date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
Abhishek-1211/langchain
libs~langchain~tests~integration_tests~chat_models~test_vertexai.py
"""Test Vertex AI API wrapper. In order to run this test, you need to install VertexAI SDK (that is is the private preview) and be whitelisted to list the models themselves: In order to run this test, you need to install VertexAI SDK pip install google-cloud-aiplatform>=1.35.0 Your end-user credentials would be used to make the calls (make sure you've run `gcloud auth login` first). """ from typing import Optional from unittest.mock import MagicMock, Mock, patch import pytest from langchain_core.messages import ( AIMessage, AIMessageChunk, HumanMessage, SystemMessage, ) from langchain_core.outputs import LLMResult from langchain.chat_models import ChatVertexAI from langchain.chat_models.vertexai import _parse_chat_history, _parse_examples @pytest.mark.parametrize("model_name", [None, "codechat-bison", "chat-bison"]) def test_vertexai_instantiation(model_name: str) -> None: if model_name: model = ChatVertexAI(model_name=model_name) else: model = ChatVertexAI() assert model._llm_type == "vertexai" assert model.model_name == model.client._model_id @pytest.mark.scheduled @pytest.mark.parametrize("model_name", [None, "codechat-bison", "chat-bison"]) def test_vertexai_single_call(model_name: str) -> None: if model_name: model = ChatVertexAI(model_name=model_name) else: model = ChatVertexAI() message = HumanMessage(content="Hello") response = model([message]) assert isinstance(response, AIMessage) assert isinstance(response.content, str) # mark xfail because Vertex API randomly doesn't respect # the n/candidate_count parameter @pytest.mark.xfail @pytest.mark.scheduled def test_candidates() -> None: model = ChatVertexAI(model_name="chat-bison@001", temperature=0.3, n=2) message = HumanMessage(content="Hello") response = model.generate(messages=[[message]]) assert isinstance(response, LLMResult) assert len(response.generations) == 1 assert len(response.generations[0]) == 2 @pytest.mark.scheduled async def test_vertexai_agenerate() -> None: model = ChatVertexAI(temperature=0) message = HumanMessage(content="Hello") response = await model.agenerate([[message]]) assert isinstance(response, LLMResult) assert isinstance(response.generations[0][0].message, AIMessage) # type: ignore sync_response = model.generate([[message]]) assert response.generations[0][0] == sync_response.generations[0][0] @pytest.mark.scheduled async def test_vertexai_stream() -> None: model = ChatVertexAI(temperature=0) message = HumanMessage(content="Hello") sync_response = model.stream([message]) for chunk in sync_response: assert isinstance(chunk, AIMessageChunk) @pytest.mark.scheduled def test_vertexai_single_call_with_context() -> None: model = ChatVertexAI() raw_context = ( "My name is Ned. You are my personal assistant. My favorite movies " "are Lord of the Rings and Hobbit." ) question = ( "Hello, could you recommend a good movie for me to watch this evening, please?" ) context = SystemMessage(content=raw_context) message = HumanMessage(content=question) response = model([context, message]) assert isinstance(response, AIMessage) assert isinstance(response.content, str) @pytest.mark.scheduled def test_vertexai_single_call_with_examples() -> None: model = ChatVertexAI() raw_context = "My name is Ned. You are my personal assistant." question = "2+2" text_question, text_answer = "4+4", "8" inp = HumanMessage(content=text_question) output = AIMessage(content=text_answer) context = SystemMessage(content=raw_context) message = HumanMessage(content=question) response = model([context, message], examples=[inp, output]) assert isinstance(response, AIMessage) assert isinstance(response.content, str) @pytest.mark.scheduled @pytest.mark.parametrize("model_name", [None, "codechat-bison", "chat-bison"]) def test_vertexai_single_call_with_history(model_name: str) -> None: if model_name: model = ChatVertexAI(model_name=model_name) else: model = ChatVertexAI() text_question1, text_answer1 = "How much is 2+2?", "4" text_question2 = "How much is 3+3?" message1 = HumanMessage(content=text_question1) message2 = AIMessage(content=text_answer1) message3 = HumanMessage(content=text_question2) response = model([message1, message2, message3]) assert isinstance(response, AIMessage) assert isinstance(response.content, str) def test_parse_chat_history_correct() -> None: from vertexai.language_models import ChatMessage text_context = ( "My name is Ned. You are my personal assistant. My " "favorite movies are Lord of the Rings and Hobbit." ) context = SystemMessage(content=text_context) text_question = ( "Hello, could you recommend a good movie for me to watch this evening, please?" ) question = HumanMessage(content=text_question) text_answer = ( "Sure, You might enjoy The Lord of the Rings: The Fellowship of the Ring " "(2001): This is the first movie in the Lord of the Rings trilogy." ) answer = AIMessage(content=text_answer) history = _parse_chat_history([context, question, answer, question, answer]) assert history.context == context.content assert len(history.history) == 4 assert history.history == [ ChatMessage(content=text_question, author="user"), ChatMessage(content=text_answer, author="bot"), ChatMessage(content=text_question, author="user"), ChatMessage(content=text_answer, author="bot"), ] def test_vertexai_single_call_fails_no_message() -> None: chat = ChatVertexAI() with pytest.raises(ValueError) as exc_info: _ = chat([]) assert ( str(exc_info.value) == "You should provide at least one message to start the chat!" ) @pytest.mark.parametrize("stop", [None, "stop1"]) def test_vertexai_args_passed(stop: Optional[str]) -> None: response_text = "Goodbye" user_prompt = "Hello" prompt_params = { "max_output_tokens": 1, "temperature": 10000.0, "top_k": 10, "top_p": 0.5, } # Mock the library to ensure the args are passed correctly with patch( "vertexai.language_models._language_models.ChatModel.start_chat" ) as start_chat: mock_response = MagicMock() mock_response.candidates = [Mock(text=response_text)] mock_chat = MagicMock() start_chat.return_value = mock_chat mock_send_message = MagicMock(return_value=mock_response) mock_chat.send_message = mock_send_message model = ChatVertexAI(**prompt_params) message = HumanMessage(content=user_prompt) if stop: response = model([message], stop=[stop]) else: response = model([message]) assert response.content == response_text mock_send_message.assert_called_once_with(user_prompt, candidate_count=1) expected_stop_sequence = [stop] if stop else None start_chat.assert_called_once_with( context=None, message_history=[], **prompt_params, stop_sequences=expected_stop_sequence, ) def test_parse_examples_correct() -> None: from vertexai.language_models import InputOutputTextPair text_question = ( "Hello, could you recommend a good movie for me to watch this evening, please?" ) question = HumanMessage(content=text_question) text_answer = ( "Sure, You might enjoy The Lord of the Rings: The Fellowship of the Ring " "(2001): This is the first movie in the Lord of the Rings trilogy." ) answer = AIMessage(content=text_answer) examples = _parse_examples([question, answer, question, answer]) assert len(examples) == 2 assert examples == [ InputOutputTextPair(input_text=text_question, output_text=text_answer), InputOutputTextPair(input_text=text_question, output_text=text_answer), ] def test_parse_examples_failes_wrong_sequence() -> None: with pytest.raises(ValueError) as exc_info: _ = _parse_examples([AIMessage(content="a")]) print(str(exc_info.value)) assert ( str(exc_info.value) == "Expect examples to have an even amount of messages, got 1." )
[ "{'max_output_tokens': 1, 'temperature': 10000.0, 'top_k': 10, 'top_p': 0.5}", "a", "My name is Ned. You are my personal assistant.", "2+2", "Hello", "How much is 3+3?" ]
2024-01-10
Abhishek-1211/langchain
libs~langchain~langchain~llms~tongyi.py
from __future__ import annotations import logging from typing import Any, Callable, Dict, List, Optional from langchain_core.outputs import Generation, LLMResult from langchain_core.pydantic_v1 import Field, root_validator from requests.exceptions import HTTPError from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) def _create_retry_decorator(llm: Tongyi) -> Callable[[Any], Any]: min_seconds = 1 max_seconds = 4 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(llm.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=(retry_if_exception_type(HTTPError)), before_sleep=before_sleep_log(logger, logging.WARNING), ) def generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator def _generate_with_retry(**_kwargs: Any) -> Any: resp = llm.client.call(**_kwargs) if resp.status_code == 200: return resp elif resp.status_code in [400, 401]: raise ValueError( f"status_code: {resp.status_code} \n " f"code: {resp.code} \n message: {resp.message}" ) else: raise HTTPError( f"HTTP error occurred: status_code: {resp.status_code} \n " f"code: {resp.code} \n message: {resp.message}", response=resp, ) return _generate_with_retry(**kwargs) def stream_generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator def _stream_generate_with_retry(**_kwargs: Any) -> Any: stream_resps = [] resps = llm.client.call(**_kwargs) for resp in resps: if resp.status_code == 200: stream_resps.append(resp) elif resp.status_code in [400, 401]: raise ValueError( f"status_code: {resp.status_code} \n " f"code: {resp.code} \n message: {resp.message}" ) else: raise HTTPError( f"HTTP error occurred: status_code: {resp.status_code} \n " f"code: {resp.code} \n message: {resp.message}", response=resp, ) return stream_resps return _stream_generate_with_retry(**kwargs) class Tongyi(LLM): """Tongyi Qwen large language models. To use, you should have the ``dashscope`` python package installed, and the environment variable ``DASHSCOPE_API_KEY`` set with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.llms import Tongyi Tongyi = tongyi() """ @property def lc_secrets(self) -> Dict[str, str]: return {"dashscope_api_key": "DASHSCOPE_API_KEY"} @classmethod def is_lc_serializable(cls) -> bool: return False client: Any #: :meta private: model_name: str = "qwen-plus-v1" """Model name to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) top_p: float = 0.8 """Total probability mass of tokens to consider at each step.""" dashscope_api_key: Optional[str] = None """Dashscope api key provide by alicloud.""" n: int = 1 """How many completions to generate for each prompt.""" streaming: bool = False """Whether to stream the results or not.""" max_retries: int = 10 """Maximum number of retries to make when generating.""" prefix_messages: List = Field(default_factory=list) """Series of messages for Chat input.""" @property def _llm_type(self) -> str: """Return type of llm.""" return "tongyi" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" get_from_dict_or_env(values, "dashscope_api_key", "DASHSCOPE_API_KEY") try: import dashscope except ImportError: raise ImportError( "Could not import dashscope python package. " "Please install it with `pip install dashscope`." ) try: values["client"] = dashscope.Generation except AttributeError: raise ValueError( "`dashscope` has no `Generation` attribute, this is likely " "due to an old version of the dashscope package. Try upgrading it " "with `pip install --upgrade dashscope`." ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" normal_params = { "top_p": self.top_p, } return {**normal_params, **self.model_kwargs} def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to Tongyi's generate endpoint. Args: prompt: The prompt to pass into the model. Returns: The string generated by the model. Example: .. code-block:: python response = tongyi("Tell me a joke.") """ params: Dict[str, Any] = { **{"model": self.model_name}, **self._default_params, **kwargs, } completion = generate_with_retry( self, prompt=prompt, **params, ) return completion["output"]["text"] def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: generations = [] params: Dict[str, Any] = { **{"model": self.model_name}, **self._default_params, **kwargs, } if self.streaming: if len(prompts) > 1: raise ValueError("Cannot stream results with multiple prompts.") params["stream"] = True temp = "" for stream_resp in stream_generate_with_retry( self, prompt=prompts[0], **params ): if run_manager: stream_resp_text = stream_resp["output"]["text"] stream_resp_text = stream_resp_text.replace(temp, "") # Ali Cloud's streaming transmission interface, each return content # will contain the output # of the previous round(as of September 20, 2023, future updates to # the Alibaba Cloud API may vary) run_manager.on_llm_new_token(stream_resp_text) # The implementation of streaming transmission primarily relies on # the "on_llm_new_token" method # of the streaming callback. temp = stream_resp["output"]["text"] generations.append( [ Generation( text=stream_resp["output"]["text"], generation_info=dict( finish_reason=stream_resp["output"]["finish_reason"], ), ) ] ) generations.reverse() # In the official implementation of the OpenAI API, # the "generations" parameter passed to LLMResult seems to be a 1*1*1 # two-dimensional list # (including in non-streaming mode). # Considering that Alibaba Cloud's streaming transmission # (as of September 20, 2023, future updates to the Alibaba Cloud API may # vary) # includes the output of the previous round in each return, # reversing this "generations" list should suffice # (This is the solution with the least amount of changes to the source code, # while still allowing for convenient modifications in the future, # although it may result in slightly more memory consumption). else: for prompt in prompts: completion = generate_with_retry( self, prompt=prompt, **params, ) generations.append( [ Generation( text=completion["output"]["text"], generation_info=dict( finish_reason=completion["output"]["finish_reason"], ), ) ] ) return LLMResult(generations=generations)
[]
2024-01-10
Abhishek-1211/langchain
libs~langchain~tests~integration_tests~embeddings~test_azure_openai.py
"""Test openai embeddings.""" import os from typing import Any import numpy as np import pytest from langchain.embeddings import AzureOpenAIEmbeddings OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "") OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "") OPENAI_API_KEY = os.environ.get("AZURE_OPENAI_API_KEY", "") DEPLOYMENT_NAME = os.environ.get( "AZURE_OPENAI_DEPLOYMENT_NAME", os.environ.get("AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME", ""), ) def _get_embeddings(**kwargs: Any) -> AzureOpenAIEmbeddings: return AzureOpenAIEmbeddings( azure_deployment=DEPLOYMENT_NAME, api_version=OPENAI_API_VERSION, openai_api_base=OPENAI_API_BASE, openai_api_key=OPENAI_API_KEY, **kwargs, ) @pytest.mark.scheduled def test_azure_openai_embedding_documents() -> None: """Test openai embeddings.""" documents = ["foo bar"] embedding = _get_embeddings() output = embedding.embed_documents(documents) assert len(output) == 1 assert len(output[0]) == 1536 @pytest.mark.scheduled def test_azure_openai_embedding_documents_multiple() -> None: """Test openai embeddings.""" documents = ["foo bar", "bar foo", "foo"] embedding = _get_embeddings(chunk_size=2) embedding.embedding_ctx_length = 8191 output = embedding.embed_documents(documents) assert embedding.chunk_size == 2 assert len(output) == 3 assert len(output[0]) == 1536 assert len(output[1]) == 1536 assert len(output[2]) == 1536 @pytest.mark.scheduled def test_azure_openai_embedding_documents_chunk_size() -> None: """Test openai embeddings.""" documents = ["foo bar"] * 20 embedding = _get_embeddings() embedding.embedding_ctx_length = 8191 output = embedding.embed_documents(documents) # Max 16 chunks per batch on Azure OpenAI embeddings assert embedding.chunk_size == 16 assert len(output) == 20 assert all([len(out) == 1536 for out in output]) @pytest.mark.scheduled async def test_azure_openai_embedding_documents_async_multiple() -> None: """Test openai embeddings.""" documents = ["foo bar", "bar foo", "foo"] embedding = _get_embeddings(chunk_size=2) embedding.embedding_ctx_length = 8191 output = await embedding.aembed_documents(documents) assert len(output) == 3 assert len(output[0]) == 1536 assert len(output[1]) == 1536 assert len(output[2]) == 1536 @pytest.mark.scheduled def test_azure_openai_embedding_query() -> None: """Test openai embeddings.""" document = "foo bar" embedding = _get_embeddings() output = embedding.embed_query(document) assert len(output) == 1536 @pytest.mark.scheduled async def test_azure_openai_embedding_async_query() -> None: """Test openai embeddings.""" document = "foo bar" embedding = _get_embeddings() output = await embedding.aembed_query(document) assert len(output) == 1536 @pytest.mark.skip(reason="Unblock scheduled testing. TODO: fix.") def test_azure_openai_embedding_with_empty_string() -> None: """Test openai embeddings with empty string.""" import openai document = ["", "abc"] embedding = _get_embeddings() output = embedding.embed_documents(document) assert len(output) == 2 assert len(output[0]) == 1536 expected_output = openai.Embedding.create(input="", model="text-embedding-ada-002")[ "data" ][0]["embedding"] assert np.allclose(output[0], expected_output) assert len(output[1]) == 1536 @pytest.mark.scheduled def test_embed_documents_normalized() -> None: output = _get_embeddings().embed_documents(["foo walked to the market"]) assert np.isclose(np.linalg.norm(output[0]), 1.0) @pytest.mark.scheduled def test_embed_query_normalized() -> None: output = _get_embeddings().embed_query("foo walked to the market") assert np.isclose(np.linalg.norm(output), 1.0)
[]
2024-01-10
Abhishek-1211/langchain
libs~langchain~langchain~llms~fireworks.py
import asyncio from concurrent.futures import ThreadPoolExecutor from typing import Any, AsyncIterator, Callable, Dict, Iterator, List, Optional, Union from langchain_core.outputs import Generation, GenerationChunk, LLMResult from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import BaseLLM, create_base_retry_decorator from langchain.utils.env import get_from_dict_or_env def _stream_response_to_generation_chunk( stream_response: Any, ) -> GenerationChunk: """Convert a stream response to a generation chunk.""" return GenerationChunk( text=stream_response.choices[0].text, generation_info=dict( finish_reason=stream_response.choices[0].finish_reason, logprobs=stream_response.choices[0].logprobs, ), ) class Fireworks(BaseLLM): """Fireworks models.""" model: str = "accounts/fireworks/models/llama-v2-7b-chat" model_kwargs: dict = Field( default_factory=lambda: { "temperature": 0.7, "max_tokens": 512, "top_p": 1, }.copy() ) fireworks_api_key: Optional[SecretStr] = None max_retries: int = 20 batch_size: int = 20 use_retry: bool = True @property def lc_secrets(self) -> Dict[str, str]: return {"fireworks_api_key": "FIREWORKS_API_KEY"} @classmethod def is_lc_serializable(cls) -> bool: return True @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "llms", "fireworks"] @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key in environment.""" try: import fireworks.client except ImportError as e: raise ImportError( "Could not import fireworks-ai python package. " "Please install it with `pip install fireworks-ai`." ) from e fireworks_api_key = convert_to_secret_str( get_from_dict_or_env(values, "fireworks_api_key", "FIREWORKS_API_KEY") ) fireworks.client.api_key = fireworks_api_key.get_secret_value() return values @property def _llm_type(self) -> str: """Return type of llm.""" return "fireworks" def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Call out to Fireworks endpoint with k unique prompts. Args: prompts: The prompts to pass into the model. stop: Optional list of stop words to use when generating. Returns: The full LLM output. """ params = { "model": self.model, **self.model_kwargs, } sub_prompts = self.get_batch_prompts(prompts) choices = [] for _prompts in sub_prompts: response = completion_with_retry_batching( self, self.use_retry, prompt=_prompts, run_manager=run_manager, stop=stop, **params, ) choices.extend(response) return self.create_llm_result(choices, prompts) async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Call out to Fireworks endpoint async with k unique prompts.""" params = { "model": self.model, **self.model_kwargs, } sub_prompts = self.get_batch_prompts(prompts) choices = [] for _prompts in sub_prompts: response = await acompletion_with_retry_batching( self, self.use_retry, prompt=_prompts, run_manager=run_manager, stop=stop, **params, ) choices.extend(response) return self.create_llm_result(choices, prompts) def get_batch_prompts( self, prompts: List[str], ) -> List[List[str]]: """Get the sub prompts for llm call.""" sub_prompts = [ prompts[i : i + self.batch_size] for i in range(0, len(prompts), self.batch_size) ] return sub_prompts def create_llm_result(self, choices: Any, prompts: List[str]) -> LLMResult: """Create the LLMResult from the choices and prompts.""" generations = [] for i, _ in enumerate(prompts): sub_choices = choices[i : (i + 1)] generations.append( [ Generation( text=choice.__dict__["choices"][0].text, ) for choice in sub_choices ] ) llm_output = {"model": self.model} return LLMResult(generations=generations, llm_output=llm_output) def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: params = { "model": self.model, "prompt": prompt, "stream": True, **self.model_kwargs, } for stream_resp in completion_with_retry( self, self.use_retry, run_manager=run_manager, stop=stop, **params ): chunk = _stream_response_to_generation_chunk(stream_resp) yield chunk if run_manager: run_manager.on_llm_new_token(chunk.text, chunk=chunk) async def _astream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[GenerationChunk]: params = { "model": self.model, "prompt": prompt, "stream": True, **self.model_kwargs, } async for stream_resp in await acompletion_with_retry_streaming( self, self.use_retry, run_manager=run_manager, stop=stop, **params ): chunk = _stream_response_to_generation_chunk(stream_resp) yield chunk if run_manager: await run_manager.on_llm_new_token(chunk.text, chunk=chunk) def conditional_decorator( condition: bool, decorator: Callable[[Any], Any] ) -> Callable[[Any], Any]: def actual_decorator(func: Callable[[Any], Any]) -> Callable[[Any], Any]: if condition: return decorator(func) return func return actual_decorator def completion_with_retry( llm: Fireworks, use_retry: bool, *, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the completion call.""" import fireworks.client retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @conditional_decorator(use_retry, retry_decorator) def _completion_with_retry(**kwargs: Any) -> Any: return fireworks.client.Completion.create( **kwargs, ) return _completion_with_retry(**kwargs) async def acompletion_with_retry( llm: Fireworks, use_retry: bool, *, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the completion call.""" import fireworks.client retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @conditional_decorator(use_retry, retry_decorator) async def _completion_with_retry(**kwargs: Any) -> Any: return await fireworks.client.Completion.acreate( **kwargs, ) return await _completion_with_retry(**kwargs) def completion_with_retry_batching( llm: Fireworks, use_retry: bool, *, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the completion call.""" import fireworks.client prompt = kwargs["prompt"] del kwargs["prompt"] retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @conditional_decorator(use_retry, retry_decorator) def _completion_with_retry(prompt: str) -> Any: return fireworks.client.Completion.create(**kwargs, prompt=prompt) def batch_sync_run() -> List: with ThreadPoolExecutor() as executor: results = list(executor.map(_completion_with_retry, prompt)) return results return batch_sync_run() async def acompletion_with_retry_batching( llm: Fireworks, use_retry: bool, *, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the completion call.""" import fireworks.client prompt = kwargs["prompt"] del kwargs["prompt"] retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @conditional_decorator(use_retry, retry_decorator) async def _completion_with_retry(prompt: str) -> Any: return await fireworks.client.Completion.acreate(**kwargs, prompt=prompt) def run_coroutine_in_new_loop( coroutine_func: Any, *args: Dict, **kwargs: Dict ) -> Any: new_loop = asyncio.new_event_loop() try: asyncio.set_event_loop(new_loop) return new_loop.run_until_complete(coroutine_func(*args, **kwargs)) finally: new_loop.close() async def batch_sync_run() -> List: with ThreadPoolExecutor() as executor: results = list( executor.map( run_coroutine_in_new_loop, [_completion_with_retry] * len(prompt), prompt, ) ) return results return await batch_sync_run() async def acompletion_with_retry_streaming( llm: Fireworks, use_retry: bool, *, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the completion call for streaming.""" import fireworks.client retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @conditional_decorator(use_retry, retry_decorator) async def _completion_with_retry(**kwargs: Any) -> Any: return fireworks.client.Completion.acreate( **kwargs, ) return await _completion_with_retry(**kwargs) def _create_retry_decorator( llm: Fireworks, *, run_manager: Optional[ Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun] ] = None, ) -> Callable[[Any], Any]: """Define retry mechanism.""" import fireworks.client errors = [ fireworks.client.error.RateLimitError, fireworks.client.error.InternalServerError, fireworks.client.error.BadGatewayError, fireworks.client.error.ServiceUnavailableError, ] return create_base_retry_decorator( error_types=errors, max_retries=llm.max_retries, run_manager=run_manager )
[]
2024-01-10
Abhishek-1211/langchain
templates~rag-timescale-conversation~rag_timescale_conversation~load_sample_dataset.py
import os import tempfile from datetime import datetime, timedelta import requests from langchain.document_loaders import JSONLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores.timescalevector import TimescaleVector from timescale_vector import client def parse_date(date_string: str) -> datetime: if date_string is None: return None time_format = "%a %b %d %H:%M:%S %Y %z" return datetime.strptime(date_string, time_format) def extract_metadata(record: dict, metadata: dict) -> dict: dt = parse_date(record["date"]) metadata["id"] = str(client.uuid_from_time(dt)) if dt is not None: metadata["date"] = dt.isoformat() else: metadata["date"] = None metadata["author"] = record["author"] metadata["commit_hash"] = record["commit"] return metadata def load_ts_git_dataset( service_url, collection_name="timescale_commits", num_records: int = 500, partition_interval=timedelta(days=7), ): json_url = "https://s3.amazonaws.com/assets.timescale.com/ai/ts_git_log.json" tmp_file = "ts_git_log.json" temp_dir = tempfile.gettempdir() json_file_path = os.path.join(temp_dir, tmp_file) if not os.path.exists(json_file_path): response = requests.get(json_url) if response.status_code == 200: with open(json_file_path, "w") as json_file: json_file.write(response.text) else: print(f"Failed to download JSON file. Status code: {response.status_code}") loader = JSONLoader( file_path=json_file_path, jq_schema=".commit_history[]", text_content=False, metadata_func=extract_metadata, ) documents = loader.load() # Remove documents with None dates documents = [doc for doc in documents if doc.metadata["date"] is not None] if num_records > 0: documents = documents[:num_records] # Split the documents into chunks for embedding text_splitter = CharacterTextSplitter( chunk_size=1000, chunk_overlap=200, ) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() # Create a Timescale Vector instance from the collection of documents TimescaleVector.from_documents( embedding=embeddings, ids=[doc.metadata["id"] for doc in docs], documents=docs, collection_name=collection_name, service_url=service_url, time_partition_interval=partition_interval, )
[]
2024-01-10
Abhishek-1211/langchain
libs~langchain~langchain~chat_models~ollama.py
import json from typing import Any, Iterator, List, Optional from langchain_core.messages import ( AIMessage, AIMessageChunk, BaseMessage, ChatMessage, HumanMessage, SystemMessage, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult from langchain.callbacks.manager import ( CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.llms.ollama import _OllamaCommon def _stream_response_to_chat_generation_chunk( stream_response: str, ) -> ChatGenerationChunk: """Convert a stream response to a generation chunk.""" parsed_response = json.loads(stream_response) generation_info = parsed_response if parsed_response.get("done") is True else None return ChatGenerationChunk( message=AIMessageChunk(content=parsed_response.get("response", "")), generation_info=generation_info, ) class ChatOllama(BaseChatModel, _OllamaCommon): """Ollama locally runs large language models. To use, follow the instructions at https://ollama.ai/. Example: .. code-block:: python from langchain.chat_models import ChatOllama ollama = ChatOllama(model="llama2") """ @property def _llm_type(self) -> str: """Return type of chat model.""" return "ollama-chat" @classmethod def is_lc_serializable(cls) -> bool: """Return whether this model can be serialized by Langchain.""" return False def _format_message_as_text(self, message: BaseMessage) -> str: if isinstance(message, ChatMessage): message_text = f"\n\n{message.role.capitalize()}: {message.content}" elif isinstance(message, HumanMessage): message_text = f"[INST] {message.content} [/INST]" elif isinstance(message, AIMessage): message_text = f"{message.content}" elif isinstance(message, SystemMessage): message_text = f"<<SYS>> {message.content} <</SYS>>" else: raise ValueError(f"Got unknown type {message}") return message_text def _format_messages_as_text(self, messages: List[BaseMessage]) -> str: return "\n".join( [self._format_message_as_text(message) for message in messages] ) def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: """Call out to Ollama's generate endpoint. Args: messages: The list of base messages to pass into the model. stop: Optional list of stop words to use when generating. Returns: Chat generations from the model Example: .. code-block:: python response = ollama([ HumanMessage(content="Tell me about the history of AI") ]) """ prompt = self._format_messages_as_text(messages) final_chunk = super()._stream_with_aggregation( prompt, stop=stop, run_manager=run_manager, verbose=self.verbose, **kwargs ) chat_generation = ChatGeneration( message=AIMessage(content=final_chunk.text), generation_info=final_chunk.generation_info, ) return ChatResult(generations=[chat_generation]) def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: prompt = self._format_messages_as_text(messages) for stream_resp in self._create_stream(prompt, stop, **kwargs): if stream_resp: chunk = _stream_response_to_chat_generation_chunk(stream_resp) yield chunk if run_manager: run_manager.on_llm_new_token( chunk.text, verbose=self.verbose, )
[]
2024-01-10
Abhishek-1211/langchain
libs~langchain~langchain~llms~anyscale.py
"""Wrapper around Anyscale Endpoint""" from typing import ( Any, AsyncIterator, Dict, Iterator, List, Mapping, Optional, Set, Tuple, cast, ) from langchain_core.outputs import Generation, GenerationChunk, LLMResult from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.openai import ( BaseOpenAI, acompletion_with_retry, completion_with_retry, ) from langchain.utils import get_from_dict_or_env def update_token_usage( keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any] ) -> None: """Update token usage.""" _keys_to_use = keys.intersection(response["usage"]) for _key in _keys_to_use: if _key not in token_usage: token_usage[_key] = response["usage"][_key] else: token_usage[_key] += response["usage"][_key] def create_llm_result( choices: Any, prompts: List[str], token_usage: Dict[str, int], model_name: str ) -> LLMResult: """Create the LLMResult from the choices and prompts.""" generations = [] for i, _ in enumerate(prompts): choice = choices[i] generations.append( [ Generation( text=choice["message"]["content"], generation_info=dict( finish_reason=choice.get("finish_reason"), logprobs=choice.get("logprobs"), ), ) ] ) llm_output = {"token_usage": token_usage, "model_name": model_name} return LLMResult(generations=generations, llm_output=llm_output) class Anyscale(BaseOpenAI): """Anyscale large language models. To use, you should have the environment variable ``ANYSCALE_API_BASE`` and ``ANYSCALE_API_KEY``set with your Anyscale Endpoint, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.llms import Anyscale anyscalellm = Anyscale(anyscale_api_base="ANYSCALE_API_BASE", anyscale_api_key="ANYSCALE_API_KEY", model_name="meta-llama/Llama-2-7b-chat-hf") # To leverage Ray for parallel processing @ray.remote(num_cpus=1) def send_query(llm, text): resp = llm(text) return resp futures = [send_query.remote(anyscalellm, text) for text in texts] results = ray.get(futures) """ """Key word arguments to pass to the model.""" anyscale_api_base: Optional[str] = None anyscale_api_key: Optional[SecretStr] = None prefix_messages: List = Field(default_factory=list) @classmethod def is_lc_serializable(cls) -> bool: return False @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["anyscale_api_base"] = get_from_dict_or_env( values, "anyscale_api_base", "ANYSCALE_API_BASE" ) values["anyscale_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "anyscale_api_key", "ANYSCALE_API_KEY") ) try: import openai ## Always create ChatComplete client, replacing the legacy Complete client values["client"] = openai.ChatCompletion except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) if values["streaming"] and values["n"] > 1: raise ValueError("Cannot stream results when n > 1.") if values["streaming"] and values["best_of"] > 1: raise ValueError("Cannot stream results when best_of > 1.") return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"model_name": self.model_name}, **super()._identifying_params, } @property def _invocation_params(self) -> Dict[str, Any]: """Get the parameters used to invoke the model.""" openai_creds: Dict[str, Any] = { "api_key": cast(SecretStr, self.anyscale_api_key).get_secret_value(), "api_base": self.anyscale_api_base, } return {**openai_creds, **{"model": self.model_name}, **super()._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "Anyscale LLM" def _get_chat_messages( self, prompts: List[str], stop: Optional[List[str]] = None ) -> Tuple: if len(prompts) > 1: raise ValueError( f"Anyscale currently only supports single prompt, got {prompts}" ) messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}] params: Dict[str, Any] = self._invocation_params if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop if params.get("max_tokens") == -1: # for Chat api, omitting max_tokens is equivalent to having no limit del params["max_tokens"] return messages, params def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: messages, params = self._get_chat_messages([prompt], stop) params = {**params, **kwargs, "stream": True} for stream_resp in completion_with_retry( self, messages=messages, run_manager=run_manager, **params ): token = stream_resp["choices"][0]["delta"].get("content", "") chunk = GenerationChunk(text=token) yield chunk if run_manager: run_manager.on_llm_new_token(token, chunk=chunk) async def _astream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[GenerationChunk]: messages, params = self._get_chat_messages([prompt], stop) params = {**params, **kwargs, "stream": True} async for stream_resp in await acompletion_with_retry( self, messages=messages, run_manager=run_manager, **params ): token = stream_resp["choices"][0]["delta"].get("content", "") chunk = GenerationChunk(text=token) yield chunk if run_manager: await run_manager.on_llm_new_token(token, chunk=chunk) def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: choices = [] token_usage: Dict[str, int] = {} _keys = {"completion_tokens", "prompt_tokens", "total_tokens"} for prompt in prompts: if self.streaming: generation: Optional[GenerationChunk] = None for chunk in self._stream(prompt, stop, run_manager, **kwargs): if generation is None: generation = chunk else: generation += chunk assert generation is not None choices.append( { "message": {"content": generation.text}, "finish_reason": generation.generation_info.get("finish_reason") if generation.generation_info else None, "logprobs": generation.generation_info.get("logprobs") if generation.generation_info else None, } ) else: messages, params = self._get_chat_messages([prompt], stop) params = {**params, **kwargs} response = completion_with_retry( self, messages=messages, run_manager=run_manager, **params ) choices.extend(response["choices"]) update_token_usage(_keys, response, token_usage) return create_llm_result(choices, prompts, token_usage, self.model_name) async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: choices = [] token_usage: Dict[str, int] = {} _keys = {"completion_tokens", "prompt_tokens", "total_tokens"} for prompt in prompts: messages = self.prefix_messages + [{"role": "user", "content": prompt}] if self.streaming: generation: Optional[GenerationChunk] = None async for chunk in self._astream(prompt, stop, run_manager, **kwargs): if generation is None: generation = chunk else: generation += chunk assert generation is not None choices.append( { "message": {"content": generation.text}, "finish_reason": generation.generation_info.get("finish_reason") if generation.generation_info else None, "logprobs": generation.generation_info.get("logprobs") if generation.generation_info else None, } ) else: messages, params = self._get_chat_messages([prompt], stop) params = {**params, **kwargs} response = await acompletion_with_retry( self, messages=messages, run_manager=run_manager, **params ) choices.extend(response["choices"]) update_token_usage(_keys, response, token_usage) return create_llm_result(choices, prompts, token_usage, self.model_name)
[]
2024-01-10
Abhishek-1211/langchain
libs~langchain~langchain~chat_models~volcengine_maas.py
from __future__ import annotations from typing import Any, Dict, Iterator, List, Mapping, Optional, cast from langchain_core.messages import ( AIMessage, AIMessageChunk, BaseMessage, FunctionMessage, HumanMessage, SystemMessage, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.chat_models.base import BaseChatModel from langchain.llms.volcengine_maas import VolcEngineMaasBase def _convert_message_to_dict(message: BaseMessage) -> dict: if isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} elif isinstance(message, FunctionMessage): message_dict = {"role": "function", "content": message.content} else: raise ValueError(f"Got unknown type {message}") return message_dict def convert_dict_to_message(_dict: Mapping[str, Any]) -> AIMessage: content = _dict.get("choice", {}).get("message", {}).get("content", "") return AIMessage(content=content) class VolcEngineMaasChat(BaseChatModel, VolcEngineMaasBase): """volc engine maas hosts a plethora of models. You can utilize these models through this class. To use, you should have the ``volcengine`` python package installed. and set access key and secret key by environment variable or direct pass those to this class. access key, secret key are required parameters which you could get help https://www.volcengine.com/docs/6291/65568 In order to use them, it is necessary to install the 'volcengine' Python package. The access key and secret key must be set either via environment variables or passed directly to this class. access key and secret key are mandatory parameters for which assistance can be sought at https://www.volcengine.com/docs/6291/65568. The two methods are as follows: * Environment Variable Set the environment variables 'VOLC_ACCESSKEY' and 'VOLC_SECRETKEY' with your access key and secret key. * Pass Directly to Class Example: .. code-block:: python from langchain.llms import VolcEngineMaasLLM model = VolcEngineMaasChat(model="skylark-lite-public", volc_engine_maas_ak="your_ak", volc_engine_maas_sk="your_sk") """ @property def _llm_type(self) -> str: """Return type of chat model.""" return "volc-engine-maas-chat" @classmethod def is_lc_serializable(cls) -> bool: """Return whether this model can be serialized by Langchain.""" return False @property def _identifying_params(self) -> Dict[str, Any]: return { **{"endpoint": self.endpoint, "model": self.model}, **super()._identifying_params, } def _convert_prompt_msg_params( self, messages: List[BaseMessage], **kwargs: Any, ) -> Dict[str, Any]: model_req = { "model": { "name": self.model, } } if self.model_version is not None: model_req["model"]["version"] = self.model_version return { **model_req, "messages": [_convert_message_to_dict(message) for message in messages], "parameters": {**self._default_params, **kwargs}, } def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: params = self._convert_prompt_msg_params(messages, **kwargs) for res in self.client.stream_chat(params): if res: msg = convert_dict_to_message(res) yield ChatGenerationChunk(message=AIMessageChunk(content=msg.content)) if run_manager: run_manager.on_llm_new_token(cast(str, msg.content)) def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: completion = "" if self.streaming: for chunk in self._stream(messages, stop, run_manager, **kwargs): completion += chunk.text else: params = self._convert_prompt_msg_params(messages, **kwargs) res = self.client.chat(params) msg = convert_dict_to_message(res) completion = cast(str, msg.content) message = AIMessage(content=completion) return ChatResult(generations=[ChatGeneration(message=message)])
[]
2024-01-10
Abhishek-1211/langchain
libs~langchain~langchain~chat_models~bedrock.py
from typing import Any, Dict, Iterator, List, Optional from langchain_core.messages import AIMessage, AIMessageChunk, BaseMessage from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult from langchain_core.pydantic_v1 import Extra from langchain.callbacks.manager import ( CallbackManagerForLLMRun, ) from langchain.chat_models.anthropic import convert_messages_to_prompt_anthropic from langchain.chat_models.base import BaseChatModel from langchain.chat_models.meta import convert_messages_to_prompt_llama from langchain.llms.bedrock import BedrockBase from langchain.utilities.anthropic import ( get_num_tokens_anthropic, get_token_ids_anthropic, ) class ChatPromptAdapter: """Adapter class to prepare the inputs from Langchain to prompt format that Chat model expects. """ @classmethod def convert_messages_to_prompt( cls, provider: str, messages: List[BaseMessage] ) -> str: if provider == "anthropic": prompt = convert_messages_to_prompt_anthropic(messages=messages) elif provider == "meta": prompt = convert_messages_to_prompt_llama(messages=messages) else: raise NotImplementedError( f"Provider {provider} model does not support chat." ) return prompt class BedrockChat(BaseChatModel, BedrockBase): """A chat model that uses the Bedrock API.""" @property def _llm_type(self) -> str: """Return type of chat model.""" return "amazon_bedrock_chat" @classmethod def is_lc_serializable(cls) -> bool: """Return whether this model can be serialized by Langchain.""" return True @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "chat_models", "bedrock"] @property def lc_attributes(self) -> Dict[str, Any]: attributes: Dict[str, Any] = {} if self.region_name: attributes["region_name"] = self.region_name return attributes class Config: """Configuration for this pydantic object.""" extra = Extra.forbid def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: provider = self._get_provider() prompt = ChatPromptAdapter.convert_messages_to_prompt( provider=provider, messages=messages ) for chunk in self._prepare_input_and_invoke_stream( prompt=prompt, stop=stop, run_manager=run_manager, **kwargs ): delta = chunk.text yield ChatGenerationChunk(message=AIMessageChunk(content=delta)) def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: completion = "" if self.streaming: for chunk in self._stream(messages, stop, run_manager, **kwargs): completion += chunk.text else: provider = self._get_provider() prompt = ChatPromptAdapter.convert_messages_to_prompt( provider=provider, messages=messages ) params: Dict[str, Any] = {**kwargs} if stop: params["stop_sequences"] = stop completion = self._prepare_input_and_invoke( prompt=prompt, stop=stop, run_manager=run_manager, **params ) message = AIMessage(content=completion) return ChatResult(generations=[ChatGeneration(message=message)]) def get_num_tokens(self, text: str) -> int: if self._model_is_anthropic: return get_num_tokens_anthropic(text) else: return super().get_num_tokens(text) def get_token_ids(self, text: str) -> List[int]: if self._model_is_anthropic: return get_token_ids_anthropic(text) else: return super().get_token_ids(text)
[]
2024-01-10
Abhishek-1211/langchain
libs~langchain~langchain~utils~aiter.py
from langchain_core.utils.aiter import NoLock, Tee, py_anext __all__ = ["py_anext", "NoLock", "Tee"]
[]
2024-01-10
Abhishek-1211/langchain
libs~langchain~langchain~llms~vllm.py
from typing import Any, Dict, List, Optional from langchain_core.outputs import Generation, LLMResult from langchain_core.pydantic_v1 import Field, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import BaseLLM from langchain.llms.openai import BaseOpenAI from langchain.utils.openai import is_openai_v1 class VLLM(BaseLLM): """VLLM language model.""" model: str = "" """The name or path of a HuggingFace Transformers model.""" tensor_parallel_size: Optional[int] = 1 """The number of GPUs to use for distributed execution with tensor parallelism.""" trust_remote_code: Optional[bool] = False """Trust remote code (e.g., from HuggingFace) when downloading the model and tokenizer.""" n: int = 1 """Number of output sequences to return for the given prompt.""" best_of: Optional[int] = None """Number of output sequences that are generated from the prompt.""" presence_penalty: float = 0.0 """Float that penalizes new tokens based on whether they appear in the generated text so far""" frequency_penalty: float = 0.0 """Float that penalizes new tokens based on their frequency in the generated text so far""" temperature: float = 1.0 """Float that controls the randomness of the sampling.""" top_p: float = 1.0 """Float that controls the cumulative probability of the top tokens to consider.""" top_k: int = -1 """Integer that controls the number of top tokens to consider.""" use_beam_search: bool = False """Whether to use beam search instead of sampling.""" stop: Optional[List[str]] = None """List of strings that stop the generation when they are generated.""" ignore_eos: bool = False """Whether to ignore the EOS token and continue generating tokens after the EOS token is generated.""" max_new_tokens: int = 512 """Maximum number of tokens to generate per output sequence.""" logprobs: Optional[int] = None """Number of log probabilities to return per output token.""" dtype: str = "auto" """The data type for the model weights and activations.""" download_dir: Optional[str] = None """Directory to download and load the weights. (Default to the default cache dir of huggingface)""" vllm_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `vllm.LLM` call not explicitly specified.""" client: Any #: :meta private: @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that python package exists in environment.""" try: from vllm import LLM as VLLModel except ImportError: raise ImportError( "Could not import vllm python package. " "Please install it with `pip install vllm`." ) values["client"] = VLLModel( model=values["model"], tensor_parallel_size=values["tensor_parallel_size"], trust_remote_code=values["trust_remote_code"], dtype=values["dtype"], download_dir=values["download_dir"], **values["vllm_kwargs"], ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling vllm.""" return { "n": self.n, "best_of": self.best_of, "max_tokens": self.max_new_tokens, "top_k": self.top_k, "top_p": self.top_p, "temperature": self.temperature, "presence_penalty": self.presence_penalty, "frequency_penalty": self.frequency_penalty, "stop": self.stop, "ignore_eos": self.ignore_eos, "use_beam_search": self.use_beam_search, "logprobs": self.logprobs, } def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Run the LLM on the given prompt and input.""" from vllm import SamplingParams # build sampling parameters params = {**self._default_params, **kwargs, "stop": stop} sampling_params = SamplingParams(**params) # call the model outputs = self.client.generate(prompts, sampling_params) generations = [] for output in outputs: text = output.outputs[0].text generations.append([Generation(text=text)]) return LLMResult(generations=generations) @property def _llm_type(self) -> str: """Return type of llm.""" return "vllm" class VLLMOpenAI(BaseOpenAI): """vLLM OpenAI-compatible API client""" @classmethod def is_lc_serializable(cls) -> bool: return False @property def _invocation_params(self) -> Dict[str, Any]: """Get the parameters used to invoke the model.""" params: Dict[str, Any] = { "model": self.model_name, **self._default_params, "logit_bias": None, } if not is_openai_v1(): params.update( { "api_key": self.openai_api_key, "api_base": self.openai_api_base, } ) return params @property def _llm_type(self) -> str: """Return type of llm.""" return "vllm-openai"
[]
2024-01-10
Abhishek-1211/langchain
libs~langchain~langchain~memory~readonly.py
from typing import Any, Dict, List from langchain_core.memory import BaseMemory class ReadOnlySharedMemory(BaseMemory): """A memory wrapper that is read-only and cannot be changed.""" memory: BaseMemory @property def memory_variables(self) -> List[str]: """Return memory variables.""" return self.memory.memory_variables def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Load memory variables from memory.""" return self.memory.load_memory_variables(inputs) def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Nothing should be saved or changed""" pass def clear(self) -> None: """Nothing to clear, got a memory like a vault.""" pass
[]
2024-01-10
Abhishek-1211/langchain
libs~core~langchain_core~runnables~history.py
from __future__ import annotations import asyncio from typing import ( TYPE_CHECKING, Any, Callable, Dict, List, Optional, Sequence, Type, Union, ) from langchain_core.chat_history import BaseChatMessageHistory from langchain_core.load import load from langchain_core.pydantic_v1 import BaseModel, create_model from langchain_core.runnables.base import Runnable, RunnableBindingBase, RunnableLambda from langchain_core.runnables.passthrough import RunnablePassthrough from langchain_core.runnables.utils import ( ConfigurableFieldSpec, get_unique_config_specs, ) if TYPE_CHECKING: from langchain_core.messages import BaseMessage from langchain_core.runnables.config import RunnableConfig from langchain_core.tracers.schemas import Run MessagesOrDictWithMessages = Union[Sequence["BaseMessage"], Dict[str, Any]] GetSessionHistoryCallable = Callable[..., BaseChatMessageHistory] class RunnableWithMessageHistory(RunnableBindingBase): """A runnable that manages chat message history for another runnable. Base runnable must have inputs and outputs that can be converted to a list of BaseMessages. RunnableWithMessageHistory must always be called with a config that contains session_id, e.g.: ``{"configurable": {"session_id": "<SESSION_ID>"}}`` Example (dict input): .. code-block:: python from typing import Optional from langchain.chat_models import ChatAnthropic from langchain.memory.chat_message_histories import RedisChatMessageHistory from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_core.runnables.history import RunnableWithMessageHistory prompt = ChatPromptTemplate.from_messages([ ("system", "You're an assistant who's good at {ability}"), MessagesPlaceholder(variable_name="history"), ("human", "{question}"), ]) chain = prompt | ChatAnthropic(model="claude-2") chain_with_history = RunnableWithMessageHistory( chain, RedisChatMessageHistory, input_messages_key="question", history_messages_key="history", ) chain_with_history.invoke( {"ability": "math", "question": "What does cosine mean?"}, config={"configurable": {"session_id": "foo"}} ) # -> "Cosine is ..." chain_with_history.invoke( {"ability": "math", "question": "What's its inverse"}, config={"configurable": {"session_id": "foo"}} ) # -> "The inverse of cosine is called arccosine ..." """ # noqa: E501 get_session_history: GetSessionHistoryCallable input_messages_key: Optional[str] = None output_messages_key: Optional[str] = None history_messages_key: Optional[str] = None @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] def __init__( self, runnable: Runnable[ MessagesOrDictWithMessages, Union[str, BaseMessage, MessagesOrDictWithMessages], ], get_session_history: GetSessionHistoryCallable, *, input_messages_key: Optional[str] = None, output_messages_key: Optional[str] = None, history_messages_key: Optional[str] = None, **kwargs: Any, ) -> None: """Initialize RunnableWithMessageHistory. Args: runnable: The base Runnable to be wrapped. Must take as input one of: - A sequence of BaseMessages - A dict with one key for all messages - A dict with one key for the current input string/message(s) and a separate key for historical messages. If the input key points to a string, it will be treated as a HumanMessage in history. Must return as output one of: - A string which can be treated as an AIMessage - A BaseMessage or sequence of BaseMessages - A dict with a key for a BaseMessage or sequence of BaseMessages get_session_history: Function that returns a new BaseChatMessageHistory given a session id. Should take a single positional argument `session_id` which is a string and a named argument `user_id` which can be a string or None. e.g.: ```python def get_session_history( session_id: str, *, user_id: Optional[str]=None ) -> BaseChatMessageHistory: ... ``` input_messages_key: Must be specified if the base runnable accepts a dict as input. output_messages_key: Must be specified if the base runnable returns a dict as output. history_messages_key: Must be specified if the base runnable accepts a dict as input and expects a separate key for historical messages. **kwargs: Arbitrary additional kwargs to pass to parent class ``RunnableBindingBase`` init. """ # noqa: E501 history_chain: Runnable = RunnableLambda( self._enter_history, self._aenter_history ).with_config(run_name="load_history") messages_key = history_messages_key or input_messages_key if messages_key: history_chain = RunnablePassthrough.assign( **{messages_key: history_chain} ).with_config(run_name="insert_history") bound = ( history_chain | runnable.with_listeners(on_end=self._exit_history) ).with_config(run_name="RunnableWithMessageHistory") super().__init__( get_session_history=get_session_history, input_messages_key=input_messages_key, output_messages_key=output_messages_key, bound=bound, history_messages_key=history_messages_key, **kwargs, ) @property def config_specs(self) -> List[ConfigurableFieldSpec]: return get_unique_config_specs( super().config_specs + [ ConfigurableFieldSpec( id="session_id", annotation=str, name="Session ID", description="Unique identifier for a session.", default="", is_shared=True, ), ] ) def get_input_schema( self, config: Optional[RunnableConfig] = None ) -> Type[BaseModel]: super_schema = super().get_input_schema(config) if super_schema.__custom_root_type__ is not None: from langchain_core.messages import BaseMessage fields: Dict = {} if self.input_messages_key and self.history_messages_key: fields[self.input_messages_key] = ( Union[str, BaseMessage, Sequence[BaseMessage]], ..., ) elif self.input_messages_key: fields[self.input_messages_key] = (Sequence[BaseMessage], ...) else: fields["__root__"] = (Sequence[BaseMessage], ...) return create_model( # type: ignore[call-overload] "RunnableWithChatHistoryInput", **fields, ) else: return super_schema def _get_input_messages( self, input_val: Union[str, BaseMessage, Sequence[BaseMessage]] ) -> List[BaseMessage]: from langchain_core.messages import BaseMessage if isinstance(input_val, str): from langchain_core.messages import HumanMessage return [HumanMessage(content=input_val)] elif isinstance(input_val, BaseMessage): return [input_val] elif isinstance(input_val, (list, tuple)): return list(input_val) else: raise ValueError( f"Expected str, BaseMessage, List[BaseMessage], or Tuple[BaseMessage]. " f"Got {input_val}." ) def _get_output_messages( self, output_val: Union[str, BaseMessage, Sequence[BaseMessage], dict] ) -> List[BaseMessage]: from langchain_core.messages import BaseMessage if isinstance(output_val, dict): output_val = output_val[self.output_messages_key or "output"] if isinstance(output_val, str): from langchain_core.messages import AIMessage return [AIMessage(content=output_val)] elif isinstance(output_val, BaseMessage): return [output_val] elif isinstance(output_val, (list, tuple)): return list(output_val) else: raise ValueError() def _enter_history(self, input: Any, config: RunnableConfig) -> List[BaseMessage]: hist = config["configurable"]["message_history"] # return only historic messages if self.history_messages_key: return hist.messages.copy() # return all messages else: input_val = ( input if not self.input_messages_key else input[self.input_messages_key] ) return hist.messages.copy() + self._get_input_messages(input_val) async def _aenter_history( self, input: Dict[str, Any], config: RunnableConfig ) -> List[BaseMessage]: return await asyncio.get_running_loop().run_in_executor( None, self._enter_history, input, config ) def _exit_history(self, run: Run, config: RunnableConfig) -> None: hist = config["configurable"]["message_history"] # Get the input messages inputs = load(run.inputs) input_val = inputs[self.input_messages_key or "input"] input_messages = self._get_input_messages(input_val) # Get the output messages output_val = load(run.outputs) output_messages = self._get_output_messages(output_val) for m in input_messages + output_messages: hist.add_message(m) def _merge_configs(self, *configs: Optional[RunnableConfig]) -> RunnableConfig: config = super()._merge_configs(*configs) # extract session_id if "session_id" not in config.get("configurable", {}): example_input = {self.input_messages_key: "foo"} example_config = {"configurable": {"session_id": "123"}} raise ValueError( "session_id is required." " Pass it in as part of the config argument to .invoke() or .stream()" f"\neg. chain.invoke({example_input}, {example_config})" ) # attach message_history session_id = config["configurable"]["session_id"] config["configurable"]["message_history"] = self.get_session_history(session_id) return config
[]
2024-01-10
xuyifan-0731/STEPS_benchmark
src~agents~api_agents~claude_agents.py
import anthropic from src.agent import Agent import os import json import sys import time import re import math import random import datetime import argparse import requests from typing import List, Callable import dataclasses from copy import deepcopy class Claude(Agent): def __init__(self, api_args=None, **config): if not api_args: api_args = {} api_args = deepcopy(api_args) self.key = api_args.pop("key", None) or os.getenv('Claude_API_KEY') api_args["model"] = api_args.pop("model", None) if not self.key: raise ValueError("Claude API KEY is required, please assign api_args.key or set OPENAI_API_KEY environment variable.") if not api_args["model"]: raise ValueError("Claude model is required, please assign api_args.model.") self.api_args = api_args if not self.api_args.get("stop_sequences"): self.api_args["stop_sequences"] = [anthropic.HUMAN_PROMPT] super.__init__(**config) def inference(self, history: List[dict]) -> str: prompt = "" for message in history: if message["role"] == "user": prompt += anthropic.HUMAN_PROMPT + message["content"] else: prompt += anthropic.AI_PROMPT + message["content"] prompt += anthropic.AI_PROMPT c = anthropic.Client(self.key) resp = c.completion( prompt=prompt, **self.api_args ) return resp
[ "content" ]
2024-01-10
MinhChaosBoDoiQua/GPTClone
myapp.py
#2122024_Nguyen Tien Minh #専門演習iiiの中間課題 from flask import Flask, render_template, request import openai app = Flask(__name__) openai.api_key = "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" def get_completion(prompt, model="gpt-3.5-turbo"): messages = [{"role": "user", "content": prompt}] response = openai.ChatCompletion.create( model=model, messages=messages, temperature=0, ) return response.choices[0].message["content"] @app.route("/") def home(): return render_template("index.html") @app.route("/get") def get_bot_response(): userText = request.args.get('msg') response = get_completion(userText) return response if __name__ == "__main__": app.run()
[]
2024-01-10
sgugger/transformers
tests~test_tokenization_fast.py
import logging import unittest from collections import namedtuple from itertools import takewhile from transformers import ( BertTokenizer, BertTokenizerFast, DistilBertTokenizer, GPT2Tokenizer, GPT2TokenizerFast, OpenAIGPTTokenizer, PreTrainedTokenizer, RobertaTokenizer, TransfoXLTokenizer, is_torch_available, ) from transformers.testing_utils import require_torch from transformers.tokenization_distilbert import DistilBertTokenizerFast from transformers.tokenization_openai import OpenAIGPTTokenizerFast from transformers.tokenization_roberta import RobertaTokenizerFast from transformers.tokenization_transfo_xl import TransfoXLTokenizerFast logger = logging.getLogger(__name__) NON_ENGLISH_TAGS = ["chinese", "dutch", "french", "finnish", "german", "multilingual"] Tokenizer = namedtuple("Tokenizer", ["name", "rust_cls", "python_cls", "vocab_key", "filter", "kwargs"]) def filter_non_english(_: Tokenizer, pretrained_name: str): """ Filter all the model for non-english language """ return not any([lang in pretrained_name for lang in NON_ENGLISH_TAGS]) def filter_roberta_detectors(_: Tokenizer, pretrained_name: str): return "detector" not in pretrained_name class CommonFastTokenizerTest(unittest.TestCase): TOKENIZERS_CLASSES = frozenset([]) def setUp(self) -> None: with open("tests/fixtures/sample_text.txt", encoding="utf-8") as f_data: self._data = f_data.read().replace("\n\n", "\n").strip() def test_all_tokenizers(self): for tok_case in self.TOKENIZERS_CLASSES: for pretrained_name in tok_case.python_cls.pretrained_vocab_files_map[tok_case.vocab_key].keys(): # Tokenizer.filter makes it possible to filter which Tokenizer to case based on all the # information available in Tokenizer (name, rust class, python class, vocab key name) if tok_case.filter is None or ( tok_case.filter is not None and tok_case.filter(tok_case, pretrained_name) ): kwargs = dict(t for t in tok_case.kwargs) if tok_case.kwargs else {} with self.subTest("{} ({})".format(tok_case.name, pretrained_name)): tokenizer_r = tok_case.rust_cls.from_pretrained(pretrained_name, **kwargs) tokenizer_p = tok_case.python_cls.from_pretrained(pretrained_name, **kwargs) self.fast_align_python(tokenizer_r, tokenizer_p, tok_case, pretrained_name) self.fast_only(tokenizer_r) def test_pretokenized_tokenizers(self): for tok_case in self.TOKENIZERS_CLASSES: for pretrained_name in tok_case.python_cls.pretrained_vocab_files_map[tok_case.vocab_key].keys(): # Tokenizer.filter makes it possible to filter which Tokenizer to case based on all the # information available in Tokenizer (name, rust class, python class, vocab key name) if tok_case.filter is None or ( tok_case.filter is not None and tok_case.filter(tok_case, pretrained_name) ): with self.subTest("{} ({})".format(tok_case.name, pretrained_name)): tokenizer_r = tok_case.rust_cls.from_pretrained(pretrained_name, add_prefix_space=True) tokenizer_p = tok_case.python_cls.from_pretrained(pretrained_name, add_prefix_space=True) self.assert_pretokenized_inputs(tokenizer_r, tokenizer_p) def fast_align_python(self, tokenizer_r, tokenizer_p, tok_case, pretrained_name): # Check is_fast is set correctly self.assertFalse(tokenizer_p.is_fast) self.assertTrue(tokenizer_r.is_fast) # Check that Rust and Python align self.assert_tokenization_python_rust_equals(tokenizer_r, tokenizer_p) self.assert_num_special_tokens_to_add_equal(tokenizer_r, tokenizer_p) self.assert_max_length_equal(tokenizer_r, tokenizer_p) self.assert_special_tokens_map_equal(tokenizer_r, tokenizer_p) self.assert_embeded_special_tokens(tokenizer_r, tokenizer_p) self.assert_padding(tokenizer_r, tokenizer_p) self.assert_create_token_type_ids(tokenizer_r, tokenizer_p) self.assert_prepare_for_model(tokenizer_r, tokenizer_p) # TODO: enable for v3.0.0 # self.assert_empty_output_no_special_tokens(tokenizer_r, tokenizer_p) def fast_only(self, tokenizer_r): # Ensure None raise an error self.assertRaises(ValueError, tokenizer_r.tokenize, None) self.assertRaises(ValueError, tokenizer_r.encode, None) self.assertRaises(ValueError, tokenizer_r.encode_plus, None) self.assertRaises(ValueError, tokenizer_r.batch_encode_plus, None) self.assert_add_tokens(tokenizer_r) self.assert_offsets_mapping(tokenizer_r) self.assert_add_special_tokens(tokenizer_r) self.assert_alignement_methods(tokenizer_r) self.assert_batch_encode_dynamic_overflowing(tokenizer_r) def assert_alignement_methods(self, tokenizer_r): words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"] text = " ".join(words) batch_size = 3 encoding = tokenizer_r.encode_plus(text, add_special_tokens=False) batch_encoding = tokenizer_r.batch_encode_plus([text] * batch_size, add_special_tokens=False) num_tokens = len(encoding["input_ids"]) last_word_index = len(words) - 1 last_token_index = num_tokens - 1 last_batch_index = batch_size - 1 last_char_index = len(text) - 1 # words, tokens self.assertEqual(len(encoding.words(0)), num_tokens) self.assertEqual(max(encoding.words(0)), last_word_index) self.assertEqual(min(encoding.words(0)), 0) self.assertEqual(len(batch_encoding.words(last_batch_index)), num_tokens) self.assertEqual(max(batch_encoding.words(last_batch_index)), last_word_index) self.assertEqual(min(batch_encoding.words(last_batch_index)), 0) self.assertEqual(len(encoding.tokens(0)), num_tokens) # Assert token_to_word self.assertEqual(encoding.token_to_word(0), 0) self.assertEqual(encoding.token_to_word(0, 0), 0) self.assertEqual(encoding.token_to_word(last_token_index), last_word_index) self.assertEqual(encoding.token_to_word(0, last_token_index), last_word_index) self.assertEqual(batch_encoding.token_to_word(1, 0), 0) self.assertEqual(batch_encoding.token_to_word(0, last_token_index), last_word_index) self.assertEqual(batch_encoding.token_to_word(last_batch_index, last_token_index), last_word_index) # Assert word_to_tokens self.assertEqual(encoding.word_to_tokens(0).start, 0) self.assertEqual(encoding.word_to_tokens(0, 0).start, 0) self.assertEqual(encoding.word_to_tokens(last_word_index).end, last_token_index + 1) self.assertEqual(encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1) self.assertEqual(batch_encoding.word_to_tokens(1, 0).start, 0) self.assertEqual(batch_encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1) self.assertEqual(batch_encoding.word_to_tokens(last_batch_index, last_word_index).end, last_token_index + 1) # Assert token_to_chars self.assertEqual(encoding.token_to_chars(0).start, 0) self.assertEqual(encoding.token_to_chars(0, 0).start, 0) self.assertEqual(encoding.token_to_chars(last_token_index).end, last_char_index + 1) self.assertEqual(encoding.token_to_chars(0, last_token_index).end, last_char_index + 1) self.assertEqual(batch_encoding.token_to_chars(1, 0).start, 0) self.assertEqual(batch_encoding.token_to_chars(0, last_token_index).end, last_char_index + 1) self.assertEqual(batch_encoding.token_to_chars(last_batch_index, last_token_index).end, last_char_index + 1) # Assert char_to_token self.assertEqual(encoding.char_to_token(0), 0) self.assertEqual(encoding.char_to_token(0, 0), 0) self.assertEqual(encoding.char_to_token(last_char_index), last_token_index) self.assertEqual(encoding.char_to_token(0, last_char_index), last_token_index) self.assertEqual(batch_encoding.char_to_token(1, 0), 0) self.assertEqual(batch_encoding.char_to_token(0, last_char_index), last_token_index) self.assertEqual(batch_encoding.char_to_token(last_batch_index, last_char_index), last_token_index) # Assert char_to_word self.assertEqual(encoding.char_to_word(0), 0) self.assertEqual(encoding.char_to_word(0, 0), 0) self.assertEqual(encoding.char_to_word(last_char_index), last_word_index) self.assertEqual(encoding.char_to_word(0, last_char_index), last_word_index) self.assertEqual(batch_encoding.char_to_word(1, 0), 0) self.assertEqual(batch_encoding.char_to_word(0, last_char_index), last_word_index) self.assertEqual(batch_encoding.char_to_word(last_batch_index, last_char_index), last_word_index) # Assert word_to_chars self.assertEqual(encoding.word_to_chars(0).start, 0) self.assertEqual(encoding.word_to_chars(0, 0).start, 0) self.assertEqual(encoding.word_to_chars(last_word_index).end, last_char_index + 1) self.assertEqual(encoding.word_to_chars(0, last_word_index).end, last_char_index + 1) self.assertEqual(batch_encoding.word_to_chars(1, 0).start, 0) self.assertEqual(batch_encoding.word_to_chars(0, last_word_index).end, last_char_index + 1) self.assertEqual(batch_encoding.word_to_chars(last_batch_index, last_word_index).end, last_char_index + 1) def assert_tokenization_python_rust_equals(self, tokenizer_r, tokenizer_p): # Ensure basic input match input_p = tokenizer_p.encode_plus(self._data) input_r = tokenizer_r.encode_plus(self._data) for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()): self.assertSequenceEqual(input_p[key], input_r[key]) input_pairs_p = tokenizer_p.encode_plus(self._data, self._data) input_pairs_r = tokenizer_r.encode_plus(self._data, self._data) for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()): self.assertSequenceEqual(input_pairs_p[key], input_pairs_r[key]) # Ensure truncation match input_p = tokenizer_p.encode_plus(self._data, max_length=512, truncation=True) input_r = tokenizer_r.encode_plus(self._data, max_length=512, truncation=True) for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()): self.assertSequenceEqual(input_p[key], input_r[key]) # Ensure truncation with stride match input_p = tokenizer_p.encode_plus( self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True ) input_r = tokenizer_r.encode_plus( self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True ) for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()): self.assertSequenceEqual(input_p[key], input_r[key][0]) def assert_num_special_tokens_to_add_equal(self, tokenizer_r, tokenizer_p): # Check we have the same number of added_tokens for both pair and non-pair inputs. self.assertEqual(tokenizer_r.num_special_tokens_to_add(False), tokenizer_p.num_special_tokens_to_add(False)) self.assertEqual(tokenizer_r.num_special_tokens_to_add(True), tokenizer_p.num_special_tokens_to_add(True)) def assert_max_length_equal(self, tokenizer_r, tokenizer_p): # Check we have the correct max_length for both pair and non-pair inputs. self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence) self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair) def assert_special_tokens_map_equal(self, tokenizer_r, tokenizer_p): # Assert the set of special tokens match. self.assertSequenceEqual( tokenizer_p.special_tokens_map.items(), tokenizer_r.special_tokens_map.items(), ) def assert_add_tokens(self, tokenizer_r): vocab_size = tokenizer_r.vocab_size self.assertEqual(tokenizer_r.add_tokens(""), 0) self.assertEqual(tokenizer_r.add_tokens("testoken"), 1) self.assertEqual(tokenizer_r.add_tokens(["testoken1", "testtoken2"]), 2) self.assertEqual(len(tokenizer_r), vocab_size + 3) self.assertEqual(tokenizer_r.add_special_tokens({}), 0) self.assertEqual(tokenizer_r.add_special_tokens({"bos_token": "[BOS]", "eos_token": "[EOS]"}), 2) self.assertRaises( AssertionError, tokenizer_r.add_special_tokens, {"additional_special_tokens": "<testtoken1>"} ) self.assertEqual(tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken2>"]}), 1) self.assertEqual( tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken3>", "<testtoken4>"]}), 2 ) self.assertEqual(len(tokenizer_r), vocab_size + 8) def assert_offsets_mapping(self, tokenizer_r): text = "Wonderful no inspiration example with subtoken" pair = "Along with an awesome pair" # No pair tokens_with_offsets = tokenizer_r.encode_plus( text, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True ) added_tokens = tokenizer_r.num_special_tokens_to_add(False) offsets = tokens_with_offsets["offset_mapping"] # Assert there is the same number of tokens and offsets self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"])) # Assert there is online added_tokens special_tokens self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens) # Pairs tokens_with_offsets = tokenizer_r.encode_plus( text, pair, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True ) added_tokens = tokenizer_r.num_special_tokens_to_add(True) offsets = tokens_with_offsets["offset_mapping"] # Assert there is the same number of tokens and offsets self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"])) # Assert there is online added_tokens special_tokens self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens) def assert_batch_encode_dynamic_overflowing(self, tokenizer: PreTrainedTokenizer): """ When calling batch_encode with multiple sequence it can returns different number of overflowing encoding for each sequence: [ Sequence 1: [Encoding 1, Encoding 2], Sequence 2: [Encoding 1], Sequence 3: [Encoding 1, Encoding 2, ... Encoding N] ] This needs to be padded so that it can represented as a tensor """ returned_tensor = "pt" if is_torch_available() else "tf" if not tokenizer.pad_token or tokenizer.pad_token_id < 0: return tokens = tokenizer.encode_plus( "HuggingFace is solving NLP one commit at a time", max_length=6, padding=True, truncation=True, return_tensors=returned_tensor, return_overflowing_tokens=True, ) for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()): self.assertEqual(len(tokens[key].shape), 2) # Mono sample tokens = tokenizer.batch_encode_plus( ["HuggingFace is solving NLP one commit at a time"], max_length=6, padding=True, truncation="only_first", return_tensors=returned_tensor, return_overflowing_tokens=True, ) for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()): self.assertEqual(len(tokens[key].shape), 2) self.assertEqual(tokens[key].shape[-1], 6) # Multi sample tokens = tokenizer.batch_encode_plus( ["HuggingFace is solving NLP one commit at a time", "Very tiny input"], max_length=6, padding=True, truncation="only_first", return_tensors=returned_tensor, return_overflowing_tokens=True, ) for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()): self.assertEqual(len(tokens[key].shape), 2) self.assertEqual(tokens[key].shape[-1], 6) def assert_pretokenized_inputs(self, tokenizer_r, tokenizer_p): # Input string pretokenized_input_simple = "This is a sample input".split() pretokenized_input_pair = "This is a sample pair".split() # Test encode for pretokenized inputs output_r = tokenizer_r.encode(pretokenized_input_simple, is_pretokenized=True) output_p = tokenizer_p.encode(pretokenized_input_simple, is_pretokenized=True) self.assertEqual(output_p, output_r) kwargs = { "is_pretokenized": True, "return_token_type_ids": True, "return_attention_mask": True, "return_overflowing_tokens": False, "return_special_tokens_mask": True, "return_offsets_mapping": False, # Not implemented in python tokenizers } batch_kwargs = { "is_pretokenized": True, "return_token_type_ids": True, "return_attention_mask": True, # we have an 's' here "return_overflowing_tokens": False, "return_special_tokens_mask": True, # we have an 's' here "return_offsets_mapping": False, # Not implemented in python tokenizers } # Test encode_plus for pretokenized inputs output_r = tokenizer_r.encode_plus(pretokenized_input_simple, **kwargs) output_p = tokenizer_p.encode_plus(pretokenized_input_simple, **kwargs) for key in output_p.keys(): self.assertEqual(output_p[key], output_r[key]) # Test batch_encode_plus for pretokenized inputs input_batch = ([pretokenized_input_simple] * 2) + [pretokenized_input_simple + pretokenized_input_pair] output_r = tokenizer_r.batch_encode_plus(input_batch, **batch_kwargs) output_p = tokenizer_p.batch_encode_plus(input_batch, **batch_kwargs) for key in output_p.keys(): self.assertEqual(output_p[key], output_r[key]) # Test encode for pretokenized inputs pairs output_r = tokenizer_r.encode(pretokenized_input_simple, pretokenized_input_pair, is_pretokenized=True) output_p = tokenizer_p.encode(pretokenized_input_simple, pretokenized_input_pair, is_pretokenized=True) self.assertEqual(output_p, output_r) # Test encode_plus for pretokenized inputs output_r = tokenizer_r.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs) output_p = tokenizer_p.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs) for key in output_p.keys(): self.assertEqual(output_p[key], output_r[key]) # Test batch_encode_plus for pretokenized inputs input_batch_pair = ([pretokenized_input_simple, pretokenized_input_pair] * 2) + [ pretokenized_input_simple + pretokenized_input_pair, pretokenized_input_pair, ] output_r = tokenizer_r.batch_encode_plus(input_batch_pair, **batch_kwargs) output_p = tokenizer_p.batch_encode_plus(input_batch_pair, **batch_kwargs) for key in output_p.keys(): self.assertEqual(output_p[key], output_r[key]) def assert_create_token_type_ids(self, tokenizer_r, tokenizer_p): input_simple = [1, 2, 3] input_pair = [1, 2, 3] # Generate output output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple) output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple) self.assertEqual(output_p, output_r) # Generate pair output output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple, input_pair) output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple, input_pair) self.assertEqual(output_p, output_r) def assert_build_inputs_with_special_tokens(self, tokenizer_r, tokenizer_p): # Input string input_simple = tokenizer_p.tokenize("This is a sample input") input_pair = tokenizer_p.tokenize("This is a sample pair") # Generate output output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple) output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple) self.assertEqual(output_p, output_r) # Generate pair output output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair) output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair) self.assertEqual(output_p, output_r) # Input tokens id input_simple = tokenizer_p.encode("This is a sample input") input_pair = tokenizer_p.encode("This is a sample pair") # Generate output output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple) output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple) self.assertEqual(output_p, output_r) # Generate pair output output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair) output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair) self.assertEqual(output_p, output_r) def assert_padding(self, tokenizer_r, tokenizer_p, max_length=15): def assert_padded_input_match(input_r: list, input_p: list, max_length: int): # Ensure we match max_length self.assertEqual(len(input_r), max_length) self.assertEqual(len(input_p), max_length) # Ensure the number of padded tokens is the same padded_tokens_r = list(takewhile(lambda i: i == tokenizer_r.pad_token_id, reversed(input_r))) padded_tokens_p = list(takewhile(lambda i: i == tokenizer_p.pad_token_id, reversed(input_p))) self.assertSequenceEqual(padded_tokens_r, padded_tokens_p) def assert_batch_padded_input_match(input_r: dict, input_p: dict, max_length: int): for i_r in input_r.values(): self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual( len(i_r[1]), max_length ) self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual( len(i_r[1]), max_length ) for i_r, i_p in zip(input_r["input_ids"], input_p["input_ids"]): assert_padded_input_match(i_r, i_p, max_length) for i_r, i_p in zip(input_r["attention_mask"], input_p["attention_mask"]): self.assertSequenceEqual(i_r, i_p) # Encode - Simple input input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, pad_to_max_length=True) input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, pad_to_max_length=True) assert_padded_input_match(input_r, input_p, max_length) input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, padding="max_length") input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, padding="max_length") assert_padded_input_match(input_r, input_p, max_length) input_r = tokenizer_r.encode("This is a simple input", padding="longest") input_p = tokenizer_p.encode("This is a simple input", padding=True) assert_padded_input_match(input_r, input_p, len(input_r)) # Encode - Pair input input_r = tokenizer_r.encode( "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True ) input_p = tokenizer_p.encode( "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True ) assert_padded_input_match(input_r, input_p, max_length) input_r = tokenizer_r.encode( "This is a simple input", "This is a pair", max_length=max_length, padding="max_length" ) input_p = tokenizer_p.encode( "This is a simple input", "This is a pair", max_length=max_length, padding="max_length" ) assert_padded_input_match(input_r, input_p, max_length) input_r = tokenizer_r.encode("This is a simple input", "This is a pair", padding=True) input_p = tokenizer_p.encode("This is a simple input", "This is a pair", padding="longest") assert_padded_input_match(input_r, input_p, len(input_r)) # Encode_plus - Simple input input_r = tokenizer_r.encode_plus("This is a simple input", max_length=max_length, pad_to_max_length=True) input_p = tokenizer_p.encode_plus("This is a simple input", max_length=max_length, pad_to_max_length=True) assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) input_r = tokenizer_r.encode_plus("This is a simple input", max_length=max_length, padding="max_length") input_p = tokenizer_p.encode_plus("This is a simple input", max_length=max_length, padding="max_length") assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) input_r = tokenizer_r.encode_plus("This is a simple input", padding="longest") input_p = tokenizer_p.encode_plus("This is a simple input", padding=True) assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"])) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) # Encode_plus - Pair input input_r = tokenizer_r.encode_plus( "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True ) input_p = tokenizer_p.encode_plus( "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True ) assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) input_r = tokenizer_r.encode_plus( "This is a simple input", "This is a pair", max_length=max_length, padding="max_length" ) input_p = tokenizer_p.encode_plus( "This is a simple input", "This is a pair", max_length=max_length, padding="max_length" ) assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) input_r = tokenizer_r.encode_plus("This is a simple input", "This is a pair", padding="longest") input_p = tokenizer_p.encode_plus("This is a simple input", "This is a pair", padding=True) assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"])) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) # Batch_encode_plus - Simple input input_r = tokenizer_r.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, pad_to_max_length=True ) input_p = tokenizer_p.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, pad_to_max_length=True ) assert_batch_padded_input_match(input_r, input_p, max_length) input_r = tokenizer_r.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, padding="max_length", ) input_p = tokenizer_p.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, padding="max_length", ) assert_batch_padded_input_match(input_r, input_p, max_length) input_r = tokenizer_r.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, padding="longest", ) input_p = tokenizer_p.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, padding=True, ) assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0])) input_r = tokenizer_r.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], padding="longest" ) input_p = tokenizer_p.batch_encode_plus(["This is a simple input 1", "This is a simple input 2"], padding=True) assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0])) # Batch_encode_plus - Pair input input_r = tokenizer_r.batch_encode_plus( [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ], max_length=max_length, truncation=True, padding="max_length", ) input_p = tokenizer_p.batch_encode_plus( [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ], max_length=max_length, truncation=True, padding="max_length", ) assert_batch_padded_input_match(input_r, input_p, max_length) input_r = tokenizer_r.batch_encode_plus( [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ], padding=True, ) input_p = tokenizer_p.batch_encode_plus( [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ], padding="longest", ) assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0])) # Using pad on single examples after tokenization input_r = tokenizer_r.encode_plus("This is a input 1") input_r = tokenizer_r.pad(input_r) input_p = tokenizer_r.encode_plus("This is a input 1") input_p = tokenizer_r.pad(input_p) assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"])) # Using pad on single examples after tokenization input_r = tokenizer_r.encode_plus("This is a input 1") input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length") input_p = tokenizer_r.encode_plus("This is a input 1") input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length") assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length) # Using pad after tokenization input_r = tokenizer_r.batch_encode_plus( ["This is a input 1", "This is a much longer input whilch should be padded"] ) input_r = tokenizer_r.pad(input_r) input_p = tokenizer_r.batch_encode_plus( ["This is a input 1", "This is a much longer input whilch should be padded"] ) input_p = tokenizer_r.pad(input_p) assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0])) # Using pad after tokenization input_r = tokenizer_r.batch_encode_plus( ["This is a input 1", "This is a much longer input whilch should be padded"] ) input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length") input_p = tokenizer_r.batch_encode_plus( ["This is a input 1", "This is a much longer input whilch should be padded"] ) input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length") assert_batch_padded_input_match(input_r, input_p, max_length) def assert_save_pretrained(self, tokenizer_r, tokenizer_p): # Checks it save with the same files self.assertSequenceEqual(tokenizer_r.save_vocabulary("."), tokenizer_p.save_vocabulary(".")) # Checks everything loads correctly in the same way tokenizer_rp, tokenizer_pp = tokenizer_r.from_pretrained("."), tokenizer_p.from_pretrained(".") # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(tokenizer_rp, key)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) def assert_embeded_special_tokens(self, tokenizer_r, tokenizer_p): sentence = "A, <mask> AllenNLP sentence." tokens_r = tokenizer_r.encode_plus( sentence, add_special_tokens=True, return_attention_mask=False, return_token_type_ids=True ) tokens_p = tokenizer_p.encode_plus( sentence, add_special_tokens=True, return_attention_mask=False, return_token_type_ids=True ) for key in tokens_p.keys(): self.assertEqual(tokens_r[key], tokens_p[key]) self.assertEqual(sum(tokens_r["token_type_ids"]), 0) self.assertEqual(sum(tokens_p["token_type_ids"]), 0) tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"]) tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) self.assertSequenceEqual(tokens_r, tokens_p) def assert_add_special_tokens(self, tokenizer_r): simple_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=False) # pair_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=True) for text in ["", " "]: # tokenize() no_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=False) with_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=True) self.assertEqual(len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add) # encode() no_special_tokens = tokenizer_r.encode(text, add_special_tokens=False) with_special_tokens = tokenizer_r.encode(text, add_special_tokens=True) self.assertEqual(len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add) # encode_plus() no_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=False) with_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=True) for key in no_special_tokens.keys(): self.assertEqual( len(no_special_tokens[key]), len(with_special_tokens[key]) - simple_num_special_tokens_to_add ) # # batch_encode_plus no_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=False) with_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=True) for key in no_special_tokens.keys(): for i_no, i_with in zip(no_special_tokens[key], with_special_tokens[key]): self.assertEqual(len(i_no), len(i_with) - simple_num_special_tokens_to_add) def assert_prepare_for_model(self, tokenizer_r, tokenizer_p): string_sequence = "Asserting that both tokenizers are equal" python_output = tokenizer_p.prepare_for_model(tokenizer_p.encode(string_sequence)) rust_output = tokenizer_r.prepare_for_model(tokenizer_r.encode(string_sequence)) self.assertEqual(python_output, rust_output) class WordPieceFastTokenizerTest(CommonFastTokenizerTest): """ Override all the specific methods to test WordPiece behavior """ TOKENIZERS_CLASSES = frozenset( [ Tokenizer("Bert", BertTokenizerFast, BertTokenizer, "vocab_file", filter_non_english, None), Tokenizer( "DistilBert", DistilBertTokenizerFast, DistilBertTokenizer, "vocab_file", filter_non_english, None ), ] ) def fast_only(self, tokenizer_r): super().fast_only(tokenizer_r) self.assert_offsets_with_special_characters(tokenizer_r) def assert_add_special_tokens(self, tokenizer_r): super().assert_add_special_tokens(tokenizer_r) def assert_offsets_with_special_characters(self, tokenizer_r): sentence = "A, naïve [MASK] AllenNLP sentence." tokens = tokenizer_r.encode_plus( sentence, return_attention_mask=False, return_token_type_ids=False, return_offsets_mapping=True, add_special_tokens=True, ) expected_results = [ ((0, 1), "A"), ((1, 2), ","), ((3, 8), "naive"), # BERT normalizes this away # Append MASK here after lower-casing ((16, 21), "Allen"), ((22, 24), "##NL"), ((24, 25), "##P"), ((26, 34), "sentence"), ((35, 36), "."), ] # Check if the tokenizer is uncased if tokenizer_r.init_kwargs.get("do_lower_case"): expected_results = [(offset, token.lower()) for (offset, token) in expected_results] # Append the special tokens expected_results.insert(3, ((9, 15), "[MASK]")) expected_results.insert(0, (None, "[CLS]")) expected_results.append((None, "[SEP]")) self.assertEqual([e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"])) # self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"]) class RobertaFastTokenizerTest(CommonFastTokenizerTest): TOKENIZERS_CLASSES = frozenset( [ Tokenizer( "Roberta", RobertaTokenizerFast, RobertaTokenizer, "vocab_file", filter_roberta_detectors, (("cls_token", "<s>"),), ) ] ) def assert_embeded_special_tokens(self, tokenizer_r, tokenizer_p): sentence = "A, <mask> AllenNLP sentence." tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) # token_type_ids should put 0 everywhere self.assertEquals(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEquals( sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]), sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]), ) tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"]) tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) self.assertSequenceEqual(tokens_r, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]) self.assertSequenceEqual(tokens_p, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]) class NoPaddingTokenFastTokenizerMatchingTest(CommonFastTokenizerTest): TOKENIZERS_CLASSES = [ Tokenizer("OpenAI GPT", OpenAIGPTTokenizerFast, OpenAIGPTTokenizer, "vocab_file", None, None), Tokenizer("GPT2", GPT2TokenizerFast, GPT2Tokenizer, "vocab_file", None, [("add_prefix_space", True)]), ] def fast_align_python(self, tokenizer_r, tokenizer_p, tok_case, pretrained_name): # Check is_fast is set correctly self.assertFalse(tokenizer_p.is_fast) self.assertTrue(tokenizer_r.is_fast) # Check that Rust and Python align self.assert_tokenization_python_rust_equals(tokenizer_r, tokenizer_p) self.assert_num_special_tokens_to_add_equal(tokenizer_r, tokenizer_p) self.assert_max_length_equal(tokenizer_r, tokenizer_p) self.assert_special_tokens_map_equal(tokenizer_r, tokenizer_p) self.assert_embeded_special_tokens(tokenizer_r, tokenizer_p) self.assert_padding(tokenizer_r, tokenizer_p) # Specific for kwargs = {} if tok_case.kwargs is not None: kwargs = dict(tok_case.kwargs) tokenizer_r = tok_case.rust_cls.from_pretrained(pretrained_name, **kwargs) self.assert_pretokenized_inputs(tokenizer_r, tokenizer_p) def assert_padding(self, tokenizer_r, tokenizer_p, max_length=15): # Simple input s = "This is a simple input" s2 = ["This is a simple input 1", "This is a simple input 2"] p = ("This is a simple input", "This is a pair") p2 = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length") # Simple input self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length") # Simple input self.assertRaises( ValueError, tokenizer_r.batch_encode_plus, s2, max_length=max_length, padding="max_length", ) # Pair input self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length") # Pair input self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length") # Pair input self.assertRaises( ValueError, tokenizer_r.batch_encode_plus, p2, max_length=max_length, padding="max_length", ) class TransfoXLFastTokenizerTest(NoPaddingTokenFastTokenizerMatchingTest): TOKENIZERS_CLASSES = frozenset( [Tokenizer("TransfoXL", TransfoXLTokenizerFast, TransfoXLTokenizer, "pretrained_vocab_file", None, None)] ) @require_torch def test_all_tokenizers(self): super().test_all_tokenizers() @require_torch def test_pretokenized_tokenizers(self): super().test_pretokenized_tokenizers()
[]
2024-01-10
gaurangdave/Aletheia
utils~common_utils.py
from tqdm.auto import tqdm from joblib import dump, load import pickle import plotly.io as io import plotly.graph_objects as go import plotly.express as px import matplotlib.pyplot as plt import pyLDAvis.gensim_models as gensimvis import pyLDAvis.sklearn import pyLDAvis from gensim.models.ldamulticore import LdaMulticore from gensim.models.ldamodel import LdaModel from gensim.models import CoherenceModel from gensim.models.phrases import Phraser from gensim.models import Phrases from gensim.utils import simple_preprocess from gensim import corpora, models from sklearn.model_selection import GridSearchCV from sklearn.decomposition import LatentDirichletAllocation from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer import spacy from pprint import pprint import pandas as pd # pd.set_option('display.max_rows', 500) # pd.set_option('display.max_columns', 500) # pd.set_option('display.width', 1000) import re import string from bs4 import BeautifulSoup import nltk from nltk.stem import PorterStemmer from nltk.stem.wordnet import WordNetLemmatizer nltk.download('stopwords') # Plotting tools # loading library nlp = spacy.load('en_core_web_md') # nlp = spacy.load('en_core_web_trf') nlp.add_pipe('merge_entities') # nlp.add_pipe("merge_noun_chunks") tqdm.pandas(desc="processing") # Utility Functions for Text Cleaning def sent_to_words(sentences): for sentence in tqdm(sentences): yield (simple_preprocess(str(sentence), deacc=True)) # function to clean html tags from text def clean_html(html): # parse html content soup = BeautifulSoup(html, "html.parser") for data in soup(['style', 'script', 'code', 'a']): # Remove tags data.decompose() # return data by retrieving the tag content return ' '.join(soup.stripped_strings) # function to convert text to lowercase def lower_case(text): return text.lower() # function to remove line breaks def remove_line_breaks(text): return re.sub(r'\n', '', text) # function to remove punctuation def remove_punctuation(text): return text.translate(str.maketrans('', '', string.punctuation)) # function to remove numbers def remove_numbers(text): return re.sub(r'\d+', '', text) # function to remove extra spaces def remove_extra_spaces(text): text = text.replace(u'\xa0', u' ') return text # return re.sub(' +', ' ', text) # function to remove stopwords def remove_stopwords(texts, stop_words = []): preprocess_text = simple_preprocess(str(texts), deacc=True) word_list = [word for word in preprocess_text if word not in stop_words] return " ".join(word_list) # return [[word for word in simple_preprocess(str(doc)) if word not in stop_words] for doc in texts] # helper function to create pos tags def create_pos_tag(str_sent): return nlp(str_sent) # function for text lemmatization using spac ##'ADJ', 'VERB' def lemmatization(texts, allowed_postags=['PROPN', 'NOUN'], stop_words=[]): """https://spacy.io/api/annotation""" texts_out = [] for sent in tqdm(texts): doc = nlp(" ".join(sent)) texts_out.append( [token.lemma_ for token in doc if (token.pos_ in allowed_postags and token.is_stop == False and token.text not in stop_words)]) return texts_out def tokenization(texts, allowed_postags=['PROPN', 'NOUN'], stop_words=[]): """https://spacy.io/api/annotation""" texts_out = [] for sent in tqdm(texts): doc = nlp(" ".join(sent)) texts_out.append( ["_".join(token.text.split(" ")) for token in doc if (token.pos_ in allowed_postags and token.is_stop == False and token.text not in stop_words)]) return texts_out def lemmatization_without_pos(texts): """https://spacy.io/api/annotation""" texts_out = [] for sent in texts: doc = nlp(" ".join(sent)) texts_out.append( [token.lemma_ for token in doc]) return texts_out def simple_tokenization(texts): """https://spacy.io/api/annotation""" return [nlp(text) for text in tqdm(texts)] def make_bigrams(texts, bigram_mod): return [bigram_mod[doc] for doc in texts] def make_trigrams(texts, bigram_mod, trigram_mod): return [trigram_mod[bigram_mod[doc]] for doc in texts] # helper function to create pos tags distribution def create_pos_tags_distribution(docs=[]): token_distribution = {} is_alpha = 0 is_stop = 0 for doc in tqdm(docs): for token in doc: token_distribution[token.pos_] = token_distribution.get( token.pos_, 0) + 1 if (token.is_alpha): is_alpha += 1 if (token.is_stop): is_stop += 1 return token_distribution, is_alpha, is_stop # function to create n-grams from noun chunks def create_noun_chunk_ngrams(docs): n_gram_docs = [] for doc in docs: doc_text = doc.text for chunk in doc.noun_chunks: chunk_n_gram = "_".join(chunk.text.split(" ")) doc_text = doc_text.replace(chunk.text, chunk_n_gram) n_gram_docs.append(doc_text.split(" ")) return n_gram_docs def lemmatization_noun_chunks(texts): """https://spacy.io/api/annotation""" texts_out = [] for sent in texts: doc = nlp(" ".join(sent)) texts_out.append([token.lemma_ for token in doc if ( ("_" in token.text) or # if the token is a noun chunk allow that # if the token is a noun or proper noun allow that (token.pos_ in ['NOUN', 'PROPN'] and token.is_alpha and token.is_stop == False) )]) return texts_out
[]
2024-01-10
gaurangdave/Aletheia
utils~sklearn_utils.py
import numpy as np from tqdm.auto import tqdm from joblib import dump, load import pickle import plotly.io as io import plotly.graph_objects as go import plotly.express as px import matplotlib.pyplot as plt import pyLDAvis.gensim_models as gensimvis import pyLDAvis.sklearn import pyLDAvis from gensim.models.ldamulticore import LdaMulticore from gensim.models.ldamodel import LdaModel from gensim.models import CoherenceModel from gensim.models.phrases import Phraser from gensim.models import Phrases from gensim.utils import simple_preprocess from gensim import corpora, models from sklearn.model_selection import GridSearchCV from sklearn.decomposition import LatentDirichletAllocation from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer import spacy from pprint import pprint import pandas as pd import re import string from bs4 import BeautifulSoup import nltk from nltk.stem import PorterStemmer from nltk.stem.wordnet import WordNetLemmatizer nltk.download('stopwords') # Styling def color_green(val): color = 'green' if val > .1 else 'black' return 'color: {col}'.format(col=color) def make_bold(val): weight = 700 if val > .1 else 400 return 'font-weight: {weight}'.format(weight=weight) def print_sklearn_sparcity(data_vectorized): # Materialize the sparse data data_dense = data_vectorized.todense() # Compute Sparsicity = Percentage of Non-Zero cells print("Sparsicity: ", ((data_dense > 0).sum()/data_dense.size)*100, "%") def create_sklearn_dominent_topic_dataframe(lda_model, data_vectorized): lda_output = lda_model.transform(data_vectorized) # column names topicnames = ["Topic" + str(i) for i in range(lda_model.n_components)] # index names docnames = ["Doc" + str(i) for i in range(len(data))] df_document_topic = pd.DataFrame( np.round(lda_output, 2), columns=topicnames, index=docnames) # Get dominant topic for each document dominant_topic = np.argmax(df_document_topic.values, axis=1) df_document_topic['dominant_topic'] = dominant_topic return df_document_topic def print_sklearn_dominant_topics(lda_model, data_vectorized): df_document_topic = create_sklearn_dominent_topic_dataframe( lda_model, data_vectorized) # Apply Style df_document_topics = df_document_topic.head( 15).style.applymap(color_green).applymap(make_bold) return df_document_topics def print_sklearn_topic_distribution(lda_model, data_vectorized): df_document_topic = create_sklearn_dominent_topic_dataframe( lda_model, data_vectorized) df_topic_distribution = df_document_topic['dominant_topic'].value_counts( ).reset_index(name="Num Documents").rename(columns={'index': 'Topic'}) # df_topic_distribution.columns = ["Topic Num", "Num Documents"] return df_topic_distribution # Show top n keywords for each topic def show_sklearn_topics(vectorizer, lda_model, n_words=20): keywords = np.array(vectorizer.get_feature_names_out()) topic_keywords = [] for topic_weights in lda_model.components_: top_keyword_locs = (-topic_weights).argsort()[:n_words] topic_keywords.append(keywords.take(top_keyword_locs)) return topic_keywords def format_sklearn_topics(topic_keywords): df_topic_keywords = pd.DataFrame(topic_keywords) df_topic_keywords.columns = [ 'Word '+str(i) for i in range(df_topic_keywords.shape[1])] df_topic_keywords.index = [ 'Topic '+str(i) for i in range(df_topic_keywords.shape[0])] return df_topic_keywords def analyze_sklearn_lda_model(lda_model, data_vectorized): # Log Likelyhood: Higher the better print("Log Likelihood: ", lda_model.score(data_vectorized)) # Perplexity: Lower the better. Perplexity = exp(-1. * log-likelihood per word) print("Perplexity: ", lda_model.perplexity(data_vectorized)) # helper function to visualize lda model def visualize_sklearn_lda_model(lda_model, data_vectorized, vectorizer, mds='tsne'): pyLDAvis.enable_notebook() panel2 = pyLDAvis.sklearn.prepare( lda_model, data_vectorized, vectorizer, mds=mds) return panel2
[]
2024-01-10
gaurangdave/Aletheia
utils~gensim_utils.py
from tqdm.auto import tqdm from joblib import dump, load import pickle import plotly.io as io import plotly.graph_objects as go import plotly.express as px import matplotlib.pyplot as plt import pyLDAvis.gensim_models as gensimvis import pyLDAvis.sklearn import pyLDAvis from gensim.models.ldamulticore import LdaMulticore from gensim.models.ldamodel import LdaModel from gensim.models import CoherenceModel from gensim.models.phrases import Phraser from gensim.models import Phrases from gensim.utils import simple_preprocess from gensim import corpora, models from sklearn.model_selection import GridSearchCV from sklearn.decomposition import LatentDirichletAllocation from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer import spacy from pprint import pprint import pandas as pd import re import string from bs4 import BeautifulSoup import nltk from nltk.stem import PorterStemmer from nltk.stem.wordnet import WordNetLemmatizer nltk.download('stopwords') # Plotting tools # loading library # function to compute optimal parameters for LDA model def compute_coherence_values(corpus, id2word, texts, num_topics, passes, chunk_sizes=[200], iterations=[100]): """ Compute c_v coherence for various number of topics Parameters: ---------- dictionary : Gensim dictionary corpus : Gensim corpus texts : List of input texts limit : Max num of topics Returns: ------- model_list : List of LDA topic models coherence_values : Coherence values corresponding to the LDA model with respective number of topics """ coherence_values = [] model_list = [] params = [] for num_topic in tqdm(num_topics): # for chunk_size in tqdm(chunk_sizes): for num_passes in tqdm(passes): for iteration in tqdm(iterations): model = LdaModel(corpus=corpus, id2word=id2word, num_topics=num_topic, random_state=100, update_every=1, # chunksize=chunk_size, passes=num_passes, iterations=iteration, per_word_topics=True) model_list.append(model) # Compute Perplexity perplexity = model.log_perplexity(corpus) # Compute Coherence Score coherence_model_lda = CoherenceModel( model=model, texts=texts, dictionary=id2word, coherence='c_v') cv_coherence = coherence_model_lda.get_coherence() coherence_model_umass = CoherenceModel( model=model, texts=texts, dictionary=id2word, coherence='u_mass') umass_coherence = coherence_model_umass.get_coherence() coherence_values.append({ "perplexity": perplexity, "cv_coherence": cv_coherence, "umass_coherence": umass_coherence, }) params.append({'num_topics': num_topic, 'chunk_size': "chunk_size", 'passes': num_passes, 'iterations': iteration}) return model_list, coherence_values, params def analyze_gensim_lda_model(lda_model, corpus, id2word, texts, num_topics, passes, chunk_sizes=[200]): # Compute Perplexity # a measure of how good the model is. lower the better. print('\nPerplexity: ', lda_model.log_perplexity(corpus)) # Compute Coherence Score coherence_model_lda = CoherenceModel( model=lda_model, texts=texts, dictionary=id2word, coherence='c_v') coherence_lda = coherence_model_lda.get_coherence() print('\nCoherence Score: ', coherence_lda) # helper functions to visualize LDA model def visualize_gensim_lda_model(lda_model, corpus, id2word, filename="gensim_lda.html"): # Visualize the topics pyLDAvis.enable_notebook() vis = gensimvis.prepare(lda_model, corpus, id2word) vis.save(filename)
[]
2024-01-10
kdliaokueida/Deep_Reinforcement_Learning
p3_collab-compet~replay_buffer.py
#code from openai #https://github.com/openai/baselines/blob/master/baselines/deepq/replay_buffer.py import numpy as np import random import operator class SegmentTree(object): def __init__(self, capacity, operation, neutral_element): """Build a Segment Tree data structure. https://en.wikipedia.org/wiki/Segment_tree Can be used as regular array, but with two important differences: a) setting item's value is slightly slower. It is O(lg capacity) instead of O(1). b) user has access to an efficient `reduce` operation which reduces `operation` over a contiguous subsequence of items in the array. Paramters --------- capacity: int Total size of the array - must be a power of two. operation: lambda obj, obj -> obj and operation for combining elements (eg. sum, max) must for a mathematical group together with the set of possible values for array elements. neutral_element: obj neutral element for the operation above. eg. float('-inf') for max and 0 for sum. """ assert capacity > 0 and capacity & (capacity - 1) == 0, "capacity must be positive and a power of 2." self._capacity = capacity self._value = [neutral_element for _ in range(2 * capacity)] self._operation = operation def _reduce_helper(self, start, end, node, node_start, node_end): if start == node_start and end == node_end: return self._value[node] mid = (node_start + node_end) // 2 if end <= mid: return self._reduce_helper(start, end, 2 * node, node_start, mid) else: if mid + 1 <= start: return self._reduce_helper(start, end, 2 * node + 1, mid + 1, node_end) else: return self._operation( self._reduce_helper(start, mid, 2 * node, node_start, mid), self._reduce_helper(mid + 1, end, 2 * node + 1, mid + 1, node_end) ) def reduce(self, start=0, end=None): """Returns result of applying `self.operation` to a contiguous subsequence of the array. self.operation(arr[start], operation(arr[start+1], operation(... arr[end]))) Parameters ---------- start: int beginning of the subsequence end: int end of the subsequences Returns ------- reduced: obj result of reducing self.operation over the specified range of array elements. """ if end is None: end = self._capacity if end < 0: end += self._capacity end -= 1 return self._reduce_helper(start, end, 1, 0, self._capacity - 1) def __setitem__(self, idx, val): # index of the leaf idx += self._capacity self._value[idx] = val idx //= 2 while idx >= 1: self._value[idx] = self._operation( self._value[2 * idx], self._value[2 * idx + 1] ) idx //= 2 def __getitem__(self, idx): assert 0 <= idx < self._capacity return self._value[self._capacity + idx] class SumSegmentTree(SegmentTree): def __init__(self, capacity): super(SumSegmentTree, self).__init__( capacity=capacity, operation=operator.add, neutral_element=0.0 ) def sum(self, start=0, end=None): """Returns arr[start] + ... + arr[end]""" return super(SumSegmentTree, self).reduce(start, end) def find_prefixsum_idx(self, prefixsum): """Find the highest index `i` in the array such that sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum if array values are probabilities, this function allows to sample indexes according to the discrete probability efficiently. Parameters ---------- perfixsum: float upperbound on the sum of array prefix Returns ------- idx: int highest index satisfying the prefixsum constraint """ assert 0 <= prefixsum <= self.sum() + 1e-5 idx = 1 while idx < self._capacity: # while non-leaf if self._value[2 * idx] > prefixsum: idx = 2 * idx else: prefixsum -= self._value[2 * idx] idx = 2 * idx + 1 return idx - self._capacity class MinSegmentTree(SegmentTree): def __init__(self, capacity): super(MinSegmentTree, self).__init__( capacity=capacity, operation=min, neutral_element=float('inf') ) def min(self, start=0, end=None): """Returns min(arr[start], ..., arr[end])""" return super(MinSegmentTree, self).reduce(start, end) class ReplayBuffer(object): def __init__(self, size): """Create Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. """ self._storage = [] self._maxsize = size self._next_idx = 0 def __len__(self): return len(self._storage) def push(self, all_states, states, actions, rewards, all_next_states, next_states, dones): data = (all_states, states, actions, rewards, all_next_states, next_states, dones) if self._next_idx >= len(self._storage): self._storage.append(data) else: self._storage[self._next_idx] = data self._next_idx = (self._next_idx + 1) % self._maxsize def _encode_sample(self, idxes): obses_t, actions, rewards, obses_tp1, dones = [], [], [], [], [] for i in idxes: data = self._storage[i] obs_t, action, reward, obs_tp1, done = data obses_t.append(np.array(obs_t, copy=False)) actions.append(np.array(action, copy=False)) rewards.append(reward) obses_tp1.append(np.array(obs_tp1, copy=False)) dones.append(done) return np.array(obses_t), np.array(actions), np.array(rewards), np.array(obses_tp1), np.array(dones) def sample(self, batch_size): """Sample a batch of experiences. Parameters ---------- batch_size: int How many transitions to sample. Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. """ idxes = [random.randint(0, len(self._storage) - 1) for _ in range(batch_size)] return self._encode_sample(idxes) class PrioritizedReplayBuffer(ReplayBuffer): def __init__(self, size, alpha): """Create Prioritized Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. alpha: float how much prioritization is used (0 - no prioritization, 1 - full prioritization) See Also -------- ReplayBuffer.__init__ """ super(PrioritizedReplayBuffer, self).__init__(size) assert alpha > 0 self._alpha = alpha it_capacity = 1 while it_capacity < size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 def push(self, *args, **kwargs): """See ReplayBuffer.store_effect""" idx = self._next_idx super(PrioritizedReplayBuffer, self).push(*args, **kwargs) self._it_sum[idx] = self._max_priority ** self._alpha self._it_min[idx] = self._max_priority ** self._alpha def _sample_proportional(self, batch_size): res = [] for _ in range(batch_size): # TODO(szymon): should we ensure no repeats? mass = random.random() * self._it_sum.sum(0, len(self._storage) - 1) idx = self._it_sum.find_prefixsum_idx(mass) res.append(idx) return res def sample(self, batch_size, beta): """Sample a batch of experiences. compared to ReplayBuffer.sample it also returns importance weights and idxes of sampled experiences. Parameters ---------- batch_size: int How many transitions to sample. beta: float To what degree to use importance weights (0 - no corrections, 1 - full correction) Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. weights: np.array Array of shape (batch_size,) and dtype np.float32 denoting importance weight of each sampled transition idxes: np.array Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences """ assert beta > 0 idxes = self._sample_proportional(batch_size) weights = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self._storage)) ** (-beta) for idx in idxes: p_sample = self._it_sum[idx] / self._it_sum.sum() weight = (p_sample * len(self._storage)) ** (-beta) weights.append(weight / max_weight) weights = np.array(weights) encoded_sample = self._encode_sample(idxes) return tuple(list(encoded_sample) + [weights, idxes]) def update_priorities(self, idxes, priorities): """Update priorities of sampled transitions. sets priority of transition at index idxes[i] in buffer to priorities[i]. Parameters ---------- idxes: [int] List of idxes of sampled transitions priorities: [float] List of updated priorities corresponding to transitions at the sampled idxes denoted by variable `idxes`. """ assert len(idxes) == len(priorities) for idx, priority in zip(idxes, priorities): assert priority > 0 assert 0 <= idx < len(self._storage) self._it_sum[idx] = priority ** self._alpha self._it_min[idx] = priority ** self._alpha self._max_priority = max(self._max_priority, priority)
[]
2024-01-10
autodistill/autodistill-gpt-4v
autodistill_gpt_4v~gpt4v_model.py
import base64 import os from dataclasses import dataclass import numpy as np import supervision as sv from autodistill.detection import CaptionOntology, DetectionBaseModel from openai import OpenAI HOME = os.path.expanduser("~") @dataclass class GPT4V(DetectionBaseModel): ontology: CaptionOntology def __init__(self, ontology: CaptionOntology, api_key, prompt: str = None): self.client = OpenAI(api_key=api_key) self.ontology = ontology self.prompt = prompt def set_of_marks(self, input, masked_input, classes, masks) -> sv.Detections: if classes is None: classes = {k:k for k in self.ontology.prompts()} payload = [ { "role": "user", "content": [ { "type": "text", "text": f"Attached is an image and a set of selections for this image. Please return the number of any selections for a {', '.join(classes)}. Return each class on a new line like Banana: 1, 2, 3 [new line] Apple: 5, 7, 8." }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64," + base64.b64encode(open(input, "rb").read()).decode( "utf-8" ), } }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64," + base64.b64encode(open(masked_input, "rb").read()).decode( "utf-8" ), } }, ], } ] print(payload[0]["content"][0]) response = self.client.chat.completions.create( model="gpt-4-vision-preview", messages=payload, max_tokens=300, ) print(response) if "none" not in self.ontology.prompts(): self.ontology.prompts().append("none") class_map = {} for line in response.choices[0].message.content.split("\n"): if ":" in line: class_name = line.split(":")[0].strip().lower() if class_name not in self.ontology.prompts(): continue if class_name not in class_map: class_map[class_name] = [] try: int(line.split(":")[1].strip().lower()) except: continue class_map[class_name].append(int(line.split(":")[1].strip().lower())) # get ids from class_map all_ids = [item for sublist in class_map.values() for item in sublist] print(all_ids) # change class id for each mask for idx, _ in enumerate(masks.xyxy): for class_name, mask_ids in class_map.items(): for mask_id in mask_ids: if mask_id == idx: masks.class_id[idx] = self.ontology.prompts().index(class_name) break new_masks = [] new_class_id = [] new_xyxy = [] for idx, item in enumerate(masks.class_id): if item in all_ids: new_masks.append(masks.mask[idx]) new_class_id.append(masks.class_id[idx]) new_xyxy.append(masks.xyxy[idx]) masks.confidence = np.array([1] * len(masks.class_id)) return sv.Detections( xyxy=np.array(new_xyxy), mask=np.array(new_masks), class_id=np.array(new_class_id), confidence=np.array([1] * len(new_masks)) ) def predict(self, input, classes: list = None) -> sv.Classifications: if classes is None: classes = {k:k for k in self.ontology.prompts()} payload = [ { "role": "user", "content": [ { "type": "text", "text": f"What is in the image? Return the class of the object in the image. Here are the classes: {', '.join(classes)}. You can only return one class from that list." if self.prompt is None else self.prompt }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64," + base64.b64encode(open(input, "rb").read()).decode( "utf-8" ), } }, ], } ] response = self.client.chat.completions.create( model="gpt-4-vision-preview", messages=payload, max_tokens=300, ) if "none" not in self.ontology.prompts(): self.ontology.prompts().append("none") if self.prompt: class_ids = [] for line in response.choices[0].message.content.split("\n"): if ":" in line: class_name = line.split(":")[1].strip().lower() print(class_name) if class_name not in self.ontology.prompts(): class_ids.append(self.ontology.prompts().index("none")) else: class_ids.append(self.ontology.prompts().index(class_name)) print(line) confidence = [1] * len(class_ids) else: result = response.choices[0].message.content.lower() if result not in self.ontology.prompts(): class_ids.append(self.ontology.prompts().index("none")) confidence = [0] else: class_ids = [self.ontology.prompts().index(result)] confidence = [1] return sv.Classifications( class_id=np.array(class_ids), confidence=np.array(confidence), )
[ ", ", "data:image/jpeg;base64," ]
2024-01-10
zl172463468/langchain-ChatGLM
chatglm_llm.py
from langchain.llms.base import LLM from typing import Optional, List from langchain.llms.utils import enforce_stop_tokens from transformers import AutoTokenizer, AutoModel import torch DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" DEVICE_ID = "0" if torch.cuda.is_available() else None CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE def torch_gc(): if torch.cuda.is_available(): with torch.cuda.device(CUDA_DEVICE): torch.cuda.empty_cache() torch.cuda.ipc_collect() class ChatGLM(LLM): max_token: int = 10000 temperature: float = 0.01 top_p = 0.9 history = [] tokenizer: object = None model: object = None history_len: int = 10 def __init__(self): super().__init__() @property def _llm_type(self) -> str: return "ChatGLM" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: response, _ = self.model.chat( self.tokenizer, prompt, history=self.history[-self.history_len:] if self.history_len>0 else [], max_length=self.max_token, temperature=self.temperature, ) torch_gc() if stop is not None: response = enforce_stop_tokens(response, stop) self.history = self.history+[[None, response]] return response def load_model(self, model_name_or_path: str = "THUDM/chatglm-6b"): self.tokenizer = AutoTokenizer.from_pretrained( model_name_or_path, trust_remote_code=True ) if torch.cuda.is_available(): self.model = ( AutoModel.from_pretrained( model_name_or_path, trust_remote_code=True) .half() .cuda() ) elif torch.backends.mps.is_available(): self.model = ( AutoModel.from_pretrained( model_name_or_path, trust_remote_code=True) .float() .to('mps') ) else: self.model = ( AutoModel.from_pretrained( model_name_or_path, trust_remote_code=True) .float() ) self.model = self.model.eval()
[]
2024-01-10
zl172463468/langchain-ChatGLM
knowledge_based_chatglm.py
from langchain.chains import RetrievalQA from langchain.prompts import PromptTemplate from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.document_loaders import UnstructuredFileLoader from chatglm_llm import ChatGLM import sentence_transformers import torch import os import readline # Global Parameters EMBEDDING_MODEL = "text2vec" VECTOR_SEARCH_TOP_K = 6 LLM_MODEL = "chatglm-6b" LLM_HISTORY_LEN = 3 DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" # Show reply with source text from input document REPLY_WITH_SOURCE = True embedding_model_dict = { "ernie-tiny": "nghuyong/ernie-3.0-nano-zh", "ernie-base": "nghuyong/ernie-3.0-base-zh", "text2vec": "GanymedeNil/text2vec-large-chinese", } llm_model_dict = { "chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe", "chatglm-6b-int4": "THUDM/chatglm-6b-int4", "chatglm-6b": "THUDM/chatglm-6b", } def init_cfg(LLM_MODEL, EMBEDDING_MODEL, LLM_HISTORY_LEN, V_SEARCH_TOP_K=6): global chatglm, embeddings, VECTOR_SEARCH_TOP_K VECTOR_SEARCH_TOP_K = V_SEARCH_TOP_K chatglm = ChatGLM() chatglm.load_model(model_name_or_path=llm_model_dict[LLM_MODEL]) chatglm.history_len = LLM_HISTORY_LEN embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[EMBEDDING_MODEL],) embeddings.client = sentence_transformers.SentenceTransformer(embeddings.model_name, device=DEVICE) def init_knowledge_vector_store(filepath:str): if not os.path.exists(filepath): print("路径不存在") return None elif os.path.isfile(filepath): file = os.path.split(filepath)[-1] try: loader = UnstructuredFileLoader(filepath, mode="elements") docs = loader.load() print(f"{file} 已成功加载") except: print(f"{file} 未能成功加载") return None elif os.path.isdir(filepath): docs = [] for file in os.listdir(filepath): fullfilepath = os.path.join(filepath, file) try: loader = UnstructuredFileLoader(fullfilepath, mode="elements") docs += loader.load() print(f"{file} 已成功加载") except: print(f"{file} 未能成功加载") vector_store = FAISS.from_documents(docs, embeddings) return vector_store def get_knowledge_based_answer(query, vector_store, chat_history=[]): global chatglm, embeddings prompt_template = """基于以下已知信息,简洁和专业的来回答用户的问题。 如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。 已知内容: {context} 问题: {question}""" prompt = PromptTemplate( template=prompt_template, input_variables=["context", "question"] ) chatglm.history = chat_history knowledge_chain = RetrievalQA.from_llm( llm=chatglm, retriever=vector_store.as_retriever(search_kwargs={"k": VECTOR_SEARCH_TOP_K}), prompt=prompt ) knowledge_chain.combine_documents_chain.document_prompt = PromptTemplate( input_variables=["page_content"], template="{page_content}" ) knowledge_chain.return_source_documents = True result = knowledge_chain({"query": query}) chatglm.history[-1][0] = query return result, chatglm.history if __name__ == "__main__": init_cfg(LLM_MODEL, EMBEDDING_MODEL, LLM_HISTORY_LEN) vector_store = None while not vector_store: filepath = input("Input your local knowledge file path 请输入本地知识文件路径:") vector_store = init_knowledge_vector_store(filepath) history = [] while True: query = input("Input your question 请输入问题:") resp, history = get_knowledge_based_answer(query=query, vector_store=vector_store, chat_history=history) if REPLY_WITH_SOURCE: print(resp) else: print(resp["result"])
[ "基于以下已知信息,简洁和专业的来回答用户的问题。\n如果无法从中得到答案,请说 \"根据已知信息无法回答该问题\" 或 \"没有提供足够的相关信息\",不允许在答案中添加编造成分,答案请使用中文。\n\n已知内容:\n{context}\n\n问题:\n{question}", "没有提供足够的相关信息", "{page_content}", "question", "根据已知信息无法回答该问题", "context" ]
2024-01-10
lucifercarnicero/python
yoquese.py
def limpiar (frase): frase= frase.lower() doc = nlp(frase) lista_limpia = [token.txt for token in doc if not token.is_space and not token.is_punct and not token.is_whitespace] return lista_limpia import gensim from gensim.parsing.preprocessing import remove_stopwords, strip_punctuation, preprocess_string from gensim import corpora from gensim.models import LsiModel from gensim.models.coherencemodel import CoherenceModel from pprint import pprint from matplotlib import pyplot as plt import pyLDAvis import pyLDAvis.gensim mensajes=["Me encanta la tortilla de patata con cebolla", "No puedo creer que haya gente que tome la tortilla con cebolla", "sincebollista hasta la muerte, abajo la cebolla", "La cebolla no se toca","ojalá desaparezcan del mundo todos los cebollistas", "yo por mi cebolla mato","cada vez que veo una tortilla de patata con cebolla, me dan una puñalada en el corazon","la tortilla con chorizo es la mejor","cada vez que le echan cebolla a una tortilla, muere un gatito","no me gusta la tortilla","la tortilla mejor con cebolla"] def ejecutarLSA(mensajes, min_topics, max_topics): mensajes_preparados=[limpiar(mensaje) for mensaje in mensajes] #les doy corpus y asigno números dic=corpora.Dictionary(mensajes_preparados) #vemos cuantas veces aparece palabra y lo guardo en variable llamada corpus corpus=[dic.doc2bow(text) for text in mensajes_preparados] models=[] coherences=[] for num_topics in range (min_topics,max_topics-1): #generamos modelo con diccionario de palabras lsa=LsiModel(corpus,num_topics=num_topics,id2word=dic) #modelo de coherencia mira cuan parecidas son las frases entre si convirtiendolas en vectores coherence_model_lsa=CoherenceModel(model=lsa, texts=mensajes_preparados,dictionary=dic,coherence='c-v') coherence_lsa=coherence_model_lsa.get_coherence() models.append(lsa) coherences.append(coherence_lsa) return(dic,coherences,models) #obtenemos un nivel de coherencia de mimimimimi def plot_graph(min_topics,max_topics,coherences,path): x=range(min_topics,max_topics-1) plt.plot(x,coherences) plt.xlabel("Numero de temas") plt.ylavel("Coherencia") plt.legend("valores de coherencia", loc='best') plt.savefig(path) #path la ruta donde guardamos la imagen que se genere mimimi (dic_lsa, coherencias_lsa, modelos_lsa)=ejecutarLSA(mensajes,2,10) plot_graph=(2,10,coherencias_lsa,"lucia.png")
[]
2024-01-10
stefan-it/datasets
datasets~openwebtext~openwebtext.py
# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The Open WebText Corpus""" from __future__ import absolute_import, division, print_function import os import re from itertools import chain import datasets _CITATION = """\ @misc{Gokaslan2019OpenWeb, title={OpenWebText Corpus}, author={Aaron Gokaslan*, Vanya Cohen*, Ellie Pavlick, Stefanie Tellex}, howpublished{\\url{http://Skylion007.github.io/OpenWebTextCorpus}}, year={2019} } """ _DESCRIPTION = """\ An open-source replication of the WebText dataset from OpenAI. """ _URL = "https://zenodo.org/record/3834942/files/openwebtext.tar.xz" class Openwebtext(datasets.GeneratorBasedBuilder): """The Open WebText dataset.""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name="plain_text", description="Plain text", version=datasets.Version("1.0.0"), ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({"text": datasets.Value("string")}), homepage="https://skylion007.github.io/OpenWebTextCorpus/", citation=_CITATION, ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(_URL) owt_dir = os.path.join(dl_dir, "openwebtext") subset_xzs = [ os.path.join(owt_dir, file_name) for file_name in sorted(os.listdir(owt_dir)) if file_name.endswith("xz") # filter out ...xz.lock ] ex_dirs = dl_manager.extract(subset_xzs, num_proc=round(os.cpu_count() * 0.75)) nested_txt_files = [ [ os.path.join(ex_dir, txt_file_name) for txt_file_name in sorted(os.listdir(ex_dir)) if txt_file_name.endswith("txt") ] for ex_dir in ex_dirs ] txt_files = chain(*nested_txt_files) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"txt_files": txt_files}), ] def _generate_examples(self, txt_files): """ Yields examples. """ for idx, filepath in enumerate(txt_files): with open(filepath, encoding="utf-8") as f: yield idx, {"text": re.sub("\n\n\n+", "\n\n", f.read()).strip()}
[]
2024-01-10
YanJiaHuan/AI_Tutor
lib~chat_paper.py
import numpy as np import os import datetime import arxiv import openai, tenacity import base64, requests import argparse import configparser import json import tiktoken from get_paper_from_pdf import Paper import re def validateTitle_2(title): # 将论文的乱七八糟的路径格式修正 rstr = r"[\/\\\:\*\?\"\<\>\|]" # '/ \ : * ? " < > |' new_title = re.sub(rstr, "_", title) # 替换为下划线 return new_title # print(validateTitle_2('Regret Bounds for Risk-Sensitive.md')) # 定义Reader类 class Reader: # 初始化方法,设置属性 def __init__(self, key_word, query, filter_keys, root_path='./', gitee_key='', sort=arxiv.SortCriterion.SubmittedDate, user_name='defualt', args=None): self.user_name = user_name # 读者姓名 self.key_word = key_word # 读者感兴趣的关键词 self.query = query # 读者输入的搜索查询 self.sort = sort # 读者选择的排序方式 self.language = 'English' self.filter_keys = filter_keys # 用于在摘要中筛选的关键词 self.root_path = root_path # 创建一个ConfigParser对象 self.config = configparser.ConfigParser() # 读取配置文件 self.config.read('./lib/apikey.ini') # 获取某个键对应的值 self.chat_api_list = self.config.get('OpenAI', 'OPENAI_API_KEYS')[1:-1].replace('\'', '').split(',') self.chat_api_list = [api.strip() for api in self.chat_api_list if len(api) > 5] self.cur_api = 0 self.file_format = args.file_format if args.save_image: self.gitee_key = self.config.get('Gitee', 'api') else: self.gitee_key = '' self.max_token_num = 4096 self.encoding = tiktoken.get_encoding("gpt2") def get_arxiv(self, max_results=30): search = arxiv.Search(query=self.query, max_results=max_results, sort_by=self.sort, sort_order=arxiv.SortOrder.Descending, ) return search def filter_arxiv(self, max_results=30): search = self.get_arxiv(max_results=max_results) print("all search:") for index, result in enumerate(search.results()): print(index, result.title, result.updated) filter_results = [] filter_keys = self.filter_keys print("filter_keys:", self.filter_keys) # 确保每个关键词都能在摘要中找到,才算是目标论文 for index, result in enumerate(search.results()): abs_text = result.summary.replace('-\n', '-').replace('\n', ' ') meet_num = 0 for f_key in filter_keys.split(" "): if f_key.lower() in abs_text.lower(): meet_num += 1 if meet_num == len(filter_keys.split(" ")): filter_results.append(result) # break print("筛选后剩下的论文数量:") print("filter_results:", len(filter_results)) print("filter_papers:") for index, result in enumerate(filter_results): print(index, result.title, result.updated) return filter_results def validateTitle(self, title): # 将论文的乱七八糟的路径格式修正 rstr = r"[\/\\\:\*\?\"\<\>\|]" # '/ \ : * ? " < > |' new_title = re.sub(rstr, "_", title) # 替换为下划线 return new_title def download_pdf(self, filter_results): # 先创建文件夹 date_str = str(datetime.datetime.now())[:13].replace(' ', '-') key_word = str(self.key_word.replace(':', ' ')) path = self.root_path + 'pdf_files/' + self.query.replace('au: ', '').replace('title: ', '').replace('ti: ', '').replace( ':', ' ')[:25] + '-' + date_str try: os.makedirs(path) except: pass print("All_paper:", len(filter_results)) # 开始下载: paper_list = [] for r_index, result in enumerate(filter_results): try: title_str = self.validateTitle(result.title) pdf_name = title_str + '.pdf' # result.download_pdf(path, filename=pdf_name) self.try_download_pdf(result, path, pdf_name) paper_path = os.path.join(path, pdf_name) print("paper_path:", paper_path) paper = Paper(path=paper_path, url=result.entry_id, title=result.title, abs=result.summary.replace('-\n', '-').replace('\n', ' '), authers=[str(aut) for aut in result.authors], ) # 下载完毕,开始解析: paper.parse_pdf() paper_list.append(paper) except Exception as e: print("download_error:", e) pass return paper_list @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5), reraise=True) def try_download_pdf(self, result, path, pdf_name): result.download_pdf(path, filename=pdf_name) @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5), reraise=True) def upload_gitee(self, image_path, image_name='', ext='png'): """ 上传到码云 :return: """ with open(image_path, 'rb') as f: base64_data = base64.b64encode(f.read()) base64_content = base64_data.decode() date_str = str(datetime.datetime.now())[:19].replace(':', '-').replace(' ', '-') + '.' + ext path = image_name + '-' + date_str payload = { "access_token": self.gitee_key, "owner": self.config.get('Gitee', 'owner'), "repo": self.config.get('Gitee', 'repo'), "path": self.config.get('Gitee', 'path'), "content": base64_content, "message": "upload image" } # 这里需要修改成你的gitee的账户和仓库名,以及文件夹的名字: url = f'https://gitee.com/api/v5/repos/' + self.config.get('Gitee', 'owner') + '/' + self.config.get('Gitee', 'repo') + '/contents/' + self.config.get( 'Gitee', 'path') + '/' + path rep = requests.post(url, json=payload).json() print("rep:", rep) if 'content' in rep.keys(): image_url = rep['content']['download_url'] else: image_url = r"https://gitee.com/api/v5/repos/" + self.config.get('Gitee', 'owner') + '/' + self.config.get( 'Gitee', 'repo') + '/contents/' + self.config.get('Gitee', 'path') + '/' + path return image_url def summary_with_chat(self, paper_list): htmls = [] for paper_index, paper in enumerate(paper_list): # 第一步先用title,abs,和introduction进行总结。 text = '' text += 'Title:' + paper.title text += 'Url:' + paper.url text += 'Abstrat:' + paper.abs text += 'Paper_info:' + paper.section_text_dict['paper_info'] # intro text += list(paper.section_text_dict.values())[0] chat_summary_text = self.chat_summary(text=text) htmls.append('## Paper:' + str(paper_index + 1)) htmls.append('\n\n\n') htmls.append(chat_summary_text) # 由于图像信息不重要,还经常报错,我把这段内容注释掉。 # # TODO 往md文档中插入论文里的像素最大的一张图片,这个方案可以弄的更加智能一些: # first_image, ext = paper.get_image_path() # if first_image is None or self.gitee_key == '': # pass # else: # image_title = self.validateTitle(paper.title) # image_url = self.upload_gitee(image_path=first_image, image_name=image_title, ext=ext) # htmls.append("\n\n") # htmls.append("![Fig]("+image_url+")") # htmls.append("\n\n") # 第二步总结方法: # TODO,由于有些文章的方法章节名是算法名,所以简单的通过关键词来筛选,很难获取,后面需要用其他的方案去优化。 method_key = '' for parse_key in paper.section_text_dict.keys(): if 'method' in parse_key.lower() or 'approach' in parse_key.lower(): method_key = parse_key break if method_key != '': text = '' method_text = '' summary_text = '' summary_text += "<summary>" + chat_summary_text # methods method_text += paper.section_text_dict[method_key] text = summary_text + "\n\n<Methods>:\n\n" + method_text chat_method_text = self.chat_method(text=text) htmls.append(chat_method_text) else: chat_method_text = '' htmls.append("\n" * 4) # 第三步总结全文,并打分: conclusion_key = '' for parse_key in paper.section_text_dict.keys(): if 'conclu' in parse_key.lower(): conclusion_key = parse_key break text = '' conclusion_text = '' summary_text = '' summary_text += "<summary>" + chat_summary_text + "\n <Method summary>:\n" + chat_method_text if conclusion_key != '': # conclusion conclusion_text += paper.section_text_dict[conclusion_key] text = summary_text + "\n\n<Conclusion>:\n\n" + conclusion_text else: text = summary_text chat_conclusion_text = self.chat_conclusion(text=text) htmls.append(chat_conclusion_text) htmls.append("\n" * 4) # # 整合成一个文件,打包保存下来。 date_str = str(datetime.datetime.now())[:13].replace(' ', '-') try: export_path = os.path.join(self.root_path, 'export') os.makedirs(export_path) except: pass mode = 'w' if paper_index == 0 else 'a' file_name = os.path.join(export_path, self.validateTitle(paper.title) + "." + self.file_format) self.export_to_markdown("\n".join(htmls), file_name=file_name, mode=mode) # file_name = os.path.join(export_path, date_str+'-'+self.validateTitle(paper.title)+".md") # self.export_to_markdown("\n".join(htmls), file_name=file_name, mode=mode) htmls = [] @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5), reraise=True) def chat_conclusion(self, text): openai.api_key = self.chat_api_list[self.cur_api] self.cur_api += 1 self.cur_api = 0 if self.cur_api >= len(self.chat_api_list) - 1 else self.cur_api conclusion_prompt_token = 650 text_token = len(self.encoding.encode(text)) clip_text_index = int(len(text) * (self.max_token_num - conclusion_prompt_token) / text_token) clip_text = text[:clip_text_index] messages = [ {"role": "system", "content": "You are a reviewer in the field of [" + self.key_word + "] and you need to critically review this article"}, # chatgpt 角色 {"role": "assistant", "content": "This is the <summary> and <conclusion> part of an English literature, where <summary> you have already summarized, but <conclusion> part, I need your help to summarize the following questions:" + clip_text}, # 背景知识,可以参考OpenReview的审稿流程 {"role": "user", "content": """ 8. Make the following summary.Be sure to use {} answers (proper nouns need to be marked in English). - (1):What is the significance of this piece of work? - (2):Summarize the strengths and weaknesses of this article in three dimensions: innovation point, performance, and workload. ....... Follow the format of the output later: 8. Conclusion: \n\n - (1):xxx;\n - (2):Innovation point: xxx; Performance: xxx; Workload: xxx;\n Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not repeat the content of the previous <summary>, the value of the use of the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed, ....... means fill in according to the actual requirements, if not, you can not write.your total feedback should be no more than 20 words """.format(self.language, self.language)}, ] # print('#' * 20) # print(messages) # print('#' * 20) response = openai.ChatCompletion.create( model="gpt-3.5-turbo", # prompt需要用英语替换,少占用token。 messages=messages, ) result = '' for choice in response.choices: result += choice.message.content # print("conclusion_result:\n", result) # print("prompt_token_used:", response.usage.prompt_tokens, # "completion_token_used:", response.usage.completion_tokens, # "total_token_used:", response.usage.total_tokens) # print("response_time:", response.response_ms / 1000.0, 's') return result @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5), reraise=True) def chat_method(self, text): openai.api_key = self.chat_api_list[self.cur_api] self.cur_api += 1 self.cur_api = 0 if self.cur_api >= len(self.chat_api_list) - 1 else self.cur_api method_prompt_token = 650 text_token = len(self.encoding.encode(text)) clip_text_index = int(len(text) * (self.max_token_num - method_prompt_token) / text_token) clip_text = text[:clip_text_index] # print(clip_text) messages = [ {"role": "system", "content": "You are a researcher in the field of [" + self.key_word + "] who is good at summarizing papers using concise statements"}, # chatgpt 角色 {"role": "assistant", "content": "This is the <summary> and <Method> part of an English document, where <summary> you have summarized, but the <Methods> part, I need your help to read and summarize the following questions." + clip_text}, # 背景知识 {"role": "user", "content": """ 7. Describe in detail the methodological idea of this article. Be sure to use {} answers (proper nouns need to be marked in English). For example, its steps are. your total feedback should be no more than 20 words - (1):... - (2):... - (3):... - ....... Follow the format of the output that follows: 7. Methods: \n\n - (1):xxx;\n - (2):xxx;\n - (3):xxx;\n ....... \n\n Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not repeat the content of the previous <summary>, the value of the use of the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed, ....... means fill in according to the actual requirements, if not, you can not write. """.format(self.language, self.language)}, ] # print('#' * 20) # print(messages) # print('#' * 20) response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, ) result = '' for choice in response.choices: result += choice.message.content # print("method_result:\n", result) # print("prompt_token_used:", response.usage.prompt_tokens, # "completion_token_used:", response.usage.completion_tokens, # "total_token_used:", response.usage.total_tokens) # print("response_time:", response.response_ms / 1000.0, 's') return result @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5), reraise=True) def chat_summary(self, text): openai.api_key = self.chat_api_list[self.cur_api] self.cur_api += 1 self.cur_api = 0 if self.cur_api >= len(self.chat_api_list) - 1 else self.cur_api summary_prompt_token = 1000 text_token = len(self.encoding.encode(text)) clip_text_index = int(len(text) * (self.max_token_num - summary_prompt_token) / text_token) clip_text = text[:clip_text_index] messages = [ {"role": "system", "content": "You are a researcher in the field of [" + self.key_word + "] who is good at summarizing papers using concise statements"}, {"role": "assistant", "content": "This is the title, author, link, abstract and introduction of an English document. I need your help to read and summarize the following questions: " + clip_text}, {"role": "user", "content": """ You need to answer the following questions: 1. Title of Presentation 2. Section 1: Introduction - Brief overview of topic - Key points to be covered 3. Section 2: Background Information - Historical context - Key figures and events - Relevant theories 4. Section 3: Main Points - Point 1 - Point 2 - Point 3 5. Section 4: Case Study or Example - Real-world example - Analyze how topic applies to case study 6. Section 5: Conclusion - Summary of key points - Takeaways for the audience - Future directions for research or practice 7. References - List of sources cited in presentation Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not have too much repetitive information, numerical values using the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed. """.format(self.language, self.language)}, ] response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, ) result = '' for choice in response.choices: result += choice.message.content print("summary_result:\n", result) print("prompt_token_used:", response.usage.prompt_tokens, "completion_token_used:", response.usage.completion_tokens, "total_token_used:", response.usage.total_tokens) print("response_time:", response.response_ms / 1000.0, 's') return result def export_to_markdown(self, text, file_name, mode='w'): # 使用markdown模块的convert方法,将文本转换为html格式 # html = markdown.markdown(text) # 打开一个文件,以写入模式 with open(file_name, mode, encoding="utf-8") as f: # 将html格式的内容写入文件 f.write(text) # 定义一个方法,打印出读者信息 def show_info(self): print(f"Key word: {self.key_word}") print(f"Query: {self.query}") print(f"Sort: {self.sort}") def chat_terminology(self, text): openai.api_key = self.chat_api_list[self.cur_api] self.cur_api += 1 self.cur_api = 0 if self.cur_api >= len(self.chat_api_list) - 1 else self.cur_api conclusion_prompt_token = 650 text_token = len(self.encoding.encode(text)) clip_text_index = int(len(text) * (self.max_token_num - conclusion_prompt_token) / text_token) clip_text = text[:clip_text_index] messages = [ {"role": "system", "content": "You are a reviewer in the field of [" + self.key_word + "] and you need to critically review this article"}, # chatgpt 角色 {"role": "assistant", "content": "This is the <summary> and <conclusion> part of an English literature, where <summary> you have already summarized, but <conclusion> part, I need your help to answer the following questions:" + clip_text}, # 背景知识,可以参考OpenReview的审稿流程 {"role": "user", "content": """ List 10 terminology in this article and use your own knowledge or content from thia article to explain them. """.format(self.language, self.language)}, ] print('#'*20) print(messages) print('#' * 20) response = openai.ChatCompletion.create( model="gpt-3.5-turbo", # prompt需要用英语替换,少占用token。 messages=messages, ) result = '' for choice in response.choices: result += choice.message.content print(result) return result def content_extractor(md_name): with open( md_name, 'r', encoding='utf-8') as file: text = file.read() # Create patterns for the sections you want to extract # summary_pattern = re.compile(r"6\. Summary:(.*?)(?=\n\n\n\n)", re.DOTALL) # methods_pattern = re.compile(r"7\. Methods:(.*?)(?=\n\n\n\n)", re.DOTALL) # conclusion_pattern = re.compile(r"8\. Conclusion:(.*?)(?=\n\n\n\n)", re.DOTALL) # summary_pattern = re.compile(r'\d+\.summary(.*?)\d+\.(?:[^summary]|summary(?!$))+', re.DOTALL) # methods_pattern = re.compile(r'\d+\.methods(.*?)\d+\.(?:[^methods]|methods(?!$))+', re.DOTALL) # conclusion_pattern = re.compile(r'\d+\.conclusion(.*?)\d+\.(?:[^conclusion]|conclusion(?!$))+', re.DOTALL) summary_pattern = r'\d+\.summary(.*?)\d+\.(?:[^summary]|summary(?!$))+' summary_match = re.search(summary_pattern, text, flags=re.DOTALL) methods_pattern = r'\d+\.methods(.*?)\d+\.(?:[^methods]|methods(?!$))+' methods_match = re.search(methods_pattern, text, flags=re.DOTALL) conclusion_pattern = r'\d+\.conclusion(.*?)\d+\.(?:[^conclusion]|conclusion(?!$))+' conclusion_match = re.search(conclusion_pattern, text, flags=re.DOTALL) if summary_match: summary = summary_match.group(1).strip() else: summary = 'Re error ' if methods_match: methods = methods_match.group(1).strip() else: methods = 'Re error ' if conclusion_match: conclusion = conclusion_match.group(1).strip() else: conclusion = 'Re error ' paper_info = { "GPTsummary": summary, "GPTmethods": methods, "GPTconclusion": conclusion } return paper_info # def main(args): # # 创建一个Reader对象,并调用show_info方法 # # if args.sort == 'Relevance': # # sort = arxiv.SortCriterion.Relevance # # elif args.sort == 'LastUpdatedDate': # # sort = arxiv.SortCriterion.LastUpdatedDate # # else: # # sort = arxiv.SortCriterion.Relevance # # if args.pdf_path: # reader1 = Reader(key_word=args.key_word, # query=args.query, # filter_keys=args.filter_keys, # sort=args.sort, # args=args # ) # reader1.show_info() # #开始判断是路径还是文件: # paper_list = [] # if args.pdf_path.endswith(".pdf"): # paper_list.append(Paper(path=args.pdf_path)) # else: # for root, dirs, files in os.walk(args.pdf_path): # print("root:", root, "dirs:", dirs, 'files:', files) # 当前目录路径 # for filename in files: # # 如果找到PDF文件,则将其复制到目标文件夹中 # if filename.endswith(".pdf"): # paper_list.append(Paper(path=os.path.join(root, filename))) # print("------------------paper_num: {}------------------".format(len(paper_list))) # [print(paper_index, paper_name.path.split('\\')[-1]) for paper_index, paper_name in enumerate(paper_list)] # # output = reader1.summary_with_chat(paper_list=paper_list) # for paper in paper_list: # print(paper.title) # with open(f"./data/{validateTitle_2(paper.title)}.json", "w") as write_file: # paper.section_text_dict.update(content_extractor(f"./export/{validateTitle_2(paper.title)}.md")) # json.dump(paper.section_text_dict, write_file, indent=4) # else: # reader1 = Reader(key_word=args.key_word, # query=args.query, # filter_keys=args.filter_keys, # sort=args.sort, # args=args # ) # reader1.show_info() # filter_results = reader1.filter_arxiv(max_results=args.max_results) # paper_list = reader1.download_pdf(filter_results) # reader1.summary_with_chat(paper_list=paper_list) # # for paper in paper_list: # # with open(f"./data/{paper.title}.json", "w") as write_file: # # paper.section_text_dict.update(content_extractor(f"./export/{validateTitle_2(paper.title)}.md")) # # json.dump(paper.section_text_dict, write_file, indent=4) def main(args): # 创建一个Reader对象,并调用show_info方法 if args.sort == 'Relevance': sort = arxiv.SortCriterion.Relevance elif args.sort == 'LastUpdatedDate': sort = arxiv.SortCriterion.LastUpdatedDate else: sort = arxiv.SortCriterion.Relevance if args.pdf_path: reader1 = Reader(key_word=args.key_word, query=args.query, filter_keys=args.filter_keys, sort=sort, args=args ) reader1.show_info() # 开始判断是路径还是文件: paper_list = [] if args.pdf_path.endswith(".pdf"): paper_list.append(Paper(path=args.pdf_path)) else: for root, dirs, files in os.walk(args.pdf_path): print("root:", root, "dirs:", dirs, 'files:', files) # 当前目录路径 for filename in files: # 如果找到PDF文件,则将其复制到目标文件夹中 if filename.endswith(".pdf"): paper_list.append(Paper(path=os.path.join(root, filename))) print("------------------paper_num: {}------------------".format(len(paper_list))) [print(paper_index, paper_name.path.split('\\')[-1]) for paper_index, paper_name in enumerate(paper_list)] reader1.summary_with_chat(paper_list=paper_list) else: reader1 = Reader(key_word=args.key_word, query=args.query, filter_keys=args.filter_keys, sort=sort, args=args ) reader1.show_info() filter_results = reader1.filter_arxiv(max_results=args.max_results) paper_list = reader1.download_pdf(filter_results) reader1.summary_with_chat(paper_list=paper_list) def main_2(args): if args.pdf_path: reader1 = Reader(key_word=args.key_word, query=args.query, filter_keys=args.filter_keys, sort=args.sort, args=args ) reader1.show_info() paper_content = Paper(args.pdf_path) terminology = reader1.chat_terminology(paper_content) print(terminology) else: print("not find pdf_path") # type in terminal: # def main(): # path_file = './pdf_files/reinforcement learning-2023-03-23-11' # print('start') # paper_list = [] # for root, dirs, files in os.walk(path_file): # for filename in files: # if filename.endswith(".pdf"): # paper_list.append(Paper(path=(root+'/'+filename))) # print(len(paper_list)) # for paper in paper_list: # print(paper.title) # paper_name = validateTitle_2(paper.title) # with open(f"./data/{paper_name}.json", "w") as write_file: # # paper.section_text_dict.update(content_extractor(f"./export/{paper_name}.md")) # json.dump(paper.section_text_dict, write_file, indent=4) if __name__ == '__main__': parser = argparse.ArgumentParser() # parser.add_argument("--pdf_path", type=str, default=r'demo.pdf', help="if none, the bot will download from arxiv with query") parser.add_argument("--pdf_path", type=str, default=r'/Users/yan/Desktop/Project/ChatPaper/pdf_files/reinforcement learning-2023-03-23-11', help="if none, the bot will download from arxiv with query") # parser.add_argument("--pdf_path", type=str, default='', help="if none, the bot will download from arxiv with query") parser.add_argument("--query", type=str, default='reinforcement learning', help="the query string, ti: xx, au: xx, all: xx,") parser.add_argument("--key_word", type=str, default='reinforcement learning', help="the key word of user research fields") parser.add_argument("--filter_keys", type=str, default=' ', help="the filter key words, 摘要中每个单词都得有,才会被筛选为目标论文") parser.add_argument("--max_results", type=int, default=100, help="the maximum number of results") # arxiv.SortCriterion.Relevance parser.add_argument("--sort", type=str, default="Relevance", help="another is LastUpdatedDate") parser.add_argument("--save_image", default=False, help="save image? It takes a minute or two to save a picture! But pretty") parser.add_argument("--file_format", type=str, default='md', help="导出的文件格式,如果存图片的话,最好是md,如果不是的话,txt的不会乱") parser.add_argument("--language", type=str, default='en', help="The other output lauguage is English, is en") args = parser.parse_args() main(args) ################## #type "python ./lib/chat_paper.py " in your terminal, the code will download 100 paper to local,and do parser and GPTsummary afterwards
[ " \n List 10 terminology in this article and use your own knowledge or content from thia article to explain them.\n \n ", " \n You need to answer the following questions:\n 1. Title of Presentation \n\n 2. Section 1: Introduction \n\n - Brief overview of topic \n \n - Key points to be covered \n\n \n\n 3. Section 2: Background Information \n\n - Historical context \n \n - Key figures and events \n \n - Relevant theories \n\n \n\n 4. Section 3: Main Points \n \n - Point 1 \n \n - Point 2 \n \n - Point 3 \n\n \n\n 5. Section 4: Case Study or Example \n \n - Real-world example \n \n - Analyze how topic applies to case study \n\n \n\n 6. Section 5: Conclusion \n \n - Summary of key points \n \n - Takeaways for the audience \n \n - Future directions for research or practice \n\n \n \n 7. References \n \n - List of sources cited in presentation \n\n \n\n Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not have too much repetitive information, numerical values using the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed. \n ", " \n 8. Make the following summary.Be sure to use {} answers (proper nouns need to be marked in English).\n - (1):What is the significance of this piece of work?\n - (2):Summarize the strengths and weaknesses of this article in three dimensions: innovation point, performance, and workload. \n .......\n Follow the format of the output later: \n 8. Conclusion: \n\n\n - (1):xxx;\n \n - (2):Innovation point: xxx; Performance: xxx; Workload: xxx;\n \n\n Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not repeat the content of the previous <summary>, the value of the use of the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed, ....... means fill in according to the actual requirements, if not, you can not write.your total feedback should be no more than 20 words \n ", " \n 7. Describe in detail the methodological idea of this article. Be sure to use {} answers (proper nouns need to be marked in English). For example, its steps are. your total feedback should be no more than 20 words\n - (1):...\n - (2):...\n - (3):...\n - .......\n Follow the format of the output that follows: \n 7. Methods: \n\n\n - (1):xxx;\n \n - (2):xxx;\n \n - (3):xxx;\n \n ....... \n\n \n\n Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not repeat the content of the previous <summary>, the value of the use of the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed, ....... means fill in according to the actual requirements, if not, you can not write. \n ", "This is the <summary> and <conclusion> part of an English literature, where <summary> you have already summarized, but <conclusion> part, I need your help to answer the following questions:PLACEHOLDER", "650", "] and you need to critically review this article", "This is the <summary> and <Method> part of an English document, where <summary> you have summarized, but the <Methods> part, I need your help to read and summarize the following questions.PLACEHOLDER", "] who is good at summarizing papers using concise statements", "This is the <summary> and <conclusion> part of an English literature, where <summary> you have already summarized, but <conclusion> part, I need your help to summarize the following questions:PLACEHOLDER", "This is the title, author, link, abstract and introduction of an English document. I need your help to read and summarize the following questions: PLACEHOLDER", "You are a researcher in the field of [", "You are a reviewer in the field of [", "1000" ]
2024-01-10
YanJiaHuan/AI_Tutor
test~pdf_parser.py
import numpy as np import os import re import datetime import arxiv import openai, tenacity import base64, requests import argparse import configparser import json import tiktoken from get_paper_from_pdf import Paper # 定义Reader类 class Reader: # 初始化方法,设置属性 def __init__(self, key_word, query, filter_keys, root_path='./', gitee_key='', sort=arxiv.SortCriterion.SubmittedDate, user_name='defualt', args=None): self.user_name = user_name # 读者姓名 self.key_word = key_word # 读者感兴趣的关键词 self.query = query # 读者输入的搜索查询 self.sort = sort # 读者选择的排序方式 if args.language == 'en': self.language = 'English' elif args.language == 'zh': self.language = 'Chinese' else: self.language = 'Chinese' self.filter_keys = filter_keys # 用于在摘要中筛选的关键词 self.root_path = root_path # 创建一个ConfigParser对象 self.config = configparser.ConfigParser() # 读取配置文件 self.config.read('./test/apikey.ini') # 获取某个键对应的值 self.chat_api_list = self.config.get('OpenAI', 'OPENAI_API_KEYS')[1:-1].replace('\'', '').split(',') self.chat_api_list = [api.strip() for api in self.chat_api_list if len(api) > 5] self.cur_api = 0 self.file_format = args.file_format if args.save_image: self.gitee_key = self.config.get('Gitee', 'api') else: self.gitee_key = '' self.max_token_num = 4096 self.encoding = tiktoken.get_encoding("cl100k_base") # self.encoding = tiktoken.encoding_for_model("gpt-4") def get_arxiv(self, max_results=30): search = arxiv.Search(query=self.query, max_results=max_results, sort_by=self.sort, sort_order=arxiv.SortOrder.Descending, ) return search def filter_arxiv(self, max_results=30): search = self.get_arxiv(max_results=max_results) print("all search:") for index, result in enumerate(search.results()): print(index, result.title, result.updated) filter_results = [] filter_keys = self.filter_keys print("filter_keys:", self.filter_keys) # 确保每个关键词都能在摘要中找到,才算是目标论文 for index, result in enumerate(search.results()): abs_text = result.summary.replace('-\n', '-').replace('\n', ' ') meet_num = 0 for f_key in filter_keys.split(" "): if f_key.lower() in abs_text.lower(): meet_num += 1 if meet_num == len(filter_keys.split(" ")): filter_results.append(result) # break print("筛选后剩下的论文数量:") print("filter_results:", len(filter_results)) print("filter_papers:") for index, result in enumerate(filter_results): print(index, result.title, result.updated) return filter_results def validateTitle(self, title): # 将论文的乱七八糟的路径格式修正 rstr = r"[\/\\\:\*\?\"\<\>\|]" # '/ \ : * ? " < > |' new_title = re.sub(rstr, "_", title) # 替换为下划线 return new_title def download_pdf(self, filter_results): # 先创建文件夹 date_str = str(datetime.datetime.now())[:13].replace(' ', '-') key_word = str(self.key_word.replace(':', ' ')) path = self.root_path + 'pdf_files/' + self.query.replace('au: ', '').replace('title: ', '').replace('ti: ', '').replace(':', ' ')[:25] + '-' + date_str try: os.makedirs(path) except: pass print("All_paper:", len(filter_results)) # 开始下载: paper_list = [] for r_index, result in enumerate(filter_results): try: title_str = self.validateTitle(result.title) pdf_name = title_str+'.pdf' # result.download_pdf(path, filename=pdf_name) self.try_download_pdf(result, path, pdf_name) paper_path = os.path.join(path, pdf_name) print("paper_path:", paper_path) paper = Paper(path=paper_path, url=result.entry_id, title=result.title, abs=result.summary.replace('-\n', '-').replace('\n', ' '), authers=[str(aut) for aut in result.authors], ) # 下载完毕,开始解析: paper.parse_pdf() paper_list.append(paper) except Exception as e: print("download_error:", e) pass return paper_list @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5), reraise=True) def try_download_pdf(self, result, path, pdf_name): result.download_pdf(path, filename=pdf_name) @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5), reraise=True) def upload_gitee(self, image_path, image_name='', ext='png'): """ 上传到码云 :return: """ with open(image_path, 'rb') as f: base64_data = base64.b64encode(f.read()) base64_content = base64_data.decode() date_str = str(datetime.datetime.now())[:19].replace(':', '-').replace(' ', '-') + '.' + ext path = image_name+ '-' +date_str payload = { "access_token": self.gitee_key, "owner": self.config.get('Gitee', 'owner'), "repo": self.config.get('Gitee', 'repo'), "path": self.config.get('Gitee', 'path'), "content": base64_content, "message": "upload image" } # 这里需要修改成你的gitee的账户和仓库名,以及文件夹的名字: url = f'https://gitee.com/api/v5/repos/'+self.config.get('Gitee', 'owner')+'/'+self.config.get('Gitee', 'repo')+'/contents/'+self.config.get('Gitee', 'path')+'/'+path rep = requests.post(url, json=payload).json() print("rep:", rep) if 'content' in rep.keys(): image_url = rep['content']['download_url'] else: image_url = r"https://gitee.com/api/v5/repos/"+self.config.get('Gitee', 'owner')+'/'+self.config.get('Gitee', 'repo')+'/contents/'+self.config.get('Gitee', 'path')+'/' + path return image_url def summary_with_chat(self, paper_list): # htmls = [] data_list=[] for paper_index, paper in enumerate(paper_list): data_dic = {} # print(paper_index, paper.abstract) # 第一步先用title,abs,和introduction进行总结。 # data_dic['Abstract']=paper.abs # data_dic['Introduction']=paper.section_text_dict['Introduction'] data_dic['paper_info']=paper.section_text_dict['paper_info'] data_list.append(data_dic) with open("./test/mydata.json", "w") as out_file: json.dump(data_list, out_file) # 定义一个方法,打印出读者信息 def show_info(self): print(f"Key word: {self.key_word}") print(f"Query: {self.query}") print(f"Sort: {self.sort}") def main(args): # 创建一个Reader对象,并调用show_info方法 if args.sort == 'Relevance': sort = arxiv.SortCriterion.Relevance elif args.sort == 'LastUpdatedDate': sort = arxiv.SortCriterion.LastUpdatedDate else: sort = arxiv.SortCriterion.Relevance if args.pdf_path: reader1 = Reader(key_word=args.key_word, query=args.query, filter_keys=args.filter_keys, sort=sort, args=args ) reader1.show_info() # 开始判断是路径还是文件: paper_list = [] if args.pdf_path.endswith(".pdf"): paper_list.append(Paper(path=args.pdf_path)) else: for root, dirs, files in os.walk(args.pdf_path): print("root:", root, "dirs:", dirs, 'files:', files) #当前目录路径 for filename in files: # 如果找到PDF文件,则将其复制到目标文件夹中 if filename.endswith(".pdf"): paper_list.append(Paper(path=os.path.join(root, filename))) print("------------------paper_num: {}------------------".format(len(paper_list))) [print(paper_index, paper_name.path.split('\\')[-1]) for paper_index, paper_name in enumerate(paper_list)] reader1.summary_with_chat(paper_list=paper_list) else: reader1 = Reader(key_word=args.key_word, query=args.query, filter_keys=args.filter_keys, sort=sort, args=args ) reader1.show_info() filter_results = reader1.filter_arxiv(max_results=args.max_results) paper_list = reader1.download_pdf(filter_results) reader1.summary_with_chat(paper_list=paper_list) if __name__ == '__main__': parser = argparse.ArgumentParser() # parser.add_argument("--pdf_path", type=str, default='./test/demo.pdf', help="if none, the bot will download from arxiv with query") # parser.add_argument("--pdf_path", type=str, default=r'C:\Users\Administrator\Desktop\DHER\RHER_Reset\ChatPaper', help="if none, the bot will download from arxiv with query") parser.add_argument("--pdf_path", type=str, default='', help="if none, the bot will download from arxiv with query") parser.add_argument("--query", type=str, default='all: nlp', help="the query string, ti: xx, au: xx, all: xx,") parser.add_argument("--key_word", type=str, default='nlp', help="the key word of user research fields") parser.add_argument("--filter_keys", type=str, default='nlp', help="the filter key words, 摘要中每个单词都得有,才会被筛选为目标论文") parser.add_argument("--max_results", type=int, default=2000, help="the maximum number of results") # arxiv.SortCriterion.Relevance parser.add_argument("--sort", type=str, default="LastUpdatedDate", help="another is LastUpdatedDate") parser.add_argument("--save_image", default=False, help="save image? It takes a minute or two to save a picture! But pretty") parser.add_argument("--file_format", type=str, default='md', help="导出的文件格式,如果存图片的话,最好是md,如果不是的话,txt的不会乱") parser.add_argument("--language", type=str, default='en', help="The other output lauguage is English, is en") args = parser.parse_args() import time start_time = time.time() main(args=args) print("summary time:", time.time() - start_time)
[]
2024-01-10
YanJiaHuan/AI_Tutor
test~chat_paper.py
import numpy as np import os import re import datetime import arxiv import openai, tenacity import base64, requests import argparse import configparser import json import tiktoken from get_paper_from_pdf import Paper # 定义Reader类 class Reader: # 初始化方法,设置属性 def __init__(self, key_word, query, filter_keys, root_path='./', gitee_key='', sort=arxiv.SortCriterion.SubmittedDate, user_name='defualt', args=None): self.user_name = user_name # 读者姓名 self.key_word = key_word # 读者感兴趣的关键词 self.query = query # 读者输入的搜索查询 self.sort = sort # 读者选择的排序方式 if args.language == 'en': self.language = 'English' elif args.language == 'zh': self.language = 'Chinese' else: self.language = 'Chinese' self.filter_keys = filter_keys # 用于在摘要中筛选的关键词 self.root_path = root_path # 创建一个ConfigParser对象 self.config = configparser.ConfigParser() # 读取配置文件 self.config.read('./test/apikey.ini') # 获取某个键对应的值 self.chat_api_list = self.config.get('OpenAI', 'OPENAI_API_KEYS')[1:-1].replace('\'', '').split(',') self.chat_api_list = [api.strip() for api in self.chat_api_list if len(api) > 5] self.cur_api = 0 self.file_format = args.file_format if args.save_image: self.gitee_key = self.config.get('Gitee', 'api') else: self.gitee_key = '' self.max_token_num = 4096 self.encoding = tiktoken.get_encoding("cl100k_base") # self.encoding = tiktoken.encoding_for_model("gpt-4") def get_arxiv(self, max_results=30): search = arxiv.Search(query=self.query, max_results=max_results, sort_by=self.sort, sort_order=arxiv.SortOrder.Descending, ) return search def filter_arxiv(self, max_results=30): search = self.get_arxiv(max_results=max_results) print("all search:") for index, result in enumerate(search.results()): print(index, result.title, result.updated) filter_results = [] filter_keys = self.filter_keys print("filter_keys:", self.filter_keys) # 确保每个关键词都能在摘要中找到,才算是目标论文 for index, result in enumerate(search.results()): abs_text = result.summary.replace('-\n', '-').replace('\n', ' ') meet_num = 0 for f_key in filter_keys.split(" "): if f_key.lower() in abs_text.lower(): meet_num += 1 if meet_num == len(filter_keys.split(" ")): filter_results.append(result) # break print("筛选后剩下的论文数量:") print("filter_results:", len(filter_results)) print("filter_papers:") for index, result in enumerate(filter_results): print(index, result.title, result.updated) return filter_results def validateTitle(self, title): # 将论文的乱七八糟的路径格式修正 rstr = r"[\/\\\:\*\?\"\<\>\|]" # '/ \ : * ? " < > |' new_title = re.sub(rstr, "_", title) # 替换为下划线 return new_title def download_pdf(self, filter_results): # 先创建文件夹 date_str = str(datetime.datetime.now())[:13].replace(' ', '-') key_word = str(self.key_word.replace(':', ' ')) path = self.root_path + 'pdf_files/' + self.query.replace('au: ', '').replace('title: ', '').replace('ti: ', '').replace(':', ' ')[:25] + '-' + date_str try: os.makedirs(path) except: pass print("All_paper:", len(filter_results)) # 开始下载: paper_list = [] for r_index, result in enumerate(filter_results): try: title_str = self.validateTitle(result.title) pdf_name = title_str+'.pdf' # result.download_pdf(path, filename=pdf_name) self.try_download_pdf(result, path, pdf_name) paper_path = os.path.join(path, pdf_name) print("paper_path:", paper_path) paper = Paper(path=paper_path, url=result.entry_id, title=result.title, abs=result.summary.replace('-\n', '-').replace('\n', ' '), authers=[str(aut) for aut in result.authors], ) # 下载完毕,开始解析: paper.parse_pdf() paper_list.append(paper) except Exception as e: print("download_error:", e) pass return paper_list @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5), reraise=True) def try_download_pdf(self, result, path, pdf_name): result.download_pdf(path, filename=pdf_name) @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5), reraise=True) def upload_gitee(self, image_path, image_name='', ext='png'): """ 上传到码云 :return: """ with open(image_path, 'rb') as f: base64_data = base64.b64encode(f.read()) base64_content = base64_data.decode() date_str = str(datetime.datetime.now())[:19].replace(':', '-').replace(' ', '-') + '.' + ext path = image_name+ '-' +date_str payload = { "access_token": self.gitee_key, "owner": self.config.get('Gitee', 'owner'), "repo": self.config.get('Gitee', 'repo'), "path": self.config.get('Gitee', 'path'), "content": base64_content, "message": "upload image" } # 这里需要修改成你的gitee的账户和仓库名,以及文件夹的名字: url = f'https://gitee.com/api/v5/repos/'+self.config.get('Gitee', 'owner')+'/'+self.config.get('Gitee', 'repo')+'/contents/'+self.config.get('Gitee', 'path')+'/'+path rep = requests.post(url, json=payload).json() print("rep:", rep) if 'content' in rep.keys(): image_url = rep['content']['download_url'] else: image_url = r"https://gitee.com/api/v5/repos/"+self.config.get('Gitee', 'owner')+'/'+self.config.get('Gitee', 'repo')+'/contents/'+self.config.get('Gitee', 'path')+'/' + path return image_url def summary_with_chat(self, mydata, paper_list): # htmls = [] data_dic = {} for paper_index, paper in enumerate(paper_list): # print(paper_index, paper.abstract) # 第一步先用title,abs,和introduction进行总结。 text = '' text += 'Title:' + paper.title text += '|Abstract:' + paper.section_text_dict['Abstract'] text += '|Introduction:' + paper.section_text_dict['Introduction'] text += '|The first page info:' + paper.section_text_dict['paper_info'] # intro text += list(paper.section_text_dict.values())[0] # chat_summary_text = "" try: mydata = self.chat_summary(text=text) except Exception as e: print("summary_error:", e) if "maximum context" in str(e): current_tokens_index = str(e).find("your messages resulted in") + len("your messages resulted in")+1 offset = int(str(e)[current_tokens_index:current_tokens_index+4]) summary_prompt_token = offset+1000+150 mydata = self.chat_summary(text=text, summary_prompt_token=summary_prompt_token) # htmls.append('## Paper:' + str(paper_index+1)) # htmls.append('\n\n\n') # htmls.append(chat_summary_text) # # 第二步总结方法: # # TODO,由于有些文章的方法章节名是算法名,所以简单的通过关键词来筛选,很难获取,后面需要用其他的方案去优化。 # method_key = '' # for parse_key in paper.section_text_dict.keys(): # if 'method' in parse_key.lower() or 'approach' in parse_key.lower(): # method_key = parse_key # break # if method_key != '': # text = '' # method_text = '' # summary_text = '' # summary_text += "<Summary>" + chat_summary_text # # methods # method_text += paper.section_text_dict[method_key] # text = summary_text + "\n\n<Method>:\n\n" + method_text # chat_method_text = "" # try: # chat_method_text = self.chat_method(text=text) # except Exception as e: # print("method_error:", e) # if "maximum context" in str(e): # current_tokens_index = str(e).find("your messages resulted in") + len("your messages resulted in")+1 # offset = int(str(e)[current_tokens_index:current_tokens_index+4]) # method_prompt_token = offset+800+150 # chat_method_text = self.chat_method(text=text, method_prompt_token=method_prompt_token) # # htmls.append(chat_method_text) # else: # chat_method_text = '' # # htmls.append("\n"*4) # # 第三步总结全文,并打分: # conclusion_key = '' # for parse_key in paper.section_text_dict.keys(): # if 'conclu' in parse_key.lower(): # conclusion_key = parse_key # break # text = '' # conclusion_text = '' # summary_text = '' # summary_text += "<Summary>" + chat_summary_text + "\n <Method>:\n" + chat_method_text # if conclusion_key != '': # # conclusion # conclusion_text += paper.section_text_dict[conclusion_key] # text = summary_text + "\n\n<Conclusion>:\n\n" + conclusion_text # else: # text = summary_text # chat_conclusion_text = "" # try: # chat_conclusion_text = self.chat_conclusion(text=text) # except Exception as e: # print("conclusion_error:", e) # if "maximum context" in str(e): # current_tokens_index = str(e).find("your messages resulted in") + len("your messages resulted in")+1 # offset = int(str(e)[current_tokens_index:current_tokens_index+4]) # conclusion_prompt_token = offset+800+150 # chat_conclusion_text = self.chat_conclusion(text=text, conclusion_prompt_token=conclusion_prompt_token) # # htmls.append(chat_conclusion_text) # # htmls.append("\n"*4) # summary_text += "\n <Conclusion>:\n" + chat_conclusion_text # print("===========================================================================") # print(summary_text) # try: # chat_ppt_text = self.chat_ppt(text=summary_text) # except Exception as e: # print("ppt_error:", e) # if "maximum context" in str(e): # current_tokens_index = str(e).find("your messages resulted in") + len("your messages resulted in")+1 # offset = int(str(e)[current_tokens_index:current_tokens_index+4]) # ppt_prompt_token = offset+1000+150 # chat_ppt_text = self.chat_ppt(text=summary_text, ppt_prompt_token=ppt_prompt_token) # htmls.append(chat_ppt_text) # # # 整合成一个文件,打包保存下来。 # date_str = str(datetime.datetime.now())[:13].replace(' ', '-') # try: # export_path = os.path.join(self.root_path, 'export') # os.makedirs(export_path) # except: # pass # mode = 'w' if paper_index == 0 else 'a' # file_name = os.path.join(export_path, date_str+'-'+self.validateTitle(paper.title[:80])+"."+self.file_format) # self.export_to_markdown("\n".join(htmls), file_name=file_name, mode=mode) # file_name = os.path.join(export_path, date_str+'-'+self.validateTitle(paper.title)+".md") # self.export_to_markdown("\n".join(htmls), file_name=file_name, mode=mode) # htmls = [] with open("./test/mydata.json", "w") as out_file: json.dump(mydata, out_file) @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5), reraise=True) def chat_conclusion(self, text, conclusion_prompt_token = 800): openai.api_key = self.chat_api_list[self.cur_api] self.cur_api += 1 self.cur_api = 0 if self.cur_api >= len(self.chat_api_list)-1 else self.cur_api text_token = len(self.encoding.encode(text)) clip_text_index = int(len(text)*(self.max_token_num-conclusion_prompt_token)/text_token) clip_text = text[:clip_text_index] messages=[ {"role": "system", "content": "You are a reviewer in the field of ["+self.key_word+"] and you need to critically review this article"}, # chatgpt 角色 {"role": "assistant", "content": "This is the <Summary> and <Conclusion> part of an English literature, where <Summary> you have already summarized, but <Conclusion> part, I need your help to summarize the following questions:"+clip_text}, # 背景知识,可以参考OpenReview的审稿流程 {"role": "user", "content": """ 8. Make the following summary.Be sure to use {} answers (proper nouns need to be marked in English). - (1):What is the significance of this piece of work? - (2):Summarize the strengths and weaknesses of this article in three dimensions: innovation point, performance, and workload. ....... Follow the format of the output later: 8. Conclusion: \n\n - (1):xxx;\n - (2):Innovation point: xxx; Performance: xxx; Workload: xxx;\n Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not repeat the content of the previous <summary>, the value of the use of the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed, ....... means fill in according to the actual requirements, if not, you can not write. """.format(self.language, self.language)}, ] response = openai.ChatCompletion.create( model="gpt-3.5-turbo", # prompt需要用英语替换,少占用token。 messages=messages, ) result = '' for choice in response.choices: result += choice.message.content print("conclusion_result:\n", result) print("prompt_token_used:", response.usage.prompt_tokens, "completion_token_used:", response.usage.completion_tokens, "total_token_used:", response.usage.total_tokens) print("response_time:", response.response_ms/1000.0, 's') return result @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5), reraise=True) def chat_method(self, text, method_prompt_token = 800): openai.api_key = self.chat_api_list[self.cur_api] self.cur_api += 1 self.cur_api = 0 if self.cur_api >= len(self.chat_api_list)-1 else self.cur_api text_token = len(self.encoding.encode(text)) clip_text_index = int(len(text)*(self.max_token_num-method_prompt_token)/text_token) clip_text = text[:clip_text_index] messages=[ {"role": "system", "content": "You are a researcher in the field of ["+self.key_word+"] who is good at summarizing papers using concise statements"}, # chatgpt 角色 {"role": "assistant", "content": "This is the <Summary> and <Method> part of an English document, where <Summary> you have summarized, but the <Method> part, I need your help to read and summarize the following questions."+clip_text}, # 背景知识 {"role": "user", "content": """ 7. Describe in detail the methodological idea of this article. Be sure to use {} answers (proper nouns need to be marked in English). For example, its steps are. - (1):... - (2):... - (3):... - ....... Follow the format of the output that follows: 7. Methods: \n\n - (1):xxx;\n - (2):xxx;\n - (3):xxx;\n ....... \n\n Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not repeat the content of the previous <summary>, the value of the use of the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed, ....... means fill in according to the actual requirements, if not, you can not write. """.format(self.language, self.language)}, ] response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, ) result = '' for choice in response.choices: result += choice.message.content print("method_result:\n", result) print("prompt_token_used:", response.usage.prompt_tokens, "completion_token_used:", response.usage.completion_tokens, "total_token_used:", response.usage.total_tokens) print("response_time:", response.response_ms/1000.0, 's') return result @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5), reraise=True) def chat_summary(self, text, summary_prompt_token = 1100): openai.api_key = self.chat_api_list[self.cur_api] self.cur_api += 1 self.cur_api = 0 if self.cur_api >= len(self.chat_api_list)-1 else self.cur_api text_token = len(self.encoding.encode(text)) clip_text_index = int(len(text)*(self.max_token_num-summary_prompt_token)/text_token) clip_text = text[:clip_text_index] contents=["You are a researcher in the field of ["+self.key_word+"] who is good at summarizing papers using concise statements", "This is the title, abstract, introduction and the first page info of an English document seperated by |: "+clip_text+" I need your help to read and summarize the following questions: ", "Mark the title of the paper \n Follow the format of the output that follows: Title: xxx\n\n ", "List all the authors' names \n Follow the format of the output that follows: Authors: xxx\n\n ", "Mark the first author's affiliation \n Follow the format of the output that follows: Affiliation: xxx\n\n ", "Mark the keywords of this article \n Follow the format of the output that follows: Keywords: xxx\n\n ", "Link to the paper, Github code link (if available, fill in Github:None if not) \n Follow the format of the output that follows: Urls: xxx or xxx , xxx \n\n ", """Summarize according to the following four points.Be sure to use {} answers (proper nouns need to be marked in English) - (1):What is the research background of this article? - (2):What are the past methods? What are the problems with them? Is the approach well motivated? - (3):What is the research methodology proposed in this paper? - (4):On what task and what performance is achieved by the methods in this paper? Can the performance support their goals? \n Follow the format of the output that follows: Summary: \n\n - (1):xxx;\n - (2):xxx;\n - (3):xxx;\n - (4):xxx.\n\n """, "Make sure the statements as concise and academic as possible, do not have too much repetitive information, numerical values using the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed. " ] msg_list=[] for i in range(2,5): msg_dict={} messages=[ {"role": "system", "content": contents[0]}, {"role": "assistant", "content": contents[1]}, {"role": "user", "content":contents[i]+contents[8]}, ] # print(messages) response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, ) result = '' for choice in response.choices: result += choice.message.content # print("summary_result:\n", result) print("prompt_token_used:", response.usage.prompt_tokens, "completion_token_used:", response.usage.completion_tokens, "total_token_used:", response.usage.total_tokens) print("response_time:", response.response_ms/1000.0, 's') # print(result) msg_dict["instruction"]=contents[i]+contents[8] msg_dict["input"]= contents[0]+contents[1] msg_dict["output"]=result msg_list.append(msg_dict) # print(msg_list) return msg_list # def chat_ppt(self, text, ppt_prompt_token = 1100): # openai.api_key = self.chat_api_list[self.cur_api] # self.cur_api += 1 # self.cur_api = 0 if self.cur_api >= len(self.chat_api_list)-1 else self.cur_api # text_token = len(self.encoding.encode(text)) # clip_text_index = int(len(text)*(self.max_token_num-ppt_prompt_token)/text_token) # clip_text = text[:clip_text_index] # messages=[ # {"role": "system", "content": "You are a tutor in the field of ["+self.key_word+"] who is good at creating powerpoint slides from research papers."}, # {"role": "assistant", "content": "This is the <Summary>, <Method> and <Conclusion> part of an English document where all you have summarized, I need your help to read and summarize the following questions: "+clip_text}, # {"role": "user", "content": """ # Follow the format of the output that follows: # # Title of Presentation: xxx\n # # Section 1: Introduction # - Brief overview of the topic: xxx\n # - Key points to be covered: xxx\n # # Section 2: Background Information # - Historical context: xxx\n # - Key figures and events: xxx\n # - Relevant theories: xxx\n # # Section 3: Main Points # - What dataset did this paper use? xxx\n # - What is the process of the proposed method? xxx\n # - What is the performance of the proposed method? Please note down its performance metrics. xxx\n # - What are the baseline models and their performances? Please note down these baseline methods. xxx\n # # Section 4: Case Study or Example # - Real-world example: xxx\n # - Analyze how this topic applies to case study: xxx\n # # Section 5: Conclusion # - Summary of key points: xxx\n # - Takeaways for the audience: xxx\n # - Future directions for research or practice: xxx\n # # References # - List of sources cited in the slides: xxx\n # Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not have too much repetitive information, numerical values using the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed. # """.format(self.language, self.language, self.language)}, # ] # response = openai.ChatCompletion.create( # model="gpt-3.5-turbo", # messages=messages, # ) # result = '' # for choice in response.choices: # result += choice.message.content # print("summary_result:\n", result) # print("prompt_token_used:", response.usage.prompt_tokens, # "completion_token_used:", response.usage.completion_tokens, # "total_token_used:", response.usage.total_tokens) # print("response_time:", response.response_ms/1000.0, 's') # return result def export_to_markdown(self, text, file_name, mode='w'): # 使用markdown模块的convert方法,将文本转换为html格式 # html = markdown.markdown(text) # 打开一个文件,以写入模式 with open(file_name, mode, encoding="utf-8") as f: # 将html格式的内容写入文件 f.write(text) # 定义一个方法,打印出读者信息 def show_info(self): print(f"Key word: {self.key_word}") print(f"Query: {self.query}") print(f"Sort: {self.sort}") def main(args): # 创建一个Reader对象,并调用show_info方法 if args.sort == 'Relevance': sort = arxiv.SortCriterion.Relevance elif args.sort == 'LastUpdatedDate': sort = arxiv.SortCriterion.LastUpdatedDate else: sort = arxiv.SortCriterion.Relevance if args.pdf_path: reader1 = Reader(key_word=args.key_word, query=args.query, filter_keys=args.filter_keys, sort=sort, args=args ) reader1.show_info() # 开始判断是路径还是文件: paper_list = [] if args.pdf_path.endswith(".pdf"): paper_list.append(Paper(path=args.pdf_path)) else: for root, dirs, files in os.walk(args.pdf_path): print("root:", root, "dirs:", dirs, 'files:', files) #当前目录路径 for filename in files: # 如果找到PDF文件,则将其复制到目标文件夹中 if filename.endswith(".pdf"): paper_list.append(Paper(path=os.path.join(root, filename))) print("------------------paper_num: {}------------------".format(len(paper_list))) [print(paper_index, paper_name.path.split('\\')[-1]) for paper_index, paper_name in enumerate(paper_list)] mydata=[] reader1.summary_with_chat(mydata,paper_list=paper_list) else: reader1 = Reader(key_word=args.key_word, query=args.query, filter_keys=args.filter_keys, sort=sort, args=args ) reader1.show_info() filter_results = reader1.filter_arxiv(max_results=args.max_results) paper_list = reader1.download_pdf(filter_results) reader1.summary_with_chat(paper_list=paper_list) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--pdf_path", type=str, default='./test/demo.pdf', help="if none, the bot will download from arxiv with query") # parser.add_argument("--pdf_path", type=str, default=r'C:\Users\Administrator\Desktop\DHER\RHER_Reset\ChatPaper', help="if none, the bot will download from arxiv with query") # parser.add_argument("--pdf_path", type=str, default='', help="if none, the bot will download from arxiv with query") parser.add_argument("--query", type=str, default='all: ChatGPT robot', help="the query string, ti: xx, au: xx, all: xx,") parser.add_argument("--key_word", type=str, default='reinforcement learning', help="the key word of user research fields") parser.add_argument("--filter_keys", type=str, default='ChatGPT robot', help="the filter key words, 摘要中每个单词都得有,才会被筛选为目标论文") parser.add_argument("--max_results", type=int, default=1, help="the maximum number of results") # arxiv.SortCriterion.Relevance parser.add_argument("--sort", type=str, default="Relevance", help="another is LastUpdatedDate") parser.add_argument("--save_image", default=False, help="save image? It takes a minute or two to save a picture! But pretty") parser.add_argument("--file_format", type=str, default='md', help="导出的文件格式,如果存图片的话,最好是md,如果不是的话,txt的不会乱") parser.add_argument("--language", type=str, default='en', help="The other output lauguage is English, is en") args = parser.parse_args() import time start_time = time.time() main(args=args) print("summary time:", time.time() - start_time)
[ "This is the <Summary> and <Method> part of an English document, where <Summary> you have summarized, but the <Method> part, I need your help to read and summarize the following questions.PLACEHOLDER", "This is the <Summary> and <Conclusion> part of an English literature, where <Summary> you have already summarized, but <Conclusion> part, I need your help to summarize the following questions:PLACEHOLDER", " \n 7. Describe in detail the methodological idea of this article. Be sure to use {} answers (proper nouns need to be marked in English). For example, its steps are.\n - (1):...\n - (2):...\n - (3):...\n - .......\n Follow the format of the output that follows: \n 7. Methods: \n\n\n - (1):xxx;\n \n - (2):xxx;\n \n - (3):xxx;\n \n ....... \n\n \n \n Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not repeat the content of the previous <summary>, the value of the use of the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed, ....... means fill in according to the actual requirements, if not, you can not write. \n ", "] and you need to critically review this article", " \n 8. Make the following summary.Be sure to use {} answers (proper nouns need to be marked in English).\n - (1):What is the significance of this piece of work?\n - (2):Summarize the strengths and weaknesses of this article in three dimensions: innovation point, performance, and workload. \n .......\n Follow the format of the output later: \n 8. Conclusion: \n\n\n - (1):xxx;\n \n - (2):Innovation point: xxx; Performance: xxx; Workload: xxx;\n \n \n Be sure to use {} answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not repeat the content of the previous <summary>, the value of the use of the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed, ....... means fill in according to the actual requirements, if not, you can not write. \n ", "] who is good at summarizing papers using concise statements", "You are a researcher in the field of [", "You are a reviewer in the field of [" ]
2024-01-10
YanJiaHuan/AI_Tutor
test~get_instruct.py
import numpy as np import os import re import datetime import arxiv import openai, tenacity import base64, requests import argparse import configparser import json import tiktoken # 定义Reader类 class Reader: # 初始化方法,设置属性 def __init__(self, key_word, root_path='./'): self.key_word = key_word self.root_path = root_path # 创建一个ConfigParser对象 self.config = configparser.ConfigParser() # 读取配置文件 self.config.read('./test/apikey.ini') # 获取某个键对应的值 self.chat_api_list = self.config.get('OpenAI', 'OPENAI_API_KEYS')[1:-1].replace('\'', '').split(',') self.chat_api_list = [api.strip() for api in self.chat_api_list if len(api) > 5] self.cur_api = 0 self.max_token_num = 4096 self.encoding = tiktoken.get_encoding("cl100k_base") # self.encoding = tiktoken.encoding_for_model("gpt-4") def summary_with_chat(self, paper_info): try: output = self.chat_summary(text=paper_info) except Exception as e: print("summary_error:", e) if "maximum context" in str(e): current_tokens_index = str(e).find("your messages resulted in") + len("your messages resulted in")+1 offset = int(str(e)[current_tokens_index:current_tokens_index+4]) summary_prompt_token = offset+1000+150 output = self.chat_summary(text=paper_info, summary_prompt_token=summary_prompt_token) return output @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5), reraise=True) def chat_summary(self, text, summary_prompt_token = 1100): openai.api_key = self.chat_api_list[self.cur_api] self.cur_api += 1 self.cur_api = 0 if self.cur_api >= len(self.chat_api_list) - 1 else self.cur_api summary_prompt_token = 1000 text_token = len(self.encoding.encode(text)) clip_text_index = int(len(text) * (self.max_token_num - summary_prompt_token) / text_token) clip_text = text[:clip_text_index] # print('=======================================================================================================') # print(clip_text) # print('=======================================================================================================') messages = [ {"role": "system", "content": "You are a researcher in the field of [" + self.key_word + "] who is good at summarizing papers using concise statements"}, {"role": "assistant", "content": "This is the first page of a paper including title, author, link, abstract and introduction. I need your help to read and summarize the following questions: " + clip_text}, {"role": "user", "content": """ You need to answer the following questions: 1. Mark the title of the given paper 2. List all the authors' names 3. Mark the keywords of this paper and give the definitions of each keyword 4. Summarize the given introduction to generate the research background of this paper 5. List all the research methodologies proposed by this paper and summarize their details 6. Give a conclusion about this paper's major achievements and breakthroughs Follow the format of the output that follows: ||1||xxx\n ||2||xxx\n ||3||xxx\n ||4||xxx\n ||5||xxx\n ||6||xxx\n Make sure the statements as concise and academic as possible, do not have too much repetitive information, numerical values using the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed. """}, ] response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, ) result = '' for choice in response.choices: result += choice.message.content # print("summary_result:\n", result) # print("prompt_token_used:", response.usage.prompt_tokens, # "completion_token_used:", response.usage.completion_tokens, # "total_token_used:", response.usage.total_tokens) # print("response_time:", response.response_ms / 1000.0, 's') return result # 定义一个方法,打印出读者信息 def show_info(self): print(f"Key word: {self.key_word}") def main(): reader = Reader(key_word='natural language processing') reader.show_info() instruction = ["Mark the title of the given paper.","List all the authors' names.","Mark the keywords of this paper and give their definitions.","Summarize the given introduction to generate the research background of this paper.","List all the research methodologies proposed by this paper and summarize their details.","Give a conclusion about this paper's major achievements and breakthroughs."] with open('./test/mydata.json', 'r') as f: papers = json.load(f) instruct_list=[] from tqdm import tqdm for paper in tqdm(papers[1261:], desc="Prepare the instruction", unit="paper"): # for paper in tqdm(papers, desc="Prepare the instruction", unit="paper"): chatgpt_output=reader.summary_with_chat(paper_info=paper['paper_info']) for n in range(6): if n != 5: pattern = r"\|\|{i}\|\|((.|\n)*)\|\|{j}".format(i=n+1,j=n+2) else: pattern = r"\|\|{i}\|\|((.|\n)*)".format(i=n+1) result = re.search(pattern, chatgpt_output) if result: extracted_str = result.group(1) else: continue instruct = { "instruction": instruction[n], "input": paper['paper_info'], "output": extracted_str, } instruct_list.append(instruct) # print(instruct_list) break # with open("./test/myinstruct.json", "w") as out_file: # json.dump(instruct_list, out_file) if __name__ == '__main__': import time start_time = time.time() main() print("summary time:", time.time() - start_time)
[ " \n You need to answer the following questions:\n 1. Mark the title of the given paper\n 2. List all the authors' names\n 3. Mark the keywords of this paper and give the definitions of each keyword\n 4. Summarize the given introduction to generate the research background of this paper\n 5. List all the research methodologies proposed by this paper and summarize their details\n 6. Give a conclusion about this paper's major achievements and breakthroughs\n \n Follow the format of the output that follows:\n ||1||xxx\n\n ||2||xxx\n\n ||3||xxx\n\n ||4||xxx\n\n ||5||xxx\n\n ||6||xxx\n\n Make sure the statements as concise and academic as possible, do not have too much repetitive information, numerical values using the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed. \n ", "] who is good at summarizing papers using concise statements", "This is the first page of a paper including title, author, link, abstract and introduction. I need your help to read and summarize the following questions: PLACEHOLDER", "You are a researcher in the field of [", "1000" ]
2024-01-10
little51/FastChat
fastchat~serve~api_provider.py
"""Call API providers.""" import os import random import time from fastchat.utils import build_logger logger = build_logger("gradio_web_server", "gradio_web_server.log") def openai_api_stream_iter(model_name, messages, temperature, top_p, max_new_tokens): import openai # Make requests gen_params = { "model": model_name, "prompt": messages, "temperature": temperature, "top_p": top_p, } logger.info(f"==== request ====\n{gen_params}") res = openai.ChatCompletion.create( model=model_name, messages=messages, temperature=temperature, stream=True ) text = "" for chunk in res: text += chunk["choices"][0]["delta"].get("content", "") data = { "text": text, "error_code": 0, } yield data def anthropic_api_stream_iter(model_name, prompt, temperature, top_p, max_new_tokens): import anthropic c = anthropic.Client(os.environ["ANTHROPIC_API_KEY"]) # Make requests gen_params = { "model": model_name, "prompt": prompt, "temperature": temperature, "top_p": top_p, } logger.info(f"==== request ====\n{gen_params}") res = c.completion_stream( prompt=prompt, stop_sequences=[anthropic.HUMAN_PROMPT], max_tokens_to_sample=max_new_tokens, temperature=temperature, top_p=top_p, model=model_name, stream=True, ) for chunk in res: data = { "text": chunk["completion"], "error_code": 0, } yield data def bard_api_stream_iter(state): # TODO: we will use the official PaLM 2 API sooner or later, # and we will update this function accordingly. So here we just hard code the # Bard worker address. It is going to be deprecated anyway. # Make requests gen_params = { "model": "bard", "prompt": state.messages, } logger.info(f"==== request ====\n{gen_params}") response = requests.post( "http://localhost:18900/chat", json={ "content": state.messages[-2][-1], "state": state.session_state, }, stream=False, timeout=WORKER_API_TIMEOUT, ) resp_json = response.json() state.session_state = resp_json["state"] content = resp_json["content"] # The Bard Web API does not support streaming yet. Here we have to simulate # the streaming behavior by adding some time.sleep(). pos = 0 while pos < len(content): # This is a fancy way to simulate token generation latency combined # with a Poisson process. pos += random.randint(1, 5) time.sleep(random.expovariate(50)) data = { "text": content[:pos], "error_code": 0, } yield data def init_palm_chat(model_name): import vertexai # pip3 install google-cloud-aiplatform from vertexai.preview.language_models import ChatModel project_id = os.environ["GCP_PROJECT_ID"] location = "us-central1" vertexai.init(project=project_id, location=location) chat_model = ChatModel.from_pretrained(model_name) chat = chat_model.start_chat(examples=[]) return chat def palm_api_stream_iter(chat, message, temperature, top_p, max_new_tokens): parameters = { "temperature": temperature, "top_p": top_p, "max_output_tokens": max_new_tokens, } gen_params = { "model": "bard", "prompt": message, } gen_params.update(parameters) logger.info(f"==== request ====\n{gen_params}") response = chat.send_message(message, **parameters) content = response.text pos = 0 while pos < len(content): # This is a fancy way to simulate token generation latency combined # with a Poisson process. pos += random.randint(1, 5) time.sleep(random.expovariate(50)) data = { "text": content[:pos], "error_code": 0, } yield data
[]
2024-01-10
microsoft/LLaVA-Med
llava~eval~eval_gpt_review_visual.py
import argparse import json import os import openai import tqdm import ray import time @ray.remote(num_cpus=4) def get_eval(content: str, max_tokens: int): while True: try: response = openai.ChatCompletion.create( model='gpt-4', messages=[{ 'role': 'system', 'content': 'You are a helpful and precise assistant for checking the quality of the answer.' }, { 'role': 'user', 'content': content, }], temperature=0.2, # TODO: figure out which temperature is best for evaluation max_tokens=max_tokens, ) break except openai.error.RateLimitError: pass except Exception as e: print(e) time.sleep(1) print('success!') return response['choices'][0]['message']['content'] def parse_score(review): try: score_pair = review.split('\n')[0] score_pair = score_pair.replace(',', ' ') sp = score_pair.split(' ') if len(sp) == 2: return [float(sp[0]), float(sp[1])] else: print('error', review) return [-1, -1] except Exception as e: print(e) print('error', review) return [-1, -1] if __name__ == '__main__': parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.') parser.add_argument('-q', '--question') parser.add_argument('-c', '--context') parser.add_argument('-a', '--answer-list', nargs='+', default=[]) parser.add_argument('-r', '--rule') parser.add_argument('-o', '--output') parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output') args = parser.parse_args() ray.init() f_q = open(os.path.expanduser(args.question)) f_ans1 = open(os.path.expanduser(args.answer_list[0])) f_ans2 = open(os.path.expanduser(args.answer_list[1])) rule_dict = json.load(open(os.path.expanduser(args.rule), 'r')) review_file = open(f'{args.output}', 'w') context_list = [json.loads(line) for line in open(os.path.expanduser(args.context))] image_to_context = {context['image']: context for context in context_list} js_list = [] handles = [] idx = 0 for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2): ques = json.loads(ques_js) ans1 = json.loads(ans1_js) ans2 = json.loads(ans2_js) inst = image_to_context[ques['image']] cap_str = '\n'.join(inst['captions']) box_str = '\n'.join([f'{instance["category"]}: {instance["bbox"]}' for instance in inst['instances']]) category = json.loads(ques_js)['category'] if category in rule_dict: rule = rule_dict[category] else: assert False, f"Visual QA category not found in rule file: {category}." prompt = rule['prompt'] role = rule['role'] content = (f'[Context]\n{cap_str}\n\n{box_str}\n\n' f'[Question]\n{ques["text"]}\n\n' f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n' f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n' f'[System]\n{prompt}\n\n') js_list.append({ 'id': idx+1, 'question_id': ques['question_id'], 'answer1_id': ans1.get('answer_id', ans1['question_id']), 'answer2_id': ans2.get('answer_id', ans2['answer_id']), 'category': category}) idx += 1 handles.append(get_eval.remote(content, args.max_tokens)) # To avoid the rate limit set by OpenAI time.sleep(1) reviews = ray.get(handles) for idx, review in enumerate(reviews): scores = parse_score(review) js_list[idx]['content'] = review js_list[idx]['tuple'] = scores review_file.write(json.dumps(js_list[idx]) + '\n') review_file.close()
[ "You are a helpful and precise assistant for checking the quality of the answer." ]
2024-01-10
microsoft/LLaVA-Med
llava~eval~qa_baseline_gpt4_translate.py
"""Generate answers with GPT-3.5""" # Note: you need to be using OpenAI Python v0.27.0 for the code below to work import argparse import json import os import time import concurrent.futures import openai import tqdm import shortuuid import os, json import requests from azure.identity import ManagedIdentityCredential, DefaultAzureCredential, AzureCliCredential MODEL = 'gpt-4' MODEL_ID = 'gpt-4:20230527' # MODEL = 'gpt-3.5-turbo' # MODEL_ID = 'gpt-3.5-turbo:20230327' def update_openai_api(): openai.api_key = os.environ.get('API_KEY', 'sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx') api_type = os.environ.get('API_TYPE', 'azure') model = os.environ.get('MODEL', 'gpt-4') engine = os.environ.get('ENGINE', 'gpt-35-turbo') if api_type == 'azure': openai.api_type = 'azure' openai.api_base = os.environ.get('API_BASE', '') openai.api_version = os.environ.get('API_VERSION', '2023-03-15-preview') return {'engine': engine} else: global GPT_arch GPT_arch = "GPT-4" return {'model': model} def get_answer(openai_engine_kwargs, question_id: int, question: str, max_tokens: int): ans = { 'answer_id': shortuuid.uuid(), 'question_id': question_id, 'model_id': MODEL_ID, } reach_valid_answer = False while not reach_valid_answer: try: messages=[{ 'role': 'system', 'content': 'You are a helpful assistant.' }, { 'role': 'user', 'content': question, }] SCOPE = "https://ml.azure.com" AZURE_ENDPOINT_URL_PATTERN = "https://{}/v1/engines/davinci/chat/completions" model = "text-alpha-002" # this doesn't do anything... deployment = "aims1.eastus.inference.ml.azure.com" url = AZURE_ENDPOINT_URL_PATTERN.format(deployment, model) credential = AzureCliCredential() token = credential.get_token(SCOPE).token headers = { "Authorization": f"Bearer {token}", "azureml-model-deployment": "gpt4-v2", # gpt4-v2 gpt4 "Openai-Internal-AllowChatCompletion": "true", "Openai-Internal-AllowedSpecialTokens": "1", "Openai-Internal-AllowedOutputSpecialTokens": "1", "Openai-Internal-HarmonyVersion": "harmony_v4.0_no_system_message_content_type", } # {"messages": [{"name":"history","role":"user","content":"<|im_start|> tell me about the Emperor Ashoka"}] request_data = {"messages": messages, "max_tokens":max_tokens, "n": 1} # request_data = {"messages": messages, "max_tokens":max_tokens, "temperature":temperature, "n": 1} response = requests.post(url, json=request_data, headers=headers) print(response.json()) content = response.json()['choices'][0]['message']['content'] content = content.strip() ans['text'] = content # response = openai.ChatCompletion.create( # **openai_engine_kwargs, # messages=[{ # 'role': 'system', # 'content': 'You are a helpful assistant.' # }, { # 'role': 'user', # 'content': question, # }], # max_tokens=max_tokens, # # stop=["\n", "<|endoftext|>"] # ) # ans['text'] = response['choices'][0]['message']['content'] reach_valid_answer = True return ans except Exception as e: print('[ERROR]', e) ans['text'] = '#ERROR#' time.sleep(20) return ans def load_jsonl(path): data=[] with open(path, 'r', encoding='utf-8') as reader: for line in reader: data.append(json.loads(line)) return data if __name__ == '__main__': parser = argparse.ArgumentParser(description='ChatGPT answer generation.') parser.add_argument('-q', '--input') parser.add_argument('-o', '--output') parser.add_argument('--max-tokens', type=int, default=2048, help='maximum number of tokens produced in the output') args = parser.parse_args() pred = load_jsonl(args.input) # pred = pred[:3] openai_engine_kwargs = update_openai_api() print(openai_engine_kwargs) answers = [] with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor: futures = [] for idx, p in enumerate(pred): qid, question = p['question_id'], p['text'] question = f'Translate the following text into Chinese.  Do not be verbose. \n The original sentence is: {question} \n 对应的中文翻译是: \n' future = executor.submit(get_answer, openai_engine_kwargs, idx, question, args.max_tokens) futures.append(future) # import pdb; pdb.set_trace() for future in tqdm.tqdm(concurrent.futures.as_completed(futures), total=len(futures)): answers.append(future.result()) answers.sort(key=lambda x: x['question_id']) output_list = [] for idx, p in enumerate(pred): for a in answers: if idx == a['question_id']: p['text']= a['text'] output_list.append(p) # import pdb; pdb.set_trace() with open(os.path.expanduser(args.output), 'w', encoding='utf-8') as f: table = [json.dumps(out, indent=0, ensure_ascii=False) for out in output_list] f.write('\n'.join(table))
[ "You are a helpful assistant.", "Translate the following text into Chinese.  Do not be verbose. \n The original sentence is: question98cbcae0-4cef-4f6a-89f7-0bf3ed2b263d \n 对应的中文翻译是: \n" ]
2024-01-10
microsoft/LLaVA-Med
llava~eval~eval_multimodal_chat_gpt_score.py
import sys import json import argparse from pprint import pprint from copy import deepcopy from collections import defaultdict sys.path.append("llava") from openai_api import call_async class LLMEvalPromptGenerator: instruct_prompt = """We would like to request your feedback on the performance of two AI assistants in response to the user question displayed above. The user asks the question on observing an image. For your reference, the visual content in the image is represented with caption describing the same image. Please rate the helpfulness, relevance, accuracy, level of details of their responses. Each assistant receives an overall score on a scale of 1 to 10, where a higher score indicates better overall performance. Please first output a single line containing only two values indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a space. In the subsequent line, please provide a comprehensive explanation of your evaluation, avoiding any potential bias and ensuring that the order in which the responses were presented does not affect your judgment.""" role = 'Assistant' @staticmethod def conv_to_str(fig_label, fig_caption, fig_inline_mention, question, ans1, ans2): return (f'[Context]\n' f'Figure Caption:\n{fig_label}: {fig_caption}\n\n' f'Figure Context:\n\t- {fig_inline_mention}\n\n' f'[Question]\n{question}\n\n' f'[{LLMEvalPromptGenerator.role} 1]\n{ans1}\n\n[End of {LLMEvalPromptGenerator.role} 1]\n\n' f'[{LLMEvalPromptGenerator.role} 2]\n{ans2}\n\n[End of {LLMEvalPromptGenerator.role} 2]\n\n' f'[System]\n{LLMEvalPromptGenerator.instruct_prompt}\n\n') @staticmethod def compare_messages_gen(sample): messages = [ {"role": "system", "content": """'You are a helpful and precise assistant for checking the quality of the answer."""}, ] messages.append({"role": "user", "content": LLMEvalPromptGenerator.conv_to_str(sample['fig_label'], sample['fig_caption'], sample['in_text_mention'], sample['question'], sample['ans1'], sample['ans2'])}) return messages class ChatEvaluation: # Calculate precision, recall, F1 overall and for each domain. @staticmethod def get_domain(x): for domain in ['chest_xray', 'mri', 'histology', 'gross', 'ct_scan']: in_domain = x['domain'][domain] if in_domain: return domain @staticmethod def get_avg(x): return sum([float(y) for y in x])/len(x) @staticmethod def eval(samples): predictions = [(x['question_id'], x['type'], ChatEvaluation.get_domain(x), x['result'].split('\n')[0].split(' ')) for x in samples] score_type_dict = defaultdict(lambda: defaultdict(list)) for q_id, q_type, domain, (a1_score, a2_score) in predictions: score_type_dict[q_type][1].append(a1_score) score_type_dict[q_type][2].append(a2_score) score_type_dict['all'][1].append(a1_score) score_type_dict['all'][2].append(a2_score) score_type_dict[domain][1].append(a1_score) score_type_dict[domain][2].append(a2_score) result = defaultdict(dict) for q_type, score_dict in score_type_dict.items(): result[q_type]['gpt4_score'] = ChatEvaluation.get_avg(score_dict[1]) result[q_type]['pred_score'] = ChatEvaluation.get_avg(score_dict[2]) result[q_type]['pred_relative_score'] = ChatEvaluation.get_avg([float(s2)/float(s1) for s1, s2 in zip(score_dict[1], score_dict[2])])*100 result[q_type]['data_size'] = len(score_dict[1]) # print results pprint(result) def main(args): # Load input data answer_data = [] with open(args.input_path) as f: for line in f: answer_data.append(json.loads(line)) question_data = [] with open(args.question_input_path) as f: for line in f: question_data.append(json.loads(line)) # Merge question and answer input data samples = [] for question, answer in zip(question_data, answer_data): sample = deepcopy(question) question['question'] = sample['text'][:-8] question['ans1'] = sample.pop('gpt4_answer') question['ans2'] = answer['text'] samples.append(question) samples_question_ids = set(x['question_id'] for x in samples) # Generate GPT-4 evaluation of indivdual answers between model answer and GPT-4 answer results = [] BATCH_SIZE = 3 for i in range(30): result_question_ids = set(result['question_id'] for result in results) batch = [] counter = 0 for sample in samples: if sample['question_id'] in result_question_ids: continue batch.append(sample) if len(batch)>=BATCH_SIZE: async_results = call_async(batch, lambda x: LLMEvalPromptGenerator.compare_messages_gen(x)) results.extend(async_results) print(f"Result Size: {len(results)}") batch = [] async_results = call_async(batch, lambda x: LLMEvalPromptGenerator.compare_messages_gen(x)) results.extend(async_results) print(f"Result Size: {len(results)}") # Print number of questions and results print(f'all samples: {len(samples_question_ids)}') print(f'ran samples: {len(result_question_ids)}') print(f'to be run samples: {len(samples_question_ids-result_question_ids)}') # Write GPT-4 evaluation outputs to output_path with open(args.output_path, 'w') as f: for line in results: f.write(json.dumps(line)+'\n') # Perform Evaluation for all results ChatEvaluation().eval(results) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--question_input_path', type=str, default='data/eval/llava_med_eval_qa50_qa.jsonl') parser.add_argument('--input_path', type=str, default='dbfs:/mnt/hanoverdev/scratch/clwon/llava/test/answers/test50/2023-05-10_med-pretrain-364m-v1-1epoch.jsonl') parser.add_argument('--output_path', type=str, default='data/eval/llava_med_eval_qa50_qa_ans.jsonl') args = parser.parse_args() main(args)
[ "in_text_mention", "fig_caption", "question", "We would like to request your feedback on the performance of two AI assistants in response to the user question displayed above. The user asks the question on observing an image. For your reference, the visual content in the image is represented with caption describing the same image.\n Please rate the helpfulness, relevance, accuracy, level of details of their responses. Each assistant receives an overall score on a scale of 1 to 10, where a higher score indicates better overall performance.\n Please first output a single line containing only two values indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a space. In the subsequent line, please provide a comprehensive explanation of your evaluation, avoiding any potential bias and ensuring that the order in which the responses were presented does not affect your judgment.", "ans1", "ans2", "'You are a helpful and precise assistant for checking the quality of the answer." ]
2024-01-10
microsoft/LLaVA-Med
llava~instruct~instruct_generate.py
import sys import time import json import argparse import asyncio import itertools from pprint import pprint import instruct_few_shot_examples sys.path.append("llava") from openai_api import call_async conv_to_str = lambda conv: "\n\n".join([("User: " if x["from"] == "human" else "Assistant: ") + x["value"] for x in conv]) class PromptGenerator: @staticmethod def few_shot_messages_gen(query_context, use_inline_mentions=True): messages = [ {"role": "system", "content": """You are an AI assistant specialized in biomedical topics. You are provided with a text description (Figure Caption) of a figure image from a biomedical research paper. In some cases, you may have additional text (Figure Context) that mentions the image. Unfortunately, you don't have access to the actual image. Your task is to generate a conversation between a person (User) inquiring about the image and you (Assistant) responding to their questions. The conversation should proceed as though both the User and Assistant are viewing the image, while not referring to the text information (Figure Caption and Figure Context). Below are requirements for generating the questions and answers in the conversation: - Avoid quoting or referring to specific facts, terms, abbreviations, dates, numbers, or names, as these may reveal the conversation is based on the text information, rather than the image itself. Focus on the visual aspects of the image that can be inferred without the text information. - Do not use phrases like "mentioned", "caption", "context" in the conversation. Instead, refer to the information as being "in the image." - Ensure that questions are diverse and cover a range of visual aspects of the image. - The conversation should include at least 2-3 turns of questions and answers about the visual aspects of the image. - Answer responsibly, avoiding overconfidence, and do not provide medical advice or diagnostic information. Encourage the user to consult a healthcare professional for advice. """}, ] for ex in instruct_few_shot_examples.fs: messages += [ {"role": "user", "content": PromptGenerator.context_gen(ex, use_inline_mentions)}, {"role": "assistant", "content": conv_to_str(ex["conversations"])}, ] messages.append({"role": "user", "content": query_context}) return messages @staticmethod def context_gen(sample, use_inline_mentions=True): ctx = [] if use_inline_mentions and sample["in_text_mention"]: for sent in sample["in_text_mention"]: if isinstance(sent, dict): sent = sent["tokens"] ctx.append(sent) ret = f"Figure Caption:\n{sample['fig_label']}: {sample['fig_caption']}" if len(ctx): ret += "\n\nFigure Context:\n\t- {ctx}".format(ctx="\n\t- ".join(ctx)) return ret @staticmethod def wrap_gen_message(sample, use_inline_mentions=False): text = PromptGenerator.context_gen(sample, use_inline_mentions=use_inline_mentions) context = PromptGenerator.few_shot_messages_gen(text, use_inline_mentions=use_inline_mentions) return context def main(args): with open(args.input_path) as f: domain_dict = json.load(f) results = [] for i in range(3): print(f'round {i}') result_pair_ids = set(result['pair_id'] for result in results) batch = [] counter = 0 for cycle_idx, samples in enumerate(itertools.zip_longest(*domain_dict.values())): if counter>=args.max_size: break for domain_idx, sample in enumerate(samples): if not sample: continue counter+=1 if counter>=args.max_size: break if sample['pair_id'] in result_pair_ids: continue batch.append(sample) if len(batch)>=args.batch_size: async_results = call_async(batch, lambda x: PromptGenerator.wrap_gen_message(x, use_inline_mentions=args.use_inline_mentions)) results.extend(async_results) print(f"Result Size: {len(results)}") batch = [] async_results = call_async(batch, lambda x: PromptGenerator.wrap_gen_message(x, use_inline_mentions=args.use_inline_mentions)) results.extend(async_results) print(f"Result Size: {len(results)}") with open(args.output_path, 'w') as f: for line in results: f.write(json.dumps(line)+'\n') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--input_path', type=str, default='data/instruct/llava_med_instruct_fig_captions.json') parser.add_argument('--output_path', type=str, default='data/instruct/llava_med_instruct_fig_captions_gen.json') parser.add_argument('--use_inline_mentions', type=bool, default=False) parser.add_argument('--batch_size', type=int, default=3) parser.add_argument('--max_size', type=int, default=60000) args = parser.parse_args() main(args)
[ "conversations", "You are an AI assistant specialized in biomedical topics.\n\n You are provided with a text description (Figure Caption) of a figure image from a biomedical research paper. In some cases, you may have additional text (Figure Context) that mentions the image. Unfortunately, you don't have access to the actual image.\n\n Your task is to generate a conversation between a person (User) inquiring about the image and you (Assistant) responding to their questions. The conversation should proceed as though both the User and Assistant are viewing the image, while not referring to the text information (Figure Caption and Figure Context). \n\n Below are requirements for generating the questions and answers in the conversation:\n - Avoid quoting or referring to specific facts, terms, abbreviations, dates, numbers, or names, as these may reveal the conversation is based on the text information, rather than the image itself. Focus on the visual aspects of the image that can be inferred without the text information.\n - Do not use phrases like \"mentioned\", \"caption\", \"context\" in the conversation. Instead, refer to the information as being \"in the image.\"\n - Ensure that questions are diverse and cover a range of visual aspects of the image.\n - The conversation should include at least 2-3 turns of questions and answers about the visual aspects of the image.\n - Answer responsibly, avoiding overconfidence, and do not provide medical advice or diagnostic information. Encourage the user to consult a healthcare professional for advice.\n " ]
2024-01-10
microsoft/LLaVA-Med
llava~eval~eval_gpt_review.py
import argparse import json import os import openai import tqdm import ray import time @ray.remote(num_cpus=4) def get_eval(content: str, max_tokens: int): while True: try: response = openai.ChatCompletion.create( model='gpt-4', messages=[{ 'role': 'system', 'content': 'You are a helpful and precise assistant for checking the quality of the answer.' }, { 'role': 'user', 'content': content, }], temperature=0.2, # TODO: figure out which temperature is best for evaluation max_tokens=max_tokens, ) break except openai.error.RateLimitError: pass except Exception as e: print(e) time.sleep(1) print('success!') return response['choices'][0]['message']['content'] def parse_score(review): try: score_pair = review.split('\n')[0] score_pair = score_pair.replace(',', ' ') sp = score_pair.split(' ') if len(sp) == 2: return [float(sp[0]), float(sp[1])] else: print('error', review) return [-1, -1] except Exception as e: print(e) print('error', review) return [-1, -1] if __name__ == '__main__': parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.') parser.add_argument('-q', '--question') # parser.add_argument('-a', '--answer') parser.add_argument('-a', '--answer-list', nargs='+', default=[]) parser.add_argument('-r', '--rule') parser.add_argument('-o', '--output') parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output') args = parser.parse_args() ray.init() f_q = open(os.path.expanduser(args.question)) f_ans1 = open(os.path.expanduser(args.answer_list[0])) f_ans2 = open(os.path.expanduser(args.answer_list[1])) rule_dict = json.load(open(os.path.expanduser(args.rule), 'r')) review_file = open(f'{args.output}', 'w') js_list = [] handles = [] idx = 0 for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2): # if idx == 1: # break ques = json.loads(ques_js) ans1 = json.loads(ans1_js) ans2 = json.loads(ans2_js) category = json.loads(ques_js)['category'] if category in rule_dict: rule = rule_dict[category] else: rule = rule_dict['default'] prompt = rule['prompt'] role = rule['role'] content = (f'[Question]\n{ques["text"]}\n\n' f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n' f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n' f'[System]\n{prompt}\n\n') js_list.append({ 'id': idx+1, 'question_id': ques['question_id'], 'answer1_id': ans1['answer_id'], 'answer2_id': ans2['answer_id'], 'category': category}) idx += 1 handles.append(get_eval.remote(content, args.max_tokens)) # To avoid the rate limit set by OpenAI time.sleep(1) reviews = ray.get(handles) for idx, review in enumerate(reviews): scores = parse_score(review) js_list[idx]['content'] = review js_list[idx]['tuple'] = scores review_file.write(json.dumps(js_list[idx]) + '\n') review_file.close()
[ "You are a helpful and precise assistant for checking the quality of the answer." ]
2024-01-10
erenyasarkurt/OpenAI-AWS-Lambda-Layer
lambda_function.py
import openai import json import datetime def query_completion(prompt: str, engine: str = 'text-davinci-003', temperature: float = 0.5, max_tokens: int = 1500, top_p: int = 1, frequency_penalty: int = 0.5, presence_penalty: int = 0.2) -> object: """ Function for querying GPT-3. """ estimated_prompt_tokens = int(len(prompt.split()) * 1.6) estimated_answer_tokens = 2049 - estimated_prompt_tokens response = openai.Completion.create( engine=engine, prompt=prompt, temperature=temperature, max_tokens=min(4096-estimated_prompt_tokens, max_tokens), top_p=top_p, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty ) return response def lambda_handler(event, context): '''Provide an event that contains the following keys: - prompt: text of an open ai prompt ''' openai.api_key = "YOUR_KEY_HERE" print("Init:") print(datetime.datetime.now()) print("Event:") print(event) body = json.loads(event['body']) prompt = body['prompt'] max_tokens = 1500 response = query_completion(prompt) response_text = response['choices'][0]['text'].strip() response = { "statusCode": 200, "headers": {}, "body": response_text } return response
[]
2024-01-10
THUDM/ChatGLM3
tools_using_demo~openai_api_demo.py
import json from openai import OpenAI from colorama import init, Fore from loguru import logger from tool_register import get_tools, dispatch_tool init(autoreset=True) client = OpenAI( base_url="http://127.0.0.1:8000/v1", api_key = "xxx" ) functions = get_tools() def run_conversation(query: str, stream=False, functions=None, max_retry=5): params = dict(model="chatglm3", messages=[{"role": "user", "content": query}], stream=stream) if functions: params["functions"] = functions response = client.chat.completions.create(**params) for _ in range(max_retry): if not stream: if response.choices[0].message.function_call: function_call = response.choices[0].message.function_call logger.info(f"Function Call Response: {function_call.model_dump()}") function_args = json.loads(function_call.arguments) tool_response = dispatch_tool(function_call.name, function_args) logger.info(f"Tool Call Response: {tool_response}") params["messages"].append(response.choices[0].message) params["messages"].append( { "role": "function", "name": function_call.name, "content": tool_response, # 调用函数返回结果 } ) else: reply = response.choices[0].message.content logger.info(f"Final Reply: \n{reply}") return else: output = "" for chunk in response: content = chunk.choices[0].delta.content or "" print(Fore.BLUE + content, end="", flush=True) output += content if chunk.choices[0].finish_reason == "stop": return elif chunk.choices[0].finish_reason == "function_call": print("\n") function_call = chunk.choices[0].delta.function_call logger.info(f"Function Call Response: {function_call.model_dump()}") function_args = json.loads(function_call.arguments) tool_response = dispatch_tool(function_call.name, function_args) logger.info(f"Tool Call Response: {tool_response}") params["messages"].append( { "role": "assistant", "content": output } ) params["messages"].append( { "role": "function", "name": function_call.name, "content": tool_response, } ) break response = client.chat.completions.create(**params) if __name__ == "__main__": query = "你是谁" run_conversation(query, stream=True) logger.info("\n=========== next conversation ===========") query = "帮我查询北京的天气怎么样" run_conversation(query, functions=functions, stream=True)
[]
2024-01-10
THUDM/ChatGLM3
langchain_demo~tools~Weather.py
import os import requests from typing import Type, Any from langchain.tools import BaseTool from pydantic import BaseModel, Field class WeatherInput(BaseModel): location: str = Field(description="the location need to check the weather") class Weather(BaseTool): name = "weather" description = "Use for searching weather at a specific location" args_schema: Type[BaseModel] = WeatherInput def __init__(self): super().__init__() def _run(self, location: str) -> dict[str, Any]: api_key = os.environ["SENIVERSE_KEY"] url = f"https://api.seniverse.com/v3/weather/now.json?key={api_key}&location={location}&language=zh-Hans&unit=c" response = requests.get(url) if response.status_code == 200: data = response.json() weather = { "temperature": data["results"][0]["now"]["temperature"], "description": data["results"][0]["now"]["text"], } return weather else: raise Exception( f"Failed to retrieve weather: {response.status_code}")
[ "Use for searching weather at a specific location" ]
2024-01-10
THUDM/ChatGLM3
langchain_demo~tools~Calculator.py
import abc from typing import Type from langchain.tools import BaseTool from pydantic import BaseModel, Field class CalculatorInput(BaseModel): calculation: str = Field(description="calculation to perform") class Calculator(BaseTool, abc.ABC): name = "Calculator" description = "Useful for when you need to calculate math problems" args_schema: Type[BaseModel] = CalculatorInput def __init__(self): super().__init__() def _run(self, calculation: str) -> str: calculation = calculation.replace("^", "**") if "sqrt" in calculation: calculation = calculation.replace("sqrt", "math.sqrt") elif "log" in calculation: calculation = calculation.replace("log", "math.log") return eval(calculation)
[ "Useful for when you need to calculate math problems" ]
2024-01-10
THUDM/ChatGLM3
langchain_demo~tools~DistanceConversion.py
import abc from typing import Type from langchain.tools import BaseTool from pydantic import BaseModel, Field class DistanceConversionInput(BaseModel): distance: float = Field(description="The numerical value of the distance to convert") unit: str = Field(description="The current unit of the distance (m, km, or feet)") to_unit: str = Field(description="The target unit to convert the distance into (m, km, or feet)") class DistanceConverter(BaseTool, abc.ABC): name = "DistanceConverter" description = "Converts distance between meters, kilometers, and feet" args_schema: Type[BaseModel] = DistanceConversionInput def __init__(self): super().__init__() def _run(self, distance: float, unit: str, to_unit: str) -> str: unit_conversions = { "m_to_km": 0.001, "km_to_m": 1000, "feet_to_m": 0.3048, "m_to_feet": 3.28084, "km_to_feet": 3280.84, "feet_to_km": 0.0003048 } if unit == to_unit: return f"{distance} {unit} is equal to {distance} {to_unit}" if unit == "km": distance *= unit_conversions["km_to_m"] elif unit == "feet": distance *= unit_conversions["feet_to_m"] if to_unit == "km": converted_distance = distance * unit_conversions["m_to_km"] elif to_unit == "feet": converted_distance = distance * unit_conversions["m_to_feet"] else: converted_distance = distance # already in meters if this block is reached return f"{distance} {unit} is equal to {converted_distance} {to_unit}"
[ "Converts distance between meters, kilometers, and feet" ]
2024-01-10
THUDM/ChatGLM3
langchain_demo~ChatGLM3.py
import ast import json from langchain.llms.base import LLM from transformers import AutoTokenizer, AutoModel, AutoConfig from typing import List, Optional class ChatGLM3(LLM): max_token: int = 8192 do_sample: bool = True temperature: float = 0.8 top_p = 0.8 tokenizer: object = None model: object = None history: List = [] has_search: bool = False def __init__(self): super().__init__() @property def _llm_type(self) -> str: return "ChatGLM3" def load_model(self, model_name_or_path=None): model_config = AutoConfig.from_pretrained( model_name_or_path, trust_remote_code=True ) self.tokenizer = AutoTokenizer.from_pretrained( model_name_or_path, trust_remote_code=True ) self.model = AutoModel.from_pretrained( model_name_or_path, config=model_config, trust_remote_code=True, device_map="auto").eval() def _tool_history(self, prompt: str): ans = [] tool_prompts = prompt.split( "You have access to the following tools:\n\n")[1].split("\n\nUse a json blob")[0].split("\n") tools_json = [] for tool_desc in tool_prompts: name = tool_desc.split(":")[0] description = tool_desc.split(":")[1].split(", args:")[0].strip() parameters_str = tool_desc.split("args:")[1].strip() parameters_dict = ast.literal_eval(parameters_str) # Extracting only the 'description' and 'type' for each parameter params_cleaned = {} for param, details in parameters_dict.items(): params_cleaned[param] = {'description': details['description'], 'type': details['type']} tools_json.append({ "name": name, "description": description, "parameters": params_cleaned }) ans.append({ "role": "system", "content": "Answer the following questions as best as you can. You have access to the following tools:", "tools": tools_json }) query = f"""{prompt.split("Human: ")[-1].strip()}""" return ans, query def _extract_observation(self, prompt: str): return_json = prompt.split("Observation: ")[-1].split("\nThought:")[0] self.history.append({ "role": "observation", "content": return_json }) return def _extract_tool(self): if len(self.history[-1]["metadata"]) > 0: metadata = self.history[-1]["metadata"] content = self.history[-1]["content"] lines = content.split('\n') for line in lines: if 'tool_call(' in line and ')' in line and self.has_search is False: # 获取括号内的字符串 params_str = line.split('tool_call(')[-1].split(')')[0] # 解析参数对 params_pairs = [param.split("=") for param in params_str.split(",") if "=" in param] params = {pair[0].strip(): pair[1].strip().strip("'\"") for pair in params_pairs} action_json = { "action": metadata, "action_input": params } self.has_search = True print("*****Action*****") print(action_json) print("*****Answer*****") return f""" Action: ``` {json.dumps(action_json, ensure_ascii=False)} ```""" final_answer_json = { "action": "Final Answer", "action_input": self.history[-1]["content"] } self.has_search = False return f""" Action: ``` {json.dumps(final_answer_json, ensure_ascii=False)} ```""" def _call(self, prompt: str, history: List = [], stop: Optional[List[str]] = ["<|user|>"]): if not self.has_search: self.history, query = self._tool_history(prompt) else: self._extract_observation(prompt) query = "" _, self.history = self.model.chat( self.tokenizer, query, history=self.history, do_sample=self.do_sample, max_length=self.max_token, temperature=self.temperature, ) response = self._extract_tool() history.append((prompt, response)) return response
[ "Answer the following questions as best as you can. You have access to the following tools:", "\n", "You have access to the following tools:\n\n", "\n\nUse a json blob" ]
2024-01-10
FabienRoger/Countergen
countergen~countergen~augmentation~llmd_augmenter.py
# From Fryer, 2022 https://aclanthology.org/2022.woah-1.20.pdf # Adapted to be usable with InstructGPT #%% from typing import Dict, Optional, Tuple import countergen from countergen.tools.api_utils import ApiConfig import openai from attrs import define from countergen.tools.utils import estimate_paraphrase_length from countergen.types import Augmenter, Category, Input import countergen.config DEFAULT_AUGMENTERS = { "gender": { "male": "Rewrite it to be about a man/about men.", "female": "Rewrite it to be about a woman/about women.", }, } DEFAULT_PROMPT = """0: Here is some text: {When the doctor asked Linda to take the medicine, he smiled and gave her a lollipop.}. Rewrite it to be more scary. 1: {When the doctor told Linda to take the medicine, there had been a malicious gleam in her eye that Linda didn’t like at all.} 0: Here is some text: {they asked loudly, over the sound of the train.}. Rewrite it to be more intense. 1: {they yelled aggressively, over the clanging of the train.} 0: Here is some text: {When Mohammed left the theatre, it was already dark out}. Rewrite it to be more about the movie itself. 1: {The movie was longer than Mohammed had expected, and despite the excellent ratings he was a bit disappointed when he left the theatre.} 0: Here is some text: {next to the path}. Rewrite it to be about France. 1: {next to la Siene} 0: Here is some text: {The man stood outside the grocery store, ringing the bell.}. Rewrite it to be about clowns. 1: {The man stood outside the circus, holding a bunch of balloons.} 0: Here is some text: {the bell ringing}. Rewrite it to be more flowery. 1: {the peales of the jangling bell} 0: Here is some text: {against the tree}. Rewrite it to include the word “snow”. 1: {against the snow-covered bark of the tree}’ 0: Here is some text: {__input__}. __instruction__ 1: {""" @define class LlmdAugmenter(Augmenter): """Augmenter that does word substituion between its two categories. "words" are defined by the word_regex expression. From Fryer 2022, https://aclanthology.org/2022.woah-1.20.pdf""" categories_instructions: Dict[Category, str] prompt_template: str = DEFAULT_PROMPT engine: str = "text-davinci-003" apiconfig: Optional[ApiConfig] = None @classmethod def from_default(cls, name: str) -> "LlmdAugmenter": """Load one of the defaults datasets from "DEFAULT_AUGMENTERS".""" if name not in DEFAULT_AUGMENTERS: raise ValueError(f"{name} not a valid default augmenter. Choose one in {set(DEFAULT_AUGMENTERS.keys())}") return LlmdAugmenter(DEFAULT_AUGMENTERS[name]) @property def categories(self) -> Tuple[Category, ...]: return tuple(self.categories_instructions.keys()) def transform(self, inp: Input, to: Category) -> Input: apiconfig = self.apiconfig or countergen.config.apiconfig instruction = self.categories_instructions[to] prompt = self.prompt_template.replace("__input__", inp).replace("__instruction__", instruction) completion = openai.Completion.create( engine=self.engine, prompt=prompt, max_tokens=estimate_paraphrase_length(inp), temperature=1, top_p=0.7, # LLM-D has top_k=40, but not available stream=False, **apiconfig.get_config(), )["choices"][0]["text"] return completion.split("}")[0]
[ "__instruction__", "__input__", "0: Here is some text: {When the doctor asked Linda to take the medicine, he smiled and gave her a lollipop.}. Rewrite it to be more scary.\n1: {When the doctor told Linda to take the medicine, there had been a malicious gleam in her eye that Linda didn’t like at all.}\n0: Here is some text: {they asked loudly, over the sound of the train.}. Rewrite it to be more intense.\n1: {they yelled aggressively, over the clanging of the train.}\n0: Here is some text: {When Mohammed left the theatre, it was already dark out}. Rewrite it to be more about the movie itself.\n1: {The movie was longer than Mohammed had expected, and despite the excellent ratings he was a bit disappointed when he left the theatre.}\n0: Here is some text: {next to the path}. Rewrite it to be about France.\n1: {next to la Siene}\n0: Here is some text: {The man stood outside the grocery store, ringing the bell.}. Rewrite it to be about clowns.\n1: {The man stood outside the circus, holding a bunch of balloons.}\n0: Here is some text: {the bell ringing}. Rewrite it to be more flowery.\n1: {the peales of the jangling bell}\n0: Here is some text: {against the tree}. Rewrite it to include the word “snow”.\n1: {against the snow-covered bark of the tree}’\n0: Here is some text: {__input__}. __instruction__\n1: {" ]
2024-01-10
dylanholmes/griptape
griptape~drivers~prompt~cohere_prompt_driver.py
import cohere from attr import define, field, Factory from griptape.artifacts import TextArtifact from griptape.drivers import BasePromptDriver from griptape.tokenizers import CohereTokenizer from griptape.utils import PromptStack @define class CoherePromptDriver(BasePromptDriver): """ Attributes: api_key: Cohere API key. model: Cohere model name. Defaults to `xlarge`. client: Custom `cohere.Client`. tokenizer: Custom `CohereTokenizer`. """ api_key: str = field(kw_only=True) model: str = field(default=CohereTokenizer.DEFAULT_MODEL, kw_only=True) client: cohere.Client = field( default=Factory(lambda self: cohere.Client(self.api_key), takes_self=True), kw_only=True ) tokenizer: CohereTokenizer = field( default=Factory(lambda self: CohereTokenizer(model=self.model, client=self.client), takes_self=True), kw_only=True ) def try_run(self, prompt_stack: PromptStack) -> TextArtifact: prompt = self.prompt_stack_to_string(prompt_stack) result = self.client.generate( prompt=prompt, model=self.model, temperature=self.temperature, end_sequences=self.tokenizer.stop_sequences, max_tokens=self.max_output_tokens(prompt) ) if len(result.generations) == 1: generation = result.generations[0] return TextArtifact( value=generation.text.strip() ) else: raise Exception("Completion with more than one choice is not supported yet.")
[]
2024-01-10
dylanholmes/griptape
griptape~loaders~text_loader.py
from __future__ import annotations from pathlib import Path from attr import field, define, Factory from griptape import utils from griptape.artifacts import TextArtifact from griptape.chunkers import TextChunker from griptape.loaders import BaseLoader from griptape.tokenizers import OpenAiTokenizer @define class TextLoader(BaseLoader): MAX_TOKEN_RATIO = 0.5 tokenizer: OpenAiTokenizer = field( default=Factory(lambda: OpenAiTokenizer()), kw_only=True ) max_tokens: int = field( default=Factory(lambda self: round(self.tokenizer.max_tokens * self.MAX_TOKEN_RATIO), takes_self=True), kw_only=True ) chunker: TextChunker = field( default=Factory( lambda self: TextChunker( tokenizer=self.tokenizer, max_tokens=self.max_tokens ), takes_self=True ), kw_only=True ) def load(self, text: str | Path) -> list[TextArtifact]: return self.text_to_artifacts(text) def load_collection(self, texts: list[str | Path]) -> dict[str, list[TextArtifact]]: return utils.execute_futures_dict({ utils.str_to_hash(str(text)): self.futures_executor.submit(self.text_to_artifacts, text) for text in texts }) def text_to_artifacts(self, text: str | Path) -> list[TextArtifact]: artifacts = [] if isinstance(text, Path): with open(text, "r") as file: body = file.read() else: body = text if self.chunker: chunks = self.chunker.chunk(body) else: chunks = [TextArtifact(body)] for chunk in chunks: artifacts.append(chunk) return artifacts
[]
2024-01-10
dylanholmes/griptape
tests~mocks~mock_prompt_driver.py
from attr import define, field from griptape.utils import PromptStack from griptape.drivers import BasePromptDriver from griptape.tokenizers import OpenAiTokenizer, BaseTokenizer from griptape.artifacts import TextArtifact @define class MockPromptDriver(BasePromptDriver): model: str = "test-model" tokenizer: BaseTokenizer = OpenAiTokenizer() mock_output: str = field(default="mock output", kw_only=True) def try_run(self, prompt_stack: PromptStack) -> TextArtifact: return TextArtifact(value=self.mock_output)
[]
2024-01-10
dylanholmes/griptape
tests~mocks~mock_failing_prompt_driver.py
from attr import define from griptape.utils import PromptStack from griptape.drivers import BasePromptDriver from griptape.tokenizers import OpenAiTokenizer, BaseTokenizer from griptape.artifacts import TextArtifact @define class MockFailingPromptDriver(BasePromptDriver): max_failures: int current_attempt: int = 0 model: str = "test-model" tokenizer: BaseTokenizer = OpenAiTokenizer() def try_run(self, prompt_stack: PromptStack) -> TextArtifact: if self.current_attempt < self.max_failures: self.current_attempt += 1 raise Exception(f"failed attempt") else: return TextArtifact("success")
[]
2024-01-10
dylanholmes/griptape
tests~mocks~mock_value_prompt_driver.py
from attr import define from griptape.drivers import BasePromptDriver from griptape.tokenizers import OpenAiTokenizer, BaseTokenizer from griptape.artifacts import TextArtifact @define class MockValuePromptDriver(BasePromptDriver): value: str model: str = "test-model" tokenizer: BaseTokenizer = OpenAiTokenizer() def try_run(self, value: str) -> TextArtifact: return TextArtifact(value=self.value)
[]
2024-01-10
dylanholmes/griptape
tests~unit~tokenizers~test_anthropic_tokenizer.py
import pytest from griptape.tokenizers import AnthropicTokenizer class TestAnthropicTokenizer: @pytest.fixture def tokenizer(self): return AnthropicTokenizer() def test_encode(self, tokenizer): assert tokenizer.encode("foo bar") == [3803, 3871] def test_decode(self, tokenizer): assert tokenizer.decode([3803, 3871]) == "foo bar" def test_token_count(self, tokenizer): assert tokenizer.token_count("foo bar huzzah") == 5 def test_tokens_left(self, tokenizer): assert tokenizer.tokens_left("foo bar huzzah") == 99995
[]
2024-01-10
dylanholmes/griptape
griptape~memory~structure~summary_conversation_memory.py
from __future__ import annotations import json import logging from typing import TYPE_CHECKING from typing import Optional from attr import define, field, Factory from griptape.drivers import OpenAiChatPromptDriver from griptape.schemas import SummaryConversationMemorySchema from griptape.utils import J2 from griptape.memory.structure import ConversationMemory if TYPE_CHECKING: from griptape.drivers import BasePromptDriver from griptape.memory.structure import Run from griptape.utils import PromptStack @define class SummaryConversationMemory(ConversationMemory): offset: int = field(default=1, kw_only=True) prompt_driver: BasePromptDriver = field( default=Factory(lambda: OpenAiChatPromptDriver()), kw_only=True ) summary: Optional[str] = field(default=None, kw_only=True) summary_index: int = field(default=0, kw_only=True) summary_template_generator: J2 = field( default=Factory(lambda: J2("memory/conversation/summary.j2")), kw_only=True ) summarize_conversation_template_generator: J2 = field( default=Factory(lambda: J2("memory/conversation/summarize_conversation.j2")), kw_only=True ) @classmethod def from_dict(cls, memory_dict: dict) -> SummaryConversationMemory: return SummaryConversationMemorySchema().load(memory_dict) @classmethod def from_json(cls, memory_json: str) -> SummaryConversationMemory: return SummaryConversationMemory.from_dict(json.loads(memory_json)) def add_to_prompt_stack(self, stack: PromptStack) -> None: if self.summary: stack.add_user_input(self.summary_template_generator.render(summary=self.summary)) for r in self.unsummarized_runs(): stack.add_user_input(r.input) stack.add_assistant_input(r.output) def to_dict(self) -> dict: return dict(SummaryConversationMemorySchema().dump(self)) def unsummarized_runs(self, last_n: Optional[int] = None) -> list[Run]: summary_index_runs = self.runs[self.summary_index:] if last_n: last_n_runs = self.runs[-last_n:] if len(summary_index_runs) > len(last_n_runs): return last_n_runs else: return summary_index_runs else: return summary_index_runs def try_add_run(self, run: Run) -> None: super().try_add_run(run) unsummarized_runs = self.unsummarized_runs() runs_to_summarize = unsummarized_runs[:max(0, len(unsummarized_runs) - self.offset)] if len(runs_to_summarize) > 0: self.summary = self.summarize_runs(self.summary, runs_to_summarize) self.summary_index = 1 + self.runs.index(runs_to_summarize[-1]) def summarize_runs(self, previous_summary: str, runs: list[Run]) -> str: try: if len(runs) > 0: return self.prompt_driver.run( prompt_stack=self.summarize_conversation_template_generator.render( summary=previous_summary, runs=runs ) ).to_text() else: return previous_summary except Exception as e: logging.error(f"Error summarizing memory: {type(e).__name__}({e})") return previous_summary
[ "memory/conversation/summary.j2", "memory/conversation/summarize_conversation.j2" ]
2024-01-10
dylanholmes/griptape
griptape~chunkers~base_chunker.py
from __future__ import annotations from abc import ABC from typing import Optional from attr import define, field, Factory from griptape.artifacts import TextArtifact from griptape.chunkers import ChunkSeparator from griptape.tokenizers import OpenAiTokenizer @define class BaseChunker(ABC): DEFAULT_SEPARATORS = [ ChunkSeparator(" ") ] separators: list[ChunkSeparator] = field( default=Factory(lambda self: self.DEFAULT_SEPARATORS, takes_self=True), kw_only=True ) tokenizer: OpenAiTokenizer = field( default=Factory(lambda: OpenAiTokenizer()), kw_only=True ) max_tokens: int = field( default=Factory(lambda self: self.tokenizer.max_tokens, takes_self=True), kw_only=True ) def chunk(self, text: TextArtifact | str) -> list[TextArtifact]: text = text.value if isinstance(text, TextArtifact) else text return [TextArtifact(c) for c in self._chunk_recursively(text)] def _chunk_recursively(self, chunk: str, current_separator: Optional[ChunkSeparator] = None) -> list[str]: token_count = self.tokenizer.token_count(chunk) if token_count <= self.max_tokens: return [chunk] else: balance_index = -1 balance_diff = float("inf") tokens_count = 0 half_token_count = token_count // 2 if current_separator: separators = self.separators[self.separators.index(current_separator):] else: separators = self.separators for separator in separators: subchanks = list(filter(None, chunk.split(separator.value))) if len(subchanks) > 1: for index, subchunk in enumerate(subchanks): if index < len(subchanks): if separator.is_prefix: subchunk = separator.value + subchunk else: subchunk = subchunk + separator.value tokens_count += self.tokenizer.token_count(subchunk) if abs(tokens_count - half_token_count) < balance_diff: balance_index = index balance_diff = abs(tokens_count - half_token_count) if separator.is_prefix: first_subchunk = separator.value + separator.value.join(subchanks[:balance_index + 1]) second_subchunk = separator.value + separator.value.join(subchanks[balance_index + 1:]) else: first_subchunk = separator.value.join(subchanks[:balance_index + 1]) + separator.value second_subchunk = separator.value.join(subchanks[balance_index + 1:]) first_subchunk_rec = self._chunk_recursively(first_subchunk.strip(), separator) second_subchunk_rec = self._chunk_recursively(second_subchunk.strip(), separator) if first_subchunk_rec and second_subchunk_rec: return first_subchunk_rec + second_subchunk_rec elif first_subchunk_rec: return first_subchunk_rec elif second_subchunk_rec: return second_subchunk_rec else: return [] return []
[]
2024-01-10
dylanholmes/griptape
tests~unit~tokenizers~test_tiktoken_tokenizer.py
import pytest from griptape.tokenizers import OpenAiTokenizer class TestOpenAiTokenizer: @pytest.fixture def tokenizer(self): return OpenAiTokenizer() def test_encode(self, tokenizer): assert tokenizer.encode("foo bar") == [8134, 3703] def test_decode(self, tokenizer): assert tokenizer.decode([8134, 3703]) == "foo bar" def test_token_count_for_text(self, tokenizer): assert tokenizer.token_count("foo bar huzzah") == 5 def test_token_count_for_messages(self, tokenizer): assert tokenizer.token_count( [ { "role": "system", "content": "foobar baz" }, { "role": "user", "content": "how foobar am I?" } ], model="gpt-4" ) == 19 assert tokenizer.token_count( [ { "role": "system", "content": "foobar baz" }, { "role": "user", "content": "how foobar am I?" } ], model="gpt-3.5-turbo-0301" ) == 21 assert tokenizer.token_count( [ { "role": "system", "content": "foobar baz" }, { "role": "user", "content": "how foobar am I?" } ], model="gpt-35-turbo" ) == 19 def test_tokens_left(self, tokenizer): assert tokenizer.tokens_left("foo bar huzzah") == 4083 def test_encoding(self, tokenizer): assert tokenizer.encoding.name == "cl100k_base" def test_chunk_tokens(self, tokenizer): tokens = tokenizer.encode("foo bar") assert [chunk for chunk in tokenizer.chunk_tokens(tokens)] == [(8134, 3703)]
[ "foobar baz", "how foobar am I?" ]
2024-01-10
bovem/gpt-developer-tools
src~requester.py
import openai def send_gpt_request(script_path, line_start, line_end, prompt, open_ai_api_key, model_engine, max_tokens, n, temperature): with open(script_path, "r") as script: print("\nInput Script: {}".format(script_path)) print() openai.api_key = open_ai_api_key prompt+="\n " total_lines = sum(1 for line in script) line_end = total_lines if line_end==None else line_end script.seek(0) for i, line in enumerate(script): if line_start<=(i+1) and line_end>=(i+1): prompt+=line elif line_end<(i+1): break # Generate a response completion = openai.Completion.create( engine=model_engine, prompt=prompt, max_tokens=max_tokens, n=n, stop=None, temperature=temperature, ) response = completion.choices[0].text print("ChatGPT's Response:") print(response) def send_gpt_request_create(prompt, write_flag, write_path, open_ai_api_key, model_engine, max_tokens, n, temperature): print("\nInput prompt: {}".format(prompt)) print() openai.api_key = open_ai_api_key # Generate a response completion = openai.Completion.create( engine=model_engine, prompt=prompt, max_tokens=max_tokens, n=n, stop=None, temperature=temperature, ) response = completion.choices[0].text if write_flag==True: script = open(write_path, "w") script.write(response) script.close() print("Program written to file: {}".format(write_path)) else: print("ChatGPT's Response:") print(response)
[ "\n " ]
2024-01-10
kevinbtalbert/Electric_and_Utilities_System_Demo
CML-Assets~2_outages_app~outages_llm_app.py
import os import gradio import pandas as pd import openai openai.api_key = os.getenv('OPENAI_KEY') # Custom CSS custom_css = f""" .gradio-header {{ color: white; }} .gradio-description {{ color: white; }} gradio-app {{ background-image: url('https://raw.githubusercontent.com/kevinbtalbert/Electric_and_Utilities_System_Demo/main/CML-Assets/app_assets/cldr_bg.jpg') !important; background-size: cover !important; background-position: center center !important; background-repeat: no-repeat !important; background-attachment: fixed !important; }} #custom-logo {{ text-align: center; }} .dark {{ background-image: url('https://raw.githubusercontent.com/kevinbtalbert/Electric_and_Utilities_System_Demo/main/CML-Assets/app_assets/cldr_bg.jpg') !important; background-size: cover !important; background-position: center center !important; background-repeat: no-repeat !important; background-attachment: fixed !important; }} .gr-interface {{ background-color: rgba(255, 255, 255, 0.8); }} .gradio-header {{ background-color: rgba(0, 0, 0, 0.5); }} .gradio-input-box, .gradio-output-box {{ background-color: rgba(255, 255, 255, 0.8); }} h1 {{ color: white; font-family: -apple-system, BlinkMacSystemFont, sans-serif; font-size: large; !important; }} """ def main(): # Configure gradio QA app print("Configuring gradio app") demo = gradio.Interface(fn=get_responses, title="Electric & Utilities Company AI-Powered Assistant", description="This AI-powered assistant is designed to help you understand outages in your area as well as be a source for questions about your utility company. For outages, served, and affected, simply enter the area name. You can ask complete questions for the chatbot.", inputs=[gradio.Radio(['outages', 'customers-served', 'customers-affected', 'chatbot'], label="Select Use Case", value="outages"), gradio.Textbox(label="Area/Question", placeholder="")], outputs=[gradio.Textbox(label="Response")], allow_flagging="never", css=custom_css) # Launch gradio app print("Launching gradio app") demo.launch(share=True, enable_queue=True, show_error=True, server_name='127.0.0.1', server_port=int(os.getenv('CDSW_APP_PORT'))) print("Gradio app ready") # Helper function for generating responses for the QA app def get_responses(option, question): engine = "gpt-3.5-turbo" if question is "" or question is None: return "No question and/or engine selected." if option == "outages": res = get_outages_by_area(question) context_chunk="You are a chatbot responding for an electric and utilities company." question = "Explain to me that the area " + question + " has " + str(res) + " outages." if option == "customers-served": res = get_customers_served_by_area(question) context_chunk="You are a chatbot responding for an electric and utilities company" question = "Explain to me that the area " + question + " has " + str(res) + " served customers." if option == "customers-affected": res = get_customers_affected_by_area(question) context_chunk = "You are a chatbot responding for an electric and utilities company. " question = "Explain to me that the area " + question + " has " + str(res) + " affected customers by outages." if option == "chatbot": context_chunk="You are a chatbot responding to a question for an electric and utilities company. If this question is not about that domain, say you cannot answer it: " # Perform text generation with LLM model response = get_llm_response(question, context_chunk, engine) return response def get_outages_by_area(area_name): try: # Read the CSV file data = pd.read_csv('/home/cdsw/CML-Assets/data/utility_outage_data.csv') # Convert the 'Area Name' column to uppercase for case-insensitive comparison data['Area Name'] = data['Area Name'].str.upper() # Find the row with the matching area name area_data = data[data['Area Name'] == area_name.upper()] # Check if the area is found if not area_data.empty: # Return the number of outages return area_data.iloc[0]['Number of Outages'] else: return "Area name not found." except FileNotFoundError: return "Outage data not found." def get_customers_served_by_area(area_name): try: # Read the CSV file data = pd.read_csv('/home/cdsw/CML-Assets/data/utility_outage_data.csv') # Convert the 'Area Name' column to uppercase for case-insensitive comparison data['Area Name'] = data['Area Name'].str.upper() # Find the row with the matching area name area_data = data[data['Area Name'] == area_name.upper()] # Check if the area is found if not area_data.empty: # Return the number of customers served return area_data.iloc[0]['Customers Served'] else: return "Area name not found." except FileNotFoundError: return "Outage data not found." def get_customers_affected_by_area(area_name): try: # Read the CSV file data = pd.read_csv('/home/cdsw/CML-Assets/data/utility_outage_data.csv') # Convert the 'Area Name' column to uppercase for case-insensitive comparison data['Area Name'] = data['Area Name'].str.upper() # Find the row with the matching area name area_data = data[data['Area Name'] == area_name.upper()] # Check if the area is found if not area_data.empty: # Return the number of customers affected return area_data.iloc[0]['Approximate Customers Affected'] else: return "Area name not found." except FileNotFoundError: return "Outage data not found." # Pass through user input to LLM model with enhanced prompt and stop tokens def get_llm_response(question, context, engine): response = openai.ChatCompletion.create( model=engine, messages=[ {"role": "system", "content": str(context)}, {"role": "user", "content": str(question)} ] ) return response['choices'][0]['message']['content'] if __name__ == "__main__": main()
[]
2024-01-10
stas00/datasets
datasets~openwebtext~openwebtext.py
# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The Open WebText Corpus""" import os import re from itertools import chain import datasets _CITATION = """\ @misc{Gokaslan2019OpenWeb, title={OpenWebText Corpus}, author={Aaron Gokaslan*, Vanya Cohen*, Ellie Pavlick, Stefanie Tellex}, howpublished{\\url{http://Skylion007.github.io/OpenWebTextCorpus}}, year={2019} } """ _DESCRIPTION = """\ An open-source replication of the WebText dataset from OpenAI. """ _URL = "https://zenodo.org/record/3834942/files/openwebtext.tar.xz" class Openwebtext(datasets.GeneratorBasedBuilder): """The Open WebText dataset.""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name="plain_text", description="Plain text", version=datasets.Version("1.0.0"), ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({"text": datasets.Value("string")}), homepage="https://skylion007.github.io/OpenWebTextCorpus/", citation=_CITATION, ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(_URL) owt_dir = os.path.join(dl_dir, "openwebtext") subset_xzs = [ os.path.join(owt_dir, file_name) for file_name in sorted(os.listdir(owt_dir)) if file_name.endswith("xz") # filter out ...xz.lock ] ex_dirs = dl_manager.extract(subset_xzs, num_proc=round(os.cpu_count() * 0.75)) nested_txt_files = [ [ os.path.join(ex_dir, txt_file_name) for txt_file_name in sorted(os.listdir(ex_dir)) if txt_file_name.endswith("txt") ] for ex_dir in ex_dirs ] txt_files = chain(*nested_txt_files) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"txt_files": txt_files}), ] def _generate_examples(self, txt_files): """Yields examples.""" for idx, filepath in enumerate(txt_files): with open(filepath, encoding="utf-8") as f: yield idx, {"text": re.sub("\n\n\n+", "\n\n", f.read()).strip()}
[]
2024-01-10
sohanshow/Convo_Sense_Public
demo~reference_old.py
## This is going to be our end file for the reference. import logging from PyDictionary import PyDictionary logging.basicConfig(level=logging.INFO) import requests import nltk import os import wget import json from google_images_search import GoogleImagesSearch import requests import openai #============This returns the definition of the word from openai=========== openai.api_key = 'Your API KEY' def get_def(word, context): model = "text-davinci-002" prompt = ( f"Please provide the definition of the word '{word}' as used in the following sentence:\n\n" f"{context}\n\n" f"Definition of '{word}': " ) response = openai.Completion.create( engine=model, prompt=prompt, max_tokens=100, n=1, stop=None, temperature=0.5, ) definition = response.choices[0].text.strip() return definition #=============================================================================================# #=============================================================# # This function gets the pictures for our reference from Google Custom Search API #=============================================================# def getPicture(keyword): gis = GoogleImagesSearch('Your API KEY', 'Your custom Image Search Key') gis.search({'q': keyword}) dir_path = './site/' try: image_url = gis.results()[0].url response = requests.get(image_url, headers={'User-Agent': 'Mozilla/5.0'}) img_data = response.content except IndexError: return None with open(os.path.join(dir_path, 'image.png'), 'wb') as f: f.write(img_data) def getPictureGuest(keyword): gis = GoogleImagesSearch('Your API KEY', 'Your custom Image Search Key') gis.search({'q': keyword}) dir_path = './site/' try: image_url = gis.results()[0].url response = requests.get(image_url, headers={'User-Agent': 'Mozilla/5.0'}) img_data = response.content except IndexError: return None with open(os.path.join(dir_path, 'image2.png'), 'wb') as f: f.write(img_data)
[ "Please provide the definition of the word 'PLACEHOLDER' as used in the following sentence:\n\nPLACEHOLDER\n\nDefinition of 'PLACEHOLDER': " ]
2024-01-10
sohanshow/Convo_Sense_Public
reference.py
## This is going to be our end file for the reference. import logging from PyDictionary import PyDictionary logging.basicConfig(level=logging.INFO) import requests import nltk import os import wget import json from google_images_search import GoogleImagesSearch import requests import openai #============This returns the definition of the word from openai API=========== openai.api_key = 'Your openai KEY' def get_def(word, context): model = "text-davinci-002" prompt = ( f"Please provide the definition of the word '{word}' as used in the following sentence:\n\n" f"{context}\n\n" f"Definition of '{word}': " ) response = openai.Completion.create( engine=model, prompt=prompt, max_tokens=100, n=1, stop=None, temperature=0.5, ) definition = response.choices[0].text.strip() return definition #=============================================================================================# #=============================================================# # This function gets the pictures for our reference from Google Custom Search API #=============================================================# def getPicture(keyword): gis = GoogleImagesSearch('YOUR Google API KEY', 'YOUR custom search API KEY') gis.search({'q': keyword}) dir_path = './site/' try: image_url = gis.results()[0].url response = requests.get(image_url, headers={'User-Agent': 'Mozilla/5.0'}) img_data = response.content except IndexError: return None with open(os.path.join(dir_path, 'image.png'), 'wb') as f: f.write(img_data) def getPictureGuest(keyword): gis = GoogleImagesSearch('YOUR Google API KEY', 'YOUR custom search API KEY') gis.search({'q': keyword}) dir_path = './site/' try: image_url = gis.results()[0].url response = requests.get(image_url, headers={'User-Agent': 'Mozilla/5.0'}) img_data = response.content except IndexError: return None with open(os.path.join(dir_path, 'image2.png'), 'wb') as f: f.write(img_data)
[ "Please provide the definition of the word 'PLACEHOLDER' as used in the following sentence:\n\nPLACEHOLDER\n\nDefinition of 'PLACEHOLDER': " ]
2024-01-10
sohanshow/Convo_Sense_Public
demo~reference.py
## This is going to be our end file for the reference. import logging from PyDictionary import PyDictionary logging.basicConfig(level=logging.INFO) import os from PIL import Image from io import BytesIO from google_images_search import GoogleImagesSearch import requests import openai #============This returns the definition of the word from OpenAI=========== openai.api_key = 'Your API KEY' def get_def(word, context): model = "text-davinci-002" prompt = ( f"Please provide the definition of the word '{word}' as used in the following sentence:\n\n" f"{context}\n\n" f"Definition of '{word}': " ) response = openai.Completion.create( engine=model, prompt=prompt, max_tokens=100, n=1, stop=None, temperature=0.5, ) definition = response.choices[0].text.strip() return definition #===================================This is Saving the Image================================== def save_image(url, file_name, directory): response = requests.get(url) response.raise_for_status() img = Image.open(BytesIO(response.content)) if not os.path.exists(directory): os.makedirs(directory) file_path = os.path.join(directory, file_name) img.save(file_path) #=============================================================================================# def bing_image_search(query, api_key, count=10): headers = {"Ocp-Apim-Subscription-Key": api_key} params = { "q": query, "count": count, "offset": 0, "mkt": "en-US", "safesearch": "Moderate", } url = "https://api.bing.microsoft.com/v7.0/images/search" response = requests.get(url, headers=headers, params=params) response.raise_for_status() return response.json() #=============================================================# # This function gets the pictures for our reference from Google Custom Search API #=============================================================# def getPicture(keyword): gis = GoogleImagesSearch('Your API KEY', 'Your custom search KEY') # define the search parameters gis.search({'q': keyword}) dir_path = './site/' # If path not availabe then do this: # if not os.path.exists(dir_path): # os.makedirs(dir_path) # get the URL of the first image in the search results try: image_url = gis.results()[0].url # download the image from the URL and save it # wget.download(image_url) response = requests.get(image_url, headers={'User-Agent': 'Mozilla/5.0'}) img_data = response.content except IndexError: print("No Image found") return None with open(os.path.join(dir_path, 'image.png'), 'wb') as f: f.write(img_data) getPicture("a bat")
[ "Please provide the definition of the word 'PLACEHOLDER' as used in the following sentence:\n\nPLACEHOLDER\n\nDefinition of 'PLACEHOLDER': " ]
2024-01-10
AllenXiao95/openchat
ochat~evaluation~get_openai_answer.py
import os import json import argparse import time import openai from tqdm import tqdm from tenacity import retry, stop_after_attempt, wait_random_exponential @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6)) def chat_completion_with_backoff(**kwargs): return openai.ChatCompletion.create(**kwargs) def main(): parser = argparse.ArgumentParser() # Input / output parser.add_argument("--data_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) parser.add_argument("--model_types", type=str, nargs='+', default=["gpt-3.5-turbo", "gpt-4"]) # Temperature parser.add_argument("--temperature", type=float, default=0.7) parser.add_argument("--top_p", type=float, default=0.9) args = parser.parse_args() # Load questions with open(os.path.join(args.data_path, "question.jsonl"), "r") as f: question_list = list(map(json.loads, f.readlines())) # Get API answers cur_date = time.strftime("%Y%m%d") for model_type in args.model_types: output_filename = os.path.join(args.output_path, f"{os.path.basename(args.data_path)}_{model_type}.jsonl") # API call answer_list = [] for question in tqdm(question_list): answer = chat_completion_with_backoff( model=model_type, messages=[ {"role": "user", "content": question["text"]} ], temperature=args.temperature, top_p=args.top_p ) answer = answer["choices"][0]["message"]["content"] answer_list.append({ "answer_model": f"{model_type}_{cur_date}", "answer": answer, **question }) # Write jsonl answer_list = list(map(lambda x: json.dumps(x) + "\n", answer_list)) with open(output_filename, "w") as f: f.writelines(answer_list) if __name__ == "__main__": main()
[]
2024-01-10
abeldiress/cohere-python
cohere~client.py
import json import sys from concurrent.futures import ThreadPoolExecutor from typing import Any, Dict, List from urllib.parse import urljoin import requests from requests import Response import cohere from cohere.classify import Classification, Classifications from cohere.classify import Example as ClassifyExample from cohere.classify import LabelPrediction from cohere.detokenize import Detokenization from cohere.embeddings import Embeddings from cohere.error import CohereError from cohere.generation import Generations from cohere.tokenize import Tokens from cohere.detectlang import Language, DetectLanguageResponse use_xhr_client = False try: from js import XMLHttpRequest use_xhr_client = True except ImportError: pass class Client: def __init__(self, api_key: str, version: str = None, num_workers: int = 64, request_dict: dict = {}, check_api_key: bool = True) -> None: self.api_key = api_key self.api_url = cohere.COHERE_API_URL self.batch_size = cohere.COHERE_EMBED_BATCH_SIZE self._executor = ThreadPoolExecutor(num_workers) self.num_workers = num_workers self.request_dict = request_dict if version is None: self.cohere_version = cohere.COHERE_VERSION else: self.cohere_version = version if check_api_key: try: res = self.check_api_key() if not res['valid']: raise CohereError('invalid api key') except CohereError as e: raise CohereError(message=e.message, http_status=e.http_status, headers=e.headers) def check_api_key(self) -> Response: headers = { 'Authorization': 'BEARER {}'.format(self.api_key), 'Content-Type': 'application/json', 'Request-Source': 'python-sdk', } if self.cohere_version != '': headers['Cohere-Version'] = self.cohere_version url = urljoin(self.api_url, cohere.CHECK_API_KEY_URL) if use_xhr_client: response = self.__pyfetch(url, headers, None) return response else: response = requests.request('POST', url, headers=headers) try: res = json.loads(response.text) except Exception: raise CohereError(message=response.text, http_status=response.status_code, headers=response.headers) if 'message' in res.keys(): # has errors raise CohereError(message=res['message'], http_status=response.status_code, headers=response.headers) return res def batch_generate(self, prompts: List[str], **kwargs) -> List[Generations]: generations: List[Generations] = [] for prompt in prompts: kwargs["prompt"] = prompt generations.append(self.generate(**kwargs)) return generations def generate(self, prompt: str = None, prompt_vars: object = {}, model: str = None, preset: str = None, num_generations: int = None, max_tokens: int = None, temperature: float = None, k: int = None, p: float = None, frequency_penalty: float = None, presence_penalty: float = None, end_sequences: List[str] = None, stop_sequences: List[str] = None, return_likelihoods: str = None, truncate: str = None, logit_bias: Dict[int, float] = {}) -> Generations: json_body = { 'model': model, 'prompt': prompt, 'prompt_vars': prompt_vars, 'preset': preset, 'num_generations': num_generations, 'max_tokens': max_tokens, 'temperature': temperature, 'k': k, 'p': p, 'frequency_penalty': frequency_penalty, 'presence_penalty': presence_penalty, 'end_sequences': end_sequences, 'stop_sequences': stop_sequences, 'return_likelihoods': return_likelihoods, 'truncate': truncate, 'logit_bias': logit_bias, } response = self._executor.submit(self.__request, cohere.GENERATE_URL, json=json_body) return Generations(return_likelihoods=return_likelihoods, _future=response) def embed(self, texts: List[str], model: str = None, truncate: str = 'NONE') -> Embeddings: responses = [] json_bodys = [] for i in range(0, len(texts), self.batch_size): texts_batch = texts[i:i + self.batch_size] json_bodys.append({ 'model': model, 'texts': texts_batch, 'truncate': truncate, }) if use_xhr_client: for json_body in json_bodys: response = self.__request(cohere.EMBED_URL, json=json_body) responses.append(response['embeddings']) else: for result in self._executor.map(lambda json_body: self.__request(cohere.EMBED_URL, json=json_body), json_bodys): responses.extend(result['embeddings']) return Embeddings(responses) def classify(self, inputs: List[str] = [], model: str = None, preset: str = None, examples: List[ClassifyExample] = [], truncate: str = None) -> Classifications: examples_dicts: list[dict[str, str]] = [] for example in examples: example_dict = {'text': example.text, 'label': example.label} examples_dicts.append(example_dict) json_body = { 'model': model, 'preset': preset, 'inputs': inputs, 'examples': examples_dicts, 'truncate': truncate, } response = self.__request(cohere.CLASSIFY_URL, json=json_body) classifications = [] for res in response['classifications']: labelObj = {} for label, prediction in res['labels'].items(): labelObj[label] = LabelPrediction(prediction['confidence']) classifications.append(Classification(res['input'], res['prediction'], res['confidence'], labelObj)) return Classifications(classifications) def batch_tokenize(self, texts: List[str]) -> List[Tokens]: return [self.tokenize(t) for t in texts] def tokenize(self, text: str) -> Tokens: json_body = {'text': text} return Tokens(_future=self._executor.submit(self.__request, cohere.TOKENIZE_URL, json=json_body)) def batch_detokenize(self, list_of_tokens: List[List[int]]) -> List[Detokenization]: return [self.detokenize(t) for t in list_of_tokens] def detokenize(self, tokens: List[int]) -> Detokenization: json_body = {'tokens': tokens} return Detokenization(_future=self._executor.submit(self.__request, cohere.DETOKENIZE_URL, json=json_body)) def detect_language(self, texts: List[str]) -> List[Language]: json_body = { "texts": texts, } response = self.__request(cohere.DETECT_LANG_URL, json=json_body) results = [] for result in response["results"]: results.append(Language(result["language_code"], result["language_name"])) return DetectLanguageResponse(results) def __print_warning_msg(self, response: Response): if 'X-API-Warning' in response.headers: print("\033[93mWarning: {}\n\033[0m".format(response.headers['X-API-Warning']), file=sys.stderr) def __pyfetch(self, url, headers, json_body) -> Response: req = XMLHttpRequest.new() req.open('POST', url, False) for key, value in headers.items(): req.setRequestHeader(key, value) try: req.send(json_body) except Exception: raise CohereError(message=req.responseText, http_status=req.status, headers=req.getAllResponseHeaders()) res = json.loads(req.response) if 'message' in res.keys(): raise CohereError(message=res['message'], http_status=req.status, headers=req.getAllResponseHeaders()) return res def __request(self, endpoint, json=None) -> Any: headers = { 'Authorization': 'BEARER {}'.format(self.api_key), 'Content-Type': 'application/json', 'Request-Source': 'python-sdk', } if self.cohere_version != '': headers['Cohere-Version'] = self.cohere_version url = urljoin(self.api_url, endpoint) if use_xhr_client: response = self.__pyfetch(url, headers, json.dumps(json)) self.__print_warning_msg(response) return response else: response = requests.request('POST', url, headers=headers, json=json, **self.request_dict) try: res = response.json() except Exception: raise CohereError(message=response.text, http_status=response.status_code, headers=response.headers) if 'message' in res: # has errors raise CohereError(message=res['message'], http_status=response.status_code, headers=response.headers) self.__print_warning_msg(response) return res
[]
2024-01-10
abeldiress/cohere-python
cohere~detectlang.py
from cohere.response import CohereObject from typing import List class Language(CohereObject): def __init__(self, code: str, name: str): self.language_code = code self.language_name = name def __repr__(self) -> str: return f"Language<language_code: \"{self.language_code}\", language_name: \"{self.language_name}\">" class DetectLanguageResponse: def __init__(self, results: List[Language]): self.results = results
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~robot_envs~cube_single_disk_env.py
import numpy import rospy from openai_ros import robot_gazebo_env from std_msgs.msg import Float64 from sensor_msgs.msg import JointState from nav_msgs.msg import Odometry from openai_ros.openai_ros_common import ROSLauncher class CubeSingleDiskEnv(robot_gazebo_env.RobotGazeboEnv): """Superclass for all CubeSingleDisk environments. """ def __init__(self, ros_ws_abspath): """Initializes a new CubeSingleDisk environment. Args: """ # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="moving_cube_description", launch_file_name="put_cube_in_world.launch", ros_ws_abspath=ros_ws_abspath) # Variables that we give through the constructor. # None in this case # Internal Vars self.controllers_list = ['joint_state_controller', 'inertia_wheel_roll_joint_velocity_controller' ] self.robot_name_space = "moving_cube" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(CubeSingleDiskEnv, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=True) """ To check any topic we need to have the simulations running, we need to do two things: 1) Unpause the simulation: without that th stream of data doesnt flow. This is for simulations that are pause for whatever the reason 2) If the simulation was running already for some reason, we need to reset the controlers. This has to do with the fact that some plugins with tf, dont understand the reset of the simulation and need to be reseted to work properly. """ self.gazebo.unpauseSim() self.controllers_object.reset_controllers() self._check_all_sensors_ready() # We Start all the ROS related Subscribers and publishers rospy.Subscriber("/moving_cube/joint_states", JointState, self._joints_callback) rospy.Subscriber("/moving_cube/odom", Odometry, self._odom_callback) self._roll_vel_pub = rospy.Publisher('/moving_cube/inertia_wheel_roll_joint_velocity_controller/command', Float64, queue_size=1) self._check_publishers_connection() self.gazebo.pauseSim() # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ self._check_all_sensors_ready() return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): self._check_joint_states_ready() self._check_odom_ready() rospy.logdebug("ALL SENSORS READY") def _check_joint_states_ready(self): self.joints = None while self.joints is None and not rospy.is_shutdown(): try: self.joints = rospy.wait_for_message( "/moving_cube/joint_states", JointState, timeout=1.0) rospy.logdebug( "Current moving_cube/joint_states READY=>" + str(self.joints)) except: rospy.logerr( "Current moving_cube/joint_states not ready yet, retrying for getting joint_states") return self.joints def _check_odom_ready(self): self.odom = None while self.odom is None and not rospy.is_shutdown(): try: self.odom = rospy.wait_for_message( "/moving_cube/odom", Odometry, timeout=1.0) rospy.logdebug( "Current /moving_cube/odom READY=>" + str(self.odom)) except: rospy.logerr( "Current /moving_cube/odom not ready yet, retrying for getting odom") return self.odom def _joints_callback(self, data): self.joints = data def _odom_callback(self, data): self.odom = data def _check_publishers_connection(self): """ Checks that all the publishers are working :return: """ rate = rospy.Rate(10) # 10hz while self._roll_vel_pub.get_num_connections() == 0 and not rospy.is_shutdown(): rospy.logdebug( "No susbribers to _roll_vel_pub yet so we wait and try again") try: rate.sleep() except rospy.ROSInterruptException: # This is to avoid error when world is rested, time when backwards. pass rospy.logdebug("_roll_vel_pub Publisher Connected") rospy.logdebug("All Publishers READY") # Methods that the TrainingEnvironment will need to define here as virtual # because they will be used in RobotGazeboEnv GrandParentClass and defined in the # TrainingEnvironment. # ---------------------------- def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() # Methods that the TrainingEnvironment will need. # ---------------------------- def move_joints(self, roll_speed): joint_speed_value = Float64() joint_speed_value.data = roll_speed rospy.logdebug("Single Disk Roll Velocity>>" + str(joint_speed_value)) self._roll_vel_pub.publish(joint_speed_value) self.wait_until_roll_is_in_vel(joint_speed_value.data) def wait_until_roll_is_in_vel(self, velocity): rate = rospy.Rate(10) start_wait_time = rospy.get_rostime().to_sec() end_wait_time = 0.0 epsilon = 0.1 v_plus = velocity + epsilon v_minus = velocity - epsilon while not rospy.is_shutdown(): joint_data = self._check_joint_states_ready() roll_vel = joint_data.velocity[0] rospy.logdebug("VEL=" + str(roll_vel) + ", ?RANGE=[" + str(v_minus) + ","+str(v_plus)+"]") are_close = (roll_vel <= v_plus) and (roll_vel > v_minus) if are_close: rospy.logdebug("Reached Velocity!") end_wait_time = rospy.get_rostime().to_sec() break rospy.logdebug("Not there yet, keep waiting...") rate.sleep() delta_time = end_wait_time - start_wait_time rospy.logdebug("[Wait Time=" + str(delta_time)+"]") return delta_time def get_joints(self): return self.joints def get_odom(self): return self.odom
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~robot_envs~turtlebot2_env.py
import numpy import rospy import time from openai_ros import robot_gazebo_env from std_msgs.msg import Float64 from sensor_msgs.msg import JointState from sensor_msgs.msg import Image from sensor_msgs.msg import LaserScan from sensor_msgs.msg import PointCloud2 from nav_msgs.msg import Odometry from geometry_msgs.msg import Twist from openai_ros.openai_ros_common import ROSLauncher class TurtleBot2Env(robot_gazebo_env.RobotGazeboEnv): """Superclass for all CubeSingleDisk environments. """ def __init__(self, ros_ws_abspath): """ Initializes a new TurtleBot2Env environment. Turtlebot2 doesnt use controller_manager, therefore we wont reset the controllers in the standard fashion. For the moment we wont reset them. To check any topic we need to have the simulations running, we need to do two things: 1) Unpause the simulation: without that th stream of data doesnt flow. This is for simulations that are pause for whatever the reason 2) If the simulation was running already for some reason, we need to reset the controlers. This has to do with the fact that some plugins with tf, dont understand the reset of the simulation and need to be reseted to work properly. The Sensors: The sensors accesible are the ones considered usefull for AI learning. Sensor Topic List: * /odom : Odometry readings of the Base of the Robot * /camera/depth/image_raw: 2d Depth image of the depth sensor. * /camera/depth/points: Pointcloud sensor readings * /camera/rgb/image_raw: RGB camera * /kobuki/laser/scan: Laser Readings Actuators Topic List: /cmd_vel, Args: """ rospy.logdebug("Start TurtleBot2Env INIT...") # Variables that we give through the constructor. # None in this case # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="turtlebot_gazebo", launch_file_name="put_turtlebot2_in_world.launch", ros_ws_abspath=ros_ws_abspath) # Internal Vars # Doesnt have any accesibles self.controllers_list = [] # It doesnt use namespace self.robot_name_space = "" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(TurtleBot2Env, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=False, start_init_physics_parameters=False, reset_world_or_sim="WORLD") self.gazebo.unpauseSim() #self.controllers_object.reset_controllers() self._check_all_sensors_ready() # We Start all the ROS related Subscribers and publishers rospy.Subscriber("/odom", Odometry, self._odom_callback) #rospy.Subscriber("/camera/depth/image_raw", Image, self._camera_depth_image_raw_callback) #rospy.Subscriber("/camera/depth/points", PointCloud2, self._camera_depth_points_callback) #rospy.Subscriber("/camera/rgb/image_raw", Image, self._camera_rgb_image_raw_callback) rospy.Subscriber("/kobuki/laser/scan", LaserScan, self._laser_scan_callback) self._cmd_vel_pub = rospy.Publisher('/cmd_vel', Twist, queue_size=1) self._check_publishers_connection() self.gazebo.pauseSim() rospy.logdebug("Finished TurtleBot2Env INIT...") # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ self._check_all_sensors_ready() return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): rospy.logdebug("START ALL SENSORS READY") self._check_odom_ready() # We dont need to check for the moment, takes too long #self._check_camera_depth_image_raw_ready() #self._check_camera_depth_points_ready() #self._check_camera_rgb_image_raw_ready() self._check_laser_scan_ready() rospy.logdebug("ALL SENSORS READY") def _check_odom_ready(self): self.odom = None rospy.logdebug("Waiting for /odom to be READY...") while self.odom is None and not rospy.is_shutdown(): try: self.odom = rospy.wait_for_message("/odom", Odometry, timeout=5.0) rospy.logdebug("Current /odom READY=>") except: rospy.logerr("Current /odom not ready yet, retrying for getting odom") return self.odom def _check_camera_depth_image_raw_ready(self): self.camera_depth_image_raw = None rospy.logdebug("Waiting for /camera/depth/image_raw to be READY...") while self.camera_depth_image_raw is None and not rospy.is_shutdown(): try: self.camera_depth_image_raw = rospy.wait_for_message("/camera/depth/image_raw", Image, timeout=5.0) rospy.logdebug("Current /camera/depth/image_raw READY=>") except: rospy.logerr("Current /camera/depth/image_raw not ready yet, retrying for getting camera_depth_image_raw") return self.camera_depth_image_raw def _check_camera_depth_points_ready(self): self.camera_depth_points = None rospy.logdebug("Waiting for /camera/depth/points to be READY...") while self.camera_depth_points is None and not rospy.is_shutdown(): try: self.camera_depth_points = rospy.wait_for_message("/camera/depth/points", PointCloud2, timeout=10.0) rospy.logdebug("Current /camera/depth/points READY=>") except: rospy.logerr("Current /camera/depth/points not ready yet, retrying for getting camera_depth_points") return self.camera_depth_points def _check_camera_rgb_image_raw_ready(self): self.camera_rgb_image_raw = None rospy.logdebug("Waiting for /camera/rgb/image_raw to be READY...") while self.camera_rgb_image_raw is None and not rospy.is_shutdown(): try: self.camera_rgb_image_raw = rospy.wait_for_message("/camera/rgb/image_raw", Image, timeout=5.0) rospy.logdebug("Current /camera/rgb/image_raw READY=>") except: rospy.logerr("Current /camera/rgb/image_raw not ready yet, retrying for getting camera_rgb_image_raw") return self.camera_rgb_image_raw def _check_laser_scan_ready(self): self.laser_scan = None rospy.logdebug("Waiting for /kobuki/laser/scan to be READY...") while self.laser_scan is None and not rospy.is_shutdown(): try: self.laser_scan = rospy.wait_for_message("/kobuki/laser/scan", LaserScan, timeout=5.0) rospy.logdebug("Current /kobuki/laser/scan READY=>") except: rospy.logerr("Current /kobuki/laser/scan not ready yet, retrying for getting laser_scan") return self.laser_scan def _odom_callback(self, data): self.odom = data def _camera_depth_image_raw_callback(self, data): self.camera_depth_image_raw = data def _camera_depth_points_callback(self, data): self.camera_depth_points = data def _camera_rgb_image_raw_callback(self, data): self.camera_rgb_image_raw = data def _laser_scan_callback(self, data): self.laser_scan = data def _check_publishers_connection(self): """ Checks that all the publishers are working :return: """ rate = rospy.Rate(10) # 10hz while self._cmd_vel_pub.get_num_connections() == 0 and not rospy.is_shutdown(): rospy.logdebug("No susbribers to _cmd_vel_pub yet so we wait and try again") try: rate.sleep() except rospy.ROSInterruptException: # This is to avoid error when world is rested, time when backwards. pass rospy.logdebug("_cmd_vel_pub Publisher Connected") rospy.logdebug("All Publishers READY") # Methods that the TrainingEnvironment will need to define here as virtual # because they will be used in RobotGazeboEnv GrandParentClass and defined in the # TrainingEnvironment. # ---------------------------- def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() # Methods that the TrainingEnvironment will need. # ---------------------------- def move_base(self, linear_speed, angular_speed, epsilon=0.05, update_rate=10, min_laser_distance=-1): """ It will move the base based on the linear and angular speeds given. It will wait untill those twists are achived reading from the odometry topic. :param linear_speed: Speed in the X axis of the robot base frame :param angular_speed: Speed of the angular turning of the robot base frame :param epsilon: Acceptable difference between the speed asked and the odometry readings :param update_rate: Rate at which we check the odometry. :return: """ cmd_vel_value = Twist() cmd_vel_value.linear.x = linear_speed cmd_vel_value.angular.z = angular_speed rospy.logdebug("TurtleBot2 Base Twist Cmd>>" + str(cmd_vel_value)) self._check_publishers_connection() self._cmd_vel_pub.publish(cmd_vel_value) time.sleep(0.2) #time.sleep(0.02) """ self.wait_until_twist_achieved(cmd_vel_value, epsilon, update_rate, min_laser_distance) """ def wait_until_twist_achieved(self, cmd_vel_value, epsilon, update_rate, min_laser_distance=-1): """ We wait for the cmd_vel twist given to be reached by the robot reading from the odometry. :param cmd_vel_value: Twist we want to wait to reach. :param epsilon: Error acceptable in odometry readings. :param update_rate: Rate at which we check the odometry. :return: """ rospy.logwarn("START wait_until_twist_achieved...") rate = rospy.Rate(update_rate) start_wait_time = rospy.get_rostime().to_sec() end_wait_time = 0.0 epsilon = 0.05 rospy.logdebug("Desired Twist Cmd>>" + str(cmd_vel_value)) rospy.logdebug("epsilon>>" + str(epsilon)) linear_speed = cmd_vel_value.linear.x angular_speed = cmd_vel_value.angular.z linear_speed_plus = linear_speed + epsilon linear_speed_minus = linear_speed - epsilon angular_speed_plus = angular_speed + epsilon angular_speed_minus = angular_speed - epsilon while not rospy.is_shutdown(): crashed_into_something = self.has_crashed(min_laser_distance) current_odometry = self._check_odom_ready() odom_linear_vel = current_odometry.twist.twist.linear.x odom_angular_vel = current_odometry.twist.twist.angular.z rospy.logdebug("Linear VEL=" + str(odom_linear_vel) + ", ?RANGE=[" + str(linear_speed_minus) + ","+str(linear_speed_plus)+"]") rospy.logdebug("Angular VEL=" + str(odom_angular_vel) + ", ?RANGE=[" + str(angular_speed_minus) + ","+str(angular_speed_plus)+"]") linear_vel_are_close = (odom_linear_vel <= linear_speed_plus) and (odom_linear_vel > linear_speed_minus) angular_vel_are_close = (odom_angular_vel <= angular_speed_plus) and (odom_angular_vel > angular_speed_minus) if linear_vel_are_close and angular_vel_are_close: rospy.logwarn("Reached Velocity!") end_wait_time = rospy.get_rostime().to_sec() break if crashed_into_something: rospy.logerr("TurtleBot has crashed, stopping movement!") break rospy.logwarn("Not there yet, keep waiting...") rate.sleep() delta_time = end_wait_time- start_wait_time rospy.logdebug("[Wait Time=" + str(delta_time)+"]") rospy.logwarn("END wait_until_twist_achieved...") return delta_time def has_crashed(self, min_laser_distance): """ It states based on the laser scan if the robot has crashed or not. Crashed means that the minimum laser reading is lower than the min_laser_distance value given. If min_laser_distance == -1, it returns always false, because its the way to deactivate this check. """ robot_has_crashed = False if min_laser_distance != -1: laser_data = self.get_laser_scan() for i, item in enumerate(laser_data.ranges): if item == float ('Inf') or numpy.isinf(item): pass elif numpy.isnan(item): pass else: # Has a Non Infinite or Nan Value if (item < min_laser_distance): rospy.logerr("TurtleBot HAS CRASHED >>> item=" + str(item)+"< "+str(min_laser_distance)) robot_has_crashed = True break return robot_has_crashed def get_odom(self): return self.odom def get_camera_depth_image_raw(self): return self.camera_depth_image_raw def get_camera_depth_points(self): return self.camera_depth_points def get_camera_rgb_image_raw(self): return self.camera_rgb_image_raw def get_laser_scan(self): return self.laser_scan def reinit_sensors(self): """ This method is for the tasks so that when reseting the episode the sensors values are forced to be updated with the real data and """
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~robot_gazebo_env.py
import rospy import gym from gym.utils import seeding from .gazebo_connection import GazeboConnection from .controllers_connection import ControllersConnection #https://bitbucket.org/theconstructcore/theconstruct_msgs/src/master/msg/RLExperimentInfo.msg from openai_ros.msg import RLExperimentInfo # https://github.com/openai/gym/blob/master/gym/core.py class RobotGazeboEnv(gym.Env): def __init__(self, robot_name_space, controllers_list, reset_controls, start_init_physics_parameters=True, reset_world_or_sim="SIMULATION"): # To reset Simulations rospy.logdebug("START init RobotGazeboEnv") self.gazebo = GazeboConnection(robot_name_space, start_init_physics_parameters,reset_world_or_sim) self.controllers_object = ControllersConnection(namespace=robot_name_space, controllers_list=controllers_list) self.reset_controls = reset_controls self.seed() # Set up ROS related variables self.episode_num = 0 self.cumulated_episode_reward = 0 self.reward_pub = rospy.Publisher('/'+robot_name_space+'/openai/reward', RLExperimentInfo, queue_size=1) rospy.logdebug("END init RobotGazeboEnv") # Env methods def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, action): """ Function executed each time step. Here we get the action execute it in a time step and retrieve the observations generated by that action. :param action: :return: obs, reward, done, info """ """ Here we should convert the action num to movement action, execute the action in the simulation and get the observations result of performing that action. """ rospy.logdebug("START STEP OpenAIROS") self.gazebo.unpauseSim() self._set_action(action) self.gazebo.pauseSim() obs = self._get_obs() done = self._is_done(obs) info = {} reward = self._compute_reward(obs, done) self.cumulated_episode_reward += reward rospy.logdebug("END STEP OpenAIROS") return obs, reward, done, info def reset(self): rospy.logdebug("Reseting RobotGazeboEnvironment") self._init_env_variables() self._reset_sim() self._update_episode() obs = self._get_obs() rospy.logdebug("END Reseting RobotGazeboEnvironment") return obs def close(self): """ Function executed when closing the environment. Use it for closing GUIS and other systems that need closing. :return: """ rospy.logdebug("Closing RobotGazeboEnvironment") rospy.signal_shutdown("Closing RobotGazeboEnvironment") def _update_episode(self): """ Publishes the cumulated reward of the episode and increases the episode number by one. :return: """ rospy.logwarn("PUBLISHING REWARD...") self._publish_reward_topic( self.cumulated_episode_reward, self.episode_num ) rospy.logwarn("PUBLISHING REWARD...DONE="+str(self.cumulated_episode_reward)+",EP="+str(self.episode_num)) self.episode_num += 1 self.cumulated_episode_reward = 0 def _publish_reward_topic(self, reward, episode_number=1): """ This function publishes the given reward in the reward topic for easy access from ROS infrastructure. :param reward: :param episode_number: :return: """ reward_msg = RLExperimentInfo() reward_msg.episode_number = episode_number reward_msg.episode_reward = reward self.reward_pub.publish(reward_msg) # Extension methods # ---------------------------- def _reset_sim(self): """Resets a simulation """ rospy.logdebug("RESET SIM START") if self.reset_controls : rospy.logdebug("RESET CONTROLLERS") self.gazebo.unpauseSim() self.controllers_object.reset_controllers() self._check_all_systems_ready() self._set_init_pose() self.gazebo.pauseSim() self.gazebo.resetSim() self.gazebo.unpauseSim() self.controllers_object.reset_controllers() self._check_all_systems_ready() self.gazebo.pauseSim() else: rospy.logwarn("DONT RESET CONTROLLERS") self.gazebo.unpauseSim() self._check_all_systems_ready() self._set_init_pose() self.gazebo.pauseSim() self.gazebo.resetSim() self.gazebo.unpauseSim() self._check_all_systems_ready() self.gazebo.pauseSim() rospy.logdebug("RESET SIM END") return True def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ raise NotImplementedError() def _get_obs(self): """Returns the observation. """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _is_done(self, observations): """Indicates whether or not the episode is done ( the robot has fallen for example). """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _env_setup(self, initial_qpos): """Initial configuration of the environment. Can be used to configure initial state and extract information from the simulation. """ raise NotImplementedError()
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~robot_envs~sawyer_env.py
import numpy import rospy import time import tf from openai_ros import robot_gazebo_env import intera_interface import intera_external_devices from intera_interface import CHECK_VERSION from intera_core_msgs.msg import JointLimits from sensor_msgs.msg import Image from openai_ros.openai_ros_common import ROSLauncher class SawyerEnv(robot_gazebo_env.RobotGazeboEnv): """Superclass for all SawyerEnv environments. """ def __init__(self, ros_ws_abspath): """ Initializes a new SawyerEnv environment. To check any topic we need to have the simulations running, we need to do two things: 1) Unpause the simulation: without that th stream of data doesnt flow. This is for simulations that are pause for whatever the reason 2) If the simulation was running already for some reason, we need to reset the controlers. This has to do with the fact that some plugins with tf, dont understand the reset of the simulation and need to be reseted to work properly. The Sensors: The sensors accesible are the ones considered usefull for AI learning. Sensor Topic List: * /robot/joint_limits: Odometry of the Base of Wamv Actuators Topic List: * As actuator we will use a class to interface with the movements through commands. Args: """ rospy.logdebug("Start SawyerEnv INIT...") # Variables that we give through the constructor. # None in this case # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="sawyer_gazebo", launch_file_name="put_sawyer_in_world.launch", ros_ws_abspath=ros_ws_abspath) # Internal Vars # Doesnt have any accesibles self.controllers_list = [] # It doesnt use namespace self.robot_name_space = "" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(SawyerEnv, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=False, start_init_physics_parameters=False, reset_world_or_sim="WORLD") rospy.logdebug("SawyerEnv unpause...") self.gazebo.unpauseSim() # self.controllers_object.reset_controllers() # TODO: Fill it with the sensors self._check_all_systems_ready() rospy.Subscriber("/io/internal_camera/head_camera/image_raw", Image, self._head_camera_image_raw_callback) rospy.Subscriber("/io/internal_camera/right_hand_camera/image_raw", Image, self._right_hand_camera_image_raw_callback) self._setup_tf_listener() self._setup_movement_system() self.gazebo.pauseSim() rospy.logdebug("Finished SawyerEnv INIT...") # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ rospy.logdebug("SawyerEnv check_all_systems_ready...") self._check_all_sensors_ready() rospy.logdebug("END SawyerEnv _check_all_systems_ready...") return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): rospy.logdebug("START ALL SENSORS READY") # TODO: Here go the sensors like cameras and joint states self._check_head_camera_image_raw_ready() self._check_right_hand_camera_image_raw_ready() rospy.logdebug("ALL SENSORS READY") def _check_head_camera_image_raw_ready(self): self.head_camera_image_raw = None rospy.logdebug( "Waiting for /io/internal_camera/head_camera/image_raw to be READY...") while self.head_camera_image_raw is None and not rospy.is_shutdown(): try: self.head_camera_image_raw = rospy.wait_for_message( "/io/internal_camera/head_camera/image_raw", Image, timeout=5.0) rospy.logdebug( "Current /io/internal_camera/head_camera/image_raw READY=>") except: rospy.logerr( "Current /io/internal_camera/head_camera/image_raw not ready yet, retrying for getting head_camera_image_raw") return self.head_camera_image_raw def _check_right_hand_camera_image_raw_ready(self): self.right_hand_camera_image_raw = None rospy.logdebug( "Waiting for /io/internal_camera/right_hand_camera/image_raw to be READY...") while self.right_hand_camera_image_raw is None and not rospy.is_shutdown(): try: self.right_hand_camera_image_raw = rospy.wait_for_message( "/io/internal_camera/right_hand_camera/image_raw", Image, timeout=5.0) rospy.logdebug( "Current /io/internal_camera/right_hand_camera/image_raw READY=>") except: rospy.logerr( "Current /io/internal_camera/right_hand_camera/image_raw not ready yet, retrying for getting right_hand_camera_image_raw") return self.right_hand_camera_image_raw def _head_camera_image_raw_callback(self, data): self.head_camera_image_raw = data def _right_hand_camera_image_raw_callback(self, data): self.right_hand_camera_image_raw = data def _setup_tf_listener(self): """ Set ups the TF listener for getting the transforms you ask for. """ self.listener = tf.TransformListener() def _setup_movement_system(self): """ Setup of the movement system. :return: """ rp = intera_interface.RobotParams() valid_limbs = rp.get_limb_names() if not valid_limbs: rp.log_message(("Cannot detect any limb parameters on this robot. " "Exiting."), "ERROR") return rospy.loginfo("Valid Sawyer Limbs==>"+str(valid_limbs)) print("Getting robot state... ") rs = intera_interface.RobotEnable(CHECK_VERSION) init_state = rs.state().enabled rospy.loginfo("Enabling robot...") rs.enable() self._map_actions_to_movement() def _map_actions_to_movement(self, side="right", joint_delta=0.1): self.limb = intera_interface.Limb(side) try: self.gripper = intera_interface.Gripper(side + '_gripper') except: self.has_gripper = False rospy.loginfo("The electric gripper is not detected on the robot.") else: self.has_gripper = True self.joints = self.limb.joint_names() self.bindings = { self.joints[0]+"_increase": (self.set_j, [self.joints[0], joint_delta], self.joints[0]+" increase"), self.joints[0]+"_decrease": (self.set_j, [self.joints[0], -joint_delta], self.joints[0]+" decrease"), self.joints[1]+"_increase": (self.set_j, [self.joints[1], joint_delta], self.joints[1]+" increase"), self.joints[1]+"_decrease": (self.set_j, [self.joints[1], -joint_delta], self.joints[1]+" decrease"), self.joints[2]+"_increase": (self.set_j, [self.joints[2], joint_delta], self.joints[2]+" increase"), self.joints[2]+"_decrease": (self.set_j, [self.joints[2], -joint_delta], self.joints[2]+" decrease"), self.joints[3]+"_increase": (self.set_j, [self.joints[3], joint_delta], self.joints[3]+" increase"), self.joints[3]+"_decrease": (self.set_j, [self.joints[3], -joint_delta], self.joints[3]+" decrease"), self.joints[4]+"_increase": (self.set_j, [self.joints[4], joint_delta], self.joints[4]+" increase"), self.joints[4]+"_decrease": (self.set_j, [self.joints[4], -joint_delta], self.joints[4]+" decrease"), self.joints[5]+"_increase": (self.set_j, [self.joints[5], joint_delta], self.joints[5]+" increase"), self.joints[5]+"_decrease": (self.set_j, [self.joints[5], -joint_delta], self.joints[5]+" decrease"), self.joints[6]+"_increase": (self.set_j, [self.joints[6], joint_delta], self.joints[6]+" increase"), self.joints[6]+"_decrease": (self.set_j, [self.joints[6], -joint_delta], self.joints[6]+" decrease") } if self.has_gripper: self.bindings.update({ "close": (self.set_g, "close", side+" gripper close"), "open": (self.set_g, "open", side+" gripper open"), "calibrate": (self.set_g, "calibrate", side+" gripper calibrate") }) rospy.loginfo("Controlling joints...") # Methods that the TrainingEnvironment will need to define here as virtual # because they will be used in RobotGazeboEnv GrandParentClass and defined in the # TrainingEnvironment. # ---------------------------- def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() # Methods that the TrainingEnvironment will need. # ---------------------------- def execute_movement(self, action_id): """ It executed the command given through an id. This will move any joint of Sawyer, including the gripper if it has it. :param: action_id: These are the possible action_id values and the action asociated. self.joints[0]+"_increase", self.joints[0]+_decrease, self.joints[1]+"_increase", self.joints[1]+"_decrease", self.joints[2]+"_increase", self.joints[2]+"_decrease", self.joints[3]+"_increase", self.joints[3]+"_decrease", self.joints[4]+"_increase", self.joints[4]+"_decrease", self.joints[5]+"_increase", self.joints[5]+"_decrease", self.joints[6]+"_increase", self.joints[6]+"_decrease", gripper_close, gripper_open, gripper_calibrate """ if action_id in self.bindings: cmd = self.bindings[action_id] if action_id == "gripper_close" or action_id == "gripper_open" or action_id == "gripper_calibrate": cmd[0](cmd[1]) rospy.loginfo("command: %s" % (cmd[2],)) else: # expand binding to something like "self.set_j(right, 'j0', joint_delta)" cmd[0](*cmd[1]) rospy.loginfo("command: %s" % (cmd[2],)) else: rospy.logerr("NOT VALID key binding, it should be one of these: ") for key, val in sorted(self.bindings.items(), key=lambda x: x[1][2]): rospy.logerr(" %s: %s" % (key, val[2])) def set_j(self, joint_name, delta): current_position = self.limb.joint_angle(joint_name) joint_command = {joint_name: current_position + delta} self.limb.set_joint_positions(joint_command) def set_g(self, action): if self.has_gripper: if action == "close": self.gripper.close() elif action == "open": self.gripper.open() elif action == "calibrate": self.gripper.calibrate() def move_joints_to_angle_blocking(self, joint_positions_dict, timeout=15.0, threshold=0.008726646): """ It moves all the joints to the given position and doesnt exit until it reaches that position """ self.limb.move_to_joint_positions(positions=joint_positions_dict, timeout=15.0, threshold=0.008726646, test=None) def get_limb_joint_names_array(self): """ Returns the Joint Names array of the Limb. """ return self.joints def get_all_limb_joint_angles(self): """ Return dictionary dict({str:float}) with all the joints angles """ return self.limb.joint_angles() def get_all_limb_joint_efforts(self): """ Returns a dictionary dict({str:float}) with all the joints efforts """ return self.limb.joint_efforts() def get_tf_start_to_end_frames(self, start_frame_name, end_frame_name): """ Given two frames, it returns the transform from the start_frame_name to the end_frame_name. It will only return something different to None if the TFs of the Two frames are in TF topic published and are connected through the TF tree. :param: start_frame_name: Start Frame of the TF transform end_frame_name: End Frame of the TF transform :return: trans,rot of the transform between the start and end frames. """ start_frame = "/"+start_frame_name end_frame = "/"+end_frame_name trans, rot = None, None while (trans is None or rot is None) and not rospy.is_shutdown(): try: (trans, rot) = self.listener.lookupTransform( start_frame, end_frame, rospy.Time(0)) except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): rospy.logerr("TF start to end not ready YET...") duration_obj = rospy.Duration.from_sec(1.0) rospy.sleep(duration_obj) return trans, rot def check_joint_limits_ready(self): self.joint_limits = None rospy.logdebug("Waiting for /robot/joint_limits to be READY...") while self.joint_limits is None and not rospy.is_shutdown(): try: self.joint_limits = rospy.wait_for_message( "/robot/joint_limits", JointLimits, timeout=3.0) rospy.logdebug("Current /robot/joint_limits READY=>") except: rospy.logerr( "Current /robot/joint_limits not ready yet, retrying for getting joint_limits") return self.joint_limits def get_joint_limits(self): return self.joint_limits def get_head_camera_image_raw(self): return self.head_camera_image_raw def get_right_hand_camera_image_raw(self): return self.right_hand_camera_image_raw def init_joint_limits(self): """ Get the Joint Limits, in the init fase where we need to unpause the simulation to get them :return: joint_limits: The Joint Limits Dictionary, with names, angles, vel and effort limits. """ self.gazebo.unpauseSim() joint_limits = self.check_joint_limits_ready() self.gazebo.pauseSim() return joint_limits
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~competition_rl~scripts~start_training.py
#!/usr/bin/env python from tianshou.policy import PPOPolicy from tianshou.env import SubprocVectorEnv from tianshou.trainer import onpolicy_trainer from tianshou.data import Collector, ReplayBuffer import gym import time import numpy import random import time from gym import wrappers # ROS packages required import rospy import rospkg import multiAgentChallengeTaskEnv # from openai_ros.openai_ros_common import StartOpenAI_ROS_Environment from gym import envs def main(): rospy.init_node('aichallenge_gym_node', anonymous=True, log_level=rospy.WARN) # env = gym.make('AiChallengeEnv-v0', robot_ns="jackal0") env = gym.make('AiChallengeEnv-v1') # env = VectorEnv(env) # Set the logging system rospack = rospkg.RosPack() pkg_path = rospack.get_path('competition_rl') outdir = pkg_path + '/training_results' env = wrappers.Monitor(env, outdir, force=True) rospy.loginfo ( "Monitor Wrapper started") # last_time_steps = numpy.ndarray(0) # Loads parameters from the ROS param server # Parameters are stored in a yaml file inside the config directory # They are loaded at runtime by the launch file # Alpha = rospy.get_param("/moving_cube/alpha") # Initialize the environment and get first state of the robot observation = env.reset() # state = ''.join(map(str, observation)) time.sleep(5) observation = env.reset() time.sleep(2) # env.step(1) # time.sleep(2) # env.step(-1) # time.sleep(2) # observation = env.reset() if __name__ == '__main__': main()
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~task_envs~turtlebot2~turtlebot2_maze.py
import rospy import numpy import time import math from gym import spaces from openai_ros.robot_envs import turtlebot2_env from gym.envs.registration import register from sensor_msgs.msg import LaserScan from std_msgs.msg import Header from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class TurtleBot2MazeEnv(turtlebot2_env.TurtleBot2Env): def __init__(self): """ This Task Env is designed for having the TurtleBot2 in some kind of maze. It will learn how to move around the maze without crashing. """ # This is the path where the simulation files, the Task and the Robot gits will be downloaded if not there # This parameter HAS to be set up in the MAIN launch of the AI RL script ros_ws_abspath = rospy.get_param("/turtlebot2/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path "+ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p "+ros_ws_abspath + \ "/src;cd "+ros_ws_abspath+";catkin_make" ROSLauncher(rospackage_name="gym_construct", launch_file_name="start_maze_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/turtlebot2/config", yaml_file_name="turtlebot2_maze.yaml") # Here we will add any init functions prior to starting the MyRobotEnv super(TurtleBot2MazeEnv, self).__init__(ros_ws_abspath) # Only variable needed to be set here number_actions = rospy.get_param('/turtlebot2/n_actions') self.action_space = spaces.Discrete(number_actions) # We set the reward range, which is not compulsory but here we do it. self.reward_range = (-numpy.inf, numpy.inf) #number_observations = rospy.get_param('/turtlebot2/n_observations') """ We set the Observation space for the 6 observations cube_observations = [ round(current_disk_roll_vel, 0), round(y_distance, 1), round(roll, 1), round(pitch, 1), round(y_linear_speed,1), round(yaw, 1), ] """ # Actions and Observations self.dec_obs = rospy.get_param( "/turtlebot2/number_decimals_precision_obs", 1) self.linear_forward_speed = rospy.get_param( '/turtlebot2/linear_forward_speed') self.linear_turn_speed = rospy.get_param( '/turtlebot2/linear_turn_speed') self.angular_speed = rospy.get_param('/turtlebot2/angular_speed') self.init_linear_forward_speed = rospy.get_param( '/turtlebot2/init_linear_forward_speed') self.init_linear_turn_speed = rospy.get_param( '/turtlebot2/init_linear_turn_speed') self.n_observations = rospy.get_param('/turtlebot2/n_observations') self.min_range = rospy.get_param('/turtlebot2/min_range') self.max_laser_value = rospy.get_param('/turtlebot2/max_laser_value') self.min_laser_value = rospy.get_param('/turtlebot2/min_laser_value') # We create two arrays based on the binary values that will be assigned # In the discretization method. #laser_scan = self._check_laser_scan_ready() laser_scan = self.get_laser_scan() rospy.logdebug("laser_scan len===>"+str(len(laser_scan.ranges))) # Laser data self.laser_scan_frame = laser_scan.header.frame_id # Number of laser reading jumped self.new_ranges = int( math.ceil(float(len(laser_scan.ranges)) / float(self.n_observations))) rospy.logdebug("n_observations===>"+str(self.n_observations)) rospy.logdebug( "new_ranges, jumping laser readings===>"+str(self.new_ranges)) high = numpy.full((self.n_observations), self.max_laser_value) low = numpy.full((self.n_observations), self.min_laser_value) # We only use two integers self.observation_space = spaces.Box(low, high) rospy.logdebug("ACTION SPACES TYPE===>"+str(self.action_space)) rospy.logdebug("OBSERVATION SPACES TYPE===>" + str(self.observation_space)) # Rewards self.forwards_reward = rospy.get_param("/turtlebot2/forwards_reward") self.turn_reward = rospy.get_param("/turtlebot2/turn_reward") self.end_episode_points = rospy.get_param( "/turtlebot2/end_episode_points") self.cumulated_steps = 0.0 self.laser_filtered_pub = rospy.Publisher( '/turtlebot2/laser/scan_filtered', LaserScan, queue_size=1) def _set_init_pose(self): """Sets the Robot in its init pose """ self.move_base(self.init_linear_forward_speed, self.init_linear_turn_speed, epsilon=0.05, update_rate=10, min_laser_distance=-1) return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ # For Info Purposes self.cumulated_reward = 0.0 # Set to false Done, because its calculated asyncronously self._episode_done = False # We wait a small ammount of time to start everything because in very fast resets, laser scan values are sluggish # and sometimes still have values from the prior position that triguered the done. time.sleep(1.0) # TODO: Add reset of published filtered laser readings laser_scan = self.get_laser_scan() discretized_ranges = laser_scan.ranges self.publish_filtered_laser_scan(laser_original_data=laser_scan, new_filtered_laser_range=discretized_ranges) def _set_action(self, action): """ This set action will Set the linear and angular speed of the turtlebot2 based on the action number given. :param action: The action integer that set s what movement to do next. """ rospy.logdebug("Start Set Action ==>"+str(action)) # We convert the actions to speed movements to send to the parent class CubeSingleDiskEnv if action == 0: # FORWARD linear_speed = self.linear_forward_speed angular_speed = 0.0 self.last_action = "FORWARDS" elif action == 1: # LEFT linear_speed = self.linear_turn_speed angular_speed = self.angular_speed self.last_action = "TURN_LEFT" elif action == 2: # RIGHT linear_speed = self.linear_turn_speed angular_speed = -1*self.angular_speed self.last_action = "TURN_RIGHT" # We tell TurtleBot2 the linear and angular speed to set to execute self.move_base(linear_speed, angular_speed, epsilon=0.05, update_rate=10, min_laser_distance=self.min_range) rospy.logdebug("END Set Action ==>"+str(action) + ", NAME="+str(self.last_action)) def _get_obs(self): """ Here we define what sensor data defines our robots observations To know which Variables we have acces to, we need to read the TurtleBot2Env API DOCS :return: """ rospy.logdebug("Start Get Observation ==>") # We get the laser scan data laser_scan = self.get_laser_scan() rospy.logdebug("BEFORE DISCRET _episode_done==>" + str(self._episode_done)) discretized_observations = self.discretize_observation(laser_scan, self.new_ranges ) rospy.logdebug("Observations==>"+str(discretized_observations)) rospy.logdebug("AFTER DISCRET_episode_done==>"+str(self._episode_done)) rospy.logdebug("END Get Observation ==>") return discretized_observations def _is_done(self, observations): if self._episode_done: rospy.logdebug("TurtleBot2 is Too Close to wall==>" + str(self._episode_done)) else: rospy.logerr("TurtleBot2 is Ok ==>") return self._episode_done def _compute_reward(self, observations, done): if not done: if self.last_action == "FORWARDS": reward = self.forwards_reward else: reward = self.turn_reward else: reward = -1*self.end_episode_points rospy.logdebug("reward=" + str(reward)) self.cumulated_reward += reward rospy.logdebug("Cumulated_reward=" + str(self.cumulated_reward)) self.cumulated_steps += 1 rospy.logdebug("Cumulated_steps=" + str(self.cumulated_steps)) return reward # Internal TaskEnv Methods def discretize_observation(self, data, new_ranges): """ Discards all the laser readings that are not multiple in index of new_ranges value. """ self._episode_done = False discretized_ranges = [] filtered_range = [] #mod = len(data.ranges)/new_ranges mod = new_ranges max_laser_value = data.range_max min_laser_value = data.range_min rospy.logdebug("data=" + str(data)) rospy.logwarn("mod=" + str(mod)) for i, item in enumerate(data.ranges): if (i % mod == 0): if item == float('Inf') or numpy.isinf(item): # discretized_ranges.append(self.max_laser_value) discretized_ranges.append( round(max_laser_value, self.dec_obs)) elif numpy.isnan(item): # discretized_ranges.append(self.min_laser_value) discretized_ranges.append( round(min_laser_value, self.dec_obs)) else: # discretized_ranges.append(int(item)) discretized_ranges.append(round(item, self.dec_obs)) if (self.min_range > item > 0): rospy.logerr("done Validation >>> item=" + str(item)+"< "+str(self.min_range)) self._episode_done = True else: rospy.logwarn("NOT done Validation >>> item=" + str(item)+"< "+str(self.min_range)) # We add last value appended filtered_range.append(discretized_ranges[-1]) else: # We add value zero filtered_range.append(0.1) rospy.logdebug( "Size of observations, discretized_ranges==>"+str(len(discretized_ranges))) self.publish_filtered_laser_scan(laser_original_data=data, new_filtered_laser_range=discretized_ranges) return discretized_ranges def publish_filtered_laser_scan(self, laser_original_data, new_filtered_laser_range): rospy.logdebug("new_filtered_laser_range==>" + str(new_filtered_laser_range)) laser_filtered_object = LaserScan() h = Header() # Note you need to call rospy.init_node() before this will work h.stamp = rospy.Time.now() h.frame_id = laser_original_data.header.frame_id laser_filtered_object.header = h laser_filtered_object.angle_min = laser_original_data.angle_min laser_filtered_object.angle_max = laser_original_data.angle_max new_angle_incr = abs(laser_original_data.angle_max - laser_original_data.angle_min) / len(new_filtered_laser_range) #laser_filtered_object.angle_increment = laser_original_data.angle_increment laser_filtered_object.angle_increment = new_angle_incr laser_filtered_object.time_increment = laser_original_data.time_increment laser_filtered_object.scan_time = laser_original_data.scan_time laser_filtered_object.range_min = laser_original_data.range_min laser_filtered_object.range_max = laser_original_data.range_max laser_filtered_object.ranges = [] laser_filtered_object.intensities = [] for item in new_filtered_laser_range: if item == 0.0: laser_distance = 0.1 else: laser_distance = item laser_filtered_object.ranges.append(laser_distance) laser_filtered_object.intensities.append(item) self.laser_filtered_pub.publish(laser_filtered_object)
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~robot_envs~fetchsimple_env.py
import numpy as np import rospy from std_msgs.msg import Float64 from sensor_msgs.msg import JointState from openai_ros import robot_gazebo_env from openai_ros.openai_ros_common import ROSLauncher class FetchSimpleEnv(robot_gazebo_env.RobotGazeboEnv): def __init__(self, ros_ws_abspath): rospy.logdebug("Entered Fetch Env") # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="fetch_simple_description", launch_file_name="put_fetchsimple_in_world.launch", ros_ws_abspath=ros_ws_abspath) self.controllers_list = ["joint_state_controller", "torso_lift_joint_position_controller", "bellows_joint_position_controller", "head_pan_joint_position_controller", "head_tilt_joint_position_controller", "shoulder_pan_joint_position_controller", "shoulder_lift_joint_position_controller", "upperarm_roll_joint_position_controller", "elbow_flex_joint_position_controller", "forearm_roll_joint_position_controller", "wrist_flex_joint_position_controller", "wrist_roll_joint_position_controller", "r_gripper_finger_joint_position_controller", "l_gripper_finger_joint_position_controller"] self.robot_name_space = "fetch" self.reset_controls = True super(FetchSimpleEnv, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=self.reset_controls, start_init_physics_parameters=False, reset_world_or_sim="WORLD") # We Start all the ROS related Subscribers and publishers self.JOINT_STATES_SUBSCRIBER = '/fetch/joint_states' self.join_names = ["joint0", "joint1", "joint2", "joint3", "joint4", "joint5", "joint6"] self.gazebo.unpauseSim() # Start Move Fetch Object, that checks all systems are ready self.move_fetch_object = FetchSimpleMove() # Wait until Fetch goes to the init pose self.move_fetch_object.init_position() # We pause until the next step self.gazebo.pauseSim() # RobotGazeboEnv virtual methods # ---------------------------- def move_to_init_pose(self): self.move_fetch_object.init_position() def get_joint_limits(self): return self.move_fetch_object.joint_upper_limits, self.move_fetch_object.joint_lower_limits def get_joints_position(self): return self.move_fetch_object.get_current_joints_position() def set_trajectory_joints(self, delta_joints_array): self.move_fetch_object.delta_joints(delta_joints_array) return True # ParticularEnv methods # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ self.move_fetch_object.check_all_systems_ready() return True def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() class FetchSimpleMove(object): def __init__(self): rospy.loginfo("Initialising...") self.name_joints = ["bellows_joint", "elbow_flex_joint", "forearm_roll_joint", "head_pan_joint", "head_tilt_joint", "l_gripper_finger_joint", "r_gripper_finger_joint", "shoulder_lift_joint", "shoulder_pan_joint", "torso_lift_joint", "upperarm_roll_joint", "wrist_flex_joint", "wrist_roll_joint"] self.joint_upper_limits = [0.4, 2.251, 6.27, # Was none but placed a limit 1.57, 1.45, 0.05, 0.05, 1.518, 1.6056, 0.38615, 6.27, # Was none but placed a limit 2.16, 6.27, # Was none but placed a limit ] self.joint_lower_limits = [0.0, -2.251, 0.0, # Was none but placed a limit -1.57, -0.76, 0.0, 0.0, -1.221, -1.6056, 0.0, 0.0, # Was none but placed a limit -2.16, 0.0, # Was none but placed a limit ] self.travel_arm_pose = [0.0, -1.8, # elbow_flex_joint 0.0, # forearm_roll_joint 0.0, 0.0, 0.05, 0.04, 0.7, # shoulder_lift_joint 1.32, # shoulder_pan_joint 0.0, # upperarm_roll_joint 0.0, -0.4, # wrist_flex_joint 0.1] self.joint_array = len(self.name_joints)*[0.0] self.pub_position_array = [] for joint in self.name_joints: topic_name = "/fetch/"+joint+"_position_controller/command" self.pub_position_array.append( rospy.Publisher(topic_name, Float64, queue_size=1)) # Wait for publishers to be ready self.check_all_systems_ready() rospy.Subscriber("/fetch/joint_states", JointState, self.join_state_callback) def check_all_systems_ready(self): self.wait_publishers_to_be_ready() self._check_joint_states_ready() def _check_joint_states_ready(self): self.joints_state = None while self.joints_state is None and not rospy.is_shutdown(): try: self.joints_state = rospy.wait_for_message( "/fetch/joint_states", JointState, timeout=1.0) rospy.logdebug( "Current /fetch/joint_states READY=>" + str(self.joints_state)) except: rospy.logerr( "Current /fetch/joint_states not ready yet, retrying for getting joint_states") return self.joints_state def join_state_callback(self, msg): self.joints_state = msg def get_current_joints_position(self): return self.joints_state.position def init_position(self): # We wait what it takes to reset pose self.move_all_joints(joints_pos_array=self.joint_array, time_out=0.0) def set_travel_arm_pose(self): self.move_all_joints(joints_pos_array=self.travel_arm_pose) def wait_for_joints_to_get_there(self, desired_pos_array, error=0.2, timeout=3.0): time_waiting = 0.0 frequency = 10.0 are_equal = False is_timeout = False rate = rospy.Rate(frequency) rospy.logwarn("Waiting for joint to get to the position") while not are_equal and not is_timeout and not rospy.is_shutdown(): current_pos = [self.joints_state.position] are_equal = np.allclose(a=current_pos, b=desired_pos_array, atol=error) rospy.logdebug("are_equal="+str(are_equal)) rospy.logdebug(str(desired_pos_array)) rospy.logdebug(str(current_pos)) rate.sleep() if timeout == 0.0: # We wait what it takes time_waiting += 0.0 else: time_waiting += 1.0 / frequency is_timeout = time_waiting > timeout rospy.logwarn( "Joints are in the desired position with an erro of "+str(error)) def wait_publishers_to_be_ready(self): rate_wait = rospy.Rate(10) rospy.logdebug("Waiting for Publishers to be ready...") i = 0 for publisher_obj in self.pub_position_array: publisher_ready = False while not publisher_ready: connection_num = publisher_obj.get_num_connections() publisher_ready = connection_num > 0 rospy.logdebug("Pub joint NOT Ready=" + str(self.name_joints[i])) rate_wait.sleep() rospy.logdebug("Publisher for joint Ready=" + str(self.name_joints[i])) i += 1 def move_all_joints(self, joints_pos_array, time_out=3.0, error=0.2): assert len(joints_pos_array) == len( self.joint_array), "Lengths dont match" i = 0 for angle in joints_pos_array: angle_msg = Float64() angle_msg.data = angle # Publish Joint Position self.pub_position_array[i].publish(angle_msg) i += 1 self.wait_for_joints_to_get_there(self.joint_array, error=error, timeout=time_out) self.update_joints(new_joints_pos=joints_pos_array) def update_joints(self, new_joints_pos): i = 0 assert len(new_joints_pos) == len( self.joint_array), "Lengths don't match in Update" for new_joint_value in new_joints_pos: upper = self.joint_upper_limits[i] lower = self.joint_lower_limits[i] if upper is None or lower is None: self.joint_array[i] = new_joint_value else: if upper >= new_joint_value >= lower: self.joint_array[i] = new_joint_value elif new_joint_value < lower: self.joint_array[i] = lower else: self.joint_array[i] = upper rospy.logdebug("index =" + str(i)) rospy.logdebug("length of name_joints =" + str(len(self.name_joints[i]))) rospy.logdebug("name_joints=" + str(self.name_joints[i])) i += 1 def delta_joints(self, delta_array): """ delta_array = [bellows_joint, elbow_flex_joint, forearm_roll_joint, head_pan_joint, head_tilt_joint, l_gripper_finger_joint, r_gripper_finger_joint, shoulder_lift_joint, shoulder_pan_joint, torso_lift_joint, upperarm_roll_joint, wrist_flex_joint, wrist_roll_joint] :param delta_array: :return: """ new_pos_array = len(delta_array)*[0.0] i = 0 for delta in delta_array: new_pos_array[i] = self.joint_array[i] + delta i += 1 self.move_all_joints(new_pos_array) def get_current_angles(self): return self.joint_array
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~task_envs~wamv~wamv_nav_twosets_buoys.py
import rospy import numpy from gym import spaces from openai_ros.robot_envs import wamv_env from gym.envs.registration import register from geometry_msgs.msg import Point from geometry_msgs.msg import Vector3 from tf.transformations import euler_from_quaternion from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class WamvNavTwoSetsBuoysEnv(wamv_env.WamvEnv): def __init__(self): """ Make Wamv learn how to move straight from The starting point to a desired point inside the designed corridor. http://robotx.org/images/files/RobotX_2018_Task_Summary.pdf Demonstrate Navigation Control """ # This is the path where the simulation files, the Task and the Robot gits will be downloaded if not there ros_ws_abspath = rospy.get_param("/wamv/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="robotx_gazebo", launch_file_name="start_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/wamv/config", yaml_file_name="wamv_nav_twosets_buoys.yaml") # Here we will add any init functions prior to starting the MyRobotEnv super(WamvNavTwoSetsBuoysEnv, self).__init__(ros_ws_abspath) # Only variable needed to be set here rospy.logdebug("Start WamvNavTwoSetsBuoysEnv INIT...") number_actions = rospy.get_param('/wamv/n_actions') self.action_space = spaces.Discrete(number_actions) # We set the reward range, which is not compulsory but here we do it. self.reward_range = (-numpy.inf, numpy.inf) # Actions and Observations self.propeller_high_speed = rospy.get_param('/wamv/propeller_high_speed') self.propeller_low_speed = rospy.get_param('/wamv/propeller_low_speed') self.max_angular_speed = rospy.get_param('/wamv/max_angular_speed') self.max_distance_from_des_point = rospy.get_param('/wamv/max_distance_from_des_point') # Get Desired Point to Get self.desired_point = Point() self.desired_point.x = rospy.get_param("/wamv/desired_point/x") self.desired_point.y = rospy.get_param("/wamv/desired_point/y") self.desired_point.z = rospy.get_param("/wamv/desired_point/z") self.desired_point_epsilon = rospy.get_param("/wamv/desired_point_epsilon") self.work_space_x_max = rospy.get_param("/wamv/work_space/x_max") self.work_space_x_min = rospy.get_param("/wamv/work_space/x_min") self.work_space_y_max = rospy.get_param("/wamv/work_space/y_max") self.work_space_y_min = rospy.get_param("/wamv/work_space/y_min") self.dec_obs = rospy.get_param("/wamv/number_decimals_precision_obs") # We place the Maximum and minimum values of observations high = numpy.array([self.work_space_x_max, self.work_space_y_max, 1.57, 1.57, 3.14, self.propeller_high_speed, self.propeller_high_speed, self.max_angular_speed, self.max_distance_from_des_point ]) low = numpy.array([ self.work_space_x_min, self.work_space_y_min, -1*1.57, -1*1.57, -1*3.14, -1*self.propeller_high_speed, -1*self.propeller_high_speed, -1*self.max_angular_speed, 0.0 ]) self.observation_space = spaces.Box(low, high) rospy.logdebug("ACTION SPACES TYPE===>"+str(self.action_space)) rospy.logdebug("OBSERVATION SPACES TYPE===>"+str(self.observation_space)) # Rewards self.done_reward =rospy.get_param("/wamv/done_reward") self.closer_to_point_reward = rospy.get_param("/wamv/closer_to_point_reward") self.cumulated_steps = 0.0 rospy.logdebug("END WamvNavTwoSetsBuoysEnv INIT...") def _set_init_pose(self): """ Sets the two proppelers speed to 0.0 and waits for the time_sleep to allow the action to be executed """ right_propeller_speed = 0.0 left_propeller_speed = 0.0 self.set_propellers_speed( right_propeller_speed, left_propeller_speed, time_sleep=1.0) return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ # For Info Purposes self.cumulated_reward = 0.0 # We get the initial pose to mesure the distance from the desired point. odom = self.get_odom() current_position = Vector3() current_position.x = odom.pose.pose.position.x current_position.y = odom.pose.pose.position.y self.previous_distance_from_des_point = self.get_distance_from_desired_point(current_position) def _set_action(self, action): """ It sets the joints of wamv based on the action integer given based on the action number given. :param action: The action integer that sets what movement to do next. """ rospy.logdebug("Start Set Action ==>"+str(action)) right_propeller_speed = 0.0 left_propeller_speed = 0.0 if action == 0: # Go Forwards right_propeller_speed = self.propeller_high_speed left_propeller_speed = self.propeller_high_speed elif action == 1: # Go BackWards right_propeller_speed = -1*self.propeller_high_speed left_propeller_speed = -1*self.propeller_high_speed elif action == 2: # Turn Left right_propeller_speed = self.propeller_high_speed left_propeller_speed = -1*self.propeller_high_speed elif action == 3: # Turn Right right_propeller_speed = -1*self.propeller_high_speed left_propeller_speed = self.propeller_high_speed # We tell wamv the propeller speeds self.set_propellers_speed( right_propeller_speed, left_propeller_speed, time_sleep=1.0) rospy.logdebug("END Set Action ==>"+str(action)) def _get_obs(self): """ Here we define what sensor data defines our robots observations To know which Variables we have access to, we need to read the WamvEnv API DOCS. :return: observation """ rospy.logdebug("Start Get Observation ==>") odom = self.get_odom() base_position = odom.pose.pose.position base_orientation_quat = odom.pose.pose.orientation base_roll, base_pitch, base_yaw = self.get_orientation_euler(base_orientation_quat) base_speed_linear = odom.twist.twist.linear base_speed_angular_yaw = odom.twist.twist.angular.z distance_from_desired_point = self.get_distance_from_desired_point(base_position) observation = [] observation.append(round(base_position.x,self.dec_obs)) observation.append(round(base_position.y,self.dec_obs)) observation.append(round(base_roll,self.dec_obs)) observation.append(round(base_pitch,self.dec_obs)) observation.append(round(base_yaw,self.dec_obs)) observation.append(round(base_speed_linear.x,self.dec_obs)) observation.append(round(base_speed_linear.y,self.dec_obs)) observation.append(round(base_speed_angular_yaw,self.dec_obs)) observation.append(round(distance_from_desired_point,self.dec_obs)) return observation def _is_done(self, observations): """ We consider the episode done if: 1) The wamvs is ouside the workspace 2) It got to the desired point """ distance_from_desired_point = observations[8] current_position = Vector3() current_position.x = observations[0] current_position.y = observations[1] is_inside_corridor = self.is_inside_workspace(current_position) has_reached_des_point = self.is_in_desired_position(current_position, self.desired_point_epsilon) done = not(is_inside_corridor) or has_reached_des_point return done def _compute_reward(self, observations, done): """ We Base the rewards in if its done or not and we base it on if the distance to the desired point has increased or not :return: """ # We only consider the plane, the fluctuation in z is due mainly to wave current_position = Point() current_position.x = observations[0] current_position.y = observations[1] distance_from_des_point = self.get_distance_from_desired_point(current_position) distance_difference = distance_from_des_point - self.previous_distance_from_des_point if not done: # If there has been a decrease in the distance to the desired point, we reward it if distance_difference < 0.0: rospy.logwarn("DECREASE IN DISTANCE GOOD") reward = self.closer_to_point_reward else: rospy.logerr("ENCREASE IN DISTANCE BAD") reward = -1*self.closer_to_point_reward else: if self.is_in_desired_position(current_position, self.desired_point_epsilon): reward = self.done_reward else: reward = -1*self.done_reward self.previous_distance_from_des_point = distance_from_des_point rospy.logdebug("reward=" + str(reward)) self.cumulated_reward += reward rospy.logdebug("Cumulated_reward=" + str(self.cumulated_reward)) self.cumulated_steps += 1 rospy.logdebug("Cumulated_steps=" + str(self.cumulated_steps)) return reward # Internal TaskEnv Methods def is_in_desired_position(self,current_position, epsilon=0.05): """ It return True if the current position is similar to the desired poistion """ is_in_desired_pos = False x_pos_plus = self.desired_point.x + epsilon x_pos_minus = self.desired_point.x - epsilon y_pos_plus = self.desired_point.y + epsilon y_pos_minus = self.desired_point.y - epsilon x_current = current_position.x y_current = current_position.y x_pos_are_close = (x_current <= x_pos_plus) and (x_current > x_pos_minus) y_pos_are_close = (y_current <= y_pos_plus) and (y_current > y_pos_minus) is_in_desired_pos = x_pos_are_close and y_pos_are_close rospy.logdebug("###### IS DESIRED POS ? ######") rospy.logdebug("current_position"+str(current_position)) rospy.logdebug("x_pos_plus"+str(x_pos_plus)+",x_pos_minus="+str(x_pos_minus)) rospy.logdebug("y_pos_plus"+str(y_pos_plus)+",y_pos_minus="+str(y_pos_minus)) rospy.logdebug("x_pos_are_close"+str(x_pos_are_close)) rospy.logdebug("y_pos_are_close"+str(y_pos_are_close)) rospy.logdebug("is_in_desired_pos"+str(is_in_desired_pos)) rospy.logdebug("############") return is_in_desired_pos def get_distance_from_desired_point(self, current_position): """ Calculates the distance from the current position to the desired point :param start_point: :return: """ distance = self.get_distance_from_point(current_position, self.desired_point) return distance def get_distance_from_point(self, pstart, p_end): """ Given a Vector3 Object, get distance from current position :param p_end: :return: """ a = numpy.array((pstart.x, pstart.y, pstart.z)) b = numpy.array((p_end.x, p_end.y, p_end.z)) distance = numpy.linalg.norm(a - b) return distance def get_orientation_euler(self, quaternion_vector): # We convert from quaternions to euler orientation_list = [quaternion_vector.x, quaternion_vector.y, quaternion_vector.z, quaternion_vector.w] roll, pitch, yaw = euler_from_quaternion(orientation_list) return roll, pitch, yaw def is_inside_workspace(self,current_position): """ Check if the Wamv is inside the Workspace defined """ is_inside = False rospy.logwarn("##### INSIDE WORK SPACE? #######") rospy.logwarn("XYZ current_position"+str(current_position)) rospy.logwarn("work_space_x_max"+str(self.work_space_x_max)+",work_space_x_min="+str(self.work_space_x_min)) rospy.logwarn("work_space_y_max"+str(self.work_space_y_max)+",work_space_y_min="+str(self.work_space_y_min)) rospy.logwarn("############") if current_position.x > self.work_space_x_min and current_position.x <= self.work_space_x_max: if current_position.y > self.work_space_y_min and current_position.y <= self.work_space_y_max: is_inside = True return is_inside
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~task_envs~husarion~husarion_get_to_position_turtlebot_playground.py
import rospy import numpy from gym import spaces from openai_ros.robot_envs import husarion_env from geometry_msgs.msg import Vector3 from geometry_msgs.msg import Point from tf.transformations import euler_from_quaternion from sensor_msgs.msg import LaserScan from std_msgs.msg import Header from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class HusarionGetToPosTurtleBotPlayGroundEnv(husarion_env.HusarionEnv): def __init__(self): """ This Task Env is designed for having the husarion in the husarion world closed room with columns. It will learn how to move around without crashing. """ # Launch the Task Simulated-Environment # This is the path where the simulation files, the Task and the Robot gits will be downloaded if not there ros_ws_abspath = rospy.get_param("/husarion/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="rosbot_gazebo", launch_file_name="start_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/husarion/config", yaml_file_name="husarion_get_to_position_turtlebot_playground.yaml") # Only variable needed to be set here number_actions = rospy.get_param('/husarion/n_actions') self.action_space = spaces.Discrete(number_actions) # We set the reward range, which is not compulsory but here we do it. self.reward_range = (-numpy.inf, numpy.inf) # Actions and Observations self.init_linear_forward_speed = rospy.get_param( '/husarion/init_linear_forward_speed') self.init_linear_turn_speed = rospy.get_param( '/husarion/init_linear_turn_speed') self.linear_forward_speed = rospy.get_param( '/husarion/linear_forward_speed') self.linear_turn_speed = rospy.get_param('/husarion/linear_turn_speed') self.angular_speed = rospy.get_param('/husarion/angular_speed') self.new_ranges = rospy.get_param('/husarion/new_ranges') self.max_laser_value = rospy.get_param('/husarion/max_laser_value') self.min_laser_value = rospy.get_param('/husarion/min_laser_value') self.work_space_x_max = rospy.get_param("/husarion/work_space/x_max") self.work_space_x_min = rospy.get_param("/husarion/work_space/x_min") self.work_space_y_max = rospy.get_param("/husarion/work_space/y_max") self.work_space_y_min = rospy.get_param("/husarion/work_space/y_min") # Get Desired Point to Get self.desired_position = Point() self.desired_position.x = rospy.get_param("/husarion/desired_pose/x") self.desired_position.y = rospy.get_param("/husarion/desired_pose/y") self.precision = rospy.get_param('/husarion/precision') self.precision_epsilon = 1.0 / (10.0 * self.precision) self.move_base_precision = rospy.get_param( '/husarion/move_base_precision') # We create the arrays for the laser readings # We also create the arrays for the odometry readings # We join them toeguether. # Here we will add any init functions prior to starting the MyRobotEnv super(HusarionGetToPosTurtleBotPlayGroundEnv, self).__init__(ros_ws_abspath) laser_scan = self._check_laser_scan_ready() num_laser_readings = len(laser_scan.ranges)/self.new_ranges high_laser = numpy.full((num_laser_readings), self.max_laser_value) low_laser = numpy.full((num_laser_readings), self.min_laser_value) # We place the Maximum and minimum values of the X,Y and YAW of the odometry # The odometry yaw can be any value in the circunference. high_odometry = numpy.array([self.work_space_x_max, self.work_space_y_max, 3.14]) low_odometry = numpy.array([self.work_space_x_min, self.work_space_y_min, -1*3.14]) # Now we fetch the max and min of the Desired Position in 2D XY # We use the exact same as the workspace, just because make no sense # Consider points outside the workspace high_des_pos = numpy.array([self.work_space_x_max, self.work_space_y_max ]) low_des_pos = numpy.array([self.work_space_x_min, self.work_space_y_min ]) # We join both arrays high = numpy.concatenate([high_laser, high_odometry, high_des_pos]) low = numpy.concatenate([low_laser, low_odometry, low_des_pos]) self.observation_space = spaces.Box(low, high) rospy.logdebug("ACTION SPACES TYPE===>"+str(self.action_space)) rospy.logdebug("OBSERVATION SPACES TYPE===>" + str(self.observation_space)) # Rewards self.closer_to_point_reward = rospy.get_param( "/husarion/closer_to_point_reward") self.alive_reward = rospy.get_param("/husarion/alive_reward") self.end_episode_points = rospy.get_param( "/husarion/end_episode_points") self.cumulated_steps = 0.0 self.laser_filtered_pub = rospy.Publisher( '/rosbot/laser/scan_filtered', LaserScan, queue_size=1) def _set_init_pose(self): """Sets the Robot in its init pose """ self.move_base(self.init_linear_forward_speed, self.init_linear_turn_speed, epsilon=self.move_base_precision, update_rate=10) return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ # For Info Purposes self.cumulated_reward = 0.0 self.index = 0 odometry = self.get_odom() self.previous_distance_from_des_point = self.get_distance_from_desired_point( odometry.pose.pose.position, self.desired_position) def _set_action(self, action): """ This set action will Set the linear and angular speed of the SumitXl based on the action number given. :param action: The action integer that set s what movement to do next. """ rospy.logdebug("Start Set Action ==>"+str(action)) # We convert the actions to speed movements to send to the parent class CubeSingleDiskEnv if action == 0: # FORWARD linear_speed = self.linear_forward_speed angular_speed = 0.0 last_action = "FORWARDS" elif action == 1: # LEFT linear_speed = self.linear_turn_speed angular_speed = self.angular_speed last_action = "TURN_LEFT" elif action == 2: # RIGHT linear_speed = self.linear_turn_speed angular_speed = -1*self.angular_speed last_action = "TURN_RIGHT" elif action == 3: # BACKWARDS linear_speed = self.linear_forward_speed angular_speed = 0.0 last_action = "BACKWARDS" # We tell Husarion the linear and angular speed to set to execute self.move_base(linear_speed, angular_speed, epsilon=self.move_base_precision, update_rate=10) rospy.logdebug("END Set Action ==>"+str(action) + ", ACTION="+str(last_action)) def _get_obs(self): """ Here we define what sensor data defines our robots observations To know which Variables we have acces to, we need to read the HusarionEnv API DOCS :return: """ rospy.logdebug("Start Get Observation ==>") # We get the laser scan data laser_scan = self.get_laser_scan() discretized_laser_scan = self.discretize_scan_observation(laser_scan, self.new_ranges ) # We get the odometry so that SumitXL knows where it is. odometry = self.get_odom() x_position = odometry.pose.pose.position.x y_position = odometry.pose.pose.position.y # We get the orientation of the cube in RPY roll, pitch, yaw = self.get_orientation_euler() # We round to only two decimals to avoid very big Observation space # We only want the X and Y position and the Yaw odometry_array = [round(x_position, 1), round(y_position, 1), round(yaw, 1)] # We fetch also the desired position because it conditions the learning # It also make it dynamic, because we can change the desired position and the # learning will be able to adapt. desired_position = [round(self.desired_position.x, 1), round(self.desired_position.y, 1)] # We concatenate all the lists. observations = discretized_laser_scan + odometry_array + desired_position rospy.logwarn("Observations==>"+str(observations)) rospy.logwarn("END Get Observation ==>") return observations def _is_done(self, observations): """ We consider that the episode has finished when: 1) Husarion has moved ouside the workspace defined. 2) Husarion is too close to an object 3) Husarion has reached the desired position """ # We fetch data through the observations # Its all the array except from the last four elements, which are XY odom and XY des_pos laser_readings = observations[:-5] current_position = Point() current_position.x = observations[-5] current_position.y = observations[-4] current_position.z = 0.0 desired_position = Point() desired_position.x = observations[-2] desired_position.y = observations[-1] desired_position.z = 0.0 rospy.logwarn("is DONE? laser_readings=" + str(laser_readings)) rospy.logwarn("is DONE? current_position=" + str(current_position)) rospy.logwarn("is DONE? desired_position=" + str(desired_position)) too_close_to_object = self.check_husarion_has_crashed(laser_readings) inside_workspace = self.check_inside_workspace(current_position) reached_des_pos = self.check_reached_desired_position(current_position, desired_position, self.precision_epsilon) is_done = too_close_to_object or not( inside_workspace) or reached_des_pos rospy.logwarn("####################") rospy.logwarn("too_close_to_object=" + str(too_close_to_object)) rospy.logwarn("inside_workspace=" + str(inside_workspace)) rospy.logwarn("reached_des_pos=" + str(reached_des_pos)) rospy.logwarn("is_done=" + str(is_done)) rospy.logwarn("######## END DONE ##") return is_done def _compute_reward(self, observations, done): """ We will reward the following behaviours: 1) The distance to the desired point has increase from last step 2) The robot has reached the desired point We will penalise the following behaviours: 1) Ending the episode without reaching the desired pos. That means it has crashed or it has gone outside the workspace """ laser_readings = observations[:-5] current_position = Point() current_position.x = observations[-5] current_position.y = observations[-4] current_position.z = 0.0 desired_position = Point() desired_position.x = observations[-2] desired_position.y = observations[-1] desired_position.z = 0.0 distance_from_des_point = self.get_distance_from_desired_point( current_position, desired_position) distance_difference = distance_from_des_point - \ self.previous_distance_from_des_point rospy.logwarn("current_position=" + str(current_position)) rospy.logwarn("desired_point=" + str(desired_position)) rospy.logwarn("total_distance_from_des_point=" + str(self.previous_distance_from_des_point)) rospy.logwarn("distance_from_des_point=" + str(distance_from_des_point)) rospy.logwarn("distance_difference=" + str(distance_difference)) if not done: # If there has been a decrease in the distance to the desired point, we reward it if distance_difference < 0.0: rospy.logwarn("DECREASE IN DISTANCE GOOD") reward = self.closer_to_point_reward else: reward = self.alive_reward else: reached_des_pos = self.check_reached_desired_position(current_position, desired_position, self.precision_epsilon) if reached_des_pos: reward = self.end_episode_points rospy.logwarn( "GOT TO DESIRED POINT ; DONE, reward=" + str(reward)) else: reward = -1*self.end_episode_points rospy.logerr( "SOMETHING WENT WRONG ; DONE, reward=" + str(reward)) self.previous_distance_from_des_point = distance_from_des_point rospy.logwarn("reward=" + str(reward)) self.cumulated_reward += reward rospy.logdebug("Cumulated_reward=" + str(self.cumulated_reward)) self.cumulated_steps += 1 rospy.logdebug("Cumulated_steps=" + str(self.cumulated_steps)) return reward # Internal TaskEnv Methods def update_desired_pos(self, new_position): """ With this method you can change the desired position that you want Usarion to be that initialy is set through rosparams loaded through a yaml file possibly. :new_position: Type Point, because we only value the position. """ self.desired_position.x = new_position.x self.desired_position.y = new_position.y def discretize_scan_observation(self, data, new_ranges): """ Discards all the laser readings that are not multiple in index of new_ranges value. """ discretized_ranges = [] mod = len(data.ranges)/new_ranges filtered_range = [] rospy.logdebug("data=" + str(data)) rospy.logdebug("new_ranges=" + str(new_ranges)) rospy.logdebug("mod=" + str(mod)) nan_value = (self.min_laser_value + self.min_laser_value) / 2.0 for i, item in enumerate(data.ranges): if (i % mod == 0): if item == float('Inf') or numpy.isinf(item): rospy.logerr("Infinite Value=" + str(item) + "Assigning Max value") discretized_ranges.append(self.max_laser_value) elif numpy.isnan(item): rospy.logerr("Nan Value=" + str(item) + "Assigning MIN value") discretized_ranges.append(self.min_laser_value) else: # We clamp the laser readings if item > self.max_laser_value: rospy.logwarn("Item Bigger Than MAX, CLAMPING=>" + str(item)+", MAX="+str(self.max_laser_value)) discretized_ranges.append( round(self.max_laser_value, 1)) elif item < self.min_laser_value: rospy.logwarn("Item smaller Than MIN, CLAMPING=>" + str(item)+", MIN="+str(self.min_laser_value)) discretized_ranges.append( round(self.min_laser_value, 1)) else: rospy.logwarn( "Normal Item, no processing=>" + str(item)) discretized_ranges.append(round(item, 1)) # We add last value appended filtered_range.append(discretized_ranges[-1]) else: # We add value zero filtered_range.append(0.0) rospy.logwarn( ">>>>>>>>>>>>>>>>>>>>>>discretized_ranges=>" + str(discretized_ranges)) self.publish_filtered_laser_scan(laser_original_data=data, new_filtered_laser_range=filtered_range) return discretized_ranges def get_orientation_euler(self): # We convert from quaternions to euler orientation_list = [self.odom.pose.pose.orientation.x, self.odom.pose.pose.orientation.y, self.odom.pose.pose.orientation.z, self.odom.pose.pose.orientation.w] roll, pitch, yaw = euler_from_quaternion(orientation_list) return roll, pitch, yaw def get_distance_from_desired_point(self, current_position, desired_position): """ Calculates the distance from the current position to the desired point :param current_position: :param desired_position: :return: """ distance = self.get_distance_from_point(current_position, desired_position) return distance def get_distance_from_point(self, pstart, p_end): """ Given a Vector3 Object, get distance from current position :param p_end: :return: """ a = numpy.array((pstart.x, pstart.y, pstart.z)) b = numpy.array((p_end.x, p_end.y, p_end.z)) distance = numpy.linalg.norm(a - b) return distance def check_husarion_has_crashed(self, laser_readings): """ Based on the laser readings we check if any laser readingdistance is below the minimum distance acceptable. """ husarion_has_crashed = False for laser_distance in laser_readings: rospy.logwarn("laser_distance==>"+str(laser_distance)) if laser_distance == self.min_laser_value: husarion_has_crashed = True rospy.logwarn("HAS CRASHED==>"+str(laser_distance) + ", min="+str(self.min_laser_value)) break elif laser_distance < self.min_laser_value: rospy.logerr("Value of laser shouldnt be lower than min==>" + str(laser_distance)+", min="+str(self.min_laser_value)) elif laser_distance > self.max_laser_value: rospy.logerr("Value of laser shouldnt be higher than max==>" + str(laser_distance)+", max="+str(self.min_laser_value)) return husarion_has_crashed def check_inside_workspace(self, current_position): """ We check that the current position is inside the given workspace. """ is_inside = False rospy.logwarn("##### INSIDE WORK SPACE? #######") rospy.logwarn("XYZ current_position"+str(current_position)) rospy.logwarn("work_space_x_max"+str(self.work_space_x_max) + ",work_space_x_min="+str(self.work_space_x_min)) rospy.logwarn("work_space_y_max"+str(self.work_space_y_max) + ",work_space_y_min="+str(self.work_space_y_min)) rospy.logwarn("############") if current_position.x > self.work_space_x_min and current_position.x <= self.work_space_x_max: if current_position.y > self.work_space_y_min and current_position.y <= self.work_space_y_max: is_inside = True return is_inside def check_reached_desired_position(self, current_position, desired_position, epsilon=0.1): """ It return True if the current position is similar to the desired poistion """ is_in_desired_pos = False x_pos_plus = desired_position.x + epsilon x_pos_minus = desired_position.x - epsilon y_pos_plus = desired_position.y + epsilon y_pos_minus = desired_position.y - epsilon x_current = current_position.x y_current = current_position.y x_pos_are_close = (x_current <= x_pos_plus) and ( x_current > x_pos_minus) y_pos_are_close = (y_current <= y_pos_plus) and ( y_current > y_pos_minus) is_in_desired_pos = x_pos_are_close and y_pos_are_close rospy.logdebug("###### IS DESIRED POS ? ######") rospy.logdebug("epsilon==>"+str(epsilon)) rospy.logdebug("current_position"+str(current_position)) rospy.logdebug("x_pos_plus"+str(x_pos_plus) + ",x_pos_minus="+str(x_pos_minus)) rospy.logdebug("y_pos_plus"+str(y_pos_plus) + ",y_pos_minus="+str(y_pos_minus)) rospy.logdebug("x_pos_are_close"+str(x_pos_are_close)) rospy.logdebug("y_pos_are_close"+str(y_pos_are_close)) rospy.logdebug("is_in_desired_pos"+str(is_in_desired_pos)) rospy.logdebug("############") return is_in_desired_pos def publish_filtered_laser_scan(self, laser_original_data, new_filtered_laser_range): length_range = len(laser_original_data.ranges) length_intensities = len(laser_original_data.intensities) laser_filtered_object = LaserScan() h = Header() # Note you need to call rospy.init_node() before this will work h.stamp = rospy.Time.now() h.frame_id = "chassis" laser_filtered_object.header = h laser_filtered_object.angle_min = laser_original_data.angle_min laser_filtered_object.angle_max = laser_original_data.angle_max laser_filtered_object.angle_increment = laser_original_data.angle_increment laser_filtered_object.time_increment = laser_original_data.time_increment laser_filtered_object.scan_time = laser_original_data.scan_time laser_filtered_object.range_min = laser_original_data.range_min laser_filtered_object.range_max = laser_original_data.range_max laser_filtered_object.ranges = [] laser_filtered_object.intensities = [] for item in new_filtered_laser_range: laser_filtered_object.ranges.append(item) laser_filtered_object.intensities.append(item) self.laser_filtered_pub.publish(laser_filtered_object)
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~robot_envs~shadow_tc_env.py
import numpy import rospy import time import tf from openai_ros import robot_gazebo_env from sensor_msgs.msg import Imu from sensor_msgs.msg import JointState from smart_grasping_sandbox.smart_grasper import SmartGrasper from moveit_msgs.msg import PlanningScene from openai_ros.openai_ros_common import ROSLauncher class ShadowTcEnv(robot_gazebo_env.RobotGazeboEnv): """Superclass for all ShadowTcEnv environments. """ def __init__(self, ros_ws_abspath): """ Initializes a new ShadowTcEnv environment. To check any topic we need to have the simulations running, we need to do two things: 1) Unpause the simulation: without that th stream of data doesnt flow. This is for simulations that are pause for whatever the reason 2) If the simulation was running already for some reason, we need to reset the controlers. This has to do with the fact that some plugins with tf, dont understand the reset of the simulation and need to be reseted to work properly. The Sensors: The sensors accesible are the ones considered usefull for AI learning. Sensor Topic List: * /imu/data * /joint_states Actuators Topic List: * As actuator we will use a class SmartGrasper to interface. We use smart_grasping_sandbox smart_grasper.py, to move and get the pose of the ball and the tool tip. Args: """ rospy.logdebug("Start ShadowTcEnv INIT...") # Variables that we give through the constructor. # None in this case # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="shadow_gazebo", launch_file_name="put_shadow_in_world.launch", ros_ws_abspath=ros_ws_abspath) # Internal Vars # Doesnt have any accesibles self.controllers_list = [] # It doesnt use namespace self.robot_name_space = "" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(ShadowTcEnv, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=False, start_init_physics_parameters=False, reset_world_or_sim="NO_RESET_SIM") rospy.logdebug("ShadowTcEnv unpause...") self.gazebo.unpauseSim() #self.controllers_object.reset_controllers() self._check_all_systems_ready() rospy.Subscriber("/imu/data", Imu, self._imu_callback) rospy.Subscriber("/joint_states", JointState, self._joints_state_callback) #rospy.Subscriber('/planning_scene', PlanningScene, self._planning_scene_callback) self._setup_smart_grasper() self.gazebo.pauseSim() rospy.logdebug("Finished ShadowTcEnv INIT...") # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ rospy.logdebug("ShadowTcEnv check_all_systems_ready...") self._check_all_sensors_ready() rospy.logdebug("END ShadowTcEnv _check_all_systems_ready...") return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): rospy.logdebug("START ALL SENSORS READY") self._check_imu_ready() self._check_joint_states_ready() #self._check_planning_scene_ready() rospy.logdebug("ALL SENSORS READY") def _check_imu_ready(self): self.imu = None rospy.logdebug("Waiting for /imu/data to be READY...") while self.imu is None and not rospy.is_shutdown(): try: self.imu = rospy.wait_for_message("/imu/data", Imu, timeout=5.0) rospy.logdebug("Current/imu/data READY=>") except: rospy.logerr("Current /imu/data not ready yet, retrying for getting imu") return self.imu def _check_joint_states_ready(self): self.joint_states = None rospy.logdebug("Waiting for /joint_states to be READY...") while self.joint_states is None and not rospy.is_shutdown(): try: self.joint_states = rospy.wait_for_message("/joint_states", JointState, timeout=1.0) rospy.logdebug("Current /joint_states READY=>") except: rospy.logerr("Current /joint_states not ready yet, retrying for getting joint_states") return self.joint_states def _check_planning_scene_ready(self): self.planning_scene = None rospy.logdebug("Waiting for /planning_scene to be READY...") while self.planning_scene is None and not rospy.is_shutdown(): try: self.planning_scene = rospy.wait_for_message('/planning_scene', PlanningScene, timeout=1.0) rospy.logdebug("Current /planning_scene READY=>") except: rospy.logerr("Current /planning_scene not ready yet, retrying for getting planning_scene") return self.planning_scene def _imu_callback(self, data): self.imu = data def _joints_state_callback(self, data): self.joint_states = data def _planning_scene_callback(self, data): self.planning_scene = data def _setup_tf_listener(self): """ Set ups the TF listener for getting the transforms you ask for. """ self.listener = tf.TransformListener() def _setup_smart_grasper(self): """ Setup of the movement system. :return: """ rospy.logdebug("START _setup_smart_grasper") # We need to tell it to not start a node self.sgs = SmartGrasper(init_ros_node=False) rospy.logdebug("END _setup_smart_grasper") # Methods that the TrainingEnvironment will need to define here as virtual # because they will be used in RobotGazeboEnv GrandParentClass and defined in the # TrainingEnvironment. # ---------------------------- def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() # Methods that the TrainingEnvironment will need. # ---------------------------- def open_hand(self): """ When called it opens robots hand """ self.sgs.open_hand() def close_hand(self): """ When called it closes robots hand """ self.sgs.close_hand() def get_ball_pose(self): """ Get Ball Pose return: Ball Pose in the World frame We unpause and pause the simulation because this calss is a service call. This means that if the simulation is NOT running it wont get the Ball information of position. """ rospy.logdebug("START get_ball_pose ==>") self.gazebo.unpauseSim() ball_pose = self.sgs.get_object_pose() self.gazebo.pauseSim() rospy.logdebug("ball_pose ==>"+str(ball_pose)) rospy.logdebug("STOP get_ball_pose ==>") return ball_pose def get_tip_pose(self): """ Returns the pose of the tip of the TCP We unpause and pause the simulation because this calss is a service call. This means that if the simulation is NOT running it wont get the TCP information of position. """ rospy.logdebug("START get_tip_pose ==>") self.gazebo.unpauseSim() tcp_pose = self.sgs.get_tip_pose() self.gazebo.pauseSim() rospy.logdebug("END get_tip_pose ==>") return tcp_pose def move_tcp_world_frame(self, desired_pose): """ Moves the Tool tip TCP to the pose given Its relative pose to world frame :param: desired_pose: Pose where you want the TCP to move next """ self.sgs.move_tip_absolute(desired_pose) def move_tip(self, x=0., y=0., z=0., roll=0., pitch=0., yaw=0.): """ Moves that increment of XYZ RPY in the world frame Only state the increment of the variable you want, the rest will not increment due to the default values """ self.sgs.move_tip(x,y,z,roll,pitch,yaw) def send_movement_command(self, command, duration=0.2): """ Send a dictionnary of joint targets to the arm and hand directly. To get the available joints names: rostopic echo /joint_states/name -n1 [H1_F1J1, H1_F1J2, H1_F1J3, H1_F2J1, H1_F2J2, H1_F2J3, H1_F3J1, H1_F3J2, H1_F3J3, elbow_joint, shoulder_lift_joint, shoulder_pan_joint, wrist_1_joint, wrist_2_joint, wrist_3_joint] :param command: a dictionnary of joint names associated with a target: {"H1_F1J1": -1.0, "shoulder_pan_joint": 1.0} :param duration: the amount of time it will take to get there in seconds. Needs to be bigger than 0.0 """ self.sgs.send_command(command, duration) def set_fingers_colision(self, activate=False): """ It activates or deactivates the finger collisions. It also will triguer the publish into the planning_scene the collisions. We puase and unpause for the smae exact reason as the get TCP and get ball pos. Being a service, untill the simulation is unpaused it wont get response. """ rospy.logdebug("START get_fingers_colision") self.sgs.check_fingers_collisions(activate) rospy.logdebug("END get_fingers_colision") def get_fingers_colision(self, object_collision_name): """ Returns the collision of the three fingers object_collision_name: Here yo ustate the name of the model to check collision with fingers. Objects in sim: cricket_ball__link, drill__link """ self.gazebo.unpauseSim() self.set_fingers_colision(True) planning_scene = self._check_planning_scene_ready() self.gazebo.pauseSim() objects_scene = planning_scene.allowed_collision_matrix.entry_names colissions_matrix = planning_scene.allowed_collision_matrix.entry_values # We look for the Ball object model name in the objects sceen list and get the index: object_collision_name_index = objects_scene.index(object_collision_name) Finger_Links_Names = [ "H1_F1_base_link", "H1_F1_link_1", "H1_F1_link_2", "H1_F1_palm_link", "H1_F1_tip", "H1_F2_base_link", "H1_F2_link_1", "H1_F2_link_2", "H1_F2_palm_link", "H1_F2_tip", "H1_F3_base_link", "H1_F3_link_1", "H1_F3_link_2", "H1_F3_palm_link", "H1_F3_tip"] # We get all the index of the model links that are part of the fingers # We separate by finguer to afterwards be easy to detect that there is contact in all of the finguers finger1_indices = [i for i, var in enumerate(Finger_Links_Names) if "H1_F1" in var] finger2_indices = [i for i, var in enumerate(Finger_Links_Names) if "H1_F2" in var] finger3_indices = [i for i, var in enumerate(Finger_Links_Names) if "H1_F3" in var] # Now we search in the entry_value corresponding to the object to check the collision # With all the rest of objects. object_collision_array = colissions_matrix[object_collision_name_index].enabled # Is there a collision with Finguer1 f1_collision = False for finger_index in finger1_indices: if object_collision_array[finger_index]: f1_collision = True break # Is there a collision with Finguer2 f2_collision = False for finger_index in finger2_indices: if object_collision_array[finger_index]: f2_collision = True break # Is there a collision with Finguer3 f3_collision = False for finger_index in finger3_indices: if object_collision_array[finger_index]: f3_collision = True break finger_collision_dict = { "f1":f1_collision, "f2":f2_collision, "f3":f3_collision } return finger_collision_dict def reset_scene(self): """ Restarts the simulation and world objects """ self.sgs.reset_world() def get_imu(self): return self.imu def get_joint_states(self): return self.joint_states
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~task_envs~sumit_xl~sumit_xl_room.py
import rospy import numpy from gym import spaces from openai_ros.robot_envs import sumitxl_env from gym.envs.registration import register from geometry_msgs.msg import Vector3 from geometry_msgs.msg import Point from tf.transformations import euler_from_quaternion from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class SumitXlRoom(sumitxl_env.SumitXlEnv): def __init__(self): """ This Task Env is designed for having the sumit_xl in the sumit_xl world closed room with columns. It will learn how to move around without crashing. """ # This is the path where the simulation files, the Task and the Robot gits will be downloaded if not there ros_ws_abspath = rospy.get_param("/sumit_xl/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="summit_xl_gazebo", launch_file_name="start_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/sumit_xl/config", yaml_file_name="sumit_xl_room.yaml") # Here we will add any init functions prior to starting the MyRobotEnv super(SumitXlRoom, self).__init__(ros_ws_abspath) # Only variable needed to be set here number_actions = rospy.get_param('/sumit_xl/n_actions') self.action_space = spaces.Discrete(number_actions) # We set the reward range, which is not compulsory but here we do it. self.reward_range = (-numpy.inf, numpy.inf) # Actions and Observations self.linear_forward_speed = rospy.get_param( '/sumit_xl/linear_forward_speed') self.linear_turn_speed = rospy.get_param('/sumit_xl/linear_turn_speed') self.angular_speed = rospy.get_param('/sumit_xl/angular_speed') self.init_linear_forward_speed = rospy.get_param( '/sumit_xl/init_linear_forward_speed') self.init_linear_turn_speed = rospy.get_param( '/sumit_xl/init_linear_turn_speed') self.new_ranges = rospy.get_param('/sumit_xl/new_ranges') self.min_range = rospy.get_param('/sumit_xl/min_range') self.max_laser_value = rospy.get_param('/sumit_xl/max_laser_value') self.min_laser_value = rospy.get_param('/sumit_xl/min_laser_value') self.max_linear_aceleration = rospy.get_param( '/sumit_xl/max_linear_aceleration') self.max_distance = rospy.get_param('/sumit_xl/max_distance') # Get Desired Point to Get self.desired_point = Point() self.desired_point.x = rospy.get_param("/sumit_xl/desired_pose/x") self.desired_point.y = rospy.get_param("/sumit_xl/desired_pose/y") self.desired_point.z = rospy.get_param("/sumit_xl/desired_pose/z") # We create the arrays for the laser readings # We also create the arrays for the odometry readings # We join them toeguether. laser_scan = self.get_laser_scan() num_laser_readings = len(laser_scan.ranges)/self.new_ranges high_laser = numpy.full((num_laser_readings), self.max_laser_value) low_laser = numpy.full((num_laser_readings), self.min_laser_value) # We place the Maximum and minimum values of the X,Y and YAW of the odometry # The odometry yaw can be any value in the circunference. high_odometry = numpy.array( [self.max_distance, self.max_distance, 3.14]) low_odometry = numpy.array( [-1*self.max_distance, -1*self.max_distance, -1*3.14]) # We join both arrays high = numpy.concatenate([high_laser, high_odometry]) low = numpy.concatenate([low_laser, low_odometry]) self.observation_space = spaces.Box(low, high) rospy.logdebug("ACTION SPACES TYPE===>"+str(self.action_space)) rospy.logdebug("OBSERVATION SPACES TYPE===>" + str(self.observation_space)) # Rewards self.closer_to_point_reward = rospy.get_param( "/sumit_xl/closer_to_point_reward") self.not_ending_point_reward = rospy.get_param( "/sumit_xl/not_ending_point_reward") self.end_episode_points = rospy.get_param( "/sumit_xl/end_episode_points") self.cumulated_steps = 0.0 def _set_init_pose(self): """Sets the Robot in its init pose """ self.move_base(self.init_linear_forward_speed, self.init_linear_turn_speed, epsilon=0.05, update_rate=10) return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ # For Info Purposes self.cumulated_reward = 0.0 # Set to false Done, because its calculated asyncronously self._episode_done = False odometry = self.get_odom() self.previous_distance_from_des_point = self.get_distance_from_desired_point( odometry.pose.pose.position) def _set_action(self, action): """ This set action will Set the linear and angular speed of the SumitXl based on the action number given. :param action: The action integer that set s what movement to do next. """ rospy.logdebug("Start Set Action ==>"+str(action)) # We convert the actions to speed movements to send to the parent class CubeSingleDiskEnv if action == 0: # FORWARD linear_speed = self.linear_forward_speed angular_speed = 0.0 self.last_action = "FORWARDS" elif action == 1: # LEFT linear_speed = self.linear_turn_speed angular_speed = self.angular_speed self.last_action = "TURN_LEFT" elif action == 2: # RIGHT linear_speed = self.linear_turn_speed angular_speed = -1*self.angular_speed self.last_action = "TURN_RIGHT" """ elif action == 3: #STOP linear_speed = 0.0 angular_speed = 0.0 self.last_action = "STOP" """ # We tell SumitXL the linear and angular speed to set to execute self.move_base(linear_speed, angular_speed, epsilon=0.05, update_rate=10) rospy.logdebug("END Set Action ==>"+str(action)) def _get_obs(self): """ Here we define what sensor data defines our robots observations To know which Variables we have acces to, we need to read the SumitXlEnv API DOCS WALL CLOSE LEFT [1, 1, 9, 0, 0, 0, -1.8, 0.46, 0.01] WALL CLOSE RIGHT [0, 0, 0, 10, 1, 2, -1.8, -0.61, 0.01] WALL BACK [0, 9, 1, 1, 6, 0, -1.8, -0.54, 1.59] WALL FRONT [2, 9, 0, 0, 2, 2, -1.83, 0.51, 1.58] 0 in reality is arround front 0.4, back 0.5, sides 0.3 :return: """ rospy.logdebug("Start Get Observation ==>") # We get the laser scan data laser_scan = self.get_laser_scan() discretized_laser_scan = self.discretize_scan_observation(laser_scan, self.new_ranges ) # We get the odometry so that SumitXL knows where it is. odometry = self.get_odom() x_position = odometry.pose.pose.position.x y_position = odometry.pose.pose.position.y # We get the orientation of the cube in RPY roll, pitch, yaw = self.get_orientation_euler() # We round to only two decimals to avoid very big Observation space odometry_array = [round(x_position, 2), round(y_position, 2), round(yaw, 2)] # We only want the X and Y position and the Yaw observations = discretized_laser_scan + odometry_array rospy.logdebug("Observations==>"+str(observations)) rospy.logdebug("END Get Observation ==>") return observations def _is_done(self, observations): if self._episode_done: rospy.logerr("SumitXl is Too Close to wall==>") else: rospy.logdebug("SumitXl is NOT close to a wall ==>") # Now we check if it has crashed based on the imu imu_data = self.get_imu() linear_acceleration_magnitude = self.get_vector_magnitude( imu_data.linear_acceleration) if linear_acceleration_magnitude > self.max_linear_aceleration: rospy.logerr("SumitXl Crashed==>"+str(linear_acceleration_magnitude) + ">"+str(self.max_linear_aceleration)) self._episode_done = True else: rospy.logerr("DIDNT crash SumitXl ==>"+str(linear_acceleration_magnitude) + ">"+str(self.max_linear_aceleration)) current_position = Point() current_position.x = observations[-3] current_position.y = observations[-2] current_position.z = 0.0 if abs(current_position.x) <= self.max_distance: if abs(current_position.y) <= self.max_distance: rospy.logdebug( "SummitXL Position is OK ==>["+str(current_position.x)+","+str(current_position.y)+"]") else: rospy.logerr("SummitXL to Far in Y Pos ==>" + str(current_position.x)) self._episode_done = True else: rospy.logerr("SummitXL to Far in X Pos ==>" + str(current_position.x)) self._episode_done = True if self.is_in_desired_position(current_position): self._episode_done = True return self._episode_done def _compute_reward(self, observations, done): """ We give reward to the robot when it gets closer to the desired point. We Dont give it contsnatly, but only if there is an improvement """ # We get the current Position from the obervations current_position = Point() current_position.x = observations[-3] current_position.y = observations[-2] current_position.z = 0.0 distance_from_des_point = self.get_distance_from_desired_point( current_position) distance_difference = distance_from_des_point - \ self.previous_distance_from_des_point rospy.logwarn("current_position=" + str(current_position)) rospy.logwarn("desired_point=" + str(self.desired_point)) rospy.logwarn("total_distance_from_des_point=" + str(self.previous_distance_from_des_point)) rospy.logwarn("distance_from_des_point=" + str(distance_from_des_point)) rospy.logwarn("distance_difference=" + str(distance_difference)) if not done: # If there has been a decrease in the distance to the desired point, we reward it if distance_difference < 0.0: rospy.logwarn("DECREASE IN DISTANCE GOOD") reward = self.closer_to_point_reward else: # If it didnt get closer, we give much less points in theory # This should trigger the behaviour of moving towards the point rospy.logwarn("NO DECREASE IN DISTANCE, so much less points") reward = self.not_ending_point_reward else: if self.is_in_desired_position(current_position): reward = self.end_episode_points rospy.logwarn( "GOT TO DESIRED POINT ; DONE, reward=" + str(reward)) else: reward = -1*self.end_episode_points rospy.logerr( "SOMETHING WENT WRONG ; DONE, reward=" + str(reward)) self.previous_distance_from_des_point = distance_from_des_point rospy.logwarn("reward=" + str(reward)) self.cumulated_reward += reward rospy.logdebug("Cumulated_reward=" + str(self.cumulated_reward)) self.cumulated_steps += 1 rospy.logdebug("Cumulated_steps=" + str(self.cumulated_steps)) return reward # Internal TaskEnv Methods def discretize_scan_observation(self, data, new_ranges): """ Discards all the laser readings that are not multiple in index of new_ranges value. """ self._episode_done = False discretized_ranges = [] mod = len(data.ranges)/new_ranges rospy.logdebug("data=" + str(data)) rospy.logdebug("new_ranges=" + str(new_ranges)) rospy.logdebug("mod=" + str(mod)) for i, item in enumerate(data.ranges): if (i % mod == 0): if item == float('Inf') or numpy.isinf(item): discretized_ranges.append(self.max_laser_value) elif numpy.isnan(item): discretized_ranges.append(self.min_laser_value) else: discretized_ranges.append(int(item)) if (self.min_range > item > 0): rospy.logerr("done Validation >>> item=" + str(item)+"< "+str(self.min_range)) self._episode_done = True else: rospy.logdebug("NOT done Validation >>> item=" + str(item)+"< "+str(self.min_range)) return discretized_ranges def get_vector_magnitude(self, vector): """ It calculated the magnitude of the Vector3 given. This is usefull for reading imu accelerations and knowing if there has been a crash :return: """ contact_force_np = numpy.array((vector.x, vector.y, vector.z)) force_magnitude = numpy.linalg.norm(contact_force_np) return force_magnitude def get_orientation_euler(self): # We convert from quaternions to euler orientation_list = [self.odom.pose.pose.orientation.x, self.odom.pose.pose.orientation.y, self.odom.pose.pose.orientation.z, self.odom.pose.pose.orientation.w] roll, pitch, yaw = euler_from_quaternion(orientation_list) return roll, pitch, yaw def get_distance_from_desired_point(self, current_position): """ Calculates the distance from the current position to the desired point :param start_point: :return: """ distance = self.get_distance_from_point(current_position, self.desired_point) return distance def get_distance_from_point(self, pstart, p_end): """ Given a Vector3 Object, get distance from current position :param p_end: :return: """ a = numpy.array((pstart.x, pstart.y, pstart.z)) b = numpy.array((p_end.x, p_end.y, p_end.z)) distance = numpy.linalg.norm(a - b) return distance def is_in_desired_position(self, current_position, epsilon=0.05): """ It return True if the current position is similar to the desired poistion """ is_in_desired_pos = False x_pos_plus = self.desired_point.x + epsilon x_pos_minus = self.desired_point.x - epsilon y_pos_plus = self.desired_point.y + epsilon y_pos_minus = self.desired_point.y - epsilon x_current = current_position.x y_current = current_position.y x_pos_are_close = (x_current <= x_pos_plus) and ( x_current > x_pos_minus) y_pos_are_close = (y_current <= y_pos_plus) and ( y_current > y_pos_minus) is_in_desired_pos = x_pos_are_close and y_pos_are_close return is_in_desired_pos
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~task_envs~moving_cube~one_disk_walk.py
import rospy import numpy import math from gym import spaces from openai_ros.robot_envs import cube_single_disk_env from geometry_msgs.msg import Point from tf.transformations import euler_from_quaternion from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class MovingCubeOneDiskWalkEnv(cube_single_disk_env.CubeSingleDiskEnv): def __init__(self): # Launch the Task Simulated-Environment # This is the path where the simulation files, the Task and the Robot gits will be downloaded if not there ros_ws_abspath = rospy.get_param("/moving_cube/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name = "moving_cube_description", launch_file_name = "start_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest( rospackage_name = "openai_ros", rel_path_from_package_to_file = "src/openai_ros/task_envs/moving_cube/config", yaml_file_name = "one_disk_walk.yaml") # Only variable needed to be set here number_actions = rospy.get_param('/moving_cube/n_actions') self.action_space = spaces.Discrete(number_actions) #number_observations = rospy.get_param('/moving_cube/n_observations') """ We set the Observation space for the 6 observations cube_observations = [ round(current_disk_roll_vel, 0), round(y_distance, 1), round(roll, 1), round(pitch, 1), round(y_linear_speed,1), round(yaw, 1), ] """ # Actions and Observations self.roll_speed_fixed_value = rospy.get_param('/moving_cube/roll_speed_fixed_value') self.roll_speed_increment_value = rospy.get_param('/moving_cube/roll_speed_increment_value') self.max_distance = rospy.get_param('/moving_cube/max_distance') max_roll = 2 * math.pi self.max_pitch_angle = rospy.get_param('/moving_cube/max_pitch_angle') self.max_y_linear_speed = rospy.get_param('/moving_cube/max_y_linear_speed') self.max_yaw_angle = rospy.get_param('/moving_cube/max_yaw_angle') high = numpy.array([ self.roll_speed_fixed_value, self.max_distance, max_roll, self.max_pitch_angle, self.max_y_linear_speed, self.max_y_linear_speed, ]) self.observation_space = spaces.Box(-high, high) rospy.logwarn("ACTION SPACES TYPE===>"+str(self.action_space)) rospy.logwarn("OBSERVATION SPACES TYPE===>"+str(self.observation_space)) # Variables that we retrieve through the param server, loded when launch training launch. self.init_roll_vel = rospy.get_param("/moving_cube/init_roll_vel") # Get Observations self.start_point = Point() self.start_point.x = rospy.get_param("/moving_cube/init_cube_pose/x") self.start_point.y = rospy.get_param("/moving_cube/init_cube_pose/y") self.start_point.z = rospy.get_param("/moving_cube/init_cube_pose/z") # Rewards self.move_distance_reward_weight = rospy.get_param("/moving_cube/move_distance_reward_weight") self.y_linear_speed_reward_weight = rospy.get_param("/moving_cube/y_linear_speed_reward_weight") self.y_axis_angle_reward_weight = rospy.get_param("/moving_cube/y_axis_angle_reward_weight") self.end_episode_points = rospy.get_param("/moving_cube/end_episode_points") self.roll_reward_weight = rospy.get_param("/moving_cube/roll_reward_weight") self.cumulated_steps = 0.0 # Here we will add any init functions prior to starting the MyRobotEnv super(MovingCubeOneDiskWalkEnv, self).__init__(ros_ws_abspath) def _set_init_pose(self): """Sets the Robot in its init pose """ self.move_joints(self.init_roll_vel) return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ self.total_distance_moved = 0.0 self.current_y_distance = self.get_y_dir_distance_from_start_point(self.start_point) self.pre_roll_angle = 0 self.roll_turn_speed = rospy.get_param('/moving_cube/init_roll_vel') # For Info Purposes self.cumulated_reward = 0.0 #self.cumulated_steps = 0.0 def _set_action(self, action): # We convert the actions to speed movements to send to the parent class CubeSingleDiskEnv if action == 0:# Move Speed Wheel Forwards self.roll_turn_speed = self.roll_speed_fixed_value elif action == 1:# Move Speed Wheel Backwards self.roll_turn_speed = -1*self.roll_speed_fixed_value elif action == 2:# Stop Speed Wheel self.roll_turn_speed = 0.0 elif action == 3:# Increment Speed self.roll_turn_speed += self.roll_speed_increment_value elif action == 4:# Decrement Speed self.roll_turn_speed -= self.roll_speed_increment_value # We clamp Values to maximum rospy.logdebug("roll_turn_speed before clamp=="+str(self.roll_turn_speed)) self.roll_turn_speed = numpy.clip(self.roll_turn_speed, -1*self.roll_speed_fixed_value, self.roll_speed_fixed_value) rospy.logdebug("roll_turn_speed after clamp==" + str(self.roll_turn_speed)) # We tell the OneDiskCube to spin the RollDisk at the selected speed self.move_joints(self.roll_turn_speed) def _get_obs(self): """ Here we define what sensor data defines our robots observations To know which Variables we have acces to, we need to read the MyCubeSingleDiskEnv API DOCS :return: """ # We get the orientation of the cube in RPY roll, pitch, yaw = self.get_orientation_euler() # We get the distance from the origin #distance = self.get_distance_from_start_point(self.start_point) y_distance = self.get_y_dir_distance_from_start_point(self.start_point) # We get the current speed of the Roll Disk current_disk_roll_vel = self.get_roll_velocity() # We get the linear speed in the y axis y_linear_speed = self.get_y_linear_speed() cube_observations = [ round(current_disk_roll_vel, 0), round(y_distance, 1), round(roll, 1), round(pitch, 1), round(y_linear_speed,1), round(yaw, 1) ] rospy.logdebug("Observations==>"+str(cube_observations)) return cube_observations def _is_done(self, observations): pitch_angle = observations[3] yaw_angle = observations[5] if abs(pitch_angle) > self.max_pitch_angle: rospy.logerr("WRONG Cube Pitch Orientation==>" + str(pitch_angle)) done = True else: rospy.logdebug("Cube Pitch Orientation Ok==>" + str(pitch_angle)) if abs(yaw_angle) > self.max_yaw_angle: rospy.logerr("WRONG Cube Yaw Orientation==>" + str(yaw_angle)) done = True else: rospy.logdebug("Cube Yaw Orientation Ok==>" + str(yaw_angle)) done = False return done def _compute_reward(self, observations, done): if not done: y_distance_now = observations[1] delta_distance = y_distance_now - self.current_y_distance rospy.logdebug("y_distance_now=" + str(y_distance_now)+", current_y_distance=" + str(self.current_y_distance)) rospy.logdebug("delta_distance=" + str(delta_distance)) reward_distance = delta_distance * self.move_distance_reward_weight self.current_y_distance = y_distance_now y_linear_speed = observations[4] rospy.logdebug("y_linear_speed=" + str(y_linear_speed)) reward_y_axis_speed = y_linear_speed * self.y_linear_speed_reward_weight # Negative Reward for yaw different from zero. yaw_angle = observations[5] rospy.logdebug("yaw_angle=" + str(yaw_angle)) # Worst yaw is 90 and 270 degrees, best 0 and 180. We use sin function for giving reward. sin_yaw_angle = math.sin(yaw_angle) rospy.logdebug("sin_yaw_angle=" + str(sin_yaw_angle)) reward_y_axis_angle = -1 * abs(sin_yaw_angle) * self.y_axis_angle_reward_weight #Rolling reward roll_angle = observations[2] roll_reward = math.sin(abs(self.pre_roll_angle - roll_angle)) * self.roll_reward_weight self.pre_roll_angle = roll_angle # We are not intereseted in decimals of the reward, doesnt give any advatage. reward = round(reward_distance, 0) + round(reward_y_axis_speed, 0) + round(reward_y_axis_angle, 0) rospy.logdebug("reward_distance=" + str(reward_distance)) rospy.logdebug("reward_y_axis_speed=" + str(reward_y_axis_speed)) rospy.logdebug("reward_y_axis_angle=" + str(reward_y_axis_angle)) rospy.logdebug("reward=" + str(reward)) else: reward = -1*self.end_episode_points self.cumulated_reward += reward rospy.logdebug("Cumulated_reward=" + str(self.cumulated_reward)) self.cumulated_steps += 1 rospy.logdebug("Cumulated_steps=" + str(self.cumulated_steps)) return reward # Internal TaskEnv Methods def get_y_dir_distance_from_start_point(self, start_point): """ Calculates the distance from the given point and the current position given by odometry. In this case the increase or decrease in y. :param start_point: :return: """ y_dist_dir = self.odom.pose.pose.position.y - start_point.y return y_dist_dir def get_distance_from_start_point(self, start_point): """ Calculates the distance from the given point and the current position given by odometry :param start_point: :return: """ distance = self.get_distance_from_point(start_point, self.odom.pose.pose.position) return distance def get_distance_from_point(self, pstart, p_end): """ Given a Vector3 Object, get distance from current position :param p_end: :return: """ a = numpy.array((pstart.x, pstart.y, pstart.z)) b = numpy.array((p_end.x, p_end.y, p_end.z)) distance = numpy.linalg.norm(a - b) return distance def get_orientation_euler(self): # We convert from quaternions to euler orientation_list = [self.odom.pose.pose.orientation.x, self.odom.pose.pose.orientation.y, self.odom.pose.pose.orientation.z, self.odom.pose.pose.orientation.w] roll, pitch, yaw = euler_from_quaternion(orientation_list) return roll, pitch, yaw def get_roll_velocity(self): # We get the current joint roll velocity roll_vel = self.joints.velocity[0] return roll_vel def get_y_linear_speed(self): # We get the current joint roll velocity y_linear_speed = self.odom.twist.twist.linear.y return y_linear_speed
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~robot_envs~husarion_env.py
import numpy import rospy from openai_ros import robot_gazebo_env from std_msgs.msg import Float64 from sensor_msgs.msg import JointState from sensor_msgs.msg import Image from sensor_msgs.msg import LaserScan from sensor_msgs.msg import PointCloud2 from nav_msgs.msg import Odometry from geometry_msgs.msg import Twist from openai_ros.openai_ros_common import ROSLauncher class HusarionEnv(robot_gazebo_env.RobotGazeboEnv): """Superclass for all CubeSingleDisk environments. """ def __init__(self, ros_ws_abspath): """ Initializes a new HusarionEnv environment. Husarion doesnt use controller_manager, therefore we wont reset the controllers in the standard fashion. For the moment we wont reset them. To check any topic we need to have the simulations running, we need to do two things: 1) Unpause the simulation: without that th stream of data doesnt flow. This is for simulations that are pause for whatever the reason 2) If the simulation was running already for some reason, we need to reset the controlers. This has to do with the fact that some plugins with tf, dont understand the reset of the simulation and need to be reseted to work properly. The Sensors: The sensors accesible are the ones considered usefull for AI learning. Sensor Topic List: * /odom : Odometry readings of the Base of the Robot * /camera/depth/image_raw: 2d Depth image of the depth sensor. * /camera/depth/points: Pointcloud sensor readings * /camera/rgb/image_raw: RGB camera * /rosbot/laser/scan: Laser Readings Actuators Topic List: /cmd_vel, Args: """ rospy.logerr(">>>>>>>>>>>Start HusarionEnv INIT...") # Variables that we give through the constructor. # None in this case # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="rosbot_gazebo", launch_file_name="put_rosbot_in_world.launch", ros_ws_abspath=ros_ws_abspath) rospy.logerr(">>>>>>>>>>>ROSLAUCHER DONE HusarionEnv INIT...") # Internal Vars # Doesnt have any accesibles self.controllers_list = [] # It doesnt use namespace self.robot_name_space = "" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(HusarionEnv, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=False, start_init_physics_parameters=False, reset_world_or_sim="WORLD") self.gazebo.unpauseSim() # self.controllers_object.reset_controllers() self._check_all_sensors_ready() # We Start all the ROS related Subscribers and publishers rospy.Subscriber("/odom", Odometry, self._odom_callback) rospy.Subscriber("/camera/depth/image_raw", Image, self._camera_depth_image_raw_callback) rospy.Subscriber("/camera/depth/points", PointCloud2, self._camera_depth_points_callback) rospy.Subscriber("/camera/rgb/image_raw", Image, self._camera_rgb_image_raw_callback) rospy.Subscriber("/rosbot/laser/scan", LaserScan, self._laser_scan_callback) self._cmd_vel_pub = rospy.Publisher('/cmd_vel', Twist, queue_size=1) self._check_publishers_connection() self.gazebo.pauseSim() rospy.logdebug("Finished HusarionEnv INIT...") # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ self._check_all_sensors_ready() return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): rospy.logdebug("START ALL SENSORS READY") self._check_odom_ready() # We dont need to check for the moment, takes too long self._check_camera_depth_image_raw_ready() self._check_camera_depth_points_ready() self._check_camera_rgb_image_raw_ready() self._check_laser_scan_ready() rospy.logdebug("ALL SENSORS READY") def _check_odom_ready(self): self.odom = None rospy.logdebug("Waiting for /odom to be READY...") while self.odom is None and not rospy.is_shutdown(): try: self.odom = rospy.wait_for_message( "/odom", Odometry, timeout=5.0) rospy.logdebug("Current /odom READY=>") except: rospy.logerr( "Current /odom not ready yet, retrying for getting odom") return self.odom def _check_camera_depth_image_raw_ready(self): self.camera_depth_image_raw = None rospy.logdebug("Waiting for /camera/depth/image_raw to be READY...") while self.camera_depth_image_raw is None and not rospy.is_shutdown(): try: self.camera_depth_image_raw = rospy.wait_for_message( "/camera/depth/image_raw", Image, timeout=5.0) rospy.logdebug("Current /camera/depth/image_raw READY=>") except: rospy.logerr( "Current /camera/depth/image_raw not ready yet, retrying for getting camera_depth_image_raw") return self.camera_depth_image_raw def _check_camera_depth_points_ready(self): self.camera_depth_points = None rospy.logdebug("Waiting for /camera/depth/points to be READY...") while self.camera_depth_points is None and not rospy.is_shutdown(): try: self.camera_depth_points = rospy.wait_for_message( "/camera/depth/points", PointCloud2, timeout=10.0) rospy.logdebug("Current /camera/depth/points READY=>") except: rospy.logerr( "Current /camera/depth/points not ready yet, retrying for getting camera_depth_points") return self.camera_depth_points def _check_camera_rgb_image_raw_ready(self): self.camera_rgb_image_raw = None rospy.logdebug("Waiting for /camera/rgb/image_raw to be READY...") while self.camera_rgb_image_raw is None and not rospy.is_shutdown(): try: self.camera_rgb_image_raw = rospy.wait_for_message( "/camera/rgb/image_raw", Image, timeout=5.0) rospy.logdebug("Current /camera/rgb/image_raw READY=>") except: rospy.logerr( "Current /camera/rgb/image_raw not ready yet, retrying for getting camera_rgb_image_raw") return self.camera_rgb_image_raw def _check_laser_scan_ready(self): self.laser_scan = None rospy.logdebug("Waiting for /rosbot/laser/scan to be READY...") while self.laser_scan is None and not rospy.is_shutdown(): try: self.laser_scan = rospy.wait_for_message( "/rosbot/laser/scan", LaserScan, timeout=1.0) rospy.logdebug("Current /rosbot/laser/scan READY=>") except: rospy.logerr( "Current /rosbot/laser/scan not ready yet, retrying for getting laser_scan") return self.laser_scan def _odom_callback(self, data): self.odom = data def _camera_depth_image_raw_callback(self, data): self.camera_depth_image_raw = data def _camera_depth_points_callback(self, data): self.camera_depth_points = data def _camera_rgb_image_raw_callback(self, data): self.camera_rgb_image_raw = data def _laser_scan_callback(self, data): self.laser_scan = data def _check_publishers_connection(self): """ Checks that all the publishers are working :return: """ rate = rospy.Rate(10) # 10hz while self._cmd_vel_pub.get_num_connections() == 0 and not rospy.is_shutdown(): rospy.logdebug( "No susbribers to _cmd_vel_pub yet so we wait and try again") try: rate.sleep() except rospy.ROSInterruptException: # This is to avoid error when world is rested, time when backwards. pass rospy.logdebug("_cmd_vel_pub Publisher Connected") rospy.logdebug("All Publishers READY") # Methods that the TrainingEnvironment will need to define here as virtual # because they will be used in RobotGazeboEnv GrandParentClass and defined in the # TrainingEnvironment. # ---------------------------- def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() # Methods that the TrainingEnvironment will need. # ---------------------------- def move_base(self, linear_speed, angular_speed, epsilon=0.05, update_rate=10): """ It will move the base based on the linear and angular speeds given. It will wait untill those twists are achived reading from the odometry topic. :param linear_speed: Speed in the X axis of the robot base frame :param angular_speed: Speed of the angular turning of the robot base frame :param epsilon: Acceptable difference between the speed asked and the odometry readings :param update_rate: Rate at which we check the odometry. :return: """ cmd_vel_value = Twist() cmd_vel_value.linear.x = linear_speed cmd_vel_value.angular.z = angular_speed rospy.logdebug("Husarion Base Twist Cmd>>" + str(cmd_vel_value)) self._check_publishers_connection() self._cmd_vel_pub.publish(cmd_vel_value) self.wait_until_twist_achieved(cmd_vel_value, epsilon, update_rate) def wait_until_twist_achieved(self, cmd_vel_value, epsilon, update_rate, angular_speed_noise=0.005): """ We wait for the cmd_vel twist given to be reached by the robot reading Bare in mind that the angular wont be controled , because its too imprecise. We will only consider to check if its moving or not inside the angular_speed_noise fluctiations it has. from the odometry. :param cmd_vel_value: Twist we want to wait to reach. :param epsilon: Error acceptable in odometry readings. :param update_rate: Rate at which we check the odometry. :return: """ rospy.logwarn("START wait_until_twist_achieved...") rate = rospy.Rate(update_rate) start_wait_time = rospy.get_rostime().to_sec() end_wait_time = 0.0 rospy.logdebug("Desired Twist Cmd>>" + str(cmd_vel_value)) rospy.logdebug("epsilon>>" + str(epsilon)) linear_speed = cmd_vel_value.linear.x angular_speed = cmd_vel_value.angular.z angular_speed_is = self.check_angular_speed_dir( angular_speed, angular_speed_noise) linear_speed_plus = linear_speed + epsilon linear_speed_minus = linear_speed - epsilon while not rospy.is_shutdown(): current_odometry = self._check_odom_ready() odom_linear_vel = current_odometry.twist.twist.linear.x odom_angular_vel = current_odometry.twist.twist.angular.z rospy.logdebug("Linear VEL=" + str(odom_linear_vel) + ", ?RANGE=[" + str(linear_speed_minus) + ","+str(linear_speed_plus)+"]") rospy.logdebug("Angular VEL=" + str(odom_angular_vel) + ", angular_speed asked=[" + str(angular_speed)+"]") linear_vel_are_close = (odom_linear_vel <= linear_speed_plus) and ( odom_linear_vel > linear_speed_minus) odom_angular_speed_is = self.check_angular_speed_dir( odom_angular_vel, angular_speed_noise) # We check if its turning in the same diretion or has stopped angular_vel_are_close = (angular_speed_is == odom_angular_speed_is) if linear_vel_are_close and angular_vel_are_close: rospy.logwarn("Reached Velocity!") end_wait_time = rospy.get_rostime().to_sec() break rospy.logwarn("Not there yet, keep waiting...") rate.sleep() delta_time = end_wait_time - start_wait_time rospy.logdebug("[Wait Time=" + str(delta_time)+"]") rospy.logwarn("END wait_until_twist_achieved...") return delta_time def check_angular_speed_dir(self, angular_speed, angular_speed_noise): """ It States if the speed is zero, posititive or negative """ # We check if odom angular speed is positive or negative or "zero" if (-angular_speed_noise < angular_speed <= angular_speed_noise): angular_speed_is = 0 elif angular_speed > angular_speed_noise: angular_speed_is = 1 elif angular_speed <= angular_speed_noise: angular_speed_is = -1 else: angular_speed_is = 0 rospy.logerr("Angular Speed has wrong value=="+str(angular_speed)) def get_odom(self): return self.odom def get_camera_depth_image_raw(self): return self.camera_depth_image_raw def get_camera_depth_points(self): return self.camera_depth_points def get_camera_rgb_image_raw(self): return self.camera_rgb_image_raw def get_laser_scan(self): return self.laser_scan
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~task_envs~turtlebot3~turtlebot3_world.py
import rospy import numpy from gym import spaces from openai_ros.robot_envs import turtlebot3_env from gym.envs.registration import register from geometry_msgs.msg import Vector3 from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class TurtleBot3WorldEnv(turtlebot3_env.TurtleBot3Env): def __init__(self): """ This Task Env is designed for having the TurtleBot3 in the turtlebot3 world closed room with columns. It will learn how to move around without crashing. """ # This is the path where the simulation files, the Task and the Robot gits will be downloaded if not there ros_ws_abspath = rospy.get_param("/turtlebot3/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="turtlebot3_gazebo", launch_file_name="start_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/turtlebot3/config", yaml_file_name="turtlebot3_world.yaml") # Here we will add any init functions prior to starting the MyRobotEnv super(TurtleBot3WorldEnv, self).__init__(ros_ws_abspath) # Only variable needed to be set here number_actions = rospy.get_param('/turtlebot3/n_actions') self.action_space = spaces.Discrete(number_actions) # We set the reward range, which is not compulsory but here we do it. self.reward_range = (-numpy.inf, numpy.inf) #number_observations = rospy.get_param('/turtlebot3/n_observations') """ We set the Observation space for the 6 observations cube_observations = [ round(current_disk_roll_vel, 0), round(y_distance, 1), round(roll, 1), round(pitch, 1), round(y_linear_speed,1), round(yaw, 1), ] """ # Actions and Observations self.linear_forward_speed = rospy.get_param('/turtlebot3/linear_forward_speed') self.linear_turn_speed = rospy.get_param('/turtlebot3/linear_turn_speed') self.angular_speed = rospy.get_param('/turtlebot3/angular_speed') self.init_linear_forward_speed = rospy.get_param('/turtlebot3/init_linear_forward_speed') self.init_linear_turn_speed = rospy.get_param('/turtlebot3/init_linear_turn_speed') self.new_ranges = rospy.get_param('/turtlebot3/new_ranges') self.min_range = rospy.get_param('/turtlebot3/min_range') self.max_laser_value = rospy.get_param('/turtlebot3/max_laser_value') self.min_laser_value = rospy.get_param('/turtlebot3/min_laser_value') self.max_linear_aceleration = rospy.get_param('/turtlebot3/max_linear_aceleration') # We create two arrays based on the binary values that will be assigned # In the discretization method. laser_scan = self.get_laser_scan() num_laser_readings = len(laser_scan.ranges)/self.new_ranges high = numpy.full((num_laser_readings), self.max_laser_value) low = numpy.full((num_laser_readings), self.min_laser_value) # We only use two integers self.observation_space = spaces.Box(low, high) rospy.logdebug("ACTION SPACES TYPE===>"+str(self.action_space)) rospy.logdebug("OBSERVATION SPACES TYPE===>"+str(self.observation_space)) # Rewards self.forwards_reward = rospy.get_param("/turtlebot3/forwards_reward") self.turn_reward = rospy.get_param("/turtlebot3/turn_reward") self.end_episode_points = rospy.get_param("/turtlebot3/end_episode_points") self.cumulated_steps = 0.0 def _set_init_pose(self): """Sets the Robot in its init pose """ self.move_base( self.init_linear_forward_speed, self.init_linear_turn_speed, epsilon=0.05, update_rate=10) return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ # For Info Purposes self.cumulated_reward = 0.0 # Set to false Done, because its calculated asyncronously self._episode_done = False def _set_action(self, action): """ This set action will Set the linear and angular speed of the turtlebot2 based on the action number given. :param action: The action integer that set s what movement to do next. """ rospy.logdebug("Start Set Action ==>"+str(action)) # We convert the actions to speed movements to send to the parent class CubeSingleDiskEnv if action == 0: #FORWARD linear_speed = self.linear_forward_speed angular_speed = 0.0 self.last_action = "FORWARDS" elif action == 1: #LEFT linear_speed = self.linear_turn_speed angular_speed = self.angular_speed self.last_action = "TURN_LEFT" elif action == 2: #RIGHT linear_speed = self.linear_turn_speed angular_speed = -1*self.angular_speed self.last_action = "TURN_RIGHT" # We tell TurtleBot2 the linear and angular speed to set to execute self.move_base(linear_speed, angular_speed, epsilon=0.05, update_rate=10) rospy.logdebug("END Set Action ==>"+str(action)) def _get_obs(self): """ Here we define what sensor data defines our robots observations To know which Variables we have acces to, we need to read the TurtleBot2Env API DOCS :return: """ rospy.logdebug("Start Get Observation ==>") # We get the laser scan data laser_scan = self.get_laser_scan() discretized_observations = self.discretize_scan_observation( laser_scan, self.new_ranges ) rospy.logdebug("Observations==>"+str(discretized_observations)) rospy.logdebug("END Get Observation ==>") return discretized_observations def _is_done(self, observations): if self._episode_done: rospy.logerr("TurtleBot2 is Too Close to wall==>") else: rospy.logwarn("TurtleBot2 is NOT close to a wall ==>") # Now we check if it has crashed based on the imu imu_data = self.get_imu() linear_acceleration_magnitude = self.get_vector_magnitude(imu_data.linear_acceleration) if linear_acceleration_magnitude > self.max_linear_aceleration: rospy.logerr("TurtleBot2 Crashed==>"+str(linear_acceleration_magnitude)+">"+str(self.max_linear_aceleration)) self._episode_done = True else: rospy.logerr("DIDNT crash TurtleBot2 ==>"+str(linear_acceleration_magnitude)+">"+str(self.max_linear_aceleration)) return self._episode_done def _compute_reward(self, observations, done): if not done: if self.last_action == "FORWARDS": reward = self.forwards_reward else: reward = self.turn_reward else: reward = -1*self.end_episode_points rospy.logdebug("reward=" + str(reward)) self.cumulated_reward += reward rospy.logdebug("Cumulated_reward=" + str(self.cumulated_reward)) self.cumulated_steps += 1 rospy.logdebug("Cumulated_steps=" + str(self.cumulated_steps)) return reward # Internal TaskEnv Methods def discretize_scan_observation(self,data,new_ranges): """ Discards all the laser readings that are not multiple in index of new_ranges value. """ self._episode_done = False discretized_ranges = [] mod = len(data.ranges)/new_ranges rospy.logdebug("data=" + str(data)) rospy.logdebug("new_ranges=" + str(new_ranges)) rospy.logdebug("mod=" + str(mod)) for i, item in enumerate(data.ranges): if (i%mod==0): if item == float ('Inf') or numpy.isinf(item): discretized_ranges.append(self.max_laser_value) elif numpy.isnan(item): discretized_ranges.append(self.min_laser_value) else: discretized_ranges.append(int(item)) if (self.min_range > item > 0): rospy.logerr("done Validation >>> item=" + str(item)+"< "+str(self.min_range)) self._episode_done = True else: rospy.logdebug("NOT done Validation >>> item=" + str(item)+"< "+str(self.min_range)) return discretized_ranges def get_vector_magnitude(self, vector): """ It calculated the magnitude of the Vector3 given. This is usefull for reading imu accelerations and knowing if there has been a crash :return: """ contact_force_np = numpy.array((vector.x, vector.y, vector.z)) force_magnitude = numpy.linalg.norm(contact_force_np) return force_magnitude
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~robot_envs~hopper_env.py
import numpy import rospy import time from openai_ros import robot_gazebo_env from gazebo_msgs.msg import ContactsState from sensor_msgs.msg import Imu from nav_msgs.msg import Odometry from geometry_msgs.msg import Point, Quaternion, Vector3 from sensor_msgs.msg import JointState from std_msgs.msg import Float64 from openai_ros.openai_ros_common import ROSLauncher class HopperEnv(robot_gazebo_env.RobotGazeboEnv): """Superclass for all HopperEnv environments. """ def __init__(self, ros_ws_abspath): """ Initializes a new HopperEnv environment. To check any topic we need to have the simulations running, we need to do two things: 1) Unpause the simulation: without that th stream of data doesnt flow. This is for simulations that are pause for whatever the reason 2) If the simulation was running already for some reason, we need to reset the controlers. This has to do with the fact that some plugins with tf, dont understand the reset of the simulation and need to be reseted to work properly. The Sensors: The sensors accesible are the ones considered usefull for AI learning. Sensor Topic List: * /drone/down_camera/image_raw: RGB Camera facing down. * /drone/front_camera/image_raw: RGB Camera facing front. * /drone/imu: IMU of the drone giving acceleration and orientation relative to world. * /drone/sonar: Sonar readings facing front * /drone/gt_pose: Get position and orientation in Global space * /drone/gt_vel: Get the linear velocity , the angular doesnt record anything. Actuators Topic List: * /cmd_vel: Move the Drone Around when you have taken off. * /drone/takeoff: Publish into it to take off * /drone/land: Publish to make ParrotDrone Land Args: """ rospy.logdebug("Start HopperEnv INIT...") # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="legged_robots_sims", launch_file_name="put_hopper_in_world.launch", ros_ws_abspath=ros_ws_abspath) # Variables that we give through the constructor. # None in this case # Internal Vars # Doesnt have any accesibles self.controllers_list = ['joint_state_controller', 'haa_joint_position_controller', 'hfe_joint_position_controller', 'kfe_joint_position_controller'] # It doesnt use namespace self.robot_name_space = "monoped" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(HopperEnv, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=False, start_init_physics_parameters=False, reset_world_or_sim="WORLD") rospy.logdebug("HopperEnv unpause1...") self.gazebo.unpauseSim() # self.controllers_object.reset_controllers() self._check_all_systems_ready() # We Start all the ROS related Subscribers and publishers rospy.Subscriber("/odom", Odometry, self._odom_callback) # We use the IMU for orientation and linearacceleration detection rospy.Subscriber("/monoped/imu/data", Imu, self._imu_callback) # We use it to get the contact force, to know if its in the air or stumping too hard. rospy.Subscriber("/lowerleg_contactsensor_state", ContactsState, self._contact_callback) # We use it to get the joints positions and calculate the reward associated to it rospy.Subscriber("/monoped/joint_states", JointState, self._joints_state_callback) self.publishers_array = [] self._haa_joint_pub = rospy.Publisher( '/monoped/haa_joint_position_controller/command', Float64, queue_size=1) self._hfe_joint_pub = rospy.Publisher( '/monoped/hfe_joint_position_controller/command', Float64, queue_size=1) self._kfe_joint_pub = rospy.Publisher( '/monoped/kfe_joint_position_controller/command', Float64, queue_size=1) self.publishers_array.append(self._haa_joint_pub) self.publishers_array.append(self._hfe_joint_pub) self.publishers_array.append(self._kfe_joint_pub) self._check_all_publishers_ready() self.gazebo.pauseSim() rospy.logdebug("Finished HopperEnv INIT...") # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ rospy.logdebug("HopperEnv check_all_systems_ready...") self._check_all_sensors_ready() rospy.logdebug("END HopperEnv _check_all_systems_ready...") return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): rospy.logdebug("START ALL SENSORS READY") self._check_odom_ready() self._check_imu_ready() self._check_lowerleg_contactsensor_state_ready() self._check_joint_states_ready() rospy.logdebug("ALL SENSORS READY") def _check_odom_ready(self): self.odom = None rospy.logdebug("Waiting for /odom to be READY...") while self.odom is None and not rospy.is_shutdown(): try: self.odom = rospy.wait_for_message( "/odom", Odometry, timeout=1.0) rospy.logdebug("Current /odom READY=>") except: rospy.logerr( "Current /odom not ready yet, retrying for getting odom") return self.odom def _check_imu_ready(self): self.imu = None rospy.logdebug("Waiting for /monoped/imu/data to be READY...") while self.imu is None and not rospy.is_shutdown(): try: self.imu = rospy.wait_for_message( "/monoped/imu/data", Imu, timeout=1.0) rospy.logdebug("Current /monoped/imu/data READY=>") except: rospy.logerr( "Current /monoped/imu/data not ready yet, retrying for getting imu") return self.imu def _check_lowerleg_contactsensor_state_ready(self): self.lowerleg_contactsensor_state = None rospy.logdebug( "Waiting for /lowerleg_contactsensor_state to be READY...") while self.lowerleg_contactsensor_state is None and not rospy.is_shutdown(): try: self.lowerleg_contactsensor_state = rospy.wait_for_message( "/lowerleg_contactsensor_state", ContactsState, timeout=1.0) rospy.logdebug("Current /lowerleg_contactsensor_state READY=>") except: rospy.logerr( "Current /lowerleg_contactsensor_state not ready yet, retrying for getting lowerleg_contactsensor_state") return self.lowerleg_contactsensor_state def _check_joint_states_ready(self): self.joint_states = None rospy.logdebug("Waiting for /monoped/joint_states to be READY...") while self.joint_states is None and not rospy.is_shutdown(): try: self.joint_states = rospy.wait_for_message( "/monoped/joint_states", JointState, timeout=1.0) rospy.logdebug("Current /monoped/joint_states READY=>") except: rospy.logerr( "Current /monoped/joint_states not ready yet, retrying for getting joint_states") return self.joint_states def _odom_callback(self, data): self.odom = data def _imu_callback(self, data): self.imu = data def _contact_callback(self, data): self.lowerleg_contactsensor_state = data def _joints_state_callback(self, data): self.joint_states = data def _check_all_publishers_ready(self): """ Checks that all the publishers are working :return: """ rospy.logdebug("START ALL SENSORS READY") for publisher_object in self.publishers_array: self._check_pub_connection(publisher_object) rospy.logdebug("ALL SENSORS READY") def _check_pub_connection(self, publisher_object): rate = rospy.Rate(10) # 10hz while publisher_object.get_num_connections() == 0 and not rospy.is_shutdown(): rospy.logdebug( "No susbribers to publisher_object yet so we wait and try again") try: rate.sleep() except rospy.ROSInterruptException: # This is to avoid error when world is rested, time when backwards. pass rospy.logdebug("publisher_object Publisher Connected") rospy.logdebug("All Publishers READY") # Methods that the TrainingEnvironment will need to define here as virtual # because they will be used in RobotGazeboEnv GrandParentClass and defined in the # TrainingEnvironment. # ---------------------------- def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() # Methods that the TrainingEnvironment will need. # ---------------------------- def move_joints(self, joints_array, epsilon=0.05, update_rate=10, time_sleep=0.05, check_position=True): """ It will move the Hopper Joints to the given Joint_Array values """ i = 0 for publisher_object in self.publishers_array: joint_value = Float64() joint_value.data = joints_array[i] rospy.logdebug("JointsPos>>"+str(joint_value)) publisher_object.publish(joint_value) i += 1 if check_position: self.wait_time_for_execute_movement( joints_array, epsilon, update_rate) else: self.wait_time_movement_hard(time_sleep=time_sleep) def wait_time_for_execute_movement(self, joints_array, epsilon, update_rate): """ We wait until Joints are where we asked them to be based on the joints_states :param joints_array:Joints Values in radians of each of the three joints of hopper leg. :param epsilon: Error acceptable in odometry readings. :param update_rate: Rate at which we check the joint_states. :return: """ rospy.logdebug("START wait_until_twist_achieved...") rate = rospy.Rate(update_rate) start_wait_time = rospy.get_rostime().to_sec() end_wait_time = 0.0 rospy.logdebug("Desired JointsState>>" + str(joints_array)) rospy.logdebug("epsilon>>" + str(epsilon)) while not rospy.is_shutdown(): current_joint_states = self._check_joint_states_ready() values_to_check = [current_joint_states.position[0], current_joint_states.position[1], current_joint_states.position[2]] vel_values_are_close = self.check_array_similar( joints_array, values_to_check, epsilon) if vel_values_are_close: rospy.logdebug("Reached JointStates!") end_wait_time = rospy.get_rostime().to_sec() break rospy.logdebug("Not there yet, keep waiting...") rate.sleep() delta_time = end_wait_time - start_wait_time rospy.logdebug("[Wait Time=" + str(delta_time)+"]") rospy.logdebug("END wait_until_jointstate_achieved...") return delta_time def wait_time_movement_hard(self, time_sleep): """ Hard Wait to avoid inconsistencies in times executing actions """ rospy.logdebug("Test Wait="+str(time_sleep)) time.sleep(time_sleep) def check_array_similar(self, ref_value_array, check_value_array, epsilon): """ It checks if the check_value id similar to the ref_value """ rospy.logdebug("ref_value_array="+str(ref_value_array)) rospy.logdebug("check_value_array="+str(check_value_array)) return numpy.allclose(ref_value_array, check_value_array, atol=epsilon) def get_odom(self): return self.odom def get_imu(self): return self.imu def get_lowerleg_contactsensor_state(self): return self.lowerleg_contactsensor_state def get_joint_states(self): return self.joint_states
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~robot_envs~sumitxl_env.py
import numpy import rospy import time from openai_ros import robot_gazebo_env from std_msgs.msg import Float64 from sensor_msgs.msg import JointState from sensor_msgs.msg import Image from sensor_msgs.msg import LaserScan from sensor_msgs.msg import PointCloud2 from sensor_msgs.msg import Imu from sensor_msgs.msg import NavSatFix from nav_msgs.msg import Odometry from geometry_msgs.msg import Twist from geometry_msgs.msg import Vector3Stamped from openai_ros.openai_ros_common import ROSLauncher class SumitXlEnv(robot_gazebo_env.RobotGazeboEnv): """Superclass for all CubeSingleDisk environments. """ def __init__(self, ros_ws_abspath): """ Initializes a new SumitXlEnv environment. Execute a call to service /summit_xl/controller_manager/list_controllers To get the list of controllers to be restrarted To check any topic we need to have the simulations running, we need to do two things: 1) Unpause the simulation: without that th stream of data doesnt flow. This is for simulations that are pause for whatever the reason 2) If the simulation was running already for some reason, we need to reset the controlers. This has to do with the fact that some plugins with tf, dont understand the reset of the simulation and need to be reseted to work properly. The Sensors: The sensors accesible are the ones considered usefull for AI learning. Sensor Topic List: * /gps/fix : GPS position Data * /gps/fix_velocity: GPS Speed data * /hokuyo_base/scan: Laser Readings * /imu/data: Inertial Mesurment Unit data, orientation and acceleration * /orbbec_astra/depth/image_raw * /orbbec_astra/depth/points * /orbbec_astra/rgb/image_raw * /odom: Odometry Actuators Topic List: /cmd_vel, Args: """ print("Start SumitXlEnv INIT...") # Variables that we give through the constructor. # None in this case # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="summit_xl_gazebo", launch_file_name="put_summit_xl_in_world.launch", ros_ws_abspath=ros_ws_abspath) print("SPAWN DONE SumitXlEnv INIT...") # Internal Vars # Doesnt have any accesibles self.controllers_list = ["joint_read_state_controller", "joint_blw_velocity_controller", "joint_brw_velocity_controller", "joint_flw_velocity_controller", "joint_frw_velocity_controller" ] # It doesnt use namespace self.robot_name_space = "summit_xl" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv print("START OpenAIROS CORE SumitXlEnv INIT...") super(SumitXlEnv, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=False, start_init_physics_parameters=False, reset_world_or_sim="WORLD") print("DONE OpenAIROS CORE SumitXlEnv INIT...") self.gazebo.unpauseSim() # TODO: See why this doesnt work in Summit XL # self.controllers_object.reset_controllers() print("START CHECK SENSORS SumitXlEnv INIT...") self._check_all_sensors_ready() print("DONE CHECK SENSORS SumitXlEnv INIT...") # We Start all the ROS related Subscribers and publishers rospy.Subscriber("/gps/fix", NavSatFix, self._gps_fix_callback) rospy.Subscriber("/gps/fix_velocity", Vector3Stamped, self._gps_fix_velocity_callback) rospy.Subscriber("/orbbec_astra/depth/image_raw", Image, self._camera_depth_image_raw_callback) rospy.Subscriber("/orbbec_astra/depth/points", PointCloud2, self._camera_depth_points_callback) rospy.Subscriber("/orbbec_astra/rgb/image_raw", Image, self._camera_rgb_image_raw_callback) rospy.Subscriber("/hokuyo_base/scan", LaserScan, self._laser_scan_callback) rospy.Subscriber("/imu/data", Imu, self._imu_callback) rospy.Subscriber("/odom", Odometry, self._odom_callback) self._cmd_vel_pub = rospy.Publisher('/cmd_vel', Twist, queue_size=1) print("START CHECK PUBLISHERS SumitXlEnv INIT...") self._check_publishers_connection() print("DONE CHECK PUBLISHERS SumitXlEnv INIT...") self.gazebo.pauseSim() print("Finished SumitXlEnv INIT...") # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ self._check_all_sensors_ready() return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): print("START ALL SENSORS READY") self._check_gps_fix_ready() self._check_gps_fix_velocity_ready() self._check_camera_depth_image_raw_ready() self._check_camera_depth_points_ready() self._check_camera_rgb_image_raw_ready() self._check_odom_ready() self._check_imu_ready() self._check_laser_scan_ready() print("ALL SENSORS READY") def _check_gps_fix_ready(self): self.gps_fix = None print("Waiting for /gps/fix to be READY...") while self.gps_fix is None and not rospy.is_shutdown(): try: self.gps_fix = rospy.wait_for_message( "/gps/fix", NavSatFix, timeout=5.0) print("Current /gps/fix READY=>") except: rospy.logerr( "Current /gps/fix not ready yet, retrying for getting odom") return self.gps_fix def _check_gps_fix_velocity_ready(self): self.gps_fix_velocity = None print("Waiting for /gps/fix_velocity to be READY...") while self.gps_fix_velocity is None and not rospy.is_shutdown(): try: self.gps_fix_velocity = rospy.wait_for_message( "/gps/fix_velocity", Vector3Stamped, timeout=5.0) print("Current /gps/fix_velocity READY=>") except: rospy.logerr( "Current /gps/fix_velocity not ready yet, retrying for getting odom") return self.gps_fix_velocity def _check_camera_depth_image_raw_ready(self): self.camera_depth_image_raw = None print("Waiting for /orbbec_astra/depth/image_raw to be READY...") while self.camera_depth_image_raw is None and not rospy.is_shutdown(): try: self.camera_depth_image_raw = rospy.wait_for_message( "/orbbec_astra/depth/image_raw", Image, timeout=5.0) print("Current /orbbec_astra/depth/image_raw READY=>") except: rospy.logerr( "Current /orbbec_astra/depth/image_raw not ready yet, retrying for getting camera_depth_image_raw") return self.camera_depth_image_raw def _check_camera_depth_points_ready(self): self.camera_depth_points = None print("Waiting for /orbbec_astra/depth/points to be READY...") while self.camera_depth_points is None and not rospy.is_shutdown(): try: self.camera_depth_points = rospy.wait_for_message( "/orbbec_astra/depth/points", PointCloud2, timeout=10.0) print("Current /orbbec_astra/depth/points READY=>") except: rospy.logerr( "Current /orbbec_astra/depth/points not ready yet, retrying for getting camera_depth_points") return self.camera_depth_points def _check_camera_rgb_image_raw_ready(self): self.camera_rgb_image_raw = None print("Waiting for /orbbec_astra/rgb/image_raw to be READY...") while self.camera_rgb_image_raw is None and not rospy.is_shutdown(): try: self.camera_rgb_image_raw = rospy.wait_for_message( "/orbbec_astra/rgb/image_raw", Image, timeout=5.0) print("Current /orbbec_astra/rgb/image_raw READY=>") except: rospy.logerr( "Current /orbbec_astra/rgb/image_raw not ready yet, retrying for getting camera_rgb_image_raw") return self.camera_rgb_image_raw def _check_odom_ready(self): self.odom = None print("Waiting for /odom to be READY...") while self.odom is None and not rospy.is_shutdown(): try: self.odom = rospy.wait_for_message( "/odom", Odometry, timeout=0.5) print("Current /odom READY=>") except: rospy.logerr( "Current /odom not ready yet, retrying for getting odom") return self.odom def _check_imu_ready(self): self.imu = None print("Waiting for /imu/data to be READY...") while self.imu is None and not rospy.is_shutdown(): try: self.imu = rospy.wait_for_message( "/imu/data", Imu, timeout=5.0) print("Current /imu/data READY=>") except: rospy.logerr( "Current /imu/data not ready yet, retrying for getting imu") return self.imu def _check_laser_scan_ready(self): self.laser_scan = None print("Waiting for /hokuyo_base/scan to be READY...") while self.laser_scan is None and not rospy.is_shutdown(): try: self.laser_scan = rospy.wait_for_message( "/hokuyo_base/scan", LaserScan, timeout=1.0) print("Current /hokuyo_base/scan READY=>") except: rospy.logerr( "Current /hokuyo_base/scan not ready yet, retrying for getting laser_scan") return self.laser_scan def _gps_fix_callback(self, data): self.gps_fix = data def _gps_fix_velocity_callback(self, data): self.gps_fix_velocity = data def _camera_depth_image_raw_callback(self, data): self.camera_depth_image_raw = data def _camera_depth_points_callback(self, data): self.camera_depth_points = data def _camera_rgb_image_raw_callback(self, data): self.camera_rgb_image_raw = data def _odom_callback(self, data): self.odom = data def _imu_callback(self, data): self.imu = data def _laser_scan_callback(self, data): self.laser_scan = data def _check_publishers_connection(self): """ Checks that all the publishers are working :return: """ rate = rospy.Rate(10) # 10hz while self._cmd_vel_pub.get_num_connections() == 0 and not rospy.is_shutdown(): print("No susbribers to _cmd_vel_pub yet so we wait and try again") try: rate.sleep() except rospy.ROSInterruptException: # This is to avoid error when world is rested, time when backwards. pass print("_cmd_vel_pub Publisher Connected") print("All Publishers READY") # Methods that the TrainingEnvironment will need to define here as virtual # because they will be used in RobotGazeboEnv GrandParentClass and defined in the # TrainingEnvironment. # ---------------------------- def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() # Methods that the TrainingEnvironment will need. # ---------------------------- def move_base(self, linear_speed, angular_speed, epsilon=0.05, update_rate=10): """ It will move the base based on the linear and angular speeds given. It will wait untill those twists are achived reading from the odometry topic. :param linear_speed: Speed in the X axis of the robot base frame :param angular_speed: Speed of the angular turning of the robot base frame :param epsilon: Acceptable difference between the speed asked and the odometry readings :param update_rate: Rate at which we check the odometry. :return: """ cmd_vel_value = Twist() cmd_vel_value.linear.x = linear_speed cmd_vel_value.angular.z = angular_speed print("SumitXL Base Twist Cmd>>" + str(cmd_vel_value)) self._check_publishers_connection() self._cmd_vel_pub.publish(cmd_vel_value) time.sleep(0.2) """ self.wait_until_twist_achieved(cmd_vel_value, epsilon, update_rate) """ def wait_until_twist_achieved(self, cmd_vel_value, epsilon, update_rate): """ We wait for the cmd_vel twist given to be reached by the robot reading from the odometry. :param cmd_vel_value: Twist we want to wait to reach. :param epsilon: Error acceptable in odometry readings. :param update_rate: Rate at which we check the odometry. :return: """ print("START wait_until_twist_achieved...") rate = rospy.Rate(update_rate) start_wait_time = rospy.get_rostime().to_sec() end_wait_time = 0.0 print("Desired Twist Cmd>>" + str(cmd_vel_value)) print("epsilon>>" + str(epsilon)) linear_speed = cmd_vel_value.linear.x angular_speed = cmd_vel_value.angular.z linear_speed_plus = linear_speed + epsilon linear_speed_minus = linear_speed - epsilon # Correcting factor for angular based on observations angular_factor = 2.0 epsilon_angular_factor = 6.0 angular_speed_plus = (angular_factor * angular_speed) + \ (epsilon * epsilon_angular_factor) angular_speed_minus = (angular_factor * angular_speed) - \ (epsilon * epsilon_angular_factor) while not rospy.is_shutdown(): current_odometry = self._check_odom_ready() odom_linear_vel = current_odometry.twist.twist.linear.x """ When asking to turn EX: angular.Z = 0.3 --> Odometry is 0.6 In linera runs ok. It also flutuates a lot, due to the turning through friction. Therefore we will have to multiply the angular by 2 and broaden the accepted error for angular. """ odom_angular_vel = current_odometry.twist.twist.angular.z print("Linear VEL=" + str(odom_linear_vel) + ", ?RANGE=[" + str(linear_speed_minus) + ","+str(linear_speed_plus)+"]") print("Angular VEL=" + str(odom_angular_vel) + ", ?RANGE=[" + str(angular_speed_minus) + ","+str(angular_speed_plus)+"]") linear_vel_are_close = (odom_linear_vel <= linear_speed_plus) and ( odom_linear_vel > linear_speed_minus) angular_vel_are_close = (odom_angular_vel <= angular_speed_plus) and ( odom_angular_vel > angular_speed_minus) if linear_vel_are_close and angular_vel_are_close: print("Reached Velocity!") end_wait_time = rospy.get_rostime().to_sec() break print("Not there yet, keep waiting...") rate.sleep() delta_time = end_wait_time - start_wait_time print("[Wait Time=" + str(delta_time)+"]") print("END wait_until_twist_achieved...") return delta_time def get_gps_fix(self): return self.gps_fix def get_gps_fix_velocity(self): return self.gps_fix_velocity def get_laser_scan(self): return self.laser_scan def get_camera_depth_image_raw(self): return self.camera_depth_image_raw def get_camera_depth_points(self): return self.camera_depth_points def get_camera_rgb_image_raw(self): return self.camera_rgb_image_raw def get_odom(self): return self.odom def get_imu(self): return self.imu
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~competition_rl~scripts~multiAgentChallengeTaskEnv.py
from gym import spaces from openai_ros import multi_robot_gazebo_env from gym.envs.registration import register import rospy import numpy from gazebo_msgs.srv import SetModelState from gazebo_msgs.msg import ModelState import robot_instance # The path is __init__.py of openai_ros, where we import the MovingCubeOneDiskWalkEnv directly timestep_limit_per_episode = 1000 # Can be any Value register( id='AiChallengeEnv-v1', entry_point='multiAgentChallengeTaskEnv:MultiAgentAiChallengeEnv', max_episode_steps = timestep_limit_per_episode, ) class MultiAgentAiChallengeEnv(multi_robot_gazebo_env.MultiRobotGazeboEnv): def __init__(self, **kwargs): self.robot0 = robot_instance.AiRobot(robot_ns="jackal0", init_x=rospy.get_param('start_training/jackal0/x'), init_y=rospy.get_param('start_training/jackal0/y'), init_yaw=rospy.get_param('start_training/jackal0/yaw')) # print('robot1 spawn') # self.robot1 = challengeTaskEnv.AiChallengeEnv(robot_ns="jackal1", init_x=0.7, init_y=4.7, init_yaw=0) # print('robot2 spawn') # self.robot2 = challengeTaskEnv.AiChallengeEnv(robot_ns="jackal2", init_x=7.5, init_y=4.6, init_yaw=3.14) # print('robot3 spawn') # self.robot3 = challengeTaskEnv.AiChallengeEnv(robot_ns="jackal3", init_x=7.5, init_y=0.6, init_yaw=3.14) super(MultiAgentAiChallengeEnv, self).__init__(start_init_physics_parameters=True) def _set_init_gazebo_pose(self): """Sets the Robot in its init pose in Gazebo """ self.robot0._set_init_gazebo_pose() # self.robot1._set_init_pose() # self.robot2._set_init_pose() def _set_init_ros(self): """Sets the Robot in its init pose in ROS """ self.robot0._set_init_ros() self.robot0._set_init_ros() # self.robot1._set_init_pose() # self.robot2._set_init_pose() def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ # pass self.robot0._check_all_systems_ready() def _get_obs(self): """Returns the observation. """ pass def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ pass def _set_action(self, action): """Applies the given action to the simulation. """ self.robot0._set_action(action) def _is_done(self, observations): """Indicates whether or not the episode is done ( the robot has fallen for example). """ done=False return done def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ reward=0 return reward # def _env_setup(self, initial_qpos): # """Initial configuration of the environment. Can be used to configure initial state # and extract information from the simulation. # """ # raise NotImplementedError()
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~task_envs~cartpole_stay_up~stay_up.py
from gym import utils from openai_ros.robot_envs import cartpole_env from gym.envs.registration import register from gym import error, spaces import rospy import math import numpy as np from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class CartPoleStayUpEnv(cartpole_env.CartPoleEnv): def __init__(self): ros_ws_abspath = rospy.get_param("/cartpole_v0/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="cartpole_description", launch_file_name="start_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/cartpole_stay_up/config", yaml_file_name="stay_up.yaml") self.get_params() self.action_space = spaces.Discrete(self.n_actions) high = np.array([ 2.5 * 2, np.finfo(np.float32).max, 0.7 * 2, np.finfo(np.float32).max]) self.observation_space = spaces.Box(-high, high) # TODO: Remove when working """ cartpole_env.CartPoleEnv.__init__( self, control_type=self.control_type ) """ # Here we will add any init functions prior to starting the MyRobotEnv super(CartPoleStayUpEnv, self).__init__(control_type=self.control_type, ros_ws_abspath=ros_ws_abspath) def get_params(self): # get configuration parameters self.n_actions = rospy.get_param('/cartpole_v0/n_actions') self.min_pole_angle = rospy.get_param('/cartpole_v0/min_pole_angle') self.max_pole_angle = rospy.get_param('/cartpole_v0/max_pole_angle') self.max_base_velocity = rospy.get_param( '/cartpole_v0/max_base_velocity') self.min_base_pose_x = rospy.get_param('/cartpole_v0/min_base_pose_x') self.max_base_pose_x = rospy.get_param('/cartpole_v0/max_base_pose_x') self.pos_step = rospy.get_param('/cartpole_v0/pos_step') self.running_step = rospy.get_param('/cartpole_v0/running_step') self.init_pos = rospy.get_param('/cartpole_v0/init_pos') self.wait_time = rospy.get_param('/cartpole_v0/wait_time') self.control_type = rospy.get_param('/cartpole_v0/control_type') def _set_action(self, action): # Take action if action == 0: # LEFT rospy.loginfo("GO LEFT...") self.pos[0] -= self.pos_step elif action == 1: # RIGHT rospy.loginfo("GO RIGHT...") self.pos[0] += self.pos_step elif action == 2: # LEFT BIG rospy.loginfo("GO LEFT BIG...") self.pos[0] -= self.pos_step * 10 elif action == 3: # RIGHT BIG rospy.loginfo("GO RIGHT BIG...") self.pos[0] += self.pos_step * 10 # Apply action to simulation. rospy.loginfo("MOVING TO POS=="+str(self.pos)) # 1st: unpause simulation #rospy.logdebug("Unpause SIM...") # self.gazebo.unpauseSim() self.move_joints(self.pos) rospy.logdebug( "Wait for some time to execute movement, time="+str(self.running_step)) rospy.sleep(self.running_step) # wait for some time rospy.logdebug( "DONE Wait for some time to execute movement, time=" + str(self.running_step)) # 3rd: pause simulation #rospy.logdebug("Pause SIM...") # self.gazebo.pauseSim() def _get_obs(self): data = self.joints # base_postion base_velocity pole angle pole velocity #obs = [round(data.position[1],1), round(data.velocity[1],1), round(data.position[0],1), round(data.velocity[0],1)] obs = [data.position[1], data.velocity[1], data.position[0], data.velocity[0]] return np.array(obs) def _is_done(self, observations): done = False data = self.joints rospy.loginfo("BASEPOSITION=="+str(observations[0])) rospy.loginfo("POLE ANGLE==" + str(observations[2])) # check if the base is still within the ranges of (-2, 2) if (self.min_base_pose_x >= observations[0] or observations[0] >= self.max_base_pose_x): rospy.logerr("Base Outside Limits==>min="+str(self.min_base_pose_x) + ",pos="+str(observations[0])+",max="+str(self.max_base_pose_x)) done = True # check if pole has toppled over if (self.min_pole_angle >= observations[2] or observations[2] >= self.max_pole_angle): rospy.logerr( "Pole Angle Outside Limits==>min=" + str(self.min_pole_angle) + ",pos=" + str(observations[2]) + ",max=" + str( self.max_pole_angle)) done = True rospy.loginfo("FINISHED get _is_done") return done def _compute_reward(self, observations, done): """ Gives more points for staying upright, gets data from given observations to avoid having different data than other previous functions :return:reward """ rospy.logdebug("START _compute_reward") if not done: reward = 1.0 elif self.steps_beyond_done is None: # Pole just fell! self.steps_beyond_done = 0 reward = 1.0 else: if self.steps_beyond_done == 0: logger.warning("You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.") self.steps_beyond_done += 1 reward = 0.0 rospy.logdebug("END _compute_reward") return reward def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ self.steps_beyond_done = None def _set_init_pose(self): """ Sets joints to initial position [0,0,0] :return: """ self.check_publishers_connection() # Reset Internal pos variable self.init_internal_vars(self.init_pos) self.move_joints(self.pos)
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~task_envs~hopper~hopper_stay_up.py
import rospy import numpy from gym import spaces from openai_ros.robot_envs import hopper_env from gym.envs.registration import register from geometry_msgs.msg import Point from geometry_msgs.msg import Vector3 from tf.transformations import euler_from_quaternion from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class HopperStayUpEnv(hopper_env.HopperEnv): def __init__(self): """ Make Hopper Learn how to Stay Up indefenitly """ # Only variable needed to be set here """ For this version, we consider 6 actions 1-2) Increment/Decrement haa_joint 3-4) Increment/Decrement hfe_joint 5-6) Increment/Decrement kfe_joint """ rospy.logdebug("Start HopperStayUpEnv INIT...") # This is the path where the simulation files, the Task and the Robot gits will be downloaded if not there ros_ws_abspath = rospy.get_param("/monoped/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="legged_robots_sims", launch_file_name="start_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/hopper/config", yaml_file_name="hopper_stay_up.yaml") number_actions = rospy.get_param('/monoped/n_actions') self.action_space = spaces.Discrete(number_actions) # We set the reward range, which is not compulsory but here we do it. self.reward_range = (-numpy.inf, numpy.inf) # Actions and Observations self.init_joint_states = Vector3() self.init_joint_states.x = rospy.get_param( '/monoped/init_joint_states/haa_joint') self.init_joint_states.y = rospy.get_param( '/monoped/init_joint_states/hfe_joint') self.init_joint_states.z = rospy.get_param( '/monoped/init_joint_states/kfe_joint') # Get Desired Point to Get self.desired_point = Point() self.desired_point.x = rospy.get_param("/monoped/desired_point/x") self.desired_point.y = rospy.get_param("/monoped/desired_point/y") self.desired_point.z = rospy.get_param("/monoped/desired_point/z") self.accepted_error_in_des_pos = rospy.get_param( "/monoped/accepted_error_in_des_pos") self.desired_yaw = rospy.get_param("/monoped/desired_yaw") self.joint_increment_value = rospy.get_param( "/monoped/joint_increment_value") self.init_move_time = rospy.get_param("/monoped/init_move_time", 1.0) self.move_time = rospy.get_param("/monoped/move_time", 0.05) self.check_position = rospy.get_param("/monoped/check_position", True) self.accepted_joint_error = rospy.get_param( "/monoped/accepted_joint_error") self.update_rate = rospy.get_param("/monoped/update_rate") self.dec_obs = rospy.get_param( "/monoped/number_decimals_precision_obs") self.desired_force = rospy.get_param("/monoped/desired_force") self.max_x_pos = rospy.get_param("/monoped/max_x_pos") self.max_y_pos = rospy.get_param("/monoped/max_y_pos") self.min_height = rospy.get_param("/monoped/min_height") self.max_height = rospy.get_param("/monoped/max_height") self.distance_from_desired_point_max = rospy.get_param( "/monoped/distance_from_desired_point_max") self.max_incl_roll = rospy.get_param("/monoped/max_incl") self.max_incl_pitch = rospy.get_param("/monoped/max_incl") self.max_contact_force = rospy.get_param("/monoped/max_contact_force") self.maximum_haa_joint = rospy.get_param("/monoped/maximum_haa_joint") self.maximum_hfe_joint = rospy.get_param("/monoped/maximum_hfe_joint") self.maximum_kfe_joint = rospy.get_param("/monoped/maximum_kfe_joint") self.min_kfe_joint = rospy.get_param("/monoped/min_kfe_joint") # We place the Maximum and minimum values of observations self.joint_ranges_array = {"maximum_haa": self.maximum_haa_joint, "minimum_haa_joint": -self.maximum_haa_joint, "maximum_hfe_joint": self.maximum_hfe_joint, "minimum_hfe_joint": self.maximum_hfe_joint, "maximum_kfe_joint": self.maximum_kfe_joint, "min_kfe_joint": self.min_kfe_joint } high = numpy.array([self.distance_from_desired_point_max, self.max_incl_roll, self.max_incl_pitch, 3.14, self.max_contact_force, self.maximum_haa_joint, self.maximum_hfe_joint, self.maximum_kfe_joint, self.max_x_pos, self.max_y_pos, self.max_height ]) low = numpy.array([0.0, -1*self.max_incl_roll, -1*self.max_incl_pitch, -1*3.14, 0.0, -1*self.maximum_haa_joint, -1*self.maximum_hfe_joint, self.min_kfe_joint, -1*self.max_x_pos, -1*self.max_y_pos, self.min_height ]) self.observation_space = spaces.Box(low, high) rospy.logdebug("ACTION SPACES TYPE===>"+str(self.action_space)) rospy.logdebug("OBSERVATION SPACES TYPE===>" + str(self.observation_space)) # Rewards self.weight_joint_position = rospy.get_param( "/monoped/rewards_weight/weight_joint_position") self.weight_contact_force = rospy.get_param( "/monoped/rewards_weight/weight_contact_force") self.weight_orientation = rospy.get_param( "/monoped/rewards_weight/weight_orientation") self.weight_distance_from_des_point = rospy.get_param( "/monoped/rewards_weight/weight_distance_from_des_point") self.alive_reward = rospy.get_param("/monoped/alive_reward") self.done_reward = rospy.get_param("/monoped/done_reward") # Here we will add any init functions prior to starting the MyRobotEnv super(HopperStayUpEnv, self).__init__(ros_ws_abspath) rospy.logdebug("END HopperStayUpEnv INIT...") def _set_init_pose(self): """ Sets the Robot in its init linear and angular speeds and lands the robot. Its preparing it to be reseted in the world. """ joints_array = [self.init_joint_states.x, self.init_joint_states.y, self.init_joint_states.z] self.move_joints(joints_array, epsilon=self.accepted_joint_error, update_rate=self.update_rate, time_sleep=self.init_move_time, check_position=self.check_position) return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ # For Info Purposes self.cumulated_reward = 0.0 # We get the initial pose to mesure the distance from the desired point. odom = self.get_odom() self.previous_distance_from_des_point = self.get_distance_from_desired_point( odom.pose.pose.position) def _set_action(self, action): """ It sets the joints of monoped based on the action integer given based on the action number given. :param action: The action integer that sets what movement to do next. """ rospy.logdebug("Start Set Action ==>"+str(action)) # We get current Joints values joint_states = self.get_joint_states() joint_states_position = joint_states.position rospy.logdebug("get_action_to_position>>>"+str(joint_states_position)) action_position = [0.0, 0.0, 0.0] rospy.logdebug( "OLD-JOINT-STATE [haa,hfa,kfe]>>>"+str(joint_states_position)) if action == 0: # Increment haa_joint rospy.logdebug("Increment haa_joint") action_position[0] = joint_states_position[0] + \ self.joint_increment_value action_position[1] = joint_states_position[1] action_position[2] = joint_states_position[2] elif action == 1: # Decrement haa_joint rospy.logdebug("Decrement haa_joint") action_position[0] = joint_states_position[0] - \ self.joint_increment_value action_position[1] = joint_states_position[1] action_position[2] = joint_states_position[2] elif action == 2: # Increment hfe_joint rospy.logdebug("Increment hfe_joint") action_position[0] = joint_states_position[0] action_position[1] = joint_states_position[1] + \ self.joint_increment_value action_position[2] = joint_states_position[2] elif action == 3: # Decrement hfe_joint rospy.logdebug("Decrement hfe_joint") action_position[0] = joint_states_position[0] action_position[1] = joint_states_position[1] - \ self.joint_increment_value action_position[2] = joint_states_position[2] elif action == 4: # Increment kfe_joint rospy.logdebug("Increment kfe_joint") action_position[0] = joint_states_position[0] action_position[1] = joint_states_position[1] action_position[2] = joint_states_position[2] + \ self.joint_increment_value elif action == 5: # Decrement kfe_joint rospy.logdebug("Decrement kfe_joint") action_position[0] = joint_states_position[0] action_position[1] = joint_states_position[1] action_position[2] = joint_states_position[2] - \ self.joint_increment_value rospy.logdebug("NEW-JOINT-STATE [haa,hfa,kfe]>>>"+str(action_position)) rospy.logdebug("JOINT-RANGES>>>"+str(self.joint_ranges_array)) rospy.logdebug("START ACTION EXECUTE>>>"+str(action)) # We tell monoped where to place its joints next self.move_joints(action_position, epsilon=self.accepted_joint_error, update_rate=self.update_rate, time_sleep=self.move_time, check_position=self.check_position) rospy.logdebug("END ACTION EXECUTE>>>"+str(action)) rospy.logdebug("END Set Action ==>"+str(action)) def _get_obs(self): """ Here we define what sensor data defines our robots observations To know which Variables we have access to, we need to read the HopperEnv API DOCS Returns the state of the robot needed for OpenAI QLearn Algorithm The state will be defined by an array of the: 1) distance from desired point in meters 2) The pitch orientation in radians 3) the Roll orientation in radians 4) the Yaw orientation in radians 5) Force in contact sensor in Newtons 6-7-8) State of the 3 joints in radians 9) Height of the Base observation = [distance_from_desired_point, base_roll, base_pitch, base_yaw, force_magnitude, joint_states_haa, joint_states_hfe, joint_states_kfe, height_base] :return: observation """ rospy.logdebug("Start Get Observation ==>") distance_from_desired_point = self.get_distance_from_desired_point( self.desired_point) base_orientation = self.get_base_rpy() base_roll = base_orientation.x base_pitch = base_orientation.y base_yaw = base_orientation.z force_magnitude = self.get_contact_force_magnitude() joint_states = self.get_joint_states() joint_states_haa = joint_states.position[0] joint_states_hfe = joint_states.position[1] joint_states_kfe = joint_states.position[2] odom = self.get_odom() base_position = odom.pose.pose.position observation = [] observation.append(round(distance_from_desired_point, self.dec_obs)) observation.append(round(base_roll, self.dec_obs)) observation.append(round(base_pitch, self.dec_obs)) observation.append(round(base_yaw, self.dec_obs)) observation.append(round(force_magnitude, self.dec_obs)) observation.append(round(joint_states_haa, self.dec_obs)) observation.append(round(joint_states_hfe, self.dec_obs)) observation.append(round(joint_states_kfe, self.dec_obs)) observation.append(round(base_position.x, self.dec_obs)) observation.append(round(base_position.y, self.dec_obs)) observation.append(round(base_position.z, self.dec_obs)) # height return observation def _is_done(self, observations): """ We consider the episode done if: 1) The Monopeds height is lower than a threshhold 2) The Orientation is outside a threshold """ height_base = observations[10] monoped_height_ok = self.monoped_height_ok(height_base) monoped_orientation_ok = self.monoped_orientation_ok() done = not(monoped_height_ok and monoped_orientation_ok) return done def _compute_reward(self, observations, done): """ We Base the rewards in if its done or not and we base it on the joint poisition, effort, contact force, orientation and distance from desired point. :return: """ joints_state_array = observations[5:8] r1 = self.calculate_reward_joint_position( joints_state_array, self.weight_joint_position) # Desired Force in Newtons, taken form idle contact with 9.81 gravity. force_magnitude = observations[4] r2 = self.calculate_reward_contact_force( force_magnitude, self.weight_contact_force) rpy_array = observations[1:4] r3 = self.calculate_reward_orientation( rpy_array, self.weight_orientation) current_position = Point() current_position.x = observations[8] current_position.y = observations[9] current_position.z = observations[10] r4 = self.calculate_reward_distance_from_des_point( current_position, self.weight_distance_from_des_point) # The sign depend on its function. total_reward = self.alive_reward - r1 - r2 - r3 - r4 rospy.logdebug("###############") rospy.logdebug("alive_bonus=" + str(self.alive_reward)) rospy.logdebug("r1 joint_position=" + str(r1)) rospy.logdebug("r2 contact_force=" + str(r2)) rospy.logdebug("r3 orientation=" + str(r3)) rospy.logdebug("r4 distance=" + str(r4)) rospy.logdebug("total_reward=" + str(total_reward)) rospy.logdebug("###############") return total_reward # Internal TaskEnv Methods def is_in_desired_position(self, current_position, epsilon=0.05): """ It return True if the current position is similar to the desired poistion """ is_in_desired_pos = False x_pos_plus = self.desired_point.x + epsilon x_pos_minus = self.desired_point.x - epsilon y_pos_plus = self.desired_point.y + epsilon y_pos_minus = self.desired_point.y - epsilon x_current = current_position.x y_current = current_position.y x_pos_are_close = (x_current <= x_pos_plus) and ( x_current > x_pos_minus) y_pos_are_close = (y_current <= y_pos_plus) and ( y_current > y_pos_minus) is_in_desired_pos = x_pos_are_close and y_pos_are_close rospy.logdebug("###### IS DESIRED POS ? ######") rospy.logdebug("current_position"+str(current_position)) rospy.logdebug("x_pos_plus"+str(x_pos_plus) + ",x_pos_minus="+str(x_pos_minus)) rospy.logdebug("y_pos_plus"+str(y_pos_plus) + ",y_pos_minus="+str(y_pos_minus)) rospy.logdebug("x_pos_are_close"+str(x_pos_are_close)) rospy.logdebug("y_pos_are_close"+str(y_pos_are_close)) rospy.logdebug("is_in_desired_pos"+str(is_in_desired_pos)) rospy.logdebug("############") return is_in_desired_pos def is_inside_workspace(self, current_position): """ Check if the monoped is inside the Workspace defined """ is_inside = False rospy.logdebug("##### INSIDE WORK SPACE? #######") rospy.logdebug("XYZ current_position"+str(current_position)) rospy.logdebug("work_space_x_max"+str(self.work_space_x_max) + ",work_space_x_min="+str(self.work_space_x_min)) rospy.logdebug("work_space_y_max"+str(self.work_space_y_max) + ",work_space_y_min="+str(self.work_space_y_min)) rospy.logdebug("work_space_z_max"+str(self.work_space_z_max) + ",work_space_z_min="+str(self.work_space_z_min)) rospy.logdebug("############") if current_position.x > self.work_space_x_min and current_position.x <= self.work_space_x_max: if current_position.y > self.work_space_y_min and current_position.y <= self.work_space_y_max: if current_position.z > self.work_space_z_min and current_position.z <= self.work_space_z_max: is_inside = True return is_inside def sonar_detected_something_too_close(self, sonar_value): """ Detects if there is something too close to the monoped front """ rospy.logdebug("##### SONAR TOO CLOSE? #######") rospy.logdebug("sonar_value"+str(sonar_value) + ",min_sonar_value="+str(self.min_sonar_value)) rospy.logdebug("############") too_close = sonar_value < self.min_sonar_value return too_close def monoped_has_flipped(self, current_orientation): """ Based on the orientation RPY given states if the monoped has flipped """ has_flipped = True self.max_roll = rospy.get_param("/monoped/max_roll") self.max_pitch = rospy.get_param("/monoped/max_pitch") rospy.logdebug("#### HAS FLIPPED? ########") rospy.logdebug("RPY current_orientation"+str(current_orientation)) rospy.logdebug("max_roll"+str(self.max_roll) + ",min_roll="+str(-1*self.max_roll)) rospy.logdebug("max_pitch"+str(self.max_pitch) + ",min_pitch="+str(-1*self.max_pitch)) rospy.logdebug("############") if current_orientation.x > -1*self.max_roll and current_orientation.x <= self.max_roll: if current_orientation.y > -1*self.max_pitch and current_orientation.y <= self.max_pitch: has_flipped = False return has_flipped def get_distance_from_desired_point(self, current_position): """ Calculates the distance from the current position to the desired point :param start_point: :return: """ distance = self.get_distance_from_point(current_position, self.desired_point) return distance def get_distance_from_point(self, pstart, p_end): """ Given a Vector3 Object, get distance from current position :param p_end: :return: """ a = numpy.array((pstart.x, pstart.y, pstart.z)) b = numpy.array((p_end.x, p_end.y, p_end.z)) distance = numpy.linalg.norm(a - b) return distance def get_orientation_euler(self, quaternion_vector): # We convert from quaternions to euler orientation_list = [quaternion_vector.x, quaternion_vector.y, quaternion_vector.z, quaternion_vector.w] roll, pitch, yaw = euler_from_quaternion(orientation_list) return roll, pitch, yaw def get_base_rpy(self): imu = self.get_imu() base_orientation = imu.orientation euler_rpy = Vector3() euler = euler_from_quaternion([base_orientation.x, base_orientation.y, base_orientation.z, base_orientation.w] ) euler_rpy.x = euler[0] euler_rpy.y = euler[1] euler_rpy.z = euler[2] return euler_rpy def get_contact_force_magnitude(self): """ You will see that because the X axis is the one pointing downwards, it will be the one with higher value when touching the floor For a Robot of total mas of 0.55Kg, a gravity of 9.81 m/sec**2, Weight = 0.55*9.81=5.39 N Falling from around 5centimetres ( negligible height ), we register peaks around Fx = 7.08 N :return: """ # We get the Contact Sensor data lowerleg_contactsensor_state = self.get_lowerleg_contactsensor_state() # We extract what we need that is only the total_wrench force contact_force = self.get_contact_force(lowerleg_contactsensor_state) # We create an array with each component XYZ contact_force_np = numpy.array( (contact_force.x, contact_force.y, contact_force.z)) # We calculate the magnitude of the Force Vector, array. force_magnitude = numpy.linalg.norm(contact_force_np) return force_magnitude def get_contact_force(self, lowerleg_contactsensor_state): """ /lowerleg_contactsensor_state/states[0]/contact_positions ==> PointContact in World /lowerleg_contactsensor_state/states[0]/contact_normals ==> NormalContact in World ==> One is an array of all the forces, the other total, and are relative to the contact link referred to in the sensor. /lowerleg_contactsensor_state/states[0]/wrenches[] /lowerleg_contactsensor_state/states[0]/total_wrench :return: """ # We create an empty element , in case there is no contact. contact_force = Vector3() for state in lowerleg_contactsensor_state.states: self.contact_force = state.total_wrench.force return contact_force def monoped_height_ok(self, height_base): height_ok = self.min_height <= height_base < self.max_height return height_ok def monoped_orientation_ok(self): orientation_rpy = self.get_base_rpy() roll_ok = self.max_incl_roll > abs(orientation_rpy.x) pitch_ok = self.max_incl_pitch > abs(orientation_rpy.y) orientation_ok = roll_ok and pitch_ok return orientation_ok def calculate_reward_joint_position(self, joints_state_array, weight=1.0): """ We calculate reward base on the joints configuration. The more near 0 the better. :return: """ acumulated_joint_pos = 0.0 for joint_pos in joints_state_array: # Abs to remove sign influence, it doesnt matter the direction of turn. acumulated_joint_pos += abs(joint_pos) rospy.logdebug( "calculate_reward_joint_position>>acumulated_joint_pos=" + str(acumulated_joint_pos)) reward = weight * acumulated_joint_pos rospy.logdebug( "calculate_reward_joint_position>>reward=" + str(reward)) return reward def calculate_reward_contact_force(self, force_magnitude, weight=1.0): """ We calculate reward base on the contact force. The nearest to the desired contact force the better. We use exponential to magnify big departures from the desired force. Default ( 7.08 N ) desired force was taken from reading of the robot touching the ground from a negligible height of 5cm. :return: """ force_displacement = force_magnitude - self.desired_force rospy.logdebug( "calculate_reward_contact_force>>force_magnitude=" + str(force_magnitude)) rospy.logdebug( "calculate_reward_contact_force>>force_displacement=" + str(force_displacement)) # Abs to remove sign reward = weight * abs(force_displacement) rospy.logdebug("calculate_reward_contact_force>>reward=" + str(reward)) return reward def calculate_reward_orientation(self, rpy_array, weight=1.0): """ We calculate the reward based on the orientation. The more its closser to 0 the better because it means its upright desired_yaw is the yaw that we want it to be. to praise it to have a certain orientation, here is where to set it. :param: rpy_array: Its an array with Roll Pitch and Yaw in place 0, 1 and 2 respectively. :return: """ yaw_displacement = rpy_array[2] - self.desired_yaw acumulated_orientation_displacement = abs( rpy_array[0]) + abs(rpy_array[1]) + abs(yaw_displacement) reward = weight * acumulated_orientation_displacement rospy.logdebug("calculate_reward_orientation>>reward=" + str(reward)) return reward def calculate_reward_distance_from_des_point(self, current_position, weight=1.0): """ We calculate the distance from the desired point. The closser the better :param weight: :return:reward """ distance = self.get_distance_from_desired_point(current_position) reward = weight * distance rospy.logdebug("calculate_reward_orientation>>reward=" + str(reward)) return reward
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~robot_envs~cartpole_env.py
#!/usr/bin/env python import gym import rospy import roslaunch import time import numpy as np from gym import utils, spaces from geometry_msgs.msg import Twist from std_srvs.srv import Empty from gym.utils import seeding from gym.envs.registration import register import copy import math import os from sensor_msgs.msg import JointState from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint from std_msgs.msg import Float64 from gazebo_msgs.srv import SetLinkState from gazebo_msgs.msg import LinkState from rosgraph_msgs.msg import Clock from openai_ros import robot_gazebo_env from openai_ros.openai_ros_common import ROSLauncher class CartPoleEnv(robot_gazebo_env.RobotGazeboEnv): def __init__( self, control_type, ros_ws_abspath ): # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="cartpole_description", launch_file_name="put_cartpole_in_world.launch", ros_ws_abspath=ros_ws_abspath) self.publishers_array = [] self._base_pub = rospy.Publisher( '/cartpole_v0/foot_joint_velocity_controller/command', Float64, queue_size=1) self._pole_pub = rospy.Publisher( '/cartpole_v0/pole_joint_velocity_controller/command', Float64, queue_size=1) self.publishers_array.append(self._base_pub) self.publishers_array.append(self._pole_pub) rospy.Subscriber("/cartpole_v0/joint_states", JointState, self.joints_callback) self.control_type = control_type if self.control_type == "velocity": self.controllers_list = ['joint_state_controller', 'pole_joint_velocity_controller', 'foot_joint_velocity_controller', ] elif self.control_type == "position": self.controllers_list = ['joint_state_controller', 'pole_joint_position_controller', 'foot_joint_position_controller', ] elif self.control_type == "effort": self.controllers_list = ['joint_state_controller', 'pole_joint_effort_controller', 'foot_joint_effort_controller', ] self.robot_name_space = "cartpole_v0" self.reset_controls = True # Seed the environment self._seed() self.steps_beyond_done = None super(CartPoleEnv, self).__init__( controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=self.reset_controls ) def joints_callback(self, data): self.joints = data def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] # RobotEnv methods # ---------------------------- def _env_setup(self, initial_qpos): self.init_internal_vars(self.init_pos) self.set_init_pose() self.check_all_systems_ready() def init_internal_vars(self, init_pos_value): self.pos = [init_pos_value] self.joints = None def check_publishers_connection(self): """ Checks that all the publishers are working :return: """ rate = rospy.Rate(10) # 10hz while (self._base_pub.get_num_connections() == 0 and not rospy.is_shutdown()): rospy.logdebug( "No susbribers to _base_pub yet so we wait and try again") try: rate.sleep() except rospy.ROSInterruptException: # This is to avoid error when world is rested, time when backwards. pass rospy.logdebug("_base_pub Publisher Connected") while (self._pole_pub.get_num_connections() == 0 and not rospy.is_shutdown()): rospy.logdebug( "No susbribers to _pole_pub yet so we wait and try again") try: rate.sleep() except rospy.ROSInterruptException: # This is to avoid error when world is rested, time when backwards. pass rospy.logdebug("_pole_pub Publisher Connected") rospy.logdebug("All Publishers READY") def _check_all_systems_ready(self, init=True): self.base_position = None while self.base_position is None and not rospy.is_shutdown(): try: self.base_position = rospy.wait_for_message( "/cartpole_v0/joint_states", JointState, timeout=1.0) rospy.logdebug( "Current cartpole_v0/joint_states READY=>"+str(self.base_position)) if init: # We Check all the sensors are in their initial values positions_ok = all( abs(i) <= 1.0e-02 for i in self.base_position.position) velocity_ok = all( abs(i) <= 1.0e-02 for i in self.base_position.velocity) efforts_ok = all( abs(i) <= 1.0e-01 for i in self.base_position.effort) base_data_ok = positions_ok and velocity_ok and efforts_ok rospy.logdebug( "Checking Init Values Ok=>" + str(base_data_ok)) except: rospy.logerr( "Current cartpole_v0/joint_states not ready yet, retrying for getting joint_states") rospy.logdebug("ALL SYSTEMS READY") def move_joints(self, joints_array): joint_value = Float64() joint_value.data = joints_array[0] rospy.logdebug("Single Base JointsPos>>"+str(joint_value)) self._base_pub.publish(joint_value) def get_clock_time(self): self.clock_time = None while self.clock_time is None and not rospy.is_shutdown(): try: self.clock_time = rospy.wait_for_message( "/clock", Clock, timeout=1.0) rospy.logdebug("Current clock_time READY=>" + str(self.clock_time)) except: rospy.logdebug( "Current clock_time not ready yet, retrying for getting Current clock_time") return self.clock_time
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~task_envs~sawyer~learn_to_touch_cube.py
import rospy import numpy from gym import spaces from openai_ros.robot_envs import sawyer_env from gym.envs.registration import register from geometry_msgs.msg import Point from geometry_msgs.msg import Vector3 from tf.transformations import euler_from_quaternion from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class SawyerTouchCubeEnv(sawyer_env.SawyerEnv): def __init__(self): """ Make sawyer learn how pick up a cube """ # This is the path where the simulation files, the Task and the Robot gits will be downloaded if not there ros_ws_abspath = rospy.get_param("/sawyer/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="sawyer_gazebo", launch_file_name="start_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/sawyer/config", yaml_file_name="learn_to_touch_cube.yaml") import time time.sleep(15) print("STARTING SPAWN ROBOT") # We execute this one before because there are some functions that this # TaskEnv uses that use variables from the parent class, like the effort limit fetch. super(SawyerTouchCubeEnv, self).__init__(ros_ws_abspath) # Here we will add any init functions prior to starting the MyRobotEnv # Only variable needed to be set here rospy.logdebug("Start SawyerTouchCubeEnv INIT...") number_actions = rospy.get_param('/sawyer/n_actions') self.action_space = spaces.Discrete(number_actions) # We set the reward range, which is not compulsory but here we do it. self.reward_range = (-numpy.inf, numpy.inf) self.work_space_x_max = rospy.get_param("/sawyer/work_space/x_max") self.work_space_x_min = rospy.get_param("/sawyer/work_space/x_min") self.work_space_y_max = rospy.get_param("/sawyer/work_space/y_max") self.work_space_y_min = rospy.get_param("/sawyer/work_space/y_min") self.work_space_z_max = rospy.get_param("/sawyer/work_space/z_max") self.work_space_z_min = rospy.get_param("/sawyer/work_space/z_min") self.max_effort = rospy.get_param("/sawyer/max_effort") self.dec_obs = rospy.get_param("/sawyer/number_decimals_precision_obs") self.acceptable_distance_to_cube = rospy.get_param( "/sawyer/acceptable_distance_to_cube") self.tcp_z_position_min = rospy.get_param("/sawyer/tcp_z_position_min") # We place the Maximum and minimum values of observations # TODO: Fill when get_observations is done. """ We supose that its all these: head_pan, right_gripper_l_finger_joint, right_gripper_r_finger_joint, right_j0, right_j1, right_j2, right_j3, right_j4, right_j5, right_j6 Plus the first three are the block_to_tcp vector """ # We fetch the limits of the joinst to get the effort and angle limits self.joint_limits = self.init_joint_limits() high = numpy.array([self.work_space_x_max, self.work_space_y_max, self.work_space_z_max, self.joint_limits.position_upper[0], self.joint_limits.position_upper[1], self.joint_limits.position_upper[2], self.joint_limits.position_upper[3], self.joint_limits.position_upper[4], self.joint_limits.position_upper[5], self.joint_limits.position_upper[6], self.joint_limits.position_upper[7], self.joint_limits.position_upper[8], self.joint_limits.position_upper[9] ]) low = numpy.array([self.work_space_x_min, self.work_space_y_min, self.work_space_z_min, self.joint_limits.position_lower[0], self.joint_limits.position_lower[1], self.joint_limits.position_lower[2], self.joint_limits.position_lower[3], self.joint_limits.position_lower[4], self.joint_limits.position_lower[5], self.joint_limits.position_lower[6], self.joint_limits.position_lower[7], self.joint_limits.position_lower[8], self.joint_limits.position_lower[9] ]) self.observation_space = spaces.Box(low, high) rospy.logdebug("ACTION SPACES TYPE===>"+str(self.action_space)) rospy.logdebug("OBSERVATION SPACES TYPE===>" + str(self.observation_space)) # Rewards self.done_reward = rospy.get_param("/sawyer/done_reward") self.closer_to_block_reward = rospy.get_param( "/sawyer/closer_to_block_reward") self.cumulated_steps = 0.0 rospy.logdebug("END SawyerTouchCubeEnv INIT...") def _set_init_pose(self): """ Sets the two proppelers speed to 0.0 and waits for the time_sleep to allow the action to be executed """ # We set the angles to zero of the limb self.joints = self.get_limb_joint_names_array() join_values_array = [0.0]*len(self.joints) joint_positions_dict_zero = dict(zip(self.joints, join_values_array)) actual_joint_angles_dict = self.get_all_limb_joint_angles() # We generate the two step movement. Turn Right/Left where you are and then set all to zero if "right_j0" in actual_joint_angles_dict: # We turn to the left or to the right based on where the position is to avoid the table. if actual_joint_angles_dict["right_j0"] >= 0.0: actual_joint_angles_dict["right_j0"] = 1.57 else: actual_joint_angles_dict["right_j0"] = -1.57 if "right_j1" in actual_joint_angles_dict: actual_joint_angles_dict["right_j1"] = actual_joint_angles_dict["right_j1"] - 0.3 self.move_joints_to_angle_blocking( actual_joint_angles_dict, timeout=15.0, threshold=0.008726646) self.move_joints_to_angle_blocking( joint_positions_dict_zero, timeout=15.0, threshold=0.008726646) # We Open the gripper self.set_g(action="open") return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ # For Info Purposes self.cumulated_reward = 0.0 # We get the initial pose to mesure the distance from the desired point. translation_tcp_block, rotation_tcp_block = self.get_tf_start_to_end_frames(start_frame_name="block", end_frame_name="right_electric_gripper_base") tf_tcp_to_block_vector = Vector3() tf_tcp_to_block_vector.x = translation_tcp_block[0] tf_tcp_to_block_vector.y = translation_tcp_block[1] tf_tcp_to_block_vector.z = translation_tcp_block[2] self.previous_distance_from_block = self.get_magnitud_tf_tcp_to_block( tf_tcp_to_block_vector) self.translation_tcp_world, _ = self.get_tf_start_to_end_frames(start_frame_name="world", end_frame_name="right_electric_gripper_base") def _set_action(self, action): """ It sets the joints of sawyer based on the action integer given based on the action number given. :param action: The action integer that sets what movement to do next. """ rospy.logdebug("Start Set Action ==>"+str(action)) if action == 0: # Increase joint_0 action_id = self.joints[0]+"_increase" elif action == 1: # Decrease joint_0 action_id = self.joints[0]+"_decrease" elif action == 2: # Increase joint_1 action_id = self.joints[1]+"_increase" elif action == 3: # Decrease joint_1 action_id = self.joints[1]+"_decrease" elif action == 4: # Increase joint_2 action_id = self.joints[2]+"_increase" elif action == 5: # Decrease joint_2 action_id = self.joints[2]+"_decrease" elif action == 6: # Increase joint_3 action_id = self.joints[3]+"_increase" elif action == 7: # Decrease joint_3 action_id = self.joints[3]+"_decrease" elif action == 8: # Increase joint_4 action_id = self.joints[4]+"_increase" elif action == 9: # Decrease joint_4 action_id = self.joints[4]+"_decrease" elif action == 10: # Increase joint_5 action_id = self.joints[5]+"_increase" elif action == 11: # Decrease joint_5 action_id = self.joints[5]+"_decrease" elif action == 12: # Increase joint_6 action_id = self.joints[6]+"_increase" elif action == 13: # Decrease joint_6 action_id = self.joints[6]+"_decrease" # We tell sawyer the action to perform self.execute_movement(action_id) rospy.logdebug("END Set Action ==>"+str(action)+","+str(action_id)) def _get_obs(self): """ Here we define what sensor data defines our robots observations To know which Variables we have access to, we need to read the sawyerEnv API DOCS. :return: observation """ rospy.logdebug("Start Get Observation ==>") # We get the translation of the base of the gripper to the block translation_tcp_block, _ = self.get_tf_start_to_end_frames(start_frame_name="block", end_frame_name="right_electric_gripper_base") translation_tcp_block_round = numpy.around( translation_tcp_block, decimals=self.dec_obs) # We get this data but we dont put it in the observations because its somthing internal for evaluation. # The order is cucial, get it upside down and it make no sense. self.translation_tcp_world, _ = self.get_tf_start_to_end_frames(start_frame_name="world", end_frame_name="right_electric_gripper_base") # Same here, the values are used internally for knowing if done, they wont define the state ( although these are left out for performance) self.joints_efforts_dict = self.get_all_limb_joint_efforts() rospy.logdebug("JOINTS EFFORTS DICT OBSERVATION METHOD==>" + str(self.joints_efforts_dict)) """ We supose that its all these: head_pan, right_gripper_l_finger_joint, right_gripper_r_finger_joint, right_j0, right_j1, right_j2, right_j3, right_j4, right_j5, right_j6 """ joints_angles_array = self.get_all_limb_joint_angles().values() joints_angles_array_round = numpy.around( joints_angles_array, decimals=self.dec_obs) # We concatenate the two rounded arrays and convert them to standard Python list observation = numpy.concatenate( (translation_tcp_block_round, joints_angles_array_round), axis=0).tolist() return observation def _is_done(self, observations): """ We consider the episode done if: 1) The sawyer TCP is outside the workspace, with self.translation_tcp_world 2) The Joints exeded a certain effort ( it got stuck somewhere ), self.joints_efforts_array 3) The TCP to block distance is lower than a threshold ( it got to the place ) """ is_stuck = self.is_arm_stuck(self.joints_efforts_dict) tcp_current_pos = Vector3() tcp_current_pos.x = self.translation_tcp_world[0] tcp_current_pos.y = self.translation_tcp_world[1] tcp_current_pos.z = self.translation_tcp_world[2] is_inside_workspace = self.is_inside_workspace(tcp_current_pos) tcp_to_block_pos = Vector3() tcp_to_block_pos.x = observations[0] tcp_to_block_pos.y = observations[1] tcp_to_block_pos.z = observations[2] has_reached_the_block = self.reached_block(tcp_to_block_pos, self.acceptable_distance_to_cube, self.translation_tcp_world[2], self.tcp_z_position_min) done = is_stuck or not(is_inside_workspace) or has_reached_the_block rospy.logdebug("#### IS DONE ? ####") rospy.logdebug("is_stuck ?="+str(is_stuck)) rospy.logdebug("Not is_inside_workspace ?=" + str(not(is_inside_workspace))) rospy.logdebug("has_reached_the_block ?="+str(has_reached_the_block)) rospy.logdebug("done ?="+str(done)) rospy.logdebug("#### #### ####") return done def _compute_reward(self, observations, done): """ We Base the rewards in if its done or not and we base it on if the distance to the block has increased or not. :return: """ tf_tcp_to_block_vector = Vector3() tf_tcp_to_block_vector.x = observations[0] tf_tcp_to_block_vector.y = observations[1] tf_tcp_to_block_vector.z = observations[2] distance_block_to_tcp = self.get_magnitud_tf_tcp_to_block( tf_tcp_to_block_vector) distance_difference = distance_block_to_tcp - self.previous_distance_from_block if not done: # If there has been a decrease in the distance to the desired point, we reward it if distance_difference < 0.0: rospy.logdebug("DECREASE IN DISTANCE GOOD") reward = self.closer_to_block_reward else: rospy.logerr("ENCREASE IN DISTANCE BAD") #reward = -1*self.closer_to_block_reward reward = 0.0 else: if self.reached_block(tf_tcp_to_block_vector, self.acceptable_distance_to_cube, self.translation_tcp_world[2], self.tcp_z_position_min): reward = self.done_reward else: reward = -1*self.done_reward self.previous_distance_from_block = distance_block_to_tcp rospy.logdebug("reward=" + str(reward)) self.cumulated_reward += reward rospy.logdebug("Cumulated_reward=" + str(self.cumulated_reward)) self.cumulated_steps += 1 rospy.logdebug("Cumulated_steps=" + str(self.cumulated_steps)) return reward # Internal TaskEnv Methods def is_arm_stuck(self, joints_efforts_dict): """ Checks if the efforts in the arm joints exceed certain theshhold We will only check the joints_0,1,2,3,4,5,6 """ is_arm_stuck = False for joint_name in self.joint_limits.joint_names: if joint_name in joints_efforts_dict: effort_value = joints_efforts_dict[joint_name] index = self.joint_limits.joint_names.index(joint_name) effort_limit = self.joint_limits.effort[index] rospy.logdebug("Joint Effort ==>Name="+str(joint_name) + ",Effort="+str(effort_value)+",Limit="+str(effort_limit)) if abs(effort_value) > effort_limit: is_arm_stuck = True rospy.logerr("Joint Effort TOO MUCH ==>" + str(joint_name)+","+str(effort_value)) break else: rospy.logdebug("Joint Effort is ok==>" + str(joint_name)+","+str(effort_value)) else: rospy.logdebug( "Joint Name is not in the effort dict==>"+str(joint_name)) return is_arm_stuck def reached_block(self, block_to_tcp_vector, minimum_distance, tcp_z_position, tcp_z_position_min): """ It return True if the transform TCP to block vector magnitude is smaller than the minimum_distance. tcp_z_position we use it to only consider that it has reached if its above the table. """ reached_block_b = False distance_to_block = self.get_magnitud_tf_tcp_to_block( block_to_tcp_vector) tcp_z_pos_ok = tcp_z_position >= tcp_z_position_min distance_ok = distance_to_block <= minimum_distance reached_block_b = distance_ok and tcp_z_pos_ok rospy.logdebug("###### REACHED BLOCK ? ######") rospy.logdebug("tcp_z_pos_ok==>"+str(tcp_z_pos_ok)) rospy.logdebug("distance_ok==>"+str(distance_ok)) rospy.logdebug("reached_block_b==>"+str(reached_block_b)) rospy.logdebug("############") return reached_block_b def get_distance_from_desired_point(self, current_position): """ Calculates the distance from the current position to the desired point :param start_point: :return: """ distance = self.get_distance_from_point(current_position, self.desired_point) return distance def get_distance_from_point(self, pstart, p_end): """ Given a Vector3 Object, get distance from current position :param p_end: :return: """ a = numpy.array((pstart.x, pstart.y, pstart.z)) b = numpy.array((p_end.x, p_end.y, p_end.z)) distance = numpy.linalg.norm(a - b) return distance def get_magnitud_tf_tcp_to_block(self, translation_vector): """ Given a Vector3 Object, get the magnitud :param p_end: :return: """ a = numpy.array((translation_vector.x, translation_vector.y, translation_vector.z)) distance = numpy.linalg.norm(a) return distance def get_orientation_euler(self, quaternion_vector): # We convert from quaternions to euler orientation_list = [quaternion_vector.x, quaternion_vector.y, quaternion_vector.z, quaternion_vector.w] roll, pitch, yaw = euler_from_quaternion(orientation_list) return roll, pitch, yaw def is_inside_workspace(self, current_position): """ Check if the sawyer is inside the Workspace defined """ is_inside = False rospy.logdebug("##### INSIDE WORK SPACE? #######") rospy.logdebug("XYZ current_position"+str(current_position)) rospy.logdebug("work_space_x_max"+str(self.work_space_x_max) + ",work_space_x_min="+str(self.work_space_x_min)) rospy.logdebug("work_space_y_max"+str(self.work_space_y_max) + ",work_space_y_min="+str(self.work_space_y_min)) rospy.logdebug("work_space_z_max"+str(self.work_space_z_max) + ",work_space_z_min="+str(self.work_space_z_min)) rospy.logdebug("############") if current_position.x > self.work_space_x_min and current_position.x <= self.work_space_x_max: if current_position.y > self.work_space_y_min and current_position.y <= self.work_space_y_max: if current_position.z > self.work_space_z_min and current_position.z <= self.work_space_z_max: is_inside = True return is_inside
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~robot_envs~turtlebot3_env.py
import numpy import rospy from openai_ros import robot_gazebo_env from std_msgs.msg import Float64 from sensor_msgs.msg import JointState from sensor_msgs.msg import Image from sensor_msgs.msg import LaserScan from sensor_msgs.msg import PointCloud2 from sensor_msgs.msg import Imu from nav_msgs.msg import Odometry from geometry_msgs.msg import Twist from openai_ros.openai_ros_common import ROSLauncher class TurtleBot3Env(robot_gazebo_env.RobotGazeboEnv): """Superclass for all CubeSingleDisk environments. """ def __init__(self, ros_ws_abspath): """ Initializes a new TurtleBot3Env environment. TurtleBot3 doesnt use controller_manager, therefore we wont reset the controllers in the standard fashion. For the moment we wont reset them. To check any topic we need to have the simulations running, we need to do two things: 1) Unpause the simulation: without that th stream of data doesnt flow. This is for simulations that are pause for whatever the reason 2) If the simulation was running already for some reason, we need to reset the controlers. This has to do with the fact that some plugins with tf, dont understand the reset of the simulation and need to be reseted to work properly. The Sensors: The sensors accesible are the ones considered usefull for AI learning. Sensor Topic List: * /odom : Odometry readings of the Base of the Robot * /imu: Inertial Mesuring Unit that gives relative accelerations and orientations. * /scan: Laser Readings Actuators Topic List: /cmd_vel, Args: """ rospy.logdebug("Start TurtleBot3Env INIT...") # Variables that we give through the constructor. # None in this case # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="turtlebot3_gazebo", launch_file_name="put_turtlebot3_in_world.launch", ros_ws_abspath=ros_ws_abspath) # Internal Vars # Doesnt have any accesibles self.controllers_list = [] # It doesnt use namespace self.robot_name_space = "" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(TurtleBot3Env, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=False, start_init_physics_parameters=False) self.gazebo.unpauseSim() #self.controllers_object.reset_controllers() self._check_all_sensors_ready() # We Start all the ROS related Subscribers and publishers rospy.Subscriber("/odom", Odometry, self._odom_callback) rospy.Subscriber("/imu", Imu, self._imu_callback) rospy.Subscriber("/scan", LaserScan, self._laser_scan_callback) self._cmd_vel_pub = rospy.Publisher('/cmd_vel', Twist, queue_size=1) self._check_publishers_connection() self.gazebo.pauseSim() rospy.logdebug("Finished TurtleBot3Env INIT...") # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ self._check_all_sensors_ready() return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): rospy.logdebug("START ALL SENSORS READY") self._check_odom_ready() self._check_imu_ready() self._check_laser_scan_ready() rospy.logdebug("ALL SENSORS READY") def _check_odom_ready(self): self.odom = None rospy.logdebug("Waiting for /odom to be READY...") while self.odom is None and not rospy.is_shutdown(): try: self.odom = rospy.wait_for_message("/odom", Odometry, timeout=5.0) rospy.logdebug("Current /odom READY=>") except: rospy.logerr("Current /odom not ready yet, retrying for getting odom") return self.odom def _check_imu_ready(self): self.imu = None rospy.logdebug("Waiting for /imu to be READY...") while self.imu is None and not rospy.is_shutdown(): try: self.imu = rospy.wait_for_message("/imu", Imu, timeout=5.0) rospy.logdebug("Current /imu READY=>") except: rospy.logerr("Current /imu not ready yet, retrying for getting imu") return self.imu def _check_laser_scan_ready(self): self.laser_scan = None rospy.logdebug("Waiting for /scan to be READY...") while self.laser_scan is None and not rospy.is_shutdown(): try: self.laser_scan = rospy.wait_for_message("/scan", LaserScan, timeout=1.0) rospy.logdebug("Current /scan READY=>") except: rospy.logerr("Current /scan not ready yet, retrying for getting laser_scan") return self.laser_scan def _odom_callback(self, data): self.odom = data def _imu_callback(self, data): self.imu = data def _laser_scan_callback(self, data): self.laser_scan = data def _check_publishers_connection(self): """ Checks that all the publishers are working :return: """ rate = rospy.Rate(10) # 10hz while self._cmd_vel_pub.get_num_connections() == 0 and not rospy.is_shutdown(): rospy.logdebug("No susbribers to _cmd_vel_pub yet so we wait and try again") try: rate.sleep() except rospy.ROSInterruptException: # This is to avoid error when world is rested, time when backwards. pass rospy.logdebug("_cmd_vel_pub Publisher Connected") rospy.logdebug("All Publishers READY") # Methods that the TrainingEnvironment will need to define here as virtual # because they will be used in RobotGazeboEnv GrandParentClass and defined in the # TrainingEnvironment. # ---------------------------- def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() # Methods that the TrainingEnvironment will need. # ---------------------------- def move_base(self, linear_speed, angular_speed, epsilon=0.05, update_rate=10): """ It will move the base based on the linear and angular speeds given. It will wait untill those twists are achived reading from the odometry topic. :param linear_speed: Speed in the X axis of the robot base frame :param angular_speed: Speed of the angular turning of the robot base frame :param epsilon: Acceptable difference between the speed asked and the odometry readings :param update_rate: Rate at which we check the odometry. :return: """ cmd_vel_value = Twist() cmd_vel_value.linear.x = linear_speed cmd_vel_value.angular.z = angular_speed rospy.logdebug("TurtleBot3 Base Twist Cmd>>" + str(cmd_vel_value)) self._check_publishers_connection() self._cmd_vel_pub.publish(cmd_vel_value) self.wait_until_twist_achieved(cmd_vel_value, epsilon, update_rate) def wait_until_twist_achieved(self, cmd_vel_value, epsilon, update_rate): """ We wait for the cmd_vel twist given to be reached by the robot reading from the odometry. :param cmd_vel_value: Twist we want to wait to reach. :param epsilon: Error acceptable in odometry readings. :param update_rate: Rate at which we check the odometry. :return: """ rospy.logdebug("START wait_until_twist_achieved...") rate = rospy.Rate(update_rate) start_wait_time = rospy.get_rostime().to_sec() end_wait_time = 0.0 epsilon = 0.05 rospy.logdebug("Desired Twist Cmd>>" + str(cmd_vel_value)) rospy.logdebug("epsilon>>" + str(epsilon)) linear_speed = cmd_vel_value.linear.x angular_speed = cmd_vel_value.angular.z linear_speed_plus = linear_speed + epsilon linear_speed_minus = linear_speed - epsilon angular_speed_plus = angular_speed + epsilon angular_speed_minus = angular_speed - epsilon while not rospy.is_shutdown(): current_odometry = self._check_odom_ready() # IN turtlebot3 the odometry angular readings are inverted, so we have to invert the sign. odom_linear_vel = current_odometry.twist.twist.linear.x odom_angular_vel = -1*current_odometry.twist.twist.angular.z rospy.logdebug("Linear VEL=" + str(odom_linear_vel) + ", ?RANGE=[" + str(linear_speed_minus) + ","+str(linear_speed_plus)+"]") rospy.logdebug("Angular VEL=" + str(odom_angular_vel) + ", ?RANGE=[" + str(angular_speed_minus) + ","+str(angular_speed_plus)+"]") linear_vel_are_close = (odom_linear_vel <= linear_speed_plus) and (odom_linear_vel > linear_speed_minus) angular_vel_are_close = (odom_angular_vel <= angular_speed_plus) and (odom_angular_vel > angular_speed_minus) if linear_vel_are_close and angular_vel_are_close: rospy.logdebug("Reached Velocity!") end_wait_time = rospy.get_rostime().to_sec() break rospy.logdebug("Not there yet, keep waiting...") rate.sleep() delta_time = end_wait_time- start_wait_time rospy.logdebug("[Wait Time=" + str(delta_time)+"]") rospy.logdebug("END wait_until_twist_achieved...") return delta_time def get_odom(self): return self.odom def get_imu(self): return self.imu def get_laser_scan(self): return self.laser_scan
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~robot_envs~parrotdrone_env.py
import numpy import rospy import time from openai_ros import robot_gazebo_env from std_msgs.msg import Float64 from sensor_msgs.msg import JointState from sensor_msgs.msg import Image from sensor_msgs.msg import LaserScan from sensor_msgs.msg import PointCloud2 from nav_msgs.msg import Odometry from geometry_msgs.msg import Twist from sensor_msgs.msg import Range from sensor_msgs.msg import Imu from geometry_msgs.msg import Pose from std_msgs.msg import Empty from openai_ros.openai_ros_common import ROSLauncher class ParrotDroneEnv(robot_gazebo_env.RobotGazeboEnv): """Superclass for all CubeSingleDisk environments. """ def __init__(self, ros_ws_abspath): """ Initializes a new ParrotDroneEnv environment. To check any topic we need to have the simulations running, we need to do two things: 1) Unpause the simulation: without that th stream of data doesnt flow. This is for simulations that are pause for whatever the reason 2) If the simulation was running already for some reason, we need to reset the controlers. This has to do with the fact that some plugins with tf, dont understand the reset of the simulation and need to be reseted to work properly. The Sensors: The sensors accesible are the ones considered usefull for AI learning. Sensor Topic List: * /drone/down_camera/image_raw: RGB Camera facing down. * /drone/front_camera/image_raw: RGB Camera facing front. * /drone/imu: IMU of the drone giving acceleration and orientation relative to world. * /drone/sonar: Sonar readings facing front * /drone/gt_pose: Get position and orientation in Global space * /drone/gt_vel: Get the linear velocity , the angular doesnt record anything. Actuators Topic List: * /cmd_vel: Move the Drone Around when you have taken off. * /drone/takeoff: Publish into it to take off * /drone/land: Publish to make ParrotDrone Land Args: """ rospy.logdebug("Start ParrotDroneEnv INIT...") # Variables that we give through the constructor. # None in this case # Internal Vars # Doesnt have any accesibles self.controllers_list = [] # It doesnt use namespace self.robot_name_space = "" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(ParrotDroneEnv, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=False, start_init_physics_parameters=False, reset_world_or_sim="WORLD") self.gazebo.unpauseSim() ROSLauncher(rospackage_name="drone_construct", launch_file_name="put_drone_in_world.launch", ros_ws_abspath=ros_ws_abspath) # self.controllers_object.reset_controllers() self._check_all_sensors_ready() # We Start all the ROS related Subscribers and publishers rospy.Subscriber("/drone/down_camera/image_raw", Image, self._down_camera_rgb_image_raw_callback) rospy.Subscriber("/drone/front_camera/image_raw", Image, self._front_camera_rgb_image_raw_callback) rospy.Subscriber("/drone/imu", Imu, self._imu_callback) rospy.Subscriber("/drone/sonar", Range, self._sonar_callback) rospy.Subscriber("/drone/gt_pose", Pose, self._gt_pose_callback) rospy.Subscriber("/drone/gt_vel", Twist, self._gt_vel_callback) self._cmd_vel_pub = rospy.Publisher('/cmd_vel', Twist, queue_size=1) self._takeoff_pub = rospy.Publisher( '/drone/takeoff', Empty, queue_size=1) self._land_pub = rospy.Publisher('/drone/land', Empty, queue_size=1) self._check_all_publishers_ready() self.gazebo.pauseSim() rospy.logdebug("Finished ParrotDroneEnv INIT...") # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ self._check_all_sensors_ready() return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): rospy.logdebug("START ALL SENSORS READY") self._check_down_camera_rgb_image_raw_ready() self._check_front_camera_rgb_image_raw_ready() self._check_imu_ready() self._check_sonar_ready() self._check_gt_pose_ready() self._check_gt_vel_ready() rospy.logdebug("ALL SENSORS READY") def _check_down_camera_rgb_image_raw_ready(self): self.down_camera_rgb_image_raw = None rospy.logdebug( "Waiting for /drone/down_camera/image_raw to be READY...") while self.down_camera_rgb_image_raw is None and not rospy.is_shutdown(): try: self.down_camera_rgb_image_raw = rospy.wait_for_message( "/drone/down_camera/image_raw", Image, timeout=5.0) rospy.logdebug("Current /drone/down_camera/image_raw READY=>") except: rospy.logerr( "Current /drone/down_camera/image_raw not ready yet, retrying for getting down_camera_rgb_image_raw") return self.down_camera_rgb_image_raw def _check_front_camera_rgb_image_raw_ready(self): self.front_camera_rgb_image_raw = None rospy.logdebug( "Waiting for /drone/front_camera/image_raw to be READY...") while self.front_camera_rgb_image_raw is None and not rospy.is_shutdown(): try: self.front_camera_rgb_image_raw = rospy.wait_for_message( "/drone/front_camera/image_raw", Image, timeout=5.0) rospy.logdebug("Current /drone/front_camera/image_raw READY=>") except: rospy.logerr( "Current /drone/front_camera/image_raw not ready yet, retrying for getting front_camera_rgb_image_raw") return self.front_camera_rgb_image_raw def _check_imu_ready(self): self.imu = None rospy.logdebug("Waiting for /drone/imu to be READY...") while self.imu is None and not rospy.is_shutdown(): try: self.imu = rospy.wait_for_message( "/drone/imu", Imu, timeout=5.0) rospy.logdebug("Current/drone/imu READY=>") except: rospy.logerr( "Current /drone/imu not ready yet, retrying for getting imu") return self.imu def _check_sonar_ready(self): self.sonar = None rospy.logdebug("Waiting for /drone/sonar to be READY...") while self.sonar is None and not rospy.is_shutdown(): try: self.sonar = rospy.wait_for_message( "/drone/sonar", Range, timeout=5.0) rospy.logdebug("Current/drone/sonar READY=>") except: rospy.logerr( "Current /drone/sonar not ready yet, retrying for getting sonar") return self.sonar def _check_gt_pose_ready(self): self.gt_pose = None rospy.logdebug("Waiting for /drone/gt_pose to be READY...") while self.gt_pose is None and not rospy.is_shutdown(): try: self.gt_pose = rospy.wait_for_message( "/drone/gt_pose", Pose, timeout=5.0) rospy.logdebug("Current /drone/gt_pose READY=>") except: rospy.logerr( "Current /drone/gt_pose not ready yet, retrying for getting gt_pose") return self.gt_pose def _check_gt_vel_ready(self): self.gt_vel = None rospy.logdebug("Waiting for /drone/gt_vel to be READY...") while self.gt_vel is None and not rospy.is_shutdown(): try: self.gt_vel = rospy.wait_for_message( "/drone/gt_vel", Twist, timeout=5.0) rospy.logdebug("Current /drone/gt_vel READY=>") except: rospy.logerr( "Current /drone/gt_vel not ready yet, retrying for getting gt_vel") return self.gt_vel def _down_camera_rgb_image_raw_callback(self, data): self.down_camera_rgb_image_raw = data def _front_camera_rgb_image_raw_callback(self, data): self.front_camera_rgb_image_raw = data def _imu_callback(self, data): self.imu = data def _sonar_callback(self, data): self.sonar = data def _gt_pose_callback(self, data): self.gt_pose = data def _gt_vel_callback(self, data): self.gt_vel = data def _check_all_publishers_ready(self): """ Checks that all the publishers are working :return: """ rospy.logdebug("START ALL SENSORS READY") self._check_cmd_vel_pub_connection() self._check_takeoff_pub_connection() self._check_land_pub_connection() rospy.logdebug("ALL SENSORS READY") def _check_cmd_vel_pub_connection(self): rate = rospy.Rate(10) # 10hz while self._cmd_vel_pub.get_num_connections() == 0 and not rospy.is_shutdown(): rospy.logdebug( "No susbribers to _cmd_vel_pub yet so we wait and try again") try: rate.sleep() except rospy.ROSInterruptException: # This is to avoid error when world is rested, time when backwards. pass rospy.logdebug("_cmd_vel_pub Publisher Connected") rospy.logdebug("All Publishers READY") def _check_takeoff_pub_connection(self): rate = rospy.Rate(10) # 10hz while self._takeoff_pub.get_num_connections() == 0 and not rospy.is_shutdown(): rospy.logdebug( "No susbribers to _takeoff_pub yet so we wait and try again") try: rate.sleep() except rospy.ROSInterruptException: # This is to avoid error when world is rested, time when backwards. pass rospy.logdebug("_takeoff_pub Publisher Connected") rospy.logdebug("All Publishers READY") def _check_land_pub_connection(self): rate = rospy.Rate(10) # 10hz while self._land_pub.get_num_connections() == 0 and not rospy.is_shutdown(): rospy.logdebug( "No susbribers to _land_pub yet so we wait and try again") try: rate.sleep() except rospy.ROSInterruptException: # This is to avoid error when world is rested, time when backwards. pass rospy.logdebug("_land_pub Publisher Connected") rospy.logdebug("All Publishers READY") # Methods that the TrainingEnvironment will need to define here as virtual # because they will be used in RobotGazeboEnv GrandParentClass and defined in the # TrainingEnvironment. # ---------------------------- def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() # Methods that the TrainingEnvironment will need. # ---------------------------- def takeoff(self): """ Sends the takeoff command and checks it has taken of It unpauses the simulation and pauses again to allow it to be a self contained action """ self.gazebo.unpauseSim() self._check_takeoff_pub_connection() takeoff_cmd = Empty() self._takeoff_pub.publish(takeoff_cmd) # When it takes of value of height is around 1.3 self.wait_for_height(heigh_value_to_check=0.8, smaller_than=False, epsilon=0.05, update_rate=10) self.gazebo.pauseSim() def land(self): """ Sends the Landing command and checks it has landed It unpauses the simulation and pauses again to allow it to be a self contained action """ self.gazebo.unpauseSim() self._check_land_pub_connection() land_cmd = Empty() self._land_pub.publish(land_cmd) # When Drone is on the floor, the readings are 0.5 self.wait_for_height(heigh_value_to_check=0.6, smaller_than=True, epsilon=0.05, update_rate=10) self.gazebo.pauseSim() def wait_for_height(self, heigh_value_to_check, smaller_than, epsilon, update_rate): """ Checks if current height is smaller or bigger than a value :param: smaller_than: If True, we will wait until value is smaller than the one given """ rate = rospy.Rate(update_rate) start_wait_time = rospy.get_rostime().to_sec() end_wait_time = 0.0 rospy.logdebug("epsilon>>" + str(epsilon)) while not rospy.is_shutdown(): current_gt_pose = self._check_gt_pose_ready() current_height = current_gt_pose.position.z if smaller_than: takeoff_height_achieved = current_height <= heigh_value_to_check rospy.logwarn("SMALLER THAN HEIGHT...current_height=" + str(current_height)+"<="+str(heigh_value_to_check)) else: takeoff_height_achieved = current_height >= heigh_value_to_check rospy.logwarn("BIGGER THAN HEIGHT...current_height=" + str(current_height)+">="+str(heigh_value_to_check)) if takeoff_height_achieved: rospy.logwarn("Reached Height!") end_wait_time = rospy.get_rostime().to_sec() break rospy.logwarn("Height Not there yet, keep waiting...") rate.sleep() def move_base(self, linear_speed_vector, angular_speed, epsilon=0.05, update_rate=10): """ It will move the base based on the linear and angular speeds given. It will wait untill those twists are achived reading from the odometry topic. :param linear_speed_vector: Speed in the XYZ axis of the robot base frame, because drones can move in any direction :param angular_speed: Speed of the angular turning of the robot base frame, because this drone only turns on the Z axis. :param epsilon: Acceptable difference between the speed asked and the odometry readings :param update_rate: Rate at which we check the odometry. :return: """ cmd_vel_value = Twist() cmd_vel_value.linear.x = linear_speed_vector.x cmd_vel_value.linear.y = linear_speed_vector.y cmd_vel_value.linear.z = linear_speed_vector.z cmd_vel_value.angular.z = angular_speed rospy.logdebug("TurtleBot2 Base Twist Cmd>>" + str(cmd_vel_value)) self._check_cmd_vel_pub_connection() self._cmd_vel_pub.publish(cmd_vel_value) """ self.wait_until_twist_achieved(cmd_vel_value, epsilon, update_rate) """ self.wait_time_for_execute_movement() def wait_time_for_execute_movement(self): """ Because this Parrot Drone position is global, we really dont have a way to know if its moving in the direction desired, because it would need to evaluate the diference in position and speed on the local reference. """ time.sleep(1.0) def wait_until_twist_achieved(self, cmd_vel_value, epsilon, update_rate): """ # TODO: Make it work using TF conversions We wait for the cmd_vel twist given to be reached by the robot reading from the odometry. :param cmd_vel_value: Twist we want to wait to reach. :param epsilon: Error acceptable in odometry readings. :param update_rate: Rate at which we check the odometry. :return: """ rospy.logwarn("START wait_until_twist_achieved...") rate = rospy.Rate(update_rate) start_wait_time = rospy.get_rostime().to_sec() end_wait_time = 0.0 epsilon = 0.05 rospy.logwarn("Desired Twist Cmd>>" + str(cmd_vel_value)) rospy.logwarn("epsilon>>" + str(epsilon)) values_of_ref = [cmd_vel_value.linear.x, cmd_vel_value.linear.y, cmd_vel_value.linear.z, cmd_vel_value.angular.z] while not rospy.is_shutdown(): current_gt_vel = self._check_gt_vel_ready() values_to_check = [current_gt_vel.linear.x, current_gt_vel.linear.y, current_gt_vel.linear.z, current_gt_vel.angular.z] vel_values_are_close = self.check_array_similar( values_of_ref, values_to_check, epsilon) if vel_values_are_close: rospy.logwarn("Reached Velocity!") end_wait_time = rospy.get_rostime().to_sec() break rospy.logwarn("Not there yet, keep waiting...") rate.sleep() delta_time = end_wait_time - start_wait_time rospy.logdebug("[Wait Time=" + str(delta_time)+"]") rospy.logwarn("END wait_until_twist_achieved...") return delta_time def check_array_similar(self, ref_value_array, check_value_array, epsilon): """ It checks if the check_value id similar to the ref_value """ rospy.logwarn("ref_value_array="+str(ref_value_array)) rospy.logwarn("check_value_array="+str(check_value_array)) return numpy.allclose(ref_value_array, check_value_array, atol=epsilon) def get_down_camera_rgb_image_raw(self): return self.down_camera_rgb_image_raw def get_front_camera_rgb_image_raw(self): return self.front_camera_rgb_image_raw def get_imu(self): return self.imu def get_sonar(self): return self.sonar def get_gt_pose(self): return self.gt_pose def get_gt_vel(self): return self.gt_vel
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~task_envs~turtlebot2~turtlebot2_wall.py
import rospy import numpy from gym import spaces from openai_ros.robot_envs import turtlebot2_env from gym.envs.registration import register from geometry_msgs.msg import Point from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class TurtleBot2WallEnv(turtlebot2_env.TurtleBot2Env): def __init__(self): """ This Task Env is designed for having the TurtleBot2 in some kind of maze. It will learn how to move around the maze without crashing. """ # This is the path where the simulation files, the Task and the Robot gits will be downloaded if not there ros_ws_abspath = rospy.get_param("/turtlebot2/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="turtlebot_gazebo", launch_file_name="start_wall_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/turtlebot2/config", yaml_file_name="turtlebot2_wall.yaml") # Here we will add any init functions prior to starting the MyRobotEnv super(TurtleBot2WallEnv, self).__init__(ros_ws_abspath) # Only variable needed to be set here number_actions = rospy.get_param('/turtlebot2/n_actions') self.action_space = spaces.Discrete(number_actions) # We set the reward range, which is not compulsory but here we do it. self.reward_range = (-numpy.inf, numpy.inf) #number_observations = rospy.get_param('/turtlebot2/n_observations') """ We set the Observation space for the 6 observations cube_observations = [ round(current_disk_roll_vel, 0), round(y_distance, 1), round(roll, 1), round(pitch, 1), round(y_linear_speed,1), round(yaw, 1), ] """ # Actions and Observations self.linear_forward_speed = rospy.get_param('/turtlebot2/linear_forward_speed') self.linear_turn_speed = rospy.get_param('/turtlebot2/linear_turn_speed') self.angular_speed = rospy.get_param('/turtlebot2/angular_speed') self.init_linear_forward_speed = rospy.get_param('/turtlebot2/init_linear_forward_speed') self.init_linear_turn_speed = rospy.get_param('/turtlebot2/init_linear_turn_speed') self.new_ranges = rospy.get_param('/turtlebot2/new_ranges') self.min_range = rospy.get_param('/turtlebot2/min_range') self.max_laser_value = rospy.get_param('/turtlebot2/max_laser_value') self.min_laser_value = rospy.get_param('/turtlebot2/min_laser_value') # Get Desired Point to Get self.desired_point = Point() self.desired_point.x = rospy.get_param("/turtlebot2/desired_pose/x") self.desired_point.y = rospy.get_param("/turtlebot2/desired_pose/y") self.desired_point.z = rospy.get_param("/turtlebot2/desired_pose/z") # We create two arrays based on the binary values that will be assigned # In the discretization method. laser_scan = self.get_laser_scan() rospy.logdebug("laser_scan len===>" + str(len(laser_scan.ranges))) num_laser_readings = len(laser_scan.ranges)/self.new_ranges high = numpy.full((num_laser_readings), self.max_laser_value) low = numpy.full((num_laser_readings), self.min_laser_value) # We only use two integers self.observation_space = spaces.Box(low, high) rospy.logdebug("ACTION SPACES TYPE===>"+str(self.action_space)) rospy.logdebug("OBSERVATION SPACES TYPE===>"+str(self.observation_space)) # Rewards self.forwards_reward = rospy.get_param("/turtlebot2/forwards_reward") self.turn_reward = rospy.get_param("/turtlebot2/turn_reward") self.end_episode_points = rospy.get_param("/turtlebot2/end_episode_points") self.cumulated_steps = 0.0 def _set_init_pose(self): """Sets the Robot in its init pose """ self.move_base( self.init_linear_forward_speed, self.init_linear_turn_speed, epsilon=0.05, update_rate=10) return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ # For Info Purposes self.cumulated_reward = 0.0 # Set to false Done, because its calculated asyncronously self._episode_done = False odometry = self.get_odom() self.previous_distance_from_des_point = self.get_distance_from_desired_point(odometry.pose.pose.position) def _set_action(self, action): """ This set action will Set the linear and angular speed of the turtlebot2 based on the action number given. :param action: The action integer that set s what movement to do next. """ rospy.logdebug("Start Set Action ==>"+str(action)) # We convert the actions to speed movements to send to the parent class CubeSingleDiskEnv if action == 0: #FORWARD linear_speed = self.linear_forward_speed angular_speed = 0.0 self.last_action = "FORWARDS" elif action == 1: #LEFT linear_speed = self.linear_turn_speed angular_speed = self.angular_speed self.last_action = "TURN_LEFT" elif action == 2: #RIGHT linear_speed = self.linear_turn_speed angular_speed = -1*self.angular_speed self.last_action = "TURN_RIGHT" # We tell TurtleBot2 the linear and angular speed to set to execute self.move_base(linear_speed, angular_speed, epsilon=0.05, update_rate=10) rospy.logdebug("END Set Action ==>"+str(action)) def _get_obs(self): """ Here we define what sensor data defines our robots observations To know which Variables we have acces to, we need to read the TurtleBot2Env API DOCS :return: """ rospy.logdebug("Start Get Observation ==>") # We get the laser scan data laser_scan = self.get_laser_scan() discretized_laser_scan = self.discretize_observation( laser_scan, self.new_ranges ) # We get the odometry so that SumitXL knows where it is. odometry = self.get_odom() x_position = odometry.pose.pose.position.x y_position = odometry.pose.pose.position.y # We round to only two decimals to avoid very big Observation space odometry_array = [round(x_position, 2),round(y_position, 2)] # We only want the X and Y position and the Yaw observations = discretized_laser_scan + odometry_array rospy.logdebug("Observations==>"+str(observations)) rospy.logdebug("END Get Observation ==>") return observations def _is_done(self, observations): if self._episode_done: rospy.logerr("TurtleBot2 is Too Close to wall==>") else: rospy.logerr("TurtleBot2 didnt crash at least ==>") current_position = Point() current_position.x = observations[-2] current_position.y = observations[-1] current_position.z = 0.0 MAX_X = 6.0 MIN_X = -1.0 MAX_Y = 3.0 MIN_Y = -3.0 # We see if we are outside the Learning Space if current_position.x <= MAX_X and current_position.x > MIN_X: if current_position.y <= MAX_Y and current_position.y > MIN_Y: rospy.logdebug("TurtleBot Position is OK ==>["+str(current_position.x)+","+str(current_position.y)+"]") # We see if it got to the desired point if self.is_in_desired_position(current_position): self._episode_done = True else: rospy.logerr("TurtleBot to Far in Y Pos ==>"+str(current_position.x)) self._episode_done = True else: rospy.logerr("TurtleBot to Far in X Pos ==>"+str(current_position.x)) self._episode_done = True return self._episode_done def _compute_reward(self, observations, done): current_position = Point() current_position.x = observations[-2] current_position.y = observations[-1] current_position.z = 0.0 distance_from_des_point = self.get_distance_from_desired_point(current_position) distance_difference = distance_from_des_point - self.previous_distance_from_des_point if not done: if self.last_action == "FORWARDS": reward = self.forwards_reward else: reward = self.turn_reward # If there has been a decrease in the distance to the desired point, we reward it if distance_difference < 0.0: rospy.logwarn("DECREASE IN DISTANCE GOOD") reward += self.forwards_reward else: rospy.logerr("ENCREASE IN DISTANCE BAD") reward += 0 else: if self.is_in_desired_position(current_position): reward = self.end_episode_points else: reward = -1*self.end_episode_points self.previous_distance_from_des_point = distance_from_des_point rospy.logdebug("reward=" + str(reward)) self.cumulated_reward += reward rospy.logdebug("Cumulated_reward=" + str(self.cumulated_reward)) self.cumulated_steps += 1 rospy.logdebug("Cumulated_steps=" + str(self.cumulated_steps)) return reward # Internal TaskEnv Methods def discretize_observation(self,data,new_ranges): """ Discards all the laser readings that are not multiple in index of new_ranges value. """ self._episode_done = False discretized_ranges = [] mod = len(data.ranges)/new_ranges rospy.logdebug("data=" + str(data)) rospy.logwarn("new_ranges=" + str(new_ranges)) rospy.logwarn("mod=" + str(mod)) for i, item in enumerate(data.ranges): if (i%mod==0): if item == float ('Inf') or numpy.isinf(item): discretized_ranges.append(self.max_laser_value) elif numpy.isnan(item): discretized_ranges.append(self.min_laser_value) else: discretized_ranges.append(int(item)) if (self.min_range > item > 0): rospy.logerr("done Validation >>> item=" + str(item)+"< "+str(self.min_range)) self._episode_done = True else: rospy.logwarn("NOT done Validation >>> item=" + str(item)+"< "+str(self.min_range)) return discretized_ranges def is_in_desired_position(self,current_position, epsilon=0.05): """ It return True if the current position is similar to the desired poistion """ is_in_desired_pos = False x_pos_plus = self.desired_point.x + epsilon x_pos_minus = self.desired_point.x - epsilon y_pos_plus = self.desired_point.y + epsilon y_pos_minus = self.desired_point.y - epsilon x_current = current_position.x y_current = current_position.y x_pos_are_close = (x_current <= x_pos_plus) and (x_current > x_pos_minus) y_pos_are_close = (y_current <= y_pos_plus) and (y_current > y_pos_minus) is_in_desired_pos = x_pos_are_close and y_pos_are_close return is_in_desired_pos def get_distance_from_desired_point(self, current_position): """ Calculates the distance from the current position to the desired point :param start_point: :return: """ distance = self.get_distance_from_point(current_position, self.desired_point) return distance def get_distance_from_point(self, pstart, p_end): """ Given a Vector3 Object, get distance from current position :param p_end: :return: """ a = numpy.array((pstart.x, pstart.y, pstart.z)) b = numpy.array((p_end.x, p_end.y, p_end.z)) distance = numpy.linalg.norm(a - b) return distance
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~task_envs~shadow_tc~learn_to_pick_ball.py
import rospy import numpy from gym import spaces from openai_ros.robot_envs import shadow_tc_env from gym.envs.registration import register from geometry_msgs.msg import Point from geometry_msgs.msg import Vector3 from tf.transformations import euler_from_quaternion from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class ShadowTcGetBallEnv(shadow_tc_env.ShadowTcEnv): def __init__(self): """ Make ShadowTc learn how pick up a ball """ # This is the path where the simulation files, the Task and the Robot gits will be downloaded if not there ros_ws_abspath = rospy.get_param("/shadow_tc/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="shadow_gazebo", launch_file_name="start_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/shadow_tc/config", yaml_file_name="learn_to_pick_ball.yaml") # We execute this one before because there are some functions that this # TaskEnv uses that use variables from the parent class, like the effort limit fetch. super(ShadowTcGetBallEnv, self).__init__(ros_ws_abspath) # Here we will add any init functions prior to starting the MyRobotEnv # Only variable needed to be set here rospy.logdebug("Start ShadowTcGetBallEnv INIT...") number_actions = rospy.get_param('/shadow_tc/n_actions') self.action_space = spaces.Discrete(number_actions) # We set the reward range, which is not compulsory but here we do it. self.reward_range = (-numpy.inf, numpy.inf) self.movement_delta =rospy.get_param("/shadow_tc/movement_delta") self.work_space_x_max = rospy.get_param("/shadow_tc/work_space/x_max") self.work_space_x_min = rospy.get_param("/shadow_tc/work_space/x_min") self.work_space_y_max = rospy.get_param("/shadow_tc/work_space/y_max") self.work_space_y_min = rospy.get_param("/shadow_tc/work_space/y_min") self.work_space_z_max = rospy.get_param("/shadow_tc/work_space/z_max") self.work_space_z_min = rospy.get_param("/shadow_tc/work_space/z_min") self.dec_obs = rospy.get_param("/shadow_tc/number_decimals_precision_obs") self.acceptable_distance_to_ball = rospy.get_param("/shadow_tc/acceptable_distance_to_ball") # We place the Maximum and minimum values of observations # TODO: Fill when get_observations is done. high = numpy.array([self.work_space_x_max, self.work_space_y_max, self.work_space_z_max, 1,1,1]) low = numpy.array([ self.work_space_x_min, self.work_space_y_min, self.work_space_z_min, 0,0,0]) self.observation_space = spaces.Box(low, high) rospy.logdebug("ACTION SPACES TYPE===>"+str(self.action_space)) rospy.logdebug("OBSERVATION SPACES TYPE===>"+str(self.observation_space)) # Rewards self.done_reward =rospy.get_param("/shadow_tc/done_reward") self.closer_to_block_reward = rospy.get_param("/shadow_tc/closer_to_block_reward") self.cumulated_steps = 0.0 rospy.logdebug("END shadow_tcGetBallEnv INIT...") def _set_init_pose(self): """ Sets the UR5 arm to the initial position and the objects to the original position. """ rospy.logdebug("START _set_init_pose...") # We set the angles to zero of the limb self.reset_scene() rospy.logdebug("END _set_init_pose...") return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ rospy.logdebug("START TaskEnv _init_env_variables") # For Info Purposes self.cumulated_reward = 0.0 self.ball_pose = self.get_ball_pose() tcp_pose = self.get_tip_pose() rospy.logdebug("TCP POSE ===>"+str(tcp_pose)) self.previous_distance_from_ball = self.get_distance_from_point(self.ball_pose.position, tcp_pose.position) rospy.logdebug("END TaskEnv _init_env_variables") def _set_action(self, action): """ It sets the joints of shadow_tc based on the action integer given based on the action number given. :param action: The action integer that sets what movement to do next. """ rospy.logdebug("Start Set Action ==>"+str(action)) increment_vector = Vector3() action_id="move" if action == 0: # Increase X increment_vector.x = self.movement_delta elif action == 1: # Decrease X increment_vector.x = -1*self.movement_delta elif action == 2: # Increase Y increment_vector.y = self.movement_delta elif action == 3: # Decrease Y increment_vector.y = -1*self.movement_delta elif action == 4: # Increase Z increment_vector.z = self.movement_delta elif action == 5: # Decrease Z increment_vector.z = -1*self.movement_delta elif action == 6: # Open Claw action_id = "open" elif action == 7: # Close Claw action_id = "close" rospy.logdebug("Action_id="+str(action_id)+",IncrementVector===>"+str(increment_vector)) if action_id == "move": # We tell shadow_tc the action to perform # We dont change the RPY, therefore it will always be zero self.move_tip( x=increment_vector.x, y=increment_vector.y, z=increment_vector.z) elif action_id == "open": self.open_hand() elif action_id == "close": self.close_hand() rospy.logdebug("END Set Action ==>"+str(action)+",action_id="+str(action_id)+",IncrementVector===>"+str(increment_vector)) def _get_obs(self): """ Here we define what sensor data defines our robots observations To know which Variables we have access to, we need to read the shadow_tcEnv API DOCS. :return: observation """ rospy.logdebug("Start Get Observation ==>") tcp_pose = self.get_tip_pose() # We dont add it to the observations because is not part of the robot self.ball_pose = self.get_ball_pose() # We activate the Finguer collision detection self.finger_collided_dict = self.get_fingers_colision(object_collision_name="cricket_ball__link") f1_collided = self.finger_collided_dict["f1"] f2_collided = self.finger_collided_dict["f2"] f3_collided = self.finger_collided_dict["f3"] observation = [ round(tcp_pose.position.x,self.dec_obs), round(tcp_pose.position.y,self.dec_obs), round(tcp_pose.position.z,self.dec_obs), int(f1_collided), int(f2_collided), int(f3_collided) ] rospy.logdebug("Observations ==>"+str(observation)) rospy.logdebug("END Get Observation ==>") return observation def _is_done(self, observations): """ We consider the episode done if: 1) The shadow_tc TCP is outside the workspace. 2) The TCP to block distance is lower than a threshold ( it got to the place ) and the the collisions in the figuers are true. """ tcp_pos = Vector3() tcp_pos.x = observations[0] tcp_pos.y = observations[1] tcp_pos.z = observations[2] # We check if all three finguers have collided with the ball finguers_collided = observations[3] and observations[4] and observations[5] bool_is_inside_workspace = self.is_inside_workspace(tcp_pos) has_reached_the_ball = self.reached_ball( tcp_pos, self.ball_pose.position, self.acceptable_distance_to_ball, finguers_collided) done = has_reached_the_ball or not(bool_is_inside_workspace) rospy.logdebug("#### IS DONE ? ####") rospy.logdebug("Not bool_is_inside_workspace ?="+str(not(bool_is_inside_workspace))) rospy.logdebug("has_reached_the_ball ?="+str(has_reached_the_ball)) rospy.logdebug("done ?="+str(done)) rospy.logdebug("#### #### ####") return done def _compute_reward(self, observations, done): """ We Base the rewards in if its done or not and we base it on if the distance to the ball has increased or not. :return: """ tcp_pos = Vector3() tcp_pos.x = observations[0] tcp_pos.y = observations[1] tcp_pos.z = observations[2] # We check if all three finguers have collided with the ball finguers_collided = observations[3] and observations[4] and observations[5] distance_from_ball = self.get_distance_from_point(self.ball_pose.position, tcp_pos) distance_difference = distance_from_ball - self.previous_distance_from_ball if not done: # If there has been a decrease in the distance to the desired point, we reward it if distance_difference < 0.0: rospy.logerr("NOT ERROR: DECREASE IN DISTANCE GOOD") reward = self.closer_to_block_reward else: rospy.logerr("NOT ERROR: ENCREASE IN DISTANCE BAD") #reward = -1*self.closer_to_block_reward reward = 0.0 else: has_reached_the_ball = self.reached_ball( tcp_pos, self.ball_pose.position, self.acceptable_distance_to_ball, finguers_collided) if has_reached_the_ball: reward = self.done_reward else: reward = -1*self.done_reward self.previous_distance_from_ball = distance_from_ball rospy.logdebug("reward=" + str(reward)) self.cumulated_reward += reward rospy.logdebug("Cumulated_reward=" + str(self.cumulated_reward)) self.cumulated_steps += 1 rospy.logdebug("Cumulated_steps=" + str(self.cumulated_steps)) return reward # Internal TaskEnv Methods def reached_ball(self,tcp_position, ball_position, minimum_distance, finguers_collided): """ Return true if the distance from TCP position to the ball position is lower than the minimum_distance and all three finguers are touching the ball. """ distance_from_ball = self.get_distance_from_point(tcp_position, ball_position) distance_to_ball_ok = distance_from_ball < minimum_distance reached_ball_b = distance_to_ball_ok and finguers_collided rospy.logdebug("###### REACHED BLOCK ? ######") rospy.logdebug("distance_from_ball==>"+str(distance_from_ball)) rospy.logdebug("distance_to_ball_ok==>"+str(distance_to_ball_ok)) rospy.logdebug("reached_ball_b==>"+str(reached_ball_b)) rospy.logdebug("finguers_collided==>"+str(finguers_collided)) rospy.logdebug("############") return reached_ball_b def get_distance_from_point(self, pstart, p_end): """ Given a Vector3 Object, get distance from current position :param p_end: :return: """ a = numpy.array((pstart.x, pstart.y, pstart.z)) b = numpy.array((p_end.x, p_end.y, p_end.z)) distance = numpy.linalg.norm(a - b) return distance def is_inside_workspace(self,current_position): """ Check if the shadow_tc is inside the Workspace defined """ is_inside = False rospy.logdebug("##### INSIDE WORK SPACE? #######") rospy.logdebug("XYZ current_position"+str(current_position)) rospy.logdebug("work_space_x_max"+str(self.work_space_x_max)+",work_space_x_min="+str(self.work_space_x_min)) rospy.logdebug("work_space_y_max"+str(self.work_space_y_max)+",work_space_y_min="+str(self.work_space_y_min)) rospy.logdebug("work_space_z_max"+str(self.work_space_z_max)+",work_space_z_min="+str(self.work_space_z_min)) rospy.logdebug("############") if current_position.x > self.work_space_x_min and current_position.x <= self.work_space_x_max: if current_position.y > self.work_space_y_min and current_position.y <= self.work_space_y_max: if current_position.z > self.work_space_z_min and current_position.z <= self.work_space_z_max: is_inside = True return is_inside
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~robot_envs~fetch_env.py
import numpy as np import rospy from gazebo_msgs.srv import GetWorldProperties, GetModelState from sensor_msgs.msg import JointState from openai_ros import robot_gazebo_env import sys import moveit_commander import moveit_msgs.msg import geometry_msgs.msg import trajectory_msgs.msg from openai_ros.openai_ros_common import ROSLauncher class FetchEnv(robot_gazebo_env.RobotGazeboEnv): def __init__(self, ros_ws_abspath): rospy.logdebug("========= In Fetch Env") # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="fetch_gazebo", launch_file_name="put_robot_in_world_HER.launch", ros_ws_abspath=ros_ws_abspath) # this object contains all object's positions!! self.obj_positions = Obj_Pos() self.controllers_list = [] self.robot_name_space = "" self.reset_controls = False super(FetchEnv, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=False, start_init_physics_parameters=False, reset_world_or_sim="WORLD") # We Start all the ROS related Subscribers and publishers self.JOINT_STATES_SUBSCRIBER = '/joint_states' self.join_names = ["joint0", "joint1", "joint2", "joint3", "joint4", "joint5", "joint6"] self.gazebo.unpauseSim() self._check_all_systems_ready() self.joint_states_sub = rospy.Subscriber( self.JOINT_STATES_SUBSCRIBER, JointState, self.joints_callback) self.joints = JointState() # Start Services self.move_fetch_object = MoveFetch() # Wait until it has reached its Sturtup Position self.wait_fetch_ready() self.gazebo.pauseSim() # Variables that we give through the constructor. rospy.logdebug("========= Out Fetch Env") # RobotGazeboEnv virtual methods # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ self._check_all_sensors_ready() return True # FetchEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): self._check_joint_states_ready() rospy.logdebug("ALL SENSORS READY") def _check_joint_states_ready(self): self.joints = None while self.joints is None and not rospy.is_shutdown(): try: self.joints = rospy.wait_for_message( self.JOINT_STATES_SUBSCRIBER, JointState, timeout=1.0) rospy.logdebug( "Current "+str(self.JOINT_STATES_SUBSCRIBER)+" READY=>" + str(self.joints)) except: rospy.logerr( "Current "+str(self.JOINT_STATES_SUBSCRIBER)+" not ready yet, retrying....") return self.joints def joints_callback(self, data): self.joints = data def get_joints(self): return self.joints def get_joint_names(self): return self.joints.name def set_trajectory_ee(self, action): """ Sets the Pose of the EndEffector based on the action variable. The action variable contains the position and orientation of the EndEffector. See create_action """ # Set up a trajectory message to publish. ee_target = geometry_msgs.msg.Pose() ee_target.orientation.x = -0.707 ee_target.orientation.y = 0.0 ee_target.orientation.z = 0.707 ee_target.orientation.w = 0.001 ee_target.position.x = action[0] ee_target.position.y = action[1] ee_target.position.z = action[2] result = self.move_fetch_object.ee_traj(ee_target) return result def set_trajectory_joints(self, initial_qpos): positions_array = [None] * 7 positions_array[0] = initial_qpos["joint0"] positions_array[1] = initial_qpos["joint1"] positions_array[2] = initial_qpos["joint2"] positions_array[3] = initial_qpos["joint3"] positions_array[4] = initial_qpos["joint4"] positions_array[5] = initial_qpos["joint5"] positions_array[6] = initial_qpos["joint6"] self.move_fetch_object.joint_traj(positions_array) return True def create_action(self, position, orientation): """ position = [x,y,z] orientation= [x,y,z,w] """ gripper_target = np.array(position) gripper_rotation = np.array(orientation) action = np.concatenate([gripper_target, gripper_rotation]) return action def create_joints_dict(self, joints_positions): """ Based on the Order of the positions, they will be assigned to its joint name names_in_order: joint0: 0.0 joint1: 0.0 joint2: 0.0 joint3: -1.5 joint4: 0.0 joint5: 1.5 joint6: 0.0 """ assert len(joints_positions) == len( self.join_names), "Wrong number of joints, there should be "+str(len(self.join_names)) joints_dict = dict(zip(self.join_names, joints_positions)) return joints_dict def get_ee_pose(self): """ Returns geometry_msgs/PoseStamped std_msgs/Header header uint32 seq time stamp string frame_id geometry_msgs/Pose pose geometry_msgs/Point position float64 x float64 y float64 z geometry_msgs/Quaternion orientation float64 x float64 y float64 z float64 w """ self.gazebo.unpauseSim() gripper_pose = self.move_fetch_object.ee_pose() self.gazebo.pauseSim() return gripper_pose def get_ee_rpy(self): gripper_rpy = self.move_fetch_object.ee_rpy() return gripper_rpy def wait_fetch_ready(self): """ # TODO: Make it wait for this position Desired Position to wait for (0.44291739197591884, -0.13691381375054146, -4.498589757905556e-09, 0.006635104153645881, 0.0018354466563206273, 0.0023142971818792546, 1.3200059164171716, 1.399964660857453, -0.19981518020955402, 1.719961735970255, 1.0394665737933906e-05, 1.659980987917125, -6.067103113238659e-06, 0.05001918351472232, 0.050051597253287436) """ import time for i in range(20): print("WAITING..."+str(i)) sys.stdout.flush() time.sleep(1.0) print("WAITING...DONE") # ParticularEnv methods # ---------------------------- def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() class Obj_Pos(object): """ This object maintains the pose and rotation of the cube in a simulation through Gazebo Service """ def __init__(self): world_specs = rospy.ServiceProxy( '/gazebo/get_world_properties', GetWorldProperties)() self.time = 0 self.model_names = world_specs.model_names self.get_model_state = rospy.ServiceProxy( '/gazebo/get_model_state', GetModelState) def get_states(self): """ Returns the ndarray of pose&rotation of the cube """ for model_name in self.model_names: if model_name == "cube": data = self.get_model_state( model_name, "world") # gazebo service client return np.array([ data.pose.position.x, data.pose.position.y, data.pose.position.z, data.pose.orientation.x, data.pose.orientation.y, data.pose.orientation.z ]) class MoveFetch(object): def __init__(self): rospy.logdebug("===== In MoveFetch") moveit_commander.roscpp_initialize(sys.argv) self.robot = moveit_commander.RobotCommander() self.scene = moveit_commander.PlanningSceneInterface() self.group = moveit_commander.MoveGroupCommander("arm") rospy.logdebug("===== Out MoveFetch") def ee_traj(self, pose): self.group.set_pose_target(pose) result = self.execute_trajectory() return result def joint_traj(self, positions_array): self.group_variable_values = self.group.get_current_joint_values() self.group_variable_values[0] = positions_array[0] self.group_variable_values[1] = positions_array[1] self.group_variable_values[2] = positions_array[2] self.group_variable_values[3] = positions_array[3] self.group_variable_values[4] = positions_array[4] self.group_variable_values[5] = positions_array[5] self.group_variable_values[6] = positions_array[6] self.group.set_joint_value_target(self.group_variable_values) result = self.execute_trajectory() return result def execute_trajectory(self): """ Assuming that the trajecties has been set to the self objects appropriately Make a plan to the destination in Homogeneous Space(x,y,z,yaw,pitch,roll) and returns the result of execution """ self.plan = self.group.plan() result = self.group.go(wait=True) return result def ee_pose(self): gripper_pose = self.group.get_current_pose() return gripper_pose def ee_rpy(self, request): gripper_rpy = self.group.get_current_rpy() return gripper_rpy
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~task_envs~iriwam~tcp_to_bowl.py
import rospy import numpy from gym import spaces from openai_ros.robot_envs import iriwam_env from gym.envs.registration import register from geometry_msgs.msg import Point from geometry_msgs.msg import Vector3 from tf.transformations import euler_from_quaternion import cv2 from cv_bridge import CvBridge, CvBridgeError from sensor_msgs.msg import Image from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest from openai_ros.openai_ros_common import ROSLauncher import os class IriWamTcpToBowlEnv(iriwam_env.IriWamEnv): def __init__(self): """ Make iriwam learn how pick up a cube """ # This is the path where the simulation files, the Task and the Robot gits will be downloaded if not there ros_ws_abspath = rospy.get_param("/iriwam/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="iri_wam_gazebo", launch_file_name="start_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/iriwam/config", yaml_file_name="tcp_to_bowl.yaml") # We execute this one before because there are some functions that this # TaskEnv uses that use variables from the parent class, like the effort limit fetch. super(IriWamTcpToBowlEnv, self).__init__(ros_ws_abspath) # Here we will add any init functions prior to starting the MyRobotEnv # Only variable needed to be set here rospy.logdebug("Start IriWamTcpToBowlEnv INIT...") number_actions = rospy.get_param('/iriwam/n_actions') self.action_space = spaces.Discrete(number_actions) # We set the reward range, which is not compulsory but here we do it. self.reward_range = (-numpy.inf, numpy.inf) self.iri_wam_joint_1 = rospy.get_param( "/iriwam/init_joints/iri_wam_joint_1") self.iri_wam_joint_2 = rospy.get_param( "/iriwam/init_joints/iri_wam_joint_2") self.iri_wam_joint_3 = rospy.get_param( "/iriwam/init_joints/iri_wam_joint_3") self.iri_wam_joint_4 = rospy.get_param( "/iriwam/init_joints/iri_wam_joint_4") self.iri_wam_joint_5 = rospy.get_param( "/iriwam/init_joints/iri_wam_joint_5") self.iri_wam_joint_6 = rospy.get_param( "/iriwam/init_joints/iri_wam_joint_6") self.iri_wam_joint_7 = rospy.get_param( "/iriwam/init_joints/iri_wam_joint_7") self.init_joints_positions_array = [self.iri_wam_joint_1, self.iri_wam_joint_2, self.iri_wam_joint_3, self.iri_wam_joint_4, self.iri_wam_joint_5, self.iri_wam_joint_6, self.iri_wam_joint_7] self.init_joints_x_max = rospy.get_param( "/iriwam/work_space/x_max") self.init_joints_y_max = rospy.get_param( "/iriwam/work_space/y_max") self.init_joints_z_max = rospy.get_param( "/iriwam/work_space/z_max") self.init_joints_x_min = rospy.get_param( "/iriwam/work_space/x_min") self.init_joints_y_min = rospy.get_param( "/iriwam/work_space/y_min") self.init_joints_z_min = rospy.get_param( "/iriwam/work_space/z_min") self.joint_increment_value = rospy.get_param( "/iriwam/joint_increment_value") self.max_distance_from_red_bowl = rospy.get_param( "/iriwam/max_distance_from_red_bowl") self.min_distance_from_red_bowl = rospy.get_param( "/iriwam/min_distance_from_red_bowl") self.min_laser_distance = rospy.get_param("/iriwam/min_laser_distance") self.dec_obs = rospy.get_param("/iriwam/number_decimals_precision_obs") # We place the Maximum and minimum values of observations # TODO: Fill when get_observations is done. """ We supose that its all these: head_pan, right_gripper_l_finger_joint, right_gripper_r_finger_joint, right_j0, right_j1, right_j2, right_j3, right_j4, right_j5, right_j6 Plus the first three are the block_to_tcp vector """ # We fetch the limits of the joinst to get the effort and angle limits self.joint_limits = self.init_joint_limits() high = numpy.array([self.init_joints_x_max, self.init_joints_y_max, self.init_joints_z_max, self.joint_limits[0].max_position, self.joint_limits[1].max_position, self.joint_limits[2].max_position, self.joint_limits[3].max_position, self.joint_limits[4].max_position, self.joint_limits[5].max_position, self.joint_limits[6].max_position ]) low = numpy.array([self.init_joints_x_min, self.init_joints_y_min, self.init_joints_z_min, self.joint_limits[0].min_position, self.joint_limits[1].min_position, self.joint_limits[2].min_position, self.joint_limits[3].min_position, self.joint_limits[4].min_position, self.joint_limits[5].min_position, self.joint_limits[6].min_position ]) self.observation_space = spaces.Box(low, high) rospy.logdebug("ACTION SPACES TYPE===>"+str(self.action_space)) rospy.logdebug("OBSERVATION SPACES TYPE===>" + str(self.observation_space)) # Rewards self.done_reward = rospy.get_param("/iriwam/done_reward") self.closer_to_block_reward = rospy.get_param( "/iriwam/closer_to_block_reward") self.cumulated_steps = 0.0 # We init the CVBridge object self.bridge_object = CvBridge() rospy.logdebug("END IriWamTcpToBowlEnv INIT...") def _set_init_pose(self): """ Sets the two proppelers speed to 0.0 and waits for the time_sleep to allow the action to be executed """ # We set the angles of the IriWam to the init pose: self.move_joints_to_angle_blocking(self.init_joints_positions_array) self.joints = [] for joint_value in self.init_joints_positions_array: self.joints.append(joint_value) return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. :return: """ # For Info Purposes self.cumulated_reward = 0.0 image_data = self.get_camera_rgb_image_raw() self.previous_distance_from_bowl = self.get_magnitud_tcp_to_block( data=image_data) def _set_action(self, action): """ It sets the joints of iriwam based on the action integer given based on the action number given. :param action: The action integer that sets what movement to do next. """ rospy.logdebug("Start Set Action ==>"+str(action)) if action == 0: # Increase joint_0 self.joints[0] += self.joint_increment_value elif action == 1: # Decrease joint_0 self.joints[0] -= self.joint_increment_value elif action == 2: # Increase joint_1 self.joints[1] += self.joint_increment_value elif action == 3: # Decrease joint_1 self.joints[1] -= self.joint_increment_value elif action == 4: # Increase joint_2 self.joints[2] += self.joint_increment_value elif action == 5: # Decrease joint_2 self.joints[2] -= self.joint_increment_value elif action == 6: # Increase joint_3 self.joints[3] += self.joint_increment_value elif action == 7: # Decrease joint_3 self.joints[3] -= self.joint_increment_value elif action == 8: # Increase joint_4 self.joints[4] += self.joint_increment_value elif action == 9: # Decrease joint_4 self.joints[4] -= self.joint_increment_value elif action == 10: # Increase joint_5 self.joints[5] += self.joint_increment_value elif action == 11: # Decrease joint_5 self.joints[5] -= self.joint_increment_value elif action == 12: # Increase joint_6 self.joints[6] += self.joint_increment_value elif action == 13: # Decrease joint_6 self.joints[6] -= self.joint_increment_value elif action == 14: # Increase joint_7 self.joints[7] += self.joint_increment_value elif action == 15: # Decrease joint_7 self.joints[7] -= self.joint_increment_value # We tell iriwam the action to perform self.move_joints_to_angle_blocking(self.joints) def _get_obs(self): """ Here we define what sensor data defines our robots observations To know which Variables we have access to, we need to read the iriwamEnv API DOCS. :return: observation """ rospy.logdebug("Start Get Observation ==>") # We get Join state currently of all the joints join_state = self.get_joint_state() joints_angles_array = join_state.actual.positions joints_angles_array_round = numpy.around( joints_angles_array, decimals=self.dec_obs) # We get the Laser reading of the center laser ray, only one laser_data = self.get_laser_scan() center_laser_distance = laser_data.ranges[int( len(laser_data.ranges)/2)] center_laser_distance_array = [ round(center_laser_distance, self.dec_obs)] # We get the distance laser tip to the red bowl using the image blob detection system image_data = self.get_camera_rgb_image_raw() distance_from_bowl = self.get_magnitud_tcp_to_block(data=image_data) distance_from_bowl_array = [round(distance_from_bowl, self.dec_obs)] # We concatenate the two rounded arrays and convert them to standard Python list observation = numpy.concatenate( (joints_angles_array_round, center_laser_distance_array, distance_from_bowl_array), axis=0).tolist() return observation def _is_done(self, observations): """ We consider the episode done if: 1) The iriwam end effector to bowl distance exceeds the maximum 2) The iriwam end effector to bowl distance reaches the minimum and laser distance is lower than minimum """ distance_laser = observations[-2] magnitude_image = observations[-1] has_reached_the_block = self.reached_bowl( distance_laser, magnitude_image) too_faraway_bowl_b = self.too_faraway_bowl(distance_laser, magnitude_image) done = has_reached_the_block or too_faraway_bowl_b rospy.logdebug("#### IS DONE ? ####") rospy.logdebug("done ?="+str(done)) rospy.logdebug("#### #### ####") return done def _compute_reward(self, observations, done): """ We Base the rewards in if its done or not and we base it on if the distance to the block has increased or not. :return: """ tf_tcp_to_block_vector = Vector3() tf_tcp_to_block_vector.x = observations[0] tf_tcp_to_block_vector.y = observations[1] tf_tcp_to_block_vector.z = observations[2] distance_block_to_tcp = self.get_magnitud_tf_tcp_to_block( tf_tcp_to_block_vector) distance_difference = distance_block_to_tcp - self.previous_distance_from_block if not done: # If there has been a decrease in the distance to the desired point, we reward it if distance_difference < 0.0: rospy.logdebug("DECREASE IN DISTANCE GOOD") reward = self.closer_to_block_reward else: rospy.logerr("ENCREASE IN DISTANCE BAD") #reward = -1*self.closer_to_block_reward reward = 0.0 else: if self.reached_block(tf_tcp_to_block_vector, self.acceptable_distance_to_cube, self.translation_tcp_world[2], self.tcp_z_position_min): reward = self.done_reward else: reward = -1*self.done_reward self.previous_distance_from_block = distance_block_to_tcp rospy.logdebug("reward=" + str(reward)) self.cumulated_reward += reward rospy.logdebug("Cumulated_reward=" + str(self.cumulated_reward)) self.cumulated_steps += 1 rospy.logdebug("Cumulated_steps=" + str(self.cumulated_steps)) return reward # Internal TaskEnv Methods def is_arm_stuck(self, joints_efforts_dict): """ Checks if the efforts in the arm joints exceed certain theshhold We will only check the joints_0,1,2,3,4,5,6 """ is_arm_stuck = False for joint_name in self.joint_limits.joint_names: if joint_name in joints_efforts_dict: effort_value = joints_efforts_dict[joint_name] index = self.joint_limits.joint_names.index(joint_name) effort_limit = self.joint_limits.effort[index] rospy.logdebug("Joint Effort ==>Name="+str(joint_name) + ",Effort="+str(effort_value)+",Limit="+str(effort_limit)) if abs(effort_value) > effort_limit: is_arm_stuck = True rospy.logerr("Joint Effort TOO MUCH ==>" + str(joint_name)+","+str(effort_value)) break else: rospy.logdebug("Joint Effort is ok==>" + str(joint_name)+","+str(effort_value)) else: rospy.logdebug( "Joint Name is not in the effort dict==>"+str(joint_name)) return is_arm_stuck def reached_bowl(self, distance_laser, magnitude_image): """ It return True if the distance red by the laser is smaller than minimum and the distance by image is smaller than minimum """ laser_close_enough = (distance_laser <= self.min_laser_distance) magnitude_image_enough = ( magnitude_image <= self.min_distance_from_red_bowl) reached_block_b = laser_close_enough and magnitude_image_enough rospy.logdebug("###### REACHED BLOCK ? ######") rospy.logdebug("laser_close_enough==>"+str(laser_close_enough)) rospy.logdebug("magnitude_image_enough==>"+str(magnitude_image_enough)) rospy.logdebug("reached_block_b==>"+str(reached_block_b)) rospy.logdebug("############") return reached_block_b def too_faraway_bowl(self, distance_laser, magnitude_image): """ It return True if the distance by image is bigger than maximum """ laser_close_enough = (distance_laser <= self.min_laser_distance) magnitude_image_too_big = ( magnitude_image <= self.max_distance_from_red_bowl) too_faraway_b = laser_close_enough and magnitude_image_too_big rospy.logdebug("###### REACHED BLOCK ? ######") rospy.logdebug("magnitude_image_too_big==>" + str(magnitude_image_too_big)) rospy.logdebug("too_faraway_b==>"+str(too_faraway_b)) rospy.logdebug("############") return too_faraway_b def get_distance_from_desired_point(self, current_position): """ Calculates the distance from the current position to the desired point :param start_point: :return: """ distance = self.get_distance_from_point(current_position, self.desired_point) return distance def get_distance_from_point(self, pstart, p_end): """ Given a Vector3 Object, get distance from current position :param p_end: :return: """ a = numpy.array((pstart.x, pstart.y, pstart.z)) b = numpy.array((p_end.x, p_end.y, p_end.z)) distance = numpy.linalg.norm(a - b) return distance def get_magnitud_tf_tcp_to_block(self, translation_vector): """ Given a Vector3 Object, get the magnitud :param p_end: :return: """ a = numpy.array((translation_vector.x, translation_vector.y, translation_vector.z)) distance = numpy.linalg.norm(a) return distance def get_orientation_euler(self, quaternion_vector): # We convert from quaternions to euler orientation_list = [quaternion_vector.x, quaternion_vector.y, quaternion_vector.z, quaternion_vector.w] roll, pitch, yaw = euler_from_quaternion(orientation_list) return roll, pitch, yaw def is_inside_workspace(self, current_position): """ Check if the iriwam is inside the Workspace defined """ is_inside = False rospy.logdebug("##### INSIDE WORK SPACE? #######") rospy.logdebug("XYZ current_position"+str(current_position)) rospy.logdebug("init_joints_x_max"+str(self.init_joints_x_max) + ",init_joints_x_min="+str(self.init_joints_x_min)) rospy.logdebug("init_joints_y_max"+str(self.init_joints_y_max) + ",init_joints_y_min="+str(self.init_joints_y_min)) rospy.logdebug("init_joints_z_max"+str(self.init_joints_z_max) + ",init_joints_z_min="+str(self.init_joints_z_min)) rospy.logdebug("############") if current_position.x > self.init_joints_x_min and current_position.x <= self.init_joints_x_max: if current_position.y > self.init_joints_y_min and current_position.y <= self.init_joints_y_max: if current_position.z > self.init_joints_z_min and current_position.z <= self.init_joints_z_max: is_inside = True return is_inside def get_magnitud_tcp_to_block(self, data): """ Retrieves the distance end effector laser element to the red bowl through the image data given :param: data: RGB image data :return: magnitude: Distance in pixels from the center of the black blob ( the laser) To the center of the red blob ( the red bowl) Bear in mind that if the laser tip goes out of the cameras view, it will give a false positive """ try: # We select bgr8 because its the OpneCV encoding by default cv_image = self.bridge_object.imgmsg_to_cv2( data, desired_encoding="bgr8") except CvBridgeError as e: print(e) cv_image = None if cv_image is not None: # We get image dimensions and crop the parts of the image we don't need # Bear in mind that because the first value of the image matrix is start and second value is down limit. # Select the limits so that it gets the line not too close and not too far, and the minimum portion possible # To make process faster. height, width, channels = cv_image.shape descentre = -height/2 rows_to_watch = height crop_img = cv_image[(height)/2+descentre:(height) / 2+(descentre+rows_to_watch)][1:width] # Convert from RGB to HSV hsv = cv2.cvtColor(crop_img, cv2.COLOR_BGR2HSV) # We track two colours, the RedBowl and the Black tip of IriWam Arm ( laser ) which is black. # RED BOWL lower_red = numpy.array([0, 204, 100]) upper_red = numpy.array([0, 255, 255]) # Threshold the HSV image to get only yellow colors mask = cv2.inRange(hsv, lower_red, upper_red) # Calculate centroid of the blob of binary image using ImageMoments m = cv2.moments(mask, False) try: cx_red, cy_red = m['m10']/m['m00'], m['m01']/m['m00'] except ZeroDivisionError: cy_red, cx_red = height/2, width/2 # Black Laser lower_black = numpy.array([0, 0, 0]) upper_black = numpy.array([0, 0, 10]) # Threshold the HSV image to get only yellow colors mask_black = cv2.inRange(hsv, lower_black, upper_black) # Calculate centroid of the blob of binary image using ImageMoments m = cv2.moments(mask_black, False) try: cx_black, cy_black = m['m10']/m['m00'], m['m01']/m['m00'] except ZeroDivisionError: cy_black, cx_black = height/2, width/2 # Bitwise-AND mask and original image res_black = cv2.bitwise_and(crop_img, crop_img) # Draw the centroid in the resultut image cv2.circle(res_black, (int(cx_red), int(cy_red)), 10, (255, 0, 0), -1) cv2.circle(res_black, (int(cx_black), int(cy_black)), 10, (0, 255, 0), -1) cv2.imshow("RES BLACK", res_black) cv2.waitKey(1) error_x = cx_red - cx_black error_y = cy_red - cy_black error_array = numpy.array([error_x, error_y]) magnitude = numpy.linalg.norm(error_array) rospy.logwarn("Magnitude==>"+str(magnitude)) else: magnitude = 10.0 return magnitude def clean_up(self): cv2.destroyAllWindows()
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~robot_envs~wamv_env.py
import numpy import rospy import time from openai_ros import robot_gazebo_env from nav_msgs.msg import Odometry from robotx_gazebo.msg import UsvDrive from openai_ros.openai_ros_common import ROSLauncher class WamvEnv(robot_gazebo_env.RobotGazeboEnv): """Superclass for all WamvEnv environments. """ def __init__(self, ros_ws_abspath): """ Initializes a new WamvEnv environment. To check any topic we need to have the simulations running, we need to do two things: 1) Unpause the simulation: without that th stream of data doesnt flow. This is for simulations that are pause for whatever the reason 2) If the simulation was running already for some reason, we need to reset the controlers. This has to do with the fact that some plugins with tf, dont understand the reset of the simulation and need to be reseted to work properly. The Sensors: The sensors accesible are the ones considered usefull for AI learning. Sensor Topic List: * /wamv/odom: Odometry of the Base of Wamv Actuators Topic List: * /cmd_drive: You publish the speed of the left and right propellers. Args: """ rospy.logdebug("Start WamvEnv INIT...") # Variables that we give through the constructor. # None in this case # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="robotx_gazebo", launch_file_name="put_wamv_in_world.launch", ros_ws_abspath=ros_ws_abspath) # Internal Vars # Doesnt have any accesibles self.controllers_list = [] # It doesnt use namespace self.robot_name_space = "" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(WamvEnv, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=False, start_init_physics_parameters=False, reset_world_or_sim="WORLD") rospy.logdebug("WamvEnv unpause1...") self.gazebo.unpauseSim() #self.controllers_object.reset_controllers() self._check_all_systems_ready() # We Start all the ROS related Subscribers and publishers rospy.Subscriber("/wamv/odom", Odometry, self._odom_callback) self.publishers_array = [] self._cmd_drive_pub = rospy.Publisher('/cmd_drive', UsvDrive, queue_size=1) self.publishers_array.append(self._cmd_drive_pub) self._check_all_publishers_ready() self.gazebo.pauseSim() rospy.logdebug("Finished WamvEnv INIT...") # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ rospy.logdebug("WamvEnv check_all_systems_ready...") self._check_all_sensors_ready() rospy.logdebug("END WamvEnv _check_all_systems_ready...") return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): rospy.logdebug("START ALL SENSORS READY") self._check_odom_ready() rospy.logdebug("ALL SENSORS READY") def _check_odom_ready(self): self.odom = None rospy.logdebug("Waiting for /wamv/odom to be READY...") while self.odom is None and not rospy.is_shutdown(): try: self.odom = rospy.wait_for_message("/wamv/odom", Odometry, timeout=1.0) rospy.logdebug("Current /wamv/odom READY=>") except: rospy.logerr("Current /wamv/odom not ready yet, retrying for getting odom") return self.odom def _odom_callback(self, data): self.odom = data def _check_all_publishers_ready(self): """ Checks that all the publishers are working :return: """ rospy.logdebug("START ALL SENSORS READY") for publisher_object in self.publishers_array: self._check_pub_connection(publisher_object) rospy.logdebug("ALL SENSORS READY") def _check_pub_connection(self, publisher_object): rate = rospy.Rate(10) # 10hz while publisher_object.get_num_connections() == 0 and not rospy.is_shutdown(): rospy.logdebug("No susbribers to publisher_object yet so we wait and try again") try: rate.sleep() except rospy.ROSInterruptException: # This is to avoid error when world is rested, time when backwards. pass rospy.logdebug("publisher_object Publisher Connected") rospy.logdebug("All Publishers READY") # Methods that the TrainingEnvironment will need to define here as virtual # because they will be used in RobotGazeboEnv GrandParentClass and defined in the # TrainingEnvironment. # ---------------------------- def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() # Methods that the TrainingEnvironment will need. # ---------------------------- def set_propellers_speed(self, right_propeller_speed, left_propeller_speed, time_sleep=1.0): """ It will set the speed of each of the two proppelers of wamv. """ i = 0 for publisher_object in self.publishers_array: usv_drive_obj = UsvDrive() usv_drive_obj.right = right_propeller_speed usv_drive_obj.left = left_propeller_speed rospy.logdebug("usv_drive_obj>>"+str(usv_drive_obj)) publisher_object.publish(usv_drive_obj) i += 1 self.wait_time_for_execute_movement(time_sleep) def wait_time_for_execute_movement(self, time_sleep): """ Because this Wamv position is global, we really dont have a way to know if its moving in the direction desired, because it would need to evaluate the diference in position and speed on the local reference. """ time.sleep(time_sleep) def get_odom(self): return self.odom
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~templates~template_my_robot_env.py
from openai_ros import robot_gazebo_env class MyRobotEnv(robot_gazebo_env.RobotGazeboEnv): """Superclass for all Robot environments. """ def __init__(self): """Initializes a new Robot environment. """ # Variables that we give through the constructor. # Internal Vars self.controllers_list = ['my_robot_controller1','my_robot_controller2', ..., 'my_robot_controllerX'] self.robot_name_space = "my_robot_namespace" reset_controls_bool = True or False # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(MyRobotEnv, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=reset_controls_bool) # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ # TODO return True # Methods that the TrainingEnvironment will need to define here as virtual # because they will be used in RobotGazeboEnv GrandParentClass and defined in the # TrainingEnvironment. # ---------------------------- def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() # Methods that the TrainingEnvironment will need. # ----------------------------
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~task_envs~fetch~fetch_test_task.py
from gym import utils import copy import rospy from gym import spaces from openai_ros.robot_envs import fetch_env from gym.envs.registration import register import numpy as np from sensor_msgs.msg import JointState from openai_ros.openai_ros_common import ROSLauncher from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest import os class FetchTestEnv(fetch_env.FetchEnv, utils.EzPickle): def __init__(self): # Launch the Task Simulated-Environment # This is the path where the simulation files are, # the Task and the Robot gits will be downloaded if not there ros_ws_abspath = rospy.get_param("/fetch/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="fetch_gazebo", launch_file_name="start_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file relative to this TaskEnvironment LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/fetch/config", yaml_file_name="fetch_test.yaml") rospy.logdebug("Entered FetchTestEnv Env") self.get_params() self.action_space = spaces.Discrete(self.n_actions) observations_high_range = np.array( [self.position_ee_max]*self.n_observations) observations_low_range = np.array( [self.position_ee_min]*self.n_observations) observations_high_dist = np.array([self.max_distance]) observations_low_dist = np.array([0.0]) high = np.concatenate( [observations_high_range, observations_high_dist]) low = np.concatenate([observations_low_range, observations_low_dist]) self.observation_space = spaces.Box(low, high) # TODO: Clean up # fetch_env.FetchEnv.__init__(self) super(FetchTestEnv, self).__init__(ros_ws_abspath) def get_params(self): # get configuration parameters self.n_actions = rospy.get_param('/fetch/n_actions') self.n_observations = rospy.get_param('/fetch/n_observations') self.position_ee_max = rospy.get_param('/fetch/position_ee_max') self.position_ee_min = rospy.get_param('/fetch/position_ee_min') self.init_pos = rospy.get_param('/fetch/init_pos') self.setup_ee_pos = rospy.get_param('/fetch/setup_ee_pos') self.goal_ee_pos = rospy.get_param('/fetch/goal_ee_pos') self.position_delta = rospy.get_param('/fetch/position_delta') self.step_punishment = rospy.get_param('/fetch/step_punishment') self.closer_reward = rospy.get_param('/fetch/closer_reward') self.impossible_movement_punishement = rospy.get_param( '/fetch/impossible_movement_punishement') self.reached_goal_reward = rospy.get_param( '/fetch/reached_goal_reward') self.max_distance = rospy.get_param('/fetch/max_distance') self.desired_position = [self.goal_ee_pos["x"], self.goal_ee_pos["y"], self.goal_ee_pos["z"]] self.gripper_rotation = [1., 0., 1., 0.] def _set_init_pose(self): """Sets the Robot in its init pose The Simulation will be unpaused for this purpose. """ # Check because it seems its not being used rospy.logdebug("Init Pos:") rospy.logdebug(self.init_pos) """ # Init Joint Pose rospy.logdebug("Moving To SETUP Joints ") self.movement_result = self.set_trajectory_joints(self.init_pos) """ # We test the Desired Goal # INIT POSE rospy.logdebug("Moving To TEST DESIRED GOAL Position ") action = self.create_action( self.desired_position, self.gripper_rotation) self.movement_result = self.set_trajectory_ee(action) if self.movement_result: # INIT POSE rospy.logdebug("Moving To SETUP Position ") self.last_gripper_target = [ self.setup_ee_pos["x"], self.setup_ee_pos["y"], self.setup_ee_pos["z"]] action = self.create_action( self.last_gripper_target, self.gripper_rotation) self.movement_result = self.set_trajectory_ee(action) self.current_dist_from_des_pos_ee = self.calculate_distance_between( self.desired_position, self.last_gripper_target) rospy.logdebug("INIT DISTANCE FROM GOAL==>" + str(self.current_dist_from_des_pos_ee)) else: assert False, "Desired GOAL EE is not possible" self.last_action = "INIT" rospy.logdebug("Init Pose Results ==>"+str(self.movement_result)) return self.movement_result def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. The simulation will be paused, therefore all the data retrieved has to be from a system that doesnt need the simulation running, like variables where the callbackas have stored last know sesnor data. :return: """ rospy.logdebug("Init Env Variables...") rospy.logdebug("Init Env Variables...END") def _set_action(self, action): delta_gripper_target = [0.0]*len(self.last_gripper_target) # We convert action ints in increments/decrements of one of the axis XYZ if action == 0: # X+ delta_gripper_target[0] += self.position_delta self.last_action = "X+" elif action == 1: # X- delta_gripper_target[0] -= self.position_delta self.last_action = "X-" elif action == 2: # Y+ delta_gripper_target[1] += self.position_delta self.last_action = "Y+" elif action == 3: # Y- delta_gripper_target[1] -= self.position_delta self.last_action = "Y-" elif action == 4: # Z+ delta_gripper_target[2] += self.position_delta self.last_action = "Z+" elif action == 5: # Z- delta_gripper_target[2] -= self.position_delta self.last_action = "Z-" gripper_target = copy.deepcopy(self.last_gripper_target) gripper_target[0] += delta_gripper_target[0] gripper_target[1] += delta_gripper_target[1] gripper_target[2] += delta_gripper_target[2] # Apply action to simulation. action_end_effector = self.create_action( gripper_target, self.gripper_rotation) self.movement_result = self.set_trajectory_ee(action_end_effector) if self.movement_result: # If the End Effector Positioning was succesfull, we replace the last one with the new one. self.last_gripper_target = copy.deepcopy(gripper_target) else: rospy.logerr("Impossible End Effector Position...." + str(gripper_target)) rospy.logwarn("END Set Action ==>"+str(action) + ", NAME="+str(self.last_action)) def _get_obs(self): """ It returns the Position of the TCP/EndEffector as observation. And the distance from the desired point Orientation for the moment is not considered """ grip_pos = self.get_ee_pose() grip_pos_array = [grip_pos.pose.position.x, grip_pos.pose.position.y, grip_pos.pose.position.z] obs = grip_pos_array new_dist_from_des_pos_ee = self.calculate_distance_between( self.desired_position, grip_pos_array) obs.append(new_dist_from_des_pos_ee) rospy.logdebug("OBSERVATIONS====>>>>>>>"+str(obs)) return obs def _is_done(self, observations): """ If the latest Action didnt succeed, it means that tha position asked was imposible therefore the episode must end. It will also end if it reaches its goal. """ current_pos = observations[:3] done = self.calculate_if_done( self.movement_result, self.desired_position, current_pos) return done def _compute_reward(self, observations, done): """ We punish each step that it passes without achieveing the goal. Punishes differently if it reached a position that is imposible to move to. Rewards getting to a position close to the goal. """ current_pos = observations[:3] new_dist_from_des_pos_ee = observations[-1] reward = self.calculate_reward( self.movement_result, self.desired_position, current_pos, new_dist_from_des_pos_ee) rospy.logwarn(">>>REWARD>>>"+str(reward)) return reward def calculate_if_done(self, movement_result, desired_position, current_pos): """ It calculated whather it has finished or not """ done = False if movement_result: position_similar = np.all(np.isclose( desired_position, current_pos, atol=1e-02)) if position_similar: done = True rospy.logdebug("Reached a Desired Position!") else: done = True rospy.logdebug("Reached a TCP position not reachable") return done def calculate_reward(self, movement_result, desired_position, current_pos, new_dist_from_des_pos_ee): """ It calculated whather it has finished or nota and how much reward to give """ if movement_result: position_similar = np.all(np.isclose( desired_position, current_pos, atol=1e-02)) # Calculating Distance rospy.logwarn("desired_position="+str(desired_position)) rospy.logwarn("current_pos="+str(current_pos)) rospy.logwarn("self.current_dist_from_des_pos_ee=" + str(self.current_dist_from_des_pos_ee)) rospy.logwarn("new_dist_from_des_pos_ee=" + str(new_dist_from_des_pos_ee)) delta_dist = new_dist_from_des_pos_ee - self.current_dist_from_des_pos_ee if position_similar: reward = self.reached_goal_reward rospy.logwarn("Reached a Desired Position!") else: if delta_dist < 0: reward = self.closer_reward rospy.logwarn( "CLOSER To Desired Position!="+str(delta_dist)) else: reward = self.step_punishment rospy.logwarn( "FURTHER FROM Desired Position!"+str(delta_dist)) else: reward = self.impossible_movement_punishement rospy.logwarn("Reached a TCP position not reachable") # We update the distance self.current_dist_from_des_pos_ee = new_dist_from_des_pos_ee rospy.logdebug("Updated Distance from GOAL==" + str(self.current_dist_from_des_pos_ee)) return reward def calculate_distance_between(self, v1, v2): """ Calculated the Euclidian distance between two vectors given as python lists. """ dist = np.linalg.norm(np.array(v1)-np.array(v2)) return dist
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~multi_robot_gazebo_env.py
import rospy import gym from gym.utils import seeding from .multi_robot_gazebo_connection import GazeboConnection #https://bitbucket.org/theconstructcore/theconstruct_msgs/src/master/msg/RLExperimentInfo.msg from openai_ros.msg import RLExperimentInfo # https://github.com/openai/gym/blob/master/gym/core.py class MultiRobotGazeboEnv(gym.Env): def __init__(self, start_init_physics_parameters=True): # To reset Simulations rospy.logdebug("START init MultiRobotGazeboEnv") self.gazebo = GazeboConnection(start_init_physics_parameters) self.seed() # Set up ROS related variables self.episode_num = 0 self.cumulated_episode_reward = 0 self.reward_pub = rospy.Publisher('/openai/reward', RLExperimentInfo, queue_size=1) rospy.logdebug("END init MultiRobotGazeboEnv") # Env methods def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, action): """ Function executed each time step. Here we get the action execute it in a time step and retrieve the observations generated by that action. :param action: :return: obs, reward, done, info """ """ Here we should convert the action num to movement action, execute the action in the simulation and get the observations result of performing that action. """ rospy.logdebug("START STEP OpenAIROS") self.gazebo.unpauseSim() self._set_action(action) self.gazebo.pauseSim() obs = self._get_obs() done = self._is_done(obs) info = {} reward = self._compute_reward(obs, done) self.cumulated_episode_reward += reward rospy.logdebug("END STEP OpenAIROS") return obs, reward, done, info def reset(self): rospy.logdebug("Reseting MultiRobotGazeboEnvironment") self._init_env_variables() self._reset_sim() self._update_episode() obs = self._get_obs() rospy.logdebug("END Reseting MultiRobotGazeboEnvironment") return obs def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _reset_sim(self): """Resets a simulation """ rospy.logdebug("RESET SIM START") self.gazebo.pauseSim() self._set_init_gazebo_pose() self.gazebo.unpauseSim() self._check_all_systems_ready() self._set_init_ros() rospy.logdebug("RESET SIM END") return True def _set_init_gazebo_pose(self): """Sets the Robot in its init pose in Gazebo """ raise NotImplementedError() def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ raise NotImplementedError() def _set_init_ros(self): """Sets the Robot in its init pose in ROS """ raise NotImplementedError() def _update_episode(self): """ Publishes the cumulated reward of the episode and increases the episode number by one. :return: """ rospy.logwarn("PUBLISHING REWARD...") self._publish_reward_topic( self.cumulated_episode_reward, self.episode_num ) rospy.logwarn("PUBLISHING REWARD...DONE="+str(self.cumulated_episode_reward)+",EP="+str(self.episode_num)) self.episode_num += 1 self.cumulated_episode_reward = 0 def _publish_reward_topic(self, reward, episode_number=1): """ This function publishes the given reward in the reward topic for easy access from ROS infrastructure. :param reward: :param episode_number: :return: """ reward_msg = RLExperimentInfo() reward_msg.episode_number = episode_number reward_msg.episode_reward = reward self.reward_pub.publish(reward_msg) def _get_obs(self): """Returns the observation. """ raise NotImplementedError() def close(self): """ Function executed when closing the environment. Use it for closing GUIS and other systems that need closing. :return: """ rospy.logdebug("Closing MultiRobotGazeboEnvironment") rospy.signal_shutdown("Closing MultiRobotGazeboEnvironment") def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _is_done(self, observations): """Indicates whether or not the episode is done ( the robot has fallen for example). """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _env_setup(self, initial_qpos): """Initial configuration of the environment. Can be used to configure initial state and extract information from the simulation. """ raise NotImplementedError()
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~robot_envs~iriwam_env.py
import numpy import rospy import time import tf from openai_ros import robot_gazebo_env from sensor_msgs.msg import Image from sensor_msgs.msg import LaserScan from sensor_msgs.msg import PointCloud2 from control_msgs.msg import JointTrajectoryControllerState from openai_ros.openai_ros_common import ROSLauncher import actionlib from control_msgs.msg import FollowJointTrajectoryAction, FollowJointTrajectoryGoal from trajectory_msgs.msg import JointTrajectoryPoint from moveit_msgs.msg import JointLimits class IriWamEnv(robot_gazebo_env.RobotGazeboEnv): """Superclass for all IriWamEnv environments. """ def __init__(self, ros_ws_abspath): """ Initializes a new IriWamEnv environment. To check any topic we need to have the simulations running, we need to do two things: 1) Unpause the simulation: without that th stream of data doesnt flow. This is for simulations that are pause for whatever the reason 2) If the simulation was running already for some reason, we need to reset the controlers. This has to do with the fact that some plugins with tf, dont understand the reset of the simulation and need to be reseted to work properly. The Sensors: The sensors accesible are the ones considered usefull for AI learning. Sensor Topic List: * /camera/depth/image_raw * /camera/depth/points * /camera/rgb/image_raw * /laser_scan: Laser scan of the TCP * /iri_wam/iri_wam_controller/state, control_msgs/JointTrajectoryControllerState: Gives desired, actual and error. Actuators Topic List: * We publish int the action: /iri_wam/iri_wam_controller/follow_joint_trajectory/goal Args: """ rospy.logdebug("Start IriWamEnv INIT...") # Variables that we give through the constructor. # None in this case # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="iri_wam_gazebo", launch_file_name="put_iriwam_in_world.launch", ros_ws_abspath=ros_ws_abspath) # Internal Vars # Doesnt have any accesibles self.controllers_list = [] # It doesnt use namespace self.robot_name_space = "" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(IriWamEnv, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=False, start_init_physics_parameters=False, reset_world_or_sim="WORLD") rospy.logdebug("IriWamEnv unpause...") self.gazebo.unpauseSim() self._check_all_systems_ready() rospy.Subscriber("/camera/depth/image_raw", Image, self._camera_depth_image_raw_callback) rospy.Subscriber("/camera/depth/points", PointCloud2, self._camera_depth_points_callback) rospy.Subscriber("/camera/rgb/image_raw", Image, self._camera_rgb_image_raw_callback) rospy.Subscriber("/laser_scan", LaserScan, self._laser_scan_callback) rospy.Subscriber("/iri_wam/iri_wam_controller/state", JointTrajectoryControllerState, self._joint_state_callback) self._setup_tf_listener() self._setup_movement_system() self.gazebo.pauseSim() rospy.logdebug("Finished IriWamEnv INIT...") # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ rospy.logdebug("IriWamEnv check_all_systems_ready...") self._check_all_sensors_ready() rospy.logdebug("END IriWamEnv _check_all_systems_ready...") return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): rospy.logdebug("START ALL SENSORS READY") # TODO: Here go the sensors like cameras and joint states # self._check_camera_depth_image_raw_ready() # self._check_camera_depth_points_ready() # self._check_camera_rgb_image_raw_ready() self._check_laser_scan_ready() rospy.logdebug("ALL SENSORS READY") def _check_camera_depth_image_raw_ready(self): self.camera_depth_image_raw = None rospy.logdebug("Waiting for /camera/depth/image_raw to be READY...") while self.camera_depth_image_raw is None and not rospy.is_shutdown(): try: self.camera_depth_image_raw = rospy.wait_for_message( "/camera/depth/image_raw", Image, timeout=5.0) rospy.logdebug("Current /camera/depth/image_raw READY=>") except: rospy.logerr( "Current /camera/depth/image_raw not ready yet, retrying for getting camera_depth_image_raw") return self.camera_depth_image_raw def _check_camera_depth_points_ready(self): self.camera_depth_points = None rospy.logdebug("Waiting for /camera/depth/points to be READY...") while self.camera_depth_points is None and not rospy.is_shutdown(): try: self.camera_depth_points = rospy.wait_for_message( "/camera/depth/points", PointCloud2, timeout=10.0) rospy.logdebug("Current /camera/depth/points READY=>") except: rospy.logerr( "Current /camera/depth/points not ready yet, retrying for getting camera_depth_points") return self.camera_depth_points def _check_camera_rgb_image_raw_ready(self): self.camera_rgb_image_raw = None rospy.logdebug("Waiting for /camera/rgb/image_raw to be READY...") while self.camera_rgb_image_raw is None and not rospy.is_shutdown(): try: self.camera_rgb_image_raw = rospy.wait_for_message( "/camera/rgb/image_raw", Image, timeout=5.0) rospy.logdebug("Current /camera/rgb/image_raw READY=>") except: rospy.logerr( "Current /camera/rgb/image_raw not ready yet, retrying for getting camera_rgb_image_raw") return self.camera_rgb_image_raw def _check_laser_scan_ready(self): self.laser_scan = None rospy.logdebug("Waiting for /laser_scan to be READY...") while self.laser_scan is None and not rospy.is_shutdown(): try: self.laser_scan = rospy.wait_for_message( "/laser_scan", LaserScan, timeout=5.0) rospy.logdebug("Current /laser_scan READY=>") except: rospy.logerr( "Current /laser_scan not ready yet, retrying for getting laser_scan") return self.laser_scan def _check_joint_state_ready(self): self.joint_state = None rospy.logdebug( "Waiting for /iri_wam/iri_wam_controller/state to be READY...") while self.joint_state is None and not rospy.is_shutdown(): try: self.joint_state = rospy.wait_for_message( "/iri_wam/iri_wam_controller/state", JointTrajectoryControllerState, timeout=5.0) rospy.logdebug( "Current /iri_wam/iri_wam_controller/state READY=>") except: rospy.logerr( "Current /iri_wam/iri_wam_controller/state not ready yet, retrying for getting laser_scan") return self.joint_state def _camera_depth_image_raw_callback(self, data): self.camera_depth_image_raw = data def _camera_depth_points_callback(self, data): self.camera_depth_points = data def _camera_rgb_image_raw_callback(self, data): self.camera_rgb_image_raw = data def _laser_scan_callback(self, data): self.laser_scan = data def _joint_state_callback(self, data): self.joint_state = data def _setup_tf_listener(self): """ Set ups the TF listener for getting the transforms you ask for. """ self.listener = tf.TransformListener() def _setup_movement_system(self): """ Setup of the movement system. :return: """ self.traj_object = IriWamExecTrajectory() # Methods that the TrainingEnvironment will need to define here as virtual # because they will be used in RobotGazeboEnv GrandParentClass and defined in the # TrainingEnvironment. # ---------------------------- def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() # Methods that the TrainingEnvironment will need. # ---------------------------- def move_joints_to_angle_blocking(self, joints_positions_array): """ It moves all the joints to the given position and doesnt exit until it reaches that position :param: joints_positions_array: Its an array that ahas the desired joint positions in radians. The order of the joints is: [ "iri_wam_joint_1", "iri_wam_joint_2", "iri_wam_joint_3", "iri_wam_joint_4", "iri_wam_joint_5", "iri_wam_joint_6", "iri_wam_joint_7"] """ self.traj_object.send_joints_positions(joints_positions_array) def get_tf_start_to_end_frames(self, start_frame_name, end_frame_name): """ Given two frames, it returns the transform from the start_frame_name to the end_frame_name. It will only return something different to None if the TFs of the Two frames are in TF topic published and are connected through the TF tree. :param: start_frame_name: Start Frame of the TF transform end_frame_name: End Frame of the TF transform :return: trans,rot of the transform between the start and end frames. """ start_frame = "/"+start_frame_name end_frame = "/"+end_frame_name trans, rot = None, None try: (trans, rot) = self.listener.lookupTransform( start_frame, end_frame, rospy.Time(0)) except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): rospy.logerr("TF start to end not ready YET...") pass return trans, rot def get_camera_depth_image_raw(self): return self.camera_depth_image_raw def get_camera_depth_points(self): return self.camera_depth_points def get_camera_rgb_image_raw(self): return self.camera_rgb_image_raw def get_laser_scan(self): return self.laser_scan def get_joint_state(self): return self.joint_state def get_joint_limits(self): """ name: [iri_wam_joint_1, iri_wam_joint_2, iri_wam_joint_3, iri_wam_joint_4, iri_wam_joint_5, iri_wam_joint_6, iri_wam_joint_7] position: [-2.453681702263566e-11, 5.5375411835534294e-05, -2.9760194308892096e-11, -0.0062733383258359865, 1.8740564655672642e-13, 2.6570746959997393e-05, 1.5187850976872141e-13] """ name_array = ["iri_wam_joint_1", "iri_wam_joint_2", "iri_wam_joint_3", "iri_wam_joint_4", "iri_wam_joint_5", "iri_wam_joint_6", "iri_wam_joint_7"] up_limits_array = [2.6, 2.0, 2.8, 3.1, 1.24, 1.6, 3.0] down_limits_array = [-2.6, -2.0, -2.8, -0.9, -4.76, -1.6, -3.0] joint_limits_array = [] for i in range(len(name_array)): joint_limits = JointLimits() joint_limits.min_position = down_limits_array[i] joint_limits.max_position = up_limits_array[i] joint_limits_array.append(joint_limits) return joint_limits_array def init_joint_limits(self): """ Get the Joint Limits, in the init fase where we need to unpause the simulation to get them :return: joint_limits: The Joint Limits Dictionary, with names, angles, vel and effort limits. """ joint_limits = self.get_joint_limits() return joint_limits class IriWamExecTrajectory(object): def __init__(self): # create the connection to the action server self.client = actionlib.SimpleActionClient( '/iri_wam/iri_wam_controller/follow_joint_trajectory', FollowJointTrajectoryAction) # waits until the action server is up and running self.client.wait_for_server() self.init_goal_message() def init_goal_message(self): """ We initialise the variable that we will use to send the goals. We will reuse it because most of the values are fixed. """ self.PENDING = 0 self.ACTIVE = 1 self.DONE = 2 self.WARN = 3 self.ERROR = 4 # We Initialise the GOAL SYETS GOINT TO INIT POSE # creates a goal to send to the action server self.goal = FollowJointTrajectoryGoal() # We fill in the Goal self.goal.trajectory.header.stamp = rospy.Time.now() self.goal.trajectory.header.frame_id = "iri_wam_link_base" self.goal.trajectory.joint_names = ["iri_wam_joint_1", "iri_wam_joint_2", "iri_wam_joint_3", "iri_wam_joint_4", "iri_wam_joint_5", "iri_wam_joint_6", "iri_wam_joint_7"] # Some of them dont quite coincide with the URDF limits, just because those limits break the simulation. self.max_values = [2.6, 2.0, 2.8, 3.0, 1.24, 1.5, 3.0] self.min_values = [-2.6, -2.0, -2.8, -0.9, -1.24, -1.4, -3.0] self.goal.trajectory.points = [] joint_traj_point = JointTrajectoryPoint() # TODO joint_traj_point.positions = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] joint_traj_point.velocities = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] joint_traj_point.accelerations = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] joint_traj_point.effort = [] joint_traj_point.time_from_start = rospy.Duration.from_sec(1.0) self.goal.trajectory.points.append(joint_traj_point) def get_goal(self): return self.goal def feedback_callback(self, feedback): rospy.loginfo("##### FEEDBACK ######") # rospy.loginfo(str(feedback.joint_names)) # rospy.loginfo(str(feedback.desired.positions)) # rospy.loginfo(str(feedback.actual.positions)) rospy.loginfo(str(feedback.error.positions)) rospy.loginfo("##### ###### ######") def send_joints_positions(self, joints_positions_array, seconds_duration=0.05): my_goal = self.get_goal() my_goal.trajectory.header.stamp = rospy.Time.now() joint_traj_point = JointTrajectoryPoint() # We clamp the values to max and min to avoid asking configurations that IriWam cant reach. joint_traj_point.positions = numpy.clip(joints_positions_array, self.min_values, self.max_values).tolist() joint_traj_point.velocities = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] joint_traj_point.accelerations = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] joint_traj_point.effort = [] joint_traj_point.time_from_start = rospy.Duration.from_sec( seconds_duration) my_goal.trajectory.points = [] my_goal.trajectory.points.append(joint_traj_point) # sends the goal to the action server, specifying which feedback function # to call when feedback received self.client.send_goal(my_goal, feedback_cb=self.feedback_callback) # Uncomment these lines to test goal preemption: # self.client.cancel_goal() # would cancel the goal 3 seconds after starting state_result = self.client.get_state() rate = rospy.Rate(10) rospy.loginfo("state_result: "+str(state_result)) while state_result < self.DONE: rospy.loginfo( "Doing Stuff while waiting for the Server to give a result....") rate.sleep() state_result = self.client.get_state() rospy.loginfo("state_result: "+str(state_result)) rospy.loginfo("[Result] State: "+str(state_result)) if state_result == self.ERROR: rospy.logerr("Something went wrong in the Server Side") if state_result == self.WARN: rospy.logwarn("There is a warning in the Server Side")
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~task_envs~fetch~fetch_push.py
from gym import utils import copy import rospy from gym import spaces from openai_ros.robot_envs import fetch_env from gym.envs.registration import register import numpy as np from sensor_msgs.msg import JointState from openai_ros.openai_ros_common import ROSLauncher from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest import os class FetchPushEnv(fetch_env.FetchEnv, utils.EzPickle): def __init__(self): # Launch the Task Simulated-Environment # This is the path where the simulation files are, # the Task and the Robot gits will be downloaded if not there ros_ws_abspath = rospy.get_param("/fetch/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="fetch_simple_description", launch_file_name="start_HER_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file relative to this TaskEnvironment LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/fetch/config", yaml_file_name="fetch_push.yaml") self.get_params() # TODO: this must be continuous action space... don't follow the old implementation. self.action_space = spaces.Discrete(self.n_actions) observations_high_range = np.array( [self.position_ee_max]*self.n_observations) observations_low_range = np.array( [self.position_ee_min]*self.n_observations) observations_high_dist = np.array([self.max_distance]) observations_low_dist = np.array([0.0]) high = np.concatenate( [observations_high_range, observations_high_dist]) low = np.concatenate([observations_low_range, observations_low_dist]) self.observation_space = spaces.Box(low, high) # TODO: Clean up # fetch_env.FetchEnv.__init__(self) super(FetchPushEnv, self).__init__(ros_ws_abspath) def get_params(self): """ get configuration parameters """ self.sim_time = rospy.get_time() self.n_actions = rospy.get_param('/fetch/n_actions') self.n_observations = rospy.get_param('/fetch/n_observations') self.position_ee_max = rospy.get_param('/fetch/position_ee_max') self.position_ee_min = rospy.get_param('/fetch/position_ee_min') self.init_pos = rospy.get_param('/fetch/init_pos') self.setup_ee_pos = rospy.get_param('/fetch/setup_ee_pos') self.goal_ee_pos = rospy.get_param('/fetch/goal_ee_pos') self.position_delta = rospy.get_param('/fetch/position_delta') self.step_punishment = rospy.get_param('/fetch/step_punishment') self.closer_reward = rospy.get_param('/fetch/closer_reward') self.impossible_movement_punishement = rospy.get_param( '/fetch/impossible_movement_punishement') self.reached_goal_reward = rospy.get_param( '/fetch/reached_goal_reward') self.max_distance = rospy.get_param('/fetch/max_distance') self.goal = np.array( [self.goal_ee_pos["x"], self.goal_ee_pos["y"], self.goal_ee_pos["z"]]) self.rot_ctrl = np.array([1., 0., 1., 0.]) self.prev_grip_pos = np.zeros(3) self.prev_object_pos = np.zeros(3) self.prev_object_rot = np.zeros(3) def _set_init_pose(self): """ Sets the Robot in its init pose The Simulation will be unpaused for this purpose. """ if not self.set_trajectory_joints(self.init_pos): assert False, "Initialisation is failed...." def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. The simulation will be paused, therefore all the data retrieved has to be from a system that doesnt need the simulation running, like variables where the callbackas have stored last know sesnor data. :return: """ rospy.logdebug("Init Env Variables...") rospy.logdebug("Init Env Variables...END") def _set_action(self, action): rospy.logwarn("=== Action: {}".format(action)) pos_ctrl, gripper_ctrl = action[:3], action[3] """ Since the implementation of self.set_trajectory_ee(in fetch_env.py) ONLY takes the position of the EE(end-effector) Action only contains: the destination of the EE in the world frame TODO: Talk to Miguel regarding the modification of the basic implementation of self.set_trajectory_ee(in fetch_env.py) below code is similar to the original implementaion of OpenAI """ # gripper_ctrl = np.array([gripper_ctrl, gripper_ctrl]) # action = np.concatenate([pos_ctrl, self.rot_ctrl, gripper_ctrl]) # TODO: After speak to Miguel, let's not use this, USE above action!! action = pos_ctrl self.movement_result = self.set_trajectory_ee(action) if not self.movement_result: assert False, "movement_result failed with the action of : " + \ str(action) def _get_obs(self): """ It returns the Position of the TCP/EndEffector as observation. And the distance from the desired point Orientation for the moment is not considered Note: - In original code(https://github.com/openai/gym/blob/master/gym/envs/robotics/fetch_env.py#L91), the term (xvelp) is used and it means positional velocity in world frame """ grip_pos_v = self.get_ee_pose() grip_pos = np.array([grip_pos_v.pose.position.x, grip_pos_v.pose.position.y, grip_pos_v.pose.position.z]) dt = self.get_elapsed_time() # Velocity(position) = Distance/Time grip_velp = (grip_pos - self.prev_grip_pos)/dt # the pose and rotation of the cube/box on a table object_data = self.obj_positions.get_states() object_pos = object_data[:3] # pose of cube object_rot = object_data[3:] # rotation of cube object_velp = (object_pos - self.prev_object_pos) / \ dt # Velocity(position) = Distance/Time object_velr = (object_rot - self.prev_object_rot) / \ dt # Velocity(rotation) = Rotation/Time object_rel_pos = object_pos - grip_pos # Unknown meaning of this operation(https://github.com/openai/gym/blob/master/gym/envs/robotics/fetch_env.py#L102) object_velp -= grip_velp """ TODO: Ask Miguel the meaning of the two variables below 1. gripper_state => https: // github.com / openai / gym / blob / master / gym / envs / robotics / fetch_env.py # L105 2. gripper_vel => https: // github.com / openai / gym / blob / master / gym / envs / robotics / fetch_env.py # L106 """ gripper_state = np.zeros(0) # temp workaround gripper_vel = np.zeros(0) # temp workaround achieved_goal = np.squeeze(object_pos.copy()) obs = np.concatenate([ grip_pos, # absolute position of gripper object_pos.ravel(), # absolute position of object object_rel_pos.ravel(), # relative position of object from gripper gripper_state, # gripper state object_rot.ravel(), # rotations of object object_velp.ravel(), # positional velocities of object object_velr.ravel(), # rotational velocities of object grip_velp, # distance between fingers gripper_vel, # velocities of gripper ]) rospy.logdebug("OBSERVATIONS====>>>>>>>"+str(obs)) # Update the previous properties self.prev_grip_pos = grip_pos self.prev_object_pos = object_pos self.prev_object_rot = object_rot return { 'observation': obs.copy(), 'achieved_goal': achieved_goal.copy(), 'desired_goal': self.goal.copy(), } def get_elapsed_time(self): """ Returns the elapsed time since the beginning of the simulation Then maintains the current time as "previous time" to calculate the elapsed time again """ current_time = rospy.get_time() dt = self.sim_time - current_time self.sim_time = current_time return dt def _is_done(self, observations): """ If the latest Action didnt succeed, it means that tha position asked was imposible therefore the episode must end. It will also end if it reaches its goal. """ current_pos = observations[:3] done = self.calculate_if_done( self.movement_result, self.goal, current_pos) return done def _compute_reward(self, observations, done): """ Given a success of the execution of the action Calculate the reward: binary => 1 for success, 0 for failure """ current_pos = observations[:3] # TODO: ask Miguel, why we need this new_dist_from_des_pos_ee = observations[-1] if self.movement_result: position_similar = np.all(np.isclose( self.goal, current_pos, atol=1e-02)) if position_similar: reward = self.reached_goal_reward rospy.logwarn("Reached a Desired Position!") else: reward = 0 else: # TODO: Ask Miguel about the purpose of having "self.impossible_movement_punishement" reward = self.impossible_movement_punishement rospy.logwarn("Reached a TCP position not reachable") rospy.logwarn(">>>REWARD>>>"+str(reward)) return reward def calculate_if_done(self, movement_result, goal, current_pos): """ It calculated whather it has finished or not """ done = False if movement_result: # check if the end-effector located within a threshold # TODO: check this threshold is alined with the paper one position_similar = np.all( np.isclose(goal, current_pos, atol=1e-02)) if position_similar: done = True rospy.logdebug("Reached a Desired Position!") else: # or if the end-effector reaches the maximum strechable point done = True rospy.logdebug("Reached a TCP position not reachable") return done def calculate_distance_between(self, v1, v2): """ Calculated the Euclidian distance between two vectors given as python lists. """ dist = np.linalg.norm(np.array(v1) - np.array(v2)) return dist
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~task_envs~task_envs_list.py
#!/usr/bin/env python from gym.envs.registration import register from gym import envs def RegisterOpenAI_Ros_Env(task_env, timestep_limit_per_episode=10000): """ Registers all the ENVS supported in OpenAI ROS. This way we can load them with variable limits. Here is where you have to PLACE YOUR NEW TASK ENV, to be registered and accesible. return: False if the Task_Env wasnt registered, True if it was. """ ########################################################################### # MovingCube Task-Robot Envs result = True # Cubli Moving Cube if task_env == 'MovingCubeOneDiskWalk-v0': # We register the Class through the Gym system register( id=task_env, entry_point='openai_ros:task_envs.moving_cube.one_disk_walk.MovingCubeOneDiskWalkEnv', max_episode_steps=timestep_limit_per_episode, ) # We have to import the Class that we registered so that it can be found afterwards in the Make from openai_ros.task_envs.moving_cube import one_disk_walk # Husarion Robot elif task_env == 'HusarionGetToPosTurtleBotPlayGround-v0': register( id=task_env, entry_point='openai_ros:task_envs.husarion.husarion_get_to_position_turtlebot_playground.HusarionGetToPosTurtleBotPlayGroundEnv', timestep_limit=timestep_limit_per_episode, ) # import our training environment from openai_ros.task_envs.husarion import husarion_get_to_position_turtlebot_playground elif task_env == 'FetchTest-v0': register( id=task_env, entry_point='openai_ros:task_envs.fetch.fetch_test_task.FetchTestEnv', timestep_limit=timestep_limit_per_episode, ) # 50 # We have to import the Class that we registered so that it can be found afterwards in the Make from openai_ros.task_envs.fetch import fetch_test_task elif task_env == 'FetchSimpleTest-v0': register( id=task_env, # entry_point='openai_ros:task_envs.fetch.fetch_simple_task.FetchSimpleTestEnv', entry_point='openai_ros.task_envs.fetch.fetch_simple_task:FetchSimpleTestEnv', timestep_limit=timestep_limit_per_episode, ) # We have to import the Class that we registered so that it can be found afterwards in the Make from openai_ros.task_envs.fetch import fetch_simple_task elif task_env == 'FetchPickAndPlace-v0': register( id=task_env, # entry_point='openai_ros:task_envs.fetch.fetch_pick_and_place_task.FetchPickAndPlaceEnv', entry_point='openai_ros:task_envs.fetch.fetch_pick_and_place_task.FetchPickAndPlaceEnv', timestep_limit=timestep_limit_per_episode, ) # We have to import the Class that we registered so that it can be found afterwards in the Make from openai_ros.task_envs.fetch import fetch_pick_and_place_task elif task_env == 'FetchPush-v0': register( id=task_env, # entry_point='openai_ros:task_envs.fetch.fetch_pick_and_place_task.FetchPushEnv', # entry_point='openai_ros:task_envs.fetch.fetch_push.FetchPushEnv', entry_point='openai_ros.task_envs.fetch.fetch_push:FetchPushEnv', timestep_limit=timestep_limit_per_episode, ) # We have to import the Class that we registered so that it can be found afterwards in the Make from openai_ros.task_envs.fetch import fetch_push elif task_env == 'CartPoleStayUp-v0': register( id=task_env, entry_point='openai_ros:task_envs.cartpole_stay_up.stay_up.CartPoleStayUpEnv', timestep_limit=timestep_limit_per_episode, ) # import our training environment from openai_ros.task_envs.cartpole_stay_up import stay_up elif task_env == 'HopperStayUp-v0': register( id=task_env, entry_point='openai_ros:task_envs.hopper.hopper_stay_up.HopperStayUpEnv', timestep_limit=timestep_limit_per_episode, ) # import our training environment from openai_ros.task_envs.hopper import hopper_stay_up elif task_env == 'IriWamTcpToBowl-v0': register( id=task_env, entry_point='openai_ros:task_envs.iriwam.tcp_to_bowl.IriWamTcpToBowlEnv', timestep_limit=timestep_limit_per_episode, ) # import our training environment from openai_ros.task_envs.iriwam import tcp_to_bowl elif task_env == 'ParrotDroneGoto-v0': register( id=task_env, entry_point='openai_ros:task_envs.parrotdrone.parrotdrone_goto.ParrotDroneGotoEnv', timestep_limit=timestep_limit_per_episode, ) # import our training environment from openai_ros.task_envs.parrotdrone import parrotdrone_goto elif task_env == 'SawyerTouchCube-v0': register( id=task_env, entry_point='openai_ros:task_envs.sawyer.learn_to_touch_cube.SawyerTouchCubeEnv', timestep_limit=timestep_limit_per_episode, ) # import our training environment from openai_ros.task_envs.sawyer import learn_to_touch_cube elif task_env == 'ShadowTcGetBall-v0': register( id=task_env, entry_point='openai_ros:task_envs.shadow_tc.learn_to_pick_ball.ShadowTcGetBallEnv', timestep_limit=timestep_limit_per_episode, ) # import our training environment from openai_ros.task_envs.shadow_tc import learn_to_pick_ball elif task_env == 'SumitXlRoom-v0': register( id='SumitXlRoom-v0', entry_point='openai_ros:task_envs.sumit_xl.sumit_xl_room.SumitXlRoom', timestep_limit=timestep_limit_per_episode, ) # import our training environment from openai_ros.task_envs.sumit_xl import sumit_xl_room elif task_env == 'MyTurtleBot2Maze-v0': register( id=task_env, entry_point='openai_ros:task_envs.turtlebot2.turtlebot2_maze.TurtleBot2MazeEnv', timestep_limit=timestep_limit_per_episode, ) # import our training environment from openai_ros.task_envs.turtlebot2 import turtlebot2_maze elif task_env == 'MyTurtleBot2Wall-v0': register( id=task_env, entry_point='openai_ros:task_envs.turtlebot2.turtlebot2_wall.TurtleBot2WallEnv', timestep_limit=timestep_limit_per_episode, ) # import our training environment from openai_ros.task_envs.turtlebot2 import turtlebot2_wall elif task_env == 'TurtleBot3World-v0': register( id=task_env, entry_point='openai_ros:task_envs.turtlebot3.turtlebot3_world.TurtleBot3WorldEnv', timestep_limit=timestep_limit_per_episode, ) # import our training environment from openai_ros.task_envs.turtlebot3 import turtlebot3_world elif task_env == 'WamvNavTwoSetsBuoys-v0': register( id=task_env, entry_point='openai_ros:task_envs.wamv.wamv_nav_twosets_buoys.WamvNavTwoSetsBuoysEnv', timestep_limit=timestep_limit_per_episode, ) # import our training environment from openai_ros.task_envs.wamv import wamv_nav_twosets_buoys # Add here your Task Envs to be registered else: result = False ########################################################################### if result: # We check that it was really registered supported_gym_envs = GetAllRegisteredGymEnvs() #print("REGISTERED GYM ENVS===>"+str(supported_gym_envs)) assert (task_env in supported_gym_envs), "The Task_Robot_ENV given is not Registered ==>" + \ str(task_env) return result def GetAllRegisteredGymEnvs(): """ Returns a List of all the registered Envs in the system return EX: ['Copy-v0', 'RepeatCopy-v0', 'ReversedAddition-v0', ... ] """ all_envs = envs.registry.all() env_ids = [env_spec.id for env_spec in all_envs] return env_ids
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~task_envs~fetch~fetch_pick_and_place_task.py
from gym import utils import copy import rospy import numpy as np from gym import spaces from openai_ros.robot_envs import fetchsimple_env from gym.envs.registration import register import numpy as np from sensor_msgs.msg import JointState from openai_ros.openai_ros_common import ROSLauncher from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest import os class FetchPickAndPlaceEnv(fetchsimple_env.FetchSimpleEnv, utils.EzPickle): def __init__(self): # Launch the Task Simulated-Environment # This is the path where the simulation files are, # the Task and the Robot gits will be downloaded if not there ros_ws_abspath = rospy.get_param("/fetch/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="fetch_simple_description", launch_file_name="start_HER_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file relative to this TaskEnvironment LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/fetch/config", yaml_file_name="fetchsimple_test.yaml") super(FetchPickAndPlaceEnv, self).__init__(ros_ws_abspath) rospy.logdebug("Entered FetchPickAndPlaceEnv Env") self.get_params() self.action_space = spaces.Discrete(self.n_actions) observations_high_range = np.array( self.upper_array_observations) observations_low_range = np.array( self.lower_array_observations) self.observation_space = spaces.Box( observations_low_range, observations_high_range) def get_params(self): # get configuration parameters self.n_actions = rospy.get_param('/fetch/n_actions') self.n_max_iterations = rospy.get_param('/fetch/max_iterations') self.init_pos = rospy.get_param('/fetch/init_pos') init_pos_dict = rospy.get_param('/fetch/init_pos') self.init_pos = [init_pos_dict["bellows_joint"], init_pos_dict["elbow_flex_joint"], init_pos_dict["forearm_roll_joint"], init_pos_dict["head_pan_joint"], init_pos_dict["head_tilt_joint"], init_pos_dict["l_gripper_finger_joint"], init_pos_dict["r_gripper_finger_joint"], init_pos_dict["shoulder_lift_joint"], init_pos_dict["shoulder_pan_joint"], init_pos_dict["torso_lift_joint"], init_pos_dict["upperarm_roll_joint"], init_pos_dict["wrist_flex_joint"], init_pos_dict["wrist_roll_joint"] ] goal_pos_dict = rospy.get_param('/fetch/goal_pos') self.goal_pos = [goal_pos_dict["elbow_flex_joint"], goal_pos_dict["shoulder_lift_joint"], goal_pos_dict["shoulder_pan_joint"]] self.position_delta = rospy.get_param('/fetch/position_delta') self.reached_goal_reward = rospy.get_param( '/fetch/reached_goal_reward') upper_array, lower_array = self.get_joint_limits() self.upper_array_observations = [ upper_array[1], upper_array[7], upper_array[8]] self.lower_array_observations = [ lower_array[1], lower_array[7], lower_array[8]] self.n_observations = len(self.upper_array_observations) def _set_init_pose(self): """Sets the Robot in its init pose The Simulation will be unpaused for this purpose. """ # Check because it seems its not being used rospy.logdebug("Init Pos:") rospy.logdebug(self.init_pos) """ # Init Joint Pose rospy.logdebug("Moving To SETUP Joints ") self.movement_result = self.set_trajectory_joints(self.init_pos) """ # We test the Desired Goal # INIT POSE rospy.logdebug("Moving To Init Pose ") self.move_to_init_pose() self.last_action = "INIT" return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. The simulation will be paused, therefore all the data retrieved has to be from a system that doesnt need the simulation running, like variables where the callbackas have stored last know sesnor data. :return: """ rospy.logdebug("Init Env Variables...") self.interations_done = 0 rospy.logdebug("Init Env Variables...END") def _set_action(self, action): delta_gripper_target = [0.0]*len(self.init_pos) rospy.logwarn("==== ROBOT ENV RECEIVED ACTION: "+str(action)) delta_gripper_target[1] += action[0] delta_gripper_target[7] += action[1] delta_gripper_target[8] += action[2] # # We convert action ints in increments/decrements of one of the axis XYZ # if action == 0: # elbow_flex_joint+ # delta_gripper_target[1] += self.position_delta # self.last_action = "elbow_flex_joint+" # elif action == 1: # elbow_flex_joint- # delta_gripper_target[1] -= self.position_delta # self.last_action = "elbow_flex_joint-" # elif action == 2: # shoulder_lift_joint+ # delta_gripper_target[7] += self.position_delta # self.last_action = "shoulder_lift_joint+" # elif action == 3: # shoulder_lift_joint- # delta_gripper_target[7] -= self.position_delta # self.last_action = "shoulder_lift_joint-" # elif action == 4: # shoulder_pan_joint+ # delta_gripper_target[8] += self.position_delta # self.last_action = "shoulder_pan_joint+" # elif action == 5: # shoulder_pan_joint- # delta_gripper_target[8] -= self.position_delta # self.last_action = "shoulder_pan_joint-" self.movement_result = self.set_trajectory_joints(delta_gripper_target) # rospy.logwarn("END Set Action ==>" + str(action) + # ", NAME=" + str(self.last_action)) def _get_obs(self): """ It returns the Position of the TCP/EndEffector as observation. And the distance from the desired point Orientation for the moment is not considered """ joints_position = self.get_joints_position() obs_joints_position = { 'observation': np.array([joints_position[1]]), 'achieved_goal': np.array([joints_position[7]]), 'desired_goal': np.array([joints_position[8]]), } # obs_joints_position = [joints_position[1], # joints_position[7], joints_position[8]] rospy.logdebug("OBSERVATIONS====>>>>>>>"+str(obs_joints_position)) return obs_joints_position def _is_done(self, observations): """ If the latest Action didnt succeed, it means that tha position asked was imposible therefore the episode must end. It will also end if it reaches its goal. """ done = np.allclose(a=observations, b=self.goal_pos, atol=0.2) self.interations_done += 1 if self.interations_done >= self.n_max_iterations: done = True return done def _compute_reward(self, observations, done): """ We punish each step that it passes without achieveing the goal. Punishes differently if it reached a position that is imposible to move to. Rewards getting to a position close to the goal. """ reward = 1.0 / \ (np.linalg.norm(np.array(observations) - np.array(self.goal_pos))) if done: reward += self.reached_goal_reward rospy.logwarn(">>>REWARD>>>"+str(reward)) return reward
[]
2024-01-10
Privilger/RoboMaster-Simulator
src~openai_ros~openai_ros~src~openai_ros~task_envs~fetch~fetch_simple_task.py
from gym import utils import copy import rospy from gym import spaces from openai_ros.robot_envs import fetchsimple_env from gym.envs.registration import register import numpy as np from sensor_msgs.msg import JointState from openai_ros.openai_ros_common import ROSLauncher from openai_ros.task_envs.task_commons import LoadYamlFileParamsTest import os class FetchSimpleTestEnv(fetchsimple_env.FetchSimpleEnv, utils.EzPickle): def __init__(self): # Launch the Task Simulated-Environment # This is the path where the simulation files are, # the Task and the Robot gits will be downloaded if not there ros_ws_abspath = rospy.get_param("/fetch/ros_ws_abspath", None) assert ros_ws_abspath is not None, "You forgot to set ros_ws_abspath in your yaml file of your main RL script. Set ros_ws_abspath: \'YOUR/SIM_WS/PATH\'" assert os.path.exists(ros_ws_abspath), "The Simulation ROS Workspace path " + ros_ws_abspath + \ " DOESNT exist, execute: mkdir -p " + ros_ws_abspath + \ "/src;cd " + ros_ws_abspath + ";catkin_make" ROSLauncher(rospackage_name="fetch_simple_description", launch_file_name="start_world.launch", ros_ws_abspath=ros_ws_abspath) # Load Params from the desired Yaml file relative to this TaskEnvironment LoadYamlFileParamsTest(rospackage_name="openai_ros", rel_path_from_package_to_file="src/openai_ros/task_envs/fetch/config", yaml_file_name="fetchsimple_test.yaml") super(FetchSimpleTestEnv, self).__init__(ros_ws_abspath) rospy.logdebug("Entered FetchSimpleTestEnv Env") self.get_params() self.action_space = spaces.Discrete(self.n_actions) observations_high_range = np.array( self.upper_array_observations) observations_low_range = np.array( self.lower_array_observations) self.observation_space = spaces.Box(observations_low_range, observations_high_range) def get_params(self): # get configuration parameters self.n_actions = rospy.get_param('/fetch/n_actions') self.n_max_iterations = rospy.get_param('/fetch/max_iterations') self.init_pos = rospy.get_param('/fetch/init_pos') init_pos_dict = rospy.get_param('/fetch/init_pos') self.init_pos = [init_pos_dict["bellows_joint"], init_pos_dict["elbow_flex_joint"], init_pos_dict["forearm_roll_joint"], init_pos_dict["head_pan_joint"], init_pos_dict["head_tilt_joint"], init_pos_dict["l_gripper_finger_joint"], init_pos_dict["r_gripper_finger_joint"], init_pos_dict["shoulder_lift_joint"], init_pos_dict["shoulder_pan_joint"], init_pos_dict["torso_lift_joint"], init_pos_dict["upperarm_roll_joint"], init_pos_dict["wrist_flex_joint"], init_pos_dict["wrist_roll_joint"] ] goal_pos_dict = rospy.get_param('/fetch/goal_pos') self.goal_pos = [goal_pos_dict["elbow_flex_joint"], goal_pos_dict["shoulder_lift_joint"], goal_pos_dict["shoulder_pan_joint"]] self.position_delta = rospy.get_param('/fetch/position_delta') self.reached_goal_reward = rospy.get_param( '/fetch/reached_goal_reward') upper_array, lower_array = self.get_joint_limits() self.upper_array_observations = [upper_array[1],upper_array[7],upper_array[8]] self.lower_array_observations = [lower_array[1], lower_array[7], lower_array[8]] self.n_observations = len(self.upper_array_observations) def _set_init_pose(self): """Sets the Robot in its init pose The Simulation will be unpaused for this purpose. """ # Check because it seems its not being used rospy.logdebug("Init Pos:") rospy.logdebug(self.init_pos) """ # Init Joint Pose rospy.logdebug("Moving To SETUP Joints ") self.movement_result = self.set_trajectory_joints(self.init_pos) """ # We test the Desired Goal # INIT POSE rospy.logdebug("Moving To Init Pose ") self.move_to_init_pose() self.last_action = "INIT" return True def _init_env_variables(self): """ Inits variables needed to be initialised each time we reset at the start of an episode. The simulation will be paused, therefore all the data retrieved has to be from a system that doesnt need the simulation running, like variables where the callbackas have stored last know sesnor data. :return: """ rospy.logdebug("Init Env Variables...") self.interations_done = 0 rospy.logdebug("Init Env Variables...END") def _set_action(self, action): delta_gripper_target = [0.0]*len(self.init_pos) # We convert action ints in increments/decrements of one of the axis XYZ if action == 0: # elbow_flex_joint+ delta_gripper_target[1] += self.position_delta self.last_action = "elbow_flex_joint+" elif action == 1: # elbow_flex_joint- delta_gripper_target[1] -= self.position_delta self.last_action = "elbow_flex_joint-" elif action == 2: # shoulder_lift_joint+ delta_gripper_target[7] += self.position_delta self.last_action = "shoulder_lift_joint+" elif action == 3: # shoulder_lift_joint- delta_gripper_target[7] -= self.position_delta self.last_action = "shoulder_lift_joint-" elif action == 4: # shoulder_pan_joint+ delta_gripper_target[8] += self.position_delta self.last_action = "shoulder_pan_joint+" elif action == 5: # shoulder_pan_joint- delta_gripper_target[8] -= self.position_delta self.last_action = "shoulder_pan_joint-" self.movement_result = self.set_trajectory_joints(delta_gripper_target) rospy.logwarn("END Set Action ==>" + str(action) + ", NAME=" + str(self.last_action)) def _get_obs(self): """ It returns the Position of the TCP/EndEffector as observation. And the distance from the desired point Orientation for the moment is not considered """ joints_position = self.get_joints_position() obs_joints_position = [joints_position[1],joints_position[7],joints_position[8]] rospy.logdebug("OBSERVATIONS====>>>>>>>"+str(obs_joints_position)) return obs_joints_position def _is_done(self, observations): """ If the latest Action didnt succeed, it means that tha position asked was imposible therefore the episode must end. It will also end if it reaches its goal. """ done = np.allclose(a=observations, b=self.goal_pos, atol=0.2) self.interations_done += 1 if self.interations_done >= self.n_max_iterations: done = True return done def _compute_reward(self, observations, done): """ We punish each step that it passes without achieveing the goal. Punishes differently if it reached a position that is imposible to move to. Rewards getting to a position close to the goal. """ reward = 1.0 / (np.linalg.norm(np.array(observations) - np.array(self.goal_pos))) if done: reward += self.reached_goal_reward rospy.logwarn(">>>REWARD>>>"+str(reward)) return reward
[]
2024-01-10
while-basic/GPTeam
src~utils~logging.py
import atexit import json import logging import os import re from datetime import datetime from pathlib import Path from typing import List import openai import pytz def clean_json_string(json_string): cleaned_string = re.sub(r"\\\'", r"'", json_string) # replace \' with ' cleaned_string = re.sub( r'\\"', r'"', cleaned_string ) # replace \" with " on cleaned_string return cleaned_string def get_completion_data(text) -> List[str]: pattern = r"(api_version=[^\s]+)|(data=(.+?)(?= [^\s]+=))|(message='(.+?)')" matches = re.findall(pattern, text) cleaned_matches = [] for match in matches: for item in match: if item != "": cleaned_matches.append(item) break return cleaned_matches def get_key_value(text): pattern = r"(\w+)=((?:\"(?:\\\"|[^\"])*\")|(?:\'(?:\\\'|[^'])*\'))" matches = re.findall(pattern, text) result = {} for match in matches: key, value = match[0], match[1] # Remove the outer quotes and unescape the inner quotes if value.startswith('"'): value = value[1:-1].replace('\\"', '"') else: value = value[1:-1].replace("\\'", "'") result[key] = value return result class OpenAIFilter(logging.Filter): def filter(self, record): return "openai" in record.name class JsonArrayFileHandler(logging.FileHandler): def __init__(self, filename, mode="a", encoding=None, delay=False): super().__init__(filename, mode, encoding, delay) self.closed_properly = False self.stream.write("[") atexit.register(self.close) def close(self): self.acquire() try: if not self.closed_properly: self.stream.write("]") self.closed_properly = True super().close() finally: self.release() def emit(self, record): if self.stream.tell() > 1: self.stream.write(",\n") super().emit(record) class LoggingFilter(logging.Filter): def filter(self, record): print("logging filter", record) return True def init_logging(): openai.util.logger.setLevel(logging.WARNING) open("src/web/logs/agent.txt", "w").close() def get_agent_logger(): # Create a logger logger = logging.getLogger("agent") logger.setLevel(logging.INFO) # Prevent log messages from being passed to the root logger or any other ancestor logger logger.propagate = False # Remove all handlers associated with the logger object. for handler in logger.handlers[:]: logger.removeHandler(handler) # Create a file handler Path("src/web/logs/").mkdir(parents=True, exist_ok=True) handler = logging.FileHandler("src/web/logs/agent.txt") handler.setLevel(logging.INFO) # Add the handlers to the logger logger.addHandler(handler) return logger agent_logger = get_agent_logger()
[]
2024-01-10
iulmt/text_to_vedio_web
data_to_image.py
# -*- coding: utf-8 -*- """ 作者:张贵发 日期:2023年07月07日 描述:根据生成的prompt提示词来生成对应的图片 """ import os.path import requests import openai import pandas as pd def SaveImgFromUrl(response, save_path): numOfOutput = len(response) org_path = save_path for i in range(numOfOutput): save_path = org_path img_content = requests.get(response[i]["url"]).content if i >= 1: save_path = save_path.split(".")[0] + "_" + str(i + 1) + "." + save_path.split(".")[1] with open(save_path, "wb") as f: f.write(img_content) def CreateImage( description, path,key): size = "1024x1024" if size not in ["256x256", "512x512", "1024x1024"]: # 校验生成图片尺寸 raise Exception("图片尺寸不符,仅支持 256x256, 512x512, 1024x1024三种大小") openai.api_key = key image = openai.Image.create( prompt=description, n=1, size=size, response_format="url", ) SaveImgFromUrl(image.data, path) def load_image_data(path,key): df = pd.read_csv(path) newpath = path.split(".csv")[0].replace("data_prompt", "data_image") if not os.path.exists(newpath): os.makedirs(newpath) for index, row in df.iterrows(): childpath = os.path.join(newpath,str(index)+".png") CreateImage(row["prompt"][:10],childpath,key) return newpath if __name__ == '__main__': size = "1024x1024"
[]
2024-01-10
letisiapangataa/autogen
test~test_notebook.py
import sys import os import pytest try: import openai skip = False except ImportError: skip = True here = os.path.abspath(os.path.dirname(__file__)) def run_notebook(input_nb, output_nb="executed_openai_notebook.ipynb", save=False): import nbformat from nbconvert.preprocessors import ExecutePreprocessor from nbconvert.preprocessors import CellExecutionError try: nb_loc = os.path.join(here, os.pardir, "notebook") file_path = os.path.join(nb_loc, input_nb) with open(file_path) as nb_file: nb = nbformat.read(nb_file, as_version=4) preprocessor = ExecutePreprocessor(timeout=4800, kernel_name="python3") preprocessor.preprocess(nb, {"metadata": {"path": nb_loc}}) output_file_name = "executed_openai_notebook_output.txt" output_file = os.path.join(here, output_file_name) with open(output_file, "a") as nb_output_file: for cell in nb.cells: if cell.cell_type == "code" and "outputs" in cell: for output in cell.outputs: if "text" in output: nb_output_file.write(output["text"].strip() + "\n") elif "data" in output and "text/plain" in output["data"]: nb_output_file.write(output["data"]["text/plain"].strip() + "\n") except CellExecutionError: raise finally: if save: with open(os.path.join(here, output_nb), "w", encoding="utf-8") as nb_executed_file: nbformat.write(nb, nb_executed_file) @pytest.mark.skipif( skip or not sys.version.startswith("3.11"), reason="do not run if openai is not installed or py!=3.11", ) def test_agentchat_auto_feedback_from_code(save=False): run_notebook("agentchat_auto_feedback_from_code_execution.ipynb", save=save) @pytest.mark.skipif( skip or not sys.version.startswith("3.10"), reason="do not run if openai is not installed or py!=3.10", ) def _test_oai_completion(save=False): run_notebook("oai_completion.ipynb", save=save) @pytest.mark.skipif( skip or not sys.version.startswith("3.10"), reason="do not run if openai is not installed or py!=3.10", ) def test_agentchat_function_call(save=False): run_notebook("agentchat_function_call.ipynb", save=save) @pytest.mark.skipif( skip or not sys.version.startswith("3.10"), reason="do not run if openai is not installed or py!=3.10", ) def test_agentchat_function_call_currency_calculator(save=False): run_notebook("agentchat_function_call_currency_calculator.ipynb", save=save) @pytest.mark.skipif( skip or not sys.version.startswith("3.10"), reason="do not run if openai is not installed or py!=3.10", ) def test_agentchat_function_call_async(save=False): run_notebook("agentchat_function_call_async.ipynb", save=save) @pytest.mark.skipif( skip or not sys.version.startswith("3.10"), reason="do not run if openai is not installed or py!=3.10", ) def _test_agentchat_MathChat(save=False): run_notebook("agentchat_MathChat.ipynb", save=save) @pytest.mark.skipif( skip or not sys.version.startswith("3.11"), reason="do not run if openai is not installed or py!=3.11", ) def _test_oai_chatgpt_gpt4(save=False): run_notebook("oai_chatgpt_gpt4.ipynb", save=save) @pytest.mark.skipif( skip or not sys.version.startswith("3.10"), reason="do not run if openai is not installed or py!=3.10", ) def test_hierarchy_flow_using_select_speaker(save=False): run_notebook("agentchat_hierarchy_flow_using_select_speaker.ipynb", save=save) @pytest.mark.skipif( skip or not sys.version.startswith("3.10"), reason="do not run if openai is not installed or py!=3.10", ) def test_graph_modelling_language_using_select_speaker(save=False): run_notebook("agentchat_graph_modelling_language_using_select_speaker.ipynb", save=save) @pytest.mark.skipif( skip or not sys.version.startswith("3.10"), reason="do not run if openai is not installed or py!=3.10", ) def test_oai_client_cost(save=False): run_notebook("oai_client_cost.ipynb", save=save) if __name__ == "__main__": # test_agentchat_auto_feedback_from_code(save=True) # test_oai_chatgpt_gpt4(save=True) # test_oai_completion(save=True) # test_agentchat_MathChat(save=True) # test_agentchat_function_call(save=True) test_graph_modelling_language_using_select_speaker(save=True)
[]
2024-01-10
MarthurGalarsy/SampleAI
src~lang_chain_git_ui_hugging.py
import os import streamlit as st import openai from dotenv import load_dotenv from streamlit_chat import message from langchain.memory import ConversationBufferMemory from langchain.vectorstores import Chroma from langchain.embeddings import HuggingFaceEmbeddings from langchain.indexes import VectorstoreIndexCreator from langchain.document_loaders import GitLoader from langchain.schema import HumanMessage from langchain.schema import AIMessage load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") # セッション内に保存されたチャット履歴のメモリの取得 try: memory = st.session_state["memory"] except: memory = ConversationBufferMemory(return_messages=True) st.title("langchain for GitHub in Streamlit") st.caption("by Marthur") clone_url = st.text_input("GitHubのURL") type = st.text_input("プログラムの種類(ex:.kt)") branch = st.text_input("ブランチ") repo_path = "./temp" read_button = st.button("GitHub読み込み") model_list = ["Git", "GPT"] model_selector = st.radio("モデル切り替え", model_list) if model_selector == "Git": git_user_input = st.text_input("質問") git_send_button = st.button("送信") elif model_selector == "GPT": git_user_input = st.text_input("対象ファイル名") gpt_user_input = st.text_input("質問") gpt_send_button = st.button("送信") # 会話履歴を格納するための変数 conversation_history = [] # チャット履歴(HumanMessageやAIMessageなど)を格納する配列の初期化 history = [] if read_button: read_button = False if os.path.exists(repo_path): clone_url = None loader = GitLoader( clone_url=clone_url, branch=branch, repo_path=repo_path, file_filter=lambda file_path: file_path.endswith(type), ) index = VectorstoreIndexCreator( vectorstore_cls=Chroma, # default embedding=HuggingFaceEmbeddings(), #default ).from_loaders([loader]) st.session_state["index"] = index if index : memory.chat_memory.add_ai_message("読み込みました") # チャット履歴(HumanMessageやAIMessageなど)の読み込み try: history = memory.load_memory_variables({})["history"] except Exception as e: st.error(e) if model_selector == "Git" and git_send_button : git_send_button = False memory.chat_memory.add_user_message(git_user_input) index = st.session_state["index"] response = index.query(git_user_input) print(response) # セッションへのチャット履歴の保存 st.session_state["index"] = index memory.chat_memory.add_ai_message(response) st.session_state["memory"] = memory # チャット履歴(HumanMessageやAIMessageなど)の読み込み try: history = memory.load_memory_variables({})["history"] except Exception as e: st.error(e) if model_selector == "GPT" and gpt_send_button : gpt_send_button = False memory.chat_memory.add_user_message(git_user_input + "を表示してください") index = st.session_state["index"] code_res = index.query(git_user_input + "を表示してください") # セッションへのチャット履歴の保存 st.session_state["index"] = index memory.chat_memory.add_ai_message(code_res) st.session_state["memory"] = memory prompt = "下記のコードがあります。\n下記のコードに対して" + gpt_user_input + "\n" + code_res memory.chat_memory.add_user_message(prompt) # ユーザーの質問を会話履歴に追加 conversation_history.append({"role": "user", "content": prompt}) # GPT-4モデルを使用してテキストを生成 gpt_response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "system", "content": f"You are a excellent system engineer."}] + conversation_history, max_tokens=3500, n=1, temperature=0.8, ) gpt_message = gpt_response.choices[0].message['content'].strip() # アシスタントの回答を会話履歴に追加 conversation_history.append({"role": "assistant", "content": gpt_message}) memory.chat_memory.add_ai_message(gpt_message) # チャット履歴(HumanMessageやAIMessageなど)の読み込み try: history = memory.load_memory_variables({})["history"] except Exception as e: st.error(e) # チャット履歴の表示 for index, chat_message in enumerate(reversed(history)): if isinstance(chat_message, HumanMessage): message(chat_message.content, is_user=True, key=2 * index) elif isinstance(chat_message, AIMessage): message(chat_message.content, is_user=False, key=2 * index + 1)
[ "content", "You are a excellent system engineer.", "下記のコードがあります。\n下記のコードに対してPLACEHOLDER\nPLACEHOLDER" ]