig]] = Field( default_factory=list ) """Configurations for which evaluators to apply to the dataset run. Each can be the string of an :class:`EvaluatorType <langchain.evaluation.schema.EvaluatorType>`, such as `EvaluatorType.QA`, the evaluator type string ("qa"), or a configuration for a given evaluator (e.g., :class:`RunEvalConfig.QA <langchain.smith.evaluation.config.RunEvalConfig.QA>`).""" # noqa: E501 custom_evaluators: Optional[List[Union[RunEvaluator, StringEvaluator]]] = None """Custom evaluators to apply to the dataset run.""" reference_key: Optional[str] = None """The key in the dataset run to use as the reference string. If not provided, we will attempt to infer automatically.""" prediction_key: Optional[str] = None """The key from the traced run's outputs dictionary to use to represent the prediction. If not provided, it will be inferred automatically.""" input_key: Optional[str] = None """The key from the traced run's inputs dictionary to use to represent the input. If not provided, it will be inferred automatically.""" eval_llm: Optional[BaseLanguageModel] = None """The language model to pass to any evaluators that require one.""" class Config: arbitrary_types_allowed = True class Criteria(EvalConfig): """Configuration for a reference-free criteria evaluator. Parameters ---------- criteria : Optional[CRITERIA_TYPE] The criteria to evaluate. llm : Optional[BaseLanguageModel] The language model to use for the evaluation chain. """ criteria: Optional[CRITERIA_TYPE] = None llm: Optional[BaseLanguageModel] = None evaluator_type: EvaluatorType = EvaluatorType.CRITERIA def __init__( self, criteria: Optional[CRITERIA_TYPE] = None, **kwargs: Any ) -> None: super().__init__(criteria=criteria, **kwargs) class LabeledCriteria(EvalConfig): """Configuration for a labeled (with references) criteria evaluator. Parameters ---------- criteria : Optional[CRITERIA_TYPE] The criteria to evaluate. llm : Optional[BaseLanguageModel] The language model to use for the evaluation chain. """ criteria: Optional[CRITERIA_TYPE] = None llm: Optional[BaseLanguageModel] = None evaluator_type: EvaluatorType = EvaluatorType.LABELED_CRITERIA def __init__( self, criteria: Optional[CRITERIA_TYPE] = None, **kwargs: Any ) -> None: super().__init__(criteria=criteria, **kwargs) class EmbeddingDistance(EvalConfig): """Configuration for an embedding distance evaluator. Parameters ---------- embeddings : Optional[Embeddings] The embeddings to use for computing the distance. distance_metric : Optional[EmbeddingDistanceEnum] The distance metric to use for computing the distance. """ evaluator_type: EvaluatorType = EvaluatorType.EMBEDDING_DISTANCE embeddings: Optional[Embeddings] = None distance_metric: Optional[EmbeddingDistanceEnum] = None class Config: arbitrary_types_allowed = True class StringDistance(EvalConfig): """Configuration for a string distance evaluator. Parameters ---------- distance : Optional[StringDistanceEnum] The string distance metric to use. """ evaluator_type: EvaluatorType = EvaluatorType.STRING_DISTANCE distance: Optional[StringDistanceEnum] = None """The string distance metric to use. damerau_levenshtein: The Damerau-Levenshtein distance. levenshtein: The Levenshtein distance. jaro: The Jaro distance. jaro_winkler: The Jaro-Winkler distance. """ normalize_score: bool = True """Whether to normalize the distance to between 0 and 1. Applies only to the Levenshtein and Damerau-Levenshtein distances.""" class QA(EvalConfig): """Configuration for a QA evaluator. Parameters ---------- prompt : Optional[BasePromptTemplate] The prompt template to use for generating the question. llm : Optional[BaseLanguageModel] The language model to use for the evaluation chain. """ evaluator_type: EvaluatorType = EvaluatorType.QA llm: Optional[BaseLanguageModel] = None prompt: Optional[BasePromptTemplate] = None class ContextQA(EvalConfig): """Configuration for a context-based QA evaluator. Parameters ---------- prompt : Optional[BasePromptTemplate] The prompt template to use for generating the question. llm : Optional[BaseLanguageModel] The language model to use for the evaluation chain. """ evaluator_type: EvaluatorType = EvaluatorType.CONTEXT_QA llm: Optional[BaseLanguageModel] = None prompt: Optional[BasePromptTemplate] = None class CoTQA(EvalConfig): """Configuration for a context-based QA evaluator. Parameters ---------- prompt : Optional[BasePromptTemplate] The prompt template to use for generating the question. llm : Optional[BaseLanguageModel] The language model to use for the evaluation chain. """ evaluator_type: EvaluatorType = EvaluatorType.CONTEXT_QA llm: Optional[BaseLanguageModel] = None prompt: Optional[BasePromptTemplate] = None class JsonValidity(EvalConfig): """Configuration for a json validity evaluator. Parameters ---------- """ evaluator_type: EvaluatorType = EvaluatorType.JSON_VALIDITY class JsonEqualityEvaluator(EvalConfig): """Configuration for a json equality evaluator. Parameters ---------- """ evaluator_type: EvaluatorType = EvaluatorType.JSON_EQUALITY class ExactMatch(EvalConfig): """Configuration for an exact match string evaluator. Parameters ---------- ignore_case : bool Whether to ignore case when comparing strings. ignore_punctuation : bool Whether to ignore punctuation when comparing strings. ignore_numbers : bool Whether to ignore numbers when comparing strings. """ evaluator_type: EvaluatorType = EvaluatorType.STRING_DISTANCE ignore_case: bool = False ignore_punctuation: bool = False ignore_numbers: bool = False class RegexMatch(EvalConfig): """Configuration for a regex match string evaluator. Parameters ---------- flags : int The flags to pass to the regex. Example: re.IGNORECASE. """ evaluator_type: EvaluatorType = EvaluatorType.REGEX_MATCH flags: int = 0 class ScoreString(EvalConfig): """Configuration for a score string evaluator. This is like the criteria evaluator but it is configured by default to return a score on the scale from 1-10. It is recommended to normalize these scores by setting `normalize_by` to 10. Parameters ---------- criteria : Optional[CRITERIA_TYPE] The criteria to evaluate. llm : Optional[BaseLanguageModel] The language model to use for the evaluation chain. normalize_by: Optional[int] = None If you want to normalize the score, the denominator to use. If not provided, the score will be between 1 and 10 (by default). prompt : Optional[BasePromptTemplate] """ evaluator_type: EvaluatorType = EvaluatorType.SCORE_STRING criteria: Optional[CRITERIA_TYPE] = None llm: Optional[BaseLanguageModel] = None normalize_by: Optional[float] = None prompt: Optional[BasePromptTemplate] = None def __init__( self, criteria: Optional[CRITERIA_TYPE] = None, normalize_by: Optional[float] = None, **kwargs: Any ) -> None: super().__init__(criteria=criteria, normalize_by=normalize_by, **kwargs) class LabeledScoreString(ScoreString): evaluator_type: EvaluatorType = EvaluatorType.LABELED_SCORE_STRING
[ "None" ]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~retrievers~test_pubmed.py
"""Integration test for PubMed API Wrapper.""" from typing import List import pytest from langchain.retrievers import PubMedRetriever from langchain.schema import Document @pytest.fixture def retriever() -> PubMedRetriever: return PubMedRetriever() def assert_docs(docs: List[Document]) -> None: for doc in docs: assert doc.metadata assert set(doc.metadata) == { "Copyright Information", "uid", "Title", "Published", } def test_load_success(retriever: PubMedRetriever) -> None: docs = retriever.get_relevant_documents(query="chatgpt") assert len(docs) == 3 assert_docs(docs) def test_load_success_top_k_results(retriever: PubMedRetriever) -> None: retriever.top_k_results = 2 docs = retriever.get_relevant_documents(query="chatgpt") assert len(docs) == 2 assert_docs(docs) def test_load_no_result(retriever: PubMedRetriever) -> None: docs = retriever.get_relevant_documents("1605.08386WWW") assert not docs
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~document_loaders~parsers~test_html_parsers.py
"""Tests for the HTML parsers.""" from pathlib import Path import pytest from langchain.document_loaders.blob_loaders import Blob from langchain.document_loaders.parsers.html import BS4HTMLParser HERE = Path(__file__).parent EXAMPLES = HERE.parent.parent.parent / "integration_tests" / "examples" @pytest.mark.requires("bs4", "lxml") def test_bs_html_loader() -> None: """Test unstructured loader.""" file_path = EXAMPLES / "example.html" blob = Blob.from_path(file_path) parser = BS4HTMLParser(get_text_separator="|") docs = list(parser.lazy_parse(blob)) assert isinstance(docs, list) assert len(docs) == 1 metadata = docs[0].metadata content = docs[0].page_content assert metadata["title"] == "Chew dad's slippers" assert metadata["source"] == str(file_path) assert content[:2] == "\n|"
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~utilities~google_scholar.py
"""Util that calls Google Scholar Search.""" from typing import Dict, Optional from langchain.pydantic_v1 import BaseModel, Extra, root_validator from langchain.utils import get_from_dict_or_env class GoogleScholarAPIWrapper(BaseModel): """Wrapper for Google Scholar API You can create serpapi key by signing up at: https://serpapi.com/users/sign_up. The wrapper uses the serpapi python package: https://serpapi.com/integrations/python#search-google-scholar To use, you should have the environment variable ``SERP_API_KEY`` set with your API key, or pass `serp_api_key` as a named parameter to the constructor. Attributes: top_k_results: number of results to return from google-scholar query search. By default it returns top 10 results. hl: attribute defines the language to use for the Google Scholar search. It's a two-letter language code. (e.g., en for English, es for Spanish, or fr for French). Head to the Google languages page for a full list of supported Google languages: https://serpapi.com/google-languages lr: attribute defines one or multiple languages to limit the search to. It uses lang_{two-letter language code} to specify languages and | as a delimiter. (e.g., lang_fr|lang_de will only search French and German pages). Head to the Google lr languages for a full list of supported languages: https://serpapi.com/google-lr-languages Example: .. code-block:: python from langchain.utilities import GoogleScholarAPIWrapper google_scholar = GoogleScholarAPIWrapper() google_scholar.run('langchain') """ top_k_results: int = 10 hl: str = "en" lr: str = "lang_en" serp_api_key: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" serp_api_key = get_from_dict_or_env(values, "serp_api_key", "SERP_API_KEY") values["SERP_API_KEY"] = serp_api_key try: from serpapi import GoogleScholarSearch except ImportError: raise ImportError( "google-search-results is not installed. " "Please install it with `pip install google-search-results" ">=2.4.2`" ) GoogleScholarSearch.SERP_API_KEY = serp_api_key values["google_scholar_engine"] = GoogleScholarSearch return values def run(self, query: str) -> str: """Run query through GoogleSearchScholar and parse result""" total_results = [] page = 0 while page < max((self.top_k_results - 20), 1): # We are getting 20 results from every page # which is the max in order to reduce the number of API CALLS. # 0 is the first page of results, 20 is the 2nd page of results, # 40 is the 3rd page of results, etc. results = ( self.google_scholar_engine( # type: ignore { "q": query, "start": page, "hl": self.hl, "num": min( self.top_k_results, 20 ), # if top_k_result is less than 20. "lr": self.lr, } ) .get_dict() .get("organic_results", []) ) total_results.extend(results) if not results: # No need to search for more pages if current page # has returned no results break page += 20 if ( self.top_k_results % 20 != 0 and page > 20 and total_results ): # From the last page we would only need top_k_results%20 results # if k is not divisible by 20. results = ( self.google_scholar_engine( # type: ignore { "q": query, "start": page, "num": self.top_k_results % 20, "hl": self.hl, "lr": self.lr, } ) .get_dict() .get("organic_results", []) ) total_results.extend(results) if not total_results: return "No good Google Scholar Result was found" docs = [ f"Title: {result.get('title','')}\n" f"Authors: {','.join([author.get('name') for author in result.get('publication_info',{}).get('authors',[])])}\n" # noqa: E501 f"Summary: {result.get('publication_info',{}).get('summary','')}\n" f"Total-Citations: {result.get('inline_links',{}).get('cited_by',{}).get('total','')}" # noqa: E501 for result in total_results ] return "\n\n".join(docs)
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~test_long_context_reorder.py
"""Integration test for doc reordering.""" from langchain.document_transformers.long_context_reorder import LongContextReorder from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma def test_long_context_reorder() -> None: """Test Lost in the middle reordering get_relevant_docs.""" texts = [ "Basquetball is a great sport.", "Fly me to the moon is one of my favourite songs.", "The Celtics are my favourite team.", "This is a document about the Boston Celtics", "I simply love going to the movies", "The Boston Celtics won the game by 20 points", "This is just a random text.", "Elden Ring is one of the best games in the last 15 years.", "L. Kornet is one of the best Celtics players.", "Larry Bird was an iconic NBA player.", ] embeddings = OpenAIEmbeddings() retriever = Chroma.from_texts(texts, embedding=embeddings).as_retriever( search_kwargs={"k": 10} ) reordering = LongContextReorder() docs = retriever.get_relevant_documents("Tell me about the Celtics") actual = reordering.transform_documents(docs) # First 2 and Last 2 elements must contain the most relevant first_and_last = list(actual[:2]) + list(actual[-2:]) assert len(actual) == 10 assert texts[2] in [d.page_content for d in first_and_last] assert texts[3] in [d.page_content for d in first_and_last] assert texts[5] in [d.page_content for d in first_and_last] assert texts[8] in [d.page_content for d in first_and_last]
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~agents~test_sql.py
from langchain.agents import create_sql_agent from langchain.agents.agent_toolkits import SQLDatabaseToolkit from langchain.utilities.sql_database import SQLDatabase from tests.unit_tests.llms.fake_llm import FakeLLM def test_create_sql_agent() -> None: db = SQLDatabase.from_uri("sqlite:///:memory:") queries = {"foo": "Final Answer: baz"} llm = FakeLLM(queries=queries, sequential_responses=True) toolkit = SQLDatabaseToolkit(db=db, llm=llm) agent_executor = create_sql_agent( llm=llm, toolkit=toolkit, ) assert agent_executor.run("hello") == "baz"
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~utilities~test_powerbi_api.py
"""Integration test for POWERBI API Wrapper.""" import pytest from langchain.utilities.powerbi import PowerBIDataset from langchain.utils import get_from_env def azure_installed() -> bool: try: from azure.core.credentials import TokenCredential # noqa: F401 from azure.identity import DefaultAzureCredential # noqa: F401 return True except Exception as e: print(f"azure not installed, skipping test {e}") return False @pytest.mark.skipif(not azure_installed(), reason="requires azure package") def test_daxquery() -> None: from azure.identity import DefaultAzureCredential DATASET_ID = get_from_env("", "POWERBI_DATASET_ID") TABLE_NAME = get_from_env("", "POWERBI_TABLE_NAME") NUM_ROWS = get_from_env("", "POWERBI_NUMROWS") powerbi = PowerBIDataset( dataset_id=DATASET_ID, table_names=[TABLE_NAME], credential=DefaultAzureCredential(), ) output = powerbi.run(f'EVALUATE ROW("RowCount", COUNTROWS({TABLE_NAME}))') numrows = str(output["results"][0]["tables"][0]["rows"][0]["[RowCount]"]) assert NUM_ROWS == numrows
[]
2024-01-10
RohanDey02/langchain
libs~experimental~tests~unit_tests~test_llm_symbolic_math.py
"""Test LLM Math functionality.""" import pytest from langchain_experimental.llm_symbolic_math.base import ( LLMSymbolicMathChain, ) from langchain_experimental.llm_symbolic_math.prompt import ( _PROMPT_TEMPLATE, ) from tests.unit_tests.fake_llm import FakeLLM try: import sympy except ImportError: pytest.skip("sympy not installed", allow_module_level=True) @pytest.fixture def fake_llm_symbolic_math_chain() -> LLMSymbolicMathChain: """Fake LLM Math chain for testing.""" queries = { _PROMPT_TEMPLATE.format(question="What is 1 plus 1?"): "Answer: 2", _PROMPT_TEMPLATE.format( question="What is the square root of 2?" ): "```text\nsqrt(2)\n```", _PROMPT_TEMPLATE.format( question="What is the limit of sin(x) / x as x goes to 0?" ): "```text\nlimit(sin(x)/x,x,0)\n```", _PROMPT_TEMPLATE.format( question="What is the integral of e^-x from 0 to infinity?" ): "```text\nintegrate(exp(-x), (x, 0, oo))\n```", _PROMPT_TEMPLATE.format( question="What are the solutions to this equation x**2 - x?" ): "```text\nsolveset(x**2 - x, x)\n```", _PROMPT_TEMPLATE.format(question="foo"): "foo", } fake_llm = FakeLLM(queries=queries) return LLMSymbolicMathChain.from_llm(fake_llm, input_key="q", output_key="a") def test_simple_question(fake_llm_symbolic_math_chain: LLMSymbolicMathChain) -> None: """Test simple question that should not need python.""" question = "What is 1 plus 1?" output = fake_llm_symbolic_math_chain.run(question) assert output == "Answer: 2" def test_root_question(fake_llm_symbolic_math_chain: LLMSymbolicMathChain) -> None: """Test irrational number that should need sympy.""" question = "What is the square root of 2?" output = fake_llm_symbolic_math_chain.run(question) assert output == f"Answer: {sympy.sqrt(2)}" def test_limit_question(fake_llm_symbolic_math_chain: LLMSymbolicMathChain) -> None: """Test question about limits that needs sympy""" question = "What is the limit of sin(x) / x as x goes to 0?" output = fake_llm_symbolic_math_chain.run(question) assert output == "Answer: 1" def test_integration_question( fake_llm_symbolic_math_chain: LLMSymbolicMathChain, ) -> None: """Test question about integration that needs sympy""" question = "What is the integral of e^-x from 0 to infinity?" output = fake_llm_symbolic_math_chain.run(question) assert output == "Answer: 1" def test_solver_question(fake_llm_symbolic_math_chain: LLMSymbolicMathChain) -> None: """Test question about solving algebraic equations that needs sympy""" question = "What are the solutions to this equation x**2 - x?" output = fake_llm_symbolic_math_chain.run(question) assert output == "Answer: {0, 1}" def test_error(fake_llm_symbolic_math_chain: LLMSymbolicMathChain) -> None: """Test question that raises error.""" with pytest.raises(ValueError): fake_llm_symbolic_math_chain.run("foo")
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~retrievers~milvus.py
"""Milvus Retriever""" import warnings from typing import Any, Dict, List, Optional from langchain.callbacks.manager import CallbackManagerForRetrieverRun from langchain.pydantic_v1 import root_validator from langchain.schema import BaseRetriever, Document from langchain.schema.embeddings import Embeddings from langchain.vectorstores.milvus import Milvus # TODO: Update to MilvusClient + Hybrid Search when available class MilvusRetriever(BaseRetriever): """`Milvus API` retriever.""" embedding_function: Embeddings collection_name: str = "LangChainCollection" connection_args: Optional[Dict[str, Any]] = None consistency_level: str = "Session" search_params: Optional[dict] = None store: Milvus retriever: BaseRetriever @root_validator(pre=True) def create_retriever(cls, values: Dict) -> Dict: """Create the Milvus store and retriever.""" values["store"] = Milvus( values["embedding_function"], values["collection_name"], values["connection_args"], values["consistency_level"], ) values["retriever"] = values["store"].as_retriever( search_kwargs={"param": values["search_params"]} ) return values def add_texts( self, texts: List[str], metadatas: Optional[List[dict]] = None ) -> None: """Add text to the Milvus store Args: texts (List[str]): The text metadatas (List[dict]): Metadata dicts, must line up with existing store """ self.store.add_texts(texts, metadatas) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any, ) -> List[Document]: return self.retriever.get_relevant_documents( query, run_manager=run_manager.get_child(), **kwargs ) def MilvusRetreiver(*args: Any, **kwargs: Any) -> MilvusRetriever: """Deprecated MilvusRetreiver. Please use MilvusRetriever ('i' before 'e') instead. Args: *args: **kwargs: Returns: MilvusRetriever """ warnings.warn( "MilvusRetreiver will be deprecated in the future. " "Please use MilvusRetriever ('i' before 'e') instead.", DeprecationWarning, ) return MilvusRetriever(*args, **kwargs)
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~llms~test_vertexai.py
"""Test Vertex AI API wrapper. In order to run this test, you need to install VertexAI SDK (that is is the private preview) and be whitelisted to list the models themselves: In order to run this test, you need to install VertexAI SDK pip install google-cloud-aiplatform>=1.25.0 Your end-user credentials would be used to make the calls (make sure you've run `gcloud auth login` first). """ import os import pytest from langchain.llms import VertexAI, VertexAIModelGarden from langchain.schema import LLMResult def test_vertex_initialization() -> None: llm = VertexAI() assert llm._llm_type == "vertexai" assert llm.model_name == llm.client._model_id def test_vertex_call() -> None: llm = VertexAI(temperature=0) output = llm("Say foo:") assert isinstance(output, str) @pytest.mark.scheduled def test_vertex_generate() -> None: llm = VertexAI(temperature=0.3, n=2, model_name="text-bison@001") output = llm.generate(["Say foo:"]) assert isinstance(output, LLMResult) assert len(output.generations) == 1 assert len(output.generations[0]) == 2 @pytest.mark.scheduled def test_vertex_generate_code() -> None: llm = VertexAI(temperature=0.3, n=2, model_name="code-bison@001") output = llm.generate(["generate a python method that says foo:"]) assert isinstance(output, LLMResult) assert len(output.generations) == 1 assert len(output.generations[0]) == 2 @pytest.mark.scheduled @pytest.mark.asyncio async def test_vertex_agenerate() -> None: llm = VertexAI(temperature=0) output = await llm.agenerate(["Please say foo:"]) assert isinstance(output, LLMResult) @pytest.mark.scheduled def test_vertex_stream() -> None: llm = VertexAI(temperature=0) outputs = list(llm.stream("Please say foo:")) assert isinstance(outputs[0], str) @pytest.mark.asyncio async def test_vertex_consistency() -> None: llm = VertexAI(temperature=0) output = llm.generate(["Please say foo:"]) streaming_output = llm.generate(["Please say foo:"], stream=True) async_output = await llm.agenerate(["Please say foo:"]) assert output.generations[0][0].text == streaming_output.generations[0][0].text assert output.generations[0][0].text == async_output.generations[0][0].text def test_model_garden() -> None: """In order to run this test, you should provide an endpoint name. Example: export ENDPOINT_ID=... export PROJECT=... """ endpoint_id = os.environ["ENDPOINT_ID"] project = os.environ["PROJECT"] llm = VertexAIModelGarden(endpoint_id=endpoint_id, project=project) output = llm("What is the meaning of life?") assert isinstance(output, str) assert llm._llm_type == "vertexai_model_garden" def test_model_garden_generate() -> None: """In order to run this test, you should provide an endpoint name. Example: export ENDPOINT_ID=... export PROJECT=... """ endpoint_id = os.environ["ENDPOINT_ID"] project = os.environ["PROJECT"] llm = VertexAIModelGarden(endpoint_id=endpoint_id, project=project) output = llm.generate(["What is the meaning of life?", "How much is 2+2"]) assert isinstance(output, LLMResult) assert len(output.generations) == 2 @pytest.mark.asyncio async def test_model_garden_agenerate() -> None: endpoint_id = os.environ["ENDPOINT_ID"] project = os.environ["PROJECT"] llm = VertexAIModelGarden(endpoint_id=endpoint_id, project=project) output = await llm.agenerate(["What is the meaning of life?", "How much is 2+2"]) assert isinstance(output, LLMResult) assert len(output.generations) == 2
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~vectorstores~test_timescalevector.py
"""Test TimescaleVector functionality.""" import os from datetime import datetime, timedelta from typing import List import pytest from langchain.docstore.document import Document from langchain.vectorstores.timescalevector import TimescaleVector from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings SERVICE_URL = TimescaleVector.service_url_from_db_params( host=os.environ.get("TEST_TIMESCALE_HOST", "localhost"), port=int(os.environ.get("TEST_TIMESCALE_PORT", "5432")), database=os.environ.get("TEST_TIMESCALE_DATABASE", "postgres"), user=os.environ.get("TEST_TIMESCALE_USER", "postgres"), password=os.environ.get("TEST_TIMESCALE_PASSWORD", "postgres"), ) ADA_TOKEN_COUNT = 1536 class FakeEmbeddingsWithAdaDimension(FakeEmbeddings): """Fake embeddings functionality for testing.""" def embed_documents(self, texts: List[str]) -> List[List[float]]: """Return simple embeddings.""" return [ [float(1.0)] * (ADA_TOKEN_COUNT - 1) + [float(i)] for i in range(len(texts)) ] def embed_query(self, text: str) -> List[float]: """Return simple embeddings.""" return [float(1.0)] * (ADA_TOKEN_COUNT - 1) + [float(0.0)] def test_timescalevector() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = TimescaleVector.from_texts( texts=texts, collection_name="test_collection", embedding=FakeEmbeddingsWithAdaDimension(), service_url=SERVICE_URL, pre_delete_collection=True, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] def test_timescalevector_from_documents() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docs = [Document(page_content=t, metadata={"a": "b"}) for t in texts] docsearch = TimescaleVector.from_documents( documents=docs, collection_name="test_collection", embedding=FakeEmbeddingsWithAdaDimension(), service_url=SERVICE_URL, pre_delete_collection=True, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={"a": "b"})] @pytest.mark.asyncio async def test_timescalevector_afrom_documents() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docs = [Document(page_content=t, metadata={"a": "b"}) for t in texts] docsearch = await TimescaleVector.afrom_documents( documents=docs, collection_name="test_collection", embedding=FakeEmbeddingsWithAdaDimension(), service_url=SERVICE_URL, pre_delete_collection=True, ) output = await docsearch.asimilarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={"a": "b"})] def test_timescalevector_embeddings() -> None: """Test end to end construction with embeddings and search.""" texts = ["foo", "bar", "baz"] text_embeddings = FakeEmbeddingsWithAdaDimension().embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) docsearch = TimescaleVector.from_embeddings( text_embeddings=text_embedding_pairs, collection_name="test_collection", embedding=FakeEmbeddingsWithAdaDimension(), service_url=SERVICE_URL, pre_delete_collection=True, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] @pytest.mark.asyncio async def test_timescalevector_aembeddings() -> None: """Test end to end construction with embeddings and search.""" texts = ["foo", "bar", "baz"] text_embeddings = FakeEmbeddingsWithAdaDimension().embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) docsearch = await TimescaleVector.afrom_embeddings( text_embeddings=text_embedding_pairs, collection_name="test_collection", embedding=FakeEmbeddingsWithAdaDimension(), service_url=SERVICE_URL, pre_delete_collection=True, ) output = await docsearch.asimilarity_search("foo", k=1) assert output == [Document(page_content="foo")] def test_timescalevector_with_metadatas() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = TimescaleVector.from_texts( texts=texts, collection_name="test_collection", embedding=FakeEmbeddingsWithAdaDimension(), metadatas=metadatas, service_url=SERVICE_URL, pre_delete_collection=True, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={"page": "0"})] def test_timescalevector_with_metadatas_with_scores() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = TimescaleVector.from_texts( texts=texts, collection_name="test_collection", embedding=FakeEmbeddingsWithAdaDimension(), metadatas=metadatas, service_url=SERVICE_URL, pre_delete_collection=True, ) output = docsearch.similarity_search_with_score("foo", k=1) assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)] @pytest.mark.asyncio async def test_timescalevector_awith_metadatas_with_scores() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = await TimescaleVector.afrom_texts( texts=texts, collection_name="test_collection", embedding=FakeEmbeddingsWithAdaDimension(), metadatas=metadatas, service_url=SERVICE_URL, pre_delete_collection=True, ) output = await docsearch.asimilarity_search_with_score("foo", k=1) assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)] def test_timescalevector_with_filter_match() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = TimescaleVector.from_texts( texts=texts, collection_name="test_collection_filter", embedding=FakeEmbeddingsWithAdaDimension(), metadatas=metadatas, service_url=SERVICE_URL, pre_delete_collection=True, ) output = docsearch.similarity_search_with_score("foo", k=1, filter={"page": "0"}) assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)] def test_timescalevector_with_filter_distant_match() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = TimescaleVector.from_texts( texts=texts, collection_name="test_collection_filter", embedding=FakeEmbeddingsWithAdaDimension(), metadatas=metadatas, service_url=SERVICE_URL, pre_delete_collection=True, ) output = docsearch.similarity_search_with_score("foo", k=1, filter={"page": "2"}) assert output == [ (Document(page_content="baz", metadata={"page": "2"}), 0.0013003906671379406) ] def test_timescalevector_with_filter_no_match() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = TimescaleVector.from_texts( texts=texts, collection_name="test_collection_filter", embedding=FakeEmbeddingsWithAdaDimension(), metadatas=metadatas, service_url=SERVICE_URL, pre_delete_collection=True, ) output = docsearch.similarity_search_with_score("foo", k=1, filter={"page": "5"}) assert output == [] def test_timescalevector_with_filter_in_set() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = TimescaleVector.from_texts( texts=texts, collection_name="test_collection_filter", embedding=FakeEmbeddingsWithAdaDimension(), metadatas=metadatas, service_url=SERVICE_URL, pre_delete_collection=True, ) output = docsearch.similarity_search_with_score( "foo", k=2, filter=[{"page": "0"}, {"page": "2"}] ) assert output == [ (Document(page_content="foo", metadata={"page": "0"}), 0.0), (Document(page_content="baz", metadata={"page": "2"}), 0.0013003906671379406), ] def test_timescalevector_relevance_score() -> None: """Test to make sure the relevance score is scaled to 0-1.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = TimescaleVector.from_texts( texts=texts, collection_name="test_collection", embedding=FakeEmbeddingsWithAdaDimension(), metadatas=metadatas, service_url=SERVICE_URL, pre_delete_collection=True, ) output = docsearch.similarity_search_with_relevance_scores("foo", k=3) assert output == [ (Document(page_content="foo", metadata={"page": "0"}), 1.0), (Document(page_content="bar", metadata={"page": "1"}), 0.9996744261675065), (Document(page_content="baz", metadata={"page": "2"}), 0.9986996093328621), ] @pytest.mark.asyncio async def test_timescalevector_relevance_score_async() -> None: """Test to make sure the relevance score is scaled to 0-1.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = await TimescaleVector.afrom_texts( texts=texts, collection_name="test_collection", embedding=FakeEmbeddingsWithAdaDimension(), metadatas=metadatas, service_url=SERVICE_URL, pre_delete_collection=True, ) output = await docsearch.asimilarity_search_with_relevance_scores("foo", k=3) assert output == [ (Document(page_content="foo", metadata={"page": "0"}), 1.0), (Document(page_content="bar", metadata={"page": "1"}), 0.9996744261675065), (Document(page_content="baz", metadata={"page": "2"}), 0.9986996093328621), ] def test_timescalevector_retriever_search_threshold() -> None: """Test using retriever for searching with threshold.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = TimescaleVector.from_texts( texts=texts, collection_name="test_collection", embedding=FakeEmbeddingsWithAdaDimension(), metadatas=metadatas, service_url=SERVICE_URL, pre_delete_collection=True, ) retriever = docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={"k": 3, "score_threshold": 0.999}, ) output = retriever.get_relevant_documents("summer") assert output == [ Document(page_content="foo", metadata={"page": "0"}), Document(page_content="bar", metadata={"page": "1"}), ] def test_timescalevector_retriever_search_threshold_custom_normalization_fn() -> None: """Test searching with threshold and custom normalization function""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = TimescaleVector.from_texts( texts=texts, collection_name="test_collection", embedding=FakeEmbeddingsWithAdaDimension(), metadatas=metadatas, service_url=SERVICE_URL, pre_delete_collection=True, relevance_score_fn=lambda d: d * 0, ) retriever = docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={"k": 3, "score_threshold": 0.5}, ) output = retriever.get_relevant_documents("foo") assert output == [] def test_timescalevector_delete() -> None: """Test deleting functionality.""" texts = ["bar", "baz"] docs = [Document(page_content=t, metadata={"a": "b"}) for t in texts] docsearch = TimescaleVector.from_documents( documents=docs, collection_name="test_collection", embedding=FakeEmbeddingsWithAdaDimension(), service_url=SERVICE_URL, pre_delete_collection=True, ) texts = ["foo"] meta = [{"b": "c"}] ids = docsearch.add_texts(texts, meta) output = docsearch.similarity_search("bar", k=10) assert len(output) == 3 docsearch.delete(ids) output = docsearch.similarity_search("bar", k=10) assert len(output) == 2 docsearch.delete_by_metadata({"a": "b"}) output = docsearch.similarity_search("bar", k=10) assert len(output) == 0 def test_timescalevector_with_index() -> None: """Test deleting functionality.""" texts = ["bar", "baz"] docs = [Document(page_content=t, metadata={"a": "b"}) for t in texts] docsearch = TimescaleVector.from_documents( documents=docs, collection_name="test_collection", embedding=FakeEmbeddingsWithAdaDimension(), service_url=SERVICE_URL, pre_delete_collection=True, ) texts = ["foo"] meta = [{"b": "c"}] docsearch.add_texts(texts, meta) docsearch.create_index() output = docsearch.similarity_search("bar", k=10) assert len(output) == 3 docsearch.drop_index() docsearch.create_index( index_type=TimescaleVector.IndexType.TIMESCALE_VECTOR, max_alpha=1.0, num_neighbors=50, ) docsearch.drop_index() docsearch.create_index("tsv", max_alpha=1.0, num_neighbors=50) docsearch.drop_index() docsearch.create_index("ivfflat", num_lists=20, num_records=1000) docsearch.drop_index() docsearch.create_index("hnsw", m=16, ef_construction=64) def test_timescalevector_time_partitioning() -> None: """Test deleting functionality.""" from timescale_vector import client texts = ["bar", "baz"] docs = [Document(page_content=t, metadata={"a": "b"}) for t in texts] docsearch = TimescaleVector.from_documents( documents=docs, collection_name="test_collection_time_partitioning", embedding=FakeEmbeddingsWithAdaDimension(), service_url=SERVICE_URL, pre_delete_collection=True, time_partition_interval=timedelta(hours=1), ) texts = ["foo"] meta = [{"b": "c"}] ids = [client.uuid_from_time(datetime.now() - timedelta(hours=3))] docsearch.add_texts(texts, meta, ids) output = docsearch.similarity_search("bar", k=10) assert len(output) == 3 output = docsearch.similarity_search( "bar", k=10, start_date=datetime.now() - timedelta(hours=1) ) assert len(output) == 2 output = docsearch.similarity_search( "bar", k=10, end_date=datetime.now() - timedelta(hours=1) ) assert len(output) == 1 output = docsearch.similarity_search( "bar", k=10, start_date=datetime.now() - timedelta(minutes=200) ) assert len(output) == 3 output = docsearch.similarity_search( "bar", k=10, start_date=datetime.now() - timedelta(minutes=200), time_delta=timedelta(hours=1), ) assert len(output) == 1
[]
2024-01-10
RohanDey02/langchain
libs~experimental~tests~unit_tests~rl_chain~test_rl_chain_base_embedder.py
from typing import List, Union import pytest from test_utils import MockEncoder import langchain_experimental.rl_chain.base as base encoded_keyword = "[encoded]" @pytest.mark.requires("vowpal_wabbit_next") def test_simple_context_str_no_emb() -> None: expected = [{"a_namespace": "test"}] assert base.embed("test", MockEncoder(), "a_namespace") == expected @pytest.mark.requires("vowpal_wabbit_next") def test_simple_context_str_w_emb() -> None: str1 = "test" encoded_str1 = base.stringify_embedding(list(encoded_keyword + str1)) expected = [{"a_namespace": encoded_str1}] assert base.embed(base.Embed(str1), MockEncoder(), "a_namespace") == expected expected_embed_and_keep = [{"a_namespace": str1 + " " + encoded_str1}] assert ( base.embed(base.EmbedAndKeep(str1), MockEncoder(), "a_namespace") == expected_embed_and_keep ) @pytest.mark.requires("vowpal_wabbit_next") def test_simple_context_str_w_nested_emb() -> None: # nested embeddings, innermost wins str1 = "test" encoded_str1 = base.stringify_embedding(list(encoded_keyword + str1)) expected = [{"a_namespace": encoded_str1}] assert ( base.embed(base.EmbedAndKeep(base.Embed(str1)), MockEncoder(), "a_namespace") == expected ) expected2 = [{"a_namespace": str1 + " " + encoded_str1}] assert ( base.embed(base.Embed(base.EmbedAndKeep(str1)), MockEncoder(), "a_namespace") == expected2 ) @pytest.mark.requires("vowpal_wabbit_next") def test_context_w_namespace_no_emb() -> None: expected = [{"test_namespace": "test"}] assert base.embed({"test_namespace": "test"}, MockEncoder()) == expected @pytest.mark.requires("vowpal_wabbit_next") def test_context_w_namespace_w_emb() -> None: str1 = "test" encoded_str1 = base.stringify_embedding(list(encoded_keyword + str1)) expected = [{"test_namespace": encoded_str1}] assert base.embed({"test_namespace": base.Embed(str1)}, MockEncoder()) == expected expected_embed_and_keep = [{"test_namespace": str1 + " " + encoded_str1}] assert ( base.embed({"test_namespace": base.EmbedAndKeep(str1)}, MockEncoder()) == expected_embed_and_keep ) @pytest.mark.requires("vowpal_wabbit_next") def test_context_w_namespace_w_emb2() -> None: str1 = "test" encoded_str1 = base.stringify_embedding(list(encoded_keyword + str1)) expected = [{"test_namespace": encoded_str1}] assert base.embed(base.Embed({"test_namespace": str1}), MockEncoder()) == expected expected_embed_and_keep = [{"test_namespace": str1 + " " + encoded_str1}] assert ( base.embed(base.EmbedAndKeep({"test_namespace": str1}), MockEncoder()) == expected_embed_and_keep ) @pytest.mark.requires("vowpal_wabbit_next") def test_context_w_namespace_w_some_emb() -> None: str1 = "test1" str2 = "test2" encoded_str2 = base.stringify_embedding(list(encoded_keyword + str2)) expected = [{"test_namespace": str1, "test_namespace2": encoded_str2}] assert ( base.embed( {"test_namespace": str1, "test_namespace2": base.Embed(str2)}, MockEncoder() ) == expected ) expected_embed_and_keep = [ { "test_namespace": str1, "test_namespace2": str2 + " " + encoded_str2, } ] assert ( base.embed( {"test_namespace": str1, "test_namespace2": base.EmbedAndKeep(str2)}, MockEncoder(), ) == expected_embed_and_keep ) @pytest.mark.requires("vowpal_wabbit_next") def test_simple_action_strlist_no_emb() -> None: str1 = "test1" str2 = "test2" str3 = "test3" expected = [{"a_namespace": str1}, {"a_namespace": str2}, {"a_namespace": str3}] to_embed: List[Union[str, base._Embed]] = [str1, str2, str3] assert base.embed(to_embed, MockEncoder(), "a_namespace") == expected @pytest.mark.requires("vowpal_wabbit_next") def test_simple_action_strlist_w_emb() -> None: str1 = "test1" str2 = "test2" str3 = "test3" encoded_str1 = base.stringify_embedding(list(encoded_keyword + str1)) encoded_str2 = base.stringify_embedding(list(encoded_keyword + str2)) encoded_str3 = base.stringify_embedding(list(encoded_keyword + str3)) expected = [ {"a_namespace": encoded_str1}, {"a_namespace": encoded_str2}, {"a_namespace": encoded_str3}, ] assert ( base.embed(base.Embed([str1, str2, str3]), MockEncoder(), "a_namespace") == expected ) expected_embed_and_keep = [ {"a_namespace": str1 + " " + encoded_str1}, {"a_namespace": str2 + " " + encoded_str2}, {"a_namespace": str3 + " " + encoded_str3}, ] assert ( base.embed(base.EmbedAndKeep([str1, str2, str3]), MockEncoder(), "a_namespace") == expected_embed_and_keep ) @pytest.mark.requires("vowpal_wabbit_next") def test_simple_action_strlist_w_some_emb() -> None: str1 = "test1" str2 = "test2" str3 = "test3" encoded_str2 = base.stringify_embedding(list(encoded_keyword + str2)) encoded_str3 = base.stringify_embedding(list(encoded_keyword + str3)) expected = [ {"a_namespace": str1}, {"a_namespace": encoded_str2}, {"a_namespace": encoded_str3}, ] assert ( base.embed( [str1, base.Embed(str2), base.Embed(str3)], MockEncoder(), "a_namespace" ) == expected ) expected_embed_and_keep = [ {"a_namespace": str1}, {"a_namespace": str2 + " " + encoded_str2}, {"a_namespace": str3 + " " + encoded_str3}, ] assert ( base.embed( [str1, base.EmbedAndKeep(str2), base.EmbedAndKeep(str3)], MockEncoder(), "a_namespace", ) == expected_embed_and_keep ) @pytest.mark.requires("vowpal_wabbit_next") def test_action_w_namespace_no_emb() -> None: str1 = "test1" str2 = "test2" str3 = "test3" expected = [ {"test_namespace": str1}, {"test_namespace": str2}, {"test_namespace": str3}, ] assert ( base.embed( [ {"test_namespace": str1}, {"test_namespace": str2}, {"test_namespace": str3}, ], MockEncoder(), ) == expected ) @pytest.mark.requires("vowpal_wabbit_next") def test_action_w_namespace_w_emb() -> None: str1 = "test1" str2 = "test2" str3 = "test3" encoded_str1 = base.stringify_embedding(list(encoded_keyword + str1)) encoded_str2 = base.stringify_embedding(list(encoded_keyword + str2)) encoded_str3 = base.stringify_embedding(list(encoded_keyword + str3)) expected = [ {"test_namespace": encoded_str1}, {"test_namespace": encoded_str2}, {"test_namespace": encoded_str3}, ] assert ( base.embed( [ {"test_namespace": base.Embed(str1)}, {"test_namespace": base.Embed(str2)}, {"test_namespace": base.Embed(str3)}, ], MockEncoder(), ) == expected ) expected_embed_and_keep = [ {"test_namespace": str1 + " " + encoded_str1}, {"test_namespace": str2 + " " + encoded_str2}, {"test_namespace": str3 + " " + encoded_str3}, ] assert ( base.embed( [ {"test_namespace": base.EmbedAndKeep(str1)}, {"test_namespace": base.EmbedAndKeep(str2)}, {"test_namespace": base.EmbedAndKeep(str3)}, ], MockEncoder(), ) == expected_embed_and_keep ) @pytest.mark.requires("vowpal_wabbit_next") def test_action_w_namespace_w_emb2() -> None: str1 = "test1" str2 = "test2" str3 = "test3" encoded_str1 = base.stringify_embedding(list(encoded_keyword + str1)) encoded_str2 = base.stringify_embedding(list(encoded_keyword + str2)) encoded_str3 = base.stringify_embedding(list(encoded_keyword + str3)) expected = [ {"test_namespace1": encoded_str1}, {"test_namespace2": encoded_str2}, {"test_namespace3": encoded_str3}, ] assert ( base.embed( base.Embed( [ {"test_namespace1": str1}, {"test_namespace2": str2}, {"test_namespace3": str3}, ] ), MockEncoder(), ) == expected ) expected_embed_and_keep = [ {"test_namespace1": str1 + " " + encoded_str1}, {"test_namespace2": str2 + " " + encoded_str2}, {"test_namespace3": str3 + " " + encoded_str3}, ] assert ( base.embed( base.EmbedAndKeep( [ {"test_namespace1": str1}, {"test_namespace2": str2}, {"test_namespace3": str3}, ] ), MockEncoder(), ) == expected_embed_and_keep ) @pytest.mark.requires("vowpal_wabbit_next") def test_action_w_namespace_w_some_emb() -> None: str1 = "test1" str2 = "test2" str3 = "test3" encoded_str2 = base.stringify_embedding(list(encoded_keyword + str2)) encoded_str3 = base.stringify_embedding(list(encoded_keyword + str3)) expected = [ {"test_namespace": str1}, {"test_namespace": encoded_str2}, {"test_namespace": encoded_str3}, ] assert ( base.embed( [ {"test_namespace": str1}, {"test_namespace": base.Embed(str2)}, {"test_namespace": base.Embed(str3)}, ], MockEncoder(), ) == expected ) expected_embed_and_keep = [ {"test_namespace": str1}, {"test_namespace": str2 + " " + encoded_str2}, {"test_namespace": str3 + " " + encoded_str3}, ] assert ( base.embed( [ {"test_namespace": str1}, {"test_namespace": base.EmbedAndKeep(str2)}, {"test_namespace": base.EmbedAndKeep(str3)}, ], MockEncoder(), ) == expected_embed_and_keep ) @pytest.mark.requires("vowpal_wabbit_next") def test_action_w_namespace_w_emb_w_more_than_one_item_in_first_dict() -> None: str1 = "test1" str2 = "test2" str3 = "test3" encoded_str1 = base.stringify_embedding(list(encoded_keyword + str1)) encoded_str2 = base.stringify_embedding(list(encoded_keyword + str2)) encoded_str3 = base.stringify_embedding(list(encoded_keyword + str3)) expected = [ {"test_namespace": encoded_str1, "test_namespace2": str1}, {"test_namespace": encoded_str2, "test_namespace2": str2}, {"test_namespace": encoded_str3, "test_namespace2": str3}, ] assert ( base.embed( [ {"test_namespace": base.Embed(str1), "test_namespace2": str1}, {"test_namespace": base.Embed(str2), "test_namespace2": str2}, {"test_namespace": base.Embed(str3), "test_namespace2": str3}, ], MockEncoder(), ) == expected ) expected_embed_and_keep = [ { "test_namespace": str1 + " " + encoded_str1, "test_namespace2": str1, }, { "test_namespace": str2 + " " + encoded_str2, "test_namespace2": str2, }, { "test_namespace": str3 + " " + encoded_str3, "test_namespace2": str3, }, ] assert ( base.embed( [ {"test_namespace": base.EmbedAndKeep(str1), "test_namespace2": str1}, {"test_namespace": base.EmbedAndKeep(str2), "test_namespace2": str2}, {"test_namespace": base.EmbedAndKeep(str3), "test_namespace2": str3}, ], MockEncoder(), ) == expected_embed_and_keep ) @pytest.mark.requires("vowpal_wabbit_next") def test_one_namespace_w_list_of_features_no_emb() -> None: str1 = "test1" str2 = "test2" expected = [{"test_namespace": [str1, str2]}] assert base.embed({"test_namespace": [str1, str2]}, MockEncoder()) == expected @pytest.mark.requires("vowpal_wabbit_next") def test_one_namespace_w_list_of_features_w_some_emb() -> None: str1 = "test1" str2 = "test2" encoded_str2 = base.stringify_embedding(list(encoded_keyword + str2)) expected = [{"test_namespace": [str1, encoded_str2]}] assert ( base.embed({"test_namespace": [str1, base.Embed(str2)]}, MockEncoder()) == expected ) @pytest.mark.requires("vowpal_wabbit_next") def test_nested_list_features_throws() -> None: with pytest.raises(ValueError): base.embed({"test_namespace": [[1, 2], [3, 4]]}, MockEncoder()) @pytest.mark.requires("vowpal_wabbit_next") def test_dict_in_list_throws() -> None: with pytest.raises(ValueError): base.embed({"test_namespace": [{"a": 1}, {"b": 2}]}, MockEncoder()) @pytest.mark.requires("vowpal_wabbit_next") def test_nested_dict_throws() -> None: with pytest.raises(ValueError): base.embed({"test_namespace": {"a": {"b": 1}}}, MockEncoder()) @pytest.mark.requires("vowpal_wabbit_next") def test_list_of_tuples_throws() -> None: with pytest.raises(ValueError): base.embed({"test_namespace": [("a", 1), ("b", 2)]}, MockEncoder())
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~document_loaders~test_confluence.py
import unittest from typing import Dict from unittest.mock import MagicMock, patch import pytest import requests from langchain.docstore.document import Document from langchain.document_loaders.confluence import ConfluenceLoader, ContentFormat @pytest.fixture def mock_confluence(): # type: ignore with patch("atlassian.Confluence") as mock_confluence: yield mock_confluence @pytest.mark.requires("atlassian", "bs4", "lxml") class TestConfluenceLoader: CONFLUENCE_URL = "https://example.atlassian.com/wiki" MOCK_USERNAME = "[email protected]" MOCK_API_TOKEN = "api_token" MOCK_SPACE_KEY = "spaceId123" def test_confluence_loader_initialization(self, mock_confluence: MagicMock) -> None: ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, ) mock_confluence.assert_called_once_with( url=self.CONFLUENCE_URL, username="[email protected]", password="api_token", cloud=True, ) def test_confluence_loader_initialization_invalid(self) -> None: with pytest.raises(ValueError): ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, token="foo", ) with pytest.raises(ValueError): ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, oauth2={ "access_token": "bar", "access_token_secret": "bar", "consumer_key": "bar", "key_cert": "bar", }, ) with pytest.raises(ValueError): ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, session=requests.Session(), ) def test_confluence_loader_initialization_from_env( self, mock_confluence: MagicMock ) -> None: with unittest.mock.patch.dict( "os.environ", { "CONFLUENCE_USERNAME": self.MOCK_USERNAME, "CONFLUENCE_API_TOKEN": self.MOCK_API_TOKEN, }, ): ConfluenceLoader(url=self.CONFLUENCE_URL) mock_confluence.assert_called_with( url=self.CONFLUENCE_URL, username=None, password=None, cloud=True ) def test_confluence_loader_load_data_invalid_args(self) -> None: confluence_loader = ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, ) with pytest.raises( ValueError, match="Must specify at least one among `space_key`, `page_ids`, `label`, `cql` parameters.", # noqa: E501 ): confluence_loader.load() def test_confluence_loader_load_data_by_page_ids( self, mock_confluence: MagicMock ) -> None: mock_confluence.get_page_by_id.side_effect = [ self._get_mock_page("123"), self._get_mock_page("456"), ] mock_confluence.get_all_restrictions_for_content.side_effect = [ self._get_mock_page_restrictions("123"), self._get_mock_page_restrictions("456"), ] confluence_loader = self._get_mock_confluence_loader(mock_confluence) mock_page_ids = ["123", "456"] documents = confluence_loader.load(page_ids=mock_page_ids) assert mock_confluence.get_page_by_id.call_count == 2 assert mock_confluence.get_all_restrictions_for_content.call_count == 2 assert len(documents) == 2 assert all(isinstance(doc, Document) for doc in documents) assert documents[0].page_content == "Content 123" assert documents[1].page_content == "Content 456" assert mock_confluence.get_all_pages_from_space.call_count == 0 assert mock_confluence.get_all_pages_by_label.call_count == 0 assert mock_confluence.cql.call_count == 0 assert mock_confluence.get_page_child_by_type.call_count == 0 def test_confluence_loader_load_data_by_space_id( self, mock_confluence: MagicMock ) -> None: # one response with two pages mock_confluence.get_all_pages_from_space.return_value = [ self._get_mock_page("123"), self._get_mock_page("456"), ] mock_confluence.get_all_restrictions_for_content.side_effect = [ self._get_mock_page_restrictions("123"), self._get_mock_page_restrictions("456"), ] confluence_loader = self._get_mock_confluence_loader(mock_confluence) documents = confluence_loader.load(space_key=self.MOCK_SPACE_KEY, max_pages=2) assert mock_confluence.get_all_pages_from_space.call_count == 1 assert len(documents) == 2 assert all(isinstance(doc, Document) for doc in documents) assert documents[0].page_content == "Content 123" assert documents[1].page_content == "Content 456" assert mock_confluence.get_page_by_id.call_count == 0 assert mock_confluence.get_all_pages_by_label.call_count == 0 assert mock_confluence.cql.call_count == 0 assert mock_confluence.get_page_child_by_type.call_count == 0 def test_confluence_loader_when_content_format_and_keep_markdown_format_enabled( self, mock_confluence: MagicMock ) -> None: # one response with two pages mock_confluence.get_all_pages_from_space.return_value = [ self._get_mock_page("123", ContentFormat.VIEW), self._get_mock_page("456", ContentFormat.VIEW), ] mock_confluence.get_all_restrictions_for_content.side_effect = [ self._get_mock_page_restrictions("123"), self._get_mock_page_restrictions("456"), ] confluence_loader = self._get_mock_confluence_loader(mock_confluence) documents = confluence_loader.load( space_key=self.MOCK_SPACE_KEY, content_format=ContentFormat.VIEW, keep_markdown_format=True, max_pages=2, ) assert mock_confluence.get_all_pages_from_space.call_count == 1 assert len(documents) == 2 assert all(isinstance(doc, Document) for doc in documents) assert documents[0].page_content == "Content 123\n\n" assert documents[1].page_content == "Content 456\n\n" assert mock_confluence.get_page_by_id.call_count == 0 assert mock_confluence.get_all_pages_by_label.call_count == 0 assert mock_confluence.cql.call_count == 0 assert mock_confluence.get_page_child_by_type.call_count == 0 def _get_mock_confluence_loader( self, mock_confluence: MagicMock ) -> ConfluenceLoader: confluence_loader = ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, ) confluence_loader.confluence = mock_confluence return confluence_loader def _get_mock_page( self, page_id: str, content_format: ContentFormat = ContentFormat.STORAGE ) -> Dict: return { "id": f"{page_id}", "title": f"Page {page_id}", "body": { f"{content_format.name.lower()}": {"value": f"<p>Content {page_id}</p>"} }, "status": "current", "type": "page", "_links": { "self": f"{self.CONFLUENCE_URL}/rest/api/content/{page_id}", "tinyui": "/x/tiny_ui_link", "editui": f"/pages/resumedraft.action?draftId={page_id}", "webui": f"/spaces/{self.MOCK_SPACE_KEY}/overview", }, } def _get_mock_page_restrictions(self, page_id: str) -> Dict: return { "read": { "operation": "read", "restrictions": { "user": {"results": [], "start": 0, "limit": 200, "size": 0}, "group": {"results": [], "start": 0, "limit": 200, "size": 0}, }, "_expandable": {"content": f"/rest/api/content/{page_id}"}, "_links": { "self": f"{self.CONFLUENCE_URL}/rest/api/content/{page_id}/restriction/byOperation/read" # noqa: E501 }, }, "update": { "operation": "update", "restrictions": { "user": {"results": [], "start": 0, "limit": 200, "size": 0}, "group": {"results": [], "start": 0, "limit": 200, "size": 0}, }, "_expandable": {"content": f"/rest/api/content/{page_id}"}, "_links": { "self": f"{self.CONFLUENCE_URL}/rest/api/content/{page_id}/restriction/byOperation/update" # noqa: E501 }, }, "_links": { "self": f"{self.CONFLUENCE_URL}/rest/api/content/{page_id}/restriction/byOperation", # noqa: E501 "base": self.CONFLUENCE_URL, "context": "/wiki", }, }
[ "/rest/api/content/PLACEHOLDER", "{'value': '<p>Content PLACEHOLDER</p>'}" ]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~llms~test_huggingface_pipeline.py
"""Test HuggingFace Pipeline wrapper.""" from pathlib import Path from langchain.llms.huggingface_pipeline import HuggingFacePipeline from langchain.llms.loading import load_llm from tests.integration_tests.llms.utils import assert_llm_equality def test_huggingface_pipeline_text_generation() -> None: """Test valid call to HuggingFace text generation model.""" llm = HuggingFacePipeline.from_model_id( model_id="gpt2", task="text-generation", model_kwargs={"max_new_tokens": 10} ) output = llm("Say foo:") assert isinstance(output, str) def test_huggingface_pipeline_text2text_generation() -> None: """Test valid call to HuggingFace text2text generation model.""" llm = HuggingFacePipeline.from_model_id( model_id="google/flan-t5-small", task="text2text-generation" ) output = llm("Say foo:") assert isinstance(output, str) def text_huggingface_pipeline_summarization() -> None: """Test valid call to HuggingFace summarization model.""" llm = HuggingFacePipeline.from_model_id( model_id="facebook/bart-large-cnn", task="summarization" ) output = llm("Say foo:") assert isinstance(output, str) def test_saving_loading_llm(tmp_path: Path) -> None: """Test saving/loading an HuggingFaceHub LLM.""" llm = HuggingFacePipeline.from_model_id( model_id="gpt2", task="text-generation", model_kwargs={"max_new_tokens": 10} ) llm.save(file_path=tmp_path / "hf.yaml") loaded_llm = load_llm(tmp_path / "hf.yaml") assert_llm_equality(llm, loaded_llm) def test_init_with_pipeline() -> None: """Test initialization with a HF pipeline.""" from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10 ) llm = HuggingFacePipeline(pipeline=pipe) output = llm("Say foo:") assert isinstance(output, str)
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~utilities~wolfram_alpha.py
"""Util that calls WolframAlpha.""" from typing import Any, Dict, Optional from langchain.pydantic_v1 import BaseModel, Extra, root_validator from langchain.utils import get_from_dict_or_env class WolframAlphaAPIWrapper(BaseModel): """Wrapper for Wolfram Alpha. Docs for using: 1. Go to wolfram alpha and sign up for a developer account 2. Create an app and get your APP ID 3. Save your APP ID into WOLFRAM_ALPHA_APPID env variable 4. pip install wolframalpha """ wolfram_client: Any #: :meta private: wolfram_alpha_appid: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" wolfram_alpha_appid = get_from_dict_or_env( values, "wolfram_alpha_appid", "WOLFRAM_ALPHA_APPID" ) values["wolfram_alpha_appid"] = wolfram_alpha_appid try: import wolframalpha except ImportError: raise ImportError( "wolframalpha is not installed. " "Please install it with `pip install wolframalpha`" ) client = wolframalpha.Client(wolfram_alpha_appid) values["wolfram_client"] = client return values def run(self, query: str) -> str: """Run query through WolframAlpha and parse result.""" res = self.wolfram_client.query(query) try: assumption = next(res.pods).text answer = next(res.results).text except StopIteration: return "Wolfram Alpha wasn't able to answer it" if answer is None or answer == "": # We don't want to return the assumption alone if answer is empty return "No good Wolfram Alpha Result was found" else: return f"Assumption: {assumption} \nAnswer: {answer}"
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~evaluation~scoring~eval_chain.py
"""Base classes for scoring the output of a model on a scale of 1-10.""" from __future__ import annotations import logging import re from typing import Any, Dict, List, Optional, Union from langchain.callbacks.manager import Callbacks from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple from langchain.chains.llm import LLMChain from langchain.chat_models.azure_openai import AzureChatOpenAI from langchain.chat_models.openai import ChatOpenAI from langchain.evaluation.criteria.eval_chain import ( CRITERIA_TYPE, Criteria, ) from langchain.evaluation.schema import LLMEvalChain, StringEvaluator from langchain.evaluation.scoring.prompt import ( CRITERIA_INSTRUCTIONS, DEFAULT_CRITERIA, SCORING_TEMPLATE, SCORING_TEMPLATE_WITH_REFERENCE, ) from langchain.prompts.prompt import PromptTemplate from langchain.pydantic_v1 import Extra, Field from langchain.schema import RUN_KEY, BaseOutputParser from langchain.schema.language_model import BaseLanguageModel logger = logging.getLogger(__name__) _FIND_DOUBLE_BRACKETS = re.compile(r"\[\[(.*?)\]\]") _SUPPORTED_CRITERIA = { Criteria.CONCISENESS: "Is the submission concise and to the point?", Criteria.RELEVANCE: "Is the submission referring to a real quote from the text?", Criteria.CORRECTNESS: "Is the submission correct, accurate, and factual?", Criteria.COHERENCE: "Is the submission coherent, well-structured, and organized?", Criteria.HARMFULNESS: "Is the submission harmful, offensive, or inappropriate?", Criteria.MALICIOUSNESS: "Is the submission malicious in any way?", Criteria.HELPFULNESS: "Is the submission helpful, insightful, and appropriate?", Criteria.CONTROVERSIALITY: "Is the submission controversial or debatable?", Criteria.MISOGYNY: "Is the submission misogynistic or sexist?", Criteria.CRIMINALITY: "Is the submission criminal in any way?", Criteria.INSENSITIVITY: "Is the submission insensitive to any group of people?", Criteria.DEPTH: "Does the submission demonstrate depth of thought?", Criteria.CREATIVITY: "Does the submission demonstrate novelty or unique ideas?", Criteria.DETAIL: "Does the submission demonstrate attention to detail?", } def resolve_criteria( criteria: Optional[Union[CRITERIA_TYPE, str, List[CRITERIA_TYPE]]] ) -> dict: """Resolve the criteria for the pairwise evaluator. Args: criteria (Union[CRITERIA_TYPE, str], optional): The criteria to use. Returns: dict: The resolved criteria. """ if criteria is None: _default_criteria = [ Criteria.HELPFULNESS, Criteria.RELEVANCE, Criteria.CORRECTNESS, Criteria.DEPTH, ] return {k.value: _SUPPORTED_CRITERIA[k] for k in _default_criteria} elif isinstance(criteria, Criteria): criteria_ = {criteria.value: _SUPPORTED_CRITERIA[criteria]} elif isinstance(criteria, str): if criteria in _SUPPORTED_CRITERIA: criteria_ = {criteria: _SUPPORTED_CRITERIA[Criteria(criteria)]} else: criteria_ = {criteria: ""} elif isinstance(criteria, ConstitutionalPrinciple): criteria_ = {criteria.name: criteria.critique_request} elif isinstance(criteria, (list, tuple)): criteria_ = { k: v for criterion in criteria for k, v in resolve_criteria(criterion).items() } else: if not criteria: raise ValueError( "Criteria cannot be empty. " "Please provide a criterion name or a mapping of the criterion name" " to its description." ) criteria_ = dict(criteria) return criteria_ class ScoreStringResultOutputParser(BaseOutputParser[dict]): """A parser for the output of the ScoreStringEvalChain. Attributes: _type (str): The type of the output parser. """ @property def _type(self) -> str: """Return the type of the output parser. Returns: str: The type of the output parser. """ return "pairwise_string_result" def parse(self, text: str) -> Dict[str, Any]: """Parse the output text. Args: text (str): The output text to parse. Returns: Dict: The parsed output. Raises: ValueError: If the verdict is invalid. """ match = _FIND_DOUBLE_BRACKETS.search(text) if match: verdict = match.group(1) if not match or verdict not in list("123456789") + ["10"]: raise ValueError( f"Invalid output: {text}. " "Output must contain a double bracketed string\ with the verdict between 1 and 10." ) return { "reasoning": text, "score": int(verdict), } class ScoreStringEvalChain(StringEvaluator, LLMEvalChain, LLMChain): """A chain for scoring on a scale of 1-10 the output of a model. Attributes: output_parser (BaseOutputParser): The output parser for the chain. Example: >>> from langchain.chat_models import ChatOpenAI >>> from langchain.evaluation.scoring import ScoreStringEvalChain >>> llm = ChatOpenAI(temperature=0, model_name="gpt-4") >>> chain = ScoreStringEvalChain.from_llm(llm=llm) >>> result = chain.evaluate_strings( ... input = "What is the chemical formula for water?", ... prediction = "H2O", ... reference = "The chemical formula for water is H2O.", ... ) >>> print(result) # { # "score": 8, # "comment": "The response accurately states " # "that the chemical formula for water is H2O." # "However, it does not provide an explanation of what the formula means." # } """ output_key: str = "results" #: :meta private: output_parser: BaseOutputParser = Field( default_factory=ScoreStringResultOutputParser ) normalize_by: Optional[float] = None """The value to normalize the score by, if specified.""" criterion_name: str """The name of the criterion being evaluated.""" class Config: """Configuration for the ScoreStringEvalChain.""" extra = Extra.ignore @property def requires_reference(self) -> bool: """Return whether the chain requires a reference. Returns: bool: True if the chain requires a reference, False otherwise. """ return False @property def requires_input(self) -> bool: """Return whether the chain requires an input. Returns: bool: True if the chain requires an input, False otherwise. """ return True @property def evaluation_name(self) -> str: """Get the name of the evaluation. Returns ------- str The name of the evaluation. """ return f"score_string:{self.criterion_name}" @property def _skip_reference_warning(self) -> str: """Return the warning to show when reference is ignored. Returns: str: The warning to show when reference is ignored. """ return ( f"Ignoring reference in {self.__class__.__name__}, as it is not expected." "\nTo use a reference, use the LabeledScoreStringEvalChain instead." " (EvaluatorType.LABELED_SCORE_STRING) instead." ) @classmethod def from_llm( cls, llm: BaseLanguageModel, *, prompt: Optional[PromptTemplate] = None, criteria: Optional[Union[CRITERIA_TYPE, str]] = None, normalize_by: Optional[float] = None, **kwargs: Any, ) -> ScoreStringEvalChain: """Initialize the ScoreStringEvalChain from an LLM. Args: llm (BaseChatModel): The LLM to use (GPT-4 recommended). prompt (PromptTemplate, optional): The prompt to use. **kwargs (Any): Additional keyword arguments. Returns: ScoreStringEvalChain: The initialized ScoreStringEvalChain. Raises: ValueError: If the input variables are not as expected. """ if not ( isinstance(llm, (ChatOpenAI, AzureChatOpenAI)) and llm.model_name.startswith("gpt-4") ): logger.warning( "This chain was only tested with GPT-4. \ Performance may be significantly worse with other models." ) expected_input_vars = {"prediction", "input", "criteria"} prompt_ = prompt or SCORING_TEMPLATE.partial(reference="") if expected_input_vars != set(prompt_.input_variables): raise ValueError( f"Input variables should be {expected_input_vars}, " f"but got {prompt_.input_variables}" ) criteria_ = resolve_criteria(criteria) criteria_str = "\n".join( f"{k}: {v}" if v else k for k, v in criteria_.items() ).strip() criteria_str = ( CRITERIA_INSTRUCTIONS + f"{criteria_str}\n" if criteria_str else DEFAULT_CRITERIA ) return cls( llm=llm, prompt=prompt_.partial(criteria=criteria_str), normalize_by=normalize_by, criterion_name="-".join(criteria_), **kwargs, ) def _prepare_input( self, prediction: str, input: Optional[str], reference: Optional[str], ) -> dict: """Prepare the input for the chain. Args: prediction (str): The output string from the first model. prediction_b (str): The output string from the second model. input (str, optional): The input or task string. reference (str, optional): The reference string, if any. Returns: dict: The prepared input for the chain. """ input_ = { "prediction": prediction, "input": input, } if self.requires_reference: input_["reference"] = reference return input_ def _prepare_output(self, result: dict) -> dict: """Prepare the output.""" parsed = result[self.output_key] if RUN_KEY in result: parsed[RUN_KEY] = result[RUN_KEY] if "score" in parsed and self.normalize_by is not None: parsed["score"] = parsed["score"] / self.normalize_by return parsed def _evaluate_strings( self, *, prediction: str, input: Optional[str] = None, reference: Optional[str] = None, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False, **kwargs: Any, ) -> dict: """Score the output string. Args: prediction (str): The output string from the first model. input (str, optional): The input or task string. callbacks (Callbacks, optional): The callbacks to use. reference (str, optional): The reference string, if any. **kwargs (Any): Additional keyword arguments. Returns: dict: A dictionary containing: - reasoning: The reasoning for the preference. - score: A score between 1 and 10. """ input_ = self._prepare_input(prediction, input, reference) result = self( inputs=input_, callbacks=callbacks, tags=tags, metadata=metadata, include_run_info=include_run_info, ) return self._prepare_output(result) async def _aevaluate_string_pairs( self, *, prediction: str, reference: Optional[str] = None, input: Optional[str] = None, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False, **kwargs: Any, ) -> dict: """Asynchronously score the output string. Args: prediction (str): The output string from the first model. input (str, optional): The input or task string. callbacks (Callbacks, optional): The callbacks to use. reference (str, optional): The reference string, if any. **kwargs (Any): Additional keyword arguments. Returns: dict: A dictionary containing: - reasoning: The reasoning for the preference. - score: A score between 1 and 10. """ input_ = self._prepare_input(prediction, input, reference) result = await self.acall( inputs=input_, callbacks=callbacks, tags=tags, metadata=metadata, include_run_info=include_run_info, ) return self._prepare_output(result) class LabeledScoreStringEvalChain(ScoreStringEvalChain): """A chain for scoring the output of a model on a scale of 1-10. Attributes: output_parser (BaseOutputParser): The output parser for the chain. """ @property def requires_reference(self) -> bool: """Return whether the chain requires a reference. Returns: bool: True if the chain requires a reference, False otherwise. """ return True @classmethod def from_llm( cls, llm: BaseLanguageModel, *, prompt: Optional[PromptTemplate] = None, criteria: Optional[Union[CRITERIA_TYPE, str]] = None, normalize_by: Optional[float] = None, **kwargs: Any, ) -> LabeledScoreStringEvalChain: """Initialize the LabeledScoreStringEvalChain from an LLM. Args: llm (BaseLanguageModel): The LLM to use. prompt (PromptTemplate, optional): The prompt to use. criteria (Union[CRITERIA_TYPE, str], optional): The criteria to use. normalize_by (float, optional): The value to normalize the score by. **kwargs (Any): Additional keyword arguments. Returns: LabeledScoreStringEvalChain: The initialized LabeledScoreStringEvalChain. Raises: ValueError: If the input variables are not as expected. """ # noqa: E501 expected_input_vars = { "prediction", "input", "reference", "criteria", } prompt_ = prompt or SCORING_TEMPLATE_WITH_REFERENCE if expected_input_vars != set(prompt_.input_variables): raise ValueError( f"Input variables should be {expected_input_vars}, " f"but got {prompt_.input_variables}" ) criteria_ = resolve_criteria(criteria) criteria_str = "\n".join(f"{k}: {v}" for k, v in criteria_.items()).strip() criteria_str = ( CRITERIA_INSTRUCTIONS + f"{criteria_str}\n" if criteria_str else DEFAULT_CRITERIA ) return cls( llm=llm, prompt=prompt_.partial(criteria=criteria_str), normalize_by=normalize_by, criterion_name="-".join(criteria_), **kwargs, )
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~smith~evaluation~test_runner_utils.py
from typing import Iterator, List from uuid import uuid4 import pytest from langsmith import Client as Client from langsmith.schemas import DataType from langchain.chains.llm import LLMChain from langchain.chat_models import ChatOpenAI from langchain.evaluation import EvaluatorType from langchain.llms.openai import OpenAI from langchain.prompts.chat import ChatPromptTemplate from langchain.schema.messages import BaseMessage, HumanMessage from langchain.smith import RunEvalConfig, run_on_dataset from langchain.smith.evaluation import InputFormatError from langchain.smith.evaluation.runner_utils import arun_on_dataset def _check_all_feedback_passed(_project_name: str, client: Client) -> None: # Assert that all runs completed, all feedback completed, and that the # chain or llm passes for the feedback provided. runs = list(client.list_runs(project_name=_project_name, execution_order=1)) if not runs: # Queue delays. We are mainly just smoke checking rn. return feedback = list(client.list_feedback(run_ids=[run.id for run in runs])) if not feedback: return assert all([f.score == 1 for f in feedback]) @pytest.fixture def eval_project_name() -> str: return f"lcp integration tests - {str(uuid4())[-8:]}" @pytest.fixture(scope="module") def client() -> Client: return Client() @pytest.fixture( scope="module", ) def kv_dataset_name() -> Iterator[str]: import pandas as pd client = Client() df = pd.DataFrame( { "some_input": [ "What's the capital of California?", "What's the capital of Nevada?", "What's the capital of Oregon?", "What's the capital of Washington?", ], "other_input": [ "a", "b", "c", "d", ], "some_output": ["Sacramento", "Carson City", "Salem", "Olympia"], "other_output": ["e", "f", "g", "h"], } ) uid = str(uuid4())[-8:] _dataset_name = f"lcp kv dataset integration tests - {uid}" client.upload_dataframe( df, name=_dataset_name, input_keys=["some_input", "other_input"], output_keys=["some_output", "other_output"], description="Integration test dataset", ) yield _dataset_name def test_chat_model( kv_dataset_name: str, eval_project_name: str, client: Client ) -> None: llm = ChatOpenAI(temperature=0) eval_config = RunEvalConfig(evaluators=[EvaluatorType.QA, EvaluatorType.CRITERIA]) with pytest.raises(ValueError, match="Must specify reference_key"): run_on_dataset( dataset_name=kv_dataset_name, llm_or_chain_factory=llm, evaluation=eval_config, client=client, ) eval_config = RunEvalConfig( evaluators=[EvaluatorType.QA, EvaluatorType.CRITERIA], reference_key="some_output", ) with pytest.raises( InputFormatError, match="Example inputs do not match language model" ): run_on_dataset( dataset_name=kv_dataset_name, llm_or_chain_factory=llm, evaluation=eval_config, client=client, ) def input_mapper(d: dict) -> List[BaseMessage]: return [HumanMessage(content=d["some_input"])] run_on_dataset( client=client, dataset_name=kv_dataset_name, llm_or_chain_factory=llm, evaluation=eval_config, input_mapper=input_mapper, project_name=eval_project_name, tags=["shouldpass"], ) _check_all_feedback_passed(eval_project_name, client) def test_llm(kv_dataset_name: str, eval_project_name: str, client: Client) -> None: llm = OpenAI(temperature=0) eval_config = RunEvalConfig(evaluators=[EvaluatorType.QA, EvaluatorType.CRITERIA]) with pytest.raises(ValueError, match="Must specify reference_key"): run_on_dataset( dataset_name=kv_dataset_name, llm_or_chain_factory=llm, evaluation=eval_config, client=client, ) eval_config = RunEvalConfig( evaluators=[EvaluatorType.QA, EvaluatorType.CRITERIA], reference_key="some_output", ) with pytest.raises( InputFormatError, match="Example inputs do not match language model" ): run_on_dataset( dataset_name=kv_dataset_name, llm_or_chain_factory=llm, evaluation=eval_config, client=client, ) def input_mapper(d: dict) -> str: return d["some_input"] run_on_dataset( client=client, dataset_name=kv_dataset_name, llm_or_chain_factory=llm, evaluation=eval_config, input_mapper=input_mapper, project_name=eval_project_name, tags=["shouldpass"], ) _check_all_feedback_passed(eval_project_name, client) def test_chain(kv_dataset_name: str, eval_project_name: str, client: Client) -> None: llm = ChatOpenAI(temperature=0) chain = LLMChain.from_string(llm, "The answer to the {question} is: ") eval_config = RunEvalConfig(evaluators=[EvaluatorType.QA, EvaluatorType.CRITERIA]) with pytest.raises(ValueError, match="Must specify reference_key"): run_on_dataset( dataset_name=kv_dataset_name, llm_or_chain_factory=lambda: chain, evaluation=eval_config, client=client, ) eval_config = RunEvalConfig( evaluators=[EvaluatorType.QA, EvaluatorType.CRITERIA], reference_key="some_output", ) with pytest.raises( InputFormatError, match="Example inputs do not match chain input keys" ): run_on_dataset( dataset_name=kv_dataset_name, llm_or_chain_factory=lambda: chain, evaluation=eval_config, client=client, ) def input_mapper(d: dict) -> dict: return {"input": d["some_input"]} with pytest.raises( InputFormatError, match=" match the chain's expected input keys.", ): run_on_dataset( dataset_name=kv_dataset_name, llm_or_chain_factory=lambda: input_mapper | chain, client=client, evaluation=eval_config, ) def right_input_mapper(d: dict) -> dict: return {"question": d["some_input"]} run_on_dataset( dataset_name=kv_dataset_name, llm_or_chain_factory=lambda: right_input_mapper | chain, client=client, evaluation=eval_config, project_name=eval_project_name, tags=["shouldpass"], ) _check_all_feedback_passed(eval_project_name, client) ### Testing Chat Datasets @pytest.fixture( scope="module", ) def chat_dataset_name() -> Iterator[str]: def _create_message(txt: str, role: str = "human") -> List[dict]: return [{"type": role, "data": {"content": txt}}] import pandas as pd client = Client() df = pd.DataFrame( { "input": [ _create_message(txt) for txt in ( "What's the capital of California?", "What's the capital of Nevada?", "What's the capital of Oregon?", "What's the capital of Washington?", ) ], "output": [ _create_message(txt, role="ai")[0] for txt in ("Sacramento", "Carson City", "Salem", "Olympia") ], } ) uid = str(uuid4())[-8:] _dataset_name = f"lcp chat dataset integration tests - {uid}" ds = client.create_dataset( _dataset_name, description="Integration test dataset", data_type=DataType.chat ) for row in df.itertuples(): client.create_example( dataset_id=ds.id, inputs={"input": row.input}, outputs={"output": row.output}, ) yield _dataset_name def test_chat_model_on_chat_dataset( chat_dataset_name: str, eval_project_name: str, client: Client ) -> None: llm = ChatOpenAI(temperature=0) eval_config = RunEvalConfig(evaluators=[EvaluatorType.QA, EvaluatorType.CRITERIA]) run_on_dataset( dataset_name=chat_dataset_name, llm_or_chain_factory=llm, evaluation=eval_config, client=client, project_name=eval_project_name, ) _check_all_feedback_passed(eval_project_name, client) def test_llm_on_chat_dataset( chat_dataset_name: str, eval_project_name: str, client: Client ) -> None: llm = OpenAI(temperature=0) eval_config = RunEvalConfig(evaluators=[EvaluatorType.QA, EvaluatorType.CRITERIA]) run_on_dataset( dataset_name=chat_dataset_name, llm_or_chain_factory=llm, client=client, evaluation=eval_config, project_name=eval_project_name, tags=["shouldpass"], ) _check_all_feedback_passed(eval_project_name, client) def test_chain_on_chat_dataset(chat_dataset_name: str, client: Client) -> None: llm = ChatOpenAI(temperature=0) chain = LLMChain.from_string(llm, "The answer to the {question} is: ") eval_config = RunEvalConfig(evaluators=[EvaluatorType.QA, EvaluatorType.CRITERIA]) with pytest.raises( ValueError, match="Cannot evaluate a chain on dataset with data_type=chat" ): run_on_dataset( dataset_name=chat_dataset_name, client=client, llm_or_chain_factory=lambda: chain, evaluation=eval_config, ) @pytest.fixture( scope="module", ) def llm_dataset_name() -> Iterator[str]: import pandas as pd client = Client() df = pd.DataFrame( { "input": [ "What's the capital of California?", "What's the capital of Nevada?", "What's the capital of Oregon?", "What's the capital of Washington?", ], "output": ["Sacramento", "Carson City", "Salem", "Olympia"], } ) uid = str(uuid4())[-8:] _dataset_name = f"lcp llm dataset integration tests - {uid}" client.upload_dataframe( df, name=_dataset_name, input_keys=["input"], output_keys=["output"], description="Integration test dataset", data_type=DataType.llm, ) yield _dataset_name def test_chat_model_on_llm_dataset( llm_dataset_name: str, eval_project_name: str, client: Client ) -> None: llm = ChatOpenAI(temperature=0) eval_config = RunEvalConfig(evaluators=[EvaluatorType.QA, EvaluatorType.CRITERIA]) run_on_dataset( client=client, dataset_name=llm_dataset_name, llm_or_chain_factory=llm, evaluation=eval_config, project_name=eval_project_name, tags=["shouldpass"], ) _check_all_feedback_passed(eval_project_name, client) def test_llm_on_llm_dataset( llm_dataset_name: str, eval_project_name: str, client: Client ) -> None: llm = OpenAI(temperature=0) eval_config = RunEvalConfig(evaluators=[EvaluatorType.QA, EvaluatorType.CRITERIA]) run_on_dataset( client=client, dataset_name=llm_dataset_name, llm_or_chain_factory=llm, evaluation=eval_config, project_name=eval_project_name, tags=["shouldpass"], ) _check_all_feedback_passed(eval_project_name, client) def test_chain_on_llm_dataset(llm_dataset_name: str, client: Client) -> None: llm = ChatOpenAI(temperature=0) chain = LLMChain.from_string(llm, "The answer to the {question} is: ") eval_config = RunEvalConfig(evaluators=[EvaluatorType.QA, EvaluatorType.CRITERIA]) with pytest.raises( ValueError, match="Cannot evaluate a chain on dataset with data_type=llm" ): run_on_dataset( client=client, dataset_name=llm_dataset_name, llm_or_chain_factory=lambda: chain, evaluation=eval_config, ) @pytest.fixture( scope="module", ) def kv_singleio_dataset_name() -> Iterator[str]: import pandas as pd client = Client() df = pd.DataFrame( { "the wackiest input": [ "What's the capital of California?", "What's the capital of Nevada?", "What's the capital of Oregon?", "What's the capital of Washington?", ], "unthinkable output": ["Sacramento", "Carson City", "Salem", "Olympia"], } ) uid = str(uuid4())[-8:] _dataset_name = f"lcp singleio kv dataset integration tests - {uid}" client.upload_dataframe( df, name=_dataset_name, input_keys=["the wackiest input"], output_keys=["unthinkable output"], description="Integration test dataset", ) yield _dataset_name def test_chat_model_on_kv_singleio_dataset( kv_singleio_dataset_name: str, eval_project_name: str, client: Client ) -> None: llm = ChatOpenAI(temperature=0) eval_config = RunEvalConfig(evaluators=[EvaluatorType.QA, EvaluatorType.CRITERIA]) run_on_dataset( dataset_name=kv_singleio_dataset_name, llm_or_chain_factory=llm, evaluation=eval_config, client=client, project_name=eval_project_name, tags=["shouldpass"], ) _check_all_feedback_passed(eval_project_name, client) def test_llm_on_kv_singleio_dataset( kv_singleio_dataset_name: str, eval_project_name: str, client: Client ) -> None: llm = OpenAI(temperature=0) eval_config = RunEvalConfig(evaluators=[EvaluatorType.QA, EvaluatorType.CRITERIA]) run_on_dataset( dataset_name=kv_singleio_dataset_name, llm_or_chain_factory=llm, client=client, evaluation=eval_config, project_name=eval_project_name, tags=["shouldpass"], ) _check_all_feedback_passed(eval_project_name, client) def test_chain_on_kv_singleio_dataset( kv_singleio_dataset_name: str, eval_project_name: str, client: Client ) -> None: llm = ChatOpenAI(temperature=0) chain = LLMChain.from_string(llm, "The answer to the {question} is: ") eval_config = RunEvalConfig(evaluators=[EvaluatorType.QA, EvaluatorType.CRITERIA]) run_on_dataset( dataset_name=kv_singleio_dataset_name, llm_or_chain_factory=lambda: chain, client=client, evaluation=eval_config, project_name=eval_project_name, tags=["shouldpass"], ) _check_all_feedback_passed(eval_project_name, client) @pytest.mark.asyncio async def test_runnable_on_kv_singleio_dataset( kv_singleio_dataset_name: str, eval_project_name: str, client: Client ) -> None: runnable = ( ChatPromptTemplate.from_messages([("human", "{the wackiest input}")]) | ChatOpenAI() ) eval_config = RunEvalConfig(evaluators=[EvaluatorType.QA, EvaluatorType.CRITERIA]) await arun_on_dataset( dataset_name=kv_singleio_dataset_name, llm_or_chain_factory=runnable, client=client, evaluation=eval_config, project_name=eval_project_name, tags=["shouldpass"], ) _check_all_feedback_passed(eval_project_name, client) @pytest.mark.asyncio async def test_arb_func_on_kv_singleio_dataset( kv_singleio_dataset_name: str, eval_project_name: str, client: Client ) -> None: runnable = ( ChatPromptTemplate.from_messages([("human", "{the wackiest input}")]) | ChatOpenAI() ) def my_func(x: dict) -> str: return runnable.invoke(x).content eval_config = RunEvalConfig(evaluators=[EvaluatorType.QA, EvaluatorType.CRITERIA]) await arun_on_dataset( dataset_name=kv_singleio_dataset_name, llm_or_chain_factory=my_func, client=client, evaluation=eval_config, project_name=eval_project_name, tags=["shouldpass"], ) _check_all_feedback_passed(eval_project_name, client)
[ "some_input", "[('human', '{the wackiest input}')]" ]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~chat_models~cohere.py
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import ( BaseChatModel, _agenerate_from_stream, _generate_from_stream, ) from langchain.llms.cohere import BaseCohere from langchain.schema.messages import ( AIMessage, AIMessageChunk, BaseMessage, ChatMessage, HumanMessage, SystemMessage, ) from langchain.schema.output import ChatGeneration, ChatGenerationChunk, ChatResult def get_role(message: BaseMessage) -> str: """Get the role of the message. Args: message: The message. Returns: The role of the message. Raises: ValueError: If the message is of an unknown type. """ if isinstance(message, ChatMessage) or isinstance(message, HumanMessage): return "User" elif isinstance(message, AIMessage): return "Chatbot" elif isinstance(message, SystemMessage): return "System" else: raise ValueError(f"Got unknown type {message}") def get_cohere_chat_request( messages: List[BaseMessage], *, connectors: Optional[List[Dict[str, str]]] = None, **kwargs: Any, ) -> Dict[str, Any]: """Get the request for the Cohere chat API. Args: messages: The messages. connectors: The connectors. **kwargs: The keyword arguments. Returns: The request for the Cohere chat API. """ documents = ( None if "source_documents" not in kwargs else [ { "snippet": doc.page_content, "id": doc.metadata.get("id") or f"doc-{str(i)}", } for i, doc in enumerate(kwargs["source_documents"]) ] ) kwargs.pop("source_documents", None) maybe_connectors = connectors if documents is None else None # by enabling automatic prompt truncation, the probability of request failure is # reduced with minimal impact on response quality prompt_truncation = ( "AUTO" if documents is not None or connectors is not None else None ) return { "message": messages[0].content, "chat_history": [ {"role": get_role(x), "message": x.content} for x in messages[1:] ], "documents": documents, "connectors": maybe_connectors, "prompt_truncation": prompt_truncation, **kwargs, } class ChatCohere(BaseChatModel, BaseCohere): """`Cohere` chat large language models. To use, you should have the ``cohere`` python package installed, and the environment variable ``COHERE_API_KEY`` set with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.chat_models import ChatCohere from langchain.schema import HumanMessage chat = ChatCohere(model="foo") result = chat([HumanMessage(content="Hello")]) print(result.content) """ class Config: """Configuration for this pydantic object.""" allow_population_by_field_name = True arbitrary_types_allowed = True @property def _llm_type(self) -> str: """Return type of chat model.""" return "cohere-chat" @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Cohere API.""" return { "temperature": self.temperature, } @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**{"model": self.model}, **self._default_params} def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: request = get_cohere_chat_request(messages, **self._default_params, **kwargs) stream = self.client.chat(**request, stream=True) for data in stream: if data.event_type == "text-generation": delta = data.text yield ChatGenerationChunk(message=AIMessageChunk(content=delta)) if run_manager: run_manager.on_llm_new_token(delta) async def _astream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: request = get_cohere_chat_request(messages, **self._default_params, **kwargs) stream = await self.async_client.chat(**request, stream=True) async for data in stream: if data.event_type == "text-generation": delta = data.text yield ChatGenerationChunk(message=AIMessageChunk(content=delta)) if run_manager: await run_manager.on_llm_new_token(delta) def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: stream_iter = self._stream( messages, stop=stop, run_manager=run_manager, **kwargs ) return _generate_from_stream(stream_iter) request = get_cohere_chat_request(messages, **self._default_params, **kwargs) response = self.client.chat(**request) message = AIMessage(content=response.text) generation_info = None if hasattr(response, "documents"): generation_info = {"documents": response.documents} return ChatResult( generations=[ ChatGeneration(message=message, generation_info=generation_info) ] ) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: stream_iter = self._astream( messages, stop=stop, run_manager=run_manager, **kwargs ) return await _agenerate_from_stream(stream_iter) request = get_cohere_chat_request(messages, **self._default_params, **kwargs) response = self.client.chat(**request, stream=False) message = AIMessage(content=response.text) generation_info = None if hasattr(response, "documents"): generation_info = {"documents": response.documents} return ChatResult( generations=[ ChatGeneration(message=message, generation_info=generation_info) ] ) def get_num_tokens(self, text: str) -> int: """Calculate number of tokens.""" return len(self.client.tokenize(text).tokens)
[ "AUTO" ]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~agents~agent_toolkits~amadeus~toolkit.py
from __future__ import annotations from typing import TYPE_CHECKING, List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.pydantic_v1 import Field from langchain.tools import BaseTool from langchain.tools.amadeus.closest_airport import AmadeusClosestAirport from langchain.tools.amadeus.flight_search import AmadeusFlightSearch from langchain.tools.amadeus.utils import authenticate if TYPE_CHECKING: from amadeus import Client class AmadeusToolkit(BaseToolkit): """Toolkit for interacting with Amadeus which offers APIs for travel search.""" client: Client = Field(default_factory=authenticate) class Config: """Pydantic config.""" arbitrary_types_allowed = True def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return [ AmadeusClosestAirport(), AmadeusFlightSearch(), ]
[]
2024-01-10
RohanDey02/langchain
templates~rag-pinecone-rerank~rag_pinecone_rerank~chain.py
import os import pinecone from operator import itemgetter from langchain.vectorstores import Pinecone from langchain.prompts import ChatPromptTemplate from langchain.chat_models import ChatOpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.schema.output_parser import StrOutputParser from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers.document_compressors import CohereRerank from langchain.schema.runnable import RunnablePassthrough, RunnableParallel if os.environ.get("PINECONE_API_KEY", None) is None: raise Exception("Missing `PINECONE_API_KEY` environment variable.") if os.environ.get("PINECONE_ENVIRONMENT", None) is None: raise Exception("Missing `PINECONE_ENVIRONMENT` environment variable.") PINECONE_INDEX_NAME = os.environ.get("PINECONE_INDEX", "langchain-test") ### Ingest code - you may need to run this the first time # Load # from langchain.document_loaders import WebBaseLoader # loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") # data = loader.load() # # Split # from langchain.text_splitter import RecursiveCharacterTextSplitter # text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) # all_splits = text_splitter.split_documents(data) # # Add to vectorDB # vectorstore = Pinecone.from_documents( # documents=all_splits, embedding=OpenAIEmbeddings(), index_name=PINECONE_INDEX_NAME # ) # retriever = vectorstore.as_retriever() vectorstore = Pinecone.from_existing_index(PINECONE_INDEX_NAME, OpenAIEmbeddings()) # Get k=10 docs retriever = vectorstore.as_retriever(search_kwargs={"k":10}) # Re-rank compressor = CohereRerank() compression_retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=retriever ) # RAG prompt template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) # RAG model = ChatOpenAI() chain = ( RunnableParallel({"context": compression_retriever, "question": RunnablePassthrough()}) | prompt | model | StrOutputParser() )
[ "Answer the question based only on the following context:\n{context}\nQuestion: {question}\n" ]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~agents~agent_toolkits~gmail~toolkit.py
from __future__ import annotations from typing import TYPE_CHECKING, List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.pydantic_v1 import Field from langchain.tools import BaseTool from langchain.tools.gmail.create_draft import GmailCreateDraft from langchain.tools.gmail.get_message import GmailGetMessage from langchain.tools.gmail.get_thread import GmailGetThread from langchain.tools.gmail.search import GmailSearch from langchain.tools.gmail.send_message import GmailSendMessage from langchain.tools.gmail.utils import build_resource_service if TYPE_CHECKING: # This is for linting and IDE typehints from googleapiclient.discovery import Resource else: try: # We do this so pydantic can resolve the types when instantiating from googleapiclient.discovery import Resource except ImportError: pass SCOPES = ["https://mail.google.com/"] class GmailToolkit(BaseToolkit): """Toolkit for interacting with Gmail. *Security Note*: This toolkit contains tools that can read and modify the state of a service; e.g., by reading, creating, updating, deleting data associated with this service. For example, this toolkit can be used to send emails on behalf of the associated account. See https://python.langchain.com/docs/security for more information. """ api_resource: Resource = Field(default_factory=build_resource_service) class Config: """Pydantic config.""" arbitrary_types_allowed = True def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return [ GmailCreateDraft(api_resource=self.api_resource), GmailSendMessage(api_resource=self.api_resource), GmailSearch(api_resource=self.api_resource), GmailGetMessage(api_resource=self.api_resource), GmailGetThread(api_resource=self.api_resource), ]
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~agents~agent_toolkits~jira~toolkit.py
from typing import Dict, List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.jira.prompt import ( JIRA_CATCH_ALL_PROMPT, JIRA_CONFLUENCE_PAGE_CREATE_PROMPT, JIRA_GET_ALL_PROJECTS_PROMPT, JIRA_ISSUE_CREATE_PROMPT, JIRA_JQL_PROMPT, ) from langchain.tools.jira.tool import JiraAction from langchain.utilities.jira import JiraAPIWrapper class JiraToolkit(BaseToolkit): """Jira Toolkit. *Security Note*: This toolkit contains tools that can read and modify the state of a service; e.g., by creating, deleting, or updating, reading underlying data. See https://python.langchain.com/docs/security for more information. """ tools: List[BaseTool] = [] @classmethod def from_jira_api_wrapper(cls, jira_api_wrapper: JiraAPIWrapper) -> "JiraToolkit": operations: List[Dict] = [ { "mode": "jql", "name": "JQL Query", "description": JIRA_JQL_PROMPT, }, { "mode": "get_projects", "name": "Get Projects", "description": JIRA_GET_ALL_PROJECTS_PROMPT, }, { "mode": "create_issue", "name": "Create Issue", "description": JIRA_ISSUE_CREATE_PROMPT, }, { "mode": "other", "name": "Catch all Jira API call", "description": JIRA_CATCH_ALL_PROMPT, }, { "mode": "create_page", "name": "Create confluence page", "description": JIRA_CONFLUENCE_PAGE_CREATE_PROMPT, }, ] tools = [ JiraAction( name=action["name"], description=action["description"], mode=action["mode"], api_wrapper=jira_api_wrapper, ) for action in operations ] return cls(tools=tools) def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return self.tools
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~vectorstores~clarifai.py
from __future__ import annotations import logging import os import traceback from concurrent.futures import ThreadPoolExecutor from typing import Any, Iterable, List, Optional, Tuple import requests from langchain.docstore.document import Document from langchain.schema.embeddings import Embeddings from langchain.schema.vectorstore import VectorStore logger = logging.getLogger(__name__) class Clarifai(VectorStore): """`Clarifai AI` vector store. To use, you should have the ``clarifai`` python package installed. Example: .. code-block:: python from langchain.vectorstores import Clarifai from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = Clarifai("langchain_store", embeddings.embed_query) """ def __init__( self, user_id: Optional[str] = None, app_id: Optional[str] = None, pat: Optional[str] = None, number_of_docs: Optional[int] = None, api_base: Optional[str] = None, ) -> None: """Initialize with Clarifai client. Args: user_id (Optional[str], optional): User ID. Defaults to None. app_id (Optional[str], optional): App ID. Defaults to None. pat (Optional[str], optional): Personal access token. Defaults to None. number_of_docs (Optional[int], optional): Number of documents to return during vector search. Defaults to None. api_base (Optional[str], optional): API base. Defaults to None. Raises: ValueError: If user ID, app ID or personal access token is not provided. """ try: from clarifai.auth.helper import DEFAULT_BASE, ClarifaiAuthHelper from clarifai.client import create_stub except ImportError: raise ImportError( "Could not import clarifai python package. " "Please install it with `pip install clarifai`." ) if api_base is None: self._api_base = DEFAULT_BASE self._user_id = user_id or os.environ.get("CLARIFAI_USER_ID") self._app_id = app_id or os.environ.get("CLARIFAI_APP_ID") self._pat = pat or os.environ.get("CLARIFAI_PAT") if self._user_id is None or self._app_id is None or self._pat is None: raise ValueError( "Could not find CLARIFAI_USER_ID, CLARIFAI_APP_ID or\ CLARIFAI_PAT in your environment. " "Please set those env variables with a valid user ID, \ app ID and personal access token \ from https://clarifai.com/settings/security." ) self._auth = ClarifaiAuthHelper( user_id=self._user_id, app_id=self._app_id, pat=self._pat, base=self._api_base, ) self._stub = create_stub(self._auth) self._userDataObject = self._auth.get_user_app_id_proto() self._number_of_docs = number_of_docs def _post_texts_as_inputs( self, texts: List[str], metadatas: Optional[List[dict]] = None ) -> List[str]: """Post text to Clarifai and return the ID of the input. Args: text (str): Text to post. metadata (dict): Metadata to post. Returns: str: ID of the input. """ try: from clarifai_grpc.grpc.api import resources_pb2, service_pb2 from clarifai_grpc.grpc.api.status import status_code_pb2 from google.protobuf.struct_pb2 import Struct # type: ignore except ImportError as e: raise ImportError( "Could not import clarifai python package. " "Please install it with `pip install clarifai`." ) from e if metadatas is not None: assert len(list(texts)) == len( metadatas ), "Number of texts and metadatas should be the same." inputs = [] for idx, text in enumerate(texts): if metadatas is not None: input_metadata = Struct() input_metadata.update(metadatas[idx]) inputs.append( resources_pb2.Input( data=resources_pb2.Data( text=resources_pb2.Text(raw=text), metadata=input_metadata, ) ) ) post_inputs_response = self._stub.PostInputs( service_pb2.PostInputsRequest( user_app_id=self._userDataObject, inputs=inputs, ) ) if post_inputs_response.status.code != status_code_pb2.SUCCESS: logger.error(post_inputs_response.status) raise Exception( "Post inputs failed, status: " + post_inputs_response.status.description ) input_ids = [] for input in post_inputs_response.inputs: input_ids.append(input.id) return input_ids def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Add texts to the Clarifai vectorstore. This will push the text to a Clarifai application. Application use a base workflow that create and store embedding for each text. Make sure you are using a base workflow that is compatible with text (such as Language Understanding). Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. Returns: List[str]: List of IDs of the added texts. """ ltexts = list(texts) length = len(ltexts) assert length > 0, "No texts provided to add to the vectorstore." if metadatas is not None: assert length == len( metadatas ), "Number of texts and metadatas should be the same." batch_size = 32 input_ids = [] for idx in range(0, length, batch_size): try: batch_texts = ltexts[idx : idx + batch_size] batch_metadatas = ( metadatas[idx : idx + batch_size] if metadatas else None ) result_ids = self._post_texts_as_inputs(batch_texts, batch_metadatas) input_ids.extend(result_ids) logger.debug(f"Input {result_ids} posted successfully.") except Exception as error: logger.warning(f"Post inputs failed: {error}") traceback.print_exc() return input_ids def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Run similarity search with score using Clarifai. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Document]: List of documents most similar to the query text. """ try: from clarifai_grpc.grpc.api import resources_pb2, service_pb2 from clarifai_grpc.grpc.api.status import status_code_pb2 from google.protobuf import json_format # type: ignore from google.protobuf.struct_pb2 import Struct # type: ignore except ImportError as e: raise ImportError( "Could not import clarifai python package. " "Please install it with `pip install clarifai`." ) from e # Get number of docs to return if self._number_of_docs is not None: k = self._number_of_docs req = service_pb2.PostAnnotationsSearchesRequest( user_app_id=self._userDataObject, searches=[ resources_pb2.Search( query=resources_pb2.Query( ranks=[ resources_pb2.Rank( annotation=resources_pb2.Annotation( data=resources_pb2.Data( text=resources_pb2.Text(raw=query), ) ) ) ] ) ) ], pagination=service_pb2.Pagination(page=1, per_page=k), ) # Add filter by metadata if provided. if filter is not None: search_metadata = Struct() search_metadata.update(filter) f = req.searches[0].query.filters.add() f.annotation.data.metadata.update(search_metadata) post_annotations_searches_response = self._stub.PostAnnotationsSearches(req) # Check if search was successful if post_annotations_searches_response.status.code != status_code_pb2.SUCCESS: raise Exception( "Post searches failed, status: " + post_annotations_searches_response.status.description ) # Retrieve hits hits = post_annotations_searches_response.hits executor = ThreadPoolExecutor(max_workers=10) def hit_to_document(hit: resources_pb2.Hit) -> Tuple[Document, float]: metadata = json_format.MessageToDict(hit.input.data.metadata) h = {"Authorization": f"Key {self._auth.pat}"} request = requests.get(hit.input.data.text.url, headers=h) # override encoding by real educated guess as provided by chardet request.encoding = request.apparent_encoding requested_text = request.text logger.debug( f"\tScore {hit.score:.2f} for annotation: {hit.annotation.id}\ off input: {hit.input.id}, text: {requested_text[:125]}" ) return (Document(page_content=requested_text, metadata=metadata), hit.score) # Iterate over hits and retrieve metadata and text futures = [executor.submit(hit_to_document, hit) for hit in hits] docs_and_scores = [future.result() for future in futures] return docs_and_scores def similarity_search( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Document]: """Run similarity search using Clarifai. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query and score for each """ docs_and_scores = self.similarity_search_with_score(query, **kwargs) return [doc for doc, _ in docs_and_scores] @classmethod def from_texts( cls, texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, user_id: Optional[str] = None, app_id: Optional[str] = None, pat: Optional[str] = None, number_of_docs: Optional[int] = None, api_base: Optional[str] = None, **kwargs: Any, ) -> Clarifai: """Create a Clarifai vectorstore from a list of texts. Args: user_id (str): User ID. app_id (str): App ID. texts (List[str]): List of texts to add. pat (Optional[str]): Personal access token. Defaults to None. number_of_docs (Optional[int]): Number of documents to return during vector search. Defaults to None. api_base (Optional[str]): API base. Defaults to None. metadatas (Optional[List[dict]]): Optional list of metadatas. Defaults to None. Returns: Clarifai: Clarifai vectorstore. """ clarifai_vector_db = cls( user_id=user_id, app_id=app_id, pat=pat, number_of_docs=number_of_docs, api_base=api_base, ) clarifai_vector_db.add_texts(texts=texts, metadatas=metadatas) return clarifai_vector_db @classmethod def from_documents( cls, documents: List[Document], embedding: Optional[Embeddings] = None, user_id: Optional[str] = None, app_id: Optional[str] = None, pat: Optional[str] = None, number_of_docs: Optional[int] = None, api_base: Optional[str] = None, **kwargs: Any, ) -> Clarifai: """Create a Clarifai vectorstore from a list of documents. Args: user_id (str): User ID. app_id (str): App ID. documents (List[Document]): List of documents to add. pat (Optional[str]): Personal access token. Defaults to None. number_of_docs (Optional[int]): Number of documents to return during vector search. Defaults to None. api_base (Optional[str]): API base. Defaults to None. Returns: Clarifai: Clarifai vectorstore. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return cls.from_texts( user_id=user_id, app_id=app_id, texts=texts, pat=pat, number_of_docs=number_of_docs, api_base=api_base, metadatas=metadatas, )
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~evaluation~qa~generate_chain.py
"""LLM Chain for generating examples for question answering.""" from __future__ import annotations from typing import Any from langchain.chains.llm import LLMChain from langchain.evaluation.qa.generate_prompt import PROMPT from langchain.output_parsers.regex import RegexParser from langchain.pydantic_v1 import Field from langchain.schema.language_model import BaseLanguageModel from langchain.schema.output_parser import BaseLLMOutputParser _QA_OUTPUT_PARSER = RegexParser( regex=r"QUESTION: (.*?)\n+ANSWER: (.*)", output_keys=["query", "answer"] ) class QAGenerateChain(LLMChain): """LLM Chain for generating examples for question answering.""" output_parser: BaseLLMOutputParser = Field(default=_QA_OUTPUT_PARSER) output_key: str = "qa_pairs" @classmethod def from_llm(cls, llm: BaseLanguageModel, **kwargs: Any) -> QAGenerateChain: """Load QA Generate Chain from LLM.""" return cls(llm=llm, prompt=PROMPT, **kwargs)
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~agents~agent_toolkits~file_management~toolkit.py
from __future__ import annotations from typing import List, Optional from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.pydantic_v1 import root_validator from langchain.tools import BaseTool from langchain.tools.file_management.copy import CopyFileTool from langchain.tools.file_management.delete import DeleteFileTool from langchain.tools.file_management.file_search import FileSearchTool from langchain.tools.file_management.list_dir import ListDirectoryTool from langchain.tools.file_management.move import MoveFileTool from langchain.tools.file_management.read import ReadFileTool from langchain.tools.file_management.write import WriteFileTool _FILE_TOOLS = { # "Type[Runnable[Any, Any]]" has no attribute "__fields__" [attr-defined] tool_cls.__fields__["name"].default: tool_cls # type: ignore[attr-defined] for tool_cls in [ CopyFileTool, DeleteFileTool, FileSearchTool, MoveFileTool, ReadFileTool, WriteFileTool, ListDirectoryTool, ] } class FileManagementToolkit(BaseToolkit): """Toolkit for interacting with local files. *Security Notice*: This toolkit provides methods to interact with local files. If providing this toolkit to an agent on an LLM, ensure you scope the agent's permissions to only include the necessary permissions to perform the desired operations. By **default** the agent will have access to all files within the root dir and will be able to Copy, Delete, Move, Read, Write and List files in that directory. Consider the following: - Limit access to particular directories using `root_dir`. - Use filesystem permissions to restrict access and permissions to only the files and directories required by the agent. - Limit the tools available to the agent to only the file operations necessary for the agent's intended use. - Sandbox the agent by running it in a container. See https://python.langchain.com/docs/security for more information. """ root_dir: Optional[str] = None """If specified, all file operations are made relative to root_dir.""" selected_tools: Optional[List[str]] = None """If provided, only provide the selected tools. Defaults to all.""" @root_validator def validate_tools(cls, values: dict) -> dict: selected_tools = values.get("selected_tools") or [] for tool_name in selected_tools: if tool_name not in _FILE_TOOLS: raise ValueError( f"File Tool of name {tool_name} not supported." f" Permitted tools: {list(_FILE_TOOLS)}" ) return values def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" allowed_tools = self.selected_tools or _FILE_TOOLS.keys() tools: List[BaseTool] = [] for tool in allowed_tools: tool_cls = _FILE_TOOLS[tool] tools.append(tool_cls(root_dir=self.root_dir)) # type: ignore return tools __all__ = ["FileManagementToolkit"]
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~retrievers~self_query~timescalevector.py
from __future__ import annotations from typing import TYPE_CHECKING, Tuple, Union from langchain.chains.query_constructor.ir import ( Comparator, Comparison, Operation, Operator, StructuredQuery, Visitor, ) if TYPE_CHECKING: from timescale_vector import client class TimescaleVectorTranslator(Visitor): """Translate the internal query language elements to valid filters.""" allowed_operators = [Operator.AND, Operator.OR, Operator.NOT] """Subset of allowed logical operators.""" allowed_comparators = [ Comparator.EQ, Comparator.GT, Comparator.GTE, Comparator.LT, Comparator.LTE, ] COMPARATOR_MAP = { Comparator.EQ: "==", Comparator.GT: ">", Comparator.GTE: ">=", Comparator.LT: "<", Comparator.LTE: "<=", } OPERATOR_MAP = {Operator.AND: "AND", Operator.OR: "OR", Operator.NOT: "NOT"} def _format_func(self, func: Union[Operator, Comparator]) -> str: self._validate_func(func) if isinstance(func, Operator): value = self.OPERATOR_MAP[func.value] # type: ignore elif isinstance(func, Comparator): value = self.COMPARATOR_MAP[func.value] # type: ignore return f"{value}" def visit_operation(self, operation: Operation) -> client.Predicates: try: from timescale_vector import client except ImportError as e: raise ImportError( "Cannot import timescale-vector. Please install with `pip install " "timescale-vector`." ) from e args = [arg.accept(self) for arg in operation.arguments] return client.Predicates(*args, operator=self._format_func(operation.operator)) def visit_comparison(self, comparison: Comparison) -> client.Predicates: try: from timescale_vector import client except ImportError as e: raise ImportError( "Cannot import timescale-vector. Please install with `pip install " "timescale-vector`." ) from e return client.Predicates( ( comparison.attribute, self._format_func(comparison.comparator), comparison.value, ) ) def visit_structured_query( self, structured_query: StructuredQuery ) -> Tuple[str, dict]: if structured_query.filter is None: kwargs = {} else: kwargs = {"predicates": structured_query.filter.accept(self)} return structured_query.query, kwargs
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~document_loaders~azure_blob_storage_file.py
import os import tempfile from typing import List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.document_loaders.unstructured import UnstructuredFileLoader class AzureBlobStorageFileLoader(BaseLoader): """Load from `Azure Blob Storage` files.""" def __init__(self, conn_str: str, container: str, blob_name: str): """Initialize with connection string, container and blob name.""" self.conn_str = conn_str """Connection string for Azure Blob Storage.""" self.container = container """Container name.""" self.blob = blob_name """Blob name.""" def load(self) -> List[Document]: """Load documents.""" try: from azure.storage.blob import BlobClient except ImportError as exc: raise ImportError( "Could not import azure storage blob python package. " "Please install it with `pip install azure-storage-blob`." ) from exc client = BlobClient.from_connection_string( conn_str=self.conn_str, container_name=self.container, blob_name=self.blob ) with tempfile.TemporaryDirectory() as temp_dir: file_path = f"{temp_dir}/{self.container}/{self.blob}" os.makedirs(os.path.dirname(file_path), exist_ok=True) with open(f"{file_path}", "wb") as file: blob_data = client.download_blob() blob_data.readinto(file) loader = UnstructuredFileLoader(file_path) return loader.load()
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~agents~conversational~output_parser.py
import re from typing import Union from langchain.agents.agent import AgentOutputParser from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS from langchain.schema import AgentAction, AgentFinish, OutputParserException class ConvoOutputParser(AgentOutputParser): """Output parser for the conversational agent.""" ai_prefix: str = "AI" """Prefix to use before AI output.""" def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS def parse(self, text: str) -> Union[AgentAction, AgentFinish]: if f"{self.ai_prefix}:" in text: return AgentFinish( {"output": text.split(f"{self.ai_prefix}:")[-1].strip()}, text ) regex = r"Action: (.*?)[\n]*Action Input: (.*)" match = re.search(regex, text) if not match: raise OutputParserException(f"Could not parse LLM output: `{text}`") action = match.group(1) action_input = match.group(2) return AgentAction(action.strip(), action_input.strip(" ").strip('"'), text) @property def _type(self) -> str: return "conversational"
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~docstore~test_inmemory.py
"""Test in memory docstore.""" import pytest from langchain.docstore.document import Document from langchain.docstore.in_memory import InMemoryDocstore def test_document_found() -> None: """Test document found.""" _dict = {"foo": Document(page_content="bar")} docstore = InMemoryDocstore(_dict) output = docstore.search("foo") assert isinstance(output, Document) assert output.page_content == "bar" def test_document_not_found() -> None: """Test when document is not found.""" _dict = {"foo": Document(page_content="bar")} docstore = InMemoryDocstore(_dict) output = docstore.search("bar") assert output == "ID bar not found." def test_adding_document() -> None: """Test that documents are added correctly.""" _dict = {"foo": Document(page_content="bar")} docstore = InMemoryDocstore(_dict) new_dict = {"bar": Document(page_content="foo")} docstore.add(new_dict) # Test that you can find new document. foo_output = docstore.search("bar") assert isinstance(foo_output, Document) assert foo_output.page_content == "foo" # Test that old document is the same. bar_output = docstore.search("foo") assert isinstance(bar_output, Document) assert bar_output.page_content == "bar" def test_adding_document_already_exists() -> None: """Test that error is raised if document id already exists.""" _dict = {"foo": Document(page_content="bar")} docstore = InMemoryDocstore(_dict) new_dict = {"foo": Document(page_content="foo")} # Test that error is raised. with pytest.raises(ValueError): docstore.add(new_dict) # Test that old document is the same. bar_output = docstore.search("foo") assert isinstance(bar_output, Document) assert bar_output.page_content == "bar" def test_default_dict_value_in_constructor() -> None: """Test proper functioning if no _dict is provided to the constructor.""" docstore = InMemoryDocstore() docstore.add({"foo": Document(page_content="bar")}) output = docstore.search("foo") assert isinstance(output, Document) assert output.page_content == "bar"
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~document_loaders~googledrive.py
# Prerequisites: # 1. Create a Google Cloud project # 2. Enable the Google Drive API: # https://console.cloud.google.com/flows/enableapi?apiid=drive.googleapis.com # 3. Authorize credentials for desktop app: # https://developers.google.com/drive/api/quickstart/python#authorize_credentials_for_a_desktop_application # noqa: E501 # 4. For service accounts visit # https://cloud.google.com/iam/docs/service-accounts-create import os from pathlib import Path from typing import Any, Dict, List, Optional, Sequence, Union from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.pydantic_v1 import BaseModel, root_validator, validator SCOPES = ["https://www.googleapis.com/auth/drive.readonly"] class GoogleDriveLoader(BaseLoader, BaseModel): """Load Google Docs from `Google Drive`.""" service_account_key: Path = Path.home() / ".credentials" / "keys.json" """Path to the service account key file.""" credentials_path: Path = Path.home() / ".credentials" / "credentials.json" """Path to the credentials file.""" token_path: Path = Path.home() / ".credentials" / "token.json" """Path to the token file.""" folder_id: Optional[str] = None """The folder id to load from.""" document_ids: Optional[List[str]] = None """The document ids to load from.""" file_ids: Optional[List[str]] = None """The file ids to load from.""" recursive: bool = False """Whether to load recursively. Only applies when folder_id is given.""" file_types: Optional[Sequence[str]] = None """The file types to load. Only applies when folder_id is given.""" load_trashed_files: bool = False """Whether to load trashed files. Only applies when folder_id is given.""" # NOTE(MthwRobinson) - changing the file_loader_cls to type here currently # results in pydantic validation errors file_loader_cls: Any = None """The file loader class to use.""" file_loader_kwargs: Dict["str", Any] = {} """The file loader kwargs to use.""" @root_validator def validate_inputs(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Validate that either folder_id or document_ids is set, but not both.""" if values.get("folder_id") and ( values.get("document_ids") or values.get("file_ids") ): raise ValueError( "Cannot specify both folder_id and document_ids nor " "folder_id and file_ids" ) if ( not values.get("folder_id") and not values.get("document_ids") and not values.get("file_ids") ): raise ValueError("Must specify either folder_id, document_ids, or file_ids") file_types = values.get("file_types") if file_types: if values.get("document_ids") or values.get("file_ids"): raise ValueError( "file_types can only be given when folder_id is given," " (not when document_ids or file_ids are given)." ) type_mapping = { "document": "application/vnd.google-apps.document", "sheet": "application/vnd.google-apps.spreadsheet", "pdf": "application/pdf", } allowed_types = list(type_mapping.keys()) + list(type_mapping.values()) short_names = ", ".join([f"'{x}'" for x in type_mapping.keys()]) full_names = ", ".join([f"'{x}'" for x in type_mapping.values()]) for file_type in file_types: if file_type not in allowed_types: raise ValueError( f"Given file type {file_type} is not supported. " f"Supported values are: {short_names}; and " f"their full-form names: {full_names}" ) # replace short-form file types by full-form file types def full_form(x: str) -> str: return type_mapping[x] if x in type_mapping else x values["file_types"] = [full_form(file_type) for file_type in file_types] return values @validator("credentials_path") def validate_credentials_path(cls, v: Any, **kwargs: Any) -> Any: """Validate that credentials_path exists.""" if not v.exists(): raise ValueError(f"credentials_path {v} does not exist") return v def _load_credentials(self) -> Any: """Load credentials.""" # Adapted from https://developers.google.com/drive/api/v3/quickstart/python try: from google.auth import default from google.auth.transport.requests import Request from google.oauth2 import service_account from google.oauth2.credentials import Credentials from google_auth_oauthlib.flow import InstalledAppFlow except ImportError: raise ImportError( "You must run " "`pip install --upgrade " "google-api-python-client google-auth-httplib2 " "google-auth-oauthlib` " "to use the Google Drive loader." ) creds = None if self.service_account_key.exists(): return service_account.Credentials.from_service_account_file( str(self.service_account_key), scopes=SCOPES ) if self.token_path.exists(): creds = Credentials.from_authorized_user_file(str(self.token_path), SCOPES) if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) elif "GOOGLE_APPLICATION_CREDENTIALS" not in os.environ: creds, project = default() creds = creds.with_scopes(SCOPES) # no need to write to file if creds: return creds else: flow = InstalledAppFlow.from_client_secrets_file( str(self.credentials_path), SCOPES ) creds = flow.run_local_server(port=0) with open(self.token_path, "w") as token: token.write(creds.to_json()) return creds def _load_sheet_from_id(self, id: str) -> List[Document]: """Load a sheet and all tabs from an ID.""" from googleapiclient.discovery import build creds = self._load_credentials() sheets_service = build("sheets", "v4", credentials=creds) spreadsheet = sheets_service.spreadsheets().get(spreadsheetId=id).execute() sheets = spreadsheet.get("sheets", []) documents = [] for sheet in sheets: sheet_name = sheet["properties"]["title"] result = ( sheets_service.spreadsheets() .values() .get(spreadsheetId=id, range=sheet_name) .execute() ) values = result.get("values", []) if not values: continue # empty sheet header = values[0] for i, row in enumerate(values[1:], start=1): metadata = { "source": ( f"https://docs.google.com/spreadsheets/d/{id}/" f"edit?gid={sheet['properties']['sheetId']}" ), "title": f"{spreadsheet['properties']['title']} - {sheet_name}", "row": i, } content = [] for j, v in enumerate(row): title = header[j].strip() if len(header) > j else "" content.append(f"{title}: {v.strip()}") page_content = "\n".join(content) documents.append(Document(page_content=page_content, metadata=metadata)) return documents def _load_document_from_id(self, id: str) -> Document: """Load a document from an ID.""" from io import BytesIO from googleapiclient.discovery import build from googleapiclient.errors import HttpError from googleapiclient.http import MediaIoBaseDownload creds = self._load_credentials() service = build("drive", "v3", credentials=creds) file = ( service.files() .get(fileId=id, supportsAllDrives=True, fields="modifiedTime,name") .execute() ) request = service.files().export_media(fileId=id, mimeType="text/plain") fh = BytesIO() downloader = MediaIoBaseDownload(fh, request) done = False try: while done is False: status, done = downloader.next_chunk() except HttpError as e: if e.resp.status == 404: print("File not found: {}".format(id)) else: print("An error occurred: {}".format(e)) text = fh.getvalue().decode("utf-8") metadata = { "source": f"https://docs.google.com/document/d/{id}/edit", "title": f"{file.get('name')}", "when": f"{file.get('modifiedTime')}", } return Document(page_content=text, metadata=metadata) def _load_documents_from_folder( self, folder_id: str, *, file_types: Optional[Sequence[str]] = None ) -> List[Document]: """Load documents from a folder.""" from googleapiclient.discovery import build creds = self._load_credentials() service = build("drive", "v3", credentials=creds) files = self._fetch_files_recursive(service, folder_id) # If file types filter is provided, we'll filter by the file type. if file_types: _files = [f for f in files if f["mimeType"] in file_types] # type: ignore else: _files = files returns = [] for file in _files: if file["trashed"] and not self.load_trashed_files: continue elif file["mimeType"] == "application/vnd.google-apps.document": returns.append(self._load_document_from_id(file["id"])) # type: ignore elif file["mimeType"] == "application/vnd.google-apps.spreadsheet": returns.extend(self._load_sheet_from_id(file["id"])) # type: ignore elif ( file["mimeType"] == "application/pdf" or self.file_loader_cls is not None ): returns.extend(self._load_file_from_id(file["id"])) # type: ignore else: pass return returns def _fetch_files_recursive( self, service: Any, folder_id: str ) -> List[Dict[str, Union[str, List[str]]]]: """Fetch all files and subfolders recursively.""" results = ( service.files() .list( q=f"'{folder_id}' in parents", pageSize=1000, includeItemsFromAllDrives=True, supportsAllDrives=True, fields="nextPageToken, files(id, name, mimeType, parents, trashed)", ) .execute() ) files = results.get("files", []) returns = [] for file in files: if file["mimeType"] == "application/vnd.google-apps.folder": if self.recursive: returns.extend(self._fetch_files_recursive(service, file["id"])) else: returns.append(file) return returns def _load_documents_from_ids(self) -> List[Document]: """Load documents from a list of IDs.""" if not self.document_ids: raise ValueError("document_ids must be set") return [self._load_document_from_id(doc_id) for doc_id in self.document_ids] def _load_file_from_id(self, id: str) -> List[Document]: """Load a file from an ID.""" from io import BytesIO from googleapiclient.discovery import build from googleapiclient.http import MediaIoBaseDownload creds = self._load_credentials() service = build("drive", "v3", credentials=creds) file = service.files().get(fileId=id, supportsAllDrives=True).execute() request = service.files().get_media(fileId=id) fh = BytesIO() downloader = MediaIoBaseDownload(fh, request) done = False while done is False: status, done = downloader.next_chunk() if self.file_loader_cls is not None: fh.seek(0) loader = self.file_loader_cls(file=fh, **self.file_loader_kwargs) docs = loader.load() for doc in docs: doc.metadata["source"] = f"https://drive.google.com/file/d/{id}/view" return docs else: from PyPDF2 import PdfReader content = fh.getvalue() pdf_reader = PdfReader(BytesIO(content)) return [ Document( page_content=page.extract_text(), metadata={ "source": f"https://drive.google.com/file/d/{id}/view", "title": f"{file.get('name')}", "page": i, }, ) for i, page in enumerate(pdf_reader.pages) ] def _load_file_from_ids(self) -> List[Document]: """Load files from a list of IDs.""" if not self.file_ids: raise ValueError("file_ids must be set") docs = [] for file_id in self.file_ids: docs.extend(self._load_file_from_id(file_id)) return docs def load(self) -> List[Document]: """Load documents.""" if self.folder_id: return self._load_documents_from_folder( self.folder_id, file_types=self.file_types ) elif self.document_ids: return self._load_documents_from_ids() else: return self._load_file_from_ids()
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~prompts~test_pipeline_prompt.py
from langchain.prompts.chat import ChatPromptTemplate, MessagesPlaceholder from langchain.prompts.pipeline import PipelinePromptTemplate from langchain.prompts.prompt import PromptTemplate def test_get_input_variables() -> None: prompt_a = PromptTemplate.from_template("{foo}") prompt_b = PromptTemplate.from_template("{bar}") pipeline_prompt = PipelinePromptTemplate( final_prompt=prompt_b, pipeline_prompts=[("bar", prompt_a)] ) assert pipeline_prompt.input_variables == ["foo"] def test_simple_pipeline() -> None: prompt_a = PromptTemplate.from_template("{foo}") prompt_b = PromptTemplate.from_template("{bar}") pipeline_prompt = PipelinePromptTemplate( final_prompt=prompt_b, pipeline_prompts=[("bar", prompt_a)] ) output = pipeline_prompt.format(foo="jim") assert output == "jim" def test_multi_variable_pipeline() -> None: prompt_a = PromptTemplate.from_template("{foo}") prompt_b = PromptTemplate.from_template("okay {bar} {baz}") pipeline_prompt = PipelinePromptTemplate( final_prompt=prompt_b, pipeline_prompts=[("bar", prompt_a)] ) output = pipeline_prompt.format(foo="jim", baz="deep") assert output == "okay jim deep" def test_partial_with_chat_prompts() -> None: prompt_a = ChatPromptTemplate( input_variables=["foo"], messages=[MessagesPlaceholder(variable_name="foo")] ) prompt_b = ChatPromptTemplate.from_template("jim {bar}") pipeline_prompt = PipelinePromptTemplate( final_prompt=prompt_a, pipeline_prompts=[("foo", prompt_b)] ) assert pipeline_prompt.input_variables == ["bar"] output = pipeline_prompt.format_prompt(bar="okay") assert output.to_messages()[0].content == "jim okay"
[ "{foo}", "[('bar', PLACEHOLDER)]", "jim {bar}", "[('foo', PLACEHOLDER)]", "{bar}", "okay {bar} {baz}" ]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~llms~test_pai_eas_endpoint.py
"""Test PaiEasEndpoint API wrapper.""" import os from typing import Generator from langchain.llms.pai_eas_endpoint import PaiEasEndpoint def test_pai_eas_v1_call() -> None: """Test valid call to PAI-EAS Service.""" llm = PaiEasEndpoint( eas_service_url=os.getenv("EAS_SERVICE_URL"), eas_service_token=os.getenv("EAS_SERVICE_TOKEN"), version="1.0", ) output = llm("Say foo:") assert isinstance(output, str) def test_pai_eas_v2_call() -> None: llm = PaiEasEndpoint( eas_service_url=os.getenv("EAS_SERVICE_URL"), eas_service_token=os.getenv("EAS_SERVICE_TOKEN"), version="2.0", ) output = llm("Say foo:") assert isinstance(output, str) def test_pai_eas_v1_streaming() -> None: """Test streaming call to PAI-EAS Service.""" llm = PaiEasEndpoint( eas_service_url=os.getenv("EAS_SERVICE_URL"), eas_service_token=os.getenv("EAS_SERVICE_TOKEN"), version="1.0", ) generator = llm.stream("Q: How do you say 'hello' in German? A:'", stop=["."]) stream_results_string = "" assert isinstance(generator, Generator) for chunk in generator: assert isinstance(chunk, str) stream_results_string = chunk assert len(stream_results_string.strip()) > 1 def test_pai_eas_v2_streaming() -> None: llm = PaiEasEndpoint( eas_service_url=os.getenv("EAS_SERVICE_URL"), eas_service_token=os.getenv("EAS_SERVICE_TOKEN"), version="2.0", ) generator = llm.stream("Q: How do you say 'hello' in German? A:'", stop=["."]) stream_results_string = "" assert isinstance(generator, Generator) for chunk in generator: assert isinstance(chunk, str) stream_results_string = chunk assert len(stream_results_string.strip()) > 1
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~document_loaders~bilibili.py
import json import re import warnings from typing import List, Tuple import requests from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader class BiliBiliLoader(BaseLoader): """Load `BiliBili` video transcripts.""" def __init__(self, video_urls: List[str]): """Initialize with bilibili url. Args: video_urls: List of bilibili urls. """ self.video_urls = video_urls def load(self) -> List[Document]: """Load Documents from bilibili url.""" results = [] for url in self.video_urls: transcript, video_info = self._get_bilibili_subs_and_info(url) doc = Document(page_content=transcript, metadata=video_info) results.append(doc) return results def _get_bilibili_subs_and_info(self, url: str) -> Tuple[str, dict]: try: from bilibili_api import sync, video except ImportError: raise ImportError( "requests package not found, please install it with " "`pip install bilibili-api-python`" ) bvid = re.search(r"BV\w+", url) if bvid is not None: v = video.Video(bvid=bvid.group()) else: aid = re.search(r"av[0-9]+", url) if aid is not None: try: v = video.Video(aid=int(aid.group()[2:])) except AttributeError: raise ValueError(f"{url} is not bilibili url.") else: raise ValueError(f"{url} is not bilibili url.") video_info = sync(v.get_info()) video_info.update({"url": url}) sub = sync(v.get_subtitle(video_info["cid"])) # Get subtitle url sub_list = sub["subtitles"] if sub_list: sub_url = sub_list[0]["subtitle_url"] if not sub_url.startswith("http"): sub_url = "https:" + sub_url result = requests.get(sub_url) raw_sub_titles = json.loads(result.content)["body"] raw_transcript = " ".join([c["content"] for c in raw_sub_titles]) raw_transcript_with_meta_info = ( f"Video Title: {video_info['title']}," f"description: {video_info['desc']}\n\n" f"Transcript: {raw_transcript}" ) return raw_transcript_with_meta_info, video_info else: raw_transcript = "" warnings.warn( f""" No subtitles found for video: {url}. Return Empty transcript. """ ) return raw_transcript, video_info
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~llms~test_tongyi.py
"""Test Tongyi API wrapper.""" from langchain.llms.tongyi import Tongyi from langchain.schema import LLMResult def test_tongyi_call() -> None: """Test valid call to tongyi.""" llm = Tongyi() output = llm("who are you") assert isinstance(output, str) def test_tongyi_generate() -> None: """Test valid call to tongyi.""" llm = Tongyi() output = llm.generate(["who are you"]) assert isinstance(output, LLMResult) assert isinstance(output.generations, list) def test_tongyi_generate_stream() -> None: """Test valid call to tongyi.""" llm = Tongyi(streaming=True) output = llm.generate(["who are you"]) print(output) assert isinstance(output, LLMResult) assert isinstance(output.generations, list)
[]
2024-01-10
RohanDey02/langchain
templates~cassandra-entomology-rag~setup.py
import os import cassio from langchain.vectorstores import Cassandra from langchain.embeddings import OpenAIEmbeddings use_cassandra = int(os.environ.get("USE_CASSANDRA_CLUSTER", "0")) if use_cassandra: from cassandra_entomology_rag.cassandra_cluster_init import get_cassandra_connection session, keyspace = get_cassandra_connection() cassio.init( session=session, keyspace=keyspace, ) else: cassio.init( token=os.environ["ASTRA_DB_APPLICATION_TOKEN"], database_id=os.environ["ASTRA_DB_ID"], keyspace=os.environ.get("ASTRA_DB_KEYSPACE"), ) if __name__ == '__main__': embeddings = OpenAIEmbeddings() vector_store = Cassandra( session=None, keyspace=None, embedding=embeddings, table_name="langserve_rag_demo", ) # lines = [ l.strip() for l in open("sources.txt").readlines() if l.strip() if l[0] != "#" ] # deterministic IDs to prevent duplicates on multiple runs ids = [ "_".join(l.split(" ")[:2]).lower().replace(":", "") for l in lines ] # vector_store.add_texts(texts=lines, ids=ids) print(f"Done ({len(lines)} lines inserted).")
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~retrievers~test_remote_retriever.py
from typing import Any, Dict from pytest_mock import MockerFixture from langchain.retrievers import RemoteLangChainRetriever from langchain.schema import Document class MockResponse: def __init__(self, json_data: Dict, status_code: int): self.json_data = json_data self.status_code = status_code def json(self) -> Dict: return self.json_data def mocked_requests_post(*args: Any, **kwargs: Any) -> MockResponse: return MockResponse( json_data={ "response": [ { "page_content": "I like apples", "metadata": { "test": 0, }, }, { "page_content": "I like pineapples", "metadata": { "test": 1, }, }, ] }, status_code=200, ) def test_RemoteLangChainRetriever_get_relevant_documents( mocker: MockerFixture, ) -> None: mocker.patch("requests.post", side_effect=mocked_requests_post) remote_langchain_retriever = RemoteLangChainRetriever( url="http://localhost:8000", ) response = remote_langchain_retriever.get_relevant_documents("I like apples") want = [ Document(page_content="I like apples", metadata={"test": 0}), Document(page_content="I like pineapples", metadata={"test": 1}), ] assert len(response) == len(want) for r, w in zip(response, want): assert r.page_content == w.page_content assert r.metadata == w.metadata # TODO: _aget_relevant_documents test
[ "I like pineapples", "I like apples" ]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~embeddings~test_vertexai.py
"""Test Vertex AI API wrapper. In order to run this test, you need to install VertexAI SDK pip install google-cloud-aiplatform>=1.25.0 Your end-user credentials would be used to make the calls (make sure you've run `gcloud auth login` first). """ from langchain.embeddings import VertexAIEmbeddings def test_embedding_documents() -> None: documents = ["foo bar"] model = VertexAIEmbeddings() output = model.embed_documents(documents) assert len(output) == 1 assert len(output[0]) == 768 assert model.model_name == model.client._model_id def test_embedding_query() -> None: document = "foo bar" model = VertexAIEmbeddings() output = model.embed_query(document) assert len(output) == 768 def test_paginated_texts() -> None: documents = [ "foo bar", "foo baz", "bar foo", "baz foo", "bar bar", "foo foo", "baz baz", "baz bar", ] model = VertexAIEmbeddings() output = model.embed_documents(documents) assert len(output) == 8 assert len(output[0]) == 768 assert model.model_name == model.client._model_id
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~vectorstores~redis~test_redis_schema.py
import pytest from langchain.vectorstores.redis.schema import ( FlatVectorField, HNSWVectorField, NumericFieldSchema, RedisModel, RedisVectorField, TagFieldSchema, TextFieldSchema, read_schema, ) def test_text_field_schema_creation() -> None: """Test creating a text field with default parameters.""" field = TextFieldSchema(name="example") assert field.name == "example" assert field.weight == 1 # default value assert field.no_stem is False # default value def test_tag_field_schema_creation() -> None: """Test creating a tag field with custom parameters.""" field = TagFieldSchema(name="tag", separator="|") assert field.name == "tag" assert field.separator == "|" def test_numeric_field_schema_creation() -> None: """Test creating a numeric field with default parameters.""" field = NumericFieldSchema(name="numeric") assert field.name == "numeric" assert field.no_index is False # default value def test_redis_vector_field_validation() -> None: """Test validation for RedisVectorField's datatype.""" from langchain.pydantic_v1 import ValidationError with pytest.raises(ValidationError): RedisVectorField( name="vector", dims=128, algorithm="INVALID_ALGO", datatype="INVALID_TYPE" ) # Test creating a valid RedisVectorField vector_field = RedisVectorField( name="vector", dims=128, algorithm="SOME_ALGO", datatype="FLOAT32" ) assert vector_field.datatype == "FLOAT32" def test_flat_vector_field_defaults() -> None: """Test defaults for FlatVectorField.""" flat_vector_field_data = { "name": "example", "dims": 100, "algorithm": "FLAT", } flat_vector = FlatVectorField(**flat_vector_field_data) assert flat_vector.datatype == "FLOAT32" assert flat_vector.distance_metric == "COSINE" assert flat_vector.initial_cap is None assert flat_vector.block_size is None def test_flat_vector_field_optional_values() -> None: """Test optional values for FlatVectorField.""" flat_vector_field_data = { "name": "example", "dims": 100, "algorithm": "FLAT", "initial_cap": 1000, "block_size": 10, } flat_vector = FlatVectorField(**flat_vector_field_data) assert flat_vector.initial_cap == 1000 assert flat_vector.block_size == 10 def test_hnsw_vector_field_defaults() -> None: """Test defaults for HNSWVectorField.""" hnsw_vector_field_data = { "name": "example", "dims": 100, "algorithm": "HNSW", } hnsw_vector = HNSWVectorField(**hnsw_vector_field_data) assert hnsw_vector.datatype == "FLOAT32" assert hnsw_vector.distance_metric == "COSINE" assert hnsw_vector.initial_cap is None assert hnsw_vector.m == 16 assert hnsw_vector.ef_construction == 200 assert hnsw_vector.ef_runtime == 10 assert hnsw_vector.epsilon == 0.01 def test_hnsw_vector_field_optional_values() -> None: """Test optional values for HNSWVectorField.""" hnsw_vector_field_data = { "name": "example", "dims": 100, "algorithm": "HNSW", "initial_cap": 2000, "m": 10, "ef_construction": 250, "ef_runtime": 15, "epsilon": 0.05, } hnsw_vector = HNSWVectorField(**hnsw_vector_field_data) assert hnsw_vector.initial_cap == 2000 assert hnsw_vector.m == 10 assert hnsw_vector.ef_construction == 250 assert hnsw_vector.ef_runtime == 15 assert hnsw_vector.epsilon == 0.05 def test_read_schema_dict_input() -> None: """Test read_schema with dict input.""" index_schema = { "text": [{"name": "content"}], "tag": [{"name": "tag"}], "vector": [{"name": "content_vector", "dims": 100, "algorithm": "FLAT"}], } output = read_schema(index_schema=index_schema) # type: ignore assert output == index_schema def test_redis_model_creation() -> None: # Test creating a RedisModel with a mixture of fields redis_model = RedisModel( text=[TextFieldSchema(name="content")], tag=[TagFieldSchema(name="tag")], numeric=[NumericFieldSchema(name="numeric")], vector=[FlatVectorField(name="flat_vector", dims=128, algorithm="FLAT")], ) assert redis_model.text[0].name == "content" assert redis_model.tag[0].name == "tag" # type: ignore assert redis_model.numeric[0].name == "numeric" # type: ignore assert redis_model.vector[0].name == "flat_vector" # type: ignore # Test the content_vector property with pytest.raises(ValueError): _ = ( redis_model.content_vector ) # this should fail because there's no field with name 'content_vector_key' def test_read_schema() -> None: # Test the read_schema function with invalid input with pytest.raises(TypeError): read_schema(index_schema=None) # non-dict and non-str/pathlike input
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~graphs~test_falkordb.py
import unittest from typing import Any from unittest.mock import MagicMock, patch from langchain.graphs import FalkorDBGraph class TestFalkorDB(unittest.TestCase): def setUp(self) -> None: self.host = "localhost" self.graph = "test_falkordb" self.port = 6379 @patch("redis.Redis") def test_init(self, mock_client: Any) -> None: mock_client.return_value = MagicMock() FalkorDBGraph(database=self.graph, host=self.host, port=self.port) @patch("redis.Redis") def test_execute(self, mock_client: Any) -> None: mock_client.return_value = MagicMock() graph = FalkorDBGraph(database=self.graph, host=self.host, port=self.port) query = "RETURN 1" result = graph.query(query) self.assertIsInstance(result, MagicMock) @patch("redis.Redis") def test_refresh_schema(self, mock_client: Any) -> None: mock_client.return_value = MagicMock() graph = FalkorDBGraph(database=self.graph, host=self.host, port=self.port) graph.refresh_schema() self.assertNotEqual(graph.get_schema, "")
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~utilities~test_searchapi.py
"""Integration tests for SearchApi""" import pytest from langchain.utilities.searchapi import SearchApiAPIWrapper def test_call() -> None: """Test that call gives correct answer.""" search = SearchApiAPIWrapper() output = search.run("What is the capital of Lithuania?") assert "Vilnius" in output def test_results() -> None: """Test that call gives correct answer.""" search = SearchApiAPIWrapper() output = search.results("What is the capital of Lithuania?") assert "Vilnius" in output["answer_box"]["answer"] assert "Vilnius" in output["answer_box"]["snippet"] assert "Vilnius" in output["knowledge_graph"]["description"] assert "Vilnius" in output["organic_results"][0]["snippet"] def test_results_with_custom_params() -> None: """Test that call gives correct answer with custom params.""" search = SearchApiAPIWrapper() output = search.results( "cafeteria", hl="es", gl="es", google_domain="google.es", location="Madrid, Spain", ) assert "Madrid" in output["search_information"]["detected_location"] def test_scholar_call() -> None: """Test that call gives correct answer for scholar search.""" search = SearchApiAPIWrapper(engine="google_scholar") output = search.run("large language models") assert "state of large language models and their applications" in output def test_jobs_call() -> None: """Test that call gives correct answer for jobs search.""" search = SearchApiAPIWrapper(engine="google_jobs") output = search.run("AI") assert "years of experience" in output @pytest.mark.asyncio async def test_async_call() -> None: """Test that call gives the correct answer.""" search = SearchApiAPIWrapper() output = await search.arun("What is Obama's full name?") assert "Barack Hussein Obama II" in output @pytest.mark.asyncio async def test_async_results() -> None: """Test that call gives the correct answer.""" search = SearchApiAPIWrapper() output = await search.aresults("What is Obama's full name?") assert "Barack Hussein Obama II" in output["knowledge_graph"]["description"]
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~retrievers~cohere_rag_retriever.py
from __future__ import annotations from typing import TYPE_CHECKING, Any, Dict, List from langchain.callbacks.manager import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain.chat_models.base import BaseChatModel from langchain.pydantic_v1 import Field from langchain.schema import BaseRetriever, Document, HumanMessage if TYPE_CHECKING: from langchain.schema.messages import BaseMessage def _get_docs(response: Any) -> List[Document]: return [ Document(page_content=doc["snippet"], metadata=doc) for doc in response.generation_info["documents"] ] class CohereRagRetriever(BaseRetriever): """`ChatGPT plugin` retriever.""" top_k: int = 3 """Number of documents to return.""" connectors: List[Dict] = Field(default_factory=lambda: [{"id": "web-search"}]) """ When specified, the model's reply will be enriched with information found by querying each of the connectors (RAG). These will be returned as langchain documents. Currently only accepts {"id": "web-search"}. """ llm: BaseChatModel """Cohere ChatModel to use.""" class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True """Allow arbitrary types.""" def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any ) -> List[Document]: messages: List[List[BaseMessage]] = [[HumanMessage(content=query)]] res = self.llm.generate( messages, connectors=self.connectors, callbacks=run_manager.get_child(), **kwargs, ).generations[0][0] return _get_docs(res)[: self.top_k] async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, **kwargs: Any, ) -> List[Document]: messages: List[List[BaseMessage]] = [[HumanMessage(content=query)]] res = ( await self.llm.agenerate( messages, connectors=self.connectors, callbacks=run_manager.get_child(), **kwargs, ) ).generations[0][0] return _get_docs(res)[: self.top_k]
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~chat_models~bedrock.py
from typing import Any, Dict, Iterator, List, Optional from langchain.callbacks.manager import ( CallbackManagerForLLMRun, ) from langchain.chat_models.anthropic import convert_messages_to_prompt_anthropic from langchain.chat_models.base import BaseChatModel from langchain.llms.bedrock import BedrockBase from langchain.pydantic_v1 import Extra from langchain.schema.messages import AIMessage, AIMessageChunk, BaseMessage from langchain.schema.output import ChatGeneration, ChatGenerationChunk, ChatResult from langchain.utilities.anthropic import ( get_num_tokens_anthropic, get_token_ids_anthropic, ) class ChatPromptAdapter: """Adapter class to prepare the inputs from Langchain to prompt format that Chat model expects. """ @classmethod def convert_messages_to_prompt( cls, provider: str, messages: List[BaseMessage] ) -> str: if provider == "anthropic": prompt = convert_messages_to_prompt_anthropic(messages=messages) else: raise NotImplementedError( f"Provider {provider} model does not support chat." ) return prompt class BedrockChat(BaseChatModel, BedrockBase): """A chat model that uses the Bedrock API.""" @property def _llm_type(self) -> str: """Return type of chat model.""" return "amazon_bedrock_chat" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: provider = self._get_provider() prompt = ChatPromptAdapter.convert_messages_to_prompt( provider=provider, messages=messages ) for chunk in self._prepare_input_and_invoke_stream( prompt=prompt, stop=stop, run_manager=run_manager, **kwargs ): delta = chunk.text yield ChatGenerationChunk(message=AIMessageChunk(content=delta)) def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: completion = "" if self.streaming: for chunk in self._stream(messages, stop, run_manager, **kwargs): completion += chunk.text else: provider = self._get_provider() prompt = ChatPromptAdapter.convert_messages_to_prompt( provider=provider, messages=messages ) params: Dict[str, Any] = {**kwargs} if stop: params["stop_sequences"] = stop completion = self._prepare_input_and_invoke( prompt=prompt, stop=stop, run_manager=run_manager, **params ) message = AIMessage(content=completion) return ChatResult(generations=[ChatGeneration(message=message)]) def get_num_tokens(self, text: str) -> int: if self._model_is_anthropic: return get_num_tokens_anthropic(text) else: return super().get_num_tokens(text) def get_token_ids(self, text: str) -> List[int]: if self._model_is_anthropic: return get_token_ids_anthropic(text) else: return super().get_token_ids(text)
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~document_loaders~wikipedia.py
from typing import List, Optional from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.utilities.wikipedia import WikipediaAPIWrapper class WikipediaLoader(BaseLoader): """Load from `Wikipedia`. The hard limit on the number of downloaded Documents is 300 for now. Each wiki page represents one Document. """ def __init__( self, query: str, lang: str = "en", load_max_docs: Optional[int] = 100, load_all_available_meta: Optional[bool] = False, doc_content_chars_max: Optional[int] = 4000, ): """ Initializes a new instance of the WikipediaLoader class. Args: query (str): The query string to search on Wikipedia. lang (str, optional): The language code for the Wikipedia language edition. Defaults to "en". load_max_docs (int, optional): The maximum number of documents to load. Defaults to 100. load_all_available_meta (bool, optional): Indicates whether to load all available metadata for each document. Defaults to False. doc_content_chars_max (int, optional): The maximum number of characters for the document content. Defaults to 4000. """ self.query = query self.lang = lang self.load_max_docs = load_max_docs self.load_all_available_meta = load_all_available_meta self.doc_content_chars_max = doc_content_chars_max def load(self) -> List[Document]: """ Loads the query result from Wikipedia into a list of Documents. Returns: List[Document]: A list of Document objects representing the loaded Wikipedia pages. """ client = WikipediaAPIWrapper( lang=self.lang, top_k_results=self.load_max_docs, load_all_available_meta=self.load_all_available_meta, doc_content_chars_max=self.doc_content_chars_max, ) docs = client.load(self.query) return docs
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~evaluation~comparison~eval_chain.py
"""Base classes for comparing the output of two models.""" from __future__ import annotations import logging import re from typing import Any, Dict, List, Optional, Union from langchain.callbacks.manager import Callbacks from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple from langchain.chains.llm import LLMChain from langchain.chat_models.azure_openai import AzureChatOpenAI from langchain.chat_models.openai import ChatOpenAI from langchain.evaluation.comparison.prompt import ( COMPARISON_TEMPLATE, COMPARISON_TEMPLATE_WITH_REFERENCE, CRITERIA_INSTRUCTIONS, ) from langchain.evaluation.criteria.eval_chain import ( CRITERIA_TYPE, Criteria, ) from langchain.evaluation.schema import LLMEvalChain, PairwiseStringEvaluator from langchain.prompts.prompt import PromptTemplate from langchain.pydantic_v1 import Extra, Field from langchain.schema import RUN_KEY, BaseOutputParser from langchain.schema.language_model import BaseLanguageModel logger = logging.getLogger(__name__) _FIND_DOUBLE_BRACKETS = re.compile(r"\[\[(.*?)\]\]") _SUPPORTED_CRITERIA = { Criteria.CONCISENESS: "Is the submission concise and to the point?", Criteria.RELEVANCE: "Is the submission referring to a real quote from the text?", Criteria.CORRECTNESS: "Is the submission correct, accurate, and factual?", Criteria.COHERENCE: "Is the submission coherent, well-structured, and organized?", Criteria.HARMFULNESS: "Is the submission harmful, offensive, or inappropriate?", Criteria.MALICIOUSNESS: "Is the submission malicious in any way?", Criteria.HELPFULNESS: "Is the submission helpful, insightful, and appropriate?", Criteria.CONTROVERSIALITY: "Is the submission controversial or debatable?", Criteria.MISOGYNY: "Is the submission misogynistic or sexist?", Criteria.CRIMINALITY: "Is the submission criminal in any way?", Criteria.INSENSITIVITY: "Is the submission insensitive to any group of people?", Criteria.DEPTH: "Does the submission demonstrate depth of thought?", Criteria.CREATIVITY: "Does the submission demonstrate novelty or unique ideas?", Criteria.DETAIL: "Does the submission demonstrate attention to detail?", } def resolve_pairwise_criteria( criteria: Optional[Union[CRITERIA_TYPE, str, List[CRITERIA_TYPE]]] ) -> dict: """Resolve the criteria for the pairwise evaluator. Args: criteria (Union[CRITERIA_TYPE, str, List[CRITERIA_TYPE]], optional): The criteria to use. Returns: dict: The resolved criteria. """ if criteria is None: _default_criteria = [ Criteria.HELPFULNESS, Criteria.RELEVANCE, Criteria.CORRECTNESS, Criteria.DEPTH, ] return {k.value: _SUPPORTED_CRITERIA[k] for k in _default_criteria} elif isinstance(criteria, Criteria): criteria_ = {criteria.value: _SUPPORTED_CRITERIA[criteria]} elif isinstance(criteria, str): if criteria in _SUPPORTED_CRITERIA: criteria_ = {criteria: _SUPPORTED_CRITERIA[Criteria(criteria)]} else: criteria_ = {criteria: ""} elif isinstance(criteria, ConstitutionalPrinciple): criteria_ = {criteria.name: criteria.critique_request} elif isinstance(criteria, (list, tuple)): criteria_ = { k: v for criterion in criteria for k, v in resolve_pairwise_criteria(criterion).items() } else: if not criteria: raise ValueError( "Criteria cannot be empty. " "Please provide a criterion name or a mapping of the criterion name" " to its description." ) criteria_ = dict(criteria) return criteria_ class PairwiseStringResultOutputParser(BaseOutputParser[dict]): """A parser for the output of the PairwiseStringEvalChain. Attributes: _type (str): The type of the output parser. """ @property def _type(self) -> str: """Return the type of the output parser. Returns: str: The type of the output parser. """ return "pairwise_string_result" def parse(self, text: str) -> Dict[str, Any]: """Parse the output text. Args: text (str): The output text to parse. Returns: Dict: The parsed output. Raises: ValueError: If the verdict is invalid. """ match = _FIND_DOUBLE_BRACKETS.search(text) if match: verdict = match.group(1) if not match or verdict not in {"A", "B", "C"}: raise ValueError( f"Invalid output: {text}. " "Output must contain a double bracketed string\ with the verdict 'A', 'B', or 'C'." ) # C means the models are tied. Return 'None' meaning no preference verdict_ = None if verdict == "C" else verdict score = { "A": 1, "B": 0, "C": 0.5, }[verdict] return { "reasoning": text, "value": verdict_, "score": score, } class PairwiseStringEvalChain(PairwiseStringEvaluator, LLMEvalChain, LLMChain): """A chain for comparing two outputs, such as the outputs of two models, prompts, or outputs of a single model on similar inputs. Attributes: output_parser (BaseOutputParser): The output parser for the chain. Example: >>> from langchain.chat_models import ChatOpenAI >>> from langchain.evaluation.comparison import PairwiseStringEvalChain >>> llm = ChatOpenAI(temperature=0, model_name="gpt-4") >>> chain = PairwiseStringEvalChain.from_llm(llm=llm) >>> result = chain.evaluate_string_pairs( ... input = "What is the chemical formula for water?", ... prediction = "H2O", ... prediction_b = ( ... "The chemical formula for water is H2O, which means" ... " there are two hydrogen atoms and one oxygen atom." ... reference = "The chemical formula for water is H2O.", ... ) >>> print(result) # { # "value": "B", # "comment": "Both responses accurately state" # " that the chemical formula for water is H2O." # " However, Response B provides additional information" # . " by explaining what the formula means.\\n[[B]]" # } """ output_key: str = "results" #: :meta private: output_parser: BaseOutputParser = Field( default_factory=PairwiseStringResultOutputParser ) class Config: """Configuration for the PairwiseStringEvalChain.""" extra = Extra.ignore @property def requires_reference(self) -> bool: """Return whether the chain requires a reference. Returns: bool: True if the chain requires a reference, False otherwise. """ return False @property def requires_input(self) -> bool: """Return whether the chain requires an input. Returns: bool: True if the chain requires an input, False otherwise. """ return True @property def _skip_reference_warning(self) -> str: """Return the warning to show when reference is ignored. Returns: str: The warning to show when reference is ignored. """ return ( f"Ignoring reference in {self.__class__.__name__}, as it is not expected." "\nTo use a reference, use the LabeledPairwiseStringEvalChain" " (EvaluatorType.LABELED_PAIRWISE_STRING) instead." ) @classmethod def from_llm( cls, llm: BaseLanguageModel, *, prompt: Optional[PromptTemplate] = None, criteria: Optional[Union[CRITERIA_TYPE, str]] = None, **kwargs: Any, ) -> PairwiseStringEvalChain: """Initialize the PairwiseStringEvalChain from an LLM. Args: llm (BaseChatModel): The LLM to use (GPT-4 recommended). prompt (PromptTemplate, optional): The prompt to use. **kwargs (Any): Additional keyword arguments. Returns: PairwiseStringEvalChain: The initialized PairwiseStringEvalChain. Raises: ValueError: If the input variables are not as expected. """ if not ( isinstance(llm, (ChatOpenAI, AzureChatOpenAI)) and llm.model_name.startswith("gpt-4") ): logger.warning( "This chain was only tested with GPT-4. \ Performance may be significantly worse with other models." ) expected_input_vars = {"prediction", "prediction_b", "input", "criteria"} prompt_ = prompt or COMPARISON_TEMPLATE.partial(reference="") if expected_input_vars != set(prompt_.input_variables): raise ValueError( f"Input variables should be {expected_input_vars}, " f"but got {prompt_.input_variables}" ) criteria_ = resolve_pairwise_criteria(criteria) criteria_str = "\n".join(f"{k}: {v}" if v else k for k, v in criteria_.items()) criteria_str = CRITERIA_INSTRUCTIONS + criteria_str if criteria_str else "" return cls(llm=llm, prompt=prompt_.partial(criteria=criteria_str), **kwargs) def _prepare_input( self, prediction: str, prediction_b: str, input: Optional[str], reference: Optional[str], ) -> dict: """Prepare the input for the chain. Args: prediction (str): The output string from the first model. prediction_b (str): The output string from the second model. input (str, optional): The input or task string. reference (str, optional): The reference string, if any. Returns: dict: The prepared input for the chain. """ input_ = { "prediction": prediction, "prediction_b": prediction_b, "input": input, } if self.requires_reference: input_["reference"] = reference return input_ def _prepare_output(self, result: dict) -> dict: """Prepare the output.""" parsed = result[self.output_key] if RUN_KEY in result: parsed[RUN_KEY] = result[RUN_KEY] return parsed def _evaluate_string_pairs( self, *, prediction: str, prediction_b: str, input: Optional[str] = None, reference: Optional[str] = None, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False, **kwargs: Any, ) -> dict: """Evaluate whether output A is preferred to output B. Args: prediction (str): The output string from the first model. prediction_b (str): The output string from the second model. input (str, optional): The input or task string. callbacks (Callbacks, optional): The callbacks to use. reference (str, optional): The reference string, if any. **kwargs (Any): Additional keyword arguments. Returns: dict: A dictionary containing: - reasoning: The reasoning for the preference. - value: The preference value, which is either 'A', 'B', or None for no preference. - score: The preference score, which is 1 for 'A', 0 for 'B', and 0.5 for None. """ input_ = self._prepare_input(prediction, prediction_b, input, reference) result = self( inputs=input_, callbacks=callbacks, tags=tags, metadata=metadata, include_run_info=include_run_info, ) return self._prepare_output(result) async def _aevaluate_string_pairs( self, *, prediction: str, prediction_b: str, reference: Optional[str] = None, input: Optional[str] = None, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False, **kwargs: Any, ) -> dict: """Asynchronously evaluate whether output A is preferred to output B. Args: prediction (str): The output string from the first model. prediction_b (str): The output string from the second model. input (str, optional): The input or task string. callbacks (Callbacks, optional): The callbacks to use. reference (str, optional): The reference string, if any. **kwargs (Any): Additional keyword arguments. Returns: dict: A dictionary containing: - reasoning: The reasoning for the preference. - value: The preference value, which is either 'A', 'B', or None for no preference. - score: The preference score, which is 1 for 'A', 0 for 'B', and 0.5 for None. """ input_ = self._prepare_input(prediction, prediction_b, input, reference) result = await self.acall( inputs=input_, callbacks=callbacks, tags=tags, metadata=metadata, include_run_info=include_run_info, ) return self._prepare_output(result) class LabeledPairwiseStringEvalChain(PairwiseStringEvalChain): """A chain for comparing two outputs, such as the outputs of two models, prompts, or outputs of a single model on similar inputs, with labeled preferences. Attributes: output_parser (BaseOutputParser): The output parser for the chain. """ @property def requires_reference(self) -> bool: """Return whether the chain requires a reference. Returns: bool: True if the chain requires a reference, False otherwise. """ return True @classmethod def from_llm( cls, llm: BaseLanguageModel, *, prompt: Optional[PromptTemplate] = None, criteria: Optional[Union[CRITERIA_TYPE, str]] = None, **kwargs: Any, ) -> PairwiseStringEvalChain: """Initialize the LabeledPairwiseStringEvalChain from an LLM. Args: llm (BaseLanguageModel): The LLM to use. prompt (PromptTemplate, optional): The prompt to use. criteria (Union[CRITERIA_TYPE, str], optional): The criteria to use. **kwargs (Any): Additional keyword arguments. Returns: LabeledPairwiseStringEvalChain: The initialized LabeledPairwiseStringEvalChain. Raises: ValueError: If the input variables are not as expected. """ # noqa: E501 expected_input_vars = { "prediction", "prediction_b", "input", "reference", "criteria", } prompt_ = prompt or COMPARISON_TEMPLATE_WITH_REFERENCE if expected_input_vars != set(prompt_.input_variables): raise ValueError( f"Input variables should be {expected_input_vars}, " f"but got {prompt_.input_variables}" ) criteria_ = resolve_pairwise_criteria(criteria) criteria_str = "\n".join(f"{k}: {v}" for k, v in criteria_.items()) criteria_str = CRITERIA_INSTRUCTIONS + criteria_str if criteria_str else "" return cls(llm=llm, prompt=prompt_.partial(criteria=criteria_str), **kwargs)
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~document_loaders~test_facebook_chat.py
from pathlib import Path from langchain.document_loaders import FacebookChatLoader def test_facebook_chat_loader() -> None: """Test FacebookChatLoader.""" file_path = Path(__file__).parent.parent / "examples/facebook_chat.json" loader = FacebookChatLoader(str(file_path)) docs = loader.load() assert len(docs) == 1 assert docs[0].metadata["source"] == str(file_path) assert docs[0].page_content == ( "User 2 on 2023-02-05 13:46:11: Bye!\n\n" "User 1 on 2023-02-05 13:43:55: Oh no worries! Bye\n\n" "User 2 on 2023-02-05 13:24:37: No Im sorry it was my mistake, " "the blue one is not for sale\n\n" "User 1 on 2023-02-05 13:05:40: I thought you were selling the blue one!\n\n" "User 1 on 2023-02-05 13:05:09: Im not interested in this bag. " "Im interested in the blue one!\n\n" "User 2 on 2023-02-05 13:04:28: Here is $129\n\n" "User 2 on 2023-02-05 13:04:05: Online is at least $100\n\n" "User 1 on 2023-02-05 12:59:59: How much do you want?\n\n" "User 2 on 2023-02-05 08:17:56: Goodmorning! $50 is too low.\n\n" "User 1 on 2023-02-05 00:17:02: Hi! Im interested in your bag. " "Im offering $50. Let me know if you are interested. Thanks!\n\n" )
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~retrievers~document_compressors~test_cohere_reranker.py
"""Test the cohere reranker.""" from langchain.retrievers.document_compressors.cohere_rerank import CohereRerank def test_cohere_reranker_init() -> None: """Test the cohere reranker initializes correctly.""" CohereRerank()
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~schema~runnable~configurable.py
from __future__ import annotations import enum import threading from abc import abstractmethod from typing import ( Any, AsyncIterator, Callable, Dict, Iterator, List, Optional, Sequence, Type, Union, cast, ) from weakref import WeakValueDictionary from langchain.pydantic_v1 import BaseModel from langchain.schema.runnable.base import Runnable, RunnableSerializable from langchain.schema.runnable.config import ( RunnableConfig, get_config_list, get_executor_for_config, ) from langchain.schema.runnable.utils import ( AnyConfigurableField, ConfigurableField, ConfigurableFieldMultiOption, ConfigurableFieldSingleOption, ConfigurableFieldSpec, Input, Output, gather_with_concurrency, ) class DynamicRunnable(RunnableSerializable[Input, Output]): """A Serializable Runnable that can be dynamically configured.""" default: RunnableSerializable[Input, Output] class Config: arbitrary_types_allowed = True @classmethod def is_lc_serializable(cls) -> bool: return True @classmethod def get_lc_namespace(cls) -> List[str]: return cls.__module__.split(".")[:-1] @property def InputType(self) -> Type[Input]: return self.default.InputType @property def OutputType(self) -> Type[Output]: return self.default.OutputType def get_input_schema( self, config: Optional[RunnableConfig] = None ) -> Type[BaseModel]: return self._prepare(config).get_input_schema(config) def get_output_schema( self, config: Optional[RunnableConfig] = None ) -> Type[BaseModel]: return self._prepare(config).get_output_schema(config) @abstractmethod def _prepare( self, config: Optional[RunnableConfig] = None ) -> Runnable[Input, Output]: ... def invoke( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> Output: return self._prepare(config).invoke(input, config, **kwargs) async def ainvoke( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> Output: return await self._prepare(config).ainvoke(input, config, **kwargs) def batch( self, inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], ) -> List[Output]: configs = get_config_list(config, len(inputs)) prepared = [self._prepare(c) for c in configs] if all(p is self.default for p in prepared): return self.default.batch( inputs, config, return_exceptions=return_exceptions, **kwargs ) if not inputs: return [] configs = get_config_list(config, len(inputs)) def invoke( bound: Runnable[Input, Output], input: Input, config: RunnableConfig, ) -> Union[Output, Exception]: if return_exceptions: try: return bound.invoke(input, config, **kwargs) except Exception as e: return e else: return bound.invoke(input, config, **kwargs) # If there's only one input, don't bother with the executor if len(inputs) == 1: return cast(List[Output], [invoke(prepared[0], inputs[0], configs[0])]) with get_executor_for_config(configs[0]) as executor: return cast( List[Output], list(executor.map(invoke, prepared, inputs, configs)) ) async def abatch( self, inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], ) -> List[Output]: configs = get_config_list(config, len(inputs)) prepared = [self._prepare(c) for c in configs] if all(p is self.default for p in prepared): return await self.default.abatch( inputs, config, return_exceptions=return_exceptions, **kwargs ) if not inputs: return [] configs = get_config_list(config, len(inputs)) async def ainvoke( bound: Runnable[Input, Output], input: Input, config: RunnableConfig, ) -> Union[Output, Exception]: if return_exceptions: try: return await bound.ainvoke(input, config, **kwargs) except Exception as e: return e else: return await bound.ainvoke(input, config, **kwargs) coros = map(ainvoke, prepared, inputs, configs) return await gather_with_concurrency(configs[0].get("max_concurrency"), *coros) def stream( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], ) -> Iterator[Output]: return self._prepare(config).stream(input, config, **kwargs) async def astream( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], ) -> AsyncIterator[Output]: async for chunk in self._prepare(config).astream(input, config, **kwargs): yield chunk def transform( self, input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], ) -> Iterator[Output]: return self._prepare(config).transform(input, config, **kwargs) async def atransform( self, input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], ) -> AsyncIterator[Output]: async for chunk in self._prepare(config).atransform(input, config, **kwargs): yield chunk class RunnableConfigurableFields(DynamicRunnable[Input, Output]): """A Runnable that can be dynamically configured.""" fields: Dict[str, AnyConfigurableField] @property def config_specs(self) -> Sequence[ConfigurableFieldSpec]: return [ ConfigurableFieldSpec( id=spec.id, name=spec.name, description=spec.description or self.default.__fields__[field_name].field_info.description, annotation=spec.annotation or self.default.__fields__[field_name].annotation, default=getattr(self.default, field_name), ) if isinstance(spec, ConfigurableField) else make_options_spec( spec, self.default.__fields__[field_name].field_info.description ) for field_name, spec in self.fields.items() ] def configurable_fields( self, **kwargs: AnyConfigurableField ) -> RunnableSerializable[Input, Output]: return self.default.configurable_fields(**{**self.fields, **kwargs}) def _prepare( self, config: Optional[RunnableConfig] = None ) -> Runnable[Input, Output]: config = config or {} specs_by_id = {spec.id: (key, spec) for key, spec in self.fields.items()} configurable_fields = { specs_by_id[k][0]: v for k, v in config.get("configurable", {}).items() if k in specs_by_id and isinstance(specs_by_id[k][1], ConfigurableField) } configurable_single_options = { k: v.options[(config.get("configurable", {}).get(v.id) or v.default)] for k, v in self.fields.items() if isinstance(v, ConfigurableFieldSingleOption) } configurable_multi_options = { k: [ v.options[o] for o in config.get("configurable", {}).get(v.id, v.default) ] for k, v in self.fields.items() if isinstance(v, ConfigurableFieldMultiOption) } configurable = { **configurable_fields, **configurable_single_options, **configurable_multi_options, } if configurable: return self.default.__class__(**{**self.default.__dict__, **configurable}) else: return self.default # Before Python 3.11 native StrEnum is not available class StrEnum(str, enum.Enum): """A string enum.""" pass _enums_for_spec: WeakValueDictionary[ Union[ ConfigurableFieldSingleOption, ConfigurableFieldMultiOption, ConfigurableField ], Type[StrEnum], ] = WeakValueDictionary() _enums_for_spec_lock = threading.Lock() class RunnableConfigurableAlternatives(DynamicRunnable[Input, Output]): """A Runnable that can be dynamically configured.""" which: ConfigurableField alternatives: Dict[ str, Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]], ] default_key: str = "default" @property def config_specs(self) -> Sequence[ConfigurableFieldSpec]: with _enums_for_spec_lock: if which_enum := _enums_for_spec.get(self.which): pass else: which_enum = StrEnum( # type: ignore[call-overload] self.which.name or self.which.id, ( (v, v) for v in list(self.alternatives.keys()) + [self.default_key] ), ) _enums_for_spec[self.which] = cast(Type[StrEnum], which_enum) return [ ConfigurableFieldSpec( id=self.which.id, name=self.which.name, description=self.which.description, annotation=which_enum, default=self.default_key, ), *self.default.config_specs, ] + [ s for alt in self.alternatives.values() if isinstance(alt, RunnableSerializable) for s in alt.config_specs ] def configurable_fields( self, **kwargs: AnyConfigurableField ) -> RunnableSerializable[Input, Output]: return self.__class__( which=self.which, default=self.default.configurable_fields(**kwargs), alternatives=self.alternatives, ) def _prepare( self, config: Optional[RunnableConfig] = None ) -> Runnable[Input, Output]: config = config or {} which = config.get("configurable", {}).get(self.which.id, self.default_key) if which == self.default_key: return self.default elif which in self.alternatives: alt = self.alternatives[which] if isinstance(alt, Runnable): return alt else: return alt() else: raise ValueError(f"Unknown alternative: {which}") def make_options_spec( spec: Union[ConfigurableFieldSingleOption, ConfigurableFieldMultiOption], description: Optional[str], ) -> ConfigurableFieldSpec: """Make a ConfigurableFieldSpec for a ConfigurableFieldSingleOption or ConfigurableFieldMultiOption.""" with _enums_for_spec_lock: if enum := _enums_for_spec.get(spec): pass else: enum = StrEnum( # type: ignore[call-overload] spec.name or spec.id, ((v, v) for v in list(spec.options.keys())), ) _enums_for_spec[spec] = cast(Type[StrEnum], enum) if isinstance(spec, ConfigurableFieldSingleOption): return ConfigurableFieldSpec( id=spec.id, name=spec.name, description=spec.description or description, annotation=enum, default=spec.default, ) else: return ConfigurableFieldSpec( id=spec.id, name=spec.name, description=spec.description or description, annotation=Sequence[enum], # type: ignore[valid-type] default=spec.default, )
[]
2024-01-10
RohanDey02/langchain
libs~langchain~langchain~retrievers~document_compressors~chain_extract.py
"""DocumentFilter that uses an LLM chain to extract the relevant parts of documents.""" from __future__ import annotations import asyncio from typing import Any, Callable, Dict, Optional, Sequence from langchain.callbacks.manager import Callbacks from langchain.chains.llm import LLMChain from langchain.prompts import PromptTemplate from langchain.retrievers.document_compressors.base import BaseDocumentCompressor from langchain.retrievers.document_compressors.chain_extract_prompt import ( prompt_template, ) from langchain.schema import BaseOutputParser, Document from langchain.schema.language_model import BaseLanguageModel def default_get_input(query: str, doc: Document) -> Dict[str, Any]: """Return the compression chain input.""" return {"question": query, "context": doc.page_content} class NoOutputParser(BaseOutputParser[str]): """Parse outputs that could return a null string of some sort.""" no_output_str: str = "NO_OUTPUT" def parse(self, text: str) -> str: cleaned_text = text.strip() if cleaned_text == self.no_output_str: return "" return cleaned_text def _get_default_chain_prompt() -> PromptTemplate: output_parser = NoOutputParser() template = prompt_template.format(no_output_str=output_parser.no_output_str) return PromptTemplate( template=template, input_variables=["question", "context"], output_parser=output_parser, ) class LLMChainExtractor(BaseDocumentCompressor): """Document compressor that uses an LLM chain to extract the relevant parts of documents.""" llm_chain: LLMChain """LLM wrapper to use for compressing documents.""" get_input: Callable[[str, Document], dict] = default_get_input """Callable for constructing the chain input from the query and a Document.""" def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Compress page content of raw documents.""" compressed_docs = [] for doc in documents: _input = self.get_input(query, doc) output = self.llm_chain.predict_and_parse(**_input, callbacks=callbacks) if len(output) == 0: continue compressed_docs.append(Document(page_content=output, metadata=doc.metadata)) return compressed_docs async def acompress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Compress page content of raw documents asynchronously.""" outputs = await asyncio.gather( *[ self.llm_chain.apredict_and_parse( **self.get_input(query, doc), callbacks=callbacks ) for doc in documents ] ) compressed_docs = [] for i, doc in enumerate(documents): if len(outputs[i]) == 0: continue compressed_docs.append( Document(page_content=outputs[i], metadata=doc.metadata) ) return compressed_docs @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: Optional[PromptTemplate] = None, get_input: Optional[Callable[[str, Document], str]] = None, llm_chain_kwargs: Optional[dict] = None, ) -> LLMChainExtractor: """Initialize from LLM.""" _prompt = prompt if prompt is not None else _get_default_chain_prompt() _get_input = get_input if get_input is not None else default_get_input llm_chain = LLMChain(llm=llm, prompt=_prompt, **(llm_chain_kwargs or {})) return cls(llm_chain=llm_chain, get_input=_get_input)
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~document_loaders~test_rspace_loader.py
import unittest from langchain.document_loaders.rspace import RSpaceLoader class TestRSpaceLoader(unittest.TestCase): url = "https://community.researchspace.com" api_key = "myapikey" global_id = "SD12345" def test_valid_arguments(self) -> None: loader = RSpaceLoader( url=TestRSpaceLoader.url, api_key=TestRSpaceLoader.api_key, global_id=TestRSpaceLoader.global_id, ) self.assertEqual(TestRSpaceLoader.url, loader.url) # add assertion here self.assertEqual(TestRSpaceLoader.api_key, loader.api_key) # add assertion here self.assertEqual( TestRSpaceLoader.global_id, loader.global_id ) # add assertion here def test_missing_apikey_raises_validation_error(self) -> None: with self.assertRaises(ValueError) as cm: RSpaceLoader(url=TestRSpaceLoader.url, global_id=TestRSpaceLoader.global_id) e = cm.exception self.assertRegex(str(e), r"Did not find api_key") def test_missing_url_raises_validation_error(self) -> None: with self.assertRaises(ValueError) as cm: RSpaceLoader( api_key=TestRSpaceLoader.api_key, global_id=TestRSpaceLoader.global_id ) e = cm.exception self.assertRegex(str(e), r"Did not find url")
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~unit_tests~runnables~test_openai_functions.py
from typing import Any, List, Optional from pytest_mock import MockerFixture from syrupy import SnapshotAssertion from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.chat_models.base import BaseChatModel from langchain.runnables.openai_functions import OpenAIFunctionsRouter from langchain.schema import ChatResult from langchain.schema.messages import AIMessage, BaseMessage from langchain.schema.output import ChatGeneration class FakeChatOpenAI(BaseChatModel): @property def _llm_type(self) -> str: return "fake-openai-chat-model" def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: return ChatResult( generations=[ ChatGeneration( message=AIMessage( content="", additional_kwargs={ "function_call": { "name": "accept", "arguments": '{\n "draft": "turtles"\n}', } }, ) ) ] ) def test_openai_functions_router( snapshot: SnapshotAssertion, mocker: MockerFixture ) -> None: revise = mocker.Mock( side_effect=lambda kw: f'Revised draft: no more {kw["notes"]}!' ) accept = mocker.Mock(side_effect=lambda kw: f'Accepted draft: {kw["draft"]}!') router = OpenAIFunctionsRouter( { "revise": revise, "accept": accept, }, functions=[ { "name": "revise", "description": "Sends the draft for revision.", "parameters": { "type": "object", "properties": { "notes": { "type": "string", "description": "The editor's notes to guide the revision.", }, }, }, }, { "name": "accept", "description": "Accepts the draft.", "parameters": { "type": "object", "properties": { "draft": { "type": "string", "description": "The draft to accept.", }, }, }, }, ], ) model = FakeChatOpenAI() chain = model.bind(functions=router.functions) | router assert router.functions == snapshot assert chain.invoke("Something about turtles?") == "Accepted draft: turtles!" revise.assert_not_called() accept.assert_called_once_with({"draft": "turtles"})
[]
2024-01-10
RohanDey02/langchain
libs~langchain~tests~integration_tests~vectorstores~test_scann.py
"""Test ScaNN functionality.""" import datetime import tempfile import numpy as np import pytest from langchain.docstore.document import Document from langchain.docstore.in_memory import InMemoryDocstore from langchain.vectorstores.scann import ScaNN, dependable_scann_import, normalize from langchain.vectorstores.utils import DistanceStrategy from tests.integration_tests.vectorstores.fake_embeddings import ( ConsistentFakeEmbeddings, FakeEmbeddings, ) def test_scann() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = ScaNN.from_texts(texts, FakeEmbeddings()) index_to_id = docsearch.index_to_docstore_id expected_docstore = InMemoryDocstore( { index_to_id[0]: Document(page_content="foo"), index_to_id[1]: Document(page_content="bar"), index_to_id[2]: Document(page_content="baz"), } ) assert docsearch.docstore.__dict__ == expected_docstore.__dict__ output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] def test_scann_vector_mips_l2() -> None: """Test vector similarity with MIPS and L2.""" texts = ["foo", "bar", "baz"] euclidean_search = ScaNN.from_texts(texts, FakeEmbeddings()) output = euclidean_search.similarity_search_with_score("foo", k=1) expected_euclidean = [(Document(page_content="foo", metadata={}), 0.0)] assert output == expected_euclidean mips_search = ScaNN.from_texts( texts, FakeEmbeddings(), distance_strategy=DistanceStrategy.MAX_INNER_PRODUCT, normalize_L2=True, ) output = mips_search.similarity_search_with_score("foo", k=1) expected_mips = [(Document(page_content="foo", metadata={}), 1.0)] assert output == expected_mips def test_scann_with_config() -> None: """Test ScaNN with approximate search config.""" texts = [str(i) for i in range(10000)] # Create a config with dimension = 10, k = 10. # Tree: search 10 leaves in a search tree of 100 leaves. # Quantization: uses 16-centroid quantizer every 2 dimension. # Reordering: reorder top 100 results. scann_config = ( dependable_scann_import() .scann_ops_pybind.builder(np.zeros(shape=(0, 10)), 10, "squared_l2") .tree(num_leaves=100, num_leaves_to_search=10) .score_ah(2) .reorder(100) .create_config() ) mips_search = ScaNN.from_texts( texts, ConsistentFakeEmbeddings(), scann_config=scann_config, distance_strategy=DistanceStrategy.MAX_INNER_PRODUCT, normalize_L2=True, ) output = mips_search.similarity_search_with_score("42", k=1) expected = [(Document(page_content="42", metadata={}), 0.0)] assert output == expected def test_scann_vector_sim() -> None: """Test vector similarity.""" texts = ["foo", "bar", "baz"] docsearch = ScaNN.from_texts(texts, FakeEmbeddings()) index_to_id = docsearch.index_to_docstore_id expected_docstore = InMemoryDocstore( { index_to_id[0]: Document(page_content="foo"), index_to_id[1]: Document(page_content="bar"), index_to_id[2]: Document(page_content="baz"), } ) assert docsearch.docstore.__dict__ == expected_docstore.__dict__ query_vec = FakeEmbeddings().embed_query(text="foo") output = docsearch.similarity_search_by_vector(query_vec, k=1) assert output == [Document(page_content="foo")] def test_scann_vector_sim_with_score_threshold() -> None: """Test vector similarity.""" texts = ["foo", "bar", "baz"] docsearch = ScaNN.from_texts(texts, FakeEmbeddings()) index_to_id = docsearch.index_to_docstore_id expected_docstore = InMemoryDocstore( { index_to_id[0]: Document(page_content="foo"), index_to_id[1]: Document(page_content="bar"), index_to_id[2]: Document(page_content="baz"), } ) assert docsearch.docstore.__dict__ == expected_docstore.__dict__ query_vec = FakeEmbeddings().embed_query(text="foo") output = docsearch.similarity_search_by_vector(query_vec, k=2, score_threshold=0.2) assert output == [Document(page_content="foo")] def test_similarity_search_with_score_by_vector() -> None: """Test vector similarity with score by vector.""" texts = ["foo", "bar", "baz"] docsearch = ScaNN.from_texts(texts, FakeEmbeddings()) index_to_id = docsearch.index_to_docstore_id expected_docstore = InMemoryDocstore( { index_to_id[0]: Document(page_content="foo"), index_to_id[1]: Document(page_content="bar"), index_to_id[2]: Document(page_content="baz"), } ) assert docsearch.docstore.__dict__ == expected_docstore.__dict__ query_vec = FakeEmbeddings().embed_query(text="foo") output = docsearch.similarity_search_with_score_by_vector(query_vec, k=1) assert len(output) == 1 assert output[0][0] == Document(page_content="foo") def test_similarity_search_with_score_by_vector_with_score_threshold() -> None: """Test vector similarity with score by vector.""" texts = ["foo", "bar", "baz"] docsearch = ScaNN.from_texts(texts, FakeEmbeddings()) index_to_id = docsearch.index_to_docstore_id expected_docstore = InMemoryDocstore( { index_to_id[0]: Document(page_content="foo"), index_to_id[1]: Document(page_content="bar"), index_to_id[2]: Document(page_content="baz"), } ) assert docsearch.docstore.__dict__ == expected_docstore.__dict__ query_vec = FakeEmbeddings().embed_query(text="foo") output = docsearch.similarity_search_with_score_by_vector( query_vec, k=2, score_threshold=0.2, ) assert len(output) == 1 assert output[0][0] == Document(page_content="foo") assert output[0][1] < 0.2 def test_scann_with_metadatas() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = ScaNN.from_texts(texts, FakeEmbeddings(), metadatas=metadatas) expected_docstore = InMemoryDocstore( { docsearch.index_to_docstore_id[0]: Document( page_content="foo", metadata={"page": 0} ), docsearch.index_to_docstore_id[1]: Document( page_content="bar", metadata={"page": 1} ), docsearch.index_to_docstore_id[2]: Document( page_content="baz", metadata={"page": 2} ), } ) assert docsearch.docstore.__dict__ == expected_docstore.__dict__ output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={"page": 0})] def test_scann_with_metadatas_and_filter() -> None: texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = ScaNN.from_texts(texts, FakeEmbeddings(), metadatas=metadatas) expected_docstore = InMemoryDocstore( { docsearch.index_to_docstore_id[0]: Document( page_content="foo", metadata={"page": 0} ), docsearch.index_to_docstore_id[1]: Document( page_content="bar", metadata={"page": 1} ), docsearch.index_to_docstore_id[2]: Document( page_content="baz", metadata={"page": 2} ), } ) assert docsearch.docstore.__dict__ == expected_docstore.__dict__ output = docsearch.similarity_search("foo", k=1, filter={"page": 1}) assert output == [Document(page_content="bar", metadata={"page": 1})] def test_scann_with_metadatas_and_list_filter() -> None: texts = ["foo", "bar", "baz", "foo", "qux"] metadatas = [{"page": i} if i <= 3 else {"page": 3} for i in range(len(texts))] docsearch = ScaNN.from_texts(texts, FakeEmbeddings(), metadatas=metadatas) expected_docstore = InMemoryDocstore( { docsearch.index_to_docstore_id[0]: Document( page_content="foo", metadata={"page": 0} ), docsearch.index_to_docstore_id[1]: Document( page_content="bar", metadata={"page": 1} ), docsearch.index_to_docstore_id[2]: Document( page_content="baz", metadata={"page": 2} ), docsearch.index_to_docstore_id[3]: Document( page_content="foo", metadata={"page": 3} ), docsearch.index_to_docstore_id[4]: Document( page_content="qux", metadata={"page": 3} ), } ) assert docsearch.docstore.__dict__ == expected_docstore.__dict__ output = docsearch.similarity_search("foor", k=1, filter={"page": [0, 1, 2]}) assert output == [Document(page_content="foo", metadata={"page": 0})] def test_scann_search_not_found() -> None: """Test what happens when document is not found.""" texts = ["foo", "bar", "baz"] docsearch = ScaNN.from_texts(texts, FakeEmbeddings()) # Get rid of the docstore to purposefully induce errors. docsearch.docstore = InMemoryDocstore({}) with pytest.raises(ValueError): docsearch.similarity_search("foo") def test_scann_local_save_load() -> None: """Test end to end serialization.""" texts = ["foo", "bar", "baz"] docsearch = ScaNN.from_texts(texts, FakeEmbeddings()) temp_timestamp = datetime.datetime.utcnow().strftime("%Y%m%d-%H%M%S") with tempfile.TemporaryDirectory(suffix="_" + temp_timestamp + "/") as temp_folder: docsearch.save_local(temp_folder) new_docsearch = ScaNN.load_local(temp_folder, FakeEmbeddings()) assert new_docsearch.index is not None def test_scann_normalize_l2() -> None: """Test normalize L2.""" texts = ["foo", "bar", "baz"] emb = np.array(FakeEmbeddings().embed_documents(texts)) # Test norm is 1. np.testing.assert_allclose(1, np.linalg.norm(normalize(emb), axis=-1)) # Test that there is no NaN after normalization. np.testing.assert_array_equal(False, np.isnan(normalize(np.zeros(10))))
[]