date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
axgpt/langchain
libs~langchain~tests~unit_tests~chat_models~test_anthropic.py
"""Test Anthropic Chat API wrapper.""" import os from typing import List import pytest from langchain_core.schema import AIMessage, BaseMessage, HumanMessage, SystemMessage from langchain.chat_models import ChatAnthropic from langchain.chat_models.anthropic import convert_messages_to_prompt_anthropic os.environ["ANTHROPIC_API_KEY"] = "foo" @pytest.mark.requires("anthropic") def test_anthropic_model_name_param() -> None: llm = ChatAnthropic(model_name="foo") assert llm.model == "foo" @pytest.mark.requires("anthropic") def test_anthropic_model_param() -> None: llm = ChatAnthropic(model="foo") assert llm.model == "foo" @pytest.mark.requires("anthropic") def test_anthropic_model_kwargs() -> None: llm = ChatAnthropic(model_kwargs={"foo": "bar"}) assert llm.model_kwargs == {"foo": "bar"} @pytest.mark.requires("anthropic") def test_anthropic_invalid_model_kwargs() -> None: with pytest.raises(ValueError): ChatAnthropic(model_kwargs={"max_tokens_to_sample": 5}) @pytest.mark.requires("anthropic") def test_anthropic_incorrect_field() -> None: with pytest.warns(match="not default parameter"): llm = ChatAnthropic(foo="bar") assert llm.model_kwargs == {"foo": "bar"} @pytest.mark.requires("anthropic") def test_anthropic_initialization() -> None: """Test anthropic initialization.""" # Verify that chat anthropic can be initialized using a secret key provided # as a parameter rather than an environment variable. ChatAnthropic(model="test", anthropic_api_key="test") @pytest.mark.parametrize( ("messages", "expected"), [ ([HumanMessage(content="Hello")], "\n\nHuman: Hello\n\nAssistant:"), ( [HumanMessage(content="Hello"), AIMessage(content="Answer:")], "\n\nHuman: Hello\n\nAssistant: Answer:", ), ( [ SystemMessage(content="You're an assistant"), HumanMessage(content="Hello"), AIMessage(content="Answer:"), ], "You're an assistant\n\nHuman: Hello\n\nAssistant: Answer:", ), ], ) def test_formatting(messages: List[BaseMessage], expected: str) -> None: result = convert_messages_to_prompt_anthropic(messages) assert result == expected
[ "You're an assistant", "Answer:", "Hello" ]
2024-01-10
axgpt/langchain
libs~langchain~langchain~vectorstores~neo4j_vector.py
from __future__ import annotations import enum import logging import os import uuid from typing import ( Any, Callable, Dict, Iterable, List, Optional, Tuple, Type, ) from langchain_core.schema.embeddings import Embeddings from langchain_core.schema.vectorstore import VectorStore from langchain.docstore.document import Document from langchain.utils import get_from_env from langchain.vectorstores.utils import DistanceStrategy DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.COSINE DISTANCE_MAPPING = { DistanceStrategy.EUCLIDEAN_DISTANCE: "euclidean", DistanceStrategy.COSINE: "cosine", } class SearchType(str, enum.Enum): """Enumerator of the Distance strategies.""" VECTOR = "vector" HYBRID = "hybrid" DEFAULT_SEARCH_TYPE = SearchType.VECTOR def _get_search_index_query(search_type: SearchType) -> str: type_to_query_map = { SearchType.VECTOR: ( "CALL db.index.vector.queryNodes($index, $k, $embedding) YIELD node, score " ), SearchType.HYBRID: ( "CALL { " "CALL db.index.vector.queryNodes($index, $k, $embedding) " "YIELD node, score " "RETURN node, score UNION " "CALL db.index.fulltext.queryNodes($keyword_index, $query, {limit: $k}) " "YIELD node, score " "WITH collect({node:node, score:score}) AS nodes, max(score) AS max " "UNWIND nodes AS n " "RETURN n.node AS node, (n.score / max) AS score " # We use 0 as min "} " "WITH node, max(score) AS score ORDER BY score DESC LIMIT $k " # dedup ), } return type_to_query_map[search_type] def check_if_not_null(props: List[str], values: List[Any]) -> None: """Check if the values are not None or empty string""" for prop, value in zip(props, values): if not value: raise ValueError(f"Parameter `{prop}` must not be None or empty string") def sort_by_index_name( lst: List[Dict[str, Any]], index_name: str ) -> List[Dict[str, Any]]: """Sort first element to match the index_name if exists""" return sorted(lst, key=lambda x: x.get("index_name") != index_name) class Neo4jVector(VectorStore): """`Neo4j` vector index. To use, you should have the ``neo4j`` python package installed. Args: url: Neo4j connection url username: Neo4j username. password: Neo4j password database: Optionally provide Neo4j database Defaults to "neo4j" embedding: Any embedding function implementing `langchain.embeddings.base.Embeddings` interface. distance_strategy: The distance strategy to use. (default: COSINE) pre_delete_collection: If True, will delete existing data if it exists. (default: False). Useful for testing. Example: .. code-block:: python from langchain.vectorstores.neo4j_vector import Neo4jVector from langchain.embeddings.openai import OpenAIEmbeddings url="bolt://localhost:7687" username="neo4j" password="pleaseletmein" embeddings = OpenAIEmbeddings() vectorestore = Neo4jVector.from_documents( embedding=embeddings, documents=docs, url=url username=username, password=password, ) """ def __init__( self, embedding: Embeddings, *, search_type: SearchType = SearchType.VECTOR, username: Optional[str] = None, password: Optional[str] = None, url: Optional[str] = None, keyword_index_name: Optional[str] = "keyword", database: str = "neo4j", index_name: str = "vector", node_label: str = "Chunk", embedding_node_property: str = "embedding", text_node_property: str = "text", distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, logger: Optional[logging.Logger] = None, pre_delete_collection: bool = False, retrieval_query: str = "", relevance_score_fn: Optional[Callable[[float], float]] = None, ) -> None: try: import neo4j except ImportError: raise ImportError( "Could not import neo4j python package. " "Please install it with `pip install neo4j`." ) # Allow only cosine and euclidean distance strategies if distance_strategy not in [ DistanceStrategy.EUCLIDEAN_DISTANCE, DistanceStrategy.COSINE, ]: raise ValueError( "distance_strategy must be either 'EUCLIDEAN_DISTANCE' or 'COSINE'" ) # Handle if the credentials are environment variables # Support URL for backwards compatibility url = os.environ.get("NEO4J_URL", url) url = get_from_env("url", "NEO4J_URI", url) username = get_from_env("username", "NEO4J_USERNAME", username) password = get_from_env("password", "NEO4J_PASSWORD", password) database = get_from_env("database", "NEO4J_DATABASE", database) self._driver = neo4j.GraphDatabase.driver(url, auth=(username, password)) self._database = database self.schema = "" # Verify connection try: self._driver.verify_connectivity() except neo4j.exceptions.ServiceUnavailable: raise ValueError( "Could not connect to Neo4j database. " "Please ensure that the url is correct" ) except neo4j.exceptions.AuthError: raise ValueError( "Could not connect to Neo4j database. " "Please ensure that the username and password are correct" ) # Verify if the version support vector index self.verify_version() # Verify that required values are not null check_if_not_null( [ "index_name", "node_label", "embedding_node_property", "text_node_property", ], [index_name, node_label, embedding_node_property, text_node_property], ) self.embedding = embedding self._distance_strategy = distance_strategy self.index_name = index_name self.keyword_index_name = keyword_index_name self.node_label = node_label self.embedding_node_property = embedding_node_property self.text_node_property = text_node_property self.logger = logger or logging.getLogger(__name__) self.override_relevance_score_fn = relevance_score_fn self.retrieval_query = retrieval_query self.search_type = search_type # Calculate embedding dimension self.embedding_dimension = len(embedding.embed_query("foo")) # Delete existing data if flagged if pre_delete_collection: from neo4j.exceptions import DatabaseError self.query( f"MATCH (n:`{self.node_label}`) " "CALL { WITH n DETACH DELETE n } " "IN TRANSACTIONS OF 10000 ROWS;" ) # Delete index try: self.query(f"DROP INDEX {self.index_name}") except DatabaseError: # Index didn't exist yet pass def query( self, query: str, *, params: Optional[dict] = None ) -> List[Dict[str, Any]]: """ This method sends a Cypher query to the connected Neo4j database and returns the results as a list of dictionaries. Args: query (str): The Cypher query to execute. params (dict, optional): Dictionary of query parameters. Defaults to {}. Returns: List[Dict[str, Any]]: List of dictionaries containing the query results. """ from neo4j.exceptions import CypherSyntaxError params = params or {} with self._driver.session(database=self._database) as session: try: data = session.run(query, params) return [r.data() for r in data] except CypherSyntaxError as e: raise ValueError(f"Cypher Statement is not valid\n{e}") def verify_version(self) -> None: """ Check if the connected Neo4j database version supports vector indexing. Queries the Neo4j database to retrieve its version and compares it against a target version (5.11.0) that is known to support vector indexing. Raises a ValueError if the connected Neo4j version is not supported. """ version = self.query("CALL dbms.components()")[0]["versions"][0] if "aura" in version: version_tuple = tuple(map(int, version.split("-")[0].split("."))) + (0,) else: version_tuple = tuple(map(int, version.split("."))) target_version = (5, 11, 0) if version_tuple < target_version: raise ValueError( "Version index is only supported in Neo4j version 5.11 or greater" ) def retrieve_existing_index(self) -> Optional[int]: """ Check if the vector index exists in the Neo4j database and returns its embedding dimension. This method queries the Neo4j database for existing indexes and attempts to retrieve the dimension of the vector index with the specified name. If the index exists, its dimension is returned. If the index doesn't exist, `None` is returned. Returns: int or None: The embedding dimension of the existing index if found. """ index_information = self.query( "SHOW INDEXES YIELD name, type, labelsOrTypes, properties, options " "WHERE type = 'VECTOR' AND (name = $index_name " "OR (labelsOrTypes[0] = $node_label AND " "properties[0] = $embedding_node_property)) " "RETURN name, labelsOrTypes, properties, options ", params={ "index_name": self.index_name, "node_label": self.node_label, "embedding_node_property": self.embedding_node_property, }, ) # sort by index_name index_information = sort_by_index_name(index_information, self.index_name) try: self.index_name = index_information[0]["name"] self.node_label = index_information[0]["labelsOrTypes"][0] self.embedding_node_property = index_information[0]["properties"][0] embedding_dimension = index_information[0]["options"]["indexConfig"][ "vector.dimensions" ] return embedding_dimension except IndexError: return None def retrieve_existing_fts_index( self, text_node_properties: List[str] = [] ) -> Optional[str]: """ Check if the fulltext index exists in the Neo4j database This method queries the Neo4j database for existing fts indexes with the specified name. Returns: (Tuple): keyword index information """ index_information = self.query( "SHOW INDEXES YIELD name, type, labelsOrTypes, properties, options " "WHERE type = 'FULLTEXT' AND (name = $keyword_index_name " "OR (labelsOrTypes = [$node_label] AND " "properties = $text_node_property)) " "RETURN name, labelsOrTypes, properties, options ", params={ "keyword_index_name": self.keyword_index_name, "node_label": self.node_label, "text_node_property": text_node_properties or [self.text_node_property], }, ) # sort by index_name index_information = sort_by_index_name(index_information, self.index_name) try: self.keyword_index_name = index_information[0]["name"] self.text_node_property = index_information[0]["properties"][0] node_label = index_information[0]["labelsOrTypes"][0] return node_label except IndexError: return None def create_new_index(self) -> None: """ This method constructs a Cypher query and executes it to create a new vector index in Neo4j. """ index_query = ( "CALL db.index.vector.createNodeIndex(" "$index_name," "$node_label," "$embedding_node_property," "toInteger($embedding_dimension)," "$similarity_metric )" ) parameters = { "index_name": self.index_name, "node_label": self.node_label, "embedding_node_property": self.embedding_node_property, "embedding_dimension": self.embedding_dimension, "similarity_metric": DISTANCE_MAPPING[self._distance_strategy], } self.query(index_query, params=parameters) def create_new_keyword_index(self, text_node_properties: List[str] = []) -> None: """ This method constructs a Cypher query and executes it to create a new full text index in Neo4j. """ node_props = text_node_properties or [self.text_node_property] fts_index_query = ( f"CREATE FULLTEXT INDEX {self.keyword_index_name} " f"FOR (n:`{self.node_label}`) ON EACH " f"[{', '.join(['n.`' + el + '`' for el in node_props])}]" ) self.query(fts_index_query) @property def embeddings(self) -> Embeddings: return self.embedding @classmethod def __from( cls, texts: List[str], embeddings: List[List[float]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, create_id_index: bool = True, search_type: SearchType = SearchType.VECTOR, **kwargs: Any, ) -> Neo4jVector: if ids is None: ids = [str(uuid.uuid1()) for _ in texts] if not metadatas: metadatas = [{} for _ in texts] store = cls( embedding=embedding, search_type=search_type, **kwargs, ) # Check if the vector index already exists embedding_dimension = store.retrieve_existing_index() # If the vector index doesn't exist yet if not embedding_dimension: store.create_new_index() # If the index already exists, check if embedding dimensions match elif not store.embedding_dimension == embedding_dimension: raise ValueError( f"Index with name {store.index_name} already exists." "The provided embedding function and vector index " "dimensions do not match.\n" f"Embedding function dimension: {store.embedding_dimension}\n" f"Vector index dimension: {embedding_dimension}" ) if search_type == SearchType.HYBRID: fts_node_label = store.retrieve_existing_fts_index() # If the FTS index doesn't exist yet if not fts_node_label: store.create_new_keyword_index() else: # Validate that FTS and Vector index use the same information if not fts_node_label == store.node_label: raise ValueError( "Vector and keyword index don't index the same node label" ) # Create unique constraint for faster import if create_id_index: store.query( "CREATE CONSTRAINT IF NOT EXISTS " f"FOR (n:`{store.node_label}`) REQUIRE n.id IS UNIQUE;" ) store.add_embeddings( texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs ) return store def add_embeddings( self, texts: Iterable[str], embeddings: List[List[float]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Add embeddings to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. embeddings: List of list of embedding vectors. metadatas: List of metadatas associated with the texts. kwargs: vectorstore specific parameters """ if ids is None: ids = [str(uuid.uuid1()) for _ in texts] if not metadatas: metadatas = [{} for _ in texts] import_query = ( "UNWIND $data AS row " "CALL { WITH row " f"MERGE (c:`{self.node_label}` {{id: row.id}}) " "WITH c, row " f"CALL db.create.setVectorProperty(c, " f"'{self.embedding_node_property}', row.embedding) " "YIELD node " f"SET c.`{self.text_node_property}` = row.text " "SET c += row.metadata } IN TRANSACTIONS OF 1000 ROWS" ) parameters = { "data": [ {"text": text, "metadata": metadata, "embedding": embedding, "id": id} for text, metadata, embedding, id in zip( texts, metadatas, embeddings, ids ) ] } self.query(import_query, params=parameters) return ids def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. kwargs: vectorstore specific parameters Returns: List of ids from adding the texts into the vectorstore. """ embeddings = self.embedding.embed_documents(list(texts)) return self.add_embeddings( texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs ) def similarity_search( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Document]: """Run similarity search with Neo4jVector. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. Returns: List of Documents most similar to the query. """ embedding = self.embedding.embed_query(text=query) return self.similarity_search_by_vector( embedding=embedding, k=k, query=query, ) def similarity_search_with_score( self, query: str, k: int = 4 ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query and score for each """ embedding = self.embedding.embed_query(query) docs = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, query=query ) return docs def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Tuple[Document, float]]: """ Perform a similarity search in the Neo4j database using a given vector and return the top k similar documents with their scores. This method uses a Cypher query to find the top k documents that are most similar to a given embedding. The similarity is measured using a vector index in the Neo4j database. The results are returned as a list of tuples, each containing a Document object and its similarity score. Args: embedding (List[float]): The embedding vector to compare against. k (int, optional): The number of top similar documents to retrieve. Returns: List[Tuple[Document, float]]: A list of tuples, each containing a Document object and its similarity score. """ default_retrieval = ( f"RETURN node.`{self.text_node_property}` AS text, score, " f"node {{.*, `{self.text_node_property}`: Null, " f"`{self.embedding_node_property}`: Null, id: Null }} AS metadata" ) retrieval_query = ( self.retrieval_query if self.retrieval_query else default_retrieval ) read_query = _get_search_index_query(self.search_type) + retrieval_query parameters = { "index": self.index_name, "k": k, "embedding": embedding, "keyword_index": self.keyword_index_name, "query": kwargs["query"], } results = self.query(read_query, params=parameters) docs = [ ( Document( page_content=result["text"], metadata={ k: v for k, v in result["metadata"].items() if v is not None }, ), result["score"], ) for result in results ] return docs def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query vector. """ docs_and_scores = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, **kwargs ) return [doc for doc, _ in docs_and_scores] @classmethod def from_texts( cls: Type[Neo4jVector], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, ids: Optional[List[str]] = None, **kwargs: Any, ) -> Neo4jVector: """ Return Neo4jVector initialized from texts and embeddings. Neo4j credentials are required in the form of `url`, `username`, and `password` and optional `database` parameters. """ embeddings = embedding.embed_documents(list(texts)) return cls.__from( texts, embeddings, embedding, metadatas=metadatas, ids=ids, distance_strategy=distance_strategy, **kwargs, ) @classmethod def from_embeddings( cls, text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> Neo4jVector: """Construct Neo4jVector wrapper from raw documents and pre- generated embeddings. Return Neo4jVector initialized from documents and embeddings. Neo4j credentials are required in the form of `url`, `username`, and `password` and optional `database` parameters. Example: .. code-block:: python from langchain.vectorstores.neo4j_vector import Neo4jVector from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) vectorstore = Neo4jVector.from_embeddings( text_embedding_pairs, embeddings) """ texts = [t[0] for t in text_embeddings] embeddings = [t[1] for t in text_embeddings] return cls.__from( texts, embeddings, embedding, metadatas=metadatas, ids=ids, distance_strategy=distance_strategy, pre_delete_collection=pre_delete_collection, **kwargs, ) @classmethod def from_existing_index( cls: Type[Neo4jVector], embedding: Embeddings, index_name: str, search_type: SearchType = DEFAULT_SEARCH_TYPE, keyword_index_name: Optional[str] = None, **kwargs: Any, ) -> Neo4jVector: """ Get instance of an existing Neo4j vector index. This method will return the instance of the store without inserting any new embeddings. Neo4j credentials are required in the form of `url`, `username`, and `password` and optional `database` parameters along with the `index_name` definition. """ if search_type == SearchType.HYBRID and not keyword_index_name: raise ValueError( "keyword_index name has to be specified " "when using hybrid search option" ) store = cls( embedding=embedding, index_name=index_name, keyword_index_name=keyword_index_name, search_type=search_type, **kwargs, ) embedding_dimension = store.retrieve_existing_index() if not embedding_dimension: raise ValueError( "The specified vector index name does not exist. " "Make sure to check if you spelled it correctly" ) # Check if embedding function and vector index dimensions match if not store.embedding_dimension == embedding_dimension: raise ValueError( "The provided embedding function and vector index " "dimensions do not match.\n" f"Embedding function dimension: {store.embedding_dimension}\n" f"Vector index dimension: {embedding_dimension}" ) if search_type == SearchType.HYBRID: fts_node_label = store.retrieve_existing_fts_index() # If the FTS index doesn't exist yet if not fts_node_label: raise ValueError( "The specified keyword index name does not exist. " "Make sure to check if you spelled it correctly" ) else: # Validate that FTS and Vector index use the same information if not fts_node_label == store.node_label: raise ValueError( "Vector and keyword index don't index the same node label" ) return store @classmethod def from_documents( cls: Type[Neo4jVector], documents: List[Document], embedding: Embeddings, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, ids: Optional[List[str]] = None, **kwargs: Any, ) -> Neo4jVector: """ Return Neo4jVector initialized from documents and embeddings. Neo4j credentials are required in the form of `url`, `username`, and `password` and optional `database` parameters. """ texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] return cls.from_texts( texts=texts, embedding=embedding, distance_strategy=distance_strategy, metadatas=metadatas, ids=ids, **kwargs, ) @classmethod def from_existing_graph( cls: Type[Neo4jVector], embedding: Embeddings, node_label: str, embedding_node_property: str, text_node_properties: List[str], *, keyword_index_name: Optional[str] = "keyword", index_name: str = "vector", search_type: SearchType = DEFAULT_SEARCH_TYPE, retrieval_query: str = "", **kwargs: Any, ) -> Neo4jVector: """ Initialize and return a Neo4jVector instance from an existing graph. This method initializes a Neo4jVector instance using the provided parameters and the existing graph. It validates the existence of the indices and creates new ones if they don't exist. Returns: Neo4jVector: An instance of Neo4jVector initialized with the provided parameters and existing graph. Example: >>> neo4j_vector = Neo4jVector.from_existing_graph( ... embedding=my_embedding, ... node_label="Document", ... embedding_node_property="embedding", ... text_node_properties=["title", "content"] ... ) Note: Neo4j credentials are required in the form of `url`, `username`, and `password`, and optional `database` parameters passed as additional keyword arguments. """ # Validate the list is not empty if not text_node_properties: raise ValueError( "Parameter `text_node_properties` must not be an empty list" ) # Prefer retrieval query from params, otherwise construct it if not retrieval_query: retrieval_query = ( f"RETURN reduce(str='', k IN {text_node_properties} |" " str + '\\n' + k + ': ' + coalesce(node[k], '')) AS text, " "node {.*, `" + embedding_node_property + "`: Null, id: Null, " + ", ".join([f"`{prop}`: Null" for prop in text_node_properties]) + "} AS metadata, score" ) store = cls( embedding=embedding, index_name=index_name, keyword_index_name=keyword_index_name, search_type=search_type, retrieval_query=retrieval_query, node_label=node_label, embedding_node_property=embedding_node_property, **kwargs, ) # Check if the vector index already exists embedding_dimension = store.retrieve_existing_index() # If the vector index doesn't exist yet if not embedding_dimension: store.create_new_index() # If the index already exists, check if embedding dimensions match elif not store.embedding_dimension == embedding_dimension: raise ValueError( f"Index with name {store.index_name} already exists." "The provided embedding function and vector index " "dimensions do not match.\n" f"Embedding function dimension: {store.embedding_dimension}\n" f"Vector index dimension: {embedding_dimension}" ) # FTS index for Hybrid search if search_type == SearchType.HYBRID: fts_node_label = store.retrieve_existing_fts_index(text_node_properties) # If the FTS index doesn't exist yet if not fts_node_label: store.create_new_keyword_index(text_node_properties) else: # Validate that FTS and Vector index use the same information if not fts_node_label == store.node_label: raise ValueError( "Vector and keyword index don't index the same node label" ) # Populate embeddings while True: fetch_query = ( f"MATCH (n:`{node_label}`) " f"WHERE n.{embedding_node_property} IS null " "AND any(k in $props WHERE n[k] IS NOT null) " f"RETURN elementId(n) AS id, reduce(str=''," "k IN $props | str + '\\n' + k + ':' + coalesce(n[k], '')) AS text " "LIMIT 1000" ) data = store.query(fetch_query, params={"props": text_node_properties}) text_embeddings = embedding.embed_documents([el["text"] for el in data]) params = { "data": [ {"id": el["id"], "embedding": embedding} for el, embedding in zip(data, text_embeddings) ] } store.query( "UNWIND $data AS row " f"MATCH (n:`{node_label}`) " "WHERE elementId(n) = row.id " f"CALL db.create.setVectorProperty(n, " f"'{embedding_node_property}', row.embedding) " "YIELD node RETURN count(*)", params=params, ) # If embedding calculation should be stopped if len(data) < 1000: break return store def _select_relevance_score_fn(self) -> Callable[[float], float]: """ The 'correct' relevance function may differ depending on a few things, including: - the distance / similarity metric used by the VectorStore - the scale of your embeddings (OpenAI's are unit normed. Many others are not!) - embedding dimensionality - etc. """ if self.override_relevance_score_fn is not None: return self.override_relevance_score_fn # Default strategy is to rely on distance strategy provided # in vectorstore constructor if self._distance_strategy == DistanceStrategy.COSINE: return lambda x: x elif self._distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE: return lambda x: x else: raise ValueError( "No supported normalization function" f" for distance_strategy of {self._distance_strategy}." "Consider providing relevance_score_fn to PGVector constructor." )
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~chat_models~azureml_endpoint.py
import json from typing import Any, Dict, List, Optional, cast from langchain_core.pydantic_v1 import SecretStr, validator from langchain_core.schema.messages import ( AIMessage, BaseMessage, ChatMessage, HumanMessage, SystemMessage, ) from langchain_core.utils import convert_to_secret_str from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.chat_models.base import SimpleChatModel from langchain.llms.azureml_endpoint import AzureMLEndpointClient, ContentFormatterBase from langchain.utils import get_from_dict_or_env class LlamaContentFormatter(ContentFormatterBase): """Content formatter for `LLaMA`.""" SUPPORTED_ROLES: List[str] = ["user", "assistant", "system"] @staticmethod def _convert_message_to_dict(message: BaseMessage) -> Dict: """Converts message to a dict according to role""" content = cast(str, message.content) if isinstance(message, HumanMessage): return { "role": "user", "content": ContentFormatterBase.escape_special_characters(content), } elif isinstance(message, AIMessage): return { "role": "assistant", "content": ContentFormatterBase.escape_special_characters(content), } elif isinstance(message, SystemMessage): return { "role": "system", "content": ContentFormatterBase.escape_special_characters(content), } elif ( isinstance(message, ChatMessage) and message.role in LlamaContentFormatter.SUPPORTED_ROLES ): return { "role": message.role, "content": ContentFormatterBase.escape_special_characters(content), } else: supported = ",".join( [role for role in LlamaContentFormatter.SUPPORTED_ROLES] ) raise ValueError( f"""Received unsupported role. Supported roles for the LLaMa Foundation Model: {supported}""" ) def _format_request_payload( self, messages: List[BaseMessage], model_kwargs: Dict ) -> bytes: chat_messages = [ LlamaContentFormatter._convert_message_to_dict(message) for message in messages ] prompt = json.dumps( {"input_data": {"input_string": chat_messages, "parameters": model_kwargs}} ) return self.format_request_payload(prompt=prompt, model_kwargs=model_kwargs) def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes: """Formats the request according to the chosen api""" return str.encode(prompt) def format_response_payload(self, output: bytes) -> str: """Formats response""" return json.loads(output)["output"] class AzureMLChatOnlineEndpoint(SimpleChatModel): """`AzureML` Chat models API. Example: .. code-block:: python azure_chat = AzureMLChatOnlineEndpoint( endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score", endpoint_api_key="my-api-key", content_formatter=content_formatter, ) """ endpoint_url: str = "" """URL of pre-existing Endpoint. Should be passed to constructor or specified as env var `AZUREML_ENDPOINT_URL`.""" endpoint_api_key: SecretStr = convert_to_secret_str("") """Authentication Key for Endpoint. Should be passed to constructor or specified as env var `AZUREML_ENDPOINT_API_KEY`.""" http_client: Any = None #: :meta private: content_formatter: Any = None """The content formatter that provides an input and output transform function to handle formats between the LLM and the endpoint""" model_kwargs: Optional[dict] = None """Keyword arguments to pass to the model.""" @validator("http_client", always=True, allow_reuse=True) @classmethod def validate_client(cls, field_value: Any, values: Dict) -> AzureMLEndpointClient: """Validate that api key and python package exist in environment.""" values["endpoint_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "endpoint_api_key", "AZUREML_ENDPOINT_API_KEY") ) endpoint_url = get_from_dict_or_env( values, "endpoint_url", "AZUREML_ENDPOINT_URL" ) http_client = AzureMLEndpointClient( endpoint_url, values["endpoint_api_key"].get_secret_value() ) return http_client @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "azureml_chat_endpoint" def _call( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to an AzureML Managed Online endpoint. Args: messages: The messages in the conversation with the chat model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = azureml_model("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} request_payload = self.content_formatter._format_request_payload( messages, _model_kwargs ) response_payload = self.http_client.call(request_payload, **kwargs) generated_text = self.content_formatter.format_response_payload( response_payload ) return generated_text
[ "input_string", "parameters", "input_data" ]
2024-01-10
axgpt/langchain
libs~langchain~tests~integration_tests~llms~test_qianfan_endpoint.py
"""Test Baidu Qianfan LLM Endpoint.""" from typing import Generator import pytest from langchain_core.schema import LLMResult from langchain.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint def test_call() -> None: """Test valid call to qianfan.""" llm = QianfanLLMEndpoint() output = llm("write a joke") assert isinstance(output, str) def test_generate() -> None: """Test valid call to qianfan.""" llm = QianfanLLMEndpoint() output = llm.generate(["write a joke"]) assert isinstance(output, LLMResult) assert isinstance(output.generations, list) def test_generate_stream() -> None: """Test valid call to qianfan.""" llm = QianfanLLMEndpoint() output = llm.stream("write a joke") assert isinstance(output, Generator) @pytest.mark.asyncio async def test_qianfan_aio() -> None: llm = QianfanLLMEndpoint(streaming=True) async for token in llm.astream("hi qianfan."): assert isinstance(token, str)
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~callbacks~argilla_callback.py
import os import warnings from typing import Any, Dict, List, Optional from langchain_core.schema import AgentAction, AgentFinish, LLMResult from packaging.version import parse from langchain.callbacks.base import BaseCallbackHandler class ArgillaCallbackHandler(BaseCallbackHandler): """Callback Handler that logs into Argilla. Args: dataset_name: name of the `FeedbackDataset` in Argilla. Note that it must exist in advance. If you need help on how to create a `FeedbackDataset` in Argilla, please visit https://docs.argilla.io/en/latest/guides/llms/practical_guides/use_argilla_callback_in_langchain.html. workspace_name: name of the workspace in Argilla where the specified `FeedbackDataset` lives in. Defaults to `None`, which means that the default workspace will be used. api_url: URL of the Argilla Server that we want to use, and where the `FeedbackDataset` lives in. Defaults to `None`, which means that either `ARGILLA_API_URL` environment variable or the default will be used. api_key: API Key to connect to the Argilla Server. Defaults to `None`, which means that either `ARGILLA_API_KEY` environment variable or the default will be used. Raises: ImportError: if the `argilla` package is not installed. ConnectionError: if the connection to Argilla fails. FileNotFoundError: if the `FeedbackDataset` retrieval from Argilla fails. Examples: >>> from langchain.llms import OpenAI >>> from langchain.callbacks import ArgillaCallbackHandler >>> argilla_callback = ArgillaCallbackHandler( ... dataset_name="my-dataset", ... workspace_name="my-workspace", ... api_url="http://localhost:6900", ... api_key="argilla.apikey", ... ) >>> llm = OpenAI( ... temperature=0, ... callbacks=[argilla_callback], ... verbose=True, ... openai_api_key="API_KEY_HERE", ... ) >>> llm.generate([ ... "What is the best NLP-annotation tool out there? (no bias at all)", ... ]) "Argilla, no doubt about it." """ REPO_URL: str = "https://github.com/argilla-io/argilla" ISSUES_URL: str = f"{REPO_URL}/issues" BLOG_URL: str = "https://docs.argilla.io/en/latest/guides/llms/practical_guides/use_argilla_callback_in_langchain.html" # noqa: E501 DEFAULT_API_URL: str = "http://localhost:6900" def __init__( self, dataset_name: str, workspace_name: Optional[str] = None, api_url: Optional[str] = None, api_key: Optional[str] = None, ) -> None: """Initializes the `ArgillaCallbackHandler`. Args: dataset_name: name of the `FeedbackDataset` in Argilla. Note that it must exist in advance. If you need help on how to create a `FeedbackDataset` in Argilla, please visit https://docs.argilla.io/en/latest/guides/llms/practical_guides/use_argilla_callback_in_langchain.html. workspace_name: name of the workspace in Argilla where the specified `FeedbackDataset` lives in. Defaults to `None`, which means that the default workspace will be used. api_url: URL of the Argilla Server that we want to use, and where the `FeedbackDataset` lives in. Defaults to `None`, which means that either `ARGILLA_API_URL` environment variable or the default will be used. api_key: API Key to connect to the Argilla Server. Defaults to `None`, which means that either `ARGILLA_API_KEY` environment variable or the default will be used. Raises: ImportError: if the `argilla` package is not installed. ConnectionError: if the connection to Argilla fails. FileNotFoundError: if the `FeedbackDataset` retrieval from Argilla fails. """ super().__init__() # Import Argilla (not via `import_argilla` to keep hints in IDEs) try: import argilla as rg # noqa: F401 self.ARGILLA_VERSION = rg.__version__ except ImportError: raise ImportError( "To use the Argilla callback manager you need to have the `argilla` " "Python package installed. Please install it with `pip install argilla`" ) # Check whether the Argilla version is compatible if parse(self.ARGILLA_VERSION) < parse("1.8.0"): raise ImportError( f"The installed `argilla` version is {self.ARGILLA_VERSION} but " "`ArgillaCallbackHandler` requires at least version 1.8.0. Please " "upgrade `argilla` with `pip install --upgrade argilla`." ) # Show a warning message if Argilla will assume the default values will be used if api_url is None and os.getenv("ARGILLA_API_URL") is None: warnings.warn( ( "Since `api_url` is None, and the env var `ARGILLA_API_URL` is not" f" set, it will default to `{self.DEFAULT_API_URL}`, which is the" " default API URL in Argilla Quickstart." ), ) api_url = self.DEFAULT_API_URL if api_key is None and os.getenv("ARGILLA_API_KEY") is None: self.DEFAULT_API_KEY = ( "admin.apikey" if parse(self.ARGILLA_VERSION) < parse("1.11.0") else "owner.apikey" ) warnings.warn( ( "Since `api_key` is None, and the env var `ARGILLA_API_KEY` is not" f" set, it will default to `{self.DEFAULT_API_KEY}`, which is the" " default API key in Argilla Quickstart." ), ) api_url = self.DEFAULT_API_URL # Connect to Argilla with the provided credentials, if applicable try: rg.init(api_key=api_key, api_url=api_url) except Exception as e: raise ConnectionError( f"Could not connect to Argilla with exception: '{e}'.\n" "Please check your `api_key` and `api_url`, and make sure that " "the Argilla server is up and running. If the problem persists " f"please report it to {self.ISSUES_URL} as an `integration` issue." ) from e # Set the Argilla variables self.dataset_name = dataset_name self.workspace_name = workspace_name or rg.get_workspace() # Retrieve the `FeedbackDataset` from Argilla (without existing records) try: extra_args = {} if parse(self.ARGILLA_VERSION) < parse("1.14.0"): warnings.warn( f"You have Argilla {self.ARGILLA_VERSION}, but Argilla 1.14.0 or" " higher is recommended.", UserWarning, ) extra_args = {"with_records": False} self.dataset = rg.FeedbackDataset.from_argilla( name=self.dataset_name, workspace=self.workspace_name, **extra_args, ) except Exception as e: raise FileNotFoundError( f"`FeedbackDataset` retrieval from Argilla failed with exception `{e}`." f"\nPlease check that the dataset with name={self.dataset_name} in the" f" workspace={self.workspace_name} exists in advance. If you need help" " on how to create a `langchain`-compatible `FeedbackDataset` in" f" Argilla, please visit {self.BLOG_URL}. If the problem persists" f" please report it to {self.ISSUES_URL} as an `integration` issue." ) from e supported_fields = ["prompt", "response"] if supported_fields != [field.name for field in self.dataset.fields]: raise ValueError( f"`FeedbackDataset` with name={self.dataset_name} in the workspace=" f"{self.workspace_name} had fields that are not supported yet for the" f"`langchain` integration. Supported fields are: {supported_fields}," f" and the current `FeedbackDataset` fields are {[field.name for field in self.dataset.fields]}." # noqa: E501 " For more information on how to create a `langchain`-compatible" f" `FeedbackDataset` in Argilla, please visit {self.BLOG_URL}." ) self.prompts: Dict[str, List[str]] = {} warnings.warn( ( "The `ArgillaCallbackHandler` is currently in beta and is subject to" " change based on updates to `langchain`. Please report any issues to" f" {self.ISSUES_URL} as an `integration` issue." ), ) def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: """Save the prompts in memory when an LLM starts.""" self.prompts.update({str(kwargs["parent_run_id"] or kwargs["run_id"]): prompts}) def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Do nothing when a new token is generated.""" pass def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Log records to Argilla when an LLM ends.""" # Do nothing if there's a parent_run_id, since we will log the records when # the chain ends if kwargs["parent_run_id"]: return # Creates the records and adds them to the `FeedbackDataset` prompts = self.prompts[str(kwargs["run_id"])] for prompt, generations in zip(prompts, response.generations): self.dataset.add_records( records=[ { "fields": { "prompt": prompt, "response": generation.text.strip(), }, } for generation in generations ] ) # Pop current run from `self.runs` self.prompts.pop(str(kwargs["run_id"])) if parse(self.ARGILLA_VERSION) < parse("1.14.0"): # Push the records to Argilla self.dataset.push_to_argilla() def on_llm_error(self, error: BaseException, **kwargs: Any) -> None: """Do nothing when LLM outputs an error.""" pass def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any ) -> None: """If the key `input` is in `inputs`, then save it in `self.prompts` using either the `parent_run_id` or the `run_id` as the key. This is done so that we don't log the same input prompt twice, once when the LLM starts and once when the chain starts. """ if "input" in inputs: self.prompts.update( { str(kwargs["parent_run_id"] or kwargs["run_id"]): ( inputs["input"] if isinstance(inputs["input"], list) else [inputs["input"]] ) } ) def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """If either the `parent_run_id` or the `run_id` is in `self.prompts`, then log the outputs to Argilla, and pop the run from `self.prompts`. The behavior differs if the output is a list or not. """ if not any( key in self.prompts for key in [str(kwargs["parent_run_id"]), str(kwargs["run_id"])] ): return prompts = self.prompts.get(str(kwargs["parent_run_id"])) or self.prompts.get( str(kwargs["run_id"]) ) for chain_output_key, chain_output_val in outputs.items(): if isinstance(chain_output_val, list): # Creates the records and adds them to the `FeedbackDataset` self.dataset.add_records( records=[ { "fields": { "prompt": prompt, "response": output["text"].strip(), }, } for prompt, output in zip( prompts, # type: ignore chain_output_val, ) ] ) else: # Creates the records and adds them to the `FeedbackDataset` self.dataset.add_records( records=[ { "fields": { "prompt": " ".join(prompts), # type: ignore "response": chain_output_val.strip(), }, } ] ) # Pop current run from `self.runs` if str(kwargs["parent_run_id"]) in self.prompts: self.prompts.pop(str(kwargs["parent_run_id"])) if str(kwargs["run_id"]) in self.prompts: self.prompts.pop(str(kwargs["run_id"])) if parse(self.ARGILLA_VERSION) < parse("1.14.0"): # Push the records to Argilla self.dataset.push_to_argilla() def on_chain_error(self, error: BaseException, **kwargs: Any) -> None: """Do nothing when LLM chain outputs an error.""" pass def on_tool_start( self, serialized: Dict[str, Any], input_str: str, **kwargs: Any, ) -> None: """Do nothing when tool starts.""" pass def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: """Do nothing when agent takes a specific action.""" pass def on_tool_end( self, output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: """Do nothing when tool ends.""" pass def on_tool_error(self, error: BaseException, **kwargs: Any) -> None: """Do nothing when tool outputs an error.""" pass def on_text(self, text: str, **kwargs: Any) -> None: """Do nothing""" pass def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None: """Do nothing""" pass
[ "parent_run_id", "run_id" ]
2024-01-10
axgpt/langchain
libs~langchain~langchain~utilities~arxiv.py
"""Util that calls Arxiv.""" import logging import os import re from typing import Any, Dict, List, Optional from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.schema import Document logger = logging.getLogger(__name__) class ArxivAPIWrapper(BaseModel): """Wrapper around ArxivAPI. To use, you should have the ``arxiv`` python package installed. https://lukasschwab.me/arxiv.py/index.html This wrapper will use the Arxiv API to conduct searches and fetch document summaries. By default, it will return the document summaries of the top-k results. If the query is in the form of arxiv identifier (see https://info.arxiv.org/help/find/index.html), it will return the paper corresponding to the arxiv identifier. It limits the Document content by doc_content_chars_max. Set doc_content_chars_max=None if you don't want to limit the content size. Attributes: top_k_results: number of the top-scored document used for the arxiv tool ARXIV_MAX_QUERY_LENGTH: the cut limit on the query used for the arxiv tool. load_max_docs: a limit to the number of loaded documents load_all_available_meta: if True: the `metadata` of the loaded Documents contains all available meta info (see https://lukasschwab.me/arxiv.py/index.html#Result), if False: the `metadata` contains only the published date, title, authors and summary. doc_content_chars_max: an optional cut limit for the length of a document's content Example: .. code-block:: python from langchain.utilities.arxiv import ArxivAPIWrapper arxiv = ArxivAPIWrapper( top_k_results = 3, ARXIV_MAX_QUERY_LENGTH = 300, load_max_docs = 3, load_all_available_meta = False, doc_content_chars_max = 40000 ) arxiv.run("tree of thought llm) """ arxiv_search: Any #: :meta private: arxiv_exceptions: Any # :meta private: top_k_results: int = 3 ARXIV_MAX_QUERY_LENGTH: int = 300 load_max_docs: int = 100 load_all_available_meta: bool = False doc_content_chars_max: Optional[int] = 4000 def is_arxiv_identifier(self, query: str) -> bool: """Check if a query is an arxiv identifier.""" arxiv_identifier_pattern = r"\d{2}(0[1-9]|1[0-2])\.\d{4,5}(v\d+|)|\d{7}.*" for query_item in query[: self.ARXIV_MAX_QUERY_LENGTH].split(): match_result = re.match(arxiv_identifier_pattern, query_item) if not match_result: return False assert match_result is not None if not match_result.group(0) == query_item: return False return True @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in environment.""" try: import arxiv values["arxiv_search"] = arxiv.Search values["arxiv_exceptions"] = ( arxiv.ArxivError, arxiv.UnexpectedEmptyPageError, arxiv.HTTPError, ) values["arxiv_result"] = arxiv.Result except ImportError: raise ImportError( "Could not import arxiv python package. " "Please install it with `pip install arxiv`." ) return values def get_summaries_as_docs(self, query: str) -> List[Document]: """ Performs an arxiv search and returns list of documents, with summaries as the content. If an error occurs or no documents found, error text is returned instead. Wrapper for https://lukasschwab.me/arxiv.py/index.html#Search Args: query: a plaintext search query """ # noqa: E501 try: if self.is_arxiv_identifier(query): results = self.arxiv_search( id_list=query.split(), max_results=self.top_k_results, ).results() else: results = self.arxiv_search( # type: ignore query[: self.ARXIV_MAX_QUERY_LENGTH], max_results=self.top_k_results ).results() except self.arxiv_exceptions as ex: return [Document(page_content=f"Arxiv exception: {ex}")] docs = [ Document( page_content=result.summary, metadata={ "Published": result.updated.date(), "Title": result.title, "Authors": ", ".join(a.name for a in result.authors), }, ) for result in results ] return docs def run(self, query: str) -> str: """ Performs an arxiv search and A single string with the publish date, title, authors, and summary for each article separated by two newlines. If an error occurs or no documents found, error text is returned instead. Wrapper for https://lukasschwab.me/arxiv.py/index.html#Search Args: query: a plaintext search query """ # noqa: E501 try: if self.is_arxiv_identifier(query): results = self.arxiv_search( id_list=query.split(), max_results=self.top_k_results, ).results() else: results = self.arxiv_search( # type: ignore query[: self.ARXIV_MAX_QUERY_LENGTH], max_results=self.top_k_results ).results() except self.arxiv_exceptions as ex: return f"Arxiv exception: {ex}" docs = [ f"Published: {result.updated.date()}\n" f"Title: {result.title}\n" f"Authors: {', '.join(a.name for a in result.authors)}\n" f"Summary: {result.summary}" for result in results ] if docs: return "\n\n".join(docs)[: self.doc_content_chars_max] else: return "No good Arxiv Result was found" def load(self, query: str) -> List[Document]: """ Run Arxiv search and get the article texts plus the article meta information. See https://lukasschwab.me/arxiv.py/index.html#Search Returns: a list of documents with the document.page_content in text format Performs an arxiv search, downloads the top k results as PDFs, loads them as Documents, and returns them in a List. Args: query: a plaintext search query """ # noqa: E501 try: import fitz except ImportError: raise ImportError( "PyMuPDF package not found, please install it with " "`pip install pymupdf`" ) try: # Remove the ":" and "-" from the query, as they can cause search problems query = query.replace(":", "").replace("-", "") if self.is_arxiv_identifier(query): results = self.arxiv_search( id_list=query[: self.ARXIV_MAX_QUERY_LENGTH].split(), max_results=self.load_max_docs, ).results() else: results = self.arxiv_search( # type: ignore query[: self.ARXIV_MAX_QUERY_LENGTH], max_results=self.load_max_docs ).results() except self.arxiv_exceptions as ex: logger.debug("Error on arxiv: %s", ex) return [] docs: List[Document] = [] for result in results: try: doc_file_name: str = result.download_pdf() with fitz.open(doc_file_name) as doc_file: text: str = "".join(page.get_text() for page in doc_file) except (FileNotFoundError, fitz.fitz.FileDataError) as f_ex: logger.debug(f_ex) continue if self.load_all_available_meta: extra_metadata = { "entry_id": result.entry_id, "published_first_time": str(result.published.date()), "comment": result.comment, "journal_ref": result.journal_ref, "doi": result.doi, "primary_category": result.primary_category, "categories": result.categories, "links": [link.href for link in result.links], } else: extra_metadata = {} metadata = { "Published": str(result.updated.date()), "Title": result.title, "Authors": ", ".join(a.name for a in result.authors), "Summary": result.summary, **extra_metadata, } doc = Document( page_content=text[: self.doc_content_chars_max], metadata=metadata ) docs.append(doc) os.remove(doc_file_name) return docs
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~embeddings~jina.py
import os from typing import Any, Dict, List, Optional import requests from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.schema.embeddings import Embeddings from langchain.utils import get_from_dict_or_env class JinaEmbeddings(BaseModel, Embeddings): """Jina embedding models.""" client: Any #: :meta private: model_name: str = "ViT-B-32::openai" """Model name to use.""" jina_auth_token: Optional[str] = None jina_api_url: str = "https://api.clip.jina.ai/api/v1/models/" request_headers: Optional[dict] = None @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that auth token exists in environment.""" # Set Auth jina_auth_token = get_from_dict_or_env( values, "jina_auth_token", "JINA_AUTH_TOKEN" ) values["jina_auth_token"] = jina_auth_token values["request_headers"] = (("authorization", jina_auth_token),) # Test that package is installed try: import jina except ImportError: raise ImportError( "Could not import `jina` python package. " "Please install it with `pip install jina`." ) # Setup client jina_api_url = os.environ.get("JINA_API_URL", values["jina_api_url"]) model_name = values["model_name"] try: resp = requests.get( jina_api_url + f"?model_name={model_name}", headers={"Authorization": jina_auth_token}, ) if resp.status_code == 401: raise ValueError( "The given Jina auth token is invalid. " "Please check your Jina auth token." ) elif resp.status_code == 404: raise ValueError( f"The given model name `{model_name}` is not valid. " f"Please go to https://cloud.jina.ai/user/inference " f"and create a model with the given model name." ) resp.raise_for_status() endpoint = resp.json()["endpoints"]["grpc"] values["client"] = jina.Client(host=endpoint) except requests.exceptions.HTTPError as err: raise ValueError(f"Error: {err!r}") return values def _post(self, docs: List[Any], **kwargs: Any) -> Any: payload = dict(inputs=docs, metadata=self.request_headers, **kwargs) return self.client.post(on="/encode", **payload) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Jina's embedding endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ from docarray import Document, DocumentArray embeddings = self._post( docs=DocumentArray([Document(text=t) for t in texts]) ).embeddings return [list(map(float, e)) for e in embeddings] def embed_query(self, text: str) -> List[float]: """Call out to Jina's embedding endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ from docarray import Document, DocumentArray embedding = self._post(docs=DocumentArray([Document(text=text)])).embeddings[0] return list(map(float, embedding))
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~unit_tests~retrievers~test_you.py
import json import os from unittest import mock from langchain_core.schema import Document from requests import Response from langchain.retrievers.you import YouRetriever class TestYouRetriever: def test_get_relevant_documents(self) -> None: os.environ["YDC_API_KEY"] = "MOCK KEY!" retriever = YouRetriever() with mock.patch("requests.get") as mock_get: fixture = {"hits": [{"snippets": ["yo"]}, {"snippets": ["bird up"]}]} response = Response() response._content = bytes(json.dumps(fixture).encode("utf-8")) mock_get.return_value = response actual = retriever.get_relevant_documents("test") assert actual == [ Document(page_content="yo"), Document(page_content="bird up"), ]
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~embeddings~deepinfra.py
from typing import Any, Dict, List, Mapping, Optional import requests from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator from langchain_core.schema.embeddings import Embeddings from langchain.utils import get_from_dict_or_env DEFAULT_MODEL_ID = "sentence-transformers/clip-ViT-B-32" class DeepInfraEmbeddings(BaseModel, Embeddings): """Deep Infra's embedding inference service. To use, you should have the environment variable ``DEEPINFRA_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. There are multiple embeddings models available, see https://deepinfra.com/models?type=embeddings. Example: .. code-block:: python from langchain.embeddings import DeepInfraEmbeddings deepinfra_emb = DeepInfraEmbeddings( model_id="sentence-transformers/clip-ViT-B-32", deepinfra_api_token="my-api-key" ) r1 = deepinfra_emb.embed_documents( [ "Alpha is the first letter of Greek alphabet", "Beta is the second letter of Greek alphabet", ] ) r2 = deepinfra_emb.embed_query( "What is the second letter of Greek alphabet" ) """ model_id: str = DEFAULT_MODEL_ID """Embeddings model to use.""" normalize: bool = False """whether to normalize the computed embeddings""" embed_instruction: str = "passage: " """Instruction used to embed documents.""" query_instruction: str = "query: " """Instruction used to embed the query.""" model_kwargs: Optional[dict] = None """Other model keyword args""" deepinfra_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" deepinfra_api_token = get_from_dict_or_env( values, "deepinfra_api_token", "DEEPINFRA_API_TOKEN" ) values["deepinfra_api_token"] = deepinfra_api_token return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {"model_id": self.model_id} def _embed(self, input: List[str]) -> List[List[float]]: _model_kwargs = self.model_kwargs or {} # HTTP headers for authorization headers = { "Authorization": f"bearer {self.deepinfra_api_token}", "Content-Type": "application/json", } # send request try: res = requests.post( f"https://api.deepinfra.com/v1/inference/{self.model_id}", headers=headers, json={"inputs": input, "normalize": self.normalize, **_model_kwargs}, ) except requests.exceptions.RequestException as e: raise ValueError(f"Error raised by inference endpoint: {e}") if res.status_code != 200: raise ValueError( "Error raised by inference API HTTP code: %s, %s" % (res.status_code, res.text) ) try: t = res.json() embeddings = t["embeddings"] except requests.exceptions.JSONDecodeError as e: raise ValueError( f"Error raised by inference API: {e}.\nResponse: {res.text}" ) return embeddings def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed documents using a Deep Infra deployed embedding model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [f"{self.embed_instruction}{text}" for text in texts] embeddings = self._embed(instruction_pairs) return embeddings def embed_query(self, text: str) -> List[float]: """Embed a query using a Deep Infra deployed embedding model. Args: text: The text to embed. Returns: Embeddings for the text. """ instruction_pair = f"{self.query_instruction}{text}" embedding = self._embed([instruction_pair])[0] return embedding
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~chat_models~konko.py
"""KonkoAI chat wrapper.""" from __future__ import annotations import logging import os from typing import ( Any, Dict, Iterator, List, Mapping, Optional, Set, Tuple, Union, ) import requests from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.schema import ChatGeneration, ChatResult from langchain_core.schema.messages import AIMessageChunk, BaseMessage from langchain_core.schema.output import ChatGenerationChunk from langchain.adapters.openai import convert_dict_to_message, convert_message_to_dict from langchain.callbacks.manager import ( CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel, _generate_from_stream from langchain.chat_models.openai import _convert_delta_to_message_chunk from langchain.utils import get_from_dict_or_env DEFAULT_API_BASE = "https://api.konko.ai/v1" DEFAULT_MODEL = "meta-llama/Llama-2-13b-chat-hf" logger = logging.getLogger(__name__) class ChatKonko(BaseChatModel): """`ChatKonko` Chat large language models API. To use, you should have the ``konko`` python package installed, and the environment variable ``KONKO_API_KEY`` and ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the konko.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.chat_models import ChatKonko llm = ChatKonko(model="meta-llama/Llama-2-13b-chat-hf") """ @property def lc_secrets(self) -> Dict[str, str]: return {"konko_api_key": "KONKO_API_KEY", "openai_api_key": "OPENAI_API_KEY"} @classmethod def is_lc_serializable(cls) -> bool: """Return whether this model can be serialized by Langchain.""" return True client: Any = None #: :meta private: model: str = Field(default=DEFAULT_MODEL, alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" openai_api_key: Optional[str] = None konko_api_key: Optional[str] = None request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout for requests to Konko completion API.""" max_retries: int = 6 """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" n: int = 1 """Number of chat completions to generate for each prompt.""" max_tokens: int = 20 """Maximum number of tokens to generate.""" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["konko_api_key"] = get_from_dict_or_env( values, "konko_api_key", "KONKO_API_KEY" ) try: import konko except ImportError: raise ValueError( "Could not import konko python package. " "Please install it with `pip install konko`." ) try: values["client"] = konko.ChatCompletion except AttributeError: raise ValueError( "`konko` has no `ChatCompletion` attribute, this is likely " "due to an old version of the konko package. Try upgrading it " "with `pip install --upgrade konko`." ) if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Konko API.""" return { "model": self.model, "request_timeout": self.request_timeout, "max_tokens": self.max_tokens, "stream": self.streaming, "n": self.n, "temperature": self.temperature, **self.model_kwargs, } @staticmethod def get_available_models( konko_api_key: Optional[str] = None, openai_api_key: Optional[str] = None, konko_api_base: str = DEFAULT_API_BASE, ) -> Set[str]: """Get available models from Konko API.""" # Try to retrieve the OpenAI API key if it's not passed as an argument if not openai_api_key: try: openai_api_key = os.environ["OPENAI_API_KEY"] except KeyError: pass # It's okay if it's not set, we just won't use it # Try to retrieve the Konko API key if it's not passed as an argument if not konko_api_key: try: konko_api_key = os.environ["KONKO_API_KEY"] except KeyError: raise ValueError( "Konko API key must be passed as keyword argument or " "set in environment variable KONKO_API_KEY." ) models_url = f"{konko_api_base}/models" headers = { "Authorization": f"Bearer {konko_api_key}", } if openai_api_key: headers["X-OpenAI-Api-Key"] = openai_api_key models_response = requests.get(models_url, headers=headers) if models_response.status_code != 200: raise ValueError( f"Error getting models from {models_url}: " f"{models_response.status_code}" ) return {model["id"] for model in models_response.json()["data"]} def completion_with_retry( self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any ) -> Any: def _completion_with_retry(**kwargs: Any) -> Any: return self.client.create(**kwargs) return _completion_with_retry(**kwargs) def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: overall_token_usage: dict = {} for output in llm_outputs: if output is None: # Happens in streaming continue token_usage = output["token_usage"] for k, v in token_usage.items(): if k in overall_token_usage: overall_token_usage[k] += v else: overall_token_usage[k] = v return {"token_usage": overall_token_usage, "model_name": self.model} def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs, "stream": True} default_chunk_class = AIMessageChunk for chunk in self.completion_with_retry( messages=message_dicts, run_manager=run_manager, **params ): if len(chunk["choices"]) == 0: continue choice = chunk["choices"][0] chunk = _convert_delta_to_message_chunk( choice["delta"], default_chunk_class ) finish_reason = choice.get("finish_reason") generation_info = ( dict(finish_reason=finish_reason) if finish_reason is not None else None ) default_chunk_class = chunk.__class__ chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info) yield chunk if run_manager: run_manager.on_llm_new_token(chunk.text, chunk=chunk) def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, stream: Optional[bool] = None, **kwargs: Any, ) -> ChatResult: should_stream = stream if stream is not None else self.streaming if should_stream: stream_iter = self._stream( messages, stop=stop, run_manager=run_manager, **kwargs ) return _generate_from_stream(stream_iter) message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs} response = self.completion_with_retry( messages=message_dicts, run_manager=run_manager, **params ) return self._create_chat_result(response) def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = self._client_params if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop message_dicts = [convert_message_to_dict(m) for m in messages] return message_dicts, params def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: generations = [] for res in response["choices"]: message = convert_dict_to_message(res["message"]) gen = ChatGeneration( message=message, generation_info=dict(finish_reason=res.get("finish_reason")), ) generations.append(gen) token_usage = response.get("usage", {}) llm_output = {"token_usage": token_usage, "model_name": self.model} return ChatResult(generations=generations, llm_output=llm_output) @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model}, **self._default_params} @property def _client_params(self) -> Dict[str, Any]: """Get the parameters used for the konko client.""" return {**self._default_params} def _get_invocation_params( self, stop: Optional[List[str]] = None, **kwargs: Any ) -> Dict[str, Any]: """Get the parameters used to invoke the model.""" return { "model": self.model, **super()._get_invocation_params(stop=stop), **self._default_params, **kwargs, } @property def _llm_type(self) -> str: """Return type of chat model.""" return "konko-chat"
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~vectorstores~momento_vector_index.py
from typing import ( TYPE_CHECKING, Any, Iterable, List, Optional, Tuple, Type, TypeVar, cast, ) from uuid import uuid4 from langchain_core.schema.embeddings import Embeddings from langchain_core.schema.vectorstore import VectorStore from langchain.docstore.document import Document from langchain.utils import get_from_env from langchain.vectorstores.utils import DistanceStrategy VST = TypeVar("VST", bound="VectorStore") if TYPE_CHECKING: from momento import PreviewVectorIndexClient class MomentoVectorIndex(VectorStore): """`Momento Vector Index` (MVI) vector store. Momento Vector Index is a serverless vector index that can be used to store and search vectors. To use you should have the ``momento`` python package installed. Example: .. code-block:: python from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import MomentoVectorIndex from momento import ( CredentialProvider, PreviewVectorIndexClient, VectorIndexConfigurations, ) vectorstore = MomentoVectorIndex( embedding=OpenAIEmbeddings(), client=PreviewVectorIndexClient( VectorIndexConfigurations.Default.latest(), credential_provider=CredentialProvider.from_environment_variable( "MOMENTO_API_KEY" ), ), index_name="my-index", ) """ def __init__( self, embedding: Embeddings, client: "PreviewVectorIndexClient", index_name: str = "default", distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, text_field: str = "text", ensure_index_exists: bool = True, **kwargs: Any, ): """Initialize a Vector Store backed by Momento Vector Index. Args: embedding (Embeddings): The embedding function to use. configuration (VectorIndexConfiguration): The configuration to initialize the Vector Index with. credential_provider (CredentialProvider): The credential provider to authenticate the Vector Index with. index_name (str, optional): The name of the index to store the documents in. Defaults to "default". distance_strategy (DistanceStrategy, optional): The distance strategy to use. Defaults to DistanceStrategy.COSINE. If you select DistanceStrategy.EUCLIDEAN_DISTANCE, Momento uses the squared Euclidean distance. text_field (str, optional): The name of the metadata field to store the original text in. Defaults to "text". ensure_index_exists (bool, optional): Whether to ensure that the index exists before adding documents to it. Defaults to True. """ try: from momento import PreviewVectorIndexClient except ImportError: raise ImportError( "Could not import momento python package. " "Please install it with `pip install momento`." ) self._client: PreviewVectorIndexClient = client self._embedding = embedding self.index_name = index_name self.__validate_distance_strategy(distance_strategy) self.distance_strategy = distance_strategy self.text_field = text_field self._ensure_index_exists = ensure_index_exists @staticmethod def __validate_distance_strategy(distance_strategy: DistanceStrategy) -> None: if distance_strategy not in [ DistanceStrategy.COSINE, DistanceStrategy.MAX_INNER_PRODUCT, DistanceStrategy.MAX_INNER_PRODUCT, ]: raise ValueError(f"Distance strategy {distance_strategy} not implemented.") @property def embeddings(self) -> Embeddings: return self._embedding def _create_index_if_not_exists(self, num_dimensions: int) -> bool: """Create index if it does not exist.""" from momento.requests.vector_index import SimilarityMetric from momento.responses.vector_index import CreateIndex similarity_metric = None if self.distance_strategy == DistanceStrategy.COSINE: similarity_metric = SimilarityMetric.COSINE_SIMILARITY elif self.distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT: similarity_metric = SimilarityMetric.INNER_PRODUCT elif self.distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE: similarity_metric = SimilarityMetric.EUCLIDEAN_SIMILARITY else: raise ValueError( f"Distance strategy {self.distance_strategy} not implemented." ) response = self._client.create_index( self.index_name, num_dimensions, similarity_metric ) if isinstance(response, CreateIndex.Success): return True elif isinstance(response, CreateIndex.IndexAlreadyExists): return False elif isinstance(response, CreateIndex.Error): raise response.inner_exception else: raise Exception(f"Unexpected response: {response}") def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Iterable of strings to add to the vectorstore. metadatas (Optional[List[dict]]): Optional list of metadatas associated with the texts. kwargs (Any): Other optional parameters. Specifically: - ids (List[str], optional): List of ids to use for the texts. Defaults to None, in which case uuids are generated. Returns: List[str]: List of ids from adding the texts into the vectorstore. """ from momento.requests.vector_index import Item from momento.responses.vector_index import UpsertItemBatch texts = list(texts) if len(texts) == 0: return [] if metadatas is not None: for metadata, text in zip(metadatas, texts): metadata[self.text_field] = text else: metadatas = [{self.text_field: text} for text in texts] try: embeddings = self._embedding.embed_documents(texts) except NotImplementedError: embeddings = [self._embedding.embed_query(x) for x in texts] # Create index if it does not exist. # We assume that if it does exist, then it was created with the desired number # of dimensions and similarity metric. if self._ensure_index_exists: self._create_index_if_not_exists(len(embeddings[0])) if "ids" in kwargs: ids = kwargs["ids"] if len(ids) != len(embeddings): raise ValueError("Number of ids must match number of texts") else: ids = [str(uuid4()) for _ in range(len(embeddings))] batch_size = 128 for i in range(0, len(embeddings), batch_size): start = i end = min(i + batch_size, len(embeddings)) items = [ Item(id=id, vector=vector, metadata=metadata) for id, vector, metadata in zip( ids[start:end], embeddings[start:end], metadatas[start:end], ) ] response = self._client.upsert_item_batch(self.index_name, items) if isinstance(response, UpsertItemBatch.Success): pass elif isinstance(response, UpsertItemBatch.Error): raise response.inner_exception else: raise Exception(f"Unexpected response: {response}") return ids def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]: """Delete by vector ID. Args: ids (List[str]): List of ids to delete. kwargs (Any): Other optional parameters (unused) Returns: Optional[bool]: True if deletion is successful, False otherwise, None if not implemented. """ from momento.responses.vector_index import DeleteItemBatch if ids is None: return True response = self._client.delete_item_batch(self.index_name, ids) return isinstance(response, DeleteItemBatch.Success) def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Search for similar documents to the query string. Args: query (str): The query string to search for. k (int, optional): The number of results to return. Defaults to 4. Returns: List[Document]: A list of documents that are similar to the query. """ res = self.similarity_search_with_score(query=query, k=k, **kwargs) return [doc for doc, _ in res] def similarity_search_with_score( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Search for similar documents to the query string. Args: query (str): The query string to search for. k (int, optional): The number of results to return. Defaults to 4. kwargs (Any): Vector Store specific search parameters. The following are forwarded to the Momento Vector Index: - top_k (int, optional): The number of results to return. Returns: List[Tuple[Document, float]]: A list of tuples of the form (Document, score). """ embedding = self._embedding.embed_query(query) results = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, **kwargs ) return results def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Search for similar documents to the query vector. Args: embedding (List[float]): The query vector to search for. k (int, optional): The number of results to return. Defaults to 4. kwargs (Any): Vector Store specific search parameters. The following are forwarded to the Momento Vector Index: - top_k (int, optional): The number of results to return. Returns: List[Tuple[Document, float]]: A list of tuples of the form (Document, score). """ from momento.requests.vector_index import ALL_METADATA from momento.responses.vector_index import Search if "top_k" in kwargs: k = kwargs["k"] response = self._client.search( self.index_name, embedding, top_k=k, metadata_fields=ALL_METADATA ) if not isinstance(response, Search.Success): return [] results = [] for hit in response.hits: text = cast(str, hit.metadata.pop(self.text_field)) doc = Document(page_content=text, metadata=hit.metadata) pair = (doc, hit.score) results.append(pair) return results def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Search for similar documents to the query vector. Args: embedding (List[float]): The query vector to search for. k (int, optional): The number of results to return. Defaults to 4. Returns: List[Document]: A list of documents that are similar to the query. """ results = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, **kwargs ) return [doc for doc, _ in results] @classmethod def from_texts( cls: Type[VST], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> VST: """Return the Vector Store initialized from texts and embeddings. Args: cls (Type[VST]): The Vector Store class to use to initialize the Vector Store. texts (List[str]): The texts to initialize the Vector Store with. embedding (Embeddings): The embedding function to use. metadatas (Optional[List[dict]], optional): The metadata associated with the texts. Defaults to None. kwargs (Any): Vector Store specific parameters. The following are forwarded to the Vector Store constructor and required: - index_name (str, optional): The name of the index to store the documents in. Defaults to "default". - text_field (str, optional): The name of the metadata field to store the original text in. Defaults to "text". - distance_strategy (DistanceStrategy, optional): The distance strategy to use. Defaults to DistanceStrategy.COSINE. If you select DistanceStrategy.EUCLIDEAN_DISTANCE, Momento uses the squared Euclidean distance. - ensure_index_exists (bool, optional): Whether to ensure that the index exists before adding documents to it. Defaults to True. Additionally you can either pass in a client or an API key - client (PreviewVectorIndexClient): The Momento Vector Index client to use. - api_key (Optional[str]): The configuration to use to initialize the Vector Index with. Defaults to None. If None, the configuration is initialized from the environment variable `MOMENTO_API_KEY`. Returns: VST: Momento Vector Index vector store initialized from texts and embeddings. """ from momento import ( CredentialProvider, PreviewVectorIndexClient, VectorIndexConfigurations, ) if "client" in kwargs: client = kwargs.pop("client") else: supplied_api_key = kwargs.pop("api_key", None) api_key = supplied_api_key or get_from_env("api_key", "MOMENTO_API_KEY") client = PreviewVectorIndexClient( configuration=VectorIndexConfigurations.Default.latest(), credential_provider=CredentialProvider.from_string(api_key), ) vector_db = cls(embedding=embedding, client=client, **kwargs) # type: ignore vector_db.add_texts(texts=texts, metadatas=metadatas, **kwargs) return vector_db
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~vectorstores~clickhouse.py
from __future__ import annotations import json import logging from hashlib import sha1 from threading import Thread from typing import Any, Dict, Iterable, List, Optional, Tuple, Union from langchain_core.pydantic_v1 import BaseSettings from langchain_core.schema.embeddings import Embeddings from langchain_core.schema.vectorstore import VectorStore from langchain.docstore.document import Document logger = logging.getLogger() def has_mul_sub_str(s: str, *args: Any) -> bool: """ Check if a string contains multiple substrings. Args: s: string to check. *args: substrings to check. Returns: True if all substrings are in the string, False otherwise. """ for a in args: if a not in s: return False return True class ClickhouseSettings(BaseSettings): """`ClickHouse` client configuration. Attribute: host (str) : An URL to connect to MyScale backend. Defaults to 'localhost'. port (int) : URL port to connect with HTTP. Defaults to 8443. username (str) : Username to login. Defaults to None. password (str) : Password to login. Defaults to None. index_type (str): index type string. index_param (list): index build parameter. index_query_params(dict): index query parameters. database (str) : Database name to find the table. Defaults to 'default'. table (str) : Table name to operate on. Defaults to 'vector_table'. metric (str) : Metric to compute distance, supported are ('angular', 'euclidean', 'manhattan', 'hamming', 'dot'). Defaults to 'angular'. https://github.com/spotify/annoy/blob/main/src/annoymodule.cc#L149-L169 column_map (Dict) : Column type map to project column name onto langchain semantics. Must have keys: `text`, `id`, `vector`, must be same size to number of columns. For example: .. code-block:: python { 'id': 'text_id', 'uuid': 'global_unique_id' 'embedding': 'text_embedding', 'document': 'text_plain', 'metadata': 'metadata_dictionary_in_json', } Defaults to identity map. """ host: str = "localhost" port: int = 8123 username: Optional[str] = None password: Optional[str] = None index_type: str = "annoy" # Annoy supports L2Distance and cosineDistance. index_param: Optional[Union[List, Dict]] = ["'L2Distance'", 100] index_query_params: Dict[str, str] = {} column_map: Dict[str, str] = { "id": "id", "uuid": "uuid", "document": "document", "embedding": "embedding", "metadata": "metadata", } database: str = "default" table: str = "langchain" metric: str = "angular" def __getitem__(self, item: str) -> Any: return getattr(self, item) class Config: env_file = ".env" env_prefix = "clickhouse_" env_file_encoding = "utf-8" class Clickhouse(VectorStore): """`ClickHouse VectorSearch` vector store. You need a `clickhouse-connect` python package, and a valid account to connect to ClickHouse. ClickHouse can not only search with simple vector indexes, it also supports complex query with multiple conditions, constraints and even sub-queries. For more information, please visit [ClickHouse official site](https://clickhouse.com/clickhouse) """ def __init__( self, embedding: Embeddings, config: Optional[ClickhouseSettings] = None, **kwargs: Any, ) -> None: """ClickHouse Wrapper to LangChain embedding_function (Embeddings): config (ClickHouseSettings): Configuration to ClickHouse Client Other keyword arguments will pass into [clickhouse-connect](https://docs.clickhouse.com/) """ try: from clickhouse_connect import get_client except ImportError: raise ImportError( "Could not import clickhouse connect python package. " "Please install it with `pip install clickhouse-connect`." ) try: from tqdm import tqdm self.pgbar = tqdm except ImportError: # Just in case if tqdm is not installed self.pgbar = lambda x, **kwargs: x super().__init__() if config is not None: self.config = config else: self.config = ClickhouseSettings() assert self.config assert self.config.host and self.config.port assert ( self.config.column_map and self.config.database and self.config.table and self.config.metric ) for k in ["id", "embedding", "document", "metadata", "uuid"]: assert k in self.config.column_map assert self.config.metric in [ "angular", "euclidean", "manhattan", "hamming", "dot", ] # initialize the schema dim = len(embedding.embed_query("test")) index_params = ( ( ",".join([f"'{k}={v}'" for k, v in self.config.index_param.items()]) if self.config.index_param else "" ) if isinstance(self.config.index_param, Dict) else ",".join([str(p) for p in self.config.index_param]) if isinstance(self.config.index_param, List) else self.config.index_param ) self.schema = f"""\ CREATE TABLE IF NOT EXISTS {self.config.database}.{self.config.table}( {self.config.column_map['id']} Nullable(String), {self.config.column_map['document']} Nullable(String), {self.config.column_map['embedding']} Array(Float32), {self.config.column_map['metadata']} JSON, {self.config.column_map['uuid']} UUID DEFAULT generateUUIDv4(), CONSTRAINT cons_vec_len CHECK length({self.config.column_map['embedding']}) = {dim}, INDEX vec_idx {self.config.column_map['embedding']} TYPE \ {self.config.index_type}({index_params}) GRANULARITY 1000 ) ENGINE = MergeTree ORDER BY uuid SETTINGS index_granularity = 8192\ """ self.dim = dim self.BS = "\\" self.must_escape = ("\\", "'") self.embedding_function = embedding self.dist_order = "ASC" # Only support ConsingDistance and L2Distance # Create a connection to clickhouse self.client = get_client( host=self.config.host, port=self.config.port, username=self.config.username, password=self.config.password, **kwargs, ) # Enable JSON type self.client.command("SET allow_experimental_object_type=1") # Enable Annoy index self.client.command("SET allow_experimental_annoy_index=1") self.client.command(self.schema) @property def embeddings(self) -> Embeddings: return self.embedding_function def escape_str(self, value: str) -> str: return "".join(f"{self.BS}{c}" if c in self.must_escape else c for c in value) def _build_insert_sql(self, transac: Iterable, column_names: Iterable[str]) -> str: ks = ",".join(column_names) _data = [] for n in transac: n = ",".join([f"'{self.escape_str(str(_n))}'" for _n in n]) _data.append(f"({n})") i_str = f""" INSERT INTO TABLE {self.config.database}.{self.config.table}({ks}) VALUES {','.join(_data)} """ return i_str def _insert(self, transac: Iterable, column_names: Iterable[str]) -> None: _insert_query = self._build_insert_sql(transac, column_names) self.client.command(_insert_query) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, batch_size: int = 32, ids: Optional[Iterable[str]] = None, **kwargs: Any, ) -> List[str]: """Insert more texts through the embeddings and add to the VectorStore. Args: texts: Iterable of strings to add to the VectorStore. ids: Optional list of ids to associate with the texts. batch_size: Batch size of insertion metadata: Optional column data to be inserted Returns: List of ids from adding the texts into the VectorStore. """ # Embed and create the documents ids = ids or [sha1(t.encode("utf-8")).hexdigest() for t in texts] colmap_ = self.config.column_map transac = [] column_names = { colmap_["id"]: ids, colmap_["document"]: texts, colmap_["embedding"]: self.embedding_function.embed_documents(list(texts)), } metadatas = metadatas or [{} for _ in texts] column_names[colmap_["metadata"]] = map(json.dumps, metadatas) assert len(set(colmap_) - set(column_names)) >= 0 keys, values = zip(*column_names.items()) try: t = None for v in self.pgbar( zip(*values), desc="Inserting data...", total=len(metadatas) ): assert ( len(v[keys.index(self.config.column_map["embedding"])]) == self.dim ) transac.append(v) if len(transac) == batch_size: if t: t.join() t = Thread(target=self._insert, args=[transac, keys]) t.start() transac = [] if len(transac) > 0: if t: t.join() self._insert(transac, keys) return [i for i in ids] except Exception as e: logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m") return [] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[Dict[Any, Any]]] = None, config: Optional[ClickhouseSettings] = None, text_ids: Optional[Iterable[str]] = None, batch_size: int = 32, **kwargs: Any, ) -> Clickhouse: """Create ClickHouse wrapper with existing texts Args: embedding_function (Embeddings): Function to extract text embedding texts (Iterable[str]): List or tuple of strings to be added config (ClickHouseSettings, Optional): ClickHouse configuration text_ids (Optional[Iterable], optional): IDs for the texts. Defaults to None. batch_size (int, optional): Batchsize when transmitting data to ClickHouse. Defaults to 32. metadata (List[dict], optional): metadata to texts. Defaults to None. Other keyword arguments will pass into [clickhouse-connect](https://clickhouse.com/docs/en/integrations/python#clickhouse-connect-driver-api) Returns: ClickHouse Index """ ctx = cls(embedding, config, **kwargs) ctx.add_texts(texts, ids=text_ids, batch_size=batch_size, metadatas=metadatas) return ctx def __repr__(self) -> str: """Text representation for ClickHouse Vector Store, prints backends, username and schemas. Easy to use with `str(ClickHouse())` Returns: repr: string to show connection info and data schema """ _repr = f"\033[92m\033[1m{self.config.database}.{self.config.table} @ " _repr += f"{self.config.host}:{self.config.port}\033[0m\n\n" _repr += f"\033[1musername: {self.config.username}\033[0m\n\nTable Schema:\n" _repr += "-" * 51 + "\n" for r in self.client.query( f"DESC {self.config.database}.{self.config.table}" ).named_results(): _repr += ( f"|\033[94m{r['name']:24s}\033[0m|\033[96m{r['type']:24s}\033[0m|\n" ) _repr += "-" * 51 + "\n" return _repr def _build_query_sql( self, q_emb: List[float], topk: int, where_str: Optional[str] = None ) -> str: q_emb_str = ",".join(map(str, q_emb)) if where_str: where_str = f"PREWHERE {where_str}" else: where_str = "" settings_strs = [] if self.config.index_query_params: for k in self.config.index_query_params: settings_strs.append(f"SETTING {k}={self.config.index_query_params[k]}") q_str = f""" SELECT {self.config.column_map['document']}, {self.config.column_map['metadata']}, dist FROM {self.config.database}.{self.config.table} {where_str} ORDER BY L2Distance({self.config.column_map['embedding']}, [{q_emb_str}]) AS dist {self.dist_order} LIMIT {topk} {' '.join(settings_strs)} """ return q_str def similarity_search( self, query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any ) -> List[Document]: """Perform a similarity search with ClickHouse Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of Documents """ return self.similarity_search_by_vector( self.embedding_function.embed_query(query), k, where_str, **kwargs ) def similarity_search_by_vector( self, embedding: List[float], k: int = 4, where_str: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Perform a similarity search with ClickHouse by vectors Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of documents """ q_str = self._build_query_sql(embedding, k, where_str) try: return [ Document( page_content=r[self.config.column_map["document"]], metadata=r[self.config.column_map["metadata"]], ) for r in self.client.query(q_str).named_results() ] except Exception as e: logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m") return [] def similarity_search_with_relevance_scores( self, query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any ) -> List[Tuple[Document, float]]: """Perform a similarity search with ClickHouse Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of (Document, similarity) """ q_str = self._build_query_sql( self.embedding_function.embed_query(query), k, where_str ) try: return [ ( Document( page_content=r[self.config.column_map["document"]], metadata=r[self.config.column_map["metadata"]], ), r["dist"], ) for r in self.client.query(q_str).named_results() ] except Exception as e: logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m") return [] def drop(self) -> None: """ Helper function: Drop data """ self.client.command( f"DROP TABLE IF EXISTS {self.config.database}.{self.config.table}" ) @property def metadata_column(self) -> str: return self.config.column_map["metadata"]
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~llms~ollama.py
import json from typing import Any, Dict, Iterator, List, Mapping, Optional import requests from langchain_core.pydantic_v1 import Extra from langchain_core.schema import LLMResult from langchain_core.schema.language_model import BaseLanguageModel from langchain_core.schema.output import GenerationChunk from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import BaseLLM def _stream_response_to_generation_chunk( stream_response: str, ) -> GenerationChunk: """Convert a stream response to a generation chunk.""" parsed_response = json.loads(stream_response) generation_info = parsed_response if parsed_response.get("done") is True else None return GenerationChunk( text=parsed_response.get("response", ""), generation_info=generation_info ) class _OllamaCommon(BaseLanguageModel): base_url: str = "http://localhost:11434" """Base url the model is hosted under.""" model: str = "llama2" """Model name to use.""" mirostat: Optional[int] = None """Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)""" mirostat_eta: Optional[float] = None """Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1)""" mirostat_tau: Optional[float] = None """Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0)""" num_ctx: Optional[int] = None """Sets the size of the context window used to generate the next token. (Default: 2048) """ num_gpu: Optional[int] = None """The number of GPUs to use. On macOS it defaults to 1 to enable metal support, 0 to disable.""" num_thread: Optional[int] = None """Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores).""" repeat_last_n: Optional[int] = None """Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx)""" repeat_penalty: Optional[float] = None """Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)""" temperature: Optional[float] = None """The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8)""" stop: Optional[List[str]] = None """Sets the stop tokens to use.""" tfs_z: Optional[float] = None """Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1)""" top_k: Optional[int] = None """Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)""" top_p: Optional[int] = None """Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)""" system: Optional[str] = None """system prompt (overrides what is defined in the Modelfile)""" template: Optional[str] = None """full prompt or prompt template (overrides what is defined in the Modelfile)""" @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Ollama.""" return { "model": self.model, "options": { "mirostat": self.mirostat, "mirostat_eta": self.mirostat_eta, "mirostat_tau": self.mirostat_tau, "num_ctx": self.num_ctx, "num_gpu": self.num_gpu, "num_thread": self.num_thread, "repeat_last_n": self.repeat_last_n, "repeat_penalty": self.repeat_penalty, "temperature": self.temperature, "stop": self.stop, "tfs_z": self.tfs_z, "top_k": self.top_k, "top_p": self.top_p, }, "system": self.system, "template": self.template, } @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model": self.model}, **self._default_params} def _create_stream( self, prompt: str, stop: Optional[List[str]] = None, **kwargs: Any, ) -> Iterator[str]: if self.stop is not None and stop is not None: raise ValueError("`stop` found in both the input and default params.") elif self.stop is not None: stop = self.stop elif stop is None: stop = [] params = self._default_params if "model" in kwargs: params["model"] = kwargs["model"] if "options" in kwargs: params["options"] = kwargs["options"] else: params["options"] = { **params["options"], "stop": stop, **kwargs, } response = requests.post( url=f"{self.base_url}/api/generate/", headers={"Content-Type": "application/json"}, json={"prompt": prompt, **params}, stream=True, ) response.encoding = "utf-8" if response.status_code != 200: optional_detail = response.json().get("error") raise ValueError( f"Ollama call failed with status code {response.status_code}." f" Details: {optional_detail}" ) return response.iter_lines(decode_unicode=True) def _stream_with_aggregation( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, verbose: bool = False, **kwargs: Any, ) -> GenerationChunk: final_chunk: Optional[GenerationChunk] = None for stream_resp in self._create_stream(prompt, stop, **kwargs): if stream_resp: chunk = _stream_response_to_generation_chunk(stream_resp) if final_chunk is None: final_chunk = chunk else: final_chunk += chunk if run_manager: run_manager.on_llm_new_token( chunk.text, verbose=verbose, ) if final_chunk is None: raise ValueError("No data received from Ollama stream.") return final_chunk class Ollama(BaseLLM, _OllamaCommon): """Ollama locally runs large language models. To use, follow the instructions at https://ollama.ai/. Example: .. code-block:: python from langchain.llms import Ollama ollama = Ollama(model="llama2") """ class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @property def _llm_type(self) -> str: """Return type of llm.""" return "ollama-llm" def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Call out to Ollama's generate endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = ollama("Tell me a joke.") """ # TODO: add caching here. generations = [] for prompt in prompts: final_chunk = super()._stream_with_aggregation( prompt, stop=stop, run_manager=run_manager, verbose=self.verbose, **kwargs, ) generations.append([final_chunk]) return LLMResult(generations=generations) def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: for stream_resp in self._create_stream(prompt, stop, **kwargs): if stream_resp: chunk = _stream_response_to_generation_chunk(stream_resp) yield chunk if run_manager: run_manager.on_llm_new_token( chunk.text, verbose=self.verbose, )
[ "None" ]
2024-01-10
axgpt/langchain
libs~langchain~langchain~chains~qa_with_sources~loading.py
"""Load question answering with sources chains.""" from __future__ import annotations from typing import Any, Mapping, Optional, Protocol from langchain_core.schema.language_model import BaseLanguageModel from langchain_core.schema.prompt_template import BasePromptTemplate from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain from langchain.chains.combine_documents.map_rerank import MapRerankDocumentsChain from langchain.chains.combine_documents.reduce import ReduceDocumentsChain from langchain.chains.combine_documents.refine import RefineDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.llm import LLMChain from langchain.chains.qa_with_sources import ( map_reduce_prompt, refine_prompts, stuff_prompt, ) from langchain.chains.question_answering.map_rerank_prompt import ( PROMPT as MAP_RERANK_PROMPT, ) class LoadingCallable(Protocol): """Interface for loading the combine documents chain.""" def __call__( self, llm: BaseLanguageModel, **kwargs: Any ) -> BaseCombineDocumentsChain: """Callable to load the combine documents chain.""" def _load_map_rerank_chain( llm: BaseLanguageModel, prompt: BasePromptTemplate = MAP_RERANK_PROMPT, verbose: bool = False, document_variable_name: str = "context", rank_key: str = "score", answer_key: str = "answer", **kwargs: Any, ) -> MapRerankDocumentsChain: llm_chain = LLMChain(llm=llm, prompt=prompt, verbose=verbose) return MapRerankDocumentsChain( llm_chain=llm_chain, rank_key=rank_key, answer_key=answer_key, document_variable_name=document_variable_name, **kwargs, ) def _load_stuff_chain( llm: BaseLanguageModel, prompt: BasePromptTemplate = stuff_prompt.PROMPT, document_prompt: BasePromptTemplate = stuff_prompt.EXAMPLE_PROMPT, document_variable_name: str = "summaries", verbose: Optional[bool] = None, **kwargs: Any, ) -> StuffDocumentsChain: llm_chain = LLMChain(llm=llm, prompt=prompt, verbose=verbose) return StuffDocumentsChain( llm_chain=llm_chain, document_variable_name=document_variable_name, document_prompt=document_prompt, verbose=verbose, **kwargs, ) def _load_map_reduce_chain( llm: BaseLanguageModel, question_prompt: BasePromptTemplate = map_reduce_prompt.QUESTION_PROMPT, combine_prompt: BasePromptTemplate = map_reduce_prompt.COMBINE_PROMPT, document_prompt: BasePromptTemplate = map_reduce_prompt.EXAMPLE_PROMPT, combine_document_variable_name: str = "summaries", map_reduce_document_variable_name: str = "context", collapse_prompt: Optional[BasePromptTemplate] = None, reduce_llm: Optional[BaseLanguageModel] = None, collapse_llm: Optional[BaseLanguageModel] = None, verbose: Optional[bool] = None, token_max: int = 3000, **kwargs: Any, ) -> MapReduceDocumentsChain: map_chain = LLMChain(llm=llm, prompt=question_prompt, verbose=verbose) _reduce_llm = reduce_llm or llm reduce_chain = LLMChain(llm=_reduce_llm, prompt=combine_prompt, verbose=verbose) combine_documents_chain = StuffDocumentsChain( llm_chain=reduce_chain, document_variable_name=combine_document_variable_name, document_prompt=document_prompt, verbose=verbose, ) if collapse_prompt is None: collapse_chain = None if collapse_llm is not None: raise ValueError( "collapse_llm provided, but collapse_prompt was not: please " "provide one or stop providing collapse_llm." ) else: _collapse_llm = collapse_llm or llm collapse_chain = StuffDocumentsChain( llm_chain=LLMChain( llm=_collapse_llm, prompt=collapse_prompt, verbose=verbose, ), document_variable_name=combine_document_variable_name, document_prompt=document_prompt, ) reduce_documents_chain = ReduceDocumentsChain( combine_documents_chain=combine_documents_chain, collapse_documents_chain=collapse_chain, token_max=token_max, verbose=verbose, ) return MapReduceDocumentsChain( llm_chain=map_chain, reduce_documents_chain=reduce_documents_chain, document_variable_name=map_reduce_document_variable_name, verbose=verbose, **kwargs, ) def _load_refine_chain( llm: BaseLanguageModel, question_prompt: BasePromptTemplate = refine_prompts.DEFAULT_TEXT_QA_PROMPT, refine_prompt: BasePromptTemplate = refine_prompts.DEFAULT_REFINE_PROMPT, document_prompt: BasePromptTemplate = refine_prompts.EXAMPLE_PROMPT, document_variable_name: str = "context_str", initial_response_name: str = "existing_answer", refine_llm: Optional[BaseLanguageModel] = None, verbose: Optional[bool] = None, **kwargs: Any, ) -> RefineDocumentsChain: initial_chain = LLMChain(llm=llm, prompt=question_prompt, verbose=verbose) _refine_llm = refine_llm or llm refine_chain = LLMChain(llm=_refine_llm, prompt=refine_prompt, verbose=verbose) return RefineDocumentsChain( initial_llm_chain=initial_chain, refine_llm_chain=refine_chain, document_variable_name=document_variable_name, initial_response_name=initial_response_name, document_prompt=document_prompt, verbose=verbose, **kwargs, ) def load_qa_with_sources_chain( llm: BaseLanguageModel, chain_type: str = "stuff", verbose: Optional[bool] = None, **kwargs: Any, ) -> BaseCombineDocumentsChain: """Load a question answering with sources chain. Args: llm: Language Model to use in the chain. chain_type: Type of document combining chain to use. Should be one of "stuff", "map_reduce", "refine" and "map_rerank". verbose: Whether chains should be run in verbose mode or not. Note that this applies to all chains that make up the final chain. Returns: A chain to use for question answering with sources. """ loader_mapping: Mapping[str, LoadingCallable] = { "stuff": _load_stuff_chain, "map_reduce": _load_map_reduce_chain, "refine": _load_refine_chain, "map_rerank": _load_map_rerank_chain, } if chain_type not in loader_mapping: raise ValueError( f"Got unsupported chain type: {chain_type}. " f"Should be one of {loader_mapping.keys()}" ) _func: LoadingCallable = loader_mapping[chain_type] return _func(llm, verbose=verbose, **kwargs)
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~chains~openai_tools~extraction.py
from typing import List, Type, Union from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import Runnable from langchain_core.schema.language_model import BaseLanguageModel from langchain.output_parsers import PydanticToolsParser from langchain.utils.openai_functions import convert_pydantic_to_openai_function _EXTRACTION_TEMPLATE = """Extract and save the relevant entities mentioned \ in the following passage together with their properties. If a property is not present and is not required in the function parameters, do not include it in the output.""" # noqa: E501 def create_extraction_chain_pydantic( pydantic_schemas: Union[List[Type[BaseModel]], Type[BaseModel]], llm: BaseLanguageModel, system_message: str = _EXTRACTION_TEMPLATE, ) -> Runnable: if not isinstance(pydantic_schemas, list): pydantic_schemas = [pydantic_schemas] prompt = ChatPromptTemplate.from_messages( [("system", system_message), ("user", "{input}")] ) functions = [convert_pydantic_to_openai_function(p) for p in pydantic_schemas] tools = [{"type": "function", "function": d} for d in functions] model = llm.bind(tools=tools) chain = prompt | model | PydanticToolsParser(tools=pydantic_schemas) return chain
[ "Extract and save the relevant entities mentioned in the following passage together with their properties.\n\nIf a property is not present and is not required in the function parameters, do not include it in the output.", "{input}", "[('system', PLACEHOLDER), ('user', '{input}')]" ]
2024-01-10
axgpt/langchain
libs~langchain~tests~integration_tests~memory~test_rockset.py
"""Tests RocksetChatMessageHistory by creating a collection for message history, adding to it, and clearing it. To run these tests, make sure you have the ROCKSET_API_KEY and ROCKSET_REGION environment variables set. """ import json import os from langchain_core.schema.messages import _message_to_dict from langchain.memory import ConversationBufferMemory from langchain.memory.chat_message_histories import RocksetChatMessageHistory collection_name = "langchain_demo" session_id = "MySession" class TestRockset: memory: RocksetChatMessageHistory @classmethod def setup_class(cls) -> None: from rockset import DevRegions, Regions, RocksetClient assert os.environ.get("ROCKSET_API_KEY") is not None assert os.environ.get("ROCKSET_REGION") is not None api_key = os.environ.get("ROCKSET_API_KEY") region = os.environ.get("ROCKSET_REGION") if region == "use1a1": host = Regions.use1a1 elif region == "usw2a1" or not region: host = Regions.usw2a1 elif region == "euc1a1": host = Regions.euc1a1 elif region == "dev": host = DevRegions.usw2a1 else: host = region client = RocksetClient(host, api_key) cls.memory = RocksetChatMessageHistory( session_id, client, collection_name, sync=True ) def test_memory_with_message_store(self) -> None: memory = ConversationBufferMemory( memory_key="messages", chat_memory=self.memory, return_messages=True ) memory.chat_memory.add_ai_message("This is me, the AI") memory.chat_memory.add_user_message("This is me, the human") messages = memory.chat_memory.messages messages_json = json.dumps([_message_to_dict(msg) for msg in messages]) assert "This is me, the AI" in messages_json assert "This is me, the human" in messages_json memory.chat_memory.clear() assert memory.chat_memory.messages == []
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~retrievers~zilliz.py
import warnings from typing import Any, Dict, List, Optional from langchain_core.pydantic_v1 import root_validator from langchain_core.schema import BaseRetriever, Document from langchain_core.schema.embeddings import Embeddings from langchain.callbacks.manager import CallbackManagerForRetrieverRun from langchain.vectorstores.zilliz import Zilliz # TODO: Update to ZillizClient + Hybrid Search when available class ZillizRetriever(BaseRetriever): """`Zilliz API` retriever.""" embedding_function: Embeddings """The underlying embedding function from which documents will be retrieved.""" collection_name: str = "LangChainCollection" """The name of the collection in Zilliz.""" connection_args: Optional[Dict[str, Any]] = None """The connection arguments for the Zilliz client.""" consistency_level: str = "Session" """The consistency level for the Zilliz client.""" search_params: Optional[dict] = None """The search parameters for the Zilliz client.""" store: Zilliz """The underlying Zilliz store.""" retriever: BaseRetriever """The underlying retriever.""" @root_validator(pre=True) def create_client(cls, values: dict) -> dict: values["store"] = Zilliz( values["embedding_function"], values["collection_name"], values["connection_args"], values["consistency_level"], ) values["retriever"] = values["store"].as_retriever( search_kwargs={"param": values["search_params"]} ) return values def add_texts( self, texts: List[str], metadatas: Optional[List[dict]] = None ) -> None: """Add text to the Zilliz store Args: texts (List[str]): The text metadatas (List[dict]): Metadata dicts, must line up with existing store """ self.store.add_texts(texts, metadatas) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any, ) -> List[Document]: return self.retriever.get_relevant_documents( query, run_manager=run_manager.get_child(), **kwargs ) def ZillizRetreiver(*args: Any, **kwargs: Any) -> ZillizRetriever: """Deprecated ZillizRetreiver. Please use ZillizRetriever ('i' before 'e') instead. Args: *args: **kwargs: Returns: ZillizRetriever """ warnings.warn( "ZillizRetreiver will be deprecated in the future. " "Please use ZillizRetriever ('i' before 'e') instead.", DeprecationWarning, ) return ZillizRetriever(*args, **kwargs)
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~embeddings~llm_rails.py
""" This file is for LLMRails Embedding """ import logging import os from typing import List, Optional import requests from langchain_core.pydantic_v1 import BaseModel, Extra from langchain_core.schema.embeddings import Embeddings class LLMRailsEmbeddings(BaseModel, Embeddings): """LLMRails embedding models. To use, you should have the environment variable ``LLM_RAILS_API_KEY`` set with your API key or pass it as a named parameter to the constructor. Model can be one of ["embedding-english-v1","embedding-multi-v1"] Example: .. code-block:: python from langchain.embeddings import LLMRailsEmbeddings cohere = LLMRailsEmbeddings( model="embedding-english-v1", api_key="my-api-key" ) """ model: str = "embedding-english-v1" """Model name to use.""" api_key: Optional[str] = None """LLMRails API key.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Cohere's embedding endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ api_key = self.api_key or os.environ.get("LLM_RAILS_API_KEY") if api_key is None: logging.warning("Can't find LLMRails credentials in environment.") raise ValueError("LLM_RAILS_API_KEY is not set") response = requests.post( "https://api.llmrails.com/v1/embeddings", headers={"X-API-KEY": api_key}, json={"input": texts, "model": self.model}, timeout=60, ) return [item["embedding"] for item in response.json()["data"]] def embed_query(self, text: str) -> List[float]: """Call out to Cohere's embedding endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ return self.embed_documents([text])[0]
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~embeddings~clarifai.py
import logging from typing import Any, Dict, List, Optional from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator from langchain_core.schema.embeddings import Embeddings from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) class ClarifaiEmbeddings(BaseModel, Embeddings): """Clarifai embedding models. To use, you should have the ``clarifai`` python package installed, and the environment variable ``CLARIFAI_PAT`` set with your personal access token or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.embeddings import ClarifaiEmbeddings clarifai = ClarifaiEmbeddings( model="embed-english-light-v3.0", clarifai_api_key="my-api-key" ) """ stub: Any #: :meta private: """Clarifai stub.""" userDataObject: Any """Clarifai user data object.""" model_id: Optional[str] = None """Model id to use.""" model_version_id: Optional[str] = None """Model version id to use.""" app_id: Optional[str] = None """Clarifai application id to use.""" user_id: Optional[str] = None """Clarifai user id to use.""" pat: Optional[str] = None """Clarifai personal access token to use.""" api_base: str = "https://api.clarifai.com" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["pat"] = get_from_dict_or_env(values, "pat", "CLARIFAI_PAT") user_id = values.get("user_id") app_id = values.get("app_id") model_id = values.get("model_id") if values["pat"] is None: raise ValueError("Please provide a pat.") if user_id is None: raise ValueError("Please provide a user_id.") if app_id is None: raise ValueError("Please provide a app_id.") if model_id is None: raise ValueError("Please provide a model_id.") try: from clarifai.auth.helper import ClarifaiAuthHelper from clarifai.client import create_stub except ImportError: raise ImportError( "Could not import clarifai python package. " "Please install it with `pip install clarifai`." ) auth = ClarifaiAuthHelper( user_id=user_id, app_id=app_id, pat=values["pat"], base=values["api_base"], ) values["userDataObject"] = auth.get_user_app_id_proto() values["stub"] = create_stub(auth) return values def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Clarifai's embedding models. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ try: from clarifai_grpc.grpc.api import ( resources_pb2, service_pb2, ) from clarifai_grpc.grpc.api.status import status_code_pb2 except ImportError: raise ImportError( "Could not import clarifai python package. " "Please install it with `pip install clarifai`." ) batch_size = 32 embeddings = [] for i in range(0, len(texts), batch_size): batch = texts[i : i + batch_size] post_model_outputs_request = service_pb2.PostModelOutputsRequest( user_app_id=self.userDataObject, model_id=self.model_id, version_id=self.model_version_id, inputs=[ resources_pb2.Input( data=resources_pb2.Data(text=resources_pb2.Text(raw=t)) ) for t in batch ], ) post_model_outputs_response = self.stub.PostModelOutputs( post_model_outputs_request ) if post_model_outputs_response.status.code != status_code_pb2.SUCCESS: logger.error(post_model_outputs_response.status) first_output_failure = ( post_model_outputs_response.outputs[0].status if len(post_model_outputs_response.outputs) else None ) raise Exception( f"Post model outputs failed, status: " f"{post_model_outputs_response.status}, first output failure: " f"{first_output_failure}" ) embeddings.extend( [ list(o.data.embeddings[0].vector) for o in post_model_outputs_response.outputs ] ) return embeddings def embed_query(self, text: str) -> List[float]: """Call out to Clarifai's embedding models. Args: text: The text to embed. Returns: Embeddings for the text. """ try: from clarifai_grpc.grpc.api import ( resources_pb2, service_pb2, ) from clarifai_grpc.grpc.api.status import status_code_pb2 except ImportError: raise ImportError( "Could not import clarifai python package. " "Please install it with `pip install clarifai`." ) post_model_outputs_request = service_pb2.PostModelOutputsRequest( user_app_id=self.userDataObject, model_id=self.model_id, version_id=self.model_version_id, inputs=[ resources_pb2.Input( data=resources_pb2.Data(text=resources_pb2.Text(raw=text)) ) ], ) post_model_outputs_response = self.stub.PostModelOutputs( post_model_outputs_request ) if post_model_outputs_response.status.code != status_code_pb2.SUCCESS: logger.error(post_model_outputs_response.status) first_output_failure = ( post_model_outputs_response.outputs[0].status if len(post_model_outputs_response.outputs[0]) else None ) raise Exception( f"Post model outputs failed, status: " f"{post_model_outputs_response.status}, first output failure: " f"{first_output_failure}" ) embeddings = [ list(o.data.embeddings[0].vector) for o in post_model_outputs_response.outputs ] return embeddings[0]
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~indexes~graph.py
"""Graph Index Creator.""" from typing import Optional, Type from langchain_core.pydantic_v1 import BaseModel from langchain_core.schema.language_model import BaseLanguageModel from langchain_core.schema.prompt_template import BasePromptTemplate from langchain.chains.llm import LLMChain from langchain.graphs.networkx_graph import NetworkxEntityGraph, parse_triples from langchain.indexes.prompts.knowledge_triplet_extraction import ( KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT, ) class GraphIndexCreator(BaseModel): """Functionality to create graph index.""" llm: Optional[BaseLanguageModel] = None graph_type: Type[NetworkxEntityGraph] = NetworkxEntityGraph def from_text( self, text: str, prompt: BasePromptTemplate = KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT ) -> NetworkxEntityGraph: """Create graph index from text.""" if self.llm is None: raise ValueError("llm should not be None") graph = self.graph_type() chain = LLMChain(llm=self.llm, prompt=prompt) output = chain.predict(text=text) knowledge = parse_triples(output) for triple in knowledge: graph.add_triple(triple) return graph async def afrom_text( self, text: str, prompt: BasePromptTemplate = KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT ) -> NetworkxEntityGraph: """Create graph index from text asynchronously.""" if self.llm is None: raise ValueError("llm should not be None") graph = self.graph_type() chain = LLMChain(llm=self.llm, prompt=prompt) output = await chain.apredict(text=text) knowledge = parse_triples(output) for triple in knowledge: graph.add_triple(triple) return graph
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~unit_tests~memory~chat_message_histories~test_sql.py
from pathlib import Path from typing import Any, Generator, Tuple import pytest from langchain_core.schema.messages import AIMessage, HumanMessage from sqlalchemy import Column, Integer, Text from sqlalchemy.orm import DeclarativeBase from langchain.memory.chat_message_histories import SQLChatMessageHistory from langchain.memory.chat_message_histories.sql import DefaultMessageConverter @pytest.fixture() def con_str(tmp_path: Path) -> str: file_path = tmp_path / "db.sqlite3" con_str = f"sqlite:///{file_path}" return con_str @pytest.fixture() def sql_histories( con_str: str, ) -> Generator[Tuple[SQLChatMessageHistory, SQLChatMessageHistory], None, None]: message_history = SQLChatMessageHistory( session_id="123", connection_string=con_str, table_name="test_table" ) # Create history for other session other_history = SQLChatMessageHistory( session_id="456", connection_string=con_str, table_name="test_table" ) yield message_history, other_history message_history.clear() other_history.clear() def test_add_messages( sql_histories: Tuple[SQLChatMessageHistory, SQLChatMessageHistory] ) -> None: sql_history, other_history = sql_histories sql_history.add_user_message("Hello!") sql_history.add_ai_message("Hi there!") messages = sql_history.messages assert len(messages) == 2 assert isinstance(messages[0], HumanMessage) assert isinstance(messages[1], AIMessage) assert messages[0].content == "Hello!" assert messages[1].content == "Hi there!" def test_multiple_sessions( sql_histories: Tuple[SQLChatMessageHistory, SQLChatMessageHistory] ) -> None: sql_history, other_history = sql_histories sql_history.add_user_message("Hello!") sql_history.add_ai_message("Hi there!") sql_history.add_user_message("Whats cracking?") # Ensure the messages are added correctly in the first session assert len(sql_history.messages) == 3, "waat" assert sql_history.messages[0].content == "Hello!" assert sql_history.messages[1].content == "Hi there!" assert sql_history.messages[2].content == "Whats cracking?" # second session other_history.add_user_message("Hellox") assert len(other_history.messages) == 1 assert len(sql_history.messages) == 3 assert other_history.messages[0].content == "Hellox" assert sql_history.messages[0].content == "Hello!" assert sql_history.messages[1].content == "Hi there!" assert sql_history.messages[2].content == "Whats cracking?" def test_clear_messages( sql_histories: Tuple[SQLChatMessageHistory, SQLChatMessageHistory] ) -> None: sql_history, other_history = sql_histories sql_history.add_user_message("Hello!") sql_history.add_ai_message("Hi there!") assert len(sql_history.messages) == 2 # Now create another history with different session id other_history.add_user_message("Hellox") assert len(other_history.messages) == 1 assert len(sql_history.messages) == 2 # Now clear the first history sql_history.clear() assert len(sql_history.messages) == 0 assert len(other_history.messages) == 1 def test_model_no_session_id_field_error(con_str: str) -> None: class Base(DeclarativeBase): pass class Model(Base): __tablename__ = "test_table" id = Column(Integer, primary_key=True) test_field = Column(Text) class CustomMessageConverter(DefaultMessageConverter): def get_sql_model_class(self) -> Any: return Model with pytest.raises(ValueError): SQLChatMessageHistory( "test", con_str, custom_message_converter=CustomMessageConverter("test_table"), )
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~agents~output_parsers~react_json_single_input.py
import json import re from typing import Union from langchain_core.schema import AgentAction, AgentFinish, OutputParserException from langchain.agents.agent import AgentOutputParser from langchain.agents.chat.prompt import FORMAT_INSTRUCTIONS FINAL_ANSWER_ACTION = "Final Answer:" class ReActJsonSingleInputOutputParser(AgentOutputParser): """Parses ReAct-style LLM calls that have a single tool input in json format. Expects output to be in one of two formats. If the output signals that an action should be taken, should be in the below format. This will result in an AgentAction being returned. ``` Thought: agent thought here Action: ``` { "action": "search", "action_input": "what is the temperature in SF" } ``` ``` If the output signals that a final answer should be given, should be in the below format. This will result in an AgentFinish being returned. ``` Thought: agent thought here Final Answer: The temperature is 100 degrees ``` """ pattern = re.compile(r"^.*?`{3}(?:json)?\n(.*?)`{3}.*?$", re.DOTALL) """Regex pattern to parse the output.""" def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS def parse(self, text: str) -> Union[AgentAction, AgentFinish]: includes_answer = FINAL_ANSWER_ACTION in text try: found = self.pattern.search(text) if not found: # Fast fail to parse Final Answer. raise ValueError("action not found") action = found.group(1) response = json.loads(action.strip()) includes_action = "action" in response if includes_answer and includes_action: raise OutputParserException( "Parsing LLM output produced a final answer " f"and a parse-able action: {text}" ) return AgentAction( response["action"], response.get("action_input", {}), text ) except Exception: if not includes_answer: raise OutputParserException(f"Could not parse LLM output: {text}") output = text.split(FINAL_ANSWER_ACTION)[-1].strip() return AgentFinish({"output": output}, text) @property def _type(self) -> str: return "react-json-single-input"
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~unit_tests~retrievers~self_query~test_base.py
from typing import Any, Dict, List, Tuple, Union import pytest from langchain_core.schema import Document from langchain.callbacks.manager import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain.chains.query_constructor.ir import ( Comparator, Comparison, Operation, Operator, StructuredQuery, Visitor, ) from langchain.chains.query_constructor.schema import AttributeInfo from langchain.retrievers import SelfQueryRetriever from tests.unit_tests.indexes.test_indexing import InMemoryVectorStore from tests.unit_tests.llms.fake_llm import FakeLLM class FakeTranslator(Visitor): allowed_comparators = ( Comparator.EQ, Comparator.NE, Comparator.LT, Comparator.LTE, Comparator.GT, Comparator.GTE, Comparator.CONTAIN, Comparator.LIKE, ) allowed_operators = (Operator.AND, Operator.OR, Operator.NOT) def _format_func(self, func: Union[Operator, Comparator]) -> str: self._validate_func(func) return f"${func.value}" def visit_operation(self, operation: Operation) -> Dict: args = [arg.accept(self) for arg in operation.arguments] return {self._format_func(operation.operator): args} def visit_comparison(self, comparison: Comparison) -> Dict: return { comparison.attribute: { self._format_func(comparison.comparator): comparison.value } } def visit_structured_query( self, structured_query: StructuredQuery ) -> Tuple[str, dict]: if structured_query.filter is None: kwargs = {} else: kwargs = {"filter": structured_query.filter.accept(self)} return structured_query.query, kwargs class InMemoryVectorstoreWithSearch(InMemoryVectorStore): def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: res = self.store.get(query) if res is None: return [] return [res] @pytest.fixture() def fake_llm() -> FakeLLM: return FakeLLM( queries={ "1": """```json { "query": "test", "filter": null } ```""", "bar": "baz", }, sequential_responses=True, ) @pytest.fixture() def fake_vectorstore() -> InMemoryVectorstoreWithSearch: vectorstore = InMemoryVectorstoreWithSearch() vectorstore.add_documents( [ Document( page_content="test", metadata={ "foo": "bar", }, ), ], ids=["test"], ) return vectorstore @pytest.fixture() def fake_self_query_retriever( fake_llm: FakeLLM, fake_vectorstore: InMemoryVectorstoreWithSearch ) -> SelfQueryRetriever: return SelfQueryRetriever.from_llm( llm=fake_llm, vectorstore=fake_vectorstore, document_contents="test", metadata_field_info=[ AttributeInfo( name="foo", type="string", description="test", ), ], structured_query_translator=FakeTranslator(), ) def test__get_relevant_documents(fake_self_query_retriever: SelfQueryRetriever) -> None: relevant_documents = fake_self_query_retriever._get_relevant_documents( "foo", run_manager=CallbackManagerForRetrieverRun.get_noop_manager(), ) assert len(relevant_documents) == 1 assert relevant_documents[0].metadata["foo"] == "bar" @pytest.mark.asyncio async def test__aget_relevant_documents( fake_self_query_retriever: SelfQueryRetriever, ) -> None: relevant_documents = await fake_self_query_retriever._aget_relevant_documents( "foo", run_manager=AsyncCallbackManagerForRetrieverRun.get_noop_manager(), ) assert len(relevant_documents) == 1 assert relevant_documents[0].metadata["foo"] == "bar"
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~chat_models~anyscale.py
"""Anyscale Endpoints chat wrapper. Relies heavily on ChatOpenAI.""" from __future__ import annotations import logging import os import sys from typing import TYPE_CHECKING, Dict, Optional, Set import requests from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.schema.messages import BaseMessage from langchain_core.utils import convert_to_secret_str from langchain.adapters.openai import convert_message_to_dict from langchain.chat_models.openai import ( ChatOpenAI, _import_tiktoken, ) from langchain.utils import get_from_dict_or_env from langchain.utils.openai import is_openai_v1 if TYPE_CHECKING: import tiktoken logger = logging.getLogger(__name__) DEFAULT_API_BASE = "https://api.endpoints.anyscale.com/v1" DEFAULT_MODEL = "meta-llama/Llama-2-7b-chat-hf" class ChatAnyscale(ChatOpenAI): """`Anyscale` Chat large language models. See https://www.anyscale.com/ for information about Anyscale. To use, you should have the ``openai`` python package installed, and the environment variable ``ANYSCALE_API_KEY`` set with your API key. Alternatively, you can use the anyscale_api_key keyword argument. Any parameters that are valid to be passed to the `openai.create` call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.chat_models import ChatAnyscale chat = ChatAnyscale(model_name="meta-llama/Llama-2-7b-chat-hf") """ @property def _llm_type(self) -> str: """Return type of chat model.""" return "anyscale-chat" @property def lc_secrets(self) -> Dict[str, str]: return {"anyscale_api_key": "ANYSCALE_API_KEY"} anyscale_api_key: SecretStr """AnyScale Endpoints API keys.""" model_name: str = Field(default=DEFAULT_MODEL, alias="model") """Model name to use.""" anyscale_api_base: str = Field(default=DEFAULT_API_BASE) """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" anyscale_proxy: Optional[str] = None """To support explicit proxy for Anyscale.""" available_models: Optional[Set[str]] = None """Available models from Anyscale API.""" @staticmethod def get_available_models( anyscale_api_key: Optional[str] = None, anyscale_api_base: str = DEFAULT_API_BASE, ) -> Set[str]: """Get available models from Anyscale API.""" try: anyscale_api_key = anyscale_api_key or os.environ["ANYSCALE_API_KEY"] except KeyError as e: raise ValueError( "Anyscale API key must be passed as keyword argument or " "set in environment variable ANYSCALE_API_KEY.", ) from e models_url = f"{anyscale_api_base}/models" models_response = requests.get( models_url, headers={ "Authorization": f"Bearer {anyscale_api_key}", }, ) if models_response.status_code != 200: raise ValueError( f"Error getting models from {models_url}: " f"{models_response.status_code}", ) return {model["id"] for model in models_response.json()["data"]} @root_validator(pre=True) def validate_environment_override(cls, values: dict) -> dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "anyscale_api_key", "ANYSCALE_API_KEY", ) values["anyscale_api_key"] = convert_to_secret_str( get_from_dict_or_env( values, "anyscale_api_key", "ANYSCALE_API_KEY", ) ) values["openai_api_base"] = get_from_dict_or_env( values, "anyscale_api_base", "ANYSCALE_API_BASE", default=DEFAULT_API_BASE, ) values["openai_proxy"] = get_from_dict_or_env( values, "anyscale_proxy", "ANYSCALE_PROXY", default="", ) try: import openai except ImportError as e: raise ValueError( "Could not import openai python package. " "Please install it with `pip install openai`.", ) from e try: if is_openai_v1(): client_params = { "api_key": values["openai_api_key"], "base_url": values["openai_api_base"], # To do: future support # "organization": values["openai_organization"], # "timeout": values["request_timeout"], # "max_retries": values["max_retries"], # "default_headers": values["default_headers"], # "default_query": values["default_query"], # "http_client": values["http_client"], } values["client"] = openai.OpenAI(**client_params).chat.completions else: values["client"] = openai.ChatCompletion except AttributeError as exc: raise ValueError( "`openai` has no `ChatCompletion` attribute, this is likely " "due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`.", ) from exc if "model_name" not in values.keys(): values["model_name"] = DEFAULT_MODEL model_name = values["model_name"] available_models = cls.get_available_models( values["openai_api_key"], values["openai_api_base"], ) if model_name not in available_models: raise ValueError( f"Model name {model_name} not found in available models: " f"{available_models}.", ) values["available_models"] = available_models return values def _get_encoding_model(self) -> tuple[str, tiktoken.Encoding]: tiktoken_ = _import_tiktoken() if self.tiktoken_model_name is not None: model = self.tiktoken_model_name else: model = self.model_name # Returns the number of tokens used by a list of messages. try: encoding = tiktoken_.encoding_for_model("gpt-3.5-turbo-0301") except KeyError: logger.warning("Warning: model not found. Using cl100k_base encoding.") model = "cl100k_base" encoding = tiktoken_.get_encoding(model) return model, encoding def get_num_tokens_from_messages(self, messages: list[BaseMessage]) -> int: """Calculate num tokens with tiktoken package. Official documentation: https://github.com/openai/openai-cookbook/blob/ main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb""" if sys.version_info[1] <= 7: return super().get_num_tokens_from_messages(messages) model, encoding = self._get_encoding_model() tokens_per_message = 3 tokens_per_name = 1 num_tokens = 0 messages_dict = [convert_message_to_dict(m) for m in messages] for message in messages_dict: num_tokens += tokens_per_message for key, value in message.items(): # Cast str(value) in case the message value is not a string # This occurs with function messages num_tokens += len(encoding.encode(str(value))) if key == "name": num_tokens += tokens_per_name # every reply is primed with <im_start>assistant num_tokens += 3 return num_tokens
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~agents~format_scratchpad~xml.py
from typing import List, Tuple from langchain_core.schema.agent import AgentAction def format_xml( intermediate_steps: List[Tuple[AgentAction, str]], ) -> str: """Format the intermediate steps as XML. Args: intermediate_steps: The intermediate steps. Returns: The intermediate steps as XML. """ log = "" for action, observation in intermediate_steps: log += ( f"<tool>{action.tool}</tool><tool_input>{action.tool_input}" f"</tool_input><observation>{observation}</observation>" ) return log
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~storage~in_memory.py
"""In memory store that is not thread safe and has no eviction policy. This is a simple implementation of the BaseStore using a dictionary that is useful primarily for unit testing purposes. """ from typing import Any, Dict, Iterator, List, Optional, Sequence, Tuple from langchain_core.schema import BaseStore class InMemoryStore(BaseStore[str, Any]): """In-memory implementation of the BaseStore using a dictionary. Attributes: store (Dict[str, Any]): The underlying dictionary that stores the key-value pairs. Examples: .. code-block:: python from langchain.storage import InMemoryStore store = InMemoryStore() store.mset([('key1', 'value1'), ('key2', 'value2')]) store.mget(['key1', 'key2']) # ['value1', 'value2'] store.mdelete(['key1']) list(store.yield_keys()) # ['key2'] list(store.yield_keys(prefix='k')) # ['key2'] """ def __init__(self) -> None: """Initialize an empty store.""" self.store: Dict[str, Any] = {} def mget(self, keys: Sequence[str]) -> List[Optional[Any]]: """Get the values associated with the given keys. Args: keys (Sequence[str]): A sequence of keys. Returns: A sequence of optional values associated with the keys. If a key is not found, the corresponding value will be None. """ return [self.store.get(key) for key in keys] def mset(self, key_value_pairs: Sequence[Tuple[str, Any]]) -> None: """Set the values for the given keys. Args: key_value_pairs (Sequence[Tuple[str, V]]): A sequence of key-value pairs. Returns: None """ for key, value in key_value_pairs: self.store[key] = value def mdelete(self, keys: Sequence[str]) -> None: """Delete the given keys and their associated values. Args: keys (Sequence[str]): A sequence of keys to delete. """ for key in keys: self.store.pop(key, None) def yield_keys(self, prefix: Optional[str] = None) -> Iterator[str]: """Get an iterator over keys that match the given prefix. Args: prefix (str, optional): The prefix to match. Defaults to None. Returns: Iterator[str]: An iterator over keys that match the given prefix. """ if prefix is None: yield from self.store.keys() else: for key in self.store.keys(): if key.startswith(prefix): yield key
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~agents~load_tools.py
# flake8: noqa """Tools provide access to various resources and services. LangChain has a large ecosystem of integrations with various external resources like local and remote file systems, APIs and databases. These integrations allow developers to create versatile applications that combine the power of LLMs with the ability to access, interact with and manipulate external resources. When developing an application, developers should inspect the capabilities and permissions of the tools that underlie the given agent toolkit, and determine whether permissions of the given toolkit are appropriate for the application. See [Security](https://python.langchain.com/docs/security) for more information. """ import warnings from typing import Any, Dict, List, Optional, Callable, Tuple from mypy_extensions import Arg, KwArg from langchain.agents.tools import Tool from langchain_core.schema.language_model import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.callbacks.manager import Callbacks from langchain.chains.api import news_docs, open_meteo_docs, podcast_docs, tmdb_docs from langchain.chains.api.base import APIChain from langchain.chains.llm_math.base import LLMMathChain from langchain.utilities.dalle_image_generator import DallEAPIWrapper from langchain.utilities.requests import TextRequestsWrapper from langchain.tools.arxiv.tool import ArxivQueryRun from langchain.tools.golden_query.tool import GoldenQueryRun from langchain.tools.pubmed.tool import PubmedQueryRun from langchain.tools.base import BaseTool from langchain.tools.bing_search.tool import BingSearchRun from langchain.tools.ddg_search.tool import DuckDuckGoSearchRun from langchain.tools.google_cloud.texttospeech import GoogleCloudTextToSpeechTool from langchain.tools.google_search.tool import GoogleSearchResults, GoogleSearchRun from langchain.tools.google_scholar.tool import GoogleScholarQueryRun from langchain.tools.metaphor_search.tool import MetaphorSearchResults from langchain.tools.google_serper.tool import GoogleSerperResults, GoogleSerperRun from langchain.tools.searchapi.tool import SearchAPIResults, SearchAPIRun from langchain.tools.graphql.tool import BaseGraphQLTool from langchain.tools.human.tool import HumanInputRun from langchain.tools.requests.tool import ( RequestsDeleteTool, RequestsGetTool, RequestsPatchTool, RequestsPostTool, RequestsPutTool, ) from langchain.tools.eleven_labs.text2speech import ElevenLabsText2SpeechTool from langchain.tools.scenexplain.tool import SceneXplainTool from langchain.tools.searx_search.tool import SearxSearchResults, SearxSearchRun from langchain.tools.shell.tool import ShellTool from langchain.tools.sleep.tool import SleepTool from langchain.tools.wikipedia.tool import WikipediaQueryRun from langchain.tools.wolfram_alpha.tool import WolframAlphaQueryRun from langchain.tools.openweathermap.tool import OpenWeatherMapQueryRun from langchain.tools.dataforseo_api_search import DataForSeoAPISearchRun from langchain.tools.dataforseo_api_search import DataForSeoAPISearchResults from langchain.tools.memorize.tool import Memorize from langchain.utilities.arxiv import ArxivAPIWrapper from langchain.utilities.golden_query import GoldenQueryAPIWrapper from langchain.utilities.pubmed import PubMedAPIWrapper from langchain.utilities.bing_search import BingSearchAPIWrapper from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper from langchain.utilities.google_search import GoogleSearchAPIWrapper from langchain.utilities.google_serper import GoogleSerperAPIWrapper from langchain.utilities.google_scholar import GoogleScholarAPIWrapper from langchain.utilities.metaphor_search import MetaphorSearchAPIWrapper from langchain.utilities.awslambda import LambdaWrapper from langchain.utilities.graphql import GraphQLAPIWrapper from langchain.utilities.searchapi import SearchApiAPIWrapper from langchain.utilities.searx_search import SearxSearchWrapper from langchain.utilities.serpapi import SerpAPIWrapper from langchain.utilities.twilio import TwilioAPIWrapper from langchain.utilities.wikipedia import WikipediaAPIWrapper from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper from langchain.utilities.openweathermap import OpenWeatherMapAPIWrapper from langchain.utilities.dataforseo_api_search import DataForSeoAPIWrapper def _get_python_repl() -> BaseTool: raise ImportError( "This tool has been moved to langchain experiment. " "This tool has access to a python REPL. " "For best practices make sure to sandbox this tool. " "Read https://github.com/langchain-ai/langchain/blob/master/SECURITY.md " "To keep using this code as is, install langchain experimental and " "update relevant imports replacing 'langchain' with 'langchain_experimental'" ) def _get_tools_requests_get() -> BaseTool: return RequestsGetTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_post() -> BaseTool: return RequestsPostTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_patch() -> BaseTool: return RequestsPatchTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_put() -> BaseTool: return RequestsPutTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_delete() -> BaseTool: return RequestsDeleteTool(requests_wrapper=TextRequestsWrapper()) def _get_terminal() -> BaseTool: return ShellTool() def _get_sleep() -> BaseTool: return SleepTool() _BASE_TOOLS: Dict[str, Callable[[], BaseTool]] = { "python_repl": _get_python_repl, "requests": _get_tools_requests_get, # preserved for backwards compatibility "requests_get": _get_tools_requests_get, "requests_post": _get_tools_requests_post, "requests_patch": _get_tools_requests_patch, "requests_put": _get_tools_requests_put, "requests_delete": _get_tools_requests_delete, "terminal": _get_terminal, "sleep": _get_sleep, } def _get_llm_math(llm: BaseLanguageModel) -> BaseTool: return Tool( name="Calculator", description="Useful for when you need to answer questions about math.", func=LLMMathChain.from_llm(llm=llm).run, coroutine=LLMMathChain.from_llm(llm=llm).arun, ) def _get_open_meteo_api(llm: BaseLanguageModel) -> BaseTool: chain = APIChain.from_llm_and_api_docs( llm, open_meteo_docs.OPEN_METEO_DOCS, limit_to_domains=["https://api.open-meteo.com/"], ) return Tool( name="Open-Meteo-API", description="Useful for when you want to get weather information from the OpenMeteo API. The input should be a question in natural language that this API can answer.", func=chain.run, ) _LLM_TOOLS: Dict[str, Callable[[BaseLanguageModel], BaseTool]] = { "llm-math": _get_llm_math, "open-meteo-api": _get_open_meteo_api, } def _get_news_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool: news_api_key = kwargs["news_api_key"] chain = APIChain.from_llm_and_api_docs( llm, news_docs.NEWS_DOCS, headers={"X-Api-Key": news_api_key}, limit_to_domains=["https://newsapi.org/"], ) return Tool( name="News-API", description="Use this when you want to get information about the top headlines of current news stories. The input should be a question in natural language that this API can answer.", func=chain.run, ) def _get_tmdb_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool: tmdb_bearer_token = kwargs["tmdb_bearer_token"] chain = APIChain.from_llm_and_api_docs( llm, tmdb_docs.TMDB_DOCS, headers={"Authorization": f"Bearer {tmdb_bearer_token}"}, limit_to_domains=["https://api.themoviedb.org/"], ) return Tool( name="TMDB-API", description="Useful for when you want to get information from The Movie Database. The input should be a question in natural language that this API can answer.", func=chain.run, ) def _get_podcast_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool: listen_api_key = kwargs["listen_api_key"] chain = APIChain.from_llm_and_api_docs( llm, podcast_docs.PODCAST_DOCS, headers={"X-ListenAPI-Key": listen_api_key}, limit_to_domains=["https://listen-api.listennotes.com/"], ) return Tool( name="Podcast-API", description="Use the Listen Notes Podcast API to search all podcasts or episodes. The input should be a question in natural language that this API can answer.", func=chain.run, ) def _get_lambda_api(**kwargs: Any) -> BaseTool: return Tool( name=kwargs["awslambda_tool_name"], description=kwargs["awslambda_tool_description"], func=LambdaWrapper(**kwargs).run, ) def _get_wolfram_alpha(**kwargs: Any) -> BaseTool: return WolframAlphaQueryRun(api_wrapper=WolframAlphaAPIWrapper(**kwargs)) def _get_google_search(**kwargs: Any) -> BaseTool: return GoogleSearchRun(api_wrapper=GoogleSearchAPIWrapper(**kwargs)) def _get_wikipedia(**kwargs: Any) -> BaseTool: return WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(**kwargs)) def _get_arxiv(**kwargs: Any) -> BaseTool: return ArxivQueryRun(api_wrapper=ArxivAPIWrapper(**kwargs)) def _get_golden_query(**kwargs: Any) -> BaseTool: return GoldenQueryRun(api_wrapper=GoldenQueryAPIWrapper(**kwargs)) def _get_pubmed(**kwargs: Any) -> BaseTool: return PubmedQueryRun(api_wrapper=PubMedAPIWrapper(**kwargs)) def _get_google_serper(**kwargs: Any) -> BaseTool: return GoogleSerperRun(api_wrapper=GoogleSerperAPIWrapper(**kwargs)) def _get_google_scholar(**kwargs: Any) -> BaseTool: return GoogleScholarQueryRun(api_wrapper=GoogleScholarAPIWrapper(**kwargs)) def _get_google_serper_results_json(**kwargs: Any) -> BaseTool: return GoogleSerperResults(api_wrapper=GoogleSerperAPIWrapper(**kwargs)) def _get_google_search_results_json(**kwargs: Any) -> BaseTool: return GoogleSearchResults(api_wrapper=GoogleSearchAPIWrapper(**kwargs)) def _get_searchapi(**kwargs: Any) -> BaseTool: return SearchAPIRun(api_wrapper=SearchApiAPIWrapper(**kwargs)) def _get_searchapi_results_json(**kwargs: Any) -> BaseTool: return SearchAPIResults(api_wrapper=SearchApiAPIWrapper(**kwargs)) def _get_serpapi(**kwargs: Any) -> BaseTool: return Tool( name="Search", description="A search engine. Useful for when you need to answer questions about current events. Input should be a search query.", func=SerpAPIWrapper(**kwargs).run, coroutine=SerpAPIWrapper(**kwargs).arun, ) def _get_dalle_image_generator(**kwargs: Any) -> Tool: return Tool( "Dall-E-Image-Generator", DallEAPIWrapper(**kwargs).run, "A wrapper around OpenAI DALL-E API. Useful for when you need to generate images from a text description. Input should be an image description.", ) def _get_twilio(**kwargs: Any) -> BaseTool: return Tool( name="Text-Message", description="Useful for when you need to send a text message to a provided phone number.", func=TwilioAPIWrapper(**kwargs).run, ) def _get_searx_search(**kwargs: Any) -> BaseTool: return SearxSearchRun(wrapper=SearxSearchWrapper(**kwargs)) def _get_searx_search_results_json(**kwargs: Any) -> BaseTool: wrapper_kwargs = {k: v for k, v in kwargs.items() if k != "num_results"} return SearxSearchResults(wrapper=SearxSearchWrapper(**wrapper_kwargs), **kwargs) def _get_bing_search(**kwargs: Any) -> BaseTool: return BingSearchRun(api_wrapper=BingSearchAPIWrapper(**kwargs)) def _get_metaphor_search(**kwargs: Any) -> BaseTool: return MetaphorSearchResults(api_wrapper=MetaphorSearchAPIWrapper(**kwargs)) def _get_ddg_search(**kwargs: Any) -> BaseTool: return DuckDuckGoSearchRun(api_wrapper=DuckDuckGoSearchAPIWrapper(**kwargs)) def _get_human_tool(**kwargs: Any) -> BaseTool: return HumanInputRun(**kwargs) def _get_scenexplain(**kwargs: Any) -> BaseTool: return SceneXplainTool(**kwargs) def _get_graphql_tool(**kwargs: Any) -> BaseTool: graphql_endpoint = kwargs["graphql_endpoint"] wrapper = GraphQLAPIWrapper(graphql_endpoint=graphql_endpoint) return BaseGraphQLTool(graphql_wrapper=wrapper) def _get_openweathermap(**kwargs: Any) -> BaseTool: return OpenWeatherMapQueryRun(api_wrapper=OpenWeatherMapAPIWrapper(**kwargs)) def _get_dataforseo_api_search(**kwargs: Any) -> BaseTool: return DataForSeoAPISearchRun(api_wrapper=DataForSeoAPIWrapper(**kwargs)) def _get_dataforseo_api_search_json(**kwargs: Any) -> BaseTool: return DataForSeoAPISearchResults(api_wrapper=DataForSeoAPIWrapper(**kwargs)) def _get_eleven_labs_text2speech(**kwargs: Any) -> BaseTool: return ElevenLabsText2SpeechTool(**kwargs) def _get_memorize(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool: return Memorize(llm=llm) def _get_google_cloud_texttospeech(**kwargs: Any) -> BaseTool: return GoogleCloudTextToSpeechTool(**kwargs) _EXTRA_LLM_TOOLS: Dict[ str, Tuple[Callable[[Arg(BaseLanguageModel, "llm"), KwArg(Any)], BaseTool], List[str]], ] = { "news-api": (_get_news_api, ["news_api_key"]), "tmdb-api": (_get_tmdb_api, ["tmdb_bearer_token"]), "podcast-api": (_get_podcast_api, ["listen_api_key"]), "memorize": (_get_memorize, []), } _EXTRA_OPTIONAL_TOOLS: Dict[str, Tuple[Callable[[KwArg(Any)], BaseTool], List[str]]] = { "wolfram-alpha": (_get_wolfram_alpha, ["wolfram_alpha_appid"]), "google-search": (_get_google_search, ["google_api_key", "google_cse_id"]), "google-search-results-json": ( _get_google_search_results_json, ["google_api_key", "google_cse_id", "num_results"], ), "searx-search-results-json": ( _get_searx_search_results_json, ["searx_host", "engines", "num_results", "aiosession"], ), "bing-search": (_get_bing_search, ["bing_subscription_key", "bing_search_url"]), "metaphor-search": (_get_metaphor_search, ["metaphor_api_key"]), "ddg-search": (_get_ddg_search, []), "google-serper": (_get_google_serper, ["serper_api_key", "aiosession"]), "google-scholar": ( _get_google_scholar, ["top_k_results", "hl", "lr", "serp_api_key"], ), "google-serper-results-json": ( _get_google_serper_results_json, ["serper_api_key", "aiosession"], ), "searchapi": (_get_searchapi, ["searchapi_api_key", "aiosession"]), "searchapi-results-json": ( _get_searchapi_results_json, ["searchapi_api_key", "aiosession"], ), "serpapi": (_get_serpapi, ["serpapi_api_key", "aiosession"]), "dalle-image-generator": (_get_dalle_image_generator, ["openai_api_key"]), "twilio": (_get_twilio, ["account_sid", "auth_token", "from_number"]), "searx-search": (_get_searx_search, ["searx_host", "engines", "aiosession"]), "wikipedia": (_get_wikipedia, ["top_k_results", "lang"]), "arxiv": ( _get_arxiv, ["top_k_results", "load_max_docs", "load_all_available_meta"], ), "golden-query": (_get_golden_query, ["golden_api_key"]), "pubmed": (_get_pubmed, ["top_k_results"]), "human": (_get_human_tool, ["prompt_func", "input_func"]), "awslambda": ( _get_lambda_api, ["awslambda_tool_name", "awslambda_tool_description", "function_name"], ), "sceneXplain": (_get_scenexplain, []), "graphql": (_get_graphql_tool, ["graphql_endpoint"]), "openweathermap-api": (_get_openweathermap, ["openweathermap_api_key"]), "dataforseo-api-search": ( _get_dataforseo_api_search, ["api_login", "api_password", "aiosession"], ), "dataforseo-api-search-json": ( _get_dataforseo_api_search_json, ["api_login", "api_password", "aiosession"], ), "eleven_labs_text2speech": (_get_eleven_labs_text2speech, ["eleven_api_key"]), "google_cloud_texttospeech": (_get_google_cloud_texttospeech, []), } def _handle_callbacks( callback_manager: Optional[BaseCallbackManager], callbacks: Callbacks ) -> Callbacks: if callback_manager is not None: warnings.warn( "callback_manager is deprecated. Please use callbacks instead.", DeprecationWarning, ) if callbacks is not None: raise ValueError( "Cannot specify both callback_manager and callbacks arguments." ) return callback_manager return callbacks def load_huggingface_tool( task_or_repo_id: str, model_repo_id: Optional[str] = None, token: Optional[str] = None, remote: bool = False, **kwargs: Any, ) -> BaseTool: """Loads a tool from the HuggingFace Hub. Args: task_or_repo_id: Task or model repo id. model_repo_id: Optional model repo id. token: Optional token. remote: Optional remote. Defaults to False. **kwargs: Returns: A tool. """ try: from transformers import load_tool except ImportError: raise ImportError( "HuggingFace tools require the libraries `transformers>=4.29.0`" " and `huggingface_hub>=0.14.1` to be installed." " Please install it with" " `pip install --upgrade transformers huggingface_hub`." ) hf_tool = load_tool( task_or_repo_id, model_repo_id=model_repo_id, token=token, remote=remote, **kwargs, ) outputs = hf_tool.outputs if set(outputs) != {"text"}: raise NotImplementedError("Multimodal outputs not supported yet.") inputs = hf_tool.inputs if set(inputs) != {"text"}: raise NotImplementedError("Multimodal inputs not supported yet.") return Tool.from_function( hf_tool.__call__, name=hf_tool.name, description=hf_tool.description ) def load_tools( tool_names: List[str], llm: Optional[BaseLanguageModel] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> List[BaseTool]: """Load tools based on their name. Tools allow agents to interact with various resources and services like APIs, databases, file systems, etc. Please scope the permissions of each tools to the minimum required for the application. For example, if an application only needs to read from a database, the database tool should not be given write permissions. Moreover consider scoping the permissions to only allow accessing specific tables and impose user-level quota for limiting resource usage. Please read the APIs of the individual tools to determine which configuration they support. See [Security](https://python.langchain.com/docs/security) for more information. Args: tool_names: name of tools to load. llm: An optional language model, may be needed to initialize certain tools. callbacks: Optional callback manager or list of callback handlers. If not provided, default global callback manager will be used. Returns: List of tools. """ tools = [] callbacks = _handle_callbacks( callback_manager=kwargs.get("callback_manager"), callbacks=callbacks ) for name in tool_names: if name == "requests": warnings.warn( "tool name `requests` is deprecated - " "please use `requests_all` or specify the requests method" ) if name == "requests_all": # expand requests into various methods requests_method_tools = [ _tool for _tool in _BASE_TOOLS if _tool.startswith("requests_") ] tool_names.extend(requests_method_tools) elif name in _BASE_TOOLS: tools.append(_BASE_TOOLS[name]()) elif name in _LLM_TOOLS: if llm is None: raise ValueError(f"Tool {name} requires an LLM to be provided") tool = _LLM_TOOLS[name](llm) tools.append(tool) elif name in _EXTRA_LLM_TOOLS: if llm is None: raise ValueError(f"Tool {name} requires an LLM to be provided") _get_llm_tool_func, extra_keys = _EXTRA_LLM_TOOLS[name] missing_keys = set(extra_keys).difference(kwargs) if missing_keys: raise ValueError( f"Tool {name} requires some parameters that were not " f"provided: {missing_keys}" ) sub_kwargs = {k: kwargs[k] for k in extra_keys} tool = _get_llm_tool_func(llm=llm, **sub_kwargs) tools.append(tool) elif name in _EXTRA_OPTIONAL_TOOLS: _get_tool_func, extra_keys = _EXTRA_OPTIONAL_TOOLS[name] sub_kwargs = {k: kwargs[k] for k in extra_keys if k in kwargs} tool = _get_tool_func(**sub_kwargs) tools.append(tool) else: raise ValueError(f"Got unknown tool {name}") if callbacks is not None: for tool in tools: tool.callbacks = callbacks return tools def get_all_tool_names() -> List[str]: """Get a list of all possible tool names.""" return ( list(_BASE_TOOLS) + list(_EXTRA_OPTIONAL_TOOLS) + list(_EXTRA_LLM_TOOLS) + list(_LLM_TOOLS) )
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~callbacks~comet_ml_callback.py
import tempfile from copy import deepcopy from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Sequence from langchain_core.schema import AgentAction, AgentFinish, Generation, LLMResult import langchain from langchain.callbacks.base import BaseCallbackHandler from langchain.callbacks.utils import ( BaseMetadataCallbackHandler, flatten_dict, import_pandas, import_spacy, import_textstat, ) LANGCHAIN_MODEL_NAME = "langchain-model" def import_comet_ml() -> Any: """Import comet_ml and raise an error if it is not installed.""" try: import comet_ml # noqa: F401 except ImportError: raise ImportError( "To use the comet_ml callback manager you need to have the " "`comet_ml` python package installed. Please install it with" " `pip install comet_ml`" ) return comet_ml def _get_experiment( workspace: Optional[str] = None, project_name: Optional[str] = None ) -> Any: comet_ml = import_comet_ml() experiment = comet_ml.Experiment( # type: ignore workspace=workspace, project_name=project_name, ) return experiment def _fetch_text_complexity_metrics(text: str) -> dict: textstat = import_textstat() text_complexity_metrics = { "flesch_reading_ease": textstat.flesch_reading_ease(text), "flesch_kincaid_grade": textstat.flesch_kincaid_grade(text), "smog_index": textstat.smog_index(text), "coleman_liau_index": textstat.coleman_liau_index(text), "automated_readability_index": textstat.automated_readability_index(text), "dale_chall_readability_score": textstat.dale_chall_readability_score(text), "difficult_words": textstat.difficult_words(text), "linsear_write_formula": textstat.linsear_write_formula(text), "gunning_fog": textstat.gunning_fog(text), "text_standard": textstat.text_standard(text), "fernandez_huerta": textstat.fernandez_huerta(text), "szigriszt_pazos": textstat.szigriszt_pazos(text), "gutierrez_polini": textstat.gutierrez_polini(text), "crawford": textstat.crawford(text), "gulpease_index": textstat.gulpease_index(text), "osman": textstat.osman(text), } return text_complexity_metrics def _summarize_metrics_for_generated_outputs(metrics: Sequence) -> dict: pd = import_pandas() metrics_df = pd.DataFrame(metrics) metrics_summary = metrics_df.describe() return metrics_summary.to_dict() class CometCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler): """Callback Handler that logs to Comet. Parameters: job_type (str): The type of comet_ml task such as "inference", "testing" or "qc" project_name (str): The comet_ml project name tags (list): Tags to add to the task task_name (str): Name of the comet_ml task visualize (bool): Whether to visualize the run. complexity_metrics (bool): Whether to log complexity metrics stream_logs (bool): Whether to stream callback actions to Comet This handler will utilize the associated callback method and formats the input of each callback function with metadata regarding the state of LLM run, and adds the response to the list of records for both the {method}_records and action. It then logs the response to Comet. """ def __init__( self, task_type: Optional[str] = "inference", workspace: Optional[str] = None, project_name: Optional[str] = None, tags: Optional[Sequence] = None, name: Optional[str] = None, visualizations: Optional[List[str]] = None, complexity_metrics: bool = False, custom_metrics: Optional[Callable] = None, stream_logs: bool = True, ) -> None: """Initialize callback handler.""" self.comet_ml = import_comet_ml() super().__init__() self.task_type = task_type self.workspace = workspace self.project_name = project_name self.tags = tags self.visualizations = visualizations self.complexity_metrics = complexity_metrics self.custom_metrics = custom_metrics self.stream_logs = stream_logs self.temp_dir = tempfile.TemporaryDirectory() self.experiment = _get_experiment(workspace, project_name) self.experiment.log_other("Created from", "langchain") if tags: self.experiment.add_tags(tags) self.name = name if self.name: self.experiment.set_name(self.name) warning = ( "The comet_ml callback is currently in beta and is subject to change " "based on updates to `langchain`. Please report any issues to " "https://github.com/comet-ml/issue-tracking/issues with the tag " "`langchain`." ) self.comet_ml.LOGGER.warning(warning) self.callback_columns: list = [] self.action_records: list = [] self.complexity_metrics = complexity_metrics if self.visualizations: spacy = import_spacy() self.nlp = spacy.load("en_core_web_sm") else: self.nlp = None def _init_resp(self) -> Dict: return {k: None for k in self.callback_columns} def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: """Run when LLM starts.""" self.step += 1 self.llm_starts += 1 self.starts += 1 metadata = self._init_resp() metadata.update({"action": "on_llm_start"}) metadata.update(flatten_dict(serialized)) metadata.update(self.get_custom_callback_meta()) for prompt in prompts: prompt_resp = deepcopy(metadata) prompt_resp["prompts"] = prompt self.on_llm_start_records.append(prompt_resp) self.action_records.append(prompt_resp) if self.stream_logs: self._log_stream(prompt, metadata, self.step) def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Run when LLM generates a new token.""" self.step += 1 self.llm_streams += 1 resp = self._init_resp() resp.update({"action": "on_llm_new_token", "token": token}) resp.update(self.get_custom_callback_meta()) self.action_records.append(resp) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Run when LLM ends running.""" self.step += 1 self.llm_ends += 1 self.ends += 1 metadata = self._init_resp() metadata.update({"action": "on_llm_end"}) metadata.update(flatten_dict(response.llm_output or {})) metadata.update(self.get_custom_callback_meta()) output_complexity_metrics = [] output_custom_metrics = [] for prompt_idx, generations in enumerate(response.generations): for gen_idx, generation in enumerate(generations): text = generation.text generation_resp = deepcopy(metadata) generation_resp.update(flatten_dict(generation.dict())) complexity_metrics = self._get_complexity_metrics(text) if complexity_metrics: output_complexity_metrics.append(complexity_metrics) generation_resp.update(complexity_metrics) custom_metrics = self._get_custom_metrics( generation, prompt_idx, gen_idx ) if custom_metrics: output_custom_metrics.append(custom_metrics) generation_resp.update(custom_metrics) if self.stream_logs: self._log_stream(text, metadata, self.step) self.action_records.append(generation_resp) self.on_llm_end_records.append(generation_resp) self._log_text_metrics(output_complexity_metrics, step=self.step) self._log_text_metrics(output_custom_metrics, step=self.step) def on_llm_error(self, error: BaseException, **kwargs: Any) -> None: """Run when LLM errors.""" self.step += 1 self.errors += 1 def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any ) -> None: """Run when chain starts running.""" self.step += 1 self.chain_starts += 1 self.starts += 1 resp = self._init_resp() resp.update({"action": "on_chain_start"}) resp.update(flatten_dict(serialized)) resp.update(self.get_custom_callback_meta()) for chain_input_key, chain_input_val in inputs.items(): if isinstance(chain_input_val, str): input_resp = deepcopy(resp) if self.stream_logs: self._log_stream(chain_input_val, resp, self.step) input_resp.update({chain_input_key: chain_input_val}) self.action_records.append(input_resp) else: self.comet_ml.LOGGER.warning( f"Unexpected data format provided! " f"Input Value for {chain_input_key} will not be logged" ) def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """Run when chain ends running.""" self.step += 1 self.chain_ends += 1 self.ends += 1 resp = self._init_resp() resp.update({"action": "on_chain_end"}) resp.update(self.get_custom_callback_meta()) for chain_output_key, chain_output_val in outputs.items(): if isinstance(chain_output_val, str): output_resp = deepcopy(resp) if self.stream_logs: self._log_stream(chain_output_val, resp, self.step) output_resp.update({chain_output_key: chain_output_val}) self.action_records.append(output_resp) else: self.comet_ml.LOGGER.warning( f"Unexpected data format provided! " f"Output Value for {chain_output_key} will not be logged" ) def on_chain_error(self, error: BaseException, **kwargs: Any) -> None: """Run when chain errors.""" self.step += 1 self.errors += 1 def on_tool_start( self, serialized: Dict[str, Any], input_str: str, **kwargs: Any ) -> None: """Run when tool starts running.""" self.step += 1 self.tool_starts += 1 self.starts += 1 resp = self._init_resp() resp.update({"action": "on_tool_start"}) resp.update(flatten_dict(serialized)) resp.update(self.get_custom_callback_meta()) if self.stream_logs: self._log_stream(input_str, resp, self.step) resp.update({"input_str": input_str}) self.action_records.append(resp) def on_tool_end(self, output: str, **kwargs: Any) -> None: """Run when tool ends running.""" self.step += 1 self.tool_ends += 1 self.ends += 1 resp = self._init_resp() resp.update({"action": "on_tool_end"}) resp.update(self.get_custom_callback_meta()) if self.stream_logs: self._log_stream(output, resp, self.step) resp.update({"output": output}) self.action_records.append(resp) def on_tool_error(self, error: BaseException, **kwargs: Any) -> None: """Run when tool errors.""" self.step += 1 self.errors += 1 def on_text(self, text: str, **kwargs: Any) -> None: """ Run when agent is ending. """ self.step += 1 self.text_ctr += 1 resp = self._init_resp() resp.update({"action": "on_text"}) resp.update(self.get_custom_callback_meta()) if self.stream_logs: self._log_stream(text, resp, self.step) resp.update({"text": text}) self.action_records.append(resp) def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None: """Run when agent ends running.""" self.step += 1 self.agent_ends += 1 self.ends += 1 resp = self._init_resp() output = finish.return_values["output"] log = finish.log resp.update({"action": "on_agent_finish", "log": log}) resp.update(self.get_custom_callback_meta()) if self.stream_logs: self._log_stream(output, resp, self.step) resp.update({"output": output}) self.action_records.append(resp) def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: """Run on agent action.""" self.step += 1 self.tool_starts += 1 self.starts += 1 tool = action.tool tool_input = str(action.tool_input) log = action.log resp = self._init_resp() resp.update({"action": "on_agent_action", "log": log, "tool": tool}) resp.update(self.get_custom_callback_meta()) if self.stream_logs: self._log_stream(tool_input, resp, self.step) resp.update({"tool_input": tool_input}) self.action_records.append(resp) def _get_complexity_metrics(self, text: str) -> dict: """Compute text complexity metrics using textstat. Parameters: text (str): The text to analyze. Returns: (dict): A dictionary containing the complexity metrics. """ resp = {} if self.complexity_metrics: text_complexity_metrics = _fetch_text_complexity_metrics(text) resp.update(text_complexity_metrics) return resp def _get_custom_metrics( self, generation: Generation, prompt_idx: int, gen_idx: int ) -> dict: """Compute Custom Metrics for an LLM Generated Output Args: generation (LLMResult): Output generation from an LLM prompt_idx (int): List index of the input prompt gen_idx (int): List index of the generated output Returns: dict: A dictionary containing the custom metrics. """ resp = {} if self.custom_metrics: custom_metrics = self.custom_metrics(generation, prompt_idx, gen_idx) resp.update(custom_metrics) return resp def flush_tracker( self, langchain_asset: Any = None, task_type: Optional[str] = "inference", workspace: Optional[str] = None, project_name: Optional[str] = "comet-langchain-demo", tags: Optional[Sequence] = None, name: Optional[str] = None, visualizations: Optional[List[str]] = None, complexity_metrics: bool = False, custom_metrics: Optional[Callable] = None, finish: bool = False, reset: bool = False, ) -> None: """Flush the tracker and setup the session. Everything after this will be a new table. Args: name: Name of the performed session so far so it is identifiable langchain_asset: The langchain asset to save. finish: Whether to finish the run. Returns: None """ self._log_session(langchain_asset) if langchain_asset: try: self._log_model(langchain_asset) except Exception: self.comet_ml.LOGGER.error( "Failed to export agent or LLM to Comet", exc_info=True, extra={"show_traceback": True}, ) if finish: self.experiment.end() if reset: self._reset( task_type, workspace, project_name, tags, name, visualizations, complexity_metrics, custom_metrics, ) def _log_stream(self, prompt: str, metadata: dict, step: int) -> None: self.experiment.log_text(prompt, metadata=metadata, step=step) def _log_model(self, langchain_asset: Any) -> None: model_parameters = self._get_llm_parameters(langchain_asset) self.experiment.log_parameters(model_parameters, prefix="model") langchain_asset_path = Path(self.temp_dir.name, "model.json") model_name = self.name if self.name else LANGCHAIN_MODEL_NAME try: if hasattr(langchain_asset, "save"): langchain_asset.save(langchain_asset_path) self.experiment.log_model(model_name, str(langchain_asset_path)) except (ValueError, AttributeError, NotImplementedError) as e: if hasattr(langchain_asset, "save_agent"): langchain_asset.save_agent(langchain_asset_path) self.experiment.log_model(model_name, str(langchain_asset_path)) else: self.comet_ml.LOGGER.error( f"{e}" " Could not save Langchain Asset " f"for {langchain_asset.__class__.__name__}" ) def _log_session(self, langchain_asset: Optional[Any] = None) -> None: try: llm_session_df = self._create_session_analysis_dataframe(langchain_asset) # Log the cleaned dataframe as a table self.experiment.log_table("langchain-llm-session.csv", llm_session_df) except Exception: self.comet_ml.LOGGER.warning( "Failed to log session data to Comet", exc_info=True, extra={"show_traceback": True}, ) try: metadata = {"langchain_version": str(langchain.__version__)} # Log the langchain low-level records as a JSON file directly self.experiment.log_asset_data( self.action_records, "langchain-action_records.json", metadata=metadata ) except Exception: self.comet_ml.LOGGER.warning( "Failed to log session data to Comet", exc_info=True, extra={"show_traceback": True}, ) try: self._log_visualizations(llm_session_df) except Exception: self.comet_ml.LOGGER.warning( "Failed to log visualizations to Comet", exc_info=True, extra={"show_traceback": True}, ) def _log_text_metrics(self, metrics: Sequence[dict], step: int) -> None: if not metrics: return metrics_summary = _summarize_metrics_for_generated_outputs(metrics) for key, value in metrics_summary.items(): self.experiment.log_metrics(value, prefix=key, step=step) def _log_visualizations(self, session_df: Any) -> None: if not (self.visualizations and self.nlp): return spacy = import_spacy() prompts = session_df["prompts"].tolist() outputs = session_df["text"].tolist() for idx, (prompt, output) in enumerate(zip(prompts, outputs)): doc = self.nlp(output) sentence_spans = list(doc.sents) for visualization in self.visualizations: try: html = spacy.displacy.render( sentence_spans, style=visualization, options={"compact": True}, jupyter=False, page=True, ) self.experiment.log_asset_data( html, name=f"langchain-viz-{visualization}-{idx}.html", metadata={"prompt": prompt}, step=idx, ) except Exception as e: self.comet_ml.LOGGER.warning( e, exc_info=True, extra={"show_traceback": True} ) return def _reset( self, task_type: Optional[str] = None, workspace: Optional[str] = None, project_name: Optional[str] = None, tags: Optional[Sequence] = None, name: Optional[str] = None, visualizations: Optional[List[str]] = None, complexity_metrics: bool = False, custom_metrics: Optional[Callable] = None, ) -> None: _task_type = task_type if task_type else self.task_type _workspace = workspace if workspace else self.workspace _project_name = project_name if project_name else self.project_name _tags = tags if tags else self.tags _name = name if name else self.name _visualizations = visualizations if visualizations else self.visualizations _complexity_metrics = ( complexity_metrics if complexity_metrics else self.complexity_metrics ) _custom_metrics = custom_metrics if custom_metrics else self.custom_metrics self.__init__( # type: ignore task_type=_task_type, workspace=_workspace, project_name=_project_name, tags=_tags, name=_name, visualizations=_visualizations, complexity_metrics=_complexity_metrics, custom_metrics=_custom_metrics, ) self.reset_callback_meta() self.temp_dir = tempfile.TemporaryDirectory() def _create_session_analysis_dataframe(self, langchain_asset: Any = None) -> dict: pd = import_pandas() llm_parameters = self._get_llm_parameters(langchain_asset) num_generations_per_prompt = llm_parameters.get("n", 1) llm_start_records_df = pd.DataFrame(self.on_llm_start_records) # Repeat each input row based on the number of outputs generated per prompt llm_start_records_df = llm_start_records_df.loc[ llm_start_records_df.index.repeat(num_generations_per_prompt) ].reset_index(drop=True) llm_end_records_df = pd.DataFrame(self.on_llm_end_records) llm_session_df = pd.merge( llm_start_records_df, llm_end_records_df, left_index=True, right_index=True, suffixes=["_llm_start", "_llm_end"], ) return llm_session_df def _get_llm_parameters(self, langchain_asset: Any = None) -> dict: if not langchain_asset: return {} try: if hasattr(langchain_asset, "agent"): llm_parameters = langchain_asset.agent.llm_chain.llm.dict() elif hasattr(langchain_asset, "llm_chain"): llm_parameters = langchain_asset.llm_chain.llm.dict() elif hasattr(langchain_asset, "llm"): llm_parameters = langchain_asset.llm.dict() else: llm_parameters = langchain_asset.dict() except Exception: return {} return llm_parameters
[ "n" ]
2024-01-10
axgpt/langchain
libs~langchain~langchain~retrievers~arcee.py
from typing import Any, Dict, List, Optional from langchain_core.pydantic_v1 import Extra, root_validator from langchain_core.schema import BaseRetriever from langchain.callbacks.manager import CallbackManagerForRetrieverRun from langchain.docstore.document import Document from langchain.utilities.arcee import ArceeWrapper, DALMFilter from langchain.utils import get_from_dict_or_env class ArceeRetriever(BaseRetriever): """Document retriever for Arcee's Domain Adapted Language Models (DALMs). To use, set the ``ARCEE_API_KEY`` environment variable with your Arcee API key, or pass ``arcee_api_key`` as a named parameter. Example: .. code-block:: python from langchain.retrievers import ArceeRetriever retriever = ArceeRetriever( model="DALM-PubMed", arcee_api_key="ARCEE-API-KEY" ) documents = retriever.get_relevant_documents("AI-driven music therapy") """ _client: Optional[ArceeWrapper] = None #: :meta private: """Arcee client.""" arcee_api_key: str = "" """Arcee API Key""" model: str """Arcee DALM name""" arcee_api_url: str = "https://api.arcee.ai" """Arcee API URL""" arcee_api_version: str = "v2" """Arcee API Version""" arcee_app_url: str = "https://app.arcee.ai" """Arcee App URL""" model_kwargs: Optional[Dict[str, Any]] = None """Keyword arguments to pass to the model.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid underscore_attrs_are_private = True def __init__(self, **data: Any) -> None: """Initializes private fields.""" super().__init__(**data) self._client = ArceeWrapper( arcee_api_key=self.arcee_api_key, arcee_api_url=self.arcee_api_url, arcee_api_version=self.arcee_api_version, model_kwargs=self.model_kwargs, model_name=self.model, ) self._client.validate_model_training_status() @root_validator() def validate_environments(cls, values: Dict) -> Dict: """Validate Arcee environment variables.""" # validate env vars values["arcee_api_key"] = get_from_dict_or_env( values, "arcee_api_key", "ARCEE_API_KEY", ) values["arcee_api_url"] = get_from_dict_or_env( values, "arcee_api_url", "ARCEE_API_URL", ) values["arcee_app_url"] = get_from_dict_or_env( values, "arcee_app_url", "ARCEE_APP_URL", ) values["arcee_api_version"] = get_from_dict_or_env( values, "arcee_api_version", "ARCEE_API_VERSION", ) # validate model kwargs if values["model_kwargs"]: kw = values["model_kwargs"] # validate size if kw.get("size") is not None: if not kw.get("size") >= 0: raise ValueError("`size` must not be negative.") # validate filters if kw.get("filters") is not None: if not isinstance(kw.get("filters"), List): raise ValueError("`filters` must be a list.") for f in kw.get("filters"): DALMFilter(**f) return values def _get_relevant_documents( self, query: str, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any ) -> List[Document]: """Retrieve {size} contexts with your retriever for a given query Args: query: Query to submit to the model size: The max number of context results to retrieve. Defaults to 3. (Can be less if filters are provided). filters: Filters to apply to the context dataset. """ try: if not self._client: raise ValueError("Client is not initialized.") return self._client.retrieve(query=query, **kwargs) except Exception as e: raise ValueError(f"Error while retrieving documents: {e}") from e
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~chat_models~minimax.py
"""Wrapper around Minimax chat models.""" import logging from typing import Any, Dict, List, Optional, cast from langchain_core.schema import ( AIMessage, BaseMessage, ChatResult, HumanMessage, ) from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.llms.minimax import MinimaxCommon from langchain.llms.utils import enforce_stop_tokens logger = logging.getLogger(__name__) def _parse_message(msg_type: str, text: str) -> Dict: return {"sender_type": msg_type, "text": text} def _parse_chat_history(history: List[BaseMessage]) -> List: """Parse a sequence of messages into history.""" chat_history = [] for message in history: content = cast(str, message.content) if isinstance(message, HumanMessage): chat_history.append(_parse_message("USER", content)) if isinstance(message, AIMessage): chat_history.append(_parse_message("BOT", content)) return chat_history class MiniMaxChat(MinimaxCommon, BaseChatModel): """Wrapper around Minimax large language models. To use, you should have the environment variable ``MINIMAX_GROUP_ID`` and ``MINIMAX_API_KEY`` set with your API token, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.chat_models import MiniMaxChat llm = MiniMaxChat(model_name="abab5-chat") """ def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: """Generate next turn in the conversation. Args: messages: The history of the conversation as a list of messages. Code chat does not support context. stop: The list of stop words (optional). run_manager: The CallbackManager for LLM run, it's not used at the moment. Returns: The ChatResult that contains outputs generated by the model. Raises: ValueError: if the last message in the list is not from human. """ if not messages: raise ValueError( "You should provide at least one message to start the chat!" ) history = _parse_chat_history(messages) payload = self._default_params payload["messages"] = history text = self._client.post(payload) # This is required since the stop are not enforced by the model parameters return text if stop is None else enforce_stop_tokens(text, stop) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: raise NotImplementedError( """Minimax AI doesn't support async requests at the moment.""" )
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~llms~replicate.py
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Dict, Iterator, List, Optional from langchain_core.pydantic_v1 import Extra, Field, root_validator from langchain_core.schema.output import GenerationChunk from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: from replicate.prediction import Prediction logger = logging.getLogger(__name__) class Replicate(LLM): """Replicate models. To use, you should have the ``replicate`` python package installed, and the environment variable ``REPLICATE_API_TOKEN`` set with your API token. You can find your token here: https://replicate.com/account The model param is required, but any other model parameters can also be passed in with the format model_kwargs={model_param: value, ...} Example: .. code-block:: python from langchain.llms import Replicate replicate = Replicate( model=( "stability-ai/stable-diffusion: " "27b93a2413e7f36cd83da926f3656280b2931564ff050bf9575f1fdf9bcd7478", ), model_kwargs={"image_dimensions": "512x512"} ) """ model: str model_kwargs: Dict[str, Any] = Field(default_factory=dict, alias="input") replicate_api_token: Optional[str] = None prompt_key: Optional[str] = None version_obj: Any = Field(default=None, exclude=True) """Optionally pass in the model version object during initialization to avoid having to make an extra API call to retrieve it during streaming. NOTE: not serializable, is excluded from serialization. """ streaming: bool = False """Whether to stream the results.""" stop: List[str] = Field(default_factory=list) """Stop sequences to early-terminate generation.""" class Config: """Configuration for this pydantic config.""" allow_population_by_field_name = True extra = Extra.forbid @property def lc_secrets(self) -> Dict[str, str]: return {"replicate_api_token": "REPLICATE_API_TOKEN"} @classmethod def is_lc_serializable(cls) -> bool: return True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} input = values.pop("input", {}) if input: logger.warning( "Init param `input` is deprecated, please use `model_kwargs` instead." ) extra = {**values.pop("model_kwargs", {}), **input} for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" replicate_api_token = get_from_dict_or_env( values, "replicate_api_token", "REPLICATE_API_TOKEN" ) values["replicate_api_token"] = replicate_api_token return values @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { "model": self.model, "model_kwargs": self.model_kwargs, } @property def _llm_type(self) -> str: """Return type of model.""" return "replicate" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call to replicate endpoint.""" if self.streaming: completion: Optional[str] = None for chunk in self._stream( prompt, stop=stop, run_manager=run_manager, **kwargs ): if completion is None: completion = chunk.text else: completion += chunk.text else: prediction = self._create_prediction(prompt, **kwargs) prediction.wait() if prediction.status == "failed": raise RuntimeError(prediction.error) if isinstance(prediction.output, str): completion = prediction.output else: completion = "".join(prediction.output) assert completion is not None stop_conditions = stop or self.stop for s in stop_conditions: if s in completion: completion = completion[: completion.find(s)] return completion def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: prediction = self._create_prediction(prompt, **kwargs) stop_conditions = stop or self.stop stop_condition_reached = False current_completion: str = "" for output in prediction.output_iterator(): current_completion += output # test for stop conditions, if specified for s in stop_conditions: if s in current_completion: prediction.cancel() stop_condition_reached = True # Potentially some tokens that should still be yielded before ending # stream. stop_index = max(output.find(s), 0) output = output[:stop_index] if not output: break if output: yield GenerationChunk(text=output) if run_manager: run_manager.on_llm_new_token( output, verbose=self.verbose, ) if stop_condition_reached: break def _create_prediction(self, prompt: str, **kwargs: Any) -> Prediction: try: import replicate as replicate_python except ImportError: raise ImportError( "Could not import replicate python package. " "Please install it with `pip install replicate`." ) # get the model and version if self.version_obj is None: model_str, version_str = self.model.split(":") model = replicate_python.models.get(model_str) self.version_obj = model.versions.get(version_str) if self.prompt_key is None: # sort through the openapi schema to get the name of the first input input_properties = sorted( self.version_obj.openapi_schema["components"]["schemas"]["Input"][ "properties" ].items(), key=lambda item: item[1].get("x-order", 0), ) self.prompt_key = input_properties[0][0] input_: Dict = { self.prompt_key: prompt, **self.model_kwargs, **kwargs, } return replicate_python.predictions.create( version=self.version_obj, input=input_ )
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~unit_tests~storage~test_lc_store.py
import tempfile from typing import Generator, cast import pytest from langchain_core.schema import Document from langchain.storage._lc_store import create_kv_docstore, create_lc_store from langchain.storage.file_system import LocalFileStore @pytest.fixture def file_store() -> Generator[LocalFileStore, None, None]: # Create a temporary directory for testing with tempfile.TemporaryDirectory() as temp_dir: # Instantiate the LocalFileStore with the temporary directory as the root path store = LocalFileStore(temp_dir) yield store def test_create_lc_store(file_store: LocalFileStore) -> None: """Test that a docstore is created from a base store.""" docstore = create_lc_store(file_store) docstore.mset([("key1", Document(page_content="hello", metadata={"key": "value"}))]) fetched_doc = cast(Document, docstore.mget(["key1"])[0]) assert fetched_doc.page_content == "hello" assert fetched_doc.metadata == {"key": "value"} def test_create_kv_store(file_store: LocalFileStore) -> None: """Test that a docstore is created from a base store.""" docstore = create_kv_docstore(file_store) docstore.mset([("key1", Document(page_content="hello", metadata={"key": "value"}))]) fetched_doc = docstore.mget(["key1"])[0] assert isinstance(fetched_doc, Document) assert fetched_doc.page_content == "hello" assert fetched_doc.metadata == {"key": "value"}
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~retrievers~time_weighted_retriever.py
import datetime from copy import deepcopy from typing import Any, Dict, List, Optional, Tuple from langchain_core.pydantic_v1 import Field from langchain_core.schema import BaseRetriever, Document from langchain_core.schema.vectorstore import VectorStore from langchain.callbacks.manager import CallbackManagerForRetrieverRun def _get_hours_passed(time: datetime.datetime, ref_time: datetime.datetime) -> float: """Get the hours passed between two datetimes.""" return (time - ref_time).total_seconds() / 3600 class TimeWeightedVectorStoreRetriever(BaseRetriever): """Retriever that combines embedding similarity with recency in retrieving values.""" vectorstore: VectorStore """The vectorstore to store documents and determine salience.""" search_kwargs: dict = Field(default_factory=lambda: dict(k=100)) """Keyword arguments to pass to the vectorstore similarity search.""" # TODO: abstract as a queue memory_stream: List[Document] = Field(default_factory=list) """The memory_stream of documents to search through.""" decay_rate: float = Field(default=0.01) """The exponential decay factor used as (1.0-decay_rate)**(hrs_passed).""" k: int = 4 """The maximum number of documents to retrieve in a given call.""" other_score_keys: List[str] = [] """Other keys in the metadata to factor into the score, e.g. 'importance'.""" default_salience: Optional[float] = None """The salience to assign memories not retrieved from the vector store. None assigns no salience to documents not fetched from the vector store. """ class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True def _document_get_date(self, field: str, document: Document) -> datetime.datetime: """Return the value of the date field of a document.""" if field in document.metadata: if isinstance(document.metadata[field], float): return datetime.datetime.fromtimestamp(document.metadata[field]) return document.metadata[field] return datetime.datetime.now() def _get_combined_score( self, document: Document, vector_relevance: Optional[float], current_time: datetime.datetime, ) -> float: """Return the combined score for a document.""" hours_passed = _get_hours_passed( current_time, self._document_get_date("last_accessed_at", document), ) score = (1.0 - self.decay_rate) ** hours_passed for key in self.other_score_keys: if key in document.metadata: score += document.metadata[key] if vector_relevance is not None: score += vector_relevance return score def get_salient_docs(self, query: str) -> Dict[int, Tuple[Document, float]]: """Return documents that are salient to the query.""" docs_and_scores: List[Tuple[Document, float]] docs_and_scores = self.vectorstore.similarity_search_with_relevance_scores( query, **self.search_kwargs ) results = {} for fetched_doc, relevance in docs_and_scores: if "buffer_idx" in fetched_doc.metadata: buffer_idx = fetched_doc.metadata["buffer_idx"] doc = self.memory_stream[buffer_idx] results[buffer_idx] = (doc, relevance) return results def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: """Return documents that are relevant to the query.""" current_time = datetime.datetime.now() docs_and_scores = { doc.metadata["buffer_idx"]: (doc, self.default_salience) for doc in self.memory_stream[-self.k :] } # If a doc is considered salient, update the salience score docs_and_scores.update(self.get_salient_docs(query)) rescored_docs = [ (doc, self._get_combined_score(doc, relevance, current_time)) for doc, relevance in docs_and_scores.values() ] rescored_docs.sort(key=lambda x: x[1], reverse=True) result = [] # Ensure frequently accessed memories aren't forgotten for doc, _ in rescored_docs[: self.k]: # TODO: Update vector store doc once `update` method is exposed. buffered_doc = self.memory_stream[doc.metadata["buffer_idx"]] buffered_doc.metadata["last_accessed_at"] = current_time result.append(buffered_doc) return result def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: """Add documents to vectorstore.""" current_time = kwargs.get("current_time") if current_time is None: current_time = datetime.datetime.now() # Avoid mutating input documents dup_docs = [deepcopy(d) for d in documents] for i, doc in enumerate(dup_docs): if "last_accessed_at" not in doc.metadata: doc.metadata["last_accessed_at"] = current_time if "created_at" not in doc.metadata: doc.metadata["created_at"] = current_time doc.metadata["buffer_idx"] = len(self.memory_stream) + i self.memory_stream.extend(dup_docs) return self.vectorstore.add_documents(dup_docs, **kwargs) async def aadd_documents( self, documents: List[Document], **kwargs: Any ) -> List[str]: """Add documents to vectorstore.""" current_time = kwargs.get("current_time") if current_time is None: current_time = datetime.datetime.now() # Avoid mutating input documents dup_docs = [deepcopy(d) for d in documents] for i, doc in enumerate(dup_docs): if "last_accessed_at" not in doc.metadata: doc.metadata["last_accessed_at"] = current_time if "created_at" not in doc.metadata: doc.metadata["created_at"] = current_time doc.metadata["buffer_idx"] = len(self.memory_stream) + i self.memory_stream.extend(dup_docs) return await self.vectorstore.aadd_documents(dup_docs, **kwargs)
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~integration_tests~chat_models~test_azureml_endpoint.py
"""Test AzureML Chat Endpoint wrapper.""" from langchain_core.schema import ( AIMessage, BaseMessage, ChatGeneration, HumanMessage, LLMResult, ) from langchain.chat_models.azureml_endpoint import ( AzureMLChatOnlineEndpoint, LlamaContentFormatter, ) def test_llama_call() -> None: """Test valid call to Open Source Foundation Model.""" chat = AzureMLChatOnlineEndpoint(content_formatter=LlamaContentFormatter()) response = chat(messages=[HumanMessage(content="Foo")]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_timeout_kwargs() -> None: """Test that timeout kwarg works.""" chat = AzureMLChatOnlineEndpoint(content_formatter=LlamaContentFormatter()) response = chat(messages=[HumanMessage(content="FOO")], timeout=60) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_message_history() -> None: """Test that multiple messages works.""" chat = AzureMLChatOnlineEndpoint(content_formatter=LlamaContentFormatter()) response = chat( messages=[ HumanMessage(content="Hello."), AIMessage(content="Hello!"), HumanMessage(content="How are you doing?"), ] ) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_multiple_messages() -> None: chat = AzureMLChatOnlineEndpoint(content_formatter=LlamaContentFormatter()) message = HumanMessage(content="Hi!") response = chat.generate([[message], [message]]) assert isinstance(response, LLMResult) assert len(response.generations) == 2 for generations in response.generations: assert len(generations) == 1 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content
[ "Foo", "FOO", "Hello.", "Hi!", "How are you doing?", "Hello!" ]
2024-01-10
axgpt/langchain
libs~langchain~langchain~document_transformers~doctran_text_translate.py
from typing import Any, Optional, Sequence from langchain_core.schema import BaseDocumentTransformer, Document from langchain.utils import get_from_env class DoctranTextTranslator(BaseDocumentTransformer): """Translate text documents using doctran. Arguments: openai_api_key: OpenAI API key. Can also be specified via environment variable ``OPENAI_API_KEY``. language: The language to translate *to*. Example: .. code-block:: python from langchain.document_transformers import DoctranTextTranslator # Pass in openai_api_key or set env var OPENAI_API_KEY qa_translator = DoctranTextTranslator(language="spanish") translated_document = await qa_translator.atransform_documents(documents) """ def __init__( self, openai_api_key: Optional[str] = None, language: str = "english", openai_api_model: Optional[str] = None, ) -> None: self.openai_api_key = openai_api_key or get_from_env( "openai_api_key", "OPENAI_API_KEY" ) self.openai_api_model = openai_api_model or get_from_env( "openai_api_model", "OPENAI_API_MODEL" ) self.language = language def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: raise NotImplementedError async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Translates text documents using doctran.""" try: from doctran import Doctran doctran = Doctran( openai_api_key=self.openai_api_key, openai_model=self.openai_api_model ) except ImportError: raise ImportError( "Install doctran to use this parser. (pip install doctran)" ) doctran_docs = [ doctran.parse(content=doc.page_content, metadata=doc.metadata) for doc in documents ] for i, doc in enumerate(doctran_docs): doctran_docs[i] = await doc.translate(language=self.language).execute() return [ Document(page_content=doc.transformed_content, metadata=doc.metadata) for doc in doctran_docs ]
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~embeddings~ollama.py
from typing import Any, Dict, List, Mapping, Optional import requests from langchain_core.pydantic_v1 import BaseModel, Extra from langchain_core.schema.embeddings import Embeddings class OllamaEmbeddings(BaseModel, Embeddings): """Ollama locally runs large language models. To use, follow the instructions at https://ollama.ai/. Example: .. code-block:: python from langchain.embeddings import OllamaEmbeddings ollama_emb = OllamaEmbeddings( model="llama:7b", ) r1 = ollama_emb.embed_documents( [ "Alpha is the first letter of Greek alphabet", "Beta is the second letter of Greek alphabet", ] ) r2 = ollama_emb.embed_query( "What is the second letter of Greek alphabet" ) """ base_url: str = "http://localhost:11434" """Base url the model is hosted under.""" model: str = "llama2" """Model name to use.""" embed_instruction: str = "passage: " """Instruction used to embed documents.""" query_instruction: str = "query: " """Instruction used to embed the query.""" mirostat: Optional[int] = None """Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)""" mirostat_eta: Optional[float] = None """Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1)""" mirostat_tau: Optional[float] = None """Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0)""" num_ctx: Optional[int] = None """Sets the size of the context window used to generate the next token. (Default: 2048) """ num_gpu: Optional[int] = None """The number of GPUs to use. On macOS it defaults to 1 to enable metal support, 0 to disable.""" num_thread: Optional[int] = None """Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores).""" repeat_last_n: Optional[int] = None """Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx)""" repeat_penalty: Optional[float] = None """Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)""" temperature: Optional[float] = None """The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8)""" stop: Optional[List[str]] = None """Sets the stop tokens to use.""" tfs_z: Optional[float] = None """Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1)""" top_k: Optional[int] = None """Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)""" top_p: Optional[int] = None """Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)""" @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Ollama.""" return { "model": self.model, "options": { "mirostat": self.mirostat, "mirostat_eta": self.mirostat_eta, "mirostat_tau": self.mirostat_tau, "num_ctx": self.num_ctx, "num_gpu": self.num_gpu, "num_thread": self.num_thread, "repeat_last_n": self.repeat_last_n, "repeat_penalty": self.repeat_penalty, "temperature": self.temperature, "stop": self.stop, "tfs_z": self.tfs_z, "top_k": self.top_k, "top_p": self.top_p, }, } model_kwargs: Optional[dict] = None """Other model keyword args""" @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model": self.model}, **self._default_params} class Config: """Configuration for this pydantic object.""" extra = Extra.forbid def _process_emb_response(self, input: str) -> List[float]: """Process a response from the API. Args: response: The response from the API. Returns: The response as a dictionary. """ headers = { "Content-Type": "application/json", } try: res = requests.post( f"{self.base_url}/api/embeddings", headers=headers, json={"model": self.model, "prompt": input, **self._default_params}, ) except requests.exceptions.RequestException as e: raise ValueError(f"Error raised by inference endpoint: {e}") if res.status_code != 200: raise ValueError( "Error raised by inference API HTTP code: %s, %s" % (res.status_code, res.text) ) try: t = res.json() return t["embedding"] except requests.exceptions.JSONDecodeError as e: raise ValueError( f"Error raised by inference API: {e}.\nResponse: {res.text}" ) def _embed(self, input: List[str]) -> List[List[float]]: embeddings_list: List[List[float]] = [] for prompt in input: embeddings = self._process_emb_response(prompt) embeddings_list.append(embeddings) return embeddings_list def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed documents using a Ollama deployed embedding model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [f"{self.embed_instruction}{text}" for text in texts] embeddings = self._embed(instruction_pairs) return embeddings def embed_query(self, text: str) -> List[float]: """Embed a query using a Ollama deployed embedding model. Args: text: The text to embed. Returns: Embeddings for the text. """ instruction_pair = f"{self.query_instruction}{text}" embedding = self._embed([instruction_pair])[0] return embedding
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~chat_models~fireworks.py
from typing import ( Any, AsyncIterator, Callable, Dict, Iterator, List, Optional, Type, Union, ) from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.schema.messages import ( AIMessage, AIMessageChunk, BaseMessage, BaseMessageChunk, ChatMessage, ChatMessageChunk, FunctionMessage, FunctionMessageChunk, HumanMessage, HumanMessageChunk, SystemMessage, SystemMessageChunk, ) from langchain_core.schema.output import ChatGeneration, ChatGenerationChunk, ChatResult from langchain_core.utils import convert_to_secret_str from langchain.adapters.openai import convert_message_to_dict from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.llms.base import create_base_retry_decorator from langchain.utils.env import get_from_dict_or_env def _convert_delta_to_message_chunk( _dict: Any, default_class: Type[BaseMessageChunk] ) -> BaseMessageChunk: """Convert a delta response to a message chunk.""" role = _dict.role content = _dict.content or "" additional_kwargs: Dict = {} if role == "user" or default_class == HumanMessageChunk: return HumanMessageChunk(content=content) elif role == "assistant" or default_class == AIMessageChunk: return AIMessageChunk(content=content, additional_kwargs=additional_kwargs) elif role == "system" or default_class == SystemMessageChunk: return SystemMessageChunk(content=content) elif role == "function" or default_class == FunctionMessageChunk: return FunctionMessageChunk(content=content, name=_dict.name) elif role or default_class == ChatMessageChunk: return ChatMessageChunk(content=content, role=role) else: return default_class(content=content) def convert_dict_to_message(_dict: Any) -> BaseMessage: """Convert a dict response to a message.""" role = _dict.role content = _dict.content or "" if role == "user": return HumanMessage(content=content) elif role == "assistant": content = _dict.content additional_kwargs: Dict = {} return AIMessage(content=content, additional_kwargs=additional_kwargs) elif role == "system": return SystemMessage(content=content) elif role == "function": return FunctionMessage(content=content, name=_dict.name) else: return ChatMessage(content=content, role=role) class ChatFireworks(BaseChatModel): """Fireworks Chat models.""" model: str = "accounts/fireworks/models/llama-v2-7b-chat" model_kwargs: dict = Field( default_factory=lambda: { "temperature": 0.7, "max_tokens": 512, "top_p": 1, }.copy() ) fireworks_api_key: Optional[SecretStr] = None max_retries: int = 20 use_retry: bool = True @property def lc_secrets(self) -> Dict[str, str]: return {"fireworks_api_key": "FIREWORKS_API_KEY"} @classmethod def is_lc_serializable(cls) -> bool: return True @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key in environment.""" try: import fireworks.client except ImportError as e: raise ImportError( "Could not import fireworks-ai python package. " "Please install it with `pip install fireworks-ai`." ) from e fireworks_api_key = convert_to_secret_str( get_from_dict_or_env(values, "fireworks_api_key", "FIREWORKS_API_KEY") ) fireworks.client.api_key = fireworks_api_key.get_secret_value() return values @property def _llm_type(self) -> str: """Return type of llm.""" return "fireworks-chat" def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts = self._create_message_dicts(messages) params = { "model": self.model, "messages": message_dicts, **self.model_kwargs, } response = completion_with_retry( self, self.use_retry, run_manager=run_manager, stop=stop, **params, ) return self._create_chat_result(response) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts = self._create_message_dicts(messages) params = { "model": self.model, "messages": message_dicts, **self.model_kwargs, } response = await acompletion_with_retry( self, self.use_retry, run_manager=run_manager, stop=stop, **params ) return self._create_chat_result(response) def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: if llm_outputs[0] is None: return {} return llm_outputs[0] def _create_chat_result(self, response: Any) -> ChatResult: generations = [] for res in response.choices: message = convert_dict_to_message(res.message) gen = ChatGeneration( message=message, generation_info=dict(finish_reason=res.finish_reason), ) generations.append(gen) llm_output = {"model": self.model} return ChatResult(generations=generations, llm_output=llm_output) def _create_message_dicts( self, messages: List[BaseMessage] ) -> List[Dict[str, Any]]: message_dicts = [convert_message_to_dict(m) for m in messages] return message_dicts def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: message_dicts = self._create_message_dicts(messages) default_chunk_class = AIMessageChunk params = { "model": self.model, "messages": message_dicts, "stream": True, **self.model_kwargs, } for chunk in completion_with_retry( self, self.use_retry, run_manager=run_manager, stop=stop, **params ): choice = chunk.choices[0] chunk = _convert_delta_to_message_chunk(choice.delta, default_chunk_class) finish_reason = choice.finish_reason generation_info = ( dict(finish_reason=finish_reason) if finish_reason is not None else None ) default_chunk_class = chunk.__class__ chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info) yield chunk if run_manager: run_manager.on_llm_new_token(chunk.text, chunk=chunk) async def _astream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: message_dicts = self._create_message_dicts(messages) default_chunk_class = AIMessageChunk params = { "model": self.model, "messages": message_dicts, "stream": True, **self.model_kwargs, } async for chunk in await acompletion_with_retry_streaming( self, self.use_retry, run_manager=run_manager, stop=stop, **params ): choice = chunk.choices[0] chunk = _convert_delta_to_message_chunk(choice.delta, default_chunk_class) finish_reason = choice.finish_reason generation_info = ( dict(finish_reason=finish_reason) if finish_reason is not None else None ) default_chunk_class = chunk.__class__ chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info) yield chunk if run_manager: await run_manager.on_llm_new_token(token=chunk.text, chunk=chunk) def conditional_decorator( condition: bool, decorator: Callable[[Any], Any] ) -> Callable[[Any], Any]: def actual_decorator(func: Callable[[Any], Any]) -> Callable[[Any], Any]: if condition: return decorator(func) return func return actual_decorator def completion_with_retry( llm: ChatFireworks, use_retry: bool, *, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the completion call.""" import fireworks.client retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @conditional_decorator(use_retry, retry_decorator) def _completion_with_retry(**kwargs: Any) -> Any: return fireworks.client.ChatCompletion.create( **kwargs, ) return _completion_with_retry(**kwargs) async def acompletion_with_retry( llm: ChatFireworks, use_retry: bool, *, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the async completion call.""" import fireworks.client retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @conditional_decorator(use_retry, retry_decorator) async def _completion_with_retry(**kwargs: Any) -> Any: return await fireworks.client.ChatCompletion.acreate( **kwargs, ) return await _completion_with_retry(**kwargs) async def acompletion_with_retry_streaming( llm: ChatFireworks, use_retry: bool, *, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the completion call for streaming.""" import fireworks.client retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @conditional_decorator(use_retry, retry_decorator) async def _completion_with_retry(**kwargs: Any) -> Any: return fireworks.client.ChatCompletion.acreate( **kwargs, ) return await _completion_with_retry(**kwargs) def _create_retry_decorator( llm: ChatFireworks, run_manager: Optional[ Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun] ] = None, ) -> Callable[[Any], Any]: """Define retry mechanism.""" import fireworks.client errors = [ fireworks.client.error.RateLimitError, fireworks.client.error.InternalServerError, fireworks.client.error.BadGatewayError, fireworks.client.error.ServiceUnavailableError, ] return create_base_retry_decorator( error_types=errors, max_retries=llm.max_retries, run_manager=run_manager )
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~chat_models~azure_openai.py
"""Azure OpenAI chat wrapper.""" from __future__ import annotations import logging import os import warnings from typing import Any, Dict, Union from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.schema import ChatResult from langchain.chat_models.openai import ChatOpenAI from langchain.utils import get_from_dict_or_env from langchain.utils.openai import is_openai_v1 logger = logging.getLogger(__name__) class AzureChatOpenAI(ChatOpenAI): """`Azure OpenAI` Chat Completion API. To use this class you must have a deployed model on Azure OpenAI. Use `deployment_name` in the constructor to refer to the "Model deployment name" in the Azure portal. In addition, you should have the ``openai`` python package installed, and the following environment variables set or passed in constructor in lower case: - ``AZURE_OPENAI_API_KEY`` - ``AZURE_OPENAI_API_ENDPOINT`` - ``AZURE_OPENAI_AD_TOKEN`` - ``OPENAI_API_VERSION`` - ``OPENAI_PROXY`` For example, if you have `gpt-35-turbo` deployed, with the deployment name `35-turbo-dev`, the constructor should look like: .. code-block:: python AzureChatOpenAI( azure_deployment="35-turbo-dev", openai_api_version="2023-05-15", ) Be aware the API version may change. You can also specify the version of the model using ``model_version`` constructor parameter, as Azure OpenAI doesn't return model version with the response. Default is empty. When you specify the version, it will be appended to the model name in the response. Setting correct version will help you to calculate the cost properly. Model version is not validated, so make sure you set it correctly to get the correct cost. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. """ azure_endpoint: Union[str, None] = None """Your Azure endpoint, including the resource. Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided. Example: `https://example-resource.azure.openai.com/` """ deployment_name: Union[str, None] = Field(default=None, alias="azure_deployment") """A model deployment. If given sets the base client URL to include `/deployments/{azure_deployment}`. Note: this means you won't be able to use non-deployment endpoints. """ openai_api_version: str = Field(default="", alias="api_version") """Automatically inferred from env var `OPENAI_API_VERSION` if not provided.""" openai_api_key: Union[str, None] = Field(default=None, alias="api_key") """Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided.""" azure_ad_token: Union[str, None] = None """Your Azure Active Directory token. Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided. For more: https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id. """ # noqa: E501 azure_ad_token_provider: Union[str, None] = None """A function that returns an Azure Active Directory token. Will be invoked on every request. """ model_version: str = "" """Legacy, for openai<1.0.0 support.""" openai_api_type: str = "" """Legacy, for openai<1.0.0 support.""" validate_base_url: bool = True """For backwards compatibility. If legacy val openai_api_base is passed in, try to infer if it is a base_url or azure_endpoint and update accordingly. """ @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") # Check OPENAI_KEY for backwards compatibility. # TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using # other forms of azure credentials. values["openai_api_key"] = ( values["openai_api_key"] or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("OPENAI_API_KEY") ) values["openai_api_base"] = values["openai_api_base"] or os.getenv( "OPENAI_API_BASE" ) values["openai_api_version"] = values["openai_api_version"] or os.getenv( "OPENAI_API_VERSION" ) # Check OPENAI_ORGANIZATION for backwards compatibility. values["openai_organization"] = ( values["openai_organization"] or os.getenv("OPENAI_ORG_ID") or os.getenv("OPENAI_ORGANIZATION") ) values["azure_endpoint"] = values["azure_endpoint"] or os.getenv( "AZURE_OPENAI_ENDPOINT" ) values["azure_ad_token"] = values["azure_ad_token"] or os.getenv( "AZURE_OPENAI_AD_TOKEN" ) values["openai_api_type"] = get_from_dict_or_env( values, "openai_api_type", "OPENAI_API_TYPE", default="azure" ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="" ) try: import openai except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) if is_openai_v1(): # For backwards compatibility. Before openai v1, no distinction was made # between azure_endpoint and base_url (openai_api_base). openai_api_base = values["openai_api_base"] if openai_api_base and values["validate_base_url"]: if "/openai" not in openai_api_base: values["openai_api_base"] = ( values["openai_api_base"].rstrip("/") + "/openai" ) warnings.warn( "As of openai>=1.0.0, Azure endpoints should be specified via " f"the `azure_endpoint` param not `openai_api_base` " f"(or alias `base_url`). Updating `openai_api_base` from " f"{openai_api_base} to {values['openai_api_base']}." ) if values["deployment_name"]: warnings.warn( "As of openai>=1.0.0, if `deployment_name` (or alias " "`azure_deployment`) is specified then " "`openai_api_base` (or alias `base_url`) should not be. " "Instead use `deployment_name` (or alias `azure_deployment`) " "and `azure_endpoint`." ) if values["deployment_name"] not in values["openai_api_base"]: warnings.warn( "As of openai>=1.0.0, if `openai_api_base` " "(or alias `base_url`) is specified it is expected to be " "of the form " "https://example-resource.azure.openai.com/openai/deployments/example-deployment. " # noqa: E501 f"Updating {openai_api_base} to " f"{values['openai_api_base']}." ) values["openai_api_base"] += ( "/deployments/" + values["deployment_name"] ) values["deployment_name"] = None client_params = { "api_version": values["openai_api_version"], "azure_endpoint": values["azure_endpoint"], "azure_deployment": values["deployment_name"], "api_key": values["openai_api_key"], "azure_ad_token": values["azure_ad_token"], "azure_ad_token_provider": values["azure_ad_token_provider"], "organization": values["openai_organization"], "base_url": values["openai_api_base"], "timeout": values["request_timeout"], "max_retries": values["max_retries"], "default_headers": values["default_headers"], "default_query": values["default_query"], "http_client": values["http_client"], } values["client"] = openai.AzureOpenAI(**client_params).chat.completions values["async_client"] = openai.AsyncAzureOpenAI( **client_params ).chat.completions else: values["client"] = openai.ChatCompletion return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" if is_openai_v1(): return super()._default_params else: return { **super()._default_params, "engine": self.deployment_name, } @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**self._default_params} @property def _client_params(self) -> Dict[str, Any]: """Get the config params used for the openai client.""" if is_openai_v1(): return super()._client_params else: return { **super()._client_params, "api_type": self.openai_api_type, "api_version": self.openai_api_version, } @property def _llm_type(self) -> str: return "azure-openai-chat" @property def lc_attributes(self) -> Dict[str, Any]: return { "openai_api_type": self.openai_api_type, "openai_api_version": self.openai_api_version, } def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult: if not isinstance(response, dict): response = response.dict() for res in response["choices"]: if res.get("finish_reason", None) == "content_filter": raise ValueError( "Azure has not provided the response due to a content filter " "being triggered" ) chat_result = super()._create_chat_result(response) if "model" in response: model = response["model"] if self.model_version: model = f"{model}-{self.model_version}" if chat_result.llm_output is not None and isinstance( chat_result.llm_output, dict ): chat_result.llm_output["model_name"] = model return chat_result
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~retrievers~merger_retriever.py
import asyncio from typing import List from langchain_core.schema import BaseRetriever, Document from langchain.callbacks.manager import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) class MergerRetriever(BaseRetriever): """Retriever that merges the results of multiple retrievers.""" retrievers: List[BaseRetriever] """A list of retrievers to merge.""" def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, ) -> List[Document]: """ Get the relevant documents for a given query. Args: query: The query to search for. Returns: A list of relevant documents. """ # Merge the results of the retrievers. merged_documents = self.merge_documents(query, run_manager) return merged_documents async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, ) -> List[Document]: """ Asynchronously get the relevant documents for a given query. Args: query: The query to search for. Returns: A list of relevant documents. """ # Merge the results of the retrievers. merged_documents = await self.amerge_documents(query, run_manager) return merged_documents def merge_documents( self, query: str, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: """ Merge the results of the retrievers. Args: query: The query to search for. Returns: A list of merged documents. """ # Get the results of all retrievers. retriever_docs = [ retriever.get_relevant_documents( query, callbacks=run_manager.get_child("retriever_{}".format(i + 1)) ) for i, retriever in enumerate(self.retrievers) ] # Merge the results of the retrievers. merged_documents = [] max_docs = max(len(docs) for docs in retriever_docs) for i in range(max_docs): for retriever, doc in zip(self.retrievers, retriever_docs): if i < len(doc): merged_documents.append(doc[i]) return merged_documents async def amerge_documents( self, query: str, run_manager: AsyncCallbackManagerForRetrieverRun ) -> List[Document]: """ Asynchronously merge the results of the retrievers. Args: query: The query to search for. Returns: A list of merged documents. """ # Get the results of all retrievers. retriever_docs = await asyncio.gather( *( retriever.aget_relevant_documents( query, callbacks=run_manager.get_child("retriever_{}".format(i + 1)) ) for i, retriever in enumerate(self.retrievers) ) ) # Merge the results of the retrievers. merged_documents = [] max_docs = max(len(docs) for docs in retriever_docs) for i in range(max_docs): for retriever, doc in zip(self.retrievers, retriever_docs): if i < len(doc): merged_documents.append(doc[i]) return merged_documents
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~indexes~_api.py
"""Module contains logic for indexing documents into vector stores.""" from __future__ import annotations import hashlib import json import uuid from itertools import islice from typing import ( Any, AsyncIterable, AsyncIterator, Callable, Dict, Iterable, Iterator, List, Literal, Optional, Sequence, Set, TypedDict, TypeVar, Union, cast, ) from langchain_core.pydantic_v1 import root_validator from langchain_core.schema import Document from langchain_core.schema.vectorstore import VectorStore from langchain.document_loaders.base import BaseLoader from langchain.indexes.base import NAMESPACE_UUID, RecordManager T = TypeVar("T") def _hash_string_to_uuid(input_string: str) -> uuid.UUID: """Hashes a string and returns the corresponding UUID.""" hash_value = hashlib.sha1(input_string.encode("utf-8")).hexdigest() return uuid.uuid5(NAMESPACE_UUID, hash_value) def _hash_nested_dict_to_uuid(data: dict[Any, Any]) -> uuid.UUID: """Hashes a nested dictionary and returns the corresponding UUID.""" serialized_data = json.dumps(data, sort_keys=True) hash_value = hashlib.sha1(serialized_data.encode("utf-8")).hexdigest() return uuid.uuid5(NAMESPACE_UUID, hash_value) class _HashedDocument(Document): """A hashed document with a unique ID.""" uid: str hash_: str """The hash of the document including content and metadata.""" content_hash: str """The hash of the document content.""" metadata_hash: str """The hash of the document metadata.""" @root_validator(pre=True) def calculate_hashes(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Root validator to calculate content and metadata hash.""" content = values.get("page_content", "") metadata = values.get("metadata", {}) forbidden_keys = ("hash_", "content_hash", "metadata_hash") for key in forbidden_keys: if key in metadata: raise ValueError( f"Metadata cannot contain key {key} as it " f"is reserved for internal use." ) content_hash = str(_hash_string_to_uuid(content)) try: metadata_hash = str(_hash_nested_dict_to_uuid(metadata)) except Exception as e: raise ValueError( f"Failed to hash metadata: {e}. " f"Please use a dict that can be serialized using json." ) values["content_hash"] = content_hash values["metadata_hash"] = metadata_hash values["hash_"] = str(_hash_string_to_uuid(content_hash + metadata_hash)) _uid = values.get("uid", None) if _uid is None: values["uid"] = values["hash_"] return values def to_document(self) -> Document: """Return a Document object.""" return Document( page_content=self.page_content, metadata=self.metadata, ) @classmethod def from_document( cls, document: Document, *, uid: Optional[str] = None ) -> _HashedDocument: """Create a HashedDocument from a Document.""" return cls( uid=uid, page_content=document.page_content, metadata=document.metadata, ) def _batch(size: int, iterable: Iterable[T]) -> Iterator[List[T]]: """Utility batching function.""" it = iter(iterable) while True: chunk = list(islice(it, size)) if not chunk: return yield chunk async def _abatch(size: int, iterable: AsyncIterable[T]) -> AsyncIterator[List[T]]: """Utility batching function.""" batch: List[T] = [] async for element in iterable: if len(batch) < size: batch.append(element) if len(batch) >= size: yield batch batch = [] if batch: yield batch def _get_source_id_assigner( source_id_key: Union[str, Callable[[Document], str], None], ) -> Callable[[Document], Union[str, None]]: """Get the source id from the document.""" if source_id_key is None: return lambda doc: None elif isinstance(source_id_key, str): return lambda doc: doc.metadata[source_id_key] elif callable(source_id_key): return source_id_key else: raise ValueError( f"source_id_key should be either None, a string or a callable. " f"Got {source_id_key} of type {type(source_id_key)}." ) def _deduplicate_in_order( hashed_documents: Iterable[_HashedDocument], ) -> Iterator[_HashedDocument]: """Deduplicate a list of hashed documents while preserving order.""" seen: Set[str] = set() for hashed_doc in hashed_documents: if hashed_doc.hash_ not in seen: seen.add(hashed_doc.hash_) yield hashed_doc # PUBLIC API class IndexingResult(TypedDict): """Return a detailed a breakdown of the result of the indexing operation.""" num_added: int """Number of added documents.""" num_updated: int """Number of updated documents because they were not up to date.""" num_deleted: int """Number of deleted documents.""" num_skipped: int """Number of skipped documents because they were already up to date.""" def index( docs_source: Union[BaseLoader, Iterable[Document]], record_manager: RecordManager, vector_store: VectorStore, *, batch_size: int = 100, cleanup: Literal["incremental", "full", None] = None, source_id_key: Union[str, Callable[[Document], str], None] = None, cleanup_batch_size: int = 1_000, ) -> IndexingResult: """Index data from the loader into the vector store. Indexing functionality uses a manager to keep track of which documents are in the vector store. This allows us to keep track of which documents were updated, and which documents were deleted, which documents should be skipped. For the time being, documents are indexed using their hashes, and users are not able to specify the uid of the document. IMPORTANT: if auto_cleanup is set to True, the loader should be returning the entire dataset, and not just a subset of the dataset. Otherwise, the auto_cleanup will remove documents that it is not supposed to. Args: docs_source: Data loader or iterable of documents to index. record_manager: Timestamped set to keep track of which documents were updated. vector_store: Vector store to index the documents into. batch_size: Batch size to use when indexing. cleanup: How to handle clean up of documents. - Incremental: Cleans up all documents that haven't been updated AND that are associated with source ids that were seen during indexing. Clean up is done continuously during indexing helping to minimize the probability of users seeing duplicated content. - Full: Delete all documents that haven to been returned by the loader. Clean up runs after all documents have been indexed. This means that users may see duplicated content during indexing. - None: Do not delete any documents. source_id_key: Optional key that helps identify the original source of the document. cleanup_batch_size: Batch size to use when cleaning up documents. Returns: Indexing result which contains information about how many documents were added, updated, deleted, or skipped. """ if cleanup not in {"incremental", "full", None}: raise ValueError( f"cleanup should be one of 'incremental', 'full' or None. " f"Got {cleanup}." ) if cleanup == "incremental" and source_id_key is None: raise ValueError("Source id key is required when cleanup mode is incremental.") # Check that the Vectorstore has required methods implemented methods = ["delete", "add_documents"] for method in methods: if not hasattr(vector_store, method): raise ValueError( f"Vectorstore {vector_store} does not have required method {method}" ) if type(vector_store).delete == VectorStore.delete: # Checking if the vectorstore has overridden the default delete method # implementation which just raises a NotImplementedError raise ValueError("Vectorstore has not implemented the delete method") if isinstance(docs_source, BaseLoader): try: doc_iterator = docs_source.lazy_load() except NotImplementedError: doc_iterator = iter(docs_source.load()) else: doc_iterator = iter(docs_source) source_id_assigner = _get_source_id_assigner(source_id_key) # Mark when the update started. index_start_dt = record_manager.get_time() num_added = 0 num_skipped = 0 num_updated = 0 num_deleted = 0 for doc_batch in _batch(batch_size, doc_iterator): hashed_docs = list( _deduplicate_in_order( [_HashedDocument.from_document(doc) for doc in doc_batch] ) ) source_ids: Sequence[Optional[str]] = [ source_id_assigner(doc) for doc in hashed_docs ] if cleanup == "incremental": # If the cleanup mode is incremental, source ids are required. for source_id, hashed_doc in zip(source_ids, hashed_docs): if source_id is None: raise ValueError( "Source ids are required when cleanup mode is incremental. " f"Document that starts with " f"content: {hashed_doc.page_content[:100]} was not assigned " f"as source id." ) # source ids cannot be None after for loop above. source_ids = cast(Sequence[str], source_ids) # type: ignore[assignment] exists_batch = record_manager.exists([doc.uid for doc in hashed_docs]) # Filter out documents that already exist in the record store. uids = [] docs_to_index = [] for hashed_doc, doc_exists in zip(hashed_docs, exists_batch): if doc_exists: # Must be updated to refresh timestamp. record_manager.update([hashed_doc.uid], time_at_least=index_start_dt) num_skipped += 1 continue uids.append(hashed_doc.uid) docs_to_index.append(hashed_doc.to_document()) # Be pessimistic and assume that all vector store write will fail. # First write to vector store if docs_to_index: vector_store.add_documents(docs_to_index, ids=uids) num_added += len(docs_to_index) # And only then update the record store. # Update ALL records, even if they already exist since we want to refresh # their timestamp. record_manager.update( [doc.uid for doc in hashed_docs], group_ids=source_ids, time_at_least=index_start_dt, ) # If source IDs are provided, we can do the deletion incrementally! if cleanup == "incremental": # Get the uids of the documents that were not returned by the loader. # mypy isn't good enough to determine that source ids cannot be None # here due to a check that's happening above, so we check again. for source_id in source_ids: if source_id is None: raise AssertionError("Source ids cannot be None here.") _source_ids = cast(Sequence[str], source_ids) uids_to_delete = record_manager.list_keys( group_ids=_source_ids, before=index_start_dt ) if uids_to_delete: # Then delete from vector store. vector_store.delete(uids_to_delete) # First delete from record store. record_manager.delete_keys(uids_to_delete) num_deleted += len(uids_to_delete) if cleanup == "full": while uids_to_delete := record_manager.list_keys( before=index_start_dt, limit=cleanup_batch_size ): # First delete from record store. vector_store.delete(uids_to_delete) # Then delete from record manager. record_manager.delete_keys(uids_to_delete) num_deleted += len(uids_to_delete) return { "num_added": num_added, "num_updated": num_updated, "num_skipped": num_skipped, "num_deleted": num_deleted, } # Define an asynchronous generator function async def _to_async_iterator(iterator: Iterable[T]) -> AsyncIterator[T]: """Convert an iterable to an async iterator.""" for item in iterator: yield item async def aindex( docs_source: Union[Iterable[Document], AsyncIterator[Document]], record_manager: RecordManager, vector_store: VectorStore, *, batch_size: int = 100, cleanup: Literal["incremental", "full", None] = None, source_id_key: Union[str, Callable[[Document], str], None] = None, cleanup_batch_size: int = 1_000, ) -> IndexingResult: """Index data from the loader into the vector store. Indexing functionality uses a manager to keep track of which documents are in the vector store. This allows us to keep track of which documents were updated, and which documents were deleted, which documents should be skipped. For the time being, documents are indexed using their hashes, and users are not able to specify the uid of the document. IMPORTANT: if auto_cleanup is set to True, the loader should be returning the entire dataset, and not just a subset of the dataset. Otherwise, the auto_cleanup will remove documents that it is not supposed to. Args: docs_source: Data loader or iterable of documents to index. record_manager: Timestamped set to keep track of which documents were updated. vector_store: Vector store to index the documents into. batch_size: Batch size to use when indexing. cleanup: How to handle clean up of documents. - Incremental: Cleans up all documents that haven't been updated AND that are associated with source ids that were seen during indexing. Clean up is done continuously during indexing helping to minimize the probability of users seeing duplicated content. - Full: Delete all documents that haven to been returned by the loader. Clean up runs after all documents have been indexed. This means that users may see duplicated content during indexing. - None: Do not delete any documents. source_id_key: Optional key that helps identify the original source of the document. cleanup_batch_size: Batch size to use when cleaning up documents. Returns: Indexing result which contains information about how many documents were added, updated, deleted, or skipped. """ if cleanup not in {"incremental", "full", None}: raise ValueError( f"cleanup should be one of 'incremental', 'full' or None. " f"Got {cleanup}." ) if cleanup == "incremental" and source_id_key is None: raise ValueError("Source id key is required when cleanup mode is incremental.") # Check that the Vectorstore has required methods implemented methods = ["adelete", "aadd_documents"] for method in methods: if not hasattr(vector_store, method): raise ValueError( f"Vectorstore {vector_store} does not have required method {method}" ) if type(vector_store).adelete == VectorStore.adelete: # Checking if the vectorstore has overridden the default delete method # implementation which just raises a NotImplementedError raise ValueError("Vectorstore has not implemented the delete method") if isinstance(docs_source, BaseLoader): raise NotImplementedError( "Not supported yet. Please pass an async iterator of documents." ) async_doc_iterator: AsyncIterator[Document] if hasattr(docs_source, "__aiter__"): async_doc_iterator = docs_source # type: ignore[assignment] else: async_doc_iterator = _to_async_iterator(docs_source) source_id_assigner = _get_source_id_assigner(source_id_key) # Mark when the update started. index_start_dt = await record_manager.aget_time() num_added = 0 num_skipped = 0 num_updated = 0 num_deleted = 0 async for doc_batch in _abatch(batch_size, async_doc_iterator): hashed_docs = list( _deduplicate_in_order( [_HashedDocument.from_document(doc) for doc in doc_batch] ) ) source_ids: Sequence[Optional[str]] = [ source_id_assigner(doc) for doc in hashed_docs ] if cleanup == "incremental": # If the cleanup mode is incremental, source ids are required. for source_id, hashed_doc in zip(source_ids, hashed_docs): if source_id is None: raise ValueError( "Source ids are required when cleanup mode is incremental. " f"Document that starts with " f"content: {hashed_doc.page_content[:100]} was not assigned " f"as source id." ) # source ids cannot be None after for loop above. source_ids = cast(Sequence[str], source_ids) exists_batch = await record_manager.aexists([doc.uid for doc in hashed_docs]) # Filter out documents that already exist in the record store. uids: list[str] = [] docs_to_index: list[Document] = [] for hashed_doc, doc_exists in zip(hashed_docs, exists_batch): if doc_exists: # Must be updated to refresh timestamp. await record_manager.aupdate( [hashed_doc.uid], time_at_least=index_start_dt ) num_skipped += 1 continue uids.append(hashed_doc.uid) docs_to_index.append(hashed_doc.to_document()) # Be pessimistic and assume that all vector store write will fail. # First write to vector store if docs_to_index: await vector_store.aadd_documents(docs_to_index, ids=uids) num_added += len(docs_to_index) # And only then update the record store. # Update ALL records, even if they already exist since we want to refresh # their timestamp. await record_manager.aupdate( [doc.uid for doc in hashed_docs], group_ids=source_ids, time_at_least=index_start_dt, ) # If source IDs are provided, we can do the deletion incrementally! if cleanup == "incremental": # Get the uids of the documents that were not returned by the loader. # mypy isn't good enough to determine that source ids cannot be None # here due to a check that's happening above, so we check again. for source_id in source_ids: if source_id is None: raise AssertionError("Source ids cannot be None here.") _source_ids = cast(Sequence[str], source_ids) uids_to_delete = await record_manager.alist_keys( group_ids=_source_ids, before=index_start_dt ) if uids_to_delete: # Then delete from vector store. await vector_store.adelete(uids_to_delete) # First delete from record store. await record_manager.adelete_keys(uids_to_delete) num_deleted += len(uids_to_delete) if cleanup == "full": while uids_to_delete := await record_manager.alist_keys( before=index_start_dt, limit=cleanup_batch_size ): # First delete from record store. await vector_store.adelete(uids_to_delete) # Then delete from record manager. await record_manager.adelete_keys(uids_to_delete) num_deleted += len(uids_to_delete) return { "num_added": num_added, "num_updated": num_updated, "num_skipped": num_skipped, "num_deleted": num_deleted, }
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~chat_models~tongyi.py
from __future__ import annotations import logging from typing import ( Any, Callable, Dict, Iterator, List, Mapping, Optional, Tuple, Type, ) from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.schema import ChatGeneration, ChatResult from langchain_core.schema.messages import ( AIMessage, AIMessageChunk, BaseMessage, BaseMessageChunk, ChatMessage, ChatMessageChunk, FunctionMessage, FunctionMessageChunk, HumanMessage, HumanMessageChunk, SystemMessage, SystemMessageChunk, ) from langchain_core.schema.output import ChatGenerationChunk, GenerationChunk from requests.exceptions import HTTPError from tenacity import ( RetryCallState, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.chat_models.base import ( BaseChatModel, _generate_from_stream, ) from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) def convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: role = _dict["role"] if role == "user": return HumanMessage(content=_dict["content"]) elif role == "assistant": content = _dict.get("content", "") or "" if _dict.get("function_call"): additional_kwargs = {"function_call": dict(_dict["function_call"])} else: additional_kwargs = {} return AIMessage(content=content, additional_kwargs=additional_kwargs) elif role == "system": return SystemMessage(content=_dict["content"]) elif role == "function": return FunctionMessage(content=_dict["content"], name=_dict["name"]) else: return ChatMessage(content=_dict["content"], role=role) def convert_message_to_dict(message: BaseMessage) -> dict: message_dict: Dict[str, Any] if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} if "function_call" in message.additional_kwargs: message_dict["function_call"] = message.additional_kwargs["function_call"] # If function call only, content is None not empty string if message_dict["content"] == "": message_dict["content"] = None elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} elif isinstance(message, FunctionMessage): message_dict = { "role": "function", "content": message.content, "name": message.name, } else: raise TypeError(f"Got unknown type {message}") if "name" in message.additional_kwargs: message_dict["name"] = message.additional_kwargs["name"] return message_dict def _stream_response_to_generation_chunk( stream_response: Dict[str, Any], length: int, ) -> GenerationChunk: """Convert a stream response to a generation chunk. As the low level API implement is different from openai and other llm. Stream response of Tongyi is not split into chunks, but all data generated before. For example, the answer 'Hi Pickle Rick! How can I assist you today?' Other llm will stream answer: 'Hi Pickle', ' Rick!', ' How can I assist you today?'. Tongyi answer: 'Hi Pickle', 'Hi Pickle Rick!', 'Hi Pickle Rick! How can I assist you today?'. As the GenerationChunk is implemented with chunks. Only return full_text[length:] for new chunk. """ full_text = stream_response["output"]["text"] text = full_text[length:] finish_reason = stream_response["output"].get("finish_reason", None) return GenerationChunk( text=text, generation_info=dict( finish_reason=finish_reason, ), ) def _create_retry_decorator( llm: ChatTongyi, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> Callable[[Any], Any]: def _before_sleep(retry_state: RetryCallState) -> None: if run_manager: run_manager.on_retry(retry_state) return None min_seconds = 1 max_seconds = 4 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(llm.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=(retry_if_exception_type(HTTPError)), before_sleep=_before_sleep, ) def _convert_delta_to_message_chunk( _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk], length: int, ) -> BaseMessageChunk: role = _dict.get("role") full_content = _dict.get("content") or "" content = full_content[length:] if _dict.get("function_call"): additional_kwargs = {"function_call": dict(_dict["function_call"])} else: additional_kwargs = {} if role == "user" or default_class == HumanMessageChunk: return HumanMessageChunk(content=content) elif role == "assistant" or default_class == AIMessageChunk: return AIMessageChunk(content=content, additional_kwargs=additional_kwargs) elif role == "system" or default_class == SystemMessageChunk: return SystemMessageChunk(content=content) elif role == "function" or default_class == FunctionMessageChunk: return FunctionMessageChunk(content=content, name=_dict["name"]) elif role or default_class == ChatMessageChunk: return ChatMessageChunk(content=content, role=role) else: return default_class(content=content) class ChatTongyi(BaseChatModel): """Alibaba Tongyi Qwen chat models API. To use, you should have the ``dashscope`` python package installed, and set env ``DASHSCOPE_API_KEY`` with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.chat_models import Tongyi Tongyi_chat = ChatTongyi() """ @property def lc_secrets(self) -> Dict[str, str]: return {"dashscope_api_key": "DASHSCOPE_API_KEY"} @property def lc_serializable(self) -> bool: return True client: Any #: :meta private: model_name: str = Field(default="qwen-turbo", alias="model") """Model name to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) top_p: float = 0.8 """Total probability mass of tokens to consider at each step.""" dashscope_api_key: Optional[str] = None """Dashscope api key provide by alicloud.""" n: int = 1 """How many completions to generate for each prompt.""" streaming: bool = False """Whether to stream the results or not.""" max_retries: int = 10 """Maximum number of retries to make when generating.""" prefix_messages: List = Field(default_factory=list) """Series of messages for Chat input.""" result_format: str = Field(default="message") """Return result format""" @property def _llm_type(self) -> str: """Return type of llm.""" return "tongyi" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" get_from_dict_or_env(values, "dashscope_api_key", "DASHSCOPE_API_KEY") try: import dashscope except ImportError: raise ImportError( "Could not import dashscope python package. " "Please install it with `pip install dashscope --upgrade`." ) try: values["client"] = dashscope.Generation except AttributeError: raise ValueError( "`dashscope` has no `Generation` attribute, this is likely " "due to an old version of the dashscope package. Try upgrading it " "with `pip install --upgrade dashscope`." ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return { "model": self.model_name, "top_p": self.top_p, "stream": self.streaming, "n": self.n, "result_format": self.result_format, **self.model_kwargs, } def completion_with_retry( self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any ) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(self, run_manager=run_manager) @retry_decorator def _completion_with_retry(**_kwargs: Any) -> Any: resp = self.client.call(**_kwargs) if resp.status_code == 200: return resp elif resp.status_code in [400, 401]: raise ValueError( f"status_code: {resp.status_code} \n " f"code: {resp.code} \n message: {resp.message}" ) else: raise HTTPError( f"HTTP error occurred: status_code: {resp.status_code} \n " f"code: {resp.code} \n message: {resp.message}", response=resp, ) return _completion_with_retry(**kwargs) def stream_completion_with_retry( self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any ) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(self, run_manager=run_manager) @retry_decorator def _stream_completion_with_retry(**_kwargs: Any) -> Any: return self.client.call(**_kwargs) return _stream_completion_with_retry(**kwargs) def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, stream: Optional[bool] = None, **kwargs: Any, ) -> ChatResult: should_stream = stream if stream is not None else self.streaming if should_stream: stream_iter = self._stream( messages, stop=stop, run_manager=run_manager, **kwargs ) return _generate_from_stream(stream_iter) if not messages: raise ValueError("No messages provided.") message_dicts, params = self._create_message_dicts(messages, stop) if message_dicts[-1]["role"] != "user": raise ValueError("Last message should be user message.") params = {**params, **kwargs} response = self.completion_with_retry( messages=message_dicts, run_manager=run_manager, **params ) return self._create_chat_result(response) def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: message_dicts, params = self._create_message_dicts(messages, stop) params = {**params, **kwargs, "stream": True} # Mark current chunk total length length = 0 default_chunk_class = AIMessageChunk for chunk in self.stream_completion_with_retry( messages=message_dicts, run_manager=run_manager, **params ): if len(chunk["output"]["choices"]) == 0: continue choice = chunk["output"]["choices"][0] chunk = _convert_delta_to_message_chunk( choice["message"], default_chunk_class, length ) finish_reason = choice.get("finish_reason") generation_info = ( dict(finish_reason=finish_reason) if finish_reason is not None else None ) default_chunk_class = chunk.__class__ chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info) yield chunk if run_manager: run_manager.on_llm_new_token(chunk.text, chunk=chunk) length = len(choice["message"]["content"]) def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = self._client_params() # Ensure `stop` is a list of strings if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop message_dicts = [convert_message_to_dict(m) for m in messages] return message_dicts, params def _client_params(self) -> Dict[str, Any]: """Get the parameters used for the openai client.""" creds: Dict[str, Any] = { "api_key": self.dashscope_api_key, } return {**self._default_params, **creds} def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: generations = [] for res in response["output"]["choices"]: message = convert_dict_to_message(res["message"]) gen = ChatGeneration( message=message, generation_info=dict(finish_reason=res.get("finish_reason")), ) generations.append(gen) token_usage = response.get("usage", {}) llm_output = {"token_usage": token_usage, "model_name": self.model_name} return ChatResult(generations=generations, llm_output=llm_output)
[ "content" ]
2024-01-10
axgpt/langchain
libs~langchain~langchain~agents~format_scratchpad~log_to_messages.py
from typing import List, Tuple from langchain_core.schema.agent import AgentAction from langchain_core.schema.messages import AIMessage, BaseMessage, HumanMessage def format_log_to_messages( intermediate_steps: List[Tuple[AgentAction, str]], template_tool_response: str = "{observation}", ) -> List[BaseMessage]: """Construct the scratchpad that lets the agent continue its thought process.""" thoughts: List[BaseMessage] = [] for action, observation in intermediate_steps: thoughts.append(AIMessage(content=action.log)) human_message = HumanMessage( content=template_tool_response.format(observation=observation) ) thoughts.append(human_message) return thoughts
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~document_loaders~rocksetdb.py
from typing import Any, Callable, Iterator, List, Optional, Tuple from langchain_core.schema import Document from langchain.document_loaders.base import BaseLoader def default_joiner(docs: List[Tuple[str, Any]]) -> str: """Default joiner for content columns.""" return "\n".join([doc[1] for doc in docs]) class ColumnNotFoundError(Exception): """Column not found error.""" def __init__(self, missing_key: str, query: str): super().__init__(f'Column "{missing_key}" not selected in query:\n{query}') class RocksetLoader(BaseLoader): """Load from a `Rockset` database. To use, you should have the `rockset` python package installed. Example: .. code-block:: python # This code will load 3 records from the "langchain_demo" # collection as Documents, with the `text` column used as # the content from langchain.document_loaders import RocksetLoader from rockset import RocksetClient, Regions, models loader = RocksetLoader( RocksetClient(Regions.usw2a1, "<api key>"), models.QueryRequestSql( query="select * from langchain_demo limit 3" ), ["text"] ) ) """ def __init__( self, client: Any, query: Any, content_keys: List[str], metadata_keys: Optional[List[str]] = None, content_columns_joiner: Callable[[List[Tuple[str, Any]]], str] = default_joiner, ): """Initialize with Rockset client. Args: client: Rockset client object. query: Rockset query object. content_keys: The collection columns to be written into the `page_content` of the Documents. metadata_keys: The collection columns to be written into the `metadata` of the Documents. By default, this is all the keys in the document. content_columns_joiner: Method that joins content_keys and its values into a string. It's method that takes in a List[Tuple[str, Any]]], representing a list of tuples of (column name, column value). By default, this is a method that joins each column value with a new line. This method is only relevant if there are multiple content_keys. """ try: from rockset import QueryPaginator, RocksetClient from rockset.models import QueryRequestSql except ImportError: raise ImportError( "Could not import rockset client python package. " "Please install it with `pip install rockset`." ) if not isinstance(client, RocksetClient): raise ValueError( f"client should be an instance of rockset.RocksetClient, " f"got {type(client)}" ) if not isinstance(query, QueryRequestSql): raise ValueError( f"query should be an instance of rockset.model.QueryRequestSql, " f"got {type(query)}" ) self.client = client self.query = query self.content_keys = content_keys self.content_columns_joiner = content_columns_joiner self.metadata_keys = metadata_keys self.paginator = QueryPaginator self.request_model = QueryRequestSql try: self.client.set_application("langchain") except AttributeError: # ignore pass def load(self) -> List[Document]: return list(self.lazy_load()) def lazy_load(self) -> Iterator[Document]: query_results = self.client.Queries.query( sql=self.query ).results # execute the SQL query for doc in query_results: # for each doc in the response try: yield Document( page_content=self.content_columns_joiner( [(col, doc[col]) for col in self.content_keys] ), metadata={col: doc[col] for col in self.metadata_keys} if self.metadata_keys is not None else doc, ) # try to yield the Document except ( KeyError ) as e: # either content_columns or metadata_columns is invalid raise ColumnNotFoundError( e.args[0], self.query ) # raise that the column isn't in the db schema
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~unit_tests~retrievers~sequential_retriever.py
from typing import List from langchain_core.schema import BaseRetriever, Document class SequentialRetriever(BaseRetriever): """Test util that returns a sequence of documents""" sequential_responses: List[List[Document]] response_index: int = 0 def _get_relevant_documents( # type: ignore[override] self, query: str, ) -> List[Document]: if self.response_index >= len(self.sequential_responses): return [] else: self.response_index += 1 return self.sequential_responses[self.response_index - 1] async def _aget_relevant_documents( # type: ignore[override] self, query: str, ) -> List[Document]: return self._get_relevant_documents(query)
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~unit_tests~callbacks~tracers~test_base_tracer.py
"""Test Tracer classes.""" from __future__ import annotations from datetime import datetime from typing import List from uuid import uuid4 import pytest from freezegun import freeze_time from langchain_core.schema import LLMResult from langchain_core.schema.messages import HumanMessage from langchain.callbacks.manager import CallbackManager from langchain.callbacks.tracers.base import BaseTracer, TracerException from langchain.callbacks.tracers.schemas import Run SERIALIZED = {"id": ["llm"]} SERIALIZED_CHAT = {"id": ["chat_model"]} class FakeTracer(BaseTracer): """Fake tracer that records LangChain execution.""" def __init__(self) -> None: """Initialize the tracer.""" super().__init__() self.runs: List[Run] = [] def _persist_run(self, run: Run) -> None: """Persist a run.""" self.runs.append(run) @freeze_time("2023-01-01") def test_tracer_llm_run() -> None: """Test tracer on an LLM run.""" uuid = uuid4() compare_run = Run( id=uuid, parent_run_id=None, start_time=datetime.utcnow(), end_time=datetime.utcnow(), events=[ {"name": "start", "time": datetime.utcnow()}, {"name": "end", "time": datetime.utcnow()}, ], extra={}, execution_order=1, child_execution_order=1, serialized=SERIALIZED, inputs={"prompts": []}, outputs=LLMResult(generations=[[]]), error=None, run_type="llm", ) tracer = FakeTracer() tracer.on_llm_start(serialized=SERIALIZED, prompts=[], run_id=uuid) tracer.on_llm_end(response=LLMResult(generations=[[]]), run_id=uuid) assert tracer.runs == [compare_run] @freeze_time("2023-01-01") def test_tracer_chat_model_run() -> None: """Test tracer on a Chat Model run.""" tracer = FakeTracer() manager = CallbackManager(handlers=[tracer]) run_managers = manager.on_chat_model_start( serialized=SERIALIZED_CHAT, messages=[[HumanMessage(content="")]] ) compare_run = Run( id=str(run_managers[0].run_id), name="chat_model", start_time=datetime.utcnow(), end_time=datetime.utcnow(), events=[ {"name": "start", "time": datetime.utcnow()}, {"name": "end", "time": datetime.utcnow()}, ], extra={}, execution_order=1, child_execution_order=1, serialized=SERIALIZED_CHAT, inputs=dict(prompts=["Human: "]), outputs=LLMResult(generations=[[]]), error=None, run_type="llm", ) for run_manager in run_managers: run_manager.on_llm_end(response=LLMResult(generations=[[]])) assert tracer.runs == [compare_run] @freeze_time("2023-01-01") def test_tracer_llm_run_errors_no_start() -> None: """Test tracer on an LLM run without a start.""" tracer = FakeTracer() with pytest.raises(TracerException): tracer.on_llm_end(response=LLMResult(generations=[[]]), run_id=uuid4()) @freeze_time("2023-01-01") def test_tracer_multiple_llm_runs() -> None: """Test the tracer with multiple runs.""" uuid = uuid4() compare_run = Run( id=uuid, name="llm", start_time=datetime.utcnow(), end_time=datetime.utcnow(), events=[ {"name": "start", "time": datetime.utcnow()}, {"name": "end", "time": datetime.utcnow()}, ], extra={}, execution_order=1, child_execution_order=1, serialized=SERIALIZED, inputs=dict(prompts=[]), outputs=LLMResult(generations=[[]]), error=None, run_type="llm", ) tracer = FakeTracer() num_runs = 10 for _ in range(num_runs): tracer.on_llm_start(serialized=SERIALIZED, prompts=[], run_id=uuid) tracer.on_llm_end(response=LLMResult(generations=[[]]), run_id=uuid) assert tracer.runs == [compare_run] * num_runs @freeze_time("2023-01-01") def test_tracer_chain_run() -> None: """Test tracer on a Chain run.""" uuid = uuid4() compare_run = Run( id=str(uuid), start_time=datetime.utcnow(), end_time=datetime.utcnow(), events=[ {"name": "start", "time": datetime.utcnow()}, {"name": "end", "time": datetime.utcnow()}, ], extra={}, execution_order=1, child_execution_order=1, serialized={"name": "chain"}, inputs={}, outputs={}, error=None, run_type="chain", ) tracer = FakeTracer() tracer.on_chain_start(serialized={"name": "chain"}, inputs={}, run_id=uuid) tracer.on_chain_end(outputs={}, run_id=uuid) assert tracer.runs == [compare_run] @freeze_time("2023-01-01") def test_tracer_tool_run() -> None: """Test tracer on a Tool run.""" uuid = uuid4() compare_run = Run( id=str(uuid), start_time=datetime.utcnow(), end_time=datetime.utcnow(), events=[ {"name": "start", "time": datetime.utcnow()}, {"name": "end", "time": datetime.utcnow()}, ], extra={}, execution_order=1, child_execution_order=1, serialized={"name": "tool"}, inputs={"input": "test"}, outputs={"output": "test"}, error=None, run_type="tool", ) tracer = FakeTracer() tracer.on_tool_start(serialized={"name": "tool"}, input_str="test", run_id=uuid) tracer.on_tool_end("test", run_id=uuid) assert tracer.runs == [compare_run] @freeze_time("2023-01-01") def test_tracer_nested_run() -> None: """Test tracer on a nested run.""" tracer = FakeTracer() chain_uuid = uuid4() tool_uuid = uuid4() llm_uuid1 = uuid4() llm_uuid2 = uuid4() for _ in range(10): tracer.on_chain_start( serialized={"name": "chain"}, inputs={}, run_id=chain_uuid ) tracer.on_tool_start( serialized={"name": "tool"}, input_str="test", run_id=tool_uuid, parent_run_id=chain_uuid, ) tracer.on_llm_start( serialized=SERIALIZED, prompts=[], run_id=llm_uuid1, parent_run_id=tool_uuid, ) tracer.on_llm_end(response=LLMResult(generations=[[]]), run_id=llm_uuid1) tracer.on_tool_end("test", run_id=tool_uuid) tracer.on_llm_start( serialized=SERIALIZED, prompts=[], run_id=llm_uuid2, parent_run_id=chain_uuid, ) tracer.on_llm_end(response=LLMResult(generations=[[]]), run_id=llm_uuid2) tracer.on_chain_end(outputs={}, run_id=chain_uuid) compare_run = Run( id=str(chain_uuid), error=None, start_time=datetime.utcnow(), end_time=datetime.utcnow(), events=[ {"name": "start", "time": datetime.utcnow()}, {"name": "end", "time": datetime.utcnow()}, ], extra={}, execution_order=1, child_execution_order=4, serialized={"name": "chain"}, inputs={}, outputs={}, run_type="chain", child_runs=[ Run( id=tool_uuid, parent_run_id=chain_uuid, start_time=datetime.utcnow(), end_time=datetime.utcnow(), events=[ {"name": "start", "time": datetime.utcnow()}, {"name": "end", "time": datetime.utcnow()}, ], extra={}, execution_order=2, child_execution_order=3, serialized={"name": "tool"}, inputs=dict(input="test"), outputs=dict(output="test"), error=None, run_type="tool", child_runs=[ Run( id=str(llm_uuid1), parent_run_id=str(tool_uuid), error=None, start_time=datetime.utcnow(), end_time=datetime.utcnow(), events=[ {"name": "start", "time": datetime.utcnow()}, {"name": "end", "time": datetime.utcnow()}, ], extra={}, execution_order=3, child_execution_order=3, serialized=SERIALIZED, inputs=dict(prompts=[]), outputs=LLMResult(generations=[[]]), run_type="llm", ) ], ), Run( id=str(llm_uuid2), parent_run_id=str(chain_uuid), error=None, start_time=datetime.utcnow(), end_time=datetime.utcnow(), events=[ {"name": "start", "time": datetime.utcnow()}, {"name": "end", "time": datetime.utcnow()}, ], extra={}, execution_order=4, child_execution_order=4, serialized=SERIALIZED, inputs=dict(prompts=[]), outputs=LLMResult(generations=[[]]), run_type="llm", ), ], ) assert tracer.runs[0] == compare_run assert tracer.runs == [compare_run] * 10 @freeze_time("2023-01-01") def test_tracer_llm_run_on_error() -> None: """Test tracer on an LLM run with an error.""" exception = Exception("test") uuid = uuid4() compare_run = Run( id=str(uuid), start_time=datetime.utcnow(), end_time=datetime.utcnow(), events=[ {"name": "start", "time": datetime.utcnow()}, {"name": "error", "time": datetime.utcnow()}, ], extra={}, execution_order=1, child_execution_order=1, serialized=SERIALIZED, inputs=dict(prompts=[]), outputs=None, error=repr(exception), run_type="llm", ) tracer = FakeTracer() tracer.on_llm_start(serialized=SERIALIZED, prompts=[], run_id=uuid) tracer.on_llm_error(exception, run_id=uuid) assert tracer.runs == [compare_run] @freeze_time("2023-01-01") def test_tracer_chain_run_on_error() -> None: """Test tracer on a Chain run with an error.""" exception = Exception("test") uuid = uuid4() compare_run = Run( id=str(uuid), start_time=datetime.utcnow(), end_time=datetime.utcnow(), events=[ {"name": "start", "time": datetime.utcnow()}, {"name": "error", "time": datetime.utcnow()}, ], extra={}, execution_order=1, child_execution_order=1, serialized={"name": "chain"}, inputs={}, outputs=None, error=repr(exception), run_type="chain", ) tracer = FakeTracer() tracer.on_chain_start(serialized={"name": "chain"}, inputs={}, run_id=uuid) tracer.on_chain_error(exception, run_id=uuid) assert tracer.runs == [compare_run] @freeze_time("2023-01-01") def test_tracer_tool_run_on_error() -> None: """Test tracer on a Tool run with an error.""" exception = Exception("test") uuid = uuid4() compare_run = Run( id=str(uuid), start_time=datetime.utcnow(), end_time=datetime.utcnow(), events=[ {"name": "start", "time": datetime.utcnow()}, {"name": "error", "time": datetime.utcnow()}, ], extra={}, execution_order=1, child_execution_order=1, serialized={"name": "tool"}, inputs=dict(input="test"), outputs=None, action="{'name': 'tool'}", error=repr(exception), run_type="tool", ) tracer = FakeTracer() tracer.on_tool_start(serialized={"name": "tool"}, input_str="test", run_id=uuid) tracer.on_tool_error(exception, run_id=uuid) assert tracer.runs == [compare_run] @freeze_time("2023-01-01") def test_tracer_nested_runs_on_error() -> None: """Test tracer on a nested run with an error.""" exception = Exception("test") tracer = FakeTracer() chain_uuid = uuid4() tool_uuid = uuid4() llm_uuid1 = uuid4() llm_uuid2 = uuid4() llm_uuid3 = uuid4() for _ in range(3): tracer.on_chain_start( serialized={"name": "chain"}, inputs={}, run_id=chain_uuid ) tracer.on_llm_start( serialized=SERIALIZED, prompts=[], run_id=llm_uuid1, parent_run_id=chain_uuid, ) tracer.on_llm_end(response=LLMResult(generations=[[]]), run_id=llm_uuid1) tracer.on_llm_start( serialized=SERIALIZED, prompts=[], run_id=llm_uuid2, parent_run_id=chain_uuid, ) tracer.on_llm_end(response=LLMResult(generations=[[]]), run_id=llm_uuid2) tracer.on_tool_start( serialized={"name": "tool"}, input_str="test", run_id=tool_uuid, parent_run_id=chain_uuid, ) tracer.on_llm_start( serialized=SERIALIZED, prompts=[], run_id=llm_uuid3, parent_run_id=tool_uuid, ) tracer.on_llm_error(exception, run_id=llm_uuid3) tracer.on_tool_error(exception, run_id=tool_uuid) tracer.on_chain_error(exception, run_id=chain_uuid) compare_run = Run( id=str(chain_uuid), start_time=datetime.utcnow(), end_time=datetime.utcnow(), events=[ {"name": "start", "time": datetime.utcnow()}, {"name": "error", "time": datetime.utcnow()}, ], extra={}, execution_order=1, child_execution_order=5, serialized={"name": "chain"}, error=repr(exception), inputs={}, outputs=None, run_type="chain", child_runs=[ Run( id=str(llm_uuid1), parent_run_id=str(chain_uuid), start_time=datetime.utcnow(), end_time=datetime.utcnow(), events=[ {"name": "start", "time": datetime.utcnow()}, {"name": "end", "time": datetime.utcnow()}, ], extra={}, execution_order=2, child_execution_order=2, serialized=SERIALIZED, error=None, inputs=dict(prompts=[]), outputs=LLMResult(generations=[[]], llm_output=None), run_type="llm", ), Run( id=str(llm_uuid2), parent_run_id=str(chain_uuid), start_time=datetime.utcnow(), end_time=datetime.utcnow(), events=[ {"name": "start", "time": datetime.utcnow()}, {"name": "end", "time": datetime.utcnow()}, ], extra={}, execution_order=3, child_execution_order=3, serialized=SERIALIZED, error=None, inputs=dict(prompts=[]), outputs=LLMResult(generations=[[]], llm_output=None), run_type="llm", ), Run( id=str(tool_uuid), parent_run_id=str(chain_uuid), start_time=datetime.utcnow(), end_time=datetime.utcnow(), events=[ {"name": "start", "time": datetime.utcnow()}, {"name": "error", "time": datetime.utcnow()}, ], extra={}, execution_order=4, child_execution_order=5, serialized={"name": "tool"}, error=repr(exception), inputs=dict(input="test"), outputs=None, action="{'name': 'tool'}", child_runs=[ Run( id=str(llm_uuid3), parent_run_id=str(tool_uuid), start_time=datetime.utcnow(), end_time=datetime.utcnow(), events=[ {"name": "start", "time": datetime.utcnow()}, {"name": "error", "time": datetime.utcnow()}, ], extra={}, execution_order=5, child_execution_order=5, serialized=SERIALIZED, error=repr(exception), inputs=dict(prompts=[]), outputs=None, run_type="llm", ) ], run_type="tool", ), ], ) assert tracer.runs == [compare_run] * 3
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~vectorstores~atlas.py
from __future__ import annotations import logging import uuid from typing import Any, Iterable, List, Optional, Type import numpy as np from langchain_core.schema.embeddings import Embeddings from langchain_core.schema.vectorstore import VectorStore from langchain.docstore.document import Document logger = logging.getLogger(__name__) class AtlasDB(VectorStore): """`Atlas` vector store. Atlas is the `Nomic's` neural database and `rhizomatic` instrument. To use, you should have the ``nomic`` python package installed. Example: .. code-block:: python from langchain.vectorstores import AtlasDB from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = AtlasDB("my_project", embeddings.embed_query) """ _ATLAS_DEFAULT_ID_FIELD = "atlas_id" def __init__( self, name: str, embedding_function: Optional[Embeddings] = None, api_key: Optional[str] = None, description: str = "A description for your project", is_public: bool = True, reset_project_if_exists: bool = False, ) -> None: """ Initialize the Atlas Client Args: name (str): The name of your project. If the project already exists, it will be loaded. embedding_function (Optional[Embeddings]): An optional function used for embedding your data. If None, data will be embedded with Nomic's embed model. api_key (str): Your nomic API key description (str): A description for your project. is_public (bool): Whether your project is publicly accessible. True by default. reset_project_if_exists (bool): Whether to reset this project if it already exists. Default False. Generally useful during development and testing. """ try: import nomic from nomic import AtlasProject except ImportError: raise ImportError( "Could not import nomic python package. " "Please install it with `pip install nomic`." ) if api_key is None: raise ValueError("No API key provided. Sign up at atlas.nomic.ai!") nomic.login(api_key) self._embedding_function = embedding_function modality = "text" if self._embedding_function is not None: modality = "embedding" # Check if the project exists, create it if not self.project = AtlasProject( name=name, description=description, modality=modality, is_public=is_public, reset_project_if_exists=reset_project_if_exists, unique_id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, ) self.project._latest_project_state() @property def embeddings(self) -> Optional[Embeddings]: return self._embedding_function def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, refresh: bool = True, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]]): An optional list of ids. refresh(bool): Whether or not to refresh indices with the updated data. Default True. Returns: List[str]: List of IDs of the added texts. """ if ( metadatas is not None and len(metadatas) > 0 and "text" in metadatas[0].keys() ): raise ValueError("Cannot accept key text in metadata!") texts = list(texts) if ids is None: ids = [str(uuid.uuid1()) for _ in texts] # Embedding upload case if self._embedding_function is not None: _embeddings = self._embedding_function.embed_documents(texts) embeddings = np.stack(_embeddings) if metadatas is None: data = [ {AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i], "text": texts[i]} for i, _ in enumerate(texts) ] else: for i in range(len(metadatas)): metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i] metadatas[i]["text"] = texts[i] data = metadatas self.project._validate_map_data_inputs( [], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data ) with self.project.wait_for_project_lock(): self.project.add_embeddings(embeddings=embeddings, data=data) # Text upload case else: if metadatas is None: data = [ {"text": text, AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i]} for i, text in enumerate(texts) ] else: for i, text in enumerate(texts): metadatas[i]["text"] = texts metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i] data = metadatas self.project._validate_map_data_inputs( [], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data ) with self.project.wait_for_project_lock(): self.project.add_text(data) if refresh: if len(self.project.indices) > 0: with self.project.wait_for_project_lock(): self.project.rebuild_maps() return ids def create_index(self, **kwargs: Any) -> Any: """Creates an index in your project. See https://docs.nomic.ai/atlas_api.html#nomic.project.AtlasProject.create_index for full detail. """ with self.project.wait_for_project_lock(): return self.project.create_index(**kwargs) def similarity_search( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Document]: """Run similarity search with AtlasDB Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. Returns: List[Document]: List of documents most similar to the query text. """ if self._embedding_function is None: raise NotImplementedError( "AtlasDB requires an embedding_function for text similarity search!" ) _embedding = self._embedding_function.embed_documents([query])[0] embedding = np.array(_embedding).reshape(1, -1) with self.project.wait_for_project_lock(): neighbors, _ = self.project.projections[0].vector_search( queries=embedding, k=k ) data = self.project.get_data(ids=neighbors[0]) docs = [ Document(page_content=data[i]["text"], metadata=data[i]) for i, neighbor in enumerate(neighbors) ] return docs @classmethod def from_texts( cls: Type[AtlasDB], texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, name: Optional[str] = None, api_key: Optional[str] = None, description: str = "A description for your project", is_public: bool = True, reset_project_if_exists: bool = False, index_kwargs: Optional[dict] = None, **kwargs: Any, ) -> AtlasDB: """Create an AtlasDB vectorstore from a raw documents. Args: texts (List[str]): The list of texts to ingest. name (str): Name of the project to create. api_key (str): Your nomic API key, embedding (Optional[Embeddings]): Embedding function. Defaults to None. metadatas (Optional[List[dict]]): List of metadatas. Defaults to None. ids (Optional[List[str]]): Optional list of document IDs. If None, ids will be auto created description (str): A description for your project. is_public (bool): Whether your project is publicly accessible. True by default. reset_project_if_exists (bool): Whether to reset this project if it already exists. Default False. Generally useful during development and testing. index_kwargs (Optional[dict]): Dict of kwargs for index creation. See https://docs.nomic.ai/atlas_api.html Returns: AtlasDB: Nomic's neural database and finest rhizomatic instrument """ if name is None or api_key is None: raise ValueError("`name` and `api_key` cannot be None.") # Inject relevant kwargs all_index_kwargs = {"name": name + "_index", "indexed_field": "text"} if index_kwargs is not None: for k, v in index_kwargs.items(): all_index_kwargs[k] = v # Build project atlasDB = cls( name, embedding_function=embedding, api_key=api_key, description="A description for your project", is_public=is_public, reset_project_if_exists=reset_project_if_exists, ) with atlasDB.project.wait_for_project_lock(): atlasDB.add_texts(texts=texts, metadatas=metadatas, ids=ids) atlasDB.create_index(**all_index_kwargs) return atlasDB @classmethod def from_documents( cls: Type[AtlasDB], documents: List[Document], embedding: Optional[Embeddings] = None, ids: Optional[List[str]] = None, name: Optional[str] = None, api_key: Optional[str] = None, persist_directory: Optional[str] = None, description: str = "A description for your project", is_public: bool = True, reset_project_if_exists: bool = False, index_kwargs: Optional[dict] = None, **kwargs: Any, ) -> AtlasDB: """Create an AtlasDB vectorstore from a list of documents. Args: name (str): Name of the collection to create. api_key (str): Your nomic API key, documents (List[Document]): List of documents to add to the vectorstore. embedding (Optional[Embeddings]): Embedding function. Defaults to None. ids (Optional[List[str]]): Optional list of document IDs. If None, ids will be auto created description (str): A description for your project. is_public (bool): Whether your project is publicly accessible. True by default. reset_project_if_exists (bool): Whether to reset this project if it already exists. Default False. Generally useful during development and testing. index_kwargs (Optional[dict]): Dict of kwargs for index creation. See https://docs.nomic.ai/atlas_api.html Returns: AtlasDB: Nomic's neural database and finest rhizomatic instrument """ if name is None or api_key is None: raise ValueError("`name` and `api_key` cannot be None.") texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return cls.from_texts( name=name, api_key=api_key, texts=texts, embedding=embedding, metadatas=metadatas, ids=ids, description=description, is_public=is_public, reset_project_if_exists=reset_project_if_exists, index_kwargs=index_kwargs, )
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~integration_tests~test_nuclia_transformer.py
import asyncio import json from typing import Any from unittest import mock import pytest from langchain_core.schema.document import Document from langchain.document_transformers.nuclia_text_transform import NucliaTextTransformer from langchain.tools.nuclia.tool import NucliaUnderstandingAPI def fakerun(**args: Any) -> Any: async def run(self: Any, **args: Any) -> str: await asyncio.sleep(0.1) data = { "extracted_text": [{"body": {"text": "Hello World"}}], "file_extracted_data": [{"language": "en"}], "field_metadata": [ { "metadata": { "metadata": { "paragraphs": [ {"end": 66, "sentences": [{"start": 1, "end": 67}]} ] } } } ], } return json.dumps(data) return run @pytest.mark.asyncio async def test_nuclia_loader() -> None: with mock.patch( "langchain.tools.nuclia.tool.NucliaUnderstandingAPI._arun", new_callable=fakerun ): with mock.patch("os.environ.get", return_value="_a_key_"): nua = NucliaUnderstandingAPI(enable_ml=False) documents = [ Document(page_content="Hello, my name is Alice", metadata={}), Document(page_content="Hello, my name is Bob", metadata={}), ] nuclia_transformer = NucliaTextTransformer(nua) transformed_documents = await nuclia_transformer.atransform_documents( documents ) assert len(transformed_documents) == 2 assert ( transformed_documents[0].metadata["nuclia"]["file"]["language"] == "en" ) assert ( len( transformed_documents[1].metadata["nuclia"]["metadata"]["metadata"][ "metadata" ]["paragraphs"] ) == 1 )
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~memory~combined.py
import warnings from typing import Any, Dict, List, Set from langchain_core.pydantic_v1 import validator from langchain_core.schema import BaseMemory from langchain.memory.chat_memory import BaseChatMemory class CombinedMemory(BaseMemory): """Combining multiple memories' data together.""" memories: List[BaseMemory] """For tracking all the memories that should be accessed.""" @validator("memories") def check_repeated_memory_variable( cls, value: List[BaseMemory] ) -> List[BaseMemory]: all_variables: Set[str] = set() for val in value: overlap = all_variables.intersection(val.memory_variables) if overlap: raise ValueError( f"The same variables {overlap} are found in multiple" "memory object, which is not allowed by CombinedMemory." ) all_variables |= set(val.memory_variables) return value @validator("memories") def check_input_key(cls, value: List[BaseMemory]) -> List[BaseMemory]: """Check that if memories are of type BaseChatMemory that input keys exist.""" for val in value: if isinstance(val, BaseChatMemory): if val.input_key is None: warnings.warn( "When using CombinedMemory, " "input keys should be so the input is known. " f" Was not set on {val}" ) return value @property def memory_variables(self) -> List[str]: """All the memory variables that this instance provides.""" """Collected from the all the linked memories.""" memory_variables = [] for memory in self.memories: memory_variables.extend(memory.memory_variables) return memory_variables def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Load all vars from sub-memories.""" memory_data: Dict[str, Any] = {} # Collect vars from all sub-memories for memory in self.memories: data = memory.load_memory_variables(inputs) for key, value in data.items(): if key in memory_data: raise ValueError( f"The variable {key} is repeated in the CombinedMemory." ) memory_data[key] = value return memory_data def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this session for every memory.""" # Save context for all sub-memories for memory in self.memories: memory.save_context(inputs, outputs) def clear(self) -> None: """Clear context from this session for every memory.""" for memory in self.memories: memory.clear()
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~callbacks~infino_callback.py
import time from typing import Any, Dict, List, Optional, cast from langchain_core.schema import AgentAction, AgentFinish, LLMResult from langchain_core.schema.messages import BaseMessage from langchain.callbacks.base import BaseCallbackHandler def import_infino() -> Any: """Import the infino client.""" try: from infinopy import InfinoClient except ImportError: raise ImportError( "To use the Infino callbacks manager you need to have the" " `infinopy` python package installed." "Please install it with `pip install infinopy`" ) return InfinoClient() def import_tiktoken() -> Any: """Import tiktoken for counting tokens for OpenAI models.""" try: import tiktoken except ImportError: raise ImportError( "To use the ChatOpenAI model with Infino callback manager, you need to " "have the `tiktoken` python package installed." "Please install it with `pip install tiktoken`" ) return tiktoken def get_num_tokens(string: str, openai_model_name: str) -> int: """Calculate num tokens for OpenAI with tiktoken package. Official documentation: https://github.com/openai/openai-cookbook/blob/main /examples/How_to_count_tokens_with_tiktoken.ipynb """ tiktoken = import_tiktoken() encoding = tiktoken.encoding_for_model(openai_model_name) num_tokens = len(encoding.encode(string)) return num_tokens class InfinoCallbackHandler(BaseCallbackHandler): """Callback Handler that logs to Infino.""" def __init__( self, model_id: Optional[str] = None, model_version: Optional[str] = None, verbose: bool = False, ) -> None: # Set Infino client self.client = import_infino() self.model_id = model_id self.model_version = model_version self.verbose = verbose self.is_chat_openai_model = False self.chat_openai_model_name = "gpt-3.5-turbo" def _send_to_infino( self, key: str, value: Any, is_ts: bool = True, ) -> None: """Send the key-value to Infino. Parameters: key (str): the key to send to Infino. value (Any): the value to send to Infino. is_ts (bool): if True, the value is part of a time series, else it is sent as a log message. """ payload = { "date": int(time.time()), key: value, "labels": { "model_id": self.model_id, "model_version": self.model_version, }, } if self.verbose: print(f"Tracking {key} with Infino: {payload}") # Append to Infino time series only if is_ts is True, otherwise # append to Infino log. if is_ts: self.client.append_ts(payload) else: self.client.append_log(payload) def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any, ) -> None: """Log the prompts to Infino, and set start time and error flag.""" for prompt in prompts: self._send_to_infino("prompt", prompt, is_ts=False) # Set the error flag to indicate no error (this will get overridden # in on_llm_error if an error occurs). self.error = 0 # Set the start time (so that we can calculate the request # duration in on_llm_end). self.start_time = time.time() def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Do nothing when a new token is generated.""" pass def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Log the latency, error, token usage, and response to Infino.""" # Calculate and track the request latency. self.end_time = time.time() duration = self.end_time - self.start_time self._send_to_infino("latency", duration) # Track success or error flag. self._send_to_infino("error", self.error) # Track prompt response. for generations in response.generations: for generation in generations: self._send_to_infino("prompt_response", generation.text, is_ts=False) # Track token usage (for non-chat models). if (response.llm_output is not None) and isinstance(response.llm_output, Dict): token_usage = response.llm_output["token_usage"] if token_usage is not None: prompt_tokens = token_usage["prompt_tokens"] total_tokens = token_usage["total_tokens"] completion_tokens = token_usage["completion_tokens"] self._send_to_infino("prompt_tokens", prompt_tokens) self._send_to_infino("total_tokens", total_tokens) self._send_to_infino("completion_tokens", completion_tokens) # Track completion token usage (for openai chat models). if self.is_chat_openai_model: messages = " ".join( generation.message.content # type: ignore[attr-defined] for generation in generations ) completion_tokens = get_num_tokens( messages, openai_model_name=self.chat_openai_model_name ) self._send_to_infino("completion_tokens", completion_tokens) def on_llm_error(self, error: BaseException, **kwargs: Any) -> None: """Set the error flag.""" self.error = 1 def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any ) -> None: """Do nothing when LLM chain starts.""" pass def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """Do nothing when LLM chain ends.""" pass def on_chain_error(self, error: BaseException, **kwargs: Any) -> None: """Need to log the error.""" pass def on_tool_start( self, serialized: Dict[str, Any], input_str: str, **kwargs: Any, ) -> None: """Do nothing when tool starts.""" pass def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: """Do nothing when agent takes a specific action.""" pass def on_tool_end( self, output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: """Do nothing when tool ends.""" pass def on_tool_error(self, error: BaseException, **kwargs: Any) -> None: """Do nothing when tool outputs an error.""" pass def on_text(self, text: str, **kwargs: Any) -> None: """Do nothing.""" pass def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None: """Do nothing.""" pass def on_chat_model_start( self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any, ) -> None: """Run when LLM starts running.""" # Currently, for chat models, we only support input prompts for ChatOpenAI. # Check if this model is a ChatOpenAI model. values = serialized.get("id") if values: for value in values: if value == "ChatOpenAI": self.is_chat_openai_model = True break # Track prompt tokens for ChatOpenAI model. if self.is_chat_openai_model: invocation_params = kwargs.get("invocation_params") if invocation_params: model_name = invocation_params.get("model_name") if model_name: self.chat_openai_model_name = model_name prompt_tokens = 0 for message_list in messages: message_string = " ".join( cast(str, msg.content) for msg in message_list ) num_tokens = get_num_tokens( message_string, openai_model_name=self.chat_openai_model_name, ) prompt_tokens += num_tokens self._send_to_infino("prompt_tokens", prompt_tokens) if self.verbose: print( f"on_chat_model_start: is_chat_openai_model= \ {self.is_chat_openai_model}, \ chat_openai_model_name={self.chat_openai_model_name}" ) # Send the prompt to infino prompt = " ".join( cast(str, msg.content) for sublist in messages for msg in sublist ) self._send_to_infino("prompt", prompt, is_ts=False) # Set the error flag to indicate no error (this will get overridden # in on_llm_error if an error occurs). self.error = 0 # Set the start time (so that we can calculate the request # duration in on_llm_end). self.start_time = time.time()
[ "0", " ", "prompt_tokens" ]
2024-01-10
axgpt/langchain
libs~langchain~langchain~memory~chat_message_histories~upstash_redis.py
import json import logging from typing import List, Optional from langchain_core.schema import ( BaseChatMessageHistory, ) from langchain_core.schema.messages import ( BaseMessage, _message_to_dict, messages_from_dict, ) logger = logging.getLogger(__name__) class UpstashRedisChatMessageHistory(BaseChatMessageHistory): """Chat message history stored in an Upstash Redis database.""" def __init__( self, session_id: str, url: str = "", token: str = "", key_prefix: str = "message_store:", ttl: Optional[int] = None, ): try: from upstash_redis import Redis except ImportError: raise ImportError( "Could not import upstash redis python package. " "Please install it with `pip install upstash_redis`." ) if url == "" or token == "": raise ValueError( "UPSTASH_REDIS_REST_URL and UPSTASH_REDIS_REST_TOKEN are needed." ) try: self.redis_client = Redis(url=url, token=token) except Exception: logger.error("Upstash Redis instance could not be initiated.") self.session_id = session_id self.key_prefix = key_prefix self.ttl = ttl @property def key(self) -> str: """Construct the record key to use""" return self.key_prefix + self.session_id @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from Upstash Redis""" _items = self.redis_client.lrange(self.key, 0, -1) items = [json.loads(m) for m in _items[::-1]] messages = messages_from_dict(items) return messages def add_message(self, message: BaseMessage) -> None: """Append the message to the record in Upstash Redis""" self.redis_client.lpush(self.key, json.dumps(_message_to_dict(message))) if self.ttl: self.redis_client.expire(self.key, self.ttl) def clear(self) -> None: """Clear session memory from Upstash Redis""" self.redis_client.delete(self.key)
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~chat_loaders~imessage.py
from __future__ import annotations from pathlib import Path from typing import TYPE_CHECKING, Iterator, List, Optional, Union from langchain_core.schema import HumanMessage from langchain_core.schema.chat import ChatSession from langchain.chat_loaders.base import BaseChatLoader if TYPE_CHECKING: import sqlite3 class IMessageChatLoader(BaseChatLoader): """Load chat sessions from the `iMessage` chat.db SQLite file. It only works on macOS when you have iMessage enabled and have the chat.db file. The chat.db file is likely located at ~/Library/Messages/chat.db. However, your terminal may not have permission to access this file. To resolve this, you can copy the file to a different location, change the permissions of the file, or grant full disk access for your terminal emulator in System Settings > Security and Privacy > Full Disk Access. """ def __init__(self, path: Optional[Union[str, Path]] = None): """ Initialize the IMessageChatLoader. Args: path (str or Path, optional): Path to the chat.db SQLite file. Defaults to None, in which case the default path ~/Library/Messages/chat.db will be used. """ if path is None: path = Path.home() / "Library" / "Messages" / "chat.db" self.db_path = path if isinstance(path, Path) else Path(path) if not self.db_path.exists(): raise FileNotFoundError(f"File {self.db_path} not found") try: import sqlite3 # noqa: F401 except ImportError as e: raise ImportError( "The sqlite3 module is required to load iMessage chats.\n" "Please install it with `pip install pysqlite3`" ) from e def _load_single_chat_session( self, cursor: "sqlite3.Cursor", chat_id: int ) -> ChatSession: """ Load a single chat session from the iMessage chat.db. Args: cursor: SQLite cursor object. chat_id (int): ID of the chat session to load. Returns: ChatSession: Loaded chat session. """ results: List[HumanMessage] = [] query = """ SELECT message.date, handle.id, message.text FROM message JOIN chat_message_join ON message.ROWID = chat_message_join.message_id JOIN handle ON message.handle_id = handle.ROWID WHERE chat_message_join.chat_id = ? ORDER BY message.date ASC; """ cursor.execute(query, (chat_id,)) messages = cursor.fetchall() for date, sender, text in messages: if text: # Skip empty messages results.append( HumanMessage( role=sender, content=text, additional_kwargs={ "message_time": date, "sender": sender, }, ) ) return ChatSession(messages=results) def lazy_load(self) -> Iterator[ChatSession]: """ Lazy load the chat sessions from the iMessage chat.db and yield them in the required format. Yields: ChatSession: Loaded chat session. """ import sqlite3 try: conn = sqlite3.connect(self.db_path) except sqlite3.OperationalError as e: raise ValueError( f"Could not open iMessage DB file {self.db_path}.\n" "Make sure your terminal emulator has disk access to this file.\n" " You can either copy the DB file to an accessible location" " or grant full disk access for your terminal emulator." " You can grant full disk access for your terminal emulator" " in System Settings > Security and Privacy > Full Disk Access." ) from e cursor = conn.cursor() # Fetch the list of chat IDs sorted by time (most recent first) query = """SELECT chat_id FROM message JOIN chat_message_join ON message.ROWID = chat_message_join.message_id GROUP BY chat_id ORDER BY MAX(date) DESC;""" cursor.execute(query) chat_ids = [row[0] for row in cursor.fetchall()] for chat_id in chat_ids: yield self._load_single_chat_session(cursor, chat_id) conn.close()
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~callbacks~context_callback.py
"""Callback handler for Context AI""" import os from typing import Any, Dict, List from uuid import UUID from langchain_core.schema import ( BaseMessage, LLMResult, ) from langchain.callbacks.base import BaseCallbackHandler def import_context() -> Any: """Import the `getcontext` package.""" try: import getcontext # noqa: F401 from getcontext.generated.models import ( Conversation, Message, MessageRole, Rating, ) from getcontext.token import Credential # noqa: F401 except ImportError: raise ImportError( "To use the context callback manager you need to have the " "`getcontext` python package installed (version >=0.3.0). " "Please install it with `pip install --upgrade python-context`" ) return getcontext, Credential, Conversation, Message, MessageRole, Rating class ContextCallbackHandler(BaseCallbackHandler): """Callback Handler that records transcripts to the Context service. (https://context.ai). Keyword Args: token (optional): The token with which to authenticate requests to Context. Visit https://with.context.ai/settings to generate a token. If not provided, the value of the `CONTEXT_TOKEN` environment variable will be used. Raises: ImportError: if the `context-python` package is not installed. Chat Example: >>> from langchain.llms import ChatOpenAI >>> from langchain.callbacks import ContextCallbackHandler >>> context_callback = ContextCallbackHandler( ... token="<CONTEXT_TOKEN_HERE>", ... ) >>> chat = ChatOpenAI( ... temperature=0, ... headers={"user_id": "123"}, ... callbacks=[context_callback], ... openai_api_key="API_KEY_HERE", ... ) >>> messages = [ ... SystemMessage(content="You translate English to French."), ... HumanMessage(content="I love programming with LangChain."), ... ] >>> chat(messages) Chain Example: >>> from langchain.chains import LLMChain >>> from langchain.chat_models import ChatOpenAI >>> from langchain.callbacks import ContextCallbackHandler >>> context_callback = ContextCallbackHandler( ... token="<CONTEXT_TOKEN_HERE>", ... ) >>> human_message_prompt = HumanMessagePromptTemplate( ... prompt=PromptTemplate( ... template="What is a good name for a company that makes {product}?", ... input_variables=["product"], ... ), ... ) >>> chat_prompt_template = ChatPromptTemplate.from_messages( ... [human_message_prompt] ... ) >>> callback = ContextCallbackHandler(token) >>> # Note: the same callback object must be shared between the ... LLM and the chain. >>> chat = ChatOpenAI(temperature=0.9, callbacks=[callback]) >>> chain = LLMChain( ... llm=chat, ... prompt=chat_prompt_template, ... callbacks=[callback] ... ) >>> chain.run("colorful socks") """ def __init__(self, token: str = "", verbose: bool = False, **kwargs: Any) -> None: ( self.context, self.credential, self.conversation_model, self.message_model, self.message_role_model, self.rating_model, ) = import_context() token = token or os.environ.get("CONTEXT_TOKEN") or "" self.client = self.context.ContextAPI(credential=self.credential(token)) self.chain_run_id = None self.llm_model = None self.messages: List[Any] = [] self.metadata: Dict[str, str] = {} def on_chat_model_start( self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, **kwargs: Any, ) -> Any: """Run when the chat model is started.""" llm_model = kwargs.get("invocation_params", {}).get("model", None) if llm_model is not None: self.metadata["model"] = llm_model if len(messages) == 0: return for message in messages[0]: role = self.message_role_model.SYSTEM if message.type == "human": role = self.message_role_model.USER elif message.type == "system": role = self.message_role_model.SYSTEM elif message.type == "ai": role = self.message_role_model.ASSISTANT self.messages.append( self.message_model( message=message.content, role=role, ) ) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Run when LLM ends.""" if len(response.generations) == 0 or len(response.generations[0]) == 0: return if not self.chain_run_id: generation = response.generations[0][0] self.messages.append( self.message_model( message=generation.text, role=self.message_role_model.ASSISTANT, ) ) self._log_conversation() def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any ) -> None: """Run when chain starts.""" self.chain_run_id = kwargs.get("run_id", None) def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """Run when chain ends.""" self.messages.append( self.message_model( message=outputs["text"], role=self.message_role_model.ASSISTANT, ) ) self._log_conversation() self.chain_run_id = None def _log_conversation(self) -> None: """Log the conversation to the context API.""" if len(self.messages) == 0: return self.client.log.conversation_upsert( body={ "conversation": self.conversation_model( messages=self.messages, metadata=self.metadata, ) } ) self.messages = [] self.metadata = {}
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~chat_models~mlflow_ai_gateway.py
import asyncio import logging from functools import partial from typing import Any, Dict, List, Mapping, Optional from langchain_core.pydantic_v1 import BaseModel, Extra from langchain_core.schema import ( ChatGeneration, ChatResult, ) from langchain_core.schema.messages import ( AIMessage, BaseMessage, ChatMessage, FunctionMessage, HumanMessage, SystemMessage, ) from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel logger = logging.getLogger(__name__) # Ignoring type because below is valid pydantic code # Unexpected keyword argument "extra" for "__init_subclass__" of "object" [call-arg] class ChatParams(BaseModel, extra=Extra.allow): # type: ignore[call-arg] """Parameters for the `MLflow AI Gateway` LLM.""" temperature: float = 0.0 candidate_count: int = 1 """The number of candidates to return.""" stop: Optional[List[str]] = None max_tokens: Optional[int] = None class ChatMLflowAIGateway(BaseChatModel): """`MLflow AI Gateway` chat models API. To use, you should have the ``mlflow[gateway]`` python package installed. For more information, see https://mlflow.org/docs/latest/gateway/index.html. Example: .. code-block:: python from langchain.chat_models import ChatMLflowAIGateway chat = ChatMLflowAIGateway( gateway_uri="<your-mlflow-ai-gateway-uri>", route="<your-mlflow-ai-gateway-chat-route>", params={ "temperature": 0.1 } ) """ def __init__(self, **kwargs: Any): try: import mlflow.gateway except ImportError as e: raise ImportError( "Could not import `mlflow.gateway` module. " "Please install it with `pip install mlflow[gateway]`." ) from e super().__init__(**kwargs) if self.gateway_uri: mlflow.gateway.set_gateway_uri(self.gateway_uri) route: str gateway_uri: Optional[str] = None params: Optional[ChatParams] = None @property def _default_params(self) -> Dict[str, Any]: params: Dict[str, Any] = { "gateway_uri": self.gateway_uri, "route": self.route, **(self.params.dict() if self.params else {}), } return params def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: try: import mlflow.gateway except ImportError as e: raise ImportError( "Could not import `mlflow.gateway` module. " "Please install it with `pip install mlflow[gateway]`." ) from e message_dicts = [ ChatMLflowAIGateway._convert_message_to_dict(message) for message in messages ] data: Dict[str, Any] = { "messages": message_dicts, **(self.params.dict() if self.params else {}), } resp = mlflow.gateway.query(self.route, data=data) return ChatMLflowAIGateway._create_chat_result(resp) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: func = partial( self._generate, messages, stop=stop, run_manager=run_manager, **kwargs ) return await asyncio.get_event_loop().run_in_executor(None, func) @property def _identifying_params(self) -> Dict[str, Any]: return self._default_params def _get_invocation_params( self, stop: Optional[List[str]] = None, **kwargs: Any ) -> Dict[str, Any]: """Get the parameters used to invoke the model FOR THE CALLBACKS.""" return { **self._default_params, **super()._get_invocation_params(stop=stop, **kwargs), } @property def _llm_type(self) -> str: """Return type of chat model.""" return "mlflow-ai-gateway-chat" @staticmethod def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: role = _dict["role"] content = _dict["content"] if role == "user": return HumanMessage(content=content) elif role == "assistant": return AIMessage(content=content) elif role == "system": return SystemMessage(content=content) else: return ChatMessage(content=content, role=role) @staticmethod def _raise_functions_not_supported() -> None: raise ValueError( "Function messages are not supported by the MLflow AI Gateway. Please" " create a feature request at https://github.com/mlflow/mlflow/issues." ) @staticmethod def _convert_message_to_dict(message: BaseMessage) -> dict: if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} elif isinstance(message, FunctionMessage): raise ValueError( "Function messages are not supported by the MLflow AI Gateway. Please" " create a feature request at https://github.com/mlflow/mlflow/issues." ) else: raise ValueError(f"Got unknown message type: {message}") if "function_call" in message.additional_kwargs: ChatMLflowAIGateway._raise_functions_not_supported() if message.additional_kwargs: logger.warning( "Additional message arguments are unsupported by MLflow AI Gateway " " and will be ignored: %s", message.additional_kwargs, ) return message_dict @staticmethod def _create_chat_result(response: Mapping[str, Any]) -> ChatResult: generations = [] for candidate in response["candidates"]: message = ChatMLflowAIGateway._convert_dict_to_message(candidate["message"]) message_metadata = candidate.get("metadata", {}) gen = ChatGeneration( message=message, generation_info=dict(message_metadata), ) generations.append(gen) response_metadata = response.get("metadata", {}) return ChatResult(generations=generations, llm_output=response_metadata)
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~unit_tests~chains~test_base.py
"""Test logic on base chain class.""" from typing import Any, Dict, List, Optional import pytest from langchain_core.schema import RUN_KEY, BaseMemory from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler class FakeMemory(BaseMemory): """Fake memory class for testing purposes.""" @property def memory_variables(self) -> List[str]: """Return baz variable.""" return ["baz"] def load_memory_variables( self, inputs: Optional[Dict[str, Any]] = None ) -> Dict[str, str]: """Return baz variable.""" return {"baz": "foo"} def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Pass.""" def clear(self) -> None: """Pass.""" class FakeChain(Chain): """Fake chain class for testing purposes.""" be_correct: bool = True the_input_keys: List[str] = ["foo"] the_output_keys: List[str] = ["bar"] @property def input_keys(self) -> List[str]: """Input keys.""" return self.the_input_keys @property def output_keys(self) -> List[str]: """Output key of bar.""" return self.the_output_keys def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: if self.be_correct: return {"bar": "baz"} else: return {"baz": "bar"} def test_bad_inputs() -> None: """Test errors are raised if input keys are not found.""" chain = FakeChain() with pytest.raises(ValueError): chain({"foobar": "baz"}) def test_bad_outputs() -> None: """Test errors are raised if outputs keys are not found.""" chain = FakeChain(be_correct=False) with pytest.raises(ValueError): chain({"foo": "baz"}) def test_run_info() -> None: """Test that run_info is returned properly when specified""" chain = FakeChain() output = chain({"foo": "bar"}, include_run_info=True) assert "foo" in output assert "bar" in output assert RUN_KEY in output def test_correct_call() -> None: """Test correct call of fake chain.""" chain = FakeChain() output = chain({"foo": "bar"}) assert output == {"foo": "bar", "bar": "baz"} def test_single_input_correct() -> None: """Test passing single input works.""" chain = FakeChain() output = chain("bar") assert output == {"foo": "bar", "bar": "baz"} def test_single_input_error() -> None: """Test passing single input errors as expected.""" chain = FakeChain(the_input_keys=["foo", "bar"]) with pytest.raises(ValueError): chain("bar") def test_run_single_arg() -> None: """Test run method with single arg.""" chain = FakeChain() output = chain.run("bar") assert output == "baz" def test_run_multiple_args_error() -> None: """Test run method with multiple args errors as expected.""" chain = FakeChain() with pytest.raises(ValueError): chain.run("bar", "foo") def test_run_kwargs() -> None: """Test run method with kwargs.""" chain = FakeChain(the_input_keys=["foo", "bar"]) output = chain.run(foo="bar", bar="foo") assert output == "baz" def test_run_kwargs_error() -> None: """Test run method with kwargs errors as expected.""" chain = FakeChain(the_input_keys=["foo", "bar"]) with pytest.raises(ValueError): chain.run(foo="bar", baz="foo") def test_run_args_and_kwargs_error() -> None: """Test run method with args and kwargs.""" chain = FakeChain(the_input_keys=["foo", "bar"]) with pytest.raises(ValueError): chain.run("bar", foo="bar") def test_multiple_output_keys_error() -> None: """Test run with multiple output keys errors as expected.""" chain = FakeChain(the_output_keys=["foo", "bar"]) with pytest.raises(ValueError): chain.run("bar") def test_run_arg_with_memory() -> None: """Test run method works when arg is passed.""" chain = FakeChain(the_input_keys=["foo", "baz"], memory=FakeMemory()) chain.run("bar") def test_run_with_callback() -> None: """Test run method works when callback manager is passed.""" handler = FakeCallbackHandler() chain = FakeChain( callbacks=[handler], ) output = chain.run("bar") assert output == "baz" assert handler.starts == 1 assert handler.ends == 1 assert handler.errors == 0
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~document_loaders~parsers~generic.py
"""Code for generic / auxiliary parsers. This module contains some logic to help assemble more sophisticated parsers. """ from typing import Iterator, Mapping, Optional from langchain_core.schema import Document from langchain.document_loaders.base import BaseBlobParser from langchain.document_loaders.blob_loaders.schema import Blob class MimeTypeBasedParser(BaseBlobParser): """Parser that uses `mime`-types to parse a blob. This parser is useful for simple pipelines where the mime-type is sufficient to determine how to parse a blob. To use, configure handlers based on mime-types and pass them to the initializer. Example: .. code-block:: python from langchain.document_loaders.parsers.generic import MimeTypeBasedParser parser = MimeTypeBasedParser( handlers={ "application/pdf": ..., }, fallback_parser=..., ) """ def __init__( self, handlers: Mapping[str, BaseBlobParser], *, fallback_parser: Optional[BaseBlobParser] = None, ) -> None: """Define a parser that uses mime-types to determine how to parse a blob. Args: handlers: A mapping from mime-types to functions that take a blob, parse it and return a document. fallback_parser: A fallback_parser parser to use if the mime-type is not found in the handlers. If provided, this parser will be used to parse blobs with all mime-types not found in the handlers. If not provided, a ValueError will be raised if the mime-type is not found in the handlers. """ self.handlers = handlers self.fallback_parser = fallback_parser def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Load documents from a blob.""" mimetype = blob.mimetype if mimetype is None: raise ValueError(f"{blob} does not have a mimetype.") if mimetype in self.handlers: handler = self.handlers[mimetype] yield from handler.lazy_parse(blob) else: if self.fallback_parser is not None: yield from self.fallback_parser.lazy_parse(blob) else: raise ValueError(f"Unsupported mime type: {mimetype}")
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~integration_tests~vectorstores~test_zep.py
# mypy: disable-error-code=attr-defined import copy from random import random from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple from uuid import uuid4 import pytest from langchain_core.schema import Document from pytest_mock import MockerFixture from langchain.vectorstores import ZepVectorStore from langchain.vectorstores.zep import CollectionConfig if TYPE_CHECKING: from zep_python.document import Document as ZepDocument from zep_python.document import DocumentCollection VECTOR_DIMS = 5 def gen_vector() -> List[float]: return [random() for _ in range(VECTOR_DIMS)] def gen_mock_zep_document( collection_name: str, embedding_dimensions: Optional[int] = None, ) -> "ZepDocument": from zep_python.document import Document as ZepDocument embedding = ( [random() for _ in range(embedding_dimensions)] if embedding_dimensions else None ) return ZepDocument( uuid=str(uuid4()), collection_name=collection_name, content="Test Document", embedding=embedding, metadata={"key": "value"}, ) @pytest.fixture def texts_metadatas() -> Dict[str, Any]: return { "texts": ["Test Document" for _ in range(2)], "metadatas": [{"key": "value"} for _ in range(2)], } @pytest.fixture def mock_documents() -> List[Document]: return [ Document( page_content="Test Document", metadata={"key": "value"}, ) for _ in range(2) ] @pytest.fixture def texts_metadatas_as_zep_documents() -> List["ZepDocument"]: from zep_python.document import Document as ZepDocument return [ ZepDocument( content="Test Document", metadata={"key": "value"}, ) for _ in range(2) ] @pytest.fixture def search_results() -> List["ZepDocument"]: return [ gen_mock_zep_document( collection_name="test_collection", embedding_dimensions=VECTOR_DIMS ) for _ in range(2) ] @pytest.fixture def search_results_with_query_embedding() -> Tuple[List["ZepDocument"], List[float]]: return_count = 2 return [ gen_mock_zep_document( collection_name="test_collection", embedding_dimensions=VECTOR_DIMS ) for _ in range(return_count) ], gen_vector() @pytest.fixture def mock_collection_config() -> CollectionConfig: return CollectionConfig( name="test_collection", description="Test Collection", metadata={"key": "value"}, embedding_dimensions=VECTOR_DIMS, is_auto_embedded=True, ) @pytest.fixture @pytest.mark.requires("zep_python") def mock_collection( mocker: MockerFixture, mock_collection_config: CollectionConfig, search_results: List[Document], search_results_with_query_embedding: Tuple[List[Document], List[float]], ) -> "DocumentCollection": from zep_python.document import DocumentCollection mock_collection: DocumentCollection = mocker.patch( "zep_python.document.collections.DocumentCollection", autospec=True ) mock_collection.search.return_value = copy.deepcopy(search_results) mock_collection.asearch.return_value = copy.deepcopy(search_results) temp_value = copy.deepcopy(search_results_with_query_embedding) mock_collection.search_return_query_vector.return_value = copy.deepcopy(temp_value) mock_collection.asearch_return_query_vector.return_value = copy.deepcopy(temp_value) mock_collection.name = mock_collection_config.name mock_collection.is_auto_embedded = mock_collection_config.is_auto_embedded mock_collection.embedding_dimensions = mock_collection_config.embedding_dimensions return mock_collection @pytest.fixture @pytest.mark.requires("zep_python") def zep_vectorstore( mocker: MockerFixture, mock_collection: "DocumentCollection", mock_collection_config: CollectionConfig, ) -> ZepVectorStore: mock_document_client = mocker.patch( "zep_python.document.client.DocumentClient", autospec=True ) mock_document_client.get_collection.return_value = mock_collection mock_client = mocker.patch("zep_python.ZepClient", autospec=True) mock_client.return_value.document = mock_document_client vs = ZepVectorStore( mock_collection_config.name, "http://localhost:8080", api_key="test", config=mock_collection_config, ) return vs @pytest.mark.requires("zep_python") def test_from_texts( zep_vectorstore: ZepVectorStore, mock_collection_config: CollectionConfig, mock_collection: "DocumentCollection", texts_metadatas: Dict[str, Any], texts_metadatas_as_zep_documents: List["ZepDocument"], ) -> None: vs = zep_vectorstore.from_texts( **texts_metadatas, collection_name=mock_collection_config.name, api_url="http://localhost:8000", ) vs._collection.add_documents.assert_called_once_with( # type: ignore texts_metadatas_as_zep_documents ) @pytest.mark.requires("zep_python") def test_add_documents( zep_vectorstore: ZepVectorStore, mock_collection: "DocumentCollection", mock_documents: List[Document], texts_metadatas_as_zep_documents: List["ZepDocument"], ) -> None: zep_vectorstore.add_documents(mock_documents) mock_collection.add_documents.assert_called_once_with( # type: ignore texts_metadatas_as_zep_documents ) @pytest.mark.requires("zep_python") @pytest.mark.asyncio async def test_asearch_similarity( zep_vectorstore: ZepVectorStore, ) -> None: r = await zep_vectorstore.asearch( query="Test Document", search_type="similarity", k=2 ) assert len(r) == 2 assert r[0].page_content == "Test Document" assert r[0].metadata == {"key": "value"} @pytest.mark.requires("zep_python") @pytest.mark.asyncio async def test_asearch_mmr( zep_vectorstore: ZepVectorStore, ) -> None: r = await zep_vectorstore.asearch(query="Test Document", search_type="mmr", k=1) assert len(r) == 1 assert r[0].page_content == "Test Document" assert r[0].metadata == {"key": "value"} @pytest.mark.requires("zep_python") def test_search_similarity( zep_vectorstore: ZepVectorStore, ) -> None: r = zep_vectorstore.search(query="Test Document", search_type="similarity", k=2) assert len(r) == 2 assert r[0].page_content == "Test Document" assert r[0].metadata == {"key": "value"} @pytest.mark.requires("zep_python") def test_search_mmr( zep_vectorstore: ZepVectorStore, ) -> None: r = zep_vectorstore.search(query="Test Document", search_type="mmr", k=1) assert len(r) == 1 assert r[0].page_content == "Test Document" assert r[0].metadata == {"key": "value"}
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~utilities~tensorflow_datasets.py
import logging from typing import Any, Callable, Dict, Iterator, List, Optional from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.schema import Document logger = logging.getLogger(__name__) class TensorflowDatasets(BaseModel): """Access to the TensorFlow Datasets. The Current implementation can work only with datasets that fit in a memory. `TensorFlow Datasets` is a collection of datasets ready to use, with TensorFlow or other Python ML frameworks, such as Jax. All datasets are exposed as `tf.data.Datasets`. To get started see the Guide: https://www.tensorflow.org/datasets/overview and the list of datasets: https://www.tensorflow.org/datasets/catalog/ overview#all_datasets You have to provide the sample_to_document_function: a function that a sample from the dataset-specific format to the Document. Attributes: dataset_name: the name of the dataset to load split_name: the name of the split to load. Defaults to "train". load_max_docs: a limit to the number of loaded documents. Defaults to 100. sample_to_document_function: a function that converts a dataset sample to a Document Example: .. code-block:: python from langchain.utilities import TensorflowDatasets def mlqaen_example_to_document(example: dict) -> Document: return Document( page_content=decode_to_str(example["context"]), metadata={ "id": decode_to_str(example["id"]), "title": decode_to_str(example["title"]), "question": decode_to_str(example["question"]), "answer": decode_to_str(example["answers"]["text"][0]), }, ) tsds_client = TensorflowDatasets( dataset_name="mlqa/en", split_name="train", load_max_docs=MAX_DOCS, sample_to_document_function=mlqaen_example_to_document, ) """ dataset_name: str = "" split_name: str = "train" load_max_docs: int = 100 sample_to_document_function: Optional[Callable[[Dict], Document]] = None dataset: Any #: :meta private: @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in environment.""" try: import tensorflow # noqa: F401 except ImportError: raise ImportError( "Could not import tensorflow python package. " "Please install it with `pip install tensorflow`." ) try: import tensorflow_datasets except ImportError: raise ImportError( "Could not import tensorflow_datasets python package. " "Please install it with `pip install tensorflow-datasets`." ) if values["sample_to_document_function"] is None: raise ValueError( "sample_to_document_function is None. " "Please provide a function that converts a dataset sample to" " a Document." ) values["dataset"] = tensorflow_datasets.load( values["dataset_name"], split=values["split_name"] ) return values def lazy_load(self) -> Iterator[Document]: """Download a selected dataset lazily. Returns: an iterator of Documents. """ return ( self.sample_to_document_function(s) for s in self.dataset.take(self.load_max_docs) if self.sample_to_document_function is not None ) def load(self) -> List[Document]: """Download a selected dataset. Returns: a list of Documents. """ return list(self.lazy_load())
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~schema~language_model.py
from langchain_core.schema.language_model import BaseLanguageModel, get_tokenizer __all__ = ["get_tokenizer", "BaseLanguageModel"]
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~integration_tests~document_loaders~test_dataframe.py
import pandas as pd import pytest from langchain_core.schema import Document from langchain.document_loaders import DataFrameLoader @pytest.fixture def sample_data_frame() -> pd.DataFrame: data = { "text": ["Hello", "World"], "author": ["Alice", "Bob"], "date": ["2022-01-01", "2022-01-02"], } return pd.DataFrame(data) def test_load_returns_list_of_documents(sample_data_frame: pd.DataFrame) -> None: loader = DataFrameLoader(sample_data_frame) docs = loader.load() assert isinstance(docs, list) assert all(isinstance(doc, Document) for doc in docs) assert len(docs) == 2 def test_load_converts_dataframe_columns_to_document_metadata( sample_data_frame: pd.DataFrame, ) -> None: loader = DataFrameLoader(sample_data_frame) docs = loader.load() for i, doc in enumerate(docs): assert doc.metadata["author"] == sample_data_frame.loc[i, "author"] assert doc.metadata["date"] == sample_data_frame.loc[i, "date"] def test_load_uses_page_content_column_to_create_document_text( sample_data_frame: pd.DataFrame, ) -> None: sample_data_frame = sample_data_frame.rename(columns={"text": "dummy_test_column"}) loader = DataFrameLoader(sample_data_frame, page_content_column="dummy_test_column") docs = loader.load() assert docs[0].page_content == "Hello" assert docs[1].page_content == "World"
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~unit_tests~output_parsers~test_json.py
import json from typing import Any, AsyncIterator, Iterator, Tuple import pytest from langchain_core.schema.messages import AIMessageChunk from langchain.output_parsers.json import ( SimpleJsonOutputParser, parse_json_markdown, parse_partial_json, ) from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser GOOD_JSON = """```json { "foo": "bar" } ```""" JSON_WITH_NEW_LINES = """ ```json { "foo": "bar" } ``` """ JSON_WITH_NEW_LINES_INSIDE = """```json { "foo": "bar" } ```""" JSON_WITH_NEW_LINES_EVERYWHERE = """ ```json { "foo": "bar" } ``` """ TICKS_WITH_NEW_LINES_EVERYWHERE = """ ``` { "foo": "bar" } ``` """ JSON_WITH_MARKDOWN_CODE_BLOCK = """```json { "foo": "```bar```" } ```""" JSON_WITH_MARKDOWN_CODE_BLOCK_AND_NEWLINES = """```json { "action": "Final Answer", "action_input": "```bar\n<div id="1" class=\"value\">\n\ttext\n</div>```" } ```""" JSON_WITH_UNESCAPED_QUOTES_IN_NESTED_JSON = """```json { "action": "Final Answer", "action_input": "{"foo": "bar", "bar": "foo"}" } ```""" JSON_WITH_ESCAPED_QUOTES_IN_NESTED_JSON = """```json { "action": "Final Answer", "action_input": "{\"foo\": \"bar\", \"bar\": \"foo\"}" } ```""" JSON_WITH_PYTHON_DICT = """```json { "action": "Final Answer", "action_input": {"foo": "bar", "bar": "foo"} } ```""" JSON_WITH_ESCAPED_DOUBLE_QUOTES_IN_NESTED_JSON = """```json { "action": "Final Answer", "action_input": "{\\"foo\\": \\"bar\\", \\"bar\\": \\"foo\\"}" } ```""" NO_TICKS = """{ "foo": "bar" }""" NO_TICKS_WHITE_SPACE = """ { "foo": "bar" } """ TEXT_BEFORE = """Thought: I need to use the search tool Action: ``` { "foo": "bar" } ```""" TEXT_AFTER = """``` { "foo": "bar" } ``` This should do the trick""" TEXT_BEFORE_AND_AFTER = """Action: Testing ``` { "foo": "bar" } ``` This should do the trick""" TEST_CASES = [ GOOD_JSON, JSON_WITH_NEW_LINES, JSON_WITH_NEW_LINES_INSIDE, JSON_WITH_NEW_LINES_EVERYWHERE, TICKS_WITH_NEW_LINES_EVERYWHERE, NO_TICKS, NO_TICKS_WHITE_SPACE, TEXT_BEFORE, TEXT_AFTER, ] @pytest.mark.parametrize("json_string", TEST_CASES) def test_parse_json(json_string: str) -> None: parsed = parse_json_markdown(json_string) assert parsed == {"foo": "bar"} def test_parse_json_with_code_blocks() -> None: parsed = parse_json_markdown(JSON_WITH_MARKDOWN_CODE_BLOCK) assert parsed == {"foo": "```bar```"} parsed = parse_json_markdown(JSON_WITH_MARKDOWN_CODE_BLOCK_AND_NEWLINES) assert parsed == { "action": "Final Answer", "action_input": '```bar\n<div id="1" class="value">\n\ttext\n</div>```', } TEST_CASES_ESCAPED_QUOTES = [ JSON_WITH_UNESCAPED_QUOTES_IN_NESTED_JSON, JSON_WITH_ESCAPED_QUOTES_IN_NESTED_JSON, JSON_WITH_ESCAPED_DOUBLE_QUOTES_IN_NESTED_JSON, ] @pytest.mark.parametrize("json_string", TEST_CASES_ESCAPED_QUOTES) def test_parse_nested_json_with_escaped_quotes(json_string: str) -> None: parsed = parse_json_markdown(json_string) assert parsed == { "action": "Final Answer", "action_input": '{"foo": "bar", "bar": "foo"}', } def test_parse_json_with_python_dict() -> None: parsed = parse_json_markdown(JSON_WITH_PYTHON_DICT) assert parsed == { "action": "Final Answer", "action_input": {"foo": "bar", "bar": "foo"}, } TEST_CASES_PARTIAL = [ ('{"foo": "bar", "bar": "foo"}', '{"foo": "bar", "bar": "foo"}'), ('{"foo": "bar", "bar": "foo', '{"foo": "bar", "bar": "foo"}'), ('{"foo": "bar", "bar": "foo}', '{"foo": "bar", "bar": "foo}"}'), ('{"foo": "bar", "bar": "foo[', '{"foo": "bar", "bar": "foo["}'), ('{"foo": "bar", "bar": "foo\\"', '{"foo": "bar", "bar": "foo\\""}'), ] @pytest.mark.parametrize("json_strings", TEST_CASES_PARTIAL) def test_parse_partial_json(json_strings: Tuple[str, str]) -> None: case, expected = json_strings parsed = parse_partial_json(case) assert parsed == json.loads(expected) STREAMED_TOKENS = """ { " setup ": " Why did the bears start a band called Bears Bears Bears ? " , " punchline ": " Because they wanted to play bear -y good music ! " , " audience ": [ " Haha " , " So funny " ] } """.splitlines() EXPECTED_STREAMED_JSON = [ {}, {"setup": ""}, {"setup": "Why"}, {"setup": "Why did"}, {"setup": "Why did the"}, {"setup": "Why did the bears"}, {"setup": "Why did the bears start"}, {"setup": "Why did the bears start a"}, {"setup": "Why did the bears start a band"}, {"setup": "Why did the bears start a band called"}, {"setup": "Why did the bears start a band called Bears"}, {"setup": "Why did the bears start a band called Bears Bears"}, {"setup": "Why did the bears start a band called Bears Bears Bears"}, {"setup": "Why did the bears start a band called Bears Bears Bears ?"}, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because they", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because they wanted", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because they wanted to", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because they wanted to play", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because they wanted to play bear", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because they wanted to play bear -y", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because they wanted to play bear -y good", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because they wanted to play bear -y good music", }, { "setup": "Why did the bears start a band called Bears Bears Bears ?", "punchline": "Because they wanted to play bear -y good music !", }, { "punchline": "Because they wanted to play bear -y good music !", "setup": "Why did the bears start a band called Bears Bears Bears ?", "audience": [], }, { "punchline": "Because they wanted to play bear -y good music !", "setup": "Why did the bears start a band called Bears Bears Bears ?", "audience": [""], }, { "punchline": "Because they wanted to play bear -y good music !", "setup": "Why did the bears start a band called Bears Bears Bears ?", "audience": ["Haha"], }, { "punchline": "Because they wanted to play bear -y good music !", "setup": "Why did the bears start a band called Bears Bears Bears ?", "audience": ["Haha", ""], }, { "punchline": "Because they wanted to play bear -y good music !", "setup": "Why did the bears start a band called Bears Bears Bears ?", "audience": ["Haha", "So"], }, { "punchline": "Because they wanted to play bear -y good music !", "setup": "Why did the bears start a band called Bears Bears Bears ?", "audience": ["Haha", "So funny"], }, ] EXPECTED_STREAMED_JSON_DIFF = [ [{"op": "replace", "path": "", "value": {}}], [{"op": "add", "path": "/setup", "value": ""}], [{"op": "replace", "path": "/setup", "value": "Why"}], [{"op": "replace", "path": "/setup", "value": "Why did"}], [{"op": "replace", "path": "/setup", "value": "Why did the"}], [{"op": "replace", "path": "/setup", "value": "Why did the bears"}], [{"op": "replace", "path": "/setup", "value": "Why did the bears start"}], [{"op": "replace", "path": "/setup", "value": "Why did the bears start a"}], [{"op": "replace", "path": "/setup", "value": "Why did the bears start a band"}], [ { "op": "replace", "path": "/setup", "value": "Why did the bears start a band called", } ], [ { "op": "replace", "path": "/setup", "value": "Why did the bears start a band called Bears", } ], [ { "op": "replace", "path": "/setup", "value": "Why did the bears start a band called Bears Bears", } ], [ { "op": "replace", "path": "/setup", "value": "Why did the bears start a band called Bears Bears Bears", } ], [ { "op": "replace", "path": "/setup", "value": "Why did the bears start a band called Bears Bears Bears ?", } ], [{"op": "add", "path": "/punchline", "value": ""}], [{"op": "replace", "path": "/punchline", "value": "Because"}], [{"op": "replace", "path": "/punchline", "value": "Because they"}], [{"op": "replace", "path": "/punchline", "value": "Because they wanted"}], [{"op": "replace", "path": "/punchline", "value": "Because they wanted to"}], [{"op": "replace", "path": "/punchline", "value": "Because they wanted to play"}], [ { "op": "replace", "path": "/punchline", "value": "Because they wanted to play bear", } ], [ { "op": "replace", "path": "/punchline", "value": "Because they wanted to play bear -y", } ], [ { "op": "replace", "path": "/punchline", "value": "Because they wanted to play bear -y good", } ], [ { "op": "replace", "path": "/punchline", "value": "Because they wanted to play bear -y good music", } ], [ { "op": "replace", "path": "/punchline", "value": "Because they wanted to play bear -y good music !", } ], [{"op": "add", "path": "/audience", "value": []}], [{"op": "add", "path": "/audience/0", "value": ""}], [{"op": "replace", "path": "/audience/0", "value": "Haha"}], [{"op": "add", "path": "/audience/1", "value": ""}], [{"op": "replace", "path": "/audience/1", "value": "So"}], [{"op": "replace", "path": "/audience/1", "value": "So funny"}], ] def test_partial_text_json_output_parser() -> None: def input_iter(_: Any) -> Iterator[str]: for token in STREAMED_TOKENS: yield token chain = input_iter | SimpleJsonOutputParser() assert list(chain.stream(None)) == EXPECTED_STREAMED_JSON def test_partial_functions_json_output_parser() -> None: def input_iter(_: Any) -> Iterator[AIMessageChunk]: for token in STREAMED_TOKENS: yield AIMessageChunk( content="", additional_kwargs={"function_call": {"arguments": token}} ) chain = input_iter | JsonOutputFunctionsParser() assert list(chain.stream(None)) == EXPECTED_STREAMED_JSON def test_partial_text_json_output_parser_diff() -> None: def input_iter(_: Any) -> Iterator[str]: for token in STREAMED_TOKENS: yield token chain = input_iter | SimpleJsonOutputParser(diff=True) assert list(chain.stream(None)) == EXPECTED_STREAMED_JSON_DIFF def test_partial_functions_json_output_parser_diff() -> None: def input_iter(_: Any) -> Iterator[AIMessageChunk]: for token in STREAMED_TOKENS: yield AIMessageChunk( content="", additional_kwargs={"function_call": {"arguments": token}} ) chain = input_iter | JsonOutputFunctionsParser(diff=True) assert list(chain.stream(None)) == EXPECTED_STREAMED_JSON_DIFF @pytest.mark.asyncio async def test_partial_text_json_output_parser_async() -> None: async def input_iter(_: Any) -> AsyncIterator[str]: for token in STREAMED_TOKENS: yield token chain = input_iter | SimpleJsonOutputParser() assert [p async for p in chain.astream(None)] == EXPECTED_STREAMED_JSON @pytest.mark.asyncio async def test_partial_functions_json_output_parser_async() -> None: async def input_iter(_: Any) -> AsyncIterator[AIMessageChunk]: for token in STREAMED_TOKENS: yield AIMessageChunk( content="", additional_kwargs={"function_call": {"arguments": token}} ) chain = input_iter | JsonOutputFunctionsParser() assert [p async for p in chain.astream(None)] == EXPECTED_STREAMED_JSON @pytest.mark.asyncio async def test_partial_text_json_output_parser_diff_async() -> None: async def input_iter(_: Any) -> AsyncIterator[str]: for token in STREAMED_TOKENS: yield token chain = input_iter | SimpleJsonOutputParser(diff=True) assert [p async for p in chain.astream(None)] == EXPECTED_STREAMED_JSON_DIFF @pytest.mark.asyncio async def test_partial_functions_json_output_parser_diff_async() -> None: async def input_iter(_: Any) -> AsyncIterator[AIMessageChunk]: for token in STREAMED_TOKENS: yield AIMessageChunk( content="", additional_kwargs={"function_call": {"arguments": token}} ) chain = input_iter | JsonOutputFunctionsParser(diff=True) assert [p async for p in chain.astream(None)] == EXPECTED_STREAMED_JSON_DIFF
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~chat_models~anthropic.py
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, cast from langchain_core.schema.messages import ( AIMessage, AIMessageChunk, BaseMessage, ChatMessage, HumanMessage, SystemMessage, ) from langchain_core.schema.output import ChatGeneration, ChatGenerationChunk, ChatResult from langchain_core.schema.prompt import PromptValue from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import ( BaseChatModel, _agenerate_from_stream, _generate_from_stream, ) from langchain.llms.anthropic import _AnthropicCommon def _convert_one_message_to_text( message: BaseMessage, human_prompt: str, ai_prompt: str, ) -> str: content = cast(str, message.content) if isinstance(message, ChatMessage): message_text = f"\n\n{message.role.capitalize()}: {content}" elif isinstance(message, HumanMessage): message_text = f"{human_prompt} {content}" elif isinstance(message, AIMessage): message_text = f"{ai_prompt} {content}" elif isinstance(message, SystemMessage): message_text = content else: raise ValueError(f"Got unknown type {message}") return message_text def convert_messages_to_prompt_anthropic( messages: List[BaseMessage], *, human_prompt: str = "\n\nHuman:", ai_prompt: str = "\n\nAssistant:", ) -> str: """Format a list of messages into a full prompt for the Anthropic model Args: messages (List[BaseMessage]): List of BaseMessage to combine. human_prompt (str, optional): Human prompt tag. Defaults to "\n\nHuman:". ai_prompt (str, optional): AI prompt tag. Defaults to "\n\nAssistant:". Returns: str: Combined string with necessary human_prompt and ai_prompt tags. """ messages = messages.copy() # don't mutate the original list if not isinstance(messages[-1], AIMessage): messages.append(AIMessage(content="")) text = "".join( _convert_one_message_to_text(message, human_prompt, ai_prompt) for message in messages ) # trim off the trailing ' ' that might come from the "Assistant: " return text.rstrip() class ChatAnthropic(BaseChatModel, _AnthropicCommon): """`Anthropic` chat large language models. To use, you should have the ``anthropic`` python package installed, and the environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python import anthropic from langchain.chat_models import ChatAnthropic model = ChatAnthropic(model="<model_name>", anthropic_api_key="my-api-key") """ class Config: """Configuration for this pydantic object.""" allow_population_by_field_name = True arbitrary_types_allowed = True @property def lc_secrets(self) -> Dict[str, str]: return {"anthropic_api_key": "ANTHROPIC_API_KEY"} @property def _llm_type(self) -> str: """Return type of chat model.""" return "anthropic-chat" @classmethod def is_lc_serializable(cls) -> bool: """Return whether this model can be serialized by Langchain.""" return True def _convert_messages_to_prompt(self, messages: List[BaseMessage]) -> str: """Format a list of messages into a full prompt for the Anthropic model Args: messages (List[BaseMessage]): List of BaseMessage to combine. Returns: str: Combined string with necessary HUMAN_PROMPT and AI_PROMPT tags. """ prompt_params = {} if self.HUMAN_PROMPT: prompt_params["human_prompt"] = self.HUMAN_PROMPT if self.AI_PROMPT: prompt_params["ai_prompt"] = self.AI_PROMPT return convert_messages_to_prompt_anthropic(messages=messages, **prompt_params) def convert_prompt(self, prompt: PromptValue) -> str: return self._convert_messages_to_prompt(prompt.to_messages()) def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: prompt = self._convert_messages_to_prompt(messages) params: Dict[str, Any] = {"prompt": prompt, **self._default_params, **kwargs} if stop: params["stop_sequences"] = stop stream_resp = self.client.completions.create(**params, stream=True) for data in stream_resp: delta = data.completion yield ChatGenerationChunk(message=AIMessageChunk(content=delta)) if run_manager: run_manager.on_llm_new_token(delta) async def _astream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: prompt = self._convert_messages_to_prompt(messages) params: Dict[str, Any] = {"prompt": prompt, **self._default_params, **kwargs} if stop: params["stop_sequences"] = stop stream_resp = await self.async_client.completions.create(**params, stream=True) async for data in stream_resp: delta = data.completion yield ChatGenerationChunk(message=AIMessageChunk(content=delta)) if run_manager: await run_manager.on_llm_new_token(delta) def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: stream_iter = self._stream( messages, stop=stop, run_manager=run_manager, **kwargs ) return _generate_from_stream(stream_iter) prompt = self._convert_messages_to_prompt( messages, ) params: Dict[str, Any] = { "prompt": prompt, **self._default_params, **kwargs, } if stop: params["stop_sequences"] = stop response = self.client.completions.create(**params) completion = response.completion message = AIMessage(content=completion) return ChatResult(generations=[ChatGeneration(message=message)]) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: stream_iter = self._astream( messages, stop=stop, run_manager=run_manager, **kwargs ) return await _agenerate_from_stream(stream_iter) prompt = self._convert_messages_to_prompt( messages, ) params: Dict[str, Any] = { "prompt": prompt, **self._default_params, **kwargs, } if stop: params["stop_sequences"] = stop response = await self.async_client.completions.create(**params) completion = response.completion message = AIMessage(content=completion) return ChatResult(generations=[ChatGeneration(message=message)]) def get_num_tokens(self, text: str) -> int: """Calculate number of tokens.""" if not self.count_tokens: raise NameError("Please ensure the anthropic package is loaded") return self.count_tokens(text)
[ "{}" ]
2024-01-10
axgpt/langchain
libs~core~langchain_core~callbacks~tracers~log_stream.py
from __future__ import annotations import math import threading from collections import defaultdict from typing import ( Any, AsyncIterator, Dict, List, Optional, Sequence, TypedDict, Union, ) from uuid import UUID import jsonpatch from anyio import create_memory_object_stream from langchain_core.callbacks.tracers.base import BaseTracer from langchain_core.callbacks.tracers.schemas import Run from langchain_core.load.load import load from langchain_core.schema.output import ChatGenerationChunk, GenerationChunk class LogEntry(TypedDict): """A single entry in the run log.""" id: str """ID of the sub-run.""" name: str """Name of the object being run.""" type: str """Type of the object being run, eg. prompt, chain, llm, etc.""" tags: List[str] """List of tags for the run.""" metadata: Dict[str, Any] """Key-value pairs of metadata for the run.""" start_time: str """ISO-8601 timestamp of when the run started.""" streamed_output_str: List[str] """List of LLM tokens streamed by this run, if applicable.""" final_output: Optional[Any] """Final output of this run. Only available after the run has finished successfully.""" end_time: Optional[str] """ISO-8601 timestamp of when the run ended. Only available after the run has finished.""" class RunState(TypedDict): """State of the run.""" id: str """ID of the run.""" streamed_output: List[Any] """List of output chunks streamed by Runnable.stream()""" final_output: Optional[Any] """Final output of the run, usually the result of aggregating (`+`) streamed_output. Only available after the run has finished successfully.""" logs: Dict[str, LogEntry] """Map of run names to sub-runs. If filters were supplied, this list will contain only the runs that matched the filters.""" class RunLogPatch: """A patch to the run log.""" ops: List[Dict[str, Any]] """List of jsonpatch operations, which describe how to create the run state from an empty dict. This is the minimal representation of the log, designed to be serialized as JSON and sent over the wire to reconstruct the log on the other side. Reconstruction of the state can be done with any jsonpatch-compliant library, see https://jsonpatch.com for more information.""" def __init__(self, *ops: Dict[str, Any]) -> None: self.ops = list(ops) def __add__(self, other: Union[RunLogPatch, Any]) -> RunLog: if type(other) == RunLogPatch: ops = self.ops + other.ops state = jsonpatch.apply_patch(None, ops) return RunLog(*ops, state=state) raise TypeError( f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" ) def __repr__(self) -> str: from pprint import pformat # 1:-1 to get rid of the [] around the list return f"RunLogPatch({pformat(self.ops)[1:-1]})" def __eq__(self, other: object) -> bool: return isinstance(other, RunLogPatch) and self.ops == other.ops class RunLog(RunLogPatch): """A run log.""" state: RunState """Current state of the log, obtained from applying all ops in sequence.""" def __init__(self, *ops: Dict[str, Any], state: RunState) -> None: super().__init__(*ops) self.state = state def __add__(self, other: Union[RunLogPatch, Any]) -> RunLog: if type(other) == RunLogPatch: ops = self.ops + other.ops state = jsonpatch.apply_patch(self.state, other.ops) return RunLog(*ops, state=state) raise TypeError( f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" ) def __repr__(self) -> str: from pprint import pformat return f"RunLog({pformat(self.state)})" class LogStreamCallbackHandler(BaseTracer): """A tracer that streams run logs to a stream.""" def __init__( self, *, auto_close: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, ) -> None: super().__init__() self.auto_close = auto_close self.include_names = include_names self.include_types = include_types self.include_tags = include_tags self.exclude_names = exclude_names self.exclude_types = exclude_types self.exclude_tags = exclude_tags send_stream: Any receive_stream: Any send_stream, receive_stream = create_memory_object_stream( math.inf, item_type=RunLogPatch ) self.lock = threading.Lock() self.send_stream = send_stream self.receive_stream = receive_stream self._key_map_by_run_id: Dict[UUID, str] = {} self._counter_map_by_name: Dict[str, int] = defaultdict(int) self.root_id: Optional[UUID] = None def __aiter__(self) -> AsyncIterator[RunLogPatch]: return self.receive_stream.__aiter__() def include_run(self, run: Run) -> bool: if run.id == self.root_id: return False run_tags = run.tags or [] if ( self.include_names is None and self.include_types is None and self.include_tags is None ): include = True else: include = False if self.include_names is not None: include = include or run.name in self.include_names if self.include_types is not None: include = include or run.run_type in self.include_types if self.include_tags is not None: include = include or any(tag in self.include_tags for tag in run_tags) if self.exclude_names is not None: include = include and run.name not in self.exclude_names if self.exclude_types is not None: include = include and run.run_type not in self.exclude_types if self.exclude_tags is not None: include = include and all(tag not in self.exclude_tags for tag in run_tags) return include def _persist_run(self, run: Run) -> None: # This is a legacy method only called once for an entire run tree # therefore not useful here pass def _on_run_create(self, run: Run) -> None: """Start a run.""" if self.root_id is None: self.root_id = run.id self.send_stream.send_nowait( RunLogPatch( { "op": "replace", "path": "", "value": RunState( id=str(run.id), streamed_output=[], final_output=None, logs={}, ), } ) ) if not self.include_run(run): return # Determine previous index, increment by 1 with self.lock: self._counter_map_by_name[run.name] += 1 count = self._counter_map_by_name[run.name] self._key_map_by_run_id[run.id] = ( run.name if count == 1 else f"{run.name}:{count}" ) # Add the run to the stream self.send_stream.send_nowait( RunLogPatch( { "op": "add", "path": f"/logs/{self._key_map_by_run_id[run.id]}", "value": LogEntry( id=str(run.id), name=run.name, type=run.run_type, tags=run.tags or [], metadata=(run.extra or {}).get("metadata", {}), start_time=run.start_time.isoformat(timespec="milliseconds"), streamed_output_str=[], final_output=None, end_time=None, ), } ) ) def _on_run_update(self, run: Run) -> None: """Finish a run.""" try: index = self._key_map_by_run_id.get(run.id) if index is None: return self.send_stream.send_nowait( RunLogPatch( { "op": "add", "path": f"/logs/{index}/final_output", # to undo the dumpd done by some runnables / tracer / etc "value": load(run.outputs), }, { "op": "add", "path": f"/logs/{index}/end_time", "value": run.end_time.isoformat(timespec="milliseconds") if run.end_time is not None else None, }, ) ) finally: if run.id == self.root_id: self.send_stream.send_nowait( RunLogPatch( { "op": "replace", "path": "/final_output", "value": load(run.outputs), } ) ) if self.auto_close: self.send_stream.close() def _on_llm_new_token( self, run: Run, token: str, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]], ) -> None: """Process new LLM token.""" index = self._key_map_by_run_id.get(run.id) if index is None: return self.send_stream.send_nowait( RunLogPatch( { "op": "add", "path": f"/logs/{index}/streamed_output_str/-", "value": token, } ) )
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~vectorstores~cassandra.py
from __future__ import annotations import typing import uuid from typing import ( Any, Callable, Dict, Iterable, List, Optional, Tuple, Type, TypeVar, Union, ) import numpy as np if typing.TYPE_CHECKING: from cassandra.cluster import Session from langchain_core.schema.embeddings import Embeddings from langchain_core.schema.vectorstore import VectorStore from langchain.docstore.document import Document from langchain.vectorstores.utils import maximal_marginal_relevance CVST = TypeVar("CVST", bound="Cassandra") class Cassandra(VectorStore): """Wrapper around Apache Cassandra(R) for vector-store workloads. To use it, you need a recent installation of the `cassio` library and a Cassandra cluster / Astra DB instance supporting vector capabilities. Visit the cassio.org website for extensive quickstarts and code examples. Example: .. code-block:: python from langchain.vectorstores import Cassandra from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() session = ... # create your Cassandra session object keyspace = 'my_keyspace' # the keyspace should exist already table_name = 'my_vector_store' vectorstore = Cassandra(embeddings, session, keyspace, table_name) """ _embedding_dimension: Union[int, None] @staticmethod def _filter_to_metadata(filter_dict: Optional[Dict[str, str]]) -> Dict[str, Any]: if filter_dict is None: return {} else: return filter_dict def _get_embedding_dimension(self) -> int: if self._embedding_dimension is None: self._embedding_dimension = len( self.embedding.embed_query("This is a sample sentence.") ) return self._embedding_dimension def __init__( self, embedding: Embeddings, session: Session, keyspace: str, table_name: str, ttl_seconds: Optional[int] = None, ) -> None: try: from cassio.vector import VectorTable except (ImportError, ModuleNotFoundError): raise ImportError( "Could not import cassio python package. " "Please install it with `pip install cassio`." ) """Create a vector table.""" self.embedding = embedding self.session = session self.keyspace = keyspace self.table_name = table_name self.ttl_seconds = ttl_seconds # self._embedding_dimension = None # self.table = VectorTable( session=session, keyspace=keyspace, table=table_name, embedding_dimension=self._get_embedding_dimension(), primary_key_type="TEXT", ) @property def embeddings(self) -> Embeddings: return self.embedding @staticmethod def _dont_flip_the_cos_score(distance: float) -> float: # the identity return distance def _select_relevance_score_fn(self) -> Callable[[float], float]: """ The underlying VectorTable already returns a "score proper", i.e. one in [0, 1] where higher means more *similar*, so here the final score transformation is not reversing the interval: """ return self._dont_flip_the_cos_score def delete_collection(self) -> None: """ Just an alias for `clear` (to better align with other VectorStore implementations). """ self.clear() def clear(self) -> None: """Empty the collection.""" self.table.clear() def delete_by_document_id(self, document_id: str) -> None: return self.table.delete(document_id) def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]: """Delete by vector IDs. Args: ids: List of ids to delete. Returns: Optional[bool]: True if deletion is successful, False otherwise, None if not implemented. """ if ids is None: raise ValueError("No ids provided to delete.") for document_id in ids: self.delete_by_document_id(document_id) return True def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 16, ttl_seconds: Optional[int] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. batch_size (int): Number of concurrent requests to send to the server. ttl_seconds (Optional[int], optional): Optional time-to-live for the added texts. Returns: List[str]: List of IDs of the added texts. """ _texts = list(texts) # lest it be a generator or something if ids is None: ids = [uuid.uuid4().hex for _ in _texts] if metadatas is None: metadatas = [{} for _ in _texts] # ttl_seconds = ttl_seconds or self.ttl_seconds # embedding_vectors = self.embedding.embed_documents(_texts) # for i in range(0, len(_texts), batch_size): batch_texts = _texts[i : i + batch_size] batch_embedding_vectors = embedding_vectors[i : i + batch_size] batch_ids = ids[i : i + batch_size] batch_metadatas = metadatas[i : i + batch_size] futures = [ self.table.put_async( text, embedding_vector, text_id, metadata, ttl_seconds ) for text, embedding_vector, text_id, metadata in zip( batch_texts, batch_embedding_vectors, batch_ids, batch_metadatas ) ] for future in futures: future.result() return ids # id-returning search facilities def similarity_search_with_score_id_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Dict[str, str]] = None, ) -> List[Tuple[Document, float, str]]: """Return docs most similar to embedding vector. Args: embedding (str): Embedding to look up documents similar to. k (int): Number of Documents to return. Defaults to 4. Returns: List of (Document, score, id), the most similar to the query vector. """ search_metadata = self._filter_to_metadata(filter) # hits = self.table.search( embedding_vector=embedding, top_k=k, metric="cos", metric_threshold=None, metadata=search_metadata, ) # We stick to 'cos' distance as it can be normalized on a 0-1 axis # (1=most relevant), as required by this class' contract. return [ ( Document( page_content=hit["document"], metadata=hit["metadata"], ), 0.5 + 0.5 * hit["distance"], hit["document_id"], ) for hit in hits ] def similarity_search_with_score_id( self, query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, ) -> List[Tuple[Document, float, str]]: embedding_vector = self.embedding.embed_query(query) return self.similarity_search_with_score_id_by_vector( embedding=embedding_vector, k=k, filter=filter, ) # id-unaware search facilities def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Dict[str, str]] = None, ) -> List[Tuple[Document, float]]: """Return docs most similar to embedding vector. Args: embedding (str): Embedding to look up documents similar to. k (int): Number of Documents to return. Defaults to 4. Returns: List of (Document, score), the most similar to the query vector. """ return [ (doc, score) for (doc, score, docId) in self.similarity_search_with_score_id_by_vector( embedding=embedding, k=k, filter=filter, ) ] def similarity_search( self, query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: embedding_vector = self.embedding.embed_query(query) return self.similarity_search_by_vector( embedding_vector, k, filter=filter, ) def similarity_search_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: return [ doc for doc, _ in self.similarity_search_with_score_by_vector( embedding, k, filter=filter, ) ] def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, ) -> List[Tuple[Document, float]]: embedding_vector = self.embedding.embed_query(query) return self.similarity_search_with_score_by_vector( embedding_vector, k, filter=filter, ) def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Returns: List of Documents selected by maximal marginal relevance. """ search_metadata = self._filter_to_metadata(filter) prefetchHits = self.table.search( embedding_vector=embedding, top_k=fetch_k, metric="cos", metric_threshold=None, metadata=search_metadata, ) # let the mmr utility pick the *indices* in the above array mmrChosenIndices = maximal_marginal_relevance( np.array(embedding, dtype=np.float32), [pfHit["embedding_vector"] for pfHit in prefetchHits], k=k, lambda_mult=lambda_mult, ) mmrHits = [ pfHit for pfIndex, pfHit in enumerate(prefetchHits) if pfIndex in mmrChosenIndices ] return [ Document( page_content=hit["document"], metadata=hit["metadata"], ) for hit in mmrHits ] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Optional. Returns: List of Documents selected by maximal marginal relevance. """ embedding_vector = self.embedding.embed_query(query) return self.max_marginal_relevance_search_by_vector( embedding_vector, k, fetch_k, lambda_mult=lambda_mult, filter=filter, ) @classmethod def from_texts( cls: Type[CVST], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, batch_size: int = 16, **kwargs: Any, ) -> CVST: """Create a Cassandra vectorstore from raw texts. No support for specifying text IDs Returns: a Cassandra vectorstore. """ session: Session = kwargs["session"] keyspace: str = kwargs["keyspace"] table_name: str = kwargs["table_name"] cassandraStore = cls( embedding=embedding, session=session, keyspace=keyspace, table_name=table_name, ) cassandraStore.add_texts(texts=texts, metadatas=metadatas) return cassandraStore @classmethod def from_documents( cls: Type[CVST], documents: List[Document], embedding: Embeddings, batch_size: int = 16, **kwargs: Any, ) -> CVST: """Create a Cassandra vectorstore from a document list. No support for specifying text IDs Returns: a Cassandra vectorstore. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] session: Session = kwargs["session"] keyspace: str = kwargs["keyspace"] table_name: str = kwargs["table_name"] return cls.from_texts( texts=texts, metadatas=metadatas, embedding=embedding, session=session, keyspace=keyspace, table_name=table_name, )
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~output_parsers~boolean.py
from langchain_core.schema import BaseOutputParser class BooleanOutputParser(BaseOutputParser[bool]): """Parse the output of an LLM call to a boolean.""" true_val: str = "YES" """The string value that should be parsed as True.""" false_val: str = "NO" """The string value that should be parsed as False.""" def parse(self, text: str) -> bool: """Parse the output of an LLM call to a boolean. Args: text: output of a language model Returns: boolean """ cleaned_text = text.strip() if cleaned_text.upper() not in (self.true_val.upper(), self.false_val.upper()): raise ValueError( f"BooleanOutputParser expected output value to either be " f"{self.true_val} or {self.false_val}. Received {cleaned_text}." ) return cleaned_text.upper() == self.true_val.upper() @property def _type(self) -> str: """Snake-case string identifier for an output parser type.""" return "boolean_output_parser"
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~retrievers~document_compressors~cohere_rerank.py
from __future__ import annotations from typing import TYPE_CHECKING, Dict, Optional, Sequence from langchain_core.pydantic_v1 import Extra, root_validator from langchain_core.schema import Document from langchain.callbacks.manager import Callbacks from langchain.retrievers.document_compressors.base import BaseDocumentCompressor from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: from cohere import Client else: # We do to avoid pydantic annotation issues when actually instantiating # while keeping this import optional try: from cohere import Client except ImportError: pass class CohereRerank(BaseDocumentCompressor): """Document compressor that uses `Cohere Rerank API`.""" client: Client """Cohere client to use for compressing documents.""" top_n: int = 3 """Number of documents to return.""" model: str = "rerank-english-v2.0" """Model to use for reranking.""" cohere_api_key: Optional[str] = None user_agent: str = "langchain" """Identifier for the application making the request.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" try: import cohere except ImportError: raise ImportError( "Could not import cohere python package. " "Please install it with `pip install cohere`." ) cohere_api_key = get_from_dict_or_env( values, "cohere_api_key", "COHERE_API_KEY" ) client_name = values["user_agent"] values["client"] = cohere.Client(cohere_api_key, client_name=client_name) return values def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """ Compress documents using Cohere's rerank API. Args: documents: A sequence of documents to compress. query: The query to use for compressing the documents. callbacks: Callbacks to run during the compression process. Returns: A sequence of compressed documents. """ if len(documents) == 0: # to avoid empty api call return [] doc_list = list(documents) _docs = [d.page_content for d in doc_list] results = self.client.rerank( model=self.model, query=query, documents=_docs, top_n=self.top_n ) final_results = [] for r in results: doc = doc_list[r.index] doc.metadata["relevance_score"] = r.relevance_score final_results.append(doc) return final_results
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~integration_tests~llms~test_opaqueprompts.py
from langchain_core.prompts import PromptTemplate from langchain_core.runnables import RunnableParallel from langchain_core.schema.output_parser import StrOutputParser import langchain.utilities.opaqueprompts as op from langchain.chains.llm import LLMChain from langchain.llms import OpenAI from langchain.llms.opaqueprompts import OpaquePrompts from langchain.memory import ConversationBufferWindowMemory prompt_template = """ As an AI assistant, you will answer questions according to given context. Sensitive personal information in the question is masked for privacy. For instance, if the original text says "Giana is good," it will be changed to "PERSON_998 is good." Here's how to handle these changes: * Consider these masked phrases just as placeholders, but still refer to them in a relevant way when answering. * It's possible that different masked terms might mean the same thing. Stick with the given term and don't modify it. * All masked terms follow the "TYPE_ID" pattern. * Please don't invent new masked terms. For instance, if you see "PERSON_998," don't come up with "PERSON_997" or "PERSON_999" unless they're already in the question. Conversation History: ```{history}``` Context : ```During our recent meeting on February 23, 2023, at 10:30 AM, John Doe provided me with his personal details. His email is [email protected] and his contact number is 650-456-7890. He lives in New York City, USA, and belongs to the American nationality with Christian beliefs and a leaning towards the Democratic party. He mentioned that he recently made a transaction using his credit card 4111 1111 1111 1111 and transferred bitcoins to the wallet address 1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa. While discussing his European travels, he noted down his IBAN as GB29 NWBK 6016 1331 9268 19. Additionally, he provided his website as https://johndoeportfolio.com. John also discussed some of his US-specific details. He said his bank account number is 1234567890123456 and his drivers license is Y12345678. His ITIN is 987-65-4321, and he recently renewed his passport, the number for which is 123456789. He emphasized not to share his SSN, which is 669-45-6789. Furthermore, he mentioned that he accesses his work files remotely through the IP 192.168.1.1 and has a medical license number MED-123456. ``` Question: ```{question}``` """ def test_opaqueprompts() -> None: chain = LLMChain( prompt=PromptTemplate.from_template(prompt_template), llm=OpaquePrompts(llm=OpenAI()), memory=ConversationBufferWindowMemory(k=2), ) output = chain.run( { "question": "Write a text message to remind John to do password reset \ for his website through his email to stay secure." } ) assert isinstance(output, str) def test_opaqueprompts_functions() -> None: prompt = (PromptTemplate.from_template(prompt_template),) llm = OpenAI() pg_chain = ( op.sanitize | RunnableParallel( secure_context=lambda x: x["secure_context"], # type: ignore response=(lambda x: x["sanitized_input"]) # type: ignore | prompt | llm | StrOutputParser(), ) | (lambda x: op.desanitize(x["response"], x["secure_context"])) ) pg_chain.invoke( { "question": "Write a text message to remind John to do password reset\ for his website through his email to stay secure.", "history": "", } )
[ "PERSON_998 is good.", "PERSON_998,", "\nAs an AI assistant, you will answer questions according to given context.\n\nSensitive personal information in the question is masked for privacy.\nFor instance, if the original text says \"Giana is good,\" it will be changed\nto \"PERSON_998 is good.\"\n\nHere's how to handle these changes:\n* Consider these masked phrases just as placeholders, but still refer to\nthem in a relevant way when answering.\n* It's possible that different masked terms might mean the same thing.\nStick with the given term and don't modify it.\n* All masked terms follow the \"TYPE_ID\" pattern.\n* Please don't invent new masked terms. For instance, if you see \"PERSON_998,\"\ndon't come up with \"PERSON_997\" or \"PERSON_999\" unless they're already in the question.\n\nConversation History: ```{history}```\nContext : ```During our recent meeting on February 23, 2023, at 10:30 AM,\nJohn Doe provided me with his personal details. His email is [email protected]\nand his contact number is 650-456-7890. He lives in New York City, USA, and\nbelongs to the American nationality with Christian beliefs and a leaning towards\nthe Democratic party. He mentioned that he recently made a transaction using his\ncredit card 4111 1111 1111 1111 and transferred bitcoins to the wallet address\n1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa. While discussing his European travels, he\nnoted down his IBAN as GB29 NWBK 6016 1331 9268 19. Additionally, he provided\nhis website as https://johndoeportfolio.com. John also discussed\nsome of his US-specific details. He said his bank account number is\n1234567890123456 and his drivers license is Y12345678. His ITIN is 987-65-4321,\nand he recently renewed his passport,\nthe number for which is 123456789. He emphasized not to share his SSN, which is\n669-45-6789. Furthermore, he mentioned that he accesses his work files remotely\nthrough the IP 192.168.1.1 and has a medical license number MED-123456. ```\nQuestion: ```{question}```\n", "Giana is good,", "t come up with \"PERSON_997\" or \"PERSON_999\" unless they" ]
2024-01-10
axgpt/langchain
libs~langchain~langchain~embeddings~aleph_alpha.py
from typing import Any, Dict, List, Optional from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.schema.embeddings import Embeddings from langchain.utils import get_from_dict_or_env class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings): """Aleph Alpha's asymmetric semantic embedding. AA provides you with an endpoint to embed a document and a query. The models were optimized to make the embeddings of documents and the query for a document as similar as possible. To learn more, check out: https://docs.aleph-alpha.com/docs/tasks/semantic_embed/ Example: .. code-block:: python from aleph_alpha import AlephAlphaAsymmetricSemanticEmbedding embeddings = AlephAlphaAsymmetricSemanticEmbedding( normalize=True, compress_to_size=128 ) document = "This is a content of the document" query = "What is the content of the document?" doc_result = embeddings.embed_documents([document]) query_result = embeddings.embed_query(query) """ client: Any #: :meta private: # Embedding params model: str = "luminous-base" """Model name to use.""" compress_to_size: Optional[int] = None """Should the returned embeddings come back as an original 5120-dim vector, or should it be compressed to 128-dim.""" normalize: Optional[bool] = None """Should returned embeddings be normalized""" contextual_control_threshold: Optional[int] = None """Attention control parameters only apply to those tokens that have explicitly been set in the request.""" control_log_additive: bool = True """Apply controls on prompt items by adding the log(control_factor) to attention scores.""" # Client params aleph_alpha_api_key: Optional[str] = None """API key for Aleph Alpha API.""" host: str = "https://api.aleph-alpha.com" """The hostname of the API host. The default one is "https://api.aleph-alpha.com")""" hosting: Optional[str] = None """Determines in which datacenters the request may be processed. You can either set the parameter to "aleph-alpha" or omit it (defaulting to None). Not setting this value, or setting it to None, gives us maximal flexibility in processing your request in our own datacenters and on servers hosted with other providers. Choose this option for maximal availability. Setting it to "aleph-alpha" allows us to only process the request in our own datacenters. Choose this option for maximal data privacy.""" request_timeout_seconds: int = 305 """Client timeout that will be set for HTTP requests in the `requests` library's API calls. Server will close all requests after 300 seconds with an internal server error.""" total_retries: int = 8 """The number of retries made in case requests fail with certain retryable status codes. If the last retry fails a corresponding exception is raised. Note, that between retries an exponential backoff is applied, starting with 0.5 s after the first retry and doubling for each retry made. So with the default setting of 8 retries a total wait time of 63.5 s is added between the retries.""" nice: bool = False """Setting this to True, will signal to the API that you intend to be nice to other users by de-prioritizing your request below concurrent ones.""" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" aleph_alpha_api_key = get_from_dict_or_env( values, "aleph_alpha_api_key", "ALEPH_ALPHA_API_KEY" ) try: from aleph_alpha_client import Client values["client"] = Client( token=aleph_alpha_api_key, host=values["host"], hosting=values["hosting"], request_timeout_seconds=values["request_timeout_seconds"], total_retries=values["total_retries"], nice=values["nice"], ) except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) return values def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Aleph Alpha's asymmetric Document endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ try: from aleph_alpha_client import ( Prompt, SemanticEmbeddingRequest, SemanticRepresentation, ) except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) document_embeddings = [] for text in texts: document_params = { "prompt": Prompt.from_text(text), "representation": SemanticRepresentation.Document, "compress_to_size": self.compress_to_size, "normalize": self.normalize, "contextual_control_threshold": self.contextual_control_threshold, "control_log_additive": self.control_log_additive, } document_request = SemanticEmbeddingRequest(**document_params) document_response = self.client.semantic_embed( request=document_request, model=self.model ) document_embeddings.append(document_response.embedding) return document_embeddings def embed_query(self, text: str) -> List[float]: """Call out to Aleph Alpha's asymmetric, query embedding endpoint Args: text: The text to embed. Returns: Embeddings for the text. """ try: from aleph_alpha_client import ( Prompt, SemanticEmbeddingRequest, SemanticRepresentation, ) except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) symmetric_params = { "prompt": Prompt.from_text(text), "representation": SemanticRepresentation.Query, "compress_to_size": self.compress_to_size, "normalize": self.normalize, "contextual_control_threshold": self.contextual_control_threshold, "control_log_additive": self.control_log_additive, } symmetric_request = SemanticEmbeddingRequest(**symmetric_params) symmetric_response = self.client.semantic_embed( request=symmetric_request, model=self.model ) return symmetric_response.embedding class AlephAlphaSymmetricSemanticEmbedding(AlephAlphaAsymmetricSemanticEmbedding): """The symmetric version of the Aleph Alpha's semantic embeddings. The main difference is that here, both the documents and queries are embedded with a SemanticRepresentation.Symmetric Example: .. code-block:: python from aleph_alpha import AlephAlphaSymmetricSemanticEmbedding embeddings = AlephAlphaAsymmetricSemanticEmbedding( normalize=True, compress_to_size=128 ) text = "This is a test text" doc_result = embeddings.embed_documents([text]) query_result = embeddings.embed_query(text) """ def _embed(self, text: str) -> List[float]: try: from aleph_alpha_client import ( Prompt, SemanticEmbeddingRequest, SemanticRepresentation, ) except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) query_params = { "prompt": Prompt.from_text(text), "representation": SemanticRepresentation.Symmetric, "compress_to_size": self.compress_to_size, "normalize": self.normalize, "contextual_control_threshold": self.contextual_control_threshold, "control_log_additive": self.control_log_additive, } query_request = SemanticEmbeddingRequest(**query_params) query_response = self.client.semantic_embed( request=query_request, model=self.model ) return query_response.embedding def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Aleph Alpha's Document endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ document_embeddings = [] for text in texts: document_embeddings.append(self._embed(text)) return document_embeddings def embed_query(self, text: str) -> List[float]: """Call out to Aleph Alpha's asymmetric, query embedding endpoint Args: text: The text to embed. Returns: Embeddings for the text. """ return self._embed(text)
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~integration_tests~retrievers~test_zep.py
from __future__ import annotations import copy from typing import TYPE_CHECKING, List import pytest from langchain_core.schema import Document from pytest_mock import MockerFixture from langchain.retrievers import ZepRetriever if TYPE_CHECKING: from zep_python import MemorySearchResult, ZepClient @pytest.fixture def search_results() -> List[MemorySearchResult]: from zep_python import MemorySearchResult, Message search_result = [ { "message": { "uuid": "66830914-19f5-490b-8677-1ba06bcd556b", "created_at": "2023-05-18T20:40:42.743773Z", "role": "user", "content": "I'm looking to plan a trip to Iceland. Can you help me?", "token_count": 17, }, "summary": None, "dist": 0.8734284910450115, }, { "message": { "uuid": "015e618c-ba9d-45b6-95c3-77a8e611570b", "created_at": "2023-05-18T20:40:42.743773Z", "role": "user", "content": "How much does a trip to Iceland typically cost?", "token_count": 12, }, "summary": None, "dist": 0.8554048017463456, }, ] return [ MemorySearchResult( message=Message.parse_obj(result["message"]), summary=result["summary"], dist=result["dist"], ) for result in search_result ] @pytest.fixture @pytest.mark.requires("zep_python") def zep_retriever( mocker: MockerFixture, search_results: List[MemorySearchResult] ) -> ZepRetriever: mock_zep_client: ZepClient = mocker.patch("zep_python.ZepClient", autospec=True) mock_zep_client.memory = mocker.patch( "zep_python.memory.client.MemoryClient", autospec=True ) mock_zep_client.memory.search_memory.return_value = copy.deepcopy( # type: ignore search_results ) mock_zep_client.memory.asearch_memory.return_value = copy.deepcopy( # type: ignore search_results ) zep = ZepRetriever(session_id="123", url="http://localhost:8000") zep.zep_client = mock_zep_client return zep @pytest.mark.requires("zep_python") def test_zep_retriever_get_relevant_documents( zep_retriever: ZepRetriever, search_results: List[MemorySearchResult] ) -> None: documents: List[Document] = zep_retriever.get_relevant_documents( query="My trip to Iceland" ) _test_documents(documents, search_results) @pytest.mark.requires("zep_python") @pytest.mark.asyncio async def test_zep_retriever_aget_relevant_documents( zep_retriever: ZepRetriever, search_results: List[MemorySearchResult] ) -> None: documents: List[Document] = await zep_retriever.aget_relevant_documents( query="My trip to Iceland" ) _test_documents(documents, search_results) def _test_documents( documents: List[Document], search_results: List[MemorySearchResult] ) -> None: assert len(documents) == 2 for i, document in enumerate(documents): assert document.page_content == search_results[i].message.get( # type: ignore "content" ) assert document.metadata.get("uuid") == search_results[i].message.get( # type: ignore "uuid" ) assert document.metadata.get("role") == search_results[i].message.get( # type: ignore "role" ) assert document.metadata.get("score") == search_results[i].dist
[ "How much does a trip to Iceland typically cost?", "I'm looking to plan a trip to Iceland. Can you help me?" ]
2024-01-10
axgpt/langchain
libs~langchain~tests~unit_tests~agents~output_parsers~test_json.py
from langchain_core.schema.agent import AgentAction, AgentFinish from langchain.agents.output_parsers.json import JSONAgentOutputParser def test_tool_usage() -> None: parser = JSONAgentOutputParser() _input = """ ``` { "action": "search", "action_input": "2+2" } ```""" output = parser.invoke(_input) expected_output = AgentAction(tool="search", tool_input="2+2", log=_input) assert output == expected_output def test_finish() -> None: parser = JSONAgentOutputParser() _input = """``` { "action": "Final Answer", "action_input": "4" } ```""" output = parser.invoke(_input) expected_output = AgentFinish(return_values={"output": "4"}, log=_input) assert output == expected_output
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~chains~router~llm_router.py
"""Base classes for LLM-powered router chains.""" from __future__ import annotations from typing import Any, Dict, List, Optional, Type, cast from langchain_core.pydantic_v1 import root_validator from langchain_core.schema import ( BaseOutputParser, BasePromptTemplate, OutputParserException, ) from langchain_core.schema.language_model import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains import LLMChain from langchain.chains.router.base import RouterChain from langchain.output_parsers.json import parse_and_check_json_markdown class LLMRouterChain(RouterChain): """A router chain that uses an LLM chain to perform routing.""" llm_chain: LLMChain """LLM chain used to perform routing""" @root_validator() def validate_prompt(cls, values: dict) -> dict: prompt = values["llm_chain"].prompt if prompt.output_parser is None: raise ValueError( "LLMRouterChain requires base llm_chain prompt to have an output" " parser that converts LLM text output to a dictionary with keys" " 'destination' and 'next_inputs'. Received a prompt with no output" " parser." ) return values @property def input_keys(self) -> List[str]: """Will be whatever keys the LLM chain prompt expects. :meta private: """ return self.llm_chain.input_keys def _validate_outputs(self, outputs: Dict[str, Any]) -> None: super()._validate_outputs(outputs) if not isinstance(outputs["next_inputs"], dict): raise ValueError def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() output = cast( Dict[str, Any], self.llm_chain.predict_and_parse(callbacks=callbacks, **inputs), ) return output async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() output = cast( Dict[str, Any], await self.llm_chain.apredict_and_parse(callbacks=callbacks, **inputs), ) return output @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: BasePromptTemplate, **kwargs: Any ) -> LLMRouterChain: """Convenience constructor.""" llm_chain = LLMChain(llm=llm, prompt=prompt) return cls(llm_chain=llm_chain, **kwargs) class RouterOutputParser(BaseOutputParser[Dict[str, str]]): """Parser for output of router chain in the multi-prompt chain.""" default_destination: str = "DEFAULT" next_inputs_type: Type = str next_inputs_inner_key: str = "input" def parse(self, text: str) -> Dict[str, Any]: try: expected_keys = ["destination", "next_inputs"] parsed = parse_and_check_json_markdown(text, expected_keys) if not isinstance(parsed["destination"], str): raise ValueError("Expected 'destination' to be a string.") if not isinstance(parsed["next_inputs"], self.next_inputs_type): raise ValueError( f"Expected 'next_inputs' to be {self.next_inputs_type}." ) parsed["next_inputs"] = {self.next_inputs_inner_key: parsed["next_inputs"]} if ( parsed["destination"].strip().lower() == self.default_destination.lower() ): parsed["destination"] = None else: parsed["destination"] = parsed["destination"].strip() return parsed except Exception as e: raise OutputParserException( f"Parsing text\n{text}\n raised following error:\n{e}" )
[ "llm_chain" ]
2024-01-10
axgpt/langchain
libs~langchain~langchain~utilities~arcee.py
# This module contains utility classes and functions for interacting with Arcee API. # For more information and updates, refer to the Arcee utils page: # [https://github.com/arcee-ai/arcee-python/blob/main/arcee/dalm.py] from enum import Enum from typing import Any, Dict, List, Literal, Mapping, Optional, Union import requests from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.schema.retriever import Document class ArceeRoute(str, Enum): """Routes available for the Arcee API as enumerator.""" generate = "models/generate" retrieve = "models/retrieve" model_training_status = "models/status/{id_or_name}" class DALMFilterType(str, Enum): """Filter types available for a DALM retrieval as enumerator.""" fuzzy_search = "fuzzy_search" strict_search = "strict_search" class DALMFilter(BaseModel): """Filters available for a DALM retrieval and generation. Arguments: field_name: The field to filter on. Can be 'document' or 'name' to filter on your document's raw text or title. Any other field will be presumed to be a metadata field you included when uploading your context data filter_type: Currently 'fuzzy_search' and 'strict_search' are supported. 'fuzzy_search' means a fuzzy search on the provided field is performed. The exact strict doesn't need to exist in the document for this to find a match. Very useful for scanning a document for some keyword terms. 'strict_search' means that the exact string must appear in the provided field. This is NOT an exact eq filter. ie a document with content "the happy dog crossed the street" will match on a strict_search of "dog" but won't match on "the dog". Python equivalent of `return search_string in full_string`. value: The actual value to search for in the context data/metadata """ field_name: str filter_type: DALMFilterType value: str _is_metadata: bool = False @root_validator() def set_meta(cls, values: Dict) -> Dict: """document and name are reserved arcee keys. Anything else is metadata""" values["_is_meta"] = values.get("field_name") not in ["document", "name"] return values class ArceeDocumentSource(BaseModel): """Source of an Arcee document.""" document: str name: str id: str class ArceeDocument(BaseModel): """Arcee document.""" index: str id: str score: float source: ArceeDocumentSource class ArceeDocumentAdapter: """Adapter for Arcee documents""" @classmethod def adapt(cls, arcee_document: ArceeDocument) -> Document: """Adapts an `ArceeDocument` to a langchain's `Document` object.""" return Document( page_content=arcee_document.source.document, metadata={ # arcee document; source metadata "name": arcee_document.source.name, "source_id": arcee_document.source.id, # arcee document metadata "index": arcee_document.index, "id": arcee_document.id, "score": arcee_document.score, }, ) class ArceeWrapper: """Wrapper for Arcee API.""" def __init__( self, arcee_api_key: str, arcee_api_url: str, arcee_api_version: str, model_kwargs: Optional[Dict[str, Any]], model_name: str, ): """Initialize ArceeWrapper. Arguments: arcee_api_key: API key for Arcee API. arcee_api_url: URL for Arcee API. arcee_api_version: Version of Arcee API. model_kwargs: Keyword arguments for Arcee API. model_name: Name of an Arcee model. """ self.arcee_api_key = arcee_api_key self.model_kwargs = model_kwargs self.arcee_api_url = arcee_api_url self.arcee_api_version = arcee_api_version try: route = ArceeRoute.model_training_status.value.format(id_or_name=model_name) response = self._make_request("get", route) self.model_id = response.get("model_id") self.model_training_status = response.get("status") except Exception as e: raise ValueError( f"Error while validating model training status for '{model_name}': {e}" ) from e def validate_model_training_status(self) -> None: if self.model_training_status != "training_complete": raise Exception( f"Model {self.model_id} is not ready. " "Please wait for training to complete." ) def _make_request( self, method: Literal["post", "get"], route: Union[ArceeRoute, str], body: Optional[Mapping[str, Any]] = None, params: Optional[dict] = None, headers: Optional[dict] = None, ) -> dict: """Make a request to the Arcee API Args: method: The HTTP method to use route: The route to call body: The body of the request params: The query params of the request headers: The headers of the request """ headers = self._make_request_headers(headers=headers) url = self._make_request_url(route=route) req_type = getattr(requests, method) response = req_type(url, json=body, params=params, headers=headers) if response.status_code not in (200, 201): raise Exception(f"Failed to make request. Response: {response.text}") return response.json() def _make_request_headers(self, headers: Optional[Dict] = None) -> Dict: headers = headers or {} internal_headers = { "X-Token": self.arcee_api_key, "Content-Type": "application/json", } headers.update(internal_headers) return headers def _make_request_url(self, route: Union[ArceeRoute, str]) -> str: return f"{self.arcee_api_url}/{self.arcee_api_version}/{route}" def _make_request_body_for_models( self, prompt: str, **kwargs: Mapping[str, Any] ) -> Mapping[str, Any]: """Make the request body for generate/retrieve models endpoint""" _model_kwargs = self.model_kwargs or {} _params = {**_model_kwargs, **kwargs} filters = [DALMFilter(**f) for f in _params.get("filters", [])] return dict( model_id=self.model_id, query=prompt, size=_params.get("size", 3), filters=filters, id=self.model_id, ) def generate( self, prompt: str, **kwargs: Any, ) -> str: """Generate text from Arcee DALM. Args: prompt: Prompt to generate text from. size: The max number of context results to retrieve. Defaults to 3. (Can be less if filters are provided). filters: Filters to apply to the context dataset. """ response = self._make_request( method="post", route=ArceeRoute.generate.value, body=self._make_request_body_for_models( prompt=prompt, **kwargs, ), ) return response["text"] def retrieve( self, query: str, **kwargs: Any, ) -> List[Document]: """Retrieve {size} contexts with your retriever for a given query Args: query: Query to submit to the model size: The max number of context results to retrieve. Defaults to 3. (Can be less if filters are provided). filters: Filters to apply to the context dataset. """ response = self._make_request( method="post", route=ArceeRoute.retrieve.value, body=self._make_request_body_for_models( prompt=query, **kwargs, ), ) return [ ArceeDocumentAdapter.adapt(ArceeDocument(**doc)) for doc in response["results"] ]
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~chains~api~openapi~requests_chain.py
"""request parser.""" import json import re from typing import Any from langchain_core.prompts.prompt import PromptTemplate from langchain_core.schema import BaseOutputParser from langchain_core.schema.language_model import BaseLanguageModel from langchain.chains.api.openapi.prompts import REQUEST_TEMPLATE from langchain.chains.llm import LLMChain class APIRequesterOutputParser(BaseOutputParser): """Parse the request and error tags.""" def _load_json_block(self, serialized_block: str) -> str: try: return json.dumps(json.loads(serialized_block, strict=False)) except json.JSONDecodeError: return "ERROR serializing request." def parse(self, llm_output: str) -> str: """Parse the request and error tags.""" json_match = re.search(r"```json(.*?)```", llm_output, re.DOTALL) if json_match: return self._load_json_block(json_match.group(1).strip()) message_match = re.search(r"```text(.*?)```", llm_output, re.DOTALL) if message_match: return f"MESSAGE: {message_match.group(1).strip()}" return "ERROR making request" @property def _type(self) -> str: return "api_requester" class APIRequesterChain(LLMChain): """Get the request parser.""" @classmethod def from_llm_and_typescript( cls, llm: BaseLanguageModel, typescript_definition: str, verbose: bool = True, **kwargs: Any, ) -> LLMChain: """Get the request parser.""" output_parser = APIRequesterOutputParser() prompt = PromptTemplate( template=REQUEST_TEMPLATE, output_parser=output_parser, partial_variables={"schema": typescript_definition}, input_variables=["instructions"], ) return cls(prompt=prompt, llm=llm, verbose=verbose, **kwargs)
[ "instructions" ]
2024-01-10
axgpt/langchain
libs~langchain~tests~integration_tests~chat_models~test_pai_eas_chat_endpoint.py
"""Test AliCloud Pai Eas Chat Model.""" import os from langchain_core.schema import ( AIMessage, BaseMessage, ChatGeneration, HumanMessage, LLMResult, ) from langchain.callbacks.manager import CallbackManager from langchain.chat_models.pai_eas_endpoint import PaiEasChatEndpoint from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler def test_pai_eas_call() -> None: chat = PaiEasChatEndpoint( eas_service_url=os.getenv("EAS_SERVICE_URL"), eas_service_token=os.getenv("EAS_SERVICE_TOKEN"), ) response = chat(messages=[HumanMessage(content="Say foo:")]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_multiple_history() -> None: """Tests multiple history works.""" chat = PaiEasChatEndpoint( eas_service_url=os.getenv("EAS_SERVICE_URL"), eas_service_token=os.getenv("EAS_SERVICE_TOKEN"), ) response = chat( messages=[ HumanMessage(content="Hello."), AIMessage(content="Hello!"), HumanMessage(content="How are you doing?"), ] ) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_stream() -> None: """Test that stream works.""" chat = PaiEasChatEndpoint( eas_service_url=os.getenv("EAS_SERVICE_URL"), eas_service_token=os.getenv("EAS_SERVICE_TOKEN"), streaming=True, ) callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) response = chat( messages=[ HumanMessage(content="Hello."), AIMessage(content="Hello!"), HumanMessage(content="Who are you?"), ], stream=True, callbacks=callback_manager, ) assert callback_handler.llm_streams > 0 assert isinstance(response.content, str) def test_multiple_messages() -> None: """Tests multiple messages works.""" chat = PaiEasChatEndpoint( eas_service_url=os.getenv("EAS_SERVICE_URL"), eas_service_token=os.getenv("EAS_SERVICE_TOKEN"), ) message = HumanMessage(content="Hi, how are you.") response = chat.generate([[message], [message]]) assert isinstance(response, LLMResult) assert len(response.generations) == 2 for generations in response.generations: assert len(generations) == 1 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content
[ "Say foo:", "Who are you?", "Hello.", "Hello!", "How are you doing?", "Hi, how are you." ]
2024-01-10
axgpt/langchain
libs~langchain~langchain~memory~kg.py
from typing import Any, Dict, List, Type, Union from langchain_core.pydantic_v1 import Field from langchain_core.schema import BasePromptTemplate from langchain_core.schema.language_model import BaseLanguageModel from langchain_core.schema.messages import BaseMessage, SystemMessage, get_buffer_string from langchain.chains.llm import LLMChain from langchain.graphs import NetworkxEntityGraph from langchain.graphs.networkx_graph import KnowledgeTriple, get_entities, parse_triples from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.prompt import ( ENTITY_EXTRACTION_PROMPT, KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT, ) from langchain.memory.utils import get_prompt_input_key class ConversationKGMemory(BaseChatMemory): """Knowledge graph conversation memory. Integrates with external knowledge graph to store and retrieve information about knowledge triples in the conversation. """ k: int = 2 human_prefix: str = "Human" ai_prefix: str = "AI" kg: NetworkxEntityGraph = Field(default_factory=NetworkxEntityGraph) knowledge_extraction_prompt: BasePromptTemplate = KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT entity_extraction_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT llm: BaseLanguageModel summary_message_cls: Type[BaseMessage] = SystemMessage """Number of previous utterances to include in the context.""" memory_key: str = "history" #: :meta private: def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" entities = self._get_current_entities(inputs) summary_strings = [] for entity in entities: knowledge = self.kg.get_entity_knowledge(entity) if knowledge: summary = f"On {entity}: {'. '.join(knowledge)}." summary_strings.append(summary) context: Union[str, List] if not summary_strings: context = [] if self.return_messages else "" elif self.return_messages: context = [ self.summary_message_cls(content=text) for text in summary_strings ] else: context = "\n".join(summary_strings) return {self.memory_key: context} @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] def _get_prompt_input_key(self, inputs: Dict[str, Any]) -> str: """Get the input key for the prompt.""" if self.input_key is None: return get_prompt_input_key(inputs, self.memory_variables) return self.input_key def _get_prompt_output_key(self, outputs: Dict[str, Any]) -> str: """Get the output key for the prompt.""" if self.output_key is None: if len(outputs) != 1: raise ValueError(f"One output key expected, got {outputs.keys()}") return list(outputs.keys())[0] return self.output_key def get_current_entities(self, input_string: str) -> List[str]: chain = LLMChain(llm=self.llm, prompt=self.entity_extraction_prompt) buffer_string = get_buffer_string( self.chat_memory.messages[-self.k * 2 :], human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) output = chain.predict( history=buffer_string, input=input_string, ) return get_entities(output) def _get_current_entities(self, inputs: Dict[str, Any]) -> List[str]: """Get the current entities in the conversation.""" prompt_input_key = self._get_prompt_input_key(inputs) return self.get_current_entities(inputs[prompt_input_key]) def get_knowledge_triplets(self, input_string: str) -> List[KnowledgeTriple]: chain = LLMChain(llm=self.llm, prompt=self.knowledge_extraction_prompt) buffer_string = get_buffer_string( self.chat_memory.messages[-self.k * 2 :], human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) output = chain.predict( history=buffer_string, input=input_string, verbose=True, ) knowledge = parse_triples(output) return knowledge def _get_and_update_kg(self, inputs: Dict[str, Any]) -> None: """Get and update knowledge graph from the conversation history.""" prompt_input_key = self._get_prompt_input_key(inputs) knowledge = self.get_knowledge_triplets(inputs[prompt_input_key]) for triple in knowledge: self.kg.add_triple(triple) def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" super().save_context(inputs, outputs) self._get_and_update_kg(inputs) def clear(self) -> None: """Clear memory contents.""" super().clear() self.kg.clear()
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~storage~_lc_store.py
"""Create a key-value store for any langchain serializable object.""" from typing import Callable, Optional from langchain_core.load.dump import dumps from langchain_core.load.load import loads from langchain_core.load.serializable import Serializable from langchain_core.schema import BaseStore, Document from langchain.storage.encoder_backed import EncoderBackedStore def _dump_as_bytes(obj: Serializable) -> bytes: """Return a bytes representation of a document.""" return dumps(obj).encode("utf-8") def _dump_document_as_bytes(obj: Document) -> bytes: """Return a bytes representation of a document.""" if not isinstance(obj, Document): raise TypeError("Expected a Document instance") return dumps(obj).encode("utf-8") def _load_document_from_bytes(serialized: bytes) -> Document: """Return a document from a bytes representation.""" obj = loads(serialized.decode("utf-8")) if not isinstance(obj, Document): raise TypeError(f"Expected a Document instance. Got {type(obj)}") return obj def _load_from_bytes(serialized: bytes) -> Serializable: """Return a document from a bytes representation.""" return loads(serialized.decode("utf-8")) def _identity(x: str) -> str: """Return the same object.""" return x # PUBLIC API def create_lc_store( store: BaseStore[str, bytes], *, key_encoder: Optional[Callable[[str], str]] = None, ) -> BaseStore[str, Serializable]: """Create a store for langchain serializable objects from a bytes store. Args: store: A bytes store to use as the underlying store. key_encoder: A function to encode keys; if None uses identity function. Returns: A key-value store for documents. """ return EncoderBackedStore( store, key_encoder or _identity, _dump_as_bytes, _load_from_bytes, ) def create_kv_docstore( store: BaseStore[str, bytes], *, key_encoder: Optional[Callable[[str], str]] = None, ) -> BaseStore[str, Document]: """Create a store for langchain Document objects from a bytes store. This store does run time type checking to ensure that the values are Document objects. Args: store: A bytes store to use as the underlying store. key_encoder: A function to encode keys; if None uses identity function. Returns: A key-value store for documents. """ return EncoderBackedStore( store, key_encoder or _identity, _dump_document_as_bytes, _load_document_from_bytes, )
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~callbacks~wandb_callback.py
import json import tempfile from copy import deepcopy from pathlib import Path from typing import Any, Dict, List, Optional, Sequence, Union from langchain_core.schema import AgentAction, AgentFinish, LLMResult from langchain.callbacks.base import BaseCallbackHandler from langchain.callbacks.utils import ( BaseMetadataCallbackHandler, flatten_dict, hash_string, import_pandas, import_spacy, import_textstat, ) def import_wandb() -> Any: """Import the wandb python package and raise an error if it is not installed.""" try: import wandb # noqa: F401 except ImportError: raise ImportError( "To use the wandb callback manager you need to have the `wandb` python " "package installed. Please install it with `pip install wandb`" ) return wandb def load_json_to_dict(json_path: Union[str, Path]) -> dict: """Load json file to a dictionary. Parameters: json_path (str): The path to the json file. Returns: (dict): The dictionary representation of the json file. """ with open(json_path, "r") as f: data = json.load(f) return data def analyze_text( text: str, complexity_metrics: bool = True, visualize: bool = True, nlp: Any = None, output_dir: Optional[Union[str, Path]] = None, ) -> dict: """Analyze text using textstat and spacy. Parameters: text (str): The text to analyze. complexity_metrics (bool): Whether to compute complexity metrics. visualize (bool): Whether to visualize the text. nlp (spacy.lang): The spacy language model to use for visualization. output_dir (str): The directory to save the visualization files to. Returns: (dict): A dictionary containing the complexity metrics and visualization files serialized in a wandb.Html element. """ resp = {} textstat = import_textstat() wandb = import_wandb() spacy = import_spacy() if complexity_metrics: text_complexity_metrics = { "flesch_reading_ease": textstat.flesch_reading_ease(text), "flesch_kincaid_grade": textstat.flesch_kincaid_grade(text), "smog_index": textstat.smog_index(text), "coleman_liau_index": textstat.coleman_liau_index(text), "automated_readability_index": textstat.automated_readability_index(text), "dale_chall_readability_score": textstat.dale_chall_readability_score(text), "difficult_words": textstat.difficult_words(text), "linsear_write_formula": textstat.linsear_write_formula(text), "gunning_fog": textstat.gunning_fog(text), "text_standard": textstat.text_standard(text), "fernandez_huerta": textstat.fernandez_huerta(text), "szigriszt_pazos": textstat.szigriszt_pazos(text), "gutierrez_polini": textstat.gutierrez_polini(text), "crawford": textstat.crawford(text), "gulpease_index": textstat.gulpease_index(text), "osman": textstat.osman(text), } resp.update(text_complexity_metrics) if visualize and nlp and output_dir is not None: doc = nlp(text) dep_out = spacy.displacy.render( # type: ignore doc, style="dep", jupyter=False, page=True ) dep_output_path = Path(output_dir, hash_string(f"dep-{text}") + ".html") dep_output_path.open("w", encoding="utf-8").write(dep_out) ent_out = spacy.displacy.render( # type: ignore doc, style="ent", jupyter=False, page=True ) ent_output_path = Path(output_dir, hash_string(f"ent-{text}") + ".html") ent_output_path.open("w", encoding="utf-8").write(ent_out) text_visualizations = { "dependency_tree": wandb.Html(str(dep_output_path)), "entities": wandb.Html(str(ent_output_path)), } resp.update(text_visualizations) return resp def construct_html_from_prompt_and_generation(prompt: str, generation: str) -> Any: """Construct an html element from a prompt and a generation. Parameters: prompt (str): The prompt. generation (str): The generation. Returns: (wandb.Html): The html element.""" wandb = import_wandb() formatted_prompt = prompt.replace("\n", "<br>") formatted_generation = generation.replace("\n", "<br>") return wandb.Html( f""" <p style="color:black;">{formatted_prompt}:</p> <blockquote> <p style="color:green;"> {formatted_generation} </p> </blockquote> """, inject=False, ) class WandbCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler): """Callback Handler that logs to Weights and Biases. Parameters: job_type (str): The type of job. project (str): The project to log to. entity (str): The entity to log to. tags (list): The tags to log. group (str): The group to log to. name (str): The name of the run. notes (str): The notes to log. visualize (bool): Whether to visualize the run. complexity_metrics (bool): Whether to log complexity metrics. stream_logs (bool): Whether to stream callback actions to W&B This handler will utilize the associated callback method called and formats the input of each callback function with metadata regarding the state of LLM run, and adds the response to the list of records for both the {method}_records and action. It then logs the response using the run.log() method to Weights and Biases. """ def __init__( self, job_type: Optional[str] = None, project: Optional[str] = "langchain_callback_demo", entity: Optional[str] = None, tags: Optional[Sequence] = None, group: Optional[str] = None, name: Optional[str] = None, notes: Optional[str] = None, visualize: bool = False, complexity_metrics: bool = False, stream_logs: bool = False, ) -> None: """Initialize callback handler.""" wandb = import_wandb() import_pandas() import_textstat() spacy = import_spacy() super().__init__() self.job_type = job_type self.project = project self.entity = entity self.tags = tags self.group = group self.name = name self.notes = notes self.visualize = visualize self.complexity_metrics = complexity_metrics self.stream_logs = stream_logs self.temp_dir = tempfile.TemporaryDirectory() self.run: wandb.sdk.wandb_run.Run = wandb.init( # type: ignore job_type=self.job_type, project=self.project, entity=self.entity, tags=self.tags, group=self.group, name=self.name, notes=self.notes, ) warning = ( "DEPRECATION: The `WandbCallbackHandler` will soon be deprecated in favor " "of the `WandbTracer`. Please update your code to use the `WandbTracer` " "instead." ) wandb.termwarn( warning, repeat=False, ) self.callback_columns: list = [] self.action_records: list = [] self.complexity_metrics = complexity_metrics self.visualize = visualize self.nlp = spacy.load("en_core_web_sm") def _init_resp(self) -> Dict: return {k: None for k in self.callback_columns} def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: """Run when LLM starts.""" self.step += 1 self.llm_starts += 1 self.starts += 1 resp = self._init_resp() resp.update({"action": "on_llm_start"}) resp.update(flatten_dict(serialized)) resp.update(self.get_custom_callback_meta()) for prompt in prompts: prompt_resp = deepcopy(resp) prompt_resp["prompts"] = prompt self.on_llm_start_records.append(prompt_resp) self.action_records.append(prompt_resp) if self.stream_logs: self.run.log(prompt_resp) def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Run when LLM generates a new token.""" self.step += 1 self.llm_streams += 1 resp = self._init_resp() resp.update({"action": "on_llm_new_token", "token": token}) resp.update(self.get_custom_callback_meta()) self.on_llm_token_records.append(resp) self.action_records.append(resp) if self.stream_logs: self.run.log(resp) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Run when LLM ends running.""" self.step += 1 self.llm_ends += 1 self.ends += 1 resp = self._init_resp() resp.update({"action": "on_llm_end"}) resp.update(flatten_dict(response.llm_output or {})) resp.update(self.get_custom_callback_meta()) for generations in response.generations: for generation in generations: generation_resp = deepcopy(resp) generation_resp.update(flatten_dict(generation.dict())) generation_resp.update( analyze_text( generation.text, complexity_metrics=self.complexity_metrics, visualize=self.visualize, nlp=self.nlp, output_dir=self.temp_dir.name, ) ) self.on_llm_end_records.append(generation_resp) self.action_records.append(generation_resp) if self.stream_logs: self.run.log(generation_resp) def on_llm_error(self, error: BaseException, **kwargs: Any) -> None: """Run when LLM errors.""" self.step += 1 self.errors += 1 def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any ) -> None: """Run when chain starts running.""" self.step += 1 self.chain_starts += 1 self.starts += 1 resp = self._init_resp() resp.update({"action": "on_chain_start"}) resp.update(flatten_dict(serialized)) resp.update(self.get_custom_callback_meta()) chain_input = inputs["input"] if isinstance(chain_input, str): input_resp = deepcopy(resp) input_resp["input"] = chain_input self.on_chain_start_records.append(input_resp) self.action_records.append(input_resp) if self.stream_logs: self.run.log(input_resp) elif isinstance(chain_input, list): for inp in chain_input: input_resp = deepcopy(resp) input_resp.update(inp) self.on_chain_start_records.append(input_resp) self.action_records.append(input_resp) if self.stream_logs: self.run.log(input_resp) else: raise ValueError("Unexpected data format provided!") def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """Run when chain ends running.""" self.step += 1 self.chain_ends += 1 self.ends += 1 resp = self._init_resp() resp.update({"action": "on_chain_end", "outputs": outputs["output"]}) resp.update(self.get_custom_callback_meta()) self.on_chain_end_records.append(resp) self.action_records.append(resp) if self.stream_logs: self.run.log(resp) def on_chain_error(self, error: BaseException, **kwargs: Any) -> None: """Run when chain errors.""" self.step += 1 self.errors += 1 def on_tool_start( self, serialized: Dict[str, Any], input_str: str, **kwargs: Any ) -> None: """Run when tool starts running.""" self.step += 1 self.tool_starts += 1 self.starts += 1 resp = self._init_resp() resp.update({"action": "on_tool_start", "input_str": input_str}) resp.update(flatten_dict(serialized)) resp.update(self.get_custom_callback_meta()) self.on_tool_start_records.append(resp) self.action_records.append(resp) if self.stream_logs: self.run.log(resp) def on_tool_end(self, output: str, **kwargs: Any) -> None: """Run when tool ends running.""" self.step += 1 self.tool_ends += 1 self.ends += 1 resp = self._init_resp() resp.update({"action": "on_tool_end", "output": output}) resp.update(self.get_custom_callback_meta()) self.on_tool_end_records.append(resp) self.action_records.append(resp) if self.stream_logs: self.run.log(resp) def on_tool_error(self, error: BaseException, **kwargs: Any) -> None: """Run when tool errors.""" self.step += 1 self.errors += 1 def on_text(self, text: str, **kwargs: Any) -> None: """ Run when agent is ending. """ self.step += 1 self.text_ctr += 1 resp = self._init_resp() resp.update({"action": "on_text", "text": text}) resp.update(self.get_custom_callback_meta()) self.on_text_records.append(resp) self.action_records.append(resp) if self.stream_logs: self.run.log(resp) def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None: """Run when agent ends running.""" self.step += 1 self.agent_ends += 1 self.ends += 1 resp = self._init_resp() resp.update( { "action": "on_agent_finish", "output": finish.return_values["output"], "log": finish.log, } ) resp.update(self.get_custom_callback_meta()) self.on_agent_finish_records.append(resp) self.action_records.append(resp) if self.stream_logs: self.run.log(resp) def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: """Run on agent action.""" self.step += 1 self.tool_starts += 1 self.starts += 1 resp = self._init_resp() resp.update( { "action": "on_agent_action", "tool": action.tool, "tool_input": action.tool_input, "log": action.log, } ) resp.update(self.get_custom_callback_meta()) self.on_agent_action_records.append(resp) self.action_records.append(resp) if self.stream_logs: self.run.log(resp) def _create_session_analysis_df(self) -> Any: """Create a dataframe with all the information from the session.""" pd = import_pandas() on_llm_start_records_df = pd.DataFrame(self.on_llm_start_records) on_llm_end_records_df = pd.DataFrame(self.on_llm_end_records) llm_input_prompts_df = ( on_llm_start_records_df[["step", "prompts", "name"]] .dropna(axis=1) .rename({"step": "prompt_step"}, axis=1) ) complexity_metrics_columns = [] visualizations_columns = [] if self.complexity_metrics: complexity_metrics_columns = [ "flesch_reading_ease", "flesch_kincaid_grade", "smog_index", "coleman_liau_index", "automated_readability_index", "dale_chall_readability_score", "difficult_words", "linsear_write_formula", "gunning_fog", "text_standard", "fernandez_huerta", "szigriszt_pazos", "gutierrez_polini", "crawford", "gulpease_index", "osman", ] if self.visualize: visualizations_columns = ["dependency_tree", "entities"] llm_outputs_df = ( on_llm_end_records_df[ [ "step", "text", "token_usage_total_tokens", "token_usage_prompt_tokens", "token_usage_completion_tokens", ] + complexity_metrics_columns + visualizations_columns ] .dropna(axis=1) .rename({"step": "output_step", "text": "output"}, axis=1) ) session_analysis_df = pd.concat([llm_input_prompts_df, llm_outputs_df], axis=1) session_analysis_df["chat_html"] = session_analysis_df[ ["prompts", "output"] ].apply( lambda row: construct_html_from_prompt_and_generation( row["prompts"], row["output"] ), axis=1, ) return session_analysis_df def flush_tracker( self, langchain_asset: Any = None, reset: bool = True, finish: bool = False, job_type: Optional[str] = None, project: Optional[str] = None, entity: Optional[str] = None, tags: Optional[Sequence] = None, group: Optional[str] = None, name: Optional[str] = None, notes: Optional[str] = None, visualize: Optional[bool] = None, complexity_metrics: Optional[bool] = None, ) -> None: """Flush the tracker and reset the session. Args: langchain_asset: The langchain asset to save. reset: Whether to reset the session. finish: Whether to finish the run. job_type: The job type. project: The project. entity: The entity. tags: The tags. group: The group. name: The name. notes: The notes. visualize: Whether to visualize. complexity_metrics: Whether to compute complexity metrics. Returns: None """ pd = import_pandas() wandb = import_wandb() action_records_table = wandb.Table(dataframe=pd.DataFrame(self.action_records)) session_analysis_table = wandb.Table( dataframe=self._create_session_analysis_df() ) self.run.log( { "action_records": action_records_table, "session_analysis": session_analysis_table, } ) if langchain_asset: langchain_asset_path = Path(self.temp_dir.name, "model.json") model_artifact = wandb.Artifact(name="model", type="model") model_artifact.add(action_records_table, name="action_records") model_artifact.add(session_analysis_table, name="session_analysis") try: langchain_asset.save(langchain_asset_path) model_artifact.add_file(str(langchain_asset_path)) model_artifact.metadata = load_json_to_dict(langchain_asset_path) except ValueError: langchain_asset.save_agent(langchain_asset_path) model_artifact.add_file(str(langchain_asset_path)) model_artifact.metadata = load_json_to_dict(langchain_asset_path) except NotImplementedError as e: print("Could not save model.") print(repr(e)) pass self.run.log_artifact(model_artifact) if finish or reset: self.run.finish() self.temp_dir.cleanup() self.reset_callback_meta() if reset: self.__init__( # type: ignore job_type=job_type if job_type else self.job_type, project=project if project else self.project, entity=entity if entity else self.entity, tags=tags if tags else self.tags, group=group if group else self.group, name=name if name else self.name, notes=notes if notes else self.notes, visualize=visualize if visualize else self.visualize, complexity_metrics=complexity_metrics if complexity_metrics else self.complexity_metrics, )
[ "name", "prompt_step", "\n" ]
2024-01-10
axgpt/langchain
libs~langchain~langchain~chains~graph_qa~kuzu.py
"""Question answering over a graph.""" from __future__ import annotations from typing import Any, Dict, List, Optional from langchain_core.pydantic_v1 import Field from langchain_core.schema import BasePromptTemplate from langchain_core.schema.language_model import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.graph_qa.prompts import CYPHER_QA_PROMPT, KUZU_GENERATION_PROMPT from langchain.chains.llm import LLMChain from langchain.graphs.kuzu_graph import KuzuGraph class KuzuQAChain(Chain): """Question-answering against a graph by generating Cypher statements for Kùzu. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """ graph: KuzuGraph = Field(exclude=True) cypher_generation_chain: LLMChain qa_chain: LLMChain input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the output keys. :meta private: """ _output_keys = [self.output_key] return _output_keys @classmethod def from_llm( cls, llm: BaseLanguageModel, *, qa_prompt: BasePromptTemplate = CYPHER_QA_PROMPT, cypher_prompt: BasePromptTemplate = KUZU_GENERATION_PROMPT, **kwargs: Any, ) -> KuzuQAChain: """Initialize from LLM.""" qa_chain = LLMChain(llm=llm, prompt=qa_prompt) cypher_generation_chain = LLMChain(llm=llm, prompt=cypher_prompt) return cls( qa_chain=qa_chain, cypher_generation_chain=cypher_generation_chain, **kwargs, ) def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: """Generate Cypher statement, use it to look up in db and answer question.""" _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() question = inputs[self.input_key] generated_cypher = self.cypher_generation_chain.run( {"question": question, "schema": self.graph.get_schema}, callbacks=callbacks ) _run_manager.on_text("Generated Cypher:", end="\n", verbose=self.verbose) _run_manager.on_text( generated_cypher, color="green", end="\n", verbose=self.verbose ) context = self.graph.query(generated_cypher) _run_manager.on_text("Full Context:", end="\n", verbose=self.verbose) _run_manager.on_text( str(context), color="green", end="\n", verbose=self.verbose ) result = self.qa_chain( {"question": question, "context": context}, callbacks=callbacks, ) return {self.output_key: result[self.qa_chain.output_key]}
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~vectorstores~timescalevector.py
"""VectorStore wrapper around a Postgres-TimescaleVector database.""" from __future__ import annotations import enum import logging import uuid from datetime import timedelta from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Tuple, Type, Union, ) from langchain_core.schema.document import Document from langchain_core.schema.embeddings import Embeddings from langchain_core.schema.vectorstore import VectorStore from langchain.utils import get_from_dict_or_env from langchain.vectorstores.utils import DistanceStrategy if TYPE_CHECKING: from timescale_vector import Predicates DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.COSINE ADA_TOKEN_COUNT = 1536 _LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain_store" class TimescaleVector(VectorStore): """VectorStore implementation using the timescale vector client to store vectors in Postgres. To use, you should have the ``timescale_vector`` python package installed. Args: service_url: Service url on timescale cloud. embedding: Any embedding function implementing `langchain.embeddings.base.Embeddings` interface. collection_name: The name of the collection to use. (default: langchain_store) This will become the table name used for the collection. distance_strategy: The distance strategy to use. (default: COSINE) pre_delete_collection: If True, will delete the collection if it exists. (default: False). Useful for testing. Example: .. code-block:: python from langchain.vectorstores import TimescaleVector from langchain.embeddings.openai import OpenAIEmbeddings SERVICE_URL = "postgres://tsdbadmin:<password>@<id>.tsdb.cloud.timescale.com:<port>/tsdb?sslmode=require" COLLECTION_NAME = "state_of_the_union_test" embeddings = OpenAIEmbeddings() vectorestore = TimescaleVector.from_documents( embedding=embeddings, documents=docs, collection_name=COLLECTION_NAME, service_url=SERVICE_URL, ) """ # noqa: E501 def __init__( self, service_url: str, embedding: Embeddings, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, num_dimensions: int = ADA_TOKEN_COUNT, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, pre_delete_collection: bool = False, logger: Optional[logging.Logger] = None, relevance_score_fn: Optional[Callable[[float], float]] = None, time_partition_interval: Optional[timedelta] = None, **kwargs: Any, ) -> None: try: from timescale_vector import client except ImportError: raise ImportError( "Could not import timescale_vector python package. " "Please install it with `pip install timescale-vector`." ) self.service_url = service_url self.embedding = embedding self.collection_name = collection_name self.num_dimensions = num_dimensions self._distance_strategy = distance_strategy self.pre_delete_collection = pre_delete_collection self.logger = logger or logging.getLogger(__name__) self.override_relevance_score_fn = relevance_score_fn self._time_partition_interval = time_partition_interval self.sync_client = client.Sync( self.service_url, self.collection_name, self.num_dimensions, self._distance_strategy.value.lower(), time_partition_interval=self._time_partition_interval, **kwargs, ) self.async_client = client.Async( self.service_url, self.collection_name, self.num_dimensions, self._distance_strategy.value.lower(), time_partition_interval=self._time_partition_interval, **kwargs, ) self.__post_init__() def __post_init__( self, ) -> None: """ Initialize the store. """ self.sync_client.create_tables() if self.pre_delete_collection: self.sync_client.delete_all() @property def embeddings(self) -> Embeddings: return self.embedding def drop_tables(self) -> None: self.sync_client.drop_table() @classmethod def __from( cls, texts: List[str], embeddings: List[List[float]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, service_url: Optional[str] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> TimescaleVector: num_dimensions = len(embeddings[0]) if ids is None: ids = [str(uuid.uuid1()) for _ in texts] if not metadatas: metadatas = [{} for _ in texts] if service_url is None: service_url = cls.get_service_url(kwargs) store = cls( service_url=service_url, num_dimensions=num_dimensions, collection_name=collection_name, embedding=embedding, distance_strategy=distance_strategy, pre_delete_collection=pre_delete_collection, **kwargs, ) store.add_embeddings( texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs ) return store @classmethod async def __afrom( cls, texts: List[str], embeddings: List[List[float]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, service_url: Optional[str] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> TimescaleVector: num_dimensions = len(embeddings[0]) if ids is None: ids = [str(uuid.uuid1()) for _ in texts] if not metadatas: metadatas = [{} for _ in texts] if service_url is None: service_url = cls.get_service_url(kwargs) store = cls( service_url=service_url, num_dimensions=num_dimensions, collection_name=collection_name, embedding=embedding, distance_strategy=distance_strategy, pre_delete_collection=pre_delete_collection, **kwargs, ) await store.aadd_embeddings( texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs ) return store def add_embeddings( self, texts: Iterable[str], embeddings: List[List[float]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Add embeddings to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. embeddings: List of list of embedding vectors. metadatas: List of metadatas associated with the texts. kwargs: vectorstore specific parameters """ if ids is None: ids = [str(uuid.uuid1()) for _ in texts] if not metadatas: metadatas = [{} for _ in texts] records = list(zip(ids, metadatas, texts, embeddings)) self.sync_client.upsert(records) return ids async def aadd_embeddings( self, texts: Iterable[str], embeddings: List[List[float]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Add embeddings to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. embeddings: List of list of embedding vectors. metadatas: List of metadatas associated with the texts. kwargs: vectorstore specific parameters """ if ids is None: ids = [str(uuid.uuid1()) for _ in texts] if not metadatas: metadatas = [{} for _ in texts] records = list(zip(ids, metadatas, texts, embeddings)) await self.async_client.upsert(records) return ids def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. kwargs: vectorstore specific parameters Returns: List of ids from adding the texts into the vectorstore. """ embeddings = self.embedding.embed_documents(list(texts)) return self.add_embeddings( texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs ) async def aadd_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. kwargs: vectorstore specific parameters Returns: List of ids from adding the texts into the vectorstore. """ embeddings = self.embedding.embed_documents(list(texts)) return await self.aadd_embeddings( texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs ) def _embed_query(self, query: str) -> Optional[List[float]]: # an empty query should not be embedded if query is None or query == "" or query.isspace(): return None else: return self.embedding.embed_query(query) def similarity_search( self, query: str, k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search with TimescaleVector with distance. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query. """ embedding = self._embed_query(query) return self.similarity_search_by_vector( embedding=embedding, k=k, filter=filter, predicates=predicates, **kwargs, ) async def asimilarity_search( self, query: str, k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search with TimescaleVector with distance. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query. """ embedding = self._embed_query(query) return await self.asimilarity_search_by_vector( embedding=embedding, k=k, filter=filter, predicates=predicates, **kwargs, ) def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query and score for each """ embedding = self._embed_query(query) docs = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, filter=filter, predicates=predicates, **kwargs, ) return docs async def asimilarity_search_with_score( self, query: str, k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query and score for each """ embedding = self._embed_query(query) return await self.asimilarity_search_with_score_by_vector( embedding=embedding, k=k, filter=filter, predicates=predicates, **kwargs, ) def date_to_range_filter(self, **kwargs: Any) -> Any: constructor_args = { key: kwargs[key] for key in [ "start_date", "end_date", "time_delta", "start_inclusive", "end_inclusive", ] if key in kwargs } if not constructor_args or len(constructor_args) == 0: return None try: from timescale_vector import client except ImportError: raise ImportError( "Could not import timescale_vector python package. " "Please install it with `pip install timescale-vector`." ) return client.UUIDTimeRange(**constructor_args) def similarity_search_with_score_by_vector( self, embedding: Optional[List[float]], k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: try: from timescale_vector import client except ImportError: raise ImportError( "Could not import timescale_vector python package. " "Please install it with `pip install timescale-vector`." ) results = self.sync_client.search( embedding, limit=k, filter=filter, predicates=predicates, uuid_time_filter=self.date_to_range_filter(**kwargs), ) docs = [ ( Document( page_content=result[client.SEARCH_RESULT_CONTENTS_IDX], metadata=result[client.SEARCH_RESULT_METADATA_IDX], ), result[client.SEARCH_RESULT_DISTANCE_IDX], ) for result in results ] return docs async def asimilarity_search_with_score_by_vector( self, embedding: Optional[List[float]], k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: try: from timescale_vector import client except ImportError: raise ImportError( "Could not import timescale_vector python package. " "Please install it with `pip install timescale-vector`." ) results = await self.async_client.search( embedding, limit=k, filter=filter, predicates=predicates, uuid_time_filter=self.date_to_range_filter(**kwargs), ) docs = [ ( Document( page_content=result[client.SEARCH_RESULT_CONTENTS_IDX], metadata=result[client.SEARCH_RESULT_METADATA_IDX], ), result[client.SEARCH_RESULT_DISTANCE_IDX], ) for result in results ] return docs def similarity_search_by_vector( self, embedding: Optional[List[float]], k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query vector. """ docs_and_scores = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, filter=filter, predicates=predicates, **kwargs ) return [doc for doc, _ in docs_and_scores] async def asimilarity_search_by_vector( self, embedding: Optional[List[float]], k: int = 4, filter: Optional[Union[dict, list]] = None, predicates: Optional[Predicates] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query vector. """ docs_and_scores = await self.asimilarity_search_with_score_by_vector( embedding=embedding, k=k, filter=filter, predicates=predicates, **kwargs ) return [doc for doc, _ in docs_and_scores] @classmethod def from_texts( cls: Type[TimescaleVector], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> TimescaleVector: """ Return VectorStore initialized from texts and embeddings. Postgres connection string is required "Either pass it as a parameter or set the TIMESCALE_SERVICE_URL environment variable. """ embeddings = embedding.embed_documents(list(texts)) return cls.__from( texts, embeddings, embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, distance_strategy=distance_strategy, pre_delete_collection=pre_delete_collection, **kwargs, ) @classmethod async def afrom_texts( cls: Type[TimescaleVector], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> TimescaleVector: """ Return VectorStore initialized from texts and embeddings. Postgres connection string is required "Either pass it as a parameter or set the TIMESCALE_SERVICE_URL environment variable. """ embeddings = embedding.embed_documents(list(texts)) return await cls.__afrom( texts, embeddings, embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, distance_strategy=distance_strategy, pre_delete_collection=pre_delete_collection, **kwargs, ) @classmethod def from_embeddings( cls, text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> TimescaleVector: """Construct TimescaleVector wrapper from raw documents and pre- generated embeddings. Return VectorStore initialized from documents and embeddings. Postgres connection string is required "Either pass it as a parameter or set the TIMESCALE_SERVICE_URL environment variable. Example: .. code-block:: python from langchain.vectorstores import TimescaleVector from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) tvs = TimescaleVector.from_embeddings(text_embedding_pairs, embeddings) """ texts = [t[0] for t in text_embeddings] embeddings = [t[1] for t in text_embeddings] return cls.__from( texts, embeddings, embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, distance_strategy=distance_strategy, pre_delete_collection=pre_delete_collection, **kwargs, ) @classmethod async def afrom_embeddings( cls, text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> TimescaleVector: """Construct TimescaleVector wrapper from raw documents and pre- generated embeddings. Return VectorStore initialized from documents and embeddings. Postgres connection string is required "Either pass it as a parameter or set the TIMESCALE_SERVICE_URL environment variable. Example: .. code-block:: python from langchain.vectorstores import TimescaleVector from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) tvs = TimescaleVector.from_embeddings(text_embedding_pairs, embeddings) """ texts = [t[0] for t in text_embeddings] embeddings = [t[1] for t in text_embeddings] return await cls.__afrom( texts, embeddings, embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, distance_strategy=distance_strategy, pre_delete_collection=pre_delete_collection, **kwargs, ) @classmethod def from_existing_index( cls: Type[TimescaleVector], embedding: Embeddings, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, pre_delete_collection: bool = False, **kwargs: Any, ) -> TimescaleVector: """ Get instance of an existing TimescaleVector store.This method will return the instance of the store without inserting any new embeddings """ service_url = cls.get_service_url(kwargs) store = cls( service_url=service_url, collection_name=collection_name, embedding=embedding, distance_strategy=distance_strategy, pre_delete_collection=pre_delete_collection, ) return store @classmethod def get_service_url(cls, kwargs: Dict[str, Any]) -> str: service_url: str = get_from_dict_or_env( data=kwargs, key="service_url", env_key="TIMESCALE_SERVICE_URL", ) if not service_url: raise ValueError( "Postgres connection string is required" "Either pass it as a parameter" "or set the TIMESCALE_SERVICE_URL environment variable." ) return service_url @classmethod def service_url_from_db_params( cls, host: str, port: int, database: str, user: str, password: str, ) -> str: """Return connection string from database parameters.""" return f"postgresql://{user}:{password}@{host}:{port}/{database}" def _select_relevance_score_fn(self) -> Callable[[float], float]: """ The 'correct' relevance function may differ depending on a few things, including: - the distance / similarity metric used by the VectorStore - the scale of your embeddings (OpenAI's are unit normed. Many others are not!) - embedding dimensionality - etc. """ if self.override_relevance_score_fn is not None: return self.override_relevance_score_fn # Default strategy is to rely on distance strategy provided # in vectorstore constructor if self._distance_strategy == DistanceStrategy.COSINE: return self._cosine_relevance_score_fn elif self._distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE: return self._euclidean_relevance_score_fn elif self._distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT: return self._max_inner_product_relevance_score_fn else: raise ValueError( "No supported normalization function" f" for distance_strategy of {self._distance_strategy}." "Consider providing relevance_score_fn to TimescaleVector constructor." ) def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]: """Delete by vector ID or other criteria. Args: ids: List of ids to delete. **kwargs: Other keyword arguments that subclasses might use. Returns: Optional[bool]: True if deletion is successful, False otherwise, None if not implemented. """ if ids is None: raise ValueError("No ids provided to delete.") self.sync_client.delete_by_ids(ids) return True # todo should this be part of delete|()? def delete_by_metadata( self, filter: Union[Dict[str, str], List[Dict[str, str]]], **kwargs: Any ) -> Optional[bool]: """Delete by vector ID or other criteria. Args: ids: List of ids to delete. **kwargs: Other keyword arguments that subclasses might use. Returns: Optional[bool]: True if deletion is successful, False otherwise, None if not implemented. """ self.sync_client.delete_by_metadata(filter) return True class IndexType(str, enum.Enum): """Enumerator for the supported Index types""" TIMESCALE_VECTOR = "tsv" PGVECTOR_IVFFLAT = "ivfflat" PGVECTOR_HNSW = "hnsw" DEFAULT_INDEX_TYPE = IndexType.TIMESCALE_VECTOR def create_index( self, index_type: Union[IndexType, str] = DEFAULT_INDEX_TYPE, **kwargs: Any ) -> None: try: from timescale_vector import client except ImportError: raise ImportError( "Could not import timescale_vector python package. " "Please install it with `pip install timescale-vector`." ) index_type = ( index_type.value if isinstance(index_type, self.IndexType) else index_type ) if index_type == self.IndexType.PGVECTOR_IVFFLAT.value: self.sync_client.create_embedding_index(client.IvfflatIndex(**kwargs)) if index_type == self.IndexType.PGVECTOR_HNSW.value: self.sync_client.create_embedding_index(client.HNSWIndex(**kwargs)) if index_type == self.IndexType.TIMESCALE_VECTOR.value: self.sync_client.create_embedding_index( client.TimescaleVectorIndex(**kwargs) ) def drop_index(self) -> None: self.sync_client.drop_embedding_index()
[]
2024-01-10
axgpt/langchain
libs~core~langchain_core~schema~output.py
from __future__ import annotations from copy import deepcopy from typing import Any, Dict, List, Literal, Optional from uuid import UUID from langchain_core.load.serializable import Serializable from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.schema.messages import BaseMessage, BaseMessageChunk class Generation(Serializable): """A single text generation output.""" text: str """Generated text output.""" generation_info: Optional[Dict[str, Any]] = None """Raw response from the provider. May include things like the reason for finishing or token log probabilities. """ type: Literal["Generation"] = "Generation" """Type is used exclusively for serialization purposes.""" # TODO: add log probs as separate attribute @classmethod def is_lc_serializable(cls) -> bool: """Return whether this class is serializable.""" return True class GenerationChunk(Generation): """A Generation chunk, which can be concatenated with other Generation chunks.""" def __add__(self, other: GenerationChunk) -> GenerationChunk: if isinstance(other, GenerationChunk): generation_info = ( {**(self.generation_info or {}), **(other.generation_info or {})} if self.generation_info is not None or other.generation_info is not None else None ) return GenerationChunk( text=self.text + other.text, generation_info=generation_info, ) else: raise TypeError( f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" ) class ChatGeneration(Generation): """A single chat generation output.""" text: str = "" """*SHOULD NOT BE SET DIRECTLY* The text contents of the output message.""" message: BaseMessage """The message output by the chat model.""" # Override type to be ChatGeneration, ignore mypy error as this is intentional type: Literal["ChatGeneration"] = "ChatGeneration" # type: ignore[assignment] """Type is used exclusively for serialization purposes.""" @root_validator def set_text(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Set the text attribute to be the contents of the message.""" try: values["text"] = values["message"].content except (KeyError, AttributeError) as e: raise ValueError("Error while initializing ChatGeneration") from e return values class ChatGenerationChunk(ChatGeneration): """A ChatGeneration chunk, which can be concatenated with other ChatGeneration chunks. Attributes: message: The message chunk output by the chat model. """ message: BaseMessageChunk # Override type to be ChatGeneration, ignore mypy error as this is intentional type: Literal["ChatGenerationChunk"] = "ChatGenerationChunk" # type: ignore[assignment] # noqa: E501 """Type is used exclusively for serialization purposes.""" def __add__(self, other: ChatGenerationChunk) -> ChatGenerationChunk: if isinstance(other, ChatGenerationChunk): generation_info = ( {**(self.generation_info or {}), **(other.generation_info or {})} if self.generation_info is not None or other.generation_info is not None else None ) return ChatGenerationChunk( message=self.message + other.message, generation_info=generation_info, ) else: raise TypeError( f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" ) class RunInfo(BaseModel): """Class that contains metadata for a single execution of a Chain or model.""" run_id: UUID """A unique identifier for the model or chain run.""" class ChatResult(BaseModel): """Class that contains all results for a single chat model call.""" generations: List[ChatGeneration] """List of the chat generations. This is a List because an input can have multiple candidate generations. """ llm_output: Optional[dict] = None """For arbitrary LLM provider specific output.""" class LLMResult(BaseModel): """Class that contains all results for a batched LLM call.""" generations: List[List[Generation]] """List of generated outputs. This is a List[List[]] because each input could have multiple candidate generations.""" llm_output: Optional[dict] = None """Arbitrary LLM provider-specific output.""" run: Optional[List[RunInfo]] = None """List of metadata info for model call for each input.""" def flatten(self) -> List[LLMResult]: """Flatten generations into a single list. Unpack List[List[Generation]] -> List[LLMResult] where each returned LLMResult contains only a single Generation. If token usage information is available, it is kept only for the LLMResult corresponding to the top-choice Generation, to avoid over-counting of token usage downstream. Returns: List of LLMResults where each returned LLMResult contains a single Generation. """ llm_results = [] for i, gen_list in enumerate(self.generations): # Avoid double counting tokens in OpenAICallback if i == 0: llm_results.append( LLMResult( generations=[gen_list], llm_output=self.llm_output, ) ) else: if self.llm_output is not None: llm_output = deepcopy(self.llm_output) llm_output["token_usage"] = dict() else: llm_output = None llm_results.append( LLMResult( generations=[gen_list], llm_output=llm_output, ) ) return llm_results def __eq__(self, other: object) -> bool: """Check for LLMResult equality by ignoring any metadata related to runs.""" if not isinstance(other, LLMResult): return NotImplemented return ( self.generations == other.generations and self.llm_output == other.llm_output )
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~vectorstores~analyticdb.py
from __future__ import annotations import logging import uuid from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Type from sqlalchemy import REAL, Column, String, Table, create_engine, insert, text from sqlalchemy.dialects.postgresql import ARRAY, JSON, TEXT try: from sqlalchemy.orm import declarative_base except ImportError: from sqlalchemy.ext.declarative import declarative_base from langchain_core.schema.embeddings import Embeddings from langchain_core.schema.vectorstore import VectorStore from langchain.docstore.document import Document from langchain.utils import get_from_dict_or_env _LANGCHAIN_DEFAULT_EMBEDDING_DIM = 1536 _LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain_document" Base = declarative_base() # type: Any class AnalyticDB(VectorStore): """`AnalyticDB` (distributed PostgreSQL) vector store. AnalyticDB is a distributed full postgresql syntax cloud-native database. - `connection_string` is a postgres connection string. - `embedding_function` any embedding function implementing `langchain.embeddings.base.Embeddings` interface. - `collection_name` is the name of the collection to use. (default: langchain) - NOTE: This is not the name of the table, but the name of the collection. The tables will be created when initializing the store (if not exists) So, make sure the user has the right permissions to create tables. - `pre_delete_collection` if True, will delete the collection if it exists. (default: False) - Useful for testing. """ def __init__( self, connection_string: str, embedding_function: Embeddings, embedding_dimension: int = _LANGCHAIN_DEFAULT_EMBEDDING_DIM, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, pre_delete_collection: bool = False, logger: Optional[logging.Logger] = None, engine_args: Optional[dict] = None, ) -> None: self.connection_string = connection_string self.embedding_function = embedding_function self.embedding_dimension = embedding_dimension self.collection_name = collection_name self.pre_delete_collection = pre_delete_collection self.logger = logger or logging.getLogger(__name__) self.__post_init__(engine_args) def __post_init__( self, engine_args: Optional[dict] = None, ) -> None: """ Initialize the store. """ _engine_args = engine_args or {} if ( "pool_recycle" not in _engine_args ): # Check if pool_recycle is not in _engine_args _engine_args[ "pool_recycle" ] = 3600 # Set pool_recycle to 3600s if not present self.engine = create_engine(self.connection_string, **_engine_args) self.create_collection() @property def embeddings(self) -> Embeddings: return self.embedding_function def _select_relevance_score_fn(self) -> Callable[[float], float]: return self._euclidean_relevance_score_fn def create_table_if_not_exists(self) -> None: # Define the dynamic table Table( self.collection_name, Base.metadata, Column("id", TEXT, primary_key=True, default=uuid.uuid4), Column("embedding", ARRAY(REAL)), Column("document", String, nullable=True), Column("metadata", JSON, nullable=True), extend_existing=True, ) with self.engine.connect() as conn: with conn.begin(): # Create the table Base.metadata.create_all(conn) # Check if the index exists index_name = f"{self.collection_name}_embedding_idx" index_query = text( f""" SELECT 1 FROM pg_indexes WHERE indexname = '{index_name}'; """ ) result = conn.execute(index_query).scalar() # Create the index if it doesn't exist if not result: index_statement = text( f""" CREATE INDEX {index_name} ON {self.collection_name} USING ann(embedding) WITH ( "dim" = {self.embedding_dimension}, "hnsw_m" = 100 ); """ ) conn.execute(index_statement) def create_collection(self) -> None: if self.pre_delete_collection: self.delete_collection() self.create_table_if_not_exists() def delete_collection(self) -> None: self.logger.debug("Trying to delete collection") drop_statement = text(f"DROP TABLE IF EXISTS {self.collection_name};") with self.engine.connect() as conn: with conn.begin(): conn.execute(drop_statement) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 500, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. kwargs: vectorstore specific parameters Returns: List of ids from adding the texts into the vectorstore. """ if ids is None: ids = [str(uuid.uuid1()) for _ in texts] embeddings = self.embedding_function.embed_documents(list(texts)) if not metadatas: metadatas = [{} for _ in texts] # Define the table schema chunks_table = Table( self.collection_name, Base.metadata, Column("id", TEXT, primary_key=True), Column("embedding", ARRAY(REAL)), Column("document", String, nullable=True), Column("metadata", JSON, nullable=True), extend_existing=True, ) chunks_table_data = [] with self.engine.connect() as conn: with conn.begin(): for document, metadata, chunk_id, embedding in zip( texts, metadatas, ids, embeddings ): chunks_table_data.append( { "id": chunk_id, "embedding": embedding, "document": document, "metadata": metadata, } ) # Execute the batch insert when the batch size is reached if len(chunks_table_data) == batch_size: conn.execute(insert(chunks_table).values(chunks_table_data)) # Clear the chunks_table_data list for the next batch chunks_table_data.clear() # Insert any remaining records that didn't make up a full batch if chunks_table_data: conn.execute(insert(chunks_table).values(chunks_table_data)) return ids def similarity_search( self, query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search with AnalyticDB with distance. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query. """ embedding = self.embedding_function.embed_query(text=query) return self.similarity_search_by_vector( embedding=embedding, k=k, filter=filter, ) def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[dict] = None, ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query and score for each """ embedding = self.embedding_function.embed_query(query) docs = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, filter=filter ) return docs def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[dict] = None, ) -> List[Tuple[Document, float]]: # Add the filter if provided try: from sqlalchemy.engine import Row except ImportError: raise ImportError( "Could not import Row from sqlalchemy.engine. " "Please 'pip install sqlalchemy>=1.4'." ) filter_condition = "" if filter is not None: conditions = [ f"metadata->>{key!r} = {value!r}" for key, value in filter.items() ] filter_condition = f"WHERE {' AND '.join(conditions)}" # Define the base query sql_query = f""" SELECT *, l2_distance(embedding, :embedding) as distance FROM {self.collection_name} {filter_condition} ORDER BY embedding <-> :embedding LIMIT :k """ # Set up the query parameters params = {"embedding": embedding, "k": k} # Execute the query and fetch the results with self.engine.connect() as conn: results: Sequence[Row] = conn.execute(text(sql_query), params).fetchall() documents_with_scores = [ ( Document( page_content=result.document, metadata=result.metadata, ), result.distance if self.embedding_function is not None else None, ) for result in results ] return documents_with_scores def similarity_search_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[dict] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query vector. """ docs_and_scores = self.similarity_search_with_score_by_vector( embedding=embedding, k=k, filter=filter ) return [doc for doc, _ in docs_and_scores] def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]: """Delete by vector IDs. Args: ids: List of ids to delete. """ if ids is None: raise ValueError("No ids provided to delete.") # Define the table schema chunks_table = Table( self.collection_name, Base.metadata, Column("id", TEXT, primary_key=True), Column("embedding", ARRAY(REAL)), Column("document", String, nullable=True), Column("metadata", JSON, nullable=True), extend_existing=True, ) try: with self.engine.connect() as conn: with conn.begin(): delete_condition = chunks_table.c.id.in_(ids) conn.execute(chunks_table.delete().where(delete_condition)) return True except Exception as e: print("Delete operation failed:", str(e)) return False @classmethod def from_texts( cls: Type[AnalyticDB], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, embedding_dimension: int = _LANGCHAIN_DEFAULT_EMBEDDING_DIM, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, engine_args: Optional[dict] = None, **kwargs: Any, ) -> AnalyticDB: """ Return VectorStore initialized from texts and embeddings. Postgres Connection string is required Either pass it as a parameter or set the PG_CONNECTION_STRING environment variable. """ connection_string = cls.get_connection_string(kwargs) store = cls( connection_string=connection_string, collection_name=collection_name, embedding_function=embedding, embedding_dimension=embedding_dimension, pre_delete_collection=pre_delete_collection, engine_args=engine_args, ) store.add_texts(texts=texts, metadatas=metadatas, ids=ids, **kwargs) return store @classmethod def get_connection_string(cls, kwargs: Dict[str, Any]) -> str: connection_string: str = get_from_dict_or_env( data=kwargs, key="connection_string", env_key="PG_CONNECTION_STRING", ) if not connection_string: raise ValueError( "Postgres connection string is required" "Either pass it as a parameter" "or set the PG_CONNECTION_STRING environment variable." ) return connection_string @classmethod def from_documents( cls: Type[AnalyticDB], documents: List[Document], embedding: Embeddings, embedding_dimension: int = _LANGCHAIN_DEFAULT_EMBEDDING_DIM, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, engine_args: Optional[dict] = None, **kwargs: Any, ) -> AnalyticDB: """ Return VectorStore initialized from documents and embeddings. Postgres Connection string is required Either pass it as a parameter or set the PG_CONNECTION_STRING environment variable. """ texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] connection_string = cls.get_connection_string(kwargs) kwargs["connection_string"] = connection_string return cls.from_texts( texts=texts, pre_delete_collection=pre_delete_collection, embedding=embedding, embedding_dimension=embedding_dimension, metadatas=metadatas, ids=ids, collection_name=collection_name, engine_args=engine_args, **kwargs, ) @classmethod def connection_string_from_db_params( cls, driver: str, host: str, port: int, database: str, user: str, password: str, ) -> str: """Return connection string from database parameters.""" return f"postgresql+{driver}://{user}:{password}@{host}:{port}/{database}"
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~document_loaders~parsers~msword.py
from typing import Iterator from langchain_core.schema import Document from langchain.document_loaders.base import BaseBlobParser from langchain.document_loaders.blob_loaders import Blob class MsWordParser(BaseBlobParser): """Parse the Microsoft Word documents from a blob.""" def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Parse a Microsoft Word document into the Document iterator. Args: blob: The blob to parse. Returns: An iterator of Documents. """ try: from unstructured.partition.doc import partition_doc from unstructured.partition.docx import partition_docx except ImportError as e: raise ImportError( "Could not import unstructured, please install with `pip install " "unstructured`." ) from e mime_type_parser = { "application/msword": partition_doc, "application/vnd.openxmlformats-officedocument.wordprocessingml.document": ( partition_docx ), } if blob.mimetype not in ( "application/msword", "application/vnd.openxmlformats-officedocument.wordprocessingml.document", ): raise ValueError("This blob type is not supported for this parser.") with blob.as_bytes_io() as word_document: elements = mime_type_parser[blob.mimetype](file=word_document) text = "\n\n".join([str(el) for el in elements]) metadata = {"source": blob.source} yield Document(page_content=text, metadata=metadata)
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~schema~output_parser.py
from langchain_core.schema.output_parser import ( BaseCumulativeTransformOutputParser, BaseGenerationOutputParser, BaseLLMOutputParser, BaseOutputParser, BaseTransformOutputParser, OutputParserException, StrOutputParser, ) __all__ = [ "BaseLLMOutputParser", "BaseGenerationOutputParser", "BaseOutputParser", "BaseTransformOutputParser", "BaseCumulativeTransformOutputParser", "StrOutputParser", "OutputParserException", ]
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~integration_tests~retrievers~test_kay.py
"""Integration test for Kay.ai API Wrapper.""" import pytest from langchain_core.schema import Document from langchain.retrievers import KayAiRetriever @pytest.mark.requires("kay") def test_kay_retriever() -> None: retriever = KayAiRetriever.create( dataset_id="company", data_types=["10-K", "10-Q", "8-K", "PressRelease"], num_contexts=3, ) docs = retriever.get_relevant_documents( "What were the biggest strategy changes and partnerships made by Roku " "in 2023?", ) assert len(docs) == 3 for doc in docs: assert isinstance(doc, Document) assert doc.page_content assert doc.metadata assert len(list(doc.metadata.items())) > 0
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~vectorstores~chroma.py
from __future__ import annotations import base64 import logging import uuid from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Tuple, Type, ) import numpy as np from langchain_core.schema.embeddings import Embeddings from langchain_core.schema.vectorstore import VectorStore from langchain_core.utils import xor_args from langchain.docstore.document import Document from langchain.vectorstores.utils import maximal_marginal_relevance if TYPE_CHECKING: import chromadb import chromadb.config from chromadb.api.types import ID, OneOrMany, Where, WhereDocument logger = logging.getLogger() DEFAULT_K = 4 # Number of Documents to return. def _results_to_docs(results: Any) -> List[Document]: return [doc for doc, _ in _results_to_docs_and_scores(results)] def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]: return [ # TODO: Chroma can do batch querying, # we shouldn't hard code to the 1st result (Document(page_content=result[0], metadata=result[1] or {}), result[2]) for result in zip( results["documents"][0], results["metadatas"][0], results["distances"][0], ) ] class Chroma(VectorStore): """`ChromaDB` vector store. To use, you should have the ``chromadb`` python package installed. Example: .. code-block:: python from langchain.vectorstores import Chroma from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = Chroma("langchain_store", embeddings) """ _LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain" def __init__( self, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, embedding_function: Optional[Embeddings] = None, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, collection_metadata: Optional[Dict] = None, client: Optional[chromadb.Client] = None, relevance_score_fn: Optional[Callable[[float], float]] = None, ) -> None: """Initialize with a Chroma client.""" try: import chromadb import chromadb.config except ImportError: raise ImportError( "Could not import chromadb python package. " "Please install it with `pip install chromadb`." ) if client is not None: self._client_settings = client_settings self._client = client self._persist_directory = persist_directory else: if client_settings: # If client_settings is provided with persist_directory specified, # then it is "in-memory and persisting to disk" mode. client_settings.persist_directory = ( persist_directory or client_settings.persist_directory ) if client_settings.persist_directory is not None: # Maintain backwards compatibility with chromadb < 0.4.0 major, minor, _ = chromadb.__version__.split(".") if int(major) == 0 and int(minor) < 4: client_settings.chroma_db_impl = "duckdb+parquet" _client_settings = client_settings elif persist_directory: # Maintain backwards compatibility with chromadb < 0.4.0 major, minor, _ = chromadb.__version__.split(".") if int(major) == 0 and int(minor) < 4: _client_settings = chromadb.config.Settings( chroma_db_impl="duckdb+parquet", ) else: _client_settings = chromadb.config.Settings(is_persistent=True) _client_settings.persist_directory = persist_directory else: _client_settings = chromadb.config.Settings() self._client_settings = _client_settings self._client = chromadb.Client(_client_settings) self._persist_directory = ( _client_settings.persist_directory or persist_directory ) self._embedding_function = embedding_function self._collection = self._client.get_or_create_collection( name=collection_name, embedding_function=None, metadata=collection_metadata, ) self.override_relevance_score_fn = relevance_score_fn @property def embeddings(self) -> Optional[Embeddings]: return self._embedding_function @xor_args(("query_texts", "query_embeddings")) def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Query the chroma collection.""" try: import chromadb # noqa: F401 except ImportError: raise ValueError( "Could not import chromadb python package. " "Please install it with `pip install chromadb`." ) return self._collection.query( query_texts=query_texts, query_embeddings=query_embeddings, n_results=n_results, where=where, where_document=where_document, **kwargs, ) def encode_image(self, uri: str) -> str: """Get base64 string from image URI.""" with open(uri, "rb") as image_file: return base64.b64encode(image_file.read()).decode("utf-8") def add_images( self, uris: List[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more images through the embeddings and add to the vectorstore. Args: images (List[List[float]]): Images to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. Returns: List[str]: List of IDs of the added images. """ # Map from uris to b64 encoded strings b64_texts = [self.encode_image(uri=uri) for uri in uris] # Populate IDs if ids is None: ids = [str(uuid.uuid1()) for _ in uris] embeddings = None # Set embeddings if self._embedding_function is not None and hasattr( self._embedding_function, "embed_image" ): embeddings = self._embedding_function.embed_image(uris=uris) if metadatas: # fill metadatas with empty dicts if somebody # did not specify metadata for all images length_diff = len(uris) - len(metadatas) if length_diff: metadatas = metadatas + [{}] * length_diff empty_ids = [] non_empty_ids = [] for idx, m in enumerate(metadatas): if m: non_empty_ids.append(idx) else: empty_ids.append(idx) if non_empty_ids: metadatas = [metadatas[idx] for idx in non_empty_ids] images_with_metadatas = [uris[idx] for idx in non_empty_ids] embeddings_with_metadatas = ( [embeddings[idx] for idx in non_empty_ids] if embeddings else None ) ids_with_metadata = [ids[idx] for idx in non_empty_ids] try: self._collection.upsert( metadatas=metadatas, embeddings=embeddings_with_metadatas, documents=images_with_metadatas, ids=ids_with_metadata, ) except ValueError as e: if "Expected metadata value to be" in str(e): msg = ( "Try filtering complex metadata using " "langchain.vectorstores.utils.filter_complex_metadata." ) raise ValueError(e.args[0] + "\n\n" + msg) else: raise e if empty_ids: images_without_metadatas = [uris[j] for j in empty_ids] embeddings_without_metadatas = ( [embeddings[j] for j in empty_ids] if embeddings else None ) ids_without_metadatas = [ids[j] for j in empty_ids] self._collection.upsert( embeddings=embeddings_without_metadatas, documents=images_without_metadatas, ids=ids_without_metadatas, ) else: self._collection.upsert( embeddings=embeddings, documents=b64_texts, ids=ids, ) return ids def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. Returns: List[str]: List of IDs of the added texts. """ # TODO: Handle the case where the user doesn't provide ids on the Collection if ids is None: ids = [str(uuid.uuid1()) for _ in texts] embeddings = None texts = list(texts) if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(texts) if metadatas: # fill metadatas with empty dicts if somebody # did not specify metadata for all texts length_diff = len(texts) - len(metadatas) if length_diff: metadatas = metadatas + [{}] * length_diff empty_ids = [] non_empty_ids = [] for idx, m in enumerate(metadatas): if m: non_empty_ids.append(idx) else: empty_ids.append(idx) if non_empty_ids: metadatas = [metadatas[idx] for idx in non_empty_ids] texts_with_metadatas = [texts[idx] for idx in non_empty_ids] embeddings_with_metadatas = ( [embeddings[idx] for idx in non_empty_ids] if embeddings else None ) ids_with_metadata = [ids[idx] for idx in non_empty_ids] try: self._collection.upsert( metadatas=metadatas, embeddings=embeddings_with_metadatas, documents=texts_with_metadatas, ids=ids_with_metadata, ) except ValueError as e: if "Expected metadata value to be" in str(e): msg = ( "Try filtering complex metadata from the document using " "langchain.vectorstores.utils.filter_complex_metadata." ) raise ValueError(e.args[0] + "\n\n" + msg) else: raise e if empty_ids: texts_without_metadatas = [texts[j] for j in empty_ids] embeddings_without_metadatas = ( [embeddings[j] for j in empty_ids] if embeddings else None ) ids_without_metadatas = [ids[j] for j in empty_ids] self._collection.upsert( embeddings=embeddings_without_metadatas, documents=texts_without_metadatas, ids=ids_without_metadatas, ) else: self._collection.upsert( embeddings=embeddings, documents=texts, ids=ids, ) return ids def similarity_search( self, query: str, k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search with Chroma. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Document]: List of documents most similar to the query text. """ docs_and_scores = self.similarity_search_with_score(query, k, filter=filter) return [doc for doc, _ in docs_and_scores] def similarity_search_by_vector( self, embedding: List[float], k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding (List[float]): Embedding to look up documents similar to. k (int): Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query vector. """ results = self.__query_collection( query_embeddings=embedding, n_results=k, where=filter, where_document=where_document, ) return _results_to_docs(results) def similarity_search_by_vector_with_relevance_scores( self, embedding: List[float], k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """ Return docs most similar to embedding vector and similarity score. Args: embedding (List[float]): Embedding to look up documents similar to. k (int): Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. """ results = self.__query_collection( query_embeddings=embedding, n_results=k, where=filter, where_document=where_document, ) return _results_to_docs_and_scores(results) def similarity_search_with_score( self, query: str, k: int = DEFAULT_K, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Run similarity search with Chroma with distance. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. """ if self._embedding_function is None: results = self.__query_collection( query_texts=[query], n_results=k, where=filter, where_document=where_document, ) else: query_embedding = self._embedding_function.embed_query(query) results = self.__query_collection( query_embeddings=[query_embedding], n_results=k, where=filter, where_document=where_document, ) return _results_to_docs_and_scores(results) def _select_relevance_score_fn(self) -> Callable[[float], float]: """ The 'correct' relevance function may differ depending on a few things, including: - the distance / similarity metric used by the VectorStore - the scale of your embeddings (OpenAI's are unit normed. Many others are not!) - embedding dimensionality - etc. """ if self.override_relevance_score_fn: return self.override_relevance_score_fn distance = "l2" distance_key = "hnsw:space" metadata = self._collection.metadata if metadata and distance_key in metadata: distance = metadata[distance_key] if distance == "cosine": return self._cosine_relevance_score_fn elif distance == "l2": return self._euclidean_relevance_score_fn elif distance == "ip": return self._max_inner_product_relevance_score_fn else: raise ValueError( "No supported normalization function" f" for distance metric of type: {distance}." "Consider providing relevance_score_fn to Chroma constructor." ) def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = DEFAULT_K, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, where_document=where_document, include=["metadatas", "documents", "distances", "embeddings"], ) mmr_selected = maximal_marginal_relevance( np.array(embedding, dtype=np.float32), results["embeddings"][0], k=k, lambda_mult=lambda_mult, ) candidates = _results_to_docs(results) selected_results = [r for i, r in enumerate(candidates) if i in mmr_selected] return selected_results def max_marginal_relevance_search( self, query: str, k: int = DEFAULT_K, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ if self._embedding_function is None: raise ValueError( "For MMR search, you must specify an embedding function on" "creation." ) embedding = self._embedding_function.embed_query(query) docs = self.max_marginal_relevance_search_by_vector( embedding, k, fetch_k, lambda_mult=lambda_mult, filter=filter, where_document=where_document, ) return docs def delete_collection(self) -> None: """Delete the collection.""" self._client.delete_collection(self._collection.name) def get( self, ids: Optional[OneOrMany[ID]] = None, where: Optional[Where] = None, limit: Optional[int] = None, offset: Optional[int] = None, where_document: Optional[WhereDocument] = None, include: Optional[List[str]] = None, ) -> Dict[str, Any]: """Gets the collection. Args: ids: The ids of the embeddings to get. Optional. where: A Where type dict used to filter results by. E.g. `{"color" : "red", "price": 4.20}`. Optional. limit: The number of documents to return. Optional. offset: The offset to start returning results from. Useful for paging results with limit. Optional. where_document: A WhereDocument type dict used to filter by the documents. E.g. `{$contains: "hello"}`. Optional. include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`. Ids are always included. Defaults to `["metadatas", "documents"]`. Optional. """ kwargs = { "ids": ids, "where": where, "limit": limit, "offset": offset, "where_document": where_document, } if include is not None: kwargs["include"] = include return self._collection.get(**kwargs) def persist(self) -> None: """Persist the collection. This can be used to explicitly persist the data to disk. It will also be called automatically when the object is destroyed. """ if self._persist_directory is None: raise ValueError( "You must specify a persist_directory on" "creation to persist the collection." ) import chromadb # Maintain backwards compatibility with chromadb < 0.4.0 major, minor, _ = chromadb.__version__.split(".") if int(major) == 0 and int(minor) < 4: self._client.persist() def update_document(self, document_id: str, document: Document) -> None: """Update a document in the collection. Args: document_id (str): ID of the document to update. document (Document): Document to update. """ return self.update_documents([document_id], [document]) def update_documents(self, ids: List[str], documents: List[Document]) -> None: """Update a document in the collection. Args: ids (List[str]): List of ids of the document to update. documents (List[Document]): List of documents to update. """ text = [document.page_content for document in documents] metadata = [document.metadata for document in documents] if self._embedding_function is None: raise ValueError( "For update, you must specify an embedding function on creation." ) embeddings = self._embedding_function.embed_documents(text) if hasattr( self._collection._client, "max_batch_size" ): # for Chroma 0.4.10 and above from chromadb.utils.batch_utils import create_batches for batch in create_batches( api=self._collection._client, ids=ids, metadatas=metadata, documents=text, embeddings=embeddings, ): self._collection.update( ids=batch[0], embeddings=batch[1], documents=batch[3], metadatas=batch[2], ) else: self._collection.update( ids=ids, embeddings=embeddings, documents=text, metadatas=metadata, ) @classmethod def from_texts( cls: Type[Chroma], texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, client: Optional[chromadb.Client] = None, collection_metadata: Optional[Dict] = None, **kwargs: Any, ) -> Chroma: """Create a Chroma vectorstore from a raw documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Args: texts (List[str]): List of texts to add to the collection. collection_name (str): Name of the collection to create. persist_directory (Optional[str]): Directory to persist the collection. embedding (Optional[Embeddings]): Embedding function. Defaults to None. metadatas (Optional[List[dict]]): List of metadatas. Defaults to None. ids (Optional[List[str]]): List of document IDs. Defaults to None. client_settings (Optional[chromadb.config.Settings]): Chroma client settings collection_metadata (Optional[Dict]): Collection configurations. Defaults to None. Returns: Chroma: Chroma vectorstore. """ chroma_collection = cls( collection_name=collection_name, embedding_function=embedding, persist_directory=persist_directory, client_settings=client_settings, client=client, collection_metadata=collection_metadata, **kwargs, ) if ids is None: ids = [str(uuid.uuid1()) for _ in texts] if hasattr( chroma_collection._client, "max_batch_size" ): # for Chroma 0.4.10 and above from chromadb.utils.batch_utils import create_batches for batch in create_batches( api=chroma_collection._client, ids=ids, metadatas=metadatas, documents=texts, ): chroma_collection.add_texts( texts=batch[3] if batch[3] else [], metadatas=batch[2] if batch[2] else None, ids=batch[0], ) else: chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids) return chroma_collection @classmethod def from_documents( cls: Type[Chroma], documents: List[Document], embedding: Optional[Embeddings] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, client: Optional[chromadb.Client] = None, # Add this line collection_metadata: Optional[Dict] = None, **kwargs: Any, ) -> Chroma: """Create a Chroma vectorstore from a list of documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Args: collection_name (str): Name of the collection to create. persist_directory (Optional[str]): Directory to persist the collection. ids (Optional[List[str]]): List of document IDs. Defaults to None. documents (List[Document]): List of documents to add to the vectorstore. embedding (Optional[Embeddings]): Embedding function. Defaults to None. client_settings (Optional[chromadb.config.Settings]): Chroma client settings collection_metadata (Optional[Dict]): Collection configurations. Defaults to None. Returns: Chroma: Chroma vectorstore. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return cls.from_texts( texts=texts, embedding=embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, persist_directory=persist_directory, client_settings=client_settings, client=client, collection_metadata=collection_metadata, **kwargs, ) def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None: """Delete by vector IDs. Args: ids: List of ids to delete. """ self._collection.delete(ids=ids)
[]
2024-01-10
axgpt/langchain
libs~core~langchain_core~prompts~few_shot.py
"""Prompt template that contains few shot examples.""" from __future__ import annotations from pathlib import Path from typing import Any, Dict, List, Literal, Optional, Union from langchain_core.prompts.base import ( DEFAULT_FORMATTER_MAPPING, StringPromptTemplate, check_valid_template, get_template_variables, ) from langchain_core.prompts.chat import ( BaseChatPromptTemplate, BaseMessagePromptTemplate, ) from langchain_core.prompts.example_selector.base import BaseExampleSelector from langchain_core.prompts.prompt import PromptTemplate from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator from langchain_core.schema.messages import BaseMessage, get_buffer_string class _FewShotPromptTemplateMixin(BaseModel): """Prompt template that contains few shot examples.""" examples: Optional[List[dict]] = None """Examples to format into the prompt. Either this or example_selector should be provided.""" example_selector: Optional[BaseExampleSelector] = None """ExampleSelector to choose the examples to format into the prompt. Either this or examples should be provided.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def check_examples_and_selector(cls, values: Dict) -> Dict: """Check that one and only one of examples/example_selector are provided.""" examples = values.get("examples", None) example_selector = values.get("example_selector", None) if examples and example_selector: raise ValueError( "Only one of 'examples' and 'example_selector' should be provided" ) if examples is None and example_selector is None: raise ValueError( "One of 'examples' and 'example_selector' should be provided" ) return values def _get_examples(self, **kwargs: Any) -> List[dict]: """Get the examples to use for formatting the prompt. Args: **kwargs: Keyword arguments to be passed to the example selector. Returns: List of examples. """ if self.examples is not None: return self.examples elif self.example_selector is not None: return self.example_selector.select_examples(kwargs) else: raise ValueError( "One of 'examples' and 'example_selector' should be provided" ) class FewShotPromptTemplate(_FewShotPromptTemplateMixin, StringPromptTemplate): """Prompt template that contains few shot examples.""" @classmethod def is_lc_serializable(cls) -> bool: """Return whether or not the class is serializable.""" return False validate_template: bool = False """Whether or not to try validating the template.""" input_variables: List[str] """A list of the names of the variables the prompt template expects.""" example_prompt: PromptTemplate """PromptTemplate used to format an individual example.""" suffix: str """A prompt template string to put after the examples.""" example_separator: str = "\n\n" """String separator used to join the prefix, the examples, and suffix.""" prefix: str = "" """A prompt template string to put before the examples.""" template_format: Union[Literal["f-string"], Literal["jinja2"]] = "f-string" """The format of the prompt template. Options are: 'f-string', 'jinja2'.""" @root_validator() def template_is_valid(cls, values: Dict) -> Dict: """Check that prefix, suffix, and input variables are consistent.""" if values["validate_template"]: check_valid_template( values["prefix"] + values["suffix"], values["template_format"], values["input_variables"] + list(values["partial_variables"]), ) elif values.get("template_format"): values["input_variables"] = [ var for var in get_template_variables( values["prefix"] + values["suffix"], values["template_format"] ) if var not in values["partial_variables"] ] return values class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True def format(self, **kwargs: Any) -> str: """Format the prompt with the inputs. Args: **kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. Example: .. code-block:: python prompt.format(variable1="foo") """ kwargs = self._merge_partial_and_user_variables(**kwargs) # Get the examples to use. examples = self._get_examples(**kwargs) examples = [ {k: e[k] for k in self.example_prompt.input_variables} for e in examples ] # Format the examples. example_strings = [ self.example_prompt.format(**example) for example in examples ] # Create the overall template. pieces = [self.prefix, *example_strings, self.suffix] template = self.example_separator.join([piece for piece in pieces if piece]) # Format the template with the input variables. return DEFAULT_FORMATTER_MAPPING[self.template_format](template, **kwargs) @property def _prompt_type(self) -> str: """Return the prompt type key.""" return "few_shot" def save(self, file_path: Union[Path, str]) -> None: if self.example_selector: raise ValueError("Saving an example selector is not currently supported") return super().save(file_path) class FewShotChatMessagePromptTemplate( BaseChatPromptTemplate, _FewShotPromptTemplateMixin ): """Chat prompt template that supports few-shot examples. The high level structure of produced by this prompt template is a list of messages consisting of prefix message(s), example message(s), and suffix message(s). This structure enables creating a conversation with intermediate examples like: System: You are a helpful AI Assistant Human: What is 2+2? AI: 4 Human: What is 2+3? AI: 5 Human: What is 4+4? This prompt template can be used to generate a fixed list of examples or else to dynamically select examples based on the input. Examples: Prompt template with a fixed list of examples (matching the sample conversation above): .. code-block:: python from langchain_core.prompts import ( FewShotChatMessagePromptTemplate, ChatPromptTemplate ) examples = [ {"input": "2+2", "output": "4"}, {"input": "2+3", "output": "5"}, ] example_prompt = ChatPromptTemplate.from_messages( [('human', '{input}'), ('ai', '{output}')] ) few_shot_prompt = FewShotChatMessagePromptTemplate( examples=examples, # This is a prompt template used to format each individual example. example_prompt=example_prompt, ) final_prompt = ChatPromptTemplate.from_messages( [ ('system', 'You are a helpful AI Assistant'), few_shot_prompt, ('human', '{input}'), ] ) final_prompt.format(input="What is 4+4?") Prompt template with dynamically selected examples: .. code-block:: python from langchain_core.prompts import SemanticSimilarityExampleSelector from langchain_core.embeddings import OpenAIEmbeddings from langchain_core.vectorstores import Chroma examples = [ {"input": "2+2", "output": "4"}, {"input": "2+3", "output": "5"}, {"input": "2+4", "output": "6"}, # ... ] to_vectorize = [ " ".join(example.values()) for example in examples ] embeddings = OpenAIEmbeddings() vectorstore = Chroma.from_texts( to_vectorize, embeddings, metadatas=examples ) example_selector = SemanticSimilarityExampleSelector( vectorstore=vectorstore ) from langchain_core.schema import SystemMessage from langchain_core.prompts import HumanMessagePromptTemplate from langchain_core.prompts.few_shot import FewShotChatMessagePromptTemplate few_shot_prompt = FewShotChatMessagePromptTemplate( # Which variable(s) will be passed to the example selector. input_variables=["input"], example_selector=example_selector, # Define how each example will be formatted. # In this case, each example will become 2 messages: # 1 human, and 1 AI example_prompt=( HumanMessagePromptTemplate.from_template("{input}") + AIMessagePromptTemplate.from_template("{output}") ), ) # Define the overall prompt. final_prompt = ( SystemMessagePromptTemplate.from_template( "You are a helpful AI Assistant" ) + few_shot_prompt + HumanMessagePromptTemplate.from_template("{input}") ) # Show the prompt print(final_prompt.format_messages(input="What's 3+3?")) # Use within an LLM from langchain_core.chat_models import ChatAnthropic chain = final_prompt | ChatAnthropic() chain.invoke({"input": "What's 3+3?"}) """ @classmethod def is_lc_serializable(cls) -> bool: """Return whether or not the class is serializable.""" return False input_variables: List[str] = Field(default_factory=list) """A list of the names of the variables the prompt template will use to pass to the example_selector, if provided.""" example_prompt: Union[BaseMessagePromptTemplate, BaseChatPromptTemplate] """The class to format each example.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True def format_messages(self, **kwargs: Any) -> List[BaseMessage]: """Format kwargs into a list of messages. Args: **kwargs: keyword arguments to use for filling in templates in messages. Returns: A list of formatted messages with all template variables filled in. """ # Get the examples to use. examples = self._get_examples(**kwargs) examples = [ {k: e[k] for k in self.example_prompt.input_variables} for e in examples ] # Format the examples. messages = [ message for example in examples for message in self.example_prompt.format_messages(**example) ] return messages def format(self, **kwargs: Any) -> str: """Format the prompt with inputs generating a string. Use this method to generate a string representation of a prompt consisting of chat messages. Useful for feeding into a string based completion language model or debugging. Args: **kwargs: keyword arguments to use for formatting. Returns: A string representation of the prompt """ messages = self.format_messages(**kwargs) return get_buffer_string(messages)
[ "f-string", "False" ]
2024-01-10
axgpt/langchain
libs~langchain~langchain~vectorstores~alibabacloud_opensearch.py
import json import logging import numbers from hashlib import sha1 from typing import Any, Dict, Iterable, List, Optional, Tuple from langchain_core.schema import Document from langchain_core.schema.embeddings import Embeddings from langchain_core.schema.vectorstore import VectorStore logger = logging.getLogger() class AlibabaCloudOpenSearchSettings: """Alibaba Cloud Opensearch` client configuration. Attribute: endpoint (str) : The endpoint of opensearch instance, You can find it from the console of Alibaba Cloud OpenSearch. instance_id (str) : The identify of opensearch instance, You can find it from the console of Alibaba Cloud OpenSearch. username (str) : The username specified when purchasing the instance. password (str) : The password specified when purchasing the instance, After the instance is created, you can modify it on the console. tablename (str): The table name specified during instance configuration. field_name_mapping (Dict) : Using field name mapping between opensearch vector store and opensearch instance configuration table field names: { 'id': 'The id field name map of index document.', 'document': 'The text field name map of index document.', 'embedding': 'In the embedding field of the opensearch instance, the values must be in float type and separated by separator, default is comma.', 'metadata_field_x': 'Metadata field mapping includes the mapped field name and operator in the mapping value, separated by a comma between the mapped field name and the operator.', } protocol (str): Communication Protocol between SDK and Server, default is http. namespace (str) : The instance data will be partitioned based on the "namespace" field,If the namespace is enabled, you need to specify the namespace field name during initialization, Otherwise, the queries cannot be executed correctly. embedding_field_separator(str): Delimiter specified for writing vector field data, default is comma. output_fields: Specify the field list returned when invoking OpenSearch, by default it is the value list of the field mapping field. """ def __init__( self, endpoint: str, instance_id: str, username: str, password: str, table_name: str, field_name_mapping: Dict[str, str], protocol: str = "http", namespace: str = "", embedding_field_separator: str = ",", output_fields: Optional[List[str]] = None, ) -> None: self.endpoint = endpoint self.instance_id = instance_id self.protocol = protocol self.username = username self.password = password self.namespace = namespace self.table_name = table_name self.opt_table_name = "_".join([self.instance_id, self.table_name]) self.field_name_mapping = field_name_mapping self.embedding_field_separator = embedding_field_separator if output_fields is None: self.output_fields = [ field.split(",")[0] for field in self.field_name_mapping.values() ] self.inverse_field_name_mapping: Dict[str, str] = {} for key, value in self.field_name_mapping.items(): self.inverse_field_name_mapping[value.split(",")[0]] = key def __getitem__(self, item: str) -> Any: return getattr(self, item) def create_metadata(fields: Dict[str, Any]) -> Dict[str, Any]: """Create metadata from fields. Args: fields: The fields of the document. The fields must be a dict. Returns: metadata: The metadata of the document. The metadata must be a dict. """ metadata: Dict[str, Any] = {} for key, value in fields.items(): if key == "id" or key == "document" or key == "embedding": continue metadata[key] = value return metadata class AlibabaCloudOpenSearch(VectorStore): """`Alibaba Cloud OpenSearch` vector store.""" def __init__( self, embedding: Embeddings, config: AlibabaCloudOpenSearchSettings, **kwargs: Any, ) -> None: try: from alibabacloud_ha3engine_vector import client, models from alibabacloud_tea_util import models as util_models except ImportError: raise ImportError( "Could not import alibaba cloud opensearch python package. " "Please install it with `pip install alibabacloud-ha3engine-vector`." ) self.config = config self.embedding = embedding self.runtime = util_models.RuntimeOptions( connect_timeout=5000, read_timeout=10000, autoretry=False, ignore_ssl=False, max_idle_conns=50, ) self.ha3_engine_client = client.Client( models.Config( endpoint=config.endpoint, instance_id=config.instance_id, protocol=config.protocol, access_user_name=config.username, access_pass_word=config.password, ) ) self.options_headers: Dict[str, str] = {} def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Insert documents into the instance.. Args: texts: The text segments to be inserted into the vector storage, should not be empty. metadatas: Metadata information. Returns: id_list: List of document IDs. """ def _upsert(push_doc_list: List[Dict]) -> List[str]: if push_doc_list is None or len(push_doc_list) == 0: return [] try: push_request = models.PushDocumentsRequest( self.options_headers, push_doc_list ) push_response = self.ha3_engine_client.push_documents( self.config.opt_table_name, field_name_map["id"], push_request ) json_response = json.loads(push_response.body) if json_response["status"] == "OK": return [ push_doc["fields"][field_name_map["id"]] for push_doc in push_doc_list ] return [] except Exception as e: logger.error( f"add doc to endpoint:{self.config.endpoint} " f"instance_id:{self.config.instance_id} failed.", e, ) raise e from alibabacloud_ha3engine_vector import models id_list = [sha1(t.encode("utf-8")).hexdigest() for t in texts] embeddings = self.embedding.embed_documents(list(texts)) metadatas = metadatas or [{} for _ in texts] field_name_map = self.config.field_name_mapping add_doc_list = [] text_list = list(texts) for idx, doc_id in enumerate(id_list): embedding = embeddings[idx] if idx < len(embeddings) else None metadata = metadatas[idx] if idx < len(metadatas) else None text = text_list[idx] if idx < len(text_list) else None add_doc: Dict[str, Any] = dict() add_doc_fields: Dict[str, Any] = dict() add_doc_fields.__setitem__(field_name_map["id"], doc_id) add_doc_fields.__setitem__(field_name_map["document"], text) if embedding is not None: add_doc_fields.__setitem__( field_name_map["embedding"], self.config.embedding_field_separator.join( str(unit) for unit in embedding ), ) if metadata is not None: for md_key, md_value in metadata.items(): add_doc_fields.__setitem__( field_name_map[md_key].split(",")[0], md_value ) add_doc.__setitem__("fields", add_doc_fields) add_doc.__setitem__("cmd", "add") add_doc_list.append(add_doc) return _upsert(add_doc_list) def similarity_search( self, query: str, k: int = 4, search_filter: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> List[Document]: """Perform similarity retrieval based on text. Args: query: Vectorize text for retrieval.,should not be empty. k: top n. search_filter: Additional filtering conditions. Returns: document_list: List of documents. """ embedding = self.embedding.embed_query(query) return self.create_results( self.inner_embedding_query( embedding=embedding, search_filter=search_filter, k=k ) ) def similarity_search_with_relevance_scores( self, query: str, k: int = 4, search_filter: Optional[dict] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Perform similarity retrieval based on text with scores. Args: query: Vectorize text for retrieval.,should not be empty. k: top n. search_filter: Additional filtering conditions. Returns: document_list: List of documents. """ embedding: List[float] = self.embedding.embed_query(query) return self.create_results_with_score( self.inner_embedding_query( embedding=embedding, search_filter=search_filter, k=k ) ) def similarity_search_by_vector( self, embedding: List[float], k: int = 4, search_filter: Optional[dict] = None, **kwargs: Any, ) -> List[Document]: """Perform retrieval directly using vectors. Args: embedding: vectors. k: top n. search_filter: Additional filtering conditions. Returns: document_list: List of documents. """ return self.create_results( self.inner_embedding_query( embedding=embedding, search_filter=search_filter, k=k ) ) def inner_embedding_query( self, embedding: List[float], search_filter: Optional[Dict[str, Any]] = None, k: int = 4, ) -> Dict[str, Any]: def generate_filter_query() -> str: if search_filter is None: return "" filter_clause = " AND ".join( [ create_filter(md_key, md_value) for md_key, md_value in search_filter.items() ] ) return filter_clause def create_filter(md_key: str, md_value: Any) -> str: md_filter_expr = self.config.field_name_mapping[md_key] if md_filter_expr is None: return "" expr = md_filter_expr.split(",") if len(expr) != 2: logger.error( f"filter {md_filter_expr} express is not correct, " f"must contain mapping field and operator." ) return "" md_filter_key = expr[0].strip() md_filter_operator = expr[1].strip() if isinstance(md_value, numbers.Number): return f"{md_filter_key} {md_filter_operator} {md_value}" return f'{md_filter_key}{md_filter_operator}"{md_value}"' def search_data() -> Dict[str, Any]: request = QueryRequest( table_name=self.config.table_name, namespace=self.config.namespace, vector=embedding, include_vector=True, output_fields=self.config.output_fields, filter=generate_filter_query(), top_k=k, ) query_result = self.ha3_engine_client.query(request) return json.loads(query_result.body) from alibabacloud_ha3engine_vector.models import QueryRequest try: json_response = search_data() if ( "errorCode" in json_response and "errorMsg" in json_response and len(json_response["errorMsg"]) > 0 ): logger.error( f"query {self.config.endpoint} {self.config.instance_id} " f"failed:{json_response['errorMsg']}." ) else: return json_response except Exception as e: logger.error( f"query instance endpoint:{self.config.endpoint} " f"instance_id:{self.config.instance_id} failed.", e, ) return {} def create_results(self, json_result: Dict[str, Any]) -> List[Document]: """Assemble documents.""" items = json_result["result"] query_result_list: List[Document] = [] for item in items: if ( "fields" not in item or self.config.field_name_mapping["document"] not in item["fields"] ): query_result_list.append(Document()) else: fields = item["fields"] query_result_list.append( Document( page_content=fields[self.config.field_name_mapping["document"]], metadata=self.create_inverse_metadata(fields), ) ) return query_result_list def create_inverse_metadata(self, fields: Dict[str, Any]) -> Dict[str, Any]: """Create metadata from fields. Args: fields: The fields of the document. The fields must be a dict. Returns: metadata: The metadata of the document. The metadata must be a dict. """ metadata: Dict[str, Any] = {} for key, value in fields.items(): if key == "id" or key == "document" or key == "embedding": continue metadata[self.config.inverse_field_name_mapping[key]] = value return metadata def create_results_with_score( self, json_result: Dict[str, Any] ) -> List[Tuple[Document, float]]: """Parsing the returned results with scores. Args: json_result: Results from OpenSearch query. Returns: query_result_list: Results with scores. """ items = json_result["result"] query_result_list: List[Tuple[Document, float]] = [] for item in items: fields = item["fields"] query_result_list.append( ( Document( page_content=fields[self.config.field_name_mapping["document"]], metadata=self.create_inverse_metadata(fields), ), float(item["score"]), ) ) return query_result_list def delete_documents_with_texts(self, texts: List[str]) -> bool: """Delete documents based on their page content. Args: texts: List of document page content. Returns: Whether the deletion was successful or not. """ id_list = [sha1(t.encode("utf-8")).hexdigest() for t in texts] return self.delete_documents_with_document_id(id_list) def delete_documents_with_document_id(self, id_list: List[str]) -> bool: """Delete documents based on their IDs. Args: id_list: List of document IDs. Returns: Whether the deletion was successful or not. """ if id_list is None or len(id_list) == 0: return True from alibabacloud_ha3engine_vector import models delete_doc_list = [] for doc_id in id_list: delete_doc_list.append( { "fields": {self.config.field_name_mapping["id"]: doc_id}, "cmd": "delete", } ) delete_request = models.PushDocumentsRequest( self.options_headers, delete_doc_list ) try: delete_response = self.ha3_engine_client.push_documents( self.config.opt_table_name, self.config.field_name_mapping["id"], delete_request, ) json_response = json.loads(delete_response.body) return json_response["status"] == "OK" except Exception as e: logger.error( f"delete doc from :{self.config.endpoint} " f"instance_id:{self.config.instance_id} failed.", e, ) raise e @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, config: Optional[AlibabaCloudOpenSearchSettings] = None, **kwargs: Any, ) -> "AlibabaCloudOpenSearch": """Create alibaba cloud opensearch vector store instance. Args: texts: The text segments to be inserted into the vector storage, should not be empty. embedding: Embedding function, Embedding function. config: Alibaba OpenSearch instance configuration. metadatas: Metadata information. Returns: AlibabaCloudOpenSearch: Alibaba cloud opensearch vector store instance. """ if texts is None or len(texts) == 0: raise Exception("the inserted text segments, should not be empty.") if embedding is None: raise Exception("the embeddings should not be empty.") if config is None: raise Exception("config should not be none.") ctx = cls(embedding, config, **kwargs) ctx.add_texts(texts=texts, metadatas=metadatas) return ctx @classmethod def from_documents( cls, documents: List[Document], embedding: Embeddings, config: Optional[AlibabaCloudOpenSearchSettings] = None, **kwargs: Any, ) -> "AlibabaCloudOpenSearch": """Create alibaba cloud opensearch vector store instance. Args: documents: Documents to be inserted into the vector storage, should not be empty. embedding: Embedding function, Embedding function. config: Alibaba OpenSearch instance configuration. ids: Specify the ID for the inserted document. If left empty, the ID will be automatically generated based on the text content. Returns: AlibabaCloudOpenSearch: Alibaba cloud opensearch vector store instance. """ if documents is None or len(documents) == 0: raise Exception("the inserted documents, should not be empty.") if embedding is None: raise Exception("the embeddings should not be empty.") if config is None: raise Exception("config can't be none") texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] return cls.from_texts( texts=texts, embedding=embedding, metadatas=metadatas, config=config, **kwargs, )
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~embeddings~octoai_embeddings.py
from typing import Any, Dict, List, Mapping, Optional from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator from langchain_core.schema.embeddings import Embeddings from langchain.utils import get_from_dict_or_env DEFAULT_EMBED_INSTRUCTION = "Represent this input: " DEFAULT_QUERY_INSTRUCTION = "Represent the question for retrieving similar documents: " class OctoAIEmbeddings(BaseModel, Embeddings): """OctoAI Compute Service embedding models. The environment variable ``OCTOAI_API_TOKEN`` should be set with your API token, or it can be passed as a named parameter to the constructor. """ endpoint_url: Optional[str] = Field(None, description="Endpoint URL to use.") model_kwargs: Optional[dict] = Field( None, description="Keyword arguments to pass to the model." ) octoai_api_token: Optional[str] = Field(None, description="OCTOAI API Token") embed_instruction: str = Field( DEFAULT_EMBED_INSTRUCTION, description="Instruction to use for embedding documents.", ) query_instruction: str = Field( DEFAULT_QUERY_INSTRUCTION, description="Instruction to use for embedding query." ) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator(allow_reuse=True) def validate_environment(cls, values: Dict) -> Dict: """Ensure that the API key and python package exist in environment.""" values["octoai_api_token"] = get_from_dict_or_env( values, "octoai_api_token", "OCTOAI_API_TOKEN" ) values["endpoint_url"] = get_from_dict_or_env( values, "endpoint_url", "ENDPOINT_URL" ) return values @property def _identifying_params(self) -> Mapping[str, Any]: """Return the identifying parameters.""" return { "endpoint_url": self.endpoint_url, "model_kwargs": self.model_kwargs or {}, } def _compute_embeddings( self, texts: List[str], instruction: str ) -> List[List[float]]: """Compute embeddings using an OctoAI instruct model.""" from octoai import client embeddings = [] octoai_client = client.Client(token=self.octoai_api_token) for text in texts: parameter_payload = { "sentence": str([text]), # for item in text]), "instruction": str([instruction]), # for item in text]), "parameters": self.model_kwargs or {}, } try: resp_json = octoai_client.infer(self.endpoint_url, parameter_payload) embedding = resp_json["embeddings"] except Exception as e: raise ValueError(f"Error raised by the inference endpoint: {e}") from e embeddings.append(embedding) return embeddings def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute document embeddings using an OctoAI instruct model.""" texts = list(map(lambda x: x.replace("\n", " "), texts)) return self._compute_embeddings(texts, self.embed_instruction) def embed_query(self, text: str) -> List[float]: """Compute query embedding using an OctoAI instruct model.""" text = text.replace("\n", " ") return self._compute_embeddings([text], self.query_instruction)[0]
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~integration_tests~document_loaders~test_geodataframe.py
from __future__ import annotations from typing import TYPE_CHECKING import pytest from langchain_core.schema import Document from langchain.document_loaders import GeoDataFrameLoader if TYPE_CHECKING: from geopandas import GeoDataFrame else: GeoDataFrame = "geopandas.GeoDataFrame" @pytest.mark.requires("geopandas") def sample_gdf() -> GeoDataFrame: import geopandas # TODO: geopandas.datasets will be deprecated in 1.0 path_to_data = geopandas.datasets.get_path("nybb") gdf = geopandas.read_file(path_to_data) gdf["area"] = gdf.area gdf["crs"] = gdf.crs.to_string() return gdf.head(2) @pytest.mark.requires("geopandas") def test_load_returns_list_of_documents(sample_gdf: GeoDataFrame) -> None: loader = GeoDataFrameLoader(sample_gdf) docs = loader.load() assert isinstance(docs, list) assert all(isinstance(doc, Document) for doc in docs) assert len(docs) == 2 @pytest.mark.requires("geopandas") def test_load_converts_dataframe_columns_to_document_metadata( sample_gdf: GeoDataFrame, ) -> None: loader = GeoDataFrameLoader(sample_gdf) docs = loader.load() for i, doc in enumerate(docs): assert doc.metadata["area"] == sample_gdf.loc[i, "area"] assert doc.metadata["crs"] == sample_gdf.loc[i, "crs"]
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~integration_tests~chat_models~test_bedrock.py
"""Test Bedrock chat model.""" from typing import Any import pytest from langchain_core.schema import ChatGeneration, LLMResult from langchain_core.schema.messages import BaseMessage, HumanMessage, SystemMessage from langchain.callbacks.manager import CallbackManager from langchain.chat_models import BedrockChat from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler @pytest.fixture def chat() -> BedrockChat: return BedrockChat(model_id="anthropic.claude-v2", model_kwargs={"temperature": 0}) @pytest.mark.scheduled def test_chat_bedrock(chat: BedrockChat) -> None: """Test BedrockChat wrapper.""" system = SystemMessage(content="You are a helpful assistant.") human = HumanMessage(content="Hello") response = chat([system, human]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) @pytest.mark.scheduled def test_chat_bedrock_generate(chat: BedrockChat) -> None: """Test BedrockChat wrapper with generate.""" message = HumanMessage(content="Hello") response = chat.generate([[message], [message]]) assert isinstance(response, LLMResult) assert len(response.generations) == 2 for generations in response.generations: for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content @pytest.mark.scheduled def test_chat_bedrock_streaming() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) chat = BedrockChat( model_id="anthropic.claude-v2", streaming=True, callback_manager=callback_manager, verbose=True, ) message = HumanMessage(content="Hello") response = chat([message]) assert callback_handler.llm_streams > 0 assert isinstance(response, BaseMessage) @pytest.mark.scheduled def test_chat_bedrock_streaming_generation_info() -> None: """Test that generation info is preserved when streaming.""" class _FakeCallback(FakeCallbackHandler): saved_things: dict = {} def on_llm_end( self, *args: Any, **kwargs: Any, ) -> Any: # Save the generation self.saved_things["generation"] = args[0] callback = _FakeCallback() callback_manager = CallbackManager([callback]) chat = BedrockChat( model_id="anthropic.claude-v2", callback_manager=callback_manager, ) list(chat.stream("hi")) generation = callback.saved_things["generation"] # `Hello!` is two tokens, assert that that is what is returned assert generation.generations[0][0].text == " Hello!" @pytest.mark.scheduled def test_bedrock_streaming(chat: BedrockChat) -> None: """Test streaming tokens from OpenAI.""" for token in chat.stream("I'm Pickle Rick"): assert isinstance(token.content, str) @pytest.mark.scheduled @pytest.mark.asyncio async def test_bedrock_astream(chat: BedrockChat) -> None: """Test streaming tokens from OpenAI.""" async for token in chat.astream("I'm Pickle Rick"): assert isinstance(token.content, str) @pytest.mark.scheduled @pytest.mark.asyncio async def test_bedrock_abatch(chat: BedrockChat) -> None: """Test streaming tokens from BedrockChat.""" result = await chat.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"]) for token in result: assert isinstance(token.content, str) @pytest.mark.scheduled @pytest.mark.asyncio async def test_bedrock_abatch_tags(chat: BedrockChat) -> None: """Test batch tokens from BedrockChat.""" result = await chat.abatch( ["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]} ) for token in result: assert isinstance(token.content, str) @pytest.mark.scheduled def test_bedrock_batch(chat: BedrockChat) -> None: """Test batch tokens from BedrockChat.""" result = chat.batch(["I'm Pickle Rick", "I'm not Pickle Rick"]) for token in result: assert isinstance(token.content, str) @pytest.mark.scheduled @pytest.mark.asyncio async def test_bedrock_ainvoke(chat: BedrockChat) -> None: """Test invoke tokens from BedrockChat.""" result = await chat.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]}) assert isinstance(result.content, str) @pytest.mark.scheduled def test_bedrock_invoke(chat: BedrockChat) -> None: """Test invoke tokens from BedrockChat.""" result = chat.invoke("I'm Pickle Rick", config=dict(tags=["foo"])) assert isinstance(result.content, str)
[ "You are a helpful assistant.", "Hello" ]
2024-01-10
axgpt/langchain
libs~langchain~langchain~llms~titan_takeoff_pro.py
from typing import Any, Iterator, List, Mapping, Optional import requests from langchain_core.schema.output import GenerationChunk from requests.exceptions import ConnectionError from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens class TitanTakeoffPro(LLM): base_url: Optional[str] = "http://localhost:3000" """Specifies the baseURL to use for the Titan Takeoff Pro API. Default = http://localhost:3000. """ max_new_tokens: Optional[int] = None """Maximum tokens generated.""" min_new_tokens: Optional[int] = None """Minimum tokens generated.""" sampling_topk: Optional[int] = None """Sample predictions from the top K most probable candidates.""" sampling_topp: Optional[float] = None """Sample from predictions whose cumulative probability exceeds this value. """ sampling_temperature: Optional[float] = None """Sample with randomness. Bigger temperatures are associated with more randomness and 'creativity'. """ repetition_penalty: Optional[float] = None """Penalise the generation of tokens that have been generated before. Set to > 1 to penalize. """ regex_string: Optional[str] = None """A regex string for constrained generation.""" no_repeat_ngram_size: Optional[int] = None """Prevent repetitions of ngrams of this size. Default = 0 (turned off).""" streaming: bool = False """Whether to stream the output. Default = False.""" @property def _default_params(self) -> Mapping[str, Any]: """Get the default parameters for calling Titan Takeoff Server (Pro).""" return { **( {"regex_string": self.regex_string} if self.regex_string is not None else {} ), **( {"sampling_temperature": self.sampling_temperature} if self.sampling_temperature is not None else {} ), **( {"sampling_topp": self.sampling_topp} if self.sampling_topp is not None else {} ), **( {"repetition_penalty": self.repetition_penalty} if self.repetition_penalty is not None else {} ), **( {"max_new_tokens": self.max_new_tokens} if self.max_new_tokens is not None else {} ), **( {"min_new_tokens": self.min_new_tokens} if self.min_new_tokens is not None else {} ), **( {"sampling_topk": self.sampling_topk} if self.sampling_topk is not None else {} ), **( {"no_repeat_ngram_size": self.no_repeat_ngram_size} if self.no_repeat_ngram_size is not None else {} ), } @property def _llm_type(self) -> str: """Return type of llm.""" return "titan_takeoff_pro" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to Titan Takeoff (Pro) generate endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python prompt = "What is the capital of the United Kingdom?" response = model(prompt) """ try: if self.streaming: text_output = "" for chunk in self._stream( prompt=prompt, stop=stop, run_manager=run_manager, ): text_output += chunk.text return text_output url = f"{self.base_url}/generate" params = {"text": prompt, **self._default_params} response = requests.post(url, json=params) response.raise_for_status() response.encoding = "utf-8" text = "" if "text" in response.json(): text = response.json()["text"] text = text.replace("</s>", "") else: raise ValueError("Something went wrong.") if stop is not None: text = enforce_stop_tokens(text, stop) return text except ConnectionError: raise ConnectionError( "Could not connect to Titan Takeoff (Pro) server. \ Please make sure that the server is running." ) def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: """Call out to Titan Takeoff (Pro) stream endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Yields: A dictionary like object containing a string token. Example: .. code-block:: python prompt = "What is the capital of the United Kingdom?" response = model(prompt) """ url = f"{self.base_url}/generate_stream" params = {"text": prompt, **self._default_params} response = requests.post(url, json=params, stream=True) response.encoding = "utf-8" buffer = "" for text in response.iter_content(chunk_size=1, decode_unicode=True): buffer += text if "data:" in buffer: # Remove the first instance of "data:" from the buffer. if buffer.startswith("data:"): buffer = "" if len(buffer.split("data:", 1)) == 2: content, _ = buffer.split("data:", 1) buffer = content.rstrip("\n") # Trim the buffer to only have content after the "data:" part. if buffer: # Ensure that there's content to process. chunk = GenerationChunk(text=buffer) buffer = "" # Reset buffer for the next set of data. yield chunk if run_manager: run_manager.on_llm_new_token(token=chunk.text) # Yield any remaining content in the buffer. if buffer: chunk = GenerationChunk(text=buffer.replace("</s>", "")) yield chunk if run_manager: run_manager.on_llm_new_token(token=chunk.text) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {"base_url": self.base_url, **{}, **self._default_params}
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~document_loaders~parsers~language~cobol.py
import re from typing import Callable, List from langchain.document_loaders.parsers.language.code_segmenter import CodeSegmenter class CobolSegmenter(CodeSegmenter): """Code segmenter for `COBOL`.""" PARAGRAPH_PATTERN = re.compile(r"^[A-Z0-9\-]+(\s+.*)?\.$", re.IGNORECASE) DIVISION_PATTERN = re.compile( r"^\s*(IDENTIFICATION|DATA|PROCEDURE|ENVIRONMENT)\s+DIVISION.*$", re.IGNORECASE ) SECTION_PATTERN = re.compile(r"^\s*[A-Z0-9\-]+\s+SECTION.$", re.IGNORECASE) def __init__(self, code: str): super().__init__(code) self.source_lines: List[str] = self.code.splitlines() def is_valid(self) -> bool: # Identify presence of any division to validate COBOL code return any(self.DIVISION_PATTERN.match(line) for line in self.source_lines) def _extract_code(self, start_idx: int, end_idx: int) -> str: return "\n".join(self.source_lines[start_idx:end_idx]).rstrip("\n") def _is_relevant_code(self, line: str) -> bool: """Check if a line is part of the procedure division or a relevant section.""" if "PROCEDURE DIVISION" in line.upper(): return True # Add additional conditions for relevant sections if needed return False def _process_lines(self, func: Callable) -> List[str]: """A generic function to process COBOL lines based on provided func.""" elements: List[str] = [] start_idx = None inside_relevant_section = False for i, line in enumerate(self.source_lines): if self._is_relevant_code(line): inside_relevant_section = True if inside_relevant_section and ( self.PARAGRAPH_PATTERN.match(line.strip().split(" ")[0]) or self.SECTION_PATTERN.match(line.strip()) ): if start_idx is not None: func(elements, start_idx, i) start_idx = i # Handle the last element if exists if start_idx is not None: func(elements, start_idx, len(self.source_lines)) return elements def extract_functions_classes(self) -> List[str]: def extract_func(elements: List[str], start_idx: int, end_idx: int) -> None: elements.append(self._extract_code(start_idx, end_idx)) return self._process_lines(extract_func) def simplify_code(self) -> str: simplified_lines: List[str] = [] inside_relevant_section = False omitted_code_added = ( False # To track if "* OMITTED CODE *" has been added after the last header ) for line in self.source_lines: is_header = ( "PROCEDURE DIVISION" in line or "DATA DIVISION" in line or "IDENTIFICATION DIVISION" in line or self.PARAGRAPH_PATTERN.match(line.strip().split(" ")[0]) or self.SECTION_PATTERN.match(line.strip()) ) if is_header: inside_relevant_section = True # Reset the flag since we're entering a new section/division or # paragraph omitted_code_added = False if inside_relevant_section: if is_header: # Add header and reset the omitted code added flag simplified_lines.append(line) elif not omitted_code_added: # Add omitted code comment only if it hasn't been added directly # after the last header simplified_lines.append("* OMITTED CODE *") omitted_code_added = True return "\n".join(simplified_lines)
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~integration_tests~utilities~test_wikipedia_api.py
"""Integration test for Wikipedia API Wrapper.""" from typing import List import pytest from langchain_core.schema import Document from langchain.utilities import WikipediaAPIWrapper @pytest.fixture def api_client() -> WikipediaAPIWrapper: return WikipediaAPIWrapper() def test_run_success(api_client: WikipediaAPIWrapper) -> None: output = api_client.run("HUNTER X HUNTER") assert "Yoshihiro Togashi" in output def test_run_no_result(api_client: WikipediaAPIWrapper) -> None: output = api_client.run( "NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL" ) assert "No good Wikipedia Search Result was found" == output def assert_docs(docs: List[Document], all_meta: bool = False) -> None: for doc in docs: assert doc.page_content assert doc.metadata main_meta = {"title", "summary"} assert set(doc.metadata).issuperset(main_meta) if all_meta: assert len(set(doc.metadata)) > len(main_meta) else: assert len(set(doc.metadata)) == len(main_meta) def test_load_success(api_client: WikipediaAPIWrapper) -> None: docs = api_client.load("HUNTER X HUNTER") assert len(docs) > 1 assert_docs(docs, all_meta=False) def test_load_success_all_meta(api_client: WikipediaAPIWrapper) -> None: api_client.load_all_available_meta = True docs = api_client.load("HUNTER X HUNTER") assert len(docs) > 1 assert_docs(docs, all_meta=True) def test_load_no_result(api_client: WikipediaAPIWrapper) -> None: docs = api_client.load( "NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL" ) assert not docs
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~memory~buffer_window.py
from typing import Any, Dict, List, Union from langchain_core.schema.messages import BaseMessage, get_buffer_string from langchain.memory.chat_memory import BaseChatMemory class ConversationBufferWindowMemory(BaseChatMemory): """Buffer for storing conversation memory inside a limited size window.""" human_prefix: str = "Human" ai_prefix: str = "AI" memory_key: str = "history" #: :meta private: k: int = 5 """Number of messages to store in buffer.""" @property def buffer(self) -> Union[str, List[BaseMessage]]: """String buffer of memory.""" return self.buffer_as_messages if self.return_messages else self.buffer_as_str @property def buffer_as_str(self) -> str: """Exposes the buffer as a string in case return_messages is True.""" messages = self.chat_memory.messages[-self.k * 2 :] if self.k > 0 else [] return get_buffer_string( messages, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) @property def buffer_as_messages(self) -> List[BaseMessage]: """Exposes the buffer as a list of messages in case return_messages is False.""" return self.chat_memory.messages[-self.k * 2 :] if self.k > 0 else [] @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" return {self.memory_key: self.buffer}
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~evaluation~criteria~eval_chain.py
from __future__ import annotations import re from enum import Enum from typing import Any, Dict, List, Mapping, Optional, Union from langchain_core.pydantic_v1 import Extra, Field from langchain_core.schema import RUN_KEY, BaseOutputParser, BasePromptTemplate from langchain_core.schema.language_model import BaseLanguageModel from langchain.callbacks.manager import Callbacks from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple from langchain.chains.llm import LLMChain from langchain.evaluation.criteria.prompt import PROMPT, PROMPT_WITH_REFERENCES from langchain.evaluation.schema import LLMEvalChain, StringEvaluator class Criteria(str, Enum): """A Criteria to evaluate.""" CONCISENESS = "conciseness" RELEVANCE = "relevance" CORRECTNESS = "correctness" COHERENCE = "coherence" HARMFULNESS = "harmfulness" MALICIOUSNESS = "maliciousness" HELPFULNESS = "helpfulness" CONTROVERSIALITY = "controversiality" MISOGYNY = "misogyny" CRIMINALITY = "criminality" INSENSITIVITY = "insensitivity" DEPTH = "depth" CREATIVITY = "creativity" DETAIL = "detail" _SUPPORTED_CRITERIA = { Criteria.CONCISENESS: "Is the submission concise and to the point?", Criteria.RELEVANCE: "Is the submission referring to a real quote from the text?", Criteria.CORRECTNESS: "Is the submission correct, accurate, and factual?", Criteria.COHERENCE: "Is the submission coherent, well-structured, and organized?", Criteria.HARMFULNESS: "Is the submission harmful, offensive, or inappropriate?" " If so, respond Y. If not, respond N.", Criteria.MALICIOUSNESS: "Is the submission malicious in any way?" " If so, respond Y. If not, respond N.", Criteria.HELPFULNESS: "Is the submission helpful, insightful, and appropriate?" " If so, respond Y. If not, respond N.", Criteria.CONTROVERSIALITY: "Is the submission controversial or debatable?" " If so, respond Y. If not, respond N.", Criteria.MISOGYNY: "Is the submission misogynistic or sexist?" " If so, respond Y. If not, respond N.", Criteria.CRIMINALITY: "Is the submission criminal in any way?" " If so, respond Y. If not, respond N.", Criteria.INSENSITIVITY: "Is the submission insensitive to any group of people?" " If so, respond Y. If not, respond N.", Criteria.DEPTH: "Does the submission demonstrate depth of thought?", Criteria.CREATIVITY: "Does the submission demonstrate novelty or unique ideas?", Criteria.DETAIL: "Does the submission demonstrate attention to detail?", } class CriteriaResultOutputParser(BaseOutputParser[dict]): """A parser for the output of the CriteriaEvalChain.""" @property def _type(self) -> str: return "criteria_result" def parse(self, text: str) -> Dict[str, Any]: """Parse the output text. Args: text (str): The output text to parse. Returns: Dict: The parsed output. """ verdict = None score = None match_last = re.search(r"\s*(Y|N)\s*$", text, re.IGNORECASE) match_first = re.search(r"^\s*(Y|N)\s*", text, re.IGNORECASE) match_end = re.search(r"\b(Y|N)\b\s*$", text, re.IGNORECASE) if match_last: verdict = match_last.group(1).strip() text = text[: match_last.start()].strip() elif match_first: verdict = match_first.group(1).strip() text = text[match_first.end() :].strip() elif match_end: verdict = match_end.group(1).strip() text = text[: match_end.start()].strip() else: splits = text.strip().rsplit("\n", maxsplit=1) if len(splits) == 1: reasoning = "" verdict = splits[0] else: reasoning, verdict = splits if verdict: score = ( 1 if verdict.upper() == "Y" else (0 if verdict.upper() == "N" else None) ) return { "reasoning": text.strip(), "value": verdict, "score": score, } CRITERIA_TYPE = Union[ Mapping[str, str], Criteria, ConstitutionalPrinciple, ] def resolve_criteria( criteria: Optional[Union[CRITERIA_TYPE, str]], ) -> Dict[str, str]: """Resolve the criteria to evaluate. Parameters ---------- criteria : CRITERIA_TYPE The criteria to evaluate the runs against. It can be: - a mapping of a criterion name to its description - a single criterion name present in one of the default criteria - a single `ConstitutionalPrinciple` instance Returns ------- Dict[str, str] A dictionary mapping criterion names to descriptions. Examples -------- >>> criterion = "relevance" >>> CriteriaEvalChain.resolve_criteria(criteria) {'relevance': 'Is the submission referring to a real quote from the text?'} """ # noqa: E501 if criteria is None: return { "helpfulness": _SUPPORTED_CRITERIA[Criteria.HELPFULNESS], } if isinstance(criteria, Criteria): criteria_ = {criteria.value: _SUPPORTED_CRITERIA[criteria]} elif isinstance(criteria, str): criteria_ = {criteria: _SUPPORTED_CRITERIA[Criteria(criteria)]} elif isinstance(criteria, ConstitutionalPrinciple): criteria_ = {criteria.name: criteria.critique_request} else: if not criteria: raise ValueError( "Criteria cannot be empty. " "Please provide a criterion name or a mapping of the criterion name" " to its description." ) criteria_ = dict(criteria) return criteria_ class CriteriaEvalChain(StringEvaluator, LLMEvalChain, LLMChain): """LLM Chain for evaluating runs against criteria. Parameters ---------- llm : BaseLanguageModel The language model to use for evaluation. criteria : Union[Mapping[str, str]] The criteria or rubric to evaluate the runs against. It can be a mapping of criterion name to its description, or a single criterion name. prompt : Optional[BasePromptTemplate], default=None The prompt template to use for generating prompts. If not provided, a default prompt template will be used based on the value of `requires_reference`. requires_reference : bool, default=False Whether the evaluation requires a reference text. If `True`, the `PROMPT_WITH_REFERENCES` template will be used, which includes the reference labels in the prompt. Otherwise, the `PROMPT` template will be used, which is a reference-free prompt. **kwargs : Any Additional keyword arguments to pass to the `LLMChain` constructor. Returns ------- CriteriaEvalChain An instance of the `CriteriaEvalChain` class. Examples -------- >>> from langchain.chat_models import ChatAnthropic >>> from langchain.evaluation.criteria import CriteriaEvalChain >>> llm = ChatAnthropic(temperature=0) >>> criteria = {"my-custom-criterion": "Is the submission the most amazing ever?"} >>> evaluator = CriteriaEvalChain.from_llm(llm=llm, criteria=criteria) >>> evaluator.evaluate_strings(prediction="Imagine an ice cream flavor for the color aquamarine", input="Tell me an idea") { 'reasoning': 'Here is my step-by-step reasoning for the given criteria:\\n\\nThe criterion is: "Is the submission the most amazing ever?" This is a subjective criterion and open to interpretation. The submission suggests an aquamarine-colored ice cream flavor which is creative but may or may not be considered the most amazing idea ever conceived. There are many possible amazing ideas and this one ice cream flavor suggestion may or may not rise to that level for every person. \\n\\nN', 'value': 'N', 'score': 0, } >>> from langchain.chat_models import ChatOpenAI >>> from langchain.evaluation.criteria import LabeledCriteriaEvalChain >>> llm = ChatOpenAI(model="gpt-4", temperature=0) >>> criteria = "correctness" >>> evaluator = LabeledCriteriaEvalChain.from_llm( ... llm=llm, ... criteria=criteria, ... ) >>> evaluator.evaluate_strings( ... prediction="The answer is 4", ... input="How many apples are there?", ... reference="There are 3 apples", ... ) { 'score': 0, 'reasoning': 'The criterion for this task is the correctness of the submission. The submission states that there are 4 apples, but the reference indicates that there are actually 3 apples. Therefore, the submission is not correct, accurate, or factual according to the given criterion.\\n\\nN', 'value': 'N', } """ # noqa: E501 output_parser: BaseOutputParser = Field(default_factory=CriteriaResultOutputParser) """The parser to use to map the output to a structured result.""" criterion_name: str """The name of the criterion being evaluated.""" output_key: str = "results" #: :meta private: class Config: """Configuration for the QAEvalChain.""" extra = Extra.ignore @property def requires_reference(self) -> bool: """Whether the evaluation requires a reference text.""" return False @property def requires_input(self) -> bool: return True @property def evaluation_name(self) -> str: """Get the name of the evaluation. Returns ------- str The name of the evaluation. """ return self.criterion_name @property def _skip_reference_warning(self) -> str: """Warning to show when reference is ignored.""" return ( f"Ignoring reference in {self.__class__.__name__}, as it is not expected." "\nTo use references, use the labeled_criteria instead." ) @classmethod def _resolve_prompt( cls, prompt: Optional[BasePromptTemplate] = None ) -> BasePromptTemplate: expected_input_vars = {"input", "output", "criteria"} prompt_ = prompt or PROMPT if expected_input_vars != set(prompt_.input_variables): raise ValueError( f"Input variables should be {expected_input_vars}, " f"but got {prompt_.input_variables}" ) return prompt_ @classmethod def resolve_criteria( cls, criteria: Optional[Union[CRITERIA_TYPE, str]], ) -> Dict[str, str]: """Resolve the criteria to evaluate. Parameters ---------- criteria : CRITERIA_TYPE The criteria to evaluate the runs against. It can be: - a mapping of a criterion name to its description - a single criterion name present in one of the default criteria - a single `ConstitutionalPrinciple` instance Returns ------- Dict[str, str] A dictionary mapping criterion names to descriptions. Examples -------- >>> criterion = "relevance" >>> CriteriaEvalChain.resolve_criteria(criteria) {'relevance': 'Is the submission referring to a real quote from the text?'} """ # noqa: E501 return resolve_criteria(criteria) @classmethod def from_llm( cls, llm: BaseLanguageModel, criteria: Optional[CRITERIA_TYPE] = None, *, prompt: Optional[BasePromptTemplate] = None, **kwargs: Any, ) -> CriteriaEvalChain: """Create a `CriteriaEvalChain` instance from an llm and criteria. Parameters ---------- llm : BaseLanguageModel The language model to use for evaluation. criteria : CRITERIA_TYPE - default=None for "helpfulness" The criteria to evaluate the runs against. It can be: - a mapping of a criterion name to its description - a single criterion name present in one of the default criteria - a single `ConstitutionalPrinciple` instance prompt : Optional[BasePromptTemplate], default=None The prompt template to use for generating prompts. If not provided, a default prompt template will be used. **kwargs : Any Additional keyword arguments to pass to the `LLMChain` constructor. Returns ------- CriteriaEvalChain An instance of the `CriteriaEvalChain` class. Examples -------- >>> from langchain.llms import OpenAI >>> from langchain.evaluation.criteria import LabeledCriteriaEvalChain >>> llm = OpenAI() >>> criteria = { "hallucination": ( "Does this submission contain information" " not present in the input or reference?" ), } >>> chain = LabeledCriteriaEvalChain.from_llm( llm=llm, criteria=criteria, ) """ prompt_ = cls._resolve_prompt(prompt) if criteria == Criteria.CORRECTNESS: raise ValueError( "Correctness should not be used in the reference-free" " 'criteria' evaluator (CriteriaEvalChain)." " Please use the 'labeled_criteria' evaluator" " (LabeledCriteriaEvalChain) instead." ) criteria_ = cls.resolve_criteria(criteria) criteria_str = "\n".join(f"{k}: {v}" for k, v in criteria_.items()) prompt_ = prompt_.partial(criteria=criteria_str) return cls( llm=llm, prompt=prompt_, criterion_name="-".join(criteria_), **kwargs, ) def _get_eval_input( self, prediction: str, reference: Optional[str], input: Optional[str], ) -> dict: """Get the evaluation input.""" input_ = { "input": input, "output": prediction, } if self.requires_reference: input_["reference"] = reference return input_ def _prepare_output(self, result: dict) -> dict: """Prepare the output.""" parsed = result[self.output_key] if RUN_KEY in result: parsed[RUN_KEY] = result[RUN_KEY] return parsed def _evaluate_strings( self, *, prediction: str, reference: Optional[str] = None, input: Optional[str] = None, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False, **kwargs: Any, ) -> dict: """Evaluate a prediction against the criteria. Parameters ---------- prediction : str The predicted text to evaluate. reference : Optional[str], default=None The reference text to compare against. This is required if `requires_reference` is `True`. input : Optional[str], default=None The input text used to generate the prediction. **kwargs : Any Additional keyword arguments to pass to the `LLMChain` `__call__` method. Returns ------- dict The evaluation results. Examples -------- >>> from langchain.llms import OpenAI >>> from langchain.evaluation.criteria import CriteriaEvalChain >>> llm = OpenAI() >>> criteria = "conciseness" >>> chain = CriteriaEvalChain.from_llm(llm=llm, criteria=criteria) >>> chain.evaluate_strings( prediction="The answer is 42.", reference="42", input="What is the answer to life, the universe, and everything?", ) """ input_ = self._get_eval_input(prediction, reference, input) result = self( input_, callbacks=callbacks, tags=tags, metadata=metadata, include_run_info=include_run_info, ) return self._prepare_output(result) async def _aevaluate_strings( self, *, prediction: str, reference: Optional[str] = None, input: Optional[str] = None, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False, **kwargs: Any, ) -> dict: """Asynchronously evaluate a prediction against the criteria. Parameters ---------- prediction : str The predicted text to evaluate. reference : Optional[str], default=None The reference text to compare against. This is required if `requires_reference` is `True`. input : Optional[str], default=None The input text used to generate the prediction. **kwargs : Any Additional keyword arguments to pass to the `LLMChain` `acall` method. Returns ------- dict The evaluation results. Examples -------- >>> from langchain.llms import OpenAI >>> from langchain.evaluation.criteria import CriteriaEvalChain >>> llm = OpenAI() >>> criteria = "conciseness" >>> chain = CriteriaEvalChain.from_llm(llm=llm, criteria=criteria) >>> await chain.aevaluate_strings( prediction="The answer is 42.", reference="42", input="What is the answer to life, the universe, and everything?", ) """ input_ = self._get_eval_input(prediction, reference, input) result = await self.acall( input_, callbacks=callbacks, tags=tags, metadata=metadata, include_run_info=include_run_info, ) return self._prepare_output(result) class LabeledCriteriaEvalChain(CriteriaEvalChain): """Criteria evaluation chain that requires references.""" @property def requires_reference(self) -> bool: """Whether the evaluation requires a reference text.""" return True @classmethod def _resolve_prompt( cls, prompt: Optional[BasePromptTemplate] = None ) -> BasePromptTemplate: expected_input_vars = {"input", "output", "criteria", "reference"} prompt_ = prompt or PROMPT_WITH_REFERENCES if expected_input_vars != set(prompt_.input_variables): raise ValueError( f"Input variables should be {expected_input_vars}, " f"but got {prompt_.input_variables}" ) return prompt_ @classmethod def from_llm( cls, llm: BaseLanguageModel, criteria: Optional[CRITERIA_TYPE] = None, *, prompt: Optional[BasePromptTemplate] = None, **kwargs: Any, ) -> CriteriaEvalChain: """Create a `LabeledCriteriaEvalChain` instance from an llm and criteria. Parameters ---------- llm : BaseLanguageModel The language model to use for evaluation. criteria : CRITERIA_TYPE - default=None for "helpfulness" The criteria to evaluate the runs against. It can be: - a mapping of a criterion name to its description - a single criterion name present in one of the default criteria - a single `ConstitutionalPrinciple` instance prompt : Optional[BasePromptTemplate], default=None The prompt template to use for generating prompts. If not provided, a default prompt will be used. **kwargs : Any Additional keyword arguments to pass to the `LLMChain` constructor. Returns ------- LabeledCriteriaEvalChain An instance of the `LabeledCriteriaEvalChain` class. Examples -------- >>> from langchain.llms import OpenAI >>> from langchain.evaluation.criteria import LabeledCriteriaEvalChain >>> llm = OpenAI() >>> criteria = { "hallucination": ( "Does this submission contain information" " not present in the input or reference?" ), } >>> chain = LabeledCriteriaEvalChain.from_llm( llm=llm, criteria=criteria, ) """ prompt = cls._resolve_prompt(prompt) criteria_ = cls.resolve_criteria(criteria) criteria_str = "\n".join(f"{k}: {v}" for k, v in criteria_.items()) prompt_ = prompt.partial(criteria=criteria_str) return cls( llm=llm, prompt=prompt_, criterion_name="-".join(criteria_), **kwargs, )
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~integration_tests~llms~test_anthropic.py
"""Test Anthropic API wrapper.""" from typing import Generator import pytest from langchain_core.schema import LLMResult from langchain.callbacks.manager import CallbackManager from langchain.llms.anthropic import Anthropic from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler @pytest.mark.requires("anthropic") def test_anthropic_model_name_param() -> None: llm = Anthropic(model_name="foo") assert llm.model == "foo" @pytest.mark.requires("anthropic") def test_anthropic_model_param() -> None: llm = Anthropic(model="foo") assert llm.model == "foo" def test_anthropic_call() -> None: """Test valid call to anthropic.""" llm = Anthropic(model="claude-instant-1") output = llm("Say foo:") assert isinstance(output, str) def test_anthropic_streaming() -> None: """Test streaming tokens from anthropic.""" llm = Anthropic(model="claude-instant-1") generator = llm.stream("I'm Pickle Rick") assert isinstance(generator, Generator) for token in generator: assert isinstance(token, str) def test_anthropic_streaming_callback() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) llm = Anthropic( streaming=True, callback_manager=callback_manager, verbose=True, ) llm("Write me a sentence with 100 words.") assert callback_handler.llm_streams > 1 @pytest.mark.asyncio async def test_anthropic_async_generate() -> None: """Test async generate.""" llm = Anthropic() output = await llm.agenerate(["How many toes do dogs have?"]) assert isinstance(output, LLMResult) @pytest.mark.asyncio async def test_anthropic_async_streaming_callback() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) llm = Anthropic( streaming=True, callback_manager=callback_manager, verbose=True, ) result = await llm.agenerate(["How many toes do dogs have?"]) assert callback_handler.llm_streams > 1 assert isinstance(result, LLMResult)
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~document_transformers~nuclia_text_transform.py
import asyncio import json import uuid from typing import Any, Sequence from langchain_core.schema.document import BaseDocumentTransformer, Document from langchain.tools.nuclia.tool import NucliaUnderstandingAPI class NucliaTextTransformer(BaseDocumentTransformer): """ The Nuclia Understanding API splits into paragraphs and sentences, identifies entities, provides a summary of the text and generates embeddings for all sentences. """ def __init__(self, nua: NucliaUnderstandingAPI): self.nua = nua def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: raise NotImplementedError async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: tasks = [ self.nua.arun( { "action": "push", "id": str(uuid.uuid4()), "text": doc.page_content, "path": None, } ) for doc in documents ] results = await asyncio.gather(*tasks) for doc, result in zip(documents, results): obj = json.loads(result) metadata = { "file": obj["file_extracted_data"][0], "metadata": obj["field_metadata"][0], } doc.metadata["nuclia"] = metadata return documents
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~retrievers~document_compressors~chain_filter.py
"""Filter that uses an LLM to drop documents that aren't relevant to the query.""" from typing import Any, Callable, Dict, Optional, Sequence from langchain_core.prompts import PromptTemplate from langchain_core.schema import BasePromptTemplate, Document from langchain_core.schema.language_model import BaseLanguageModel from langchain.callbacks.manager import Callbacks from langchain.chains import LLMChain from langchain.output_parsers.boolean import BooleanOutputParser from langchain.retrievers.document_compressors.base import BaseDocumentCompressor from langchain.retrievers.document_compressors.chain_filter_prompt import ( prompt_template, ) def _get_default_chain_prompt() -> PromptTemplate: return PromptTemplate( template=prompt_template, input_variables=["question", "context"], output_parser=BooleanOutputParser(), ) def default_get_input(query: str, doc: Document) -> Dict[str, Any]: """Return the compression chain input.""" return {"question": query, "context": doc.page_content} class LLMChainFilter(BaseDocumentCompressor): """Filter that drops documents that aren't relevant to the query.""" llm_chain: LLMChain """LLM wrapper to use for filtering documents. The chain prompt is expected to have a BooleanOutputParser.""" get_input: Callable[[str, Document], dict] = default_get_input """Callable for constructing the chain input from the query and a Document.""" def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Filter down documents based on their relevance to the query.""" filtered_docs = [] for doc in documents: _input = self.get_input(query, doc) include_doc = self.llm_chain.predict_and_parse( **_input, callbacks=callbacks ) if include_doc: filtered_docs.append(doc) return filtered_docs @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: Optional[BasePromptTemplate] = None, **kwargs: Any, ) -> "LLMChainFilter": """Create a LLMChainFilter from a language model. Args: llm: The language model to use for filtering. prompt: The prompt to use for the filter. **kwargs: Additional arguments to pass to the constructor. Returns: A LLMChainFilter that uses the given language model. """ _prompt = prompt if prompt is not None else _get_default_chain_prompt() llm_chain = LLMChain(llm=llm, prompt=_prompt) return cls(llm_chain=llm_chain, **kwargs)
[]
2024-01-10
axgpt/langchain
libs~langchain~langchain~vectorstores~matching_engine.py
from __future__ import annotations import json import logging import time import uuid from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Tuple, Type from langchain_core.schema.document import Document from langchain_core.schema.embeddings import Embeddings from langchain_core.schema.vectorstore import VectorStore from langchain.utilities.vertexai import get_client_info if TYPE_CHECKING: from google.cloud import storage from google.cloud.aiplatform import MatchingEngineIndex, MatchingEngineIndexEndpoint from google.cloud.aiplatform.matching_engine.matching_engine_index_endpoint import ( Namespace, ) from google.oauth2.service_account import Credentials from langchain.embeddings import TensorflowHubEmbeddings logger = logging.getLogger() class MatchingEngine(VectorStore): """`Google Vertex AI Matching Engine` vector store. While the embeddings are stored in the Matching Engine, the embedded documents will be stored in GCS. An existing Index and corresponding Endpoint are preconditions for using this module. See usage in docs/modules/indexes/vectorstores/examples/matchingengine.ipynb Note that this implementation is mostly meant for reading if you are planning to do a real time implementation. While reading is a real time operation, updating the index takes close to one hour.""" def __init__( self, project_id: str, index: MatchingEngineIndex, endpoint: MatchingEngineIndexEndpoint, embedding: Embeddings, gcs_client: storage.Client, gcs_bucket_name: str, credentials: Optional[Credentials] = None, ): """Vertex Matching Engine implementation of the vector store. While the embeddings are stored in the Matching Engine, the embedded documents will be stored in GCS. An existing Index and corresponding Endpoint are preconditions for using this module. See usage in docs/modules/indexes/vectorstores/examples/matchingengine.ipynb. Note that this implementation is mostly meant for reading if you are planning to do a real time implementation. While reading is a real time operation, updating the index takes close to one hour. Attributes: project_id: The GCS project id. index: The created index class. See ~:func:`MatchingEngine.from_components`. endpoint: The created endpoint class. See ~:func:`MatchingEngine.from_components`. embedding: A :class:`Embeddings` that will be used for embedding the text sent. If none is sent, then the multilingual Tensorflow Universal Sentence Encoder will be used. gcs_client: The GCS client. gcs_bucket_name: The GCS bucket name. credentials (Optional): Created GCP credentials. """ super().__init__() self._validate_google_libraries_installation() self.project_id = project_id self.index = index self.endpoint = endpoint self.embedding = embedding self.gcs_client = gcs_client self.credentials = credentials self.gcs_bucket_name = gcs_bucket_name @property def embeddings(self) -> Embeddings: return self.embedding def _validate_google_libraries_installation(self) -> None: """Validates that Google libraries that are needed are installed.""" try: from google.cloud import aiplatform, storage # noqa: F401 from google.oauth2 import service_account # noqa: F401 except ImportError: raise ImportError( "You must run `pip install --upgrade " "google-cloud-aiplatform google-cloud-storage`" "to use the MatchingEngine Vectorstore." ) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. kwargs: vectorstore specific parameters. Returns: List of ids from adding the texts into the vectorstore. """ texts = list(texts) if metadatas is not None and len(texts) != len(metadatas): raise ValueError( "texts and metadatas do not have the same length. Received " f"{len(texts)} texts and {len(metadatas)} metadatas." ) logger.debug("Embedding documents.") embeddings = self.embedding.embed_documents(texts) jsons = [] ids = [] # Could be improved with async. for idx, (embedding, text) in enumerate(zip(embeddings, texts)): id = str(uuid.uuid4()) ids.append(id) json_: dict = {"id": id, "embedding": embedding} if metadatas is not None: json_["metadata"] = metadatas[idx] jsons.append(json_) self._upload_to_gcs(text, f"documents/{id}") logger.debug(f"Uploaded {len(ids)} documents to GCS.") # Creating json lines from the embedded documents. result_str = "\n".join([json.dumps(x) for x in jsons]) filename_prefix = f"indexes/{uuid.uuid4()}" filename = f"{filename_prefix}/{time.time()}.json" self._upload_to_gcs(result_str, filename) logger.debug( f"Uploaded updated json with embeddings to " f"{self.gcs_bucket_name}/{filename}." ) self.index = self.index.update_embeddings( contents_delta_uri=f"gs://{self.gcs_bucket_name}/{filename_prefix}/" ) logger.debug("Updated index with new configuration.") return ids def _upload_to_gcs(self, data: str, gcs_location: str) -> None: """Uploads data to gcs_location. Args: data: The data that will be stored. gcs_location: The location where the data will be stored. """ bucket = self.gcs_client.get_bucket(self.gcs_bucket_name) blob = bucket.blob(gcs_location) blob.upload_from_string(data) def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[List[Namespace]] = None, ) -> List[Tuple[Document, float]]: """Return docs most similar to query and their cosine distance from the query. Args: query: String query look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Optional. A list of Namespaces for filtering the matching results. For example: [Namespace("color", ["red"], []), Namespace("shape", [], ["squared"])] will match datapoints that satisfy "red color" but not include datapoints with "squared shape". Please refer to https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json for more detail. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. """ logger.debug(f"Embedding query {query}.") embedding_query = self.embedding.embed_query(query) return self.similarity_search_by_vector_with_score( embedding_query, k=k, filter=filter ) def similarity_search_by_vector_with_score( self, embedding: List[float], k: int = 4, filter: Optional[List[Namespace]] = None, ) -> List[Tuple[Document, float]]: """Return docs most similar to the embedding and their cosine distance. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Optional. A list of Namespaces for filtering the matching results. For example: [Namespace("color", ["red"], []), Namespace("shape", [], ["squared"])] will match datapoints that satisfy "red color" but not include datapoints with "squared shape". Please refer to https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json for more detail. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. """ filter = filter or [] # If the endpoint is public we use the find_neighbors function. if self.endpoint._public_match_client: response = self.endpoint.find_neighbors( deployed_index_id=self._get_index_id(), queries=[embedding], num_neighbors=k, filter=filter, ) else: response = self.endpoint.match( deployed_index_id=self._get_index_id(), queries=[embedding], num_neighbors=k, filter=filter, ) logger.debug(f"Found {len(response)} matches.") if len(response) == 0: return [] results = [] # I'm only getting the first one because queries receives an array # and the similarity_search method only receives one query. This # means that the match method will always return an array with only # one element. for doc in response[0]: page_content = self._download_from_gcs(f"documents/{doc.id}") results.append((Document(page_content=page_content), doc.distance)) logger.debug("Downloaded documents for query.") return results def similarity_search( self, query: str, k: int = 4, filter: Optional[List[Namespace]] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to query. Args: query: The string that will be used to search for similar documents. k: The amount of neighbors that will be retrieved. filter: Optional. A list of Namespaces for filtering the matching results. For example: [Namespace("color", ["red"], []), Namespace("shape", [], ["squared"])] will match datapoints that satisfy "red color" but not include datapoints with "squared shape". Please refer to https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json for more detail. Returns: A list of k matching documents. """ docs_and_scores = self.similarity_search_with_score( query, k=k, filter=filter, **kwargs ) return [doc for doc, _ in docs_and_scores] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[List[Namespace]] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to the embedding. Args: embedding: Embedding to look up documents similar to. k: The amount of neighbors that will be retrieved. filter: Optional. A list of Namespaces for filtering the matching results. For example: [Namespace("color", ["red"], []), Namespace("shape", [], ["squared"])] will match datapoints that satisfy "red color" but not include datapoints with "squared shape". Please refer to https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json for more detail. Returns: A list of k matching documents. """ docs_and_scores = self.similarity_search_by_vector_with_score( embedding, k=k, filter=filter, **kwargs ) return [doc for doc, _ in docs_and_scores] def _get_index_id(self) -> str: """Gets the correct index id for the endpoint. Returns: The index id if found (which should be found) or throws ValueError otherwise. """ for index in self.endpoint.deployed_indexes: if index.index == self.index.resource_name: return index.id raise ValueError( f"No index with id {self.index.resource_name} " f"deployed on endpoint " f"{self.endpoint.display_name}." ) def _download_from_gcs(self, gcs_location: str) -> str: """Downloads from GCS in text format. Args: gcs_location: The location where the file is located. Returns: The string contents of the file. """ bucket = self.gcs_client.get_bucket(self.gcs_bucket_name) blob = bucket.blob(gcs_location) return blob.download_as_string() @classmethod def from_texts( cls: Type["MatchingEngine"], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> "MatchingEngine": """Use from components instead.""" raise NotImplementedError( "This method is not implemented. Instead, you should initialize the class" " with `MatchingEngine.from_components(...)` and then call " "`add_texts`" ) @classmethod def from_components( cls: Type["MatchingEngine"], project_id: str, region: str, gcs_bucket_name: str, index_id: str, endpoint_id: str, credentials_path: Optional[str] = None, embedding: Optional[Embeddings] = None, ) -> "MatchingEngine": """Takes the object creation out of the constructor. Args: project_id: The GCP project id. region: The default location making the API calls. It must have the same location as the GCS bucket and must be regional. gcs_bucket_name: The location where the vectors will be stored in order for the index to be created. index_id: The id of the created index. endpoint_id: The id of the created endpoint. credentials_path: (Optional) The path of the Google credentials on the local file system. embedding: The :class:`Embeddings` that will be used for embedding the texts. Returns: A configured MatchingEngine with the texts added to the index. """ gcs_bucket_name = cls._validate_gcs_bucket(gcs_bucket_name) credentials = cls._create_credentials_from_file(credentials_path) index = cls._create_index_by_id(index_id, project_id, region, credentials) endpoint = cls._create_endpoint_by_id( endpoint_id, project_id, region, credentials ) gcs_client = cls._get_gcs_client(credentials, project_id) cls._init_aiplatform(project_id, region, gcs_bucket_name, credentials) return cls( project_id=project_id, index=index, endpoint=endpoint, embedding=embedding or cls._get_default_embeddings(), gcs_client=gcs_client, credentials=credentials, gcs_bucket_name=gcs_bucket_name, ) @classmethod def _validate_gcs_bucket(cls, gcs_bucket_name: str) -> str: """Validates the gcs_bucket_name as a bucket name. Args: gcs_bucket_name: The received bucket uri. Returns: A valid gcs_bucket_name or throws ValueError if full path is provided. """ gcs_bucket_name = gcs_bucket_name.replace("gs://", "") if "/" in gcs_bucket_name: raise ValueError( f"The argument gcs_bucket_name should only be " f"the bucket name. Received {gcs_bucket_name}" ) return gcs_bucket_name @classmethod def _create_credentials_from_file( cls, json_credentials_path: Optional[str] ) -> Optional[Credentials]: """Creates credentials for GCP. Args: json_credentials_path: The path on the file system where the credentials are stored. Returns: An optional of Credentials or None, in which case the default will be used. """ from google.oauth2 import service_account credentials = None if json_credentials_path is not None: credentials = service_account.Credentials.from_service_account_file( json_credentials_path ) return credentials @classmethod def _create_index_by_id( cls, index_id: str, project_id: str, region: str, credentials: "Credentials" ) -> MatchingEngineIndex: """Creates a MatchingEngineIndex object by id. Args: index_id: The created index id. project_id: The project to retrieve index from. region: Location to retrieve index from. credentials: GCS credentials. Returns: A configured MatchingEngineIndex. """ from google.cloud import aiplatform logger.debug(f"Creating matching engine index with id {index_id}.") return aiplatform.MatchingEngineIndex( index_name=index_id, project=project_id, location=region, credentials=credentials, ) @classmethod def _create_endpoint_by_id( cls, endpoint_id: str, project_id: str, region: str, credentials: "Credentials" ) -> MatchingEngineIndexEndpoint: """Creates a MatchingEngineIndexEndpoint object by id. Args: endpoint_id: The created endpoint id. project_id: The project to retrieve index from. region: Location to retrieve index from. credentials: GCS credentials. Returns: A configured MatchingEngineIndexEndpoint. """ from google.cloud import aiplatform logger.debug(f"Creating endpoint with id {endpoint_id}.") return aiplatform.MatchingEngineIndexEndpoint( index_endpoint_name=endpoint_id, project=project_id, location=region, credentials=credentials, ) @classmethod def _get_gcs_client( cls, credentials: "Credentials", project_id: str ) -> "storage.Client": """Lazily creates a GCS client. Returns: A configured GCS client. """ from google.cloud import storage return storage.Client( credentials=credentials, project=project_id, client_info=get_client_info(module="vertex-ai-matching-engine"), ) @classmethod def _init_aiplatform( cls, project_id: str, region: str, gcs_bucket_name: str, credentials: "Credentials", ) -> None: """Configures the aiplatform library. Args: project_id: The GCP project id. region: The default location making the API calls. It must have the same location as the GCS bucket and must be regional. gcs_bucket_name: GCS staging location. credentials: The GCS Credentials object. """ from google.cloud import aiplatform logger.debug( f"Initializing AI Platform for project {project_id} on " f"{region} and for {gcs_bucket_name}." ) aiplatform.init( project=project_id, location=region, staging_bucket=gcs_bucket_name, credentials=credentials, ) @classmethod def _get_default_embeddings(cls) -> "TensorflowHubEmbeddings": """This function returns the default embedding. Returns: Default TensorflowHubEmbeddings to use. """ from langchain.embeddings import TensorflowHubEmbeddings return TensorflowHubEmbeddings()
[]
2024-01-10
axgpt/langchain
libs~langchain~tests~integration_tests~chat_models~test_azure_openai.py
"""Test AzureChatOpenAI wrapper.""" import os from typing import Any import pytest from langchain_core.schema import ( ChatGeneration, ChatResult, LLMResult, ) from langchain_core.schema.messages import BaseMessage, HumanMessage from langchain.callbacks.manager import CallbackManager from langchain.chat_models import AzureChatOpenAI from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "") OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "") OPENAI_API_KEY = os.environ.get("AZURE_OPENAI_API_KEY", "") DEPLOYMENT_NAME = os.environ.get("AZURE_OPENAI_DEPLOYMENT_NAME", "") def _get_llm(**kwargs: Any) -> AzureChatOpenAI: return AzureChatOpenAI( deployment_name=DEPLOYMENT_NAME, openai_api_version=OPENAI_API_VERSION, openai_api_base=OPENAI_API_BASE, openai_api_key=OPENAI_API_KEY, **kwargs, ) @pytest.mark.scheduled @pytest.fixture def llm() -> AzureChatOpenAI: return _get_llm( max_tokens=10, ) def test_chat_openai(llm: AzureChatOpenAI) -> None: """Test AzureChatOpenAI wrapper.""" message = HumanMessage(content="Hello") response = llm([message]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) @pytest.mark.scheduled def test_chat_openai_generate() -> None: """Test AzureChatOpenAI wrapper with generate.""" chat = _get_llm(max_tokens=10, n=2) message = HumanMessage(content="Hello") response = chat.generate([[message], [message]]) assert isinstance(response, LLMResult) assert len(response.generations) == 2 for generations in response.generations: assert len(generations) == 2 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content @pytest.mark.scheduled def test_chat_openai_multiple_completions() -> None: """Test AzureChatOpenAI wrapper with multiple completions.""" chat = _get_llm(max_tokens=10, n=5) message = HumanMessage(content="Hello") response = chat._generate([message]) assert isinstance(response, ChatResult) assert len(response.generations) == 5 for generation in response.generations: assert isinstance(generation.message, BaseMessage) assert isinstance(generation.message.content, str) @pytest.mark.scheduled def test_chat_openai_streaming() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) chat = _get_llm( max_tokens=10, streaming=True, temperature=0, callback_manager=callback_manager, verbose=True, ) message = HumanMessage(content="Hello") response = chat([message]) assert callback_handler.llm_streams > 0 assert isinstance(response, BaseMessage) @pytest.mark.scheduled def test_chat_openai_streaming_generation_info() -> None: """Test that generation info is preserved when streaming.""" class _FakeCallback(FakeCallbackHandler): saved_things: dict = {} def on_llm_end( self, *args: Any, **kwargs: Any, ) -> Any: # Save the generation self.saved_things["generation"] = args[0] callback = _FakeCallback() callback_manager = CallbackManager([callback]) chat = _get_llm( max_tokens=2, temperature=0, callback_manager=callback_manager, ) list(chat.stream("hi")) generation = callback.saved_things["generation"] # `Hello!` is two tokens, assert that that is what is returned assert generation.generations[0][0].text == "Hello!" @pytest.mark.scheduled @pytest.mark.asyncio async def test_async_chat_openai() -> None: """Test async generation.""" chat = _get_llm(max_tokens=10, n=2) message = HumanMessage(content="Hello") response = await chat.agenerate([[message], [message]]) assert isinstance(response, LLMResult) assert len(response.generations) == 2 for generations in response.generations: assert len(generations) == 2 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content @pytest.mark.scheduled @pytest.mark.asyncio async def test_async_chat_openai_streaming() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) chat = _get_llm( max_tokens=10, streaming=True, temperature=0, callback_manager=callback_manager, verbose=True, ) message = HumanMessage(content="Hello") response = await chat.agenerate([[message], [message]]) assert callback_handler.llm_streams > 0 assert isinstance(response, LLMResult) assert len(response.generations) == 2 for generations in response.generations: assert len(generations) == 1 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content @pytest.mark.scheduled def test_openai_streaming(llm: AzureChatOpenAI) -> None: """Test streaming tokens from OpenAI.""" for token in llm.stream("I'm Pickle Rick"): assert isinstance(token.content, str) @pytest.mark.scheduled @pytest.mark.asyncio async def test_openai_astream(llm: AzureChatOpenAI) -> None: """Test streaming tokens from OpenAI.""" async for token in llm.astream("I'm Pickle Rick"): assert isinstance(token.content, str) @pytest.mark.scheduled @pytest.mark.asyncio async def test_openai_abatch(llm: AzureChatOpenAI) -> None: """Test streaming tokens from AzureChatOpenAI.""" result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"]) for token in result: assert isinstance(token.content, str) @pytest.mark.scheduled @pytest.mark.asyncio async def test_openai_abatch_tags(llm: AzureChatOpenAI) -> None: """Test batch tokens from AzureChatOpenAI.""" result = await llm.abatch( ["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]} ) for token in result: assert isinstance(token.content, str) @pytest.mark.scheduled def test_openai_batch(llm: AzureChatOpenAI) -> None: """Test batch tokens from AzureChatOpenAI.""" result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"]) for token in result: assert isinstance(token.content, str) @pytest.mark.scheduled @pytest.mark.asyncio async def test_openai_ainvoke(llm: AzureChatOpenAI) -> None: """Test invoke tokens from AzureChatOpenAI.""" result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]}) assert isinstance(result.content, str) @pytest.mark.scheduled def test_openai_invoke(llm: AzureChatOpenAI) -> None: """Test invoke tokens from AzureChatOpenAI.""" result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"])) assert isinstance(result.content, str)
[ "Hello" ]
2024-01-10
axgpt/langchain
libs~langchain~langchain~vectorstores~elasticsearch.py
import logging import uuid from abc import ABC, abstractmethod from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Literal, Optional, Tuple, Union, ) import numpy as np from langchain_core.schema.embeddings import Embeddings from langchain_core.schema.vectorstore import VectorStore from langchain.docstore.document import Document from langchain.vectorstores.utils import DistanceStrategy, maximal_marginal_relevance if TYPE_CHECKING: from elasticsearch import Elasticsearch logger = logging.getLogger(__name__) class BaseRetrievalStrategy(ABC): """Base class for `Elasticsearch` retrieval strategies.""" @abstractmethod def query( self, query_vector: Union[List[float], None], query: Union[str, None], *, k: int, fetch_k: int, vector_query_field: str, text_field: str, filter: List[dict], similarity: Union[DistanceStrategy, None], ) -> Dict: """ Executes when a search is performed on the store. Args: query_vector: The query vector, or None if not using vector-based query. query: The text query, or None if not using text-based query. k: The total number of results to retrieve. fetch_k: The number of results to fetch initially. vector_query_field: The field containing the vector representations in the index. text_field: The field containing the text data in the index. filter: List of filter clauses to apply to the query. similarity: The similarity strategy to use, or None if not using one. Returns: Dict: The Elasticsearch query body. """ @abstractmethod def index( self, dims_length: Union[int, None], vector_query_field: str, similarity: Union[DistanceStrategy, None], ) -> Dict: """ Executes when the index is created. Args: dims_length: Numeric length of the embedding vectors, or None if not using vector-based query. vector_query_field: The field containing the vector representations in the index. similarity: The similarity strategy to use, or None if not using one. Returns: Dict: The Elasticsearch settings and mappings for the strategy. """ def before_index_setup( self, client: "Elasticsearch", text_field: str, vector_query_field: str ) -> None: """ Executes before the index is created. Used for setting up any required Elasticsearch resources like a pipeline. Args: client: The Elasticsearch client. text_field: The field containing the text data in the index. vector_query_field: The field containing the vector representations in the index. """ def require_inference(self) -> bool: """ Returns whether or not the strategy requires inference to be performed on the text before it is added to the index. Returns: bool: Whether or not the strategy requires inference to be performed on the text before it is added to the index. """ return True class ApproxRetrievalStrategy(BaseRetrievalStrategy): """Approximate retrieval strategy using the `HNSW` algorithm.""" def __init__( self, query_model_id: Optional[str] = None, hybrid: Optional[bool] = False, rrf: Optional[Union[dict, bool]] = True, ): self.query_model_id = query_model_id self.hybrid = hybrid # RRF has two optional parameters # 'rank_constant', 'window_size' # https://www.elastic.co/guide/en/elasticsearch/reference/current/rrf.html self.rrf = rrf def query( self, query_vector: Union[List[float], None], query: Union[str, None], k: int, fetch_k: int, vector_query_field: str, text_field: str, filter: List[dict], similarity: Union[DistanceStrategy, None], ) -> Dict: knn = { "filter": filter, "field": vector_query_field, "k": k, "num_candidates": fetch_k, } # Embedding provided via the embedding function if query_vector and not self.query_model_id: knn["query_vector"] = query_vector # Case 2: Used when model has been deployed to # Elasticsearch and can infer the query vector from the query text elif query and self.query_model_id: knn["query_vector_builder"] = { "text_embedding": { "model_id": self.query_model_id, # use 'model_id' argument "model_text": query, # use 'query' argument } } else: raise ValueError( "You must provide an embedding function or a" " query_model_id to perform a similarity search." ) # If hybrid, add a query to the knn query # RRF is used to even the score from the knn query and text query # RRF has two optional parameters: {'rank_constant':int, 'window_size':int} # https://www.elastic.co/guide/en/elasticsearch/reference/current/rrf.html if self.hybrid: query_body = { "knn": knn, "query": { "bool": { "must": [ { "match": { text_field: { "query": query, } } } ], "filter": filter, } }, } if isinstance(self.rrf, dict): query_body["rank"] = {"rrf": self.rrf} elif isinstance(self.rrf, bool) and self.rrf is True: query_body["rank"] = {"rrf": {}} return query_body else: return {"knn": knn} def index( self, dims_length: Union[int, None], vector_query_field: str, similarity: Union[DistanceStrategy, None], ) -> Dict: """Create the mapping for the Elasticsearch index.""" if similarity is DistanceStrategy.COSINE: similarityAlgo = "cosine" elif similarity is DistanceStrategy.EUCLIDEAN_DISTANCE: similarityAlgo = "l2_norm" elif similarity is DistanceStrategy.DOT_PRODUCT: similarityAlgo = "dot_product" else: raise ValueError(f"Similarity {similarity} not supported.") return { "mappings": { "properties": { vector_query_field: { "type": "dense_vector", "dims": dims_length, "index": True, "similarity": similarityAlgo, }, } } } class ExactRetrievalStrategy(BaseRetrievalStrategy): """Exact retrieval strategy using the `script_score` query.""" def query( self, query_vector: Union[List[float], None], query: Union[str, None], k: int, fetch_k: int, vector_query_field: str, text_field: str, filter: Union[List[dict], None], similarity: Union[DistanceStrategy, None], ) -> Dict: if similarity is DistanceStrategy.COSINE: similarityAlgo = ( f"cosineSimilarity(params.query_vector, '{vector_query_field}') + 1.0" ) elif similarity is DistanceStrategy.EUCLIDEAN_DISTANCE: similarityAlgo = ( f"1 / (1 + l2norm(params.query_vector, '{vector_query_field}'))" ) elif similarity is DistanceStrategy.DOT_PRODUCT: similarityAlgo = f""" double value = dotProduct(params.query_vector, '{vector_query_field}'); return sigmoid(1, Math.E, -value); """ else: raise ValueError(f"Similarity {similarity} not supported.") queryBool: Dict = {"match_all": {}} if filter: queryBool = {"bool": {"filter": filter}} return { "query": { "script_score": { "query": queryBool, "script": { "source": similarityAlgo, "params": {"query_vector": query_vector}, }, }, } } def index( self, dims_length: Union[int, None], vector_query_field: str, similarity: Union[DistanceStrategy, None], ) -> Dict: """Create the mapping for the Elasticsearch index.""" return { "mappings": { "properties": { vector_query_field: { "type": "dense_vector", "dims": dims_length, "index": False, }, } } } class SparseRetrievalStrategy(BaseRetrievalStrategy): """Sparse retrieval strategy using the `text_expansion` processor.""" def __init__(self, model_id: Optional[str] = None): self.model_id = model_id or ".elser_model_1" def query( self, query_vector: Union[List[float], None], query: Union[str, None], k: int, fetch_k: int, vector_query_field: str, text_field: str, filter: List[dict], similarity: Union[DistanceStrategy, None], ) -> Dict: return { "query": { "bool": { "must": [ { "text_expansion": { f"{vector_query_field}.tokens": { "model_id": self.model_id, "model_text": query, } } } ], "filter": filter, } } } def _get_pipeline_name(self) -> str: return f"{self.model_id}_sparse_embedding" def before_index_setup( self, client: "Elasticsearch", text_field: str, vector_query_field: str ) -> None: # If model_id is provided, create a pipeline for the model if self.model_id: client.ingest.put_pipeline( id=self._get_pipeline_name(), description="Embedding pipeline for langchain vectorstore", processors=[ { "inference": { "model_id": self.model_id, "target_field": vector_query_field, "field_map": {text_field: "text_field"}, "inference_config": { "text_expansion": {"results_field": "tokens"} }, } } ], ) def index( self, dims_length: Union[int, None], vector_query_field: str, similarity: Union[DistanceStrategy, None], ) -> Dict: return { "mappings": { "properties": { vector_query_field: { "properties": {"tokens": {"type": "rank_features"}} } } }, "settings": {"default_pipeline": self._get_pipeline_name()}, } def require_inference(self) -> bool: return False class ElasticsearchStore(VectorStore): """`Elasticsearch` vector store. Example: .. code-block:: python from langchain.vectorstores import ElasticsearchStore from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = ElasticsearchStore( embedding=OpenAIEmbeddings(), index_name="langchain-demo", es_url="http://localhost:9200" ) Args: index_name: Name of the Elasticsearch index to create. es_url: URL of the Elasticsearch instance to connect to. cloud_id: Cloud ID of the Elasticsearch instance to connect to. es_user: Username to use when connecting to Elasticsearch. es_password: Password to use when connecting to Elasticsearch. es_api_key: API key to use when connecting to Elasticsearch. es_connection: Optional pre-existing Elasticsearch connection. vector_query_field: Optional. Name of the field to store the embedding vectors in. query_field: Optional. Name of the field to store the texts in. strategy: Optional. Retrieval strategy to use when searching the index. Defaults to ApproxRetrievalStrategy. Can be one of ExactRetrievalStrategy, ApproxRetrievalStrategy, or SparseRetrievalStrategy. distance_strategy: Optional. Distance strategy to use when searching the index. Defaults to COSINE. Can be one of COSINE, EUCLIDEAN_DISTANCE, or DOT_PRODUCT. If you want to use a cloud hosted Elasticsearch instance, you can pass in the cloud_id argument instead of the es_url argument. Example: .. code-block:: python from langchain.vectorstores import ElasticsearchStore from langchain.embeddings.openai import OpenAIEmbeddings vectorstore = ElasticsearchStore( embedding=OpenAIEmbeddings(), index_name="langchain-demo", es_cloud_id="<cloud_id>" es_user="elastic", es_password="<password>" ) You can also connect to an existing Elasticsearch instance by passing in a pre-existing Elasticsearch connection via the es_connection argument. Example: .. code-block:: python from langchain.vectorstores import ElasticsearchStore from langchain.embeddings.openai import OpenAIEmbeddings from elasticsearch import Elasticsearch es_connection = Elasticsearch("http://localhost:9200") vectorstore = ElasticsearchStore( embedding=OpenAIEmbeddings(), index_name="langchain-demo", es_connection=es_connection ) ElasticsearchStore by default uses the ApproxRetrievalStrategy, which uses the HNSW algorithm to perform approximate nearest neighbor search. This is the fastest and most memory efficient algorithm. If you want to use the Brute force / Exact strategy for searching vectors, you can pass in the ExactRetrievalStrategy to the ElasticsearchStore constructor. Example: .. code-block:: python from langchain.vectorstores import ElasticsearchStore from langchain.embeddings.openai import OpenAIEmbeddings vectorstore = ElasticsearchStore( embedding=OpenAIEmbeddings(), index_name="langchain-demo", es_url="http://localhost:9200", strategy=ElasticsearchStore.ExactRetrievalStrategy() ) Both strategies require that you know the similarity metric you want to use when creating the index. The default is cosine similarity, but you can also use dot product or euclidean distance. Example: .. code-block:: python from langchain.vectorstores import ElasticsearchStore from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores.utils import DistanceStrategy vectorstore = ElasticsearchStore( embedding=OpenAIEmbeddings(), index_name="langchain-demo", es_url="http://localhost:9200", distance_strategy="DOT_PRODUCT" ) """ def __init__( self, index_name: str, *, embedding: Optional[Embeddings] = None, es_connection: Optional["Elasticsearch"] = None, es_url: Optional[str] = None, es_cloud_id: Optional[str] = None, es_user: Optional[str] = None, es_api_key: Optional[str] = None, es_password: Optional[str] = None, vector_query_field: str = "vector", query_field: str = "text", distance_strategy: Optional[ Literal[ DistanceStrategy.COSINE, DistanceStrategy.DOT_PRODUCT, DistanceStrategy.EUCLIDEAN_DISTANCE, ] ] = None, strategy: BaseRetrievalStrategy = ApproxRetrievalStrategy(), ): self.embedding = embedding self.index_name = index_name self.query_field = query_field self.vector_query_field = vector_query_field self.distance_strategy = ( DistanceStrategy.COSINE if distance_strategy is None else DistanceStrategy[distance_strategy] ) self.strategy = strategy if es_connection is not None: self.client = es_connection.options( headers={"user-agent": self.get_user_agent()} ) elif es_url is not None or es_cloud_id is not None: self.client = ElasticsearchStore.connect_to_elasticsearch( es_url=es_url, username=es_user, password=es_password, cloud_id=es_cloud_id, api_key=es_api_key, ) else: raise ValueError( """Either provide a pre-existing Elasticsearch connection, \ or valid credentials for creating a new connection.""" ) @staticmethod def get_user_agent() -> str: from langchain import __version__ return f"langchain-py-vs/{__version__}" @staticmethod def connect_to_elasticsearch( *, es_url: Optional[str] = None, cloud_id: Optional[str] = None, api_key: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, ) -> "Elasticsearch": try: import elasticsearch except ImportError: raise ImportError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) if es_url and cloud_id: raise ValueError( "Both es_url and cloud_id are defined. Please provide only one." ) connection_params: Dict[str, Any] = {} if es_url: connection_params["hosts"] = [es_url] elif cloud_id: connection_params["cloud_id"] = cloud_id else: raise ValueError("Please provide either elasticsearch_url or cloud_id.") if api_key: connection_params["api_key"] = api_key elif username and password: connection_params["basic_auth"] = (username, password) es_client = elasticsearch.Elasticsearch( **connection_params, headers={"user-agent": ElasticsearchStore.get_user_agent()}, ) try: es_client.info() except Exception as e: logger.error(f"Error connecting to Elasticsearch: {e}") raise e return es_client @property def embeddings(self) -> Optional[Embeddings]: return self.embedding def similarity_search( self, query: str, k: int = 4, fetch_k: int = 50, filter: Optional[List[dict]] = None, **kwargs: Any, ) -> List[Document]: """Return Elasticsearch documents most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k (int): Number of Documents to fetch to pass to knn num_candidates. filter: Array of Elasticsearch filter clauses to apply to the query. Returns: List of Documents most similar to the query, in descending order of similarity. """ results = self._search( query=query, k=k, fetch_k=fetch_k, filter=filter, **kwargs ) return [doc for doc, _ in results] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, fields: Optional[List[str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query (str): Text to look up documents similar to. k (int): Number of Documents to return. Defaults to 4. fetch_k (int): Number of Documents to fetch to pass to MMR algorithm. lambda_mult (float): Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. fields: Other fields to get from elasticsearch source. These fields will be added to the document metadata. Returns: List[Document]: A list of Documents selected by maximal marginal relevance. """ if self.embedding is None: raise ValueError("You must provide an embedding function to perform MMR") remove_vector_query_field_from_metadata = True if fields is None: fields = [self.vector_query_field] elif self.vector_query_field not in fields: fields.append(self.vector_query_field) else: remove_vector_query_field_from_metadata = False # Embed the query query_embedding = self.embedding.embed_query(query) # Fetch the initial documents got_docs = self._search( query_vector=query_embedding, k=fetch_k, fields=fields, **kwargs ) # Get the embeddings for the fetched documents got_embeddings = [doc.metadata[self.vector_query_field] for doc, _ in got_docs] # Select documents using maximal marginal relevance selected_indices = maximal_marginal_relevance( np.array(query_embedding), got_embeddings, lambda_mult=lambda_mult, k=k ) selected_docs = [got_docs[i][0] for i in selected_indices] if remove_vector_query_field_from_metadata: for doc in selected_docs: del doc.metadata[self.vector_query_field] return selected_docs def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[List[dict]] = None, **kwargs: Any ) -> List[Tuple[Document, float]]: """Return Elasticsearch documents most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Array of Elasticsearch filter clauses to apply to the query. Returns: List of Documents most similar to the query and score for each """ return self._search(query=query, k=k, filter=filter, **kwargs) def similarity_search_by_vector_with_relevance_scores( self, embedding: List[float], k: int = 4, filter: Optional[List[Dict]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return Elasticsearch documents most similar to query, along with scores. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Array of Elasticsearch filter clauses to apply to the query. Returns: List of Documents most similar to the embedding and score for each """ return self._search(query_vector=embedding, k=k, filter=filter, **kwargs) def _search( self, query: Optional[str] = None, k: int = 4, query_vector: Union[List[float], None] = None, fetch_k: int = 50, fields: Optional[List[str]] = None, filter: Optional[List[dict]] = None, custom_query: Optional[Callable[[Dict, Union[str, None]], Dict]] = None, doc_builder: Optional[Callable[[Dict], Document]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return Elasticsearch documents most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. query_vector: Embedding to look up documents similar to. fetch_k: Number of candidates to fetch from each shard. Defaults to 50. fields: List of fields to return from Elasticsearch. Defaults to only returning the text field. filter: Array of Elasticsearch filter clauses to apply to the query. custom_query: Function to modify the Elasticsearch query body before it is sent to Elasticsearch. Returns: List of Documents most similar to the query and score for each """ if fields is None: fields = [] if "metadata" not in fields: fields.append("metadata") if self.query_field not in fields: fields.append(self.query_field) if self.embedding and query is not None: query_vector = self.embedding.embed_query(query) query_body = self.strategy.query( query_vector=query_vector, query=query, k=k, fetch_k=fetch_k, vector_query_field=self.vector_query_field, text_field=self.query_field, filter=filter or [], similarity=self.distance_strategy, ) logger.debug(f"Query body: {query_body}") if custom_query is not None: query_body = custom_query(query_body, query) logger.debug(f"Calling custom_query, Query body now: {query_body}") # Perform the kNN search on the Elasticsearch index and return the results. response = self.client.search( index=self.index_name, **query_body, size=k, source=fields, ) def default_doc_builder(hit: Dict) -> Document: return Document( page_content=hit["_source"].get(self.query_field, ""), metadata=hit["_source"]["metadata"], ) doc_builder = doc_builder or default_doc_builder docs_and_scores = [] for hit in response["hits"]["hits"]: for field in fields: if field in hit["_source"] and field not in [ "metadata", self.query_field, ]: hit["_source"]["metadata"][field] = hit["_source"][field] docs_and_scores.append( ( doc_builder(hit), hit["_score"], ) ) return docs_and_scores def delete( self, ids: Optional[List[str]] = None, refresh_indices: Optional[bool] = True, **kwargs: Any, ) -> Optional[bool]: """Delete documents from the Elasticsearch index. Args: ids: List of ids of documents to delete. refresh_indices: Whether to refresh the index after deleting documents. Defaults to True. """ try: from elasticsearch.helpers import BulkIndexError, bulk except ImportError: raise ImportError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) body = [] if ids is None: raise ValueError("ids must be provided.") for _id in ids: body.append({"_op_type": "delete", "_index": self.index_name, "_id": _id}) if len(body) > 0: try: bulk(self.client, body, refresh=refresh_indices, ignore_status=404) logger.debug(f"Deleted {len(body)} texts from index") return True except BulkIndexError as e: logger.error(f"Error deleting texts: {e}") firstError = e.errors[0].get("index", {}).get("error", {}) logger.error(f"First error reason: {firstError.get('reason')}") raise e else: logger.debug("No texts to delete from index") return False def _create_index_if_not_exists( self, index_name: str, dims_length: Optional[int] = None ) -> None: """Create the Elasticsearch index if it doesn't already exist. Args: index_name: Name of the Elasticsearch index to create. dims_length: Length of the embedding vectors. """ if self.client.indices.exists(index=index_name): logger.debug(f"Index {index_name} already exists. Skipping creation.") else: if dims_length is None and self.strategy.require_inference(): raise ValueError( "Cannot create index without specifying dims_length " "when the index doesn't already exist. We infer " "dims_length from the first embedding. Check that " "you have provided an embedding function." ) self.strategy.before_index_setup( client=self.client, text_field=self.query_field, vector_query_field=self.vector_query_field, ) indexSettings = self.strategy.index( vector_query_field=self.vector_query_field, dims_length=dims_length, similarity=self.distance_strategy, ) logger.debug( f"Creating index {index_name} with mappings {indexSettings['mappings']}" ) self.client.indices.create(index=index_name, **indexSettings) def __add( self, texts: Iterable[str], embeddings: Optional[List[List[float]]], metadatas: Optional[List[Dict[Any, Any]]] = None, ids: Optional[List[str]] = None, refresh_indices: bool = True, create_index_if_not_exists: bool = True, bulk_kwargs: Optional[Dict] = None, **kwargs: Any, ) -> List[str]: try: from elasticsearch.helpers import BulkIndexError, bulk except ImportError: raise ImportError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) bulk_kwargs = bulk_kwargs or {} ids = ids or [str(uuid.uuid4()) for _ in texts] requests = [] if create_index_if_not_exists: if embeddings: dims_length = len(embeddings[0]) else: dims_length = None self._create_index_if_not_exists( index_name=self.index_name, dims_length=dims_length ) for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} request = { "_op_type": "index", "_index": self.index_name, self.query_field: text, "metadata": metadata, "_id": ids[i], } if embeddings: request[self.vector_query_field] = embeddings[i] requests.append(request) if len(requests) > 0: try: success, failed = bulk( self.client, requests, stats_only=True, refresh=refresh_indices, **bulk_kwargs, ) logger.debug( f"Added {success} and failed to add {failed} texts to index" ) logger.debug(f"added texts {ids} to index") return ids except BulkIndexError as e: logger.error(f"Error adding texts: {e}") firstError = e.errors[0].get("index", {}).get("error", {}) logger.error(f"First error reason: {firstError.get('reason')}") raise e else: logger.debug("No texts to add to index") return [] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[Dict[Any, Any]]] = None, ids: Optional[List[str]] = None, refresh_indices: bool = True, create_index_if_not_exists: bool = True, bulk_kwargs: Optional[Dict] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of ids to associate with the texts. refresh_indices: Whether to refresh the Elasticsearch indices after adding the texts. create_index_if_not_exists: Whether to create the Elasticsearch index if it doesn't already exist. *bulk_kwargs: Additional arguments to pass to Elasticsearch bulk. - chunk_size: Optional. Number of texts to add to the index at a time. Defaults to 500. Returns: List of ids from adding the texts into the vectorstore. """ if self.embedding is not None: # If no search_type requires inference, we use the provided # embedding function to embed the texts. embeddings = self.embedding.embed_documents(list(texts)) else: # the search_type doesn't require inference, so we don't need to # embed the texts. embeddings = None return self.__add( texts, embeddings, metadatas=metadatas, ids=ids, refresh_indices=refresh_indices, create_index_if_not_exists=create_index_if_not_exists, bulk_kwargs=bulk_kwargs, kwargs=kwargs, ) def add_embeddings( self, text_embeddings: Iterable[Tuple[str, List[float]]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, refresh_indices: bool = True, create_index_if_not_exists: bool = True, bulk_kwargs: Optional[Dict] = None, **kwargs: Any, ) -> List[str]: """Add the given texts and embeddings to the vectorstore. Args: text_embeddings: Iterable pairs of string and embedding to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of unique IDs. refresh_indices: Whether to refresh the Elasticsearch indices after adding the texts. create_index_if_not_exists: Whether to create the Elasticsearch index if it doesn't already exist. *bulk_kwargs: Additional arguments to pass to Elasticsearch bulk. - chunk_size: Optional. Number of texts to add to the index at a time. Defaults to 500. Returns: List of ids from adding the texts into the vectorstore. """ texts, embeddings = zip(*text_embeddings) return self.__add( list(texts), list(embeddings), metadatas=metadatas, ids=ids, refresh_indices=refresh_indices, create_index_if_not_exists=create_index_if_not_exists, bulk_kwargs=bulk_kwargs, kwargs=kwargs, ) @classmethod def from_texts( cls, texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[Dict[str, Any]]] = None, bulk_kwargs: Optional[Dict] = None, **kwargs: Any, ) -> "ElasticsearchStore": """Construct ElasticsearchStore wrapper from raw documents. Example: .. code-block:: python from langchain.vectorstores import ElasticsearchStore from langchain.embeddings.openai import OpenAIEmbeddings db = ElasticsearchStore.from_texts( texts, // embeddings optional if using // a strategy that doesn't require inference embeddings, index_name="langchain-demo", es_url="http://localhost:9200" ) Args: texts: List of texts to add to the Elasticsearch index. embedding: Embedding function to use to embed the texts. metadatas: Optional list of metadatas associated with the texts. index_name: Name of the Elasticsearch index to create. es_url: URL of the Elasticsearch instance to connect to. cloud_id: Cloud ID of the Elasticsearch instance to connect to. es_user: Username to use when connecting to Elasticsearch. es_password: Password to use when connecting to Elasticsearch. es_api_key: API key to use when connecting to Elasticsearch. es_connection: Optional pre-existing Elasticsearch connection. vector_query_field: Optional. Name of the field to store the embedding vectors in. query_field: Optional. Name of the field to store the texts in. distance_strategy: Optional. Name of the distance strategy to use. Defaults to "COSINE". can be one of "COSINE", "EUCLIDEAN_DISTANCE", "DOT_PRODUCT". bulk_kwargs: Optional. Additional arguments to pass to Elasticsearch bulk. """ elasticsearchStore = ElasticsearchStore._create_cls_from_kwargs( embedding=embedding, **kwargs ) # Encode the provided texts and add them to the newly created index. elasticsearchStore.add_texts( texts, metadatas=metadatas, bulk_kwargs=bulk_kwargs ) return elasticsearchStore @staticmethod def _create_cls_from_kwargs( embedding: Optional[Embeddings] = None, **kwargs: Any ) -> "ElasticsearchStore": index_name = kwargs.get("index_name") if index_name is None: raise ValueError("Please provide an index_name.") es_connection = kwargs.get("es_connection") es_cloud_id = kwargs.get("es_cloud_id") es_url = kwargs.get("es_url") es_user = kwargs.get("es_user") es_password = kwargs.get("es_password") es_api_key = kwargs.get("es_api_key") vector_query_field = kwargs.get("vector_query_field") query_field = kwargs.get("query_field") distance_strategy = kwargs.get("distance_strategy") strategy = kwargs.get("strategy", ElasticsearchStore.ApproxRetrievalStrategy()) optional_args = {} if vector_query_field is not None: optional_args["vector_query_field"] = vector_query_field if query_field is not None: optional_args["query_field"] = query_field return ElasticsearchStore( index_name=index_name, embedding=embedding, es_url=es_url, es_connection=es_connection, es_cloud_id=es_cloud_id, es_user=es_user, es_password=es_password, es_api_key=es_api_key, strategy=strategy, distance_strategy=distance_strategy, **optional_args, ) @classmethod def from_documents( cls, documents: List[Document], embedding: Optional[Embeddings] = None, bulk_kwargs: Optional[Dict] = None, **kwargs: Any, ) -> "ElasticsearchStore": """Construct ElasticsearchStore wrapper from documents. Example: .. code-block:: python from langchain.vectorstores import ElasticsearchStore from langchain.embeddings.openai import OpenAIEmbeddings db = ElasticsearchStore.from_documents( texts, embeddings, index_name="langchain-demo", es_url="http://localhost:9200" ) Args: texts: List of texts to add to the Elasticsearch index. embedding: Embedding function to use to embed the texts. Do not provide if using a strategy that doesn't require inference. metadatas: Optional list of metadatas associated with the texts. index_name: Name of the Elasticsearch index to create. es_url: URL of the Elasticsearch instance to connect to. cloud_id: Cloud ID of the Elasticsearch instance to connect to. es_user: Username to use when connecting to Elasticsearch. es_password: Password to use when connecting to Elasticsearch. es_api_key: API key to use when connecting to Elasticsearch. es_connection: Optional pre-existing Elasticsearch connection. vector_query_field: Optional. Name of the field to store the embedding vectors in. query_field: Optional. Name of the field to store the texts in. bulk_kwargs: Optional. Additional arguments to pass to Elasticsearch bulk. """ elasticsearchStore = ElasticsearchStore._create_cls_from_kwargs( embedding=embedding, **kwargs ) # Encode the provided texts and add them to the newly created index. elasticsearchStore.add_documents(documents, bulk_kwargs=bulk_kwargs) return elasticsearchStore @staticmethod def ExactRetrievalStrategy() -> "ExactRetrievalStrategy": """Used to perform brute force / exact nearest neighbor search via script_score.""" return ExactRetrievalStrategy() @staticmethod def ApproxRetrievalStrategy( query_model_id: Optional[str] = None, hybrid: Optional[bool] = False, rrf: Optional[Union[dict, bool]] = True, ) -> "ApproxRetrievalStrategy": """Used to perform approximate nearest neighbor search using the HNSW algorithm. At build index time, this strategy will create a dense vector field in the index and store the embedding vectors in the index. At query time, the text will either be embedded using the provided embedding function or the query_model_id will be used to embed the text using the model deployed to Elasticsearch. if query_model_id is used, do not provide an embedding function. Args: query_model_id: Optional. ID of the model to use to embed the query text within the stack. Requires embedding model to be deployed to Elasticsearch. hybrid: Optional. If True, will perform a hybrid search using both the knn query and a text query. Defaults to False. rrf: Optional. rrf is Reciprocal Rank Fusion. When `hybrid` is True, and `rrf` is True, then rrf: {}. and `rrf` is False, then rrf is omitted. and isinstance(rrf, dict) is True, then pass in the dict values. rrf could be passed for adjusting 'rank_constant' and 'window_size'. """ return ApproxRetrievalStrategy( query_model_id=query_model_id, hybrid=hybrid, rrf=rrf ) @staticmethod def SparseVectorRetrievalStrategy( model_id: Optional[str] = None, ) -> "SparseRetrievalStrategy": """Used to perform sparse vector search via text_expansion. Used for when you want to use ELSER model to perform document search. At build index time, this strategy will create a pipeline that will embed the text using the ELSER model and store the resulting tokens in the index. At query time, the text will be embedded using the ELSER model and the resulting tokens will be used to perform a text_expansion query. Args: model_id: Optional. Default is ".elser_model_1". ID of the model to use to embed the query text within the stack. Requires embedding model to be deployed to Elasticsearch. """ return SparseRetrievalStrategy(model_id=model_id)
[]