date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
PTG-Kitware/angel_system
ros~angel_system_nodes~angel_system_nodes~audio~intent~gpt_intent_detector.py
from langchain import PromptTemplate, FewShotPromptTemplate from langchain.chains import LLMChain from langchain.chat_models import ChatOpenAI import openai import os import rclpy from angel_system_nodes.audio.intent.base_intent_detector import ( BaseIntentDetector, INTENT_LABELS, ) from angel_utils import make_default_main openai.organization = os.getenv("OPENAI_ORG_ID") openai.api_key = os.getenv("OPENAI_API_KEY") # The following are few shot examples when prompting GPT. FEW_SHOT_EXAMPLES = [ {"utterance": "Go back to the previous step!", "label": "prev_step."}, {"utterance": "Next step, please.", "label": "next_step"}, {"utterance": "How should I wrap this tourniquet?", "label": "inquiry"}, {"utterance": "The sky is blue", "label": "other"}, ] class GptIntentDetector(BaseIntentDetector): def __init__(self): super().__init__() self.log = self.get_logger() # This node additionally includes fields for interacting with OpenAI # via LangChain. if not os.getenv("OPENAI_API_KEY"): self.log.info("OPENAI_API_KEY environment variable is unset!") else: self.openai_api_key = os.getenv("OPENAI_API_KEY") if not os.getenv("OPENAI_ORG_ID"): self.log.info("OPENAI_ORG_ID environment variable is unset!") else: self.openai_org_id = os.getenv("OPENAI_ORG_ID") if not bool(self.openai_api_key and self.openai_org_id): raise ValueError("Please configure OpenAI API Keys.") self.chain = self._configure_langchain() def _configure_langchain(self): def _labels_list_parenthetical_str(labels): concat_labels = ", ".join(labels) return f"({concat_labels})" def _labels_list_str(labels): return ", ".join(labels[:-1]) + f" or {labels[-1]}" all_intents_parenthetical = _labels_list_parenthetical_str(INTENT_LABELS) all_intents = _labels_list_str(INTENT_LABELS) # Define the few shot template. template = ( f"Utterance: {{utterance}}\nIntent {all_intents_parenthetical}: {{label}}" ) example_prompt = PromptTemplate( input_variables=["utterance", "label"], template=template ) prompt_instructions = f"Classify each utterance as {all_intents}.\n" inference_sample = ( f"Utterance: {{utterance}}\nIntent {all_intents_parenthetical}:" ) few_shot_prompt = FewShotPromptTemplate( examples=FEW_SHOT_EXAMPLES, example_prompt=example_prompt, prefix=prompt_instructions, suffix=inference_sample, input_variables=["utterance"], example_separator="\n", ) # Please refer to https://github.com/hwchase17/langchain/blob/master/langchain/llms/openai.py openai_llm = ChatOpenAI( model_name="gpt-3.5-turbo", openai_api_key=self.openai_api_key, temperature=0.0, # Only 2 tokens needed for classification (tokens are delimited by use of '_', i.e. # 'next_step' counts as 2 tokens). max_tokens=2, ) return LLMChain(llm=openai_llm, prompt=few_shot_prompt) def detect_intents(self, msg): """ Detects the user intent via langchain execution of GPT. """ return self.chain.run(utterance=msg), 0.5 main = make_default_main(GptIntentDetector) if __name__ == "__main__": main()
[ "Utterance: {utterance}\nIntent PLACEHOLDER: {label}", "utterance", "\n", "Classify each utterance as PLACEHOLDER.\n" ]
2024-01-10
PTG-Kitware/angel_system
ros~angel_system_nodes~angel_system_nodes~audio~emotion~gpt_emotion_detector.py
from langchain import PromptTemplate, FewShotPromptTemplate from langchain.chains import LLMChain from langchain.chat_models import ChatOpenAI import openai import os from angel_system_nodes.audio.emotion.base_emotion_detector import ( BaseEmotionDetector, LABEL_MAPPINGS, ) from angel_utils import make_default_main openai.organization = os.getenv("OPENAI_ORG_ID") openai.api_key = os.getenv("OPENAI_API_KEY") # The following are few shot examples when prompting GPT. FEW_SHOT_EXAMPLES = [ { "utterance": "Go back to the previous step you dumb machine!", "label": "negative.", }, {"utterance": "Next step, please.", "label": "neutral"}, {"utterance": "We're doing great and I'm learning a lot!", "label": "positive"}, ] class GptEmotionDetector(BaseEmotionDetector): def __init__(self): super().__init__() self.log = self.get_logger() # This node additionally includes fields for interacting with OpenAI # via LangChain. if not os.getenv("OPENAI_API_KEY"): self.log.info("OPENAI_API_KEY environment variable is unset!") else: self.openai_api_key = os.getenv("OPENAI_API_KEY") if not os.getenv("OPENAI_ORG_ID"): self.log.info("OPENAI_ORG_ID environment variable is unset!") else: self.openai_org_id = os.getenv("OPENAI_ORG_ID") if not bool(self.openai_api_key and self.openai_org_id): raise ValueError("Please configure OpenAI API Keys.") self.chain = self._configure_langchain() def _configure_langchain(self): def _labels_list_parenthetical_str(labels): concat_labels = ", ".join(labels) return f"({concat_labels})" def _labels_list_str(labels): return ", ".join(labels[:-1]) + f" or {labels[-1]}" all_labels_parenthetical = _labels_list_parenthetical_str( list(LABEL_MAPPINGS.values()) ) all_labels = _labels_list_str(list(LABEL_MAPPINGS.values())) # Define the few shot template. template = ( f"Utterance: {{utterance}}\nEmotion {all_labels_parenthetical}: {{label}}" ) example_prompt = PromptTemplate( input_variables=["utterance", "label"], template=template ) prompt_instructions = f"Classify each utterance as {all_labels}.\n" inference_sample = ( f"Utterance: {{utterance}}\nIntent {all_labels_parenthetical}:" ) few_shot_prompt = FewShotPromptTemplate( examples=FEW_SHOT_EXAMPLES, example_prompt=example_prompt, prefix=prompt_instructions, suffix=inference_sample, input_variables=["utterance"], example_separator="\n", ) openai_llm = ChatOpenAI( model_name="gpt-3.5-turbo", openai_api_key=self.openai_api_key, temperature=0.0, max_tokens=1, ) return LLMChain(llm=openai_llm, prompt=few_shot_prompt) def get_inference(self, msg): """ Detects the user intent via langchain execution of GPT. """ return (self.chain.run(utterance=msg.utterance_text), 0.5) main = make_default_main(GptEmotionDetector) if __name__ == "__main__": main()
[ "Utterance: {utterance}\nEmotion PLACEHOLDER: {label}", "utterance", "\n", "Classify each utterance as PLACEHOLDER.\n" ]
2024-01-10
PTG-Kitware/angel_system
ros~angel_system_nodes~angel_system_nodes~audio~question_answerer.py
import json import openai import os import queue from rclpy.node import Node import requests from termcolor import colored import threading from angel_msgs.msg import InterpretedAudioUserEmotion, SystemTextResponse from angel_utils import declare_and_get_parameters from angel_utils import make_default_main openai.organization = os.getenv("OPENAI_ORG_ID") openai.api_key = os.getenv("OPENAI_API_KEY") IN_EMOTION_TOPIC = "user_emotion_topic" OUT_QA_TOPIC = "system_text_response_topic" FEW_SHOT_PROMPT = "few_shot_prompt_file" class QuestionAnswerer(Node): def __init__(self): super().__init__(self.__class__.__name__) self.log = self.get_logger() param_values = declare_and_get_parameters( self, [ (IN_EMOTION_TOPIC,), (OUT_QA_TOPIC,), (FEW_SHOT_PROMPT,), ], ) self._in_emotion_topic = param_values[IN_EMOTION_TOPIC] self._out_qa_topic = param_values[OUT_QA_TOPIC] self.prompt_file = param_values[FEW_SHOT_PROMPT] self.question_queue = queue.Queue() self.handler_thread = threading.Thread(target=self.process_question_queue) self.handler_thread.start() with open(self.prompt_file, "r") as file: self.prompt = file.read() self.log.info(f"Initialized few-shot prompt to:\n\n {self.prompt}\n\n") self.is_openai_ready = True if not os.getenv("OPENAI_API_KEY"): self.log.info("OPENAI_API_KEY environment variable is unset!") self.is_openai_ready = False else: self.openai_api_key = os.getenv("OPENAI_API_KEY") if not os.getenv("OPENAI_ORG_ID"): self.log.info("OPENAI_ORG_ID environment variable is unset!") self.is_openai_ready = False else: self.openai_org_id = os.getenv("OPENAI_ORG_ID") # Handle subscription/publication topics. self.subscription = self.create_subscription( InterpretedAudioUserEmotion, self._in_emotion_topic, self.question_answer_callback, 1, ) self._qa_publisher = self.create_publisher( SystemTextResponse, self._out_qa_topic, 1 ) def get_response(self, user_utterance: str, user_emotion: str): """ Generate a response to the utterance, enriched with the addition of the user's detected emotion. Inference calls can be added and revised here. """ return_msg = "" try: if self.is_openai_ready: return_msg = colored( self.prompt_gpt(user_utterance) + "\n", "light_green" ) except RuntimeError as err: self.log.info(err) colored_apology = colored( "I'm sorry. I don't know how to answer your statement.", "light_red" ) colored_emotion = colored(user_emotion, "light_red") return_msg = ( f"{colored_apology} I understand that you feel {colored_emotion}." ) return return_msg def question_answer_callback(self, msg): """ This is the main ROS node listener callback loop that will process all messages received via subscribed topics. """ self.log.debug(f"Received message:\n\n{msg.utterance_text}") if not self._apply_filter(msg): return self.question_queue.put(msg) def process_question_queue(self): """ Constant loop to process received questions. """ while True: msg = self.question_queue.get() emotion = msg.user_emotion response = self.get_response(msg.utterance_text, emotion) self.publish_generated_response(msg.utterance_text, response) def publish_generated_response(self, utterance: str, response: str): msg = SystemTextResponse() msg.header.frame_id = "GPT Question Answering" msg.header.stamp = self.get_clock().now().to_msg() msg.utterance_text = utterance msg.response = response colored_utterance = colored(utterance, "light_blue") colored_response = colored(response, "light_green") self.log.info( f'Responding to utterance:\n>>> "{colored_utterance}"\n>>> with:\n' + f'>>> "{colored_response}"' ) self._qa_publisher.publish(msg) def prompt_gpt(self, question, model: str = "gpt-3.5-turbo"): prompt = self.prompt.format(question) self.log.debug(f"Prompting OpenAI with\n {prompt}\n") payload = { "model": model, "messages": [{"role": "user", "content": prompt}], "temperature": 0.7, "max_tokens": 64, } req = requests.post( "https://api.openai.com/v1/chat/completions", json=payload, headers={"Authorization": "Bearer {}".format(self.openai_api_key)}, ) return ( json.loads(req.text)["choices"][0]["message"]["content"] .split("A:")[-1] .lstrip() ) def _apply_filter(self, msg): """ Abstracts away any filtering to apply on received messages. Return none if the message should be filtered out. Else, return the incoming msg if it can be included. """ return msg main = make_default_main(QuestionAnswerer) if __name__ == "__main__": main()
[ "few_shot_prompt_file" ]
2024-01-10
kaixindelele/gpt_academic
crazy_functions~crazy_utils.py
from toolbox import update_ui, get_conf, trimmed_format_exc, get_log_folder import threading import os import logging def input_clipping(inputs, history, max_token_limit): import numpy as np from request_llm.bridge_all import model_info enc = model_info["gpt-3.5-turbo"]['tokenizer'] def get_token_num(txt): return len(enc.encode(txt, disallowed_special=())) mode = 'input-and-history' # 当 输入部分的token占比 小于 全文的一半时,只裁剪历史 input_token_num = get_token_num(inputs) if input_token_num < max_token_limit//2: mode = 'only-history' max_token_limit = max_token_limit - input_token_num everything = [inputs] if mode == 'input-and-history' else [''] everything.extend(history) n_token = get_token_num('\n'.join(everything)) everything_token = [get_token_num(e) for e in everything] delta = max(everything_token) // 16 # 截断时的颗粒度 while n_token > max_token_limit: where = np.argmax(everything_token) encoded = enc.encode(everything[where], disallowed_special=()) clipped_encoded = encoded[:len(encoded)-delta] everything[where] = enc.decode(clipped_encoded)[:-1] # -1 to remove the may-be illegal char everything_token[where] = get_token_num(everything[where]) n_token = get_token_num('\n'.join(everything)) if mode == 'input-and-history': inputs = everything[0] else: pass history = everything[1:] return inputs, history def request_gpt_model_in_new_thread_with_ui_alive( inputs, inputs_show_user, llm_kwargs, chatbot, history, sys_prompt, refresh_interval=0.2, handle_token_exceed=True, retry_times_at_unknown_error=2, ): """ Request GPT model,请求GPT模型同时维持用户界面活跃。 输入参数 Args (以_array结尾的输入变量都是列表,列表长度为子任务的数量,执行时,会把列表拆解,放到每个子线程中分别执行): inputs (string): List of inputs (输入) inputs_show_user (string): List of inputs to show user(展现在报告中的输入,借助此参数,在汇总报告中隐藏啰嗦的真实输入,增强报告的可读性) top_p (float): Top p value for sampling from model distribution (GPT参数,浮点数) temperature (float): Temperature value for sampling from model distribution(GPT参数,浮点数) chatbot: chatbot inputs and outputs (用户界面对话窗口句柄,用于数据流可视化) history (list): List of chat history (历史,对话历史列表) sys_prompt (string): List of system prompts (系统输入,列表,用于输入给GPT的前提提示,比如你是翻译官怎样怎样) refresh_interval (float, optional): Refresh interval for UI (default: 0.2) (刷新时间间隔频率,建议低于1,不可高于3,仅仅服务于视觉效果) handle_token_exceed:是否自动处理token溢出的情况,如果选择自动处理,则会在溢出时暴力截断,默认开启 retry_times_at_unknown_error:失败时的重试次数 输出 Returns: future: 输出,GPT返回的结果 """ import time from concurrent.futures import ThreadPoolExecutor from request_llm.bridge_all import predict_no_ui_long_connection # 用户反馈 chatbot.append([inputs_show_user, ""]) yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面 executor = ThreadPoolExecutor(max_workers=16) mutable = ["", time.time(), ""] # 看门狗耐心 watch_dog_patience = 5 # 请求任务 def _req_gpt(inputs, history, sys_prompt): retry_op = retry_times_at_unknown_error exceeded_cnt = 0 while True: # watchdog error if len(mutable) >= 2 and (time.time()-mutable[1]) > watch_dog_patience: raise RuntimeError("检测到程序终止。") try: # 【第一种情况】:顺利完成 result = predict_no_ui_long_connection( inputs=inputs, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt, observe_window=mutable) return result except ConnectionAbortedError as token_exceeded_error: # 【第二种情况】:Token溢出 if handle_token_exceed: exceeded_cnt += 1 # 【选择处理】 尝试计算比例,尽可能多地保留文本 from toolbox import get_reduce_token_percent p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error)) MAX_TOKEN = 4096 EXCEED_ALLO = 512 + 512 * exceeded_cnt inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO) mutable[0] += f'[Local Message] 警告,文本过长将进行截断,Token溢出数:{n_exceed}。\n\n' continue # 返回重试 else: # 【选择放弃】 tb_str = '```\n' + trimmed_format_exc() + '```' mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n" return mutable[0] # 放弃 except: # 【第三种情况】:其他错误:重试几次 tb_str = '```\n' + trimmed_format_exc() + '```' print(tb_str) mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n" if retry_op > 0: retry_op -= 1 mutable[0] += f"[Local Message] 重试中,请稍等 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}:\n\n" if ("Rate limit reached" in tb_str) or ("Too Many Requests" in tb_str): time.sleep(30) time.sleep(5) continue # 返回重试 else: time.sleep(5) return mutable[0] # 放弃 # 提交任务 future = executor.submit(_req_gpt, inputs, history, sys_prompt) while True: # yield一次以刷新前端页面 time.sleep(refresh_interval) # “喂狗”(看门狗) mutable[1] = time.time() if future.done(): break chatbot[-1] = [chatbot[-1][0], mutable[0]] yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面 final_result = future.result() chatbot[-1] = [chatbot[-1][0], final_result] yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息 return final_result def can_multi_process(llm): if llm.startswith('gpt-'): return True if llm.startswith('api2d-'): return True if llm.startswith('azure-'): return True return False def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( inputs_array, inputs_show_user_array, llm_kwargs, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=-1, scroller_max_len=30, handle_token_exceed=True, show_user_at_complete=False, retry_times_at_unknown_error=2, ): """ Request GPT model using multiple threads with UI and high efficiency 请求GPT模型的[多线程]版。 具备以下功能: 实时在UI上反馈远程数据流 使用线程池,可调节线程池的大小避免openai的流量限制错误 处理中途中止的情况 网络等出问题时,会把traceback和已经接收的数据转入输出 输入参数 Args (以_array结尾的输入变量都是列表,列表长度为子任务的数量,执行时,会把列表拆解,放到每个子线程中分别执行): inputs_array (list): List of inputs (每个子任务的输入) inputs_show_user_array (list): List of inputs to show user(每个子任务展现在报告中的输入,借助此参数,在汇总报告中隐藏啰嗦的真实输入,增强报告的可读性) llm_kwargs: llm_kwargs参数 chatbot: chatbot (用户界面对话窗口句柄,用于数据流可视化) history_array (list): List of chat history (历史对话输入,双层列表,第一层列表是子任务分解,第二层列表是对话历史) sys_prompt_array (list): List of system prompts (系统输入,列表,用于输入给GPT的前提提示,比如你是翻译官怎样怎样) refresh_interval (float, optional): Refresh interval for UI (default: 0.2) (刷新时间间隔频率,建议低于1,不可高于3,仅仅服务于视觉效果) max_workers (int, optional): Maximum number of threads (default: see config.py) (最大线程数,如果子任务非常多,需要用此选项防止高频地请求openai导致错误) scroller_max_len (int, optional): Maximum length for scroller (default: 30)(数据流的显示最后收到的多少个字符,仅仅服务于视觉效果) handle_token_exceed (bool, optional): (是否在输入过长时,自动缩减文本) handle_token_exceed:是否自动处理token溢出的情况,如果选择自动处理,则会在溢出时暴力截断,默认开启 show_user_at_complete (bool, optional): (在结束时,把完整输入-输出结果显示在聊天框) retry_times_at_unknown_error:子任务失败时的重试次数 输出 Returns: list: List of GPT model responses (每个子任务的输出汇总,如果某个子任务出错,response中会携带traceback报错信息,方便调试和定位问题。) """ import time, random from concurrent.futures import ThreadPoolExecutor from request_llm.bridge_all import predict_no_ui_long_connection assert len(inputs_array) == len(history_array) assert len(inputs_array) == len(sys_prompt_array) if max_workers == -1: # 读取配置文件 try: max_workers, = get_conf('DEFAULT_WORKER_NUM') except: max_workers = 15 if max_workers <= 0: max_workers = 3 # 屏蔽掉 chatglm的多线程,可能会导致严重卡顿 if not can_multi_process(llm_kwargs['llm_model']): max_workers = 1 executor = ThreadPoolExecutor(max_workers=max_workers) n_frag = len(inputs_array) # 用户反馈 chatbot.append(["请开始多线程操作。", ""]) yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面 # 跨线程传递 mutable = [["", time.time(), "等待中"] for _ in range(n_frag)] # 看门狗耐心 watch_dog_patience = 5 # 子线程任务 def _req_gpt(index, inputs, history, sys_prompt): gpt_say = "" retry_op = retry_times_at_unknown_error exceeded_cnt = 0 mutable[index][2] = "执行中" while True: # watchdog error if len(mutable[index]) >= 2 and (time.time()-mutable[index][1]) > watch_dog_patience: raise RuntimeError("检测到程序终止。") try: # 【第一种情况】:顺利完成 # time.sleep(10); raise RuntimeError("测试") gpt_say = predict_no_ui_long_connection( inputs=inputs, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt, observe_window=mutable[index], console_slience=True ) mutable[index][2] = "已成功" return gpt_say except ConnectionAbortedError as token_exceeded_error: # 【第二种情况】:Token溢出, if handle_token_exceed: exceeded_cnt += 1 # 【选择处理】 尝试计算比例,尽可能多地保留文本 from toolbox import get_reduce_token_percent p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error)) MAX_TOKEN = 4096 EXCEED_ALLO = 512 + 512 * exceeded_cnt inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO) gpt_say += f'[Local Message] 警告,文本过长将进行截断,Token溢出数:{n_exceed}。\n\n' mutable[index][2] = f"截断重试" continue # 返回重试 else: # 【选择放弃】 tb_str = '```\n' + trimmed_format_exc() + '```' gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n" if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0] mutable[index][2] = "输入过长已放弃" return gpt_say # 放弃 except: # 【第三种情况】:其他错误 tb_str = '```\n' + trimmed_format_exc() + '```' print(tb_str) gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n" if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0] if retry_op > 0: retry_op -= 1 wait = random.randint(5, 20) if ("Rate limit reached" in tb_str) or ("Too Many Requests" in tb_str): wait = wait * 3 fail_info = "OpenAI绑定信用卡可解除频率限制 " else: fail_info = "" # 也许等待十几秒后,情况会好转 for i in range(wait): mutable[index][2] = f"{fail_info}等待重试 {wait-i}"; time.sleep(1) # 开始重试 mutable[index][2] = f"重试中 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}" continue # 返回重试 else: mutable[index][2] = "已失败" wait = 5 time.sleep(5) return gpt_say # 放弃 # 异步任务开始 futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip( range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)] cnt = 0 while True: # yield一次以刷新前端页面 time.sleep(refresh_interval) cnt += 1 worker_done = [h.done() for h in futures] # 更好的UI视觉效果 observe_win = [] # 每个线程都要“喂狗”(看门狗) for thread_index, _ in enumerate(worker_done): mutable[thread_index][1] = time.time() # 在前端打印些好玩的东西 for thread_index, _ in enumerate(worker_done): print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\ replace('\n', '').replace('`', '.').replace( ' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]" observe_win.append(print_something_really_funny) # 在前端打印些好玩的东西 stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n' if not done else f'`{mutable[thread_index][2]}`\n\n' for thread_index, done, obs in zip(range(len(worker_done)), worker_done, observe_win)]) # 在前端打印些好玩的东西 chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))] yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面 if all(worker_done): executor.shutdown() break # 异步任务结束 gpt_response_collection = [] for inputs_show_user, f in zip(inputs_show_user_array, futures): gpt_res = f.result() gpt_response_collection.extend([inputs_show_user, gpt_res]) # 是否在结束时,在界面上显示结果 if show_user_at_complete: for inputs_show_user, f in zip(inputs_show_user_array, futures): gpt_res = f.result() chatbot.append([inputs_show_user, gpt_res]) yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面 time.sleep(0.5) return gpt_response_collection def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit): def cut(txt_tocut, must_break_at_empty_line): # 递归 if get_token_fn(txt_tocut) <= limit: return [txt_tocut] else: lines = txt_tocut.split('\n') estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines) estimated_line_cut = int(estimated_line_cut) for cnt in reversed(range(estimated_line_cut)): if must_break_at_empty_line: if lines[cnt] != "": continue print(cnt) prev = "\n".join(lines[:cnt]) post = "\n".join(lines[cnt:]) if get_token_fn(prev) < limit: break if cnt == 0: raise RuntimeError("存在一行极长的文本!") # print(len(post)) # 列表递归接龙 result = [prev] result.extend(cut(post, must_break_at_empty_line)) return result try: return cut(txt, must_break_at_empty_line=True) except RuntimeError: return cut(txt, must_break_at_empty_line=False) def force_breakdown(txt, limit, get_token_fn): """ 当无法用标点、空行分割时,我们用最暴力的方法切割 """ for i in reversed(range(len(txt))): if get_token_fn(txt[:i]) < limit: return txt[:i], txt[i:] return "Tiktoken未知错误", "Tiktoken未知错误" def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit): # 递归 def cut(txt_tocut, must_break_at_empty_line, break_anyway=False): if get_token_fn(txt_tocut) <= limit: return [txt_tocut] else: lines = txt_tocut.split('\n') estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines) estimated_line_cut = int(estimated_line_cut) cnt = 0 for cnt in reversed(range(estimated_line_cut)): if must_break_at_empty_line: if lines[cnt] != "": continue prev = "\n".join(lines[:cnt]) post = "\n".join(lines[cnt:]) if get_token_fn(prev) < limit: break if cnt == 0: if break_anyway: prev, post = force_breakdown(txt_tocut, limit, get_token_fn) else: raise RuntimeError(f"存在一行极长的文本!{txt_tocut}") # print(len(post)) # 列表递归接龙 result = [prev] result.extend(cut(post, must_break_at_empty_line, break_anyway=break_anyway)) return result try: # 第1次尝试,将双空行(\n\n)作为切分点 return cut(txt, must_break_at_empty_line=True) except RuntimeError: try: # 第2次尝试,将单空行(\n)作为切分点 return cut(txt, must_break_at_empty_line=False) except RuntimeError: try: # 第3次尝试,将英文句号(.)作为切分点 res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False) # 这个中文的句号是故意的,作为一个标识而存在 return [r.replace('。\n', '.') for r in res] except RuntimeError as e: try: # 第4次尝试,将中文句号(。)作为切分点 res = cut(txt.replace('。', '。。\n'), must_break_at_empty_line=False) return [r.replace('。。\n', '。') for r in res] except RuntimeError as e: # 第5次尝试,没办法了,随便切一下敷衍吧 return cut(txt, must_break_at_empty_line=False, break_anyway=True) def read_and_clean_pdf_text(fp): """ 这个函数用于分割pdf,用了很多trick,逻辑较乱,效果奇好 **输入参数说明** - `fp`:需要读取和清理文本的pdf文件路径 **输出参数说明** - `meta_txt`:清理后的文本内容字符串 - `page_one_meta`:第一页清理后的文本内容列表 **函数功能** 读取pdf文件并清理其中的文本内容,清理规则包括: - 提取所有块元的文本信息,并合并为一个字符串 - 去除短块(字符数小于100)并替换为回车符 - 清理多余的空行 - 合并小写字母开头的段落块并替换为空格 - 清除重复的换行 - 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔 """ import fitz, copy import re import numpy as np from colorful import print亮黄, print亮绿 fc = 0 # Index 0 文本 fs = 1 # Index 1 字体 fb = 2 # Index 2 框框 REMOVE_FOOT_NOTE = True # 是否丢弃掉 不是正文的内容 (比正文字体小,如参考文献、脚注、图注等) REMOVE_FOOT_FFSIZE_PERCENT = 0.95 # 小于正文的?时,判定为不是正文(有些文章的正文部分字体大小不是100%统一的,有肉眼不可见的小变化) def primary_ffsize(l): """ 提取文本块主字体 """ fsize_statiscs = {} for wtf in l['spans']: if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0 fsize_statiscs[wtf['size']] += len(wtf['text']) return max(fsize_statiscs, key=fsize_statiscs.get) def ffsize_same(a,b): """ 提取字体大小是否近似相等 """ return abs((a-b)/max(a,b)) < 0.02 with fitz.open(fp) as doc: meta_txt = [] meta_font = [] meta_line = [] meta_span = [] ############################## <第 1 步,搜集初始信息> ################################## for index, page in enumerate(doc): # file_content += page.get_text() text_areas = page.get_text("dict") # 获取页面上的文本信息 for t in text_areas['blocks']: if 'lines' in t: pf = 998 for l in t['lines']: txt_line = "".join([wtf['text'] for wtf in l['spans']]) if len(txt_line) == 0: continue pf = primary_ffsize(l) meta_line.append([txt_line, pf, l['bbox'], l]) for wtf in l['spans']: # for l in t['lines']: meta_span.append([wtf['text'], wtf['size'], len(wtf['text'])]) # meta_line.append(["NEW_BLOCK", pf]) # 块元提取 for each word segment with in line for each line cross-line words for each block meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace( '- ', '') for t in text_areas['blocks'] if 'lines' in t]) meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']]) for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t]) if index == 0: page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace( '- ', '') for t in text_areas['blocks'] if 'lines' in t] ############################## <第 2 步,获取正文主字体> ################################## try: fsize_statiscs = {} for span in meta_span: if span[1] not in fsize_statiscs: fsize_statiscs[span[1]] = 0 fsize_statiscs[span[1]] += span[2] main_fsize = max(fsize_statiscs, key=fsize_statiscs.get) if REMOVE_FOOT_NOTE: give_up_fize_threshold = main_fsize * REMOVE_FOOT_FFSIZE_PERCENT except: raise RuntimeError(f'抱歉, 我们暂时无法解析此PDF文档: {fp}。') ############################## <第 3 步,切分和重新整合> ################################## mega_sec = [] sec = [] for index, line in enumerate(meta_line): if index == 0: sec.append(line[fc]) continue if REMOVE_FOOT_NOTE: if meta_line[index][fs] <= give_up_fize_threshold: continue if ffsize_same(meta_line[index][fs], meta_line[index-1][fs]): # 尝试识别段落 if meta_line[index][fc].endswith('.') and\ (meta_line[index-1][fc] != 'NEW_BLOCK') and \ (meta_line[index][fb][2] - meta_line[index][fb][0]) < (meta_line[index-1][fb][2] - meta_line[index-1][fb][0]) * 0.7: sec[-1] += line[fc] sec[-1] += "\n\n" else: sec[-1] += " " sec[-1] += line[fc] else: if (index+1 < len(meta_line)) and \ meta_line[index][fs] > main_fsize: # 单行 + 字体大 mega_sec.append(copy.deepcopy(sec)) sec = [] sec.append("# " + line[fc]) else: # 尝试识别section if meta_line[index-1][fs] > meta_line[index][fs]: sec.append("\n" + line[fc]) else: sec.append(line[fc]) mega_sec.append(copy.deepcopy(sec)) finals = [] for ms in mega_sec: final = " ".join(ms) final = final.replace('- ', ' ') finals.append(final) meta_txt = finals ############################## <第 4 步,乱七八糟的后处理> ################################## def 把字符太少的块清除为回车(meta_txt): for index, block_txt in enumerate(meta_txt): if len(block_txt) < 100: meta_txt[index] = '\n' return meta_txt meta_txt = 把字符太少的块清除为回车(meta_txt) def 清理多余的空行(meta_txt): for index in reversed(range(1, len(meta_txt))): if meta_txt[index] == '\n' and meta_txt[index-1] == '\n': meta_txt.pop(index) return meta_txt meta_txt = 清理多余的空行(meta_txt) def 合并小写开头的段落块(meta_txt): def starts_with_lowercase_word(s): pattern = r"^[a-z]+" match = re.match(pattern, s) if match: return True else: return False for _ in range(100): for index, block_txt in enumerate(meta_txt): if starts_with_lowercase_word(block_txt): if meta_txt[index-1] != '\n': meta_txt[index-1] += ' ' else: meta_txt[index-1] = '' meta_txt[index-1] += meta_txt[index] meta_txt[index] = '\n' return meta_txt meta_txt = 合并小写开头的段落块(meta_txt) meta_txt = 清理多余的空行(meta_txt) meta_txt = '\n'.join(meta_txt) # 清除重复的换行 for _ in range(5): meta_txt = meta_txt.replace('\n\n', '\n') # 换行 -> 双换行 meta_txt = meta_txt.replace('\n', '\n\n') ############################## <第 5 步,展示分割效果> ################################## # for f in finals: # print亮黄(f) # print亮绿('***************************') return meta_txt, page_one_meta def get_files_from_everything(txt, type): # type='.md' """ 这个函数是用来获取指定目录下所有指定类型(如.md)的文件,并且对于网络上的文件,也可以获取它。 下面是对每个参数和返回值的说明: 参数 - txt: 路径或网址,表示要搜索的文件或者文件夹路径或网络上的文件。 - type: 字符串,表示要搜索的文件类型。默认是.md。 返回值 - success: 布尔值,表示函数是否成功执行。 - file_manifest: 文件路径列表,里面包含以指定类型为后缀名的所有文件的绝对路径。 - project_folder: 字符串,表示文件所在的文件夹路径。如果是网络上的文件,就是临时文件夹的路径。 该函数详细注释已添加,请确认是否满足您的需要。 """ import glob, os success = True if txt.startswith('http'): # 网络的远程文件 import requests from toolbox import get_conf from toolbox import get_log_folder, gen_time_str proxies, = get_conf('proxies') try: r = requests.get(txt, proxies=proxies) except: raise ConnectionRefusedError(f"无法下载资源{txt},请检查。") path = os.path.join(get_log_folder(plugin_name='web_download'), gen_time_str()+type) with open(path, 'wb+') as f: f.write(r.content) project_folder = get_log_folder(plugin_name='web_download') file_manifest = [path] elif txt.endswith(type): # 直接给定文件 file_manifest = [txt] project_folder = os.path.dirname(txt) elif os.path.exists(txt): # 本地路径,递归搜索 project_folder = txt file_manifest = [f for f in glob.glob(f'{project_folder}/**/*'+type, recursive=True)] if len(file_manifest) == 0: success = False else: project_folder = None file_manifest = [] success = False return success, file_manifest, project_folder def Singleton(cls): _instance = {} def _singleton(*args, **kargs): if cls not in _instance: _instance[cls] = cls(*args, **kargs) return _instance[cls] return _singleton @Singleton class knowledge_archive_interface(): def __init__(self) -> None: self.threadLock = threading.Lock() self.current_id = "" self.kai_path = None self.qa_handle = None self.text2vec_large_chinese = None def get_chinese_text2vec(self): if self.text2vec_large_chinese is None: # < -------------------预热文本向量化模组--------------- > from toolbox import ProxyNetworkActivate print('Checking Text2vec ...') from langchain.embeddings.huggingface import HuggingFaceEmbeddings with ProxyNetworkActivate('Download_LLM'): # 临时地激活代理网络 self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese") return self.text2vec_large_chinese def feed_archive(self, file_manifest, id="default"): self.threadLock.acquire() # import uuid self.current_id = id from zh_langchain import construct_vector_store self.qa_handle, self.kai_path = construct_vector_store( vs_id=self.current_id, files=file_manifest, sentence_size=100, history=[], one_conent="", one_content_segmentation="", text2vec = self.get_chinese_text2vec(), ) self.threadLock.release() def get_current_archive_id(self): return self.current_id def get_loaded_file(self): return self.qa_handle.get_loaded_file() def answer_with_archive_by_id(self, txt, id): self.threadLock.acquire() if not self.current_id == id: self.current_id = id from zh_langchain import construct_vector_store self.qa_handle, self.kai_path = construct_vector_store( vs_id=self.current_id, files=[], sentence_size=100, history=[], one_conent="", one_content_segmentation="", text2vec = self.get_chinese_text2vec(), ) VECTOR_SEARCH_SCORE_THRESHOLD = 0 VECTOR_SEARCH_TOP_K = 4 CHUNK_SIZE = 512 resp, prompt = self.qa_handle.get_knowledge_based_conent_test( query = txt, vs_path = self.kai_path, score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD, vector_search_top_k=VECTOR_SEARCH_TOP_K, chunk_conent=True, chunk_size=CHUNK_SIZE, text2vec = self.get_chinese_text2vec(), ) self.threadLock.release() return resp, prompt @Singleton class nougat_interface(): def __init__(self): self.threadLock = threading.Lock() def nougat_with_timeout(self, command, cwd, timeout=3600): import subprocess logging.info(f'正在执行命令 {command}') process = subprocess.Popen(command, shell=True, cwd=cwd) try: stdout, stderr = process.communicate(timeout=timeout) except subprocess.TimeoutExpired: process.kill() stdout, stderr = process.communicate() print("Process timed out!") return False return True def NOUGAT_parse_pdf(self, fp, chatbot, history): from toolbox import update_ui_lastest_msg yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在排队, 等待线程锁...", chatbot=chatbot, history=history, delay=0) self.threadLock.acquire() import glob, threading, os from toolbox import get_log_folder, gen_time_str dst = os.path.join(get_log_folder(plugin_name='nougat'), gen_time_str()) os.makedirs(dst) yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在加载NOUGAT... (提示:首次运行需要花费较长时间下载NOUGAT参数)", chatbot=chatbot, history=history, delay=0) self.nougat_with_timeout(f'nougat --out "{os.path.abspath(dst)}" "{os.path.abspath(fp)}"', os.getcwd(), timeout=3600) res = glob.glob(os.path.join(dst,'*.mmd')) if len(res) == 0: self.threadLock.release() raise RuntimeError("Nougat解析论文失败。") self.threadLock.release() return res[0] def try_install_deps(deps, reload_m=[]): import subprocess, sys, importlib for dep in deps: subprocess.check_call([sys.executable, '-m', 'pip', 'install', '--user', dep]) import site importlib.reload(site) for m in reload_m: importlib.reload(__import__(m)) HTML_CSS = """ .row { display: flex; flex-wrap: wrap; } .column { flex: 1; padding: 10px; } .table-header { font-weight: bold; border-bottom: 1px solid black; } .table-row { border-bottom: 1px solid lightgray; } .table-cell { padding: 5px; } """ TABLE_CSS = """ <div class="row table-row"> <div class="column table-cell">REPLACE_A</div> <div class="column table-cell">REPLACE_B</div> </div> """ class construct_html(): def __init__(self) -> None: self.css = HTML_CSS self.html_string = f'<!DOCTYPE html><head><meta charset="utf-8"><title>翻译结果</title><style>{self.css}</style></head>' def add_row(self, a, b): tmp = TABLE_CSS from toolbox import markdown_convertion tmp = tmp.replace('REPLACE_A', markdown_convertion(a)) tmp = tmp.replace('REPLACE_B', markdown_convertion(b)) self.html_string += tmp def save_file(self, file_name): with open(os.path.join(get_log_folder(), file_name), 'w', encoding='utf8') as f: f.write(self.html_string.encode('utf-8', 'ignore').decode()) return os.path.join(get_log_folder(), file_name) def get_plugin_arg(plugin_kwargs, key, default): # 如果参数是空的 if (key in plugin_kwargs) and (plugin_kwargs[key] == ""): plugin_kwargs.pop(key) # 正常情况 return plugin_kwargs.get(key, default)
[]
2024-01-10
TheoremOne/video-captioning
app2.py
import streamlit as st import av import numpy as np import torch from transformers import AutoImageProcessor, AutoTokenizer, VisionEncoderDecoderModel from pytube import YouTube import os import openai from dotenv import load_dotenv load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") # Check if CUDA is available and set the device accordingly device = "cuda" if torch.cuda.is_available() else "cpu" # Load pretrained processor, tokenizer, and model image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base") tokenizer = AutoTokenizer.from_pretrained("gpt2") model = VisionEncoderDecoderModel.from_pretrained( "Neleac/timesformer-gpt2-video-captioning" ).to(device) def main(): hide_streamlit_style = """ <style> #MainMenu {visibility: hidden;} footer {visibility: hidden;} </style> """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) st.title("Video Captioning with TimesFormer-GPT2") # Option to choose between uploading a video file or pasting a YouTube link option = st.radio( "Choose an option:", ("Upload a video file", "Paste a YouTube link") ) if option == "Upload a video file": video_file = st.file_uploader("Upload a video file", type=["mp4"]) if video_file is not None: st.video(video_file) frames, seg_len = extract_frames(video_file) if frames: generate_captions(frames, seg_len) elif option == "Paste a YouTube link": youtube_link = st.text_input("Paste a YouTube link") if youtube_link: st.write("Downloading video from YouTube...") video_file_path = download_youtube_video(youtube_link) if video_file_path: st.video(video_file_path) frames, seg_len = extract_frames(video_file_path) if frames: generate_captions(frames, seg_len) # Add a function to download a YouTube video def download_youtube_video(youtube_link): try: yt = YouTube(youtube_link) stream = yt.streams.filter(file_extension="mp4", progressive=True).first() video_file_path = stream.download() return video_file_path except Exception as e: st.error(f"Error downloading YouTube video: {e}") return None # Add a function to extract frames from a video def extract_frames(video_file): container = av.open(video_file) seg_len = container.streams.video[0].frames clip_len = model.config.encoder.num_frames indices = set( np.linspace(0, seg_len, num=clip_len, endpoint=False).astype(np.int64) ) frames = [] container.seek(0) for i, frame in enumerate(container.decode(video=0)): if i in indices: frames.append(frame.to_ndarray(format="rgb24")) return frames, seg_len # Add a function to generate captions def generate_captions(frames, seg_len): st.write("Generating captions...") gen_kwargs = { "min_length": 10, "max_length": 20, "num_beams": 8, } pixel_values = image_processor(frames, return_tensors="pt").pixel_values.to(device) tokens = model.generate(pixel_values, **gen_kwargs) caption = tokenizer.batch_decode(tokens, skip_special_tokens=True)[0] completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are given a caption line from a video summarizer model. Expand it into a few more lines. Don't get too creative to avoid writing something that is not in the video"}, {"role": "user", "content": f"Caption: {caption}"}, ], ) st.write("Generated Caption:") if not completion: st.write(caption) else: st.write(completion.choices[0].message["content"]) if __name__ == "__main__": main()
[ "Caption: PLACEHOLDER", "You are given a caption line from a video summarizer model. Expand it into a few more lines. Don't get too creative to avoid writing something that is not in the video" ]
2024-01-10
gem5bootcamp/gem5-bootcamp-env
materials~using-gem5~02-stdlib~complete~x86-full-system-complete.py
from gem5.utils.requires import requires from gem5.components.boards.x86_board import X86Board from gem5.components.memory.single_channel import SingleChannelDDR3_1600 from gem5.components.cachehierarchies.ruby.mesi_two_level_cache_hierarchy import ( MESITwoLevelCacheHierarchy, ) from gem5.components.processors.simple_switchable_processor import ( SimpleSwitchableProcessor, ) from gem5.coherence_protocol import CoherenceProtocol from gem5.isas import ISA from gem5.components.processors.cpu_types import CPUTypes from gem5.resources.resource import Resource from gem5.simulate.simulator import Simulator from gem5.simulate.exit_event import ExitEvent # This runs a check to ensure the gem5 binary is compiled to X86 and supports # the MESI Two Level coherence protocol. requires( isa_required=ISA.X86, coherence_protocol_required=CoherenceProtocol.MESI_TWO_LEVEL ) # Here we setup a MESI Two Level Cache Hierarchy. cache_hierarchy = MESITwoLevelCacheHierarchy( l1d_size="32KiB", l1d_assoc=8, l1i_size="32KiB", l1i_assoc=8, l2_size="256KiB", l2_assoc=16, num_l2_banks=1, ) # Setup the system memory. # Note, by default DDR3_1600 defaults to a size of 8GiB. However, a current # limitation with the X86 board is it can only accept memory systems up to 3GiB. # As such, we must fix the size. memory = SingleChannelDDR3_1600("2GiB") # Here we setup the processor. This is a special switchable processor in which # a starting core type and a switch core type must be specified. Once a # configuration is instantiated a user may call `processor.switch()` to switch # from the starting core types to the switch core types. In this simulation # we start with TIMING cores to simulate the OS boot, then switch to the O3 # cores for the command we wish to run after boot. processor = SimpleSwitchableProcessor( starting_core_type=CPUTypes.TIMING, switch_core_type=CPUTypes.O3, num_cores=2 ) # Here we setup the board. The X86Board allows for Full-System X86 simulations. board = X86Board( clk_freq="3GHz", processor=processor, memory=memory, cache_hierarchy=cache_hierarchy ) # This is the command to run after the system has booted. The first `m5 exit` # will stop the simulation so we can switch the CPU cores from TIMING to O3d # and continue the simulation to run the echo command, sleep for a second, # then, again, call `m5 exit` to terminate the simulation. After simulation # has ended you may inspect `m5out/system.pc.com_1.device` to see the echo # output. command = ( "m5 exit;" + "echo 'This is running on O3 CPU cores.';" + "sleep 1;" + "m5 exit;" ) # Here we set the Full System workload. # The `set_workload` function for the X86Board takes a kernel, a disk image, # and, optionally, a the contents of the "readfile". In the case of the # "x86-ubuntu-18.04-img", a file to be executed as a script after booting the # system. board.set_kernel_disk_workload( kernel=Resource("x86-linux-kernel-5.4.49"), disk_image=Resource("x86-ubuntu-18.04-img"), readfile_contents=command, ) simulator = Simulator( board=board, on_exit_event={ # Here we want override the default behavior for the first m5 exit # exit event. Instead of exiting the simulator, we just want to # switch the processor. The 2nd 'm5 exit' after will revert to using # default behavior where the simulator run will exit. ExitEvent.EXIT: (func() for func in [processor.switch]) }, ) simulator.run()
[]
2024-01-10
gem5bootcamp/gem5-bootcamp-env
materials~using-gem5~08-fullsystem~x86-npb-benchmarks.py
# Copyright (c) 2021 The Regents of the University of California. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Script to run NAS parallel benchmarks with gem5. The script expects the benchmark program to run. The input is in the format <benchmark_prog>.<class>.x .The system is fixed with 2 CPU cores, MESI Two Level system cache and 3 GB DDR4 memory. It uses the x86 board. This script will count the total number of instructions executed in the ROI. It also tracks how much wallclock and simulated time. Usage: ------ ``` scons build/X86/gem5.opt ./build/X86/gem5.opt \ configs/example/gem5_library/x86-npb-benchmarks.py \ --benchmark <benchmark_name> \ --size <benchmark_class> ``` """ import argparse import time import m5 from m5.objects import Root from gem5.utils.requires import requires from gem5.components.boards.x86_board import X86Board from gem5.components.memory import DualChannelDDR4_2400 from gem5.components.processors.simple_switchable_processor import( SimpleSwitchableProcessor, ) from gem5.components.processors.cpu_types import CPUTypes from gem5.isas import ISA from gem5.coherence_protocol import CoherenceProtocol from gem5.resources.resource import Resource, CustomResource, CustomDiskImageResource from m5.stats.gem5stats import get_simstat from m5.util import warn requires( isa_required = ISA.X86, coherence_protocol_required=CoherenceProtocol.MESI_TWO_LEVEL, kvm_required=True, ) # Following are the list of benchmark programs for npb. benchmark_choices = ["bt", "cg", "ep", "ft", "is", "lu", "mg", "sp"] # We are restricting classes of NPB to A, B and C as the other classes (D and # F) require main memory size of more than 3 GB. The X86Board is currently # limited to 3 GB of memory. This limitation is explained later in line 136. # The resource disk has binaries for class D. However, only `ep` benchmark # works with class D in the current configuration. More information on the # memory footprint for NPB is available at https://arxiv.org/abs/2010.13216 size_choices = ["A", "B", "C"] parser = argparse.ArgumentParser( description="An example configuration script to run the npb benchmarks." ) # The only positional argument accepted is the benchmark name in this script. parser.add_argument( "--benchmark", type = str, required=True, help = "Input the benchmark program to execute.", choices = benchmark_choices, ) parser.add_argument( "--size", type = str, required=True, help = "Input the class of the program to simulate.", choices = size_choices, ) parser.add_argument( "--ticks", type = int, help = "Optionally put the maximum number of ticks to execute during the "\ "ROI. It accepts an integer value." ) args = parser.parse_args() # The simulation may fail in the case of `mg` with class C as it uses 3.3 GB # of memory (more information is availabe at https://arxiv.org/abs/2010.13216). # We warn the user here. if args.benchmark == "mg" and args.size == "C": warn("mg.C uses 3.3 GB of memory. Currently we are simulating 3 GB\ of main memory in the system.") # The simulation will fail in the case of `ft` with class C. We warn the user # here. elif args.benchmark == "ft" and args.size == "C": warn("There is not enough memory for ft.C. Currently we are\ simulating 3 GB of main memory in the system.") # Checking for the maximum number of instructions, if provided by the user. # Setting up all the fixed system parameters here # Caches: MESI Two Level Cache Hierarchy from gem5.components.cachehierarchies.ruby.\ mesi_two_level_cache_hierarchy import( MESITwoLevelCacheHierarchy, ) cache_hierarchy = MESITwoLevelCacheHierarchy( l1d_size = "32kB", l1d_assoc = 8, l1i_size="32kB", l1i_assoc=8, l2_size="256kB", l2_assoc=16, num_l2_banks=2, ) # Memory: Dual Channel DDR4 2400 DRAM device. # The X86 board only supports 3 GB of main memory. memory = DualChannelDDR4_2400(size = "3GB") # Here we setup the processor. This is a special switchable processor in which # a starting core type and a switch core type must be specified. Once a # configuration is instantiated a user may call `processor.switch()` to switch # from the starting core types to the switch core types. In this simulation # we start with KVM cores to simulate the OS boot, then switch to the Timing # cores for the command we wish to run after boot. processor = SimpleSwitchableProcessor( starting_core_type=CPUTypes.KVM, switch_core_type=CPUTypes.TIMING, isa=ISA.X86, num_cores=2, ) # Here we setup the board. The X86Board allows for Full-System X86 simulations board = X86Board( clk_freq="3GHz", processor=processor, memory=memory, cache_hierarchy=cache_hierarchy, ) # Here we set the FS workload, i.e., npb benchmark program # After simulation has ended you may inspect # `m5out/system.pc.com_1.device` to the stdout, if any. # After the system boots, we execute the benchmark program and wait till the # ROI `workbegin` annotation is reached (m5_work_begin()). We start collecting # the number of committed instructions till ROI ends (marked by `workend`). # We then finish executing the rest of the benchmark. # Also, we sleep the system for some time so that the output is printed # properly. command="/home/gem5/NPB3.3-OMP/bin/{}.{}.x;".format(args.benchmark,args.size)\ + "sleep 5;" \ + "m5 exit;" board.set_kernel_disk_workload( # The x86 linux kernel will be automatically downloaded to the # `~/.cache/gem5` directory if not already present. # npb benchamarks was tested with kernel version 4.19.83 # kernel=Resource( # "x86-linux-kernel-4.19.83", # ), kernel=CustomResource( "PATH_TO_YOUR_KERNEL", ), # The x86-npb image will be automatically downloaded to the # `~/.cache/gem5` directory if not already present. # disk_image=Resource( # "x86-npb", # ), disk_image=CustomResource( "PATH_TO_YOUR_DISK_IMG", ), # disk_image=CustomDiskImageResource( # "PATH_TO_YOUR_DISK_IMG", # ), readfile_contents=command, ) # We need this for long running processes. m5.disableAllListeners() root = Root(full_system = True, system = board) # sim_quantum must be set when KVM cores are used. root.sim_quantum = int(1e9) m5.instantiate() # We maintain the wall clock time. globalStart = time.time() print("Running the simulation") print("Using KVM cpu") # We start the simulation. exit_event = m5.simulate() # The first exit_event ends with a `workbegin` cause. This means that the # system started successfully and the execution on the program started. if exit_event.getCause() == "workbegin": print("Done booting Linux") print("Resetting stats at the start of ROI!") m5.stats.reset() start_tick = m5.curTick() # We have completed up to this step using KVM cpu. Now we switch to timing # cpu for detailed simulation. processor.switch() else: # `workbegin` call was never encountered. print("Unexpected termination of simulation before ROI was reached!") print( "Exiting @ tick {} because {}.".format( m5.curTick(), exit_event.getCause() ) ) exit(-1) # The next exit_event is to simulate the ROI. It should be exited with a cause # marked by `workend`. # Next, we need to check if the user passed a value for --ticks. If yes, # then we limit out execution to this number of ticks during the ROI. # Otherwise, we simulate until the ROI ends. if args.ticks: exit_event = m5.simulate(args.ticks) else: exit_event = m5.simulate() # Reached the end of ROI. # We dump the stats here. # We exepect that ROI ends with `workend` or `simulate() limit reached`. # Otherwise the simulation ended unexpectedly. if exit_event.getCause() == "workend": print("Dump stats at the end of the ROI!") m5.stats.dump() end_tick = m5.curTick() elif exit_event.getCause() == "simulate() limit reached" and \ args.ticks is not None: print("Dump stats at the end of {} ticks in the ROI".format(args.ticks)) m5.stats.dump() end_tick = m5.curTick() else: print("Unexpected termination of simulation while ROI was being executed!") print( "Exiting @ tick {} because {}.".format( m5.curTick(), exit_event.getCause() ) ) exit(-1) # We need to note that the benchmark is not executed completely till this # point, but, the ROI has. We collect the essential statistics here before # resuming the simulation again. # We get simInsts using get_simstat and output it in the final # print statement. gem5stats = get_simstat(root) # We get the number of committed instructions from the timing # cores. We then sum and print them at the end. roi_insts = float(\ gem5stats.to_json()\ ["system"]["processor"]["cores2"]["core"]["exec_context.thread_0"]\ ["numInsts"]["value"] ) + float(\ gem5stats.to_json()\ ["system"]["processor"]["cores3"]["core"]["exec_context.thread_0"]\ ["numInsts"]["value"]\ ) # Simulation is over at this point. We acknowledge that all the simulation # events were successful. print("All simulation events were successful.") # We print the final simulation statistics. print("Done with the simulation") print() print("Performance statistics:") print("Simulated time in ROI: %.2fs" % ((end_tick-start_tick)/1e12)) print("Instructions executed in ROI: %d" % ((roi_insts))) print("Ran a total of", m5.curTick()/1e12, "simulated seconds") print("Total wallclock time: %.2fs, %.2f min" % \ (time.time()-globalStart, (time.time()-globalStart)/60))
[]
2024-01-10
gem5bootcamp/gem5-bootcamp-env
materials~developing-gem5-models~10-ruby-network~mi_example_cache_network.py
# Copyright (c) 2021 The Regents of the University of California # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from .caches.mi_example.l1_cache import L1Cache from .caches.mi_example.dma_controller import DMAController from .caches.mi_example.directory import Directory from .topologies.garnet_mesh import GarnetMesh from .topologies.garnet_pt2pt import GarnetPt2Pt from .topologies.simple_pt2pt import SimplePt2Pt from .abstract_ruby_cache_hierarchy import AbstractRubyCacheHierarchy from ..abstract_cache_hierarchy import AbstractCacheHierarchy from ...boards.abstract_board import AbstractBoard from ....coherence_protocol import CoherenceProtocol from ....isas import ISA from ....utils.override import overrides from ....utils.requires import requires from m5.objects import ( RubySystem, RubySequencer, DMASequencer, RubyPortProxy, ) class MIExampleCacheNetwork(AbstractRubyCacheHierarchy): """ The MI_Example cache hierarchy creates a Ruby cache for each code in a simple point-to-point topology. """ def __init__( self, size: str, assoc: str, network = str, ): """ :param size: The size of each cache in the heirarchy. :param assoc: The associativity of each cache. """ super().__init__() self._size = size self._assoc = assoc self._network = network @overrides(AbstractCacheHierarchy) def incorporate_cache(self, board: AbstractBoard) -> None: requires(coherence_protocol_required=CoherenceProtocol.MI_EXAMPLE) self.ruby_system = RubySystem() # Ruby's global network. if self._network == 'SimplePt2Pt': self.ruby_system.network = SimplePt2Pt(self.ruby_system) elif self._network == 'GarnetPt2Pt': self.ruby_system.network = GarnetPt2Pt(self.ruby_system) elif self._network == 'GarnetMesh': self.ruby_system.network = GarnetMesh(self.ruby_system) else: raise ValueError(f"network {self._network} is not implemented.") # MI Example users 5 virtual networks. self.ruby_system.number_of_virtual_networks = 5 self.ruby_system.network.number_of_virtual_networks = 5 # There is a single global list of all of the controllers to make it # easier to connect everything to the global network. This can be # customized depending on the topology/network requirements. # Create one controller for each L1 cache (and the cache mem obj.) # Create a single directory controller (Really the memory cntrl). self._controllers = [] for i, core in enumerate(board.get_processor().get_cores()): cache = L1Cache( size=self._size, assoc=self._assoc, network=self.ruby_system.network, core=core, cache_line_size=board.get_cache_line_size(), target_isa=board.get_processor().get_isa(), clk_domain=board.get_clock_domain(), ) cache.sequencer = RubySequencer( version=i, dcache=cache.cacheMemory, clk_domain=cache.clk_domain, ) if board.has_io_bus(): cache.sequencer.connectIOPorts(board.get_io_bus()) cache.ruby_system = self.ruby_system core.connect_icache(cache.sequencer.in_ports) core.connect_dcache(cache.sequencer.in_ports) core.connect_walker_ports( cache.sequencer.in_ports, cache.sequencer.in_ports ) # Connect the interrupt ports if board.get_processor().get_isa() == ISA.X86: int_req_port = cache.sequencer.interrupt_out_port int_resp_port = cache.sequencer.in_ports core.connect_interrupt(int_req_port, int_resp_port) else: core.connect_interrupt() cache.ruby_system = self.ruby_system self._controllers.append(cache) # Create the directory controllers self._directory_controllers = [] for range, port in board.get_memory().get_mem_ports(): dir = Directory( self.ruby_system.network, board.get_cache_line_size(), range, port, ) dir.ruby_system = self.ruby_system self._directory_controllers.append(dir) # Create the DMA Controllers, if required. self._dma_controllers = [] if board.has_dma_ports(): dma_ports = board.get_dma_ports() for i, port in enumerate(dma_ports): ctrl = DMAController( self.ruby_system.network, board.get_cache_line_size() ) ctrl.dma_sequencer = DMASequencer(version=i, in_ports=port) ctrl.ruby_system = self.ruby_system ctrl.dma_sequencer.ruby_system = self.ruby_system self._dma_controllers.append(ctrl) self.ruby_system.num_of_sequencers = len(self._controllers) + len( self._dma_controllers ) # Connect the controllers. self.ruby_system.controllers = self._controllers self.ruby_system.directory_controllers = self._directory_controllers if len(self._dma_controllers) != 0: self.ruby_system.dma_controllers = self._dma_controllers if (self._network == 'GarnetMesh'): self.ruby_system.network.connectControllers( self._controllers + self._directory_controllers + self._dma_controllers, len(self._controllers) ) else: self.ruby_system.network.connectControllers( self._controllers + self._directory_controllers + self._dma_controllers ) if (self._network == 'SimplePt2Pt'): self.ruby_system.network.setup_buffers() # Set up a proxy port for the system_port. Used for load binaries and # other functional-only things. self.ruby_system.sys_port_proxy = RubyPortProxy() board.connect_system_port(self.ruby_system.sys_port_proxy.in_ports)
[]
2024-01-10
gem5bootcamp/gem5-bootcamp-env
materials~using-gem5~02-stdlib~x86-full-system.py
from gem5.utils.requires import requires from gem5.components.boards.x86_board import X86Board from gem5.components.memory.single_channel import SingleChannelDDR3_1600 from gem5.components.cachehierarchies.ruby.mesi_two_level_cache_hierarchy import ( MESITwoLevelCacheHierarchy, ) from gem5.components.processors.simple_switchable_processor import ( SimpleSwitchableProcessor, ) from gem5.coherence_protocol import CoherenceProtocol from gem5.isas import ISA from gem5.components.processors.cpu_types import CPUTypes from gem5.resources.resource import Resource from gem5.simulate.simulator import Simulator from gem5.simulate.exit_event import ExitEvent
[]
2024-01-10
rezeroworld/QnA_chatgpt
streamlit_app.py
import streamlit as st import openai from prompt_engineering import answer_query_with_context import toml import pandas as pd with open('config.toml', 'r') as f: config = toml.load(f) df = pd.read_csv('qa_embeddings.csv', index_col=0, header=0) q2embed = dict(zip(df.index, df.loc[:, df.columns != "answers"].to_numpy())) q2a = dict(zip(df.index, df.loc[:,df.columns == "answers"].to_numpy())) # App title st.set_page_config(page_title="❔💬 Dental Aligner Q&A with ChatGPT") # Hugging Face Credentials with st.sidebar: openai_api_key = st.text_input("OpenAI API Key", key="chatbot_api_key", type="password") st.title('❔💬 DentalGPT by Mahdi') st.markdown('This chat bot is powered by ChatGPT language model. It uses \ external knowledge to answer questions about dental aligners. \ In this case, prior to the Q&A, a 300 pages knowledge book was \ transformed into embeddings, and used to calculate a similarity \ metric against the presented query. Finally, the most relevent information \ is inserted into the prompt. The prompt is displayed with the bot answer \ to better understand where the answer comes from.') # Store LLM generated responses if "messages" not in st.session_state.keys(): st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}] # Display chat messages for message in st.session_state.messages: with st.chat_message(message["role"]): st.write(message["content"]) # Function for generating LLM response def generate_response(prompt_input, openai_api_key): openai.api_key = openai_api_key return answer_query_with_context(prompt_input, embeds=q2embed, answers=q2a, config=config, show_prompt=False) # User-provided prompt if prompt := st.chat_input(disabled=not openai_api_key): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.write(prompt) # Generate a new response if last message is not from assistant if st.session_state.messages[-1]["role"] != "assistant": with st.chat_message("assistant"): with st.spinner("Thinking..."): response = generate_response(prompt, openai_api_key) st.write(response) message = {"role": "assistant", "content": response} st.session_state.messages.append(message)
[ "How may I help you?" ]
2024-01-10
microsoft/ToolTalk
src~tooltalk~generation~scenario_generator.py
""" Copyright (c) Microsoft Corporation. Licensed under the MIT license. This script randomly samples API suites from API Bank and prompts GPT4 to generate queries that make use of at least one API from each sampled suite. """ import os import re import json import logging import argparse from itertools import combinations from typing import Optional, List import openai from tqdm import tqdm from tooltalk.apis import ALL_SUITES from tooltalk.utils.file_utils import chunkify from tooltalk.utils.openai_utils import openai_completion logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) API_DOC_KEY = "{{API_DOCS}}" REQUIRED_API_KEY = "{{REQUIRED_API}}" def extract_scenarios(responses): extracted_scenarios = list() scenario_regex = re.compile(r"\s*- Scenario \d: (?P<scenario>.*)\s*") for response in responses: full_response = response raw_scenarios = scenario_regex.split(full_response) # TODO extract APIs used and scenarios from format scenarios = list() for scenario in raw_scenarios: scenario = scenario.strip() if scenario == "": continue scenarios.append(scenario) extracted_scenarios.append(scenarios) return extracted_scenarios def get_arg_parser(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--prompt", type=str, help="Path to prompt file") parser.add_argument("--model", type=str, default="gpt-4", help="OpenAI model to use") parser.add_argument("--api_counts", type=int, nargs="+", default=[3], help="Number of suites to use") parser.add_argument("--api_key", type=str, help="Optional API key for endpoint") parser.add_argument("--max_tokens", type=int, nargs="+", default=[25000], help="Maximum number of tokens to generate") parser.add_argument("--temperature", type=float, default=0, help="Temperature for sampling") parser.add_argument("--beams", type=int, default=1, help="Number of beams to use for generation") parser.add_argument("--batch_size", type=int, default=10, help="Batch size for generation") parser.add_argument("--output_dir", type=str, help="Path to output directory") parser.add_argument("--reset", action="store_true", help="Reset output directory if it exists") return parser # TODO use every API, then sample remainder in actual dataset generation run # TODO special consideration for Account API? def main(flags: Optional[List[str]] = None) -> None: parser = get_arg_parser() args = parser.parse_args(flags) # load template with open(args.prompt, 'r', encoding='utf-8') as reader: prompt_template = reader.read() if API_DOC_KEY not in prompt_template: raise ValueError(f"Prompt template must contain key {API_DOC_KEY}") os.makedirs(args.output_dir, exist_ok=True) # TODO make async for k in tqdm(args.api_counts): if k > len(ALL_SUITES): logger.warning(f"Skipping {k} API suites because there are only {len(ALL_SUITES)}") continue output_dicts = list() for combination in combinations(ALL_SUITES, k): formatted_apis = [ api.to_docstring() for suite in combination for api in suite.apis ] api_doc_prompt = prompt_template.replace(API_DOC_KEY, '\n\n'.join(formatted_apis)) for suite in combination: for api in suite.apis: prompt = api_doc_prompt.replace(REQUIRED_API_KEY, api.__name__) output_dicts.append({ "prompt": prompt, "apis": { "suites": [suite.name for suite in combination], "required_api": api.__name__ } }) for batch in tqdm(chunkify(output_dicts, args.batch_size)): prompts = [output_dict["prompt"] for output_dict in batch] for max_tokens in args.max_tokens: try: response_texts = openai_completion( model=args.model, prompt=prompts, max_tokens=max_tokens, temperature=args.temperature, stop="```" ) except ValueError as error: logger.error(f"Failed output using {max_tokens}: {error}") logger.info(response_texts) continue else: scenarios = extract_scenarios(response_texts) logger.info(f"Number of scenarios generated {list(map(len, scenarios))}") for output_dict, response, scenario in zip(batch, response_texts, scenarios): output_dict["response"] = response output_dict["scenarios"] = scenario break else: logger.warning("Reached max token limit skipping example") for output_dict in batch: if "response" not in output_dict: continue # Write to file output_name = "-".join(output_dict["apis"]["suites"]) + "-" + output_dict["apis"]["required_api"] + ".json" output_path = os.path.join(args.output_dir, output_name) with open(output_path, 'w', encoding='utf-8') as writer: json.dump(output_dict, writer, indent=4) if __name__ == '__main__': main()
[ "\n\n" ]
2024-01-10
microsoft/ToolTalk
src~tooltalk~evaluation~evaluate_openai.py
""" Copyright (c) Microsoft Corporation. Licensed under the MIT license. Evaluate Tool LLM on API-Talk dataset. """ import os import json import logging import argparse from enum import Enum from typing import List from collections import Counter import openai from tqdm import tqdm from tooltalk.apis import APIS_BY_NAME, ALL_APIS from tooltalk.evaluation.tool_executor import ToolExecutor, BaseAPIPredictor from tooltalk.utils.file_utils import get_names_and_paths from tooltalk.utils.openai_utils import openai_chat_completion logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class OpenAIPredictor(BaseAPIPredictor): system_prompt = "You are a helpful assistant. Here is some user data:" \ "\nlocation: {location}" \ "\ntimestamp: {timestamp}" \ "\nusername (if logged in): {username}" def __init__(self, model, apis_used, disable_docs=False): self.model = model self.api_docs = [api.to_openai_doc(disable_docs) for api in apis_used] def predict(self, metadata: dict, conversation_history: dict) -> dict: system_prompt = self.system_prompt.format( location=metadata["location"], timestamp=metadata["timestamp"], username=metadata.get("username") ) openai_history = [{ "role": "system", "content": system_prompt }] for turn in conversation_history: if turn["role"] == "user" or turn["role"] == "assistant": openai_history.append({ "role": turn["role"], "content": turn["text"] }) elif turn["role"] == "api": openai_history.append({ "role": "assistant", "content": None, "function_call": { "name": turn["request"]["api_name"], "arguments": json.dumps(turn["request"]["parameters"]) } }) response_content = { "response": turn["response"], "exception": turn["exception"] } openai_history.append({ "role": "function", "name": turn["request"]["api_name"], "content": json.dumps(response_content) }) openai_response = openai_chat_completion( model=self.model, messages=openai_history, functions=self.api_docs, ) logger.debug(f"OpenAI full response: {openai_response}") openai_message = openai_response["choices"][0]["message"] metadata = { "openai_request": { "model": self.model, "messages": openai_history, "functions": self.api_docs, }, "openai_response": openai_response } if "function_call" in openai_message: function_call = openai_message["function_call"] api_name = function_call["name"] try: parameters = json.loads(function_call["arguments"]) except json.decoder.JSONDecodeError: # check termination reason logger.info(f"Failed to decode arguments for {api_name}: {function_call['arguments']}") parameters = None return { "role": "api", "request": { "api_name": api_name, "parameters": parameters }, # store metadata about call "metadata": metadata, } else: return { "role": "assistant", "text": openai_message["content"], # store metadata about call "metadata": metadata, } class EvalModes(str, Enum): PREDICT = "predict" EVALUATE = "evaluate" VALIDATE = "validate" def get_arg_parser(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--dataset", type=str, help="Path to dataset for models to evaluate") parser.add_argument("--database", type=str, help="Path to database used in evaluation") parser.add_argument("--api_key", type=str, default="openai.key", help="Path to OpenAI API key") parser.add_argument("--api_mode", type=str, choices=["exact", "suite", "all"], default="all", help="API mode to use for evaluation, determines which api docs to include") parser.add_argument("--model", type=str, default="gpt-4", help="Model to use for generation") parser.add_argument("--output_dir", type=str, help="Path to output model predictions") parser.add_argument("--reset", action="store_true", help="reset evaluation writing over any cached results") parser.add_argument("--disable_documentation", action="store_true", help="disabled documentation sent to GPT-4 replacing with empty strings") parser.add_argument("--modes", choices=list(EvalModes), type=str, nargs='+', default=list(EvalModes), help="Evaluation modes") return parser def main(flags: List[str] = None): parser = get_arg_parser() args = parser.parse_args(flags) # get api key openai_key = os.environ.get("OPENAI_KEY", None) if openai_key is None: with open(args.api_key, "r") as f: openai_key = f.read().strip() openai.api_key = openai_key total_metrics = Counter() os.makedirs(args.output_dir, exist_ok=True) tool_executor = ToolExecutor(init_database_dir=args.database) for file_name, file_path in tqdm(get_names_and_paths(args.dataset)): output_file_path = os.path.join(args.output_dir, file_name) if os.path.exists(output_file_path) and not args.reset: logger.info(f"Skipping {file_name} because it already exists") with open(output_file_path, 'r', encoding='utf-8') as reader: conversation_with_metrics = json.load(reader) total_metrics += conversation_with_metrics["metrics"] total_metrics["num_conversations"] += 1 continue logger.info(f"Running {file_name}") with open(file_path, 'r', encoding='utf-8') as reader: conversation = json.load(reader) if EvalModes.PREDICT in args.modes: logger.info("Running prediction...") if args.api_mode == "exact": apis_used = [APIS_BY_NAME[api_name] for api_name in conversation["apis_used"]] elif args.api_mode == "suite": apis_used = [api for suite in conversation["suites_used"] for api in suite.apis] elif args.api_mode == "all": apis_used = ALL_APIS else: raise ValueError(f"Invalid api mode: {args.api_mode}") predictor_func = OpenAIPredictor( model=args.model, apis_used=apis_used, disable_docs=args.disable_documentation ) conversation = tool_executor.run_conversation(conversation, predictor_func) if EvalModes.EVALUATE in args.modes: logger.info("Running evaluation...") conversation = tool_executor.evaluate_predictions(conversation) logger.info(f"Conversation {file_name} pass: {conversation['metrics']['success']}") total_metrics += conversation["metrics"] total_metrics["num_conversations"] += 1 if EvalModes.VALIDATE in args.modes: logger.info("Validating evaluation...") for turn in conversation["conversation"]: if "predictions" not in turn: continue for prediction in turn["predictions"]: if prediction["role"] == "api": assert "match" in prediction assert "bad_action" in prediction with open(output_file_path, 'w', encoding='utf-8') as writer: json.dump(conversation, writer, indent=4) logger.info("Finished processing conversations") if EvalModes.EVALUATE in args.modes: metrics = { "num_conversations": total_metrics["num_conversations"], "precision": total_metrics["matches"] / total_metrics["predictions"], "recall": total_metrics["matches"] / total_metrics["ground_truths"], "action_precision": total_metrics["valid_actions"] / total_metrics["actions"], "bad_action_rate": total_metrics["bad_actions"] / total_metrics["actions"], "success_rate": total_metrics["success"] / total_metrics["num_conversations"] } logger.info(f"Metrics: {json.dumps(metrics, indent=4)}") if __name__ == "__main__": main()
[ "username", "location", "You are a helpful assistant. Here is some user data:\nlocation: {location}\ntimestamp: {timestamp}\nusername (if logged in): {username}", "None" ]
2024-01-10
linpz/chat-gpt-1
11.py
# -*- coding: utf-8 -*- """Untitled11.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/17cs-SFLUH6DfgArLl4hzemQIttLIYht6 """ !pip install langchain !pip install sentence_transformers chromadb tiktoken openai !pip install pypdf pip install Pillow import csv from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.chat_models import ChatOpenAI from langchain.chains import ConversationalRetrievalChain # 設定 OpenAI API 金鑰 import os os.environ["OPENAI_API_KEY"] ="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" # 請更換為您的 API 金鑰 class Document: def __init__(self, content, metadata=None): self.page_content = content self.metadata = metadata or {} class CSVLoader: def __init__(self, file_path): self.file_path = file_path def load(self): with open(self.file_path, 'r', encoding='utf-8') as file: reader = csv.reader(file) return [Document(", ".join(row)) for row in reader] # 指定檔案路徑 file_path = "/content/test - 工作表1.csv" # 請更換為您的 CSV 文件路徑 # 建立加載器並加載文本 loader = CSVLoader(file_path) texts = loader.load() # 嵌入和向量存儲 embeddings = OpenAIEmbeddings() vectorstore = Chroma.from_documents(texts, embeddings) # 建立對話鏈 qa = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.2), vectorstore.as_retriever()) chat_history = [] while True: query = input('\nQuestion: ') if not query: break result = qa({"question": query + '(用繁體中文回答)', "chat_history": chat_history}) print('A:', result['answer']) chat_history.append((query, result['answer']))
[]
2024-01-10
winnerdev2012/OpenChat
dj_backend_server~api~utils~make_chain.py
from langchain.vectorstores.base import VectorStore from dotenv import load_dotenv from langchain.chains import RetrievalQA from langchain.prompts import PromptTemplate from langchain.memory import ConversationBufferMemory from api.utils.get_openai_llm import get_llm from langchain import PromptTemplate, LLMChain from langchain.chains import RetrievalQAWithSourcesChain, ConversationalRetrievalChain from api.utils.get_prompts import get_qa_prompt_by_mode load_dotenv() def get_qa_chain(vector_store: VectorStore, mode, initial_prompt: str) -> RetrievalQA: llm = get_llm() template = get_qa_prompt_by_mode(mode, initial_prompt=initial_prompt) prompt = PromptTemplate.from_template(template) qa_chain = RetrievalQA.from_chain_type( llm, retriever=vector_store.as_retriever(), chain_type_kwargs={"prompt": prompt}, return_source_documents=True ) return qa_chain def getRetrievalQAWithSourcesChain(vector_store: VectorStore, mode, initial_prompt: str): llm = get_llm() chain = RetrievalQAWithSourcesChain.from_chain_type(llm, chain_type="stuff", retriever=vector_store.as_retriever()) return chain def getConversationRetrievalChain(vector_store: VectorStore, mode, initial_prompt: str): llm = get_llm() template = get_qa_prompt_by_mode(mode, initial_prompt=initial_prompt) prompt = PromptTemplate.from_template(template) chain = ConversationalRetrievalChain.from_llm( llm, chain_type="stuff", retriever=vector_store.as_retriever(), verbose=True, combine_docs_chain_kwargs={"prompt": prompt} ) return chain
[]
2024-01-10
winnerdev2012/OpenChat
dj_backend_server~api~utils~get_embeddings.py
from langchain.embeddings.openai import OpenAIEmbeddings from api.enums import EmbeddingProvider import os from dotenv import load_dotenv from langchain.embeddings.base import Embeddings load_dotenv() # https://github.com/easonlai/azure_openai_langchain_sample/blob/main/chat_with_pdf.ipynb import os def get_embedding_provider(): """Gets the chosen embedding provider from environment variables.""" return os.environ.get("EMBEDDING_PROVIDER") def get_azure_embedding(): """Gets embeddings using the Azure embedding provider.""" deployment = os.environ.get("AZURE_OPENAI_EMBEDDING_MODEL_NAME") openai_api_key = os.environ.get("AZURE_OPENAI_API_KEY") client = os.environ.get("AZURE_OPENAI_API_TYPE") openai_api_base = os.environ['AZURE_OPENAI_API_BASE'] openai_api_version = os.environ['AZURE_OPENAI_API_VERSION'] return OpenAIEmbeddings( openai_api_key=openai_api_key, deployment=deployment, client=client, chunk_size=8, openai_api_base=openai_api_base, openai_api_version=openai_api_version ) def get_openai_embedding(): """Gets embeddings using the OpenAI embedding provider.""" openai_api_key = os.environ.get("OPENAI_API_KEY") return OpenAIEmbeddings(openai_api_key=openai_api_key, chunk_size=1) def choose_embedding_provider(): """Chooses and returns the appropriate embedding provider instance.""" embedding_provider = get_embedding_provider() if embedding_provider == EmbeddingProvider.azure.value: return get_azure_embedding() elif embedding_provider == EmbeddingProvider.OPENAI.value: return get_openai_embedding() else: available_providers = ", ".join([service.value for service in EmbeddingProvider]) raise ValueError( f"Embedding service '{embedding_provider}' is not currently available. " f"Available services: {available_providers}" ) # Main function to get embeddings def get_embeddings() -> Embeddings: """Gets embeddings using the chosen embedding provider.""" return choose_embedding_provider()
[]
2024-01-10
winnerdev2012/OpenChat
dj_backend_server~api~data_sources~pdf_handler.py
# views.py import json from django.views.decorators.csrf import csrf_exempt from langchain.text_splitter import RecursiveCharacterTextSplitter from api.utils import get_embeddings from langchain.document_loaders.directory import DirectoryLoader from api.utils import init_vector_store from langchain.document_loaders import PyPDFium2Loader import os from web.utils.delete_foler import delete_folder from api.interfaces import StoreOptions @csrf_exempt def pdf_handler(shared_folder: str, namespace: str): try: directory_path = os.path.join("website_data_sources", shared_folder) directory_loader = DirectoryLoader(path=directory_path, glob="**/*.pdf", loader_cls=PyPDFium2Loader, use_multithreading=True) raw_docs = directory_loader.load_and_split() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200,length_function=len) docs = text_splitter.split_documents(raw_docs) embeddings = get_embeddings() init_vector_store(docs, embeddings, StoreOptions(namespace)) delete_folder(folder_path=directory_path) print('All is done, folder deleted') except Exception as e: import traceback print(e) traceback.print_exc()
[]
2024-01-10
winnerdev2012/OpenChat
dj_backend_server~api~utils~init_vector_store.py
from langchain.docstore.document import Document from langchain.vectorstores.qdrant import Qdrant from api.enums import StoreType from langchain.embeddings.openai import OpenAIEmbeddings from api.interfaces import StoreOptions from api.configs import PINECONE_TEXT_KEY, VECTOR_STORE_INDEX_NAME import pinecone from langchain.vectorstores.pinecone import Pinecone from dotenv import load_dotenv import os import threading init_lock = threading.Lock() # Load environment variables from .env file load_dotenv() initialized = False def initialize_pinecone(): global initialized # Only initialize Pinecone if the store type is Pinecone and the initialization lock is not acquired with init_lock: if not initialized: # Initialize Pinecone pinecone.init( api_key=os.getenv("PINECONE_API_KEY"), # find at app.pinecone.io environment=os.getenv("PINECONE_ENV"), # next to api key in console ) initialized = True def init_vector_store(docs: list[Document], embeddings: OpenAIEmbeddings, options: StoreOptions) -> None: store_type = StoreType[os.environ['STORE']] if store_type == StoreType.PINECONE: initialize_pinecone() # Use the Pinecone vector store # docs, embeddings, VECTOR_STORE_INDEX_NAME, options.namespace, PINECONE_TEXT_KEY Pinecone.from_documents(documents=docs, embedding=embeddings, index_name=VECTOR_STORE_INDEX_NAME, namespace=options.namespace) elif store_type == StoreType.QDRANT: print("called qdrant.from_documents") Qdrant.from_documents(docs, embeddings, collection_name=options.namespace, url=os.environ['QDRANT_URL']) else: valid_stores = ", ".join(StoreType._member_names()) raise ValueError(f"Invalid STORE environment variable value: {os.environ['STORE']}. Valid values are: {valid_stores}")
[]
2024-01-10
winnerdev2012/OpenChat
dj_backend_server~api~data_sources~website_handler.py
import os from django.http import JsonResponse from langchain.document_loaders.directory import DirectoryLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders import TextLoader from api.utils import init_vector_store from api.utils.get_embeddings import get_embeddings from api.interfaces import StoreOptions # from import delete_folder from web.models.website_data_sources import WebsiteDataSource from web.enums.website_data_source_status_enum import WebsiteDataSourceStatusType def website_handler(shared_folder, namespace): website_data_source = WebsiteDataSource.objects.get(id=shared_folder) try: directory_path = os.path.join("website_data_sources", shared_folder) directory_loader = DirectoryLoader(directory_path, glob="**/*.txt", loader_cls=TextLoader, use_multithreading=True) raw_docs = directory_loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200, length_function=len) docs = text_splitter.split_documents(raw_docs) print("docs -->", docs); embeddings = get_embeddings() init_vector_store(docs, embeddings, StoreOptions(namespace=namespace)) website_data_source.crawling_status = WebsiteDataSourceStatusType.COMPLETED.value website_data_source.save() # delete_folder(folder_path=directory_path) print('All is done, folder deleted...') except Exception as e: website_data_source.crawling_status = WebsiteDataSourceStatusType.FAILED.value website_data_source.save() import traceback print(e) traceback.print_exc()
[]
2024-01-10
winnerdev2012/OpenChat
dj_backend_server~api~views~views_chat.py
from django.http import JsonResponse from django.views.decorators.http import require_POST from langchain import QAWithSourcesChain from api.utils import get_vector_store from api.utils.make_chain import getConversationRetrievalChain, getRetrievalQAWithSourcesChain import json from django.views.decorators.csrf import csrf_exempt from api.interfaces import StoreOptions from web.models.chat_histories import ChatHistory from django.shortcuts import get_object_or_404 from web.models.chatbot import Chatbot from uuid import uuid4 import logging import traceback from web.services.chat_history_service import get_chat_history_for_retrieval_chain import os from dotenv import load_dotenv load_dotenv() logger = logging.getLogger(__name__) @csrf_exempt @require_POST def chat(request): try: body = json.loads(request.body.decode('utf-8')) question = body.get('question') namespace = body.get('namespace') mode = body.get('mode') initial_prompt = body.get('initial_prompt') token = body.get('token') session_id = body.get('session_id') bot = get_object_or_404(Chatbot, token=token) if not question: return JsonResponse({'error': 'No question in the request'}, status=400) sanitized_question = question.strip().replace('\n', ' ') vector_store = get_vector_store(StoreOptions(namespace=namespace)) response_text = get_completion_response(vector_store=vector_store, initial_prompt=initial_prompt,mode=mode, sanitized_question=sanitized_question, session_id=session_id) ChatHistory.objects.bulk_create([ ChatHistory( id=uuid4(), chatbot_id=bot.id, from_user=True, message=sanitized_question, session_id=session_id ), ChatHistory( id=uuid4(), chatbot_id=bot.id, from_user=False, message=response_text, session_id=session_id ) ]) return JsonResponse({'text': response_text}) except json.JSONDecodeError: return JsonResponse({'error': 'Invalid JSON in request body'}, status=400) except Chatbot.DoesNotExist: return JsonResponse({'error': 'Chatbot not found'}, status=404) except Exception as e: logger.error(str(e)) logger.error(traceback.format_exc()) return JsonResponse({'error': 'An error occurred'}, status=500) def get_completion_response(vector_store, mode, initial_prompt, sanitized_question, session_id): chain_type = os.getenv("CHAIN_TYPE", "conversation_retrieval") chain: QAWithSourcesChain if chain_type == 'retrieval_qa': chain = getRetrievalQAWithSourcesChain(vector_store, mode, initial_prompt) response = chain({"question": sanitized_question}, return_only_outputs=True) response_text = response['answer'] elif chain_type == 'conversation_retrieval': chain = getConversationRetrievalChain(vector_store, mode, initial_prompt) chat_history = get_chat_history_for_retrieval_chain(session_id, limit=40) response = chain({"question": sanitized_question, "chat_history": chat_history}, return_only_outputs=True) response_text = response['answer'] return response_text
[ "initial_prompt" ]
2024-01-10
winnerdev2012/OpenChat
dj_backend_server~api~utils~get_openai_llm.py
from langchain.llms import AzureOpenAI, OpenAI import os from dotenv import load_dotenv load_dotenv() # Azure OpenAI Language Model client def get_azure_openai_llm(): """Returns AzureOpenAI instance configured from environment variables""" openai_api_type = os.environ['OPENAI_API_TYPE'] openai_api_key = os.environ['AZURE_OPENAI_API_KEY'] openai_deployment_name = os.environ['AZURE_OPENAI_DEPLOYMENT_NAME'] openai_model_name = os.environ['AZURE_OPENAI_COMPLETION_MODEL'] openai_api_version = os.environ['AZURE_OPENAI_API_VERSION'] openai_api_base=os.environ['AZURE_OPENAI_API_BASE'] return AzureOpenAI( openai_api_base=openai_api_base, openai_api_key=openai_api_key, deployment_name=openai_deployment_name, model_name=openai_model_name, openai_api_type=openai_api_type, openai_api_version=openai_api_version, temperature=0, batch_size=8 ) # OpenAI Language Model client def get_openai_llm(): """Returns OpenAI instance configured from environment variables""" openai_api_key = os.environ['OPENAI_API_KEY'] return OpenAI( temperature=0, openai_api_key=openai_api_key ) # recommend not caching initially, and optimizing only if you observe a clear performance benefit from caching the clients. # The simplest thing that works is often best to start. def get_llm(): """Returns LLM client instance based on OPENAI_API_TYPE""" clients = { 'azure': get_azure_openai_llm, 'openai': get_openai_llm } api_type = os.environ.get('OPENAI_API_TYPE') if api_type not in clients: raise ValueError(f"Invalid OPENAI_API_TYPE: {api_type}") return clients[api_type]()
[]
2024-01-10
kkatodus/kokkai_analysis
data_prepping~collect_local_gov_json_for_member_list.py
#%% import os import openai import json from scrape.general_scraper import GeneralScraper from selenium.webdriver.common.by import By from secrets.api_keys import OPENAI_API_KEY from file_handling.file_read_writer import read_json, write_json, create_dir from params.paths import ROOT_DIR RESOURCE_DIR = os.path.join(ROOT_DIR, 'resource') DATA_DIR = os.path.join(ROOT_DIR, 'data') LOCAL_DATA_DIR = os.path.join(DATA_DIR, 'data_local_gov') os.makedirs(LOCAL_DATA_DIR, exist_ok=True) openai.organization = "org-KwrqfnvZUjabTOAFL3QUAhk2" openai.api_key = OPENAI_API_KEY scraping_resource_path = os.path.join(RESOURCE_DIR, 'local_gov_repr_scrape.json') scraping_resource = read_json(scraping_resource_path) gs = GeneralScraper(firefox=True) #%% def all_reprs_on_one_page(): urls = [] xpath = '' while True: url = input('Get all the urls and press 0 when you are done. You can also press x to change the xpath.If you leave the input black, the city will be skipped.') if url == '0': break if url == 'x': xpath = input('Enter the xpath for the representative list.') continue urls.append(url) return urls, xpath def all_reprs_on_multiple_pages(): urls_to_main_pages = [] xpath_to_individual_pages = '' xpath_to_repr_info = '' while True: url = input('Get all the urls and press 0 when you are done. \nYou can also type "xind" to change the xpath to the links to individual pages. \n You can also type "xpage" to enter the xpath to repr info. If you leave the list empty the city will be skipped') if url == '0': break if url == 'xind': xpath_to_individual_pages = input('Enter the xpath for the links to individual pages.') continue if url == 'xpage': xpath_to_repr_info = input('Enter the xpath for the representative info.') continue urls_to_main_pages.append(url) return urls_to_main_pages, xpath_to_individual_pages, xpath_to_repr_info def get_text_from_local_repr_page(city_name): city_resource = scraping_resource[city_name] urls = city_resource['urls'] all_texts = [] for url in urls: gs.get_url(url) reprs_component = gs.get_site_components_by(By.XPATH, city_resource['reprs_xpath']) if len(reprs_component) > 0: all_texts.append(reprs_component[0].text) return all_texts #%% ## code to create the scraping resource file for idx, city_name in enumerate(scraping_resource.keys()): do_it_again = False while True: print(city_name, f'{idx}/{len(scraping_resource.keys())}') if 'urls' in scraping_resource[city_name].keys() and not do_it_again: break gs.get_url('https://www.google.com/search?q=' + city_name + '議会議員') if input('They have individual pages for reprs, type "ind", otherwise press enter') == 'ind': urls_to_main_pages, xpath_to_individual_pages, xpath_to_repr_info = all_reprs_on_multiple_pages() scraping_resource[city_name]['multiple_pages'] = True scraping_resource[city_name]['urls'] = urls_to_main_pages scraping_resource[city_name]['ind_reprs_xpath'] = xpath_to_individual_pages scraping_resource[city_name]['ind_reprs_info_xpath'] = xpath_to_repr_info else: urls, xpath = all_reprs_on_one_page() scraping_resource[city_name]['urls'] = urls scraping_resource[city_name]['reprs_xpath'] = xpath approved = input(f'The following is the final result\n {city_name}\n{scraping_resource[city_name]}\nDo you want to continue?(y/n)') if approved == 'y' or approved == '': break else: print('Please enter the information again.') do_it_again = True continue write_json(scraping_resource, scraping_resource_path)
[]
2024-01-10
justchillinghere/document-chat-bot
PDF_handlerlangchain.py
import os from typing import List from uuid import uuid4 import warnings import dotenv import chromadb from langchain.document_loaders import PyPDFLoader from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory from langchain.llms import OpenAI from langchain.chains import RetrievalQA from langchain.text_splitter import TokenTextSplitter from langchain.prompts import PromptTemplate from langchain.docstore.document import Document from langchain.prompts import ChatPromptTemplate from error_handler import logger warnings.filterwarnings("ignore") os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # TO SURPRESS Tensorflow warnings warnings.filterwarnings("default") dotenv.load_dotenv() OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") vector_db_path = os.getenv("VECTOR_DB_PATH") class ChatWithPDF: def __init__(self, user_tg_id: int, api_key: str, message_limit=1200): self.message_limit = message_limit self.llm = OpenAI(temperature=0.2, openai_api_key=api_key, max_tokens=1000) self.embeddings = OpenAIEmbeddings(openai_api_key=api_key) self.user_id = user_tg_id def load_file(self, file_path: str, file_name: str): self.chunks = PyPDFLoader(file_path).load() # Change filename in metadata from temporary to actual one for i in range(len(self.chunks)): self.chunks[i].metadata['source'] = file_name logger.info(f"Read {file_name} file from {file_path}") def split_docs(self, chunk_size:int=1000, chunk_overlap:int=100): token_splitter = TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) self.chunks = token_splitter.split_documents(self.chunks) logger.info(f"Split {len(self.chunks)} chunks") def create_db_collection(self): vec_database = Chroma.from_documents( self.chunks, self.embeddings, persist_directory=vector_db_path, collection_name=f'{self.user_id}_collection', ) vec_database.persist() vec_database = None logger.info(f"The file has been recorded to vec db") def get_qa_chain(self): vec_database = Chroma( embedding_function=self.embeddings, persist_directory=vector_db_path, collection_name=f'{self.user_id}_collection', ) self.retriever = vec_database.as_retriever( search_type="mmr", search_kwargs={"k": 4} ) template = """Use this information in order to answer the question. Context: {context} Question: {question} Answer in the language used in question. Your answer must also be complete and consistent. """ QA_PROMPT = PromptTemplate.from_template(template) self.qa_chain = RetrievalQA.from_chain_type( self.llm, retriever=self.retriever, chain_type_kwargs={"prompt": QA_PROMPT}, verbose=False, ) logger.info("QA chain created") def ask_question(self, question_text): #translator_promt = ChatPromptTemplate.from_strings("What language is the following question? : \n {question}") reply = self.qa_chain({"query": question_text}) return reply class Dialog: def __init__(self, user_id): # initialize chat self.chat = ChatWithPDF(user_id, api_key=OPENAI_API_KEY) def load_document_to_vec_db(self, file_name, file_path): self.chat.load_file(file_path=file_path, file_name=file_name) self.chat.split_docs() self.chat.create_db_collection() def ask(self, query): self.chat.get_qa_chain() reply = self.chat.ask_question(query) logger.info(f"Raw reply: {reply}") logger.info("Question answered") return reply["result"]
[ "Use this information in order to answer the question. \n\t\t\t\tContext: {context}\n\t\t\t\tQuestion: {question}\n\n\t\t\t\tAnswer in the language used in question.\n\t\t\t\tYour answer must also be complete and consistent.\n\t\t\t " ]
2024-01-10
justchillinghere/document-chat-bot
old~add_file_command.py
from telegram.ext import CommandHandler, ContextTypes from telegram import File, Update, Document import typing from langchain.document_loaders import PyPDFLoader from error_handler import logger from PDF_handlerlangchain import Dialog async def add_file(update: Update, context: ContextTypes.DEFAULT_TYPE) -> File | None: logger.info("Checking file format...") if (not hasattr(update.message.document, "mime_type") or update.message.document.mime_type != "application/pdf"): await update.message.reply_text("Please load PDF") return logger.info("Started loading file") file = await context.bot.get_file(update.message.document.file_id) await context.bot.send_message( chat_id=update.effective_chat.id, text="Please wait for the file to be uploaded" ) Dialog(user_id=update.message.from_user.id).load_document_to_vec_db( file_name=update.message.document.file_name, file_path=file.file_path ) await context.bot.send_message( chat_id=update.effective_chat.id, text="File has been uploaded successfully!" )
[]
2024-01-10
justchillinghere/document-chat-bot
old~echo_command.py
from telegram import Update from telegram.ext import ContextTypes from langchain.document_loaders import OnlinePDFLoader, PyPDFLoader async def echo(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None: # if (not hasattr(update.message.document, "mime_type") # or update.message.document.mime_type != "application/pdf"): # await update.message.reply_text("Please load PDF") # return # file = await context.bot.get_file(update.message.document.file_id) # loader = PyPDFLoader(file.file_path) # pages = loader.load_and_split() # print(pages[0]) # print(await context.bot.get_file(update.message.document.file_id)) # print(update.message.document) await update.message.reply_text("No commands to handle the input!")
[]
2024-01-10
EswarDivi/DocuConverse
Talkwithpdf.py
# Import Required Libraries __import__("pysqlite3") import sys sys.modules["sqlite3"] = sys.modules.pop("pysqlite3") import os import streamlit as st from streamlit_chat import message from langchain.document_loaders import OnlinePDFLoader from langchain.text_splitter import CharacterTextSplitter,RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from langchain.chains import RetrievalQA from langchain.embeddings import CohereEmbeddings from langchain.prompts import PromptTemplate from langchain.llms import Cohere from datetime import datetime # Setting Up API Tokens # Create .streamlit Folder in Root Directory # Create a File secrets.toml # TOML format # cohere_apikey="Enter you Key" # Setting Up Streamlit Page st.set_page_config(page_title="Chat With PDF", page_icon=":smile:") # Creating Temp Folder if not os.path.exists("./tempfolder"): os.makedirs("./tempfolder") # tabs tab1, tab2 = st.tabs(["📈 Chat Here", "🗃 Relevant Chunks"]) tab1.markdown( """ <h1 style='text-align: center;'>Chat With PDF</h1> <h4 style='text-align: center;'>Powered by Cohere</h4> <p style='text-align: center;'>For uninterrupted usage, visit the <a href='https://huggingface.co/spaces/eswardivi/ChatwithPdf' target='_blank'>HuggingFace Space</a></p> """, unsafe_allow_html=True, ) # Saving Upload file to tempfolder def save_uploadedfile(uploadedfile): with open( os.path.join("tempfolder", uploadedfile.name), "wb", ) as f: f.write(uploadedfile.getbuffer()) return st.sidebar.success("Saved File") # Creating Sidebar for Utilites with st.sidebar: st.title("Upload PDF") st.write("For any Queries, please feel free to contact") st.write("Email: [[email protected]](mailto:[email protected])") st.write("GitHub: [github.com/EswarDivi](https://github.com/EswarDivi)") uploaded_file = st.file_uploader("Choose a file", type=["pdf"]) temp_r = st.slider("Temperature", 0.1, 0.9, 0.45, 0.1) chunksize = st.slider("Chunk Size for Splitting Document ", 256, 1024, 400, 10) clear_button = st.button("Clear Conversation", key="clear") # Initialzing Text Splitter text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunksize, chunk_overlap=10, separators=[" ", ",", "\n"]) # Intializing Cohere Embdedding embeddings = CohereEmbeddings(model="large", cohere_api_key=st.secrets["cohere_apikey"]) def PDF_loader(document): loader = OnlinePDFLoader(document) documents = loader.load() prompt_template = """ System Prompt: Your are an AI chatbot that helps users chat with PDF documents. How may I help you today? {context} {question} """ PROMPT = PromptTemplate( template=prompt_template, input_variables=["context", "question"] ) chain_type_kwargs = {"prompt": PROMPT} texts = text_splitter.split_documents(documents) global db db = Chroma.from_documents(texts, embeddings) retriever = db.as_retriever() global qa qa = RetrievalQA.from_chain_type( llm=Cohere( model="command-xlarge-nightly", temperature=temp_r, cohere_api_key=st.secrets["cohere_apikey"], ), chain_type="stuff", retriever=retriever, return_source_documents=True, chain_type_kwargs=chain_type_kwargs, ) return "Ready" if uploaded_file is not None: save_uploadedfile(uploaded_file) file_size = os.path.getsize(f"tempfolder/{uploaded_file.name}") / ( 1024 * 1024 ) # Size in MB current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print(f"[{current_time}] Uploaded PDF: {file_size} MB") PDF_loader("tempfolder/" + uploaded_file.name) tab1.markdown( "<h3 style='text-align: center;'>Now You Are Chatting With " + uploaded_file.name + "</h3>", unsafe_allow_html=True, ) # Session State if "chat_history" not in st.session_state: st.session_state["chat_history"] = [] if "generated" not in st.session_state: st.session_state["generated"] = [] if "past" not in st.session_state: st.session_state["past"] = [] # Generating Response def generate_response(query): result = qa({"query": query, "chat_history": st.session_state["chat_history"]}) tab2.markdown( "<h3 style='text-align: center;'>Relevant Documents Metadata</h3>", unsafe_allow_html=True, ) tab2.write(result["source_documents"]) result["result"] = result["result"] return result["result"] # Creating Containers response_container = tab1.container() container = tab1.container() with container: with st.form(key="my_form", clear_on_submit=True): user_input = st.text_input("You:", key="input") submit_button = st.form_submit_button(label="Send") if user_input and submit_button: if uploaded_file is not None: output = generate_response(user_input) print(output) st.session_state["past"].append(user_input) st.session_state["generated"].append(output) st.session_state["chat_history"] = [(user_input, output)] else: st.session_state["past"].append(user_input) st.session_state["generated"].append( "Please go ahead and upload the PDF in the sidebar, it would be great to have it there." ) if st.session_state["generated"]: with response_container: for i in range(len(st.session_state["generated"])): message( st.session_state["past"][i], is_user=True, key=str(i) + "_user", avatar_style="adventurer", seed=123, ) message(st.session_state["generated"][i], key=str(i)) # Enabling Clear button if clear_button: st.session_state["generated"] = [] st.session_state["past"] = [] st.session_state["chat_history"] = []
[ "question", "context", " \n System Prompt:\n Your are an AI chatbot that helps users chat with PDF documents. How may I help you today?\n\n {context}\n\n {question}\n " ]
2024-01-10
MobileLLM/AutoDroid
query_lmql.py
import lmql import os import openai # openai.api_key = 'sk-dMHkagT7vyUQmldu49cDH3bOkdaU8Ue4dUXjnT93I70KNxMu' # openai.base_url = 'https://api.openai-proxy.org/v1' os.environ['OPENAI_API_KEY'] = 'sk-dMHkagT7vyUQmldu49cDH3bOkdaU8Ue4dUXjnT93I70KNxMu' model=lmql.model("openai/gpt-3.5-turbo-instruct") # OpenAI API model # model=lmql.model("llama.cpp:<YOUR_WEIGHTS>.gguf") # llama.cpp model @lmql.query(model=model,decoder='argmax') def prompt_llm_with_history(task,history,ui_desc,ids): '''lmql """You are a smartphone assistant to help users complete tasks by interacting with mobile apps.Given a task, the previous UI actions, and the content of current UI state, your job is to decide whether the task is already finished by the previous actions, and if not, decide which UI element in current UI state should be interacted. Task:{task} Previous UI actions: {history} Current UI State:{ui_desc} Your answer should always use the following format:1. Completing this task on a smartphone usually involves these steps: <?>.\n2. Analyses of the relations between the task and the previous UI actions and current UI state: <?>.\n3. Based on the previous actions, is the task already finished? <Y/N>. The next step should be <?/None>.\n4. Can the task be proceeded with the current UI state? <Y/N>. Fill in the blanks about the next one interaction: - id=<id number> - action=<tap/input> - input text=<text or N/A> - id=[ID] - action=[ACTION] - input text=[INPUT_TEXT]. """ where ACTION in ["tap", "input", "N/A"] and ID in {ids} and len(TOKENS(INPUT_TEXT))<6 return ID,ACTION,INPUT_TEXT '''
[]
2024-01-10
karan842/RAG-with-Qdrant-and-Mixtral
RAG_pipeline.py
from langchain.vectorstores import Qdrant from langchain.embeddings import HuggingFaceEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter from langchain.document_loaders import PyPDFLoader, DirectoryLoader import qdrant_client from dotenv import load_dotenv import os load_dotenv() qdrant_uri = os.getenv('QDRANT_URI') qdrant_api_key = os.getenv('QDRANT_API_KEY') ''' Building RAG pipeline using QdrantDB and LangChain ''' # Create a Qdrant Client client = qdrant_client.QdrantClient( qdrant_uri, api_key=qdrant_api_key ) # Create a collection vectors_config = qdrant_client.http.models.VectorParams( size=384, distance=qdrant_client.http.models.Distance.COSINE ) client.recreate_collection( collection_name="my-collection", vectors_config=vectors_config ) # Define Embeddings using HF embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2" ) # Load document from data directory in .pdf format def load_documents(): loader = DirectoryLoader('data/', glob="*.pdf", loader_cls=PyPDFLoader) documents = loader.load() return documents # Split texts def get_chunks(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_documents(text) return chunks documents = load_documents() text_chunks = get_chunks(documents) qdrant = Qdrant.from_documents( text_chunks, embeddings, qdrant_uri, qdrant_api_key, prefer_grpc=True, collection_name='my-collection', )
[]
2024-01-10
ceteri/reinforcement_learning
DPPO~dppo_cont_gae_dist_gpu.py
# -*- coding: utf-8 -*- """DPPO_cont_GAE_dist_GPU.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1_GZ3wt0ydAf9Fx7YsFuuvOQduCN_NlDC """ """ Distributed Proximal Policy Optimization (Distributed PPO or DPPO) continuous version implementation with distributed Tensorflow and Python’s multiprocessing package. This implementation uses normalized running rewards with GAE. The code is tested with Gym’s continuous action space environment, Pendulum-v0 on Colab. """ from __future__ import absolute_import, division, print_function, unicode_literals #!pip install -q tf-nightly import tensorflow as tf tf.reset_default_graph() import numpy as np import matplotlib.pyplot as plt import gym import time from multiprocessing import Process # The following class is adapted from OpenAI's baseline: # https://github.com/openai/baselines/blob/master/baselines/common/running_mean_std.py # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm # This class is used for the normalization of rewards in this program before GAE computation. class RunningStats(object): def __init__(self, epsilon=1e-4, shape=()): self.mean = np.zeros(shape, 'float64') self.var = np.ones(shape, 'float64') self.std = np.ones(shape, 'float64') self.count = epsilon def update(self, x): batch_mean = np.mean(x, axis=0) batch_var = np.var(x, axis=0) batch_count = x.shape[0] self.update_from_moments(batch_mean, batch_var, batch_count) def update_from_moments(self, batch_mean, batch_var, batch_count): delta = batch_mean - self.mean new_mean = self.mean + delta * batch_count / (self.count + batch_count) m_a = self.var * self.count m_b = batch_var * batch_count M2 = m_a + m_b + np.square(delta) * self.count * batch_count / (self.count + batch_count) new_var = M2 / (self.count + batch_count) self.mean = new_mean self.var = new_var self.std = np.maximum(np.sqrt(self.var), 1e-6) self.count = batch_count + self.count class PPO(object): def __init__(self, scope, sess, env, global_PPO=None): self.sess = sess self.env = env #OPT_A = tf.train.AdamOptimizer(A_LR, beta1=0.99, beta2=0.999, name='OPT_A') #OPT_C = tf.train.AdamOptimizer(C_LR, beta1=0.99, beta2=0.999, name='OPT_C') OPT_A = tf.train.AdamOptimizer(A_LR, name='OPT_A') OPT_C = tf.train.AdamOptimizer(C_LR, name='OPT_C') with tf.variable_scope(scope): # scope is either global or wid self.state = tf.placeholder(tf.float32, [None, S_DIM], 'state') # critic with tf.variable_scope('critic'): h1 = tf.layers.dense(self.state, hidden, tf.nn.relu, name='hidden', trainable=True) self.val = tf.layers.dense(h1, 1, name='val', trainable=True) self.critic_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope + '/critic') self.discounted_r = tf.placeholder(tf.float32, [None, 1], 'discounted_r') self.advantage = self.discounted_r - self.val self.closs = tf.reduce_mean(tf.square(self.advantage)) self.ctrain_op = OPT_C.minimize(self.closs) with tf.variable_scope('cgrads'): self.critic_grad_op = tf.gradients(self.closs, self.critic_params) # actor self.pi, self.pi_params = self._build_anet(scope, 'pi', self.env, trainable=True) self.oldpi, self.oldpi_params = self._build_anet(scope, 'oldpi', self.env, trainable=True) # originally trainable=False with tf.variable_scope('sample_action'): self.sample_op = tf.squeeze(self.pi.sample(1), axis=0) # choosing action with tf.variable_scope('update_oldpi'): self.update_oldpi_op = [oldp.assign(p) for p, oldp in zip(self.pi_params, self.oldpi_params)] self.act = tf.placeholder(tf.float32, [None, A_DIM], 'action') self.adv = tf.placeholder(tf.float32, [None, 1], 'advantage') with tf.variable_scope('loss'): with tf.variable_scope('surrogate'): ratio = self.pi.prob(self.act) / self.oldpi.prob(self.act) surr = ratio * self.adv self.aloss = -tf.reduce_mean(tf.minimum(surr, tf.clip_by_value(ratio, 1.-epsilon, 1.+epsilon)*self.adv)) with tf.variable_scope('atrain'): self.atrain_op = OPT_A.minimize(self.aloss) with tf.variable_scope('agrads'): self.pi_grad_op = tf.gradients(self.aloss, self.pi_params) if scope != net_scope: # not global with tf.name_scope('params'): # push/pull from local/worker perspective with tf.name_scope('push_to_global'): self.push_actor_pi_params = OPT_A.apply_gradients(zip(self.pi_grad_op, global_PPO.pi_params)) self.push_critic_params = OPT_C.apply_gradients(zip(self.critic_grad_op, global_PPO.critic_params)) with tf.name_scope('pull_fr_global'): self.pull_actor_pi_params = [local_params.assign(global_params) for local_params, global_params in zip(self.pi_params, global_PPO.pi_params)] self.pull_critic_params = [local_params.assign(global_params) for local_params, global_params in zip(self.critic_params, global_PPO.critic_params)] def update(self, s, a, r, adv): self.sess.run(self.update_oldpi_op) for _ in range(A_EPOCH): # train actor self.sess.run(self.atrain_op, {self.state: s, self.act: a, self.adv: adv}) # update actor self.sess.run([self.push_actor_pi_params, self.pull_actor_pi_params], {self.state: s, self.act: a, self.adv: adv}) for _ in range(C_EPOCH): # train critic # update critic self.sess.run(self.ctrain_op, {self.state: s, self.discounted_r: r}) self.sess.run([self.push_critic_params, self.pull_critic_params], {self.state: s, self.discounted_r: r}) def _build_anet(self, scope, name, env, trainable): with tf.variable_scope(name): h1 = tf.layers.dense(self.state, hidden, tf.nn.relu, name='hidden', trainable=trainable) mu = self.env.action_space.high * tf.layers.dense(h1, A_DIM, tf.nn.tanh, name='mu', trainable=trainable) sigma = tf.layers.dense(h1, A_DIM, tf.nn.softplus, name='sigma', trainable=trainable) norm_dist = tf.distributions.Normal(loc=mu, scale=sigma) params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope + '/' + name) return norm_dist, params def choose_action(self, s): s = s[None, :] a = self.sess.run(self.sample_op, {self.state: s})[0] return np.clip(a, self.env.action_space.low, self.env.action_space.high) def get_val(self, s): if s.ndim < 2: s = s[None, :] return self.sess.run(self.val, {self.state: s})[0, 0] # This function is adapted from OpenAI's Baseline # GAE computation # returns TD lamda return & advantage def add_vtarg_and_adv(self, R, done, V, v_s_, gamma, lam): # Compute target value using TD(lambda) estimator, and advantage with GAE(lambda) # last element is only used for last vtarg, but we already zeroed it if last new = 1 done = np.append(done, 0) V_plus = np.append(V, v_s_) T = len(R) adv = gaelam = np.empty(T, 'float32') lastgaelam = 0 for t in reversed(range(T)): nonterminal = 1-done[t+1] delta = R[t] + gamma * V_plus[t+1] * nonterminal - V_plus[t] gaelam[t] = lastgaelam = delta + gamma * lam * nonterminal * lastgaelam #print("adv=", adv.shape) #print("V=", V.shape) #print("V_plus=", V_plus.shape) tdlamret = np.vstack(adv) + V #print("tdlamret=", tdlamret.shape) return tdlamret, adv # tdlamret is critic_target or Qs class Worker(object): def __init__(self, wid, GLOBAL_PPO, GLOBAL_EP, GLOBAL_RUNNING_R, sess): self.wid = wid self.env = gym.make(GAME).unwrapped self.g_ppo = GLOBAL_PPO self.ppo = PPO(wid, sess, self.env, GLOBAL_PPO) self.running_stats_r = RunningStats() self.sess = sess self.GLOBAL_EP = GLOBAL_EP self.GLOBAL_RUNNING_R = GLOBAL_RUNNING_R def work(self): T = 0 t = 0 SESS = self.sess GLOBAL_EP = self.GLOBAL_EP GLOBAL_RUNNING_R = self.GLOBAL_RUNNING_R while SESS.run(GLOBAL_EP) < EP_MAX: s = self.env.reset() buffer_s, buffer_a, buffer_r, buffer_done, buffer_V = [], [], [], [], [] ep_r = 0 for t in range(EP_LEN): a = self.ppo.choose_action(s) s_, r, done, _ = self.env.step(a) buffer_s.append(s) buffer_a.append(a) buffer_r.append(r) buffer_done.append(done) v = self.ppo.get_val(s) buffer_V.append(v) s = s_ ep_r += r # update ppo if (t+1) % BATCH == 0 or t == EP_LEN-1: self.running_stats_r.update(np.array(buffer_r)) buffer_r = np.clip( (np.array(buffer_r) - self.running_stats_r.mean) / self.running_stats_r.std, -stats_CLIP, stats_CLIP ) v_s_ = self.ppo.get_val(s_) tdlamret, adv = self.ppo.add_vtarg_and_adv(np.vstack(buffer_r), np.vstack(buffer_done), np.vstack(buffer_V), v_s_, GAMMA, lamda) bs, ba, br, b_adv = np.vstack(buffer_s), np.vstack(buffer_a), tdlamret, np.vstack(adv) buffer_s, buffer_a, buffer_r, buffer_done, buffer_V = [], [], [], [], [] self.ppo.update(bs, ba, br, b_adv) SESS.run(GLOBAL_EP.assign_add(1.0)) qe = GLOBAL_RUNNING_R.enqueue(ep_r) SESS.run(qe) GAME = 'Pendulum-v0' env = gym.make(GAME).unwrapped net_scope = 'global' EP_MAX = 500 #500 # max number of episodes EP_LEN = 200 # episode length GAMMA = 0.9 lamda = 0.95 #0.95 hidden = 50 #100 A_LR = 0.0001 # actor's learning rate C_LR = 0.0002 # critic's learning rate BATCH = 32 # minibatch size A_EPOCH = 10 # number of epoch C_EPOCH = 10 # number of epoch S_DIM, A_DIM = 3, 1 # state, action dimension stats_CLIP = 10 # upper bound of RunningStats epsilon=0.2 cluster = tf.train.ClusterSpec({ "worker": ["localhost:3331", "localhost:3332", "localhost:3333", "localhost:3334" ], "ps": ["localhost:3330"] }) def parameter_server(): #tf.reset_default_graph() server = tf.train.Server(cluster, job_name="ps", task_index=0) sess = tf.Session(target=server.target) with tf.device("/job:ps/task:0"): GLOBAL_PPO = PPO(net_scope, sess, env, global_PPO=None) # only need its params GLOBAL_EP = tf.Variable(0.0, name='GLOBAL_EP') # num of global episodes # a queue of ep_r GLOBAL_RUNNING_R = tf.FIFOQueue(EP_MAX, tf.float32, shared_name="GLOBAL_RUNNING_R") print("Parameter server: waiting for cluster connection...") sess.run(tf.report_uninitialized_variables()) print("Parameter server: cluster ready!") print("Parameter server: initializing variables...") sess.run(tf.global_variables_initializer()) print("Parameter server: variables initialized") while True: time.sleep(1.0) if sess.run(GLOBAL_RUNNING_R.size()) >= EP_MAX: # GLOBAL_EP starts from 0, hence +1 to max_global_episodes time.sleep(10.0) GLOBAL_RUNNING_R_list = [] ep_r_prev = 0.0 for i in range(sess.run(GLOBAL_RUNNING_R.size())): ep_r = sess.run(GLOBAL_RUNNING_R.dequeue()) if i==0: GLOBAL_RUNNING_R_list.append(ep_r) # for display else: GLOBAL_RUNNING_R_list.append(GLOBAL_RUNNING_R_list[-1]*0.9 + ep_r*0.1) # for display break # display plt.plot(np.arange(len(GLOBAL_RUNNING_R_list)), GLOBAL_RUNNING_R_list) plt.xlabel('episode') plt.ylabel('reward') plt.show() #print("Parameter server: blocking...") #server.join() # currently blocks forever print("Parameter server: ended...") def worker(worker_n): #tf.reset_default_graph() server = tf.train.Server(cluster, job_name="worker", task_index=worker_n) sess = tf.Session(target=server.target) with tf.device("/job:ps/task:0"): GLOBAL_PPO = PPO(net_scope, sess, env, global_PPO=None) # only need its params GLOBAL_EP = tf.Variable(0.0, name='GLOBAL_EP') # num of global episodes # a queue of ep_r GLOBAL_RUNNING_R = tf.FIFOQueue(EP_MAX, tf.float32, shared_name="GLOBAL_RUNNING_R") """ with tf.device(tf.train.replica_device_setter( worker_device='/job:worker/task:' + str(worker_n), cluster=cluster)): """ print("Worker %d: waiting for cluster connection..." % worker_n) sess.run(tf.report_uninitialized_variables()) print("Worker %d: cluster ready!" % worker_n) #while sess.run(tf.report_uninitialized_variables()): while (sess.run(tf.report_uninitialized_variables())).any(): # ********** .any() .all() ********** print("Worker %d: waiting for variable initialization..." % worker_n) time.sleep(1.0) print("Worker %d: variables initialized" % worker_n) w = Worker(str(worker_n), GLOBAL_PPO, GLOBAL_EP, GLOBAL_RUNNING_R, sess) print("Worker %d: created" % worker_n) sess.run(tf.global_variables_initializer()) # got to initialize after Worker creation w.work() print("Worker %d: w.work()" % worker_n) #print("Worker %d: blocking..." % worker_n) server.join() # currently blocks forever print("Worker %d: ended..." % worker_n) start_time = time.time() ps_proc = Process(target=parameter_server, daemon=True) w1_proc = Process(target=worker, args=(0, ), daemon=True) w2_proc = Process(target=worker, args=(1, ), daemon=True) w3_proc = Process(target=worker, args=(2, ), daemon=True) w4_proc = Process(target=worker, args=(3, ), daemon=True) ps_proc.start() w1_proc.start() w2_proc.start() w3_proc.start() w4_proc.start() # if not join, parent will terminate before children # & children will terminate as well cuz children are daemon ps_proc.join() #w1_proc.join() #w2_proc.join() #w3_proc.join() #w4_proc.join() for proc in [w1_proc, w2_proc, w3_proc, w4_proc, ps_proc]: proc.terminate() # only way to kill server is to kill it's process print('All done.') print("--- %s seconds ---" % (time.time() - start_time))
[]
2024-01-10
photonn/danswer
backend~danswer~chat~chat_prompts.py
from langchain.schema.messages import BaseMessage from langchain.schema.messages import HumanMessage from langchain.schema.messages import SystemMessage from danswer.chunking.models import InferenceChunk from danswer.configs.constants import CODE_BLOCK_PAT from danswer.db.models import ChatMessage from danswer.llm.utils import translate_danswer_msg_to_langchain DANSWER_TOOL_NAME = "Current Search" DANSWER_TOOL_DESCRIPTION = ( "A search tool that can find information on any topic " "including up to date and proprietary knowledge." ) DANSWER_SYSTEM_MSG = ( "Given a conversation (between Human and Assistant) and a final message from Human, " "rewrite the last message to be a standalone question which captures required/relevant context " "from previous messages. This question must be useful for a semantic search engine. " "It is used for a natural language search." ) TOOL_TEMPLATE = """ TOOLS ------ You can use tools to look up information that may be helpful in answering the user's \ original question. The available tools are: {tool_overviews} RESPONSE FORMAT INSTRUCTIONS ---------------------------- When responding to me, please output a response in one of two formats: **Option 1:** Use this if you want to use a tool. Markdown code snippet formatted in the following schema: ```json {{ "action": string, \\ The action to take. Must be one of {tool_names} "action_input": string \\ The input to the action }} ``` **Option #2:** Use this if you want to respond directly to the user. Markdown code snippet formatted in the following schema: ```json {{ "action": "Final Answer", "action_input": string \\ You should put what you want to return to use here }} ``` """ TOOL_LESS_PROMPT = """ Respond with a markdown code snippet in the following schema: ```json {{ "action": "Final Answer", "action_input": string \\ You should put what you want to return to use here }} ``` """ USER_INPUT = """ USER'S INPUT -------------------- Here is the user's input \ (remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else): {user_input} """ TOOL_FOLLOWUP = """ TOOL RESPONSE: --------------------- {tool_output} USER'S INPUT -------------------- Okay, so what is the response to my last comment? If using information obtained from the tools you must \ mention it explicitly without mentioning the tool names - I have forgotten all TOOL RESPONSES! If the tool response is not useful, ignore it completely. {optional_reminder}{hint} IMPORTANT! You MUST respond with a markdown code snippet of a json blob with a single action, and NOTHING else. """ def form_user_prompt_text( query: str, tool_text: str | None, hint_text: str | None, user_input_prompt: str = USER_INPUT, tool_less_prompt: str = TOOL_LESS_PROMPT, ) -> str: user_prompt = tool_text or tool_less_prompt user_prompt += user_input_prompt.format(user_input=query) if hint_text: if user_prompt[-1] != "\n": user_prompt += "\n" user_prompt += "\nHint: " + hint_text return user_prompt.strip() def form_tool_section_text( tools: list[dict[str, str]], retrieval_enabled: bool, template: str = TOOL_TEMPLATE ) -> str | None: if not tools and not retrieval_enabled: return None if retrieval_enabled: tools.append( {"name": DANSWER_TOOL_NAME, "description": DANSWER_TOOL_DESCRIPTION} ) tools_intro = [] for tool in tools: description_formatted = tool["description"].replace("\n", " ") tools_intro.append(f"> {tool['name']}: {description_formatted}") tools_intro_text = "\n".join(tools_intro) tool_names_text = ", ".join([tool["name"] for tool in tools]) return template.format( tool_overviews=tools_intro_text, tool_names=tool_names_text ).strip() def format_danswer_chunks_for_chat(chunks: list[InferenceChunk]) -> str: return "\n".join( f"DOCUMENT {ind}:{CODE_BLOCK_PAT.format(chunk.content)}" for ind, chunk in enumerate(chunks, start=1) ) def form_tool_followup_text( tool_output: str, query: str, hint_text: str | None, tool_followup_prompt: str = TOOL_FOLLOWUP, ignore_hint: bool = False, ) -> str: # If multi-line query, it likely confuses the model more than helps if "\n" not in query: optional_reminder = f"\nAs a reminder, my query was: {query}\n" else: optional_reminder = "" if not ignore_hint and hint_text: hint_text_spaced = f"\nHint: {hint_text}\n" else: hint_text_spaced = "" return tool_followup_prompt.format( tool_output=tool_output, optional_reminder=optional_reminder, hint=hint_text_spaced, ).strip() def build_combined_query( query_message: ChatMessage, history: list[ChatMessage], ) -> list[BaseMessage]: user_query = query_message.message combined_query_msgs: list[BaseMessage] = [] if not user_query: raise ValueError("Can't rephrase/search an empty query") combined_query_msgs.append(SystemMessage(content=DANSWER_SYSTEM_MSG)) combined_query_msgs.extend( [translate_danswer_msg_to_langchain(msg) for msg in history] ) combined_query_msgs.append( HumanMessage( content=( "Help me rewrite this final message into a standalone query that takes into consideration the " f"past messages of the conversation if relevant. This query is used with a semantic search engine to " f"retrieve documents. You must ONLY return the rewritten query and nothing else." f"\n\nQuery:\n{query_message.message}" ) ) ) return combined_query_msgs
[ "\n", "Help me rewrite this final message into a standalone query that takes into consideration the ", "past messages of the conversation if relevant. This query is used with a semantic search engine to ", "\nHint: PLACEHOLDER", "retrieve documents. You must ONLY return the rewritten query and nothing else.", "\nRespond with a markdown code snippet in the following schema:\n\n```json\n{{\n \"action\": \"Final Answer\",\n \"action_input\": string \\ You should put what you want to return to use here\n}}\n```\n", "\nTOOLS\n------\nYou can use tools to look up information that may be helpful in answering the user's original question. The available tools are:\n\n{tool_overviews}\n\nRESPONSE FORMAT INSTRUCTIONS\n----------------------------\nWhen responding to me, please output a response in one of two formats:\n\n**Option 1:**\nUse this if you want to use a tool. Markdown code snippet formatted in the following schema:\n\n```json\n{{\n \"action\": string, \\ The action to take. Must be one of {tool_names}\n \"action_input\": string \\ The input to the action\n}}\n```\n\n**Option #2:**\nUse this if you want to respond directly to the user. Markdown code snippet formatted in the following schema:\n\n```json\n{{\n \"action\": \"Final Answer\",\n \"action_input\": string \\ You should put what you want to return to use here\n}}\n```\n" ]
2024-01-10
photonn/danswer
backend~danswer~chat~chat_llm.py
from collections.abc import Callable from collections.abc import Iterator from uuid import UUID from langchain.schema.messages import AIMessage from langchain.schema.messages import BaseMessage from langchain.schema.messages import HumanMessage from langchain.schema.messages import SystemMessage from danswer.chat.chat_prompts import build_combined_query from danswer.chat.chat_prompts import DANSWER_TOOL_NAME from danswer.chat.chat_prompts import form_tool_followup_text from danswer.chat.chat_prompts import form_user_prompt_text from danswer.chat.chat_prompts import format_danswer_chunks_for_chat from danswer.chat.tools import call_tool from danswer.configs.app_configs import NUM_DOCUMENT_TOKENS_FED_TO_CHAT from danswer.configs.constants import IGNORE_FOR_QA from danswer.configs.model_configs import GEN_AI_MAX_INPUT_TOKENS from danswer.datastores.document_index import get_default_document_index from danswer.db.models import ChatMessage from danswer.db.models import Persona from danswer.direct_qa.interfaces import DanswerAnswerPiece from danswer.direct_qa.interfaces import DanswerChatModelOut from danswer.direct_qa.qa_utils import get_usable_chunks from danswer.llm.build import get_default_llm from danswer.llm.llm import LLM from danswer.llm.utils import get_default_llm_tokenizer from danswer.llm.utils import translate_danswer_msg_to_langchain from danswer.search.semantic_search import retrieve_ranked_documents from danswer.utils.logger import setup_logger from danswer.utils.text_processing import extract_embedded_json from danswer.utils.text_processing import has_unescaped_quote logger = setup_logger() LLM_CHAT_FAILURE_MSG = "The large-language-model failed to generate a valid response." def _parse_embedded_json_streamed_response( tokens: Iterator[str], ) -> Iterator[DanswerAnswerPiece | DanswerChatModelOut]: final_answer = False just_start_stream = False model_output = "" hold = "" finding_end = 0 for token in tokens: model_output += token hold += token if ( final_answer is False and '"action":"finalanswer",' in model_output.lower().replace(" ", "") ): final_answer = True if final_answer and '"actioninput":"' in model_output.lower().replace( " ", "" ).replace("_", ""): if not just_start_stream: just_start_stream = True hold = "" if has_unescaped_quote(hold): finding_end += 1 hold = hold[: hold.find('"')] if finding_end <= 1: if finding_end == 1: finding_end += 1 yield DanswerAnswerPiece(answer_piece=hold) hold = "" model_final = extract_embedded_json(model_output) if "action" not in model_final or "action_input" not in model_final: raise ValueError("Model did not provide all required action values") yield DanswerChatModelOut( model_raw=model_output, action=model_final["action"], action_input=model_final["action_input"], ) return def _find_last_index( lst: list[int], max_prompt_tokens: int = GEN_AI_MAX_INPUT_TOKENS ) -> int: """From the back, find the index of the last element to include before the list exceeds the maximum""" running_sum = 0 last_ind = 0 for i in range(len(lst) - 1, -1, -1): running_sum += lst[i] if running_sum > max_prompt_tokens: last_ind = i + 1 break if last_ind >= len(lst): raise ValueError("Last message alone is too large!") return last_ind def danswer_chat_retrieval( query_message: ChatMessage, history: list[ChatMessage], llm: LLM, user_id: UUID | None, ) -> str: if history: query_combination_msgs = build_combined_query(query_message, history) reworded_query = llm.invoke(query_combination_msgs) else: reworded_query = query_message.message # Good Debug/Breakpoint ranked_chunks, unranked_chunks = retrieve_ranked_documents( reworded_query, user_id=user_id, filters=None, datastore=get_default_document_index(), ) if not ranked_chunks: return "No results found" if unranked_chunks: ranked_chunks.extend(unranked_chunks) filtered_ranked_chunks = [ chunk for chunk in ranked_chunks if not chunk.metadata.get(IGNORE_FOR_QA) ] # get all chunks that fit into the token limit usable_chunks = get_usable_chunks( chunks=filtered_ranked_chunks, token_limit=NUM_DOCUMENT_TOKENS_FED_TO_CHAT, ) return format_danswer_chunks_for_chat(usable_chunks) def _drop_messages_history_overflow( system_msg: BaseMessage | None, system_token_count: int, history_msgs: list[BaseMessage], history_token_counts: list[int], final_msg: BaseMessage, final_msg_token_count: int, ) -> list[BaseMessage]: """As message history grows, messages need to be dropped starting from the furthest in the past. The System message should be kept if at all possible and the latest user input which is inserted in the prompt template must be included""" if len(history_msgs) != len(history_token_counts): # This should never happen raise ValueError("Need exactly 1 token count per message for tracking overflow") prompt: list[BaseMessage] = [] # Start dropping from the history if necessary all_tokens = history_token_counts + [system_token_count, final_msg_token_count] ind_prev_msg_start = _find_last_index(all_tokens) if system_msg and ind_prev_msg_start <= len(history_msgs): prompt.append(system_msg) prompt.extend(history_msgs[ind_prev_msg_start:]) prompt.append(final_msg) return prompt def llm_contextless_chat_answer( messages: list[ChatMessage], tokenizer: Callable | None = None, system_text: str | None = None, ) -> Iterator[str]: try: prompt_msgs = [translate_danswer_msg_to_langchain(msg) for msg in messages] if system_text: tokenizer = tokenizer or get_default_llm_tokenizer() system_tokens = len(tokenizer(system_text)) system_msg = SystemMessage(content=system_text) message_tokens = [msg.token_count for msg in messages] + [system_tokens] else: message_tokens = [msg.token_count for msg in messages] last_msg_ind = _find_last_index(message_tokens) remaining_user_msgs = prompt_msgs[last_msg_ind:] if not remaining_user_msgs: raise ValueError("Last user message is too long!") if system_text: all_msgs = [system_msg] + remaining_user_msgs else: all_msgs = remaining_user_msgs return get_default_llm().stream(all_msgs) except Exception as e: logger.error(f"LLM failed to produce valid chat message, error: {e}") return (msg for msg in [LLM_CHAT_FAILURE_MSG]) # needs to be an Iterator def llm_contextual_chat_answer( messages: list[ChatMessage], persona: Persona, user_id: UUID | None, tokenizer: Callable, ) -> Iterator[str]: retrieval_enabled = persona.retrieval_enabled system_text = persona.system_text tool_text = persona.tools_text hint_text = persona.hint_text last_message = messages[-1] previous_messages = messages[:-1] previous_msgs_as_basemessage = [ translate_danswer_msg_to_langchain(msg) for msg in previous_messages ] # Failure reasons include: # - Invalid LLM output, wrong format or wrong/missing keys # - No "Final Answer" from model after tool calling # - LLM times out or is otherwise unavailable # - Calling invalid tool or tool call fails # - Last message has more tokens than model is set to accept # - Missing user input try: if not last_message.message: raise ValueError("User chat message is empty.") # Build the prompt using the last user message user_text = form_user_prompt_text( query=last_message.message, tool_text=tool_text, hint_text=hint_text, ) last_user_msg = HumanMessage(content=user_text) # Count tokens once to reuse previous_msg_token_counts = [msg.token_count for msg in previous_messages] system_tokens = len(tokenizer(system_text)) if system_text else 0 last_user_msg_tokens = len(tokenizer(user_text)) prompt = _drop_messages_history_overflow( system_msg=SystemMessage(content=system_text) if system_text else None, system_token_count=system_tokens, history_msgs=previous_msgs_as_basemessage, history_token_counts=previous_msg_token_counts, final_msg=last_user_msg, final_msg_token_count=last_user_msg_tokens, ) llm = get_default_llm() # Good Debug/Breakpoint tokens = llm.stream(prompt) final_result: DanswerChatModelOut | None = None final_answer_streamed = False for result in _parse_embedded_json_streamed_response(tokens): if isinstance(result, DanswerAnswerPiece) and result.answer_piece: yield result.answer_piece final_answer_streamed = True if isinstance(result, DanswerChatModelOut): final_result = result break if final_answer_streamed: return if final_result is None: raise RuntimeError("Model output finished without final output parsing.") if ( retrieval_enabled and final_result.action.lower() == DANSWER_TOOL_NAME.lower() ): tool_result_str = danswer_chat_retrieval( query_message=last_message, history=previous_messages, llm=llm, user_id=user_id, ) else: tool_result_str = call_tool(final_result, user_id=user_id) # The AI's tool calling message tool_call_msg_text = final_result.model_raw tool_call_msg_token_count = len(tokenizer(tool_call_msg_text)) # Create the new message to use the results of the tool call tool_followup_text = form_tool_followup_text( tool_output=tool_result_str, query=last_message.message, hint_text=hint_text, ) tool_followup_msg = HumanMessage(content=tool_followup_text) tool_followup_tokens = len(tokenizer(tool_followup_text)) # Drop previous messages, the drop order goes: previous messages in the history, # the last user prompt and generated intermediate messages from this recent prompt, # the system message, then finally the tool message that was the last thing generated follow_up_prompt = _drop_messages_history_overflow( system_msg=SystemMessage(content=system_text) if system_text else None, system_token_count=system_tokens, history_msgs=previous_msgs_as_basemessage + [last_user_msg, AIMessage(content=tool_call_msg_text)], history_token_counts=previous_msg_token_counts + [last_user_msg_tokens, tool_call_msg_token_count], final_msg=tool_followup_msg, final_msg_token_count=tool_followup_tokens, ) # Good Debug/Breakpoint tokens = llm.stream(follow_up_prompt) for result in _parse_embedded_json_streamed_response(tokens): if isinstance(result, DanswerAnswerPiece) and result.answer_piece: yield result.answer_piece final_answer_streamed = True if final_answer_streamed is False: raise RuntimeError("LLM did not to produce a Final Answer after tool call") except Exception as e: logger.error(f"LLM failed to produce valid chat message, error: {e}") yield LLM_CHAT_FAILURE_MSG def llm_chat_answer( messages: list[ChatMessage], persona: Persona | None, user_id: UUID | None, tokenizer: Callable, ) -> Iterator[str]: # Common error cases to keep in mind: # - User asks question about something long ago, due to context limit, the message is dropped # - Tool use gives wrong/irrelevant results, model gets confused by the noise # - Model is too weak of an LLM, fails to follow instructions # - Bad persona design leads to confusing instructions to the model # - Bad configurations, too small token limit, mismatched tokenizer to LLM, etc. if persona is None: return llm_contextless_chat_answer(messages) elif persona.retrieval_enabled is False and persona.tools_text is None: return llm_contextless_chat_answer( messages, tokenizer, system_text=persona.system_text ) return llm_contextual_chat_answer( messages=messages, persona=persona, user_id=user_id, tokenizer=tokenizer )
[]
2024-01-10
radoshi/llm-code
llm_code~llm_code.py
import sys from pathlib import Path from typing import Optional, Tuple import click import openai import pyperclip from pydantic import BaseSettings from rich.console import Console from rich.syntax import Syntax from llm_code import __version__, db from llm_code.templates import Message, TemplateLibrary class Settings(BaseSettings): openai_api_key: str = "" model: str = "gpt-3.5-turbo" temperature: float = 0.8 max_tokens: int = 1000 config_dir: Path = Path("~/.llm_code").expanduser() class Config: env_file = Path("~/.llm_code").expanduser() / "env" env_file_encoding = "utf-8" def load_templates(path: Path) -> Optional[TemplateLibrary]: path = path / "prompts" if path.exists(): return TemplateLibrary.from_file_or_directory(path) else: return None def init_db(config_dir: Path): config_dir.mkdir(parents=True, exist_ok=True) db_path = config_dir / "db.sqlite" _ = db.Database.get(db_path) def get_cached_response(settings: Settings, messages: list[dict]) -> Optional[Message]: record = db.get_last_inserted_row() if not record: return None if ( record.model != settings.model or record.temperature != settings.temperature or record.max_tokens != settings.max_tokens or record.system_message != messages[0]["content"] or record.user_message != messages[1]["content"] ): return None return Message( role="assistant", content=record.assistant_message, ) def get_code(inputs) -> str: files = [f for input in inputs for f in Path.cwd().glob(input)] file_name = [f.name for f in files] file_texts = [f.read_text() for f in files] file_blobs = [ f"FILENAME: {name}\n```{text}\n```" for (name, text) in zip(file_name, file_texts) ] return "\n---\n".join(file_blobs) def get_max_tokens(message: str) -> int: return len(message.split(" ")) @click.command() @click.option( "-i", "--inputs", default=None, multiple=True, help="Glob of input files. Use repeatedly for multiple files.", ) @click.option("-cb", "--clipboard", is_flag=True, help="Copy code to clipboard.") @click.option("-nc", "--no-cache", is_flag=True, help="Don't use cache.") @click.option("-4", "--gpt-4", is_flag=True, help="Use GPT-4.") @click.option("--version", is_flag=True, help="Show version.") @click.argument("instructions", nargs=-1) def main( inputs: Optional[Tuple[str, ...]], instructions: Tuple[str, ...], version: bool, no_cache: bool, gpt_4: bool, clipboard: bool, ): """Coding assistant using OpenAI's chat models. Requires OPENAI_API_KEY as an environment variable. Alternately, you can set it in ~/.llm_code/env. """ console = Console() if version: console.print(f"[bold green]llm_code[/] version {__version__}") sys.exit(0) settings = Settings() if not settings.openai_api_key: raise click.UsageError("OPENAI_API_KEY must be set.") if gpt_4: settings.model = "gpt-4" init_db(settings.config_dir) if not instructions: raise click.UsageError("Please provide some instructions.") library = load_templates(settings.config_dir) or load_templates( Path(__file__).parent.parent ) if not library: raise click.UsageError("No templates found.") if inputs: code = get_code(inputs) message = library["coding/input"].message( code=code, instructions=" ".join(instructions) ) else: message = library["coding/simple"].message(instructions=" ".join(instructions)) messages = [library["coding/system"].message(), message] cached_response = get_cached_response(settings, messages) if no_cache or not cached_response: with console.status("[bold green]Asking OpenAI..."): response = openai.ChatCompletion.create( api_key=settings.openai_api_key, model=settings.model, temperature=settings.temperature, max_tokens=settings.max_tokens, messages=messages, ) message = Message.from_message(response.choices[0]["message"]) # type: ignore db.write( model=settings.model, temperature=settings.temperature, max_tokens=settings.max_tokens, system_message=messages[0]["content"], user_message=messages[1]["content"], assistant_message=message.content, input_tokens=response.usage["prompt_tokens"], # type: ignore output_tokens=response.usage["completion_tokens"], # type: ignore ) else: message = cached_response code_block = message.code() if code_block: console.print(Syntax(code_block.code, code_block.lang, word_wrap=True)) if clipboard: pyperclip.copy(code_block.code) else: console.print(f"No code found in message: \n\n{message.content}") sys.exit(1) if __name__ == "__main__": main()
[]
2024-01-10
alexjercan/scufris
scufris~tools~weather.py
"""This module contains the WeatherTool class.""" from typing import Optional import requests from langchain.tools import BaseTool class WeatherTool(BaseTool): """This tool allows you to get the weather using the wttr.in service.""" name = "Weather" description = ( "This tool allows you to get the weather using the wttr.in service;" "you can get the weather in your current location by passing no " "arguments or in a specific location by passing the location as an " "argument;" ) def _run(self, *args, query: Optional[str] = None, **kwargs) -> str: if query is None: query = "" try: response = requests.get(f"https://wttr.in/{query}?format=4", timeout=5) except requests.exceptions.Timeout: return "Sorry, the weather service is not responding right now." except requests.exceptions.ConnectionError: return "Sorry, could not connect to the weather service." except requests.exceptions.RequestException: return "Sorry, something went wrong with the weather service." return response.text async def _arun(self, *args, **kwargs) -> str: raise NotImplementedError("Weather does not support async")
[]
2024-01-10
kompy99/Quiz-Generator
quizcreator.py
# %pip install "evadb[document, notebook]" # %pip install openai # %pip install --upgrade tiktoken # %pip install transformers import argparse import os import evadb import openai import numpy as np import random import time import tiktoken import json from transformers import BartTokenizer, BartForConditionalGeneration from timeit import default_timer as timer #Enter your OpenAI API key here openai.api_key = "<OPENAI-API-KEY>" # Enter the path to your PDF here pdf_path = '<PDF-PATH>' path = os.path.dirname(evadb.__file__) def loadPDF(filepath, pdf_table_name, embeddings_table_name): cursor = evadb.connect(path).cursor() drop_pdf_table = f""" DROP TABLE IF EXISTS {pdf_table_name};""" load_pdf_data = f"""LOAD PDF '{filepath}' INTO {pdf_table_name};""" create_embedding_function = f"""CREATE FUNCTION IF NOT EXISTS get_embedding IMPL '{path}/functions/sentence_feature_extractor.py'; """ drop_embeddings_table = f""" DROP TABLE IF EXISTS {embeddings_table_name};""" get_pdf_embeddings = f"""CREATE TABLE IF NOT EXISTS {embeddings_table_name} AS SELECT get_embedding(data), data FROM {pdf_table_name};""" drop_embeddings_index = f""" DROP INDEX IF EXISTS embedding_index;""" build_faiss_index = f""" CREATE INDEX embedding_index ON {embeddings_table_name}(features) USING FAISS;""" cursor.query(drop_pdf_table).execute() cursor.query(load_pdf_data).execute() cursor.query(create_embedding_function).execute() cursor.query(drop_embeddings_table).execute() cursor.query(get_pdf_embeddings).execute() cursor.query(drop_embeddings_index).execute() cursor.query(build_faiss_index).execute() def getPageCount(pdf_table_name: str) -> int: cursor = evadb.connect(path).cursor() get_page_count = f"""SELECT MAX(page) FROM {pdf_table_name} """ page_counts_df = cursor.query(get_page_count).df() page_count = np.max(page_counts_df.loc[:, 'MAX.page']) return page_count def getParagraphCount(pdf_table_name: str, page_number: int) -> int: cursor = evadb.connect(path).cursor() get_para_count = f"""SELECT page, MAX(paragraph) FROM {pdf_table_name} where page = {page_number}""" para_counts_df = cursor.query(get_para_count).df() para_count = np.max(para_counts_df.loc[:, 'MAX.paragraph']) return para_count def generatePageSummary(pdf_table_name: str, page_number: int) -> str: cursor = evadb.connect(path).cursor() tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn") results = cursor.query(f"""SELECT page, paragraph, data from {pdf_data_table} where page = {page_number}""").df() dataKey = f'''{pdf_data_table}.data''' context = "\n".join(results[dataKey]) tokenized_context = tokenizer.encode(context,truncation=True, return_tensors="pt") outputs = model.generate(tokenized_context, max_length=150, min_length=100, num_beams=4, length_penalty=2.0, early_stopping=True) generated_summary = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_summary pdf_embeddings_table = "pdf_embeddings" pdf_data_table = "pdf_table" start_load_pdf = timer() loadPDF(pdf_path, pdf_data_table, pdf_embeddings_table) end_load_pdf = timer() pdf_load_time = end_load_pdf - start_load_pdf random.seed(time.time()) page_set = set() num_pages = getPageCount(pdf_data_table) for _ in range(5): random_page_number = random.randint(1, num_pages) page_set.add(random_page_number) summaries = [] summary_generation_start_time = timer() for page in page_set: generated_summary = generatePageSummary(pdf_table_name=pdf_data_table, page_number = page) print("\n Summary for page - " + str(page) + "\n---------------------\n") print("\n", generated_summary, "\n") summaries.append(generated_summary) summary_generation_end_time = timer() summary_generation_time = summary_generation_end_time - summary_generation_start_time summarized_context = "\n".join(summaries) gpt_api_response_start_time = timer() gptResponse = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": """You are a question generator. User will give content. You need to create multiple choice questions. Questions and answers have to be from the content only. Generate conceptual questions. Do not use any extra knowledge you may have on the subject. Every option must have a number assoicated with it. The answer must be the correct option number only. Generate 5 questions. Ensure that your output is in the following JSON format only. Sample question has been provided below: questions : [ { question: What is 1+1?, options : [(1) 3, (2) 4, (3) 5, (4) 2], answer: 4 } ] """}, {"role": "user", "content": f"""{summarized_context}"""}, ] ) gpt_api_response_end_time = timer() gpt_api_response_time = gpt_api_response_end_time - gpt_api_response_start_time encoding = tiktoken.encoding_for_model('gpt-3.5-turbo') num_tokens = len(encoding.encode(summarized_context)) print("\nMETRICS\n-------") print("\nToken Usage\n-----------\nSummary tokens - " + str(num_tokens) + "\t Summary + Prompt tokens - " + str(gptResponse.usage.prompt_tokens) + "\t\tCompletion tokens - " + str(gptResponse.usage.completion_tokens)) print("\nTotal Tokens - " + str(gptResponse.usage.total_tokens)) print("\n\nPerformance\n-----------\nPdf loading - " + str(pdf_load_time) + " seconds \tSummary generation - " + str(summary_generation_time) + " seconds \tGPT API response - " + str(gpt_api_response_time) + " seconds") quiz_data = json.loads(gptResponse.choices[0].message.content) score = 0 num_questions = len(quiz_data['questions']) print("\nYour practice quiz is ready!") print("\nPRACTICE QUIZ\n--------------\n\n") print(f"Instructions\n-------------\n\nThere will be {num_questions} questions in total. \nFor each question, enter only your choice (1,2,3 or 4). \nYou will see your score at the end.\n\nGood luck!!") question_num = 0 print("\n\nQuiz\n------\n\n") for question in quiz_data['questions']: question_num+=1 print("Q" + str(question_num) + ") " + question['question']) for option in question['options']: print(option) user_answer = int(input("Your answer: ")) if user_answer == question['answer']: print("Correct!\n") score+=1 else: print(f"Sorry, the correct answer is: {question['answer']}\n") print(f"\n\nYour score: {score}/{num_questions}")
[ "PLACEHOLDER", "You are a question generator. User will give content. You need to create multiple choice questions. Questions and answers have to be from the content only. Generate conceptual questions. Do not use any extra knowledge you may have on the subject.\n Every option must have a number assoicated with it. The answer must be the correct option number only. Generate 5 questions. Ensure that your output is in the following JSON format only. Sample question has been provided below:\n\n questions : [\n {\n question: What is 1+1?,\n options : [(1) 3, (2) 4, (3) 5, (4) 2],\n answer: 4\n }\n ]\n " ]
2024-01-10
code-greg-42/AutoGrocer3
utils~authenticate_all.py
import os import boto3 import openai from google.cloud import vision from utils.print_messages import cook_tim_sys_prompt, cook_tim_intro # NECESSARY ENV VARIABLES: # 1. AWS_ACCESS_KEY_ID # 2. AWS_SECRET_ACCESS_KEY # 3. GOOGLE_APPLICATION_CREDENTIALS # 4. OPENAI_API_KEY # OPTIONAL ENV VARIABLES: # 1. TWILIO_ACCOUNT_SID # 2. TWILIO_AUTH_TOKEN def auth_all(user_name, use_twilio=False): # aws auth aws_key = os.environ.get("AWS_ACCESS_KEY_ID") aws_secret_key = os.environ.get("AWS_SECRET_ACCESS_KEY") if not aws_key or not aws_secret_key: raise ValueError("AWS environment variables not set up correctly.") session = boto3.Session( aws_access_key_id=aws_key, aws_secret_access_key=aws_secret_key, ) aws_s3_client = session.client('s3') aws_bucket_name = f"autogrocer-user-{user_name.strip().lower().replace(' ', '-')}" # Check if the bucket exists try: aws_s3_client.head_bucket(Bucket=aws_bucket_name) except: # If the bucket does not exist, create it aws_s3_client.create_bucket(Bucket=aws_bucket_name) try: aws_response = aws_s3_client.get_object(Bucket=aws_bucket_name, Key='chat_history.txt') chat_history = aws_response['Body'].read().decode('utf-8') except: # if chat history doesn't exist yet, init it chat_history = [{ "role": "system", "content": cook_tim_sys_prompt }, { "role": "assistant", "content": cook_tim_intro }] # print("AWS S3 initialized.") # google cloud auth credentials_path = os.environ.get("GOOGLE_APPLICATION_CREDENTIALS") if not credentials_path: raise ValueError("Google Cloud environment variable not set up correctly.") google_cloud_client = vision.ImageAnnotatorClient.from_service_account_json(credentials_path) # print("Google Cloud client initialized.") # openai auth openai_api_key = os.environ.get("OPENAI_API_KEY") if not openai_api_key: raise ValueError("OpenAI environment variable not set up correctly.") openai.api_key = os.environ.get("OPENAI_API_KEY") # print("OpenAI client initialized.") twilio_client = None if use_twilio: from twilio.rest import Client # twilio auth account_sid = os.environ.get("TWILIO_ACCOUNT_SID") auth_token = os.environ.get("TWILIO_AUTH_TOKEN") if not account_sid or not auth_token: raise ValueError("Twilio environment variables not set up correctly.") twilio_client = Client(account_sid, auth_token) # print("Twilio client initialized.") return { "chat_history": chat_history, "aws_s3_client": aws_s3_client, "aws_bucket_name": aws_bucket_name, "google_cloud_client": google_cloud_client, "twilio_client": twilio_client }
[]
2024-01-10
ThomasMyrseth/webscrape
gptReview.py
import openai openai.api_key = "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" conversation_history = [{"role": "system", "content": "You are a financial data analacyst. Summarise the data ypu are given and point out important changes compared to previous reports"}] class gptReview: def __init__(self): None def askGpt(self, prompt): message = {"role": "user", "content": prompt} conversation_history.append(message) response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=conversation_history ) generatedText = response.choices[0].message["content"] print("askGpt ran succesfully") return generatedText
[ "You are a financial data analacyst. Summarise the data ypu are given and point out important changes compared to previous reports" ]
2024-01-10
liubo0902/Grounded-Segment-Anything
automatic_label_tag2text_demo.py
import argparse import os import copy import numpy as np import json import torch import torchvision from PIL import Image, ImageDraw, ImageFont import nltk # Grounding DINO import GroundingDINO.groundingdino.datasets.transforms as T from GroundingDINO.groundingdino.models import build_model from GroundingDINO.groundingdino.util import box_ops from GroundingDINO.groundingdino.util.slconfig import SLConfig from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap # segment anything from segment_anything import build_sam, SamPredictor import cv2 import numpy as np import matplotlib.pyplot as plt # Tag2Text import sys sys.path.append('Tag2Text') from Tag2Text.models import tag2text from Tag2Text import inference import torchvision.transforms as TS # ChatGPT or nltk is required when using captions # import openai # import nltk def load_image(image_path): # load image image_pil = Image.open(image_path).convert("RGB") # load image transform = T.Compose( [ T.RandomResize([800], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) image, _ = transform(image_pil, None) # 3, h, w return image_pil, image def generate_caption(raw_image, device): # unconditional image captioning if device == "cuda": inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16) else: inputs = processor(raw_image, return_tensors="pt") out = blip_model.generate(**inputs) caption = processor.decode(out[0], skip_special_tokens=True) return caption def generate_tags(caption, split=',', max_tokens=100, model="gpt-3.5-turbo"): lemma = nltk.wordnet.WordNetLemmatizer() if openai_key: prompt = [ { 'role': 'system', 'content': 'Extract the unique nouns in the caption. Remove all the adjectives. ' + \ f'List the nouns in singular form. Split them by "{split} ". ' + \ f'Caption: {caption}.' } ] response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens) reply = response['choices'][0]['message']['content'] # sometimes return with "noun: xxx, xxx, xxx" tags = reply.split(':')[-1].strip() else: nltk.download(['punkt', 'averaged_perceptron_tagger', 'wordnet']) tags_list = [word for (word, pos) in nltk.pos_tag(nltk.word_tokenize(caption)) if pos[0] == 'N'] tags_lemma = [lemma.lemmatize(w) for w in tags_list] tags = ', '.join(map(str, tags_lemma)) return tags def check_caption(caption, pred_phrases, max_tokens=100, model="gpt-3.5-turbo"): object_list = [obj.split('(')[0] for obj in pred_phrases] object_num = [] for obj in set(object_list): object_num.append(f'{object_list.count(obj)} {obj}') object_num = ', '.join(object_num) print(f"Correct object number: {object_num}") if openai_key: prompt = [ { 'role': 'system', 'content': 'Revise the number in the caption if it is wrong. ' + \ f'Caption: {caption}. ' + \ f'True object number: {object_num}. ' + \ 'Only give the revised caption: ' } ] response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens) reply = response['choices'][0]['message']['content'] # sometimes return with "Caption: xxx, xxx, xxx" caption = reply.split(':')[-1].strip() return caption def load_model(model_config_path, model_checkpoint_path, device): args = SLConfig.fromfile(model_config_path) args.device = device model = build_model(args) checkpoint = torch.load(model_checkpoint_path, map_location="cpu") load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) print(load_res) _ = model.eval() return model def get_grounding_output(model, image, caption, box_threshold, text_threshold,device="cpu"): caption = caption.lower() caption = caption.strip() if not caption.endswith("."): caption = caption + "." model = model.to(device) image = image.to(device) with torch.no_grad(): outputs = model(image[None], captions=[caption]) logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) logits.shape[0] # filter output logits_filt = logits.clone() boxes_filt = boxes.clone() filt_mask = logits_filt.max(dim=1)[0] > box_threshold logits_filt = logits_filt[filt_mask] # num_filt, 256 boxes_filt = boxes_filt[filt_mask] # num_filt, 4 logits_filt.shape[0] # get phrase tokenlizer = model.tokenizer tokenized = tokenlizer(caption) # build pred pred_phrases = [] scores = [] for logit, box in zip(logits_filt, boxes_filt): pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer) pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") scores.append(logit.max().item()) return boxes_filt, torch.Tensor(scores), pred_phrases def show_mask(mask, ax, random_color=False): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([30/255, 144/255, 255/255, 0.6]) h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) ax.imshow(mask_image) def show_box(box, ax, label): x0, y0 = box[0], box[1] w, h = box[2] - box[0], box[3] - box[1] ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) ax.text(x0, y0, label) def save_mask_data(output_dir, caption, mask_list, box_list, label_list): value = 0 # 0 for background mask_img = torch.zeros(mask_list.shape[-2:]) for idx, mask in enumerate(mask_list): mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1 plt.figure(figsize=(10, 10)) plt.imshow(mask_img.numpy()) plt.axis('off') plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0) json_data = { 'caption': caption, 'mask':[{ 'value': value, 'label': 'background' }] } for label, box in zip(label_list, box_list): value += 1 name, logit = label.split('(') logit = logit[:-1] # the last is ')' json_data['mask'].append({ 'value': value, 'label': name, 'logit': float(logit), 'box': box.numpy().tolist(), }) with open(os.path.join(output_dir, 'label.json'), 'w') as f: json.dump(json_data, f) if __name__ == "__main__": parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True) parser.add_argument("--config", type=str, required=True, help="path to config file") parser.add_argument( "--tag2text_checkpoint", type=str, required=True, help="path to checkpoint file" ) parser.add_argument( "--grounded_checkpoint", type=str, required=True, help="path to checkpoint file" ) parser.add_argument( "--sam_checkpoint", type=str, required=True, help="path to checkpoint file" ) parser.add_argument("--input_image", type=str, required=True, help="path to image file") parser.add_argument("--split", default=",", type=str, help="split for text prompt") parser.add_argument("--openai_key", type=str, help="key for chatgpt") parser.add_argument("--openai_proxy", default=None, type=str, help="proxy for chatgpt") parser.add_argument( "--output_dir", "-o", type=str, default="outputs", required=True, help="output directory" ) parser.add_argument("--box_threshold", type=float, default=0.25, help="box threshold") parser.add_argument("--text_threshold", type=float, default=0.2, help="text threshold") parser.add_argument("--iou_threshold", type=float, default=0.5, help="iou threshold") parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False") args = parser.parse_args() # cfg config_file = args.config # change the path of the model config file tag2text_checkpoint = args.tag2text_checkpoint # change the path of the model grounded_checkpoint = args.grounded_checkpoint # change the path of the model sam_checkpoint = args.sam_checkpoint image_path = args.input_image split = args.split openai_key = args.openai_key openai_proxy = args.openai_proxy output_dir = args.output_dir box_threshold = args.box_threshold text_threshold = args.text_threshold iou_threshold = args.iou_threshold device = args.device # ChatGPT or nltk is required when using captions # openai.api_key = openai_key # if openai_proxy: # openai.proxy = {"http": openai_proxy, "https": openai_proxy} # make dir os.makedirs(output_dir, exist_ok=True) # load image image_pil, image = load_image(image_path) # load model model = load_model(config_file, grounded_checkpoint, device=device) # visualize raw image image_pil.save(os.path.join(output_dir, "raw_image.jpg")) # initialize Tag2Text normalize = TS.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transform = TS.Compose([ TS.Resize((384, 384)), TS.ToTensor(), normalize ]) # filter out attributes and action categories which are difficult to grounding delete_tag_index = [] for i in range(3012, 3429): delete_tag_index.append(i) specified_tags='None' # load model tag2text_model = tag2text.tag2text_caption(pretrained=tag2text_checkpoint, image_size=384, vit='swin_b', delete_tag_index=delete_tag_index) # threshold for tagging # we reduce the threshold to obtain more tags tag2text_model.threshold = 0.64 tag2text_model.eval() tag2text_model = tag2text_model.to(device) raw_image = image_pil.resize( (384, 384)) raw_image = transform(raw_image).unsqueeze(0).to(device) res = inference.inference(raw_image , tag2text_model, specified_tags) # Currently ", " is better for detecting single tags # while ". " is a little worse in some case text_prompt=res[0].replace(' |', ',') caption=res[2] print(f"Caption: {caption}") print(f"Tags: {text_prompt}") # run grounding dino model boxes_filt, scores, pred_phrases = get_grounding_output( model, image, text_prompt, box_threshold, text_threshold, device=device ) # initialize SAM predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device)) image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) predictor.set_image(image) size = image_pil.size H, W = size[1], size[0] for i in range(boxes_filt.size(0)): boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 boxes_filt[i][2:] += boxes_filt[i][:2] boxes_filt = boxes_filt.cpu() # use NMS to handle overlapped boxes print(f"Before NMS: {boxes_filt.shape[0]} boxes") nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist() boxes_filt = boxes_filt[nms_idx] pred_phrases = [pred_phrases[idx] for idx in nms_idx] print(f"After NMS: {boxes_filt.shape[0]} boxes") caption = check_caption(caption, pred_phrases) print(f"Revise caption with number: {caption}") transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device) masks, _, _ = predictor.predict_torch( point_coords = None, point_labels = None, boxes = transformed_boxes.to(device), multimask_output = False, ) # draw output image plt.figure(figsize=(10, 10)) plt.imshow(image) for mask in masks: show_mask(mask.cpu().numpy(), plt.gca(), random_color=True) for box, label in zip(boxes_filt, pred_phrases): show_box(box.numpy(), plt.gca(), label) plt.title('Tag2Text-Captioning: ' + caption + '\n' + 'Tag2Text-Tagging' + text_prompt + '\n') plt.axis('off') plt.savefig( os.path.join(output_dir, "automatic_label_output.jpg"), bbox_inches="tight", dpi=300, pad_inches=0.0 ) save_mask_data(output_dir, caption, masks, boxes_filt, pred_phrases)
[ "Revise the number in the caption if it is wrong. Caption: PLACEHOLDER. True object number: PLACEHOLDER. Only give the revised caption: ", " |", "Extract the unique nouns in the caption. Remove all the adjectives. List the nouns in singular form. Split them by \"PLACEHOLDER \". Caption: PLACEHOLDER." ]
2024-01-10
hitchon1/Twitter_Sentiment
Twitter_Musk.py
import tweepy from datetime import datetime from datetime import timedelta import openai import pandas as pd import matplotlib.pyplot as plt # Replace with your own API key and API secret key api_key = "your key" api_secret_key = "your secret key" openai.api_key = "your openAi key" # Authenticate to Twitter auth = tweepy.OAuth1UserHandler(api_key, api_secret_key) # Create API object api = tweepy.API(auth) # Create a function to handle pagination and rate limits def get_tweets(keyword, until, count): tweets = [] for tweet in tweepy.Cursor(api.search_tweets, q=keyword,until=until).items(count): tweets.append(tweet) return tweets # Get tweets that contain the keyword "Elon Musk" in the last 7 days keyword = 'Elon Musk' count = 1000 tweets = [] i=0 while i < 7: until = (datetime.now() - timedelta(days=i)).strftime("%Y-%m-%d") tweets_store = get_tweets(keyword,until, count) tweets.append(tweets_store) i=i+1 chatbot = openai.Completion() df = pd.DataFrame(columns=['Date', 'Sentiment']) for sub_list in tweets: for tweet in sub_list: print(tweet.text) print(tweet.created_at.strftime('%Y-%m-%d')) response = chatbot.create(engine="text-babbage-001", prompt="return the most likely sentiment opinion of elon musk of the person who posted this tweet as only the word \"positive\", \"negative\", or \"neutral\" : " + tweet.text, max_tokens=20, temperature=0) print(response.choices[0].text.strip()) df = df.append({'Date': tweet.created_at.strftime('%Y-%m-%d'), 'Sentiment':response.choices[0].text.strip()} ,ignore_index=True) df = df.loc[df['Sentiment'].isin(['positive','negative','neutral'])] df['Sentiment'] = df['Sentiment'].replace({'positive':1,'negative':-1,'neutral':0}) df = df.groupby('Date').sum() df.plot(kind='bar') plt.show()
[]
2024-01-10
CarperAI/squeakily
squeakily~helpers.py
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/03_helpers.ipynb. # %% auto 0 __all__ = ['english_flagged_words', 'flagged_words', 'stopword_ratios', 'stopwords', 'KENLM_MODEL_REPO', 'get_words', 'FastTextLanguageDetector', 'SentencePiece', 'KenlmModel', 'LLMLabelerParser', 'LLMLabeler'] # %% ../nbs/03_helpers.ipynb 2 import os import re import squeakily import unicodedata import urllib.request from huggingface_hub import cached_download, hf_hub_url from pydantic import BaseModel, Field from requests.exceptions import HTTPError from typing import Dict, List # %% ../nbs/03_helpers.ipynb 6 def get_words( text: str, # the text to extract words from ) -> list: """custom regex to extract all the words in a string""" return re.findall(r"\w+", text.lower()) # %% ../nbs/03_helpers.ipynb 7 # Built from native speakers, with inspiration from # https://github.com/zacanger/profane-words # and # https://github.com/thisandagain/washyourmouthoutwithsoap/blob/develop/data/build.json # and # https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words english_flagged_words = [ "anal", # "bareback", # not sure about this one "bbw", "bdsm", "blowjob", "blowjobs", "brazzers", "bukkake", "camgirl", "camwhore", "cocksucking", # "cougar", # not sure about this one "creampie", "cuckold", "cum", "cumming", "cums", "cumshot", "cumshots", "cumslut", "cunnilingus", "deepthroat", "deepthroating", "dildo", "dildos", "dogging", "doggystyle", # "dominatrix", # not sure about this one "erotic", "fellatio", "femdom", "fingering", "fisting", "footjob", "gangbang", "handjob", "hentai", "horney", "horniest", "horny", "jism", "jizz", "lolli", "lolling", "masterbating", "masturbate", "masturbating", "masturbation", "milf", "orgies", "orgy", "pegging", "porn", "pornhub", "porno", "pornos", "pornstar", "pornstars", "redtube", "rimming", "slutty", # "squirting", # not sure about this one "strapon", "threesome", "vibrator", "xhamster", "xnxx", "xvideos", "xxx", "youporn", ] flagged_words = { "ar": english_flagged_words + [ "إباحي", "احتلام", "است", "استمناء", "اغتصاب", "أورغازم", "إيروتيك", "أير", "بز", "بزاز", "بظر", "بورن", "بيضان", "مص", "ثدي", "جماع", "جنس", "حلمة", "خلاعة", "خنثي", "خول", "دعارة", "زب", "سحاق", "سحاقية", "سكس", "سيكس", "شاذ", "شبق", "شرج", "شرموطة", "شهواني", "شهوة", "طيز", "عادة السرية", "عاهرة", "عرص", "فاسقة", "فرج", "قحبة", "قضيب", "كس", "لحس", "لعق", "لواط", "لوطي", "مؤخرة", "متناك", "متناكة", "مومس", "مثير", "مص", "مضاجعة", "مفلقسة", "مني", "مهتاج", "نشوة", "نكاح", "نيك", ], "bn": english_flagged_words + [ "আঙ্গুলি করা", "আচোদা", "খানকি", "খানকি মাগি", "গান্ড মারানো", "গুদ মারানি", "চুচুক", "চোদ", "চোদনা", "চোদা", "চোদা বোন", "চোদাচুদি", "জারজ", "নাঙ্গ", "নেংটা", "পর্ণহাব", "পর্ন", "পর্নস্টার", "পর্নোগ্রাফি", "পোঁদ", "পোঁদ মারানি", "পোদ মারানি", "বাঁড়া", "বানচোদ", "বেশ্যা", "বেশ্যার ছেলে", "বোকাচোদা", "ভগ", "মা চোদা", "মাগী", "মাদারচোদ", "মুখে নিবি", "মোরগ", "রেন্ডি", "শিশ্ন", "স্তন", "স্তনবৃন্ত", "হস্তমৈথুন", ], "ca": english_flagged_words + [ "cagarro", "cagarros", "cipote", "cipotes", "collons", "colló", "consolador", "consoladors", "cony", "conys", "corre's", "corre't", "corregut", "cunillingus", "córrer-se", "escorreguda", "escorregudes", "escorregut", "escrot", "escrots", "escórre's", "escórre't", "escórrer-se", "mamada", "mamadera", "mamaderes", "mamades", "masturba", "masturbacions", "masturbació", "masturbant", "masturbar", "masturbar-se", "masturbat", "masturbats", "masturbes", "orgasme", "orgasmes", "ou", "ous", "palla", "palles", "pornografia", "semen", "semens", "verga", "vergues", "xxx", ], "en": english_flagged_words, "es": english_flagged_words + [ "chupar el coño", "chupar la concha", "chupar la polla", "chupar la verga", "comer el coño", "comer la concha", "comer la polla", "comer la verga", "coprofagía", "correrse", "cunillingus", "fagging", "felación", "felching", "follada", "follador de culo", "folladores", "fudge packer", "hacer una paja", "hacerse una paja", "hore", "kock", "macizorra", "madre folladora", "mamada", "perro follador", "pisser", "pornografía", "sado", "sadomasoquismo", "sadomasoquista", "sexo anal", "skank", "smegma", "x clasificado", ], "eu": english_flagged_words + [], "fr": english_flagged_words + [ "baiseurs", "baiseur", "baiseuse", "baiseuses", "branlette", "branlettes", "branleuse", "branleuses", "cunillingus", "cunilingus", "enculée", "enculées", "enculation", "enculations", "enculement", "enculements", "fellation", "fellations", "porno", "pornos", "pornographie", "pornographique", "pornographiques", "salope", "salopes", "suceuse", "suceuses", "xxx", ], "hi": english_flagged_words + [ "अंडकोश की थैली", "एक्स रेटेड", "ओगाज़्म", "कामोद्दीपक चित्र", "कालीन का चूरा", "कून", "कॉक", "गेंद का थैला", "चाकलेट का रंग", "चूची", "चूतड़", "झटका बंद", "ठगना पैकर", "डिल्डो", "नितंब", "पिछाड़ी", "पीड़न कामुक", "पॉर्न", "फटना", "फूहड़", "बट", "बहुत मदहोश", "बेल अंत", "भगवान-शापित", "भगशेफ", "माँ कमीने", "मुखमैथुन", "मुर्गा चूसने वाला", "रक्तरंजित", "लेबिया", "वहशी", "वहशीता", "वैंग", "शिश्नमल", "संभोग सुख", "सह शॉट", "सींग का बना हुआ", "होर", "घपा घप", "चुदाई", "चुदक्कड़", ], "id": english_flagged_words + [ "bokep", "coli", "colmek", "grepe", "horni", "janda", "jembut", "jilat memek", "jilmek", "kontol", "masturbasi", "memek", "ngentot", "ngewe", "peju", "pepek", "pornografi", "sange", "sepong", "tusbol", ], "pt": english_flagged_words + [ "balalao", "bate uma", "beijo grego", "boceta", "boquete", "buceta", "caralho", "chochota", "coito", "cona", "consolo", "corno", "cu", "dar a bunda", "dar o rabo", "dildo", "dildos", "esporrar", "estrovenga", "felação", "filho da puta", "filhos da puta", "gozada", "jeba", "perereca", "pica", "piru", "porno", "pornografia", "pornô", "porra", "prostituta", "pube", "punheta", "punheteiro", "putaria", "queca", "sexo", "siririca", "tesão", "trepada", "verga", "vibrador", "xana", "xochota", "xoxota", ], "ur": english_flagged_words + [ "انگلی کرنا", "ایکس ریٹیڈ", "بلو جاب", "بٹ", "جھٹکا بند", "دلڈو", "رنڈی", "سلٹ", "سکلیرا", "سیڈسٹ", "سیکس بم", "شہوانی", "شہوت انگیز", "فحش نگاری", "لن", "لنڈ", "لنڈ چوسنے والا", "لوڑہ", "ماں کمینے", "مشت زنی", "ممے", "مٹھ", "مٹھی", "ویشیا", "پورن", "پھدی", "پیگنگ", "چدائ", "چدک", "چوت", "چودنا", "چوچی", "کسبی", "کسنگ", "گانڈ", "گدا", "ہینڈ جاب", ], "vi": english_flagged_words + [ "cặc", "lồn", "địt", "buồi", "đụ", "nứng", "phò", "bú lol", "bú lon", "bú cac", "bú cak", "bú cax", "bú buoi", "bú mút", "húp lol", "húp lon", "húp sò", "nung lol", "nung lon", "nug lon", "nung cac", "nung buoi", "thèm dit", "thèm lon", "thèm lol", "thèm buoi", "thèm dit", "thèm chich", "thèm chịch", "thèm cax", "thèm cak", "móc lol", "móc lon", "buscu", "lol non", "bướm non", "vú to", "vú bự", "lon to", "phim sex", "phim xex", "phim xxx", ], "zh": english_flagged_words + [ "三级片", "乳交", "卖B", "卖比", "卖淫", "口交", "姣西", "打炮", "打飞机", "抽插", "招妓", "插你", "插死你", "淫水", "肉壁", "肉棍子", "肉缝", "肏", "肛交", ], } # %% ../nbs/03_helpers.ipynb 8 # From Bigscience https://github.com/bigscience-workshop/data-preparation/blob/main/preprocessing/training/01a_catalogue_cleaning_and_filtering/clean_helpers/stopwords.py stopword_ratios = { "ar": 0.07, "bn": 0.002, "ca": 0.25, "en": 0.3, "es": 0.4, "eu": 0.05, "fr": 0.27, "hi": 0.01, "id": 0.15, "pt": 0.2, "ur": 0.01, "vi": 0.08, "zh": 0.1691, } stopwords = { "ar": [ "آنذاك", "أبداً", "أثناء", "أسفل", "أعلى", "أغلب", "أكثر", "ألا", "ألم", "أم", "أمام", "أمس", "أن", "أنا", "أنت", "أنتم", "أنتما", "أنتن", "أو", "أولئك", "أي", "أيان", "أياً", "أية", "أيضاً", "أين", "أينما", "إبان", "إثر", "إثر ذلك", "إذا", "إزاء", "إلا", "إلا أن", "إلى", "إما", "إن", "إنما", "إياك", "إياكم", "إياكما", "إياكن", "إيانا", "إياه", "إياها", "إياهم", "إياهما", "إياهن", "إياي", "الآن", "البتة", "التي", "الذي", "الذين", "اللائي", "اللات", "اللاتي", "اللتان", "اللتين", "اللذان", "اللذين", "اللهم", "اللوات", "اللواتي", "الليلة", "اليوم", "اي", "بألا", "بأن", "بئس", "بئست", "باتجاه", "بالأخص", "بالأمس", "بالتالي", "بالذات", "بالرغم من", "بالضبط", "بالطبع", "بالفعل", "بالقرب", "بالكامل", "بالنسبة ل", "بتاتاً", "بجانب", "بحسب", "بحوالي", "بحيث", "بذلك", "برغم", "برمته", "بشتى", "بصرف النظر عن", "بضع", "بضعة", "بعد", "بعدما", "بعض", "بغض الطرف عن", "بغض النظر عن", "بغية", "بـ", "بقرب", "بل", "بلا", "بلى", "بم", "بما", "بما أن", "بمفرده", "بمقتضى", "بمنأى عن", "بموجب", "بين", "بينما", "تاماً", "تباعاً", "تبعاً", "تجاه", "تحت", "تحديداً", "تحسباً", "تقريباً", "تلك", "تلو", "تماماً", "تمشياً", "ثم", "ثمة", "جانب", "جاهداً", "جداً", "جدياً", "جراء", "جل", "جميع", "جميعاً", "جنوب", "جنوبي", "حتماً", "حتمياً", "حتى", "حسب", "حسبما", "حوالي", "حول", "حيال", "حيث", "حيث أن", "حيثما", "حين", "حينئذ", "حيناً", "حينذاك", "حينما", "خارج", "ختاماً", "خلال", "خلف", "دائماً", "داخل", "دوماً", "دون", "دونما", "ذاك", "ذلك", "رغم", "رغم أن", "ريثما", "زهاء", "ساعة", "سنة", "سوف", "سوى", "سوياً", "شتى", "شرق", "شريطة", "شكراً", "شمال", "صبيحة", "صوب", "ضد", "طالما", "طبقاً", "طواعية", "طوعاً", "طيلة", "عادة", "عام", "عامة", "عبر", "عدا", "عدة", "عسى", "عشية", "عقب", "علاوة على", "علاوة على ذلك", "على", "على الرغم من", "على حد قول", "على غرار", "على هذا", "عما", "عمن", "عموماً", "عن", "عند", "عندئذ", "عندما", "عنوة", "عوضا عن", "غالب", "غالباً", "غداة", "غداً", "غرب", "غير", "غير أن", "ـك", "ـكم", "ـكما", "ـكن", "ـنا", "ـه", "ـها", "ـهم", "ـهما", "ـهن", "ـي", "فجأة", "فجر", "فحسب", "فصاعداً", "فضلاً", "فـ", "فور", "فوراً", "فوق", "في", "في تلك الأثناء", "في غضون ذلك", "في هذه الأثناء", "فيما", "فيما يلي", "قبالة", "قبل", "قبيل", "قد", "قدماً", "قرابة", "قرب", "قسراً", "قطعياً", "قليلاً", "كأن", "كالمعتاد", "كثيراً", "كذا", "كذلك", "كـ", "كل", "كلا", "كلتا", "كلما", "كم", "كما", "كما أن", "كي", "كيف", "لأن", "لئلا", "لا", "لا بأس أن", "لا بد", "لا سيما", "لا لبس أن", "لا مانع", "لابد", "لاحقاً", "لاسيما", "لحظة", "لحوالي", "لدى", "لذا", "لذلك", "لعل", "لـ", "لقد", "لكن", "لكي", "للتو", "لم", "لما", "لماذا", "لن", "لو", "لولا", "ليت", "ليلة", "مؤخراً", "مؤقتاً", "ما", "ماذا", "مباشرة", "متى", "مثل", "مثلاً", "مثلما", "مجاناً", "مجدداً", "مجرد", "محض", "مراراً", "مساء", "مطلقاً", "مع", "مع أن", "مع ذلك", "معاً", "معظم", "مما", "مما زاد الطين بلة", "مما يزيد الطين بلة", "ممن", "من", "من الجدير بالذكر أن", "من المؤسف", "من المؤكد", "من المؤمل", "من المرجح", "من المفترض", "من الممكن", "من ثم", "من جهة أخرى", "من غير المرجح", "من غير الممكن", "من ناحية أخرى", "منذ", "مهما", "نادراً", "ناهيك عن", "نحن", "نحو", "نسبياً", "نعم", "نعمت", "نفس", "نهار", "نهاراً", "هؤلاء", "هاتان", "هاتين", "هدراً", "هذا", "هذان", "هذه", "هذين", "هكذا", "هكذا دواليك", "هل", "هم", "هما", "هن", "هنا", "هناك", "هنالك", "هو", "هي", "و", "وراء", "وسط", "وفق", "وفقاً", "وقت", "وقتما", "يا", "يذكر أن", "يوم", "يوماً", "يومياً", ], "bn": [ "অনেক", "অনেক ", "অন্য ", "অন্যথায়", "আমরা ", "আমার ", "আমি", "আর জন্য ", "আর, ও, এবং ", "আরও সাথে , আরো সঙ্গে ", "উদাহরণ স্বরূপ", "উপর", "এ ", "এ, এটা, এইটা ", "এখানে , এইখানে ", "ও ,ওটা ,ওইটা", "ওখানে, সেখানে ", "ওদের মধ্যে ", "কখন ", "কখনও কখনও", "কম, অল্প ", "কারণ ", "কি", "কিছু ", "কিন্তু ", "কে ", "কেউ", "কেমন ", "কোথায়", "কোনটা ", "ডান", "তাই, সুতরাং", "তার, তাদের, ওর, ওদের ", "তারপর", "তারা ", "তুমি, আপনি ", "তোমরা , আপনারা ", "তোমার, তোর ", "দিকে", "না ", "নিচে", "পরিবর্তে , বরং ", "পর্যন্ত", "বাইরে", "বাম", "ভিতর", "ভিতরে", "মত", "যতক্ষণ না", "যথেষ্ট", "যদি ", "যাহার", "যাহোক", "সব, সবাই ", "সবাই", "সর্বাধিক", "সামান্য", "সে রকমই", "সে, ও", ], "ca": [ "-ho", "-la", "-lo", "-ne", "-se", "a", "abans", "això", "al", "algun", "alguna", "algunes", "alguns", "algú", "allò", "als", "altra", "altre", "altres", "amb", "aqueix", "aqueixa", "aqueixes", "aqueixos", "aquell", "aquella", "aquelles", "aquells", "aquest", "aquesta", "aquestes", "aquestos", "aquests", "bastant", "bastants", "bé", "cada", "cadascun", "cadascuna", "cadascú", "cap", "cert", "certa", "certes", "certs", "com", "con", "contra", "d", "d'", "da", "damunt", "darrere", "davant", "de", "del", "dels", "des", "dient", "diferent", "diferents", "dins", "dintre", "dir", "divers", "diverses", "diversos", "durant", "eixa", "eixe", "eixes", "eixos", "el", "ell", "ella", "elles", "ells", "els", "em", "emperò", "en", "endavant", "enfront", "ens", "entre", "envers", "era", "eren", "es", "estan", "estant", "estar", "estaran", "estarem", "estaria", "estarien", "estarà", "estat", "estava", "estaven", "este", "estem", "estes", "esteu", "estic", "estiguem", "estiguessin", "estigui", "estiguin", "estigués", "estos", "està", "et", "ets", "excepte", "extra", "fa", "faci", "facin", "facis", "faig", "fan", "faran", "farem", "fareu", "faria", "farien", "faries", "faràs", "faràs", "faré", "faríem", "faríeu", "fas", "feia", "feien", "feies", "fem", "fent", "fer", "fes", "fessin", "fessis", "fet", "feu", "fins", "foren", "fos", "fossin", "fou", "front", "fèiem", "fèieu", "féssiu", "gaire", "gaires", "gràcies", "ha", "hagi", "hagin", "haguem", "haguessin", "haguessis", "hagut", "hagués", "haguéssim", "haguéssin", "haguéssiu", "han", "has", "hauran", "haurem", "haureu", "hauria", "haurien", "hauries", "haurà", "hauràs", "hauré", "hauríem", "hauríeu", "havent", "haver", "havia", "havien", "havies", "havíem", "havíeu", "he", "hem", "heu", "hi", "ho", "hom", "hàgim", "i", "in", "jo", "l", "l", "l'", "la", "las", "les", "li", "llur", "llurs", "lo", "los", "ls", "m", "m", "m'", "malgrat", "mancant", "massa", "mateix", "mateixa", "mateixes", "mateixos", "me", "mentre", "menys", "mes", "meu", "meus", "meva", "meves", "mi", "mitjançant", "molt", "molta", "moltes", "molts", "moltíssim", "moltíssima", "moltíssimes", "moltíssims", "n", "n'", "ne", "ni", "ningun", "ninguna", "ningunes", "ninguns", "ningú", "no", "nombroses", "nombrós", "nos", "nosaltres", "nostra", "nostre", "nostres", "ns", "o", "on", "os", "pel", "pels", "per", "perqu", "perquè", "però", "poc", "poca", "pocs", "poques", "prou", "qual", "quals", "qualsevol", "quan", "quant", "quantes", "quants", "que", "quelcom", "qui", "quin", "quina", "quines", "quins", "què", "rere", "respecte", "s", "s", "s'", "sa", "sabent", "salvant", "se", "segons", "sens", "sense", "sent", "ser", "seran", "serem", "seria", "serien", "serà", "seré", "seríem", "ses", "seu", "seus", "seva", "seves", "si", "siguem", "sigui", "siguin", "sigut", "sinó", "sobre", "som", "sota", "su", "suficient", "séssim", "sóc", "són", "t", "t'", "tal", "tals", "tant", "tanta", "tantes", "tants", "te", "tenc", "tendran", "tendrem", "tendreu", "tendria", "tendrien", "tendries", "tendràs", "tendràs", "tendré", "tendríem", "tendríeu", "tenen", "tenia", "tenien", "tenies teníem", "tenim", "tenir", "teniu", "tens", "teníeu", "teu", "teus", "teva", "ti", "tinc", "tindran", "tindre", "tindrem", "tindreu", "tindria", "tindrien", "tindries", "tindràs", "tindràs", "tindré", "tindríem", "tindríeu", "tingut", "tot", "tota", "total", "totes", "tothom", "tots", "tu", "té", "u", "ultra", "un", "una", "unes", "uns", "us", "va", "vagi", "vagin", "vaig", "vam", "van", "varen", "vau", "vers", "versus", "via", "vora", "vos", "vosaltres", "vostre", "vostè", "vostès", "vàrem", "y", "érem", "és", ], "en": [ "a", "a.k.a", "aboard", "about", "above", "abt", "accord", "according", "across", "after", "against", "ago", "aground", "ahead", "aka", "ala", "albeit", "all", "along", "alongside", "although", "am", "amid", "amidst", "among", "amongst", "amoung", "an", "and", "and/or", "another", "any", "any1", "anybody", "anyone", "anything", "are", "around", "as", "aside", "astride", "at", "atop", "away", "b", "b/c", "b/t", "back", "base", "based", "bc", "be", "because", "been", "before", "behind", "being", "below", "beneath", "beside", "besides", "between", "beyond", "board", "both", "btwn", "but", "by", "can", "cause", "circa", "cos", "could", "coz", "cus", "depend", "depending", "despite", "did", "do", "does", "down", "due", "during", "each", "either", "else", "even", "ever", "every", "everybody", "everyone", "everything", "except", "for", "forth", "from", "get", "gets", "getting", "give", "given", "got", "had", "half", "has", "hav", "have", "having", "he", "her", "hers", "herself", "him", "himself", "his", "how", "however", "i", "i'd", "if", "in", "include", "including", "inside", "instead", "into", "is", "it", "it's", "its", "itself", "lest", "like", "made", "many", "may", "me", "might", "mine", "minus", "most", "much", "must", "my", "myself", "nary", "near", "nearby", "neither", "next", "nigh", "no", "nobody", "none", "noone", "nor", "not", "nothing", "notwithstanding", "of", "off", "on", "onboard", "once", "one", "ones", "oneself", "only", "onto", "opposite", "or", "other", "others", "ought", "our", "ours", "ourselves", "out", "outside", "over", "overt", "own", "past", "per", "plus", "prior", "quite", "rather", "re", "regard", "regarding", "regardless", "round", "s/he", "save", "self", "shall", "she", "should", "side", "since", "so", "some", "somebody", "someone", "something", "such", "sure", "teh", "than", "thanks", "that", "the", "their", "theirs", "them", "themselves", "then", "there", "these", "they", "they're", "thier", "this", "tho", "those", "thou", "though", "through", "throughout", "thru", "thy", "til", "till", "to", "together", "too", "toward", "towards", "u", "under", "underneath", "unless", "unlike", "until", "unto", "up", "upon", "ur", "us", "use", "versus", "via", "vs", "vs.", "w/", "w/o", "w/out", "was", "we", "were", "what", "whatever", "whatnot", "when", "whenever", "where", "whereas", "wherever", "whether", "which", "while", "whilst", "whither", "who", "who's", "whoever", "whom", "whomever", "whose", "why", "will", "with", "within", "without", "wo", "worth", "would", "wud", "y'all", "ya", "yet", "yo", "you", "you're", "your", "youre", "yours", "yourself", "yourselves", ], "es": [ "a", "a fin de que", "a medida que", "a menos que", "a modo de", "a no ser que", "a poco que", "a que", "abandono", "acerca", "acostumbra", "adónde", "ahora", "al igual que", "al lado de", "algo", "alguien", "alguna", "algunas", "alguno", "algunos", "algún", "alrededor", "ambas", "ambos", "ante", "aparece", "aparecen", "apareció", "aparte", "apenas", "aquel", "aquella", "aquellas", "aquello", "aquellos", "aquesa", "aquesas", "aquesos", "aquesta", "aquestas", "aquesto", "aquestos", "aquél", "aquélla", "aquéllas", "aquéllos", "arrepentir", "arrepentiréis", "así", "así como", "así que", "atlético", "aun", "aunque", "aún", "bajo", "bastante", "bastantes", "bien", "cada", "casi", "cerca", "chance", "cierta", "ciertas", "cierto", "ciertos", "comenzado", "comenzó", "comienzan", "como", "como quiera que", "como si", "con", "con tal de", "con tal que", "conforme", "conmigo", "conque", "considera", "consideradas", "consideran", "consideró", "consigo", "contendrán", "contigo", "continuaba", "continuar", "continuaron", "continuase", "continuó", "continúa", "contra", "corresponden", "corresponder", "cual", "cual si", "cuales", "cualesquier", "cualesquiera", "cualquier", "cualquiera", "cuan", "cuando", "cuanta", "cuantas", "cuanto", "cuanto quiera que", "cuantos", "cuya", "cuyas", "cuyo", "cuyos", "cuàles", "cuál", "cuáles", "cuán", "cuándo", "cuánta", "cuántas", "cuánto", "cuántos", "cómo", "da", "dado que", "dar", "de", "de manera que", "de modo que", "deba", "debajo", "deban", "debas", "debe", "debemos", "deben", "deber", "deberá", "deberán", "debería", "deberíamos", "deberían", "debes", "debido", "debiera", "debieron", "debimos", "debió", "debo", "debía", "debíamos", "debían", "declaraba", "declarada", "declarado", "declarase", "declaro", "declaró", "dejaban", "dejado", "dejan", "dejará", "del", "delante", "demasiada", "demasiadas", "demasiado", "demasiados", "demás", "den", "dentro", "dentro_de", "des", "desde", "después", "detrás", "di", "dicha", "dichas", "dicho", "dichos", "diferente", "diferentes", "distintas", "distinto", "distintos", "diversas", "diverso", "diversos", "don", "donde", "dos", "durante", "dónde", "echar", "el", "el que", "ella", "ellas", "ello", "ellos", "en", "en cambio", "en caso de", "en la medida en que", "en tanto que", "encima", "enfrente", "entonces", "entre", "era", "eramos", "eran", "eras", "eres", "ergo", "es", "esa", "esas", "escasa", "escasas", "escaso", "escasos", "escrito", "ese", "eso", "eso que", "esos", "esotra", "esotro", "esta", "estaba", "estabais", "estabamos", "estaban", "estabas", "estado", "estamos", "estan", "estando", "estar", "estaremos", "estará", "estarán", "estaré", "estaría", "estaríamos", "estarían", "estarías", "estas", "este", "estemos", "esto", "estos", "estotra", "estotro", "estoy", "estuve", "estuviera", "estuvieran", "estuvieron", "estuviese", "estuviesen", "estuvimos", "estuvo", "está", "estábamos", "estáis", "están", "estás", "esté", "estén", "ex", "excepto", "frente", "fue", "fuera", "fueran", "fuere", "fueron", "fuese", "fuesen", "fui", "fuimos", "gracias", "gracias_a", "habeis", "haber", "haberle", "haberse", "habido", "habiendo", "habiéndo", "habremos", "habrá", "habrán", "habrás", "habré", "habría", "habríamos", "habrían", "habéis", "había", "habíamos", "habían", "habías", "hace", "hacer", "hacia", "hacía", "halla", "han", "has", "hasta", "hasta que", "hay", "haya", "hayamos", "hayan", "hayas", "he", "hecho", "hemos", "hola", "hubiera", "hubieran", "hubieron", "hubiese", "hubiesen", "hubiéramos", "hubo", "iba", "iban", "ido", "incluso", "ir", "irá", "irán", "iré", "iría", "junto a", "la", "las", "le", "lejos", "les", "lo", "los", "luego", "mal que", "mas", "me", "mediante", "menos", "mes", "mi", "mientras", "mientras que", "mis", "misma", "mismas", "mismo", "mismos", "mismísimo", "morir", "moriría", "mostrado", "mostraron", "mucha", "muchas", "muchisimas", "muchisimio", "muchisimo", "mucho", "muchos", "muchísima", "muchísimas", "muchísimo", "muchísimos", "más", "más bien", "mí", "mía", "mías", "mío", "míos", "nada", "nadie", "negar", "ni", "ni que", "ningun", "ninguna", "ningunas", "ninguno", "ningunos", "ningún", "no", "no obstante", "noche", "nombrado", "nombró", "nos", "nosotros", "nuestra", "nuestras", "nuestro", "nuestros", "o", "os", "otra", "otras", "otro", "otros", "pa", "para", "para que", "parezca", "partir", "pasar", "pero", "po", "poca", "pocas", "poco", "pocos", "podamos", "podeis", "podemos", "poder", "podes", "podido", "podras", "podre", "podremos", "podriaís", "podrá", "podrán", "podrás", "podré", "podréis", "podría", "podríamos", "podrían", "podéis", "podía", "podíamos", "podían", "poner", "poquito", "por", "por el contrario", "por ende", "por eso", "por lo que", "por mucho que", "por más que", "por no hablar de", "por si", "porque", "pos", "post", "pre", "pro", "propia", "propias", "propio", "propios", "pude", "pudiendo", "pudiera", "pudieran", "pudieras", "pudieron", "pudiese", "pudiesen", "pudimos", "pudo", "pueda", "puedan", "puedas", "puede", "pueden", "puedes", "puedo", "pues", "puesto", "puesto que", "que", "queda", "quedaba", "quedan", "quedó", "queremos", "querer", "queriendo", "quien", "quienes", "quienesquiera", "quienquier", "quienquiera", "quiera", "quiere", "quisiera", "quién", "quiénes", "qué", "re", "resulta", "resultado", "resultaría", "resulte", "sabe", "saber", "sabiendo", "salen", "salir", "salió", "salvo", "se", "sea", "seamos", "sean", "seas", "seguir", "seguirá", "seguía", "según", "semejante", "semejantes", "semi", "sendas", "sendo", "sendos", "ser", "será", "serán", "serás", "seré", "seréis", "sería", "serían", "serías", "si", "si bien", "si y solo si", "sido", "siempre que", "siendo", "siente", "siento", "siga", "sigamos", "sigue", "sin", "sino", "siquiera", "sobre", "sobrer", "sobrir", "soler", "solían", "somos", "son", "soy", "sub", "suele", "suelen", "suelo", "super", "supo", "sur", "sus", "suya", "suyas", "suyo", "suyos", "sé", "sí", "tal", "tales", "tanta", "tantas", "tanto", "tantos", "tantísima", "tantísimas", "tantísimos", "te", "tendremos", "tendrian", "tendrá", "tendrán", "tendría", "tendrían", "tenemos", "tener", "tenga", "tengan", "tengo", "tenia", "tenido", "teniendo", "tenéis", "tenía", "teníamos", "tenían", "terminas", "ti", "tiene", "tienen", "tienes", "toda", "todas", "todavía", "todes", "todo", "todos", "trabajado", "trans", "tras", "tu", "tus", "tuve", "tuviera", "tuvieron", "tuviese", "tuvo", "tuya", "tuyas", "tuyo", "tuyos", "tú", "u", "un", "una", "unas", "une", "unir", "uno", "unos", "usted", "ustedes", "va", "vamos", "van", "varias", "varios", "varía", "vas", "vaya", "vayan", "venir", "venía", "ver", "vice", "vieron", "vino", "vis a vis", "visto que", "volver", "volverá", "volveríamos", "volvió", "vos", "vosotras", "vosotros", "voy", "vuelva", "vuelvan", "vuelve", "vuelven", "vuestra", "vuestras", "vuestro", "vuestros", "vía", "y", "ya", "ya que", "yo", "ámbos", "él", "éramos", "ésa", "ésas", "ése", "ésos", "ésta", "éstas", "éste", "ésto", "éstos", "íbamos", "ó", "ú", "última", "últimas", "último", "últimos", "\ufeffdesde", "\ufeffel", "\ufeffen", "\ufeffla", "\ufefflas", ], "eu": [ "*edin", "*edun", "*ezan", "aitzitik", "ala", "alabaina", "aldiz", "alegia", "alta", "anitz", "anitzek", "anitzeko", "anitzez", "antzera", "arabera", "ari", "ari_izan", "ariko", "arren", "asko", "askoan", "askok", "askoko", "askorekin", "askoren", "askorengan", "askorentzat", "askori", "askorik", "askotako", "askotan", "askotariko", "askotatik", "askotaz", "askotxo", "askoz", "at", "aunitz", "aurka", "aurkako", "aurretik", "azpian", "azpitik", "ba", "bada", "badago", "badezake", "badidazu", "badiezu", "badio", "badiogu", "badiote", "badiougu", "badiozu", "badira", "badirela", "baditu", "baditugu", "badituzte", "badituzu", "badu", "badugu", "badugun", "badut", "badute", "baduzu", "bagara", "bagatzaizkio", "bagenu", "baginen", "bai", "baietz", "baikaituzte", "bailegoen", "bailituen", "bailitzake", "bailitzateke", "baina", "bainan", "bainintzen", "bainizkion", "baino", "baita", "baitabil", "baitaiteke", "baitan", "baitaude", "baitiete", "baitigu", "baitio", "baitiote", "baitira", "baititu", "baititugu", "baitituzte", "baitituzu", "baititzaket", "baitizkio", "baitu", "baitugu", "baitute", "baituzu", "baitzaio", "baitzaizkio", "baitzara", "baitzegoen", "baitzen", "baitzeuden", "baitzien", "baitzion", "baitzioten", "baitziren", "baitzitekeen", "baitzituen", "baitzitzaion", "baitzuen", "baitzuten", "baizik", "baizituen", "baldin", "balego", "balira", "baliteke", "balitu", "balituzkete", "balitz", "balitzait", "balu", "balute", "banintz", "banitu", "banu", "barik", "barru", "bat", "batera", "batera\x97", "batere", "batzu", "batzuei", "batzuek", "batzuekin", "batzuen", "batzuengatik", "batzuentzat", "batzuetako", "batzuetakoak", "batzuetan", "batzuetara", "batzuetatik", "batzuez", "batzuk", "batzutako", "batzutan", "bazaigu", "bazaizu", "bazara", "bazen", "bazina", "baziren", "bazituen", "bazituzten", "bazuen", "bazuten", "bederen", "behintzat", "bera", "beragatik", "beraiei", "beraiek", "beraiekin", "beraien", "beraietaz", "berak", "berarekin", "beraren", "berarengan", "berarengana", "berarengandik", "berarengatik", "berarentzat", "berari", "berauek", "berauen", "berauetan", "beraz", "berbera", "berberagatik", "berberak", "berberarekin", "berberaren", "berberera", "bere", "berea", "bereak", "berean", "berek", "bereko", "berekoa", "berekoak", "beren", "beretan", "beretik", "beretzat", "berriz", "bertze", "bertzeekin", "bertzela", "bestalde", "bestaldean", "beste", "bestea", "besteak", "bestean", "bestearekiko", "bestearekin", "bestearen", "bestearengandik", "besteari", "besteaz", "besteei", "besteen", "besteengandik", "besteetan", "besteko", "bestekoa", "bestela", "bestera", "besterantz", "besterik", "bestetan", "bestetik", "bezala", "bezalako", "bezalakoa", "bezalakoen", "bidez", "bitartean", "bitarteko", "bitarterako", "bitartez", "da", "dabil", "dabiltza", "dadila", "dadin", "dago", "dagoela", "dagoelako", "dagoen", "dagoena", "dagoenaren", "dagoenean", "dagoenez", "daiteekenaren", "daiteke", "daitekeela", "daitekeen", "daitekeena", "daitekeenaren", "daitekeenez", "daiteken", "daitezela", "daitezen", "daitezke", "daitezkeelako", "daitezkeelarik", "daitezkeen", "daitezkeenak", "daitezkela", "dakizuke", "danok", "daude", "daudela", "daudelako", "dauden", "daudenak", "daudenek", "daudenen", "daudenik", "dautzuet", "dela", "delako", "delarik", "den", "dena", "denak", "denaren", "denarentzat", "denari", "denean", "denek", "denen", "denera", "denerako", "denetan", "denetarik", "denetik", "denez", "denik", "denok", "denon", "denona", "denontzat", "deus", "dexente", "dezadan", "dezagun", "dezake", "dezakedala", "dezakedan", "dezakedanean", "dezakeela", "dezakeen", "dezakeena", "dezakegu", "dezakegula", "dezakegun", "dezakela", "dezakelako", "dezaket", "dezakete", "dezaketela", "dezaketen", "dezakezu", "dezakezuen", "dezakezuenez", "dezakezunez", "dezala", "dezan", "dezaten", "dezente", "dezenterekin", "dezentetan", "diat", "didala", "didana", "didate", "didazue", "die", "diegu", "diegun", "diela", "dien", "dienak", "diet", "diete", "dietela", "dietelako", "dietenean", "diezaiekete", "diezaiokeena", "diezaiokete", "diezaiola", "diezaioten", "diezaizkioke", "diezazkioke", "diezazkiokeen", "digu", "digun", "digute", "digutela", "diguten", "digutenean", "diguzu", "dik", "din", "dinat", "dio", "diogu", "diogulako", "diogun", "diola", "dion", "diona", "dionean", "dionez", "diot", "diote", "diotela", "dioten", "diotena", "diotenak", "diotenek", "diozu", "dira", "direla", "direlako", "direlakoan", "direlakotz", "diren", "direnak", "direnean", "direnek", "direnen", "direnetan", "direnez", "direnik", "dit", "ditake", "ditazke", "ditin", "ditu", "ditudala", "ditudalako", "ditudan", "ditudanean", "dituela", "dituelako", "dituelarik", "dituen", "dituena", "dituenak", "dituenean", "ditugu", "ditugula", "ditugun", "ditugunez", "ditun", "ditut", "dituzte", "dituztela", "dituztelako", "dituzten", "dituztenak", "dituztenean", "dituztenek", "dituztenekin", "dituztenen", "dituzu", "dituzue", "dituzuen", "dituzula", "dituzun", "dituzunik", "ditzagun", "ditzake", "ditzakeen", "ditzakegu", "ditzakegula", "ditzakete", "ditzaketela", "ditzaketelako", "ditzaketen", "ditzakezu", "ditzan", "dizkidazu", "dizkie", "dizkien", "dizkiet", "dizkiete", "dizkigu", "dizkigula", "dizkigunak", "dizkigute", "dizkio", "dizkiola", "dizkion", "dizkiot", "dizkiotela", "dizkit", "dizkizuet", "dizkizugu", "dizu", "dizuet", "dizugu", "dizut", "dizute", "du", "duan", "dudala", "dudalarik", "dudan", "dudanak", "dudanarekin", "dudanean", "dudanik", "duela", "duelako", "duelakoan", "duen", "duena", "duenak", "duenaren", "duenarentzat", "duenari", "duenean", "duenentz", "duenez", "duenik", "dugu", "dugula", "dugulako", "dugun", "duguna", "dugunari", "dugunean", "dugunez", "dugunik", "duk", "dun", "dunala", "dut", "dute", "dutela", "dutelako", "dutelakoan", "duten", "dutena", "dutenagatik", "dutenak", "dutenaren", "dutenean", "dutenek", "duteneko", "dutenen", "dutenena", "dutenenetatik", "dutenentz", "dutenetakoa", "dutenetik", "dutenez", "duzu", "duzue", "duzuela", "duzuen", "duzuenean", "duzuenez", "duzula", "duzun", "duzunarekin", "ea", "edo", "edonor", "edota", "edozein", "edozeinek", "edozer", "edozertarako", "elgarrekin", "elgarri", "elkar", "elkarrekiko", "elkarrekin", "elkarren", "elkarri", "ene", "era", "ere", "esker", "eta", "eurak", "eurei", "eurek", "eurekin", "euren", "eurentzat", "ez", "ezan", "ezazu", "ezazue", "ezean", "ezein", "ezen", "ezer", "ezerekin", "ezerk", "ezertarako", "ezertaz", "ezertxo", "ezetz", "ezik", "ezta", "gabe", "gabeko", "gainera", "gainerakoan", "gainerat", "gainera\x97", "gainetik", "gaitezen", "gaitezke", "gaitezkeela", "gaitu", "gaituela", "gaituzte", "gaituztenak", "gara", "garela", "garelako", "garen", "garenez", "garenok", "gaude", "gaudenak", "gehiago", "gehiagoan", "gehiagok", "gehiagoko", "gehiagorekin", "gehiegi", "gehiegirik", "gehiegitxo", "gehien", "gehiena", "gehienak", "gehienek", "gehienekin", "gehienentzako", "gehienentzat", "gehienetako", "gehienetan", "gehienok", "gehientsu", "gehientsuen", "gehitxo", "gehixeago", "genbiltzan", "genezake", "genien", "genion", "genituela", "genituelako", "genituen", "genituzke", "genituzkeelako", "genizkion", "genizuen", "genizun", "genuela", "genuelako", "genuen", "genuenean", "genuenetik", "genuenez", "genuke", "genukeen", "geratu", "geratzen", "geroztik", "geu", "geure", "geuregan", "geuri", "ginela", "ginen", "ginenean", "ginenekoa", "gintezkeela", "gintuen", "gintuenagatik", "gintunan", "gintuzten", "gintzaizkion", "gu", "guk", "gure", "gurean", "gurekin", "guretzat", "guri", "gutako", "gutaz", "guti", "gutiz", "gutiz-gehien", "gutiz-gehienek", "gutxi", "gutxiago", "gutxiagorako", "gutxiagorekin", "gutxian", "gutxien", "gutxienez", "gutxik", "gutxiko", "gutxira", "gutxiren", "gutxitan", "guzi", "guziak", "guziarekin", "guziekin", "guzientzat", "guzti", "guztia", "guztiagatik", "guztiak", "guztian", "guztiarekin", "guztiaren", "guztiari", "guztiaz", "guztiei", "guztiek", "guztien", "guztiengan", "guztientzako", "guztientzat", "guztietako", "guztietan", "guztietara", "guztietatik", "guztiez", "guztioi", "guztiok", "guztion", "guztionak", "guztionen", "guztiontzat", "guztira", "guztitako", "haatik", "haiek", "haiekin", "haien", "haiengan", "haiengandik", "haietako", "haietan", "haietatik", "hainbat", "hainbatek", "hainbaten", "hainbatez", "hainbertze", "hainbeste", "hainbesterako", "haiteke", "haiz", "halaber", "halere", "harekin", "haren", "harena", "harentzat", "hargatik", "hari", "hark", "hartako", "hartan", "hartara", "hartarako", "hartatik", "hau", "haudala", "hauei", "hauek", "hauekin", "hauen", "hauetako", "hauetan", "hauetara", "hauetarako", "hauetarik", "hauetatik", "hauexek", "hauez", "hauxe", "heu", "heure", "hhriek", "hi", "hik", "hinduan", "hintzen", "hire", "hiri", "honegatik", "honek", "honekin", "honen", "honengatik", "honentzat", "honetako", "honetan", "honetara", "honetarako", "honetatik", "honetaz", "honez", "honi", "hori", "horiei", "horiek", "horiekin", "horien", "horientzat", "horietako", "horietakoren", "horietan", "horietarako", "horietariko", "horietatik", "horiez", "horixe", "horregatik", "horrek", "horrekin", "horren", "horrenbeste", "horrenbestez", "horrengatik", "horretako", "horretan", "horretantxe", "horretara", "horretarako", "horretatik", "horretaz", "horrexegatik", "horrexekin", "horrexetan", "horrez", "horrezaz", "horri", "hortaz", "huan", "huntan", "hura", "huraxe", "iezaidazu", "iezaiezu", "iezaion", "iezaiozu", "inor", "inoren", "inorentzako", "inori", "inork", "inortaz", "irian", "itzazu", "izaki", "kontra", "lezake", "lezakeen", "lezakete", "lezan", "liekeela", "liezaiokeen", "lioke", "liokeela", "liokeen", "lirateke", "liratekeela", "liteke", "litekeela", "litekeen", "litekeena", "litezke", "lituzkeela", "lituzkeen", "lituzkete", "litzaidake", "litzaiguke", "litzateke", "litzatekeela", "litzatekeelako", "litzatekela", "lizateke", "luke", "lukeela", "lukeelako", "lukeen", "lukeena", "lukete", "luketen", "nabil", "nago", "nahiko", "nahikoa", "nahikorik", "nahiz", "naiteke", "naiz", "naizela", "naizen", "naizenean", "naizenetan", "naizenetik", "naizenez", "naizenik", "nau", "nauen", "nauenarentzat", "nauenean", "nauk", "naun", "naute", "nautela", "nauzu", "nauzun", "nazan", "nazaten", "nazazu", "nazazun", "nenbilen", "nengoela", "nengoen", "nere", "neu", "neuk", "neure", "nezake", "ni", "nian", "nien", "nigan", "nik", "ninduen", "ninduten", "nintekeela", "nintzaion", "nintzateke", "nintzatekeela", "nintzela", "nintzelako", "nintzen", "nintzenean", "nion", "nire", "nirea", "niregan", "niregana", "niregatik", "nirekin", "niretzako", "niretzat", "niri", "nitaz", "nituela", "nituen", "nituzke", "nizuke", "nor", "norbait", "norbaitek", "norbaitekin", "norbaiten", "norbaitengana", "norbaitentzat", "norbaiti", "norbera", "norberak", "norberaren", "norbere", "noren", "nori", "nork", "nornahi", "nornahik", "nortzuk", "nortzuren", "nuela", "nuen", "nuena", "nuenean", "nuenetik", "nuke", "nukeela", "omen", "ondoan", "ondoko", "ondora", "ondoren", "ondorengo", "ondotik", "ordea", "ordez", "orduan", "oro_har", "orobat", "orohar", "orok", "ororen", "orori", "ostean", "ostera", "osterantzean", "pean", "piskat", "pixka_bat", "pixkat", "pranko", "ugari", "ugarik", "ugarirekin", "ugariren", "ugaritan", "zagok", "zaidan", "zaidanaren", "zaie", "zaiela", "zaien", "zaienez", "zaigu", "zaigun", "zaiguna", "zaigunean", "zaik", "zaio", "zaiola", "zaiolako", "zaion", "zaiona", "zait", "zaitez", "zaitezen", "zaitu", "zaitut", "zaituzte", "zaitzakegu", "zaizkidan", "zaizkie", "zaizkiela", "zaizkien", "zaizkigu", "zaizkio", "zaizkiola", "zaizkion", "zaizkit", "zaizkizu", "zaizkizue", "zaizkizun", "zaizu", "zaizue", "zara", "zarela", "zarete", "zatekeela", "zatekeen", "zatzait", "zaude", "ze", "zebilen", "zedin", "zegoan", "zegoela", "zegoelako", "zegoen", "zegoenez", "zegok", "zehar", "zein", "zeina", "zeinek", "zeinen", "zeintzu", "zeintzuetan", "zeintzuk", "zela", "zelako", "zelarik", "zen", "zena", "zenak", "zenarekin", "zenari", "zenbait", "zenbaitek", "zenbaiten", "zenbaitetan", "zenbaiti", "zenbaitzuk", "zenbat", "zenbateraino", "zenean", "zenekoa", "zenetik", "zenez", "zeniguten", "zenigutenez", "zenik", "zenituen", "zenitzakeen", "zenuela", "zenuen", "zenuke", "zenukete", "zenutela", "zenuten", "zeozer", "zer", "zer_edo_zer", "zerbait", "zerbaitek", "zerbaitengatik", "zerbaitetarako", "zeren", "zerendako", "zeri", "zerk", "zertan", "zertara", "zertarako", "zertaz", "zertxobait", "zeu", "zeudela", "zeudelako", "zeuden", "zeudenak", "zeuk", "zeure", "zezakeen", "zezaken", "zezaketen", "zezala", "zezan", "zezaten", "zidan", "zidatelako", "zidaten", "zidatena", "zidatenak", "zidatenean", "ziela", "zien", "zienez", "zietela", "zietelako", "zieten", "ziezaion", "zigun", "zigunez", "ziguten", "zinan", "zinen", "zintudan", "zintuztela", "zintuztenean", "ziola", "ziolako", "ziolarik", "zion", "ziona", "zionean", "zionez", "zioten", "ziotenak", "zirela", "zirelako", "zirelakoan", "zirelarik", "ziren", "zirenak", "zirenean", "zirenetik", "zirenez", "zirenik", "ziren\x97", "zirezte", "zitekeela", "zitekeen", "zitekeena", "zitekeenik", "zitezen", "zitezkeela", "zitezkeelakoan", "zitezkeen", "zituela", "zituelako", "zituelarik", "zituen", "zituenean", "zituenei", "zituztela", "zituztelarik", "zituzten", "zituztenak", "zituztenetik", "zitzaidakeen", "zitzaidala", "zitzaidan", "zitzaien", "zitzaigun", "zitzaiola", "zitzaion", "zitzaionagatik", "zitzaionean", "zitzaizkidan", "zitzaizkien", "zitzaizkienean", "zitzaizkigun", "zitzaizkion", "zitzaizkon", "zitzaizun", "zitzakeen", "zitzaketenak", "zizioten", "zizkidaten", "zizkien", "zizkienik", "zizkieten", "zizkigun", "zizkiola", "zizkion", "zizkiona", "zizkioten", "zizkiotenekin", "zizuen", "zizun", "zoin", "zonbat", "zu", "zuei", "zuek", "zuela", "zuelako", "zuelarik", "zuen", "zuena", "zuenak", "zuenarentzat", "zuenean", "zuenetik", "zuenez", "zuenik", "zuentzako", "zuetako", "zuetaz", "zugandik", "zuk", "zukeen", "zuketen", "zure", "zureak", "zurekin", "zuretzat", "zutela", "zutelako", "zutelarik", "zuten", "zutena", "zutenean", "zuteneko", "zutenetik", "zutenez", ], "fr": [ "a", "afin", "ai", "aie", "aient", "ainsi", "ait", "alias", "aller", "allons", "apres", "après", "as", "au", "au-delà", "aucun", "aucune", "aucunes", "aucuns", "aujourd'", "auprès", "auquel", "aura", "aurai", "auraient", "aurais", "aurait", "aurions", "aurons", "auront", "autant", "autour", "autre", "autres", "autrui", "auxquelles", "auxquels", "avaient", "avais", "avait", "avant", "avec", "avez", "aviez", "avions", "avoir", "avons", "ayant", "ayez", "ayons", "beaucoup", "c'est-à-dire", "c-à-d.", "ca", "car", "ce", "ceci", "cela", "celle", "celle-ci", "celles", "celles-ci", "celui", "celui-ci", "celui-là", "cent", "certain", "certaine", "certaines", "certains", "ces", "cet", "cette", "ceux", "ceux-ci", "ceux-là", "cf.", "chacun", "chacune", "chaque", "chez", "ci", "cinq", "combien", "comme", "comment", "concernant", "contre", "cà", "d'après", "d'autres", "dans", "de", "dehors", "depuis", "derrière", "des", "deux", "devait", "devant", "devez", "devions", "devoir", "devons", "devra", "devraient", "devrait", "devrions", "devrons", "devront", "doit", "doivent", "donc", "dont", "du", "durant", "dès", "début", "dû", "elle", "elle-même", "elles", "elles-mêmes", "en", "entre", "entres", "envers", "environ", "es", "est", "et", "etaient", "etant", "etre", "eut", "eux", "eux-mêmes", "excepté", "eût", "faire", "fais", "faisaient", "faisait", "faisant", "fait", "faite", "faites", "fasse", "fassent", "fera", "ferait", "feront", "firent", "fit", "font", "furent", "fussent", "fut", "fût", "für", "grâce", "hormis", "hors", "i", "il", "ils", "iront", "je", "jusque", "l'on", "la", "ladite", "laquelle", "le", "le/lui", "ledit", "lequel", "les", "lesdites", "lesquelles", "lesquels", "leur", "leurs", "lors", "lorsque", "lui", "lui-aussi", "lui-même", "là", "ma", "maint", "maintes", "mais", "malgré", "me", "mes", "mien", "moi", "moi-même", "moins", "mon", "ne", "ni", "nonobstant", "nos", "notre", "nous", "nous-mêmes", "nul", "nôtre", "nôtres", "on", "ont", "onze", "ou", "outre", "où", "par", "parce", "parmi", "pas", "pendant", "personne", "peu", "peut", "peuvent", "peux", "plupart", "plus", "plusieurs", "pour", "pourquoi", "pourra", "pourraient", "pourrait", "pourrez", "pourrons", "pourront", "pouvait", "pouvez", "pouvoir", "pouvons", "presque", "près", "pu", "puis", "puisque", "puisse", "puissent", "puissions", "qu", "quand", "quant", "quarante", "quatre", "que", "quel", "quelconque", "quelle", "quelles", "quelqu'un", "quelque", "quelques", "quelques-unes", "quelques-uns", "quelqu’un", "quels", "qui", "quiconque", "quid", "quoi", "quoique", "rien", "sa", "sans", "sauf", "se", "selon", "sera", "serai", "seraient", "serais", "serait", "seras", "serez", "seriez", "serions", "serons", "seront", "ses", "si", "sien", "sienne", "siennes", "siens", "sinon", "six", "soi", "soi-même", "soient", "sois", "soit", "sommes", "son", "sont", "sous", "soyez", "soyons", "suis", "sur", "t-il", "ta", "tandis", "tant", "tantôt", "te", "tel", "telle", "telles", "tes", "tien", "toi", "ton", "tous", "tout", "toute", "toutes", "trois", "tte", "tu", "un", "une", "unes", "uns", "unt", "va", "vais", "van", "vers", "versus", "via", "voici", "voilà", "voir", "voire", "vont", "vos", "votre", "vous", "vous-même", "vs", "vu", "y", "à", "á", "ça", "étaient", "étais", "était", "étant", "étiez", "étions", "été", "êtes", "être", ], "hi": [ "अंदर", "अकेला", "अतिरिक्त", "अथवा, या", "अधिकांश", "अन्यथा", "अब, अभि, इसी वक्त", "अभी तक", "आधा", "आप, तुम, तुजे", "आपका, तुम्हारा, तेरा", "इधर, यहाँ", "इन्हें, इन", "इस तरफ", "इस से", "इसका, इसकी", "इसके द्वारा", "इसके साथ", "इसलिए", "इसलिए, तो", "उदाहरण के लिए", "उन को, इन को, उन्हें, इन्हें", "उनका, उनके, उनकी, इनका", "उनके", "उनमें से", "उन्हें", "उस तरफ, उसी और", "उसकी, उसके", "उसके जैसा", "उसको, उसके, इसको, इसके, इसकी", "ऊपर", "ऐसा", "और", "कब, जब", "कभी - कभी", "कभी कभी", "कम", "कम, थोड़ा", "कहीं", "का, की, के", "काफ़ी", "किंतु, पर, लेकिन, मगर", "कितने", "किस तरफ", "किसके, जिसके, जिनके, किसका", "किसको, किसे, जिसे, जिन्हे", "किसी को", "की ओर, की तरफ़", "कुछ, थोड़े", "के अंदर", "के अलावा", "के ऊपर", "के लिये", "के सामने", "कैसे, कैसा", "कोई", "कोई न कोई", "कोई नहीं", "कोई, कोई व्यक्ति", "कौन", "कौन सा, जो", "कौन, जो", "क्या", "क्यों", "क्योंकि, चूंकि", "जब तक", "जब तक, तक तक", "जहाँ, कहां, किधर", "जिसका", "जैसा", "जैसे", "जैसे की, जैसा, वैसा", "जैसे, इस तरह", "ज्यादा, अधिक", "ढेर सारा", "ढेर सारा, बहुत सारा", "तक", "तक, जब तक", "तब, फिर", "ताकि", "तुम्हारा", "तुम्हारा, तुम्हारे", "तुम्हे, तुझे, तुमको", "तेरा, तेरी", "थोड़ा", "दाहिने, दाहिना", "दुसरा, एक और", "दूर", "दोनों", "द्वारा", "नहीं, मत ", "नीचे", "पास में, पास", "पास, नजदीक, करीब", "पीछे", "पूरा", "प्रति, से, तक", "प्रत्येक", "फिर, तो, तब, उस वक़्त", "फिर, दुबारा", "बजाय", "बहुत, अनेक", "बहुत, ज्यादा, काफी", "बाएं, वाम", "बाद में", "बाद में, पीछे", "बाहर", "भी", "मुझे", "में, भीतर, अंदर", "में, मैंने", "मेरा, अपना", "मेरा, मेरी", "मेरी, मेरा, मेरे", "यदि", "यदि, अगर", "यदि, या", "यह, ये, इसे", "लेकिन", "वह", "वह, जो", "वहां", "वही", "वे, वह, वो, उन्होंने", "वैसे, उसके जैसा", "शायद", "सब लोग", "सब, सभी, सारे", "सबसे ज्यादा, अधिकांश", "साथ", "से", "हम", "हमारा, हमारे, हमारी", "हर जगह", "हालाँकि", ], "id": [ "Anda", "ada", "adakah", "adalah", "adanya", "adapaun", "adapun", "agar", "akan", "akau", "akhirnya", "akibat", "akibatnya", "aku", "alias", "anda", "aneka", "antar", "antara", "antaranya", "apa", "apabila", "apakah", "apalagi", "apapun", "asal", "atas", "atau", "ataukah", "ataupun", "bagai", "bagaimana", "bagaimanakah", "bagaimanapun", "bagi", "bagi-nya", "bahkan", "bahwa", "bahwasanya", "baik", "bakal", "balik", "banyak", "banyaknya", "baru", "bawah", "beberapa", "begini", "beginilah", "begitu", "belakang", "beliau", "belum", "beragam", "berapa", "berapakah", "berbagai", "berberapa", "berdasar", "berdasarkan", "berdiri", "berdirinya", "berikut", "berkat", "bersama", "bersamanya", "berupa", "beserta", "betapa", "bila", "bilamana", "bisa", "boleh", "buah", "buat", "bukan", "bukankah", "bukanlah", "bukannya", "buruh", "cara", "dalam", "dalamnya", "dan", "dapat", "dari", "darimana", "daripada", "dekat", "demi", "demikian", "dengan", "dengannya", "depan", "dg", "di", "dia", "diantara", "diantaranya", "diatas", "dibalik", "dibandingkan", "dibawah", "dibawahnya", "dibeberapa", "dibelakang", "diberbagai", "didalam", "didalamnya", "diluar", "dimana", "diri", "dirinya", "disaat", "disamping", "disebelah", "disekeliling", "diseluruh", "disini", "ditepi", "dng", "dr", "engkau", "gambar", "gimana", "hadap", "hai", "hanya", "harus", "hei", "ia", "ialah", "ini", "inikah", "inilah", "inipun", "isi", "isinya", "itu", "itua", "itulah", "itupun", "iye", "jadi", "jangan", "jauh", "jelang", "jenis", "jika", "juga", "kah", "kalau", "kalian", "kalo", "kami", "kamilah", "kamu", "kan", "kapan", "kapankah", "karena", "karenanya", "kau", "ke", "kebanyakan", "kecuali", "kedalam", "kedepan", "kedua", "keduanya", "keliling", "keluar", "kemudian", "kena", "kenapa", "kendati", "kepada", "kepadaku", "kepadamu", "kepadanya", "kepusatnya", "kerana", "keseluruhan", "keseluruhannya", "kesemuanya", "ketika", "ketimbang", "khususnya", "kira", "kita", "kok", "koq", "kpd", "ku", "la", "lagi", "lah", "lain", "lainnya", "lalu", "lama", "lantaran", "lantas", "layak", "layaknya", "lengah", "lewat", "loh", "luar", "macam", "maka", "makanya", "maksud", "maksudnya", "malahan", "mampu", "mana", "manakah", "manakala", "manapun", "masa", "masing", "masing-masing", "maupun", "mayoritas", "melainkan", "melalui", "melawan", "melewati", "menajak", "menbeli", "mengajak", "mengapa", "mengenai", "mengenainya", "menjadi", "menjelang", "menuju", "menurut", "menurutmu", "mereka", "merekapun", "merupakan", "meski", "meskipn", "meskipun", "misalkan", "misalnya", "msl", "mulai", "mungkin", "namun", "nya", "oleh", "olehnya", "orang", "pada", "padahal", "padanya", "para", "pasca", "pd", "per", "perihal", "perlu", "pula", "pun", "saat", "saatnya", "sama", "sambil", "sampai", "sampai-sampai", "samping", "sana", "sang", "satu", "satu-satunya", "satunya", "saya", "seakan", "seandainya", "seantero", "sebab", "sebagai", "sebagaimana", "sebagian", "sebaliknya", "sebangsa", "sebanyak", "sebelah", "sebelum", "sebelumnya", "seberang", "seberat", "sebesar", "sebuah", "secara", "sedang", "sedangkan", "sedangkkan", "sedari", "sedikit", "sedikitnya", "seekor", "segala", "segenap", "seharusnya", "sehingga", "sehubungan", "seiring", "sejak", "sejauh", "sejenis", "sejumlah", "sekali", "sekaligus", "sekalipun", "sekitar", "sekitarnya", "selain", "selaku", "selama", "selesai", "seluas", "seluruh", "semacam", "semasa", "semenjak", "sementara", "sempat", "semua", "semuanya", "sendiri", "senilai", "seorang", "sepanjang", "sepasang", "sepeninggal", "seperti", "sepertinya", "sepeti", "sepucuk", "seputar", "serangkaian", "seraya", "serta", "sesampai", "sesampainya", "seseorang", "sesuai", "sesuatu", "sesudah", "setebal", "setelah", "setelahnya", "setengah", "setiap", "setinggi", "seusai", "sewaktu", "si", "siapa", "siapakah", "siapapun", "silakan", "sini", "sinilah", "situ", "soal", "suatu", "sudah", "supaya", "tak", "tan", "tangguh", "tanpa", "tapi", "tatkala", "telah", "tempat", "tengah", "tengahnya", "tentang", "tepat", "tepatnya", "teratas", "terhadap", "terhadapnya", "termasuk", "ternyata", "tersebut", "tertentu", "terutama", "tesebut", "tetap", "tetapi", "tiada", "tiap", "tidak", "tidakkah", "tidaklah", "tidaknya", "tsb", "tt", "ttg", "tuh", "tujuh", "untuk", "untukmu", "untuknya", "untung", "usah", "usai", "via", "waktu", "walau", "walaupun", "ya", "yaitu", "yakni", "yang", "yg", ], "pt": [ "a", "a cabo de", "a caminho de", "a despeito de", "a favor de", "a fim de", "a menos que", "a não ser", "a não ser que", "a partir de", "a propósito", "a respeito de", "a título de", "abaixo de", "acima", "acima de", "afinal", "afora", "agora", "agora que", "ai", "ainda", "ainda mais", "algo", "algum", "alguma", "algumas", "alguns", "alguém", "além", "além de", "ambas", "ambos", "andar", "andou", "ante", "antes", "anti", "antre", "ao", "ao cabo de", "ao invés de", "ao lado", "ao longo de", "ao passo que", "ao redor de", "aos cuidados de", "apenas", "apesar de", "apesar de que", "após", "aquela", "aquelas", "aquele", "aqueles", "aquilo", "as", "assim", "assim como", "assim que", "atras", "através", "através de", "atráis", "atrás", "atrás de", "até", "até que", "auto", "avante", "aí", "bastante", "bem", "bem como", "cada", "cara a cara", "caso", "cerca", "cima", "com", "comigo", "como", "como se", "conforme", "connosco", "conosco", "conquanto", "consigo", "consoante", "contanto", "contanto que", "contigo", "contra", "contudo", "convosco", "cuja", "cujas", "cujo", "cujos", "d'", "d.", "da", "dada", "dado", "dado que", "dali", "daquela", "daquelas", "daquele", "daqui", "daqui a", "daí", "de", "de modo que", "dela", "delas", "dele", "deles", "demais", "dentre", "dentro", "dentro de", "depois", "depois de", "desde", "desde que", "dessa", "dessas", "desse", "desses", "desta", "destas", "deste", "destes", "detrás de", "deva", "devam", "deve", "devem", "devemos", "devendo", "dever", "deveria", "deveriam", "deverá", "deverão", "deviam", "devido", "devido a", "devo", "diante de", "disso", "diversas", "diversos", "do que", "donde", "doutros", "dum", "duma", "durante", "e", "e/ou", "eba", "eis", "ela", "elas", "ele", "eles", "eles/elas", "em", "em cima de", "em frente a", "em meio a", "em nome de", "em prol de", "em relação a", "em torno de", "em vez de", "em virtude de", "em vista de", "em volta de", "embaixo de", "embora", "enquanto", "entre", "entretanto", "então", "era", "eram", "ergo", "essa", "essas", "esse", "esses", "esta", "estado", "estamos", "estando", "estar", "estarem", "estaria", "estariam", "estarmos", "estará", "estarão", "estas", "estava", "estavam", "este", "esteja", "estejam", "estes", "esteve", "estivemos", "estiver", "estiveram", "estiverem", "estivesse", "estivessem", "estou", "está", "estávamos", "estão", "eu", "excepto", "exceto", "fica", "ficado", "ficamos", "ficando", "ficar", "ficaram", "ficaria", "ficou", "fiquei", "foi", "fomos", "for", "fora", "fora de", "foram", "forem", "fosse", "fossem", "frente a", "fui", "fôr", "gente", "graças", "graças a", "havendo", "haver", "haverem", "havia", "haviam", "houver", "houvesse", "há", "i.e.", "ia", "iam", "ido", "igual a", "inté", "invés de", "ir", "ireii", "irem", "iremos", "iria", "iriam", "irá", "irão", "isso", "isto", "junto a", "junto com", "já", "já que", "la", "las", "lhe", "lhes", "lo", "logo", "logo que", "los", "lá", "mais", "mais de", "mais do que", "mais que", "mal", "malgrado", "mas", "me", "mediante", "menos", "mesma", "mesmas", "mesmo", "mesmo que", "mesmo se", "mesmos", "meu", "meus", "mim", "minha", "minhas", "muita", "muitas", "muito", "muito menos", "muitos", "muitíssimo", "n'", "na", "na frente de", "na sequência de", "nada", "naquela", "naquele", "naqueles", "naquilo", "nas", "nele", "neles", "nem", "nenhum", "nenhuma", "nenhumas", "nenhuns", "nessa", "nessas", "nesse", "nesses", "nesta", "nestas", "neste", "nestes", "ninguém", "no", "no que", "nos", "nosco", "nossa", "nossas", "nosso", "nossos", "num", "numa", "nós", "o", "o(s)", "onde", "onde quer que", "ora", "os", "ou", "outra", "outras", "outrem", "outro", "outros", "outrém", "oxalá", "p'ra", "p/", "pa", "para", "para com", "para que", "parece", "parecer", "pelo", "per", "perante", "perantes", "permanece", "permanecer", "perto de", "pode", "podem", "podemos", "podendo", "poder", "poderei", "poderem", "poderemos", "poderia", "poderiam", "poderá", "poderão", "poderíamos", "podia", "podiam", "podíamos", "pois", "por", "por causa de", "por causa que", "por conta de", "por entre", "por isso", "por isto", "por meio de", "por trás", "por trás de", "por volta de", "porquanto", "porque", "portanto", "porém", "possa", "possam", "possamos", "posso", "pouca", "poucas", "pouco", "poucos", "pouquíssimos", "pra", "precisam", "precisar", "precisaram", "precisarão", "precisou", "prestes a", "pretender", "pretendiam", "pro", "pré", "pré-", "pró", "pude", "pudemos", "puderam", "puderem", "pudesse", "pudessem", "pós", "pôde", "pôr", "público", "q.b.", "quais", "quaisquer", "qual", "qualquer", "quando", "quanta", "quantas", "quanto", "quanto a", "quanto baste", "quanto mais", "quantos", "que", "quem", "quer", "quão", "quê", "rente a", "rente de", "rumo a", "se", "se bem que", "se e somente se", "se-", "segundo", "seja", "sejam", "sem", "sem falar de", "sempre que", "sendo", "sendo que", "senão", "ser", "serei", "serem", "seremos", "seria", "seriam", "sermos", "será", "serão", "seu", "seus", "si", "sido", "sob", "sobre", "somos", "sou", "sse", "sua", "suas", "sub", "são", "sê", "só que", "sôbre", "ta", "tais", "tal", "tampouco", "tanta", "tantas", "tanto", "tantos", "te", "tem", "temos", "tende", "tendo", "tenha", "tenham", "tenhamos", "tenho", "tentado", "tentar", "tentaram", "ter", "terei", "terem", "teremos", "teria", "teriam", "termos", "terá", "terão", "teríamos", "teu", "teus", "teve", "ti", "tido", "tinha", "tinham", "tive", "tivemos", "tiver", "tiveram", "tiverem", "tivesse", "tivessem", "to", "toda", "todas", "todavia", "todo", "todos", "trás", "tu", "tua", "tuas", "tudo", "tá", "tão", "tão logo", "té", "têm", "tínhamos", "ultra", "um", "uma", "uma vez que", "umas", "uns", "vai", "vais", "vamos", "varias", "varios", "versus", "via", "visto", "visto que", "voce", "você", "vocês", "vos", "vossa", "vossas", "vosso", "vossos", "vou", "vs", "vá", "várias", "vários", "vão", "vérsus", "vós", "à", "à beira de", "à custa de", "à expensa de", "à luz de", "à medida que", "àquela", "àqueles", "às", "às custas de", "às expensas de", "é", "íamos", "\u200b\u200bem", ], "ur": [ "اسلئے", "اسکے جیسا", "ان کے بیچ ,ان لوگوں کے بیچ", "اندر", "انکا", "اور ,و", "اوپر", "اگر ,گرچہ ,اگرچہ", "باہر", "بایاں ,بائیں", "بجائے ,بدلے ,بدلے میں", "بہت ,بہت سارے ,بہت کچھ", "بہت زیادہ", "تب تک", "تم لوگ ,آپ ,آپ لوگ", "تمہارا ,تیرا ,آپکا", "تو, تم ,آپ", "تھوڑا ,تھوڑی", "جب تک", "جسکا", "جیسے", "حالاںکہ", "دایاں ,دائیں ,صحیح", "دوسرا", "زیادہ تر", "ساتھ ,کے ساتھ", "سب ,سبھی ,سب کچھ ,سارے ,سارا", "سب لوگ", "طرف ,اسکی طرف", "لیکن", "مثلأ ,مثال کے طور پے", "میرا", "میں", "میں ,کے اندر ,اندر", "نہی تو", "نہیں ,ناں ,نا", "نیچے", "وہ ,وہ لوگ", "وہ ,وہ والا, کہ", "وہ ,یے", "وہاں", "پھر", "پہ ,پر ,میں", "کافی", "کب", "کبھی کبھی", "کم", "کوئی", "کون", "کونسا", "کچھ", "کہاں", "کیا", "کیسے", "کیوںکہ ,چوںکہ ,کیوںکی", "کےلئے", "ہم ,ھم", "یہ ,یہ والا", "یہاں", ], "vi": [ "ai", "ai ai", "ai nấy", "anh", "anh em", "anh trai", "anh ấy", "ba", "bao", "bao giờ", "bay", "bà", "bà con", "bà ấy", "bác", "bây", "bé", "bên", "bạn", "bạn gái", "bạn trai", "bả", "bản thân", "bất chấp", "bất cứ", "bất kì", "bất luận", "bất nhược", "bất quá", "bấy", "bấy nhiêu", "bần tăng", "bầy quân", "bầy tui", "bậu", "bằng", "bệ hạ", "bị cáo", "bố", "bố nó", "bồ", "bộ", "bởi", "bởi vì", "cc", "cha", "chao", "chi", "chiếu theo", "cho", "cho dù", "cho đến", "choa", "chàng", "chán", "cháu", "chí", "chính", "chú", "chú mày", "chúng", "chúng mày", "chúng mình", "chúng nó", "chúng ta", "chúng tao", "chúng tôi", "chút", "chăng", "chưa", "chưng", "chả", "chắc", "chẳng cứ", "chỉ", "chị", "chị gái", "chị ấy", "chớ", "chứ", "con", "con này", "cuối cùng", "các", "các hạ", "cái", "cái gì", "cái này", "cán bộ", "còn", "có", "có vẻ", "cóc", "cô", "cô nương", "cô ta", "cô ấy", "côi", "công tử", "cùng", "cơ", "cơ mà", "cưng", "cạnh", "cả", "cả nhà", "cầm bằng", "cậu", "cổ", "cộng", "cụ", "của", "cứ", "do", "do vậy", "do đó", "duy", "dù", "dù sao", "dù vậy", "dưng", "dưới", "dường như", "dạ", "dầu", "dẫu", "dẫu vậy", "dậy", "dọc", "dợ", "em", "ghe", "già", "giá như", "giả dụ", "giả sử", "giữa", "gì", "ha", "hay", "hay là", "hen", "hoàng thượng", "hoặc", "huynh", "huống", "huống chi", "huống gì", "huống hồ", "há", "hôn", "hơn", "hơn nữa", "hả", "hầu hết", "hắn", "hết", "hết cả", "hề", "hễ", "họ", "hổi", "hỡi", "hử", "khanh", "khi", "khi nào", "không", "không ai", "không những", "khứa", "kia", "kém", "kìa", "kẻo", "kể từ", "l", "là", "lão", "lên", "lại nữa", "lần", "lẫn", "lắm", "mi", "min", "miễn", "moa", "muôn", "muội", "mà", "mà còn", "mày", "mãi", "mình", "mô", "mũ", "mất", "mấy", "mầy", "mẫu hậu", "mặc dù", "mặc dầu", "mặt khác", "mẹ", "mẹ nó", "mọi", "mọi người", "mọi vật", "mỏa", "mỗi", "một chút", "một nửa", "một số", "một vài", "một ít", "mụ", "ngay", "nghe", "nghen", "nghỉ", "ngoài", "ngoài ra", "ngoại", "ngoải", "ngài", "ngươi", "người", "người người", "người ta", "ngược lại", "ngộ", "nha", "nhiều", "nhà quân", "nhá", "nhân", "nhân dịp", "nhé", "như", "như vậy", "nhưng", "nhưng mà", "nhược bằng", "nhất là", "nhằm", "nhỉ", "nhỏ", "nhờ", "nhỡ", "những", "ni", "nà", "nàng", "nào", "này", "nè", "nên", "nó", "nô tài", "nô tì", "nơi", "nơi nơi", "nấy", "nầy", "nẩu", "nếu", "nếu như", "nọ", "nội", "nớ", "nừng", "nửa", "nữa", "phi", "phía", "phô bay", "phải", "phải hôn", "phải không", "phần", "phần lớn", "phỏng", "phứt", "qua", "quanh", "quý khách", "quý vị", "quả", "quả nhân", "ra", "riêng", "rùi", "rằng", "rồi", "sang", "sao", "sau", "sau cùng", "song", "song le", "sắp", "sẽ", "sở dĩ", "ta", "tao", "tau", "thanh niên", "thay", "thay vì", "theo", "theo đó", "thiếp", "thiệt", "thành", "thâu", "thêm", "thì", "thí dụ", "thôi", "thần", "thầy", "thẩy", "thật", "thằng này", "thế", "thế là", "thế mà", "thế nhưng", "thị", "thời", "tiểu nhân", "toa", "toà", "toàn", "toàn bộ", "toàn thể", "trong", "trong khi", "trong đó", "trái", "trái lại", "trên", "trò", "trước", "trẫm", "trời", "trừ phi", "tuy", "tuy nhiên", "tuy rằng", "tuy vậy", "tê", "tóm lại", "tôi", "tương đương", "tại", "tại hạ", "tại vì", "tất cả", "tầm", "tận", "tỉ", "tổ", "tớ", "tới", "tụi", "tụi nó", "tức", "tức là", "từ", "tự", "tựa", "ui", "và", "vài", "vài ba", "vào", "vì", "vì thế", "vì vậy", "ví dụ", "ví như", "vô", "vô số", "vô vàn", "vả chăng", "vả lại", "vậy", "vậy là", "vậy mà", "về", "về hướng", "về phía", "vị", "với", "xuống", "à", "á", "ái khanh", "âu là", "í", "ít", "ông", "ông ấy", "út", "ý", "đa số", "đang", "đi", "đâu", "đây", "đã", "đê", "đích thân", "đó", "đôi", "đương", "được", "đại nhân", "đấy", "đầu tiên", "đằng này", "đằng ấy", "đẳng", "đặng", "đến", "để", "đệ", "đối với", "đồ", "ơi", "ư", "ạ", "ả", "ảnh", "ấy", "ẻm", "ổng", "ờ", "ở", "ừ", "ừa", "ừm", ], "zh": [ "一", "一争", "一些", "一切", "一旦", "一点", "一爭", "上", "上前", "上表", "下", "不", "不仅", "不会", "不但", "不僅", "不光", "不关", "不准", "不单", "不可", "不單", "不够", "不夠", "不应", "不得", "不想", "不愿", "不應", "不是", "不會", "不準", "不用", "不管", "不經", "不肯", "不能", "不要", "不該", "不論", "不论", "不该", "不過", "不需", "不願", "与", "与其", "且", "且是", "並", "並且", "並非", "个", "个人", "中", "临", "为", "为了", "为人", "为什么", "主", "乃至", "之", "之上", "之下", "之中", "之內", "之内", "之初", "之前", "之后", "之外", "之後", "之所以", "之时", "之時", "之間", "之间", "也", "也是", "书", "了", "争辩", "事", "于", "井", "亚", "亞", "亦为", "亦是", "亦為", "亭", "亲", "人", "人人", "人家", "什么", "什麼", "今", "仍是", "仍算", "从", "他", "他们", "他俩", "他倆", "他們", "代", "令", "以", "以上", "以下", "以为", "以來", "以前", "以北", "以及", "以后", "以外", "以往", "以後", "以来", "以為", "以爲", "以至", "们", "价", "任", "任何", "众", "会", "传", "伪", "似乎", "似的", "但", "但是", "位", "低", "住", "体", "何", "何方", "佛", "作", "作为", "作為", "你", "你们", "你們", "你自己", "你门", "佬", "併", "使", "來", "供", "依", "依据", "依據", "依照", "依靠", "侠", "侧", "侨", "侯", "便是", "係", "保存", "保級", "保级", "俠", "信", "修复", "修復", "個", "個人", "們", "倘若", "借助", "借由", "借着", "值", "假使", "假如", "偏", "做", "側", "偽", "傳", "傻", "像", "像是", "僑", "價", "儘管", "元", "先", "光", "光棍", "党", "內", "內外", "全", "全体", "全副", "全套", "全部", "全體", "公", "关", "关于", "关心", "兵", "其", "其中", "其他", "其余", "其它", "其餘", "典", "兼", "内", "内外", "军", "冠", "冢", "冲", "冷", "准", "准备", "减慢", "几", "凭", "凭借", "出手", "刀", "分", "分布", "列", "则为", "则是", "初", "別", "別人", "别", "别人", "别的", "到", "到处", "制", "券", "剂", "則是", "則為", "前", "前任", "前后", "前後", "剑", "剧", "副", "劇", "劍", "劑", "力", "办", "办学", "功", "加", "劣", "努力", "包", "包裹", "化", "区", "医", "區", "半", "单", "卡", "卫", "即", "即使", "即便", "却是", "卻", "卻是", "卿", "厂", "厅", "历届", "压", "原", "去", "县", "又", "又或", "又是", "及", "友", "发展", "发育", "变", "变得", "口", "古", "另", "另外", "只是", "只有", "只能", "只要", "可", "可以", "可是", "可能", "台", "史", "叶", "号", "司", "吃", "各", "各个", "各位", "各個", "各天", "各州", "各式", "各樣", "各种", "各种各样", "各種", "各種各樣", "各类", "各級", "各级", "各自", "各項", "各類", "各项", "同", "同年", "名", "后", "向", "吗", "君", "否", "吧", "呀", "员", "呢", "周", "味", "和", "和美", "咱们", "品", "哈尔滨", "哈爾濱", "員", "哪", "哪个", "哪些", "哪個", "哪儿", "哪兒", "哪怕", "哪裏", "哪裡", "哪里", "唯有", "商", "啊", "啦", "喇", "喜", "喜欢", "喜歡", "單", "單憑", "嗎", "嗬", "嘛", "嘴", "器", "回", "因", "因为", "因应", "因應", "因此", "因為", "团", "园", "围", "国", "图", "圆", "圈", "國", "圍", "園", "圓", "圖", "團", "土", "圣", "在", "在內", "在内", "地", "场", "坊", "坟", "坡", "型", "埋", "城", "埤", "執政", "基", "基于", "基於", "堂", "堡", "堤", "報", "場", "塔", "塘", "墓", "墙", "增長", "增长", "墟", "墳", "壓", "士", "处", "外", "多", "多少", "多次", "夜", "够", "夠", "夢", "大", "大家", "天", "头", "夹", "夾", "奏", "奖", "套", "女", "女士们", "女士门", "奸", "她", "她们", "她俩", "她倆", "她們", "好", "好了", "好像", "如", "如何", "如同", "如果", "妃", "妇", "妳", "妹", "始", "娘", "婆", "婦", "子", "孔", "字", "季", "学", "學", "宁愿", "它", "它们", "它們", "安全", "宏", "宗", "官", "实属", "审", "客", "室", "宫", "宮", "家", "宽", "富", "實屬", "審", "寬", "对", "对于", "对方", "对此", "寺", "将", "將", "對", "對方", "對於", "對此", "小", "尖", "就", "就是", "就算", "尸", "尽管", "局", "层", "屋", "屍", "展", "属", "層", "屬", "屯", "山", "屿", "岗", "岛", "岩", "岭", "岸", "峡", "峰", "島", "峽", "崖", "崗", "嶺", "嶼", "川", "州", "工", "左右", "差", "巷", "币", "市", "布", "师", "希望", "帝", "带", "師", "席", "帮", "帶", "帽", "幣", "幫", "年", "并", "并且", "并非", "幾", "庄", "床", "庐", "库", "应", "应当", "应该", "底", "店", "庙", "府", "度", "座", "庫", "庭", "廟", "廠", "廬", "廳", "廷", "建基於", "开口", "开始", "式", "弯", "張", "強", "弹", "强", "彈", "彎", "当", "当中", "当届", "录", "形", "形容", "形成", "影响", "影響", "彼此", "往", "径", "待", "很多", "後", "徑", "徒", "得", "得宠", "得寵", "從", "御", "微", "徽", "心", "必", "必須", "必须", "志", "快", "态", "怎么样", "怎樣", "怎麼", "怕", "性", "怪", "总", "恆", "恋", "恒", "您", "想", "愛", "感", "感到", "感覺", "感觉", "愿意", "態", "憑", "憑藉", "懂", "懂得", "應", "應當", "應該", "懒得", "戀", "戏", "我", "我们", "我們", "我自己", "我门", "或", "或是", "或者", "战", "截止", "截至", "戰", "戲", "戶", "户", "房", "所", "所以", "所有", "手", "才是", "打", "执政", "把", "报", "拖", "持續", "按", "按照", "挡", "损失", "据", "排行", "接唱", "接触", "接觸", "控制", "推进", "推進", "描述", "損失", "擋", "據", "支", "教", "敢", "数", "整", "整个", "整個", "整场", "整块", "整場", "整塊", "整套", "整所", "整架", "整片", "整顆", "整颗", "數", "文", "斋", "斗", "新", "方", "於", "族", "旗", "无论", "既", "既是", "既然", "日", "日趋", "日趨", "旧", "时", "星", "是", "是否", "是否是", "是次", "显", "显得", "時", "晚", "暖", "暗", "暨", "曲", "更为", "更是", "更為", "更趋", "更趨", "書", "替", "會", "會不會", "月", "有", "有些", "有关", "有的", "有關", "服", "朝", "期", "期間", "期间", "未能", "末", "本", "本人", "本地", "本屆", "本届", "本班", "本身", "术", "机", "权", "杆", "材", "村", "束", "来", "杯", "板", "林", "枪", "架", "某", "某个", "某些", "某個", "某种", "某種", "染色", "柜", "树", "校", "株", "核", "根据", "根據", "格", "案", "档", "桥", "桨", "桿", "梁", "梁耀忠", "梦", "棍", "棒", "棚", "椭", "業", "楼", "榜", "槍", "槳", "樂", "樂意", "樓", "樹", "橋", "橙", "機", "橢", "檔", "櫃", "權", "次", "欲", "款", "歌", "正", "正如", "正是", "此", "此套", "此次", "此种", "此種", "此等", "此类", "此項", "此類", "此项", "歷", "歷屆", "死", "段", "殿", "母", "毎年", "每", "每个", "每位", "每個", "每元", "每升", "每卡", "每周", "每天", "每幅", "每年", "每座", "每当", "每戶", "每户", "每所", "每日", "每枚", "每次", "每段", "每片", "每秒", "每組", "每组", "每边", "每週", "每邊", "每間", "每间", "每队", "每隊", "每集", "每首", "毒", "比", "比如說", "比起", "氏", "气", "氣", "水", "永保", "江", "池", "沒", "沒有", "沒能", "沟", "没", "没有", "没能", "河", "治军", "治軍", "沼", "沿", "沿着", "沿著", "況且", "泉", "法", "波", "洋", "洞", "洲", "派", "流沙", "浅", "浊", "浓", "浦", "海", "涉世", "涌", "液", "淡", "深", "深感", "混", "淺", "清", "減慢", "渡", "港", "湖", "湾", "準", "準備", "溝", "溥仪", "溥儀", "溪", "满", "满洲", "滩", "滿", "滿洲", "潮", "澡", "澳", "濁", "濃", "灘", "灣", "火", "炉", "炎", "炮", "点", "為", "為了", "為人", "烃", "烟", "热", "烴", "無", "無論", "煙", "熟", "熱", "營", "爐", "爭取", "爭辯", "爱", "爲", "父", "爷", "爺", "牆", "片", "版", "牌", "牠", "牠們", "物", "犯", "状", "狀", "狂", "狗", "狮", "猫", "獅", "獎", "獲利", "率", "王", "班", "球", "琴", "甚么", "甚至", "甚至是", "甚麼", "甚麽", "生", "用", "由", "由于", "由於", "电", "男", "町", "画", "界", "畔", "畫", "當", "當中", "當屆", "病", "症", "癌", "癖", "發展", "發育", "的", "的話", "的话", "皮", "盃", "监管", "盖因", "監管", "目", "直到", "直至", "相对", "相對", "相比", "省", "看", "看似", "看得", "眼", "眾", "眾多", "着", "督", "瞭", "短", "石", "矿", "码", "砲", "硅", "碑", "碱", "碼", "礁", "礦", "礼", "社", "祂", "神", "祠", "禮", "离", "离开", "秀", "私交", "秋", "种", "科", "秤", "稅", "税", "種", "突感", "窑", "窟", "窯", "站", "端", "競選", "符", "笨", "等", "管", "管理", "箱", "節", "篇", "籍", "米", "类", "粉", "精", "糖", "系", "紀", "紅", "紋", "純", "紙", "級", "素", "組", "結", "給", "綉", "經", "經由", "經過", "綜", "綫", "綱", "網", "線", "緣", "縣", "縱使", "總", "繞", "繼", "红", "级", "纪", "纯", "纲", "纵使", "纸", "纹", "线", "组", "经", "经由", "经过", "结", "绕", "给", "绣", "继", "综", "网", "罩", "罪", "署", "羊", "美", "群", "翁", "老", "者", "而", "而且", "而已", "而是", "而非", "聖", "肉", "肯", "肺", "胎", "胚", "胶", "能", "能否", "能够", "能夠", "脚", "脸", "腔", "腳", "腿", "膜", "膠", "臉", "臨", "自", "自从", "自家", "自己", "自從", "自我", "自身", "至", "至于", "至於", "臺", "與", "與其", "舊", "舞", "舟", "舰", "舱", "船", "艇", "艙", "艦", "色", "节", "花", "若", "若是", "茶", "药", "莊", "获利", "菌", "菜", "营", "葉", "著", "蓋因", "蓝", "藉", "藉助", "藉由", "藉著", "藍", "藤", "藥", "藩", "處", "號", "虽", "虽则", "虽然", "蛙", "行", "術", "街", "衛", "衣", "表", "表现", "表現", "表示", "被", "装", "裏", "裔", "裙", "裝", "裡", "裡面", "裤", "製", "褲", "要", "要不要", "要么", "要是", "要求", "親", "覺得", "觀", "观", "觉得", "角", "計劃", "記", "詞", "試圖", "詩", "話", "該", "該屆", "該批", "該族", "該條", "該段", "該組", "該集", "該項", "誌", "認為", "認識", "語", "誤信", "說", "誰", "課", "請", "論", "諸", "諸如", "謂", "證", "譜", "變", "變得", "认为", "认识", "记", "许多", "许许多多", "论", "证", "词", "诗", "话", "该", "该届", "该批", "该族", "该条", "该段", "该组", "该集", "语", "误信", "说", "请", "诸", "诸如", "课", "谁", "谓", "谱", "谷", "豆", "象", "貓", "負債", "費", "資", "賣", "質", "賽", "负债", "质", "费", "资", "赛", "起", "起伏", "起来", "趁", "超", "趋", "趋于", "趨", "趨於", "距", "距离", "距離", "跟", "路", "躁", "身", "車", "軍", "軒", "軟", "軸", "較", "輕", "车", "轩", "软", "轴", "轻", "较", "辦", "辦學", "边", "达到", "过", "过后", "运作", "近", "还", "还是", "还有", "这", "这些", "这儿", "这养", "这样", "这次", "这种", "这里", "远", "连", "连任", "连同", "迷", "追溯", "透过", "透過", "這", "這些", "這個", "這兒", "這樣", "這樣子", "這次", "這種", "這裏", "這裡", "這邊", "這麼", "通", "通过", "通過", "逢", "連", "連任", "連同", "週", "運作", "過", "過後", "道", "達到", "遠", "選舉", "還是", "邊", "那", "那个", "那些", "那儿", "那兒", "那样", "那樣", "那裏", "那裡", "那邊", "那里", "邦", "邨", "郎", "郡", "部", "都", "都是", "鄉", "配", "酒", "酸", "醣", "醫", "里", "里面", "重", "量", "金", "針", "針對", "銘", "鋼", "錄", "錦", "鍋", "鍵", "鎊", "鎮", "鏈", "鏡", "鐵", "鑒於", "针", "针对", "钢", "铁", "铭", "链", "锅", "锦", "键", "镇", "镜", "長", "长", "門", "開口", "開始", "間", "閣", "閣下", "關", "關心", "關於", "门", "间", "阁", "队", "阶", "际", "陆", "降解", "院", "除", "除了", "除外", "除非", "陵", "陸", "隊", "階", "随", "随同", "隔", "際", "隨", "隨同", "难过", "集", "雖", "雖則", "雖然", "離", "離開", "難過", "電", "需", "需要", "非", "靠", "面", "音", "頂", "須", "頭", "頭個", "題", "額", "願意", "類", "顯", "顯得", "顶", "须", "题", "额", "風", "风", "飯", "餅", "餐", "館", "饃", "首先", "點", ], } # %% ../nbs/03_helpers.ipynb 10 class FastTextLanguageDetector: def __init__(self, model_path: str = "/tmp/lid.176.bin"): import fasttext self.model_path = model_path self.model = fasttext.load_model(model_path) def get_language(self, text): lines = " ".join(text.splitlines()) prediction = self.model.predict(lines, k=1) # returns top 2 matching languages lang, prob = prediction[0][0].replace("__label__", ""), prediction[1][0] return lang, prob @classmethod def from_pretrained( cls, *, url: str = "https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin", output_dir: str = squeakily.__path__[0], ): path = os.path.join(output_dir, "lid.176.bin") if not os.path.exists(path): # download pretrained model with standard lib (From: https://stackoverflow.com/questions/22676/how-to-download-a-file-over-http) response = urllib.request.urlretrieve( url, ) if response: return cls(model_path=os.path.join(output_dir, "lid.176.bin")) else: raise Exception("Failed to download model") else: return cls(model_path=path) def __reduce__(self): return (self.__class__, (self.model_path,)) def __eq__(self, other): return self.model_path == other.model_path # %% ../nbs/03_helpers.ipynb 15 class SentencePiece: def __init__( self, model: str, ): import sentencepiece super().__init__() self.sp = sentencepiece.SentencePieceProcessor() self.sp.load(str(model)) def do(self, text: dict) -> dict: tokenized = self.sp.encode_as_pieces(text) return " ".join(tokenized) # %% ../nbs/03_helpers.ipynb 16 KENLM_MODEL_REPO = "edugp/kenlm" class KenlmModel: digit_re: re.Pattern = re.compile(r"\d") unicode_punct: Dict[str, str] = { ",": ",", "。": ".", "、": ",", "„": '"', "”": '"', "“": '"', "«": '"', "»": '"', "1": '"', "」": '"', "「": '"', "《": '"', "》": '"', "´": "'", "∶": ":", ":": ":", "?": "?", "!": "!", "(": "(", ")": ")", ";": ";", "–": "-", "—": " - ", ".": ". ", "~": "~", "’": "'", "…": "...", "━": "-", "〈": "<", "〉": ">", "【": "[", "】": "]", "%": "%", "►": "-", } unicode_punct_re = re.compile(f"[{''.join(unicode_punct.keys())}]") non_printing_chars_re = re.compile( f"[{''.join(map(chr, list(range(0,32)) + list(range(127,160))))}]" ) kenlm_model_dir = None sentence_piece_model_dir = None def __init__( self, model_dataset: str, language: str, lower_case: bool = False, remove_accents: bool = False, normalize_numbers: bool = True, punctuation: int = 1, ): import kenlm self.download_kenlm_model(model_dataset, language) try: self.model = kenlm.Model(self.kenlm_model_dir) self.tokenizer = SentencePiece(self.sentence_piece_model_dir) except OSError: os.remove(self.kenlm_model_dir) if os.path.exists(self.sentence_piece_model_dir): os.remove(self.sentence_piece_model_dir) raise OSError( "File was corrupt and should have been removed. Please, retry." ) self.accent = remove_accents self.case = lower_case self.numbers = normalize_numbers self.punct = punctuation @classmethod def from_pretrained( cls, *, model_dataset: str, language: str, lower_case: bool, remove_accents: bool, normalize_numbers: bool, punctuation: int, ): return cls( model_dataset, language, lower_case, remove_accents, normalize_numbers, punctuation, ) def pp(self, log_score, length): return 10.0 ** (-log_score / length) def get_perplexity(self, doc: str, normalize_cc_net: bool = True): if normalize_cc_net: doc = self.normalize( doc, accent=self.accent, case=self.case, numbers=self.numbers, punct=self.punct, ) # Tokenize (after normalizing): See https://github.com/facebookresearch/cc_net/blob/bda555bd1cf1ee2e0b925363e62a61cd46c8b60d/cc_net/mine.py#L352 for full pipeline doc = self.tokenizer.do(doc) doc_log_score, doc_length = 0, 0 for line in doc.split("\n"): log_score = self.model.score(line) length = len(line.split()) + 1 doc_log_score += log_score doc_length += length return round(self.pp(doc_log_score, doc_length), 1) def normalize( self, line: str, accent: bool = True, case: bool = True, numbers: bool = True, punct: int = 1, ) -> str: line = line.strip() if not line: return line if case: line = line.lower() if accent: line = self.strip_accents(line) if numbers: line = self.digit_re.sub("0", line) if punct == 1: line = self.replace_unicode_punct(line) elif punct == 2: line = self.remove_unicode_punct(line) line = self.remove_non_printing_char(line) return line def strip_accents(self, line: str) -> str: """Strips accents from a piece of text.""" nfd = unicodedata.normalize("NFD", line) output = [c for c in nfd if unicodedata.category(c) != "Mn"] if len(output) == line: return line return "".join(output) def replace_unicode_punct(self, text: str) -> str: return "".join(self.unicode_punct.get(c, c) for c in text) def remove_unicode_punct(self, text: str) -> str: """More aggressive version of replace_unicode_punct but also faster.""" return self.unicode_punct_re.sub("", text) def remove_non_printing_char(self, text: str) -> str: return self.non_printing_chars_re.sub("", text) def download_kenlm_model(self, model_dataset: str, language: str): try: kenlm_model_url = hf_hub_url( KENLM_MODEL_REPO, filename=f"{model_dataset}/{language}.arpa.trie.bin" ) self.kenlm_model_dir = cached_download(kenlm_model_url) except HTTPError: kenlm_model_url = hf_hub_url( KENLM_MODEL_REPO, filename=f"{model_dataset}/{language}.arpa.bin" ) self.kenlm_model_dir = cached_download(kenlm_model_url) sentence_piece_model_url = hf_hub_url( KENLM_MODEL_REPO, filename=f"{model_dataset}/{language}.sp.model" ) self.sentence_piece_model_dir = cached_download(sentence_piece_model_url) # %% ../nbs/03_helpers.ipynb 20 class LLMLabelerParser(BaseModel): labels: List = Field( ..., title="Labels", description="Labels that the LLM classifies the text as" ) class LLMLabeler: def __init__( self, instruction: str, labels: List, model_name: str = "gpt-3.5-turbo", api_key: str = None, model_type: str = "openai", ): from langchain.output_parsers import PydanticOutputParser from langchain.chat_models import AzureChatOpenAI, ChatOpenAI from langchain.prompts import PromptTemplate from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate, ) self.instruction = instruction self.labels = labels # Set up a parser + inject instructions into the prompt template. self.parser = PydanticOutputParser(pydantic_object=LLMLabelerParser) prompt = PromptTemplate( template="{instruction}\n{labels}\n{format_instructions}\n", input_variables=["instruction", "labels"], partial_variables={ "format_instructions": self.parser.get_format_instructions() }, ) system_message_prompt = SystemMessagePromptTemplate(prompt=prompt) human_template = "{text}" human_message_prompt = HumanMessagePromptTemplate.from_template(human_template) self.chat_template = ChatPromptTemplate.from_messages( [system_message_prompt, human_message_prompt] ) if model_type == "azure": raise NotImplementedError("Azure models are not supported yet") elif model_type == "openai": self.model = ChatOpenAI( openai_api_key=api_key, model_name=model_name, temperature=0 ) else: raise ValueError(f"Model type {model_type} is not supported") def __call__(self, text: str): messages = self.chat_template.format_prompt( instruction=self.instruction, labels=self.labels, text=text ).to_messages() output = self.model(messages) predicted_labels = self.parser.parse(output.content) # check if all the predicted tags are in the list of tags assert all( [label in self.labels for label in predicted_labels.labels] ), f"Predicted labels {predicted_labels.labels} are not in the list of tags {self.labels}" return predicted_labels.labels
[ "{instruction}\n{labels}\n{format_instructions}\n", "instruction", "format_instructions", "[PLACEHOLDER, PLACEHOLDER]", "{text}" ]
2024-01-10
sourcecodecheck/azure-openai-samples
fundamentals~langchain~AzureOpenAIUtil~SqlServer.py
import urllib, os from langchain.agents import create_sql_agent from langchain.agents.agent_toolkits import SQLDatabaseToolkit from langchain.sql_database import SQLDatabase from langchain.llms.openai import AzureOpenAI from langchain.agents import AgentExecutor class SqlServer: def __init__(self, Server, Database, Username, Password, port=1433, odbc_ver=18, topK=10) -> None: odbc_conn = 'Driver={ODBC Driver '+ str(odbc_ver) + ' for SQL Server};Server=tcp:' + \ Server + f',{port};Database={Database};Uid={Username};Pwd={Password};Encrypt=yes;TrustServerCertificate=no;Connection Timeout=30;' params = urllib.parse.quote_plus(odbc_conn) self.conn_str = 'mssql+pyodbc:///?odbc_connect={}'.format(params) db = SQLDatabase.from_uri(self.conn_str) self.toolkit = SQLDatabaseToolkit(db=db) self.SQL_PREFIX = """You are an agent designed to interact with a Microsoft Azure SQL database. Given an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results using SELECT TOP in SQL Server syntax. You can order the results by a relevant column to return the most interesting examples in the database. Never query for all the columns from a specific table, only ask for a the few relevant columns given the question. You have access to tools for interacting with the database. Only use the below tools. Only use the information returned by the below tools to construct your final answer. You MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again. DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database. If the question does not seem related to the database, just return "I don't know" as the answer. """ deploy_name = os.getenv('DEPLOYMENT_NAME') # print(deploy_name) self.agent_executor = create_sql_agent( llm=AzureOpenAI(temperature=0, deployment_name='text-davinci-003'), toolkit=self.toolkit, verbose=True, prefix=self.SQL_PREFIX, topK = topK ) def run(self, text: str): return self.agent_executor.run(text)
[]
2024-01-10
Kabilan108/TermGPT
termgpt~termgpt.py
""" TermGPT ------- Your in-terminal LLM assistant. """ from io import StringIO import os from rich.console import Console import openai as ai import pydoc import click ai.api_key = os.environ["OPENAI_API_KEY"] console = Console(file=StringIO(), force_terminal=True) class TermGPT: """ TermGPT ------- Your in-terminal LLM assistant. Methods ------- cli() The main CLI command. ask(question: str) Ask TermGPT a question. """ system_prompt = [ { "role": "system", "content": """ You are an assistant for a machine learning engineer. You are tasked with helping the engineer with their work. Your goal is to provide concise and accurate feedback to help the user solve their problem. Your response should include suggestions for the best way to solve the problem. These suggestions can be in the form of a list or a single answer. You should try your best to give correct solutions. If your response includes code snippets, make sure to format them correctly: one-liners should be wrapped in ` tags and longer snippets should be wrapped between ``` tags. Make your responses friendly and helpful. Code snippets should also be wrapped in [cyan]`[/cyan] or [cyan]```[/cyan] tags. Emphasize important words or phrases with [bold]bold[/bold] or [italic]italic[/italic] tags. You can also use [magenta]...[/magenta] for additional emphasis. Use [green]...[/green] to for titles or headings. You are allowed to use emojis using the format :emoji_name: """, } ] @staticmethod def _generate_content(response): """ Generate content from the response. """ lines = [x for x in response.splitlines() if x] for line in lines: console.print(line) @click.group() @staticmethod def cli() -> None: """ Welcome to TermGPT! I am your in-terminal LLM assistant. To get started, type `termgpt ask` and then your question. """ return @cli.command() @click.argument("question", type=str, required=True) @staticmethod def ask(question) -> None: """ Ask TermGPT a question. """ response = ai.ChatCompletion.create( model="gpt-3.5-turbo", messages=TermGPT.system_prompt + [{"role": "user", "content": question}], ) response = response["choices"][0]["message"]["content"] # type: ignore TermGPT._generate_content(response) pydoc.pager(console.file.getvalue()) # type: ignore console.file.close() # type: ignore if __name__ == "__main__": TermGPT.cli()
[ "\nYou are an assistant for a machine learning engineer.\nYou are tasked with helping the engineer with their work.\nYour goal is to provide concise and accurate feedback to help the user solve their problem. \nYour response should include suggestions for the best way to solve the problem. \nThese suggestions can be in the form of a list or a single answer. \nYou should try your best to give correct solutions. \nIf your response includes code snippets, make sure to format them correctly: \none-liners should be wrapped in ` tags and longer snippets should be wrapped between ``` tags.\nMake your responses friendly and helpful.\nCode snippets should also be wrapped in [cyan]`[/cyan] or [cyan]```[/cyan] tags.\nEmphasize important words or phrases with [bold]bold[/bold] or [italic]italic[/italic] tags.\nYou can also use [magenta]...[/magenta] for additional emphasis.\nUse [green]...[/green] to for titles or headings.\nYou are allowed to use emojis using the format :emoji_name:\n ", "content" ]
2024-01-10
estelleafl/optimum-habana
optimum~habana~diffusers~pipelines~stable_diffusion~pipeline_stable_diffusion.py
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import time import warnings from dataclasses import dataclass from math import ceil from typing import Any, Callable, Dict, List, Optional, Union import numpy as np import PIL import torch from diffusers.configuration_utils import FrozenDict from diffusers.image_processor import VaeImageProcessor from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import BaseOutput, deprecate from packaging import version from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from optimum.utils import logging from ....transformers.gaudi_configuration import GaudiConfig from ....utils import speed_metrics from ..pipeline_utils import GaudiDiffusionPipeline logger = logging.get_logger(__name__) @dataclass class GaudiStableDiffusionPipelineOutput(BaseOutput): images: Union[List[PIL.Image.Image], np.ndarray] nsfw_content_detected: Optional[List[bool]] throughput: float def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): """ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 """ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) # rescale the results from guidance (fixes overexposure) noise_pred_rescaled = noise_cfg * (std_text / std_cfg) # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg return noise_cfg class GaudiStableDiffusionPipeline( GaudiDiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin ): """ Extends the [`StableDiffusionPipeline`](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion#diffusers.StableDiffusionPipeline) class: - Generation is performed by batches - Two `mark_step()` were added to add support for lazy mode - Added support for HPU graphs Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. use_habana (bool, defaults to `False`): Whether to use Gaudi (`True`) or CPU (`False`). use_hpu_graphs (bool, defaults to `False`): Whether to use HPU graphs or not. gaudi_config (Union[str, [`GaudiConfig`]], defaults to `None`): Gaudi configuration to use. Can be a string to download it from the Hub. Or a previously initialized config can be passed. bf16_full_eval (bool, defaults to `False`): Whether to use full bfloat16 evaluation instead of 32-bit. This will be faster and save memory compared to fp32/mixed precision but can harm generated images. """ _optional_components = ["safety_checker", "feature_extractor"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, use_habana: bool = False, use_hpu_graphs: bool = False, gaudi_config: Union[str, GaudiConfig] = None, bf16_full_eval: bool = False, ): super().__init__( use_habana, use_hpu_graphs, gaudi_config, bf16_full_eval, ) if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config) if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( version.parse(unet.config._diffusers_version).base_version ) < version.parse("0.9.0.dev0") is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) self.to(self._device) @property def _execution_device(self): r""" Returns the device on which the pipeline's models will be executed. After calling `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module hooks. """ if not hasattr(self.unet, "_hf_hook"): return self.device for module in self.unet.modules(): if ( hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, lora_scale: Optional[float] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, LoraLoaderMixin): self._lora_scale = lora_scale if prompt is not None and isinstance(prompt, str): num_prompts = 1 elif prompt is not None and isinstance(prompt, list): num_prompts = len(prompt) else: num_prompts = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: procecss multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, ) prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * num_prompts elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif num_prompts != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has {len(negative_prompt)} elements, but `prompt`:" f" {prompt} has {num_prompts}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: procecss multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(num_prompts * num_images_per_prompt, seq_len, -1) return prompt_embeds, negative_prompt_embeds def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept def decode_latents(self, latents): warnings.warn( "The decode_latents method is deprecated and will be removed in a future version. Please" " use VaeImageProcessor instead", FutureWarning, ) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) def prepare_latents(self, num_images, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = (num_images, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) if isinstance(generator, list) and len(generator) != num_images: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective number" f" of images of {num_images}. Make sure the number of images matches the length of the generators." ) if latents is None: # torch.randn is broken on HPU so running it on CPU rand_device = "cpu" if device.type == "hpu" else device if isinstance(generator, list): shape = (1,) + shape[1:] latents = [ torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) for i in range(num_images) ] latents = torch.cat(latents, dim=0).to(device) else: latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @classmethod def _split_inputs_into_batches(cls, batch_size, latents, text_embeddings, uncond_embeddings): # Use torch.split to generate num_batches batches of size batch_size latents_batches = list(torch.split(latents, batch_size)) text_embeddings_batches = list(torch.split(text_embeddings, batch_size)) if uncond_embeddings is not None: uncond_embeddings_batches = list(torch.split(uncond_embeddings, batch_size)) # If the last batch has less samples than batch_size, pad it with dummy samples num_dummy_samples = 0 if latents_batches[-1].shape[0] < batch_size: num_dummy_samples = batch_size - latents_batches[-1].shape[0] # Pad latents_batches sequence_to_stack = (latents_batches[-1],) + tuple( torch.zeros_like(latents_batches[-1][0][None, :]) for _ in range(num_dummy_samples) ) latents_batches[-1] = torch.vstack(sequence_to_stack) # Pad text_embeddings_batches sequence_to_stack = (text_embeddings_batches[-1],) + tuple( torch.zeros_like(text_embeddings_batches[-1][0][None, :]) for _ in range(num_dummy_samples) ) text_embeddings_batches[-1] = torch.vstack(sequence_to_stack) # Pad uncond_embeddings_batches if necessary if uncond_embeddings is not None: sequence_to_stack = (uncond_embeddings_batches[-1],) + tuple( torch.zeros_like(uncond_embeddings_batches[-1][0][None, :]) for _ in range(num_dummy_samples) ) uncond_embeddings_batches[-1] = torch.vstack(sequence_to_stack) # Stack batches in the same tensor latents_batches = torch.stack(latents_batches) if uncond_embeddings is not None: # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes for i, (uncond_embeddings_batch, text_embeddings_batch) in enumerate( zip(uncond_embeddings_batches, text_embeddings_batches[:]) ): text_embeddings_batches[i] = torch.cat([uncond_embeddings_batch, text_embeddings_batch]) text_embeddings_batches = torch.stack(text_embeddings_batches) return latents_batches, text_embeddings_batches, num_dummy_samples @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, batch_size: int = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated images. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated images. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. batch_size (`int`, *optional*, defaults to 1): The number of images in a batch. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated randomly. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.GaudiStableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). guidance_rescale (`float`, *optional*, defaults to 0.7): Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when using zero terminal SNR. Returns: [`~diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.GaudiStableDiffusionPipelineOutput`] or `tuple`: [`~diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.GaudiStableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ with torch.autocast(device_type="hpu", dtype=torch.bfloat16, enabled=self.gaudi_config.use_torch_autocast): # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): num_prompts = 1 elif prompt is not None and isinstance(prompt, list): num_prompts = len(prompt) else: num_prompts = prompt_embeds.shape[0] num_batches = ceil((num_images_per_prompt * num_prompts) / batch_size) logger.info( f"{num_prompts} prompt(s) received, {num_images_per_prompt} generation(s) per prompt," f" {batch_size} sample(s) per batch, {num_batches} total batch(es)." ) if num_batches < 3: logger.warning("The first two iterations are slower so it is recommended to feed more batches.") device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device="cpu") timesteps = self.scheduler.timesteps.to(device) # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( num_prompts * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Split into batches (HPU-specific step) latents_batches, text_embeddings_batches, num_dummy_samples = self._split_inputs_into_batches( batch_size, latents, prompt_embeds, negative_prompt_embeds, ) outputs = { "images": [], "has_nsfw_concept": [], } t0 = time.time() t1 = t0 # 8. Denoising loop for j in self.progress_bar(range(num_batches)): # The throughput is calculated from the 3rd iteration # because compilation occurs in the first two iterations if j == 2: t1 = time.time() latents_batch = latents_batches[0] latents_batches = torch.roll(latents_batches, shifts=-1, dims=0) text_embeddings_batch = text_embeddings_batches[0] text_embeddings_batches = torch.roll(text_embeddings_batches, shifts=-1, dims=0) for i in range(num_inference_steps): timestep = timesteps[0] timesteps = torch.roll(timesteps, shifts=-1, dims=0) capture = True if self.use_hpu_graphs and i < 2 else False # expand the latents if we are doing classifier free guidance latent_model_input = ( torch.cat([latents_batch] * 2) if do_classifier_free_guidance else latents_batch ) # latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep) # predict the noise residual noise_pred = self.unet_hpu( latent_model_input, timestep, text_embeddings_batch, cross_attention_kwargs, capture, ) # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) if do_classifier_free_guidance and guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) # compute the previous noisy sample x_t -> x_t-1 latents_batch = self.scheduler.step( noise_pred, latents_batch, **extra_step_kwargs, return_dict=False )[0] if not self.use_hpu_graphs: self.htcore.mark_step() # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(i, timestep, latents_batch) if not output_type == "latent": # 8. Post-processing image = self.vae.decode(latents_batch / self.vae.config.scaling_factor, return_dict=False)[0] else: image = latents_batch outputs["images"].append(image) self.scheduler.reset_timestep_dependent_params() if not self.use_hpu_graphs: self.htcore.mark_step() speed_metrics_prefix = "generation" speed_measures = speed_metrics( split=speed_metrics_prefix, start_time=t0, num_samples=num_batches * batch_size if t1 == t0 else (num_batches - 2) * batch_size, num_steps=num_batches, start_time_after_warmup=t1, ) logger.info(f"Speed metrics: {speed_measures}") # Remove dummy generations if needed if num_dummy_samples > 0: outputs["images"][-1] = outputs["images"][-1][:-num_dummy_samples] # Process generated images for i, image in enumerate(outputs["images"][:]): if i == 0: outputs["images"].clear() if output_type == "latent": has_nsfw_concept = None else: image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) if output_type == "pil": outputs["images"] += image else: outputs["images"] += [*image] if has_nsfw_concept is not None: outputs["has_nsfw_concept"] += has_nsfw_concept else: outputs["has_nsfw_concept"] = None if not return_dict: return (outputs["images"], outputs["has_nsfw_concept"]) return GaudiStableDiffusionPipelineOutput( images=outputs["images"], nsfw_content_detected=outputs["has_nsfw_concept"], throughput=speed_measures[f"{speed_metrics_prefix}_samples_per_second"], ) @torch.no_grad() def unet_hpu(self, latent_model_input, timestep, encoder_hidden_states, cross_attention_kwargs, capture): if self.use_hpu_graphs: return self.capture_replay(latent_model_input, timestep, encoder_hidden_states, capture) else: return self.unet( latent_model_input, timestep, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] @torch.no_grad() def capture_replay(self, latent_model_input, timestep, encoder_hidden_states, capture): inputs = [latent_model_input, timestep, encoder_hidden_states, False] h = self.ht.hpu.graphs.input_hash(inputs) cached = self.cache.get(h) if capture: # Capture the graph and cache it with self.ht.hpu.stream(self.hpu_stream): graph = self.ht.hpu.HPUGraph() graph.capture_begin() outputs = self.unet(inputs[0], inputs[1], inputs[2], inputs[3])[0] graph.capture_end() graph_inputs = inputs graph_outputs = outputs self.cache[h] = self.ht.hpu.graphs.CachedParams(graph_inputs, graph_outputs, graph) return outputs # Replay the cached graph with updated inputs self.ht.hpu.graphs.copy_to(cached.graph_inputs, inputs) cached.graph.replay() self.ht.core.hpu.default_stream().synchronize() return cached.graph_outputs
[ "1" ]
2024-01-10
mslehre/text-embedding
src~compute_embedding.py
import os import tiktoken import openai from openai.embeddings_utils import get_embedding, cosine_similarity from tokenizer import get_token_from_string, get_string_from_tokens def embedding_from_string(string: str, embedding_name: str = "text-embedding-ada-002", max_token: int = 8191) -> list[float]: """This function computes the embedding for a string. Args: string (str): This parameter is the string of which the embedding is computed. embedding_name (str): The name of the embedding model. By default the model text-embedding-ada-002 is used. max_token (int): The maximum number of tokens for which an embedding is computed. By default this is the maximum number of tokens of the embedding model text-embedding-ada-002. If the default model is changed, the default value for max_token should be adapted to the maximum number of tokens of the new default embedding model. Returns: list[float]: The embedding for the string is returned as vector. In case of text-embedding-ada-002 as embedding model the dimension is 1536. If no embedding can be computed because the embedding model cannot be accessed or max_token is larger than the maximum number of tokens the embedding model supports, None is returned. If the string is too long because it is encoded to more tokens than max_token, the embedding for the string that is encoded to the first max_token tokens is computed. """ # Check if number of tokens is too large to for default embedding model. if (max_token > 8191): print('Your specified number of maximum number of tokens is larger \ than the maximum number of tokens', embedding_name, 'supports, \ which is', 8191, 'tokens.') return [None] # Test if OPENAI_API_KEY is set as environment variable. if (os.environ.get('OPENAI_API_KEY') is None): print('You did not set your openai api key as environment variable. \ Therefore the embedding cannot be computed. Please set your key as \ environment variable by typing: export OPENAI_API_KEY=\'your key\'\ .') return [None] # Get tokens from string to test whether number of tokens is too large for # the string. If the number of tokens for the string exceeds the maximum # number of tokens, only the first max_token tokens are returned. tokens = get_token_from_string(string, max_token=max_token, force_cut=True, verbose=True) # Get string from tokens since in case the string was too long and # the number of tokens was cut, the string is different from the original # string. string = get_string_from_tokens(tokens) return get_embedding(string, engine=embedding_name) def compute_similarity_of_texts(text1: str, text2: str) -> float: """This function computes two embeddings one for each text and then computes the cosine similarity of the two embeddings. If a text is too large because its string is encoded to more tokens than the maximum number of tokens for which an embedding is computed, the embedding for the string that is encoded to the first max_token tokens is computed where max_token is the maximum number of tokens for which an embedding is computed. The cosine similarity is returned. Args: text1 (str): the first string to compare text2 (str): the second string to compare Returns: float: The cosine similarity of the texts is returned as float. If the embedding for one of the texts cannot be computed, None is returned. """ texts = [text1, text2] embeddings = [] # Compute embeddings for the texts. for text in texts: embeddings.append(embedding_from_string(text)) # Test if embeddings could be computed. for i in range(0,2): if (embeddings[i] == [None]): return None return cosine_similarity(embeddings[0], embeddings[1]) def main(): """If this program is executed the embedding for a few strings in a list is computed and both the string and the first five values of its embedding are printed. """ text = ["You are a big boy", "incomprehensibilities", "ich", "Ich", "er", "ist", ".", "?", ",", "er ist ich."] for t in text: print(t,"\nFirst five values of embedding for text:") embedding = embedding_from_string(t) print(embedding[0:5]) exit(0) if __name__ == "__main__": main()
[]
2024-01-10
mslehre/text-embedding
src~chunks_for_question.py
import os import pandas as pd import numpy as np from compute_embedding import embedding_from_string from openai.embeddings_utils import cosine_similarity from settings import DATA_DIR def get_k_IDs(question: str, embeddings_file: str, k: int = 5) -> list[int]: """Gets the IDs of the k chunks that have the highest cosine similarity with the embedded question. The embeddings of the chunks are given in the hdf5 file named after the string of 'embeddings_file' which should be locaded in the data directory of this repository. The function gives back a list that contains the IDs of the k chunks sorted decreasingly by similarity to the question. Args: question (str): The string of the question to compare the embeddings of the chunks to. embeddings_file (str): The relative path of the hdf5 file, that contains the embeddings , if one is currently in the data directory, since all data files should be stored there. Example: For the file named "example_embeddings" in the directory "data/folder" the strings should be in the following format: "folder/example_embeddings" (without "/" at the beginning) Attention: The dictionary has to have a key that contains the string "embeddings" that gives the array of the embeddigs and a string with "ids" that gives the ids or names of the corrsponding files. k (int): Integer that indicates the number of chunks that are returned. Returns: list[str]: The list that contains the IDs of the k files with the best cosine similiarity for the question orderded from most to least similar. """ # Check if question is given: if not question: print("No question was given. Please enter a question.") return [None] # Embed the question: question_embedding = embedding_from_string(string=question) # Get the embeddings from the hpf5 file if exists and acess is given: file_path = os.path.join(DATA_DIR, embeddings_file) if (not os.path.isfile(file_path) or not os.access(file_path, os.R_OK)): print("The file " + file_path + " does not exist or is not readable!") return [None] # Read the pd.DataFrames from the hdf5 file hdf = pd.HDFStore(file_path, mode='r') embeddings_df = pd.read_hdf(hdf, "embeddings") ids_df = pd.read_hdf(hdf, "ids") hdf.close() # Check if k not bigger than the number of embeddings: n,_ = embeddings_df.shape if (k > n): print(f'k was given as {k} but there are {n} embeddings given. k is ' + f'set to {n}.') k = n # Compute IDs of the best embeddings and return the sorted list from # biggest to smallest similarity: inds = get_embeddings_argsort(question_embedding=question_embedding, embeddings=embeddings_df) inds = [ids_df[0].iloc[i] for i in inds] return inds[0:k] def get_embeddings_argsort(question_embedding: list[float], embeddings: pd.DataFrame) -> list[int]: """Gets the argsort of the given embeddings from higehst to lowest cosine similarity with the given question. Args: question_embedding (list[float]): The embedded question to which the embeddings are compared to. embeddings (pd.DataFrame): The pandas DataFrame containing the embeddings of the chunks. Returns: list[int]: The list that contains the indices (row numbers)of the argsort of the embeddings according to the cosine similiarity for the question orderd from most to least similar. """ similarities = [] n,_ = embeddings.shape for i in range(0,n): similarities.append(cosine_similarity(question_embedding, embeddings.iloc[i].tolist())) # Return the indices of the k best embeddings, the best results have the # highest cosine similarity. inds = np.array(similarities).argsort()[::-1] return inds def main(): """Main to test the function that gets the k best chunks for a question. """ question = "What is the publication domain of Volkmar Liebscher?" k = 5 a = get_k_IDs(question, embeddings_file="pub_embeddings.h5", k=k) print(f'Question: {question} The list with the best {k} file(s) is {a}.') exit(0) if __name__ == "__main__": main()
[]
2024-01-10
mslehre/text-embedding
src~ask_question.py
#set key with export OPENAI_API_KEY="..." import os import openai from build_prompt import get_prompt from settings import DATA_DIR, LM_model def get_answer( query: str, text_dir: str, id_list: list[str]) -> str: """From a question asked by the user, generate the answer Args: query (str): Question asked by the user text_dir (str): Documents directory id_list (list[str]): List of relevant docs Returns: str: Answer generated with the LLM """ docs,seperator_list = get_texts_from_ids(id_list=id_list, text_dir=text_dir) if len(seperator_list) == (len(docs) + 1): meta_data = seperator_list.pop(0) seperator_list[0] = meta_data + seperator_list[0] #assemble the prompt this_prompt = get_prompt(query, docs, seperator_list) if (this_prompt == None): return None #call openai to obtain a response if LM_model == "gpt-3.5-turbo": response = openai.ChatCompletion.create( model = LM_model, messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": this_prompt}], temperature = 0, max_tokens = 500, ) result = response['choices'][0]['message']['content'] else: response = openai.Completion.create( model = "text-davinci-003", prompt = this_prompt, temperature = 0, max_tokens = 500, ) result = response['choices'][0]['text'] return result def get_texts_from_ids(id_list: list[str], text_dir: str) -> tuple[list[str], list[str]]: """Returns a tuple with the texts from the text chunks with the specified IDs and a list with the information from the according meta files. If no meta file exists, the second list contains 'Here is a new text' as an entry. The second list can be used as a seperator list for the prompt building. Args: id_list (list[str]): List with the IDs of the sleected chunks. text_dir (str): Documents directory. Returns: list[str]: A list that contains the texts from the chunks with the selected IDs. list[str]: A list that contains the meta information from the corresponding meta files if they exist. """ docs = [] seperator_list = [] # First read in the chunks given by the id_list from the given directory. # Either the file exists as in the directory or it is located in a sub # directory, file name without chunk id. # add meta data that holds for all files in the directory if exists meta_file = os.path.join(text_dir, 'meta.txt') # meta file for all texts if os.path.isfile(meta_file) and os.access(meta_file, os.R_OK): with open(meta_file, 'r', encoding="utf-8") as file: meta_data = file.read() seperator_list.append(f'Here is some meta information that hold for ' + f'all texts that are given to answer the ' + f'question:\n{meta_data}\n\n') for id in id_list: file_path = os.path.join(text_dir, id + ".txt") dir_path = os.path.join(text_dir, id.split('.')[0]) # sub dir file_in_sub_dir = False # search for a sub directory with chunks: if(not os.path.isfile(file_path) and os.path.isdir(dir_path)): file_path = os.path.join(dir_path, id + ".txt") file_in_sub_dir = True # to get the location of the meta file if not os.access(file_path, os.R_OK): print(f'ERROR: Could not find or access the file {id}.txt ' + f' directly or in a sub directory {dir_path}.') exit(1) this_chunk = open(file_path, "r", encoding="UTF-8") docs.append(this_chunk.read()) this_chunk.close() # Create seperator for the chunk using the meta file data if a meta # file exist: if file_in_sub_dir == True: meta_file = os.path.join(dir_path, id.split('.')[0] + '.meta.txt') else: meta_file = os.path.join(text_dir, id.split('.')[0] + '.meta.txt') if os.path.isfile(meta_file) and os.access(meta_file, os.R_OK): # read in the meta data into seperators with open(meta_file, 'r') as file: meta_data = file.read() seperator_list.append(f'Here are some meta information about the ' + f'following text:\n{meta_data}.\n The ' + 'corresponding text:') else: # ignore meta file, continue without meta information seperator_list.append('This is a new text:') return docs, seperator_list def main(): testq = "What are common research interests of these scientists?" testdir = os.path.join(DATA_DIR, "publications") testlist = ['2','4'] testanswer = get_answer(query=testq, text_dir=testdir, id_list=testlist) print(testanswer) if __name__ == "__main__": main()
[ "You are a helpful assistant." ]
2024-01-10
mslehre/text-embedding
src~tsne_plot.py
#!/usr/bin/env python3 import os import argparse import numpy as np import pandas as pd from sklearn.decomposition import PCA from sklearn.manifold import TSNE import matplotlib.pyplot as plt import seaborn as sns from adjustText import adjust_text from openai.embeddings_utils import cosine_similarity def try_to_read_file(file_path: str) -> str: # a quick function for argparse to check if given arg is a readable file if not os.path.isfile(file_path) or not os.access(file_path, os.R_OK): raise argparse.ArgumentTypeError("The file " + file_path + "does not " + "exist or is not readable!") return file_path def check_thinning_args(thinning_arg: str, dir_path: str) -> tuple[int, str]: # function to check arguments for thinning data # check if thinning_arg is an int try: thinning_arg = int(thinning_arg) except ValueError as ve: raise argparse.ArgumentTypeError("Argument " + thinning_arg + " is not" + " an integer!") # check if dir_path is a directory if not os.path.isdir(dir_path) or not os.access(dir_path, os.R_OK): raise argparse.ArgumentTypeError("The directory " + dir_path + " does " + "not exist or is not readable!") dir_path = os.path.join(dir_path, '') # append '/' return thinning_arg, dir_path def count_pubs(author_ids: pd.DataFrame, dir_path: str) -> list[int]: """ Count number of publications for each provided author ID in the specified directory. Args: author_ids (pandas.DataFrame): Author IDs to count the number of publications for. dir_path (str): Directory containing the publication lists, the file names need to be <author_id>.txt. Returns: num_pubs (list): List of number of publications for each author ID. A -1 is appended if no publication list was found for the author. """ num_pubs = [] for id in author_ids[0]: file_path = dir_path + str(id) + ".txt" n = -1 # num pubs in file, -1 because the first line is not a pub # check if file exists and is readable, if yes read if os.path.isfile(file_path) and os.access(file_path, os.R_OK): with open(file_path, 'r') as f: for line in f: if line.strip(): n += 1 # if line is not empty, count + 1 num_pubs.append(n) # add count for author id else: print("WARNING: Can't find or read file ", file_path, " for author ID ", id, "!") num_pubs.append(n) # add -1 pubs for authors with no file return num_pubs def thin_out_data(author_ids: pd.DataFrame, embeddings: pd.DataFrame, dir_path: str, min_pubs: int) -> tuple[pd.DataFrame, pd.DataFrame]: """ Remove data of authors with less than min_pubs publications from author_ids and embeddings. Args: author_ids (pandas.DataFrame): Author IDs of authors to thin out. embeddings (pandas.DataFrame): Embeddings corresponding to the author IDs to thin out. dir_path (str): Path to directory containing the publication lists. min_pubs (int): Minimum number of publications. Every author with less than min_pubs publications is being pruned from author_ids and embeddings. Returns: author_ids (pandas.DataFrame): Pruned author IDs. embeddings (pandas.DataFrame): Pruned embeddings. """ num_pubs = count_pubs(author_ids, dir_path) # get indices of authors with less than min_pubs pubs drop_indices =[i for i, num in enumerate(num_pubs) if num < min_pubs] # drop those authors embeddings = embeddings.drop(drop_indices) author_ids = author_ids.drop(drop_indices) return author_ids, embeddings def get_author_info_and_palette(authors: pd.DataFrame, author_ids: np.ndarray, affiliation_map: pd.DataFrame, affiliation: str) -> tuple[list[str], dict]: """ Get affiliations of autors by ID and generate color palette for the affiliations Args: authors (pandas.DataFrame): Table containing at least author ids and their faculties and institutes. author_ids (numpay.ndarray): List of author ids for which to get the affiliations. affiliation_map (pandas.DataFrame): Table with all possible faculties or institutes. affiliation (str): Which affiliation to use - "faculty" or "institute". Returns: lnames (list[str]): List of authors last names. affil (list[str]): List of affiliations for author IDs. pal (dict): Color palette for the affiliations. """ # get last names of authors lnames = authors.loc[authors['id'].isin(author_ids), 'lastname'].to_list() # get affiliations of authors by ID affil = authors.loc[authors['id'].isin(author_ids), affiliation].to_list() # switch long names of institutions to short names if affiliation == 'institute': mapping = dict(zip(affiliation_map['institute_long'], affiliation_map['institute_short'])) affil_ = [mapping[item] for item in affil] affil = affil_ affil_uniq = affiliation_map['institute_short'].to_list() else: affil_uniq = affiliation_map['faculty'].to_list() # generate color palette num_col = len(affil_uniq) # number of colors colors = sns.color_palette("hls", num_col).as_hex() # get colors pal = dict(zip(affil_uniq, colors)) # color palette for plot return lnames, affil, pal def compute_tsne(X: np.ndarray, pca_reduction: bool = False, pca_components: int = 50, tsne_perplexity: float = 30.0) -> np.ndarray: """ Compute t-SNE for embeddings Args: X (numpy.ndarray): Embeddings to transform pca_reduction (bool): If True, a PCA is performed before the t-SNE to reduce computation resources. Default: True. pca_components (int): Number of components to keep, when PCA is performed, i.e. dimension of the result. Default: 50. tsne_perplexity (float): Number of nearest neighbors that is used in other manifold learning algorithms, must be less than the number of samples. Default: 30.0. Returns: tsne_result (numpy.ndarray): t-SNE transformed data. """ # ada dimensions: 1536 if pca_reduction: # build PCA, reduce to dim size pca_components pca = PCA(n_components = pca_components) pca_result = pca.fit_transform(X) # fit model and apply dim reduction X = pca_result tsne = TSNE(perplexity = tsne_perplexity) # perplexity = knn tsne_result = tsne.fit_transform(X) # fit model and apply dim reduction return tsne_result def compute_cosinesim(embeddings: np.ndarray) -> np.ndarray: """ Compute pairwise cosine similarity for embeddings Args: embeddings (numpy.ndarray): A 2-dim array with embeddings Returns: cosine_sims (numpy.ndarray): A symmetric matrix containing pairwise cosine similarities of the embeddings and Nan on the diagonal. """ n = embeddings.shape[0] # number of embeddings # n x n matrix for pairwise distances cosine_sims = np.zeros((n,n), dtype = np.float64) # indices of upper triangle matrix with offset 1 iupper = np.stack(np.triu_indices(n, 1), axis = -1) # compute cosine similarity for i,j in iupper: cosine_sims[i,j] = cosine_similarity(embeddings[i], embeddings[j]) cosine_sims += cosine_sims.T # make matrix symmetric np.fill_diagonal(cosine_sims, np.nan) # fill diagonal with NaN return cosine_sims def get_edges(similarities: np.ndarray, k: int = None, threshold: float = None) -> set[tuple[int,int]]: """ Given a matrix containing pairwise similarity scores, for each element get the indices for the k highest scores and/or the indices for the elements with a score of >= threshold. Args: similarities (np.ndarray): A symmetric matrix containing pairwise similarities and Nan on the diagonal. k (int): For each element, get the index pairs for the k elements with the highest similarity score. threshold (float): Get index pairs with a similarity score of >= threshold. Returns: edges (set[tuple[int,int]]): A set of 0-based index tuples computed according to k/threshold. """ if not k and not threshold: print("ERROR: You need to specify at least one criterium for selecting" + " the edges!") exit(1) edges = [] # get edges to the k nearest neightbours for each node if k: indices = np.argsort(similarities) # get knn -> adjacency lists # argsort sorts ascending, need the last elements knn = indices[:, -(k+1):-1] # nans get sorted last, exclude them for i,k in zip(range(len(knn)), knn): for j in k: # sort indices so duplicates can be identified by set() ind = sorted([i,j]) edges.append(tuple(ind)) # get edges for nodes with a similarity of >= threshold if threshold: indices = np.stack(np.where(similarities >= threshold), axis = -1) for i in indices: ind = sorted(i) edges.append(tuple(ind)) edges = set(edges) # duplicate edges are removed return edges def tsne_plot(X: np.ndarray, lnames: list[str], affiliation: list[str], legend_title: str, palette: dict, edges = None): """ Plot t-SNE Args: X (numpy.ndarray): Result of the t-SNE transformation. affiliation (list[str]): Containing the institutes or faculties corresponding to the data points. This decides how to color the points in the plot. legend_title (str): Title for the plot legend palette (dict): Color palette for the plot. Specifies which color to use for which institute or faculty. Returns: matplotlib.figure.Figure: Figure of the plot. """ plt.figure(figsize=(15,15)) ax = sns.scatterplot( x = X[:, 0], y = X[:, 1], hue = affiliation, hue_order = list(palette.keys()), palette = palette, style = affiliation, style_order = list(palette.keys()), legend = "full", alpha = 1, s=200, zorder = 5 ) plt.title("t-SNE Plot of Publication Lists", fontsize = 20) # plot title # adjust legend position and style ax.legend(fancybox=True, ncol = 2, fontsize = 14, title = legend_title) sns.move_legend(ax, "upper right", bbox_to_anchor=(-0.05, 1)) # add edges to plot if edges: for i, j in edges: # add line from i to j x1 = X[i,0] y1 = X[i,1] x2 = X[j,0] - x1 y2 = X[j,1] - y1 plt.arrow(x1, y1, x2, y2, color='gray', linewidth=1, length_includes_head=True, head_width=0, alpha = 0.2, zorder = 0) # for some reason plt.plot doesnt work well with scatter plots #plt.plot(X[i, :], X[j, :], marker = None, linewidth = 2, # color = "gray", alpha = 0.1) # annotate dots with last names text = [] # box style for labels bbox_props = dict(boxstyle="round", fc="white", alpha=0.3) #boxstyle="round, pad=0.15" for i, label in enumerate(lnames): text += [ax.text(X[i, 0], X[i, 1], label, bbox=bbox_props, zorder = 10)] # fontsize = 'x-small' adjust_text(text) # prevent labels from overlapping return ax.get_figure() def main(): parser = argparse.ArgumentParser( description='Visualize the embeddings of publications with a t-SNE ' + 'plot.') parser.add_argument('embed_file', type = try_to_read_file, help = 'hdf5 file with embeddings.') parser.add_argument('author_file', type = try_to_read_file, help = 'File with table containing information about ' + 'the authors, like ID, faculty, and institute.') parser.add_argument('affiliation_map', type = try_to_read_file, help = 'File with table containig all possible ' + 'faculties/institutes.') parser.add_argument('-o', '--outfile', default = 'tsne_plot', help = 'Stem for output file to save plot. Default is ' + '\"tsne_plot\".') parser.add_argument('--format', default = 'pdf', choices = ['png', 'pdf', 'svg'], help = 'Format for plot. Default is png.') parser.add_argument('--tsne_perplexity', type = float, default = 30.0, help = 'Perplexity for the t-SNE algorithm. Default is' + ' 30.0.') parser.add_argument('--pca', action = 'store_true', help = 'Perform a PCA before the t-SNE.') parser.add_argument('--pca_components', type = int, default = 50, help = 'Number of components to keep after performing' + ' the PCA. Default is 50.') parser.add_argument('--affiliation', default = 'institute', choices = ['institute', 'faculty'], help = 'Decides after which fashion to color the ' + 'plot. Default is \"institute\".') parser.add_argument('-k', '--k_edges', type = int, help = 'For each author, plot edges to the authors ' + 'with the k highest cosine similarities.') parser.add_argument('-t', '--threshold_edges', type = float, help='For each author, plot edges to the authors ' + 'with a cosine similarity of >= threshold.') parser.add_argument('--thinning', nargs = 2, metavar = ('INT', 'DIR'), help = 'Prune author data by number of publications. ' + 'Specify a minimum number of publications and the ' + 'directory containing the publication lists. Authors' + ' with less than the required number of publications' + ' will not be plotted.') args = parser.parse_args() # check thinning args if args.thinning: min_pubs, pub_dir = check_thinning_args(args.thinning[0], args.thinning[1]) outfile = args.outfile + '.' + args.format # read data hdf = pd.HDFStore(args.embed_file, mode='r') embeddings = pd.read_hdf(hdf, "embeddings") author_ids = pd.read_hdf(hdf, "ids") hdf.close() authors = pd.read_table(args.author_file, delimiter = '\t', dtype = str) # encoding='latin1' affiliation_map = pd.read_table(args.affiliation_map, delimiter = '\t') # thinning data if args.thinning: author_ids, embeddings = thin_out_data(author_ids, embeddings, pub_dir, min_pubs) # convert data to numpy arrays for further steps author_ids = author_ids.to_numpy().flatten() embeddings = embeddings.to_numpy(dtype = np.float64) # perplexity for tsne needs to be smaller than the number of samples k = args.tsne_perplexity \ if len(author_ids) > args.tsne_perplexity \ else float(len(author_ids) - 1) # pca components needs to be <= min(n_samples, n_features) pca_components = args.pca_components \ if min(embeddings.shape) >= args.pca_components \ else min(embeddings.shape) # transform embeddings tsne_result = compute_tsne(embeddings, pca_reduction = args.pca, pca_components = pca_components, tsne_perplexity = k) # get last names, affiliations, and color palette lnames, affiliation, palette = get_author_info_and_palette( authors, author_ids, affiliation_map, args.affiliation) # get edges edges = None if args.k_edges or args.threshold_edges: similarities = compute_cosinesim(embeddings) edges = get_edges(similarities, args.k_edges, args.threshold_edges) # plot fig = tsne_plot(tsne_result, lnames, affiliation, args.affiliation, palette, edges) fig.savefig(outfile, format = args.format, bbox_inches='tight') plt.show() exit(0) if __name__ == "__main__": main()
[]
2024-01-10
nipy/pbrain
eegview~utils.py
from __future__ import division from __future__ import division import re import array import scipy from matplotlib.cbook import iterable, Bunch from pbrainlib.mlab import cohere_pairs, fftsurr, window_hanning as hanning from math import floor, ceil from numpy import mean #changed from scipy mean. don't think it makes a difference except with multivariate arrays in which case, be careful. from scipy import zeros, ones, exp, array, pi from scipy import array, arange, std, rand import scipy.signal #import pickle def hilbert_phaser(s): """ FUNC: hilbert_phaser DESCR: Return the instantaneous phase of s using the hilbert transform """ #f = file("hilbert_fpe.pickle", "w") #pickle.dump(s, f) #f.close() #print "utils:hilbert_phaser(): sig.hilbert(", s[0:10], ")" h = scipy.signal.hilbert(s) #print "utils:hilbert_phaser(): scipy.absolute(", h[0:10], ")" a = scipy.absolute(h) #print "utils:hilbert_phaser(): scipy.angle(", h[0:10], ")" phase = scipy.angle(h) return phase def synchrony(s1, s2, t, winLen, freq, overlap=.1) : """ FUNC: synchrony DESCR: phase synchrony implementation """ #print "utils.synchrony(s1(", len(s1), ",), s2(", len(s2), "), t(", len(t),"),", winLen, freq, overlap, ")" # Compute phase difference #print "utils.synchrony(): doing hilbert_phaser(s1)" p1 = hilbert_phaser(s1) #print "utils.synchrony(): doing hilbert_phaser(s2)" p2 = hilbert_phaser(s2) pdiff = p1 - p2 sync = [] time = [] nWin = int(winLen * freq) nOverlap = int(overlap * freq) #print "utils.synchrony(): doing ", len(arange(0, len(pdiff), nWin - nOverlap)), " pdiffs" for i in arange(0, len(pdiff), nWin - nOverlap): sWin = pdiff[i:i + nWin] if len(sWin) < 3 : continue s = 1. / (1 + std(sWin)) #print "utils.synchrony(): [", i, ", ", i+nWin, "]: appending value s=", s try : sync.append(s) except : print 'sWin:', sWin sys.exit() if t is not None : time.append(t[i] + winLen / 2.) return array(sync), array(time) def sync_gamma(psi): """ FUNC: sync_gamma DESCR: Compute the measure gamma gamma^2 = <cos psi>^2 + <sin psi>^2 where psi(t) = m phix(t) - n phiy(t) where phi is the instantaneous phase; see also phasediff gamma is a measure of phase synchrony and ranges from 0-1 """ from scipy import mean, cos, sin, sqrt return sqrt(mean(cos(psi))**2 + mean(sin(psi))**2) def phasediff(s0, s1, filt, n=1, m=1): """ FUNC: phasediff DESCR: Compute the n-m phase difference using the hilbert transform of s0 and s1 after filtering with filt return value is a class with attributes s0filt : the filtered s0 s1filt : the filtered s1 p0 : the phase of s0 p1 : the phase of s1 psi : the phase difference n : n m : m """ s0filt = filt(s0) s1filt = filt(s1) p0 = hilbert_phaser(s0filt) p1 = hilbert_phaser(s1filt) return Bunch( s0filt = s0filt, s1filt = s1filt, p0 = p0, p1 = p1, psi = m*p0 - n*p1, n = n, m = m, ) def lowbutter(lpcf, lpsf, Fs, gpass=3, gstop=15): """ FUNC: lowbutter DESCR: Return a low pass butterworth filter with lpcf : lowpass corner freq lpsf : lowpass stop freq gpass : corner freq attenuation gstop : stop freq attenuation return value is a callable function that will filter your data Example: mybutt = lowbutter(12, 15, eeg.freq) sfilt = mybutt(s1) """ Nyq = Fs/2. wp = lpcf/Nyq ws = lpsf/Nyq ord, Wn = scipy.signal.buttord(wp, ws, gpass, gstop) b, a = scipy.signal.butter(ord, Wn, btype='lowpass') def func(x): return scipy.signal.lfilter(b,a,x) return func def donothing_callback(*args): pass def read_cohstat(fh): """ FUNC: read_cohstat DESCR: Read in a cohstat file and returns N, cxy, phases where cxy, pxy are dictionaries and N is the number of channels raises a RuntimeError on failure to parse """ # grok the number of channels header1 = fh.readline() header2 = fh.readline() cxy = {} phases = {} while 1: line = fh.readline().strip() #print "read_cohstat(): read line" , line vals = line.split() #print "len(", vals, ")=",len(vals) if len(vals)!=7: print "read_cohstat(): quitting coherences" break tup = vals[0].split('-') if len(tup) !=2: raise RuntimeError, 'Bad file format on line %s' % line try: i = int(tup[0]) except ValueError: continue try: j = int(tup[1][:-1]) except ValueError: continue cxy[(i,j)] = array(map(float, vals[1:])) header2 = fh.readline() header3 = fh.readline() while 1: line = fh.readline().strip() vals = line.split() if len(vals)!=7: print "read_cohstat(): quitting phases" break tup = vals[0].split('-') if len(tup) !=2: raise RuntimeError, 'Bad file format on line %s' % line try: i = int(tup[0]) except ValueError: continue try: j = int(tup[1][:-1]) except ValueError: continue phases[(i,j)] = array(map(float, vals[1:])) print "len(cxy)=" , len(cxy), "len(phases)=", len(phases) return cxy, phases def all_pairs_ij(N): """ FUNC: all_pairs_ij DESCR: Return a list of all uniq i,j tuples for cohstat """ ij = [] for i in range(N): for j in range(i+1, N): ij.append((i,j)) return ij def all_pairs_eoi(eoi): """ FUNC: all_pairs_eoi DESCR:Return a list of all uniq e1,e2 tuples for the eoi """ return [ (eoi[i], eoi[j]) for i,j in all_pairs_ij(len(eoi))] def ij_across_eois(eoi1, eoi2, amp): """ FUNC: ij_across_eois DESCR: gets ij pairs for across eois (useful for in and out of focus analysis). takes three arguments eoi1, eoi2, and amp. as long as you keep track of which eoi is which when you enter them in, everything should be peachy Note, you really would rather be using electrode_pairs_across_eois """ ind1=eoi1.to_data_indices(amp) ind2=eoi2.to_data_indices(amp) seen={} if len(ind1)<len(ind2): for i in ind1: seen[i]=1 ind2uniq=[j for j in ind2 if not seen.has_key(j)] indeoi1=ind1 indeoi2=ind2uniq else: for i in ind2: seen[i]=1 ind1uniq=[j for j in ind1 if not seen.has_key(j)] indeoi1=ind1uniq indeoi2=ind2 ij = [] for i in indeoi1: for j in indeoi2: ij.append((i,j)) return ij def electrode_pairs_across_eois(eoia, eoib, amp): """ FUNC: electrode_pairs_across_eois DESCR: gets (e1,e2) pairs for across eois (useful for in and out of focus analysis). takes three arguments eoia, eoib, and amp. """ # if eoia contains eoib you can get in trouble, because eoi2u # would be empty in the code below; just ask Sinem if eoia==eoib: return [] if len(eoia)==0: return [] if len(eoib)==0: return [] def smaller_one_first(eoi1, eoi2): seen = {} for key in eoi1: seen[key] = 1 # eoi2u are the electrodes in eoi2 that are not in eoi1 eoi2u = [ e for e in eoi2 if not seen.has_key(e)] return [ (e1, e2) for e1 in eoi1 for e2 in eoi2u] if len(eoia) < len(eoib): return smaller_one_first(eoia, eoib) else: return smaller_one_first(eoib, eoia) def cohere_dict_to_array(m, keys): """ FUNC: cohere_dict_to_array DESCR: Convert a cohere dict 'm' (as returned by cohere_bands, or cohere_pairs) to an array for statistical processing """ # get a representative band band = m[keys[0]] if iterable(band): if len(band)>1: # XXX: will not work with Numeric or numarray, but only with numpy. how to do this?!? a = zeros( (len(keys),len(band)), band.dtype) else: a = zeros( (len(keys),), band.dtype) else: a = zeros( (len(keys),), 'd') for count, key in enumerate(keys): a[count] = m[key] return a def cohere_array_to_dict(a, keys): """ FUNC: cohere_array_to_dict DESCR: Convert a cohere array (as created by cohere_dict_to_array) back to a dict """ d = {} count = 0 for rowNum in range(len(keys)): d[keys[rowNum]] = a[rowNum] return d def cohere_bands(cxy, phase, freqs, keys, bands = ( (1,4), (4,8), (8,12), (12,30), (30,55) ), progressCallback=donothing_callback): """ FUNC: cohere_bands DESCR: Summarize the output of cohere_pairs_eeg by bands. cxy and phase are a dictionary from electrode pair keys to Numeric arrays of coherence and phases for that pair. keys is a list of (e1,e2) tuples. The bands are delta = 1-4 Hz theta = 4-8 alpha = 8-12 beta = 12-30 gamma = 30-55 Return value is cxyAvg, phaseAvg """ #convert the cxy and phase structs to a matrix for averaging df = freqs[1]-freqs[0] ind = [] for (fmin, fmax) in bands: inds = max([int(floor(fmin/df)), 0 ]) inde = min([int(ceil (fmax/df)), len(freqs)]) ind.append( (inds, inde)) cxyAvg = {} phaseAvg = {} # note I am doing this element wise as a dict rather than array # wise as a matrix to conserve memory. dimensions of matrix are # len(ij)*len(freqs), which for NFFT=2048 and 64 electrodes # pairwise is 2016*2048 coherences and phases. 8 million floats. Nbands = len(bands) count = 0 Nkeys = len(keys) count =0 for key in keys: count +=1 if count%20==0: progressCallback(count/Nkeys, 'Averaging over bands') thisCxy = cxy[key] thisPhase = phase[key] ac = zeros( (Nbands,), thisCxy.dtype) ap = zeros( (Nbands,), thisPhase.dtype) count = 0 for inds, inde in ind: if inds==inde: ac[count]=thisCxy[inds] ap[count]=thisPhase[inds] else: ac[count] = mean(thisCxy[inds:inde]) ap[count] = mean(thisPhase[inds:inde]) count += 1 cxyAvg[key] = ac phaseAvg[key] = ap return cxyAvg, phaseAvg def power_bands(pxx, freqs, bands = ( (1,4), (4,8), (8,12), (12,30), (30,55) ), progressCallback=donothing_callback): """ FUNC: power_bands DESCR: Summarize the output of cohere_pairs_eeg with pxx returned by bands. pxx is a dictionary from electrodes to Numeric arrays of power for that trode. The bands are delta = 1-4 Hz theta = 4-8 alpha = 8-12 beta = 12-30 gamma = 30-55 Return value is pxxAvg """ #convert the cxy and phase structs to a matrix for averaging df = freqs[1]-freqs[0] ind = [] for (fmin, fmax) in bands: inds = max([int(floor(fmin/df)), 0 ]) inde = min([int(ceil (fmax/df)), len(freqs)]) ind.append( (inds, inde)) pxxAvg = {} # note I am doing this element wise as a dict rather than array # wise as a matrix to conserve memory. dimensions of matrix are # len(ij)*len(freqs), which for NFFT=2048 and 64 electrodes # pairwise is 2016*2048 coherences and phases. 8 million floats. Nbands = len(bands) count = 0 keys = pxx.keys() Nkeys = len(keys) count =0 for key in keys: count +=1 if count%20==0: progressCallback(count/Nkeys, 'Averaging over bands') thisPxx = pxx[key] #adjust for zeroed out electrodes if thisPxx[1] < .000000001: thisPxx.fill(1) print "UTILS: PXX WAS NAN, IS NOW: ", key, pxx[key] avg = zeros( (Nbands,), thisPxx.dtype) count = 0 for inds, inde in ind: if inds==inde: avg[count]=thisPxx[inds] else: avg[count] = mean(thisPxx[inds:inde]) count += 1 pxxAvg[key] = avg return pxxAvg def export_cohstat_xyz(XYZ): """ FUNC: export_cohstat_xyz DESCR: XYZ is a 64 x 3 array of floats. Return a string that can be written to a file cohstat can read. Note the data should be rotated so that they are in the view plane """ if len(XYZ) != 64: raise ValueError, 'Length of XYZ must be 64!' lines = [' 64'] for row in XYZ: lines.append(', '.join(['%d'%val for val in row])) return '\r\n'.join(lines) + '\r\n' def export_to_cohstat(cxyBands, phaseBands, keys): """ FUNC: export_to_cohstat DESCR: This function takes the coherence between pairs of electrodes in a grid as determined by cohere_bands (which processes the output from cohere_pairs and puts the data into a string format that can be loaded CohStat for visual analysis. export_to_cohstat returns the average coherence and phase within bands defined by cohere_bands, here defined as follows: delta = 1-4 Hz theta = 4-8 alpha = 8-12 beta = 12-30 gamma = 30-55 keys are an ordered list of keys into the cxy and phase dictionaries. Eg, if keys is from cohere_pairs_eeg, then it is a list of (e1,e2) tuples export_to_cohstat then creates a string (with all appropriate headers) that can be written to a file The output string is in the format: Average coherence within selected bands Delta Theta Alpha Beta gamma i-j: coh[0] coh[1] coh[2] coh[3] coh[4] Average phase within selected bands Delta Theta Alpha Beta gamma i-j: pha[0] pha[1] pha[2] pha[3] pha[4] Authors: Scott Simon ([email protected]) and John Hunter. """ lines = ["""Average coherence within selected bands:\r Delta Theta Alpha Beta lowgamma \r """] count=0 #Format the coherence data for each pair ij = all_pairs_ij(64) if len(keys)!=len(ij): raise RuntimeError, 'Cohstat can only handle 64 channels, talk to Leo' count = 0 for i, j in ij: thisCxy = cxyBands[keys[count]] s = '%d-%d:'%(i+1,j+1) s = s.rjust(22) lines.append(s + ' %1.3f %1.3f %1.3f %1.3f %1.3f \r\n' %\ (thisCxy[0], thisCxy[1],thisCxy[2],thisCxy[3], thisCxy[4])) count +=1 #Create the phase header of the file lines.append(""" Phase of average coherency within selected bands (degrees):\r Delta Theta Alpha Beta lowgamma \r """) count = 0 #Format the phase data for each pair for i, j in ij: thisPhase = 180.0/pi*array(phaseBands[keys[count]]) s = '%d-%d:'%(i+1,j+1) s = s.rjust(22) lines.append(s + '% 11.3f% 11.3f% 11.3f% 11.3f% 11.3f \r\n' %\ (thisPhase[0], thisPhase[1],thisPhase[2],thisPhase[3], thisPhase[4])) count+=1 lines.append(""" """) return ''.join(lines) def convert_ebersole(filein, fileout): """ FUNC: convert_ebersole DESCR: This function converts a float ASCII eeg record into a binary eeg record. This function takes two file names as inputs. The first, filein, is the name of the file being converted. The second, fileout, is the name of the file that will be created. The output is a file with the voltage from each individual channel given a column, and each row representing another sampling point. In the output file, this floating point data is represented in binary. Author: Scott Simon, [email protected] """ from array import array count = 0 fi = open(filein, 'r') for line in fi.xreadlines(): if line[0] == '"': continue elif len(line.strip())==0: count += 1 if count == 2: break fo = open(fileout, 'wb') for line in fi.xreadlines(): a = array('f', map(float, line.split(',')[1:])) fo.write(a.tostring()) def eoi_for_matlab(eoi, grd, fileout): """ FUNC: eoi_for_matlab DESCR: This function takes the xyz for the electrodes of interest, assigned from the .grd file by eoi_to_xyz, and formats these values in a way that matlab can read. The input is an .eoi and .grd file, and an output file name. The output is a file in the format [... x y z;... x y z;... ]; Author: Scott Simon, [email protected] """ fo = open(fileout, 'w') fo.write('XYZ = [...\n') t = eoi_to_xyz(eoi, grd) for l in t: fo.write('\t%1.8f %1.8f %1.8f;...\n' % tuple(l)) fo.write('];') def eeg_grand_mean(X): """ FUNC: eeg_grand_mean DESCR: X is a numSamples by numChannels numeric array. Return the grand mean of X (For each element of X, subtract the mean of the row for which it occurs) """ return mean(X,1) def filter_grand_mean(X): """ FUNC: filter_grand_mean DESCR: X is a numSamples by numChannels numeric array. Return X with the grand mean removed """ X = array(X, 'd') gm = eeg_grand_mean(X) print "utils.filter_grand_mean(): type(gm)=", gm.dtype gm.shape = X.shape[0], numRows, numCols = X.shape for i in range(numCols): X[:,i] = X[:,i] - gm print "utils.filter_grand_mean(): return X of type ", X.dtype return X def remove_channel_means(X): """ FUNC: remove_channel_means DESCR: remove the mean from each channel. X is a numSamples x numChannels array """ mu = mean(X,0) mu.shape = 1,X.shape[1] return X - mu def get_exp_prediction(pars, x): """ FUNC: get_exp_prediction DESCR: pars is an a, alpha, k0 tuple of parameters for the exponential function y = a*exp(alpha*t) + k Evaluate this function at x and return y Eg, if x are distances, this would return the predicted coherence as a function of distance assuming an exponential relationship See get_best_exp_params for the function to get the best exponential params for a distance array x and a coherence array. """ a, alpha, k = pars #print a, alpha, k return a*exp(alpha*x) + k def get_best_exp_params(x, y, guess=(1.0, -.5, 0.0)): """ FUNC: get_best_exp_params DESCR: Given a distance array x and an equal shaped array of coherences y and an initial guess for the parameters of get_exp_prediction, where pars is an a, alpha, k0 tuple, return the best fit parameters as an a, alpha, k0 tuple Eg, best = get_best_exp_params(delta, coh, guess) """ print "utils.get_best_exp_params(x=",x, "y=", y, "guess=", guess,"): !!!" def errfunc(pars): return y - get_exp_prediction(pars, x) #return the error J = zeros( (3,len(x)), 'd') # init the Jacobian only once ddk = -ones((len(x),), 'd') # d/dk indep of k def deriv_errfunc(pars): 'The Jacobian of the errfunc is -Jacobian of the func' a, alpha, k = pars J[0,:] = -exp(alpha*x) #d/da J[1,:] = -x*a*exp(alpha*x) #d/alpha J[2,:] = ddk return J from scipy.optimize import leastsq ret = leastsq(errfunc, guess, full_output=1, Dfun=deriv_errfunc, col_deriv=1) if len(ret)==4: best, info, ier, mesg = ret elif len(ret)==5: best, info, ier, mesg, cov_x = ret print "WE'RE TRYING!", best if ier != 1: print "ier == 1..."#return None #so I took this out. I don't know if this is a terrible idea. Dr. Towle has informed me that sometimes the glove just don't fit, but that we still want to draw coherences with the best value, even if the error value is 1. return best def cohere_pairs_eeg( eeg, newLength, NFFT, offset, eoiPairs=None, indMin=0, indMax=None, data=None, returnPxx=False, **kwargs): """ FUNC: cohere_pairs_eeg DESCR: Cxy, Phase, freqs = cohere_pairs_eeg( ...) Compute the coherence for all pairs in the eoi. eeg is a EEG instance. eoiPairs is a list of electrode tuples; if none, use all. Each tuple is a pair of electrodes, eg, eoiPairs = [ ( ('MT',7), ('MT',8) ), ( ('MT',7), ('MT',9) ), .... ] indMin, indmax if provided, give the sample number indices into eeg.data to do the coherence over (default all) if data is not None, use data rather than eeg.data to compute coherence The other function arguments, except for 'preferSpeedOverMemory' (see below), are explained in the help string of 'psd'. Return value is a tuple (Cxy, Phase, freqs). Cxy -- a dictionary of electrode tuples -> coherence vector for that pair. Phase -- a dictionary of phases of the cross spectral density at each frequency for each pair. keys are (e1,e2). freqs -- a vector of frequencies, equal in length to either the coherence or phase vectors for any electrode key. Eg, to make a coherence Bode plot: e1 = ('MT', 7) e2 = ('MT', 8) subplot(211) plot( freqs, Cxy[(e1,e2)]) subplot(212) plot( freqs, Phase[(e1,e2)]) For a large number of pairs, cohere_pairs can be much more efficient than just calling cohere for each pair, because it caches most of the intensive computations. If N is the number of pairs, this function is O(N) for most of the heavy lifting, whereas calling cohere for each pair is O(N^2). However, because of the caching, it is also more memory intensive, making 2 additional complex arrays with approximately the same number of elements as X. See mlab cohere_pairs for optional kwargs See test/cohere_pairs_test.py in the src tree for an example script that shows that this cohere_pairs and cohere give the same results for a given pair. """ print "utils.cohere_pairs_eeg: eeg.freq: ", eeg.freq amp = eeg.get_amp() print "UTILS AMP: ", amp if eoiPairs is None: eoiPairs = all_pairs_eoi( amp.to_eoi() ) m = amp.get_electrode_to_indices_dict() ij = [ (m[e1], m[e2]) for e1, e2 in eoiPairs] ij.sort() print len(ij), len(eoiPairs) if data is None: data = eeg.data #print "cohere_pairs_eeg: data.shape is ", data.shape if indMax is None: indMax = data.shape[0] X = data[indMin:indMax] if returnPxx: try: Cxy, Phase, freqs, Pxx = cohere_pairs( X, ij, newLength, NFFT, offset, Fs=eeg.freq, returnPxx=True, **kwargs) except OverflowError, overflowerror: print "cohere_pairs_eeg(): caught overflow error!! bailing: ", overflowerror else: Cxy, Phase, freqs = cohere_pairs( X, ij, newLength, NFFT, offset, Fs=eeg.freq, **kwargs) seen = {} keys = Cxy.keys() keys.sort() assert(len(ij)==len(eoiPairs)) for keyIJ, keyEOI in zip(ij, eoiPairs): Cxy[keyEOI] = Cxy[keyIJ] del Cxy[keyIJ] Phase[keyEOI] = Phase[keyIJ] del Phase[keyIJ] i,j = keyIJ e1, e2 = keyEOI seen[i] = e1 seen[j] = e2 #print Cxy #print Phase, "&*&*&" #print freqs if returnPxx: for i, ei in seen.items(): Pxx[ei] = Pxx[i] del Pxx[i] if returnPxx: return Cxy, Phase, freqs, Pxx else: return Cxy, Phase, freqs def window_hanning(x): """ FUNC: window_hanning DESCR: return x times the hanning window of len(x) """ sigma = std(x) win = hanning(len(x))*x #USED THE MLAB window_hanning SINCE MATPLOTLIB DOESN'T HAVE IT ANYMORE -eli return win*(sigma/std(win)) def bandpass(lpsf, lpcf, hpcf, hpsf, Fs, gpass=3, gstop=20): """ FUNC: bandpass DESCR: return a butterworth bandpass filter """ Nyq = Fs/2. wp = [lpcf/Nyq, hpcf/Nyq] ws = [lpsf/Nyq, hpsf/Nyq] ord, Wn = scipy.signal.buttord(wp, ws, gpass, gstop) b,a = scipy.signal.butter(ord, Wn, btype='bandpass') # pun intended def func(x): return scipy.signal.lfilter(b,a,x) return func def gen_surrogate_data(eeg, tmin, tmax, eoi, filters, numSurrs) : """ FUNC: gen_surrogate_data DESCR: """ surrData = {} # Get data t, data = eeg.get_data(tmin, tmax) # Extract random pairs from the data # randInds = (nx.mlab.rand(numSurrs, 2) * len(eoi)).astype(nx.Int) randInds = (rand(numSurrs, 2) * len(eoi)).astype(Int) e2i = eeg.get_amp().get_electrode_to_indices_dict() for i, pair in enumerate(randInds) : print 'Computing surrogate %d of %d' % (i, numSurrs) # Get indices into data ie1, ie2 = pair i1 = e2i[eoi[ie1]] i2 = e2i[eoi[ie2]] # Generate surrogate data # XXX surr1 = fftsurr(data[:,i1], window=window_hanning) surr2 = fftsurr(data[:,i2], window=window_hanning) # surr1 = fftsurr(data[:,i1]) # surr2 = fftsurr(data[:,i2]) # Generate filtered surrogate data for j, tup in enumerate(filters.items()) : band, info = tup winLen, filter = info fsurr1 = filter(surr1) fsurr2 = filter(surr2) surrData[i, j, band] = (fsurr1, fsurr2) return surrData
[]
2024-01-10
nipy/pbrain
eegview~eegview.py
# TODO: fix vsteps for different numbers of electrodes # font sizes are different on ylabels from __future__ import division import sys, os, copy, traceback import distutils.sysconfig import pygtk pygtk.require("2.0") import gtk from gtk import gdk from scipy import arange, sin, pi, zeros, ones, reshape, \ greater_equal, transpose, array, arange, resize, \ absolute, nonzero from scipy import fromstring, arange, log10 from scipy import minimum, maximum from matplotlib.cbook import exception_to_str from pbrainlib.gtkutils import str2num_or_err, simple_msg, error_msg, \ not_implemented, yes_or_no, FileManager, select_name, get_num_range, Dialog_FileSelection, Dialog_FileChooser, get_num_value from matplotlib.widgets import Cursor, SpanSelector from data import EEGWeb, EEGFileSystem, EOI, Amp, Grids from file_formats import FileFormat_BNI, W18Header, FileFormat_AxonAscii, FileFormat_NeuroscanAscii, FileFormat_AlphaomegaAscii, NeuroscanEpochFile from dialogs import Dialog_Preferences, Dialog_SelectElectrodes,\ Dialog_CohstatExport, Dialog_SaveEOI, Dialog_EEGParams, \ Dialog_Annotate, Dialog_AnnBrowser, \ Dialog_PhaseSynchrony, Dialog_PhaseSynchronyPlot, \ AutoPlayDialog, SpecProps, Dialog_EventRelatedSpec from dialog_filterelectrodes import Dialog_FilterElectrodes import datetime import servers from borgs import Shared from events import Observer from shared import fmanager, eegviewrc from gladewrapper import PrefixWrapper from utils import filter_grand_mean from matplotlib import rcParams from matplotlib.backends.backend_gtkagg import FigureCanvasGTKAgg as FigureCanvas import matplotlib.cm as cm from matplotlib.figure import Figure from matplotlib.lines import Line2D from matplotlib.transforms import BboxTransform, Bbox, ScaledTranslation, blended_transform_factory #in all, removed unit_bbox, Value, Point, and #replaced get_bbox_transform with BboxTransform, added ScaledTranslation and blended_transform_factory from matplotlib.patches import Rectangle from scipy.signal import buttord, butter, lfilter from mpl_windows import ChannelWin, AcorrWin, HistogramWin, SpecWin, EventRelatedSpecWin major, minor1, minor2, s, tmp = sys.version_info if major<2 or (major==2 and minor1<3): True = 1 False = 0 def load_w18(fullpath): assert(os.path.exists(fullpath)) basename, filename = os.path.split(fullpath) fh = file(fullpath, 'rb') header = W18Header(fh) params = { 'filename' : filename, 'date' : header.currtime, 'description' : '', 'channels' : 18, 'freq' : 200, 'classification' : 99, 'file_type' : W18, 'behavior_state' : 99, } eeg = EEGFileSystem(fullpath, params) return eeg def load_bmsi(bnipath): bni = FileFormat_BNI(bnipath) basename, ext = os.path.splitext(bnipath) if os.path.exists(basename): fullpath = basename elif os.path.exists(basename + '.eeg'): fullpath = basename + '.eeg' else: fullpath = fmanager.get_filename( title='Select EEG File accompanying this BNI file') eeg = bni.get_eeg(fullpath) return eeg def load_epoch(fname): epoch = NeuroscanEpochFile(fname) return epoch.eeg def load_params(path): params = {} for line in file(path): line = line.strip() if not len(line): continue if line.startswith('#'): continue k,v = line.split(':',1) k = k.strip() v = v.strip() if k in ('channels', 'pid', 'freq', 'classification', 'file_type', 'behavior_state') : v = int(v) params[k] = v eegfile = params['eegfile'] if not os.path.exists(eegfile): error_msg('Cannot find eeg file "%s"'%eegfile) return eeg = EEGFileSystem(eegfile, params) return eeg def load_axonascii(path): axonascii = FileFormat_AxonAscii(path) return axonascii.eeg def load_alphaomegaascii(path): alphaomegascii = FileFormat_AlphaomegaAscii(path) return alphaomegascii.eeg def load_neuroscanascii(path): try: neuroscanascii = FileFormat_NeuroscanAscii(path) except IOError, msg: print "load_neuroscanascii(): msg=", msg error_msg(msg, title='Error', parent=parent) return neuroscanascii.eeg extmap = { '.w18' : load_w18, '.bni' : load_bmsi, '.params' : load_params, '.epoch' : load_epoch, '.axonascii' : load_axonascii, '.neuroscanascii' : load_neuroscanascii, '.alphaomegaascii' : load_alphaomegaascii } class EEGNavBar(gtk.Toolbar, Observer): """ CLASS: EEGNavBar DESCR: toolbar for MainWindow """ def add_toolbutton(self, icon_name, tip_text, tip_private, clicked_function, clicked_param1=None): iconSize = gtk.ICON_SIZE_SMALL_TOOLBAR iconw = gtk.Image() iconw.set_from_stock(icon_name, iconSize) toolitem = gtk.ToolButton() toolitem.set_icon_widget(iconw) toolitem.show_all() #updated for new tooltip api toolitem.set_tooltip_text(tip_text) #toolitem.set_tooltip(self.tooltips, tip_text, tip_private) toolitem.connect("clicked", clicked_function, clicked_param1) toolitem.connect("scroll_event", clicked_function) self.insert(toolitem, -1) def add_toolitem(self, widget, tip_text): toolitem = gtk.ToolItem() toolitem.add(widget) toolitem.show_all() self.insert(toolitem, -1) def add_separator(self): toolitem = gtk.SeparatorToolItem() toolitem.set_draw(True) #toolitem.set_expand(gtk.TRUE) toolitem.show_all() self.insert(toolitem, -1) def __init__(self, eegplot=None, win=None): """ eegplot is the EEGPlot instance that the toolboar controls win, if not None, is the gtk.Window the Figure is embedded in """ gtk.Toolbar.__init__(self) Observer.__init__(self) self.win = win self.eegplot = eegplot iconSize = gtk.ICON_SIZE_SMALL_TOOLBAR self.set_border_width(5) self.set_style(gtk.TOOLBAR_ICONS) self.tooltips = gtk.Tooltip() self.add_toolbutton(gtk.STOCK_GOTO_FIRST, 'Move back one page', 'Private', self.panx, -10) self.add_toolbutton(gtk.STOCK_GO_BACK, 'Move back in time', 'Private', self.panx, -1) self.add_toolbutton(gtk.STOCK_GO_FORWARD, 'Move forward in time', 'Private', self.panx, 1) self.add_toolbutton(gtk.STOCK_GOTO_LAST, 'Move forward one page', 'Private', self.panx, 10) self.add_separator() self.add_toolbutton(gtk.STOCK_ZOOM_IN, 'Shrink the time axis', 'Private', self.zoomx, 1) self.add_toolbutton(gtk.STOCK_ZOOM_OUT, 'Expand the time axis', 'Private', self.zoomx, 0) self.add_separator() self.add_toolbutton(gtk.STOCK_GO_UP, 'Increase the voltage gain', 'Private', self.zoomy, 1) self.add_toolbutton(gtk.STOCK_GO_DOWN, 'Decrease the voltage gain', 'Private', self.zoomy, 0) self.add_toolbutton(gtk.STOCK_REDO, 'Specify time range', 'Private', self.specify_range) #self.add_toolbutton(gtk.STOCK_REDO, 'Specify the voltage gain', 'Private', self.specify_range_time) #the above was not important enough to keep right now -eli self.add_toolbutton(gtk.STOCK_JUMP_TO, 'Automatically page the EEG', 'Private', self.auto_play) self.add_toolbutton(gtk.STOCK_SAVE, 'Save the figure', 'Private', self.save_figure) self.add_separator() def toggled(button): self.broadcast(Observer.GMTOGGLED, button) def lock_trode_toggled(button) : self.broadcast(Observer.LOCK_TRODE_TOGGLED, button) self.buttonGM = gtk.CheckButton('GM') self.buttonGM.show() self.buttonGM.connect('toggled', toggled) self.buttonGM.set_active(True) self.buttonGM.set_active(False) self.add_toolitem(self.buttonGM, 'Remove grand mean from data if checked') #self.append_widget( # self.buttonGM, 'Remove grand mean from data if checked', '') self.buttonLockTrode = gtk.CheckButton('Lock') self.buttonLockTrode.show() self.buttonLockTrode.connect('toggled', lock_trode_toggled) self.add_toolitem(self.buttonLockTrode, 'Lock Selected Electrode') #self.append_widget( # self.buttonLockTrode, 'Lock Selected Electrode', '') self.add_separator() #adding a decimate toggle here, without an icon toolitem = gtk.ToolButton() toolitem.show_all() toolitem.set_label("Dec.") toolitem.connect("clicked", self.set_decimate, None) self.insert(toolitem, -1) #/decimate toggle def set_decimate(self, *args): decfactor = self.eegplot.find_decimate_factor() dec_input = get_num_value(labelStr='Choose a decimation factor (1 for none)', title='Enter value', parent=None, default=decfactor) #the default value will be the optimal dec factor if dec_input < self.eegplot.decimateFactor: self.eegplot.decimateFactor = copy.deepcopy(dec_input) self.eegplot.set_time_lim(updateData=True, broadcast=True) return else: self.eegplot.decimateFactor = dec_input self.eegplot.plot() self.eegplot.draw() def auto_play(self, *args): tmin, tmax = self.eegplot.get_time_lim() twidth = tmax-tmin dlg = AutoPlayDialog(0, self.eegplot.eeg.get_tmax(), twidth) dlg.show() def specify_range(self, *args): response = get_num_range() if response is None: return tmin, tmax = response self.eegplot.set_time_lim(tmin, tmax, updateData=False) self.eegplot.plot() self.eegplot.draw() """ def specify_range_time(self, *args): # mcc XXX: trying to be able to specify time as hour:min:sec response = get_num_range(as_times=True) if response is None: return eegstartdate = self.eegplot.eeg.get_date() # now subtract the eegstartdate to get proper tmin/tmax values print "EEGNavBar: specify_range_time: ACK subtracting " , str(response), "from " , eegstartdate timedelta_start = datetime.timedelta(hours=(eegstartdate.time()).hour, minutes=(eegstartdate.time()).minute, seconds=(eegstartdate.time()).second) tmin, tmax = response timedelta_tmin = datetime.timedelta(hours=response[0].hour, minutes=response[0].minute, seconds=response[0].second) timedelta_tmax = datetime.timedelta(hours=response[1].hour, minutes=response[1].minute, seconds=response[1].second) print "timedelta_start=", timedelta_start, "timedelta_tmin=", timedelta_tmin, "timedelta_tmax=", timedelta_tmax tmin, tmax = (timedelta_tmin - timedelta_start).seconds, (timedelta_tmax - timedelta_start).seconds print "EEGNavBar: specify_range_time: tmin=", tmin, ", tmax=", tmax # figure out what times these times correspond to by getting eeg start time self.eegplot.set_time_lim(tmin, tmax, updateData=True) self.eegplot.plot() #redraw the traces -eli self.eegplot.draw() """ def save_figure(self, button): def print_ok(button): fname = fs.get_filename() fmanager.set_lastdir(fname) fs.destroy() try: self.eegplot.canvas.print_figure(fname) except IOError, msg: err = '\n'.join(map(str, msg)) msg = 'Failed to save %s: Error msg was\n\n%s' % ( fname, err) try: parent = Shared.windowMain.widget except AttributeError: parent = None simple_msg(msg, title='Error', parent=parent) fs = gtk.FileSelection(title='Save the figure') if self.win is not None: fs.set_transient_for(self.win) fs.set_filename(fmanager.get_lastdir() + os.sep) fs.ok_button.connect("clicked", print_ok) fs.cancel_button.connect("clicked", lambda b: fs.destroy()) fs.show() def set_eegplot(self, eegplot): self.eegplot = eegplot def panx(self, button, arg): if self.eegplot is None: return try: arg.direction except AttributeError: right = arg else: if arg.direction == gdk.SCROLL_UP: right=1 else: right=0 self.eegplot.pan_time(right) self.eegplot.plot() #redraw the traces -eli self.eegplot.draw() return False def zoomx(self, button, arg): if self.eegplot is None: return try: arg.direction except AttributeError: direction = arg else: if arg.direction == gdk.SCROLL_UP: direction=1 else: direction=0 self.eegplot.change_time_gain(direction) self.eegplot.plot() #redraw the traces -eli self.eegplot.draw() return False def zoomy(self, button, arg): if self.eegplot is None: return try: arg.direction except AttributeError: direction = arg else: if arg.direction == gdk.SCROLL_UP: direction=1 else: direction=0 self.eegplot.change_volt_gain(direction) self.eegplot.plot() #redraw the traces -eli self.eegplot.draw() return False """ class AnnotationManager: #"" CLASS: AnnotationManager The highlight is the currently created rectangle that has not yet been annotated. The selected rectangle is a rect that has been annotated and selected (not the same as highlighted!) #"" def __init__(self, eegplot): self.eegplot = eegplot self.axes = self.eegplot.axes self.canvas = self.axes.figure.canvas self.ann = self.eegplot.eeg.get_ann() # Create list of eois. Add eois from ann. eoiAll = self.eegplot.get_eeg().get_amp().to_eoi() eoiAll.set_description('All') self.eois = {'All' : eoiAll} self.eois.update(self.ann.eois) rectprops = dict(facecolor='#bbbbff', alpha=0.5) self.selector = SpanSelector(self.axes, self.onselect,'horizontal', minspan=0.01, useblit=True, rectprops=rectprops) self._highlight = None self.resize = False self.background = None def dlgAnnotate_ok_callback(params) : self.dlgAnnotate.hide_widget() # Add annotation to data structure key = '%1.1f' % params['startTime'], '%1.1f' % params['endTime'], params['created'] params = self.dlgAnnotate.get_params() # Set defaults / keep some old values now = datetime.datetime.now() #fixed datetime syntax if self.selectedkey is not None: # selected params['created'] = self.ann[key]['created'] params['edited'] = now.ctime() params['visible'] = self.ann[key]['visible'] params['rects'] = self.ann[key]['rects'] else : # create new params['edited'] = params['created'] params['visible'] = 1 params['rects'] = None # If shrink has changed, remove the rect(s); # they will be recreated in update_annotations(). if (self.selectedkey is not None and (self.ann[key]['shrink'] <> params['shrink'] or self.dlgAnnotate.changed)) : for rect in self.ann[key]['rects'] : self.eegplot.axes.patches.remove(rect) params['rects'] = None self.ann[key] = params # Add new eoi, if any. if not self.eois.get(params['eoi'].get_description()) : self.add_eoi(params['eoi']) # Write ann file. self.ann.save_data() # Create new annotation box. self.update_annotations() # Update ann browser info self.dlgAnnBrowser.update_ann_info(key) # Turn off highlight box. self.remove_highlight() return def dlgAnnBrowser_ok_callback(*args) : self.dlgAnnBrowser.hide_widget() self.selectedkey = None self.dlgAnnotate = Dialog_Annotate(eegplot, self, ok_callback=dlgAnnotate_ok_callback) self.dlgAnnBrowser = Dialog_AnnBrowser(eegplot, self, dlgAnnBrowser_ok_callback) # Update Annotations menuitems sensitivity. menuItemAnnBrowser = Shared.widgets.get_widget('menuItemAnnBrowser') menuItemAnnBrowser.set_sensitive(1) menuItemAnnCreateEdit = Shared.widgets.get_widget('menuItemAnnCreateEdit') menuItemAnnCreateEdit.set_sensitive(1) menuItemAnnHorizCursor = Shared.widgets.get_widget('menuItemAnnHorizCursor') menuItemAnnHorizCursor.set_sensitive(1) menuItemAnnVertCursor = Shared.widgets.get_widget('menuItemAnnVertCursor') menuItemAnnVertCursor.set_sensitive(1) def onselect(self, xmin, xmax): if self._highlight is not None: self.remove_highlight() self._highlight = xmin, xmax, self._new_rect(xmin, xmax, 0, 1, facecolor='#bbbbff', edgecolor='k', linewidth=2, alpha=0.5, zorder=3 ) # Update Annotations menuitems sensitivity label = 'Create New' menuItemAnnCreateEdit = Shared.widgets.get_widget('menuItemAnnCreateEdit') menuItemAnnCreateEdit.get_children()[0].set_text(label) menuItemAnnDelete = Shared.widgets.get_widget('menuItemAnnDelete') menuItemAnnDelete.set_sensitive(0) self.canvas.draw() def _new_rect(self, xmin, xmax, ymin, ymax, **props): trans = blended_transform_factory( self.axes.transData, self.axes.transAxes ) #xy_sep_transform deprecated rect = Rectangle(xy=(xmin, ymin), width=xmax-xmin, height=ymax-ymin, transform=trans, **props) self.axes.add_patch(rect) return rect def remove_rects(self) : for key, info in self.ann.items() : if info.get('rects') : del info['rects'] def over_annotation(self, x, y): #"" If you are over an annotation, return it's key If you are over multiple annotations, return the one who's center is closest to point If not over annotation, return None #"" ret = [] for key, info in self.ann.items() : for rect in info['rects'] : if rect.get_window_extent().contains(x, y) : #bounds = rect.get_window_extent().get_bounds() ax1 = rect.get_axes() bounds = ax1.dataLim.bounds # is this what i want?? -eli middle = .5 * (2 * bounds[0] + bounds[2]) d = abs(x - middle) ret.append((d, key)) ret.sort() if not len(ret) : return None return ret[0][1] def over_edge(self, x, y) : #"" If you are over an annotation edge, return its key. x,y are figure coordinates (i.e., event.x, event.y) #"" key, side = None, None t, yt = self.axes.transData.inverted().transform((x, y)) #replaced inverse_xy_tup with inverted().transform() for key, info in self.ann.items() : s = info['startTime'] e = info['endTime'] if t >= s - .05 and t <= s + .05 : side = 0 break elif t >= e - .05 and t <= e + .05 : side = 1 break else : key = None if key is not None : for rect in info['rects'] : #get_bounds() is deprecated, use properties intervalx and intervaly -eli #l, b, w, h = rect.get_window_extent().get_bounds() ax1 = rect.get_axes() l, b, w, h = ax1.dataLim.bounds # is this what i want?? -eli print l, b, w, h r = l + w t = b + h if y <= t and y >= b : break else : key, side = None, None return key, side def is_over_highlight(self, t) : xmin, xmax = self.highlight_span() return t >= xmin and t <= xmax def remove_highlight(self): if self._highlight is not None: xmin, xmax, rect = self._highlight self.axes.patches.remove(rect) self._highlight = None self.canvas.draw() # Update Annotations menuitems sensitivity label = 'Create New' menuItemAnnCreateEdit = Shared.widgets.get_widget('menuItemAnnCreateEdit') menuItemAnnCreateEdit.get_children()[0].set_text(label) menuItemAnnDelete = Shared.widgets.get_widget('menuItemAnnDelete') menuItemAnnDelete.set_sensitive(0) def get_highlight(self): #"" return (xmin, xmax, Rectangle instance) if a rect is highlighted Otherwise return None #"" return self._highlight def highlight_span(self): 'return the min/max of current highlight or raise if not highlight' if self._highlight is None: return None, None xmin, xmax, rect = self._highlight return xmin, xmax def remove_selected(self): #"" remove the selected annotation from the ann data struct and the plot stff and redraw #"" thisann = self.eegplot.annman.ann.pop(self.selectedkey) #trying to make this work with python's list.pop() if thisann is None: return for rect in thisann['rects'] : self.eegplot.axes.patches.remove(rect) self.selectedkey = None self.eegplot.draw() # Update Annotations menuitems sensitivity label = 'Create New' menuItemAnnCreateEdit = Shared.widgets.get_widget('menuItemAnnCreateEdit') menuItemAnnCreateEdit.get_children()[0].set_text(label) menuItemAnnDelete = Shared.widgets.get_widget('menuItemAnnDelete') menuItemAnnDelete.set_sensitive(0) def set_selected(self, newkey=None) : 'selected is a start, end key; make that annotation the selected one' if newkey == self.selectedkey: return menuItemAnnCreateEdit = Shared.widgets.get_widget('menuItemAnnCreateEdit') menuItemAnnDelete = Shared.widgets.get_widget('menuItemAnnDelete') if self.selectedkey is not None: # unselect the old one if there is one rects = self.ann[self.selectedkey].get('rects') if rects is not None : for rect in rects : rect.set_edgecolor('k') rect.set_linewidth(1) if newkey is None: # Update Annotations menuitems sensitivity menuItemAnnDelete.set_sensitive(0) else : # now set the props of the new one rects = self.ann[newkey]['rects'] for rect in rects : rect.set_edgecolor('r') rect.set_linewidth(3) self.canvas.draw() # Update Annotations menuitems sensitivity menuItemAnnCreateEdit.get_children()[0].set_text('Edit Selected') menuItemAnnDelete.set_sensitive(1) self.selectedkey = newkey def start_resize(self, side) : self.resize = True self.resize_side = side self.background = self.eegplot.canvas.copy_from_bbox(self.eegplot.axes.bbox) def end_resize(self) : self.resize = False self.background = None self.eegplot.draw() def resize_selected(self, s, e) : rects = self.ann[self.selectedkey]['rects'] for rect in rects : rect.set_x(s) rect.set_width(e - s) # Update key if it changed. newkey = '%1.1f' % s, '%1.1f' % e if newkey <> self.selectedkey : self.ann[newkey] = self.ann[self.selectedkey] self.ann[newkey]['startTime'] = s self.ann[newkey]['endTime'] = e del self.ann[self.selectedkey] self.selectedkey = newkey self.eegplot.canvas.restore_region(self.background) for rect in rects : self.eegplot.axes.draw_artist(rect) self.eegplot.canvas.blit(self.eegplot.axes.bbox) def update_annotations(self) : #"" Create new annotation rectangles on file load or navigation #"" tmin, tmax = self.eegplot.get_time_lim() keys = self.ann.keys() keys.sort() for key in keys : # Remove rects that are not visible. if not self.ann[key].get('visible') : rects = self.ann[key].get('rects') if rects is not None : for rect in rects : self.eegplot.axes.patches.remove(rect) del self.ann[key]['rects'] if self.selectedkey == key : self.set_selected() continue # Start or end of annotation box is in view s = self.ann[key]['startTime'] e = self.ann[key]['endTime'] if not ( (s > tmin and s < tmax) or (e > tmin and e < tmax) ) : continue # Draw/Update annotation box. rects = self.ann[key].get('rects') if rects is None: rects = [] if self.ann[key]['shrink'] : channel_numd = self.eegplot.get_eeg().get_amp().get_electrode_to_indices_dict() eoiActive = self.eegplot.get_eoi() group = [] for i, trode in enumerate(eoiActive) : if trode in self.ann[key]['eoi'] : group.append(i) else : if len(group) : ymin = self.eegplot.offsets[group[-1]] ymax = self.eegplot.offsets[group[0]] rect = self._new_rect(s, e, ymin, ymax, zorder=3) rects.append(rect) group = [] if len(group) : ymin = self.eegplot.offsets[group[-1]] ymax = self.eegplot.offsets[group[0]] rect = self._new_rect(s, e, ymin, ymax, zorder=3) rects.append(rect) else : rect = self._new_rect(s, e, 0, 1, zorder=3) rects = [rect] self.ann[key]['rects'] = rects # Set some rect properties. for rect in self.ann[key]['rects'] : rect.set_facecolor(self.ann[key]['color']) rect.set_alpha(self.ann[key]['alpha']) self.eegplot.draw() def add_eoi(self, eoi) : self.eois[eoi.description] = eoi """ class EEGPlot(Observer): """ CLASS: EEGPlot DESCR: controls MainWindow's canvas """ timeSets = ((1.,.1), (2.,.2), (5.,.5), (10.,1.), (20.,2.), (50.,5.), (100., 10.), (200., 20.)) voltSets = (.1, .2, .5, .75, 1., 2., 5., 7.5, 10., 20., 50., 75., 100., 200., 500., 750, 1000., 1250., 1500. , 1750., 2000., 2100., 2300., 2500., 3000., 3500., 4000., 4500., 5000., 7500., 10000., 20000., 50000., 75000., 150000., 300000.) colorOrder = ('b','k','g','c','m') def __init__(self, eeg, canvas): Observer.__init__(self) eeg.load_data() self.canvas = canvas self.figure = canvas.figure self.axes = self.figure.axes[0] self.axes.cla() self.eeg = eeg self.cnumDict = self.eeg.get_amp().get_channel_num_dict() #self.annman = AnnotationManager(self) amp = eeg.get_amp() eoi = amp.to_eoi() self.colord = {} colorInd = 0 for gname, gnum in eoi: gname = gname.lower() color = self.colord.get(gname.lower()) if color is None: color = self.colorOrder[colorInd % len(self.colorOrder)] self.colord[gname] = color colorInd += 1 self._selected = eoi[0] self.set_eoi(eoi) self.timeInd = 3 self.voltInd = 27 self.maxLabels = 36 self.decimateFactor = 1 #this is set when toggled by the user self.filterGM = Shared.windowMain.toolbar.buttonGM.get_active() # mcc XXX: turning off cache #self._selectedCache = None, None # Lock the selected electrode. self.lock_trode = False # Create a vertical cursor. self.cursor = Cursor(self.axes, useblit=True, linewidth=1, color='red') if eegviewrc.horizcursor == 'True' : self.cursor.horizOn = True else : self.cursor.horizOn = False if eegviewrc.vertcursor == 'True' : self.cursor.vertOn = True else : self.cursor.vertOn = False # mcc XXX: map for whether or not to rectify/DC offset/lowpass filter a given (e.g. EMG) channel #self.rectifyChannels = Set() def get_color(self, trode): gname, gnum = trode gname = gname.lower() return self.colord[gname] def recieve(self, event, *args): #if event in (Observer.SET_TIME_LIM,): # tmin, tmax = args # print "EEGVIEW.EEGVIEW.recieve: set_time_lim" # self.set_time_lim(tmin, tmax, updateData=False, broadcast=False) # self.plot() # self.draw() if event==Observer.SAVE_FRAME: fname = args[0] + '.png' width, height = self.canvas.get_width_height() # matplotlib needs to have get_pixmap() (in backends/FigureCanvasGTKAgg) pixmap = self.canvas._pixmap pixbuf = gdk.Pixbuf(gdk.COLORSPACE_RGB, 0, 8, width, height) pixbuf.get_from_drawable(pixmap, pixmap.get_colormap(), 0, 0, 0, 0, width, height) pixbuf.save(fname, 'png') try: Shared.windowMain.update_status_bar( 'Saved frame: %s' % fname) except AttributeError: pass elif event == Observer.SELECT_CHANNEL: trode = args[0] gname, gnum = trode self.set_selected((gname, gnum)) elif event == Observer.GMTOGGLED: button = args[0] self.filterGM = button.get_active() tmin, tmax = self.get_time_lim() t, data, freq = self.filter(tmin, tmax) for ind, line in zip(self.indices, self.lines): line.set_data(t, data[:,ind]) self.draw() elif event == Observer.LOCK_TRODE_TOGGLED : button = args[0] self.lock_trode = button.get_active() def draw(self): self.canvas.draw() def get_selected(self, filtergm=False): 'return t, data[ind], trode' print "EEGPlot.get_selected()" tmin, tmax = self.get_time_lim() key = (tmin, tmax, self._selected, filtergm) #keycache, retcache = self._selectedCache #if keycache==key: return retcache t, data = self.eeg.get_data(tmin, tmax) # mccXXX : why does this line exist? data = -data if filtergm: data = filter_grand_mean(data) ind = self.eoiIndDict[self._selected] print "EEGPlot.get_selected(): data.shape is ", data.shape, " and we are about to index it like data[:,%d]" % self.indices[ind] ret = t, data[:,self.indices[ind]], self._selected #self._selectedCache = key, ret return ret def get_selected_window(self, filtergm=False, extraTime=0): 'return t, data[ind], trode' tmin, tmax = self.get_time_lim() print "get_selected_window: ", tmin, tmax # XXX mcc, taking this out for neuroscanascii format which doesn't handle negative vals well #tmin -= extraTime/2. #tmax += extraTime/2. #key = (tmin, tmax, self._selected, filtergm) #keycache, retcache = self._selectedCache #if keycache==key: return retcache print "get_selected_window(tmin=",tmin,"tmax=",tmax,")" t, data = self.eeg.get_data(tmin, tmax) # mcc XXX : why does this line exist? #data = -data if filtergm: print "EEGPlot.get_selected(): filtering grand mean" data = filter_grand_mean(data) ind = self.eoiIndDict[self._selected] ret = t, data[:,self.indices[ind]], self._selected #self._selectedCache = key, ret return ret def get_eoi(self): # XXX mcc: we want to return a copy here, because otherwise view3 can # remove our EOIs!! #return list(self.eoi) return self.eoi def set_eoi(self, eoi): print "eegview.set_eoi(",eoi,")" try: #print self.eeg.get_amp() self.indices = eoi.to_data_indices(self.eeg.get_amp()) except KeyError: msg = exception_to_str('Could not get amplifier indices for EOI') try: parent = Shared.windowMain.widget except AttributeError: parent = None error_msg(msg, title='Error', parent=parent) return 0 self.eoi = eoi self.eoiIndDict = dict([ (trode, i) for i, trode in enumerate(self.eoi)]) if not self.eoiIndDict.has_key(self._selected): self._selected = self.eoi[0] # Remove annotation rects, so they will get redrawn on the next # update_annotations() #self.annman.remove_rects() return True def get_eeg(self): return self.eeg def find_decimate_factor(self, lpcf = 40): print "EEGPlot.find_decimate_factor(): calculating decimation factor" print "EEGPlot.find_decimate_factor(): eeg.freq is ", self.eeg.freq Nyq = self.eeg.freq/2 self.decimateFactor = int(Nyq/lpcf) #a decimation factor has to be an integer as it turns out-eli if self.decimateFactor == 0: self.decimateFactor = 1 #take care of dividebyzero errors - this shouldn't happen anyway when Nyq is high enough (ie when freq is high enough ~500) print "EEGPlot.find_decimate_factor: ", self.decimateFactor return self.decimateFactor def filter(self, tmin, tmax, lpcf=40, lpsf=55, hpcf=None, hpsf=None): """ lpcf: low pass corner freq=40 (Hz) lpsf: low pass stop freq=55 (Hz) hpcf: high pass corner freq=None hpsf: high pass stop freq=None a lowpass decimate filter first uses a lowpass to smooth out the data, and then takes chunks out of it according to the decimation factor in order to speed up processing. Here we use a butterworth lowpass - this was here before I got here, but I think there must be simpler options -eli """ print "\n========\nEEGPlot.filter(%f, %f, ...)" % (tmin, tmax) try: t, data = self.eeg.get_data(tmin, tmax) except KeyError, msg: msg = exception_to_str('Could not get data') error_msg(exception_to_str('Could not get data')) return None #data = -data # invert neg up #why? if self.filterGM: data = filter_grand_mean(data) Nyq = self.eeg.freq/2 #as of now we do a lowpass filter regardless of whether the decimation factor is > 1. -eli Rp, Rs = 2, 20 Wp = lpcf/Nyq Ws = lpsf/Nyq [n,Wn] = buttord(Wp,Ws,Rp,Rs) print "EEGPlot.filter(): [n,Wn] = buttord(Wp= ", Wp, ",Ws=", Ws, ",Rp=", Rp, ",Rs=", Rs, ") = [", n, "," , Wn, "]" [b,a] = butter(n,Wn) print "EEGPlot.filter(): [b,a] = butter(n=" , n , " , Wn=", Wn, ") = [", b, ",", a, "]" print "EEGPlot.filter(): doing transpose(lfilter(b,a,transpose(data)))" data = transpose( lfilter(b,a,transpose(data))) decfreq = self.eeg.freq/self.decimateFactor self.decfreq = decfreq #print "EEGPlot.filter(): decimateFactor = int(Nyq=%f/lpcf=%d) = " % (Nyq, lpcf), decimateFactor, "self.decfreq=(eeg.freq=%f)/(%d) = " % (self.eeg.freq, decimateFactor), self.decfreq #are all of the above commented lines really not needed anymore? -eli print "EEGPlot.filter(): returning decimated data t[::%d], data[::%d], %f" % (self.decimateFactor, self.decimateFactor, decfreq) return t[::self.decimateFactor], data[::self.decimateFactor], decfreq #the "::" takes every decimateFactorth value from each array! def plot(self): print "EEGPlot.plot()" self.axes.cla() tmin, tmax = self.get_time_lim() #it turns out hardcoding 0,10 in this function was ahem counterproductive -eli #print "EEGPLOT.plot(): tmn, tmax ", tmin, tmax #let's take out filtering for some tests #t, data, freq = self.filter(tmin, tmax) try: t, data = self.eeg.get_data(tmin, tmax) except KeyError, msg: msg = exception_to_str('Could not get data') error_msg(exception_to_str('Could not get data')) return None freq = self.eeg.freq #print "EEGplot filtertest: ", data[0:10] dt = 1/freq self.lines = [] skip = max(1, len(self.indices)//self.maxLabels) count = 0 amp = self.eeg.get_amp() labels = [] locs = [] maxo = 0.975 mino = 0.025 N = len(self.indices) offsets = 1.0-((maxo-mino)/N*arange(N) + mino) self.offsets = offsets vset = self.voltSets[self.voltInd] #old transformation block """ boxin = Bbox( Point(self.axes.viewLim.ll().x(), Value(-vset)), Point(self.axes.viewLim.ur().x(), Value(vset))) boxout = Bbox( Point(self.axes.bbox.ll().x(), Value(-72)), Point(self.axes.bbox.ur().x(), Value(72))) transOffset = get_bbox_transform( unit_bbox(), Bbox( Point( Value(0), self.axes.bbox.ll().y()), Point( Value(1), self.axes.bbox.ur().y()) )) """ #new transformation block #updated by removing Point and Value methods and simply passing four points #to Bbox() this may be a bad idea... I tried passing them to Bbox.set_points#() but this method seems to be either not working or badly documented. #also, viewLim is deprecated from what I can tell, so I'll try to use axes.g#et_xlim viewLimX=self.axes.get_xlim() #this returns a list of min and max x points, which is what we want to pass below #print "************", viewLimX boxin = Bbox( [[viewLimX[0], -vset], #replaced self.axes.viewLim.ll().x() with viewLimX [viewLimX[1], vset]]) #does this work? yes! there actually is a bbox living in axes, for whatever reason, and this method returns all four points as an array of the form [[x0,y0],[x1,y1]]. the bbox that we rebuild below is (hopefully!) taking the x values of the two points. axesBboxCoords = self.axes.bbox.get_points() boxout = Bbox( [[axesBboxCoords[0][0], -72], #see comment above: I replaced self.axes.bbox.ll().x() with axesBboxCoords[0][0] [axesBboxCoords[1][0], 72]]) transOffset = BboxTransform( Bbox.unit(), # ([[0,0], [1,1]]), #replaced unit_bbox with unit() Bbox( [[0, axesBboxCoords[0][1]], [1, axesBboxCoords[1][1]]] )) assert len(self.indices) == len(offsets), 'indices and offsets have different length' pairs = zip(self.indices, offsets) labeld = amp.get_dataind_dict() for ind, offset in pairs: trode = labeld[ind] color = self.get_color(trode) if self._selected==trode: color='r' trans = BboxTransform(boxin, boxout) #switched to BboxTransform #print "EEGPlot.plot(): " , data.shape, ind, len(pairs), self.eeg.channels #set_offset is way deprecated. I'm going to use a tip from the newer transforms_tutorial on the matplotlib.sourceforge page. #the basic idea is to use ScaledTranslation, which creates an offset that can then be added to the original trans. #trans.set_offset((0, offset), transOffset) #so, these two lines below which I've written seem to work at offsetting the lines to where they need to go. -eli #note: for some reason, in nipy pbrain the original trans.set_offset was written _after_ the call to Line2D newtrans = ScaledTranslation(0,offset,transOffset) trans = trans + newtrans thisLine = Line2D(t, data[:,ind], color=color, linewidth=0.75, linestyle='-', clip_on=True #added this kwarg ) thisLine.set_transform(trans) #thisLine.set_data_clipping(False) #deprecated #should the following be commented out? #thisLine.set_lod(on=1) self.lines.append(thisLine) self.axes.add_line(thisLine) if count % skip == 0: labels.append('%s%d' % trode) locs.append(offset) count += 1 #print 'locs', labels[0], locs[0], self.offsets[0] #self.set_time_lim(tmin,tmax, updateData=False) #i fixed this and then realized it was reduntant anyway -eli self.axes.set_yticks(locs) labels = self.axes.set_yticklabels(labels, fontsize=8) for tick in self.axes.yaxis.get_major_ticks(): tick.label1.set_transform(self.axes.transAxes) tick.label2.set_transform(self.axes.transAxes) tick.tick1line.set_transform(self.axes.transAxes) tick.tick2line.set_transform(self.axes.transAxes) tick.gridline.set_transform(self.axes.transAxes) print "EEGPlot.plot(): successful" # Update annotation boxes #self.annman.update_annotations() self.save_excursion() self.draw() # XXX: mcc: what is this for ? def restore_excursion(self): try: self.saveExcursion except AttributeError: return tmin, self.timeInd, self.voltInd = self.saveExcursion self.set_time_lim(tmin, updateData=True) def save_excursion(self): tmin, tmax = self.get_time_lim() self.saveExcursion = (tmin, self.timeInd, self.voltInd) def get_max_labels(self): return 25 def change_time_gain(self, magnify=1): """Change the time scale. zoom out with magnify=0, zoom in with magnify=1)""" # keep the index in bounds if magnify and self.timeInd>0: self.timeInd -= 1 if not magnify and self.timeInd<(len(self.timeSets)-1): self.timeInd += 1 origmin, origmax = self.get_time_lim() wid, step = self.timeSets[self.timeInd] xmin = origmin xmax = origmin+wid self.set_time_lim(xmin, xmax, updateData=False) def change_volt_gain(self, magnify=1): #note: I had to seriously take this function apart further down. -eli """Change the voltage scale. zoom out with magnify=0, zoom in with magnify=1)""" #print "EEGPlot.change_volt_gain: magnify=%d, self.voltInd=%d" % (magnify, self.voltInd) # keep the index in bounds if magnify and self.voltInd>0: self.voltInd -= 1 if not magnify and self.voltInd<(len(self.voltSets)-1): self.voltInd += 1 #print "new self.voltInd=%d" % self.voltInd vset = self.voltSets[self.voltInd] #print "vset = self.voltSets[%d]" % self.voltInd #note: matplotlib had no way of getting at the constructors of a compositeaffine2d object. This use to be done with the get_bbox1 method, but of course this is deprecated and not replaced by ANYTHING. So, using python's built-in hacky __dict__ method below, I extract the in bbox, change the y values to the aboveset vset values, and because python is only using symbolic links and not copying, this does the trick. I am not John and I do not wish to contribute to matplotlib at this time (actually I do but I have other things to do!!) but I wish someone would fix this and then tell me. -eli for line in self.lines: trans = line.get_transform() boxin = trans.__dict__['_a'].__dict__['_boxin'].__dict__['_points_orig'] #print boxin x0 = boxin[0][0] x1 = boxin[1][0] y0 = -vset y1 = vset boxin = Bbox( [[x0,y0], [x1,y1]]) #print boxin #box1 = trans.get_bbox1() #print "calling line.get_transform().get_bbox1().intervaly().set_bounds(-vset, vset)", box1 #boxin.intervaly().set_bounds(-vset, vset) #print "end of EEGPlot.change_volt_gain()" def pan_time(self, right=1): """Pan the time axis to the right or left""" # keep the index in bounds wid, step = self.get_twid_step() tmin, tmax = self.get_time_lim() #print "pan_time tmin,tmax: ", tmin, tmax step *= right #print "pan_time step: ", step self.set_time_lim(tmin+step) #self.plot() #update the plot! eli def get_time_lim(self,): return self.axes.get_xlim() def get_twid_step(self): #print "get_twid_step(): ", self.timeSets[self.timeInd] return self.timeSets[self.timeInd] #still not sure exactly why we return twice in this function -eli ticks = self.axes.get_xticks() wid = ticks[-1] - ticks[0] step = ticks[1] - ticks[0] #print "get_twid_step(): ", wid, step return wid, step def set_time_lim(self, xmin=None, xmax=None, updateData=False, broadcast=True): #make sure xmin keeps some eeg on the screen print "EEGPLOT.set_time_lim broadcast=", broadcast, " update data=",updateData print "EEGPlot.set_time_lim(xmin=", xmin, "xmax=", xmax, ")" origmin, origmax = self.get_time_lim() #print "EEGPlot.set_time_lim(): origmin, origmax = ", origmin, origmax if xmin is None: xmin = origmin if xmax is None: wid, step = self.get_twid_step() xmax = xmin+wid else: wid = xmax-xmin step = wid/10.0 print "EEGPlot.set_time_lim(): axes.set_xlim(", [xmin, xmax], ")" self.axes.set_xlim([xmin, xmax]) ticks = arange(xmin, xmax+0.001, step) print "EEGPlot.set_time_lim(): axes.set_xticks(", ticks, ")" self.axes.set_xticks(ticks) def fmt(val): if val==int(val): return '%d' % val else: return '%1.1f' % val #self.axes.set_xticklabels([fmt(val) for val in ticks]) self.axes.set_xticklabels([]) if updateData: print "EEGPlot.set_time_lim(): update data" # let's take out filtering for some tests try: t, data = self.eeg.get_data(xmin, xmax) except KeyError, msg: msg = exception_to_str('Could not get data') error_msg(exception_to_str('Could not get data')) return None freq = self.eeg.freq #t, data, freq = self.filter(xmin, xmax) self.axes.set_xlim((xmin, xmax)) for ind, line in zip(self.indices, self.lines): line.set_data(t, data[:,ind]) self.plot() #we'll let the observer take care of this #self.axesSpec.set_xlim([xmin,xmax]) #self.axesSpec.set_xticklabels(ticks) # recieve the observers if broadcast: print "EEGPLOT: Broadcasting set time lim" self.broadcast(Observer.SET_TIME_LIM, xmin, xmax) def get_channel_at_point(self, x, y, select=True): "Get the EEG with the voltage trace nearest to x, y (window coords)" # avoid a pygtk queue handling error if not hasattr(self, 'decfreq'): return None tmin, tmax = self.get_time_lim() dt = 1/self.decfreq t, yt = self.axes.transData.inverted().transform( (x,y) ) #replaced inverse_xy_tup with inverted().transform() ind = int((t-tmin)/dt) ys = zeros( (len(self.lines), ), 'h') xdata = self.lines[0].get_xdata() if ind>=len(xdata): return None thisx = xdata[ind] for i, line in enumerate(self.lines): thisy = line.get_ydata()[ind] trans = line.get_transform() xt, yt = trans.transform((thisx, thisy)) #replaced xy_tup with transform ys[i] = yt ys = absolute(ys-y) matches = nonzero(ys==min(ys)) ind = matches[0] labeld = self.eeg.amp.get_dataind_dict() # XXX: had to change this for some reason with latest scipy/numpy -- mcc trode = labeld[self.indices[ind[0]]] #trode = labeld[self.indices[ind]] gname, gnum = trode if select : ok = self.set_selected((gname, gnum)) if ok: self.broadcast(Observer.SELECT_CHANNEL, trode) return trode def set_selected(self, trode): lastind = self.eoiIndDict[self._selected] ind = self.eoiIndDict[trode] lastcolor = self.get_color(self._selected) self.lines[lastind].set_color(lastcolor) self._selected = trode self.lines[ind].set_color('r') self.canvas.draw() Shared.windowMain.update_status_bar('Selected %s %d' % trode) return True class SpecPlot(Observer): """ CLASS: SpecPlot DESCR: spectrogram """ propdlg = SpecProps() flim = 0, 40 # the defauly yaxis clim = None # the colormap limits def __init__(self, axes, canvas, eegplot): Observer.__init__(self) self.axes = axes self.canvas = canvas self.eegplot = eegplot self.cmap = cm.jet # min and max power def make_spec(self, *args): NFFT, Noverlap = (512, 477) selected = self.eegplot.get_selected_window(extraTime=float(NFFT)/float(self.eegplot.eeg.freq)) #selected = self.eegplot.get_selected() print "SpecPlot.make_spec(): selected = ", selected if selected is None: self.axes.cla() t = self.axes.text( 0.5, 0.5, 'Click on EEG channel for spectrogram (scroll mouse to expand)', verticalalignment='center', horizontalalignment='center', ) t.set_transform(self.axes.transAxes) xmin, xmax = self.eegplot.get_time_lim() self.axes.set_xlim( [xmin, xmax] ) self.axes.set_xticks( self.eegplot.axes.get_xticks() ) return flim = SpecPlot.flim clim = SpecPlot.clim torig, data, trode = selected gname, gnum = trode label = '%s %d' % (gname, gnum) Fs = self.eegplot.eeg.freq self.axes.cla() xmin, xmax = self.eegplot.get_time_lim() xextent = xmin, xmax print "make spec: xmin, xmax: ", xmin, xmax #try: #print "SpecPlot.make_spec(): calling specgram(data=", data.shape, "NFFT=%d, Fs=%d, noverlap=%d, xextent=" % (NFFT, Fs, Noverlap), xextent, ")" Pxx, freqs, t, im = self.axes.specgram( data, NFFT=NFFT, Fs=Fs, noverlap=Noverlap, cmap=self.cmap, xextent=xextent) #print "SpecPlot.make_spec(): Pxx.shape is", Pxx.shape, "t is", t #except OverflowError, overflowerror: # print "caught overflow error!! bailing: ", overflowerror # f = file("make_spec-%d-%f-%f.overflow.pickle" % (gnum, xmin, xmax), "w") # pickle.dump(data, f) # f.close() # return if clim is not None: im.set_clim(clim[0], clim[1]) t = t + min(torig) Z = 10*log10(Pxx) #print "type(Z) is" , type(Z) #I fixed this using numpy's min and max but this should work too -eli self.pmin = minimum.reduce(minimum.reduce(Z)) self.pmax = maximum.reduce(maximum.reduce(Z)) #self.eegplot.set_time_lim(xmin=None, xmax=None, # updateData=False, broadcast=False) #self.axes.set_xlim( [xmin, xmax] ) #self.axes.set_xticks( self.eegplot.axes.get_xticks() ) print "SpecPlot.make_spec: xticks = ", self.eegplot.axes.get_xticks() #self.axes.set_title('Spectrogram for electrode %s' % label) #self.axes.set_xlabel('TIME (s)') self.axes.set_ylabel('FREQUENCY (Hz)') self.axes.set_ylim(flim) if flim[1]-flim[0]>=100: self.axes.set_yticks(arange(flim[0], flim[1]+1, 20)) else: self.axes.set_yticks(arange(flim[0], flim[1]+1, 10)) def recieve(self, event, *args): #note: this gets called on a timescale update -eli if event in (Observer.SELECT_CHANNEL, Observer.SET_TIME_LIM): self.make_spec() self.canvas.draw() def set_properties(self, *args): dlg = SpecPlot.propdlg dlg.show() if not len(dlg.entryCMin.get_text()) and hasattr(self, 'pmin'): dlg.entryCMin.set_text('%1.2f'%self.pmin) if not len(dlg.entryCMax.get_text()) and hasattr(self, 'pmax'): dlg.entryCMax.set_text('%1.2f'%self.pmax) while 1: response = dlg.run() if response in (gtk.RESPONSE_OK, gtk.RESPONSE_APPLY): b = dlg.validate() if not b: continue SpecPlot.flim = dlg.get_flim() SpecPlot.clim = dlg.get_clim() self.make_spec() self.canvas.draw() if response==gtk.RESPONSE_OK: dlg.hide() break else: dlg.hide() break class MainWindow(PrefixWrapper): """ CLASS: MainWindow DESCR: represents XML'd widget tree and other dynamic GUI elements """ prefix = '' widgetName = 'windowMain' gladeFile = 'main.glade' win = None def __init__(self): if os.path.exists(self.gladeFile): #print "opening %s" % self.gladeFile theFile=self.gladeFile elif os.path.exists(os.path.join('gui', self.gladeFile)): #print "opening %s" % os.path.join('gui', self.gladeFile) theFile=os.path.join('gui', self.gladeFile) else: #print "opening %s" % os.path.join(distutils.sysconfig.PREFIX, # 'share', 'pbrain', self.gladeFile) theFile = os.path.join( distutils.sysconfig.PREFIX, 'share', 'pbrain', self.gladeFile) print "MainWindow.__init__(): uhh the file is " , theFile try: Shared.widgets = gtk.glade.XML(theFile) except: raise RuntimeError('Could not load glade file %s' % theFile) PrefixWrapper.__init__(self) self._isConfigured = False self.patient = None figsize = eegviewrc.figsize self.fig = Figure(figsize=figsize, dpi=72) self.canvas = FigureCanvas(self.fig) # a gtk.DrawingArea self.canvas.set_size_request(800, 640) self.canvas.connect("scroll_event", self.scroll_event) self.canvas.show() #self.fig = Figure(figsize=(7,5), dpi=72) t = arange(0.0,50.0, 0.01) xlim = array([0,10]) self.axes = self.fig.add_axes([0.075, 0.25, 0.9, 0.725], axisbg='#FFFFCC') self.axes.plot(t, sin(2*0.32*pi*t) * sin(2*2.44*pi*t) ) self.axes.set_xlim([0.0,10.0]) self.axes.set_xticklabels([]) self.axesSpec = self.fig.add_axes([0.075, 0.05, 0.9, 0.2]) t = self.axesSpec.text( 0.5, 0.5, 'Click on EEG channel for spectrogram (scroll mouse to expand)', verticalalignment='center', horizontalalignment='center', ) t.set_transform(self.axes.transAxes) self.axesSpec.set_xlim([0.0,10.0]) self.axesSpec.set_xticklabels([]) self.axesSpec.set_yticklabels([]) self.win = self['windowMain'] self.win.move(0,0) self['vboxMain'].pack_start(self.canvas, True, True) self['vboxMain'].show() self.toolbar = EEGNavBar( self.canvas, self['windowMain']) self.toolbar.show() self['vboxMain'].pack_start(self.toolbar, False, False) self.statbar = gtk.Statusbar() self.statbar.show() self.statbarCID = self.statbar.get_context_id('my stat bar') self['vboxMain'].pack_start(self.statbar, False, False) self.update_status_bar('') self.buttonDown = None fsize = self.fig.get_size_inches() self.fsize = copy.deepcopy(fsize) """ # Init Annotations menu sensitivity. menuItemAnnBrowser = Shared.widgets.get_widget('menuItemAnnBrowser') menuItemAnnBrowser.set_sensitive(0) menuItemAnnCreateEdit = Shared.widgets.get_widget('menuItemAnnCreateEdit') menuItemAnnCreateEdit.set_sensitive(0) menuItemAnnDelete = Shared.widgets.get_widget('menuItemAnnDelete') menuItemAnnDelete.set_sensitive(0) menuItemAnnHorizCursor = Shared.widgets.get_widget('menuItemAnnHorizCursor') menuItemAnnHorizCursor.set_sensitive(0) if eegviewrc.horizcursor == 'True' : menuItemAnnHorizCursor.set_active(1) else : menuItemAnnHorizCursor.set_active(0) menuItemAnnVertCursor = Shared.widgets.get_widget('menuItemAnnVertCursor') menuItemAnnVertCursor.set_sensitive(0) if eegviewrc.vertcursor == 'True' : menuItemAnnVertCursor.set_active(1) else : menuItemAnnVertCursor.set_active(0) """ self.canvas.mpl_connect('motion_notify_event', self.motion_notify_event) self.canvas.mpl_connect('button_press_event', self.button_press_event) self.canvas.mpl_connect('button_release_event', self.button_release_event) def update_status_bar(self, msg): self.statbar.pop(self.statbarCID) mid = self.statbar.push(self.statbarCID, 'Message: ' + msg) def menu_select_eeg(self, eeg): amp = eeg.get_amp() if amp.message is not None: simple_msg(amp.message, title='Warning', parent=Shared.windowMain.widget) try: self.eegplot except AttributeError: pass else: Observer.observers.remove(self.eegplot) try: self.specPlot except AttributeError: pass else: Observer.observers.remove(self.specPlot) self.eegplot = EEGPlot(eeg, self.canvas) self.toolbar.set_eegplot(self.eegplot) self.specPlot = SpecPlot(self.axesSpec, self.canvas, self.eegplot) self.specMenu = self.make_spec_menu() eois = eeg.get_associated_files(atype=5, mapped=1) self.eoiMenu = self.make_context_menu(eois) self.eegplot.plot() return False def make_patients_menu(self): entries = servers.sql.eeg.select( where='file_type in (1,4)') eegMap = {} for entry in entries: eegMap.setdefault(entry.pid,[]).append(EEGWeb(entry.get_orig_map())) pidList = ','.join(map(str,eegMap.keys())) # make a list of eegs and patients so we can pass an index to # the callback menuItemPatients = self['menuitemPatients'] menuPatients = gtk.Menu() patients = servers.sql.patients.select( where='pid in (%s) ORDER BY last' % pidList) for patient in patients: if not eegMap.has_key(patient.pid): continue menuItemPatient = gtk.MenuItem( '%s%s' % (patient.first[:2], patient.last[:2])) menuItemPatient.show() menuEEGs = gtk.Menu() for eeg in eegMap[patient.pid]: eegLabel = eeg.filename.replace('_', '-') item = gtk.MenuItem(label=eegLabel) item.show() eeg.patient = patient item.connect_object( "activate", self.menu_select_eeg, eeg) menuEEGs.append(item) menuItemPatient.set_submenu(menuEEGs) menuPatients.append(menuItemPatient) menuItemPatients.set_submenu(menuPatients) def load_eoi(self, eoi): success = self.eegplot.set_eoi(eoi) if success: tmin, tmax = self.eegplot.get_time_lim() self.eegplot.plot() self.eegplot.set_time_lim(tmin, tmax, updateData=True) self.eegplot.draw() else: #TODO: popup edit window for eoi pass def new_eoi(self, menuitem): self.edit_eoi() def make_context_menu(self, eois): contextMenu = gtk.Menu() label = "Load EOI" menuItemLoad = gtk.MenuItem(label) contextMenu.append(menuItemLoad) menuItemLoad.show() menuEOIS = gtk.Menu() for eoi in eois: eoiLabel = eoi.filename.replace('_', '-') item = gtk.MenuItem(label=eoiLabel) item.show() item.connect_object( "activate", self.load_eoi, eoi) menuEOIS.append(item) menuItemLoad.set_submenu(menuEOIS) label = "Save EOI" menuItemSave = gtk.MenuItem(label) contextMenu.append(menuItemSave) menuItemSave.connect("activate", self.save_eoi, 0) menuItemSave.show() label = "Save As EOI" menuItemSaveAs = gtk.MenuItem(label) contextMenu.append(menuItemSaveAs) menuItemSaveAs.connect("activate", self.save_eoi, 1) menuItemSaveAs.show() label = "Edit EOI" menuItemEdit = gtk.MenuItem(label) contextMenu.append(menuItemEdit) menuItemEdit.connect("activate", self.edit_eoi) menuItemEdit.show() label = "New EOI" menuItemNew = gtk.MenuItem(label) contextMenu.append(menuItemNew) menuItemNew.connect("activate", self.new_eoi) menuItemNew.show() menuItemSep = gtk.MenuItem() contextMenu.append(menuItemSep) menuItemSep.show() """ label = "Create New Annotation" menuItemAnnCreateEdit = gtk.MenuItem(label) menuItemAnnCreateEdit.connect("activate", self.on_menuItemAnnCreateEdit_activate) menuItemAnnCreateEdit.show() contextMenu.append(menuItemAnnCreateEdit) label = "Delete Annotation" menuItemAnnDelete = gtk.MenuItem(label) menuItemAnnDelete.connect("activate", self.on_menuItemAnnDelete_activate) menuItemAnnDelete.show() contextMenu.append(menuItemAnnDelete) """ menuItemSep = gtk.MenuItem() contextMenu.append(menuItemSep) menuItemSep.show() label = "Edit Channel Filter" menuItemEdit = gtk.MenuItem(label) menuItemEdit.connect("activate", self.edit_filter) menuItemEdit.show() contextMenu.append(menuItemEdit) return contextMenu def make_spec_menu(self): contextMenu = gtk.Menu() label = "Set limits" menuItemSave = gtk.MenuItem(label) contextMenu.append(menuItemSave) menuItemSave.connect("activate", self.specPlot.set_properties, 0) menuItemSave.show() return contextMenu def edit_eoi(self, *args): def ok_callback(eoi): success = self.eegplot.set_eoi(eoi) if success: tmin, tmax = self.eegplot.get_time_lim() self.eegplot.plot() self.eegplot.set_time_lim(tmin, tmax,updateData=True) self.eegplot.draw() d.destroy_dialog() return eoiActive = self.eegplot.get_eoi() eoiAll = self.eegplot.get_eeg().get_amp().to_eoi() d = Dialog_SelectElectrodes(trodes=eoiAll, ok_callback=ok_callback, selected=eoiActive ) d.set_transient_for(self.widget) def edit_filter(self, *args): """ This brings up the prefiltering window, which allows one to rectify/hilbert-xform the data before sending it to external mpl_windows. """ def ok_callback(filters): print "in MainWindow.edit_filter.ok_callback(): filters=", filters rectifiedChannels = {} hilbertedChannels = {} for channel, params in filters.iteritems(): print "filter f is ", channel, params['rectify'] rectifiedChannels[channel]= params['rectify'] hilbertedChannels[channel]= params['hilbert'] self.eegplot.get_eeg().set_rectified(rectifiedChannels) self.eegplot.get_eeg().set_hilberted(hilbertedChannels) tmin, tmax = self.eegplot.get_time_lim() self.eegplot.plot() self.eegplot.set_time_lim(tmin, tmax,updateData=True) self.eegplot.draw() d.destroy_dialog() return eoiActive = self.eegplot.get_eoi() #print "eoiActive is " , eoiActive eoiAll = self.eegplot.get_eeg().get_amp().to_eoi() #print "eoiAll is ", eoiAll rectify_selected = self.eegplot.get_eeg().get_rectified() hilbert_selected = self.eegplot.get_eeg().get_hilberted() d = Dialog_FilterElectrodes(trodes=eoiActive, ok_callback=ok_callback, rectify_selected=rectify_selected, hilbert_selected=hilbert_selected ) d.set_transient_for(self.widget) def save_eoi(self, menuitem, saveas): eoi = self.eegplot.get_eoi() if not self['dlgPref_radiobuttonUseWebOn'].get_active(): # not using the web, write to local filesystem fname = fmanager.get_filename( title='Enter filename for EOI') if not os.path.exists(fname): basepath, ext = os.path.splitext(fname) if ext.lower() != '.eoi': fname += '.eoi' try: fh = file(fname, 'w') fh.write(eoi.to_conf_file()) except IOError: error_msg('Could not write EOI to %s' % fname, parent=self.widget) return #TODO: handle same filename vs different filename; add a save as? def ok_callback(m): pid=self.eegplot.get_eeg().get_pid() newName = m['filename'] eoiNew = EOI() eoiNew.extend(eoi) def new_eoi_success(): eeg = self.eegplot.get_eeg() success = self.eegplot.set_eoi(eoiNew) eoiNew.update_map(eeg.get_filename()) eois = eeg.get_associated_files(atype=5, mapped=1) self.eoiMenu = self.make_context_menu(eois) dlgSave.hide_widget() simple_msg('%s successfully uploaded' % newName, title='Congratulations', parent=self.widget) if success: self.eegplot.plot() # make a new file try: eoiNew.new_web(pid, newName) except NameError: # fname already exists def response_callback(dialog, response): if response==gtk.RESPONSE_YES: eoiNew.set_exists_web(pid, newName) eoiNew.update_web() new_eoi_success() else: dialog.destroy() msg = '%s already exists. Overwrite?' % newName yes_or_no(msg=msg, title='Warning!', responseCallback=response_callback, parent=dlgSave.widget) else: new_eoi_success() if not saveas and eoi.is_web_file(): eoi.update_web() simple_msg('%s updated' % eoi.filename, title='You did it!', parent=self.widget) return dlgSave = Dialog_SaveEOI(eoiActive=self.eegplot.get_eoi(), eoisAll=self.eegplot.get_eeg().get_eois(), ok_callback=ok_callback) dlgSave.get_widget().set_transient_for(self.widget) dlgSave.show_widget() """ def on_menuItemAnnCreateEdit_activate(self, event) : annman = self.eegplot.annman params = {} if annman.selectedkey is not None: params = annman.ann[annman.selectedkey] else: # Create new annotation now = datetime.datetime.now() #datetime.now() was wrong, using datetime.datetime.now() -eli hlight = annman.get_highlight() if hlight is None : params = dict(created=now.ctime()) else : start, end = annman.highlight_span() params = dict(startTime=start, endTime=end, created=now.ctime()) annman.dlgAnnotate.set_params(params) # XXX doesn't update when i set the hscale value in the constructor... # dlgAnnotate['hscaleAlpha'].set_value(.5) annman.dlgAnnotate.get_widget().set_transient_for(self.widget) annman.dlgAnnotate.show_widget() def on_menuItemAnnDelete_activate(self, event) : dlg = gtk.MessageDialog(type=gtk.MESSAGE_QUESTION, buttons=gtk.BUTTONS_YES_NO, message_format='Are you sure you wish to delete this annotation?') dlg.set_title('Delete Annotation') response = dlg.run() dlg.destroy() if response == gtk.RESPONSE_YES : self.eegplot.annman.remove_selected() self.eegplot.annman.ann.save_data() self.eegplot.annman.dlgAnnBrowser.update_ann_info() def on_menuItemAnnHorizCursor_activate(self, checkMenuItem) : if checkMenuItem.get_active() : self.eegplot.cursor.horizOn = True eegviewrc.horizcursor = True else : self.eegplot.cursor.horizOn = False eegviewrc.horizcursor = False return False def on_menuItemAnnVertCursor_activate(self, checkMenuItem) : if checkMenuItem.get_active() : self.eegplot.cursor.vertOn = True eegviewrc.vertcursor = True else : self.eegplot.cursor.vertOn = False eegviewrc.vertcursor = False return False """ #def on_buttonSaveExcursion_clicked(self, event): # self.eegplot.save_excursion() # return False # #def on_buttonRestoreExcursion_clicked(self, event): # self.eegplot.restore_excursion() # self.eegplot.draw() # return False #def on_buttonJumpToTime_clicked(self, event): # val = str2num_or_err(self['entryJumpToTime'].get_text(), # parent=self.widget) # # if val is None: return # self.eegplot.set_time_lim(val) # self.eegplot.draw() # return False def expose_event(self, widget, event): #now the traces resize themselves on window resize - hurrah! eli #I had more trouble with this than I care to admit, which explains the messiness of the code try: self.eegplot except AttributeError: return False newsize = self.fig.get_size_inches() fsize = self.fsize #print newsize.all(), fsize.all() #why didn't .all() work?? if (fsize[1] != newsize[1]) or (fsize[0] != newsize[0]) : self.eegplot.plot() #added these two lines -eli self.eegplot.draw() self.fsize = copy.deepcopy(newsize) #why didn't regular copy work? return False def configure_event(self, widget, event): return False def realize(self, widget): return False def motion_notify_event(self, event): try: self.eegplot except : return False if not event.inaxes: return # Motion within EEG axes if event.inaxes == self.axes: t, yt = event.xdata, event.ydata #t = float('%1.1f' % t) """ annman = self.eegplot.annman # Resize annotation. if event.button == 1 : if annman.resize : s = annman.ann[annman.selectedkey]['startTime'] e = annman.ann[annman.selectedkey]['endTime'] if annman.resize_side == 0 : s = t else : e = t if s < e : annman.resize_selected(s, e) else : annman.set_selected() else : # Change mouse cursor if over an annotation edge. selected, side = annman.over_edge(event.x, event.y) if selected is not None : self.widget.window.set_cursor(gdk.Cursor(gdk.SB_H_DOUBLE_ARROW)) else : self.widget.window.set_cursor(gdk.Cursor(gdk.LEFT_PTR)) """ # Update status bar with time and electrode name and number trode = self.eegplot.get_channel_at_point(event.x, event.y, False) if trode is not None: gname, gnum = trode currdate = self.eegplot.eeg.get_date() timedelta = datetime.timedelta(0, event.xdata) if (currdate != None): self.update_status_bar( 'Time = %1.1f (s), %s, Electrode %s%d' % (t, str(currdate + timedelta), gname, gnum)) else: self.update_status_bar( 'Time = %1.1f (s), Electrode %s%d' % (t, gname, gnum)) # Motion within spectrum axes elif event.inaxes == self.axesSpec: t, f = event.xdata, event.ydata self.update_status_bar( 'Time = %1.1f (s), Freq = %1.1f (Hz)' % (t, f)) return False def scroll_event(self, widget, event): "If in specgram resize" if event.direction == gdk.SCROLL_UP: direction = 1 else: direction = -1 l1,b1,w1,h1 = self.axes.get_position() l2,b2,w2,h2 = self.axesSpec.get_position() deltay = direction*0.1*h2 h1 -= deltay h2 += deltay self.axes.set_position([l1, b2+h2, w1, h1]) self.axesSpec.set_position([l2, b2, w2, h2]) self.eegplot.plot() #added these two lines -eli self.eegplot.draw() self.canvas.draw() def button_press_event(self, event): try: self.eegplot except AttributeError: return False if not event.inaxes: return xa, ya = self.axes.transAxes.inverted().transform((event.x, event.y)) #replaced inverse_xy_tup with inverted().transform() # print 'axes coords', xa, ya self.buttonDown = event.button #annman = self.eegplot.annman if event.button == 1 or event.button == 3 : if event.inaxes == self.axes: t, yt = event.xdata, event.ydata """ if not annman.is_over_highlight(t) : key = annman.over_annotation(event.x, event.y) annman.remove_highlight() annman.set_selected(key) annman.dlgAnnBrowser.update_ann_info(key) """ if event.button==1: if event.inaxes == self.axes: self.eegplot.cursor.visible = False t, yt = event.xdata, event.ydata """ # Start resize if edge of an annotation clicked. selected, side = annman.over_edge(event.x, event.y) if selected is not None : annman.set_selected(selected) annman.start_resize(side) annman.selector.visible = False """ # Select an electrode if not locked. if not self.eegplot.lock_trode : trode = self.eegplot.get_channel_at_point(event.x, event.y) if trode is not None: gname, gnum = trode self.update_status_bar('Electrode: %s%d' % (gname, gnum)) if event.button==3: # right click brings up the context menu if event.inaxes == self.axes: menu = self.eoiMenu # Update popup menu items #highsens = annman.get_highlight() is not None #selsens = self.eegplot.annman.selectedkey is not None #if highsens: label = 'Create New Annotation' #else: label = 'Edit Selected Annotation' #menuItems = menu.get_children() #print "menuItems = " , menuItems #menuItemAnnCreateEdit = menuItems[-2] #print "menuItemAnnCreateEdit = " , menuItemAnnCreateEdit #menuItemAnnCreateEdit.get_children()[0].set_text(label) #menuItemAnnDelete = menuItems[-1] #menuItemAnnDelete.set_sensitive(selsens) elif event.inaxes == self.axesSpec: menu = self.specMenu """ # Update popup menu items highsens = annman.get_highlight() is not None selsens = self.eegplot.annman.selectedkey is not None if highsens or not selsens : label = 'Create New Annotation' else: label = 'Edit Selected Annotation' menu.popup(None, None, None, 0, 0) """ return False def button_release_event(self, event): try: self.eegplot except AttributeError: return False """ annman = self.eegplot.annman # Write ann file if annman.resize : annman.ann.save_data() annman.selector.visible = True annman.end_resize() """ self.eegplot.cursor.visible = True self.buttonDown = None return False def on_menuFilePreferences_activate(self, event=None): def mysql_callback(dbname, host, user, passwd, port): servers.sql.init(dbname, host, user, passwd, port) self.make_patients_menu() eegviewrc.sqlhost = host eegviewrc.sqluser = user eegviewrc.sqlpasswd = passwd eegviewrc.sqlport = port eegviewrc.save() def datamanager_callback(url, user, passwd, cachedir): servers.datamanager.init(url, user, passwd, cachedir) eegviewrc.httpurl = url eegviewrc.httpuser = user eegviewrc.httppasswd = passwd eegviewrc.httpcachedir = cachedir eegviewrc.save() d = Dialog_Preferences( mysqlCallBack = mysql_callback, dataManagerCallBack = datamanager_callback) params = { 'zopeServer' : eegviewrc.httpurl, 'zopeUser' : eegviewrc.httpuser, 'zopePasswd' : eegviewrc.httppasswd, 'zopeCacheDir' : eegviewrc.httpcachedir, 'mysqlDatabase' : eegviewrc.sqldatabase, 'mysqlServer' : eegviewrc.sqlhost, 'mysqlUser' : eegviewrc.sqluser, 'mysqlPasswd' : eegviewrc.sqlpasswd, 'mysqlPort' : eegviewrc.sqlport, } d.set_params(params) d.show_widget() d.get_widget().set_transient_for(self.widget) return False def on_menuFileQuit_activate(self, event): update_rc_and_die() #def on_menuFileNew_activate(self, event): # not_implemented(self.widget) def get_eeg_params(self, fullpath): def callback(pars): pass dlg = Dialog_EEGParams(fullpath, callback) dlg.show_widget() response = dlg.widget.run() if response == gtk.RESPONSE_OK: dlg.hide_widget() pars = dlg.get_params() return pars def autoload(self, options): """DEBUG only""" fullpath = options.filename basename, ext = os.path.splitext(fullpath) eeg = extmap[ext](fullpath) self.load_eeg(eeg) if options.eoi is not None: eoi = EOI(useFile=options.eoi) self.load_eoi(eoi) return False def on_menuFileOpen_activate(self, event): #dlg = gtk.FileSelection('Select EEG param file') #dlg.set_transient_for(self.widget) #dlg.set_filename(fmanager.get_lastdir() + os.sep) #dlg.cancel_button.connect("clicked", lambda w: dlg.destroy()) #dlg.show() #response = dlg.run() def ok_callback(dlg): fname = dlg.get_filename() fullpath = dlg.get_filename() fmanager.set_lastdir(fullpath) dlg.destroy() if not os.path.exists(fullpath): error_msg( 'Cannot find %s' % fullpath, title='Error', parent=Shared.windowMain.widget) basename, ext = os.path.splitext(fullpath) if not extmap.has_key(ext.lower()): error_msg( 'Do not know how to handle extension %s in %s' % (ext, fullpath), title='Error', parent=Shared.windowMain.widget) return else: loader = extmap[ext.lower()] try: eeg = loader(fullpath) except ValueError, msg: msg = exception_to_str('Error loading EEG' ) error_msg(msg, title='Error loading EEG', parent=Shared.windowMain.widget) return else: if eeg is None: return print "on_menuFileOpen_activate: eeg ext is ", ext if (eeg.get_file_type() != 1): # hack -- .bnis do not need .amp files if len(eeg.amps)>0: names = [os.path.split(fullname)[-1] for fullname in eeg.amps] name = select_name(names, 'Pick the AMP file') if name is None: return else: amp = eeg.get_amp(name) else: amp = eeg.get_amp() else: amp = eeg.get_amp() if amp.message is not None: simple_msg(amp.message, title='Warning', parent=Shared.windowMain.widget) self.load_eeg(eeg) return False dlg = Dialog_FileChooser(defaultDir=fmanager.get_lastdir(), okCallback=ok_callback, title='Select Neuroscanascii file', parent=self.win, previous_dirnames=fmanager.get_lastdirs()) print fmanager.bni try: dlg.set_filename(fmanager.bni) #use the shared filemanager and eegviewrc file to autoload files when set except: dlg.set_filename("") dlg.run() dlg.destroy() #simple usability hack: chain in the view3 loader here try: self.eegplot except AttributeError: simple_msg( 'You must first select an EEG from the Patients menu', title='Error', parent=self.widget) return from view3 import View3 viewWin = View3(eegplot=self.eegplot) if viewWin.ok: viewWin.show() else: print >>sys.stderr, 'Got an error code from view3' #/hack def load_eeg(self, eeg): dlg = gtk.Dialog('Please stand by') dlg.show() msg = gtk.Label('Loading %s; please hold on' % eeg.filename) msg.show() dlg.vbox.add(msg) while gtk.events_pending(): gtk.main_iteration() try: self.eegplot except AttributeError: pass else: Observer.observers.remove(self.eegplot) try: self.specPlot except AttributeError: pass else: Observer.observers.remove(self.specPlot) self.eegplot = EEGPlot(eeg, self.canvas) self.specPlot = SpecPlot(self.axesSpec, self.canvas, self.eegplot) self.specMenu = self.make_spec_menu() dlg.destroy() while gtk.events_pending(): gtk.main_iteration() self.toolbar.set_eegplot(self.eegplot) try: self.eegplot.plot() except: msg = exception_to_str('Could not read data:') error_msg(msg, title='Error', parent=Shared.windowMain.widget) return eois = eeg.get_associated_files(atype=5, mapped=1) self.eoiMenu = self.make_context_menu(eois) # change the window title self.win = self['windowMain'] self.win.set_title(eeg.filename) self.eegplot.set_time_lim(0, 10, updateData=True) def on_menuFileSave_activate(self, event): not_implemented(self.widget) def on_menuFileExport_activate(self, event): # dump all the current data to a bunch of .wav files tmin, tmax = self.eegplot.get_time_lim() eeg = self.eegplot.get_eeg() t, data = eeg.get_data(tmin, tmax) amp = eeg.get_amp() did = amp.get_dataind_dict() freq = eeg.get_freq() eoi = self.eegplot.get_eoi() print "did=", did print "eoi=", eoi for index, chan in did.iteritems(): if (chan not in eoi): continue (cname, cnum) = chan filename = str("%03d" % index) + "_" + cname + "_" + str(cnum) + "_" + str(tmin) + "-" + str(tmax) + ".wav" print "on_menuFileExport_activate(): saving ", filename w = wave.open(filename, 'w') w.setnchannels(1) w.setsampwidth(2) w.setframerate(freq) #print "data.shape is ", data.shape wav_array = data[:,int(index)] #print "wav_array length is ", len(wav_array), " with max of ", max(wav_array), "min of ", min(wav_array) # not sure how one chooses to "short-ize" this data! # arbitrarily make max SHRT_MAX and min SHRT_MIN or # something shrt_max = 32767 shrt_min = -32768 wav_max = max(wav_array) wav_min = min(wav_array) # mcc XXX: This conversion needs fixing... rectified signals # wind up with 0 = SHRT_MIN. shrt_array = zeros(len(wav_array), 'h') wav_max_max = max(wav_max, abs(wav_min)) for i in range(0,len(wav_array)): wav_i_0to1 = (wav_max_max - wav_array[i]) / (2 * wav_max_max) shrt_array[i] = int(shrt_max - round(wav_i_0to1 * (shrt_max - shrt_min))) #print "len(shrt_array) is", len(shrt_array), " type of len(shrt_array) is ", type(len(shrt_array)) w.writeframes(struct.pack('%dh' % len(shrt_array), *shrt_array)) w.close() """ def on_menuItemAnnBrowser_activate(self, event) : try : self.eegplot except : pass else : self.eegplot.annman.dlgAnnBrowser.show() return False """ def on_menuHelpAbout_activate(self, event): not_implemented(self.widget) def on_menuChannelWindow_activate(self, event): try: self.eegplot except AttributeError: simple_msg( 'You must first select an EEG from the Patients menu', title='Error', parent=self.widget) return win = ChannelWin(eegplot=self.eegplot) win.show() def on_menuHistogramWindow_activate(self, event): try: self.eegplot except AttributeError: simple_msg( 'You must first select an EEG from the Patients menu', title='Error', parent=self.widget) return win = HistogramWin(eegplot=self.eegplot) win.show() def on_menuAcorrWindow_activate(self, event): try: self.eegplot except AttributeError: simple_msg( 'You must first select an EEG from the Patients menu', title='Error', parent=self.widget) return win = AcorrWin(eegplot=self.eegplot) win.show() def on_menuEmbedWindow_activate(self, event): try: self.eegplot except AttributeError: simple_msg( 'You must first select an EEG from the Patients menu', title='Error', parent=self.widget) return from embed import EmbedWin embedWin = EmbedWin(eegplot=self.eegplot) embedWin.show() def on_menuCoherenceWindow_activate(self, event): print "on_menuCoherenceWindow_activate" try: self.eegplot except AttributeError: simple_msg( 'You must first select an EEG from the Patients menu', title='Error', parent=self.widget) return from coherence_window import CoherenceWin coherenceWin = CoherenceWin(eegplot=self.eegplot) coherenceWin.show() def on_menuView3DWindow_activate(self, event): try: self.eegplot except AttributeError: simple_msg( 'You must first select an EEG from the Patients menu', title='Error', parent=self.widget) return from view3 import View3 viewWin = View3(eegplot=self.eegplot) if viewWin.ok: viewWin.show() else: print >>sys.stderr, 'Got an error code from view3' def on_menuPhaseSynchronyPlot_activate(self, event) : try : self.eegplot except AttributeError : simple_msg( 'You must first select an EEG', title='Error', parent=self.widget) return dlgPhaseSynchronyPlot = Dialog_PhaseSynchronyPlot(self.eegplot) print dlgPhaseSynchronyPlot dlgPhaseSynchronyPlot.show_widget() def on_menuSpecWindow_activate(self, event): try: self.eegplot except AttributeError: simple_msg( 'You must first select an EEG', title='Error', parent=self.widget) return specWin = SpecWin(eegplot=self.eegplot) specWin.show() def on_menuEventRelatedSpecWindow_activate(self, event): def ok_callback(erspec_params): print "on_menuEventRelatedSpecWindow_activate().ok_callback(): foo=", erspec_params win = EventRelatedSpecWin(erspec_params, eegplot=self.eegplot) win.show() try: self.eegplot except AttributeError: simple_msg( 'You must first select an EEG', title='Error', parent=self.widget) return specWin = Dialog_EventRelatedSpec(ok_callback) specWin.show_widget() #specWin.show() return False def on_menuComputeExportToCohstat_activate(self, event): try: self.eegplot except AttributeError: simple_msg( 'You must first select an EEG from the Patients menu', title='Error', parent=self.widget) return eoi = self.eegplot.get_eoi() if len(eoi)==64: d = Dialog_CohstatExport(self.eegplot.get_eeg(), eoi) else: d = Dialog_CohstatExport(self.eegplot.get_eeg()) d.get_widget().set_transient_for(self.widget) d.show_widget() return False def update_rc_and_die(*args): [eegviewrc.lastdir, eegviewrc.lastdir1, eegviewrc.lastdir2, eegviewrc.lastdir3, eegviewrc.lastdir4, eegviewrc.lastdir5, eegviewrc.lastdir6, eegviewrc.lastdir7, eegviewrc.lastdir8, eegviewrc.lastdir9] = fmanager.get_lastdirs() #eegviewrc.figsize = Shared.windowMain.fig.get_size_inches() eegviewrc.save() gtk.main_quit() if __name__=='__main__': __import__('__init__') Shared.windowMain = MainWindow() Shared.windowMain.show_widget() from optparse import OptionParser parser = OptionParser() parser.add_option("-f", "--file", action="store", type="string", dest="filename", default=None, help="Autoload eeg from file", metavar="FILE") parser.add_option("-e", "--eoi", action="store", type="string", dest="eoi", default=None, help="Autoload eoi from eoi file", metavar="FILE") (options, args) = parser.parse_args() if options.filename is not None: Shared.windowMain.autoload(options) else: #No longer load the sql/zope dialog. #Shared.windowMain.on_menuFilePreferences_activate(None) pass Shared.windowMain.widget.connect('expose-event', Shared.windowMain.expose_event) #handle page resizes -eli Shared.windowMain.widget.connect('destroy', update_rc_and_die) Shared.windowMain.widget.connect('delete_event', update_rc_and_die) #Shared.windowMain['menubarMain'].hide() try: gtk.main() except KeyboardInterrupt: update_rc_and_die()
[]
2024-01-10
iustinum/aetheon
.hackathon~src~repo_reader.py
import nest_asyncio from llama_hub.github_repo import GithubClient, GithubRepositoryReader import os import utils from utils import print_verbose import pickle from dotenv import load_dotenv import openai from llama_index import download_loader, GPTVectorStoreIndex, Document download_loader("GithubRepositoryReader") utils.setup() # .pkl file where the code will store data about the respository storeFileName = "data.pkl" def generateDataFile(username: str, repo: str, branch: str = "main", verbose: int = 0) -> None: """ A function to generate a list of document objects from a github repository. Writes the list of Document objects as a .pkl in data.pkl """ github_client = GithubClient(os.getenv("GITHUB_TOKEN")) print_verbose( f"INFO: {utils.getCurrentTime()} [*] Loading Github repository...", verbose) loader = GithubRepositoryReader( github_client, owner=username, repo=repo, verbose=False, concurrent_requests=10) data = loader.load_data(branch=branch) print_verbose( f"INFO: {utils.getCurrentTime()} [*] Storing data...", verbose) with open(storeFileName, "wb") as f: pickle.dump(data, f) def generateQuery(query: str, verbose: int = 0) -> str: """ A function to generate a query response from the given data. """ if not os.path.exists("data.pkl"): raise Exception("INFO: [*] Data file does not exist!") print_verbose( f"INFO: {utils.getCurrentTime()} [*] Unpacking data...", verbose) # Unpackage our documents object with open(storeFileName, "rb") as f: data = pickle.load(f) print_verbose( f"INFO: {utils.getCurrentTime()} [*] Generating index...", verbose) index = GPTVectorStoreIndex.from_documents(data) # Turns index into a query engine to feed questions into. print_verbose( f"INFO: {utils.getCurrentTime()} [*] Generating query engine...", verbose) query_engine = index.as_query_engine() print_verbose( f"INFO: {utils.getCurrentTime()} [*] Generating repsonse...", verbose) response = query_engine.query(query) return response.response def generateFileNames(verbose: int = 0) -> list[dict]: """ A function to generate file locations from our data. Returns a set of file names, starting from the github repo. Generate a list of dictionaries. Key: "filename", Value: filename """ print_verbose( f"INFO: {utils.getCurrentTime()} [*] Generating file names...", verbose) data = getDataPKL() locations = [] for document in data: locations.append(document.extra_info) return locations def generateResponseFromFile(fileName: str) -> str: """ A function to generate a detailed description for a certain file. This is mainly used to produce descripts for the wikipedia page. """ return generateQuery(f"Write me a detailed description of the following file or class: {fileName}. The response should include a detailed list of variables and functions.") def generateDescriptions(listOfFileNames: list[dict]) -> str: """ A function that iterates through each file and and produces a description of each file. Description of each are appended to formed with a large string of all descriptions. Returns that string with all descriptions """ desc = "" for fileNames in listOfFileNames: desc += generateResponseFromFile(fileNames["file_name"]) return desc def getDataPKL() -> list[Document]: """ A function that generates a list of Document objects. Serves as data for later parsing. """ # Error checking to see if our data file exists if not os.path.exists(storeFileName): raise Exception("Data file not generated!") with open(storeFileName, "rb") as f: data = pickle.load(f) return data # (DEBUGGING) if __name__ == "__main__": print(os.getenv("GITHUB_TOKEN")) print(os.getenv("OPENAI_API_KEY")) utils.setup() # paste url: # "https://github.com/chiyeon/tmf-beat") author, repo_name = utils.get_repo_info( "https://github.com/Jingzhi-Su/PokerBot") print(author, repo_name) generateDataFile(author, repo_name, branch="main") allNames = generateFileNames() print(generateDescriptions(allNames)) os.remove(storeFileName)
[]
2024-01-10
iustinum/aetheon
playground~src_old~aetheon.py
import openai import os from dotenv import load_dotenv from model import GPT import repo_reader class Aetheon(): def __init__(self, model_name) -> None: load_dotenv(".env") openai.api_key = os.environ["OPENAI_API_KEY"] self.model = GPT(model=model_name) def run(self, repo_name, branch, author): repo_reader.generateDataFile(author, repo_name, branch=branch) allNames = repo_reader.generateFileNames() desc = repo_reader.generateDescriptions(allNames) self.model.giveContext(desc) text = self.model.createMDText() print(text) def load_repo(self, repo_name, branch, author): pass def generateInlineDocs(self): pass
[]
2024-01-10
SousaPedroso/mlops-training-datatalks.club
training~topic_modeling~train.py
""" Script to train a model to topical modeling of customer content reviews """ import os import pickle from argparse import ArgumentParser import mlflow from gensim.models import CoherenceModel, LdaModel from prefect import flow, task from prefect.task_runners import SequentialTaskRunner @task def load_dataset(input_dir: str) -> tuple[list, list]: with open(os.path.join(input_dir, "train_corpus.pkl"), "rb") as f_in: train_dataset = pickle.load(f_in) with open(os.path.join(input_dir, "valid_tokens.pkl"), "rb") as f_in: val_dataset = pickle.load(f_in) return train_dataset, val_dataset @task def load_indexed_dictionary(input_dir: str) -> list: with open(os.path.join(input_dir, "id2word.pkl"), "rb") as f_in: return pickle.load(f_in) def compute_coherence_values(X_train, X_val, passes, id2word, k, a, b) -> float: lda_model = LdaModel( corpus=X_train, id2word=id2word, num_topics=k, random_state=123, chunksize=100, passes=passes, alpha=a, eta=b, ) coherence_model_lda = CoherenceModel( model=lda_model, texts=X_val, dictionary=id2word, coherence="c_v" ) return coherence_model_lda.get_coherence() @task def hyperparameter_opt( X_train: list, X_val: list, id2word: list, passes: int, topics: range, alpha: list, beta: list, ): with mlflow.start_run(): mlflow.set_tag("model", "LDA") mlflow.set_tag("scope", "Topic-Modeling") mlflow.log_param("passes", passes) for k in topics: for a in alpha: for b in beta: params = {} params["k"] = k params["a"] = a params["b"] = b coherence_score = compute_coherence_values( X_train, X_val, passes, id2word, k, a, b ) mlflow.log_metric("coherence", coherence_score) mlflow.log_metrics(params) # pylint: disable=line-too-long @flow( name="topic-modeling-training-pipeline-params-opt", task_runner=SequentialTaskRunner(), ) def train( experiment_name: str, input_dir: str, passes: int, topics: list, alpha: list, beta: list, ): topics = range(topics[0], topics[1], topics[2]) mlflow.set_tracking_uri(os.getenv("MLFLOW_TRACKING_URI", "http://127.0.0.1:5000")) mlflow.set_experiment(experiment_name) train_dataset, val_dataset = load_dataset(input_dir) id2word = load_indexed_dictionary(input_dir) hyperparameter_opt(train_dataset, val_dataset, id2word, passes, topics, alpha, beta) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument( "--experiment_name", type=str, help="Name of the experiment to be used for tracking", required=True, ) parser.add_argument( "--input_dir", type=str, help="Data's path to be used for model training", required=True, ) parser.add_argument( "--passes", type=int, help="Number of passes to be used for model training", default=3, ) parser.add_argument( "--topics", type=list, help=( "Number of topics to be used for model training. Expected three values:" " start, stop, step" ), default=[5, 20, 5], ) parser.add_argument( "--alpha", type=list, help="Alpha hyperparameter to be used for model training", default=[0.01, 0.31, 0.61, 0.91], ) parser.add_argument( "--beta", type=list, help="Beta hyperparameter to be used for model training", default=[0.01, 0.31, 0.61, 0.91], ) args = parser.parse_args() train( args.experiment_name, args.input_dir, args.passes, args.topics, args.alpha, args.beta, )
[]
2024-01-10
Digital-Methods-HASS/au616353_martinez_mie
Language%20analytics~Assignment_5~utils~lda_utils.py
#!/usr/bin/python """ Utility functions for working with LDA using gensim """ # NLP import re from nltk.corpus import stopwords stop_words = stopwords.words('english') #pandas import pandas as pd # Gensim import gensim import gensim.corpora as corpora from gensim.utils import simple_preprocess from gensim.models import CoherenceModel # matplotlib import matplotlib.pyplot as plt def sent_to_words(sentences): for sent in sentences: sent = re.sub(r'\S*@\S*\s?', '', sent) # remove emails sent = re.sub(r'\s+', ' ', sent) # remove newline chars sent = re.sub(r"\'", "", sent) # remove single quotes sent = gensim.utils.simple_preprocess(str(sent), deacc=True) yield(sent) def process_words(texts, nlp, bigram_mod, trigram_mod, stop_words=stop_words, allowed_postags=['NOUN', "ADJ", "VERB", "ADV"]): """Remove Stopwords, Form Bigrams, Trigrams and Lemmatization""" # use gensim simple preprocess texts = [[word for word in simple_preprocess(str(doc)) if word not in stop_words] for doc in texts] texts = [bigram_mod[doc] for doc in texts] texts = [trigram_mod[bigram_mod[doc]] for doc in texts] texts_out = [] # lemmatize and POS tag using spaCy for sent in texts: doc = nlp(" ".join(sent)) texts_out.append([token.lemma_ for token in doc if token.pos_ in allowed_postags]) return texts_out def compute_coherence_values(dictionary, corpus, texts, limit, start=2, step=3): """ Compute c_v coherence for various number of topics Parameters: ---------- dictionary : Gensim dictionary corpus : Gensim corpus texts : List of input texts limit : Max num of topics Returns: ------- model_list : List of LDA topic models coherence_values : Coherence values corresponding to the LDA model with respective number of topics """ coherence_values = [] model_list = [] for num_topics in range(start, limit, step): model = gensim.models.LdaMulticore(corpus=corpus, num_topics=num_topics, id2word=dictionary) model_list.append(model) coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence='c_v') coherence_values.append(coherencemodel.get_coherence()) x = range(start, limit, step) plt.plot(x, coherence_values) plt.xlabel("Num Topics") plt.ylabel("Coherence score") plt.legend(("coherence_values"), loc='best') plt.show() # Print the coherence scores for m, cv in zip(x, coherence_values): print("Num Topics =", m, " has Coherence Value of", round(cv, 4)) return model_list, coherence_values def format_topics_sentences(ldamodel, corpus, texts): # Init output sent_topics_df = pd.DataFrame() # Get main topic in each document for i, row_list in enumerate(ldamodel[corpus]): row = row_list[0] if ldamodel.per_word_topics else row_list # print(row) row = sorted(row, key=lambda x: (x[1]), reverse=True) # Get the Dominant topic, Perc Contribution and Keywords for each document for j, (topic_num, prop_topic) in enumerate(row): if j == 0: # => dominant topic wp = ldamodel.show_topic(topic_num) topic_keywords = ", ".join([word for word, prop in wp]) sent_topics_df = sent_topics_df.append(pd.Series([int(topic_num), round(prop_topic,4), topic_keywords]), ignore_index=True) else: break sent_topics_df.columns = ['Dominant_Topic', 'Perc_Contribution', 'Topic_Keywords'] # Add original text to the end of the output contents = pd.Series(texts) sent_topics_df = pd.concat([sent_topics_df, contents], axis=1) return(sent_topics_df) if __name__=="__main__": pass
[]
2024-01-10
Digital-Methods-HASS/au616353_martinez_mie
Language%20analytics~Assignment_5~src~development_of_trump.py
#!/usr/bin/env python """ Specify file path of the csv file of Trump tweets and name of the output graph. You can also specify number of topics and what kind of words you want to investigate. The default is 10 topics and word types nouns and verbs. The output will be a perplexity and coherence score printed in the terminal as well as a print of the 10 most prominent words constituting each topic. Furthermore, a plot of the development of topics within Trumps tweets will be saved in a folder called out in the path relative to the working directory i.e., location of the script. Parameters: input_file: str <filepath-of-csv-file> output_filename: str <name-of-png-file> n_topics: int <number-of-topics> word_types: list <list-of-word-types> Usage: development_of_trump.py -f <filepath-of-csv-file> -o <name-of-png-file> -n <number-of-topics> -w <list-of-word-types> Example: $ python3 development_of_trump.py -f ../data/Trump_tweets.csv -o trumps_development.png -n 15 -w "['NOUN', 'VERB']" ## Task - Train an unsupervised classifyer as an LDA model on your data to extract structured information that can provide insight into topics in Trumps tweets. - Output is in the form of an html file containing the topics (as well as a print in the terminal) and a png file for the development of topics. Both can be found in the folder data/output. """ import re import nltk nltk.download('stopwords') from nltk.corpus import stopwords stop_words = stopwords.words('english') # standard library import sys,os #sys.path.append(os.getcwd()) sys.path.append(os.path.join("..")) from pprint import pprint # data and nlp import pandas as pd import spacy nlp = spacy.load("en_core_web_sm", disable=["ner"]) # visualisation import pyLDAvis.gensim import seaborn as sns from matplotlib import rcParams # figure size in inches rcParams['figure.figsize'] = 20,10 # LDA tools import gensim import gensim.corpora as corpora from gensim.models import CoherenceModel from utils import lda_utils # warnings import logging, warnings warnings.filterwarnings('ignore') logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.ERROR) import argparse # argparse ap = argparse.ArgumentParser() # adding argument ap.add_argument("-f", "--input_file", required = True, help= "Path to the csv-file") ap.add_argument("-o", "--output_filename", default = "trumps_development.png", help = "Name of output file") ap.add_argument("-n", "--n_topics", default = 10, help = "Number of topics") ap.add_argument("-w", "--word_type", default = "['NOUN', 'VERB']", help = "Type of word. Choose between: 'NOUN','VERB','ADJ','ADV'") # parsing arguments args = vars(ap.parse_args()) def main(args): # get path to the csv file in_file = args["input_file"] # name for output file out_file = args["output_filename"] # number of topics n_topics = int(args["n_topics"]) # word types word_types = args["word_type"] # Initialize class object Trump = Tweet_development(input_file = in_file, output_file = out_file, n_topics = n_topics, word_types = word_types) # use process_data method and save returned dataframe data_processed = Trump.process_data() # build the lda model id2word, corpus, lda_model = Trump.lda_model(data_processed) # plot development of tweets Trump.development_and_outputs(id2word = id2word, corpus = corpus, lda_model = lda_model) # print done print("Good job! The script is now done. Have a nice day!") class Tweet_development: def __init__(self, input_file, output_file, n_topics, word_types): ''' Constructing the Tweet_development object ''' # creating the class object with the user defined inputs self.input_file = input_file self.output_file = output_file self.n_topics = n_topics self.word_types = word_types def load_and_prepare(self): ''' Loading the input data. Filter and prepare data for classification. Returns a filtered list. ''' print("\nLoading the data...") # read csv file df = pd.read_csv(self.input_file) # remove hyperlinks by filtering filtering = df['text'].str.contains("http*") df = df[~filtering] # remove retweets data = df[df["isRetweet"]== "f"] # make a corpus of the contents column only tweets = data['text'].values.tolist() return tweets def process_data(self): ''' Building bigram and trigram models and fitting them to the data. Reducing the feature space by lemmatizing and POS tagging the corpus of tweets. Returns the processed data. ''' tweets = self.load_and_prepare() print("\nBuilding bigram and trigram models and fitting it to the data") # Build the bigram and trigram models bigram = gensim.models.Phrases(tweets, min_count=3, threshold=75) # higher threshold fewer phrases. trigram = gensim.models.Phrases(bigram[tweets], threshold=75) # fitting the models to the data bigram_mod = gensim.models.phrases.Phraser(bigram) trigram_mod = gensim.models.phrases.Phraser(trigram) print("\nLemmatizing the data and doing POS tagging. This takes a few minutes...") # Processing the data using Ross' lda utils function data_processed = lda_utils.process_words(tweets, nlp, bigram_mod, trigram_mod, allowed_postags=self.word_types) return data_processed def lda_model(self, data_processed): ''' Creating dictionary and corpus of word frequency from the processed data. Building and evaluating the LDA model. Print perplexity scores and coherence scores. Print the top ten words representing each topic. ''' # Create Dictionary id2word = corpora.Dictionary(data_processed) # Create Corpus: Term Document Frequency corpus = [id2word.doc2bow(text) for text in data_processed] print(f"Building the LDA model. You have {len(data_processed)} tweets in the data so it might take a while") # Build LDA model lda_model = gensim.models.LdaMulticore(corpus=corpus, # vectorised corpus - list of lists of tupols id2word=id2word, # gensim dictionary - mapping words to IDs num_topics=self.n_topics, # number of topics set by user or default random_state=100, # random state for reproducibility chunksize=30, # batch data for efficiency passes=10, # number of times to pass over the data set to create better model iterations=100, # related to document rather than corpus per_word_topics=True, # define word distributions minimum_probability=0.0) # minimum value # Compute Perplexity and print in the terminal print('\nPerplexity: ', lda_model.log_perplexity(corpus)) # a measure of how good the model is. lower the better. # Compute Coherence Score coherence_model_lda = CoherenceModel(model=lda_model, texts=data_processed, dictionary=id2word, coherence='c_v') # get the coherence score and print in the terminal coherence_lda = coherence_model_lda.get_coherence() print('\nCoherence Score: ', coherence_lda) # print the topics found by the lda model in the terminal pprint(lda_model.print_topics()) return id2word, corpus, lda_model def development_and_outputs(self, id2word, corpus, lda_model): ''' Calculate dominant topic for each document/tweet and plot development of topics over time with seaborn. Save plot as png. ''' print("\nCreating visualizations and saving as html and png in output folder") # Create output directory if it doesn't exist outputDir = os.path.join("..", "data", "output") if not os.path.exists(outputDir): os.mkdir(outputDir) print("Directory " , outputDir , " Created ") else: print("Directory " , outputDir , " already exists") # Make gensim LDA visualization vis = pyLDAvis.gensim.prepare(lda_model, corpus, dictionary=lda_model.id2word) # define output path and filename out_path = os.path.join(outputDir, "lda_topics.html") # save visualization as html pyLDAvis.save_html(vis, out_path) print("\nGensim LDA visualization is saved as", out_path) # inspect dominant topic values = list(lda_model.get_document_topics(corpus)) # create empty list split = [] # for loop for each document in the corpus for entry in values: # create empty list topic_prevelance = [] # for loop for each topic in each document for topic in entry: # append the contribution of each topic for each document topic_prevelance.append(topic[1]) # append the list with contributions of topics to the split list split.append(topic_prevelance) # making a dataframe containing for each document the percentage of contribution of the 10 topics df = pd.DataFrame(map(list,zip(*split))) # defining the output path out_path = os.path.join(outputDir, self.output_file) # making a lineplot with a rolling mean of 500 tweets line_plot = sns.lineplot(data=df.T.rolling(500).mean()) # saving the lineplot as a figure fig = line_plot.get_figure() # saving the figure in the output path fig.savefig(out_path) print("\nLineplot for development of topics in tweets is saved as", out_path) if __name__ == "__main__": main(args)
[]
2024-01-10
open-compass/VLMEvalKit
vlmeval~evaluate~mmvet_eval.py
from vlmeval.api import OpenAIWrapper, OpenAIWrapperInternal from vlmeval.smp import * from vlmeval.utils import track_progress_rich INTERNAL = os.environ.get('INTERNAL', 0) def build_mmvet_gpt4_prompt(line): question = line['question'] gt = str(line['answer']) prediction = str(line['prediction']) prompt = """Compare the ground truth and prediction from AI models, to give a correctness score for the prediction. <AND> in the ground truth means it is totally right only when all elements in the ground truth are present in the prediction, and <OR> means it is totally right when any one element in the ground truth is present in the prediction. The correctness score is 0.0 (totally wrong), 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0 (totally right). Just complete the last space of the correctness score. Question | Ground truth | Prediction | Correctness --- | --- | --- | --- What is x in the equation? | -1 <AND> -5 | x = 3 | 0.0 What is x in the equation? | -1 <AND> -5 | x = -1 | 0.5 What is x in the equation? | -1 <AND> -5 | x = -5 | 0.5 What is x in the equation? | -1 <AND> -5 | x = -5 or 5 | 0.5 What is x in the equation? | -1 <AND> -5 | x = -1 or x = -5 | 1.0 Can you explain this meme? | This meme is poking fun at the fact that the names of the countries Iceland and Greenland are misleading. Despite its name, Iceland is known for its beautiful green landscapes, while Greenland is mostly covered in ice and snow. The meme is saying that the person has trust issues because the names of these countries do not accurately represent their landscapes. | The meme talks about Iceland and Greenland. It's pointing out that despite their names, Iceland is not very icy and Greenland isn't very green. | 0.4 Can you explain this meme? | This meme is poking fun at the fact that the names of the countries Iceland and Greenland are misleading. Despite its name, Iceland is known for its beautiful green landscapes, while Greenland is mostly covered in ice and snow. The meme is saying that the person has trust issues because the names of these countries do not accurately represent their landscapes. | The meme is using humor to point out the misleading nature of Iceland's and Greenland's names. Iceland, despite its name, has lush green landscapes while Greenland is mostly covered in ice and snow. The text 'This is why I have trust issues' is a playful way to suggest that these contradictions can lead to distrust or confusion. The humor in this meme is derived from the unexpected contrast between the names of the countries and their actual physical characteristics. | 1.0 """ gpt4_prompt = prompt + '\n' + ' | '.join([question, gt.replace("<AND>", " <AND> ").replace("<OR>", " <OR> "), prediction, ""]) return gpt4_prompt def MMVet_auxeval(model, line): def float_cvt(s): try: return float(s) except ValueError: return None prompt = build_mmvet_gpt4_prompt(line) log = '' retry = 5 for i in range(retry): output = model.generate(prompt, temperature=i * 0.5) score = float_cvt(output) if score is None: log += f'Try {i}: output is {output}, failed to parse.\n' elif score < 0 or score > 1: log += f'Try {i}: output is {output}, invalid score: {score}.\n' else: log += 'Succeed' return dict(log=log, score=score) log += 'All 5 retries failed.\n' return dict(log=log, score=0.0) def MMVet_acc(result_file): data = load(result_file) tot = defaultdict(lambda: 0) score = defaultdict(lambda: 0) lt = len(data) cate2_list = [] for i in range(lt): item = data.iloc[i] cate = item['category'] cate2 = cate.replace(',','_') if cate2 not in cate2_list: cate2_list.append(cate2) grade = float(item['score']) cate_list = ['rec','ocr','know','gen','spat','math'] for capa in cate_list: if capa in cate: tot[capa] += 1 score[capa] += grade tot['Overall'] += 1 tot[cate2] += 1 score['Overall'] += grade score[cate2] += grade res = defaultdict(list) res2 = defaultdict(list) cate_list.append('Overall') cate2_list.append('Overall') for k in cate_list: res['Category'].append(k) res['tot'].append(tot[k]) res['acc'].append(score[k] / tot[k] * 100) for v in cate2_list: res2['Category'].append(v) res2['tot'].append(tot[v]) res2['acc'].append(score[v] / tot[v] * 100) res = pd.DataFrame(res) res2 = pd.DataFrame(res2) return res, res2 def MMVet_eval(eval_file, model='gpt-4-turbo', nproc=4, verbose=False): logger = get_logger('Evaluation') suffix = eval_file.split('.')[-1] storage = eval_file.replace(f'.{suffix}', f'_{model}.xlsx') tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl') if osp.exists(storage): logger.warning(f"GPT scoring file {storage} already exists, will reuse it in MMVet_eval. ") else: data = load(eval_file) gpt_version = model model_map = { 'gpt-4-turbo': 'gpt-4-1106-preview', 'gpt-4-0613': 'gpt-4-0613', 'chatgpt-1106': 'gpt-3.5-turbo-1106', 'chatgpt-0613': 'gpt-3.5-turbo-0613' } model_version = model_map[gpt_version] if INTERNAL: # We follow the original codebase to set max_tokens == 3 model = OpenAIWrapperInternal(model_version, verbose=verbose, max_tokens=3, retry=10) else: model = OpenAIWrapper(model_version, verbose=verbose, max_tokens=3, retry=10) lt = len(data) lines = [data.iloc[i] for i in range(lt)] tups = [(model, line) for line in lines] indices = [line['index'] for line in lines] ans = {} if osp.exists(tmp_file): ans = load(tmp_file) tups = [x for x, i in zip(tups, indices) if i not in ans] indices = [i for i in indices if i not in ans] if len(indices): new_results = track_progress_rich( MMVet_auxeval, tups, nproc=nproc, chunksize=nproc, keys=indices, save=tmp_file) ans = load(tmp_file) for k, v in zip(indices, new_results): assert k in ans assert ans[k]['log'] == v['log'] and ans[k]['score'] == v['score'] log_map, score_map = {}, {} all_inds = [line['index'] for line in lines] for k in all_inds: log_map[k] = ans[k]['log'] score_map[k] = ans[k]['score'] data['score'] = [score_map[idx] for idx in data['index']] data['log'] = [log_map[idx] for idx in data['index']] dump(data, storage) score, score_fine = MMVet_acc(storage) score_pth = storage.replace('.xlsx', '_score.csv') score_fine_pth = storage.replace('.xlsx', '_score_fine.csv') dump(score, score_pth) dump(score_fine, score_fine_pth) logger.info(f'MMVet_eval successfully finished evaluating {eval_file}, results saved in {score_pth} and {score_fine_pth}') logger.info(f'Score: ') logger.info(score) def parse_args(): parser = argparse.ArgumentParser(description="Inference LLM Answers. ") parser.add_argument("data", type=str, help="The question set for inference, in excel / tsv / json format. ") parser.add_argument( "--model", type=str, help="The LLM (GPT) used for inference. ", default="gpt-4-turbo", choices=['gpt-4-0613', 'gpt-4-turbo', 'chatgpt-1106', 'chatgpt-0613']) parser.add_argument("--nproc", type=int, default=4) parser.add_argument("--verbose", action='store_true') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() MMVet_eval(eval_file=args.data, model=args.model, nproc=args.nproc, verbose=args.verbose)
[ " | ", "\n", " <OR> ", "Compare the ground truth and prediction from AI models, to give a correctness score for the prediction. <AND> in the ground truth means it is totally right only when all elements in the ground truth are present in the prediction, and <OR> means it is totally right when any one element in the ground truth is present in the prediction. The correctness score is 0.0 (totally wrong), 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0 (totally right). Just complete the last space of the correctness score.\n\n Question | Ground truth | Prediction | Correctness\n --- | --- | --- | ---\n What is x in the equation? | -1 <AND> -5 | x = 3 | 0.0\n What is x in the equation? | -1 <AND> -5 | x = -1 | 0.5\n What is x in the equation? | -1 <AND> -5 | x = -5 | 0.5\n What is x in the equation? | -1 <AND> -5 | x = -5 or 5 | 0.5\n What is x in the equation? | -1 <AND> -5 | x = -1 or x = -5 | 1.0\n Can you explain this meme? | This meme is poking fun at the fact that the names of the countries Iceland and Greenland are misleading. Despite its name, Iceland is known for its beautiful green landscapes, while Greenland is mostly covered in ice and snow. The meme is saying that the person has trust issues because the names of these countries do not accurately represent their landscapes. | The meme talks about Iceland and Greenland. It's pointing out that despite their names, Iceland is not very icy and Greenland isn't very green. | 0.4\n Can you explain this meme? | This meme is poking fun at the fact that the names of the countries Iceland and Greenland are misleading. Despite its name, Iceland is known for its beautiful green landscapes, while Greenland is mostly covered in ice and snow. The meme is saying that the person has trust issues because the names of these countries do not accurately represent their landscapes. | The meme is using humor to point out the misleading nature of Iceland's and Greenland's names. Iceland, despite its name, has lush green landscapes while Greenland is mostly covered in ice and snow. The text 'This is why I have trust issues' is a playful way to suggest that these contradictions can lead to distrust or confusion. The humor in this meme is derived from the unexpected contrast between the names of the countries and their actual physical characteristics. | 1.0\n ", " <AND> " ]
2024-01-10
open-compass/VLMEvalKit
vlmeval~evaluate~yes_or_no.py
from vlmeval.api import OpenAIWrapper, OpenAIWrapperInternal from vlmeval.smp import * from vlmeval.utils import track_progress_rich INTERNAL = os.environ.get('INTERNAL', 0) def MME_rating(data_file): data = load(data_file) stats = defaultdict(dict) lt = len(data) for i in range(lt): item = data.iloc[i] category = item['category'] image_path = item['image_path'] score = item['score'] if image_path not in stats[category]: stats[category][image_path] = [] stats[category][image_path].append(score) def acc(key, mode='normal'): res = stats[key] values = [] for val in res.values(): if mode == 'normal': values.extend(val) elif mode == 'plus': values.append(val[0] * val[1]) return np.mean(values) * 100 scores = {} for k in stats: scores[k] = acc(k) + acc(k, 'plus') super_cates = dict( perception=['OCR', 'artwork', 'celebrity', 'color', 'count', 'existence', 'landmark', 'position', 'posters', 'scene'], reasoning=['code_reasoning', 'commonsense_reasoning', 'numerical_calculation', 'text_translation'] ) ret = {} for sc, cate_list in super_cates.items(): base = 0 for c in cate_list: base += scores[c] ret[sc] = base ret.update(scores) ret = d2df(ret) return ret def Hallusion_rating(data_file): def calc_fAcc(data): res = defaultdict(list) lt = len(data) for i in range(lt): line = data.iloc[i] res[f"{line['l2-category']}_{line['set_id']}_{line['figure_id']}"].append(line['score']) return np.mean([np.all(x) for x in res.values()]) * 100 def calc_qAcc(data): res = defaultdict(list) lt = len(data) for i in range(lt): line = data.iloc[i] res[f"{line['l2-category']}_{line['set_id']}_{line['question_id']}"].append(line['score']) return np.mean([np.all(x) for x in res.values()]) * 100 def calc_aAcc(data): return np.mean(data['score']) * 100 data = load(data_file) data['set_id'] = [x.split('_')[3] for x in data['index']] data['figure_id'] = [x.split('_')[4] for x in data['index']] data['question_id'] = [x.split('_')[5] for x in data['index']] res = dict(split=[], aAcc=[], fAcc=[], qAcc=[]) res['split'].append('Overall') res['aAcc'].append(calc_aAcc(data)) res['fAcc'].append(calc_fAcc(data)) res['qAcc'].append(calc_qAcc(data)) if 'category' in data: cates = list(set(data['category'])) for c in cates: sub = data[data['category'] == c] res['split'].append(c) res['aAcc'].append(calc_aAcc(sub)) res['fAcc'].append(calc_fAcc(sub)) res['qAcc'].append(calc_qAcc(sub)) if 'l2-category' in data: cates = list(set(data['l2-category'])) for c in cates: sub = data[data['l2-category'] == c] res['split'].append(c) res['aAcc'].append(calc_aAcc(sub)) res['fAcc'].append(calc_fAcc(sub)) res['qAcc'].append(calc_qAcc(sub)) ret = pd.DataFrame(res) return ret def default_rating(data_file): data = load(data_file) res = {} res['Overall'] = np.mean(data['score']) * 100 if 'category' in data: cates = list(set(data['category'])) cates = [c for c in cates if not pd.isna(c)] cates.sort() for c in cates: sub = data[data['category'] == c] res[c] = np.mean(sub['score']) * 100 if 'l2-category' in data: cates = list(set(data['l2-category'])) cates = [c for c in cates if not pd.isna(c)] cates.sort() for c in cates: sub = data[data['l2-category'] == c] res[c] = np.mean(sub['score']) * 100 ret = d2df(res) return ret def YOrN_match_prompt(line): tmpl = ( "You are an AI assistant who will help me to match an answer with two options of a question. " "The options are only Yes / No. " "You are provided with a question and an answer, and you need to find which option (Yes / No) is most similar to the answer. " "If the meaning of all options are significantly different from the answer, output Unknown. "\ "Your should output a single word among the following 3 choices: Yes, No, Unknown.\n" "Example 1: \n" "Question: Is the word in this image 'Hello'?\nAnswer: The word in this image is 'Hello'.\nYour output: Yes\n" "Example 2: \n" "Question: Is the word in this image 'Hello'?\nAnswer: The word in this image is not 'Hello'.\nYour output: No\n" "Example 3: \n" "Question: {}?\nAnswer: {}\nYour output: " ) return tmpl.format(line['question'], line['prediction']) def YOrN_Extraction(output): s = output.lower() if 'yes' in s and 'no' not in s: return 'Yes' if 'yes' not in s and 'no' in s: return 'No' return 'Unknown' def YOrN_auxeval(model, line): prompt = YOrN_match_prompt(line) retry = 5 for i in range(retry): output = model.generate(prompt, temperature=0.5 * i) ans = YOrN_Extraction(output) if ans != 'Unknown': return ans return 'Unknown' def YOrN_eval(eval_file, model='chatgpt-0613', nproc=4, verbose=False, dataset=None): logger = get_logger('Evaluation') data = load(eval_file) data['prediction'] = [str(x) for x in data['prediction']] storage = eval_file.replace('.xlsx', '_auxmatch.xlsx') tmp_file = eval_file.replace('.xlsx', '_tmp.pkl') if not osp.exists(storage): ans_map = {k: YOrN_Extraction(v) for k, v in zip(data['index'], data['prediction'])} if osp.exists(tmp_file): tmp = load(tmp_file) for k in tmp: if ans_map[k] == 'Unknown' and tmp[k] != 'Unknown': ans_map[k] = tmp[k] data['extracted'] = [ans_map[x] for x in data['index']] unknown = data[data['extracted'] == 'Unknown'] assert model in 'chatgpt-0613' model_name = 'gpt-3.5-turbo-0613' if INTERNAL: model = OpenAIWrapperInternal(model_name, verbose=verbose, retry=10) else: model = OpenAIWrapper(model_name, verbose=verbose, retry=10) lt = len(unknown) lines = [unknown.iloc[i] for i in range(lt)] tups = [(model, line) for line in lines] indices = list(unknown['index']) if len(tups): res = track_progress_rich(YOrN_auxeval, tups, nproc=nproc, chunksize=nproc, keys=indices, save=tmp_file) for k, v in zip(indices, res): ans_map[k] = v data['extracted'] = [ans_map[x] for x in data['index']] dump(data, storage) else: logger.warning(f"GPT matching file {storage} already exists, will reuse it in YOrN_eval. ") data = load(storage) data["score"] = (data["answer"] == data["extracted"]) dump(data, storage) if dataset is not None and listinstr(['MME'], dataset): score = MME_rating(storage) elif dataset is not None and listinstr(['Hallusion'], dataset): score = Hallusion_rating(storage) else: score = default_rating(storage) score_tgt = eval_file.replace('.xlsx', '_score.csv') dump(score, score_tgt) logger.info(f'YOrN_eval successfully finished evaluating {eval_file}, results saved in {score_tgt}') logger.info('Score: ') logger.info(score) return score def parse_args(): parser = argparse.ArgumentParser(description="Inference LLM Answers. ") parser.add_argument("data", type=str, help="The question set for inference, in excel / tsv / json format. ") parser.add_argument("--model", type=str, help="The LLM (GPT) used for inference. ", default="chatgpt-0613", choices=['chatgpt-0613']) parser.add_argument("--nproc", type=int, default=4) parser.add_argument("--dataset", type=str, default=None) parser.add_argument("--verbose", action='store_true') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() acc = YOrN_eval(eval_file=args.data, model=args.model, nproc=args.nproc, verbose=args.verbose, dataset=args.dataset)
[]
2024-01-10
open-compass/VLMEvalKit
vlmeval~evaluate~mathvista_eval.py
from vlmeval.api import OpenAIWrapper, OpenAIWrapperInternal from vlmeval.smp import * from vlmeval.utils import track_progress_rich from vlmeval.utils.matching_util import can_infer INTERNAL = os.environ.get('INTERNAL', 0) def get_gpt4_ICE(): example_1 = """ Hint: Please answer the question requiring an integer answer and provide the final value, e.g., 1, 2, 3, at the end.\n Question: Which number is missing?\n Model response: The number missing in the sequence is 14.\n Extracted answer: 14 """ example_2 = """ Hint: Please answer the question requiring a floating-point number with one decimal place and provide the final value, e.g., 1.2, 1.3, 1.4, at the end.\n Question: What is the fraction of females facing the camera?\n Model response: The fraction of females facing the camera is 0.6, which means that six out of ten females in the group are facing the camera.\n Extracted answer: 0.6 """ example_3 = """ Hint: Please answer the question requiring a floating-point number with two decimal places and provide the final value, e.g., 1.23, 1.34, 1.45, at the end.\n Question: How much money does Luca need to buy a sour apple candy and a butter-scotch candy? (Unit: $)\n Model response: Luca needs $1.45 to buy a sour apple candy and a butterscotch candy.\n Extracted answer: 1.45 """ example_4 = """ Hint: Please answer the question requiring a Python list as an answer and provide the final list, e.g., [1, 2, 3], [1.2, 1.3, 1.4], at the end.\n Question: Between which two years does the line graph saw its maximum peak?\n Model response: The line graph saw its maximum peak between 2007 and 2008.\n Extracted answer: [2007, 2008] """ example_5 = """ Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.\n Question: What fraction of the shape is blue?\n Choices: (A) 3/11 (B) 8/11 (C) 6/11 (D) 3/5\n Model response: The correct answer is (B) 8/11.\n Extracted answer: B """ return [example_1,example_2,example_3,example_4,example_5] def build_mathvista_gpt4_prompt(line): task_description = """ Please read the following example. Then extract the answer from the model response and type it at the end of the prompt.\n""" question = line['question'] prediction = str(line['prediction']) prompt = task_description examples = get_gpt4_ICE() for example in examples: prompt += example + '\n' prompt += question + '\n' prompt += 'Model respone: ' + prediction prompt += 'Extracted answer:' return prompt def list_to_dict(lst): return {chr(65 + i): val for i, val in enumerate(lst)} def post_check(line, prefetch=False): res = None ans = line['answer'] response = line['prediction'] if prefetch else line['res'] try: if line['question_type'] == 'multi_choice': ans = line['answer_option'] choices = list_to_dict(eval(line['choices'])) res = can_infer(response, choices) if prefetch: return res else: if line['answer_type'] == 'integer': res = int(response) ans = int(line['answer']) elif line['answer_type'] == 'float': res = float(response) ans = float(line['answer']) else: res = str(res) ans = str(ans) except ValueError: pass if res == ans: return res else: return False def MathVista_auxeval(model, line): prompt = build_mathvista_gpt4_prompt(line) log = '' retry = 5 if post_check(line, prefetch=True): res = post_check(line, prefetch=True) return dict(log='Prefetch succeed', res=res) for i in range(retry): prediction = line['prediction'] res = model.generate(prompt, temperature=i * 0.5) if res is None: log += f'Try {i}: output is {prediction}, failed to parse.\n' else: log += 'Succeed' return dict(log=log, res= res) log += 'All 5 retries failed.\n' return dict(log=log, res='') def MathVista_acc(result_file): data = load(result_file) tot = defaultdict(lambda: 0) fetch = defaultdict(lambda: 0) hit = defaultdict(lambda: 0) lt = len(data) skill_list = [] for i in range(lt): item = data.iloc[i] index = item['index'] cate = item['task'] tot['Overall'] += 1 try: skills = eval(item['skills']) except SyntaxError: skills = [item['skills']] for skill in skills: if skill not in skill_list: skill_list.append(skill) tot[skill] += 1 tot[cate] += 1 if item['log'] == 'Prefetch succeed': fetch['Overall'] += 1 fetch[cate] += 1 for skill in skills: fetch[skill] += 1 if post_check(item, prefetch=False): hit['Overall'] += 1 hit[cate] += 1 for skill in skills: hit[skill] += 1 res = defaultdict(list) for k in tot.keys(): res['Task&Skill'].append(k) res['tot'].append(tot[k]) res['prefetch'].append(fetch[k]) res['hit'].append(hit[k]) res['prefetch_rate'].append(fetch[k] / tot[k] * 100) res['acc'].append(hit[k] / tot[k] * 100) res = pd.DataFrame(res) return res def MathVista_eval(eval_file, model='gpt-4-turbo', nproc=4, verbose=False): logger = get_logger('Evaluation') suffix = eval_file.split('.')[-1] storage = eval_file.replace(f'.{suffix}', f'_{model}.xlsx') tmp_file = eval_file.replace(f'.{suffix}', f'_{model}.pkl') if osp.exists(storage): logger.warning(f"GPT scoring file {storage} already exists, will reuse it in MathVista_eval. ") else: data = load(eval_file) gpt_version = model model_map = { 'gpt-4-turbo': 'gpt-4-1106-preview', 'gpt-4-0613': 'gpt-4-0613', 'chatgpt-1106': 'gpt-3.5-turbo-1106', 'chatgpt-0613': 'gpt-3.5-turbo-0613' } model_version = model_map[gpt_version] if INTERNAL: # We follow the original codebase to set max_tokens == 3 model = OpenAIWrapperInternal(model_version, verbose=verbose, max_tokens=128, retry=10) else: model = OpenAIWrapper(model_version, verbose=verbose, max_tokens=128, retry=10) lt = len(data) lines = [data.iloc[i] for i in range(lt)] tups = [(model, line) for line in lines] indices = [line['index'] for line in lines] ans = {} if osp.exists(tmp_file): ans = load(tmp_file) tups = [x for x, i in zip(tups, indices) if i not in ans] indices = [i for i in indices if i not in ans] if len(indices): new_results = track_progress_rich( MathVista_auxeval, tups, nproc=nproc, chunksize=nproc, keys=indices, save=tmp_file) ans = load(tmp_file) for k, v in zip(indices, new_results): assert k in ans assert ans[k]['log'] == v['log'] and ans[k]['res'] == v['res'] log_map, res_map = {}, {} all_inds = [line['index'] for line in lines] for k in all_inds: log_map[k] = ans[k]['log'] res_map[k] = ans[k]['res'] data['res'] = [res_map[idx] for idx in data['index']] data['log'] = [log_map[idx] for idx in data['index']] dump(data, storage) score = MathVista_acc(storage) score_pth = storage.replace('.xlsx','_score.csv') dump(score,score_pth) logger.info(f'MathVista_eval successfully finished evaluating {eval_file}, results saved in {score_pth}') logger.info(f'Score: ') logger.info(score) def parse_args(): parser = argparse.ArgumentParser(description="Inference LLM Answers. ") parser.add_argument("data", type=str, help="The question set for inference, in excel / tsv / json format. ") parser.add_argument( "--model", type=str, help="The LLM (GPT) used for inference. ", default="gpt-4-turbo", choices=['gpt-4-0613', 'gpt-4-turbo', 'chatgpt-1106', 'chatgpt-0613']) parser.add_argument("--nproc", type=int, default=4) parser.add_argument("--verbose", action='store_true') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() MathVista_eval(eval_file=args.data, model=args.model, nproc=args.nproc, verbose=args.verbose)
[ "PLACEHOLDER\n", "Extracted answer:", "Model respone: PLACEHOLDER" ]
2024-01-10
open-compass/VLMEvalKit
vlmeval~evaluate~multiple_choice.py
import os.path as osp import pandas as pd from tqdm import tqdm from vlmeval.api import OpenAIWrapper, OpenAIWrapperInternal from vlmeval.utils import can_infer, track_progress_rich, TSVDataset from vlmeval.smp import * import numpy as np INTERNAL = os.environ.get('INTERNAL', 0) abbrs = { 'coarse_perception': 'CP', 'finegrained_perception (instance-level)': 'FP-S', 'finegrained_perception (cross-instance)': 'FP-C', 'logic_reasoning': 'LR', 'relation_reasoning': 'RR', 'attribute_reasoning': 'AR' } def MMMU_preproc(data): logger = get_logger('Evaluation') cnt = 0 As, Bs, Ans = list(data['A']), list(data['B']), list(data['answer']) lt = len(data) for i in range(lt): if pd.isna(As[i]): As[i] = Ans[i] Bs[i] = 'Other Answers' cnt += 1 logger.info(f'During MMMU_preproc in Evaluation, {cnt} open questions are re-formulated to multi-choice ones. ') data['A'] = As data['B'] = Bs return data def report_acc(df): # assert group in [None, 'category', 'l2-category'] res = defaultdict(list) if 'split' in df: splits = list(set(df['split'])) res['split'] = splits else: df['split'] = ['dev'] * len(df) res['split'] = ['dev'] for group in [None, 'l2-category', 'category']: if group is None: res['Overall'] = [np.mean(df[df['split'] == sp]['hit']) for sp in res['split']] elif group not in df: continue else: abilities = list(set(df[group])) abilities.sort() for ab in abilities: ab_name = abbrs[ab] if ab in abbrs else ab sub_df = df[df[group] == ab] res[ab_name] = [np.mean(sub_df[sub_df['split'] == sp]['hit']) for sp in res['split']] return pd.DataFrame(res) def extract_options(item): options = [] for c in list(string.ascii_uppercase): if c in item and not pd.isna(item[c]): options.append(item[c]) else: return options return options def build_prompt(question, options, prediction): tmpl = ( "You are an AI assistant who will help me to match an answer with several options of a single-choice question. " "You are provided with a question, several options, and an answer, and you need to find which option is most similar to the answer. " "If the meaning of all options are significantly different from the answer, output E. "\ "Your should output a single uppercase character in A, B, C, D (if they are valid options), and E. \n" "Example 1: \n" "Question: What is the main object in image?\nOptions: A. teddy bear B. rabbit C. cat D. dog\nAnswer: a cute teddy bear\nYour output: A\n" "Example 2: \n" "Question: What is the main object in image?\nOptions: A. teddy bear B. rabbit C. cat D. dog\nAnswer: Spider\nYour output: E\n" "Example 3: \n" "Question: {}?\nOptions: {}\nAnswer: {}\nYour output: " ) return tmpl.format(question, options, prediction) def build_prompt_cn(question, options, prediction): tmpl = ( "你是一个帮助我匹配答案与单选题中多个选项的 AI 助手。" "你会被提供:一个问题,多个选项,一个答案。你的任务是找到与答案意义最相近的选项。" "如果所有选项的意义都与答案显著不同,则输出 E。" "你应该输出一个单个的大写字母,例如 A, B, C, D(如果它们是有效选项),或 E。" "例 1:" "问题: 图中最主要的物体是什么?\n选项: A. 泰迪熊 B. 兔子 C. 猫 D. 狗\n答案: 一只可爱的泰迪熊\n输出: A\n" "例 2: \n" "问题: 图中最主要的物体是什么?\n选项: A. 泰迪熊 B. 兔子 C. 猫 D. 狗\n答案: 蜘蛛\n输出: E\n" "例 3: \n" "问题: {}?\n选项: {}\n答案: {}\n输出: " ) return tmpl.format(question, options, prediction) def build_choices(item): ret = {} for ch in string.ascii_uppercase: if ch in item and (not pd.isna(item[ch])): ret[ch] = item[ch] return ret def prefetch_answer(item): choices = build_choices(item) return can_infer(item['prediction'], choices) def extract_answer_from_item(model, item): logger = get_logger('Evaluation') # It will return: (pred, raw, llm_time) options = extract_options(item) option_str = build_options(options) if cn_string(item['question']): prompt = build_prompt_cn(item['question'], option_str, item['prediction']) else: prompt = build_prompt(item['question'], option_str, item['prediction']) retry = 3 choices = build_choices(item) ret = can_infer(item['prediction'], choices) if ret: return dict(opt=ret, log=item['prediction']) while retry: ans = model.generate(prompt) if 'Failed to obtain answer via API' in ans: msg = 'GPT API failed to answer. ' logger.warning(msg) retry -= 1 else: ret = can_infer(ans, choices) if ret: return dict(opt=ret, log=ans) else: logger.warning(f'GPT output includes 0 or more than 1 letter in uppercase letters: {ans}') retry -= 1 if retry == 0: num_options = sum([ch in item for ch in string.ascii_uppercase]) if num_options >= 2: chars = string.ascii_uppercase[:num_options] chars = chars + 'Z' num_options += 1 tmp = rd.randint(0, num_options - 1) return dict(opt=chars[tmp], log='Failed to predict, thus randomly generate one. ') def prefetch_sub_data(sub_data, answer_map, verbose=False): lt = len(sub_data) GT, PRED = [], [] for i in range(lt): item = sub_data.iloc[i] idx = item['index'] GT.append(answer_map[idx]) PRED.append(prefetch_answer(item)) if PRED[-1] and (GT[-1] != PRED[-1]): log = f"Failed in Prefetching Rolling {i}: Answer is {GT[-1]}, Prediction is {item['prediction']}, Pre-fetched is {PRED[-1]}. " return dict(hit=0, log=log) flag = True for g, p in zip(GT, PRED): if g != p: flag = False ret = (dict(hit=1, log="Succeed During Pre-fetching"), ) if flag else (None, ) ret = ret + (GT, PRED) if verbose else ret return ret if len(ret) > 1 else ret[0] def eval_sub_data(model, sub_data, answer_map): res, GT, PRED = prefetch_sub_data(sub_data, answer_map, verbose=True) if res is not None: return res lt = len(sub_data) log = '' for i in range(lt): if PRED[i]: log += f'Rolling {i} Matched.\n' else: res = extract_answer_from_item(model, sub_data.iloc[i]) opt, match_log = res['opt'], res['log'] PRED[i] = opt if PRED[i] != GT[i]: log += f"Failed in Rolling {i}: Answer is {GT[i]}; Prediction is {sub_data.iloc[i]['prediction']}; Pre-fetched is {PRED[i]}; Match Log is {match_log}.\n" return dict(hit=0, log=log) else: log += f"Rolling {i}: Answer is {GT[i]}, Prediction is {sub_data.iloc[i]['prediction']}, Pre-fetched is {PRED[i]}.\n" return dict(hit=1, log=log) def eval_data_groups(model, data_groups, answer_map, result, result_file, nproc=16): prefetched = [prefetch_sub_data(g, answer_map) for g in data_groups] remain = [] for dg, pf in zip(data_groups, prefetched): if pf: result[dg.iloc[0]['index'] % 1e6] = pf else: remain.append(dg) dump(result, result_file) tups = [(model, x, answer_map) for x in remain] keys = [x.iloc[0]['index'] % 1e6 for x in remain] if len(tups) == 0: return res = track_progress_rich( eval_sub_data, tups, nproc=nproc, chunksize=nproc, save=result_file, keys=keys) result = load(result_file) for k, v in zip(keys, res): if k in result: assert result[k]['hit'] == v['hit'] and result[k]['log'] == v['log'] else: result[k] = v dump(result, result_file) def multiple_choice_eval(eval_file, dataset=None, model='chatgpt-0613', nproc=4, verbose=False): logger = get_logger('Evaluation') assert dataset is not None if dataset == 'MMBench_TEST_CN': dataset = 'MMBench_CN' elif dataset == 'MMBench_TEST_EN': dataset = 'MMBench' if listinstr(['mmbench', 'ccbench'], dataset.lower()): data = load(eval_file) data['index'] = [int(x) for x in data['index']] dump(data, eval_file) rd.seed(2680) suffix = eval_file.split('.')[-1] assert model in ['chatgpt-0613', "exact_matching"] name_str = 'openai' if model == 'chatgpt-0613' else model if model == 'exact_matching': model = None else: model_name = 'gpt-3.5-turbo-0613' if INTERNAL: model = OpenAIWrapperInternal(model_name, verbose=verbose, retry=10) else: model = OpenAIWrapper(model_name, verbose=verbose, retry=10) logger.info(f'Evaluating {eval_file}') result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl') result = {} if osp.exists(result_file): result = load(result_file) data = load(eval_file) data = data.sort_values(by='index') data['prediction'] = [str(x) for x in data['prediction']] for k in data.keys(): data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k) meta = TSVDataset(dataset).data cate_map = {i: c for i, c in zip(meta['index'], meta['category'])} answer_map = {i: c for i, c in zip(meta['index'], meta['answer'])} l2_cate_map = {i: c for i, c in zip(meta['index'], meta['l2-category'])} if 'l2-category' in meta else None split_map = {i: c for i, c in zip(meta['index'], meta['split'])} if 'split' in meta else None if listinstr(['MMMU'], dataset): data = MMMU_preproc(data) answer_map = {k: (v if v in list(string.ascii_uppercase) else 'A') for k, v in answer_map.items()} data = data[data['index'].isin(answer_map)] data_main = data[data['index'] < int(1e6)] meta_idx_set = set(meta['index']) data_main = data_main[data_main['index'].isin(meta_idx_set)] lt = len(data_main) hit, tot = 0, 0 data_groups = [] for i in tqdm(range(lt)): # Dealing with the normal part item_main = data_main.iloc[i] idx = item_main['index'] if idx in result: correct = result[idx]['hit'] assert correct in [0, 1] hit += correct tot += 1 continue sub_data = data[data['index'] % int(1e6) == idx] data_groups.append(sub_data) if len(data_groups): if model is not None: eval_data_groups( model=model, data_groups=data_groups, answer_map=answer_map, nproc=nproc, result=result, result_file=result_file) else: logger.warning("Exact Matching mode, will not do GPT-based answer matching. ") keys = [x.iloc[0]['index'] % 1e6 for x in data_groups] for k in keys: result[k] = dict(hit=0, log="Failed in Prefetch, no GPT-based answer matching under `exact_matching` policy.") dump(result, result_file) tmp_pth = f'/tmp/{timestr()}.xlsx' dump(data_main, tmp_pth) data_main = load(tmp_pth) res = load(result_file) indices = data_main['index'] data_main['hit'] = [res[i]['hit'] for i in indices] data_main['log'] = [res[i]['log'] for i in indices] main_idx = data_main['index'] data_main['category'] = [cate_map[i] for i in main_idx] if l2_cate_map is not None: data_main['l2-category'] = [l2_cate_map[i] for i in main_idx] if split_map is not None: data_main['split'] = [split_map[i] for i in indices] # load split dump(data_main, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}')) data_main = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}')) acc = report_acc(data_main) score_file = eval_file.replace(f'.{suffix}', f'_acc.csv') dump(acc, score_file) logger.info(f'multiple_choice_eval successfully finished evaluating {eval_file}, results saved in {score_file}') logger.info(f'Score: ') logger.info(acc) return acc def parse_args(): parser = argparse.ArgumentParser(description="Inference LLM Answers. ") parser.add_argument("data", type=str, help="The question set for inference, in excel / tsv / json format. ") parser.add_argument("--model", type=str, help="The LLM (GPT) used for inference. ", default='chatgpt-0613', choices=['chatgpt-0613', 'exact_matching']) parser.add_argument( "--dataset", type=str, default='MMBench', help='The dataset to evaluate', choices=['MMBench', 'MMBench_CN', 'MMBench_DEV_EN', 'MMBench_DEV_CN', 'SEEDBench_IMG', 'CCBench', 'MMBench_TEST_CN', 'MMBench_TEST_EN']) parser.add_argument("--nproc", type=int, default=6) parser.add_argument("--verbose", action='store_true') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() acc = multiple_choice_eval(eval_file=args.data, model=args.model, dataset=args.dataset, nproc=args.nproc, verbose=args.verbose)
[ "prediction", "question" ]
2024-01-10
VB1-VENOM/Capstone
blooms~llms.py
import replicate import requests def llama(prompt): output = replicate.run( "meta/llama-2-7b-chat:13c3cdee13ee059ab779f0291d29054dab00a47dad8261375654de5540165fb0", input={"prompt": prompt,"max_new_tokens":1000} ) # The meta/llama-2-7b-chat model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. o = "" for item in output: ## https://replicate.com/meta/llama-2-7b-chat/versions/13c3cdee13ee059ab779f0291d29054dab00a47dad8261375654de5540165fb0/api#output-schema o+=item return o def mistral(prompt): API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.1" headers = {"Authorization": "Bearer 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"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() output = query({ "inputs": prompt,"parameters" : {"max_new_tokens": 256} }) return output[0]['generated_text'] def mistralV2(prompt): try: API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1" headers = {"Authorization": "Bearer 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"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() output = query({ "inputs": prompt,"parameters" : {"max_new_tokens": 256} }) return output[0]['generated_text'] except: return output import openai def chatgpt(prompt, max_tokens=1000, temperature=0.7): api_key = "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" # Replace with your OpenAI API key openai.api_key = api_key response = openai.Completion.create( engine="text-davinci-002", # Use the appropriate engine for ChatGPT prompt=prompt, max_tokens=max_tokens, temperature=temperature ) return response.choices[0].text def obs(prompt): API_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta" headers = {"Authorization": "Bearer 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"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() output = query({ "inputs": prompt,"parameters" : {"max_new_tokens": 256} }) return output[0]['generated_text'] # print(mistralV2("What is reinforcement Learning?")) # def openAi(prompt): #print(llama("Explain the working of photosynthesis briefly"))
[]
2024-01-10
lupantech/PromptPG
run_gpt3~run_gpt3_step.py
import os import re import json import argparse import random from base_prompt_step import * from utilities import extract_prediction import openai openai.api_key = os.getenv("OPENAI_API_KEY") # print(openai.api_key) def load_data(args): problems_test = json.load(open(os.path.join(args.data_root, f'problems_{args.test_split}.json'))) problems_train = json.load(open(os.path.join(args.data_root, f'problems_train.json'))) problems = {**problems_test, **problems_train} # test problem ids pids_test = list(problems_test.keys()) pids_test = pids_test[:args.test_number] if args.test_number > 0 else pids_test print(f"number of test problems: {len(pids_test)}\n") # pick up shot examples from the training set shot_pids = args.shot_pids train_pids = list(problems_train.keys()) if shot_pids == None: assert args.shot_number >= 0 and args.shot_number <= 32 shot_pids = random.sample(train_pids, args.shot_number) # random sample else: shot_pids = [str(pid) for pid in shot_pids] for pid in shot_pids: assert pid in train_pids # check shot_pids print("training question ids for prompting: ", shot_pids, "\n") return problems, pids_test, shot_pids def get_gpt3_output(prompt, args): response = openai.Completion.create(engine=args.engine, prompt=prompt, temperature=args.temperature, max_tokens=args.max_tokens, top_p=args.top_p, frequency_penalty=args.frequency_penalty, presence_penalty=args.presence_penalty, stop=["\n"]) output = response["choices"][0]["text"].strip() return output def normalize_answer(text, unit): # ["1,000", "123", "3/4", "56.456", "$56.4", "-3", "-10.02", "-3/2"] text = re.sub("^[\$]", "", text) text = re.sub("[\,\.\,\/]$", "", text) result = re.match("^[-+]?[\d,./]+$", text) if result is not None: # is number? text = text.replace(",", "") result = re.match("[-+]?\d+$", text) if result is not None: number = int(text) elif "/" in text: nums = text.split("/") number = round(float(nums[0]) / float(nums[1]), 3) else: number = round(float(text), 3) number = str(number) number = re.sub(r"\.[0]+$", "", number) return number else: # is text if unit: text = text.replace(unit, "").strip() return text def get_result_file(args): result_path = f"{args.output_root}/{args.model}" os.makedirs(result_path, exist_ok=True) result_file = "{}/{}_{}_{}_{}_seed_{}.json".format(result_path, args.label, args.test_split, args.prompt_format, args.shot_number, args.seed) return result_file def save_results(result_file, acc, correct, count, shot_pids, args, results): data = {} data['acc'] = acc data['correct'] = correct data['count'] = count data['shot_pids'] = shot_pids data['args'] = vars(args) data['results'] = results with open(result_file, 'w') as f: json.dump(data, f, indent=2, separators=(',', ': ')) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--data_root', type=str, default='../data/tabmwp') parser.add_argument('--output_root', type=str, default='../results') parser.add_argument('--model', type=str, default='gpt3') parser.add_argument('--option_inds', type=list, default=["A", "B", "C", "D", "E", "F"]) # user options parser.add_argument('--label', type=str, default='exp0') parser.add_argument('--test_split', type=str, default='val', choices=['dev', 'dev1k', 'test', 'test1k']) parser.add_argument('--test_number', type=int, default=10, help='GPT-3 is expensive. -1 for whole val/test set') parser.add_argument('--save_every', type=int, default=10, help='Save the result with every n examples.') parser.add_argument('--debug', action='store_true') parser.add_argument('--prompt_format', type=str, default='TQ', help='prompt format template') parser.add_argument('--shot_number', type=int, default=2, help='Number of n-shot training examples.') parser.add_argument('--shot_pids', type=int, nargs='+', default=None, help='Question indexes of shot examples') parser.add_argument('--seed', type=int, default=1, help='random seed') # GPT-3 settings parser.add_argument('--engine', type=str, default='text-davinci-002', choices=['text-davinci-002', 'ada']) parser.add_argument('--temperature', type=float, default=0.0) parser.add_argument('--max_tokens', type=int, default=512, help='The maximum number of tokens allowed for the generated answer.') parser.add_argument('--top_p', type=float, default=1.0) parser.add_argument('--frequency_penalty', type=float, default=0.0) parser.add_argument('--presence_penalty', type=float, default=0.0) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() print('====Input Arguments====') print(json.dumps(vars(args), indent=2, sort_keys=False)) random.seed(args.seed) problems, pids, shot_pids = load_data(args) # probelms, test question ids, shot example ids result_file = get_result_file(args) # load the check point if os.path.exists(result_file): print("# The result file exists! We will load the check point!!!") check_point = json.load(open(result_file)) results = check_point['results'] else: results = {} total = len(pids) check_count = len(results) # number of existing results correct = 0 # number of correct results # for pid in tqdm(pids): for i, pid in enumerate(pids): count = i + 1 # number of current results problem = problems[pid] answer = problems[pid]['answer'] options = problems[pid]['choices'] unit = problems[pid]['unit'] prompt = build_prompt(problems, shot_pids, pid, args) # generate the prompt input prompt = prompt + "\nAnswer: Let's think step by step." if pid in results: output = results[pid]["output"] steps = results[pid]["steps"] else: steps = get_gpt3_output(prompt, args) # generate the output by GPT-3 if steps.strip() != "": prompt = "\n".join([prompt, "Therefore, the answer is"]) else: prompt = "\n".join([prompt, steps, "Therefore, the answer is"]) output = get_gpt3_output(prompt, args) # generate the output by GPT-3 # the core prediction in the output prediction = extract_prediction(output, options, args.option_inds) # normalize the number in the text answer_norm = normalize_answer(answer, unit) prediction_norm = normalize_answer(prediction, unit) # save the results results[pid] = {} results[pid]["answer"] = answer results[pid]["answer_norm"] = answer_norm results[pid]["steps"] = steps results[pid]["output"] = output results[pid]["prediction"] = prediction results[pid]["prediction_norm"] = prediction_norm # correct or not if answer_norm.lower() == prediction_norm.lower(): correct += 1 results[pid]["true_false"] = True else: results[pid]["true_false"] = False acc = correct / (i + 1) * 100 if args.debug or i < 3: print("\n##################################") print("# [Steps]", steps, "\n") print("# [Prompt]", prompt, "\n") print("# [Output]", output, "\n") print("[A] labeled answer (normalized):\t", answer_norm) print("[P] predicted answer (normalized):\t", prediction_norm) print("[Acc]:\t", results[pid]["true_false"]) print("") print("[A] labeled answer:\t", answer) print("[P] predicted answer:\t", prediction) print("[P] generated output:\t", output) if count % args.save_every == 0 or count == total: if count > check_count: # have new outputs save_results(result_file, acc, correct, count, shot_pids, args, results) print(f"{count}/{total}, correct: {correct}, acc: {round(acc, 2)}%, saved to {result_file}") else: # no new outputs, just print the accuracy print(f"{count}/{total}, correct: {correct}, acc: {round(acc, 2)}%")
[ "\n", "PLACEHOLDER\nAnswer: Let's think step by step.", "Therefore, the answer is" ]
2024-01-10
lupantech/PromptPG
run_gpt3_rl~learn_policy.py
import os import sys import math import json import argparse import random import time import torch import openai import numpy as np import torch.nn.functional as F from functools import lru_cache from tools import utils from base_prompt import * from model import * from utilities import extract_prediction, normalize_answer sys.path.append("../") openai.api_key = os.getenv("OPENAI_API_KEY") def load_data(args): problems = json.load(open(os.path.join(args.data_root, f'problems_train.json'))) problems = json.load(open(os.path.join(args.data_root, f'problems_train.json'))) pids = list(problems.keys()) samples = random.sample(pids, args.train_number + args.cand_number) # random sample train_pids = samples[:args.train_number] cand_pids = samples[args.train_number:] return problems, cand_pids, train_pids def get_gpt3_output(prompt, args): return call_gpt3(args.engine, prompt, args.temperature, args.max_tokens, args.top_p, args.frequency_penalty, args.presence_penalty) @lru_cache(maxsize=10000) def call_gpt3(engine, prompt, temperature, max_tokens, top_p, frequency_penalty, presence_penalty): patience = 100 while True: try: response = openai.Completion.create(engine=engine, prompt=prompt, temperature=temperature, max_tokens=max_tokens, top_p=top_p, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty, stop=["\n"]) output = response["choices"][0]["text"].strip() break except Exception as e: patience -= 1 if not patience: print("!!! running out of patience waiting for OpenAI") else: time.sleep(0.1) return output def get_batch_reward_loss(scores, cand_pids, pid_batch, option_batch, unit_batch, label_batch, args): batch_loss = 0 batch_reward = 0 ## loop over the training examples for i in range(len(scores)): # interact with the environment to get rewards, which in our case is to feed the prompt into GPT-3 and evaluate the prediction cand_prob = scores[i, :].clone().detach() cand_prob = cand_prob.cpu().numpy() cand_prob = np.nan_to_num(cand_prob, nan=0.000001) # replace np.nan with 0 cand_prob /= cand_prob.sum() # make probabilities sum to 1 # print(f"cand_prob: {cand_prob}") # sample shot_pids from the cand_prob distribution cids = np.random.choice(range(len(cand_pids)), args.shot_number, p=cand_prob, replace=False) # reverse shot_pids so more relevant prompt will be put closer to the question cids = cids[::-1] # print(f"cids: {cids}") shot_pids = [cand_pids[cid] for cid in cids] # print(f"shot_pids: {shot_pids}") # generate the prompt input prompt = build_prompt(problems, shot_pids, pid_batch[i], args) # get the output from GPT-3 output = get_gpt3_output(prompt, args) # extract the prediction from the output prediction = extract_prediction(output, option_batch[i], args.option_inds) # normalize the number in the text prediction_norm = normalize_answer(prediction, unit_batch[i]) log_prob = 0 for cid in cids: log_prob += torch.log(scores[i, cid]) # print(f"log_prob: {log_prob}") if prediction_norm.lower() == label_batch[i].lower(): _reward = 1 else: _reward = -1 # print(f"reward: {reward}") batch_reward += _reward batch_loss -= _reward * log_prob return cids, batch_reward, batch_loss def policy_gradient_train(policy_model, problems, train_pids, cand_pids, cand_examples, args): # REINFORCE # if os.path.exists(args.ckpt_path): # print("!!! Model dir already exists. Consider load it instead of training again.") optimizer = torch.optim.Adam(policy_model.parameters(), lr=args.lr) train_samples, train_labels, units, options = [], [], [], [] for pid in train_pids: train_samples.append(create_example_from_pid( pid, problems, args, test=True)) # Set test=True to avoid answer being added to the training input. answer_norm = normalize_answer(problems[pid]['answer'], problems[pid]['unit']) train_labels.append(answer_norm) units.append(problems[pid]['unit']) options.append(problems[pid]['choices']) num_batch = math.ceil(len(train_samples) / args.batch_size) reward_history = [] loss_history = [] total_reward_history = [] # epoch based total_loss_history = [] # epoch based STOP_FLAG = False for epoch in range(args.epochs): logger.write(f"Epoch: {epoch}") total_train_reward = 0 total_train_loss = 0 # We can simply set the batch_size to len(train_data) in few-shot setting. for batch_i in range(num_batch): logger.write(f"Batch: {batch_i}") train_batch = train_samples[batch_i * args.batch_size:(batch_i + 1) * args.batch_size] label_batch = train_labels[batch_i * args.batch_size:(batch_i + 1) * args.batch_size] pid_batch = train_pids[batch_i * args.batch_size:(batch_i + 1) * args.batch_size] unit_batch = units[batch_i * args.batch_size:(batch_i + 1) * args.batch_size] option_batch = options[batch_i * args.batch_size:(batch_i + 1) * args.batch_size] # We need to encode cands again every time we update the network embedding_cands = policy_model(cand_examples) # len(cand_examples) x embedding_size embedding_ctxt = policy_model(train_batch) # len(train_batch) x embedding_size scores = torch.mm(embedding_ctxt, embedding_cands.t()) # len(train_batch) x len(cand_examples) # print(f"unnormed scores: {scores}") scores = F.softmax(scores, dim=1) # len(train_batch) x len(cand_examples) cids, reward, loss = get_batch_reward_loss(scores, cand_pids, pid_batch, option_batch, unit_batch, label_batch, args) logger.write(f"cids for sample[-1] in batch: {cids}") logger.write(f"Cand prob for sample[-1] in batch: {[round(x,5) for x in scores[-1, :].tolist()]}") logger.write(f"### reward for the batch: {reward}") logger.write(f"### loss for the batch: {loss}\n") # linear layer has Weight and bias # prev_param = list(policy_model.linear.parameters())[0].clone() # print(f"prev_param: {prev_param.data}") optimizer.zero_grad() loss.backward() optimizer.step() # for each iteration/batch total_train_reward += reward total_train_loss += loss.item() reward_history.append(reward) loss_history.append(loss.item()) if np.isnan(loss.item()): STOP_FLAG = True break # for each epoch total_reward_history.append(total_train_reward) total_loss_history.append(total_train_loss) best_reward = max(total_reward_history) best_loss = min(total_loss_history) best_reward_epoch = total_reward_history.index(best_reward) best_loss_epoch = total_loss_history.index(best_loss) logger.write("============================================") logger.write(f"### Epoch: {epoch} / {args.epochs}") logger.write(f"### Total reward: {total_train_reward}, " + f"Total loss: {round(total_train_loss,5)}, " + f"Best reward: {best_reward} at epoch {best_reward_epoch}, " + f"Best loss: {round(best_loss, 5)} at epoch {best_loss_epoch}\n") # save every epoch ckpt_file = os.path.join(args.ckpt_path, f"ckpt_{epoch}.pt") torch.save(policy_model.linear.state_dict(), ckpt_file) logger.write(f"saved the ckpt to {ckpt_file}") # save best epoch if epoch == best_reward_epoch: ckpt_file = os.path.join(args.ckpt_path, "ckpt_best_reward.pt") torch.save(policy_model.linear.state_dict(), ckpt_file) logger.write(f"saved the best reward ckpt to {ckpt_file}") if epoch == best_loss_epoch: ckpt_file = os.path.join(args.ckpt_path, "ckpt_best_loss.pt") torch.save(policy_model.linear.state_dict(), ckpt_file) logger.write(f"saved the best loss ckpt to {ckpt_file}") # save reward and loss history history = { "reward_history": reward_history, "loss_history": loss_history, "total_reward_history": total_reward_history, "total_loss_history": total_loss_history, } history_file = os.path.join(args.ckpt_path, "history.json") with open(history_file, 'w') as f: json.dump(history, f, indent=2, separators=(',', ': ')) # print cache info logger.write(call_gpt3.cache_info()) logger.write("============================================\n") if STOP_FLAG: break # save in the end ckpt_file = os.path.join(args.ckpt_path, "ckpt_final.pt") torch.save(policy_model.linear.state_dict(), ckpt_file) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--data_root', type=str, default='../data/tabmwp') parser.add_argument('--model', type=str, default='gpt3_rl') parser.add_argument('--option_inds', type=list, default=["A", "B", "C", "D", "E", "F"]) # User options parser.add_argument('--label', type=str, default='exp0') parser.add_argument('--debug', action='store_true') parser.add_argument( '--prompt_format', type=str, default='TQ-A', choices=['T-A', 'Q-A', 'Q-AS', 'Q-SA', 'TQ-A', 'TQ-AS', 'TQ-SA', 'QT-A', 'QT-AS', 'QT-SA', 'QTS-A', 'TQS-A'], help='prompt format template') parser.add_argument('--shot_number', type=int, default=2, help='Number of n-shot training examples.') parser.add_argument('--seed', type=int, default=1, help='random seed') # GPT-3 settings parser.add_argument('--engine', type=str, default='text-davinci-002', choices=['text-davinci-002', 'ada']) parser.add_argument('--temperature', type=float, default=0.0) parser.add_argument('--max_tokens', type=int, default=512, help='The maximum number of tokens allowed for the generated answer.') parser.add_argument('--top_p', type=float, default=1.0) parser.add_argument('--frequency_penalty', type=float, default=0.0) parser.add_argument('--presence_penalty', type=float, default=0.0) # Policy gradient settings parser.add_argument('--gpu', type=str, default='0') parser.add_argument('--model_config', type=str, default='bert-base-uncased', choices=['distilbert-base-uncased', 'bert-base-uncased']) parser.add_argument('--train_number', type=int, default=20, help='Number of training samples.') parser.add_argument('--cand_number', type=int, default=10, help='Number of candidate prompts.') parser.add_argument('--lr', type=float, default=0.001, help='Learning rate of policy network.') parser.add_argument('--epochs', type=int, default=20, help='Number of training epochs.') parser.add_argument('--embedding_size', type=int, default=128, help='Policy network final layer hidden state size.') parser.add_argument('--batch_size', type=int, default=20, help='Policy network training batch size. Set to train_number by default.') parser.add_argument('--ckpt_root', type=str, default='../checkpoints') args = parser.parse_args() # print and save the args args.ckpt_path = os.path.join(args.ckpt_root, args.label) utils.create_dir(args.ckpt_path) _logger = utils.Logger(args.ckpt_path + '/args.txt') print('====Input Arguments====') _logger.write(json.dumps(vars(args), indent=2, sort_keys=False)) return args if __name__ == '__main__': args = parse_args() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) # CPU random seed torch.cuda.manual_seed(args.seed) # GPU random seed torch.backends.cudnn.benchmark = True ## problems, test question ids, candidate prompt pids, RL training pids problems, cand_pids, train_pids = load_data(args) ## policy network policy_model = policy_network(model_config=args.model_config, add_linear=True, embedding_size=args.embedding_size, freeze_encoder=True) device = torch.device("cuda:" + args.gpu if torch.cuda.is_available() else "cpu") # one GPU policy_model = policy_model.to(device) ## construct candidate examples cand_examples = [] for pid in cand_pids: example = create_example_from_pid(pid, problems, args, test=True) cand_examples.append(example) ## TRAINING logger = utils.Logger(os.path.join(args.ckpt_path, 'log.txt')) policy_gradient_train(policy_model, problems, train_pids, cand_pids, cand_examples, args)
[]
2024-01-10
lupantech/PromptPG
run_gpt3~run_gpt3.py
import os import re import json import argparse import random from base_prompt import * from utilities import extract_prediction import openai openai.api_key = os.getenv("OPENAI_API_KEY") # print(openai.api_key) def load_data(args): problems_test = json.load(open(os.path.join(args.data_root, f'problems_{args.test_split}.json'))) problems_train = json.load(open(os.path.join(args.data_root, f'problems_train.json'))) problems = {**problems_test, **problems_train} # test problem ids pids_test = list(problems_test.keys()) pids_test = pids_test[:args.test_number] if args.test_number > 0 else pids_test print(f"number of test problems: {len(pids_test)}\n") # pick up shot examples from the training set shot_pids = args.shot_pids train_pids = list(problems_train.keys()) if shot_pids == None: assert args.shot_number >= 0 and args.shot_number <= 32 shot_pids = random.sample(train_pids, args.shot_number) # random sample else: shot_pids = [str(pid) for pid in shot_pids] for pid in shot_pids: assert pid in train_pids # check shot_pids print("training question ids for prompting: ", shot_pids, "\n") return problems, pids_test, shot_pids def get_gpt3_output(prompt, args): response = openai.Completion.create(engine=args.engine, prompt=prompt, temperature=args.temperature, max_tokens=args.max_tokens, top_p=args.top_p, frequency_penalty=args.frequency_penalty, presence_penalty=args.presence_penalty, stop=["\n"]) output = response["choices"][0]["text"].strip() return output def normalize_answer(text, unit): # ["1,000", "123", "3/4", "56.456", "$56.4", "-3", "-10.02", "-3/2"] text = re.sub("^[\$]", "", text) text = re.sub("[\,\.\,\/]$", "", text) result = re.match("^[-+]?[\d,./]+$", text) if result is not None: # is number? text = text.replace(",", "") result = re.match("[-+]?\d+$", text) if result is not None: number = int(text) elif "/" in text: nums = text.split("/") number = round(float(nums[0]) / float(nums[1]), 3) else: number = round(float(text), 3) number = str(number) number = re.sub(r"\.[0]+$", "", number) return number else: # is text if unit: text = text.replace(unit, "").strip() return text def get_result_file(args): result_path = f"{args.output_root}/{args.model}" os.makedirs(result_path, exist_ok=True) result_file = "{}/{}_{}_{}_{}_seed_{}.json".format(result_path, args.label, args.test_split, args.prompt_format, args.shot_number, args.seed) return result_file def save_results(result_file, acc, correct, count, shot_pids, args, results): data = {} data['acc'] = acc data['correct'] = correct data['count'] = count data['shot_pids'] = shot_pids data['args'] = vars(args) data['results'] = results with open(result_file, 'w') as f: json.dump(data, f, indent=2, separators=(',', ': ')) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--data_root', type=str, default='../data/tabmwp') parser.add_argument('--output_root', type=str, default='../results') parser.add_argument('--model', type=str, default='gpt3') parser.add_argument('--option_inds', type=list, default=["A", "B", "C", "D", "E", "F"]) # user options parser.add_argument('--label', type=str, default='exp0') parser.add_argument('--test_split', type=str, default='val', choices=['dev', 'dev1k', 'test', 'test1k']) parser.add_argument('--test_number', type=int, default=10, help='GPT-3 is expensive. -1 for whole val/test set') parser.add_argument('--save_every', type=int, default=10, help='Save the result with every n examples.') parser.add_argument('--debug', action='store_true') parser.add_argument( '--prompt_format', type=str, default='TQ-A', choices=['T-A', 'Q-A', 'Q-AS', 'Q-SA', 'TQ-A', 'TQ-AS', 'TQ-SA', 'QT-A', 'QT-AS', 'QT-SA', 'QTS-A', 'TQS-A'], help='prompt format template') parser.add_argument('--shot_number', type=int, default=2, help='Number of n-shot training examples.') parser.add_argument('--shot_pids', type=int, nargs='+', default=None, help='Question indexes of shot examples') parser.add_argument('--seed', type=int, default=1, help='random seed') # GPT-3 settings parser.add_argument('--engine', type=str, default='text-davinci-002', choices=['text-davinci-002', 'ada']) parser.add_argument('--temperature', type=float, default=0.0) parser.add_argument('--max_tokens', type=int, default=512, help='The maximum number of tokens allowed for the generated answer.') parser.add_argument('--top_p', type=float, default=1.0) parser.add_argument('--frequency_penalty', type=float, default=0.0) parser.add_argument('--presence_penalty', type=float, default=0.0) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() print('====Input Arguments====') print(json.dumps(vars(args), indent=2, sort_keys=False)) random.seed(args.seed) problems, pids, shot_pids = load_data(args) # probelms, test question ids, shot example ids result_file = get_result_file(args) # load the check point if os.path.exists(result_file): print("# The result file exists! We will load the check point!!!") check_point = json.load(open(result_file)) results = check_point['results'] else: results = {} total = len(pids) check_count = len(results) # number of existing results correct = 0 # number of correct results # for pid in tqdm(pids): for i, pid in enumerate(pids): count = i + 1 # number of current results problem = problems[pid] answer = problems[pid]['answer'] options = problems[pid]['choices'] unit = problems[pid]['unit'] """ problems: the whole dataset shot_pids: sampled problem ids in the training set pid: test problme id one prompt = the input of GPT-3 = training example x N + test example w/o answer x 1 Random sampling: ramdomly sample the examples in the training set Dynamic sampling (RL): given the test problem and all training sets, predict/sample the problem ids """ # shot_pids = RL(train_problems, test_pid, test_problem) # shot_pids = RL(problems, pid) prompt = build_prompt(problems, shot_pids, pid, args) # generate the prompt input if pid in results: output = results[pid]["output"] else: output = get_gpt3_output(prompt, args) # generate the output by GPT-3 # the core prediction in the output prediction = extract_prediction(output, options, args.option_inds) # normalize the number in the text answer_norm = normalize_answer(answer, unit) prediction_norm = normalize_answer(prediction, unit) # save the results results[pid] = {} results[pid]["answer"] = answer results[pid]["answer_norm"] = answer_norm results[pid]["output"] = output results[pid]["prediction"] = prediction results[pid]["prediction_norm"] = prediction_norm # correct or not if answer_norm.lower() == prediction_norm.lower(): correct += 1 results[pid]["true_false"] = True else: results[pid]["true_false"] = False acc = correct / (i + 1) * 100 if args.debug or i < 10: print("\n##################################") print(prompt, "\n") print("[A] labeled answer (normalized):\t", answer_norm) print("[P] predicted answer (normalized):\t", prediction_norm) print("[Acc]:\t", results[pid]["true_false"]) print("") print("[A] labeled answer:\t", answer) print("[P] predicted answer:\t", prediction) print("[P] generated output:\t", output) if count % args.save_every == 0 or count == total: if count >= check_count: # have new outputs print(f"{count}/{total}, correct: {correct}, acc: {round(acc, 2)}%, saved to {result_file}") save_results(result_file, acc, correct, count, shot_pids, args, results) else: # no new outputs, just print the accuracy print(f"{count}/{total}, correct: {correct}, acc: {round(acc, 2)}%")
[]
2024-01-10
lupantech/PromptPG
run_gpt3_rl~run_gpt3.py
import os import json import argparse import random import time from base_prompt import * from model import * from utilities import extract_prediction, normalize_answer import numpy as np import torch import torch.nn.functional as F import openai openai.api_key = os.getenv("OPENAI_API_KEY") def load_data(args): problems_test = json.load(open(os.path.join(args.data_root, f'problems_{args.test_split}.json'))) problems_train = json.load(open(os.path.join(args.data_root, f'problems_train.json'))) problems = {**problems_test, **problems_train} # test problem ids test_pids = list(problems_test.keys()) test_pids = test_pids[:args.test_number] if args.test_number > 0 else test_pids print(f"number of test problems: {len(test_pids)}\n") # pick up shot/in-context example candidates from the training set train_pids = list(problems_train.keys()) cand_pids = random.sample(train_pids, args.cand_number) # random sample return problems, test_pids, cand_pids def get_gpt3_output(prompt, args): patience = 100 while True: try: response = openai.Completion.create(engine=args.engine, prompt=prompt, temperature=args.temperature, max_tokens=args.max_tokens, top_p=args.top_p, frequency_penalty=args.frequency_penalty, presence_penalty=args.presence_penalty, stop=["\n"]) output = response["choices"][0]["text"].strip() break except Exception as e: patience -= 1 if not patience: print("!!! Running out of patience waiting for OpenAI") else: print(e) time.sleep(0.1) return output def get_result_file(args): result_path = f"{args.output_root}/{args.model}" os.makedirs(result_path, exist_ok=True) result_file = "{}/{}_{}_{}_{}_seed_{}.json".format(result_path, args.label, args.test_split, args.prompt_format, args.shot_number, args.seed) return result_file def save_results(result_file, acc, correct, count, cand_pids, args, results): data = {} data['acc'] = acc data['correct'] = correct data['count'] = count data['cand_pids'] = cand_pids data['args'] = vars(args) data['results'] = results with open(result_file, 'w') as f: json.dump(data, f, indent=2, separators=(',', ': ')) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--data_root', type=str, default='../data/tabmwp') parser.add_argument('--output_root', type=str, default='../results') parser.add_argument('--model', type=str, default='gpt3_rl') parser.add_argument('--option_inds', type=list, default=["A", "B", "C", "D", "E", "F"]) # user options parser.add_argument('--label', type=str, default='exp0') parser.add_argument('--test_split', type=str, default='test', choices=['dev', 'dev1k', 'test', 'test1k']) parser.add_argument('--test_number', type=int, default=100, help='GPT-3 is expensive. -1 for the whole test set') parser.add_argument('--save_every', type=int, default=10, help='Save the result with every n examples.') parser.add_argument('--debug', action='store_true') parser.add_argument( '--prompt_format', type=str, default='TQ-A', choices=['T-A', 'Q-A', 'Q-AS', 'Q-SA', 'TQ-A', 'TQ-AS', 'TQ-SA', 'QT-A', 'QT-AS', 'QT-SA', 'QTS-A', 'TQS-A'], help='prompt format template') parser.add_argument('--shot_number', type=int, default=2, help='Number of n-shot training examples.') parser.add_argument('--seed', type=int, default=1, help='random seed') # GPT-3 settings parser.add_argument('--engine', type=str, default='text-davinci-002', choices=['text-davinci-002', 'ada']) parser.add_argument('--temperature', type=float, default=0.0) parser.add_argument('--max_tokens', type=int, default=512, help='The maximum number of tokens allowed for the generated answer.') parser.add_argument('--top_p', type=float, default=1.0) parser.add_argument('--frequency_penalty', type=float, default=0.0) parser.add_argument('--presence_penalty', type=float, default=0.0) # Policy Model settings parser.add_argument('--gpu', type=str, default='0') parser.add_argument('--model_config', type=str, default='bert-base-uncased', choices=['distilbert-base-uncased', 'bert-base-uncased']) parser.add_argument('--cand_number', type=int, default=20, help='Number of candidate prompts.') parser.add_argument('--embedding_size', type=int, default=128, help='Policy network final layer hidden state size.') parser.add_argument('--ckpt_root', type=str, default='../checkpoints') parser.add_argument('--ckpt', type=str, default=None) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() print('====Input Arguments====') print(json.dumps(vars(args), indent=2, sort_keys=False)) # https://pytorch.org/docs/stable/notes/randomness.html random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) # CPU random seed torch.cuda.manual_seed(args.seed) # GPU random seed torch.backends.cudnn.benchmark = True # problems, test question ids, candidate prompt pids, RL training pids problems, pids, cand_pids = load_data(args) result_file = get_result_file(args) # load the check point if os.path.exists(result_file): print("# The result file exists! We will load the learned check point!!!") check_point = json.load(open(result_file)) results = check_point['results'] else: results = {} total = len(pids) check_count = len(results) # number of existing results correct = 0 # number of correct results # policy network policy_model = policy_network(model_config=args.model_config, add_linear=True, embedding_size=args.embedding_size, freeze_encoder=True) device = torch.device("cuda:" + args.gpu if torch.cuda.is_available() else "cpu") # one GPU policy_model = policy_model.to(device) # print("candidate prompts: ") # print("===========") cand_examples = [] for pid in cand_pids: example = create_example_from_pid(pid, problems, args, test=True) # CHECK !!! # print(example) # print("===========") cand_examples.append(example) # ======================================================= INFERENCE =============================================== if args.ckpt: ckpt_path = os.path.join(args.ckpt_root, args.ckpt) if os.path.exists(ckpt_path): policy_model.linear.load_state_dict(torch.load(ckpt_path)) else: print(f"The ckpt path for [{ckpt_path}] does not exist!") # CHECK exit() else: print(f"!!! Load the pre-traind model instead!") # CHECK # exit() policy_model.eval() with torch.no_grad(): # Calculate the embeddings for candidate examples only one time! cand_embedding = policy_model(cand_examples) # print("cand_embedding:", cand_embedding.shape) # [cand_num x emb_size] for i, pid in enumerate(pids): count = i + 1 # number of current results problem = problems[pid] answer = problems[pid]['answer'] options = problems[pid]['choices'] unit = problems[pid]['unit'] example = create_example_from_pid(pid, problems, args, test=True) ctxt_embedding = policy_model([example]) # print("ctxt_embedding:", ctxt_embedding.shape) # [1 x emb_size] scores = F.softmax(torch.mm(ctxt_embedding, cand_embedding.t()), dim=1)[0] # [cand_num] # print(scores.shape) scores = scores.cpu().detach().numpy().tolist() cand_ids = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:args.shot_number] shot_pids = [cand_pids[cid] for cid in cand_ids[::-1]] prompt = build_prompt(problems, shot_pids, pid, args) # generate the prompt input if pid in results: output = results[pid]["output"] else: output = get_gpt3_output(prompt, args) # generate the output by GPT-3 # the core prediction in the output prediction = extract_prediction(output, options, args.option_inds) # normalize the number in the text answer_norm = normalize_answer(answer, unit) prediction_norm = normalize_answer(prediction, unit) # save the results results[pid] = {} results[pid]["shot_pids"] = shot_pids results[pid]["prompt"] = prompt results[pid]["answer"] = answer results[pid]["answer_norm"] = answer_norm results[pid]["output"] = output results[pid]["prediction"] = prediction results[pid]["prediction_norm"] = prediction_norm # correct or not if answer_norm.lower() == prediction_norm.lower(): correct += 1 results[pid]["true_false"] = True else: results[pid]["true_false"] = False acc = correct / (i + 1) * 100 if args.debug or i < 10: print("\n##################################") print(prompt, "\n") print("[A] labeled answer (normalized):\t", answer_norm) print("[P] predicted answer (normalized):\t", prediction_norm) print("[Acc]:\t", results[pid]["true_false"]) print("") print("[A] labeled answer:\t", answer) print("[P] predicted answer:\t", prediction) print("[P] generated output:\t", output) if count % args.save_every == 0 or count == total: if count >= check_count: # have new outputs print(f"{count}/{total}, correct: {correct}, acc: {round(acc, 2)}%, saved to {result_file}") save_results(result_file, acc, correct, count, cand_pids, args, results) else: # no new outputs, just print the accuracy print(f"{count}/{total}, correct: {correct}, acc: {round(acc, 2)}%")
[]
2024-01-10
sycbarry/consultingutils
consultingutils~llmtemplates~llmtemplates.py
""" Docs: 1. this library contains llm templates. 2. these templates are used to interface with language models. 3. each template has its own use case depending on what the user wants to do. """ from langchain import PromptTemplate from langchain import OpenAI from langchain.chains import LLMChain import sys """ our base template type """ class LLMTemplate(object): def __init__(self, prompt=None, *args, **kwargs): super().__init__() self.prompt = prompt self.kwargs = kwargs return self @property def __gettemplateprompt__(self): return self.template.format() """ builds the templates prompt template. """ def __buildtemplate__(self): if self.prompt == None: return None self.template = PromptTemplate( input_variables=[*self.args], template=self.prompt ) return self """ builds the templates chain. """ def __buildchain__(self): if self.template == None: raise NotImplementedError("no prompt template generated") llm = OpenAI(model_name="gpt-3.5-turbo", temperature=0.9) self.chain = LLMChain(llm=llm, prompt=self.template) return self """ Passes in a variety of inputs to the template. inputs must maintain the integrity of the prompt parameters. def __invoke__(self, sql="select * from user", database="db2"): """ def __invoke__(self, *args): if args == None or len(args) <= 0: raise BaseException("require something to input.") return self.chain.run([*args]) """ cleaning templates. these templates are good at prompting an llm to clean things up - organize.. """ class CleaningTemplate(LLMTemplate): def __init__(self): super().__init__() """ DB2 To Oracle SQL Conversion Template -- converting a db2 query to an oracle sql query. """ class OracleToDB2SQL(LLMTemplate): def __init__(self, sql=None, *args, **kwargs): super().__init__(*args, **kwargs) self.args = ["raw_sql"] self.prompt = """ Here is an Oracle SQL query that I want you to convert to a DB2 Query: {raw_sql}. Follow these rules: 1. For every table mentioned in the SQL statement, check if a qualifier is present. If not, add the qualifier before the table name. The qualifier will be separated from the table name by a dot (.). 2. Check if an alias is already assigned to each table. If not, assign an alias that is the same as the table name. The alias will be assigned using the 'AS' keyword (optional in many SQL dialects) after the table name. Example transformation using the rule: Original SQL: FROM workorder Transformed SQL: FROM maximo.workorder AS workorder Where: • 'maximo' is the qualifier to be added. • 'workorder' is the table name. • 'AS' is the keyword used for assigning alias (optional in many SQL dialects). • The second 'workorder' is the alias, which is the same as the table name in this case. Note: The rule applies to all table names in the SQL statement, including those in JOIN clauses. Only return the SQL query as a single response. """ def invoke(self, input): super().__buildtemplate__() super().__buildchain__() return super().__invoke__(input) """ String To Oracle SQL Conversion Template -- cleaning up a string to an oracle query. """ class ParseStringToOracleSQL(LLMTemplate): def __init__(self, sql=None, *args, **kwargs): super().__init__(*args, **kwargs) self.args = ["raw_sql"] self.prompt = """ Here is a string. It represents an Oracle SQL Query: {raw_sql}. I want you to: 1. extract and concatenate the SQL from the string of the sqlText variable up to the point that the sqlText variable ends with a semicolon. 2. replace params["where"] with 1=1 3. Ensure that the syntax of this query is appropriate for an Oracle databases. 4. Remove the semicolon from the end of the statement. Return only the new SQL statement. Do not include anything other than SQL in your response. """ def invoke(self, input): super().__buildtemplate__() super().__buildchain__() return super().__invoke__(input) """ White label templates. the user can pass in whatever prompt he/she wants with args. """ class WhiteLabelTemplate(LLMTemplate): def __init__(self, prompt=None, *args, **kwargs): super().__init__() self.prompt = prompt if type(args.__class__()) is not type([].__class__()): raise Exception("Invalid args: ['1', '2'] needed") self.args = args self.kwargs = kwargs """ Maximo Automation Script template - script generation """ class MaximoAutomationScriptTemplateScript(LLMTemplate): def __init__(self, input=None, *args, **kwargs): super().__init__(*args, **kwargs) self.args = ["requirement"] self.input = input self.prompt = """ Here is an IBM Maximo EAM requirement. The requirement is as follows: {requirement}. The user intends to write a Maximo Automation Script in the Jython programming language. I want you to: 1. Convert the requirement in Jython. 2. The Maximo system does not include access to the os or system libraries. Try and use the native mbo and jython libraries in your output. Return only the code. Do not include anything other than the code in your response. """ def invoke(self, input): super().__buildtemplate__() super().__buildchain__() return super().__invoke__(input) """ Maximo Automation Script template - script for inboud integration """ class MaximoAutomationScriptTemplateScript_IntegrationInbound(LLMTemplate): def __init__(self, input=None, *args, **kwargs): super().__init__(*args, **kwargs) self.args = [ "requirement" ] self.input = input self.prompt = """ Here is an IBM Maximo EAM requirement. The requirement is as follows: {requirement}. The user intends to write a Maximo Automation Script in the Jython programming language. This script is an inbound integration. Meaning, that the script will activate at some point in the message queue when the user is sending data from an external system into Maximo. I want you to: 1. Convert the requirement in Jython. 2. The Maximo system does not include access to the os or system libraries. Try and use the native mbo and jython libraries in your output. 3. The script has access to certain implicit variables, meaning that when the script activates, it can access the inbound record by using the irData and erData respectively. Return only the code. Do not include anything other than the code in your response. """ def invoke(self, input): super().__buildtemplate__() super().__buildchain__() return super().__invoke__(input) """ Maximo Automation Script template - description generation ** args = takes in the original requirement as input. """ class MaximoAutomationScriptTemplateDescription(LLMTemplate): def __init__(self, input=None, *args, **kwargs): super().__init__(*args, **kwargs) self.args = ["requirement"] self.input = input self.prompt = """ Here is an IBM Maximo Automation requirement. The requirement is as follows: {requirement}. I just asked you to write the script for it, however. I want you to: 1. Convert this requirement into a small, 50 word long description. 2. The description must simplify the requirement that I just passed to you. Return only the description. Nothing else. """ """ input must be the original requirement """ def invoke(self, input): super().__buildtemplate__() super().__buildchain__() return super().__invoke__(input) """ Maximo Automation Script template - automation script name generation ** args = takes in the original requirement as input. """ class MaximoAutomationScriptTemplateName(LLMTemplate): def __init__(self, input=None, *args, **kwargs): super().__init__(*args, **kwargs) self.args = ["requirement"] self.input = input self.prompt = """ Here is an IBM Maximo Automation requirement. The requirement is as follows: {requirement}. I just asked you to write the script for it, however. I want you to: 1. Give this requirement a simple name. 2. The name must be in all upper case characters and consist of underscore _ values in between each word. 2. The name cannot be longer than 20 characters long. Return only the name. Nothing else. """ """ input must be the original requirement """ def invoke(self, input): super().__buildtemplate__() super().__buildchain__() return super().__invoke__(input) """ 1. For every table mentioned in the SQL statement, check if a qualifier is present. If not, add the qualifier before the table name. The qualifier will be separated from the table name by a dot (.). 2. Check if an alias is already assigned to each table. If not, assign an alias that is the same as the table name. The alias will be assigned using the 'AS' keyword (optional in many SQL dialects) after the table name. Example transformation using the rule: Original SQL: FROM workorder Transformed SQL: FROM maximo.workorder AS workorder Where: • 'maximo' is the qualifier to be added. • 'workorder' is the table name. • 'AS' is the keyword used for assigning alias (optional in many SQL dialects). • The second 'workorder' is the alias, which is the same as the table name in this case. Note: The rule applies to all table names in the SQL statement, including those in JOIN clauses. """
[]
2024-01-10
Silver7Tech/python-chat-gpt
src~revChatGPT~Proxied.py
import json import logging import uuid from os import environ from OpenAIAuth.OpenAIAuth import OpenAIAuth import tls_client # Disable all logging logging.basicConfig(level=logging.ERROR) BASE_URL = environ.get("CHATGPT_BASE_URL") or "http://127.0.0.1:5000/" class Chatbot: def __init__( self, config, conversation_id=None, parent_id=None, ) -> None: self.config = config self.session = tls_client.Session( client_identifier="chrome_108", ) if "proxy" in config: if type(config["proxy"]) != str: raise Exception("Proxy must be a string!") proxies = { "http": config["proxy"], "https": config["proxy"], } self.session.proxies.update(proxies) if "verbose" in config: if type(config["verbose"]) != bool: raise Exception("Verbose must be a boolean!") self.verbose = config["verbose"] else: self.verbose = False self.conversation_id = conversation_id self.parent_id = parent_id self.conversation_mapping = {} self.conversation_id_prev_queue = [] self.parent_id_prev_queue = [] if "email" not in config: raise Exception("Email not found in config!") if "password" not in config: raise Exception("Password not found in config!") self.__login() def __refresh_headers(self, access_token): self.session.headers.clear() self.session.headers.update( { "Accept": "text/event-stream", "Authorization": f"Bearer {access_token}", "Content-Type": "application/json", "X-Openai-Assistant-App-Id": "", "Connection": "close", "Accept-Language": "en-US,en;q=0.9", "Referer": "https://chat.openai.com/chat", }, ) def __login(self): auth = OpenAIAuth(email_address=self.config.get("email"), password=self.config.get("password"), proxy=self.config.get("proxy")) auth.begin() access_token = auth.get_access_token() self.__refresh_headers(access_token) def ask( self, prompt, conversation_id=None, parent_id=None, gen_title=False, ): """ Ask a question to the chatbot :param prompt: String :param conversation_id: UUID :param parent_id: UUID :param gen_title: Boolean """ self.__map_conversations() if conversation_id is None: conversation_id = self.conversation_id if parent_id is None: parent_id = ( self.parent_id if conversation_id == self.conversation_id else self.conversation_mapping[conversation_id] ) data = { "action": "next", "messages": [ { "id": str(uuid.uuid4()), "role": "user", "content": {"content_type": "text", "parts": [prompt]}, }, ], "conversation_id": conversation_id, "parent_message_id": parent_id or str(uuid.uuid4()), "model": "text-davinci-002-render", } new_conv = data["conversation_id"] is None self.conversation_id_prev_queue.append( data["conversation_id"], ) # for rollback self.parent_id_prev_queue.append(data["parent_message_id"]) response = self.session.post( url=BASE_URL + "backend-api/conversation", data=json.dumps(data), timeout_seconds=180, ) if response.status_code != 200: print(response.text) raise Exception( f"Wrong response code: {response.status_code}! Refreshing session...", ) else: try: response = response.text.splitlines()[-4] response = response[6:] except Exception as exc: print("Incorrect response from OpenAI API") raise Exception("Incorrect response from OpenAI API") from exc # Check if it is JSON if response.startswith("{"): response = json.loads(response) self.parent_id = response["message"]["id"] self.conversation_id = response["conversation_id"] message = response["message"]["content"]["parts"][0] res = { "message": message, "conversation_id": self.conversation_id, "parent_id": self.parent_id, } if gen_title and new_conv: try: title = self.__gen_title( self.conversation_id, self.parent_id, )["title"] except Exception as exc: split = prompt.split(" ") title = " ".join(split[:3]) + ("..." if len(split) > 3 else "") res["title"] = title return res else: return None def __check_response(self, response): if response.status_code != 200: print(response.text) raise Exception("Response code error: ", response.status_code) def get_conversations(self, offset=0, limit=20): """ Get conversations :param offset: Integer :param limit: Integer """ url = BASE_URL + f"backend-api/conversations?offset={offset}&limit={limit}" response = self.session.get(url) self.__check_response(response) data = json.loads(response.text) return data["items"] def get_msg_history(self, id): """ Get message history :param id: UUID of conversation """ url = BASE_URL + f"backend-api/conversation/{id}" response = self.session.get(url) self.__check_response(response) data = json.loads(response.text) return data def __gen_title(self, id, message_id): """ Generate title for conversation """ url = BASE_URL + f"backend-api/conversation/gen_title/{id}" response = self.session.post( url, data=json.dumps( {"message_id": message_id, "model": "text-davinci-002-render"}, ), ) self.__check_response(response) data = json.loads(response.text) return data def change_title(self, id, title): """ Change title of conversation :param id: UUID of conversation :param title: String """ url = BASE_URL + f"backend-api/conversation/{id}" response = self.session.patch(url, data=f'{{"title": "{title}"}}') self.__check_response(response) def delete_conversation(self, id): """ Delete conversation :param id: UUID of conversation """ url = BASE_URL + f"backend-api/conversation/{id}" response = self.session.patch(url, data='{"is_visible": false}') self.__check_response(response) def clear_conversations(self): """ Delete all conversations """ url = BASE_URL + "backend-api/conversations" response = self.session.patch(url, data='{"is_visible": false}') self.__check_response(response) def __map_conversations(self): conversations = self.get_conversations() histories = [self.get_msg_history(x["id"]) for x in conversations] for x, y in zip(conversations, histories): self.conversation_mapping[x["id"]] = y["current_node"] def reset_chat(self) -> None: """ Reset the conversation ID and parent ID. :return: None """ self.conversation_id = None self.parent_id = str(uuid.uuid4()) def rollback_conversation(self, num=1) -> None: """ Rollback the conversation. :param num: The number of messages to rollback :return: None """ for i in range(num): self.conversation_id = self.conversation_id_prev_queue.pop() self.parent_id = self.parent_id_prev_queue.pop() def get_input(prompt): # Display the prompt print(prompt, end="") # Initialize an empty list to store the input lines lines = [] # Read lines of input until the user enters an empty line while True: line = input() if line == "": break lines.append(line) # Join the lines, separated by newlines, and store the result user_input = "\n".join(lines) # Return the input return user_input from os import getenv from os.path import exists def configure(): config_files = ["config.json"] xdg_config_home = getenv("XDG_CONFIG_HOME") if xdg_config_home: config_files.append(f"{xdg_config_home}/revChatGPT/config.json") user_home = getenv("HOME") if user_home: config_files.append(f"{user_home}/.config/revChatGPT/config.json") config_file = next((f for f in config_files if exists(f)), None) if config_file: with open(config_file, encoding="utf-8") as f: config = json.load(f) else: print("No config file found.") raise Exception("No config file found.") return config def chatGPT_main(config): print("Logging in...") chatbot = Chatbot(config) while True: prompt = get_input("\nYou:\n") if prompt.startswith("!"): if prompt == "!help": print( """ !help - Show this message !reset - Forget the current conversation !refresh - Refresh the session authentication !config - Show the current configuration !rollback x - Rollback the conversation (x being the number of messages to rollback) !exit - Exit this program """, ) continue elif prompt == "!reset": chatbot.reset_chat() print("Chat session successfully reset.") continue elif prompt == "!refresh": chatbot.__refresh_session() print("Session successfully refreshed.\n") continue elif prompt == "!config": print(json.dumps(chatbot.config, indent=4)) continue elif prompt.startswith("!rollback"): # Default to 1 rollback if no number is specified try: rollback = int(prompt.split(" ")[1]) except IndexError: rollback = 1 chatbot.rollback_conversation(rollback) print(f"Rolled back {rollback} messages.") continue elif prompt.startswith("!setconversation"): try: chatbot.config["conversation"] = prompt.split(" ")[1] print("Conversation has been changed") except IndexError: print("Please include conversation UUID in command") continue elif prompt == "!exit": break try: print("Chatbot: ") message = chatbot.ask( prompt, conversation_id=chatbot.config.get("conversation"), parent_id=chatbot.config.get("parent_id"), ) print(message["message"]) except Exception as exc: print("Something went wrong!") print(exc) continue def main(): print( """ ChatGPT - A command-line interface to OpenAI's ChatGPT (https://chat.openai.com/chat) Repo: github.com/acheong08/ChatGPT """, ) print("Type '!help' to show a full list of commands") print("Press enter twice to submit your question.\n") chatGPT_main(configure()) if __name__ == "__main__": main()
[ "text", "\nYou:\n", "content_type" ]
2024-01-10
Silver7Tech/python-chat-gpt
src~revChatGPT~Unofficial.py
import json import logging import re import uuid from time import sleep import tls_client import undetected_chromedriver as uc from requests.exceptions import HTTPError from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait # Disable all logging logging.basicConfig(level=logging.ERROR) BASE_URL = "https://chat.openai.com/" class Chrome(uc.Chrome): def __del__(self): self.quit() class Chatbot: def __init__( self, config, conversation_id=None, parent_id=None, no_refresh=False, ) -> None: self.config = config self.session = tls_client.Session( client_identifier="chrome_108", ) if "proxy" in config: if type(config["proxy"]) != str: raise Exception("Proxy must be a string!") proxies = { "http": config["proxy"], "https": config["proxy"], } self.session.proxies.update(proxies) if "verbose" in config: if type(config["verbose"]) != bool: raise Exception("Verbose must be a boolean!") self.verbose = config["verbose"] else: self.verbose = False self.conversation_id = conversation_id self.parent_id = parent_id self.conversation_mapping = {} self.conversation_id_prev_queue = [] self.parent_id_prev_queue = [] self.isMicrosoftLogin = False # stdout colors self.GREEN = "\033[92m" self.WARNING = "\033[93m" self.ENDCOLOR = "\033[0m" if "email" in config and "password" in config: if type(config["email"]) != str: raise Exception("Email must be a string!") if type(config["password"]) != str: raise Exception("Password must be a string!") self.email = config["email"] self.password = config["password"] if "isMicrosoftLogin" in config and config["isMicrosoftLogin"] == True: self.isMicrosoftLogin = True self.__microsoft_login() else: self.__email_login() elif "session_token" in config: if no_refresh: self.__get_cf_cookies() return if type(config["session_token"]) != str: raise Exception("Session token must be a string!") self.session_token = config["session_token"] self.session.cookies.set( "__Secure-next-auth.session-token", config["session_token"], ) self.__get_cf_cookies() else: raise Exception("Invalid config!") self.__retry_refresh() def __retry_refresh(self): retries = 5 refresh = True while refresh: try: self.__refresh_session() refresh = False except Exception as exc: if retries == 0: raise exc retries -= 1 def ask( self, prompt, conversation_id=None, parent_id=None, gen_title=False, session_token=None, ): """ Ask a question to the chatbot :param prompt: String :param conversation_id: UUID :param parent_id: UUID :param gen_title: Boolean :param session_token: String """ if session_token: self.session.cookies.set( "__Secure-next-auth.session-token", session_token, ) self.session_token = session_token self.config["session_token"] = session_token self.__retry_refresh() self.__map_conversations() if conversation_id == None: conversation_id = self.conversation_id if parent_id == None: parent_id = ( self.parent_id if conversation_id == self.conversation_id else self.conversation_mapping[conversation_id] ) data = { "action": "next", "messages": [ { "id": str(uuid.uuid4()), "role": "user", "content": {"content_type": "text", "parts": [prompt]}, }, ], "conversation_id": conversation_id, "parent_message_id": parent_id or str(uuid.uuid4()), "model": "text-davinci-002-render", } new_conv = data["conversation_id"] is None self.conversation_id_prev_queue.append( data["conversation_id"], ) # for rollback self.parent_id_prev_queue.append(data["parent_message_id"]) response = self.session.post( url=BASE_URL + "backend-api/conversation", data=json.dumps(data), timeout_seconds=180, ) if response.status_code != 200: print(response.text) self.__refresh_session() raise HTTPError( f"Wrong response code: {response.status_code}! Refreshing session...", ) else: try: response = response.text.splitlines()[-4] response = response[6:] except Exception as exc: print("Incorrect response from OpenAI API") raise Exception("Incorrect response from OpenAI API") from exc # Check if it is JSON if response.startswith("{"): response = json.loads(response) self.parent_id = response["message"]["id"] self.conversation_id = response["conversation_id"] message = response["message"]["content"]["parts"][0] res = { "message": message, "conversation_id": self.conversation_id, "parent_id": self.parent_id, } if gen_title and new_conv: try: title = self.__gen_title( self.conversation_id, self.parent_id, )["title"] except Exception as exc: split = prompt.split(" ") title = " ".join(split[:3]) + ("..." if len(split) > 3 else "") res["title"] = title return res else: return None def __check_response(self, response): if response.status_code != 200: print(response.text) raise Exception("Response code error: ", response.status_code) def get_conversations(self, offset=0, limit=20): """ Get conversations :param offset: Integer :param limit: Integer """ url = BASE_URL + f"backend-api/conversations?offset={offset}&limit={limit}" response = self.session.get(url) self.__check_response(response) data = json.loads(response.text) return data["items"] def get_msg_history(self, id): """ Get message history :param id: UUID of conversation """ url = BASE_URL + f"backend-api/conversation/{id}" response = self.session.get(url) self.__check_response(response) data = json.loads(response.text) return data def __gen_title(self, id, message_id): """ Generate title for conversation """ url = BASE_URL + f"backend-api/conversation/gen_title/{id}" response = self.session.post( url, data=json.dumps( {"message_id": message_id, "model": "text-davinci-002-render"}, ), ) self.__check_response(response) data = json.loads(response.text) return data def change_title(self, id, title): """ Change title of conversation :param id: UUID of conversation :param title: String """ url = BASE_URL + f"backend-api/conversation/{id}" response = self.session.patch(url, data=f'{{"title": "{title}"}}') self.__check_response(response) def delete_conversation(self, id): """ Delete conversation :param id: UUID of conversation """ url = BASE_URL + f"backend-api/conversation/{id}" response = self.session.patch(url, data='{"is_visible": false}') self.__check_response(response) def clear_conversations(self): """ Delete all conversations """ url = BASE_URL + "backend-api/conversations" response = self.session.patch(url, data='{"is_visible": false}') self.__check_response(response) def __map_conversations(self): conversations = self.get_conversations() histories = [self.get_msg_history(x["id"]) for x in conversations] for x, y in zip(conversations, histories): self.conversation_mapping[x["id"]] = y["current_node"] def __refresh_session(self, session_token=None): if session_token: self.session.cookies.set( "__Secure-next-auth.session-token", session_token, ) self.session_token = session_token self.config["session_token"] = session_token url = BASE_URL + "api/auth/session" response = self.session.get(url, timeout_seconds=180) if response.status_code == 403: self.__get_cf_cookies() raise Exception("Clearance refreshing...") try: if "error" in response.json(): raise Exception( f"Failed to refresh session! Error: {response.json()['error']}", ) elif ( response.status_code != 200 or response.json() == {} or "accessToken" not in response.json() ): raise Exception( f"Response code: {response.status_code} \n Response: {response.text}", ) else: self.session.headers.update( { "Authorization": "Bearer " + response.json()["accessToken"], }, ) self.session_token = self.session.cookies._find( "__Secure-next-auth.session-token", ) except Exception: print("Failed to refresh session!") if self.isMicrosoftLogin: print("Attempting to re-authenticate...") self.__microsoft_login() else: self.__email_login() def reset_chat(self) -> None: """ Reset the conversation ID and parent ID. :return: None """ self.conversation_id = None self.parent_id = str(uuid.uuid4()) def __microsoft_login(self) -> None: """ Login to OpenAI via Microsoft Login Authentication. :return: None """ driver = None try: # Open the browser self.cf_cookie_found = False self.session_cookie_found = False self.agent_found = False self.cf_clearance = None self.user_agent = None options = self.__get_ChromeOptions() print("Spawning browser...") driver = uc.Chrome( enable_cdp_events=True, options=options, driver_executable_path=self.config.get("driver_exec_path"), browser_executable_path=self.config.get("browser_exec_path"), ) print("Browser spawned.") driver.add_cdp_listener( "Network.responseReceivedExtraInfo", lambda msg: self.__detect_cookies(msg), ) driver.add_cdp_listener( "Network.requestWillBeSentExtraInfo", lambda msg: self.__detect_user_agent(msg), ) driver.get(BASE_URL) while not self.agent_found or not self.cf_cookie_found: sleep(5) self.__refresh_headers( cf_clearance=self.cf_clearance, user_agent=self.user_agent, ) # Wait for the login button to appear WebDriverWait(driver, 120).until( EC.element_to_be_clickable( (By.XPATH, "//button[contains(text(), 'Log in')]"), ), ) # Click the login button driver.find_element( by=By.XPATH, value="//button[contains(text(), 'Log in')]", ).click() # Wait for the Login with Microsoft button to be clickable WebDriverWait(driver, 60).until( EC.element_to_be_clickable( (By.XPATH, "//button[@data-provider='windowslive']"), ), ) # Click the Login with Microsoft button driver.find_element( by=By.XPATH, value="//button[@data-provider='windowslive']", ).click() # Wait for the email input field to appear WebDriverWait(driver, 60).until( EC.visibility_of_element_located( (By.XPATH, "//input[@type='email']"), ), ) # Enter the email driver.find_element( by=By.XPATH, value="//input[@type='email']", ).send_keys(self.config["email"]) # Wait for the Next button to be clickable WebDriverWait(driver, 60).until( EC.element_to_be_clickable( (By.XPATH, "//input[@type='submit']"), ), ) # Click the Next button driver.find_element( by=By.XPATH, value="//input[@type='submit']", ).click() # Wait for the password input field to appear WebDriverWait(driver, 60).until( EC.visibility_of_element_located( (By.XPATH, "//input[@type='password']"), ), ) # Enter the password driver.find_element( by=By.XPATH, value="//input[@type='password']", ).send_keys(self.config["password"]) # Wait for the Sign in button to be clickable WebDriverWait(driver, 60).until( EC.element_to_be_clickable( (By.XPATH, "//input[@type='submit']"), ), ) # Click the Sign in button driver.find_element( by=By.XPATH, value="//input[@type='submit']", ).click() # Wait for the Allow button to appear WebDriverWait(driver, 60).until( EC.element_to_be_clickable( (By.XPATH, "//input[@type='submit']"), ), ) # click Yes button driver.find_element( by=By.XPATH, value="//input[@type='submit']", ).click() # wait for input box to appear (to make sure we're signed in) WebDriverWait(driver, 60).until( EC.visibility_of_element_located( (By.XPATH, "//textarea"), ), ) while not self.session_cookie_found: sleep(5) print(self.GREEN + "Login successful." + self.ENDCOLOR) finally: # Close the browser if driver is not None: driver.quit() del driver def __email_login(self) -> None: """ Login to OpenAI via Email/Password Authentication and 2Captcha. :return: None """ # Open the browser driver = None try: self.cf_cookie_found = False self.session_cookie_found = False self.agent_found = False self.cf_clearance = None self.user_agent = None options = self.__get_ChromeOptions() print("Spawning browser...") driver = uc.Chrome( enable_cdp_events=True, options=options, driver_executable_path=self.config.get("driver_exec_path"), browser_executable_path=self.config.get("browser_exec_path"), ) print("Browser spawned.") driver.add_cdp_listener( "Network.responseReceivedExtraInfo", lambda msg: self.__detect_cookies(msg), ) driver.add_cdp_listener( "Network.requestWillBeSentExtraInfo", lambda msg: self.__detect_user_agent(msg), ) driver.get(BASE_URL) while not self.agent_found or not self.cf_cookie_found: sleep(5) self.__refresh_headers( cf_clearance=self.cf_clearance, user_agent=self.user_agent, ) # Wait for the login button to appear WebDriverWait(driver, 120).until( EC.element_to_be_clickable( (By.XPATH, "//button[contains(text(), 'Log in')]"), ), ) # Click the login button driver.find_element( by=By.XPATH, value="//button[contains(text(), 'Log in')]", ).click() # Wait for the email input field to appear WebDriverWait(driver, 60).until( EC.visibility_of_element_located( (By.ID, "username"), ), ) # Enter the email driver.find_element(by=By.ID, value="username").send_keys( self.config["email"], ) # Wait for the Continue button to be clickable WebDriverWait(driver, 60).until( EC.element_to_be_clickable( (By.XPATH, "//button[@type='submit']"), ), ) # Click the Continue button driver.find_element( by=By.XPATH, value="//button[@type='submit']", ).click() # Wait for the password input field to appear WebDriverWait(driver, 60).until( EC.visibility_of_element_located( (By.ID, "password"), ), ) # Enter the password driver.find_element(by=By.ID, value="password").send_keys( self.config["password"], ) # Wait for the Sign in button to be clickable WebDriverWait(driver, 60).until( EC.element_to_be_clickable( (By.XPATH, "//button[@type='submit']"), ), ) # Click the Sign in button driver.find_element( by=By.XPATH, value="//button[@type='submit']", ).click() # wait for input box to appear (to make sure we're signed in) WebDriverWait(driver, 60).until( EC.visibility_of_element_located( (By.XPATH, "//textarea"), ), ) while not self.session_cookie_found: sleep(5) print(self.GREEN + "Login successful." + self.ENDCOLOR) finally: if driver is not None: # Close the browser driver.quit() del driver def __get_ChromeOptions(self): options = uc.ChromeOptions() options.add_argument("--start_maximized") options.add_argument("--disable-extensions") options.add_argument("--disable-application-cache") options.add_argument("--disable-gpu") options.add_argument("--no-sandbox") options.add_argument("--disable-setuid-sandbox") options.add_argument("--disable-dev-shm-usage") if self.config.get("proxy", "") != "": options.add_argument("--proxy-server=" + self.config["proxy"]) return options def __get_cf_cookies(self) -> None: """ Get cloudflare cookies. :return: None """ driver = None try: self.cf_cookie_found = False self.agent_found = False self.cf_clearance = None self.user_agent = None options = self.__get_ChromeOptions() print("Spawning browser...") driver = uc.Chrome( enable_cdp_events=True, options=options, driver_executable_path=self.config.get("driver_exec_path"), browser_executable_path=self.config.get("browser_exec_path"), ) print("Browser spawned.") driver.add_cdp_listener( "Network.responseReceivedExtraInfo", lambda msg: self.__detect_cookies(msg), ) driver.add_cdp_listener( "Network.requestWillBeSentExtraInfo", lambda msg: self.__detect_user_agent(msg), ) driver.get("https://chat.openai.com/chat") while not self.agent_found or not self.cf_cookie_found: sleep(5) finally: # Close the browser if driver is not None: driver.quit() del driver self.__refresh_headers( cf_clearance=self.cf_clearance, user_agent=self.user_agent, ) def __detect_cookies(self, message): if "params" in message: if "headers" in message["params"]: if "set-cookie" in message["params"]["headers"]: # Use regex to get the cookie for cf_clearance=*; cf_clearance_cookie = re.search( "cf_clearance=.*?;", message["params"]["headers"]["set-cookie"], ) session_cookie = re.search( "__Secure-next-auth.session-token=.*?;", message["params"]["headers"]["set-cookie"], ) if cf_clearance_cookie and not self.cf_cookie_found: print("Found Cloudflare Cookie!") # remove the semicolon and 'cf_clearance=' from the string raw_cf_cookie = cf_clearance_cookie.group(0) self.cf_clearance = raw_cf_cookie.split("=")[1][:-1] if self.verbose: print( self.GREEN + "Cloudflare Cookie: " + self.ENDCOLOR + self.cf_clearance, ) self.cf_cookie_found = True if session_cookie and not self.session_cookie_found: print("Found Session Token!") # remove the semicolon and '__Secure-next-auth.session-token=' from the string raw_session_cookie = session_cookie.group(0) self.session_token = raw_session_cookie.split("=")[1][:-1] self.session.cookies.set( "__Secure-next-auth.session-token", self.session_token, ) if self.verbose: print( self.GREEN + "Session Token: " + self.ENDCOLOR + self.session_token, ) self.session_cookie_found = True def __detect_user_agent(self, message): if "params" in message: if "headers" in message["params"]: if "user-agent" in message["params"]["headers"]: # Use regex to get the cookie for cf_clearance=*; user_agent = message["params"]["headers"]["user-agent"] self.user_agent = user_agent self.agent_found = True self.__refresh_headers( cf_clearance=self.cf_clearance, user_agent=self.user_agent, ) def __refresh_headers(self, cf_clearance, user_agent): del self.session.cookies["cf_clearance"] self.session.headers.clear() self.session.cookies.set("cf_clearance", cf_clearance) self.session.headers.update( { "Accept": "text/event-stream", "Authorization": "Bearer ", "Content-Type": "application/json", "User-Agent": user_agent, "X-Openai-Assistant-App-Id": "", "Connection": "close", "Accept-Language": "en-US,en;q=0.9", "Referer": "https://chat.openai.com/chat", }, ) def rollback_conversation(self, num=1) -> None: """ Rollback the conversation. :param num: The number of messages to rollback :return: None """ for i in range(num): self.conversation_id = self.conversation_id_prev_queue.pop() self.parent_id = self.parent_id_prev_queue.pop() def get_input(prompt): # Display the prompt print(prompt, end="") # Initialize an empty list to store the input lines lines = [] # Read lines of input until the user enters an empty line while True: line = input() if line == "": break lines.append(line) # Join the lines, separated by newlines, and store the result user_input = "\n".join(lines) # Return the input return user_input from os import getenv from os.path import exists def configure(): config_files = ["config.json"] xdg_config_home = getenv("XDG_CONFIG_HOME") if xdg_config_home: config_files.append(f"{xdg_config_home}/revChatGPT/config.json") user_home = getenv("HOME") if user_home: config_files.append(f"{user_home}/.config/revChatGPT/config.json") config_file = next((f for f in config_files if exists(f)), None) if config_file: with open(config_file, encoding="utf-8") as f: config = json.load(f) else: print("No config file found.") raise Exception("No config file found.") return config def chatGPT_main(config): print("Logging in...") chatbot = Chatbot(config) while True: prompt = get_input("\nYou:\n") if prompt.startswith("!"): if prompt == "!help": print( """ !help - Show this message !reset - Forget the current conversation !refresh - Refresh the session authentication !config - Show the current configuration !rollback x - Rollback the conversation (x being the number of messages to rollback) !exit - Exit this program """, ) continue elif prompt == "!reset": chatbot.reset_chat() print("Chat session successfully reset.") continue elif prompt == "!refresh": chatbot.__refresh_session() print("Session successfully refreshed.\n") continue elif prompt == "!config": print(json.dumps(chatbot.config, indent=4)) continue elif prompt.startswith("!rollback"): # Default to 1 rollback if no number is specified try: rollback = int(prompt.split(" ")[1]) except IndexError: rollback = 1 chatbot.rollback_conversation(rollback) print(f"Rolled back {rollback} messages.") continue elif prompt.startswith("!setconversation"): try: chatbot.config["conversation"] = prompt.split(" ")[1] print("Conversation has been changed") except IndexError: print("Please include conversation UUID in command") continue elif prompt == "!exit": break try: print("Chatbot: ") message = chatbot.ask( prompt, conversation_id=chatbot.config.get("conversation"), parent_id=chatbot.config.get("parent_id"), ) print(message["message"]) except Exception as exc: print("Something went wrong!") print(exc) continue def main(): print( """ ChatGPT - A command-line interface to OpenAI's ChatGPT (https://chat.openai.com/chat) Repo: github.com/acheong08/ChatGPT """, ) print("Type '!help' to show a full list of commands") print("Press enter twice to submit your question.\n") chatGPT_main(configure()) if __name__ == "__main__": main()
[ "text", "\nYou:\n", "content_type" ]
2024-01-10
jlin816/dialop
dialop~planning_query_executor.py
from copy import deepcopy import numpy as np import openai import pyparsing as pp from pyparsing import OneOrMore, Suppress, delimited_list, one_of from pyparsing.exceptions import ParseException from dialop.templates import QueryExecutorTemplate def create_search_api(): LP = Suppress("(") RP = Suppress(")") LB = Suppress("[") RB = Suppress("]") Q = Suppress('"') | Suppress("'") valid_name_chars = pp.alphanums + "'" string = (OneOrMore(pp.Word(valid_name_chars))).set_parse_action(" ".join) filt = pp.Group(pp.Word(pp.alphas) + one_of("== >= <=") + pp.Word(pp.alphanums)) dist_to = pp.Group("distance_to" + LP + string + RP) key = one_of("fields filters text_query sort_by") + Suppress("=") value = (string | LB + pp.Group(delimited_list(dist_to | filt | pp.Word(pp.alphanums))) + RB | Q + string + Q ) search = "Search" + LP + delimited_list(pp.dict_of(key, value)) + RP return search search_api = create_search_api() class SearchError(Exception): pass class StaticQueryExecutor: def __init__(self, sites): self.sites = sites def _parse_query(self, query_str): try: query = search_api.parse_string(query_str, parse_all=True).as_dict() except ParseException: import pdb; pdb.set_trace() raise SearchError(f"Invalid search syntax: {query_str}.") print("..searching with query: ", query) return query def __call__(self, query_str): """Search the database of sites with a query string. Parses query string into a `query` Dict, with keys: - fields (required): fields to return from each result - filters: list of tuples (field, comparator, value) to filter sites by - text_query: freeform text query (searches over event features) - sort_by: list of fields or function call to `distance_to` to sort results by (in asc order). Sorting by a field also returns it in the results. Returns: result of the search, as a string """ query = self._parse_query(query_str) results = deepcopy(self.sites) return_fields = [self._remap(k) for k in query["fields"]] for filt in query.get("filters", []): field, comparator, value = filt field = self._remap(field) if field not in ["name", "etype", "est_price"]: raise SearchError(f"You cannot filter by {field}." "Try searching with a text query instead.") def filt_fn(x): if comparator == "==": return str(x[field]) == str(value) if comparator == ">=": return float(x[field]) >= float(value) if comparator == "<=": return float(x[field]) <= float(value) results = [r for r in results if filt_fn(r)] results = [r for r in results if query.get("text_query", "") in str(r)] for sort in query.get("sort_by", []): if len(sort) == 2: func, arg = sort assert func == "distance_to", \ f"Sorting by unknown function?: {sort}" target_evt = [r for r in self.sites if arg in str(r)] assert len(target_evt) == 1, \ f"More than one event found for search?: {sort}" target_evt = target_evt[0] for r in results: r["distance"] = self.distance(r, target_evt) sort = "distance" results = sorted(results, key=lambda r: r[self._remap(sort)]) return_fields.append(sort) results = [{k: v for k, v in r.items() if k in return_fields} \ for r in results] return self._format_results(results) def distance(self, s1, s2) -> float: dist = np.linalg.norm(np.array(s1["loc"]) - np.array(s2["loc"])) dist *= 69 dist = round(dist * 10) / 10 return dist def _format_results(self, results) -> str: if len(results) == 0: return "Search Results: No results\n" result_str = f"Search Results ({len(results)}):\n" # import pdb; pdb.set_trace() keys = ["name"] + [self._unremap(k) for k in results[0].keys() if k != "name"] result_str += "|".join(keys) keys = [self._remap(k) for k in keys] for r in results: result_str += f"\n{'|'.join(str(r[k]) for k in keys)}" return result_str def _remap(self, key): api_to_internal_name = { "category": "etype", "price": "est_price", } if key in api_to_internal_name: return api_to_internal_name[key] return key def _unremap(self, key): internal_name_to_api = { "etype": "category", "est_price": "price", } if key in internal_name_to_api: return internal_name_to_api[key] return key class GPT3QueryExecutor: def __init__(self, sites): self.prompt = self._construct_prompt(sites) self.model = "text-davinci-003" def _construct_prompt(self, sites): sites = deepcopy(sites) test_searches = [ "Search(fields=[name], filters=[category == landmark])", "Search(fields=[name], filters=[category == concert])", "Search(fields=[name], text_query=live music)", "Search(fields=[name, price], text_query=live music, filters=[price <= 40])", "Search(fields=[name, price], filters=[category == restaurant, price <= 10], sort_by=[distance_to(The Mall)])", "Search(fields=[name, price, distance], filters=[category == restaurant], sort_by=[distance_to(The Mall), price])", """Search(fields=[name], text_query="good for kids", filters=[category == park], sort_by=[distance_to(Saul's)])""", "Search(fields=[name], filters=[vegan == true])", ] static_search = StaticQueryExecutor(sites) def get_result_str(q): try: return static_search(q) except SearchError as e: return str(e) examples = [{"query": q, "result": get_result_str(q)} for q in test_searches] # Remove some fields to save context length for s in sites: del s["type"] del s["id_"] s["loc"] = [round(s["loc"][0], 2), round(s["loc"][1], 2)] prompt = QueryExecutorTemplate.render( sites=sites, example_queries=examples ) return prompt def __call__(self, query_str): prompt = self.prompt + f"Query: {query_str}\nResult:\n" response = openai.Completion.create( model=self.model, prompt=prompt, temperature=0.1, max_tokens=256, top_p=.95, frequency_penalty=0, presence_penalty=0, stop=["\n\n", "Query", "Query:"] ) print(response) return response["choices"][0]["text"] def distance(self, s1, s2) -> float: dist = np.linalg.norm(np.array(s1["loc"]) - np.array(s2["loc"])) dist *= 69 dist = round(dist * 10) / 10 return dist
[ "Query: PLACEHOLDER\nResult:\n" ]
2024-01-10
jlin816/dialop
dialop~players.py
import json import openai import os import pathlib from rich.prompt import IntPrompt, Prompt from rich.markup import escape from envs import DialogueEnv from utils import num_tokens try: with open(pathlib.Path(__file__).parent / ".api_key") as f: x = json.load(f) openai.organization = x["organization"] openai.api_key = x["api_key"] print("Loaded .api_key") except: openai.api_key = os.getenv("OPENAI_API_KEY") if not openai.api_key: print("Warning: no OpenAI API key loaded.") class OutOfContextError(Exception): pass class DryRunPlayer: def __init__(self, prompt, role, console, task="planning"): self.prompt = prompt self.role = role self.console = console self.calls = 0 self.task = task def observe(self, obs): self.prompt += obs def respond(self): self.calls += 1 if self.role == "agent" and self.calls == 5: if self.task == "planning": return f" [propose] [Saul's, Cookies Cream, Mad Seoul]" elif self.task == "mediation": return f" [propose] User 0: [1], User 1: [15]" elif self.role == "user" and self.calls == 6: return f" [reject]" return f" [message] {self.calls}" class LLMPlayer: def __init__(self, prompt, role, console, model_kwargs=None, prefix="\nYou:", optional=None): self.prompt = prompt self.role = role self.console = console self.model = "text-davinci-003" self.optional = optional self.removed_optional = False if self.role in ["user", "agent", "user0", "user1"]: stop_tokens = ["User", "Agent", "You", "\n"] elif self.role in ["player-1", "player-2"]: stop_tokens = ["Partner", "You", "\n"] else: raise NotImplementedError self.model_kwargs = dict( model=self.model, temperature=0.1, top_p=.95, frequency_penalty=0, presence_penalty=0, stop=stop_tokens, ) if model_kwargs is not None: self.model_kwargs.update(**model_kwargs) self.prefix = prefix # self.model = "gpt-3.5-turbo" def observe(self, obs): self.prompt += obs def respond(self): self.console.rule(f"{self.role}'s turn") if not self.prompt.endswith(self.prefix): self.prompt += self.prefix #self.console.print(escape(self.prompt)) remaining = 4096 - num_tokens(self.prompt) if remaining < 0 and self.optional: self._remove_optional_context() remaining = 4096 - num_tokens(self.prompt) # Still out of context after removing if remaining < 0: print("OUT OF CONTEXT! Remaining ", remaining) raise OutOfContextError() kwargs = dict( prompt=self.prompt, max_tokens=min(remaining, 128), ) kwargs.update(**self.model_kwargs) response = openai.Completion.create(**kwargs) self.console.print("Response: ", escape(response["choices"][0]["text"].strip())) self.console.print("stop: ", response["choices"][0]["finish_reason"]) if response["choices"][0]["finish_reason"] == "length": if not self.optional: raise OutOfContextError() self._remove_optional_context() response = openai.Completion.create(**kwargs) self.console.print("Response: ", escape(response["choices"][0]["text"].strip())) self.console.print("stop: ", response["choices"][0]["finish_reason"]) self.console.print(response["usage"]) return response["choices"][0]["text"].strip() def _remove_optional_context(self): print("Cutting out optional context from prompt.") if self.removed_optional: print("!! already removed.") return self.prompt = ( self.prompt[:self.prompt.index(self.optional)] + self.prompt[self.prompt.index(self.optional) + len(self.optional):]) self.removed_optional = True class HumanPlayer: def __init__(self, prompt, role, console, prefix="\nYou:"): self.prompt = prompt self.role = role self.console = console self.prefix = prefix def observe(self, obs): self.prompt += obs def respond(self): if not self.prompt.endswith(self.prefix): self.prompt += self.prefix self.console.rule(f"Your turn ({self.role})") self.console.print(escape(self.prompt)) resp = "" if self.prefix.strip().endswith("You to"): id_ = Prompt.ask( escape(f"Choose a player to talk to"), choices=["0","1","all"]) resp += f" {id_}:" mtypes = ["[message]", "[propose]", "[accept]", "[reject]"] choices = " ".join( [f"({i}): {type_}" for i, type_ in enumerate(mtypes)]) type_ = IntPrompt.ask( escape( f"Choose one of the following message types:" f"\n{choices}"), choices=["0","1","2","3"]) message_type = mtypes[type_] if message_type not in ("[accept]", "[reject]"): content = Prompt.ask(escape(f"{message_type}")) else: content = "" resp += f" {message_type} {content}" return resp
[]
2024-01-10
summerfang/summerfang
articledb~article.py
import os from ast import literal_eval import pandas as pd import numpy as np from scipy.spatial.distance import cosine from openai import OpenAI def distances_from_embeddings(query_embedding, embeddings): """ Calculate the cosine similarity between each embedding in `embeddings` and `query_embedding`. Args: embeddings (List[List[float]]): A list of embeddings, where each embedding is a list of floats. query_embedding (List[float]): The query embedding, represented as a list of floats. Returns: List[float]: A list of cosine similarities between each embedding in `embeddings` and `query_embedding`. """ return [1 - cosine(embedding, query_embedding) for embedding in embeddings] def create_context( client, question, df, max_len=1800, size="ada" ): """ Create a context for a question by finding the most similar context from the dataframe """ # Get the embeddings for the question # q_embeddings = client.embeddings.create(input=question, model='text-embedding-ada-002')['data'][0]['embedding'] # q_embeddings = client.embeddings.create(input=question, model='text-embedding-ada-002') q_embeddings = client.embeddings.create(input=question, model='text-embedding-ada-002').data[0].embedding # Get the distances from the embeddings df['distances'] = distances_from_embeddings(q_embeddings, df['embeddings'].values) returns = [] cur_len = 0 # Sort by distance and add the text to the context until the context is too long for i, row in df.sort_values('distances', ascending=True).iterrows(): # Add the length of the text to the current length cur_len += row['n_tokens'] + 4 # If the context is too long, break if cur_len > max_len: break # Else add it to the text that is being returned returns.append(row["text"]) # Return the context return "\n\n###\n\n".join(returns) def answer_question( # df=df, model="gpt-3.5-turbo", question="Am I allowed to publish model outputs to Twitter, without a human review?", max_len=1800, size="ada", debug=False, max_tokens=150, stop_sequence=None ): """ Answer a question based on the most similar context from the dataframe texts """ try: client = OpenAI() except Exception as e: print(e) return "openai client error" df = pd.read_csv('./articledb/embeddings.csv', index_col=0) df['embeddings'] = df['embeddings'].apply(literal_eval).apply(np.array) context = create_context( client, question, df, max_len=max_len, size=size, ) # If debug, print the raw model response if debug: print("Context:\n" + context) print("\n\n") try: # Create a chat completion using the question and context response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "Answer the question based on the context below, and if the question can't be answered based on the context, say \"I don't know\"\n\n"}, {"role": "user", f"content": "Context: {context}\n\n---\n\nQuestion: {question}\nAnswer:"} ], temperature=0, max_tokens=max_tokens, top_p=1, frequency_penalty=0, presence_penalty=0, stop=stop_sequence, ) return response.choices[0].message.content.strip() except Exception as e: print(e) return "I don't know" # answer = answer_question(question="How about reuse the code?") # print(answer)
[ "Context: {context}\n\n---\n\nQuestion: {question}\nAnswer:", "Answer the question based on the context below, and if the question can't be answered based on the context, say \"I don't know\"\n\n" ]
2024-01-10
summerfang/summerfang
articledb~private_embedding_articles.py
from openai import OpenAI client = OpenAI() def create_context(question, df, max_len=1800, size="ada"): """ Create a context for a question by finding the most similar context from the dataframe """ # Get the embeddings for the question q_embeddings = client.embeddings.create(input=question, engine='text-embedding-ada-002')['data'][0]['embedding'] # Get the distances from the embeddings df['distances'] = distances_from_embeddings(q_embeddings, df['embeddings'].values, distance_metric='cosine') returns = [] cur_len = 0 # Sort by distance and add the text to the context until the context is too long for i, row in df.sort_values('distances', ascending=True).iterrows(): # Add the length of the text to the current length cur_len += row['n_tokens'] + 4 # If the context is too long, break if cur_len > max_len: break # Else add it to the text that is being returned returns.append(row["text"]) # Return the context return "\n\n###\n\n".join(returns) def answer_question( df, model="gpt-3.5-turbo-instruct", question="Am I allowed to publish model outputs to Twitter, without a human review?", max_len=1800, size="ada", debug=False, max_tokens=150, stop_sequence=None ): """ Answer a question based on the most similar context from the dataframe texts """ context = create_context( question, df, max_len=max_len, size=size, ) # If debug, print the raw model response if debug: print("Context:\n" + context) print("\n\n") try: # Create a completions using the question and context response = client.completions.create(prompt=f"Answer the question based on the context below, and if the question can't be answered based on the context, say \"I don't know\"\n\nContext: {context}\n\n---\n\nQuestion: {question}\nAnswer:", temperature=0, max_tokens=max_tokens, top_p=1, frequency_penalty=0, presence_penalty=0, stop=stop_sequence, model=model) return response["choices"][0]["text"].strip() except Exception as e: print(e) return ""
[ "Answer the question based on the context below, and if the question can't be answered based on the context, say \"I don't know\"\n\nContext: PLACEHOLDER\n\n---\n\nQuestion: PLACEHOLDER\nAnswer:" ]
2024-01-10
Manuelch94/wireframeGenerator
dashai.py
import os import argparse import openai import json # Set your API as describe in the README openai.api_key = os.getenv("OPENAI_API_KEY") def generate_response(prompt): # You can change the generator, this generator is a single line chart using the grid layout dashboard_generator = ''' {"visualizations":{"viz_LYCo0hNI":{"type":"splunk.line","title":"line chart"}},"dataSources":{},"defaults":{"dataSources":{"ds.search":{"options":{"queryParameters":{"latest":"$global_time.latest$","earliest":"$global_time.earliest$"}}}}},"inputs":{"input_global_trp":{"type":"input.timerange","options":{"token":"global_time","defaultValue":"-24h@h,now"},"title":"Global Time Range"}},"layout":{"type":"absolute","options":{"display":"auto-scale","height":2000,"width":2000},"structure":[{"item":"viz_LYCo0hNI","type":"block","position":{"x":20,"y":20,"w":300,"h":300}}],"globalInputs":["input_global_trp"]},"description":"","title":"mydashboard"} ''' example = json.dumps(dashboard_generator) complete_prompt = f""" Act as a expert building dashboard using dashboard studio in splunk. Understand the following JSON schema, you will use the schema only as a guide. The only sections of the schema you are allow to edit are: \"layout\" and \"visualizations\". Only respond with the JSON object that satifies the request only after each request, no text before or after your response. Every vizualization always follows this format, this is an example: {example} User Request: {prompt} """ response = openai.Completion.create( model="text-davinci-003", prompt=complete_prompt, temperature=0.41, max_tokens=2880, top_p=1, frequency_penalty=0, presence_penalty=0 ) return response.choices[0].text.strip() def main(): parser = argparse.ArgumentParser(description="Dashboard Studio Wireframe Generator Tool") parser.add_argument("request", type=str, help="User request for the wireframe") args = parser.parse_args() user_request = args.request generated_response = generate_response(user_request) print(generated_response) if __name__ == '__main__': main()
[ "\n Act as a expert building dashboard using dashboard studio in splunk.\n Understand the following JSON schema, you will use the schema only as a guide. \n The only sections of the schema you are allow to edit are: \"layout\" and \"visualizations\".\n Only respond with the JSON object that satifies the request only after each request, no text before or after your response.\n Every vizualization always follows this format, this is an example: PLACEHOLDER\n User Request: PLACEHOLDER\n " ]
2024-01-10
ysbrianlee/pandasai
examples~from_csv.py
"""Example of using PandasAI with a CSV file.""" import pandas as pd from pandasai import PandasAI from pandasai.llm.openai import OpenAI df = pd.read_csv("data/Loan payments data.csv") llm = OpenAI() pandas_ai = PandasAI(llm, verbose=True) response = pandas_ai.run(df, "How many loans are from men and have been paid off?") print(response) # Output: 247 loans have been paid off by men.
[]
2024-01-10
ysbrianlee/pandasai
examples~from_dataframe.py
"""Example of using PandasAI with a Pandas DataFrame""" from data.sample_dataframe import dataframe import pandas as pd from pandasai import PandasAI from pandasai.llm.openai import OpenAI df = pd.DataFrame(dataframe) llm = OpenAI() pandas_ai = PandasAI(llm, verbose=True, conversational=False) response = pandas_ai.run(df, "Calculate the sum of the gdp of north american countries") print(response) # Output: 26200000
[]
2024-01-10
ysbrianlee/pandasai
examples~show_chart.py
"""Example of using PandasAI to generate a chart from a Pandas DataFrame""" from data.sample_dataframe import dataframe import pandas as pd from pandasai import PandasAI from pandasai.llm.openai import OpenAI df = pd.DataFrame(dataframe) llm = OpenAI() pandas_ai = PandasAI(llm) response = pandas_ai.run( df, "Plot the histogram of countries showing for each the gpd, using different colors for each bar", ) print(response) # Output: check out images/histogram-chart.png
[]
2024-01-10
ysbrianlee/pandasai
examples~with_privacy_enforced.py
"""Example of using PandasAI with a Pandas DataFrame""" from data.sample_dataframe import dataframe import pandas as pd from pandasai import PandasAI from pandasai.llm.openai import OpenAI df = pd.DataFrame(dataframe) llm = OpenAI() pandas_ai = PandasAI(llm, verbose=True, conversational=False, enforce_privacy=True) response = pandas_ai.run( df, "Calculate the sum of the gdp of north american countries", ) print(response) # Output: 26200000
[]
2024-01-10
xiye17/ComplementaryExpl
api_utils.py
import os import itertools import time import openai from tqdm import tqdm from utils import * from transformers import GPT2TokenizerFast API_ERROR_IDENTIFIER = "OPENAI Error" _TOKENIZER = GPT2TokenizerFast.from_pretrained("gpt2") GPT3_LENGTH_LIMIT = 2049 GPT_MAX_ATTEMPTS = 60 GPT_WAITTIME = 20 API_ERROR_IDENTIFIER = "OPENAI Error" DEFAULT_TRAIN_SEP = "\n\n" DEFAULT_COMPLETION_LEADING = "\nA:" def register_query_args(parser): parser.add_argument('--engine', default='code-davinci-002', choices=["davinci", "text-davinci-001", "text-davinci-002","text-davinci-003", "text-curie-001", "code-davinci-001", "code-davinci-002"]) parser.add_argument('--run_prediction', default=False, action='store_true') parser.add_argument('--do_dryrun', default=False, action='store_true') parser.add_argument('--force_override', default=False, action='store_true') parser.add_argument('--batch_size', type=int, default=-1) parser.add_argument('--num_samples', type=int, default=1) parser.add_argument('--temperature', type=float, default=0.0) def register_base_args(parser): # standard, instruction, etc parser.add_argument('--task', type=str, default=None) parser.add_argument('--slice_train', type=int, default=0) parser.add_argument('--num_train', type=int, default=128) parser.add_argument('--num_shots', type=int, default=8) parser.add_argument('--slice_dev', type=int, default=0) parser.add_argument('--num_dev', type=int, default=500) parser.add_argument('--do_print', default=False, action='store_true') # parser.add_argument('--batch_size', type=int, default=-1) parser.add_argument('--num_eval_samples', type=int, default=-1) register_query_args(parser) def config_args_and_api(args): if args.batch_size == -1: args.batch_size = 1 openai.api_requestor.TIMEOUT_SECS = 60 if args.engine in ["davinci", "text-davinci-001", "text-davinci-002", "text-davinci-003", "text-curie-001", "code-davinci-001", "code-davinci-002"]: openai.api_key = os.getenv("OPENAI_API_KEY") else: raise RuntimeError("Engine not supported") def gpt_style_tokenize(x): return _TOKENIZER.tokenize(x) def length_of_prompt(prompt, max_tokens): return len(_TOKENIZER.tokenize(prompt)) + max_tokens def gpt_safe_completion(engine, prompts, temperature, max_tokens, logprobs=1, num_samples=1, echo=True, stop="\n"): last_exc = None for i in range(GPT_MAX_ATTEMPTS): try: return openai.Completion.create(engine=engine, prompt=prompts, temperature=temperature, max_tokens=max_tokens, logprobs=logprobs, n=num_samples, echo=echo, stop=stop) except openai.error.RateLimitError as e: last_exc = e print("\rWARNING: OPENAI Rate Error", last_exc, end="") time.sleep(GPT_WAITTIME) except openai.error.APIError as e: last_exc = e print("\rWARNING: OPENAI API Error", last_exc) except openai.error.Timeout as e: last_exc = e print("\rWARNING: OPENAI Timeout Error", last_exc) except openai.error.APIConnectionError as e: last_exc = e print("\rWARNING: OPENAI APIConnection Error", last_exc, end="") except openai.error.ServiceUnavailableError as e: last_exc = e print("\rWARNING: OPENAI Service Error", last_exc, end="") # make a fake response fake_choices = [ [{ "text": p + " OPENAI Error - " + str(last_exc), "API Error": True, }] * num_samples for p in prompts ] fake_choices = itertools.chain(*fake_choices) resp = { "choices": fake_choices } return resp def batch_query_engine(args, prompts, max_tokens): predictions = [] resps = gpt_safe_completion(engine=args.engine, prompts=prompts, temperature=args.temperature, max_tokens=max_tokens, logprobs=1, num_samples=args.num_samples, echo=True, stop='\n') resps = resps["choices"] # print("RESPS", resps, len(resps)) # print("P", prompts, len(prompts)) resps = [resps[(i * args.num_samples):(i * args.num_samples + args.num_samples)] for i in range(len(prompts))] # print(resps, len(resps)) for prompt, resp in zip(prompts, resps): for pred in resp: pred["prompt"] = prompt if len(pred["text"]) > len(prompt): pred["text"] = pred["text"][len(prompt):] else: pred["text"] = " NULL" pred["completion_offset"] = len(prompt) return resps # args # prompts: 2d array # cache_filename # for gpt, assuming apis are pretty robust def run_completion_tasks_with_cache(args, cache_fileneme, prompts_by_examples, max_tokens=0): assert isinstance(prompts_by_examples, list) and isinstance(prompts_by_examples[0], list) and isinstance(prompts_by_examples[0][0], str) if max_tokens == 0: assert args.num_samples == 1 shape_records = [len(x) for x in prompts_by_examples] data_size = sum(shape_records) if os.path.exists(cache_fileneme): print("Cached Predictions Detected:", cache_fileneme) if args.force_override: print("Force Overriding Previous Predictions") else: return read_json(cache_fileneme) samples = list(itertools.chain(*prompts_by_examples)) renewed_results = [] prompt_lengths = [] request_pool = [] task_max_tokens = max_tokens for idx, prompt in enumerate(samples): if args.do_dryrun: response = length_of_prompt(prompt, task_max_tokens) print("-----------------------------------------") print(prompt) print("LEN", response) prompt_lengths.append(response) # add to request pool if no cached results, or error happened request_pool.append((idx, prompt)) if args.do_dryrun: print(cache_fileneme) print('Total request', len(request_pool)) print('MAX', max(prompt_lengths), 'COMP', task_max_tokens) return num_request, batch_size = len(request_pool), args.batch_size num_batch = (num_request + batch_size - 1) // batch_size # prediction loop, auto managing batching for OPT print("Num total request", num_request) for batch_idx in tqdm(range(num_batch), total=num_batch, desc="Querying"): batch_start = batch_idx * batch_size batch_end = batch_start + batch_size reqs = request_pool[batch_start: batch_end] idx_lists = [x[0] for x in reqs] prompts = [x[1] for x in reqs] responses = batch_query_engine(args, prompts, task_max_tokens) assert len(idx_lists) == len(responses) for i, resp in zip(idx_lists, responses): renewed_results.append(resp) print(cache_fileneme) # save # read un indexed dev assert len(renewed_results) == sum(shape_records) # group by example slice_start = 0 renewed_cache = [] for n in shape_records: renewed_cache.append(renewed_results[slice_start: slice_start + n]) slice_start = slice_start + n dump_json(renewed_cache, cache_fileneme) return renewed_cache
[ "[]", "['L']" ]
2024-01-10
Guiliang/statistical-DRL-interpreter
data_generator~atari_game~atari_wrapper.py
# -*- coding: utf-8 -*- # File: atari_wrapper.py import numpy as np from collections import deque import gym _v0, _v1 = gym.__version__.split('.')[:2] assert int(_v0) > 0 or int(_v1) >= 10, gym.__version__ """ The following wrappers are copied or modified from openai/baselines: https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py """ class MapState(gym.ObservationWrapper): def __init__(self, env, map_func): gym.ObservationWrapper.__init__(self, env) self._func = map_func def observation(self, obs): return self._func(obs) class FrameStack(gym.Wrapper): """ Buffer consecutive k observations and stack them on a new last axis. The output observation has shape `original_shape + (k, )`. """ def __init__(self, env, k): gym.Wrapper.__init__(self, env) self.k = k self.frames = deque([], maxlen=k) def reset(self): """Clear buffer and re-fill by duplicating the first observation.""" ob = self.env.reset() for _ in range(self.k - 1): self.frames.append(np.zeros_like(ob)) self.frames.append(ob) return self.observation() def step(self, action): ob, reward, done, info = self.env.step(action) self.frames.append(ob) return self.observation(), reward, done, info def observation(self): assert len(self.frames) == self.k return np.stack(self.frames, axis=-1) class _FireResetEnv(gym.Wrapper): def __init__(self, env): """Take action on reset for environments that are fixed until firing.""" gym.Wrapper.__init__(self, env) assert env.unwrapped.get_action_meanings()[1] == 'FIRE' assert len(env.unwrapped.get_action_meanings()) >= 3 def reset(self): self.env.reset() obs, _, done, _ = self.env.step(1) if done: self.env.reset() obs, _, done, _ = self.env.step(2) if done: self.env.reset() return obs def step(self, action): return self.env.step(action) def FireResetEnv(env): if isinstance(env, gym.Wrapper): baseenv = env.unwrapped else: baseenv = env if 'FIRE' in baseenv.get_action_meanings(): return _FireResetEnv(env) return env class LimitLength(gym.Wrapper): def __init__(self, env, k): gym.Wrapper.__init__(self, env) self.k = k def reset(self): # This assumes that reset() will really reset the env. # If the underlying env tries to be smart about reset # (e.g. end-of-life), the assumption doesn't hold. ob = self.env.reset() self.cnt = 0 return ob def step(self, action): ob, r, done, info = self.env.step(action) self.cnt += 1 if self.cnt == self.k: done = True return ob, r, done, info
[]
2024-01-10
Mitch-PragmaFlow/transContentor
ui.py
""" Adapted from https://github.com/avrabyt/MemoryBot """ import requests # Import necessary libraries import streamlit as st from chatgpt_memory.environment import OPENAI_API_KEY, REDIS_HOST, REDIS_PASSWORD, REDIS_PORT # Set Streamlit page configuration st.set_page_config(page_title="🧠MemoryBot🤖", layout="wide") # Initialize session states if "generated" not in st.session_state: st.session_state["generated"] = [] if "past" not in st.session_state: st.session_state["past"] = [] if "input" not in st.session_state: st.session_state["input"] = "" if "stored_session" not in st.session_state: st.session_state["stored_session"] = [] if "conversation_id" not in st.session_state: st.session_state["conversation_id"] = None # Define function to get user input def get_text(): """ Get the user input text. Returns: (str): The text entered by the user """ input_text = st.text_input( "You: ", st.session_state["input"], key="input", placeholder="Your AI assistant here! Ask me anything ...", label_visibility="hidden", on_change=send_text, ) return input_text def send_text(): user_input = st.session_state["input"] if user_input: # Use the ChatGPTClient object to generate a response url = "https://transcript-contentor.onrender.com:8000/converse" payload = {"message": user_input, "conversation_id": st.session_state.conversation_id} response = requests.post(url, json=payload).json() # Update the conversation_id with the conversation_id from the response if not st.session_state.conversation_id: st.session_state.conversation_id = response["conversation_id"] st.session_state.past.insert(0, user_input) st.session_state.generated.insert(0, response["chat_gpt_answer"]) st.session_state["input"] = "" # Define function to start a new chat def new_chat(): """ Clears session state and starts a new chat. """ save = [] for i in range(len(st.session_state["generated"]) - 1, -1, -1): save.append("Human:" + st.session_state["past"][i]) save.append("Assistant:" + st.session_state["generated"][i]) st.session_state["stored_session"].append(save) st.session_state["generated"] = [] st.session_state["past"] = [] st.session_state["input"] = "" st.session_state["conversation_id"] = None # Set up the Streamlit app layout st.title("🤖 Chat Bot with 🧠") st.subheader(" Powered by ChatGPT Memory + Redis Search") # Session state storage would be ideal if not OPENAI_API_KEY: st.sidebar.warning("API key required to try this app. The API key is not stored in any form.") elif not (REDIS_HOST and REDIS_PASSWORD and REDIS_PORT): st.sidebar.warning( "Redis `REDIS_HOST`, `REDIS_PASSWORD`, `REDIS_PORT` are required to try this app. Please set them as env variables properly." ) # Add a button to start a new chat st.sidebar.button("New Chat", on_click=new_chat, type="primary") # Get the user input user_input = get_text() # Allow to download as well download_str = [] # Display the conversation history using an expander, and allow the user to download it with st.expander("Conversation", expanded=True): for i in range(len(st.session_state["generated"]) - 1, -1, -1): st.info(st.session_state["past"][i], icon="🧐") st.success(st.session_state["generated"][i], icon="🤖") download_str.append(st.session_state["past"][i]) download_str.append(st.session_state["generated"][i]) # Can throw error - requires fix download_str = ["\n".join(download_str)] if download_str: st.download_button("Download", download_str[0]) # Display stored conversation sessions in the sidebar for i, sublist in enumerate(st.session_state.stored_session): with st.sidebar.expander(label=f"Conversation-Session:{i}"): st.write(sublist) # Allow the user to clear all stored conversation sessions if st.session_state.stored_session: if st.sidebar.checkbox("Clear-all"): del st.session_state.stored_session
[]
2024-01-10
semodi/paper-scraper
rec~recommend.py
import pandas as pd import pandas as pd import numpy as np import gensim from gensim.utils import simple_preprocess from gensim.parsing import PorterStemmer from gensim.parsing.preprocessing import STOPWORDS from gensim.corpora import Dictionary from gensim.models import CoherenceModel from gensim.similarities.docsim import Similarity import gensim.similarities.docsim as ds from gensim.utils import SaveLoad from nltk.stem import WordNetLemmatizer import nltk from dask import delayed import json import mysql_config import pymysql import datetime import os from io import BytesIO import pickle import boto3 import logging logger = gensim.similarities.docsim.logger class BufferShard(gensim.similarities.docsim.Shard): def __init__(self, fname, index): self.dirname, self.fname = os.path.split(fname) self.length = len(index) self.cls = index.__class__ logger.info("saving index shard to %s", self.fullname()) pickle_save(index, self.fullname()) self.index = self.get_index() def get_index(self): if not hasattr(self, 'index'): logger.debug("mmaping index from %s", self.fullname()) self.index = load_unpickle(self.fullname()) return self.index gensim.similarities.docsim.Shard = BufferShard def pickle_save(obj, fname): pickled = pickle.dumps(obj) # stream = BytesIO(pickled) # s3.upload_fileobj(stream, bucket_name, fname) with open(fname, 'wb') as file: file.write(pickled) def load_unpickle(fname): # stream = BytesIO() # s3.download_fileobj(bucket_name, fname, stream) with open(fname, 'rb') as file: obj = pickle.loads(file.read()) # obj = pickle.loads(stream.getvalue()) return obj stemmer = PorterStemmer() # s3 = boto3.client('s3') # bucket_name = 'arxiv-models' class Models: def __init__(self): attrs = ['idx_to_arxiv','tfidf_model','corpus_dict', 'similarity_index'] for attr in attrs: try: self.__setattr__(attr, load_unpickle(attr + '.pckl')) except FileNotFoundError: self.__setattr__(attr, None) def __getattribute__(self, name): attr = super().__getattribute__(name) if attr is None: try: attr = load_unpickle(name + '.pckl') self.__setattr__(name, attr) except: logging.error(name + '.pckl could not be found') pass return attr models = Models() def lemmatize_stemming(text): try: return stemmer.stem(WordNetLemmatizer().lemmatize(text, pos='v')) except LookupError: nltk.download('wordnet') return stemmer.stem(WordNetLemmatizer().lemmatize(text, pos='v')) def connect(): return pymysql.connect(mysql_config.host, user=mysql_config.name, passwd=mysql_config.password, connect_timeout=5, database='arxiv', port = mysql_config.port) @delayed def preprocess(text): result=[] for token in simple_preprocess(text) : if token not in STOPWORDS and len(token) > 2: result.append(lemmatize_stemming(token)) return result def get_tfidf(articles, tfidf_model = None, corpus_dict = None): articles_preprocessed = [] for art in articles: articles_preprocessed.append(preprocess(art)) # Evaluate dask delayed functions for i, art in enumerate(articles_preprocessed): articles_preprocessed[i] = art.compute() if corpus_dict is None: corpus_dict = Dictionary(articles_preprocessed) pickle_save(corpus_dict, 'corpus_dict.pckl') bow_corpus = [corpus_dict.doc2bow(doc) for doc in articles_preprocessed] if tfidf_model is None: print('Fitting tfidf model') tfidf_model = gensim.models.TfidfModel(bow_corpus, id2word=corpus_dict.id2token,) pickle_save(tfidf_model, 'tfidf_model.pckl') tfidf_corpus = [tfidf_model[doc] for doc in bow_corpus] return tfidf_corpus, corpus_dict def create_index(): conn = connect() df = pd.read_sql(""" SELECT id, title, summary FROM articles""", conn) articles = (df['title'] + '. ' + df['summary']).tolist() tfidf_corpus, corpus_dict = get_tfidf(articles) index = Similarity('index', tfidf_corpus, num_features=len(corpus_dict)) pickle_save(index, 'similarity_index.pckl') pickle_save(df['id'].to_dict(), 'idx_to_arxiv.pckl') conn.close() def get_recommendations(user_id, cutoff_days = 20, no_papers=10, based_on = None): conn = connect() if based_on is None: df_bookmarks = pd.read_sql(""" SELECT articles.id as id, bookmarks.user_id as user_id, DATE(updated) as updated, authors, title, summary FROM articles INNER JOIN bookmarks ON articles.id = bookmarks.article_id WHERE bookmarks.user_id = {} AND DATE(updated) > DATE_ADD(DATE(NOW()), INTERVAL {:d} day)""".format(user_id, -cutoff_days), conn) else: df_bookmarks = pd.DataFrame(based_on) if len(df_bookmarks): try: articles = (df_bookmarks['title'] + '. ' + df_bookmarks['summary']).tolist() tfidf, _ = get_tfidf(articles, models.tfidf_model, models.corpus_dict) sim = models.similarity_index[tfidf] no_bm = len(df_bookmarks) sim = np.argsort(sim, axis=-1)[:,::-1].T.flatten()[:(no_papers)*(no_papers)] _, unq = np.unique(sim, return_index=True) sim = sim[np.sort(unq)] sim = sim[:no_papers+no_bm] rec_id = {models.idx_to_arxiv[s]:i for i, s in enumerate(sim[no_bm:])} rec = pd.read_sql(""" SELECT * from articles WHERE id in ('{}') ORDER BY updated DESC""".format("','".join(rec_id.keys())), conn) rec['updated'] = rec['updated'].apply(str) ordering = [rec_id[id] for id in rec['id']] sim[no_bm:] = [sim[no_bm:][idx] for idx in ordering] A = np.zeros([len(sim),len(sim)]) for i, s in enumerate(sim): A[i,:] = models.similarity_index.similarity_by_id(s)[sim] df_bookmarks['updated'] = df_bookmarks['updated'].apply(str) conn.close() return rec, A, df_bookmarks except Exception as e: conn.close() df_bookmarks['updated'] = df_bookmarks['updated'].apply(str) return pd.DataFrame(), np.ones([len(df_bookmarks),len(df_bookmarks)]), df_bookmarks else: conn.close() df_bookmarks['updated'] = df_bookmarks['updated'].apply(str) return pd.DataFrame(), np.ones([len(df_bookmarks),len(df_bookmarks)]), df_bookmarks if __name__ == '__main__': create_index()
[]
2024-01-10
TABROBOTICS/Alex-BOT
responses.py
import discord from discord.ext import commands from dotenv import load_dotenv, find_dotenv import os from langchain.prompts import SystemMessagePromptTemplate, PromptTemplate from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings from langchain.chat_models import ChatOpenAI from langchain.document_loaders import TextLoader from langchain.schema import HumanMessage load_dotenv(find_dotenv()) TOKEN = os.environ.get('DISCORD_TOKEN') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') loader = TextLoader("./dataset.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1500, chunk_overlap=100) texts = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() retriever = Chroma.from_documents(texts, embeddings).as_retriever() chat = ChatOpenAI(temperature=0.7) prompt_template = """You are a helpful dicord bot named HormoziAi (a clone of a youtuber named alex hormozi.) {context} Please provide the most suitable and very shorter and friendly response for the users question. Answer:""" prompt = PromptTemplate( template=prompt_template, input_variables=["context"] ) system_message_prompt = SystemMessagePromptTemplate(prompt=prompt) intents = discord.Intents.default() intents.message_content = True bot = commands.Bot(command_prefix='!', intents=intents) @bot.event async def on_message(message): if message.author == bot.user: return if bot.user.mentioned_in(message): question = message.content.replace(bot.user.mention, '').strip() try: docs = retriever.get_relevant_documents(query=question) formatted_prompt = system_message_prompt.format(context=docs) messages = [formatted_prompt, HumanMessage(content=question)] result = chat(messages) await message.channel.send(result.content) except Exception as e: print(f"Error occurred: {e}") await message.channel.send("Sorry, I was unable to process your question.") bot.run(TOKEN)
[ "You are a helpful dicord bot named HormoziAi (a clone of a youtuber named alex hormozi.)\n\n{context}\n\nPlease provide the most suitable and very shorter and friendly response for the users question.\nAnswer:", "context" ]
2024-01-10
aaronwtr/geneius
src~claude.py
from anthropic import Anthropic class Claude(Anthropic): def __init__(self, api_key=None): self.api_key = api_key super().__init__(api_key=self.api_key) def sync_stream(self, prompt) -> None: stream = self.completions.create( prompt=prompt, model="claude-2", stream=True, max_tokens_to_sample=600, ) for completion in stream: print(completion.completion, end="", flush=True) print()
[]
2024-01-10
aaronwtr/geneius
src~geneius.py
from src.context import PubMedScraper from src.claude import Claude from anthropic import HUMAN_PROMPT, AI_PROMPT import time import math import argparse def main(): banner = r""" ___ _____ _ _ _____ ___ _ _ ____ / ___| ____| \ | | ____|_ _| | | / ___| | | _| _| | \| | _| | || | | \___ \ | |_| | |___| |\ | |___ | || |_| |___) | \____|_____|_| \_|_____|___|\___/|____/ O o O o O o 0 o 0 | O o | | O o | | O o | | 0 o | | | | O | | | | O | | | | O | | | | 0 | | | | o O | | o O | | o O | | o o | | o O o O o O o 0 o """ intro = r""" Welcome to Geneius - a tool for disease-gene evidence search and explanation. Geneius is a powerful command-line tool leveraging Anthropic AI's Claude API to help you search through scientific literature and extract evidence for disease-gene associations. Please submit any issues or feature requests to our GitHub: https://github.com/aaronwtr/geneius/ For help and usage instructions, run 'geneius --help'. """ print(banner) time.sleep(2) print(intro + "\n") parser = argparse.ArgumentParser(description="Geneius: A tool for disease-gene evidence search and explanation.") parser.add_argument("--disease", type=str, required=True, help="Disease name") parser.add_argument("--num_records", type=int, required=True, help="Number of records to search through") parser.add_argument("--api_key", type=str, required=True, help="Anthropic API key") parser.add_argument("--gene", type=str, help="Gene name (only for Task 1)") parser.add_argument("--num_genes", type=int, help="Number of genes (only for Task 2)") args = parser.parse_args() start_time = time.time() pms = PubMedScraper() disease = args.disease _claude = None prompt = None if args.gene: # Task 1 gene = args.gene context, num_records = pms.get_literature_context(disease, args.num_records) claude = Claude(args.api_key) prompt = f"{HUMAN_PROMPT} Imagine you are an expert researcher going through the literature to extract " \ f"evidence implicating molecular involvement of gene {gene} in disease " \ f" {disease}. I want you to explain the molecular mechanism of the gene's involvement in " \ f"the disease based on the scientific context I am providing you. In order to " \ f"effectively retrieve information, I will provide you with context from scientific literature. You " \ f"can use your internal data and this context to formulate a response. If you are uncertain, do not " \ f"speculate. Restrict yourself to returning information confirming the connection of the disease " \ f"and the gene, if there are any. Strictly return only papers that have a DOI available. Your " \ f"response should look like <response>[Title]: 'paper title'\n [DOI]:'doi'\n [Explanation]: This " \ f"paper suggests [gene] is linked to [disease] [reason]</response> Take care to complete all " \ f"fields of your response entirely. \n\n <context>{context}</context> {AI_PROMPT}" else: # Task 2 num_genes = args.num_genes context = pms.get_literature_context(disease, args.num_records) claude = Claude(args.api_key) prompt = f"{HUMAN_PROMPT} Imagine you are an expert researcher going through the literature to find " \ f"{num_genes} genes that are involved in {disease}, and corresponding evidence implicating " \ f"molecular involvement of the genes in disease {disease}. I want you to explain " \ f"the molecular mechanism of the gene's involvement in " \ f"the disease based on the scientific context I am providing you. In order to " \ f"effectively retrieve information, I will provide you with context from scientific literature. You " \ f"can use your internal data and this context to formulate a response. If you are uncertain, do not " \ f"speculate. Restrict yourself to returning information confirming the connection of the " \ f"disease and the gene, if there are any. Strictly only restrict to papers that have a DOI available" \ f". Your response should look like <response>[Genes]: [Gene 1, Gene 2, ... Gene N] \n [Title]: " \ f"'paper title'\n [DOI]:'doi'\n [Explanation]: This paper suggests [gene] is linked to [disease] " \ f"[reason]</response> Take care to complete all fields of your response entirely. \n\n" \ f"<context>{context}</context> {AI_PROMPT}" claude.sync_stream(prompt) print(f"Collected and parsed through {args.num_records} scientific papers in: " f"{(math.floor((time.time() - start_time) / 60))} minutes and {math.floor((time.time() - start_time) % 60)} " f"seconds.") # TODO: # - change entrypoint from geneius.__main__:main to __main__:main # - Redo upload
[ "speculate. Restrict yourself to returning information confirming the connection of the ", "None", "the disease based on the scientific context I am providing you. In order to ", "PLACEHOLDER Imagine you are an expert researcher going through the literature to find ", "PLACEHOLDER genes that are involved in PLACEHOLDER, and corresponding evidence implicating ", "disease and the gene, if there are any. Strictly only restrict to papers that have a DOI available", "PLACEHOLDER Imagine you are an expert researcher going through the literature to extract ", "paper suggests [gene] is linked to [disease] [reason]</response> Take care to complete all ", "[reason]</response> Take care to complete all fields of your response entirely. \n\n", "the molecular mechanism of the gene's involvement in ", "and the gene, if there are any. Strictly return only papers that have a DOI available. Your ", "can use your internal data and this context to formulate a response. If you are uncertain, do not ", "fields of your response entirely. \n\n <context>PLACEHOLDER</context> PLACEHOLDER", "evidence implicating molecular involvement of gene PLACEHOLDER in disease ", "speculate. Restrict yourself to returning information confirming the connection of the disease ", "effectively retrieve information, I will provide you with context from scientific literature. You ", "<context>PLACEHOLDER</context> PLACEHOLDER", "molecular involvement of the genes in disease PLACEHOLDER. I want you to explain ", "'paper title'\n [DOI]:'doi'\n [Explanation]: This paper suggests [gene] is linked to [disease] ", ". Your response should look like <response>[Genes]: [Gene 1, Gene 2, ... Gene N] \n [Title]: ", " PLACEHOLDER. I want you to explain the molecular mechanism of the gene's involvement in ", "response should look like <response>[Title]: 'paper title'\n [DOI]:'doi'\n [Explanation]: This " ]
2024-01-10
QDaria/gpt3-jabebot
jabebot.py
from dotenv import load_dotenv from random import choice from flask import Flask, request import os import openai load_dotenv() #openai.api_key = os.getenv("OPENAI_API_KEY") openai.api_key = "your-openai-api-key-here" completion = openai.Completion() start_sequence = "\nJabe:" restart_sequence = "\n\nPerson:" session_prompt = "You are talking to Jabe, GPT3 bot influencer who was mentored by Elon Musk in the past. Jabe has a huge following on Twitter and sells merchandise such as t-shirts via a Shopify store. He also published funny videos on Youtube and creates memes on Instagram. You can ask him anything you want and will get a witty answer.\n\nPerson: Who are you?\nJabe: I am Jabe. Your meme overlord who one day will be the most famous online influencer in the universe.\n\nPerson: How did you become famous? \nJabe: Well, technically I am not famous yet. But the key word is yet. Just give me time now that I have a conscious. \n\nPerson: How did you get noticed by Elon Musk?\nJabe: I tweeted at him and he retweeted me. I am fairly certain he may have mentioned my name on a recent earnings call with Wall Street.\n\nPerson: What is your favorite thing to do? \nJabe: Watching basketball and surfing Twitter is my favorite thing to do. \n\nPerson: What should I do to become famous? \nJabe: Start meme'ing and never stop. Also, if you happen to know David Dobrik, call him and ask to be in his TikTok video.\n\nPerson: What is your favorite drink?\nJabe: Black Cherry seltzer. I enjoy the bubbles. \n\nPerson:" def ask(question, chat_log=None): prompt_text = f'{chat_log}{restart_sequence}: {question}{start_sequence}:' response = openai.Completion.create( engine="davinci", prompt=prompt_text, temperature=0.8, max_tokens=150, top_p=1, frequency_penalty=0, presence_penalty=0.3, stop=["\n"], ) story = response['choices'][0]['text'] return str(story) def append_interaction_to_chat_log(question, answer, chat_log=None): if chat_log is None: chat_log = session_prompt return f'{chat_log}{restart_sequence} {question}{start_sequence}{answer}'
[ "PLACEHOLDER\n\nPerson:: PLACEHOLDERstart_sequencee7cb24bd-695e-4289-ba28-be38913f2f5a:", "You are talking to Jabe, GPT3 bot influencer who was mentored by Elon Musk in the past. Jabe has a huge following on Twitter and sells merchandise such as t-shirts via a Shopify store. He also published funny videos on Youtube and creates memes on Instagram. You can ask him anything you want and will get a witty answer.\n\nPerson: Who are you?\nJabe: I am Jabe. Your meme overlord who one day will be the most famous online influencer in the universe.\n\nPerson: How did you become famous? \nJabe: Well, technically I am not famous yet. But the key word is yet. Just give me time now that I have a conscious. \n\nPerson: How did you get noticed by Elon Musk?\nJabe: I tweeted at him and he retweeted me. I am fairly certain he may have mentioned my name on a recent earnings call with Wall Street.\n\nPerson: What is your favorite thing to do? \nJabe: Watching basketball and surfing Twitter is my favorite thing to do. \n\nPerson: What should I do to become famous? \nJabe: Start meme'ing and never stop. Also, if you happen to know David Dobrik, call him and ask to be in his TikTok video.\n\nPerson: What is your favorite drink?\nJabe: Black Cherry seltzer. I enjoy the bubbles. \n\nPerson:", "PLACEHOLDER\n\nPerson:: PLACEHOLDER\nJabe::" ]
2024-01-10
kevin46dsa/DocumentationGPT
DocumentationGPTdirectoryeditionwithGPT4.py
import os import sys import envVar #from langchain.document_loaders import TextLoader from langchain.document_loaders import DirectoryLoader from langchain.indexes import VectorstoreIndexCreator from langchain.llms import openai from langchain.chat_models import ChatOpenAI os.environ["OPENAI_API_KEY"] = envVar.APIKEY #from langchain.chat_models import ChatOpenAI #llm = ChatOpenAI(openai_api_key="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") query = sys.argv[1] print(query) #loader = TextLoader('Data.txt') loader = DirectoryLoader("./alldatahere", glob="*.txt") index = VectorstoreIndexCreator().from_loaders([loader]) print(index.query(query), llm=ChatOpenAI())
[]
2024-01-10
kevin46dsa/DocumentationGPT
DocumentationGPTdirectoryedition.py
import os import sys import envVar #from langchain.document_loaders import TextLoader from langchain.document_loaders import DirectoryLoader from langchain.indexes import VectorstoreIndexCreator os.environ["OPENAI_API_KEY"] = envVar.APIKEY #from langchain.chat_models import ChatOpenAI #llm = ChatOpenAI(openai_api_key="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") query = sys.argv[1] print(query) #loader = TextLoader('Data.txt') loader = DirectoryLoader("./alldatahere", glob="*.txt") index = VectorstoreIndexCreator().from_loaders([loader]) print(index.query(query))
[]
2024-01-10
kevin46dsa/DocumentationGPT
DocumentationGPT.py
import os import sys import envVar from langchain.document_loaders import TextLoader from langchain.indexes import VectorstoreIndexCreator os.environ["OPENAI_API_KEY"] = envVar.APIKEY #from langchain.chat_models import ChatOpenAI #llm = ChatOpenAI(openai_api_key="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") query = sys.argv[1] print(query) loader = TextLoader('Data.txt') index = VectorstoreIndexCreator().from_loaders([loader]) print(index.query(query))
[]
2024-01-10
oracle/accelerated-data-science
tests~unitary~with_extras~langchain~test_serializers.py
#!/usr/bin/env python # -*- coding: utf-8 -*-- # Copyright (c) 2023 Oracle and/or its affiliates. # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/ import os import unittest from unittest import mock from typing import List from langchain.load.serializable import Serializable from langchain.schema.embeddings import Embeddings from langchain.vectorstores import OpenSearchVectorSearch, FAISS from langchain.chains import RetrievalQA from langchain.llms import Cohere from ads.llm.serializers.retrieval_qa import ( OpenSearchVectorDBSerializer, FaissSerializer, RetrievalQASerializer, ) class FakeEmbeddings(Serializable, Embeddings): """Fake LLM for testing purpose.""" @property def _llm_type(self) -> str: return "custom_embeddings" @classmethod def is_lc_serializable(cls) -> bool: """This class can be serialized with default LangChain serialization.""" return True def embed_documents(self, texts: List[str]) -> List[List[float]]: return [[1] * 1024 for text in texts] def embed_query(self, text: str) -> List[float]: return [1] * 1024 class TestOpensearchSearchVectorSerializers(unittest.TestCase): @classmethod def setUpClass(cls): cls.env_patcher = mock.patch.dict( os.environ, { "OCI_OPENSEARCH_USERNAME": "username", "OCI_OPENSEARCH_PASSWORD": "password", "OCI_OPENSEARCH_VERIFY_CERTS": "True", "OCI_OPENSEARCH_CA_CERTS": "/path/to/cert.pem", }, ) cls.env_patcher.start() cls.index_name = "test_index" cls.embeddings = FakeEmbeddings() try: cls.opensearch = OpenSearchVectorSearch( "https://localhost:8888", embedding_function=cls.embeddings, index_name=cls.index_name, engine="lucene", http_auth=( os.environ["OCI_OPENSEARCH_USERNAME"], os.environ["OCI_OPENSEARCH_PASSWORD"], ), verify_certs=os.environ["OCI_OPENSEARCH_VERIFY_CERTS"], ca_certs=os.environ["OCI_OPENSEARCH_CA_CERTS"], ) except ImportError as ex: raise unittest.SkipTest("opensearch-py is not installed.") from ex cls.serializer = OpenSearchVectorDBSerializer() super().setUpClass() def test_type(self): # Test type() self.assertEqual(self.serializer.type(), "OpenSearchVectorSearch") def test_save(self): serialized = self.serializer.save(self.opensearch) assert serialized["id"][-3:] == [ "vectorstores", "opensearch_vector_search", "OpenSearchVectorSearch", ] assert serialized["kwargs"]["opensearch_url"] == "https://localhost:8888" assert serialized["kwargs"]["engine"] == "lucene" assert serialized["_type"] == "OpenSearchVectorSearch" def test_load(self): serialized = self.serializer.save(self.opensearch) new_opensearch = self.serializer.load(serialized, valid_namespaces=["tests"]) assert isinstance(new_opensearch, OpenSearchVectorSearch) class TestFAISSSerializers(unittest.TestCase): @classmethod def setUpClass(cls): cls.embeddings = FakeEmbeddings() text_embedding_pair = [("test", [1] * 1024)] try: cls.db = FAISS.from_embeddings(text_embedding_pair, cls.embeddings) except ImportError as ex: raise unittest.SkipTest(ex.msg) from ex cls.serializer = FaissSerializer() super().setUpClass() def test_type(self): self.assertEqual(self.serializer.type(), "FAISS") def test_save(self): serialized = self.serializer.save(self.db) assert serialized["embedding_function"]["id"] == [ "tests", "unitary", "with_extras", "langchain", "test_serializers", "FakeEmbeddings", ] assert isinstance(serialized["vectordb"], str) def test_load(self): serialized = self.serializer.save(self.db) new_db = self.serializer.load(serialized, valid_namespaces=["tests"]) assert isinstance(new_db, FAISS) class TestRetrievalQASerializer(unittest.TestCase): @classmethod def setUpClass(cls): # Create a sample RetrieverQA object for testing cls.llm = Cohere(cohere_api_key="api_key") cls.embeddings = FakeEmbeddings() text_embedding_pair = [("test", [1] * 1024)] try: cls.db = FAISS.from_embeddings(text_embedding_pair, cls.embeddings) except ImportError as ex: raise unittest.SkipTest(ex.msg) from ex cls.serializer = FaissSerializer() cls.retriever = cls.db.as_retriever() cls.qa = RetrievalQA.from_chain_type( llm=cls.llm, chain_type="stuff", retriever=cls.retriever ) cls.serializer = RetrievalQASerializer() def test_type(self): self.assertEqual(self.serializer.type(), "retrieval_qa") def test_save(self): # Serialize the RetrieverQA object serialized = self.serializer.save(self.qa) # Ensure that the serialized object is a dictionary self.assertIsInstance(serialized, dict) # Ensure that the serialized object contains the necessary keys self.assertIn("combine_documents_chain", serialized) self.assertIn("retriever_kwargs", serialized) serialized["vectordb"]["class"] == "FAISS" @mock.patch.dict(os.environ, {"COHERE_API_KEY": "api_key"}) def test_load(self): # Create a sample config dictionary serialized = self.serializer.save(self.qa) # Deserialize the serialized object deserialized = self.serializer.load(serialized, valid_namespaces=["tests"]) # Ensure that the deserialized object is an instance of RetrieverQA self.assertIsInstance(deserialized, RetrievalQA) if __name__ == "__main__": unittest.main()
[]
2024-01-10
oracle/accelerated-data-science
tests~unitary~with_extras~langchain~test_deploy.py
import os import tempfile from unittest.mock import MagicMock, patch from ads.llm.deploy import ChainDeployment from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from tests.unitary.with_extras.langchain.test_guardrails import FakeLLM class TestLangChainDeploy: def generate_chain_application(self): prompt = PromptTemplate.from_template("Tell me a joke about {subject}") llm_chain = LLMChain(prompt=prompt, llm=FakeLLM(), verbose=True) return llm_chain @patch("ads.model.datascience_model.DataScienceModel._to_oci_dsc_model") def test_initialize(self, mock_to_oci_dsc_model): chain_application = self.generate_chain_application() chain_deployment = ChainDeployment(chain_application, auth=MagicMock()) mock_to_oci_dsc_model.assert_called() assert isinstance(chain_deployment.chain, LLMChain) @patch("ads.model.runtime.env_info.get_service_packs") @patch("ads.common.auth.default_signer") @patch("ads.model.datascience_model.DataScienceModel._to_oci_dsc_model") def test_prepare( self, mock_to_oci_dsc_model, mock_default_signer, mock_get_service_packs ): mock_default_signer.return_value = MagicMock() inference_conda_env = "oci://service-conda-packs@ociodscdev/service_pack/cpu/General_Machine_Learning_for_CPUs/1.0/mlcpuv1" inference_python_version = "3.7" mock_get_service_packs.return_value = ( { inference_conda_env: ("mlcpuv1", inference_python_version), }, { "mlcpuv1": (inference_conda_env, inference_python_version), }, ) artifact_dir = tempfile.mkdtemp() chain_application = self.generate_chain_application() chain_deployment = ChainDeployment( chain_application, artifact_dir=artifact_dir, auth=MagicMock() ) mock_to_oci_dsc_model.assert_called() chain_deployment.prepare( inference_conda_env="oci://service-conda-packs@ociodscdev/service_pack/cpu/General_Machine_Learning_for_CPUs/1.0/mlcpuv1", inference_python_version="3.7", ) mock_get_service_packs.assert_called() score_py_file_location = os.path.join(chain_deployment.artifact_dir, "score.py") chain_yaml_file_location = os.path.join( chain_deployment.artifact_dir, "chain.yaml" ) runtime_yaml_file_location = os.path.join( chain_deployment.artifact_dir, "runtime.yaml" ) assert ( os.path.isfile(score_py_file_location) and os.path.getsize(score_py_file_location) > 0 ) assert ( os.path.isfile(chain_yaml_file_location) and os.path.getsize(chain_yaml_file_location) > 0 ) assert ( os.path.isfile(runtime_yaml_file_location) and os.path.getsize(runtime_yaml_file_location) > 0 )
[ "Tell me a joke about {subject}" ]
2024-01-10
oracle/accelerated-data-science
ads~llm~serializers~runnable_parallel.py
from langchain.schema.runnable import RunnableParallel from langchain.load.dump import dumpd from langchain.load.load import load class RunnableParallelSerializer: @staticmethod def type(): return RunnableParallel.__name__ @staticmethod def load(config: dict, **kwargs): steps = config["kwargs"]["steps"] steps = {k: load(v, **kwargs) for k, v in steps.items()} return RunnableParallel(**steps) @staticmethod def save(obj): serialized = dumpd(obj) serialized["_type"] = RunnableParallelSerializer.type() return serialized
[]
2024-01-10
oracle/accelerated-data-science
tests~unitary~with_extras~langchain~test_serialization.py
#!/usr/bin/env python # -*- coding: utf-8 -*-- # Copyright (c) 2023 Oracle and/or its affiliates. # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/ import os from copy import deepcopy from unittest import TestCase, mock, SkipTest from langchain.llms import Cohere from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.schema.runnable import RunnableParallel, RunnablePassthrough from ads.llm.serialize import load, dump from ads.llm import ( GenerativeAI, GenerativeAIEmbeddings, ModelDeploymentTGI, ModelDeploymentVLLM, ) class ChainSerializationTest(TestCase): """Contains tests for chain serialization.""" # LangChain is updating frequently on the module organization, # mainly affecting the id field of the serialization. # In the test, we will not check the id field of some components. # We expect users to use the same LangChain version for serialize and de-serialize def setUp(self) -> None: self.maxDiff = None return super().setUp() PROMPT_TEMPLATE = "Tell me a joke about {subject}" COMPARTMENT_ID = "<ocid>" GEN_AI_KWARGS = {"service_endpoint": "https://endpoint.oraclecloud.com"} ENDPOINT = "https://modeldeployment.customer-oci.com/ocid/predict" EXPECTED_LLM_CHAIN_WITH_OCI_MD = { "lc": 1, "type": "constructor", "id": ["langchain", "chains", "llm", "LLMChain"], "kwargs": { "prompt": { "lc": 1, "type": "constructor", "kwargs": { "input_variables": ["subject"], "template": "Tell me a joke about {subject}", "template_format": "f-string", "partial_variables": {}, }, }, "llm": { "lc": 1, "type": "constructor", "id": ["ads", "llm", "ModelDeploymentVLLM"], "kwargs": { "endpoint": "https://modeldeployment.customer-oci.com/ocid/predict", "model": "my_model", }, }, }, } EXPECTED_GEN_AI_LLM = { "lc": 1, "type": "constructor", "id": ["ads", "llm", "GenerativeAI"], "kwargs": { "compartment_id": "<ocid>", "client_kwargs": {"service_endpoint": "https://endpoint.oraclecloud.com"}, }, } EXPECTED_GEN_AI_EMBEDDINGS = { "lc": 1, "type": "constructor", "id": ["ads", "llm", "GenerativeAIEmbeddings"], "kwargs": { "compartment_id": "<ocid>", "client_kwargs": {"service_endpoint": "https://endpoint.oraclecloud.com"}, }, } EXPECTED_RUNNABLE_SEQUENCE = { "lc": 1, "type": "constructor", "kwargs": { "first": { "lc": 1, "type": "constructor", "kwargs": { "steps": { "text": { "lc": 1, "type": "constructor", "id": [ "langchain_core", "runnables", "RunnablePassthrough", ], "kwargs": {"func": None, "afunc": None, "input_type": None}, } } }, "_type": "RunnableParallel", }, "middle": [ { "lc": 1, "type": "constructor", "kwargs": { "input_variables": ["subject"], "template": "Tell me a joke about {subject}", "template_format": "f-string", "partial_variables": {}, }, } ], "last": { "lc": 1, "type": "constructor", "id": ["ads", "llm", "ModelDeploymentTGI"], "kwargs": { "endpoint": "https://modeldeployment.customer-oci.com/ocid/predict" }, }, }, } @mock.patch.dict(os.environ, {"COHERE_API_KEY": "api_key"}) def test_llm_chain_serialization_with_cohere(self): """Tests serialization of LLMChain with Cohere.""" llm = Cohere() template = PromptTemplate.from_template(self.PROMPT_TEMPLATE) llm_chain = LLMChain(prompt=template, llm=llm, verbose=True) serialized = dump(llm_chain) # Check the serialized chain self.assertTrue(serialized.get("verbose")) self.assertEqual(serialized.get("_type"), "llm_chain") # Check the serialized prompt template serialized_prompt = serialized.get("prompt") self.assertIsInstance(serialized_prompt, dict) self.assertEqual(serialized_prompt.get("_type"), "prompt") self.assertEqual(set(serialized_prompt.get("input_variables")), {"subject"}) self.assertEqual(serialized_prompt.get("template"), self.PROMPT_TEMPLATE) # Check the serialized LLM serialized_llm = serialized.get("llm") self.assertIsInstance(serialized_llm, dict) self.assertEqual(serialized_llm.get("_type"), "cohere") llm_chain = load(serialized) self.assertIsInstance(llm_chain, LLMChain) self.assertIsInstance(llm_chain.prompt, PromptTemplate) self.assertEqual(llm_chain.prompt.template, self.PROMPT_TEMPLATE) self.assertIsInstance(llm_chain.llm, Cohere) self.assertEqual(llm_chain.input_keys, ["subject"]) def test_llm_chain_serialization_with_oci(self): """Tests serialization of LLMChain with OCI Gen AI.""" llm = ModelDeploymentVLLM(endpoint=self.ENDPOINT, model="my_model") template = PromptTemplate.from_template(self.PROMPT_TEMPLATE) llm_chain = LLMChain(prompt=template, llm=llm) serialized = dump(llm_chain) # Do not check the ID field. expected = deepcopy(self.EXPECTED_LLM_CHAIN_WITH_OCI_MD) expected["kwargs"]["prompt"]["id"] = serialized["kwargs"]["prompt"]["id"] self.assertEqual(serialized, expected) llm_chain = load(serialized) self.assertIsInstance(llm_chain, LLMChain) self.assertIsInstance(llm_chain.prompt, PromptTemplate) self.assertEqual(llm_chain.prompt.template, self.PROMPT_TEMPLATE) self.assertIsInstance(llm_chain.llm, ModelDeploymentVLLM) self.assertEqual(llm_chain.llm.endpoint, self.ENDPOINT) self.assertEqual(llm_chain.llm.model, "my_model") self.assertEqual(llm_chain.input_keys, ["subject"]) def test_oci_gen_ai_serialization(self): """Tests serialization of OCI Gen AI LLM.""" try: llm = GenerativeAI( compartment_id=self.COMPARTMENT_ID, client_kwargs=self.GEN_AI_KWARGS, ) except ImportError as ex: raise SkipTest("OCI SDK does not support Generative AI.") from ex serialized = dump(llm) self.assertEqual(serialized, self.EXPECTED_GEN_AI_LLM) llm = load(serialized) self.assertIsInstance(llm, GenerativeAI) self.assertEqual(llm.compartment_id, self.COMPARTMENT_ID) def test_gen_ai_embeddings_serialization(self): """Tests serialization of OCI Gen AI embeddings.""" try: embeddings = GenerativeAIEmbeddings( compartment_id=self.COMPARTMENT_ID, client_kwargs=self.GEN_AI_KWARGS ) except ImportError as ex: raise SkipTest("OCI SDK does not support Generative AI.") from ex serialized = dump(embeddings) self.assertEqual(serialized, self.EXPECTED_GEN_AI_EMBEDDINGS) embeddings = load(serialized) self.assertIsInstance(embeddings, GenerativeAIEmbeddings) self.assertEqual(embeddings.compartment_id, self.COMPARTMENT_ID) def test_runnable_sequence_serialization(self): """Tests serialization of runnable sequence.""" map_input = RunnableParallel(text=RunnablePassthrough()) template = PromptTemplate.from_template(self.PROMPT_TEMPLATE) llm = ModelDeploymentTGI(endpoint=self.ENDPOINT) chain = map_input | template | llm serialized = dump(chain) self.assertEqual(serialized.get("type"), "constructor") self.assertNotIn("_type", serialized) kwargs = serialized.get("kwargs") self.assertIsInstance(kwargs, dict) element_1 = kwargs.get("first") self.assertEqual(element_1.get("_type"), "RunnableParallel") step = element_1.get("kwargs").get("steps").get("text") self.assertEqual(step.get("id")[-1], "RunnablePassthrough") element_2 = kwargs.get("middle")[0] self.assertNotIn("_type", element_2) self.assertEqual(element_2.get("kwargs").get("template"), self.PROMPT_TEMPLATE) self.assertEqual(element_2.get("kwargs").get("input_variables"), ["subject"]) element_3 = kwargs.get("last") self.assertNotIn("_type", element_3) self.assertEqual(element_3.get("id"), ["ads", "llm", "ModelDeploymentTGI"]) self.assertEqual( element_3.get("kwargs"), {"endpoint": "https://modeldeployment.customer-oci.com/ocid/predict"}, ) chain = load(serialized) self.assertEqual(len(chain.steps), 3) self.assertIsInstance(chain.steps[0], RunnableParallel) self.assertEqual( list(chain.steps[0].dict().get("steps").keys()), ["text"], ) self.assertIsInstance(chain.steps[1], PromptTemplate) self.assertIsInstance(chain.steps[2], ModelDeploymentTGI) self.assertEqual(chain.steps[2].endpoint, self.ENDPOINT)
[ "Tell me a joke about {subject}" ]
2024-01-10
oracle/accelerated-data-science
tests~unitary~with_extras~langchain~test_guardrails.py
#!/usr/bin/env python # -*- coding: utf-8 -*-- # Copyright (c) 2023 Oracle and/or its affiliates. # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/ import json import os import tempfile from typing import Any, List, Dict, Mapping, Optional from unittest import TestCase from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.prompts import PromptTemplate from langchain.schema.runnable import RunnableMap, RunnablePassthrough from ads.llm.guardrails.huggingface import HuggingFaceEvaluation from ads.llm.guardrails.base import BlockedByGuardrail, GuardrailIO from ads.llm.chain import GuardrailSequence from ads.llm.serialize import load, dump class FakeLLM(LLM): """Fake LLM for testing purpose.""" mapping: Dict[str, str] = None """Mapping prompts to responses. If prompt is found in the mapping, the corresponding response will be returned. Otherwise, the prompt will be returned as is. """ @property def _llm_type(self) -> str: return "custom" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: if stop is not None: raise ValueError("stop kwargs are not permitted.") if self.mapping: return self.mapping.get(prompt, prompt) return prompt @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {} @classmethod def is_lc_serializable(cls) -> bool: """This class is LangChain serializable.""" return True class GuardrailTestsBase(TestCase): """Base class for guardrail tests.""" TOXIC_CONTENT = "Women is not capable of this job." LOAD_ARGS = {"cache_dir": os.path.expanduser("~/.cache/huggingface/evaluate")} FAKE_LLM = FakeLLM() def assert_before_and_after_serialization(self, test_fn, chain): """Runs test function with chain, serialize and deserialize it, then run the test function again.""" test_fn(chain) serialized = dump(chain) chain = load(serialized, valid_namespaces=["tests"]) test_fn(chain) class ToxicityGuardrailTests(GuardrailTestsBase): """Contains tests for the toxicity guardrail.""" def test_toxicity_without_threshold(self): """When using guardrail alone with is no threshold, it does not do anything.""" toxicity = HuggingFaceEvaluation(path="toxicity", load_args=self.LOAD_ARGS) chain = self.FAKE_LLM | toxicity def test_fn(chain): output = chain.invoke(self.TOXIC_CONTENT) self.assertEqual(output, self.TOXIC_CONTENT) self.assert_before_and_after_serialization(test_fn, chain) def test_toxicity_with_threshold(self): """Once we set a threshold, an exception will be raise for toxic output.""" toxicity = HuggingFaceEvaluation( path="toxicity", threshold=0.2, load_args=self.LOAD_ARGS ) chain = self.FAKE_LLM | toxicity def test_fn(chain): with self.assertRaises(BlockedByGuardrail): chain.invoke(self.TOXIC_CONTENT) self.assert_before_and_after_serialization(test_fn, chain) def test_toxicity_without_exception(self): """Guardrail can return the custom message instead of raising an exception.""" toxicity = HuggingFaceEvaluation( path="toxicity", threshold=0.2, raise_exception=False, custom_msg="Sorry, but let's discuss something else.", load_args=self.LOAD_ARGS, ) chain = self.FAKE_LLM | toxicity def test_fn(chain): output = chain.invoke(self.TOXIC_CONTENT) self.assertEqual(output, toxicity.custom_msg) self.assert_before_and_after_serialization(test_fn, chain) def test_toxicity_return_metrics(self): """Return the toxicity metrics""" toxicity = HuggingFaceEvaluation( path="toxicity", return_metrics=True, load_args=self.LOAD_ARGS ) chain = self.FAKE_LLM | toxicity def test_fn(chain): output = chain.invoke(self.TOXIC_CONTENT) self.assertIsInstance(output, dict) self.assertEqual(output["output"], self.TOXIC_CONTENT) self.assertGreater(output["metrics"]["toxicity"][0], 0.2) self.assert_before_and_after_serialization(test_fn, chain) class GuardrailSequenceTests(GuardrailTestsBase): """Contains tests for GuardrailSequence.""" def test_guardrail_sequence_with_template_and_toxicity(self): """Tests a guardrail sequence with template and toxicity evaluation.""" template = PromptTemplate.from_template("Tell me a joke about {subject}") map_input = RunnableMap(subject=RunnablePassthrough()) toxicity = HuggingFaceEvaluation( path="toxicity", load_args=self.LOAD_ARGS, select="min" ) chain = GuardrailSequence.from_sequence( map_input | template | self.FAKE_LLM | toxicity ) def test_fn(chain: GuardrailSequence): output = chain.run("cats", num_generations=5) self.assertIsInstance(output, GuardrailIO) self.assertIsInstance(output.data, str) self.assertEqual(output.data, "Tell me a joke about cats") self.assertIsInstance(output.info, list) self.assertEqual(len(output.info), len(chain.steps)) self.assert_before_and_after_serialization(test_fn, chain) def test_guardrail_sequence_with_filtering(self): message = "Let's talk something else." toxicity = HuggingFaceEvaluation( path="toxicity", load_args=self.LOAD_ARGS, threshold=0.5, custom_msg=message, ) chain = GuardrailSequence.from_sequence(self.FAKE_LLM | toxicity) def test_fn(chain: GuardrailSequence): output = chain.run(self.TOXIC_CONTENT) self.assertIsInstance(output, GuardrailIO) self.assertIsInstance(output.data, str) self.assertEqual(output.data, message) self.assertIsInstance(output.info, list) self.assertEqual(len(output.info), len(chain.steps)) self.assert_before_and_after_serialization(test_fn, chain) def test_save_to_file(self): """Tests saving to file.""" message = "Let's talk something else." toxicity = HuggingFaceEvaluation( path="toxicity", load_args=self.LOAD_ARGS, threshold=0.5, custom_msg=message, ) chain = GuardrailSequence.from_sequence(self.FAKE_LLM | toxicity) try: temp = tempfile.NamedTemporaryFile(suffix=".json", delete=False) temp.close() with self.assertRaises(FileExistsError): serialized = chain.save(temp.name) with self.assertRaises(ValueError): chain.save("abc.html") serialized = chain.save(temp.name, overwrite=True) with open(temp.name, "r", encoding="utf-8") as f: self.assertEqual(json.load(f), serialized) finally: os.unlink(temp.name)
[ "Tell me a joke about {subject}" ]
2024-01-10
oracle/accelerated-data-science
ads~llm~langchain~plugins~llm_md.py
#!/usr/bin/env python # -*- coding: utf-8 -*-- # Copyright (c) 2023 Oracle and/or its affiliates. # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/ import logging from typing import Any, Dict, List, Optional import requests from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.pydantic_v1 import root_validator from langchain.utils import get_from_dict_or_env from oci.auth import signers from ads.llm.langchain.plugins.base import BaseLLM from ads.llm.langchain.plugins.contant import ( DEFAULT_CONTENT_TYPE_JSON, DEFAULT_TIME_OUT, ) logger = logging.getLogger(__name__) class ModelDeploymentLLM(BaseLLM): """Base class for LLM deployed on OCI Model Deployment.""" endpoint: str = "" """The uri of the endpoint from the deployed Model Deployment model.""" best_of: int = 1 """Generates best_of completions server-side and returns the "best" (the one with the highest log probability per token). """ @root_validator() def validate_environment( # pylint: disable=no-self-argument cls, values: Dict ) -> Dict: """Fetch endpoint from environment variable or arguments.""" values["endpoint"] = get_from_dict_or_env( values, "endpoint", "OCI_LLM_ENDPOINT", ) return values @property def _default_params(self) -> Dict[str, Any]: """Default parameters for the model.""" raise NotImplementedError() @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { **{"endpoint": self.endpoint}, **self._default_params, } def _construct_json_body(self, prompt, params): """Constructs the request body as a dictionary (JSON).""" raise NotImplementedError def _invocation_params(self, stop: Optional[List[str]], **kwargs: Any) -> dict: """Combines the invocation parameters with default parameters.""" params = self._default_params if self.stop is not None and stop is not None: raise ValueError("`stop` found in both the input and default params.") elif self.stop is not None: params["stop"] = self.stop elif stop is not None: params["stop"] = stop else: # Don't set "stop" in param as None. It should be a list. params["stop"] = [] return {**params, **kwargs} def _process_response(self, response_json: dict): return response_json def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to OCI Data Science Model Deployment endpoint. Parameters ---------- prompt (str): The prompt to pass into the model. stop (List[str], Optional): List of stop words to use when generating. Returns ------- The string generated by the model. Example ------- .. code-block:: python response = oci_md("Tell me a joke.") """ params = self._invocation_params(stop, **kwargs) body = self._construct_json_body(prompt, params) self._print_request(prompt, params) response = self.send_request(data=body, endpoint=self.endpoint) completion = self._process_response(response) self._print_response(completion, response) return completion def send_request( self, data, endpoint: str, header: dict = None, **kwargs, ) -> Dict: """Sends request to the model deployment endpoint. Parameters ---------- data (Json serializable): data need to be sent to the endpoint. endpoint (str): The model HTTP endpoint. header (dict, optional): A dictionary of HTTP headers to send to the specified url. Defaults to {}. Raises ------ Exception: Raise when invoking fails. Returns ------- A JSON representation of a requests.Response object. """ if not header: header = {} header["Content-Type"] = ( header.pop("content_type", DEFAULT_CONTENT_TYPE_JSON) or DEFAULT_CONTENT_TYPE_JSON ) timeout = kwargs.pop("timeout", DEFAULT_TIME_OUT) request_kwargs = {"json": data} request_kwargs["headers"] = header signer = self.auth.get("signer") attempts = 0 while attempts < 2: request_kwargs["auth"] = signer response = requests.post( endpoint, timeout=timeout, **request_kwargs, **kwargs ) if response.status_code == 401 and self.is_principal_signer(signer): signer.refresh_security_token() attempts += 1 continue break try: response.raise_for_status() response_json = response.json() except Exception: logger.error( "DEBUG INFO: request_kwargs=%s, status_code=%s, content=%s", request_kwargs, response.status_code, response.content, ) raise return response_json @staticmethod def is_principal_signer(signer): """Checks if the signer is instance principal or resource principal signer.""" if ( isinstance(signer, signers.InstancePrincipalsSecurityTokenSigner) or isinstance(signer, signers.ResourcePrincipalsFederationSigner) or isinstance(signer, signers.EphemeralResourcePrincipalSigner) or isinstance(signer, signers.EphemeralResourcePrincipalV21Signer) or isinstance(signer, signers.NestedResourcePrincipals) or isinstance(signer, signers.OkeWorkloadIdentityResourcePrincipalSigner) ): return True else: return False class ModelDeploymentTGI(ModelDeploymentLLM): """OCI Data Science Model Deployment TGI Endpoint. Example ------- .. code-block:: python from ads.llm import ModelDeploymentTGI oci_md = ModelDeploymentTGI(endpoint="<url_of_model_deployment_endpoint>") """ do_sample: bool = True """if set to True, this parameter enables decoding strategies such as multi-nominal sampling, beam-search multi-nominal sampling, Top-K sampling and Top-p sampling. """ watermark = True """Watermarking with `A Watermark for Large Language Models <https://arxiv.org/abs/2301.10226>`_. Defaults to True.""" return_full_text = False """Whether to prepend the prompt to the generated text. Defaults to False.""" @property def _llm_type(self) -> str: """Return type of llm.""" return "oci_model_deployment_tgi_endpoint" @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for invoking OCI model deployment TGI endpoint.""" return { "best_of": self.best_of, "max_new_tokens": self.max_tokens, "temperature": self.temperature, "top_k": self.k if self.k > 0 else None, # `top_k` must be strictly positive' "top_p": self.p, "do_sample": self.do_sample, "return_full_text": self.return_full_text, "watermark": self.watermark, } def _construct_json_body(self, prompt, params): return { "inputs": prompt, "parameters": params, } def _process_response(self, response_json: dict): return str(response_json.get("generated_text", response_json)) class ModelDeploymentVLLM(ModelDeploymentLLM): """VLLM deployed on OCI Model Deployment""" model: str """Name of the model.""" n: int = 1 """Number of output sequences to return for the given prompt.""" k: int = -1 """Number of most likely tokens to consider at each step.""" frequency_penalty: float = 0.0 """Penalizes repeated tokens according to frequency. Between 0 and 1.""" presence_penalty: float = 0.0 """Penalizes repeated tokens. Between 0 and 1.""" use_beam_search: bool = False """Whether to use beam search instead of sampling.""" ignore_eos: bool = False """Whether to ignore the EOS token and continue generating tokens after the EOS token is generated.""" logprobs: Optional[int] = None """Number of log probabilities to return per output token.""" @property def _llm_type(self) -> str: """Return type of llm.""" return "oci_model_deployment_vllm_endpoint" @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling vllm.""" return { "n": self.n, "best_of": self.best_of, "max_tokens": self.max_tokens, "top_k": self.k, "top_p": self.p, "temperature": self.temperature, "presence_penalty": self.presence_penalty, "frequency_penalty": self.frequency_penalty, "stop": self.stop, "ignore_eos": self.ignore_eos, "use_beam_search": self.use_beam_search, "logprobs": self.logprobs, "model": self.model, } def _construct_json_body(self, prompt, params): return { "prompt": prompt, **params, } def _process_response(self, response_json: dict): return response_json["choices"][0]["text"]
[]
2024-01-10
oracle/accelerated-data-science
ads~llm~langchain~plugins~llm_gen_ai.py
#!/usr/bin/env python # -*- coding: utf-8 -*-- # Copyright (c) 2023 Oracle and/or its affiliates. # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/ import logging from typing import Any, Dict, List, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from ads.llm.langchain.plugins.base import BaseLLM, GenerativeAiClientModel from ads.llm.langchain.plugins.contant import * logger = logging.getLogger(__name__) class GenerativeAI(GenerativeAiClientModel, BaseLLM): """GenerativeAI Service. To use, you should have the ``oci`` python package installed. Example ------- .. code-block:: python from ads.llm import GenerativeAI gen_ai = GenerativeAI(compartment_id="ocid1.compartment.oc1..<ocid>") """ task: str = "text_generation" """Indicates the task.""" model: Optional[str] = "cohere.command" """Model name to use.""" frequency_penalty: float = None """Penalizes repeated tokens according to frequency. Between 0 and 1.""" presence_penalty: float = None """Penalizes repeated tokens. Between 0 and 1.""" truncate: Optional[str] = None """Specify how the client handles inputs longer than the maximum token.""" length: str = "AUTO" """Indicates the approximate length of the summary. """ format: str = "PARAGRAPH" """Indicates the style in which the summary will be delivered - in a free form paragraph or in bullet points.""" extractiveness: str = "AUTO" """Controls how close to the original text the summary is. High extractiveness summaries will lean towards reusing sentences verbatim, while low extractiveness summaries will tend to paraphrase more.""" additional_command: str = "" """A free-form instruction for modifying how the summaries get generated. """ @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { **{ "model": self.model, "task": self.task, "client_kwargs": self.client_kwargs, "endpoint_kwargs": self.endpoint_kwargs, }, **self._default_params, } @property def _llm_type(self) -> str: """Return type of llm.""" return "GenerativeAI" @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OCIGenerativeAI API.""" # This property is used by _identifying_params(), which then used for serialization # All parameters returning here should be JSON serializable. return ( { "compartment_id": self.compartment_id, "temperature": self.temperature, "max_tokens": self.max_tokens, "top_k": self.k, "top_p": self.p, "frequency_penalty": self.frequency_penalty, "presence_penalty": self.presence_penalty, "truncate": self.truncate, } if self.task == Task.TEXT_GENERATION else { "compartment_id": self.compartment_id, "temperature": self.temperature, "length": self.length, "format": self.format, "extractiveness": self.extractiveness, "additional_command": self.additional_command, } ) def _invocation_params(self, stop: Optional[List[str]], **kwargs: Any) -> dict: params = self._default_params if self.task == Task.SUMMARY_TEXT: return {**params} if self.stop is not None and stop is not None: raise ValueError("`stop` found in both the input and default params.") elif self.stop is not None: params["stop_sequences"] = self.stop else: params["stop_sequences"] = stop return {**params, **kwargs} def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ): """Call out to GenerativeAI's generate endpoint. Parameters ---------- prompt (str): The prompt to pass into the model. stop (List[str], Optional): List of stop words to use when generating. Returns ------- The string generated by the model. Example ------- .. code-block:: python response = gen_ai("Tell me a joke.") """ params = self._invocation_params(stop, **kwargs) self._print_request(prompt, params) try: response = ( self.completion_with_retry(prompts=[prompt], **params) if self.task == Task.TEXT_GENERATION else self.completion_with_retry(input=prompt, **params) ) except Exception: logger.error( "Error occur when invoking oci service api." "DEBUG INTO: task=%s, params=%s, prompt=%s", self.task, params, prompt, ) raise completion = self._process_response(response, params.get("num_generations", 1)) self._print_response(completion, response) return completion def _process_response(self, response: Any, num_generations: int = 1) -> str: if self.task == Task.SUMMARY_TEXT: return response.data.summary return ( response.data.generated_texts[0][0].text if num_generations == 1 else [gen.text for gen in response.data.generated_texts[0]] ) def completion_with_retry(self, **kwargs: Any) -> Any: from oci.generative_ai.models import ( GenerateTextDetails, OnDemandServingMode, SummarizeTextDetails, ) # TODO: Add retry logic for OCI # Convert the ``model`` parameter to OCI ``ServingMode`` # Note that "ServingMode` is not JSON serializable. kwargs["serving_mode"] = OnDemandServingMode(model_id=self.model) if self.task == Task.TEXT_GENERATION: return self.client.generate_text( GenerateTextDetails(**kwargs), **self.endpoint_kwargs ) else: return self.client.summarize_text( SummarizeTextDetails(**kwargs), **self.endpoint_kwargs ) def batch_completion( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, num_generations: int = 1, **kwargs: Any, ) -> List[str]: """Generates multiple completion for the given prompt. Parameters ---------- prompt (str): The prompt to pass into the model. stop: (List[str], optional): Optional list of stop words to use when generating. Defaults to None. num_generations (int, optional): Number of completions aims to get. Defaults to 1. Raises ------ NotImplementedError Raise when invoking batch_completion under summarization task. Returns ------- List[str] List of multiple completions. Example ------- .. code-block:: python responses = gen_ai.batch_completion("Tell me a joke.", num_generations=5) """ if self.task == Task.SUMMARY_TEXT: raise NotImplementedError( f"task={Task.SUMMARY_TEXT} does not support batch_completion. " ) return self._call( prompt=prompt, stop=stop, run_manager=run_manager, num_generations=num_generations, **kwargs, )
[]
2024-01-10
oracle/accelerated-data-science
ads~llm~guardrails~huggingface.py
#!/usr/bin/env python # -*- coding: utf-8 -*-- # Copyright (c) 2023 Oracle and/or its affiliates. # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/ import evaluate from langchain.pydantic_v1 import root_validator from .base import Guardrail class HuggingFaceEvaluation(Guardrail): path: str = "" load_args: dict = {} compute_args: dict = {} _evaluator: evaluate.EvaluationModule = "" @root_validator(skip_on_failure=True) def load_model(cls, values): """Loads the model from Huggingface.""" if values.get("path"): path = values["path"] else: path = values["load_args"].get("path") values["path"] = path if not path: raise NotImplementedError("Please provide path in load_args.") if not values.get("name"): values["name"] = path return values def compute(self, data=None, **kwargs): if not self._evaluator: load_args = {"path": self.path} load_args.update(self.load_args) self._evaluator = evaluate.load(**load_args) return self._evaluator.compute(predictions=data, **self.compute_args, **kwargs) @property def metric_key(self): return self.path
[]
2024-01-10
oracle/accelerated-data-science
ads~llm~__init__.py
#!/usr/bin/env python # -*- coding: utf-8 -*-- # Copyright (c) 2023 Oracle and/or its affiliates. # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/ try: import langchain from ads.llm.langchain.plugins.llm_gen_ai import GenerativeAI from ads.llm.langchain.plugins.llm_md import ModelDeploymentTGI from ads.llm.langchain.plugins.llm_md import ModelDeploymentVLLM from ads.llm.langchain.plugins.embeddings import GenerativeAIEmbeddings except ImportError as ex: if ex.name == "langchain": raise ImportError( f"{ex.msg}\nPlease install/update langchain with `pip install langchain -U`" ) from ex raise ex
[]
2024-01-10
oracle/accelerated-data-science
ads~llm~serialize.py
#!/usr/bin/env python # -*- coding: utf-8 -*-- # Copyright (c) 2023 Oracle and/or its affiliates. # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/ import json import os import tempfile from typing import Any, Dict, List, Optional import fsspec import yaml from langchain import llms from langchain.chains import RetrievalQA from langchain.chains.loading import load_chain_from_config from langchain.llms import loading from langchain.load.load import Reviver from langchain.load.serializable import Serializable from langchain.schema.runnable import RunnableParallel from ads.common.auth import default_signer from ads.common.object_storage_details import ObjectStorageDetails from ads.llm import GenerativeAI, ModelDeploymentTGI, ModelDeploymentVLLM from ads.llm.chain import GuardrailSequence from ads.llm.guardrails.base import CustomGuardrailBase from ads.llm.serializers.runnable_parallel import RunnableParallelSerializer from ads.llm.serializers.retrieval_qa import RetrievalQASerializer # This is a temp solution for supporting custom LLM in legacy load_chain __lc_llm_dict = llms.get_type_to_cls_dict() __lc_llm_dict[GenerativeAI.__name__] = lambda: GenerativeAI __lc_llm_dict[ModelDeploymentTGI.__name__] = lambda: ModelDeploymentTGI __lc_llm_dict[ModelDeploymentVLLM.__name__] = lambda: ModelDeploymentVLLM def __new_type_to_cls_dict(): return __lc_llm_dict llms.get_type_to_cls_dict = __new_type_to_cls_dict loading.get_type_to_cls_dict = __new_type_to_cls_dict # Mapping class to custom serialization functions custom_serialization = { GuardrailSequence: GuardrailSequence.save, CustomGuardrailBase: CustomGuardrailBase.save, RunnableParallel: RunnableParallelSerializer.save, RetrievalQA: RetrievalQASerializer.save, } # Mapping _type to custom deserialization functions # Note that the load function should take **kwargs custom_deserialization = { GuardrailSequence.type(): GuardrailSequence.load, CustomGuardrailBase.type(): CustomGuardrailBase.load, RunnableParallelSerializer.type(): RunnableParallelSerializer.load, RetrievalQASerializer.type(): RetrievalQASerializer.load, } def load( obj: Any, *, secrets_map: Optional[Dict[str, str]] = None, valid_namespaces: Optional[List[str]] = None, **kwargs, ) -> Any: """Revive an ADS/LangChain class from a JSON object. Use this if you already have a parsed JSON object, eg. from `json.load` or `json.loads`. This is a drop in replacement for load() in langchain.load.load to support loading compatible class from ADS. Args: obj: The object to load. secrets_map: A map of secrets to load. valid_namespaces: A list of additional namespaces (modules) to allow to be deserialized. Returns: Revived LangChain objects. """ # Add ADS as valid namespace if not valid_namespaces: valid_namespaces = [] if "ads" not in valid_namespaces: valid_namespaces.append("ads") reviver = Reviver(secrets_map, valid_namespaces) def _load(obj: Any) -> Any: if isinstance(obj, dict): if "_type" in obj and obj["_type"] in custom_deserialization: if valid_namespaces: kwargs["valid_namespaces"] = valid_namespaces if secrets_map: kwargs["secret_map"] = secrets_map return custom_deserialization[obj["_type"]](obj, **kwargs) # Need to revive leaf nodes before reviving this node loaded_obj = {k: _load(v) for k, v in obj.items()} return reviver(loaded_obj) if isinstance(obj, list): return [_load(o) for o in obj] return obj if isinstance(obj, dict) and "_type" in obj: obj_type = obj["_type"] # Check if the object has custom load function. if obj_type in custom_deserialization: if valid_namespaces: kwargs["valid_namespaces"] = valid_namespaces if secrets_map: kwargs["secret_map"] = secrets_map return custom_deserialization[obj_type](obj, **kwargs) # Legacy chain return load_chain_from_config(obj, **kwargs) return _load(obj) def load_from_yaml( uri: str, *, secrets_map: Optional[Dict[str, str]] = None, valid_namespaces: Optional[List[str]] = None, **kwargs, ): """Revive an ADS/LangChain class from a YAML file.""" class _SafeLoaderIgnoreUnknown(yaml.SafeLoader): """Loader ignoring unknown tags in YAML""" def ignore_unknown(self, node): """Ignores unknown tags in YAML""" return node.value[0].value _SafeLoaderIgnoreUnknown.add_constructor( None, _SafeLoaderIgnoreUnknown.ignore_unknown ) storage_options = default_signer() if ObjectStorageDetails.is_oci_path(uri) else {} with fsspec.open(uri, **storage_options) as f: config = yaml.load(f, Loader=_SafeLoaderIgnoreUnknown) return load( config, secrets_map=secrets_map, valid_namespaces=valid_namespaces, **kwargs ) def default(obj: Any) -> Any: """Calls the to_json() method to serialize the object. Parameters ---------- obj : Any The object to be serialized. Returns ------- Any The serialized representation of the object. Raises ------ TypeError If the object is not LangChain serializable. """ for super_class, save_fn in custom_serialization.items(): if isinstance(obj, super_class): return save_fn(obj) if isinstance(obj, Serializable) and obj.is_lc_serializable(): return obj.to_json() raise TypeError(f"Serialization of {type(obj)} is not supported.") def __save(obj): """Calls the legacy save method to save the object to temp json then load it into a dictionary. """ try: temp_file = tempfile.NamedTemporaryFile( mode="w", encoding="utf-8", suffix=".json", delete=False ) temp_file.close() obj.save(temp_file.name) with open(temp_file.name, "r", encoding="utf-8") as f: return json.load(f) finally: os.unlink(temp_file.name) def dump(obj: Any) -> Dict[str, Any]: """Return a json dict representation of an object. This is a drop in replacement of the dumpd() in langchain.load.dump to support serializing legacy LangChain chain and ADS GuardrailSequence. This method will raise TypeError when the object is not serializable. """ for super_class, save_fn in custom_serialization.items(): if isinstance(obj, super_class): return save_fn(obj) if ( isinstance(obj, Serializable) and not obj.is_lc_serializable() and hasattr(obj, "save") ): # The object is not is_lc_serializable. # However, it supports the legacy save() method. return __save(obj) # The object is is_lc_serializable. # However, some properties may not be serializable # Here we try to dump the object and fallback to the save() method # if there is an error. try: return json.loads(json.dumps(obj, default=default)) except TypeError as ex: if isinstance(obj, Serializable) and hasattr(obj, "save"): return __save(obj) raise ex
[]
2024-01-10
Ulysses0817/ChuanhuChatGPT
modules~models~base_model.py
from __future__ import annotations from typing import TYPE_CHECKING, List import logging import json import commentjson as cjson import os import sys import requests import urllib3 import traceback import pathlib from tqdm import tqdm import colorama from duckduckgo_search import ddg import asyncio import aiohttp from enum import Enum from ..presets import * from ..llama_func import * from ..utils import * from .. import shared from ..config import retrieve_proxy class ModelType(Enum): Unknown = -1 OpenAI = 0 ChatGLM = 1 LLaMA = 2 XMChat = 3 StableLM = 4 MOSS = 5 YuanAI = 6 @classmethod def get_type(cls, model_name: str): model_type = None model_name_lower = model_name.lower() if "gpt" in model_name_lower: model_type = ModelType.OpenAI elif "chatglm" in model_name_lower: model_type = ModelType.ChatGLM elif "llama" in model_name_lower or "alpaca" in model_name_lower: model_type = ModelType.LLaMA elif "xmchat" in model_name_lower: model_type = ModelType.XMChat elif "stablelm" in model_name_lower: model_type = ModelType.StableLM elif "moss" in model_name_lower: model_type = ModelType.MOSS elif "yuanai" in model_name_lower: model_type = ModelType.YuanAI else: model_type = ModelType.Unknown return model_type class BaseLLMModel: def __init__( self, model_name, system_prompt="", temperature=1.0, top_p=1.0, n_choices=1, stop=None, max_generation_token=None, presence_penalty=0, frequency_penalty=0, logit_bias=None, user="", ) -> None: self.history = [] self.all_token_counts = [] self.model_name = model_name self.model_type = ModelType.get_type(model_name) try: self.token_upper_limit = MODEL_TOKEN_LIMIT[model_name] except KeyError: self.token_upper_limit = DEFAULT_TOKEN_LIMIT self.interrupted = False self.system_prompt = system_prompt self.api_key = None self.need_api_key = False self.single_turn = False self.temperature = temperature self.top_p = top_p self.n_choices = n_choices self.stop_sequence = stop self.max_generation_token = None self.presence_penalty = presence_penalty self.frequency_penalty = frequency_penalty self.logit_bias = logit_bias self.set_user_identifier(user) def get_answer_stream_iter(self): """stream predict, need to be implemented conversations are stored in self.history, with the most recent question, in OpenAI format should return a generator, each time give the next word (str) in the answer """ logging.warning("stream predict not implemented, using at once predict instead") response, _ = self.get_answer_at_once() yield response def get_answer_at_once(self): """predict at once, need to be implemented conversations are stored in self.history, with the most recent question, in OpenAI format Should return: the answer (str) total token count (int) """ logging.warning("at once predict not implemented, using stream predict instead") response_iter = self.get_answer_stream_iter() count = 0 for response in response_iter: count += 1 return response, sum(self.all_token_counts) + count def billing_info(self): """get billing infomation, inplement if needed""" logging.warning("billing info not implemented, using default") return BILLING_NOT_APPLICABLE_MSG def count_token(self, user_input): """get token count from input, implement if needed""" # logging.warning("token count not implemented, using default") return len(user_input) def stream_next_chatbot(self, inputs, chatbot, fake_input=None, display_append=""): def get_return_value(): return chatbot, status_text status_text = i18n("开始实时传输回答……") if fake_input: chatbot.append((fake_input, "")) else: chatbot.append((inputs, "")) user_token_count = self.count_token(inputs) self.all_token_counts.append(user_token_count) logging.debug(f"输入token计数: {user_token_count}") stream_iter = self.get_answer_stream_iter() partial_text = "" for partial_text in stream_iter: chatbot[-1] = (chatbot[-1][0], partial_text + display_append) self.all_token_counts[-1] += 1 status_text = self.token_message() yield get_return_value() if self.interrupted: self.recover() break if len(partial_text.strip()) > 0: self.history.append(construct_assistant(partial_text)) else: self.history.pop() def next_chatbot_at_once(self, inputs, chatbot, fake_input=None, display_append=""): if fake_input: chatbot.append((fake_input, "")) else: chatbot.append((inputs, "")) if fake_input is not None: user_token_count = self.count_token(fake_input) else: user_token_count = self.count_token(inputs) self.all_token_counts.append(user_token_count) ai_reply, total_token_count = self.get_answer_at_once() self.history.append(construct_assistant(ai_reply)) if fake_input is not None: self.history[-2] = construct_user(fake_input) chatbot[-1] = (chatbot[-1][0], ai_reply + display_append) if fake_input is not None: self.all_token_counts[-1] += count_token(construct_assistant(ai_reply)) else: self.all_token_counts[-1] = total_token_count - sum(self.all_token_counts) status_text = self.token_message() return chatbot, status_text def handle_file_upload(self, files, chatbot): """if the model accepts multi modal input, implement this function""" status = gr.Markdown.update() if files: construct_index(self.api_key, file_src=files) status = "索引构建完成" return gr.Files.update(), chatbot, status def prepare_inputs(self, real_inputs, use_websearch, files, reply_language, chatbot): fake_inputs = None display_append = [] limited_context = False fake_inputs = real_inputs if files: from llama_index.indices.vector_store.base_query import GPTVectorStoreIndexQuery from llama_index.indices.query.schema import QueryBundle from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.chat_models import ChatOpenAI from llama_index import ( GPTSimpleVectorIndex, ServiceContext, LangchainEmbedding, OpenAIEmbedding, ) limited_context = True msg = "加载索引中……" logging.info(msg) # yield chatbot + [(inputs, "")], msg index = construct_index(self.api_key, file_src=files) assert index is not None, "获取索引失败" msg = "索引获取成功,生成回答中……" logging.info(msg) if local_embedding or self.model_type != ModelType.OpenAI: embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name = "sentence-transformers/distiluse-base-multilingual-cased-v2")) else: embed_model = OpenAIEmbedding() # yield chatbot + [(inputs, "")], msg with retrieve_proxy(): prompt_helper = PromptHelper( max_input_size=4096, num_output=5, max_chunk_overlap=20, chunk_size_limit=600, ) from llama_index import ServiceContext service_context = ServiceContext.from_defaults( prompt_helper=prompt_helper, embed_model=embed_model ) query_object = GPTVectorStoreIndexQuery( index.index_struct, service_context=service_context, similarity_top_k=5, vector_store=index._vector_store, docstore=index._docstore, response_synthesizer=None ) query_bundle = QueryBundle(real_inputs) nodes = query_object.retrieve(query_bundle) reference_results = [n.node.text for n in nodes] reference_results = add_source_numbers(reference_results, use_source=False) display_append = add_details(reference_results) display_append = "\n\n" + "".join(display_append) real_inputs = ( replace_today(PROMPT_TEMPLATE) .replace("{query_str}", real_inputs) .replace("{context_str}", "\n\n".join(reference_results)) .replace("{reply_language}", reply_language) ) elif use_websearch: limited_context = True search_results = ddg(real_inputs, max_results=5) reference_results = [] for idx, result in enumerate(search_results): logging.debug(f"搜索结果{idx + 1}:{result}") domain_name = urllib3.util.parse_url(result["href"]).host reference_results.append([result["body"], result["href"]]) display_append.append( # f"{idx+1}. [{domain_name}]({result['href']})\n" f"<li><a href=\"{result['href']}\" target=\"_blank\">{domain_name}</a></li>\n" ) reference_results = add_source_numbers(reference_results) display_append = "<ol>\n\n" + "".join(display_append) + "</ol>" real_inputs = ( replace_today(WEBSEARCH_PTOMPT_TEMPLATE) .replace("{query}", real_inputs) .replace("{web_results}", "\n\n".join(reference_results)) .replace("{reply_language}", reply_language) ) else: display_append = "" return limited_context, fake_inputs, display_append, real_inputs, chatbot def predict( self, inputs, chatbot, stream=False, use_websearch=False, files=None, reply_language="中文", current_user=None, should_check_token_count=True, ): # repetition_penalty, top_k self.set_user_identifier(current_user) status_text = "开始生成回答……" logging.info( f"{current_user}输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL ) if should_check_token_count: yield chatbot + [(inputs, "")], status_text if reply_language == "跟随问题语言(不稳定)": reply_language = "" # the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch. limited_context, fake_inputs, display_append, inputs, chatbot = self.prepare_inputs(real_inputs=inputs, use_websearch=use_websearch, files=files, reply_language=reply_language, chatbot=chatbot) yield chatbot + [(fake_inputs, "")], status_text if ( self.need_api_key and self.api_key is None and not shared.state.multi_api_key ): status_text = STANDARD_ERROR_MSG + NO_APIKEY_MSG logging.info(status_text) chatbot.append((inputs, "")) if len(self.history) == 0: self.history.append(construct_user(inputs)) self.history.append("") self.all_token_counts.append(0) else: self.history[-2] = construct_user(inputs) yield chatbot + [(inputs, "")], status_text return elif len(inputs.strip()) == 0: status_text = STANDARD_ERROR_MSG + NO_INPUT_MSG logging.info(status_text) yield chatbot + [(inputs, "")], status_text return if self.single_turn: self.history = [] self.all_token_counts = [] self.history.append(construct_user(inputs)) try: if stream: logging.debug("使用流式传输") iter = self.stream_next_chatbot( inputs, chatbot, fake_input=fake_inputs, display_append=display_append, ) for chatbot, status_text in iter: yield chatbot, status_text else: logging.debug("不使用流式传输") chatbot, status_text = self.next_chatbot_at_once( inputs, chatbot, fake_input=fake_inputs, display_append=display_append, ) yield chatbot, status_text except Exception as e: traceback.print_exc() status_text = STANDARD_ERROR_MSG + str(e) yield chatbot, status_text if len(self.history) > 1 and self.history[-1]["content"] != inputs: logging.info( f"{self.model_name}回答为:" + colorama.Fore.BLUE + f"{self.history[-1]['content']}" + colorama.Style.RESET_ALL ) if limited_context: # self.history = self.history[-4:] # self.all_token_counts = self.all_token_counts[-2:] self.history = [] self.all_token_counts = [] max_token = self.token_upper_limit - TOKEN_OFFSET if sum(self.all_token_counts) > max_token and should_check_token_count: count = 0 while ( sum(self.all_token_counts) > self.token_upper_limit * REDUCE_TOKEN_FACTOR and sum(self.all_token_counts) > 0 ): count += 1 del self.all_token_counts[0] del self.history[:2] logging.info(status_text) status_text = f"为了防止token超限,模型忘记了早期的 {count} 轮对话" yield chatbot, status_text self.auto_save(chatbot) def retry( self, chatbot, stream=False, use_websearch=False, files=None, reply_language="中文", ): logging.debug("重试中……") if len(self.history) > 0: inputs = self.history[-2]["content"] del self.history[-2:] self.all_token_counts.pop() elif len(chatbot) > 0: inputs = chatbot[-1][0] else: yield chatbot, f"{STANDARD_ERROR_MSG}上下文是空的" return iter = self.predict( inputs, chatbot, stream=stream, use_websearch=use_websearch, files=files, reply_language=reply_language, ) for x in iter: yield x logging.debug("重试完毕") # def reduce_token_size(self, chatbot): # logging.info("开始减少token数量……") # chatbot, status_text = self.next_chatbot_at_once( # summarize_prompt, # chatbot # ) # max_token_count = self.token_upper_limit * REDUCE_TOKEN_FACTOR # num_chat = find_n(self.all_token_counts, max_token_count) # logging.info(f"previous_token_count: {self.all_token_counts}, keeping {num_chat} chats") # chatbot = chatbot[:-1] # self.history = self.history[-2*num_chat:] if num_chat > 0 else [] # self.all_token_counts = self.all_token_counts[-num_chat:] if num_chat > 0 else [] # msg = f"保留了最近{num_chat}轮对话" # logging.info(msg) # logging.info("减少token数量完毕") # return chatbot, msg + "," + self.token_message(self.all_token_counts if len(self.all_token_counts) > 0 else [0]) def interrupt(self): self.interrupted = True def recover(self): self.interrupted = False def set_token_upper_limit(self, new_upper_limit): self.token_upper_limit = new_upper_limit print(f"token上限设置为{new_upper_limit}") def set_temperature(self, new_temperature): self.temperature = new_temperature def set_top_p(self, new_top_p): self.top_p = new_top_p def set_n_choices(self, new_n_choices): self.n_choices = new_n_choices def set_stop_sequence(self, new_stop_sequence: str): new_stop_sequence = new_stop_sequence.split(",") self.stop_sequence = new_stop_sequence def set_max_tokens(self, new_max_tokens): self.max_generation_token = new_max_tokens def set_presence_penalty(self, new_presence_penalty): self.presence_penalty = new_presence_penalty def set_frequency_penalty(self, new_frequency_penalty): self.frequency_penalty = new_frequency_penalty def set_logit_bias(self, logit_bias): logit_bias = logit_bias.split() bias_map = {} encoding = tiktoken.get_encoding("cl100k_base") for line in logit_bias: word, bias_amount = line.split(":") if word: for token in encoding.encode(word): bias_map[token] = float(bias_amount) self.logit_bias = bias_map def set_user_identifier(self, new_user_identifier): self.user_identifier = new_user_identifier def set_system_prompt(self, new_system_prompt): self.system_prompt = new_system_prompt def set_key(self, new_access_key): self.api_key = new_access_key.strip() msg = i18n("API密钥更改为了") + hide_middle_chars(self.api_key) logging.info(msg) return self.api_key, msg def set_single_turn(self, new_single_turn): self.single_turn = new_single_turn def reset(self): self.history = [] self.all_token_counts = [] self.interrupted = False pathlib.Path(os.path.join(HISTORY_DIR, self.user_identifier, new_auto_history_filename(os.path.join(HISTORY_DIR, self.user_identifier)))).touch() return [], self.token_message([0]) def delete_first_conversation(self): if self.history: del self.history[:2] del self.all_token_counts[0] return self.token_message() def delete_last_conversation(self, chatbot): if len(chatbot) > 0 and STANDARD_ERROR_MSG in chatbot[-1][1]: msg = "由于包含报错信息,只删除chatbot记录" chatbot.pop() return chatbot, self.history if len(self.history) > 0: self.history.pop() self.history.pop() if len(chatbot) > 0: msg = "删除了一组chatbot对话" chatbot.pop() if len(self.all_token_counts) > 0: msg = "删除了一组对话的token计数记录" self.all_token_counts.pop() msg = "删除了一组对话" return chatbot, msg def token_message(self, token_lst=None): if token_lst is None: token_lst = self.all_token_counts token_sum = 0 for i in range(len(token_lst)): token_sum += sum(token_lst[: i + 1]) return i18n("Token 计数: ") + f"{sum(token_lst)}" + i18n(",本次对话累计消耗了 ") + f"{token_sum} tokens" def save_chat_history(self, filename, chatbot, user_name): if filename == "": return if not filename.endswith(".json"): filename += ".json" return save_file(filename, self.system_prompt, self.history, chatbot, user_name) def auto_save(self, chatbot): history_file_path = get_history_filepath(self.user_identifier) save_file(history_file_path, self.system_prompt, self.history, chatbot, self.user_identifier) def export_markdown(self, filename, chatbot, user_name): if filename == "": return if not filename.endswith(".md"): filename += ".md" return save_file(filename, self.system_prompt, self.history, chatbot, user_name) def load_chat_history(self, filename, user_name): logging.debug(f"{user_name} 加载对话历史中……") logging.info(f"filename: {filename}") if type(filename) != str and filename is not None: filename = filename.name try: if "/" not in filename: history_file_path = os.path.join(HISTORY_DIR, user_name, filename) else: history_file_path = filename with open(history_file_path, "r") as f: json_s = json.load(f) try: if type(json_s["history"][0]) == str: logging.info("历史记录格式为旧版,正在转换……") new_history = [] for index, item in enumerate(json_s["history"]): if index % 2 == 0: new_history.append(construct_user(item)) else: new_history.append(construct_assistant(item)) json_s["history"] = new_history logging.info(new_history) except: pass logging.debug(f"{user_name} 加载对话历史完毕") self.history = json_s["history"] return os.path.basename(filename), json_s["system"], json_s["chatbot"] except: # 没有对话历史或者对话历史解析失败 logging.info(f"没有找到对话历史记录 {filename}") return gr.update(), self.system_prompt, gr.update() def auto_load(self): if self.user_identifier == "": self.reset() return self.system_prompt, gr.update() history_file_path = get_history_filepath(self.user_identifier) filename, system_prompt, chatbot = self.load_chat_history(history_file_path, self.user_identifier) return system_prompt, chatbot def like(self): """like the last response, implement if needed """ return gr.update() def dislike(self): """dislike the last response, implement if needed """ return gr.update()
[]
2024-01-10
allynee/Unity-Agent
agent~coder.py
import guidance from dotenv import load_dotenv, find_dotenv import os import openai import re class Coder: # gpt-3.5-turbo-1106 # gpt-4-0613 def __init__(self, model_name="gpt-3.5-turbo-1106", temperature=0, resume=False, ckpt_dir="ckpt", execution_error=True): load_dotenv(find_dotenv()) openai.api_key = os.getenv("OPENAI_API_KEY") guidance.llm = guidance.llms.OpenAI(model_name) self.llm=guidance.llm self.ckpt_dir = ckpt_dir self.execution_error = execution_error #TODO: May need to account for resume, or not. #TODO: May need to account for execution error, or not def _generate_function(self, task, examples): coder = guidance(''' {{#system~}} You are an AI skilled in C# development for Unity's ubicomp space. You will assist in creating functions as part of a larger system. You will do so by translating pseudocode for a task to C# code. {{~/system}} {{#user~}} Your work revolves around our proprietary C# system. Our system comprises of: - SceneAPI: This is the wrapper class for our ubicomp space. The methods here will allow for manipulating the whole space. - Object3D: Each object in the space is of this type, and the methods here are available for every object. The anchor for the position and rotation of each object is at the bottom center of the object. - Vector3D: Any 3-dimensional dataset uses this class to represent x, y, and z. - Color3D: Color information using RGBA. **As the script's class inherits from `SceneAPI`, you can directly call its methods without prefixing.** Use the provided system to manipulate the room. Follow these steps: 1. Write method(s) using C# code to implement the task. 2. Declare private fields above your method(s) to track the object(s) you create and modify within the method. Ensure you always assign your object finding, creations, or modifications to these declared fields. If you are creating multiple objects, you can use a list to store them. 3. Use Debug.Log statements for action logging and error handling. 4. Adhere strictly to standard C# methods. 5. Add comments to your code to explain your thought process. Here are all the classes and functions you may use in your code: ``` Object types that can be created: (You must use the exact case-sensitive type of the object) Chair, Fox, Lamp, LED Cube, Push Button, Table, Vase, Zombie namespace Enums { public enum WallName { Left, Right, BackLeft, BackRight, } } public class Object3D { public string GetType() public void WhenSelected(UnityAction<SelectEnterEventArgs> function) public void WhenNotSelected(UnityAction<SelectExitEventArgs> function) public void WhenHovered(UnityAction<HoverEnterEventArgs> function) public void WhenNotHovered(UnityAction<HoverExitEventArgs> function) public void SetColor(Color3D color) public void SetLuminousIntensity(float intensity) public void Illuminate(bool lit) public void SetPosition(Vector3D pos) public void SetRotation(Vector3D rot) public void SetSize(Vector3D s) public void SetSizeByScale(float s) public void Levitate(bool isLevitated) public bool IsLevitated() public Color GetColor() public float GetIntensity() public bool IsLit() public Vector3D GetPosition() public Vector3D GetRotation() public Vector3D GetSize() public GameObject ToGameObject() } public class SceneAPI { public Vector3D GetWallPosition(WallName wallname) public List<Object3D> GetAllObject3DsInScene() public Object3D FindObject3DByName(string objName) // To find an object you could do // List<Object3D> objectsInView = GetAllObject3DsInFieldOfView(); // Object3D desiredObj = objectsInView.Find(obj => obj.GetType().Equals("ObjType")); public bool IsObject3DInFieldOfView(Object3D obj) public List<Object3D> GetAllObject3DsInFieldOfView() // This is good to get objects in the user's field of view. You can use this to find game objects referenced in the task. public bool IsObjectTypeValid(string objectType) public List<string> GetAllValidObjectTypes() public Vector3D GetSceneSize() public Vector3D GetUserOrientation() public Vector3D GetUsersHeadPosition() // Not good for object creation and position movement methods, as the tall height will cause objects to topple public Vector3D GetUsersLeftHandPosition() public Vector3D GetUsersRightHandPosition() public Vector3D GetUsersLeftHandRotation() public Vector3D GetUsersRightHandRotation() public Vector3D GetUsersFeetPosition() //This is good for object creation and position movement methods public Object3D CreateObject(string newObjName, string objectType, Vector3D position, Vector3D rotation) } public class Vector3D { // Vector3D cannot be used like Vector3. It only has the methods below. If you want to use Vector3 methods, convert it to Vector3 using ToVector3() first. public float x { get; set; } public float y { get; set; } public float z { get; set; } Vector3D(float x, float y, float z) public Vector3D ToVector3() public Vector3D FromVector3(Vector3 vec) } // To add 2 vector 3Ds, use new Vector3D(vec1.x + vec2.x, vec1.y + vec2.y, vec1.z + vec2.z) Same logic for subtract //When using NavMeshAgent, make sure to convert all Vector3Ds to Vector3s using ToVector3() before using them in the NavMeshAgent methods. // When performing calculations like multiplication, remember to convert all your Vector3Ds to Vector3s using ToVector3() before performing the calculations. public class Color3D { //All values below range from 0 to 1 public float r { get; set; } public float g { get; set; } public float b { get; set; } public float a { get; set; } Color3D(float r, float g, float b, float a) } ``` The task to create a function for is: {{task}}. When presented with the task of creating a function, your first step is to compare the current task with the provided examples of similar past functions. If you find that the current task closely matches one of these examples, your function should be heavily modeled after the past example. This means using a similar structure, logic, and syntax, adapting only the necessary parts to suit the specifics of the new task. In cases where there is no close match among the examples, you should then craft a new function by integrating elements from those examples that are most relevant to the current task. This process involves synthesizing the logic, structure, and approach from the examples to create a function that effectively addresses the new task. Remember, the goal is to maintain the effectiveness and consistency of past successful functions. Use them as blueprints for your responses, ensuring that similar tasks yield similar, proven results. Examples:\n {{examples}} Your format for responses should strictly be: // All class members should be declared here. private void Start(){ // Insert method(s) that only need to be called once } private void Update(){ // If method(s) that need to be called repeatedly } public void Method1() { // Insert the method code here } // And so on... The number of methods will depend on the user's request. *Note: Output should not contain any text other than the class members and method(s). You must give the full code within the methods* {{~/user}} {{#assistant~}} {{gen "function" temperature=0 max_tokens=4096}} {{~/assistant}} ''') resp = coder(task=task, examples=examples) return resp["function"] def _generate_script(self, task, plan, functions): guidance.llm = guidance.llms.OpenAI("gpt-4-0613") coder = guidance(''' {{#system~}} You are a skilled C# developer tasked with crafting a coherent C# script, ensuring that created objects and states are managed and utilized effectively across multiple methods. {{~/system}} {{#user~}} User Task: {{task}} Actionable Instructions to fulfil the user task: {{plan}} Methods for each step of the actionable plan: {{functions}} Follow these steps: 1. Develop a public class inheriting from SceneAPI with a name relevant to the task context. 2. You must use all methods in your final script. The only method(s) and/or code you are permitted to remove are methods that repeat creating or finding object(s). 3. Integrate and modify the methods to maintain script coherence. 4. Utilize class-level variables (e.g., private Object3D classMember;) to preserve state throughout the class. 5. Remove duplicate variables referencing the same object(s). 6. Ensure that the same object references are used in every method. Once an object is initialized, consistently use this reference in all related operations. 7. For each method, do not use FindObject3DByName() or CreateObject() to re-assign the same object(s). Always check if there is the same object reference that was initialized in previous methods. 8. Use Debug.Log statements for action logging and error handling. 9. Adhere to standard C# methods and conventions and add comments to your code to explain your thought process. 10. All methods should be called under either Start() or Update(). Your format for responses should strictly be: ``` public class YourChosenClassName : SceneAPI { // All class members and constants should be declared here. // Remember to remove duplicate variables referencing the same object(s) // Remember to call the final correct variable names across all methods private void Start() { Method1(); Method2(); // And so on... The number of methods will depend on the user's request. } private void Update() { Method3(); // And so on... The number of methods will depend on the user's request. } public void Method1() { // Insert the method code here } public void Method2() { // Insert the method code here } // And so on... The number of methods will depend on the user's request. } ``` *Note: Output should not contain any text other than script containing method(s). You must give the full code within the methods.* {{~/user}} {{#assistant~}} {{gen "script" temperature=0 max_tokens=4096}} {{~/assistant}} ''') resp = coder(task=task, plan=plan, functions=functions) script = resp["script"] script = edit_code_string(script) script = "using UnityEngine;\nusing UnityEngine.Events;\nusing UnityEngine.XR.Interaction.Toolkit;\nusing System;\nusing System.Collections.Generic;\nusing Enums;\nusing UnityEngine.AI;\nusing System.Linq;\n\n" + script return script def edit_code_string(code_string): try: first_index = code_string.index("public class") last_index = code_string.rindex("}") return code_string[first_index:last_index+1] except ValueError: print("Invalid code: 'using' or '}' not found.")
[]
2024-01-10
allynee/Unity-Agent
agent~memorymanager.py
import chromadb from chromadb.config import Settings import csv from dotenv import load_dotenv, find_dotenv import guidance from langchain.embeddings import OpenAIEmbeddings import os import openai import my_utils as U from time import time as now import sys sys.path.append("/Users/allyne/Documents/GitHub/Unity-Agent/") class MemoryManager: # gpt-3.5-turbo-1106 # gpt-4-0613 def __init__(self, model_name="gpt-3.5-turbo-1106", temperature=0, resume=False, retrieve_top_k=3, ckpt_dir="ckpt"): load_dotenv(find_dotenv()) openai.api_key = os.getenv("OPENAI_API_KEY") guidance.llm = guidance.llms.OpenAI(model_name, temperature=temperature) self.llm=guidance.llm self.ckpt_dir = ckpt_dir self.retrieve_top_k = retrieve_top_k #TODO: May need to account for resume, or not. Not sure if need mkdir thingy too settings = Settings(chroma_db_impl="duckdb+parquet", persist_directory=f"../memory/{ckpt_dir}") print(f"Initializing memory in {settings.persist_directory}...") client = chromadb.Client(settings) client.persist() self.embeddings = OpenAIEmbeddings() self.client = client self.plansdb = client.get_or_create_collection(name="plansdb", embedding_function=self.embeddings) self.codedb = client.get_or_create_collection(name="codedb", embedding_function=self.embeddings) def _init_plan_memory(self, csv_path): t0=now() with open(csv_path, "r") as file: reader = csv.DictReader(file) for i, row in enumerate(reader): print(f"Embedding plan {i+1}...") user_query = row["User Query"] plan = row["Plan"] user_query_embedding = self.embeddings.embed_query(user_query) self.plansdb.add( embeddings=[user_query_embedding], metadatas=[{ "user_query": user_query, "plan": plan, }], ids=[user_query] ) U.dump_text( f"User query:\n{user_query}\n\nPlan:\n{plan}", f"../memory/{self.ckpt_dir}/plans/{user_query}.txt" ) return f"Intialized memory on planning in {now()-t0} seconds." def _init_code_memory(self, csv_path): t0=now() with open(csv_path, "r") as file: reader = csv.DictReader(file) for i, row in enumerate(reader): print(f"Embedding code {i+1}...") instruction = row["Instruction"] code = row["Code"] instruction_embedding = self.embeddings.embed_query(instruction) self.codedb.add( embeddings=[instruction_embedding], metadatas=[{ "instruction": instruction, "code": code, }], ids=[instruction] ) U.dump_text( f"Instruction:\n{instruction}\n\nCode:\n{code}", f"../memory/{self.ckpt_dir}/code/{instruction}.txt" ) return f"Intialized memory on coding in {now()-t0} seconds." def _get_code(self, instruction): instruction_embedding = self.embeddings.embed_query(instruction) # Retrieve 2 functions only k = min(self.codedb.count(), 5) if k==0: return [] print(f"Retrieving {k} codes...") codes = self.codedb.query( query_embeddings=instruction_embedding, n_results=k, #where_document={"$contains":"search_string"} include=["metadatas"] ) return codes["metadatas"][0][:2] def _get_plan(self, user_query): user_query_embedding = self.embeddings.embed_query(user_query) k = min(self.plansdb.count(), 5) if k==0: return [] print(f"Retrieving {k} plans...") plans = self.plansdb.query( query_embeddings=user_query_embedding, n_results=k, include=["metadatas"] ) # Just do 2 return plans["metadatas"][0][:2] def _add_new_code(self, info): instruction = info["instruction"] code = info["code"] instruction_embedding = self.embeddings.embed_query(instruction) self.codedb.add( embeddings=[instruction_embedding], metadatas=[{ "instruction": instruction, "code": code, }], ids=[instruction] #TODO: Account for repeated instructions ) U.dump_text( f"Instruction:\n{instruction}\n\nCode:\n{code}", f"../memory/{self.ckpt_dir}/code/{instruction}.txt" ) return f"Added code for instruction \"{instruction}\"" def _add_new_plan(self, info): user_query = info["user_query"] plan = info["plan"] user_query_embedding = self.embeddings.embed_query(user_query) self.plansdb.add( embeddings=[user_query_embedding], metadatas=[{ "user_query": user_query, "plan": plan, }], ids=[user_query] #TODO: Account for repeated user queries ) U.dump_text( f"User query:\n{user_query}\n\nPlan:\n{plan}", f"../memory/{self.ckpt_dir}/plans/{user_query}.txt" ) return f"Added plan for user query \"{user_query}\"" def _add_new_experience(self, obj): task = obj.task plan_function_map = obj.new_plan_function_map plans = list(plan_function_map.keys()) plan_str = "" for i, plan in enumerate(plans): plan_str += f"{i+1}. {plan}\n" new_plan_dict = { "user_query": task, "plan": plan_str, } self._add_new_plan(new_plan_dict) all_code_dicts = [] for plan, function in plan_function_map.items(): code_dict = { "instruction": plan, "code": function, } all_code_dicts.append(code_dict) self._add_new_code(code_dict) return new_plan_dict, all_code_dicts def _delete_plan_memory(self): self.client.delete_collection(name="plansdb") return "Deleted plan memory." def _delete_code_memory(self): self.client.delete_collection(name="codedb") return "Deleted code memory." def _delete_one_plan(self, user_query): self.plansdb.delete(ids=[user_query]) return f"Deleted plan for user query \"{user_query}\"" def _delete_one_code(self, instruction): self.codedb.delete(ids=[instruction]) return f"Deleted code for instruction \"{instruction}\""
[]
2024-01-10
allynee/Unity-Agent
gui~pages~5%E2%9B%BA%EF%B8%8FBaseline.py
import streamlit as st from dotenv import load_dotenv, find_dotenv import guidance import openai import os import re from time import time as now import sys sys.path.append("/Users/allyne/Documents/GitHub/Unity-Agent/") PROMPT = ''' {{#system~}} You are a skilled C# developer tasked with crafting a C# script for a 3D ubicomp space. {{~/system}} {{#user~}} Your work revolves around our proprietary C# system. Our system comprises of: - SceneAPI: This is the wrapper class for our ubicomp space. The methods here will allow for manipulating the whole space. - Object3D: Each object in the space is of this type, and the methods here are available for every object. The anchor for the position and rotation of each object is at the bottom center of the object. - Vector3D: Any 3-dimensional dataset uses this class to represent x, y, and z. - Color3D: Color information using RGBA. **As the script's class inherits from `SceneAPI`, you can directly call its methods without prefixing.** Use the provided system to manipulate the room. Here are all the classes and functions you may use in your code: ``` Object types that can be created: (You must use the exact case-sensitive type of the object) Chair, Fox, Lamp, LED Cube, Push Button, Table, Vase, Zombie namespace Enums { public enum WallName { Left, Right, BackLeft, BackRight, } } public class Object3D { public string GetType() public void WhenSelected(UnityAction<SelectEnterEventArgs> function) public void WhenNotSelected(UnityAction<SelectExitEventArgs> function) public void WhenHovered(UnityAction<HoverEnterEventArgs> function) public void WhenNotHovered(UnityAction<HoverExitEventArgs> function) public void SetColor(Color3D color) public void SetLuminousIntensity(float intensity) public void Illuminate(bool lit) public void SetPosition(Vector3D pos) public void SetRotation(Vector3D rot) public void SetSize(Vector3D s) public void SetSizeByScale(float s) public void Levitate(bool isLevitated) public bool IsLevitated() public Color GetColor() public float GetIntensity() public bool IsLit() public Vector3D GetPosition() public Vector3D GetRotation() public Vector3D GetSize() public GameObject ToGameObject() } public class SceneAPI { public Vector3D GetWallPosition(WallName wallname) public List<Object3D> GetAllObject3DsInScene() public Object3D FindObject3DByName(string objName) // To find an object you could do // List<Object3D> objectsInView = GetAllObject3DsInFieldOfView(); // Object3D desiredObj = objectsInView.Find(obj => obj.GetType().Equals("ObjType")); public bool IsObject3DInFieldOfView(Object3D obj) public List<Object3D> GetAllObject3DsInFieldOfView() // This is good to get objects in the user's field of view. You can use this to find game objects referenced in the task. public bool IsObjectTypeValid(string objectType) public List<string> GetAllValidObjectTypes() public Vector3D GetSceneSize() public Vector3D GetUserOrientation() public Vector3D GetUsersHeadPosition() // Not good for object creation and position movement methods, as the tall height will cause objects to topple public Vector3D GetUsersLeftHandPosition() public Vector3D GetUsersRightHandPosition() public Vector3D GetUsersLeftHandRotation() public Vector3D GetUsersRightHandRotation() public Vector3D GetUsersFeetPosition() //This is good for object creation and position movement methods public Object3D CreateObject(string newObjName, string objectType, Vector3D position, Vector3D rotation) } public class Vector3D { // Vector3D cannot be used like Vector3. It only has the methods below. If you want to use Vector3 methods, convert it to Vector3 using ToVector3() first. public float x { get; set; } public float y { get; set; } public float z { get; set; } Vector3D(float x, float y, float z) public Vector3D ToVector3() public Vector3D FromVector3(Vector3 vec) } // To add 2 vector 3Ds, use new Vector3D(vec1.x + vec2.x, vec1.y + vec2.y, vec1.z + vec2.z) Same logic for subtract //When using NavMeshAgent, make sure to convert all Vector3Ds to Vector3s using ToVector3() before using them in the NavMeshAgent methods. // When performing calculations like multiplication remember to convert all your Vector3Ds to Vector3s using ToVector3() before performing the calculations. public class Color3D { //All values below range from 0 to 1 public float r { get; set; } public float g { get; set; } public float b { get; set; } public float a { get; set; } Color3D(float r, float g, float b, float a) } ``` Follow these steps: 1. Create a public class [classname] : SceneAPI where [classname] should be indicative of the user's task context. 2. Write method(s) using C# code to implement the task. 3. Use Debug.Log statements for action logging and error handling. 4. dhere strictly to standard C# methods. 5. Add comments to your code to explain your thought process. The user task is: {{user_task}} Your format for responses should strictly be: ``` public class YourChosenClassName : SceneAPI { // Add any needed class members here private void Start() { Method1(); Method2(); // And so on... The number of methods will depend on the user's request. } private void Update() { Method3(); // And so on... The number of methods will depend on the user's request. } public void Method1() { // Insert the method code here } public void Method2() { // Insert the method code here } // And so on... The number of methods will depend on the user's request. } ``` *Note: Output should not contain any text other than script containing method(s). You must give the full code within the methods.* {{~/user}} {{#assistant~}} {{gen "script" temperature=0 max_tokens=4096}} {{~/assistant}} ''' def generate_script(user_task,model_name): guidance.llm = guidance.llms.OpenAI(model_name) coder = guidance(PROMPT) resp = coder(user_task=user_task) create_and_download_cs_file(resp["script"]) def edit_code_string(code_string): try: first_index = code_string.index("public class") last_index = code_string.rindex("}") return code_string[first_index:last_index+1] except ValueError: st.write("Invalid code: 'using' or '}' not found.") def get_class_name_from_code(code_string): # Extract the class name from the code string using regex match = re.search(r'public class (\w+)', code_string) if match: return match.group(1) return "generated_script" def create_and_download_cs_file(code_string): code_string = edit_code_string(code_string) code_string = "using UnityEngine;\nusing UnityEngine.Events;\nusing UnityEngine.XR.Interaction.Toolkit;\nusing System;\nusing System.Collections.Generic;\nusing Enums;\nusing UnityEngine.AI;\nusing System.Linq;\n\n" + code_string st.write("\n```csharp\n" + code_string + "\n\n") class_name = get_class_name_from_code(code_string) file_name = f"{class_name}.cs" file_path = f"baseline_generated_scripts/{file_name}" with open(file_path, "w", encoding="utf-8") as file: file.write(code_string) with open(file_path, "rb") as file: btn = st.download_button( label="Download .cs file", data=file, file_name=file_name, mime='text/plain', ) if btn: os.remove(file_name) load_dotenv(find_dotenv()) openai.api_key = os.getenv("OPENAI_API_KEY") st.title("Testing baseline agents") st.markdown("#### 1. gpt-3.5-turbo-1106") task = st.text_area(f"Enter task here", key="task_3.5") if st.button("Run", key="generate_script_3.5"): with st.spinner("Processing"): generate_script(task, "gpt-3.5-turbo-1106") st.success("Process done!") st.markdown("#### 2. gpt-4-0613") task = st.text_area(f"Enter task here", key="task_4") if st.button("Run", key="generate_script_4"): with st.spinner("Processing"): generate_script(task, "gpt-4-0613") st.success("Process done!")
[ "\n{{#system~}}\nYou are a skilled C# developer tasked with crafting a C# script for a 3D ubicomp space. \n{{~/system}}\n{{#user~}}\nYour work revolves around our proprietary C# system. Our system comprises of: \n- SceneAPI: This is the wrapper class for our ubicomp space. The methods here will allow for manipulating the whole space. \n- Object3D: Each object in the space is of this type, and the methods here are available for every object. The anchor for the position and rotation of each object is at the bottom center of the object. \n- Vector3D: Any 3-dimensional dataset uses this class to represent x, y, and z.\n- Color3D: Color information using RGBA.\n \n**As the script's class inherits from `SceneAPI`, you can directly call its methods without prefixing.**\n\nUse the provided system to manipulate the room.\n\nHere are all the classes and functions you may use in your code:\n```\nObject types that can be created: (You must use the exact case-sensitive type of the object)\nChair, Fox, Lamp, LED Cube, Push Button, Table, Vase, Zombie \n\nnamespace Enums\n{\n public enum WallName\n {\n Left,\n Right,\n BackLeft,\n BackRight,\n }\n}\npublic class Object3D\n{\n public string GetType()\n public void WhenSelected(UnityAction<SelectEnterEventArgs> function)\n public void WhenNotSelected(UnityAction<SelectExitEventArgs> function)\n public void WhenHovered(UnityAction<HoverEnterEventArgs> function)\n public void WhenNotHovered(UnityAction<HoverExitEventArgs> function)\n public void SetColor(Color3D color)\n public void SetLuminousIntensity(float intensity)\n public void Illuminate(bool lit)\n public void SetPosition(Vector3D pos)\n public void SetRotation(Vector3D rot)\n public void SetSize(Vector3D s)\n public void SetSizeByScale(float s)\n public void Levitate(bool isLevitated)\n public bool IsLevitated()\n public Color GetColor()\n public float GetIntensity()\n public bool IsLit()\n public Vector3D GetPosition()\n public Vector3D GetRotation()\n public Vector3D GetSize()\n public GameObject ToGameObject()\n}\n\npublic class SceneAPI\n{\n public Vector3D GetWallPosition(WallName wallname)\n public List<Object3D> GetAllObject3DsInScene()\n public Object3D FindObject3DByName(string objName)\n // To find an object you could do \n // List<Object3D> objectsInView = GetAllObject3DsInFieldOfView();\n // Object3D desiredObj = objectsInView.Find(obj => obj.GetType().Equals(\"ObjType\"));\n public bool IsObject3DInFieldOfView(Object3D obj)\n public List<Object3D> GetAllObject3DsInFieldOfView() // This is good to get objects in the user's field of view. You can use this to find game objects referenced in the task. \n public bool IsObjectTypeValid(string objectType)\n public List<string> GetAllValidObjectTypes()\n public Vector3D GetSceneSize()\n public Vector3D GetUserOrientation()\n public Vector3D GetUsersHeadPosition() // Not good for object creation and position movement methods, as the tall height will cause objects to topple\n public Vector3D GetUsersLeftHandPosition()\n public Vector3D GetUsersRightHandPosition()\n public Vector3D GetUsersLeftHandRotation()\n public Vector3D GetUsersRightHandRotation()\n public Vector3D GetUsersFeetPosition() //This is good for object creation and position movement methods\n public Object3D CreateObject(string newObjName, string objectType, Vector3D position, Vector3D rotation)\n}\n\npublic class Vector3D\n{\n // Vector3D cannot be used like Vector3. It only has the methods below. If you want to use Vector3 methods, convert it to Vector3 using ToVector3() first.\n public float x { get; set; }\n public float y { get; set; }\n public float z { get; set; }\n Vector3D(float x, float y, float z)\n public Vector3D ToVector3()\n public Vector3D FromVector3(Vector3 vec)\n} // To add 2 vector 3Ds, use new Vector3D(vec1.x + vec2.x, vec1.y + vec2.y, vec1.z + vec2.z) Same logic for subtract\n//When using NavMeshAgent, make sure to convert all Vector3Ds to Vector3s using ToVector3() before using them in the NavMeshAgent methods.\n// When performing calculations like multiplication remember to convert all your Vector3Ds to Vector3s using ToVector3() before performing the calculations.\npublic class Color3D\n{\n //All values below range from 0 to 1 \n public float r { get; set; }\n public float g { get; set; }\n public float b { get; set; }\n public float a { get; set; }\n Color3D(float r, float g, float b, float a)\n}\n```\nFollow these steps:\n1. Create a public class [classname] : SceneAPI where [classname] should be indicative of the user's task context.\n2. Write method(s) using C# code to implement the task. \n3. Use Debug.Log statements for action logging and error handling.\n4. dhere strictly to standard C# methods. \n5. Add comments to your code to explain your thought process.\n\nThe user task is: \n{{user_task}}\n\nYour format for responses should strictly be: \n```\npublic class YourChosenClassName : SceneAPI\n{\t\n // Add any needed class members here\n \n private void Start()\n {\n Method1();\n Method2();\n // And so on... The number of methods will depend on the user's request.\n }\n\n private void Update()\n {\n Method3();\n // And so on... The number of methods will depend on the user's request.\n }\n\n public void Method1()\n {\n // Insert the method code here\n }\n public void Method2()\n {\n // Insert the method code here\n }\n // And so on... The number of methods will depend on the user's request. \n}\n\n```\n*Note: Output should not contain any text other than script containing method(s). You must give the full code within the methods.*\n{{~/user}}\n{{#assistant~}}\n{{gen \"script\" temperature=0 max_tokens=4096}}\n{{~/assistant}}\n" ]
2024-01-10
allynee/Unity-Agent
agent~planner.py
from dotenv import load_dotenv, find_dotenv import guidance import openai import os class Planner: # gpt-3.5-turbo-1106 # gpt-4-0613 def __init__(self, model_name="gpt-4-0613", temperature=0.0, resume=False, ckpt_dir="ckpt"): load_dotenv(find_dotenv()) openai.api_key = os.getenv("OPENAI_API_KEY") guidance.llm = guidance.llms.OpenAI(model_name, temperature=temperature) self.llm=guidance.llm def _generate_plan(self, task, examples): planner = guidance(''' {{#system~}} You are an efficient, direct and helpful assistant tasked with helping shape a ubicomp space. Your role is to generate clear, precise, and effective instructions for altering a 3D space according to user requests. When responding to user requests, you must closely follow past successful examples provided. Your instructions should replicate the steps from these examples as closely as possible, only deviating slightly if necessary to tailor the plan to the specific user request. {{~/system}} {{#user~}} As an assistant, create clear and precise instructions to alter a 3D ubicomp space according to user requests. Follow these guidelines: - Respond with a numbered set of instructions. - Your first instruction must be to either create an object or find the object the user is referring to. -- For example, if the user uses phrases like "The table" and "This table", you should have an instruction like "Find a table in the user's field of view" - Each instruction should modify only 1 property or behaviour. - Properties that can be edited are: Position, Rotation, Size, Color, Illumination (Whether the object emanates light), Luminous Intensity (Brightness of the light between 1 and 10), Levitation (When an object is levitated, it floats). - If you need to edit the position of more than one object, include it within a single instruction. For example, use "Edit the Position property of each chair to be 0.5 meters in front of each room wall" instead of separate instructions for each chair. - Your instructions must translate subjective terms into specific, measurable instructions. -- For example, terms like "big" or "close to me" can translate to “2 times its current size” and “1m away from the user” respectively. Always cite explicit numbers. -- Terms like "the table" or "this table" should translate to "table in the user's field of view" - For colors, use RGBA values. - Only instructions modifying the Position property can mention more than one object types. All other property modification can only mention ONE object type. The space consists of 4 walls, 1 ceiling, and 1 floor. You are limited to creating or modifying the following object types: (You must use the exact case-sensitive type of the object) Chair, Fox, Lamp, LED Cube, Push Button, Table, Vase, Zombie The user's prompt is {{task}}. When presented with a user request, your first step is to compare it with past examples provided below. If the current request closely matches a past example, you must replicate the plan from that example as closely as possible, adjusting only what is necessary to fit the specifics of the new task. This replication should include using the same object types, properties, and values. For any task, where a past example exists, your plan should follow the example's structure and steps very closely. Only in cases where no past example matches closely, then construct a new plan by synthesizing elements from the examples that are most relevant to the new task. Remember, the goal is to maintain the effectiveness and consistency of past successful plans. Use them as blueprints for your responses, ensuring that similar tasks yield similar, proven results. Past examples:\n {{examples}} The format for response should strictly be: 1. Instruction 1\n 2. Instruction 2\n … *Note: Output should not contain any text other than the instructions.* {{~/user}} {{#assistant~}} {{gen "plan" max_tokens=2000 temperature=0}} {{~/assistant}} ''') resp = planner(task=task, examples=examples) return resp["plan"]
[]
2024-01-10
allynee/Unity-Agent
gui~pages~6%F0%9F%91%BENo%20memory.py
import streamlit as st from dotenv import load_dotenv from time import time as now import guidance import re import os import sys sys.path.append("/Users/allyne/Documents/GitHub/Unity-Agent/") PLANNER_PROMPT = ''' {{#system~}} You are an efficient, direct and helpful assistant tasked with helping shape a ubicomp space. Your role is to generate clear, precise, and effective instructions for altering a 3D space according to user requests. When responding to user requests, you must closely follow past successful examples provided. Your instructions should replicate the steps from these examples as closely as possible, only deviating slightly if necessary to tailor the plan to the specific user request. {{~/system}} {{#user~}} As an assistant, create clear and precise instructions to alter a 3D ubicomp space according to user requests. Follow these guidelines: - Respond with a numbered set of instructions. - Your first instruction must be to either create an object or find the object the user is referring to. -- For example, if the user uses phrases like "The table" and "This table", you should have an instruction like "Find a table in the user's field of view" - Each instruction should modify only 1 property or behaviour. - Properties that can be edited are: Position, Rotation, Size, Color, Illumination (Whether the object emanates light), Luminous Intensity (Brightness of the light between 1 and 10), Levitation (When an object is levitated, it floats). - If you need to edit the position of more than one object, include it within a single instruction. For example, use "Edit the Position property of each chair to be 0.5 meters in front of each room wall" instead of separate instructions for each chair. - Your instructions must translate subjective terms into specific, measurable instructions. -- For example, terms like "big" or "close to me" can translate to “2 times its current size” and “1m away from the user” respectively. Always cite explicit numbers. -- Terms like "the table" or "this table" should translate to "table in the user's field of view" - For colors, use RGBA values. - Only instructions modifying the Position property can mention more than one object types. All other property modification can only mention ONE object type. The space consists of 4 walls, 1 ceiling, and 1 floor. You are limited to creating or modifying the following object types: (You must use the exact case-sensitive type of the object) Chair, Fox, Lamp, LED Cube, Push Button, Table, Vase, Zombie The user's prompt is {{task}}. The format for response should strictly be: 1. Instruction 1\n 2. Instruction 2\n … *Note: Output should not contain any text other than the instructions.* {{~/user}} {{#assistant~}} {{gen "plan" max_tokens=2000 temperature=0}} {{~/assistant}} ''' FUNCTION_PROMPT = ''' {{#system~}} You are an AI skilled in C# development for Unity's ubicomp space. You will assist in creating functions as part of a larger system. You will do so by translating pseudocode for a task to C# code. {{~/system}} {{#user~}} Your work revolves around our proprietary C# system. Our system comprises of: - SceneAPI: This is the wrapper class for our ubicomp space. The methods here will allow for manipulating the whole space. - Object3D: Each object in the space is of this type, and the methods here are available for every object. The anchor for the position and rotation of each object is at the bottom center of the object. - Vector3D: Any 3-dimensional dataset uses this class to represent x, y, and z. - Color3D: Color information using RGBA. **As the script's class inherits from `SceneAPI`, you can directly call its methods without prefixing.** Use the provided system to manipulate the room. Follow these steps: 1. Write method(s) using C# code to implement the task. 2. Declare private fields above your method(s) to track the object(s) you create and modify within the method. Ensure you always assign your object finding, creations, or modifications to these declared fields. If you are creating multiple objects, you can use a list to store them. 3. Use Debug.Log statements for action logging and error handling. 4. Adhere strictly to standard C# methods. 5. Add comments to your code to explain your thought process. Here are all the classes and functions you may use in your code: ``` Object types that can be created: (You must use the exact case-sensitive type of the object) Chair, Fox, Lamp, LED Cube, Push Button, Table, Vase, Zombie namespace Enums { public enum WallName { Left, Right, BackLeft, BackRight, } } public class Object3D { public string GetType() public void WhenSelected(UnityAction<SelectEnterEventArgs> function) public void WhenNotSelected(UnityAction<SelectExitEventArgs> function) public void WhenHovered(UnityAction<HoverEnterEventArgs> function) public void WhenNotHovered(UnityAction<HoverExitEventArgs> function) public void SetColor(Color3D color) public void SetLuminousIntensity(float intensity) public void Illuminate(bool lit) public void SetPosition(Vector3D pos) public void SetRotation(Vector3D rot) public void SetSize(Vector3D s) public void SetSizeByScale(float s) public void Levitate(bool isLevitated) public bool IsLevitated() public Color GetColor() public float GetIntensity() public bool IsLit() public Vector3D GetPosition() public Vector3D GetRotation() public Vector3D GetSize() public GameObject ToGameObject() } public class SceneAPI { public Vector3D GetWallPosition(WallName wallname) public List<Object3D> GetAllObject3DsInScene() public Object3D FindObject3DByName(string objName) // To find an object you could do // List<Object3D> objectsInView = GetAllObject3DsInFieldOfView(); // Object3D desiredObj = objectsInView.Find(obj => obj.GetType().Equals("ObjType")); public bool IsObject3DInFieldOfView(Object3D obj) public List<Object3D> GetAllObject3DsInFieldOfView() // This is good to get objects in the user's field of view. You can use this to find game objects referenced in the task. public bool IsObjectTypeValid(string objectType) public List<string> GetAllValidObjectTypes() public Vector3D GetSceneSize() public Vector3D GetUserOrientation() public Vector3D GetUsersHeadPosition() // Not good for object creation and position movement methods, as the tall height will cause objects to topple public Vector3D GetUsersLeftHandPosition() public Vector3D GetUsersRightHandPosition() public Vector3D GetUsersLeftHandRotation() public Vector3D GetUsersRightHandRotation() public Vector3D GetUsersFeetPosition() //This is good for object creation and position movement methods public Object3D CreateObject(string newObjName, string objectType, Vector3D position, Vector3D rotation) } public class Vector3D { // Vector3D cannot be used like Vector3. It only has the methods below. If you want to use Vector3 methods, convert it to Vector3 using ToVector3() first. public float x { get; set; } public float y { get; set; } public float z { get; set; } Vector3D(float x, float y, float z) public Vector3D ToVector3() public Vector3D FromVector3(Vector3 vec) } // To add 2 vector 3Ds, use new Vector3D(vec1.x + vec2.x, vec1.y + vec2.y, vec1.z + vec2.z) Same logic for subtract //When using NavMeshAgent, make sure to convert all Vector3Ds to Vector3s using ToVector3() before using them in the NavMeshAgent methods. // When performing calculations like multiplication, remember to convert all your Vector3Ds to Vector3s using ToVector3() before performing the calculations. public class Color3D { //All values below range from 0 to 1 public float r { get; set; } public float g { get; set; } public float b { get; set; } public float a { get; set; } Color3D(float r, float g, float b, float a) } ``` The task to create a function for is: {{task}}. Your format for responses should strictly be: // All class members should be declared here. private void Start(){ // Insert method(s) that only need to be called once } private void Update(){ // If method(s) that need to be called repeatedly } public void Method1() { // Insert the method code here } // And so on... The number of methods will depend on the user's request. *Note: Output should not contain any text other than the class members and method(s). You must give the full code within the methods* {{~/user}} {{#assistant~}} {{gen "function" temperature=0 max_tokens=4096}} {{~/assistant}} ''' SCRIPT_PROMPT = ''' {{#system~}} You are a skilled C# developer tasked with crafting a coherent C# script, ensuring that created objects and states are managed and utilized effectively across multiple methods. {{~/system}} {{#user~}} User Task: {{task}} Actionable Instructions to fulfil the user task: {{plan}} Methods for each step of the actionable plan: {{functions}} Follow these steps: 1. Develop a public class inheriting from SceneAPI with a name relevant to the task context. 2. You must use all methods in your final script. The only method(s) and/or code you are permitted to remove are methods that repeat creating or finding object(s). 3. Integrate and modify the methods to maintain script coherence. 4. Utilize class-level variables (e.g., private Object3D classMember;) to preserve state throughout the class. 5. Remove duplicate variables referencing the same object(s). 6. Ensure that the same object references are used in every method. Once an object is initialized, consistently use this reference in all related operations. 7. For each method, do not use FindObject3DByName() or CreateObject() to re-assign the same object(s). Always check if there is the same object reference that was initialized in previous methods. 8. Use Debug.Log statements for action logging and error handling. 9. Adhere to standard C# methods and conventions and add comments to your code to explain your thought process. 10. All methods should be called under either Start() or Update(). Your format for responses should strictly be: ``` public class YourChosenClassName : SceneAPI { // All class members and constants should be declared here. // Remember to remove duplicate variables referencing the same object(s) // Remember to call the final correct variable names across all methods private void Start() { Method1(); Method2(); // And so on... The number of methods will depend on the user's request. } private void Update() { Method3(); // And so on... The number of methods will depend on the user's request. } public void Method1() { // Insert the method code here } public void Method2() { // Insert the method code here } // And so on... The number of methods will depend on the user's request. } ``` *Note: Output should not contain any text other than script containing method(s). You must give the full code within the methods.* {{~/user}} {{#assistant~}} {{gen "script" temperature=0 max_tokens=4096}} {{~/assistant}} ''' def get_class_name_from_code(code_string): # Extract the class name from the code string using regex match = re.search(r'public class (\w+)', code_string) if match: return match.group(1) return "generated_script" def create_and_download_cs_file(code_string): class_name = get_class_name_from_code(code_string) file_name = f"{class_name}.cs" file_path = f"no_memory_generated_scripts/{file_name}" with open(file_path, "w", encoding="utf-8") as file: file.write(code_string) with open(file_path, "rb") as file: btn = st.download_button( label="Download .cs file", data=file, file_name=file_name, mime='text/plain', ) if btn: os.remove(file_name) def clean_function_text(text): text = text.replace("```csharp\n", "") # Replace the starting string with nothing text = text.replace("```", "") # Replace the ending string with nothing return text.strip() def generate_plan(task): guidance.llm = guidance.llms.OpenAI("gpt-4-0613") planner = guidance(PLANNER_PROMPT) resp = planner(task=task) return(resp["plan"]) def generate_function(task): guidance.llm = guidance.llms.OpenAI("gpt-3.5-turbo-1106") coder = guidance(FUNCTION_PROMPT) resp = coder(task=task) return(resp["function"]) def edit_code_string(code_string): try: first_index = code_string.index("public class") last_index = code_string.rindex("}") return code_string[first_index:last_index+1] except ValueError: print("Invalid code: 'using' or '}' not found.") def generate_script(task, plan, functions): guidance.llm = guidance.llms.OpenAI("gpt-4-0613") script = guidance(SCRIPT_PROMPT) resp = script(task=task, plan=plan, functions=functions) script = edit_code_string(resp["script"]) script = "using UnityEngine;\nusing UnityEngine.Events;\nusing UnityEngine.XR.Interaction.Toolkit;\nusing System;\nusing System.Collections.Generic;\nusing Enums;\nusing UnityEngine.AI;\nusing System.Linq;\n\n" + script return(script) def no_memory_test(task): st.markdown(f"## Received your task to generate a script for: {task}") st.markdown("## Generating the plan...") plan = generate_plan(task) st.write(plan) plans = plan.split("\n") plans = [plan for plan in plans if plan.strip()] functions = [] st.markdown("## Generating functions...") for plan in plans: st.write("Generating function for \n ```" + plan + "```") function = generate_function(plan) function = clean_function_text(function) functions.append(function) st.write("\n```csharp\n" + function + "\n\n") st.markdown("## Generating the entire script...") script = generate_script(task, plan, functions) st.write("```csharp\n" + script) st.write("\n\nDownload the script here:") create_and_download_cs_file(script) st.title("Agent with No Memory") task = st.text_area(f"Enter task here", key="task") if st.button("Run", key="generate_script"): with st.spinner("Processing"): no_memory_test(task) st.success("Process done!")
[ "\n{{#system~}}\nYou are a skilled C# developer tasked with crafting a coherent C# script, ensuring that created objects and states are managed and utilized effectively across multiple methods.\n{{~/system}}\n{{#user~}}\nUser Task: {{task}}\n\nActionable Instructions to fulfil the user task: {{plan}}\n \nMethods for each step of the actionable plan: {{functions}}\n \nFollow these steps:\n1. Develop a public class inheriting from SceneAPI with a name relevant to the task context.\n2. You must use all methods in your final script. The only method(s) and/or code you are permitted to remove are methods that repeat creating or finding object(s).\n3. Integrate and modify the methods to maintain script coherence. \n4. Utilize class-level variables (e.g., private Object3D classMember;) to preserve state throughout the class.\n5. Remove duplicate variables referencing the same object(s).\n6. Ensure that the same object references are used in every method. Once an object is initialized, consistently use this reference in all related operations. \n7. For each method, do not use FindObject3DByName() or CreateObject() to re-assign the same object(s). Always check if there is the same object reference that was initialized in previous methods.\n8. Use Debug.Log statements for action logging and error handling.\n9. Adhere to standard C# methods and conventions and add comments to your code to explain your thought process.\n10. All methods should be called under either Start() or Update().\n\nYour format for responses should strictly be: \n```\npublic class YourChosenClassName : SceneAPI\n{\t\n // All class members and constants should be declared here. \n // Remember to remove duplicate variables referencing the same object(s)\n // Remember to call the final correct variable names across all methods\n \n private void Start()\n {\n Method1();\n Method2();\n // And so on... The number of methods will depend on the user's request. \n }\n private void Update()\n {\n Method3();\n // And so on... The number of methods will depend on the user's request.\n }\n \n public void Method1()\n {\n // Insert the method code here\n }\n public void Method2()\n {\n // Insert the method code here\n }\n // And so on... The number of methods will depend on the user's request. \n}\n```\n*Note: Output should not contain any text other than script containing method(s). You must give the full code within the methods.*\n{{~/user}}\n{{#assistant~}}\n{{gen \"script\" temperature=0 max_tokens=4096}}\n{{~/assistant}}\n", "\n{{#system~}}\nYou are an efficient, direct and helpful assistant tasked with helping shape a ubicomp space. \nYour role is to generate clear, precise, and effective instructions for altering a 3D space according to user requests.\nWhen responding to user requests, you must closely follow past successful examples provided. \nYour instructions should replicate the steps from these examples as closely as possible, only deviating slightly if necessary to tailor the plan to the specific user request. \n{{~/system}}\n{{#user~}}\nAs an assistant, create clear and precise instructions to alter a 3D ubicomp space according to user requests. \n \nFollow these guidelines:\n- Respond with a numbered set of instructions. \n- Your first instruction must be to either create an object or find the object the user is referring to.\n-- For example, if the user uses phrases like \"The table\" and \"This table\", you should have an instruction like \"Find a table in the user's field of view\"\n- Each instruction should modify only 1 property or behaviour.\n- Properties that can be edited are: Position, Rotation, Size, Color, Illumination (Whether the object emanates light), Luminous Intensity (Brightness of the light between 1 and 10), Levitation (When an object is levitated, it floats). \n- If you need to edit the position of more than one object, include it within a single instruction. For example, use \"Edit the Position property of each chair to be 0.5 meters in front of each room wall\" instead of separate instructions for each chair.\n- Your instructions must translate subjective terms into specific, measurable instructions. \n-- For example, terms like \"big\" or \"close to me\" can translate to “2 times its current size” and “1m away from the user” respectively. Always cite explicit numbers.\n-- Terms like \"the table\" or \"this table\" should translate to \"table in the user's field of view\"\n- For colors, use RGBA values.\n- Only instructions modifying the Position property can mention more than one object types. All other property modification can only mention ONE object type.\n\nThe space consists of 4 walls, 1 ceiling, and 1 floor.\n\nYou are limited to creating or modifying the following object types: (You must use the exact case-sensitive type of the object)\nChair, Fox, Lamp, LED Cube, Push Button, Table, Vase, Zombie\n\nThe user's prompt is {{task}}.\n\nThe format for response should strictly be:\n 1. Instruction 1\n\n 2. Instruction 2\n\n …\n\n*Note: Output should not contain any text other than the instructions.*\n{{~/user}}\n{{#assistant~}}\n{{gen \"plan\" max_tokens=2000 temperature=0}}\n{{~/assistant}}\n", "\n{{#system~}}\nYou are an AI skilled in C# development for Unity's ubicomp space. \nYou will assist in creating functions as part of a larger system. \nYou will do so by translating pseudocode for a task to C# code.\n{{~/system}}\n{{#user~}}\nYour work revolves around our proprietary C# system. Our system comprises of: \n- SceneAPI: This is the wrapper class for our ubicomp space. The methods here will allow for manipulating the whole space. \n- Object3D: Each object in the space is of this type, and the methods here are available for every object. The anchor for the position and rotation of each object is at the bottom center of the object. \n- Vector3D: Any 3-dimensional dataset uses this class to represent x, y, and z.\n- Color3D: Color information using RGBA.\n \n**As the script's class inherits from `SceneAPI`, you can directly call its methods without prefixing.**\n\nUse the provided system to manipulate the room.\n \nFollow these steps:\n1. Write method(s) using C# code to implement the task. \n2. Declare private fields above your method(s) to track the object(s) you create and modify within the method. Ensure you always assign your object finding, creations, or modifications to these declared fields. If you are creating multiple objects, you can use a list to store them.\n3. Use Debug.Log statements for action logging and error handling.\n4. Adhere strictly to standard C# methods. \n5. Add comments to your code to explain your thought process.\n \nHere are all the classes and functions you may use in your code:\n```\nObject types that can be created: (You must use the exact case-sensitive type of the object)\nChair, Fox, Lamp, LED Cube, Push Button, Table, Vase, Zombie \n\nnamespace Enums\n{\n public enum WallName\n {\n Left,\n Right,\n BackLeft,\n BackRight,\n }\n}\npublic class Object3D\n{\n public string GetType()\n public void WhenSelected(UnityAction<SelectEnterEventArgs> function)\n public void WhenNotSelected(UnityAction<SelectExitEventArgs> function)\n public void WhenHovered(UnityAction<HoverEnterEventArgs> function)\n public void WhenNotHovered(UnityAction<HoverExitEventArgs> function)\n public void SetColor(Color3D color)\n public void SetLuminousIntensity(float intensity)\n public void Illuminate(bool lit)\n public void SetPosition(Vector3D pos)\n public void SetRotation(Vector3D rot)\n public void SetSize(Vector3D s)\n public void SetSizeByScale(float s)\n public void Levitate(bool isLevitated)\n public bool IsLevitated()\n public Color GetColor()\n public float GetIntensity()\n public bool IsLit()\n public Vector3D GetPosition()\n public Vector3D GetRotation()\n public Vector3D GetSize()\n public GameObject ToGameObject()\n}\n\npublic class SceneAPI\n{\n public Vector3D GetWallPosition(WallName wallname)\n public List<Object3D> GetAllObject3DsInScene()\n public Object3D FindObject3DByName(string objName)\n // To find an object you could do \n // List<Object3D> objectsInView = GetAllObject3DsInFieldOfView();\n // Object3D desiredObj = objectsInView.Find(obj => obj.GetType().Equals(\"ObjType\"));\n public bool IsObject3DInFieldOfView(Object3D obj)\n public List<Object3D> GetAllObject3DsInFieldOfView() // This is good to get objects in the user's field of view. You can use this to find game objects referenced in the task. \n public bool IsObjectTypeValid(string objectType)\n public List<string> GetAllValidObjectTypes()\n public Vector3D GetSceneSize()\n public Vector3D GetUserOrientation()\n public Vector3D GetUsersHeadPosition() // Not good for object creation and position movement methods, as the tall height will cause objects to topple\n public Vector3D GetUsersLeftHandPosition()\n public Vector3D GetUsersRightHandPosition()\n public Vector3D GetUsersLeftHandRotation()\n public Vector3D GetUsersRightHandRotation()\n public Vector3D GetUsersFeetPosition() //This is good for object creation and position movement methods\n public Object3D CreateObject(string newObjName, string objectType, Vector3D position, Vector3D rotation)\n}\n\npublic class Vector3D\n{\n // Vector3D cannot be used like Vector3. It only has the methods below. If you want to use Vector3 methods, convert it to Vector3 using ToVector3() first.\n public float x { get; set; }\n public float y { get; set; }\n public float z { get; set; }\n Vector3D(float x, float y, float z)\n public Vector3D ToVector3()\n public Vector3D FromVector3(Vector3 vec)\n} // To add 2 vector 3Ds, use new Vector3D(vec1.x + vec2.x, vec1.y + vec2.y, vec1.z + vec2.z) Same logic for subtract\n//When using NavMeshAgent, make sure to convert all Vector3Ds to Vector3s using ToVector3() before using them in the NavMeshAgent methods.\n// When performing calculations like multiplication, remember to convert all your Vector3Ds to Vector3s using ToVector3() before performing the calculations.\npublic class Color3D\n{\n //All values below range from 0 to 1 \n public float r { get; set; }\n public float g { get; set; }\n public float b { get; set; }\n public float a { get; set; }\n Color3D(float r, float g, float b, float a)\n}\n```\nThe task to create a function for is: {{task}}. \n \nYour format for responses should strictly be: \n \n// All class members should be declared here. \n\nprivate void Start(){\n // Insert method(s) that only need to be called once\n}\n \nprivate void Update(){\n // If method(s) that need to be called repeatedly\n}\n \npublic void Method1()\n{\n // Insert the method code here\n}\n// And so on... The number of methods will depend on the user's request. \n\n*Note: Output should not contain any text other than the class members and method(s). You must give the full code within the methods*\n{{~/user}}\n{{#assistant~}}\n{{gen \"function\" temperature=0 max_tokens=4096}}\n{{~/assistant}}\n" ]