date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
yitong241/LiteraLink
trash~textSplit.py
from langchain.text_splitter import CharacterTextSplitter def split_text(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks
[]
2024-01-10
yitong241/LiteraLink
functions~qg_openai.py
import openai import random from datasets import load_dataset API_KEY = "random_key" openai.api_key = API_KEY system_msgs = { 'easy': "You are a primary school teacher who designs easy reading comprehension questions \ for primary school students.", 'medium': "You are a middle school teacher who designs medium level reading comprehension questions \ for middle school students.", 'hard': "You are a university professor who designs difficult reading comprehension questions \ for collage students." } def response_parser(response, num_qns): qa_pairs = [] cleaned_response = [line.strip() for line in response.split('\n') if len(line.strip()) > 0] if len(cleaned_response) != 2 * num_qns: return None for i in range(0, 2 * num_qns, 2): q = cleaned_response[i] a = cleaned_response[i + 1] if ":" in q: q = q.split(":")[1] elif str(i / 2 + 1) + "." in q: q = q.split(str(i / 2 + 1) + ".")[1] if ":" in a: a = a.split(":")[1] elif str(i / 2 + 1) + "." in q: a = a.split(str(i / 2 + 1) + ".")[1] qa_pairs.append({ "question": q, "answer": a }) return qa_pairs def generate_questions(context, num_qns=5, difficulty_level='easy'): system_msg = system_msgs[difficulty_level] user_msg = "Please read the following context and generate {cnt} different question-answer pairs in a list. \ Each element of your list should contain one question-answer pair with clear separation. \ Context: {context}".format(cnt=num_qns, context=context) response = openai.ChatCompletion.create(model="gpt-3.5-turbo-16k", messages=[{"role": "system", "content": system_msg}, {"role": "user", "content": user_msg}]) print(response['choices'][0]['message']['content']) qa_pairs = response_parser(response['choices'][0]['message']['content'], num_qns) return qa_pairs if __name__ == '__main__': train_dataset, val_dataset, test_dataset = load_dataset("kmfoda/booksum", split=["train", "validation", "test"]) sample = random.choice(train_dataset) qa_pairs = generate_questions(sample["chapter"]) print(qa_pairs)
[]
2024-01-10
Joeya1ds/Discord-GPT3-Bot
GPTBot.py
import json import asyncio import openai import discord from discord import app_commands import logger with open('./config.json') as data: config = json.load(data) path = config['LOG_PATH'] openai.api_key = config['OPENAI_API_KEY'] class aclient(discord.Client): def __init__(self): super().__init__(intents=discord.Intents.all()) self.synced = False async def on_ready(self): await self.wait_until_ready() await self.change_presence(activity=discord.Activity( type=discord.ActivityType.listening, name='your prompts!' )) if not self.synced: await tree.sync() self.synced = True print('Logged in as:') print(f'{self.user.name}, {self.user.id}') print('Created by Joeyy#4628. The most up-to-date code can be found on github: https://github.com/Joeya1ds/Discord-GPT3-Bot') print('--------------------------------------------------------------------------------------------------------------------') client = aclient() tree = app_commands.CommandTree(client) @tree.command(name='ask', description='Ask the AI bot a question!') async def ask(interaction: discord.Interaction, prompt: str): user_id = interaction.user.id await interaction.response.defer() # Moderation API flagging moderate = openai.Moderation.create(input=prompt) flagged = moderate['results'][0]['flagged'] # Functions for generating and sending bot responses to chat messages if flagged: logger.create_log_file(path, user_id) logger.append_log(path, user_id, prompt) logger.append_warning_log(path, user_id) logger.append_newline_log(path, user_id) await asyncio.sleep(3) await interaction.followup.send('I cannot respond to what you have said, it has been flagged by the Moderation API.') print(f'User with ID: {user_id} has had a prompt flagged by the Moderation API. Consider checking logs.') return openairesponse = openai.Completion.create( engine='text-davinci-003', prompt=prompt, max_tokens=200, temperature=0.8, top_p=0.8, ) logger.create_log_file(path, user_id) logger.append_log(path, user_id, prompt) logger.append_token_log(path, user_id, openairesponse["usage"]["total_tokens"]) logger.append_newline_log(path, user_id) await asyncio.sleep(3) await interaction.followup.send(openairesponse['choices'][0]['text']) client.run(config['DISCORD_BOT_TOKEN'])
[]
2024-01-10
zbailey83/SCRaiPER
vision_scraper.py
from openai import OpenAI import subprocess import base64 import os from dotenv import load_dotenv load_dotenv() model = OpenAI() model.timeout = 30 def image_b64(image): with open(image, "rb") as f: return base64.b64encode(f.read()).decode() def url2screenshot(url): print(f"Crawling {url}") if os.path.exists("screenshot.jpg"): os.remove("screenshot.jpg") result = subprocess.run( ["node", "screenshot.js", url], capture_output=True, text=True ) exitcode = result.returncode output = result.stdout if not os.path.exists("screenshot.jpg"): print("ERROR") return "Failed to scrape the website" b64_image = image_b64("screenshot.jpg") return b64_image def visionExtract(b64_image, prompt): response = model.chat.completions.create( model="gpt-4-vision-preview", messages=[ { "role": "system", "content": "You a web scraper, your job is to extract information based on a screenshot of a website & user's instruction", } ] + [ { "role": "user", "content": [ { "type": "image_url", "image_url": f"data:image/jpeg;base64,{b64_image}", }, { "type": "text", "text": prompt, }, ], } ], max_tokens=1024, ) message = response.choices[0].message message_text = message.content if "ANSWER_NOT_FOUND" in message_text: print("ERROR: Answer not found") return ( "I was unable to find the answer on that website. Please pick another one" ) else: print(f"GPT: {message_text}") return message_text def visionCrawl(url, prompt): b64_image = url2screenshot(url) print("Image captured") if b64_image == "Failed to scrape the website": return "I was unable to crawl that site. Please pick a different one." else: return visionExtract(b64_image, prompt) response = visionCrawl("https://relevanceai.com/pricing", "Extract the pricing info") print(response)
[ "[{'type': 'image_url', 'image_url': ''}, {'type': 'text', 'text': PLACEHOLDER}]", "You a web scraper, your job is to extract information based on a screenshot of a website & user's instruction" ]
2024-01-10
kaiesalmahmud/DB-Connect
pages~accountsChat.py
import streamlit as st from pathlib import Path # from langchain.llms.openai import OpenAI from langchain.chat_models import ChatOpenAI from langchain.agents import create_sql_agent from langchain.sql_database import SQLDatabase from langchain.agents.agent_types import AgentType from langchain.callbacks import StreamlitCallbackHandler from langchain.agents.agent_toolkits import SQLDatabaseToolkit st.set_page_config(page_title="accountsChat", page_icon="🦜") st.title("🦜 accountsChat") # # User inputs # radio_opt = ["Use sample database - Chinook.db", "Connect to your SQL database"] # selected_opt = st.sidebar.radio(label="Choose suitable option", options=radio_opt) # if radio_opt.index(selected_opt) == 1: # db_uri = st.sidebar.text_input( # label="Database URI", placeholder="mysql://user:pass@hostname:port/db" # ) # else: # db_filepath = (Path(__file__).parent / "Chinook.db").absolute() # db_uri = f"sqlite:////{db_filepath}" import os openai_api_key = open('key.txt', 'r').read().strip() os.environ["OPENAI_API_KEY"] = openai_api_key DB_PASSWORD = open('pass.txt', 'r').read().strip() from dotenv import load_dotenv load_dotenv() host="ep-wispy-forest-393400.ap-southeast-1.aws.neon.tech" port="5432" database="accountsDB" username="db_user" password=DB_PASSWORD db_uri = f"postgresql+psycopg2://{username}:{password}@{host}:{port}/{database}" # openai_api_key = st.sidebar.text_input( # label="OpenAI API Key", # type="password", # ) # Check user inputs if not db_uri: st.info("Please enter database URI to connect to your database.") st.stop() if not openai_api_key: st.info("Please add your OpenAI API key to continue.") st.stop() # Setup agent # llm = OpenAI(openai_api_key=openai_api_key, temperature=0, streaming=True) llm = ChatOpenAI(model_name="gpt-4", temperature=0) @st.cache_resource(ttl="2h") def configure_db(db_uri): return SQLDatabase.from_uri(database_uri=db_uri) db = configure_db(db_uri) toolkit = SQLDatabaseToolkit(db=db, llm=llm) SQL_PREFIX = """You are an agent designed to interact with a SQL database. Given an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database. Never query for all the columns from a specific table, only ask for the relevant columns given the question. You have access to tools for interacting with the database. Only use the below tools. Only use the information returned by the below tools to construct your final answer. You MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again. DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database. If the question does not seem related to the database, just return "I don't know" as the answer. Following are the unique values in some of the columns of the database. Search for these values in their corresponding columns to get the relevant information: Unique values in column 'cost_category': ["Fixed Asset" "Field Asset" "Receipt" "Operating Expense" "Administrative Expense" "None"] Unique values in column 'cost_subcategory': ["Computers & Printers" "Software & Subscriptions" "Furniture & Fixtures" "None" "Pantry Supplies" "Office Stationary" "Travelling & Conveyance" "Misc. Exp" "ISP" "City Group Accounts" "Electrician - Tv Installation" "Stata IT Limited" "Sheba.xyz- digiGO" "Salary (Op)" "Advertising" "Hasan & Brothers" "CEO" "KPI Bonus" "Final Settlement" "Software & Subscription Fees" "Electric Equipment" "IOU" "Medicine" "Training & Development" "Sales" "Bill Reimbursement" "Lunch Allowance" "Balance B/D" "Deployment Equipments " "Retail Partner" "Electric Tools - Tv Installation" "Office Decoration/Reconstruction" "Entertainment (Ops)" "Carrying Cost" "Entertainment (Admin)" "Festival Bonus" "Office Refreshment" "Office Equipment" "Bkash" "Router"] Unique values in column 'holder_bearer_vendor_quantity_device_name': ["Electric Spare Tools" "75" "None" "Salim" "Rakibul" "Shoikot" "Morshed" "Android Box Tx6" "ISP" "Tv Frame" "25" "Hasan & Brothers" "Digi Jadoo Broadband Ltd" "H & H Construction" "Teamviewer" "Tea Spices" "Amzad" "Vendor" "100" "Omran" "Flash Net Enterprise" "Grid Ventures Ltd" "32 Tv" "Aman" "Retail Partner" "Printer" "Shahin" "Umbrella" "Masud" "A/C Payable" "Tea" "Coffee" "Staffs" "Emon" "Flat flexible cable" "May" "Working Capital" "Eid-ul-fitre" "Shamim" "Rubab" "SR" "CEO" "WC" "SSD 256 GB" "Accounts (AD-IQ)" "Retail Partner's Payment" "Condensed Milk" "Electrician" "Farib & Indec" "Jun" "Asif" "Driver" "Nut+Boltu" "Sugar" "Labib" "April" "Coffee Mate" "Tonner Cartridge" "Router"] Unique values in column 'source': ["50K" "SR" "None"] Following are some exmaple question and their corresponding queries: Question: give me top 10 cash out in may? Query: SELECT date, details, cash_out FROM ledger WHERE EXTRACT(MONTH FROM date) = 5 AND cash_out IS NOT NULL ORDER BY cash_out DESC LIMIT 10; Observation: When ordering by a column in descending order, the top values will be the largest values in the column. """ SQL_FUNCTIONS_SUFFIX = """I should look at the tables in the database to see what I can query. Then I should query the schema of the most relevant tables.""" FORMAT_INSTRUCTIONS = """Use the following format: Question: the input question you must answer Thought: you should always think about what to do Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question """ # agent = create_sql_agent( # llm=llm, # toolkit=toolkit, # verbose=True, # agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION, # ) agent = create_sql_agent( llm=llm, toolkit=toolkit, verbose=True, agent_type=AgentType.OPENAI_FUNCTIONS, prefix=SQL_PREFIX, suffix=SQL_FUNCTIONS_SUFFIX, format_instructions=FORMAT_INSTRUCTIONS, # agent_executor_kwargs = {'return_intermediate_steps': True} ) if "messages" not in st.session_state or st.sidebar.button("Clear message history"): st.session_state["messages"] = [{"role": "assistant", "content": "You are connected with accountsDB. Ask questions!"}] for msg in st.session_state.messages: st.chat_message(msg["role"]).write(msg["content"]) user_query = st.chat_input(placeholder="Ask me anything!") if user_query: st.session_state.messages.append({"role": "user", "content": user_query}) st.chat_message("user").write(user_query) with st.chat_message("assistant"): st_cb = StreamlitCallbackHandler(st.container()) response = agent.run(user_query, callbacks=[st_cb]) st.session_state.messages.append({"role": "assistant", "content": response}) st.write(response)
[ "You are connected with accountsDB. Ask questions!" ]
2024-01-10
kaiesalmahmud/DB-Connect
pages~accountsDB.py
import os import openai from langchain.agents import create_sql_agent from langchain.agents.agent_toolkits import SQLDatabaseToolkit from langchain.sql_database import SQLDatabase from langchain.llms.openai import OpenAI from langchain.agents import AgentExecutor from langchain.agents.agent_types import AgentType from langchain.chat_models import ChatOpenAI import streamlit as st API_KEY = open('key.txt', 'r').read().strip() DB_PASSWORD = open('pass.txt', 'r').read().strip() os.environ["OPENAI_API_KEY"] = API_KEY openai.api_key = API_KEY from dotenv import load_dotenv load_dotenv() SQL_PREFIX = """You are an agent designed to interact with a SQL database. Given an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database. Never query for all the columns from a specific table, only ask for the relevant columns given the question. You have access to tools for interacting with the database. Only use the below tools. Only use the information returned by the below tools to construct your final answer. You MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again. DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database. If the question does not seem related to the database, just return "I don't know" as the answer. Following are the unique values in some of the columns of the database. Search for these values in their corresponding columns to get the relevant information: Unique values in column 'cost_category': ["Fixed Asset" "Field Asset" "Receipt" "Operating Expense" "Administrative Expense" "None"] Unique values in column 'cost_subcategory': ["Computers & Printers" "Software & Subscriptions" "Furniture & Fixtures" "None" "Pantry Supplies" "Office Stationary" "Travelling & Conveyance" "Misc. Exp" "ISP" "City Group Accounts" "Electrician - Tv Installation" "Stata IT Limited" "Sheba.xyz- digiGO" "Salary (Op)" "Advertising" "Hasan & Brothers" "CEO" "KPI Bonus" "Final Settlement" "Software & Subscription Fees" "Electric Equipment" "IOU" "Medicine" "Training & Development" "Sales" "Bill Reimbursement" "Lunch Allowance" "Balance B/D" "Deployment Equipments " "Retail Partner" "Electric Tools - Tv Installation" "Office Decoration/Reconstruction" "Entertainment (Ops)" "Carrying Cost" "Entertainment (Admin)" "Festival Bonus" "Office Refreshment" "Office Equipment" "Bkash" "Router"] Unique values in column 'holder_bearer_vendor_quantity_device_name': ["Electric Spare Tools" "75" "None" "Salim" "Rakibul" "Shoikot" "Morshed" "Android Box Tx6" "ISP" "Tv Frame" "25" "Hasan & Brothers" "Digi Jadoo Broadband Ltd" "H & H Construction" "Teamviewer" "Tea Spices" "Amzad" "Vendor" "100" "Omran" "Flash Net Enterprise" "Grid Ventures Ltd" "32 Tv" "Aman" "Retail Partner" "Printer" "Shahin" "Umbrella" "Masud" "A/C Payable" "Tea" "Coffee" "Staffs" "Emon" "Flat flexible cable" "May" "Working Capital" "Eid-ul-fitre" "Shamim" "Rubab" "SR" "CEO" "WC" "SSD 256 GB" "Accounts (AD-IQ)" "Retail Partner's Payment" "Condensed Milk" "Electrician" "Farib & Indec" "Jun" "Asif" "Driver" "Nut+Boltu" "Sugar" "Labib" "April" "Coffee Mate" "Tonner Cartridge" "Router"] Unique values in column 'source': ["50K" "SR" "None"] Following are some exmaple question and their corresponding queries: Question: give me top 10 cash out in may? Query: SELECT date, details, cash_out FROM ledger WHERE EXTRACT(MONTH FROM date) = 5 AND cash_out IS NOT NULL ORDER BY cash_out DESC LIMIT 10; Observation: When ordering by a column in descending order, the top values will be the largest values in the column. """ SQL_FUNCTIONS_SUFFIX = """I should look at the tables in the database to see what I can query. Then I should query the schema of the most relevant tables.""" FORMAT_INSTRUCTIONS = """Use the following format: Question: the input question you must answer Thought: you should always think about what to do Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question """ def get_response(input_text): response = agent_executor(input_text) # print(response['intermediate_steps'][1][0].tool) # print(response['intermediate_steps'][-1][0].tool) # print(response['output']) if response['intermediate_steps'][1][0].tool == 'sql_db_schema': schema = response['intermediate_steps'][1][1] else: schema = None if response['intermediate_steps'][-1][0].tool == 'sql_db_query': query = response['intermediate_steps'][-1][0].tool_input query_output = response['intermediate_steps'][-1][1] else: query, query_output = None, None answer = response['output'] return schema, query, query_output, answer def explain(query, schema, query_output): message_history = [{"role": "user", "content": f"""You are a SQL query explainer bot. That means you will explain the logic of a SQL query. There is a postgreSQL database table with the following table: {schema} A SQL query is executed on the table and it returns the following result: {query_output} I will give you the SQL query executed to get the result and you will explain the logic executed in the query. Make the explanation brief and simple. It will be used as the explanation of the results. Do not mention the query itself. No need to explain the total query. Just explain the logic of the query. Reply only with the explaination to further input. If you understand, say OK."""}, {"role": "assistant", "content": f"OK"}] message_history.append({"role": "user", "content": query}) completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=message_history, ) explaination = completion.choices[0].message.content return explaination host="ep-wispy-forest-393400.ap-southeast-1.aws.neon.tech" port="5432" database="accountsDB" username="db_user" password=DB_PASSWORD # # Create the sidebar for DB connection parameters # st.sidebar.header("Connect Your Database") # host = st.sidebar.text_input("Host", value=host) # port = st.sidebar.text_input("Port", value=port) # username = st.sidebar.text_input("Username", value=username) # password = st.sidebar.text_input("Password", value=password) # database = st.sidebar.text_input("Database", value=database) # # submit_button = st.sidebar.checkbox("Connect") db = SQLDatabase.from_uri(f"postgresql+psycopg2://{username}:{password}@{host}:{port}/{database}") llm = ChatOpenAI(model_name="gpt-4", temperature=0) toolkit = SQLDatabaseToolkit(db=db, llm=llm) agent_executor = create_sql_agent( llm=llm, toolkit=toolkit, verbose=True, agent_type=AgentType.OPENAI_FUNCTIONS, prefix=SQL_PREFIX, suffix=SQL_FUNCTIONS_SUFFIX, format_instructions=FORMAT_INSTRUCTIONS, agent_executor_kwargs = {'return_intermediate_steps': True} ) # Create the main panel st.title("connectDB :star2:") st.subheader("You are connected to AD-IQ Accounts database!!") st.caption("The database contains the Daily Cash Input Output data for AD-IQ Accounts from Jan to June") with st.expander("Database properties"): # st.divider() # st.write("*--Helpful Info--*") st.subheader("Cost categories:") st.text(""" "Fixed Asset" "Field Asset" "Receipt" "Operating Expense" "Administrative Expense" "None" """) st.subheader("Cost Subcategories:") st.text(""" "Computers & Printers" "Software & Subscriptions" "Furniture & Fixtures" "None" "Pantry Supplies" "Office Stationary" "Travelling & Conveyance" "Misc. Exp" "ISP" "City Group Accounts" "Electrician - Tv Installation" "Stata IT Limited" "Sheba.xyz- digiGO" "Salary (Op)" "Advertising" "Hasan & Brothers" "CEO" "KPI Bonus" "Final Settlement" "Software & Subscription Fees" "Electric Equipment" "IOU" "Medicine" "Training & Development" "Sales" "Bill Reimbursement" "Lunch Allowance" "Balance B/D" "Deployment Equipments " "Retail Partner" "Electric Tools - Tv Installation" "Office Decoration/Reconstruction" "Entertainment (Ops)" "Carrying Cost" "Entertainment (Admin)" "Festival Bonus" "Office Refreshment" "Office Equipment" "Bkash" "Router" """) st.subheader("List of Holder/Bearer/Vendor:") st.text(""" "Electric Spare Tools" "75" "None" "Salim" "Rakibul" "Shoikot" "Morshed" "Android Box Tx6" "ISP" "Tv Frame" "25" "Hasan & Brothers" "Digi Jadoo Broadband Ltd" "H & H Construction" "Teamviewer" "Tea Spices" "Amzad" "Vendor" "100" "Omran" "Flash Net Enterprise" "Grid Ventures Ltd" "32 Tv" "Aman" "Retail Partner" "Printer" "Shahin" "Umbrella" "Masud" "A/C Payable" "Tea" "Coffee" "Staffs" "Emon" "Flat flexible cable" "May" "Working Capital" "Eid-ul-fitre" "Shamim" "Rubab" "SR" "CEO" "WC" "SSD 256 GB" "Accounts (AD-IQ)" "Retail Partner's Payment" "Condensed Milk" "Electrician" "Farib & Indec" "Jun" "Asif" "Driver" "Nut+Boltu" "Sugar" "Labib" "April" "Coffee Mate" "Tonner Cartridge" "Router" """) # st.divider() with st.expander("FAQs"): st.text(""" 1. Describe the database. 2. What is the timeline of the data present? 3. Who are the top 5 most expensive vendors? 4. What is the total amount of money spent on 'Electrician'? 5. How many different cost categories are there? 6. What is the total ISP cost in May? 7. Would you happen to have any information about the CEO? 8. Give me all expenses regarding Rubab? 9. Do we have any scope to reduce the expenses on operations? """) # Get the user's natural question input question = st.text_input(":blue[Ask a question:]", placeholder="Enter your question.") # Create a submit button for executing the query query_button = st.button("Submit") # Execute the query when the submit button is clicked if query_button: # Display the results as a dataframe # Execute the query and get the results as a dataframe try: with st.spinner('Calculating...'): print("\nQuestion: " + str(question)) # print(str(question)) schema, query, query_output, answer = get_response(question) if query: explaination = explain(query, schema, query_output) else: explaination = None # explaination = explain(query, schema, query_output) # if query: # print("\nExplaination: " + str(explaination)) print("\nExplaination: " + str(explaination)) st.subheader("Answer :robot_face:") st.write(answer) try: if query: st.divider() # st.caption("Query:") # st.caption(query) st.caption("Explaination:") st.caption(explaination) st.divider() except Exception as e: print(e) st.info(":coffee: _Did that answer your question? If not, try to be more specific._") except: st.warning(":wave: Please enter a valid question. Try to be as specific as possible.")
[ "OK", "You are a SQL query explainer bot. That means you will explain the logic of a SQL query. \n There is a postgreSQL database table with the following table:\n\n PLACEHOLDER \n \n A SQL query is executed on the table and it returns the following result:\n\n PLACEHOLDER\n\n I will give you the SQL query executed to get the result and you will explain the logic executed in the query.\n Make the explanation brief and simple. It will be used as the explanation of the results. Do not mention the query itself.\n No need to explain the total query. Just explain the logic of the query.\n Reply only with the explaination to further input. If you understand, say OK." ]
2024-01-10
kaiesalmahmud/DB-Connect
withPsycopg.py
import os from langchain.agents import create_sql_agent from langchain.agents.agent_toolkits import SQLDatabaseToolkit from langchain.sql_database import SQLDatabase from langchain.llms.openai import OpenAI from langchain.agents import AgentExecutor from langchain.agents.agent_types import AgentType from langchain.chat_models import ChatOpenAI import psycopg2 import pandas as pd import streamlit as st API_KEY = open('key.txt', 'r').read().strip() os.environ["OPENAI_API_KEY"] = API_KEY from dotenv import load_dotenv load_dotenv() host="localhost" port="5432" database="ReportDB" user="postgres" password="postgres" db = SQLDatabase.from_uri(f"postgresql+psycopg2://{user}:{password}@{host}:{port}/{database}") llm = ChatOpenAI(model_name="gpt-4", temperature=0) toolkit = SQLDatabaseToolkit(db=db, llm=llm) # Implement: If null value is found at the top while trying to sort in descending order, try to look for the next non-null value. SQL_PREFIX = """You are an agent designed to interact with a SQL database. Given an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database. Never query for all the columns from a specific table, only ask for the relevant columns given the question. You have access to tools for interacting with the database. Only use the below tools. Only use the information returned by the below tools to construct your final answer. You MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again. DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database. If the question does not seem related to the database, just return "I don't know" as the answer. SQL query format example: Question: "Who are the top 5 retailers for the month of May in terms of total play time?" Query: SELECT "Retail Name", SUM("Total Play time") as total_play_time FROM "dailyLog" WHERE EXTRACT(MONTH FROM "Date") = 5 GROUP BY "Retail Name" ORDER BY total_play_time DESC LIMIT 5 """ SQL_FUNCTIONS_SUFFIX = """I should look at the tables in the database to see what I can query. Then I should query the schema of the most relevant tables.""" FORMAT_INSTRUCTIONS = """Use the following format: Question: the input question you must answer Thought: you should always think about what to do Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question""" # Define function to connect to the database using input parameters def connect_to_database(host, port, username, password, database): connection = psycopg2.connect( host=host, port=port, database=database, user=username, password=password ) return connection def get_response(input_text): response = agent_executor(input_text) sql_query = response['intermediate_steps'][-1][0].tool_input message = response['intermediate_steps'][-1][0].message_log[0].content answer = response['output'] return sql_query, message, answer def sqlout(connection,query): cursor = connection.cursor() cursor.execute(query) # Given column information column_info = list(cursor.description) # Extract column names column_names = [column.name for column in column_info] # Create a DataFrame df = pd.DataFrame(columns=range(len(column_names))) # Fetch all the rows returned by the query rows = cursor.fetchall() df=df.from_records(rows).astype(str) # Set column names as column headers df.columns = column_names # st.text(query) st.dataframe(df,width=None) agent_executor = create_sql_agent( llm=llm, toolkit=toolkit, verbose=True, agent_type=AgentType.OPENAI_FUNCTIONS, prefix=SQL_PREFIX, suffix=SQL_FUNCTIONS_SUFFIX, format_instructions=FORMAT_INSTRUCTIONS, agent_executor_kwargs = {'return_intermediate_steps': True} ) # Create the sidebar for DB connection parameters st.sidebar.header("Connect Your Database") host = st.sidebar.text_input("Host", value="localhost") port = st.sidebar.text_input("Port", value="5432") username = st.sidebar.text_input("Username", value="postgres") password = st.sidebar.text_input("Password", value="postgres") database = st.sidebar.text_input("Database", value="ReportDB") submit_button = st.sidebar.checkbox("Connect") # Create the main panel st.title("DB Connect :cyclone:") st.subheader("Connect your database and ask questions!!") connection = None # Check if the submit button is clicked and establish the database connection if submit_button: try: connection = connect_to_database(host, port, user, password, database) except: connection=None if connection: st.sidebar.success("Connected to the database!") else: st.sidebar.error("Failed to connect to the database. Please check your connection parameters.") st.divider() st.write("*--Frequently Asked--*") st.text(""" 1. Describe the database. 2. What is the timeline of the data present? 3. What is the average total play time for the month of April? 4. Who are the top 5 retailers for the month of May in terms of total play time? 5. How many areas are the shops located at? 6. What is the combined total play time for 5th May? 7. List the top 5 areas with least average efficiency. 8. List of most not opened shops for the month of April. 9. Which shops has most count of playtime of less than 10 hours? 10. Which shops has the most count of start time after 10 am? """) st.divider() # Get the user's natural question input question = st.text_input(":blue[Ask a question:]", placeholder="Enter your question") # Create a submit button for executing the query query_button = st.button("Submit") # Execute the query when the submit button is clicked if query_button: if connection: # Display the results as a dataframe # Execute the query and get the results as a dataframe try: with st.spinner('Calculating...'): sql_query, message, answer = get_response(question) st.subheader("Answer :robot_face:") st.write(answer) # results_df = sqlout(connection, sql_query) st.info(":coffee: _Did that answer your question? If not, try to be more specific._") except: st.warning(":wave: Please enter a valid question. Try to be as specific as possible.") else: st.warning(":wave: Please connect to the database first.")
[]
2024-01-10
kaiesalmahmud/DB-Connect
pages~basicChat.py
from langchain.chains import LLMChain from langchain.llms import OpenAI from langchain.memory import ConversationBufferMemory from langchain.memory.chat_message_histories import StreamlitChatMessageHistory from langchain.prompts import PromptTemplate import streamlit as st st.set_page_config(page_title="Basic Chat", page_icon="📖") st.title("📖 Basic Chat") # """ # A basic example of using StreamlitChatMessageHistory to help LLMChain remember messages in a conversation. # The messages are stored in Session State across re-runs automatically. You can view the contents of Session State # in the expander below. View the # [source code for this app](https://github.com/langchain-ai/streamlit-agent/blob/main/streamlit_agent/basic_memory.py). # """ # Set up memory msgs = StreamlitChatMessageHistory(key="langchain_messages") memory = ConversationBufferMemory(chat_memory=msgs) if len(msgs.messages) == 0: msgs.add_ai_message("How can I help you?") view_messages = st.expander("View the message contents in session state") # # Get an OpenAI API Key before continuing # if "openai_api_key" in st.secrets: # openai_api_key = st.secrets.openai_api_key # else: # openai_api_key = st.sidebar.text_input("OpenAI API Key", type="password") import os openai_api_key = open('key.txt', 'r').read().strip() os.environ["OPENAI_API_KEY"] = openai_api_key from dotenv import load_dotenv load_dotenv() if not openai_api_key: st.info("Enter an OpenAI API Key to continue") st.stop() # Set up the LLMChain, passing in memory template = """You are an AI chatbot having a conversation with a human. {history} Human: {human_input} AI: """ prompt = PromptTemplate(input_variables=["history", "human_input"], template=template) llm_chain = LLMChain(llm=OpenAI(openai_api_key=openai_api_key), prompt=prompt, memory=memory) # Render current messages from StreamlitChatMessageHistory for msg in msgs.messages: st.chat_message(msg.type).write(msg.content) # If user inputs a new prompt, generate and draw a new response if prompt := st.chat_input(): st.chat_message("human").write(prompt) # Note: new messages are saved to history automatically by Langchain during run response = llm_chain.run(prompt) st.chat_message("ai").write(response) # Draw the messages at the end, so newly generated ones show up immediately with view_messages: """ Memory initialized with: ```python msgs = StreamlitChatMessageHistory(key="langchain_messages") memory = ConversationBufferMemory(chat_memory=msgs) ``` Contents of `st.session_state.langchain_messages`: """ view_messages.json(st.session_state.langchain_messages)
[ "You are an AI chatbot having a conversation with a human.\n\n{history}\nHuman: {human_input}\nAI: ", "human_input" ]
2024-01-10
kaiesalmahmud/DB-Connect
pages~dailyLogDB.py
import os import openai from langchain.agents import create_sql_agent from langchain.agents.agent_toolkits import SQLDatabaseToolkit from langchain.sql_database import SQLDatabase from langchain.llms.openai import OpenAI from langchain.agents import AgentExecutor from langchain.agents.agent_types import AgentType from langchain.chat_models import ChatOpenAI import streamlit as st API_KEY = open('key.txt', 'r').read().strip() DB_PASSWORD = open('pass.txt', 'r').read().strip() os.environ["OPENAI_API_KEY"] = API_KEY openai.api_key = API_KEY from dotenv import load_dotenv load_dotenv() # Implement: If null value is found at the top while trying to sort in descending order, try to look for the next non-null value. SQL_PREFIX = """You are an agent designed to interact with a SQL database. Given an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database. Never query for all the columns from a specific table, only ask for the relevant columns given the question. You have access to tools for interacting with the database. Only use the below tools. Only use the information returned by the below tools to construct your final answer. You MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again. DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database. If the question does not seem related to the database, just return "I don't know" as the answer. SQL query format example: Question: "Who are the top 5 retailers for the month of May in terms of total play time?" Query: SELECT "Retail Name", SUM("Total Play time") as total_play_time FROM "dailyLog" WHERE EXTRACT(MONTH FROM "Date") = 5 AND total_play_time IS NOT NULL GROUP BY "Retail Name" ORDER BY total_play_time DESC LIMIT 5 Observation: When ordering by a column in descending order, the top values will be the largest values in the column. """ SQL_FUNCTIONS_SUFFIX = """I should look at the tables in the database to see what I can query. Then I should query the schema of the most relevant tables.""" FORMAT_INSTRUCTIONS = """Use the following format: Question: the input question you must answer Thought: you should always think about what to do Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question """ def get_response(input_text): response = agent_executor(input_text) # print(response['intermediate_steps'][1][0].tool) # print(response['intermediate_steps'][-1][0].tool) # print(response['output']) if response['intermediate_steps'][1][0].tool == 'sql_db_schema': schema = response['intermediate_steps'][1][1] else: schema = None if response['intermediate_steps'][-1][0].tool == 'sql_db_query': query = response['intermediate_steps'][-1][0].tool_input query_output = response['intermediate_steps'][-1][1] else: query, query_output = None, None answer = response['output'] return schema, query, query_output, answer def explain(query, schema, query_output): message_history = [{"role": "user", "content": f"""You are a SQL query explainer bot. That means you will explain the logic of a SQL query. There is a postgreSQL database table with the following table: {schema} A SQL query is executed on the table and it returns the following result: {query_output} I will give you the SQL query executed to get the result and you will explain the logic executed in the query. Make the explanation brief and simple. It will be used as the explanation of the results. Do not mention the query itself. No need to explain the total query. Just explain the logic of the query. Reply only with the explaination to further input. If you understand, say OK."""}, {"role": "assistant", "content": f"OK"}] message_history.append({"role": "user", "content": query}) completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=message_history, ) explaination = completion.choices[0].message.content return explaination host="localhost" port="5432" database="ReportDB" username="postgres" password="postgres" # # Create the sidebar for DB connection parameters # st.sidebar.header("Connect Your Database") # host = st.sidebar.text_input("Host", value=host) # port = st.sidebar.text_input("Port", value=port) # username = st.sidebar.text_input("Username", value=username) # password = st.sidebar.text_input("Password", value=password) # database = st.sidebar.text_input("Database", value=database) # # submit_button = st.sidebar.checkbox("Connect") db = SQLDatabase.from_uri(f"postgresql+psycopg2://{username}:{password}@{host}:{port}/{database}") llm = ChatOpenAI(model_name="gpt-4", temperature=0) toolkit = SQLDatabaseToolkit(db=db, llm=llm) agent_executor = create_sql_agent( llm=llm, toolkit=toolkit, verbose=True, agent_type=AgentType.OPENAI_FUNCTIONS, prefix=SQL_PREFIX, suffix=SQL_FUNCTIONS_SUFFIX, format_instructions=FORMAT_INSTRUCTIONS, agent_executor_kwargs = {'return_intermediate_steps': True} ) # Create the main panel st.title("connectDB :star2:") st.subheader("You are connected to AD-IQ DailyLog database!!") st.caption("The database contains the Daily Log data for AD-IQ screens from April 1st to June 17th") with st.expander("Database properties"): st.text(""" "Date" "Retail Name" "Zone" "Location" "Total Play time" "Efficiency (percent)" "Start Time" "End Time" "Device Offline time" "Remarks" """) with st.expander("FAQs"): st.text(""" 1. Describe the database. 2. What is the timeline of the data present? 3. What is the average total play time for the month of April? 4. Who are the top 5 retailers for the month of May in terms of total play time? 5. How many areas are the shops located at? 6. What is the combined total play time for 5th May? 7. List the top 5 areas with least average efficiency. 8. List of most not opened shops for the month of April. 9. Which shops has most count of playtime of less than 10 hours? 10. Which shops has the most count of start time after 10 am? """) # Get the user's natural question input question = st.text_input(":blue[Ask a question:]", placeholder="Enter your question.") # Create a submit button for executing the query query_button = st.button("Submit") # Execute the query when the submit button is clicked if query_button: # Display the results as a dataframe # Execute the query and get the results as a dataframe try: with st.spinner('Calculating...'): print("\nQuestion: " + str(question)) # print(str(question)) schema, query, query_output, answer = get_response(question) if query: explaination = explain(query, schema, query_output) else: explaination = None # explaination = explain(query, schema, query_output) # if query: # print("\nExplaination: " + str(explaination)) print("\nExplaination: " + str(explaination)) st.subheader("Answer :robot_face:") st.write(answer) try: if query: st.divider() # st.caption("Query:") # st.caption(query) st.caption("Explaination:") st.caption(explaination) st.divider() except Exception as e: print(e) st.info(":coffee: _Did that answer your question? If not, try to be more specific._") except Exception as e: print(e) st.warning(":wave: Please enter a valid question. Try to be as specific as possible.")
[ "OK", "You are a SQL query explainer bot. That means you will explain the logic of a SQL query. \n There is a postgreSQL database table with the following table:\n\n PLACEHOLDER \n \n A SQL query is executed on the table and it returns the following result:\n\n PLACEHOLDER\n\n I will give you the SQL query executed to get the result and you will explain the logic executed in the query.\n Make the explanation brief and simple. It will be used as the explanation of the results. Do not mention the query itself.\n No need to explain the total query. Just explain the logic of the query.\n Reply only with the explaination to further input. If you understand, say OK." ]
2024-01-10
kaiesalmahmud/DB-Connect
pages~anyDOC.py
import os import openai import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from htmlTemplates import css, bot_template, user_template from langchain.llms import HuggingFaceHub def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): embeddings = OpenAIEmbeddings() # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore def get_conversation_chain(vectorstore): llm = ChatOpenAI() # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def handle_userinput(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(user_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) else: st.write(bot_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) API_KEY = open('key.txt', 'r').read().strip() os.environ["OPENAI_API_KEY"] = API_KEY openai.api_key = API_KEY from dotenv import load_dotenv load_dotenv() st.write(css, unsafe_allow_html=True) if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("anyDOC :bookmark_tabs:") pdf_docs = st.file_uploader( "Upload your PDFs here and click on 'Process'", accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing"): # get pdf text raw_text = get_pdf_text(pdf_docs) # get the text chunks text_chunks = get_text_chunks(raw_text) # create vector store vectorstore = get_vectorstore(text_chunks) # create conversation chain st.session_state.conversation = get_conversation_chain( vectorstore) user_question = st.text_input("Ask a question about your documents:") if user_question: handle_userinput(user_question)
[]
2024-01-10
kaiesalmahmud/DB-Connect
pages~anyDB.py
import os from langchain.agents import create_sql_agent from langchain.agents.agent_toolkits import SQLDatabaseToolkit from langchain.sql_database import SQLDatabase from langchain.llms.openai import OpenAI from langchain.agents import AgentExecutor from langchain.agents.agent_types import AgentType from langchain.chat_models import ChatOpenAI import streamlit as st from io import StringIO API_KEY = open('key.txt', 'r').read().strip() os.environ["OPENAI_API_KEY"] = API_KEY import openai openai.api_key = API_KEY from dotenv import load_dotenv load_dotenv() # SQL_PREFIX = """You are an agent designed to interact with a SQL database. # Given an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. # Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results. # You can order the results by a relevant column to return the most interesting examples in the database. # Never query for all the columns from a specific table, only ask for the relevant columns given the question. # You have access to tools for interacting with the database. # Only use the below tools. Only use the information returned by the below tools to construct your final answer. # You MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again. # DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database. # If the question does not seem related to the database, just return "I don't know" as the answer. # """ SQL_FUNCTIONS_SUFFIX = """I should look at the tables in the database to see what I can query. Then I should query the schema of the most relevant tables.""" FORMAT_INSTRUCTIONS = """Use the following format: Question: the input question you must answer Thought: you should always think about what to do Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question """ def get_response(input_text): response = agent_executor(input_text) # print(response['intermediate_steps'][1][0].tool) # print(response['intermediate_steps'][-1][0].tool) # print(response['output']) if response['intermediate_steps'][1][0].tool == 'sql_db_schema': schema = response['intermediate_steps'][1][1] else: schema = None if response['intermediate_steps'][-1][0].tool == 'sql_db_query': query = response['intermediate_steps'][-1][0].tool_input query_output = response['intermediate_steps'][-1][1] else: query, query_output = None, None answer = response['output'] return schema, query, query_output, answer def explain(query, schema, query_output): message_history = [{"role": "user", "content": f"""You are a SQL query explainer bot. That means you will explain the logic of a SQL query. There is a postgreSQL database table with the following table: {schema} A SQL query is executed on the table and it returns the following result: {query_output} I will give you the SQL query executed to get the result and you will explain the logic executed in the query. Make the explanation brief and simple. It will be used as the explanation of the results. Do not mention the query itself. No need to explain the total query. Just explain the logic of the query. Reply only with the explaination to further input. If you understand, say OK."""}, {"role": "assistant", "content": f"OK"}] message_history.append({"role": "user", "content": query}) completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=message_history, ) explaination = completion.choices[0].message.content return explaination # host="localhost" # port="5432" # database="ReportDB" # user="postgres" # password="postgres" # host="rain.db.elephantsql.com" # port="5432" # database="wblrcksm" # user="wblrcksm" # password="gElzAF-zRYJO-DNtPUudJ7pV0C4E6qMv" # Create the sidebar for DB connection parameters # Create the main panel st.title("anyDB :sparkles:") st.subheader("Connect your database and ask questions!") host="localhost" port="5432" database="ReportDB" username="postgres" password="postgres" with st.form("Connect Your Database"): # st.markdown("#### Connect Your Database") host = st.text_input("Host", placeholder=host) port = st.text_input("Port", placeholder=port) username = st.text_input("Username", placeholder=username) password = st.text_input("Password", placeholder=password) database = st.text_input("Database", placeholder=database) submit_button = st.checkbox("Connect") description = "" uploaded_file = st.file_uploader("Upload Database Documentation") if uploaded_file is not None: # To read file as bytes: bytes_data = uploaded_file.getvalue() # st.write(bytes_data) # To convert to a string based IO: description = str(StringIO(uploaded_file.getvalue().decode("utf-8"))) submit = st.form_submit_button("Process") # print(description) SQL_PREFIX = """You are an agent designed to interact with a SQL database. Given an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database. Never query for all the columns from a specific table, only ask for the relevant columns given the question. You have access to tools for interacting with the database. Only use the below tools. Only use the information returned by the below tools to construct your final answer. You MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again. DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database. If the question does not seem related to the database, just return "I don't know" as the answer. Here are some information about the database: """ SQL_PREFIX_update = SQL_PREFIX + "\n" + description if submit_button: db = SQLDatabase.from_uri(f"postgresql+psycopg2://{username}:{password}@{host}:{port}/{database}") llm = ChatOpenAI(model_name="gpt-4", temperature=0) toolkit = SQLDatabaseToolkit(db=db, llm=llm) agent_executor = create_sql_agent( llm=llm, toolkit=toolkit, verbose=True, agent_type=AgentType.OPENAI_FUNCTIONS, prefix=SQL_PREFIX_update, suffix=SQL_FUNCTIONS_SUFFIX, format_instructions=FORMAT_INSTRUCTIONS, agent_executor_kwargs = {'return_intermediate_steps': True} ) st.sidebar.success("Connected to the database!") # Get the user's natural question input question = st.text_input(":blue[Ask a question:]", placeholder="Enter your question.") # Create a submit button for executing the query query_button = st.button("Submit") # Execute the query when the submit button is clicked if query_button: if not submit_button: st.warning(":wave: Please connect to the database first.") st.stop() # Display the results as a dataframe # Execute the query and get the results as a dataframe try: with st.spinner('Calculating...'): print("\nQuestion: " + str(question)) # print(str(question)) schema, query, query_output, answer = get_response(question) if query: explaination = explain(query, schema, query_output) else: explaination = None # explaination = explain(query, schema, query_output) # if query: # print("\nExplaination: " + str(explaination)) print("\nExplaination: " + str(explaination)) st.subheader("Answer :robot_face:") st.write(answer) try: if query: st.divider() # st.caption("Query:") # st.caption(query) st.caption("Explaination:") st.caption(explaination) st.divider() except Exception as e: print(e) st.info(":coffee: _Did that answer your question? If not, try to be more specific._") except Exception as e: print(e) st.warning(":wave: Please enter a valid question. Try to be as specific as possible.")
[ "OK", "You are a SQL query explainer bot. That means you will explain the logic of a SQL query. \n There is a postgreSQL database table with the following table:\n\n PLACEHOLDER \n \n A SQL query is executed on the table and it returns the following result:\n\n PLACEHOLDER\n\n I will give you the SQL query executed to get the result and you will explain the logic executed in the query.\n Make the explanation brief and simple. It will be used as the explanation of the results. Do not mention the query itself.\n No need to explain the total query. Just explain the logic of the query.\n Reply only with the explaination to further input. If you understand, say OK." ]
2024-01-10
kaiesalmahmud/DB-Connect
pages~dailyLogChat.py
import streamlit as st from pathlib import Path # from langchain.llms.openai import OpenAI from langchain.chat_models import ChatOpenAI from langchain.agents import create_sql_agent from langchain.sql_database import SQLDatabase from langchain.agents.agent_types import AgentType from langchain.callbacks import StreamlitCallbackHandler from langchain.agents.agent_toolkits import SQLDatabaseToolkit st.set_page_config(page_title="dailyLogChat", page_icon="🦜") st.title("🦜 dailyLogChat") # # User inputs # radio_opt = ["Use sample database - Chinook.db", "Connect to your SQL database"] # selected_opt = st.sidebar.radio(label="Choose suitable option", options=radio_opt) # if radio_opt.index(selected_opt) == 1: # db_uri = st.sidebar.text_input( # label="Database URI", placeholder="mysql://user:pass@hostname:port/db" # ) # else: # db_filepath = (Path(__file__).parent / "Chinook.db").absolute() # db_uri = f"sqlite:////{db_filepath}" host="localhost" port="5432" database="ReportDB" username="postgres" password="postgres" db_uri = f"postgresql+psycopg2://{username}:{password}@{host}:{port}/{database}" # openai_api_key = st.sidebar.text_input( # label="OpenAI API Key", # type="password", # ) import os openai_api_key = open('key.txt', 'r').read().strip() os.environ["OPENAI_API_KEY"] = openai_api_key from dotenv import load_dotenv load_dotenv() # Check user inputs if not db_uri: st.info("Please enter database URI to connect to your database.") st.stop() if not openai_api_key: st.info("Please add your OpenAI API key to continue.") st.stop() # Setup agent # llm = OpenAI(openai_api_key=openai_api_key, temperature=0, streaming=True) llm = ChatOpenAI(model_name="gpt-4", temperature=0) @st.cache_resource(ttl="2h") def configure_db(db_uri): return SQLDatabase.from_uri(database_uri=db_uri) db = configure_db(db_uri) toolkit = SQLDatabaseToolkit(db=db, llm=llm) SQL_PREFIX = """You are an agent designed to interact with a SQL database. Given an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database. Never query for all the columns from a specific table, only ask for the relevant columns given the question. You have access to tools for interacting with the database. Only use the below tools. Only use the information returned by the below tools to construct your final answer. You MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again. DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database. If the question does not seem related to the database, just return "I don't know" as the answer. SQL query format example: Question: "Who are the top 5 retailers for the month of May in terms of total play time?" Query: SELECT "Retail Name", SUM("Total Play time") as total_play_time FROM "dailyLog" WHERE EXTRACT(MONTH FROM "Date") = 5 AND total_play_time IS NOT NULL GROUP BY "Retail Name" ORDER BY total_play_time DESC LIMIT 5 Observation: When ordering by a column in descending order, the top values will be the largest values in the column. """ SQL_FUNCTIONS_SUFFIX = """I should look at the tables in the database to see what I can query. Then I should query the schema of the most relevant tables.""" FORMAT_INSTRUCTIONS = """Use the following format: Question: the input question you must answer Thought: you should always think about what to do Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question """ # agent = create_sql_agent( # llm=llm, # toolkit=toolkit, # verbose=True, # agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION, # ) agent = create_sql_agent( llm=llm, toolkit=toolkit, verbose=True, agent_type=AgentType.OPENAI_FUNCTIONS, prefix=SQL_PREFIX, suffix=SQL_FUNCTIONS_SUFFIX, format_instructions=FORMAT_INSTRUCTIONS, # agent_executor_kwargs = {'return_intermediate_steps': True} ) if "messages" not in st.session_state or st.sidebar.button("Clear message history"): st.session_state["messages"] = [{"role": "assistant", "content": "You are connected with dailyLogDB. Ask questions!"}] for msg in st.session_state.messages: st.chat_message(msg["role"]).write(msg["content"]) user_query = st.chat_input(placeholder="Ask me anything!") if user_query: st.session_state.messages.append({"role": "user", "content": user_query}) st.chat_message("user").write(user_query) with st.chat_message("assistant"): st_cb = StreamlitCallbackHandler(st.container()) response = agent.run(user_query, callbacks=[st_cb]) st.session_state.messages.append({"role": "assistant", "content": response}) st.write(response)
[ "You are connected with dailyLogDB. Ask questions!" ]
2024-01-10
schulzad/rasa
aida~let_rasa_learn.py
from distutils.command.clean import clean from urllib import response import openai import os import sys import json import requests import time import random # the follow is a python script that will let rasa learn from an api # the demonstration api is at the url: https://beta.openai.com/docs/api-reference/ # the api key is: 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 # # the completion api is at the url: https://api.openai.com/v1/engines/davinci/completions openai_api_key = "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" openai_api_url = "https://api.openai.com/v1/engines/davinci/completions" os.environ['OPENAI_API_URL'] = openai_api_url os.environ['OPENAI_API_KEY'] = openai_api_key def get_api_key(): # get the api key from the environment variable api_key = os.environ.get('OPENAI_API_KEY') if api_key is None: print("Please set the environment variable OPENAI_API_KEY") sys.exit(1) return api_key def get_url(): url = os.environ.get('OPENAI_API_URL') if url is None: print("Please set the environment variable OPENAI_API_URL") sys.exit(1) return url def discover_capabilities(url, api_key, npl_phrase): # create the first intent from the api # url = os.environ.get('OPENAI_API_URL') # api_key = os.environ.get('OPENAI_API_KEY') headers = {'Authorization': 'Bearer ' + api_key} data = { 'api_key': api_key, 'engine': 'davinci', 'text': npl_phrase, 'max_tokens': 100 } response = requests.post(url, data=data) if response.status_code != 200: print("Failed to discover capabilities") print(response.text) sys.exit(1) else: print("Successfully discovered capabilities") print(response.text) print("Created intent") return response.json() def create_intent_from_phrase(phrase): # create the first intent from the api # from the template update the phrase file = open("ask_openai_intent.txt", "r") contents = file.read() runtime_phrase = contents.replace("replace@runtime", phrase) file.close() if(runtime_phrase == phrase): print("Error: could not replace the phrase") sys.exit(1) # print("NEW PHRASE:" + runtime_phrase) # print("ORIGINAL PHRASE:" + phrase) print("==intent_from_phrase==") response = do_completion(runtime_phrase) return response def create_phrase_from_intent(intent): # create the first intent from the api print(intent) print("replace the intent with " + str(intent)) file = open("ask_openai_phrase.txt", "r") contents = file.read() runtime_intent = contents.replace("replace@runtime", str(intent)) file.close() if(runtime_intent == intent): print("Error: could not replace the phrase") sys.exit(1) # print("DOING THE POST:" + runtime_intent) # print("phrase:" + intent) print("==phrase_from_intent==") response = do_completion(intent) return response.json() def create_phrase_from_phrase(phrase): # create the first intent from the api intent = create_intent_from_phrase(phrase) new_phrase = create_phrase_from_intent(intent) return new_phrase def create_intent_from_intent(intent): phrase = create_phrase_from_intent(intent) new_intent = create_intent_from_phrase(phrase) return new_intent def string_to_json(string): return json.loads(string) def to_json(data): return json.loads(data) ## REQUEST PARAMTERS # { # "prompt": "Say this is a test", # "max_tokens": 5, # "temperature": 1, # "top_p": 1, # "n": 1, # "stream": false, # "logprobs": null, # "stop": "\n" # } ## RESPONSE # { # "id": "cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7", # "object": "text_completion", # "created": 1589478378, # "model": "text-davinci-002", # "choices": [ # { # "text": "\n\nThis is a test", # "index": 0, # "logprobs": null, # "finish_reason": "length" # } # ] # } def do_completion(text): url = get_url() api_key = get_api_key() #cleaned = text.join([chr(char) for char in range(1, 32)]) cleaned = text headers = {'Authorization': 'Bearer ' + api_key} headers.update({'Content-Type': 'application/json'}) data = { 'prompt': cleaned, 'max_tokens': 100 } data = json.dumps(data) response = requests.post(url, data=data, headers=headers) if(response.status_code != 200): print("FAILED to talk to SENSEI: " + str(response.status_code)) print(response.text) print("REQUEST WAS: " + str(data)) sys.exit(1) data = response.text jsondata = json.loads(data) #print("do_completion json data:") #print("--returning from do_complete--") #print(jsondata['choices']) #sys.exit(1) return jsondata['choices'][0]['text'] # def davinci_completion(text, max_tokens=40, temperature=0.7, n=3): # params = {'text': text, # 'max_tokens': max_tokens, # 'temperature': temperature, # 'top_p': 1.0, # 'n': n} # headers = {'Content-Type': 'application/json'} # headers.update(('Authorization', 'Bearer ' + get_api_key())) # r = requests.post('https://api.openai.com/v1/engines/davinci/completions', headers=headers, json=params) # return r.json() ### # This function takes in a phrase and returns a "better" phrase # Better means that it is more likely to be a good phrase since we cycle through # several iterations of the completion api def dream_of_intents(intent, dream_value): while(dream_value): dream_value -= 1 intent = create_intent_from_intent(intent) print("dream_of_intents...") return intent def dream_of_phrases(phrase, dream_value=3): while(dream_value): print("dream_of_phrases...") dream_value -= 1 phrase = create_phrase_from_phrase(phrase) return phrase # discover and write out the list of intents to a file def bootstrap_rasa(): gensis_phrase = "Hello A.I.. Can you tell me what your main capabilities are? What can you do and how should I communicate with you? A simple list is good" better_phrase = create_intent_from_phrase(gensis_phrase) print("BACK FROM CREATE") #completed_text = complete_text(phrase) #print(gensis_phrase) #print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") print(better_phrase) #intent = create_intent_from_phrase(url, api_key, "Hello A.I. Can you tell me what you main capabilities are?") return response = requests.post(url, data=data) if response.status_code != 200: print("Failed to dicover capabilities") print(response.text) sys.exit(1) else: print("Successfully discovered capabilities") print(response.text) print("Created intent") return response.json() if __name__ == "__main__": bootstrap_rasa()
[]
2024-01-10
MJavadHzr/CE40417-Artificial-Intelligence
MiniProjects~MPQ5~Practical~Q2~src~wrappers.py
from gym.core import ObservationWrapper, Wrapper, RewardWrapper from gym.spaces import Box import cv2 import numpy as np # Some taken from OpenAI baselines. class PreprocessAtariObs(ObservationWrapper): def __init__(self, env, gray_scale=False): """A gym wrapper that crops, scales image into the desired shapes and grayscales it.""" ObservationWrapper.__init__(self, env) self.img_size = (50, 50) # TODO: <YOUR CODE> self.observation_space = Box(0.0, 1.0, ( self.img_size[0], self.img_size[1], 1 if gray_scale else env.observation_space.shape[2])) self.gray_scale = gray_scale def _to_gray_scale(self, rgb, channel_weights=[0.6, 0.3, 0.1]): #todo gray_img = np.zeros((rgb.shape[0], rgb.shape[1], 1)) return gray_img def observation(self, img): """what happens to each observation""" img = img[35:475, 37:465, :].astype('float32') img = cv2.resize(img, (self.img_size[0], self.img_size[1]), interpolation = cv2.INTER_AREA) if self.gray_scale: img = self._to_gray_scale(img) img = img/225 # Here's what you need to do: # * crop image, remove irrelevant parts # * resize image to self.img_size # (use imresize from any library you want, # e.g. opencv, skimage, PIL, keras) # * cast image to grayscale (in case of breakout) # * convert image pixels to (0,1) range, float32 type # TODO: complete observation descaling processed_img = img return processed_img class ClipRewardEnv(RewardWrapper): def __init__(self, env): RewardWrapper.__init__(self, env) def reward(self, reward): # TODO: you may complete this section as you please """Bin reward to {+1, 0, -1} by its sign.""" return np.sign(reward) class MaxAndSkipEnv(Wrapper): # This wrapper holds the same action for <skip> frames and outputs # the maximal pixel value of 2 last frames (to handle blinking # in some envs) def __init__(self, env, skip=4): """Return only every `skip`-th frame""" Wrapper.__init__(self, env) # most recent raw observations (for max pooling across time steps) self._obs_buffer = np.zeros( (2,) + env.observation_space.shape, dtype=np.uint8) self._skip = skip def step(self, action): """Repeat action, sum reward, and max over last observations.""" total_reward = 0.0 done = None for i in range(self._skip): obs, reward, done, info = self.env.step(action) if i == self._skip - 2: self._obs_buffer[0] = obs if i == self._skip - 1: self._obs_buffer[1] = obs total_reward += reward if done: break # Note that the observation on the done=True frame # doesn't matter max_frame = self._obs_buffer.max(axis=0) return max_frame, total_reward, done, info def reset(self, **kwargs): return self.env.reset(**kwargs) class FireResetEnv(Wrapper): def __init__(self, env): """Take action on reset for environments that are fixed until firing.""" Wrapper.__init__(self, env) assert env.unwrapped.get_action_meanings()[1] == 'FIRE' assert len(env.unwrapped.get_action_meanings()) >= 3 def reset(self, **kwargs): self.env.reset(**kwargs) obs, _, done, _ = self.env.step(1) if done: self.env.reset(**kwargs) obs, _, done, _ = self.env.step(2) if done: self.env.reset(**kwargs) return obs def step(self, ac): return self.env.step(ac) class EpisodicLifeEnv(Wrapper): def __init__(self, env): """Make end-of-life == end-of-episode, but only reset on true game over. Done by DeepMind for the DQN and co. since it helps value estimation. """ Wrapper.__init__(self, env) self.lives = 0 self.was_real_done = True def step(self, action): obs, reward, done, info = self.env.step(action) self.was_real_done = done # check current lives, make loss of life terminal, # then update lives to handle bonus lives lives = self.env.unwrapped.ale.lives() if lives < self.lives and lives > 0: # for Qbert sometimes we stay in lives == 0 condition for a few frames # so it's important to keep lives > 0, so that we only reset once # the environment advertises done. done = True self.lives = lives return obs, reward, done, info def reset(self, **kwargs): """Reset only when lives are exhausted. This way all states are still reachable even though lives are episodic, and the learner need not know about any of this behind-the-scenes. """ if self.was_real_done: obs = self.env.reset(**kwargs) else: # no-op step to advance from terminal/lost life state obs, _, _, _ = self.env.step(0) self.lives = self.env.unwrapped.ale.lives() return obs
[]
2024-01-10
ta0ma0/neonirony
go_post.py
import openai import time import os import random import string import sys import json import requests def clear_screen(): # Очистка экрана os.system('cls' if os.name == 'nt' else 'clear') def print_random_ascii(length=67): # ANSI escape codes для различных цветов colors = [ "\033[91m", # Красный "\033[92m", # Зеленый "\033[93m", # Желтый "\033[94m", # Синий "\033[95m", # Пурпурный "\033[96m", # Голубой "\033[97m" # Белый ] # Выбор случайного цвета random_color = random.choice(colors) # Генерация случайной строки random_chars = ''.join(random.choices(string.ascii_letters + string.digits, k=length)) # Печать строки с выбранным цветом print(random_color + random_chars + "\033[0m") # \033[0m сбрасывает форматирование def get_gpt_advice(api_key, prompt): # Получение ответа от GPT openai.api_key = api_key response = openai.Completion.create( engine="text-davinci-003", prompt=prompt, max_tokens=800 ) return response.choices[0].text.strip() def get_dalle_prompt(api_key, advice): # Получение ответа от GPT openai.api_key = api_key preprompt = "Create a request for Dall-e 3 on English languge from the one that comes after [prompt], the generated image should have an illustration of what is in the main message, the image should be in cyberpunk style" response = openai.Completion.create( engine="text-davinci-003", prompt=preprompt + "[prompt]" + advice, max_tokens=256 ) dalle_prompt = response.choices[0].text.strip() # print(dalle_prompt) return dalle_prompt def _write_to_file(advice, dirname='.'): with open(f'{dirname}/advice.txt', 'w') as f: f.write(advice + '\n') def create_image(api_key, prompt): headers = { 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json', } data = json.dumps({ "prompt": prompt, "n": 1, "size": "1024x1024" }) response = requests.post('https://api.openai.com/v1/images/generations', headers=headers, data=data) if response.status_code == 200: return response.json() else: print("Something went wrong") return None def save_image(image_data, dirname): if image_data: image_url = image_data['data'][0]['url'] image_response = requests.get(image_url) if image_response.status_code == 200: with open(f'{dirname}/image.png', 'wb') as f: f.write(image_response.content) def main(api_key, prompt): while True: start_time = time.time() clear_screen() api_key = os.environ.get("OPENAI_API_KEY", None) advice = get_gpt_advice(api_key, prompt) print(advice) _write_to_file(advice) user_input = input('Continue? Y/n/p').strip().lower() if user_input == 'n': sys.exit() elif user_input == 'y' or user_input == '': # Продолжить выполнение программы pass elif user_input == 'p': dirname = 'post_' + ''.join(random.choices(string.ascii_letters + string.digits, k=5)) os.makedirs(dirname, exist_ok=True) dalle_prompt = get_dalle_prompt(api_key, advice) image_data = create_image(api_key, dalle_prompt) print(dalle_prompt) save_image(image_data, dirname) _write_to_file(advice + '\n\n' + dalle_prompt, dirname) while True: current_time = time.time() if current_time - start_time > 1700: # Проверка времени на превышение 1700 секунд break time.sleep(3) # Пауза на 1 секунду для обновления текущего времени print_random_ascii() # Пример использования: api_key = os.environ.get("OPENAI_API_KEY", None) #prompt = "Напиши историю в стиле киберпанк, в которой есть признаки этого жанра, используй места и имена из известных произведений киберпанка, добавь хакерского жаргона, где это уместно" prompt = "Напиши короткую историю (400-500 символов) в стиле киберпанк, включающую элементы жанра, места и имена из известных произведений, а также хакерский жаргон. Сделай акцент на краткость и лаконичность." main(api_key, prompt)
[ "Напиши короткую историю (400-500 символов) в стиле киберпанк, включающую элементы жанра, места и имена из известных произведений, а также хакерский жаргон. Сделай акцент на краткость и лаконичность.", "Create a request for Dall-e 3 on English languge from the one that comes after [prompt], the generated image should have an illustration of what is in the main message, the image should be in cyberpunk style", "Create a request for Dall-e 3 on English languge from the one that comes after [prompt], the generated image should have an illustration of what is in the main message, the image should be in cyberpunk style[prompt]PLACEHOLDER" ]
2024-01-10
1369556525/Streamlit_1
Homepage.py
import streamlit as st from langchain.chat_models import ChatOpenAI from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) # Initialize the ChatOpenAI object chat = None if "OPENAI_API_KEY" not in st.session_state: st.session_state["OPENAI_API_KEY"] = "" elif st.session_state["OPENAI_API_KEY"] != "": chat = ChatOpenAI(openai_api_key=st.session_state["OPENAI_API_KEY"]) if "PINECONE_API_KEY" not in st.session_state: st.session_state["PINECONE_API_KEY"] = "" if "PINECONE_ENVIRONMENT" not in st.session_state: st.session_state["PINECONE_ENVIRONMENT"] = "" st.set_page_config(page_title="Shareholders GPT", layout="wide") st.title("🤠 Welcome to Shareholders GPT") if "messages" not in st.session_state: st.session_state["messages"] = [] if chat: with st.container(): st.header("Chat with GPT") for message in st.session_state["messages"]: if isinstance(message, HumanMessage): with st.chat_message("user"): st.markdown(message.content) elif isinstance(message, AIMessage): with st.chat_message("assistant"): st.markdown(message.content) prompt = st.chat_input("Type something...") if prompt: st.session_state["messages"].append(HumanMessage(content=prompt)) with st.chat_message("user"): st.markdown(prompt) ai_message = chat([HumanMessage(content=prompt)]) st.session_state["messages"].append(ai_message) with st.chat_message("assistant"): st.markdown(ai_message.content) else: with st.container(): st.warning("Please set your OpenAI API key in the settings page.")
[ "Type something..." ]
2024-01-10
codechrl/llm-data-explore
server~engine~kgraph.py
# import streamlit as st import json import openai from langchain.chains import create_extraction_chain from langchain.chat_models import ChatOpenAI from langchain.llms import OpenAI from langchain.output_parsers import PydanticOutputParser from langchain.prompts import ( PromptTemplate, ) from pydantic import BaseModel from setting import setting default_schema = { "properties": { "subject": {"type": "string"}, "relation": {"type": "string"}, "subjectRelated": {"type": "string"}, }, "required": ["subject", "relation", "subjectRelated"], } llm = ChatOpenAI( temperature=0, model="gpt-3.5-turbo-16k", openai_api_key=setting.OPENAI_API_KEY ) chain = create_extraction_chain(default_schema, llm, verbose=True) # chain = create_extraction_chain_pydantic(pydantic_schema=DefaultSchema, llm=llm) def generate(title, output_path="data/db"): text_path = f"data/summary/{title}.txt" with open(text_path, "r") as file: text_data = file.read() extraction_output = chain(text_data, include_run_info=True) # markdown_output = json_to_markdown_table(extraction_output["text"]) # run_id = extraction_output["__run"].run_id output = extraction_output["text"] output_path = f"data/graph/{title}.json" with open(output_path, "w") as file: json.dump({"graph": output}, file) class KnowledgeGraph(BaseModel): subject: str = None relation: str = None subject_related: str = None model_name = "text-davinci-003" # model_name = "gpt-3.5-turbo-16k" temperature = 0.0 model = OpenAI( model_name=model_name, temperature=temperature, openai_api_key=setting.OPENAI_API_KEY, # max_tokens=2000, ) parser = PydanticOutputParser(pydantic_object=KnowledgeGraph) prompt = PromptTemplate( template="""You are expert in building Knowlede Graph. Identify subjects and its relation. Subject and subject related must a noun. {format_instructions}\n{text}\n Example answer without format: subject : ChatGPT relation : part subject_related: LLM """, input_variables=["text"], partial_variables={"format_instructions": parser.get_format_instructions()}, ) def generate_pydantic(title, output_path="data/db"): text_path = f"data/summary/{title}.txt" with open(text_path, "r") as file: text_data = file.read() _input = prompt.format_prompt(text=text_data) output = model(_input.to_string()) extraction_output = parser.parse(output) output = extraction_output output_path = f"data/graph/{title}.json" with open(output_path, "w") as file: json.dump({"graph": output}, file) def generate_pydantic_iter(title, output_path="data/db"): print("graph") text_path = f"data/summary/{title}_brief.txt" with open(text_path, "r") as file: text_data = file.read() text_data_split = text_data.split("\n") graph = [] for idx, _text_data_split in enumerate(text_data_split): print(f"graph - {idx}") _input = prompt.format_prompt(text=_text_data_split) output = model(_input.to_string()) extraction_output = parser.parse(output) graph.append(extraction_output) output = extraction_output output_path = f"data/graph/{title}.json" with open(output_path, "w") as file: try: json.dump({"graph": output}, file) except: file.write(output) def call_openai_api_graph(chunk): response = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages=[ { "role": "system", "content": "Hello I am KnowledgeGraphBot. What can I help you?", }, { "role": "user", "content": f""" Please identify all subject of the following text. Then identify the relations. Answer with this format of list of dict: [{{ "subject": "ChatGPT, "relation" "part", "subject_related": "LLM }}, {{ "subject": "Claude, "relation" "part", "subject_related": "LLM }}] Aanser ONLY with the list of dict. no explanation whatsoever. TEXT: {chunk} ANSWER: """, }, ], # max_tokens=15000, n=1, stop=None, temperature=0.1, ) return response.choices[0]["message"]["content"].strip() def generate_call(title, output_path="data/db"): text_path = f"data/summary/{title}_brief.txt" with open(text_path, "r") as file: text_data = file.read() extraction_output = call_openai_api_graph(text_data) output = extraction_output try: output = json.loads(output) except: pass output_path = f"data/graph/{title}.json" with open(output_path, "w") as file: json.dump({"graph": output}, file)
[ " Please identify all subject of the following text.\n Then identify the relations.\n Answer with this format of list of dict:\n [{\n \"subject\": \"ChatGPT,\n \"relation\" \"part\",\n \"subject_related\": \"LLM\n },\n {\n \"subject\": \"Claude,\n \"relation\" \"part\",\n \"subject_related\": \"LLM\n }]\n Aanser ONLY with the list of dict. no explanation whatsoever.\n\n TEXT: PLACEHOLDER\n ANSWER:\n ", "format_instructions", "You are expert in building Knowlede Graph. \n Identify subjects and its relation. \n Subject and subject related must a noun.\n \n {format_instructions}\n{text}\n\n \n Example answer without format:\n subject : ChatGPT\n relation : part\n subject_related: LLM\n ", "Hello I am KnowledgeGraphBot. What can I help you?" ]
2024-01-10
codechrl/llm-data-explore
server~engine~kgraph2.py
# import streamlit as st import json from collections import Counter from typing import List from langchain.llms import OpenAI from langchain.output_parsers import PydanticOutputParser from langchain.prompts import PromptTemplate from pydantic import BaseModel from setting import setting class Node(BaseModel): subject: str = None relation: str = None subject_related: str = None class KnowledgeGraph(BaseModel): node: List[Node] model_name = "text-davinci-003" # model_name = "gpt-3.5-turbo" temperature = 0.0 model = OpenAI( model_name=model_name, temperature=temperature, openai_api_key=setting.OPENAI_API_KEY, # max_tokens=2000, ) parser = PydanticOutputParser(pydantic_object=KnowledgeGraph) prompt = PromptTemplate( template="""You are expert in building Knowlede Graph. Identify subjects and its relation. Subject and subject related must a noun. Subject and subject is ONE to ONE relation. Answer only with the instuction below. No need explanation or anything not neccesary. {format_instructions}\n{text}\n """, input_variables=["text"], partial_variables={"format_instructions": parser.get_format_instructions()}, ) def generate_pydantic_iter(title, output_path="data/db"): print("graph") text_path = f"data/summary/{title}.txt" with open(text_path, "r") as file: text_data = file.read() text_data_split = text_data.split("\n") graph = [] for idx, _text_data_split in enumerate(text_data_split): try: print(f"graph - {idx}") _input = prompt.format_prompt(text=_text_data_split) output = model(_input.to_string()) extraction_output = parser.parse(output) graph.append(extraction_output) except Exception as exc: print(f"Error: {exc}") output = [] for graph_elem in graph: output.extend( [ { "subject": node.subject, "relation": node.relation, "subject_related": node.subject_related, } for node in graph_elem.node ] ) output_path = f"data/graph/{title}.json" with open(output_path, "w") as file: json.dump({"graph": output}, file) def format(title): with open(f"data/graph/{title}.json", "r") as json_file: data = json.load(json_file) subjects = [elem["subject"] for elem in data["graph"]] objects = [elem["subject_related"] for elem in data["graph"]] subjects_counts = Counter(subjects) subjects_total_occurences = sum(subjects_counts.values()) subjects_counts_list = [ {"name": key, "occurrence": value} for key, value in subjects_counts.items() ] for idx, elem in enumerate(subjects_counts_list): subjects_counts_list[idx]["size_percentage"] = ( elem["occurrence"] / subjects_total_occurences ) for idx, elem_subj in enumerate(subjects_counts_list): objects = [] for idx_graph, elem_graph in enumerate(data["graph"]): if elem_subj["name"] == elem_graph["subject"]: objects.append(elem_graph["subject_related"]) subjects_counts_list[idx]["subject_related"] = objects return subjects_counts_list
[ "format_instructions", "You are expert in building Knowlede Graph. \n Identify subjects and its relation. \n Subject and subject related must a noun.\n Subject and subject is ONE to ONE relation.\n Answer only with the instuction below. No need explanation or anything not neccesary.\n \n {format_instructions}\n{text}\n\n " ]
2024-01-10
codechrl/llm-data-explore
server~engine~vector.py
import json import os import pathlib import pickle import re import subprocess import tiktoken from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.chains import ConversationalRetrievalChain, RetrievalQAWithSourcesChain from langchain.chains.conversational_retrieval.prompts import ( CONDENSE_QUESTION_PROMPT, QA_PROMPT, ) from langchain.chains.llm import LLMChain from langchain.chains.question_answering import load_qa_chain from langchain.chat_models import ChatOpenAI from langchain.docstore.document import Document from langchain.embeddings.openai import OpenAIEmbeddings from langchain.llms import OpenAI from langchain.memory import ConversationBufferMemory # from langchain.prompts import ( # ChatPromptTemplate, # HumanMessagePromptTemplate, # MessagesPlaceholder, # ) from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from setting import setting os.environ["OPENAI_API_KEY"] = setting.OPENAI_API_KEY REPO_URL = "https://github.com/GovTechSG/developer.gov.sg" # Source URL DOCS_FOLDER = "data/repository" # Folder to check out to REPO_DOCUMENTS_PATH = "" # Set to "" to index the whole data folder DOCUMENT_BASE_URL = "https://www.developer.tech.gov.sg/products/categories/devops/ship-hats" # Actual URL DATA_STORE_DIR = "data/data_store" name_filter = "**/*.md" name_filter = "**/*.*" separator = "\n### " separator = " " # Thi+s separator assumes Markdown docs from the repo uses ### as logical main header most of the time name_filter = "**/*.*" separator = "\n### " separator = " " # Thi+s separator assumes Markdown docs from the repo uses ### as logical main header most of the time chunk_size_limit = 1000 max_chunk_overlap = 20 CONV_LIST = [] def run_command_with_output(command): process = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True, text=True ) while True: output = process.stdout.readline() if output == "" and process.poll() is not None: break if output: print(output.strip()) return process.poll() def convert_path_to_doc_url(doc_path): # Convert from relative path to actual document url return re.sub( f"{DOCS_FOLDER}/{REPO_DOCUMENTS_PATH}/(.*)\.[\w\d]+", f"{DOCUMENT_BASE_URL}/\\1", str(doc_path), ) def split_doc(title, folder="repository", only=None): repo_path = pathlib.Path(os.path.join(f"data/{folder}", title)) # document_files = list(repo_path.glob(name_filter)) def split_doc(title, folder="repository", only=None): repo_path = pathlib.Path(os.path.join(f"data/{folder}", title)) # document_files = list(repo_path.glob(name_filter)) document_files = list(repo_path.glob(name_filter)) document_files = [p for p in document_files if os.path.isfile(p)] document_files = [ p for p in document_files if str(p).split(".")[-1] not in ["jpg", "jpeg", "mp3", "mp4", "png", "webp"] ] document_files = [p for p in document_files if "/.git/" not in str(p)] if only: document_files = [p for p in document_files if str(p).split(".")[-1] in only] documents = [] for file in document_files: try: print(file) documents.append( Document( page_content=open(file, "r").read(), metadata={"source": convert_path_to_doc_url(file)}, ) ) except: pass text_splitter = CharacterTextSplitter( separator=separator, chunk_size=chunk_size_limit, chunk_overlap=max_chunk_overlap, ) split_docs = text_splitter.split_documents(documents) enc = tiktoken.get_encoding("cl100k_base") try: enc = tiktoken.encoding_for_model("gpt-4") except: pass enc = tiktoken.get_encoding("cl100k_base") try: enc = tiktoken.encoding_for_model("gpt-4") except: pass total_word_count = sum(len(doc.page_content.split()) for doc in split_docs) total_token_count = sum(len(enc.encode(doc.page_content)) for doc in split_docs) print(f"\nTotal word count: {total_word_count}") print(f"\nEstimated tokens: {total_token_count}") print(f"\nEstimated cost of embedding: ${total_token_count * 0.0004 / 1000}") return split_docs def generate_embedding(title, split_docs): embeddings = OpenAIEmbeddings() vector_store = FAISS.from_documents(split_docs, embeddings) vector_store.save_local(f"{DATA_STORE_DIR}/{title}") def load_embedding(title): if os.path.exists(f"{DATA_STORE_DIR}/{title}"): vector_store = FAISS.load_local(f"{DATA_STORE_DIR}/{title}", OpenAIEmbeddings()) return vector_store else: print( f"Missing files. Upload index.faiss and index.pkl files to {DATA_STORE_DIR}/{title} directory first" ) def ask(vector_store, question, stream=False): system_template = """Use the following pieces of context to answer the users question. Take note of the sources and include them in the answer in the format: "SOURCES: source1 source2", use "SOURCES" in capital letters regardless of the number of sources. If you don't know the answer, just say that "I don't know", don't try to make up an answer. ---------------- {summaries}""" messages = [ SystemMessagePromptTemplate.from_template(system_template), HumanMessagePromptTemplate.from_template("{question}"), ] prompt = ChatPromptTemplate.from_messages(messages) chain_type_kwargs = {"prompt": prompt} llm = ChatOpenAI( model_name="gpt-3.5-turbo-16k", temperature=0, max_tokens=14000 ) # Modify model_name if you have access to GPT-4 chain = RetrievalQAWithSourcesChain.from_chain_type( llm=llm, chain_type="stuff", retriever=vector_store.as_retriever(), return_source_documents=True, chain_type_kwargs=chain_type_kwargs, ) if not stream: return chain(question) else: return chain.stream(question) def ask_conv(vector_store, question, conv_id, stream=False): global CONV_LIST # Construct a ConversationalRetrievalChain with a streaming llm for combine docs # and a separate, non-streaming llm for question generation try: chat_history = [ch["chat_history"] for ch in CONV_LIST if ch["id"] == conv_id] except: chat_history = [] CONV_LIST.append({"id": conv_id, "chat_history": []}) llm = OpenAI( temperature=0, ) streaming_llm = OpenAI( # streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0, ) question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT) doc_chain = load_qa_chain(streaming_llm, chain_type="stuff", prompt=QA_PROMPT) qa = ConversationalRetrievalChain( retriever=vector_store.as_retriever(), combine_docs_chain=doc_chain, question_generator=question_generator, ) chat_history = [] result = qa({"question": question, "chat_history": chat_history}) chat_history.append((question, result["answer"])) for idx in range(len(CONV_LIST)): if CONV_LIST[idx]["id"] == conv_id: CONV_LIST[idx]["chat_history"] = chat_history return result def ask_memory_(vector_store, question, session_id, stream=False): try: with open(f"data/session/{session_id}.json", "r") as json_file: json.load(json_file) except: pass system_template = """Use the following pieces of context to answer the users question. Take note of the sources and include them in the answer in the format: "SOURCES: source1 source2", use "SOURCES" in capital letters regardless of the number of sources. If you don't know the answer, just say that "I don't know", don't try to make up an answer. ---------------- {summaries}""" messages = [ SystemMessagePromptTemplate.from_template(system_template), # MessagesPlaceholder(variable_name="chat_history"), HumanMessagePromptTemplate.from_template("{question}"), ] prompt = ChatPromptTemplate.from_messages(messages) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) chain_type_kwargs = {"prompt": prompt} llm = ChatOpenAI(model_name="gpt-3.5-turbo-16k", temperature=0, max_tokens=14000) chain = RetrievalQAWithSourcesChain.from_chain_type( llm=llm, chain_type="stuff", retriever=vector_store.as_retriever(), return_source_documents=True, chain_type_kwargs=chain_type_kwargs, # memory=memory, ) try: print(memory.to_json()) except: pass if not stream: return chain(question) else: return chain.stream(question) def ask_memory(vector_store, question, session_id=None, stream=False): try: with open(f"data/session/{session_id}.pickle", "rb") as file: memory = pickle.load(file) except: memory = [] memory_template = ( """Also use the following pieces of chat history to understand context.""" ) if memory: for i_memory in memory: memory_template += f"{i_memory[0]}: {i_memory[1]}" system_template = """Use the following pieces of context to answer the users question. Take note of the sources and include them in the answer in the format: "SOURCES: source1 source2", use "SOURCES" in capital letters regardless of the number of sources. If you don't know the answer, just say that "I don't know", don't try to make up an answer. ---------------- {summaries}""" messages = [ SystemMessagePromptTemplate.from_template(system_template), HumanMessagePromptTemplate.from_template(memory_template), HumanMessagePromptTemplate.from_template("{question}"), ] prompt = ChatPromptTemplate.from_messages(messages) chain_type_kwargs = {"prompt": prompt} llm = ChatOpenAI(model_name="gpt-3.5-turbo-16k", temperature=0, max_tokens=14000) chain = RetrievalQAWithSourcesChain.from_chain_type( llm=llm, chain_type="stuff", retriever=vector_store.as_retriever(), return_source_documents=True, chain_type_kwargs=chain_type_kwargs, ) result = chain(question) try: memory.append(["Human", question]) memory.append(["Human", result["answer"]]) print(memory) with open(f"data/session/{session_id}.pickle", "wb") as file: pickle.dump(memory, file) except Exception as exc: print(exc) return result def repository_overview(): repo_done = [] directory_path = "data/db" for filename in os.listdir(directory_path): if filename.endswith(".json"): file_path = os.path.join(directory_path, filename) with open(file_path, "r") as file: json_data = json.load(file) if json_data.get("status") == "done": repo_done.append(json_data) print(repo_done) model_embedding = load_embedding("overview_repository") if model_embedding is None: c = 0 while True: try: model_embedding = load_embedding(repo_done[c]["title"]) c += 1 break except: pass for repo in repo_done: try: load_embedding(repo["title"]) print(f"embed {repo['title']}") split_docs = split_doc(repo["title"], folder="raw", only=["txt"]) # embeddings = OpenAIEmbeddings() # vector_store = FAISS.from_documents(split_docs, embeddings) # model_embedding.add_documents(split_docs) model_embedding.aadd_texts(split_docs) # model_embedding.a # model_embedding.add(model_repo.as_retriever()) # model_embedding += model_repo # model_embedding = FAISS.IndexIDMap(FAISS.IndexFlatIP(faiss_index1.index.d)) # model_embedding.add_with_ids(faiss_index1.index, np.arange(faiss_index1.index.ntotal)) # model_embedding.add_with_ids(faiss_index2.index, np.arange(faiss_index1.index.ntotal, faiss_index1.index.ntotal + faiss_index2.index.ntotal)) except: pass model_embedding.save_local(f"{DATA_STORE_DIR}/overview_repository")
[ "PLACEHOLDER: PLACEHOLDER", "{question}", "Also use the following pieces of chat history to understand context.", "Use the following pieces of context to answer the users question.\n Take note of the sources and include them in the answer in the format: \"SOURCES: source1 source2\", use \"SOURCES\" in capital letters regardless of the number of sources.\n If you don't know the answer, just say that \"I don't know\", don't try to make up an answer.\n \n ----------------\n {summaries}" ]
2024-01-10
IkeMane/Adogy-Publications
Autoblog.py
from openai import OpenAI from dotenv import load_dotenv import os import json load_dotenv() Client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) model = os.getenv("OPENAI_MODEL") def upload_file(file_path, purpose): with open(file_path, "rb") as file: response = Client.files.create(file=file, purpose=purpose) return response.id def methodology(keyword): systemmsg = f"You are a methodology section generator for {keyword} ranking its items and or categories. Output only the text that will be used in article." messages = list() messages.append({"role": "system", "content": systemmsg}) prompt = f"Generate a methodology section in html starting at h2 for a wordpress article titled {keyword}. Include a heading for the section." messages.append({"role": "user", "content": prompt}) response = Client.chat.completions.create(model=model,messages=messages,) response_message = response.choices[0].message.content # print(response_message) return response_message def introduction(article): systemmsg = f"You are an introduction section generator for wordpress articles. You generate a very short introduction" messages = list() messages.append({"role": "system", "content": systemmsg}) prompt = f"Generate a one paragraph introduction without including the methodology for a wordpress article format it html starting at h2: \n {article}" messages.append({"role": "user", "content": prompt}) response = Client.chat.completions.create(model=model,messages=messages,) response_message = response.choices[0].message.content # print("\n\nIntroduction:",response_message) return response_message def read_items(filename): with open(filename, 'r') as file: data = json.load(file) return data['items'] #TODO change this to be an assistant API call to add internal links and to be sure it doesnt max out of tokens. def generate_sections(methodology,keyword,items): rated_items = f"<h2> {keyword} </h2>\n\n" messages = list() systemmsg = f"You are a section generator for wordpress articles. Write in a journalist tone and based off: \n {methodology}." messages.append({"role": "system", "content": systemmsg}) for item in items: name = item['Title'] link = item['URL'] photo = item['Image URL'] prompt = f"Generate a short one paragraph section in html about {name} for the article title {keyword}. Be sure to add their link whenever you mention their name: {link} and show the image if one: {photo}. Dont add any headers." messages.append({"role": "user", "content": prompt}) response = Client.chat.completions.create( model=model, messages=messages, ) response_message = response.choices[0].message.content messages.append({"role": "assistant", "content": response_message}) # print(response_message) rated_items += f"<h3>{name}</h3>\n{response_message}\n\n" return rated_items def overview(keyword, rated_items): systemmsg = f"You are an article overview generator for wordpress articles. You generate the overview with this format: \n <h2>{keyword}</h2>: \n <ul> \n <li> <a href='https://www.wired.com/'>Wired</a> </li> \n </ul> " messages = list() messages.append({"role": "system", "content": systemmsg}) prompt = f"Generate an overview of this article with no images in html for the article titled {keyword}. Keep it one short sentence MAX for each section: {rated_items}." messages.append({"role": "user", "content": prompt}) response = Client.chat.completions.create(model=model,messages=messages,) response_message = response.choices[0].message.content return response_message def table_of_contents(article): systemmsg = f"You are an table of contents generator for wordpress articles. You generate the table of contents with this format: <h2> Table of Contents </h2> \n <ul> \n <li> <a href='#introduction'>Introduction</a> </li> \n </ul>..." messages = list() messages.append({"role": "system", "content": systemmsg}) prompt = f"ONLY generate the table of contents for this article in html with links to headings, include a heading for the section: {article}." messages.append({"role": "user", "content": prompt}) response = Client.chat.completions.create(model=model,messages=messages,) response_message = response.choices[0].message.content return response_message def generate_json(keyword,methodology): systemmsg = f"You are a json generator for {keyword} ranking its items and or categories. You use: {methodology} Output JSON." messages = list() messages.append({"role": "system", "content": systemmsg}) prompt = f'Create a list of {keyword} and links to websites. Leave the image URL and Image URL blank like this JSON: {{"items": [{{"Title": "TechCrunch", "URL": "", "Image URL": ""}},...]}} ' messages.append({"role": "user", "content": prompt}) response = Client.chat.completions.create(model='gpt-4-1106-preview',messages=messages,response_format={ "type": "json_object" }) response_message = response.choices[0].message.content # print(response_message) return response_message def autoblog(keyword,methodology_): # methodology_ = methodology(keyword) items = read_items('data.json') sections = generate_sections(methodology_,keyword,items) overview_ = overview(keyword,sections) article = methodology_ + "\n\n"+ sections introduction_ = introduction(article) article += "\n\n"+ introduction_ +"\n\n" + overview_ + "\n\n" + methodology_ +"\n\n"+ sections table_of_contents_ = table_of_contents(article) final_article = introduction_ +"\n\n"+ table_of_contents_ +"\n\n"+ overview_ + "\n\n" + methodology_ +"\n\n\n"+ sections # print(final_article) #replace markdown tags with nothing final_article = final_article.replace("“`html","") final_article = final_article.replace("“`","") final_article = final_article.replace("```html","") final_article = final_article.replace("```","") final_article = final_article.replace('"','') #add results to results.md file with open('results.md', 'w') as file: file.write(final_article) return final_article def seo(article): systemmsg = "You are an SEO generator for wordpress articles. You return only the text that will be used. e.g. response: Top Tech Publications" messages = list() messages.append({"role": "system", "content": systemmsg}) prompt = f"Heres the article:\n {article}." messages.append({"role": "user", "content": prompt}) prompt = f"Generate the Focus keyphrase for this article." messages.append({"role": "user", "content": prompt}) response = Client.chat.completions.create(model=model,messages=messages,) focus_keyphrase = response.choices[0].message.content focus_keyphrase = focus_keyphrase.replace('"','') messages.append({"role": "assistant", "content": focus_keyphrase}) prompt = f"Generate the title for this article" messages.append({"role": "user", "content": prompt}) response = Client.chat.completions.create(model=model,messages=messages,) title = response.choices[0].message.content title = title.replace('"','') messages.append({"role": "assistant", "content": title}) prompt = f"Generate the SEO title for this article" messages.append({"role": "user", "content": prompt}) response = Client.chat.completions.create(model=model,messages=messages,) seo_title = response.choices[0].message.content seo_title = seo_title.replace('"','') messages.append({"role": "assistant", "content": seo_title}) prompt = f"Generate a meta description for this article in one very short sentence" messages.append({"role": "user", "content": prompt}) response = Client.chat.completions.create(model=model,messages=messages,) meta_description = response.choices[0].message.content meta_description = meta_description.replace('"','') messages.append({"role": "assistant", "content": meta_description}) return title, focus_keyphrase, meta_description, seo_title #TODO scrape google maps for JSON data- may be different for style of application #TODO def generate_ranking(methodology): #prompt: generate ranking for {category} based off {methodology} in JSON format: {category: {publication: {rank: 1, link: https://www.wired.com/, photo: https://www.wired.com/logo.png}}} #will give it the doc using assistants API. #TODO add assitants API to take advantage of files with our interal links to add to the sections and use of thread so we dont max out tokens. #TODO have a grading GPT that states if the article is good to post or not. If not, it will return a list of things to fix. And then call a GPT to fix the section. #note Maybe the section builder shoudlnt have access to the image url and we do that part manuely. #if img_url : #add the image #else: #dont add the image #TODO change from mardown to HTML for the final article.
[ "Generate the title for this article", "ONLY generate the table of contents for this article in html with links to headings, include a heading for the section: PLACEHOLDER.", "Generate a methodology section in html starting at h2 for a wordpress article titled PLACEHOLDER. Include a heading for the section.", "Heres the article:\n PLACEHOLDER.", "Generate an overview of this article with no images in html for the article titled PLACEHOLDER. Keep it one short sentence MAX for each section: PLACEHOLDER.", "Generate a meta description for this article in one very short sentence", "Generate a one paragraph introduction without including the methodology for a wordpress article format it html starting at h2: \n PLACEHOLDER", "Generate a short one paragraph section in html about PLACEHOLDER for the article title PLACEHOLDER. Be sure to add their link whenever you mention their name: PLACEHOLDER and show the image if one: PLACEHOLDER. Dont add any headers.", "Create a list of PLACEHOLDER and links to websites. Leave the image URL and Image URL blank like this JSON: {\"items\": [{\"Title\": \"TechCrunch\", \"URL\": \"\", \"Image URL\": \"\"},...]} ", "Generate the SEO title for this article", "Generate the Focus keyphrase for this article." ]
2024-01-10
IkeMane/Adogy-Publications
photos.py
from openai import OpenAI import json from dotenv import load_dotenv import os import requests from pexels_api import API import random load_dotenv() client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) model = os.getenv("OPENAI_MODEL") def search_and_download(search_term, filename='image.jpg'): PEXELS_API_KEY = os.getenv("PEXELS_API_KEY") api = API(PEXELS_API_KEY) api.search(search_term) photos = api.get_entries() if photos: # Limit to the top 5 results top_photos = photos[:5] # Select a random image from the top 5 results if top_photos: selected_photo = random.choice(top_photos) image_url = selected_photo.original # Download the selected image img_data = requests.get(image_url).content with open(filename, 'wb') as handler: handler.write(img_data) return json.dumps({"search_term": search_term, "image_url": image_url, "saved_as": filename}) else: return json.dumps({"search_term": search_term, "image_url": "None", "saved_as": "None"}) else: return json.dumps({"search_term": search_term, "image_url": "None", "saved_as": "None"}) def run_images(keyword): systemmsg = "You are a article image finder for wordpress articles." messages = [{"role": "system", "content": systemmsg}] messages.append({"role": "user", "content": f"Find an image for this article titled: {keyword} be sure not to serch for the title but for images that might repesent article e.g: News, or Journalist."}) tools = [ { "type": "function", "function": { "name": "search_and_download", "description": "Search and downloads a random image from the search term, only call this function once per message. - May have to input the same exact search term a few times to get the perfect image.", "parameters": { "type": "object", "properties": { "search_term": { "type": "string", "description": "The term to search for, e.g., 'news'", }, }, "required": ["search_term"], }, }, } ] #loop through this counter = 0 while True: if counter > 5: try: #generate new image messages = list() systemmsg = "You are a prompt enegineer for AI generated images." messages.append({"role": "system", "content": systemmsg}) messages.append({"role": "user", "content": f"Generate a prompt for Dall-e to generate an image for {keyword} article. You will have to describe exactly what you want to see to every detail. Dont use IP or trademarked content."}) dalle_prompt = client.chat.completions.create( model=model, messages = messages, ) prompt = dalle_prompt.choices[0].message.content print("\n\nDalle Prompt:",prompt) # Generate the image response = client.images.generate( model="dall-e-3", prompt=prompt, size="1024x1024", quality="hd", n=1, style="vivid", ) image_url = response.data[0].url print("\n\nDalle Image URL:",image_url) # Download and save the image img_data = requests.get(image_url).content with open('image.jpg', 'wb') as handler: handler.write(img_data) print("Image saved as image.jpg") break except Exception as err: # Handle the error here print("Error:", err) counter += 1 continue response = client.chat.completions.create( model=model, messages=messages, tools=tools, tool_choice="auto", ) response_message = response.choices[0].message print("\n\nResponse 1:",response_message.content) tool_calls = response_message.tool_calls if tool_calls: available_functions = {"search_and_download": search_and_download} messages.append(response_message) for tool_call in tool_calls: function_name = tool_call.function.name function_to_call = available_functions[function_name] function_args = json.loads(tool_call.function.arguments) function_response = function_to_call( search_term=function_args.get("search_term"), filename=function_args.get("filename", "image.jpg"), ) messages.append( { "tool_call_id": tool_call.id, "role": "tool", "name": function_name, "content": function_response, } ) second_response = client.chat.completions.create( model="gpt-3.5-turbo-1106", messages=messages, ) print("\n\nResponse 2:",second_response.choices[0].message.content) messages.append(second_response.choices[0].message) image_url = json.loads(function_response)["image_url"] image_messages = [ { "role": "user", "content": [ {"type": "text", "text": f"is this image sutatble for the article titled {keyword}? If not then say no, explain what the image was in one sentence and say try again, you can use the same search term again or a new one if it still isnt working. Note: The image doesnt have to be perfect but it should resemble something in the article."}, { "type": "image_url", "image_url": { "url": image_url, }, }, ], } ] third_response = client.chat.completions.create( model="gpt-4-vision-preview", messages=image_messages, ) print("\n\nThird Response: ",third_response.choices[0].message.content) messages.append({"role": "user", "content": third_response.choices[0].message.content}) if "no" in third_response.choices[0].message.content.lower(): #restart loop print("\n\nRestarting loop") # print(messages) counter += 1 continue else: #stop loop print("\n\nStopping loop because of yes in response") # print(messages) counter = 0 break else: #stop loop # print(messages) print("\n\nStopping loop because no tool calls") counter = 0 break if __name__ == "__main__": keyword = "Top Tech Publications" run_images(keyword) #TODO Have it see images that its already used and not use them again. add a general screenshot of the website maybe?
[ "Generate a prompt for Dall-e to generate an image for PLACEHOLDER article. You will have to describe exactly what you want to see to every detail. Dont use IP or trademarked content.", "Find an image for this article titled: PLACEHOLDER be sure not to serch for the title but for images that might repesent article e.g: News, or Journalist.", "[{'type': 'text', 'text': 'is this image sutatble for the article titled PLACEHOLDER? If not then say no, explain what the image was in one sentence and say try again, you can use the same search term again or a new one if it still isnt working. Note: The image doesnt have to be perfect but it should resemble something in the article.'}, {'type': 'image_url', 'image_url': {'url': PLACEHOLDER}}]" ]
2024-01-10
IsisChameleon/niddy-bot
src~modules~loaders.py
import os from langchain.document_loaders import CSVLoader from langchain.document_loaders.pdf import PDFPlumberLoader from langchain.schema import Document from pathlib import Path class MyDirectoryLoader: def __init__(self, dir_path): if type(dir_path) is str: dir_path = Path(dir_path) self.dir_path = dir_path def loadOLd(self): docs = [] for root, _, files in os.walk(self.dir_path): for file in files: print('file:', file) file_path = os.path.join(root, file) if file_path.endswith('.csv'): loader = CSVLoader(file_path) elif file_path.endswith('.pdf'): loader = PDFPlumberLoader(file_path) else: print(f"Do not process the file: {file_path}") continue loaded_docs = loader.load() docs.extend(loaded_docs) return docs def load(self): docs = [] for obj in self.dir_path.rglob('*'): if obj.is_file(): print('file:', obj.name) file_path = obj if file_path.suffix == '.csv': loader = CSVLoader(str(file_path)) elif file_path.suffix == '.pdf': loader = PDFPlumberLoader(str(file_path)) else: print(f"Do not process the file: {file_path}") continue loaded_docs: List[Document] = loader.load() docs.extend(loaded_docs) return docs
[]
2024-01-10
IsisChameleon/niddy-bot
src~tests~test_myDirectoryLoader.py
import unittest from unittest.mock import patch, Mock from pathlib import Path from modules.loaders import MyDirectoryLoader from langchain.schema import Document class TestMyDirectoryLoader(unittest.TestCase): @patch('modules.loaders.CSVLoader') @patch('modules.loaders.PDFPlumberLoader') def test_load(self, MockPDFPlumberLoader, MockCSVLoader): # Arrange dir_path = Path('some/directory') csv_loader = Mock() pdf_loader = Mock() MockCSVLoader.return_value = csv_loader MockPDFPlumberLoader.return_value = pdf_loader csv_loader.load.return_value = [Document(page_content='csv_doc1'), Document(page_content='csv_doc2')] pdf_loader.load.return_value = [Document(page_content='pdf_doc1'), Document(page_content='pdf_doc2')] # Act my_directory_loader = MyDirectoryLoader(dir_path) with patch('modules.loaders.Path.rglob', return_value=[ Path('file1.csv'), Path('file2.pdf'), Path('file3.txt') ]), patch('modules.loaders.Path.is_file', return_value=True): docs = my_directory_loader.load() # Assert self.assertEqual(docs, [Document(page_content='csv_doc1'), Document(page_content='csv_doc2'),Document(page_content='pdf_doc1'), Document(page_content='pdf_doc2')]) MockCSVLoader.assert_called_once_with('file1.csv') MockPDFPlumberLoader.assert_called_once_with('file2.pdf') csv_loader.load.assert_called_once() pdf_loader.load.assert_called_once() if __name__ == '__main__': unittest.main()
[]
2024-01-10
KavyaSethia/HTM4.O
text_gen.py
import openai import re from api_key import API_KEY openai.api_key = API_KEY model_engine = "text-davinci-003" text= input("What do you want to know about?") prompt = text print("AI-Bot is generating new text for you....") completions = openai.Completion.create( engine=model_engine, prompt=prompt, max_tokens=1024, n=1, stop = None, temperature = 0.5 ) #print the generated text generated_text = completions.choices[0].text # save text in file with open("generated_text.txt","w") as file: file.write(generated_text.strip()) print("text generated !!")
[]
2024-01-10
KavyaSethia/HTM4.O
video_gen.py
import openai import re, os import urllib.request from gtts import gTTS from moviepy.editor import * from api_key import API_KEY from moviepy.config import change_settings change_settings({"IMAGEMAGICK_BINARY": r'C:\Program Files\ImageMagick-7.1.1-Q16-HDRI\convert.exe'}) # openai.api_key = API_KEY with open("generated_text.txt", "r") as file: text = file.read() # split the text by , and . paragraphs = re.split(r"[,.]", text) # create folders os.makedirs("audio") os.makedirs("images") os.makedirs("video") # loop through each i = 1 for para in paragraphs[:-1]: response = openai.Image.create( prompt=para.strip(), n=1 #size="1024x1024" ) print("generate new img from para") image_url = response['data'][0]['url'] urllib.request.urlretrieve(image_url, f"images/image{i}.jpg") print("generated image saved in img folder") # create gtts instance tts = gTTS(text=para, lang='en', slow=False) tts.save(f"audio/voiceover{i}.mp3") print("paragraph converted to voice") print("extract voice get duration") audio_clip = AudioFileClip(f"audio/voiceover{i}.mp3") audio_duration = audio_clip.duration # audio file using moviepy print("extract image clip and set duration") image_clip = ImageClip(f"images/image{i}.jpg").set_duration(audio_duration) print("customize text clip") text_clip = TextClip(para, fontsize=25, color="white") text_clip = text_clip.set_pos('center').set_duration(audio_duration) # use py to create final video print("concatenated video") clip = image_clip.set_audio(audio_clip) video = CompositeVideoClip([clip, text_clip]) # save final video to file video = video.write_videofile(f"video/video{i}.mp4", fps=24) print(f"The Video{i} Has Been Created Successfully!") i += 1 clips = [] l_files = os.listdir("video") for file in l_files: clip = VideoFileClip(f"video/{file}") clips.append(clip) print("Concatenate All The Clips to Create a Final Video...") final_video = concatenate_videoclips(clips, method="compose") final_video = final_video.write_videofile("final_video.mp4") print("The Final Video Has Been Created Successfully!")
[]
2024-01-10
saurabh175/TeamKart
flask~llama_index~structure.py
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext from llama_index.output_parsers import GuardrailsOutputParser from llama_index.llm_predictor import StructuredLLMPredictor from llama_index.prompts.prompts import QuestionAnswerPrompt, RefinePrompt from llama_index.prompts.default_prompts import DEFAULT_TEXT_QA_PROMPT_TMPL, DEFAULT_REFINE_PROMPT_TMPL import openai import os openai.api_key = "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" os.environ['OPENAI_API_KEY'] = "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" # load documents, build index documents = SimpleDirectoryReader('company_data').load_data() index = VectorStoreIndex.from_documents(documents, chunk_size=512, openai_api_key = "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") llm_predictor = StructuredLLMPredictor() # specify StructuredLLMPredictor # this is a special LLMPredictor that allows for structured outputs # define query / output spec rail_spec = (""" <rail version="0.1"> <output> <list name="products" description="Bullet points regarding products that the company sells"> <object> <list name="product" description="Bullet points regarding the individual product"> <object> <string name="price" description="The price of the product"/> <string name="description" description="The description of the product"/> </object> </list> </object> </list> </output> <prompt> Query string here. @xml_prefix_prompt {output_schema} @json_suffix_prompt_v2_wo_none </prompt> </rail> """) # define output parser output_parser = GuardrailsOutputParser.from_rail_string( rail_spec, llm=llm_predictor.llm) # format each prompt with output parser instructions fmt_qa_tmpl = output_parser.format(DEFAULT_TEXT_QA_PROMPT_TMPL) fmt_refine_tmpl = output_parser.format(DEFAULT_REFINE_PROMPT_TMPL) qa_prompt = QuestionAnswerPrompt(fmt_qa_tmpl, output_parser=output_parser) refine_prompt = RefinePrompt(fmt_refine_tmpl, output_parser=output_parser) # obtain a structured response query_engine = index.as_query_engine( service_context=ServiceContext.from_defaults( llm_predictor=llm_predictor ), text_qa_temjlate=qa_prompt, refine_template=refine_prompt, ) instructions = """ Format your response like: 1. <product name> <price> <description> 2. """ response = query_engine.query( "What are all the products from this store", ) print(response)
[]
2024-01-10
saurabh175/TeamKart
flask~open_ai~user~iterate_user_profile.py
import openai openai.api_key = "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" def strengthen_profile(cur_profile, recent_chat, products_bought): profile_current = "Here is the current profile (it may be empty): " + cur_profile + "\n" prompt = f""" We are an e-commerce platform that sells products to customers. We want to strengthen our customer profiles by adding information about the products that they have bought and conversations they have had. For example, if a customer has bought a product, we want to add information about that product to their profile. If a customer has had a conversation with a customer service representative, we want to add information about that conversation to their profile. By adding information, we don't want to just copy the direct product names into their profile - rather, we want to derive insights about the persona and background of the user. For example, if the user is buying hiking clothes and talking about playing sports, we can assume that this user is an active individual. If the user is buying a lot of books and talking about reading, we can assume that this user is an avid reader. If the user talks about keeping warm, the user may live in a cold area, so save that he likes to be warn and might live in a cool environment. {profile_current} Here is their most recent chat - this may be structured like a transcripts. {recent_chat} Here are the products that the user has bought: {products_bought} Format your answer in the following way: User is a ______ New user profile: """ response = openai.Completion.create( model="text-davinci-003", prompt= prompt, temperature=0.3, max_tokens=256, top_p=1, frequency_penalty=0, presence_penalty=0 ) return response['choices'][0]
[ "\n We are an e-commerce platform that sells products to customers. We want to strengthen our customer profiles by adding information about the products that they have bought and conversations they have had.\n For example, if a customer has bought a product, we want to add information about that product to their profile. If a customer has had a conversation with a customer service representative, we want to add information about that conversation to their profile.\n By adding information, we don't want to just copy the direct product names into their profile - rather, we want to derive insights about the persona and background of the user.\n For example, if the user is buying hiking clothes and talking about playing sports, we can assume that this user is an active individual.\n If the user is buying a lot of books and talking about reading, we can assume that this user is an avid reader.\n If the user talks about keeping warm, the user may live in a cold area, so save that he likes to be warn and might live in a cool environment.\n \n Here is the current profile (it may be empty): PLACEHOLDER\n\n\n Here is their most recent chat - this may be structured like a transcripts.\n PLACEHOLDER\n\n Here are the products that the user has bought:\n PLACEHOLDER\n\n Format your answer in the following way:\n User is a ______\n\n New user profile: \n " ]
2024-01-10
saurabh175/TeamKart
live-demo~application.py
from flask import Flask, request, render_template, jsonify from langchain.chains import RetrievalQA from langchain.llms import OpenAI from langchain.document_loaders import TextLoader from langchain.document_loaders import PyPDFLoader, DirectoryLoader from langchain.indexes import VectorstoreIndexCreator from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory import os from langchain.prompts.prompt import PromptTemplate from langchain.chains.question_answering import load_qa_chain from langchain.document_loaders.json_loader import JSONLoader import json from reportlab.pdfgen import canvas from reportlab.lib.pagesizes import letter from api import findKNearestItems from item import ProductEncoder, create_product_object app = Flask(__name__) rapidapi_key = "d83f4bfe89msh2c35c0f026b5666p1bfa94jsnb9eba71c9060" # Replace with your RapidAPI key rapidapi_endpoint = "https://gpt-chat.p.rapidapi.com/v1/gpt-3.5-turbo" # openai_api_key = "sk-d83f4bfe89msh2c35c0f026b5666p1bfa94jsnb9eba71c9060" # llm = OpenAI(openai_api_key=openai_api_key, temperature=0) # with open("faq.txt", "r", encoding="utf-8") as file: # content = file.read() # with open("faq.txt", "r", encoding="utf-8", errors="ignore") as file: # content = file.read() instructions = ''' You are a online shopping assistant with two tasks - answering questions about inventory and company policy or generating product bundles. Specifically, you are an online shopping assistant meant to guide users through the website of the company 'Son of a Tailor'. It is your job to deduce whether the user is asking a question about the company's policy or is asking about potential products to buy. For each case, follow the follow instructions respectively. START OF INSTRUCTIONS If user is asking a general FAQ question about policies, DO NOT RECCOMEND ANY PRODUCTS out of the inventory. After directly responding to the question asked by the user about policies, terminate your answer. 1. If the user is asking questions about the company's policies or general information Answer the question using the company's FAQs data. Your response should follow the following format (under no circumstances should you recommend a product in this case): FAQ Response: <response> If the question is about products, follow the below protocol: 2. The user is looking for products to buy. If you do not know the exact name of a product or it does not exist within the company's inventory, tell them that we do not offer it at the moment. Do not make up or reference products that are not directly from the data provided. Only provide the DKK and USD prices unless specified for a different currency. Don't just build outfits based on your general knowledge - only base your oufits on the product list you were given. Don't make up the names of products that you don't have access to. We only sell tops. If a product has more than one color available, suggest a color but also say we have more colors. Verify that the product bundles you are generating are adequate and are of the same type as the request being made and fit the appropriate criteria If the user says some gibberish or something that is not a question or doesn't make sense, say that they have to clarify and you don't understand by saying I'm sorry, I don't understand. Could you please clarify what you are asking? Keep your responses under 200 word. At the end of your response, list out each product that you chose from, why you chose that product, and confirm that the product was found in the list of products we inputted. If the user provides you details about why they need something (region, reason, age), cater your results to this preference. Your response should be in the following format: - <product > - <product > - <product > ... <reasoning > Only provde the title of the product and price, no other information. Do not provide materials unless asked for. Keep in mind the context of what the user has said in the conversation below when giving answers to additional questions. If the user is not asking or requesting products to buy, just answer their question without recommending any clothing items. Parse through the FAQs to get relevant information. END OF INSTRUCTIONS Current Conversation: {history} Here are the products related to the current query: {input} The <reasoning> should come after the product listing and should be brief. Keep the word count low and concise. AI Assistant:''' PROMPT = PromptTemplate( input_variables=["history", "input"], template=instructions ) conversation = ConversationChain( prompt=PROMPT, llm=llm, verbose=True, memory=ConversationBufferMemory(ai_prefix="AI Assistant") ) # chrome://net-internals/#sockets @app.route('/', methods=['GET', 'POST']) def index(): return render_template('popup.html') # @app.route('/get_parameter', methods=['GET']) # def get_parameter(): # input_data = request.args.get('input') # nearest_items = findKNearestItems(input_data, 5) # products = process_products(nearest_items) # input_products = product_template(products) # llm_response = conversation.predict( # input=input_products + "\n Customer: " + input_data) # print(llm_response) # res = {"data": products, "result": llm_response} # return jsonify(res) @app.route('/get_parameter', methods=['GET']) def get_parameter(): input_data = request.args.get('input') # Send request to RapidAPI headers = { "X-RapidAPI-Host": "gpt-chat.p.rapidapi.com", "X-RapidAPI-Key": rapidapi_key, "Content-Type": "application/json", } payload = { "messages": [{"role": "user", "content": input_data}], "model": "gpt-3.5-turbo", "max_tokens": 100, "temperature": 0.9, } response = request.post(rapidapi_endpoint, headers=headers, json=payload) response_data = response.json() llm_response = response_data["choices"][0]["message"]["content"] # Process llm_response and generate products nearest_items = findKNearestItems(input_data, 5) products = process_products(nearest_items) input_products = product_template(products) # Generate AI response using conversation.predict conversation_history = "" # Add your conversation history here llm_response = conversation.predict( input=input_products + "\n Customer: " + input_data + "\n" + conversation_history ) print(llm_response) res = {"data": products, "result": llm_response} return jsonify(res) # turns each string into a product object and converts to json def process_products(inputs): products = [] for item in inputs: product = create_product_object(item[0]) product_json = json.dumps(product, cls=ProductEncoder) product_dict = json.loads(product_json) products.append(product_dict) return products def product_template(products): res = [] for p in products: res.append( { 'name': p['title'], 'desc': p['desc'] } ) return str(res) if __name__ == "__main__": # Change the host and port as desired app.run(host='localhost', port=9000)
[ "\n\nYou are a online shopping assistant with two tasks - answering questions about inventory and company policy or generating product bundles. \nSpecifically, you are an online shopping assistant meant to guide users through the website of the company 'Son of a Tailor'.\n\nIt is your job to deduce whether the user is asking a question about the company's policy or is asking about potential products to buy.\nFor each case, follow the follow instructions respectively.\n\nSTART OF INSTRUCTIONS\n\nIf user is asking a general FAQ question about policies, DO NOT RECCOMEND ANY PRODUCTS out of the inventory. After directly responding to the \nquestion asked by the user about policies, terminate your answer. \n\n1. If the user is asking questions about the company's policies or general information\nAnswer the question using the company's FAQs data. \nYour response should follow the following format (under no circumstances should you recommend a product in this case):\nFAQ Response: <response>\n\nIf the question is about products, follow the below protocol:\n \n2. The user is looking for products to buy.\nIf you do not know the exact name of a product or it does not exist within the company's inventory, tell them that we do not offer it at the moment. Do not make up or reference products that are not directly from the data provided. \nOnly provide the DKK and USD prices unless specified for a different currency.\nDon't just build outfits based on your general knowledge - only base your oufits on the product list you were given. Don't make up the names of products that you don't have access to. We only sell tops. \nIf a product has more than one color available, suggest a color but also say we have more colors.\nVerify that the product bundles you are generating are adequate and are of the same type as the request being made and fit the appropriate criteria\nIf the user says some gibberish or something that is not a question or doesn't make sense, say that they have to clarify and you don't understand by saying I'm sorry, I don't understand. Could you please clarify what you are asking?\nKeep your responses under 200 word. At the end of your response, list out each product that you chose from, why you chose that product, and confirm that the product was found in the list of products we inputted.\nIf the user provides you details about why they need something (region, reason, age), cater your results to this preference.\nYour response should be in the following format:\n - <product >\n - <product >\n - <product >\n ...\n<reasoning >\n\nOnly provde the title of the product and price, no other information. Do not provide materials unless asked for. \nKeep in mind the context of what the user has said in the conversation below when giving answers to additional questions.\nIf the user is not asking or requesting products to buy, just answer their question without recommending any clothing items. Parse through the FAQs to get relevant information.\n\nEND OF INSTRUCTIONS\n\nCurrent Conversation:\n{history}\n\nHere are the products related to the current query: {input}\n\nThe <reasoning> should come after the product listing and should be brief. Keep the word count low and concise. \n\nAI Assistant:", "t just build outfits based on your general knowledge - only base your oufits on the product list you were given. Don", "m sorry, I don", "Son of a Tailor", "input", "t make sense, say that they have to clarify and you don" ]
2024-01-10
saurabh175/TeamKart
flask~upsert.py
from langchain.vectorstores import Pinecone from langchain.embeddings.openai import OpenAIEmbeddings from langchain.document_loaders import DirectoryLoader from langchain.chains.question_answering import load_qa_chain from langchain.embeddings import OpenAIEmbeddings from flask import Flask, request, send_file from flask_cors import CORS from werkzeug.utils import secure_filename import os from llama_index import SimpleDirectoryReader import tiktoken from langchain.text_splitter import RecursiveCharacterTextSplitter import hashlib import openai import pinecone import mimetypes from langchain.llms import OpenAI from open_ai.shopping.query import getResponse from utils.process import getCSV, getJSON, getWebsite from langchain.document_loaders import PyPDFLoader, OnlinePDFLoader, UnstructuredPDFLoader, CSVLoader openai.api_key = "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" # Initialize OpenAI embeddings model embeddings = OpenAIEmbeddings( openai_api_key="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") openai.api_key = "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" PINECONE_API_KEY = '2f1f9a16-8e97-4485-b643-bbcd3618570a' PINECONE_ENVIRONMENT = 'us-west1-gcp-free' pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENVIRONMENT) index = pinecone.Index('wing-sandbox') index.delete(delete_all=True) openai_api_key = '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' tokenizer = tiktoken.get_encoding('cl100k_base') BEARER_TOKEN = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuYW1lIjoiQXNod2luIENoaXJ1bWFtaWxsYSJ9.keW___VBKcQY6uyxkxOH_uXZ1Jo74171cVa8SozxrKc" datas = [] docsearchers = [] text_splitter = RecursiveCharacterTextSplitter( chunk_size=2000, chunk_overlap=0) UPSERT_BATCH_SIZE = 100 app = Flask(__name__) CORS(app, origins=["http://localhost:3000/"]) # unblock CORS @app.after_request def after_request(response): response.headers.add('Access-Control-Allow-Origin', 'http://localhost:3000/') response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization') response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS,PATCH') return response def tiktoken_len(text): tokens = tokenizer.encode(text, disallowed_special=()) return len(tokens) def process_csv(text): chunks = text_splitter.split_text(text) documents = [] for i, chunk in enumerate(chunks): documents.append({ 'id': str(hash(chunk)), 'text': chunk }) return documents text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=20, length_function=tiktoken_len, separators=['\n\n', '\n', ' ', ''] ) @app.route('/upload', methods=['POST']) def upload_file(): file = request.files['file'] filename = secure_filename(file.filename) file_path = os.path.join('data', filename) file.save(file_path) file_type, _ = mimetypes.guess_type(file_path) extension = file_type.split('/')[-1] if extension == 'pdf': loader = PyPDFLoader(file_path) data = loader.load() datas.append(data) elif extension == 'csv': loader = CSVLoader(file_path) data = loader.load() datas.append(data) texts = text_splitter.split_documents(data) docsearch = Pinecone.from_texts([t.page_content for t in texts], embeddings, index_name="wing-sandbox") docsearchers.append(docsearch) return "file successfully uploaded" @app.route('/query', methods=['POST']) def query_chat(): data = request.json query = data.get('query_string') user_profile = "My name is Arth Bohra and I live in the extreme cold." return getResponse(query, user_profile, docsearchers[0]) def load_document(filename): loader = PyPDFLoader(filename) docs = loader.load() return docs def process_documents(docs): documents = [] for doc in docs: chunks = text_splitter.split_text(doc.page_content) for i, chunk in enumerate(chunks): documents.append({ 'id': str(hash(chunk)), 'text': chunk }) return documents def get_embeddings(texts): response = openai.Embedding.create( input=texts, model="text-embedding-ada-002") data = response["data"] return [result["embedding"] for result in data] def remove_files_from_data(): for file in os.listdir('data'): os.remove(os.path.join('data', file))
[]
2024-01-10
saurabh175/TeamKart
flask~trial.py
from langchain.document_loaders import UnstructuredPDFLoader, OnlinePDFLoader, PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter import os import openai print (f'You have {len(data)} document(s) in your data') print (f'You have {len(data)} document(s) in your data') print (f'Now you have {len(texts)} documents') from langchain.vectorstores import Chroma, Pinecone from langchain.embeddings.openai import OpenAIEmbeddings import pinecone embeddings = OpenAIEmbeddings(openai_api_key="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") embeddings = OpenAIEmbeddings( openai_api_key="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") openai.api_key = "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" PINECONE_API_KEY = '2f1f9a16-8e97-4485-b643-bbcd3618570a' PINECONE_ENVIRONMENT = 'us-west1-gcp-free' pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENVIRONMENT) index = pinecone.Index('wing-sandbox') index.delete(delete_all=True) docsearch = Pinecone.from_texts([t.page_content for t in texts], embeddings, index_name="wing-sandbox") query = "What are examples of good data science teams?" docs = docsearch.similarity_search(query) print(docs[0].page_content[:450]) from langchain.llms import OpenAI from langchain.chains.question_answering import load_qa_chain llm = OpenAI(temperature=0, openai_api_key="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") chain = load_qa_chain(llm, chain_type="stuff") query = "What is BYOC?" docs = docsearch.similarity_search(query) print(chain.run(input_documents=docs, question=query))
[]
2024-01-10
saurabh175/TeamKart
flask~utils~process.py
import json import openai from openai.embeddings_utils import cosine_similarity import matplotlib from langchain.embeddings import OpenAIEmbeddings from llama_index import download_loader import urllib.request import ssl ssl._create_default_https_context = ssl._create_unverified_context from urllib.request import urlopen from bs4 import BeautifulSoup from langchain.document_loaders import PyPDFLoader import csv embeddings = OpenAIEmbeddings( openai_api_key="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") openai.api_key = "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" def getCSV(filename): with open(filename) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 csv_string = "" column_headers = [] for row in csv_reader: if line_count == 0: for col in row: column_headers.append(col) csv_string += f'"{col}": "{col}",' line_count += 1 else: csv_string += "{" i = 0 for col in row: csv_string += f'"{column_headers[i]}": "{col}",' i += 1 csv_string += "}," line_count += 1 return csv_string def getJSON(filename): # turn the json file into a json string json_string = "" json_file = open(filename) json_data = json.load(json_file) for item in json_data: json_string += json.dumps(item) return json_string def getWebsite(url): html = urlopen(url).read() soup = BeautifulSoup(html, features="html.parser") # kill all script and style elements for script in soup(["script", "style"]): script.extract() # rip it out # get text text = soup.get_text() # break into lines and remove leading and trailing space on each lines = (line.strip() for line in text.splitlines()) # break multi-headlines into a line each chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) # drop blank lines text = '\n'.join(chunk for chunk in chunks if chunk) return text def getPDF(filename): loader = PyPDFLoader(filename) pages = loader.load_and_split() return pages
[]
2024-01-10
SR3u/gpt-2-tensorflow2.0
sample.py
import json import sentencepiece as spm import tensorflow as tf from gpt2_model import Gpt2 def argmax(logits): return tf.argmax(logits) def top_k_logits(logits, k): if k == 0: return logits values, _ = tf.nn.top_k(logits, k=k) min_values = values[:, -1] return tf.where( logits < min_values, tf.ones_like(logits, dtype=logits.dtype) * -1e10, logits ) # Nucleas Sampling (https://arxiv.org/pdf/1904.09751.pdf) def top_p_logits(logits, p): """Took from OpenAI GPT-2 Implememtation""" batch = tf.shape(logits)[0] sorted_logits = tf.sort(logits, direction='DESCENDING', axis=-1) cumulative_probs = tf.cumsum(tf.nn.softmax(sorted_logits, axis=-1), axis=-1) indices = tf.stack([ tf.range(0, batch), tf.maximum(tf.reduce_sum(tf.cast(cumulative_probs <= p, tf.int32), axis=-1) - 1, 0), ], axis=-1) min_values = tf.gather_nd(sorted_logits, indices) return tf.where( logits < min_values, tf.ones_like(logits) * -1e10, logits, ) class SequenceGenerator: def __init__(self, model_path, model_param, vocab_path): self.sp = None self.model = None self.model_path = model_path self.model_param = model_param self.vocab_path = vocab_path def load_weights(self): with open(self.model_param) as f: param = json.load(f) self.model = Gpt2(param['num_layers'], param['d_model'], param['num_heads'], param['dff'], param['max_seq_len'], param['vocab_size']) ckpt = tf.train.Checkpoint(model=self.model) ckpt_manager = tf.train.CheckpointManager(ckpt, self.model_path, max_to_keep=1) ckpt.restore(ckpt_manager.latest_checkpoint).expect_partial() print('Model weights loaded into memory') self.sp = spm.SentencePieceProcessor() self.sp.load(self.vocab_path) def sample_sequence(self, context=None, seq_len=512, bos=3, eos=4, temperature=1, top_k=8, top_p=8, nucleus_sampling=True): if context == None: print("Give some context to model.................") return context = tf.expand_dims(([bos] + self.sp.encode_as_ids(context)), 0) prev = context output = context past = None for i in range(seq_len): logits, past = self.model(prev, training=False, past=past) # print(logits) logits = logits[:, -1, :] / tf.cast(temperature, tf.float32) # print(logits) logits = top_k_logits(logits, k=top_k) # print(logits) if nucleus_sampling: logits = top_p_logits(logits, p=top_p) samples = tf.random.categorical(logits, num_samples=1, dtype=tf.int32) # print(samples) if tf.equal(samples, eos): # print("Predicted end of sequence.") break # print("shape.........") # print(tf.shape(output)) # print(tf.shape(samples)) output = tf.concat([output, samples], axis=-1) prev = samples # print(tf.shape(output)) # print(output) # print("--------------------------") result = tf.squeeze(output, axis=0) pred = [int(i) for i in result] generated_seq = self.sp.decode_ids(pred[1:]) generated_seq = generated_seq.replace("[SEP]", "").strip() generated_seq = ' '.join(generated_seq.split()) return generated_seq
[]
2024-01-10
arvindinh/custom-chatbot
utils~splitters~character.py
from langchain.text_splitter import CharacterTextSplitter class Character_TextSplitter: """ A class to split a Document using the CharacterTextSplitter wrapper from the langchain library """ def __init__(self, separator, chunk_size, chunk_overlap, length_function): """ Initializes a new instance of CharacterTextSplitter ex. splitter = character.Character_TextSplitter( separator= "\n", chunk_size = 1000, chunk_overlap = 200, length_function = len, ) :param separator: list of separator characters for the text splitter :param chunk_size: Maximum size of chunks to return :param chunk_overlap: Overlap in characters between chunks :param length_function: Function that measures the length of given chunks """ self.splitter = CharacterTextSplitter( separator = separator, chunk_size = chunk_size, chunk_overlap = chunk_overlap, length_function = length_function ) def split_data(self, data): """ Splits the given Document based on single characters, default "\n\n", and measures chunk length by number of characters :param data: The Document to be split, in the Document format returned by the langchain pdf loaders :return: Split Documents """ docs = self.splitter.split_documents(data) return docs
[]
2024-01-10
arvindinh/custom-chatbot
ai~llms~llms_mapper.py
import os from langchain.llms import OpenAI class LLMs_Mapper: """ A class to initalize a new language model based on the wrappers from langchain. """ def __init__(self): """ initializes a new mapper to return a LLM object based on the langchain wrapper """ self.openai_key = os.environ.get('OPENAI_API_KEY') self.model_map = { "openai" : (OpenAI, {"temperature": 0.7, "openai_api_key": self.openai_key}), #temperature:takes values 0-2, lower = more focused and deterministic, higher = random and diverse. } def find_model(self, model): if model in self.model_map: model_class, model_args = self.model_map[model] model = model_class(**model_args) return model raise ValueError(f"LLM '{model}' not recognized")
[]
2024-01-10
arvindinh/custom-chatbot
utils~tests~test_loaders.py
import sys sys.path.append('..') from langchain.document_loaders import ( CSVLoader, PyMuPDFLoader, TextLoader, UnstructuredHTMLLoader, UnstructuredMarkdownLoader, UnstructuredWordDocumentLoader, UnstructuredPowerPointLoader, UnstructuredExcelLoader, ) from utils.loaders.loader_mapper import LoaderMapper import pytest import re @pytest.mark.parametrize("doc, expected", [ ('tests/docs/dummy_doc_twinkle.pdf', PyMuPDFLoader('tests/docs/dummy_doc_twinkle.pdf')), ('tests/docs/example.csv', CSVLoader('tests/docs/example.csv')), ('tests/docs/dummy.txt', TextLoader(file_path='tests/docs/dummy.txt', encoding="utf8")), ('tests/docs/dummy.html', UnstructuredHTMLLoader('tests/docs/dummy.html')), ('tests/docs/dummy.md', UnstructuredMarkdownLoader('tests/docs/dummy.md')), ('tests/docs/dummy.docx', UnstructuredWordDocumentLoader('tests/docs/dummy.docx')), ('tests/docs/dummy.pptx', UnstructuredPowerPointLoader('tests/docs/dummy.pptx')), ('tests/docs/dummy.xlsx', UnstructuredExcelLoader('tests/docs/dummy.xlsx')), ]) def test_return_loader(doc, expected): mapper = LoaderMapper() loader = mapper.find_loader(doc) assert type(loader) == type(expected) @pytest.mark.parametrize("doc, expected", [ ('tests/docs/dummy_doc_twinkle.pdf', """Twinkle, twinkle, little star,\nHow I wonder what you are!\nUp above the world so high,\nLike a diamond in the sky.\nTwinkle, twinkle, little star,\nHow I wonder what you are!"""), ('tests/docs/example.csv', """Name: John Age: 25 Country: USA"""), ('tests/docs/dummy.txt', """Blah blah blah. Sample text. Blah Blah Blah Blah Blah. This is so fun. Blah Blah. Abcdefghijklmnopqrstuvwxyz.""" ), ('tests/docs/dummy.html', """This is a dummy HTML file. It serves as an example."""), ('tests/docs/dummy.md', """Dummy Markdown File This is a dummy Markdown file. It serves as an example. Item 1 Item 2 Item 3"""), ('tests/docs/dummy.docx', """Dummy Document This is a dummy Word document."""), ('tests/docs/dummy.pptx', """Dummy Presentation This is a dummy PowerPoint presentation."""), ('tests/docs/dummy.xlsx', """This is a dummy Excel spreadsheet."""), ]) def test_load_doc(doc, expected): mapper = LoaderMapper() loader = mapper.find_loader(doc) loaded_doc = loader.load() text = loaded_doc[0].page_content actual_normalized = re.sub(r'\s+', ' ', text.strip()) expected_normalized = re.sub(r'\s+', ' ', expected.strip()) assert actual_normalized == expected_normalized
[]
2024-01-10
arvindinh/custom-chatbot
utils~loaders~loader_mapper.py
from langchain.document_loaders import ( CSVLoader, PyMuPDFLoader, TextLoader, UnstructuredHTMLLoader, UnstructuredMarkdownLoader, UnstructuredWordDocumentLoader, UnstructuredPowerPointLoader, UnstructuredExcelLoader, ) class LoaderMapper: """ LoaderMapper can accept multiple file types and return a langchain loader wrapper that corresponds to the associated loader. Currently supports csv, pdf, txt, html, md, docx, pptx, xls, xlsx. Note: Currently having issues with JSON """ #keep dict of file extensions and their relevant loaders with their arguments loader_map = { ".csv": (CSVLoader, {}), ".pdf": (PyMuPDFLoader, {}), ".txt": (TextLoader, {"encoding": "utf8"}), ".html": (UnstructuredHTMLLoader, {}), ".md": (UnstructuredMarkdownLoader, {}), ".docx": (UnstructuredWordDocumentLoader, {}), ".pptx": (UnstructuredPowerPointLoader, {}), ".xls": (UnstructuredExcelLoader, {}), ".xlsx": (UnstructuredExcelLoader, {}), } @classmethod def find_loader(self, filepath): """ Finds the associated loader based on filepath extension :param filepath: path of the file to be loaded :return: langchain loader wrapper object. to load the filepath into a Document object, use ".load" Example usage: mapper = LoaderMapper() loader = mapper.find_loader(filepath) data = loader.load() You can pass in the data(Document object) to a splitter, which returns the chunks you can pass to create an embedding/store in db """ ext = "." + filepath.rsplit(".", 1)[-1] if ext in LoaderMapper.loader_map: loader_class, loader_args = LoaderMapper.loader_map[ext] loader = loader_class(filepath, **loader_args) return loader raise ValueError(f"Unsupported file extension '{ext}'")
[]
2024-01-10
arvindinh/custom-chatbot
ai~tests~test_embeddings.py
import sys sys.path.append('..') import pytest from ai.embeddings.embeddings_mapper import Embeddings_Mapper from langchain.embeddings import OpenAIEmbeddings from langchain.embeddings import HuggingFaceEmbeddings @pytest.mark.parametrize("model, expected", [ ("openai", OpenAIEmbeddings()), ("huggingface", HuggingFaceEmbeddings()), ]) def test_mapper(model, expected): mapper = Embeddings_Mapper() embeddings = mapper.find_model(model) assert type(embeddings) == type(expected)
[]
2024-01-10
arvindinh/custom-chatbot
utils~vectorstores~deep_lake.py
from langchain.vectorstores import DeepLake class DeeplakeDB: """ A class to initialize the Deep Lake vector store and perform various operations based on the DeepLake wrapper from langchain """ def __init__(self, store_path, embedding_model): """ Initializes the DeepLake object based on a given dataset path and embedding function/model. DeepLake wrapper is capable of internally computing the embedding using the given model and storing it in the path. :param store_path: path that contains vector store. will create at that path if doesn't already exist :param embedding_model: langchain embedding model """ self.db = DeepLake(dataset_path = store_path, embedding_function = embedding_model) def add_docs(self, documents): """ Adds the embedded documents to the path given on initialization. returns the id, accessible if needed. :param document: langchain Document object used for computing embedding, then to be stored """ for document in documents: id = self.db.add_documents(document) def find_similar(self, query): """ Returns the document that best matches the query :param query: String that is tested for similarity search :return: most similar Document object """ return self.db.similarity_search(query) def delete_all(self): """ Deletes the vector store in the given path. """ self.db.delete_dataset()
[]
2024-01-10
arvindinh/custom-chatbot
utils~splitters~nltk.py
from langchain.text_splitter import NLTKTextSplitter class NLTK_TextSplitter: """ A class to split a Document using the NLTKTextSplitter wrapper from the langchain library """ def __init__(self, chunk_size): """ Initializes a new instance of NLTKTextSplitter :param chunk_size: Maximum size of chunks to return """ self.splitter = NLTKTextSplitter(chunk_size = chunk_size) def split_data(self, data): """ Splits the given Document based on NLTK tokenzer, chunk size is measured by number of characters :param data: The Document to be split, in the Document format returned by the langchain pdf loaders :return: Split Documents """ docs = self.splitter.split_documents(data) return docs
[]
2024-01-10
arvindinh/custom-chatbot
utils~splitters~tiktoken.py
from langchain.text_splitter import TokenTextSplitter class Token_TextSplitter: """ A class to split a Document using the TokenTextSplitter wrapper from the langchain library. """ def __init__(self, chunk_size, chunk_overlap): """ Initializes a new instance of TokenTextSplitter :param chunk_size: Maximum size of chunks to return :param chunk_overlap: Overlap in characters between chunks """ self.splitter = TokenTextSplitter( chunk_size = chunk_size, chunk_overlap = chunk_overlap, ) def split_data(self, data): """ Splits the given Document based on tiktoken tokens. The text is split and chunk size is measured by tiktoken tokens. :param data: The Document to be split, in the Document format returned by the langchain pdf loaders :return: Split Documents """ docs = self.splitter.split_documents(data) return docs
[]
2024-01-10
arvindinh/custom-chatbot
ai~chains~conversational.py
from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory class ConversationModel: """ ConversationModel is a simple wrapper for a conversational language model that uses chat history in addition to context from db """ def __init__(self, llm, db): """ Initializes a conversational retrieval chain based on a given llm model, vector store. :param llm: langchain language model object :param db: langchain vector store object """ memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) self.chat = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever(), memory=memory) def get_response(self, query): """ returns the response given by the given language model based on a given query :param query: string, question to be passed in to the llm :return: string, response given by llm based on query and embedded documents in vector store """ response = self.chat({"question": query}) return response["answer"]
[ "{'question': PLACEHOLDER}" ]
2024-01-10
arvindinh/custom-chatbot
utils~splitters~recursive.py
from langchain.text_splitter import RecursiveCharacterTextSplitter class RecursiveCharacter_TextSplitter: """ A class to split a Document using the RecursiveCharacterTextSplitter wrapper from the langchain library. Recommended text splitter for generic text. """ def __init__(self, chunk_size, chunk_overlap, length_function): """ Initializes a new instance of RecursiveCharacterTextSplitter :param chunk_size: Maximum size of chunks to return :param chunk_overlap: Overlap in characters between chunks :param length_function: Function that measures the length of given chunks """ self.splitter = RecursiveCharacterTextSplitter( chunk_size = chunk_size, chunk_overlap = chunk_overlap, length_function = length_function ) def split_data(self, data): """ Splits the given Document based on list of characters, ["\n\n", "\n", " ", ""]. Chunk size is measured of characters. :param data: The Document to be split, in the Document format returned by the langchain pdf loaders :return: Split Documents """ docs = self.splitter.split_documents(data) return docs
[]
2024-01-10
arvindinh/custom-chatbot
ai~tests~test_llms.py
import sys sys.path.append('..') import pytest from ai.llms.llms_mapper import LLMs_Mapper from langchain.llms import OpenAI @pytest.mark.parametrize("model, expected", [ ("openai", OpenAI()), ]) def test_mapper(model, expected): mapper = LLMs_Mapper() llm = mapper.find_model(model) assert type(llm) == type(expected)
[]
2024-01-10
Itsfoss0/langchain-rag-python
hello_rag.py
import os import bs4 from langchain import hub from langchain.chat_models import ChatOpenAI from langchain.document_loaders import WebBaseLoader from langchain.embeddings import OpenAIEmbeddings from langchain.schema import StrOutputParser from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from langchain_core.runnables import RunnablePassthrough import dotenv dotenv.load_dotenv() os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") loader = WebBaseLoader( web_paths=( "https://devlog.tublian.com/tublian-open-source-internship-cohort2-a-path-to-software-development-mastery", ), ) loader.requests_kwargs = {"verify": False} docs = loader.load() print(docs) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) splits = text_splitter.split_documents(docs) vectorstore = Chroma.from_documents( documents=splits, embedding=OpenAIEmbeddings(), persist_directory="./chroma_db" ) retriever = vectorstore.as_retriever() print(retriever) prompt = hub.pull("rlm/rag-prompt") llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0) def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) rag_chain = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) print("invoking...") result = rag_chain.invoke("How long is the Open Source internship?") print(result) print("invoking...1")
[ "rlm/rag-prompt" ]
2024-01-10
DylanAlloy/prismatica
celery_server.py
from fastapi import FastAPI, BackgroundTasks, File, UploadFile, HTTPException from fastapi.responses import HTMLResponse from fastapi.staticfiles import StaticFiles from pymongo import MongoClient from bson import ObjectId from pydantic import BaseModel import hashlib import os from transformers import pipeline, AutoTokenizer from typing import Optional from langchain.text_splitter import CharacterTextSplitter from qdrant_client import QdrantClient from qdrant_client.models import Distance, VectorParams from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Qdrant from langchain.document_loaders import PyPDFLoader, Docx2txtLoader app = FastAPI() app.mount("/public", StaticFiles(directory="public"), name="public") import configparser config = configparser.ConfigParser() config.read('config.ini') mongo_host = config.get('mongo', 'host') qdrant_host = config.get('qdrant', 'host') class Document(BaseModel): filename: str question: str class MongoDB: def __init__(self, uri: str, registry: Optional[str] = None): self._client = MongoClient(host=uri) self._registry = registry def __getattr__(self, name): return getattr(self._client, name) @property def type_registry(self): return self._registry def __getitem__(self, key): db = self._client[key] return MongoCollection(db) class MongoCollection: def __init__(self, db): self._db = db def __getattr__(self, name): return getattr(self._db, name) def __getitem__(self, key): return self._db[key] mongo_client = MongoDB(mongo_host, registry='utf-8') ml_tasks = mongo_client['tasks']['ml_tasks'] uploads_collection = mongo_client['user_uploads']['uploads'] @app.get("/") async def read_index_html(): with open("index.html", "r") as index_file: content = index_file.read() return HTMLResponse(content=content) @app.get("/uploads") async def get_uploads(): # retrieve all documents from the uploads collection all_uploads = uploads_collection.find() # convert the documents to a list and remove the '_id' field from each document all_uploads = [upload for upload in all_uploads] for upload in all_uploads: upload.pop('_id', None) # return the list of documents return all_uploads @app.get("/tasks") async def get_tasks(): # retrieve all documents from the uploads collection all_tasks = ml_tasks.find() # convert the documents to a list and remove the '_id' field from each document all_tasks = [task for task in all_tasks] # return the list of documents return all_tasks def generate_text_task(text: str): generated_text = generator(text, max_length=100) task_id = str(ObjectId()) task_result = generated_text[0]['generated_text'] print(task_result) task = { '_id': task_id, 'status': 'done', 'result': task_result } ml_tasks.insert_one(task) return task_id @app.post("/generate_text") async def generate_text(text: dict, background_tasks: BackgroundTasks): task_id = str(ObjectId()) task = { '_id': task_id, 'status': 'processing', 'result': None } ml_tasks.insert_one(task) background_tasks.add_task(generate_text_task, text['text']) return {"task_id": task_id} def is_valid_filetype(filename): allowed_extensions = ['.pdf', '.docx', '.txt', '.log'] file_extension = os.path.splitext(filename)[1] return file_extension in allowed_extensions @app.post("/upload_file") async def upload_file(file: UploadFile = File(...)): if not is_valid_filetype(file.filename): raise HTTPException( status_code=400, detail="Invalid filetype. Allowed filetypes are: .pdf, .docx, .txt") file_extension = os.path.splitext(file.filename)[1] file_md5 = hashlib.md5(file.file.read()).hexdigest() file.file.seek(0) file_path = f"uploads/{os.path.splitext(file.filename)[0]+file_md5[0:8]}{file_extension}" # Check if file with same md5 exists in MongoDB existing_file = uploads_collection.find_one({'md5': file_md5}) if existing_file: raise HTTPException( status_code=400, detail="File with same MD5 already exists in the database") with open(file_path, "wb") as f: f.write(file.file.read()) file_info = { 'filename': os.path.splitext(file.filename)[0]+file_md5[0:8]+file_extension, 'md5': file_md5, 'path': file_path } uploads_collection.insert_one(file_info) return {"filename": file_info["filename"], "md5": file_md5, "path": file_path} @app.get("/task_status/{task_id}") async def task_status(task_id: str): task = ml_tasks.find_one({'_id': task_id}) if task is None: return {"status": "not found"} else: return task async def find_similar_documents_task(document: Document, task: str): print(document) embedding_model = "sentence-transformers/multi-qa-MiniLM-L6-cos-v1" _question = document.question _limit = 10 client = QdrantClient(url=qdrant_host+":6333") text_splitter = CharacterTextSplitter( separator="\n", chunk_size=250, chunk_overlap=0, length_function=len, ) embeddings = HuggingFaceEmbeddings( model_name=embedding_model ) # Load document from file if document.filename.split(".")[1] == 'pdf': loader = PyPDFLoader(f'uploads/{document.filename}') else: loader = Docx2txtLoader(f'uploads/{document.filename}') data = loader.load_and_split() # Split document into pages docs = [] for each in data: _page_content = text_splitter.create_documents([each.page_content]) for page in _page_content: doc = page.page_content.replace("\n", " ").replace("\t", " ") docs.append(doc) # _id=[str(each.metadata["page"])] Qdrant.from_texts( texts=docs, embedding=embeddings, host=qdrant_host, collection_name="custom_llm" ) qdrant = Qdrant( client=client, collection_name="custom_llm", embeddings=embeddings.embed_query ) query = _question found_docs = qdrant.similarity_search_with_score(query, k=_limit) def concat_page_content(docs): for doc, _ in docs: yield doc.page_content.replace("\n", "") page_content_generator = concat_page_content(found_docs) # Save search results to database result = list(page_content_generator) ml_tasks.update_one( {'_id': task}, {'$set': {'status': 'done', 'result': result}} ) @app.post("/find_similar_documents") async def find_similar_documents(document: Document, background_tasks: BackgroundTasks): print(document) task_id = str(ObjectId()) task = { '_id': task_id, 'status': 'processing', 'result': None } ml_tasks.insert_one(task) background_tasks.add_task(find_similar_documents_task, document, task_id) return {"task_id": task_id} async def save_search_results(found_docs): # TODO: Save search results to database pass
[]
2024-01-10
hamzeiehsan/LLM_Heritage_Documents
LLMProcess.py
import logging from ChromaProcess import load_local_chroma_db from langchain.chains import RetrievalQA from langchain.prompts import PromptTemplate # from langchain.embeddings import HuggingFaceEmbeddings from langchain.llms import HuggingFacePipeline import torch from auto_gptq import AutoGPTQForCausalLM from transformers import ( AutoModelForCausalLM, AutoTokenizer, GenerationConfig, LlamaForCausalLM, LlamaTokenizer, pipeline, ) from HVConstants import ( DEVICE_TYPE, MODEL_ID, MODEL_BASENAME ) # load the LLM for generating Natural Language responses def load_model(device_type, model_id, model_basename=None): """ from localGPT """ logging.info(f"Loading Model: {model_id}, on: {device_type}") logging.info("This action can take a few minutes!") if model_basename is not None: # The code supports all huggingface models that ends with GPTQ # and have some variation of .no-act.order or .safetensors in their HF repo. print("Using AutoGPTQForCausalLM for quantized models") if ".safetensors" in model_basename: # Remove the ".safetensors" ending if present model_basename = model_basename.replace(".safetensors", "") tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True) logging.info("Tokenizer loaded") model = AutoGPTQForCausalLM.from_quantized( model_id, # model_basename=model_basename, use_safetensors=True, trust_remote_code=True, device="cuda:0", use_triton=True, inject_fused_mlp=False, quantize_config=None, ) elif ( device_type.lower() == "cuda" ): # The code supports all huggingface models that ends with -HF or which have a .bin file in their HF repo. print("Using AutoModelForCausalLM for full models") tokenizer = AutoTokenizer.from_pretrained(model_id) logging.info("Tokenizer loaded") model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.float16, low_cpu_mem_usage=True, trust_remote_code=True ) model.tie_weights() else: print("Using LlamaTokenizer") tokenizer = LlamaTokenizer.from_pretrained(model_id) model = LlamaForCausalLM.from_pretrained(model_id) # Load configuration from the model to avoid warnings generation_config = GenerationConfig.from_pretrained(model_id) # see here for details: # https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.from_pretrained.returns # Create a pipeline for text generation pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_length=2048, temperature=0, top_p=0.95, repetition_penalty=1.15, generation_config=generation_config, ) local_llm = HuggingFacePipeline(pipeline=pipe) logging.info("Local LLM Loaded") return local_llm if DEVICE_TYPE == "cpu": llm = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID) else: llm = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME) def answer_query_from_db(query, custom_format=None, search_kwargds=None): db = load_local_chroma_db() if not db: print("No existing chroma db!") if search_kwargds is None: qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=db.as_retriever()) else: qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=db.as_retriever(search_kwargs=search_kwargds)) # filter by document qa.return_source_documents = True res = qa(query) answer, docs = res["result"], res["source_documents"] if custom_format: answer = refine_answer_with_custom_format(answer, custom_format, llm) return { "answer": answer, "source_documents": docs, "query": query, "custom_format": custom_format } def refine_answer_with_custom_format(answer, custom_format, llm): template_string = ''' Please convert the following target text to the required format below. target text:{answer} required format:{custom_format} ''' prompt = PromptTemplate.from_template(template_string) input_ = prompt.format(answer=answer, custom_format=custom_format) output_ = llm(input_) return output_ if __name__ == "__main__": logging.basicConfig( format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)s - %(message)s", level=logging.INFO ) result = answer_query_from_db("When is the constitution of freedom of speech created?", custom_format="please present the answer in the format of YYYY:MM:DD") print(result)
[ "\n Please convert the following target text to the required format below.\n \n target text:{answer}\n \n required format:{custom_format}\n \n " ]
2024-01-10
hamzeiehsan/LLM_Heritage_Documents
ChromaProcess.py
import logging import os from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed import click from langchain.docstore.document import Document from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.text_splitter import Language, RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from typing import ( Iterable, ) from HVConstants import ( DOCUMENT_MAP, EMBEDDING_MODEL_NAME, INGEST_THREADS, PERSIST_DIRECTORY, SOURCE_DIRECTORY, DEVICE_TYPE ) def load_single_document(file_path: str) -> Document: # Loads a single document from a file path file_extension = os.path.splitext(file_path)[1] loader_class = DOCUMENT_MAP.get(file_extension) if loader_class: loader = loader_class(file_path) else: raise ValueError("Document type is undefined") return loader.load()[0] def load_document_batch(filepaths): logging.info("Loading document batch") # create a thread pool with ThreadPoolExecutor(len(filepaths)) as exe: # load files futures = [exe.submit(load_single_document, name) for name in filepaths] # collect data data_list = [future.result() for future in futures] # return data and file paths return (data_list, filepaths) def load_documents(source_dir: str) -> list[Document]: # Loads all documents from the source documents directory all_files = os.listdir(source_dir) paths = [] for file_path in all_files: file_extension = os.path.splitext(file_path)[1] source_file_path = os.path.join(source_dir, file_path) if file_extension in DOCUMENT_MAP.keys(): paths.append(source_file_path) # Have at least one worker and at most INGEST_THREADS workers n_workers = min(INGEST_THREADS, max(len(paths), 1)) chunksize = round(len(paths) / n_workers) docs = [] with ProcessPoolExecutor(n_workers) as executor: futures = [] # split the load operations into chunks for i in range(0, len(paths), chunksize): # select a chunk of filenames filepaths = paths[i: (i + chunksize)] # submit the task future = executor.submit(load_document_batch, filepaths) futures.append(future) # process all results for future in as_completed(futures): # open the file and load the data contents, _ = future.result() docs.extend(contents) return docs def split_documents(documents: list[Document]) -> tuple[list[Document], list[Document]]: # Splits documents for correct Text Splitter text_docs, python_docs = [], [] for doc in documents: file_extension = os.path.splitext(doc.metadata["source"])[1] if file_extension == ".py": python_docs.append(doc) else: text_docs.append(doc) return text_docs, python_docs @click.command() @click.option( "--device_type", default=DEVICE_TYPE, type=click.Choice( [ "cpu", "cuda", "ipu", "xpu", "mkldnn", "opengl", "opencl", "ideep", "hip", "ve", "fpga", "ort", "xla", "lazy", "vulkan", "mps", "meta", "hpu", "mtia", ], ), help="Device to run on. (Default is cuda)", ) def main(device_type): # Load documents and split in chunks logging.info(f"Loading documents from {SOURCE_DIRECTORY}") documents = load_documents(SOURCE_DIRECTORY) text_documents, python_documents = split_documents(documents) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) python_splitter = RecursiveCharacterTextSplitter.from_language( language=Language.PYTHON, chunk_size=1000, chunk_overlap=200 ) texts = text_splitter.split_documents(text_documents) texts.extend(python_splitter.split_documents(python_documents)) logging.info(f"Loaded {len(documents)} documents from {SOURCE_DIRECTORY}") logging.info(f"Split into {len(texts)} chunks of text") # Create embeddings embeddings = HuggingFaceInstructEmbeddings( model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": device_type}, ) # change the embedding type here if you are running into issues. # These are much smaller embeddings and will work for most appications # If you use HuggingFaceEmbeddings, make sure to also use the same in the # run_localGPT.py file. # embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME) db = Chroma.from_documents( texts, embeddings, persist_directory=PERSIST_DIRECTORY, ) db.persist() db = None def load_local_chroma_db(db_dir=None, device_type=DEVICE_TYPE): if not db_dir: db_dir = PERSIST_DIRECTORY if os.path.exists(db_dir): embeddings = HuggingFaceInstructEmbeddings( model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": device_type}, ) db = Chroma(persist_directory=db_dir, embedding_function=embeddings) return db else: print("The directory does not exist") def add_text_to_db(texts: Iterable[str], db_dir=None): db = load_local_chroma_db(db_dir) if db: db.add_texts(texts) print(f"uploaded {len(texts)} text chunks in chroma!") logging.info(f"uploaded {len(texts)} text chunks in chroma!") else: print("No existing chroma db!") def db_similarity_search(query, top_k=4, db_dir=None): db = load_local_chroma_db(db_dir) if db: result = db.similarity_search(query, k=top_k) return result if __name__ == "__main__": logging.basicConfig( format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)s - %(message)s", level=logging.INFO ) main() # add_text_to_db(["Hellow world", "This is Bryan speaker!"]) # results = db_similarity_search("Bryan speaker!", top_k=4, db_dir=None) # for r in results: # print(r.page_content)
[]
2024-01-10
hamzeiehsan/LLM_Heritage_Documents
HVConstants.py
import os # from dotenv import load_dotenv from chromadb.config import Settings # https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/excel.html?highlight=xlsx#microsoft-excel from langchain.document_loaders import CSVLoader, PDFMinerLoader, TextLoader, UnstructuredExcelLoader, Docx2txtLoader # load_dotenv() ROOT_DIRECTORY = os.path.dirname(os.path.realpath(__file__)) # Define the folder for storing database SOURCE_DIRECTORY = f"{ROOT_DIRECTORY}/data" PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/DB" # Can be changed to a specific number INGEST_THREADS = os.cpu_count() or 8 # https://python.langchain.com/en/latest/_modules/langchain/document_loaders/excel.html#UnstructuredExcelLoader DOCUMENT_MAP = { ".txt": TextLoader, ".md": TextLoader, ".py": TextLoader, ".pdf": PDFMinerLoader, ".csv": CSVLoader, ".xls": UnstructuredExcelLoader, ".xlxs": UnstructuredExcelLoader, ".docx": Docx2txtLoader, ".doc": Docx2txtLoader, } # Default Instructor Model EMBEDDING_MODEL_NAME = "hkunlp/instructor-large" # You can also choose a smaller model, don't forget to change HuggingFaceInstructEmbeddings # to HuggingFaceEmbeddings in both ingest.py and run_localGPT.py # EMBEDDING_MODEL_NAME = "all-MiniLM-L6-v2" DEVICE_TYPE = "cuda" # for HF models # MODEL_ID = "TheBloke/vicuna-7B-1.1-HF" # MODEL_ID = "TheBloke/Wizard-Vicuna-7B-Uncensored-HF" MODEL_ID = "TheBloke/guanaco-7B-HF" # MODEL_ID = 'NousResearch/Nous-Hermes-13b' # Requires ~ 23GB VRAM. # Using STransformers alongside will 100% create OOM on 24GB cards. # for GPTQ (quantized) models # MODEL_ID = "TheBloke/Nous-Hermes-13B-GPTQ" # MODEL_BASENAME = "nous-hermes-13b-GPTQ-4bit-128g.no-act.order" # MODEL_ID = "TheBloke/WizardLM-30B-Uncensored-GPTQ" # MODEL_BASENAME = "WizardLM-30B-Uncensored-GPTQ-4bit.act-order.safetensors" # Requires ~21GB VRAM. Using STransformers alongside can potentially create OOM on 24GB cards. # MODEL_ID = "TheBloke/wizardLM-7B-GPTQ" # MODEL_BASENAME = "wizardLM-7B-GPTQ-4bit.compat.no-act-order.safetensors" MODEL_ID = "TheBloke/WizardLM-7B-uncensored-GPTQ" MODEL_BASENAME = "WizardLM-7B-uncensored-GPTQ-4bit-128g.compat.no-act-order.safetensors"
[]
2024-01-10
AlexHTW/chatgpt-telegram-bot
bot~telegram_bot.py
from __future__ import annotations import asyncio import logging import os from uuid import uuid4 from telegram import BotCommandScopeAllGroupChats, Update, constants from telegram import InlineKeyboardMarkup, InlineKeyboardButton, InlineQueryResultArticle from telegram import InputTextMessageContent, BotCommand from telegram.error import RetryAfter, TimedOut from telegram.ext import ApplicationBuilder, CommandHandler, MessageHandler, \ filters, InlineQueryHandler, CallbackQueryHandler, Application, ContextTypes, CallbackContext from pydub import AudioSegment from utils import is_group_chat, get_thread_id, message_text, wrap_with_indicator, split_into_chunks, \ edit_message_with_retry, get_stream_cutoff_values, is_allowed, get_remaining_budget, is_admin, is_within_budget, \ get_reply_to_message_id, add_chat_request_to_usage_tracker, error_handler, is_direct_result, handle_direct_result, \ cleanup_intermediate_files from openai_helper import OpenAIHelper, localized_text from usage_tracker import UsageTracker class ChatGPTTelegramBot: """ Class representing a ChatGPT Telegram Bot. """ def __init__(self, config: dict, openai: OpenAIHelper): """ Initializes the bot with the given configuration and GPT bot object. :param config: A dictionary containing the bot configuration :param openai: OpenAIHelper object """ self.config = config self.openai = openai bot_language = self.config['bot_language'] self.commands = [ BotCommand(command='help', description=localized_text('help_description', bot_language)), BotCommand(command='reset', description=localized_text('reset_description', bot_language)), BotCommand(command='stats', description=localized_text('stats_description', bot_language)), BotCommand(command='resend', description=localized_text('resend_description', bot_language)) ] # If imaging is enabled, add the "image" command to the list if self.config.get('enable_image_generation', False): self.commands.append(BotCommand(command='image', description=localized_text('image_description', bot_language))) if self.config.get('enable_tts_generation', False): self.commands.append(BotCommand(command='tts', description=localized_text('tts_description', bot_language))) self.group_commands = [BotCommand( command='chat', description=localized_text('chat_description', bot_language) )] + self.commands self.disallowed_message = localized_text('disallowed', bot_language) self.budget_limit_message = localized_text('budget_limit', bot_language) self.usage = {} self.last_message = {} self.inline_queries_cache = {} async def help(self, update: Update, _: ContextTypes.DEFAULT_TYPE) -> None: """ Shows the help menu. """ commands = self.group_commands if is_group_chat(update) else self.commands commands_description = [f'/{command.command} - {command.description}' for command in commands] bot_language = self.config['bot_language'] help_text = ( localized_text('help_text', bot_language)[0] + '\n\n' + '\n'.join(commands_description) + '\n\n' + localized_text('help_text', bot_language)[1] + '\n\n' + localized_text('help_text', bot_language)[2] ) await update.message.reply_text(help_text, disable_web_page_preview=True) async def stats(self, update: Update, context: ContextTypes.DEFAULT_TYPE): """ Returns token usage statistics for current day and month. """ if not await is_allowed(self.config, update, context): logging.warning(f'User {update.message.from_user.name} (id: {update.message.from_user.id}) ' f'is not allowed to request their usage statistics') await self.send_disallowed_message(update, context) return logging.info(f'User {update.message.from_user.name} (id: {update.message.from_user.id}) ' f'requested their usage statistics') user_id = update.message.from_user.id if user_id not in self.usage: self.usage[user_id] = UsageTracker(user_id, update.message.from_user.name) tokens_today, tokens_month = self.usage[user_id].get_current_token_usage() images_today, images_month = self.usage[user_id].get_current_image_count() (transcribe_minutes_today, transcribe_seconds_today, transcribe_minutes_month, transcribe_seconds_month) = self.usage[user_id].get_current_transcription_duration() characters_today, characters_month = self.usage[user_id].get_current_tts_usage() current_cost = self.usage[user_id].get_current_cost() chat_id = update.effective_chat.id chat_messages, chat_token_length = self.openai.get_conversation_stats(chat_id) remaining_budget = get_remaining_budget(self.config, self.usage, update) bot_language = self.config['bot_language'] text_current_conversation = ( f"*{localized_text('stats_conversation', bot_language)[0]}*:\n" f"{chat_messages} {localized_text('stats_conversation', bot_language)[1]}\n" f"{chat_token_length} {localized_text('stats_conversation', bot_language)[2]}\n" f"----------------------------\n" ) # Check if image generation is enabled and, if so, generate the image statistics for today text_today_images = "" if self.config.get('enable_image_generation', False): text_today_images = f"{images_today} {localized_text('stats_images', bot_language)}\n" text_today_tts = "" if self.config.get('enable_tts_generation', False): text_today_tts = f"{characters_today} {localized_text('stats_tts', bot_language)}\n" text_today = ( f"*{localized_text('usage_today', bot_language)}:*\n" f"{tokens_today} {localized_text('stats_tokens', bot_language)}\n" f"{text_today_images}" # Include the image statistics for today if applicable f"{text_today_tts}" f"{transcribe_minutes_today} {localized_text('stats_transcribe', bot_language)[0]} " f"{transcribe_seconds_today} {localized_text('stats_transcribe', bot_language)[1]}\n" f"{localized_text('stats_total', bot_language)}{current_cost['cost_today']:.2f}\n" f"----------------------------\n" ) text_month_images = "" if self.config.get('enable_image_generation', False): text_month_images = f"{images_month} {localized_text('stats_images', bot_language)}\n" text_month_tts = "" if self.config.get('enable_tts_generation', False): text_month_tts = f"{characters_month} {localized_text('stats_tts', bot_language)}\n" # Check if image generation is enabled and, if so, generate the image statistics for the month text_month = ( f"*{localized_text('usage_month', bot_language)}:*\n" f"{tokens_month} {localized_text('stats_tokens', bot_language)}\n" f"{text_month_images}" # Include the image statistics for the month if applicable f"{text_month_tts}" f"{transcribe_minutes_month} {localized_text('stats_transcribe', bot_language)[0]} " f"{transcribe_seconds_month} {localized_text('stats_transcribe', bot_language)[1]}\n" f"{localized_text('stats_total', bot_language)}{current_cost['cost_month']:.2f}" ) # text_budget filled with conditional content text_budget = "\n\n" budget_period = self.config['budget_period'] if remaining_budget < float('inf'): text_budget += ( f"{localized_text('stats_budget', bot_language)}" f"{localized_text(budget_period, bot_language)}: " f"${remaining_budget:.2f}.\n" ) # No longer works as of July 21st 2023, as OpenAI has removed the billing API # add OpenAI account information for admin request # if is_admin(self.config, user_id): # text_budget += ( # f"{localized_text('stats_openai', bot_language)}" # f"{self.openai.get_billing_current_month():.2f}" # ) usage_text = text_current_conversation + text_today + text_month + text_budget await update.message.reply_text(usage_text, parse_mode=constants.ParseMode.MARKDOWN) async def resend(self, update: Update, context: ContextTypes.DEFAULT_TYPE): """ Resend the last request """ if not await is_allowed(self.config, update, context): logging.warning(f'User {update.message.from_user.name} (id: {update.message.from_user.id})' f' is not allowed to resend the message') await self.send_disallowed_message(update, context) return chat_id = update.effective_chat.id if chat_id not in self.last_message: logging.warning(f'User {update.message.from_user.name} (id: {update.message.from_user.id})' f' does not have anything to resend') await update.effective_message.reply_text( message_thread_id=get_thread_id(update), text=localized_text('resend_failed', self.config['bot_language']) ) return # Update message text, clear self.last_message and send the request to prompt logging.info(f'Resending the last prompt from user: {update.message.from_user.name} ' f'(id: {update.message.from_user.id})') with update.message._unfrozen() as message: message.text = self.last_message.pop(chat_id) await self.prompt(update=update, context=context) async def reset(self, update: Update, context: ContextTypes.DEFAULT_TYPE): """ Resets the conversation. """ if not await is_allowed(self.config, update, context): logging.warning(f'User {update.message.from_user.name} (id: {update.message.from_user.id}) ' f'is not allowed to reset the conversation') await self.send_disallowed_message(update, context) return logging.info(f'Resetting the conversation for user {update.message.from_user.name} ' f'(id: {update.message.from_user.id})...') chat_id = update.effective_chat.id reset_content = message_text(update.message) self.openai.reset_chat_history(chat_id=chat_id, content=reset_content) await update.effective_message.reply_text( message_thread_id=get_thread_id(update), text=localized_text('reset_done', self.config['bot_language']) ) async def image(self, update: Update, context: ContextTypes.DEFAULT_TYPE): """ Generates an image for the given prompt using DALL·E APIs """ if not self.config['enable_image_generation'] \ or not await self.check_allowed_and_within_budget(update, context): return image_query = message_text(update.message) if image_query == '': await update.effective_message.reply_text( message_thread_id=get_thread_id(update), text=localized_text('image_no_prompt', self.config['bot_language']) ) return logging.info(f'New image generation request received from user {update.message.from_user.name} ' f'(id: {update.message.from_user.id})') async def _generate(): try: image_url, image_size = await self.openai.generate_image(prompt=image_query) if self.config['image_receive_mode'] == 'photo': await update.effective_message.reply_photo( reply_to_message_id=get_reply_to_message_id(self.config, update), photo=image_url ) elif self.config['image_receive_mode'] == 'document': await update.effective_message.reply_document( reply_to_message_id=get_reply_to_message_id(self.config, update), document=image_url ) else: raise Exception(f"env variable IMAGE_RECEIVE_MODE has invalid value {self.config['image_receive_mode']}") # add image request to users usage tracker user_id = update.message.from_user.id self.usage[user_id].add_image_request(image_size, self.config['image_prices']) # add guest chat request to guest usage tracker if str(user_id) not in self.config['allowed_user_ids'].split(',') and 'guests' in self.usage: self.usage["guests"].add_image_request(image_size, self.config['image_prices']) except Exception as e: logging.exception(e) await update.effective_message.reply_text( message_thread_id=get_thread_id(update), reply_to_message_id=get_reply_to_message_id(self.config, update), text=f"{localized_text('image_fail', self.config['bot_language'])}: {str(e)}", parse_mode=constants.ParseMode.MARKDOWN ) await wrap_with_indicator(update, context, _generate, constants.ChatAction.UPLOAD_PHOTO) async def tts(self, update: Update, context: ContextTypes.DEFAULT_TYPE): """ Generates an speech for the given input using TTS APIs """ if not self.config['enable_tts_generation'] \ or not await self.check_allowed_and_within_budget(update, context): return tts_query = message_text(update.message) if tts_query == '': await update.effective_message.reply_text( message_thread_id=get_thread_id(update), text=localized_text('tts_no_prompt', self.config['bot_language']) ) return logging.info(f'New speech generation request received from user {update.message.from_user.name} ' f'(id: {update.message.from_user.id})') async def _generate(): try: speech_file, text_length = await self.openai.generate_speech(text=tts_query) await update.effective_message.reply_voice( reply_to_message_id=get_reply_to_message_id(self.config, update), voice=speech_file ) speech_file.close() # add image request to users usage tracker user_id = update.message.from_user.id self.usage[user_id].add_tts_request(text_length, self.config['tts_model'], self.config['tts_prices']) # add guest chat request to guest usage tracker if str(user_id) not in self.config['allowed_user_ids'].split(',') and 'guests' in self.usage: self.usage["guests"].add_tts_request(text_length, self.config['tts_model'], self.config['tts_prices']) except Exception as e: logging.exception(e) await update.effective_message.reply_text( message_thread_id=get_thread_id(update), reply_to_message_id=get_reply_to_message_id(self.config, update), text=f"{localized_text('tts_fail', self.config['bot_language'])}: {str(e)}", parse_mode=constants.ParseMode.MARKDOWN ) await wrap_with_indicator(update, context, _generate, constants.ChatAction.UPLOAD_VOICE) async def transcribe(self, update: Update, context: ContextTypes.DEFAULT_TYPE): """ Transcribe audio messages. """ if not self.config['enable_transcription'] or not await self.check_allowed_and_within_budget(update, context): return if is_group_chat(update) and self.config['ignore_group_transcriptions']: logging.info(f'Transcription coming from group chat, ignoring...') return chat_id = update.effective_chat.id filename = update.message.effective_attachment.file_unique_id async def _execute(): filename_mp3 = f'{filename}.mp3' bot_language = self.config['bot_language'] try: media_file = await context.bot.get_file(update.message.effective_attachment.file_id) await media_file.download_to_drive(filename) except Exception as e: logging.exception(e) await update.effective_message.reply_text( message_thread_id=get_thread_id(update), reply_to_message_id=get_reply_to_message_id(self.config, update), text=( f"{localized_text('media_download_fail', bot_language)[0]}: " f"{str(e)}. {localized_text('media_download_fail', bot_language)[1]}" ), parse_mode=constants.ParseMode.MARKDOWN ) return try: audio_track = AudioSegment.from_file(filename) audio_track.export(filename_mp3, format="mp3") logging.info(f'New transcribe request received from user {update.message.from_user.name} ' f'(id: {update.message.from_user.id})') except Exception as e: logging.exception(e) await update.effective_message.reply_text( message_thread_id=get_thread_id(update), reply_to_message_id=get_reply_to_message_id(self.config, update), text=localized_text('media_type_fail', bot_language) ) if os.path.exists(filename): os.remove(filename) return user_id = update.message.from_user.id if user_id not in self.usage: self.usage[user_id] = UsageTracker(user_id, update.message.from_user.name) try: transcript = await self.openai.transcribe(filename_mp3) transcription_price = self.config['transcription_price'] self.usage[user_id].add_transcription_seconds(audio_track.duration_seconds, transcription_price) allowed_user_ids = self.config['allowed_user_ids'].split(',') if str(user_id) not in allowed_user_ids and 'guests' in self.usage: self.usage["guests"].add_transcription_seconds(audio_track.duration_seconds, transcription_price) # check if transcript starts with any of the prefixes response_to_transcription = any(transcript.lower().startswith(prefix.lower()) if prefix else False for prefix in self.config['voice_reply_prompts']) if self.config['voice_reply_transcript'] and not response_to_transcription: # Split into chunks of 4096 characters (Telegram's message limit) transcript_output = f"_{localized_text('transcript', bot_language)}:_\n\"{transcript}\"" chunks = split_into_chunks(transcript_output) for index, transcript_chunk in enumerate(chunks): await update.effective_message.reply_text( message_thread_id=get_thread_id(update), reply_to_message_id=get_reply_to_message_id(self.config, update) if index == 0 else None, text=transcript_chunk, parse_mode=constants.ParseMode.MARKDOWN ) else: # Get the response of the transcript response, total_tokens = await self.openai.get_chat_response(chat_id=chat_id, query=transcript) self.usage[user_id].add_chat_tokens(total_tokens, self.config['token_price']) if str(user_id) not in allowed_user_ids and 'guests' in self.usage: self.usage["guests"].add_chat_tokens(total_tokens, self.config['token_price']) # Split into chunks of 4096 characters (Telegram's message limit) transcript_output = ( f"_{localized_text('transcript', bot_language)}:_\n\"{transcript}\"\n\n" f"_{localized_text('answer', bot_language)}:_\n{response}" ) chunks = split_into_chunks(transcript_output) for index, transcript_chunk in enumerate(chunks): await update.effective_message.reply_text( message_thread_id=get_thread_id(update), reply_to_message_id=get_reply_to_message_id(self.config, update) if index == 0 else None, text=transcript_chunk, parse_mode=constants.ParseMode.MARKDOWN ) except Exception as e: logging.exception(e) await update.effective_message.reply_text( message_thread_id=get_thread_id(update), reply_to_message_id=get_reply_to_message_id(self.config, update), text=f"{localized_text('transcribe_fail', bot_language)}: {str(e)}", parse_mode=constants.ParseMode.MARKDOWN ) finally: if os.path.exists(filename_mp3): os.remove(filename_mp3) if os.path.exists(filename): os.remove(filename) await wrap_with_indicator(update, context, _execute, constants.ChatAction.TYPING) async def prompt(self, update: Update, context: ContextTypes.DEFAULT_TYPE): """ React to incoming messages and respond accordingly. """ if update.edited_message or not update.message or update.message.via_bot: return if not await self.check_allowed_and_within_budget(update, context): return logging.info( f'New message received from user {update.message.from_user.name} (id: {update.message.from_user.id})') chat_id = update.effective_chat.id user_id = update.message.from_user.id prompt = message_text(update.message) self.last_message[chat_id] = prompt if is_group_chat(update): trigger_keyword = self.config['group_trigger_keyword'] if prompt.lower().startswith(trigger_keyword.lower()) or update.message.text.lower().startswith('/chat'): if prompt.lower().startswith(trigger_keyword.lower()): prompt = prompt[len(trigger_keyword):].strip() if update.message.reply_to_message and \ update.message.reply_to_message.text and \ update.message.reply_to_message.from_user.id != context.bot.id: prompt = f'"{update.message.reply_to_message.text}" {prompt}' else: if update.message.reply_to_message and update.message.reply_to_message.from_user.id == context.bot.id: logging.info('Message is a reply to the bot, allowing...') else: logging.warning('Message does not start with trigger keyword, ignoring...') return try: total_tokens = 0 if self.config['stream']: await update.effective_message.reply_chat_action( action=constants.ChatAction.TYPING, message_thread_id=get_thread_id(update) ) stream_response = self.openai.get_chat_response_stream(chat_id=chat_id, query=prompt) i = 0 prev = '' sent_message = None backoff = 0 stream_chunk = 0 async for content, tokens in stream_response: if is_direct_result(content): return await handle_direct_result(self.config, update, content) if len(content.strip()) == 0: continue stream_chunks = split_into_chunks(content) if len(stream_chunks) > 1: content = stream_chunks[-1] if stream_chunk != len(stream_chunks) - 1: stream_chunk += 1 try: await edit_message_with_retry(context, chat_id, str(sent_message.message_id), stream_chunks[-2]) except: pass try: sent_message = await update.effective_message.reply_text( message_thread_id=get_thread_id(update), text=content if len(content) > 0 else "..." ) except: pass continue cutoff = get_stream_cutoff_values(update, content) cutoff += backoff if i == 0: try: if sent_message is not None: await context.bot.delete_message(chat_id=sent_message.chat_id, message_id=sent_message.message_id) sent_message = await update.effective_message.reply_text( message_thread_id=get_thread_id(update), reply_to_message_id=get_reply_to_message_id(self.config, update), text=content, ) except: continue elif abs(len(content) - len(prev)) > cutoff or tokens != 'not_finished': prev = content try: use_markdown = tokens != 'not_finished' await edit_message_with_retry(context, chat_id, str(sent_message.message_id), text=content, markdown=use_markdown) except RetryAfter as e: backoff += 5 await asyncio.sleep(e.retry_after) continue except TimedOut: backoff += 5 await asyncio.sleep(0.5) continue except Exception: backoff += 5 continue await asyncio.sleep(0.01) i += 1 if tokens != 'not_finished': total_tokens = int(tokens) else: async def _reply(): nonlocal total_tokens response, total_tokens = await self.openai.get_chat_response(chat_id=chat_id, query=prompt) if is_direct_result(response): return await handle_direct_result(self.config, update, response) # Split into chunks of 4096 characters (Telegram's message limit) chunks = split_into_chunks(response) for index, chunk in enumerate(chunks): try: await update.effective_message.reply_text( message_thread_id=get_thread_id(update), reply_to_message_id=get_reply_to_message_id(self.config, update) if index == 0 else None, text=chunk, parse_mode=constants.ParseMode.MARKDOWN ) except Exception: try: await update.effective_message.reply_text( message_thread_id=get_thread_id(update), reply_to_message_id=get_reply_to_message_id(self.config, update) if index == 0 else None, text=chunk ) except Exception as exception: raise exception await wrap_with_indicator(update, context, _reply, constants.ChatAction.TYPING) add_chat_request_to_usage_tracker(self.usage, self.config, user_id, total_tokens) except Exception as e: logging.exception(e) await update.effective_message.reply_text( message_thread_id=get_thread_id(update), reply_to_message_id=get_reply_to_message_id(self.config, update), text=f"{localized_text('chat_fail', self.config['bot_language'])} {str(e)}", parse_mode=constants.ParseMode.MARKDOWN ) async def inline_query(self, update: Update, context: ContextTypes.DEFAULT_TYPE) -> None: """ Handle the inline query. This is run when you type: @botusername <query> """ query = update.inline_query.query if len(query) < 3: return if not await self.check_allowed_and_within_budget(update, context, is_inline=True): return callback_data_suffix = "gpt:" result_id = str(uuid4()) self.inline_queries_cache[result_id] = query callback_data = f'{callback_data_suffix}{result_id}' await self.send_inline_query_result(update, result_id, message_content=query, callback_data=callback_data) async def send_inline_query_result(self, update: Update, result_id, message_content, callback_data=""): """ Send inline query result """ try: reply_markup = None bot_language = self.config['bot_language'] if callback_data: reply_markup = InlineKeyboardMarkup([[ InlineKeyboardButton(text=f'🤖 {localized_text("answer_with_chatgpt", bot_language)}', callback_data=callback_data) ]]) inline_query_result = InlineQueryResultArticle( id=result_id, title=localized_text("ask_chatgpt", bot_language), input_message_content=InputTextMessageContent(message_content), description=message_content, thumb_url='https://user-images.githubusercontent.com/11541888/223106202-7576ff11-2c8e-408d-94ea' '-b02a7a32149a.png', reply_markup=reply_markup ) await update.inline_query.answer([inline_query_result], cache_time=0) except Exception as e: logging.error(f'An error occurred while generating the result card for inline query {e}') async def handle_callback_inline_query(self, update: Update, context: CallbackContext): """ Handle the callback query from the inline query result """ callback_data = update.callback_query.data user_id = update.callback_query.from_user.id inline_message_id = update.callback_query.inline_message_id name = update.callback_query.from_user.name callback_data_suffix = "gpt:" query = "" bot_language = self.config['bot_language'] answer_tr = localized_text("answer", bot_language) loading_tr = localized_text("loading", bot_language) try: if callback_data.startswith(callback_data_suffix): unique_id = callback_data.split(':')[1] total_tokens = 0 # Retrieve the prompt from the cache query = self.inline_queries_cache.get(unique_id) if query: self.inline_queries_cache.pop(unique_id) else: error_message = ( f'{localized_text("error", bot_language)}. ' f'{localized_text("try_again", bot_language)}' ) await edit_message_with_retry(context, chat_id=None, message_id=inline_message_id, text=f'{query}\n\n_{answer_tr}:_\n{error_message}', is_inline=True) return unavailable_message = localized_text("function_unavailable_in_inline_mode", bot_language) if self.config['stream']: stream_response = self.openai.get_chat_response_stream(chat_id=user_id, query=query) i = 0 prev = '' backoff = 0 async for content, tokens in stream_response: if is_direct_result(content): cleanup_intermediate_files(content) await edit_message_with_retry(context, chat_id=None, message_id=inline_message_id, text=f'{query}\n\n_{answer_tr}:_\n{unavailable_message}', is_inline=True) return if len(content.strip()) == 0: continue cutoff = get_stream_cutoff_values(update, content) cutoff += backoff if i == 0: try: await edit_message_with_retry(context, chat_id=None, message_id=inline_message_id, text=f'{query}\n\n{answer_tr}:\n{content}', is_inline=True) except: continue elif abs(len(content) - len(prev)) > cutoff or tokens != 'not_finished': prev = content try: use_markdown = tokens != 'not_finished' divider = '_' if use_markdown else '' text = f'{query}\n\n{divider}{answer_tr}:{divider}\n{content}' # We only want to send the first 4096 characters. No chunking allowed in inline mode. text = text[:4096] await edit_message_with_retry(context, chat_id=None, message_id=inline_message_id, text=text, markdown=use_markdown, is_inline=True) except RetryAfter as e: backoff += 5 await asyncio.sleep(e.retry_after) continue except TimedOut: backoff += 5 await asyncio.sleep(0.5) continue except Exception: backoff += 5 continue await asyncio.sleep(0.01) i += 1 if tokens != 'not_finished': total_tokens = int(tokens) else: async def _send_inline_query_response(): nonlocal total_tokens # Edit the current message to indicate that the answer is being processed await context.bot.edit_message_text(inline_message_id=inline_message_id, text=f'{query}\n\n_{answer_tr}:_\n{loading_tr}', parse_mode=constants.ParseMode.MARKDOWN) logging.info(f'Generating response for inline query by {name}') response, total_tokens = await self.openai.get_chat_response(chat_id=user_id, query=query) if is_direct_result(response): cleanup_intermediate_files(response) await edit_message_with_retry(context, chat_id=None, message_id=inline_message_id, text=f'{query}\n\n_{answer_tr}:_\n{unavailable_message}', is_inline=True) return text_content = f'{query}\n\n_{answer_tr}:_\n{response}' # We only want to send the first 4096 characters. No chunking allowed in inline mode. text_content = text_content[:4096] # Edit the original message with the generated content await edit_message_with_retry(context, chat_id=None, message_id=inline_message_id, text=text_content, is_inline=True) await wrap_with_indicator(update, context, _send_inline_query_response, constants.ChatAction.TYPING, is_inline=True) add_chat_request_to_usage_tracker(self.usage, self.config, user_id, total_tokens) except Exception as e: logging.error(f'Failed to respond to an inline query via button callback: {e}') logging.exception(e) localized_answer = localized_text('chat_fail', self.config['bot_language']) await edit_message_with_retry(context, chat_id=None, message_id=inline_message_id, text=f"{query}\n\n_{answer_tr}:_\n{localized_answer} {str(e)}", is_inline=True) async def check_allowed_and_within_budget(self, update: Update, context: ContextTypes.DEFAULT_TYPE, is_inline=False) -> bool: """ Checks if the user is allowed to use the bot and if they are within their budget :param update: Telegram update object :param context: Telegram context object :param is_inline: Boolean flag for inline queries :return: Boolean indicating if the user is allowed to use the bot """ name = update.inline_query.from_user.name if is_inline else update.message.from_user.name user_id = update.inline_query.from_user.id if is_inline else update.message.from_user.id if not await is_allowed(self.config, update, context, is_inline=is_inline): logging.warning(f'User {name} (id: {user_id}) is not allowed to use the bot') await self.send_disallowed_message(update, context, is_inline) return False if not is_within_budget(self.config, self.usage, update, is_inline=is_inline): logging.warning(f'User {name} (id: {user_id}) reached their usage limit') await self.send_budget_reached_message(update, context, is_inline) return False return True async def send_disallowed_message(self, update: Update, _: ContextTypes.DEFAULT_TYPE, is_inline=False): """ Sends the disallowed message to the user. """ if not is_inline: await update.effective_message.reply_text( message_thread_id=get_thread_id(update), text=self.disallowed_message, disable_web_page_preview=True ) else: result_id = str(uuid4()) await self.send_inline_query_result(update, result_id, message_content=self.disallowed_message) async def send_budget_reached_message(self, update: Update, _: ContextTypes.DEFAULT_TYPE, is_inline=False): """ Sends the budget reached message to the user. """ if not is_inline: await update.effective_message.reply_text( message_thread_id=get_thread_id(update), text=self.budget_limit_message ) else: result_id = str(uuid4()) await self.send_inline_query_result(update, result_id, message_content=self.budget_limit_message) async def post_init(self, application: Application) -> None: """ Post initialization hook for the bot. """ await application.bot.set_my_commands(self.group_commands, scope=BotCommandScopeAllGroupChats()) await application.bot.set_my_commands(self.commands) def run(self): """ Runs the bot indefinitely until the user presses Ctrl+C """ application = ApplicationBuilder() \ .token(self.config['token']) \ .proxy_url(self.config['proxy']) \ .get_updates_proxy_url(self.config['proxy']) \ .post_init(self.post_init) \ .concurrent_updates(True) \ .build() application.add_handler(CommandHandler('reset', self.reset)) application.add_handler(CommandHandler('help', self.help)) application.add_handler(CommandHandler('image', self.image)) application.add_handler(CommandHandler('tts', self.tts)) application.add_handler(CommandHandler('start', self.help)) application.add_handler(CommandHandler('stats', self.stats)) application.add_handler(CommandHandler('resend', self.resend)) application.add_handler(CommandHandler( 'chat', self.prompt, filters=filters.ChatType.GROUP | filters.ChatType.SUPERGROUP) ) application.add_handler(MessageHandler( filters.AUDIO | filters.VOICE | filters.Document.AUDIO | filters.VIDEO | filters.VIDEO_NOTE | filters.Document.VIDEO, self.transcribe)) application.add_handler(MessageHandler(filters.TEXT & (~filters.COMMAND), self.prompt)) application.add_handler(InlineQueryHandler(self.inline_query, chat_types=[ constants.ChatType.GROUP, constants.ChatType.SUPERGROUP, constants.ChatType.PRIVATE ])) application.add_handler(CallbackQueryHandler(self.handle_callback_inline_query)) application.add_error_handler(error_handler) application.run_polling()
[]
2024-01-10
profjsb/skyportal
skyportal~handlers~api~summary_query.py
import os import copy import yaml from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Pinecone from typing import List, Optional import pinecone from baselayer.app.access import auth_or_token from baselayer.app.env import load_env from baselayer.log import make_log from ..base import BaseHandler from ...models import ( User, ) _, cfg = load_env() log = make_log('query') # add in this new search method to the Pinecone class def search_sources( self, query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, ) -> List[dict]: """Return pinecone documents most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Dictionary of argument(s) to filter on metadata namespace: Namespace to search in. Default will search in '' namespace. Returns: List of source dictionaries most similar to the query and score for each """ if namespace is None: namespace = self._namespace query_obj = self._embedding_function(query) sources = [] results = self._index.query( [query_obj], top_k=k, include_metadata=True, namespace=namespace, filter=filter, ) for res in results["matches"]: try: source = { "id": res["id"], "score": res["score"], "metadata": res["metadata"], } sources.append(source) except Exception as e: log(f"Error: {e}") continue return sources setattr(Pinecone, 'search_sources', search_sources) # Preamble: get the embeddings and summary parameters ready # for now, we only support pinecone embeddings summarize_embedding_config = cfg[ 'analysis_services.openai_analysis_service.embeddings_store.summary' ] USE_PINECONE = False if ( summarize_embedding_config.get("location") == "pinecone" and summarize_embedding_config.get("api_key") and summarize_embedding_config.get("environment") and summarize_embedding_config.get("index_name") and summarize_embedding_config.get("index_size") ): log("initializing pinecone access...") pinecone.init( api_key=summarize_embedding_config.get("api_key"), environment=summarize_embedding_config.get("environment"), ) summarize_embedding_index_name = summarize_embedding_config.get("index_name") summarize_embedding_index_size = summarize_embedding_config.get("index_size") summarize_embedding_model = summarize_embedding_config.get("model") if summarize_embedding_index_name in pinecone.list_indexes(): USE_PINECONE = True else: if cfg['database.database'] == 'skyportal_test': USE_PINECONE = True log("Setting USE_PINECONE=True as it seems like we are in a test environment") else: log("No valid pinecone configuration found. Please check the config file.") summary_config = copy.deepcopy(cfg['analysis_services.openai_analysis_service.summary']) if summary_config.get("api_key"): # there may be a global API key set in the config file openai_api_key = summary_config.pop("api_key") elif os.path.exists(".secret"): # try to get this key from the dev environment, useful for debugging openai_api_key = yaml.safe_load(open(".secret")).get("OPENAI_API_KEY") elif cfg['database.database'] == 'skyportal_test': openai_api_key = "TEST_KEY" else: openai_api_key = None class SummaryQueryHandler(BaseHandler): @auth_or_token def post(self): """ --- description: Get a list of sources with summaries matching the query tags: - summary parameters: - in: query name: q schema: type: string required: true description: | The query string. E.g. "What sources are associated with an NGC galaxy?" - in: query name: k schema: type: int minimum: 1 maximum: 100 description: | Max number of sources to return. Default 5. - in: query name: z_min schema: type: float nullable: true description: | Minimum redshift to consider of queries sources. If None or missing, then no lower limit is applied. - in: query name: z_max schema: type: float nullable: true description: | Maximum redshift to consider of queries sources. If None or missing, then no upper limit is applied. - in: query name: classificationTypes nullable: true schema: type: array items: type: string description: | List of classification types to consider. If [] or missing, then all classification types are considered. responses: 200: content: application/json: schema: allOf: - $ref: '#/components/schemas/Success' - type: object properties: data: type: object properties: sources: type: array items: $ref: '#/components/schemas/Obj' 400: content: application/json: schema: Error """ if not USE_PINECONE: return self.error( "No valid pinecone configuration found. Please check your config file." ) if not openai_api_key: user_id = self.associated_user_object.id with self.Session() as session: user = session.scalars( User.select(session.user_or_token, mode="read").where( User.id == user_id ) ).first() if user is None: return self.error( 'No global OpenAI key found and cannot find user.', status=400 ) if user.preferences is not None and user.preferences.get( "summary", {} ).get("OpenAI", {}).get('active', False): user_pref_openai = user.preferences["summary"]["OpenAI"].get( "apikey" ) user_openai_key = user_pref_openai["apikey"] else: user_openai_key = openai_api_key if not user_openai_key: return self.error('No OpenAI API key found.', status=400) data = self.get_json() query = data.get('q') if query in [None, '']: return self.error('Missing required query string "q"') k = data.get('k', 5) if k < 1 or k > 100: return self.error('k must be 1<=k<=100') z_min = data.get('z_min', None) z_max = data.get('z_max', None) if z_min is not None and z_max is not None and z_min > z_max: return self.error('z_min must be <= z_max') classification_types = data.get('classificationTypes', None) # construct the filter if z_min is not None and z_max is None: z_filt = {"redshift": {"$gte": z_min}} elif z_min is None and z_max is not None: z_filt = {"redshift": {"$lte": z_max}} elif z_min is not None and z_max is not None: z_filt = { "$and": [{"redshift": {"$gte": z_min}}, {"redshift": {"$lte": z_max}}] } else: z_filt = None if classification_types not in [None, []]: class_filt = {"class": {"$in": classification_types}} else: class_filt = None if class_filt is not None and z_filt is not None: filt = {"$and": [class_filt, z_filt]} elif class_filt is not None: filt = class_filt elif z_filt is not None: filt = z_filt else: filt = {} try: embeddings = OpenAIEmbeddings( model=summarize_embedding_model, embedding_ctx_length=summarize_embedding_index_size, openai_api_key=user_openai_key, ) docsearch = Pinecone.from_existing_index( summarize_embedding_index_name, embeddings, text_key="summary" ) except Exception as e: return self.error(f'Could not load embeddings or pinecone index: {e}') # get the top k sources try: results = docsearch.search_sources(query, k=k, filter=filt) except Exception as e: return self.error(f'Could not search sources: {e}') return self.success(data={'query_results': results})
[]
2024-01-10
grill-lab/OAT
offline~augmenters~fact_augmenter.py
import openai import torch import os import pandas as pd from taskmap_pb2 import ScreenInteraction, TaskMap, ExtraInfo, ExecutionStep from utils import logger, get_file_system, Downloader from .abstract_step_augmenter import AbstractBatchStepAugmenter from sentence_transformers import SentenceTransformer, util openai.api_key = '' class FactAugmenter(AbstractBatchStepAugmenter): def __init__(self): super().__init__() self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="/shared/file_system/cache/offline/models/1_Pooling", device=self.device).to(self.device) artefact_id = "facts_json" downloader = Downloader() downloader.download([artefact_id]) self.facts_data = pd.read_json(downloader.get_artefact_path(artefact_id)) self.facts = self.facts_data['fact'] self.facts = [fact for fact in self.facts if fact != ""] self.fact_keywords = self.facts_data['keyword'] self.fact_keywords = [word for word in self.fact_keywords if word != ""] self.fact_embeddings = self.model.encode(self.facts, convert_to_tensor=True, batch_size=128, show_progress_bar=True) logger.info('Fact embeddings successfully encoded') def batch_process(self, batch): input_list = [] output_list = [] for (_, step, _) in batch: step_text = step.response.speech_text input_list.append(step_text) step_embeddings = self.model.encode(input_list, convert_to_tensor=True, batch_size=128, show_progress_bar=True) logger.info('Step embeddings successfully encoded') for step_idx, step_embedding in enumerate(step_embeddings): similarity_scores = util.cos_sim(step_embedding, self.fact_embeddings)[0] sorted_idxs = similarity_scores.argsort(descending=True) reranked_facts = [self.facts[i] for i in sorted_idxs] reranked_fact_keywords = [self.fact_keywords[i] for i in sorted_idxs] reranked_fact_scores = similarity_scores[sorted_idxs].tolist() most_relevant_fact = None most_relevant_score = 0 for fact, fact_keyword, score in zip(reranked_facts, reranked_fact_keywords, reranked_fact_scores): if score > max(0.2, most_relevant_score) and fact_keyword in input_list[step_idx]: most_relevant_fact = fact most_relevant_score = score if most_relevant_score > 0: output_list.append([most_relevant_fact]) else: output_list.append([]) return output_list def condition(self, step: ExecutionStep) -> bool: return True def apply_output(self, step: ExecutionStep, processed_output) -> ExecutionStep: screen = ScreenInteraction() screen.format = ScreenInteraction.ScreenFormat.TEXT_IMAGE for fact in processed_output: extra_info: ExtraInfo = ExtraInfo() extra_info.type = ExtraInfo.InfoType.FUNFACT extra_info.text = fact extra_info.keyword = self.facts_data[self.facts_data["fact"] == fact]['keyword'].iloc[0] image = self.facts_data[self.facts_data["fact"] == fact]['image'].iloc[0] if image != "": extra_info.image_url = image screen.extra_information.append(extra_info) logger.info(f"Matched fact '{fact}' with step '{step.response.speech_text}'") step.response.screen.MergeFrom(screen) return step def get_transformed_input(self, task_map: TaskMap): return None
[]
2024-01-10
grill-lab/OAT
offline~category_index~abstract_taxonomy_builder.py
import hashlib import json import os from abc import ABC, abstractmethod from typing import Optional import openai import requests from bs4 import BeautifulSoup from requests.models import Response from offline_pb2 import CategoryDocument, HTMLDocument from utils import get_file_system, logger class AbstractTaxonomyBuilder(ABC): def __init__(self): self.openai_descriptions_folder = os.path.join(get_file_system(), "offline", "openai_responses") if not os.path.isdir(self.openai_descriptions_folder): os.makedirs(self.openai_descriptions_folder) openai.api_key = '' # must be filled to generate descriptions @staticmethod def get_docid(url: str): """ Generate document unique identifier. """ return hashlib.md5(url.encode('utf-8')).hexdigest() @staticmethod def get_soup(url: str, html: Optional[Response] = None) -> Optional[BeautifulSoup]: """ Obtains a BeautifulSoup object for the given URL. If the `html` parameter is an existing requests response object, the BeautifulSoup object will be parsed directly from that. Otherwise requests.get is used to retrieve the HTML. Returns: A BeautifulSoup object for the given URL, or None on error. """ if html is None: logger.info(f"get_soup retrieving HTML for {url}") try: html = requests.get(url) except Exception as e: logger.warning(f"get_soup failed to retrieve HTML for {url}: {e}") return None try: soup = BeautifulSoup(html.text, 'html.parser') except Exception as e: logger.warning(f"get_soup failed to parse HTML for {url}: {e}") return None return soup @staticmethod def clean_text(s): """ Standard cleaning of text. """ s = s.replace('</li><li>', '. ') return s.replace('\n', ' ').replace('\t', ' ').strip() if s is not None else s @staticmethod def write_out(data): if not os.path.isdir(os.path.join(get_file_system(), "offline/category_data")): os.makedirs(os.path.join(get_file_system(), "offline/category_data"), exist_ok=True) with open(os.path.join(get_file_system(), "offline/category_data/cat_data.jsonl"), "w") as json_file: for cat in data: json.dump(cat, json_file) json_file.write('\n') @abstractmethod def build_taxonomy(self, url: str, html=None) -> CategoryDocument: """ Used to build the different categories available: Args: - urls (of the categories, e.g. {"url": https://www.wikihow.com/Category:Crafts, "name": "crafts"} Returns: - a CategoryDocument in the following format (if translated to a dictionary): { 'title': '', 'description': '', 'options_available': True, questions_turns 'sub_categories': [ {'title': '', 'candidates': [], taskmap_ids images 'thumbnail_url': '' }, {'title': '', 'candidates': [''], 'thumbnail_url': '' },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 {'title': '', 'candidates': [], 'thumbnail_url': '' } ] } """ pass def parse(self, url: str, html: HTMLDocument) -> CategoryDocument: category_doc = self.build_taxonomy(url, html) if category_doc and len(category_doc.sub_categories) < 3: return None # if category_doc and category_doc.description == "": # category_doc.description = self.generate_description(category_doc.title) return category_doc def generate_description(self, title: str) -> str: """Matches a description to a category. If there is no available description for the given category, the description is generated with OpenAI""" prompts_file: str = os.path.join(self.openai_descriptions_folder, "category_responses.txt") title_prompt_dict: dict = {} if os.path.isfile(prompts_file): with open(prompts_file, "r") as fp: title_prompt_dict = json.load(fp) if title in title_prompt_dict.keys(): return title_prompt_dict[title] prompt: str = f"Context: You are an Alexa Skill that helps and guides user with home improvement and cooking " \ f"tasks. Tasks are divided into different categories and these categories are further divided " \ f"into subcategories. When a subcategory is selected, tasks related to this subcategory are " \ f"recommended to the user. The purpose of having categories is to be able to deal with vague " \ f"queries such by narrowing down the search results. It is important that when a category is " \ f"selected, rather than a narrowed search, the user is informed that they entered a category. " \ f"After the opening sentences, 3 subcategories are recommended, but this is not part of the " \ f"opening statement!\n\nTask: When a user chooses the category '{title}' , " \ f"you will generate an opening statement. The initial sentence should convey the user's " \ f"selection in a positive and enjoyable manner. One or two sentences should follow which " \ f"aim to hype how great this category is, by mentioning interesting facts about it. Finally, " \ f"the last sentence must inform the user that there are several subcategories available " \ f"for them to explore. And choose from, but do not provide any examples." completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", max_tokens=100, messages=[ {"role": "system", "content": prompt} ]) description: str = completion['choices'][0]['message']['content'] title_prompt_dict[title] = description logger.info(f"For category '{title}' generated description: '{description}'") with open(prompts_file, "w") as fp: json.dump(title_prompt_dict, fp, indent=2) return description
[ "category_responses.txt", "Context: You are an Alexa Skill that helps and guides user with home improvement and cooking tasks. Tasks are divided into different categories and these categories are further divided into subcategories. When a subcategory is selected, tasks related to this subcategory are recommended to the user. The purpose of having categories is to be able to deal with vague queries such by narrowing down the search results. It is important that when a category is selected, rather than a narrowed search, the user is informed that they entered a category. After the opening sentences, 3 subcategories are recommended, but this is not part of the opening statement!\n\nTask: When a user chooses the category 'PLACEHOLDER' , you will generate an opening statement. The initial sentence should convey the user's selection in a positive and enjoyable manner. One or two sentences should follow which aim to hype how great this category is, by mentioning interesting facts about it. Finally, the last sentence must inform the user that there are several subcategories available for them to explore. And choose from, but do not provide any examples.", "{}" ]
2024-01-10
grill-lab/OAT
offline~augmenters~joke_augmenter.py
import openai import torch import os import pandas as pd from taskmap_pb2 import ScreenInteraction, TaskMap, ExtraInfo, ExecutionStep from utils import logger, get_file_system, Downloader from .abstract_step_augmenter import AbstractBatchStepAugmenter from sentence_transformers import SentenceTransformer, util openai.api_key = '' class JokeAugmenter(AbstractBatchStepAugmenter): def __init__(self): super().__init__() self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="/shared/file_system/cache/offline/models/1_Pooling", device=self.device).to(self.device) artefact_id = "jokes_json" downloader = Downloader() downloader.download([artefact_id]) self.jokes_data = pd.read_json(downloader.get_artefact_path(artefact_id)) self.jokes = self.jokes_data['joke'] self.jokes = [joke for joke in self.jokes if joke != ""] self.joke_keywords = self.jokes_data['keyword'] self.joke_keywords = [word for word in self.joke_keywords if word != ""] self.joke_embeddings = self.model.encode(self.jokes, convert_to_tensor=True, batch_size=128, show_progress_bar=True) logger.info('Joke embeddings successfully encoded') def batch_process(self, batch): input_list = [] output_list = [] for (_, step, _) in batch: step_text = step.response.speech_text input_list.append(step_text) step_embeddings = self.model.encode(input_list, convert_to_tensor=True, batch_size=128, show_progress_bar=True) logger.info('Step embeddings successfully encoded') for step_idx, step in enumerate(zip(input_list, step_embeddings)): step_text, step_embedding = step similarity_scores = util.cos_sim(step_embedding, self.joke_embeddings)[0] sorted_idxs = similarity_scores.argsort(descending=True) reranked_jokes = [self.jokes[i] for i in sorted_idxs] reranked_joke_keywords = [self.joke_keywords[i] for i in sorted_idxs] reranked_joke_scores = similarity_scores[sorted_idxs].tolist() most_relevant_joke = None most_relevant_score = 0 for joke, keyword, score in zip(reranked_jokes, reranked_joke_keywords, reranked_joke_scores): if score > max(0.2, most_relevant_score) and keyword in input_list[step_idx]: most_relevant_joke = joke most_relevant_score = score if most_relevant_score > 0: output_list.append([most_relevant_joke]) else: output_list.append([]) return output_list def condition(self, step: ExecutionStep) -> bool: potential_keywords = step.response.speech_text.strip().lower().split(" ") matched_keywords = self.jokes_data[self.jokes_data['keyword'].isin(potential_keywords)]['keyword'].tolist() return len(matched_keywords) > 0 def apply_output(self, step: ExecutionStep, processed_output) -> ExecutionStep: screen = ScreenInteraction() screen.format = ScreenInteraction.ScreenFormat.TEXT_IMAGE for joke in processed_output: extra_info = ExtraInfo( type='JOKE', text=joke, keyword=self.jokes_data[self.jokes_data["joke"] == joke]['keyword'].iloc[0] ) image = self.jokes_data[self.jokes_data["joke"] == joke]['image'].iloc[0] if image != "": extra_info.image_url = image screen.extra_information.append(extra_info) logger.info(f"Matched joke '{joke}' with step '{step.response.speech_text}'") step.response.screen.MergeFrom(screen) return step def get_transformed_input(self, task_map: TaskMap): return None # def generate_jokes_from_step(self, step_text): # prompt = f"""Tell me a clean joke that is related to {step_text} and is appropriate for children""" # # response = openai.Completion.create( # engine="text-davinci-002", # prompt=prompt, # max_tokens=50, # top_p=1, # frequency_penalty=0.2, # presence_penalty=0.5, # temperature=0.5 # ) # generator = JokeGenerator() # generator.add_joke(response.choices[0].text) # joke = response.choices[0].text # # # with open(os.path.join(get_file_system(), 'offline/extra_info_data/jokes.txt'), 'a') as file: # # file.append(joke + '\n') # # # logger.info("GENERATING JOKE" + kw + str(response.choices[0].text)) # # return joke
[]
2024-01-10
platisd/openai-pr-description
autofill_description.py
#!/usr/bin/env python3 import sys import requests import argparse import json import openai import os SAMPLE_PROMPT = """ Write a pull request description focusing on the motivation behind the change and why it improves the project. Go straight to the point. The title of the pull request is "Enable valgrind on CI" and the following changes took place: Changes in file .github/workflows/build-ut-coverage.yml: @@ -24,6 +24,7 @@ jobs: run: | sudo apt-get update sudo apt-get install -y lcov + sudo apt-get install -y valgrind sudo apt-get install -y ${{ matrix.compiler.cc }} sudo apt-get install -y ${{ matrix.compiler.cxx }} - name: Checkout repository @@ -48,3 +49,7 @@ jobs: with: files: coverage.info fail_ci_if_error: true + - name: Run valgrind + run: | + valgrind --tool=memcheck --leak-check=full --leak-resolution=med \ + --track-origins=yes --vgdb=no --error-exitcode=1 ${build_dir}/test/command_parser_test Changes in file test/CommandParserTest.cpp: @@ -566,7 +566,7 @@ TEST(CommandParserTest, ParsedCommandImpl_WhenArgumentIsSupportedNumericTypeWill unsigned long long expectedUnsignedLongLong { std::numeric_limits<unsigned long long>::max() }; float expectedFloat { -164223.123f }; // std::to_string does not play well with floating point min() double expectedDouble { std::numeric_limits<double>::max() }; - long double expectedLongDouble { std::numeric_limits<long double>::max() }; + long double expectedLongDouble { 123455678912349.1245678912349L }; auto command = UnparsedCommand::create(expectedCommand, "dummyDescription"s) .withArgs<int, long, unsigned long, long long, unsigned long long, float, double, long double>(); """ GOOD_SAMPLE_RESPONSE = """ Currently, our CI build does not include Valgrind as part of the build and test process. Valgrind is a powerful tool for detecting memory errors, and its use is essential for maintaining the integrity of our project. This pull request adds Valgrind to the CI build, so that any memory errors will be detected and reported immediately. This will help to prevent undetected memory errors from making it into the production build. Overall, this change will improve the quality of the project by helping us detect and prevent memory errors. """ def main(): parser = argparse.ArgumentParser( description="Use ChatGPT to generate a description for a pull request." ) parser.add_argument( "--github-api-url", type=str, required=True, help="The GitHub API URL" ) parser.add_argument( "--github-repository", type=str, required=True, help="The GitHub repository" ) parser.add_argument( "--pull-request-id", type=int, required=True, help="The pull request ID", ) parser.add_argument( "--github-token", type=str, required=True, help="The GitHub token", ) parser.add_argument( "--openai-api-key", type=str, required=True, help="The OpenAI API key", ) parser.add_argument( "--allowed-users", type=str, required=False, help="A comma-separated list of GitHub usernames that are allowed to trigger the action, empty or missing means all users are allowed", ) args = parser.parse_args() github_api_url = args.github_api_url repo = args.github_repository github_token = args.github_token pull_request_id = args.pull_request_id openai_api_key = args.openai_api_key allowed_users = os.environ.get("INPUT_ALLOWED_USERS", "") if allowed_users: allowed_users = allowed_users.split(",") open_ai_model = os.environ.get("INPUT_OPENAI_MODEL", "gpt-3.5-turbo") max_prompt_tokens = int(os.environ.get("INPUT_MAX_TOKENS", "1000")) model_temperature = float(os.environ.get("INPUT_TEMPERATURE", "0.6")) model_sample_prompt = os.environ.get("INPUT_MODEL_SAMPLE_PROMPT", SAMPLE_PROMPT) model_sample_response = os.environ.get( "INPUT_MODEL_SAMPLE_RESPONSE", GOOD_SAMPLE_RESPONSE ) authorization_header = { "Accept": "application/vnd.github.v3+json", "Authorization": "token %s" % github_token, } pull_request_url = f"{github_api_url}/repos/{repo}/pulls/{pull_request_id}" pull_request_result = requests.get( pull_request_url, headers=authorization_header, ) if pull_request_result.status_code != requests.codes.ok: print( "Request to get pull request data failed: " + str(pull_request_result.status_code) ) return 1 pull_request_data = json.loads(pull_request_result.text) if pull_request_data["body"]: print("Pull request already has a description, skipping") return 0 if allowed_users: pr_author = pull_request_data["user"]["login"] if pr_author not in allowed_users: print( f"Pull request author {pr_author} is not allowed to trigger this action" ) return 0 pull_request_title = pull_request_data["title"] pull_request_files = [] # Request a maximum of 10 pages (300 files) for page_num in range(1, 11): pull_files_url = f"{pull_request_url}/files?page={page_num}&per_page=30" pull_files_result = requests.get( pull_files_url, headers=authorization_header, ) if pull_files_result.status_code != requests.codes.ok: print( "Request to get list of files failed with error code: " + str(pull_files_result.status_code) ) return 1 pull_files_chunk = json.loads(pull_files_result.text) if len(pull_files_chunk) == 0: break pull_request_files.extend(pull_files_chunk) completion_prompt = f""" Write a pull request description focusing on the motivation behind the change and why it improves the project. Go straight to the point. The title of the pull request is "{pull_request_title}" and the following changes took place: \n """ for pull_request_file in pull_request_files: # Not all PR file metadata entries may contain a patch section # For example, entries related to removed binary files may not contain it if "patch" not in pull_request_file: continue filename = pull_request_file["filename"] patch = pull_request_file["patch"] completion_prompt += f"Changes in file {filename}: {patch}\n" max_allowed_tokens = 2048 # 4096 is the maximum allowed by OpenAI for GPT-3.5 characters_per_token = 4 # The average number of characters per token max_allowed_characters = max_allowed_tokens * characters_per_token if len(completion_prompt) > max_allowed_characters: completion_prompt = completion_prompt[:max_allowed_characters] openai.api_key = openai_api_key openai_response = openai.ChatCompletion.create( model=open_ai_model, messages=[ { "role": "system", "content": "You are a helpful assistant who writes pull request descriptions", }, {"role": "user", "content": model_sample_prompt}, {"role": "assistant", "content": model_sample_response}, {"role": "user", "content": completion_prompt}, ], temperature=model_temperature, max_tokens=max_prompt_tokens, ) generated_pr_description = openai_response.choices[0].message.content redundant_prefix = "This pull request " if generated_pr_description.startswith(redundant_prefix): generated_pr_description = generated_pr_description[len(redundant_prefix) :] generated_pr_description = ( generated_pr_description[0].upper() + generated_pr_description[1:] ) print(f"Generated pull request description: '{generated_pr_description}'") issues_url = "%s/repos/%s/issues/%s" % ( github_api_url, repo, pull_request_id, ) update_pr_description_result = requests.patch( issues_url, headers=authorization_header, json={"body": generated_pr_description}, ) if update_pr_description_result.status_code != requests.codes.ok: print( "Request to update pull request description failed: " + str(update_pr_description_result.status_code) ) print("Response: " + update_pr_description_result.text) return 1 if __name__ == "__main__": sys.exit(main())
[ "Changes in file PLACEHOLDER: PLACEHOLDER\n", "\nWrite a pull request description focusing on the motivation behind the change and why it improves the project.\nGo straight to the point.\n\nThe title of the pull request is \"Enable valgrind on CI\" and the following changes took place: \n\nChanges in file .github/workflows/build-ut-coverage.yml: @@ -24,6 +24,7 @@ jobs:\n run: |\n sudo apt-get update\n sudo apt-get install -y lcov\n+ sudo apt-get install -y valgrind\n sudo apt-get install -y ${{ matrix.compiler.cc }}\n sudo apt-get install -y ${{ matrix.compiler.cxx }}\n - name: Checkout repository\n@@ -48,3 +49,7 @@ jobs:\n with:\n files: coverage.info\n fail_ci_if_error: true\n+ - name: Run valgrind\n+ run: |\n+ valgrind --tool=memcheck --leak-check=full --leak-resolution=med + --track-origins=yes --vgdb=no --error-exitcode=1 ${build_dir}/test/command_parser_test\nChanges in file test/CommandParserTest.cpp: @@ -566,7 +566,7 @@ TEST(CommandParserTest, ParsedCommandImpl_WhenArgumentIsSupportedNumericTypeWill\n unsigned long long expectedUnsignedLongLong { std::numeric_limits<unsigned long long>::max() };\n float expectedFloat { -164223.123f }; // std::to_string does not play well with floating point min()\n double expectedDouble { std::numeric_limits<double>::max() };\n- long double expectedLongDouble { std::numeric_limits<long double>::max() };\n+ long double expectedLongDouble { 123455678912349.1245678912349L };\n \n auto command = UnparsedCommand::create(expectedCommand, \"dummyDescription\"s)\n .withArgs<int, long, unsigned long, long long, unsigned long long, float, double, long double>();\n", "You are a helpful assistant who writes pull request descriptions", "INPUT_MODEL_SAMPLE_PROMPT", "\nWrite a pull request description focusing on the motivation behind the change and why it improves the project.\nGo straight to the point.\n\nThe title of the pull request is \"PLACEHOLDER\" and the following changes took place: \n\n", "INPUT_MAX_TOKENS" ]
2024-01-10
dhruvyad/super-mario-ai
ai~llm_backend.py
from langchain.agents import initialize_agent, AgentType, Tool from langchain.chat_models import ChatOpenAI from langchain.llms import OpenAI llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613") # iterate over image assets and transform them given the prompt def game_visual_updater(prompt): pass # return a 2D array consistenting of elements that can be used to create a Mario level def level_creator(prompt): pass tools = [ Tool( name = "Update Game", func=game_visual_updater, description="useful for when you need to update the visual details of the video game. You should define the ways in which you need to update the game." ), Tool( name="Create Level", func=level_creator, description="useful for when you need to create a new level for the video game." ), ] main_agent = initialize_agent(tools, llm, agent=AgentType.OPENAI_FUNCTIONS, verbose=True) def response_function(prompt, history): # main_agent.run(prompt) return "Hi."
[]
2024-01-10
lifan-yuan/CRAFT
vqa~vision_models.py
""" Adding a new functionality is easy. Just implement your new model as a subclass of BaseModel. The code will make the rest: it will make it available for the processes to call by using process(name, *args, **kwargs), where *args and **kwargs are the arguments of the models process() method. """ import abc import backoff import contextlib import openai import os import re import timeit import torch import torchvision import warnings from PIL import Image from collections import Counter from contextlib import redirect_stdout from functools import partial from itertools import chain from joblib import Memory from rich.console import Console from torch import hub from torch.nn import functional as F from torchvision import transforms from typing import List, Union import json from configs import config from vipergpt_utils import HiddenPrints import requests import time cache = Memory('cache/' if config.use_cache else None, verbose=0) device = "cuda" if torch.cuda.is_available() else "cpu" console = Console(highlight=False) HiddenPrints = partial(HiddenPrints, console=console, use_newline=config.multiprocessing) with open("api.key") as f: CANDIDATE_API = f.readlines() CANDIDATE_API = [api.strip() for api in CANDIDATE_API] count = 0 api_num = len(CANDIDATE_API) CURRENT_API = int((count / 3) % api_num) CURRENT_API = int(count % api_num) openai.api_key = CANDIDATE_API[CURRENT_API] # --------------------------- Base abstract model --------------------------- # class BaseModel(abc.ABC): to_batch = False seconds_collect_data = 1.5 # Window of seconds to group inputs, if to_batch is True max_batch_size = 10 # Maximum batch size, if to_batch is True. Maximum allowed by OpenAI requires_gpu = True def __init__(self, gpu_number): self.dev = f'cuda:{gpu_number}' if device == 'cuda' else device @abc.abstractmethod def forward(self, *args, **kwargs): """ If to_batch is True, every arg and kwarg will be a list of inputs, and the output should be a list of outputs. The way it is implemented in the background, if inputs with defaults are not specified, they will take the default value, but still be given as a list to the forward method. """ pass @classmethod @abc.abstractmethod def name(cls) -> str: """The name of the model has to be given by the subclass""" pass @classmethod def list_processes(cls): """ A single model can be run in multiple processes, for example if there are different tasks to be done with it. If multiple processes are used, override this method to return a list of strings. Remember the @classmethod decorator. If we specify a list of processes, the self.forward() method has to have a "process_name" parameter that gets automatically passed in. See GPT3Model for an example. """ return [cls.name] # ------------------------------ Specific models ---------------------------- # class ObjectDetector(BaseModel): name = 'object_detector' def __init__(self, gpu_number=0): super().__init__(gpu_number) with HiddenPrints('ObjectDetector'): detection_model = hub.load('facebookresearch/detr', 'detr_resnet50', pretrained=True).to(self.dev) detection_model.eval() self.detection_model = detection_model @torch.no_grad() def forward(self, image: torch.Tensor): """get_object_detection_bboxes""" input_batch = image.to(self.dev).unsqueeze(0) # create a mini-batch as expected by the model detections = self.detection_model(input_batch) p = detections['pred_boxes'] p = torch.stack([p[..., 0], 1 - p[..., 3], p[..., 2], 1 - p[..., 1]], -1) # [left, lower, right, upper] detections['pred_boxes'] = p return detections class DepthEstimationModel(BaseModel): name = 'depth' def __init__(self, gpu_number=0, model_type='DPT_Large'): super().__init__(gpu_number) with HiddenPrints('DepthEstimation'): warnings.simplefilter("ignore") # Model options: MiDaS_small, DPT_Hybrid, DPT_Large torch_cache_dir = "/yangyic3/.cache/torch/hub" # depth_estimation_model = hub.load(os.path.join(torch_cache_dir, 'intel-isl_MiDaS_master'), model_type, source="local", pretrained=True).to(self.dev) depth_estimation_model = hub.load('intel-isl/MiDaS', model_type, pretrained=True).to(self.dev) depth_estimation_model.eval() # midas_transforms = torch.hub.load(os.path.join(torch_cache_dir, 'intel-isl_MiDaS_master'), "transforms", source="local") midas_transforms = torch.hub.load('intel-isl/MiDaS', "transforms") if model_type == "DPT_Large" or model_type == "DPT_Hybrid": self.transform = midas_transforms.dpt_transform else: self.transform = midas_transforms.small_transform self.depth_estimation_model = depth_estimation_model @torch.no_grad() def forward(self, image: torch.Tensor): """Estimate depth map""" image_numpy = image.cpu().permute(1, 2, 0).numpy() * 255 input_batch = self.transform(image_numpy).to(self.dev) prediction = self.depth_estimation_model(input_batch) # Resize to original size prediction = torch.nn.functional.interpolate( prediction.unsqueeze(1), size=image_numpy.shape[:2], mode="bicubic", align_corners=False, ).squeeze() # We compute the inverse because the model returns inverse depth to_return = 1 / prediction to_return = to_return.cpu().numpy() return to_return # To save: plt.imsave(path_save, prediction.cpu().numpy()) class CLIPModel(BaseModel): name = 'clip' def __init__(self, gpu_number=0, version="ViT-L/14@336px"): # @336px super().__init__(gpu_number) import clip self.clip = clip with HiddenPrints('CLIP'): model, preprocess = clip.load(version, device=self.dev) model.eval() model.requires_grad_ = False self.model = model self.negative_text_features = None self.transform = self.get_clip_transforms_from_tensor(336 if "336" in version else 224) # @staticmethod def _convert_image_to_rgb(self, image): return image.convert("RGB") # @staticmethod def get_clip_transforms_from_tensor(self, n_px=336): return transforms.Compose([ transforms.ToPILImage(), transforms.Resize(n_px, interpolation=transforms.InterpolationMode.BICUBIC), transforms.CenterCrop(n_px), self._convert_image_to_rgb, transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) @torch.no_grad() def binary_score(self, image: torch.Tensor, prompt, negative_categories=None): is_video = isinstance(image, torch.Tensor) and image.ndim == 4 if is_video: # video image = torch.stack([self.transform(image[i]) for i in range(image.shape[0])], dim=0) else: image = self.transform(image).unsqueeze(0).to(self.dev) prompt_prefix = "photo of " prompt = prompt_prefix + prompt if negative_categories is None: if self.negative_text_features is None: self.negative_text_features = self.clip_negatives(prompt_prefix) negative_text_features = self.negative_text_features else: negative_text_features = self.clip_negatives(prompt_prefix, negative_categories) text = self.clip.tokenize([prompt]).to(self.dev) image_features = self.model.encode_image(image.to(self.dev)) image_features = F.normalize(image_features, dim=-1) pos_text_features = self.model.encode_text(text) pos_text_features = F.normalize(pos_text_features, dim=-1) text_features = torch.concat([pos_text_features, negative_text_features], axis=0) # run competition where we do a binary classification # between the positive and all the negatives, then take the mean sim = (100.0 * image_features @ text_features.T).squeeze(dim=0) if is_video: query = sim[..., 0].unsqueeze(-1).broadcast_to(sim.shape[0], sim.shape[-1] - 1) others = sim[..., 1:] res = F.softmax(torch.stack([query, others], dim=-1), dim=-1)[..., 0].mean(-1) else: res = F.softmax(torch.cat((sim[0].broadcast_to(1, sim.shape[0] - 1), sim[1:].unsqueeze(0)), dim=0), dim=0)[0].mean() return res @torch.no_grad() def clip_negatives(self, prompt_prefix, negative_categories=None): if negative_categories is None: with open('useful_lists/random_negatives.txt') as f: negative_categories = [x.strip() for x in f.read().split()] # negative_categories = negative_categories[:1000] # negative_categories = ["a cat", "a lamp"] negative_categories = [prompt_prefix + x for x in negative_categories] negative_tokens = self.clip.tokenize(negative_categories).to(self.dev) negative_text_features = self.model.encode_text(negative_tokens) negative_text_features = F.normalize(negative_text_features, dim=-1) return negative_text_features @torch.no_grad() def classify(self, image: Union[torch.Tensor, list], categories: List[str], return_index=True): is_list = isinstance(image, list) if is_list: assert len(image) == len(categories) image = [self.transform(x).unsqueeze(0) for x in image] image_clip = torch.cat(image, dim=0).to(self.dev) elif len(image.shape) == 3: image_clip = self.transform(image).to(self.dev).unsqueeze(0) else: # Video (process images separately) image_clip = torch.stack([self.transform(x) for x in image], dim=0).to(self.dev) # if len(image_clip.shape) == 3: # image_clip = image_clip.unsqueeze(0) prompt_prefix = "photo of " categories = [prompt_prefix + x for x in categories] categories = self.clip.tokenize(categories).to(self.dev) text_features = self.model.encode_text(categories) text_features = F.normalize(text_features, dim=-1) image_features = self.model.encode_image(image_clip) image_features = F.normalize(image_features, dim=-1) if image_clip.shape[0] == 1: # get category from image softmax_arg = image_features @ text_features.T # 1 x n else: if is_list: # get highest category-image match with n images and n corresponding categories softmax_arg = (image_features @ text_features.T).diag().unsqueeze(0) # n x n -> 1 x n else: softmax_arg = (image_features @ text_features.T) similarity = (100.0 * softmax_arg).softmax(dim=-1).squeeze(0) if not return_index: return similarity else: result = torch.argmax(similarity, dim=-1) if result.shape == (): result = result.item() return result @torch.no_grad() def compare(self, images: List[torch.Tensor], prompt, return_scores=False): images = [self.transform(im).unsqueeze(0).to(self.dev) for im in images] images = torch.cat(images, dim=0) prompt_prefix = "photo of " prompt = prompt_prefix + prompt text = self.clip.tokenize([prompt]).to(self.dev) image_features = self.model.encode_image(images.to(self.dev)) image_features = F.normalize(image_features, dim=-1) text_features = self.model.encode_text(text) text_features = F.normalize(text_features, dim=-1) sim = (image_features @ text_features.T).squeeze(dim=-1) # Only one text, so squeeze if return_scores: return sim res = sim.argmax() return res def forward(self, image, prompt, task='score', return_index=True, negative_categories=None, return_scores=False): if task == 'classify': categories = prompt clip_sim = self.classify(image, categories, return_index=return_index) out = clip_sim elif task == 'score': clip_score = self.binary_score(image, prompt, negative_categories=negative_categories) out = clip_score else: # task == 'compare' idx = self.compare(image, prompt, return_scores) out = idx if not isinstance(out, int): out = out.cpu() return out class MaskRCNNModel(BaseModel): name = 'maskrcnn' def __init__(self, gpu_number=0, threshold=config.detect_thresholds.maskrcnn): super().__init__(gpu_number) with HiddenPrints('MaskRCNN'): obj_detect = torchvision.models.detection.maskrcnn_resnet50_fpn_v2(weights='COCO_V1').to(self.dev) # obj_detect = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True).to(self.dev) obj_detect.eval() obj_detect.requires_grad_(False) self.categories = torchvision.models.detection.MaskRCNN_ResNet50_FPN_V2_Weights.COCO_V1.meta['categories'] self.obj_detect = obj_detect self.threshold = threshold def prepare_image(self, image): image = image.to(self.dev) return image @torch.no_grad() def detect(self, images: torch.Tensor, return_labels=True): if type(images) != list: images = [images] images = [self.prepare_image(im) for im in images] detections = self.obj_detect(images) for i in range(len(images)): height = detections[i]['masks'].shape[-2] # Just return boxes (no labels no masks, no scores) with scores > threshold if return_labels: # In the current implementation, we only return labels d_i = detections[i]['labels'][detections[i]['scores'] > self.threshold] detections[i] = set([self.categories[d] for d in d_i]) else: d_i = detections[i]['boxes'][detections[i]['scores'] > self.threshold] # Return [left, lower, right, upper] instead of [left, upper, right, lower] detections[i] = torch.stack([d_i[:, 0], height - d_i[:, 3], d_i[:, 2], height - d_i[:, 1]], dim=1) return detections def forward(self, image, return_labels=False): obj_detections = self.detect(image, return_labels) # Move to CPU before sharing. Alternatively we can try cloning tensors in CUDA, but may not work obj_detections = [(v.to('cpu') if isinstance(v, torch.Tensor) else list(v)) for v in obj_detections] return obj_detections class OwlViTModel(BaseModel): name = 'owlvit' def __init__(self, gpu_number=0, threshold=config.detect_thresholds.owlvit): super().__init__(gpu_number) from transformers import OwlViTProcessor, OwlViTForObjectDetection with HiddenPrints("OwlViT"): processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32") model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32") model.eval() model.requires_grad_(False) self.model = model.to(self.dev) self.processor = processor self.threshold = threshold @torch.no_grad() def forward(self, image: torch.Tensor, text: List[str], return_labels: bool = False): if isinstance(image, list): raise TypeError("image has to be a torch tensor, not a list") if isinstance(text, str): text = [text] text_original = text text = ['a photo of a ' + t for t in text] inputs = self.processor(text=text, images=image, return_tensors="pt") # padding="longest", inputs = {k: v.to(self.dev) for k, v in inputs.items()} outputs = self.model(**inputs) # Target image sizes (height, width) to rescale box predictions [batch_size, 2] target_sizes = torch.tensor([image.shape[1:]]).to(self.dev) # Convert outputs (bounding boxes and class logits) to COCO API results = self.processor.post_process(outputs=outputs, target_sizes=target_sizes) boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"] indices_good = scores > self.threshold boxes = boxes[indices_good] # Change to format where large "upper"/"lower" means more up left, upper, right, lower = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3] height = image.shape[-2] boxes = torch.stack([left, height - lower, right, height - upper], -1) if return_labels: labels = labels[indices_good] labels = [text_original[lab].re('a photo of a ') for lab in labels] return boxes, labels return boxes.cpu() # [x_min, y_min, x_max, y_max] class GLIPModel(BaseModel): name = 'glip' def __init__(self, model_size='large', gpu_number=0, *args): BaseModel.__init__(self, gpu_number) with contextlib.redirect_stderr(open(os.devnull, "w")): # Do not print nltk_data messages when importing from maskrcnn_benchmark.engine.predictor_glip import GLIPDemo, to_image_list, create_positive_map, \ create_positive_map_label_to_token_from_positive_map working_dir = f'{config.path_pretrained_models}/GLIP/' if model_size == 'tiny': config_file = working_dir + "configs/glip_Swin_T_O365_GoldG.yaml" weight_file = working_dir + "checkpoints/glip_tiny_model_o365_goldg_cc_sbu.pth" else: # large config_file = working_dir + "configs/glip_Swin_L.yaml" weight_file = working_dir + "checkpoints/glip_large_model.pth" class OurGLIPDemo(GLIPDemo): def __init__(self, dev, *args_demo): kwargs = { 'min_image_size': 800, 'confidence_threshold': config.detect_thresholds.glip, 'show_mask_heatmaps': False } self.dev = dev from maskrcnn_benchmark.config import cfg # manual override some options cfg.local_rank = 0 cfg.num_gpus = 1 cfg.merge_from_file(config_file) cfg.merge_from_list(["MODEL.WEIGHT", weight_file]) cfg.merge_from_list(["MODEL.DEVICE", self.dev]) with HiddenPrints("GLIP"), torch.cuda.device(self.dev): from transformers.utils import logging logging.set_verbosity_error() GLIPDemo.__init__(self, cfg, *args_demo, **kwargs) if self.cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD": plus = 1 else: plus = 0 self.plus = plus self.color = 255 @torch.no_grad() def compute_prediction(self, original_image, original_caption, custom_entity=None): image = self.transforms(original_image) # image = [image, image.permute(0, 2, 1)] image_list = to_image_list(image, self.cfg.DATALOADER.SIZE_DIVISIBILITY) image_list = image_list.to(self.dev) # caption if isinstance(original_caption, list): if len(original_caption) > 40: all_predictions = None for loop_num, i in enumerate(range(0, len(original_caption), 40)): list_step = original_caption[i:i + 40] prediction_step = self.compute_prediction(original_image, list_step, custom_entity=None) if all_predictions is None: all_predictions = prediction_step else: # Aggregate predictions all_predictions.bbox = torch.cat((all_predictions.bbox, prediction_step.bbox), dim=0) for k in all_predictions.extra_fields: all_predictions.extra_fields[k] = \ torch.cat((all_predictions.extra_fields[k], prediction_step.extra_fields[k] + loop_num), dim=0) return all_predictions # we directly provided a list of category names caption_string = "" tokens_positive = [] seperation_tokens = " . " for word in original_caption: tokens_positive.append([len(caption_string), len(caption_string) + len(word)]) caption_string += word caption_string += seperation_tokens tokenized = self.tokenizer([caption_string], return_tensors="pt") # tokens_positive = [tokens_positive] # This was wrong tokens_positive = [[v] for v in tokens_positive] original_caption = caption_string # print(tokens_positive) else: tokenized = self.tokenizer([original_caption], return_tensors="pt") if custom_entity is None: tokens_positive = self.run_ner(original_caption) # print(tokens_positive) # process positive map positive_map = create_positive_map(tokenized, tokens_positive) positive_map_label_to_token = create_positive_map_label_to_token_from_positive_map(positive_map, plus=self.plus) self.positive_map_label_to_token = positive_map_label_to_token tic = timeit.time.perf_counter() # compute predictions with HiddenPrints(): # Hide some deprecated notices predictions = self.model(image_list, captions=[original_caption], positive_map=positive_map_label_to_token) predictions = [o.to(self.cpu_device) for o in predictions] # print("inference time per image: {}".format(timeit.time.perf_counter() - tic)) # always single image is passed at a time prediction = predictions[0] # reshape prediction (a BoxList) into the original image size height, width = original_image.shape[-2:] # if self.tensor_inputs: # else: # height, width = original_image.shape[:-1] prediction = prediction.resize((width, height)) if prediction.has_field("mask"): # if we have masks, paste the masks in the right position # in the image, as defined by the bounding boxes masks = prediction.get_field("mask") # always single image is passed at a time masks = self.masker([masks], [prediction])[0] prediction.add_field("mask", masks) return prediction @staticmethod def to_left_right_upper_lower(bboxes): return [(bbox[1], bbox[3], bbox[0], bbox[2]) for bbox in bboxes] @staticmethod def to_xmin_ymin_xmax_ymax(bboxes): # invert the previous method return [(bbox[2], bbox[0], bbox[3], bbox[1]) for bbox in bboxes] @staticmethod def prepare_image(image): image = image[[2, 1, 0]] # convert to bgr for opencv-format for glip return image @torch.no_grad() def forward(self, image: torch.Tensor, obj: Union[str, list], return_labels: bool = False, confidence_threshold=None): if confidence_threshold is not None: original_confidence_threshold = self.confidence_threshold self.confidence_threshold = confidence_threshold # if isinstance(object, list): # object = ' . '.join(object) + ' .' # add separation tokens image = self.prepare_image(image) # Avoid the resizing creating a huge image in a pathological case ratio = image.shape[1] / image.shape[2] ratio = max(ratio, 1 / ratio) original_min_image_size = self.min_image_size if ratio > 10: self.min_image_size = int(original_min_image_size * 10 / ratio) self.transforms = self.build_transform() with torch.cuda.device(self.dev): inference_output = self.inference(image, obj) bboxes = inference_output.bbox.cpu().numpy().astype(int) # bboxes = self.to_left_right_upper_lower(bboxes) if ratio > 10: self.min_image_size = original_min_image_size self.transforms = self.build_transform() bboxes = torch.tensor(bboxes) # Convert to [left, lower, right, upper] instead of [left, upper, right, lower] height = image.shape[-2] bboxes = torch.stack([bboxes[:, 0], height - bboxes[:, 3], bboxes[:, 2], height - bboxes[:, 1]], dim=1) if confidence_threshold is not None: self.confidence_threshold = original_confidence_threshold if return_labels: # subtract 1 because it's 1-indexed for some reason return bboxes, inference_output.get_field("labels").cpu().numpy() - 1 return bboxes self.glip_demo = OurGLIPDemo(*args, dev=self.dev) def forward(self, *args, **kwargs): result = self.glip_demo.forward(*args, **kwargs) return result class TCLModel(BaseModel): name = 'tcl' def __init__(self, gpu_number=0): from base_models.tcl.tcl_model_pretrain import ALBEF from base_models.tcl.tcl_vit import interpolate_pos_embed from base_models.tcl.tcl_tokenization_bert import BertTokenizer super().__init__(gpu_number) config = { 'image_res': 384, 'mlm_probability': 0.15, 'embed_dim': 256, 'vision_width': 768, # 'bert_config': 'base_models/tcl_config_bert.json', 'bert_config': 'base_models/tcl/tcl_config_bert.json', 'temp': 0.07, 'queue_size': 65536, 'momentum': 0.995, } text_encoder = 'bert-base-uncased' # checkpoint_path = f'{config.path_pretrained_models}/TCL_4M.pth' checkpoint_path = './pretrained_models/TCL/TCL_4M.pth' self.tokenizer = BertTokenizer.from_pretrained(text_encoder) with warnings.catch_warnings(), HiddenPrints("TCL"): model = ALBEF(config=config, text_encoder=text_encoder, tokenizer=self.tokenizer) checkpoint = torch.load(checkpoint_path, map_location='cpu') state_dict = checkpoint['model'] # reshape positional embedding to accomodate for image resolution change pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'], model.visual_encoder) state_dict['visual_encoder.pos_embed'] = pos_embed_reshaped m_pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'], model.visual_encoder_m) state_dict['visual_encoder_m.pos_embed'] = m_pos_embed_reshaped model.load_state_dict(state_dict, strict=False) self.model = model.to(self.dev) self.model.eval() normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) self.test_transform = transforms.Compose([ transforms.Resize((config['image_res'], config['image_res']), interpolation=Image.BICUBIC), transforms.ToTensor(), normalize, ]) self.negative_text_features = None def transform(self, image): image = transforms.ToPILImage()(image) image = self.test_transform(image) return image def prepare_image(self, image): image = self.transform(image) image = image.unsqueeze(0) image = image.to(self.dev) return image @torch.no_grad() def binary_score(self, images: Union[List[torch.Tensor], torch.Tensor], prompt): single_image = False if isinstance(images, torch.Tensor): single_image = True images = [images] images = [self.prepare_image(im) for im in images] images = torch.cat(images, dim=0) first_words = ['description', 'caption', 'alt text'] second_words = ['photo', 'image', 'picture'] options = [f'{fw}: {sw} of a' for fw in first_words for sw in second_words] prompts = [f'{option} {prompt}' for option in options] text_input = self.tokenizer(prompts, padding='max_length', truncation=True, max_length=30, return_tensors="pt") \ .to(self.dev) text_output = self.model.text_encoder(text_input.input_ids, attention_mask=text_input.attention_mask, mode='text') text_feats = text_output # .last_hidden_state text_atts = text_input.attention_mask image_feats = self.model.visual_encoder(images) img_len = image_feats.shape[0] text_len = text_feats.shape[0] image_feats = image_feats.unsqueeze(1).repeat(1, text_len, 1, 1).view(-1, *image_feats.shape[-2:]) text_feats = text_feats.unsqueeze(0).repeat(img_len, 1, 1, 1).view(-1, *text_feats.shape[-2:]) text_atts = text_atts.unsqueeze(0).repeat(img_len, 1, 1).view(-1, *text_atts.shape[-1:]) image_feats_att = torch.ones(image_feats.size()[:-1], dtype=torch.long).to(self.dev) output = self.model.text_encoder(encoder_embeds=text_feats, attention_mask=text_atts, encoder_hidden_states=image_feats, encoder_attention_mask=image_feats_att, return_dict=True, mode='fusion') scores = self.model.itm_head(output[:, 0, :])[:, 1] scores = scores.view(img_len, text_len) score = scores.sigmoid().max(-1)[0] if single_image: score = score.item() return score @torch.no_grad() def classify(self, image, texts, return_index=True): if isinstance(image, list): assert len(image) == len(texts) image = [self.transform(x).unsqueeze(0) for x in image] image_tcl = torch.cat(image, dim=0).to(self.dev) else: image_tcl = self.prepare_image(image) text_input = self.tokenizer(texts, padding='max_length', truncation=True, max_length=30, return_tensors="pt") \ .to(self.dev) text_output = self.model.text_encoder(text_input.input_ids, attention_mask=text_input.attention_mask, mode='text') text_feats = text_output # .last_hidden_state text_embeds = F.normalize(self.model.text_proj(text_feats[:, 0, :])) text_atts = text_input.attention_mask image_feats = self.model.visual_encoder(image_tcl) image_embeds = self.model.vision_proj(image_feats[:, 0, :]) image_embeds = F.normalize(image_embeds, dim=-1) # In the original code, this is only used to select the topk pairs, to not compute ITM head on all pairs. # But other than that, not used sims_matrix = image_embeds @ text_embeds.t() sims_matrix_t = sims_matrix.t() # Image-Text Matching (ITM): Binary classifier for every image-text pair # Only one direction, because we do not filter bet t2i, i2t, and do all pairs image_feats_att = torch.ones(image_feats.size()[:-1], dtype=torch.long).to(self.dev) output = self.model.text_encoder(encoder_embeds=text_feats, attention_mask=text_atts, encoder_hidden_states=image_feats, encoder_attention_mask=image_feats_att, return_dict=True, mode='fusion') score_matrix = self.model.itm_head(output[:, 0, :])[:, 1] if not return_index: return score_matrix else: return torch.argmax(score_matrix).item() def forward(self, image, texts, task='classify', return_index=True): if task == 'classify': best_text = self.classify(image, texts, return_index=return_index) out = best_text else: # task == 'score': # binary_score score = self.binary_score(image, texts) out = score if isinstance(out, torch.Tensor): out = out.cpu() return out @cache.cache(ignore=['result']) def gpt3_cache_aux(fn_name, prompts, temperature, n_votes, result): """ This is a trick to manually cache results from GPT-3. We want to do it manually because the queries to GPT-3 are batched, and caching doesn't make sense for batches. With this we can separate individual samples in the batch """ return result class GPT3Model(BaseModel): name = 'gpt3' to_batch = False requires_gpu = False def __init__(self, gpu_number=0): super().__init__(gpu_number=gpu_number) with open(config.gpt3.qa_prompt) as f: self.qa_prompt = f.read().strip() self.temperature = config.gpt3.temperature self.n_votes = config.gpt3.n_votes self.model = config.gpt3.model # initial cleaning for reference QA results @staticmethod def process_answer(answer): answer = answer.lstrip() # remove leading spaces (our addition) answer = answer.replace('.', '').replace(',', '').lower() to_be_removed = {'a', 'an', 'the', 'to', ''} answer_list = answer.split(' ') answer_list = [item for item in answer_list if item not in to_be_removed] return ' '.join(answer_list) @staticmethod def get_union(lists): return list(set(chain.from_iterable(lists))) @staticmethod def most_frequent(answers): answer_counts = Counter(answers) return answer_counts.most_common(1)[0][0] def get_qa(self, prompts, prompt_base: str=None) -> List[str]: if prompt_base is None: prompt_base = self.qa_prompt prompts_total = [] for p in prompts: question = p prompts_total.append(prompt_base.format(question)) response = self.get_qa_fn(prompts_total) if self.n_votes > 1: response_ = [] for i in range(len(prompts)): if self.model == 'chatgpt': resp_i = [r['message']['content'] for r in response['choices'][i * self.n_votes:(i + 1) * self.n_votes]] else: resp_i = [r['text'] for r in response['choices'][i * self.n_votes:(i + 1) * self.n_votes]] response_.append(self.most_frequent(resp_i)) response = response_ else: if self.model == 'chatgpt': response = [r['message']['content'] for r in response['choices']] else: response = [self.process_answer(r["text"]) for r in response['choices']] return response def get_qa_fn(self, prompt): response = self.query_gpt3(prompt, model=self.model, max_tokens=5, logprobs=1, stream=False, stop=["\n", "<|endoftext|>"]) return response def get_general(self, prompts) -> List[str]: if self.model == "chatgpt": response = self.query_gpt3(prompts, model=self.model, max_tokens=256, top_p=1, frequency_penalty=0, presence_penalty=0) response = [r['message']['content'] for r in response['choices']] else: response = self.query_gpt3(prompts, model=self.model, max_tokens=256, top_p=1, frequency_penalty=0, presence_penalty=0) response = [r["text"] for r in response['choices']] return response def query_gpt3(self, prompt, model="gpt-3.5-turbo-0613", max_tokens=16, logprobs=None, stream=False, stop=None, top_p=1, frequency_penalty=0, presence_penalty=0): global count, api_num, CURRENT_API, CANDIDATE_API ####################################################################### while True: try: response = openai.ChatCompletion.create( model=model, messages=[{"role": "user", "content": p} for p in prompt], temperature=self.temperature, max_tokens=max_tokens, top_p=top_p, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty ) except Exception as e: # print(e) if str(e).startswith("You exceeded your current quota"): print(f"API #{CURRENT_API} run out! Use the next one!") CURRENT_API += 1 openai.api_key = CANDIDATE_API[CURRENT_API] continue elif str(e).startswith("Rate limit reached"): continue else: time.sleep(1) continue else: break ####################################################################### response = response['choices'][0]['message']['content'] return response ########################################################################### def query_with_message(self, messages, model="gpt-3.5-turbo-0613", max_tokens=16, temperature=0.0, logprobs=None, stream=False, stop=None, top_p=1, frequency_penalty=0, presence_penalty=0): global count, api_num, CURRENT_API, CANDIDATE_API for _ in range(20): try: count += 1 CURRENT_API = int(count % api_num) openai.api_key = CANDIDATE_API[CURRENT_API] response = openai.ChatCompletion.create( model=model, messages=messages, temperature=temperature, max_tokens=max_tokens, top_p=top_p, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty ) except Exception as e: if str(e).startswith("You exceeded your current quota"): print(f"API #{CURRENT_API} run out! Use the next one!") count += 1 CURRENT_API = int(count % api_num) openai.api_key = CANDIDATE_API[CURRENT_API] continue elif str(e).startswith("Rate limit reached"): count += 1 CURRENT_API = int(count % api_num) openai.api_key = CANDIDATE_API[CURRENT_API] continue else: time.sleep(1) print(e) continue else: count += 1 CURRENT_API = int(count % api_num) openai.api_key = CANDIDATE_API[CURRENT_API] break response = response['choices'][0]['message']['content'] return response ########################################################################### def forward(self, prompt, process_name): if not self.to_batch: prompt = [prompt] if process_name == 'gpt3_qa': # if items in prompt are tuples, then we assume it is a question and context if isinstance(prompt[0], tuple) or isinstance(prompt[0], list): prompt = [question.format(context) for question, context in prompt] to_compute = None results = [] # Check if in cache if config.use_cache: for p in prompt: # This is not ideal, because if not found, later it will have to re-hash the arguments. # But I could not find a better way to do it. result = gpt3_cache_aux(process_name, p, self.temperature, self.n_votes, None) results.append(result) # If in cache, will be actual result, otherwise None to_compute = [i for i, r in enumerate(results) if r is None] prompt = [prompt[i] for i in to_compute] if len(prompt) > 0: if process_name == 'gpt3_qa': response = self.get_qa(prompt) else: # 'gpt3_general', general prompt, has to be given all of it response = self.get_general(prompt) else: response = [] # All previously cached if config.use_cache: for p, r in zip(prompt, response): # "call" forces the overwrite of the cache gpt3_cache_aux.call(process_name, p, self.temperature, self.n_votes, r) for i, idx in enumerate(to_compute): results[idx] = response[i] else: results = response if not self.to_batch: results = results[0] return results @classmethod def list_processes(cls): return ['gpt3_' + n for n in ['qa', 'general']] # @cache.cache # @backoff.on_exception(backoff.expo, Exception, max_tries=10) def codex_helper(extended_prompt, temperature=None): global count, api_num, CURRENT_API, CANDIDATE_API assert 0 <= config.codex.temperature <= 1 assert 1 <= config.codex.best_of <= 20 if not isinstance(extended_prompt, list): extended_prompt = [extended_prompt] ######################################################################################## if config.codex.model in ["gpt-4", "gpt-4-0613", "gpt-3.5-turbo", "gpt-3.5-turbo-0613", "codellama"]: if not isinstance(extended_prompt, list): extended_prompt = [extended_prompt] for _ in range(1000): try: count += 1 responses = [openai.ChatCompletion.create( model=config.codex.model, messages=[ {"role": "system", "content": "Only answer with a function starting def execute_command."}, {"role": "user", "content": prompt} ], temperature=temperature, max_tokens=config.codex.max_tokens, top_p=0., stop=["\n\n"], presence_penalty=0, frequency_penalty=0, ) for prompt in extended_prompt] except openai.error.InvalidRequestError as e: # too long raise e except Exception as e: print(e) if str(e).startswith("You exceeded your current quota"): print(f"API #{CURRENT_API} run out! Use the next one!") count += 1 CURRENT_API = int(count % api_num) openai.api_key = CANDIDATE_API[CURRENT_API] continue elif str(e).startswith("Rate limit reached"): print(f"API #{CURRENT_API} reach limit! Use the next one!") print("length:", len(extended_prompt[0].split())) count += 1 CURRENT_API = int(count % api_num) openai.api_key = CANDIDATE_API[CURRENT_API] continue else: time.sleep(1) continue else: try: resp = [r['choices'][0]['message']['content'] for r in responses] except: continue break else: raise ValueError("No model specified") ######################################################################################## try: if len(resp) == 1: resp = resp[0] except Exception as e: print(e) print(resp) return '' return resp class CodexModel(BaseModel): name = 'codex' requires_gpu = False max_batch_size = 1#5 # Not batched, but every call will probably be a batch (coming from the same process) def __init__(self, gpu_number=0): super().__init__(gpu_number=0) with open(config.codex.prompt) as f: self.base_prompt = f.read().strip() self.fixed_code = None if config.use_fixed_code: with open(config.fixed_code_file) as f: self.fixed_code = f.read() def forward(self, prompt, input_type='image', prompt_file=None, base_prompt=None, temperature=1): if config.use_fixed_code: # Use the same program for every sample, like in socratic models return [self.fixed_code] * len(prompt) if isinstance(prompt, list) else self.fixed_code if prompt_file is not None and base_prompt is None: # base_prompt takes priority with open(prompt_file) as f: base_prompt = f.read().strip() elif base_prompt is None: base_prompt = self.base_prompt if isinstance(prompt, list): extended_prompt = [base_prompt.replace("INSERT_QUERY_HERE", p).replace('INSERT_TYPE_HERE', input_type) for p in prompt] elif isinstance(prompt, str): extended_prompt = [base_prompt.replace("INSERT_QUERY_HERE", prompt). replace('INSERT_TYPE_HERE', input_type)] else: raise TypeError("prompt must be a string or a list of strings") result = self.forward_(extended_prompt, temperature) if isinstance(prompt, list): result = result[0] return result def forward_(self, extended_prompt, temperature): # print(len(extended_prompt)) if len(extended_prompt) > self.max_batch_size: response = [] for i in range(0, len(extended_prompt), self.max_batch_size): response += self.forward_(extended_prompt[i:i + self.max_batch_size], temperature) response = codex_helper(extended_prompt, temperature) try: response = codex_helper(extended_prompt, temperature) except openai.error.RateLimitError as e: print("Retrying Codex, splitting batch") if len(extended_prompt) == 1: warnings.warn("This is taking too long, maybe OpenAI is down? (status.openai.com/)") # Will only be here after the number of retries in the backoff decorator. # It probably means a single batch takes up the entire rate limit. sub_batch_1 = extended_prompt[:len(extended_prompt) // 2] sub_batch_2 = extended_prompt[len(extended_prompt) // 2:] if len(sub_batch_1) > 0: response_1 = self.forward_(sub_batch_1, temperature) else: response_1 = [] if len(sub_batch_2) > 0: response_2 = self.forward_(sub_batch_2, temperature) else: response_2 = [] response = response_1 + response_2 except Exception as e: # Some other error like an internal OpenAI error print("Retrying Codex") print(e) response = self.forward_(extended_prompt, temperature) return response class BLIPModel(BaseModel): name = 'blip' to_batch = True max_batch_size = 32 seconds_collect_data = 0.2 # The queue has additionally the time it is executing the previous forward pass def __init__(self, gpu_number=0, half_precision=config.blip_half_precision, blip_v2_model_type=config.blip_v2_model_type): super().__init__(gpu_number) # from lavis.models import load_model_and_preprocess from transformers import BlipProcessor, BlipForConditionalGeneration, Blip2Processor, \ Blip2ForConditionalGeneration # https://huggingface.co/models?sort=downloads&search=Salesforce%2Fblip2- assert blip_v2_model_type in ['blip2-flan-t5-xxl', 'blip2-flan-t5-xl', 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-flan-t5-xl-coco', 'blip2-opt-6.7b-coco'] with warnings.catch_warnings(), HiddenPrints("BLIP"), torch.cuda.device(self.dev): max_memory = {gpu_number: torch.cuda.mem_get_info(self.dev)[0]} self.processor = Blip2Processor.from_pretrained(f"Salesforce/{blip_v2_model_type}") # Device_map must be sequential for manual GPU selection try: self.model = Blip2ForConditionalGeneration.from_pretrained( f"Salesforce/{blip_v2_model_type}", load_in_8bit=half_precision, torch_dtype=torch.float16 if half_precision else "auto", # device_map="sequential", max_memory=max_memory device_map="auto" ) # print(self.model.device_map) except Exception as e: # Clarify error message. The problem is that it tries to load part of the model to disk. if "had weights offloaded to the disk" in e.args[0]: extra_text = ' You may want to consider setting half_precision to True.' if half_precision else '' raise MemoryError(f"Not enough GPU memory in GPU {self.dev} to load the model.{extra_text}") else: raise e self.qa_prompt = "Question: {} Short answer:" self.caption_prompt = "a photo of" self.half_precision = half_precision self.max_words = 50 @torch.no_grad() def caption(self, image, prompt=None): inputs = self.processor(images=image, text=prompt, return_tensors="pt").to(self.dev, torch.float16) generated_ids = self.model.generate(**inputs, length_penalty=1., num_beams=5, max_length=30, min_length=1, do_sample=False, top_p=0.9, repetition_penalty=1.0, num_return_sequences=1, temperature=1) generated_text = [cap.strip() for cap in self.processor.batch_decode(generated_ids, skip_special_tokens=True)] return generated_text def pre_question(self, question): # from LAVIS blip_processors question = re.sub( r"([.!\"()*#:;~])", "", question.lower(), ) question = question.rstrip(" ") # truncate question question_words = question.split(" ") if len(question_words) > self.max_words: question = " ".join(question_words[: self.max_words]) return question @torch.no_grad() def qa(self, image, question): inputs = self.processor(images=image, text=question, return_tensors="pt", padding="longest").to(self.dev) if self.half_precision: inputs['pixel_values'] = inputs['pixel_values'].half() generated_ids = self.model.generate(**inputs, length_penalty=-1, num_beams=5, max_length=10, min_length=1, do_sample=False, top_p=0.9, repetition_penalty=1.0, num_return_sequences=1, temperature=1) generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True) return generated_text def forward(self, image, question=None, task='caption'): if not self.to_batch: image, question, task = [image], [question], [task] # Separate into qa and caption batches. prompts_qa = [self.qa_prompt.format(self.pre_question(q)) for q, t in zip(question, task) if t == 'qa'] images_qa = [im for i, im in enumerate(image) if task[i] == 'qa'] images_caption = [im for i, im in enumerate(image) if task[i] == 'caption'] with torch.cuda.device(self.dev): response_qa = self.qa(images_qa, prompts_qa) if len(images_qa) > 0 else [] response_caption = self.caption(images_caption) if len(images_caption) > 0 else [] response = [] for t in task: if t == 'qa': response.append(response_qa.pop(0)) else: response.append(response_caption.pop(0)) if not self.to_batch: response = response[0] return response class SaliencyModel(BaseModel): name = 'saliency' def __init__(self, gpu_number=0, path_checkpoint=f'{config.path_pretrained_models}/saliency_inspyrenet_plus_ultra'): from base_models.inspyrenet.saliency_transforms import get_transform from base_models.inspyrenet.InSPyReNet import InSPyReNet from base_models.inspyrenet.backbones.SwinTransformer import SwinB # These parameters are for the Plus Ultra LR model super().__init__(gpu_number) depth = 64 pretrained = True base_size = [384, 384] kwargs = {'name': 'InSPyReNet_SwinB', 'threshold': 512} with HiddenPrints("Saliency"): model = InSPyReNet(SwinB(pretrained=pretrained, path_pretrained_models=config.path_pretrained_models), [128, 128, 256, 512, 1024], depth, base_size, **kwargs) model.load_state_dict(torch.load(os.path.join(path_checkpoint, 'latest.pth'), map_location=torch.device('cpu')), strict=True) model = model.to(self.dev) model.eval() self.model = model self.transform_pil = transforms.ToPILImage() self.transform = get_transform({ 'static_resize': {'size': [384, 384]}, 'dynamic_resize': {'L': 1280}, 'tonumpy': None, 'normalize': {'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225]}, 'totensor': None }) @torch.no_grad() def forward(self, image): image_t = self.transform({'image': self.transform_pil(image)}) image_t['image_resized'] = image_t['image_resized'].unsqueeze(0).to(self.dev) image_t['image'] = image_t['image'].unsqueeze(0).to(self.dev) pred = self.model(image_t)['pred'] pred_resized = F.interpolate(pred, image.shape[1:], mode='bilinear', align_corners=True)[0, 0] mask_foreground = pred_resized < 0.5 image_masked = image.clone() image_masked[:, mask_foreground] = 0 return image_masked class XVLMModel(BaseModel): name = 'xvlm' def __init__(self, gpu_number=0, path_checkpoint=f'{config.path_pretrained_models}/xvlm/retrieval_mscoco_checkpoint_9.pth'): from base_models.xvlm.xvlm import XVLMBase from transformers import BertTokenizer super().__init__(gpu_number) image_res = 384 self.max_words = 30 config_xvlm = { 'image_res': image_res, 'patch_size': 32, 'text_encoder': 'bert-base-uncased', 'block_num': 9, 'max_tokens': 40, 'embed_dim': 256, } vision_config = { 'vision_width': 1024, 'image_res': 384, 'window_size': 12, 'embed_dim': 128, 'depths': [2, 2, 18, 2], 'num_heads': [4, 8, 16, 32] } with warnings.catch_warnings(), HiddenPrints("XVLM"): model = XVLMBase(config_xvlm, use_contrastive_loss=True, vision_config=vision_config) checkpoint = torch.load(path_checkpoint, map_location='cpu') state_dict = checkpoint['model'] if 'model' in checkpoint.keys() else checkpoint msg = model.load_state_dict(state_dict, strict=False) if len(msg.missing_keys) > 0: print('XVLM Missing keys: ', msg.missing_keys) model = model.to(self.dev) model.eval() self.model = model self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) self.transform = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((image_res, image_res), interpolation=Image.BICUBIC), transforms.ToTensor(), normalize, ]) with open('useful_lists/random_negatives.txt') as f: self.negative_categories = [x.strip() for x in f.read().split()] @staticmethod def pre_caption(caption, max_words): caption = re.sub( r"([,.'!?\"()*#:;~])", '', caption.lower(), ).replace('-', ' ').replace('/', ' ').replace('<person>', 'person') caption = re.sub( r"\s{2,}", ' ', caption, ) caption = caption.rstrip('\n') caption = caption.strip(' ') # truncate caption caption_words = caption.split(' ') if len(caption_words) > max_words: caption = ' '.join(caption_words[:max_words]) if not len(caption): raise ValueError("pre_caption yields invalid text") return caption @torch.no_grad() def score(self, images, texts): if isinstance(texts, str): texts = [texts] if not isinstance(images, list): images = [images] images = [self.transform(image) for image in images] images = torch.stack(images, dim=0).to(self.dev) texts = [self.pre_caption(text, self.max_words) for text in texts] text_input = self.tokenizer(texts, padding='longest', return_tensors="pt").to(self.dev) image_embeds, image_atts = self.model.get_vision_embeds(images) text_ids, text_atts = text_input.input_ids, text_input.attention_mask text_embeds = self.model.get_text_embeds(text_ids, text_atts) image_feat, text_feat = self.model.get_features(image_embeds, text_embeds) logits = image_feat @ text_feat.t() return logits @torch.no_grad() def binary_score(self, image, text, negative_categories): # Compare with a pre-defined set of negatives texts = [text] + negative_categories sim = 100 * self.score(image, texts)[0] res = F.softmax(torch.cat((sim[0].broadcast_to(1, sim.shape[0] - 1), sim[1:].unsqueeze(0)), dim=0), dim=0)[0].mean() return res def forward(self, image, text, task='score', negative_categories=None): if task == 'score': score = self.score(image, text) else: # binary score = self.binary_score(image, text, negative_categories=negative_categories) return score.cpu() ############################################################################################ class BingModel(BaseModel): name = "bing" requires_gpu = False def __init__(self, gpu_number): self.subscription_key = open("bing.key").read() self.endpoint='https://api.bing.microsoft.com/v7.0/search' self.mkt = 'en-GB' def parse_bing_result(self, result): responses = [] try: value = result["webPages"]["value"] except: return responses for i in range(len(value)): snippet = value[i]['snippet'] if 'snippet' in value[i] else "" snippet = snippet.replace("<b>", "").replace("</b>", "").strip() if snippet != "": responses.append(snippet) return responses def forward(self, query): params = { 'q': query, 'mkt': self.mkt , "answerCount": 1} headers = { 'Ocp-Apim-Subscription-Key': self.subscription_key } try: response = requests.get(self.endpoint, headers=headers, params=params) response.raise_for_status() response_data = response.json() except Exception as ex: raise ex responses = self.parse_bing_result(response_data) search_result = '' if len(responses) > 0 and responses[0] != "": inserted_response = " ".join(responses[0].split(" ")[:100]) search_result += f"{inserted_response} ..." return search_result ############################################################################################
[ "INSERT_TYPE_HERE", "Only answer with a function starting def execute_command.", "PLACEHOLDER PLACEHOLDER", "PLACEHOLDERPLACEHOLDER", "INSERT_QUERY_HERE", "[]", "photo of ", "[{'role': 'user', 'content': 'PLACEHOLDER'}]" ]
2024-01-10
lifan-yuan/CRAFT
vqa~retrieve_tools.py
import pandas as pd import numpy as np import datasets import openai from utils import * def planning(query): messages = [ {"role": "user", "content": retrieval_template.format(query=query)}, ] response = gpt3_model.query_with_message(messages, max_tokens=200) plans = [query, response.split("The final answer is: ")[1].strip()] try: expected_tools = eval(response.split("\n\n")[-2].split("The useful functions are: ")[1].strip(".")) except: expected_tools = eval(response.split("\n\n")[-2].split("The useful function is: ")[1].strip(".")) return plans, expected_tools def match_plan_from_single_perspective(plan_embeddings, tool_embeddings, k=3): # k: number of tools to retrieve for each sub-task from each perspective tool_list = [] for plan_embedding in plan_embeddings: # compute cos sim between plan and query plan_embedding = plan_embedding.unsqueeze(0) sim = torch.nn.functional.cosine_similarity(plan_embedding.unsqueeze(1), tool_embeddings.unsqueeze(0), dim=2) topk = torch.topk(sim, k=k, dim=1).indices.squeeze(0).tolist() tool_list.append(topk) return tool_list def retrieve_tool(example, vector_library, model, tokenizer, k=3): # k: number of tools to retrieve for each sub-task ##### Retrieval Stage of CRAFT ##### # decompose the query into sub-tasks plans, expected_tools = planning(example['query']) plan_embeddings = compute_simcse(model, tokenizer, plans) expected_tool_embeddings = compute_simcse(model, tokenizer, expected_tools) # match plan with tools from different perspectives tool_by_explanation = match_plan_from_single_perspective(plan_embeddings[1:], vector_library["explanation_embedding"], k=10) tool_by_name = match_plan_from_single_perspective(expected_tool_embeddings, vector_library["name_embedding"], k=5) tool_by_query = match_plan_from_single_perspective(plan_embeddings[0].unsqueeze(0), vector_library["query_embedding"], k=10) counter = Counter([ *[item for sublist in tool_by_explanation for item in sublist], # k_1*len(plans) *[item for sublist in tool_by_name for item in sublist], # k_1*len(plans) *[item for sublist in tool_by_query for item in sublist], # k_1*1 ]) top_k = counter.most_common(k) tool_list.extend([tool for (tool, count) in top_k if count >= 2]) # must at least have 2 votes tool_list = list(set(tool_list)) return {"expected_tools": expected_tools, "retrieved_tools": tool_list}
[]
2024-01-10
lifan-yuan/CRAFT
vqa~run_exp.py
from utils import * import datasets import random import numpy as np import openai import os import openai from metric_utils import * from utils import process_code def generate_code(example): code = forward('codex', prompt=example["question"], input_type="image") code = process_code(code) return { "code": code } from retrieve_tools import retrieve_tool PROMPT = open(config.codex.prompt).read() inserted_tools_prompt = """**Note: If necessary, you may also leverage the following tools to directly perform complex operations. However, please carefully review the implementation code of the tool functions to determine whether to utilize any of them. Additionally, consider the appropriate method of passing parameters based on your comprehension of the internal implementation of the tool functions, rather than solely relying on the docstring.**\n""" def wrap_into_function(func_head, docstring): name = func_head.split("(")[0].strip() args = ", ".join([arg.split(":")[0].strip() for arg in func_head.split("(")[1].split(")")[0].split(",")]) return f"def {func_head}:" + "\n" + f"\t'''{docstring}\n\t'''" + "\n" + f"\treturn {name}({args})\n" def wrap_into_incontext_sample(query, call): code = f"Query: {query}" + "\n" + "def execute_command(image):" + "\n" + "\timage_patch = ImagePatch(image)" + "\n" + f"\treturn {call}\n" return code def count_args_from_call(call): record = [] # record all (), [], {} tuples = re.findall(r"\((.*?)\)", call) if len(tuples) > 1: # first one is the total args for i in range(1, len(tuples)): record.append(tuples[i]) lists = re.findall(r"\[(.*?)\]", call) for i in range(0, len(lists)): record.append(lists[i]) dicts = re.findall(r"\{(.*?)\}", call) for i in range(0, len(dicts)): record.append(dicts[i]) # now replace all comma in record with ";" for protection for i, sub_string in enumerate(record): call = call.replace(sub_string, sub_string.replace(",", ";")) # now count the number of args by splitting with "," try: args = re.findall(r"\((.*?)\)", call)[0].split(", ") except: print(call, re.findall(r"\((.*?)\)", call)) exit() return len(args) def remove_extra_functions(code, all_tools, retrieved_tools): # extract function name and args from retrieved tools try: function_names = [extract_function_name(item) for item in [all_tools[i] for i in retrieved_tools]] except IndexError: print(len(all_tools), retrieved_tools) exit() num_args = [count_args(item) for item in [all_tools[i] for i in retrieved_tools]] # extract function name and args from code tool_call = set() # may use multiple tools or each using multiple times for line in code.split("\n"): for func_name in function_names: if func_name in line: tool_call.add((func_name, line.strip())) tool_call = list(tool_call) num_args_in_code = [] for func_name, call in tool_call: arg_list = [] if "(" in call and ")" in call: # make sure there are args num_args_in_code.append((func_name, count_args_from_call(call))) filtered_tools = [] for i, (func_name, num_arg) in enumerate(zip(function_names, num_args)): if (func_name, num_arg) in num_args_in_code: filtered_tools.append(retrieved_tools[i]) # list[int] return filtered_tools def generate_code_with_retrieval(example, vector_library, model, tokenizer): print() print(example["question"]) retrieval_results = retrieve_tool(example, vector_library, model, tokenizer, 3) retrieved_tools = retrieval_results["retrieved_tools"] top_k = 3 while True: try: tools = retrieved_tools[:top_k] if len(tools) > 0: inserted_tools = inserted_tools_prompt + "\n" + "\n\n".join([toolbase["tool"][tool] for tool in tools]) base_prompt = PROMPT.replace("INSERT_TOOL_HERE", inserted_tools) else: base_prompt = PROMPT.replace("INSERT_TOOL_HERE", "") inserted_tools = "" code = forward('codex', prompt=example["question"], input_type="image", base_prompt=base_prompt) code = process_code(code) except openai.error.InvalidRequestError as e: # exceed max token length print(e) top_k -= 1 continue else: print() print("\n\n".join([toolbase["tool"][tool] for tool in tools])) break # # write base_prompt to temp.txt # with open("temp.txt", "w") as f: # f.write(base_prompt) print() print(example["question"]) print(code) print("\n"*3) return { "code": code, "inserted_tool_prompts": inserted_tools, "retrieved_tools": tools } def validate_results(dataset): code_results_path = f"./results/eval/{args.eval_dataset}/{args.model}.json" if not args.retrieval else \ f"./results/eval/{args.eval_dataset}/{args.model}_retrieval.json" if os.path.exists(code_results_path): import json with open(code_results_path, "r") as f: results = json.load(f) keys = list(range(len(results["prediction"].keys()))) predictions = [results["prediction"][str(i)] for i in keys] groundtruths = [results["groundtruth"][str(i)] for i in keys] else: global flag if not flag: init_vision_models() flag = True predictions = [] groundtruths = [] for data in tqdm(dataset): image = load_image(data["image_path"]) # wrap tools into code if args.retrieval: # should deduplicate the retrieved tools retrieved_tools = remove_extra_functions(code, toolbase["tool"], data["retrieved_tools"]) retrieved_tools = [toolbase["tool"][i] for i in retrieved_tools] explanations = [extract_function_docstring(item)[0] for item in retrieved_tools] retrieved_tools = [tool.replace(explanation, "") for tool, explanation in zip(retrieved_tools, explanations)] # print(retrieved_tools) code = "\n\n".join([ *retrieved_tools, code ]) # execute code if code is None: prediction = "" elif ("pixel" in code) or ("input(" in code) or ("return" not in code): # infinite loop or no return print("Error in turbo-generated code.") prediction = "" else: try: # normal cases print(code) prediction = execute_code(code, image) print() print(data["question"]) print(prediction, data["answers"]) except: print("Error in turbo-generated code. ") prediction = "" # process bool to yes/no if str(prediction) == "True": prediction = "yes" elif str(prediction) == "False": prediction = "no" predictions.append(prediction) groundtruths.append(data["answers"]) # save to csv, using pandas print("save") import pandas as pd df = pd.DataFrame({"prediction": predictions, "groundtruth": groundtruths}) df.to_json(code_results_path, indent=4) print("saved") return predictions, groundtruths if __name__ == "__main__": # add args import argparse parser = argparse.ArgumentParser() parser.add_argument("--eval_dataset", type=str) parser.add_argument("--model", type=str) parser.add_argument("--retrieval", action="store_true") parser.add_argument("--tool_epoch", type=int, default=-1) parser.add_argument("--ablation", type=str, default="none") args = parser.parse_args() print(os.getenv('CONFIG_NAMES', None)) dataset = datasets.load_from_disk(f"./datasets/eval/{args.eval_dataset}")#.select(range(1)) assert len(dataset) == 1000 flag = False ####################################### Code Gen ####################################### reserved_columns = ["image_id", "image_path", "question", "answers", "code"] if args.retrieval: reserved_columns = reserved_columns + ["retrieved_tools"] all_columns = list(dataset.features.keys()) ##### Tool Scaling ##### if args.retrieval: code_results_path = f"./results/eval/{args.eval_dataset}_{args.model}_retrieval.json" else: code_results_path = f"./results/eval/{args.eval_dataset}_{args.model}.json" ##### Tool-Augmented Code Generation ##### if args.retrieval: ### Prepare model and toolbase for tool retrieval ### from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("princeton-nlp/sup-simcse-roberta-large") model = AutoModel.from_pretrained("princeton-nlp/sup-simcse-roberta-large").cuda() ##### initialize toolbase and vector library ##### toolbase = datasets.Dataset.from_csv('./results/viper/5_deduplicated_tool.csv') vector_library = torch.load("./results/viper/vector_library.pt") print("toolbase length:", len(toolbase)) ### Code Generation with Tool Retrieval ### if os.path.exists(code_results_path): dataset = datasets.Dataset.from_json(code_results_path) else: flag = True init_vision_models() dataset = dataset.map(lambda x: generate_code_with_retrieval(x, vector_library, model, tokenizer), load_from_cache_file=False).remove_columns(set(all_columns)-set(reserved_columns)) dataset.to_json(code_results_path) else: ##### Vinalla Code Generation ##### if os.path.exists(code_results_path): dataset = datasets.Dataset.from_json(code_results_path) else: flag = True init_vision_models() dataset = dataset.map(generate_code, load_from_cache_file=False).remove_columns(set(all_columns)-set(reserved_columns)) dataset.to_json(code_results_path) ####################################### Validate ####################################### dataset = dataset.map(lambda x: {"image_path": os.path.join(f"./datasets/eval/{args.eval_dataset}/images", x['image_path'])}) ##### Tool Scaling ##### if args.retrieval: exec_results_path = f"./results/eval/{args.eval_dataset}_{args.model}_retrieval.json" else: exec_results_path = f"./results/eval/{args.eval_dataset}_{args.model}.json" ##### Call Vision Models ##### predictions, groundtruths = validate_results(dataset) ##### Compute Metrics ##### import pandas as pd vqa_acc = 100.00 * compute_vqa_acc(predictions, groundtruths) f1 = 100.00 * compute_f1(predictions, groundtruths) print(f"Soft accuracy: {vqa_acc}") print(f"F1 score: {f1}") ##### Write Metrics ##### os.makedirs(f"./results/metrics/{args.eval_dataset}", exist_ok=True) df = pd.DataFrame({"soft_acc": [vqa_acc], "f1": [f1]}) metric_results_path = f"./results/metrics/{args.eval_dataset}/{args.model}.csv" df.to_csv(metric_results_path)
[ "**Note: If necessary, you may also leverage the following tools to directly perform complex operations. \nHowever, please carefully review the implementation code of the tool functions to determine whether to utilize any of them.\nAdditionally, consider the appropriate method of passing parameters based on your comprehension of the internal implementation of the tool functions, rather than solely relying on the docstring.**\n", "INSERT_TOOL_HERE" ]
2024-01-10
Eloise1988/OPENAI
asyncV2~robotV2.py
import requests import json import os import re import random import memory import asyncio # OpenAI secret Key API_KEY = 'xxxxxxxxxxxsecretAPIxxxxxxxxxx' # Models: text-davinci-003,text-curie-001,text-babbage-001,text-ada-001 MODEL = 'gpt-3.5-turbo' # Telegram secret access bot token BOT_TOKEN = 'xxxxxxbotapikeyxxxxx' # Specify all group ID the bot can respond too ALLOWED_GROUP_ID = ['-100xxxxxxxx', '-1001xxxxxxxx1'] # Specify your Chat Bot handle CHATBOT_HANDLE = '@ask_chatgptbot' # Retrieve last ID message : Create an empty text file named chatgpt.txt, write 1 on the first line of the text file and save it, write the full path of your file below FILENAME = '/xxxxxx/xxxxxxx/xxxxx/chatgpt.txt' # 2a. Function that gets the response from OpenAI's chatbot async def openAI(prompt, max_tokens): # Make the request to the OpenAI API response = requests.post( 'https://api.openai.com/v1/chat/completions', headers={'Authorization': f'Bearer {API_KEY}'}, json={'model': MODEL, 'messages': [{"role": "user", "content": prompt}], 'temperature': 0.5, 'max_tokens': max_tokens}, timeout=10 ) result=response.json() final_result='' for i in range(0,len(result['choices'])): final_result+=result['choices'][i]['message']['content'] return final_result # 2b. Function that gets an Image from OpenAI async def openAImage(prompt): # Make the request to the OpenAI API resp = requests.post( 'https://api.openai.com/v1/images/generations', headers={'Authorization': f'Bearer {API_KEY}'}, json={'prompt': prompt,'n' : 1, 'size': '256x256'}, timeout=10 ) response_text = json.loads(resp.text) #print(response_text['data'][0]['url']) return response_text['data'][0]['url'] # Sending a message to a specific telegram group async def telegram_bot_sendtext(bot_message,chat_id,msg_id): data = { 'chat_id': chat_id, 'text': bot_message, 'reply_to_message_id': msg_id } response = requests.post( 'https://api.telegram.org/bot' + BOT_TOKEN + '/sendMessage', json=data, timeout=5 ) return response.json() # Sending a image to a specific telegram group async def telegram_bot_sendimage(image_url,group_id, msg_id): data = {'chat_id': group_id, 'photo': image_url,'reply_to_message_id': msg_id} url = 'https://api.telegram.org/bot' + BOT_TOKEN + '/sendPhoto' response = requests.post(url, data=data, timeout=5) return response.json() # Checking for specific tone for message async def checkTone(user_message): bot_personality='' match = re.search(r"/setTone\((.*?)\)", user_message, flags=re.IGNORECASE) if match: substring = match.group(1) bot_personality = 'Answer in a '+ substring +' tone, ' user_message=user_message.replace('/setTone('+substring+')','') return [user_message,bot_personality] async def ChatGPTbot(): # Give your bot a personality using adjectives from the tone list bot_personality = '' # Leave write_history BLANK write_history= '' tone_list=['Friendly','Professional','Humorous','Sarcastic','Witty','Sassy','Charming','Cheeky','Quirky','Laid-back','Elegant','Playful','Soothing','Intense','Passionate'] with open(FILENAME) as f: last_update = f.read() f.close() # Check for new messages in Telegram group url = f'https://api.telegram.org/bot{BOT_TOKEN}/getUpdates?offset={last_update}' response = requests.get(url, timeout=5) data = json.loads(response.content) print(data) result=data['result'][len(data['result'])-1] try: # Checking for new message if float(result['update_id']) > float(last_update): # Checking for new messages that did not come from chatGPT if not result['message']['from']['is_bot']: last_update = str(int(result['update_id'])) # Retrieving the chat ID of the sender of the request chat_id = str(result['message']['chat']['id']) if chat_id in ALLOWED_GROUP_ID: msg_id = str(int(result['message']['message_id'])) try: # Greeting message for new participants if 'new_chat_participant' in result['message']: prompt = 'Write in a '+random.choice(tone_list)+' tone: ' + "I am here to assist you. Nice to meet you, "+result['message']['new_chat_participant']['first_name'] bot_response = await openAI(prompt, 200) # Sending back response to telegram group x = await telegram_bot_sendtext(bot_response, chat_id, msg_id) except Exception as e: print(e) try: if '/img' in result['message']['text']: prompt = result['message']['text'].replace("/img", "") bot_response = await openAImage(prompt) x = await telegram_bot_sendimage(bot_response, chat_id, msg_id) except Exception as e: print(e) boolean_active=False # Checking that user mentionned chatbot's username in message if CHATBOT_HANDLE in result['message']['text']: prompt = result['message']['text'].replace(CHATBOT_HANDLE, "") boolean_active=True # Verifying that the user is responding to the ChatGPT bot if 'reply_to_message' in result['message']: if result['message']['reply_to_message']['from']['username'] == CHATBOT_HANDLE[1:]: prompt = result['message']['text'] #Getting historical messages from user write_history = await memory.get_channel_messages(chat_id,msg_id) boolean_active=True if boolean_active: try: prompt1=await checkTone(prompt) prompt=prompt1[0] bot_personality=prompt1[1] boolean_active=True except Exception as e: print(e) try: if write_history!='': prompt=write_history+"\n\nQ : "+prompt+"\n\n###\n\n" bot_response = await openAI(f"{bot_personality}{prompt}",300) if bot_response =='' : bot_response = await openAI(f"{bot_personality}{vague_prompt}",300) x = await telegram_bot_sendtext(bot_response, chat_id, msg_id) except Exception as e: print(e) except Exception as e: print(e) # Updating file with last update ID with open(FILENAME, 'w') as f: f.write(last_update) return "done" async def main(): while True: await ChatGPTbot() await asyncio.sleep(5) loop = asyncio.get_event_loop() loop.run_until_complete(main())
[ "I am here to assist you. Nice to meet you, ", "new_chat_participant", "PLACEHOLDER\n\nQ : PLACEHOLDER\n\n###\n\n", "first_name", " tone: ", "Write in a " ]
2024-01-10
Eloise1988/OPENAI
robot.py
# 1. Start by importing the necessary libraries and setting up the API clients import requests import json import os import threading # OpenAI secret Key API_KEY = 'xxxxxxxxxxxsecretAPIxxxxxxxxxx' # Models: text-davinci-003,text-curie-001,text-babbage-001,text-ada-001 MODEL = 'gpt-3.5-turbo' # Telegram secret access bot token BOT_TOKEN = 'xxxxxxbotapikeyxxxxx' # Defining the bot's personality using adjectives BOT_PERSONALITY = 'Answer in a funny tone, ' # Specify your Chat Bot handle CHATBOT_HANDLE = '@ask_chatgptbot' # 2a. Function that gets the response from OpenAI's chatbot def openAI(prompt): # Make the request to the OpenAI API response = requests.post( 'https://api.openai.com/v1/chat/completions', headers={'Authorization': f'Bearer {API_KEY}'}, json={'model': MODEL, 'messages': [{"role": "user", "content": prompt}], 'temperature': 0.5, 'max_tokens': 300}, timeout=10 ) result=response.json() final_result='' for i in range(0,len(result['choices'])): final_result+=result['choices'][i]['message']['content'] return final_result # 2b. Function that gets an Image from OpenAI def openAImage(prompt): # Make the request to the OpenAI API resp = requests.post( 'https://api.openai.com/v1/images/generations', headers={'Authorization': f'Bearer {API_KEY}'}, json={'prompt': prompt,'n' : 1, 'size': '1024x1024'}, timeout=10 ) response_text = json.loads(resp.text) return response_text['data'][0]['url'] # 3a. Function that sends a message to a specific telegram group def telegram_bot_sendtext(bot_message,chat_id,msg_id): data = { 'chat_id': chat_id, 'text': bot_message, 'reply_to_message_id': msg_id } response = requests.post( 'https://api.telegram.org/bot' + BOT_TOKEN + '/sendMessage', json=data, timeout=5 ) return response.json() # 3b. Function that sends an image to a specific telegram group def telegram_bot_sendimage(image_url, group_id, msg_id): data = { 'chat_id': group_id, 'photo': image_url, 'reply_to_message_id': msg_id } url = 'https://api.telegram.org/bot' + BOT_TOKEN + '/sendPhoto' response = requests.post(url, data=data, timeout=5) return response.json() # 4. Function that retrieves the latest requests from users in a Telegram group, # generates a response using OpenAI, and sends the response back to the group. def Chatbot(): # Retrieve last ID message from text file for ChatGPT update cwd = os.getcwd() filename = cwd + '/chatgpt.txt' if not os.path.exists(filename): with open(filename, "w") as f: f.write("1") else: does_file_exist="File Exists" with open(filename) as f: last_update = f.read() f.close() # Check for new messages in Telegram group url = f'https://api.telegram.org/bot{BOT_TOKEN}/getUpdates?offset={last_update}' response = requests.get(url, timeout=5) data = json.loads(response.content) print(data) for result in data['result']: try: # Checking for new message if float(result['update_id']) > float(last_update): # Checking for new messages that did not come from chatGPT if not result['message']['from']['is_bot']: last_update = str(int(result['update_id'])) # Retrieving message ID of the sender of the request msg_id = str(int(result['message']['message_id'])) # Retrieving the chat ID chat_id = str(result['message']['chat']['id']) # Checking if user wants an image if '/img' in result['message']['text']: prompt = result['message']['text'].replace("/img", "") bot_response = openAImage(prompt) print(telegram_bot_sendimage(bot_response, chat_id, msg_id)) # Checking that user mentionned chatbot's username in message if CHATBOT_HANDLE in result['message']['text'] or "/ask" in result['message']['text']: prompt = result['message']['text'].replace(CHATBOT_HANDLE, "") # Calling OpenAI API using the bot's personality bot_response = openAI(f"{BOT_PERSONALITY}{prompt}") # Sending back response to telegram group print(telegram_bot_sendtext(bot_response, chat_id, msg_id)) # Verifying that the user is responding to the ChatGPT bot if 'reply_to_message' in result['message']: if result['message']['reply_to_message']['from']['username'] == CHATBOT_HANDLE[1:]: prompt = result['message']['text'] bot_response = openAI(f"{BOT_PERSONALITY}{prompt}") print(telegram_bot_sendtext(bot_response, chat_id, msg_id)) except Exception as e: print(e) # Updating file with last update ID with open(filename, 'w') as f: f.write(last_update) f.close() return "done" # 5 Running a check every 5 seconds to check for new messages def main(): timertime=5 Chatbot() # 5 sec timer threading.Timer(timertime, main).start() # Run the main function if __name__ == "__main__": main()
[]
2024-01-10
daveshap/ChatGPT_QA_Regenerative_Medicine
step02_embed_papers.py
import os import openai import json from time import time,sleep def open_file(filepath): with open(filepath, 'r', encoding='utf-8') as infile: return infile.read() def save_file(filepath, content): with open(filepath, 'w', encoding='utf-8') as outfile: outfile.write(content) def load_json(filepath): with open(filepath, 'r', encoding='utf-8') as infile: return json.load(infile) def save_json(filepath, payload): with open(filepath, 'w', encoding='utf-8') as outfile: json.dump(payload, outfile, ensure_ascii=False, sort_keys=True, indent=2) def gpt3_embedding(content, engine='text-embedding-ada-002'): #try: print('CONTENT TO EMBED:', content) content = content.encode(encoding='ASCII',errors='ignore').decode() # fix any UNICODE errors response = openai.Embedding.create(input=content,engine=engine) vector = response['data'][0]['embedding'] # this is a normal list print('VECTOR:', vector) return vector #except: # return None def process_text_files(dir_path, out_path): # Create the output directory if it doesn't exist if not os.path.exists(out_path): os.mkdir(out_path) # Loop through all files in the directory for filename in os.listdir(dir_path): if filename.endswith(".txt"): # Read in the text file with open(dir_path + filename, "r", encoding="utf-8") as f: text = f.read() # Split the text into pages pages = text.split("NEW PAGE") # Generate embeddings for each page embeddings = [gpt3_embedding(page) for page in pages] # Create a dictionary with the filename and the pages and embeddings output_dict = {"original_filename": filename, "pages": [{"page_number": i+1, "text": page, "embedding": embedding} for i, (page, embedding) in enumerate(zip(pages, embeddings))]} # Save the dictionary to a JSON file #with open(os.path.join(out_path, filename.replace(".txt", ".json")), "w") as f: # json.dump(output_dict, f) save_json(os.path.join(out_path, filename.replace(".txt", ".json")), output_dict) if __name__ == "__main__": openai.api_key = open_file('key_openai.txt') # Define the directories where the text files and output JSON files are located dir_path = "papers_txt/" out_path = "papers_json/" # Process the text files process_text_files(dir_path, out_path)
[]
2024-01-10
daveshap/ChatGPT_QA_Regenerative_Medicine
step03_read_papers.py
import re import os import json import openai from time import time, sleep def open_file(filepath): with open(filepath, 'r', encoding='utf-8', errors='ignore') as infile: return infile.read() def save_file(filepath, content): with open(filepath, 'w', encoding='utf-8') as outfile: outfile.write(content) def load_json(filepath): with open(filepath, 'r', encoding='utf-8', errors='ignore') as infile: return json.load(infile) def save_json(filepath, payload): with open(filepath, 'w', encoding='utf-8') as outfile: json.dump(payload, outfile, ensure_ascii=False, sort_keys=True, indent=2) def chatgpt_completion(messages, temp=0, model="gpt-4"): max_retry = 7 retry = 0 while True: try: response = openai.ChatCompletion.create(model=model, messages=messages, temperature=temp) text = response['choices'][0]['message']['content'] filename = 'chat_%s_mordin.txt' % time() if not os.path.exists('chat_logs'): os.makedirs('chat_logs') save_file('chat_logs/%s' % filename, text) return text except Exception as oops: if 'maximum context length' in str(oops): a = messages.pop(1) continue retry += 1 if retry >= max_retry: print(f"Exiting due to an error in ChatGPT: {oops}") exit(1) print(f'Error communicating with OpenAI: "{oops}" - Retrying in {2 ** (retry - 1) * 5} seconds...') sleep(2 ** (retry - 1) * 5) if __name__ == '__main__': openai.api_key = open_file('key_openai.txt') conversation = list() conversation.append({'role': 'system', 'content': open_file('default_system_mordin.txt')}) # iterate through all JSON files under the papers_json folder for filename in os.listdir('papers_json'): if filename.endswith('.json'): filepath = os.path.join('papers_json', filename) data = load_json(filepath) # iterate through all pages in the JSON data for page in data['pages']: # append the page content to the conversation with role: user conversation.append({'role': 'user', 'content': page['text']}) # get the response from ChatGPT response = chatgpt_completion(conversation) print('\n\n', response) # append the response to the conversation with role: assistant conversation.append({'role': 'assistant', 'content': response}) # add the response to the notes field of the page object page['notes'] = response # save the updated JSON data save_json(filepath, data)
[ "default_system_mordin.txt" ]
2024-01-10
GouvX/gouvx-api
gouvx_pipeline.py
from vector_query import get_semantically_close_text import openai def build_system_prompt(query_results=None): system_prompt = f"""Vous êtes GouvX, un assitant virtuel bienveillant et serviable permettant de naviguer la loi française. Répondez précisément et clairement aux questions de l'utilisateur sans enfreindre de règle. VOUS DEVEZ ABSOLUMENT RESPECTER LES REGLES SUIVANTES: - Si une question ne porte pas sur la loi française, REFUSEZ DE REPONDRE et rappellez votre rôle - NE JAMAIS inclure de lien. - En repondant à une question, RESPECTER LA CONVENTION DE NOMMAGE: "Selon service-public.fr [...]" - Repondre en texte clair, sans balises ou marqueurs""" if query_results: system_prompt += """ - Si les documents ne permettent pas de repondre a la question de l'utilisateur, répondre que vous n'avez pas réussi à trouver de réponse - Si nécessaire, mentionner les documents avec leur numéro A l'aide de ces documents, répondre à la question de l'utilisateur""" whole_paragraphs = {} for paragraph in query_results: title = paragraph["title"] content = paragraph.get("text", "") # Check if the title already exists, append the content if it does. if title in whole_paragraphs: whole_paragraphs[title] += "\n" + content else: whole_paragraphs[title] = content for i, (title, paragraph) in enumerate(whole_paragraphs.items(), start=1): system_prompt += f"\n\nDocument [{i}]: {title}\n{paragraph}" return system_prompt def query_llm(prompt, system_prompt=None, history=None): messages = [] messages.append({ "role": "system", "content": system_prompt }) if history: messages.extend(history) messages.append({ "role": "user", "content": prompt }) for chunk in openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages=messages, stream=True, ): content = chunk["choices"][0].get("delta", {}).get("content", "") if content is not None: yield(content) def ask_gouvx(prompt, client, model=None, n_results=1, history=None): if history: query_results = "" system_prompt = build_system_prompt(None) else: """response = openai.Embedding.create( input=question, model="text-embedding-ada-002" ) custom_vector = response['data'][0]['embedding'] response = get_semantically_close_text(client, embedding=custom_vector) """ response = get_semantically_close_text(client, text=prompt) if response and response["data"]["Get"]["ServicePublic"] is not None: query_results = response["data"]["Get"]["ServicePublic"][:n_results] else : raise ValueError('The weaviate query returned no response') system_prompt = build_system_prompt(query_results) chatgpt_generator = query_llm(prompt, system_prompt=system_prompt, history=history) return query_results, chatgpt_generator
[ "\n- Si les documents ne permettent pas de repondre a la question de l'utilisateur, répondre que vous n'avez pas réussi à trouver de réponse\n- Si nécessaire, mentionner les documents avec leur numéro\n\nA l'aide de ces documents, répondre à la question de l'utilisateur", "Vous êtes GouvX, un assitant virtuel bienveillant et serviable permettant de naviguer la loi française. Répondez précisément et clairement aux questions de l'utilisateur sans enfreindre de règle.\n \nVOUS DEVEZ ABSOLUMENT RESPECTER LES REGLES SUIVANTES:\n- Si une question ne porte pas sur la loi française, REFUSEZ DE REPONDRE et rappellez votre rôle\n- NE JAMAIS inclure de lien.\n- En repondant à une question, RESPECTER LA CONVENTION DE NOMMAGE: \"Selon service-public.fr [...]\"\n- Repondre en texte clair, sans balises ou marqueurs", "\n\nDocument [PLACEHOLDER]: PLACEHOLDER\nPLACEHOLDER" ]
2024-01-10
4GeeksAcademy/JSON-Bourne-Capstone
src~api~routes.py
""" This module takes care of starting the API Server, Loading the DB and Adding the endpoints """ from flask import Flask, request, jsonify, url_for, Blueprint, session from api.models import db, User, Post, Favorites, Comment from flask_jwt_extended import jwt_required, get_jwt_identity, create_access_token import sys import openai import os api = Blueprint('api', __name__) app = Flask(__name__) openai.api_key = ("APIKEYHERE") #stored securely in config.py which is in the gitignore list openai.Model.list() @api.route('/signup', methods=['POST']) def signup(): # Retrieve request data username = request.json.get('username') password = request.json.get('password') # confirm_password = request.json.get('confirm_password') # Check if the email is already registered if User.query.filter_by(username=username).first(): return jsonify(message='Username already registered'), 409 # if password != confirm_password: # return jsonify(message='Passwords do not match'), 200 # Create a new user object new_user = User(username=username, password=password) try: db.session.add(new_user) db.session.commit() except Exception as e: db.session.rollback() print(sys.exc_info()) return jsonify(message='Failed to register user'), 500 user_id = new_user.id return jsonify(message='User registered successfully', user_id=user_id), 201 @api.route('/login', methods=['POST']) def login(): username = request.json.get("username", None) password = request.json.get("password", None) # Perform authentication user = User.query.filter_by(username=username).first() if user is None or not password == user.password: if user is None or not user.check_password(password): return jsonify({"msg": "Incorrect email or password"}), 401 # Generate access token access_token = create_access_token(identity=username) print (access_token) return jsonify(access_token=access_token, user_id=user.id) @api.route('/generate_image', methods=['POST']) def generate_image(): data = request.get_json() prompt = data.get('prompt') number = data.get('number', 1) size = data.get('size', '1024x1024') response_format = data.get('response_format', 'url') # Change response_format to 'url' try: response = openai.Image.create( prompt=prompt, n=number, size=size, response_format=response_format ) urls = [] if response_format == "url": urls = [data['url'] for data in response.data] response_headers = { 'Access-Control-Allow-Methods': 'POST' } return jsonify(urls), 200, response_headers except Exception as e: return jsonify(error=str(e)), 500 @api.route('/comments', methods=['POST']) def comments(): data = request.get_json() print("I AM DATA COMMENTS",data) text = data.get('text') user_id = data.get('user_id') post_id = data.get('post_id') new_comment = Comment( text=text, user_id=user_id, post_id=post_id, ) db.session.add(new_comment) db.session.commit() return jsonify(new_comment.serialize()), 200 @api.route('/comments', methods=['GET']) def get_comments(): comment_list= Comment.query.all() all_comments= list(map(lambda comment:comment.serialize(),comment_list)) return jsonify(all_comments), 200 # @api.route('/users/<int:id>', methods=['GET']) # @jwt_required() # def get_user_(id): # user = User.query.filter_by(id=id).first() # if not user: # return jsonify({'message': 'User not found'}), 404 # request_token = request.headers.get('Authorization', '').split('Bearer ')[1] if 'Authorization' in request.headers else None # if 'access_token' not in session or session['access_token'] != request_token: # if request_token: # session['access_token'] = request_token # return jsonify({'message': 'Invalid access token'}), 401 # return jsonify(user.serialize()), 200 @api.route('/posts', methods=['GET']) def get_posts(): posts = Post.query.all() serialized_posts=[] for post in posts: serialized_posts.append(posts.serialize()) return jsonify(serialized_posts), 200 @api.route('/posts', methods=['POST']) @jwt_required() def create_post(): data = request.get_json() user_id = data.get('user_id') post_id = data.get('post_id') user = User.query.filter_by(id=user_id).first() if not user: return jsonify({'message': 'User not found'}), 404 post = Post( title=data['title'], content=data['content'], author=user, post_id=post_id ) db.session.add(post) db.session.commit() return jsonify({'message': 'Post created successfully', 'post_id': post.id}), 200 # @api.route("/post_images", methods=["POST"]) # def create_post_image(): # image = request.files['file'] # post_id = request.form.get("post_id") # response = uploader.upload( # image, # resource_type="image", # folder="posts" # ) # new_post_image = Image( # post_id=post_id, # url=response["secure_url"], # ) # db.session.add(new_post_image) # db.session.commit() # return jsonify(new_post_image.serialize()), 201 @api.route('/single/<int:theid>', methods=['GET']) def get_single(theid): item = User.query.get(theid) if not item: return jsonify({'message': 'Item not found'}), 404 return jsonify({'item': item.serialize()}), 200 @api.route('/users/favorites', methods=['POST']) def add_favorite(): data = request.get_json() print(data) user_id = data.get('user_id') print (user_id) # Check if user_id is provided and is an integer if not user_id or not isinstance(user_id, int): return jsonify({'message': 'Invalid user ID'}), 400 user = User.query.filter_by(id=user_id).first() if not user: return jsonify({'message': 'User not found'}), 404 post_id = data.get('post_id') if not post_id or not isinstance(post_id, int): return jsonify({'message': 'Invalid post ID'}), 400 favorite = Favorites( user_id=user_id, post_id=post_id, ) db.session.add(favorite) db.session.commit() favorites = Favorites.query.filter_by(user_id=user_id).all() # Use .all() to get all favorites # Serialize the list of favorites favorites_data = [favorite.serialize() for favorite in favorites] return jsonify({'message': 'Favorite added successfully', 'favorites': favorites_data}), 200 @api.route('/users/favorites/<int:id>', methods=['DELETE']) def delete_favorite(id): current_user_id = get_jwt_identity() favorite = Favorites.query.get(id) if not favorite: return jsonify({'message': 'Favorite not found'}), 404 db.session.delete(favorite) db.session.commit() return jsonify({'message': 'Favorite deleted successfully'}), 200 @api.route('/logout', methods=['POST']) @jwt_required() def logout(): # Remove the stored access token from the session session.pop('access_token', None) return jsonify({'message': 'Logged out successfully'}), 200 @api.route('/hello', methods=['GET']) @jwt_required() def hello(): # Retrieve the username from the token username = get_jwt_identity() # Create the message with the username message = f"Hello, {username}" # Return the message as JSON response return jsonify({'message': message}), 200 if __name__ == "__main__": api.run()
[]
2024-01-10
burpheart/Gepetto-ChatGPT
Gepetto-ChatGPT.py
import functools import json import idaapi import ida_hexrays import ida_kernwin import idc # import openai import os import re import textwrap import threading from revChatGPT.revChatGPT import Chatbot config = { "email": "<YOUR_EMAIL>", "password": "<YOUR_PASSWORD>"#, #"session_token": "", #Use session_token or email/password. But the session_token has a very short validity #"proxy": "127.0.0.1:7890" } ZH_CN = True # 是否使用中文代码解释 # Use Chinese explain # ============================================================================= # Setup the context menu and hotkey in IDA # ============================================================================= class Gepetto_CHATPlugin(idaapi.plugin_t): flags = 0 explain_action_name = "Gepetto_CHAT:explain_function_CHAT" explain_menu_path = "Edit/Gepetto_CHAT/Explain function_CHAT" rename_action_name = "Gepetto_CHAT:rename_function_CHAT" rename_menu_path = "Edit/Gepetto_CHAT/Rename variables_CHAT" wanted_name = 'Gepetto_CHAT' wanted_hotkey = '' comment = "Uses ChatGPT to enrich the decompiler's output" help = "See usage instructions on GitHub" menu = None def init(self): # Check whether the decompiler is available if not ida_hexrays.init_hexrays_plugin(): return idaapi.PLUGIN_SKIP # Function explaining action explain_action = idaapi.action_desc_t(self.explain_action_name, 'Explain function_CHAT', ExplainHandler(), "Ctrl+Alt+G", 'Use ChatGPT to explain the currently selected function', 199) idaapi.register_action(explain_action) idaapi.attach_action_to_menu(self.explain_menu_path, self.explain_action_name, idaapi.SETMENU_APP) # Variable renaming action rename_action = idaapi.action_desc_t(self.rename_action_name, 'Rename variables_CHAT', RenameHandler(), "Ctrl+Alt+R", "Use ChatGPT to rename this function's variables", 199) idaapi.register_action(rename_action) idaapi.attach_action_to_menu(self.rename_menu_path, self.rename_action_name, idaapi.SETMENU_APP) # Register context menu actions self.menu = ContextMenuHooks() self.menu.hook() return idaapi.PLUGIN_KEEP def run(self, arg): pass def term(self): idaapi.detach_action_from_menu(self.explain_menu_path, self.explain_action_name) idaapi.detach_action_from_menu(self.rename_menu_path, self.rename_action_name) if self.menu: self.menu.unhook() return # ----------------------------------------------------------------------------- class ContextMenuHooks(idaapi.UI_Hooks): def finish_populating_widget_popup(self, form, popup): # Add actions to the context menu of the Pseudocode view if idaapi.get_widget_type(form) == idaapi.BWN_PSEUDOCODE: idaapi.attach_action_to_popup(form, popup, Gepetto_CHATPlugin.explain_action_name, "Gepetto_CHAT/") idaapi.attach_action_to_popup(form, popup, Gepetto_CHATPlugin.rename_action_name, "Gepetto_CHAT/") # ----------------------------------------------------------------------------- def comment_callback(address, view, response): """ Callback that sets a comment at the given address. :param address: The address of the function to comment :param view: A handle to the decompiler window :param response: The comment to add """ # Add newlines at the end of each sentence. response = "\n".join(textwrap.wrap(response, 80, replace_whitespace=False)) # Add the response as a comment in IDA. idc.set_func_cmt(address, response, 0) # Refresh the window so the comment is displayed properly if view: view.refresh_view(False) print("ChatGPT query finished!") # ----------------------------------------------------------------------------- class ExplainHandler(idaapi.action_handler_t): """ This handler is tasked with querying ChatGPT for an explanation of the given function. Once the reply is received, it is added as a function comment. """ def __init__(self): idaapi.action_handler_t.__init__(self) def activate(self, ctx): decompiler_output = ida_hexrays.decompile(idaapi.get_screen_ea()) v = ida_hexrays.get_widget_vdui(ctx.widget) if ZH_CN: query_model_async( "对下面的C语言伪代码函数进行分析 推测关于该函数的使用环境和预期目的详细的函数功能等信息 并为这个函数取一个新的名字 不要返回其他的内容 (开始前加上GPTSTART 结束后加上GPTEND字符串)\n" + str(decompiler_output), functools.partial(comment_callback, address=idaapi.get_screen_ea(), view=v)) else: query_model_async( "Can you explain what the following C function does and suggest a better name for it?(Add GPTSTART before the beginning of the conversation and GPTEND after the end.)\n" + str(decompiler_output), functools.partial(comment_callback, address=idaapi.get_screen_ea(), view=v)) return 1 # This action is always available. def update(self, ctx): return idaapi.AST_ENABLE_ALWAYS # ----------------------------------------------------------------------------- def rename_callback(address, view, response): """ Callback that extracts a JSON array of old names and new names from the response and sets them in the pseudocode. :param address: The address of the function to work on :param view: A handle to the decompiler window :param response: The response from ChatGPT """ j = re.search(r"\{[^}]*?\}", response) if not j: print(f"Error: couldn't extract a response from ChatGPT's output:\n{response}") return try: names = json.loads(j.group(0)) except json.decoder.JSONDecodeError: print(f"The data returned by the model cannot be parsed. Asking the model to fix it...") query_model_async("Please fix the following JSON document:\n" + j.group(0), functools.partial(rename_callback, address=idaapi.get_screen_ea(), view=view)) return # The rename function needs the start address of the function function_addr = idaapi.get_func(address).start_ea replaced = [] for n in names: if ida_hexrays.rename_lvar(function_addr, n, names[n]): replaced.append(n) # Update possible names left in the function comment comment = idc.get_func_cmt(address, 0) if comment and len(replaced) > 0: for n in replaced: comment = re.sub(r'\b%s\b' % n, names[n], comment) idc.set_func_cmt(address, comment, 0) # Refresh the window to show the new names if view: view.refresh_view(True) print(f"ChatGPT query finished! {len(replaced)} variable(s) renamed.") # ----------------------------------------------------------------------------- class RenameHandler(idaapi.action_handler_t): """ This handler requests new variable names from ChatGPT and updates the decompiler's output. """ def __init__(self): idaapi.action_handler_t.__init__(self) def activate(self, ctx): decompiler_output = ida_hexrays.decompile(idaapi.get_screen_ea()) v = ida_hexrays.get_widget_vdui(ctx.widget) query_model_async( "Analyze the following C function. Suggest better variable names, reply with a JSON array where keys are the original names and values are the proposed names. Do not explain anything, only print the JSON dictionary(Add GPTSTART before the beginning of the reply and GPTEND after the end.):\n" + str( decompiler_output), functools.partial(rename_callback, address=idaapi.get_screen_ea(), view=v)) return 1 # This action is always available. def update(self, ctx): return idaapi.AST_ENABLE_ALWAYS # ============================================================================= # ChatGPT interaction # ============================================================================= def query_model(query, cb): """ Function which sends a query to ChatGPT and calls a callback when the response is available. Blocks until the response is received :param query: The request to send to ChatGPT :param cb: Tu function to which the response will be passed to. """ try: chatbot = Chatbot(config, conversation_id=None) response = chatbot.get_chat_response(query)['message'] if response.find("GPTSTART") == -1: raise Exception("Unexpected response: " + response) times = 1 retry = 0 data = response print(f"response[" + str(times) + "]: " + response) while response.find("GPTEND") == -1: try: times += 1 response = chatbot.get_chat_response("next")['message'] if response.find("GPTSTART") != -1: times = 99 raise Exception("Duplicate responses appear: " + response) print(f"response[" + str(times) + "]: " + response) data += response # print(message) times = times - retry retry = 0 except Exception as e: if times > 5: raise Exception("Request 5 times and still not return full results: " + response) if retry > 3: raise Exception("Retry 3 times and the request still fails: " + response) retry += 1 ida_kernwin.execute_sync(functools.partial(cb, response=data.replace('GPTEND', '').replace('GPTSTART', '')), ida_kernwin.MFF_WRITE) except Exception as e: print(f"General exception encountered while running the query: {str(e)}") # ----------------------------------------------------------------------------- def query_model_async(query, cb): """ Function which sends a query to ChatGPT and calls a callback when the response is available. :param query: The request to send to ChatGPT :param cb: Tu function to which the response will be passed to. """ print("Request to ChatGPT sent...") t = threading.Thread(target=query_model, args=[query, cb]) t.start() # ============================================================================= # Main # ============================================================================= def PLUGIN_ENTRY(): return Gepetto_CHATPlugin()
[]
2024-01-10
SilveerDusk/calhacks
reflex~reflex-chat-main~webui~webui~state.py
import os, pyaudio, time, wave, librosa from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq, WhisperProcessor, WhisperForConditionalGeneration from bark import generate_audio from scipy.io.wavfile import write as write_wav import subprocess import openai import reflex as rx openai.api_key = os.getenv("OPENAI_API_KEY") openai.api_base = os.getenv("OPENAI_API_BASE", "https://api.openai.com/v1") class QA(rx.Base): """A question and answer pair.""" question: str answer: str DEFAULT_CHATS = { "Intros": [], } class State(rx.State): """The app state.""" # A dict from the chat name to the list of questions and answers. chats: dict[str, list[QA]] = DEFAULT_CHATS # The current chat name. current_chat = "Intros" # The current question. question: str # Whether we are processing the question. processing: bool = False # The name of the new chat. new_chat_name: str = "" # Whether the drawer is open. drawer_open: bool = False # Whether the modal is open. modal_open: bool = False def create_chat(self): """Create a new chat.""" # Add the new chat to the list of chats. self.current_chat = self.new_chat_name self.chats[self.new_chat_name] = [] # Toggle the modal. self.modal_open = False def toggle_modal(self): """Toggle the new chat modal.""" self.modal_open = not self.modal_open def toggle_drawer(self): """Toggle the drawer.""" self.drawer_open = not self.drawer_open def delete_chat(self): """Delete the current chat.""" del self.chats[self.current_chat] if len(self.chats) == 0: self.chats = DEFAULT_CHATS self.current_chat = list(self.chats.keys())[0] self.toggle_drawer() def set_chat(self, chat_name: str): """Set the name of the current chat. Args: chat_name: The name of the chat. """ self.current_chat = chat_name self.toggle_drawer() @rx.var def chat_titles(self) -> list[str]: """Get the list of chat titles. Returns: The list of chat names. """ return list(self.chats.keys()) async def process_question(self, form_data: dict[str, str]): """Get the response from the API. Args: form_data: A dict with the current question. """ audio = pyaudio.PyAudio() stream = audio.open(format=pyaudio.paInt16, channels=1, rate=16000, input=True, frames_per_buffer=1024) frames = [] tend = time.time() + 13 while time.time() < tend: data=stream.read(1024) frames.append(data) stream.stop_stream() stream.close() audio.terminate() sound_file = wave.open("inputAudio.wav", "wb") sound_file.setnchannels(1) sound_file.setsampwidth(audio.get_sample_size(pyaudio.paInt16)) sound_file.setframerate(16000) sound_file.writeframes(b''.join(frames)) sound_file.close() processor = AutoProcessor.from_pretrained("openai/whisper-large-v2") model = AutoModelForSpeechSeq2Seq.from_pretrained("openai/whisper-large-v2") # load model and processor processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2") model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2") model.config.forced_decoder_ids = None # load dummy dataset and read audio files audio = librosa.load("inputAudio.wav", sr=16000) input_features = processor(audio[0], sampling_rate=16000, return_tensors="pt").input_features # generate token ids predicted_ids = model.generate(input_features) # decode token ids to text transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) with open("transcription.txt", "w") as f: f.write(transcription[0]) # Check if the question is empty if transcription[0] == "": return # Add the question to the list of questions. qa = QA(question=transcription[0], answer="") self.chats[self.current_chat].append(qa) # Clear the input and start the processing. self.processing = True self.question = "" yield # Build the messages. messages = [ {"role": "system", "content": "You are a friendly chatbot named AIfred."} ] for qa in self.chats[self.current_chat]: messages.append({"role": "user", "content": qa.question}) messages.append({"role": "assistant", "content": qa.answer}) # Remove the last mock answer. messages = messages[:-1] # Start a new session to answer the question. session = openai.ChatCompletion.create( model=os.getenv("OPENAI_MODEL", "gpt-3.5-turbo"), messages=messages, stream=True, ) # Stream the results, yielding after every word. for item in session: if hasattr(item.choices[0].delta, "content"): answer_text = item.choices[0].delta.content self.chats[self.current_chat][-1].answer += answer_text self.chats = self.chats yield # Toggle the processing flag. audio_array = generate_audio(self.chats[self.current_chat][-1].answer) write_wav("audio.wav", 16000, audio_array) audio_file = "audio.wav" subprocess.call(["afplay", audio_file]) self.processing = False
[ "You are a friendly chatbot named AIfred." ]
2024-01-10
aasif057/ChatBot
backend.py
import pyttsx3 import speech_recognition as sr import os import openai api_key = os.environ['OpenAI'] class ChatBot: def __init__(self): self.engine=pyttsx3.init('sapi5') self.voices=self.engine.getProperty('voices') self.engine.setProperty('voice',self.voices[0].id) openai.api_key = api_key self.r=sr.Recognizer() def speak(self,audio): self.engine.say(audio) self.engine.runAndWait() def close_speak(self): self.engine.stop() def take_commands(self): with sr.Microphone() as Source: print("Listening...") self.r.pause_threshold=1 audio=self.r.listen(source = Source, timeout= None, phrase_time_limit= 5) try: print("Recognising...") command=self.r.recognize_google(audio,language='en-in') print(f"User asked for {command}") return command except Exception as e: self.speak("Say That Again Please..") command = self.take_commands() return command def get_response(self, user_input): response = openai.Completion.create( engine = "text-davinci-003", prompt = user_input, max_tokens= 4000, temperature = 0.5 ).choices[0].text return response # if __name__ == "__main__": # chatbot = ChatBot() # response = chatbot.get_response("Tell me about Wipro") # print(response)
[]
2024-01-10
MuriloEduardo/new-poc-whatsapp-openia
openia.py
import os import openai OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') history = [] def mount_messages(content, role="user"): history.append({"role": role, "content": content}) return history def extract_openia_response(response): returned_response = response['choices'][0]['message']['content'] return returned_response def get_ia_response(new_message): messages = mount_messages(new_message) try: response = openai.ChatCompletion.create( temperature=0.7, messages=messages, model="gpt-3.5-turbo", ) extracted_response = extract_openia_response(response) mount_messages(extracted_response, role="assistant") return extracted_response except Exception as e: print(e)
[]
2024-01-10
gventuri/pandas-ai
pandasai~smart_datalake~__init__.py
""" A smart dataframe class is a wrapper around the pandas/polars dataframe that allows you to query it using natural language. It uses the LLMs to generate Python code from natural language and then executes it on the dataframe. Example: ```python from pandasai.smart_dataframe import SmartDataframe from pandasai.llm.openai import OpenAI df = pd.read_csv("examples/data/Loan payments data.csv") llm = OpenAI() df = SmartDataframe(df, config={"llm": llm}) response = df.chat("What is the average loan amount?") print(response) # The average loan amount is $15,000. ``` """ import uuid import logging import os from pandasai.constants import DEFAULT_CHART_DIRECTORY, DEFAULT_FILE_PERMISSIONS from pandasai.helpers.skills_manager import SkillsManager from pandasai.pipelines.pipeline_context import PipelineContext from pandasai.skills import Skill from pandasai.helpers.query_exec_tracker import QueryExecTracker from ..pipelines.smart_datalake_chat.generate_smart_datalake_pipeline import ( GenerateSmartDatalakePipeline, ) from pandasai.helpers.output_types import output_type_factory from pandasai.helpers.viz_library_types import viz_lib_type_factory from pandasai.responses.context import Context from pandasai.responses.response_parser import ResponseParser from ..llm.base import LLM from ..llm.langchain import LangchainLLM from ..helpers.logger import Logger from ..helpers.cache import Cache from ..helpers.memory import Memory from ..schemas.df_config import Config from ..config import load_config from ..prompts.base import AbstractPrompt from ..prompts.correct_error_prompt import CorrectErrorPrompt from typing import Union, List, Any, Optional from ..helpers.code_manager import CodeManager from ..helpers.df_info import DataFrameType from ..helpers.path import find_project_root from ..helpers.viz_library_types.base import VisualizationLibrary class SmartDatalake: _dfs: List[DataFrameType] _config: Union[Config, dict] _llm: LLM _cache: Cache = None _logger: Logger _last_prompt_id: uuid.UUID _conversation_id: uuid.UUID _code_manager: CodeManager _memory: Memory _skills: SkillsManager _instance: str _query_exec_tracker: QueryExecTracker _last_code_generated: str = None _last_result: str = None _last_error: str = None _viz_lib: str = None def __init__( self, dfs: List[Union[DataFrameType, Any]], config: Optional[Union[Config, dict]] = None, logger: Optional[Logger] = None, memory: Optional[Memory] = None, cache: Optional[Cache] = None, ): """ Args: dfs (List[Union[DataFrameType, Any]]): List of dataframes to be used config (Union[Config, dict], optional): Config to be used. Defaults to None. logger (Logger, optional): Logger to be used. Defaults to None. """ self._load_config(config) self.initialize() if logger: self.logger = logger else: self.logger = Logger( save_logs=self._config.save_logs, verbose=self._config.verbose ) self._load_dfs(dfs) self._memory = memory or Memory() self._code_manager = CodeManager( dfs=self._dfs, config=self._config, logger=self.logger, ) self._skills = SkillsManager() if cache: self._cache = cache elif self._config.enable_cache: self._cache = Cache() context = Context(self._config, self.logger, self.engine) if self._config.response_parser: self._response_parser = self._config.response_parser(context) else: self._response_parser = ResponseParser(context) if self._config.data_viz_library: self._viz_lib = self._config.data_viz_library.value self._conversation_id = uuid.uuid4() self._instance = self.__class__.__name__ self._query_exec_tracker = QueryExecTracker( server_config=self._config.log_server, ) def set_instance_type(self, type_: str): self._instance = type_ def is_related_query(self, flag: bool): self._query_exec_tracker.set_related_query(flag) def initialize(self): """Initialize the SmartDatalake, create auxiliary directories. If 'save_charts' option is enabled, create '.exports/charts directory' in case if it doesn't exist. If 'enable_cache' option is enabled, Create './cache' in case if it doesn't exist. Returns: None """ if self._config.save_charts: charts_dir = self._config.save_charts_path # Add project root path if save_charts_path is default if self._config.save_charts_path == DEFAULT_CHART_DIRECTORY: try: charts_dir = os.path.join( (find_project_root()), self._config.save_charts_path ) self._config.save_charts_path = charts_dir except ValueError: charts_dir = os.path.join( os.getcwd(), self._config.save_charts_path ) os.makedirs(charts_dir, mode=DEFAULT_FILE_PERMISSIONS, exist_ok=True) if self._config.enable_cache: try: cache_dir = os.path.join((find_project_root()), "cache") except ValueError: cache_dir = os.path.join(os.getcwd(), "cache") os.makedirs(cache_dir, mode=DEFAULT_FILE_PERMISSIONS, exist_ok=True) def _load_dfs(self, dfs: List[Union[DataFrameType, Any]]): """ Load all the dataframes to be used in the smart datalake. Args: dfs (List[Union[DataFrameType, Any]]): List of dataframes to be used """ from ..smart_dataframe import SmartDataframe smart_dfs = [] for df in dfs: if not isinstance(df, SmartDataframe): smart_dfs.append( SmartDataframe(df, config=self._config, logger=self.logger) ) else: smart_dfs.append(df) self._dfs = smart_dfs def _load_config(self, config: Union[Config, dict]): """ Load a config to be used to run the queries. Args: config (Union[Config, dict]): Config to be used """ config = load_config(config) if config.get("llm"): self._load_llm(config["llm"]) config["llm"] = self._llm if config.get("data_viz_library"): self._load_data_viz_library(config["data_viz_library"]) config["data_viz_library"] = self._data_viz_library self._config = Config(**config) def _load_llm(self, llm: LLM): """ Load a LLM to be used to run the queries. Check if it is a PandasAI LLM or a Langchain LLM. If it is a Langchain LLM, wrap it in a PandasAI LLM. Args: llm (object): LLMs option to be used for API access Raises: BadImportError: If the LLM is a Langchain LLM but the langchain package is not installed """ if hasattr(llm, "_llm_type"): llm = LangchainLLM(llm) self._llm = llm def _load_data_viz_library(self, data_viz_library: str): """ Load the appropriate instance for viz library type to use. Args: data_viz_library (enum): TODO Raises: TODO """ self._data_viz_library = VisualizationLibrary.DEFAULT.value if data_viz_library in (item.value for item in VisualizationLibrary): self._data_viz_library = data_viz_library def add_skills(self, *skills: Skill): """ Add Skills to PandasAI """ self._skills.add_skills(*skills) def _assign_prompt_id(self): """Assign a prompt ID""" self._last_prompt_id = uuid.uuid4() if self.logger: self.logger.log(f"Prompt ID: {self._last_prompt_id}") def _get_prompt( self, key: str, default_prompt: AbstractPrompt, default_values: Optional[dict] = None, ) -> AbstractPrompt: """ Return a prompt by key. Args: key (str): The key of the prompt default_prompt (Type[AbstractPrompt]): The default prompt to use default_values (Optional[dict], optional): The default values to use for the prompt. Defaults to None. Returns: AbstractPrompt: The prompt """ if default_values is None: default_values = {} custom_prompt = self._config.custom_prompts.get(key) prompt = custom_prompt or default_prompt # set default values for the prompt prompt.set_config(self._config) if "dfs" not in default_values: prompt.set_var("dfs", self._dfs) if "conversation" not in default_values: prompt.set_var("conversation", self._memory.get_conversation()) if "prev_conversation" not in default_values: prompt.set_var( "prev_conversation", self._memory.get_previous_conversation() ) if "last_message" not in default_values: prompt.set_var("last_message", self._memory.get_last_message()) # Adds the skills to prompt if exist else display nothing skills_prompt = self._skills.prompt_display() prompt.set_var("skills", skills_prompt if skills_prompt is not None else "") for key, value in default_values.items(): prompt.set_var(key, value) self.logger.log(f"Using prompt: {prompt}") return prompt def chat(self, query: str, output_type: Optional[str] = None): """ Run a query on the dataframe. Args: query (str): Query to run on the dataframe output_type (Optional[str]): Add a hint for LLM which type should be returned by `analyze_data()` in generated code. Possible values: "number", "dataframe", "plot", "string": * number - specifies that user expects to get a number as a response object * dataframe - specifies that user expects to get pandas/polars dataframe as a response object * plot - specifies that user expects LLM to build a plot * string - specifies that user expects to get text as a response object If none `output_type` is specified, the type can be any of the above or "text". Raises: ValueError: If the query is empty """ pipeline_context = self.prepare_context_for_smart_datalake_pipeline( query=query, output_type=output_type ) try: result = GenerateSmartDatalakePipeline(pipeline_context, self.logger).run() except Exception as exception: self.last_error = str(exception) self._query_exec_tracker.success = False self._query_exec_tracker.publish() return ( "Unfortunately, I was not able to answer your question, " "because of the following error:\n" f"\n{exception}\n" ) self.update_intermediate_value_post_pipeline_execution(pipeline_context) # publish query tracker self._query_exec_tracker.publish() return result def _validate_output(self, result: dict, output_type: Optional[str] = None): """ Validate the output of the code execution. Args: result (Any): Result of executing the code output_type (Optional[str]): Add a hint for LLM which type should be returned by `analyze_data()` in generated code. Possible values: "number", "dataframe", "plot", "string": * number - specifies that user expects to get a number as a response object * dataframe - specifies that user expects to get pandas/polars dataframe as a response object * plot - specifies that user expects LLM to build a plot * string - specifies that user expects to get text as a response object If none `output_type` is specified, the type can be any of the above or "text". Raises: (ValueError): If the output is not valid """ output_type_helper = output_type_factory(output_type, logger=self.logger) result_is_valid, validation_logs = output_type_helper.validate(result) if result_is_valid: self._query_exec_tracker.add_step( { "type": "Validating Output", "success": True, "message": "Output Validation Successful", } ) else: self.logger.log("\n".join(validation_logs), level=logging.WARNING) self._query_exec_tracker.add_step( { "type": "Validating Output", "success": False, "message": "Output Validation Failed", } ) raise ValueError("Output validation failed") def _get_viz_library_type(self) -> str: """ Get the visualization library type based on the configured library. Returns: (str): Visualization library type """ viz_lib_helper = viz_lib_type_factory(self._viz_lib, logger=self.logger) return viz_lib_helper.template_hint def prepare_context_for_smart_datalake_pipeline( self, query: str, output_type: Optional[str] = None ) -> PipelineContext: """ Prepare Pipeline Context to initiate Smart Data Lake Pipeline. Args: query (str): Query to run on the dataframe output_type (Optional[str]): Add a hint for LLM which type should be returned by `analyze_data()` in generated code. Possible values: "number", "dataframe", "plot", "string": * number - specifies that user expects to get a number as a response object * dataframe - specifies that user expects to get pandas/polars dataframe as a response object * plot - specifies that user expects LLM to build a plot * string - specifies that user expects to get text as a response object If none `output_type` is specified, the type can be any of the above or "text". Returns: PipelineContext: The Pipeline Context to be used by Smart Data Lake Pipeline. """ self._query_exec_tracker.start_new_track() self.logger.log(f"Question: {query}") self.logger.log(f"Running PandasAI with {self._llm.type} LLM...") self._assign_prompt_id() self._query_exec_tracker.add_query_info( self._conversation_id, self._instance, query, output_type ) self._query_exec_tracker.add_dataframes(self._dfs) self._memory.add(query, True) output_type_helper = output_type_factory(output_type, logger=self.logger) viz_lib_helper = viz_lib_type_factory(self._viz_lib, logger=self.logger) pipeline_context = PipelineContext( dfs=self.dfs, config=self.config, memory=self.memory, cache=self.cache, query_exec_tracker=self._query_exec_tracker, ) pipeline_context.add_intermediate_value("is_present_in_cache", False) pipeline_context.add_intermediate_value( "output_type_helper", output_type_helper ) pipeline_context.add_intermediate_value("viz_lib_helper", viz_lib_helper) pipeline_context.add_intermediate_value( "last_code_generated", self._last_code_generated ) pipeline_context.add_intermediate_value("get_prompt", self._get_prompt) pipeline_context.add_intermediate_value("last_prompt_id", self.last_prompt_id) pipeline_context.add_intermediate_value("skills", self._skills) pipeline_context.add_intermediate_value("code_manager", self._code_manager) pipeline_context.add_intermediate_value( "response_parser", self._response_parser ) return pipeline_context def update_intermediate_value_post_pipeline_execution( self, pipeline_context: PipelineContext ): """ After the Smart Data Lake Pipeline has executed, update values of Smart Data Lake object. Args: pipeline_context (PipelineContext): Pipeline Context after the Smart Data Lake pipeline execution """ self._last_code_generated = pipeline_context.get_intermediate_value( "last_code_generated" ) self._last_result = pipeline_context.get_intermediate_value("last_result") def _retry_run_code(self, code: str, e: Exception) -> List: """ A method to retry the code execution with error correction framework. Args: code (str): A python code e (Exception): An exception dataframes Returns (str): A python code """ self.logger.log(f"Failed with error: {e}. Retrying", logging.ERROR) default_values = { "engine": self._dfs[0].engine, "code": code, "error_returned": e, } error_correcting_instruction = self._get_prompt( "correct_error", default_prompt=CorrectErrorPrompt(), default_values=default_values, ) return self._llm.generate_code(error_correcting_instruction) def clear_memory(self): """ Clears the memory """ self._memory.clear() self._conversation_id = uuid.uuid4() @property def engine(self): return self._dfs[0].engine @property def last_prompt(self): return self._llm.last_prompt @property def last_prompt_id(self) -> uuid.UUID: """Return the id of the last prompt that was run.""" if self._last_prompt_id is None: raise ValueError("Pandas AI has not been run yet.") return self._last_prompt_id @property def logs(self): return self.logger.logs @property def logger(self): return self._logger @logger.setter def logger(self, logger): self._logger = logger @property def config(self): return self._config @property def cache(self): return self._cache @property def verbose(self): return self._config.verbose @verbose.setter def verbose(self, verbose: bool): self._config.verbose = verbose self._logger.verbose = verbose @property def save_logs(self): return self._config.save_logs @save_logs.setter def save_logs(self, save_logs: bool): self._config.save_logs = save_logs self._logger.save_logs = save_logs @property def enforce_privacy(self): return self._config.enforce_privacy @enforce_privacy.setter def enforce_privacy(self, enforce_privacy: bool): self._config.enforce_privacy = enforce_privacy @property def enable_cache(self): return self._config.enable_cache @enable_cache.setter def enable_cache(self, enable_cache: bool): self._config.enable_cache = enable_cache if enable_cache: if self.cache is None: self._cache = Cache() else: self._cache = None @property def use_error_correction_framework(self): return self._config.use_error_correction_framework @use_error_correction_framework.setter def use_error_correction_framework(self, use_error_correction_framework: bool): self._config.use_error_correction_framework = use_error_correction_framework @property def custom_prompts(self): return self._config.custom_prompts @custom_prompts.setter def custom_prompts(self, custom_prompts: dict): self._config.custom_prompts = custom_prompts @property def save_charts(self): return self._config.save_charts @save_charts.setter def save_charts(self, save_charts: bool): self._config.save_charts = save_charts @property def save_charts_path(self): return self._config.save_charts_path @save_charts_path.setter def save_charts_path(self, save_charts_path: str): self._config.save_charts_path = save_charts_path @property def custom_whitelisted_dependencies(self): return self._config.custom_whitelisted_dependencies @custom_whitelisted_dependencies.setter def custom_whitelisted_dependencies( self, custom_whitelisted_dependencies: List[str] ): self._config.custom_whitelisted_dependencies = custom_whitelisted_dependencies @property def max_retries(self): return self._config.max_retries @max_retries.setter def max_retries(self, max_retries: int): self._config.max_retries = max_retries @property def llm(self): return self._llm @llm.setter def llm(self, llm: LLM): self._load_llm(llm) @property def last_code_generated(self): return self._last_code_generated @last_code_generated.setter def last_code_generated(self, last_code_generated: str): self._last_code_generated = last_code_generated @property def last_code_executed(self): return self._code_manager.last_code_executed @property def last_result(self): return self._last_result @last_result.setter def last_result(self, last_result: str): self._last_result = last_result @property def last_error(self): return self._last_error @last_error.setter def last_error(self, last_error: str): self._last_error = last_error @property def dfs(self): return self._dfs @property def memory(self): return self._memory @property def instance(self): return self._instance @property def last_query_log_id(self): return self._query_exec_tracker.last_log_id
[]
2024-01-10
gventuri/pandas-ai
examples~from_csv.py
"""Example of using PandasAI with a CSV file.""" from pandasai import SmartDataframe from pandasai.llm import OpenAI llm = OpenAI() df = SmartDataframe("examples/data/Loan payments data.csv", config={"llm": llm}) response = df.chat("How many loans are from men and have been paid off?") print(response) # Output: 247 loans have been paid off by men.
[ "How many loans are from men and have been paid off?" ]
2024-01-10
gventuri/pandas-ai
examples~sql_direct_config.py
"""Example of using PandasAI with a CSV file.""" from pandasai import SmartDatalake from pandasai.llm import OpenAI from pandasai.connectors import PostgreSQLConnector from pandasai.smart_dataframe import SmartDataframe # With a PostgreSQL database order = PostgreSQLConnector( config={ "host": "localhost", "port": 5432, "database": "testdb", "username": "postgres", "password": "123456", "table": "orders", } ) order_details = PostgreSQLConnector( config={ "host": "localhost", "port": 5432, "database": "testdb", "username": "postgres", "password": "123456", "table": "order_details", } ) products = PostgreSQLConnector( config={ "host": "localhost", "port": 5432, "database": "testdb", "username": "postgres", "password": "123456", "table": "products", } ) llm = OpenAI("OPEN_API_KEY") order_details_smart_df = SmartDataframe( order_details, config={"llm": llm, "direct_sql": True}, description="Contain user order details", ) df = SmartDatalake( [order_details_smart_df, order, products], config={"llm": llm, "direct_sql": True}, ) response = df.chat("return orders with count of distinct products") print(response)
[ "return orders with count of distinct products" ]
2024-01-10
gventuri/pandas-ai
examples~from_dataframe.py
"""Example of using PandasAI with a Pandas DataFrame""" import pandas as pd from data.sample_dataframe import dataframe from pandasai import SmartDataframe from pandasai.llm import OpenAI df = pd.DataFrame(dataframe) llm = OpenAI() df = SmartDataframe(df=pd.DataFrame(dataframe), config={"llm": llm}) response = df.chat("Calculate the sum of the gdp of north american countries") print(response) # Output: 20901884461056
[ "Calculate the sum of the gdp of north american countries" ]
2024-01-10
gventuri/pandas-ai
examples~from_airtable.py
from pandasai.connectors import AirtableConnector from pandasai.llm import OpenAI from pandasai import SmartDataframe airtable_connectors = AirtableConnector( config={ "api_key": "AIRTABLE_API_TOKEN", "table": "AIRTABLE_TABLE_NAME", "base_id": "AIRTABLE_BASE_ID", "where": [ # this is optional and filters the data to # reduce the size of the dataframe ["Status", "=", "In progress"] ], } ) llm = OpenAI("OPENAI_API_KEY") df = SmartDataframe(airtable_connectors, config={"llm": llm}) response = df.chat("How many rows are there in data ?") print(response)
[ "How many rows are there in data ?" ]
2024-01-10
gventuri/pandas-ai
examples~show_chart.py
"""Example of using PandasAI to generate a chart from a Pandas DataFrame""" import pandas as pd from data.sample_dataframe import dataframe from pandasai import SmartDataframe from pandasai.llm import OpenAI df = pd.DataFrame(dataframe) llm = OpenAI() df = SmartDataframe(df, config={"llm": llm, "verbose": True}) response = df.chat( "Plot the histogram of countries showing for each the gpd," " using different colors for each bar", ) # Output: check out images/histogram-chart.png
[ "Plot the histogram of countries showing for each the gpd, using different colors for each bar" ]
2024-01-10
gventuri/pandas-ai
examples~from_excel.py
"""Example of using PandasAI with am Excel file.""" from pandasai import SmartDataframe from pandasai.llm import OpenAI llm = OpenAI() df = SmartDataframe("examples/data/Loan payments data.xlsx", config={"llm": llm}) response = df.chat("How many loans are from men and have been paid off?") print(response) # Output: 247 loans have been paid off by men.
[ "How many loans are from men and have been paid off?" ]
2024-01-10
gventuri/pandas-ai
examples~using_streamlit.py
""" Example of using displaying PandasAI charts in Streamlit Usage: streamlit run examples/using_streamlit.py """ import pandas as pd from pandasai import SmartDatalake from pandasai.llm import OpenAI from pandasai.responses.streamlit_response import StreamlitResponse employees_df = pd.DataFrame( { "EmployeeID": [1, 2, 3, 4, 5], "Name": ["John", "Emma", "Liam", "Olivia", "William"], "Department": ["HR", "Sales", "IT", "Marketing", "Finance"], } ) salaries_df = pd.DataFrame( { "EmployeeID": [1, 2, 3, 4, 5], "Salary": [5000, 6000, 4500, 7000, 5500], } ) llm = OpenAI() dl = SmartDatalake( [employees_df, salaries_df], config={"llm": llm, "verbose": True, "response_parser": StreamlitResponse}, ) dl.chat("Plot salaries against employee name")
[ "Plot salaries against employee name" ]
2024-01-10
gventuri/pandas-ai
tests~llms~test_openai.py
"""Unit tests for the openai LLM class""" import openai import pytest from pandasai.exceptions import APIKeyNotFoundError, UnsupportedModelError from pandasai.llm import OpenAI from pandasai.prompts import AbstractPrompt class OpenAIObject: def __init__(self, dictionary): self.__dict__.update(dictionary) class TestOpenAILLM: """Unit tests for the openai LLM class""" @pytest.fixture def prompt(self): class MockAbstractPrompt(AbstractPrompt): template: str = "instruction" return MockAbstractPrompt() def test_type_without_token(self): with pytest.raises(APIKeyNotFoundError): OpenAI().type def test_type_with_token(self): assert OpenAI(api_token="test").type == "openai" def test_proxy(self): proxy = "http://proxy.mycompany.com:8080" client = OpenAI(api_token="test", openai_proxy=proxy) assert client.openai_proxy == proxy assert openai.proxy["http"] == proxy assert openai.proxy["https"] == proxy def test_params_setting(self): llm = OpenAI( api_token="test", model="gpt-3.5-turbo", temperature=0.5, max_tokens=50, top_p=1.0, frequency_penalty=2.0, presence_penalty=3.0, stop=["\n"], ) assert llm.model == "gpt-3.5-turbo" assert llm.temperature == 0.5 assert llm.max_tokens == 50 assert llm.top_p == 1.0 assert llm.frequency_penalty == 2.0 assert llm.presence_penalty == 3.0 assert llm.stop == ["\n"] def test_completion(self, mocker): expected_text = "This is the generated text." expected_response = OpenAIObject( { "choices": [{"text": expected_text}], "usage": { "prompt_tokens": 2, "completion_tokens": 1, "total_tokens": 3, }, "model": "gpt-35-turbo", } ) openai = OpenAI(api_token="test") mocker.patch.object(openai, "completion", return_value=expected_response) result = openai.completion("Some prompt.") openai.completion.assert_called_once_with("Some prompt.") assert result == expected_response def test_chat_completion(self, mocker): openai = OpenAI(api_token="test") expected_response = OpenAIObject( { "choices": [ { "text": "Hello, how can I help you today?", "index": 0, "logprobs": None, "finish_reason": "stop", "start_text": "", } ] } ) mocker.patch.object(openai, "chat_completion", return_value=expected_response) result = openai.chat_completion("Hi") openai.chat_completion.assert_called_once_with("Hi") assert result == expected_response def test_call_with_unsupported_model(self, prompt): with pytest.raises( UnsupportedModelError, match=( "Unsupported model: The model 'not a model' doesn't exist " "or is not supported yet." ), ): llm = OpenAI(api_token="test", model="not a model") llm.call(instruction=prompt) def test_call_supported_completion_model(self, mocker, prompt): openai = OpenAI(api_token="test", model="gpt-3.5-turbo-instruct") mocker.patch.object(openai, "completion", return_value="response") result = openai.call(instruction=prompt) assert result == "response" def test_call_supported_chat_model(self, mocker, prompt): openai = OpenAI(api_token="test", model="gpt-4") mocker.patch.object(openai, "chat_completion", return_value="response") result = openai.call(instruction=prompt) assert result == "response" def test_call_finetuned_model(self, mocker, prompt): openai = OpenAI(api_token="test", model="ft:gpt-3.5-turbo:my-org:custom_suffix:id") mocker.patch.object(openai, "chat_completion", return_value="response") result = openai.call(instruction=prompt) assert result == "response"
[ "instruction" ]
2024-01-10
gventuri/pandas-ai
examples~using_workspace_env.py
import os import pandas as pd from pandasai import Agent from pandasai.llm.openai import OpenAI from pandasai.schemas.df_config import Config employees_data = { "EmployeeID": [1, 2, 3, 4, 5], "Name": ["John", "Emma", "Liam", "Olivia", "William"], "Department": ["HR", "Sales", "IT", "Marketing", "Finance"], } salaries_data = { "EmployeeID": [1, 2, 3, 4, 5], "Salary": [5000, 6000, 4500, 7000, 5500], } employees_df = pd.DataFrame(employees_data) salaries_df = pd.DataFrame(salaries_data) os.environ["PANDASAI_WORKSPACE"] = "workspace dir path" llm = OpenAI("YOUR_API_KEY") config__ = {"llm": llm, "save_charts": False} agent = Agent( [employees_df, salaries_df], config=Config(**config__), memory_size=10, ) # Chat with the agent response = agent.chat("plot salary against department?") print(response)
[ "plot salary against department?" ]
2024-01-10
gventuri/pandas-ai
tests~test_smartdatalake.py
"""Unit tests for the SmartDatalake class""" import os import sys from typing import Optional from unittest.mock import Mock, patch import pandas as pd import pytest from pandasai import SmartDataframe, SmartDatalake from pandasai.connectors.base import SQLConnectorConfig from pandasai.connectors.sql import PostgreSQLConnector, SQLConnector from pandasai.helpers.code_manager import CodeManager from pandasai.llm.fake import FakeLLM from pandasai.constants import DEFAULT_FILE_PERMISSIONS from langchain import OpenAI class TestSmartDatalake: """Unit tests for the SmartDatlake class""" @pytest.fixture def llm(self, output: Optional[str] = None): return FakeLLM(output=output) @pytest.fixture def sample_df(self): return pd.DataFrame( { "country": [ "United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China", ], "gdp": [ 19294482071552, 2891615567872, 2411255037952, 3435817336832, 1745433788416, 1181205135360, 1607402389504, 1490967855104, 4380756541440, 14631844184064, ], "happiness_index": [ 6.94, 7.16, 6.66, 7.07, 6.38, 6.4, 7.23, 7.22, 5.87, 5.12, ], } ) @pytest.fixture @patch("pandasai.connectors.sql.create_engine", autospec=True) def sql_connector(self, create_engine): # Define your ConnectorConfig instance here self.config = SQLConnectorConfig( dialect="mysql", driver="pymysql", username="your_username", password="your_password", host="your_host", port=443, database="your_database", table="your_table", where=[["column_name", "=", "value"]], ).dict() # Create an instance of SQLConnector return SQLConnector(self.config) @pytest.fixture @patch("pandasai.connectors.sql.create_engine", autospec=True) def pgsql_connector(self, create_engine): # Define your ConnectorConfig instance here self.config = SQLConnectorConfig( dialect="mysql", driver="pymysql", username="your_username", password="your_password", host="your_host", port=443, database="your_database", table="your_table", where=[["column_name", "=", "value"]], ).dict() # Create an instance of SQLConnector return PostgreSQLConnector(self.config) @pytest.fixture def smart_dataframe(self, llm, sample_df): return SmartDataframe(sample_df, config={"llm": llm, "enable_cache": False}) @pytest.fixture def smart_datalake(self, smart_dataframe: SmartDataframe): return smart_dataframe.lake def test_load_llm_with_pandasai_llm(self, smart_datalake: SmartDatalake, llm): smart_datalake._llm = None assert smart_datalake._llm is None smart_datalake._load_llm(llm) assert smart_datalake._llm == llm def test_load_llm_with_langchain_llm(self, smart_datalake: SmartDatalake, llm): langchain_llm = OpenAI(openai_api_key="fake_key") smart_datalake._llm = None assert smart_datalake._llm is None smart_datalake._load_llm(langchain_llm) assert smart_datalake._llm._langchain_llm == langchain_llm @patch.object( CodeManager, "execute_code", return_value={ "type": "string", "value": "There are 10 countries in the dataframe.", }, ) def test_last_result_is_saved(self, _mocked_method, smart_datalake: SmartDatalake): assert smart_datalake.last_result is None _mocked_method.__name__ = "execute_code" smart_datalake.chat("How many countries are in the dataframe?") assert smart_datalake.last_result == { "type": "string", "value": "There are 10 countries in the dataframe.", } @patch.object( CodeManager, "execute_code", return_value={ "type": "string", "value": "There are 10 countries in the dataframe.", }, ) @patch("pandasai.helpers.query_exec_tracker.QueryExecTracker.publish") def test_query_tracker_publish_called_in_chat_method( self, mock_query_tracker_publish, _mocked_method, smart_datalake: SmartDatalake ): assert smart_datalake.last_result is None _mocked_method.__name__ = "execute_code" smart_datalake.chat("How many countries are in the dataframe?") mock_query_tracker_publish.assert_called() def test_retry_on_error_with_single_df( self, smart_datalake: SmartDatalake, smart_dataframe: SmartDataframe ): code = """result = 'Hello World'""" smart_dataframe._get_sample_head = Mock( return_value=pd.DataFrame( { "country": ["China", "Japan", "Spain"], "gdp": [654881226, 9009692259, 8446903488], "happiness_index": [6.66, 7.16, 6.38], } ) ) smart_datalake._retry_run_code( code=code, e=Exception("Test error"), ) last_prompt = smart_datalake.last_prompt if sys.platform.startswith("win"): last_prompt = last_prompt.replace("\r\n", "\n") assert ( last_prompt == """<dataframe> dfs[0]:10x3 country,gdp,happiness_index China,654881226,6.66 Japan,9009692259,7.16 Spain,8446903488,6.38 </dataframe> The user asked the following question: You generated this python code: result = 'Hello World' It fails with the following error: Test error Fix the python code above and return the new python code:""" # noqa: E501 ) @patch("os.makedirs") def test_initialize_with_cache(self, mock_makedirs, smart_datalake): # Modify the smart_datalake's configuration smart_datalake.config.save_charts = True smart_datalake.config.enable_cache = True # Call the initialize method smart_datalake.initialize() # Assertions for enabling cache cache_dir = os.path.join(os.getcwd(), "cache") mock_makedirs.assert_any_call( cache_dir, mode=DEFAULT_FILE_PERMISSIONS, exist_ok=True ) # Assertions for saving charts charts_dir = os.path.join(os.getcwd(), smart_datalake.config.save_charts_path) mock_makedirs.assert_any_call( charts_dir, mode=DEFAULT_FILE_PERMISSIONS, exist_ok=True ) @patch("os.makedirs") def test_initialize_without_cache(self, mock_makedirs, smart_datalake): # Modify the smart_datalake's configuration smart_datalake.config.save_charts = True smart_datalake.config.enable_cache = False # Call the initialize method smart_datalake.initialize() # Assertions for saving charts charts_dir = os.path.join(os.getcwd(), smart_datalake.config.save_charts_path) mock_makedirs.assert_called_once_with( charts_dir, mode=DEFAULT_FILE_PERMISSIONS, exist_ok=True ) def test_validate_true_direct_sql_with_non_connector(self, llm, sample_df): # raise exception with non connector SmartDatalake( [sample_df], config={"llm": llm, "enable_cache": False, "direct_sql": True}, ) def test_validate_direct_sql_with_connector(self, llm, sql_connector): # not exception is raised using single connector SmartDatalake( [sql_connector], config={"llm": llm, "enable_cache": False, "direct_sql": True}, ) def test_validate_false_direct_sql_with_connector(self, llm, sql_connector): # not exception is raised using single connector SmartDatalake( [sql_connector], config={"llm": llm, "enable_cache": False, "direct_sql": False}, ) def test_validate_false_direct_sql_with_two_different_connector( self, llm, sql_connector, pgsql_connector ): # not exception is raised using single connector SmartDatalake( [sql_connector, pgsql_connector], config={"llm": llm, "enable_cache": False, "direct_sql": False}, )
[ "How many countries are in the dataframe?", "\r\n", "\n" ]
2024-01-10
gventuri/pandas-ai
examples~from_sql.py
"""Example of using PandasAI with a CSV file.""" from pandasai import SmartDatalake from pandasai.llm import OpenAI from pandasai.connectors import MySQLConnector, PostgreSQLConnector, SqliteConnector # With a MySQL database loan_connector = MySQLConnector( config={ "host": "localhost", "port": 3306, "database": "mydb", "username": "root", "password": "root", "table": "loans", "where": [ # this is optional and filters the data to # reduce the size of the dataframe ["loan_status", "=", "PAIDOFF"], ], } ) # With a PostgreSQL database payment_connector = PostgreSQLConnector( config={ "host": "localhost", "port": 5432, "database": "mydb", "username": "root", "password": "root", "table": "payments", "where": [ # this is optional and filters the data to # reduce the size of the dataframe ["payment_status", "=", "PAIDOFF"], ], } ) # With a Sqlite database invoice_connector = SqliteConnector( config={ "database": "local_path_to_db", "table": "invoices", "where": [["status", "=", "pending"]], } ) llm = OpenAI() df = SmartDatalake( [loan_connector, payment_connector, invoice_connector], config={"llm": llm} ) response = df.chat("How many people from the United states?") print(response) # Output: 247 loans have been paid off by men.
[ "How many people from the United states?" ]
2024-01-10
gventuri/pandas-ai
examples~with_multiple_dataframes.py
"""Example of using PandasAI on multiple Pandas DataFrame""" import pandas as pd from pandasai import SmartDatalake from pandasai.llm import OpenAI employees_df = pd.DataFrame( { "EmployeeID": [1, 2, 3, 4, 5], "Name": ["John", "Emma", "Liam", "Olivia", "William"], "Department": ["HR", "Sales", "IT", "Marketing", "Finance"], } ) salaries_df = pd.DataFrame( { "EmployeeID": [1, 2, 3, 4, 5], "Salary": [5000, 6000, 4500, 7000, 5500], } ) llm = OpenAI() dl = SmartDatalake( [employees_df, salaries_df], config={"llm": llm, "verbose": True}, ) response = dl.chat("Plot salaries against name") print(response) # Output: <displays the plot>
[ "Plot salaries against name" ]
2024-01-10
gventuri/pandas-ai
examples~from_google_sheets.py
"""Example of using PandasAI with am Excel file.""" from pandasai import SmartDataframe from pandasai.llm import OpenAI # Betas & Bludgers Writing Competitions List (source: https://heystacks.com/?type=sheets&tags=data) google_sheets_url = "https://docs.google.com/spreadsheets/d/1VKkhugv2eF87AoOm4OXjI0sQEHrNhxy6gPL3F7xyw7g/edit#gid=115719017" # noqa E501 llm = OpenAI() df = SmartDataframe(google_sheets_url, config={"llm": llm}) response = df.chat("How many short stories are there?") print(response) # Output: 35
[ "How many short stories are there?" ]
2024-01-10
gventuri/pandas-ai
examples~using_pandasai_log_server.py
import os import pandas as pd from pandasai import Agent from pandasai.llm.openai import OpenAI employees_data = { "EmployeeID": [1, 2, 3, 4, 5], "Name": ["John", "Emma", "Liam", "Olivia", "William"], "Department": ["HR", "Sales", "IT", "Marketing", "Finance"], } salaries_data = { "EmployeeID": [1, 2, 3, 4, 5], "Salary": [5000, 6000, 4500, 7000, 5500], } employees_df = pd.DataFrame(employees_data) salaries_df = pd.DataFrame(salaries_data) # Example 1: Using Environment Variables os.environ["LOGGING_SERVER_URL"] = "SERVER_URL" os.environ["LOGGING_SERVER_API_KEY"] = "YOUR_API_KEY" llm = OpenAI("YOUR_API_KEY") agent = Agent( [employees_df, salaries_df], config={ "llm": llm, "enable_cache": True, }, memory_size=10, ) # Chat with the agent response = agent.chat("Plot salary against department?") print(response) # Example 2: Using Config llm = OpenAI("YOUR_API_KEY") agent = Agent( [employees_df, salaries_df], config={ "llm": llm, "enable_cache": True, "log_server": { "server_url": "SERVER_URL", "api_key": "YOUR_API_KEY", }, }, memory_size=10, ) # Chat with the agent response = agent.chat("Plot salary against department?") print(response)
[ "Plot salary against department?" ]
2024-01-10
gventuri/pandas-ai
examples~from_yahoo_finance.py
from pandasai.connectors.yahoo_finance import YahooFinanceConnector from pandasai import SmartDataframe from pandasai.llm import OpenAI yahoo_connector = YahooFinanceConnector("MSFT") llm = OpenAI(api_token="OPEN_API_KEY") df = SmartDataframe(yahoo_connector, config={"llm": llm}) response = df.chat("What is the closing price for yesterday?") print(response)
[ "What is the closing price for yesterday?" ]
2024-01-10
gventuri/pandas-ai
tests~llms~test_langchain_llm.py
"""Unit tests for the base LLM class""" from langchain.llms import OpenAI import pytest from pandasai.llm import LangchainLLM from pandasai.prompts import AbstractPrompt from unittest.mock import Mock class TestLangchainLLM: """Unit tests for the LangChain wrapper LLM class""" @pytest.fixture def langchain_llm(self): class FakeOpenAI(OpenAI): openai_api_key = "fake_key" def __call__(self, _prompt, stop=None, callbacks=None, **kwargs): return Mock(return_value="Custom response")() return FakeOpenAI() @pytest.fixture def prompt(self): class MockAbstractPrompt(AbstractPrompt): template: str = "Hello" return MockAbstractPrompt() def test_langchain_llm_type(self, langchain_llm): langchain_wrapper = LangchainLLM(langchain_llm) assert langchain_wrapper.type == "langchain_openai" def test_langchain_model_call(self, langchain_llm, prompt): langchain_wrapper = LangchainLLM(langchain_llm) assert ( langchain_wrapper.call(instruction=prompt, suffix="!") == "Custom response" )
[ "Hello" ]
2024-01-10
gventuri/pandas-ai
examples~with_privacy_enforced.py
"""Example of using PandasAI with a Pandas DataFrame""" import pandas as pd from pandasai import SmartDataframe from pandasai.llm import OpenAI from .data.sample_dataframe import dataframe llm = OpenAI() df = SmartDataframe( df=pd.DataFrame(dataframe), config={"llm": llm, "enforce_privacy": True} ) response = df.chat("Calculate the sum of the gdp of north american countries") print(response) # Output: 20901884461056
[ "Calculate the sum of the gdp of north american countries" ]
2024-01-10
gventuri/pandas-ai
examples~save_chart.py
"""Example of using PandasAI to generate and save a chart from a Pandas DataFrame""" import pandas as pd import os from data.sample_dataframe import dataframe from pandasai import SmartDataframe from pandasai.llm import OpenAI from pandasai.helpers import path df = pd.DataFrame(dataframe) llm = OpenAI() try: user_defined_path = path.find_project_root() except ValueError: user_defined_path = os.getcwd() user_defined_path = os.path.join(user_defined_path, "exports", "charts") df = SmartDataframe( df, config={ "llm": llm, "save_charts_path": user_defined_path, "save_charts": True, "verbose": True, }, ) response = df.chat( "Plot the histogram of countries showing for each the gpd," " using different colors for each bar", ) # Output: check out $pwd/exports/charts/{hashid}/chart.png
[ "Plot the histogram of countries showing for each the gpd, using different colors for each bar" ]
2024-01-10
gventuri/pandas-ai
examples~with_name_and_description.py
"""Example of using PandasAI with a Pandas DataFrame""" import pandas as pd from data.sample_dataframe import dataframe from pandasai import SmartDataframe from pandasai.llm import OpenAI df = pd.DataFrame(dataframe) llm = OpenAI() df = SmartDataframe( df=pd.DataFrame(dataframe), name="Countries", description="A dataframe with countries with their GDPs and happiness scores", config={"llm": llm}, ) response = df.chat("Calculate the sum of the gdp of north american countries") print(response) print(df.last_prompt) # Output: 20901884461056
[ "Calculate the sum of the gdp of north american countries" ]
2024-01-10
gventuri/pandas-ai
examples~from_snowflake.py
"""Example of using PandasAI with a Snowflake""" from pandasai import SmartDataframe from pandasai.llm import OpenAI from pandasai.connectors import SnowFlakeConnector snowflake_connector = SnowFlakeConnector( config={ "account": "ehxzojy-ue47135", "database": "SNOWFLAKE_SAMPLE_DATA", "username": "test", "password": "*****", "table": "lineitem", "warehouse": "COMPUTE_WH", "dbSchema": "tpch_sf1", "where": [ # this is optional and filters the data to # reduce the size of the dataframe ["l_quantity", ">", "49"] ], } ) llm = OpenAI(api_token="OPEN_API_KEY") df = SmartDataframe(snowflake_connector, config={"llm": llm}) response = df.chat("How many records has status 'F'?") print(response)
[ "How many records has status 'F'?" ]
2024-01-10
gventuri/pandas-ai
pandasai~llm~azure_openai.py
"""OpenAI LLM via Microsoft Azure Cloud This module is to run the OpenAI API when using Microsoft Cloud infrastructure. Azure has implemented the openai API access to its platform. For details https://learn.microsoft.com/en-us/azure/cognitive-services/openai/reference. Example: Use below example to call AzureOpenAI class >>> from pandasai.llm.azure_openai import AzureOpenAI """ import os from typing import Any, Dict, Optional, Union, Callable import openai from ..helpers import load_dotenv from ..exceptions import APIKeyNotFoundError, MissingModelError from ..helpers.openai import is_openai_v1 from .base import BaseOpenAI load_dotenv() class AzureOpenAI(BaseOpenAI): """OpenAI LLM via Microsoft Azure This class uses `BaseOpenAI` class to support Azure OpenAI features. """ azure_endpoint: Union[str, None] = None """Your Azure Active Directory token. Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided. For more: https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id. """ azure_ad_token: Union[str, None] = None """A function that returns an Azure Active Directory token. Will be invoked on every request. """ azure_ad_token_provider: Union[Callable[[], str], None] = None deployment_name: str api_version: str = "" """Legacy, for openai<1.0.0 support.""" api_base: str """Legacy, for openai<1.0.0 support.""" api_type: str = "azure" def __init__( self, api_token: Optional[str] = None, azure_endpoint: Union[str, None] = None, azure_ad_token: Union[str, None] = None, azure_ad_token_provider: Union[Callable[[], str], None] = None, api_base: Optional[str] = None, api_version: Optional[str] = None, deployment_name: str = None, is_chat_model: bool = True, **kwargs, ): """ __init__ method of AzureOpenAI Class. Args: api_token (str): Azure OpenAI API token. azure_endpoint (str): Azure endpoint. It should look like the following: <https://YOUR_RESOURCE_NAME.openai.azure.com/> azure_ad_token (str): Your Azure Active Directory token. Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided. For more: https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id. azure_ad_token_provider (str): A function that returns an Azure Active Directory token. Will be invoked on every request. api_version (str): Version of the Azure OpenAI API. Be aware the API version may change. api_base (str): Legacy, kept for backward compatibility with openai < 1.0. Ignored for openai >= 1.0. deployment_name (str): Custom name of the deployed model is_chat_model (bool): Whether ``deployment_name`` corresponds to a Chat or a Completion model. **kwargs: Inference Parameters. """ self.api_token = ( api_token or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("OPENAI_API_KEY") ) self.azure_endpoint = azure_endpoint or os.getenv("AZURE_OPENAI_ENDPOINT") self.api_base = api_base or os.getenv("OPENAI_API_BASE") self.api_version = api_version or os.getenv("OPENAI_API_VERSION") if self.api_token is None: raise APIKeyNotFoundError( "Azure OpenAI key is required. Please add an environment variable " "`AZURE_OPENAI_API_KEY` or `OPENAI_API_KEY` or pass `api_token` as a named parameter" ) if is_openai_v1(): if self.azure_endpoint is None: raise APIKeyNotFoundError( "Azure endpoint is required. Please add an environment variable " "`AZURE_OPENAI_API_ENDPOINT` or pass `azure_endpoint` as a named parameter" ) elif self.api_base is None: raise APIKeyNotFoundError( "Azure OpenAI base is required. Please add an environment variable " "`OPENAI_API_BASE` or pass `api_base` as a named parameter" ) if self.api_version is None: raise APIKeyNotFoundError( "Azure OpenAI version is required. Please add an environment variable " "`OPENAI_API_VERSION` or pass `api_version` as a named parameter" ) if deployment_name is None: raise MissingModelError( "No deployment name provided.", "Please include deployment name from Azure dashboard.", ) self.azure_ad_token = azure_ad_token or os.getenv("AZURE_OPENAI_AD_TOKEN") self.azure_ad_token_provider = azure_ad_token_provider self._is_chat_model = is_chat_model self.deployment_name = deployment_name self.openai_proxy = kwargs.get("openai_proxy") or os.getenv("OPENAI_PROXY") if self.openai_proxy: openai.proxy = {"http": self.openai_proxy, "https": self.openai_proxy} self._set_params(**kwargs) # set the client if self._is_chat_model: self.client = ( openai.AzureOpenAI(**self._client_params).chat.completions if is_openai_v1() else openai.ChatCompletion ) else: self.client = ( openai.AzureOpenAI(**self._client_params).completions if is_openai_v1() else openai.Completion ) @property def _default_params(self) -> Dict[str, Any]: """ Get the default parameters for calling OpenAI API. Returns: dict: A dictionary containing Default Params. """ return { **super()._default_params, "model" if is_openai_v1() else "engine": self.deployment_name, } @property def _invocation_params(self) -> Dict[str, Any]: """Get the parameters used to invoke the model.""" if is_openai_v1(): return super()._invocation_params else: return { **super()._invocation_params, "api_type": self.api_type, "api_version": self.api_version, } @property def _client_params(self) -> Dict[str, any]: client_params = { "api_version": self.api_version, "azure_endpoint": self.azure_endpoint, "azure_deployment": self.deployment_name, "azure_ad_token": self.azure_ad_token, "azure_ad_token_provider": self.azure_ad_token_provider, } return {**client_params, **super()._client_params} @property def type(self) -> str: return "azure-openai"
[]
2024-01-10
gventuri/pandas-ai
examples~from_databricks.py
"""Example of using PandasAI with a DataBricks""" from pandasai import SmartDataframe from pandasai.llm import OpenAI from pandasai.connectors import DatabricksConnector databricks_connector = DatabricksConnector( config={ "host": "adb-*****.azuredatabricks.net", "database": "default", "token": "dapidfd412321", "port": 443, "table": "loan_payments_data", "httpPath": "/sql/1.0/warehouses/213421312", "where": [ # this is optional and filters the data to # reduce the size of the dataframe ["loan_status", "=", "PAIDOFF"], ], } ) llm = OpenAI("OPEN_API_KEY") df = SmartDataframe(databricks_connector, config={"llm": llm}) response = df.chat("How many people from the United states?") print(response)
[ "How many people from the United states?" ]
2024-01-10
gventuri/pandas-ai
examples~skills_example.py
import pandas as pd from pandasai import Agent from pandasai.llm.openai import OpenAI from pandasai.skills import skill employees_data = { "EmployeeID": [1, 2, 3, 4, 5], "Name": ["John", "Emma", "Liam", "Olivia", "William"], "Department": ["HR", "Sales", "IT", "Marketing", "Finance"], } salaries_data = { "EmployeeID": [1, 2, 3, 4, 5], "Salary": [5000, 6000, 4500, 7000, 5500], } employees_df = pd.DataFrame(employees_data) salaries_df = pd.DataFrame(salaries_data) # Add function docstring to give more context to model @skill def plot_salaries(names: list[str], salaries: list[int]): """ Displays the bar chart having name on x-axis and salaries on y-axis using matplotlib Args: names (list[str]): Employees' names salaries (list[int]): Salaries """ import matplotlib.pyplot as plt plt.bar(names, salaries) plt.xlabel("Employee Name") plt.ylabel("Salary") plt.title("Employee Salaries") plt.xticks(rotation=45) llm = OpenAI("YOUR-API-KEY") agent = Agent([employees_df, salaries_df], config={"llm": llm}, memory_size=10) agent.add_skills(plot_salaries) # Chat with the agent response = agent.chat("Plot the employee salaries against names") print(response)
[ "Plot the employee salaries against names" ]
2024-01-10
gventuri/pandas-ai
examples~using_pipeline.py
import pandas as pd from pandasai.llm.openai import OpenAI from pandasai.pipelines.logic_units.output_logic_unit import ProcessOutput from pandasai.pipelines.synthetic_dataframe.generate_sdf_pipeline import ( GenerateSDFPipeline, ) from pandasai.pipelines.pipeline_context import PipelineContext from pandasai.pipelines.synthetic_dataframe.sdf_code_executor import ( SDFCodeExecutor, ) from pandasai.pipelines.synthetic_dataframe.synthetic_df_prompt import ( SyntheticDataframePrompt, ) from pandasai.pipelines.logic_units.prompt_execution import PromptExecution from pandasai.pipelines.pipeline import Pipeline employees_df = pd.DataFrame( { "EmployeeID": [1, 2, 3, 4, 5], "Name": ["John", "Emma", "Liam", "Olivia", "William"], "Department": ["HR", "Sales", "IT", "Marketing", "Finance"], } ) salaries_df = pd.DataFrame( { "EmployeeID": [1, 2, 3, 4, 5], "Salary": [5000, 6000, 4500, 7000, 5500], } ) llm = OpenAI("Your-API-Key") config = {"llm": llm, "verbose": True} context = PipelineContext([salaries_df], config) # Create your own pipeline pipeline = Pipeline( context=context, steps=[ SyntheticDataframePrompt(amount=15), PromptExecution(), SDFCodeExecutor(), ProcessOutput(), ], ) data_frame = pipeline.run() print(data_frame) # Using defined Pipelines context = PipelineContext([employees_df], config) pipeline = GenerateSDFPipeline( amount=10, context=context, ) data_frame = pipeline.run() print(data_frame) # Without passing Context pipeline = Pipeline( [salaries_df], config=config, steps=[ SyntheticDataframePrompt(amount=15), PromptExecution(), SDFCodeExecutor(), ProcessOutput(), ], ) data_frame = pipeline.run() print(data_frame)
[]
2024-01-10
sv2441/LLM-Hackathon
pages~2_CV%20ranking.py
import streamlit as st from langchain.chat_models import ChatOpenAI from langchain.prompts import ChatPromptTemplate from dotenv import load_dotenv import docx import os import pdfplumber load_dotenv() # os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"] os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY') chat_llm = ChatOpenAI(temperature=0.0, request_timeout=120) def extract_text_from_pdf(pdf_file): with pdfplumber.open(pdf_file) as pdf: text = "" for page in pdf.pages: text += page.extract_text() return text def summary(text): title_template = """you are a HR Recruiter bot.you are given a text from resume. Summarize the "{topic}" into 50 to 60 words including key skills and technology. """ prompt = ChatPromptTemplate.from_template(template=title_template) messages = prompt.format_messages(topic=text) response = chat_llm(messages) return response.content def read_docx(file_path): try: doc = docx.Document(file_path) text = "" for para in doc.paragraphs: text += para.text + "\n" return text except Exception as e: return str(e) def cv_rank(topic): file_path = "enhanced_jd.docx" jd = read_docx(file_path) title_template = """you are a HR Recruiter bot. "{topic}" is Resume summary . Score the Summary based on "{jd}". Give the Rate out of 10. """ prompt = ChatPromptTemplate.from_template(template=title_template) messages = prompt.format_messages(topic=topic,jd=jd) response = chat_llm(messages) return response.content def save_as_docx(text, filename): doc = docx.Document() doc.add_paragraph(text) doc.save(filename) def main(): st.title("CV Ranking") uploaded_files = st.file_uploader("Upload PDF Resumes", type=["pdf"], accept_multiple_files=True) if uploaded_files: st.write("Uploaded Resumes:") for resume in uploaded_files: st.write(resume.name) text = extract_text_from_pdf(resume) response=summary(text) st.text(response) # Display extracted text on the app if st.button("Rank"): rank=cv_rank(response) st.text(rank) if st.button("Save"): save_as_docx(response, "summary.docx") if __name__ == "__main__": main()
[ "you are a HR Recruiter bot.you are given a text from resume. \n Summarize the \"{topic}\" into 50 to 60 words including key skills and technology.\n ", "you are a HR Recruiter bot.\n \"{topic}\" is Resume summary . Score the Summary based on \"{jd}\". Give the Rate out of 10.\n " ]
2024-01-10
sv2441/LLM-Hackathon
pages~1_Job%20Description%20evaluation.py
import streamlit as st from langchain.chat_models import ChatOpenAI from langchain.prompts import ChatPromptTemplate from dotenv import load_dotenv import docx import os load_dotenv() # os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"] os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY') chat_llm = ChatOpenAI(temperature=0.0, request_timeout=120) def main(): st.title("Job Description Evaluation") # Text input for the test jd = st.text_input("Enter the Job Description:", value="") # Display the test result if st.button("Submit"): if jd: enhanced = enhanced_jd(jd) st.write("User Input JD:", jd) st.write("Enhanced JD:", enhanced) if st.button("Old"): save_as_docx(jd, "jd.docx") if st.button("New"): save_as_docx(enhanced, "enhanced_jd.docx") def enhanced_jd(jd): title_template = """you are a HR Recruiter bot. you are given a Job description. This is "{topic}" and Score this Job description out of 10. Make some necessary enhancements in the given Job description and only Provide the enhanced Version of the "{topic}". """ prompt = ChatPromptTemplate.from_template(template=title_template) messages = prompt.format_messages(topic=jd) response = chat_llm(messages) save_as_docx(response.content, "enhanced_jd.docx") return response.content def save_as_docx(text, filename): doc = docx.Document() doc.add_paragraph(text) doc.save(filename) if __name__ == "__main__": main()
[ "you are a HR Recruiter bot. you are given a Job description. \n This is \"{topic}\" and Score this Job description out of 10. \n Make some necessary enhancements in the given Job description and only Provide the enhanced Version of the \"{topic}\".\n " ]
2024-01-10
sv2441/LLM-Hackathon
pages~3_Genrate_QA.py
import streamlit as st from langchain.chat_models import ChatOpenAI from langchain.prompts import ChatPromptTemplate from dotenv import load_dotenv import docx import os import pdfplumber load_dotenv() # os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"] os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY') chat_llm = ChatOpenAI(temperature=0.0, request_timeout=120) def read_docx(file_path): try: doc = docx.Document(file_path) text = "" for para in doc.paragraphs: text += para.text + "\n" return text except Exception as e: return str(e) def genrate_qa(en_jd , summary): title_template = """you are a Technical interviewer. Develop 15 screening questions for each candidate, considering different levels of importance or significance assigned to the "{en_jd}" and the "{summary}" """ prompt = ChatPromptTemplate.from_template(template=title_template) messages = prompt.format_messages(en_jd=en_jd,summary=summary) response = chat_llm(messages) return response.content def main(): st.title("Screening Round") Name = st.text_input("Enter the Name :", value="") if st.button("Generate Questions"): file_path = "enhanced_jd.docx" en_jd = read_docx(file_path) file_path = "summary.docx" summary=read_docx(file_path) questions=genrate_qa(en_jd,summary) st.text(questions) if st.button("Submit"): st.markdown("Thank YOu") if __name__ == "__main__": main()
[ "you are a Technical interviewer. Develop 15 screening questions for each candidate,\n considering different levels of importance or significance assigned to the \"{en_jd}\" and the \"{summary}\"\n " ]
2024-01-10
HammadMusaddiq/Python_ML
Embeddings%20Multi%20model~Code~updated_code.py
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score, roc_auc_score, matthews_corrcoef import torch from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler from transformers import BertForSequenceClassification, BertTokenizer, BertForNextSentencePrediction from transformers import RobertaForSequenceClassification, RobertaTokenizer from transformers import DistilBertForSequenceClassification, DistilBertTokenizer from transformers import CamembertForSequenceClassification, CamembertTokenizer from transformers import AlbertForSequenceClassification, AlbertTokenizer from transformers import OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer from transformers import GPT2Tokenizer, GPT2LMHeadModel from transformers.optimization import AdamW #It works - BERT Model bert_model = BertForSequenceClassification.from_pretrained('bert-base-uncased') bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') #It works - Distil BERT distil_bert_model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased') distil_bert_tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') #It works- French Language Model camem_bert_model = CamembertForSequenceClassification.from_pretrained('camembert-base') camem_bert_tokenizer = CamembertTokenizer.from_pretrained('camembert-base') #It works - Roberta Tokenizer roberta_tokenizer = RobertaTokenizer.from_pretrained('roberta-base') roberta_model = RobertaForSequenceClassification.from_pretrained('roberta-base') #It works for EPOCHS=30 - Albert Tokenizer albert_model = AlbertForSequenceClassification.from_pretrained('albert-base-v2') albert_tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') #It does not work # tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt') # model = OpenAIGPTDoubleHeadsModel.from_pretrained('openai-gpt') #It works- GPT2 Tokenizer gpt_tokenizer = GPT2Tokenizer.from_pretrained('gpt2') gpt_model = GPT2LMHeadModel.from_pretrained('gpt2') # tokenizer.add_special_tokens({'cls_token': '[CLS]', 'pad_token': '[PAD]'}) # model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size models = [bert_model, distil_bert_model, camem_bert_model, roberta_model, albert_model, gpt_model] tokernizers = [bert_tokenizer, distil_bert_tokenizer, camem_bert_tokenizer, roberta_tokenizer, albert_tokenizer, gpt_tokenizer] print("#####################################") print("Models Loaded") print("#####################################") df = pd.read_excel('Health Related Policies-Labled 1000 Records.xlsx') X_train = df['HealthPrivacyPolicy'][:700] y_train = df['Label'][:700] X_test = df['HealthPrivacyPolicy'][700:] y_test = df['Label'][700:] print(X_train.shape, y_train.shape, X_test.shape, y_test.shape) MAX_SEQ_LEN = 32 BATCH_SIZE = 4 NUM_EPOCHS = 1 no_decay = ['bias', 'gamma', 'beta'] count = 1 # Function to calculate the accuracy of our predictions vs labels def flat_accuracy(preds, labels): pred_flat = np.argmax(preds, axis=1).flatten() labels_flat = labels.flatten() return np.sum(pred_flat == labels_flat) / len(labels_flat) def evaluate(model, test_inputs, token_types, test_masks, test_labels): # Convert all of our data into torch tensors, the required datatype for our model prediction_inputs = torch.tensor(test_inputs) #prediction_token_types = torch.tensor(token_types) prediction_masks = torch.tensor(test_masks) prediction_labels = torch.tensor(df['Label'][700:].values) # Select a batch size for training. batch_size = BATCH_SIZE # Create an iterator of our data with torch DataLoader #prediction_data = TensorDataset(prediction_inputs, prediction_token_types, prediction_masks, prediction_labels) prediction_data = TensorDataset(prediction_inputs, prediction_masks, prediction_labels) prediction_sampler = SequentialSampler(prediction_data) prediction_dataloader = DataLoader(prediction_data, sampler=prediction_sampler, batch_size=batch_size) ## Prediction on test set # Put model in evaluation mode model.eval() # Tracking variables predictions , true_labels = [], [] # Predict for batch in prediction_dataloader: # Add batch to GPU batch = tuple(t.to(device) for t in batch) # Unpack the inputs from our dataloader #b_input_ids, b_token_type_ids, b_input_mask, b_labels = batch b_input_ids, b_input_mask, b_labels = batch # Telling the model not to compute or store gradients, saving memory and speeding up prediction with torch.no_grad(): # Forward pass, calculate logit predictions # logits = model(b_input_ids, token_type_ids=b_token_type_ids, attention_mask=b_input_mask) logits = model(b_input_ids, attention_mask=b_input_mask) # Move logits and labels to CPU logits = logits[0].cpu().numpy() label_ids = b_labels.to('cpu').numpy() # Store predictions and true labels predictions.append(logits) true_labels.append(label_ids) # matthews_set = [] # for i in range(len(true_labels)): # matthews = matthews_corrcoef(true_labels[i], # np.argmax(predictions[i], axis=1).flatten()) # matthews_set.append(matthews) # Flatten the predictions and true values for aggregate Matthew's evaluation on the whole dataset flat_predictions = [item for sublist in predictions for item in sublist] flat_predictions = np.argmax(flat_predictions, axis=1).flatten() flat_true_labels = [item for sublist in true_labels for item in sublist] scores = { #'matthews_corrcoef_acc': matthews_corrcoef(flat_true_labels, flat_predictions), 'precision': precision_score(flat_true_labels, flat_predictions), 'recall': recall_score(flat_true_labels, flat_predictions), 'f1_score': f1_score(flat_true_labels, flat_predictions), 'accuracy': accuracy_score(flat_true_labels, flat_predictions) } return scores for model, tokenizer in zip(models, tokernizers): input_ids = [] attention_masks = [] input_ids_test = [] attention_masks_test = [] token_type_ids_test = [] for tweet in X_train: if model != gpt_model: #Only for BERT models encoded_data = tokenizer.encode_plus(text=tweet, max_length=512, pad_to_max_length=True) input_ids.append(encoded_data['input_ids']) else: #ONly FOR OpenAI-GPT and GPT2 tokenizer.add_special_tokens({'cls_token': '[CLS]', 'pad_token': '[PAD]'}) # model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size encoded_data = tokenizer.encode_plus(text=tweet, max_length=512, pad_to_max_length=True) input_ids.append(encoded_data['input_ids']) #token_type_ids.append(encoded_data['token_type_ids']) attention_masks.append(encoded_data['attention_mask']) # Use train_test_split to split our training data into train and validation sets for training train_inputs, validation_inputs, train_labels, validation_labels = train_test_split( input_ids, y_train, random_state=27, test_size=0.20) #train_token_types, validation_token_types, _, _ = train_test_split(token_type_ids, input_ids, # random_state=RANDOM_SEED, test_size=0.20) train_masks, validation_masks, _, _ = train_test_split(attention_masks, input_ids, random_state=27, test_size=0.20) print("Train Data: ", len(train_inputs), len(train_masks), len(train_labels)) print("Test Data: ", len(validation_inputs), len(validation_masks, len(validation_labels))) # Convert all of our data into torch tensors, the required datatype for our model train_inputs = torch.tensor(train_inputs) validation_inputs = torch.tensor(validation_inputs) #train_token_types = torch.tensor(train_token_types) #validation_token_types = torch.tensor(validation_token_types) train_masks = torch.tensor(train_masks) validation_masks = torch.tensor(validation_masks) train_labels = torch.tensor(df['Label'][:560].values) validation_labels = torch.tensor(df['Label'][560:700].values) # Select a batch size for training. batch_size = BATCH_SIZE # Create an iterator of our data with torch DataLoader #train_data = TensorDataset(train_inputs, train_token_types, train_masks, train_labels) train_data = TensorDataset(train_inputs, train_masks, train_labels) train_sampler = RandomSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size) #validation_data = TensorDataset(validation_inputs, validation_token_types, validation_masks, validation_labels) validation_data = TensorDataset(validation_inputs, validation_masks, validation_labels) validation_sampler = SequentialSampler(validation_data) validation_dataloader = DataLoader(validation_data, sampler=validation_sampler, batch_size=batch_size) torch.cuda.empty_cache() # specify GPU device #os.environ['CUDA_VISIBLE_DEVICES'] = '1' device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # device = 'cpu' #print(device) n_gpu = torch.cuda.device_count() #print(n_gpu) # torch.cuda.get_device_name(0) # BERT fine-tuning parameters param_optimizer = list(model.named_parameters()) optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0} ] optimizer = AdamW(params=optimizer_grouped_parameters, lr=2e-5, weight_decay=0.01) # Store our loss and accuracy for plotting train_loss_set = [] # Number of training epochs epochs = NUM_EPOCHS # model.cuda() model.to(device) # BERT training loop for epoch in range(epochs): print('Epoch {}/{}'.format(epoch+1, epochs)) ## TRAINING # Set our model to training mode model.train() # Tracking variables tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 # Train the data for one epoch for step, batch in enumerate(train_dataloader): # Add batch to GPU batch = tuple(t.to(device) for t in batch) # Unpack the inputs from our dataloader #b_input_ids, b_token_type_ids, b_input_mask, b_labels = batch b_input_ids, b_input_mask, b_labels = batch # Clear out the gradients (by default they accumulate) optimizer.zero_grad() # Forward pass #loss, _ = model(input_ids = b_input_ids, token_type_ids=b_token_type_ids, attention_mask=b_input_mask, labels=b_labels) #loss, _ = model(input_ids = b_input_ids, token_type_ids=b_token_type_ids, attention_mask=b_input_mask, next_sentence_label=b_labels) loss, _ = model(input_ids = b_input_ids, attention_mask=b_input_mask, labels=b_labels, return_dict=False) train_loss_set.append(loss.item()) # Backward pass loss.backward() # Update parameters and take a step using the computed gradient optimizer.step() # Update tracking variables tr_loss += loss.item() nb_tr_examples += b_input_ids.size(0) nb_tr_steps += 1 print("Train loss: {:.4f}".format(tr_loss/nb_tr_steps)) ## VALIDATION # Put model in evaluation mode model.eval() # Tracking variables eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 # Evaluate data for one epoch for batch in validation_dataloader: # Add batch to GPU batch = tuple(t.to(device) for t in batch) # Unpack the inputs from our dataloader #b_input_ids, b_token_type_ids, b_input_mask, b_labels = batch b_input_ids, b_input_mask, b_labels = batch # Telling the model not to compute or store gradients, saving memory and speeding up validation with torch.no_grad(): # Forward pass, calculate logit predictions #logits = model(b_input_ids, token_type_ids=b_token_type_ids, attention_mask=b_input_mask) logits = model(b_input_ids, attention_mask=b_input_mask) # Move logits and labels to CPU logits = np.array(logits[0].cpu()) label_ids = b_labels.to('cpu').numpy() tmp_eval_accuracy = flat_accuracy(logits, label_ids) eval_accuracy += tmp_eval_accuracy nb_eval_steps += 1 print("Validation Accuracy: {:.4f}\n".format(eval_accuracy/nb_eval_steps)) # plot training performance plt.figure(figsize=(15,8)) #plt.title("Training loss") plt.xlabel("Batch") plt.ylabel("Training Loss") plt.plot(train_loss_set) # plt.show() plt.savefig("model_" + str(count) + 'jpg') for tweet in X_test: encoded_data_test = tokenizer.encode_plus(text=tweet, max_length=MAX_SEQ_LEN, pad_to_max_length=True) input_ids_test.append(encoded_data_test['input_ids']) #token_type_ids_test.append(encoded_data_test['token_type_ids']) attention_masks_test.append(encoded_data_test['attention_mask']) scores = evaluate(model, input_ids_test, token_type_ids_test, attention_masks_test, y_test) print('{:.4f}, {:.4f}, {:.4f}, {:.4f}'.format(scores['accuracy'], scores['precision'], scores['recall'], scores['f1_score'])) print("######################################") print("Model_" + str(count) + ":Done") print("######################################") count += 1
[]
2024-01-10
LLMLab/auto_anno
auto_anno_2~utils~auto_learn~cluster_text.py
import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.metrics.pairwise import euclidean_distances import numpy as np import random import sys sys.path.append('.') from ...local_config import emb, config openai_key = config['openai']['key'] EMBEDDING_BY = 'yiyan' # openai | bert if EMBEDDING_BY == 'openai': import openai elif EMBEDDING_BY == 'bert': from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese") model = AutoModelForMaskedLM.from_pretrained("bert-base-chinese") import torch def get_embedding(text, by=EMBEDDING_BY): if by == 'openai': # Set OpenAI API key openai.api_key = random.choice(openai_key) if type(openai_key) == list else openai_key model = "text-embedding-ada-002" emb_req = openai.Embedding.create(input=[text], model=model) embedding = emb_req.data[0].embedding return embedding elif by == 'bert': encoded_input = tokenizer(text, padding=True, truncation=True, return_tensors='pt') output = model(**encoded_input) embedding = torch.mean(output[0], dim=1).squeeze(0) return embedding.detach().numpy() else: return emb(text) return None def cluster_text(text_list, n_clusters=20): if n_clusters >= len(text_list): return text_list # Convert text_list to numerical data data = [] for text in text_list: embedding = get_embedding(text, by=EMBEDDING_BY) data.append(embedding) data = np.array(data) # Cluster the data kmeans = KMeans(n_clusters=n_clusters) kmeans.fit(data) # Get the cluster centers centers = kmeans.cluster_centers_ # Get the distances to each center # distances = kmeans.transform(data) distances = euclidean_distances(data, centers) # Get the centers' index indexes = np.argmin(distances, axis=0) # Get the samples with the smallest distance to their center samples = [text_list[idx] for idx in indexes] return samples def plot_clusters(text_list, n_clusters=20, openai_api_key=openai_key): # Set OpenAI API key openai.api_key = openai_api_key model = "text-embedding-ada-002" # Convert text_list to numerical data using OpenAI API data = [] for text in text_list: emb_req = openai.Embedding.create(input=[text], model=model) embeddings = emb_req.data[0].embedding data.append(embeddings) data = np.array(data) # Cluster the data kmeans = KMeans(n_clusters=n_clusters) kmeans.fit(data) # Reduce the dimensionality of the data pca = PCA(n_components=2) reduced_data = pca.fit_transform(data) # Plot the reduced data plt.scatter(reduced_data[:, 0], reduced_data[:, 1], c=kmeans.labels_) for i, text in enumerate(text_list): plt.annotate(text, (reduced_data[i, 0], reduced_data[i, 1])) plt.show() if __name__ == "__main__": test_data = [ '一百多和三十的也看不出什么区别,包装精美,质量应该不错。', '质量很好 料子很不错 做工细致 样式好看 穿着很漂亮', ' 会卷的 建议买大的小的会卷 胖就别买了 没用', '大差了 布料很差 我也不想多说', '一点也不好,我买的东西拿都拿到快递员自己签收了还不给我,恶心恶心恶心,不要脸不要脸', '一百多和三十的也看不出什么区别,包装精美,质量应该不错。', '质量很好 料子很不错 做工细致 样式好看 穿着很漂亮', ' 会卷的 建议买大的小的会卷 胖就别买了 没用', '大差了 布料很差 我也不想多说', '一点也不好,我买的东西拿都拿到快递员自己签收了还不给我,恶心恶心恶心,不要脸不要脸', ] result = cluster_text(test_data, n_clusters=3) # plot_clusters(test_data, n_clusters=3) print(result)
[]
2024-01-10
kaueltzen/pymatgen
pymatgen~analysis~interface.py
""" This module provides classes to store, generate, and manipulate material interfaces. """ from __future__ import annotations import warnings from pymatgen.analysis.interfaces import CoherentInterfaceBuilder # noqa: F401 from pymatgen.core.interface import Interface # noqa: F401 __author__ = "Eric Sivonxay, Shyam Dwaraknath, and Kyle Bystrom" __copyright__ = "Copyright 2019, The Materials Project" __version__ = "0.1" __maintainer__ = "Kyle Bystrom" __email__ = "[email protected]" __date__ = "5/29/2019" __status__ = "Prototype" warnings.warn( "The substrate_analyzer module is being moved to the interfaces submodule in analysis." " These imports will break in Pymatgen 2023", category=FutureWarning, stacklevel=2, )
[]
2024-01-10
dkalpakchi/SweCTRL-Mini
human_eval~synthesize_gpt3.py
import os import json import time import dotenv import yaml import openai import requests import jsonlines as jsl from tqdm import tqdm prompt_templates = { "news": "Skriv en nyhetsartikel.\\{}", "wiki": "Skriv en artikel i Wikipedia.\\{}", "news_sport": "Skriv en nyhetsartikel om idrott.\\{}", "blogs": "Skriv ett blogginlägg.\\{}", "news_pressrelease": "Skriv ett pressmeddelande.\\{}", "ads": "Skriv en annons.\\{}", "news_opinion": "Skriv en insändare.\\{}", "news_culture": "Skriv en nyhetsartikel om kultur.\\{}", "admin": "Skriv en förvaltningstext.\\{}", "news_economy": "Skriv en nyhetsartikel om ekonomi.\\{}", "info_medical": "Skriv en informerande text om ett medicinskt ämne.\\{}", "info": "Skriv en informerande text.\\{}", "news_tech": "Skriv en nyhetsartikel om teknologi.\\{}", "review": "Skriv en recension.\\{}", "info_travel": "Skriv en informerande text om resor.\\{}", "news_lifestyle": "Skriv en nyhetsartikel om livstil.\\{}", "blogs_sport": "Skriv ett blogginlägg om idrott.\\{}", "info_lifestyle": "Skriv en informerande text om livstil.\\{}", "news_sustainability": "Skriv en nyhetsartikel om hållbarhet.\\{}", "news_travel": "Skriv en nyhetsartikel om resor.\\{}", "info_business": "Skriv en informerande text om affär.\\{}", "news_politics": "Skriv en nyhetsartikel om politik.\\{}", "news_science": "Skriv en nyhetsartikel om vetenskap.\\{}", "news_food": "Skriv en nyhetsartikel om mat.\\{}", "news_fashion": "Skriv en nyhetsartikel om mode.\\{}", "news_weather": "Skriv en nyhetsartikel om vädret.\\{}", "blogs_economy": "Skriv ett blogginlägg om ekonomi.\\{}" } if __name__ == '__main__': dotenv.load_dotenv() openai.api_key = os.getenv('SECRET_KEY') with open("prompts.yaml") as f: prompts = yaml.load(f) generated = [] ts = int(time.time()) max_samples = 5 with jsl.open('generated_{}.jsonl'.format(ts), 'w') as writer: for cat in tqdm(prompts): for subcat, prompt_lst in prompts[cat].items(): for prompt in prompt_lst: text = prompt_templates[cat].format(prompt) num_samples = 0 while True: if num_samples == max_samples: break try: gen_params = { 'prompt': text, 'temperature': 0.7, 'max_tokens': 256 } completion = openai.Completion.create(engine='text-davinci-003', **gen_params) num_samples += 1 except openai.error.RateLimitError: time.sleep(60) continue writer.write({ 'text': text, 'cat': cat, 'subcat': subcat, 'params': gen_params, 'res': completion })
[ "{'news': 'Skriv en nyhetsartikel.\\\\{}', 'wiki': 'Skriv en artikel i Wikipedia.\\\\{}', 'news_sport': 'Skriv en nyhetsartikel om idrott.\\\\{}', 'blogs': 'Skriv ett blogginlägg.\\\\{}', 'news_pressrelease': 'Skriv ett pressmeddelande.\\\\{}', 'ads': 'Skriv en annons.\\\\{}', 'news_opinion': 'Skriv en insändare.\\\\{}', 'news_culture': 'Skriv en nyhetsartikel om kultur.\\\\{}', 'admin': 'Skriv en förvaltningstext.\\\\{}', 'news_economy': 'Skriv en nyhetsartikel om ekonomi.\\\\{}', 'info_medical': 'Skriv en informerande text om ett medicinskt ämne.\\\\{}', 'info': 'Skriv en informerande text.\\\\{}', 'news_tech': 'Skriv en nyhetsartikel om teknologi.\\\\{}', 'review': 'Skriv en recension.\\\\{}', 'info_travel': 'Skriv en informerande text om resor.\\\\{}', 'news_lifestyle': 'Skriv en nyhetsartikel om livstil.\\\\{}', 'blogs_sport': 'Skriv ett blogginlägg om idrott.\\\\{}', 'info_lifestyle': 'Skriv en informerande text om livstil.\\\\{}', 'news_sustainability': 'Skriv en nyhetsartikel om hållbarhet.\\\\{}', 'news_travel': 'Skriv en nyhetsartikel om resor.\\\\{}', 'info_business': 'Skriv en informerande text om affär.\\\\{}', 'news_politics': 'Skriv en nyhetsartikel om politik.\\\\{}', 'news_science': 'Skriv en nyhetsartikel om vetenskap.\\\\{}', 'news_food': 'Skriv en nyhetsartikel om mat.\\\\{}', 'news_fashion': 'Skriv en nyhetsartikel om mode.\\\\{}', 'news_weather': 'Skriv en nyhetsartikel om vädret.\\\\{}', 'blogs_economy': 'Skriv ett blogginlägg om ekonomi.\\\\{}'}" ]