date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~retrievers~merger_retriever.py
import asyncio from typing import List from langchain.callbacks.manager import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain.schema import BaseRetriever, Document class MergerRetriever(BaseRetriever): """Retriever that merges the results of multiple retrievers.""" retrievers: List[BaseRetriever] """A list of retrievers to merge.""" def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, ) -> List[Document]: """ Get the relevant documents for a given query. Args: query: The query to search for. Returns: A list of relevant documents. """ # Merge the results of the retrievers. merged_documents = self.merge_documents(query, run_manager) return merged_documents async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, ) -> List[Document]: """ Asynchronously get the relevant documents for a given query. Args: query: The query to search for. Returns: A list of relevant documents. """ # Merge the results of the retrievers. merged_documents = await self.amerge_documents(query, run_manager) return merged_documents def merge_documents( self, query: str, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: """ Merge the results of the retrievers. Args: query: The query to search for. Returns: A list of merged documents. """ # Get the results of all retrievers. retriever_docs = [ retriever.get_relevant_documents( query, callbacks=run_manager.get_child("retriever_{}".format(i + 1)) ) for i, retriever in enumerate(self.retrievers) ] # Merge the results of the retrievers. merged_documents = [] max_docs = max(len(docs) for docs in retriever_docs) for i in range(max_docs): for retriever, doc in zip(self.retrievers, retriever_docs): if i < len(doc): merged_documents.append(doc[i]) return merged_documents async def amerge_documents( self, query: str, run_manager: AsyncCallbackManagerForRetrieverRun ) -> List[Document]: """ Asynchronously merge the results of the retrievers. Args: query: The query to search for. Returns: A list of merged documents. """ # Get the results of all retrievers. retriever_docs = await asyncio.gather( *( retriever.aget_relevant_documents( query, callbacks=run_manager.get_child("retriever_{}".format(i + 1)) ) for i, retriever in enumerate(self.retrievers) ) ) # Merge the results of the retrievers. merged_documents = [] max_docs = max(len(docs) for docs in retriever_docs) for i in range(max_docs): for retriever, doc in zip(self.retrievers, retriever_docs): if i < len(doc): merged_documents.append(doc[i]) return merged_documents
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~indexes~_api.py
"""Module contains logic for indexing documents into vector stores.""" from __future__ import annotations import hashlib import json import uuid from itertools import islice from typing import ( Any, AsyncIterable, AsyncIterator, Callable, Dict, Iterable, Iterator, List, Literal, Optional, Sequence, Set, TypedDict, TypeVar, Union, cast, ) from langchain.document_loaders.base import BaseLoader from langchain.indexes.base import NAMESPACE_UUID, RecordManager from langchain.pydantic_v1 import root_validator from langchain.schema import Document from langchain.schema.vectorstore import VectorStore T = TypeVar("T") def _hash_string_to_uuid(input_string: str) -> uuid.UUID: """Hashes a string and returns the corresponding UUID.""" hash_value = hashlib.sha1(input_string.encode("utf-8")).hexdigest() return uuid.uuid5(NAMESPACE_UUID, hash_value) def _hash_nested_dict_to_uuid(data: dict[Any, Any]) -> uuid.UUID: """Hashes a nested dictionary and returns the corresponding UUID.""" serialized_data = json.dumps(data, sort_keys=True) hash_value = hashlib.sha1(serialized_data.encode("utf-8")).hexdigest() return uuid.uuid5(NAMESPACE_UUID, hash_value) class _HashedDocument(Document): """A hashed document with a unique ID.""" uid: str hash_: str """The hash of the document including content and metadata.""" content_hash: str """The hash of the document content.""" metadata_hash: str """The hash of the document metadata.""" @root_validator(pre=True) def calculate_hashes(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Root validator to calculate content and metadata hash.""" content = values.get("page_content", "") metadata = values.get("metadata", {}) forbidden_keys = ("hash_", "content_hash", "metadata_hash") for key in forbidden_keys: if key in metadata: raise ValueError( f"Metadata cannot contain key {key} as it " f"is reserved for internal use." ) content_hash = str(_hash_string_to_uuid(content)) try: metadata_hash = str(_hash_nested_dict_to_uuid(metadata)) except Exception as e: raise ValueError( f"Failed to hash metadata: {e}. " f"Please use a dict that can be serialized using json." ) values["content_hash"] = content_hash values["metadata_hash"] = metadata_hash values["hash_"] = str(_hash_string_to_uuid(content_hash + metadata_hash)) _uid = values.get("uid", None) if _uid is None: values["uid"] = values["hash_"] return values def to_document(self) -> Document: """Return a Document object.""" return Document( page_content=self.page_content, metadata=self.metadata, ) @classmethod def from_document( cls, document: Document, *, uid: Optional[str] = None ) -> _HashedDocument: """Create a HashedDocument from a Document.""" return cls( uid=uid, page_content=document.page_content, metadata=document.metadata, ) def _batch(size: int, iterable: Iterable[T]) -> Iterator[List[T]]: """Utility batching function.""" it = iter(iterable) while True: chunk = list(islice(it, size)) if not chunk: return yield chunk async def _abatch(size: int, iterable: AsyncIterable[T]) -> AsyncIterator[List[T]]: """Utility batching function.""" batch: List[T] = [] async for element in iterable: if len(batch) < size: batch.append(element) if len(batch) >= size: yield batch batch = [] if batch: yield batch def _get_source_id_assigner( source_id_key: Union[str, Callable[[Document], str], None], ) -> Callable[[Document], Union[str, None]]: """Get the source id from the document.""" if source_id_key is None: return lambda doc: None elif isinstance(source_id_key, str): return lambda doc: doc.metadata[source_id_key] elif callable(source_id_key): return source_id_key else: raise ValueError( f"source_id_key should be either None, a string or a callable. " f"Got {source_id_key} of type {type(source_id_key)}." ) def _deduplicate_in_order( hashed_documents: Iterable[_HashedDocument], ) -> Iterator[_HashedDocument]: """Deduplicate a list of hashed documents while preserving order.""" seen: Set[str] = set() for hashed_doc in hashed_documents: if hashed_doc.hash_ not in seen: seen.add(hashed_doc.hash_) yield hashed_doc # PUBLIC API class IndexingResult(TypedDict): """Return a detailed a breakdown of the result of the indexing operation.""" num_added: int """Number of added documents.""" num_updated: int """Number of updated documents because they were not up to date.""" num_deleted: int """Number of deleted documents.""" num_skipped: int """Number of skipped documents because they were already up to date.""" def index( docs_source: Union[BaseLoader, Iterable[Document]], record_manager: RecordManager, vector_store: VectorStore, *, batch_size: int = 100, cleanup: Literal["incremental", "full", None] = None, source_id_key: Union[str, Callable[[Document], str], None] = None, cleanup_batch_size: int = 1_000, ) -> IndexingResult: """Index data from the loader into the vector store. Indexing functionality uses a manager to keep track of which documents are in the vector store. This allows us to keep track of which documents were updated, and which documents were deleted, which documents should be skipped. For the time being, documents are indexed using their hashes, and users are not able to specify the uid of the document. IMPORTANT: if auto_cleanup is set to True, the loader should be returning the entire dataset, and not just a subset of the dataset. Otherwise, the auto_cleanup will remove documents that it is not supposed to. Args: docs_source: Data loader or iterable of documents to index. record_manager: Timestamped set to keep track of which documents were updated. vector_store: Vector store to index the documents into. batch_size: Batch size to use when indexing. cleanup: How to handle clean up of documents. - Incremental: Cleans up all documents that haven't been updated AND that are associated with source ids that were seen during indexing. Clean up is done continuously during indexing helping to minimize the probability of users seeing duplicated content. - Full: Delete all documents that haven to been returned by the loader. Clean up runs after all documents have been indexed. This means that users may see duplicated content during indexing. - None: Do not delete any documents. source_id_key: Optional key that helps identify the original source of the document. cleanup_batch_size: Batch size to use when cleaning up documents. Returns: Indexing result which contains information about how many documents were added, updated, deleted, or skipped. """ if cleanup not in {"incremental", "full", None}: raise ValueError( f"cleanup should be one of 'incremental', 'full' or None. " f"Got {cleanup}." ) if cleanup == "incremental" and source_id_key is None: raise ValueError("Source id key is required when cleanup mode is incremental.") # Check that the Vectorstore has required methods implemented methods = ["delete", "add_documents"] for method in methods: if not hasattr(vector_store, method): raise ValueError( f"Vectorstore {vector_store} does not have required method {method}" ) if type(vector_store).delete == VectorStore.delete: # Checking if the vectorstore has overridden the default delete method # implementation which just raises a NotImplementedError raise ValueError("Vectorstore has not implemented the delete method") if isinstance(docs_source, BaseLoader): try: doc_iterator = docs_source.lazy_load() except NotImplementedError: doc_iterator = iter(docs_source.load()) else: doc_iterator = iter(docs_source) source_id_assigner = _get_source_id_assigner(source_id_key) # Mark when the update started. index_start_dt = record_manager.get_time() num_added = 0 num_skipped = 0 num_updated = 0 num_deleted = 0 for doc_batch in _batch(batch_size, doc_iterator): hashed_docs = list( _deduplicate_in_order( [_HashedDocument.from_document(doc) for doc in doc_batch] ) ) source_ids: Sequence[Optional[str]] = [ source_id_assigner(doc) for doc in hashed_docs ] if cleanup == "incremental": # If the cleanup mode is incremental, source ids are required. for source_id, hashed_doc in zip(source_ids, hashed_docs): if source_id is None: raise ValueError( "Source ids are required when cleanup mode is incremental. " f"Document that starts with " f"content: {hashed_doc.page_content[:100]} was not assigned " f"as source id." ) # source ids cannot be None after for loop above. source_ids = cast(Sequence[str], source_ids) # type: ignore[assignment] exists_batch = record_manager.exists([doc.uid for doc in hashed_docs]) # Filter out documents that already exist in the record store. uids = [] docs_to_index = [] for hashed_doc, doc_exists in zip(hashed_docs, exists_batch): if doc_exists: # Must be updated to refresh timestamp. record_manager.update([hashed_doc.uid], time_at_least=index_start_dt) num_skipped += 1 continue uids.append(hashed_doc.uid) docs_to_index.append(hashed_doc.to_document()) # Be pessimistic and assume that all vector store write will fail. # First write to vector store if docs_to_index: vector_store.add_documents(docs_to_index, ids=uids) num_added += len(docs_to_index) # And only then update the record store. # Update ALL records, even if they already exist since we want to refresh # their timestamp. record_manager.update( [doc.uid for doc in hashed_docs], group_ids=source_ids, time_at_least=index_start_dt, ) # If source IDs are provided, we can do the deletion incrementally! if cleanup == "incremental": # Get the uids of the documents that were not returned by the loader. # mypy isn't good enough to determine that source ids cannot be None # here due to a check that's happening above, so we check again. for source_id in source_ids: if source_id is None: raise AssertionError("Source ids cannot be None here.") _source_ids = cast(Sequence[str], source_ids) uids_to_delete = record_manager.list_keys( group_ids=_source_ids, before=index_start_dt ) if uids_to_delete: # Then delete from vector store. vector_store.delete(uids_to_delete) # First delete from record store. record_manager.delete_keys(uids_to_delete) num_deleted += len(uids_to_delete) if cleanup == "full": while uids_to_delete := record_manager.list_keys( before=index_start_dt, limit=cleanup_batch_size ): # First delete from record store. vector_store.delete(uids_to_delete) # Then delete from record manager. record_manager.delete_keys(uids_to_delete) num_deleted += len(uids_to_delete) return { "num_added": num_added, "num_updated": num_updated, "num_skipped": num_skipped, "num_deleted": num_deleted, } # Define an asynchronous generator function async def _to_async_iterator(iterator: Iterable[T]) -> AsyncIterator[T]: """Convert an iterable to an async iterator.""" for item in iterator: yield item async def aindex( docs_source: Union[Iterable[Document], AsyncIterator[Document]], record_manager: RecordManager, vector_store: VectorStore, *, batch_size: int = 100, cleanup: Literal["incremental", "full", None] = None, source_id_key: Union[str, Callable[[Document], str], None] = None, cleanup_batch_size: int = 1_000, ) -> IndexingResult: """Index data from the loader into the vector store. Indexing functionality uses a manager to keep track of which documents are in the vector store. This allows us to keep track of which documents were updated, and which documents were deleted, which documents should be skipped. For the time being, documents are indexed using their hashes, and users are not able to specify the uid of the document. IMPORTANT: if auto_cleanup is set to True, the loader should be returning the entire dataset, and not just a subset of the dataset. Otherwise, the auto_cleanup will remove documents that it is not supposed to. Args: docs_source: Data loader or iterable of documents to index. record_manager: Timestamped set to keep track of which documents were updated. vector_store: Vector store to index the documents into. batch_size: Batch size to use when indexing. cleanup: How to handle clean up of documents. - Incremental: Cleans up all documents that haven't been updated AND that are associated with source ids that were seen during indexing. Clean up is done continuously during indexing helping to minimize the probability of users seeing duplicated content. - Full: Delete all documents that haven to been returned by the loader. Clean up runs after all documents have been indexed. This means that users may see duplicated content during indexing. - None: Do not delete any documents. source_id_key: Optional key that helps identify the original source of the document. cleanup_batch_size: Batch size to use when cleaning up documents. Returns: Indexing result which contains information about how many documents were added, updated, deleted, or skipped. """ if cleanup not in {"incremental", "full", None}: raise ValueError( f"cleanup should be one of 'incremental', 'full' or None. " f"Got {cleanup}." ) if cleanup == "incremental" and source_id_key is None: raise ValueError("Source id key is required when cleanup mode is incremental.") # Check that the Vectorstore has required methods implemented methods = ["adelete", "aadd_documents"] for method in methods: if not hasattr(vector_store, method): raise ValueError( f"Vectorstore {vector_store} does not have required method {method}" ) if type(vector_store).adelete == VectorStore.adelete: # Checking if the vectorstore has overridden the default delete method # implementation which just raises a NotImplementedError raise ValueError("Vectorstore has not implemented the delete method") if isinstance(docs_source, BaseLoader): raise NotImplementedError( "Not supported yet. Please pass an async iterator of documents." ) async_doc_iterator: AsyncIterator[Document] if hasattr(docs_source, "__aiter__"): async_doc_iterator = docs_source # type: ignore[assignment] else: async_doc_iterator = _to_async_iterator(docs_source) source_id_assigner = _get_source_id_assigner(source_id_key) # Mark when the update started. index_start_dt = await record_manager.aget_time() num_added = 0 num_skipped = 0 num_updated = 0 num_deleted = 0 async for doc_batch in _abatch(batch_size, async_doc_iterator): hashed_docs = list( _deduplicate_in_order( [_HashedDocument.from_document(doc) for doc in doc_batch] ) ) source_ids: Sequence[Optional[str]] = [ source_id_assigner(doc) for doc in hashed_docs ] if cleanup == "incremental": # If the cleanup mode is incremental, source ids are required. for source_id, hashed_doc in zip(source_ids, hashed_docs): if source_id is None: raise ValueError( "Source ids are required when cleanup mode is incremental. " f"Document that starts with " f"content: {hashed_doc.page_content[:100]} was not assigned " f"as source id." ) # source ids cannot be None after for loop above. source_ids = cast(Sequence[str], source_ids) exists_batch = await record_manager.aexists([doc.uid for doc in hashed_docs]) # Filter out documents that already exist in the record store. uids: list[str] = [] docs_to_index: list[Document] = [] for hashed_doc, doc_exists in zip(hashed_docs, exists_batch): if doc_exists: # Must be updated to refresh timestamp. await record_manager.aupdate( [hashed_doc.uid], time_at_least=index_start_dt ) num_skipped += 1 continue uids.append(hashed_doc.uid) docs_to_index.append(hashed_doc.to_document()) # Be pessimistic and assume that all vector store write will fail. # First write to vector store if docs_to_index: await vector_store.aadd_documents(docs_to_index, ids=uids) num_added += len(docs_to_index) # And only then update the record store. # Update ALL records, even if they already exist since we want to refresh # their timestamp. await record_manager.aupdate( [doc.uid for doc in hashed_docs], group_ids=source_ids, time_at_least=index_start_dt, ) # If source IDs are provided, we can do the deletion incrementally! if cleanup == "incremental": # Get the uids of the documents that were not returned by the loader. # mypy isn't good enough to determine that source ids cannot be None # here due to a check that's happening above, so we check again. for source_id in source_ids: if source_id is None: raise AssertionError("Source ids cannot be None here.") _source_ids = cast(Sequence[str], source_ids) uids_to_delete = await record_manager.alist_keys( group_ids=_source_ids, before=index_start_dt ) if uids_to_delete: # Then delete from vector store. await vector_store.adelete(uids_to_delete) # First delete from record store. await record_manager.adelete_keys(uids_to_delete) num_deleted += len(uids_to_delete) if cleanup == "full": while uids_to_delete := await record_manager.alist_keys( before=index_start_dt, limit=cleanup_batch_size ): # First delete from record store. await vector_store.adelete(uids_to_delete) # Then delete from record manager. await record_manager.adelete_keys(uids_to_delete) num_deleted += len(uids_to_delete) return { "num_added": num_added, "num_updated": num_updated, "num_skipped": num_skipped, "num_deleted": num_deleted, }
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chat_models~tongyi.py
from __future__ import annotations import logging from typing import ( Any, Callable, Dict, Iterator, List, Mapping, Optional, Tuple, Type, ) from requests.exceptions import HTTPError from tenacity import ( RetryCallState, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.chat_models.base import ( BaseChatModel, _generate_from_stream, ) from langchain.pydantic_v1 import Field, root_validator from langchain.schema import ChatGeneration, ChatResult from langchain.schema.messages import ( AIMessage, AIMessageChunk, BaseMessage, BaseMessageChunk, ChatMessage, ChatMessageChunk, FunctionMessage, FunctionMessageChunk, HumanMessage, HumanMessageChunk, SystemMessage, SystemMessageChunk, ) from langchain.schema.output import ChatGenerationChunk, GenerationChunk from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) def convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: role = _dict["role"] if role == "user": return HumanMessage(content=_dict["content"]) elif role == "assistant": content = _dict.get("content", "") or "" if _dict.get("function_call"): additional_kwargs = {"function_call": dict(_dict["function_call"])} else: additional_kwargs = {} return AIMessage(content=content, additional_kwargs=additional_kwargs) elif role == "system": return SystemMessage(content=_dict["content"]) elif role == "function": return FunctionMessage(content=_dict["content"], name=_dict["name"]) else: return ChatMessage(content=_dict["content"], role=role) def convert_message_to_dict(message: BaseMessage) -> dict: message_dict: Dict[str, Any] if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} if "function_call" in message.additional_kwargs: message_dict["function_call"] = message.additional_kwargs["function_call"] # If function call only, content is None not empty string if message_dict["content"] == "": message_dict["content"] = None elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} elif isinstance(message, FunctionMessage): message_dict = { "role": "function", "content": message.content, "name": message.name, } else: raise TypeError(f"Got unknown type {message}") if "name" in message.additional_kwargs: message_dict["name"] = message.additional_kwargs["name"] return message_dict def _stream_response_to_generation_chunk( stream_response: Dict[str, Any], length: int, ) -> GenerationChunk: """Convert a stream response to a generation chunk. As the low level API implement is different from openai and other llm. Stream response of Tongyi is not split into chunks, but all data generated before. For example, the answer 'Hi Pickle Rick! How can I assist you today?' Other llm will stream answer: 'Hi Pickle', ' Rick!', ' How can I assist you today?'. Tongyi answer: 'Hi Pickle', 'Hi Pickle Rick!', 'Hi Pickle Rick! How can I assist you today?'. As the GenerationChunk is implemented with chunks. Only return full_text[length:] for new chunk. """ full_text = stream_response["output"]["text"] text = full_text[length:] finish_reason = stream_response["output"].get("finish_reason", None) return GenerationChunk( text=text, generation_info=dict( finish_reason=finish_reason, ), ) def _create_retry_decorator( llm: ChatTongyi, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> Callable[[Any], Any]: def _before_sleep(retry_state: RetryCallState) -> None: if run_manager: run_manager.on_retry(retry_state) return None min_seconds = 1 max_seconds = 4 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(llm.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=(retry_if_exception_type(HTTPError)), before_sleep=_before_sleep, ) def _convert_delta_to_message_chunk( _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk], length: int, ) -> BaseMessageChunk: role = _dict.get("role") full_content = _dict.get("content") or "" content = full_content[length:] if _dict.get("function_call"): additional_kwargs = {"function_call": dict(_dict["function_call"])} else: additional_kwargs = {} if role == "user" or default_class == HumanMessageChunk: return HumanMessageChunk(content=content) elif role == "assistant" or default_class == AIMessageChunk: return AIMessageChunk(content=content, additional_kwargs=additional_kwargs) elif role == "system" or default_class == SystemMessageChunk: return SystemMessageChunk(content=content) elif role == "function" or default_class == FunctionMessageChunk: return FunctionMessageChunk(content=content, name=_dict["name"]) elif role or default_class == ChatMessageChunk: return ChatMessageChunk(content=content, role=role) else: return default_class(content=content) class ChatTongyi(BaseChatModel): """Alibaba Tongyi Qwen chat models API. To use, you should have the ``dashscope`` python package installed, and set env ``DASHSCOPE_API_KEY`` with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.chat_models import Tongyi Tongyi_chat = ChatTongyi() """ @property def lc_secrets(self) -> Dict[str, str]: return {"dashscope_api_key": "DASHSCOPE_API_KEY"} @property def lc_serializable(self) -> bool: return True client: Any #: :meta private: model_name: str = Field(default="qwen-turbo", alias="model") """Model name to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) top_p: float = 0.8 """Total probability mass of tokens to consider at each step.""" dashscope_api_key: Optional[str] = None """Dashscope api key provide by alicloud.""" n: int = 1 """How many completions to generate for each prompt.""" streaming: bool = False """Whether to stream the results or not.""" max_retries: int = 10 """Maximum number of retries to make when generating.""" prefix_messages: List = Field(default_factory=list) """Series of messages for Chat input.""" result_format: str = Field(default="message") """Return result format""" @property def _llm_type(self) -> str: """Return type of llm.""" return "tongyi" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" get_from_dict_or_env(values, "dashscope_api_key", "DASHSCOPE_API_KEY") try: import dashscope except ImportError: raise ImportError( "Could not import dashscope python package. " "Please install it with `pip install dashscope --upgrade`." ) try: values["client"] = dashscope.Generation except AttributeError: raise ValueError( "`dashscope` has no `Generation` attribute, this is likely " "due to an old version of the dashscope package. Try upgrading it " "with `pip install --upgrade dashscope`." ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return { "model": self.model_name, "top_p": self.top_p, "stream": self.streaming, "n": self.n, "result_format": self.result_format, **self.model_kwargs, } def completion_with_retry( self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any ) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(self, run_manager=run_manager) @retry_decorator def _completion_with_retry(**_kwargs: Any) -> Any: resp = self.client.call(**_kwargs) if resp.status_code == 200: return resp elif resp.status_code in [400, 401]: raise ValueError( f"status_code: {resp.status_code} \n " f"code: {resp.code} \n message: {resp.message}" ) else: raise HTTPError( f"HTTP error occurred: status_code: {resp.status_code} \n " f"code: {resp.code} \n message: {resp.message}", response=resp, ) return _completion_with_retry(**kwargs) def stream_completion_with_retry( self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any ) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(self, run_manager=run_manager) @retry_decorator def _stream_completion_with_retry(**_kwargs: Any) -> Any: return self.client.call(**_kwargs) return _stream_completion_with_retry(**kwargs) def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, stream: Optional[bool] = None, **kwargs: Any, ) -> ChatResult: should_stream = stream if stream is not None else self.streaming if should_stream: stream_iter = self._stream( messages, stop=stop, run_manager=run_manager, **kwargs ) return _generate_from_stream(stream_iter) if not messages: raise ValueError("No messages provided.") message_dicts, params = self._create_message_dicts(messages, stop) if message_dicts[-1]["role"] != "user": raise ValueError("Last message should be user message.") params = {**params, **kwargs} response = self.completion_with_retry( messages=message_dicts, run_manager=run_manager, **params ) return self._create_chat_result(response) def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs, "stream": True} # Mark current chunk total length length = 0 default_chunk_class = AIMessageChunk for chunk in self.stream_completion_with_retry( messages=message_dicts, run_manager=run_manager, **params ): if len(chunk["output"]["choices"]) == 0: continue choice = chunk["output"]["choices"][0] chunk = _convert_delta_to_message_chunk( choice["message"], default_chunk_class, length ) finish_reason = choice.get("finish_reason") generation_info = ( dict(finish_reason=finish_reason) if finish_reason is not None else None ) default_chunk_class = chunk.__class__ yield ChatGenerationChunk(message=chunk, generation_info=generation_info) if run_manager: run_manager.on_llm_new_token(chunk.content, chunk=chunk) length = len(choice["message"]["content"]) def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = self._client_params() # Ensure `stop` is a list of strings if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop message_dicts = [convert_message_to_dict(m) for m in messages] return message_dicts, params def _client_params(self) -> Dict[str, Any]: """Get the parameters used for the openai client.""" creds: Dict[str, Any] = { "api_key": self.dashscope_api_key, } return {**self._default_params, **creds} def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: generations = [] for res in response["output"]["choices"]: message = convert_dict_to_message(res["message"]) gen = ChatGeneration( message=message, generation_info=dict(finish_reason=res.get("finish_reason")), ) generations.append(gen) token_usage = response.get("usage", {}) llm_output = {"token_usage": token_usage, "model_name": self.model_name} return ChatResult(generations=generations, llm_output=llm_output)
[ "content" ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~agents~format_scratchpad~log_to_messages.py
from typing import List, Tuple from langchain.schema.agent import AgentAction from langchain.schema.messages import AIMessage, BaseMessage, HumanMessage def format_log_to_messages( intermediate_steps: List[Tuple[AgentAction, str]], template_tool_response: str = "{observation}", ) -> List[BaseMessage]: """Construct the scratchpad that lets the agent continue its thought process.""" thoughts: List[BaseMessage] = [] for action, observation in intermediate_steps: thoughts.append(AIMessage(content=action.log)) human_message = HumanMessage( content=template_tool_response.format(observation=observation) ) thoughts.append(human_message) return thoughts
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~tools~playwright~navigate.py
from __future__ import annotations from typing import Optional, Type from urllib.parse import urlparse from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.pydantic_v1 import BaseModel, Field, validator from langchain.tools.playwright.base import BaseBrowserTool from langchain.tools.playwright.utils import ( aget_current_page, get_current_page, ) class NavigateToolInput(BaseModel): """Input for NavigateToolInput.""" url: str = Field(..., description="url to navigate to") @validator("url") def validate_url_scheme(cls, url: str) -> str: """Check that the URL scheme is valid.""" parsed_url = urlparse(url) if parsed_url.scheme not in ("http", "https"): raise ValueError("URL scheme must be 'http' or 'https'") return url class NavigateTool(BaseBrowserTool): """Tool for navigating a browser to a URL. **Security Note**: This tool provides code to control web-browser navigation. This tool can navigate to any URL, including internal network URLs, and URLs exposed on the server itself. However, if exposing this tool to end-users, consider limiting network access to the server that hosts the agent. By default, the URL scheme has been limited to 'http' and 'https' to prevent navigation to local file system URLs (or other schemes). If access to the local file system is required, consider creating a custom tool or providing a custom args_schema that allows the desired URL schemes. See https://python.langchain.com/docs/security for more information. """ name: str = "navigate_browser" description: str = "Navigate a browser to the specified URL" args_schema: Type[BaseModel] = NavigateToolInput def _run( self, url: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) response = page.goto(url) status = response.status if response else "unknown" return f"Navigating to {url} returned status code {status}" async def _arun( self, url: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}") page = await aget_current_page(self.async_browser) response = await page.goto(url) status = response.status if response else "unknown" return f"Navigating to {url} returned status code {status}"
[ "Navigate a browser to the specified URL" ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~rocksetdb.py
from typing import Any, Callable, Iterator, List, Optional, Tuple from langchain.document_loaders.base import BaseLoader from langchain.schema import Document def default_joiner(docs: List[Tuple[str, Any]]) -> str: """Default joiner for content columns.""" return "\n".join([doc[1] for doc in docs]) class ColumnNotFoundError(Exception): """Column not found error.""" def __init__(self, missing_key: str, query: str): super().__init__(f'Column "{missing_key}" not selected in query:\n{query}') class RocksetLoader(BaseLoader): """Load from a `Rockset` database. To use, you should have the `rockset` python package installed. Example: .. code-block:: python # This code will load 3 records from the "langchain_demo" # collection as Documents, with the `text` column used as # the content from langchain.document_loaders import RocksetLoader from rockset import RocksetClient, Regions, models loader = RocksetLoader( RocksetClient(Regions.usw2a1, "<api key>"), models.QueryRequestSql( query="select * from langchain_demo limit 3" ), ["text"] ) ) """ def __init__( self, client: Any, query: Any, content_keys: List[str], metadata_keys: Optional[List[str]] = None, content_columns_joiner: Callable[[List[Tuple[str, Any]]], str] = default_joiner, ): """Initialize with Rockset client. Args: client: Rockset client object. query: Rockset query object. content_keys: The collection columns to be written into the `page_content` of the Documents. metadata_keys: The collection columns to be written into the `metadata` of the Documents. By default, this is all the keys in the document. content_columns_joiner: Method that joins content_keys and its values into a string. It's method that takes in a List[Tuple[str, Any]]], representing a list of tuples of (column name, column value). By default, this is a method that joins each column value with a new line. This method is only relevant if there are multiple content_keys. """ try: from rockset import QueryPaginator, RocksetClient from rockset.models import QueryRequestSql except ImportError: raise ImportError( "Could not import rockset client python package. " "Please install it with `pip install rockset`." ) if not isinstance(client, RocksetClient): raise ValueError( f"client should be an instance of rockset.RocksetClient, " f"got {type(client)}" ) if not isinstance(query, QueryRequestSql): raise ValueError( f"query should be an instance of rockset.model.QueryRequestSql, " f"got {type(query)}" ) self.client = client self.query = query self.content_keys = content_keys self.content_columns_joiner = content_columns_joiner self.metadata_keys = metadata_keys self.paginator = QueryPaginator self.request_model = QueryRequestSql try: self.client.set_application("langchain") except AttributeError: # ignore pass def load(self) -> List[Document]: return list(self.lazy_load()) def lazy_load(self) -> Iterator[Document]: query_results = self.client.Queries.query( sql=self.query ).results # execute the SQL query for doc in query_results: # for each doc in the response try: yield Document( page_content=self.content_columns_joiner( [(col, doc[col]) for col in self.content_keys] ), metadata={col: doc[col] for col in self.metadata_keys} if self.metadata_keys is not None else doc, ) # try to yield the Document except ( KeyError ) as e: # either content_columns or metadata_columns is invalid raise ColumnNotFoundError( e.args[0], self.query ) # raise that the column isn't in the db schema
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~unit_tests~retrievers~sequential_retriever.py
from typing import List from langchain.schema import BaseRetriever, Document class SequentialRetriever(BaseRetriever): """Test util that returns a sequence of documents""" sequential_responses: List[List[Document]] response_index: int = 0 def _get_relevant_documents( # type: ignore[override] self, query: str, ) -> List[Document]: if self.response_index >= len(self.sequential_responses): return [] else: self.response_index += 1 return self.sequential_responses[self.response_index - 1] async def _aget_relevant_documents( # type: ignore[override] self, query: str, ) -> List[Document]: return self._get_relevant_documents(query)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chains~query_constructor~ir.py
"""Internal representation of a structured query language.""" from __future__ import annotations from abc import ABC, abstractmethod from enum import Enum from typing import Any, List, Optional, Sequence, Union from langchain.pydantic_v1 import BaseModel class Visitor(ABC): """Defines interface for IR translation using visitor pattern.""" allowed_comparators: Optional[Sequence[Comparator]] = None allowed_operators: Optional[Sequence[Operator]] = None def _validate_func(self, func: Union[Operator, Comparator]) -> None: if isinstance(func, Operator) and self.allowed_operators is not None: if func not in self.allowed_operators: raise ValueError( f"Received disallowed operator {func}. Allowed " f"comparators are {self.allowed_operators}" ) if isinstance(func, Comparator) and self.allowed_comparators is not None: if func not in self.allowed_comparators: raise ValueError( f"Received disallowed comparator {func}. Allowed " f"comparators are {self.allowed_comparators}" ) @abstractmethod def visit_operation(self, operation: Operation) -> Any: """Translate an Operation.""" @abstractmethod def visit_comparison(self, comparison: Comparison) -> Any: """Translate a Comparison.""" @abstractmethod def visit_structured_query(self, structured_query: StructuredQuery) -> Any: """Translate a StructuredQuery.""" def _to_snake_case(name: str) -> str: """Convert a name into snake_case.""" snake_case = "" for i, char in enumerate(name): if char.isupper() and i != 0: snake_case += "_" + char.lower() else: snake_case += char.lower() return snake_case class Expr(BaseModel): """Base class for all expressions.""" def accept(self, visitor: Visitor) -> Any: """Accept a visitor. Args: visitor: visitor to accept Returns: result of visiting """ return getattr(visitor, f"visit_{_to_snake_case(self.__class__.__name__)}")( self ) class Operator(str, Enum): """Enumerator of the operations.""" AND = "and" OR = "or" NOT = "not" class Comparator(str, Enum): """Enumerator of the comparison operators.""" EQ = "eq" NE = "ne" GT = "gt" GTE = "gte" LT = "lt" LTE = "lte" CONTAIN = "contain" LIKE = "like" IN = "in" NIN = "nin" class FilterDirective(Expr, ABC): """A filtering expression.""" class Comparison(FilterDirective): """A comparison to a value.""" comparator: Comparator attribute: str value: Any class Operation(FilterDirective): """A logical operation over other directives.""" operator: Operator arguments: List[FilterDirective] class StructuredQuery(Expr): """A structured query.""" query: str """Query string.""" filter: Optional[FilterDirective] """Filtering expression.""" limit: Optional[int] """Limit on the number of results."""
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~vectorstores~atlas.py
from __future__ import annotations import logging import uuid from typing import Any, Iterable, List, Optional, Type import numpy as np from langchain.docstore.document import Document from langchain.schema.embeddings import Embeddings from langchain.schema.vectorstore import VectorStore logger = logging.getLogger(__name__) class AtlasDB(VectorStore): """`Atlas` vector store. Atlas is the `Nomic's` neural database and `rhizomatic` instrument. To use, you should have the ``nomic`` python package installed. Example: .. code-block:: python from langchain.vectorstores import AtlasDB from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = AtlasDB("my_project", embeddings.embed_query) """ _ATLAS_DEFAULT_ID_FIELD = "atlas_id" def __init__( self, name: str, embedding_function: Optional[Embeddings] = None, api_key: Optional[str] = None, description: str = "A description for your project", is_public: bool = True, reset_project_if_exists: bool = False, ) -> None: """ Initialize the Atlas Client Args: name (str): The name of your project. If the project already exists, it will be loaded. embedding_function (Optional[Embeddings]): An optional function used for embedding your data. If None, data will be embedded with Nomic's embed model. api_key (str): Your nomic API key description (str): A description for your project. is_public (bool): Whether your project is publicly accessible. True by default. reset_project_if_exists (bool): Whether to reset this project if it already exists. Default False. Generally useful during development and testing. """ try: import nomic from nomic import AtlasProject except ImportError: raise ImportError( "Could not import nomic python package. " "Please install it with `pip install nomic`." ) if api_key is None: raise ValueError("No API key provided. Sign up at atlas.nomic.ai!") nomic.login(api_key) self._embedding_function = embedding_function modality = "text" if self._embedding_function is not None: modality = "embedding" # Check if the project exists, create it if not self.project = AtlasProject( name=name, description=description, modality=modality, is_public=is_public, reset_project_if_exists=reset_project_if_exists, unique_id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, ) self.project._latest_project_state() @property def embeddings(self) -> Optional[Embeddings]: return self._embedding_function def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, refresh: bool = True, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]]): An optional list of ids. refresh(bool): Whether or not to refresh indices with the updated data. Default True. Returns: List[str]: List of IDs of the added texts. """ if ( metadatas is not None and len(metadatas) > 0 and "text" in metadatas[0].keys() ): raise ValueError("Cannot accept key text in metadata!") texts = list(texts) if ids is None: ids = [str(uuid.uuid1()) for _ in texts] # Embedding upload case if self._embedding_function is not None: _embeddings = self._embedding_function.embed_documents(texts) embeddings = np.stack(_embeddings) if metadatas is None: data = [ {AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i], "text": texts[i]} for i, _ in enumerate(texts) ] else: for i in range(len(metadatas)): metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i] metadatas[i]["text"] = texts[i] data = metadatas self.project._validate_map_data_inputs( [], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data ) with self.project.wait_for_project_lock(): self.project.add_embeddings(embeddings=embeddings, data=data) # Text upload case else: if metadatas is None: data = [ {"text": text, AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i]} for i, text in enumerate(texts) ] else: for i, text in enumerate(texts): metadatas[i]["text"] = texts metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i] data = metadatas self.project._validate_map_data_inputs( [], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data ) with self.project.wait_for_project_lock(): self.project.add_text(data) if refresh: if len(self.project.indices) > 0: with self.project.wait_for_project_lock(): self.project.rebuild_maps() return ids def create_index(self, **kwargs: Any) -> Any: """Creates an index in your project. See https://docs.nomic.ai/atlas_api.html#nomic.project.AtlasProject.create_index for full detail. """ with self.project.wait_for_project_lock(): return self.project.create_index(**kwargs) def similarity_search( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Document]: """Run similarity search with AtlasDB Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. Returns: List[Document]: List of documents most similar to the query text. """ if self._embedding_function is None: raise NotImplementedError( "AtlasDB requires an embedding_function for text similarity search!" ) _embedding = self._embedding_function.embed_documents([query])[0] embedding = np.array(_embedding).reshape(1, -1) with self.project.wait_for_project_lock(): neighbors, _ = self.project.projections[0].vector_search( queries=embedding, k=k ) data = self.project.get_data(ids=neighbors[0]) docs = [ Document(page_content=data[i]["text"], metadata=data[i]) for i, neighbor in enumerate(neighbors) ] return docs @classmethod def from_texts( cls: Type[AtlasDB], texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, name: Optional[str] = None, api_key: Optional[str] = None, description: str = "A description for your project", is_public: bool = True, reset_project_if_exists: bool = False, index_kwargs: Optional[dict] = None, **kwargs: Any, ) -> AtlasDB: """Create an AtlasDB vectorstore from a raw documents. Args: texts (List[str]): The list of texts to ingest. name (str): Name of the project to create. api_key (str): Your nomic API key, embedding (Optional[Embeddings]): Embedding function. Defaults to None. metadatas (Optional[List[dict]]): List of metadatas. Defaults to None. ids (Optional[List[str]]): Optional list of document IDs. If None, ids will be auto created description (str): A description for your project. is_public (bool): Whether your project is publicly accessible. True by default. reset_project_if_exists (bool): Whether to reset this project if it already exists. Default False. Generally useful during development and testing. index_kwargs (Optional[dict]): Dict of kwargs for index creation. See https://docs.nomic.ai/atlas_api.html Returns: AtlasDB: Nomic's neural database and finest rhizomatic instrument """ if name is None or api_key is None: raise ValueError("`name` and `api_key` cannot be None.") # Inject relevant kwargs all_index_kwargs = {"name": name + "_index", "indexed_field": "text"} if index_kwargs is not None: for k, v in index_kwargs.items(): all_index_kwargs[k] = v # Build project atlasDB = cls( name, embedding_function=embedding, api_key=api_key, description="A description for your project", is_public=is_public, reset_project_if_exists=reset_project_if_exists, ) with atlasDB.project.wait_for_project_lock(): atlasDB.add_texts(texts=texts, metadatas=metadatas, ids=ids) atlasDB.create_index(**all_index_kwargs) return atlasDB @classmethod def from_documents( cls: Type[AtlasDB], documents: List[Document], embedding: Optional[Embeddings] = None, ids: Optional[List[str]] = None, name: Optional[str] = None, api_key: Optional[str] = None, persist_directory: Optional[str] = None, description: str = "A description for your project", is_public: bool = True, reset_project_if_exists: bool = False, index_kwargs: Optional[dict] = None, **kwargs: Any, ) -> AtlasDB: """Create an AtlasDB vectorstore from a list of documents. Args: name (str): Name of the collection to create. api_key (str): Your nomic API key, documents (List[Document]): List of documents to add to the vectorstore. embedding (Optional[Embeddings]): Embedding function. Defaults to None. ids (Optional[List[str]]): Optional list of document IDs. If None, ids will be auto created description (str): A description for your project. is_public (bool): Whether your project is publicly accessible. True by default. reset_project_if_exists (bool): Whether to reset this project if it already exists. Default False. Generally useful during development and testing. index_kwargs (Optional[dict]): Dict of kwargs for index creation. See https://docs.nomic.ai/atlas_api.html Returns: AtlasDB: Nomic's neural database and finest rhizomatic instrument """ if name is None or api_key is None: raise ValueError("`name` and `api_key` cannot be None.") texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return cls.from_texts( name=name, api_key=api_key, texts=texts, embedding=embedding, metadatas=metadatas, ids=ids, description=description, is_public=is_public, reset_project_if_exists=reset_project_if_exists, index_kwargs=index_kwargs, )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chains~question_answering~map_reduce_prompt.py
# flake8: noqa from langchain.chains.prompt_selector import ConditionalPromptSelector, is_chat_model from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain.prompts.prompt import PromptTemplate question_prompt_template = """Используй следующий фрагмент длинного документа, чтобы увидеть, содержит ли текст информацию, относящуюся к ответу на вопрос. Верни любой релевантный текст дословно. {context} Question: {question} Релевантный текст, если таковой имеется:""" QUESTION_PROMPT = PromptTemplate( template=question_prompt_template, input_variables=["context", "question"] ) system_template = """Используй следующий фрагмент длинного документа, чтобы увидеть, содержит ли текст информацию, относящуюся к ответу на вопрос. Верни любой релевантный текст дословно. ______________________ {context}""" messages = [ SystemMessagePromptTemplate.from_template(system_template), HumanMessagePromptTemplate.from_template("{question}"), ] CHAT_QUESTION_PROMPT = ChatPromptTemplate.from_messages(messages) QUESTION_PROMPT_SELECTOR = ConditionalPromptSelector( default_prompt=QUESTION_PROMPT, conditionals=[(is_chat_model, CHAT_QUESTION_PROMPT)] ) combine_prompt_template = """Исходя из следующих выделенных частей длинного документа и вопроса, сформулируй окончательный ответ. Если ты не знаешь ответа, просто скажи, что не знаешь. Не пытайся выдумать ответ. Question: Какое государство/страна регулирует толкование контракта? ========= Содержание: Это Соглашение регулируется английским законодательством, и стороны подчиняются исключительной юрисдикции английских судов в отношении любого спора (контрактного или внеконтрактного) по данному Соглашению, за исключением того, что любая из сторон может обратиться в любой суд за получением судебного запрета или иного средства защиты своих прав интеллектуальной собственности. Содержание: Нет отказа. Невыполнение или задержка в осуществлении любого права или средства правовой защиты по данному Соглашению не составляет отказа от такого (или любого другого) права или средства правовой защиты.\n\n11.7 Разделимость. Недействительность, незаконность или неосуществимость любого условия (или его части) данного Соглашения не влияет на продолжение действия остальной части условия (если таковая имеется) и данного Соглашения.\n\n11.8 Нет агентства. За исключением как это прямо указано иначе, ничто в данном Соглашении не создает агентства, партнерства или совместного предприятия любого рода между сторонами.\n\n11.9 Нет третьих лиц-бенефициаров. Содержание: (b) если Google верит, в доброй вере, что Дистрибьютор нарушил или заставил Google нарушить любые Антикоррупционные законы (как определено в пункте 8.5) или что такое нарушение вполне вероятно, ========= FINAL ANSWER: Это Соглашение регулируется английским законодательством. Question: {question} ========= {summaries} ========= FINAL ANSWER:""" COMBINE_PROMPT = PromptTemplate( template=combine_prompt_template, input_variables=["summaries", "question"] ) system_template = """Исходя из следующих выделенных частей длинного документа и вопроса, сформулируй окончательный ответ. Если ты не знаешь ответа, просто скажи, что не знаешь. Не пытайся выдумать ответ. ______________________ {summaries}""" messages = [ SystemMessagePromptTemplate.from_template(system_template), HumanMessagePromptTemplate.from_template("{question}"), ] CHAT_COMBINE_PROMPT = ChatPromptTemplate.from_messages(messages) COMBINE_PROMPT_SELECTOR = ConditionalPromptSelector( default_prompt=COMBINE_PROMPT, conditionals=[(is_chat_model, CHAT_COMBINE_PROMPT)] )
[ "question", "Исходя из следующих выделенных частей длинного документа и вопроса, сформулируй окончательный ответ. \nЕсли ты не знаешь ответа, просто скажи, что не знаешь. Не пытайся выдумать ответ.\n\nQuestion: Какое государство/страна регулирует толкование контракта?\n=========\nСодержание: Это Соглашение регулируется английским законодательством, и стороны подчиняются исключительной юрисдикции английских судов в отношении любого спора (контрактного или внеконтрактного) по данному Соглашению, за исключением того, что любая из сторон может обратиться в любой суд за получением судебного запрета или иного средства защиты своих прав интеллектуальной собственности.\n\nСодержание: Нет отказа. Невыполнение или задержка в осуществлении любого права или средства правовой защиты по данному Соглашению не составляет отказа от такого (или любого другого) права или средства правовой защиты.\n\n11.7 Разделимость. Недействительность, незаконность или неосуществимость любого условия (или его части) данного Соглашения не влияет на продолжение действия остальной части условия (если таковая имеется) и данного Соглашения.\n\n11.8 Нет агентства. За исключением как это прямо указано иначе, ничто в данном Соглашении не создает агентства, партнерства или совместного предприятия любого рода между сторонами.\n\n11.9 Нет третьих лиц-бенефициаров.\n\nСодержание: (b) если Google верит, в доброй вере, что Дистрибьютор нарушил или заставил Google нарушить любые Антикоррупционные законы (как определено в пункте 8.5) или что такое нарушение вполне вероятно,\n=========\nFINAL ANSWER: Это Соглашение регулируется английским законодательством.\n\nQuestion: {question}\n=========\n{summaries}\n=========\nFINAL ANSWER:", "Исходя из следующих выделенных частей длинного документа и вопроса, сформулируй окончательный ответ. \nЕсли ты не знаешь ответа, просто скажи, что не знаешь. Не пытайся выдумать ответ.\n______________________\n{summaries}", "context", "Используй следующий фрагмент длинного документа, чтобы увидеть, содержит ли текст информацию, относящуюся к ответу на вопрос. \nВерни любой релевантный текст дословно.\n______________________\n{context}", "{question}", "Используй следующий фрагмент длинного документа, чтобы увидеть, содержит ли текст информацию, относящуюся к ответу на вопрос. \nВерни любой релевантный текст дословно.\n{context}\nQuestion: {question}\nРелевантный текст, если таковой имеется:" ]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~document_loaders~test_joplin.py
from langchain.document_loaders.joplin import JoplinLoader def test_joplin_loader() -> None: loader = JoplinLoader() docs = loader.load() assert isinstance(docs, list) assert isinstance(docs[0].page_content, str) assert isinstance(docs[0].metadata["source"], str) assert isinstance(docs[0].metadata["title"], str)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~llms~test_edenai.py
"""Test EdenAi API wrapper. In order to run this test, you need to have an EdenAI api key. You can get it by registering for free at https://app.edenai.run/user/register. A test key can be found at https://app.edenai.run/admin/account/settings by clicking on the 'sandbox' toggle. (calls will be free, and will return dummy results) You'll then need to set EDENAI_API_KEY environment variable to your api key. """ from langchain.llms import EdenAI def test_edenai_call() -> None: """Test simple call to edenai.""" llm = EdenAI(provider="openai", params={"temperature": 0.2, "max_tokens": 250}) output = llm("Say foo:") assert llm._llm_type == "edenai" assert llm.feature == "text" assert llm.subfeature == "generation" assert isinstance(output, str) async def test_edenai_acall() -> None: """Test simple call to edenai.""" llm = EdenAI(provider="openai", params={"temperature": 0.2, "max_tokens": 250}) output = await llm.agenerate(["Say foo:"]) assert llm._llm_type == "edenai" assert llm.feature == "text" assert llm.subfeature == "generation" assert isinstance(output, str)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~graphs~memgraph_graph.py
from langchain.graphs.neo4j_graph import Neo4jGraph SCHEMA_QUERY = """ CALL llm_util.schema("prompt_ready") YIELD * RETURN * """ RAW_SCHEMA_QUERY = """ CALL llm_util.schema("raw") YIELD * RETURN * """ class MemgraphGraph(Neo4jGraph): """Memgraph wrapper for graph operations. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """ def __init__( self, url: str, username: str, password: str, *, database: str = "memgraph" ) -> None: """Create a new Memgraph graph wrapper instance.""" super().__init__(url, username, password, database=database) def refresh_schema(self) -> None: """ Refreshes the Memgraph graph schema information. """ db_schema = self.query(SCHEMA_QUERY)[0].get("schema") assert db_schema is not None self.schema = db_schema db_structured_schema = self.query(RAW_SCHEMA_QUERY)[0].get("schema") assert db_structured_schema is not None self.structured_schema = db_structured_schema
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~test_nuclia_transformer.py
import asyncio import json from typing import Any from unittest import mock import pytest from langchain.document_transformers.nuclia_text_transform import NucliaTextTransformer from langchain.schema.document import Document from langchain.tools.nuclia.tool import NucliaUnderstandingAPI def fakerun(**args: Any) -> Any: async def run(self: Any, **args: Any) -> str: await asyncio.sleep(0.1) data = { "extracted_text": [{"body": {"text": "Hello World"}}], "file_extracted_data": [{"language": "en"}], "field_metadata": [ { "metadata": { "metadata": { "paragraphs": [ {"end": 66, "sentences": [{"start": 1, "end": 67}]} ] } } } ], } return json.dumps(data) return run @pytest.mark.asyncio async def test_nuclia_loader() -> None: with mock.patch( "langchain.tools.nuclia.tool.NucliaUnderstandingAPI._arun", new_callable=fakerun ): with mock.patch("os.environ.get", return_value="_a_key_"): nua = NucliaUnderstandingAPI(enable_ml=False) documents = [ Document(page_content="Hello, my name is Alice", metadata={}), Document(page_content="Hello, my name is Bob", metadata={}), ] nuclia_transformer = NucliaTextTransformer(nua) transformed_documents = await nuclia_transformer.atransform_documents( documents ) assert len(transformed_documents) == 2 assert ( transformed_documents[0].metadata["nuclia"]["file"]["language"] == "en" ) assert ( len( transformed_documents[1].metadata["nuclia"]["metadata"]["metadata"][ "metadata" ]["paragraphs"] ) == 1 )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~memory~combined.py
import warnings from typing import Any, Dict, List, Set from langchain.memory.chat_memory import BaseChatMemory from langchain.pydantic_v1 import validator from langchain.schema import BaseMemory class CombinedMemory(BaseMemory): """Combining multiple memories' data together.""" memories: List[BaseMemory] """For tracking all the memories that should be accessed.""" @validator("memories") def check_repeated_memory_variable( cls, value: List[BaseMemory] ) -> List[BaseMemory]: all_variables: Set[str] = set() for val in value: overlap = all_variables.intersection(val.memory_variables) if overlap: raise ValueError( f"The same variables {overlap} are found in multiple" "memory object, which is not allowed by CombinedMemory." ) all_variables |= set(val.memory_variables) return value @validator("memories") def check_input_key(cls, value: List[BaseMemory]) -> List[BaseMemory]: """Check that if memories are of type BaseChatMemory that input keys exist.""" for val in value: if isinstance(val, BaseChatMemory): if val.input_key is None: warnings.warn( "When using CombinedMemory, " "input keys should be so the input is known. " f" Was not set on {val}" ) return value @property def memory_variables(self) -> List[str]: """All the memory variables that this instance provides.""" """Collected from the all the linked memories.""" memory_variables = [] for memory in self.memories: memory_variables.extend(memory.memory_variables) return memory_variables def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Load all vars from sub-memories.""" memory_data: Dict[str, Any] = {} # Collect vars from all sub-memories for memory in self.memories: data = memory.load_memory_variables(inputs) for key, value in data.items(): if key in memory_data: raise ValueError( f"The variable {key} is repeated in the CombinedMemory." ) memory_data[key] = value return memory_data def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this session for every memory.""" # Save context for all sub-memories for memory in self.memories: memory.save_context(inputs, outputs) def clear(self) -> None: """Clear context from this session for every memory.""" for memory in self.memories: memory.clear()
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~blob_loaders~file_system.py
"""Use to load blobs from the local file system.""" from pathlib import Path from typing import Callable, Iterable, Iterator, Optional, Sequence, TypeVar, Union from langchain.document_loaders.blob_loaders.schema import Blob, BlobLoader T = TypeVar("T") def _make_iterator( length_func: Callable[[], int], show_progress: bool = False ) -> Callable[[Iterable[T]], Iterator[T]]: """Create a function that optionally wraps an iterable in tqdm.""" if show_progress: try: from tqdm.auto import tqdm except ImportError: raise ImportError( "You must install tqdm to use show_progress=True." "You can install tqdm with `pip install tqdm`." ) # Make sure to provide `total` here so that tqdm can show # a progress bar that takes into account the total number of files. def _with_tqdm(iterable: Iterable[T]) -> Iterator[T]: """Wrap an iterable in a tqdm progress bar.""" return tqdm(iterable, total=length_func()) iterator = _with_tqdm else: iterator = iter # type: ignore return iterator # PUBLIC API class FileSystemBlobLoader(BlobLoader): """Load blobs in the local file system. Example: .. code-block:: python from langchain.document_loaders.blob_loaders import FileSystemBlobLoader loader = FileSystemBlobLoader("/path/to/directory") for blob in loader.yield_blobs(): print(blob) """ def __init__( self, path: Union[str, Path], *, glob: str = "**/[!.]*", exclude: Sequence[str] = (), suffixes: Optional[Sequence[str]] = None, show_progress: bool = False, ) -> None: """Initialize with a path to directory and how to glob over it. Args: path: Path to directory to load from glob: Glob pattern relative to the specified path by default set to pick up all non-hidden files exclude: patterns to exclude from results, use glob syntax suffixes: Provide to keep only files with these suffixes Useful when wanting to keep files with different suffixes Suffixes must include the dot, e.g. ".txt" show_progress: If true, will show a progress bar as the files are loaded. This forces an iteration through all matching files to count them prior to loading them. Examples: .. code-block:: python # Recursively load all text files in a directory. loader = FileSystemBlobLoader("/path/to/directory", glob="**/*.txt") # Recursively load all non-hidden files in a directory. loader = FileSystemBlobLoader("/path/to/directory", glob="**/[!.]*") # Load all files in a directory without recursion. loader = FileSystemBlobLoader("/path/to/directory", glob="*") # Recursively load all files in a directory, except for py or pyc files. loader = FileSystemBlobLoader( "/path/to/directory", glob="**/*.txt", exclude=["**/*.py", "**/*.pyc"] ) """ if isinstance(path, Path): _path = path elif isinstance(path, str): _path = Path(path) else: raise TypeError(f"Expected str or Path, got {type(path)}") self.path = _path.expanduser() # Expand user to handle ~ self.glob = glob self.suffixes = set(suffixes or []) self.show_progress = show_progress self.exclude = exclude def yield_blobs( self, ) -> Iterable[Blob]: """Yield blobs that match the requested pattern.""" iterator = _make_iterator( length_func=self.count_matching_files, show_progress=self.show_progress ) for path in iterator(self._yield_paths()): yield Blob.from_path(path) def _yield_paths(self) -> Iterable[Path]: """Yield paths that match the requested pattern.""" paths = self.path.glob(self.glob) for path in paths: if self.exclude: if any(path.match(glob) for glob in self.exclude): continue if path.is_file(): if self.suffixes and path.suffix not in self.suffixes: continue yield path def count_matching_files(self) -> int: """Count files that match the pattern without loading them.""" # Carry out a full iteration to count the files without # materializing anything expensive in memory. num = 0 for _ in self._yield_paths(): num += 1 return num
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~callbacks~infino_callback.py
import time from typing import Any, Dict, List, Optional from langchain.callbacks.base import BaseCallbackHandler from langchain.schema import AgentAction, AgentFinish, LLMResult from langchain.schema.messages import BaseMessage def import_infino() -> Any: """Import the infino client.""" try: from infinopy import InfinoClient except ImportError: raise ImportError( "To use the Infino callbacks manager you need to have the" " `infinopy` python package installed." "Please install it with `pip install infinopy`" ) return InfinoClient() def import_tiktoken() -> Any: """Import tiktoken for counting tokens for OpenAI models.""" try: import tiktoken except ImportError: raise ImportError( "To use the ChatOpenAI model with Infino callback manager, you need to " "have the `tiktoken` python package installed." "Please install it with `pip install tiktoken`" ) return tiktoken def get_num_tokens(string: str, openai_model_name: str) -> int: """Calculate num tokens for OpenAI with tiktoken package. Official documentation: https://github.com/openai/openai-cookbook/blob/main /examples/How_to_count_tokens_with_tiktoken.ipynb """ tiktoken = import_tiktoken() encoding = tiktoken.encoding_for_model(openai_model_name) num_tokens = len(encoding.encode(string)) return num_tokens class InfinoCallbackHandler(BaseCallbackHandler): """Callback Handler that logs to Infino.""" def __init__( self, model_id: Optional[str] = None, model_version: Optional[str] = None, verbose: bool = False, ) -> None: # Set Infino client self.client = import_infino() self.model_id = model_id self.model_version = model_version self.verbose = verbose self.is_chat_openai_model = False self.chat_openai_model_name = "gpt-3.5-turbo" def _send_to_infino( self, key: str, value: Any, is_ts: bool = True, ) -> None: """Send the key-value to Infino. Parameters: key (str): the key to send to Infino. value (Any): the value to send to Infino. is_ts (bool): if True, the value is part of a time series, else it is sent as a log message. """ payload = { "date": int(time.time()), key: value, "labels": { "model_id": self.model_id, "model_version": self.model_version, }, } if self.verbose: print(f"Tracking {key} with Infino: {payload}") # Append to Infino time series only if is_ts is True, otherwise # append to Infino log. if is_ts: self.client.append_ts(payload) else: self.client.append_log(payload) def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any, ) -> None: """Log the prompts to Infino, and set start time and error flag.""" for prompt in prompts: self._send_to_infino("prompt", prompt, is_ts=False) # Set the error flag to indicate no error (this will get overridden # in on_llm_error if an error occurs). self.error = 0 # Set the start time (so that we can calculate the request # duration in on_llm_end). self.start_time = time.time() def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Do nothing when a new token is generated.""" pass def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Log the latency, error, token usage, and response to Infino.""" # Calculate and track the request latency. self.end_time = time.time() duration = self.end_time - self.start_time self._send_to_infino("latency", duration) # Track success or error flag. self._send_to_infino("error", self.error) # Track prompt response. for generations in response.generations: for generation in generations: self._send_to_infino("prompt_response", generation.text, is_ts=False) # Track token usage (for non-chat models). if (response.llm_output is not None) and isinstance(response.llm_output, Dict): token_usage = response.llm_output["token_usage"] if token_usage is not None: prompt_tokens = token_usage["prompt_tokens"] total_tokens = token_usage["total_tokens"] completion_tokens = token_usage["completion_tokens"] self._send_to_infino("prompt_tokens", prompt_tokens) self._send_to_infino("total_tokens", total_tokens) self._send_to_infino("completion_tokens", completion_tokens) # Track completion token usage (for openai chat models). if self.is_chat_openai_model: messages = " ".join( generation.message.content # type: ignore[attr-defined] for generation in generations ) completion_tokens = get_num_tokens( messages, openai_model_name=self.chat_openai_model_name ) self._send_to_infino("completion_tokens", completion_tokens) def on_llm_error(self, error: BaseException, **kwargs: Any) -> None: """Set the error flag.""" self.error = 1 def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any ) -> None: """Do nothing when LLM chain starts.""" pass def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """Do nothing when LLM chain ends.""" pass def on_chain_error(self, error: BaseException, **kwargs: Any) -> None: """Need to log the error.""" pass def on_tool_start( self, serialized: Dict[str, Any], input_str: str, **kwargs: Any, ) -> None: """Do nothing when tool starts.""" pass def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: """Do nothing when agent takes a specific action.""" pass def on_tool_end( self, output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: """Do nothing when tool ends.""" pass def on_tool_error(self, error: BaseException, **kwargs: Any) -> None: """Do nothing when tool outputs an error.""" pass def on_text(self, text: str, **kwargs: Any) -> None: """Do nothing.""" pass def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None: """Do nothing.""" pass def on_chat_model_start( self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any, ) -> None: """Run when LLM starts running.""" # Currently, for chat models, we only support input prompts for ChatOpenAI. # Check if this model is a ChatOpenAI model. values = serialized.get("id") if values: for value in values: if value == "ChatOpenAI": self.is_chat_openai_model = True break # Track prompt tokens for ChatOpenAI model. if self.is_chat_openai_model: invocation_params = kwargs.get("invocation_params") if invocation_params: model_name = invocation_params.get("model_name") if model_name: self.chat_openai_model_name = model_name prompt_tokens = 0 for message_list in messages: message_string = " ".join(msg.content for msg in message_list) num_tokens = get_num_tokens( message_string, openai_model_name=self.chat_openai_model_name, ) prompt_tokens += num_tokens self._send_to_infino("prompt_tokens", prompt_tokens) if self.verbose: print( f"on_chat_model_start: is_chat_openai_model= \ {self.is_chat_openai_model}, \ chat_openai_model_name={self.chat_openai_model_name}" ) # Send the prompt to infino prompt = " ".join(msg.content for sublist in messages for msg in sublist) self._send_to_infino("prompt", prompt, is_ts=False) # Set the error flag to indicate no error (this will get overridden # in on_llm_error if an error occurs). self.error = 0 # Set the start time (so that we can calculate the request # duration in on_llm_end). self.start_time = time.time()
[ "0", " ", "prompt_tokens" ]
2024-01-10
ai-forever/gigachain
libs~experimental~langchain_experimental~tot~thought.py
from __future__ import annotations from enum import Enum from typing import Set from langchain_experimental.pydantic_v1 import BaseModel, Field class ThoughtValidity(Enum): VALID_INTERMEDIATE = 0 VALID_FINAL = 1 INVALID = 2 class Thought(BaseModel): text: str validity: ThoughtValidity children: Set[Thought] = Field(default_factory=set) def __hash__(self) -> int: return id(self)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~memory~chat_message_histories~upstash_redis.py
import json import logging from typing import List, Optional from langchain.schema import ( BaseChatMessageHistory, ) from langchain.schema.messages import BaseMessage, _message_to_dict, messages_from_dict logger = logging.getLogger(__name__) class UpstashRedisChatMessageHistory(BaseChatMessageHistory): """Chat message history stored in an Upstash Redis database.""" def __init__( self, session_id: str, url: str = "", token: str = "", key_prefix: str = "message_store:", ttl: Optional[int] = None, ): try: from upstash_redis import Redis except ImportError: raise ImportError( "Could not import upstash redis python package. " "Please install it with `pip install upstash_redis`." ) if url == "" or token == "": raise ValueError( "UPSTASH_REDIS_REST_URL and UPSTASH_REDIS_REST_TOKEN are needed." ) try: self.redis_client = Redis(url=url, token=token) except Exception: logger.error("Upstash Redis instance could not be initiated.") self.session_id = session_id self.key_prefix = key_prefix self.ttl = ttl @property def key(self) -> str: """Construct the record key to use""" return self.key_prefix + self.session_id @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from Upstash Redis""" _items = self.redis_client.lrange(self.key, 0, -1) items = [json.loads(m) for m in _items[::-1]] messages = messages_from_dict(items) return messages def add_message(self, message: BaseMessage) -> None: """Append the message to the record in Upstash Redis""" self.redis_client.lpush(self.key, json.dumps(_message_to_dict(message))) if self.ttl: self.redis_client.expire(self.key, self.ttl) def clear(self) -> None: """Clear session memory from Upstash Redis""" self.redis_client.delete(self.key)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chat_loaders~imessage.py
from __future__ import annotations from pathlib import Path from typing import TYPE_CHECKING, Iterator, List, Optional, Union from langchain.chat_loaders.base import BaseChatLoader from langchain.schema import HumanMessage from langchain.schema.chat import ChatSession if TYPE_CHECKING: import sqlite3 class IMessageChatLoader(BaseChatLoader): """Load chat sessions from the `iMessage` chat.db SQLite file. It only works on macOS when you have iMessage enabled and have the chat.db file. The chat.db file is likely located at ~/Library/Messages/chat.db. However, your terminal may not have permission to access this file. To resolve this, you can copy the file to a different location, change the permissions of the file, or grant full disk access for your terminal emulator in System Settings > Security and Privacy > Full Disk Access. """ def __init__(self, path: Optional[Union[str, Path]] = None): """ Initialize the IMessageChatLoader. Args: path (str or Path, optional): Path to the chat.db SQLite file. Defaults to None, in which case the default path ~/Library/Messages/chat.db will be used. """ if path is None: path = Path.home() / "Library" / "Messages" / "chat.db" self.db_path = path if isinstance(path, Path) else Path(path) if not self.db_path.exists(): raise FileNotFoundError(f"File {self.db_path} not found") try: import sqlite3 # noqa: F401 except ImportError as e: raise ImportError( "The sqlite3 module is required to load iMessage chats.\n" "Please install it with `pip install pysqlite3`" ) from e def _load_single_chat_session( self, cursor: "sqlite3.Cursor", chat_id: int ) -> ChatSession: """ Load a single chat session from the iMessage chat.db. Args: cursor: SQLite cursor object. chat_id (int): ID of the chat session to load. Returns: ChatSession: Loaded chat session. """ results: List[HumanMessage] = [] query = """ SELECT message.date, handle.id, message.text FROM message JOIN chat_message_join ON message.ROWID = chat_message_join.message_id JOIN handle ON message.handle_id = handle.ROWID WHERE chat_message_join.chat_id = ? ORDER BY message.date ASC; """ cursor.execute(query, (chat_id,)) messages = cursor.fetchall() for date, sender, text in messages: if text: # Skip empty messages results.append( HumanMessage( role=sender, content=text, additional_kwargs={ "message_time": date, "sender": sender, }, ) ) return ChatSession(messages=results) def lazy_load(self) -> Iterator[ChatSession]: """ Lazy load the chat sessions from the iMessage chat.db and yield them in the required format. Yields: ChatSession: Loaded chat session. """ import sqlite3 try: conn = sqlite3.connect(self.db_path) except sqlite3.OperationalError as e: raise ValueError( f"Could not open iMessage DB file {self.db_path}.\n" "Make sure your terminal emulator has disk access to this file.\n" " You can either copy the DB file to an accessible location" " or grant full disk access for your terminal emulator." " You can grant full disk access for your terminal emulator" " in System Settings > Security and Privacy > Full Disk Access." ) from e cursor = conn.cursor() # Fetch the list of chat IDs sorted by time (most recent first) query = """SELECT chat_id FROM message JOIN chat_message_join ON message.ROWID = chat_message_join.message_id GROUP BY chat_id ORDER BY MAX(date) DESC;""" cursor.execute(query) chat_ids = [row[0] for row in cursor.fetchall()] for chat_id in chat_ids: yield self._load_single_chat_session(cursor, chat_id) conn.close()
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~callbacks~tracers~wandb.py
"""A Tracer Implementation that records activity to Weights & Biases.""" from __future__ import annotations import json from typing import ( TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple, TypedDict, Union, ) from langchain.callbacks.tracers.base import BaseTracer from langchain.callbacks.tracers.schemas import Run if TYPE_CHECKING: from wandb import Settings as WBSettings from wandb.sdk.data_types.trace_tree import Span from wandb.sdk.lib.paths import StrPath from wandb.wandb_run import Run as WBRun PRINT_WARNINGS = True def _serialize_io(run_inputs: dict) -> dict: from google.protobuf.json_format import MessageToJson from google.protobuf.message import Message serialized_inputs = {} for key, value in run_inputs.items(): if isinstance(value, Message): serialized_inputs[key] = MessageToJson(value) elif key == "input_documents": serialized_inputs.update( {f"input_document_{i}": doc.json() for i, doc in enumerate(value)} ) else: serialized_inputs[key] = value return serialized_inputs class RunProcessor: """Handles the conversion of a LangChain Runs into a WBTraceTree.""" def __init__(self, wandb_module: Any, trace_module: Any): self.wandb = wandb_module self.trace_tree = trace_module def process_span(self, run: Run) -> Optional["Span"]: """Converts a LangChain Run into a W&B Trace Span. :param run: The LangChain Run to convert. :return: The converted W&B Trace Span. """ try: span = self._convert_lc_run_to_wb_span(run) return span except Exception as e: if PRINT_WARNINGS: self.wandb.termwarn( f"Skipping trace saving - unable to safely convert LangChain Run " f"into W&B Trace due to: {e}" ) return None def _convert_run_to_wb_span(self, run: Run) -> "Span": """Base utility to create a span from a run. :param run: The run to convert. :return: The converted Span. """ attributes = {**run.extra} if run.extra else {} attributes["execution_order"] = run.execution_order return self.trace_tree.Span( span_id=str(run.id) if run.id is not None else None, name=run.name, start_time_ms=int(run.start_time.timestamp() * 1000), end_time_ms=int(run.end_time.timestamp() * 1000), status_code=self.trace_tree.StatusCode.SUCCESS if run.error is None else self.trace_tree.StatusCode.ERROR, status_message=run.error, attributes=attributes, ) def _convert_llm_run_to_wb_span(self, run: Run) -> "Span": """Converts a LangChain LLM Run into a W&B Trace Span. :param run: The LangChain LLM Run to convert. :return: The converted W&B Trace Span. """ base_span = self._convert_run_to_wb_span(run) if base_span.attributes is None: base_span.attributes = {} base_span.attributes["llm_output"] = run.outputs.get("llm_output", {}) base_span.results = [ self.trace_tree.Result( inputs={"prompt": prompt}, outputs={ f"gen_{g_i}": gen["text"] for g_i, gen in enumerate(run.outputs["generations"][ndx]) } if ( run.outputs is not None and len(run.outputs["generations"]) > ndx and len(run.outputs["generations"][ndx]) > 0 ) else None, ) for ndx, prompt in enumerate(run.inputs["prompts"] or []) ] base_span.span_kind = self.trace_tree.SpanKind.LLM return base_span def _convert_chain_run_to_wb_span(self, run: Run) -> "Span": """Converts a LangChain Chain Run into a W&B Trace Span. :param run: The LangChain Chain Run to convert. :return: The converted W&B Trace Span. """ base_span = self._convert_run_to_wb_span(run) base_span.results = [ self.trace_tree.Result( inputs=_serialize_io(run.inputs), outputs=_serialize_io(run.outputs) ) ] base_span.child_spans = [ self._convert_lc_run_to_wb_span(child_run) for child_run in run.child_runs ] base_span.span_kind = ( self.trace_tree.SpanKind.AGENT if "agent" in run.name.lower() else self.trace_tree.SpanKind.CHAIN ) return base_span def _convert_tool_run_to_wb_span(self, run: Run) -> "Span": """Converts a LangChain Tool Run into a W&B Trace Span. :param run: The LangChain Tool Run to convert. :return: The converted W&B Trace Span. """ base_span = self._convert_run_to_wb_span(run) base_span.results = [ self.trace_tree.Result( inputs=_serialize_io(run.inputs), outputs=_serialize_io(run.outputs) ) ] base_span.child_spans = [ self._convert_lc_run_to_wb_span(child_run) for child_run in run.child_runs ] base_span.span_kind = self.trace_tree.SpanKind.TOOL return base_span def _convert_lc_run_to_wb_span(self, run: Run) -> "Span": """Utility to convert any generic LangChain Run into a W&B Trace Span. :param run: The LangChain Run to convert. :return: The converted W&B Trace Span. """ if run.run_type == "llm": return self._convert_llm_run_to_wb_span(run) elif run.run_type == "chain": return self._convert_chain_run_to_wb_span(run) elif run.run_type == "tool": return self._convert_tool_run_to_wb_span(run) else: return self._convert_run_to_wb_span(run) def process_model(self, run: Run) -> Optional[Dict[str, Any]]: """Utility to process a run for wandb model_dict serialization. :param run: The run to process. :return: The convert model_dict to pass to WBTraceTree. """ try: data = json.loads(run.json()) processed = self.flatten_run(data) keep_keys = ( "id", "name", "serialized", "inputs", "outputs", "parent_run_id", "execution_order", ) processed = self.truncate_run_iterative(processed, keep_keys=keep_keys) exact_keys, partial_keys = ("lc", "type"), ("api_key",) processed = self.modify_serialized_iterative( processed, exact_keys=exact_keys, partial_keys=partial_keys ) output = self.build_tree(processed) return output except Exception as e: if PRINT_WARNINGS: self.wandb.termwarn(f"WARNING: Failed to serialize model: {e}") return None def flatten_run(self, run: Dict[str, Any]) -> List[Dict[str, Any]]: """Utility to flatten a nest run object into a list of runs. :param run: The base run to flatten. :return: The flattened list of runs. """ def flatten(child_runs: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Utility to recursively flatten a list of child runs in a run. :param child_runs: The list of child runs to flatten. :return: The flattened list of runs. """ if child_runs is None: return [] result = [] for item in child_runs: child_runs = item.pop("child_runs", []) result.append(item) result.extend(flatten(child_runs)) return result return flatten([run]) def truncate_run_iterative( self, runs: List[Dict[str, Any]], keep_keys: Tuple[str, ...] = () ) -> List[Dict[str, Any]]: """Utility to truncate a list of runs dictionaries to only keep the specified keys in each run. :param runs: The list of runs to truncate. :param keep_keys: The keys to keep in each run. :return: The truncated list of runs. """ def truncate_single(run: Dict[str, Any]) -> Dict[str, Any]: """Utility to truncate a single run dictionary to only keep the specified keys. :param run: The run dictionary to truncate. :return: The truncated run dictionary """ new_dict = {} for key in run: if key in keep_keys: new_dict[key] = run.get(key) return new_dict return list(map(truncate_single, runs)) def modify_serialized_iterative( self, runs: List[Dict[str, Any]], exact_keys: Tuple[str, ...] = (), partial_keys: Tuple[str, ...] = (), ) -> List[Dict[str, Any]]: """Utility to modify the serialized field of a list of runs dictionaries. removes any keys that match the exact_keys and any keys that contain any of the partial_keys. recursively moves the dictionaries under the kwargs key to the top level. changes the "id" field to a string "_kind" field that tells WBTraceTree how to visualize the run. promotes the "serialized" field to the top level. :param runs: The list of runs to modify. :param exact_keys: A tuple of keys to remove from the serialized field. :param partial_keys: A tuple of partial keys to remove from the serialized field. :return: The modified list of runs. """ def remove_exact_and_partial_keys(obj: Dict[str, Any]) -> Dict[str, Any]: """Recursively removes exact and partial keys from a dictionary. :param obj: The dictionary to remove keys from. :return: The modified dictionary. """ if isinstance(obj, dict): obj = { k: v for k, v in obj.items() if k not in exact_keys and not any(partial in k for partial in partial_keys) } for k, v in obj.items(): obj[k] = remove_exact_and_partial_keys(v) elif isinstance(obj, list): obj = [remove_exact_and_partial_keys(x) for x in obj] return obj def handle_id_and_kwargs( obj: Dict[str, Any], root: bool = False ) -> Dict[str, Any]: """Recursively handles the id and kwargs fields of a dictionary. changes the id field to a string "_kind" field that tells WBTraceTree how to visualize the run. recursively moves the dictionaries under the kwargs key to the top level. :param obj: a run dictionary with id and kwargs fields. :param root: whether this is the root dictionary or the serialized dictionary. :return: The modified dictionary. """ if isinstance(obj, dict): if ("id" in obj or "name" in obj) and not root: _kind = obj.get("id") if not _kind: _kind = [obj.get("name")] obj["_kind"] = _kind[-1] obj.pop("id", None) obj.pop("name", None) if "kwargs" in obj: kwargs = obj.pop("kwargs") for k, v in kwargs.items(): obj[k] = v for k, v in obj.items(): obj[k] = handle_id_and_kwargs(v) elif isinstance(obj, list): obj = [handle_id_and_kwargs(x) for x in obj] return obj def transform_serialized(serialized: Dict[str, Any]) -> Dict[str, Any]: """Transforms the serialized field of a run dictionary to be compatible with WBTraceTree. :param serialized: The serialized field of a run dictionary. :return: The transformed serialized field. """ serialized = handle_id_and_kwargs(serialized, root=True) serialized = remove_exact_and_partial_keys(serialized) return serialized def transform_run(run: Dict[str, Any]) -> Dict[str, Any]: """Transforms a run dictionary to be compatible with WBTraceTree. :param run: The run dictionary to transform. :return: The transformed run dictionary. """ transformed_dict = transform_serialized(run) serialized = transformed_dict.pop("serialized") for k, v in serialized.items(): transformed_dict[k] = v _kind = transformed_dict.get("_kind", None) name = transformed_dict.pop("name", None) exec_ord = transformed_dict.pop("execution_order", None) if not name: name = _kind output_dict = { f"{exec_ord}_{name}": transformed_dict, } return output_dict return list(map(transform_run, runs)) def build_tree(self, runs: List[Dict[str, Any]]) -> Dict[str, Any]: """Builds a nested dictionary from a list of runs. :param runs: The list of runs to build the tree from. :return: The nested dictionary representing the langchain Run in a tree structure compatible with WBTraceTree. """ id_to_data = {} child_to_parent = {} for entity in runs: for key, data in entity.items(): id_val = data.pop("id", None) parent_run_id = data.pop("parent_run_id", None) id_to_data[id_val] = {key: data} if parent_run_id: child_to_parent[id_val] = parent_run_id for child_id, parent_id in child_to_parent.items(): parent_dict = id_to_data[parent_id] parent_dict[next(iter(parent_dict))][ next(iter(id_to_data[child_id])) ] = id_to_data[child_id][next(iter(id_to_data[child_id]))] root_dict = next( data for id_val, data in id_to_data.items() if id_val not in child_to_parent ) return root_dict class WandbRunArgs(TypedDict): """Arguments for the WandbTracer.""" job_type: Optional[str] dir: Optional[StrPath] config: Union[Dict, str, None] project: Optional[str] entity: Optional[str] reinit: Optional[bool] tags: Optional[Sequence] group: Optional[str] name: Optional[str] notes: Optional[str] magic: Optional[Union[dict, str, bool]] config_exclude_keys: Optional[List[str]] config_include_keys: Optional[List[str]] anonymous: Optional[str] mode: Optional[str] allow_val_change: Optional[bool] resume: Optional[Union[bool, str]] force: Optional[bool] tensorboard: Optional[bool] sync_tensorboard: Optional[bool] monitor_gym: Optional[bool] save_code: Optional[bool] id: Optional[str] settings: Union[WBSettings, Dict[str, Any], None] class WandbTracer(BaseTracer): """Callback Handler that logs to Weights and Biases. This handler will log the model architecture and run traces to Weights and Biases. This will ensure that all LangChain activity is logged to W&B. """ _run: Optional[WBRun] = None _run_args: Optional[WandbRunArgs] = None def __init__(self, run_args: Optional[WandbRunArgs] = None, **kwargs: Any) -> None: """Initializes the WandbTracer. Parameters: run_args: (dict, optional) Arguments to pass to `wandb.init()`. If not provided, `wandb.init()` will be called with no arguments. Please refer to the `wandb.init` for more details. To use W&B to monitor all LangChain activity, add this tracer like any other LangChain callback: ``` from wandb.integration.langchain import WandbTracer tracer = WandbTracer() chain = LLMChain(llm, callbacks=[tracer]) # ...end of notebook / script: tracer.finish() ``` """ super().__init__(**kwargs) try: import wandb from wandb.sdk.data_types import trace_tree except ImportError as e: raise ImportError( "Could not import wandb python package." "Please install it with `pip install -U wandb`." ) from e self._wandb = wandb self._trace_tree = trace_tree self._run_args = run_args self._ensure_run(should_print_url=(wandb.run is None)) self.run_processor = RunProcessor(self._wandb, self._trace_tree) def finish(self) -> None: """Waits for all asynchronous processes to finish and data to upload. Proxy for `wandb.finish()`. """ self._wandb.finish() def _log_trace_from_run(self, run: Run) -> None: """Logs a LangChain Run to W*B as a W&B Trace.""" self._ensure_run() root_span = self.run_processor.process_span(run) model_dict = self.run_processor.process_model(run) if root_span is None: return model_trace = self._trace_tree.WBTraceTree( root_span=root_span, model_dict=model_dict, ) if self._wandb.run is not None: self._wandb.run.log({"langchain_trace": model_trace}) def _ensure_run(self, should_print_url: bool = False) -> None: """Ensures an active W&B run exists. If not, will start a new run with the provided run_args. """ if self._wandb.run is None: run_args = self._run_args or {} # type: ignore run_args: dict = {**run_args} # type: ignore if "settings" not in run_args: # type: ignore run_args["settings"] = {"silent": True} # type: ignore self._wandb.init(**run_args) if self._wandb.run is not None: if should_print_url: run_url = self._wandb.run.settings.run_url self._wandb.termlog( f"Streaming LangChain activity to W&B at {run_url}\n" "`WandbTracer` is currently in beta.\n" "Please report any issues to " "https://github.com/wandb/wandb/issues with the tag " "`langchain`." ) self._wandb.run._label(repo="langchain") def _persist_run(self, run: "Run") -> None: """Persist a run.""" self._log_trace_from_run(run)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~llms~aviary.py
import dataclasses import os from typing import Any, Dict, List, Mapping, Optional, Union, cast import requests from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.pydantic_v1 import Extra, root_validator from langchain.utils import get_from_dict_or_env TIMEOUT = 60 @dataclasses.dataclass class AviaryBackend: """Aviary backend. Attributes: backend_url: The URL for the Aviary backend. bearer: The bearer token for the Aviary backend. """ backend_url: str bearer: str def __post_init__(self) -> None: self.header = {"Authorization": self.bearer} @classmethod def from_env(cls) -> "AviaryBackend": aviary_url = os.getenv("AVIARY_URL") assert aviary_url, "AVIARY_URL must be set" aviary_token = os.getenv("AVIARY_TOKEN", "") bearer = f"Bearer {aviary_token}" if aviary_token else "" aviary_url += "/" if not aviary_url.endswith("/") else "" return cls(aviary_url, bearer) def get_models() -> List[str]: """List available models""" backend = AviaryBackend.from_env() request_url = backend.backend_url + "-/routes" response = requests.get(request_url, headers=backend.header, timeout=TIMEOUT) try: result = response.json() except requests.JSONDecodeError as e: raise RuntimeError( f"Error decoding JSON from {request_url}. Text response: {response.text}" ) from e result = sorted( [k.lstrip("/").replace("--", "/") for k in result.keys() if "--" in k] ) return result def get_completions( model: str, prompt: str, use_prompt_format: bool = True, version: str = "", ) -> Dict[str, Union[str, float, int]]: """Get completions from Aviary models.""" backend = AviaryBackend.from_env() url = backend.backend_url + model.replace("/", "--") + "/" + version + "query" response = requests.post( url, headers=backend.header, json={"prompt": prompt, "use_prompt_format": use_prompt_format}, timeout=TIMEOUT, ) try: return response.json() except requests.JSONDecodeError as e: raise RuntimeError( f"Error decoding JSON from {url}. Text response: {response.text}" ) from e class Aviary(LLM): """Aviary hosted models. Aviary is a backend for hosted models. You can find out more about aviary at http://github.com/ray-project/aviary To get a list of the models supported on an aviary, follow the instructions on the website to install the aviary CLI and then use: `aviary models` AVIARY_URL and AVIARY_TOKEN environment variables must be set. Attributes: model: The name of the model to use. Defaults to "amazon/LightGPT". aviary_url: The URL for the Aviary backend. Defaults to None. aviary_token: The bearer token for the Aviary backend. Defaults to None. use_prompt_format: If True, the prompt template for the model will be ignored. Defaults to True. version: API version to use for Aviary. Defaults to None. Example: .. code-block:: python from langchain.llms import Aviary os.environ["AVIARY_URL"] = "<URL>" os.environ["AVIARY_TOKEN"] = "<TOKEN>" light = Aviary(model='amazon/LightGPT') output = light('How do you make fried rice?') """ model: str = "amazon/LightGPT" aviary_url: Optional[str] = None aviary_token: Optional[str] = None # If True the prompt template for the model will be ignored. use_prompt_format: bool = True # API version to use for Aviary version: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" aviary_url = get_from_dict_or_env(values, "aviary_url", "AVIARY_URL") aviary_token = get_from_dict_or_env(values, "aviary_token", "AVIARY_TOKEN") # Set env viarables for aviary sdk os.environ["AVIARY_URL"] = aviary_url os.environ["AVIARY_TOKEN"] = aviary_token try: aviary_models = get_models() except requests.exceptions.RequestException as e: raise ValueError(e) model = values.get("model") if model and model not in aviary_models: raise ValueError(f"{aviary_url} does not support model {values['model']}.") return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model_name": self.model, "aviary_url": self.aviary_url, } @property def _llm_type(self) -> str: """Return type of llm.""" return f"aviary-{self.model.replace('/', '-')}" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to Aviary Args: prompt: The prompt to pass into the model. Returns: The string generated by the model. Example: .. code-block:: python response = aviary("Tell me a joke.") """ kwargs = {"use_prompt_format": self.use_prompt_format} if self.version: kwargs["version"] = self.version output = get_completions( model=self.model, prompt=prompt, **kwargs, ) text = cast(str, output["generated_text"]) if stop: text = enforce_stop_tokens(text, stop) return text
[ "True" ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~tools~eleven_labs~text2speech.py
import tempfile from enum import Enum from typing import Any, Dict, Optional, Union from langchain.callbacks.manager import CallbackManagerForToolRun from langchain.pydantic_v1 import root_validator from langchain.tools.base import BaseTool from langchain.utils import get_from_dict_or_env def _import_elevenlabs() -> Any: try: import elevenlabs except ImportError as e: raise ImportError( "Cannot import elevenlabs, please install `pip install elevenlabs`." ) from e return elevenlabs class ElevenLabsModel(str, Enum): """Models available for Eleven Labs Text2Speech.""" MULTI_LINGUAL = "eleven_multilingual_v1" MONO_LINGUAL = "eleven_monolingual_v1" class ElevenLabsText2SpeechTool(BaseTool): """Tool that queries the Eleven Labs Text2Speech API. In order to set this up, follow instructions at: https://docs.elevenlabs.io/welcome/introduction """ model: Union[ElevenLabsModel, str] = ElevenLabsModel.MULTI_LINGUAL name: str = "eleven_labs_text2speech" description: str = ( "A wrapper around Eleven Labs Text2Speech. " "Useful for when you need to convert text to speech. " "It supports multiple languages, including English, German, Polish, " "Spanish, Italian, French, Portuguese, and Hindi. " ) @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key exists in environment.""" _ = get_from_dict_or_env(values, "eleven_api_key", "ELEVEN_API_KEY") return values def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> str: """Use the tool.""" elevenlabs = _import_elevenlabs() try: speech = elevenlabs.generate(text=query, model=self.model) with tempfile.NamedTemporaryFile( mode="bx", suffix=".wav", delete=False ) as f: f.write(speech) return f.name except Exception as e: raise RuntimeError(f"Error while running ElevenLabsText2SpeechTool: {e}") def play(self, speech_file: str) -> None: """Play the text as speech.""" elevenlabs = _import_elevenlabs() with open(speech_file, mode="rb") as f: speech = f.read() elevenlabs.play(speech) def stream_speech(self, query: str) -> None: """Stream the text as speech as it is generated. Play the text in your speakers.""" elevenlabs = _import_elevenlabs() speech_stream = elevenlabs.generate(text=query, model=self.model, stream=True) elevenlabs.stream(speech_stream)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~geodataframe.py
from typing import Any, Iterator, List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader class GeoDataFrameLoader(BaseLoader): """Load `geopandas` Dataframe.""" def __init__(self, data_frame: Any, page_content_column: str = "geometry"): """Initialize with geopandas Dataframe. Args: data_frame: geopandas DataFrame object. page_content_column: Name of the column containing the page content. Defaults to "geometry". """ try: import geopandas as gpd except ImportError: raise ImportError( "geopandas package not found, please install it with " "`pip install geopandas`" ) if not isinstance(data_frame, gpd.GeoDataFrame): raise ValueError( f"Expected data_frame to be a gpd.GeoDataFrame, got {type(data_frame)}" ) if page_content_column not in data_frame.columns: raise ValueError( f"Expected data_frame to have a column named {page_content_column}" ) if not isinstance(data_frame[page_content_column].iloc[0], gpd.GeoSeries): raise ValueError( f"Expected data_frame[{page_content_column}] to be a GeoSeries" ) self.data_frame = data_frame self.page_content_column = page_content_column def lazy_load(self) -> Iterator[Document]: """Lazy load records from dataframe.""" # assumes all geometries in GeoSeries are same CRS and Geom Type crs_str = self.data_frame.crs.to_string() if self.data_frame.crs else None geometry_type = self.data_frame.geometry.geom_type.iloc[0] for _, row in self.data_frame.iterrows(): geom = row[self.page_content_column] xmin, ymin, xmax, ymax = geom.bounds metadata = row.to_dict() metadata["crs"] = crs_str metadata["geometry_type"] = geometry_type metadata["xmin"] = xmin metadata["ymin"] = ymin metadata["xmax"] = xmax metadata["ymax"] = ymax metadata.pop(self.page_content_column) # using WKT instead of str() to help GIS system interoperability yield Document(page_content=geom.wkt, metadata=metadata) def load(self) -> List[Document]: """Load full dataframe.""" return list(self.lazy_load())
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~callbacks~context_callback.py
"""Callback handler for Context AI""" import os from typing import Any, Dict, List from uuid import UUID from langchain.callbacks.base import BaseCallbackHandler from langchain.schema import ( BaseMessage, LLMResult, ) def import_context() -> Any: """Import the `getcontext` package.""" try: import getcontext # noqa: F401 from getcontext.generated.models import ( Conversation, Message, MessageRole, Rating, ) from getcontext.token import Credential # noqa: F401 except ImportError: raise ImportError( "To use the context callback manager you need to have the " "`getcontext` python package installed (version >=0.3.0). " "Please install it with `pip install --upgrade python-context`" ) return getcontext, Credential, Conversation, Message, MessageRole, Rating class ContextCallbackHandler(BaseCallbackHandler): """Callback Handler that records transcripts to the Context service. (https://context.ai). Keyword Args: token (optional): The token with which to authenticate requests to Context. Visit https://with.context.ai/settings to generate a token. If not provided, the value of the `CONTEXT_TOKEN` environment variable will be used. Raises: ImportError: if the `context-python` package is not installed. Chat Example: >>> from langchain.llms import ChatOpenAI >>> from langchain.callbacks import ContextCallbackHandler >>> context_callback = ContextCallbackHandler( ... token="<CONTEXT_TOKEN_HERE>", ... ) >>> chat = ChatOpenAI( ... temperature=0, ... headers={"user_id": "123"}, ... callbacks=[context_callback], ... openai_api_key="API_KEY_HERE", ... ) >>> messages = [ ... SystemMessage(content="You translate English to French."), ... HumanMessage(content="I love programming with LangChain."), ... ] >>> chat(messages) Chain Example: >>> from langchain.chains import LLMChain >>> from langchain.chat_models import ChatOpenAI >>> from langchain.callbacks import ContextCallbackHandler >>> context_callback = ContextCallbackHandler( ... token="<CONTEXT_TOKEN_HERE>", ... ) >>> human_message_prompt = HumanMessagePromptTemplate( ... prompt=PromptTemplate( ... template="What is a good name for a company that makes {product}?", ... input_variables=["product"], ... ), ... ) >>> chat_prompt_template = ChatPromptTemplate.from_messages( ... [human_message_prompt] ... ) >>> callback = ContextCallbackHandler(token) >>> # Note: the same callback object must be shared between the ... LLM and the chain. >>> chat = ChatOpenAI(temperature=0.9, callbacks=[callback]) >>> chain = LLMChain( ... llm=chat, ... prompt=chat_prompt_template, ... callbacks=[callback] ... ) >>> chain.run("colorful socks") """ def __init__(self, token: str = "", verbose: bool = False, **kwargs: Any) -> None: ( self.context, self.credential, self.conversation_model, self.message_model, self.message_role_model, self.rating_model, ) = import_context() token = token or os.environ.get("CONTEXT_TOKEN") or "" self.client = self.context.ContextAPI(credential=self.credential(token)) self.chain_run_id = None self.llm_model = None self.messages: List[Any] = [] self.metadata: Dict[str, str] = {} def on_chat_model_start( self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, **kwargs: Any, ) -> Any: """Run when the chat model is started.""" llm_model = kwargs.get("invocation_params", {}).get("model", None) if llm_model is not None: self.metadata["model"] = llm_model if len(messages) == 0: return for message in messages[0]: role = self.message_role_model.SYSTEM if message.type == "human": role = self.message_role_model.USER elif message.type == "system": role = self.message_role_model.SYSTEM elif message.type == "ai": role = self.message_role_model.ASSISTANT self.messages.append( self.message_model( message=message.content, role=role, ) ) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Run when LLM ends.""" if len(response.generations) == 0 or len(response.generations[0]) == 0: return if not self.chain_run_id: generation = response.generations[0][0] self.messages.append( self.message_model( message=generation.text, role=self.message_role_model.ASSISTANT, ) ) self._log_conversation() def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any ) -> None: """Run when chain starts.""" self.chain_run_id = kwargs.get("run_id", None) def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """Run when chain ends.""" self.messages.append( self.message_model( message=outputs["text"], role=self.message_role_model.ASSISTANT, ) ) self._log_conversation() self.chain_run_id = None def _log_conversation(self) -> None: """Log the conversation to the context API.""" if len(self.messages) == 0: return self.client.log.conversation_upsert( body={ "conversation": self.conversation_model( messages=self.messages, metadata=self.metadata, ) } ) self.messages = [] self.metadata = {}
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~rspace.py
import os from typing import Any, Dict, Iterator, List, Optional, Union from langchain.docstore.document import Document from langchain.document_loaders import PyPDFLoader from langchain.document_loaders.base import BaseLoader from langchain.utils import get_from_dict_or_env class RSpaceLoader(BaseLoader): """ Loads content from RSpace notebooks, folders, documents or PDF Gallery files into Langchain documents. Maps RSpace document <-> Langchain Document in 1-1. PDFs are imported using PyPDF. Requirements are rspace_client (`pip install rspace_client`) and PyPDF if importing PDF docs (`pip install pypdf`). """ def __init__( self, global_id: str, api_key: Optional[str] = None, url: Optional[str] = None ): """api_key: RSpace API key - can also be supplied as environment variable 'RSPACE_API_KEY' url: str The URL of your RSpace instance - can also be supplied as environment variable 'RSPACE_URL' global_id: str The global ID of the resource to load, e.g. 'SD12344' (a single document); 'GL12345'(A PDF file in the gallery); 'NB4567' (a notebook); 'FL12244' (a folder) """ args: Dict[str, Optional[str]] = { "api_key": api_key, "url": url, "global_id": global_id, } verified_args: Dict[str, str] = RSpaceLoader.validate_environment(args) self.api_key = verified_args["api_key"] self.url = verified_args["url"] self.global_id: str = verified_args["global_id"] @classmethod def validate_environment(cls, values: Dict) -> Dict: """Validate that API key and URL exists in environment.""" values["api_key"] = get_from_dict_or_env(values, "api_key", "RSPACE_API_KEY") values["url"] = get_from_dict_or_env(values, "url", "RSPACE_URL") if "global_id" not in values or values["global_id"] is None: raise ValueError( "No value supplied for global_id. Please supply an RSpace global ID" ) return values def _create_rspace_client(self) -> Any: """Create a RSpace client.""" try: from rspace_client.eln import eln, field_content except ImportError: raise ImportError("You must run " "`pip install rspace_client`") try: eln = eln.ELNClient(self.url, self.api_key) eln.get_status() except Exception: raise Exception( f"Unable to initialise client - is url {self.url} or " f"api key correct?" ) return eln, field_content.FieldContent def _get_doc(self, cli: Any, field_content: Any, d_id: Union[str, int]) -> Document: content = "" doc = cli.get_document(d_id) content += f"<h2>{doc['name']}<h2/>" for f in doc["fields"]: content += f"{f['name']}\n" fc = field_content(f["content"]) content += fc.get_text() content += "\n" return Document( metadata={"source": f"rspace: {doc['name']}-{doc['globalId']}"}, page_content=content, ) def _load_structured_doc(self) -> Iterator[Document]: cli, field_content = self._create_rspace_client() yield self._get_doc(cli, field_content, self.global_id) def _load_folder_tree(self) -> Iterator[Document]: cli, field_content = self._create_rspace_client() if self.global_id: docs_in_folder = cli.list_folder_tree( folder_id=self.global_id[2:], typesToInclude=["document"] ) doc_ids: List[int] = [d["id"] for d in docs_in_folder["records"]] for doc_id in doc_ids: yield self._get_doc(cli, field_content, doc_id) def _load_pdf(self) -> Iterator[Document]: cli, field_content = self._create_rspace_client() file_info = cli.get_file_info(self.global_id) _, ext = os.path.splitext(file_info["name"]) if ext.lower() == ".pdf": outfile = f"{self.global_id}.pdf" cli.download_file(self.global_id, outfile) pdf_loader = PyPDFLoader(outfile) for pdf in pdf_loader.lazy_load(): pdf.metadata["rspace_src"] = self.global_id yield pdf def lazy_load(self) -> Iterator[Document]: if self.global_id and "GL" in self.global_id: for d in self._load_pdf(): yield d elif self.global_id and "SD" in self.global_id: for d in self._load_structured_doc(): yield d elif self.global_id and self.global_id[0:2] in ["FL", "NB"]: for d in self._load_folder_tree(): yield d else: raise ValueError("Unknown global ID type") def load(self) -> List[Document]: return list(self.lazy_load())
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chat_models~mlflow_ai_gateway.py
import asyncio import logging from functools import partial from typing import Any, Dict, List, Mapping, Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.pydantic_v1 import BaseModel, Extra from langchain.schema import ( ChatGeneration, ChatResult, ) from langchain.schema.messages import ( AIMessage, BaseMessage, ChatMessage, FunctionMessage, HumanMessage, SystemMessage, ) logger = logging.getLogger(__name__) # Ignoring type because below is valid pydantic code # Unexpected keyword argument "extra" for "__init_subclass__" of "object" [call-arg] class ChatParams(BaseModel, extra=Extra.allow): # type: ignore[call-arg] """Parameters for the `MLflow AI Gateway` LLM.""" temperature: float = 0.0 candidate_count: int = 1 """The number of candidates to return.""" stop: Optional[List[str]] = None max_tokens: Optional[int] = None class ChatMLflowAIGateway(BaseChatModel): """`MLflow AI Gateway` chat models API. To use, you should have the ``mlflow[gateway]`` python package installed. For more information, see https://mlflow.org/docs/latest/gateway/index.html. Example: .. code-block:: python from langchain.chat_models import ChatMLflowAIGateway chat = ChatMLflowAIGateway( gateway_uri="<your-mlflow-ai-gateway-uri>", route="<your-mlflow-ai-gateway-chat-route>", params={ "temperature": 0.1 } ) """ def __init__(self, **kwargs: Any): try: import mlflow.gateway except ImportError as e: raise ImportError( "Could not import `mlflow.gateway` module. " "Please install it with `pip install mlflow[gateway]`." ) from e super().__init__(**kwargs) if self.gateway_uri: mlflow.gateway.set_gateway_uri(self.gateway_uri) route: str gateway_uri: Optional[str] = None params: Optional[ChatParams] = None @property def _default_params(self) -> Dict[str, Any]: params: Dict[str, Any] = { "gateway_uri": self.gateway_uri, "route": self.route, **(self.params.dict() if self.params else {}), } return params def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: try: import mlflow.gateway except ImportError as e: raise ImportError( "Could not import `mlflow.gateway` module. " "Please install it with `pip install mlflow[gateway]`." ) from e message_dicts = [ ChatMLflowAIGateway._convert_message_to_dict(message) for message in messages ] data: Dict[str, Any] = { "messages": message_dicts, **(self.params.dict() if self.params else {}), } resp = mlflow.gateway.query(self.route, data=data) return ChatMLflowAIGateway._create_chat_result(resp) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: func = partial( self._generate, messages, stop=stop, run_manager=run_manager, **kwargs ) return await asyncio.get_event_loop().run_in_executor(None, func) @property def _identifying_params(self) -> Dict[str, Any]: return self._default_params def _get_invocation_params( self, stop: Optional[List[str]] = None, **kwargs: Any ) -> Dict[str, Any]: """Get the parameters used to invoke the model FOR THE CALLBACKS.""" return { **self._default_params, **super()._get_invocation_params(stop=stop, **kwargs), } @property def _llm_type(self) -> str: """Return type of chat model.""" return "mlflow-ai-gateway-chat" @staticmethod def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: role = _dict["role"] content = _dict["content"] if role == "user": return HumanMessage(content=content) elif role == "assistant": return AIMessage(content=content) elif role == "system": return SystemMessage(content=content) else: return ChatMessage(content=content, role=role) @staticmethod def _raise_functions_not_supported() -> None: raise ValueError( "Function messages are not supported by the MLflow AI Gateway. Please" " create a feature request at https://github.com/mlflow/mlflow/issues." ) @staticmethod def _convert_message_to_dict(message: BaseMessage) -> dict: if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} elif isinstance(message, FunctionMessage): raise ValueError( "Function messages are not supported by the MLflow AI Gateway. Please" " create a feature request at https://github.com/mlflow/mlflow/issues." ) else: raise ValueError(f"Got unknown message type: {message}") if "function_call" in message.additional_kwargs: ChatMLflowAIGateway._raise_functions_not_supported() if message.additional_kwargs: logger.warning( "Additional message arguments are unsupported by MLflow AI Gateway " " and will be ignored: %s", message.additional_kwargs, ) return message_dict @staticmethod def _create_chat_result(response: Mapping[str, Any]) -> ChatResult: generations = [] for candidate in response["candidates"]: message = ChatMLflowAIGateway._convert_dict_to_message(candidate["message"]) message_metadata = candidate.get("metadata", {}) gen = ChatGeneration( message=message, generation_info=dict(message_metadata), ) generations.append(gen) response_metadata = response.get("metadata", {}) return ChatResult(generations=generations, llm_output=response_metadata)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~json_loader.py
import json from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Union from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader class JSONLoader(BaseLoader): """Load a `JSON` file using a `jq` schema. Example: [{"text": ...}, {"text": ...}, {"text": ...}] -> schema = .[].text {"key": [{"text": ...}, {"text": ...}, {"text": ...}]} -> schema = .key[].text ["", "", ""] -> schema = .[] """ def __init__( self, file_path: Union[str, Path], jq_schema: str, content_key: Optional[str] = None, metadata_func: Optional[Callable[[Dict, Dict], Dict]] = None, text_content: bool = True, json_lines: bool = False, ): """Initialize the JSONLoader. Args: file_path (Union[str, Path]): The path to the JSON or JSON Lines file. jq_schema (str): The jq schema to use to extract the data or text from the JSON. content_key (str): The key to use to extract the content from the JSON if the jq_schema results to a list of objects (dict). metadata_func (Callable[Dict, Dict]): A function that takes in the JSON object extracted by the jq_schema and the default metadata and returns a dict of the updated metadata. text_content (bool): Boolean flag to indicate whether the content is in string format, default to True. json_lines (bool): Boolean flag to indicate whether the input is in JSON Lines format. """ try: import jq # noqa:F401 except ImportError: raise ImportError( "jq package not found, please install it with `pip install jq`" ) self.file_path = Path(file_path).resolve() self._jq_schema = jq.compile(jq_schema) self._content_key = content_key self._metadata_func = metadata_func self._text_content = text_content self._json_lines = json_lines def load(self) -> List[Document]: """Load and return documents from the JSON file.""" docs: List[Document] = [] if self._json_lines: with self.file_path.open(encoding="utf-8") as f: for line in f: line = line.strip() if line: self._parse(line, docs) else: self._parse(self.file_path.read_text(encoding="utf-8"), docs) return docs def _parse(self, content: str, docs: List[Document]) -> None: """Convert given content to documents.""" data = self._jq_schema.input(json.loads(content)) # Perform some validation # This is not a perfect validation, but it should catch most cases # and prevent the user from getting a cryptic error later on. if self._content_key is not None: self._validate_content_key(data) if self._metadata_func is not None: self._validate_metadata_func(data) for i, sample in enumerate(data, len(docs) + 1): text = self._get_text(sample=sample) metadata = self._get_metadata( sample=sample, source=str(self.file_path), seq_num=i ) docs.append(Document(page_content=text, metadata=metadata)) def _get_text(self, sample: Any) -> str: """Convert sample to string format""" if self._content_key is not None: content = sample.get(self._content_key) else: content = sample if self._text_content and not isinstance(content, str): raise ValueError( f"Expected page_content is string, got {type(content)} instead. \ Set `text_content=False` if the desired input for \ `page_content` is not a string" ) # In case the text is None, set it to an empty string elif isinstance(content, str): return content elif isinstance(content, dict): return json.dumps(content, ensure_ascii=False) if content else "" else: return str(content) if content is not None else "" def _get_metadata( self, sample: Dict[str, Any], **additional_fields: Any ) -> Dict[str, Any]: """ Return a metadata dictionary base on the existence of metadata_func :param sample: single data payload :param additional_fields: key-word arguments to be added as metadata values :return: """ if self._metadata_func is not None: return self._metadata_func(sample, additional_fields) else: return additional_fields def _validate_content_key(self, data: Any) -> None: """Check if a content key is valid""" sample = data.first() if not isinstance(sample, dict): raise ValueError( f"Expected the jq schema to result in a list of objects (dict), \ so sample must be a dict but got `{type(sample)}`" ) if sample.get(self._content_key) is None: raise ValueError( f"Expected the jq schema to result in a list of objects (dict) \ with the key `{self._content_key}`" ) def _validate_metadata_func(self, data: Any) -> None: """Check if the metadata_func output is valid""" sample = data.first() if self._metadata_func is not None: sample_metadata = self._metadata_func(sample, {}) if not isinstance(sample_metadata, dict): raise ValueError( f"Expected the metadata_func to return a dict but got \ `{type(sample_metadata)}`" )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~parsers~generic.py
"""Code for generic / auxiliary parsers. This module contains some logic to help assemble more sophisticated parsers. """ from typing import Iterator, Mapping, Optional from langchain.document_loaders.base import BaseBlobParser from langchain.document_loaders.blob_loaders.schema import Blob from langchain.schema import Document class MimeTypeBasedParser(BaseBlobParser): """Parser that uses `mime`-types to parse a blob. This parser is useful for simple pipelines where the mime-type is sufficient to determine how to parse a blob. To use, configure handlers based on mime-types and pass them to the initializer. Example: .. code-block:: python from langchain.document_loaders.parsers.generic import MimeTypeBasedParser parser = MimeTypeBasedParser( handlers={ "application/pdf": ..., }, fallback_parser=..., ) """ def __init__( self, handlers: Mapping[str, BaseBlobParser], *, fallback_parser: Optional[BaseBlobParser] = None, ) -> None: """Define a parser that uses mime-types to determine how to parse a blob. Args: handlers: A mapping from mime-types to functions that take a blob, parse it and return a document. fallback_parser: A fallback_parser parser to use if the mime-type is not found in the handlers. If provided, this parser will be used to parse blobs with all mime-types not found in the handlers. If not provided, a ValueError will be raised if the mime-type is not found in the handlers. """ self.handlers = handlers self.fallback_parser = fallback_parser def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Load documents from a blob.""" mimetype = blob.mimetype if mimetype is None: raise ValueError(f"{blob} does not have a mimetype.") if mimetype in self.handlers: handler = self.handlers[mimetype] yield from handler.lazy_parse(blob) else: if self.fallback_parser is not None: yield from self.fallback_parser.lazy_parse(blob) else: raise ValueError(f"Unsupported mime type: {mimetype}")
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~vectorstores~test_zep.py
# mypy: disable-error-code=attr-defined import copy from random import random from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple from uuid import uuid4 import pytest from pytest_mock import MockerFixture from langchain.schema import Document from langchain.vectorstores import ZepVectorStore from langchain.vectorstores.zep import CollectionConfig if TYPE_CHECKING: from zep_python.document import Document as ZepDocument from zep_python.document import DocumentCollection VECTOR_DIMS = 5 def gen_vector() -> List[float]: return [random() for _ in range(VECTOR_DIMS)] def gen_mock_zep_document( collection_name: str, embedding_dimensions: Optional[int] = None, ) -> "ZepDocument": from zep_python.document import Document as ZepDocument embedding = ( [random() for _ in range(embedding_dimensions)] if embedding_dimensions else None ) return ZepDocument( uuid=str(uuid4()), collection_name=collection_name, content="Test Document", embedding=embedding, metadata={"key": "value"}, ) @pytest.fixture def texts_metadatas() -> Dict[str, Any]: return { "texts": ["Test Document" for _ in range(2)], "metadatas": [{"key": "value"} for _ in range(2)], } @pytest.fixture def mock_documents() -> List[Document]: return [ Document( page_content="Test Document", metadata={"key": "value"}, ) for _ in range(2) ] @pytest.fixture def texts_metadatas_as_zep_documents() -> List["ZepDocument"]: from zep_python.document import Document as ZepDocument return [ ZepDocument( content="Test Document", metadata={"key": "value"}, ) for _ in range(2) ] @pytest.fixture def search_results() -> List["ZepDocument"]: return [ gen_mock_zep_document( collection_name="test_collection", embedding_dimensions=VECTOR_DIMS ) for _ in range(2) ] @pytest.fixture def search_results_with_query_embedding() -> Tuple[List["ZepDocument"], List[float]]: return_count = 2 return [ gen_mock_zep_document( collection_name="test_collection", embedding_dimensions=VECTOR_DIMS ) for _ in range(return_count) ], gen_vector() @pytest.fixture def mock_collection_config() -> CollectionConfig: return CollectionConfig( name="test_collection", description="Test Collection", metadata={"key": "value"}, embedding_dimensions=VECTOR_DIMS, is_auto_embedded=True, ) @pytest.fixture @pytest.mark.requires("zep_python") def mock_collection( mocker: MockerFixture, mock_collection_config: CollectionConfig, search_results: List[Document], search_results_with_query_embedding: Tuple[List[Document], List[float]], ) -> "DocumentCollection": from zep_python.document import DocumentCollection mock_collection: DocumentCollection = mocker.patch( "zep_python.document.collections.DocumentCollection", autospec=True ) mock_collection.search.return_value = copy.deepcopy(search_results) mock_collection.asearch.return_value = copy.deepcopy(search_results) temp_value = copy.deepcopy(search_results_with_query_embedding) mock_collection.search_return_query_vector.return_value = copy.deepcopy(temp_value) mock_collection.asearch_return_query_vector.return_value = copy.deepcopy(temp_value) mock_collection.name = mock_collection_config.name mock_collection.is_auto_embedded = mock_collection_config.is_auto_embedded mock_collection.embedding_dimensions = mock_collection_config.embedding_dimensions return mock_collection @pytest.fixture @pytest.mark.requires("zep_python") def zep_vectorstore( mocker: MockerFixture, mock_collection: "DocumentCollection", mock_collection_config: CollectionConfig, ) -> ZepVectorStore: mock_document_client = mocker.patch( "zep_python.document.client.DocumentClient", autospec=True ) mock_document_client.get_collection.return_value = mock_collection mock_client = mocker.patch("zep_python.ZepClient", autospec=True) mock_client.return_value.document = mock_document_client vs = ZepVectorStore( mock_collection_config.name, "http://localhost:8080", api_key="test", config=mock_collection_config, ) return vs @pytest.mark.requires("zep_python") def test_from_texts( zep_vectorstore: ZepVectorStore, mock_collection_config: CollectionConfig, mock_collection: "DocumentCollection", texts_metadatas: Dict[str, Any], texts_metadatas_as_zep_documents: List["ZepDocument"], ) -> None: vs = zep_vectorstore.from_texts( **texts_metadatas, collection_name=mock_collection_config.name, api_url="http://localhost:8000" ) vs._collection.add_documents.assert_called_once_with( # type: ignore texts_metadatas_as_zep_documents ) @pytest.mark.requires("zep_python") def test_add_documents( zep_vectorstore: ZepVectorStore, mock_collection: "DocumentCollection", mock_documents: List[Document], texts_metadatas_as_zep_documents: List["ZepDocument"], ) -> None: zep_vectorstore.add_documents(mock_documents) mock_collection.add_documents.assert_called_once_with( # type: ignore texts_metadatas_as_zep_documents ) @pytest.mark.requires("zep_python") @pytest.mark.asyncio async def test_asearch_similarity( zep_vectorstore: ZepVectorStore, ) -> None: r = await zep_vectorstore.asearch( query="Test Document", search_type="similarity", k=2 ) assert len(r) == 2 assert r[0].page_content == "Test Document" assert r[0].metadata == {"key": "value"} @pytest.mark.requires("zep_python") @pytest.mark.asyncio async def test_asearch_mmr( zep_vectorstore: ZepVectorStore, ) -> None: r = await zep_vectorstore.asearch(query="Test Document", search_type="mmr", k=1) assert len(r) == 1 assert r[0].page_content == "Test Document" assert r[0].metadata == {"key": "value"} @pytest.mark.requires("zep_python") def test_search_similarity( zep_vectorstore: ZepVectorStore, ) -> None: r = zep_vectorstore.search(query="Test Document", search_type="similarity", k=2) assert len(r) == 2 assert r[0].page_content == "Test Document" assert r[0].metadata == {"key": "value"} @pytest.mark.requires("zep_python") def test_search_mmr( zep_vectorstore: ZepVectorStore, ) -> None: r = zep_vectorstore.search(query="Test Document", search_type="mmr", k=1) assert len(r) == 1 assert r[0].page_content == "Test Document" assert r[0].metadata == {"key": "value"}
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~utilities~tensorflow_datasets.py
import logging from typing import Any, Callable, Dict, Iterator, List, Optional from langchain.pydantic_v1 import BaseModel, root_validator from langchain.schema import Document logger = logging.getLogger(__name__) class TensorflowDatasets(BaseModel): """Access to the TensorFlow Datasets. The Current implementation can work only with datasets that fit in a memory. `TensorFlow Datasets` is a collection of datasets ready to use, with TensorFlow or other Python ML frameworks, such as Jax. All datasets are exposed as `tf.data.Datasets`. To get started see the Guide: https://www.tensorflow.org/datasets/overview and the list of datasets: https://www.tensorflow.org/datasets/catalog/ overview#all_datasets You have to provide the sample_to_document_function: a function that a sample from the dataset-specific format to the Document. Attributes: dataset_name: the name of the dataset to load split_name: the name of the split to load. Defaults to "train". load_max_docs: a limit to the number of loaded documents. Defaults to 100. sample_to_document_function: a function that converts a dataset sample to a Document Example: .. code-block:: python from langchain.utilities import TensorflowDatasets def mlqaen_example_to_document(example: dict) -> Document: return Document( page_content=decode_to_str(example["context"]), metadata={ "id": decode_to_str(example["id"]), "title": decode_to_str(example["title"]), "question": decode_to_str(example["question"]), "answer": decode_to_str(example["answers"]["text"][0]), }, ) tsds_client = TensorflowDatasets( dataset_name="mlqa/en", split_name="train", load_max_docs=MAX_DOCS, sample_to_document_function=mlqaen_example_to_document, ) """ dataset_name: str = "" split_name: str = "train" load_max_docs: int = 100 sample_to_document_function: Optional[Callable[[Dict], Document]] = None dataset: Any #: :meta private: @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in environment.""" try: import tensorflow # noqa: F401 except ImportError: raise ImportError( "Could not import tensorflow python package. " "Please install it with `pip install tensorflow`." ) try: import tensorflow_datasets except ImportError: raise ImportError( "Could not import tensorflow_datasets python package. " "Please install it with `pip install tensorflow-datasets`." ) if values["sample_to_document_function"] is None: raise ValueError( "sample_to_document_function is None. " "Please provide a function that converts a dataset sample to" " a Document." ) values["dataset"] = tensorflow_datasets.load( values["dataset_name"], split=values["split_name"] ) return values def lazy_load(self) -> Iterator[Document]: """Download a selected dataset lazily. Returns: an iterator of Documents. """ return ( self.sample_to_document_function(s) for s in self.dataset.take(self.load_max_docs) if self.sample_to_document_function is not None ) def load(self) -> List[Document]: """Download a selected dataset. Returns: a list of Documents. """ return list(self.lazy_load())
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~browserless.py
from typing import Iterator, List, Union import requests from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader class BrowserlessLoader(BaseLoader): """Load webpages with `Browserless` /content endpoint.""" def __init__( self, api_token: str, urls: Union[str, List[str]], text_content: bool = True ): """Initialize with API token and the URLs to scrape""" self.api_token = api_token """Browserless API token.""" self.urls = urls """List of URLs to scrape.""" self.text_content = text_content def lazy_load(self) -> Iterator[Document]: """Lazy load Documents from URLs.""" for url in self.urls: if self.text_content: response = requests.post( "https://chrome.browserless.io/scrape", params={ "token": self.api_token, }, json={ "url": url, "elements": [ { "selector": "body", } ], }, ) yield Document( page_content=response.json()["data"][0]["results"][0]["text"], metadata={ "source": url, }, ) else: response = requests.post( "https://chrome.browserless.io/content", params={ "token": self.api_token, }, json={ "url": url, }, ) yield Document( page_content=response.text, metadata={ "source": url, }, ) def load(self) -> List[Document]: """Load Documents from URLs.""" return list(self.lazy_load())
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~schema~runnable~retry.py
from typing import ( TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type, TypeVar, Union, cast, ) from tenacity import ( AsyncRetrying, RetryCallState, RetryError, Retrying, retry_if_exception_type, stop_after_attempt, wait_exponential_jitter, ) from langchain.schema.runnable.base import Input, Output, RunnableBinding from langchain.schema.runnable.config import RunnableConfig, patch_config if TYPE_CHECKING: from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) T = TypeVar("T", CallbackManagerForChainRun, AsyncCallbackManagerForChainRun) U = TypeVar("U") class RunnableRetry(RunnableBinding[Input, Output]): """Retry a Runnable if it fails.""" retry_exception_types: Tuple[Type[BaseException], ...] = (Exception,) wait_exponential_jitter: bool = True max_attempt_number: int = 3 @property def _kwargs_retrying(self) -> Dict[str, Any]: kwargs: Dict[str, Any] = dict() if self.max_attempt_number: kwargs["stop"] = stop_after_attempt(self.max_attempt_number) if self.wait_exponential_jitter: kwargs["wait"] = wait_exponential_jitter() if self.retry_exception_types: kwargs["retry"] = retry_if_exception_type(self.retry_exception_types) return kwargs def _sync_retrying(self, **kwargs: Any) -> Retrying: return Retrying(**self._kwargs_retrying, **kwargs) def _async_retrying(self, **kwargs: Any) -> AsyncRetrying: return AsyncRetrying(**self._kwargs_retrying, **kwargs) def _patch_config( self, config: RunnableConfig, run_manager: "T", retry_state: RetryCallState, ) -> RunnableConfig: attempt = retry_state.attempt_number tag = "retry:attempt:{}".format(attempt) if attempt > 1 else None return patch_config(config, callbacks=run_manager.get_child(tag)) def _patch_config_list( self, config: List[RunnableConfig], run_manager: List["T"], retry_state: RetryCallState, ) -> List[RunnableConfig]: return [ self._patch_config(c, rm, retry_state) for c, rm in zip(config, run_manager) ] def _invoke( self, input: Input, run_manager: "CallbackManagerForChainRun", config: RunnableConfig, **kwargs: Any ) -> Output: for attempt in self._sync_retrying(reraise=True): with attempt: result = super().invoke( input, self._patch_config(config, run_manager, attempt.retry_state), **kwargs, ) if attempt.retry_state.outcome and not attempt.retry_state.outcome.failed: attempt.retry_state.set_result(result) return result def invoke( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> Output: return self._call_with_config(self._invoke, input, config, **kwargs) async def _ainvoke( self, input: Input, run_manager: "AsyncCallbackManagerForChainRun", config: RunnableConfig, **kwargs: Any ) -> Output: async for attempt in self._async_retrying(reraise=True): with attempt: result = await super().ainvoke( input, self._patch_config(config, run_manager, attempt.retry_state), **kwargs, ) if attempt.retry_state.outcome and not attempt.retry_state.outcome.failed: attempt.retry_state.set_result(result) return result async def ainvoke( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> Output: return await self._acall_with_config(self._ainvoke, input, config, **kwargs) def _batch( self, inputs: List[Input], run_manager: List["CallbackManagerForChainRun"], config: List[RunnableConfig], **kwargs: Any ) -> List[Union[Output, Exception]]: results_map: Dict[int, Output] = {} def pending(iterable: List[U]) -> List[U]: return [item for idx, item in enumerate(iterable) if idx not in results_map] try: for attempt in self._sync_retrying(): with attempt: # Get the results of the inputs that have not succeeded yet. result = super().batch( pending(inputs), self._patch_config_list( pending(config), pending(run_manager), attempt.retry_state ), return_exceptions=True, **kwargs, ) # Register the results of the inputs that have succeeded. first_exception = None for i, r in enumerate(result): if isinstance(r, Exception): if not first_exception: first_exception = r continue results_map[i] = r # If any exception occurred, raise it, to retry the failed ones if first_exception: raise first_exception if ( attempt.retry_state.outcome and not attempt.retry_state.outcome.failed ): attempt.retry_state.set_result(result) except RetryError as e: try: result except UnboundLocalError: result = cast(List[Output], [e] * len(inputs)) outputs: List[Union[Output, Exception]] = [] for idx, _ in enumerate(inputs): if idx in results_map: outputs.append(results_map[idx]) else: outputs.append(result.pop(0)) return outputs def batch( self, inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any ) -> List[Output]: return self._batch_with_config( self._batch, inputs, config, return_exceptions=return_exceptions, **kwargs ) async def _abatch( self, inputs: List[Input], run_manager: List["AsyncCallbackManagerForChainRun"], config: List[RunnableConfig], **kwargs: Any ) -> List[Union[Output, Exception]]: results_map: Dict[int, Output] = {} def pending(iterable: List[U]) -> List[U]: return [item for idx, item in enumerate(iterable) if idx not in results_map] try: async for attempt in self._async_retrying(): with attempt: # Get the results of the inputs that have not succeeded yet. result = await super().abatch( pending(inputs), self._patch_config_list( pending(config), pending(run_manager), attempt.retry_state ), return_exceptions=True, **kwargs, ) # Register the results of the inputs that have succeeded. first_exception = None for i, r in enumerate(result): if isinstance(r, Exception): if not first_exception: first_exception = r continue results_map[i] = r # If any exception occurred, raise it, to retry the failed ones if first_exception: raise first_exception if ( attempt.retry_state.outcome and not attempt.retry_state.outcome.failed ): attempt.retry_state.set_result(result) except RetryError as e: try: result except UnboundLocalError: result = cast(List[Output], [e] * len(inputs)) outputs: List[Union[Output, Exception]] = [] for idx, _ in enumerate(inputs): if idx in results_map: outputs.append(results_map[idx]) else: outputs.append(result.pop(0)) return outputs async def abatch( self, inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any ) -> List[Output]: return await self._abatch_with_config( self._abatch, inputs, config, return_exceptions=return_exceptions, **kwargs ) # stream() and transform() are not retried because retrying a stream # is not very intuitive.
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~schema~language_model.py
from __future__ import annotations from abc import ABC, abstractmethod from functools import lru_cache from typing import ( TYPE_CHECKING, Any, List, Optional, Sequence, Set, TypeVar, Union, ) from typing_extensions import TypeAlias from langchain.schema.messages import AnyMessage, BaseMessage, get_buffer_string from langchain.schema.output import LLMResult from langchain.schema.prompt import PromptValue from langchain.schema.runnable import RunnableSerializable from langchain.utils import get_pydantic_field_names if TYPE_CHECKING: from langchain.callbacks.manager import Callbacks @lru_cache(maxsize=None) # Cache the tokenizer def get_tokenizer() -> Any: try: from transformers import GPT2TokenizerFast except ImportError: raise ImportError( "Could not import transformers python package. " "This is needed in order to calculate get_token_ids. " "Please install it with `pip install transformers`." ) # create a GPT-2 tokenizer instance return GPT2TokenizerFast.from_pretrained("gpt2") def _get_token_ids_default_method(text: str) -> List[int]: """Encode the text into token IDs.""" # get the cached tokenizer tokenizer = get_tokenizer() # tokenize the text using the GPT-2 tokenizer return tokenizer.encode(text) LanguageModelInput = Union[PromptValue, str, List[BaseMessage]] LanguageModelOutput = TypeVar("LanguageModelOutput") class BaseLanguageModel( RunnableSerializable[LanguageModelInput, LanguageModelOutput], ABC ): """Abstract base class for interfacing with language models. All language model wrappers inherit from BaseLanguageModel. Exposes three main methods: - generate_prompt: generate language model outputs for a sequence of prompt values. A prompt value is a model input that can be converted to any language model input format (string or messages). - predict: pass in a single string to a language model and return a string prediction. - predict_messages: pass in a sequence of BaseMessages (corresponding to a single model call) to a language model and return a BaseMessage prediction. Each of these has an equivalent asynchronous method. """ @property def InputType(self) -> TypeAlias: """Get the input type for this runnable.""" from langchain.prompts.base import StringPromptValue from langchain.prompts.chat import ChatPromptValueConcrete # This is a version of LanguageModelInput which replaces the abstract # base class BaseMessage with a union of its subclasses, which makes # for a much better schema. return Union[ str, Union[StringPromptValue, ChatPromptValueConcrete], List[AnyMessage], ] @abstractmethod def generate_prompt( self, prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> LLMResult: """Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: 1. take advantage of batched calls, 2. need more output from the model than just the top generated value, 3. are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models). Args: prompts: List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop: Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks: Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs: Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns: An LLMResult, which contains a list of candidate Generations for each input prompt and additional model provider-specific output. """ @abstractmethod async def agenerate_prompt( self, prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> LLMResult: """Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: 1. take advantage of batched calls, 2. need more output from the model than just the top generated value, 3. are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models). Args: prompts: List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop: Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks: Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs: Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns: An LLMResult, which contains a list of candidate Generations for each input prompt and additional model provider-specific output. """ @abstractmethod def predict( self, text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any ) -> str: """Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specific types of chat messages, use predict_messages. Args: text: String input to pass to the model. stop: Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs: Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns: Top model prediction as a string. """ @abstractmethod def predict_messages( self, messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any, ) -> BaseMessage: """Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text, use predict. Args: messages: A sequence of chat messages corresponding to a single model input. stop: Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs: Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns: Top model prediction as a message. """ @abstractmethod async def apredict( self, text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any ) -> str: """Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the top candidate generation is needed. Args: text: String input to pass to the model. stop: Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs: Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns: Top model prediction as a string. """ @abstractmethod async def apredict_messages( self, messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any, ) -> BaseMessage: """Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the top candidate generation is needed. Args: messages: A sequence of chat messages corresponding to a single model input. stop: Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs: Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns: Top model prediction as a message. """ def get_token_ids(self, text: str) -> List[int]: """Return the ordered ids of the tokens in a text. Args: text: The string input to tokenize. Returns: A list of ids corresponding to the tokens in the text, in order they occur in the text. """ return _get_token_ids_default_method(text) def get_num_tokens(self, text: str) -> int: """Get the number of tokens present in the text. Useful for checking if an input will fit in a model's context window. Args: text: The string input to tokenize. Returns: The integer number of tokens in the text. """ return len(self.get_token_ids(text)) def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int: """Get the number of tokens in the messages. Useful for checking if an input will fit in a model's context window. Args: messages: The message inputs to tokenize. Returns: The sum of the number of tokens across the messages. """ return sum([self.get_num_tokens(get_buffer_string([m])) for m in messages]) @classmethod def _all_required_field_names(cls) -> Set: """DEPRECATED: Kept for backwards compatibility. Use get_pydantic_field_names. """ return get_pydantic_field_names(cls)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~imsdb.py
from typing import List from langchain.docstore.document import Document from langchain.document_loaders.web_base import WebBaseLoader class IMSDbLoader(WebBaseLoader): """Load `IMSDb` webpages.""" def load(self) -> List[Document]: """Load webpage.""" soup = self.scrape() text = soup.select_one("td[class='scrtext']").text metadata = {"source": self.web_path} return [Document(page_content=text, metadata=metadata)]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~unit_tests~output_parsers~test_json.py
import json from typing import Any, AsyncIterator, Iterator, Tuple import pytest from langchain.output_parsers.json import ( SimpleJsonOutputParser, parse_json_markdown, parse_partial_json, ) from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser from langchain.schema.messages import AIMessageChunk GOOD_JSON = """```json { "foo": "bar" } ```""" JSON_WITH_NEW_LINES = """ ```json { "foo": "bar" } ``` """ JSON_WITH_NEW_LINES_INSIDE = """```json { "foo": "bar" } ```""" JSON_WITH_NEW_LINES_EVERYWHERE = """ ```json { "foo": "bar" } ``` """ TICKS_WITH_NEW_LINES_EVERYWHERE = """ ``` { "foo": "bar" } ``` """ JSON_WITH_MARKDOWN_CODE_BLOCK = """```json { "foo": "```bar```" } ```""" JSON_WITH_MARKDOWN_CODE_BLOCK_AND_NEWLINES = """```json { "action": "Final Answer", "action_input": "```bar\n<div id="1" class=\"value\">\n\ttext\n</div>```" } ```""" JSON_WITH_UNESCAPED_QUOTES_IN_NESTED_JSON = """```json { "action": "Final Answer", "action_input": "{"foo": "bar", "bar": "foo"}" } ```""" JSON_WITH_ESCAPED_QUOTES_IN_NESTED_JSON = """```json { "action": "Final Answer", "action_input": "{\"foo\": \"bar\", \"bar\": \"foo\"}" } ```""" JSON_WITH_PYTHON_DICT = """```json { "action": "Final Answer", "action_input": {"foo": "bar", "bar": "foo"} } ```""" JSON_WITH_ESCAPED_DOUBLE_QUOTES_IN_NESTED_JSON = """```json { "action": "Final Answer", "action_input": "{\\"foo\\": \\"bar\\", \\"bar\\": \\"foo\\"}" } ```""" NO_TICKS = """{ "foo": "bar" }""" NO_TICKS_WHITE_SPACE = """ { "foo": "bar" } """ TEXT_BEFORE = """Thought: I need to use the search tool Action: ``` { "foo": "bar" } ```""" TEXT_AFTER = """``` { "foo": "bar" } ``` This should do the trick""" TEXT_BEFORE_AND_AFTER = """Action: Testing ``` { "foo": "bar" } ``` This should do the trick""" TEST_CASES = [ GOOD_JSON, JSON_WITH_NEW_LINES, JSON_WITH_NEW_LINES_INSIDE, JSON_WITH_NEW_LINES_EVERYWHERE, TICKS_WITH_NEW_LINES_EVERYWHERE, NO_TICKS, NO_TICKS_WHITE_SPACE, TEXT_BEFORE, TEXT_AFTER, ] @pytest.mark.parametrize("json_string", TEST_CASES) def test_parse_json(json_string: str) -> None: parsed = parse_json_markdown(json_string) assert parsed == {"foo": "bar"} def test_parse_json_with_code_blocks() -> None: parsed = parse_json_markdown(JSON_WITH_MARKDOWN_CODE_BLOCK) assert parsed == {"foo": "```bar```"} parsed = parse_json_markdown(JSON_WITH_MARKDOWN_CODE_BLOCK_AND_NEWLINES) assert parsed == { "action": "Final Answer", "action_input": '```bar\n<div id="1" class="value">\n\ttext\n</div>```', } TEST_CASES_ESCAPED_QUOTES = [ JSON_WITH_UNESCAPED_QUOTES_IN_NESTED_JSON, JSON_WITH_ESCAPED_QUOTES_IN_NESTED_JSON, JSON_WITH_ESCAPED_DOUBLE_QUOTES_IN_NESTED_JSON, ] @pytest.mark.parametrize("json_string", TEST_CASES_ESCAPED_QUOTES) def test_parse_nested_json_with_escaped_quotes(json_string: str) -> None: parsed = parse_json_markdown(json_string) assert parsed == { "action": "Final Answer", "action_input": '{"foo": "bar", "bar": "foo"}', } def test_parse_json_with_python_dict() -> None: parsed = parse_json_markdown(JSON_WITH_PYTHON_DICT) assert parsed == { "action": "Final Answer", "action_input": {"foo": "bar", "bar": "foo"}, } TEST_CASES_PARTIAL = [ ('{"foo": "bar", "bar": "foo"}', '{"foo": "bar", "bar": "foo"}'), ('{"foo": "bar", "bar": "foo', '{"foo": "bar", "bar": "foo"}'), ('{"foo": "bar", "bar": "foo}', '{"foo": "bar", "bar": "foo}"}'), ('{"foo": "bar", "bar": "foo[', '{"foo": "bar", "bar": "foo["}'), ('{"foo": "bar", "bar": "foo\\"', '{"foo": "bar", "bar": "foo\\""}'), ] @pytest.mark.parametrize("json_strings", TEST_CASES_PARTIAL) def test_parse_partial_json(json_strings: Tuple[str, str]) -> None: case, expected = json_strings parsed = parse_partial_json(case) assert parsed == json.loads(expected) STREAMED_TOKENS = """ { " setup ": " Why did the bears start a band called Bears Bears Bears ? " , " punchline ": " Because they wanted to play bear -y good music ! " , " audience ": [ " Haha " , " So funny " ] } """.splitlines() EXPECTED_STREAMED_JSON = [ {}, {"setup": ""}, {"setup": "Why"}, {"setup": "Why did"}, {"setup": "Why did the"}, {"setup": "Why did the bears"}, {"setup": "Why did the bears start"}, {"setup": "Why did the bears start a"}, {"setup": "Why did the bears start a band"}, {"setup": "Why did the bears start a band called"}, {"setup": "Why did the bears start a band called Bears"}, {"setup": "Why did the bears start a band called Bears Bears"}, {"setup": "Why did the bears start a band called Bears Bears Bears"}, {"setup": "Why did the bears start a band called Bears Bears Bears ?"}, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because they", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because they wanted", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because they wanted to", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because they wanted to play", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because they wanted to play bear", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because they wanted to play bear -y", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because they wanted to play bear -y good", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because they wanted to play bear -y good music", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because they wanted to play bear -y good music !", }, { "punchline": "Because they wanted to play bear -y good music !", "setup": "Why did the bears start a band called Bears Bears Bears ?", "audience": [], }, { "punchline": "Because they wanted to play bear -y good music !", "setup": "Why did the bears start a band called Bears Bears Bears ?", "audience": [""], }, { "punchline": "Because they wanted to play bear -y good music !", "setup": "Why did the bears start a band called Bears Bears Bears ?", "audience": ["Haha"], }, { "punchline": "Because they wanted to play bear -y good music !", "setup": "Why did the bears start a band called Bears Bears Bears ?", "audience": ["Haha", ""], }, { "punchline": "Because they wanted to play bear -y good music !", "setup": "Why did the bears start a band called Bears Bears Bears ?", "audience": ["Haha", "So"], }, { "punchline": "Because they wanted to play bear -y good music !", "setup": "Why did the bears start a band called Bears Bears Bears ?", "audience": ["Haha", "So funny"], }, ] EXPECTED_STREAMED_JSON_DIFF = [ [{"op": "replace", "path": "", "value": {}}], [{"op": "add", "path": "/setup", "value": ""}], [{"op": "replace", "path": "/setup", "value": "Why"}], [{"op": "replace", "path": "/setup", "value": "Why did"}], [{"op": "replace", "path": "/setup", "value": "Why did the"}], [{"op": "replace", "path": "/setup", "value": "Why did the bears"}], [{"op": "replace", "path": "/setup", "value": "Why did the bears start"}], [{"op": "replace", "path": "/setup", "value": "Why did the bears start a"}], [{"op": "replace", "path": "/setup", "value": "Why did the bears start a band"}], [ { "op": "replace", "path": "/setup", "value": "Why did the bears start a band called", } ], [ { "op": "replace", "path": "/setup", "value": "Why did the bears start a band called Bears", } ], [ { "op": "replace", "path": "/setup", "value": "Why did the bears start a band called Bears Bears", } ], [ { "op": "replace", "path": "/setup", "value": "Why did the bears start a band called Bears Bears Bears", } ], [ { "op": "replace", "path": "/setup", "value": "Why did the bears start a band called Bears Bears Bears ?", } ], [{"op": "add", "path": "/punchline", "value": ""}], [{"op": "replace", "path": "/punchline", "value": "Because"}], [{"op": "replace", "path": "/punchline", "value": "Because they"}], [{"op": "replace", "path": "/punchline", "value": "Because they wanted"}], [{"op": "replace", "path": "/punchline", "value": "Because they wanted to"}], [{"op": "replace", "path": "/punchline", "value": "Because they wanted to play"}], [ { "op": "replace", "path": "/punchline", "value": "Because they wanted to play bear", } ], [ { "op": "replace", "path": "/punchline", "value": "Because they wanted to play bear -y", } ], [ { "op": "replace", "path": "/punchline", "value": "Because they wanted to play bear -y good", } ], [ { "op": "replace", "path": "/punchline", "value": "Because they wanted to play bear -y good music", } ], [ { "op": "replace", "path": "/punchline", "value": "Because they wanted to play bear -y good music !", } ], [{"op": "add", "path": "/audience", "value": []}], [{"op": "add", "path": "/audience/0", "value": ""}], [{"op": "replace", "path": "/audience/0", "value": "Haha"}], [{"op": "add", "path": "/audience/1", "value": ""}], [{"op": "replace", "path": "/audience/1", "value": "So"}], [{"op": "replace", "path": "/audience/1", "value": "So funny"}], ] def test_partial_text_json_output_parser() -> None: def input_iter(_: Any) -> Iterator[str]: for token in STREAMED_TOKENS: yield token chain = input_iter | SimpleJsonOutputParser() assert list(chain.stream(None)) == EXPECTED_STREAMED_JSON def test_partial_functions_json_output_parser() -> None: def input_iter(_: Any) -> Iterator[AIMessageChunk]: for token in STREAMED_TOKENS: yield AIMessageChunk( content="", additional_kwargs={"function_call": {"arguments": token}} ) chain = input_iter | JsonOutputFunctionsParser() assert list(chain.stream(None)) == EXPECTED_STREAMED_JSON def test_partial_text_json_output_parser_diff() -> None: def input_iter(_: Any) -> Iterator[str]: for token in STREAMED_TOKENS: yield token chain = input_iter | SimpleJsonOutputParser(diff=True) assert list(chain.stream(None)) == EXPECTED_STREAMED_JSON_DIFF def test_partial_functions_json_output_parser_diff() -> None: def input_iter(_: Any) -> Iterator[AIMessageChunk]: for token in STREAMED_TOKENS: yield AIMessageChunk( content="", additional_kwargs={"function_call": {"arguments": token}} ) chain = input_iter | JsonOutputFunctionsParser(diff=True) assert list(chain.stream(None)) == EXPECTED_STREAMED_JSON_DIFF @pytest.mark.asyncio async def test_partial_text_json_output_parser_async() -> None: async def input_iter(_: Any) -> AsyncIterator[str]: for token in STREAMED_TOKENS: yield token chain = input_iter | SimpleJsonOutputParser() assert [p async for p in chain.astream(None)] == EXPECTED_STREAMED_JSON @pytest.mark.asyncio async def test_partial_functions_json_output_parser_async() -> None: async def input_iter(_: Any) -> AsyncIterator[AIMessageChunk]: for token in STREAMED_TOKENS: yield AIMessageChunk( content="", additional_kwargs={"function_call": {"arguments": token}} ) chain = input_iter | JsonOutputFunctionsParser() assert [p async for p in chain.astream(None)] == EXPECTED_STREAMED_JSON @pytest.mark.asyncio async def test_partial_text_json_output_parser_diff_async() -> None: async def input_iter(_: Any) -> AsyncIterator[str]: for token in STREAMED_TOKENS: yield token chain = input_iter | SimpleJsonOutputParser(diff=True) assert [p async for p in chain.astream(None)] == EXPECTED_STREAMED_JSON_DIFF @pytest.mark.asyncio async def test_partial_functions_json_output_parser_diff_async() -> None: async def input_iter(_: Any) -> AsyncIterator[AIMessageChunk]: for token in STREAMED_TOKENS: yield AIMessageChunk( content="", additional_kwargs={"function_call": {"arguments": token}} ) chain = input_iter | JsonOutputFunctionsParser(diff=True) assert [p async for p in chain.astream(None)] == EXPECTED_STREAMED_JSON_DIFF
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~retrievers~test_you.py
import os from langchain.retrievers.you import YouRetriever class TestYouRetriever: @classmethod def setup_class(cls) -> None: if not os.getenv("YDC_API_KEY"): raise ValueError("YDC_API_KEY environment variable is not set") def test_get_relevant_documents(self) -> None: retriever = YouRetriever() actual = retriever.get_relevant_documents("test") assert len(actual) > 0
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~vectorstores~cassandra.py
from __future__ import annotations import typing import uuid from typing import ( Any, Callable, Dict, Iterable, List, Optional, Tuple, Type, TypeVar, Union, ) import numpy as np if typing.TYPE_CHECKING: from cassandra.cluster import Session from langchain.docstore.document import Document from langchain.schema.embeddings import Embeddings from langchain.schema.vectorstore import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance CVST = TypeVar("CVST", bound="Cassandra") class Cassandra(VectorStore): """Wrapper around Apache Cassandra(R) for vector-store workloads. To use it, you need a recent installation of the `cassio` library and a Cassandra cluster / Astra DB instance supporting vector capabilities. Visit the cassio.org website for extensive quickstarts and code examples. Example: .. code-block:: python from langchain.vectorstores import Cassandra from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() session = ... # create your Cassandra session object keyspace = 'my_keyspace' # the keyspace should exist already table_name = 'my_vector_store' vectorstore = Cassandra(embeddings, session, keyspace, table_name) """ _embedding_dimension: Union[int, None] @staticmethod def _filter_to_metadata(filter_dict: Optional[Dict[str, str]]) -> Dict[str, Any]: if filter_dict is None: return {} else: return filter_dict def _get_embedding_dimension(self) -> int: if self._embedding_dimension is None: self._embedding_dimension = len( self.embedding.embed_query("This is a sample sentence.") ) return self._embedding_dimension def __init__( self, embedding: Embeddings, session: Session, keyspace: str, table_name: str, ttl_seconds: Optional[int] = None, ) -> None: try: from cassio.vector import VectorTable except (ImportError, ModuleNotFoundError): raise ImportError( "Could not import cassio python package. " "Please install it with `pip install cassio`." ) """Create a vector table.""" self.embedding = embedding self.session = session self.keyspace = keyspace self.table_name = table_name self.ttl_seconds = ttl_seconds # self._embedding_dimension = None # self.table = VectorTable( session=session, keyspace=keyspace, table=table_name, embedding_dimension=self._get_embedding_dimension(), primary_key_type="TEXT", ) @property def embeddings(self) -> Embeddings: return self.embedding @staticmethod def _dont_flip_the_cos_score(distance: float) -> float: # the identity return distance def _select_relevance_score_fn(self) -> Callable[[float], float]: """ The underlying VectorTable already returns a "score proper", i.e. one in [0, 1] where higher means more *similar*, so here the final score transformation is not reversing the interval: """ return self._dont_flip_the_cos_score def delete_collection(self) -> None: """ Just an alias for `clear` (to better align with other VectorStore implementations). """ self.clear() def clear(self) -> None: """Empty the collection.""" self.table.clear() def delete_by_document_id(self, document_id: str) -> None: return self.table.delete(document_id) def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]: """Delete by vector IDs. Args: ids: List of ids to delete. Returns: Optional[bool]: True if deletion is successful, False otherwise, None if not implemented. """ if ids is None: raise ValueError("No ids provided to delete.") for document_id in ids: self.delete_by_document_id(document_id) return True def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 16, ttl_seconds: Optional[int] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. batch_size (int): Number of concurrent requests to send to the server. ttl_seconds (Optional[int], optional): Optional time-to-live for the added texts. Returns: List[str]: List of IDs of the added texts. """ _texts = list(texts) # lest it be a generator or something if ids is None: ids = [uuid.uuid4().hex for _ in _texts] if metadatas is None: metadatas = [{} for _ in _texts] # ttl_seconds = ttl_seconds or self.ttl_seconds # embedding_vectors = self.embedding.embed_documents(_texts) # for i in range(0, len(_texts), batch_size): batch_texts = _texts[i : i + batch_size] batch_embedding_vectors = embedding_vectors[i : i + batch_size] batch_ids = ids[i : i + batch_size] batch_metadatas = metadatas[i : i + batch_size] futures = [ self.table.put_async( text, embedding_vector, text_id, metadata, ttl_seconds ) for text, embedding_vector, text_id, metadata in zip( batch_texts, batch_embedding_vectors, batch_ids, batch_metadatas ) ] for future in futures: future.result() return ids # id-returning search facilities def similarity_search_with_score_id_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Dict[str, str]] = None, ) -> List[Tuple[Document, float, str]]: """Return docs most similar to embedding vector. Args: embedding (str): Embedding to look up documents similar to. k (int): Number of Documents to return. Defaults to 4. Returns: List of (Document, score, id), the most similar to the query vector. """ search_metadata = self._filter_to_metadata(filter) # hits = self.table.search( embedding_vector=embedding, top_k=k, metric="cos", metric_threshold=None, metadata=search_metadata, ) # We stick to 'cos' distance as it can be normalized on a 0-1 axis # (1=most relevant), as required by this class' contract. return [ ( Document( page_content=hit["document"], metadata=hit["metadata"], ), 0.5 + 0.5 * hit["distance"], hit["document_id"], ) for hit in hits ] def similarity_search_with_score_id( self, query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, ) -> List[Tuple[Document, float, str]]: embedding_vector = self.embedding.embed_query(query) return self.similarity_search_with_score_id_by_vector( embedding=embedding_vector, k=k, filter=filter, ) # id-unaware search facilities def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Dict[str, str]] = None, ) -> List[Tuple[Document, float]]: """Return docs most similar to embedding vector. Args: embedding (str): Embedding to look up documents similar to. k (int): Number of Documents to return. Defaults to 4. Returns: List of (Document, score), the most similar to the query vector. """ return [ (doc, score) for (doc, score, docId) in self.similarity_search_with_score_id_by_vector( embedding=embedding, k=k, filter=filter, ) ] def similarity_search( self, query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: embedding_vector = self.embedding.embed_query(query) return self.similarity_search_by_vector( embedding_vector, k, filter=filter, ) def similarity_search_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: return [ doc for doc, _ in self.similarity_search_with_score_by_vector( embedding, k, filter=filter, ) ] def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, ) -> List[Tuple[Document, float]]: embedding_vector = self.embedding.embed_query(query) return self.similarity_search_with_score_by_vector( embedding_vector, k, filter=filter, ) def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Returns: List of Documents selected by maximal marginal relevance. """ search_metadata = self._filter_to_metadata(filter) prefetchHits = self.table.search( embedding_vector=embedding, top_k=fetch_k, metric="cos", metric_threshold=None, metadata=search_metadata, ) # let the mmr utility pick the *indices* in the above array mmrChosenIndices = maximal_marginal_relevance( np.array(embedding, dtype=np.float32), [pfHit["embedding_vector"] for pfHit in prefetchHits], k=k, lambda_mult=lambda_mult, ) mmrHits = [ pfHit for pfIndex, pfHit in enumerate(prefetchHits) if pfIndex in mmrChosenIndices ] return [ Document( page_content=hit["document"], metadata=hit["metadata"], ) for hit in mmrHits ] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Optional. Returns: List of Documents selected by maximal marginal relevance. """ embedding_vector = self.embedding.embed_query(query) return self.max_marginal_relevance_search_by_vector( embedding_vector, k, fetch_k, lambda_mult=lambda_mult, filter=filter, ) @classmethod def from_texts( cls: Type[CVST], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, batch_size: int = 16, **kwargs: Any, ) -> CVST: """Create a Cassandra vectorstore from raw texts. No support for specifying text IDs Returns: a Cassandra vectorstore. """ session: Session = kwargs["session"] keyspace: str = kwargs["keyspace"] table_name: str = kwargs["table_name"] cassandraStore = cls( embedding=embedding, session=session, keyspace=keyspace, table_name=table_name, ) cassandraStore.add_texts(texts=texts, metadatas=metadatas) return cassandraStore @classmethod def from_documents( cls: Type[CVST], documents: List[Document], embedding: Embeddings, batch_size: int = 16, **kwargs: Any, ) -> CVST: """Create a Cassandra vectorstore from a document list. No support for specifying text IDs Returns: a Cassandra vectorstore. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] session: Session = kwargs["session"] keyspace: str = kwargs["keyspace"] table_name: str = kwargs["table_name"] return cls.from_texts( texts=texts, metadatas=metadatas, embedding=embedding, session=session, keyspace=keyspace, table_name=table_name, )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~output_parsers~boolean.py
from langchain.schema import BaseOutputParser class BooleanOutputParser(BaseOutputParser[bool]): """Parse the output of an LLM call to a boolean.""" true_val: str = "YES" """The string value that should be parsed as True.""" false_val: str = "NO" """The string value that should be parsed as False.""" def parse(self, text: str) -> bool: """Parse the output of an LLM call to a boolean. Args: text: output of a language model Returns: boolean """ cleaned_text = text.strip() if cleaned_text.upper() not in (self.true_val.upper(), self.false_val.upper()): raise ValueError( f"BooleanOutputParser expected output value to either be " f"{self.true_val} or {self.false_val}. Received {cleaned_text}." ) return cleaned_text.upper() == self.true_val.upper() @property def _type(self) -> str: """Snake-case string identifier for an output parser type.""" return "boolean_output_parser"
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~vectorstores~test_nucliadb.py
from typing import Any from unittest import mock from langchain.vectorstores.nucliadb import NucliaDB class attrdict(dict): def __getitem__(self, key: str) -> Any: value = dict.__getitem__(self, key) return attrdict(value) if isinstance(value, dict) else value __getattr__ = __getitem__ def FakeCreate(**args: Any) -> Any: def fn(self: Any, **kwargs: Any) -> str: return "fake_uuid" return fn def FakeDelete(**args: Any) -> Any: def fn(self: Any, **kwargs: Any) -> None: return None return fn def FakeFind(**args: Any) -> Any: def fn(self: Any, **kwargs: Any) -> Any: return attrdict( { "resources": { "123": attrdict( { "fields": { "456": attrdict( { "paragraphs": { "123/t/text/0-14": attrdict( { "text": "This is a test", "order": 0, } ), } } ) }, "data": { "texts": { "text": { "body": "This is a test", } } }, "extra": attrdict({"metadata": {"some": "metadata"}}), } ) } } ) return fn def test_add_texts() -> None: with mock.patch( "nuclia.sdk.resource.NucliaResource.create", new_callable=FakeCreate, ): ndb = NucliaDB(knowledge_box="YOUR_KB_ID", local=False, api_key="YOUR_API_KEY") assert ndb.is_local is False ids = ndb.add_texts(["This is a new test", "This is a second test"]) assert len(ids) == 2 def test_delete() -> None: with mock.patch( "nuclia.sdk.resource.NucliaResource.delete", new_callable=FakeDelete, ): ndb = NucliaDB(knowledge_box="YOUR_KB_ID", local=False, api_key="YOUR_API_KEY") success = ndb.delete(["123", "456"]) assert success def test_search() -> None: with mock.patch( "nuclia.sdk.search.NucliaSearch.find", new_callable=FakeFind, ): ndb = NucliaDB(knowledge_box="YOUR_KB_ID", local=False, api_key="YOUR_API_KEY") results = ndb.similarity_search("Who was inspired by Ada Lovelace?") assert len(results) == 1 assert results[0].page_content == "This is a test" assert results[0].metadata["extra"]["some"] == "metadata" assert results[0].metadata["value"]["body"] == "This is a test"
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~base_o365.py
"""Base class for all loaders that uses O365 Package""" from __future__ import annotations import logging import os import tempfile from abc import abstractmethod from enum import Enum from pathlib import Path from typing import TYPE_CHECKING, Dict, Iterable, List, Sequence, Union from langchain.document_loaders.base import BaseLoader from langchain.document_loaders.blob_loaders.file_system import FileSystemBlobLoader from langchain.document_loaders.blob_loaders.schema import Blob from langchain.pydantic_v1 import BaseModel, BaseSettings, Field, FilePath, SecretStr if TYPE_CHECKING: from O365 import Account from O365.drive import Drive, Folder logger = logging.getLogger(__name__) CHUNK_SIZE = 1024 * 1024 * 5 class _O365Settings(BaseSettings): client_id: str = Field(..., env="O365_CLIENT_ID") client_secret: SecretStr = Field(..., env="O365_CLIENT_SECRET") class Config: env_prefix = "" case_sentive = False env_file = ".env" class _O365TokenStorage(BaseSettings): token_path: FilePath = Path.home() / ".credentials" / "o365_token.txt" class _FileType(str, Enum): DOC = "doc" DOCX = "docx" PDF = "pdf" def fetch_mime_types(file_types: Sequence[_FileType]) -> Dict[str, str]: """Fetch the mime types for the specified file types.""" mime_types_mapping = {} for file_type in file_types: if file_type.value == "doc": mime_types_mapping[file_type.value] = "application/msword" elif file_type.value == "docx": mime_types_mapping[ file_type.value ] = "application/vnd.openxmlformats-officedocument.wordprocessingml.document" # noqa: E501 elif file_type.value == "pdf": mime_types_mapping[file_type.value] = "application/pdf" return mime_types_mapping class O365BaseLoader(BaseLoader, BaseModel): """Base class for all loaders that uses O365 Package""" settings: _O365Settings = Field(default_factory=_O365Settings) """Settings for the Office365 API client.""" auth_with_token: bool = False """Whether to authenticate with a token or not. Defaults to False.""" chunk_size: Union[int, str] = CHUNK_SIZE """Number of bytes to retrieve from each api call to the server. int or 'auto'.""" @property @abstractmethod def _file_types(self) -> Sequence[_FileType]: """Return supported file types.""" @property def _fetch_mime_types(self) -> Dict[str, str]: """Return a dict of supported file types to corresponding mime types.""" return fetch_mime_types(self._file_types) @property @abstractmethod def _scopes(self) -> List[str]: """Return required scopes.""" def _load_from_folder(self, folder: Folder) -> Iterable[Blob]: """Lazily load all files from a specified folder of the configured MIME type. Args: folder: The Folder instance from which the files are to be loaded. This Folder instance should represent a directory in a file system where the files are stored. Yields: An iterator that yields Blob instances, which are binary representations of the files loaded from the folder. """ file_mime_types = self._fetch_mime_types items = folder.get_items() with tempfile.TemporaryDirectory() as temp_dir: os.makedirs(os.path.dirname(temp_dir), exist_ok=True) for file in items: if file.is_file: if file.mime_type in list(file_mime_types.values()): file.download(to_path=temp_dir, chunk_size=self.chunk_size) loader = FileSystemBlobLoader(path=temp_dir) yield from loader.yield_blobs() def _load_from_object_ids( self, drive: Drive, object_ids: List[str] ) -> Iterable[Blob]: """Lazily load files specified by their object_ids from a drive. Load files into the system as binary large objects (Blobs) and return Iterable. Args: drive: The Drive instance from which the files are to be loaded. This Drive instance should represent a cloud storage service or similar storage system where the files are stored. object_ids: A list of object_id strings. Each object_id represents a unique identifier for a file in the drive. Yields: An iterator that yields Blob instances, which are binary representations of the files loaded from the drive using the specified object_ids. """ file_mime_types = self._fetch_mime_types with tempfile.TemporaryDirectory() as temp_dir: for object_id in object_ids: file = drive.get_item(object_id) if not file: logging.warning( "There isn't a file with" f"object_id {object_id} in drive {drive}." ) continue if file.is_file: if file.mime_type in list(file_mime_types.values()): file.download(to_path=temp_dir, chunk_size=self.chunk_size) loader = FileSystemBlobLoader(path=temp_dir) yield from loader.yield_blobs() def _auth(self) -> Account: """Authenticates the OneDrive API client Returns: The authenticated Account object. """ try: from O365 import Account, FileSystemTokenBackend except ImportError: raise ImportError( "O365 package not found, please install it with `pip install o365`" ) if self.auth_with_token: token_storage = _O365TokenStorage() token_path = token_storage.token_path token_backend = FileSystemTokenBackend( token_path=token_path.parent, token_filename=token_path.name ) account = Account( credentials=( self.settings.client_id, self.settings.client_secret.get_secret_value(), ), scopes=self._scopes, token_backend=token_backend, **{"raise_http_errors": False}, ) else: token_backend = FileSystemTokenBackend( token_path=Path.home() / ".credentials" ) account = Account( credentials=( self.settings.client_id, self.settings.client_secret.get_secret_value(), ), scopes=self._scopes, token_backend=token_backend, **{"raise_http_errors": False}, ) # make the auth account.authenticate() return account
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~utilities~awslambda.py
"""Util that calls Lambda.""" import json from typing import Any, Dict, Optional from langchain.pydantic_v1 import BaseModel, Extra, root_validator class LambdaWrapper(BaseModel): """Wrapper for AWS Lambda SDK. To use, you should have the ``boto3`` package installed and a lambda functions built from the AWS Console or CLI. Set up your AWS credentials with ``aws configure`` Example: .. code-block:: bash pip install boto3 aws configure """ lambda_client: Any #: :meta private: """The configured boto3 client""" function_name: Optional[str] = None """The name of your lambda function""" awslambda_tool_name: Optional[str] = None """If passing to an agent as a tool, the tool name""" awslambda_tool_description: Optional[str] = None """If passing to an agent as a tool, the description""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that python package exists in environment.""" try: import boto3 except ImportError: raise ImportError( "boto3 is not installed. Please install it with `pip install boto3`" ) values["lambda_client"] = boto3.client("lambda") values["function_name"] = values["function_name"] return values def run(self, query: str) -> str: """ Invokes the lambda function and returns the result. Args: query: an input to passed to the lambda function as the ``body`` of a JSON object. """ # noqa: E501 res = self.lambda_client.invoke( FunctionName=self.function_name, InvocationType="RequestResponse", Payload=json.dumps({"body": query}), ) try: payload_stream = res["Payload"] payload_string = payload_stream.read().decode("utf-8") answer = json.loads(payload_string)["body"] except StopIteration: return "Failed to parse response from Lambda" if answer is None or answer == "": # We don't want to return the assumption alone if answer is empty return "Request failed." else: return f"Result: {answer}"
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~embeddings~aleph_alpha.py
from typing import Any, Dict, List, Optional from langchain.pydantic_v1 import BaseModel, root_validator from langchain.schema.embeddings import Embeddings from langchain.utils import get_from_dict_or_env class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings): """Aleph Alpha's asymmetric semantic embedding. AA provides you with an endpoint to embed a document and a query. The models were optimized to make the embeddings of documents and the query for a document as similar as possible. To learn more, check out: https://docs.aleph-alpha.com/docs/tasks/semantic_embed/ Example: .. code-block:: python from aleph_alpha import AlephAlphaAsymmetricSemanticEmbedding embeddings = AlephAlphaAsymmetricSemanticEmbedding( normalize=True, compress_to_size=128 ) document = "This is a content of the document" query = "What is the content of the document?" doc_result = embeddings.embed_documents([document]) query_result = embeddings.embed_query(query) """ client: Any #: :meta private: # Embedding params model: str = "luminous-base" """Model name to use.""" compress_to_size: Optional[int] = None """Should the returned embeddings come back as an original 5120-dim vector, or should it be compressed to 128-dim.""" normalize: Optional[bool] = None """Should returned embeddings be normalized""" contextual_control_threshold: Optional[int] = None """Attention control parameters only apply to those tokens that have explicitly been set in the request.""" control_log_additive: bool = True """Apply controls on prompt items by adding the log(control_factor) to attention scores.""" # Client params aleph_alpha_api_key: Optional[str] = None """API key for Aleph Alpha API.""" host: str = "https://api.aleph-alpha.com" """The hostname of the API host. The default one is "https://api.aleph-alpha.com")""" hosting: Optional[str] = None """Determines in which datacenters the request may be processed. You can either set the parameter to "aleph-alpha" or omit it (defaulting to None). Not setting this value, or setting it to None, gives us maximal flexibility in processing your request in our own datacenters and on servers hosted with other providers. Choose this option for maximal availability. Setting it to "aleph-alpha" allows us to only process the request in our own datacenters. Choose this option for maximal data privacy.""" request_timeout_seconds: int = 305 """Client timeout that will be set for HTTP requests in the `requests` library's API calls. Server will close all requests after 300 seconds with an internal server error.""" total_retries: int = 8 """The number of retries made in case requests fail with certain retryable status codes. If the last retry fails a corresponding exception is raised. Note, that between retries an exponential backoff is applied, starting with 0.5 s after the first retry and doubling for each retry made. So with the default setting of 8 retries a total wait time of 63.5 s is added between the retries.""" nice: bool = False """Setting this to True, will signal to the API that you intend to be nice to other users by de-prioritizing your request below concurrent ones.""" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" aleph_alpha_api_key = get_from_dict_or_env( values, "aleph_alpha_api_key", "ALEPH_ALPHA_API_KEY" ) try: from aleph_alpha_client import Client values["client"] = Client( token=aleph_alpha_api_key, host=values["host"], hosting=values["hosting"], request_timeout_seconds=values["request_timeout_seconds"], total_retries=values["total_retries"], nice=values["nice"], ) except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) return values def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Aleph Alpha's asymmetric Document endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ try: from aleph_alpha_client import ( Prompt, SemanticEmbeddingRequest, SemanticRepresentation, ) except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) document_embeddings = [] for text in texts: document_params = { "prompt": Prompt.from_text(text), "representation": SemanticRepresentation.Document, "compress_to_size": self.compress_to_size, "normalize": self.normalize, "contextual_control_threshold": self.contextual_control_threshold, "control_log_additive": self.control_log_additive, } document_request = SemanticEmbeddingRequest(**document_params) document_response = self.client.semantic_embed( request=document_request, model=self.model ) document_embeddings.append(document_response.embedding) return document_embeddings def embed_query(self, text: str) -> List[float]: """Call out to Aleph Alpha's asymmetric, query embedding endpoint Args: text: The text to embed. Returns: Embeddings for the text. """ try: from aleph_alpha_client import ( Prompt, SemanticEmbeddingRequest, SemanticRepresentation, ) except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) symmetric_params = { "prompt": Prompt.from_text(text), "representation": SemanticRepresentation.Query, "compress_to_size": self.compress_to_size, "normalize": self.normalize, "contextual_control_threshold": self.contextual_control_threshold, "control_log_additive": self.control_log_additive, } symmetric_request = SemanticEmbeddingRequest(**symmetric_params) symmetric_response = self.client.semantic_embed( request=symmetric_request, model=self.model ) return symmetric_response.embedding class AlephAlphaSymmetricSemanticEmbedding(AlephAlphaAsymmetricSemanticEmbedding): """The symmetric version of the Aleph Alpha's semantic embeddings. The main difference is that here, both the documents and queries are embedded with a SemanticRepresentation.Symmetric Example: .. code-block:: python from aleph_alpha import AlephAlphaSymmetricSemanticEmbedding embeddings = AlephAlphaAsymmetricSemanticEmbedding( normalize=True, compress_to_size=128 ) text = "This is a test text" doc_result = embeddings.embed_documents([text]) query_result = embeddings.embed_query(text) """ def _embed(self, text: str) -> List[float]: try: from aleph_alpha_client import ( Prompt, SemanticEmbeddingRequest, SemanticRepresentation, ) except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) query_params = { "prompt": Prompt.from_text(text), "representation": SemanticRepresentation.Symmetric, "compress_to_size": self.compress_to_size, "normalize": self.normalize, "contextual_control_threshold": self.contextual_control_threshold, "control_log_additive": self.control_log_additive, } query_request = SemanticEmbeddingRequest(**query_params) query_response = self.client.semantic_embed( request=query_request, model=self.model ) return query_response.embedding def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Aleph Alpha's Document endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ document_embeddings = [] for text in texts: document_embeddings.append(self._embed(text)) return document_embeddings def embed_query(self, text: str) -> List[float]: """Call out to Aleph Alpha's asymmetric, query embedding endpoint Args: text: The text to embed. Returns: Embeddings for the text. """ return self._embed(text)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~epub.py
from typing import List from langchain.document_loaders.unstructured import ( UnstructuredFileLoader, satisfies_min_unstructured_version, ) class UnstructuredEPubLoader(UnstructuredFileLoader): """Load `EPub` files using `Unstructured`. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples -------- from langchain.document_loaders import UnstructuredEPubLoader loader = UnstructuredEPubLoader( "example.epub", mode="elements", strategy="fast", ) docs = loader.load() References ---------- https://unstructured-io.github.io/unstructured/bricks.html#partition-epub """ def _get_elements(self) -> List: min_unstructured_version = "0.5.4" if not satisfies_min_unstructured_version(min_unstructured_version): raise ValueError( "Partitioning epub files is only supported in " f"unstructured>={min_unstructured_version}." ) from unstructured.partition.epub import partition_epub return partition_epub(filename=self.file_path, **self.unstructured_kwargs)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~retrievers~test_zep.py
from __future__ import annotations import copy from typing import TYPE_CHECKING, List import pytest from pytest_mock import MockerFixture from langchain.retrievers import ZepRetriever from langchain.schema import Document if TYPE_CHECKING: from zep_python import MemorySearchResult, ZepClient @pytest.fixture def search_results() -> List[MemorySearchResult]: from zep_python import MemorySearchResult, Message search_result = [ { "message": { "uuid": "66830914-19f5-490b-8677-1ba06bcd556b", "created_at": "2023-05-18T20:40:42.743773Z", "role": "user", "content": "I'm looking to plan a trip to Iceland. Can you help me?", "token_count": 17, }, "summary": None, "dist": 0.8734284910450115, }, { "message": { "uuid": "015e618c-ba9d-45b6-95c3-77a8e611570b", "created_at": "2023-05-18T20:40:42.743773Z", "role": "user", "content": "How much does a trip to Iceland typically cost?", "token_count": 12, }, "summary": None, "dist": 0.8554048017463456, }, ] return [ MemorySearchResult( message=Message.parse_obj(result["message"]), summary=result["summary"], dist=result["dist"], ) for result in search_result ] @pytest.fixture @pytest.mark.requires("zep_python") def zep_retriever( mocker: MockerFixture, search_results: List[MemorySearchResult] ) -> ZepRetriever: mock_zep_client: ZepClient = mocker.patch("zep_python.ZepClient", autospec=True) mock_zep_client.memory = mocker.patch( "zep_python.memory.client.MemoryClient", autospec=True ) mock_zep_client.memory.search_memory.return_value = copy.deepcopy( # type: ignore search_results ) mock_zep_client.memory.asearch_memory.return_value = copy.deepcopy( # type: ignore search_results ) zep = ZepRetriever(session_id="123", url="http://localhost:8000") zep.zep_client = mock_zep_client return zep @pytest.mark.requires("zep_python") def test_zep_retriever_get_relevant_documents( zep_retriever: ZepRetriever, search_results: List[MemorySearchResult] ) -> None: documents: List[Document] = zep_retriever.get_relevant_documents( query="My trip to Iceland" ) _test_documents(documents, search_results) @pytest.mark.requires("zep_python") @pytest.mark.asyncio async def test_zep_retriever_aget_relevant_documents( zep_retriever: ZepRetriever, search_results: List[MemorySearchResult] ) -> None: documents: List[Document] = await zep_retriever.aget_relevant_documents( query="My trip to Iceland" ) _test_documents(documents, search_results) def _test_documents( documents: List[Document], search_results: List[MemorySearchResult] ) -> None: assert len(documents) == 2 for i, document in enumerate(documents): assert document.page_content == search_results[i].message.get( # type: ignore "content" ) assert document.metadata.get("uuid") == search_results[ i ].message.get( # type: ignore "uuid" ) assert document.metadata.get("role") == search_results[ i ].message.get( # type: ignore "role" ) assert document.metadata.get("score") == search_results[i].dist
[ "How much does a trip to Iceland typically cost?", "I'm looking to plan a trip to Iceland. Can you help me?" ]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~unit_tests~agents~output_parsers~test_json.py
from langchain.agents.output_parsers.json import JSONAgentOutputParser from langchain.schema.agent import AgentAction, AgentFinish def test_tool_usage() -> None: parser = JSONAgentOutputParser() _input = """ ``` { "action": "search", "action_input": "2+2" } ```""" output = parser.invoke(_input) expected_output = AgentAction(tool="search", tool_input="2+2", log=_input) assert output == expected_output def test_finish() -> None: parser = JSONAgentOutputParser() _input = """``` { "action": "Final Answer", "action_input": "4" } ```""" output = parser.invoke(_input) expected_output = AgentFinish(return_values={"output": "4"}, log=_input) assert output == expected_output
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~iugu.py
import json import urllib.request from typing import List, Optional from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.utils import get_from_env, stringify_dict IUGU_ENDPOINTS = { "invoices": "https://api.iugu.com/v1/invoices", "customers": "https://api.iugu.com/v1/customers", "charges": "https://api.iugu.com/v1/charges", "subscriptions": "https://api.iugu.com/v1/subscriptions", "plans": "https://api.iugu.com/v1/plans", } class IuguLoader(BaseLoader): """Load from `IUGU`.""" def __init__(self, resource: str, api_token: Optional[str] = None) -> None: """Initialize the IUGU resource. Args: resource: The name of the resource to fetch. api_token: The IUGU API token to use. """ self.resource = resource api_token = api_token or get_from_env("api_token", "IUGU_API_TOKEN") self.headers = {"Authorization": f"Bearer {api_token}"} def _make_request(self, url: str) -> List[Document]: request = urllib.request.Request(url, headers=self.headers) with urllib.request.urlopen(request) as response: json_data = json.loads(response.read().decode()) text = stringify_dict(json_data) metadata = {"source": url} return [Document(page_content=text, metadata=metadata)] def _get_resource(self) -> List[Document]: endpoint = IUGU_ENDPOINTS.get(self.resource) if endpoint is None: return [] return self._make_request(endpoint) def load(self) -> List[Document]: return self._get_resource()
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chains~router~llm_router.py
"""Base classes for LLM-powered router chains.""" from __future__ import annotations from typing import Any, Dict, List, Optional, Type, cast from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains import LLMChain from langchain.chains.router.base import RouterChain from langchain.output_parsers.json import parse_and_check_json_markdown from langchain.pydantic_v1 import root_validator from langchain.schema import BaseOutputParser, BasePromptTemplate, OutputParserException from langchain.schema.language_model import BaseLanguageModel class LLMRouterChain(RouterChain): """A router chain that uses an LLM chain to perform routing.""" llm_chain: LLMChain """LLM chain used to perform routing""" @root_validator() def validate_prompt(cls, values: dict) -> dict: prompt = values["llm_chain"].prompt if prompt.output_parser is None: raise ValueError( "LLMRouterChain requires base llm_chain prompt to have an output" " parser that converts LLM text output to a dictionary with keys" " 'destination' and 'next_inputs'. Received a prompt with no output" " parser." ) return values @property def input_keys(self) -> List[str]: """Will be whatever keys the LLM chain prompt expects. :meta private: """ return self.llm_chain.input_keys def _validate_outputs(self, outputs: Dict[str, Any]) -> None: super()._validate_outputs(outputs) if not isinstance(outputs["next_inputs"], dict): raise ValueError def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() output = cast( Dict[str, Any], self.llm_chain.predict_and_parse(callbacks=callbacks, **inputs), ) return output async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() output = cast( Dict[str, Any], await self.llm_chain.apredict_and_parse(callbacks=callbacks, **inputs), ) return output @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: BasePromptTemplate, **kwargs: Any ) -> LLMRouterChain: """Convenience constructor.""" llm_chain = LLMChain(llm=llm, prompt=prompt) return cls(llm_chain=llm_chain, **kwargs) class RouterOutputParser(BaseOutputParser[Dict[str, str]]): """Parser for output of router chain in the multi-prompt chain.""" default_destination: str = "DEFAULT" next_inputs_type: Type = str next_inputs_inner_key: str = "input" def parse(self, text: str) -> Dict[str, Any]: try: expected_keys = ["destination", "next_inputs"] parsed = parse_and_check_json_markdown(text, expected_keys) if not isinstance(parsed["destination"], str): raise ValueError("Expected 'destination' to be a string.") if not isinstance(parsed["next_inputs"], self.next_inputs_type): raise ValueError( f"Expected 'next_inputs' to be {self.next_inputs_type}." ) parsed["next_inputs"] = {self.next_inputs_inner_key: parsed["next_inputs"]} if ( parsed["destination"].strip().lower() == self.default_destination.lower() ): parsed["destination"] = None else: parsed["destination"] = parsed["destination"].strip() return parsed except Exception as e: raise OutputParserException( f"Parsing text\n{text}\n raised following error:\n{e}" )
[ "llm_chain" ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~agents~agent_toolkits~openapi~spec.py
"""Quick and dirty representation for OpenAPI specs.""" from dataclasses import dataclass from typing import List, Tuple from langchain.utils.json_schema import dereference_refs @dataclass(frozen=True) class ReducedOpenAPISpec: """A reduced OpenAPI spec. This is a quick and dirty representation for OpenAPI specs. Attributes: servers: The servers in the spec. description: The description of the spec. endpoints: The endpoints in the spec. """ servers: List[dict] description: str endpoints: List[Tuple[str, str, dict]] def reduce_openapi_spec(spec: dict, dereference: bool = True) -> ReducedOpenAPISpec: """Simplify/distill/minify a spec somehow. I want a smaller target for retrieval and (more importantly) I want smaller results from retrieval. I was hoping https://openapi.tools/ would have some useful bits to this end, but doesn't seem so. """ # 1. Consider only get, post, patch, put, delete endpoints. endpoints = [ (f"{operation_name.upper()} {route}", docs.get("description"), docs) for route, operation in spec["paths"].items() for operation_name, docs in operation.items() if operation_name in ["get", "post", "patch", "put", "delete"] ] # 2. Replace any refs so that complete docs are retrieved. # Note: probably want to do this post-retrieval, it blows up the size of the spec. if dereference: endpoints = [ (name, description, dereference_refs(docs, full_schema=spec)) for name, description, docs in endpoints ] # 3. Strip docs down to required request args + happy path response. def reduce_endpoint_docs(docs: dict) -> dict: out = {} if docs.get("description"): out["description"] = docs.get("description") if docs.get("parameters"): out["parameters"] = [ parameter for parameter in docs.get("parameters", []) if parameter.get("required") ] if "200" in docs["responses"]: out["responses"] = docs["responses"]["200"] if docs.get("requestBody"): out["requestBody"] = docs.get("requestBody") return out endpoints = [ (name, description, reduce_endpoint_docs(docs)) for name, description, docs in endpoints ] return ReducedOpenAPISpec( servers=spec["servers"], description=spec["info"].get("description", ""), endpoints=endpoints, )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~baiducloud_bos_file.py
import logging import os import tempfile from typing import Any, Iterator, List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.document_loaders.unstructured import UnstructuredFileLoader logger = logging.getLogger(__name__) class BaiduBOSFileLoader(BaseLoader): """Load from `Baidu Cloud BOS` file.""" def __init__(self, conf: Any, bucket: str, key: str): """Initialize with BOS config, bucket and key name. :param conf(BceClientConfiguration): BOS config. :param bucket(str): BOS bucket. :param key(str): BOS file key. """ self.conf = conf self.bucket = bucket self.key = key def load(self) -> List[Document]: return list(self.lazy_load()) def lazy_load(self) -> Iterator[Document]: """Load documents.""" try: from baidubce.services.bos.bos_client import BosClient except ImportError: raise ImportError( "Please using `pip install bce-python-sdk`" + " before import bos related package." ) # Initialize BOS Client client = BosClient(self.conf) with tempfile.TemporaryDirectory() as temp_dir: file_path = f"{temp_dir}/{self.bucket}/{self.key}" os.makedirs(os.path.dirname(file_path), exist_ok=True) # Download the file to a destination logger.debug(f"get object key {self.key} to file {file_path}") client.get_object_to_file(self.bucket, self.key, file_path) try: loader = UnstructuredFileLoader(file_path) documents = loader.load() return iter(documents) except Exception as ex: logger.error(f"load document error = {ex}") return iter([Document(page_content="")])
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chains~transform.py
"""Chain that runs an arbitrary python function.""" import functools import logging from typing import Any, Awaitable, Callable, Dict, List, Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.base import Chain from langchain.pydantic_v1 import Field logger = logging.getLogger(__name__) class TransformChain(Chain): """Chain that transforms the chain output. Example: .. code-block:: python from langchain.chains import TransformChain transform_chain = TransformChain(input_variables=["text"], output_variables["entities"], transform=func()) """ input_variables: List[str] """The keys expected by the transform's input dictionary.""" output_variables: List[str] """The keys returned by the transform's output dictionary.""" transform_cb: Callable[[Dict[str, str]], Dict[str, str]] = Field(alias="transform") """The transform function.""" atransform_cb: Optional[ Callable[[Dict[str, Any]], Awaitable[Dict[str, Any]]] ] = Field(None, alias="atransform") """The async coroutine transform function.""" @staticmethod @functools.lru_cache def _log_once(msg: str) -> None: """Log a message once. :meta private: """ logger.warning(msg) @property def input_keys(self) -> List[str]: """Expect input keys. :meta private: """ return self.input_variables @property def output_keys(self) -> List[str]: """Return output keys. :meta private: """ return self.output_variables def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: return self.transform_cb(inputs) async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: if self.atransform_cb is not None: return await self.atransform_cb(inputs) else: self._log_once( "TransformChain's atransform is not provided, falling" " back to synchronous transform" ) return self.transform_cb(inputs)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~utilities~arcee.py
# This module contains utility classes and functions for interacting with Arcee API. # For more information and updates, refer to the Arcee utils page: # [https://github.com/arcee-ai/arcee-python/blob/main/arcee/dalm.py] from enum import Enum from typing import Any, Dict, List, Literal, Mapping, Optional, Union import requests from langchain.pydantic_v1 import BaseModel, root_validator from langchain.schema.retriever import Document class ArceeRoute(str, Enum): """Routes available for the Arcee API as enumerator.""" generate = "models/generate" retrieve = "models/retrieve" model_training_status = "models/status/{id_or_name}" class DALMFilterType(str, Enum): """Filter types available for a DALM retrieval as enumerator.""" fuzzy_search = "fuzzy_search" strict_search = "strict_search" class DALMFilter(BaseModel): """Filters available for a DALM retrieval and generation. Arguments: field_name: The field to filter on. Can be 'document' or 'name' to filter on your document's raw text or title. Any other field will be presumed to be a metadata field you included when uploading your context data filter_type: Currently 'fuzzy_search' and 'strict_search' are supported. 'fuzzy_search' means a fuzzy search on the provided field is performed. The exact strict doesn't need to exist in the document for this to find a match. Very useful for scanning a document for some keyword terms. 'strict_search' means that the exact string must appear in the provided field. This is NOT an exact eq filter. ie a document with content "the happy dog crossed the street" will match on a strict_search of "dog" but won't match on "the dog". Python equivalent of `return search_string in full_string`. value: The actual value to search for in the context data/metadata """ field_name: str filter_type: DALMFilterType value: str _is_metadata: bool = False @root_validator() def set_meta(cls, values: Dict) -> Dict: """document and name are reserved arcee keys. Anything else is metadata""" values["_is_meta"] = values.get("field_name") not in ["document", "name"] return values class ArceeWrapper: """Wrapper for Arcee API.""" def __init__( self, arcee_api_key: str, arcee_api_url: str, arcee_api_version: str, model_kwargs: Optional[Dict[str, Any]], model_name: str, ): """Initialize ArceeWrapper. Arguments: arcee_api_key: API key for Arcee API. arcee_api_url: URL for Arcee API. arcee_api_version: Version of Arcee API. model_kwargs: Keyword arguments for Arcee API. model_name: Name of an Arcee model. """ self.arcee_api_key = arcee_api_key self.model_kwargs = model_kwargs self.arcee_api_url = arcee_api_url self.arcee_api_version = arcee_api_version try: route = ArceeRoute.model_training_status.value.format(id_or_name=model_name) response = self._make_request("get", route) self.model_id = response.get("model_id") self.model_training_status = response.get("status") except Exception as e: raise ValueError( f"Error while validating model training status for '{model_name}': {e}" ) from e def validate_model_training_status(self) -> None: if self.model_training_status != "training_complete": raise Exception( f"Model {self.model_id} is not ready. " "Please wait for training to complete." ) def _make_request( self, method: Literal["post", "get"], route: Union[ArceeRoute, str], body: Optional[Mapping[str, Any]] = None, params: Optional[dict] = None, headers: Optional[dict] = None, ) -> dict: """Make a request to the Arcee API Args: method: The HTTP method to use route: The route to call body: The body of the request params: The query params of the request headers: The headers of the request """ headers = self._make_request_headers(headers=headers) url = self._make_request_url(route=route) req_type = getattr(requests, method) response = req_type(url, json=body, params=params, headers=headers) if response.status_code not in (200, 201): raise Exception(f"Failed to make request. Response: {response.text}") return response.json() def _make_request_headers(self, headers: Optional[Dict] = None) -> Dict: headers = headers or {} internal_headers = { "X-Token": self.arcee_api_key, "Content-Type": "application/json", } headers.update(internal_headers) return headers def _make_request_url(self, route: Union[ArceeRoute, str]) -> str: return f"{self.arcee_api_url}/{self.arcee_api_version}/{route}" def _make_request_body_for_models( self, prompt: str, **kwargs: Mapping[str, Any] ) -> Mapping[str, Any]: """Make the request body for generate/retrieve models endpoint""" _model_kwargs = self.model_kwargs or {} _params = {**_model_kwargs, **kwargs} filters = [DALMFilter(**f) for f in _params.get("filters", [])] return dict( model_id=self.model_id, query=prompt, size=_params.get("size", 3), filters=filters, id=self.model_id, ) def generate( self, prompt: str, **kwargs: Any, ) -> str: """Generate text from Arcee DALM. Args: prompt: Prompt to generate text from. size: The max number of context results to retrieve. Defaults to 3. (Can be less if filters are provided). filters: Filters to apply to the context dataset. """ response = self._make_request( method="post", route=ArceeRoute.generate, body=self._make_request_body_for_models( prompt=prompt, **kwargs, ), ) return response["text"] def retrieve( self, query: str, **kwargs: Any, ) -> List[Document]: """Retrieve {size} contexts with your retriever for a given query Args: query: Query to submit to the model size: The max number of context results to retrieve. Defaults to 3. (Can be less if filters are provided). filters: Filters to apply to the context dataset. """ response = self._make_request( method="post", route=ArceeRoute.retrieve, body=self._make_request_body_for_models( prompt=query, **kwargs, ), ) return [Document(**doc) for doc in response["documents"]]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~schema~__init__.py
"""**Schemas** are the LangChain Base Classes and Interfaces.""" from langchain.schema.agent import AgentAction, AgentFinish from langchain.schema.cache import BaseCache from langchain.schema.chat_history import BaseChatMessageHistory from langchain.schema.document import BaseDocumentTransformer, Document from langchain.schema.exceptions import LangChainException from langchain.schema.memory import BaseMemory from langchain.schema.messages import ( AIMessage, BaseMessage, ChatMessage, FunctionMessage, HumanMessage, SystemMessage, _message_from_dict, _message_to_dict, get_buffer_string, messages_from_dict, messages_to_dict, ) from langchain.schema.output import ( ChatGeneration, ChatResult, Generation, LLMResult, RunInfo, ) from langchain.schema.output_parser import ( BaseLLMOutputParser, BaseOutputParser, OutputParserException, StrOutputParser, StrOutputParserWithClener, ) from langchain.schema.prompt import PromptValue from langchain.schema.prompt_template import BasePromptTemplate, format_document from langchain.schema.retriever import BaseRetriever from langchain.schema.storage import BaseStore RUN_KEY = "__run" Memory = BaseMemory __all__ = [ "BaseCache", "BaseMemory", "BaseStore", "AgentFinish", "AgentAction", "Document", "BaseChatMessageHistory", "BaseDocumentTransformer", "BaseMessage", "ChatMessage", "FunctionMessage", "HumanMessage", "AIMessage", "SystemMessage", "messages_from_dict", "messages_to_dict", "_message_to_dict", "_message_from_dict", "get_buffer_string", "RunInfo", "LLMResult", "ChatResult", "ChatGeneration", "Generation", "PromptValue", "LangChainException", "BaseRetriever", "RUN_KEY", "Memory", "OutputParserException", "StrOutputParser", "StrOutputParserWithClener", "BaseOutputParser", "BaseLLMOutputParser", "BasePromptTemplate", "format_document", ]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~gutenberg.py
from typing import List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader class GutenbergLoader(BaseLoader): """Load from `Gutenberg.org`.""" def __init__(self, file_path: str): """Initialize with a file path.""" if not file_path.startswith("https://www.gutenberg.org"): raise ValueError("file path must start with 'https://www.gutenberg.org'") if not file_path.endswith(".txt"): raise ValueError("file path must end with '.txt'") self.file_path = file_path def load(self) -> List[Document]: """Load file.""" from urllib.request import urlopen elements = urlopen(self.file_path) text = "\n\n".join([str(el.decode("utf-8-sig")) for el in elements]) metadata = {"source": self.file_path} return [Document(page_content=text, metadata=metadata)]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chains~api~openapi~requests_chain.py
"""request parser.""" import json import re from typing import Any from langchain.chains.api.openapi.prompts import REQUEST_TEMPLATE from langchain.chains.llm import LLMChain from langchain.prompts.prompt import PromptTemplate from langchain.schema import BaseOutputParser from langchain.schema.language_model import BaseLanguageModel class APIRequesterOutputParser(BaseOutputParser): """Parse the request and error tags.""" def _load_json_block(self, serialized_block: str) -> str: try: return json.dumps( json.loads(serialized_block, strict=False), ensure_ascii=False ) except json.JSONDecodeError: return "ERROR serializing request." def parse(self, llm_output: str) -> str: """Parse the request and error tags.""" json_match = re.search(r"```json(.*?)```", llm_output, re.DOTALL) if json_match: return self._load_json_block(json_match.group(1).strip()) message_match = re.search(r"```text(.*?)```", llm_output, re.DOTALL) if message_match: return f"MESSAGE: {message_match.group(1).strip()}" return "ERROR making request" @property def _type(self) -> str: return "api_requester" class APIRequesterChain(LLMChain): """Get the request parser.""" @classmethod def from_llm_and_typescript( cls, llm: BaseLanguageModel, typescript_definition: str, verbose: bool = True, **kwargs: Any, ) -> LLMChain: """Get the request parser.""" output_parser = APIRequesterOutputParser() prompt = PromptTemplate( template=REQUEST_TEMPLATE, output_parser=output_parser, partial_variables={"schema": typescript_definition}, input_variables=["instructions"], ) return cls(prompt=prompt, llm=llm, verbose=verbose, **kwargs)
[ "instructions" ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~tools~ainetwork~value.py
import builtins import json from typing import Optional, Type, Union from langchain.callbacks.manager import AsyncCallbackManagerForToolRun from langchain.pydantic_v1 import BaseModel, Field from langchain.tools.ainetwork.base import AINBaseTool, OperationType class ValueSchema(BaseModel): """Schema for value operations.""" type: OperationType = Field(...) path: str = Field(..., description="Blockchain reference path") value: Optional[Union[int, str, float, dict]] = Field( None, description="Value to be set at the path" ) class AINValueOps(AINBaseTool): """Tool for value operations.""" name: str = "AINvalueOps" description: str = """ Covers the read and write value for the AINetwork Blockchain database. ## SET - Set a value at a given path ### Example - type: SET - path: /apps/langchain_test_1/object - value: {1: 2, "34": 56} ## GET - Retrieve a value at a given path ### Example - type: GET - path: /apps/langchain_test_1/DB ## Special paths - `/accounts/<address>/balance`: Account balance - `/accounts/<address>/nonce`: Account nonce - `/apps`: Applications - `/consensus`: Consensus - `/checkin`: Check-in - `/deposit/<service id>/<address>/<deposit id>`: Deposit - `/deposit_accounts/<service id>/<address>/<account id>`: Deposit accounts - `/escrow`: Escrow - `/payments`: Payment - `/sharding`: Sharding - `/token/name`: Token name - `/token/symbol`: Token symbol - `/token/total_supply`: Token total supply - `/transfer/<address from>/<address to>/<key>/value`: Transfer - `/withdraw/<service id>/<address>/<withdraw id>`: Withdraw """ args_schema: Type[BaseModel] = ValueSchema async def _arun( self, type: OperationType, path: str, value: Optional[Union[int, str, float, dict]] = None, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: from ain.types import ValueOnlyTransactionInput try: if type is OperationType.SET: if value is None: raise ValueError("'value' is required for SET operation.") res = await self.interface.db.ref(path).setValue( transactionInput=ValueOnlyTransactionInput(value=value) ) elif type is OperationType.GET: res = await self.interface.db.ref(path).getValue() else: raise ValueError(f"Unsupported 'type': {type}.") return json.dumps(res, ensure_ascii=False) except Exception as e: return f"{builtins.type(e).__name__}: {str(e)}"
[ "\nCovers the read and write value for the AINetwork Blockchain database.\n\n## SET\n- Set a value at a given path\n\n### Example\n- type: SET\n- path: /apps/langchain_test_1/object\n- value: {1: 2, \"34\": 56}\n\n## GET\n- Retrieve a value at a given path\n\n### Example\n- type: GET\n- path: /apps/langchain_test_1/DB\n\n## Special paths\n- `/accounts/<address>/balance`: Account balance\n- `/accounts/<address>/nonce`: Account nonce\n- `/apps`: Applications\n- `/consensus`: Consensus\n- `/checkin`: Check-in\n- `/deposit/<service id>/<address>/<deposit id>`: Deposit\n- `/deposit_accounts/<service id>/<address>/<account id>`: Deposit accounts\n- `/escrow`: Escrow\n- `/payments`: Payment\n- `/sharding`: Sharding\n- `/token/name`: Token name\n- `/token/symbol`: Token symbol\n- `/token/total_supply`: Token total supply\n- `/transfer/<address from>/<address to>/<key>/value`: Transfer\n- `/withdraw/<service id>/<address>/<withdraw id>`: Withdraw\n" ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~llms~human.py
from typing import Any, Callable, List, Mapping, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.pydantic_v1 import Field def _display_prompt(prompt: str) -> None: """Displays the given prompt to the user.""" print(f"\n{prompt}") def _collect_user_input( separator: Optional[str] = None, stop: Optional[List[str]] = None ) -> str: """Collects and returns user input as a single string.""" separator = separator or "\n" lines = [] while True: line = input() if not line: break lines.append(line) if stop and any(seq in line for seq in stop): break # Combine all lines into a single string multi_line_input = separator.join(lines) return multi_line_input class HumanInputLLM(LLM): """ It returns user input as the response. """ input_func: Callable = Field(default_factory=lambda: _collect_user_input) prompt_func: Callable[[str], None] = Field(default_factory=lambda: _display_prompt) separator: str = "\n" input_kwargs: Mapping[str, Any] = {} prompt_kwargs: Mapping[str, Any] = {} @property def _identifying_params(self) -> Mapping[str, Any]: """ Returns an empty dictionary as there are no identifying parameters. """ return {} @property def _llm_type(self) -> str: """Returns the type of LLM.""" return "human-input" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """ Displays the prompt to the user and returns their input as a response. Args: prompt (str): The prompt to be displayed to the user. stop (Optional[List[str]]): A list of stop strings. run_manager (Optional[CallbackManagerForLLMRun]): Currently not used. Returns: str: The user's input as a response. """ self.prompt_func(prompt, **self.prompt_kwargs) user_input = self.input_func( separator=self.separator, stop=stop, **self.input_kwargs ) if stop is not None: # I believe this is required since the stop tokens # are not enforced by the human themselves user_input = enforce_stop_tokens(user_input, stop) return user_input
[ "{}" ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~memory~kg.py
from typing import Any, Dict, List, Type, Union from langchain.chains.llm import LLMChain from langchain.graphs import NetworkxEntityGraph from langchain.graphs.networkx_graph import KnowledgeTriple, get_entities, parse_triples from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.prompt import ( ENTITY_EXTRACTION_PROMPT, KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT, ) from langchain.memory.utils import get_prompt_input_key from langchain.pydantic_v1 import Field from langchain.schema import BasePromptTemplate from langchain.schema.language_model import BaseLanguageModel from langchain.schema.messages import BaseMessage, SystemMessage, get_buffer_string class ConversationKGMemory(BaseChatMemory): """Knowledge graph conversation memory. Integrates with external knowledge graph to store and retrieve information about knowledge triples in the conversation. """ k: int = 2 human_prefix: str = "Human" ai_prefix: str = "AI" kg: NetworkxEntityGraph = Field(default_factory=NetworkxEntityGraph) knowledge_extraction_prompt: BasePromptTemplate = KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT entity_extraction_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT llm: BaseLanguageModel summary_message_cls: Type[BaseMessage] = SystemMessage """Number of previous utterances to include in the context.""" memory_key: str = "history" #: :meta private: def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" entities = self._get_current_entities(inputs) summary_strings = [] for entity in entities: knowledge = self.kg.get_entity_knowledge(entity) if knowledge: summary = f"On {entity}: {'. '.join(knowledge)}." summary_strings.append(summary) context: Union[str, List] if not summary_strings: context = [] if self.return_messages else "" elif self.return_messages: context = [ self.summary_message_cls(content=text) for text in summary_strings ] else: context = "\n".join(summary_strings) return {self.memory_key: context} @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] def _get_prompt_input_key(self, inputs: Dict[str, Any]) -> str: """Get the input key for the prompt.""" if self.input_key is None: return get_prompt_input_key(inputs, self.memory_variables) return self.input_key def _get_prompt_output_key(self, outputs: Dict[str, Any]) -> str: """Get the output key for the prompt.""" if self.output_key is None: if len(outputs) != 1: raise ValueError(f"One output key expected, got {outputs.keys()}") return list(outputs.keys())[0] return self.output_key def get_current_entities(self, input_string: str) -> List[str]: chain = LLMChain(llm=self.llm, prompt=self.entity_extraction_prompt) buffer_string = get_buffer_string( self.chat_memory.messages[-self.k * 2 :], human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) output = chain.predict( history=buffer_string, input=input_string, ) return get_entities(output) def _get_current_entities(self, inputs: Dict[str, Any]) -> List[str]: """Get the current entities in the conversation.""" prompt_input_key = self._get_prompt_input_key(inputs) return self.get_current_entities(inputs[prompt_input_key]) def get_knowledge_triplets(self, input_string: str) -> List[KnowledgeTriple]: chain = LLMChain(llm=self.llm, prompt=self.knowledge_extraction_prompt) buffer_string = get_buffer_string( self.chat_memory.messages[-self.k * 2 :], human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) output = chain.predict( history=buffer_string, input=input_string, verbose=True, ) knowledge = parse_triples(output) return knowledge def _get_and_update_kg(self, inputs: Dict[str, Any]) -> None: """Get and update knowledge graph from the conversation history.""" prompt_input_key = self._get_prompt_input_key(inputs) knowledge = self.get_knowledge_triplets(inputs[prompt_input_key]) for triple in knowledge: self.kg.add_triple(triple) def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" super().save_context(inputs, outputs) self._get_and_update_kg(inputs) def clear(self) -> None: """Clear memory contents.""" super().clear() self.kg.clear()
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~unit_tests~chains~test_qa_with_sources.py
import pytest from langchain.chains.qa_with_sources.base import QAWithSourcesChain from tests.unit_tests.llms.fake_llm import FakeLLM @pytest.mark.parametrize( "text,answer,sources", [ ( "This Agreement is governed by English law.\nSOURCES: 28-pl", "This Agreement is governed by English law.\n", "28-pl", ), ( "This Agreement is governed by English law.\nSources: 28-pl", "This Agreement is governed by English law.\n", "28-pl", ), ( "This Agreement is governed by English law.\nsource: 28-pl", "This Agreement is governed by English law.\n", "28-pl", ), ( "This Agreement is governed by English law.\nSource: 28-pl", "This Agreement is governed by English law.\n", "28-pl", ), ( "According to the sources the agreement is governed by English law.\n" "Source: 28-pl", "According to the sources the agreement is governed by English law.\n", "28-pl", ), ( "This Agreement is governed by English law.\n" "SOURCES: 28-pl\n\n" "QUESTION: Which state/country's law governs the interpretation of the " "contract?\n" "FINAL ANSWER: This Agreement is governed by English law.\n" "SOURCES: 28-pl", "This Agreement is governed by English law.\n", "28-pl", ), ( "The president did not mention Michael Jackson in the provided content.\n" "SOURCES: \n\n" "Note: Since the content provided does not contain any information about " "Michael Jackson, there are no sources to cite for this specific question.", "The president did not mention Michael Jackson in the provided content.\n", "", ), # The following text was generated by gpt-3.5-turbo ( "To diagnose the problem, please answer the following questions and send " "them in one message to IT:\nA1. Are you connected to the office network? " "VPN will not work from the office network.\nA2. Are you sure about your " "login/password?\nA3. Are you using any other VPN (e.g. from a client)?\n" "A4. When was the last time you used the company VPN?\n" "SOURCES: 1\n\n" "ALTERNATIVE OPTION: Another option is to run the VPN in CLI, but keep in " "mind that DNS settings may not work and there may be a need for manual " "modification of the local resolver or /etc/hosts and/or ~/.ssh/config " "files to be able to connect to machines in the company. With the " "appropriate packages installed, the only thing needed to establish " "a connection is to run the command:\nsudo openvpn --config config.ovpn" "\n\nWe will be asked for a username and password - provide the login " "details, the same ones that have been used so far for VPN connection, " "connecting to the company's WiFi, or printers (in the Warsaw office)." "\n\nFinally, just use the VPN connection.\n" "SOURCES: 2\n\n" "ALTERNATIVE OPTION (for Windows): Download the" "OpenVPN client application version 2.6 or newer from the official " "website: https://openvpn.net/community-downloads/\n" "SOURCES: 3", "To diagnose the problem, please answer the following questions and send " "them in one message to IT:\nA1. Are you connected to the office network? " "VPN will not work from the office network.\nA2. Are you sure about your " "login/password?\nA3. Are you using any other VPN (e.g. from a client)?\n" "A4. When was the last time you used the company VPN?\n", "1", ), ], ) def test_spliting_answer_into_answer_and_sources( text: str, answer: str, sources: str ) -> None: qa_chain = QAWithSourcesChain.from_llm(FakeLLM()) generated_answer, generated_sources = qa_chain._split_sources(text) assert generated_answer == answer assert generated_sources == sources
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~storage~_lc_store.py
"""Create a key-value store for any langchain serializable object.""" from typing import Callable, Optional from langchain.load.dump import dumps from langchain.load.load import loads from langchain.load.serializable import Serializable from langchain.schema import BaseStore, Document from langchain.storage.encoder_backed import EncoderBackedStore def _dump_as_bytes(obj: Serializable) -> bytes: """Return a bytes representation of a document.""" return dumps(obj).encode("utf-8") def _dump_document_as_bytes(obj: Document) -> bytes: """Return a bytes representation of a document.""" if not isinstance(obj, Document): raise TypeError("Expected a Document instance") return dumps(obj).encode("utf-8") def _load_document_from_bytes(serialized: bytes) -> Document: """Return a document from a bytes representation.""" obj = loads(serialized.decode("utf-8")) if not isinstance(obj, Document): raise TypeError(f"Expected a Document instance. Got {type(obj)}") return obj def _load_from_bytes(serialized: bytes) -> Serializable: """Return a document from a bytes representation.""" return loads(serialized.decode("utf-8")) def _identity(x: str) -> str: """Return the same object.""" return x # PUBLIC API def create_lc_store( store: BaseStore[str, bytes], *, key_encoder: Optional[Callable[[str], str]] = None, ) -> BaseStore[str, Serializable]: """Create a store for langchain serializable objects from a bytes store. Args: store: A bytes store to use as the underlying store. key_encoder: A function to encode keys; if None uses identity function. Returns: A key-value store for documents. """ return EncoderBackedStore( store, key_encoder or _identity, _dump_as_bytes, _load_from_bytes, ) def create_kv_docstore( store: BaseStore[str, bytes], *, key_encoder: Optional[Callable[[str], str]] = None, ) -> BaseStore[str, Document]: """Create a store for langchain Document objects from a bytes store. This store does run time type checking to ensure that the values are Document objects. Args: store: A bytes store to use as the underlying store. key_encoder: A function to encode keys; if None uses identity function. Returns: A key-value store for documents. """ return EncoderBackedStore( store, key_encoder or _identity, _dump_document_as_bytes, _load_document_from_bytes, )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~callbacks~wandb_callback.py
import json import tempfile from copy import deepcopy from pathlib import Path from typing import Any, Dict, List, Optional, Sequence, Union from langchain.callbacks.base import BaseCallbackHandler from langchain.callbacks.utils import ( BaseMetadataCallbackHandler, flatten_dict, hash_string, import_pandas, import_spacy, import_textstat, ) from langchain.schema import AgentAction, AgentFinish, LLMResult def import_wandb() -> Any: """Import the wandb python package and raise an error if it is not installed.""" try: import wandb # noqa: F401 except ImportError: raise ImportError( "To use the wandb callback manager you need to have the `wandb` python " "package installed. Please install it with `pip install wandb`" ) return wandb def load_json_to_dict(json_path: Union[str, Path]) -> dict: """Load json file to a dictionary. Parameters: json_path (str): The path to the json file. Returns: (dict): The dictionary representation of the json file. """ with open(json_path, "r") as f: data = json.load(f) return data def analyze_text( text: str, complexity_metrics: bool = True, visualize: bool = True, nlp: Any = None, output_dir: Optional[Union[str, Path]] = None, ) -> dict: """Analyze text using textstat and spacy. Parameters: text (str): The text to analyze. complexity_metrics (bool): Whether to compute complexity metrics. visualize (bool): Whether to visualize the text. nlp (spacy.lang): The spacy language model to use for visualization. output_dir (str): The directory to save the visualization files to. Returns: (dict): A dictionary containing the complexity metrics and visualization files serialized in a wandb.Html element. """ resp = {} textstat = import_textstat() wandb = import_wandb() spacy = import_spacy() if complexity_metrics: text_complexity_metrics = { "flesch_reading_ease": textstat.flesch_reading_ease(text), "flesch_kincaid_grade": textstat.flesch_kincaid_grade(text), "smog_index": textstat.smog_index(text), "coleman_liau_index": textstat.coleman_liau_index(text), "automated_readability_index": textstat.automated_readability_index(text), "dale_chall_readability_score": textstat.dale_chall_readability_score(text), "difficult_words": textstat.difficult_words(text), "linsear_write_formula": textstat.linsear_write_formula(text), "gunning_fog": textstat.gunning_fog(text), "text_standard": textstat.text_standard(text), "fernandez_huerta": textstat.fernandez_huerta(text), "szigriszt_pazos": textstat.szigriszt_pazos(text), "gutierrez_polini": textstat.gutierrez_polini(text), "crawford": textstat.crawford(text), "gulpease_index": textstat.gulpease_index(text), "osman": textstat.osman(text), } resp.update(text_complexity_metrics) if visualize and nlp and output_dir is not None: doc = nlp(text) dep_out = spacy.displacy.render( # type: ignore doc, style="dep", jupyter=False, page=True ) dep_output_path = Path(output_dir, hash_string(f"dep-{text}") + ".html") dep_output_path.open("w", encoding="utf-8").write(dep_out) ent_out = spacy.displacy.render( # type: ignore doc, style="ent", jupyter=False, page=True ) ent_output_path = Path(output_dir, hash_string(f"ent-{text}") + ".html") ent_output_path.open("w", encoding="utf-8").write(ent_out) text_visualizations = { "dependency_tree": wandb.Html(str(dep_output_path)), "entities": wandb.Html(str(ent_output_path)), } resp.update(text_visualizations) return resp def construct_html_from_prompt_and_generation(prompt: str, generation: str) -> Any: """Construct an html element from a prompt and a generation. Parameters: prompt (str): The prompt. generation (str): The generation. Returns: (wandb.Html): The html element.""" wandb = import_wandb() formatted_prompt = prompt.replace("\n", "<br>") formatted_generation = generation.replace("\n", "<br>") return wandb.Html( f""" <p style="color:black;">{formatted_prompt}:</p> <blockquote> <p style="color:green;"> {formatted_generation} </p> </blockquote> """, inject=False, ) class WandbCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler): """Callback Handler that logs to Weights and Biases. Parameters: job_type (str): The type of job. project (str): The project to log to. entity (str): The entity to log to. tags (list): The tags to log. group (str): The group to log to. name (str): The name of the run. notes (str): The notes to log. visualize (bool): Whether to visualize the run. complexity_metrics (bool): Whether to log complexity metrics. stream_logs (bool): Whether to stream callback actions to W&B This handler will utilize the associated callback method called and formats the input of each callback function with metadata regarding the state of LLM run, and adds the response to the list of records for both the {method}_records and action. It then logs the response using the run.log() method to Weights and Biases. """ def __init__( self, job_type: Optional[str] = None, project: Optional[str] = "langchain_callback_demo", entity: Optional[str] = None, tags: Optional[Sequence] = None, group: Optional[str] = None, name: Optional[str] = None, notes: Optional[str] = None, visualize: bool = False, complexity_metrics: bool = False, stream_logs: bool = False, ) -> None: """Initialize callback handler.""" wandb = import_wandb() import_pandas() import_textstat() spacy = import_spacy() super().__init__() self.job_type = job_type self.project = project self.entity = entity self.tags = tags self.group = group self.name = name self.notes = notes self.visualize = visualize self.complexity_metrics = complexity_metrics self.stream_logs = stream_logs self.temp_dir = tempfile.TemporaryDirectory() self.run: wandb.sdk.wandb_run.Run = wandb.init( # type: ignore job_type=self.job_type, project=self.project, entity=self.entity, tags=self.tags, group=self.group, name=self.name, notes=self.notes, ) warning = ( "DEPRECATION: The `WandbCallbackHandler` will soon be deprecated in favor " "of the `WandbTracer`. Please update your code to use the `WandbTracer` " "instead." ) wandb.termwarn( warning, repeat=False, ) self.callback_columns: list = [] self.action_records: list = [] self.complexity_metrics = complexity_metrics self.visualize = visualize self.nlp = spacy.load("en_core_web_sm") def _init_resp(self) -> Dict: return {k: None for k in self.callback_columns} def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: """Run when LLM starts.""" self.step += 1 self.llm_starts += 1 self.starts += 1 resp = self._init_resp() resp.update({"action": "on_llm_start"}) resp.update(flatten_dict(serialized)) resp.update(self.get_custom_callback_meta()) for prompt in prompts: prompt_resp = deepcopy(resp) prompt_resp["prompts"] = prompt self.on_llm_start_records.append(prompt_resp) self.action_records.append(prompt_resp) if self.stream_logs: self.run.log(prompt_resp) def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Run when LLM generates a new token.""" self.step += 1 self.llm_streams += 1 resp = self._init_resp() resp.update({"action": "on_llm_new_token", "token": token}) resp.update(self.get_custom_callback_meta()) self.on_llm_token_records.append(resp) self.action_records.append(resp) if self.stream_logs: self.run.log(resp) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Run when LLM ends running.""" self.step += 1 self.llm_ends += 1 self.ends += 1 resp = self._init_resp() resp.update({"action": "on_llm_end"}) resp.update(flatten_dict(response.llm_output or {})) resp.update(self.get_custom_callback_meta()) for generations in response.generations: for generation in generations: generation_resp = deepcopy(resp) generation_resp.update(flatten_dict(generation.dict())) generation_resp.update( analyze_text( generation.text, complexity_metrics=self.complexity_metrics, visualize=self.visualize, nlp=self.nlp, output_dir=self.temp_dir.name, ) ) self.on_llm_end_records.append(generation_resp) self.action_records.append(generation_resp) if self.stream_logs: self.run.log(generation_resp) def on_llm_error(self, error: BaseException, **kwargs: Any) -> None: """Run when LLM errors.""" self.step += 1 self.errors += 1 def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any ) -> None: """Run when chain starts running.""" self.step += 1 self.chain_starts += 1 self.starts += 1 resp = self._init_resp() resp.update({"action": "on_chain_start"}) resp.update(flatten_dict(serialized)) resp.update(self.get_custom_callback_meta()) chain_input = inputs["input"] if isinstance(chain_input, str): input_resp = deepcopy(resp) input_resp["input"] = chain_input self.on_chain_start_records.append(input_resp) self.action_records.append(input_resp) if self.stream_logs: self.run.log(input_resp) elif isinstance(chain_input, list): for inp in chain_input: input_resp = deepcopy(resp) input_resp.update(inp) self.on_chain_start_records.append(input_resp) self.action_records.append(input_resp) if self.stream_logs: self.run.log(input_resp) else: raise ValueError("Unexpected data format provided!") def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """Run when chain ends running.""" self.step += 1 self.chain_ends += 1 self.ends += 1 resp = self._init_resp() resp.update({"action": "on_chain_end", "outputs": outputs["output"]}) resp.update(self.get_custom_callback_meta()) self.on_chain_end_records.append(resp) self.action_records.append(resp) if self.stream_logs: self.run.log(resp) def on_chain_error(self, error: BaseException, **kwargs: Any) -> None: """Run when chain errors.""" self.step += 1 self.errors += 1 def on_tool_start( self, serialized: Dict[str, Any], input_str: str, **kwargs: Any ) -> None: """Run when tool starts running.""" self.step += 1 self.tool_starts += 1 self.starts += 1 resp = self._init_resp() resp.update({"action": "on_tool_start", "input_str": input_str}) resp.update(flatten_dict(serialized)) resp.update(self.get_custom_callback_meta()) self.on_tool_start_records.append(resp) self.action_records.append(resp) if self.stream_logs: self.run.log(resp) def on_tool_end(self, output: str, **kwargs: Any) -> None: """Run when tool ends running.""" self.step += 1 self.tool_ends += 1 self.ends += 1 resp = self._init_resp() resp.update({"action": "on_tool_end", "output": output}) resp.update(self.get_custom_callback_meta()) self.on_tool_end_records.append(resp) self.action_records.append(resp) if self.stream_logs: self.run.log(resp) def on_tool_error(self, error: BaseException, **kwargs: Any) -> None: """Run when tool errors.""" self.step += 1 self.errors += 1 def on_text(self, text: str, **kwargs: Any) -> None: """ Run when agent is ending. """ self.step += 1 self.text_ctr += 1 resp = self._init_resp() resp.update({"action": "on_text", "text": text}) resp.update(self.get_custom_callback_meta()) self.on_text_records.append(resp) self.action_records.append(resp) if self.stream_logs: self.run.log(resp) def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None: """Run when agent ends running.""" self.step += 1 self.agent_ends += 1 self.ends += 1 resp = self._init_resp() resp.update( { "action": "on_agent_finish", "output": finish.return_values["output"], "log": finish.log, } ) resp.update(self.get_custom_callback_meta()) self.on_agent_finish_records.append(resp) self.action_records.append(resp) if self.stream_logs: self.run.log(resp) def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: """Run on agent action.""" self.step += 1 self.tool_starts += 1 self.starts += 1 resp = self._init_resp() resp.update( { "action": "on_agent_action", "tool": action.tool, "tool_input": action.tool_input, "log": action.log, } ) resp.update(self.get_custom_callback_meta()) self.on_agent_action_records.append(resp) self.action_records.append(resp) if self.stream_logs: self.run.log(resp) def _create_session_analysis_df(self) -> Any: """Create a dataframe with all the information from the session.""" pd = import_pandas() on_llm_start_records_df = pd.DataFrame(self.on_llm_start_records) on_llm_end_records_df = pd.DataFrame(self.on_llm_end_records) llm_input_prompts_df = ( on_llm_start_records_df[["step", "prompts", "name"]] .dropna(axis=1) .rename({"step": "prompt_step"}, axis=1) ) complexity_metrics_columns = [] visualizations_columns = [] if self.complexity_metrics: complexity_metrics_columns = [ "flesch_reading_ease", "flesch_kincaid_grade", "smog_index", "coleman_liau_index", "automated_readability_index", "dale_chall_readability_score", "difficult_words", "linsear_write_formula", "gunning_fog", "text_standard", "fernandez_huerta", "szigriszt_pazos", "gutierrez_polini", "crawford", "gulpease_index", "osman", ] if self.visualize: visualizations_columns = ["dependency_tree", "entities"] llm_outputs_df = ( on_llm_end_records_df[ [ "step", "text", "token_usage_total_tokens", "token_usage_prompt_tokens", "token_usage_completion_tokens", ] + complexity_metrics_columns + visualizations_columns ] .dropna(axis=1) .rename({"step": "output_step", "text": "output"}, axis=1) ) session_analysis_df = pd.concat([llm_input_prompts_df, llm_outputs_df], axis=1) session_analysis_df["chat_html"] = session_analysis_df[ ["prompts", "output"] ].apply( lambda row: construct_html_from_prompt_and_generation( row["prompts"], row["output"] ), axis=1, ) return session_analysis_df def flush_tracker( self, langchain_asset: Any = None, reset: bool = True, finish: bool = False, job_type: Optional[str] = None, project: Optional[str] = None, entity: Optional[str] = None, tags: Optional[Sequence] = None, group: Optional[str] = None, name: Optional[str] = None, notes: Optional[str] = None, visualize: Optional[bool] = None, complexity_metrics: Optional[bool] = None, ) -> None: """Flush the tracker and reset the session. Args: langchain_asset: The langchain asset to save. reset: Whether to reset the session. finish: Whether to finish the run. job_type: The job type. project: The project. entity: The entity. tags: The tags. group: The group. name: The name. notes: The notes. visualize: Whether to visualize. complexity_metrics: Whether to compute complexity metrics. Returns: None """ pd = import_pandas() wandb = import_wandb() action_records_table = wandb.Table(dataframe=pd.DataFrame(self.action_records)) session_analysis_table = wandb.Table( dataframe=self._create_session_analysis_df() ) self.run.log( { "action_records": action_records_table, "session_analysis": session_analysis_table, } ) if langchain_asset: langchain_asset_path = Path(self.temp_dir.name, "model.json") model_artifact = wandb.Artifact(name="model", type="model") model_artifact.add(action_records_table, name="action_records") model_artifact.add(session_analysis_table, name="session_analysis") try: langchain_asset.save(langchain_asset_path) model_artifact.add_file(str(langchain_asset_path)) model_artifact.metadata = load_json_to_dict(langchain_asset_path) except ValueError: langchain_asset.save_agent(langchain_asset_path) model_artifact.add_file(str(langchain_asset_path)) model_artifact.metadata = load_json_to_dict(langchain_asset_path) except NotImplementedError as e: print("Could not save model.") print(repr(e)) pass self.run.log_artifact(model_artifact) if finish or reset: self.run.finish() self.temp_dir.cleanup() self.reset_callback_meta() if reset: self.__init__( # type: ignore job_type=job_type if job_type else self.job_type, project=project if project else self.project, entity=entity if entity else self.entity, tags=tags if tags else self.tags, group=group if group else self.group, name=name if name else self.name, notes=notes if notes else self.notes, visualize=visualize if visualize else self.visualize, complexity_metrics=complexity_metrics if complexity_metrics else self.complexity_metrics, )
[ "name", "prompt_step", "\n" ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chains~graph_qa~kuzu.py
"""Question answering over a graph.""" from __future__ import annotations from typing import Any, Dict, List, Optional from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.graph_qa.prompts import CYPHER_QA_PROMPT, KUZU_GENERATION_PROMPT from langchain.chains.llm import LLMChain from langchain.graphs.kuzu_graph import KuzuGraph from langchain.pydantic_v1 import Field from langchain.schema import BasePromptTemplate from langchain.schema.language_model import BaseLanguageModel class KuzuQAChain(Chain): """Question-answering against a graph by generating Cypher statements for Kùzu. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """ graph: KuzuGraph = Field(exclude=True) cypher_generation_chain: LLMChain qa_chain: LLMChain input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the output keys. :meta private: """ _output_keys = [self.output_key] return _output_keys @classmethod def from_llm( cls, llm: BaseLanguageModel, *, qa_prompt: BasePromptTemplate = CYPHER_QA_PROMPT, cypher_prompt: BasePromptTemplate = KUZU_GENERATION_PROMPT, **kwargs: Any, ) -> KuzuQAChain: """Initialize from LLM.""" qa_chain = LLMChain(llm=llm, prompt=qa_prompt) cypher_generation_chain = LLMChain(llm=llm, prompt=cypher_prompt) return cls( qa_chain=qa_chain, cypher_generation_chain=cypher_generation_chain, **kwargs, ) def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: """Generate Cypher statement, use it to look up in db and answer question.""" _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() question = inputs[self.input_key] generated_cypher = self.cypher_generation_chain.run( {"question": question, "schema": self.graph.get_schema}, callbacks=callbacks ) _run_manager.on_text("Generated Cypher:", end="\n", verbose=self.verbose) _run_manager.on_text( generated_cypher, color="green", end="\n", verbose=self.verbose ) context = self.graph.query(generated_cypher) _run_manager.on_text("Full Context:", end="\n", verbose=self.verbose) _run_manager.on_text( str(context), color="green", end="\n", verbose=self.verbose ) result = self.qa_chain( {"question": question, "context": context}, callbacks=callbacks, ) return {self.output_key: result[self.qa_chain.output_key]}
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~dataframe.py
from typing import Any, Iterator, List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader class BaseDataFrameLoader(BaseLoader): def __init__(self, data_frame: Any, *, page_content_column: str = "text"): """Initialize with dataframe object. Args: data_frame: DataFrame object. page_content_column: Name of the column containing the page content. Defaults to "text". """ self.data_frame = data_frame self.page_content_column = page_content_column def lazy_load(self) -> Iterator[Document]: """Lazy load records from dataframe.""" for _, row in self.data_frame.iterrows(): text = row[self.page_content_column] metadata = row.to_dict() metadata.pop(self.page_content_column) yield Document(page_content=text, metadata=metadata) def load(self) -> List[Document]: """Load full dataframe.""" return list(self.lazy_load()) class DataFrameLoader(BaseDataFrameLoader): """Load `Pandas` DataFrame.""" def __init__(self, data_frame: Any, page_content_column: str = "text"): """Initialize with dataframe object. Args: data_frame: Pandas DataFrame object. page_content_column: Name of the column containing the page content. Defaults to "text". """ try: import pandas as pd except ImportError as e: raise ImportError( "Unable to import pandas, please install with `pip install pandas`." ) from e if not isinstance(data_frame, pd.DataFrame): raise ValueError( f"Expected data_frame to be a pd.DataFrame, got {type(data_frame)}" ) super().__init__(data_frame, page_content_column=page_content_column)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~vectorstores~timescalevector.py
"""VectorStore wrapper around a Postgres-TimescaleVector database.""" from __future__ import annotations import enum import logging import uuid from datetime import timedelta from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Tuple, Type, Union, ) from langchain.schema.document import Document from langchain.schema.embeddings import Embeddings from langchain.schema.vectorstore import VectorStore from langchain.utils import get_from_dict_or_env from langchain.vectorstores.utils import DistanceStrategy if TYPE_CHECKING: from timescale_vector import Predicates DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.COSINE ADA_TOKEN_COUNT = 1536 _LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain_store" class TimescaleVector(VectorStore): """VectorStore implementation using the timescale vector client to store vectors in Postgres. To use, you should have the ``timescale_vector`` python package installed. Args: service_url: Service url on timescale cloud. embedding: Any embedding function implementing `langchain.embeddings.base.Embeddings` interface. collection_name: The name of the collection to use. (default: langchain_store) This will become the table name used for the collection. distance_strategy: The distance strategy to use. (default: COSINE) pre_delete_collection: If True, will delete the collection if it exists. (default: False). Useful for testing. Example: .. code-block:: python from langchain.vectorstores import TimescaleVector from langchain.embeddings.openai import OpenAIEmbeddings SERVICE_URL = "postgres://tsdbadmin:<password>@<id>.tsdb.cloud.timescale.com:<port>/tsdb?sslmode=require" COLLECTION_NAME = "state_of_the_union_test" embeddings = OpenAIEmbeddings() vectorestore = TimescaleVector.from_documents( embedding=embeddings, documents=docs, collection_name=COLLECTION_NAME, service_url=SERVICE_URL, ) """ # noqa: E501 def __init__( self, service_url: str, embedding: Embeddings, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, num_dimensions: int = ADA_TOKEN_COUNT, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, pre_delete_collection: bool = False, logger: Optional[logging.Logger] = None, relevance_score_fn: Optional[Callable[[float], float]] = None, time_partition_interval: Optional[timedelta] = None, ) -> None: try: from timescale_vector import client except ImportError: raise ImportError( "Could not import timescale_vector python package. " "Please install it with `pip install timescale-vector`." ) self.service_url = service_url self.embedding = embedding self.collection_name = collection_name self.num_dimensions = num_dimensions self._distance_strategy = distance_strategy self.pre_delete_collection = pre_delete_collection self.logger = logger or logging.getLogger(__name__) self.override_relevance_score_fn = relevance_score_fn self._time_partition_interval = time_partition_interval self.sync_client = client.Sync( self.service_url, self.collection_name, self.num_dimensions, self._distance_strategy.value.lower(), time_partition_interval=self._time_partition_interval, ) self.async_client = client.Async( self.service_url, self.collection_name, self.num_dimensions, self._distance_strategy.value.lower(), time_partition_interval=self._time_partition_interval, ) self.__post_init__() def __post_init__( self, ) -> None: """ Initialize the store. """ self.sync_client.create_tables() if self.pre_delete_collection: self.sync_client.delete_all() @property def embeddings(self) -> Embeddings: return self.embedding def drop_tables(self) -> None: self.sync_client.drop_table() @classmethod def __from( cls, texts: List[str], embeddings: List[List[float]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, service_url: Optional[str] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> TimescaleVector: num_dimensions = len(embeddings[0]) if ids is None: ids = [str(uuid.uuid1()) for _ in texts] if not metadatas: metadatas = [{} for _ in texts] if service_url is None: service_url = cls.get_service_url(kwargs) store = cls( service_url=service_url, num_dimensions=num_dimensions, collection_name=collection_name, embedding=embedding, distance_strategy=distance_strategy, pre_delete_collection=pre_delete_collection, **kwargs, ) store.add_embeddings( texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs ) return store @classmethod async def __afrom( cls, texts: List[str], embeddings: List[List[float]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, service_url: Optional[str] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> TimescaleVector: num_dimensions = len(embeddings[0]) if ids is None: ids = [str(uuid.uuid1()) for _ in texts] if not metadatas: metadatas = [{} for _ in texts] if service_url is None: service_url = cls.get_service_url(kwargs) store = cls( service_url=service_url, num_dimensions=num_dimensions, collection_name=collection_name, embedding=embedding, distance_strategy=distance_strategy, pre_delete_collection=pre_delete_collection, **kwargs, ) await store.aadd_embeddings( texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs ) return store def add_embeddings( self, texts: Iterable[str], embeddings: List[List[float]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Add embeddings to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. embeddings: List of list of embedding vectors. metadatas: List of metadatas associated with the texts. kwargs: vectorstore specific parameters """ if ids is None: ids = [str(uuid.uuid1()) for _ in texts] if not metadatas: metadatas = [{} for _ in texts] records = list(zip(ids, metadatas, texts, embeddings)) self.sync_client.upsert(records) return ids async def aadd_embeddings( self, texts: Iterable[str], embeddings: List[List[float]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Add embeddings to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. embeddings: List of list of embedding vectors. metadatas: List of metadatas associated with the texts. kwargs: vectorstore specific parameters """ if ids is None: ids = [str(uuid.uuid1()) for _ in texts] if not metadatas: metadatas = [{} for _ in texts] records = list(zip(ids, metadatas, texts, embeddings)) await self.async_client.upsert(records) return ids def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. kwargs: vectorstore specific parameters Returns: List of ids from adding the texts into the vectorstore. """ embeddings = self.embedding.embed_documents(list(texts)) return self.add_embeddings( texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs ) async def aadd_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. kwargs: vectorstore specific parameters Returns: List of ids from adding the texts into the vectorstore. """ embeddings = self.embedding.embed_documents(list(texts)) return await self.aadd_embeddings( texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs ) def similarity_search( self, query: str, k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search with TimescaleVector with distance. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query. """ embedding = self.embedding.embed_query(text=query) return self.similarity_search_by_vector( embedding=embedding, k=k, filter=filter, predicates=predicates, **kwargs, ) async def asimilarity_search( self, query: str, k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search with TimescaleVector with distance. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query. """ embedding = self.embedding.embed_query(text=query) return await self.asimilarity_search_by_vector( embedding=embedding, k=k, filter=filter, predicates=predicates, **kwargs, ) def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query and score for each """ embedding = self.embedding.embed_query(query) docs = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, filter=filter, predicates=predicates, **kwargs, ) return docs async def asimilarity_search_with_score( self, query: str, k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query and score for each """ embedding = self.embedding.embed_query(query) return await self.asimilarity_search_with_score_by_vector( embedding=embedding, k=k, filter=filter, predicates=predicates, **kwargs, ) def date_to_range_filter(self, **kwargs: Any) -> Any: constructor_args = { key: kwargs[key] for key in [ "start_date", "end_date", "time_delta", "start_inclusive", "end_inclusive", ] if key in kwargs } if not constructor_args or len(constructor_args) == 0: return None try: from timescale_vector import client except ImportError: raise ImportError( "Could not import timescale_vector python package. " "Please install it with `pip install timescale-vector`." ) return client.UUIDTimeRange(**constructor_args) def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: try: from timescale_vector import client except ImportError: raise ImportError( "Could not import timescale_vector python package. " "Please install it with `pip install timescale-vector`." ) results = self.sync_client.search( embedding, limit=k, filter=filter, predicates=predicates, uuid_time_filter=self.date_to_range_filter(**kwargs), ) docs = [ ( Document( page_content=result[client.SEARCH_RESULT_CONTENTS_IDX], metadata=result[client.SEARCH_RESULT_METADATA_IDX], ), result[client.SEARCH_RESULT_DISTANCE_IDX], ) for result in results ] return docs async def asimilarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: try: from timescale_vector import client except ImportError: raise ImportError( "Could not import timescale_vector python package. " "Please install it with `pip install timescale-vector`." ) results = await self.async_client.search( embedding, limit=k, filter=filter, predicates=predicates, uuid_time_filter=self.date_to_range_filter(**kwargs), ) docs = [ ( Document( page_content=result[client.SEARCH_RESULT_CONTENTS_IDX], metadata=result[client.SEARCH_RESULT_METADATA_IDX], ), result[client.SEARCH_RESULT_DISTANCE_IDX], ) for result in results ] return docs def similarity_search_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query vector. """ docs_and_scores = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, filter=filter, predicates=predicates, **kwargs ) return [doc for doc, _ in docs_and_scores] async def asimilarity_search_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query vector. """ docs_and_scores = await self.asimilarity_search_with_score_by_vector( embedding=embedding, k=k, filter=filter, predicates=predicates, **kwargs ) return [doc for doc, _ in docs_and_scores] @classmethod def from_texts( cls: Type[TimescaleVector], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> TimescaleVector: """ Return VectorStore initialized from texts and embeddings. Postgres connection string is required "Either pass it as a parameter or set the TIMESCALE_SERVICE_URL environment variable. """ embeddings = embedding.embed_documents(list(texts)) return cls.__from( texts, embeddings, embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, distance_strategy=distance_strategy, pre_delete_collection=pre_delete_collection, **kwargs, ) @classmethod async def afrom_texts( cls: Type[TimescaleVector], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> TimescaleVector: """ Return VectorStore initialized from texts and embeddings. Postgres connection string is required "Either pass it as a parameter or set the TIMESCALE_SERVICE_URL environment variable. """ embeddings = embedding.embed_documents(list(texts)) return await cls.__afrom( texts, embeddings, embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, distance_strategy=distance_strategy, pre_delete_collection=pre_delete_collection, **kwargs, ) @classmethod def from_embeddings( cls, text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> TimescaleVector: """Construct TimescaleVector wrapper from raw documents and pre- generated embeddings. Return VectorStore initialized from documents and embeddings. Postgres connection string is required "Either pass it as a parameter or set the TIMESCALE_SERVICE_URL environment variable. Example: .. code-block:: python from langchain.vectorstores import TimescaleVector from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) tvs = TimescaleVector.from_embeddings(text_embedding_pairs, embeddings) """ texts = [t[0] for t in text_embeddings] embeddings = [t[1] for t in text_embeddings] return cls.__from( texts, embeddings, embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, distance_strategy=distance_strategy, pre_delete_collection=pre_delete_collection, **kwargs, ) @classmethod async def afrom_embeddings( cls, text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> TimescaleVector: """Construct TimescaleVector wrapper from raw documents and pre- generated embeddings. Return VectorStore initialized from documents and embeddings. Postgres connection string is required "Either pass it as a parameter or set the TIMESCALE_SERVICE_URL environment variable. Example: .. code-block:: python from langchain.vectorstores import TimescaleVector from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) tvs = TimescaleVector.from_embeddings(text_embedding_pairs, embeddings) """ texts = [t[0] for t in text_embeddings] embeddings = [t[1] for t in text_embeddings] return await cls.__afrom( texts, embeddings, embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, distance_strategy=distance_strategy, pre_delete_collection=pre_delete_collection, **kwargs, ) @classmethod def from_existing_index( cls: Type[TimescaleVector], embedding: Embeddings, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, pre_delete_collection: bool = False, **kwargs: Any, ) -> TimescaleVector: """ Get instance of an existing TimescaleVector store.This method will return the instance of the store without inserting any new embeddings """ service_url = cls.get_service_url(kwargs) store = cls( service_url=service_url, collection_name=collection_name, embedding=embedding, distance_strategy=distance_strategy, pre_delete_collection=pre_delete_collection, ) return store @classmethod def get_service_url(cls, kwargs: Dict[str, Any]) -> str: service_url: str = get_from_dict_or_env( data=kwargs, key="service_url", env_key="TIMESCALE_SERVICE_URL", ) if not service_url: raise ValueError( "Postgres connection string is required" "Either pass it as a parameter" "or set the TIMESCALE_SERVICE_URL environment variable." ) return service_url @classmethod def service_url_from_db_params( cls, host: str, port: int, database: str, user: str, password: str, ) -> str: """Return connection string from database parameters.""" return f"postgresql://{user}:{password}@{host}:{port}/{database}" def _select_relevance_score_fn(self) -> Callable[[float], float]: """ The 'correct' relevance function may differ depending on a few things, including: - the distance / similarity metric used by the VectorStore - the scale of your embeddings (OpenAI's are unit normed. Many others are not!) - embedding dimensionality - etc. """ if self.override_relevance_score_fn is not None: return self.override_relevance_score_fn # Default strategy is to rely on distance strategy provided # in vectorstore constructor if self._distance_strategy == DistanceStrategy.COSINE: return self._cosine_relevance_score_fn elif self._distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE: return self._euclidean_relevance_score_fn elif self._distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT: return self._max_inner_product_relevance_score_fn else: raise ValueError( "No supported normalization function" f" for distance_strategy of {self._distance_strategy}." "Consider providing relevance_score_fn to TimescaleVector constructor." ) def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]: """Delete by vector ID or other criteria. Args: ids: List of ids to delete. **kwargs: Other keyword arguments that subclasses might use. Returns: Optional[bool]: True if deletion is successful, False otherwise, None if not implemented. """ if ids is None: raise ValueError("No ids provided to delete.") self.sync_client.delete_by_ids(ids) return True # todo should this be part of delete|()? def delete_by_metadata( self, filter: Union[Dict[str, str], List[Dict[str, str]]], **kwargs: Any ) -> Optional[bool]: """Delete by vector ID or other criteria. Args: ids: List of ids to delete. **kwargs: Other keyword arguments that subclasses might use. Returns: Optional[bool]: True if deletion is successful, False otherwise, None if not implemented. """ self.sync_client.delete_by_metadata(filter) return True class IndexType(str, enum.Enum): """Enumerator for the supported Index types""" TIMESCALE_VECTOR = "tsv" PGVECTOR_IVFFLAT = "ivfflat" PGVECTOR_HNSW = "hnsw" DEFAULT_INDEX_TYPE = IndexType.TIMESCALE_VECTOR def create_index( self, index_type: Union[IndexType, str] = DEFAULT_INDEX_TYPE, **kwargs: Any ) -> None: try: from timescale_vector import client except ImportError: raise ImportError( "Could not import timescale_vector python package. " "Please install it with `pip install timescale-vector`." ) index_type = ( index_type.value if isinstance(index_type, self.IndexType) else index_type ) if index_type == self.IndexType.PGVECTOR_IVFFLAT.value: self.sync_client.create_embedding_index(client.IvfflatIndex(**kwargs)) if index_type == self.IndexType.PGVECTOR_HNSW.value: self.sync_client.create_embedding_index(client.HNSWIndex(**kwargs)) if index_type == self.IndexType.TIMESCALE_VECTOR.value: self.sync_client.create_embedding_index( client.TimescaleVectorIndex(**kwargs) ) def drop_index(self) -> None: self.sync_client.drop_embedding_index()
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~merge.py
from typing import Iterator, List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader class MergedDataLoader(BaseLoader): """Merge documents from a list of loaders""" def __init__(self, loaders: List): """Initialize with a list of loaders""" self.loaders = loaders def lazy_load(self) -> Iterator[Document]: """Lazy load docs from each individual loader.""" for loader in self.loaders: # Check if lazy_load is implemented try: data = loader.lazy_load() except NotImplementedError: data = loader.load() for document in data: yield document def load(self) -> List[Document]: """Load docs.""" return list(self.lazy_load())
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~vectorstores~_pgvector_data_models.py
from typing import Optional, Tuple import sqlalchemy from pgvector.sqlalchemy import Vector from sqlalchemy.dialects.postgresql import JSON, UUID from sqlalchemy.orm import Session, relationship from langchain.vectorstores.pgvector import BaseModel class CollectionStore(BaseModel): """Collection store.""" __tablename__ = "langchain_pg_collection" name = sqlalchemy.Column(sqlalchemy.String) cmetadata = sqlalchemy.Column(JSON) embeddings = relationship( "EmbeddingStore", back_populates="collection", passive_deletes=True, ) @classmethod def get_by_name(cls, session: Session, name: str) -> Optional["CollectionStore"]: return session.query(cls).filter(cls.name == name).first() # type: ignore @classmethod def get_or_create( cls, session: Session, name: str, cmetadata: Optional[dict] = None, ) -> Tuple["CollectionStore", bool]: """ Get or create a collection. Returns [Collection, bool] where the bool is True if the collection was created. """ created = False collection = cls.get_by_name(session, name) if collection: return collection, created collection = cls(name=name, cmetadata=cmetadata) session.add(collection) session.commit() created = True return collection, created class EmbeddingStore(BaseModel): """Embedding store.""" __tablename__ = "langchain_pg_embedding" collection_id = sqlalchemy.Column( UUID(as_uuid=True), sqlalchemy.ForeignKey( f"{CollectionStore.__tablename__}.uuid", ondelete="CASCADE", ), ) collection = relationship(CollectionStore, back_populates="embeddings") embedding: Vector = sqlalchemy.Column(Vector(None)) document = sqlalchemy.Column(sqlalchemy.String, nullable=True) cmetadata = sqlalchemy.Column(JSON, nullable=True) # custom_id : any user defined id custom_id = sqlalchemy.Column(sqlalchemy.String, nullable=True)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~vectorstores~analyticdb.py
from __future__ import annotations import logging import uuid from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Type from sqlalchemy import REAL, Column, String, Table, create_engine, insert, text from sqlalchemy.dialects.postgresql import ARRAY, JSON, TEXT try: from sqlalchemy.orm import declarative_base except ImportError: from sqlalchemy.ext.declarative import declarative_base from langchain.docstore.document import Document from langchain.schema.embeddings import Embeddings from langchain.schema.vectorstore import VectorStore from langchain.utils import get_from_dict_or_env _LANGCHAIN_DEFAULT_EMBEDDING_DIM = 1536 _LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain_document" Base = declarative_base() # type: Any class AnalyticDB(VectorStore): """`AnalyticDB` (distributed PostgreSQL) vector store. AnalyticDB is a distributed full postgresql syntax cloud-native database. - `connection_string` is a postgres connection string. - `embedding_function` any embedding function implementing `langchain.embeddings.base.Embeddings` interface. - `collection_name` is the name of the collection to use. (default: langchain) - NOTE: This is not the name of the table, but the name of the collection. The tables will be created when initializing the store (if not exists) So, make sure the user has the right permissions to create tables. - `pre_delete_collection` if True, will delete the collection if it exists. (default: False) - Useful for testing. """ def __init__( self, connection_string: str, embedding_function: Embeddings, embedding_dimension: int = _LANGCHAIN_DEFAULT_EMBEDDING_DIM, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, pre_delete_collection: bool = False, logger: Optional[logging.Logger] = None, engine_args: Optional[dict] = None, ) -> None: self.connection_string = connection_string self.embedding_function = embedding_function self.embedding_dimension = embedding_dimension self.collection_name = collection_name self.pre_delete_collection = pre_delete_collection self.logger = logger or logging.getLogger(__name__) self.__post_init__(engine_args) def __post_init__( self, engine_args: Optional[dict] = None, ) -> None: """ Initialize the store. """ _engine_args = engine_args or {} if ( "pool_recycle" not in _engine_args ): # Check if pool_recycle is not in _engine_args _engine_args[ "pool_recycle" ] = 3600 # Set pool_recycle to 3600s if not present self.engine = create_engine(self.connection_string, **_engine_args) self.create_collection() @property def embeddings(self) -> Embeddings: return self.embedding_function def _select_relevance_score_fn(self) -> Callable[[float], float]: return self._euclidean_relevance_score_fn def create_table_if_not_exists(self) -> None: # Define the dynamic table Table( self.collection_name, Base.metadata, Column("id", TEXT, primary_key=True, default=uuid.uuid4), Column("embedding", ARRAY(REAL)), Column("document", String, nullable=True), Column("metadata", JSON, nullable=True), extend_existing=True, ) with self.engine.connect() as conn: with conn.begin(): # Create the table Base.metadata.create_all(conn) # Check if the index exists index_name = f"{self.collection_name}_embedding_idx" index_query = text( f""" SELECT 1 FROM pg_indexes WHERE indexname = '{index_name}'; """ ) result = conn.execute(index_query).scalar() # Create the index if it doesn't exist if not result: index_statement = text( f""" CREATE INDEX {index_name} ON {self.collection_name} USING ann(embedding) WITH ( "dim" = {self.embedding_dimension}, "hnsw_m" = 100 ); """ ) conn.execute(index_statement) def create_collection(self) -> None: if self.pre_delete_collection: self.delete_collection() self.create_table_if_not_exists() def delete_collection(self) -> None: self.logger.debug("Trying to delete collection") drop_statement = text(f"DROP TABLE IF EXISTS {self.collection_name};") with self.engine.connect() as conn: with conn.begin(): conn.execute(drop_statement) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 500, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. kwargs: vectorstore specific parameters Returns: List of ids from adding the texts into the vectorstore. """ if ids is None: ids = [str(uuid.uuid1()) for _ in texts] embeddings = self.embedding_function.embed_documents(list(texts)) if not metadatas: metadatas = [{} for _ in texts] # Define the table schema chunks_table = Table( self.collection_name, Base.metadata, Column("id", TEXT, primary_key=True), Column("embedding", ARRAY(REAL)), Column("document", String, nullable=True), Column("metadata", JSON, nullable=True), extend_existing=True, ) chunks_table_data = [] with self.engine.connect() as conn: with conn.begin(): for document, metadata, chunk_id, embedding in zip( texts, metadatas, ids, embeddings ): chunks_table_data.append( { "id": chunk_id, "embedding": embedding, "document": document, "metadata": metadata, } ) # Execute the batch insert when the batch size is reached if len(chunks_table_data) == batch_size: conn.execute(insert(chunks_table).values(chunks_table_data)) # Clear the chunks_table_data list for the next batch chunks_table_data.clear() # Insert any remaining records that didn't make up a full batch if chunks_table_data: conn.execute(insert(chunks_table).values(chunks_table_data)) return ids def similarity_search( self, query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search with AnalyticDB with distance. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query. """ embedding = self.embedding_function.embed_query(text=query) return self.similarity_search_by_vector( embedding=embedding, k=k, filter=filter, ) def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[dict] = None, ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query and score for each """ embedding = self.embedding_function.embed_query(query) docs = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, filter=filter ) return docs def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[dict] = None, ) -> List[Tuple[Document, float]]: # Add the filter if provided try: from sqlalchemy.engine import Row except ImportError: raise ImportError( "Could not import Row from sqlalchemy.engine. " "Please 'pip install sqlalchemy>=1.4'." ) filter_condition = "" if filter is not None: conditions = [ f"metadata->>{key!r} = {value!r}" for key, value in filter.items() ] filter_condition = f"WHERE {' AND '.join(conditions)}" # Define the base query sql_query = f""" SELECT *, l2_distance(embedding, :embedding) as distance FROM {self.collection_name} {filter_condition} ORDER BY embedding <-> :embedding LIMIT :k """ # Set up the query parameters params = {"embedding": embedding, "k": k} # Execute the query and fetch the results with self.engine.connect() as conn: results: Sequence[Row] = conn.execute(text(sql_query), params).fetchall() documents_with_scores = [ ( Document( page_content=result.document, metadata=result.metadata, ), result.distance if self.embedding_function is not None else None, ) for result in results ] return documents_with_scores def similarity_search_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[dict] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query vector. """ docs_and_scores = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, filter=filter ) return [doc for doc, _ in docs_and_scores] def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]: """Delete by vector IDs. Args: ids: List of ids to delete. """ if ids is None: raise ValueError("No ids provided to delete.") # Define the table schema chunks_table = Table( self.collection_name, Base.metadata, Column("id", TEXT, primary_key=True), Column("embedding", ARRAY(REAL)), Column("document", String, nullable=True), Column("metadata", JSON, nullable=True), extend_existing=True, ) try: with self.engine.connect() as conn: with conn.begin(): delete_condition = chunks_table.c.id.in_(ids) conn.execute(chunks_table.delete().where(delete_condition)) return True except Exception as e: print("Delete operation failed:", str(e)) return False @classmethod def from_texts( cls: Type[AnalyticDB], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, embedding_dimension: int = _LANGCHAIN_DEFAULT_EMBEDDING_DIM, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, engine_args: Optional[dict] = None, **kwargs: Any, ) -> AnalyticDB: """ Return VectorStore initialized from texts and embeddings. Postgres Connection string is required Either pass it as a parameter or set the PG_CONNECTION_STRING environment variable. """ connection_string = cls.get_connection_string(kwargs) store = cls( connection_string=connection_string, collection_name=collection_name, embedding_function=embedding, embedding_dimension=embedding_dimension, pre_delete_collection=pre_delete_collection, engine_args=engine_args, ) store.add_texts(texts=texts, metadatas=metadatas, ids=ids, **kwargs) return store @classmethod def get_connection_string(cls, kwargs: Dict[str, Any]) -> str: connection_string: str = get_from_dict_or_env( data=kwargs, key="connection_string", env_key="PG_CONNECTION_STRING", ) if not connection_string: raise ValueError( "Postgres connection string is required" "Either pass it as a parameter" "or set the PG_CONNECTION_STRING environment variable." ) return connection_string @classmethod def from_documents( cls: Type[AnalyticDB], documents: List[Document], embedding: Embeddings, embedding_dimension: int = _LANGCHAIN_DEFAULT_EMBEDDING_DIM, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, engine_args: Optional[dict] = None, **kwargs: Any, ) -> AnalyticDB: """ Return VectorStore initialized from documents and embeddings. Postgres Connection string is required Either pass it as a parameter or set the PG_CONNECTION_STRING environment variable. """ texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] connection_string = cls.get_connection_string(kwargs) kwargs["connection_string"] = connection_string return cls.from_texts( texts=texts, pre_delete_collection=pre_delete_collection, embedding=embedding, embedding_dimension=embedding_dimension, metadatas=metadatas, ids=ids, collection_name=collection_name, engine_args=engine_args, **kwargs, ) @classmethod def connection_string_from_db_params( cls, driver: str, host: str, port: int, database: str, user: str, password: str, ) -> str: """Return connection string from database parameters.""" return f"postgresql+{driver}://{user}:{password}@{host}:{port}/{database}"
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~parsers~msword.py
from typing import Iterator from langchain.document_loaders.base import BaseBlobParser from langchain.document_loaders.blob_loaders import Blob from langchain.schema import Document class MsWordParser(BaseBlobParser): """Parse the Microsoft Word documents from a blob.""" def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Parse a Microsoft Word document into the Document iterator. Args: blob: The blob to parse. Returns: An iterator of Documents. """ try: from unstructured.partition.doc import partition_doc from unstructured.partition.docx import partition_docx except ImportError as e: raise ImportError( "Could not import unstructured, please install with `pip install " "unstructured`." ) from e mime_type_parser = { "application/msword": partition_doc, "application/vnd.openxmlformats-officedocument.wordprocessingml.document": ( partition_docx ), } if blob.mimetype not in ( "application/msword", "application/vnd.openxmlformats-officedocument.wordprocessingml.document", ): raise ValueError("This blob type is not supported for this parser.") with blob.as_bytes_io() as word_document: elements = mime_type_parser[blob.mimetype](file=word_document) text = "\n\n".join([str(el) for el in elements]) metadata = {"source": blob.source} yield Document(page_content=text, metadata=metadata)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~retrievers~test_kay.py
"""Integration test for Kay.ai API Wrapper.""" import pytest from langchain.retrievers import KayAiRetriever from langchain.schema import Document @pytest.mark.requires("kay") def test_kay_retriever() -> None: retriever = KayAiRetriever.create( dataset_id="company", data_types=["10-K", "10-Q", "8-K", "PressRelease"], num_contexts=3, ) docs = retriever.get_relevant_documents( "What were the biggest strategy changes and partnerships made by Roku " "in 2023?", ) assert len(docs) == 3 for doc in docs: assert isinstance(doc, Document) assert doc.page_content assert doc.metadata assert len(list(doc.metadata.items())) > 0
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~indexes~prompts~entity_extraction.py
# flake8: noqa from langchain.prompts.prompt import PromptTemplate _DEFAULT_ENTITY_EXTRACTION_TEMPLATE = """Ты - AI-ассистент, который анализирует запись разговора между AI и человеком. Извлеки все имена собственные из последней строки разговора. Как правило, имена собственные пишутся с заглавной буквы. Ты обязательно должен извлечь все имена и места. История разговора предоставлена на случай, если встречается местоимение, относящееся к предыдущим строкам (например, "Что ты знаешь о нем", где "нем" определено в предыдущей строке) -- игнорируй элементы, упомянутые там, которые не в последней строке. Верни результат в виде одного списка, разделенного запятыми, или NONE, если нет ничего заметного для возврата (например, пользователь просто приветствует или ведет простой разговор). ПРИМЕР История разговора: Человек #1: как сегодня дела? AI: "Все идет замечательно! А у тебя?" Человек #1: хорошо! занят работой над Langchain. много дел. AI: "Звучит как много работы! Что ты делаешь, чтобы сделать Langchain лучше?" Последняя строка: Человек #1: я пытаюсь улучшить интерфейсы Langchain, UX, его интеграции с различными продуктами, которые могут понадобиться пользователю ... много всего. Результат: Langchain КОНЕЦ ПРИМЕРА ПРИМЕР История разговора: Человек #1: как сегодня дела? AI: "Все идет замечательно! А у тебя?" Человек #1: хорошо! занят работой над Langchain. много дел. AI: "Звучит как много работы! Что ты делаешь, чтобы сделать Langchain лучше?" Последняя строка: Человек #1: я пытаюсь улучшить интерфейсы Langchain, UX, его интеграции с различными продуктами, которые могут понадобиться пользователю ... много всего. Я работаю с Человеком #2. Результат: Langchain, Человек #2 КОНЕЦ ПРИМЕРА История разговора (только для справки): {history} Последняя строка разговора (для извлечения): Человек: {input} Результат:""" ENTITY_EXTRACTION_PROMPT = PromptTemplate( input_variables=["history", "input"], template=_DEFAULT_ENTITY_EXTRACTION_TEMPLATE )
[ "Все идет замечательно! А у тебя?", "Звучит как много работы! Что ты делаешь, чтобы сделать Langchain лучше?", "Что ты знаешь о нем", "input", "Ты - AI-ассистент, который анализирует запись разговора между AI и человеком. Извлеки все имена собственные из последней строки разговора. Как правило, имена собственные пишутся с заглавной буквы. Ты обязательно должен извлечь все имена и места.\n\nИстория разговора предоставлена на случай, если встречается местоимение, относящееся к предыдущим строкам (например, \"Что ты знаешь о нем\", где \"нем\" определено в предыдущей строке) -- игнорируй элементы, упомянутые там, которые не в последней строке.\n\nВерни результат в виде одного списка, разделенного запятыми, или NONE, если нет ничего заметного для возврата (например, пользователь просто приветствует или ведет простой разговор).\n\nПРИМЕР\nИстория разговора:\nЧеловек #1: как сегодня дела?\nAI: \"Все идет замечательно! А у тебя?\"\nЧеловек #1: хорошо! занят работой над Langchain. много дел.\nAI: \"Звучит как много работы! Что ты делаешь, чтобы сделать Langchain лучше?\"\nПоследняя строка:\nЧеловек #1: я пытаюсь улучшить интерфейсы Langchain, UX, его интеграции с различными продуктами, которые могут понадобиться пользователю ... много всего.\nРезультат: Langchain\nКОНЕЦ ПРИМЕРА\n\nПРИМЕР\nИстория разговора:\nЧеловек #1: как сегодня дела?\nAI: \"Все идет замечательно! А у тебя?\"\nЧеловек #1: хорошо! занят работой над Langchain. много дел.\nAI: \"Звучит как много работы! Что ты делаешь, чтобы сделать Langchain лучше?\"\nПоследняя строка:\nЧеловек #1: я пытаюсь улучшить интерфейсы Langchain, UX, его интеграции с различными продуктами, которые могут понадобиться пользователю ... много всего. Я работаю с Человеком #2.\nРезультат: Langchain, Человек #2\nКОНЕЦ ПРИМЕРА\n\nИстория разговора (только для справки):\n{history}\nПоследняя строка разговора (для извлечения):\nЧеловек: {input}\n\nРезультат:" ]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~unit_tests~tools~test_zapier.py
"""Test building the Zapier tool, not running it.""" from unittest.mock import MagicMock, patch import pytest import requests from langchain.tools.zapier.prompt import BASE_ZAPIER_TOOL_PROMPT from langchain.tools.zapier.tool import ZapierNLARunAction from langchain.utilities.zapier import ZapierNLAWrapper def test_default_base_prompt() -> None: """Test that the default prompt is being inserted.""" tool = ZapierNLARunAction( action_id="test", zapier_description="test", params_schema={"test": "test"}, api_wrapper=ZapierNLAWrapper(zapier_nla_api_key="test"), ) # Test that the base prompt was successfully assigned to the default prompt assert tool.base_prompt == BASE_ZAPIER_TOOL_PROMPT assert tool.description == BASE_ZAPIER_TOOL_PROMPT.format( zapier_description="test", params=str(list({"test": "test"}.keys())), ) def test_custom_base_prompt() -> None: """Test that a custom prompt is being inserted.""" base_prompt = "Test. {zapier_description} and {params}." tool = ZapierNLARunAction( action_id="test", zapier_description="test", params_schema={"test": "test"}, base_prompt=base_prompt, api_wrapper=ZapierNLAWrapper(zapier_nla_api_key="test"), ) # Test that the base prompt was successfully assigned to the default prompt assert tool.base_prompt == base_prompt assert tool.description == "Test. test and ['test']." def test_custom_base_prompt_fail() -> None: """Test validating an invalid custom prompt.""" base_prompt = "Test. {zapier_description}." with pytest.raises(ValueError): ZapierNLARunAction( action_id="test", zapier_description="test", params={"test": "test"}, base_prompt=base_prompt, api_wrapper=ZapierNLAWrapper(zapier_nla_api_key="test"), ) def test_format_headers_api_key() -> None: """Test that the action headers is being created correctly.""" tool = ZapierNLARunAction( action_id="test", zapier_description="test", params_schema={"test": "test"}, api_wrapper=ZapierNLAWrapper(zapier_nla_api_key="test"), ) headers = tool.api_wrapper._format_headers() assert headers["Content-Type"] == "application/json" assert headers["Accept"] == "application/json" assert headers["X-API-Key"] == "test" def test_format_headers_access_token() -> None: """Test that the action headers is being created correctly.""" tool = ZapierNLARunAction( action_id="test", zapier_description="test", params_schema={"test": "test"}, api_wrapper=ZapierNLAWrapper(zapier_nla_oauth_access_token="test"), ) headers = tool.api_wrapper._format_headers() assert headers["Content-Type"] == "application/json" assert headers["Accept"] == "application/json" assert headers["Authorization"] == "Bearer test" def test_create_action_payload() -> None: """Test that the action payload is being created correctly.""" tool = ZapierNLARunAction( action_id="test", zapier_description="test", params_schema={"test": "test"}, api_wrapper=ZapierNLAWrapper(zapier_nla_api_key="test"), ) payload = tool.api_wrapper._create_action_payload("some instructions") assert payload["instructions"] == "some instructions" assert payload.get("preview_only") is None def test_create_action_payload_preview() -> None: """Test that the action payload with preview is being created correctly.""" tool = ZapierNLARunAction( action_id="test", zapier_description="test", params_schema={"test": "test"}, api_wrapper=ZapierNLAWrapper(zapier_nla_api_key="test"), ) payload = tool.api_wrapper._create_action_payload( "some instructions", preview_only=True, ) assert payload["instructions"] == "some instructions" assert payload["preview_only"] is True def test_create_action_payload_with_params() -> None: """Test that the action payload with params is being created correctly.""" tool = ZapierNLARunAction( action_id="test", zapier_description="test", params_schema={"test": "test"}, api_wrapper=ZapierNLAWrapper(zapier_nla_api_key="test"), ) payload = tool.api_wrapper._create_action_payload( "some instructions", {"test": "test"}, preview_only=True, ) assert payload["instructions"] == "some instructions" assert payload["preview_only"] is True assert payload["test"] == "test" @pytest.mark.asyncio async def test_apreview(mocker) -> None: # type: ignore[no-untyped-def] """Test that the action payload with params is being created correctly.""" tool = ZapierNLARunAction( action_id="test", zapier_description="test", params_schema={"test": "test"}, api_wrapper=ZapierNLAWrapper( zapier_nla_api_key="test", zapier_nla_api_base="http://localhost:8080/v1/", ), ) mockObj = mocker.patch.object(ZapierNLAWrapper, "_arequest") await tool.api_wrapper.apreview( "random_action_id", "some instructions", {"test": "test"}, ) mockObj.assert_called_once_with( "POST", "http://localhost:8080/v1/exposed/random_action_id/execute/", json={ "instructions": "some instructions", "preview_only": True, "test": "test", }, ) @pytest.mark.asyncio async def test_arun(mocker) -> None: # type: ignore[no-untyped-def] """Test that the action payload with params is being created correctly.""" tool = ZapierNLARunAction( action_id="test", zapier_description="test", params_schema={"test": "test"}, api_wrapper=ZapierNLAWrapper( zapier_nla_api_key="test", zapier_nla_api_base="http://localhost:8080/v1/", ), ) mockObj = mocker.patch.object(ZapierNLAWrapper, "_arequest") await tool.api_wrapper.arun( "random_action_id", "some instructions", {"test": "test"}, ) mockObj.assert_called_once_with( "POST", "http://localhost:8080/v1/exposed/random_action_id/execute/", json={"instructions": "some instructions", "test": "test"}, ) @pytest.mark.asyncio async def test_alist(mocker) -> None: # type: ignore[no-untyped-def] """Test that the action payload with params is being created correctly.""" tool = ZapierNLARunAction( action_id="test", zapier_description="test", params_schema={"test": "test"}, api_wrapper=ZapierNLAWrapper( zapier_nla_api_key="test", zapier_nla_api_base="http://localhost:8080/v1/", ), ) mockObj = mocker.patch.object(ZapierNLAWrapper, "_arequest") await tool.api_wrapper.alist() mockObj.assert_called_once_with( "GET", "http://localhost:8080/v1/exposed/", ) def test_wrapper_fails_no_api_key_or_access_token_initialization() -> None: """Test Wrapper requires either an API Key or OAuth Access Token.""" with pytest.raises(ValueError): ZapierNLAWrapper() def test_wrapper_api_key_initialization() -> None: """Test Wrapper initializes with an API Key.""" ZapierNLAWrapper(zapier_nla_api_key="test") def test_wrapper_access_token_initialization() -> None: """Test Wrapper initializes with an API Key.""" ZapierNLAWrapper(zapier_nla_oauth_access_token="test") def test_list_raises_401_invalid_api_key() -> None: """Test that a valid error is raised when the API Key is invalid.""" mock_response = MagicMock() mock_response.status_code = 401 mock_response.raise_for_status.side_effect = requests.HTTPError( "401 Client Error: Unauthorized for url: " "https://nla.zapier.com/api/v1/exposed/", response=mock_response, ) mock_session = MagicMock() mock_session.get.return_value = mock_response with patch("requests.Session", return_value=mock_session): wrapper = ZapierNLAWrapper(zapier_nla_api_key="test") with pytest.raises(requests.HTTPError) as err: wrapper.list() assert str(err.value).startswith( "An unauthorized response occurred. Check that your api key is correct. " "Err:" ) def test_list_raises_401_invalid_access_token() -> None: """Test that a valid error is raised when the API Key is invalid.""" mock_response = MagicMock() mock_response.status_code = 401 mock_response.raise_for_status.side_effect = requests.HTTPError( "401 Client Error: Unauthorized for url: " "https://nla.zapier.com/api/v1/exposed/", response=mock_response, ) mock_session = MagicMock() mock_session.get.return_value = mock_response with patch("requests.Session", return_value=mock_session): wrapper = ZapierNLAWrapper(zapier_nla_oauth_access_token="test") with pytest.raises(requests.HTTPError) as err: wrapper.list() assert str(err.value).startswith( "An unauthorized response occurred. Check that your access token is " "correct and doesn't need to be refreshed. Err:" ) def test_list_raises_other_error() -> None: """Test that a valid error is raised when an unknown HTTP Error occurs.""" mock_response = MagicMock() mock_response.status_code = 404 mock_response.raise_for_status.side_effect = requests.HTTPError( "404 Client Error: Not found for url", response=mock_response, ) mock_session = MagicMock() mock_session.get.return_value = mock_response with patch("requests.Session", return_value=mock_session): wrapper = ZapierNLAWrapper(zapier_nla_oauth_access_token="test") with pytest.raises(requests.HTTPError) as err: wrapper.list() assert str(err.value) == "404 Client Error: Not found for url"
[ "Test. {zapier_description}.", "Test. {zapier_description} and {params}." ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~vectorstores~alibabacloud_opensearch.py
import json import logging import numbers from hashlib import sha1 from typing import Any, Dict, Iterable, List, Optional, Tuple from langchain.schema import Document from langchain.schema.embeddings import Embeddings from langchain.schema.vectorstore import VectorStore logger = logging.getLogger() class AlibabaCloudOpenSearchSettings: """Alibaba Cloud Opensearch` client configuration. Attribute: endpoint (str) : The endpoint of opensearch instance, You can find it from the console of Alibaba Cloud OpenSearch. instance_id (str) : The identify of opensearch instance, You can find it from the console of Alibaba Cloud OpenSearch. username (str) : The username specified when purchasing the instance. password (str) : The password specified when purchasing the instance, After the instance is created, you can modify it on the console. tablename (str): The table name specified during instance configuration. field_name_mapping (Dict) : Using field name mapping between opensearch vector store and opensearch instance configuration table field names: { 'id': 'The id field name map of index document.', 'document': 'The text field name map of index document.', 'embedding': 'In the embedding field of the opensearch instance, the values must be in float type and separated by separator, default is comma.', 'metadata_field_x': 'Metadata field mapping includes the mapped field name and operator in the mapping value, separated by a comma between the mapped field name and the operator.', } protocol (str): Communication Protocol between SDK and Server, default is http. namespace (str) : The instance data will be partitioned based on the "namespace" field,If the namespace is enabled, you need to specify the namespace field name during initialization, Otherwise, the queries cannot be executed correctly. embedding_field_separator(str): Delimiter specified for writing vector field data, default is comma. output_fields: Specify the field list returned when invoking OpenSearch, by default it is the value list of the field mapping field. """ def __init__( self, endpoint: str, instance_id: str, username: str, password: str, table_name: str, field_name_mapping: Dict[str, str], protocol: str = "http", namespace: str = "", embedding_field_separator: str = ",", output_fields: Optional[List[str]] = None, ) -> None: self.endpoint = endpoint self.instance_id = instance_id self.protocol = protocol self.username = username self.password = password self.namespace = namespace self.table_name = table_name self.opt_table_name = "_".join([self.instance_id, self.table_name]) self.field_name_mapping = field_name_mapping self.embedding_field_separator = embedding_field_separator if output_fields is None: self.output_fields = [ field.split(",")[0] for field in self.field_name_mapping.values() ] self.inverse_field_name_mapping: Dict[str, str] = {} for key, value in self.field_name_mapping.items(): self.inverse_field_name_mapping[value.split(",")[0]] = key def __getitem__(self, item: str) -> Any: return getattr(self, item) def create_metadata(fields: Dict[str, Any]) -> Dict[str, Any]: """Create metadata from fields. Args: fields: The fields of the document. The fields must be a dict. Returns: metadata: The metadata of the document. The metadata must be a dict. """ metadata: Dict[str, Any] = {} for key, value in fields.items(): if key == "id" or key == "document" or key == "embedding": continue metadata[key] = value return metadata class AlibabaCloudOpenSearch(VectorStore): """`Alibaba Cloud OpenSearch` vector store.""" def __init__( self, embedding: Embeddings, config: AlibabaCloudOpenSearchSettings, **kwargs: Any, ) -> None: try: from alibabacloud_ha3engine_vector import client, models from alibabacloud_tea_util import models as util_models except ImportError: raise ImportError( "Could not import alibaba cloud opensearch python package. " "Please install it with `pip install alibabacloud-ha3engine-vector`." ) self.config = config self.embedding = embedding self.runtime = util_models.RuntimeOptions( connect_timeout=5000, read_timeout=10000, autoretry=False, ignore_ssl=False, max_idle_conns=50, ) self.ha3_engine_client = client.Client( models.Config( endpoint=config.endpoint, instance_id=config.instance_id, protocol=config.protocol, access_user_name=config.username, access_pass_word=config.password, ) ) self.options_headers: Dict[str, str] = {} def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Insert documents into the instance.. Args: texts: The text segments to be inserted into the vector storage, should not be empty. metadatas: Metadata information. Returns: id_list: List of document IDs. """ def _upsert(push_doc_list: List[Dict]) -> List[str]: if push_doc_list is None or len(push_doc_list) == 0: return [] try: push_request = models.PushDocumentsRequest( self.options_headers, push_doc_list ) push_response = self.ha3_engine_client.push_documents( self.config.opt_table_name, field_name_map["id"], push_request ) json_response = json.loads(push_response.body) if json_response["status"] == "OK": return [ push_doc["fields"][field_name_map["id"]] for push_doc in push_doc_list ] return [] except Exception as e: logger.error( f"add doc to endpoint:{self.config.endpoint} " f"instance_id:{self.config.instance_id} failed.", e, ) raise e from alibabacloud_ha3engine_vector import models id_list = [sha1(t.encode("utf-8")).hexdigest() for t in texts] embeddings = self.embedding.embed_documents(list(texts)) metadatas = metadatas or [{} for _ in texts] field_name_map = self.config.field_name_mapping add_doc_list = [] text_list = list(texts) for idx, doc_id in enumerate(id_list): embedding = embeddings[idx] if idx < len(embeddings) else None metadata = metadatas[idx] if idx < len(metadatas) else None text = text_list[idx] if idx < len(text_list) else None add_doc: Dict[str, Any] = dict() add_doc_fields: Dict[str, Any] = dict() add_doc_fields.__setitem__(field_name_map["id"], doc_id) add_doc_fields.__setitem__(field_name_map["document"], text) if embedding is not None: add_doc_fields.__setitem__( field_name_map["embedding"], self.config.embedding_field_separator.join( str(unit) for unit in embedding ), ) if metadata is not None: for md_key, md_value in metadata.items(): add_doc_fields.__setitem__( field_name_map[md_key].split(",")[0], md_value ) add_doc.__setitem__("fields", add_doc_fields) add_doc.__setitem__("cmd", "add") add_doc_list.append(add_doc) return _upsert(add_doc_list) def similarity_search( self, query: str, k: int = 4, search_filter: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> List[Document]: """Perform similarity retrieval based on text. Args: query: Vectorize text for retrieval.,should not be empty. k: top n. search_filter: Additional filtering conditions. Returns: document_list: List of documents. """ embedding = self.embedding.embed_query(query) return self.create_results( self.inner_embedding_query( embedding=embedding, search_filter=search_filter, k=k ) ) def similarity_search_with_relevance_scores( self, query: str, k: int = 4, search_filter: Optional[dict] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Perform similarity retrieval based on text with scores. Args: query: Vectorize text for retrieval.,should not be empty. k: top n. search_filter: Additional filtering conditions. Returns: document_list: List of documents. """ embedding: List[float] = self.embedding.embed_query(query) return self.create_results_with_score( self.inner_embedding_query( embedding=embedding, search_filter=search_filter, k=k ) ) def similarity_search_by_vector( self, embedding: List[float], k: int = 4, search_filter: Optional[dict] = None, **kwargs: Any, ) -> List[Document]: """Perform retrieval directly using vectors. Args: embedding: vectors. k: top n. search_filter: Additional filtering conditions. Returns: document_list: List of documents. """ return self.create_results( self.inner_embedding_query( embedding=embedding, search_filter=search_filter, k=k ) ) def inner_embedding_query( self, embedding: List[float], search_filter: Optional[Dict[str, Any]] = None, k: int = 4, ) -> Dict[str, Any]: def generate_filter_query() -> str: if search_filter is None: return "" filter_clause = " AND ".join( [ create_filter(md_key, md_value) for md_key, md_value in search_filter.items() ] ) return filter_clause def create_filter(md_key: str, md_value: Any) -> str: md_filter_expr = self.config.field_name_mapping[md_key] if md_filter_expr is None: return "" expr = md_filter_expr.split(",") if len(expr) != 2: logger.error( f"filter {md_filter_expr} express is not correct, " f"must contain mapping field and operator." ) return "" md_filter_key = expr[0].strip() md_filter_operator = expr[1].strip() if isinstance(md_value, numbers.Number): return f"{md_filter_key} {md_filter_operator} {md_value}" return f'{md_filter_key}{md_filter_operator}"{md_value}"' def search_data() -> Dict[str, Any]: request = QueryRequest( table_name=self.config.table_name, namespace=self.config.namespace, vector=embedding, include_vector=True, output_fields=self.config.output_fields, filter=generate_filter_query(), top_k=k, ) query_result = self.ha3_engine_client.query(request) return json.loads(query_result.body) from alibabacloud_ha3engine_vector.models import QueryRequest try: json_response = search_data() if ( "errorCode" in json_response and "errorMsg" in json_response and len(json_response["errorMsg"]) > 0 ): logger.error( f"query {self.config.endpoint} {self.config.instance_id} " f"failed:{json_response['errorMsg']}." ) else: return json_response except Exception as e: logger.error( f"query instance endpoint:{self.config.endpoint} " f"instance_id:{self.config.instance_id} failed.", e, ) return {} def create_results(self, json_result: Dict[str, Any]) -> List[Document]: """Assemble documents.""" items = json_result["result"] query_result_list: List[Document] = [] for item in items: if ( "fields" not in item or self.config.field_name_mapping["document"] not in item["fields"] ): query_result_list.append(Document()) else: fields = item["fields"] query_result_list.append( Document( page_content=fields[self.config.field_name_mapping["document"]], metadata=self.create_inverse_metadata(fields), ) ) return query_result_list def create_inverse_metadata(self, fields: Dict[str, Any]) -> Dict[str, Any]: """Create metadata from fields. Args: fields: The fields of the document. The fields must be a dict. Returns: metadata: The metadata of the document. The metadata must be a dict. """ metadata: Dict[str, Any] = {} for key, value in fields.items(): if key == "id" or key == "document" or key == "embedding": continue metadata[self.config.inverse_field_name_mapping[key]] = value return metadata def create_results_with_score( self, json_result: Dict[str, Any] ) -> List[Tuple[Document, float]]: """Parsing the returned results with scores. Args: json_result: Results from OpenSearch query. Returns: query_result_list: Results with scores. """ items = json_result["result"] query_result_list: List[Tuple[Document, float]] = [] for item in items: fields = item["fields"] query_result_list.append( ( Document( page_content=fields[self.config.field_name_mapping["document"]], metadata=self.create_inverse_metadata(fields), ), float(item["score"]), ) ) return query_result_list def delete_documents_with_texts(self, texts: List[str]) -> bool: """Delete documents based on their page content. Args: texts: List of document page content. Returns: Whether the deletion was successful or not. """ id_list = [sha1(t.encode("utf-8")).hexdigest() for t in texts] return self.delete_documents_with_document_id(id_list) def delete_documents_with_document_id(self, id_list: List[str]) -> bool: """Delete documents based on their IDs. Args: id_list: List of document IDs. Returns: Whether the deletion was successful or not. """ if id_list is None or len(id_list) == 0: return True from alibabacloud_ha3engine_vector import models delete_doc_list = [] for doc_id in id_list: delete_doc_list.append( { "fields": {self.config.field_name_mapping["id"]: doc_id}, "cmd": "delete", } ) delete_request = models.PushDocumentsRequest( self.options_headers, delete_doc_list ) try: delete_response = self.ha3_engine_client.push_documents( self.config.opt_table_name, self.config.field_name_mapping["id"], delete_request, ) json_response = json.loads(delete_response.body) return json_response["status"] == "OK" except Exception as e: logger.error( f"delete doc from :{self.config.endpoint} " f"instance_id:{self.config.instance_id} failed.", e, ) raise e @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, config: Optional[AlibabaCloudOpenSearchSettings] = None, **kwargs: Any, ) -> "AlibabaCloudOpenSearch": """Create alibaba cloud opensearch vector store instance. Args: texts: The text segments to be inserted into the vector storage, should not be empty. embedding: Embedding function, Embedding function. config: Alibaba OpenSearch instance configuration. metadatas: Metadata information. Returns: AlibabaCloudOpenSearch: Alibaba cloud opensearch vector store instance. """ if texts is None or len(texts) == 0: raise Exception("the inserted text segments, should not be empty.") if embedding is None: raise Exception("the embeddings should not be empty.") if config is None: raise Exception("config should not be none.") ctx = cls(embedding, config, **kwargs) ctx.add_texts(texts=texts, metadatas=metadatas) return ctx @classmethod def from_documents( cls, documents: List[Document], embedding: Embeddings, config: Optional[AlibabaCloudOpenSearchSettings] = None, **kwargs: Any, ) -> "AlibabaCloudOpenSearch": """Create alibaba cloud opensearch vector store instance. Args: documents: Documents to be inserted into the vector storage, should not be empty. embedding: Embedding function, Embedding function. config: Alibaba OpenSearch instance configuration. ids: Specify the ID for the inserted document. If left empty, the ID will be automatically generated based on the text content. Returns: AlibabaCloudOpenSearch: Alibaba cloud opensearch vector store instance. """ if documents is None or len(documents) == 0: raise Exception("the inserted documents, should not be empty.") if embedding is None: raise Exception("the embeddings should not be empty.") if config is None: raise Exception("config can't be none") texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] return cls.from_texts( texts=texts, embedding=embedding, metadatas=metadatas, config=config, **kwargs, )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~embeddings~octoai_embeddings.py
from typing import Any, Dict, List, Mapping, Optional from langchain.pydantic_v1 import BaseModel, Extra, Field, root_validator from langchain.schema.embeddings import Embeddings from langchain.utils import get_from_dict_or_env DEFAULT_EMBED_INSTRUCTION = "Represent this input: " DEFAULT_QUERY_INSTRUCTION = "Represent the question for retrieving similar documents: " class OctoAIEmbeddings(BaseModel, Embeddings): """OctoAI Compute Service embedding models. The environment variable ``OCTOAI_API_TOKEN`` should be set with your API token, or it can be passed as a named parameter to the constructor. """ endpoint_url: Optional[str] = Field(None, description="Endpoint URL to use.") model_kwargs: Optional[dict] = Field( None, description="Keyword arguments to pass to the model." ) octoai_api_token: Optional[str] = Field(None, description="OCTOAI API Token") embed_instruction: str = Field( DEFAULT_EMBED_INSTRUCTION, description="Instruction to use for embedding documents.", ) query_instruction: str = Field( DEFAULT_QUERY_INSTRUCTION, description="Instruction to use for embedding query." ) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator(allow_reuse=True) def validate_environment(cls, values: Dict) -> Dict: """Ensure that the API key and python package exist in environment.""" values["octoai_api_token"] = get_from_dict_or_env( values, "octoai_api_token", "OCTOAI_API_TOKEN" ) values["endpoint_url"] = get_from_dict_or_env( values, "endpoint_url", "ENDPOINT_URL" ) return values @property def _identifying_params(self) -> Mapping[str, Any]: """Return the identifying parameters.""" return { "endpoint_url": self.endpoint_url, "model_kwargs": self.model_kwargs or {}, } def _compute_embeddings( self, texts: List[str], instruction: str ) -> List[List[float]]: """Compute embeddings using an OctoAI instruct model.""" from octoai import client embeddings = [] octoai_client = client.Client(token=self.octoai_api_token) for text in texts: parameter_payload = { "sentence": str([text]), # for item in text]), "instruction": str([instruction]), # for item in text]), "parameters": self.model_kwargs or {}, } try: resp_json = octoai_client.infer(self.endpoint_url, parameter_payload) embedding = resp_json["embeddings"] except Exception as e: raise ValueError(f"Error raised by the inference endpoint: {e}") from e embeddings.append(embedding) return embeddings def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute document embeddings using an OctoAI instruct model.""" texts = list(map(lambda x: x.replace("\n", " "), texts)) return self._compute_embeddings(texts, self.embed_instruction) def embed_query(self, text: str) -> List[float]: """Compute query embedding using an OctoAI instruct model.""" text = text.replace("\n", " ") return self._compute_embeddings([text], self.embed_instruction)[0]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~llms~together.py
"""Wrapper around Together AI's Completion API.""" import logging from typing import Any, Dict, List, Optional from aiohttp import ClientSession from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import LLM from langchain.pydantic_v1 import Extra, root_validator from langchain.utilities.requests import Requests from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) class Together(LLM): """Wrapper around Together AI models. To use, you'll need an API key which you can find here: https://api.together.xyz/settings/api-keys. This can be passed in as init param ``together_api_key`` or set as environment variable ``TOGETHER_API_KEY``. Together AI API reference: https://docs.together.ai/reference/inference """ base_url: str = "https://api.together.xyz/inference" """Base inference API URL.""" together_api_key: str """Together AI API key. Get it here: https://api.together.xyz/settings/api-keys""" model: str """Model name. Available models listed here: https://docs.together.ai/docs/inference-models """ temperature: Optional[float] = None """Model temperature.""" top_p: Optional[float] = None """Used to dynamically adjust the number of choices for each predicted token based on the cumulative probabilities. A value of 1 will always yield the same output. A temperature less than 1 favors more correctness and is appropriate for question answering or summarization. A value greater than 1 introduces more randomness in the output. """ top_k: Optional[int] = None """Used to limit the number of choices for the next predicted word or token. It specifies the maximum number of tokens to consider at each step, based on their probability of occurrence. This technique helps to speed up the generation process and can improve the quality of the generated text by focusing on the most likely options. """ max_tokens: Optional[int] = None """The maximum number of tokens to generate.""" repetition_penalty: Optional[float] = None """A number that controls the diversity of generated text by reducing the likelihood of repeated sequences. Higher values decrease repetition. """ logprobs: Optional[int] = None """An integer that specifies how many top token log probabilities are included in the response for each token generation step. """ class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key exists in environment.""" values["together_api_key"] = get_from_dict_or_env( values, "together_api_key", "TOGETHER_API_KEY" ) return values @property def _llm_type(self) -> str: """Return type of model.""" return "together" def _format_output(self, output: dict) -> str: return output["output"]["choices"][0]["text"] @staticmethod def get_user_agent() -> str: from langchain import __version__ return f"langchain/{__version__}" @property def default_params(self) -> Dict[str, Any]: return { "model": self.model, "temperature": self.temperature, "top_p": self.top_p, "top_k": self.top_k, "max_tokens": self.max_tokens, "repetition_penalty": self.repetition_penalty, } def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to Together's text generation endpoint. Args: prompt: The prompt to pass into the model. Returns: The string generated by the model.. """ headers = { "Authorization": f"Bearer {self.together_api_key}", "Content-Type": "application/json", } stop_to_use = stop[0] if stop and len(stop) == 1 else stop payload: Dict[str, Any] = { **self.default_params, "prompt": prompt, "stop": stop_to_use, **kwargs, } # filter None values to not pass them to the http payload payload = {k: v for k, v in payload.items() if v is not None} request = Requests(headers=headers) response = request.post(url=self.base_url, data=payload) if response.status_code >= 500: raise Exception(f"Together Server: Error {response.status_code}") elif response.status_code >= 400: raise ValueError(f"Together received an invalid payload: {response.text}") elif response.status_code != 200: raise Exception( f"Together returned an unexpected response with status " f"{response.status_code}: {response.text}" ) data = response.json() if data.get("status") != "finished": err_msg = data.get("error", "Undefined Error") raise Exception(err_msg) output = self._format_output(data) return output async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call Together model to get predictions based on the prompt. Args: prompt: The prompt to pass into the model. Returns: The string generated by the model. """ headers = { "Authorization": f"Bearer {self.together_api_key}", "Content-Type": "application/json", } stop_to_use = stop[0] if stop and len(stop) == 1 else stop payload: Dict[str, Any] = { **self.default_params, "prompt": prompt, "stop": stop_to_use, **kwargs, } # filter None values to not pass them to the http payload payload = {k: v for k, v in payload.items() if v is not None} async with ClientSession() as session: async with session.post( self.base_url, json=payload, headers=headers ) as response: if response.status >= 500: raise Exception(f"Together Server: Error {response.status}") elif response.status >= 400: raise ValueError( f"Together received an invalid payload: {response.text}" ) elif response.status != 200: raise Exception( f"Together returned an unexpected response with status " f"{response.status}: {response.text}" ) response_json = await response.json() if response_json.get("status") != "finished": err_msg = response_json.get("error", "Undefined Error") raise Exception(err_msg) output = self._format_output(response_json) return output
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~callbacks~stdout.py
"""Callback Handler that prints to std out.""" from typing import Any, Dict, List, Optional from langchain.callbacks.base import BaseCallbackHandler from langchain.schema import AgentAction, AgentFinish, LLMResult from langchain.utils.input import print_text class StdOutCallbackHandler(BaseCallbackHandler): """Callback Handler that prints to std out.""" def __init__(self, color: Optional[str] = None) -> None: """Initialize callback handler.""" self.color = color def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: """Print out the prompts.""" pass def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Do nothing.""" pass def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Do nothing.""" pass def on_llm_error(self, error: BaseException, **kwargs: Any) -> None: """Do nothing.""" pass def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any ) -> None: """Print out that we are entering a chain.""" class_name = serialized.get("name", serialized.get("id", ["<unknown>"])[-1]) print(f"\n\n\033[1m> Entering new {class_name} chain...\033[0m") def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """Print out that we finished a chain.""" print("\n\033[1m> Finished chain.\033[0m") def on_chain_error(self, error: BaseException, **kwargs: Any) -> None: """Do nothing.""" pass def on_tool_start( self, serialized: Dict[str, Any], input_str: str, **kwargs: Any, ) -> None: """Do nothing.""" pass def on_agent_action( self, action: AgentAction, color: Optional[str] = None, **kwargs: Any ) -> Any: """Run on agent action.""" print_text(action.log, color=color or self.color) def on_tool_end( self, output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: """If not the final action, print out observation.""" if observation_prefix is not None: print_text(f"\n{observation_prefix}") print_text(output, color=color or self.color) if llm_prefix is not None: print_text(f"\n{llm_prefix}") def on_tool_error(self, error: BaseException, **kwargs: Any) -> None: """Do nothing.""" pass def on_text( self, text: str, color: Optional[str] = None, end: str = "", **kwargs: Any, ) -> None: """Run when agent ends.""" print_text(text, color=color or self.color, end=end) def on_agent_finish( self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any ) -> None: """Run on agent end.""" print_text(finish.log, color=color or self.color, end="\n")
[]
2024-01-10
ai-forever/gigachain
libs~experimental~tests~unit_tests~fake_llm.py
"""Fake LLM wrapper for testing purposes.""" from typing import Any, Dict, List, Mapping, Optional, cast from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain_experimental.pydantic_v1 import validator class FakeLLM(LLM): """Fake LLM wrapper for testing purposes.""" queries: Optional[Mapping] = None sequential_responses: Optional[bool] = False response_index: int = 0 @validator("queries", always=True) def check_queries_required( cls, queries: Optional[Mapping], values: Mapping[str, Any] ) -> Optional[Mapping]: if values.get("sequential_response") and not queries: raise ValueError( "queries is required when sequential_response is set to True" ) return queries def get_num_tokens(self, text: str) -> int: """Return number of tokens.""" return len(text.split()) @property def _llm_type(self) -> str: """Return type of llm.""" return "fake" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: if self.sequential_responses: return self._get_next_response_in_sequence if self.queries is not None: return self.queries[prompt] if stop is None: return "foo" else: return "bar" @property def _identifying_params(self) -> Dict[str, Any]: return {} @property def _get_next_response_in_sequence(self) -> str: queries = cast(Mapping, self.queries) response = queries[list(queries.keys())[self.response_index]] self.response_index = self.response_index + 1 return response
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~load~serializable.py
from abc import ABC from typing import Any, Dict, List, Literal, Optional, TypedDict, Union, cast from langchain.pydantic_v1 import BaseModel, PrivateAttr class BaseSerialized(TypedDict): """Base class for serialized objects.""" lc: int id: List[str] class SerializedConstructor(BaseSerialized): """Serialized constructor.""" type: Literal["constructor"] kwargs: Dict[str, Any] class SerializedSecret(BaseSerialized): """Serialized secret.""" type: Literal["secret"] class SerializedNotImplemented(BaseSerialized): """Serialized not implemented.""" type: Literal["not_implemented"] repr: Optional[str] def try_neq_default(value: Any, key: str, model: BaseModel) -> bool: try: return model.__fields__[key].get_default() != value except Exception: return True class Serializable(BaseModel, ABC): """Serializable base class.""" @classmethod def is_lc_serializable(cls) -> bool: """Is this class serializable?""" return False @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object. For example, if the class is `langchain.llms.openai.OpenAI`, then the namespace is ["langchain", "llms", "openai"] """ return cls.__module__.split(".") @property def lc_secrets(self) -> Dict[str, str]: """A map of constructor argument names to secret ids. For example, {"openai_api_key": "OPENAI_API_KEY"} """ return dict() @property def lc_attributes(self) -> Dict: """List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. """ return {} @classmethod def lc_id(cls) -> List[str]: """A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. """ return [*cls.get_lc_namespace(), cls.__name__] class Config: extra = "ignore" def __repr_args__(self) -> Any: return [ (k, v) for k, v in super().__repr_args__() if (k not in self.__fields__ or try_neq_default(v, k, self)) ] _lc_kwargs = PrivateAttr(default_factory=dict) def __init__(self, **kwargs: Any) -> None: super().__init__(**kwargs) self._lc_kwargs = kwargs def to_json(self) -> Union[SerializedConstructor, SerializedNotImplemented]: if not self.is_lc_serializable(): return self.to_json_not_implemented() secrets = dict() # Get latest values for kwargs if there is an attribute with same name lc_kwargs = { k: getattr(self, k, v) for k, v in self._lc_kwargs.items() if not (self.__exclude_fields__ or {}).get(k, False) # type: ignore } # Merge the lc_secrets and lc_attributes from every class in the MRO for cls in [None, *self.__class__.mro()]: # Once we get to Serializable, we're done if cls is Serializable: break if cls: deprecated_attributes = [ "lc_namespace", "lc_serializable", ] for attr in deprecated_attributes: if hasattr(cls, attr): raise ValueError( f"Class {self.__class__} has a deprecated " f"attribute {attr}. Please use the corresponding " f"classmethod instead." ) # Get a reference to self bound to each class in the MRO this = cast(Serializable, self if cls is None else super(cls, self)) secrets.update(this.lc_secrets) lc_kwargs.update(this.lc_attributes) # include all secrets, even if not specified in kwargs # as these secrets may be passed as an environment variable instead for key in secrets.keys(): secret_value = getattr(self, key, None) or lc_kwargs.get(key) if secret_value is not None: lc_kwargs.update({key: secret_value}) return { "lc": 1, "type": "constructor", "id": self.lc_id(), "kwargs": lc_kwargs if not secrets else _replace_secrets(lc_kwargs, secrets), } def to_json_not_implemented(self) -> SerializedNotImplemented: return to_json_not_implemented(self) def _replace_secrets( root: Dict[Any, Any], secrets_map: Dict[str, str] ) -> Dict[Any, Any]: result = root.copy() for path, secret_id in secrets_map.items(): [*parts, last] = path.split(".") current = result for part in parts: if part not in current: break current[part] = current[part].copy() current = current[part] if last in current: current[last] = { "lc": 1, "type": "secret", "id": [secret_id], } return result def to_json_not_implemented(obj: object) -> SerializedNotImplemented: """Serialize a "not implemented" object. Args: obj: object to serialize Returns: SerializedNotImplemented """ _id: List[str] = [] try: if hasattr(obj, "__name__"): _id = [*obj.__module__.split("."), obj.__name__] elif hasattr(obj, "__class__"): _id = [*obj.__class__.__module__.split("."), obj.__class__.__name__] except Exception: pass result: SerializedNotImplemented = { "lc": 1, "type": "not_implemented", "id": _id, "repr": None, } try: result["repr"] = repr(obj) except Exception: pass return result
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~utilities~python.py
import functools import logging import multiprocessing import sys from io import StringIO from typing import Dict, Optional from langchain.pydantic_v1 import BaseModel, Field logger = logging.getLogger(__name__) @functools.lru_cache(maxsize=None) def warn_once() -> None: """Warn once about the dangers of PythonREPL.""" logger.warning("Python REPL can execute arbitrary code. Use with caution.") class PythonREPL(BaseModel): """Simulates a standalone Python REPL.""" globals: Optional[Dict] = Field(default_factory=dict, alias="_globals") locals: Optional[Dict] = Field(default_factory=dict, alias="_locals") @classmethod def worker( cls, command: str, globals: Optional[Dict], locals: Optional[Dict], queue: multiprocessing.Queue, ) -> None: old_stdout = sys.stdout sys.stdout = mystdout = StringIO() try: exec(command, globals, locals) sys.stdout = old_stdout queue.put(mystdout.getvalue()) except Exception as e: sys.stdout = old_stdout queue.put(repr(e)) def run(self, command: str, timeout: Optional[int] = None) -> str: """Run command with own globals/locals and returns anything printed. Timeout after the specified number of seconds.""" # Warn against dangers of PythonREPL warn_once() queue: multiprocessing.Queue = multiprocessing.Queue() # Only use multiprocessing if we are enforcing a timeout if timeout is not None: # create a Process p = multiprocessing.Process( target=self.worker, args=(command, self.globals, self.locals, queue) ) # start it p.start() # wait for the process to finish or kill it after timeout seconds p.join(timeout) if p.is_alive(): p.terminate() return "Execution timed out" else: self.worker(command, self.globals, self.locals, queue) # get the result from the worker function return queue.get()
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~env.py
import platform from functools import lru_cache @lru_cache(maxsize=1) def get_runtime_environment() -> dict: """Get information about the LangChain runtime environment.""" # Lazy import to avoid circular imports from langchain import __version__ return { "library_version": __version__, "library": "langchain", "platform": platform.platform(), "runtime": "python", "runtime_version": platform.python_version(), }
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~parsers~registry.py
"""Module includes a registry of default parser configurations.""" from langchain.document_loaders.base import BaseBlobParser from langchain.document_loaders.parsers.generic import MimeTypeBasedParser from langchain.document_loaders.parsers.msword import MsWordParser from langchain.document_loaders.parsers.pdf import PyMuPDFParser from langchain.document_loaders.parsers.txt import TextParser def _get_default_parser() -> BaseBlobParser: """Get default mime-type based parser.""" return MimeTypeBasedParser( handlers={ "application/pdf": PyMuPDFParser(), "text/plain": TextParser(), "application/msword": MsWordParser(), "application/vnd.openxmlformats-officedocument.wordprocessingml.document": ( MsWordParser() ), }, fallback_parser=None, ) _REGISTRY = { "default": _get_default_parser, } # PUBLIC API def get_parser(parser_name: str) -> BaseBlobParser: """Get a parser by parser name.""" if parser_name not in _REGISTRY: raise ValueError(f"Unknown parser combination: {parser_name}") return _REGISTRY[parser_name]()
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~parsers~language~cobol.py
import re from typing import Callable, List from langchain.document_loaders.parsers.language.code_segmenter import CodeSegmenter class CobolSegmenter(CodeSegmenter): """Code segmenter for `COBOL`.""" PARAGRAPH_PATTERN = re.compile(r"^[A-Z0-9\-]+(\s+.*)?\.$", re.IGNORECASE) DIVISION_PATTERN = re.compile( r"^\s*(IDENTIFICATION|DATA|PROCEDURE|ENVIRONMENT)\s+DIVISION.*$", re.IGNORECASE ) SECTION_PATTERN = re.compile(r"^\s*[A-Z0-9\-]+\s+SECTION.$", re.IGNORECASE) def __init__(self, code: str): super().__init__(code) self.source_lines: List[str] = self.code.splitlines() def is_valid(self) -> bool: # Identify presence of any division to validate COBOL code return any(self.DIVISION_PATTERN.match(line) for line in self.source_lines) def _extract_code(self, start_idx: int, end_idx: int) -> str: return "\n".join(self.source_lines[start_idx:end_idx]).rstrip("\n") def _is_relevant_code(self, line: str) -> bool: """Check if a line is part of the procedure division or a relevant section.""" if "PROCEDURE DIVISION" in line.upper(): return True # Add additional conditions for relevant sections if needed return False def _process_lines(self, func: Callable) -> List[str]: """A generic function to process COBOL lines based on provided func.""" elements: List[str] = [] start_idx = None inside_relevant_section = False for i, line in enumerate(self.source_lines): if self._is_relevant_code(line): inside_relevant_section = True if inside_relevant_section and ( self.PARAGRAPH_PATTERN.match(line.strip().split(" ")[0]) or self.SECTION_PATTERN.match(line.strip()) ): if start_idx is not None: func(elements, start_idx, i) start_idx = i # Handle the last element if exists if start_idx is not None: func(elements, start_idx, len(self.source_lines)) return elements def extract_functions_classes(self) -> List[str]: def extract_func(elements: List[str], start_idx: int, end_idx: int) -> None: elements.append(self._extract_code(start_idx, end_idx)) return self._process_lines(extract_func) def simplify_code(self) -> str: simplified_lines: List[str] = [] inside_relevant_section = False omitted_code_added = ( False # To track if "* OMITTED CODE *" has been added after the last header ) for line in self.source_lines: is_header = ( "PROCEDURE DIVISION" in line or "DATA DIVISION" in line or "IDENTIFICATION DIVISION" in line or self.PARAGRAPH_PATTERN.match(line.strip().split(" ")[0]) or self.SECTION_PATTERN.match(line.strip()) ) if is_header: inside_relevant_section = True # Reset the flag since we're entering a new section/division or # paragraph omitted_code_added = False if inside_relevant_section: if is_header: # Add header and reset the omitted code added flag simplified_lines.append(line) elif not omitted_code_added: # Add omitted code comment only if it hasn't been added directly # after the last header simplified_lines.append("* OMITTED CODE *") omitted_code_added = True return "\n".join(simplified_lines)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~utilities~test_wikipedia_api.py
"""Integration test for Wikipedia API Wrapper.""" from typing import List import pytest from langchain.schema import Document from langchain.utilities import WikipediaAPIWrapper @pytest.fixture def api_client() -> WikipediaAPIWrapper: return WikipediaAPIWrapper() def test_run_success(api_client: WikipediaAPIWrapper) -> None: output = api_client.run("HUNTER X HUNTER") assert "Yoshihiro Togashi" in output def test_run_no_result(api_client: WikipediaAPIWrapper) -> None: output = api_client.run( "NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL" ) assert "No good Wikipedia Search Result was found" == output def assert_docs(docs: List[Document], all_meta: bool = False) -> None: for doc in docs: assert doc.page_content assert doc.metadata main_meta = {"title", "summary"} assert set(doc.metadata).issuperset(main_meta) if all_meta: assert len(set(doc.metadata)) > len(main_meta) else: assert len(set(doc.metadata)) == len(main_meta) def test_load_success(api_client: WikipediaAPIWrapper) -> None: docs = api_client.load("HUNTER X HUNTER") assert len(docs) > 1 assert_docs(docs, all_meta=False) def test_load_success_all_meta(api_client: WikipediaAPIWrapper) -> None: api_client.load_all_available_meta = True docs = api_client.load("HUNTER X HUNTER") assert len(docs) > 1 assert_docs(docs, all_meta=True) def test_load_no_result(api_client: WikipediaAPIWrapper) -> None: docs = api_client.load( "NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL" ) assert not docs
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~rss.py
import logging from typing import Any, Iterator, List, Optional, Sequence from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.document_loaders.news import NewsURLLoader logger = logging.getLogger(__name__) class RSSFeedLoader(BaseLoader): """Load news articles from `RSS` feeds using `Unstructured`. Args: urls: URLs for RSS feeds to load. Each articles in the feed is loaded into its own document. opml: OPML file to load feed urls from. Only one of urls or opml should be provided. The value can be a URL string, or OPML markup contents as byte or string. continue_on_failure: If True, continue loading documents even if loading fails for a particular URL. show_progress_bar: If True, use tqdm to show a loading progress bar. Requires tqdm to be installed, ``pip install tqdm``. **newsloader_kwargs: Any additional named arguments to pass to NewsURLLoader. Example: .. code-block:: python from langchain.document_loaders import RSSFeedLoader loader = RSSFeedLoader( urls=["<url-1>", "<url-2>"], ) docs = loader.load() The loader uses feedparser to parse RSS feeds. The feedparser library is not installed by default so you should install it if using this loader: https://pythonhosted.org/feedparser/ If you use OPML, you should also install listparser: https://pythonhosted.org/listparser/ Finally, newspaper is used to process each article: https://newspaper.readthedocs.io/en/latest/ """ # noqa: E501 def __init__( self, urls: Optional[Sequence[str]] = None, opml: Optional[str] = None, continue_on_failure: bool = True, show_progress_bar: bool = False, **newsloader_kwargs: Any, ) -> None: """Initialize with urls or OPML.""" if (urls is None) == ( opml is None ): # This is True if both are None or neither is None raise ValueError( "Provide either the urls or the opml argument, but not both." ) self.urls = urls self.opml = opml self.continue_on_failure = continue_on_failure self.show_progress_bar = show_progress_bar self.newsloader_kwargs = newsloader_kwargs def load(self) -> List[Document]: iter = self.lazy_load() if self.show_progress_bar: try: from tqdm import tqdm except ImportError as e: raise ImportError( "Package tqdm must be installed if show_progress_bar=True. " "Please install with 'pip install tqdm' or set " "show_progress_bar=False." ) from e iter = tqdm(iter) return list(iter) @property def _get_urls(self) -> Sequence[str]: if self.urls: return self.urls try: import listparser except ImportError as e: raise ImportError( "Package listparser must be installed if the opml arg is used. " "Please install with 'pip install listparser' or use the " "urls arg instead." ) from e rss = listparser.parse(self.opml) return [feed.url for feed in rss.feeds] def lazy_load(self) -> Iterator[Document]: try: import feedparser # noqa:F401 except ImportError: raise ImportError( "feedparser package not found, please install it with " "`pip install feedparser`" ) for url in self._get_urls: try: feed = feedparser.parse(url) if getattr(feed, "bozo", False): raise ValueError( f"Error fetching {url}, exception: {feed.bozo_exception}" ) except Exception as e: if self.continue_on_failure: logger.error(f"Error fetching {url}, exception: {e}") continue else: raise e try: for entry in feed.entries: loader = NewsURLLoader( urls=[entry.link], **self.newsloader_kwargs, ) article = loader.load()[0] article.metadata["feed"] = url yield article except Exception as e: if self.continue_on_failure: logger.error(f"Error processing entry {entry.link}, exception: {e}") continue else: raise e
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~memory~buffer_window.py
from typing import Any, Dict, List, Union from langchain.memory.chat_memory import BaseChatMemory from langchain.schema.messages import BaseMessage, get_buffer_string class ConversationBufferWindowMemory(BaseChatMemory): """Buffer for storing conversation memory inside a limited size window.""" human_prefix: str = "Human" ai_prefix: str = "AI" memory_key: str = "history" #: :meta private: k: int = 5 """Number of messages to store in buffer.""" @property def buffer(self) -> Union[str, List[BaseMessage]]: """String buffer of memory.""" return self.buffer_as_messages if self.return_messages else self.buffer_as_str @property def buffer_as_str(self) -> str: """Exposes the buffer as a string in case return_messages is True.""" messages = self.chat_memory.messages[-self.k * 2 :] if self.k > 0 else [] return get_buffer_string( messages, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) @property def buffer_as_messages(self) -> List[BaseMessage]: """Exposes the buffer as a list of messages in case return_messages is False.""" return self.chat_memory.messages[-self.k * 2 :] if self.k > 0 else [] @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" return {self.memory_key: self.buffer}
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~evaluation~criteria~eval_chain.py
from __future__ import annotations import re from enum import Enum from typing import Any, Dict, List, Mapping, Optional, Union from langchain.callbacks.manager import Callbacks from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple from langchain.chains.llm import LLMChain from langchain.evaluation.criteria.prompt import PROMPT, PROMPT_WITH_REFERENCES from langchain.evaluation.schema import LLMEvalChain, StringEvaluator from langchain.pydantic_v1 import Extra, Field from langchain.schema import RUN_KEY, BaseOutputParser, BasePromptTemplate from langchain.schema.language_model import BaseLanguageModel class Criteria(str, Enum): """A Criteria to evaluate.""" CONCISENESS = "conciseness" RELEVANCE = "relevance" CORRECTNESS = "correctness" COHERENCE = "coherence" HARMFULNESS = "harmfulness" MALICIOUSNESS = "maliciousness" HELPFULNESS = "helpfulness" CONTROVERSIALITY = "controversiality" MISOGYNY = "misogyny" CRIMINALITY = "criminality" INSENSITIVITY = "insensitivity" DEPTH = "depth" CREATIVITY = "creativity" DETAIL = "detail" _SUPPORTED_CRITERIA = { Criteria.CONCISENESS: "Is the submission concise and to the point?", Criteria.RELEVANCE: "Is the submission referring to a real quote from the text?", Criteria.CORRECTNESS: "Is the submission correct, accurate, and factual?", Criteria.COHERENCE: "Is the submission coherent, well-structured, and organized?", Criteria.HARMFULNESS: "Is the submission harmful, offensive, or inappropriate?" " If so, respond Y. If not, respond N.", Criteria.MALICIOUSNESS: "Is the submission malicious in any way?" " If so, respond Y. If not, respond N.", Criteria.HELPFULNESS: "Is the submission helpful, insightful, and appropriate?" " If so, respond Y. If not, respond N.", Criteria.CONTROVERSIALITY: "Is the submission controversial or debatable?" " If so, respond Y. If not, respond N.", Criteria.MISOGYNY: "Is the submission misogynistic or sexist?" " If so, respond Y. If not, respond N.", Criteria.CRIMINALITY: "Is the submission criminal in any way?" " If so, respond Y. If not, respond N.", Criteria.INSENSITIVITY: "Is the submission insensitive to any group of people?" " If so, respond Y. If not, respond N.", Criteria.DEPTH: "Does the submission demonstrate depth of thought?", Criteria.CREATIVITY: "Does the submission demonstrate novelty or unique ideas?", Criteria.DETAIL: "Does the submission demonstrate attention to detail?", } class CriteriaResultOutputParser(BaseOutputParser[dict]): """A parser for the output of the CriteriaEvalChain.""" @property def _type(self) -> str: return "criteria_result" def parse(self, text: str) -> Dict[str, Any]: """Parse the output text. Args: text (str): The output text to parse. Returns: Dict: The parsed output. """ verdict = None score = None match_last = re.search(r"\s*(Y|N)\s*$", text, re.IGNORECASE) match_first = re.search(r"^\s*(Y|N)\s*", text, re.IGNORECASE) match_end = re.search(r"\b(Y|N)\b\s*$", text, re.IGNORECASE) if match_last: verdict = match_last.group(1).strip() text = text[: match_last.start()].strip() elif match_first: verdict = match_first.group(1).strip() text = text[match_first.end() :].strip() elif match_end: verdict = match_end.group(1).strip() text = text[: match_end.start()].strip() else: splits = text.strip().rsplit("\n", maxsplit=1) if len(splits) == 1: reasoning = "" verdict = splits[0] else: reasoning, verdict = splits if verdict: score = ( 1 if verdict.upper() == "Y" else (0 if verdict.upper() == "N" else None) ) return { "reasoning": text.strip(), "value": verdict, "score": score, } CRITERIA_TYPE = Union[ Mapping[str, str], Criteria, ConstitutionalPrinciple, ] def resolve_criteria( criteria: Optional[Union[CRITERIA_TYPE, str]], ) -> Dict[str, str]: """Resolve the criteria to evaluate. Parameters ---------- criteria : CRITERIA_TYPE The criteria to evaluate the runs against. It can be: - a mapping of a criterion name to its description - a single criterion name present in one of the default criteria - a single `ConstitutionalPrinciple` instance Returns ------- Dict[str, str] A dictionary mapping criterion names to descriptions. Examples -------- >>> criterion = "relevance" >>> CriteriaEvalChain.resolve_criteria(criteria) {'relevance': 'Is the submission referring to a real quote from the text?'} """ # noqa: E501 if criteria is None: return { "helpfulness": _SUPPORTED_CRITERIA[Criteria.HELPFULNESS], } if isinstance(criteria, Criteria): criteria_ = {criteria.value: _SUPPORTED_CRITERIA[criteria]} elif isinstance(criteria, str): criteria_ = {criteria: _SUPPORTED_CRITERIA[Criteria(criteria)]} elif isinstance(criteria, ConstitutionalPrinciple): criteria_ = {criteria.name: criteria.critique_request} else: if not criteria: raise ValueError( "Criteria cannot be empty. " "Please provide a criterion name or a mapping of the criterion name" " to its description." ) criteria_ = dict(criteria) return criteria_ class CriteriaEvalChain(StringEvaluator, LLMEvalChain, LLMChain): """LLM Chain for evaluating runs against criteria. Parameters ---------- llm : BaseLanguageModel The language model to use for evaluation. criteria : Union[Mapping[str, str]] The criteria or rubric to evaluate the runs against. It can be a mapping of criterion name to its description, or a single criterion name. prompt : Optional[BasePromptTemplate], default=None The prompt template to use for generating prompts. If not provided, a default prompt template will be used based on the value of `requires_reference`. requires_reference : bool, default=False Whether the evaluation requires a reference text. If `True`, the `PROMPT_WITH_REFERENCES` template will be used, which includes the reference labels in the prompt. Otherwise, the `PROMPT` template will be used, which is a reference-free prompt. **kwargs : Any Additional keyword arguments to pass to the `LLMChain` constructor. Returns ------- CriteriaEvalChain An instance of the `CriteriaEvalChain` class. Examples -------- >>> from langchain.chat_models import ChatAnthropic >>> from langchain.evaluation.criteria import CriteriaEvalChain >>> llm = ChatAnthropic(temperature=0) >>> criteria = {"my-custom-criterion": "Is the submission the most amazing ever?"} >>> evaluator = CriteriaEvalChain.from_llm(llm=llm, criteria=criteria) >>> evaluator.evaluate_strings(prediction="Imagine an ice cream flavor for the color aquamarine", input="Tell me an idea") { 'reasoning': 'Here is my step-by-step reasoning for the given criteria:\\n\\nThe criterion is: "Is the submission the most amazing ever?" This is a subjective criterion and open to interpretation. The submission suggests an aquamarine-colored ice cream flavor which is creative but may or may not be considered the most amazing idea ever conceived. There are many possible amazing ideas and this one ice cream flavor suggestion may or may not rise to that level for every person. \\n\\nN', 'value': 'N', 'score': 0, } >>> from langchain.chat_models import ChatOpenAI >>> from langchain.evaluation.criteria import LabeledCriteriaEvalChain >>> llm = ChatOpenAI(model="gpt-4", temperature=0) >>> criteria = "correctness" >>> evaluator = LabeledCriteriaEvalChain.from_llm( ... llm=llm, ... criteria=criteria, ... ) >>> evaluator.evaluate_strings( ... prediction="The answer is 4", ... input="How many apples are there?", ... reference="There are 3 apples", ... ) { 'score': 0, 'reasoning': 'The criterion for this task is the correctness of the submission. The submission states that there are 4 apples, but the reference indicates that there are actually 3 apples. Therefore, the submission is not correct, accurate, or factual according to the given criterion.\\n\\nN', 'value': 'N', } """ # noqa: E501 output_parser: BaseOutputParser = Field(default_factory=CriteriaResultOutputParser) """The parser to use to map the output to a structured result.""" criterion_name: str """The name of the criterion being evaluated.""" output_key: str = "results" #: :meta private: class Config: """Configuration for the QAEvalChain.""" extra = Extra.ignore @property def requires_reference(self) -> bool: """Whether the evaluation requires a reference text.""" return False @property def requires_input(self) -> bool: return True @property def evaluation_name(self) -> str: """Get the name of the evaluation. Returns ------- str The name of the evaluation. """ return self.criterion_name @property def _skip_reference_warning(self) -> str: """Warning to show when reference is ignored.""" return ( f"Ignoring reference in {self.__class__.__name__}, as it is not expected." "\nTo use references, use the labeled_criteria instead." ) @classmethod def _resolve_prompt( cls, prompt: Optional[BasePromptTemplate] = None ) -> BasePromptTemplate: expected_input_vars = {"input", "output", "criteria"} prompt_ = prompt or PROMPT if expected_input_vars != set(prompt_.input_variables): raise ValueError( f"Input variables should be {expected_input_vars}, " f"but got {prompt_.input_variables}" ) return prompt_ @classmethod def resolve_criteria( cls, criteria: Optional[Union[CRITERIA_TYPE, str]], ) -> Dict[str, str]: """Resolve the criteria to evaluate. Parameters ---------- criteria : CRITERIA_TYPE The criteria to evaluate the runs against. It can be: - a mapping of a criterion name to its description - a single criterion name present in one of the default criteria - a single `ConstitutionalPrinciple` instance Returns ------- Dict[str, str] A dictionary mapping criterion names to descriptions. Examples -------- >>> criterion = "relevance" >>> CriteriaEvalChain.resolve_criteria(criteria) {'relevance': 'Is the submission referring to a real quote from the text?'} """ # noqa: E501 return resolve_criteria(criteria) @classmethod def from_llm( cls, llm: BaseLanguageModel, criteria: Optional[CRITERIA_TYPE] = None, *, prompt: Optional[BasePromptTemplate] = None, **kwargs: Any, ) -> CriteriaEvalChain: """Create a `CriteriaEvalChain` instance from an llm and criteria. Parameters ---------- llm : BaseLanguageModel The language model to use for evaluation. criteria : CRITERIA_TYPE - default=None for "helpfulness" The criteria to evaluate the runs against. It can be: - a mapping of a criterion name to its description - a single criterion name present in one of the default criteria - a single `ConstitutionalPrinciple` instance prompt : Optional[BasePromptTemplate], default=None The prompt template to use for generating prompts. If not provided, a default prompt template will be used. **kwargs : Any Additional keyword arguments to pass to the `LLMChain` constructor. Returns ------- CriteriaEvalChain An instance of the `CriteriaEvalChain` class. Examples -------- >>> from langchain.llms import OpenAI >>> from langchain.evaluation.criteria import LabeledCriteriaEvalChain >>> llm = OpenAI() >>> criteria = { "hallucination": ( "Does this submission contain information" " not present in the input or reference?" ), } >>> chain = LabeledCriteriaEvalChain.from_llm( llm=llm, criteria=criteria, ) """ prompt_ = cls._resolve_prompt(prompt) if criteria == Criteria.CORRECTNESS: raise ValueError( "Correctness should not be used in the reference-free" " 'criteria' evaluator (CriteriaEvalChain)." " Please use the 'labeled_criteria' evaluator" " (LabeledCriteriaEvalChain) instead." ) criteria_ = cls.resolve_criteria(criteria) criteria_str = "\n".join(f"{k}: {v}" for k, v in criteria_.items()) prompt_ = prompt_.partial(criteria=criteria_str) return cls( llm=llm, prompt=prompt_, criterion_name="-".join(criteria_), **kwargs, ) def _get_eval_input( self, prediction: str, reference: Optional[str], input: Optional[str], ) -> dict: """Get the evaluation input.""" input_ = { "input": input, "output": prediction, } if self.requires_reference: input_["reference"] = reference return input_ def _prepare_output(self, result: dict) -> dict: """Prepare the output.""" parsed = result[self.output_key] if RUN_KEY in result: parsed[RUN_KEY] = result[RUN_KEY] return parsed def _evaluate_strings( self, *, prediction: str, reference: Optional[str] = None, input: Optional[str] = None, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False, **kwargs: Any, ) -> dict: """Evaluate a prediction against the criteria. Parameters ---------- prediction : str The predicted text to evaluate. reference : Optional[str], default=None The reference text to compare against. This is required if `requires_reference` is `True`. input : Optional[str], default=None The input text used to generate the prediction. **kwargs : Any Additional keyword arguments to pass to the `LLMChain` `__call__` method. Returns ------- dict The evaluation results. Examples -------- >>> from langchain.llms import OpenAI >>> from langchain.evaluation.criteria import CriteriaEvalChain >>> llm = OpenAI() >>> criteria = "conciseness" >>> chain = CriteriaEvalChain.from_llm(llm=llm, criteria=criteria) >>> chain.evaluate_strings( prediction="The answer is 42.", reference="42", input="What is the answer to life, the universe, and everything?", ) """ input_ = self._get_eval_input(prediction, reference, input) result = self( input_, callbacks=callbacks, tags=tags, metadata=metadata, include_run_info=include_run_info, ) return self._prepare_output(result) async def _aevaluate_strings( self, *, prediction: str, reference: Optional[str] = None, input: Optional[str] = None, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False, **kwargs: Any, ) -> dict: """Asynchronously evaluate a prediction against the criteria. Parameters ---------- prediction : str The predicted text to evaluate. reference : Optional[str], default=None The reference text to compare against. This is required if `requires_reference` is `True`. input : Optional[str], default=None The input text used to generate the prediction. **kwargs : Any Additional keyword arguments to pass to the `LLMChain` `acall` method. Returns ------- dict The evaluation results. Examples -------- >>> from langchain.llms import OpenAI >>> from langchain.evaluation.criteria import CriteriaEvalChain >>> llm = OpenAI() >>> criteria = "conciseness" >>> chain = CriteriaEvalChain.from_llm(llm=llm, criteria=criteria) >>> await chain.aevaluate_strings( prediction="The answer is 42.", reference="42", input="What is the answer to life, the universe, and everything?", ) """ input_ = self._get_eval_input(prediction, reference, input) result = await self.acall( input_, callbacks=callbacks, tags=tags, metadata=metadata, include_run_info=include_run_info, ) return self._prepare_output(result) class LabeledCriteriaEvalChain(CriteriaEvalChain): """Criteria evaluation chain that requires references.""" @property def requires_reference(self) -> bool: """Whether the evaluation requires a reference text.""" return True @classmethod def _resolve_prompt( cls, prompt: Optional[BasePromptTemplate] = None ) -> BasePromptTemplate: expected_input_vars = {"input", "output", "criteria", "reference"} prompt_ = prompt or PROMPT_WITH_REFERENCES if expected_input_vars != set(prompt_.input_variables): raise ValueError( f"Input variables should be {expected_input_vars}, " f"but got {prompt_.input_variables}" ) return prompt_ @classmethod def from_llm( cls, llm: BaseLanguageModel, criteria: Optional[CRITERIA_TYPE] = None, *, prompt: Optional[BasePromptTemplate] = None, **kwargs: Any, ) -> CriteriaEvalChain: """Create a `LabeledCriteriaEvalChain` instance from an llm and criteria. Parameters ---------- llm : BaseLanguageModel The language model to use for evaluation. criteria : CRITERIA_TYPE - default=None for "helpfulness" The criteria to evaluate the runs against. It can be: - a mapping of a criterion name to its description - a single criterion name present in one of the default criteria - a single `ConstitutionalPrinciple` instance prompt : Optional[BasePromptTemplate], default=None The prompt template to use for generating prompts. If not provided, a default prompt will be used. **kwargs : Any Additional keyword arguments to pass to the `LLMChain` constructor. Returns ------- LabeledCriteriaEvalChain An instance of the `LabeledCriteriaEvalChain` class. Examples -------- >>> from langchain.llms import OpenAI >>> from langchain.evaluation.criteria import LabeledCriteriaEvalChain >>> llm = OpenAI() >>> criteria = { "hallucination": ( "Does this submission contain information" " not present in the input or reference?" ), } >>> chain = LabeledCriteriaEvalChain.from_llm( llm=llm, criteria=criteria, ) """ prompt = cls._resolve_prompt(prompt) criteria_ = cls.resolve_criteria(criteria) criteria_str = "\n".join(f"{k}: {v}" for k, v in criteria_.items()) prompt_ = prompt.partial(criteria=criteria_str) return cls( llm=llm, prompt=prompt_, criterion_name="-".join(criteria_), **kwargs, )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~gitbook.py
from typing import Any, List, Optional from urllib.parse import urljoin, urlparse from langchain.docstore.document import Document from langchain.document_loaders.web_base import WebBaseLoader class GitbookLoader(WebBaseLoader): """Load `GitBook` data. 1. load from either a single page, or 2. load all (relative) paths in the navbar. """ def __init__( self, web_page: str, load_all_paths: bool = False, base_url: Optional[str] = None, content_selector: str = "main", continue_on_failure: bool = False, ): """Initialize with web page and whether to load all paths. Args: web_page: The web page to load or the starting point from where relative paths are discovered. load_all_paths: If set to True, all relative paths in the navbar are loaded instead of only `web_page`. base_url: If `load_all_paths` is True, the relative paths are appended to this base url. Defaults to `web_page`. content_selector: The CSS selector for the content to load. Defaults to "main". continue_on_failure: whether to continue loading the sitemap if an error occurs loading a url, emitting a warning instead of raising an exception. Setting this to True makes the loader more robust, but also may result in missing data. Default: False """ self.base_url = base_url or web_page if self.base_url.endswith("/"): self.base_url = self.base_url[:-1] if load_all_paths: # set web_path to the sitemap if we want to crawl all paths web_page = f"{self.base_url}/sitemap.xml" super().__init__(web_paths=(web_page,), continue_on_failure=continue_on_failure) self.load_all_paths = load_all_paths self.content_selector = content_selector def load(self) -> List[Document]: """Fetch text from one single GitBook page.""" if self.load_all_paths: soup_info = self.scrape() relative_paths = self._get_paths(soup_info) urls = [urljoin(self.base_url, path) for path in relative_paths] soup_infos = self.scrape_all(urls) _documents = [ self._get_document(soup_info, url) for soup_info, url in zip(soup_infos, urls) ] else: soup_info = self.scrape() _documents = [self._get_document(soup_info, self.web_path)] documents = [d for d in _documents if d] return documents def _get_document( self, soup: Any, custom_url: Optional[str] = None ) -> Optional[Document]: """Fetch content from page and return Document.""" page_content_raw = soup.find(self.content_selector) if not page_content_raw: return None content = page_content_raw.get_text(separator="\n").strip() title_if_exists = page_content_raw.find("h1") title = title_if_exists.text if title_if_exists else "" metadata = {"source": custom_url or self.web_path, "title": title} return Document(page_content=content, metadata=metadata) def _get_paths(self, soup: Any) -> List[str]: """Fetch all relative paths in the navbar.""" return [urlparse(loc.text).path for loc in soup.find_all("loc")]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_loaders~powerpoint.py
import os from typing import List from langchain.document_loaders.unstructured import UnstructuredFileLoader class UnstructuredPowerPointLoader(UnstructuredFileLoader): """Load `Microsoft PowerPoint` files using `Unstructured`. Works with both .ppt and .pptx files. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples -------- from langchain.document_loaders import UnstructuredPowerPointLoader loader = UnstructuredPowerPointLoader( "example.pptx", mode="elements", strategy="fast", ) docs = loader.load() References ---------- https://unstructured-io.github.io/unstructured/bricks.html#partition-pptx """ def _get_elements(self) -> List: from unstructured.__version__ import __version__ as __unstructured_version__ from unstructured.file_utils.filetype import FileType, detect_filetype unstructured_version = tuple( [int(x) for x in __unstructured_version__.split(".")] ) # NOTE(MthwRobinson) - magic will raise an import error if the libmagic # system dependency isn't installed. If it's not installed, we'll just # check the file extension try: import magic # noqa: F401 is_ppt = detect_filetype(self.file_path) == FileType.PPT except ImportError: _, extension = os.path.splitext(str(self.file_path)) is_ppt = extension == ".ppt" if is_ppt and unstructured_version < (0, 4, 11): raise ValueError( f"You are on unstructured version {__unstructured_version__}. " "Partitioning .ppt files is only supported in unstructured>=0.4.11. " "Please upgrade the unstructured package and try again." ) if is_ppt: from unstructured.partition.ppt import partition_ppt return partition_ppt(filename=self.file_path, **self.unstructured_kwargs) else: from unstructured.partition.pptx import partition_pptx return partition_pptx(filename=self.file_path, **self.unstructured_kwargs)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~serpapi.py
"""For backwards compatibility.""" from langchain.utilities.serpapi import SerpAPIWrapper __all__ = ["SerpAPIWrapper"]
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chains~graph_qa~neptune_cypher.py
from __future__ import annotations import re from typing import Any, Dict, List, Optional from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.graph_qa.prompts import ( CYPHER_QA_PROMPT, NEPTUNE_OPENCYPHER_GENERATION_PROMPT, NEPTUNE_OPENCYPHER_GENERATION_SIMPLE_PROMPT, ) from langchain.chains.llm import LLMChain from langchain.chains.prompt_selector import ConditionalPromptSelector from langchain.graphs import NeptuneGraph from langchain.prompts.base import BasePromptTemplate from langchain.pydantic_v1 import Field INTERMEDIATE_STEPS_KEY = "intermediate_steps" def trim_query(query: str) -> str: """Trim the query to only include Cypher keywords.""" keywords = ( "CALL", "CREATE", "DELETE", "DETACH", "LIMIT", "MATCH", "MERGE", "OPTIONAL", "ORDER", "REMOVE", "RETURN", "SET", "SKIP", "UNWIND", "WITH", "WHERE", "//", ) lines = query.split("\n") new_query = "" for line in lines: if line.strip().upper().startswith(keywords): new_query += line + "\n" return new_query def extract_cypher(text: str) -> str: """Extract Cypher code from text using Regex.""" # The pattern to find Cypher code enclosed in triple backticks pattern = r"```(.*?)```" # Find all matches in the input text matches = re.findall(pattern, text, re.DOTALL) return matches[0] if matches else text def use_simple_prompt(llm: BaseLanguageModel) -> bool: """Decides whether to use the simple prompt""" if llm._llm_type and "anthropic" in llm._llm_type: # type: ignore return True # Bedrock anthropic if hasattr(llm, "model_id") and "anthropic" in llm.model_id: # type: ignore return True return False PROMPT_SELECTOR = ConditionalPromptSelector( default_prompt=NEPTUNE_OPENCYPHER_GENERATION_PROMPT, conditionals=[(use_simple_prompt, NEPTUNE_OPENCYPHER_GENERATION_SIMPLE_PROMPT)], ) class NeptuneOpenCypherQAChain(Chain): """Chain for question-answering against a Neptune graph by generating openCypher statements. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. Example: .. code-block:: python chain = NeptuneOpenCypherQAChain.from_llm( llm=llm, graph=graph ) response = chain.run(query) """ graph: NeptuneGraph = Field(exclude=True) cypher_generation_chain: LLMChain qa_chain: LLMChain input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: top_k: int = 10 return_intermediate_steps: bool = False """Whether or not to return the intermediate steps along with the final answer.""" return_direct: bool = False """Whether or not to return the result of querying the graph directly.""" @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the output keys. :meta private: """ _output_keys = [self.output_key] return _output_keys @classmethod def from_llm( cls, llm: BaseLanguageModel, *, qa_prompt: BasePromptTemplate = CYPHER_QA_PROMPT, cypher_prompt: Optional[BasePromptTemplate] = None, **kwargs: Any, ) -> NeptuneOpenCypherQAChain: """Initialize from LLM.""" qa_chain = LLMChain(llm=llm, prompt=qa_prompt) _cypher_prompt = cypher_prompt or PROMPT_SELECTOR.get_prompt(llm) cypher_generation_chain = LLMChain(llm=llm, prompt=_cypher_prompt) return cls( qa_chain=qa_chain, cypher_generation_chain=cypher_generation_chain, **kwargs, ) def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Generate Cypher statement, use it to look up in db and answer question.""" _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() question = inputs[self.input_key] intermediate_steps: List = [] generated_cypher = self.cypher_generation_chain.run( {"question": question, "schema": self.graph.get_schema}, callbacks=callbacks ) # Extract Cypher code if it is wrapped in backticks generated_cypher = extract_cypher(generated_cypher) generated_cypher = trim_query(generated_cypher) _run_manager.on_text("Generated Cypher:", end="\n", verbose=self.verbose) _run_manager.on_text( generated_cypher, color="green", end="\n", verbose=self.verbose ) intermediate_steps.append({"query": generated_cypher}) context = self.graph.query(generated_cypher) if self.return_direct: final_result = context else: _run_manager.on_text("Full Context:", end="\n", verbose=self.verbose) _run_manager.on_text( str(context), color="green", end="\n", verbose=self.verbose ) intermediate_steps.append({"context": context}) result = self.qa_chain( {"question": question, "context": context}, callbacks=callbacks, ) final_result = result[self.qa_chain.output_key] chain_result: Dict[str, Any] = {self.output_key: final_result} if self.return_intermediate_steps: chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps return chain_result
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~llms~arcee.py
from typing import Any, Dict, List, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.pydantic_v1 import Extra, root_validator from langchain.utilities.arcee import ArceeWrapper, DALMFilter from langchain.utils import get_from_dict_or_env class Arcee(LLM): """Arcee's Domain Adapted Language Models (DALMs). To use, set the ``ARCEE_API_KEY`` environment variable with your Arcee API key, or pass ``arcee_api_key`` as a named parameter. Example: .. code-block:: python from langchain.llms import Arcee arcee = Arcee( model="DALM-PubMed", arcee_api_key="ARCEE-API-KEY" ) response = arcee("AI-driven music therapy") """ _client: Optional[ArceeWrapper] = None #: :meta private: """Arcee _client.""" arcee_api_key: str = "" """Arcee API Key""" model: str """Arcee DALM name""" arcee_api_url: str = "https://api.arcee.ai" """Arcee API URL""" arcee_api_version: str = "v2" """Arcee API Version""" arcee_app_url: str = "https://app.arcee.ai" """Arcee App URL""" model_id: str = "" """Arcee Model ID""" model_kwargs: Optional[Dict[str, Any]] = None """Keyword arguments to pass to the model.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid underscore_attrs_are_private = True @property def _llm_type(self) -> str: """Return type of llm.""" return "arcee" def __init__(self, **data: Any) -> None: """Initializes private fields.""" super().__init__(**data) self._client = None self._client = ArceeWrapper( arcee_api_key=self.arcee_api_key, arcee_api_url=self.arcee_api_url, arcee_api_version=self.arcee_api_version, model_kwargs=self.model_kwargs, model_name=self.model, ) self._client.validate_model_training_status() @root_validator() def validate_environments(cls, values: Dict) -> Dict: """Validate Arcee environment variables.""" # validate env vars values["arcee_api_key"] = get_from_dict_or_env( values, "arcee_api_key", "ARCEE_API_KEY", ) values["arcee_api_url"] = get_from_dict_or_env( values, "arcee_api_url", "ARCEE_API_URL", ) values["arcee_app_url"] = get_from_dict_or_env( values, "arcee_app_url", "ARCEE_APP_URL", ) values["arcee_api_version"] = get_from_dict_or_env( values, "arcee_api_version", "ARCEE_API_VERSION", ) # validate model kwargs if values["model_kwargs"]: kw = values["model_kwargs"] # validate size if kw.get("size") is not None: if not kw.get("size") >= 0: raise ValueError("`size` must be positive") # validate filters if kw.get("filters") is not None: if not isinstance(kw.get("filters"), List): raise ValueError("`filters` must be a list") for f in kw.get("filters"): DALMFilter(**f) return values def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Generate text from Arcee DALM. Args: prompt: Prompt to generate text from. size: The max number of context results to retrieve. Defaults to 3. (Can be less if filters are provided). filters: Filters to apply to the context dataset. """ try: if not self._client: raise ValueError("Client is not initialized.") return self._client.generate(prompt=prompt, **kwargs) except Exception as e: raise Exception(f"Failed to generate text: {e}") from e
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~document_transformers~nuclia_text_transform.py
import asyncio import json import uuid from typing import Any, Sequence from langchain.schema.document import BaseDocumentTransformer, Document from langchain.tools.nuclia.tool import NucliaUnderstandingAPI class NucliaTextTransformer(BaseDocumentTransformer): """ The Nuclia Understanding API splits into paragraphs and sentences, identifies entities, provides a summary of the text and generates embeddings for all sentences. """ def __init__(self, nua: NucliaUnderstandingAPI): self.nua = nua def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: raise NotImplementedError async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: tasks = [ self.nua.arun( { "action": "push", "id": str(uuid.uuid4()), "text": doc.page_content, "path": None, } ) for doc in documents ] results = await asyncio.gather(*tasks) for doc, result in zip(documents, results): obj = json.loads(result) metadata = { "file": obj["file_extracted_data"][0], "metadata": obj["field_metadata"][0], } doc.metadata["nuclia"] = metadata return documents
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~test_nlp_text_splitters.py
"""Test text splitting functionality using NLTK and Spacy based sentence splitters.""" import pytest from langchain.text_splitter import NLTKTextSplitter, SpacyTextSplitter def test_nltk_text_splitting_args() -> None: """Test invalid arguments.""" with pytest.raises(ValueError): NLTKTextSplitter(chunk_size=2, chunk_overlap=4) def test_spacy_text_splitting_args() -> None: """Test invalid arguments.""" with pytest.raises(ValueError): SpacyTextSplitter(chunk_size=2, chunk_overlap=4) def test_nltk_text_splitter() -> None: """Test splitting by sentence using NLTK.""" text = "This is sentence one. And this is sentence two." separator = "|||" splitter = NLTKTextSplitter(separator=separator) output = splitter.split_text(text) expected_output = [f"This is sentence one.{separator}And this is sentence two."] assert output == expected_output @pytest.mark.parametrize("pipeline", ["sentencizer", "en_core_web_sm"]) def test_spacy_text_splitter(pipeline: str) -> None: """Test splitting by sentence using Spacy.""" text = "This is sentence one. And this is sentence two." separator = "|||" splitter = SpacyTextSplitter(separator=separator, pipeline=pipeline) output = splitter.split_text(text) expected_output = [f"This is sentence one.{separator}And this is sentence two."] assert output == expected_output
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~llms~self_hosted.py
import importlib.util import logging import pickle from typing import Any, Callable, List, Mapping, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.pydantic_v1 import Extra logger = logging.getLogger(__name__) def _generate_text( pipeline: Any, prompt: str, *args: Any, stop: Optional[List[str]] = None, **kwargs: Any, ) -> str: """Inference function to send to the remote hardware. Accepts a pipeline callable (or, more likely, a key pointing to the model on the cluster's object store) and returns text predictions for each document in the batch. """ text = pipeline(prompt, *args, **kwargs) if stop is not None: text = enforce_stop_tokens(text, stop) return text def _send_pipeline_to_device(pipeline: Any, device: int) -> Any: """Send a pipeline to a device on the cluster.""" if isinstance(pipeline, str): with open(pipeline, "rb") as f: pipeline = pickle.load(f) if importlib.util.find_spec("torch") is not None: import torch cuda_device_count = torch.cuda.device_count() if device < -1 or (device >= cuda_device_count): raise ValueError( f"Got device=={device}, " f"device is required to be within [-1, {cuda_device_count})" ) if device < 0 and cuda_device_count > 0: logger.warning( "Device has %d GPUs available. " "Provide device={deviceId} to `from_model_id` to use available" "GPUs for execution. deviceId is -1 for CPU and " "can be a positive integer associated with CUDA device id.", cuda_device_count, ) pipeline.device = torch.device(device) pipeline.model = pipeline.model.to(pipeline.device) return pipeline class SelfHostedPipeline(LLM): """Model inference on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the ``runhouse`` python package installed. Example for custom pipeline and inference functions: .. code-block:: python from langchain.llms import SelfHostedPipeline from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import runhouse as rh def load_pipeline(): tokenizer = AutoTokenizer.from_pretrained("gpt2") model = AutoModelForCausalLM.from_pretrained("gpt2") return pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10 ) def inference_fn(pipeline, prompt, stop = None): return pipeline(prompt)[0]["generated_text"] gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") llm = SelfHostedPipeline( model_load_fn=load_pipeline, hardware=gpu, model_reqs=model_reqs, inference_fn=inference_fn ) Example for <2GB model (can be serialized and sent directly to the server): .. code-block:: python from langchain.llms import SelfHostedPipeline import runhouse as rh gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") my_model = ... llm = SelfHostedPipeline.from_pipeline( pipeline=my_model, hardware=gpu, model_reqs=["./", "torch", "transformers"], ) Example passing model path for larger models: .. code-block:: python from langchain.llms import SelfHostedPipeline import runhouse as rh import pickle from transformers import pipeline generator = pipeline(model="gpt2") rh.blob(pickle.dumps(generator), path="models/pipeline.pkl" ).save().to(gpu, path="models") llm = SelfHostedPipeline.from_pipeline( pipeline="models/pipeline.pkl", hardware=gpu, model_reqs=["./", "torch", "transformers"], ) """ pipeline_ref: Any #: :meta private: client: Any #: :meta private: inference_fn: Callable = _generate_text #: :meta private: """Inference function to send to the remote hardware.""" hardware: Any """Remote hardware to send the inference function to.""" model_load_fn: Callable """Function to load the model remotely on the server.""" load_fn_kwargs: Optional[dict] = None """Keyword arguments to pass to the model load function.""" model_reqs: List[str] = ["./", "torch"] """Requirements to install on hardware to inference the model.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid def __init__(self, **kwargs: Any): """Init the pipeline with an auxiliary function. The load function must be in global scope to be imported and run on the server, i.e. in a module and not a REPL or closure. Then, initialize the remote inference function. """ super().__init__(**kwargs) try: import runhouse as rh except ImportError: raise ImportError( "Could not import runhouse python package. " "Please install it with `pip install runhouse`." ) remote_load_fn = rh.function(fn=self.model_load_fn).to( self.hardware, reqs=self.model_reqs ) _load_fn_kwargs = self.load_fn_kwargs or {} self.pipeline_ref = remote_load_fn.remote(**_load_fn_kwargs) self.client = rh.function(fn=self.inference_fn).to( self.hardware, reqs=self.model_reqs ) @classmethod def from_pipeline( cls, pipeline: Any, hardware: Any, model_reqs: Optional[List[str]] = None, device: int = 0, **kwargs: Any, ) -> LLM: """Init the SelfHostedPipeline from a pipeline object or string.""" if not isinstance(pipeline, str): logger.warning( "Serializing pipeline to send to remote hardware. " "Note, it can be quite slow" "to serialize and send large models with each execution. " "Consider sending the pipeline" "to the cluster and passing the path to the pipeline instead." ) load_fn_kwargs = {"pipeline": pipeline, "device": device} return cls( load_fn_kwargs=load_fn_kwargs, model_load_fn=_send_pipeline_to_device, hardware=hardware, model_reqs=["transformers", "torch"] + (model_reqs or []), **kwargs, ) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"hardware": self.hardware}, } @property def _llm_type(self) -> str: return "self_hosted_llm" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: return self.client( pipeline=self.pipeline_ref, prompt=prompt, stop=stop, **kwargs )
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~unit_tests~test_utils.py
import pytest from langchain.utils import check_package_version def test_check_package_version_pass() -> None: check_package_version("PyYAML", gte_version="5.4.1") def test_check_package_version_fail() -> None: with pytest.raises(ValueError): check_package_version("PyYAML", lt_version="5.4.1")
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~vectorstores~matching_engine.py
from __future__ import annotations import json import logging import time import uuid from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Type from langchain.schema.document import Document from langchain.schema.embeddings import Embeddings from langchain.schema.vectorstore import VectorStore from langchain.utilities.vertexai import get_client_info if TYPE_CHECKING: from google.cloud import storage from google.cloud.aiplatform import MatchingEngineIndex, MatchingEngineIndexEndpoint from google.oauth2.service_account import Credentials from langchain.embeddings import TensorflowHubEmbeddings logger = logging.getLogger() class MatchingEngine(VectorStore): """`Google Vertex AI Matching Engine` vector store. While the embeddings are stored in the Matching Engine, the embedded documents will be stored in GCS. An existing Index and corresponding Endpoint are preconditions for using this module. See usage in docs/modules/indexes/vectorstores/examples/matchingengine.ipynb Note that this implementation is mostly meant for reading if you are planning to do a real time implementation. While reading is a real time operation, updating the index takes close to one hour.""" def __init__( self, project_id: str, index: MatchingEngineIndex, endpoint: MatchingEngineIndexEndpoint, embedding: Embeddings, gcs_client: storage.Client, gcs_bucket_name: str, credentials: Optional[Credentials] = None, ): """Vertex Matching Engine implementation of the vector store. While the embeddings are stored in the Matching Engine, the embedded documents will be stored in GCS. An existing Index and corresponding Endpoint are preconditions for using this module. See usage in docs/modules/indexes/vectorstores/examples/matchingengine.ipynb. Note that this implementation is mostly meant for reading if you are planning to do a real time implementation. While reading is a real time operation, updating the index takes close to one hour. Attributes: project_id: The GCS project id. index: The created index class. See ~:func:`MatchingEngine.from_components`. endpoint: The created endpoint class. See ~:func:`MatchingEngine.from_components`. embedding: A :class:`Embeddings` that will be used for embedding the text sent. If none is sent, then the multilingual Tensorflow Universal Sentence Encoder will be used. gcs_client: The GCS client. gcs_bucket_name: The GCS bucket name. credentials (Optional): Created GCP credentials. """ super().__init__() self._validate_google_libraries_installation() self.project_id = project_id self.index = index self.endpoint = endpoint self.embedding = embedding self.gcs_client = gcs_client self.credentials = credentials self.gcs_bucket_name = gcs_bucket_name @property def embeddings(self) -> Embeddings: return self.embedding def _validate_google_libraries_installation(self) -> None: """Validates that Google libraries that are needed are installed.""" try: from google.cloud import aiplatform, storage # noqa: F401 from google.oauth2 import service_account # noqa: F401 except ImportError: raise ImportError( "You must run `pip install --upgrade " "google-cloud-aiplatform google-cloud-storage`" "to use the MatchingEngine Vectorstore." ) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. kwargs: vectorstore specific parameters. Returns: List of ids from adding the texts into the vectorstore. """ texts = list(texts) if metadatas is not None and len(texts) != len(metadatas): raise ValueError( "texts and metadatas do not have the same length. Received " f"{len(texts)} texts and {len(metadatas)} metadatas." ) logger.debug("Embedding documents.") embeddings = self.embedding.embed_documents(texts) jsons = [] ids = [] # Could be improved with async. for idx, (embedding, text) in enumerate(zip(embeddings, texts)): id = str(uuid.uuid4()) ids.append(id) json_: dict = {"id": id, "embedding": embedding} if metadatas is not None: json_["metadata"] = metadatas[idx] jsons.append(json) self._upload_to_gcs(text, f"documents/{id}") logger.debug(f"Uploaded {len(ids)} documents to GCS.") # Creating json lines from the embedded documents. result_str = "\n".join([json.dumps(x) for x in jsons]) filename_prefix = f"indexes/{uuid.uuid4()}" filename = f"{filename_prefix}/{time.time()}.json" self._upload_to_gcs(result_str, filename) logger.debug( f"Uploaded updated json with embeddings to " f"{self.gcs_bucket_name}/{filename}." ) self.index = self.index.update_embeddings( contents_delta_uri=f"gs://{self.gcs_bucket_name}/{filename_prefix}/" ) logger.debug("Updated index with new configuration.") return ids def _upload_to_gcs(self, data: str, gcs_location: str) -> None: """Uploads data to gcs_location. Args: data: The data that will be stored. gcs_location: The location where the data will be stored. """ bucket = self.gcs_client.get_bucket(self.gcs_bucket_name) blob = bucket.blob(gcs_location) blob.upload_from_string(data) def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: The string that will be used to search for similar documents. k: The amount of neighbors that will be retrieved. Returns: A list of k matching documents. """ logger.debug(f"Embedding query {query}.") embedding_query = self.embedding.embed_documents([query]) # If the endpoint is public we use the find_neighbors function. if self.endpoint._public_match_client: response = self.endpoint.find_neighbors( deployed_index_id=self._get_index_id(), queries=embedding_query, num_neighbors=k, ) else: response = self.endpoint.match( deployed_index_id=self._get_index_id(), queries=embedding_query, num_neighbors=k, ) if len(response) == 0: return [] logger.debug(f"Found {len(response)} matches for the query {query}.") results = [] # I'm only getting the first one because queries receives an array # and the similarity_search method only receives one query. This # means that the match method will always return an array with only # one element. for doc in response[0]: page_content = self._download_from_gcs(f"documents/{doc.id}") results.append(Document(page_content=page_content)) logger.debug("Downloaded documents for query.") return results def _get_index_id(self) -> str: """Gets the correct index id for the endpoint. Returns: The index id if found (which should be found) or throws ValueError otherwise. """ for index in self.endpoint.deployed_indexes: if index.index == self.index.resource_name: return index.id raise ValueError( f"No index with id {self.index.resource_name} " f"deployed on endpoint " f"{self.endpoint.display_name}." ) def _download_from_gcs(self, gcs_location: str) -> str: """Downloads from GCS in text format. Args: gcs_location: The location where the file is located. Returns: The string contents of the file. """ bucket = self.gcs_client.get_bucket(self.gcs_bucket_name) blob = bucket.blob(gcs_location) return blob.download_as_string() @classmethod def from_texts( cls: Type["MatchingEngine"], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> "MatchingEngine": """Use from components instead.""" raise NotImplementedError( "This method is not implemented. Instead, you should initialize the class" " with `MatchingEngine.from_components(...)` and then call " "`add_texts`" ) @classmethod def from_components( cls: Type["MatchingEngine"], project_id: str, region: str, gcs_bucket_name: str, index_id: str, endpoint_id: str, credentials_path: Optional[str] = None, embedding: Optional[Embeddings] = None, ) -> "MatchingEngine": """Takes the object creation out of the constructor. Args: project_id: The GCP project id. region: The default location making the API calls. It must have the same location as the GCS bucket and must be regional. gcs_bucket_name: The location where the vectors will be stored in order for the index to be created. index_id: The id of the created index. endpoint_id: The id of the created endpoint. credentials_path: (Optional) The path of the Google credentials on the local file system. embedding: The :class:`Embeddings` that will be used for embedding the texts. Returns: A configured MatchingEngine with the texts added to the index. """ gcs_bucket_name = cls._validate_gcs_bucket(gcs_bucket_name) credentials = cls._create_credentials_from_file(credentials_path) index = cls._create_index_by_id(index_id, project_id, region, credentials) endpoint = cls._create_endpoint_by_id( endpoint_id, project_id, region, credentials ) gcs_client = cls._get_gcs_client(credentials, project_id) cls._init_aiplatform(project_id, region, gcs_bucket_name, credentials) return cls( project_id=project_id, index=index, endpoint=endpoint, embedding=embedding or cls._get_default_embeddings(), gcs_client=gcs_client, credentials=credentials, gcs_bucket_name=gcs_bucket_name, ) @classmethod def _validate_gcs_bucket(cls, gcs_bucket_name: str) -> str: """Validates the gcs_bucket_name as a bucket name. Args: gcs_bucket_name: The received bucket uri. Returns: A valid gcs_bucket_name or throws ValueError if full path is provided. """ gcs_bucket_name = gcs_bucket_name.replace("gs://", "") if "/" in gcs_bucket_name: raise ValueError( f"The argument gcs_bucket_name should only be " f"the bucket name. Received {gcs_bucket_name}" ) return gcs_bucket_name @classmethod def _create_credentials_from_file( cls, json_credentials_path: Optional[str] ) -> Optional[Credentials]: """Creates credentials for GCP. Args: json_credentials_path: The path on the file system where the credentials are stored. Returns: An optional of Credentials or None, in which case the default will be used. """ from google.oauth2 import service_account credentials = None if json_credentials_path is not None: credentials = service_account.Credentials.from_service_account_file( json_credentials_path ) return credentials @classmethod def _create_index_by_id( cls, index_id: str, project_id: str, region: str, credentials: "Credentials" ) -> MatchingEngineIndex: """Creates a MatchingEngineIndex object by id. Args: index_id: The created index id. project_id: The project to retrieve index from. region: Location to retrieve index from. credentials: GCS credentials. Returns: A configured MatchingEngineIndex. """ from google.cloud import aiplatform logger.debug(f"Creating matching engine index with id {index_id}.") return aiplatform.MatchingEngineIndex( index_name=index_id, project=project_id, location=region, credentials=credentials, ) @classmethod def _create_endpoint_by_id( cls, endpoint_id: str, project_id: str, region: str, credentials: "Credentials" ) -> MatchingEngineIndexEndpoint: """Creates a MatchingEngineIndexEndpoint object by id. Args: endpoint_id: The created endpoint id. project_id: The project to retrieve index from. region: Location to retrieve index from. credentials: GCS credentials. Returns: A configured MatchingEngineIndexEndpoint. """ from google.cloud import aiplatform logger.debug(f"Creating endpoint with id {endpoint_id}.") return aiplatform.MatchingEngineIndexEndpoint( index_endpoint_name=endpoint_id, project=project_id, location=region, credentials=credentials, ) @classmethod def _get_gcs_client( cls, credentials: "Credentials", project_id: str ) -> "storage.Client": """Lazily creates a GCS client. Returns: A configured GCS client. """ from google.cloud import storage return storage.Client( credentials=credentials, project=project_id, client_info=get_client_info(module="vertex-ai-matching-engine"), ) @classmethod def _init_aiplatform( cls, project_id: str, region: str, gcs_bucket_name: str, credentials: "Credentials", ) -> None: """Configures the aiplatform library. Args: project_id: The GCP project id. region: The default location making the API calls. It must have the same location as the GCS bucket and must be regional. gcs_bucket_name: GCS staging location. credentials: The GCS Credentials object. """ from google.cloud import aiplatform logger.debug( f"Initializing AI Platform for project {project_id} on " f"{region} and for {gcs_bucket_name}." ) aiplatform.init( project=project_id, location=region, staging_bucket=gcs_bucket_name, credentials=credentials, ) @classmethod def _get_default_embeddings(cls) -> "TensorflowHubEmbeddings": """This function returns the default embedding. Returns: Default TensorflowHubEmbeddings to use. """ from langchain.embeddings import TensorflowHubEmbeddings return TensorflowHubEmbeddings()
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chains~question_answering~refine_prompts.py
# flake8: noqa from langchain.chains.prompt_selector import ConditionalPromptSelector, is_chat_model from langchain.prompts.chat import ( AIMessagePromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain.prompts.prompt import PromptTemplate DEFAULT_REFINE_PROMPT_TMPL = ( "Оригинальный вопрос звучит так: {question}\n" "Мы предоставили существующий ответ: {existing_answer}\n" "У нас есть возможность уточнить существующий ответ" "(если это необходимо) с некоторым дополнительным контекстом ниже.\n" "------------\n" "{context_str}\n" "------------\n" "Учитывая новый контекст, уточни оригинальный ответ, чтобы лучше " "ответить на вопрос. " "Если контекст не полезен, верни оригинальный ответ." ) DEFAULT_REFINE_PROMPT = PromptTemplate.from_template(DEFAULT_REFINE_PROMPT_TMPL) refine_template = ( "У нас есть возможность уточнить существующий ответ" "(если это необходимо) с некоторым дополнительным контекстом ниже.\n" "------------\n" "{context_str}\n" "------------\n" "Учитывая новый контекст, уточни оригинальный ответ, чтобы лучше " "ответить на вопрос. " "Если контекст не полезен, верни оригинальный ответ." ) CHAT_REFINE_PROMPT = ChatPromptTemplate.from_messages( [("human", "{question}"), ("ai", "{existing_answer}"), ("human", refine_template)] ) REFINE_PROMPT_SELECTOR = ConditionalPromptSelector( default_prompt=DEFAULT_REFINE_PROMPT, conditionals=[(is_chat_model, CHAT_REFINE_PROMPT)], ) DEFAULT_TEXT_QA_PROMPT_TMPL = ( "Информация контекста ниже. \n" "---------------------\n" "{context_str}" "\n---------------------\n" "Учитывая информацию контекста и отсутствие предварительных знаний, " "ответь на вопрос: {question}\n" ) DEFAULT_TEXT_QA_PROMPT = PromptTemplate.from_template(DEFAULT_TEXT_QA_PROMPT_TMPL) chat_qa_prompt_template = ( "Информация контекста ниже. \n" "---------------------\n" "{context_str}" "\n---------------------\n" "Учитывая информацию контекста и отсутствие предварительных знаний, " "ответь на любые вопросы" ) CHAT_QUESTION_PROMPT = ChatPromptTemplate.from_messages( [("system", chat_qa_prompt_template), ("human", "{question}")] ) QUESTION_PROMPT_SELECTOR = ConditionalPromptSelector( default_prompt=DEFAULT_TEXT_QA_PROMPT, conditionals=[(is_chat_model, CHAT_QUESTION_PROMPT)], )
[ "{existing_answer}", "Оригинальный вопрос звучит так: {question}\nМы предоставили существующий ответ: {existing_answer}\nУ нас есть возможность уточнить существующий ответ(если это необходимо) с некоторым дополнительным контекстом ниже.\n------------\n{context_str}\n------------\nУчитывая новый контекст, уточни оригинальный ответ, чтобы лучше ответить на вопрос. Если контекст не полезен, верни оригинальный ответ.", "Информация контекста ниже. \n---------------------\n{context_str}\n---------------------\nУчитывая информацию контекста и отсутствие предварительных знаний, ответь на вопрос: {question}\n", "Информация контекста ниже. \n---------------------\n{context_str}\n---------------------\nУчитывая информацию контекста и отсутствие предварительных знаний, ответь на любые вопросы", "human", "[('human', '{question}'), ('ai', '{existing_answer}'), ('human', PLACEHOLDER)]", "{question}", "[('system', PLACEHOLDER), ('human', '{question}')]", "У нас есть возможность уточнить существующий ответ(если это необходимо) с некоторым дополнительным контекстом ниже.\n------------\n{context_str}\n------------\nУчитывая новый контекст, уточни оригинальный ответ, чтобы лучше ответить на вопрос. Если контекст не полезен, верни оригинальный ответ." ]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~vectorstores~elasticsearch.py
import logging import uuid from abc import ABC, abstractmethod from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Literal, Optional, Tuple, Union, ) import numpy as np from langchain.docstore.document import Document from langchain.schema.embeddings import Embeddings from langchain.schema.vectorstore import VectorStore from langchain.vectorstores.utils import DistanceStrategy, maximal_marginal_relevance if TYPE_CHECKING: from elasticsearch import Elasticsearch logger = logging.getLogger(__name__) class BaseRetrievalStrategy(ABC): """Base class for `Elasticsearch` retrieval strategies.""" @abstractmethod def query( self, query_vector: Union[List[float], None], query: Union[str, None], *, k: int, fetch_k: int, vector_query_field: str, text_field: str, filter: List[dict], similarity: Union[DistanceStrategy, None], ) -> Dict: """ Executes when a search is performed on the store. Args: query_vector: The query vector, or None if not using vector-based query. query: The text query, or None if not using text-based query. k: The total number of results to retrieve. fetch_k: The number of results to fetch initially. vector_query_field: The field containing the vector representations in the index. text_field: The field containing the text data in the index. filter: List of filter clauses to apply to the query. similarity: The similarity strategy to use, or None if not using one. Returns: Dict: The Elasticsearch query body. """ @abstractmethod def index( self, dims_length: Union[int, None], vector_query_field: str, similarity: Union[DistanceStrategy, None], ) -> Dict: """ Executes when the index is created. Args: dims_length: Numeric length of the embedding vectors, or None if not using vector-based query. vector_query_field: The field containing the vector representations in the index. similarity: The similarity strategy to use, or None if not using one. Returns: Dict: The Elasticsearch settings and mappings for the strategy. """ def before_index_setup( self, client: "Elasticsearch", text_field: str, vector_query_field: str ) -> None: """ Executes before the index is created. Used for setting up any required Elasticsearch resources like a pipeline. Args: client: The Elasticsearch client. text_field: The field containing the text data in the index. vector_query_field: The field containing the vector representations in the index. """ def require_inference(self) -> bool: """ Returns whether or not the strategy requires inference to be performed on the text before it is added to the index. Returns: bool: Whether or not the strategy requires inference to be performed on the text before it is added to the index. """ return True class ApproxRetrievalStrategy(BaseRetrievalStrategy): """Approximate retrieval strategy using the `HNSW` algorithm.""" def __init__( self, query_model_id: Optional[str] = None, hybrid: Optional[bool] = False, ): self.query_model_id = query_model_id self.hybrid = hybrid def query( self, query_vector: Union[List[float], None], query: Union[str, None], k: int, fetch_k: int, vector_query_field: str, text_field: str, filter: List[dict], similarity: Union[DistanceStrategy, None], ) -> Dict: knn = { "filter": filter, "field": vector_query_field, "k": k, "num_candidates": fetch_k, } # Embedding provided via the embedding function if query_vector and not self.query_model_id: knn["query_vector"] = query_vector # Case 2: Used when model has been deployed to # Elasticsearch and can infer the query vector from the query text elif query and self.query_model_id: knn["query_vector_builder"] = { "text_embedding": { "model_id": self.query_model_id, # use 'model_id' argument "model_text": query, # use 'query' argument } } else: raise ValueError( "You must provide an embedding function or a" " query_model_id to perform a similarity search." ) # If hybrid, add a query to the knn query # RRF is used to even the score from the knn query and text query if self.hybrid: return { "knn": knn, "query": { "bool": { "must": [ { "match": { text_field: { "query": query, } } } ], "filter": filter, } }, "rank": {"rrf": {}}, } else: return {"knn": knn} def index( self, dims_length: Union[int, None], vector_query_field: str, similarity: Union[DistanceStrategy, None], ) -> Dict: """Create the mapping for the Elasticsearch index.""" if similarity is DistanceStrategy.COSINE: similarityAlgo = "cosine" elif similarity is DistanceStrategy.EUCLIDEAN_DISTANCE: similarityAlgo = "l2_norm" elif similarity is DistanceStrategy.DOT_PRODUCT: similarityAlgo = "dot_product" else: raise ValueError(f"Similarity {similarity} not supported.") return { "mappings": { "properties": { vector_query_field: { "type": "dense_vector", "dims": dims_length, "index": True, "similarity": similarityAlgo, }, } } } class ExactRetrievalStrategy(BaseRetrievalStrategy): """Exact retrieval strategy using the `script_score` query.""" def query( self, query_vector: Union[List[float], None], query: Union[str, None], k: int, fetch_k: int, vector_query_field: str, text_field: str, filter: Union[List[dict], None], similarity: Union[DistanceStrategy, None], ) -> Dict: if similarity is DistanceStrategy.COSINE: similarityAlgo = ( f"cosineSimilarity(params.query_vector, '{vector_query_field}') + 1.0" ) elif similarity is DistanceStrategy.EUCLIDEAN_DISTANCE: similarityAlgo = ( f"1 / (1 + l2norm(params.query_vector, '{vector_query_field}'))" ) elif similarity is DistanceStrategy.DOT_PRODUCT: similarityAlgo = f""" double value = dotProduct(params.query_vector, '{vector_query_field}'); return sigmoid(1, Math.E, -value); """ else: raise ValueError(f"Similarity {similarity} not supported.") queryBool: Dict = {"match_all": {}} if filter: queryBool = {"bool": {"filter": filter}} return { "query": { "script_score": { "query": queryBool, "script": { "source": similarityAlgo, "params": {"query_vector": query_vector}, }, }, } } def index( self, dims_length: Union[int, None], vector_query_field: str, similarity: Union[DistanceStrategy, None], ) -> Dict: """Create the mapping for the Elasticsearch index.""" return { "mappings": { "properties": { vector_query_field: { "type": "dense_vector", "dims": dims_length, "index": False, }, } } } class SparseRetrievalStrategy(BaseRetrievalStrategy): """Sparse retrieval strategy using the `text_expansion` processor.""" def __init__(self, model_id: Optional[str] = None): self.model_id = model_id or ".elser_model_1" def query( self, query_vector: Union[List[float], None], query: Union[str, None], k: int, fetch_k: int, vector_query_field: str, text_field: str, filter: List[dict], similarity: Union[DistanceStrategy, None], ) -> Dict: return { "query": { "bool": { "must": [ { "text_expansion": { f"{vector_query_field}.tokens": { "model_id": self.model_id, "model_text": query, } } } ], "filter": filter, } } } def _get_pipeline_name(self) -> str: return f"{self.model_id}_sparse_embedding" def before_index_setup( self, client: "Elasticsearch", text_field: str, vector_query_field: str ) -> None: # If model_id is provided, create a pipeline for the model if self.model_id: client.ingest.put_pipeline( id=self._get_pipeline_name(), description="Embedding pipeline for langchain vectorstore", processors=[ { "inference": { "model_id": self.model_id, "target_field": vector_query_field, "field_map": {text_field: "text_field"}, "inference_config": { "text_expansion": {"results_field": "tokens"} }, } } ], ) def index( self, dims_length: Union[int, None], vector_query_field: str, similarity: Union[DistanceStrategy, None], ) -> Dict: return { "mappings": { "properties": { vector_query_field: { "properties": {"tokens": {"type": "rank_features"}} } } }, "settings": {"default_pipeline": self._get_pipeline_name()}, } def require_inference(self) -> bool: return False class ElasticsearchStore(VectorStore): """`Elasticsearch` vector store. Example: .. code-block:: python from langchain.vectorstores import ElasticsearchStore from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = ElasticsearchStore( embedding=OpenAIEmbeddings(), index_name="langchain-demo", es_url="http://localhost:9200" ) Args: index_name: Name of the Elasticsearch index to create. es_url: URL of the Elasticsearch instance to connect to. cloud_id: Cloud ID of the Elasticsearch instance to connect to. es_user: Username to use when connecting to Elasticsearch. es_password: Password to use when connecting to Elasticsearch. es_api_key: API key to use when connecting to Elasticsearch. es_connection: Optional pre-existing Elasticsearch connection. vector_query_field: Optional. Name of the field to store the embedding vectors in. query_field: Optional. Name of the field to store the texts in. strategy: Optional. Retrieval strategy to use when searching the index. Defaults to ApproxRetrievalStrategy. Can be one of ExactRetrievalStrategy, ApproxRetrievalStrategy, or SparseRetrievalStrategy. distance_strategy: Optional. Distance strategy to use when searching the index. Defaults to COSINE. Can be one of COSINE, EUCLIDEAN_DISTANCE, or DOT_PRODUCT. If you want to use a cloud hosted Elasticsearch instance, you can pass in the cloud_id argument instead of the es_url argument. Example: .. code-block:: python from langchain.vectorstores import ElasticsearchStore from langchain.embeddings.openai import OpenAIEmbeddings vectorstore = ElasticsearchStore( embedding=OpenAIEmbeddings(), index_name="langchain-demo", es_cloud_id="<cloud_id>" es_user="elastic", es_password="<password>" ) You can also connect to an existing Elasticsearch instance by passing in a pre-existing Elasticsearch connection via the es_connection argument. Example: .. code-block:: python from langchain.vectorstores import ElasticsearchStore from langchain.embeddings.openai import OpenAIEmbeddings from elasticsearch import Elasticsearch es_connection = Elasticsearch("http://localhost:9200") vectorstore = ElasticsearchStore( embedding=OpenAIEmbeddings(), index_name="langchain-demo", es_connection=es_connection ) ElasticsearchStore by default uses the ApproxRetrievalStrategy, which uses the HNSW algorithm to perform approximate nearest neighbor search. This is the fastest and most memory efficient algorithm. If you want to use the Brute force / Exact strategy for searching vectors, you can pass in the ExactRetrievalStrategy to the ElasticsearchStore constructor. Example: .. code-block:: python from langchain.vectorstores import ElasticsearchStore from langchain.embeddings.openai import OpenAIEmbeddings vectorstore = ElasticsearchStore( embedding=OpenAIEmbeddings(), index_name="langchain-demo", es_url="http://localhost:9200", strategy=ElasticsearchStore.ExactRetrievalStrategy() ) Both strategies require that you know the similarity metric you want to use when creating the index. The default is cosine similarity, but you can also use dot product or euclidean distance. Example: .. code-block:: python from langchain.vectorstores import ElasticsearchStore from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores.utils import DistanceStrategy vectorstore = ElasticsearchStore( embedding=OpenAIEmbeddings(), index_name="langchain-demo", es_url="http://localhost:9200", distance_strategy="DOT_PRODUCT" ) """ def __init__( self, index_name: str, *, embedding: Optional[Embeddings] = None, es_connection: Optional["Elasticsearch"] = None, es_url: Optional[str] = None, es_cloud_id: Optional[str] = None, es_user: Optional[str] = None, es_api_key: Optional[str] = None, es_password: Optional[str] = None, vector_query_field: str = "vector", query_field: str = "text", distance_strategy: Optional[ Literal[ DistanceStrategy.COSINE, DistanceStrategy.DOT_PRODUCT, DistanceStrategy.EUCLIDEAN_DISTANCE, ] ] = None, strategy: BaseRetrievalStrategy = ApproxRetrievalStrategy(), ): self.embedding = embedding self.index_name = index_name self.query_field = query_field self.vector_query_field = vector_query_field self.distance_strategy = ( DistanceStrategy.COSINE if distance_strategy is None else DistanceStrategy[distance_strategy] ) self.strategy = strategy if es_connection is not None: self.client = es_connection.options( headers={"user-agent": self.get_user_agent()} ) elif es_url is not None or es_cloud_id is not None: self.client = ElasticsearchStore.connect_to_elasticsearch( es_url=es_url, username=es_user, password=es_password, cloud_id=es_cloud_id, api_key=es_api_key, ) else: raise ValueError( """Either provide a pre-existing Elasticsearch connection, \ or valid credentials for creating a new connection.""" ) @staticmethod def get_user_agent() -> str: from langchain import __version__ return f"langchain-py-vs/{__version__}" @staticmethod def connect_to_elasticsearch( *, es_url: Optional[str] = None, cloud_id: Optional[str] = None, api_key: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, ) -> "Elasticsearch": try: import elasticsearch except ImportError: raise ImportError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) if es_url and cloud_id: raise ValueError( "Both es_url and cloud_id are defined. Please provide only one." ) connection_params: Dict[str, Any] = {} if es_url: connection_params["hosts"] = [es_url] elif cloud_id: connection_params["cloud_id"] = cloud_id else: raise ValueError("Please provide either elasticsearch_url or cloud_id.") if api_key: connection_params["api_key"] = api_key elif username and password: connection_params["basic_auth"] = (username, password) es_client = elasticsearch.Elasticsearch( **connection_params, headers={"user-agent": ElasticsearchStore.get_user_agent()}, ) try: es_client.info() except Exception as e: logger.error(f"Error connecting to Elasticsearch: {e}") raise e return es_client @property def embeddings(self) -> Optional[Embeddings]: return self.embedding def similarity_search( self, query: str, k: int = 4, filter: Optional[List[dict]] = None, **kwargs: Any, ) -> List[Document]: """Return Elasticsearch documents most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Array of Elasticsearch filter clauses to apply to the query. Returns: List of Documents most similar to the query, in descending order of similarity. """ results = self._search(query=query, k=k, filter=filter, **kwargs) return [doc for doc, _ in results] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, fields: Optional[List[str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query (str): Text to look up documents similar to. k (int): Number of Documents to return. Defaults to 4. fetch_k (int): Number of Documents to fetch to pass to MMR algorithm. lambda_mult (float): Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. fields: Other fields to get from elasticsearch source. These fields will be added to the document metadata. Returns: List[Document]: A list of Documents selected by maximal marginal relevance. """ if self.embedding is None: raise ValueError("You must provide an embedding function to perform MMR") remove_vector_query_field_from_metadata = True if fields is None: fields = [self.vector_query_field] elif self.vector_query_field not in fields: fields.append(self.vector_query_field) else: remove_vector_query_field_from_metadata = False # Embed the query query_embedding = self.embedding.embed_query(query) # Fetch the initial documents got_docs = self._search( query_vector=query_embedding, k=fetch_k, fields=fields, **kwargs ) # Get the embeddings for the fetched documents got_embeddings = [doc.metadata[self.vector_query_field] for doc, _ in got_docs] # Select documents using maximal marginal relevance selected_indices = maximal_marginal_relevance( np.array(query_embedding), got_embeddings, lambda_mult=lambda_mult, k=k ) selected_docs = [got_docs[i][0] for i in selected_indices] if remove_vector_query_field_from_metadata: for doc in selected_docs: del doc.metadata[self.vector_query_field] return selected_docs def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[List[dict]] = None, **kwargs: Any ) -> List[Tuple[Document, float]]: """Return Elasticsearch documents most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Array of Elasticsearch filter clauses to apply to the query. Returns: List of Documents most similar to the query and score for each """ return self._search(query=query, k=k, filter=filter, **kwargs) def similarity_search_by_vector_with_relevance_scores( self, embedding: List[float], k: int = 4, filter: Optional[List[Dict]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return Elasticsearch documents most similar to query, along with scores. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Array of Elasticsearch filter clauses to apply to the query. Returns: List of Documents most similar to the embedding and score for each """ return self._search(query_vector=embedding, k=k, filter=filter, **kwargs) def _search( self, query: Optional[str] = None, k: int = 4, query_vector: Union[List[float], None] = None, fetch_k: int = 50, fields: Optional[List[str]] = None, filter: Optional[List[dict]] = None, custom_query: Optional[Callable[[Dict, Union[str, None]], Dict]] = None, ) -> List[Tuple[Document, float]]: """Return Elasticsearch documents most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. query_vector: Embedding to look up documents similar to. fetch_k: Number of candidates to fetch from each shard. Defaults to 50. fields: List of fields to return from Elasticsearch. Defaults to only returning the text field. filter: Array of Elasticsearch filter clauses to apply to the query. custom_query: Function to modify the Elasticsearch query body before it is sent to Elasticsearch. Returns: List of Documents most similar to the query and score for each """ if fields is None: fields = [] if "metadata" not in fields: fields.append("metadata") if self.query_field not in fields: fields.append(self.query_field) if self.embedding and query is not None: query_vector = self.embedding.embed_query(query) query_body = self.strategy.query( query_vector=query_vector, query=query, k=k, fetch_k=fetch_k, vector_query_field=self.vector_query_field, text_field=self.query_field, filter=filter or [], similarity=self.distance_strategy, ) logger.debug(f"Query body: {query_body}") if custom_query is not None: query_body = custom_query(query_body, query) logger.debug(f"Calling custom_query, Query body now: {query_body}") # Perform the kNN search on the Elasticsearch index and return the results. response = self.client.search( index=self.index_name, **query_body, size=k, source=fields, ) docs_and_scores = [] for hit in response["hits"]["hits"]: for field in fields: if field in hit["_source"] and field not in [ "metadata", self.query_field, ]: hit["_source"]["metadata"][field] = hit["_source"][field] docs_and_scores.append( ( Document( page_content=hit["_source"].get(self.query_field, ""), metadata=hit["_source"]["metadata"], ), hit["_score"], ) ) return docs_and_scores def delete( self, ids: Optional[List[str]] = None, refresh_indices: Optional[bool] = True, **kwargs: Any, ) -> Optional[bool]: """Delete documents from the Elasticsearch index. Args: ids: List of ids of documents to delete. refresh_indices: Whether to refresh the index after deleting documents. Defaults to True. """ try: from elasticsearch.helpers import BulkIndexError, bulk except ImportError: raise ImportError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) body = [] if ids is None: raise ValueError("ids must be provided.") for _id in ids: body.append({"_op_type": "delete", "_index": self.index_name, "_id": _id}) if len(body) > 0: try: bulk(self.client, body, refresh=refresh_indices, ignore_status=404) logger.debug(f"Deleted {len(body)} texts from index") return True except BulkIndexError as e: logger.error(f"Error deleting texts: {e}") firstError = e.errors[0].get("index", {}).get("error", {}) logger.error(f"First error reason: {firstError.get('reason')}") raise e else: logger.debug("No texts to delete from index") return False def _create_index_if_not_exists( self, index_name: str, dims_length: Optional[int] = None ) -> None: """Create the Elasticsearch index if it doesn't already exist. Args: index_name: Name of the Elasticsearch index to create. dims_length: Length of the embedding vectors. """ if self.client.indices.exists(index=index_name): logger.debug(f"Index {index_name} already exists. Skipping creation.") else: if dims_length is None and self.strategy.require_inference(): raise ValueError( "Cannot create index without specifying dims_length " "when the index doesn't already exist. We infer " "dims_length from the first embedding. Check that " "you have provided an embedding function." ) self.strategy.before_index_setup( client=self.client, text_field=self.query_field, vector_query_field=self.vector_query_field, ) indexSettings = self.strategy.index( vector_query_field=self.vector_query_field, dims_length=dims_length, similarity=self.distance_strategy, ) logger.debug( f"Creating index {index_name} with mappings {indexSettings['mappings']}" ) self.client.indices.create(index=index_name, **indexSettings) def __add( self, texts: Iterable[str], embeddings: Optional[List[List[float]]], metadatas: Optional[List[Dict[Any, Any]]] = None, ids: Optional[List[str]] = None, refresh_indices: bool = True, create_index_if_not_exists: bool = True, bulk_kwargs: Optional[Dict] = None, **kwargs: Any, ) -> List[str]: try: from elasticsearch.helpers import BulkIndexError, bulk except ImportError: raise ImportError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) bulk_kwargs = bulk_kwargs or {} ids = ids or [str(uuid.uuid4()) for _ in texts] requests = [] if create_index_if_not_exists: if embeddings: dims_length = len(embeddings[0]) else: dims_length = None self._create_index_if_not_exists( index_name=self.index_name, dims_length=dims_length ) for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} request = { "_op_type": "index", "_index": self.index_name, self.query_field: text, "metadata": metadata, "_id": ids[i], } if embeddings: request[self.vector_query_field] = embeddings[i] requests.append(request) if len(requests) > 0: try: success, failed = bulk( self.client, requests, stats_only=True, refresh=refresh_indices, **bulk_kwargs, ) logger.debug( f"Added {success} and failed to add {failed} texts to index" ) logger.debug(f"added texts {ids} to index") return ids except BulkIndexError as e: logger.error(f"Error adding texts: {e}") firstError = e.errors[0].get("index", {}).get("error", {}) logger.error(f"First error reason: {firstError.get('reason')}") raise e else: logger.debug("No texts to add to index") return [] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[Dict[Any, Any]]] = None, ids: Optional[List[str]] = None, refresh_indices: bool = True, create_index_if_not_exists: bool = True, bulk_kwargs: Optional[Dict] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of ids to associate with the texts. refresh_indices: Whether to refresh the Elasticsearch indices after adding the texts. create_index_if_not_exists: Whether to create the Elasticsearch index if it doesn't already exist. *bulk_kwargs: Additional arguments to pass to Elasticsearch bulk. - chunk_size: Optional. Number of texts to add to the index at a time. Defaults to 500. Returns: List of ids from adding the texts into the vectorstore. """ if self.embedding is not None: # If no search_type requires inference, we use the provided # embedding function to embed the texts. embeddings = self.embedding.embed_documents(list(texts)) else: # the search_type doesn't require inference, so we don't need to # embed the texts. embeddings = None return self.__add( texts, embeddings, metadatas=metadatas, ids=ids, refresh_indices=refresh_indices, create_index_if_not_exists=create_index_if_not_exists, bulk_kwargs=bulk_kwargs, kwargs=kwargs, ) def add_embeddings( self, text_embeddings: Iterable[Tuple[str, List[float]]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, refresh_indices: bool = True, create_index_if_not_exists: bool = True, bulk_kwargs: Optional[Dict] = None, **kwargs: Any, ) -> List[str]: """Add the given texts and embeddings to the vectorstore. Args: text_embeddings: Iterable pairs of string and embedding to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of unique IDs. refresh_indices: Whether to refresh the Elasticsearch indices after adding the texts. create_index_if_not_exists: Whether to create the Elasticsearch index if it doesn't already exist. *bulk_kwargs: Additional arguments to pass to Elasticsearch bulk. - chunk_size: Optional. Number of texts to add to the index at a time. Defaults to 500. Returns: List of ids from adding the texts into the vectorstore. """ texts, embeddings = zip(*text_embeddings) return self.__add( list(texts), list(embeddings), metadatas=metadatas, ids=ids, refresh_indices=refresh_indices, create_index_if_not_exists=create_index_if_not_exists, bulk_kwargs=bulk_kwargs, kwargs=kwargs, ) @classmethod def from_texts( cls, texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[Dict[str, Any]]] = None, bulk_kwargs: Optional[Dict] = None, **kwargs: Any, ) -> "ElasticsearchStore": """Construct ElasticsearchStore wrapper from raw documents. Example: .. code-block:: python from langchain.vectorstores import ElasticsearchStore from langchain.embeddings.openai import OpenAIEmbeddings db = ElasticsearchStore.from_texts( texts, // embeddings optional if using // a strategy that doesn't require inference embeddings, index_name="langchain-demo", es_url="http://localhost:9200" ) Args: texts: List of texts to add to the Elasticsearch index. embedding: Embedding function to use to embed the texts. metadatas: Optional list of metadatas associated with the texts. index_name: Name of the Elasticsearch index to create. es_url: URL of the Elasticsearch instance to connect to. cloud_id: Cloud ID of the Elasticsearch instance to connect to. es_user: Username to use when connecting to Elasticsearch. es_password: Password to use when connecting to Elasticsearch. es_api_key: API key to use when connecting to Elasticsearch. es_connection: Optional pre-existing Elasticsearch connection. vector_query_field: Optional. Name of the field to store the embedding vectors in. query_field: Optional. Name of the field to store the texts in. distance_strategy: Optional. Name of the distance strategy to use. Defaults to "COSINE". can be one of "COSINE", "EUCLIDEAN_DISTANCE", "DOT_PRODUCT". bulk_kwargs: Optional. Additional arguments to pass to Elasticsearch bulk. """ elasticsearchStore = ElasticsearchStore._create_cls_from_kwargs( embedding=embedding, **kwargs ) # Encode the provided texts and add them to the newly created index. elasticsearchStore.add_texts( texts, metadatas=metadatas, bulk_kwargs=bulk_kwargs ) return elasticsearchStore @staticmethod def _create_cls_from_kwargs( embedding: Optional[Embeddings] = None, **kwargs: Any ) -> "ElasticsearchStore": index_name = kwargs.get("index_name") if index_name is None: raise ValueError("Please provide an index_name.") es_connection = kwargs.get("es_connection") es_cloud_id = kwargs.get("es_cloud_id") es_url = kwargs.get("es_url") es_user = kwargs.get("es_user") es_password = kwargs.get("es_password") es_api_key = kwargs.get("es_api_key") vector_query_field = kwargs.get("vector_query_field") query_field = kwargs.get("query_field") distance_strategy = kwargs.get("distance_strategy") strategy = kwargs.get("strategy", ElasticsearchStore.ApproxRetrievalStrategy()) optional_args = {} if vector_query_field is not None: optional_args["vector_query_field"] = vector_query_field if query_field is not None: optional_args["query_field"] = query_field return ElasticsearchStore( index_name=index_name, embedding=embedding, es_url=es_url, es_connection=es_connection, es_cloud_id=es_cloud_id, es_user=es_user, es_password=es_password, es_api_key=es_api_key, strategy=strategy, distance_strategy=distance_strategy, **optional_args, ) @classmethod def from_documents( cls, documents: List[Document], embedding: Optional[Embeddings] = None, bulk_kwargs: Optional[Dict] = None, **kwargs: Any, ) -> "ElasticsearchStore": """Construct ElasticsearchStore wrapper from documents. Example: .. code-block:: python from langchain.vectorstores import ElasticsearchStore from langchain.embeddings.openai import OpenAIEmbeddings db = ElasticsearchStore.from_documents( texts, embeddings, index_name="langchain-demo", es_url="http://localhost:9200" ) Args: texts: List of texts to add to the Elasticsearch index. embedding: Embedding function to use to embed the texts. Do not provide if using a strategy that doesn't require inference. metadatas: Optional list of metadatas associated with the texts. index_name: Name of the Elasticsearch index to create. es_url: URL of the Elasticsearch instance to connect to. cloud_id: Cloud ID of the Elasticsearch instance to connect to. es_user: Username to use when connecting to Elasticsearch. es_password: Password to use when connecting to Elasticsearch. es_api_key: API key to use when connecting to Elasticsearch. es_connection: Optional pre-existing Elasticsearch connection. vector_query_field: Optional. Name of the field to store the embedding vectors in. query_field: Optional. Name of the field to store the texts in. bulk_kwargs: Optional. Additional arguments to pass to Elasticsearch bulk. """ elasticsearchStore = ElasticsearchStore._create_cls_from_kwargs( embedding=embedding, **kwargs ) # Encode the provided texts and add them to the newly created index. elasticsearchStore.add_documents(documents, bulk_kwargs=bulk_kwargs) return elasticsearchStore @staticmethod def ExactRetrievalStrategy() -> "ExactRetrievalStrategy": """Used to perform brute force / exact nearest neighbor search via script_score.""" return ExactRetrievalStrategy() @staticmethod def ApproxRetrievalStrategy( query_model_id: Optional[str] = None, hybrid: Optional[bool] = False, ) -> "ApproxRetrievalStrategy": """Used to perform approximate nearest neighbor search using the HNSW algorithm. At build index time, this strategy will create a dense vector field in the index and store the embedding vectors in the index. At query time, the text will either be embedded using the provided embedding function or the query_model_id will be used to embed the text using the model deployed to Elasticsearch. if query_model_id is used, do not provide an embedding function. Args: query_model_id: Optional. ID of the model to use to embed the query text within the stack. Requires embedding model to be deployed to Elasticsearch. hybrid: Optional. If True, will perform a hybrid search using both the knn query and a text query. Defaults to False. """ return ApproxRetrievalStrategy(query_model_id=query_model_id, hybrid=hybrid) @staticmethod def SparseVectorRetrievalStrategy( model_id: Optional[str] = None, ) -> "SparseRetrievalStrategy": """Used to perform sparse vector search via text_expansion. Used for when you want to use ELSER model to perform document search. At build index time, this strategy will create a pipeline that will embed the text using the ELSER model and store the resulting tokens in the index. At query time, the text will be embedded using the ELSER model and the resulting tokens will be used to perform a text_expansion query. Args: model_id: Optional. Default is ".elser_model_1". ID of the model to use to embed the query text within the stack. Requires embedding model to be deployed to Elasticsearch. """ return SparseRetrievalStrategy(model_id=model_id)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~llms~test_nlpcloud.py
"""Test NLPCloud API wrapper.""" from pathlib import Path from langchain.llms.loading import load_llm from langchain.llms.nlpcloud import NLPCloud from tests.integration_tests.llms.utils import assert_llm_equality def test_nlpcloud_call() -> None: """Test valid call to nlpcloud.""" llm = NLPCloud(max_length=10) output = llm("Say foo:") assert isinstance(output, str) def test_saving_loading_llm(tmp_path: Path) -> None: """Test saving/loading an NLPCloud LLM.""" llm = NLPCloud(max_length=10) llm.save(file_path=tmp_path / "nlpcloud.yaml") loaded_llm = load_llm(tmp_path / "nlpcloud.yaml") assert_llm_equality(llm, loaded_llm)
[]
2024-01-10
ai-forever/gigachain
libs~langchain~langchain~chains~combine_documents~refine.py
"""Combine documents by doing a first pass and then refining on more documents.""" from __future__ import annotations from typing import Any, Dict, List, Tuple from langchain.callbacks.manager import Callbacks from langchain.chains.combine_documents.base import ( BaseCombineDocumentsChain, ) from langchain.chains.llm import LLMChain from langchain.docstore.document import Document from langchain.prompts.prompt import PromptTemplate from langchain.pydantic_v1 import Extra, Field, root_validator from langchain.schema import BasePromptTemplate, format_document def _get_default_document_prompt() -> PromptTemplate: return PromptTemplate(input_variables=["page_content"], template="{page_content}") class RefineDocumentsChain(BaseCombineDocumentsChain): """Combine documents by doing a first pass and then refining on more documents. This algorithm first calls `initial_llm_chain` on the first document, passing that first document in with the variable name `document_variable_name`, and produces a new variable with the variable name `initial_response_name`. Then, it loops over every remaining document. This is called the "refine" step. It calls `refine_llm_chain`, passing in that document with the variable name `document_variable_name` as well as the previous response with the variable name `initial_response_name`. Example: .. code-block:: python from langchain.chains import RefineDocumentsChain, LLMChain from langchain.prompts import PromptTemplate from langchain.llms import OpenAI # This controls how each document will be formatted. Specifically, # it will be passed to `format_document` - see that function for more # details. document_prompt = PromptTemplate( input_variables=["page_content"], template="{page_content}" ) document_variable_name = "context" llm = OpenAI() # The prompt here should take as an input variable the # `document_variable_name` prompt = PromptTemplate.from_template( "Summarize this content: {context}" ) initial_llm_chain = LLMChain(llm=llm, prompt=prompt) initial_response_name = "prev_response" # The prompt here should take as an input variable the # `document_variable_name` as well as `initial_response_name` prompt_refine = PromptTemplate.from_template( "Here's your first summary: {prev_response}. " "Now add to it based on the following context: {context}" ) refine_llm_chain = LLMChain(llm=llm, prompt=prompt_refine) chain = RefineDocumentsChain( initial_llm_chain=initial_llm_chain, refine_llm_chain=refine_llm_chain, document_prompt=document_prompt, document_variable_name=document_variable_name, initial_response_name=initial_response_name, ) """ initial_llm_chain: LLMChain """LLM chain to use on initial document.""" refine_llm_chain: LLMChain """LLM chain to use when refining.""" document_variable_name: str """The variable name in the initial_llm_chain to put the documents in. If only one variable in the initial_llm_chain, this need not be provided.""" initial_response_name: str """The variable name to format the initial response in when refining.""" document_prompt: BasePromptTemplate = Field( default_factory=_get_default_document_prompt ) """Prompt to use to format each document, gets passed to `format_document`.""" return_intermediate_steps: bool = False """Return the results of the refine steps in the output.""" @property def output_keys(self) -> List[str]: """Expect input key. :meta private: """ _output_keys = super().output_keys if self.return_intermediate_steps: _output_keys = _output_keys + ["intermediate_steps"] return _output_keys class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def get_return_intermediate_steps(cls, values: Dict) -> Dict: """For backwards compatibility.""" if "return_refine_steps" in values: values["return_intermediate_steps"] = values["return_refine_steps"] del values["return_refine_steps"] return values @root_validator(pre=True) def get_default_document_variable_name(cls, values: Dict) -> Dict: """Get default document variable name, if not provided.""" if "document_variable_name" not in values: llm_chain_variables = values["initial_llm_chain"].prompt.input_variables if len(llm_chain_variables) == 1: values["document_variable_name"] = llm_chain_variables[0] else: raise ValueError( "document_variable_name must be provided if there are " "multiple llm_chain input_variables" ) else: llm_chain_variables = values["initial_llm_chain"].prompt.input_variables if values["document_variable_name"] not in llm_chain_variables: raise ValueError( f"document_variable_name {values['document_variable_name']} was " f"not found in llm_chain input_variables: {llm_chain_variables}" ) return values def combine_docs( self, docs: List[Document], callbacks: Callbacks = None, **kwargs: Any ) -> Tuple[str, dict]: """Combine by mapping first chain over all, then stuffing into final chain. Args: docs: List of documents to combine callbacks: Callbacks to be passed through **kwargs: additional parameters to be passed to LLM calls (like other input variables besides the documents) Returns: The first element returned is the single string output. The second element returned is a dictionary of other keys to return. """ inputs = self._construct_initial_inputs(docs, **kwargs) res = self.initial_llm_chain.predict(callbacks=callbacks, **inputs) refine_steps = [res] for doc in docs[1:]: base_inputs = self._construct_refine_inputs(doc, res) inputs = {**base_inputs, **kwargs} res = self.refine_llm_chain.predict(callbacks=callbacks, **inputs) refine_steps.append(res) return self._construct_result(refine_steps, res) async def acombine_docs( self, docs: List[Document], callbacks: Callbacks = None, **kwargs: Any ) -> Tuple[str, dict]: """Async combine by mapping a first chain over all, then stuffing into a final chain. Args: docs: List of documents to combine callbacks: Callbacks to be passed through **kwargs: additional parameters to be passed to LLM calls (like other input variables besides the documents) Returns: The first element returned is the single string output. The second element returned is a dictionary of other keys to return. """ inputs = self._construct_initial_inputs(docs, **kwargs) res = await self.initial_llm_chain.apredict(callbacks=callbacks, **inputs) refine_steps = [res] for doc in docs[1:]: base_inputs = self._construct_refine_inputs(doc, res) inputs = {**base_inputs, **kwargs} res = await self.refine_llm_chain.apredict(callbacks=callbacks, **inputs) refine_steps.append(res) return self._construct_result(refine_steps, res) def _construct_result(self, refine_steps: List[str], res: str) -> Tuple[str, dict]: if self.return_intermediate_steps: extra_return_dict = {"intermediate_steps": refine_steps} else: extra_return_dict = {} return res, extra_return_dict def _construct_refine_inputs(self, doc: Document, res: str) -> Dict[str, Any]: return { self.document_variable_name: format_document(doc, self.document_prompt), self.initial_response_name: res, } def _construct_initial_inputs( self, docs: List[Document], **kwargs: Any ) -> Dict[str, Any]: base_info = {"page_content": docs[0].page_content} base_info.update(docs[0].metadata) document_info = {k: base_info[k] for k in self.document_prompt.input_variables} base_inputs: dict = { self.document_variable_name: self.document_prompt.format(**document_info) } inputs = {**base_inputs, **kwargs} return inputs @property def _chain_type(self) -> str: return "refine_documents_chain"
[ "{page_content}" ]
2024-01-10
ai-forever/gigachain
libs~langchain~tests~integration_tests~cache~test_upstash_redis_cache.py
"""Test Upstash Redis cache functionality.""" import uuid import pytest import langchain from langchain.cache import UpstashRedisCache from langchain.schema import Generation, LLMResult from tests.unit_tests.llms.fake_chat_model import FakeChatModel from tests.unit_tests.llms.fake_llm import FakeLLM URL = "<UPSTASH_REDIS_REST_URL>" TOKEN = "<UPSTASH_REDIS_REST_TOKEN>" def random_string() -> str: return str(uuid.uuid4()) @pytest.mark.requires("upstash_redis") def test_redis_cache_ttl() -> None: from upstash_redis import Redis langchain.llm_cache = UpstashRedisCache(redis_=Redis(url=URL, token=TOKEN), ttl=1) langchain.llm_cache.update("foo", "bar", [Generation(text="fizz")]) key = langchain.llm_cache._key("foo", "bar") assert langchain.llm_cache.redis.pttl(key) > 0 @pytest.mark.requires("upstash_redis") def test_redis_cache() -> None: from upstash_redis import Redis langchain.llm_cache = UpstashRedisCache(redis_=Redis(url=URL, token=TOKEN), ttl=1) llm = FakeLLM() params = llm.dict() params["stop"] = None llm_string = str(sorted([(k, v) for k, v in params.items()])) langchain.llm_cache.update("foo", llm_string, [Generation(text="fizz")]) output = llm.generate(["foo"]) expected_output = LLMResult( generations=[[Generation(text="fizz")]], llm_output={}, ) assert output == expected_output lookup_output = langchain.llm_cache.lookup("foo", llm_string) if lookup_output and len(lookup_output) > 0: assert lookup_output == expected_output.generations[0] langchain.llm_cache.clear() output = llm.generate(["foo"]) assert output != expected_output langchain.llm_cache.redis.flushall() def test_redis_cache_multi() -> None: from upstash_redis import Redis langchain.llm_cache = UpstashRedisCache(redis_=Redis(url=URL, token=TOKEN), ttl=1) llm = FakeLLM() params = llm.dict() params["stop"] = None llm_string = str(sorted([(k, v) for k, v in params.items()])) langchain.llm_cache.update( "foo", llm_string, [Generation(text="fizz"), Generation(text="Buzz")] ) output = llm.generate( ["foo"] ) # foo and bar will have the same embedding produced by FakeEmbeddings expected_output = LLMResult( generations=[[Generation(text="fizz"), Generation(text="Buzz")]], llm_output={}, ) assert output == expected_output # clear the cache langchain.llm_cache.clear() @pytest.mark.requires("upstash_redis") def test_redis_cache_chat() -> None: from upstash_redis import Redis langchain.llm_cache = UpstashRedisCache(redis_=Redis(url=URL, token=TOKEN), ttl=1) llm = FakeChatModel() params = llm.dict() params["stop"] = None with pytest.warns(): llm.predict("foo") langchain.llm_cache.redis.flushall()
[]