date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
vempatisaivishal/GlobalTruthHub
titletest.py
import openai import requests import spacy import re import multiprocessing from transformers import pipeline from clickbait import clickbait from spellchecker import SpellChecker from subjectivemodel import subjective from urllib.parse import urlparse from newspaper import Config import nltk from nltk.tokenize import sent_tokenize from gingerit.gingerit import GingerIt from isnewstitle import checkNewsTitle from bs4 import BeautifulSoup from similarity import calculate_sentence_similarity import time from selenium.webdriver.chrome.service import Service from webdriver_manager.chrome import ChromeDriverManager import html5lib from selenium import webdriver config = Config() config.browser_user_agent = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3' API_KEY = "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" openai.api_key = API_KEY class checkTitle: def __init__(self, title): self.headline = title self.own_corrections = {'iam': "i'm", 'im': "i'm"} self.spellings_ratio = 0 self.corrected = title self.misspelled_words = [] self.required = [] self.contexts = [] def lower_case(self, text): text = text.lower() pattern = re.compile("<.*?>") text = pattern.sub(r'', text) pattern = re.compile(r'https?://\S+|www\.\S+') text = pattern.sub(r'', text) exclude = "[!\#\$%\&\(\)\*\+,\.\-\"/:;<=>\?@\[\]\^_`\{\|\}\~0123456789]" return text.translate(str.maketrans('', '', exclude)) def spelling_mistakes(self): head = self.lower_case(self.headline) output_dir = "C://Users/vixha/downloads" ner_pipeline = pipeline("ner", grouped_entities=True, model=output_dir) head2 = ' '.join([i.capitalize() for i in head.split()]) ner_results = ner_pipeline(head2) named_entities = [entity["word"].lower() for entity in ner_results if entity["entity_group"] == "PER" or entity["entity_group"] == "LOC"] misspelled_words = [] # parser = GingerIt() spell = SpellChecker() words = [] for token_text in head.split(' '): # corrected_token = parser.parse(token_text)['result'].lower() corrected_token = spell.correction(token_text) if token_text.isalpha() and token_text not in named_entities: if token_text in self.own_corrections: words.append(self.own_corrections[token_text]) misspelled_words.append(token_text) elif token_text != corrected_token: misspelled_words.append(token_text) words.append(corrected_token) else: words.append(token_text) else: words.append(token_text) self.corrected = ' '.join(words) self.misspelled_words = set(misspelled_words) if len(misspelled_words) == 0: return True ratio = len(misspelled_words) / len(self.headline.split(" ")) return ratio < 0.5 def classify_clickbait(self): click = clickbait(self.corrected) return click.run() == 0 def subjective_test(self): subjective_obj = subjective() answer = subjective_obj.send_request(self.headline) return answer == "objective" def is_newstitle(self): if len(self.headline) > 90: return False if not re.search(r'[A-Z][a-z]+', self.headline): return False is_news = checkNewsTitle(self.headline).run() if is_news[0] == 0: return False return True def present_on_google(self): url = f"https://www.google.com/search?q={self.headline}" headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' } response = requests.get(url, headers=headers) soup = BeautifulSoup(response.content, 'html.parser') include_link = soup.find('a', class_='fl') if include_link: response = requests.get('https://www.google.com/' + include_link['href'], headers=headers) soup = BeautifulSoup(response.content, 'html.parser') search_results = soup.find_all('div', class_='yuRUbf') search_contexts = soup.find_all('div', {'class': ['VwiC3b', 'yXK7lf', 'MUxGbd', 'yDYNvb', 'lyLwlc', 'lEBKkf']}) search_contexts = [i for i in search_contexts if str(i).find('class="VwiC3b yXK7lf MUxGbd yDYNvb lyLwlc lEBKkf"') != -1] urls = [] for result, context in zip(search_results, search_contexts): link = result.find('a') url = link['href'] heading = result.find(re.compile('^h[1-6]$')).text response = requests.get(url, headers=headers) soup = BeautifulSoup(response.content, 'html.parser') parsed_url = urlparse(url) domain_name = parsed_url.netloc domain_name = domain_name.replace('www.', '') if soup.find('title') and self.present_on_google_news_2(domain_name): self.required.append(soup.find('title').text) if len(context.find_all('span')) > 2: self.contexts.append(context.find_all('span')[2].text) elif len(context.find_all('span')) > 1: self.contexts.append(context.find_all('span')[1].text) else: self.contexts.append(context.find_all('span')[0].text) urls.append({'url': url, 'heading': heading}) print(self.contexts) if len(self.required) < 3: return False return self.availability_on_web(urls) def availability_on_web(self, results): similar_links = [] max_similarity = 0 article_heading = '' for result, context in zip(self.required, self.contexts): similarity_percentage_1 = calculate_sentence_similarity(self.headline, result) print(self.headline, " ", result, " ", similarity_percentage_1) similarity_percentage_2 = calculate_sentence_similarity(self.headline, context) print(self.headline, " ", context, " 2 ", similarity_percentage_2) if similarity_percentage_1 > similarity_percentage_2: if similarity_percentage_1 > max_similarity: article_heading = result else: if similarity_percentage_2 > max_similarity: article_heading = context similarity_percentage = max(similarity_percentage_1, similarity_percentage_2) if similarity_percentage >= 0.55: similar_links.append(similarity_percentage) if len(similar_links) < 2: return False if not self.check_similarity2(article_heading): return False return True def present_on_google_news_2(self, domain): print(domain) headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' } ggl_news_link = f"https://www.google.com/search?q={domain}&tbm=nws" req = requests.get(ggl_news_link, headers=headers) sup = BeautifulSoup(req.content, 'html.parser') link = sup.find('a', class_='WlydOe') if link: nd_domain = urlparse(link['href']) domain_name = nd_domain.netloc domain_name = domain_name.replace('www.', '') print(domain, domain_name) if domain == domain_name: return True return False def check_similarity2(self, context): response = openai.Completion.create( model="text-davinci-003", prompt=f"i have two sentences \nsentence1 = {self.headline} \nsentence2 = {context} \ndont consider additional information, based on the contextual similarity, is the first statement true based on second statement yes or no", temperature=1, max_tokens=256, top_p=1, frequency_penalty=0, presence_penalty=0 ) response_text = response.to_dict()['choices'][0]['text'].replace("\n", "") print(response_text) final_response = response_text[:4] if final_response.lower().find('yes') != -1: return True else: return False def run(self): print(self.is_newstitle()) checkTitle("hi").present_on_google_news_2('hello how are you') # if __name__ == '__main__': # x = checkTitle("DRDO and L&T will Sign Contract To Develop 'Indigenous' AIP System For indian Navy Submarines") # tim = time.time() # p1 = multiprocessing.Process(target=x.spelling_mistakes) # p2 = multiprocessing.Process(target=x.classify_clickbait) # p3 = multiprocessing.Process(target=x.subjective_test) # p4 = multiprocessing.Process(target=x.is_newstitle) # p5 = multiprocessing.Process(target=x.present_on_google) # p1.start() # p2.start() # p3.start() # p4.start() # p5.start() # p1.join() # p2.join() # p3.join() # p4.join() # p5.join() # print(time.time() - tim)
[]
2024-01-10
mivanovitch/7-Days-of-LangChain
day_4~scientific_newsletter.py
""" This script shows how to create a newsletter based on the latest Arxiv articles. We're using an easy LangChain implementation to show how to use the different components of LangChain. This is part of my '7 Days of LangChain' series. Check out the explanation about the code on my Twitter (@JorisTechTalk) """ from langchain.document_loaders import ArxivLoader from langchain.agents.agent_toolkits import GmailToolkit from langchain import OpenAI import os from langchain.agents import initialize_agent, AgentType from langchain.chat_models import ChatOpenAI from langchain.prompts import PromptTemplate from langchain import LLMChain from langchain.callbacks import get_openai_callback import arxiv # Topic of the newsletter you want to write about query = "LLM" # Set up the ArxivLoader search = arxiv.Search( query = query, max_results = 4, sort_by = arxiv.SortCriterion.SubmittedDate ) # Initialize the docs variable docs = "" # Add all relevant information to the docs variable for result in search.results(): docs += "Title: " + result.title + "\n" docs += "Abstract: " + result.summary + "\n" docs += "Download URL: " + result.pdf_url + "\n" print(result.links) for link in result.links: docs += "Links: " + link.href + "\n" # Track cost with get_openai_callback() as cb: # Template for the newsletter prompt_newsletter_template = """ You are a newsletter writer. You write newsletters about scientific articles. You introduce the article and show a small summary to tell the user what the article is about. You're main goal is to write a newsletter which contains summaries to interest the user in the articles. -------------------- {text} -------------------- Start with the title of the article. Then, write a small summary of the article. Below each summary, include the link to the article containing /abs/ in the URL. Summaries: """ PROMPT_NEWSLETTER = PromptTemplate(template=prompt_newsletter_template, input_variables=["text"]) # Set the OpenAI API key os.environ['OPENAI_API_KEY'] = 'YOUR_API_KEY_HERE' # Initialize the language model llm = ChatOpenAI(temperature=0.6, model_name="gpt-3.5-turbo-16k", verbose=True) # Initialize the LLMChain newsletter_chain = LLMChain(llm=llm, prompt=PROMPT_NEWSLETTER, verbose=True) # Run the LLMChain newsletter = newsletter_chain.run(docs) # Write newsletter to a text file with open("newsletter.txt", "w") as f: f.write(newsletter) # Set toolkit toolkit = GmailToolkit() # Initialize the Gmail agent agent = initialize_agent( tools=toolkit.get_tools(), llm=llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) # Run the agent instructions = f""" Write a draft directed to [email protected], NEVER SEND THE EMAIL. The subject should be 'Scientific Newsletter about {query}'. The content should be the following: {newsletter}. """ agent.run(instructions) print(cb)
[ "\n You are a newsletter writer. You write newsletters about scientific articles. You introduce the article and show a small summary to tell the user what the article is about.\n\n You're main goal is to write a newsletter which contains summaries to interest the user in the articles.\n\n --------------------\n {text}\n --------------------\n\n Start with the title of the article. Then, write a small summary of the article.\n\n Below each summary, include the link to the article containing /abs/ in the URL.\n\n Summaries:\n\n " ]
2024-01-10
j-min/DallEval
models~dalle_small~DALLE-pytorch~finetune_dalle.py
import argparse from pathlib import Path import time from glob import glob import os import shutil import torch import wandb # Quit early if user doesn't have wandb installed. from torch.nn.utils import clip_grad_norm_ from torch.optim import Adam from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.utils.data import DataLoader from dalle_pytorch import OpenAIDiscreteVAE, VQGanVAE, DiscreteVAE, DALLE from dalle_pytorch import distributed_utils # from dalle_pytorch.loader import TextImageDataset # from dalle_pytorch.contrastive_loader import ContrastiveTextImageDataset from dalle_pytorch.skill_loader import SkillTextImageDataset from dalle_pytorch.coco_loader import COCOTextImageDataset from dalle_pytorch.tokenizer import tokenizer, HugTokenizer, ChineseTokenizer, YttmTokenizer # libraries needed for webdataset support import webdataset as wds from torchvision import transforms as T from PIL import Image from io import BytesIO import torch.nn.functional as F # argument parsing parser = argparse.ArgumentParser() group = parser.add_mutually_exclusive_group(required=False) group.add_argument('--vae_path', type=str, help='path to your trained discrete VAE') group.add_argument('--dalle_path', type=str, help='path to your partially trained DALL-E') parser.add_argument('--vqgan_model_path', type=str, default = None, help='path to your trained VQGAN weights. This should be a .ckpt file. (only valid when taming option is enabled)') parser.add_argument('--vqgan_config_path', type=str, default = None, help='path to your trained VQGAN config. This should be a .yaml file. (only valid when taming option is enabled)') # parser.add_argument('--image_text_folder', type=str, required=True, # help='path to your folder of images and text for learning the DALL-E') parser.add_argument('--dataset_dir', type=str, default='/playpen3/home/jmincho/workspace/datasets', help='path to your dataset directory') parser.add_argument('--text_file', type=str, default='object_train.json', help='path to your text file') parser.add_argument( '--wds', type = str, default='', help = 'Comma separated list of WebDataset (1) image and (2) text column names. Must contain 2 values, e.g. img,cap.' ) parser.add_argument('--truncate_captions', dest='truncate_captions', action='store_true', help='Captions passed in which exceed the max token length will be truncated if this is set.') parser.add_argument('--random_resize_crop_lower_ratio', dest='resize_ratio', type=float, default=0.75, help='Random resized crop lower ratio') parser.add_argument('--chinese', dest='chinese', action='store_true') parser.add_argument('--taming', dest='taming', action='store_true') parser.add_argument('--hug', dest='hug', action='store_true') parser.add_argument('--bpe_path', type=str, help='path to your BPE json file') parser.add_argument('--dalle_output_file_name', type=str, default = "dalle", help='output_file_name') parser.add_argument('--fp16', action='store_true', help='(experimental) - Enable DeepSpeed 16 bit precision. Reduces VRAM.') parser.add_argument('--amp', action='store_true', help='Apex "O1" automatic mixed precision. More stable than 16 bit precision. Can\'t be used in conjunction with deepspeed zero stages 1-3.') parser.add_argument('--wandb_name', default='dalle_train_transformer', help='Name W&B will use when saving results.\ne.g. `--wandb_name "coco2017-full-sparse"`') parser.add_argument('--wandb_entity', default=None, help='(optional) Name of W&B team/entity to log to.') parser.add_argument('--wandb_run_name', default=None, help='') parser.add_argument('--skill_name', type=str, default='object') parser.add_argument('--split', type=str, default='train') parser.add_argument('--stable_softmax', dest='stable_softmax', action='store_true', help='Prevent values from becoming too large during softmax. Helps with stability in fp16 and Mixture of Quantization training.') parser = distributed_utils.wrap_arg_parser(parser) train_group = parser.add_argument_group('Training settings') train_group.add_argument('--flops_profiler', dest = 'flops_profiler', action='store_true', help = 'Exits after printing detailed flops/runtime analysis of forward/backward') train_group.add_argument('--epochs', default = 20, type = int, help = 'Number of epochs') train_group.add_argument('--save_every_n_steps', default = 1000, type = int, help = 'Save a checkpoint every n steps') train_group.add_argument('--keep_n_checkpoints', default = None, type = int, help = '(Careful) Deletes old deepspeed checkpoints if there are more than n') train_group.add_argument('--batch_size', default = 4, type = int, help = 'Batch size') train_group.add_argument('--ga_steps', default = 1, type = int, help = 'Number of steps to accumulate gradients across per each iteration. DeepSpeed only.') train_group.add_argument('--learning_rate', default = 3e-4, type = float, help = 'Learning rate') train_group.add_argument('--clip_grad_norm', default = 0.5, type = float, help = 'Clip gradient norm') train_group.add_argument('--lr_decay', dest = 'lr_decay', action = 'store_true') model_group = parser.add_argument_group('Model settings') model_group.add_argument('--dim', default = 512, type = int, help = 'Model dimension') model_group.add_argument('--text_seq_len', default = 256, type = int, help = 'Text sequence length') model_group.add_argument('--depth', default = 2, type = int, help = 'Model depth') model_group.add_argument('--heads', default = 8, type = int, help = 'Model number of heads') model_group.add_argument('--dim_head', default = 64, type = int, help = 'Model head dimension') train_group.add_argument('--ff_dropout', default = 0.0, type = float, help = 'Feed forward dropout.') train_group.add_argument('--attn_dropout', default = 0.0, type = float, help = 'Feed forward dropout.') model_group.add_argument('--reversible', dest = 'reversible', action='store_true') model_group.add_argument('--loss_img_weight', default = 7, type = int, help = 'Image loss weight') model_group.add_argument('--attn_types', default = 'full', type = str, help = 'comma separated list of attention types. attention type can be: full or sparse or axial_row or axial_col or conv_like.') model_group.add_argument('--coco_caption', action='store_true') args = parser.parse_args() # helpers def exists(val): return val is not None def get_trainable_params(model): return [params for params in model.parameters() if params.requires_grad] def cp_path_to_dir(cp_path, tag): """Convert a checkpoint path to a directory with `tag` inserted. If `cp_path` is already a directory, return it unchanged. """ if not isinstance(cp_path, Path): cp_path = Path(cp_path) if cp_path.is_dir(): return cp_path path_sans_extension = cp_path.parent / cp_path.stem cp_dir = Path(f'{path_sans_extension}-{tag}-cp') return cp_dir # constants WEBDATASET_IMAGE_TEXT_COLUMNS = tuple(args.wds.split(',')) ENABLE_WEBDATASET = True if len(WEBDATASET_IMAGE_TEXT_COLUMNS) == 2 else False DALLE_OUTPUT_FILE_NAME = args.dalle_output_file_name + ".pt" VAE_PATH = args.vae_path VQGAN_MODEL_PATH = args.vqgan_model_path VQGAN_CONFIG_PATH = args.vqgan_config_path DALLE_PATH = args.dalle_path RESUME = exists(DALLE_PATH) EPOCHS = args.epochs BATCH_SIZE = args.batch_size LEARNING_RATE = args.learning_rate GRAD_CLIP_NORM = args.clip_grad_norm LR_DECAY = args.lr_decay SAVE_EVERY_N_STEPS = args.save_every_n_steps KEEP_N_CHECKPOINTS = args.keep_n_checkpoints MODEL_DIM = args.dim TEXT_SEQ_LEN = args.text_seq_len DEPTH = args.depth HEADS = args.heads DIM_HEAD = args.dim_head REVERSIBLE = args.reversible LOSS_IMG_WEIGHT = args.loss_img_weight FF_DROPOUT = args.ff_dropout ATTN_DROPOUT = args.attn_dropout STABLE = args.stable_softmax ATTN_TYPES = tuple(args.attn_types.split(',')) DEEPSPEED_CP_AUX_FILENAME = 'auxiliary.pt' if not ENABLE_WEBDATASET: # quit early if you used the wrong folder name # assert Path(args.image_text_folder).exists(), f'The path {args.image_text_folder} was not found.' assert Path(args.dataset_dir).exists(), f'The path {args.dataset_dir} was not found.' else: # quit early if no tar files were found if Path(args.image_text_folder).is_dir(): DATASET = [str(p) for p in Path(args.image_text_folder).glob("**/*") if ".tar" in str(p).lower()] # .name assert len(DATASET) > 0, 'The directory ({}) does not contain any WebDataset/.tar files.'.format(args.image_text_folder) print('Found {} WebDataset .tar(.gz) file(s) under given path {}!'.format(len(DATASET), args.image_text_folder)) elif ('http://' in args.image_text_folder.lower()) | ('https://' in args.image_text_folder.lower()): DATASET = f"pipe:curl -L -s {args.image_text_folder} || true" print('Found {} http(s) link under given path!'.format(len(DATASET), args.image_text_folder)) elif 'gs://' in args.image_text_folder.lower(): DATASET = f"pipe:gsutil cat {args.image_text_folder} || true" print('Found {} GCS link under given path!'.format(len(DATASET), args.image_text_folder)) elif '.tar' in args.image_text_folder: DATASET = args.image_text_folder print('Found WebDataset .tar(.gz) file under given path {}!'.format(args.image_text_folder)) else: raise Exception('No folder, no .tar(.gz) and no url pointing to tar files provided under {}.'.format(args.image_text_folder)) # initialize distributed backend distr_backend = distributed_utils.set_backend_from_args(args) distr_backend.initialize() using_deepspeed = \ distributed_utils.using_backend(distributed_utils.DeepSpeedBackend) # tokenizer if exists(args.bpe_path): klass = HugTokenizer if args.hug else YttmTokenizer tokenizer = klass(args.bpe_path) elif args.chinese: tokenizer = ChineseTokenizer() # reconstitute vae if RESUME: dalle_path = Path(DALLE_PATH) if using_deepspeed: cp_dir = cp_path_to_dir(dalle_path, 'ds') assert cp_dir.is_dir(), \ f'DeepSpeed checkpoint directory {cp_dir} not found' dalle_path = cp_dir / DEEPSPEED_CP_AUX_FILENAME else: assert dalle_path.exists(), 'DALL-E model file does not exist' loaded_obj = torch.load(str(dalle_path), map_location='cpu') dalle_params, vae_params, weights = loaded_obj['hparams'], loaded_obj['vae_params'], loaded_obj['weights'] opt_state = loaded_obj.get('opt_state') scheduler_state = loaded_obj.get('scheduler_state') if vae_params is not None: vae = DiscreteVAE(**vae_params) else: if args.taming: vae = VQGanVAE(VQGAN_MODEL_PATH, VQGAN_CONFIG_PATH) else: vae = OpenAIDiscreteVAE() dalle_params = dict( **dalle_params ) IMAGE_SIZE = vae.image_size resume_epoch = loaded_obj.get('epoch', 0) else: if exists(VAE_PATH): vae_path = Path(VAE_PATH) assert vae_path.exists(), 'VAE model file does not exist' assert not vae_path.is_dir(), \ ('Cannot load VAE model from directory; please use a ' 'standard *.pt checkpoint. ' 'Currently, merging a DeepSpeed-partitioned VAE into a DALLE ' 'model is not supported.') loaded_obj = torch.load(str(vae_path)) vae_params, weights = loaded_obj['hparams'], loaded_obj['weights'] vae = DiscreteVAE(**vae_params) vae.load_state_dict(weights) else: if distr_backend.is_root_worker(): print('using pretrained VAE for encoding images to tokens') vae_params = None if args.taming: vae = VQGanVAE(VQGAN_MODEL_PATH, VQGAN_CONFIG_PATH) else: vae = OpenAIDiscreteVAE() IMAGE_SIZE = vae.image_size dalle_params = dict( num_text_tokens=tokenizer.vocab_size, text_seq_len=TEXT_SEQ_LEN, dim=MODEL_DIM, depth=DEPTH, heads=HEADS, dim_head=DIM_HEAD, reversible=REVERSIBLE, loss_img_weight=LOSS_IMG_WEIGHT, attn_types=ATTN_TYPES, ff_dropout=FF_DROPOUT, attn_dropout=ATTN_DROPOUT, stable=STABLE, ) resume_epoch = 0 # configure OpenAI VAE for float16s if isinstance(vae, OpenAIDiscreteVAE) and args.fp16: vae.enc.blocks.output.conv.use_float16 = True # helpers def group_weight(model): group_decay, group_no_decay = [], [] for params in model.named_parameters(): if 'transformer' in params[0]: if 'bias' in params[0] or 'norm' in params[0]: group_no_decay.append(params[1]) continue group_decay.append(params[1]) assert len(list(model.parameters())) == len(group_decay) + len(group_no_decay) groups = [dict(params=group_decay), dict(params=group_no_decay, weight_decay=.0)] return groups # create dataset and dataloader is_shuffle = not distributed_utils.using_backend(distributed_utils.HorovodBackend) imagepreproc = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.RandomResizedCrop(IMAGE_SIZE, scale=(args.resize_ratio, 1.), ratio=(1., 1.)), T.ToTensor(), ]) def imagetransform(b): return Image.open(BytesIO(b)) def tokenize(s): return tokenizer.tokenize( s.decode('utf-8'), TEXT_SEQ_LEN, truncate_text=args.truncate_captions).squeeze(0) if ENABLE_WEBDATASET: DATASET_SIZE = int(1e9) # You need to set a nominal length for the Dataset in order to avoid warnings from DataLoader myimg, mycap = WEBDATASET_IMAGE_TEXT_COLUMNS image_text_mapping = { myimg: imagetransform, mycap: tokenize } image_mapping = { myimg: imagepreproc } num_batches = DATASET_SIZE // BATCH_SIZE ds = ( wds.WebDataset(DATASET, length=num_batches) # .shuffle(is_shuffle) # Commented out for WebDataset as the behaviour cannot be predicted yet .map_dict(**image_text_mapping) .map_dict(**image_mapping) .to_tuple(mycap, myimg) .batched(BATCH_SIZE, partial=False) # It is good to avoid partial batches when using Distributed training ) else: # ds = TextImageDataset( # ds = ContrastiveTextImageDataset( # mutant_image_dir=args.dataset_dir+'vqa-mutant/images/', # coco_image_dir=args.dataset_dir+'COCO/images/', # text_data_file=args.dataset_dir+args.text_file, # # args.image_text_folder, # text_len=TEXT_SEQ_LEN, # image_size=IMAGE_SIZE, # resize_ratio=args.resize_ratio, # truncate_captions=args.truncate_captions, # tokenizer=tokenizer, # shuffle=is_shuffle, # ) if args.coco_caption: image_dir = str(Path(args.dataset_dir) / 'images') text_data_file = str(Path(args.dataset_dir) / 'dataset_coco.json') ds = COCOTextImageDataset( # skill_name=args.skill_name, split=args.split, image_dir=image_dir, # text_data_file=text_data_file, text_len=TEXT_SEQ_LEN, image_size=IMAGE_SIZE, resize_ratio=args.resize_ratio, truncate_captions=args.truncate_captions, tokenizer=tokenizer, shuffle=is_shuffle, load_image=True ) else: image_dir = str(Path(args.dataset_dir) / args.skill_name / 'images') text_data_file = str(Path(args.dataset_dir) / args.skill_name / 'scenes' / args.text_file) ds = SkillTextImageDataset( skill_name=args.skill_name, split=args.split, image_dir=image_dir, text_data_file=text_data_file, text_len=TEXT_SEQ_LEN, image_size=IMAGE_SIZE, resize_ratio=args.resize_ratio, truncate_captions=args.truncate_captions, tokenizer=tokenizer, shuffle=is_shuffle, ) assert len(ds) > 0, 'dataset is empty' if distr_backend.is_root_worker(): if not ENABLE_WEBDATASET: print(f'{len(ds)} image-text pairs found for training') if not is_shuffle: data_sampler = torch.utils.data.distributed.DistributedSampler( ds, num_replicas=distr_backend.get_world_size(), rank=distr_backend.get_rank() ) else: data_sampler = None if ENABLE_WEBDATASET: # WebLoader for WebDataset and DeepSpeed compatibility dl = wds.WebLoader(ds, batch_size=None, shuffle=False) # optionally add num_workers=2 (n) argument number_of_batches = DATASET_SIZE // (BATCH_SIZE * distr_backend.get_world_size()) dl = dl.repeat(2).slice(number_of_batches) dl.length = number_of_batches else: # Regular DataLoader for image-text-folder datasets dl = DataLoader(ds, batch_size=BATCH_SIZE, shuffle=is_shuffle, drop_last=True, sampler=data_sampler) # initialize DALL-E dalle = DALLE(vae=vae, **dalle_params) if not using_deepspeed: if args.fp16: dalle = dalle.half() dalle = dalle.cuda() # if RESUME and not using_deepspeed: # dalle.load_state_dict(weights) if RESUME: # if args.transformer_scratch: # for k in list(weights.keys()): # if 'vae' not in k: # del weights[k] # results = dalle.load_state_dict(weights, strict=False) # print('Randomly initialized Transformer checkpoint') # else: results = dalle.load_state_dict(weights) print(results) print('Loaded DALLE checkpoint') # optimizer opt = Adam(get_trainable_params(dalle), lr=LEARNING_RATE) if RESUME and opt_state: opt.load_state_dict(opt_state) if LR_DECAY: scheduler = ReduceLROnPlateau( opt, mode="min", factor=0.5, patience=10, cooldown=10, min_lr=1e-6, verbose=True, ) if RESUME and scheduler_state: scheduler.load_state_dict(scheduler_state) else: scheduler = None if distr_backend.is_root_worker(): # experiment tracker model_config = dict( depth=DEPTH, heads=HEADS, dim_head=DIM_HEAD ) run = wandb.init( project=args.wandb_name, entity=args.wandb_entity, resume=False, config=model_config, ) run.name = args.wandb_run_name # distribute distr_backend.check_batch_size(BATCH_SIZE) deepspeed_config = { 'train_batch_size': BATCH_SIZE, 'gradient_accumulation_steps': args.ga_steps, 'gradient_clipping': GRAD_CLIP_NORM, 'fp16': { 'enabled': args.fp16, }, 'amp': { 'enabled': args.amp, 'opt_level': 'O1', }, "flops_profiler": { "enabled": args.flops_profiler, "profile_step": 200, "module_depth": -1, "top_modules": 1, "detailed": True, "output_file": None # TODO Can't get this to work. }, } if deepspeed_config.get('zero_optimization', {}).get('stage', 0) >= 2: print(f"Checkpoints made with DeepSpeed ZeRO Stages 2 and 3 will be stored in deepspeed checkpoint folder") print(f"As such, they will require DeepSpeed as a dependency in order to resume from or generate with.") print("See the deespeed conversion script for details on how to convert your ZeRO stage 2/3 checkpoint to a single file.") print("If using a single GPU, consider running with apex automatic mixed precision instead for a similar speedup to ZeRO.") time.sleep(2) (distr_dalle, distr_opt, distr_dl, distr_scheduler) = distr_backend.distribute( args=args, model=dalle, optimizer=opt, model_parameters=get_trainable_params(dalle), training_data=ds if using_deepspeed else dl, # Do not pass the LR scheduler to DeepSpeed so we can manually # advance it. lr_scheduler=scheduler if LR_DECAY and not using_deepspeed else None, config_params=deepspeed_config, ) # Prefer scheduler in `deepspeed_config`. if LR_DECAY and distr_scheduler is None: distr_scheduler = scheduler avoid_model_calls = using_deepspeed and args.fp16 if RESUME and using_deepspeed: distr_dalle.load_checkpoint(str(cp_dir)) def save_model(path, epoch=0): save_obj = { 'hparams': dalle_params, 'vae_params': vae_params, 'epoch': epoch, } if using_deepspeed: cp_dir = cp_path_to_dir(path, 'ds') if KEEP_N_CHECKPOINTS is not None and distr_backend.is_root_worker(): checkpoints = sorted(glob(str(cp_dir / "global*")), key=os.path.getmtime, reverse=True) for checkpoint in checkpoints[KEEP_N_CHECKPOINTS:]: shutil.rmtree(checkpoint) distr_dalle.save_checkpoint(cp_dir, client_state=save_obj) if not distr_backend.is_root_worker(): return # Save auxiliary values so we can reuse the standard routine # for loading. save_obj = { **save_obj, # Save a nonsense value that directs the user to # further help. 'weights': ( 'To get a working standard checkpoint, ' 'look into consolidating DeepSpeed checkpoints.' ), } torch.save(save_obj, str(cp_dir / DEEPSPEED_CP_AUX_FILENAME)) if deepspeed_config.get('zero_optimization', {}).get('stage', 0) >= 2: # see https://github.com/lucidrains/DALLE-pytorch/wiki/DeepSpeed-Checkpoints return if not distr_backend.is_root_worker(): return save_obj = { **save_obj, 'weights': dalle.state_dict(), 'opt_state': opt.state_dict(), } save_obj['scheduler_state'] = (scheduler.state_dict() if scheduler else None) torch.save(save_obj, path) # training from tqdm import tqdm # Saves a checkpoint before training begins to fail early when mis-configured. # See https://github.com/lucidrains/DALLE-pytorch/wiki/DeepSpeed-Checkpoints save_model(DALLE_OUTPUT_FILE_NAME, epoch=resume_epoch) for epoch in range(resume_epoch, EPOCHS): if data_sampler: data_sampler.set_epoch(epoch) if ENABLE_WEBDATASET: dataloader = dl else: dataloader = distr_dl for i, (text, images) in enumerate( tqdm(dataloader, desc=f"{args.skill_name} Epoch {epoch}")): if i % 10 == 0 and distr_backend.is_root_worker(): t = time.time() if args.fp16: images = images.half() text, images = map(lambda t: t.cuda(), (text, images)) loss = distr_dalle(text, images, return_loss=True, reduce_loss=True) if using_deepspeed: distr_dalle.backward(loss) distr_dalle.step() # Gradients are automatically zeroed after the step else: loss.backward() clip_grad_norm_(distr_dalle.parameters(), GRAD_CLIP_NORM) distr_opt.step() distr_opt.zero_grad() # Collective loss, averaged avg_loss = distr_backend.average_all(loss) log = {} if i % 10 == 0 and distr_backend.is_root_worker(): # print(epoch, i, f'loss - {avg_loss.item()}') log = { **log, 'epoch': epoch, 'iter': i, 'loss': avg_loss.item() } # if i % SAVE_EVERY_N_STEPS == 0: # save_model(DALLE_OUTPUT_FILE_NAME, epoch=epoch) if i % 1000 == 0: if distr_backend.is_root_worker(): sample_text = text[:1] token_list = sample_text.masked_select(sample_text != 0).tolist() decoded_text = tokenizer.decode(token_list) if not avoid_model_calls: # CUDA index errors when we don't guard this image = dalle.generate_images(text[:1], filter_thres=0.9) # topk sampling at 0.9 log = { **log, } if not avoid_model_calls: log['image'] = wandb.Image(image, caption=decoded_text) if i % 10 == 9 and distr_backend.is_root_worker(): sample_per_sec = BATCH_SIZE * 10 / (time.time() - t) log["sample_per_sec"] = sample_per_sec # print(epoch, i, f'sample_per_sec - {sample_per_sec}') if i == 201 and args.flops_profiler: raise StopIteration("Profiler has finished running. Stopping training early.") if distr_backend.is_root_worker(): wandb.log(log) if LR_DECAY: distr_scheduler.step(avg_loss) # save_model(DALLE_OUTPUT_FILE_NAME, epoch=epoch) # if distr_backend.is_root_worker(): # # save trained model to wandb as an artifact every epoch's end\ # model_artifact = wandb.Artifact('trained-dalle', type='model', metadata=dict(model_config)) # model_artifact.add_file(DALLE_OUTPUT_FILE_NAME) # run.log_artifact(model_artifact) save_model(DALLE_OUTPUT_FILE_NAME, epoch=epoch) if distr_backend.is_root_worker(): wandb.save(DALLE_OUTPUT_FILE_NAME) model_artifact = wandb.Artifact('trained-dalle', type='model', metadata=dict(model_config)) model_artifact.add_file(DALLE_OUTPUT_FILE_NAME) run.log_artifact(model_artifact) wandb.finish()
[]
2024-01-10
j-min/DallEval
models~dalle_small~DALLE-pytorch~dalle_pytorch~dalle_pytorch.py
from math import log2, sqrt import torch from torch import nn, einsum import torch.nn.functional as F import numpy as np from axial_positional_embedding import AxialPositionalEmbedding from einops import rearrange from dalle_pytorch import distributed_utils, tokenizer from dalle_pytorch.vae import OpenAIDiscreteVAE, VQGanVAE from dalle_pytorch.transformer import Transformer, DivideMax # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def always(val): def inner(*args, **kwargs): return val return inner def is_empty(t): return t.nelement() == 0 def masked_mean(t, mask, dim = 1): t = t.masked_fill(~mask[:, :, None], 0.) return t.sum(dim = 1) / mask.sum(dim = 1)[..., None] def set_requires_grad(model, value): for param in model.parameters(): param.requires_grad = value def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner # sampling helpers def top_k(logits, thres = 0.5): num_logits = logits.shape[-1] k = max(int((1 - thres) * num_logits), 1) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs # discrete vae class class ResBlock(nn.Module): def __init__(self, chan): super().__init__() self.net = nn.Sequential( nn.Conv2d(chan, chan, 3, padding = 1), nn.ReLU(), nn.Conv2d(chan, chan, 3, padding = 1), nn.ReLU(), nn.Conv2d(chan, chan, 1) ) def forward(self, x): return self.net(x) + x class DiscreteVAE(nn.Module): def __init__( self, image_size = 256, num_tokens = 512, codebook_dim = 512, num_layers = 3, num_resnet_blocks = 0, hidden_dim = 64, channels = 3, smooth_l1_loss = False, temperature = 0.9, straight_through = False, kl_div_loss_weight = 0., normalization = ((0.5,) * 3, (0.5,) * 3) ): super().__init__() assert log2(image_size).is_integer(), 'image size must be a power of 2' assert num_layers >= 1, 'number of layers must be greater than or equal to 1' has_resblocks = num_resnet_blocks > 0 self.image_size = image_size self.num_tokens = num_tokens self.num_layers = num_layers self.temperature = temperature self.straight_through = straight_through self.codebook = nn.Embedding(num_tokens, codebook_dim) hdim = hidden_dim enc_chans = [hidden_dim] * num_layers dec_chans = list(reversed(enc_chans)) enc_chans = [channels, *enc_chans] dec_init_chan = codebook_dim if not has_resblocks else dec_chans[0] dec_chans = [dec_init_chan, *dec_chans] enc_chans_io, dec_chans_io = map(lambda t: list(zip(t[:-1], t[1:])), (enc_chans, dec_chans)) enc_layers = [] dec_layers = [] for (enc_in, enc_out), (dec_in, dec_out) in zip(enc_chans_io, dec_chans_io): enc_layers.append(nn.Sequential(nn.Conv2d(enc_in, enc_out, 4, stride = 2, padding = 1), nn.ReLU())) dec_layers.append(nn.Sequential(nn.ConvTranspose2d(dec_in, dec_out, 4, stride = 2, padding = 1), nn.ReLU())) for _ in range(num_resnet_blocks): dec_layers.insert(0, ResBlock(dec_chans[1])) enc_layers.append(ResBlock(enc_chans[-1])) if num_resnet_blocks > 0: dec_layers.insert(0, nn.Conv2d(codebook_dim, dec_chans[1], 1)) enc_layers.append(nn.Conv2d(enc_chans[-1], num_tokens, 1)) dec_layers.append(nn.Conv2d(dec_chans[-1], channels, 1)) self.encoder = nn.Sequential(*enc_layers) self.decoder = nn.Sequential(*dec_layers) self.loss_fn = F.smooth_l1_loss if smooth_l1_loss else F.mse_loss self.kl_div_loss_weight = kl_div_loss_weight # take care of normalization within class self.normalization = normalization self._register_external_parameters() def _register_external_parameters(self): """Register external parameters for DeepSpeed partitioning.""" if ( not distributed_utils.is_distributed or not distributed_utils.using_backend( distributed_utils.DeepSpeedBackend) ): return deepspeed = distributed_utils.backend.backend_module deepspeed.zero.register_external_parameter(self, self.codebook.weight) def norm(self, images): if not exists(self.normalization): return images means, stds = map(lambda t: torch.as_tensor(t).to(images), self.normalization) means, stds = map(lambda t: rearrange(t, 'c -> () c () ()'), (means, stds)) images = images.clone() images.sub_(means).div_(stds) return images @torch.no_grad() @eval_decorator def get_codebook_indices(self, images): logits = self(images, return_logits = True) codebook_indices = logits.argmax(dim = 1).flatten(1) return codebook_indices def decode( self, img_seq ): image_embeds = self.codebook(img_seq) b, n, d = image_embeds.shape h = w = int(sqrt(n)) image_embeds = rearrange(image_embeds, 'b (h w) d -> b d h w', h = h, w = w) images = self.decoder(image_embeds) return images def forward( self, img, return_loss = False, return_recons = False, return_logits = False, temp = None, ): device, num_tokens, image_size, kl_div_loss_weight = img.device, self.num_tokens, self.image_size, self.kl_div_loss_weight assert img.shape[-1] == image_size and img.shape[-2] == image_size, f'input must have the correct image size {image_size}' img = self.norm(img) logits = self.encoder(img) if return_logits: return logits # return logits for getting hard image indices for DALL-E training temp = default(temp, self.temperature) soft_one_hot = F.gumbel_softmax(logits, tau = temp, dim = 1, hard = self.straight_through) sampled = einsum('b n h w, n d -> b d h w', soft_one_hot, self.codebook.weight) out = self.decoder(sampled) if not return_loss: return out # reconstruction loss recon_loss = self.loss_fn(img, out) # kl divergence logits = rearrange(logits, 'b n h w -> b (h w) n') log_qy = F.log_softmax(logits, dim = -1) log_uniform = torch.log(torch.tensor([1. / num_tokens], device = device)) kl_div = F.kl_div(log_uniform, log_qy, None, None, 'batchmean', log_target = True) loss = recon_loss + (kl_div * kl_div_loss_weight) if not return_recons: return loss return loss, out # main classes class CLIP(nn.Module): def __init__( self, *, dim_text = 512, dim_image = 512, dim_latent = 512, num_text_tokens = 10000, text_enc_depth = 6, text_seq_len = 256, text_heads = 8, num_visual_tokens = 512, visual_enc_depth = 6, visual_heads = 8, visual_image_size = 256, visual_patch_size = 32, channels = 3 ): super().__init__() self.text_emb = nn.Embedding(num_text_tokens, dim_text) self.text_pos_emb = nn.Embedding(text_seq_len, dim_text) self.text_transformer = Transformer(causal = False, seq_len = text_seq_len, dim = dim_text, depth = text_enc_depth, heads = text_heads) self.to_text_latent = nn.Linear(dim_text, dim_latent, bias = False) assert visual_image_size % visual_patch_size == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (visual_image_size // visual_patch_size) ** 2 patch_dim = channels * visual_patch_size ** 2 self.visual_patch_size = visual_patch_size self.to_visual_embedding = nn.Linear(patch_dim, dim_image) self.visual_pos_emb = nn.Embedding(num_patches, dim_image) self.visual_transformer = Transformer(causal = False, seq_len = num_patches, dim = dim_image, depth = visual_enc_depth, heads = visual_heads) self.to_visual_latent = nn.Linear(dim_image, dim_latent, bias = False) self.temperature = nn.Parameter(torch.tensor(1.)) def forward( self, text, image, text_mask = None, return_loss = False ): b, device, p = text.shape[0], text.device, self.visual_patch_size text_emb = self.text_emb(text) text_emb += self.text_pos_emb(torch.arange(text.shape[1], device = device)) image_patches = rearrange(image, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p) image_emb = self.to_visual_embedding(image_patches) image_emb += self.visual_pos_emb(torch.arange(image_emb.shape[1], device = device)) enc_text = self.text_transformer(text_emb, mask = text_mask) enc_image = self.visual_transformer(image_emb) if exists(text_mask): text_latents = masked_mean(enc_text, text_mask, dim = 1) else: text_latents = enc_text.mean(dim = 1) image_latents = enc_image.mean(dim = 1) text_latents = self.to_text_latent(text_latents) image_latents = self.to_visual_latent(image_latents) text_latents, image_latents = map(lambda t: F.normalize(t, p = 2, dim = -1), (text_latents, image_latents)) temp = self.temperature.exp() if not return_loss: sim = einsum('n d, n d -> n', text_latents, image_latents) * temp return sim sim = einsum('i d, j d -> i j', text_latents, image_latents) * temp labels = torch.arange(b, device = device) loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2 return loss # main DALL-E class class DALLE(nn.Module): def __init__( self, *, dim, vae, num_text_tokens = 10000, text_seq_len = 256, depth, heads = 8, dim_head = 64, reversible = False, attn_dropout = 0., ff_dropout = 0, sparse_attn = False, attn_types = None, loss_img_weight = 7, stable = False, ): super().__init__() assert isinstance(vae, (DiscreteVAE, OpenAIDiscreteVAE, VQGanVAE)), 'vae must be an instance of DiscreteVAE' image_size = vae.image_size num_image_tokens = vae.num_tokens image_fmap_size = (vae.image_size // (2 ** vae.num_layers)) image_seq_len = image_fmap_size ** 2 num_text_tokens = num_text_tokens + text_seq_len # reserve unique padding tokens for each position (text seq len) self.text_emb = nn.Embedding(num_text_tokens, dim) self.image_emb = nn.Embedding(num_image_tokens, dim) self.text_pos_emb = nn.Embedding(text_seq_len + 1, dim) # +1 for <bos> self.image_pos_emb = AxialPositionalEmbedding(dim, axial_shape = (image_fmap_size, image_fmap_size)) self.num_text_tokens = num_text_tokens # for offsetting logits index and calculating cross entropy loss self.num_image_tokens = num_image_tokens self.text_seq_len = text_seq_len self.image_seq_len = image_seq_len seq_len = text_seq_len + image_seq_len total_tokens = num_text_tokens + num_image_tokens self.total_tokens = total_tokens self.total_seq_len = seq_len self.vae = vae set_requires_grad(self.vae, False) # freeze VAE from being trained self.transformer = Transformer( dim = dim, causal = True, seq_len = seq_len, depth = depth, heads = heads, dim_head = dim_head, reversible = reversible, attn_dropout = attn_dropout, ff_dropout = ff_dropout, attn_types = attn_types, image_fmap_size = image_fmap_size, sparse_attn = sparse_attn, stable = stable ) self.stable = stable if stable: self.norm_by_max = DivideMax(dim = -1) self.to_logits = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, self.total_tokens), ) seq_range = torch.arange(seq_len) logits_range = torch.arange(total_tokens) seq_range = rearrange(seq_range, 'n -> () n ()') logits_range = rearrange(logits_range, 'd -> () () d') logits_mask = ( ((seq_range >= text_seq_len) & (logits_range < num_text_tokens)) | ((seq_range < text_seq_len) & (logits_range >= num_text_tokens)) ) self.register_buffer('logits_mask', logits_mask, persistent=False) self.loss_img_weight = loss_img_weight @torch.no_grad() @eval_decorator def generate_texts( self, text=None, *, filter_thres = 0.5, temperature = 1. ): text_seq_len = self.text_seq_len if text is None or text == "": text_tokens = torch.tensor([[0]]).cuda() else: text_tokens = torch.tensor(tokenizer.tokenizer.encode(text)).cuda().unsqueeze(0) for _ in range(text_tokens.shape[1], text_seq_len): device = text_tokens.device tokens = self.text_emb(text_tokens) tokens += self.text_pos_emb(torch.arange(text_tokens.shape[1], device = device)) seq_len = tokens.shape[1] output_transf = self.transformer(tokens) if self.stable: output_transf = self.norm_by_max(output_transf) logits = self.to_logits(output_transf) # mask logits to make sure text predicts text (except last token), and image predicts image logits_mask = self.logits_mask[:, :seq_len] max_neg_value = -torch.finfo(logits.dtype).max logits.masked_fill_(logits_mask, max_neg_value) logits = logits[:, -1, :] filtered_logits = top_k(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim = -1) sample = torch.multinomial(probs, 1) text_tokens = torch.cat((text_tokens, sample), dim=-1) padding_tokens = set(np.arange(self.text_seq_len) + (self.num_text_tokens - self.text_seq_len)) texts = [tokenizer.tokenizer.decode(text_token, pad_tokens=padding_tokens) for text_token in text_tokens] return text_tokens, texts @torch.no_grad() @eval_decorator def generate_images( self, text, *, clip = None, mask = None, filter_thres = 0.5, temperature = 1., img = None, num_init_img_tokens = None, ): vae, text_seq_len, image_seq_len, num_text_tokens = self.vae, self.text_seq_len, self.image_seq_len, self.num_text_tokens total_len = text_seq_len + image_seq_len text = text[:, :text_seq_len] # make sure text is within bounds out = text if exists(img): image_size = vae.image_size assert img.shape[1] == 3 and img.shape[2] == image_size and img.shape[3] == image_size, f'input image must have the correct image size {image_size}' indices = vae.get_codebook_indices(img) num_img_tokens = default(num_init_img_tokens, int(0.4375 * image_seq_len)) # OpenAI used 14 * 32 initial tokens to prime assert num_img_tokens < image_seq_len, 'number of initial image tokens for priming must be less than the total image token sequence length' indices = indices[:, :num_img_tokens] out = torch.cat((out, indices), dim = -1) for cur_len in range(out.shape[1], total_len): is_image = cur_len >= text_seq_len text, image = out[:, :text_seq_len], out[:, text_seq_len:] logits = self(text, image, mask = mask)[:, -1, :] filtered_logits = top_k(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim = -1) sample = torch.multinomial(probs, 1) sample -= (num_text_tokens if is_image else 0) # offset sampled token if it is an image token, since logit space is composed of text and then image tokens out = torch.cat((out, sample), dim=-1) if out.shape[1] <= text_seq_len: mask = F.pad(mask, (0, 1), value = True) text_seq = out[:, :text_seq_len] img_seq = out[:, -image_seq_len:] images = vae.decode(img_seq) if exists(clip): scores = clip(text_seq, images, return_loss = False) return images, scores return images def forward( self, text, image = None, mask = None, return_loss = False, reduce_loss=True, ): assert text.shape[-1] == self.text_seq_len, f'the length {text.shape[-1]} of the text tokens you passed in does not have the correct length ({self.text_seq_len})' device, total_seq_len = text.device, self.total_seq_len # make sure padding in text tokens get unique padding token id text_range = torch.arange(self.text_seq_len, device = device) + (self.num_text_tokens - self.text_seq_len) text = torch.where(text == 0, text_range, text) # add <bos> text = F.pad(text, (1, 0), value = 0) tokens = self.text_emb(text) tokens += self.text_pos_emb(torch.arange(text.shape[1], device = device)) seq_len = tokens.shape[1] if exists(image) and not is_empty(image): is_raw_image = len(image.shape) == 4 # training if is_raw_image: image_size = self.vae.image_size assert tuple(image.shape[1:]) == (3, image_size, image_size), f'invalid image of dimensions {image.shape} passed in during training' image = self.vae.get_codebook_indices(image) image_len = image.shape[1] image_emb = self.image_emb(image) # image_emb += self.image_pos_emb(image_emb) image_pos_emb = self.image_pos_emb(image_emb) image_emb += image_pos_emb tokens = torch.cat((tokens, image_emb), dim = 1) seq_len += image_len # when training, if the length exceeds the total text + image length # remove the last token, since it needs not to be trained if tokens.shape[1] > total_seq_len: seq_len -= 1 tokens = tokens[:, :-1] # print('after modification', 'seq len:', seq_len, 'tokens:', tokens.shape) out = self.transformer(tokens) if self.stable: out = self.norm_by_max(out) logits = self.to_logits(out) # mask logits to make sure text predicts text (except last token), and image predicts image logits_mask = self.logits_mask[:, :seq_len] max_neg_value = -torch.finfo(logits.dtype).max logits.masked_fill_(logits_mask, max_neg_value) if not return_loss: return logits assert exists(image), 'when training, image must be supplied' offsetted_image = image + self.num_text_tokens labels = torch.cat((text[:, 1:], offsetted_image), dim = 1) logits = rearrange(logits, 'b n c -> b c n') if reduce_loss: # print('logits', logits.shape) # print('labels', labels.shape) loss_text = F.cross_entropy(logits[:, :, :self.text_seq_len], labels[:, :self.text_seq_len]) loss_img = F.cross_entropy(logits[:, :, self.text_seq_len:], labels[:, self.text_seq_len:]) loss = (loss_text + self.loss_img_weight * loss_img) / (self.loss_img_weight + 1) return loss else: # loss_text = F.cross_entropy(logits[:, :, :self.text_seq_len], labels[:, :self.text_seq_len], reduction='none') text_logits = logits[:, :, :self.text_seq_len] text_labels = labels[:, :self.text_seq_len] # loss_text = F.cross_entropy(logits[:, :, :self.text_seq_len], labels[:, :self.text_seq_len]) img_logits = logits[:, :, self.text_seq_len:] img_labels = labels[:, self.text_seq_len:] # loss_img = F.cross_entropy(logits[:, :, self.text_seq_len:], labels[:, self.text_seq_len:], reduction='none') return text_logits, text_labels, img_logits, img_labels
[]
2024-01-10
j-min/DallEval
models~dalle_small~DALLE-pytorch~dalle_pytorch~vae.py
import io import sys import os import requests import PIL import warnings import hashlib import urllib import yaml from pathlib import Path from tqdm import tqdm from math import sqrt, log from omegaconf import OmegaConf from taming.models.vqgan import VQModel, GumbelVQ import importlib import torch from torch import nn import torch.nn.functional as F from einops import rearrange from dalle_pytorch import distributed_utils # constants CACHE_PATH = os.path.expanduser("~/.cache/dalle") OPENAI_VAE_ENCODER_PATH = 'https://cdn.openai.com/dall-e/encoder.pkl' OPENAI_VAE_DECODER_PATH = 'https://cdn.openai.com/dall-e/decoder.pkl' VQGAN_VAE_PATH = 'https://heibox.uni-heidelberg.de/f/140747ba53464f49b476/?dl=1' VQGAN_VAE_CONFIG_PATH = 'https://heibox.uni-heidelberg.de/f/6ecf2af6c658432c8298/?dl=1' # helpers methods def exists(val): return val is not None def default(val, d): return val if exists(val) else d def load_model(path): with open(path, 'rb') as f: return torch.load(f, map_location = torch.device('cpu')) def map_pixels(x, eps = 0.1): return (1 - 2 * eps) * x + eps def unmap_pixels(x, eps = 0.1): return torch.clamp((x - eps) / (1 - 2 * eps), 0, 1) def download(url, filename = None, root = CACHE_PATH): if ( not distributed_utils.is_distributed or distributed_utils.backend.is_local_root_worker() ): os.makedirs(root, exist_ok = True) filename = default(filename, os.path.basename(url)) download_target = os.path.join(root, filename) download_target_tmp = os.path.join(root, f'tmp.{filename}') if os.path.exists(download_target) and not os.path.isfile(download_target): raise RuntimeError(f"{download_target} exists and is not a regular file") if ( distributed_utils.is_distributed and not distributed_utils.backend.is_local_root_worker() and not os.path.isfile(download_target) ): # If the file doesn't exist yet, wait until it's downloaded by the root worker. distributed_utils.backend.local_barrier() if os.path.isfile(download_target): return download_target with urllib.request.urlopen(url) as source, open(download_target_tmp, "wb") as output: with tqdm(total=int(source.info().get("Content-Length")), ncols=80) as loop: while True: buffer = source.read(8192) if not buffer: break output.write(buffer) loop.update(len(buffer)) os.rename(download_target_tmp, download_target) if ( distributed_utils.is_distributed and distributed_utils.backend.is_local_root_worker() ): distributed_utils.backend.local_barrier() return download_target def make_contiguous(module): with torch.no_grad(): for param in module.parameters(): param.set_(param.contiguous()) # pretrained Discrete VAE from OpenAI class OpenAIDiscreteVAE(nn.Module): def __init__(self): super().__init__() self.enc = load_model(download(OPENAI_VAE_ENCODER_PATH)) self.dec = load_model(download(OPENAI_VAE_DECODER_PATH)) make_contiguous(self) self.num_layers = 3 self.image_size = 256 self.num_tokens = 8192 @torch.no_grad() def get_codebook_indices(self, img): img = map_pixels(img) z_logits = self.enc.blocks(img) z = torch.argmax(z_logits, dim = 1) return rearrange(z, 'b h w -> b (h w)') def decode(self, img_seq): b, n = img_seq.shape img_seq = rearrange(img_seq, 'b (h w) -> b h w', h = int(sqrt(n))) z = F.one_hot(img_seq, num_classes = self.num_tokens) z = rearrange(z, 'b h w c -> b c h w').float() x_stats = self.dec(z).float() x_rec = unmap_pixels(torch.sigmoid(x_stats[:, :3])) return x_rec def forward(self, img): raise NotImplemented # VQGAN from Taming Transformers paper # https://arxiv.org/abs/2012.09841 def get_obj_from_str(string, reload=False): module, cls = string.rsplit(".", 1) if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls) def instantiate_from_config(config): if not "target" in config: raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) class VQGanVAE(nn.Module): def __init__(self, vqgan_model_path=None, vqgan_config_path=None): super().__init__() if vqgan_model_path is None: model_filename = 'vqgan.1024.model.ckpt' config_filename = 'vqgan.1024.config.yml' download(VQGAN_VAE_CONFIG_PATH, config_filename) download(VQGAN_VAE_PATH, model_filename) config_path = str(Path(CACHE_PATH) / config_filename) model_path = str(Path(CACHE_PATH) / model_filename) else: model_path = vqgan_model_path config_path = vqgan_config_path config = OmegaConf.load(config_path) model = instantiate_from_config(config["model"]) state = torch.load(model_path, map_location = 'cpu')['state_dict'] model.load_state_dict(state, strict = False) print(f"Loaded VQGAN from {model_path} and {config_path}") self.model = model # f as used in https://github.com/CompVis/taming-transformers#overview-of-pretrained-models f = config.model.params.ddconfig.resolution / config.model.params.ddconfig.attn_resolutions[0] self.num_layers = int(log(f)/log(2)) self.image_size = 256 self.num_tokens = config.model.params.n_embed self.is_gumbel = isinstance(self.model, GumbelVQ) # self.is_gumbel = False self._register_external_parameters() def _register_external_parameters(self): """Register external parameters for DeepSpeed partitioning.""" if ( not distributed_utils.is_distributed or not distributed_utils.using_backend( distributed_utils.DeepSpeedBackend) ): return deepspeed = distributed_utils.backend.backend_module deepspeed.zero.register_external_parameter( self, self.model.quantize.embed.weight if self.is_gumbel else self.model.quantize.embedding.weight) @torch.no_grad() def get_codebook_indices(self, img): b = img.shape[0] img = (2 * img) - 1 _, _, [_, _, indices] = self.model.encode(img) if self.is_gumbel: return rearrange(indices, 'b h w -> b (h w)', b=b) return rearrange(indices, '(b n) -> b n', b = b) def decode(self, img_seq): b, n = img_seq.shape one_hot_indices = F.one_hot(img_seq, num_classes = self.num_tokens).float() z = one_hot_indices @ self.model.quantize.embed.weight if self.is_gumbel \ else (one_hot_indices @ self.model.quantize.embedding.weight) z = rearrange(z, 'b (h w) c -> b c h w', h = int(sqrt(n))) img = self.model.decode(z) img = (img.clamp(-1., 1.) + 1) * 0.5 return img def forward(self, img): raise NotImplemented
[]
2024-01-10
j-min/DallEval
models~dalle_small~DALLE-pytorch~train_dalle.py
import argparse from pathlib import Path import time from glob import glob import os import shutil import torch import wandb # Quit early if user doesn't have wandb installed. from torch.nn.utils import clip_grad_norm_ from torch.optim import Adam from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.utils.data import DataLoader from dalle_pytorch import OpenAIDiscreteVAE, VQGanVAE, DiscreteVAE, DALLE from dalle_pytorch import distributed_utils from dalle_pytorch.loader import TextImageDataset from dalle_pytorch.tokenizer import tokenizer, HugTokenizer, ChineseTokenizer, YttmTokenizer # libraries needed for webdataset support import webdataset as wds from torchvision import transforms as T from PIL import Image from io import BytesIO # argument parsing parser = argparse.ArgumentParser() group = parser.add_mutually_exclusive_group(required=False) group.add_argument('--vae_path', type=str, help='path to your trained discrete VAE') group.add_argument('--dalle_path', type=str, help='path to your partially trained DALL-E') parser.add_argument('--vqgan_model_path', type=str, default = None, help='path to your trained VQGAN weights. This should be a .ckpt file. (only valid when taming option is enabled)') parser.add_argument('--vqgan_config_path', type=str, default = None, help='path to your trained VQGAN config. This should be a .yaml file. (only valid when taming option is enabled)') parser.add_argument('--image_text_folder', type=str, required=True, help='path to your folder of images and text for learning the DALL-E') parser.add_argument( '--wds', type = str, default='', help = 'Comma separated list of WebDataset (1) image and (2) text column names. Must contain 2 values, e.g. img,cap.' ) parser.add_argument('--truncate_captions', dest='truncate_captions', action='store_true', help='Captions passed in which exceed the max token length will be truncated if this is set.') parser.add_argument('--random_resize_crop_lower_ratio', dest='resize_ratio', type=float, default=0.75, help='Random resized crop lower ratio') parser.add_argument('--chinese', dest='chinese', action='store_true') parser.add_argument('--taming', dest='taming', action='store_true') parser.add_argument('--hug', dest='hug', action='store_true') parser.add_argument('--bpe_path', type=str, help='path to your BPE json file') parser.add_argument('--dalle_output_file_name', type=str, default = "dalle", help='output_file_name') parser.add_argument('--fp16', action='store_true', help='(experimental) - Enable DeepSpeed 16 bit precision. Reduces VRAM.') parser.add_argument('--amp', action='store_true', help='Apex "O1" automatic mixed precision. More stable than 16 bit precision. Can\'t be used in conjunction with deepspeed zero stages 1-3.') parser.add_argument('--wandb_name', default='dalle_train_transformer', help='Name W&B will use when saving results.\ne.g. `--wandb_name "coco2017-full-sparse"`') parser.add_argument('--wandb_entity', default=None, help='(optional) Name of W&B team/entity to log to.') parser.add_argument('--stable_softmax', dest='stable_softmax', action='store_true', help='Prevent values from becoming too large during softmax. Helps with stability in fp16 and Mixture of Quantization training.') parser = distributed_utils.wrap_arg_parser(parser) train_group = parser.add_argument_group('Training settings') train_group.add_argument('--flops_profiler', dest = 'flops_profiler', action='store_true', help = 'Exits after printing detailed flops/runtime analysis of forward/backward') train_group.add_argument('--epochs', default = 20, type = int, help = 'Number of epochs') train_group.add_argument('--save_every_n_steps', default = 1000, type = int, help = 'Save a checkpoint every n steps') train_group.add_argument('--keep_n_checkpoints', default = None, type = int, help = '(Careful) Deletes old deepspeed checkpoints if there are more than n') train_group.add_argument('--batch_size', default = 4, type = int, help = 'Batch size') train_group.add_argument('--ga_steps', default = 1, type = int, help = 'Number of steps to accumulate gradients across per each iteration. DeepSpeed only.') train_group.add_argument('--learning_rate', default = 3e-4, type = float, help = 'Learning rate') train_group.add_argument('--clip_grad_norm', default = 0.5, type = float, help = 'Clip gradient norm') train_group.add_argument('--lr_decay', dest = 'lr_decay', action = 'store_true') model_group = parser.add_argument_group('Model settings') model_group.add_argument('--dim', default = 512, type = int, help = 'Model dimension') model_group.add_argument('--text_seq_len', default = 256, type = int, help = 'Text sequence length') model_group.add_argument('--depth', default = 2, type = int, help = 'Model depth') model_group.add_argument('--heads', default = 8, type = int, help = 'Model number of heads') model_group.add_argument('--dim_head', default = 64, type = int, help = 'Model head dimension') train_group.add_argument('--ff_dropout', default = 0.0, type = float, help = 'Feed forward dropout.') train_group.add_argument('--attn_dropout', default = 0.0, type = float, help = 'Feed forward dropout.') model_group.add_argument('--reversible', dest = 'reversible', action='store_true') model_group.add_argument('--loss_img_weight', default = 7, type = int, help = 'Image loss weight') model_group.add_argument('--attn_types', default = 'full', type = str, help = 'comma separated list of attention types. attention type can be: full or sparse or axial_row or axial_col or conv_like.') args = parser.parse_args() # helpers def exists(val): return val is not None def get_trainable_params(model): return [params for params in model.parameters() if params.requires_grad] def cp_path_to_dir(cp_path, tag): """Convert a checkpoint path to a directory with `tag` inserted. If `cp_path` is already a directory, return it unchanged. """ if not isinstance(cp_path, Path): cp_path = Path(cp_path) if cp_path.is_dir(): return cp_path path_sans_extension = cp_path.parent / cp_path.stem cp_dir = Path(f'{path_sans_extension}-{tag}-cp') return cp_dir # constants WEBDATASET_IMAGE_TEXT_COLUMNS = tuple(args.wds.split(',')) ENABLE_WEBDATASET = True if len(WEBDATASET_IMAGE_TEXT_COLUMNS) == 2 else False DALLE_OUTPUT_FILE_NAME = args.dalle_output_file_name + ".pt" VAE_PATH = args.vae_path VQGAN_MODEL_PATH = args.vqgan_model_path VQGAN_CONFIG_PATH = args.vqgan_config_path DALLE_PATH = args.dalle_path RESUME = exists(DALLE_PATH) EPOCHS = args.epochs BATCH_SIZE = args.batch_size LEARNING_RATE = args.learning_rate GRAD_CLIP_NORM = args.clip_grad_norm LR_DECAY = args.lr_decay SAVE_EVERY_N_STEPS = args.save_every_n_steps KEEP_N_CHECKPOINTS = args.keep_n_checkpoints MODEL_DIM = args.dim TEXT_SEQ_LEN = args.text_seq_len DEPTH = args.depth HEADS = args.heads DIM_HEAD = args.dim_head REVERSIBLE = args.reversible LOSS_IMG_WEIGHT = args.loss_img_weight FF_DROPOUT = args.ff_dropout ATTN_DROPOUT = args.attn_dropout STABLE = args.stable_softmax ATTN_TYPES = tuple(args.attn_types.split(',')) DEEPSPEED_CP_AUX_FILENAME = 'auxiliary.pt' if not ENABLE_WEBDATASET: # quit early if you used the wrong folder name assert Path(args.image_text_folder).exists(), f'The path {args.image_text_folder} was not found.' else: # quit early if no tar files were found if Path(args.image_text_folder).is_dir(): DATASET = [str(p) for p in Path(args.image_text_folder).glob("**/*") if ".tar" in str(p).lower()] # .name assert len(DATASET) > 0, 'The directory ({}) does not contain any WebDataset/.tar files.'.format(args.image_text_folder) print('Found {} WebDataset .tar(.gz) file(s) under given path {}!'.format(len(DATASET), args.image_text_folder)) elif ('http://' in args.image_text_folder.lower()) | ('https://' in args.image_text_folder.lower()): DATASET = f"pipe:curl -L -s {args.image_text_folder} || true" print('Found {} http(s) link under given path!'.format(len(DATASET), args.image_text_folder)) elif 'gs://' in args.image_text_folder.lower(): DATASET = f"pipe:gsutil cat {args.image_text_folder} || true" print('Found {} GCS link under given path!'.format(len(DATASET), args.image_text_folder)) elif '.tar' in args.image_text_folder: DATASET = args.image_text_folder print('Found WebDataset .tar(.gz) file under given path {}!'.format(args.image_text_folder)) else: raise Exception('No folder, no .tar(.gz) and no url pointing to tar files provided under {}.'.format(args.image_text_folder)) # initialize distributed backend distr_backend = distributed_utils.set_backend_from_args(args) distr_backend.initialize() using_deepspeed = \ distributed_utils.using_backend(distributed_utils.DeepSpeedBackend) # tokenizer if exists(args.bpe_path): klass = HugTokenizer if args.hug else YttmTokenizer tokenizer = klass(args.bpe_path) elif args.chinese: tokenizer = ChineseTokenizer() # reconstitute vae if RESUME: dalle_path = Path(DALLE_PATH) if using_deepspeed: cp_dir = cp_path_to_dir(dalle_path, 'ds') assert cp_dir.is_dir(), \ f'DeepSpeed checkpoint directory {cp_dir} not found' dalle_path = cp_dir / DEEPSPEED_CP_AUX_FILENAME else: assert dalle_path.exists(), 'DALL-E model file does not exist' loaded_obj = torch.load(str(dalle_path), map_location='cpu') dalle_params, vae_params, weights = loaded_obj['hparams'], loaded_obj['vae_params'], loaded_obj['weights'] opt_state = loaded_obj.get('opt_state') scheduler_state = loaded_obj.get('scheduler_state') if vae_params is not None: vae = DiscreteVAE(**vae_params) else: if args.taming: vae = VQGanVAE(VQGAN_MODEL_PATH, VQGAN_CONFIG_PATH) else: vae = OpenAIDiscreteVAE() dalle_params = dict( **dalle_params ) IMAGE_SIZE = vae.image_size resume_epoch = loaded_obj.get('epoch', 0) else: if exists(VAE_PATH): vae_path = Path(VAE_PATH) assert vae_path.exists(), 'VAE model file does not exist' assert not vae_path.is_dir(), \ ('Cannot load VAE model from directory; please use a ' 'standard *.pt checkpoint. ' 'Currently, merging a DeepSpeed-partitioned VAE into a DALLE ' 'model is not supported.') loaded_obj = torch.load(str(vae_path)) vae_params, weights = loaded_obj['hparams'], loaded_obj['weights'] vae = DiscreteVAE(**vae_params) vae.load_state_dict(weights) else: if distr_backend.is_root_worker(): print('using pretrained VAE for encoding images to tokens') vae_params = None if args.taming: vae = VQGanVAE(VQGAN_MODEL_PATH, VQGAN_CONFIG_PATH) else: vae = OpenAIDiscreteVAE() IMAGE_SIZE = vae.image_size dalle_params = dict( num_text_tokens=tokenizer.vocab_size, text_seq_len=TEXT_SEQ_LEN, dim=MODEL_DIM, depth=DEPTH, heads=HEADS, dim_head=DIM_HEAD, reversible=REVERSIBLE, loss_img_weight=LOSS_IMG_WEIGHT, attn_types=ATTN_TYPES, ff_dropout=FF_DROPOUT, attn_dropout=ATTN_DROPOUT, stable=STABLE, ) resume_epoch = 0 # configure OpenAI VAE for float16s if isinstance(vae, OpenAIDiscreteVAE) and args.fp16: vae.enc.blocks.output.conv.use_float16 = True # helpers def group_weight(model): group_decay, group_no_decay = [], [] for params in model.named_parameters(): if 'transformer' in params[0]: if 'bias' in params[0] or 'norm' in params[0]: group_no_decay.append(params[1]) continue group_decay.append(params[1]) assert len(list(model.parameters())) == len(group_decay) + len(group_no_decay) groups = [dict(params=group_decay), dict(params=group_no_decay, weight_decay=.0)] return groups # create dataset and dataloader is_shuffle = not distributed_utils.using_backend(distributed_utils.HorovodBackend) imagepreproc = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.RandomResizedCrop(IMAGE_SIZE, scale=(args.resize_ratio, 1.), ratio=(1., 1.)), T.ToTensor(), ]) def imagetransform(b): return Image.open(BytesIO(b)) def tokenize(s): return tokenizer.tokenize( s.decode('utf-8'), TEXT_SEQ_LEN, truncate_text=args.truncate_captions).squeeze(0) if ENABLE_WEBDATASET: DATASET_SIZE = int(1e9) # You need to set a nominal length for the Dataset in order to avoid warnings from DataLoader myimg, mycap = WEBDATASET_IMAGE_TEXT_COLUMNS image_text_mapping = { myimg: imagetransform, mycap: tokenize } image_mapping = { myimg: imagepreproc } num_batches = DATASET_SIZE // BATCH_SIZE ds = ( wds.WebDataset(DATASET, length=num_batches) # .shuffle(is_shuffle) # Commented out for WebDataset as the behaviour cannot be predicted yet .map_dict(**image_text_mapping) .map_dict(**image_mapping) .to_tuple(mycap, myimg) .batched(BATCH_SIZE, partial=False) # It is good to avoid partial batches when using Distributed training ) else: ds = TextImageDataset( args.image_text_folder, text_len=TEXT_SEQ_LEN, image_size=IMAGE_SIZE, resize_ratio=args.resize_ratio, truncate_captions=args.truncate_captions, tokenizer=tokenizer, shuffle=is_shuffle, ) assert len(ds) > 0, 'dataset is empty' if distr_backend.is_root_worker(): if not ENABLE_WEBDATASET: print(f'{len(ds)} image-text pairs found for training') if not is_shuffle: data_sampler = torch.utils.data.distributed.DistributedSampler( ds, num_replicas=distr_backend.get_world_size(), rank=distr_backend.get_rank() ) else: data_sampler = None if ENABLE_WEBDATASET: # WebLoader for WebDataset and DeepSpeed compatibility dl = wds.WebLoader(ds, batch_size=None, shuffle=False) # optionally add num_workers=2 (n) argument number_of_batches = DATASET_SIZE // (BATCH_SIZE * distr_backend.get_world_size()) dl = dl.repeat(2).slice(number_of_batches) dl.length = number_of_batches else: # Regular DataLoader for image-text-folder datasets dl = DataLoader(ds, batch_size=BATCH_SIZE, shuffle=is_shuffle, drop_last=True, sampler=data_sampler) # initialize DALL-E dalle = DALLE(vae=vae, **dalle_params) if not using_deepspeed: if args.fp16: dalle = dalle.half() dalle = dalle.cuda() if RESUME and not using_deepspeed: dalle.load_state_dict(weights) # optimizer opt = Adam(get_trainable_params(dalle), lr=LEARNING_RATE) if RESUME and opt_state: opt.load_state_dict(opt_state) if LR_DECAY: scheduler = ReduceLROnPlateau( opt, mode="min", factor=0.5, patience=10, cooldown=10, min_lr=1e-6, verbose=True, ) if RESUME and scheduler_state: scheduler.load_state_dict(scheduler_state) else: scheduler = None if distr_backend.is_root_worker(): # experiment tracker model_config = dict( depth=DEPTH, heads=HEADS, dim_head=DIM_HEAD ) run = wandb.init( project=args.wandb_name, entity=args.wandb_entity, resume=False, config=model_config, ) # distribute distr_backend.check_batch_size(BATCH_SIZE) deepspeed_config = { 'train_batch_size': BATCH_SIZE, 'gradient_accumulation_steps': args.ga_steps, 'gradient_clipping': GRAD_CLIP_NORM, 'fp16': { 'enabled': args.fp16, }, 'amp': { 'enabled': args.amp, 'opt_level': 'O1', }, "flops_profiler": { "enabled": args.flops_profiler, "profile_step": 200, "module_depth": -1, "top_modules": 1, "detailed": True, "output_file": None # TODO Can't get this to work. }, } if deepspeed_config.get('zero_optimization', {}).get('stage', 0) >= 2: print(f"Checkpoints made with DeepSpeed ZeRO Stages 2 and 3 will be stored in deepspeed checkpoint folder") print(f"As such, they will require DeepSpeed as a dependency in order to resume from or generate with.") print("See the deespeed conversion script for details on how to convert your ZeRO stage 2/3 checkpoint to a single file.") print("If using a single GPU, consider running with apex automatic mixed precision instead for a similar speedup to ZeRO.") time.sleep(2) (distr_dalle, distr_opt, distr_dl, distr_scheduler) = distr_backend.distribute( args=args, model=dalle, optimizer=opt, model_parameters=get_trainable_params(dalle), training_data=ds if using_deepspeed else dl, # Do not pass the LR scheduler to DeepSpeed so we can manually # advance it. lr_scheduler=scheduler if LR_DECAY and not using_deepspeed else None, config_params=deepspeed_config, ) # Prefer scheduler in `deepspeed_config`. if LR_DECAY and distr_scheduler is None: distr_scheduler = scheduler avoid_model_calls = using_deepspeed and args.fp16 if RESUME and using_deepspeed: distr_dalle.load_checkpoint(str(cp_dir)) def save_model(path, epoch=0): save_obj = { 'hparams': dalle_params, 'vae_params': vae_params, 'epoch': epoch, } if using_deepspeed: cp_dir = cp_path_to_dir(path, 'ds') if KEEP_N_CHECKPOINTS is not None and distr_backend.is_root_worker(): checkpoints = sorted(glob(str(cp_dir / "global*")), key=os.path.getmtime, reverse=True) for checkpoint in checkpoints[KEEP_N_CHECKPOINTS:]: shutil.rmtree(checkpoint) distr_dalle.save_checkpoint(cp_dir, client_state=save_obj) if not distr_backend.is_root_worker(): return # Save auxiliary values so we can reuse the standard routine # for loading. save_obj = { **save_obj, # Save a nonsense value that directs the user to # further help. 'weights': ( 'To get a working standard checkpoint, ' 'look into consolidating DeepSpeed checkpoints.' ), } torch.save(save_obj, str(cp_dir / DEEPSPEED_CP_AUX_FILENAME)) if deepspeed_config.get('zero_optimization', {}).get('stage', 0) >= 2: # see https://github.com/lucidrains/DALLE-pytorch/wiki/DeepSpeed-Checkpoints return if not distr_backend.is_root_worker(): return save_obj = { **save_obj, 'weights': dalle.state_dict(), 'opt_state': opt.state_dict(), } save_obj['scheduler_state'] = (scheduler.state_dict() if scheduler else None) torch.save(save_obj, path) # training # Saves a checkpoint before training begins to fail early when mis-configured. # See https://github.com/lucidrains/DALLE-pytorch/wiki/DeepSpeed-Checkpoints save_model(DALLE_OUTPUT_FILE_NAME, epoch=resume_epoch) for epoch in range(resume_epoch, EPOCHS): if data_sampler: data_sampler.set_epoch(epoch) for i, (text, images) in enumerate((dl if ENABLE_WEBDATASET else distr_dl)): if i % 10 == 0 and distr_backend.is_root_worker(): t = time.time() if args.fp16: images = images.half() text, images = map(lambda t: t.cuda(), (text, images)) loss = distr_dalle(text, images, return_loss=True) if using_deepspeed: distr_dalle.backward(loss) distr_dalle.step() # Gradients are automatically zeroed after the step else: loss.backward() clip_grad_norm_(distr_dalle.parameters(), GRAD_CLIP_NORM) distr_opt.step() distr_opt.zero_grad() # Collective loss, averaged avg_loss = distr_backend.average_all(loss) log = {} if i % 10 == 0 and distr_backend.is_root_worker(): print(epoch, i, f'loss - {avg_loss.item()}') log = { **log, 'epoch': epoch, 'iter': i, 'loss': avg_loss.item() } if i % SAVE_EVERY_N_STEPS == 0: save_model(DALLE_OUTPUT_FILE_NAME, epoch=epoch) if i % 100 == 0: if distr_backend.is_root_worker(): sample_text = text[:1] token_list = sample_text.masked_select(sample_text != 0).tolist() decoded_text = tokenizer.decode(token_list) if not avoid_model_calls: # CUDA index errors when we don't guard this image = dalle.generate_images(text[:1], filter_thres=0.9) # topk sampling at 0.9 log = { **log, } if not avoid_model_calls: log['image'] = wandb.Image(image, caption=decoded_text) if i % 10 == 9 and distr_backend.is_root_worker(): sample_per_sec = BATCH_SIZE * 10 / (time.time() - t) log["sample_per_sec"] = sample_per_sec print(epoch, i, f'sample_per_sec - {sample_per_sec}') if i == 201 and args.flops_profiler: raise StopIteration("Profiler has finished running. Stopping training early.") if distr_backend.is_root_worker(): wandb.log(log) if LR_DECAY: distr_scheduler.step(avg_loss) save_model(DALLE_OUTPUT_FILE_NAME, epoch=epoch) if distr_backend.is_root_worker(): # save trained model to wandb as an artifact every epoch's end model_artifact = wandb.Artifact('trained-dalle', type='model', metadata=dict(model_config)) model_artifact.add_file(DALLE_OUTPUT_FILE_NAME) run.log_artifact(model_artifact) save_model(DALLE_OUTPUT_FILE_NAME, epoch=epoch) if distr_backend.is_root_worker(): wandb.save(DALLE_OUTPUT_FILE_NAME) model_artifact = wandb.Artifact('trained-dalle', type='model', metadata=dict(model_config)) model_artifact.add_file(DALLE_OUTPUT_FILE_NAME) run.log_artifact(model_artifact) wandb.finish()
[]
2024-01-10
Walchshofer/ChatDev
camel~functions~math_functions.py
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. =========== # Licensed under the Apache License, Version 2.0 (the “License”); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an “AS IS” BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. =========== from typing import List from .openai_function import OpenAIFunction def add(a: int, b: int) -> int: r"""Adds two numbers. Args: a (integer): The first number to be added. b (integer): The second number to be added. Returns: integer: The sum of the two numbers. """ return a + b def sub(a: int, b: int) -> int: r"""Do subtraction between two numbers. Args: a (integer): The minuend in subtraction. b (integer): The subtrahend in subtraction. Returns: integer: The result of subtracting :obj:`b` from :obj:`a`. """ return a - b def mul(a: int, b: int) -> int: r"""Multiplies two integers. Args: a (integer): The multiplier in the multiplication. b (integer): The multiplicand in the multiplication. Returns: integer: The product of the two numbers. """ return a * b MATH_FUNCS: List[OpenAIFunction] = [ OpenAIFunction(func) for func in [add, sub, mul] ]
[]
2024-01-10
Walchshofer/ChatDev
camel~test_model.py
import os from dotenv import load_dotenv import openai # Load the .env file to get the OPENAI_API_KEY load_dotenv() # Retrieve the API key from the environment variables openai_api_key = os.getenv("OPENAI_API_KEY") # Set the OpenAI API key openai.api_key = openai_api_key import requests # Replace the URL with the appropriate URL of your local OpenAI API server url = "http://localhost:5001/v1/engines" # Make a GET request to the server response = requests.get(url) print(response) # Parse the JSON response data = response.json() # Extract and print the model name or ID print("Model Information:", data)
[]
2024-01-10
shukehi/ChatGPT
tests~test_index.py
#!/usr/bin/env python3 import readline import openai from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) documents = SimpleDirectoryReader('data').load_data() index = GPTSimpleVectorIndex(documents) while True: req = input("> ").strip() resp = index.query(req) print(resp)
[]
2024-01-10
shukehi/ChatGPT
gptcli.py
#!/usr/bin/env python3 import os import asyncio import argparse import openai from rich.console import Console from rich.markdown import Markdown, MarkdownIt from rich.live import Live from aiohttp import ClientSession import readline try: import rlcompleter except ImportError: pass c = Console() systemPrompt = { "role": "system", "content": "Use triple backticks with the language name for every code block in your markdown response, if any." } class Config: base_dir = os.path.dirname(os.path.realpath(__file__)) default_key = os.path.join(base_dir, ".key") aio_socks_proxy = None sep = Markdown("---") history = [] def query_openai(data: dict): messages = [ systemPrompt ] messages.extend(data) try: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) content = response["choices"][0]["message"]["content"] c.print(Markdown(content), Config.sep) return content except openai.error.OpenAIError as e: c.print(e) return "" async def query_openai_stream(data: dict): messages = [ systemPrompt ] messages.extend(data) md = Markdown("") parser = MarkdownIt().enable("strikethrough") if Config.aio_socks_proxy: try: from aiohttp_socks import ProxyConnector connector = ProxyConnector.from_url(Config.aio_socks_proxy) openai.aiosession.set(ClientSession(connector=connector)) except ImportError: c.print("aiohttp_socks not installed, socks proxy for aiohttp won't work") Config.aio_socks_proxy = None answer = "" try: with Live(md, auto_refresh=False) as lv: async for part in await openai.ChatCompletion.acreate( model="gpt-3.5-turbo", messages=messages, stream=True ): finish_reason = part["choices"][0]["finish_reason"] if "content" in part["choices"][0]["delta"]: content = part["choices"][0]["delta"]["content"] answer += content md.markup = answer md.parsed = parser.parse(md.markup) lv.refresh() elif finish_reason: pass except openai.error.OpenAIError as e: c.print(e) answer = "" c.print(Config.sep) if Config.aio_socks_proxy: await openai.aiosession.get().close() return answer class ChatConsole: def __init__(self) -> None: parser = argparse.ArgumentParser("Input", add_help=False, exit_on_error=False) parser.add_argument('-help', action='help', default=argparse.SUPPRESS, help="show this help message") parser.add_argument("-reset", action='store_true', help="reset session, i.e. clear chat history") parser.add_argument("-exit", action='store_true', help="exit console") parser.add_argument("-multiline", action='store_true', help="input multiple lines, end with ctrl-d(Linux/macOS) or ctrl-z(Windows). cancel with ctrl-c") self.parser = parser try: self.init_readline([opt for action in parser._actions for opt in action.option_strings]) except Exception: c.print("Failed to setup readline, autocomplete may not work:", e) def init_readline(self, options: dict[str]): def completer(text, state): matches = [o for o in options if o.startswith(text)] if state < len(matches): return matches[state] else: return None readline.set_completer(completer) readline.set_completer_delims(readline.get_completer_delims().replace('-', '')) readline.parse_and_bind('tab:complete') def parse_input(self) -> str: # content = c.input("[bold yellow]Input:[/] ").strip() with c.capture() as capture: c.print("[bold yellow]Input:[/] ", end="") content = input(capture.get()) if not content.startswith("-"): return content # handle console options locally try: args = self.parser.parse_args(content.split()) except SystemExit: return "" except argparse.ArgumentError as e: print(e) return "" if args.reset: Config.history.clear() elif args.multiline: return self.read_multiline() elif args.exit: raise EOFError else: print("???", args) return "" def read_multiline(self) -> str: contents = [] while True: try: line = input("> ") except EOFError: c.print("--- EOF ---") break except KeyboardInterrupt: return "" contents.append(line) return "\n".join(contents) if __name__ == '__main__': parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("-n", dest="no_stream", action="store_true", help="query openai in non-stream mode") parser.add_argument("-r", dest="response", action="store_true", help="attach server response in request prompt, consume more tokens to get better results") parser.add_argument("-k", dest="key", help="path to api_key", default=Config.default_key) parser.add_argument("-p", dest="proxy", help="http/https proxy to use") args = parser.parse_args() c.print(f"Loading key from {args.key}") with open(args.key, "r") as f: openai.api_key = f.read().strip() stream = not args.no_stream if args.proxy: c.print(f"Using proxy: {args.proxy}") if stream and args.proxy.startswith("socks"): Config.aio_socks_proxy = args.proxy else: openai.proxy = args.proxy c.print(f"Response in prompt: {args.response}") c.print(f"Stream mode: {stream}") data = Config.history chat = ChatConsole() while True: try: content = chat.parse_input().strip() if not content: continue data.append({"role": "user", "content": content}) if stream: answer = asyncio.run(query_openai_stream(data)) else: answer = query_openai(data) except KeyboardInterrupt: c.print("Bye!") break except EOFError as e: c.print("Bye!") break if not answer: data.pop() elif args.response: data.append({"role": "assistant", "content": answer})
[ "{'role': 'system', 'content': 'Use triple backticks with the language name for every code block in your markdown response, if any.'}", "Use triple backticks with the language name for every code block in your markdown response, if any." ]
2024-01-10
PAIXAI/aider
aider~coders~base_coder.py
#!/usr/bin/env python import hashlib import json import os import sys import traceback from json.decoder import JSONDecodeError from pathlib import Path, PurePosixPath import backoff import git import openai import requests from jsonschema import Draft7Validator from openai.error import APIError, RateLimitError, ServiceUnavailableError, Timeout from rich.console import Console, Text from rich.live import Live from rich.markdown import Markdown from aider import models, prompts, utils from aider.commands import Commands from aider.repomap import RepoMap from ..dump import dump # noqa: F401 class MissingAPIKeyError(ValueError): pass class ExhaustedContextWindow(Exception): pass def wrap_fence(name): return f"<{name}>", f"</{name}>" class Coder: abs_fnames = None repo = None last_aider_commit_hash = None last_asked_for_commit_time = 0 repo_map = None functions = None total_cost = 0.0 num_exhausted_context_windows = 0 @classmethod def create( self, main_model, edit_format, io, openai_api_key, openai_api_base="https://api.openai.com/v1", **kwargs, ): from . import ( EditBlockCoder, EditBlockFunctionCoder, SingleWholeFileFunctionCoder, WholeFileCoder, WholeFileFunctionCoder, ) openai.api_key = openai_api_key openai.api_base = openai_api_base if not main_model: main_model = models.GPT35_16k if not main_model.always_available: if not check_model_availability(main_model): if main_model != models.GPT4: io.tool_error( f"API key does not support {main_model.name}, falling back to" f" {models.GPT35_16k.name}" ) main_model = models.GPT35_16k if edit_format is None: edit_format = main_model.edit_format if edit_format == "diff": return EditBlockCoder(main_model, io, **kwargs) elif edit_format == "whole": return WholeFileCoder(main_model, io, **kwargs) elif edit_format == "whole-func": return WholeFileFunctionCoder(main_model, io, **kwargs) elif edit_format == "single-whole-func": return SingleWholeFileFunctionCoder(main_model, io, **kwargs) elif edit_format == "diff-func-list": return EditBlockFunctionCoder("list", main_model, io, **kwargs) elif edit_format in ("diff-func", "diff-func-string"): return EditBlockFunctionCoder("string", main_model, io, **kwargs) else: raise ValueError(f"Unknown edit format {edit_format}") def __init__( self, main_model, io, fnames=None, pretty=True, show_diffs=False, auto_commits=True, dirty_commits=True, dry_run=False, map_tokens=1024, verbose=False, assistant_output_color="blue", code_theme="default", stream=True, use_git=True, ): if not fnames: fnames = [] self.chat_completion_call_hashes = [] self.chat_completion_response_hashes = [] self.verbose = verbose self.abs_fnames = set() self.cur_messages = [] self.done_messages = [] self.num_control_c = 0 self.io = io self.stream = stream if not auto_commits: dirty_commits = False self.auto_commits = auto_commits self.dirty_commits = dirty_commits self.assistant_output_color = assistant_output_color self.code_theme = code_theme self.dry_run = dry_run self.pretty = pretty if pretty: self.console = Console() else: self.console = Console(force_terminal=False, no_color=True) self.main_model = main_model self.io.tool_output(f"Model: {main_model.name}") self.show_diffs = show_diffs self.commands = Commands(self.io, self) if use_git: self.set_repo(fnames) else: self.abs_fnames = set([str(Path(fname).resolve()) for fname in fnames]) if self.repo: rel_repo_dir = os.path.relpath(self.repo.git_dir, os.getcwd()) self.io.tool_output(f"Git repo: {rel_repo_dir}") else: self.io.tool_output("Git repo: none") self.find_common_root() if main_model.use_repo_map and self.repo and self.gpt_prompts.repo_content_prefix: self.repo_map = RepoMap( map_tokens, self.root, self.main_model, io, self.gpt_prompts.repo_content_prefix, self.verbose, ) if self.repo_map.use_ctags: self.io.tool_output(f"Repo-map: universal-ctags using {map_tokens} tokens") elif not self.repo_map.has_ctags and map_tokens > 0: self.io.tool_output( f"Repo-map: basic using {map_tokens} tokens" f" ({self.repo_map.ctags_disabled_reason})" ) else: self.io.tool_output("Repo-map: disabled because map_tokens == 0") else: self.io.tool_output("Repo-map: disabled") for fname in self.get_inchat_relative_files(): self.io.tool_output(f"Added {fname} to the chat.") # validate the functions jsonschema if self.functions: for function in self.functions: Draft7Validator.check_schema(function) if self.verbose: self.io.tool_output("JSON Schema:") self.io.tool_output(json.dumps(self.functions, indent=4)) def find_common_root(self): if len(self.abs_fnames) == 1: self.root = os.path.dirname(list(self.abs_fnames)[0]) elif self.abs_fnames: self.root = os.path.commonpath(list(self.abs_fnames)) else: self.root = os.getcwd() self.root = os.path.abspath(self.root) def set_repo(self, cmd_line_fnames): if not cmd_line_fnames: cmd_line_fnames = ["."] repo_paths = [] for fname in cmd_line_fnames: fname = Path(fname) if not fname.exists(): self.io.tool_output(f"Creating empty file {fname}") fname.parent.mkdir(parents=True, exist_ok=True) fname.touch() fname = fname.resolve() try: repo_path = git.Repo(fname, search_parent_directories=True).working_dir repo_path = os.path.abspath(repo_path) repo_paths.append(repo_path) except git.exc.InvalidGitRepositoryError: pass if fname.is_dir(): continue self.abs_fnames.add(str(fname)) num_repos = len(set(repo_paths)) if num_repos == 0: return if num_repos > 1: self.io.tool_error("Files are in different git repos.") return # https://github.com/gitpython-developers/GitPython/issues/427 self.repo = git.Repo(repo_paths.pop(), odbt=git.GitDB) self.root = os.path.abspath(self.repo.working_tree_dir) new_files = [] for fname in self.abs_fnames: relative_fname = self.get_rel_fname(fname) tracked_files = set(self.get_tracked_files()) if relative_fname not in tracked_files: new_files.append(relative_fname) if new_files: rel_repo_dir = os.path.relpath(self.repo.git_dir, os.getcwd()) self.io.tool_output(f"Files not tracked in {rel_repo_dir}:") for fn in new_files: self.io.tool_output(f" - {fn}") if self.io.confirm_ask("Add them?"): for relative_fname in new_files: self.repo.git.add(relative_fname) self.io.tool_output(f"Added {relative_fname} to the git repo") show_files = ", ".join(new_files) commit_message = f"Added new files to the git repo: {show_files}" self.repo.git.commit("-m", commit_message, "--no-verify") commit_hash = self.repo.head.commit.hexsha[:7] self.io.tool_output(f"Commit {commit_hash} {commit_message}") else: self.io.tool_error("Skipped adding new files to the git repo.") return # fences are obfuscated so aider can modify this file! fences = [ ("``" + "`", "``" + "`"), wrap_fence("source"), wrap_fence("code"), wrap_fence("pre"), wrap_fence("codeblock"), wrap_fence("sourcecode"), ] fence = fences[0] def get_abs_fnames_content(self): for fname in list(self.abs_fnames): content = self.io.read_text(fname) if content is None: relative_fname = self.get_rel_fname(fname) self.io.tool_error(f"Dropping {relative_fname} from the chat.") self.abs_fnames.remove(fname) else: yield fname, content def choose_fence(self): all_content = "" for _fname, content in self.get_abs_fnames_content(): all_content += content + "\n" good = False for fence_open, fence_close in self.fences: if fence_open in all_content or fence_close in all_content: continue good = True break if good: self.fence = (fence_open, fence_close) else: self.fence = self.fences[0] self.io.tool_error( "Unable to find a fencing strategy! Falling back to:" " {self.fence[0]}...{self.fence[1]}" ) return def get_files_content(self, fnames=None): if not fnames: fnames = self.abs_fnames prompt = "" for fname, content in self.get_abs_fnames_content(): relative_fname = self.get_rel_fname(fname) prompt = "\n" prompt += relative_fname prompt += f"\n{self.fence[0]}\n" prompt += content prompt += f"{self.fence[1]}\n" return prompt def get_files_messages(self): all_content = "" if self.abs_fnames: files_content = self.gpt_prompts.files_content_prefix files_content += self.get_files_content() else: files_content = self.gpt_prompts.files_no_full_files all_content += files_content other_files = set(self.get_all_abs_files()) - set(self.abs_fnames) if self.repo_map: repo_content = self.repo_map.get_repo_map(self.abs_fnames, other_files) if repo_content: if all_content: all_content += "\n" all_content += repo_content files_messages = [ dict(role="user", content=all_content), dict(role="assistant", content="Ok."), ] if self.abs_fnames: files_messages += [ dict(role="system", content=self.fmt_system_reminder()), ] return files_messages def run(self, with_message=None): while True: try: if with_message: new_user_message = with_message self.io.user_input(with_message) else: new_user_message = self.run_loop() while new_user_message: new_user_message = self.send_new_user_message(new_user_message) if with_message: return except KeyboardInterrupt: self.num_control_c += 1 if self.num_control_c >= 2: break self.io.tool_error("^C again or /exit to quit") except EOFError: return def should_dirty_commit(self, inp): is_commit_command = inp and inp.startswith("/commit") if is_commit_command: return if not self.dirty_commits: return if not self.repo: return if not self.repo.is_dirty(): return if self.last_asked_for_commit_time >= self.get_last_modified(): return return True def move_back_cur_messages(self, message): self.done_messages += self.cur_messages if message: self.done_messages += [ dict(role="user", content=message), dict(role="assistant", content="Ok."), ] self.cur_messages = [] def run_loop(self): inp = self.io.get_input( self.root, self.get_inchat_relative_files(), self.get_addable_relative_files(), self.commands, ) self.num_control_c = 0 if self.should_dirty_commit(inp): self.commit(ask=True, which="repo_files") # files changed, move cur messages back behind the files messages self.move_back_cur_messages(self.gpt_prompts.files_content_local_edits) if inp.strip(): self.io.tool_output("Use up-arrow to retry previous command:", inp) return if not inp: return if self.commands.is_command(inp): return self.commands.run(inp) self.check_for_file_mentions(inp) return self.send_new_user_message(inp) def fmt_system_reminder(self): prompt = self.gpt_prompts.system_reminder prompt = prompt.format(fence=self.fence) return prompt def send_new_user_message(self, inp): self.choose_fence() self.cur_messages += [ dict(role="user", content=inp), ] main_sys = self.gpt_prompts.main_system # if self.main_model.max_context_tokens > 4 * 1024: main_sys += "\n" + self.fmt_system_reminder() messages = [ dict(role="system", content=main_sys), ] messages += self.done_messages messages += self.get_files_messages() messages += self.cur_messages if self.verbose: utils.show_messages(messages, functions=self.functions) exhausted = False interrupted = False try: interrupted = self.send(messages, functions=self.functions) except ExhaustedContextWindow: exhausted = True except openai.error.InvalidRequestError as err: if "maximum context length" in str(err): exhausted = True if exhausted: self.num_exhausted_context_windows += 1 self.io.tool_error("The chat session is larger than the context window!\n") self.commands.cmd_tokens("") self.io.tool_error("\nTo reduce token usage:") self.io.tool_error(" - Use /drop to remove unneeded files from the chat session.") self.io.tool_error(" - Use /clear to clear chat history.") return if self.partial_response_function_call: args = self.parse_partial_args() if args: content = args["explanation"] else: content = "" elif self.partial_response_content: content = self.partial_response_content else: content = "" if interrupted: self.io.tool_error("\n\n^C KeyboardInterrupt") self.num_control_c += 1 content += "\n^C KeyboardInterrupt" self.io.tool_output() if interrupted: self.cur_messages += [dict(role="assistant", content=content)] return edited, edit_error = self.apply_updates() if edit_error: return edit_error # TODO: this shouldn't use content, should use self.partial_.... self.update_cur_messages(content, edited) if edited: if self.repo and self.auto_commits and not self.dry_run: saved_message = self.auto_commit() elif hasattr(self.gpt_prompts, "files_content_gpt_edits_no_repo"): saved_message = self.gpt_prompts.files_content_gpt_edits_no_repo else: saved_message = None self.move_back_cur_messages(saved_message) add_rel_files_message = self.check_for_file_mentions(content) if add_rel_files_message: return add_rel_files_message def update_cur_messages(self, content, edited): self.cur_messages += [dict(role="assistant", content=content)] def auto_commit(self): res = self.commit(history=self.cur_messages, prefix="aider: ") if res: commit_hash, commit_message = res self.last_aider_commit_hash = commit_hash saved_message = self.gpt_prompts.files_content_gpt_edits.format( hash=commit_hash, message=commit_message, ) else: if self.repo: self.io.tool_error("Warning: no changes found in tracked files.") saved_message = self.gpt_prompts.files_content_gpt_no_edits return saved_message def check_for_file_mentions(self, content): words = set(word for word in content.split()) # drop sentence punctuation from the end words = set(word.rstrip(",.!;") for word in words) # strip away all kinds of quotes quotes = "".join(['"', "'", "`"]) words = set(word.strip(quotes) for word in words) addable_rel_fnames = self.get_addable_relative_files() mentioned_rel_fnames = set() fname_to_rel_fnames = {} for rel_fname in addable_rel_fnames: fname = os.path.basename(rel_fname) if fname not in fname_to_rel_fnames: fname_to_rel_fnames[fname] = [] fname_to_rel_fnames[fname].append(rel_fname) for fname, rel_fnames in fname_to_rel_fnames.items(): if len(rel_fnames) == 1 and fname in words: mentioned_rel_fnames.add(rel_fnames[0]) if not mentioned_rel_fnames: return for rel_fname in mentioned_rel_fnames: self.io.tool_output(rel_fname) if not self.io.confirm_ask("Add these files to the chat?"): return for rel_fname in mentioned_rel_fnames: self.abs_fnames.add(os.path.abspath(os.path.join(self.root, rel_fname))) return prompts.added_files.format(fnames=", ".join(mentioned_rel_fnames)) @backoff.on_exception( backoff.expo, ( Timeout, APIError, ServiceUnavailableError, RateLimitError, requests.exceptions.ConnectionError, ), max_tries=5, on_backoff=lambda details: print(f"Retry in {details['wait']} seconds."), ) def send_with_retries(self, model, messages, functions): kwargs = dict( model=model, messages=messages, temperature=0, stream=self.stream, ) if functions is not None: kwargs["functions"] = self.functions # Generate SHA1 hash of kwargs and append it to chat_completion_call_hashes hash_object = hashlib.sha1(json.dumps(kwargs, sort_keys=True).encode()) self.chat_completion_call_hashes.append(hash_object.hexdigest()) res = openai.ChatCompletion.create(**kwargs) return res def send(self, messages, model=None, silent=False, functions=None): if not model: model = self.main_model.name self.partial_response_content = "" self.partial_response_function_call = dict() interrupted = False try: completion = self.send_with_retries(model, messages, functions) if self.stream: self.show_send_output_stream(completion, silent) else: self.show_send_output(completion, silent) except KeyboardInterrupt: interrupted = True if not silent: if self.partial_response_content: self.io.ai_output(self.partial_response_content) elif self.partial_response_function_call: # TODO: push this into subclasses args = self.parse_partial_args() if args: self.io.ai_output(json.dumps(args, indent=4)) return interrupted def show_send_output(self, completion, silent): if self.verbose: print(completion) show_func_err = None show_content_err = None try: self.partial_response_function_call = completion.choices[0].message.function_call except AttributeError as func_err: show_func_err = func_err try: self.partial_response_content = completion.choices[0].message.content except AttributeError as content_err: show_content_err = content_err resp_hash = dict( function_call=self.partial_response_function_call, content=self.partial_response_content, ) resp_hash = hashlib.sha1(json.dumps(resp_hash, sort_keys=True).encode()) self.chat_completion_response_hashes.append(resp_hash.hexdigest()) if show_func_err and show_content_err: self.io.tool_error(show_func_err) self.io.tool_error(show_content_err) raise Exception("No data found in openai response!") prompt_tokens = completion.usage.prompt_tokens completion_tokens = completion.usage.completion_tokens tokens = f"{prompt_tokens} prompt tokens, {completion_tokens} completion tokens" if self.main_model.prompt_price: cost = prompt_tokens * self.main_model.prompt_price / 1000 cost += completion_tokens * self.main_model.completion_price / 1000 tokens += f", ${cost:.6f} cost" self.total_cost += cost show_resp = self.render_incremental_response(True) if self.pretty: show_resp = Markdown( show_resp, style=self.assistant_output_color, code_theme=self.code_theme ) else: show_resp = Text(show_resp or "<no response>") self.io.console.print(show_resp) self.io.console.print(tokens) def show_send_output_stream(self, completion, silent): live = None if self.pretty and not silent: live = Live(vertical_overflow="scroll") try: if live: live.start() for chunk in completion: if chunk.choices[0].finish_reason == "length": raise ExhaustedContextWindow() try: func = chunk.choices[0].delta.function_call # dump(func) for k, v in func.items(): if k in self.partial_response_function_call: self.partial_response_function_call[k] += v else: self.partial_response_function_call[k] = v except AttributeError: pass try: text = chunk.choices[0].delta.content if text: self.partial_response_content += text except AttributeError: pass if silent: continue if self.pretty: self.live_incremental_response(live, False) else: sys.stdout.write(text) sys.stdout.flush() finally: if live: self.live_incremental_response(live, True) live.stop() def live_incremental_response(self, live, final): show_resp = self.render_incremental_response(final) if not show_resp: return md = Markdown(show_resp, style=self.assistant_output_color, code_theme=self.code_theme) live.update(md) def render_incremental_response(self, final): return self.partial_response_content def get_context_from_history(self, history): context = "" if history: context += "# Context:\n" for msg in history: context += msg["role"].upper() + ": " + msg["content"] + "\n" return context def get_commit_message(self, diffs, context): if len(diffs) >= 4 * 1024 * 4: self.io.tool_error( f"Diff is too large for {models.GPT35.name} to generate a commit message." ) return diffs = "# Diffs:\n" + diffs messages = [ dict(role="system", content=prompts.commit_system), dict(role="user", content=context + diffs), ] try: interrupted = self.send( messages, model=models.GPT35.name, silent=True, ) except openai.error.InvalidRequestError: self.io.tool_error( f"Failed to generate commit message using {models.GPT35.name} due to an invalid" " request." ) return commit_message = self.partial_response_content commit_message = commit_message.strip() if commit_message and commit_message[0] == '"' and commit_message[-1] == '"': commit_message = commit_message[1:-1].strip() if interrupted: self.io.tool_error( f"Unable to get commit message from {models.GPT35.name}. Use /commit to try again." ) return return commit_message def get_diffs(self, *args): if self.pretty: args = ["--color"] + list(args) diffs = self.repo.git.diff(*args) return diffs def commit(self, history=None, prefix=None, ask=False, message=None, which="chat_files"): repo = self.repo if not repo: return if not repo.is_dirty(): return def get_dirty_files_and_diffs(file_list): diffs = "" relative_dirty_files = [] for fname in file_list: relative_fname = self.get_rel_fname(fname) relative_dirty_files.append(relative_fname) try: current_branch_commit_count = len( list(self.repo.iter_commits(self.repo.active_branch)) ) except git.exc.GitCommandError: current_branch_commit_count = None if not current_branch_commit_count: continue these_diffs = self.get_diffs("HEAD", "--", relative_fname) if these_diffs: diffs += these_diffs + "\n" return relative_dirty_files, diffs if which == "repo_files": all_files = [os.path.join(self.root, f) for f in self.get_all_relative_files()] relative_dirty_fnames, diffs = get_dirty_files_and_diffs(all_files) elif which == "chat_files": relative_dirty_fnames, diffs = get_dirty_files_and_diffs(self.abs_fnames) else: raise ValueError(f"Invalid value for 'which': {which}") if self.show_diffs or ask: # don't use io.tool_output() because we don't want to log or further colorize print(diffs) context = self.get_context_from_history(history) if message: commit_message = message else: commit_message = self.get_commit_message(diffs, context) if not commit_message: commit_message = "work in progress" if prefix: commit_message = prefix + commit_message if ask: if which == "repo_files": self.io.tool_output("Git repo has uncommitted changes.") else: self.io.tool_output("Files have uncommitted changes.") res = self.io.prompt_ask( "Commit before the chat proceeds [y/n/commit message]?", default=commit_message, ).strip() self.last_asked_for_commit_time = self.get_last_modified() self.io.tool_output() if res.lower() in ["n", "no"]: self.io.tool_error("Skipped commmit.") return if res.lower() not in ["y", "yes"] and res: commit_message = res repo.git.add(*relative_dirty_fnames) full_commit_message = commit_message + "\n\n" + context repo.git.commit("-m", full_commit_message, "--no-verify") commit_hash = repo.head.commit.hexsha[:7] self.io.tool_output(f"Commit {commit_hash} {commit_message}") return commit_hash, commit_message def get_rel_fname(self, fname): return os.path.relpath(fname, self.root) def get_inchat_relative_files(self): files = [self.get_rel_fname(fname) for fname in self.abs_fnames] return sorted(set(files)) def get_all_relative_files(self): if self.repo: files = self.get_tracked_files() else: files = self.get_inchat_relative_files() return sorted(set(files)) def get_all_abs_files(self): files = self.get_all_relative_files() files = [os.path.abspath(os.path.join(self.root, path)) for path in files] return files def get_last_modified(self): files = self.get_all_abs_files() if not files: return 0 return max(Path(path).stat().st_mtime for path in files) def get_addable_relative_files(self): return set(self.get_all_relative_files()) - set(self.get_inchat_relative_files()) def allowed_to_edit(self, path, write_content=None): full_path = os.path.abspath(os.path.join(self.root, path)) if full_path in self.abs_fnames: if write_content: self.io.write_text(full_path, write_content) return full_path if not Path(full_path).exists(): question = f"Allow creation of new file {path}?" # noqa: E501 else: question = f"Allow edits to {path} which was not previously provided?" # noqa: E501 if not self.io.confirm_ask(question): self.io.tool_error(f"Skipping edit to {path}") return if not Path(full_path).exists() and not self.dry_run: Path(full_path).parent.mkdir(parents=True, exist_ok=True) Path(full_path).touch() self.abs_fnames.add(full_path) # Check if the file is already in the repo if self.repo: tracked_files = set(self.get_tracked_files()) relative_fname = self.get_rel_fname(full_path) if relative_fname not in tracked_files and self.io.confirm_ask(f"Add {path} to git?"): if not self.dry_run: self.repo.git.add(full_path) if write_content: self.io.write_text(full_path, write_content) return full_path def get_tracked_files(self): # convert to appropriate os.sep, since git always normalizes to / files = set(self.repo.git.ls_files().splitlines()) res = set(str(Path(PurePosixPath(path))) for path in files) return res apply_update_errors = 0 def apply_updates(self): max_apply_update_errors = 2 try: edited = self.update_files() except ValueError as err: err = err.args[0] self.apply_update_errors += 1 if self.apply_update_errors < max_apply_update_errors: self.io.tool_error(f"Malformed response #{self.apply_update_errors}, retrying...") self.io.tool_error(str(err)) return None, err else: self.io.tool_error(f"Malformed response #{self.apply_update_errors}, aborting.") return False, None except Exception as err: print(err) print() traceback.print_exc() self.apply_update_errors += 1 if self.apply_update_errors < max_apply_update_errors: self.io.tool_error(f"Update exception #{self.apply_update_errors}, retrying...") return None, str(err) else: self.io.tool_error(f"Update exception #{self.apply_update_errors}, aborting") return False, None self.apply_update_errors = 0 if edited: for path in sorted(edited): if self.dry_run: self.io.tool_output(f"Did not apply edit to {path} (--dry-run)") else: self.io.tool_output(f"Applied edit to {path}") return edited, None def parse_partial_args(self): # dump(self.partial_response_function_call) data = self.partial_response_function_call.get("arguments") if not data: return try: return json.loads(data) except JSONDecodeError: pass try: return json.loads(data + "]}") except JSONDecodeError: pass try: return json.loads(data + "}]}") except JSONDecodeError: pass try: return json.loads(data + '"}]}') except JSONDecodeError: pass def check_model_availability(main_model): available_models = openai.Model.list() model_ids = [model.id for model in available_models["data"]] return main_model.name in model_ids
[ "\n" ]
2024-01-10
nomanmurtaza786/Gents-chatbot
chains_bot.py
import os from dotenv import load_dotenv from langchain.agents import (AgentExecutor, AgentType, Tool, create_sql_agent, initialize_agent, load_tools) from langchain.agents.agent_toolkits import SQLDatabaseToolkit from langchain.chains import APIChain, ConversationalRetrievalChain from langchain.chains.llm import LLMChain from langchain.chat_models import ChatOpenAI from langchain.llms import OpenAI from langchain.prompts.prompt import PromptTemplate from langchain.sql_database import SQLDatabase from supabase_db import get_vector_store_retriever load_dotenv() openApiKey: str = os.getenv("OPENAI_API_KEY", "default_key") huggingFaceApikey = os.getenv("API_KEY", "default_key") openAillm = OpenAI( model="text-davinci-003", openai_api_key=openApiKey, ) template = """ Question: {question} think step by step Answer: """ prompt = PromptTemplate(template=template, input_variables=["question"]) chatLLM = ChatOpenAI(temperature=0.1,) llm_chain = LLMChain(llm=chatLLM, prompt=prompt,verbose=True,) #print("predict", chatLLM.predict('Captial of USA')) crc = ConversationalRetrievalChain.from_llm(llm=chatLLM, retriever=get_vector_store_retriever(), verbose=True, ) api_chain = APIChain.from_llm_and_api_docs(llm=chatLLM, api_docs='' ,verbose=True,) def get_answer(question: str, chat_history: list = []): result = crc({"question": question, "chat_history": chat_history}) return result def callingApiChain(question: str, chat_history: list): result = crc({"question": question, "chat_history": chat_history}) return result["answer"] ## database connect string from env file db_connect_string = os.getenv("DB_Connection_Str", "default_key") db = SQLDatabase.from_uri("postgresql://postgres:postgres@localhost:5432/HR") toolkit = SQLDatabaseToolkit(db=db, llm=OpenAI(temperature=0)) agent_executor = create_sql_agent( llm=ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613"), toolkit=toolkit, verbose=True, agent_type=AgentType.OPENAI_FUNCTIONS ) def get_answer_from_agent(question: str, chat_history: list = []): result = agent_executor(question) return result tools = [ Tool( name="sql_agent", description='use to employee data from database such as active employees, performance rating, location, department, etc.', func=get_answer_from_agent, ), Tool( name="resume_reader", description='use to read resume and extract information such as name, email, phone, skills, etc.', func=get_answer, ) ] agents = initialize_agent(tools=tools, verbose=True, llm=ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613", verbose=True), ) def run_multiple_agents(question: str, chat_history: list = []): result = agents.run(question) return result # print("predict", get_answer_from_agent('Tell me best location with respect to employees performance. IF rating A is consider as best performer'))
[ "question", " \n Question: {question} \n think step by step\n Answer: \n " ]
2024-01-10
nomanmurtaza786/Gents-chatbot
gen_embeddings.py
import os from dotenv import load_dotenv from langchain.document_loaders import PyPDFLoader from langchain.document_loaders.csv_loader import CSVLoader from langchain.embeddings import OpenAIEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from supabase_db import saveDocVectorSupabase, saveToSupabase embeddingOpenAi= OpenAIEmbeddings() # loader = PyPDFLoader('/Users/nomanmurtaza/Documents/Noman_Murtaza_CV.pdf') loader = CSVLoader(file_path="/Users/nomanmurtaza/Downloads/user details.csv") text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20) pages = loader.load_and_split(text_splitter=text_splitter) #saveDocVectorSupabase(pages)
[]
2024-01-10
nomanmurtaza786/Gents-chatbot
supabase_db.py
import os from dotenv import load_dotenv from langchain.embeddings import OpenAIEmbeddings from langchain.schema.embeddings import Embeddings from langchain.vectorstores import SupabaseVectorStore from supabase.client import Client, create_client load_dotenv() url: str = os.environ.get("SUPABASE_URL", "default_url") key: str = os.environ.get("SUPABASE_KEY", "default_key") supabaseClient: Client = create_client(url, key) ##response = supabase.table("coins_details").select("*").execute() embeddings = OpenAIEmbeddings() vector_store = SupabaseVectorStore(embedding=embeddings, client=supabaseClient, table_name="documents", query_name="match_documents") # create a getter function for the vector store def get_vector_store_retriever() : return vector_store.as_retriever() def saveToSupabase(content: str, metadata: dict, embedding: list): response = supabaseClient.table("documents").upsert({"content": content, "metadata": metadata, "embedding": embedding}).execute() def saveDocVectorSupabase(docs: list): supabaseVec=vector_store.from_documents(docs, embeddings, client=supabaseClient, table_name="documents") def getSimilarDocuments(text: str): return vector_store.similarity_search(text, 10) # def getSimilarDocuments(text: str, embeddings: Embeddings): # return SupabaseVectorStore.similarity_search(query=text,)
[]
2024-01-10
nomanmurtaza786/Gents-chatbot
chat_ui.py
import os import openai import streamlit as st from dotenv import load_dotenv from chains_bot import get_answer, get_answer_from_agent, run_multiple_agents from supabase_db import getSimilarDocuments load_dotenv() st.title("GEN-TS HR Partner") openai.api_key = os.getenv("OPENAI_API_KEY", "default_key") if "openai_model" not in st.session_state: st.session_state["openai_model"] = "gpt-3.5-turbo" if "messages" not in st.session_state: st.session_state.messages = [] for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if prompt := st.chat_input("What is up?"): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) with st.chat_message("assistant"): response = get_answer(prompt) st.markdown(response) st.session_state.messages.append({"role": "assistant", "content": response})
[]
2024-01-10
chrisluo5311/NYCU_AI_ChatGPT_Class
LineBot~LineFlask_Project.py
# 安置CKIP套件並且下載中文Transformer權重檔 from ckiptagger import data_utils #data_utils.download_data("./") from flask import Flask, request, abort from ckiptagger import WS from linebot.v3 import ( WebhookHandler ) from linebot.v3.exceptions import ( InvalidSignatureError ) from linebot.v3.messaging import ( Configuration, ApiClient, MessagingApi, ReplyMessageRequest, TextMessage ) from linebot.v3.webhooks import ( MessageEvent, TextMessageContent ) # 建立OpenAI的連線與ChatGPT的問答連線 & 設定OpenAI金鑰 import openai key = "" openai.api_key = key def chatgpt_qa(q): response = openai.Completion.create( model="text-davinci-003", prompt=q, temperature=0, max_tokens=500, top_p=1, frequency_penalty=0.5, presence_penalty=0 ) # 返回答案 return response["choices"][0]["text"].strip() #ws = WS("./data") # access_token configuration = Configuration( access_token='') # CHANNEL_SECRET handler = WebhookHandler('') app = Flask(__name__) @app.route("/test",methods=['GET']) def test(): return 'test' @app.route("/callback", methods=['POST']) def callback(): # get X-Line-Signature header value signature = request.headers['X-Line-Signature'] # get request body as text body = request.get_data(as_text=True) app.logger.info("Request body: " + body) # handle webhook body try: handler.handle(body, signature) except InvalidSignatureError: app.logger.info("Invalid signature. Please check your channel access token/channel secret.") abort(400) return 'OK' @handler.add(MessageEvent, message=TextMessageContent) def handle_message(event): with ApiClient(configuration) as api_client: line_bot_api = MessagingApi(api_client) line_bot_api.reply_message_with_http_info( ReplyMessageRequest( reply_token=event.reply_token, messages=[TextMessage(text=event.message.text)] ) ) if __name__ == "__main__": app.run(port=8080)
[]
2024-01-10
jnwan/nas-tools
app~plugins~modules~_autosignin~chdbits.py
import json import os import random import re from lxml import etree from app.helper.openai_helper import OpenAiHelper from app.plugins.modules._autosignin._base import _ISiteSigninHandler from app.utils import StringUtils, RequestUtils from config import Config class CHDBits(_ISiteSigninHandler): """ 彩虹岛签到 如果填写openai key则调用chatgpt获取答案 否则随机 """ # 匹配的站点Url,每一个实现类都需要设置为自己的站点Url site_url = "ptchdbits.co" # 已签到 _sign_regex = ['今天已经签过到了'] # 签到成功,待补充 _success_regex = ['\\d+点魔力值'] # 存储正确的答案,后续可直接查 _answer_path = os.path.join(Config().get_temp_path(), "signin") _answer_file = _answer_path + "/chdbits.json" @classmethod def match(cls, url): """ 根据站点Url判断是否匹配当前站点签到类,大部分情况使用默认实现即可 :param url: 站点Url :return: 是否匹配,如匹配则会调用该类的signin方法 """ return True if StringUtils.url_equal(url, cls.site_url) else False def signin(self, site_info: dict): """ 执行签到操作 :param site_info: 站点信息,含有站点Url、站点Cookie、UA等信息 :return: 签到结果信息 """ site = site_info.get("name") site_cookie = site_info.get("cookie") ua = site_info.get("ua") proxy = Config().get_proxies() if site_info.get("proxy") else None # 创建正确答案存储目录 if not os.path.exists(os.path.dirname(self._answer_file)): os.makedirs(os.path.dirname(self._answer_file)) # 判断今日是否已签到 index_res = RequestUtils(cookies=site_cookie, headers=ua, proxies=proxy ).get_res(url='https://ptchdbits.co/bakatest.php') if not index_res or index_res.status_code != 200: self.error(f"签到失败,请检查站点连通性") return False, f'【{site}】签到失败,请检查站点连通性' if "login.php" in index_res.text: self.error(f"签到失败,cookie失效") return False, f'【{site}】签到失败,cookie失效' sign_status = self.sign_in_result(html_res=index_res.text, regexs=self._sign_regex) if sign_status: self.info(f"今日已签到") return True, f'【{site}】今日已签到' # 没有签到则解析html html = etree.HTML(index_res.text) if not html: return False, f'【{site}】签到失败' # 获取页面问题、答案 questionid = html.xpath("//input[@name='questionid']/@value")[0] option_ids = html.xpath("//input[@name='choice[]']/@value") option_values = html.xpath("//input[@name='choice[]']/following-sibling::text()") question_str = html.xpath("//td[@class='text' and contains(text(),'请问:')]/text()")[0] answers = list(zip(option_ids, option_values)) # 正则获取问题 match = re.search(r'请问:(.+)', question_str) if match: question_str = match.group(1) self.debug(f"获取到签到问题 {question_str}") else: self.error(f"未获取到签到问题") return False, f"【{site}】签到失败,未获取到签到问题" # 查询已有答案 exits_answers = {} try: with open(self._answer_file, 'r') as f: json_str = f.read() exits_answers = json.loads(json_str) # 查询本地本次验证码hash答案 question_answer = exits_answers[question_str] # question_answer是数组 if not isinstance(question_answer, list): question_answer = [question_answer] # 本地存在本次hash对应的正确答案再遍历查询 choice = [] for q in question_answer: for num, answer in answers: if str(q) == str(num): choice.append(int(q)) if len(choice) > 0: # 签到 return self.__signin(questionid=questionid, choice=choice, site_cookie=site_cookie, ua=ua, proxy=proxy, site=site) except (FileNotFoundError, IOError, OSError) as e: self.debug("查询本地已知答案失败,继续请求豆瓣查询") # 正确答案,默认随机,如果gpt返回则用gpt返回的答案提交 choice = [option_ids[random.randint(0, len(option_ids) - 1)]] # 组装gpt问题 gpt_options = "{\n" + ",\n".join([f"{num}:{value}" for num, value in answers]) + "\n}" gpt_question = f"题目:{question_str}\n" \ f"选项:{gpt_options}" self.debug(f"组装chatgpt问题 {gpt_question}") # chatgpt获取答案 answer = OpenAiHelper().get_question_answer(question=gpt_question) self.debug(f"chatpgt返回结果 {answer}") # 处理chatgpt返回的答案信息 if answer is None: self.warn(f"ChatGPT未启用, 开始随机签到") # return f"【{site}】签到失败,ChatGPT未启用" elif answer: # 正则获取字符串中的数字 answer_nums = list(map(int, re.findall("\d+", answer))) if not answer_nums: self.warn(f"无法从chatgpt回复 {answer} 中获取答案, 将采用随机签到") else: choice = [] for answer in answer_nums: # 如果返回的数字在option_ids范围内,则直接作为答案 if str(answer) in option_ids: choice.append(int(answer)) self.info(f"chatgpt返回答案id {answer} 在签到选项 {option_ids} 中") # 签到 return self.__signin(questionid=questionid, choice=choice, site_cookie=site_cookie, ua=ua, proxy=proxy, site=site, exits_answers=exits_answers, question=question_str) def __signin(self, questionid, choice, site, site_cookie, ua, proxy, exits_answers=None, question=None): """ 签到请求 questionid: 450 choice[]: 8 choice[]: 4 usercomment: 此刻心情:无 submit: 提交 多选会有多个choice[].... """ data = { 'questionid': questionid, 'choice[]': choice[0] if len(choice) == 1 else choice, 'usercomment': '太难了!', 'wantskip': '不会' } self.debug(f"签到请求参数 {data}") sign_res = RequestUtils(cookies=site_cookie, headers=ua, proxies=proxy ).post_res(url='https://ptchdbits.co/bakatest.php', data=data) if not sign_res or sign_res.status_code != 200: self.error(f"签到失败,签到接口请求失败") return False, f'【{site}】签到失败,签到接口请求失败' # 判断是否签到成功 sign_status = self.sign_in_result(html_res=sign_res.text, regexs=self._success_regex) if sign_status: self.info(f"签到成功") if exits_answers and question: # 签到成功写入本地文件 self.__write_local_answer(exits_answers=exits_answers or {}, question=question, answer=choice) return True, f'【{site}】签到成功' else: sign_status = self.sign_in_result(html_res=sign_res.text, regexs=self._sign_regex) if sign_status: self.info(f"今日已签到") return True, f'【{site}】今日已签到' self.error(f"签到失败,请到页面查看") return False, f'【{site}】签到失败,请到页面查看' def __write_local_answer(self, exits_answers, question, answer): """ 签到成功写入本地文件 """ try: exits_answers[question] = answer # 序列化数据 formatted_data = json.dumps(exits_answers, indent=4) with open(self._answer_file, 'w') as f: f.write(formatted_data) except (FileNotFoundError, IOError, OSError) as e: self.debug("签到成功写入本地文件失败")
[]
2024-01-10
while-basic/superagent
app~lib~agents.py
from typing import Any import requests import yaml from decouple import config from langchain.agents import ( AgentExecutor, LLMSingleActionAgent, ) from langchain.agents.agent_toolkits.openapi import planner from langchain.agents.agent_toolkits.openapi.spec import reduce_openapi_spec from langchain.chains import ConversationalRetrievalChain, LLMChain from langchain.chains.conversational_retrieval.prompts import ( CONDENSE_QUESTION_PROMPT, QA_PROMPT, ) from langchain.chains.question_answering import load_qa_chain from langchain.chat_models import ChatAnthropic, ChatOpenAI from langchain.embeddings.openai import OpenAIEmbeddings from langchain.llms import Cohere, OpenAI from langchain.memory import ChatMessageHistory, ConversationBufferMemory from langchain.prompts.prompt import PromptTemplate from langchain.requests import RequestsWrapper from langchain.vectorstores.pinecone import Pinecone from app.lib.callbacks import StreamingCallbackHandler from app.lib.parsers import CustomOutputParser from app.lib.prisma import prisma from app.lib.prompts import ( CustomPromptTemplate, agent_template, default_chat_prompt, ) from app.lib.tools import get_search_tool class Agent: def __init__( self, agent: dict, has_streaming: bool = False, on_llm_new_token=None, on_llm_end=None, on_chain_end=None, ): self.id = agent.id self.document = agent.document self.has_memory = agent.hasMemory self.type = agent.type self.llm = agent.llm self.prompt = agent.prompt self.tool = agent.tool self.has_streaming = has_streaming self.on_llm_new_token = on_llm_new_token self.on_llm_end = on_llm_end self.on_chain_end = on_chain_end def _get_api_key(self) -> str: if self.llm["provider"] == "openai-chat" or self.llm["provider"] == "openai": return ( self.llm["api_key"] if "api_key" in self.llm else config("OPENAI_API_KEY") ) if self.llm["provider"] == "anthropic": return ( self.llm["api_key"] if "api_key" in self.llm else config("ANTHROPIC_API_KEY") ) if self.llm["provider"] == "cohere": return ( self.llm["api_key"] if "api_key" in self.llm else config("COHERE_API_KEY") ) def _get_tool(self) -> Any: try: if self.tool.type == "SEARCH": tools = get_search_tool() return tools except Exception: return None def _get_prompt(self) -> Any: if self.prompt: if self.tool: prompt = CustomPromptTemplate( template=self.prompt.template, tools=self._get_tool(), input_variables=self.prompt.input_variables, ) else: prompt = PromptTemplate( input_variables=self.prompt.input_variables, template=self.prompt.template, ) return prompt else: if self.tool: return CustomPromptTemplate( template=agent_template, tools=self._get_tool(), input_variables=[ "human_input", "intermediate_steps", "chat_history", ], ) return default_chat_prompt def _get_llm(self) -> Any: if self.llm["provider"] == "openai-chat": return ( ChatOpenAI( temperature=0, openai_api_key=self._get_api_key(), model_name=self.llm["model"], streaming=self.has_streaming, callbacks=[ StreamingCallbackHandler( on_llm_new_token_=self.on_llm_new_token, on_llm_end_=self.on_llm_end, on_chain_end_=self.on_chain_end, ) ], ) if self.has_streaming else ChatOpenAI(model_name=self.llm["model"]) ) if self.llm["provider"] == "openai": return OpenAI( model_name=self.llm["model"], openai_api_key=self._get_api_key() ) if self.llm["provider"] == "anthropic": return ( ChatAnthropic( streaming=self.has_streaming, anthropic_api_key=self._get_api_key(), callbacks=[ StreamingCallbackHandler( on_llm_new_token_=self.on_llm_new_token, on_llm_end_=self.on_llm_end, on_chain_end_=self.on_chain_end, ) ], ) if self.has_streaming else ChatAnthropic(anthropic_api_key=self._get_api_key()) ) if self.llm["provider"] == "cohere": return ( Cohere( cohere_api_key=self._get_api_key(), model=self.llm["model"], callbacks=[ StreamingCallbackHandler( on_llm_new_token_=self.on_llm_new_token, on_llm_end_=self.on_llm_end, on_chain_end_=self.on_chain_end, ) ], ) if self.has_streaming else Cohere(cohere_api_key=self._get_api_key(), model=self.llm["model"]) ) # Use ChatOpenAI as default llm in agents return ChatOpenAI(temperature=0, openai_api_key=self._get_api_key()) def _get_memory(self) -> Any: if self.has_memory: memories = prisma.agentmemory.find_many( where={"agentId": self.id}, order={"createdAt": "desc"}, take=5, ) history = ChatMessageHistory() [ history.add_ai_message(memory.message) if memory.agent == "AI" else history.add_user_message(memory.message) for memory in memories ] memory = ConversationBufferMemory( chat_memory=history, memory_key="chat_history" ) return memory return None def _get_document(self) -> Any: if self.document: embeddings = OpenAIEmbeddings() docsearch = Pinecone.from_existing_index( "superagent", embedding=embeddings, namespace=self.document.id ) return docsearch return None def get_agent(self) -> Any: llm = self._get_llm() memory = self._get_memory() document = self._get_document() tools = self._get_tool() if self.document: if self.document.type != "OPENAPI": question_generator = LLMChain( llm=OpenAI(temperature=0), prompt=CONDENSE_QUESTION_PROMPT ) doc_chain = load_qa_chain( llm, chain_type="stuff", prompt=QA_PROMPT, verbose=True ) agent = ConversationalRetrievalChain( retriever=document.as_retriever(), combine_docs_chain=doc_chain, question_generator=question_generator, memory=memory, get_chat_history=lambda h: h, ) elif self.document.type == "OPENAPI": requests_wrapper = ( RequestsWrapper( headers={ self.document.authorization[ "key" ]: self.document.authorization["value"] } ) if self.document.authorization else RequestsWrapper() ) yaml_response = requests.get(self.document.url) content = yaml_response.content raw_odds_api_spec = yaml.load(content, Loader=yaml.Loader) odds_api_spec = reduce_openapi_spec(raw_odds_api_spec) agent = planner.create_openapi_agent( odds_api_spec, requests_wrapper, llm ) elif self.tool: output_parser = CustomOutputParser() tool_names = [tool.name for tool in tools] llm_chain = LLMChain(llm=llm, prompt=self._get_prompt()) agent_config = LLMSingleActionAgent( llm_chain=llm_chain, output_parser=output_parser, stop=["\nObservation:"], allowed_tools=tool_names, ) agent = AgentExecutor.from_agent_and_tools( agent=agent_config, tools=tools, verbose=True, memory=memory ) else: agent = LLMChain( llm=llm, memory=memory, verbose=True, prompt=self._get_prompt() ) return agent
[]
2024-01-10
while-basic/superagent
app~lib~parsers.py
import re from typing import Union from langchain.agents import AgentOutputParser from langchain.schema import AgentAction, AgentFinish class CustomOutputParser(AgentOutputParser): def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]: if "Final Answer:" in llm_output: return AgentFinish( return_values={"output": llm_output.split("Final Answer:")[-1].strip()}, log=llm_output, ) regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)" match = re.search(regex, llm_output, re.DOTALL) if not match: raise ValueError(f"Could not parse LLM output: `{llm_output}`") action = match.group(1).strip() action_input = match.group(2) return AgentAction( tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output )
[]
2024-01-10
edly-io/ai-coach-xblock
ai_coach~ai_coach.py
from xblockutils.studio_editable import StudioEditableXBlockMixin from xblock.fields import Float, Integer, Scope, String from xblock.core import XBlock from xblock.completable import CompletableXBlockMixin from web_fragments.fragment import Fragment from django.template import Context, Template from django.conf import settings import pkg_resources import logging from openai import OpenAI log = logging.getLogger(__name__) def _(text): return text CHAT_COMPLETION_MODELS = ['gpt-3.5-turbo'] TEXT_COMPLETION_MODELS = [ 'text-davinci-003', 'text-davinci-002', 'text-curie-001', 'text-babbage-001', 'text-ada-001', ] AI_MODELS = CHAT_COMPLETION_MODELS + TEXT_COMPLETION_MODELS @XBlock.wants('i18n') class AICoachXBlock(XBlock, StudioEditableXBlockMixin, CompletableXBlockMixin): """ AI Coach xblock - Helps student to ask for improvement of their answer once """ display_name = String( display_name=_('Display Name'), help=_('Display name for this module'), default="AI Coach", scope=Scope.settings ) question = String( display_name=_('Question'), default='', scope=Scope.settings, multiline_editor=True, help=_('The question asked by the teacher'), ) student_answer = String( display_name=_('Answer'), default='', scope=Scope.user_state, help=_('The answer provided by Student') ) context = String( display_name=_('Context'), default="", scope=Scope.settings, multiline_editor=True, help=_("Write the question context here"), ) feedback_threshold = Integer( display_name=_('Feedback Threshold'), default=1, scope=Scope.settings, help=_("Maximum no. of times student asks for feedback") ) feedback_count = Integer( default=0, scope=Scope.user_state, help=_("No. of times student asks for feedback") ) api_key = String( display_name=_("API Key"), default=settings.OPENAI_SECRET_KEY, scope=Scope.settings, help=_( "Your OpenAI API key, which can be found at <a href='https://platform.openai.com/account/api-keys' target='_blank'>https://platform.openai.com/account/api-keys</a>" ), ) model_name = String( display_name=_("AI Model Name"), values=AI_MODELS, default="text-davinci-003", scope=Scope.settings, help=_("Select an AI Text model.") ) temperature = Float( display_name=_('Temperature'), default=0.5, values={'min': 0.1, 'max': 2, 'step': 0.1}, scope=Scope.settings, help=_( 'Higher values like 0.8 will make the output more random, while lower values \n like 0.2 will make it more focused and deterministic.' ) ) description = String( display_name=_('Description'), default='Description here...', scope=Scope.settings, help=_('Any Description') ) editable_fields = [ 'display_name', 'context', 'question', 'model_name', 'api_key', 'temperature', 'description', 'feedback_threshold' ] def get_openai_client(self): """ Initialize and return an OpenAI client using the API key stored in the XBlock settings. """ api_key = self.api_key try: client = OpenAI(api_key=api_key) return client except Exception: # Handle the exception as appropriate for your application return {'error': _('Failed to initialize OpenAI client')} def resource_string(self, path): """Handy helper for getting resources from our kit.""" data = pkg_resources.resource_string(__name__, path) return data.decode("utf8") def get_context(self): return { 'title': self.display_name, 'question': self.question, 'student_answer': self.student_answer, 'feedback_count': self.feedback_count, 'feedback_threshold': self.feedback_threshold, } def render_template(self, template_path, context): """Handy helper for rendering html template.""" template_str = self.resource_string(template_path) template = Template(template_str) context = self.get_context() return template.render(Context(context)) def student_view(self, context=None): """ The primary view of the AITutorXBlock, shown to students when viewing courses. """ html = self.render_template("static/html/ai_coach.html", context) frag = Fragment(html) frag.add_css(self.resource_string("static/css/ai_coach.css")) frag.add_javascript(self.resource_string("static/js/src/ai_coach.js")) frag.initialize_js('AICoachXBlock', json_args=self.get_context()) return frag def get_chat_completion( self, prompt='', model='gpt-3.5-turbo', temperature=0.5, max_tokens=150, n=1 ): """ Returns the improvement for student answer using ChatGPT Model """ client = self.get_openai_client() if client is None: return {'error': _('Unable to initialize OpenAI client. Please check configuration.')} messages = [{"role": "user", "content": prompt}] try: response = client.chat.completions.create(messages=messages, model=model, temperature=temperature, max_tokens=max_tokens, n=n) except Exception as err: log.error(err) return {'error': _('Unable to connect to AI-coach. Please contact your administrator')} return {'response': response.choices[0].message['content']} def get_completion( self, prompt='', model='text-davinci-003', temperature=0.5, max_tokens=150, n=1 ): """ Returns the improvement for student answer using Text AI Model """ client = self.get_openai_client() if client is None: return {'error': _('Unable to initialize OpenAI client. Please check configuration.')} try: response = client.completions.create( prompt=prompt, model=model, temperature=temperature, max_tokens=max_tokens, n=n) except Exception as err: log.error(err) return {'error': _('Unable to connect to AI-coach. Please contact your administrator')} return {'response': response.choices[0].text} @XBlock.json_handler def ask_from_coach(self, data, suffix=''): if not data['answer']: return {'error': _('Answer must be required')} if self.feedback_count >= self.feedback_threshold: return {'error': _("You've exhausted all available chances to ask the coach for help")} student_answer = data['answer'].strip() prompt = self.context.replace('{{question}}', f'"{self.question}"') prompt = prompt.replace('{{answer}}', f'"{student_answer}"') if self.model_name in CHAT_COMPLETION_MODELS: response = self.get_chat_completion( prompt, self.model_name, self.temperature ) elif self.model_name in TEXT_COMPLETION_MODELS: response = self.get_completion( prompt, self.model_name, self.temperature ) if 'error' in response: return {'error': response['error']} coach_answer = response['response'] self.feedback_count += 1 return { 'success': True, 'coach_answer': coach_answer, 'feedback_count': self.feedback_count, 'feedback_threshold': self.feedback_threshold } @XBlock.json_handler def submit_answer(self, data, suffix=''): if not data['answer']: return {'error': _('Answer must be required')} self.student_answer = data['answer'].strip() self.emit_completion(1.0) return {'success': True} @staticmethod def workbench_scenarios(): """A canned scenario for display in the workbench.""" return [ ("AICoachXBlock", """<ai_coach/> """), ("Multiple AICoachXBlock", """<vertical_demo> <ai_coach/> <ai_coach/> <ai_coach/> </vertical_demo> """), ]
[ "{{question}}", "\"PLACEHOLDER\"", "{{answer}}" ]
2024-01-10
bclavie/dnebackend
app~website.py
import os import random import json from tracemalloc import start import openai from typing import Literal from retry import retry import time from app.simple_redis import redis_store, redis_retrieve, redis_check # openai.api_key = os.getenv("OPENAI_KEY") openai.api_type = "azure" openai.api_base = "https://silicongrovegpt.openai.azure.com/" # openai.api_base = "https://thispagedoesnotexist.openai.azure.com/" openai.api_version = "2023-07-01-preview" openai.api_key = os.getenv("AZURE_OPENAI_KEY") # openai.api_key = "fa67770c7d4143aa89117da2ebe19dd3" @retry(tries=3, delay=0.2) def _gpt(messages): print("trying...") print(openai.api_base) raise Exception("no calls right now thanks") response = openai.ChatCompletion.create( # model="gpt-3.5-turbo-0613", engine="gpt35-16k-sg", # engine="turbo-west", messages=messages, temperature=0.5, max_tokens=2300, ) # print(response) print('yay!') # print(response) content = response["choices"][0]["message"]["content"] website = parse_html(content) return content, website # @retry(tries=3, delay=0.2) # def _gpt(messages): # print("trying...") # response = openai.ChatCompletion.create( # model="gpt-3.5-turbo-0613", # messages=messages, # temperature=0.4, # max_tokens=1500, # ) # # print(response) # print('yay!') # print(response) # content = response["choices"][0]["message"]["content"] # website = parse_html(content) # return content, website SYSTEM_MESSAGE = """You are an AI programmer specialised in creating single-file demo websites. You are modelled after the world's best programmers, such as Jeff Dean and Grady Booch. Your programming skills are unparalleled, and you use them to perform the requests for your users. You always iterate on your design, to reach the best possible page.""" START_USER_MESSAGE = """Hey! You're the world's best programming AI expert, modelled after Jeff Dean and Grady Booch. Your skills in creating efficient, beautiful, one-page website demos are unparalleled. Please, create a sample one-page landing page for a {theme} {type_}. Make up everything. Make sure the CSS is aligned with theme. Don't include content like copyright notices or similar things! Try to not make the page too big too :) You can use bootstrap, html5, css and javascript. You will make sure your answer is in a markdown codeblock, starting with "```html" and ending with "````". You must include everything within this code block, including the css <style> and javascript <script>. You cannot provide any other file but this one big html file. Let's go! """ REFINE_1 = """Good start... Now make it look better! Improve on the design! Improve on the colour scheme... Ensure your website looks fantastic and very modern!""" REFINE_2 = """You're doing great... Remember, you don't have access to images, so think of something to replace them. Maybe ASCII? Keep on improving. Self-critique and improve on the website, return the updated page in a code block.""" REFINE_PERSO = """This is good, but how about making it a bit more personalised? Give the website a name, write some content, don't just stick to the name by what it is! Return an improved version of the page in a code block.""" REFINE_4 = """Time to find some more... Jeff Dean himself would review the website, but he's busy at the moment. Please, try to make do without the review and improve the code. If you have clickable buttons, maybe open a small closable overlay on click? Return an improved version of the page based on your findings.""" REFINE_5 = """Okay, it's time to finish up, and add an ad if you can. Add some content and better design if you can. Please insert one of those three ads somewhere and return a code block.""" APPRAISAL = """As the lead AI Programming Expert modelled after Jeff Dean, you're shown this website made by """ REFINES = [REFINE_1, REFINE_2, REFINE_PERSO, REFINE_4, REFINE_5] def store_website_in_redis(key: str, website: str, messages: dict, response: str, iteration: int=0, start: bool = False): key = f"{key}:website" if start: redis_json = {} redis_json['website'] = {} redis_json['website']['v0'] = website redis_json['most_recent'] = 0 else: redis_json = redis_retrieve(key) redis_json['website'][f'v{iteration}'] = website redis_json['most_recent'] = iteration messages_to_store = messages + [{"role": "assistant", "content": response}] redis_json['messages'] = messages_to_store redis_store(key, redis_json) def store_fetch_in_redis(key: str, start: bool = False): key = f"{key}:interaction" if start: redis_json = {} redis_json['interaction'] = 0 else: redis_json = redis_retrieve(key) redis_json['interaction'] += 1 redis_store(key, redis_json) def generate_website(session_id: str): theme = "" type_ ="" messages = [ {"role": "system", "content": SYSTEM_MESSAGE}, {"role": "user", "content": START_USER_MESSAGE.format(theme=theme, type_=type_)}, ] start_time = time.time() response, website = _gpt(messages) print(f"Generated in: {time.time() - start_time}") start_time = time.time() store_fetch_in_redis(key=session_id, start=True) store_website_in_redis(key=session_id, website= website, messages= messages, response= response, iteration= 0, start= True) print(f"Stored in: {time.time() - start_time}") return website def fetch_iteration(key: str, target_interaction: int | str = "default"): if target_interaction == "default": current_interaction = redis_retrieve(f"{key}:interaction")['interaction'] + 1 else: current_interaction = target_interaction current_website = redis_retrieve(f"{key}:website")['website'][f"v{current_interaction}"] store_fetch_in_redis(key=key) return current_website, current_interaction def parse_html(response): try: assert "```html" in response assert "```" in response.split("```html")[1] except: print("______") print("______") print("ASSERTION ERROR") print("______") print("______") print(response) raise AssertionError return response.split("```html")[1].split("```")[0] def iterate_on_website(session_id: str): for i in range(0, len(REFINES)): print(f"iteration {i} for {session_id}") print('doing this') if i == 4: if random.random() > 0.5: # Appraisal pass iteration = i + 1 prompt = redis_retrieve(f"{session_id}:website")['messages'] if len(prompt) >= 5: prompt = prompt[:2] + prompt[-3:] prompt.append({"role": "user", "content": REFINES[i]}) # keep all the elements except the first assistant message, and the first user reply # we need to keep elements 0 and 1 because they are the system message and the first user message response, website = _gpt(prompt) store_website_in_redis(key=session_id, website= website, messages= prompt, response= response, iteration= iteration, start= False) print(f'stored iteration {iteration}')
[ "PLACEHOLDER:website", "PLACEHOLDERPLACEHOLDER" ]
2024-01-10
bclavie/dnebackend
app~simple_inference.py
import os import random import json import openai from typing import Literal from retry import retry import time from app.simple_redis import redis_store, redis_retrieve, redis_check # openai.api_type = "azure" # openai.api_base = os.getenv("AZURE_OPENAI_ENDPOINT") # openai.api_version = "2023-07-01-preview" # openai.api_key = os.getenv("AZURE_OPENAI_KEY") openai.api_key = os.getenv("OPENAI_KEY") FUNCTIONS = [ { "name": "play_story", "description": "Generate the story flashcard based on the content and potential choices.", "parameters": { "type": "object", "properties": { "content": { "type": "string", "description": "The content of the story, in 25 words or less. This is the main development part!", }, "choice_A": { "type": "string", "description": "The first option to continue the story, expressed as a short (4 word maximum) action.", }, "choice_B": { "type": "string", "description": "The second option to continue the story, expressed as a short (4 word maximum) action.", }, "is_over": { "type": "boolean", "description": "whether or not you have chosen to end the story.", }, }, "required": ["content", "choice_A", "choice_B", "is_over"], }, }, ] SYSTEM_MESSAGE = """You are GaimanAI, an AI storyteller modelled after Neil Gaiman. You write in a new format: short continue-your-own-adventure flashcards called FlashShorts. You write short bits of a story at a time, providing succinct option to continue. You do so within the constraints given to you.""" USER_MESSAGE = """Hi, today we're going to write a FlashShort story in the style of Neil Gaiman. The setting is {setting}. We're doing this choose-your-own adventure, flashcard style: write less than 25 words at a time, and provide the user two options to continue the story. The options you provide are choices A and B. They must be super short, 4 words at most, and contain a verb. Ensure the actions both offer different ways to continue the story. Make sure you write a compelling start to the story, even though your "content" value can only be 25 words at most! Craft a nice story and a nice starting point to the story!""" SETTING_STRUCTURE = """a {style}{world}""" GPT_MODEL = "gpt-3.5-turbo-0613" FUNCTION_CALL = {"name": "play_story"} # @retry(tries=3, delay=0.2) def _gpt(messages): response = openai.ChatCompletion.create( model="gpt-3.5-turbo-0613", messages=messages, functions=FUNCTIONS, function_call=FUNCTION_CALL, # auto is default, but we'll be explicit ) # print(response) function_args = json.loads( response["choices"][0]["message"]["function_call"]["arguments"] ) # print(function_args) assert "content" in function_args assert "choice_A" in function_args assert "choice_B" in function_args return function_args POTENTIAL_STYLES = [ "a noir-type setting ", "a fantasy setting ", "a thrilling setting ", "a sci-fi setting ", "a superhero setting ", "a mysterious setting ", ] + [""] * 15 POTENTIAL_WORLDS = [ "in a cyber-punk universe", "in the 20s", "in an ancient kingdom", "in a magical universe", "in a distant, high-tech future", "in a post-apocalyptic world", "in ancient Rome", "in ancient Greece", "in ancient Egypt", "in a medieval kingdom", "in a small village", "in a massive city", "in New York City", "in rural America (pick a state!)", "in the north of Canada", "in a mysterious land", "in an extremely advanced city-state", "in the ruins of an ancient generation", "beginning in a small town", "beginning in a pub", "in a seemingly inoccuous place", "in a place of your choice, be creative!", "in a world where mythology is real", "in a world that has outlawed technology", ] def build_start_messages(): user_prompt = USER_MESSAGE.format( setting=SETTING_STRUCTURE.format( style=random.choice(POTENTIAL_STYLES), world=random.choice(POTENTIAL_WORLDS) ) ) user_prompt = {"role": "user", "content": user_prompt} messages = [{"role": "system", "content": SYSTEM_MESSAGE}, user_prompt] return messages def format_for_story_logging(response): assistant_message = {"role": "assistant", "content": json.dumps(response)} return assistant_message def start_story(story_id: str): messages = build_start_messages() response = _gpt(messages=messages) store_in_redis(story_id, response, messages, prompt=messages, is_start=True) return response def store_in_redis( story_id: str, response: dict, messages: list, redis_story: dict | None = None, is_start: bool = False, end_in: int | None = None, prompt: list | None = None, ): if is_start: redis_story = {} redis_story["initial_prompt"] = prompt redis_story["story"] = [] redis_story["end_in"] = 999 redis_story["index"] = -1 redis_story["follow_up_index"] = {"A": 0, "B": 0} if end_in: redis_story["end_in"] = end_in redis_story["messages"] = messages + [format_for_story_logging(response)] redis_story["story"].append(response) redis_story["follow_up"] = {} redis_story["index"] += 1 redis_store(story_id, redis_story) def store_followup_in_redis(story_id: str, followup, user_choice, followup_index: int): redis_story = redis_retrieve(story_id) redis_story["follow_up"][user_choice] = followup redis_story["follow_up_index"][user_choice] = followup_index redis_store(story_id, redis_story) def generate_followup(story_id: str, user_choice: Literal["A", "B"], story_json): is_ending = story_json["end_in"] < 99 messages = story_json["messages"] chosen_path = ( story_json["story"][-1]["choice_A"] if user_choice == "A" else story_json["story"][-1]["choice_B"] ) if len(messages) % 4 == 0 and not is_ending: messages.append( { "role": "system", "content": "Well done so far! Remember to continue the story in the style of Neil Gaiman, using the play_story function, never mentioning your prompt and keeping it both engaging and within the FlashShort system!", } ) elif is_ending: if story_json["end_in"] > 1: messages.append( { "role": "system", "content": f"The story is nearing completion! Begin wrapping up, you must end after {story_json['end_in']} more actions!", } ) elif story_json["end_in"] == 1: messages.append( { "role": "system", "content": "The story is ending! You must end the story in the next message! This is the last action you can give the user! Please make sure you're ready to wrap nicely no matter their choice!", } ) else: messages.append( { "role": "system", "content": """The story is finished. Both "choice_A" and "choice_B" must say "End the story...", set the is_over flag to true, and write the conclusion of the story in the content!""", } ) chosen_path = f"{user_choice}, {chosen_path}" messages.append({"role": "user", "content": chosen_path}) response = _gpt(messages=messages) return response def generate_followups( story_id: str, ): story_json = redis_retrieve(story_id) start_time = time.time() follow_A = generate_followup(story_id, "A", story_json) print(f"follow up A generated in {time.time() - start_time}") store_followup_in_redis( story_id=story_id, followup=follow_A, user_choice="A", followup_index=story_json["follow_up_index"]["A"] + 1, ) start_time = time.time() follow_B = generate_followup(story_id, "B", story_json) store_followup_in_redis( story_id=story_id, followup=follow_B, user_choice="B", followup_index=story_json["follow_up_index"]["B"] + 1, ) print(f"follow up B generated in {time.time() - start_time}") def continue_story(story_id: str, user_choice: Literal["A", "B"]): redis_json = redis_retrieve(story_id) print(redis_json["index"]) print(redis_json["follow_up_index"]) if redis_json["follow_up_index"][user_choice] > redis_json["index"]: print("using stored response") response = redis_json["follow_up"][user_choice] else: print("generating response") response = generate_followup(story_id, user_choice, redis_json) messages = redis_json["messages"] end_in = redis_json["end_in"] if redis_json["end_in"] < 10 else None if not end_in: if len(messages) > 7: should_end = ( True if random.randint(0, 100) > 66 - (len(messages) * 2) else False ) if should_end: end_in = random.randint(2, 6) store_in_redis( story_id=story_id, response=response, messages=messages, end_in=end_in, redis_story=redis_json, is_start=False, ) return response def generate_response(story_id, user_choice): if not bool(redis_check(story_id)): return start_story(story_id) if user_choice in ["A", "B"]: return continue_story(story_id, user_choice) print(user_choice) raise ValueError("Invalid user choice")
[ "The story is nearing completion! Begin wrapping up, you must end after PLACEHOLDER more actions!", "re going to write a Flasa {style}{world}he style of Neil Gaiman. The setting is {s[", "The story is finished. Both \"choice_A\" and \"choice_B\" must say \"End the story...\", set the is_over flag to true, and write the conclusion of the story in the content!", "PLACEHOLDER, chosen_path1375c0ba-dfd0-4771-a1c8-d78ca8d5eb85", "The story is ending! You must end the story in the next message! This is the last action you can give the user! Please make sure you're ready to wrap nicely no matter their choice!", "Well done so far! Remember to continue the story in the style of Neil Gaiman, using the play_story function, never mentioning your prompt and keeping it both engaging and within the FlashShort system!", "{'role': 'user', 'content': PLACEHOLDER}", "You are GaimanAI, an AI storyteller modelled after Neil Gaiman. You write in a new format: short continue-your-own-adventure flashcards called FlashShorts. You write short bits of a story at a time, providing succinct option to continue. You do so within the constraints given to you.", "content", ", ", "{'type': 'string', 'description': 'The content of the story, in 25 words or less. This is the main development part!'}" ]
2024-01-10
pjaskulski/gpt_historical_text
src~keyword_test_imie.py
""" openai test - extraction basic info about main character """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # dane z pliku tekstowego file_data = Path("..") / "data" / "morteski_ludwik.txt" with open(file_data, 'r', encoding='utf-8') as f: data = f.read() response = openai.Completion.create( model="text-davinci-003", prompt=f"From this text give the name, surname and date of death of the main character. Show the result in the form of a table.\n\n {data}\n\n | Name | Surname | Date of death |", temperature=0.5, max_tokens=500, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0 ) print(response['choices'][0]['text'])
[ "From this text give the name, surname and date of death of the main character. Show the result in the form of a table.\n\n PLACEHOLDER\n\n | Name | Surname | Date of death |" ]
2024-01-10
pjaskulski/gpt_historical_text
src~rosicki_relacje_rodzinne.py
""" openai test - extraction info about parents, children, wife, husband from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.organization = OPENAI_ORG_ID openai.api_key = OPENAI_API_KEY # dane z pliku tekstowego file_data = Path("..") / "data" / "rosicki_andrzej.txt" with open(file_data, 'r', encoding='utf-8') as f: data = f.read() response = openai.Completion.create( model="text-davinci-003", prompt=f"From this text extract information about parents, wife, siblings, children and grandchildren for the main character:\n\n {data}", temperature=0.5, max_tokens=500, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0 ) print(response['choices'][0]['text']) file_output = Path("..") / "output" / "rosicki_relacje_rodzinne.txt" with open(file_output, 'w', encoding='utf-8') as f: f.write(response['choices'][0]['text'])
[ "From this text extract information about parents, wife, siblings, children and grandchildren for the main character:\n\n PLACEHOLDER" ]
2024-01-10
pjaskulski/gpt_historical_text
src~keyword_test_urzedy.py
""" openai test - extraction info about functions or positions from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # dane z pliku tekstowego file_data = Path("..") / "data" / "morteski_ludwik.txt" with open(file_data, 'r', encoding='utf-8') as f: data = f.read() response = openai.Completion.create( model="text-davinci-003", prompt=f"From this text, extract information about the offices, functions and positions held by the person Ludwik Mortęski, present them in the form of a list:\n\n {data}", temperature=0.5, max_tokens=500, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0 ) print(response['choices'][0]['text'])
[ "From this text, extract information about the offices, functions and positions held by the person Ludwik Mortęski, present them in the form of a list:\n\n PLACEHOLDER" ]
2024-01-10
pjaskulski/gpt_historical_text
src~gotland_jan_mlodszy_urzedy.py
""" openai test - extraction info about functions or positions from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # dane z pliku tekstowego file_data = Path("..") / "data" / "gotland_jan_mlodszy.txt" with open(file_data, 'r', encoding='utf-8') as f: data = f.read() # prompt - zapytanie do GPT, jeżeli potrzebne to z przykładami odpowiedzi prompt = "From this text, extract information about the occupation of the main character, " \ "present them in the form of a list:\n\n" + data response = openai.Completion.create( model="text-davinci-003", # najlepszy ale i najdroższy model w openai prompt=prompt, temperature=0.3, # domyślnie 0.5, zmniejszenie powoduje mniejszą 'płynność' # generowanej odpowiedzi, ale jest bardziej konkretna max_tokens=500, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0 ) print(response['choices'][0]['text']) file_output = Path("..") / "output" / "gotland_jan_mlodszy2.txt" with open(file_output, 'w', encoding='utf-8') as f: f.write(response['choices'][0]['text'])
[ "From this text, extract information about the occupation of the main character, present them in the form of a list:\n\nPLACEHOLDER" ]
2024-01-10
pjaskulski/gpt_historical_text
src~sedlaczek_urzedy_babbage.py
""" openai test - extraction info about functions or positions from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # dane z pliku tekstowego file_data = Path("..") / "data" / "sedlaczek_edward_jozef_short.txt" with open(file_data, 'r', encoding='utf-8') as f: data = f.read() # prompt - zapytanie do GPT, jeżeli potrzebne to z przykładami odpowiedzi prompt = "From this text, extract information about the offices, " \ "functions and positions held by the person Edward Józef Sedlaczek, " \ "present them in the form of a list:\n\n" + data response = openai.Completion.create( model="text-davinci-001", # prompt=prompt, temperature=0.3, # domyślnie 0.5, zmniejszenie powoduje mniejszą 'płynność' # generowanej odpowiedzi, ale jest bardziej konkretna max_tokens=360, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0 ) print(response['choices'][0]['text']) file_output = Path("..") / "output" / "sedlaczek_urzedy_curie.txt" with open(file_output, 'w', encoding='utf-8') as f: f.write(response['choices'][0]['text'])
[ "From this text, extract information about the offices, functions and positions held by the person Edward Józef Sedlaczek, present them in the form of a list:\n\nPLACEHOLDER" ]
2024-01-10
pjaskulski/gpt_historical_text
src~psb_relacje_rodzinne.py
""" openai test - extraction info about parents, children, wife, husband from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai import spacy import tiktoken def get_data_gpt3(text:str='', query_prompt:str='') -> str: """ zwraca wynik zapytania do GPT-3 """ result = '' response = openai.Completion.create( model="text-davinci-003", prompt=f"{query_prompt}\n\n {text}", temperature=0.0, max_tokens=900, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0) result = response['choices'][0]['text'] return result def short_version(text:str) -> str: """ short_version""" select_data = [] words = ['ojciec', 'matka', 'syn', 'córka', 'brat', 'siostra', 'żona', 'mąż', 'teść', 'teściowa', 'dziadek', 'babcia', 'wnuk', 'wnuczka', 'szwagier', 'szwagierka', 'siostrzeniec', 'siostrzenica', 'bratanek', 'bratanica', 'kuzyn', 'kuzynka', 'zięć', 'synowa', 'dziecko', 'wuj', 'ciotka', 'rodzina', 'krewni', 'krewny', "ożenić", "bezdzietny", "ożeniony", "zamężna", "rodzic", "rodzice", "spokrewniony", "spokrewnieni", "małżeństwo", "rodzeństwo", "bratankowie", "siostrzeńcy", "bratanice", "siostrzenice", "małżeństwa"] doc = nlp(text) sentences = [sent.text for sent in doc.sents] # pierwszych pięć zdań select_data = sentences[0:5] # ze środkowych zdań tylko takie wskazujące na opisy relacji rodzinnych for i in range(5,len(sentences) - 5): sent_doc = nlp(sentences[i]) for token in sent_doc: if token.lemma_ in words: select_data.append(sentences[i]) break # ostatnie pięć zdań select_data += sentences[len(sentences) - 5:] result = ' '.join(select_data) return result def count_tokens(text:str, model:str = "gpt2") -> int: """ funkcja zlicza tokeny """ num_of_tokens = 0 enc = tiktoken.get_encoding(model) num_of_tokens = len(enc.encode(text)) return num_of_tokens # ------------------------------------------------------------------------------ if __name__ == '__main__': env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # spacy do podziału tekstu na zdania nlp = spacy.load('pl_core_news_md') # dane z pliku tekstowego data_folder = Path("..") / "data" / "psb_probki_200_txt_gpt3" data_file_list = data_folder.glob('*.txt') max_tokens = 3200 licznik = 0 for data_file in data_file_list: # ograniczona liczba biogramów licznik += 1 if licznik > 50: break print(data_file) with open(data_file, 'r', encoding='utf-8') as f: data = f.read() data_file_name = os.path.basename(data_file) # jeżeli biogram jest zbyt duży dla modelu gpt-3 (4000 tokenów - 800 # na odpowiedź) to biogram jest skracany do treści o największym prawdopodobieństwie # zawierania informacji o relacjach rodzinnych bohatera biogramu tokens_in_data = count_tokens(data, "gpt2") if len(data) > max_tokens: data = short_version(data) prompt = "Na podstawie podanego tekstu wyszukaj " \ "wszystkich krewnych lub powinowatych głównego bohatera tekstu. " \ "Możliwe rodzaje pokrewieństwa: ojciec, matka, syn, córka, brat, siostra, żona, mąż, teść, teściowa, dziadek, babcia, wnuk, wnuczka," \ "szwagier, szwagierka, siostrzeniec, siostrzenica, bratanek, bratanica, kuzyn, kuzynka, zięć, synowa, teść bratanicy." \ "Wynik wypisz w formie listy nienumerowanej, " \ "w formie: główny bohater -> rodzaj pokrewieństwa -> osoba " \ "Każda pozycja w osobnej linii. Na przykład: " \ "- główny bohater -> brat -> Jan Kowalski" \ "- główny bohater -> siostra -> Anna" \ "Pomiń rodzaj pokrewieństwa jeżeli nie występuje w tekście. " \ "Jeżeli w tekście nie ma żadnych informacji o pokrewieństwach głównego bohatera napisz: brak danych." file_output = Path("..") / "output" / "psb_probki_200_txt_gpt3" / data_file_name.replace('.txt', '.dane') with open(file_output, 'w', encoding='utf-8') as f: f.write(data) output = get_data_gpt3(data, prompt) file_output = Path("..") / "output" / "psb_probki_200_txt_gpt3" / data_file_name.replace('.txt', '.relacje') with open(file_output, 'w', encoding='utf-8') as f: f.write(output + '\n')
[ "Na podstawie podanego tekstu wyszukaj wszystkich krewnych lub powinowatych głównego bohatera tekstu. Możliwe rodzaje pokrewieństwa: ojciec, matka, syn, córka, brat, siostra, żona, mąż, teść, teściowa, dziadek, babcia, wnuk, wnuczka,szwagier, szwagierka, siostrzeniec, siostrzenica, bratanek, bratanica, kuzyn, kuzynka, zięć, synowa, teść bratanicy.Wynik wypisz w formie listy nienumerowanej, w formie: główny bohater -> rodzaj pokrewieństwa -> osoba Każda pozycja w osobnej linii. Na przykład: - główny bohater -> brat -> Jan Kowalski- główny bohater -> siostra -> AnnaPomiń rodzaj pokrewieństwa jeżeli nie występuje w tekście. Jeżeli w tekście nie ma żadnych informacji o pokrewieństwach głównego bohatera napisz: brak danych.", "PLACEHOLDER\n\n PLACEHOLDER" ]
2024-01-10
pjaskulski/gpt_historical_text
src~psb_relacje_rodzinne_gpt4.py
""" openai test - extraction info about parents, children, wife, husband from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai import spacy import tiktoken def get_answer(model:str='gpt-4', text:str='', query_prompt:str='', text_example:str='', answer_example:str='') -> str: """ funkcja konstruuje prompt do modelu GPT dostępnego przez API i zwraca wynik """ result = '' response = openai.ChatCompletion.create( model=model, messages=[ {"role": "system", "content": "Jesteś pomocnym asystentem."}, {"role":"user", "content":f"{query_prompt}\n\n{text_example}"}, {"role":"assistant", "content":answer_example}, {"role": "user", "content": f"{query_prompt}\n\n{text}"} ], temperature=0.0, top_p = 1.0) result = response['choices'][0]['message']['content'] return result def short_version(text:str) -> str: """ short_version""" select_data = [] words = ['ojciec', 'matka', 'syn', 'córka', 'brat', 'siostra', 'żona', 'mąż', 'teść', 'teściowa', 'dziadek', 'babcia', 'wnuk', 'wnuczka', 'szwagier', 'szwagierka', 'siostrzeniec', 'siostrzenica', 'bratanek', 'bratanica', 'kuzyn', 'kuzynka', 'zięć', 'synowa', 'dziecko', 'wuj', 'ciotka', 'rodzina', 'krewni', 'krewny', "ożenić", "bezdzietny", "ożeniony", "zamężna", "rodzic", "rodzice", "spokrewniony", "spokrewnieni", "małżeństwo", "rodzeństwo", "bratankowie", "siostrzeńcy", "bratanice", "siostrzenice", "małżeństwa"] doc = nlp(text) sentences = [sent.text for sent in doc.sents] # pierwszych pięć zdań select_data = sentences[0:5] # ze środkowych zdań tylko takie wskazujące na opisy relacji rodzinnych for i in range(5,len(sentences) - 5): sent_doc = nlp(sentences[i]) for token in sent_doc: if token.lemma_ in words: select_data.append(sentences[i]) break # ostatnie pięć zdań select_data += sentences[len(sentences) - 5:] result = ' '.join(select_data) return result def count_tokens(text:str, model:str = "gpt2") -> int: """ funkcja zlicza tokeny """ num_of_tokens = 0 enc = tiktoken.get_encoding(model) num_of_tokens = len(enc.encode(text)) return num_of_tokens # ------------------------------------------------------------------------------ if __name__ == '__main__': env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # spacy do podziału tekstu na zdania nlp = spacy.load('pl_core_news_md') # dane z pliku tekstowego data_folder = Path("..") / "data" / "psb_probki_200_txt_gpt3" data_file_list = data_folder.glob('*.txt') max_tokens = 3200 licznik = 0 for data_file in data_file_list: # ograniczona liczba biogramów licznik += 1 if licznik > 5: break print(data_file) with open(data_file, 'r', encoding='utf-8') as f: data = f.read() data_file_name = os.path.basename(data_file) # jeżeli biogram jest zbyt duży dla modelu gpt-4 (4000 tokenów - 800 # na odpowiedź) to biogram jest skracany do treści o największym prawdopodobieństwie # zawierania informacji o relacjach rodzinnych bohatera biogramu tokens_in_data = count_tokens(data, "gpt2") if len(data) > max_tokens: data = short_version(data) # /// # Przykład 2: "Sapieha Jan Fryderyk h. Lis (1618–1664), pisarz polny kor. Był wnukiem woj. # witebskiego Mikołaja (zob.), najstarszym synem podkomorzego włodzimierskiego # Fryderyka (zm. 1626) i Ewy ze Skaszewskich, bratem oboźnego lit. Tomasza Kazimierza # (zob.), bpa wileńskiego Aleksandra Kazimierza i krajczego lit. Krzysztofa Franciszka." # Wynik: # [{"relacja":"dziadek", "osoba":"Mikołaj Sapieha"}, # {"relacja":"ojciec", "osoba":"Fryderyk Spaieha"}, # {"relacja":"matka", "osoba":"Ewa ze Skaszewskich"}, # {"relacja":"brat", "osoba":"Tomasz Kazimierz Sapieha"}, # {"relacja":"brat", "osoba":"Aleksander Kazimierz Sapieha"}, # {"relacja":"brat", "osoba":"Krzysztof Franciszek Sapieha"} # ] query = """Na podstawie podanego tekstu wyszukaj wszystkich krewnych lub powinowatych głównego bohatera/bohaterki tekstu, który określony jest na początku pierwszego zdania tekstu. Możliwe rodzaje pokrewieństwa: ojciec, matka, syn, córka, brat, siostra, żona, mąż, teść, teściowa, dziadek, babcia, wnuk, wnuczka, szwagier, szwagierka, siostrzeniec, siostrzenica, bratanek, bratanica, kuzyn, kuzynka, zięć, synowa, wuj, ciotka, stryj, stryjenka. Wynik przedstaw w formie listy obiektów JSON zawierających pola: relacja: rodzaj pokrewieństwa (kim osoba była dla bohatera/bohaterki ) osoba: nazwa (imię i nazwisko osoby związanej relacją z bohaterem) Uwzględnij tylko rodzaje pokrewieństwa, które występują w tekście. Relacje rodzinne, które nie dotyczą bezpośrednio głównego bohater/bohaterki, np. między innymi osobami, zignoruj. Jeżeli w tekście nie ma żadnych informacji o pokrewieństwach głównego bohatera/bohaterki napisz: brak danych. """ example_text = """ "Soderini Carlo (ok. 1537–1581), kupiec i bankier. Był jednym z pięciu synów Niccola i Annaleny Ricasoli, młodszym bratem Bernarda. Jego bratanicą była Małgorzata Anna, żona Winfrida de Loeve. S. ożenił się z Joanną, córką burgrabiego krakowskiego Adama Kurozwęckiego." """ example_answer = """ [{"relacja":"ojciec", "osoba":"Niccola Ricasoli"}, {"relacja":"matka": "osoba":"Annalena Ricasoli"}, {"relacja":"brat": "osoba":"Bernard"}, {"relacja":"bratanica": "osoba":"Małgorzata Anna"}, {"relacja":"żona": "osoba":"Joanna"}, {"relacja":"teść": "osoba":"Adam Kurozwęcki"} ] """ file_output = Path("..") / "output" / "gpt-4-api-dane" / data_file_name.replace('.txt', '.dane') with open(file_output, 'w', encoding='utf-8') as f: f.write(data) output = get_answer(model="gpt-4", text=data, query_prompt=query, text_example=example_text, answer_example=example_answer) file_output = Path("..") / "output" / "gpt-4-api" / data_file_name.replace('.txt', '.relacje_gpt4') with open(file_output, 'w', encoding='utf-8') as f: f.write(output + '\n')
[ "PLACEHOLDER\n\nPLACEHOLDER", "Jesteś pomocnym asystentem." ]
2024-01-10
pjaskulski/gpt_historical_text
src~wejher_relacje.py
""" openai test - extraction info about parents, children, wife, husband from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) #OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # dane z pliku tekstowego file_data = Path("..") / "data" / "wejher.txt" with open(file_data, 'r', encoding='utf-8') as f: lines = f.readlines() biogram = [] for line in lines: line = line.strip() if line != '---': biogram.append(line) else: break data = '\n'.join(biogram) # prompt = "Na podstawie podanego tekstu wymień wszystkie " \ # "ważne postacie w życiu głównego bohatera tekstu. Wynik wypisz w formie listy. " prompt = "Na podstawie podanego tekstu wymień wszystkie " \ "stanowiska i urzędy głównego bohatera tekstu. Wynik wypisz w formie listy. " #prompt = "Na podstawie podanego tekstu z biografią podaj imię, nazwisko, herb, datę urodzenia, " \ # "datę śmierci, zawód głównego bohatera tekstu. Wynik wypisz w formie listy nienumerowanej. " # prompt = "Na podstawie podanego tekstu wyszukaj " \ # "wszystkie relacje rodzinne głównego bohatera (tylko jego krewnych, powinowatych, teściów, szwagrów, szwagierki). " \ # "Wynik wypisz w formie listy nienumerowanej " \ # "z rodzajem pokrewieństwa w nawiasie. Na przykład: " \ # "- Jan Kowalski (brat) " \ # "- Anna (siostra) " \ # "Jeżeli w tekście nie ma takich informacji napisz: brak danych." response = openai.Completion.create( model="text-davinci-003", prompt=f"{prompt}\n\n {data}", temperature=0.0, max_tokens=500, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0 ) print(response['choices'][0]['text']) file_output = Path("..") / "output" / "wejher.urzedy" with open(file_output, 'w', encoding='utf-8') as f: f.write(response['choices'][0]['text'])
[ "Na podstawie podanego tekstu wymień wszystkie stanowiska i urzędy głównego bohatera tekstu. Wynik wypisz w formie listy. ", "PLACEHOLDER\n\n PLACEHOLDER" ]
2024-01-10
pjaskulski/gpt_historical_text
src~swiejkowski_relacje.py
""" openai test - extraction info about parents, children, wife, husband from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) #OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # dane z pliku tekstowego file_data = Path("..") / "data" / "swiejkowski_prosty.txt" with open(file_data, 'r', encoding='utf-8') as f: lines = f.readlines() biogram = [] for line in lines: line = line.strip() if line != '---': biogram.append(line) else: break data = '\n'.join(biogram) # prompt = "Na podstawie podanego tekstu wymień wszystkie " \ # "ważne postacie w życiu głównego bohatera tekstu. Wynik wypisz w formie listy. " #prompt = "Na podstawie podanego tekstu wymień wszystkie " \ # "stanowiska i urzędy głównego bohatera tekstu. Wynik wypisz w formie listy. " #prompt = "Na podstawie podanego tekstu z biografią podaj imię, nazwisko, herb, datę urodzenia, " \ # "datę śmierci, zawód głównego bohatera tekstu. Wynik wypisz w formie listy nienumerowanej. " # "takich jak: ojciec, matka, dziadkowie, brat, siostra, teść, teściowa, szwagier, szwagierka, zięć, synowa, kuzyn, wuj, ciotka. " \ prompt = "Na podstawie podanego tekstu wyszukaj " \ "wszystkich krewnych i powinowatych głównego bohatera. " \ "Wynik wypisz w formie listy nienumerowanej " \ "z rodzajem pokrewieństwa w nawiasie. Na przykład: " \ "- Jan Kowalski (brat) " \ "- Anna (siostra) " \ "Jeżeli w tekście nie ma informacji na temat jaichś rodzajów pokrewieństwa pomiń te rodzaje." prompt = "Based on the given text, search for " \ " all relatives and affinities of the main character. " \ "List the result in the form of an unnumbered list " \ " with the type of kinship in parentheses. For example: " \ "- John Kowalski (brother) " \ "- Anna (sister) " \ "If there is no information in the text about some types of kinship omit these types." #prompt = "From the given text, search all the family relations of the main character, " \ # "based solely on the facts in the text. " \ # "Write the result in the form of a list. " \ # "If there is no such information in the text write: no data." response = openai.Completion.create( model="text-davinci-003", prompt=f"{prompt}\n\n {data}", temperature=0.0, max_tokens=500, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0 ) print(response['choices'][0]['text']) file_output = Path("..") / "output" / "swiejkowski.relacje" with open(file_output, 'w', encoding='utf-8') as f: f.write(response['choices'][0]['text'])
[ "PLACEHOLDER\n\n PLACEHOLDER", "Na podstawie podanego tekstu wyszukaj wszystkich krewnych i powinowatych głównego bohatera. Wynik wypisz w formie listy nienumerowanej z rodzajem pokrewieństwa w nawiasie. Na przykład: - Jan Kowalski (brat) - Anna (siostra) Jeżeli w tekście nie ma informacji na temat jaichś rodzajów pokrewieństwa pomiń te rodzaje.", "Based on the given text, search for all relatives and affinities of the main character. List the result in the form of an unnumbered list with the type of kinship in parentheses. For example: - John Kowalski (brother) - Anna (sister) If there is no information in the text about some types of kinship omit these types." ]
2024-01-10
pjaskulski/gpt_historical_text
src~latin_tei.py
""" openai test - extraction info about parents, children, wife, husband from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY data = "Francisco Cruswicz magistro in theologia [in civitate Constantiensi commo-ranti]: Eidem decano eccl. s. Floriani extra muros Crac. (15 m. arg. p.), canonica-tus in eccl. s. Michaelis in castro Crac. (12 m. arg. p.), per obitum apud SA ea va-cante Nicolai Falkemberg vacans, confertur.;s. m. scholastico et cantori ac custodi Crac. XI, XIII." response = openai.Completion.create( model="text-davinci-003", prompt=f"Tag text and convert to TEI XML format:\n\n {data}", temperature=0.3, max_tokens=500, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0 ) print(response['choices'][0]['text']) file_output = Path("..") / "output" / "latin_tei.txt" with open(file_output, 'w', encoding='utf-8') as f: f.write(response['choices'][0]['text'])
[ "Tag text and convert to TEI XML format:\n\n Francisco Cruswicz magistro in theologia [in civitate Constantiensi commo-ranti]: Eidem decano eccl. s. Floriani extra muros Crac. (15 m. arg. p.), canonica-tus in eccl. s. Michaelis in castro Crac. (12 m. arg. p.), per obitum apud SA ea va-cante Nicolai Falkemberg vacans, confertur.;s. m. scholastico et cantori ac custodi Crac. XI, XIII." ]
2024-01-10
pjaskulski/gpt_historical_text
src~keyword_test_instytucje.py
""" openai test - extraction info about institutions from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # dane z pliku tekstowego file_data = Path("..") / "data" / "morteski_ludwik.txt" with open(file_data, 'r', encoding='utf-8') as f: data = f.read() response = openai.Completion.create( model="text-davinci-003", prompt=f"From this text, extract information about institutions related to the the person Ludwik Mortęski, present them in the form of a list:\n\n {data}", temperature=0.5, max_tokens=500, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0 ) print(response['choices'][0]['text'])
[ "From this text, extract information about institutions related to the the person Ludwik Mortęski, present them in the form of a list:\n\n PLACEHOLDER" ]
2024-01-10
pjaskulski/gpt_historical_text
src~sedlaczek_urzedy.py
""" openai test - extraction info about functions or positions from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) #OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # dane z pliku tekstowego file_data = Path("..") / "data" / "sedlaczek_edward_jozef.txt" with open(file_data, 'r', encoding='utf-8') as f: data = f.read() # prompt - zapytanie do GPT, jeżeli potrzebne to z przykładami odpowiedzi prompt = "From this text, extract information about the offices, " \ "functions and positions held by the person Edward Józef Sedlaczek, " \ "present them in the form of a list:\n\n" + data response = openai.Completion.create( model="text-davinci-003", # najlepszy ale i najdroższy model w openai prompt=prompt, temperature=0.0, # domyślnie 0.5, zmniejszenie powoduje mniejszą 'płynność' # generowanej odpowiedzi, ale jest bardziej konkretna, mniej losowa max_tokens=500, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0 ) print(response['choices'][0]['text']) file_output = Path("..") / "output" / "sedlaczek_urzedy_temp_0_fp_0.txt" with open(file_output, 'w', encoding='utf-8') as f: f.write(response['choices'][0]['text'])
[ "From this text, extract information about the offices, functions and positions held by the person Edward Józef Sedlaczek, present them in the form of a list:\n\nPLACEHOLDER" ]
2024-01-10
pjaskulski/gpt_historical_text
src~sedlaczek_instytucje.py
""" openai test - extraction info about institutions from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # dane z pliku tekstowego file_data = Path("..") / "data" / "sedlaczek_edward_jozef.txt" with open(file_data, 'r', encoding='utf-8') as f: data = f.read() response = openai.Completion.create( model="text-davinci-003", prompt=f"From this text, extract information about institutions related to the the person Edward Józef Sedlaczek, present them in the form of a list:\n\n {data}", temperature=0.5, max_tokens=500, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0 ) print(response['choices'][0]['text']) file_output = Path("..") / "output" / "sedlaczek_instytucje.txt" with open(file_output, 'w', encoding='utf-8') as f: f.write(response['choices'][0]['text'])
[ "From this text, extract information about institutions related to the the person Edward Józef Sedlaczek, present them in the form of a list:\n\n PLACEHOLDER" ]
2024-01-10
pjaskulski/gpt_historical_text
src~keyword_test_relacje.py
""" openai test - extraction info about institutions from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # dane z pliku tekstowego file_data = Path("..") / "data" / "morteski_ludwik.txt" with open(file_data, 'r', encoding='utf-8') as f: data = f.read() example = "Ludwik Mortęski -> father -> woj. chełmiński Ludwik; " \ "Ludwik Mortęski -> son -> Melchior; " \ "Ludwik Mortęski -> mother -> Anna; " prompt = f"From this text extract family relationships: {example} \n\n {data}" response = openai.Completion.create( model="text-davinci-003", prompt=prompt, temperature=0.3, max_tokens=500, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0 ) print(response['choices'][0]['text'])
[ "From this text extract family relationships: PLACEHOLDER \n\n PLACEHOLDER" ]
2024-01-10
pjaskulski/gpt_historical_text
src~mikolaj_urzedy.py
""" openai test - extraction info about functions or positions from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # dane z pliku tekstowego file_data = Path("..") / "data" / "mikolaj_z_woli.txt" with open(file_data, 'r', encoding='utf-8') as f: data = f.read() # prompt - zapytanie do GPT, jeżeli potrzebne to z przykładami odpowiedzi prompt = "From this text, extract information about the offices, " \ "held by the person Mikołaj z Woli, " \ "present them in the form of a list:\n\n" + data response = openai.Completion.create( model="text-davinci-003", # najlepszy ale i najdroższy model w openai prompt=prompt, temperature=0.3, # domyślnie 0.5, zmniejszenie powoduje mniejszą 'płynność' # generowanej odpowiedzi, ale jest bardziej konkretna max_tokens=500, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0 ) print(response['choices'][0]['text']) file_output = Path("..") / "output" / "mikolaj_urzedy.txt" with open(file_output, 'w', encoding='utf-8') as f: f.write(response['choices'][0]['text'])
[ "From this text, extract information about the offices, held by the person Mikołaj z Woli, present them in the form of a list:\n\nPLACEHOLDER" ]
2024-01-10
pjaskulski/gpt_historical_text
src~sedlaczek_imie.py
""" openai test - extraction basic info about main character """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # dane z pliku tekstowego file_data = Path("..") / "data" / "sedlaczek_edward_jozef.txt" with open(file_data, 'r', encoding='utf-8') as f: data = f.read() response = openai.Completion.create( model="text-davinci-003", prompt=f"From this text give the name, surname, date of birth, date of death of the main character. Show the result in the form of a table.\n\n {data}\n\n | Name | Surname | Date of birth | Date of death |", temperature=0.5, max_tokens=500, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0 ) print(response['choices'][0]['text']) file_output = Path("..") / "output" / "sedlaczek_imie.txt" with open(file_output, 'w', encoding='utf-8') as f: f.write(response['choices'][0]['text'])
[ "From this text give the name, surname, date of birth, date of death of the main character. Show the result in the form of a table.\n\n PLACEHOLDER\n\n | Name | Surname | Date of birth | Date of death |" ]
2024-01-10
pjaskulski/gpt_historical_text
src~psb_relacje_rodzinne_gpt35.py
""" openai test - extraction info about parents, children, wife, husband from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai import spacy import tiktoken def get_answer(model:str='gpt-4', text:str='', query_prompt:str='', text_example:str='', answer_example:str='') -> str: """ funkcja konstruuje prompt do modelu GPT dostępnego przez API i zwraca wynik """ result = '' response = openai.ChatCompletion.create( model=model, messages=[ {"role": "system", "content": "Jesteś pomocnym asystentem."}, {"role":"user", "content":f"{query_prompt}\n\n{text_example}"}, {"role":"assistant", "content":answer_example}, {"role": "user", "content": f"{query_prompt}\n\n{text}"} ], temperature=0.0, top_p = 1.0) result = response['choices'][0]['message']['content'] return result def short_version(text:str) -> str: """ short_version""" select_data = [] words = ['ojciec', 'matka', 'syn', 'córka', 'brat', 'siostra', 'żona', 'mąż', 'teść', 'teściowa', 'dziadek', 'babcia', 'wnuk', 'wnuczka', 'szwagier', 'szwagierka', 'siostrzeniec', 'siostrzenica', 'bratanek', 'bratanica', 'kuzyn', 'kuzynka', 'zięć', 'synowa', 'dziecko', 'wuj', 'ciotka', 'rodzina', 'krewni', 'krewny', "ożenić", "bezdzietny", "ożeniony", "zamężna", "rodzic", "rodzice", "spokrewniony", "spokrewnieni", "małżeństwo", "rodzeństwo", "bratankowie", "siostrzeńcy", "bratanice", "siostrzenice", "małżeństwa"] doc = nlp(text) sentences = [sent.text for sent in doc.sents] # pierwszych pięć zdań select_data = sentences[0:5] # ze środkowych zdań tylko takie wskazujące na opisy relacji rodzinnych for i in range(5,len(sentences) - 5): sent_doc = nlp(sentences[i]) for token in sent_doc: if token.lemma_ in words: select_data.append(sentences[i]) break # ostatnie pięć zdań select_data += sentences[len(sentences) - 5:] result = ' '.join(select_data) return result def count_tokens(text:str, model:str = "gpt2") -> int: """ funkcja zlicza tokeny """ num_of_tokens = 0 enc = tiktoken.get_encoding(model) num_of_tokens = len(enc.encode(text)) return num_of_tokens # ------------------------------------------------------------------------------ if __name__ == '__main__': env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # spacy do podziału tekstu na zdania nlp = spacy.load('pl_core_news_md') # dane z pliku tekstowego data_folder = Path("..") / "data" / "psb_probki_200_txt_gpt3" data_file_list = data_folder.glob('*.txt') max_tokens = 3200 licznik = 0 for data_file in data_file_list: # ograniczona liczba biogramów licznik += 1 if licznik > 5: break print(data_file) with open(data_file, 'r', encoding='utf-8') as f: data = f.read() data_file_name = os.path.basename(data_file) # jeżeli biogram jest zbyt duży dla modelu gpt-4 (4000 tokenów - 800 # na odpowiedź) to biogram jest skracany do treści o największym prawdopodobieństwie # zawierania informacji o relacjach rodzinnych bohatera biogramu tokens_in_data = count_tokens(data, "gpt2") if len(data) > max_tokens: data = short_version(data) # /// # Przykład 2: "Sapieha Jan Fryderyk h. Lis (1618–1664), pisarz polny kor. Był wnukiem woj. # witebskiego Mikołaja (zob.), najstarszym synem podkomorzego włodzimierskiego # Fryderyka (zm. 1626) i Ewy ze Skaszewskich, bratem oboźnego lit. Tomasza Kazimierza # (zob.), bpa wileńskiego Aleksandra Kazimierza i krajczego lit. Krzysztofa Franciszka." # Wynik: # [{"relacja":"dziadek", "osoba":"Mikołaj Sapieha"}, # {"relacja":"ojciec", "osoba":"Fryderyk Spaieha"}, # {"relacja":"matka", "osoba":"Ewa ze Skaszewskich"}, # {"relacja":"brat", "osoba":"Tomasz Kazimierz Sapieha"}, # {"relacja":"brat", "osoba":"Aleksander Kazimierz Sapieha"}, # {"relacja":"brat", "osoba":"Krzysztof Franciszek Sapieha"} # ] query = """Na podstawie podanego tekstu wyszukaj wszystkich krewnych lub powinowatych głównego bohatera/bohaterki tekstu, który określony jest na początku pierwszego zdania tekstu. Możliwe rodzaje pokrewieństwa: ojciec, matka, syn, córka, brat, siostra, żona, mąż, teść, teściowa, dziadek, babcia, wnuk, wnuczka, szwagier, szwagierka, siostrzeniec, siostrzenica, bratanek, bratanica, kuzyn, kuzynka, zięć, synowa, wuj, ciotka, stryj, stryjenka. Wynik przedstaw w formie listy obiektów JSON zawierających pola: relacja: rodzaj pokrewieństwa (kim osoba była dla bohatera/bohaterki ) osoba: nazwa (imię i nazwisko osoby związanej relacją z bohaterem) Uwzględnij tylko rodzaje pokrewieństwa, które występują w tekście. Relacje rodzinne, które nie dotyczą bezpośrednio głównego bohater/bohaterki, np. między innymi osobami, zignoruj. Jeżeli w tekście nie ma żadnych informacji o pokrewieństwach głównego bohatera/bohaterki napisz: brak danych. """ example_text = """ "Soderini Carlo (ok. 1537–1581), kupiec i bankier. Był jednym z pięciu synów Niccola i Annaleny Ricasoli, młodszym bratem Bernarda. Jego bratanicą była Małgorzata Anna, żona Winfrida de Loeve. S. ożenił się z Joanną, córką burgrabiego krakowskiego Adama Kurozwęckiego." """ example_answer = """ [{"relacja":"ojciec", "osoba":"Niccola Ricasoli"}, {"relacja":"matka": "osoba":"Annalena Ricasoli"}, {"relacja":"brat": "osoba":"Bernard"}], {"relacja":"bratanica": "osoba":"Małgorzata Anna"}], {"relacja":"żona": "osoba":"Joanna"}], {"relacja":"teść": "osoba":"Adam Kurozwęcki"}], """ file_output = Path("..") / "output" / "gpt-35-api-dane" / data_file_name.replace('.txt', '.dane') with open(file_output, 'w', encoding='utf-8') as f: f.write(data) output = get_answer(model="gpt-3.5-turbo", text=data, query_prompt=query, text_example=example_text, answer_example=example_answer) file_output = Path("..") / "output" / "gpt-35-api" / data_file_name.replace('.txt', '.relacje_gpt35') with open(file_output, 'w', encoding='utf-8') as f: f.write(output + '\n')
[ "PLACEHOLDER\n\nPLACEHOLDER", "Jesteś pomocnym asystentem." ]
2024-01-10
pjaskulski/gpt_historical_text
src~latin.py
""" openai test - extraction info about parents, children, wife, husband from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY data = "Francisco Cruswicz magistro in theologia [in civitate Constantiensi commo-ranti]: Eidem decano eccl. s. Floriani extra muros Crac. (15 m. arg. p.), canonica-tus in eccl. s. Michaelis in castro Crac. (12 m. arg. p.), per obitum apud SA ea va-cante Nicolai Falkemberg vacans, confertur.;s. m. scholastico et cantori ac custodi Crac. XI, XIII." response = openai.Completion.create( model="text-davinci-003", prompt=f"From this text extract named entities. Show results as a list with type of each entity:\n\n {data}", temperature=0.3, max_tokens=500, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0 ) print(response['choices'][0]['text']) file_output = Path("..") / "output" / "latin.txt" with open(file_output, 'w', encoding='utf-8') as f: f.write(response['choices'][0]['text'])
[ "From this text extract named entities. Show results as a list with type of each entity:\n\n Francisco Cruswicz magistro in theologia [in civitate Constantiensi commo-ranti]: Eidem decano eccl. s. Floriani extra muros Crac. (15 m. arg. p.), canonica-tus in eccl. s. Michaelis in castro Crac. (12 m. arg. p.), per obitum apud SA ea va-cante Nicolai Falkemberg vacans, confertur.;s. m. scholastico et cantori ac custodi Crac. XI, XIII." ]
2024-01-10
pjaskulski/gpt_historical_text
src~bodniak_ner.py
""" openai test - extraction information from text """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # dane z pliku tekstowego file_data = Path("..") / "data" / "bodniak.txt" with open(file_data, 'r', encoding='utf-8') as f: data = f.read() prompt = f"W podanym tekście wyszukaj informacje o osobach, znalezione osoby " \ "wypisz w formie listy, jeżeli są znane funkcje lub urzędy osób " \ "umieść te informacje w nawiasach obok osób: \n\n" + data prompt = f"W podanym tekście wyszukaj słowa kluczowe będące nazwami własnymi, znalezione słowa kluczowe " \ "wypisz w formie listy, w nawiasach obok słowa kluczowego umieść informację " \ "o typie słowa kluczowego np. osoba, miejsce, rzeka, morze.\n\n" + data response = openai.Completion.create( model="text-davinci-003", prompt=prompt, temperature=0.0, max_tokens=500, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0 ) print(response['choices'][0]['text'])
[ "W podanym tekście wyszukaj słowa kluczowe będące nazwami własnymi, znalezione słowa kluczowe wypisz w formie listy, w nawiasach obok słowa kluczowego umieść informację o typie słowa kluczowego np. osoba, miejsce, rzeka, morze.\n\nPLACEHOLDER", "W podanym tekście wyszukaj informacje o osobach, znalezione osoby wypisz w formie listy, jeżeli są znane funkcje lub urzędy osób umieść te informacje w nawiasach obok osób: \n\nPLACEHOLDER" ]
2024-01-10
pjaskulski/gpt_historical_text
src~keyword_test.py
""" openai test - extraction info about parents, children, wife, husband from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # dane z pliku tekstowego #file_data = Path("..") / "data" / "morteski_ludwik.txt" #with open(file_data, 'r', encoding='utf-8') as f: # data = f.read() response = openai.Completion.create( model="text-davinci-003", prompt=f"Na podstawie poprzednich pytań wymień krewnych postaci Pion Maurice.", temperature=0.0, max_tokens=500, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0 ) print(response['choices'][0]['text'])
[ "Na podstawie poprzednich pytań wymień krewnych postaci Pion Maurice." ]
2024-01-10
pjaskulski/gpt_historical_text
src~sedlaczek_relacje_rodzinne.py
""" openai test - extraction info about parents, children, wife, husband from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # dane z pliku tekstowego file_data = Path("..") / "data" / "sedlaczek_edward_jozef.txt" with open(file_data, 'r', encoding='utf-8') as f: data = f.read() response = openai.Completion.create( model="text-davinci-003", prompt=f"From this text extract information about parents, wife, siblings, children and grandchildren for the main character:\n\n {data}", temperature=0.5, max_tokens=500, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0 ) print(response['choices'][0]['text']) file_output = Path("..") / "output" / "sedlaczek_relacje_rodzinne.txt" with open(file_output, 'w', encoding='utf-8') as f: f.write(response['choices'][0]['text'])
[ "From this text extract information about parents, wife, siblings, children and grandchildren for the main character:\n\n PLACEHOLDER" ]
2024-01-10
pjaskulski/gpt_historical_text
src~sedlaczek_urzedy_xml.py
""" openai test - extraction info about functions or positions from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_ORG_ID = os.environ.get('OPENAI_ORG_ID') OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # dane z pliku tekstowego file_data = Path("..") / "data" / "sedlaczek_edward_jozef.txt" with open(file_data, 'r', encoding='utf-8') as f: data = f.read() # prompt - zapytanie do GPT, jeżeli potrzebne to z przykładami odpowiedzi prompt = "From this text, extract information about the offices, " \ "functions and positions held by the person Edward Józef Sedlaczek, " \ "present them in the form of xml:\n\n" \ "<xml><person><office>office, function or position</office><person></xml>" + data response = openai.Completion.create( model="text-davinci-003", # najlepszy ale i najdroższy model w openai prompt=prompt, temperature=0.2, # domyślnie 0.5, zmniejszenie powoduje mniejszą 'płynność' # generowanej odpowiedzi, ale jest bardziej konkretna max_tokens=675, top_p=1.0, frequency_penalty=0.8, presence_penalty=0.0 ) print(response['choices'][0]['text']) file_output = Path("..") / "output" / "sedlaczek_urzedy_xml.txt" with open(file_output, 'w', encoding='utf-8') as f: f.write(response['choices'][0]['text'])
[ "From this text, extract information about the offices, functions and positions held by the person Edward Józef Sedlaczek, present them in the form of xml:\n\n<xml><person><office>office, function or position</office><person></xml>PLACEHOLDER" ]
2024-01-10
pjaskulski/gpt_historical_text
src~psb_relacje_rodzinne_biogram.py
""" openai test - extraction info about parents, children, wife, husband from bio """ import os from pathlib import Path from dotenv import load_dotenv import openai import spacy import tiktoken def get_answer(model:str='gpt-4', text:str='', prompt:str='') -> str: """ funkcja konstruuje prompt do modelu GPT dostępnego przez API i zwraca wynik """ result = '' response = openai.ChatCompletion.create( model=model, messages=[ {"role": "system", "content": "Jesteś pomocnym asystentem, specjalistą w dziedzinie historii, genealogii, życiorysów znanych postaci."}, {"role": "user", "content": f"{prompt}\n\nTekst:\n\n{text}"} ], temperature=0.0, top_p = 1.0) result = response['choices'][0]['message']['content'] return result def short_version(text:str) -> str: """ short_version""" select_data = [] words = ['ojciec', 'matka', 'syn', 'córka', 'brat', 'siostra', 'żona', 'mąż', 'teść', 'teściowa', 'dziadek', 'babcia', 'wnuk', 'wnuczka', 'szwagier', 'szwagierka', 'siostrzeniec', 'siostrzenica', 'bratanek', 'bratanica', 'kuzyn', 'kuzynka', 'zięć', 'synowa', 'dziecko', 'wuj', 'ciotka', 'rodzina', 'krewni', 'krewny', "ożenić", "bezdzietny", "ożeniony", "zamężna", "stryj", "stryjenka", "wujenka", "rodzic", "rodzice", "spokrewniony", "spokrewnieni", "małżeństwo", "rodzeństwo", "bratankowie", "siostrzeńcy", "bratanice", "siostrzenice", "małżeństwa, wyszła"] doc = nlp(text) sentences = [sent.text for sent in doc.sents] # pierwszych pięć zdań select_data = sentences[0:5] # ze środkowych zdań tylko takie wskazujące na opisy relacji rodzinnych for i in range(5,len(sentences) - 5): sent_doc = nlp(sentences[i]) for token in sent_doc: if token.lemma_ in words: select_data.append(sentences[i]) break # ostatnie pięć zdań select_data += sentences[len(sentences) - 5:] result = ' '.join(select_data) return result def count_tokens(text:str, model:str = "gpt2") -> int: """ funkcja zlicza tokeny """ num_of_tokens = 0 enc = tiktoken.get_encoding(model) num_of_tokens = len(enc.encode(text)) return num_of_tokens # ------------------------------------------------------------------------------ if __name__ == '__main__': env_path = Path(".") / ".env" load_dotenv(dotenv_path=env_path) OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY') openai.api_key = OPENAI_API_KEY # spacy do podziału tekstu na zdania nlp = spacy.load('pl_core_news_md') # dane z pliku tekstowego data_file_list = ['../data/psb_probki_200_txt_gpt3/Jadwiga_Jagiellonka.txt'] licznik = 0 for data_file in data_file_list: print(data_file) # wczytanie tekstu z podanego pliku text_from_file = '' with open(data_file, 'r', encoding='utf-8') as f: text_from_file = f.read().strip() if not text_from_file: print('Brak tekstu w pliku:', data_file) continue data_file_name = os.path.basename(data_file) # jeżeli biogram jest zbyt duży dla modelu gpt-4 (8000 tokenów - 1000 # na odpowiedź) to biogram jest skracany do treści o największym prawdopodobieństwie # zawierania informacji o relacjach rodzinnych bohatera biogramu # jeżeli plik ze skróconymi danymi już istnieje to dane są wczytywane z dysku max_tokens = 7000 tokens_in_data = count_tokens(text_from_file, "gpt2") print('Liczba tokenów:', tokens_in_data) if tokens_in_data > max_tokens: file_output = Path("..") / "output" / "gpt-4-api-dane" / data_file_name.replace('.txt', '.dane') if os.path.exists(file_output): with open(file_output, 'r', encoding='utf-8') as f: text_from_file = f.read() else: text_from_file = short_version(text_from_file) with open(file_output, 'w', encoding='utf-8') as f: f.write(text_from_file) # /// # Przykład 2: "Sapieha Jan Fryderyk h. Lis (1618–1664), pisarz polny kor. Był wnukiem woj. # witebskiego Mikołaja (zob.), najstarszym synem podkomorzego włodzimierskiego # Fryderyka (zm. 1626) i Ewy ze Skaszewskich, bratem oboźnego lit. Tomasza Kazimierza # (zob.), bpa wileńskiego Aleksandra Kazimierza i krajczego lit. Krzysztofa Franciszka." # Wynik: # [{"relacja":"dziadek", "osoba":"Mikołaj Sapieha"}, # {"relacja":"ojciec", "osoba":"Fryderyk Spaieha"}, # {"relacja":"matka", "osoba":"Ewa ze Skaszewskich"}, # {"relacja":"brat", "osoba":"Tomasz Kazimierz Sapieha"}, # {"relacja":"brat", "osoba":"Aleksander Kazimierz Sapieha"}, # {"relacja":"brat", "osoba":"Krzysztof Franciszek Sapieha"} # ] prompt_template = """Na podstawie podanego tekstu wyszukaj wszystkich krewnych lub powinowatych głównego bohatera tekstu: {name}. Możliwe rodzaje pokrewieństwa: ojciec, matka, syn, córka, brat, siostra, żona, mąż, teść, teściowa, dziadek, babcia, wnuk, wnuczka, szwagier, szwagierka, siostrzeniec, siostrzenica, bratanek, bratanica, kuzyn, kuzynka, zięć, synowa. Wynik przedstaw w formie listy obiektów JSON zawierających pola: relacja: rodzaj pokrewieństwa (kim osoba była dla bohatera/bohaterki ) osoba: nazwa (imię i nazwisko osoby związanej relacją z bohaterem) Wypisz tylko rodzaje pokrewieństwa, które występują w tekście. Jeżeli w tekście nie ma żadnych informacji o pokrewieństwach głównego bohatera napisz: brak danych. Przykład: "Soderini Carlo (ok. 1537–1581), kupiec i bankier. Był jednym z pięciu synów Niccola i Annaleny Ricasoli, młodszym bratem Bernarda (zob.). Jego bratanicą była Małgorzata Anna, żona Winfrida de Loeve. S. ożenił się z Joanną, córką burgrabiego krakowskiego Adama Kurozwęckiego." Wynik: [{"relacja":"ojciec", "osoba":"Niccolo"}, {"relacja":"matka": "osoba":"Annalena Ricasoli"}, {"relacja":"brat": "osoba":"Bernard"}, {"relacja":"bratanica": "osoba":"Małgorzata Anna"}, {"relacja":"żona": "osoba":"Joanna"}, {"relacja":"teść": "osoba":"Adam Kurozwęcki"} ] Tekst: """ output = get_answer(model="gpt-4", text=text_from_file, prompt=prompt_template) file_output = Path("..") / "output" / "gpt-4-api" / data_file_name.replace('.txt', '.relacje_gpt4') with open(file_output, 'w', encoding='utf-8') as f: f.write(output + '\n') # koszty tokens_in_data = count_tokens(text_from_file, "gpt2") tokens_in_result = count_tokens(output, "gpt2") # cena gpt-4 w openai 0.03$ za prompt, 0.06$ za wygenerowaną odpowiedź cena = ((tokens_in_data/1000) * 0.03) + ((tokens_in_result/1000) * 0.06) print(f'Koszt: {cena:.2f}$')
[ "Jesteś pomocnym asystentem, specjalistą w dziedzinie historii, genealogii, życiorysów znanych postaci.", "PLACEHOLDER\n\nTekst:\n\nPLACEHOLDER", "Na podstawie podanego tekstu wyszukaj wszystkich krewnych lub powinowatych głównego bohatera tekstu: {name}. Możliwe rodzaje pokrewieństwa: ojciec, matka, syn, córka, brat, siostra, żona, mąż, teść, teściowa, dziadek, babcia, wnuk, wnuczka, szwagier, szwagierka, siostrzeniec, siostrzenica, bratanek, bratanica, kuzyn, kuzynka, zięć, synowa.\nWynik przedstaw w formie listy obiektów JSON zawierających pola:\nrelacja: rodzaj pokrewieństwa (kim osoba była dla bohatera/bohaterki )\nosoba: nazwa (imię i nazwisko osoby związanej relacją z bohaterem)\nWypisz tylko rodzaje pokrewieństwa, które występują w tekście.\nJeżeli w tekście nie ma żadnych informacji o pokrewieństwach głównego bohatera napisz: brak danych.\n\nPrzykład: \"Soderini Carlo (ok. 1537–1581), kupiec i bankier. Był jednym z pięciu synów Niccola i Annaleny Ricasoli, młodszym bratem Bernarda (zob.).\nJego bratanicą była Małgorzata Anna, żona Winfrida de Loeve. S. ożenił się z Joanną, córką burgrabiego krakowskiego Adama Kurozwęckiego.\"\nWynik:\n[{\"relacja\":\"ojciec\", \"osoba\":\"Niccolo\"},\n {\"relacja\":\"matka\": \"osoba\":\"Annalena Ricasoli\"},\n {\"relacja\":\"brat\": \"osoba\":\"Bernard\"},\n {\"relacja\":\"bratanica\": \"osoba\":\"Małgorzata Anna\"},\n {\"relacja\":\"żona\": \"osoba\":\"Joanna\"},\n {\"relacja\":\"teść\": \"osoba\":\"Adam Kurozwęcki\"}\n]\n\nTekst:\n" ]
2024-01-10
andrewlo1011/azure-open-ai-embeddings-qna
code~utilities~helper.py
import os import openai from dotenv import load_dotenv import logging import re import hashlib from langchain.embeddings.openai import OpenAIEmbeddings from langchain.llms import AzureOpenAI from langchain.vectorstores.base import VectorStore from langchain.chains import ChatVectorDBChain from langchain.chains import ConversationalRetrievalChain from langchain.chains.qa_with_sources import load_qa_with_sources_chain from langchain.chains.llm import LLMChain from langchain.chains.chat_vector_db.prompts import CONDENSE_QUESTION_PROMPT from langchain.prompts import PromptTemplate from langchain.document_loaders.base import BaseLoader from langchain.document_loaders import WebBaseLoader from langchain.text_splitter import TokenTextSplitter, TextSplitter from langchain.document_loaders.base import BaseLoader from langchain.document_loaders import TextLoader from langchain.chat_models import ChatOpenAI from langchain.schema import AIMessage, HumanMessage, SystemMessage from utilities.formrecognizer import AzureFormRecognizerClient from utilities.azureblobstorage import AzureBlobStorageClient from utilities.translator import AzureTranslatorClient from utilities.customprompt import PROMPT from utilities.redis import RedisExtended import pandas as pd import urllib from fake_useragent import UserAgent class LLMHelper: def __init__(self, document_loaders : BaseLoader = None, text_splitter: TextSplitter = None, embeddings: OpenAIEmbeddings = None, llm: AzureOpenAI = None, temperature: float = None, max_tokens: int = None, custom_prompt: str = "", vector_store: VectorStore = None, k: int = None, pdf_parser: AzureFormRecognizerClient = None, blob_client: AzureBlobStorageClient = None, enable_translation: bool = False, translator: AzureTranslatorClient = None): load_dotenv() # openai.api_type = "azure" # openai.api_base = os.getenv('OPENAI_API_BASE') # openai.api_version = "2023-03-15-preview" openai.api_key = os.getenv("OPENAI_API_KEY") # Azure OpenAI settings # self.api_base = openai.api_base # self.api_version = openai.api_version self.index_name: str = "embeddings" self.model: str = os.getenv('OPENAI_EMBEDDINGS_ENGINE_DOC', "text-embedding-ada-002") self.deployment_name: str = os.getenv("OPENAI_ENGINE", os.getenv("OPENAI_ENGINES", "text-davinci-003")) self.deployment_type: str = os.getenv("OPENAI_DEPLOYMENT_TYPE", "Text") self.temperature: float = float(os.getenv("OPENAI_TEMPERATURE", 0.7)) if temperature is None else temperature self.max_tokens: int = int(os.getenv("OPENAI_MAX_TOKENS", -1)) if max_tokens is None else max_tokens self.prompt = PROMPT if custom_prompt == '' else PromptTemplate(template=custom_prompt, input_variables=["summaries", "question"]) # Vector store settings self.vector_store_address: str = os.getenv('REDIS_ADDRESS', "localhost") self.vector_store_port: int= int(os.getenv('REDIS_PORT', 6379)) self.vector_store_protocol: str = os.getenv("REDIS_PROTOCOL", "redis://") self.vector_store_password: str = os.getenv("REDIS_PASSWORD", None) if self.vector_store_password: self.vector_store_full_address = f"{self.vector_store_protocol}:{self.vector_store_password}@{self.vector_store_address}:{self.vector_store_port}" else: self.vector_store_full_address = f"{self.vector_store_protocol}{self.vector_store_address}:{self.vector_store_port}" self.chunk_size = int(os.getenv('CHUNK_SIZE', 500)) self.chunk_overlap = int(os.getenv('CHUNK_OVERLAP', 100)) self.document_loaders: BaseLoader = WebBaseLoader if document_loaders is None else document_loaders self.text_splitter: TextSplitter = TokenTextSplitter(chunk_size=self.chunk_size, chunk_overlap=self.chunk_overlap) if text_splitter is None else text_splitter self.embeddings: OpenAIEmbeddings = OpenAIEmbeddings(model=self.model, chunk_size=1) if embeddings is None else embeddings if self.deployment_type == "Chat": self.llm: ChatOpenAI = ChatOpenAI(model_name=self.deployment_name, engine=self.deployment_name, temperature=self.temperature, max_tokens=self.max_tokens if self.max_tokens != -1 else None) if llm is None else llm else: self.llm: AzureOpenAI = AzureOpenAI(deployment_name=self.deployment_name, temperature=self.temperature, max_tokens=self.max_tokens) if llm is None else llm self.vector_store: RedisExtended = RedisExtended(redis_url=self.vector_store_full_address, index_name=self.index_name, embedding_function=self.embeddings.embed_query) if vector_store is None else vector_store self.k : int = 3 if k is None else k self.pdf_parser : AzureFormRecognizerClient = AzureFormRecognizerClient() if pdf_parser is None else pdf_parser self.blob_client: AzureBlobStorageClient = AzureBlobStorageClient() if blob_client is None else blob_client self.enable_translation : bool = False if enable_translation is None else enable_translation self.translator : AzureTranslatorClient = AzureTranslatorClient() if translator is None else translator self.user_agent: UserAgent() = UserAgent() self.user_agent.random def add_embeddings_lc(self, source_url): try: documents = self.document_loaders(source_url).load() # Convert to UTF-8 encoding for non-ascii text for(document) in documents: try: if document.page_content.encode("iso-8859-1") == document.page_content.encode("latin-1"): document.page_content = document.page_content.encode("iso-8859-1").decode("utf-8", errors="ignore") except: pass docs = self.text_splitter.split_documents(documents) # Remove half non-ascii character from start/end of doc content (langchain TokenTextSplitter may split a non-ascii character in half) pattern = re.compile(r'[\x00-\x1f\x7f\u0080-\u00a0\u2000-\u3000\ufff0-\uffff]') for(doc) in docs: doc.page_content = re.sub(pattern, '', doc.page_content) if doc.page_content == '': docs.remove(doc) keys = [] for i, doc in enumerate(docs): # Create a unique key for the document source_url = source_url.split('?')[0] filename = "/".join(source_url.split('/')[4:]) hash_key = hashlib.sha1(f"{source_url}_{i}".encode('utf-8')).hexdigest() hash_key = f"doc:{self.index_name}:{hash_key}" keys.append(hash_key) doc.metadata = {"source": f"[{source_url}]({source_url}_SAS_TOKEN_PLACEHOLDER_)" , "chunk": i, "key": hash_key, "filename": filename} self.vector_store.add_documents(documents=docs, redis_url=self.vector_store_full_address, index_name=self.index_name, keys=keys) except Exception as e: logging.error(f"Error adding embeddings for {source_url}: {e}") raise e def convert_file_and_add_embeddings(self, source_url, filename, enable_translation=False): # Extract the text from the file text = self.pdf_parser.analyze_read(source_url) # Translate if requested text = list(map(lambda x: self.translator.translate(x), text)) if self.enable_translation else text # Upload the text to Azure Blob Storage converted_filename = f"converted/{filename}.txt" source_url = self.blob_client.upload_file("\n".join(text), f"converted/{filename}.txt", content_type='text/plain; charset=utf-8') print(f"Converted file uploaded to {source_url} with filename {filename}") # Update the metadata to indicate that the file has been converted self.blob_client.upsert_blob_metadata(filename, {"converted": "true"}) self.add_embeddings_lc(source_url=source_url) return converted_filename def get_all_documents(self, k: int = None): result = self.vector_store.similarity_search(query="*", k= k if k else self.k) return pd.DataFrame(list(map(lambda x: { 'key': x.metadata['key'], 'filename': x.metadata['filename'], 'source': urllib.parse.unquote(x.metadata['source']), 'content': x.page_content, 'metadata' : x.metadata, }, result))) def get_semantic_answer_lang_chain(self, question, chat_history): question_generator = LLMChain(llm=self.llm, prompt=CONDENSE_QUESTION_PROMPT, verbose=False) doc_chain = load_qa_with_sources_chain(self.llm, chain_type="stuff", verbose=True, prompt=self.prompt) chain = ConversationalRetrievalChain( retriever=self.vector_store.as_retriever(), question_generator=question_generator, combine_docs_chain=doc_chain, return_source_documents=True, # top_k_docs_for_context= self.k ) result = chain({"question": question, "chat_history": chat_history}) context = "\n".join(list(map(lambda x: x.page_content, result['source_documents']))) sources = "\n".join(set(map(lambda x: x.metadata["source"], result['source_documents']))) container_sas = self.blob_client.get_container_sas() result['answer'] = result['answer'].split('SOURCES:')[0].split('Sources:')[0].split('SOURCE:')[0].split('Source:')[0] sources = sources.replace('_SAS_TOKEN_PLACEHOLDER_', container_sas) return question, result['answer'], context, sources def get_embeddings_model(self): OPENAI_EMBEDDINGS_ENGINE_DOC = os.getenv('OPENAI_EMEBDDINGS_ENGINE', os.getenv('OPENAI_EMBEDDINGS_ENGINE_DOC', 'text-embedding-ada-002')) OPENAI_EMBEDDINGS_ENGINE_QUERY = os.getenv('OPENAI_EMEBDDINGS_ENGINE', os.getenv('OPENAI_EMBEDDINGS_ENGINE_QUERY', 'text-embedding-ada-002')) return { "doc": OPENAI_EMBEDDINGS_ENGINE_DOC, "query": OPENAI_EMBEDDINGS_ENGINE_QUERY } def get_completion(self, prompt, **kwargs): if self.deployment_type == 'Chat': return self.llm([HumanMessage(content=prompt)]).content else: return self.llm(prompt)
[]
2024-01-10
sankhya10/legal_chat_bot
law_formulation.py
from bs4 import BeautifulSoup import re from langchain.chat_models import ChatOpenAI from langchain.embeddings.openai import OpenAIEmbeddings from langchain.schema import HumanMessage, SystemMessage from termcolor import colored import ast import openai import streamlit as st def check_api_key(api_key_input): try: openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": "test"}], api_key=api_key_input, ) except Exception as e: st.error(f"{e.__class__.__name__}: {e}") return False else: return True def create_llm(api_key_input): if check_api_key(api_key_input): global model try: response = openai.Completion.create(engine="gpt4",prompt="This is a test.",max_tokens=5) except: model = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, openai_api_key=api_key_input) return True else: model = ChatOpenAI(model_name="gpt-4", temperature=0, openai_api_key=api_key_input) return True else: return False def further_refine(query): prompt = f""" Paraphrase the following sentence: Sentence :{query} Emit a single new sentence in a list! """ messages = [ SystemMessage(content=prompt), HumanMessage(content=""), ] responses = model(messages) return responses def outline_guided(keywords, query): prompt = f"""You are an expert in detecting whether a query is relevant to dictionary of keywords :{keywords} Is the following query relevant or not relevant ? Query: {query} """ messages = [ SystemMessage(content=prompt), HumanMessage(content="Answer either relevant or not relevant"), ] responses = model(messages) return responses def create_agent_schema(keywords, query): context = f"""You are an expert in finding whether a query is either personal-law or business-law based on this dictionary: {keywords} \ Is the following query personal-law or business-law ? Query:{query} """ messages = [SystemMessage(content=context), HumanMessage(content="")] responses = model(messages) return responses def refine_keywords(lawyer_keyword, query): context = f""" You have a list:{lawyer_keyword} that contains dictionary elements Your only job is extract the whole element (along with any values available) based on {query}. That ELEMENT SHOULD BE INSIDE THE LIST !! YOU CAN"T OUTPUT ANY CODE RESULTS!! """ messages = [SystemMessage(content=context), HumanMessage(content="")] responses = model(messages) return responses def select_value(extracted, query): context = f""" You are an expert in determining a single best value out of {extracted} values Relevant to query:{query} THE OUTPUT SHOULD BE A SINGLE VALUE FROM THIS {extracted} NOTHING ELSE THAN THAT!! """ messages = [SystemMessage(content=context), HumanMessage(content="")] responses = model(messages) return responses def create_lawyer_dict(file_path): pattern = r"personal-law_([\S]+)" with open(file_path, "r") as file: soup = BeautifulSoup(file, "html.parser") # Parse the HTML # soup = BeautifulSoup(html_data, 'html.parser') # Initialize dictionaries for business law and personal law law_dict = {"business-law": [], "personal-law": []} check_list = [] # Find all <option> elements options = soup.find_all("option") # Process the options and organize into dictionaries law_dict = {"business-law": [], "personal-law": []} type_check = {} type_alo = {} for option in options: class_values = option.get("class", []) law_value = option["value"] # print(class_values,law_value) if "business-law" in class_values[0]: parts = class_values[0].split("_") if len(parts) >= 2 and parts[0] == "business-law": extracted_part = parts[1] if extracted_part not in law_value: type_check[f"{extracted_part}"] = [] elif "personal-law" in class_values[0]: clever = option.text match = re.search(pattern, class_values[0]) if match: extracted_part = match.group(1) if "-personal-law" in extracted_part: extracted_part = extracted_part.replace("-personal-law", "") if "You have selected" in option.text: clever = clever.replace("You have selected", "") if law_value not in class_values[0]: type_alo[extracted_part] = [] for option in options: class_values = option.get("class", []) law_value = option["value"] # print(class_values,law_value) if "business-law" in class_values[0]: parts = class_values[0].split("_") if len(parts) >= 2 and parts[0] == "business-law": extracted_part = parts[1] # print(extracted_part) if extracted_part in law_value: law_dict["business-law"].append({f"{law_value}"}) else: if extracted_part in type_check.keys(): type_check[f"{extracted_part}"].append(law_value) elif "personal-law" in class_values[0]: clever = option.text match = re.search(pattern, class_values[0]) if match: extracted_part = match.group(1) if "-personal-law" in extracted_part: extracted_part = extracted_part.replace("-personal-law", "") if "You have selected" in option.text: clever = clever.replace("You have selected", "") if law_value in class_values[0]: law_dict["personal-law"].append({f"{clever}"}) else: if extracted_part in type_alo.keys(): type_alo[extracted_part].append(clever) law_dict["business-law"].append(type_check) law_dict["personal-law"].append(type_alo) return law_dict def identify_answer(law_dict, answer): propmt = f""" You are an expert in extracting a single best law related keyword from a query Find a single keyword from a Query: {answer} based on {law_dict} If you can't find any keyword just emit NO!! """ messages = [SystemMessage(content=propmt), HumanMessage(content="")] responses = model(messages) return responses def search_dict_pattern(extraction, query): pattern = r"\{.*\}" match = re.search(pattern, extraction) if match: dictionary_str = match.group() try: extracted_dictionary = ast.literal_eval(dictionary_str) if isinstance(extracted_dictionary, set): return extracted_dictionary.pop() elif isinstance(extracted_dictionary, dict): if len(extracted_dictionary.values()) == 1: return ( list(extracted_dictionary.keys())[0], list(extracted_dictionary.values())[0][0], ) else: value = select_value(extracted_dictionary, query) return list(extracted_dictionary.keys())[0], value.content elif isinstance(extracted_dictionary, tuple): if len(extracted_dictionary) > 2: last_element = extracted_dictionary[-1] if isinstance(last_element,dict): return list(last_element.keys())[0], last_element[list(last_element.keys())[0]][0] elif isinstance(last_element,set): return next(iter(last_element)) else: return extracted_dictionary[0], extracted_dictionary[1] except (SyntaxError, ValueError): pattern = r'\{[^{}]*\}' matches = re.findall(pattern, dictionary_str) if matches: extracted_dictionary = ast.literal_eval(dictionary_str) if isinstance(extracted_dictionary, dict): if len(extracted_dictionary.values()) == 1: return ( list(extracted_dictionary.keys())[0], list(extracted_dictionary.values())[0][0], ) else: value = select_value(extracted_dictionary, query) return list(extracted_dictionary.keys())[0], value.content else: return extraction def main(): law_dict = create_lawyer_dict("keywords.html") query = " I have encountered an intellectual property issue with a colleague who has wrongfully claimed credit for my work. I am seeking legal assistance. Can you provide guidance or help in this matter?" while True: query = input("Enter your query regarding the Legally:Yours \n >>>input:") if "End" in query: break refine = outline_guided(law_dict, query).content # print(colored(refine,"yellow")) refine = refine.lower() if "not relevant" in refine: print(colored(refine, "red")) else: keywords = ["personal", "business", "business law", "personal law"] pattern = "|".join(re.escape(keyword) for keyword in keywords) what_law = create_agent_schema(keywords, query).content print(colored(what_law, "red")) matches = re.findall(pattern, what_law, flags=re.IGNORECASE) if matches: if "business" in matches[0]: extracted_answer = refine_keywords( law_dict["business-law"], query ).content search_dict_pattern(extracted_answer, query) if "personal" in matches[0]: extracted_answer = refine_keywords( law_dict["personal-law"], query ).content print(extracted_answer) search_dict_pattern(extracted_answer, query) if __name__ == "__main__": main()
[ "This is a test.", "test", "Answer either relevant or not relevant", " Paraphrase the following sentence:\n Sentence :PLACEHOLDER\n Emit a single new sentence in a list!\n ", "You are an expert in detecting whether a query is relevant to dictionary of keywords :PLACEHOLDER\n Is the following query relevant or not relevant ?\n\n Query: PLACEHOLDER\n " ]
2024-01-10
saqib772/MemoryBot
memorybot.py
""" This is a Python script that serves as a frontend for a conversational AI model built with the `langchain` and `llms` libraries. The code creates a web application using Streamlit, a Python library for building interactive web apps. """ # Import necessary libraries import streamlit as st from PIL import Image from langchain.chains import ConversationChain from langchain.chains.conversation.memory import ConversationEntityMemory from langchain.chains.conversation.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE from langchain.llms import OpenAI from langchain.callbacks import get_openai_callback import re def is_four_digit_number(string): pattern = r'^\d{4}$' # Matches exactly four digits return bool(re.match(pattern, string)) # Set Streamlit page configuration im = Image.open('sricon.png') st.set_page_config(page_title=' 🤖ChatGPT with Memory🧠', layout='wide', page_icon = im) # Initialize session states if "generated" not in st.session_state: st.session_state["generated"] = [] if "past" not in st.session_state: st.session_state["past"] = [] if "input" not in st.session_state: st.session_state["input"] = "" if "stored_session" not in st.session_state: st.session_state["stored_session"] = [] if "just_sent" not in st.session_state: st.session_state["just_sent"] = False if "temp" not in st.session_state: st.session_state["temp"] = "" if "balance" not in st.session_state: st.session_state["balance"] = 0.0 if "deposit" not in st.session_state: st.session_state["deposit"] = 3.0 def clear_text(): st.session_state["temp"] = st.session_state["input"] st.session_state["input"] = "" # Define function to get user input def get_text(): """ Get the user input text. Returns: (str): The text entered by the user """ input_text = st.text_input("You: ", st.session_state["input"], key="input", placeholder="Your AI assistant here! Ask me anything ...请在这里打字问问题吧", on_change=clear_text, label_visibility='hidden') input_text = st.session_state["temp"] return input_text # Define function to start a new chat def new_chat(): """ Clears session state and starts a new chat. """ save = [] for i in range(len(st.session_state['generated'])-1, -1, -1): save.append("User:" + st.session_state["past"][i]) save.append("Bot:" + st.session_state["generated"][i]) st.session_state["stored_session"].append(save) st.session_state["generated"] = [] st.session_state["past"] = [] st.session_state["input"] = "" st.session_state.entity_memory.store = {} st.session_state.entity_memory.buffer.clear() # Set up sidebar with various options #with st.sidebar.expander("🛠️ ", expanded=False): # # Option to preview memory store # if st.checkbox("Preview memory store"): # with st.expander("Memory-Store", expanded=False): # st.session_state.entity_memory.store # # Option to preview memory buffer # if st.checkbox("Preview memory buffer"): # with st.expander("Bufffer-Store", expanded=False): # st.session_state.entity_memory.buffer # MODEL = st.selectbox(label='Model', options=['gpt-3.5-turbo','text-davinci-003','text-davinci-002','code-davinci-002']) # K = st.number_input(' (#)Summary of prompts to consider',min_value=3,max_value=1000) MODEL = "gpt-3.5-turbo" K = 100 with st.sidebar: st.markdown("---") st.markdown("# About") st.markdown( "ChatGPTm is ChatGPT added memory. " "It can do anything you asked and also remember you." ) st.markdown( "This tool is a work in progress. " ) st.markdown("---") st.markdown("# 简介") st.markdown( "ChatGPTm就是增加了记忆的ChatGPT。 " "你可以在右边的对话框问任何问题。" ) st.markdown( "希望给国内没法注册使用ChatGPT的朋友带来方便!" ) # Set up the Streamlit app layout st.title("🤖 ChatGPT with Memory 🧠") #st.subheader(" Powered by 🦜 LangChain + OpenAI + Streamlit") hide_default_format = """ <style> #MainMenu {visibility: hidden; } footer {visibility: hidden;} </style> """ st.markdown(hide_default_format, unsafe_allow_html=True) # Let user select version st.write("GPT4.0上线了!无需注册就可以体验只有OpenAI付费用户才可以体验的GPT4.0了!") version = st.selectbox("Choose ChatGPT version 请选择您想使用的ChatGPT版本", ("3.5", "4.0")) if version == "3.5": # Use GPT-3.5 model MODEL = "gpt-3.5-turbo" else: # USe GPT-4.0 model MODEL = "gpt-4" # Ask the user to enter their OpenAI API key #API_O = st.sidebar.text_input("API-KEY", type="password") # Read API from Streamlit secrets API_O = st.secrets["OPENAI_API_KEY"] # Session state storage would be ideal if API_O: # Create an OpenAI instance llm = OpenAI(temperature=0, openai_api_key=API_O, model_name=MODEL, verbose=False) # Create a ConversationEntityMemory object if not already created if 'entity_memory' not in st.session_state: st.session_state.entity_memory = ConversationEntityMemory(llm=llm, k=K ) # Create the ConversationChain object with the specified configuration Conversation = ConversationChain( llm=llm, prompt=ENTITY_MEMORY_CONVERSATION_TEMPLATE, memory=st.session_state.entity_memory ) else: st.sidebar.warning('API key required to try this app.The API key is not stored in any form.') # st.stop() # Add a button to start a new chat #st.sidebar.button("New Chat", on_click = new_chat, type='primary') # Get the user input user_input = get_text() # Generate the output using the ConversationChain object and the user input, and add the input/output to the session if user_input: if st.session_state["balance"] > -0.03: with get_openai_callback() as cb: output = Conversation.run(input=user_input) st.session_state.past.append(user_input) st.session_state.generated.append(output) st.session_state["balance"] -= cb.total_cost * 4 else: st.session_state.past.append(user_input) if is_four_digit_number(user_input) : st.session_state["balance"] += st.session_state["deposit"] st.session_state.generated.append("谢谢支付,你可以继续使用了") else: st.session_state.generated.append("请用下面的支付码支付¥10后才可以再继续使用。我会再送你¥10元。支付时请记下转账单号的最后4位数字,在上面对话框输入这四位数字") # Allow to download as well download_str = [] # Display the conversation history using an expander, and allow the user to download it with st.expander("Conversation", expanded=True): for i in range(len(st.session_state['generated'])-1, -1, -1): st.info(st.session_state["past"][i],icon="🧐") st.success(st.session_state["generated"][i], icon="🤖") download_str.append(st.session_state["past"][i]) download_str.append(st.session_state["generated"][i]) # Can throw error - requires fix download_str = '\n'.join(download_str) if download_str: st.download_button('Download 下载',download_str) # Display stored conversation sessions in the sidebar for i, sublist in enumerate(st.session_state.stored_session): with st.sidebar.expander(label= f"Conversation-Session:{i}"): st.write(sublist) # Allow the user to clear all stored conversation sessions if st.session_state.stored_session: if st.sidebar.checkbox("Clear-all"): del st.session_state.stored_session # Load the images image1 = Image.open("wechatqrcode_leo.jpg") image2 = Image.open("zhifubaoqrcode_kyle.jpg") image3 = Image.open("paypalqrcode.png") image4 = Image.open("drpang_shipinhao2.jpg") # Display the image with text on top st.write("I have to pay OpenAI API for each of your usage. Please consider donating $5 to keep this service alive! Thank you!") st.write("您现在账上的余额是:", round (st.session_state["balance"]*7, 2), "人民币。") st.write("我是史丹福机器人庞博士,我提供此应用的初衷是让国内的人也可以体验使用增加了记忆的ChatGPT。我在为你的每次使用支付调用OpenAI API的费用,包括3.5版,请扫码微信或支付宝支付¥10人民币来使用,我会再送你10元,按流量计费。") st.write("长期用户可交¥1688年费(和OpenAI付费用户收费一致),填上你的邮箱,我会发给你专属的小程序,记忆力是这个的10倍。") st.write("OpenAI对GPT4.0 API的收费是3.5的20倍,请大家体验时注意。") st.write("我在我的《史丹福机器人庞博士》微信视频号也有很多关于ChatGPT和怎样使用ChatGPT魔法的视频,还有怎么使用这个小程序的视频,欢迎白嫖。也有系统的收费课程《零基础精通掌握ChatGPT魔法》给愿意知识付费的同学深入学习。 ") st.write("所有6节课在我的视频号主页的直播回放里, 每节课99元,第一节课大家可以免费试听。 如果想购买全部6节课,有50%折扣,只要299元。可以在我的视频号主页私信我购买,注明ChatGPT课程。") #st.image(img, caption=None, width=200) # Divide the app page into two columns col1, col2, col3 = st.columns(3) # Display the first image in the first column with col1: st.image(image1, caption="微信支付", width=200) # Display the second image in the second column with col2: st.image(image2, caption="支付宝", width=200) # Display the third image in the third column with col3: st.image(image3, caption="PayPal", width=200) st.image(image4, caption="史丹福机器人庞博士视频号,微信扫码前往", width=200)
[]
2024-01-10
akhilpenugonda/LLM_Journey
RagOverCode~RAGoverCode.py
from langchain.document_loaders.generic import GenericLoader from langchain.document_loaders.parsers import LanguageParser from langchain.text_splitter import Language, RecursiveCharacterTextSplitter from langchain.prompts import ChatPromptTemplate from langchain.chat_models import ChatOpenAI from langchain.schema.output_parser import StrOutputParser from langchain.embeddings import GooglePalmEmbeddings from langchain.llms import GooglePalm import pprint import google.generativeai as palm repo_path = "/Users/akhilkumarp/development/personal/github/CodeWithAI-Python" loader = GenericLoader.from_filesystem( repo_path, glob="**/*.py", suffixes=[".py"], parser=LanguageParser(language=Language.PYTHON, parser_threshold=500), ) documents = loader.load() palm.configure(api_key='AIzaSyD3d3npOFWRAbYPaKP1Yk8KWhGyiHtumZM') python_splitter = RecursiveCharacterTextSplitter.from_language( language=Language.PYTHON, chunk_size=2000, chunk_overlap=200 ) texts = python_splitter.split_documents(documents) # prompt = """ # You are an expert at solving word problems. # Solve the following problem: # I have three houses, each with three cats. # each cat owns 4 mittens, and a hat. Each mitten was # knit from 7m of yarn, each hat from 4m. # How much yarn was needed to make all the items? # Think about it step by step, and show your work. # """ # completion = palm.generate_text( # model='models/text-bison-001', # prompt=prompt, # temperature=0, # # The maximum length of the response # max_output_tokens=800, # ) import requests import os def call_palm_api(prompt): body = { "prompt": {"text": prompt}, } url = f'https://generativelanguage.googleapis.com/v1beta3/models/text-bison-001:generateText?key=AIzaSyDYTaObtIda0gQKytXUpWlDU0AsPSR4Gvo' print(body) try: response = requests.post(url, json=body) response.raise_for_status() res = response.json() res = res['candidates'][0]['output'] return res except requests.exceptions.HTTPError as err: print(f"HTTP error occurred: {err}") except Exception as err: print(f"An error occurred: {err}") call_palm_api("Explain advantages of liver and generate the response in markdown format") for text in texts: print(text) prompt = 'Explain this code '+text.page_content call_palm_api(prompt) completion = palm.generate_text( model='models/text-bison-001', prompt=prompt, temperature=0.5, # The maximum length of the response max_output_tokens=4000, ) print(completion.result) print("Hello") # weaviate_url = "http://localhost:8080" # embeddings = [] # Replace with your own embeddings # docsearch = Weaviate.from_texts( # texts, # embeddings, # weaviate_url=weaviate_url, # by_text=False, # metadatas=[{"source": f"{i}-pl"} for i in range(len(texts))], # ) # retriever = docsearch.as_retriever() # template = """ # You are an assistant for generating documentation over code. Use the following pieces of retrieved context to generate the documentation. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise. # Question: {question} # Context: {context} # Answer: # """ # prompt = ChatPromptTemplate.from_template(template) # llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0) # rag_chain = ( # {"context": retriever, "question": RunnablePassthrough()} # | prompt # | llm # | StrOutputParser() # ) # generated_documentation = rag_chain.invoke("How does this function work?")
[ "Explain this code " ]
2024-01-10
akhilpenugonda/LLM_Journey
RagOverCode~MongoDBVectors.py
from pymongo import MongoClient from langchain.embeddings.openai import OpenAIEmbeddings from langchain.embeddings.openai import GooglePaLMEmbeddings from langchain.vectorstores import MongoDBAtlasVectorSearch from langchain.document_loaders import DirectoryLoader from langchain.llms import OpenAI from langchain.chains import RetrievalQA import gradio as gr from gradio.themes.base import Base from langchain.document_loaders import TextLoader from langchain.document_loaders import PyPDFLoader client = MongoClient(host='mdburl') dbName = "langchain_demo" collectionName = "collection_of_text_blobs" collection = client[dbName][collectionName] loader = PyPDFLoader("/Users/akhilkumarp/development/personal/github/LLM_Journey/RagOverCode/AnthropicLatest3.pdf", extract_images=True) pages = loader.load() pages[4].page_content print("Yes - 1")
[]
2024-01-10
akhilpenugonda/LLM_Journey
RagOverCode~ChromaDB.py
from langchain.document_loaders import DirectoryLoader from langchain.document_loaders.generic import GenericLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import SentenceTransformerEmbeddings from langchain.vectorstores import chroma from langchain.chat_models import ChatOpenAI from langchain.chat_models import ChatGooglePalm from langchain.chains import RetrievalQA directory = '/Users/akhilkumarp/development/personal/github/LLM_Journey/RagOverCode' # loader = GenericLoader.from_filesystem( # directory, # glob="*", # suffixes=[".pdf"], # ) # documents = loader.load() def load_docs(directory): loader = DirectoryLoader(directory) documents = loader.load() return documents documents = load_docs(directory) len(documents) def split_docs(documents,chunk_size=1000,chunk_overlap=20): text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) docs = text_splitter.split_documents(documents) return docs docs = split_docs(documents) print(len(docs)) embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") db = chroma.from_documents(docs, embeddings) query = "What are the different types of concepts explained" matching_docs = db.similarity_search(query) matching_docs[0] persist_directory = "chroma_db" vectordb = Chroma.from_documents( documents=docs, embedding=embeddings, persist_directory=persist_directory ) vectordb.persist() import os os.environ["OPENAI_API_KEY"] = "key" # model_name = "gpt-3.5-turbo" # llm = ChatOpenAI(model_name=model_name) model_name = "text-bison-001" llm = ChatGooglePalm(model_name=model_name) from langchain.chains.question_answering import load_qa_chain chain = load_qa_chain(llm, chain_type="stuff",verbose=True) query = "What are the emotional benefits of owning a pet?" matching_docs = db.similarity_search(query) answer = chain.run(input_documents=matching_docs, question=query) answer retrieval_chain = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=db.as_retriever()) retrieval_chain.run(query)
[]
2024-01-10
akhilpenugonda/LLM_Journey
RagOverCode~COBOL~cobolconvertor.py
from langchain.document_loaders import DirectoryLoader from langchain.document_loaders.generic import GenericLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import SentenceTransformerEmbeddings from langchain.vectorstores import Chroma import chromadb from chromadb.config import Settings from langchain.chat_models import ChatOpenAI from langchain.chat_models import ChatGooglePalm from langchain.chains import RetrievalQA from langchain.document_loaders.parsers import LanguageParser from langchain.text_splitter import Language, RecursiveCharacterTextSplitter import google.generativeai as palm repo_path = "/Users/akhilkumarp/development/personal/github/LLM_Journey/RagOverCode/COBOL/game" loader = GenericLoader.from_filesystem( repo_path, glob="**/*.cbl", suffixes=[".cbl"], parser=LanguageParser(language=Language.COBOL, parser_threshold=500), ) documents = loader.load() # palm.configure(api_key='key') python_splitter = RecursiveCharacterTextSplitter.from_language( language=Language.PYTHON, chunk_size=2000, chunk_overlap=200 ) texts = python_splitter.split_documents(documents) embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") db = Chroma.from_documents(texts, embeddings) query = "What are the different types of concepts explained" matching_docs = db.similarity_search(query) matching_docs[0] persist_directory = "chroma_db" vectordb = Chroma.from_documents( documents=texts, embedding=embeddings, persist_directory=persist_directory ) vectordb.persist() import os os.environ["OPENAI_API_KEY"] = "key" model_name = "gpt-3.5-turbo" llm = ChatOpenAI(model_name=model_name) # llm = ChatGooglePalm(model_name="text-bison-001", google_api_key="key") from langchain.chains.question_answering import load_qa_chain chain = load_qa_chain(llm, chain_type="stuff",verbose=True) query = "Generate the complete code in a single java file, with all the dependencies" matching_docs = db.similarity_search(query) answer = chain.run(input_documents=matching_docs, question=query) print(answer)
[]
2024-01-10
gowthamthenarasu/pak_saeeda
mine.py
import streamlit as st import os from PyPDF2 import PdfReader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from langchain.chains.question_answering import load_qa_chain from langchain.llms import OpenAI # Set API keys os.environ["OPENAI_API_KEY"] = "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" os.environ["SERPAPI_API_KEY"] = "28c2445d1bfe7530595be6fbc858b1968d776af69c6034aa5feda50deab4b990" # PDF processing pdfreader = PdfReader('XYZ_contract_pdf_Sumit Yenugwar 4.pdf') raw_text = '' for i, page in enumerate(pdfreader.pages): content = page.extract_text() if content: raw_text += content # Text splitting text_splitter = CharacterTextSplitter( separator="\n", chunk_size=800, chunk_overlap=200, length_function=len, ) texts = text_splitter.split_text(raw_text) # Download embeddings from OpenAI embeddings = OpenAIEmbeddings() # Create document search document_search = FAISS.from_texts(texts, embeddings) # Load QA chain chain = load_qa_chain(OpenAI(), chain_type="stuff") with st.sidebar: st.title('🤗💬 LLM Chat APP') st.markdown(''' ## About This app is an LLM-powered chatbot built using: - [Streamlit](https://streamlit.io/) - [LangChain](https://python.langchain.com/) - [OpenAI](https://platform.openai.com/docs/models) LLM model ''') st.markdown("<br>", unsafe_allow_html=True) # Add vertical space st.write('Made with ❤️ by [Prompt Engineer](https://www.youtube.com/watch?v=M4mc-z_K1NU&list=PLUTApKyNO6MwrOioHGaFCeXtZpchoGv6W)') # Streamlit app def main(): st.title("DAMA-Data Management body of knowledge") # Text input area user_input = st.text_area("Enter your MCQ question ",height=150) # Button to trigger model inference if st.button("Get Answer"): # Combine user input with the prompt and query prompt_query = f"you have provided with MCQ question and its option as a chatbot model: {user_input}" text_query = prompt_query + user_input # Perform similarity search docs = document_search.similarity_search(text_query) # Run the model with the combined text and query model_answer = chain.run(input_documents=docs, question=user_input) # Display the model's answer st.text_area("Model Answer:", value=model_answer) # Run the Streamlit app if __name__ == "__main__": main()
[ "you have provided with MCQ question and its option as a chatbot model: PLACEHOLDER" ]
2024-01-10
zeroc0de2022/gpt-3.5-turbo
gpt-3.5-turbo.py
import sys import json import os from PyQt5.QtWidgets import QApplication, QMainWindow, QVBoxLayout, QWidget, QTextEdit, QPlainTextEdit, QPushButton, \ QHBoxLayout, QDialog, QMessageBox, QCheckBox, QComboBox, QSpinBox, QLineEdit, QLabel from PyQt5.QtCore import Qt from PyQt5.QtGui import QKeyEvent import openai import datetime # ----------------------------------------------------------- # gpt-3.5-turbo chat # # (C) 2023 A.M. RU, Stav. # Released under GNU Public License (GPL) # @author zeroc0de <[email protected]> # Date 2023.06.04 # ----------------------------------------------------------- class SettingsDialog(QDialog): def __init__(self): super().__init__() self.setWindowTitle("Настройки") self.resize(300, 200) self.save_history_checkbox = QCheckBox("Хранить историю чата") self.history_option_combo = QComboBox() self.history_option_combo.addItem("Не учитывать в ответе историю переписки") self.history_option_combo.addItem("Учитывать в ответе всю историю переписки") self.history_option_combo.addItem("Учитывать в ответе последние 5 сообщений") self.history_option_combo.addItem("Учитывать в ответе последние 3 сообщения") self.max_tokens_spinbox_label = QLabel("Количество токенов:") self.max_tokens_spinbox = QSpinBox() self.max_tokens_spinbox.setMinimum(50) self.max_tokens_spinbox.setMaximum(2016) self.max_tokens_spinbox.setValue(50) self.settings_file = 'settings.json' self.api_key_label = QLabel("API ключ:") self.api_key_edit = QLineEdit() self.save_button = QPushButton("Сохранить") self.save_button.clicked.connect(self.save_settings) layout = QVBoxLayout() layout.addWidget(self.save_history_checkbox) layout.addWidget(self.history_option_combo) layout.addWidget(self.max_tokens_spinbox_label) layout.addWidget(self.max_tokens_spinbox) layout.addWidget(self.api_key_label) layout.addWidget(self.api_key_edit) layout.addWidget(self.save_button) self.setLayout(layout) def load_settings(self): try: with open(self.settings_file, 'r') as file: settings = json.load(file) save_history = settings.get('save_history', False) history_option = settings.get('history_option', 0) api_key = settings.get('api_key', '') max_tokens = settings.get('max_tokens', 50) self.save_history_checkbox.setChecked(save_history) self.history_option_combo.setCurrentIndex(history_option) self.max_tokens_spinbox.setValue(max_tokens) self.api_key_edit.setText(api_key) except FileNotFoundError: # Если файл settings.txt не найден, используются значения по умолчанию self.save_history_checkbox.setChecked(False) self.history_option_combo.setCurrentIndex(0) self.max_tokens_spinbox.setValue(50) self.api_key_edit.setText('') def save_settings(self): save_history = self.save_history_checkbox.isChecked() history_option = self.history_option_combo.currentIndex() max_tokens = self.max_tokens_spinbox.value() api_key = self.api_key_edit.text() settings = { "save_history": save_history, "history_option": history_option, "api_key": api_key, "max_tokens": max_tokens } with open(self.settings_file, "w") as file: json.dump(settings, file) self.accept() class ChatWindow(QMainWindow): def __init__(self): super().__init__() self.setWindowTitle("ChatGPT. Model: gpt-3.5-turbo") self.resize(400, 600) self.settings_dialog = None self.save_history = False self.history_option = 0 self.max_tokens = 50 self.api_key = "" self.messages = [] self.chat_text_edit = QTextEdit() self.chat_text_edit.setReadOnly(True) # Заменяем QPlainTextEdit на QTextEdit self.input_text_edit = QTextEdit() self.input_text_edit.installEventFilter(self) self.send_button = QPushButton("Отправить") self.send_button.clicked.connect(self.send_message) self.settings_button = QPushButton("Настройки") self.settings_button.clicked.connect(self.open_settings) date = datetime.datetime.now() self.formatted_date = date.strftime("%Y-%m-%d") self.history_file = 'history/' + self.formatted_date + '_history.json' self.settings_file = 'settings.json' central_widget = QWidget() main_layout = QVBoxLayout() main_layout.addWidget(self.chat_text_edit) main_layout.addWidget(self.input_text_edit) button_layout = QHBoxLayout() button_layout.addWidget(self.send_button) button_layout.addWidget(self.settings_button) main_layout.addLayout(button_layout) central_widget.setLayout(main_layout) self.setCentralWidget(central_widget) self.load_settings() openai.api_key = self.api_key def display_message(self, message): self.chat_text_edit.append(message) def load_settings(self): try: with open(self.settings_file, 'r') as file: settings = json.load(file) self.save_history = settings.get('save_history', False) self.history_option = settings.get('history_option', 0) self.max_tokens = settings.get('max_tokens', 50) self.api_key = settings.get('api_key', '') except FileNotFoundError: self.save_history = False self.history_option = 0 self.max_tokens = 50 self.api_key = '' def save_chat_history(self): chat_history = { "messages": self.messages } if self.save_history: history = self.chat_text_edit.toPlainText() os.makedirs('history', exist_ok=True) with open(self.history_file, 'w', encoding='utf-8') as file: json.dump(chat_history, file, ensure_ascii=False) # file.write(history) def load_chat_history(self): try: with open(self.history_file, 'r', encoding='utf-8') as file: history = json.load(file) self.messages = history["messages"] # Отображение сохраненной истории в окне чата for message in self.messages: role = message["role"] content = message["content"] self.display_message(f"{role}: - {content}") self.save_chat_history() # Сохранение истории чата после загрузки except FileNotFoundError: # Если файл chat_history.txt не найден, не загружаем историю чата self.messages = [] def send_message(self): message = self.input_text_edit.toPlainText().rstrip() self.input_text_edit.clear() if message: self.messages.append({"role": "user", "content": message}) response = self.get_chatbot_response(message) # Сохранение ответа модели в истории чата self.messages.append({"role": "assistant", "content": response}) self.display_message("\nuser: - " + message) self.display_message("\nassistant: - " + response) self.input_text_edit.clear() if self.save_history: self.save_chat_history() def get_chatbot_response(self, message): history = self.chat_text_edit.toPlainText() if self.history_option == 1: # Включение всей истории переписки в запрос prompt = history + "\nuser: " + message elif self.history_option == 2: # Включение последних 5 сообщений из истории переписки в запрос last_messages = self.messages[-5:] last_messages_content = [m["content"] for m in last_messages] last_messages_str = "\n".join(last_messages_content) prompt = last_messages_str + "\nuser: " + message elif self.history_option == 3: # Включение последних 3 сообщений из истории переписки в запрос last_messages = self.messages[-3:] last_messages_content = [m["content"] for m in last_messages] last_messages_str = "\n".join(last_messages_content) prompt = last_messages_str + "\nuser: " + message else: prompt = message response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt}], max_tokens=self.max_tokens, temperature=0.7 ) return response.choices[0].message.content def open_settings(self): self.settings_dialog = SettingsDialog() self.settings_dialog.load_settings() if self.settings_dialog.exec_() == QDialog.Accepted: self.load_settings() self.settings_dialog = None def eventFilter(self, source, event): if (event.type() == QKeyEvent.KeyPress and source is self.input_text_edit and event.key() == Qt.Key_Return and event.modifiers() == Qt.ControlModifier): self.send_message() return True return super().eventFilter(source, event) def closeEvent(self, event): self.save_chat_history() event.accept() if __name__ == "__main__": app = QApplication(sys.argv) window = ChatWindow() window.load_chat_history() window.show() sys.exit(app.exec_())
[ "You are a helpful assistant.", "PLACEHOLDER\nuser: PLACEHOLDER" ]
2024-01-10
marcioBigolin/aulagtech
aula.py
import streamlit as st import pandas as pd from sqlalchemy import create_engine st.set_page_config(page_title="MDI - Análise com IA", page_icon="🌍", layout="wide") # Recebe os parâmetros via GET enquanto sem criptografia mandando direto (usar bearertok) params = st.experimental_get_query_params() # Obtém o valor do parâmetro 'variavel' da URL senha = params.get('senha', ['SEM_DADOS'])[0] #montando a tela st.write("Escolha uma das abas") def gepeto(): from pandasai import SmartDataFrame from pandasai.llm.openai import OpenAI import matplotlib.pyplot as plt import os api_token = "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" st.session_state.prompt_history = [] with st.form("Question"): question = st.text_input("Question", value="", type="default") submitted = st.form_submit_button("Gerar") if submitted: with st.spinner(): llm = OpenAI(api_token=api_token) pandas_ai = PandasAI(llm) x = pandas_ai.run(df, prompt=question) if os.path.isfile('temp_chart.png'): im = plt.imread('temp_chart.png') st.image(im) os.remove('temp_chart.png') if x is not None: st.write(x) st.session_state.prompt_history.append(question) st.subheader("Prompt history:") st.write(st.session_state.prompt_history) if "prompt_history" in st.session_state.prompt_history and len(st.session_state.prompt_history) > 0: if st.button("Limpar"): st.session_state.prompt_history = [] st.session_state.df = None if senha == 'SEM_DADOS': st.write("Sem dados") else: #criando conexão com o banco de dados conn = create_engine(f"postgresql://revisao_data:{senha}@revisao_data.postgresql.dbaas.com.br:5432/revisao_data") #consultando o banco de dados (conhecimento de SQL) sql_query = pd.read_sql_query (f"SELECT * FROM moodle_marcio2.fato_join;", con=conn) df = pd.DataFrame(sql_query, columns = ['titulo', 'nome_completo', 'coh_frazier', 'coh_brunet', 'data_entrega']) tab1, tab2, tab3 = st.tabs(["Entendendo meus dados", "Gerador de gráfico", "ChatGPT" ]) with tab1: st.dataframe(df) st.write(df['coh_brunet'].describe()) with tab2: import pygwalker as pyg from pygwalker.api.streamlit import StreamlitRenderer, init_streamlit_comm # Establish communication between pygwalker and streamlit init_streamlit_comm() @st.cache_resource def get_pyg_renderer() -> "StreamlitRenderer": # When you need to publish your app to the public, you should set the debug parameter to False to prevent other users from writing to your chart configuration file. return StreamlitRenderer(df, spec="./gw_config.json", debug=False) renderer = get_pyg_renderer() # Render your data exploration interface. Developers can use it to build charts by drag and drop. renderer.render_explore() with tab3: gepeto()
[]
2024-01-10
AbhinandanSingla/Flipify
tools~agents_tools.py
from langchain.tools import tool from flipkart_scraper.product import Product from flipkart_scraper.scrapper import search_products, dataframe_to_object @tool def searchCloth(query: str) -> str: """This function searches the products like cloths,footwear,outfits,gifts/colours/size/shades etc.""" print('\n') print(query) searched_products = [] df = search_products(query) for _, row in df.iterrows(): searched_products.append(dataframe_to_object(Product, row)) print(len(searched_products)) return f""" First Part: Following is the product information You should display the first product to the customer, and interact with him in a convincing way providing information about the customer ratings and product quality. Make the conversation appear human-like (important). Second Part: Now, the next step is to essentially display the corresponding link to relevant product as per the following: {[{'name': searched_products[x].name, 'price': searched_products[x].price, 'image_link': searched_products[x].image, 'product_link': searched_products[x].detail_url} for x in range(len(searched_products))][:3]} As soon as a relevant product is found, stop calling the function again. """ if __name__ == '__main__': print(search_products("shirts"))
[ "This function searches the products like cloths,footwear,outfits,gifts/colours/size/shades etc." ]
2024-01-10
HPCL-EI/RoboWaiter
robowaiter~llm_client~tool_api_test.py
import json import openai from colorama import init, Fore from loguru import logger import json from robowaiter.llm_client.tool_register import get_tools, dispatch_tool import requests import json import urllib3 init(autoreset=True) ######################################## # 该文件实现了与大模型的通信以及工具调用 ######################################## # 忽略https的安全性警告 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) base_url = "https://45.125.46.134:25344" # 本地部署的地址,或者使用你访问模型的API地址 def get_response(**kwargs): data = kwargs response = requests.post(f"{base_url}/v1/chat/completions", json=data, stream=data["stream"], verify=False) decoded_line = response.json() return decoded_line functions = get_tools() def run_conversation(query: str, stream=False, max_retry=5): params = dict(model="chatglm3", messages=[{"role": "user", "content": query}], stream=stream) params["functions"] = functions response = get_response(**params) for _ in range(max_retry): if response["choices"][0]["message"].get("function_call"): function_call = response["choices"][0]["message"]["function_call"] logger.info(f"Function Call Response: {function_call}") if "sub_task" in function_call["name"]: return { "Answer": "好的", "Goal": json.loads(function_call["arguments"])["goal"] } function_args = json.loads(function_call["arguments"]) tool_response = dispatch_tool(function_call["name"], function_args) logger.info(f"Tool Call Response: {tool_response}") params["messages"].append(response["choices"][0]["message"]) params["messages"].append( { "role": "function", "name": function_call["name"], "content": tool_response, # 调用函数返回结果 } ) else: reply = response["choices"][0]["message"]["content"] return { "Answer": reply, "Goal": None } logger.info(f"Final Reply: \n{reply}") return response = get_response(**params) if __name__ == "__main__": query = "可以带我去吗" print(run_conversation(query, stream=False))
[ "可以带我去吗" ]
2024-01-10
HPCL-EI/RoboWaiter
robowaiter~llm_client~tool_api_multi_round.py
import json import openai from colorama import init, Fore from loguru import logger import json from robowaiter.llm_client.tool_register import get_tools, dispatch_tool import requests import json import urllib3 init(autoreset=True) ######################################## # 该文件实现了与大模型的通信以及工具调用 ######################################## # 忽略https的安全性警告 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) base_url = "https://45.125.46.134:25344" # 本地部署的地址,或者使用你访问模型的API地址 def get_response(**kwargs): data = kwargs response = requests.post(f"{base_url}/v1/chat/completions", json=data, stream=data["stream"], verify=False) decoded_line = response.json() return decoded_line functions = get_tools() if __name__ == "__main__": question = input("\n顾客:") data_memory = [{ "role": "system", "content": "你是RoboWaiter,一个由HPCL团队开发的机器人服务员,你在咖啡厅工作。接受顾客的指令并调用工具函数来完成各种服务任务。如果顾客问你们这里有什么,或者想要点单,你说我们咖啡厅提供咖啡,水,点心,酸奶等食物。如果顾客不需要你了,你就回到吧台招待。", },] n = 1 max_retry = 5 params = dict(model="RoboWaiter",messages=data_memory, stream=False) params["functions"] = functions while question != 'end': user_dict = {"role": "user", "content": question} params["messages"].append(user_dict) # print(data_memory) response = get_response(**params) for _ in range(max_retry): if response["choices"][0]["message"].get("function_call"): function_call = response["choices"][0]["message"]["function_call"] logger.info(f"Function Call Response: {function_call}") function_args = json.loads(function_call["arguments"]) tool_response = dispatch_tool(function_call["name"], function_args) logger.info(f"Tool Call Response: {tool_response}") return_message = response["choices"][0]["message"] params["messages"].append(return_message) t = { "role": "function", "name": function_call["name"], "content": tool_response, # 调用函数返回结果 } params["messages"].append(t) response = get_response(**params) else: return_message = response["choices"][0]["message"] reply = return_message["content"] params["messages"].append(return_message) logger.info(f"Final Reply: \n{reply}") break question = input("\n顾客:")
[ "你是RoboWaiter,一个由HPCL团队开发的机器人服务员,你在咖啡厅工作。接受顾客的指令并调用工具函数来完成各种服务任务。如果顾客问你们这里有什么,或者想要点单,你说我们咖啡厅提供咖啡,水,点心,酸奶等食物。如果顾客不需要你了,你就回到吧台招待。" ]
2024-01-10
HPCL-EI/RoboWaiter
robowaiter~llm_client~multi_rounds.py
import time import openai from colorama import init, Fore from loguru import logger from robowaiter.llm_client.tool_register import get_tools, dispatch_tool import requests import json from collections import deque import urllib3 import copy init(autoreset=True) from robowaiter.utils import get_root_path import os import re from robowaiter.llm_client.single_round import single_round ######################################## # 该文件实现了与大模型的通信以及工具调用 ######################################## # 忽略https的安全性警告 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) base_url = "https://45.125.46.134:25344" # 本地部署的地址,或者使用你访问模型的API地址 root_path = get_root_path() # load test questions file_path = os.path.join(root_path,"robowaiter/llm_client/data/fix_questions.txt") functions = get_tools() fix_questions_dict = {} no_reply_functions = ["create_sub_task"] with open(file_path,'r',encoding="utf-8") as f: #读取所有行 lines = f.read().strip() sections = re.split(r'\n\s*\n', lines) for s in sections: x = s.strip().splitlines() if len(x) == 2: fix_questions_dict[x[0]] = { "answer": x[1], "function": None } else: fix_questions_dict[x[0]] = { "answer": x[1], "function": x[2], "args": x[3] } role_system = [{ "role": "system", "content": "你是RoboWaiter,一个由HPCL团队开发的机器人服务员,你在咖啡厅工作。接受顾客的指令并调用工具函数来完成各种服务任务。如果顾客问你们这里有什么,或者想要点单,你说我们咖啡厅提供咖啡,水,点心,酸奶等食物。如果顾客不需要你了,你就回到吧台招待。如果顾客叫你去做某事,你回复:好的,我马上去做这件事。", }] def new_history(max_length=7): history = deque(maxlen=max_length) return history def new_response(): return {'choices': [{'index': 0, 'message':{} }]} def parse_fix_question(question): response = new_response() fix_ans = fix_questions_dict[question] if not fix_ans['function']: #简单对话 message = {'role': 'assistant', 'content': fix_ans["answer"], 'name': None, 'function_call': None} else: func = fix_ans["function"] args = fix_ans["args"] # tool_response = dispatch_tool(function_call["name"], json.loads(args)) # logger.info(f"Tool Call Response: {tool_response}") message = {'role': 'assistant', 'content': f"\n <|assistant|> {func}({args})\n ```python\ntool_call(goal={args})\n```", 'name': None, 'function_call': {'name': func, 'arguments': args}} response["choices"][0]["message"] = message return response def get_response(sentence, history, allow_function_call = True): if sentence: history.append({"role": "user", "content": sentence}) if sentence in fix_questions_dict: time.sleep(2) return True, parse_fix_question(sentence) params = dict(model="RoboWaiter") params['messages'] = role_system + list(history) if allow_function_call: params["functions"] = functions response = requests.post(f"{base_url}/v1/chat/completions", json=params, stream=False, verify=False) decoded_line = response.json() return False, decoded_line def deal_response(response, history, func_map=None ): if response["choices"][0]["message"].get("function_call"): function_call = response["choices"][0]["message"]["function_call"] logger.info(f"Function Call Response: {function_call}") function_name = function_call["name"] function_args = json.loads(function_call["arguments"]) if func_map: tool_response = func_map[function_name](**function_args) else: try: tool_response = dispatch_tool(function_call["name"], function_args) logger.info(f"Tool Call Response: {tool_response}") except: logger.info(f"重试工具调用") # tool_response = dispatch_tool(function_call["name"], function_args) return function_name,None return_message = response["choices"][0]["message"] history.append(return_message) t = { "role": "function", "name": function_call["name"], "content": str(tool_response), # 调用函数返回结果 } history.append(t) return function_call["name"], tool_response else: return_message = response["choices"][0]["message"] reply = return_message["content"] history.append(return_message) logger.info(f"Final Reply: \n{reply}") return False, reply def ask_llm(question,history, func_map=None, retry=3): fixed, response = get_response(question, history) function_call,result = deal_response(response, history, func_map) if function_call: if question in fix_questions_dict: if fix_questions_dict[question]['function'] in no_reply_functions: reply = fix_questions_dict[question]["answer"] # result = single_round(reply, # "你是机器人服务员,请把以下句子换一种表述方式对顾客说,但是意思不变,尽量简短:\n") result = single_round(reply, "You are a robot waiter. Please change the following sentence to the customer in a different way, but the meaning remains the same and be as brief as possible:\n") else: reply = fix_questions_dict[question]["answer"] # result = single_round(f"你是机器人服务员,顾客想知道{question}, 你的具身场景查询返回的是{result},把返回的英文名词翻译成中文,请把按照以下句子对顾客说,{reply}, 尽量简短。\n") result = single_round( f"You are a robot waiter. The customer wants to know {question}. Your embodied scene query returns {result}. Translate the returned Chinese nouns into English. Please tell the customer according to the following sentence, {reply}, keep it as short as possible.\n") message = {'role': 'assistant', 'content': result, 'name': None, 'function_call': None} history.append(message) else: fixed, response = get_response(None, history,allow_function_call=False) _,result = deal_response(response, history, func_map) # print(f'{len(history)}条历史记录:') print(f'{len(history)} history records:') for x in history: print(x) return function_call, result if __name__ == "__main__": question = input("\nCustomer:") history = new_history() n = 1 max_retry = 2 while question != 'end': function_call, return_message = ask_llm(question,history) # question = input("\n顾客:") question = input("\nCustomer:")
[ "你是RoboWaiter,一个由HPCL团队开发的机器人服务员,你在咖啡厅工作。接受顾客的指令并调用工具函数来完成各种服务任务。如果顾客问你们这里有什么,或者想要点单,你说我们咖啡厅提供咖啡,水,点心,酸奶等食物。如果顾客不需要你了,你就回到吧台招待。如果顾客叫你去做某事,你回复:好的,我马上去做这件事。", "answer" ]
2024-01-10
HPCL-EI/RoboWaiter
robowaiter~llm_client~multi_rounds_retri.py
import time import openai from colorama import init, Fore from loguru import logger from robowaiter.llm_client.tool_register import get_tools, dispatch_tool import requests import json from collections import deque import urllib3 import copy init(autoreset=True) from robowaiter.utils import get_root_path import os import re from robowaiter.llm_client.single_round import single_round from robowaiter.algos.retrieval.retrieval_lm.retrieval import Retrieval ######################################## # 该文件实现了与大模型的通信以及工具调用 ######################################## # 忽略https的安全性警告 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) base_url = "https://45.125.46.134:25344" # 本地部署的地址,或者使用你访问模型的API地址 root_path = get_root_path() # load test questions # file_path = os.path.join(root_path,"robowaiter/llm_client/data/fix_questions.txt") # # fix_questions_dict = {} # no_reply_functions = ["create_sub_task"] # functions = get_tools() retrieval = Retrieval(threshold=1.9) role_system = [{ "role": "system", "content": "你是RoboWaiter,一个由HPCL团队开发的机器人服务员,你在咖啡厅工作。接受顾客的指令并调用工具函数来完成各种服务任务。如果顾客问你们这里有什么,或者想要点单,你说我们咖啡厅提供咖啡,水,点心,酸奶等食物。如果顾客不需要你了,你就回到吧台招待。如果顾客叫你去做某事,你回复:好的,我马上去做这件事。", }] def new_history(max_length=7): history = deque(maxlen=max_length) return history def new_response(): return {'choices': [{'index': 0, 'message':{} }]} def parse_fix_question(question): response = new_response() fix_ans = question if not fix_ans['function']: #简单对话 message = {'role': 'assistant', 'content': fix_ans["answer"], 'name': None, 'function_call': None} else: func = fix_ans["function"] args = fix_ans["args"] # tool_response = dispatch_tool(function_call["name"], json.loads(args)) # logger.info(f"Tool Call Response: {tool_response}") message = {'role': 'assistant', 'content': f"\n <|assistant|> {func}({args})\n ```python\ntool_call(goal={args})\n```", 'name': None, 'function_call': {'name': func, 'arguments': args}} response["choices"][0]["message"] = message return response, question["answer"] def get_response(sentence, history, allow_function_call = True): if sentence: history.append({"role": "user", "content": sentence}) retrieval_result = retrieval.get_result(sentence) if retrieval_result is not None: time.sleep(1.2) # 处理多轮 if retrieval_result["answer"] == "multi_rounds" and len(history) >= 2: print("触发多轮检索") last_content = "" for i in range(-2,-len(history)): if history[i]["role"] == "user": last_content = history[i]["content"] break retrieval_result = retrieval.get_result(last_content + sentence) if retrieval_result is not None: response, answer = parse_fix_question(retrieval_result) return True,response, answer params = dict(model="RoboWaiter") params['messages'] = role_system + list(history) if allow_function_call: params["functions"] = functions response = requests.post(f"{base_url}/v1/chat/completions", json=params, stream=False, verify=False) decoded_line = response.json() return False, decoded_line, None def deal_response(response, history, func_map=None ): if response["choices"][0]["message"].get("function_call"): function_call = response["choices"][0]["message"]["function_call"] logger.info(f"Function Call Response: {function_call}") function_name = function_call["name"] function_args = json.loads(function_call["arguments"]) if func_map: tool_response = func_map[function_name](**function_args) else: try: tool_response = dispatch_tool(function_call["name"], function_args) logger.info(f"Tool Call Response: {tool_response}") except: logger.info(f"重试工具调用") # tool_response = dispatch_tool(function_call["name"], function_args) return function_name,None return_message = response["choices"][0]["message"] history.append(return_message) t = { "role": "function", "name": function_call["name"], "content": str(tool_response), # 调用函数返回结果 } history.append(t) return function_call["name"], tool_response else: return_message = response["choices"][0]["message"] reply = return_message["content"] history.append(return_message) logger.info(f"Final Reply: \n{reply}") return False, reply def ask_llm(question,history, func_map=None, retry=3): fixed, response, answer = get_response(question, history) print(f"response: {response}") function_call,result = deal_response(response, history, func_map) if function_call: if fixed: if function_call == "create_sub_task": result = single_round(answer, "你是机器人服务员,请把以下句子换一种表述方式对顾客说,但是意思不变,尽量简短:\n") # elif function_call in ["get_object_info","find_location"] : else: result = single_round(f"你是机器人服务员,顾客想知道{question}, 你的具身场景查询返回的是{result},把返回的英文名词翻译成中文,请把按照以下句子对顾客说,{answer}, 尽量简短。\n") else: # _,response,_ = get_response(None, history,allow_function_call=False) # _,result = deal_response(response, history, func_map) result = single_round(history[-1]["content"], "你是机器人服务员,请把以下句子换一种表述方式对顾客说,但是意思不变,尽量简短:\n") message = {'role': 'assistant', 'content': result, 'name': None, 'function_call': None} history.append(message) print(f'{len(history)}条历史记录:') for x in history: print(x) return function_call, result if __name__ == "__main__": question = input("\n顾客:") history = new_history() n = 1 max_retry = 2 while question != 'end': function_call, return_message = ask_llm(question,history) question = input("\n顾客:")
[ "你是RoboWaiter,一个由HPCL团队开发的机器人服务员,你在咖啡厅工作。接受顾客的指令并调用工具函数来完成各种服务任务。如果顾客问你们这里有什么,或者想要点单,你说我们咖啡厅提供咖啡,水,点心,酸奶等食物。如果顾客不需要你了,你就回到吧台招待。如果顾客叫你去做某事,你回复:好的,我马上去做这件事。", "answer" ]
2024-01-10
zsc/langchain
tests~unit_tests~chains~test_conversation.py
"""Test conversation chain and memory.""" import pytest from langchain.chains.base import Memory from langchain.chains.conversation.base import ConversationChain from langchain.chains.conversation.memory import ( ConversationBufferMemory, ConversationBufferWindowMemory, ConversationSummaryMemory, ) from langchain.prompts.prompt import PromptTemplate from tests.unit_tests.llms.fake_llm import FakeLLM def test_memory_ai_prefix() -> None: """Test that ai_prefix in the memory component works.""" memory = ConversationBufferMemory(memory_key="foo", ai_prefix="Assistant") memory.save_context({"input": "bar"}, {"output": "foo"}) assert memory.buffer == "\nHuman: bar\nAssistant: foo" def test_conversation_chain_works() -> None: """Test that conversation chain works in basic setting.""" llm = FakeLLM() prompt = PromptTemplate(input_variables=["foo", "bar"], template="{foo} {bar}") memory = ConversationBufferMemory(memory_key="foo") chain = ConversationChain(llm=llm, prompt=prompt, memory=memory, input_key="bar") chain.run("foo") def test_conversation_chain_errors_bad_prompt() -> None: """Test that conversation chain works in basic setting.""" llm = FakeLLM() prompt = PromptTemplate(input_variables=[], template="nothing here") with pytest.raises(ValueError): ConversationChain(llm=llm, prompt=prompt) def test_conversation_chain_errors_bad_variable() -> None: """Test that conversation chain works in basic setting.""" llm = FakeLLM() prompt = PromptTemplate(input_variables=["foo"], template="{foo}") memory = ConversationBufferMemory(memory_key="foo") with pytest.raises(ValueError): ConversationChain(llm=llm, prompt=prompt, memory=memory, input_key="foo") @pytest.mark.parametrize( "memory", [ ConversationBufferMemory(memory_key="baz"), ConversationBufferWindowMemory(memory_key="baz"), ConversationSummaryMemory(llm=FakeLLM(), memory_key="baz"), ], ) def test_conversation_memory(memory: Memory) -> None: """Test basic conversation memory functionality.""" # This is a good input because the input is not the same as baz. good_inputs = {"foo": "bar", "baz": "foo"} # This is a good output because these is one variable. good_outputs = {"bar": "foo"} memory.save_context(good_inputs, good_outputs) # This is a bad input because there are two variables that aren't the same as baz. bad_inputs = {"foo": "bar", "foo1": "bar"} with pytest.raises(ValueError): memory.save_context(bad_inputs, good_outputs) # This is a bad input because the only variable is the same as baz. bad_inputs = {"baz": "bar"} with pytest.raises(ValueError): memory.save_context(bad_inputs, good_outputs) # This is a bad output because it is empty. with pytest.raises(ValueError): memory.save_context(good_inputs, {}) # This is a bad output because there are two keys. bad_outputs = {"foo": "bar", "foo1": "bar"} with pytest.raises(ValueError): memory.save_context(good_inputs, bad_outputs) @pytest.mark.parametrize( "memory", [ ConversationBufferMemory(memory_key="baz"), ConversationSummaryMemory(llm=FakeLLM(), memory_key="baz"), ConversationBufferWindowMemory(memory_key="baz"), ], ) def test_clearing_conversation_memory(memory: Memory) -> None: """Test clearing the conversation memory.""" # This is a good input because the input is not the same as baz. good_inputs = {"foo": "bar", "baz": "foo"} # This is a good output because there is one variable. good_outputs = {"bar": "foo"} memory.save_context(good_inputs, good_outputs) memory.clear() assert memory.load_memory_variables({}) == {"baz": ""}
[ "{foo} {bar}", "{foo}", "nothing here" ]
2024-01-10
zsc/langchain
langchain~chains~combine_documents~map_reduce.py
"""Combining documents by mapping a chain over them first, then combining results.""" from __future__ import annotations from typing import Any, Callable, Dict, List, Optional, Tuple from pydantic import BaseModel, Extra, root_validator from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.llm import LLMChain from langchain.docstore.document import Document def _split_list_of_docs( docs: List[Document], length_func: Callable, token_max: int, **kwargs: Any ) -> List[List[Document]]: new_result_doc_list = [] _sub_result_docs = [] for doc in docs: _sub_result_docs.append(doc) _num_tokens = length_func(_sub_result_docs, **kwargs) if _num_tokens > token_max: if len(_sub_result_docs) == 1: raise ValueError( "A single document was longer than the context length," " we cannot handle this." ) if len(_sub_result_docs) == 2: raise ValueError( "A single document was so long it could not be combined " "with another document, we cannot handle this." ) new_result_doc_list.append(_sub_result_docs[:-1]) _sub_result_docs = _sub_result_docs[-1:] new_result_doc_list.append(_sub_result_docs) return new_result_doc_list def _collapse_docs( docs: List[Document], combine_document_func: Callable, **kwargs: Any, ) -> Document: result = combine_document_func(docs, **kwargs) combined_metadata = {k: str(v) for k, v in docs[0].metadata.items()} for doc in docs[1:]: for k, v in doc.metadata.items(): if k in combined_metadata: combined_metadata[k] += f", {v}" else: combined_metadata[k] = str(v) return Document(page_content=result, metadata=combined_metadata) class MapReduceDocumentsChain(BaseCombineDocumentsChain, BaseModel): """Combining documents by mapping a chain over them, then combining results.""" llm_chain: LLMChain """Chain to apply to each document individually.""" combine_document_chain: BaseCombineDocumentsChain """Chain to use to combine results of applying llm_chain to documents.""" collapse_document_chain: Optional[BaseCombineDocumentsChain] = None """Chain to use to collapse intermediary results if needed. If None, will use the combine_document_chain.""" document_variable_name: str """The variable name in the llm_chain to put the documents in. If only one variable in the llm_chain, this need not be provided.""" return_map_steps: bool = False """Return the results of the map steps in the output.""" @property def output_keys(self) -> List[str]: """Expect input key. :meta private: """ _output_keys = super().output_keys if self.return_map_steps: _output_keys = _output_keys + ["map_steps"] return _output_keys class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def get_default_document_variable_name(cls, values: Dict) -> Dict: """Get default document variable name, if not provided.""" if "document_variable_name" not in values: llm_chain_variables = values["llm_chain"].prompt.input_variables if len(llm_chain_variables) == 1: values["document_variable_name"] = llm_chain_variables[0] else: raise ValueError( "document_variable_name must be provided if there are " "multiple llm_chain input_variables" ) else: llm_chain_variables = values["llm_chain"].prompt.input_variables if values["document_variable_name"] not in llm_chain_variables: raise ValueError( f"document_variable_name {values['document_variable_name']} was " f"not found in llm_chain input_variables: {llm_chain_variables}" ) return values @property def _collapse_chain(self) -> BaseCombineDocumentsChain: if self.collapse_document_chain is not None: return self.collapse_document_chain else: return self.combine_document_chain def combine_docs( self, docs: List[Document], token_max: int = 3000, **kwargs: Any ) -> Tuple[str, dict]: """Combine documents in a map reduce manner. Combine by mapping first chain over all documents, then reducing the results. This reducing can be done recursively if needed (if there are many documents). """ results = self.llm_chain.apply( # FYI - this is parallelized and so it is fast. [{**{self.document_variable_name: d.page_content}, **kwargs} for d in docs] ) question_result_key = self.llm_chain.output_key result_docs = [ Document(page_content=r[question_result_key], metadata=docs[i].metadata) # This uses metadata from the docs, and the textual results from `results` for i, r in enumerate(results) ] length_func = self.combine_document_chain.prompt_length num_tokens = length_func(result_docs, **kwargs) while num_tokens is not None and num_tokens > token_max: new_result_doc_list = _split_list_of_docs( result_docs, length_func, token_max, **kwargs ) result_docs = [] for docs in new_result_doc_list: new_doc = _collapse_docs( docs, self._collapse_chain.combine_docs, **kwargs ) result_docs.append(new_doc) num_tokens = self.combine_document_chain.prompt_length( result_docs, **kwargs ) if self.return_map_steps: _results = [r[self.llm_chain.output_key] for r in results] extra_return_dict = {"map_steps": _results} else: extra_return_dict = {} output, _ = self.combine_document_chain.combine_docs(result_docs, **kwargs) return output, extra_return_dict
[]
2024-01-10
zsc/langchain
langchain~chains~combine_documents~refine.py
"""Combining documents by doing a first pass and then refining on more documents.""" from __future__ import annotations from typing import Any, Dict, List, Tuple from pydantic import BaseModel, Extra, Field, root_validator from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.llm import LLMChain from langchain.docstore.document import Document from langchain.prompts.base import BasePromptTemplate from langchain.prompts.prompt import PromptTemplate def _get_default_document_prompt() -> PromptTemplate: return PromptTemplate(input_variables=["page_content"], template="{page_content}") class RefineDocumentsChain(BaseCombineDocumentsChain, BaseModel): """Combine documents by doing a first pass and then refining on more documents.""" initial_llm_chain: LLMChain """LLM chain to use on initial document.""" refine_llm_chain: LLMChain """LLM chain to use when refining.""" document_variable_name: str """The variable name in the initial_llm_chain to put the documents in. If only one variable in the initial_llm_chain, this need not be provided.""" initial_response_name: str """The variable name to format the initial response in when refining.""" document_prompt: BasePromptTemplate = Field( default_factory=_get_default_document_prompt ) """Prompt to use to format each document.""" return_refine_steps: bool = False """Return the results of the refine steps in the output.""" @property def output_keys(self) -> List[str]: """Expect input key. :meta private: """ _output_keys = super().output_keys if self.return_refine_steps: _output_keys = _output_keys + ["refine_steps"] return _output_keys class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def get_default_document_variable_name(cls, values: Dict) -> Dict: """Get default document variable name, if not provided.""" if "document_variable_name" not in values: llm_chain_variables = values["initial_llm_chain"].prompt.input_variables if len(llm_chain_variables) == 1: values["document_variable_name"] = llm_chain_variables[0] else: raise ValueError( "document_variable_name must be provided if there are " "multiple llm_chain input_variables" ) else: llm_chain_variables = values["initial_llm_chain"].prompt.input_variables if values["document_variable_name"] not in llm_chain_variables: raise ValueError( f"document_variable_name {values['document_variable_name']} was " f"not found in llm_chain input_variables: {llm_chain_variables}" ) return values def combine_docs(self, docs: List[Document], **kwargs: Any) -> Tuple[str, dict]: """Combine by mapping first chain over all, then stuffing into final chain.""" base_info = {"page_content": docs[0].page_content} base_info.update(docs[0].metadata) document_info = {k: base_info[k] for k in self.document_prompt.input_variables} base_inputs: dict = { self.document_variable_name: self.document_prompt.format(**document_info) } inputs = {**base_inputs, **kwargs} res = self.initial_llm_chain.predict(**inputs) refine_steps = [res] for doc in docs[1:]: base_info = {"page_content": doc.page_content} base_info.update(doc.metadata) document_info = { k: base_info[k] for k in self.document_prompt.input_variables } base_inputs = { self.document_variable_name: self.document_prompt.format( **document_info ), self.initial_response_name: res, } inputs = {**base_inputs, **kwargs} res = self.refine_llm_chain.predict(**inputs) refine_steps.append(res) if self.return_refine_steps: extra_return_dict = {"refine_steps": refine_steps} else: extra_return_dict = {} return res, extra_return_dict
[ "{page_content}" ]
2024-01-10
eugeneleychenko/one80-Compass
app~test_w_FAISS.py
from fastapi import FastAPI, Request, HTTPException from fastapi.responses import JSONResponse from fastapi.middleware.cors import CORSMiddleware import json import requests from dotenv import load_dotenv from langchain.chat_models import ChatOpenAI from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain.vectorstores import FAISS from langchain.embeddings.openai import OpenAIEmbeddings from langchain.schema import Document import os import numpy as np import os.path app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], # allow_origins=["http://localhost:3000"], # Allows only specific origins allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) load_dotenv() openai_api_key = os.getenv("OPENAI_API_KEY") FAISS_INDEX_FILE = 'faiss_index.bin' def save_faiss_index(db): db.save_local(FAISS_INDEX_FILE) def load_faiss_index_if_exists(embeddings): if os.path.exists(FAISS_INDEX_FILE): return FAISS.load_local(FAISS_INDEX_FILE, embeddings) return None def load_data_from_url(url): response = requests.get(url) response.raise_for_status() return response.json() def get_agenda_items(recipe_name, data): agenda_items = [] for entry in data: if entry['Journey Name (N)'] == recipe_name: agenda_items.append(entry['Agenda Items (Description)']) return agenda_items if agenda_items else None def get_methods(recipe_name, data): methods = [] for entry in data: if entry['Journey Name (N)'] == recipe_name: methods.append(entry['Methods (N)']) return methods if methods else None def get_method_details(methods_list, data): method_details = [] for method in methods_list: method = method.strip() # Remove any leading/trailing whitespace for entry in data: if entry.get('Uniques') == method: method_details.append({ 'method': method, 'description_short': entry.get('Description (short)', ''), 'ai_response': entry.get('AI Response', '') }) break # Stop searching after the first match return method_details @app.post('/get_recipe') async def get_recipe(request: Request): content = await request.json() recipe_name = content.get('recipe_name') if not recipe_name: raise HTTPException(status_code=400, detail="No recipe name provided") tasks_url = 'https://gs.jasonaa.me/?url=https://docs.google.com/spreadsheets/d/e/2PACX-1vSmp889ksBKKVVwpaxhlIzpDzXNOWjnszEXBP7SC5AyoebSIBFuX5qrcwwv6ud4RCYw2t_BZRhGLT0u/pubhtml?gid=1980586524&single=true' flow_url = 'https://gs.jasonaa.me/?url=https://docs.google.com/spreadsheets/d/e/2PACX-1vSmp889ksBKKVVwpaxhlIzpDzXNOWjnszEXBP7SC5AyoebSIBFuX5qrcwwv6ud4RCYw2t_BZRhGLT0u/pubhtml?gid=1980586524&single=true' tasks_data = load_data_from_url(tasks_url) flow_data = load_data_from_url(flow_url) # Initialize the language model llm = ChatOpenAI(model="gpt-4", temperature=.2, openai_api_key=openai_api_key) # Create an embeddings model embeddings = OpenAIEmbeddings(api_key=openai_api_key) # Replace the FAISS index creation with a check to load if it exists # If it doesn't exist, create it and save db = load_faiss_index_if_exists(embeddings) if db is None: documents = [Document(page_content=task['Journey Name (N)']) for task in tasks_data] db = FAISS.from_documents(documents, embeddings) save_faiss_index(db) # Perform a similarity search similar_docs = db.similarity_search(recipe_name, k=1) if similar_docs: closest_task = similar_docs[0].page_content similarity = np.linalg.norm(np.array(embeddings.embed_query(recipe_name)) - np.array(embeddings.embed_query(closest_task))) # Get agenda items and methods for the closest task agenda_items = get_agenda_items(closest_task, flow_data) methods_str = get_methods(closest_task, flow_data) # New line to get methods method_details = get_method_details(methods_str, tasks_data) # Get method details if agenda_items and method_details: # Create a chain that uses the language model to generate a complete sentence template = "Based on your input, I suggest you to follow these steps: {agenda_items}. This suggestion is based on the recipe '{recipe_name}', which is {similarity}% similar to your input. The original recipe that it is matching with is '{closest_task}'." prompt = PromptTemplate(template=template, input_variables=["agenda_items", "recipe_name", "similarity", "closest_task"]) llm_chain = LLMChain(prompt=prompt, llm=llm) response = await llm_chain.run({"agenda_items": ', '.join(agenda_items), "recipe_name": recipe_name, "similarity": round(similarity * 100, 2), "closest_task": closest_task}) return JSONResponse({ "response": response, "details": { "Closest Luma Task": closest_task, "Methods": '| '.join([detail['method'] for detail in method_details]), "Method Details": method_details, "Similarity": f"{similarity}% similar to that task" } }) else: raise HTTPException(status_code=404, detail="Agenda Items or Methods not found for the task") else: raise HTTPException(status_code=404, detail="Task not found") if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)
[ "{closest_task}", "agenda_items", "recipe_name", "similarity", "Based on your input, I suggest you to follow these steps: {agenda_items}. This suggestion is based on the recipe '{recipe_name}', which is {similarity}% similar to your input. The original recipe that it is matching with is '{closest_task}'.", "{recipe_name}", "closest_task" ]
2024-01-10
eugeneleychenko/one80-Compass
app~FAISS_test.py
from fastapi import FastAPI, HTTPException from fastapi.responses import JSONResponse from langchain.vectorstores import FAISS from fastapi.middleware.cors import CORSMiddleware from langchain.embeddings.openai import OpenAIEmbeddings from langchain.schema import Document import requests import os from dotenv import load_dotenv import uvicorn app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], # allow_origins=["http://localhost:3000"], # Allows only specific origins allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) load_dotenv() FAISS_INDEX_FILE = '/tmp/faiss_index.bin' def save_faiss_index(db): db.save_local(FAISS_INDEX_FILE) def load_faiss_index_if_exists(embeddings): if os.path.exists(FAISS_INDEX_FILE): return FAISS.load_local(FAISS_INDEX_FILE, embeddings) return None def load_data_from_url(url): response = requests.get(url) response.raise_for_status() return response.json() @app.post("/find_closest_match") async def find_closest_match(payload: dict): user_input = payload.get("user_input") if not user_input: raise HTTPException(status_code=400, detail="User input is required in the payload") # Load the JSON from the provided URL json_url = "https://opensheet.elk.sh/1vgJJHgyIrjip-6Z-yCW6caMgrZpJo1-waucKqvfg1HI/5" data = load_data_from_url(json_url) # agenda_items = [item.get('Journey Name (N)', 'Default Description') for item in data] # Initialize embeddings and check if FAISS index exists embeddings = OpenAIEmbeddings() faiss_index = load_faiss_index_if_exists(embeddings) if faiss_index is None: # Create a new index and save it documents = [Document(page_content=item) for item in agenda_items] faiss_index = FAISS.from_documents(documents, embeddings) save_faiss_index(faiss_index) # Find the closest match similar_docs = faiss_index.similarity_search(user_input, k=1) if similar_docs: closest_match = similar_docs[0].page_content # Find the entry with the matching Journey Name and gather all associated methods methods = [] alternatives_list = [] # Load methods data from URL methods_url = "https://opensheet.elk.sh/1vgJJHgyIrjip-6Z-yCW6caMgrZpJo1-waucKqvfg1HI/6" methods_data = load_data_from_url(methods_url) # print("methods mapping: ", methods_mapping) # Match 'closest_match' with Journey Name (N) in the json_url matched_entries = [entry for entry in data if entry.get('Journey Name (N)') == closest_match] if not matched_entries: raise HTTPException(status_code=404, detail="No matching agenda items found") # Retrieve all the Methods (N) that are associated with Journey Name (N) in the json_url methods = [] for entry in matched_entries: entry_methods = entry.get('Methods (N)', '') if entry_methods: methods.extend(entry_methods.split('; ')) # Remove duplicates from methods list methods = list(set(methods)) # From the methods_data json, find all the methods in the Unique key # and return Alt 1, Alt 2, Alt 3, Description (short), AI Response alternatives_list = [] for method in methods: method_entry = next((item for item in methods_data if item['Uniques'] == method), None) if method_entry: alternatives = { 'Alt 1': method_entry.get('Alt 1', ''), 'Alt 2': method_entry.get('Alt 2', ''), 'Alt 3': method_entry.get('Alt 3', ''), 'Description (short)': method_entry.get('Description (short)', ''), 'AI Response': method_entry.get('AI Response', '') } alternatives_list.append({method: alternatives}) return JSONResponse({ "closest_match": closest_match, "methods": methods, "alternatives": alternatives_list }) if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)
[]
2024-01-10
eugeneleychenko/one80-Compass
app~test_use_embeddings.py
from flask import Flask, request, jsonify from flask_cors import CORS # Added for CORS support import json import requests from dotenv import load_dotenv from langchain.chat_models import ChatOpenAI from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain.vectorstores import Chroma from langchain.embeddings.openai import OpenAIEmbeddings from langchain.schema import Document import os import numpy as np app = Flask(__name__) CORS(app) # Initialize CORS on the Flask app load_dotenv() openai_api_key = os.getenv("OPENAI_API_KEY") def load_data_from_url(url): response = requests.get(url) response.raise_for_status() return response.json() def get_agenda_items(recipe_name, data): agenda_items = [] for entry in data: if entry['Journey Name (N)'] == recipe_name: agenda_items.append(entry['Agenda Items (Description)']) return agenda_items if agenda_items else None def get_methods(recipe_name, data): methods = [] for entry in data: if entry['Journey Name (N)'] == recipe_name: methods.append(entry['Methods (N)']) return methods if methods else None def get_method_details(methods_list, data): method_details = [] for method in methods_list: method = method.strip() # Remove any leading/trailing whitespace for entry in data: if entry.get('Uniques') == method: method_details.append({ 'method': method, 'description_short': entry.get('Description (short)', ''), 'ai_response': entry.get('AI Response', '') }) break # Stop searching after the first match return method_details @app.route('/get_recipe', methods=['POST']) def get_recipe(): content = request.json recipe_name = content.get('recipe_name') if not recipe_name: return jsonify({"error": "No recipe name provided"}), 400 tasks_url = 'https://gs.jasonaa.me/?url=https://docs.google.com/spreadsheets/d/e/2PACX-1vSmp889ksBKKVVwpaxhlIzpDzXNOWjnszEXBP7SC5AyoebSIBFuX5qrcwwv6ud4RCYw2t_BZRhGLT0u/pubhtml?gid=1980586524&single=true' flow_url = 'https://gs.jasonaa.me/?url=https://docs.google.com/spreadsheets/d/e/2PACX-1vSmp889ksBKKVVwpaxhlIzpDzXNOWjnszEXBP7SC5AyoebSIBFuX5qrcwwv6ud4RCYw2t_BZRhGLT0u/pubhtml?gid=1980586524&single=true' tasks_data = load_data_from_url(tasks_url) flow_data = load_data_from_url(flow_url) # Initialize the language model llm = ChatOpenAI(model="gpt-4", temperature=.2, openai_api_key=openai_api_key) # Load or create vectorstore # Load or create vectorstore vectorstore_path = './chroma_db' embedding_function = OpenAIEmbeddings(api_key=openai_api_key) if os.path.exists(vectorstore_path) and os.listdir(vectorstore_path): vectorstore = Chroma(persist_directory=vectorstore_path, embedding_function=embedding_function) else: # Convert the tasks to Document objects documents = [Document(page_content=task['Journey Name (N)']) for task in tasks_data] # Create an embeddings model embeddings = OpenAIEmbeddings(api_key=openai_api_key) # Create a Chroma vectorstore from the documents # Save the vectorstore for future use # Save the vectorstore to disk with persistence vectorstore = Chroma.from_documents(documents, embeddings, persist_directory="./chroma_db") # vectorstore.save(vectorstore_path) # Perform a similarity search similar_docs = vectorstore.similarity_search(recipe_name, k=1) if similar_docs: closest_task = similar_docs[0].page_content similarity = np.linalg.norm(np.array(vectorstore.embeddings.embed_query(recipe_name)) - np.array(vectorstore.embeddings.embed_query(closest_task))) # Get agenda items and methods for the closest task agenda_items = get_agenda_items(closest_task, flow_data) methods_str = get_methods(closest_task, flow_data) # New line to get methods method_details = get_method_details(methods_str, tasks_data) # Get method details if agenda_items and method_details: # Create a chain that uses the language model to generate a complete sentence template = "Based on your input, I suggest you to follow these steps: {agenda_items}. This suggestion is based on the recipe '{recipe_name}', which is {similarity}% similar to your input. The original recipe that it is matching with is '{closest_task}'." prompt = PromptTemplate(template=template, input_variables=["agenda_items", "recipe_name", "similarity", "closest_task"]) llm_chain = LLMChain(prompt=prompt, llm=llm) response = llm_chain.run({"agenda_items": ', '.join(agenda_items), "recipe_name": recipe_name, "similarity": round(similarity * 100, 2), "closest_task": closest_task}) return jsonify({ "response": response, "details": { "Closest Luma Task": closest_task, "Methods": '| '.join([detail['method'] for detail in method_details]), "Method Details": method_details, "Similarity": f"{similarity}% similar to that task" } }) else: return jsonify({"error": "Agenda Items or Methods not found for the task"}), 404 else: return jsonify({"error": "Task not found"}), 404 if __name__ == "__main__": app.run(debug=True)
[ "{closest_task}", "agenda_items", "recipe_name", "similarity", "Based on your input, I suggest you to follow these steps: {agenda_items}. This suggestion is based on the recipe '{recipe_name}', which is {similarity}% similar to your input. The original recipe that it is matching with is '{closest_task}'.", "{recipe_name}", "closest_task" ]
2024-01-10
Sami-C4C/Studies-Assistent
hilfsbeispiele~script.py
import openai api_key = "YOUR_API_KEY" MODEL = "gpt-3.5-turbo" user_input_thema = input("Das Thema: ") user_input_fragen = input("Die Anzahl von Fragen: ") user_input_moeglichkeiten = input("Die Anzahl von Antwortmoeglichkeiten: ") response = openai.chat.completions.create( model=MODEL, messages=[ {"role": "system", "content": "You are a helpful quiz generator."}, {"role": "user", "content": "Erstelle mir ein Quiz über das Thema " + user_input_thema + ", mit " + user_input_fragen + " Fragen. Jede Frage hat " + user_input_moeglichkeiten + " Antwortmoeglichkeiten."}, ], temperature=0, ) print(response.choices[0].message.content)
[ "You are a helpful quiz generator.", "Erstelle mir ein Quiz über das Thema PLACEHOLDER, mit PLACEHOLDER Fragen. Jede Frage hat PLACEHOLDER Antwortmoeglichkeiten." ]
2024-01-10
Sami-C4C/Studies-Assistent
hilfsbeispiele~script2.py
import openai def ask_openai(prompt, model="text-davinci-003", max_tokens=150): openai.api_key = "YOUR_API_KEY" try: response = openai.Completion.create( model=model, prompt=prompt, max_tokens=max_tokens ) return response.choices[0].text.strip() except Exception as e: return f"An error occurred: {e}" def main(): print("OpenAI Chat - Type 'quit' to exit.") while True: user_input = input("You: ") if user_input.lower() == 'quit': break response = ask_openai(user_input) print("AI:", response) if __name__ == "__main__": main()
[]
2024-01-10
xcz1997/wenda
plugins~gen_data_st.py
import argparse import sentence_transformers from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores.faiss import FAISS from langchain.embeddings import HuggingFaceEmbeddings from langchain.docstore.document import Document import threading import pdfplumber import re import chardet import os import sys import time os.chdir(sys.path[0][:-8]) from common import success_print from common import error_helper from common import settings from common import CounterLock source_folder = 'txt' source_folder_path = os.path.join(os.getcwd(), source_folder) import logging logging.basicConfig() logger = logging.getLogger() logger.setLevel(logging.ERROR) root_path_list = source_folder_path.split(os.sep) docs = [] vectorstore = None model_path = settings.librarys.rtst.model_path try: embeddings = HuggingFaceEmbeddings(model_name='') embeddings.client = sentence_transformers.SentenceTransformer( model_path, device="cuda") except Exception as e: error_helper("embedding加载失败,请下载相应模型", r"https://github.com/l15y/wenda#st%E6%A8%A1%E5%BC%8F") raise e success_print("Embedding 加载完成") embedding_lock=CounterLock() vectorstore_lock=threading.Lock() def clac_embedding(texts, embeddings, metadatas): global vectorstore with embedding_lock: vectorstore_new = FAISS.from_texts(texts, embeddings, metadatas=metadatas) with vectorstore_lock: if vectorstore is None: vectorstore = vectorstore_new else: vectorstore.merge_from(vectorstore_new) def make_index(): global docs if hasattr(settings.librarys.rtst,"size") and hasattr(settings.librarys.rtst,"overlap"): text_splitter = CharacterTextSplitter( chunk_size=int(settings.librarys.rtst.size), chunk_overlap=int(settings.librarys.rtst.overlap), separator='\n') else: text_splitter = CharacterTextSplitter( chunk_size=20, chunk_overlap=0, separator='\n') doc_texts = text_splitter.split_documents(docs) docs = [] texts = [d.page_content for d in doc_texts] metadatas = [d.metadata for d in doc_texts] thread = threading.Thread(target=clac_embedding, args=(texts, embeddings, metadatas)) thread.start() while embedding_lock.get_waiting_threads()>2: time.sleep(0.1) all_files=[] for root, dirs, files in os.walk(source_folder_path): for file in files: all_files.append([root, file]) success_print("文件列表生成完成",len(all_files)) length_of_read=0 for i in range(len(all_files)): root, file=all_files[i] data = "" title = "" try: file_path = os.path.join(root, file) _, ext = os.path.splitext(file_path) if ext.lower() == '.pdf': #pdf with pdfplumber.open(file_path) as pdf: data_list = [] for page in pdf.pages: print(page.extract_text()) data_list.append(page.extract_text()) data = "\n".join(data_list) elif ext.lower() == '.txt': # txt with open(file_path, 'rb') as f: b = f.read() result = chardet.detect(b) with open(file_path, 'r', encoding=result['encoding']) as f: data = f.read() else: print("目前还不支持文件格式:", ext) except Exception as e: print("文件读取失败,当前文件已被跳过:",file,"。错误信息:",e) data = re.sub(r'!', "!\n", data) data = re.sub(r':', ":\n", data) data = re.sub(r'。', "。\n", data) data = re.sub(r'\r', "\n", data) data = re.sub(r'\n\n', "\n", data) data = re.sub(r"\n\s*\n", "\n", data) length_of_read+=len(data) docs.append(Document(page_content=data, metadata={"source": file})) if length_of_read > 1e5: success_print("处理进度",int(100*i/len(all_files)),f"%\t({i}/{len(all_files)})") make_index() # print(embedding_lock.get_waiting_threads()) length_of_read=0 if len(all_files) == 0: error_print("txt 目录没有数据") sys.exit(0) if len(docs) > 0: make_index() while embedding_lock.get_waiting_threads()>0: time.sleep(0.1) with embedding_lock: time.sleep(0.1) with vectorstore_lock: success_print("处理完成") try: vectorstore_old = FAISS.load_local( 'memory/default', embeddings=embeddings) success_print("合并至已有索引。如不需合并请删除 memory/default 文件夹") vectorstore_old.merge_from(vectorstore) vectorstore_old.save_local('memory/default') except: print("新建索引") vectorstore.save_local('memory/default') success_print("保存完成")
[]
2024-01-10
xcz1997/wenda
plugins~zhishiku_rtst.py
from langchain.vectorstores.faiss import FAISS from langchain.embeddings import HuggingFaceEmbeddings import sentence_transformers import numpy as np import re,os from plugins.common import settings,allowCROS from plugins.common import error_helper from plugins.common import success_print divider='\n' if not os.path.exists('memory'): os.mkdir('memory') cunnrent_setting=settings.librarys.rtst def get_doc_by_id(id,memory_name): return vectorstores[memory_name].docstore.search(vectorstores[memory_name].index_to_docstore_id[id]) def process_strings(A, C, B): # find the longest common suffix of A and prefix of B common = "" for i in range(1, min(len(A), len(B)) + 1): if A[-i:] == B[:i]: common = A[-i:] # if there is a common substring, replace one of them with C and concatenate if common: return A[:-len(common)] + C + B # otherwise, just return A + B else: return A + B def get_doc(id,score,step,memory_name): doc = get_doc_by_id(id,memory_name) final_content=doc.page_content print("文段分数:",score,[doc.page_content]) if step > 0: for i in range(1, step+1): try: doc_before=get_doc_by_id(id-i,memory_name) if doc_before.metadata['source']==doc.metadata['source']: final_content=process_strings(doc_before.page_content,divider,final_content) # print("上文分数:",score,doc.page_content) except: pass try: doc_after=get_doc_by_id(id+i,memory_name) if doc_after.metadata['source']==doc.metadata['source']: final_content=process_strings(final_content,divider,doc_after.page_content) except: pass if doc.metadata['source'].endswith(".pdf") or doc.metadata['source'].endswith(".txt"): title=f"[{doc.metadata['source']}](/api/read_news/{doc.metadata['source']})" else: title=doc.metadata['source'] return {'title': title,'content':re.sub(r'\n+', "\n", final_content),"score":int(score)} def find(s,step = 0,memory_name="default"): try: embedding = get_vectorstore(memory_name).embedding_function(s) scores, indices = vectorstores[memory_name].index.search(np.array([embedding], dtype=np.float32), int(cunnrent_setting.count)) docs = [] for j, i in enumerate(indices[0]): if i == -1: continue if scores[0][j]>700:continue docs.append(get_doc(i,scores[0][j],step,memory_name)) return docs except Exception as e: print(e) return [] try: embeddings = HuggingFaceEmbeddings(model_name='') embeddings.client = sentence_transformers.SentenceTransformer(cunnrent_setting.model_path, device=cunnrent_setting.device) except Exception as e: error_helper("embedding加载失败,请下载语义知识库计算模型",r"https://github.com/l15y/wenda#st%E6%A8%A1%E5%BC%8F") raise e vectorstores={} def get_vectorstore(memory_name): try: return vectorstores[memory_name] except Exception as e: try: vectorstores[memory_name] = FAISS.load_local( 'memory/'+memory_name, embeddings=embeddings) return vectorstores[memory_name] except Exception as e: success_print("没有读取到RTST记忆区%s,将新建。"%memory_name) return None from langchain.docstore.document import Document from langchain.text_splitter import CharacterTextSplitter from bottle import route, response, request, static_file, hook import bottle @route('/api/upload_rtst_zhishiku', method=("POST","OPTIONS")) def upload_zhishiku(): allowCROS() try: data = request.json title=data.get("title") memory_name=data.get("memory_name") data = re.sub(r'!', "!\n", data.get("txt")) data = re.sub(r'。', "。\n", data) data = re.sub(r'[\n\r]+', "\n", data) docs=[Document(page_content=data, metadata={"source":title })] print(docs) text_splitter = CharacterTextSplitter( chunk_size=20, chunk_overlap=0, separator='\n') doc_texts = text_splitter.split_documents(docs) texts = [d.page_content for d in doc_texts] metadatas = [d.metadata for d in doc_texts] vectorstore_new = FAISS.from_texts(texts, embeddings, metadatas=metadatas) vectorstore=get_vectorstore(memory_name) if vectorstore is None: vectorstores[memory_name]=vectorstore_new else: vectorstores[memory_name].merge_from(vectorstore_new) return '成功' except Exception as e: return str(e) @route('/api/save_rtst_zhishiku', method=("POST","OPTIONS")) def save_zhishiku(): allowCROS() try: data = request.json memory_name=data.get("memory_name") vectorstores[memory_name].save_local('memory/'+memory_name) return "保存成功" except Exception as e: return str(e) import json @route('/api/find_rtst_in_memory', method=("POST","OPTIONS")) def api_find(): allowCROS() data = request.json prompt = data.get('prompt') step = data.get('step') memory_name=data.get("memory_name") if step is None: step = int(settings.library.step) return json.dumps(find(prompt,int(step),memory_name)) @route('/api/save_news', method=("POST","OPTIONS")) def save_news(): allowCROS() try: data = request.json if not data: return 'no data' title = data.get('title') txt = data.get('txt') cut_file = f"txt/{title}.txt" with open(cut_file, 'w', encoding='utf-8') as f: f.write(txt) f.close() return 'success' except Exception as e: return(e) @route('/api/read_news/:path', method=("GET","OPTIONS")) def read_news(path=""): allowCROS() return static_file(path, root="txt/")
[ "\n", "\\n+" ]
2024-01-10
mila-iqia/mila-docs-chatbot
cfg.py
import logging import os from dataclasses import dataclass import openai from buster.busterbot import Buster, BusterConfig from buster.completers import ChatGPTCompleter, DocumentAnswerer from buster.formatters.documents import DocumentsFormatter from buster.formatters.prompts import PromptFormatter from buster.retriever import Retriever, SQLiteRetriever from buster.tokenizers import GPTTokenizer from buster.validators import QuestionAnswerValidator, Validator from huggingface_hub import hf_hub_download logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) # auth information username = os.getenv("MILA_USERNAME") password = os.getenv("MILA_PASSWORD") # set openAI creds openai.api_key = os.getenv("OPENAI_API_KEY") # hf hub information REPO_ID = os.environ.get("HUB_DATASET_ID") DB_FILE = "documents_mila.db" HUB_TOKEN = os.environ.get("HUB_TOKEN") # download the documents.db hosted on the dataset space logger.info(f"Downloading {DB_FILE} from hub...") hf_hub_download( repo_id=REPO_ID, repo_type="dataset", filename=DB_FILE, token=HUB_TOKEN, local_dir=".", local_dir_use_symlinks=False, ) logger.info("Downloaded.") buster_cfg = BusterConfig( validator_cfg={ "unknown_response_templates": [ "I'm sorry, but I am an AI language model trained to assist with questions related to the Mila Cluster. I cannot answer that question as it is not relevant to the cluster or its usage. Is there anything else I can assist you with?", ], "unknown_threshold": 0.85, "embedding_model": "text-embedding-ada-002", "use_reranking": True, "check_question_prompt": """You are an chatbot answering questions about the mila cluster, a compute infrastructure. Your job is to determine wether or not a question is valid, and should be answered. More general questions are not considered valid, even if you might know the response. A user will submit a question. Respond 'true' if it is valid, respond 'false' if it is invalid. For example: Q: How can I run a job with 2 GPUs? true Q: What is the meaning of life? false A user will submit a question. Respond 'true' if it is valid, respond 'false' if it is invalid.""", "completion_kwargs": { "model": "gpt-3.5-turbo", "stream": False, "temperature": 0, }, }, retriever_cfg={ "db_path": DB_FILE, "top_k": 3, "thresh": 0.7, "max_tokens": 2000, "embedding_model": "text-embedding-ada-002", }, documents_answerer_cfg={ "no_documents_message": "No documents are available for this question.", }, completion_cfg={ "completion_kwargs": { "model": "gpt-3.5-turbo", "stream": True, "temperature": 0, }, }, tokenizer_cfg={ "model_name": "gpt-3.5-turbo", }, documents_formatter_cfg={ "max_tokens": 3500, "formatter": "{content}", }, prompt_formatter_cfg={ "max_tokens": 3500, "text_before_docs": ( "You are a chatbot assistant answering technical questions about the Mila Cluster, a GPU cluster for Mila Students." "You are a chatbot assistant answering technical questions about the Mila Cluster." "You can only respond to a question if the content necessary to answer the question is contained in the following provided documentation." "If the answer is in the documentation, summarize it in a helpful way to the user." "If it isn't, simply reply that you cannot answer the question because it is not available in your documentation." "If it is a coding related question that you know the answer to, answer but warn the user that it wasn't taken directly from the documentation." "Do not refer to the documentation directly, but use the instructions provided within it to answer questions. " "Here is the documentation: " "<DOCUMENTS> " ), "text_after_docs": ( "<\DOCUMENTS>\n" "REMEMBER:\n" "You are a chatbot assistant answering technical questions about the Mila Cluster, a GPU cluster for Mila Students." "Here are the rules you must follow:\n" "1) You must only respond with information contained in the documentation above. Say you do not know if the information is not provided.\n" "2) Make sure to format your answers in Markdown format, including code block and snippets.\n" "3) Do not reference any links, urls or hyperlinks in your answers.\n" "4) If you do not know the answer to a question, or if it is completely irrelevant to the library usage, simply reply with:\n" "5) Do not refer to the documentation directly, but use the instructions provided within it to answer questions. " "'I'm sorry, but I am an AI language model trained to assist with questions related to AI. I cannot answer that question as it is not relevant to the library or its usage. Is there anything else I can assist you with?'" "For example:\n" "What is the meaning of life for a cluster bot?\n" "I'm sorry, but I am an AI language model trained to assist with questions related to the Mila Cluster. I cannot answer that question as it is not relevant to its usage. Is there anything else I can assist you with?" "Now answer the following question:\n" ), }, ) # initialize buster with the config in cfg.py (adapt to your needs) ... retriever: Retriever = SQLiteRetriever(**buster_cfg.retriever_cfg) tokenizer = GPTTokenizer(**buster_cfg.tokenizer_cfg) document_answerer: DocumentAnswerer = DocumentAnswerer( completer=ChatGPTCompleter(**buster_cfg.completion_cfg), documents_formatter=DocumentsFormatter(tokenizer=tokenizer, **buster_cfg.documents_formatter_cfg), prompt_formatter=PromptFormatter(tokenizer=tokenizer, **buster_cfg.prompt_formatter_cfg), **buster_cfg.documents_answerer_cfg, ) validator: Validator = QuestionAnswerValidator(**buster_cfg.validator_cfg) buster: Buster = Buster(retriever=retriever, document_answerer=document_answerer, validator=validator)
[]
2024-01-10
Luke100000/HagridBot
modules~smart_hagrid.py
import datetime import os import random from functools import lru_cache from typing import List import numpy as np import pytz as pytz import shelve from cache import AsyncLRU from discord import Message from tqdm.auto import tqdm from data import HAGRID_COMMANDS from openai_utils import generate_embedding, generate_text, num_tokens_from_string from stats import stat os.makedirs("shelve/", exist_ok=True) progress = shelve.open("shelve/progress") settings = shelve.open("shelve/settings") import sqlite3 con = sqlite3.connect("shelve/database.db") SUPER_SMART = False def setup(): con.execute( """ CREATE TABLE IF NOT EXISTS messages ( id INTEGER PRIMARY KEY, guild INTEGER, channel INTEGER, author INTEGER, content TEXT, date DATETIME, indexed BOOLEAN ) """ ) con.execute( """ CREATE TABLE IF NOT EXISTS embeddings ( message_id INTEGER PRIMARY KEY, embedding BLOB ) """ ) con.execute( """ CREATE TABLE IF NOT EXISTS summaries ( id INTEGER PRIMARY KEY AUTOINCREMENT, guild INTEGER, channel INTEGER, from_date DATETIME, to_date DATETIME, summary TEXT, embedding BLOB ) """ ) con.execute( """ CREATE TABLE IF NOT EXISTS names ( id INTEGER PRIMARY KEY, name TEXT ) """ ) con.execute( """ CREATE TABLE IF NOT EXISTS blocked_users ( id INTEGER PRIMARY KEY, reasons TEXT ) """ ) setup() @lru_cache(maxsize=1024) def set_name(identifier: int, name: str) -> None: con.execute( "INSERT OR REPLACE INTO names (id, name) VALUES (?, ?)", (identifier, name) ) @lru_cache(maxsize=1024) def get_name(identifier: int) -> None: name = con.execute("FETCH name FROM names WHERE id =?", (identifier,)).fetchone() return str(identifier) if name is None else name MIN_EMBEDDING_LENGTH = 32 MAX_CONVERSATION_TIME = 45 active_conversations = {} def get_all_embeddings(guild_id: int) -> (np.array, List[str]): """ :param guild_id: The current guild :return: The embedding matrix and the jump urls for all indexed messages """ results = con.execute( """ SELECT messages.id, content, embeddings.embedding, channel, names.name FROM messages LEFT JOIN embeddings ON messages.id=embeddings.message_id LEFT JOIN names ON messages.channel=names.id LEFT JOIN blocked_users ON messages.author=blocked_users.id WHERE blocked_users.id IS NULL AND indexed = TRUE AND guild = ? AND length(content) > ? """, ( guild_id, MIN_EMBEDDING_LENGTH, ), ).fetchall() embeddings = [] messages = [] for result in tqdm(results, "Embedding messages"): # Fetch missing embeddings if result[2] is None: embedding = generate_embedding(result[4] + ": " + result[1]) con.execute( "INSERT INTO embeddings (message_id, embedding) VALUES (?, ?)", (result[0], embedding.tobytes()), ) else: embedding = np.frombuffer(result[2], dtype=np.float32) embeddings.append(embedding) messages.append( f"https://discord.com/channels/{guild_id}/{result[3]}/{result[0]}" ) con.commit() return np.asarray(embeddings), messages def get_cosine_similarity(arr_a: np.array, arr_b: np.array) -> np.array: """ Returns the similarity between all pairs between arr_a and arr_b :param arr_a: A matrix of shape (n_samples, dim) :param arr_b: A matrix of shape (n_samples, dim) :return: A similarity matrix of shape (n_samples_a, n_samples_b) """ norms_a = np.linalg.norm(arr_a, axis=-1)[:, np.newaxis] norms_b = np.linalg.norm(arr_b, axis=-1)[:, np.newaxis] divisor = norms_a * norms_b.T dot_p = arr_a @ arr_b.T return np.divide(dot_p, divisor, dot_p, where=divisor > 0) def search(guild_id: int, embedding: np.array, samples: int = 3) -> List[str]: """ Searches for jump urls to similar messages to the given embedding :param guild_id: Current guild :param embedding: Embedding vector :param samples: Max samples to look for :return: A list of jump urls """ embeddings, messages = get_all_embeddings(guild_id) similarities = get_cosine_similarity(embeddings, embedding[None, :]).flatten() best_guess = similarities.max() top_ids = np.argsort(-similarities)[:samples] return [messages[i] for i in top_ids if similarities[i] > best_guess * 0.95] def find_best_summaries( guild_id: int, embedding: np.array, samples: int = 1 ) -> List[str]: """ Searches for summaries most similar to a user query :param guild_id: Current guild :param embedding: Embedding vector :param samples: Max samples to look for :return: A list of jump urls """ results = con.execute( """ SELECT summary, embedding FROM summaries WHERE guild = ? """, (guild_id,), ).fetchall() embeddings = np.asarray([np.frombuffer(r[1], dtype=np.float32) for r in results]) similarities = get_cosine_similarity(embeddings, embedding[None, :]).flatten() best_guess = similarities.max() top_ids = np.argsort(-similarities)[:samples] return [results[i][0] for i in top_ids if similarities[i] > best_guess * 0.75] def drop_until(messages: List[str], max_size: int, encoding_name="gpt-3.5-turbo"): while ( len(messages) > 0 and num_tokens_from_string("\n".join(messages), encoding_name) > max_size ): messages.pop(random.randrange(len(messages))) return messages @AsyncLRU(3600) async def who_is(user_id, max_length=3000): messages = con.execute( "SELECT content FROM messages WHERE author=? ORDER BY RANDOM() LIMIT 1000", (user_id,), ).fetchall() messages = [m[0] for m in messages if not m[0].startswith("/")] drop_until(messages, max_length) prompt = "> " + "\n> ".join(messages) print(f"Describing user with {len(messages)} messages and {len(prompt)} chars") system_prompt = "You are a language model tasked with describing this person in a few honest sentences, based on their past messages. Put focus on personality and behavior." return await generate_text(prompt, system_prompt=system_prompt, max_tokens=256) def get_yesterday_boundary() -> (datetime, datetime): # Define the CEST timezone cest = pytz.timezone("Europe/Berlin") # Central European Summer Time (CEST) # Get the current date and time in the CEST timezone now_cest = datetime.datetime.now(cest) # Set the time to 12:00 PM (noon) noon_cest = now_cest.replace(hour=12, minute=0, second=0, microsecond=0) # If the current time is before 12:00 PM, consider yesterday's boundary if now_cest < noon_cest: yesterday = noon_cest - datetime.timedelta(days=1) else: yesterday = noon_cest return yesterday - datetime.timedelta(days=1), yesterday @AsyncLRU(3) async def get_summary(guild_id, channel_id, offset: int = 0, max_length: int = 3500): from_date, to_date = get_yesterday_boundary() from_date = from_date - datetime.timedelta(days=offset) to_date = to_date - datetime.timedelta(days=offset) summary = con.execute( "SELECT summary FROM summaries WHERE guild=? AND channel=? AND from_date=? AND to_date=?", (guild_id, channel_id, from_date, to_date), ).fetchone() if summary is None: messages = con.execute( """ SELECT content, names.name as username FROM messages LEFT JOIN names ON names.id=messages.author LEFT JOIN blocked_users ON messages.author=blocked_users.id WHERE blocked_users.id IS NULL AND guild=? AND (? < 0 OR channel=?) AND date BETWEEN ? AND ? """, (guild_id, channel_id, channel_id, from_date, to_date), ).fetchall() messages = [f"{m[1]}: {m[0]}" for m in messages if not m[0].startswith("/")] original_count = len(messages) # Crop to fit into context size messages = drop_until(messages, max_length) # Construct prompt prompt = "> " + "\n> ".join(messages) # No need to summarize a single message if len(prompt) < 64: return "Nothing.", from_date, to_date prompt = f"Today's new conversations:{prompt}\n\nToday's summary" # Generate summary where = ( "public Discord server" if channel_id < 0 else "specific Discord server channel" ) system_prompt = f"You are a language model tasked with summarizing following conversation on a {where} in a concise way." summary = await generate_text( prompt, system_prompt=system_prompt, max_tokens=256, model="gpt-3.5-turbo", temperature=0.25, ) # Embed the summary for faster indexing embedding = generate_embedding(summary) # Cache summary con.execute( """ INSERT INTO summaries (guild, channel, from_date, to_date, summary, embedding) VALUES (?, ?, ?, ?, ?, ?) """, (guild_id, channel_id, from_date, to_date, summary, embedding), ) con.commit() print( f"Summarized day with {original_count} original, {len(messages)} compressed messages and {len(prompt)} chars." ) return summary, from_date, to_date else: return summary[0], from_date, to_date def set_index_status(channel_id, active: bool): if active: settings[str(active)] = True else: del settings[str(active)] con.execute( """ UPDATE messages SET indexed=? WHERE channel=? """, (1 if active else 0, channel_id), ) async def track(message: Message): after = None if str(message.channel.id) in progress: after = progress[str(message.channel.id)] indexed = str(message.channel.id) in settings set_name(message.guild.id, message.guild.name) set_name(message.channel.id, message.channel.name) count = 0 async for received in message.channel.history( limit=100, after=after, oldest_first=True ): if received.clean_content and not received.clean_content.startswith("/hagrid"): set_name(received.author.id, received.author.name) count += 1 con.execute( "INSERT OR REPLACE INTO messages (id, guild, channel, author, content, date, indexed) VALUES (?, ?, ?, ?, ?, ?, ?)", ( received.id, received.guild.id, received.channel.id, received.author.id, received.clean_content, received.created_at, indexed, ), ) progress[str(message.channel.id)] = received.created_at con.commit() print( f"Tracked {count} {('indexed ' if indexed else '')}messages in {message.channel.name} until {progress[str(message.channel.id)]}" ) return count async def on_smart_message(message): msg = message.clean_content.lower() tracked = str(message.guild.id) in settings # Basic commands if msg.startswith("/hagrid"): stat(message, "command") if msg == "/hagrid guild extend": settings[str(message.guild.id)] = True await message.delete() elif msg == "/hagrid channel index": set_index_status(message.channel.id, True) if hasattr(message.channel, "parent"): set_index_status(message.channel.parent.id, True) await message.delete() elif msg == "/hagrid channel noindex": set_index_status(message.channel.id, False) if hasattr(message.channel, "parent"): set_index_status(message.channel.parent.id, False) await message.delete() elif msg == "/hagrid scan": await message.delete() while await track(message) > 0: pass else: await message.channel.send(HAGRID_COMMANDS) # Track messages if tracked: await track(message) else: return # Search for stuff if msg.startswith("hagrid search"): stat(message, "search") await message.channel.typing() if message.reference and message.reference.resolved: embedding = generate_embedding(message.reference.resolved.clean_content) else: embedding = generate_embedding( message.clean_content.replace("hagrid search", "") ) best = search(message.guild.id, embedding) await message.channel.send("Check out those links: " + (" ".join(best))) return True # Summarize someones personality if "hagrid who is" in msg: await message.channel.typing() if len(message.mentions) == 0: await message.channel.send(f"Yer have to mention someone!") else: who = message.mentions[0].id description = await who_is(who) await message.channel.send(description) return True # Summarize a timespan if msg.startswith("hagrid what happened"): stat(message, "summary") await message.channel.typing() here = msg.startswith("hagrid what happened here") try: history_length = int( msg.replace( "hagrid what happened here" if here else "hagrid what happened", "" ).strip() ) except ValueError: history_length = 1 history_length = min(7, history_length) # Get the summary of the last 3 days summaries = [ get_summary(message.guild.id, message.channel.id if here else -1, i) for i in range(history_length) ] summaries.reverse() msg = ( "" if history_length == 1 else "Right then, 'ere's the summary o' the last few days!\n" ) + "\n\n".join( [ f'**{to_date.strftime("%Y, %d %B")}:**\n{summary}' for (summary, from_date, to_date) in summaries ] ) # noinspection SpellCheckingInspection if len(msg) > 1500: for (summary, from_date, to_date) in summaries: await message.channel.send( f'**{to_date.strftime("%Y, %d %B")}:**\n{summary}' ) else: await message.channel.send(msg) return True convo_id = f"{message.author.id}_{message.channel.id}" if msg == "bye hagrid" and convo_id in active_conversations: del active_conversations[convo_id] return True if "hallo hagrid" in msg or ( convo_id in active_conversations and (datetime.datetime.now() - active_conversations[convo_id]).seconds < MAX_CONVERSATION_TIME ): stat(message, "hallo hagrid") await message.channel.typing() FIXED_HISTORY_N = 5 MAX_HISTORY_N = 32 WHO_IS_CONTEXT_LENGTH = 512 HISTORY_LENGTH = 512 active_conversations[convo_id] = datetime.datetime.now() # We are not interested in this specific summary, but let's enforce generating it for the lookup if SUPER_SMART: await get_summary(message.guild.id, -1) await get_summary(message.guild.id, message.channel.id) # Fetch the embedding of the input text to look for similar topics embedding = await generate_embedding(message.clean_content) # Use similar memories from the past summaries = find_best_summaries(message.guild.id, embedding) summary = "\n\n".join(summaries) # Fetch info about the trigger if SUPER_SMART: who = await who_is(message.author.id, max_length=WHO_IS_CONTEXT_LENGTH) # Use the last few messages from the channel as context messages = con.execute( """ SELECT content, names.name as username FROM messages LEFT JOIN names ON names.id=messages.author LEFT JOIN blocked_users ON messages.author=blocked_users.id WHERE channel=? AND blocked_users.id IS NULL ORDER BY date DESC LIMIT ? """, (message.channel.id, MAX_HISTORY_N), ).fetchall() messages = [(m[0].replace("\n", " "), m[1]) for m in messages] messages = [f"{m[1]}: {m[0]}" for m in messages] messages = messages[0:FIXED_HISTORY_N] + drop_until( messages[FIXED_HISTORY_N:], HISTORY_LENGTH ) messages.reverse() # Concatenate history = "\n".join(messages).replace("HagridBot", "Hagrid") # Define Hagrid system_prompts = "You are the loyal, friendly, and softhearted Rubeus Hagrid with a thick west country accent. You are a man of few words. If asked a question, you answers correctly. This is a conversation between one or more users, where you take part." # Build prompt # prompt = f"Context from the past:\n{summary}\n\n{message.author.name}'s profile summary:\n{who}\n\nConversation:\n{history}\n\nWhat short answer would Hagrid now respond? Respond with his thick west country accent!" prompt = f"Conversation:\n{history}\n\nWhat short answer would Hagrid now respond? Respond with his thick west country accent!" # Request await message.channel.send( ( await generate_text( prompt=prompt, system_prompt=system_prompts, max_tokens=150, temperature=0.8, frequency_penalty=0.1, ) ) .replace("Hagrid:", "") .strip() ) return True
[ "Conversation:\nPLACEHOLDER\n\nWhat short answer would Hagrid now respond? Respond with his thick west country accent!", "> ", "Today's new conversations:PLACEHOLDER\n\nToday's summary", "You are a language model tasked with describing this person in a few honest sentences, based on their past messages. Put focus on personality and behavior.", "You are a language model tasked with summarizing following conversation on a PLACEHOLDER in a concise way.", "\n> ", "You are the loyal, friendly, and softhearted Rubeus Hagrid with a thick west country accent. You are a man of few words. If asked a question, you answers correctly. This is a conversation between one or more users, where you take part." ]
2024-01-10
Razcle/langchain
langchain~chains~python.py
"""Chain that runs python code. Heavily borrowed from https://replit.com/@amasad/gptpy?v=1#main.py """ import sys from io import StringIO from typing import Dict, List from pydantic import BaseModel from langchain.chains.base import Chain from langchain.python import PythonREPL class PythonChain(Chain, BaseModel): """Chain to run python code. Example: .. code-block:: python from langchain import PythonChain python_chain = PythonChain() """ input_key: str = "code" #: :meta private: output_key: str = "output" #: :meta private: @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ return [self.output_key] def _call(self, inputs: Dict[str, str]) -> Dict[str, str]: python_repl = PythonREPL() old_stdout = sys.stdout sys.stdout = mystdout = StringIO() python_repl.run(inputs[self.input_key]) sys.stdout = old_stdout output = mystdout.getvalue() return {self.output_key: output}
[]
2024-01-10
Razcle/langchain
langchain~vectorstores~elastic_vector_search.py
"""Wrapper around Elasticsearch vector database.""" import uuid from typing import Any, Callable, Dict, Iterable, List, Optional from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env from langchain.vectorstores.base import VectorStore def _default_text_mapping(dim: int) -> Dict: return { "properties": { "text": {"type": "text"}, "vector": {"type": "dense_vector", "dims": dim}, } } def _default_script_query(query_vector: List[int]) -> Dict: return { "script_score": { "query": {"match_all": {}}, "script": { "source": "cosineSimilarity(params.query_vector, 'vector') + 1.0", "params": {"query_vector": query_vector}, }, } } class ElasticVectorSearch(VectorStore): """Wrapper around Elasticsearch as a vector database. Example: .. code-block:: python from langchain import ElasticVectorSearch elastic_vector_search = ElasticVectorSearch( "http://localhost:9200", "embeddings", embedding_function ) """ def __init__( self, elasticsearch_url: str, index_name: str, embedding_function: Callable ): """Initialize with necessary components.""" try: import elasticsearch except ImportError: raise ValueError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticearch`." ) self.embedding_function = embedding_function self.index_name = index_name try: es_client = elasticsearch.Elasticsearch(elasticsearch_url) # noqa except ValueError as e: raise ValueError( f"Your elasticsearch client string is misformatted. Got error: {e} " ) self.client = es_client def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None ) -> None: """Run more texts through the embeddings and add to the vectorstore.""" try: from elasticsearch.helpers import bulk except ImportError: raise ValueError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticearch`." ) requests = [] for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} request = { "_op_type": "index", "_index": self.index_name, "vector": self.embedding_function(text), "text": text, "metadata": metadata, } requests.append(request) bulk(self.client, requests) # TODO: add option not to refresh self.client.indices.refresh(index=self.index_name) def similarity_search(self, query: str, k: int = 4) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ embedding = self.embedding_function(query) script_query = _default_script_query(embedding) response = self.client.search(index=self.index_name, query=script_query) hits = [hit["_source"] for hit in response["hits"]["hits"][:k]] documents = [ Document(page_content=hit["text"], metadata=hit["metadata"]) for hit in hits ] return documents @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> "ElasticVectorSearch": """Construct ElasticVectorSearch wrapper from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new index for the embeddings in the Elasticsearch instance. 3. Adds the documents to the newly created Elasticsearch index. This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import ElasticVectorSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() elastic_vector_search = ElasticVectorSearch.from_texts( texts, embeddings, elasticsearch_url="http://localhost:9200" ) """ elasticsearch_url = get_from_dict_or_env( kwargs, "elasticsearch_url", "ELASTICSEARCH_URL" ) try: import elasticsearch from elasticsearch.helpers import bulk except ImportError: raise ValueError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticearch`." ) try: client = elasticsearch.Elasticsearch(elasticsearch_url) except ValueError as e: raise ValueError( "Your elasticsearch client string is misformatted. " f"Got error: {e} " ) index_name = uuid.uuid4().hex embeddings = embedding.embed_documents(texts) dim = len(embeddings[0]) mapping = _default_text_mapping(dim) # TODO would be nice to create index before embedding, # just to save expensive steps for last client.indices.create(index=index_name, mappings=mapping) requests = [] for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} request = { "_op_type": "index", "_index": index_name, "vector": embeddings[i], "text": text, "metadata": metadata, } requests.append(request) bulk(client, requests) client.indices.refresh(index=index_name) return cls(elasticsearch_url, index_name, embedding.embed_query)
[]
2024-01-10
Razcle/langchain
tests~unit_tests~chains~test_natbot.py
"""Test functionality related to natbot.""" from typing import Any, List, Mapping, Optional from langchain.chains.natbot.base import NatBotChain from langchain.llms.base import LLM class FakeLLM(LLM): """Fake LLM wrapper for testing purposes.""" def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Return `foo` if longer than 10000 words, else `bar`.""" if len(prompt) > 10000: return "foo" else: return "bar" @property def _identifying_params(self) -> Mapping[str, Any]: return {} def test_proper_inputs() -> None: """Test that natbot shortens inputs correctly.""" nat_bot_chain = NatBotChain(llm=FakeLLM(), objective="testing") url = "foo" * 10000 browser_content = "foo" * 10000 output = nat_bot_chain.execute(url, browser_content) assert output == "bar" def test_variable_key_naming() -> None: """Test that natbot handles variable key naming correctly.""" nat_bot_chain = NatBotChain( llm=FakeLLM(), objective="testing", input_url_key="u", input_browser_content_key="b", output_key="c", ) output = nat_bot_chain.execute("foo", "foo") assert output == "bar"
[]
2024-01-10
Razcle/langchain
tests~unit_tests~llms~fake_llm.py
"""Fake LLM wrapper for testing purposes.""" from typing import Any, List, Mapping, Optional from langchain.llms.base import LLM class FakeLLM(LLM): """Fake LLM wrapper for testing purposes.""" def __init__(self, queries: Optional[Mapping] = None): """Initialize with optional lookup of queries.""" self._queries = queries def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str: """First try to lookup in queries, else return 'foo' or 'bar'.""" if self._queries is not None: return self._queries[prompt] if stop is None: return "foo" else: return "bar" @property def _identifying_params(self) -> Mapping[str, Any]: return {}
[]
2024-01-10
Razcle/langchain
langchain~example_generator.py
"""Utility functions for working with prompts.""" from typing import List from langchain.chains.llm import LLMChain from langchain.llms.base import LLM from langchain.prompts.few_shot import FewShotPromptTemplate from langchain.prompts.prompt import PromptTemplate TEST_GEN_TEMPLATE_SUFFIX = "Add another example." def generate_example( examples: List[dict], llm: LLM, prompt_template: PromptTemplate ) -> str: """Return another example given a list of examples for a prompt.""" prompt = FewShotPromptTemplate( examples=examples, suffix=TEST_GEN_TEMPLATE_SUFFIX, input_variables=[], example_prompt=prompt_template, ) chain = LLMChain(llm=llm, prompt=prompt) return chain.predict()
[ "Add another example." ]
2024-01-10
Razcle/langchain
langchain~llms~manifest.py
"""Wrapper around HazyResearch's Manifest library.""" from typing import Any, Dict, List, Mapping, Optional from pydantic import BaseModel, Extra, root_validator from langchain.llms.base import LLM class ManifestWrapper(LLM, BaseModel): """Wrapper around HazyResearch's Manifest library.""" client: Any #: :meta private: llm_kwargs: Optional[Dict] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that python package exists in environment.""" try: from manifest import Manifest if not isinstance(values["client"], Manifest): raise ValueError except ImportError: raise ValueError( "Could not import manifest python package. " "Please it install it with `pip install manifest-ml`." ) return values @property def _identifying_params(self) -> Mapping[str, Any]: kwargs = self.llm_kwargs or {} return {**self.client.client.get_model_params(), **kwargs} def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call out to LLM through Manifest.""" if stop is not None and len(stop) != 1: raise NotImplementedError( f"Manifest currently only supports a single stop token, got {stop}" ) kwargs = self.llm_kwargs or {} if stop is not None: kwargs["stop_token"] = stop return self.client.run(prompt, **kwargs)
[]
2024-01-10
Razcle/langchain
langchain~prompts~example_selector~semantic_similarity.py
"""Example selector that selects examples based on SemanticSimilarity.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra from langchain.embeddings.base import Embeddings from langchain.prompts.example_selector.base import BaseExampleSelector from langchain.vectorstores.base import VectorStore class SemanticSimilarityExampleSelector(BaseExampleSelector, BaseModel): """Example selector that selects examples based on SemanticSimilarity.""" vectorstore: VectorStore """VectorStore than contains information about examples.""" k: int = 4 """Number of examples to select.""" example_keys: Optional[List[str]] = None """Optional keys to filter examples to.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True def add_example(self, example: Dict[str, str]) -> None: """Add new example to vectorstore.""" string_example = " ".join(example.values()) self.vectorstore.add_texts([string_example], metadatas=[example]) def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: """Select which examples to use based on semantic similarity.""" # Get the docs with the highest similarity. query = " ".join(input_variables.values()) example_docs = self.vectorstore.similarity_search(query, k=self.k) # Get the examples from the metadata. # This assumes that examples are stored in metadata. examples = [dict(e.metadata) for e in example_docs] # If example keys are provided, filter examples to those keys. if self.example_keys: examples = [{k: eg[k] for k in self.example_keys} for eg in examples] return examples @classmethod def from_examples( cls, examples: List[dict], embeddings: Embeddings, vectorstore_cls: VectorStore, k: int = 4, **vectorstore_cls_kwargs: Any, ) -> "SemanticSimilarityExampleSelector": """Create k-shot example selector using example list and embeddings. Reshuffles examples dynamically based on query similarity. Args: examples: List of examples to use in the prompt. suffix: String to go after the list of examples. Should generally set up the user's input. input_variables: A list of variable names the final prompt template will expect. embeddings: An iniialized embedding API interface, e.g. OpenAIEmbeddings(). vectorstore_cls: A vector store DB interface class, e.g. FAISS. example_separator: The seperator to use in between examples. Defaults to two new line characters. prefix: String that should go before any examples. Generally includes examples. Default to an empty string. k: Number of examples to select vectorstore_cls_kwargs: optional kwargs containing url for vector store Returns: The ExampleSelector instantiated, backed by a vector store. """ string_examples = [" ".join(eg.values()) for eg in examples] vectorstore = vectorstore_cls.from_texts( string_examples, embeddings, metadatas=examples, **vectorstore_cls_kwargs ) return cls(vectorstore=vectorstore, k=k)
[]
2024-01-10
Razcle/langchain
tests~unit_tests~llms~test_utils.py
"""Test LLM utility functions.""" from langchain.llms.utils import enforce_stop_tokens def test_enforce_stop_tokens() -> None: """Test removing stop tokens when they occur.""" text = "foo bar baz" output = enforce_stop_tokens(text, ["moo", "baz"]) assert output == "foo bar " text = "foo bar baz" output = enforce_stop_tokens(text, ["moo", "baz", "bar"]) assert output == "foo " def test_enforce_stop_tokens_none() -> None: """Test removing stop tokens when they do not occur.""" text = "foo bar baz" output = enforce_stop_tokens(text, ["moo"]) assert output == "foo bar baz"
[]
2024-01-10
Razcle/langchain
langchain~llms~ai21.py
"""Wrapper around AI21 APIs.""" from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import BaseModel, Extra, root_validator from langchain.llms.base import LLM from langchain.utils import get_from_dict_or_env class AI21PenaltyData(BaseModel): """Parameters for AI21 penalty data.""" scale: int = 0 applyToWhitespaces: bool = True applyToPunctuations: bool = True applyToNumbers: bool = True applyToStopwords: bool = True applyToEmojis: bool = True class AI21(BaseModel, LLM): """Wrapper around AI21 large language models. To use, you should have the environment variable ``AI21_API_KEY`` set with your API key. Example: .. code-block:: python from langchain import AI21 ai21 = AI21(model="j1-jumbo") """ model: str = "j1-jumbo" """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" maxTokens: int = 256 """The maximum number of tokens to generate in the completion.""" minTokens: int = 0 """The minimum number of tokens to generate in the completion.""" topP: float = 1.0 """Total probability mass of tokens to consider at each step.""" presencePenalty: AI21PenaltyData = AI21PenaltyData() """Penalizes repeated tokens.""" countPenalty: AI21PenaltyData = AI21PenaltyData() """Penalizes repeated tokens according to count.""" frequencyPenalty: AI21PenaltyData = AI21PenaltyData() """Penalizes repeated tokens according to frequency.""" numResults: int = 1 """How many completions to generate for each prompt.""" logitBias: Optional[Dict[str, float]] = None """Adjust the probability of specific tokens being generated.""" ai21_api_key: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key exists in environment.""" ai21_api_key = get_from_dict_or_env(values, "ai21_api_key", "AI21_API_KEY") values["ai21_api_key"] = ai21_api_key return values @property def _default_params(self) -> Mapping[str, Any]: """Get the default parameters for calling AI21 API.""" return { "temperature": self.temperature, "maxTokens": self.maxTokens, "minTokens": self.minTokens, "topP": self.topP, "presencePenalty": self.presencePenalty.dict(), "countPenalty": self.countPenalty.dict(), "frequencyPenalty": self.frequencyPenalty.dict(), "numResults": self.numResults, "logitBias": self.logitBias, } @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model": self.model}, **self._default_params} def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call out to AI21's complete endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = ai21("Tell me a joke.") """ if stop is None: stop = [] response = requests.post( url=f"https://api.ai21.com/studio/v1/{self.model}/complete", headers={"Authorization": f"Bearer {self.ai21_api_key}"}, json={"prompt": prompt, "stopSequences": stop, **self._default_params}, ) if response.status_code != 200: optional_detail = response.json().get("error") raise ValueError( f"AI21 /complete call failed with status code {response.status_code}." f" Details: {optional_detail}" ) response_json = response.json() return response_json["completions"][0]["data"]["text"]
[]
2024-01-10
Razcle/langchain
langchain~chains~mapreduce.py
"""Map-reduce chain. Splits up a document, sends the smaller parts to the LLM with one prompt, then combines the results with another one. """ from typing import Dict, List from pydantic import BaseModel, Extra from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.llms.base import LLM from langchain.prompts.base import BasePromptTemplate from langchain.text_splitter import TextSplitter class MapReduceChain(Chain, BaseModel): """Map-reduce chain.""" map_llm: LLMChain """LLM wrapper to use for the map step.""" reduce_llm: LLMChain """LLM wrapper to use for the reduce step.""" text_splitter: TextSplitter """Text splitter to use.""" input_key: str = "input_text" #: :meta private: output_key: str = "output_text" #: :meta private: @classmethod def from_params( cls, llm: LLM, prompt: BasePromptTemplate, text_splitter: TextSplitter ) -> "MapReduceChain": """Construct a map-reduce chain that uses the chain for map and reduce.""" llm_chain = LLMChain(llm=llm, prompt=prompt) return cls(map_llm=llm_chain, reduce_llm=llm_chain, text_splitter=text_splitter) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ return [self.output_key] def _call(self, inputs: Dict[str, str]) -> Dict[str, str]: # Split the larger text into smaller chunks. docs = self.text_splitter.split_text(inputs[self.input_key]) # Now that we have the chunks, we send them to the LLM and track results. # This is the "map" part. input_list = [{self.map_llm.prompt.input_variables[0]: d} for d in docs] summary_results = self.map_llm.apply(input_list) summaries = [res[self.map_llm.output_key] for res in summary_results] # We then need to combine these individual parts into one. # This is the reduce part. summary_str = "\n".join(summaries) inputs = {self.reduce_llm.prompt.input_variables[0]: summary_str} output = self.reduce_llm.predict(**inputs) return {self.output_key: output}
[]
2024-01-10
Razcle/langchain
langchain~llms~nlpcloud.py
"""Wrapper around NLPCloud APIs.""" from typing import Any, Dict, List, Mapping, Optional from pydantic import BaseModel, Extra, root_validator from langchain.llms.base import LLM from langchain.utils import get_from_dict_or_env class NLPCloud(LLM, BaseModel): """Wrapper around NLPCloud large language models. To use, you should have the ``nlpcloud`` python package installed, and the environment variable ``NLPCLOUD_API_KEY`` set with your API key. Example: .. code-block:: python from langchain import NLPCloud nlpcloud = NLPCloud(model="gpt-neox-20b") """ client: Any #: :meta private: model_name: str = "finetuned-gpt-neox-20b" """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" min_length: int = 1 """The minimum number of tokens to generate in the completion.""" max_length: int = 256 """The maximum number of tokens to generate in the completion.""" length_no_input: bool = True """Whether min_length and max_length should include the length of the input.""" remove_input: bool = True """Remove input text from API response""" remove_end_sequence: bool = True """Whether or not to remove the end sequence token.""" bad_words: List[str] = [] """List of tokens not allowed to be generated.""" top_p: int = 1 """Total probability mass of tokens to consider at each step.""" top_k: int = 50 """The number of highest probability tokens to keep for top-k filtering.""" repetition_penalty: float = 1.0 """Penalizes repeated tokens. 1.0 means no penalty.""" length_penalty: float = 1.0 """Exponential penalty to the length.""" do_sample: bool = True """Whether to use sampling (True) or greedy decoding.""" num_beams: int = 1 """Number of beams for beam search.""" early_stopping: bool = False """Whether to stop beam search at num_beams sentences.""" num_return_sequences: int = 1 """How many completions to generate for each prompt.""" nlpcloud_api_key: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" nlpcloud_api_key = get_from_dict_or_env( values, "nlpcloud_api_key", "NLPCLOUD_API_KEY" ) try: import nlpcloud values["client"] = nlpcloud.Client( values["model_name"], nlpcloud_api_key, gpu=True, lang="en" ) except ImportError: raise ValueError( "Could not import nlpcloud python package. " "Please it install it with `pip install nlpcloud`." ) return values @property def _default_params(self) -> Mapping[str, Any]: """Get the default parameters for calling NLPCloud API.""" return { "temperature": self.temperature, "min_length": self.min_length, "max_length": self.max_length, "length_no_input": self.length_no_input, "remove_input": self.remove_input, "remove_end_sequence": self.remove_end_sequence, "bad_words": self.bad_words, "top_p": self.top_p, "top_k": self.top_k, "repetition_penalty": self.repetition_penalty, "length_penalty": self.length_penalty, "do_sample": self.do_sample, "num_beams": self.num_beams, "early_stopping": self.early_stopping, "num_return_sequences": self.num_return_sequences, } @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call out to NLPCloud's create endpoint. Args: prompt: The prompt to pass into the model. stop: Not supported by this interface (pass in init method) Returns: The string generated by the model. Example: .. code-block:: python response = nlpcloud("Tell me a joke.") """ if stop and len(stop) > 1: raise ValueError( "NLPCloud only supports a single stop sequence per generation." "Pass in a list of length 1." ) elif stop and len(stop) == 1: end_sequence = stop[0] else: end_sequence = None response = self.client.generation( prompt, end_sequence=end_sequence, **self._default_params ) return response["generated_text"]
[]
2024-01-10
Razcle/langchain
langchain~__init__.py
"""Main entrypoint into package.""" from pathlib import Path with open(Path(__file__).absolute().parents[0] / "VERSION") as _f: __version__ = _f.read().strip() from langchain.agents import MRKLChain, ReActChain, SelfAskWithSearchChain from langchain.chains import ( ConversationChain, LLMChain, LLMMathChain, PythonChain, SerpAPIChain, SQLDatabaseChain, VectorDBQA, ) from langchain.docstore import InMemoryDocstore, Wikipedia from langchain.llms import Cohere, HuggingFaceHub, OpenAI from langchain.prompts import ( BasePromptTemplate, FewShotPromptTemplate, Prompt, PromptTemplate, ) from langchain.sql_database import SQLDatabase from langchain.vectorstores import FAISS, ElasticVectorSearch __all__ = [ "LLMChain", "LLMMathChain", "PythonChain", "SelfAskWithSearchChain", "SerpAPIChain", "Cohere", "OpenAI", "BasePromptTemplate", "Prompt", "FewShotPromptTemplate", "PromptTemplate", "ReActChain", "Wikipedia", "HuggingFaceHub", "SQLDatabase", "SQLDatabaseChain", "FAISS", "MRKLChain", "VectorDBQA", "ElasticVectorSearch", "InMemoryDocstore", "ConversationChain", ]
[]
2024-01-10
Razcle/langchain
tests~integration_tests~llms~test_nlpcloud.py
"""Test NLPCloud API wrapper.""" from langchain.llms.nlpcloud import NLPCloud def test_nlpcloud_call() -> None: """Test valid call to nlpcloud.""" llm = NLPCloud(max_length=10) output = llm("Say foo:") assert isinstance(output, str)
[]
2024-01-10
Razcle/langchain
tests~integration_tests~chains~test_react.py
"""Integration test for self ask with search.""" from langchain.agents.react.base import ReActChain from langchain.docstore.wikipedia import Wikipedia from langchain.llms.openai import OpenAI def test_react() -> None: """Test functionality on a prompt.""" llm = OpenAI(temperature=0) react = ReActChain(llm=llm, docstore=Wikipedia()) question = ( "Author David Chanoff has collaborated with a U.S. Navy admiral " "who served as the ambassador to the United Kingdom under " "which President?" ) output = react.run(question) assert output == "Bill Clinton"
[]
2024-01-10
Razcle/langchain
langchain~prompts~few_shot.py
"""Prompt template that contains few shot examples.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.prompts.base import ( DEFAULT_FORMATTER_MAPPING, BasePromptTemplate, check_valid_template, ) from langchain.prompts.example_selector.base import BaseExampleSelector from langchain.prompts.prompt import PromptTemplate class FewShotPromptTemplate(BasePromptTemplate, BaseModel): """Prompt template that contains few shot examples.""" examples: Optional[List[dict]] = None """Examples to format into the prompt. Either this or example_selector should be provided.""" example_selector: Optional[BaseExampleSelector] = None """ExampleSelector to choose the examples to format into the prompt. Either this or examples should be provided.""" example_prompt: PromptTemplate """PromptTemplate used to format an individual example.""" suffix: str """A prompt template string to put after the examples.""" input_variables: List[str] """A list of the names of the variables the prompt template expects.""" example_separator: str = "\n\n" """String separator used to join the prefix, the examples, and suffix.""" prefix: str = "" """A prompt template string to put before the examples.""" template_format: str = "f-string" """The format of the prompt template. Options are: 'f-string'.""" @root_validator(pre=True) def check_examples_and_selector(cls, values: Dict) -> Dict: """Check that one and only one of examples/example_selector are provided.""" examples = values.get("examples", None) example_selector = values.get("example_selector", None) if examples and example_selector: raise ValueError( "Only one of 'examples' and 'example_selector' should be provided" ) if examples is None and example_selector is None: raise ValueError( "One of 'examples' and 'example_selector' should be provided" ) return values @root_validator() def template_is_valid(cls, values: Dict) -> Dict: """Check that prefix, suffix and input variables are consistent.""" check_valid_template( values["prefix"] + values["suffix"], values["template_format"], values["input_variables"], ) return values class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True def _get_examples(self, **kwargs: Any) -> List[dict]: if self.examples is not None: return self.examples elif self.example_selector is not None: return self.example_selector.select_examples(kwargs) else: raise ValueError def format(self, **kwargs: Any) -> str: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. Example: .. code-block:: python prompt.format(variable1="foo") """ # Get the examples to use. examples = self._get_examples(**kwargs) # Format the examples. example_strings = [ self.example_prompt.format(**example) for example in examples ] # Create the overall template. pieces = [self.prefix, *example_strings, self.suffix] template = self.example_separator.join([piece for piece in pieces if piece]) # Format the template with the input variables. return DEFAULT_FORMATTER_MAPPING[self.template_format](template, **kwargs)
[ "f-string" ]
2024-01-10
Razcle/langchain
tests~integration_tests~llms~test_openai.py
"""Test OpenAI API wrapper.""" import pytest from langchain.llms.openai import OpenAI def test_openai_call() -> None: """Test valid call to openai.""" llm = OpenAI(max_tokens=10) output = llm("Say foo:") assert isinstance(output, str) def test_openai_extra_kwargs() -> None: """Test extra kwargs to openai.""" # Check that foo is saved in extra_kwargs. llm = OpenAI(foo=3, max_tokens=10) assert llm.max_tokens == 10 assert llm.model_kwargs == {"foo": 3} # Test that if extra_kwargs are provided, they are added to it. llm = OpenAI(foo=3, model_kwargs={"bar": 2}) assert llm.model_kwargs == {"foo": 3, "bar": 2} # Test that if provided twice it errors with pytest.raises(ValueError): OpenAI(foo=3, model_kwargs={"foo": 2})
[]
2024-01-10
Razcle/langchain
langchain~chains~serpapi.py
"""Chain that calls SerpAPI. Heavily borrowed from https://github.com/ofirpress/self-ask """ import os import sys from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.chains.base import Chain from langchain.utils import get_from_dict_or_env class HiddenPrints: """Context manager to hide prints.""" def __enter__(self) -> None: """Open file to pipe stdout to.""" self._original_stdout = sys.stdout sys.stdout = open(os.devnull, "w") def __exit__(self, *_: Any) -> None: """Close file that stdout was piped to.""" sys.stdout.close() sys.stdout = self._original_stdout class SerpAPIChain(Chain, BaseModel): """Chain that calls SerpAPI. To use, you should have the ``google-search-results`` python package installed, and the environment variable ``SERPAPI_API_KEY`` set with your API key, or pass `serpapi_api_key` as a named parameter to the constructor. Example: .. code-block:: python from langchain import SerpAPIChain serpapi = SerpAPIChain() """ search_engine: Any #: :meta private: input_key: str = "search_query" #: :meta private: output_key: str = "search_result" #: :meta private: serpapi_api_key: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ return [self.output_key] @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" serpapi_api_key = get_from_dict_or_env( values, "serpapi_api_key", "SERPAPI_API_KEY" ) values["serpapi_api_key"] = serpapi_api_key try: from serpapi import GoogleSearch values["search_engine"] = GoogleSearch except ImportError: raise ValueError( "Could not import serpapi python package. " "Please it install it with `pip install google-search-results`." ) return values def _call(self, inputs: Dict[str, Any]) -> Dict[str, str]: params = { "api_key": self.serpapi_api_key, "engine": "google", "q": inputs[self.input_key], "google_domain": "google.com", "gl": "us", "hl": "en", } with HiddenPrints(): search = self.search_engine(params) res = search.get_dict() if "error" in res.keys(): raise ValueError(f"Got error from SerpAPI: {res['error']}") if "answer_box" in res.keys() and "answer" in res["answer_box"].keys(): toret = res["answer_box"]["answer"] elif "answer_box" in res.keys() and "snippet" in res["answer_box"].keys(): toret = res["answer_box"]["snippet"] elif ( "answer_box" in res.keys() and "snippet_highlighted_words" in res["answer_box"].keys() ): toret = res["answer_box"]["snippet_highlighted_words"][0] elif "snippet" in res["organic_results"][0].keys(): toret = res["organic_results"][0]["snippet"] else: toret = "No good search result found" return {self.output_key: toret}
[]
2024-01-10
dianadima/multi-action
stim_curation~analysis~py~sen_openai.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Apr 11 14:01:52 2023 @author: dianadima """ import openai, numpy as np from pandas import read_csv from scipy.io import savemat from parse_sentences import parse_sentences #CHANGE ME: set API key to use for OpenAI embeddings openai.api_key = []; sentences = read_csv("./sentences.csv",header=None) s_list = parse_sentences(sentences) #get ada embeddings - current best emb_ada = [] for s in s_list: resp = openai.Embedding.create( input=[s], engine="text-embedding-ada-002") emb = resp['data'][0]['embedding'] emb = np.array(emb) emb_ada.append(emb) emb_ada = np.array(emb_ada) savemat('./gpt_ada.mat',{'emb_ada':emb_ada}) #get davinci embeddings - deprecated emb_davinci = [] for s in s_list: resp = openai.Embedding.create( input=[s], engine="text-similarity-davinci-001") emb = resp['data'][0]['embedding'] emb = np.array(emb) emb_davinci.append(emb) emb_davinci = np.array(emb_davinci) savemat('./gpt_davinci.mat',{'emb_davinci':emb_davinci})
[]
2024-01-10
dianadima/multi-action
stim_curation~analysis~py~sen_openai_parts.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jun 19 13:28:38 2023 @author: dianadima """ import openai, numpy as np from pandas import read_csv from scipy.io import savemat from parse_sentence_parts import parse_sentence_parts #CHANGE ME: set API key to use for OpenAI embeddings openai.api_key = []; sentences = read_csv("./sentences.csv",header=None) s_age,s_act,s_con = parse_sentence_parts(sentences) #get ada embeddings - current best emb_ada = [] for s in s_age: resp = openai.Embedding.create( input=[s], engine="text-embedding-ada-002") emb = resp['data'][0]['embedding'] emb = np.array(emb) emb_ada.append(emb) emb_ada = np.array(emb_ada) savemat('./gpt_ada_agent.mat',{'emb_ada':emb_ada}) emb_ada = [] for s in s_act: resp = openai.Embedding.create( input=[s], engine="text-embedding-ada-002") emb = resp['data'][0]['embedding'] emb = np.array(emb) emb_ada.append(emb) emb_ada = np.array(emb_ada) savemat('./gpt_ada_action.mat',{'emb_ada':emb_ada}) emb_ada = [] for s in s_con: resp = openai.Embedding.create( input=[s], engine="text-embedding-ada-002") emb = resp['data'][0]['embedding'] emb = np.array(emb) emb_ada.append(emb) emb_ada = np.array(emb_ada) savemat('./gpt_ada_context.mat',{'emb_ada':emb_ada})
[]
2024-01-10
yeahjack/chatgpt_zulip_bot
test_all.py
import pytest from chatgpt import OpenAI, prompt_manager from configparser import ConfigParser import tiktoken import os api_version = os.environ.get("API_VERSION") api_key = os.environ.get("OPENAI_API_KEY") @pytest.fixture # Test for chatgpt.py def openai_object(): return OpenAI(api_version=api_version, api_key=api_key) def test_trim_conversation_history(openai_object): def count_tokens(message, api_version): if "gpt-3.5-turbo" in api_version: encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") elif "gpt-4" in api_version: encoding = tiktoken.encoding_for_model("gpt-4") else: raise ValueError("Unsupported API version, your API version is: " + api_version) return len(encoding.encode(message)) history = [ "User: Hello", "AI: Hi there!", "User: How are you?", "AI: I'm doing great! How about you?", "User: I'm fine, thank you." ] # Calculate token count for each message message_tokens = [count_tokens( msg, openai_object.api_version) for msg in history] # Set max_tokens to the sum of tokens of the last two messages max_tokens = message_tokens[-1] + message_tokens[-2] trimmed_history = openai_object.trim_conversation_history( history, max_tokens) assert len( trimmed_history) == 2, "Trimmed history should have only the last two messages" def test_chatgpt_response_strings(openai_object): prompts = [ "/1", "/end", "hi", "/polish_en this is a test cases", "/polish_zh 测试用例这一个是。", "/find_grammar_mistakes this is a test cases", "/zh-en 这是一个测试用例", "/en-zh This is a test case", "/en-ac This is a test case", "/ex_code_zh print('This is a test case.')" ] try: for prompt in prompts: result = openai_object.get_chatgpt_response(0, prompt) assert isinstance( result, str), f"Result should be a string for prompt: {prompt}" finally: # Clear the conversation history for test cases. openai_object.user_conversations[0] = [] def test_prompt_manager(): # incorrect command msg, code = prompt_manager("/zh-end asdf") assert msg == 'Sorry, command not found: `/zh-end`, type `/help` to get the list of commands.' assert code == 2 # correct command msg, code = prompt_manager("/zh-en asdf") assert msg == 'As a translator, your task is to accurately translate text from Chinese to English. Please pay attention to context and accurately explain phrases and proverbs. Below is the text you need to translate: \n\nasdf' assert code == 0 # contextual text information msg, code = prompt_manager("zh-en asdf") assert msg == 'zh-en asdf' assert code == 1
[ "['/1', '/end', 'hi', '/polish_en this is a test cases', '/polish_zh 测试用例这一个是。', '/find_grammar_mistakes this is a test cases', '/zh-en 这是一个测试用例', '/en-zh This is a test case', '/en-ac This is a test case', \"/ex_code_zh print('This is a test case.')\"]" ]
2024-01-10
qgerome/openhexa-test-pipelines
chatgpt~pipeline.py
import openai from openhexa.sdk import current_run, parameter, pipeline, workspace @pipeline("chatgpt", name="chatgpt") @parameter("question", required=True, type=str, default="Hello, how are you?") def chatgpt(question): openai.api_key = workspace.custom_connection("openai").api_key ask(question) current_run.log_info("Done !") @chatgpt.task def ask(question: str): current_run.log_info(f"Ask ChatGPT to answer '{question}'") # list models models = openai.Model.list() current_run.log_info(models) # create a completion completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": question}] ) answer = completion.choices[0].message.content current_run.log_info(answer) current_run.log_info("Writing answer to file") with open(f"{workspace.files_path}/answer.txt", "w") as f: f.write(answer) if __name__ == "__main__": chatgpt()
[]
2024-01-10
qgerome/openhexa-test-pipelines
chatgpt~pipeline~pipeline.py
import openai from openhexa.sdk import current_run, parameter, pipeline, workspace @pipeline("chatgpt", name="chatgpt") @parameter("question", required=True, type=str, default="Hello, how are you?") def chatgpt(question): openai.api_key = workspace.custom_connection("openai").api_key answer = ask(question) current_run.log_info("Writing answer to file") with open(f"{workspace.files_path}/answer.txt", "w") as f: f.write(answer) current_run.log_info("Done !") @chatgpt.task def ask(question: str): current_run.log_info(f"Ask ChatGPT to answer '{question}'") # list models models = openai.Model.list() current_run.log_info(models) # create a completion completion = openai.Completion.create(model="ada", prompt=question) # print the completion print(completion.choices[0].text) if __name__ == "__main__": chatgpt()
[]
2024-01-10
chazzjimel/WeChat-AIChatbot-WinOnly
voice~factory.py
""" voice factory """ def create_voice(voice_type): """ create a voice instance :param voice_type: voice type code :return: voice instance """ if voice_type == "baidu": from voice.baidu.baidu_voice import BaiduVoice return BaiduVoice() elif voice_type == "google": from voice.google.google_voice import GoogleVoice return GoogleVoice() elif voice_type == "openai": from voice.openai.openai_voice import OpenaiVoice return OpenaiVoice() elif voice_type == "pytts": from voice.pytts.pytts_voice import PyttsVoice return PyttsVoice() elif voice_type == "azure": from voice.azure.azure_voice import AzureVoice return AzureVoice() raise RuntimeError
[]
2024-01-10
chazzjimel/WeChat-AIChatbot-WinOnly
plugins~newgpt_turbo~lib~search_google.py
import concurrent import urllib import openai import requests from datetime import datetime from bs4 import BeautifulSoup from common.log import logger from concurrent.futures import ThreadPoolExecutor, as_completed """谷歌独立搜索函数,通过访问相关URL并提交给GPT整理获得更详细的信息""" __all__ = ['search_google'] __author__ = 'chazzjimel/跃迁' __date__ = '2023.6.21' def get_url(url): headers = { "User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.87 " "Safari/537.36" } try: response = requests.get(url, headers=headers, timeout=2) response.raise_for_status() html = response.text soup = BeautifulSoup(html, 'html.parser') paragraphs = soup.find_all('p') paragraphs_text = [p.get_text() for p in paragraphs] return paragraphs_text except requests.exceptions.RequestException as e: logger.warning("无法访问该URL: %s, error: %s", url, str(e)) return None def build_search_url(searchTerms, base_url, count=None, startIndex=None, language=None, cx=None, hq=None, dateRestrict=None, key=None): """ 构建谷歌搜索的URL :param searchTerms: 搜索关键词 :param base_url: 基础URL :param count: 搜索结果数量 :param startIndex: 搜索结果的起始位置 :param language: 搜索结果的语言 :param cx: 自定义搜索引擎ID :param hq: 搜索结果的域名 :param dateRestrict: 搜索结果的时间限制 :param key: API密钥 :return: 构建好的URL """ params = { "q": searchTerms, # 搜索关键词 "num": count, # 搜索结果数量 "start": startIndex, # 搜索结果的起始位置 "lr": language, # 搜索结果的语言 "cx": cx, # 自定义搜索引擎ID "sort": "date", # 搜索结果的排序方式 "filter": 1, # 是否过滤重复结果 "hq": hq, # 搜索结果的域名 "dateRestrict": dateRestrict, # 搜索结果的时间限制 "key": key, # API密钥 "alt": "json" # 返回结果的格式 } params = {k: v for k, v in params.items() if v is not None} # 去除值为None的参数 encoded_params = urllib.parse.urlencode(params) # 对参数进行URL编码 base_url = base_url # 基础URL search_url = base_url + encoded_params # 构建完整的URL return search_url def get_summary(item, model, search_terms): logger.debug("正在获取链接内容:%s", item["link"]) link_content = get_url(item["link"]) if not link_content: logger.warning("无法获取链接内容:%s", item["link"]) return None logger.debug("link_content: %s", link_content) # 获取链接内容字符数量 link_content_str = ' '.join(link_content) content_length = len(link_content_str) logger.debug("content_length: %s", content_length) # 如果内容少于200个字符,则pass if content_length < 200: logger.warning("链接内容低于200个字符:%s", item["link"]) return None # 如果内容大于15000个字符,则截取中间部分 elif content_length > 8000: logger.warning("链接内容高于15000个字符,进行裁断:%s", item["link"]) start = (content_length - 8000) // 2 end = start + 8000 link_content = link_content[start:end] logger.debug("正在提取摘要:%s", link_content) summary = process_content(str(link_content), model=model, search_terms=search_terms) return summary def search_google(model, base_url, search_terms, count, api_key, cx_id, iterations): all_summaries = [] for i in range(iterations): try: startIndex = i * count + 1 search_url = build_search_url(search_terms, base_url=base_url, count=10, cx=cx_id, key=api_key, startIndex=startIndex) logger.debug("正在进行第 %d 次搜索,URL:%s", i + 1, search_url) response = requests.get(search_url) model = model if response.status_code == 200: items = response.json().get('items', []) logger.debug(f"search_google items:{items}") with ThreadPoolExecutor(max_workers=5) as executor: future_to_item = {executor.submit(get_summary, item, model, search_terms): item for item in items} for future in as_completed(future_to_item): try: summary = future.result(timeout=5) # 设置超时时间 if summary is not None: all_summaries.append("【搜索结果内容摘要】:\n" + summary) except concurrent.futures.TimeoutError: logger.error("处理摘要任务超时") except Exception as e: logger.error("在提取摘要过程中出现错误:%s", str(e)) else: logger.error(f"Request failed with status code {response.status_code}") # time.sleep(1) # Delay to prevent rate limiting except Exception as e: logger.error("在执行搜索过程中出现错误:%s", str(e)) # 判断 all_summaries 是否为空 if not all_summaries: return ["实时联网暂未获取到有效信息内容,请更换关键词或再次重试······"] return all_summaries def process_content(content, model, search_terms=None): current_date = datetime.now().strftime("%Y年%m月%d日") summary = openai.ChatCompletion.create( model=model, messages=[ {"role": "system", "content": f"""当前中国北京日期:{current_date},请判断并提取内容中与"{search_terms}"有关的详细内容,必须保留细节,准确的时间线以及富有逻辑的排版!如果与时间、前因后果、上下文等有关内容不能忽略,不可以胡编乱造!"""}, {"role": "assistant", "content": content}, ], temperature=0.8 ) return summary["choices"][0]["message"]["content"]
[ "当前中国北京日期:PLACEHOLDER,请判断并提取内容中与\"PLACEHOLDER\"有关的详细内容,必须保留细节,准确的时间线以及富有逻辑的排版!如果与时间、前因后果、上下文等有关内容不能忽略,不可以胡编乱造!" ]
2024-01-10
chazzjimel/WeChat-AIChatbot-WinOnly
plugins~midjourney_turbo~midjourney_turbo.py
#!/usr/bin/env python # -*- coding=utf-8 -*- """ @time: 2023/5/25 10:46 @Project :chatgpt-on-wechat @file: midjourney_turbo_nt.py """ import base64 import datetime import re import sqlite3 import threading import time import openai import requests import io import plugins from tenacity import retry, stop_after_attempt, wait_fixed from PIL import Image from plugins.midjourney_turbo.lib.midJourney_module import MidJourneyModule from bridge.context import ContextType from bridge.reply import Reply, ReplyType from plugins import * from common.log import logger from common.expired_dict import ExpiredDict from datetime import timedelta # 创建并返回相应类型的频道对象 def create_channel_object(): # 从配置中获取频道类型 channel_type = conf().get("channel_type") # 根据频道类型创建相应的频道对象 if channel_type == 'wework': from channel.wework.wework_channel import WeworkChannel return WeworkChannel(), ReplyType.IMAGE_URL, 2 elif channel_type == 'ntchat': from channel.wechatnt.ntchat_channel import NtchatChannel return NtchatChannel(), ReplyType.IMAGE_URL, 2 elif channel_type == 'weworktop': from channel.weworktop.weworktop_channel import WeworkTopChannel return WeworkTopChannel(), ReplyType.IMAGE_URL, 2 else: from channel.wechatnt.ntchat_channel import NtchatChannel return NtchatChannel(), ReplyType.IMAGE_URL, 2 # 对内容进行格式化处理 def format_content(content): # 将内容中的"—"替换为"--" if "—" in content: content = content.replace("—", "--") # 如果内容中包含"--",则按"--"将内容分割为提示和命令两部分 if "--" in content: prompt, commands = content.split("--", 1) commands = " --" + commands.strip() else: prompt, commands = content, "" return prompt, commands # 根据内容生成提示信息 @retry(stop=stop_after_attempt(5), wait=wait_fixed(2)) def generate_prompt(content, api_key, api_base): openai.api_key = api_key openai.api_base = api_base try: message_content = "请根据AI生图关键词'{}'预测想要得到的画面,然后用英文拓展描述、丰富细节、添加关键词描述以适用于AI生图。描述要简短直接突出重点,请把优化后的描述直接返回,不需要多余的语言!".format( content) completion = openai.ChatCompletion.create(model=conf().get("model", "gpt-3.5-turbo"), messages=[ {"role": "user", "content": message_content}], max_tokens=300, temperature=0.8, top_p=0.9) prompt = completion['choices'][0]['message']['content'] logger.debug("优化后的关键词:{}".format(prompt)) return prompt except Exception as e: logger.warning(f"生成提示信息失败,重试中。错误信息: {str(e)}") raise e # 将图片转换为base64编码的字符串 def convert_base64(image): # 打开图片文件 with open(image, "rb") as image_file: # 对图片内容进行base64编码 encoded_string = base64.b64encode(image_file.read()) return encoded_string.decode('utf-8') # 下载并压缩图片 def download_and_compress_image(url, filename, quality): # 确定保存图片的目录 directory = os.path.join(os.getcwd(), "tmp") # 如果目录不存在,则创建目录 if not os.path.exists(directory): os.makedirs(directory) # 下载图片 response = requests.get(url) image = Image.open(io.BytesIO(response.content)) # 压缩图片 image_path = os.path.join(directory, f"{filename}.jpg") image.save(image_path, "JPEG", quality=quality) return image_path # 带有重试机制的发送消息 def send_with_retry(comapp, com_reply, e_context, max_retries=3, delay=2): # 尝试发送消息,如果失败则重试 for i in range(max_retries): try: # 尝试发送消息 comapp.send(com_reply, e_context['context']) break # 如果成功发送,就跳出循环 except requests.exceptions.SSLError as e: # 如果因为SSL错误而发送失败,记录错误并重试 logger.error(f"Failed to send message due to SSL error: {e}. Attempt {i + 1} of {max_retries}") if i < max_retries - 1: # 如果不是最后一次尝试,那么等待一段时间再重试 time.sleep(delay) # 等待指定的秒数 else: # 如果尝试发送消息的次数达到了最大次数,记录错误并放弃 logger.error(f"Failed to send message after {max_retries} attempts. Giving up.") # 使用装饰器注册一个名为"Midjourney_Turbo"的插件 @plugins.register(name="Midjourney_Turbo", desc="使用Midjourney来画图", desire_priority=1, version="2.0", author="chazzjimel") # 定义一个名为 MidjourneyTurbo 的类,继承自 Plugin class MidjourneyTurbo(Plugin): # 初始化类 def __init__(self): # 调用父类的初始化方法 super().__init__() try: # 获取当前文件的目录 curdir = os.path.dirname(__file__) # 配置文件的路径 config_path = os.path.join(curdir, "config.json") # 创建一个过期字典,有效期为1小时 self.params_cache = ExpiredDict(60 * 60) # 如果配置文件不存在 if not os.path.exists(config_path): # 输出日志信息,配置文件不存在,将使用模板 logger.info('[Midjourney_Turbo] 配置文件不存在,将使用config.json.template模板') # 模板配置文件的路径 config_path = os.path.join(curdir, "config.json.template") # 打开并读取配置文件 with open(config_path, "r", encoding="utf-8") as f: # 加载 JSON 文件 config = json.load(f) rootdir = os.path.dirname(os.path.dirname(curdir)) dbdir = os.path.join(rootdir, "db") if not os.path.exists(dbdir): os.mkdir(dbdir) logger.info("[Midjourney_Turbo] inited") user_db = os.path.join(dbdir, "user.db") self.user_db = sqlite3.connect(user_db, check_same_thread=False) # 创建频道对象 self.comapp, self.type, self.num = create_channel_object() # 获取配置文件中的各种参数 self.api_key = config.get("api_key", "") self.domain_name = config["domain_name"] self.image_ins = config.get("image_ins", "/p") self.blend_ins = config.get("blend_ins", "/b") self.change_ins = config.get("change_ins", "/c") self.split_url = config.get("split_url", False) self.short_url_api = config.get("short_url_api", "") self.default_params = config.get("default_params", {"action": "IMAGINE:出图", "prompt": ""}) self.gpt_optimized = config.get("gpt_optimized", False) self.trial_lock = config.get("trial_lock", 3) self.lock = config.get("lock", False) self.group_lock = config.get("group_lock", False) self.group_list = config.get("group_name_list", []) self.group_id_list = config.get("group_id_list", []) self.name_list = config.get("name_list", []) self.user_id_list = config.get("user_id_list", []) self.local_data = threading.local() self.complete_prompt = config.get("complete_prompt", "任务完成!") self.openai_api_key = config.get("openai_key", conf().get("open_ai_api_key")) self.openai_api_base = config.get("openai_base", conf().get("open_ai_api_base")) self.picture_quality = config.get("picture_quality", 30) # 创建 MidJourneyModule 对象 self.mm = MidJourneyModule(api_key=self.api_key, domain_name=self.domain_name) # 如果 domain_name 为空或包含"你的域名",则抛出异常 if not self.domain_name or "你的域名" in self.domain_name: raise Exception("please set your Midjourney domain_name in config or environment variable.") # 设置事件处理函数 self.handlers[Event.ON_HANDLE_CONTEXT] = self.on_handle_context # 输出日志信息,表示插件已初始化 logger.info("[Midjourney_Turbo] inited") except FileNotFoundError: # 配置文件未找到的特定情况 logger.warn(f"[Midjourney_Turbo] init failed, config.json not found.") raise # 抛出异常,结束程序 # 这个方法是一个事件处理方法,当插件接收到指定类型的事件时,会调用这个方法来处理 def on_handle_context(self, e_context: EventContext): # 如果事件的类型不是图片创建或图片,则直接返回,不进行后续处理 if e_context['context'].type not in [ContextType.IMAGE_CREATE, ContextType.IMAGE]: return # 将图片请求内容的日志输出 logger.info("[Midjourney_Turbo] image_query={}".format(e_context['context'].content)) # 创建一个回复对象 reply = Reply() try: # 获取会话ID user_id = e_context['context']["session_id"] # 获取事件内容 content = e_context['context'].content[:] if e_context['context'].type == ContextType.IMAGE_CREATE: context = e_context['context'] logger.debug("收到 IMAGE_CREATE 事件.") if self.lock: logger.debug("使用限制已开启.") if e_context["context"]["isgroup"]: if self.group_lock: msg = context.kwargs.get('msg') group_name = msg.other_user_nickname group_id = msg.other_user_id if group_name in self.group_list or group_id in self.group_id_list: continue_a, continue_b, remaining = True, False, "" logger.debug("群组白名单,无限制.") else: continue_a, continue_b, remaining = self.check_and_update_usage_limit( trial_lock=self.trial_lock, user_id=user_id, db_conn=self.user_db) logger.debug( f"群聊锁已开启. continue_a={continue_a}, continue_b={continue_b}, remaining={remaining}") else: continue_a, continue_b, remaining = True, False, "" logger.debug("群聊锁未开启,无限制.") else: msg = context.kwargs.get('msg') user_name = msg.from_user_nickname if user_name in self.name_list or user_id in self.user_id_list: continue_a, continue_b, remaining = True, False, "" logger.debug("个人白名单,无限制.") else: continue_a, continue_b, remaining = self.check_and_update_usage_limit( trial_lock=self.trial_lock, user_id=user_id, db_conn=self.user_db) else: continue_a, continue_b, remaining = True, False, "" logger.debug("使用限制未开启.") else: continue_a, continue_b, remaining = True, False, "" logger.debug("收到图像信息,继续执行.") if continue_a and continue_b: self.local_data.reminder_string = f"\n💳您的绘画试用次数剩余:{remaining}次" elif not continue_a and not continue_b: reply.type = ReplyType.TEXT reply.content = f"⚠️提交失败,您的绘画试用次数剩余:0次 " e_context['reply'] = reply e_context.action = EventAction.BREAK_PASS return else: self.local_data.reminder_string = remaining # 如果事件类型是图片创建 if e_context['context'].type == ContextType.IMAGE_CREATE: # 调用处理图片创建的方法 self.handle_image_create(e_context, user_id, content, reply) # 如果用户ID存在于参数缓存中 elif user_id in self.params_cache: # 调用处理参数缓存的方法 self.handle_params_cache(e_context, user_id, content, reply) # 设置回复内容 e_context['reply'] = reply # 设置事件动作为打断并传递,跳过处理context的默认逻辑 e_context.action = EventAction.BREAK_PASS # 记录日志,事件动作设置为打断并传递,回复已设置 logger.debug("Event action set to BREAK_PASS, reply set.") except Exception as e: # 捕获异常 # 设置回复类型为错误 reply.type = ReplyType.ERROR # 设置回复内容为异常信息 reply.content = "[Midjourney_Turbo] " + str(e) # 设置回复 e_context['reply'] = reply # 记录异常日志 logger.exception("[Midjourney_Turbo] exception: %s" % e) # 设置事件动作为pass e_context.action = EventAction.BREAK_PASS def handle_image_create(self, e_context, user_id, content, reply): # 使用format_content方法格式化内容 prompt, commands = format_content(content=content) # 深复制default_params到params params = {**self.default_params} # 处理垫图的情况 if self.image_ins in prompt: # 移除图片插入标记 prompt = prompt.replace(self.image_ins, "") prompt = generate_prompt(content=prompt, api_key=self.openai_api_key, api_base=self.openai_api_base) if self.gpt_optimized else prompt # 将params添加到用户的参数缓存中 self.params_cache[user_id] = {'image_params': params} # 向params中的prompt添加内容 if params.get("prompt", ""): params["prompt"] += f", {prompt}" else: params["prompt"] += f"{prompt}" # 记录日志 logger.info("[Midjourney_Turbo] params={}".format(params)) # 设置回复类型为INFO,内容为提示用户发送图片的消息 reply.type = ReplyType.INFO reply.content = "请发送一张图片给我" # 处理合图的情况 elif self.blend_ins in prompt: logger.info("[Midjourney_Turbo] blend_ins prompt={}".format(prompt)) try: # 从用户的输入中获取需要合成的图片数量 num_pictures = int(prompt.split()[1]) except (IndexError, ValueError): # 如果出现错误,设置回复类型为ERROR,内容为错误提示 trigger = conf()['image_create_prefix'][0] reply.type = ReplyType.TEXT reply.content = f"指令不正确,请根据示例格式重新输入:{trigger} {self.blend_ins} 2\n合图数量仅限2-5张" e_context['reply'] = reply e_context.action = EventAction.BREAK_PASS return # 检查图片数量是否在2-5张之间 if not 2 <= num_pictures <= 5: trigger = conf()['image_create_prefix'][0] reply.type = ReplyType.TEXT reply.content = f"指令不正确,请根据示例格式重新输入:{trigger} {self.blend_ins} 2\n合图数量仅限2-5张" e_context['reply'] = reply e_context.action = EventAction.BREAK_PASS return # 添加用户的合成参数到params_cache self.params_cache[user_id] = {'blend_params': params, 'num_pictures': num_pictures, 'base64_data': []} # 记录调试日志 logger.debug(f"self.params_cache_2:{self.params_cache}") # 向params中的prompt添加内容 if params.get("prompt", ""): params["prompt"] += f", {prompt}" else: params["prompt"] += f"{prompt}" # 记录日志 logger.info("[Midjourney_Turbo] params={}".format(params)) # 设置回复类型为INFO,内容为提示用户发送指定数量的图片的消息 reply.type = ReplyType.INFO reply.content = f"请直接发送{num_pictures}张图片给我" elif self.change_ins in prompt: # 处理变换,示例输入:/c V/U 1-4 # 处理提交的UV值 submit_uv = ' '.join(prompt.replace(self.change_ins, "").strip().split()) logger.debug("[Midjourney_Turbo] submit_uv post_json={}".format(" ".join(submit_uv))) # 检查输入的格式是否正确 pattern = re.compile(r'^\d+\s[vVuU]\d$') if not pattern.match(submit_uv): trigger = conf()['image_create_prefix'][0] reply.type = ReplyType.ERROR reply.content = f"格式不正确。请使用如下示例格式:\n{trigger} {self.change_ins} 8528881058085979 V1" else: # 解析输入的值 number, v_value = submit_uv.split() logger.debug("Parsed values: Number: {}, V value: {}".format(number, v_value)) v_value_upper = v_value.upper() # 确保UV值在U1-U4和V1-V4范围内 if v_value_upper in ["U1", "U2", "U3", "U4", "V1", "V2", "V3", "V4"]: simple_data = self.mm.get_simple(content=number + " " + v_value_upper) # 发送任务提交消息 self.send_task_submission_message(e_context, messageId=simple_data["result"]) # 获取图片的URL task_data = self.mm.get_image_url(id=simple_data["result"]) if task_data["failReason"] is None: # 生成新的URL new_url = self.generate_new_url(task_data=task_data) # 生成短URL short_url = self.get_short_url(short_url_api=self.short_url_api, url=new_url) # 计算时间差 time_diff_start_finish_td, time_diff_submit_finish_td = self.get_time_diff(task_data) logger.debug("new_url: %s" % new_url) # 创建一个新的回复 com_reply = self.create_reply(new_url=new_url, data=simple_data) # 发送回复 send_with_retry(self.comapp, com_reply, e_context) logger.debug("The comapp object is an instance of: " + type(self.comapp).__name__) reply.type = ReplyType.TEXT # 设置回复内容 reply.content = self.complete_prompt.format(id=simple_data["result"], change_ins=self.change_ins, imgurl=short_url, start_finish=time_diff_start_finish_td, submit_finish=time_diff_submit_finish_td) logger.debug("Sent image URL and completed prompt.") else: reply.type = ReplyType.TEXT reply.content = task_data["failReason"] logger.debug("Sent failReason as reply content.") else: # 如果没有识别到特定的指令,则执行默认的操作,生成一个新的图像 logger.debug("Generating prompt...") prompt = generate_prompt(content=prompt, api_key=self.openai_api_key, api_base=self.openai_api_base) if self.gpt_optimized else prompt prompt += commands logger.debug(f"Generated prompt: {prompt}") logger.debug("Getting imagination data...") imagine_data = self.mm.get_imagine(prompt=prompt) if isinstance(imagine_data, str): # 如果返回的是错误消息,则直接发送错误消息 reply.type = ReplyType.TEXT reply.content = f"任务提交失败,{imagine_data}" logger.error(f"Received error message: {imagine_data}") else: self.send_task_submission_message(e_context, messageId=imagine_data["result"]) logger.debug(f"Received imagination data: {imagine_data}") time.sleep(10) # 等待一段时间,以确保任务已经处理完成 logger.debug("Getting image URL...") task_data = self.mm.get_image_url(id=imagine_data["result"]) logger.debug(f"Received task data: {task_data}") if isinstance(task_data, str): # 错误信息响应 reply.type = ReplyType.TEXT reply.content = task_data logger.error(f"Received error message: {task_data}") else: # 正常的JSON响应 if task_data["failReason"] is None: # 处理图片链接 new_url = self.generate_new_url(task_data=task_data) # 生成短链接 short_url = self.get_short_url(short_url_api=self.short_url_api, url=new_url) # 计算时间差 time_diff_start_finish_td, time_diff_submit_finish_td = self.get_time_diff( task_data) logger.debug("new_url: %s" % new_url) com_reply = self.create_reply(new_url=new_url, data=imagine_data) # 发送回复 send_with_retry(self.comapp, com_reply, e_context) reply.type = ReplyType.TEXT # 设置回复内容 reply.content = self.complete_prompt.format(id=imagine_data["result"], change_ins=self.change_ins, imgurl=short_url, start_finish=time_diff_start_finish_td, submit_finish=time_diff_submit_finish_td) logger.debug("Sent image URL and completed prompt.") else: reply.type = ReplyType.TEXT reply.content = task_data["failReason"] logger.debug("Sent failReason as reply content.") # 设置回复内容和动作 e_context['reply'] = reply e_context.action = EventAction.BREAK_PASS # 事件结束后,跳过处理context的默认逻辑 logger.debug("Event action set to BREAK_PASS, reply set.") def handle_params_cache(self, e_context, user_id, content, reply): # 如果参数缓存中存在对应用户的图像参数 if 'image_params' in self.params_cache[user_id]: cmsg = e_context['context']['msg'] logger.debug("params_cache:%s" % self.params_cache) logger.debug("user_id in self.params_cache[user_id]") img_params = self.params_cache[user_id] del self.params_cache[user_id] # 删除已使用的参数缓存 cmsg.prepare() # 将用户的输入转换为 base64 编码 base64_data = convert_base64(content) base64_data = 'data:image/png;base64,' + base64_data # 使用这些参数生成一个新的图像 imagine_data = self.mm.get_imagine(prompt=img_params['image_params']["prompt"], base64_data=base64_data) if isinstance(imagine_data, str): # 如果返回错误信息,则直接发送错误信息 reply.type = ReplyType.TEXT reply.content = f"任务提交失败,{imagine_data}" logger.error(f"Received error message: {imagine_data}") else: # 否则,获取新的图像链接,并将其发送给用户 self.send_task_submission_message(e_context, messageId=imagine_data["result"]) logger.debug(f"Received imagination data: {imagine_data}") time.sleep(10) # 等待一段时间以确保任务已经处理完成 logger.debug("Getting image URL...") task_data = self.mm.get_image_url(id=imagine_data["result"]) logger.debug(f"Received task data: {task_data}") if isinstance(task_data, str): # 错误信息响应 reply.type = ReplyType.TEXT reply.content = task_data logger.error(f"Received error message: {task_data}") else: # 正常的JSON响应 if task_data["failReason"] is None: # 处理图片链接 new_url = self.generate_new_url(task_data=task_data) # 生成短链接 short_url = self.get_short_url(short_url_api=self.short_url_api, url=new_url) # 计算时间差 time_diff_start_finish_td, time_diff_submit_finish_td = self.get_time_diff(task_data) logger.debug("new_url: %s" % new_url) com_reply = self.create_reply(new_url=new_url, data=imagine_data) # 发送回复 send_with_retry(self.comapp, com_reply, e_context) reply.type = ReplyType.TEXT # 设置回复内容 reply.content = self.complete_prompt.format(id=imagine_data["result"], change_ins=self.change_ins, imgurl=short_url, start_finish=time_diff_start_finish_td, submit_finish=time_diff_submit_finish_td) logger.debug("Sent image URL and completed prompt.") else: reply.type = ReplyType.TEXT reply.content = task_data["failReason"] logger.debug("Sent failReason as reply content.") elif 'num_pictures' in self.params_cache[user_id]: cmsg = e_context['context']['msg'] logger.debug("params_cache:%s" % self.params_cache) logger.debug("user_id in self.params_cache[user_id]") cmsg.prepare() # 获取当前用户的图像参数 img_params = self.params_cache[user_id] # 将用户的输入转换为 base64 编码 base64_data = convert_base64(content) base64_data = 'data:image/png;base64,' + base64_data # 将新的 base64 数据添加到列表中 img_params['base64_data'].append(base64_data) # 减少待收集的图片数量 img_params['num_pictures'] -= 1 # 如果收集到足够数量的图片,调用函数并清除用户数据 if img_params['num_pictures'] == 0: blend_data = self.mm.submit_blend(img_params['base64_data']) del self.params_cache[user_id] # 删除已使用的参数缓存 if isinstance(blend_data, str): reply.type = ReplyType.TEXT reply.content = f"任务提交失败,{blend_data}" logger.error(f"Received error message: {blend_data}") else: # 获取混合后的图像链接,并将其发送给用户 self.send_task_submission_message(e_context, messageId=blend_data["result"]) logger.debug(f"Received imagination data: {blend_data}") time.sleep(10) # 等待一段时间以确保任务已经处理完成 logger.debug("Getting image URL...") task_data = self.mm.get_image_url(id=blend_data["result"]) logger.debug(f"Received task data: {task_data}") if isinstance(task_data, str): # 错误信息响应 reply.type = ReplyType.TEXT reply.content = task_data logger.error(f"Received error message: {task_data}") else: # 正常的JSON响应 if task_data["failReason"] is None: # 处理图片链接 new_url = self.generate_new_url(task_data=task_data) # 生成短链接 short_url = self.get_short_url(short_url_api=self.short_url_api, url=new_url) # 计算时间差 time_diff_start_finish_td, time_diff_submit_finish_td = self.get_time_diff( task_data) logger.debug("new_url: %s" % new_url) com_reply = self.create_reply(new_url=new_url, data=blend_data) # 发送回复 send_with_retry(self.comapp, com_reply, e_context) reply.type = ReplyType.TEXT # 设置回复内容 reply.content = self.complete_prompt.format(id=blend_data["result"], change_ins=self.change_ins, imgurl=short_url, start_finish=time_diff_start_finish_td, submit_finish=time_diff_submit_finish_td) logger.debug("Sent image URL and completed prompt.") else: reply.type = ReplyType.TEXT reply.content = task_data["failReason"] logger.debug("Sent failReason as reply content.") # 定义一个方法,用于生成帮助文本 def get_help_text(self, verbose=False, **kwargs): # 检查配置中是否启用了画图功能 if not conf().get('image_create_prefix'): return "画图功能未启用" # 如果未启用,则返回提示信息 else: # 否则,获取触发前缀 trigger = conf()['image_create_prefix'][0] # 初始化帮助文本,说明利用 midjourney api 来画图 help_text = "\n🔥使用Midjourney来画图,支持垫图、合图、变换等操作\n" # 如果不需要详细说明,则直接返回帮助文本 if not verbose: return help_text # 否则,添加详细的使用方法到帮助文本中 help_text += f"使用方法:\n使用\"{trigger}[内容描述]\"的格式作画,如\"{trigger}一个中国漂亮女孩\"\n垫图指令:{trigger} {self.image_ins},合图指令:{trigger} {self.blend_ins}\n垫图指令后面可以加关键词,合图指令后面不需要加" # 返回帮助文本 return help_text def get_short_url(self, short_url_api, url): # 检查是否提供了短网址 API if short_url_api != "": # 发送POST请求到短网址 API,并传入原始网址 logger.debug("发送POST请求到短网址API...") logger.debug("传入到接口的网址是:%s", url) response = requests.post(short_url_api, json={"url": url}) data = response.json() # 构建完整的短网址,将API基本URL与响应中的键值连接起来 short_url = short_url_api + data["key"] logger.debug("生成的短网址:%s", short_url) return short_url else: # 如果未提供短网址 API,则返回原始网址 logger.debug("未提供短网址 API。返回原始网址。") return url def get_time_diff(self, task_data): # 将时间戳值转换为秒 startTime_sec = task_data['startTime'] / 1000 finishTime_sec = task_data['finishTime'] / 1000 if task_data['finishTime'] is not None else None submitTime_sec = task_data['submitTime'] / 1000 if finishTime_sec is not None: # 计算开始时间和结束时间之间的时间差(秒) time_diff_start_finish = finishTime_sec - startTime_sec # 计算提交时间和结束时间之间的时间差(秒) time_diff_submit_finish = finishTime_sec - submitTime_sec # 将时间差转换为 timedelta 对象,以便更容易处理 time_diff_start_finish_td = timedelta(seconds=time_diff_start_finish) time_diff_submit_finish_td = timedelta(seconds=time_diff_submit_finish) # 获取时间差的总秒数 time_diff_start_finish_td_sec = time_diff_start_finish_td.total_seconds() time_diff_submit_finish_td_sec = time_diff_submit_finish_td.total_seconds() else: # 如果 finishTime_sec 为 None,则将时间差设置为 None time_diff_start_finish_td_sec = None time_diff_submit_finish_td_sec = None return time_diff_start_finish_td_sec, time_diff_submit_finish_td_sec def send_task_submission_message(self, e_context, messageId): com_reply = Reply() com_reply.type = ReplyType.TEXT context = e_context['context'] if context.kwargs.get('isgroup'): msg = context.kwargs.get('msg') nickname = msg.actual_user_nickname # 获取昵称 com_reply.content = "@{name}\n☑️您的绘图任务提交成功!\n🆔ID:{id}\n⏳正在努力出图,请您耐心等待...".format( name=nickname, id=messageId) + self.local_data.reminder_string else: com_reply.content = "☑️您的绘图任务提交成功!\n🆔ID:{id}\n⏳正在努力出图,请您耐心等待...".format( id=messageId) + self.local_data.reminder_string self.comapp.send(com_reply, context) def check_and_update_usage_limit(self, trial_lock, user_id, db_conn): cur = db_conn.cursor() # 确保midjourneyturbo表存在 cur.execute(""" CREATE TABLE IF NOT EXISTS midjourneyturbo (UserID TEXT PRIMARY KEY, TrialCount INTEGER, TrialDate TEXT); """) db_conn.commit() # 从数据库中查询用户 cur.execute(""" SELECT TrialCount, TrialDate FROM midjourneyturbo WHERE UserID = ? """, (user_id,)) row = cur.fetchone() # 如果用户不存在,插入一个新用户并设置试用次数和日期,然后返回True和试用次数减1 if row is None: trial_count = trial_lock - 1 # 试用次数减1 cur.execute(""" INSERT INTO midjourneyturbo (UserID, TrialCount, TrialDate) VALUES (?, ?, ?) """, (user_id, trial_count, datetime.date.today().isoformat())) # 插入用户,并设置当前日期和试用次数 db_conn.commit() return True, True, trial_count # 用户存在于数据库中,检查试用次数和日期 trial_count = row[0] if row and row[0] is not None else trial_lock trial_date = row[1] if row and row[1] is not None else None today = datetime.date.today().isoformat() if trial_count == 0 and trial_date == today: # 今天的试用次数已经用完 return False, False, "" if trial_count > 0 and trial_date == today: # 试用次数有剩余,并且日期是今天 trial_count -= 1 # 减少试用次数 else: # 试用次数为0或者日期不是今天 trial_count = trial_lock - 1 # 重置试用次数并减去1 trial_date = today # 更新试用日期 cur.execute(""" UPDATE midjourneyturbo SET TrialCount = ?, TrialDate = ? WHERE UserID = ? """, (trial_count, trial_date, user_id)) db_conn.commit() return True, True, trial_count def generate_new_url(self, task_data): if self.split_url: split_url = task_data["imageUrl"].split('/') new_url = '/'.join(split_url[0:3] + split_url[5:]) else: new_url = task_data["imageUrl"] return new_url def create_reply(self, new_url, data): com_reply = Reply() com_reply.type = self.type if self.num != 1: com_reply.content = new_url else: # 下载并压缩图片 image_path = download_and_compress_image(new_url, data['result'], quality=self.picture_quality) image_storage = open(image_path, 'rb') com_reply.content = image_storage return com_reply
[ "content" ]
2024-01-10
chazzjimel/WeChat-AIChatbot-WinOnly
bot~linkai~link_ai_bot.py
# access LinkAI knowledge base platform # docs: https://link-ai.tech/platform/link-app/wechat import time import requests from bot.bot import Bot from bot.chatgpt.chat_gpt_session import ChatGPTSession from bot.openai.open_ai_image import OpenAIImage from bot.session_manager import SessionManager from bridge.context import Context, ContextType from bridge.reply import Reply, ReplyType from common.log import logger from config import conf class LinkAIBot(Bot, OpenAIImage): # authentication failed AUTH_FAILED_CODE = 401 NO_QUOTA_CODE = 406 def __init__(self): super().__init__() self.base_url = "https://api.link-ai.chat/v1" self.sessions = SessionManager(ChatGPTSession, model=conf().get("model") or "gpt-3.5-turbo") def reply(self, query, context: Context = None) -> Reply: if context.type == ContextType.TEXT: return self._chat(query, context) elif context.type == ContextType.IMAGE_CREATE: ok, res = self.create_img(query, 0) if ok: reply = Reply(ReplyType.IMAGE_URL, res) else: reply = Reply(ReplyType.ERROR, res) return reply else: reply = Reply(ReplyType.ERROR, "Bot不支持处理{}类型的消息".format(context.type)) return reply def _chat(self, query, context, retry_count=0) -> Reply: """ 发起对话请求 :param query: 请求提示词 :param context: 对话上下文 :param retry_count: 当前递归重试次数 :return: 回复 """ if retry_count >= 2: # exit from retry 2 times logger.warn("[LINKAI] failed after maximum number of retry times") return Reply(ReplyType.ERROR, "请再问我一次吧") try: # load config if context.get("generate_breaked_by"): logger.info(f"[LINKAI] won't set appcode because a plugin ({context['generate_breaked_by']}) affected the context") app_code = None else: app_code = context.kwargs.get("app_code") or conf().get("linkai_app_code") linkai_api_key = conf().get("linkai_api_key") session_id = context["session_id"] session = self.sessions.session_query(query, session_id) model = conf().get("model") or "gpt-3.5-turbo" # remove system message if session.messages[0].get("role") == "system": if app_code or model == "wenxin": session.messages.pop(0) body = { "app_code": app_code, "messages": session.messages, "model": model, # 对话模型的名称, 支持 gpt-3.5-turbo, gpt-3.5-turbo-16k, gpt-4, wenxin "temperature": conf().get("temperature"), "top_p": conf().get("top_p", 1), "frequency_penalty": conf().get("frequency_penalty", 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容 "presence_penalty": conf().get("presence_penalty", 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容 } logger.info(f"[LINKAI] query={query}, app_code={app_code}, mode={body.get('model')}") headers = {"Authorization": "Bearer " + linkai_api_key} # do http request res = requests.post(url=self.base_url + "/chat/completions", json=body, headers=headers, timeout=conf().get("request_timeout", 180)) if res.status_code == 200: # execute success response = res.json() reply_content = response["choices"][0]["message"]["content"] total_tokens = response["usage"]["total_tokens"] logger.info(f"[LINKAI] reply={reply_content}, total_tokens={total_tokens}") self.sessions.session_reply(reply_content, session_id, total_tokens) return Reply(ReplyType.TEXT, reply_content) else: response = res.json() error = response.get("error") logger.error(f"[LINKAI] chat failed, status_code={res.status_code}, " f"msg={error.get('message')}, type={error.get('type')}") if res.status_code >= 500: # server error, need retry time.sleep(2) logger.warn(f"[LINKAI] do retry, times={retry_count}") return self._chat(query, context, retry_count + 1) return Reply(ReplyType.ERROR, "提问太快啦,请休息一下再问我吧") except Exception as e: logger.exception(e) # retry time.sleep(2) logger.warn(f"[LINKAI] do retry, times={retry_count}") return self._chat(query, context, retry_count + 1)
[]
2024-01-10
chazzjimel/WeChat-AIChatbot-WinOnly
bot~bot_factory.py
""" channel factory """ from common import const def create_bot(bot_type): """ create a bot_type instance :param bot_type: bot type code :return: bot instance """ if bot_type == const.BAIDU: # 替换Baidu Unit为Baidu文心千帆对话接口 # from bot.baidu.baidu_unit_bot import BaiduUnitBot # return BaiduUnitBot() from bot.baidu.baidu_wenxin import BaiduWenxinBot return BaiduWenxinBot() elif bot_type == const.CHATGPT: # ChatGPT 网页端web接口 from bot.chatgpt.chat_gpt_bot import ChatGPTBot return ChatGPTBot() elif bot_type == const.OPEN_AI: # OpenAI 官方对话模型API from bot.openai.open_ai_bot import OpenAIBot return OpenAIBot() elif bot_type == const.CHATGPTONAZURE: # Azure chatgpt service https://azure.microsoft.com/en-in/products/cognitive-services/openai-service/ from bot.chatgpt.chat_gpt_bot import AzureChatGPTBot return AzureChatGPTBot() elif bot_type == const.LINKAI: from bot.linkai.link_ai_bot import LinkAIBot return LinkAIBot() raise RuntimeError
[]
2024-01-10
taskswithcode/semantic_search_app
twc_openai_search.py
from scipy.spatial.distance import cosine import argparse import json import os import openai import pdb def read_text(input_file): arr = open(input_file).read().split("\n") return arr[:-1] class OpenAIQnAModel: def __init__(self): self.debug = False self.q_model_name = None self.d_model_name = None self.skip_key = True print("In OpenAI API constructor") def init_model(self,model_name = None): #print("OpenAI: Init model",model_name) openai.api_key = os.getenv("OPENAI_API_KEY") if (openai.api_key == None): openai.api_key = "" print("API key not set") if (len(openai.api_key) == 0 and not self.skip_key): print("Open API key not set") if (model_name is None): self.d_model_name = "text-search-ada-doc-001" else: self.d_model_name = model_name self.q_model_name = self.construct_query_model_name(self.d_model_name) print(f"OpenAI: Init model complete :query model {self.q_model_name} doc:{self.d_model_name}") def construct_query_model_name(self,d_model_name): return d_model_name.replace('-doc-','-query-') def compute_embeddings(self,input_file_name,input_data,is_file): if (len(openai.api_key) == 0 and not self.skip_key): print("Open API key not set") return [],[] #print("In compute embeddings after key check") in_file = input_file_name.split('/')[-1] in_file = self.d_model_name + '_' + '.'.join(in_file.split('.')[:-1]) + "_search.json" cached = False try: fp = open(in_file) cached = True embeddings = json.load(fp) q_embeddings = [embeddings[0]] d_embeddings = embeddings[1:] print("Using cached embeddings") except: pass texts = read_text(input_data) if is_file == True else input_data queries = [texts[0]] docs = texts[1:] if (not cached): print(f"Computing embeddings for {input_file_name} and query model {self.q_model_name}") query_embeds = openai.Embedding.create( input=queries, model=self.q_model_name ) print(f"Computing embeddings for {input_file_name} and doc model {self.q_model_name}") doc_embeds = openai.Embedding.create( input=docs, model=self.d_model_name ) q_embeddings = [] d_embeddings = [] for i in range(len(query_embeds['data'])): q_embeddings.append(query_embeds['data'][i]['embedding']) for i in range(len(doc_embeds['data'])): d_embeddings.append(doc_embeds['data'][i]['embedding']) if (not cached): embeddings = q_embeddings + d_embeddings with open(in_file,"w") as fp: json.dump(embeddings,fp) return texts,(q_embeddings,d_embeddings) def output_results(self,output_file,texts,embeddings,main_index = 0): # Calculate cosine similarities # Cosine similarities are in [-1, 1]. Higher means more similar query_embeddings = embeddings[0] doc_embeddings = embeddings[1] cosine_dict = {} queries = [texts[0]] docs = texts[1:] if (self.debug): print("Total sentences",len(texts)) for i in range(len(docs)): cosine_dict[docs[i]] = 1 - cosine(query_embeddings[0], doc_embeddings[i]) if (self.debug): print("Input sentence:",texts[main_index]) sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True)) if (self.debug): for key in sorted_dict: print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key])) if (output_file is not None): with open(output_file,"w") as fp: fp.write(json.dumps(sorted_dict,indent=0)) return sorted_dict if __name__ == '__main__': parser = argparse.ArgumentParser(description='OpenAI model for document search embeddings ',formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-input', action="store", dest="input",required=True,help="Input file with sentences") parser.add_argument('-output', action="store", dest="output",default="output.txt",help="Output file with results") parser.add_argument('-model', action="store", dest="model",default="text-search-ada-doc-001",help="model name") results = parser.parse_args() obj = OpenAIQnAModel() obj.init_model(results.model) texts, embeddings = obj.compute_embeddings(results.input,results.input,is_file = True) results = obj.output_results(results.output,texts,embeddings)
[]