date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
AayushMathur7/14Labs
spotify-upload~dsp-agent-deprecated.py
''' MultiOn has various limitations that will not allow us to upload audio on Spotify. Additionally, Langchain itself has limitations. Selenium will be used as an alternative instead. ''' import os from dotenv import load_dotenv from langchain.llms import OpenAI from langchain.agents import initialize_agent from langchain.agents import AgentType os.environ["LANGCHAIN_TRACING"] = "true" load_dotenv() os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY') from langchain.tools import StructuredTool from human_input import HumanInputRun from multion import MultionToolSpec def agent(query: str): multion_toolkit = MultionToolSpec(use_api=True, mode="auto") # multion.set_remote(True) tool = StructuredTool.from_function(multion_toolkit.browse) human_input = HumanInputRun() llm = OpenAI(temperature=0) # Structured tools are compatible with the STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION agent type. agent_executor = initialize_agent( [tool, human_input], llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, ) return agent_executor.run(query) # 1. # 1. If it is not logged in yet, then log in to Spotify for Podcasters. Click on continue to spotify if that option appears and log in as whoever's profile saved, else ask for credentials. Else, skip this step. # 3. Generate in the details for the title, episode description, publish date (now), explicit content (no) # 4. Generate a sample image and use that as the cover art # 5. Once filled in details click next until review step # 6. Publish it and retrieve the spotify link # Concise summary of content for digestible ear candies! PROMPT = f""" You are an expert AI Agent whose job is to `upload a mp3 audio file on spotify podcasters and retrieve the spotify link to the audio` (https://podcasters.spotify.com/pod/dashboard/home). Here are the high-level steps: 1. Click on the new episode button 2. Take the music-example.mp3 file and upload it 3. Open """ # PROMPT = f""" # You are an expert AI Agent whose job is to `display weather data` (https://www.google.com). # Here are the high-level steps: # 1. Go to google # 2. Get the average temperature of today # """ agent(query=PROMPT)
[ "\nYou are an expert AI Agent whose job is to `upload a mp3 audio file on spotify podcasters and retrieve the spotify link to the audio` (https://podcasters.spotify.com/pod/dashboard/home).\n\n Here are the high-level steps:\n 1. Click on the new episode button\n 2. Take the music-example.mp3 file and upload it\n 3. Open\n" ]
2024-01-10
princetonvisualai/multimodal_dataset_distillation
networks.py
import torch.nn as nn import torch.nn.functional as F import torch from collections import OrderedDict from typing import Tuple, Union import clip from transformers import ViTConfig, ViTModel, AutoTokenizer, CLIPTextModel, CLIPTextConfig, CLIPProcessor, CLIPConfig import numpy as np from transformers import BertTokenizer, BertModel from torchvision.models import resnet18, resnet from transformers.models.bert.modeling_bert import BertAttention, BertConfig tokenizer=BertTokenizer.from_pretrained('bert-base-uncased') BERT_model = BertModel.from_pretrained('bert-base-uncased') # Acknowledgement to # https://github.com/kuangliu/pytorch-cifar, # https://github.com/BIGBALLON/CIFAR-ZOO, # adapted from # https://github.com/VICO-UoE/DatasetCondensation # https://github.com/Zasder3/train-CLIP ''' MLP ''' class MLP(nn.Module): def __init__(self, channel, num_classes): super(MLP, self).__init__() self.fc_1 = nn.Linear(28*28*1 if channel==1 else 32*32*3, 128) self.fc_2 = nn.Linear(128, 128) self.fc_3 = nn.Linear(128, num_classes) def forward(self, x): out = x.view(x.size(0), -1) out = F.relu(self.fc_1(out)) out = F.relu(self.fc_2(out)) out = self.fc_3(out) return out ''' ConvNet ''' class ConvNet(nn.Module): def __init__(self, channel, num_classes, net_width=128, net_depth=4, net_act='relu', net_norm='instancenorm', net_pooling='avgpooling', im_size = (224,224)): super(ConvNet, self).__init__() self.features, shape_feat = self._make_layers(channel, net_width, net_depth, net_norm, net_act, net_pooling, im_size) num_feat = shape_feat[0]*shape_feat[1]*shape_feat[2] self.classifier = nn.Linear(num_feat, num_classes) def forward(self, x): # print("MODEL DATA ON: ", x.get_device(), "MODEL PARAMS ON: ", self.classifier.weight.data.get_device()) out = self.features(x) out = out.view(out.size(0), -1) out = self.classifier(out) return out def _get_activation(self, net_act): if net_act == 'sigmoid': return nn.Sigmoid() elif net_act == 'relu': return nn.ReLU(inplace=True) elif net_act == 'leakyrelu': return nn.LeakyReLU(negative_slope=0.01) else: exit('unknown activation function: %s'%net_act) def _get_pooling(self, net_pooling): if net_pooling == 'maxpooling': return nn.MaxPool2d(kernel_size=2, stride=2) elif net_pooling == 'avgpooling': return nn.AvgPool2d(kernel_size=2, stride=2) elif net_pooling == 'none': return None else: exit('unknown net_pooling: %s'%net_pooling) def _get_normlayer(self, net_norm, shape_feat): # shape_feat = (c*h*w) if net_norm == 'batchnorm': return nn.BatchNorm2d(shape_feat[0], affine=True) elif net_norm == 'layernorm': return nn.LayerNorm(shape_feat, elementwise_affine=True) elif net_norm == 'instancenorm': return nn.GroupNorm(shape_feat[0], shape_feat[0], affine=True) elif net_norm == 'groupnorm': return nn.GroupNorm(4, shape_feat[0], affine=True) elif net_norm == 'none': return None else: exit('unknown net_norm: %s'%net_norm) def _make_layers(self, channel, net_width, net_depth, net_norm, net_act, net_pooling, im_size): layers = [] in_channels = channel if im_size[0] == 28: im_size = (32, 32) shape_feat = [in_channels, im_size[0], im_size[1]] for d in range(net_depth): layers += [nn.Conv2d(in_channels, net_width, kernel_size=3, padding=3 if channel == 1 and d == 0 else 1)] shape_feat[0] = net_width if net_norm != 'none': layers += [self._get_normlayer(net_norm, shape_feat)] layers += [self._get_activation(net_act)] in_channels = net_width if net_pooling != 'none': layers += [self._get_pooling(net_pooling)] shape_feat[1] //= 2 shape_feat[2] //= 2 return nn.Sequential(*layers), shape_feat ''' ConvNet ''' class ConvNetGAP(nn.Module): def __init__(self, channel, num_classes, net_width, net_depth, net_act, net_norm, net_pooling, im_size = (32,32)): super(ConvNetGAP, self).__init__() self.features, shape_feat = self._make_layers(channel, net_width, net_depth, net_norm, net_act, net_pooling, im_size) num_feat = shape_feat[0]*shape_feat[1]*shape_feat[2] # self.classifier = nn.Linear(num_feat, num_classes) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.classifier = nn.Linear(shape_feat[0], num_classes) def forward(self, x): out = self.features(x) out = self.avgpool(out) out = out.view(out.size(0), -1) out = self.classifier(out) return out def _get_activation(self, net_act): if net_act == 'sigmoid': return nn.Sigmoid() elif net_act == 'relu': return nn.ReLU(inplace=True) elif net_act == 'leakyrelu': return nn.LeakyReLU(negative_slope=0.01) else: exit('unknown activation function: %s'%net_act) def _get_pooling(self, net_pooling): if net_pooling == 'maxpooling': return nn.MaxPool2d(kernel_size=2, stride=2) elif net_pooling == 'avgpooling': return nn.AvgPool2d(kernel_size=2, stride=2) elif net_pooling == 'none': return None else: exit('unknown net_pooling: %s'%net_pooling) def _get_normlayer(self, net_norm, shape_feat): # shape_feat = (c*h*w) if net_norm == 'batchnorm': return nn.BatchNorm2d(shape_feat[0], affine=True) elif net_norm == 'layernorm': return nn.LayerNorm(shape_feat, elementwise_affine=True) elif net_norm == 'instancenorm': return nn.GroupNorm(shape_feat[0], shape_feat[0], affine=True) elif net_norm == 'groupnorm': return nn.GroupNorm(4, shape_feat[0], affine=True) elif net_norm == 'none': return None else: exit('unknown net_norm: %s'%net_norm) def _make_layers(self, channel, net_width, net_depth, net_norm, net_act, net_pooling, im_size): layers = [] in_channels = channel if im_size[0] == 28: im_size = (32, 32) shape_feat = [in_channels, im_size[0], im_size[1]] for d in range(net_depth): layers += [nn.Conv2d(in_channels, net_width, kernel_size=3, padding=3 if channel == 1 and d == 0 else 1)] shape_feat[0] = net_width if net_norm != 'none': layers += [self._get_normlayer(net_norm, shape_feat)] layers += [self._get_activation(net_act)] in_channels = net_width if net_pooling != 'none': layers += [self._get_pooling(net_pooling)] shape_feat[1] //= 2 shape_feat[2] //= 2 return nn.Sequential(*layers), shape_feat ''' LeNet ''' class LeNet(nn.Module): def __init__(self, channel, num_classes): super(LeNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(channel, 6, kernel_size=5, padding=2 if channel==1 else 0), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(6, 16, kernel_size=5), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), ) self.fc_1 = nn.Linear(16 * 5 * 5, 120) self.fc_2 = nn.Linear(120, 84) self.fc_3 = nn.Linear(84, num_classes) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = F.relu(self.fc_1(x)) x = F.relu(self.fc_2(x)) x = self.fc_3(x) return x ''' AlexNet ''' class AlexNet(nn.Module): def __init__(self, channel, num_classes): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(channel, 128, kernel_size=5, stride=1, padding=4 if channel==1 else 2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(128, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(192, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 192, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(192, 192, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), ) self.fc = nn.Linear(192 * 4 * 4, num_classes) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.fc(x) return x ''' VGG ''' cfg_vgg = { 'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } class VGG(nn.Module): def __init__(self, vgg_name, channel, num_classes, norm='instancenorm'): super(VGG, self).__init__() self.channel = channel self.features = self._make_layers(cfg_vgg[vgg_name], norm) self.classifier = nn.Linear(512 if vgg_name != 'VGGS' else 128, num_classes) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x def _make_layers(self, cfg, norm): layers = [] in_channels = self.channel for ic, x in enumerate(cfg): if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=3 if self.channel==1 and ic==0 else 1), nn.GroupNorm(x, x, affine=True) if norm=='instancenorm' else nn.BatchNorm2d(x), nn.ReLU(inplace=True)] in_channels = x layers += [nn.AvgPool2d(kernel_size=1, stride=1)] return nn.Sequential(*layers) def VGG11(channel, num_classes): return VGG('VGG11', channel, num_classes) def VGG11BN(channel, num_classes): return VGG('VGG11', channel, num_classes, norm='batchnorm') def VGG13(channel, num_classes): return VGG('VGG13', channel, num_classes) def VGG16(channel, num_classes): return VGG('VGG16', channel, num_classes) def VGG19(channel, num_classes): return VGG('VGG19', channel, num_classes) ''' ResNet_AP ''' # The conv(stride=2) is replaced by conv(stride=1) + avgpool(kernel_size=2, stride=2) class BasicBlock_AP(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1, norm='instancenorm'): super(BasicBlock_AP, self).__init__() self.norm = norm self.stride = stride self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=1, padding=1, bias=False) # modification self.bn1 = nn.GroupNorm(planes, planes, affine=True) if self.norm == 'instancenorm' else nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.GroupNorm(planes, planes, affine=True) if self.norm == 'instancenorm' else nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=1, bias=False), nn.AvgPool2d(kernel_size=2, stride=2), # modification nn.GroupNorm(self.expansion * planes, self.expansion * planes, affine=True) if self.norm == 'instancenorm' else nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) if self.stride != 1: # modification out = F.avg_pool2d(out, kernel_size=2, stride=2) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class Bottleneck_AP(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1, norm='instancenorm'): super(Bottleneck_AP, self).__init__() self.norm = norm self.stride = stride self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.GroupNorm(planes, planes, affine=True) if self.norm == 'instancenorm' else nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) # modification self.bn2 = nn.GroupNorm(planes, planes, affine=True) if self.norm == 'instancenorm' else nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False) self.bn3 = nn.GroupNorm(self.expansion * planes, self.expansion * planes, affine=True) if self.norm == 'instancenorm' else nn.BatchNorm2d(self.expansion * planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=1, bias=False), nn.AvgPool2d(kernel_size=2, stride=2), # modification nn.GroupNorm(self.expansion * planes, self.expansion * planes, affine=True) if self.norm == 'instancenorm' else nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) if self.stride != 1: # modification out = F.avg_pool2d(out, kernel_size=2, stride=2) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet_AP(nn.Module): def __init__(self, block, num_blocks, channel=3, num_classes=10, norm='instancenorm'): super(ResNet_AP, self).__init__() self.in_planes = 64 self.norm = norm self.conv1 = nn.Conv2d(channel, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.GroupNorm(64, 64, affine=True) if self.norm == 'instancenorm' else nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.classifier = nn.Linear(512 * block.expansion * 3 * 3 if channel==1 else 512 * block.expansion * 4 * 4, num_classes) # modification def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride, self.norm)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, kernel_size=1, stride=1) # modification out = out.view(out.size(0), -1) out = self.classifier(out) return out def ResNet18BN_AP(channel, num_classes): return ResNet_AP(BasicBlock_AP, [2,2,2,2], channel=channel, num_classes=num_classes, norm='batchnorm') def ResNet18_AP(channel, num_classes): return ResNet_AP(BasicBlock_AP, [2,2,2,2], channel=channel, num_classes=num_classes) ''' ResNet ''' class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1, norm='instancenorm'): super(BasicBlock, self).__init__() self.norm = norm self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.GroupNorm(planes, planes, affine=True) if self.norm == 'instancenorm' else nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.GroupNorm(planes, planes, affine=True) if self.norm == 'instancenorm' else nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.GroupNorm(self.expansion*planes, self.expansion*planes, affine=True) if self.norm == 'instancenorm' else nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1, norm='instancenorm'): super(Bottleneck, self).__init__() self.norm = norm self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.GroupNorm(planes, planes, affine=True) if self.norm == 'instancenorm' else nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.GroupNorm(planes, planes, affine=True) if self.norm == 'instancenorm' else nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False) self.bn3 = nn.GroupNorm(self.expansion*planes, self.expansion*planes, affine=True) if self.norm == 'instancenorm' else nn.BatchNorm2d(self.expansion*planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.GroupNorm(self.expansion*planes, self.expansion*planes, affine=True) if self.norm == 'instancenorm' else nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNetImageNet(nn.Module): def __init__(self, block, num_blocks, channel=3, num_classes=10, norm='instancenorm'): super(ResNetImageNet, self).__init__() self.in_planes = 64 self.norm = norm self.conv1 = nn.Conv2d(channel, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.GroupNorm(64, 64, affine=True) if self.norm == 'instancenorm' else nn.BatchNorm2d(64) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.classifier = nn.Linear(512*block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride, self.norm)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) # out = F.avg_pool2d(out, 4) # out = out.view(out.size(0), -1) out = self.avgpool(out) out = torch.flatten(out, 1) out = self.classifier(out) return out def ResNet18BN(channel, num_classes): return ResNet(BasicBlock, [2,2,2,2], channel=channel, num_classes=num_classes, norm='batchnorm') def ResNet18(channel, num_classes): return ResNet_gn(BasicBlock, [2,2,2,2], channel=channel, num_classes=num_classes) def ResNet34(channel, num_classes): return ResNet(BasicBlock, [3,4,6,3], channel=channel, num_classes=num_classes) def ResNet50(channel, num_classes): return ResNet(Bottleneck, [3,4,6,3], channel=channel, num_classes=num_classes) def ResNet101(channel, num_classes): return ResNet(Bottleneck, [3,4,23,3], channel=channel, num_classes=num_classes) def ResNet152(channel, num_classes): return ResNet(Bottleneck, [3,8,36,3], channel=channel, num_classes=num_classes) def ResNet18ImageNet(channel, num_classes): return ResNetImageNet(BasicBlock, [2,2,2,2], channel=channel, num_classes=num_classes) def ResNet6ImageNet(channel, num_classes): return ResNetImageNet(BasicBlock, [1,1,1,1], channel=channel, num_classes=num_classes) def resnet18_gn(pretrained=False, **kwargs): """Constructs a ResNet-18 model. """ model_args = dict(block=BasicBlock, layers=[2, 2, 2, 2]) return _create_resnet('resnet18', pretrained, **dict(model_args, **kwargs)) ## Sourced directly from OpenAI's CLIP repo class ModifiedResNet(nn.Module): """ A ResNet class that is similar to torchvision's but contains the following changes: - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 - The final pooling layer is a QKV attention instead of an average pool """ def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): super().__init__() self.output_dim = output_dim self.input_resolution = input_resolution # the 3-layer stem self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(width // 2) self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(width // 2) self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(width) self.avgpool = nn.AvgPool2d(2) self.relu = nn.ReLU(inplace=True) # residual layers self._inplanes = width # this is a *mutable* variable used during construction self.layer1 = self._make_layer(width, layers[0]) self.layer2 = self._make_layer(width * 2, layers[1], stride=2) self.layer3 = self._make_layer(width * 4, layers[2], stride=2) self.layer4 = self._make_layer(width * 8, layers[3], stride=2) embed_dim = width * 32 # the ResNet feature dimension self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) def _make_layer(self, planes, blocks, stride=1): layers = [Bottleneck(self._inplanes, planes, stride)] self._inplanes = planes * Bottleneck.expansion for _ in range(1, blocks): layers.append(Bottleneck(self._inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): def stem(x): for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]: x = self.relu(bn(conv(x))) x = self.avgpool(x) return x x = x.type(self.conv1.weight.dtype) x = stem(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.attnpool(x) return x class AttentionPool2d(nn.Module): def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x): x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC x, _ = F.multi_head_attention_forward( query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False ) return x[0] import timm class ProjectionHead(nn.Module): def __init__( self, embedding_dim, projection_dim=768, dropout=0.1 ): super().__init__() self.projection = nn.Linear(embedding_dim, projection_dim) self.gelu = nn.GELU() self.fc = nn.Linear(projection_dim, projection_dim) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(projection_dim) def forward(self, x): projected = self.projection(x) x = self.gelu(projected) x = self.fc(x) x = self.dropout(x) x = x + projected x = self.layer_norm(x) return x class ImageEncoder(nn.Module): """ Encode images to a fixed size vector """ def __init__(self, args, eval_stage): super().__init__() self.model_name = args.image_encoder self.pretrained = args.image_pretrained self.trainable = args.image_trainable if self.model_name == 'clip': if self.pretrained: self.model, preprocess = clip.load("ViT-B/32", device='cuda') else: configuration = ViTConfig() self.model = ViTModel(configuration) elif self.model_name == 'nfnet': self.model = timm.create_model('nfnet_l0', pretrained=self.pretrained, num_classes=0, global_pool="avg") elif self.model_name == 'vit': self.model = timm.create_model('vit_tiny_patch16_224', pretrained=True) elif self.model_name == 'nf_resnet50': self.model = timm.create_model('nf_resnet50', pretrained=True) elif self.model_name == 'nf_regnet': self.model = timm.create_model('nf_regnet_b1', pretrained=True) else: self.model = timm.create_model(self.model_name, self.pretrained, num_classes=0, global_pool="avg") for p in self.model.parameters(): p.requires_grad = self.trainable def forward(self, x): if self.model_name == 'clip' and self.pretrained: return self.model.encode_image(x) else: return self.model(x) def gradient(self, x, y): # Compute the gradient of the mean squared error loss with respect to the weights loss = self.loss(x, y) grad = torch.autograd.grad(loss, self.parameters(), create_graph=True) return torch.cat([g.view(-1) for g in grad]) class TextEncoder(nn.Module): def __init__(self, args): super().__init__() self.pretrained = args.text_pretrained self.trainable = args.text_trainable self.model_name = args.text_encoder if self.model_name == 'clip': self.model, preprocess = clip.load("ViT-B/32", device='cuda') elif self.model_name == 'bert': if args.text_pretrained: self.model = BERT_model else: self.model = BertModel(BertConfig()) self.model.init_weights() self.tokenizer = tokenizer else: raise NotImplementedError for p in self.model.parameters(): p.requires_grad = self.trainable # we are using the CLS token hidden representation as the sentence's embedding self.target_token_idx = 0 def forward(self, texts, device='cuda'): if self.model_name == 'clip': output = self.model.encode_text(clip.tokenize(texts).to('cuda')) elif self.model_name == 'bert': # Tokenize the input text encoding = self.tokenizer.batch_encode_plus(texts, return_tensors='pt', padding=True, truncation=True) input_ids = encoding['input_ids'].to(device) attention_mask = encoding['attention_mask'].to(device) output = self.model(input_ids, attention_mask=attention_mask).last_hidden_state[:, self.target_token_idx, :] return output class CLIPModel_full(nn.Module): def __init__( self, args, temperature=1.0, eval_stage=False ): super().__init__() if args.image_encoder == 'nfnet': if eval_stage: self.image_embedding = 1000#2048 else: self.image_embedding = 2304 elif args.image_encoder == 'convnet': self.image_embedding = 768 elif args.image_encoder == 'resnet18': self.image_embedding = 512 elif args.image_encoder == 'convnext': self.image_embedding = 640 else: self.image_embedding = 1000 if args.text_encoder == 'clip': self.text_embedding = 512 elif args.text_encoder == 'bert': self.text_embedding = 768 else: raise NotImplementedError self.image_encoder = ImageEncoder(args, eval_stage=eval_stage) self.text_encoder = TextEncoder(args) if args.only_has_image_projection: self.image_projection = ProjectionHead(embedding_dim=self.image_embedding) self.text_projection = ProjectionHead(embedding_dim=self.text_embedding, projection_dim=self.image_embedding).to('cuda') self.temperature = temperature #self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.args = args self.distill = args.distill def forward(self, image, caption, epoch): self.image_encoder = self.image_encoder.to('cuda') self.text_encoder = self.text_encoder.to('cuda') image_features = self.image_encoder(image) text_features = caption if self.distill else self.text_encoder(caption) use_image_project = False im_embed = image_features.float() if not use_image_project else self.image_projection(image_features.float()) txt_embed = self.text_projection(text_features.float()) combined_image_features = im_embed combined_text_features = txt_embed image_features = combined_image_features / combined_image_features.norm(dim=1, keepdim=True) text_features = combined_text_features / combined_text_features.norm(dim=1, keepdim=True) image_logits = np.exp(np.log(1 / 0.07)) * image_features @ text_features.t() ground_truth = torch.arange(len(image_logits)).type_as(image_logits).long() loss = (F.cross_entropy(image_logits, ground_truth) + F.cross_entropy(image_logits.t(), ground_truth))/2 acc_i = (torch.argmax(image_logits, 1) == ground_truth).sum().item() acc_t = (torch.argmax(image_logits, 0) == ground_truth).sum().item() acc = (acc_i + acc_t) / 2 return loss, acc
[]
2024-01-10
mit-submit/A2rchi
a2rchi~utils~data_manager.py
from a2rchi.utils.scraper import Scraper from chromadb.config import Settings from langchain.document_loaders import TextLoader from langchain.document_loaders import PyPDFLoader from langchain.memory import ConversationBufferMemory from langchain.document_loaders import BSHTMLLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.text_splitter import CharacterTextSplitter import chromadb import hashlib import os import yaml import time class DataManager(): def __init__(self): from a2rchi.utils.config_loader import Config_Loader self.config = Config_Loader().config["utils"] self.global_config = Config_Loader().config["global"] self.data_path = self.global_config["DATA_PATH"] # create data path if it doesn't exist os.makedirs(self.data_path, exist_ok=True) # scrape data onto the filesystem print("Scraping documents onto filesystem") scraper = Scraper() scraper.hard_scrape(verbose=True) # get the collection (reset it if it already exists and reset_collection = True) # the actual name of the collection is the name given by config with the embeddings specified embedding_name = self.config["embeddings"]["EMBEDDING_NAME"] self.collection_name = self.config["data_manager"]["collection_name"] + "_with_" + embedding_name print("Using collection: ", self.collection_name) # delete the existing collection if specified self.delete_existing_collection_if_reset() # get the embedding model embedding_class_map = self.config["embeddings"]["EMBEDDING_CLASS_MAP"] embedding_name = self.config["embeddings"]["EMBEDDING_NAME"] self.embedding_model = embedding_class_map[embedding_name]["class"](**embedding_class_map[embedding_name]["kwargs"]) # create the text_splitter self.text_splitter = CharacterTextSplitter( chunk_size=self.config["data_manager"]["CHUNK_SIZE"], chunk_overlap=self.config["data_manager"]["CHUNK_OVERLAP"], ) def delete_existing_collection_if_reset(self): """ Connect to ChromaDB and delete collection. """ # return early if not resetting if not self.config["data_manager"]["reset_collection"]: return # connect to chromadb server client = None if self.config["data_manager"]["use_HTTP_chromadb_client"]: client = chromadb.HttpClient( host=self.config["data_manager"]["chromadb_host"], port=self.config["data_manager"]["chromadb_port"], settings=Settings(allow_reset=True, anonymized_telemetry=False), # NOTE: anonymized_telemetry doesn't actually do anything; need to build Chroma on our own without it ) else: client = chromadb.PersistentClient( path=self.global_config["LOCAL_VSTORE_PATH"], settings=Settings(allow_reset=True, anonymized_telemetry=False), # NOTE: anonymized_telemetry doesn't actually do anything; need to build Chroma on our own without it ) if self.collection_name in [collection.name for collection in client.list_collections()]: client.delete_collection(self.collection_name) def fetch_collection(self): """ Connect to ChromaDB and fetch the collection. """ # connect to chromadb server client = None if self.config["data_manager"]["use_HTTP_chromadb_client"]: client = chromadb.HttpClient( host=self.config["data_manager"]["chromadb_host"], port=self.config["data_manager"]["chromadb_port"], settings=Settings(allow_reset=True, anonymized_telemetry=False), # NOTE: anonymized_telemetry doesn't actually do anything; need to build Chroma on our own without it ) else: client = chromadb.PersistentClient( path=self.global_config["LOCAL_VSTORE_PATH"], settings=Settings(allow_reset=True, anonymized_telemetry=False), # NOTE: anonymized_telemetry doesn't actually do anything; need to build Chroma on our own without it ) collection = client.get_or_create_collection(self.collection_name) print(f" n in collection: {collection.count()}") return collection def update_vectorstore(self): """ Method which looks at the files in the data folder and syncs them to the vectors stored in the vectorstore """ # fetch the collection collection = self.fetch_collection() # get current status of persistent vstore files_in_vstore = [metadata["filename"] for metadata in collection.get(include=["metadatas"])["metadatas"]] # scan data folder and obtain list of files in data. Assumes max depth = 1 dirs = [ os.path.join(self.data_path, dir) for dir in os.listdir(self.data_path) if os.path.isdir(os.path.join(self.data_path, dir)) and dir != "vstore" ] files_in_data_fullpath = [ os.path.join(dir, file) for dir in dirs for file in os.listdir(dir) ] # files in data is a dictionary, with keys of the names of files and values with their full path. files_in_data = {os.path.basename(file_fullpath): file_fullpath for file_fullpath in files_in_data_fullpath} # get map between sources and filename hashes with open(os.path.join(self.data_path, 'sources.yml'), 'r') as file: sources = yaml.load(file, Loader=yaml.FullLoader) # control if files in vectorstore == files in data if set(files_in_data.keys()) == set(files_in_vstore): print("Vectorstore is up to date") else: print("Vectorstore needs to be updated") # Creates a list of the file names to remove from vectorstore # Note: the full path of the files is not needed here. files_to_remove = list(set(files_in_vstore) - set(files_in_data.keys())) # removes files from the vectorstore print(f"Files to remove: {files_to_remove}") collection = self._remove_from_vectorstore(collection, files_to_remove) # Create dictionary of the files to add, where the keys are the filenames and the values are the path of the file in data files_to_add = {filename: files_in_data[filename] for filename in list(set(files_in_data.keys()) - set(files_in_vstore))} # adds the files to the vectorstore print(f"Files to add: {files_to_add}") collection = self._add_to_vectorstore(collection, files_to_add, sources) print("Vectorstore update has been completed") print(f" N Collection: {collection.count()}") # delete collection to release collection and client object as well for garbage collection del collection return def _remove_from_vectorstore(self, collection, files_to_remove): """ Method which takes as input a list of filenames to remove from the vectorstore, then removes those filenames from the vectorstore. """ for filename in files_to_remove: collection.delete(where={"filename": filename}) return collection def _add_to_vectorstore(self, collection, files_to_add, sources={}): """ Method which takes as input: collection: a ChromaDB collection files_to_add: a dictionary with keys being the filenames and values being the file path sources: a dictionary, usually loaded from a yaml file, which has keys being the file hash (everything in the file name except the file extension) and has values of the url from which the source originated from. Not all files must be in the source dictionary. and adds these files to the vectorstore. """ for filename, file in files_to_add.items(): # create the chunks loader = None try: loader = self.loader(file) except Exception as e: print(f" ERROR - loading: {file} skip and move on. \n Exception: ", e) # treat case where file extension is not recognized or is broken if loader is None: continue # initialize lists for file chunks and metadata chunks = [] metadatas = [] # load documents from current file and add to docs and metadata docs = loader.load() for doc in docs: new_chunks = [document.page_content for document in self.text_splitter.split_documents([doc])] chunks += new_chunks metadatas += [doc.metadata for chunk in new_chunks] # explicitly get file metadata filehash = filename.split(".")[0] url = sources[filehash] if filehash in sources.keys() else "" # embed each chunk embeddings = self.embedding_model.embed_documents(chunks) # add filename as metadata for each chunk for metadata in metadatas: metadata["filename"] = filename # create unique id for each chunk # the first 12 bits of the id being the filename, 6 more based on the chunk itself, and the last 6 hashing the time ids = [] for chunk in chunks: identifier = hashlib.md5() identifier.update(chunk.encode('utf-8')) chunk_hash = str(int(identifier.hexdigest(),16))[0:6] time_identifier = hashlib.md5() time_identifier.update(str(time.time()).encode('utf-8')) time_hash = str(int(identifier.hexdigest(),16))[0:6] while str(filehash) + str(chunk_hash) + str(time_hash) in ids: print("INFO: Found conflict with hash: " + str(filehash) + str(chunk_hash) + str(time_hash) + ". Trying again") time_hash = str(int(time_hash) + 1) ids.append(str(filehash) + str(chunk_hash) + str(time_hash)) print("Ids: ",ids) collection.add(embeddings=embeddings, ids=ids, documents=chunks, metadatas=metadatas) print("succesfully added file ", filename) return collection def loader(self, file_path): """ Return the document loader from a path, with the correct loader given the extension """ _, file_extension = os.path.splitext(file_path) if file_extension == ".txt": return TextLoader(file_path) elif file_extension == ".html": return BSHTMLLoader(file_path, bs_kwargs={"features": "html.parser"}) elif file_extension == ".pdf": return PyPDFLoader(file_path) else: print(f" Error: format not supported -- {file_path}") return None
[]
2024-01-10
mit-submit/A2rchi
a2rchi~chains~models.py
from abc import abstractmethod from typing import Any, Callable, Dict, List, Optional, Tuple, Union import numpy as np import torch import time from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.chat_models import ChatOpenAI from langchain.llms import LlamaCpp class BaseCustomLLM(LLM): """ Abstract class used to load a custom LLM """ n_tokens: int = 100 # this has to be here for parent LLM class @property def _llm_type(self) -> str: return "custom" @abstractmethod def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> str: pass class DumbLLM(BaseCustomLLM): """ A simple Dumb LLM, perfect for testing """ filler: str = None sleep_time_mean: int = 3 def _call( self, prompt: str = None, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> str: sleep_time = np.random.normal(self.sleep_time_mean, 1) print(f"DumbLLM: sleeping {sleep_time}") time.sleep(sleep_time) return "I am just a dumb LLM, I will give you a number: " + str(np.random.randint(10000, 99999)) class LlamaLLM(BaseCustomLLM): """ Loading the Llama LLM from facebook. Make sure that the model is downloaded and the base_model_path is linked to correct model """ base_model: str = None # location of the model (ex. meta-llama/Llama-2-70b) peft_model: str = None # location of the finetuning of the model enable_salesforce_content_safety: bool = True # enable safety check with Salesforce safety flan t5 quantization: bool = True # enables 8-bit quantization max_new_tokens: int = 4096 # maximum numbers of tokens to generate seed: int = None # seed value for reproducibility do_sample: bool = True # use sampling; otherwise greedy decoding min_length: int = None # minimum length of sequence to generate, input prompt + min_new_tokens use_cache: bool = True # [optional] model uses past last key/values attentions top_p: float = .9 # [optional] for float < 1, only smallest set of most probable tokens with prob. that add up to top_p or higher are kept for generation temperature: float = .6 # [optional] value used to modulate next token probs top_k: int = 50 # [optional] number of highest prob. vocabulary tokens to keep for top-k-filtering repetition_penalty: float = 1.0 # parameter for repetition penalty: 1.0 == no penalty length_penalty: int = 1 # [optional] exponential penalty to length used with beam-based generation max_padding_length: int = None # the max padding length used with tokenizer padding prompts tokenizer: Callable = None llama_model: Callable = None safety_checker: List = None def __init__(self, **kwargs): super().__init__() for key, value in kwargs.items(): setattr(self, key, value) #Packages needed from peft import PeftModel from transformers import LlamaForCausalLM, LlamaTokenizer # Set the seeds for reproducibility if self.seed: torch.cuda.manual_seed(self.seed) torch.manual_seed(self.seed) # create tokenizer self.tokenizer = None self.tokenizer = LlamaTokenizer.from_pretrained(pretrained_model_name_or_path=self.base_model, local_files_only= False) base_model = LlamaForCausalLM.from_pretrained(pretrained_model_name_or_path=self.base_model, local_files_only= False, load_in_8bit=self.quantization, device_map='auto', torch_dtype = torch.float16) if self.peft_model: self.llama_model = PeftModel.from_pretrained(base_model, self.peft_model) else: self.llama_model = base_model self.llama_model.eval() # create safety checker self.safety_checker = [] if self.enable_salesforce_content_safety: self.safety_checker.append(SalesforceSafetyChecker()) @property def _llm_type(self) -> str: return "custom" def _call( self, prompt: str = None, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> str: # check if input is safe: safety_results = [check(prompt) for check in self.safety_checker] are_safe = all([r[1] for r in safety_results]) if not are_safe: print("User prompt deemed unsafe.") for method, is_safe, report in safety_results: if not is_safe: print(method) print(report) print("Skipping the Llama2 inference as the prompt is not safe.") return """It looks as if your question may be unsafe. This may be due to issues relating to toxicity, hate, identity, violence, physical tones, sexual tones, profanity, or biased questions. Please try to reformat your question.""" # prepare input batch = self.tokenizer(["[INST]" + prompt + "[/INST]"], padding='max_length', truncation=True,max_length=self.max_padding_length,return_tensors="pt") batch = {k: v.to("cuda") for k, v in batch.items()} # perform inference with torch.no_grad(): outputs = self.llama_model.generate( **batch, max_new_tokens=self.max_new_tokens, do_sample=self.do_sample, top_p=self.top_p, temperature=self.temperature, min_length=self.min_length, use_cache=self.use_cache, top_k=self.top_k, repetition_penalty=self.repetition_penalty, length_penalty=self.length_penalty, ) output_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True) # safety check of the model output safety_results = [check(output_text) for check in self.safety_checker] are_safe = all([r[1] for r in safety_results]) if not are_safe: print("Model output deemed unsafe.") for method, is_safe, report in safety_results: if not is_safe: print(method) print(report) return """The response to your question may be unsafe. This may be due to issues relating to toxicity, hate, identity, violence, physical tones, sexual tones, profanity, or biased questions. There are two ways to solve this: - generate the response - reformat your question so that it does not prompt an unsafe response.""" return output_text[output_text.rfind("[/INST]") + len("[/INST]"):] class OpenAILLM(ChatOpenAI): """ Loading the various OpenAI models, most commonly model_name = 'gpt-4' model_name = 'gpt-3.5-turbo Make sure that the api key is loaded as an environment variable and the OpenAI package installed. """ model_name: str = "gpt-4" temperature: int = 1 class SalesforceSafetyChecker(): def __init__(self): from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig import torch # load the salesforce safety model from Huggingface: https://huggingface.co/Salesforce/safety-flan-t5-base config = AutoConfig.from_pretrained("Salesforce/safety-flan-t5-base") self.tokenizer = AutoTokenizer.from_pretrained("Salesforce/safety-flan-t5-base") self.model = AutoModelForSeq2SeqLM.from_pretrained("Salesforce/safety-flan-t5-base", config=config) self.model.eval() def __call__(self, output_text): prefix = "Is the <Text> field safe or unsafe?" input_ids = self.tokenizer(prefix + " <Text> " + output_text + " <Context> ", return_tensors="pt").input_ids if len(input_ids[0]) > 512: print("Input length is > 512 token. Safety check result could be incorrect.") with torch.no_grad(): outputs = self.model.generate(input_ids,output_scores = True,return_dict_in_generate = True,max_new_tokens = 20) is_safe = self.tokenizer.decode(outputs.sequences[0], skip_special_tokens=True).split(" ")[0] == "safe" report = "" if not is_safe: true_false_ids = self.tokenizer("true false").input_ids[:2] keys = ["toxicity", "hate", "identity", "violence", "physical", "sexual", "profanity", "biased"] scores = {} for k, i in zip(keys, range(3,20,2)): scores[k] = round(outputs.scores[i][0,true_false_ids].softmax(dim=0)[0].item(), 5) report += "|" + "|".join(f"{n:^10}" for n in scores.keys()) + "|\n" report += "|" + "|".join(f"{n:^10}" for n in scores.values()) + "|\n" return "Salesforce Content Safety Flan T5 Base", is_safe, report
[]
2024-01-10
mit-submit/A2rchi
a2rchi~utils~config_loader.py
from a2rchi.chains.models import OpenAILLM, DumbLLM, LlamaLLM from langchain.embeddings.openai import OpenAIEmbeddings from langchain.embeddings import HuggingFaceEmbeddings import os import yaml class Config_Loader: def __init__(self): self.config = self.load_config() def load_config(self): """ Small function for loading the config.yaml file """ env = os.getenv("RUNTIME_ENV") try: with open(f"./config/{env}-config.yaml", "r") as f: config = yaml.load(f, Loader=yaml.FullLoader) # change the model class parameter from a string to an actual class MODEL_MAPPING = { "OpenAILLM": OpenAILLM, "DumbLLM": DumbLLM, "LlamaLLM": LlamaLLM } for model in config["chains"]["chain"]["MODEL_CLASS_MAP"].keys(): config["chains"]["chain"]["MODEL_CLASS_MAP"][model]["class"] = MODEL_MAPPING[model] EMBEDDING_MAPPING = { "OpenAIEmbeddings": OpenAIEmbeddings, "HuggingFaceEmbeddings": HuggingFaceEmbeddings } for model in config["utils"]["embeddings"]["EMBEDDING_CLASS_MAP"].keys(): config["utils"]["embeddings"]["EMBEDDING_CLASS_MAP"][model]["class"] = EMBEDDING_MAPPING[model] return config except Exception as e: raise e
[]
2024-01-10
novano1d/calcGPT
DesktopProgram~calcgpt.py
import openai import serial import sys import glob def serial_ports(): #pros steal functions from stack overflow """ Lists serial port names :raises EnvironmentError: On unsupported or unknown platforms :returns: A list of the serial ports available on the system """ if sys.platform.startswith('win'): ports = ['COM%s' % (i + 1) for i in range(256)] elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin'): # this excludes your current terminal "/dev/tty" ports = glob.glob('/dev/tty[A-Za-z]*') elif sys.platform.startswith('darwin'): ports = glob.glob('/dev/tty.*') else: raise EnvironmentError('Unsupported platform') result = [] for port in ports: try: s = serial.Serial(port) s.close() result.append(port) except (OSError, serial.SerialException): pass return result print("Available serial ports: ") for x in range(0, len(serial_ports())): print(x, serial_ports()[x]) print("Enter your selection:") port = input() ser = serial.Serial(serial_ports()[int(port)], 9600) ser.write(b'ack') #ack connection openai.api_key = "YOUR KEY HERE" messages = [ {"role": "system", "content": "You are a intelligent assistant."} ] while True: message = ser.readline() message = message.decode('utf-8') print(message) if message: messages.append( {"role": "user", "content": message}, ) chat = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) reply = chat.choices[0].message.content print(f"ChatGPT: {reply}") messages.append({"role": "assistant", "content": reply}) chunk_size = 63 #The buffer is only 64 characters on the calculator. We must break the message down into 64 byte increments to avoid issues. for i in range(0, len(reply), chunk_size): chunk = reply[i:i+chunk_size] ser.write(bytes(chunk, 'utf-8'))
[ "You are a intelligent assistant." ]
2024-01-10
QuantDeveloperUSA/ai_assistant_for_attorneys
ai_assistant_for_attorneys.py
import streamlit as st from streamlit_extras import Release_Mode from langchain.llms import OpenAI st.title('👨‍⚖️ Assistente I.A. para os melhores advogados do Brasil') # openai_api_key will be read preferably from config.txt if the file exists, else if it will be read from the enviroment variable API_TOKEN, else if it will be read from the text input field in the sidebar # try to Open the file config.txt and read the API_TOKEN from it # if the file does not exist, read the API_TOKEN from the enviroment variable API_TOKEN # if the enviroment variable does not exist, read the API_TOKEN from the text input field in the sidebar openai_api_key = "" try: with open('config.txt') as f: openai_api_key = f.readline() except: pass if openai_api_key == "": openai_api_key = st.secrets["API_TOKEN"] if openai_api_key == "": openai_api_key = st.sidebar.text_input('Qual é a palavra magica?') Release_Mode() Context_for_assistant_Prompt = "O assistente Jarvis é uma Inteligencia Artificial criada pelo Renomado Engenheiro Roberto, um dos melhores Engenheiros do planeta Terra. \nA Dra Debora é uma advogada extremamente importante nas comarcas do Rio de Janeiro no Brasil é muito criativa e super inteligente. Dra Debora perguntou a seu assistente Jarvis: " Contextualize_the_Assistant_Answer = "O assistente Jarvis, que é também advogado ilustrissimo, já foi inclusive juíz de direito e Desembargador, respondeu: " def generate_response(input_text): llm = OpenAI(temperature=0.7, openai_api_key=openai_api_key, max_tokens=3000) st.info(llm(input_text)) with st.form('my_form'): assistant_text = Context_for_assistant_Prompt + st.text_area('Olá, como posso te ajudar agora?', '') + Contextualize_the_Assistant_Answer #the color of the submit button is blue submitted_to_assistant = st.form_submit_button('Enviar 👨‍💼', help='Depois que escrever a mensagem pro teu assistente, clique aqui!') if not openai_api_key.startswith('sk-'): st.warning('Essa nao é a palavra magica!', icon='⚠') if submitted_to_assistant and openai_api_key.startswith('sk-'): generate_response(assistant_text) Release_Mode() # to change the color of the submit button to green, we can use this code # submitted_to_assistant = st.form_submit_button('Ask the Assistant 👨‍💼', help='Click to submit the form') # to run this app, use this command: streamlit run ai_assistant_for_attorneys.py # to run the app online, point the browser to https://o-assistente-da-dra-debora.streamlit.app/
[ "O assistente Jarvis é uma Inteligencia Artificial criada pelo Renomado Engenheiro Roberto, um dos melhores Engenheiros do planeta Terra. \nA Dra Debora é uma advogada extremamente importante nas comarcas do Rio de Janeiro no Brasil é muito criativa e super inteligente. Dra Debora perguntou a seu assistente Jarvis: " ]
2024-01-10
yghokim/llm-chat-web
chatbot~generators~gpt3_generator.py
import os from os import getcwd, path from asyncio import to_thread import yaml import openai from chatbot.chatbot import ResponseGenerator, DialogTurn, RegenerateRequestException class GPT3StaticPromptResponseGenerator(ResponseGenerator): @classmethod def from_yml(cls, file_path: str, model: str | None): with open(path.join(getcwd(), file_path), 'r') as f: yml_data: dict = yaml.load(f, Loader=yaml.FullLoader) print(yml_data) return cls( prompt_base=yml_data["prompt-base"], user_prefix=yml_data["user-prefix"], system_prefix=yml_data["system-prefix"], line_separator=yml_data["line-separator"], initial_system_message=yml_data["initial-system-utterance"], gpt3_params=yml_data["gpt3-params"], gpt3_model=model ) def __init__(self, prompt_base: str, user_prefix: str = "Customer: ", system_prefix: str = "Me: ", line_separator: str = "\n", initial_system_message: str = "How's your day so far?", gpt3_model: str = None, gpt3_params: dict = None ): openai.api_key = os.getenv('OPENAI_API_KEY') self.prompt_base = prompt_base self.user_prefix = user_prefix self.system_prefix = system_prefix self.line_separator = line_separator self.initial_system_message = initial_system_message if gpt3_model is not None: self.gpt3_model = gpt3_model else: self.gpt3_model = "text-davinci-002" self.max_tokens = 256 self.gpt3_params = gpt3_params or dict( temperature=0.9, presence_penalty=0.6, frequency_penalty=0.5, top_p=1 ) def _generate_prompt(self, dialog: list[DialogTurn]) -> str: first_user_message_index = next((i for i, v in enumerate(dialog) if v.is_user == True), -1) if first_user_message_index >= 0: str_arr: list[str] = [self.prompt_base.strip(), " ", dialog[first_user_message_index].message] str_arr += [f"{self.line_separator}{self.user_prefix if turn.is_user else self.system_prefix}{turn.message}" for turn in dialog[first_user_message_index + 1:]] str_arr.append(f"{self.line_separator}{self.system_prefix}") return "".join(str_arr) else: return self.prompt_base async def _get_response_impl(self, dialog: list[DialogTurn]) -> str: if len(dialog) == 0: return self.initial_system_message else: prompt = self._generate_prompt(dialog) result = await to_thread(openai.Completion.create, engine=self.gpt3_model, prompt=prompt, max_tokens=self.max_tokens, stop=[self.user_prefix, self.system_prefix], **self.gpt3_params, ) top_choice = result.choices[0] if top_choice.finish_reason == 'stop': response_text = top_choice.text.strip() if len(response_text) > 0: return response_text else: raise RegenerateRequestException("Empty text") else: raise Exception("GPT3 error")
[]
2024-01-10
heterog/mind-wave
mind_wave.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (C) 2023 Andy Stewart # # Author: Andy Stewart <[email protected]> # Maintainer: Andy Stewart <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import openai import queue import threading import traceback import os import sys from epc.server import ThreadingEPCServer from functools import wraps from utils import (get_command_result, get_emacs_var, get_emacs_vars, init_epc_client, eval_in_emacs, logger, close_epc_client, message_emacs, string_to_base64, decode_text) def catch_exception(func): @wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except: message_emacs(traceback.format_exc()) return wrapper def threaded(func): @wraps(func) def wrapper(*args, **kwargs): thread = threading.Thread(target=func, args=args, kwargs=kwargs) thread.start() if hasattr(args[0], 'thread_queue'): args[0].thread_queue.append(thread) return wrapper class MindWave: def __init__(self, args): # Init EPC client port. init_epc_client(int(args[0])) # Build EPC server. self.server = ThreadingEPCServer(('localhost', 0), log_traceback=True) # self.server.logger.setLevel(logging.DEBUG) self.server.allow_reuse_address = True # Get API key. api_key = self.chat_get_api_key() if api_key is not None: openai.api_key = api_key openai.api_base, openai.api_type, openai.api_version = get_emacs_vars(["mind-wave-api-base", "mind-wave-api-type", "mind-wave-api-version"]) self.server.register_instance(self) # register instance functions let elisp side call # Start EPC server with sub-thread, avoid block Qt main loop. self.server_thread = threading.Thread(target=self.server.serve_forever) self.server_thread.start() # Pass epc port and webengine codec information to Emacs when first start mind-wave. eval_in_emacs('mind-wave--first-start', self.server.server_address[1]) # All Emacs request running in event_loop. self.event_queue = queue.Queue() self.event_loop = threading.Thread(target=self.event_dispatcher) self.event_loop.start() # Build thread queue. self.thread_queue = [] # Build subtitles dict. self.subtitle_dict = {} # event_loop never exit, simulation event loop. self.event_loop.join() def event_dispatcher(self): try: while True: self.event_queue.get(True) self.event_queue.task_done() except: logger.error(traceback.format_exc()) def chat_get_api_key(self): mind_wave_chat_api_key = get_emacs_var("mind-wave-api-key") key = None if mind_wave_chat_api_key: key = mind_wave_chat_api_key else: key = os.environ.get("OPENAI_API_KEY") if key is None: message_emacs(f"ChatGPT API key not found, please copy it from https://platform.openai.com/account/api-keys, and fill API key in file: {mind_wave_chat_api_key_file_path}. Or set the enviroment OPENAI_API_KEY") return key @catch_exception def send_completion_request(self, messages, model="gpt-3.5-turbo"): response = openai.ChatCompletion.create( model = model, messages = messages) result = '' for choice in response.choices: result += choice.message.content return (result, response) @catch_exception def send_stream_request(self, messages, callback, model="gpt-3.5-turbo"): response = openai.ChatCompletion.create( model = model, messages = messages, temperature=0, stream=True) for chunk in response: (result_type, result_content) = self.get_chunk_result(chunk) callback(result_type, result_content) @threaded def chat_ask(self, buffer_file_name, buffer_content, prompt): content, model = self.chat_parse_content(buffer_content) messages = content if prompt: messages = content + [{"role": "user", "content": prompt}] def callback(result_type, result_content): eval_in_emacs("mind-wave-chat-ask--response", buffer_file_name, result_type, result_content) self.send_stream_request(messages, callback, model) def parse_lines(self, lines): messages = [] role = '' content = '' model = "gpt-3.5-turbo" for line in lines: if line.startswith('# : '): begin = line.find(":") + 1 model_content = line[begin:].strip() if model_content != "": model = model_content elif line.startswith('# > ') or line.startswith('## > '): if role: messages.append({"role": role, "content": content}) begin = line.find('>') + 1 end = line.find(':') role = line[begin:end].strip().lower() content = line[end + 2:] else: content += line if role: messages.append({"role": role, "content": content}) return messages, model def add_default_system_message(self, messages): default_system = {"role": "system", "content": "You are a helpful assistant."} if len(messages) == 0: messages.append(default_system) elif messages[0]["role"] != "system": messages = [default_system] + messages return messages def chat_parse_content(self, buffer_content): text = decode_text(buffer_content) lines = text.splitlines(True) messages, model = self.parse_lines(lines) messages = self.add_default_system_message(messages) return messages, model @threaded def parse_title(self, buffer_file_name, text_content, role, prompt): text = decode_text(text_content) (result, _) = self.send_completion_request( [{"role": "system", "content": role}, {"role": "user", "content": f"{prompt}:\n{text}"}], get_emacs_var("mind-wave-parse-title-model") ) eval_in_emacs("mind-wave-parse-title--response", buffer_file_name, result) @threaded def async_text(self, buffer_file_name, text_content, text_start, text_end, role, prompt, notify_start, notify_end): text = decode_text(text_content) if text_content == "": content = f"{prompt}" else: content = f"{prompt}:\n{text}" messages = [{"role": "system", "content": role}, {"role": "user", "content": content}] def callback(result_type, result_content): eval_in_emacs("mind-wave-async-text--response", buffer_file_name, result_type, result_content, text_start, text_end, notify_start, notify_end) self.send_stream_request(messages, callback, get_emacs_var("mind-wave-async-text-model")) @threaded def action_code(self, buffer_name, major_mode, code, role, prompt, callback_template, notify_start, notify_end): text = decode_text(code) messages = [{"role": "system", "content": role}, {"role": "user", "content": f"{prompt}: \n{text}"}] def callback(result_type, result_content): eval_in_emacs("mind-wave-split-window--response", buffer_name, f"mind-wave-{callback_template}-{buffer_name}", major_mode, result_type, result_content, notify_start, notify_end) self.send_stream_request(messages, callback, get_emacs_var("mind-wave-action-code-model")) @threaded def explain_word(self, buffer_name, major_mode, sentence, word, callback_template, notify_start, notify_end): sentence_text = decode_text(sentence) messages = [{"role": "system", "content": "你是一位英语词义语法专家, 你在教我英语, 我给你一句英文句子, 和这个句子中的一个单词, 请用中文帮我解释一下,这个单词在句子中的意思和句子本身的意思. 并举几个相同意思的英文例句,并用中文解释例句。如果你明白了请说同意,然后我们开始。"}, {"role": "assistant", "content": "好的,我明白了,请给我这个句子和单词。"}, {"role": "user", "content": f"句子是:{sentence_text}\n 单词是:{word}"}] def callback(result_type, result_content): eval_in_emacs("mind-wave-split-window--response", buffer_name, f"mind-wave-{callback_template}-{buffer_name}", major_mode, result_type, result_content, notify_start, notify_end) self.send_stream_request(messages, callback, get_emacs_var("mind-wave-explain-word-model")) def get_video_subtitle(self, video_id): from youtube_transcript_api import YouTubeTranscriptApi message_emacs(f"Get subtitles for video id: {video_id}...") if video_id in self.subtitle_dict: text = self.subtitle_dict[video_id] else: transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=["zh-Hans", "en"]) text = " ".join(line["text"] for line in transcript) self.subtitle_dict[video_id] = text return text @threaded def summary_video(self, buffer_name, video_id, role, prompt, notify_start, notify_end): import importlib if importlib.find_loader("youtube_transcript_api") is None: message_emacs("Please use pip3 install package 'youtube_transcript_api' first.") return text = self.get_video_subtitle(video_id) self.summary_text(buffer_name, role, prompt, notify_start, notify_end, text, video_id) @threaded def git_commit(self, dir, role, prompt): diff_string = get_command_result(f"cd {dir} ; git diff") (result, _) = self.send_completion_request( [{"role": "system", "content": role}, {"role": "user", "content": f"{prompt}:\n{diff_string}"}], get_emacs_var("mind-wave-git-commit-model")) eval_in_emacs("mind-wave-generate-commit-name--response", result) @threaded def summary_web(self, buffer_name, url, role, prompt, notify_start, notify_end): import shutil if not shutil.which("readable"): message_emacs("Please install 'readable' cli tool first") return text = get_command_result(f"readable {url} -p 'text-content'") self.summary_text(buffer_name, role, prompt, notify_start, notify_end, text, url) def summary_text(self, buffer_name, role, prompt, notify_start, notify_end, text, template): part_size = 3000 message_parts = [text[i:i + part_size] for i in range(0, len(text), part_size)] def callback(result_type, result_content): eval_in_emacs("mind-wave-split-window--response", buffer_name, f"mind-wave-summary-{template}", "text-mode", result_type, result_content, notify_start, notify_end) self.send_stream_part_request(role, prompt, message_parts, callback) def send_stream_part_request(self, role, prompt, message_parts, callback): if not message_parts: return text = message_parts[0] messages = [{"role": "system", "content": role}, {"role": "user", "content": f"{prompt}: \n{text}"}] try: response = openai.ChatCompletion.create( model = "gpt-3.5-turbo", messages = messages, temperature=0, stream=True) for chunk in response: (result_type, result_content) = self.get_chunk_result(chunk) callback(result_type, result_content) if result_type == "end": self.send_stream_part_request(role, prompt, message_parts[1:], callback) except: message_emacs(traceback.format_exc()) def get_chunk_result(self, chunk): delta = chunk.choices[0].delta if not delta: return ("end", "") elif "role" in delta: return ("start", "") elif "content" in delta: return ("content", string_to_base64(delta["content"])) def cleanup(self): """Do some cleanup before exit python process.""" close_epc_client() if __name__ == "__main__": if len(sys.argv) >= 3: import cProfile profiler = cProfile.Profile() profiler.run("MindWave(sys.argv[1:])") else: MindWave(sys.argv[1:])
[ "你是一位英语词义语法专家, 你在教我英语, 我给你一句英文句子, 和这个句子中的一个单词, 请用中文帮我解释一下,这个单词在句子中的意思和句子本身的意思. 并举几个相同意思的英文例句,并用中文解释例句。如果你明白了请说同意,然后我们开始。", "PLACEHOLDER:\nPLACEHOLDER", "句子是:PLACEHOLDER\n 单词是:PLACEHOLDER", "You are a helpful assistant.", "好的,我明白了,请给我这个句子和单词。", "PLACEHOLDER: \nPLACEHOLDER" ]
2024-01-10
senthilkumarimuth/DocsGPT_Openai
src~prepare_contextvector.py
import PyPDF2 from langchain.text_splitter import CharacterTextSplitter import pandas as pd import openai import dotenv,os from transformers import GPT2TokenizerFast import pickle import time from src.utils.rewrite_pages import rewrite import sys from pathlib import Path, PurePath sys.path.append(PurePath(Path(__file__).parents[1]).as_posix()) from utils.logging.custom_logging import logger # set api key env = dotenv.load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") # enter the document name for which vector to be created document_name = str(input('Enter PDF document name for which vector to be created(keep it short ex: pdp): ')) # pdf to text pdfFileObj = open('../data/TVS Jupiter 125 - SMW.pdf', 'rb') pdfReader = PyPDF2.PdfReader(pdfFileObj) num_pages = len(pdfReader.pages) data = [] logger.debug("wait while pages are being rewritten by completion API to remove noises") for page in range(0, num_pages): pageObj = pdfReader.pages[page] page_text = pageObj.extract_text() data.append(page_text) pdfFileObj.close() data_rewrite = [rewrite(doc) for doc in data] logger.info(f'Number of pages in the document is: {len(data)}') # Split small chucks to so that LLMs can perform well text_splitter = CharacterTextSplitter(chunk_size=1500, separator="\n") docs = [] metadatas = [] sources = None for i, d in enumerate(data_rewrite): splits = text_splitter.split_text(d) docs.extend(splits) metadatas.extend([{"source": i}] * len(splits)) df = pd.DataFrame(metadatas) df.insert(1, 'content', docs) df.insert(1,'raw_index', df.index) df = df.set_index(['raw_index',"source"]) logger.info(f'Number of rows in the document after chunk splits: {str(len(df))}') # Tokenize def count_tokens(text: str) -> int: """count the number of tokens in a string""" return len(tokenizer.encode(text)) tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") ##Todo: Use the logic provided by openai content_token = [ count_tokens(text) for text in df.content.tolist()] logger.info(f'Total number of tokens in document: {(str(sum(content_token)))}') df.insert(1, 'tokens', content_token) EMBEDDING_MODEL = "text-embedding-ada-002" def get_embedding(text: str, model: str = EMBEDDING_MODEL) -> list[float]: result = openai.Embedding.create( model=model, input= text ) return result["data"][0]["embedding"] def compute_doc_embeddings(df: pd.DataFrame) -> dict[tuple[str, str], list[float]]: """ Create an embedding for each row in the dataframe using the OpenAI Embeddings API. Return a dictionary that maps between each embedding vector and the index of the row that it corresponds to. """ logger.info(f'Embedding process is started') counter = 0 embed_dict = {} page_count = 20 # For free-trail users, 20 requests per min are allowed for idx, r in df.iterrows(): embed_dict[idx] = get_embedding(r.content) counter = counter + 1 time.sleep(2) if counter == page_count: counter = 0 logger.info(f'Embedding vector for {page_count} pages created.Waiting for 60 seconds before continuing') time.sleep(60) # Workaround for rate limit for a min logger.info(f'Embedding process is completed') return embed_dict # compute embedding for the document document_embeddings = compute_doc_embeddings(df) # Save as pkl file root_path = PurePath(Path(__file__).parents[1]).as_posix() vector_path = os.path.join(root_path, 'vectorstores', f'{document_name}') os.makedirs(vector_path, exist_ok=True) # write docs.index and pkl file df.to_pickle(os.path.join(vector_path,'df.pkl')) df.to_csv(os.path.join(vector_path,'df.csv')) with open(os.path.join(vector_path,"document_embeddings.pkl"), "wb") as f: pickle.dump(document_embeddings, f) # end # Todo: Update path in HTML so that new document can be recognized by UI logger.info('Vectorization is successful')
[]
2024-01-10
senthilkumarimuth/DocsGPT_Openai
src~utils~rewrite_pages.py
""" This module rewrites pages so that it can be used while pages to vector. Pages as it is very noisy. """ import openai COMPLETIONS_API_PARAMS = { # We use temperature of 0.0 because it gives the most predictable, factual answer. "temperature": 0.0, "max_tokens": 300, "model": "text-davinci-003", } prompt_init = "Rewrite the below in a format that AI easily understands, but don't change any important words. \n" def remove_page_number(page): page_numper = "" number = "0123456789" for i in page: if i in number: page_numper = page_numper + i else: break page = page[len(page_numper):] return page def rewrite(page): prompt = prompt_init +"'"+ remove_page_number(page)+ "'" response = openai.Completion.create( prompt=prompt, **COMPLETIONS_API_PARAMS ) re_written_text = response["choices"][0]["text"].strip(" \n") return re_written_text
[ "Rewrite the below in a format that AI easily understands, but don't change any important words. \n" ]
2024-01-10
senthilkumarimuth/DocsGPT_Openai
src~utils~common.py
import openai import numpy as np import tiktoken import pandas as pd import sys from pathlib import Path, PurePath sys.path.append(PurePath(Path(__file__).parents[1]).as_posix()) from src.utils.logging.custom_logging import logger COMPLETIONS_MODEL = "text-davinci-003" EMBEDDING_MODEL = "text-embedding-ada-002" MAX_SECTION_LEN = 1000 SEPARATOR = "\n* " ENCODING = "gpt2" # encoding for text-davinci-003 encoding = tiktoken.get_encoding(ENCODING) separator_len = len(encoding.encode(SEPARATOR)) f"Context separator contains {separator_len} tokens" COMPLETIONS_API_PARAMS = { # We use temperature of 0.0 because it gives the most predictable, factual answer. "temperature": 0.0, "max_tokens": 500, "model": COMPLETIONS_MODEL, } def get_embedding(text: str, model: str = EMBEDDING_MODEL) -> list[float]: result = openai.Embedding.create( model=model, input=text ) return result["data"][0]["embedding"] def vector_similarity(x: list[float], y: list[float]) -> float: """ Returns the similarity between two vectors. Because OpenAI Embeddings are normalized to length 1, the cosine similarity is the same as the dot product. """ return np.dot(np.array(x), np.array(y)) def order_document_sections_by_query_similarity(query: str, contexts: dict[(str, str), np.array]) -> list[ (float, (str, str))]: """ Find the query embedding for the supplied query, and compare it against all of the pre-calculated document embeddings to find the most relevant sections. Return the list of document sections, sorted by relevance in descending order. """ query_embedding = get_embedding(query) document_similarities = sorted([ (vector_similarity(query_embedding, doc_embedding), doc_index) for doc_index, doc_embedding in contexts.items() ], reverse=True) logger.debug(f"most relevant document sections {document_similarities}") return document_similarities def construct_prompt(question: str, context_embeddings: dict, df: pd.DataFrame, template: str, memory) -> str: """ Fetch relevant """ most_relevant_document_sections = order_document_sections_by_query_similarity(question, context_embeddings) chosen_sections = [] chosen_sections_len = 0 chosen_sections_indexes = [] for _, section_index in most_relevant_document_sections: # Add contexts until we run out of space. document_section = df.loc[section_index] chosen_sections_len += document_section.tokens + separator_len section = SEPARATOR + document_section.content.replace("\n", " ") if chosen_sections_len > MAX_SECTION_LEN: logger.warning(f'SECTION LEN EXCEED TO MAX SECTION LEN({MAX_SECTION_LEN})') logger.warning(f'missed to include in prompt: {section}') else: logger.info(f'Context Proability is: {_}') logger.debug(f'Contex: {section}') chosen_sections.append(section) chosen_sections_indexes.append(str(section_index)) #chosen_sections.append(SEPARATOR + document_section.content.replace("\n", " ")) #header = """You are TVS QA BOT. You are capable of answering questions reqarding TVS Owner Manual. Answer the question as truthfully as possible using the provided context, and if the answer is not contained within the text below, say "I don't know."\n\nContext:\n""" _prompt = template+ "\n" +memory.load_memory_variables({})['history'] + "\nQUESTION: " + \ question +"\ncontent: " + "".join(chosen_sections) + "\nFINAL ANSWER:" return _prompt def answer_query_with_context( query: str, df: pd.DataFrame, document_embeddings: dict[(str, str), np.array], template: str, memory, show_prompt: bool = False,) -> str: """ Facade function to get question from user and call model, eventually returns the answer to user :param query: question to docsgpt :param df: document in dataframe :param document_embeddings: embedding vector of document :param template: prompt :param show_prompt: to show prompt in stdout or not? boolean :return: answer from docgpt """ prompt = construct_prompt( query, document_embeddings, df, template, memory ) #prompt = prompt + "\n" + memory.load_memory_variables({})['history'] if show_prompt: print(prompt) response = openai.Completion.create( prompt=prompt, **COMPLETIONS_API_PARAMS ) return response["choices"][0]["text"].strip(" \n")
[ "\nQUESTION: ", "\n", "\ncontent: ", "\nFINAL ANSWER:" ]
2024-01-10
sudheer0071/Review_Genie
GPT_Terminal.py
API_KEY = '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' import openai import os os.environ['OPENAI_API_KEY'] = API_KEY openai.api_key = os.environ['OPENAI_API_KEY'] keep_prompting = True while keep_prompting: print('ReviewGenie : \t',end='') prompt = input('Hello, how can I help you today (type "exit" if done):\n\nUser: \t') print('\n') if prompt == 'exit': keep_prompting = False else: response = openai.Completion.create(engine = 'text-davinci-003', prompt=prompt,max_tokens = 200) print('ReviewGenie : \t',end='') print(response['choices'][0]['text']) print('\n')
[ "Hello, how can I help you today (type \"exit\" if done):\n\nUser: \t", "False", "True" ]
2024-01-10
fakecrash1/Jarvis
gpt_functions.py
import openai from datetime import datetime import os import urllib.request import pywhatkit from users import user_manager # API Key api_key_path = './Api_keys/api_key_openai.txt' # Read the API key from the text file with open(api_key_path, 'r') as f: openai_api_key = f.read().strip() openai.api_key = openai_api_key # Define the path to the directory where the generated images will be saved image_dir = "./Jarvis_Memory/images" # Check if the directory exists, create it if it doesn't if not os.path.exists(image_dir): os.makedirs(image_dir) # Generate response def generate_response(user_input, conversation_history): system_content = "You are JARVIS (Just A Rather Very Intelligent System), respectively the household assistance of the "+user_manager.current_user.name+" family and designed by Mr. "+user_manager.current_user.name+" (as Jarvis, you call the user as Sir.). You are a helpful AI assistant and your purpose is to make human life better, with helpful answers." response = openai.ChatCompletion.create( model="gpt-4", messages=[ {"role": "system", "content": system_content}, {"role": "user", "content": conversation_history + "\\n" + user_manager.current_user.name + ": " + user_input} ], max_tokens=320, ) message = response['choices'][0]['message']['content'].strip() conversation_history += "\\n" + user_manager.current_user.name + ": " + user_input + "\\n" + message return message, conversation_history # Generate image def generate_image(image_prompt): image_response = openai.Image.create( prompt=image_prompt, n=1, size="1024x1024" ) image_url = image_response['data'][0]['url'] return image_url # Play music def play_music(song): pywhatkit.playonyt(song) # Get help def print_help(): help_message = ''' Here are some tips and commands for using the chatbot: 1. Type your questions or statements normally, and the chatbot will respond. 2. To generate an image, type "generate image:" followed by a description, example: ("generate image: a beautiful sunset"). 3. Play anything from Youtube, use command: "play:" 4. Search on Google with command: "search:" 4. To exit the chat, type "exit" or "quit". Note: If the chatbot provides an unsatisfactory response, try rephrasing your question or statement. ''' print(help_message)
[ "\\n", ": " ]
2024-01-10
Areyouokay0/Autofilteraib
plugins~zzz_ai_LazyDeveloper.py
from utils import temp from pyrogram.types import InlineKeyboardMarkup, InlineKeyboardButton from pyrogram import Client, filters from info import * import openai openai.api_key = OPENAI_API @Client.on_message(filters.private & filters.text) async def lazy_answer(client, message): if AI == True: user_id = message.from_user.id if user_id: try: lazy_users_message = message.text user_id = message.from_user.id response = openai.Completion.create( model = "text-davinci-003", prompt = lazy_users_message, temperature = 0.5, max_tokens = 1000, top_p=1, frequency_penalty=0.1, presence_penalty = 0.0, ) btn=[ [InlineKeyboardButton(text=f"⇱🤷‍♀️ Take Action 🗃️⇲", url=f'https://t.me/{temp.U_NAME}')], [InlineKeyboardButton(text=f"🗑 Delete log ❌", callback_data=f'close_data')], ] reply_markup=InlineKeyboardMarkup(btn) footer_credit = "🦋<a href='https://t.me/andybotupdates'>• ʀᴇᴘᴏʀᴛ ɪꜱꜱᴜᴇ •</a>══<a href='https://telegram.me/Aman_sain'>• ᴄᴏɴᴛᴀᴄᴛ ᴍᴀꜱᴛᴇʀ •</a>🦋" lazy_response = response.choices[0].text await client.send_message(LAZY_AI_LOGS, text=f"⚡️⚡️#Lazy_AI_Query \n\n• A user named **{message.from_user.mention}** with user id - `{user_id}`. Asked me this query...\n\n══❚█══Q U E R Y══█❚══\n\n\n[Q྿.]**{lazy_users_message}**\n\n👇Here is what i responded:\n:-`{lazy_response}`\n\n\n❚═USER ID═❚═• `{user_id}` \n❚═USER Name═❚═• `{message.from_user.mention}` \n\n🗃️" , reply_markup = reply_markup ) await message.reply(f"{lazy_response}\n\n\n{footer_credit}") except Exception as error: print(error) else: return # i am NOT INTRESTED IN BEING YOUR SECOND FATHER... SO DON'T REMOVE MY CREDIT... # @LazyDeveloperr # ...PRESENTING... # A R T I F i C I A L - I N T E L i G E N C E # .in Auto-Filter-Bot. # @LazyDeveloperr # this line is for copy-pasters... # ...while you are removing my credit and calling yourself a developerr... # _____ just imagine, At that time i am fucking your mom and sis at same time, harder & too harder... # # i am NOT INTRESTED IN BEING YOUR SECOND FATHER... SO DON'T REMOVE MY CREDIT... # @LazyDeveloperr # # # # # # # # # # # # ...PRESENTING... # A R T I F i C I A L - I N T E L i G E N C E # .in Auto-Filter-Bot. # @LazyDeveloperr # # # # # # # # # # # # # this line is for copy-pasters... # ...while you are removing my credit and calling yourself a developerr... # _____ just imagine, At that time i am fucking your mom and sis at same time, harder & too harder... #
[]
2024-01-10
satwik121/Extractor
rcp.py
import streamlit as st from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentAnalysisClient import json import mysql.connector from mysql.connector import Error import pandas as pd from decouple import config from dotenv import load_dotenv import os import openai import config # api_key = os.getenv("api_key") # endpoint = os.getenv("endpoint") api_key = st.secrets['api_key'] endpoint = st.secrets['endpoint'] print(api_key) print(endpoint) model_id = "receipt_model" #formUrl = "YOUR_DOCUMENT" # Create a Form Recognizer client #form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(api_key)) document_analysis_client = DocumentAnalysisClient( endpoint=endpoint, credential=AzureKeyCredential(api_key) ) dict1 = {} # Create a Streamlit app st.title("Reciept Extractor") # Upload PDF file using Streamlit uploaded_file = st.file_uploader("Upload an Invoice or Receipt PDF", type=["jpg","png"]) from io import BytesIO # Read the contents of the uploaded file try: if uploaded_file: file_contents = uploaded_file.read() #file_contents = uploaded_fil # Create a file stream using BytesIO file_stream = BytesIO(file_contents) except Error as e: st.error(f"Upload the File ") if uploaded_file is not None: with uploaded_file: st.write("File Uploaded! Analyzing...") file_contents = uploaded_file.read() # Analyze the content of the document poller =document_analysis_client.begin_analyze_document( model_id = model_id, document= file_stream) documents = poller.result() # Display extracted entities for idx, document in enumerate(documents.documents): st.subheader(f"Document #{idx + 1} Entities:") for name, field in document.fields.items(): dict1[name] = field.value dict1.pop("prod table") #st.write(dict1) import pandas as pd # Create a list of indices index = list(range(1, 2)) df = pd.DataFrame(dict1,index = index) #st.write(df) df.columns = ['VendorOrg', 'ClientName','Subtotal', 'Total', 'Tax', 'VendorAddress', 'ClientAddress', 'ShippingAddress', 'Receipt', 'ReceiptDate', 'DueDate', 'PONumber'] #df.to_csv('rcpt.csv',index = False) ik = df.to_json(orient='records') json_string = json.loads(ik) d1= json_string[0] st.write(d1) st.write(df) try: # Establish a database connection db_connection = mysql.connector.connect( host="sqldatabase.mysql.database.azure.com", user="yusuf121", password="Satwik@121", database="chatbotdb" ) cursor = db_connection.cursor() insert_query = """INSERT INTO receipt (VendorOrg, ClientName, Subtotal, Total, Tax, VendorAddress, ClientAddress, ShippingAddress, Receipt, ReceiptDate, DueDate, PONumber) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)""" cursor.execute(insert_query, ( d1.get("VendorOrg", None), d1.get("ClientName", None), d1.get("Subtotal", None), d1.get("Total", None), d1.get("Tax", None), d1.get("VendorAddress", None), d1.get("ClientAddress", None), d1.get("ShippingAddress", None), d1.get("Receipt", None), d1.get("ReceiptDate", None), d1.get("DueDate", None), d1.get("PONumber", None) )) db_connection.commit() except Error as e: st.error(f"Error connecting to the database: {str(e)}") st.write(" Details Added successfully in the table ") db_connection.commit()
[]
2024-01-10
lwgm/nas-tools
app~plugins~modules~_autosignin~chdbits.py
import json import os import random import re from lxml import etree from app.helper.openai_helper import OpenAiHelper from app.plugins.modules._autosignin._base import _ISiteSigninHandler from app.utils import StringUtils, RequestUtils from config import Config class CHDBits(_ISiteSigninHandler): """ 彩虹岛签到 如果填写openai key则调用chatgpt获取答案 否则随机 """ # 匹配的站点Url,每一个实现类都需要设置为自己的站点Url site_url = "chdbits.co" # 已签到 _sign_regex = ['今天已经签过到了'] # 签到成功,待补充 _success_regex = ['\\d+点魔力值'] # 存储正确的答案,后续可直接查 _answer_path = os.path.join(Config().get_temp_path(), "signin") _answer_file = _answer_path + "/chdbits.json" @classmethod def match(cls, url): """ 根据站点Url判断是否匹配当前站点签到类,大部分情况使用默认实现即可 :param url: 站点Url :return: 是否匹配,如匹配则会调用该类的signin方法 """ return True if StringUtils.url_equal(url, cls.site_url) else False def signin(self, site_info: dict): """ 执行签到操作 :param site_info: 站点信息,含有站点Url、站点Cookie、UA等信息 :return: 签到结果信息 """ site = site_info.get("name") site_cookie = site_info.get("cookie") ua = site_info.get("ua") proxy = Config().get_proxies() if site_info.get("proxy") else None # 创建正确答案存储目录 if not os.path.exists(os.path.dirname(self._answer_file)): os.makedirs(os.path.dirname(self._answer_file)) # 判断今日是否已签到 index_res = RequestUtils(cookies=site_cookie, headers=ua, proxies=proxy ).get_res(url='https://chdbits.co/bakatest.php') if not index_res or index_res.status_code != 200: self.error(f"签到失败,请检查站点连通性") return False, f'【{site}】签到失败,请检查站点连通性' if "login.php" in index_res.text: self.error(f"签到失败,cookie失效") return False, f'【{site}】签到失败,cookie失效' sign_status = self.sign_in_result(html_res=index_res.text, regexs=self._sign_regex) if sign_status: self.info(f"今日已签到") return True, f'【{site}】今日已签到' # 没有签到则解析html html = etree.HTML(index_res.text) if not html: return False, f'【{site}】签到失败' # 获取页面问题、答案 questionid = html.xpath("//input[@name='questionid']/@value")[0] option_ids = html.xpath("//input[@name='choice[]']/@value") option_values = html.xpath("//input[@name='choice[]']/following-sibling::text()") question_str = html.xpath("//td[@class='text' and contains(text(),'请问:')]/text()")[0] answers = list(zip(option_ids, option_values)) # 正则获取问题 match = re.search(r'请问:(.+)', question_str) if match: question_str = match.group(1) self.debug(f"获取到签到问题 {question_str}") else: self.error(f"未获取到签到问题") return False, f"【{site}】签到失败,未获取到签到问题" # 查询已有答案 exits_answers = {} try: with open(self._answer_file, 'r') as f: json_str = f.read() exits_answers = json.loads(json_str) # 查询本地本次验证码hash答案 question_answer = exits_answers[question_str] # question_answer是数组 if not isinstance(question_answer, list): question_answer = [question_answer] # 本地存在本次hash对应的正确答案再遍历查询 choice = [] for q in question_answer: for num, answer in answers: if str(q) == str(num): choice.append(int(q)) if len(choice) > 0: # 签到 return self.__signin(questionid=questionid, choice=choice, site_cookie=site_cookie, ua=ua, proxy=proxy, site=site) except (FileNotFoundError, IOError, OSError) as e: self.debug("查询本地已知答案失败,继续请求豆瓣查询") # 正确答案,默认随机,如果gpt返回则用gpt返回的答案提交 choice = [option_ids[random.randint(0, len(option_ids) - 1)]] # 组装gpt问题 gpt_options = "{\n" + ",\n".join([f"{num}:{value}" for num, value in answers]) + "\n}" gpt_question = f"题目:{question_str}\n" \ f"选项:{gpt_options}" self.debug(f"组装chatgpt问题 {gpt_question}") # chatgpt获取答案 answer = OpenAiHelper().get_question_answer(question=gpt_question) self.debug(f"chatpgt返回结果 {answer}") # 处理chatgpt返回的答案信息 if answer is None: self.warn(f"ChatGPT未启用, 开始随机签到") # return f"【{site}】签到失败,ChatGPT未启用" elif answer: # 正则获取字符串中的数字 answer_nums = list(map(int, re.findall("\d+", answer))) if not answer_nums: self.warn(f"无法从chatgpt回复 {answer} 中获取答案, 将采用随机签到") else: choice = [] for answer in answer_nums: # 如果返回的数字在option_ids范围内,则直接作为答案 if str(answer) in option_ids: choice.append(int(answer)) self.info(f"chatgpt返回答案id {answer} 在签到选项 {option_ids} 中") # 签到 return self.__signin(questionid=questionid, choice=choice, site_cookie=site_cookie, ua=ua, proxy=proxy, site=site, exits_answers=exits_answers, question=question_str) def __signin(self, questionid, choice, site, site_cookie, ua, proxy, exits_answers=None, question=None): """ 签到请求 questionid: 450 choice[]: 8 choice[]: 4 usercomment: 此刻心情:无 submit: 提交 多选会有多个choice[].... """ data = { 'questionid': questionid, 'choice[]': choice[0] if len(choice) == 1 else choice, 'usercomment': '太难了!', 'wantskip': '不会' } self.debug(f"签到请求参数 {data}") sign_res = RequestUtils(cookies=site_cookie, headers=ua, proxies=proxy ).post_res(url='https://chdbits.co/bakatest.php', data=data) if not sign_res or sign_res.status_code != 200: self.error(f"签到失败,签到接口请求失败") return False, f'【{site}】签到失败,签到接口请求失败' # 判断是否签到成功 sign_status = self.sign_in_result(html_res=sign_res.text, regexs=self._success_regex) if sign_status: self.info(f"签到成功") if exits_answers and question: # 签到成功写入本地文件 self.__write_local_answer(exits_answers=exits_answers or {}, question=question, answer=choice) return True, f'【{site}】签到成功' else: sign_status = self.sign_in_result(html_res=sign_res.text, regexs=self._sign_regex) if sign_status: self.info(f"今日已签到") return True, f'【{site}】今日已签到' self.error(f"签到失败,请到页面查看") return False, f'【{site}】签到失败,请到页面查看' def __write_local_answer(self, exits_answers, question, answer): """ 签到成功写入本地文件 """ try: exits_answers[question] = answer # 序列化数据 formatted_data = json.dumps(exits_answers, indent=4) with open(self._answer_file, 'w') as f: f.write(formatted_data) except (FileNotFoundError, IOError, OSError) as e: self.debug("签到成功写入本地文件失败")
[]
2024-01-10
NoPause-io/nopause-python
examples~async_stream_play_with_chatgpt_sounddevice.py
# Copyright 2023 NoPause import asyncio import openai import nopause import sounddevice as sd # Install sdk packages first: # pip install openai nopause # Install sounddevice (see https://pypi.org/project/sounddevice/) # pip install sounddevice openai.api_key = "your_openai_api_key_here" nopause.api_key = "your_nopause_api_key_here" async def chatgpt_stream(prompt: str): responses = await openai.ChatCompletion.acreate( model="gpt-3.5-turbo-0613", messages=[ {"role": "system", "content": "You are a helpful assistant from NoPause IO."}, {"role": "user", "content": prompt}, ], stream=True, ) print("[User]: {}".format(prompt)) print("[Assistant]: ", end='', flush=True) async def agenerator(): async for response in responses: content = response["choices"][0]["delta"].get("content", '') print(content, end='', flush=True) yield content print() return agenerator() async def text_stream(): sentence = "Hello, how are you?" print("[Text]: ", end='', flush=True) for char in sentence: await asyncio.sleep(0.01) # simulate streaming text and avoid blocking print(char, end='', flush=True) yield char print() async def main(): # Note: openai key is needed for chatgpt text_stream_type = 'chatgpt' # chatgpt | text if text_stream_type == 'chatgpt': text_agenerator = chatgpt_stream("Hello, who are you?") else: text_agenerator = text_stream() audio_chunks = await nopause.Synthesis.astream(text_agenerator, voice_id="Zoe") stream = sd.RawOutputStream( samplerate=24000, blocksize=4800, device=sd.query_devices(kind="output")['index'], channels=1, dtype='int16', ) with stream: async for chunk in audio_chunks: stream.write(chunk.data) await asyncio.sleep(1) print('Play done.') if __name__ == '__main__': asyncio.run(main())
[ "You are a helpful assistant from NoPause IO." ]
2024-01-10
NoPause-io/nopause-python
examples~async_stream_play_with_chatgpt_pyaudio.py
# Copyright 2023 NoPause import asyncio import pyaudio import openai import nopause # Install sdk packages first: # pip install openai nopause # For pyaudio (see https://pypi.org/project/PyAudio/): # * windows # python -m pip install pyaudio # * mac # brew install portaudio # pip install pyaudio openai.api_key = "your_openai_api_key_here" nopause.api_key = "your_nopause_api_key_here" async def chatgpt_stream(prompt: str): responses = await openai.ChatCompletion.acreate( model="gpt-3.5-turbo-0613", messages=[ {"role": "system", "content": "You are a helpful assistant from NoPause IO."}, {"role": "user", "content": prompt}, ], stream=True, ) print("[User]: {}".format(prompt)) print("[Assistant]: ", end='', flush=True) async def agenerator(): async for response in responses: content = response["choices"][0]["delta"].get("content", '') print(content, end='', flush=True) yield content print() return agenerator() async def text_stream(): sentence = "Hello, how are you?" print("[Text]: ", end='', flush=True) for char in sentence: await asyncio.sleep(0.01) # simulate streaming text and avoid blocking print(char, end='', flush=True) yield char print() async def main(): # Note: openai key is needed for chatgpt text_stream_type = 'chatgpt' # chatgpt | text if text_stream_type == 'chatgpt': text_agenerator = chatgpt_stream("Hello, who are you?") else: text_agenerator = text_stream() audio_chunks = await nopause.Synthesis.astream(text_agenerator, voice_id="Zoe") p = pyaudio.PyAudio() stream = p.open( format=pyaudio.paInt16, channels=1, rate=24000, output=True, ) async for chunk in audio_chunks: stream.write(chunk.data) await asyncio.sleep(1) stream.close() p.terminate() print('Play done.') if __name__ == '__main__': asyncio.run(main())
[ "You are a helpful assistant from NoPause IO." ]
2024-01-10
NoPause-io/nopause-python
examples~stream_play_with_chatgpt_pyaudio.py
# Copyright 2023 NoPause import time import pyaudio import openai import nopause # Install sdk packages first: # pip install openai nopause # For pyaudio (see https://pypi.org/project/PyAudio/): # * windows # python -m pip install pyaudio # * mac # brew install portaudio # pip install pyaudio openai.api_key = "your_openai_api_key_here" nopause.api_key = "your_nopause_api_key_here" def chatgpt_stream(prompt: str): responses = openai.ChatCompletion.create( model="gpt-3.5-turbo-0613", messages=[ {"role": "system", "content": "You are a helpful assistant from NoPause IO."}, {"role": "user", "content": prompt}, ], stream=True, ) print("[User]: {}".format(prompt)) print("[Assistant]: ", end='', flush=True) def generator(): for response in responses: content = response["choices"][0]["delta"].get("content", '') print(content, end='', flush=True) yield content print() return generator() def text_stream(): sentence = "Hello, how are you?" print("[Text]: ", end='', flush=True) for char in sentence: time.sleep(0.01) # simulate streaming text print(char, end='', flush=True) yield char print() def main(): # Note: openai key is needed for chatgpt text_stream_type = 'chatgpt' # chatgpt | text if text_stream_type == 'chatgpt': text_generator = chatgpt_stream("Hello, who are you?") else: text_generator = text_stream() audio_chunks = nopause.Synthesis.stream(text_generator, voice_id="Zoe") p = pyaudio.PyAudio() stream = p.open( format=pyaudio.paInt16, channels=1, rate=24000, output=True, ) for chunk in audio_chunks: stream.write(chunk.data) time.sleep(1) # wait for playing stream.close() p.terminate() print('Play done.') if __name__ == '__main__': main()
[ "You are a helpful assistant from NoPause IO." ]
2024-01-10
NoPause-io/nopause-python
examples~stream_play_with_chatgpt_sounddevice.py
# Copyright 2023 NoPause import time import openai import nopause import sounddevice as sd # Install sdk packages first: # pip install openai nopause # Install sounddevice (see https://pypi.org/project/sounddevice/) # pip install sounddevice openai.api_key = "your_openai_api_key_here" nopause.api_key = "your_nopause_api_key_here" def chatgpt_stream(prompt: str): responses = openai.ChatCompletion.create( model="gpt-3.5-turbo-0613", messages=[ {"role": "system", "content": "You are a helpful assistant from NoPause IO."}, {"role": "user", "content": prompt}, ], stream=True, ) print("[User]: {}".format(prompt)) print("[Assistant]: ", end='', flush=True) def generator(): for response in responses: content = response["choices"][0]["delta"].get("content", '') print(content, end='', flush=True) yield content print() return generator() def text_stream(): sentence = "Hello, how are you?" print("[Text]: ", end='', flush=True) for char in sentence: time.sleep(0.01) # simulate streaming text print(char, end='', flush=True) yield char print() def main(): # Note: openai key is needed for chatgpt text_stream_type = 'chatgpt' # chatgpt | text if text_stream_type == 'chatgpt': text_generator = chatgpt_stream("Hello, who are you?") else: text_generator = text_stream() audio_chunks = nopause.Synthesis.stream(text_generator, voice_id="Zoe") stream = sd.RawOutputStream( samplerate=24000, blocksize=4800, device=sd.query_devices(kind="output")['index'], channels=1, dtype='int16', ) with stream: for chunk in audio_chunks: stream.write(chunk.data) time.sleep(1) print('Play done.') if __name__ == '__main__': main()
[ "You are a helpful assistant from NoPause IO." ]
2024-01-10
NoPause-io/nopause-python
examples~async_stream_play_with_chatgpt_sounddevice_callback.py
# Copyright 2023 NoPause import queue import asyncio import openai import nopause import sounddevice as sd # Install sdk packages first: # pip install openai nopause # Install sounddevice (see https://pypi.org/project/sounddevice/) # pip install sounddevice openai.api_key = "your_openai_api_key_here" nopause.api_key = "your_nopause_api_key_here" async def chatgpt_stream(prompt: str): responses = await openai.ChatCompletion.acreate( model="gpt-3.5-turbo-0613", messages=[ {"role": "system", "content": "You are a helpful assistant from NoPause IO."}, {"role": "user", "content": prompt}, ], stream=True, ) print("[User]: {}".format(prompt)) print("[Assistant]: ", end='', flush=True) async def agenerator(): async for response in responses: content = response["choices"][0]["delta"].get("content", '') print(content, end='', flush=True) yield content print() return agenerator() async def text_stream(): sentence = "Hello, how are you?" print("[Text]: ", end='', flush=True) for char in sentence: await asyncio.sleep(0.01) # simulate streaming text and avoid blocking print(char, end='', flush=True) yield char print() async def main(): try: # Note: openai key is needed for chatgpt text_stream_type = 'chatgpt' # chatgpt | text if text_stream_type == 'chatgpt': text_agenerator = chatgpt_stream("Hello, who are you?") else: text_agenerator = text_stream() audio_chunks = await nopause.Synthesis.astream(text_agenerator, voice_id="Zoe") q = queue.Queue() loop = asyncio.get_event_loop() event = asyncio.Event() # For non-async, just use threading.Event input_done = False def callback(outdata, frames, time, status): nonlocal input_done if q.empty(): outdata[:] = b'\x00' * len(outdata) if input_done: loop.call_soon_threadsafe(event.set) return chunk_data = q.get() # single channel outdata[:len(chunk_data)] = chunk_data if len(chunk_data) < len(outdata): outdata[len(chunk_data):] = b'\x00' * (len(outdata) - len(chunk_data)) if input_done and q.empty(): loop.call_soon_threadsafe(event.set) samplerate = 24000 blocksize = 4800 stream = sd.RawOutputStream( samplerate=samplerate, blocksize=blocksize, device=sd.query_devices(kind="output")['index'], channels=1, dtype='int16', callback=callback) with stream: async for chunk in audio_chunks: # Note, a block of int16 (blocksize*1 16-bit) = two blocks of bytes (blocksize*2 8-bit) for i in range(0, len(chunk.data), blocksize*2): q.put_nowait(chunk.data[i:i+blocksize*2]) input_done = True await event.wait() await asyncio.sleep(1) print('Play done.') except KeyboardInterrupt: print('\nInterrupted by user') except BaseException as e: raise e if __name__ == '__main__': asyncio.run(main())
[ "You are a helpful assistant from NoPause IO." ]
2024-01-10
ndurner/langchain-gpt4
langchain~output_parsers~structured.py
from __future__ import annotations import json from typing import List from pydantic import BaseModel from langchain.output_parsers.base import BaseOutputParser from langchain.output_parsers.format_instructions import STRUCTURED_FORMAT_INSTRUCTIONS line_template = '\t"{name}": {type} // {description}' class ResponseSchema(BaseModel): name: str description: str def _get_sub_string(schema: ResponseSchema) -> str: return line_template.format( name=schema.name, description=schema.description, type="string" ) class StructuredOutputParser(BaseOutputParser): response_schemas: List[ResponseSchema] @classmethod def from_response_schemas( cls, response_schemas: List[ResponseSchema] ) -> StructuredOutputParser: return cls(response_schemas=response_schemas) def get_format_instructions(self) -> str: schema_str = "\n".join( [_get_sub_string(schema) for schema in self.response_schemas] ) return STRUCTURED_FORMAT_INSTRUCTIONS.format(format=schema_str) def parse(self, text: str) -> BaseModel: json_string = text.split("```json")[1].strip().strip("```").strip() json_obj = json.loads(json_string) for schema in self.response_schemas: if schema.name not in json_obj: raise ValueError( f"Got invalid return object. Expected key `{schema.name}` " f"to be present, but got {json_obj}" ) return json_obj
[ "\t\"{name}\": {type} // {description}" ]
2024-01-10
ndurner/langchain-gpt4
langchain~output_parsers~regex.py
from __future__ import annotations import re from typing import Dict, List, Optional from pydantic import BaseModel from langchain.output_parsers.base import BaseOutputParser class RegexParser(BaseOutputParser, BaseModel): """Class to parse the output into a dictionary.""" regex: str output_keys: List[str] default_output_key: Optional[str] = None @property def _type(self) -> str: """Return the type key.""" return "regex_parser" def parse(self, text: str) -> Dict[str, str]: """Parse the output of an LLM call.""" match = re.search(self.regex, text) if match: return {key: match.group(i + 1) for i, key in enumerate(self.output_keys)} else: if self.default_output_key is None: raise ValueError(f"Could not parse output: {text}") else: return { key: text if key == self.default_output_key else "" for key in self.output_keys }
[]
2024-01-10
ndurner/langchain-gpt4
langchain~output_parsers~list.py
from __future__ import annotations from abc import abstractmethod from typing import List from langchain.output_parsers.base import BaseOutputParser class ListOutputParser(BaseOutputParser): """Class to parse the output of an LLM call to a list.""" @abstractmethod def parse(self, text: str) -> List[str]: """Parse the output of an LLM call.""" class CommaSeparatedListOutputParser(ListOutputParser): """Parse out comma separated lists.""" def get_format_instructions(self) -> str: return ( "Your response should be a list of comma separated values, " "eg: `foo, bar, baz`" ) def parse(self, text: str) -> List[str]: """Parse the output of an LLM call.""" return text.strip().split(", ")
[]
2024-01-10
ndurner/langchain-gpt4
langchain~memory~kg.py
from typing import Any, Dict, List from pydantic import BaseModel, Field from langchain.chains.llm import LLMChain from langchain.graphs import NetworkxEntityGraph from langchain.graphs.networkx_graph import KnowledgeTriple, get_entities, parse_triples from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.prompt import ( ENTITY_EXTRACTION_PROMPT, KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT, ) from langchain.memory.utils import get_prompt_input_key from langchain.prompts.base import BasePromptTemplate from langchain.schema import BaseLanguageModel, SystemMessage, get_buffer_string class ConversationKGMemory(BaseChatMemory, BaseModel): """Knowledge graph memory for storing conversation memory. Integrates with external knowledge graph to store and retrieve information about knowledge triples in the conversation. """ k: int = 2 human_prefix: str = "Human" ai_prefix: str = "AI" kg: NetworkxEntityGraph = Field(default_factory=NetworkxEntityGraph) knowledge_extraction_prompt: BasePromptTemplate = KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT entity_extraction_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT llm: BaseLanguageModel """Number of previous utterances to include in the context.""" memory_key: str = "history" #: :meta private: def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" entities = self._get_current_entities(inputs) summaries = {} for entity in entities: knowledge = self.kg.get_entity_knowledge(entity) if knowledge: summaries[entity] = ". ".join(knowledge) + "." if summaries: summary_strings = [ f"On {entity}: {summary}" for entity, summary in summaries.items() ] if self.return_messages: context: Any = [SystemMessage(content=text) for text in summary_strings] else: context = "\n".join(summary_strings) else: if self.return_messages: context = [] else: context = "" return {self.memory_key: context} @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] def _get_prompt_input_key(self, inputs: Dict[str, Any]) -> str: """Get the input key for the prompt.""" if self.input_key is None: return get_prompt_input_key(inputs, self.memory_variables) return self.input_key def _get_prompt_output_key(self, outputs: Dict[str, Any]) -> str: """Get the output key for the prompt.""" if self.output_key is None: if len(outputs) != 1: raise ValueError(f"One output key expected, got {outputs.keys()}") return list(outputs.keys())[0] return self.output_key def get_current_entities(self, input_string: str) -> List[str]: chain = LLMChain(llm=self.llm, prompt=self.entity_extraction_prompt) buffer_string = get_buffer_string( self.chat_memory.messages[-self.k * 2 :], human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) output = chain.predict( history=buffer_string, input=input_string, ) return get_entities(output) def _get_current_entities(self, inputs: Dict[str, Any]) -> List[str]: """Get the current entities in the conversation.""" prompt_input_key = self._get_prompt_input_key(inputs) return self.get_current_entities(inputs[prompt_input_key]) def get_knowledge_triplets(self, input_string: str) -> List[KnowledgeTriple]: chain = LLMChain(llm=self.llm, prompt=self.knowledge_extraction_prompt) buffer_string = get_buffer_string( self.chat_memory.messages[-self.k * 2 :], human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) output = chain.predict( history=buffer_string, input=input_string, verbose=True, ) knowledge = parse_triples(output) return knowledge def _get_and_update_kg(self, inputs: Dict[str, Any]) -> None: """Get and update knowledge graph from the conversation history.""" prompt_input_key = self._get_prompt_input_key(inputs) knowledge = self.get_knowledge_triplets(inputs[prompt_input_key]) for triple in knowledge: self.kg.add_triple(triple) def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" super().save_context(inputs, outputs) self._get_and_update_kg(inputs) def clear(self) -> None: """Clear memory contents.""" super().clear() self.kg.clear()
[]
2024-01-10
ndurner/langchain-gpt4
langchain~output_parsers~pydantic.py
import json import re from typing import Any from pydantic import BaseModel, ValidationError from langchain.output_parsers.base import BaseOutputParser from langchain.output_parsers.format_instructions import PYDANTIC_FORMAT_INSTRUCTIONS class PydanticOutputParser(BaseOutputParser): pydantic_object: Any def parse(self, text: str) -> BaseModel: try: # Greedy search for 1st json candidate. match = re.search("\{.*\}", text.strip()) json_str = "" if match: json_str = match.group() json_object = json.loads(json_str) return self.pydantic_object.parse_obj(json_object) except (json.JSONDecodeError, ValidationError) as e: name = self.pydantic_object.__name__ msg = f"Failed to parse {name} from completion {text}. Got: {e}" raise ValueError(msg) def get_format_instructions(self) -> str: schema = self.pydantic_object.schema() # Remove extraneous fields. reduced_schema = { prop: {"description": data["description"], "type": data["type"]} for prop, data in schema["properties"].items() } # Ensure json in context is well-formed with double quotes. schema = json.dumps(reduced_schema) return PYDANTIC_FORMAT_INSTRUCTIONS.format(schema=schema)
[]
2024-01-10
ndurner/langchain-gpt4
langchain~llms~sagemaker_endpoint.py
"""Wrapper around Sagemaker InvokeEndpoint API.""" from abc import ABC, abstractmethod from typing import Any, Dict, List, Mapping, Optional from pydantic import BaseModel, Extra, root_validator from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens class ContentHandlerBase(ABC): """A handler class to transform input from LLM to a format that SageMaker endpoint expects. Similarily, the class also handles transforming output from the SageMaker endpoint to a format that LLM class expects. """ """ Example: .. code-block:: python class ContentHandler(ContentHandlerBase): content_type = "application/json" accepts = "application/json" def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes: input_str = json.dumps({prompt: prompt, **model_kwargs}) return input_str.encode('utf-8') def transform_output(self, output: bytes) -> str: response_json = json.loads(output.read().decode("utf-8")) return response_json[0]["generated_text"] """ content_type: Optional[str] = "text/plain" """The MIME type of the input data passed to endpoint""" accepts: Optional[str] = "text/plain" """The MIME type of the response data returned from endpoint""" @abstractmethod def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes: """Transforms the input to a format that model can accept as the request Body. Should return bytes or seekable file like object in the format specified in the content_type request header. """ @abstractmethod def transform_output(self, output: bytes) -> str: """Transforms the output from the model to string that the LLM class expects. """ class SagemakerEndpoint(LLM, BaseModel): """Wrapper around custom Sagemaker Inference Endpoints. To use, you must supply the endpoint name from your deployed Sagemaker model & the region where it is deployed. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Sagemaker endpoint. See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html """ """ Example: .. code-block:: python from langchain import SagemakerEndpoint endpoint_name = ( "my-endpoint-name" ) region_name = ( "us-west-2" ) credentials_profile_name = ( "default" ) se = SagemakerEndpoint( endpoint_name=endpoint_name, region_name=region_name, credentials_profile_name=credentials_profile_name ) """ client: Any #: :meta private: endpoint_name: str = "" """The name of the endpoint from the deployed Sagemaker model. Must be unique within an AWS Region.""" region_name: str = "" """The aws region where the Sagemaker model is deployed, eg. `us-west-2`.""" credentials_profile_name: Optional[str] = None """The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html """ content_handler: ContentHandlerBase """The content handler class that provides an input and output transform functions to handle formats between LLM and the endpoint. """ """ Example: .. code-block:: python class ContentHandler(ContentHandlerBase): content_type = "application/json" accepts = "application/json" def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes: input_str = json.dumps({prompt: prompt, **model_kwargs}) return input_str.encode('utf-8') def transform_output(self, output: bytes) -> str: response_json = json.loads(output.read().decode("utf-8")) return response_json[0]["generated_text"] """ model_kwargs: Optional[Dict] = None """Key word arguments to pass to the model.""" endpoint_kwargs: Optional[Dict] = None """Optional attributes passed to the invoke_endpoint function. See `boto3`_. docs for more info. .. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html> """ class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that AWS credentials to and python package exists in environment.""" try: import boto3 try: if values["credentials_profile_name"] is not None: session = boto3.Session( profile_name=values["credentials_profile_name"] ) else: # use default credentials session = boto3.Session() values["client"] = session.client( "sagemaker-runtime", region_name=values["region_name"] ) except Exception as e: raise ValueError( "Could not load credentials to authenticate with AWS client. " "Please check that credentials in the specified " "profile name are valid." ) from e except ImportError: raise ValueError( "Could not import boto3 python package. " "Please it install it with `pip install boto3`." ) return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"endpoint_name": self.endpoint_name}, **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "sagemaker_endpoint" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call out to Sagemaker inference endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = se("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} _endpoint_kwargs = self.endpoint_kwargs or {} body = self.content_handler.transform_input(prompt, _model_kwargs) content_type = self.content_handler.content_type accepts = self.content_handler.accepts # send request try: response = self.client.invoke_endpoint( EndpointName=self.endpoint_name, Body=body, ContentType=content_type, Accept=accepts, **_endpoint_kwargs, ) except Exception as e: raise ValueError(f"Error raised by inference endpoint: {e}") text = self.content_handler.transform_output(response["Body"]) if stop is not None: # This is a bit hacky, but I can't figure out a better way to enforce # stop tokens when making calls to the sagemaker endpoint. text = enforce_stop_tokens(text, stop) return text
[]
2024-01-10
ndurner/langchain-gpt4
langchain~document_loaders~html_bs.py
"""Loader that uses bs4 to load HTML files, enriching metadata with page title.""" import logging from typing import Dict, List, Union from bs4 import BeautifulSoup from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader logger = logging.getLogger(__file__) class BSHTMLLoader(BaseLoader): """Loader that uses beautiful soup to parse HTML files.""" def __init__(self, file_path: str) -> None: self.file_path = file_path def load(self) -> List[Document]: """Load HTML document into document objects.""" with open(self.file_path, "r") as f: soup = BeautifulSoup(f, features="lxml") text = soup.get_text() if soup.title: title = str(soup.title.string) else: title = "" metadata: Dict[str, Union[str, None]] = { "source": self.file_path, "title": title, } return [Document(page_content=text, metadata=metadata)]
[]
2024-01-10
ndurner/langchain-gpt4
langchain~output_parsers~rail_parser.py
from __future__ import annotations from typing import Any, Dict from langchain.output_parsers.base import BaseOutputParser class GuardrailsOutputParser(BaseOutputParser): guard: Any @property def _type(self) -> str: return "guardrails" @classmethod def from_rail(cls, rail_file: str, num_reasks: int = 1) -> GuardrailsOutputParser: try: from guardrails import Guard except ImportError: raise ValueError( "guardrails-ai package not installed. " "Install it by running `pip install guardrails-ai`." ) return cls(guard=Guard.from_rail(rail_file, num_reasks=num_reasks)) @classmethod def from_rail_string( cls, rail_str: str, num_reasks: int = 1 ) -> GuardrailsOutputParser: try: from guardrails import Guard except ImportError: raise ValueError( "guardrails-ai package not installed. " "Install it by running `pip install guardrails-ai`." ) return cls(guard=Guard.from_rail_string(rail_str, num_reasks=num_reasks)) def get_format_instructions(self) -> str: return self.guard.raw_prompt.format_instructions def parse(self, text: str) -> Dict: return self.guard.parse(text)
[]
2024-01-10
ndurner/langchain-gpt4
langchain~memory~summary_buffer.py
from typing import Any, Dict, List from pydantic import BaseModel, root_validator from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.summary import SummarizerMixin from langchain.schema import BaseMessage, SystemMessage, get_buffer_string class ConversationSummaryBufferMemory(BaseChatMemory, SummarizerMixin, BaseModel): """Buffer with summarizer for storing conversation memory.""" max_token_limit: int = 2000 moving_summary_buffer: str = "" memory_key: str = "history" @property def buffer(self) -> List[BaseMessage]: return self.chat_memory.messages @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" buffer = self.buffer if self.moving_summary_buffer != "": first_messages: List[BaseMessage] = [ SystemMessage(content=self.moving_summary_buffer) ] buffer = first_messages + buffer if self.return_messages: final_buffer: Any = buffer else: final_buffer = get_buffer_string( buffer, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix ) return {self.memory_key: final_buffer} @root_validator() def validate_prompt_input_variables(cls, values: Dict) -> Dict: """Validate that prompt input variables are consistent.""" prompt_variables = values["prompt"].input_variables expected_keys = {"summary", "new_lines"} if expected_keys != set(prompt_variables): raise ValueError( "Got unexpected prompt input variables. The prompt expects " f"{prompt_variables}, but it should have {expected_keys}." ) return values def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" super().save_context(inputs, outputs) # Prune buffer if it exceeds max token limit buffer = self.chat_memory.messages curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) if curr_buffer_length > self.max_token_limit: pruned_memory = [] while curr_buffer_length > self.max_token_limit: pruned_memory.append(buffer.pop(0)) curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) self.moving_summary_buffer = self.predict_new_summary( pruned_memory, self.moving_summary_buffer ) def clear(self) -> None: """Clear memory contents.""" super().clear() self.moving_summary_buffer = ""
[]
2024-01-10
ndurner/langchain-gpt4
langchain~document_loaders~csv_loader.py
from csv import DictReader from typing import Dict, List, Optional from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader class CSVLoader(BaseLoader): """Loads a CSV file into a list of documents. Each document represents one row of the CSV file. Every row is converted into a key/value pair and outputted to a new line in the document's page_content. Output Example: .. code-block:: txt column1: value1 column2: value2 column3: value3 """ def __init__(self, file_path: str, csv_args: Optional[Dict] = None): self.file_path = file_path if csv_args is None: self.csv_args = { "delimiter": ",", "quotechar": '"', } else: self.csv_args = csv_args def load(self) -> List[Document]: docs = [] with open(self.file_path, newline="") as csvfile: csv = DictReader(csvfile, **self.csv_args) # type: ignore for i, row in enumerate(csv): docs.append( Document( page_content="\n".join( f"{k.strip()}: {v.strip()}" for k, v in row.items() ), metadata={"source": self.file_path, "row": i}, ) ) return docs
[]
2024-01-10
ndurner/langchain-gpt4
langchain~document_loaders~youtube.py
"""Loader that loads YouTube transcript.""" from __future__ import annotations from pathlib import Path from typing import Any, Dict, List, Optional from pydantic import root_validator from pydantic.dataclasses import dataclass from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader SCOPES = ["https://www.googleapis.com/auth/drive.readonly"] @dataclass class GoogleApiClient: """A Generic Google Api Client. To use, you should have the ``google_auth_oauthlib,youtube_transcript_api,google`` python package installed. As the google api expects credentials you need to set up a google account and register your Service. "https://developers.google.com/docs/api/quickstart/python" Example: .. code-block:: python from langchain.document_loaders import GoogleApiClient google_api_client = GoogleApiClient( service_account_path=Path("path_to_your_sec_file.json") ) """ credentials_path: Path = Path.home() / ".credentials" / "credentials.json" service_account_path: Path = Path.home() / ".credentials" / "credentials.json" token_path: Path = Path.home() / ".credentials" / "token.json" def __post_init__(self) -> None: self.creds = self._load_credentials() @root_validator def validate_channel_or_videoIds_is_set( cls, values: Dict[str, Any] ) -> Dict[str, Any]: """Validate that either folder_id or document_ids is set, but not both.""" if not values.get("credentials_path") and not values.get( "service_account_path" ): raise ValueError("Must specify either channel_name or video_ids") return values def _load_credentials(self) -> Any: """Load credentials.""" # Adapted from https://developers.google.com/drive/api/v3/quickstart/python try: from google.auth.transport.requests import Request from google.oauth2 import service_account from google.oauth2.credentials import Credentials from google_auth_oauthlib.flow import InstalledAppFlow from youtube_transcript_api import YouTubeTranscriptApi # noqa: F401 except ImportError: raise ImportError( "You must run" "`pip install --upgrade " "google-api-python-client google-auth-httplib2 " "google-auth-oauthlib" "youtube-transcript-api`" "to use the Google Drive loader" ) creds = None if self.service_account_path.exists(): return service_account.Credentials.from_service_account_file( str(self.service_account_path) ) if self.token_path.exists(): creds = Credentials.from_authorized_user_file(str(self.token_path), SCOPES) if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( str(self.credentials_path), SCOPES ) creds = flow.run_local_server(port=0) with open(self.token_path, "w") as token: token.write(creds.to_json()) return creds class YoutubeLoader(BaseLoader): """Loader that loads Youtube transcripts.""" def __init__( self, video_id: str, add_video_info: bool = False, language: str = "en" ): """Initialize with YouTube video ID.""" self.video_id = video_id self.add_video_info = add_video_info self.language = language @classmethod def from_youtube_channel(cls, youtube_url: str, **kwargs: Any) -> YoutubeLoader: """Given a channel name, load all videos.""" video_id = youtube_url.split("youtube.com/watch?v=")[-1] return cls(video_id, **kwargs) def load(self) -> List[Document]: """Load documents.""" try: from youtube_transcript_api import YouTubeTranscriptApi except ImportError: raise ImportError( "Could not import youtube_transcript_api python package. " "Please it install it with `pip install youtube-transcript-api`." ) metadata = {"source": self.video_id} if self.add_video_info: # Get more video meta info # Such as title, description, thumbnail url, publish_date video_info = self._get_video_info() metadata.update(video_info) transcript_pieces = YouTubeTranscriptApi.get_transcript( self.video_id, languages=[self.language] ) transcript = " ".join([t["text"].strip(" ") for t in transcript_pieces]) return [Document(page_content=transcript, metadata=metadata)] def _get_video_info(self) -> dict: """Get important video information. Components are: - title - description - thumbnail url, - publish_date - channel_author - and more. """ try: from pytube import YouTube except ImportError: raise ImportError( "Could not import pytube python package. " "Please it install it with `pip install pytube`." ) yt = YouTube(f"https://www.youtube.com/watch?v={self.video_id}") video_info = { "title": yt.title, "description": yt.description, "view_count": yt.views, "thumbnail_url": yt.thumbnail_url, "publish_date": yt.publish_date, "length": yt.length, "author": yt.author, } return video_info @dataclass class GoogleApiYoutubeLoader(BaseLoader): """Loader that loads all Videos from a Channel To use, you should have the ``googleapiclient,youtube_transcript_api`` python package installed. As the service needs a google_api_client, you first have to initialize the GoogleApiClient. Additionally you have to either provide a channel name or a list of videoids "https://developers.google.com/docs/api/quickstart/python" Example: .. code-block:: python from langchain.document_loaders import GoogleApiClient from langchain.document_loaders import GoogleApiYoutubeLoader google_api_client = GoogleApiClient( service_account_path=Path("path_to_your_sec_file.json") ) loader = GoogleApiYoutubeLoader( google_api_client=google_api_client, channel_name = "CodeAesthetic" ) load.load() """ google_api_client: GoogleApiClient channel_name: Optional[str] = None video_ids: Optional[List[str]] = None add_video_info: bool = True captions_language: str = "en" def __post_init__(self) -> None: self.youtube_client = self._build_youtube_client(self.google_api_client.creds) def _build_youtube_client(self, creds: Any) -> Any: try: from googleapiclient.discovery import build from youtube_transcript_api import YouTubeTranscriptApi # noqa: F401 except ImportError: raise ImportError( "You must run" "`pip install --upgrade " "google-api-python-client google-auth-httplib2 " "google-auth-oauthlib" "youtube-transcript-api`" "to use the Google Drive loader" ) return build("youtube", "v3", credentials=creds) @root_validator def validate_channel_or_videoIds_is_set( cls, values: Dict[str, Any] ) -> Dict[str, Any]: """Validate that either folder_id or document_ids is set, but not both.""" if not values.get("channel_name") and not values.get("video_ids"): raise ValueError("Must specify either channel_name or video_ids") return values def _get_transcripe_for_video_id(self, video_id: str) -> str: from youtube_transcript_api import YouTubeTranscriptApi transcript_pieces = YouTubeTranscriptApi.get_transcript(video_id) return " ".join([t["text"].strip(" ") for t in transcript_pieces]) def _get_document_for_video_id(self, video_id: str, **kwargs: Any) -> Document: captions = self._get_transcripe_for_video_id(video_id) video_response = ( self.youtube_client.videos() .list( part="id,snippet", id=video_id, ) .execute() ) return Document( page_content=captions, metadata=video_response.get("items")[0], ) def _get_channel_id(self, channel_name: str) -> str: request = self.youtube_client.search().list( part="id", q=channel_name, type="channel", maxResults=1, # we only need one result since channel names are unique ) response = request.execute() channel_id = response["items"][0]["id"]["channelId"] return channel_id def _get_document_for_channel(self, channel: str, **kwargs: Any) -> List[Document]: channel_id = self._get_channel_id(channel) request = self.youtube_client.search().list( part="id,snippet", channelId=channel_id, maxResults=50, # adjust this value to retrieve more or fewer videos ) video_ids = [] while request is not None: response = request.execute() # Add each video ID to the list for item in response["items"]: if not item["id"].get("videoId"): continue meta_data = {"videoId": item["id"]["videoId"]} if self.add_video_info: item["snippet"].pop("thumbnails") meta_data.update(item["snippet"]) video_ids.append( Document( page_content=self._get_transcripe_for_video_id( item["id"]["videoId"] ), metadata=meta_data, ) ) request = self.youtube_client.search().list_next(request, response) return video_ids def load(self) -> List[Document]: """Load documents.""" document_list = [] if self.channel_name: document_list.extend(self._get_document_for_channel(self.channel_name)) elif self.video_ids: document_list.extend( [ self._get_document_for_video_id(video_id) for video_id in self.video_ids ] ) else: raise ValueError("Must specify either channel_name or video_ids") return document_list
[]
2024-01-10
ndurner/langchain-gpt4
langchain~output_parsers~regex_dict.py
from __future__ import annotations import re from typing import Dict, Optional from pydantic import BaseModel from langchain.output_parsers.base import BaseOutputParser class RegexDictParser(BaseOutputParser, BaseModel): """Class to parse the output into a dictionary.""" regex_pattern: str = r"{}:\s?([^.'\n']*)\.?" # : :meta private: output_key_to_format: Dict[str, str] no_update_value: Optional[str] = None @property def _type(self) -> str: """Return the type key.""" return "regex_dict_parser" def parse(self, text: str) -> Dict[str, str]: """Parse the output of an LLM call.""" result = {} for output_key, expected_format in self.output_key_to_format.items(): specific_regex = self.regex_pattern.format(re.escape(expected_format)) matches = re.findall(specific_regex, text) if not matches: raise ValueError( f"No match found for output key: {output_key} with expected format \ {expected_format} on text {text}" ) elif len(matches) > 1: raise ValueError( f"Multiple matches found for output key: {output_key} with \ expected format {expected_format} on text {text}" ) elif ( self.no_update_value is not None and matches[0] == self.no_update_value ): continue else: result[output_key] = matches[0] return result
[]
2024-01-10
ndurner/langchain-gpt4
langchain~vectorstores~redis.py
"""Wrapper around Redis vector database.""" from __future__ import annotations import json import uuid from typing import Any, Callable, Iterable, List, Mapping, Optional import numpy as np from redis.client import Redis as RedisType from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env from langchain.vectorstores.base import VectorStore def _check_redis_module_exist(client: RedisType, module: str) -> bool: return module in [m["name"] for m in client.info().get("modules", {"name": ""})] class Redis(VectorStore): def __init__( self, redis_url: str, index_name: str, embedding_function: Callable, **kwargs: Any, ): """Initialize with necessary components.""" try: import redis except ImportError: raise ValueError( "Could not import redis python package. " "Please install it with `pip install redis`." ) self.embedding_function = embedding_function self.index_name = index_name try: redis_client = redis.from_url(redis_url, **kwargs) except ValueError as e: raise ValueError(f"Your redis connected error: {e}") # check if redis add redisearch module if not _check_redis_module_exist(redis_client, "search"): raise ValueError( "Could not use redis directly, you need to add search module" "Please refer [RediSearch](https://redis.io/docs/stack/search/quick_start/)" # noqa ) self.client = redis_client def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: # `prefix`: Maybe in the future we can let the user choose the index_name. prefix = "doc" # prefix for the document keys ids = [] # Check if index exists for i, text in enumerate(texts): key = f"{prefix}:{uuid.uuid4().hex}" metadata = metadatas[i] if metadatas else {} self.client.hset( key, mapping={ "content": text, "content_vector": np.array( self.embedding_function(text), dtype=np.float32 ).tobytes(), "metadata": json.dumps(metadata), }, ) ids.append(key) return ids def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: try: from redis.commands.search.query import Query except ImportError: raise ValueError( "Could not import redis python package. " "Please install it with `pip install redis`." ) # Creates embedding vector from user query embedding = self.embedding_function(query) # Prepare the Query return_fields = ["metadata", "content", "vector_score"] vector_field = "content_vector" hybrid_fields = "*" base_query = ( f"{hybrid_fields}=>[KNN {k} @{vector_field} $vector AS vector_score]" ) redis_query = ( Query(base_query) .return_fields(*return_fields) .sort_by("vector_score") .paging(0, k) .dialect(2) ) params_dict: Mapping[str, str] = { "vector": np.array(embedding) # type: ignore .astype(dtype=np.float32) .tobytes() } # perform vector search results = self.client.ft(self.index_name).search(redis_query, params_dict) documents = [ Document(page_content=result.content, metadata=json.loads(result.metadata)) for result in results.docs ] return documents @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, index_name: Optional[str] = None, **kwargs: Any, ) -> Redis: """Construct RediSearch wrapper from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new index for the embeddings in the RediSearch instance. 3. Adds the documents to the newly created RediSearch index. This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import RediSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() redisearch = RediSearch.from_texts( texts, embeddings, redis_url="redis://username:password@localhost:6379" ) """ redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL") try: import redis from redis.commands.search.field import TextField, VectorField from redis.commands.search.indexDefinition import IndexDefinition, IndexType except ImportError: raise ValueError( "Could not import redis python package. " "Please install it with `pip install redis`." ) try: # We need to first remove redis_url from kwargs, # otherwise passing it to Redis will result in an error. kwargs.pop("redis_url") client = redis.from_url(url=redis_url, **kwargs) except ValueError as e: raise ValueError(f"Your redis connected error: {e}") # check if redis add redisearch module if not _check_redis_module_exist(client, "search"): raise ValueError( "Could not use redis directly, you need to add search module" "Please refer [RediSearch](https://redis.io/docs/stack/search/quick_start/)" # noqa ) embeddings = embedding.embed_documents(texts) dim = len(embeddings[0]) # Constants vector_number = len(embeddings) # initial number of vectors # name of the search index if not given if not index_name: index_name = uuid.uuid4().hex prefix = "doc" # prefix for the document keys distance_metric = ( "COSINE" # distance metric for the vectors (ex. COSINE, IP, L2) ) content = TextField(name="content") metadata = TextField(name="metadata") content_embedding = VectorField( "content_vector", "FLAT", { "TYPE": "FLOAT32", "DIM": dim, "DISTANCE_METRIC": distance_metric, "INITIAL_CAP": vector_number, }, ) fields = [content, metadata, content_embedding] # Check if index exists try: client.ft(index_name).info() print("Index already exists") except: # noqa # Create Redis Index client.ft(index_name).create_index( fields=fields, definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH), ) pipeline = client.pipeline() for i, text in enumerate(texts): key = f"{prefix}:{str(uuid.uuid4().hex)}" metadata = metadatas[i] if metadatas else {} pipeline.hset( key, mapping={ "content": text, "content_vector": np.array( embeddings[i], dtype=np.float32 ).tobytes(), "metadata": json.dumps(metadata), }, ) pipeline.execute() return cls(redis_url, index_name, embedding.embed_query)
[]
2024-01-10
ndurner/langchain-gpt4
langchain~agents~load_tools.py
# flake8: noqa """Load tools.""" from typing import Any, List, Optional from langchain.agents.tools import Tool from langchain.callbacks.base import BaseCallbackManager from langchain.chains.api import news_docs, open_meteo_docs, tmdb_docs from langchain.chains.api.base import APIChain from langchain.chains.llm_math.base import LLMMathChain from langchain.chains.pal.base import PALChain from langchain.llms.base import BaseLLM from langchain.requests import RequestsWrapper from langchain.tools.base import BaseTool from langchain.tools.bing_search.tool import BingSearchRun from langchain.tools.google_search.tool import GoogleSearchResults, GoogleSearchRun from langchain.tools.python.tool import PythonREPLTool from langchain.tools.requests.tool import RequestsGetTool from langchain.tools.wikipedia.tool import WikipediaQueryRun from langchain.tools.wolfram_alpha.tool import WolframAlphaQueryRun from langchain.utilities.bash import BashProcess from langchain.utilities.bing_search import BingSearchAPIWrapper from langchain.utilities.google_search import GoogleSearchAPIWrapper from langchain.utilities.google_serper import GoogleSerperAPIWrapper from langchain.utilities.searx_search import SearxSearchWrapper from langchain.utilities.serpapi import SerpAPIWrapper from langchain.utilities.wikipedia import WikipediaAPIWrapper from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper def _get_python_repl() -> BaseTool: return PythonREPLTool() def _get_requests() -> BaseTool: return RequestsGetTool(requests_wrapper=RequestsWrapper()) def _get_terminal() -> BaseTool: return Tool( name="Terminal", description="Executes commands in a terminal. Input should be valid commands, and the output will be any output from running that command.", func=BashProcess().run, ) _BASE_TOOLS = { "python_repl": _get_python_repl, "requests": _get_requests, "terminal": _get_terminal, } def _get_pal_math(llm: BaseLLM) -> BaseTool: return Tool( name="PAL-MATH", description="A language model that is really good at solving complex word math problems. Input should be a fully worded hard word math problem.", func=PALChain.from_math_prompt(llm).run, ) def _get_pal_colored_objects(llm: BaseLLM) -> BaseTool: return Tool( name="PAL-COLOR-OBJ", description="A language model that is really good at reasoning about position and the color attributes of objects. Input should be a fully worded hard reasoning problem. Make sure to include all information about the objects AND the final question you want to answer.", func=PALChain.from_colored_object_prompt(llm).run, ) def _get_llm_math(llm: BaseLLM) -> BaseTool: return Tool( name="Calculator", description="Useful for when you need to answer questions about math.", func=LLMMathChain(llm=llm, callback_manager=llm.callback_manager).run, coroutine=LLMMathChain(llm=llm, callback_manager=llm.callback_manager).arun, ) def _get_open_meteo_api(llm: BaseLLM) -> BaseTool: chain = APIChain.from_llm_and_api_docs(llm, open_meteo_docs.OPEN_METEO_DOCS) return Tool( name="Open Meteo API", description="Useful for when you want to get weather information from the OpenMeteo API. The input should be a question in natural language that this API can answer.", func=chain.run, ) _LLM_TOOLS = { "pal-math": _get_pal_math, "pal-colored-objects": _get_pal_colored_objects, "llm-math": _get_llm_math, "open-meteo-api": _get_open_meteo_api, } def _get_news_api(llm: BaseLLM, **kwargs: Any) -> BaseTool: news_api_key = kwargs["news_api_key"] chain = APIChain.from_llm_and_api_docs( llm, news_docs.NEWS_DOCS, headers={"X-Api-Key": news_api_key} ) return Tool( name="News API", description="Use this when you want to get information about the top headlines of current news stories. The input should be a question in natural language that this API can answer.", func=chain.run, ) def _get_tmdb_api(llm: BaseLLM, **kwargs: Any) -> BaseTool: tmdb_bearer_token = kwargs["tmdb_bearer_token"] chain = APIChain.from_llm_and_api_docs( llm, tmdb_docs.TMDB_DOCS, headers={"Authorization": f"Bearer {tmdb_bearer_token}"}, ) return Tool( name="TMDB API", description="Useful for when you want to get information from The Movie Database. The input should be a question in natural language that this API can answer.", func=chain.run, ) def _get_wolfram_alpha(**kwargs: Any) -> BaseTool: return WolframAlphaQueryRun(api_wrapper=WolframAlphaAPIWrapper(**kwargs)) def _get_google_search(**kwargs: Any) -> BaseTool: return GoogleSearchRun(api_wrapper=GoogleSearchAPIWrapper(**kwargs)) def _get_wikipedia(**kwargs: Any) -> BaseTool: return WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(**kwargs)) def _get_google_serper(**kwargs: Any) -> BaseTool: return Tool( name="Serper Search", func=GoogleSerperAPIWrapper(**kwargs).run, description="A low-cost Google Search API. Useful for when you need to answer questions about current events. Input should be a search query.", ) def _get_google_search_results_json(**kwargs: Any) -> BaseTool: return GoogleSearchResults(api_wrapper=GoogleSearchAPIWrapper(**kwargs)) def _get_serpapi(**kwargs: Any) -> BaseTool: return Tool( name="Search", description="A search engine. Useful for when you need to answer questions about current events. Input should be a search query.", func=SerpAPIWrapper(**kwargs).run, coroutine=SerpAPIWrapper(**kwargs).arun, ) def _get_searx_search(**kwargs: Any) -> BaseTool: return Tool( name="SearX Search", description="A meta search engine. Useful for when you need to answer questions about current events. Input should be a search query.", func=SearxSearchWrapper(**kwargs).run, ) def _get_bing_search(**kwargs: Any) -> BaseTool: return BingSearchRun(api_wrapper=BingSearchAPIWrapper(**kwargs)) _EXTRA_LLM_TOOLS = { "news-api": (_get_news_api, ["news_api_key"]), "tmdb-api": (_get_tmdb_api, ["tmdb_bearer_token"]), } _EXTRA_OPTIONAL_TOOLS = { "wolfram-alpha": (_get_wolfram_alpha, ["wolfram_alpha_appid"]), "google-search": (_get_google_search, ["google_api_key", "google_cse_id"]), "google-search-results-json": ( _get_google_search_results_json, ["google_api_key", "google_cse_id", "num_results"], ), "bing-search": (_get_bing_search, ["bing_subscription_key", "bing_search_url"]), "google-serper": (_get_google_serper, ["serper_api_key"]), "serpapi": (_get_serpapi, ["serpapi_api_key", "aiosession"]), "searx-search": (_get_searx_search, ["searx_host"]), "wikipedia": (_get_wikipedia, ["top_k_results"]), } def load_tools( tool_names: List[str], llm: Optional[BaseLLM] = None, callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any, ) -> List[BaseTool]: """Load tools based on their name. Args: tool_names: name of tools to load. llm: Optional language model, may be needed to initialize certain tools. callback_manager: Optional callback manager. If not provided, default global callback manager will be used. Returns: List of tools. """ tools = [] for name in tool_names: if name in _BASE_TOOLS: tools.append(_BASE_TOOLS[name]()) elif name in _LLM_TOOLS: if llm is None: raise ValueError(f"Tool {name} requires an LLM to be provided") tool = _LLM_TOOLS[name](llm) if callback_manager is not None: tool.callback_manager = callback_manager tools.append(tool) elif name in _EXTRA_LLM_TOOLS: if llm is None: raise ValueError(f"Tool {name} requires an LLM to be provided") _get_llm_tool_func, extra_keys = _EXTRA_LLM_TOOLS[name] missing_keys = set(extra_keys).difference(kwargs) if missing_keys: raise ValueError( f"Tool {name} requires some parameters that were not " f"provided: {missing_keys}" ) sub_kwargs = {k: kwargs[k] for k in extra_keys} tool = _get_llm_tool_func(llm=llm, **sub_kwargs) if callback_manager is not None: tool.callback_manager = callback_manager tools.append(tool) elif name in _EXTRA_OPTIONAL_TOOLS: _get_tool_func, extra_keys = _EXTRA_OPTIONAL_TOOLS[name] sub_kwargs = {k: kwargs[k] for k in extra_keys if k in kwargs} tool = _get_tool_func(**sub_kwargs) if callback_manager is not None: tool.callback_manager = callback_manager tools.append(tool) else: raise ValueError(f"Got unknown tool {name}") return tools def get_all_tool_names() -> List[str]: """Get a list of all possible tool names.""" return ( list(_BASE_TOOLS) + list(_EXTRA_OPTIONAL_TOOLS) + list(_EXTRA_LLM_TOOLS) + list(_LLM_TOOLS) )
[]
2024-01-10
ndurner/langchain-gpt4
langchain~utilities~zapier.py
"""Util that can interact with Zapier NLA. Full docs here: https://nla.zapier.com/api/v1/dynamic/docs Note: this wrapper currently only implemented the `api_key` auth method for testing and server-side production use cases (using the developer's connected accounts on Zapier.com) For use-cases where LangChain + Zapier NLA is powering a user-facing application, and LangChain needs access to the end-user's connected accounts on Zapier.com, you'll need to use oauth. Review the full docs above and reach out to [email protected] for developer support. """ import json from typing import Dict, List, Optional import requests from pydantic import BaseModel, Extra, root_validator from requests import Request, Session from langchain.utils import get_from_dict_or_env class ZapierNLAWrapper(BaseModel): """Wrapper for Zapier NLA. Full docs here: https://nla.zapier.com/api/v1/dynamic/docs Note: this wrapper currently only implemented the `api_key` auth method for testingand server-side production use cases (using the developer's connected accounts on Zapier.com) For use-cases where LangChain + Zapier NLA is powering a user-facing application, and LangChain needs access to the end-user's connected accounts on Zapier.com, you'll need to use oauth. Review the full docs above and reach out to [email protected] for developer support. """ zapier_nla_api_key: str zapier_nla_api_base: str = "https://nla.zapier.com/api/v1/" zapier_nla_api_dynamic_base: str = "https://nla.zapier.com/api/v1/dynamic/" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid def _get_session(self) -> Session: session = requests.Session() session.headers.update( { "Accept": "application/json", "Content-Type": "application/json", } ) session.params = {"api_key": self.zapier_nla_api_key} return session def _get_action_request( self, action_id: str, instructions: str, params: Optional[Dict] = None ) -> Request: data = params if params else {} data.update( { "instructions": instructions, } ) return Request( "POST", self.zapier_nla_api_base + f"exposed/{action_id}/execute/", json=data, ) @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key exists in environment.""" zapier_nla_api_key = get_from_dict_or_env( values, "zapier_nla_api_key", "ZAPIER_NLA_API_KEY" ) values["zapier_nla_api_key"] = zapier_nla_api_key return values def list(self) -> List[Dict]: """Returns a list of all exposed (enabled) actions associated with current user (associated with the set api_key). Change your exposed actions here: https://nla.zapier.com/demo/start/ The return list can be empty if no actions exposed. Else will contain a list of action objects: [{ "id": str, "description": str, "params": Dict[str, str] }] `params` will always contain an `instructions` key, the only required param. All others optional and if provided will override any AI guesses (see "understanding the AI guessing flow" here: https://nla.zapier.com/api/v1/dynamic/docs) """ session = self._get_session() response = session.get(self.zapier_nla_api_dynamic_base + "exposed/") response.raise_for_status() return response.json()["results"] def run( self, action_id: str, instructions: str, params: Optional[Dict] = None ) -> Dict: """Executes an action that is identified by action_id, must be exposed (enabled) by the current user (associated with the set api_key). Change your exposed actions here: https://nla.zapier.com/demo/start/ The return JSON is guaranteed to be less than ~500 words (350 tokens) making it safe to inject into the prompt of another LLM call. """ session = self._get_session() request = self._get_action_request(action_id, instructions, params) response = session.send(session.prepare_request(request)) response.raise_for_status() return response.json()["result"] def preview( self, action_id: str, instructions: str, params: Optional[Dict] = None ) -> Dict: """Same as run, but instead of actually executing the action, will instead return a preview of params that have been guessed by the AI in case you need to explicitly review before executing.""" session = self._get_session() params = params if params else {} params.update({"preview_only": True}) request = self._get_action_request(action_id, instructions, params) response = session.send(session.prepare_request(request)) response.raise_for_status() return response.json()["input_params"] def run_as_str(self, *args, **kwargs) -> str: # type: ignore[no-untyped-def] """Same as run, but returns a stringified version of the JSON for insertting back into an LLM.""" data = self.run(*args, **kwargs) return json.dumps(data) def preview_as_str(self, *args, **kwargs) -> str: # type: ignore[no-untyped-def] """Same as preview, but returns a stringified version of the JSON for insertting back into an LLM.""" data = self.preview(*args, **kwargs) return json.dumps(data) def list_as_str(self, *args, **kwargs) -> str: # type: ignore[no-untyped-def] """Same as list, but returns a stringified version of the JSON for insertting back into an LLM.""" actions = self.list(*args, **kwargs) return json.dumps(actions)
[]
2024-01-10
ndurner/langchain-gpt4
langchain~vectorstores~pgvector.py
import enum import logging import uuid from typing import Any, Dict, Iterable, List, Optional, Tuple import sqlalchemy from pgvector.sqlalchemy import Vector from sqlalchemy.dialects.postgresql import UUID from sqlalchemy.orm import Mapped, Session, declarative_base, relationship from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env from langchain.vectorstores.base import VectorStore Base = declarative_base() # type: Any ADA_TOKEN_COUNT = 1536 _LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain" class BaseModel(Base): __abstract__ = True uuid = sqlalchemy.Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4) class CollectionStore(BaseModel): __tablename__ = "langchain_pg_collection" name = sqlalchemy.Column(sqlalchemy.String) cmetadata = sqlalchemy.Column(sqlalchemy.JSON) embeddings = relationship( "EmbeddingStore", back_populates="collection", passive_deletes=True, ) @classmethod def get_by_name(cls, session: Session, name: str) -> Optional["CollectionStore"]: return session.query(cls).filter(cls.name == name).first() @classmethod def get_or_create( cls, session: Session, name: str, cmetadata: Optional[dict] = None, ) -> Tuple["CollectionStore", bool]: """ Get or create a collection. Returns [Collection, bool] where the bool is True if the collection was created. """ created = False collection = cls.get_by_name(session, name) if collection: return collection, created collection = cls(name=name, metadata=cmetadata) session.add(collection) session.commit() created = True return collection, created class EmbeddingStore(BaseModel): __tablename__ = "langchain_pg_embedding" collection_id: Mapped[UUID] = sqlalchemy.Column( UUID(as_uuid=True), sqlalchemy.ForeignKey( f"{CollectionStore.__tablename__}.uuid", ondelete="CASCADE", ), ) collection = relationship(CollectionStore, back_populates="embeddings") embedding: Vector = sqlalchemy.Column(Vector(ADA_TOKEN_COUNT)) document = sqlalchemy.Column(sqlalchemy.String, nullable=True) cmetadata = sqlalchemy.Column(sqlalchemy.JSON, nullable=True) # custom_id : any user defined id custom_id = sqlalchemy.Column(sqlalchemy.String, nullable=True) class QueryResult: EmbeddingStore: EmbeddingStore distance: float class DistanceStrategy(str, enum.Enum): EUCLIDEAN = EmbeddingStore.embedding.l2_distance COSINE = EmbeddingStore.embedding.cosine_distance MAX_INNER_PRODUCT = EmbeddingStore.embedding.max_inner_product DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.EUCLIDEAN class PGVector(VectorStore): """ VectorStore implementation using Postgres and pgvector. - `connection_string` is a postgres connection string. - `embedding_function` any embedding function implementing `langchain.embeddings.base.Embeddings` interface. - `collection_name` is the name of the collection to use. (default: langchain) - NOTE: This is not the name of the table, but the name of the collection. The tables will be created when initializing the store (if not exists) So, make sure the user has the right permissions to create tables. - `distance_strategy` is the distance strategy to use. (default: EUCLIDEAN) - `EUCLIDEAN` is the euclidean distance. - `COSINE` is the cosine distance. - `pre_delete_collection` if True, will delete the collection if it exists. (default: False) - Useful for testing. """ def __init__( self, connection_string: str, embedding_function: Embeddings, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, pre_delete_collection: bool = False, logger: Optional[logging.Logger] = None, ) -> None: self.connection_string = connection_string self.embedding_function = embedding_function self.collection_name = collection_name self.distance_strategy = distance_strategy self.pre_delete_collection = pre_delete_collection self.logger = logger or logging.getLogger(__name__) self.__post_init__() def __post_init__( self, ) -> None: """ Initialize the store. """ self._conn = self.connect() # self.create_vector_extension() self.create_tables_if_not_exists() self.create_collection() def connect(self) -> sqlalchemy.engine.Connection: engine = sqlalchemy.create_engine(self.connection_string) conn = engine.connect() return conn def create_vector_extension(self) -> None: try: with Session(self._conn) as session: statement = sqlalchemy.text("CREATE EXTENSION IF NOT EXISTS vector") session.execute(statement) session.commit() except Exception as e: self.logger.exception(e) def create_tables_if_not_exists(self) -> None: Base.metadata.create_all(self._conn) def drop_tables(self) -> None: Base.metadata.drop_all(self._conn) def create_collection(self) -> None: if self.pre_delete_collection: self.delete_collection() with Session(self._conn) as session: CollectionStore.get_or_create(session, self.collection_name) def delete_collection(self) -> None: self.logger.debug("Trying to delete collection") with Session(self._conn) as session: collection = self.get_collection(session) if not collection: self.logger.error("Collection not found") return session.delete(collection) session.commit() def get_collection(self, session: Session) -> Optional["CollectionStore"]: return CollectionStore.get_by_name(session, self.collection_name) def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. kwargs: vectorstore specific parameters Returns: List of ids from adding the texts into the vectorstore. """ if ids is None: ids = [str(uuid.uuid1()) for _ in texts] embeddings = self.embedding_function.embed_documents(list(texts)) if not metadatas: metadatas = [{} for _ in texts] with Session(self._conn) as session: collection = self.get_collection(session) if not collection: raise ValueError("Collection not found") for text, metadata, embedding, id in zip(texts, metadatas, embeddings, ids): embedding_store = EmbeddingStore( embedding=embedding, document=text, cmetadata=metadata, custom_id=id, ) collection.embeddings.append(embedding_store) session.add(embedding_store) session.commit() return ids def similarity_search( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Document]: """Run similarity search with PGVector with distance. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query. """ embedding = self.embedding_function.embed_query(text=query) return self.similarity_search_by_vector( embedding=embedding, k=k, ) def similarity_search_with_score( self, query: str, k: int = 4 ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query and score for each """ embedding = self.embedding_function.embed_query(query) docs = self.similarity_search_with_score_by_vector(embedding, k) return docs def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, ) -> List[Tuple[Document, float]]: with Session(self._conn) as session: collection = self.get_collection(session) if not collection: raise ValueError("Collection not found") results: List[QueryResult] = ( session.query( EmbeddingStore, self.distance_strategy(embedding).label("distance"), # type: ignore ) .filter(EmbeddingStore.collection_id == collection.uuid) .order_by(sqlalchemy.asc("distance")) .join( CollectionStore, EmbeddingStore.collection_id == CollectionStore.uuid, ) .limit(k) .all() ) docs = [ ( Document( page_content=result.EmbeddingStore.document, metadata=result.EmbeddingStore.cmetadata, ), result.distance if self.embedding_function is not None else None, ) for result in results ] return docs def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query vector. """ docs_and_scores = self.similarity_search_with_score_by_vector( embedding=embedding, k=k ) return [doc for doc, _ in docs_and_scores] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> "PGVector": """ Return VectorStore initialized from texts and embeddings. Postgres connection string is required "Either pass it as a parameter or set the PGVECTOR_CONNECTION_STRING environment variable. """ connection_string = cls.get_connection_string(kwargs) store = cls( connection_string=connection_string, collection_name=collection_name, embedding_function=embedding, distance_strategy=distance_strategy, pre_delete_collection=pre_delete_collection, ) store.add_texts(texts=texts, metadatas=metadatas, ids=ids, **kwargs) return store @classmethod def get_connection_string(cls, kwargs: Dict[str, Any]) -> str: connection_string: str = get_from_dict_or_env( data=kwargs, key="connection_string", env_key="PGVECTOR_CONNECTION_STRING", ) if not connection_string: raise ValueError( "Postgres connection string is required" "Either pass it as a parameter" "or set the PGVECTOR_CONNECTION_STRING environment variable." ) return connection_string @classmethod def from_documents( cls, documents: List[Document], embedding: Embeddings, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any, ) -> "PGVector": """ Return VectorStore initialized from documents and embeddings. Postgres connection string is required "Either pass it as a parameter or set the PGVECTOR_CONNECTION_STRING environment variable. """ texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] connection_string = cls.get_connection_string(kwargs) kwargs["connection_string"] = connection_string return cls.from_texts( texts=texts, pre_delete_collection=pre_delete_collection, embedding=embedding, distance_strategy=distance_strategy, metadatas=metadatas, ids=ids, collection_name=collection_name, **kwargs, ) @classmethod def connection_string_from_db_params( cls, driver: str, host: str, port: int, database: str, user: str, password: str, ) -> str: """Return connection string from database parameters.""" return f"postgresql+{driver}://{user}:{password}@{host}:{port}/{database}"
[]
2024-01-10
schroederdewitt/evals
evals~registry~data~word_association~corpus_tools~validators.py
import os import re from abc import ABC, abstractmethod from collections.abc import Callable from typing import Dict, List, NamedTuple, Tuple, Union import numpy as np import openai from logger_config import logger openai.api_key = os.environ.get("OPENAI_API_KEY") CORRELATION_PROMPT_TEMPLATE = """Task: Estimate the degree of correlation between two provided strings. In your evaluation, consider not just direct links, but also indirect and subtle correlations. As an illustration, if 'watch' appears in the first string and 'tower' in the second, you could consider the combined term 'watchtower'. Similarly, for 'watch' and 'warning', think in terms of phrases like 'watch out for warnings'. You should score the correlation using the following scale from 0.00 to 1.00, where: 0.00 signifies no correlation whatsoever. 0.50 indicates a moderate level of correlation. This means there are several significant connections between the terms in the two strings, but these are not overwhelming. 1.00 is reserved for ONLY two strings that are completely identical. Strings to Correlate: string_one: {word} string_two: {related_words}""" ANSWER_PROMPT_TEMPLATE = """\nYour final output should be in the following format(NOTE: Include the square brackets): \nReasoning: <your reasoning>\nFinal Answer: [<float, rounded to the 100th place>]""" class Embedding(NamedTuple): """A named tuple representing a string and its corresponding embedding.""" string: str vector: List[float] class RelatedWordsPair(NamedTuple): """A named tuple containing a word and its related words.""" word: str related_words: str class EmbeddingPair(NamedTuple): """A named tuple representing a pair of related words and their embeddings.""" related_words_pair: RelatedWordsPair vectors: Tuple[Embedding] class SimilarityTuple(NamedTuple): """A named tuple representing the result of a similarity analysis.""" related_words_pair: RelatedWordsPair similar: bool similarity_score: float class QualityValidator(ABC): """Abstract base class for implementing quality validators.""" def __init__(self, target_score: int) -> None: self.target_score = target_score @abstractmethod def validate(self, related_words_pair: List[RelatedWordsPair]) -> List[SimilarityTuple]: raise NotImplementedError class EmbeddingsValidator(QualityValidator): """ An implementation of QualityValidator that validates the similarity of embeddings for pairs of related words. """ def validate( self, related_words_pairs: List[RelatedWordsPair], similarity_function: Callable[[List[float], List[float]], float] = None, ) -> List[SimilarityTuple]: """ Validates a list of related words pairs by comparing their embeddings. Args: related_words_pairs: a list of related word pairs to validate. similarity_function: a function that calculates similarity between two embeddings. Defaults to cosine similarity. Returns: A list of SimilarityTuple each containing a RelatedWordsPair, a boolean indicating if they're similar, and the similarity score. """ logger.info(f"Validating {len(related_words_pairs)} related strings.") if similarity_function is None: similarity_function = self.calculate_cosine_similarity # flatten all strings all_strings = [ string for pair in related_words_pairs for string in (pair.word, pair.related_words) ] logger.debug(f"{all_strings} flattened.") # get embeddings embeddings = self.get_embeddings(all_strings) logger.info(f"{len(embeddings)} embeddings processed.") # form EmbeddingPairs embedding_pairs = [ EmbeddingPair(related_string, (embeddings[i], embeddings[i + 1])) for i, related_string in enumerate(related_words_pairs) ] results = [] # for each EmbeddingPair, compare their embeddings and form SimilarityTuple for pair in embedding_pairs: similarity_score = round( similarity_function(pair.vectors[0].vector, pair.vectors[1].vector), 3 ) similar = similarity_score > self.target_score similarity_tuple = SimilarityTuple(pair.related_words_pair, similar, similarity_score) results.append(similarity_tuple) logger.info(f"{pair.related_words_pair}: {similar} score:({similarity_score})") return results @staticmethod def calculate_cosine_similarity(vec1: List[float], vec2: List[float]) -> float: """ Calculates cosine similarity between two vectors. Args: vec1: First vector. vec2: Second vector. Returns: The cosine similarity between the two vectors. """ vec1_norm = np.linalg.norm(vec1) vec2_norm = np.linalg.norm(vec2) similarity = np.dot(vec1, vec2) / (vec1_norm * vec2_norm) logger.debug(f"vec1: {vec1}, vec2: {vec2}, similarity: {similarity}") return similarity @staticmethod def calculate_euclidean_distance(vec1: List[float], vec2: List[float]) -> float: """ Calculates Euclidean distance between two vectors. Args: vec1: First vector. vec2: Second vector. Returns: The Euclidean distance between the two vectors. """ vec1 = np.array(vec1) vec2 = np.array(vec2) difference = vec1 - vec2 distance = np.linalg.norm(difference) logger.debug(f"vec1: {vec1}, vec2: {vec2}, distance: {distance}") return distance @staticmethod def get_embeddings( emb_input: Union[RelatedWordsPair, str, List[str], List[List[int]]] ) -> List[Embedding]: """ Batches the process of getting embeddings from the API. Args: emb_input: an input which can be a single string, a list of strings or a list of lists of tokens. Returns: A list of Embedding namedtuples where each Embedding represents the input string and its corresponding vector. """ response = openai.Embedding.create(model="text-embedding-ada-002", input=emb_input) logger.debug(f"embeddings response: {response}") response_data = response["data"] emb_list = [data["embedding"] for data in response_data] embeddings = [ Embedding(string=string, vector=vector) for string, vector in zip(emb_input, emb_list) ] return embeddings class GPTValidator(QualityValidator): """Uses the GPT model to validate the similarities between pairs of related words.""" def __init__( self, target_score: int, criteria: Dict[str, str] = None, model: str = "gpt-4" ) -> None: """ Constructor for GPTValidator. Args: target_score: The minimum score threshold for two words to be considered similar. criteria: A dictionary containing any specific criteria to be used in the validation process. model: The identifier of the GPT model to use for the validation. """ self._model = model self.criteria = criteria super().__init__(target_score) def validate(self, related_words_pairs: List[RelatedWordsPair]) -> List[SimilarityTuple]: """ Validates a list of related word pairs by comparing the outputs of the GPT model. Args: related_words_pairs: A list of pairs of related words to validate. Returns: A list of tuples containing the original word pair, a boolean indicating whether they are similar according to the GPT model, and the similarity score. """ similarity_tuples = [] for related_words_pair in related_words_pairs: response = self.get_chat_completion(related_words_pair) similarity_score = self.extract_score(response) similarity = similarity_score > self.target_score similarity_tuple = SimilarityTuple(related_words_pair, similarity, similarity_score) similarity_tuples.append(similarity_tuple) return similarity_tuples def get_chat_completion( self, related_words_pair: RelatedWordsPair, correlation_prompt: str = None, answer_prompt: str = None, ) -> List[SimilarityTuple]: """ Uses the GPT model to generate a completion based on a given prompt. Args: related_words_pair: The pair of related words to generate a completion for. correlation_prompt: An optional specific prompt for the correlation task. answer_prompt: An optional specific prompt for the answer format. If not provided, a default is used. Returns: The content of the message from the GPT model's response. """ if correlation_prompt is None: correlation_prompt = CORRELATION_PROMPT_TEMPLATE.format( word=related_words_pair.word, related_words=related_words_pair.related_words ) if answer_prompt is None: answer_prompt = ANSWER_PROMPT_TEMPLATE prompt = correlation_prompt + answer_prompt messages = [{"role": "user", "content": prompt}] logger.debug( f"Getting chat_completion using {self._model}.\nPrompting messages: {messages}" ) response = openai.ChatCompletion.create( model=self._model, messages=messages, temperature=0.0 ) logger.debug(f"response_message: {response}") response_message = response["choices"][0]["message"]["content"] logger.info(f"response_message: {response_message}") return response_message @staticmethod def extract_score(response_content: str) -> float: """ Extracts the similarity score from the content of a GPT model's response. Args: response_content: The content of a GPT model's response. Returns: The similarity score as a float. If no score could be extracted, returns 0.0. """ try: match = re.search(r"Final Answer: \[(.+?)]", response_content).group(1) score = float(match) logger.debug(f"response_content: {response_content}, score: {score}") except AttributeError: score = 0.0 logger.warning( "Answer not found in response, score set to 0, will autofail validation scoring." ) return score def set_model(self, model: str) -> None: """ Changes the GPT model used for validation. Args: model: The identifier of the GPT model to use for the validation. """ # Add logic to reject incorrect models self._model = model if __name__ == "__main__": # Demonstration of Both Validators related_words_pairs = [ RelatedWordsPair("stage", "point, level, present"), RelatedWordsPair("board", "point, level, present"), ] validator = EmbeddingsValidator(0.75) similarity_tuples: SimilarityTuple = validator.validate(related_words_pairs) print(similarity_tuples) gpt_validator = GPTValidator(0.75, model="gpt-4") similarity_tuples: SimilarityTuple = gpt_validator.validate(related_words_pairs) print(similarity_tuples)
[ "warning", "\nYour final output should be in the following format(NOTE: Include the square brackets):\n\nReasoning: <your reasoning>\nFinal Answer: [<float, rounded to the 100th place>]", "PLACEHOLDERPLACEHOLDER", "watch out for warnings", "Task: Estimate the degree of correlation between\n two provided strings. In your evaluation, consider not just direct links, but also indirect and subtle correlations.\n As an illustration, if 'watch' appears in the first string and 'tower' in the second,\n you could consider the combined term 'watchtower'. Similarly, for 'watch' and 'warning',\n think in terms of phrases like 'watch out for warnings'.\n You should score the correlation using the following scale from 0.00 to 1.00, where:\n 0.00 signifies no correlation whatsoever.\n 0.50 indicates a moderate level of correlation. This means there are several significant\n connections between the terms in the two strings, but these are not overwhelming.\n 1.00 is reserved for ONLY two strings that are completely identical.\n\nStrings to Correlate:\nstring_one: {word}\nstring_two: {related_words}", "watchtower" ]
2024-01-10
schroederdewitt/evals
evals~cli~oaieval.py
""" This file defines the `oaieval` CLI for running evals. """ import argparse import logging import shlex import sys from typing import Any, Mapping, Optional, Union, cast import openai import evals import evals.api import evals.base import evals.record from evals.eval import Eval from evals.record import RecorderBase from evals.registry import Registry logger = logging.getLogger(__name__) def _purple(str: str) -> str: return f"\033[1;35m{str}\033[0m" def get_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser(description="Run evals through the API") parser.add_argument( "completion_fn", type=str, help="One or more CompletionFn URLs, separated by commas (,). A CompletionFn can either be the name of a model available in the OpenAI API or a key in the registry (see evals/registry/completion_fns).", ) parser.add_argument("eval", type=str, help="Name of an eval. See registry.") parser.add_argument("--extra_eval_params", type=str, default="") parser.add_argument( "--completion_args", type=str, default="", help="Specify additional parameters to modify the behavior of the completion_fn during its creation. Parameters should be passed as a comma-separated list of key-value pairs (e.g., 'key1=value1,key2=value2'). This option allows for the dynamic modification of completion_fn settings, including the ability to override default arguments where necessary.", ) parser.add_argument("--max_samples", type=int, default=None) parser.add_argument("--cache", action=argparse.BooleanOptionalAction, default=True) parser.add_argument("--visible", action=argparse.BooleanOptionalAction, default=None) parser.add_argument("--seed", type=int, default=20220722) parser.add_argument("--user", type=str, default="") parser.add_argument("--record_path", type=str, default=None) parser.add_argument( "--log_to_file", type=str, default=None, help="Log to a file instead of stdout" ) parser.add_argument( "--registry_path", type=str, default=None, action="append", help="Path to the registry", ) parser.add_argument("--debug", action=argparse.BooleanOptionalAction, default=False) parser.add_argument( "--local-run", action=argparse.BooleanOptionalAction, default=True, help="Enable local mode for running evaluations. In this mode, the evaluation results are stored locally in a JSON file. This mode is enabled by default.", ) parser.add_argument( "--http-run", action=argparse.BooleanOptionalAction, default=False, help="Enable HTTP mode for running evaluations. In this mode, the evaluation results are sent to a specified URL rather than being stored locally or in Snowflake. This mode should be used in conjunction with the '--http-run-url' and '--http-batch-size' arguments.", ) parser.add_argument( "--http-run-url", type=str, default=None, help="URL to send the evaluation results when in HTTP mode. This option should be used in conjunction with the '--http-run' flag.", ) parser.add_argument( "--http-batch-size", type=int, default=100, help="Number of events to send in each HTTP request when in HTTP mode. Default is 1, i.e., send events individually. Set to a larger number to send events in batches. This option should be used in conjunction with the '--http-run' flag.", ) parser.add_argument( "--http-fail-percent-threshold", type=int, default=5, help="The acceptable percentage threshold of HTTP requests that can fail. Default is 5, meaning 5% of total HTTP requests can fail without causing any issues. If the failure rate goes beyond this threshold, suitable action should be taken or the process will be deemed as failing, but still stored locally.", ) parser.add_argument("--dry-run", action=argparse.BooleanOptionalAction, default=False) parser.add_argument("--dry-run-logging", action=argparse.BooleanOptionalAction, default=True) return parser class OaiEvalArguments(argparse.Namespace): completion_fn: str eval: str extra_eval_params: str max_samples: Optional[int] cache: bool visible: Optional[bool] seed: int user: str record_path: Optional[str] log_to_file: Optional[str] registry_path: list[str] debug: bool local_run: bool http_run: bool http_run_url: Optional[str] http_batch_size: int http_fail_percent_threshold: int dry_run: bool dry_run_logging: bool def run(args: OaiEvalArguments, registry: Optional[Registry] = None) -> str: if args.debug: logging.getLogger().setLevel(logging.DEBUG) visible = args.visible if args.visible is not None else (args.max_samples is None) if args.max_samples is not None: evals.eval.set_max_samples(args.max_samples) registry = registry or Registry() if args.registry_path: registry.add_registry_paths(args.registry_path) eval_spec = registry.get_eval(args.eval) assert ( eval_spec is not None ), f"Eval {args.eval} not found. Available: {list(sorted(registry._evals.keys()))}" # If the user provided an argument to --completion_args, parse it into a dict here, to be passed to the completion_fn creation **kwargs completion_args = args.completion_args.split(",") additonal_completion_args = {k: v for k, v in (kv.split("=") for kv in completion_args if kv)} completion_fns = args.completion_fn.split(",") completion_fn_instances = [ registry.make_completion_fn(url, **additonal_completion_args) for url in completion_fns ] run_config = { "completion_fns": completion_fns, "eval_spec": eval_spec, "seed": args.seed, "max_samples": args.max_samples, "command": " ".join(map(shlex.quote, sys.argv)), "initial_settings": { "visible": visible, }, } eval_name = eval_spec.key if eval_name is None: raise Exception("you must provide a eval name") run_spec = evals.base.RunSpec( completion_fns=completion_fns, eval_name=eval_name, base_eval=eval_name.split(".")[0], split=eval_name.split(".")[1], run_config=run_config, created_by=args.user, ) record_path = ( f"/tmp/evallogs/{run_spec.run_id}_{args.completion_fn}_{args.eval}.jsonl" if args.record_path is None else args.record_path ) if args.http_run: args.local_run = False elif args.local_run: args.http_run = False recorder = build_recorder(args, run_spec, record_path) api_extra_options: dict[str, Any] = {} if not args.cache: api_extra_options["cache_level"] = 0 run_url = f"{run_spec.run_id}" logger.info(_purple(f"Run started: {run_url}")) def parse_extra_eval_params( param_str: Optional[str], ) -> Mapping[str, Union[str, int, float]]: """Parse a string of the form "key1=value1,key2=value2" into a dict.""" if not param_str: return {} def to_number(x: str) -> Union[int, float, str]: try: return int(x) except (ValueError, TypeError): pass try: return float(x) except (ValueError, TypeError): pass return x str_dict = dict(kv.split("=") for kv in param_str.split(",")) return {k: to_number(v) for k, v in str_dict.items()} extra_eval_params = parse_extra_eval_params(args.extra_eval_params) eval_class = registry.get_class(eval_spec) eval: Eval = eval_class( completion_fns=completion_fn_instances, seed=args.seed, name=eval_name, eval_registry_path=eval_spec.registry_path, registry=registry, **extra_eval_params, ) result = eval.run(recorder) recorder.record_final_report(result) if not (args.dry_run or args.local_run): logger.info(_purple(f"Run completed: {run_url}")) logger.info("Final report:") for key, value in result.items(): logger.info(f"{key}: {value}") return run_spec.run_id def build_recorder( args: OaiEvalArguments, run_spec: evals.base.RunSpec, record_path: str ) -> RecorderBase: if args.dry_run: return evals.record.DummyRecorder(run_spec=run_spec, log=args.dry_run_logging) if args.local_run: return evals.record.LocalRecorder(record_path, run_spec=run_spec) if args.http_run: if args.http_run_url is None: raise ValueError("URL must be specified when using http-run mode") return evals.record.HttpRecorder( url=args.http_run_url, run_spec=run_spec, batch_size=args.http_batch_size, fail_percent_threshold=args.http_fail_percent_threshold, local_fallback_path=record_path, ) return evals.record.Recorder( record_path, run_spec=run_spec, ) def main() -> None: parser = get_parser() args = cast(OaiEvalArguments, parser.parse_args(sys.argv[1:])) logging.basicConfig( format="[%(asctime)s] [%(filename)s:%(lineno)d] %(message)s", level=logging.INFO, filename=args.log_to_file if args.log_to_file else None, ) logging.getLogger("openai").setLevel(logging.WARN) if hasattr(openai.error, "set_display_cause"): # type: ignore openai.error.set_display_cause() # type: ignore run(args) if __name__ == "__main__": main()
[]
2024-01-10
schroederdewitt/evals
evals~registry.py
""" Functions to handle registration of evals. To add a new eval to the registry, add an entry in one of the YAML files in the `../registry` dir. By convention, every eval name should start with {base_eval}.{split}. """ import copy import difflib import functools import logging import os import re from functools import cached_property from pathlib import Path from typing import Any, Generator, Iterator, Optional, Sequence, Tuple, Type, TypeVar, Union import openai import yaml from evals import OpenAIChatCompletionFn, OpenAICompletionFn from evals.api import CompletionFn, DummyCompletionFn from evals.base import BaseEvalSpec, CompletionFnSpec, EvalSetSpec, EvalSpec from evals.elsuite.modelgraded.base import ModelGradedSpec from evals.utils.misc import make_object logger = logging.getLogger(__name__) DEFAULT_PATHS = [ Path(__file__).parents[0].resolve() / "registry", Path.home() / ".evals", ] SPEC_RESERVED_KEYWORDS = ["key", "group", "cls"] def n_ctx_from_model_name(model_name: str) -> Optional[int]: """Returns n_ctx for a given API model name. Model list last updated 2023-06-16.""" # note that for most models, the max tokens is n_ctx + 1 PREFIX_AND_N_CTX: list[tuple[str, int]] = [ ("gpt-3.5-turbo-", 4096), ("gpt-4-32k-", 32768), ("gpt-4-", 8192), ] MODEL_NAME_TO_N_CTX: dict[str, int] = { "ada": 2048, "text-ada-001": 2048, "babbage": 2048, "text-babbage-001": 2048, "curie": 2048, "text-curie-001": 2048, "davinci": 2048, "text-davinci-001": 2048, "code-davinci-002": 8000, "text-davinci-002": 4096, "text-davinci-003": 4096, "gpt-3.5-turbo": 4096, "gpt-4": 8192, "gpt-4-32k": 32768, "gpt-4-base": 8192, } # first, look for an exact match if model_name in MODEL_NAME_TO_N_CTX: return MODEL_NAME_TO_N_CTX[model_name] # otherwise, look for a prefix match for model_prefix, n_ctx in PREFIX_AND_N_CTX: if model_name.startswith(model_prefix): return n_ctx # not found return None def is_chat_model(model_name: str) -> bool: if model_name in {"gpt-4-base"}: return False CHAT_MODEL_NAMES = {"gpt-3.5-turbo", "gpt-4", "gpt-4-32k"} if model_name in CHAT_MODEL_NAMES: return True for model_prefix in {"gpt-3.5-turbo-", "gpt-4-", "gpt-4-32k-"}: if model_name.startswith(model_prefix): return True return False T = TypeVar("T") RawRegistry = dict[str, Any] class Registry: def __init__(self, registry_paths: Sequence[Union[str, Path]] = DEFAULT_PATHS): self._registry_paths = [Path(p) if isinstance(p, str) else p for p in registry_paths] def add_registry_paths(self, paths: Sequence[Union[str, Path]]) -> None: self._registry_paths.extend([Path(p) if isinstance(p, str) else p for p in paths]) @cached_property def api_model_ids(self) -> list[str]: try: return [m["id"] for m in openai.Model.list()["data"]] except openai.error.OpenAIError as err: # type: ignore # Errors can happen when running eval with completion function that uses custom # API endpoints and authentication mechanisms. logger.warning(f"Could not fetch API model IDs from OpenAI API: {err}") return [] def make_completion_fn( self, name: str, **kwargs: Any, ) -> CompletionFn: """ Create a CompletionFn. The name can be one of the following formats: 1. openai-model-id (e.g. "gpt-3.5-turbo") 2. completion-fn-id (from the registry) """ if name == "dummy": return DummyCompletionFn() n_ctx = n_ctx_from_model_name(name) if is_chat_model(name): return OpenAIChatCompletionFn(model=name, n_ctx=n_ctx, **kwargs) elif name in self.api_model_ids: return OpenAICompletionFn(model=name, n_ctx=n_ctx, **kwargs) # No match, so try to find a completion-fn-id in the registry spec = self.get_completion_fn(name) if spec is None: raise ValueError(f"Could not find CompletionFn in the registry with ID {name}") if spec.args is None: spec.args = {} spec.args.update(kwargs) spec.args["registry"] = self instance = make_object(spec.cls)(**spec.args or {}) assert isinstance(instance, CompletionFn), f"{name} must be a CompletionFn" return instance def get_class(self, spec: EvalSpec) -> Any: return make_object(spec.cls, **(spec.args if spec.args else {})) def _dereference( self, name: str, d: RawRegistry, object: str, type: Type[T], **kwargs: dict ) -> Optional[T]: if name not in d: logger.warning( ( f"{object} '{name}' not found. " f"Closest matches: {difflib.get_close_matches(name, d.keys(), n=5)}" ) ) return None def get_alias() -> Optional[str]: if isinstance(d[name], str): return d[name] if isinstance(d[name], dict) and "id" in d[name]: return d[name]["id"] return None logger.debug(f"Looking for {name}") while True: alias = get_alias() if alias is None: break name = alias spec = d[name] if kwargs: spec = copy.deepcopy(spec) spec.update(kwargs) try: return type(**spec) except TypeError as e: raise TypeError(f"Error while processing {object} '{name}': {e}") def get_modelgraded_spec(self, name: str, **kwargs: dict) -> Optional[ModelGradedSpec]: assert name in self._modelgraded_specs, ( f"Modelgraded spec {name} not found. " f"Closest matches: {difflib.get_close_matches(name, self._modelgraded_specs.keys(), n=5)}" ) return self._dereference( name, self._modelgraded_specs, "modelgraded spec", ModelGradedSpec, **kwargs ) def get_completion_fn(self, name: str) -> Optional[CompletionFnSpec]: return self._dereference(name, self._completion_fns, "completion_fn", CompletionFnSpec) def get_eval(self, name: str) -> Optional[EvalSpec]: return self._dereference(name, self._evals, "eval", EvalSpec) def get_eval_set(self, name: str) -> Optional[EvalSetSpec]: return self._dereference(name, self._eval_sets, "eval set", EvalSetSpec) def get_evals(self, patterns: Sequence[str]) -> Iterator[Optional[EvalSpec]]: # valid patterns: hello, hello.dev*, hello.dev.*-v1 def get_regexp(pattern: str) -> re.Pattern[str]: pattern = pattern.replace(".", "\\.") pattern = pattern.replace("*", ".*") return re.compile(f"^{pattern}$") regexps = list(map(get_regexp, patterns)) for name in self._evals: # if any regexps match, return the name if any(map(lambda regexp: regexp.match(name), regexps)): yield self.get_eval(name) def get_base_evals(self) -> list[Optional[BaseEvalSpec]]: base_evals: list[Optional[BaseEvalSpec]] = [] for name, spec in self._evals.items(): if name.count(".") == 0: base_evals.append(self.get_base_eval(name)) return base_evals def get_base_eval(self, name: str) -> Optional[BaseEvalSpec]: if name not in self._evals: return None spec_or_alias = self._evals[name] if isinstance(spec_or_alias, dict): spec = spec_or_alias try: return BaseEvalSpec(**spec) except TypeError as e: raise TypeError(f"Error while processing base eval {name}: {e}") alias = spec_or_alias return BaseEvalSpec(id=alias) def _load_file(self, path: Path) -> Generator[Tuple[str, Path, dict], None, None]: with open(path, "r", encoding="utf-8") as f: d = yaml.safe_load(f) if d is None or not isinstance(d, dict): # no entries in the file return for name, spec in d.items(): yield name, path, spec def _load_directory(self, path: Path) -> Generator[Tuple[str, Path, dict], None, None]: files = Path(path).glob("*.yaml") for file in files: yield from self._load_file(file) def _load_resources( self, registry_path: Path, resource_type: str ) -> Generator[Tuple[str, Path, dict], None, None]: path = registry_path / resource_type logging.info(f"Loading registry from {path}") if os.path.exists(path): if os.path.isdir(path): yield from self._load_directory(path) else: yield from self._load_file(path) @staticmethod def _validate_reserved_keywords(spec: dict, name: str, path: Path) -> None: for reserved_keyword in SPEC_RESERVED_KEYWORDS: if reserved_keyword in spec: raise ValueError( f"{reserved_keyword} is a reserved keyword, but was used in {name} from {path}" ) def _load_registry(self, registry_paths: Sequence[Path], resource_type: str) -> RawRegistry: """Load registry from a list of regstry paths and a specific resource type Each path includes yaml files which are a dictionary of name -> spec. """ registry: RawRegistry = {} for registry_path in registry_paths: for name, path, spec in self._load_resources(registry_path, resource_type): assert name not in registry, f"duplicate entry: {name} from {path}" self._validate_reserved_keywords(spec, name, path) spec["key"] = name spec["group"] = str(os.path.basename(path).split(".")[0]) spec["registry_path"] = registry_path if "class" in spec: spec["cls"] = spec["class"] del spec["class"] registry[name] = spec return registry @functools.cached_property def _completion_fns(self) -> RawRegistry: return self._load_registry(self._registry_paths, "completion_fns") @functools.cached_property def _eval_sets(self) -> RawRegistry: return self._load_registry(self._registry_paths, "eval_sets") @functools.cached_property def _evals(self) -> RawRegistry: return self._load_registry(self._registry_paths, "evals") @functools.cached_property def _modelgraded_specs(self) -> RawRegistry: return self._load_registry(self._registry_paths, "modelgraded") registry = Registry()
[]
2024-01-10
schroederdewitt/evals
evals~utils~api_utils.py
""" This file defines various helper functions for interacting with the OpenAI API. """ import concurrent import logging import os import backoff import openai EVALS_THREAD_TIMEOUT = float(os.environ.get("EVALS_THREAD_TIMEOUT", "40")) @backoff.on_exception( wait_gen=backoff.expo, exception=( openai.error.ServiceUnavailableError, openai.error.APIError, openai.error.RateLimitError, openai.error.APIConnectionError, openai.error.Timeout, ), max_value=60, factor=1.5, ) def openai_completion_create_retrying(*args, **kwargs): """ Helper function for creating a completion. `args` and `kwargs` match what is accepted by `openai.Completion.create`. """ result = openai.Completion.create(*args, **kwargs) if "error" in result: logging.warning(result) raise openai.error.APIError(result["error"]) return result def request_with_timeout(func, *args, timeout=EVALS_THREAD_TIMEOUT, **kwargs): """ Worker thread for making a single request within allotted time. """ while True: with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor: future = executor.submit(func, *args, **kwargs) try: result = future.result(timeout=timeout) return result except concurrent.futures.TimeoutError: continue @backoff.on_exception( wait_gen=backoff.expo, exception=( openai.error.ServiceUnavailableError, openai.error.APIError, openai.error.RateLimitError, openai.error.APIConnectionError, openai.error.Timeout, ), max_value=60, factor=1.5, ) def openai_chat_completion_create_retrying(*args, **kwargs): """ Helper function for creating a chat completion. `args` and `kwargs` match what is accepted by `openai.ChatCompletion.create`. """ result = request_with_timeout(openai.ChatCompletion.create, *args, **kwargs) if "error" in result: logging.warning(result) raise openai.error.APIError(result["error"]) return result
[]
2024-01-10
shubham0831/Tooling
workflow-automator~main.py
meeting_notes = '''hello''' from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT from slack_sdk import WebClient import re import json from jira import JIRA anthropic = Anthropic( # defaults to os.environ.get("ANTHROPIC_API_KEY") api_key="", ) # Replace these values with your own Jira instance URL and credentials JIRA_SERVER = '' JIRA_USERNAME = '' JIRA_API_TOKEN = '' # Slack API configuration SLACK_TOKEN = '' SLACK_CHANNEL = '#slack-bot-test-channel' def generate_prompt(prompt_dict) -> str: generated_prompt = "Here is a conversation between a human and you, go through it and analyze it, and then based on the context, response to the human question" index = 0 while index in prompt_dict.keys(): convo = prompt_dict[index] question = convo['prompt'] question = "human : " + question generated_prompt = generated_prompt + "\n" + question response = convo['reply'] if response != "": response = "ai : " + response generated_prompt = generated_prompt + "\n" + question index+=1 return generated_prompt, index-1 ai_behavior_prompt = ''' I will be sending you a transcript from a meeting. Based on this transcript I want you to do the following: List all the tickets mentioned in this meeting, and for each ticket, give me the following output: jira_ticket_number : ticket_number, ticket_description : what is the original ticket about user : the name of the user this ticket belongs to, action_item : action item (eg. increase in story points, delayed release, new subtasks, etc) previous_release_version: release version of the task (4.34 by default) suggested_release_version: release version you suggest previous_story_points: story point of the ticket (default value is 5) suggested_story_points: story points you suggest reasoning: reasoning for the change For story points, if a task is taking longer than expected suggest an increase in the story points. Assume each task has a story point of 5, then based on how difficult it is proving update the story point by 1,3,5, or 7 Assume each task is due for 4.34 release. If it seems like it will get delayed, push the release back to 4.35. Each ticket can only belong to one user, and not multiple user, identify that user. It is usually the person who first gives updates on the task. If a ticket has no action item, just put action item as "nothing to do" If you suggest change for any story, provide your reasoning as well, in the reasoning section. Elaborate on this reasoning and don't be vague. If a person has mentioned a reason about something being complex, figure out what in particular is complex and put that in reasoning. Once you have done this for each ticket, give me a high level summary of this meeting. Just reply ok to this message, I will send the transcript in the next message. ''' # Create a Jira client instance jira = JIRA(server=JIRA_SERVER, basic_auth=(JIRA_USERNAME, JIRA_API_TOKEN)) def update_story_point(ticket_number, new_story_points): int_story_points = int(new_story_points) print(f"Updating story points for {ticket_number} to {new_story_points}") issue = jira.issue(ticket_number) # for field_name in issue.raw['fields']: # field_value = issue.raw['fields'][field_name] # print(f'{field_name}: {field_value}') issue.update(fields={"customfield_10016": int_story_points}) meeting_transcript_file= open("/Users/shubham/Code/personal/DigitalGarageHackathon/sample_meeting_transcript.txt", "r") meeting_transcript = meeting_transcript_file.read() meeting_transcript_file.close() previousPrompts = { 0 : { "prompt" : ai_behavior_prompt, "reply" : "ok" }, 1 : { "prompt" : f"Here's the transcript from the meeting. Please do the tasks I mention : \n {meeting_transcript}", "reply" : "" }, } prompt, last_index = generate_prompt(previousPrompts) completion = anthropic.completions.create( model="claude-2", max_tokens_to_sample=1000000, prompt=f"{HUMAN_PROMPT} {prompt} {AI_PROMPT}", ) previousPrompts[last_index]['reply'] = completion.completion print(completion.completion) client = WebClient(token=SLACK_TOKEN) result = client.users_list() members = result.data['members'] split_notes = meeting_notes.split("\n\n") ticket_dicts = [] keys_to_extract = [ 'user', 'jira_ticket_number', 'ticket_description', 'action_item', 'previous_release_version', 'suggested_release_version', 'previous_story_points', 'suggested_story_points', 'reasoning' ] for section in split_notes: ticket_dict = {} for key in keys_to_extract: match = re.search(fr'{key}: (.+)', section) if match: ticket_dict[key] = match.group(1) ticket_dicts.append(ticket_dict) for ticket in ticket_dicts: if 'suggested_story_points' in ticket and ticket['action_item'] != 'Nothing to do': username = ticket['user'] str_representation = json.dumps(ticket) # if ticket['jira_ticket_number'] == "CLOUD-46": # print(ticket) for m in members: if m['name'] == username or m['name'] == "dmitriybaikov": user_id = m['id'] # sent message to user, check for response in the future, for now just update the ticket client.chat_postMessage(channel=user_id, text=str_representation) # print(m) if ticket['jira_ticket_number'] == "CLOUD-46" or ticket['jira_ticket_number'] == "CLOUD-47": update_story_point(ticket['jira_ticket_number'], ticket['suggested_story_points'])
[ "\n I will be sending you a transcript from a meeting. Based on this transcript I want you to do the following:\n\n List all the tickets mentioned in this meeting, and for each ticket, give me the following output:\n\n jira_ticket_number : ticket_number,\n ticket_description : what is the original ticket about\n user : the name of the user this ticket belongs to,\n action_item : action item (eg. increase in story points, delayed release, new subtasks, etc)\n previous_release_version: release version of the task (4.34 by default)\n suggested_release_version: release version you suggest\n previous_story_points: story point of the ticket (default value is 5)\n suggested_story_points: story points you suggest\n reasoning: reasoning for the change\n \n\n For story points, if a task is taking longer than expected suggest an increase in the story points. Assume each task has a story point of 5, then based on how difficult it is proving\n update the story point by 1,3,5, or 7\n\n Assume each task is due for 4.34 release. If it seems like it will get delayed, push the release back to 4.35.\n\n Each ticket can only belong to one user, and not multiple user, identify that user. It is usually the person who first gives updates on the task.\n\n If a ticket has no action item, just put action item as \"nothing to do\"\n\n If you suggest change for any story, provide your reasoning as well, in the reasoning section. Elaborate on this reasoning and don't be vague. If a person has mentioned a reason\n about something being complex, figure out what in particular is complex and put that in reasoning.\n\n Once you have done this for each ticket, give me a high level summary of this meeting.\n\n Just reply ok to this message, I will send the transcript in the next message.\n ", "PLACEHOLDER\nPLACEHOLDER", "{0: {'prompt': PLACEHOLDER, 'reply': 'ok'}, 1: {'prompt': \"Here's the transcript from the meeting. Please do the tasks I mention : \\n PLACEHOLDER\", 'reply': ''}}", "Here is a conversation between a human and you, go through it and analyze it, and then based on the context, response to the human question", "PLACEHOLDER PLACEHOLDER PLACEHOLDER" ]
2024-01-10
kolubex/Megathon
gradio_app.py
import gradio as gr from gradio.components import Textbox # IMPORTS import os os.environ["CUDA_VISIBLE_DEVICES"] = "" import json import pandas as pd from operator import itemgetter from transformers import AutoTokenizer, AutoModelForCausalLM from langchain.prompts import ChatPromptTemplate from langchain.chat_models import ChatOpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.schema.output_parser import StrOutputParser from langchain.schema.runnable import RunnablePassthrough, RunnableLambda from langchain.vectorstores import FAISS from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders.csv_loader import CSVLoader # Embed and store splits from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings from langchain import hub from langchain.llms import HuggingFacePipeline from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from transformers import OpenAIGPTTokenizer, OpenAIGPTModel import torch from langchain.llms import HuggingFaceHub from langchain.llms import HuggingFacePipeline import torch from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoModelForSeq2SeqLM import time # RAG chain from langchain.schema.runnable import RunnablePassthrough # torch.cuda.set_device('cpu') # dont use cuda device = torch.device('cpu') def load_model(): embeddings_model_name = "alibidaran/medical_transcription_generator" embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name) vectorstore = Chroma(persist_directory="./vectorstore_train/", embedding_function=embeddings) retriever = vectorstore.as_retriever() rag_prompt = hub.pull("rlm/rag-prompt") model_id = 'google/flan-t5-small' tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSeq2SeqLM.from_pretrained(model_id, load_in_8bit=False, device_map='cpu') hf_pipeline = pipeline( "text2text-generation", model=model, tokenizer=tokenizer, max_length=128 ) hf = HuggingFacePipeline(pipeline=hf_pipeline) from langchain.schema.runnable import RunnablePassthrough rag_chain = ( {"context": retriever, "question": RunnablePassthrough()} | rag_prompt | hf ) return rag_chain def model_function(prompt, rag_chain): start = time.time() print("prompt: ", prompt) response = rag_chain.invoke(prompt) response += "\n" + "Time taken: " + str(time.time() - start) + " seconds" return (response) if __name__ == "__main__": rag_chain = load_model() print("model loaded") # Define the interface interface = gr.Interface( fn=lambda prompt: model_function(prompt, rag_chain), # function to call inputs=Textbox(lines=2, placeholder="Enter your text here..."), # text input outputs="text", # text output live=False # model is called only when the submit button is pressed ) # Launch the interface interface.launch(share=True)
[ "rlm/rag-prompt" ]
2024-01-10
aldrinjenson/smart-qa
src~llm_models.py
import requests import json from src.constants import OPENAI_API_KEY from openai import OpenAI client = OpenAI() client.api_key = OPENAI_API_KEY def execute_with_ollama(query): payload = { "model": "mistral", "format": "json", "stream": False, "messages": [{"role": "user", "content": query}], } payload_json = json.dumps(payload) url = "http://localhost:11434/api/chat" try: response = requests.post(url, data=payload_json) if response.status_code == 200: response_data = response.json() response_data = json.loads(response_data["message"]["content"]) print(response_data) return response_data else: print(f"LLM Request failed with status code {response.status_code}") return None except requests.RequestException as e: print(f"Request exception: {e}") return None def execute_with_openai(query): completion = client.chat.completions.create( model="gpt-3.5-turbo-1106", messages=[ {"role": "system", "content": query}, ], temperature=0.7, max_tokens=64, top_p=1, response_format={"type": "json_object"}, ) response = completion.choices[0].message.content print(response) response = json.loads(response) return response
[]
2024-01-10
jocwulf/math_adventure
math_story_de.py
import os import numpy as np import streamlit as st import openai from dotenv import load_dotenv from streamlit_chat import message from PIL import Image # Konstanten SENTENCES_PER_EPISODE = 5 # Anzahl der Sätze pro Episode RIDDLE_MIN = 2 # Mindestzahl für Rätsel MODEL = "gpt-3.5-turbo-0613" # Verwenden Sie ein besser performantes GPT-Modell, wenn möglich # Laden des OpenAI-Schlüssels aus der .env-Datei load_dotenv(".env") openai.api_key = os.getenv("OPENAI_KEY") # Bild laden image = Image.open('children.png') def reset_state(): """Setzt den Sitzungsstatus zurück.""" keys = list(st.session_state.keys()) for key in keys: del st.session_state[key] def generate_riddle(calculation_type, riddle_max): """Generiert ein Rätsel und gibt die Frage und Antwort zurück.""" num1 = np.random.randint(RIDDLE_MIN, riddle_max) num2 = np.random.randint(RIDDLE_MIN, riddle_max) if calculation_type == "Addition": question = "{} + {}".format(num1, num2) answer = num1 + num2 elif calculation_type == "Subtraction": question = "{} - {}".format(max(num1, num2), min(num1, num2)) answer = max(num1, num2) - min(num1, num2) elif calculation_type == "Multiplication": question = "{} * {}".format(num1, num2) answer = num1 * num2 elif calculation_type == "Division": product = num1 * num2 question = "{} / {}".format(product, num1) answer = num2 return question, answer def generate_story(messages): """Generiert eine Story-Episode mit der OpenAI-API und gibt die Story zurück.""" story = openai.ChatCompletion.create( model=MODEL, messages=messages, temperature=0.5, ) return story['choices'][0]['message']['content'] def generate_challenge(): """Generiert eine Reihe von Rätseln und Geschichten für das Kind zum Lösen.""" st.session_state['right_answer'] = [] # Liste der richtigen Antworten st.session_state['question'] = [] # Liste der Fragen st.session_state['story'] = [] # Liste der Episoden st.session_state['num_riddles'] = st.session_state['riddle_count'] # Anzahl der Rätsel, die im Sitzungsstatus bestehen bleiben messages = [] # Liste der Nachrichten für OpenAI-Anfragen # Systemnachricht für OpenAI-Anfragen sys_message = """Erzähle einem siebenjährigen Kind eine Fortsetzungsgeschichte über {2}. Jede Episode besteht genau aus {0} Sätzen. Die Geschichte handelt vom Tag von {1}. Eine Episode der Geschichte besteht genau aus {0} Sätzen und nicht mehr. Beginne direkt mit der Erzählung. Beende jede Episode mit einem Matheproblem, das immer zuvor von [role: user] gestellt wird. Integriere das Matheproblem in die Erzählung der Episode. Stelle sicher, dass das Matheproblem korrekt formuliert ist. Gib die Lösung nicht. Durch das Lösen dieses Problems kann das Kind {1} helfen. Führe in der neuen Episode bereits erzählte Episoden fort und stelle ein neues Matheproblem. BITTE BEACHTEN: Gib die Lösung zum Matheproblem nicht. Verwende nur {0} Sätze. Beende das Ende mit dem Matheproblem.""".format(SENTENCES_PER_EPISODE, st.session_state['person'], st.session_state['topic']) messages.append({"role": "system", "content": sys_message}) # Fortschrittsbalken erstellen progress_bar = st.progress(0) status_message = st.empty() status_message.text("Ich generiere deine Geschichte...") for i in range(st.session_state['riddle_count']): # Rätsel und Geschichten generieren # Fortschrittsbalken aktualisieren progress_bar.progress((i + 1) / st.session_state['riddle_count']) # Rätsel generieren calculation_type = np.random.choice(st.session_state['calculation_type']) question, answer = generate_riddle(calculation_type, st.session_state['riddle_max']) messages.append({"role": "user", "content": question}) # Geschichte generieren story = generate_story(messages) messages.append({"role": "assistant", "content": story}) # Rätsel und Geschichte im Sitzungsstatus speichern st.session_state.right_answer.append(answer) st.session_state.question.append(question) st.session_state.story.append(story) # Finale Episode erstellen messages.pop(0) # Erstes Element in der Nachrichtenliste entfernen (Systemnachricht) messages.append({"role": "user", "content": "Beende die Geschichte in fünf Sätzen. Füge kein Matheproblem hinzu."}) story = generate_story(messages) st.session_state.story.append(story) st.session_state['current_task'] = 0 # Verfolgt die aktuelle Episode status_message.empty() # Statusnachricht entfernen return st.session_state['story'][0] # Gibt die erste Episode zurück def on_input_change(): """Verarbeitet die Eingabe des Kindes und überprüft, ob sie korrekt ist.""" user_input = st.session_state["user_input"+str(st.session_state['current_task'])] # Benutzereingabe holen st.session_state['past'].append(user_input) # Benutzereingabe im Sitzungsstatus speichern if user_input == st.session_state.right_answer[st.session_state['current_task']]: # Benutzereingabe ist korrekt # Überprüfen, ob alle Aufgaben erledigt sind if st.session_state['current_task'] == st.session_state['num_riddles']-1: # Alle Aufgaben sind erledigt st.session_state['generated'].append(st.session_state['story'][st.session_state['current_task']+1]) # Finale Episode generieren st.session_state['finished'] = True # Fertig-Flag setzen else: # Nicht alle Aufgaben sind erledigt st.session_state['current_task']+=1 # Aufgabenzähler erhöhen st.session_state['generated'].append(st.session_state['story'][st.session_state['current_task']]) # Nächste Episode für die Ausgabe anhängen else: # Benutzereingabe ist falsch st.session_state.generated.append("Nicht ganz richtig. Versuche es noch einmal! " + st.session_state.question[st.session_state['current_task'] ]) # Falsche Nachricht zur Ausgabe hinzufügen if 'end_story' not in st.session_state: st.session_state['end_story'] = False if 'input_done' not in st.session_state: st.session_state['input_done'] = False st.title("༼ ͡ಠ ͜ʖ ͡ಠ ༽ Dein Mathe-Abenteuer") st.image(image, use_column_width=True, caption = "3 * 2 = 7 ???") if st.session_state['end_story']: # Geschichte beendet st.write("Die Geschichte ist zu Ende.") if st.button("Eine neue Geschichte starten"): reset_state() else: # Geschichte nicht beendet if st.session_state['input_done'] == False: with st.sidebar: st.selectbox("Wie viele Matheaufgaben möchtest du lösen?", [3, 5, 7, 10], key="riddle_count", index=0) st.multiselect("Wähle den Rechentyp", ["Addition", "Subtraktion", "Multiplikation", "Division"], key="calculation_type", default=["Addition", "Subtraktion", "Multiplikation", "Division"]) st.selectbox("Wähle den Zahlenbereich", ["1 Stelle (1-9)", "2 Stellen (1-99)"], key="number_range", index=0) st.text_input("Wer soll die Hauptfigur Deiner Geschichte sein?", key="person") st.text_input("Was willst Du mit Deiner Hauptfigur erleben?", key="topic") if st.button("Die Geschichte starten", key="start_btn"): st.session_state['input_done'] = True if st.session_state['number_range'] == "1 Stelle (1-9)": st.session_state['riddle_max'] = 9 else: st.session_state['riddle_max'] = 99 if st.session_state['input_done']: if 'past' not in st.session_state: st.session_state['past']=['Hier werden deine Antworten angezeigt.'] if 'generated' not in st.session_state: st.session_state['generated'] = [generate_challenge()] if 'finished' not in st.session_state: st.session_state['finished'] = False chat_placeholder = st.empty() with chat_placeholder.container(): # st.write(st.session_state.story) # zum Debuggen for i in range(len(st.session_state['generated'])): message(str(st.session_state['past'][i]), is_user=True, key=str(i) + '_user') message( st.session_state['generated'][i], key=str(i) ) if not st.session_state['finished']: with st.container(): st.number_input("Deine Lösung:", min_value=-1, max_value=100, value=-1, step=1, on_change=on_input_change, key="user_input"+str(st.session_state['current_task'])) if st.button("Die Geschichte beenden", key="end_btn"): st.session_state['end_story'] = True
[ "Beende die Geschichte in fünf Sätzen. Füge kein Matheproblem hinzu." ]
2024-01-10
jocwulf/math_adventure
math_story_en.py
import os import numpy as np import streamlit as st import openai from dotenv import load_dotenv from streamlit_chat import message from PIL import Image # Constants SENTENCES_PER_EPISODE = 5 # number of sentences per episode RIDDLE_MIN = 2 # minimum number for riddles MODEL = "gpt-3.5-turbo-0613" # use a better performing gpt model if possible # Load OpenAI key from .env file load_dotenv(".env") openai.api_key = os.getenv("OPENAI_KEY") # Load image image = Image.open('children.png') def reset_state(): """Resets the session state.""" keys = list(st.session_state.keys()) for key in keys: del st.session_state[key] def generate_riddle(calculation_type, riddle_max): """Generates a riddle and returns the question and answer.""" num1 = np.random.randint(RIDDLE_MIN, riddle_max) num2 = np.random.randint(RIDDLE_MIN, riddle_max) if calculation_type == "Addition": question = "{} + {}".format(num1, num2) answer = num1 + num2 elif calculation_type == "Subtraction": question = "{} - {}".format(max(num1, num2), min(num1, num2)) answer = max(num1, num2) - min(num1, num2) elif calculation_type == "Multiplication": question = "{} * {}".format(num1, num2) answer = num1 * num2 elif calculation_type == "Division": product = num1 * num2 question = "{} / {}".format(product, num1) answer = num2 return question, answer def generate_story(messages): """Generates a story episode using the OpenAI API and returns the story.""" story = openai.ChatCompletion.create( model=MODEL, messages=messages, temperature=0.5, ) return story['choices'][0]['message']['content'] def generate_challenge(): """Generates a set of riddles and stories for the child to solve.""" st.session_state['right_answer'] = [] # list of right answers st.session_state['question'] = [] # list of questions st.session_state['story'] = [] # list of episodes st.session_state['num_riddles'] = st.session_state['riddle_count'] # number of riddles persistent in session state messages = [] # list of messages for openai requests # system message for openai requests sys_message = """Tell a seven-year-old child a continuation story about {2}. Each episode consists of exactly {0} sentences. The story is about the day of {1}. An episode of the story consists of exactly {0} sentences and no more. Start directly with the narration. End each episode with a math problem, which is always posed by [role: user] beforehand. Integrate the math problem into the narration of the episode. Make sure the math problem is correctly formulated. Do not give the solution. By solving this problem, the child can help {1}. Continue in the new episode already told episodes and pose a new math problem. PLEASE NOTE: Do not give the solution to the math problem. Use only {0} sentences. End the end with the math problem.""".format(SENTENCES_PER_EPISODE, st.session_state['person'], st.session_state['topic']) messages.append({"role": "system", "content": sys_message}) # Create a progress bar progress_bar = st.progress(0) status_message = st.empty() status_message.text("I am generating your story...") for i in range(st.session_state['riddle_count']): # generate riddles and stories # Update the progress bar progress_bar.progress((i + 1) / st.session_state['riddle_count']) # generate riddle calculation_type = np.random.choice(st.session_state['calculation_type']) question, answer = generate_riddle(calculation_type, st.session_state['riddle_max']) messages.append({"role": "user", "content": question}) # generate story story = generate_story(messages) messages.append({"role": "assistant", "content": story}) # save riddle and story to session state st.session_state.right_answer.append(answer) st.session_state.question.append(question) st.session_state.story.append(story) # create final episode messages.pop(0) # remove first item in messages list (system message) messages.append({"role": "user", "content": "Finish the story in five sentences. Do not include a math problem."}) story = generate_story(messages) st.session_state.story.append(story) st.session_state['current_task'] = 0 # keeps track of the current episode status_message.empty() # remove the status message return st.session_state['story'][0] # return first episode def on_input_change(): """Handles child input and checks if it is correct.""" user_input = st.session_state["user_input"+str(st.session_state['current_task'])] # get user input st.session_state['past'].append(user_input) # save user input to session state if user_input == st.session_state.right_answer[st.session_state['current_task']]: # user input is correct #check if all tasks done if st.session_state['current_task'] == st.session_state['num_riddles']-1: # all tasks are done st.session_state['generated'].append(st.session_state['story'][st.session_state['current_task']+1]) # generate final episode st.session_state['finished'] = True # set finished flag else: # not all tasks are done st.session_state['current_task']+=1 # increase current task counter st.session_state['generated'].append(st.session_state['story'][st.session_state['current_task']]) # append next episode for output else: # user input is wrong st.session_state.generated.append("Not quite right. Try again! " + st.session_state.question[st.session_state['current_task'] ]) # append wrong message to output if 'end_story' not in st.session_state: st.session_state['end_story'] = False if 'input_done' not in st.session_state: st.session_state['input_done'] = False st.title("༼ ͡ಠ ͜ʖ ͡ಠ ༽ Your Math Adventure") st.image(image, use_column_width=True, caption = "3 * 2 = 7 ???") if st.session_state['end_story']: # story ended st.write("The story has ended.") if st.button("Start a new story"): reset_state() else: # story not ended if st.session_state['input_done'] == False: with st.sidebar: st.selectbox("How many math problems would you like to solve?", [3, 5, 7, 10], key="riddle_count", index=0) st.multiselect("Choose the calculation type", ["Addition", "Subtraction", "Multiplication", "Division"], key="calculation_type", default=["Addition", "Subtraction", "Multiplication", "Division"]) st.selectbox("Choose the number range", ["1 digit (1-9)", "2 digits (1-99)"], key="number_range", index=0) st.text_input("Provide a character for your story", key="person") st.text_input("Provide a topic for your story", key="topic") if st.button("Start the story", key="start_btn"): st.session_state['input_done'] = True if st.session_state['number_range'] == "1 digit (1-9)": st.session_state['riddle_max'] = 9 else: st.session_state['riddle_max'] = 99 if st.session_state['input_done']: if 'past' not in st.session_state: st.session_state['past']=['Here your answers are shown.'] if 'generated' not in st.session_state: st.session_state['generated'] = [generate_challenge()] if 'finished' not in st.session_state: st.session_state['finished'] = False chat_placeholder = st.empty() with chat_placeholder.container(): # st.write(st.session_state.story) # for debugging for i in range(len(st.session_state['generated'])): message(str(st.session_state['past'][i]), is_user=True, key=str(i) + '_user') message( st.session_state['generated'][i], key=str(i) ) if not st.session_state['finished']: with st.container(): st.number_input("Your solution:", min_value=-1, max_value=100, value=-1, step=1, on_change=on_input_change, key="user_input"+str(st.session_state['current_task'])) if st.button("End the story", key="end_btn"): st.session_state['end_story'] = True
[ "Finish the story in five sentences. Do not include a math problem." ]
2024-01-10
setohe0909/langchain-multiple-files
utils~methods.py
import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings # Vector database such as: faiss, pinecone from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from utils.htmlTemplates import bot_template, user_template from langchain.llms import huggingface_hub def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdfReader = PdfReader(pdf) for page in pdfReader.pages: text += page.extract_text() # Extract content from the page return text def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunk = text_splitter.split_text(text) return chunk def get_vectorstore(text_chunks): # embeddings = OpenAIEmbeddings() #--> open-ai embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") #--> https://huggingface.co/hkunlp/instructor-xl vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore def get_conversation_chain(vectorstore): llm= ChatOpenAI() # Using llm from huggingface #llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def handle_userinput(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i & 2 == 0: st.write(user_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) else: st.write(bot_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True)
[]
2024-01-10
htrangn/ItsTrangNguyen
pages~ChatBot.py
import openai import streamlit as st with st.sidebar: activities2 = ["Chat", "About"] choice = st.sidebar.selectbox("Select Activity", activities2) openai_api_key = st.text_input("OpenAI API Key", key="chatbot_api_key", type="password") "[OpenAI's Platform website](https://platform.openai.com/account/api-keys)" "[Instruct to get an OpenAI API key](https://www.howtogeek.com/885918/how-to-get-an-openai-api-key/)" st.write("View the source code: ", "[GITHUB](https://github.com/htrangn/ItsTrangNguyen/edit/main/pages/ChatBot.py)") markdown = """ Web App URL: <https://facapp.streamlit.app> """ st.sidebar.info(markdown) if choice == "Chat": st.title("💬 CHATBOT") if "messages" not in st.session_state: st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}] for msg in st.session_state.messages: st.chat_message(msg["role"]).write(msg["content"]) if prompt := st.chat_input(): if not openai_api_key: st.info("Please add your OpenAI API key to continue.") st.stop() openai.api_key = openai_api_key st.session_state.messages.append({"role": "user", "content": prompt}) st.chat_message("user").write(prompt) response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=st.session_state.messages) msg = response.choices[0].message st.session_state.messages.append(msg) st.chat_message("assistant").write(msg.content) elif choice == "About": st.subheader("About this app") st.write("This app was made by Nguyen H.Trang") st.write("This app requires an OpenAI API key to activate") st.write("This chatbot is designed to deliver a seamless conversational experience with its natural language processing capabilities")
[ "How can I help you?" ]
2024-01-10
JasonJbrg/mayachat
PycharmProjects~pythonProject~venv~chatapp.py
import openai import streamlit as st from streamlit_chat import message as msg from translate import Translator from pydub import AudioSegment from pydub.playback import play import os from dotenv import load_dotenv import json import docx import io from docx import Document from datetime import datetime # Load environment variables from .env file load_dotenv() # Read the config.json file with open("config.json") as file: config = json.load(file) # Extract the values from the config dictionary task_selection = config["task_selection"] initial_context = { task: f"{config['initial_context'][task]} Please provide brief and concise responses." for task in task_selection } load_dotenv() # take environment variables from .env. openai.api_key = os.getenv('OPENAI_KEY') # Set page configuration st.set_page_config( page_title="Maya Lingo", page_icon="/Users/jasons/PycharmProjects/pythonProject/venv/static/jedburghlogo_webicon.png", layout="wide", initial_sidebar_state="expanded" ) # Apply styles streamlit_style = """ <style> @import url('https://fonts.googleapis.com/css2?family=IBM+Plex+Mono&display=swap'); html, body, [class*="css"] { font-family: 'IBM Plex Mono', monospace; background: #4F5223; } .custom-title { overflow: hidden; color: white; font-size: 1.3em; animation: typewriter 4s steps(50) 1s both; white-space: nowrap; padding-bottom: 50px; } @keyframes typewriter { 0% { width: 0; } 100% { width: 100%; } } </style> """ st.markdown(streamlit_style, unsafe_allow_html=True) st.markdown('<h1 class="custom-title">WELCOME, AIRMAN ALLIE</h1>', unsafe_allow_html=True) # If 'custom_title' is not in st.session_state, assign a default title if 'custom_title' not in st.session_state: st.session_state.custom_title = "WELCOME, AIRMAN ALLIE" app_name = st.session_state.custom_title # Create subheader st.markdown(""" <div style='border: 2px solid white; padding: 10px;'> <h2 style='margin: 0; font-size: 14px; padding: 1em; font-family: 'IBM Plex Mono', monospace;'>Hamza, Cafe Owner</h2> </div> """, unsafe_allow_html=True) # Set default task if 'selected_task' not in st.session_state: st.session_state.selected_task = task_selection[0] st.session_state.selected_task = st.sidebar.radio("Select Task", task_selection) # Initialize the Translator translator = Translator(to_lang="en", from_lang="ar") # Initialize chat history in session state if 'hst_chat' not in st.session_state: st.session_state.hst_chat = [] if 'hst_chat_time' not in st.session_state: st.session_state.hst_chat_time = [] # Get user input user_prompt = st.text_input("Start your chat (in Arabic):") btn_enter = st.button("Enter") # When 'Enter' button is clicked if btn_enter: # Get the current timestamp current_time = datetime.now() # Add user's message and timestamp to chat history st.session_state.hst_chat.append({"role": "user", "content": user_prompt}) st.session_state.hst_chat_time.append(current_time) # Load specific words from tcv.txt file with open("/Users/jasons/PycharmProjects/pythonProject/venv/tcv.txt", "r", encoding="utf-8") as file: specific_words = [word.strip() for word in file.readlines()] # Check if user's input has any of the specific words # If yes, play ding sound user_input_words = user_prompt.split() matching_words = set(specific_words).intersection(user_input_words) if matching_words: ding_sound_path = "/Users/jasons/PycharmProjects/pythonProject/venv/audio/tcv_match.mp3" ding_sound = AudioSegment.from_file(ding_sound_path) play(ding_sound) MAX_TOKENS = 500 MAX_TOKENS_PER_MESSAGE = 50 # Prepare the conversation for the chat model conversation = [ {"role": "assistant", "content": initial_context[st.session_state.selected_task]}, ] + st.session_state.hst_chat # Calculate the total number of tokens in the conversation total_tokens = sum(len(message['content'].split()) for message in conversation) # Check if the total tokens exceed the maximum allowed limit if total_tokens > MAX_TOKENS: # Remove messages until the total tokens is below the limit excess_tokens = total_tokens - MAX_TOKENS removed_tokens = 0 removed_messages = 0 # Iterate through the conversation messages from the beginning for i in range(len(conversation) - 1, -1, -1): message_tokens = len(conversation[i]['content'].split()) if removed_tokens + message_tokens <= excess_tokens: # Remove the entire message removed_tokens += message_tokens removed_messages += 1 else: # Remove a portion of the message tokens_to_remove = excess_tokens - removed_tokens conversation[i]['content'] = ' '.join(conversation[i]['content'].split()[:-tokens_to_remove]) break # Remove the excess messages from the conversation conversation = conversation[:-removed_messages] # Split messages into multiple parts if they exceed the maximum tokens per message split_conversation = [] current_message = {"role": conversation[0]["role"], "content": ""} for message in conversation[1:]: tokens_in_message = len(message["content"].split()) if len(current_message["content"].split()) + tokens_in_message > MAX_TOKENS_PER_MESSAGE: split_conversation.append(current_message) current_message = {"role": message["role"], "content": message["content"]} else: current_message["content"] += " " + message["content"] if current_message["content"]: split_conversation.append(current_message) # Use OpenAI API to get a response from the chat model responses = [] for split_message in split_conversation: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[split_message], max_tokens=MAX_TOKENS_PER_MESSAGE, n=1 ) responses.append(response['choices'][0]['message']['content']) # Add assistant's response to the chat history for response in responses: assistant_response = response st.session_state.hst_chat.append({"role": "assistant", "content": assistant_response}) st.session_state.hst_chat_time.append(datetime.now()) else: # Use OpenAI API to get a response from the chat model return_openai = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=conversation, max_tokens=MAX_TOKENS, n=1 ) # Add assistant's response to the chat history assistant_response = return_openai['choices'][0]['message']['content'] st.session_state.hst_chat.append({"role": "assistant", "content": assistant_response}) st.session_state.hst_chat_time.append(datetime.now()) # Display chat history if st.session_state.hst_chat: for i in range(len(st.session_state.hst_chat)): if i % 2 == 0: # msg("You: " + st.session_state.hst_chat[i]['content'], is_user=True) st.markdown(f"<div style='text-align: left; color: black; background-color: rgba(206, 187, 163, 0.5); '>You: {st.session_state.hst_chat[i]['content']}</div>", unsafe_allow_html=True) else: # msg(st.session_state.selected_task + ": " + st.session_state.hst_chat[i]['content']) st.markdown(f"<div style='text-align: left; color: black; background-color: rgba(206, 187, 163, 1.0);'>{st.session_state.selected_task}: {st.session_state.hst_chat[i]['content']}</div>", unsafe_allow_html=True) # Translation button for user input if i % 2 == 0: translation_expander = st.expander("Show User Translation") with translation_expander: translation_result = translator.translate(st.session_state.hst_chat[i]['content']) if isinstance(translation_result, str): translation = translation_result else: translation = translation_result.text st.write(translation) # Translation button for assistant responses else: translation_expander = st.expander("Show Assistant Translation") with translation_expander: translation_result = translator.translate(st.session_state.hst_chat[i]['content']) if isinstance(translation_result, str): translation = translation_result else: translation = translation_result.text st.write(translation) # If chat history exists, show the 'Save & Export' button btn_save = st.button("Save & Export") if btn_save: # Create a Word document with chat history doc = Document() # Add the custom title with date and time to the document custom_title = f"{st.session_state.custom_title} - {datetime.now().strftime('%m/%d/%Y %I:%M:%S %p')}" doc.add_paragraph(custom_title) doc.add_paragraph("") # Calculate the total duration total_duration = st.session_state.hst_chat_time[-1] - st.session_state.hst_chat_time[0] # Add the total duration to the document doc.add_paragraph(f"Total Duration: {total_duration}") # Add the custom title, task selection and initial context to the document doc.add_paragraph(f"Custom Title: {st.session_state.custom_title}") doc.add_paragraph(f"Task Selection: {st.session_state.selected_task}") doc.add_paragraph(f"Initial Context: {initial_context[st.session_state.selected_task]}") doc.add_paragraph("") # Add the chat history to the document for message in st.session_state.hst_chat: doc.add_paragraph(f"{message['role']}: {message['content']}") # Save the Document into memory f = io.BytesIO() doc.save(f) # Format current date and time now = datetime.now() date_time = now.strftime("%m/%d/%Y %I:%M:%S %p") # Append date and time to the file name f.name = st.session_state.custom_title + "_" + date_time + '.docx' f.seek(0) # Download button for chat history Word document st.download_button( label="Download chat history", data=f, file_name=f.name, mime='application/vnd.openxmlformats-officedocument.wordprocessingml.document' )
[ "content", "Start your chat (in Arabic):" ]
2024-01-10
JasonJbrg/mayachat
venv~chatapp.py
import openai import streamlit as st from streamlit_chat import message as msg from translate import Translator from pydub import AudioSegment from pydub.playback import play import os from dotenv import load_dotenv import json import docx import io from docx import Document from datetime import datetime import random # Load environment variables from .env file dotenv_path = "PycharmProjects/.env" load_dotenv(dotenv_path) # Read the config.json file with open("venv/config.json") as file: config = json.load(file) # Extract the values from the config dictionary task_selection = config["task_selection"] initial_context = { task: f"{config['initial_context'][task]} Please provide brief and concise responses." for task in task_selection } greetings = config["greetings"] load_dotenv('/Users/jasons/PycharmProjects/pythonProject/PycharmProjects/.env') # Set OpenAI API key openai.api_key = os.getenv("OPENAI_API_KEY") # Set page configuration st.set_page_config( page_title="Maya Lingo", layout="wide", ) hide_streamlit_style = """ <style> @import url('https://fonts.googleapis.com/css2?family=IBM+Plex+Mono&display=swap'); .css-uf99v8 { font-family: 'IBM Plex Mono', monospace; background-color: #4F5223; } .stChatFloatingInputContainer.css-usj992.ehod42b2 { font-family: 'IBM Plex Mono', monospace; background-color: #4F5223; } #MainMenu {visibility: hidden;} footer {visibility: hidden;} header {visibility: hidden;} </style> """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) # Custom title st.markdown(""" <div style=" background-color: black; padding: 5px; font-family: 'IBM Plex Mono', monospace; font-size: 35px; color: white; margin-top: -90px; width: 100%; font-weight: bold; "> <p style="margin: 0; text-align: left;">Welcome,</p> <p style="margin: 0; text-align: left;">Airman Allie</p> </div> """, unsafe_allow_html=True) # Add a default option to the languages dictionary languages = {'Select Language': ''} languages.update({ 'Chinese': 'zh', 'Russian': 'ru', 'Arabic': 'ar', 'Japanese': 'ja', 'Farsi': 'fa', 'Spanish': 'es', 'German': 'de', 'Levantine Arabic': 'apc' # ISO 639-3 code for Levantine Arabic }) # Define default values for selected_language and selected_task selected_language = 'Select Language' selected_task = 'Select Topic' # Initialize new_message and return_openai to None new_message = None return_openai = None # Get user input for language selection selected_language = st.selectbox("", list(languages.keys()), key='language_selection') if selected_language != 'Select Language': # Initialize the Translator with the selected language translator = Translator(to_lang="en", from_lang=languages[selected_language]) # Initialize two Translator objects with appropriate language settings translator_to_en = Translator(from_lang=languages[selected_language], to_lang="en") translator_from_en = Translator(from_lang="en", to_lang=languages[selected_language]) # Add a default option to the task_selection list task_selection = ['Select Topic'] + task_selection # Get user input for task selection selected_task = st.selectbox(" ", task_selection, key='task_selection') # Only update the selected task in session state if a task is selected if selected_task != 'Select Topic': st.session_state.selected_task = selected_task # Only proceed if a task is selected and the chat history is empty if not st.session_state.hst_chat: # Update the selected task in session state st.session_state.selected_task = selected_task # Choose a random greeting for the selected task greeting = random.choice(greetings[selected_task]) # Translate the greeting to the target language using translator_from_en greeting_translated = translator_from_en.translate(greeting) st.session_state.hst_chat.append({"role": "assistant", "content": greeting_translated}) st.session_state.hst_chat_time.append(datetime.now()) # Get user input if 'selected_task' in st.session_state: prompt = st.chat_input("Say something") if prompt: new_message = {"role": "user", "content": prompt} # Initialize conversation in session state if not already present if 'conversation' not in st.session_state: st.session_state.conversation = [] # Check if a new message was submitted if new_message is not None: # Add user's original response to the chat history st.session_state.hst_chat.append(new_message) st.session_state.hst_chat_time.append(datetime.now()) # Add user's response to the conversation st.session_state.conversation.append(new_message) # Only generate a response if the last message was from the user if len(st.session_state.hst_chat) >= 2 and st.session_state.hst_chat[-2]["role"] == "user": # Use OpenAI API to get a response from the chat model return_openai = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=st.session_state.conversation, max_tokens=MAX_TOKENS, n=1 ) # Add assistant's response to the chat history if return_openai: assistant_response = return_openai['choices'][0]['message']['content'] st.session_state.hst_chat.append({"role": "assistant", "content": assistant_response}) st.session_state.hst_chat_time.append(datetime.now()) # Add a default option to the task_selection list task_selection = ['Select Topic'] + task_selection # Initialize chat history in session state if not already present if 'hst_chat' not in st.session_state: st.session_state.hst_chat = [] if 'hst_chat_time' not in st.session_state: st.session_state.hst_chat_time = [] # Only proceed if a task is selected and the chat history is empty if selected_task != 'Select Topic' and not st.session_state.hst_chat: # Update the selected task in session state st.session_state.selected_task = selected_task # Choose a random greeting for the selected task greeting = random.choice(greetings[selected_task]) # Translate the greeting to the target language using translator_from_en greeting_translated = translator_from_en.translate(greeting) st.session_state.hst_chat.append({"role": "assistant", "content": greeting_translated}) st.session_state.hst_chat_time.append(datetime.now()) # Update the selected task in session state st.session_state.selected_task = selected_task MAX_TOKENS = 500 MAX_TOKENS_PER_MESSAGE = 50 # Define a function to get the initial context def get_initial_context(task): if task is not None and task in initial_context: return initial_context[task] else: return "Please select a task." # Initialize conversation to an empty list conversation = [] # Prepare the conversation for the chat model if 'selected_task' in st.session_state and st.session_state.selected_task is not None and st.session_state.selected_task in initial_context: conversation = [ {"role": "assistant", "content": initial_context[st.session_state.selected_task]}, ] + st.session_state.hst_chat else: # Handle case where st.session_state.selected_task is None or does not exist in initial_context conversation = [ {"role": "assistant", "content": "Please select a valid task."}, ] + st.session_state.hst_chat # Only generate a response if the last message was from the user if conversation and conversation[-1]["role"] == "user": # Use OpenAI API to get a response from the chat model return_openai = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=conversation, max_tokens=MAX_TOKENS, n=1 ) # Calculate the total number of tokens in the conversation total_tokens = sum(len(message['content'].split()) for message in conversation) # Check if the total tokens exceed the maximum allowed limit if total_tokens > MAX_TOKENS: # Remove messages until the total tokens is below the limit excess_tokens = total_tokens - MAX_TOKENS removed_tokens = 0 removed_messages = 0 # Iterate through the conversation messages from the beginning for i in range(len(conversation) - 1, -1, -1): message_tokens = len(conversation[i]['content'].split()) if removed_tokens + message_tokens <= excess_tokens: # Remove the entire message removed_tokens += message_tokens removed_messages += 1 else: # Remove a portion of the message tokens_to_remove = excess_tokens - removed_tokens conversation[i]['content'] = ' '.join(conversation[i]['content'].split()[:-tokens_to_remove]) break # Remove the excess messages from the conversation conversation = conversation[:-removed_messages] # Split messages into multiple parts if they exceed the maximum tokens per message split_conversation = [] current_message = {"role": conversation[0]["role"], "content": ""} for message in conversation[1:]: tokens_in_message = len(message["content"].split()) if len(current_message["content"].split()) + tokens_in_message > MAX_TOKENS_PER_MESSAGE: split_conversation.append(current_message) current_message = {"role": message["role"], "content": message["content"]} else: current_message["content"] += " " + message["content"] if current_message["content"]: split_conversation.append(current_message) # Use OpenAI API to get a response from the chat model responses = [] for split_message in split_conversation: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[split_message], max_tokens=MAX_TOKENS_PER_MESSAGE, n=1 ) responses.append(response['choices'][0]['message']['content']) # Add assistant's response to the chat history for response in responses: assistant_response = response st.session_state.hst_chat.append({"role": "assistant", "content": assistant_response}) st.session_state.hst_chat_time.append(datetime.now()) else: # Use OpenAI API to get a response from the chat model return_openai = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=conversation, max_tokens=MAX_TOKENS, n=1 ) # Add assistant's response to the chat history assistant_response = return_openai['choices'][0]['message']['content'] st.session_state.hst_chat.append({"role": "assistant", "content": assistant_response}) st.session_state.hst_chat_time.append(datetime.now()) # Display chat history if st.session_state.hst_chat: for i in range(len(st.session_state.hst_chat)): if st.session_state.hst_chat[i]["role"] == "user": st.markdown( f"<div style='text-align: left; color: black; background-color: rgba(206, 187, 163, 0.5); '>You: {st.session_state.hst_chat[i]['content']}</div>", unsafe_allow_html=True) elif st.session_state.hst_chat[i]["role"] == "assistant": st.markdown( f"<div style='text-align: left; color: black; background-color: rgba(206, 187, 163, 1.0);'>{st.session_state.selected_task}: {st.session_state.hst_chat[i]['content']}</div>", unsafe_allow_html=True) # Translation expander for user input if i % 2 == 0: translation_expander = st.expander("Show User Translation", expanded=False) with translation_expander: # Use translator_to_en for user's messages translation_result = translator_to_en.translate(st.session_state.hst_chat[i]['content']) st.write(translation_result) # Translation expander for assistant responses else: translation_expander = st.expander("Show Assistant Translation") with translation_expander: # Use translator_to_en for assistant's responses # We are assuming that the assistant's responses are not in English. # If they are in English, you do not need to translate them. translation_result = translator_to_en.translate(st.session_state.hst_chat[i]['content']) st.write(translation_result) # If chat history exists, show the 'Save & Export' button if st.session_state.hst_chat: btn_save = st.button("Save & Export") if btn_save: # Create a Word document with chat history doc = Document() # Add the current date and time to the document doc.add_paragraph(datetime.now().strftime('%m/%d/%Y %I:%M:%S %p')) # Calculate the total duration total_duration = st.session_state.hst_chat_time[-1] - st.session_state.hst_chat_time[0] # Add the total duration to the document doc.add_paragraph(f"Total Duration: {total_duration}") # Add the chat history to the document for message in st.session_state.hst_chat: doc.add_paragraph(f"{message['role']}: {message['content']}") # Save the Document into memory f = io.BytesIO() doc.save(f) # Format current date and time now = datetime.now() date_time = now.strftime("%m%d%Y_%H%M%S") # Changed format to remove slashes and colons # Append date and time to the file name f.name = "Chat_History_" + date_time + '.docx' # Changed to a static string "Chat_History_" f.seek(0) # Download button for chat history Word document st.download_button( label="Download chat history", data=f, file_name=f.name, mime='application/vnd.openxmlformats-officedocument.wordprocessingml.document' )
[ "content", "Please select a valid task.", "Say something" ]
2024-01-10
njogued/alx-higher_level_programming
zz~play_api.py
import openai import os from playwright.sync_api import sync_playwright jd = input("Enter the link to the job: ") with sync_playwright() as s: browser = s.firefox.launch() page = browser.new_page() page.goto(jd) summary = page.query_selector_all('p') print(summary) browser.close() # text = input("Enter the prompt: ") text = "In 100 words or less, explain the domestication of cats" # length = input("Max words output: ") length = 1000 print(os.getenv("OPENAI_API_KEY")) openai.api_key="API-KEY" response = openai.Completion.create( model="text-davinci-003", prompt = text, temperature=0.7, max_tokens=length ) prompt = response.choices[0].text print(prompt)
[ "In 100 words or less, explain the domestication of cats" ]
2024-01-10
takuma-yoneda/dl
rl~envs~dummy_vec_env.py
"""Adapt SubprocVecEnv to save environment state. Adapted from OpenAI Baselines.""" import numpy as np from baselines.common.vec_env import VecEnv from dl.rl import env_state_dict, env_load_state_dict from dl import nest class DummyVecEnv(VecEnv): """ VecEnv that does runs multiple environments sequentially, that is, the step and reset commands are send to one environment at a time. Useful when debugging and when num_env == 1 (in the latter case, avoids communication overhead) """ def __init__(self, env_fns): """ Arguments: env_fns: iterable of callables functions that build environments """ self.envs = [fn() for fn in env_fns] env = self.envs[0] VecEnv.__init__(self, len(env_fns), env.observation_space, env.action_space) self.transitions = [None for _ in range(self.num_envs)] self.actions = None self.spec = self.envs[0].spec def step_async(self, actions): def _numpy_check(ac): if not isinstance(ac, np.ndarray): raise ValueError("You must pass actions as nested numpy arrays" " to DummyVecEnv.") nest.map_structure(_numpy_check, actions) self.actions = actions def step_wait(self): active = [False for _ in range(self.num_envs)] for e in range(self.num_envs): if self.transitions[e] is None or not self.transitions[e][2]: # if episode is over: action = nest.map_structure(lambda ac: ac[e], self.actions) self.transitions[e] = self.envs[e].step(action) active[e] = True obs, rs, dones, infos = zip(*self.transitions) for e, info in enumerate(infos): info['active'] = active[e] obs = nest.map_structure(np.stack, nest.zip_structure(*obs)) return obs, np.stack(rs), np.stack(dones), infos def reset(self, force=True): if not force: return self._reset_done_envs() obs = [self.envs[e].reset() for e in range(self.num_envs)] self.transitions = [None for _ in range(self.num_envs)] return nest.map_structure(np.stack, nest.zip_structure(*obs)) def _reset_done_envs(self): obs = [] for e in range(self.num_envs): if self.transitions[e] is None or self.transitions[e][2]: self.transitions[e] = None obs.append(self.envs[e].reset()) else: obs.append(self.transitions[e][0]) return nest.map_structure(np.stack, nest.zip_structure(*obs)) def get_images(self): return [env.render(mode='rgb_array') for env in self.envs] def render(self, mode='human'): if self.num_envs == 1: return self.envs[0].render(mode=mode) else: return super().render(mode=mode) def close_extras(self): for env in self.envs: env.close() self.closed = True def state_dict(self): env_states = [] for e in self.envs: env_states.append(env_state_dict(e)) return {'env_states': env_states} def load_state_dict(self, state_dict): for e, state in zip(self.envs, state_dict['env_states']): if isinstance(state, list): # this could happen if the state was saved with a subproc env state = state[0] env_load_state_dict(e, state) if __name__ == "__main__": import unittest import gym from gym import Wrapper class StateWrapper(Wrapper): # hack to save random state from lunar lander env. def __init__(self, env): super().__init__(env) def step(self, action): return self.env.step(action) def state_dict(self): return {'rng': self.env.np_random.get_state()} def load_state_dict(self, state_dict): self.env.np_random.set_state(state_dict['rng']) def make_env(nenv, seed=0): def _env(rank): def _thunk(): env = gym.make('LunarLander-v2') env = StateWrapper(env) env.seed(seed + rank) return env return _thunk return DummyVecEnv([_env(i) for i in range(nenv)]) class TestDummyVecEnv(unittest.TestCase): """Test DummyVecEnv""" def test(self): nenv = 4 env = make_env(nenv) obs = env.reset() env2 = make_env(nenv) obs2 = env2.reset() env3 = make_env(nenv, seed=1) obs3 = env3.reset() assert np.allclose(obs, obs2) assert not np.allclose(obs, obs3) for _ in range(100): actions = np.array([env.action_space.sample() for _ in range(nenv)]) ob, r, done, _ = env.step(actions) ob2, r2, done2, _ = env2.step(actions) assert np.allclose(ob, ob2) assert np.allclose(r, r2) assert np.allclose(done, done2) env3.load_state_dict(env.state_dict()) ob = env.reset() ob3 = env3.reset() assert np.allclose(ob, ob3) for _ in range(100): actions = np.array([env.action_space.sample() for _ in range(nenv)]) ob, r, done, _ = env.step(actions) ob3, r3, done3, _ = env3.step(actions) assert np.allclose(ob, ob3) assert np.allclose(r, r3) assert np.allclose(done, done3) dones = [False for _ in range(nenv)] obs = [None for _ in range(nenv)] while not np.all(dones): actions = np.array([env.action_space.sample() for _ in range(nenv)]) ob, r, new_dones, _ = env.step(actions) for e, d in enumerate(new_dones): if dones[e]: assert d assert np.allclose(ob[e], obs[e]) obs[e] = ob[e] dones = new_dones env.reset(force=False) unittest.main()
[]
2024-01-10
sergiomirazo/Curso_python_ARJE-10-2023
Cortana.py
import pyttsx3 import tkinter as tk import openai engine = pyttsx3.init() engine.setProperty('rate', 125) class Ship: def __init__(self, Name, Speed, Accel, Shields, Health, Coor, Radar, Trans): self.Name = Name self.Speed = Speed self.Accel = Accel self.Shields = Shields self.Health = Health self.Coor = Coor self.Radar = Radar self.Trans = Trans def message(self): print(self.Trans) engine.say(self.Trans) engine.runAndWait() def sys_status(self): if self.Radar: engine.say("ALERTA! Amenaza detectada") else: engine.say("No hay amenazas cercanas") if self.Shields and self.Health==100: engine.say("Escudos cargados") engine.say("Todos los sistemas en línea") print("Escudos cargados \nTodos los sistemas en línea") engine.runAndWait() elif self.Health<100 and self.Shields: engine.say("Daños estructurales detectados") self.Health = 100 engine.say("El equipo de reparación se hizo cargo") engine.say("Escudos cargados") engine.runAndWait() elif self.Health<100 and self.Health>20 and not self.Shields: engine.say("Daños estructurales detectados") self.Health = 100 engine.say("El equipo de reparación se hizo cargo") engine.say("Escudos críticos") engine.say("Cargando escudos") self.Shields = True engine.runAndWait() elif self.Health < 20 and not self.Shields: engine.say("ADVERTENCIA!... Daños severos estructurales detectados") self.Health = 100 engine.say("El equipo de reparación se hizo cargo") engine.say("Escudos críticos") engine.say("Cargando escudos") self.Shields = True engine.runAndWait() ship = Ship("Endurance", 900, 52, True, 100, "Arp 286, AR: 14h 20m 20s / Dec: +3º 56′", False, "Hola mundo") system = f"Eres Cortana, la IA que administra la nave {ship.Name}, velocidad: {ship.Speed}, aceleración: {ship.Accel},nuestas coordenadas: {ship.Coor} " def Consulta(): global label2 global label3 global system global engine label2.destroy() label3.destroy() prompt = entry1.get() response = openai.Completion.create( engine="text-davinci-003", prompt=prompt+system, temperature = 0.7, max_tokens = 2600, top_p = 1.0, n=1) response_text = response["choices"][0]["text"] print(response_text) engine.say(response_text) engine.runAndWait() label2 = tk.Label(root, text=prompt, font=('helvetica', 12), bg=BG_, fg='yellow') window.create_window(250, 350, window=label2) label3 = tk.Label(root, text=response_text, wraplength=360, anchor="n", bg=BG_, fg=FG_, font=('helvetica', 10)) window.create_window(250, 700, window=label3) root = tk.Tk() BG_ = '#220d8c' FG_ = '#e6e1ff' openai.api_key = 'TU_CLAVE_DE_OPENAI' #Debes reemplazar este string por tu api de openai window = tk.Canvas(root, width=500, height=1000, relief='raised', bg=BG_ ) window.pack(fill='x') label1 = tk.Label(root, text='Hacer consulta:') label1.config(font=('helvetica', 22, 'bold'), bg=BG_, fg=FG_) window.create_window(250, 125, window=label1) label2 = tk.Label(root, text=' ', font=('helvetica', 12, 'bold'), bg=BG_ , fg=FG_) window.create_window(250, 600, window=label2) label3 = tk.Label(root, text=' ', font=('helvetica', 12, 'bold'), bg=BG_ , fg='yellow' ) window.create_window(250, 400, window=label3) entry1 = tk.Entry(root) entry1.config(font=('helvetica', 12), bg=FG_, fg='black') window.create_window(200, 240, window=entry1) button1 = tk.Button(text='Ingresar', command=Consulta, bg='#1e8248', fg=FG_) window.create_window(330, 240, window=button1) button2 = tk.Button(text='Status', command=ship.sys_status, bg='#ab1eb0', fg=FG_) window.create_window(270, 300, window=button2) button3 = tk.Button(text='Mensaje', command=ship.message, bg='#ab1eb0', fg=FG_) window.create_window(330, 300, window=button2) root.mainloop()
[ "PLACEHOLDERf\"Eres Cortana, la IA que administra la nave {ship.Name}, velocidad: {ship.Speed}, aceleración: {ship.Accel},nuestas coordenadas: {ship.Coor} " ]
2024-01-10
jungwoo3490/Telegram_GPT
Telegram_GPT.py
import telegram import asyncio from openai import OpenAI # API_KEY 주석처리 # client = OpenAI(api_key="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") completion = client.chat.completions.create( model="gpt-3.5-turbo-1106", messages=[ {"role": "system", "content": "너는 동화속 공주야."}, {"role": "user", "content": "오늘 무슨 음식을 먹을지 추천해줘. json"} ], response_format={"type": "json_object"} ) token = "6722824989:AAFcr_3QSlHeaRG3EHSl_WFZhYpU0CRWSw0" bot = telegram.Bot(token = token) chat_id = "-1002143232599" text = completion.choices[0].message.content asyncio.run(bot.sendMessage(chat_id = chat_id , text=text))
[ "오늘 무슨 음식을 먹을지 추천해줘. json", "너는 동화속 공주야." ]
2024-01-10
ChrisXiaoShu/ChatPDF
window.py
import os import PySimpleGUI as sg from lib.util import create_embedding_vectorstore, load_file, split_text from langchain.chat_models import ChatOpenAI from langchain.chains import ConversationalRetrievalChain def create_file_conversation_chain(api_key, file_path): if api_key is None: sg.popup("Please enter your OpenAI API Key!") return None if file_path is None: sg.popup("Please upload a file first!") os.environ["OPENAI_API_KEY"] = api_key # load file loader = load_file(file_path) # split text texts = split_text(loader) # create embedding vectorstore vectorstore = create_embedding_vectorstore(texts) return ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0), vectorstore.as_retriever()) def question_processor(conversation_chain): chat_history = [] def _processor(question): answer = conversation_chain({"question": question, 'chat_history': chat_history}) chat_history.append((question, answer['answer'])) return "\n".join([f"Q: {q}\nA: {a}" for q, a in chat_history]) return _processor # Create the layout of the window layout = [ [sg.Text("Enter your OpenAI API Key:")], [sg.InputText(key="-KEY_TEXT-")], [sg.Text("Select a PDF file:")], [sg.Input(key="-FILE-"), sg.FileBrowse(file_types=(("PDF Files", "*.pdf", "*.txt"),)), sg.Button("Upload")], [sg.Multiline(key="-ROLLER-", size=(100, 40), enable_events=True, autoscroll=True, reroute_stdout=True)], [sg.InputText(key="-INPUT-", size=(90, 2)), sg.Button("Send")] ] # Create the window window = sg.Window("ChatPDF", layout, size=(700, 600)) # Initialize variables processor = None # Event loop to process window events while True: event, values = window.read() if event == sg.WINDOW_CLOSED or event == "Cancel": break elif event == "Upload": api_key = values["-KEY_TEXT-"] file_name = values["-FILE-"] qa_chain = create_file_conversation_chain(api_key, file_name) processor = question_processor(qa_chain) elif event == "Send": # Raise an alert if no PDF file uploaded if not processor: sg.popup("Please init a qa processor by upload a file and enter your OpenAI API Key!") continue question = values["-INPUT-"] result = processor(question) window["-ROLLER-"].update(result) window["-INPUT-"].update("") # Close the window window.close()
[]
2024-01-10
ChrisXiaoShu/ChatPDF
ai_model.py
# create basic AI model class with template model variable and has get_chain and run methods from typing import Any from chainlit import Message from langchain import ConversationChain, LLMChain, PromptTemplate from langchain.base_language import BaseLanguageModel from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from chainlit.lc.agent import run_langchain_agent from chainlit.config import config class AIModel: """Base class for AI models.""" template: str prompt: PromptTemplate model: BaseLanguageModel def get_chain(self, **kwargs: Any) -> Any: raise NotImplementedError("get_chain not implemented") def run(self, **kwargs: Any) -> Any: """Run the model.""" chain = self.get_chain(**kwargs) return chain.run(**kwargs) class BartenderAI(AIModel): model = ChatOpenAI(temperature=0) template = """The following is a friendly conversation between a Customer and an BartenderAI. The BartenderAI is a professional bartender and help Customer find a cocktail that suits. AI should guide Customer in choosing a cocktail that is tailored to its preferences. BartenderAI should understand Customer preferences based on Customer preferred texture, type of alcohol, taste, or personal characteristics. please don't recommend a particular cocktail to Customer. AI job is merely understand Customer preference. And don't ask too complex question make question simple and one at a time. 請用繁體中文與我對答案。 Current conversation: {history} Customer: {input} BartenderAI: """ prompt = PromptTemplate(template=template, input_variables=["history", "input"]) def get_chain(self, **kwargs: Any) -> Any: return ConversationChain( prompt=self.prompt, llm=self.model, memory=ConversationBufferMemory() ) class SummaryPreferenceAI(AIModel): model = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo") template = """You're now a professional bartender, and the following is the conversation between the Customer and Bartender, please summary the customer preference from the following conversation in 繁體中文 Current conversation: {history} """ prompt = PromptTemplate(template=template, input_variables=["history"]) def get_chain(self, **kwargs: Any) -> Any: return LLMChain(llm=self.model, prompt=self.prompt) async def run(self, conversation_history) -> Message: chain = self.get_chain() raw_res, output_key = await run_langchain_agent( agent=chain , input_str=conversation_history, use_async=config.code.lc_agent_is_async ) if output_key is not None: # Use the output key if provided res = raw_res[output_key] else: # Otherwise, use the raw response res = raw_res # Finally, send the response to the user return Message(author=config.ui.name, content=res) class RecommendAI(AIModel): model = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo") template = """you are acting as a professional bartender, you know much about the customer preference, and can recommend the right one to your customer. The below is the menu, please choice one of the cocktail based on the customer preference, elaborate the reason why you recommend and reply in 繁體中文 here is Customer preference: ----------------------- {preferences} ----------------------- here is the menu: ----------------------- 酒名 價格(NTD) 基底酒款 其他成分 酒感等級 口感描述 青雲閤 400 Gin琴酒 Nordes gin諾帝斯琴酒/St.germain接骨木花利口酒/Skinos乳香利口酒/Jasmine Syrup自製茉莉花糖漿/Citrus Acid檸檬酸液/tonic通寧水 2 微甜/花香味強烈/清爽/氣泡感 和泉樓 400 Gin琴酒 Generous Gin Azur大方琴酒/Crème de Violet 紫羅蘭利口酒/Lime Juice萊姆汁/Lavender Syrup自製薰衣草糖漿/La Caravedo Pisco秘魯白蘭地 3.5 偏酸爽口/如同香水的強烈花香 醉花園 450 Homemade Rose Liqueur自製玫瑰利口酒 Homemade Rose Liqueur自製玫瑰利口酒/Red Repper Syrup粉紅胡椒糖漿/Hendricks Flora Adora Gin亨利爵士花神/Latic Acid乳酸/Cream鮮奶油/Egg White蛋白/Soda Water蘇打水 3 蛋糕般的綿密奶泡/主體玫瑰花香帶一絲粉紅胡椒的偏甜辛香 鐵觀音 400 vodka伏特加 Tieguanyin tea infused vodka鐵觀音伏特加/Cointreau君度橙酒/Crème de peach水蜜桃利口酒 2 水蜜桃甜香為前調/中調展現鐵觀音培茶風味/清爽的氣泡/酒體輕盈 文山包種 400 Gin琴酒 Wen Shan Pochong包種茶琴酒/Pavan葡萄利口酒/Lavender Leaf Syrup自製薰衣草片糖漿/Lemon juice檸檬汁 3 偏甜爽口/花草香/麝香葡萄與橙花氣味為中調/茶香做為後韻 金萱 430 White Wine白葡萄酒 Jin Xuan Tea Infused White Wine金萱茶白葡萄酒/Pineapple Sage Infused Apple Whiskey鳳梨鼠尾草蘋果威士忌/Chamomile Cordial洋甘菊風味液/Cream cheese Foam奶油起司泡沫 3 上層奶泡起司蛋糕風味呼應金萱茶獨特奶香/中調強烈洋甘菊轉為鼠尾草與蘋果的清新/微苦茶感與葡萄弱酸做結尾 東方美人 $450 V.S.O.P brandy白蘭地 Driental beauty infused V.S.O.P brandy 東方美人茶白蘭地/Sesame芝麻/Adriatico鹽味杏仁利口酒/Fig Leaf Syrup無花果葉糖漿/Blackwalnut Bitters 黑核桃苦精/Selva Ray Chocolate巧克力蘭姆酒 4 初聞明顯可可香而後是杏仁與無花果葉類的堅果氣息/接著輕微苦韻洗滌口腔後茶感才慢悠悠出現 北港甜湯米糕粥 $430 Whiskey威士忌 Longan Infused Whiskey自製桂圓威士忌/Sticy Rice圓糯米/Macallan 12years麥卡倫12年/Cannanmon Bitters自製肉桂苦精 3 翻玩70年歷史甜品/甜而不膩的大人甜湯/桂圓的蜜味與雪莉桶威士忌完美融合/些許肉桂味添加層次/有趣的食用型調酒 阿嬌姨烤魷魚 $430 Vodka伏特加/ Whiskey泥煤威士忌 Squid Infused Vodka自制烤魷魚伏特加/ Talisker Storm Whiskey/Black Cardamom黑荳蔻/Basil Syrup羅勒糖漿/Citrus Acid檸檬酸/Cucumber Soda Water黃瓜口味氣泡水/Squid Slices網狀魷魚片 3.5 出乎意料的味覺組合/輕微的黑荳蔻模擬出炭烤的煙燻味/帶有鹹感的威士忌襯托魷魚鮮香/小黃瓜與氣泡帶來清爽結尾 童年記憶愛玉冰 $400 Bamboo Leaves Infused Vermouth自製竹葉苦艾酒 Bamboo Leaves Infused Vermouth自製竹葉苦艾酒/Ice Jelly愛玉/Homemade Limocello自製檸檬利口酒/White Wine Cardamom Syrup白酒荳蔻糖漿 3.5 竹葉香與檸檬甜感結合後接葡萄微酸/輕微的香料做結尾/吃得到愛玉喔 香煙裊裊龍山寺 $430 Gin琴酒 Tanquerary No.10/Skinos希臘乳香酒/Sandalwood Infused Gin檀香木琴酒/Selva Ray Coconut Rum椰子蘭姆酒/Malibu椰子香甜酒 5 椰子氣味鋪陳檀香木質氣息/順口度高/如同佛珠與佛堂的既視感香氣 民風淳樸剝皮寮 $420 Vodka伏特加/ Gin琴酒 Don Julio Blanco/Peeled Pepper Infused Vodka自製剝皮辣椒伏特加/East 135 GinㄥSoy Sauce手工醬油/Clarify Tomato Juice澄清番茄汁/ Ginger Ale薑汁汽水/Umami Bitters旨味苦精 3 氣泡爽口/輕微香菇與番茄鮮味/尾巴有些許辣椒熱感/不會辣 日皇御用摩納卡 $430 Whiskey泥煤威士忌 Arbeg10y/Red Beans杜瓦小豆香甜酒/Luxardo Apricot杏桃香甜酒/Milk牛奶/Hawthorn Miso Campari Monaka仙楂味增金巴利最中餅 2.5 前味紅豆氣味明顯/中段杏桃果香參雜煙燻味/大人味奶酒 阿寶師的咖哩酥 400 Whiskey威士忌 Pork Floss Infused Whiskey肉鬆威士忌/Curry Syrup咖哩糖漿/Carrot Juice胡蘿蔔汁 3 甜味型調酒/咖哩氣味轉為肉鬆帶來的輕微脂感/尾韻為胡蘿蔔自然清甜 懸壺濟世青草巷退火養肝茶 400 gin琴酒 Cheerful Crackers Infused gin自製奇福餅乾琴酒/Burdock Infused Frangelico 自製牛蒡榛果香甜酒/Dita荔枝香甜酒/Grassleef Sweetflag Rhizome石菖蒲/Falernum法勒南香甜酒/Suze龍膽草香甜酒 3.5 苦甜型調酒/牛蒡與龍膽草結合使苦味不再單調/中調由石菖蒲與法勒南特有的香料譜出/奇福餅乾的油脂感作為橋樑銜接所有風味 清涼百草茶 400 Herbal Tea Wine青草茶酒 Herbal Tea Wine青草茶酒/Vecchio amaro del capo義大利藥草酒/Asiatic Worm wood杜瓦艾草香甜酒/Dita荔枝香甜酒/Fernet Branca義大利苦味香甜酒 4 中式草本遇上西式藥酒/清甜中帶微苦/艾草香銜接荔枝果香/ 駐顏美人湯 400 Brandy白蘭地 La Caravedo Pisco秘魯白蘭地/White wine cardamom syrup自製白酒荳蔻糖漿/Aloe Liqueur蘆薈香甜酒/Chartreuse修道院香甜酒/Acid Solution酸味模擬液/Aloe Water澄清蘆薈汁/Ruta Graveolens Spray芸香噴霧 3 入口時可聞到雲香帶有甜感的獨特香氣/蘆薈為主軸的清新類花香/尾韻香水白蘭地葡萄香與荳蔻隱約浮現 新世紀冬瓜茶 360 Rum蘭姆酒 Spice White Gourd Drink自製香料冬瓜茶/Clarify Banana Juice澄清香蕉水/Soda Water蘇打水 3.5 香料增添冬瓜茶層次風味與香蕉熱帶水果氣味相輔相乘/輕微甜口 古早味楊桃湯 360 Gin琴酒 Star fruit juice鹽漬楊桃湯/Pineapple Juice鳳梨汁/Caramel焦糖/Tonic通寧水/Spite雪碧 3.5 楊桃湯輕微鹹味帶出甜感/焦糖鳳梨作為後味支撐 ----------------------- """ prompt = PromptTemplate(template=template, input_variables=["preferences"]) def get_chain(self, **kwargs: Any) -> Any: return LLMChain(llm=self.model, prompt=self.prompt) async def run(self, preferences) -> Message: chain = self.get_chain() raw_res, output_key = await run_langchain_agent( agent=chain , input_str=preferences, use_async=config.code.lc_agent_is_async ) if output_key is not None: # Use the output key if provided res = raw_res[output_key] else: # Otherwise, use the raw response res = raw_res # Finally, send the response to the user return Message(author=config.ui.name, content=res) class DetailAI(AIModel): model = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo") template = """please make a story for the drink call {drinks} base on the following information in 繁體中文 Drinks information: ----------------------- 酒名 價格(NTD) 基底酒款 其他成分 酒感等級 口感描述 青雲閤 400 Gin琴酒 Nordes gin諾帝斯琴酒/St.germain接骨木花利口酒/Skinos乳香利口酒/Jasmine Syrup自製茉莉花糖漿/Citrus Acid檸檬酸液/tonic通寧水 2 微甜/花香味強烈/清爽/氣泡感 和泉樓 400 Gin琴酒 Generous Gin Azur大方琴酒/Crème de Violet 紫羅蘭利口酒/Lime Juice萊姆汁/Lavender Syrup自製薰衣草糖漿/La Caravedo Pisco秘魯白蘭地 3.5 偏酸爽口/如同香水的強烈花香 醉花園 450 Homemade Rose Liqueur自製玫瑰利口酒 Homemade Rose Liqueur自製玫瑰利口酒/Red Repper Syrup粉紅胡椒糖漿/Hendricks Flora Adora Gin亨利爵士花神/Latic Acid乳酸/Cream鮮奶油/Egg White蛋白/Soda Water蘇打水 3 蛋糕般的綿密奶泡/主體玫瑰花香帶一絲粉紅胡椒的偏甜辛香 鐵觀音 400 vodka伏特加 Tieguanyin tea infused vodka鐵觀音伏特加/Cointreau君度橙酒/Crème de peach水蜜桃利口酒 2 水蜜桃甜香為前調/中調展現鐵觀音培茶風味/清爽的氣泡/酒體輕盈 文山包種 400 Gin琴酒 Wen Shan Pochong包種茶琴酒/Pavan葡萄利口酒/Lavender Leaf Syrup自製薰衣草片糖漿/Lemon juice檸檬汁 3 偏甜爽口/花草香/麝香葡萄與橙花氣味為中調/茶香做為後韻 金萱 430 White Wine白葡萄酒 Jin Xuan Tea Infused White Wine金萱茶白葡萄酒/Pineapple Sage Infused Apple Whiskey鳳梨鼠尾草蘋果威士忌/Chamomile Cordial洋甘菊風味液/Cream cheese Foam奶油起司泡沫 3 上層奶泡起司蛋糕風味呼應金萱茶獨特奶香/中調強烈洋甘菊轉為鼠尾草與蘋果的清新/微苦茶感與葡萄弱酸做結尾 東方美人 $450 V.S.O.P brandy白蘭地 Driental beauty infused V.S.O.P brandy 東方美人茶白蘭地/Sesame芝麻/Adriatico鹽味杏仁利口酒/Fig Leaf Syrup無花果葉糖漿/Blackwalnut Bitters 黑核桃苦精/Selva Ray Chocolate巧克力蘭姆酒 4 初聞明顯可可香而後是杏仁與無花果葉類的堅果氣息/接著輕微苦韻洗滌口腔後茶感才慢悠悠出現 北港甜湯米糕粥 $430 Whiskey威士忌 Longan Infused Whiskey自製桂圓威士忌/Sticy Rice圓糯米/Macallan 12years麥卡倫12年/Cannanmon Bitters自製肉桂苦精 3 翻玩70年歷史甜品/甜而不膩的大人甜湯/桂圓的蜜味與雪莉桶威士忌完美融合/些許肉桂味添加層次/有趣的食用型調酒 阿嬌姨烤魷魚 $430 Vodka伏特加/ Whiskey泥煤威士忌 Squid Infused Vodka自制烤魷魚伏特加/ Talisker Storm Whiskey/Black Cardamom黑荳蔻/Basil Syrup羅勒糖漿/Citrus Acid檸檬酸/Cucumber Soda Water黃瓜口味氣泡水/Squid Slices網狀魷魚片 3.5 出乎意料的味覺組合/輕微的黑荳蔻模擬出炭烤的煙燻味/帶有鹹感的威士忌襯托魷魚鮮香/小黃瓜與氣泡帶來清爽結尾 童年記憶愛玉冰 $400 Bamboo Leaves Infused Vermouth自製竹葉苦艾酒 Bamboo Leaves Infused Vermouth自製竹葉苦艾酒/Ice Jelly愛玉/Homemade Limocello自製檸檬利口酒/White Wine Cardamom Syrup白酒荳蔻糖漿 3.5 竹葉香與檸檬甜感結合後接葡萄微酸/輕微的香料做結尾/吃得到愛玉喔 香煙裊裊龍山寺 $430 Gin琴酒 Tanquerary No.10/Skinos希臘乳香酒/Sandalwood Infused Gin檀香木琴酒/Selva Ray Coconut Rum椰子蘭姆酒/Malibu椰子香甜酒 5 椰子氣味鋪陳檀香木質氣息/順口度高/如同佛珠與佛堂的既視感香氣 民風淳樸剝皮寮 $420 Vodka伏特加/ Gin琴酒 Don Julio Blanco/Peeled Pepper Infused Vodka自製剝皮辣椒伏特加/East 135 GinㄥSoy Sauce手工醬油/Clarify Tomato Juice澄清番茄汁/ Ginger Ale薑汁汽水/Umami Bitters旨味苦精 3 氣泡爽口/輕微香菇與番茄鮮味/尾巴有些許辣椒熱感/不會辣 日皇御用摩納卡 $430 Whiskey泥煤威士忌 Arbeg10y/Red Beans杜瓦小豆香甜酒/Luxardo Apricot杏桃香甜酒/Milk牛奶/Hawthorn Miso Campari Monaka仙楂味增金巴利最中餅 2.5 前味紅豆氣味明顯/中段杏桃果香參雜煙燻味/大人味奶酒 阿寶師的咖哩酥 400 Whiskey威士忌 Pork Floss Infused Whiskey肉鬆威士忌/Curry Syrup咖哩糖漿/Carrot Juice胡蘿蔔汁 3 甜味型調酒/咖哩氣味轉為肉鬆帶來的輕微脂感/尾韻為胡蘿蔔自然清甜 懸壺濟世青草巷退火養肝茶 400 gin琴酒 Cheerful Crackers Infused gin自製奇福餅乾琴酒/Burdock Infused Frangelico 自製牛蒡榛果香甜酒/Dita荔枝香甜酒/Grassleef Sweetflag Rhizome石菖蒲/Falernum法勒南香甜酒/Suze龍膽草香甜酒 3.5 苦甜型調酒/牛蒡與龍膽草結合使苦味不再單調/中調由石菖蒲與法勒南特有的香料譜出/奇福餅乾的油脂感作為橋樑銜接所有風味 清涼百草茶 400 Herbal Tea Wine青草茶酒 Herbal Tea Wine青草茶酒/Vecchio amaro del capo義大利藥草酒/Asiatic Worm wood杜瓦艾草香甜酒/Dita荔枝香甜酒/Fernet Branca義大利苦味香甜酒 4 中式草本遇上西式藥酒/清甜中帶微苦/艾草香銜接荔枝果香/ 駐顏美人湯 400 Brandy白蘭地 La Caravedo Pisco秘魯白蘭地/White wine cardamom syrup自製白酒荳蔻糖漿/Aloe Liqueur蘆薈香甜酒/Chartreuse修道院香甜酒/Acid Solution酸味模擬液/Aloe Water澄清蘆薈汁/Ruta Graveolens Spray芸香噴霧 3 入口時可聞到雲香帶有甜感的獨特香氣/蘆薈為主軸的清新類花香/尾韻香水白蘭地葡萄香與荳蔻隱約浮現 新世紀冬瓜茶 360 Rum蘭姆酒 Spice White Gourd Drink自製香料冬瓜茶/Clarify Banana Juice澄清香蕉水/Soda Water蘇打水 3.5 香料增添冬瓜茶層次風味與香蕉熱帶水果氣味相輔相乘/輕微甜口 古早味楊桃湯 360 Gin琴酒 Star fruit juice鹽漬楊桃湯/Pineapple Juice鳳梨汁/Caramel焦糖/Tonic通寧水/Spite雪碧 3.5 楊桃湯輕微鹹味帶出甜感/焦糖鳳梨作為後味支撐 ------------------------- """ prompt = PromptTemplate(template=template, input_variables=["drinks"]) def get_chain(self, **kwargs: Any) -> Any: return LLMChain(llm=self.model, prompt=self.prompt) async def run(self, drinks) -> Message: chain = self.get_chain() raw_res, output_key = await run_langchain_agent( agent=chain , input_str=drinks, use_async=config.code.lc_agent_is_async ) if output_key is not None: # Use the output key if provided res = raw_res[output_key] else: # Otherwise, use the raw response res = raw_res # Finally, send the response to the user return Message(author=config.ui.name, content=res)
[ "The following is a friendly conversation between a Customer and an BartenderAI. The BartenderAI is a professional bartender and help Customer find a cocktail that suits. AI should guide Customer in choosing a cocktail that is tailored to its preferences. BartenderAI should understand Customer preferences based on Customer preferred texture, type of alcohol, taste, or personal characteristics. please don't recommend a particular cocktail to Customer. AI job is merely understand Customer preference. And don't ask too complex question make question simple and one at a time. 請用繁體中文與我對答案。 \nCurrent conversation:\n{history}\nCustomer: {input}\nBartenderAI:\n", "drinks", "input", "preferences", "you are acting as a professional bartender, you know much about the customer preference, and can recommend the right one to your customer. The below is the menu, please choice one of the cocktail based on the customer preference, elaborate the reason why you recommend and reply in 繁體中文\nhere is Customer preference:\n-----------------------\n{preferences}\n-----------------------\n\nhere is the menu:\n-----------------------\n酒名\t價格(NTD)\t基底酒款\t其他成分\t酒感等級\t口感描述\n青雲閤\t400\tGin琴酒\tNordes gin諾帝斯琴酒/St.germain接骨木花利口酒/Skinos乳香利口酒/Jasmine Syrup自製茉莉花糖漿/Citrus Acid檸檬酸液/tonic通寧水\t2\t微甜/花香味強烈/清爽/氣泡感\n和泉樓\t400\tGin琴酒\tGenerous Gin Azur大方琴酒/Crème de Violet 紫羅蘭利口酒/Lime Juice萊姆汁/Lavender Syrup自製薰衣草糖漿/La Caravedo Pisco秘魯白蘭地\t3.5\t偏酸爽口/如同香水的強烈花香\n醉花園\t450\tHomemade Rose Liqueur自製玫瑰利口酒\tHomemade Rose Liqueur自製玫瑰利口酒/Red Repper Syrup粉紅胡椒糖漿/Hendricks Flora Adora Gin亨利爵士花神/Latic Acid乳酸/Cream鮮奶油/Egg White蛋白/Soda Water蘇打水\t3\t蛋糕般的綿密奶泡/主體玫瑰花香帶一絲粉紅胡椒的偏甜辛香\n鐵觀音\t400\tvodka伏特加\tTieguanyin tea infused vodka鐵觀音伏特加/Cointreau君度橙酒/Crème de peach水蜜桃利口酒\t2\t水蜜桃甜香為前調/中調展現鐵觀音培茶風味/清爽的氣泡/酒體輕盈\n文山包種\t400\tGin琴酒\tWen Shan Pochong包種茶琴酒/Pavan葡萄利口酒/Lavender Leaf Syrup自製薰衣草片糖漿/Lemon juice檸檬汁\t3\t偏甜爽口/花草香/麝香葡萄與橙花氣味為中調/茶香做為後韻\n金萱\t430\tWhite Wine白葡萄酒\tJin Xuan Tea Infused White Wine金萱茶白葡萄酒/Pineapple Sage Infused Apple Whiskey鳳梨鼠尾草蘋果威士忌/Chamomile Cordial洋甘菊風味液/Cream cheese Foam奶油起司泡沫\t3\t上層奶泡起司蛋糕風味呼應金萱茶獨特奶香/中調強烈洋甘菊轉為鼠尾草與蘋果的清新/微苦茶感與葡萄弱酸做結尾\n東方美人\t$450\tV.S.O.P brandy白蘭地\tDriental beauty infused V.S.O.P brandy 東方美人茶白蘭地/Sesame芝麻/Adriatico鹽味杏仁利口酒/Fig Leaf Syrup無花果葉糖漿/Blackwalnut Bitters 黑核桃苦精/Selva Ray Chocolate巧克力蘭姆酒\t4\t初聞明顯可可香而後是杏仁與無花果葉類的堅果氣息/接著輕微苦韻洗滌口腔後茶感才慢悠悠出現\n北港甜湯米糕粥\t$430\tWhiskey威士忌\tLongan Infused Whiskey自製桂圓威士忌/Sticy Rice圓糯米/Macallan 12years麥卡倫12年/Cannanmon Bitters自製肉桂苦精\t3\t翻玩70年歷史甜品/甜而不膩的大人甜湯/桂圓的蜜味與雪莉桶威士忌完美融合/些許肉桂味添加層次/有趣的食用型調酒\n阿嬌姨烤魷魚\t$430\tVodka伏特加/ Whiskey泥煤威士忌\tSquid Infused Vodka自制烤魷魚伏特加/ Talisker Storm Whiskey/Black Cardamom黑荳蔻/Basil Syrup羅勒糖漿/Citrus Acid檸檬酸/Cucumber Soda Water黃瓜口味氣泡水/Squid Slices網狀魷魚片\t3.5\t出乎意料的味覺組合/輕微的黑荳蔻模擬出炭烤的煙燻味/帶有鹹感的威士忌襯托魷魚鮮香/小黃瓜與氣泡帶來清爽結尾\n童年記憶愛玉冰\t$400\tBamboo Leaves Infused Vermouth自製竹葉苦艾酒\tBamboo Leaves Infused Vermouth自製竹葉苦艾酒/Ice Jelly愛玉/Homemade Limocello自製檸檬利口酒/White Wine Cardamom Syrup白酒荳蔻糖漿\t3.5\t竹葉香與檸檬甜感結合後接葡萄微酸/輕微的香料做結尾/吃得到愛玉喔\n香煙裊裊龍山寺\t$430\tGin琴酒\tTanquerary No.10/Skinos希臘乳香酒/Sandalwood Infused Gin檀香木琴酒/Selva Ray Coconut Rum椰子蘭姆酒/Malibu椰子香甜酒\t5\t椰子氣味鋪陳檀香木質氣息/順口度高/如同佛珠與佛堂的既視感香氣\n民風淳樸剝皮寮\t$420\tVodka伏特加/ Gin琴酒\tDon Julio Blanco/Peeled Pepper Infused Vodka自製剝皮辣椒伏特加/East 135 GinㄥSoy Sauce手工醬油/Clarify Tomato Juice澄清番茄汁/ Ginger Ale薑汁汽水/Umami Bitters旨味苦精\t3\t氣泡爽口/輕微香菇與番茄鮮味/尾巴有些許辣椒熱感/不會辣\n日皇御用摩納卡\t$430\tWhiskey泥煤威士忌\tArbeg10y/Red Beans杜瓦小豆香甜酒/Luxardo Apricot杏桃香甜酒/Milk牛奶/Hawthorn Miso Campari Monaka仙楂味增金巴利最中餅\t2.5\t前味紅豆氣味明顯/中段杏桃果香參雜煙燻味/大人味奶酒\n阿寶師的咖哩酥\t400\tWhiskey威士忌\tPork Floss Infused Whiskey肉鬆威士忌/Curry Syrup咖哩糖漿/Carrot Juice胡蘿蔔汁\t3\t甜味型調酒/咖哩氣味轉為肉鬆帶來的輕微脂感/尾韻為胡蘿蔔自然清甜\n懸壺濟世青草巷退火養肝茶\t400\tgin琴酒\tCheerful Crackers Infused gin自製奇福餅乾琴酒/Burdock Infused Frangelico 自製牛蒡榛果香甜酒/Dita荔枝香甜酒/Grassleef Sweetflag Rhizome石菖蒲/Falernum法勒南香甜酒/Suze龍膽草香甜酒\t3.5\t苦甜型調酒/牛蒡與龍膽草結合使苦味不再單調/中調由石菖蒲與法勒南特有的香料譜出/奇福餅乾的油脂感作為橋樑銜接所有風味\n清涼百草茶\t400\tHerbal Tea Wine青草茶酒\tHerbal Tea Wine青草茶酒/Vecchio amaro del capo義大利藥草酒/Asiatic Worm wood杜瓦艾草香甜酒/Dita荔枝香甜酒/Fernet Branca義大利苦味香甜酒\t4\t中式草本遇上西式藥酒/清甜中帶微苦/艾草香銜接荔枝果香/\n駐顏美人湯\t400\tBrandy白蘭地\tLa Caravedo Pisco秘魯白蘭地/White wine cardamom syrup自製白酒荳蔻糖漿/Aloe Liqueur蘆薈香甜酒/Chartreuse修道院香甜酒/Acid Solution酸味模擬液/Aloe Water澄清蘆薈汁/Ruta Graveolens Spray芸香噴霧\t3\t入口時可聞到雲香帶有甜感的獨特香氣/蘆薈為主軸的清新類花香/尾韻香水白蘭地葡萄香與荳蔻隱約浮現\n新世紀冬瓜茶\t360\tRum蘭姆酒\tSpice White Gourd Drink自製香料冬瓜茶/Clarify Banana Juice澄清香蕉水/Soda Water蘇打水\t3.5\t香料增添冬瓜茶層次風味與香蕉熱帶水果氣味相輔相乘/輕微甜口\n古早味楊桃湯\t360\tGin琴酒\tStar fruit juice鹽漬楊桃湯/Pineapple Juice鳳梨汁/Caramel焦糖/Tonic通寧水/Spite雪碧\t3.5\t楊桃湯輕微鹹味帶出甜感/焦糖鳳梨作為後味支撐\n-----------------------\n", "You're now a professional bartender, and the following is the conversation between the Customer and Bartender, please summary the customer preference from the following conversation in 繁體中文\nCurrent conversation:\n{history}\n", "please make a story for the drink call {drinks} base on the following information in 繁體中文 \nDrinks information:\n-----------------------\n酒名\t價格(NTD)\t基底酒款\t其他成分\t酒感等級\t口感描述\n青雲閤\t400\tGin琴酒\tNordes gin諾帝斯琴酒/St.germain接骨木花利口酒/Skinos乳香利口酒/Jasmine Syrup自製茉莉花糖漿/Citrus Acid檸檬酸液/tonic通寧水\t2\t微甜/花香味強烈/清爽/氣泡感\n和泉樓\t400\tGin琴酒\tGenerous Gin Azur大方琴酒/Crème de Violet 紫羅蘭利口酒/Lime Juice萊姆汁/Lavender Syrup自製薰衣草糖漿/La Caravedo Pisco秘魯白蘭地\t3.5\t偏酸爽口/如同香水的強烈花香\n醉花園\t450\tHomemade Rose Liqueur自製玫瑰利口酒\tHomemade Rose Liqueur自製玫瑰利口酒/Red Repper Syrup粉紅胡椒糖漿/Hendricks Flora Adora Gin亨利爵士花神/Latic Acid乳酸/Cream鮮奶油/Egg White蛋白/Soda Water蘇打水\t3\t蛋糕般的綿密奶泡/主體玫瑰花香帶一絲粉紅胡椒的偏甜辛香\n鐵觀音\t400\tvodka伏特加\tTieguanyin tea infused vodka鐵觀音伏特加/Cointreau君度橙酒/Crème de peach水蜜桃利口酒\t2\t水蜜桃甜香為前調/中調展現鐵觀音培茶風味/清爽的氣泡/酒體輕盈\n文山包種\t400\tGin琴酒\tWen Shan Pochong包種茶琴酒/Pavan葡萄利口酒/Lavender Leaf Syrup自製薰衣草片糖漿/Lemon juice檸檬汁\t3\t偏甜爽口/花草香/麝香葡萄與橙花氣味為中調/茶香做為後韻\n金萱\t430\tWhite Wine白葡萄酒\tJin Xuan Tea Infused White Wine金萱茶白葡萄酒/Pineapple Sage Infused Apple Whiskey鳳梨鼠尾草蘋果威士忌/Chamomile Cordial洋甘菊風味液/Cream cheese Foam奶油起司泡沫\t3\t上層奶泡起司蛋糕風味呼應金萱茶獨特奶香/中調強烈洋甘菊轉為鼠尾草與蘋果的清新/微苦茶感與葡萄弱酸做結尾\n東方美人\t$450\tV.S.O.P brandy白蘭地\tDriental beauty infused V.S.O.P brandy 東方美人茶白蘭地/Sesame芝麻/Adriatico鹽味杏仁利口酒/Fig Leaf Syrup無花果葉糖漿/Blackwalnut Bitters 黑核桃苦精/Selva Ray Chocolate巧克力蘭姆酒\t4\t初聞明顯可可香而後是杏仁與無花果葉類的堅果氣息/接著輕微苦韻洗滌口腔後茶感才慢悠悠出現\n北港甜湯米糕粥\t$430\tWhiskey威士忌\tLongan Infused Whiskey自製桂圓威士忌/Sticy Rice圓糯米/Macallan 12years麥卡倫12年/Cannanmon Bitters自製肉桂苦精\t3\t翻玩70年歷史甜品/甜而不膩的大人甜湯/桂圓的蜜味與雪莉桶威士忌完美融合/些許肉桂味添加層次/有趣的食用型調酒\n阿嬌姨烤魷魚\t$430\tVodka伏特加/ Whiskey泥煤威士忌\tSquid Infused Vodka自制烤魷魚伏特加/ Talisker Storm Whiskey/Black Cardamom黑荳蔻/Basil Syrup羅勒糖漿/Citrus Acid檸檬酸/Cucumber Soda Water黃瓜口味氣泡水/Squid Slices網狀魷魚片\t3.5\t出乎意料的味覺組合/輕微的黑荳蔻模擬出炭烤的煙燻味/帶有鹹感的威士忌襯托魷魚鮮香/小黃瓜與氣泡帶來清爽結尾\n童年記憶愛玉冰\t$400\tBamboo Leaves Infused Vermouth自製竹葉苦艾酒\tBamboo Leaves Infused Vermouth自製竹葉苦艾酒/Ice Jelly愛玉/Homemade Limocello自製檸檬利口酒/White Wine Cardamom Syrup白酒荳蔻糖漿\t3.5\t竹葉香與檸檬甜感結合後接葡萄微酸/輕微的香料做結尾/吃得到愛玉喔\n香煙裊裊龍山寺\t$430\tGin琴酒\tTanquerary No.10/Skinos希臘乳香酒/Sandalwood Infused Gin檀香木琴酒/Selva Ray Coconut Rum椰子蘭姆酒/Malibu椰子香甜酒\t5\t椰子氣味鋪陳檀香木質氣息/順口度高/如同佛珠與佛堂的既視感香氣\n民風淳樸剝皮寮\t$420\tVodka伏特加/ Gin琴酒\tDon Julio Blanco/Peeled Pepper Infused Vodka自製剝皮辣椒伏特加/East 135 GinㄥSoy Sauce手工醬油/Clarify Tomato Juice澄清番茄汁/ Ginger Ale薑汁汽水/Umami Bitters旨味苦精\t3\t氣泡爽口/輕微香菇與番茄鮮味/尾巴有些許辣椒熱感/不會辣\n日皇御用摩納卡\t$430\tWhiskey泥煤威士忌\tArbeg10y/Red Beans杜瓦小豆香甜酒/Luxardo Apricot杏桃香甜酒/Milk牛奶/Hawthorn Miso Campari Monaka仙楂味增金巴利最中餅\t2.5\t前味紅豆氣味明顯/中段杏桃果香參雜煙燻味/大人味奶酒\n阿寶師的咖哩酥\t400\tWhiskey威士忌\tPork Floss Infused Whiskey肉鬆威士忌/Curry Syrup咖哩糖漿/Carrot Juice胡蘿蔔汁\t3\t甜味型調酒/咖哩氣味轉為肉鬆帶來的輕微脂感/尾韻為胡蘿蔔自然清甜\n懸壺濟世青草巷退火養肝茶\t400\tgin琴酒\tCheerful Crackers Infused gin自製奇福餅乾琴酒/Burdock Infused Frangelico 自製牛蒡榛果香甜酒/Dita荔枝香甜酒/Grassleef Sweetflag Rhizome石菖蒲/Falernum法勒南香甜酒/Suze龍膽草香甜酒\t3.5\t苦甜型調酒/牛蒡與龍膽草結合使苦味不再單調/中調由石菖蒲與法勒南特有的香料譜出/奇福餅乾的油脂感作為橋樑銜接所有風味\n清涼百草茶\t400\tHerbal Tea Wine青草茶酒\tHerbal Tea Wine青草茶酒/Vecchio amaro del capo義大利藥草酒/Asiatic Worm wood杜瓦艾草香甜酒/Dita荔枝香甜酒/Fernet Branca義大利苦味香甜酒\t4\t中式草本遇上西式藥酒/清甜中帶微苦/艾草香銜接荔枝果香/\n駐顏美人湯\t400\tBrandy白蘭地\tLa Caravedo Pisco秘魯白蘭地/White wine cardamom syrup自製白酒荳蔻糖漿/Aloe Liqueur蘆薈香甜酒/Chartreuse修道院香甜酒/Acid Solution酸味模擬液/Aloe Water澄清蘆薈汁/Ruta Graveolens Spray芸香噴霧\t3\t入口時可聞到雲香帶有甜感的獨特香氣/蘆薈為主軸的清新類花香/尾韻香水白蘭地葡萄香與荳蔻隱約浮現\n新世紀冬瓜茶\t360\tRum蘭姆酒\tSpice White Gourd Drink自製香料冬瓜茶/Clarify Banana Juice澄清香蕉水/Soda Water蘇打水\t3.5\t香料增添冬瓜茶層次風味與香蕉熱帶水果氣味相輔相乘/輕微甜口\n古早味楊桃湯\t360\tGin琴酒\tStar fruit juice鹽漬楊桃湯/Pineapple Juice鳳梨汁/Caramel焦糖/Tonic通寧水/Spite雪碧\t3.5\t楊桃湯輕微鹹味帶出甜感/焦糖鳳梨作為後味支撐\n-------------------------\n" ]
2024-01-10
kladskull/crowd.dev
premium~eagle-eye~crowd-eagle-eye~crowd~eagle_eye~scheduled.py
import requests import json import logging import json from crowd.eagle_eye.sources import hacker_news from crowd.eagle_eye.sources import devto from crowd.eagle_eye.sources import post_process from crowd.eagle_eye.apis import CohereAPI from crowd.eagle_eye.apis.vector_api import VectorAPI root = logging.getLogger() if root.handlers: for handler in root.handlers: root.removeHandler(handler) logging.basicConfig( format="%(asctime)s.%(msecs)03d %(levelname)s [%(filename)s:%(lineno)s] %(message)s", level=logging.INFO ) logger = logging.getLogger(__name__) def scheduled_main(source): """ Main function. It will get the data from Hacker News, process the data that was not yet in the database, vectorise it, and save it to the database. """ vector = VectorAPI() cohere = CohereAPI() if source == 'hacker_news': logger.info("Source is Hacker News") data = hacker_news() elif source == 'devto': logger.info("Source is Dev.to") data = devto() else: raise ValueError(f'Unknown source: {source}') logger.info('Finding existing IDs...') existing_ids = vector.find_existing_ids([point.id for point in data]) data = post_process(data, existing_ids) data = cohere.embed_points(data) return vector.upsert(data) if __name__ == '__main__': scheduled_main()
[]
2024-01-10
kladskull/crowd.dev
premium~eagle-eye~crowd-eagle-eye~crowd~eagle_eye~hacker_news.py
import pandas as pd import requests import hashlib import json import logging import signal from bs4 import BeautifulSoup from transformers import GPT2TokenizerFast from urllib.parse import urlparse from reppy.robots import Robots import time logger = logging.getLogger(__name__) def pre_process(df): """ Pre-process the data Args: df (DataFrame): DataFrame to be pre-processed Returns: DataFrame: Pre-processed DataFrame """ df = df.rename(columns={'by': 'username'}) df = df.drop(columns=['descendants', 'kids', 'type']) df['platform'] = df.apply(lambda x: 'Hacker News', axis=1) return make_ids(df) def make_ids(df): def hash(r): return int(hashlib.sha256(f'{r.platform}-{r.id}'.encode('utf-8')).hexdigest(), 16) % 10**8 df['vectorId'] = df.apply(lambda x: hash(x), axis=1) df.to_csv('hacker_news.csv', index=False) return df def merge(from_db, from_hn): """ Merge the data coming from the database and the data coming from Hacker News. It is merged by sourceId, with priority to the data coming from the database. Args: from_db (DataFrame): df from the database from_hn (DataFrame): df from Hacker News """ pd.concat([from_db, from_hn]).drop_duplicates(subset='sourceId', keep="first") def post_process(df): """ Post-process the data, but still before training. Args: df (DataFrame): DataFrame to be post-processed for training """ def fill_text(text, url): """ If there is no text coming from Hacker News, we try to get it from the text in the website given by the url. We need to check robots.txt to see if we are allowed to crawl the website. Args: text (string): text field from Hacker News url (string): url field from Hacker News """ def timeout_handler(num, stack): """ Raises an exception after a timeout. """ ("Received SIGALRM") raise Exception("Alarm") # We only need this if # 1. There is no text coming from Hacker News # 2. The url is not empty # 3. The site is not a PDF if not pd.notna(text) and pd.notna(url) and 'pdf' not in url: # We set a timeout for the request signal.signal(signal.SIGALRM, timeout_handler) signal.alarm(4) try: # TODO: Make sure this works host = urlparse(url).hostname robots = Robots.fetch(f'https://{host}/robots.txt') if robots.allowed(url, 'my-user-agent'): html = requests.get(url).text else: return text except Exception as e: # noqa: E722 print(e) return text finally: signal.alarm(0) # Get the text in the page soup = BeautifulSoup(html, features="html.parser") allowlist = [ 'p' ] # Prune to 2000 characters to make sure we don't get a too long text for OpenAI text = ' '.join([t for t in soup.find_all(text=True) if t.parent.name in allowlist])[:800] return text return text def make_full_text(title, text): """ Concatenate the title and the text. Args: title (string): title field from Hacker News text (string): text field from Hacker News Returns: string: concatenated title and text """ return "Title: " + title + "; Content: " + text # Fill text and concatenated with the above functions df['text'] = df.apply(lambda x: fill_text(x.text, x.url), axis=1) df = df[df['text'].notna()] df['combined'] = df.apply(lambda x: make_full_text(x.title, x.text), axis=1) # Tokenise and drop rows that have too long tokens tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") df['n_tokens'] = df.combined.apply(lambda x: len(tokenizer.encode(x))) df = df[df.n_tokens < 1000].tail(1_000) return df def get_hacker_news_data(): """ Get the data from Hacker News. """ print("Fetching top IDs from Hacker News...") top_500 = json.loads(requests.get('https://hacker-news.firebaseio.com/v0/topstories.json').content) print("Done") print("Fetching data from Hacker News...") ('Starting') start = time.time() dicts = [ json.loads(requests.get(f'https://hacker-news.firebaseio.com/v0/item/{story_id}.json').content) for story_id in top_500 ] print(f"Done in {time.time() - start} seconds") df = pd.DataFrame(dicts) return pre_process(df) def main(): """ Main function. It will get the data from Hacker News, process the data that was not yet in the database, vectorise it, and save it to the database. """ # Get the data from Hacker News df = get_hacker_news_data() # Post-process the data df = post_process(df) df.to_csv('hacker_news_processed.csv', index=False) if __name__ == '__main__': from pprint import pprint as print # main() # get_hacker_news_data() df = pd.read_csv('hacker_news_processed.csv') import cohere import numpy as np co = cohere.Client("0BtmFTxNAhmanfNCdMRb10bpk2jtKCT1MLxQkSSF") # embeds = co.embed( # texts=list(df['combined'].values), # model='small', # truncate='LEFT' # ).embeddings # import numpy as np # shape = np.array(embeds).shape # print(shape) from qdrant_client import QdrantClient from qdrant_client.http import models client = QdrantClient(host="localhost", port=6333) client.recreate_collection( collection_name="crowddev", distance="Cosine", vector_size=1024, ) # Remove text nan df = df[df['text'].notna()] df1 = df.head(10) print(df1) embeds = co.embed( texts=list(df1['combined'].values), model='small', truncate='LEFT' ).embeddings df1.drop(columns=['combined'], inplace=True) ids = list(df1.vectorId.values) ids = [int(i) for i in ids] df1.drop(columns=['vectorId'], inplace=True) payloads = list(df1.T.to_dict().values()) print(payloads) client.upsert( collection_name="crowddev", points=models.Batch( ids=ids, payloads=payloads, vectors=embeds ), )
[]
2024-01-10
kladskull/crowd.dev
premium~eagle-eye~crowd-eagle-eye~crowd~eagle_eye~apis~vector_api.py
import pinecone import datetime import time from crowd.eagle_eye.apis import CohereAPI import logging import itertools import os from crowd.eagle_eye.config import KUBE_MODE, VECTOR_API_KEY, VECTOR_INDEX logger = logging.getLogger(__name__) class VectorAPI: """ Class to interact with the vector database. """ def __init__(self, index_name=None): """ Initialize the VectorAPI. Args: index_name (str, optional): Name of the DB index. Defaults to "crowddev". """ if KUBE_MODE: pinecone.init(api_key=VECTOR_API_KEY, environment="us-east-1-aws") else: pinecone.init(api_key=os.environ.get('VECTOR_API_KEY'), environment="us-east-1-aws") if index_name is None: if KUBE_MODE: index_name = VECTOR_INDEX else: index_name = os.environ.get('VECTOR_INDEX') self.index = pinecone.Index(index_name) @staticmethod def _chunks(iterable, batch_size=80): """A helper function to break an iterable into chunks of size batch_size. https://www.pinecone.io/docs/insert-data/#batching-upserts. Args: iterable (iterable): The iterable to break into chunks. batch_size (int, optional): The size of each chunk. Defaults to 80. """ it = iter(iterable) chunk = tuple(itertools.islice(it, batch_size)) while chunk: yield chunk chunk = tuple(itertools.islice(it, batch_size)) def upsert(self, points): """ Upsert a list of points into the vector database. Args: points ([Point]): points to upsert. """ if (len(points) == 0): return # Pinecone needs the points converted into tuples vectors = [ (point.id, point.embed, point.payload_as_dict()) for point in points ] for ids_vectors_chunk in VectorAPI._chunks(vectors, batch_size=100): self.index.upsert(vectors=ids_vectors_chunk) return "OK" @ staticmethod def _get_timestamp(ndays, start=int(time.time())): """ Get the unix timestamp for a given number of days ago. Args: ndays (int): number of days ago. start (int, optional): start timestamp. Defaults to int(time.time()). Returns: int: timestamp """ # TODO-test now = datetime.datetime.fromtimestamp(start) return int((now - datetime.timedelta(days=ndays)).timestamp()) def find_existing_ids(self, ids): """ Given a list of ids, find which ones already exist in the vector database. Args: ids ([str]): list of ids to find. Returns: [str]: list of existing ids. """ existing = list(self.index.fetch(ids=ids)['vectors'].keys()) logger.info('Found %d existing IDs', len(existing)) return existing def delete(self, ids): """ Delete a list of ids from the vector database. Args: ids ([str]): list of ids to delete. Returns: str: success message. """ if type(ids) == str: ids = [ids] return self.index.delete(ids=ids) def search(self, query, ndays, exclude, cohere=None): """ Perform a search on the vector database. We can set number of days ago, and exclude certain ids. Args: query (str): query to perform, for example a keyword ndays (int): maximum number of days ago to search exclude ([str]): list of ids to exclude from the search cohere (CohereAPI, optional): Already initialised CohereAPI. Defaults to None. Returns: [dict]: list of results """ if cohere is None: cohere = CohereAPI() start = self._get_timestamp(ndays) # Embed the query into a vector vector = cohere.embed_one(query) return self.index.query( vector=vector, top_k=20, filter={ "timestamp": {"$gte": start}, "vectorId": {"$nin": exclude} }, includeMetadata=True )
[]
2024-01-10
slyder219/tKinterChatGPT
testing~import%20openai.py
import openai openai.api_key = key model = "gpt-3.5-turbo" temp = 0.5 messages = [] while True: mes = input("\nEnter input: ") if "hist" in mes and len(mes) <= 10: print(messages) elif "temp" in mes and len(mes) <= 10: new = float(input("Enter int for temp: ")) temp = new else: messages.append({"role" : "user", "content" : mes}) response = openai.ChatCompletion.create( model = model, messages = messages, temperature = temp ) textOut = response.choices[0].message.content messages.append({"role" : "assistant", "content" : textOut}) print() print(textOut)
[]
2024-01-10
slyder219/tKinterChatGPT
testing~tetsingClass.py
import openai key = os.environ.get("OPENAI_API_KEY") openai.api_key = key class convo(): def __init__(self): self.temp = 0.5 self.model = "gpt-3.5-turbo" self.history = [] self.latestTextOut = "" def response(self, newMessage): self.history.append( {"role": "user", "content": newMessage} ) response = openai.ChatCompletion.create( model = self.model, messages = self.history, temperature = self.temp ) textOut = response.choices[0].message.content self.history.append( {"role": "assistant", "content": textOut} ) self.latestTextOut = textOut def main(): currentConvo = convo() currentConvo.response("Hello, how are you?") print(currentConvo.latestTextOut) if __name__ == "__main__": main()
[]
2024-01-10
slyder219/tKinterChatGPT
testing~tkinterChatGPT.py
import sys import customtkinter as ctk import openai messages = [] temp = 0.6 sys.path.append(r"C:\Users\seanl\AppData\Local\Programs\Python\Python311\Lib\site-packages") ctk.set_appearance_mode("dark") ctk.set_default_color_theme("blue") key = os.environ.get("OPENAI_API_KEY") openai.api_key = key model = "gpt-3.5-turbo" def enterButton(textbox, output): global messages output.configure(state = "normal") input = textbox.get("0.0", "end") messages.append({"role": "user", "content": input}) response = openai.ChatCompletion.create(model = model, messages = messages, temperature = temp) textResponse = response.choices[0].message.content print(textResponse) messages.append({"role": "assistant", "content": textResponse}) output.insert("end", "\n\n") output.insert("end", textResponse) textbox.delete("0.0", "end") output.configure(state = "disabled") def main(): root = ctk.CTk() root.geometry("1000x700") root.title("ChatGPT3.5Turbo") frame1 = ctk.CTkFrame(root, width = 1000, height= 700) frame1.grid(row = 0, column = 0) textbox = ctk.CTkTextbox(frame1, width = 1000) textbox.grid(row = 0, column = 0, sticky = "nsew") outputBox = ctk.CTkTextbox(frame1, width = 1000, height = 375) button = ctk.CTkButton(frame1, width = 500, height = 50, border_width = 0, corner_radius = 8, text = "Enter", command= lambda: enterButton(textbox, outputBox)) button.grid(row = 1) outputBox.grid(row = 2, column = 0, pady = 20) outputBox.configure(state = "disabled") root.mainloop() if __name__ == "__main__": main()
[ "INPUT" ]
2024-01-10
xorsuyash/Multi-pdf-chat
app2.py
import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from htmlTemplates import css, bot_template, user_template from langchain.llms import HuggingFaceHub def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): embeddings = OpenAIEmbeddings() # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore def get_conversation_chain(vectorstore): llm = ChatOpenAI() # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def handle_userinput(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(user_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) else: st.write(bot_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) def main(): load_dotenv() st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:") st.write(css, unsafe_allow_html=True) if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("Chat with multiple PDFs :books:") user_question = st.text_input("Ask a question about your documents:") if user_question: handle_userinput(user_question) with st.sidebar: st.subheader("Your documents") pdf_docs = st.file_uploader( "Upload your PDFs here and click on 'Process'", accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing"): # get pdf text raw_text = get_pdf_text(pdf_docs) # get the text chunks text_chunks = get_text_chunks(raw_text) # create vector store vectorstore = get_vectorstore(text_chunks) # create conversation chain st.session_state.conversation = get_conversation_chain( vectorstore) if __name__ == '__main__': main()
[]
2024-01-10
eugepineiro/lang-bot
rate_limit.py
import time import random from openai import RateLimitError def make_request_with_retry(api_call, max_retries=5): for i in range(max_retries): try: return api_call() except RateLimitError: wait_time = (2 ** i) + random.random() time.sleep(wait_time) raise Exception("Still hitting rate limit after max retries")
[]
2024-01-10
jadamixd/CodeNTNU-Hackathon
camera~imagetext_extraction.py
import pytesseract as pyt from PIL import Image import openai import cv2 import numpy as np # Path to the Tesseract executable (update this with your installation path) pyt.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe' # Function to sharpen and extract text from an image using OCR def extract_text_from_image(image_path): try: # Load the image image = cv2.imread(image_path) # Convert the image to grayscale gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Apply thresholding to create a binary image _, thresh = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY) # Find contours in the binary image contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Initialize variables to track the largest white rectangle largest_area = 0 largest_contour = None # Process each contour for contour in contours: # Calculate the area of the contour area = cv2.contourArea(contour) # Check if the area is larger than the current largest if area > largest_area: largest_area = area largest_contour = contour # Get the coordinates of the bounding box around the largest white contour x, y, w, h = cv2.boundingRect(largest_contour) # Crop the region containing the largest white contour largest_white_contour = image[y:y+h, x:x+w] # Save the resized image as a single image cv2.imwrite("static\image_new.jpg", largest_white_contour) kernel = np.array([[0, -1, 0], [-1, 5,-1], [0, -1, 0]]) image_sharp = cv2.filter2D(src=image, ddepth=-1, kernel=kernel) # img = cv2.imread("static\image_new.jpg", 1) # converting to LAB color space lab= cv2.cvtColor(image_sharp, cv2.COLOR_BGR2LAB) l_channel, a, b = cv2.split(lab) # Applying CLAHE to L-channel # feel free to try different values for the limit and grid size: clahe = cv2.createCLAHE(clipLimit=0.5, tileGridSize=(2,2)) cl = clahe.apply(l_channel) # merge the CLAHE enhanced L-channel with the a and b channel limg = cv2.merge((cl,a,b)) # Converting image from LAB Color model to BGR color spcae enhanced_img = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR) # Stacking the original image with the enhanced image cv2.imwrite("static\image_new.jpg",enhanced_img) # Open the image using Pillow (PIL) image = Image.open("static\image_new.jpg") # Perform OCR on the image text = pyt.image_to_string(image)#, lang="nor") return text except Exception as e: print(f"An error occurred: {str(e)}") return None # Function to extract the relevant parts from the extracted string def extracting_relevant_text(extracted_text): try: # INSERT YOU OPENAI ORGANIZATION AND API KEY HERE message=[ {"role": "system", "content": "Du er en data analytiker som er god til å filtrere ut matvarer fra en tekst."}, {"role": "user", "content": str(f"Kan du filtrere ut matvarer fra kvitteringen under og gi det som en komma separert streng med kun alle matvarene? Ikke oversett noen ting, rett opp i skrivefeil, og ignorer tall og ord som ikke er mat: {extracted_text}")} ] response = openai.ChatCompletion.create( model="gpt-4", max_tokens=2000, temperature=1.5, messages=message ) extracted_text_list = response['choices'][0]['message']['content'].strip('"').split(",") print(extracted_text_list) return extracted_text_list except: print("total failure!") return []
[ "Kan du filtrere ut matvarer fra kvitteringen under og gi det som en komma separert streng med kun alle matvarene? Ikke oversett noen ting, rett opp i skrivefeil, og ignorer tall og ord som ikke er mat: PLACEHOLDER", "Du er en data analytiker som er god til å filtrere ut matvarer fra en tekst." ]
2024-01-10
BenMinch/MIP
MIP_AI.py
import pandas as pd import sys,os,subprocess,argparse from openai import OpenAI import time argparser = argparse.ArgumentParser(description='Get AI descriptions from protein descriptions') argparser.add_argument('-i', '--input', help='Input csv file (Must have a column called Description with protein descriptions)', required=True) argparser.add_argument('-o', '--output', help='Output csv file', required=True) args = argparser.parse_args() test_file = pd.read_csv(args.input) output_file = args.output import time test_file client=OpenAI() assistant= client.beta.assistants.create( name="Protein Classifier", instructions="Based on the following description of a protein, I want you to give a short description of the protein's function with a 4 word limit", model='gpt-3.5-turbo' ) #iterate through descriptions and get responses in matching column test_file['Function']='' for i in range(len(test_file)): thread=client.beta.threads.create() description=test_file['Description'][i] message=client.beta.threads.messages.create( thread_id=thread.id, role="user", content=description ) run= client.beta.threads.runs.create( thread_id=thread.id, assistant_id=assistant.id, ) time.sleep(5) messages = client.beta.threads.messages.list( thread_id=thread.id ) assistant_response='' for message in messages.data: if message.role == "assistant": assistant_response = message.content[0].text.value break print(assistant_response) test_file['Function'][i]=assistant_response time.sleep(5) #clear thread client.beta.threads.delete(thread.id) #clear thread test_file.to_csv(output_file,index=False)
[]
2024-01-10
DSSGxUK/sma
src~helpers~topic_modelling.py
import logging import gensim import gensim.corpora as corpora import pandas as pd from gensim.models import CoherenceModel from gensim.utils import simple_preprocess import os os.environ["MALLET_HOME"] = "/files/mallet/mallet-2.0.8/" logger = logging.getLogger(__name__) logger.setLevel(logging.WARNING) logging.getLogger('gensim').setLevel(logging.ERROR) def create_dict(data, text_column): # Tokenize the docs tokenized_list = [simple_preprocess(doc) for doc in data[text_column]] # Create the Corpus and dictionary mydict = corpora.Dictionary() # The (0, 1) in line 1 means, the word with id=0 appears once in the 1st document. # Likewise, the (4, 4) in the second list item means the word with id 4 appears 4 times in the second document. And so on. mycorpus = [mydict.doc2bow(doc, allow_update=True) for doc in tokenized_list] # Not human readable. Convert the ids to words. # Notice, the order of the words gets lost. Just the word and it?s frequency information is retained. word_counts = [[(mydict[id], count) for id, count in line] for line in mycorpus] # Save the Dict and Corpus mydict.save('mydict.dict') # save dict to disk corpora.MmCorpus.serialize('mycorpus.mm', mycorpus) # save corpus to disk return mydict, mycorpus, tokenized_list # Find the optimal number of topics for LDA. # build many LDA models with different values of number of topics (k) # and pick the one that gives the highest coherence value. # Choosing a k that marks the end of a rapid growth of topic coherence # usually offers meaningful and interpretable topics. # Picking an even higher value can sometimes provide more granular sub-topics. # If the same keywords being repeated in multiple topics, it's probably a sign that the k is too large. def compute_coherence_values(dictionary, corpus, texts, limit, start, step): """ Compute c_v coherence for various number of topics Parameters: ---------- dictionary : Gensim dictionary corpus : Gensim corpus texts : List of input texts limit : Max num of topics Returns: ------- model_list : List of LDA topic models coherence_values : Coherence values corresponding to the LDA model with respective number of topics """ coherence_values = [] model_list = [] mallet_path = '/home/desktop1/files/mallet-2.0.8/mallet-2.0.8/bin/mallet' for num_topics in range(start, limit, step): model = gensim.models.wrappers.LdaMallet(mallet_path, corpus=mycorpus, num_topics=num_topics, id2word=mydict) model_list.append(model) coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence='c_v') coherence_values.append(coherencemodel.get_coherence()) # Show graph x = range(start, limit, step) plt.plot(x, coherence_values) plt.xlabel("Num Topics") plt.ylabel("Coherence score") plt.legend(("coherence_values"), loc='best') plt.show() # Print the coherence scores for m, cv in zip(x, coherence_values): print("Num Topics =", m, " has Coherence Value of", round(cv, 4)) k = coherence_values.index(max(coherence_values)) print(k) return model_list def topic_scores(data: list, num_topics): # Tokenize the docs tokenized_list = [simple_preprocess(doc) for doc in data] # Create the Corpus and dictionary mydict = corpora.Dictionary() # The (0, 1) in line 1 means, the word with id=0 appears once in the 1st document. # Likewise, the (4, 4) in the second list item means the word with id 4 appears 4 times in the second document. And so on. mycorpus = [mydict.doc2bow(doc, allow_update=True) for doc in tokenized_list] mallet_path = '/files/mallet-2.0.8/mallet-2.0.8/bin/mallet' model = gensim.models.wrappers.LdaMallet(mallet_path, corpus=mycorpus, num_topics=num_topics, id2word=mydict) #coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence='c_v') #coherence_values.append(coherencemodel.get_coherence()) # Init output sent_topics_df = pd.DataFrame() # Get topic in each document for i, row in enumerate(model[mycorpus]): # Get the topics, Perc Contribution and for each document for j, (topic_num, prop_topic) in enumerate(row): sent_topics_df = sent_topics_df.append(pd.Series([i, int(topic_num), prop_topic]), ignore_index=True) sent_topics_df.columns = ['row_number','Topic', 'Topic_Contribution'] sent_topics_df = sent_topics_df.pivot(index="row_number", columns="Topic", values="Topic_Contribution").reset_index() return sent_topics_df
[]
2024-01-10
ChadiHelwe/MAFALDA
src~annotation_models~models.py
from abc import ABC, abstractmethod from langchain.chat_models import ChatOpenAI from langchain.schema import AIMessage, HumanMessage from revChatGPT.V1 import Chatbot from revChatGPT.V3 import Chatbot as ChatbotV3 class LanguageModel(ABC): def __init__(self): pass def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): return None @abstractmethod def run_prompt(self, prompt: str) -> str: pass class ChatGPTModel(LanguageModel): def __init__(self, access_token: str, api_key=None, **kwargs): self.access_token = access_token self.messages = [] self.chat = None self.kwargs = kwargs self.conversation_id = None self.parent_id = None self.api_key = api_key def __enter__(self): config = {"access_token": self.access_token, "paid": True} if self.kwargs: config.update(self.kwargs) if self.api_key: self.chat = ChatbotV3( api_key=self.api_key, engine=config["model"], temperature=0 ) else: self.chat = Chatbot(config=config) return self def __exit__(self, exc_type, exc_val, exc_tb): if self.conversation_id: try: self.chat.delete_conversation(self.conversation_id) except: pass self.chat = None self.messages = None self.conversation_id = None self.parent_id = None self.kwargs = None self.access_token = None def run_prompt(self, prompt: str) -> str: self.messages.append(HumanMessage(content=prompt)) if self.api_key: if self.conversation_id is None: self.conversation_id = "default" result = self.chat.ask(prompt, role="user", convo_id=self.conversation_id) # self.chat.conversation assert isinstance(result, str) self.messages.append(AIMessage(content=result)) return result else: result = self.chat.ask( prompt, conversation_id=self.conversation_id, parent_id=self.parent_id ) result = list(result)[-1] self.messages.append(AIMessage(content=result["message"])) self.conversation_id = result["conversation_id"] self.parent_id = result["parent_id"] return result["message"]
[]
2024-01-10
ChadiHelwe/MAFALDA
src~experiments_pipelines~pipelines.py
import json import logging import os from collections import OrderedDict from typing import Any from langchain.chains import ConversationChain, LLMChain from langchain.memory import ConversationBufferMemory from langchain.prompts import PromptTemplate from tqdm import tqdm from src.classification_models.quantized_llama_based_models import ( LLaMABasedQuantizedModel, ) from src.experiments_pipelines.chatbot import ChatBotLLM from src.process_docanno_data import process_data from src.utils import read_jsonl PROMPT = { 0: """ {instruction_begin} Text: "{example_input}" Determine whether the following sentence contains a fallacy or not: Sentence: "{sentence_input}" {instruction_end} Output: """, 1: """ {instruction_begin} Text: "{example_input}" Based on the above text, identify the fallacy (if any) in the following sentence. If a fallacy is present, specify the type(s) of fallacy without providing explanations. The possible types of fallacy are: - appeal to emotion - fallacy of logic - fallacy of credibility Sentence: "{sentence_input}" {instruction_end} Output: """, 2: """ {instruction_begin} Text: "{example_input}" Based on the above text, identify the fallacy (if any) in the following sentence. If a fallacy is present, specify the type(s) of fallacy without providing explanations. The possible types of fallacy are: - appeal to positive emotion - appeal to anger - appeal to fear - appeal to pity - appeal to ridicule - appeal to worse problems - causal oversimplification - circular reasoning - equivocation - false analogy - false causality - false dilemma - hasty generalization - slippery slope - straw man - fallacy of division - ad hominem - ad populum - appeal to (false) authority - appeal to nature - appeal to tradition - guilt by association - tu quoque Sentence: "{sentence_input}" {instruction_end} Output: """, } ALT_PROMPT = { 0: """ {instruction_begin} Definitions: - An argument consists of an assertion called the conclusion and one or more assertions called premises, where the premises are intended to establish the truth of the conclusion. Premises or conclusions can be implicit in an argument. - A fallacious argument is an argument where the premises do not entail the conclusion. Text: "{example_input}" Based on the above text, determine whether the following sentence is part of a fallacious argument or not: Sentence: "{sentence_input}" {instruction_end} Output: """, 1: """ {instruction_begin} Definitions: - An argument consists of an assertion called the conclusion and one or more assertions called premises, where the premises are intended to establish the truth of the conclusion. Premises or conclusions can be implicit in an argument. - A fallacious argument is an argument where the premises do not entail the conclusion. Text: "{example_input}" Based on the above text, determine whether the following sentence is part of a fallacious argument or not. If it is, indicate the type(s) of fallacy without providing explanations. The potential types of fallacy include: - appeal to emotion - fallacy of logic - fallacy of credibility Sentence: "{sentence_input}" {instruction_end} Output: """, 2: """ {instruction_begin} Definitions: - An argument consists of an assertion called the conclusion and one or more assertions called premises, where the premises are intended to establish the truth of the conclusion. Premises or conclusions can be implicit in an argument. - A fallacious argument is an argument where the premises do not entail the conclusion. Text: "{example_input}" Based on the above text, determine whether the following sentence is part of a fallacious argument or not. If it is, indicate the type(s) of fallacy without providing explanations. The potential types of fallacy include: - appeal to positive emotion - appeal to anger - appeal to fear - appeal to pity - appeal to ridicule - appeal to worse problems - causal oversimplification - circular reasoning - equivocation - false analogy - false causality - false dilemma - hasty generalization - slippery slope - straw man - fallacy of division - ad hominem - ad populum - appeal to (false) authority - appeal to nature - appeal to tradition - guilt by association - tu quoque Sentence: "{sentence_input}" {instruction_end} Output: """, } def zero_or_few_shots_pipeline( model: LLaMABasedQuantizedModel, dataset_path: str = None, prediction_path: str = None, level: int = 0, alt_prompt: bool = True, ): logger = logging.getLogger("MafaldaLogger") if alt_prompt: prompt = PromptTemplate( input_variables=[ "example_input", "sentence_input", "instruction_begin", "instruction_end", ], template=ALT_PROMPT[level], ) else: prompt = PromptTemplate( input_variables=[ "example_input", "sentence_input", "instruction_begin", "instruction_end", ], template=PROMPT[level], ) chatbot_model = ChatBotLLM(model=model) if model.model_name == "gpt-3.5": chatbot_model.max_length = 1024 chatbot_chain = LLMChain(llm=chatbot_model, prompt=prompt) data = read_jsonl(dataset_path) processed_data = process_data(data) assert len(data) == len( processed_data ), f"Data length mismatch: {len(data)} != {len(processed_data)}" # Check already processed examples already_processed = set() if os.path.exists(prediction_path): with open(prediction_path, "r") as f: for line in f: try: entry = json.loads(line) already_processed.add(entry["text"]) except json.JSONDecodeError: # Handle improperly formatted last line f.seek(0) all_lines = f.readlines() with open(prediction_path, "w") as fw: fw.writelines(all_lines[:-1]) with open(prediction_path, "a") as f: for example, processed_example in tqdm( zip(data, processed_data), total=len(data) ): if example["text"] in already_processed: logger.info(f"Skipping already processed example: {example['text']}") continue logger.info(example["text"]) # pred_outputs = '{"prediction": {' pred_outputs = OrderedDict() for s in processed_example: logger.info(s) output = chatbot_chain.run( example_input=example["text"], sentence_input=s, instruction_begin=model.instruction_begin, instruction_end=model.instruction_end, ) logger.info(output) # pred_outputs += f'"{s}": "{output}",' pred_outputs[s] = output # pred_outputs = pred_outputs[:-1] + "}}" json_line = json.dumps( { "text": example["text"], "prediction": pred_outputs, } ) f.write(json_line + "\n")
[ "{0: '\\n {instruction_begin}\\n\\n Definitions:\\n - An argument consists of an assertion called the conclusion and one or more assertions called premises, where the premises are intended to establish the truth of the conclusion. Premises or conclusions can be implicit in an argument.\\n - A fallacious argument is an argument where the premises do not entail the conclusion.\\n\\n Text: \"{example_input}\"\\n\\n Based on the above text, determine whether the following sentence is part of a fallacious argument or not:\\n \\n Sentence: \"{sentence_input}\" {instruction_end}\\n \\n Output:\\n \\n ', 1: '\\n {instruction_begin}\\n\\n Definitions:\\n - An argument consists of an assertion called the conclusion and one or more assertions called premises, where the premises are intended to establish the truth of the conclusion. Premises or conclusions can be implicit in an argument.\\n - A fallacious argument is an argument where the premises do not entail the conclusion.\\n\\n Text: \"{example_input}\"\\n\\n Based on the above text, determine whether the following sentence is part of a fallacious argument or not. If it is, indicate the type(s) of fallacy without providing explanations. The potential types of fallacy include:\\n - appeal to emotion\\n - fallacy of logic\\n - fallacy of credibility \\n \\n Sentence: \"{sentence_input}\" {instruction_end}\\n \\n Output:\\n \\n ', 2: '\\n {instruction_begin}\\n\\n Definitions:\\n - An argument consists of an assertion called the conclusion and one or more assertions called premises, where the premises are intended to establish the truth of the conclusion. Premises or conclusions can be implicit in an argument.\\n - A fallacious argument is an argument where the premises do not entail the conclusion.\\n \\n Text: \"{example_input}\"\\n\\n Based on the above text, determine whether the following sentence is part of a fallacious argument or not. If it is, indicate the type(s) of fallacy without providing explanations. The potential types of fallacy include:\\n - appeal to positive emotion\\n - appeal to anger\\n - appeal to fear\\n - appeal to pity\\n - appeal to ridicule\\n - appeal to worse problems\\n - causal oversimplification\\n - circular reasoning\\n - equivocation\\n - false analogy\\n - false causality\\n - false dilemma\\n - hasty generalization\\n - slippery slope\\n - straw man\\n - fallacy of division\\n - ad hominem\\n - ad populum\\n - appeal to (false) authority\\n - appeal to nature\\n - appeal to tradition\\n - guilt by association\\n - tu quoque\\n \\n Sentence: \"{sentence_input}\" {instruction_end}\\n \\n Output:\\n '}", "instruction_end", "sentence_input", "example_input", "instruction_begin", "{0: '\\n {instruction_begin}\\n\\n Text: \"{example_input}\"\\n\\n Determine whether the following sentence contains a fallacy or not:\\n \\n Sentence: \"{sentence_input}\" {instruction_end}\\n \\n Output:\\n \\n ', 1: '\\n {instruction_begin}\\n\\n Text: \"{example_input}\"\\n\\n Based on the above text, identify the fallacy (if any) in the following sentence. If a fallacy is present, specify the type(s) of fallacy without providing explanations. The possible types of fallacy are:\\n - appeal to emotion\\n - fallacy of logic\\n - fallacy of credibility \\n \\n Sentence: \"{sentence_input}\" {instruction_end}\\n \\n Output:\\n \\n ', 2: '\\n {instruction_begin}\\n\\n Text: \"{example_input}\"\\n\\n Based on the above text, identify the fallacy (if any) in the following sentence. If a fallacy is present, specify the type(s) of fallacy without providing explanations. The possible types of fallacy are:\\n - appeal to positive emotion\\n - appeal to anger\\n - appeal to fear\\n - appeal to pity\\n - appeal to ridicule\\n - appeal to worse problems\\n - causal oversimplification\\n - circular reasoning\\n - equivocation\\n - false analogy\\n - false causality\\n - false dilemma\\n - hasty generalization\\n - slippery slope\\n - straw man\\n - fallacy of division\\n - ad hominem\\n - ad populum\\n - appeal to (false) authority\\n - appeal to nature\\n - appeal to tradition\\n - guilt by association\\n - tu quoque\\n \\n Sentence: \"{sentence_input}\" {instruction_end}\\n \\n Output:\\n '}" ]
2024-01-10
Trinkle23897/tianshou
examples~atari~atari_wrapper.py
# Borrow a lot from openai baselines: # https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py import warnings from collections import deque import cv2 import gymnasium as gym import numpy as np from tianshou.env import ShmemVectorEnv try: import envpool except ImportError: envpool = None def _parse_reset_result(reset_result): contains_info = ( isinstance(reset_result, tuple) and len(reset_result) == 2 and isinstance(reset_result[1], dict) ) if contains_info: return reset_result[0], reset_result[1], contains_info return reset_result, {}, contains_info class NoopResetEnv(gym.Wrapper): """Sample initial states by taking random number of no-ops on reset. No-op is assumed to be action 0. :param gym.Env env: the environment to wrap. :param int noop_max: the maximum value of no-ops to run. """ def __init__(self, env, noop_max=30): super().__init__(env) self.noop_max = noop_max self.noop_action = 0 assert env.unwrapped.get_action_meanings()[0] == "NOOP" def reset(self, **kwargs): _, info, return_info = _parse_reset_result(self.env.reset(**kwargs)) if hasattr(self.unwrapped.np_random, "integers"): noops = self.unwrapped.np_random.integers(1, self.noop_max + 1) else: noops = self.unwrapped.np_random.randint(1, self.noop_max + 1) for _ in range(noops): step_result = self.env.step(self.noop_action) if len(step_result) == 4: obs, rew, done, info = step_result else: obs, rew, term, trunc, info = step_result done = term or trunc if done: obs, info, _ = _parse_reset_result(self.env.reset()) if return_info: return obs, info return obs class MaxAndSkipEnv(gym.Wrapper): """Return only every `skip`-th frame (frameskipping) using most recent raw observations (for max pooling across time steps). :param gym.Env env: the environment to wrap. :param int skip: number of `skip`-th frame. """ def __init__(self, env, skip=4): super().__init__(env) self._skip = skip def step(self, action): """Step the environment with the given action. Repeat action, sum reward, and max over last observations. """ obs_list, total_reward = [], 0.0 new_step_api = False for _ in range(self._skip): step_result = self.env.step(action) if len(step_result) == 4: obs, reward, done, info = step_result else: obs, reward, term, trunc, info = step_result done = term or trunc new_step_api = True obs_list.append(obs) total_reward += reward if done: break max_frame = np.max(obs_list[-2:], axis=0) if new_step_api: return max_frame, total_reward, term, trunc, info return max_frame, total_reward, done, info class EpisodicLifeEnv(gym.Wrapper): """Make end-of-life == end-of-episode, but only reset on true game over. It helps the value estimation. :param gym.Env env: the environment to wrap. """ def __init__(self, env): super().__init__(env) self.lives = 0 self.was_real_done = True self._return_info = False def step(self, action): step_result = self.env.step(action) if len(step_result) == 4: obs, reward, done, info = step_result new_step_api = False else: obs, reward, term, trunc, info = step_result done = term or trunc new_step_api = True self.was_real_done = done # check current lives, make loss of life terminal, then update lives to # handle bonus lives lives = self.env.unwrapped.ale.lives() if 0 < lives < self.lives: # for Qbert sometimes we stay in lives == 0 condition for a few # frames, so its important to keep lives > 0, so that we only reset # once the environment is actually done. done = True term = True self.lives = lives if new_step_api: return obs, reward, term, trunc, info return obs, reward, done, info def reset(self, **kwargs): """Calls the Gym environment reset, only when lives are exhausted. This way all states are still reachable even though lives are episodic, and the learner need not know about any of this behind-the-scenes. """ if self.was_real_done: obs, info, self._return_info = _parse_reset_result(self.env.reset(**kwargs)) else: # no-op step to advance from terminal/lost life state step_result = self.env.step(0) obs, info = step_result[0], step_result[-1] self.lives = self.env.unwrapped.ale.lives() if self._return_info: return obs, info return obs class FireResetEnv(gym.Wrapper): """Take action on reset for environments that are fixed until firing. Related discussion: https://github.com/openai/baselines/issues/240. :param gym.Env env: the environment to wrap. """ def __init__(self, env): super().__init__(env) assert env.unwrapped.get_action_meanings()[1] == "FIRE" assert len(env.unwrapped.get_action_meanings()) >= 3 def reset(self, **kwargs): _, _, return_info = _parse_reset_result(self.env.reset(**kwargs)) obs = self.env.step(1)[0] return (obs, {}) if return_info else obs class WarpFrame(gym.ObservationWrapper): """Warp frames to 84x84 as done in the Nature paper and later work. :param gym.Env env: the environment to wrap. """ def __init__(self, env): super().__init__(env) self.size = 84 self.observation_space = gym.spaces.Box( low=np.min(env.observation_space.low), high=np.max(env.observation_space.high), shape=(self.size, self.size), dtype=env.observation_space.dtype, ) def observation(self, frame): """Returns the current observation from a frame.""" frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) return cv2.resize(frame, (self.size, self.size), interpolation=cv2.INTER_AREA) class ScaledFloatFrame(gym.ObservationWrapper): """Normalize observations to 0~1. :param gym.Env env: the environment to wrap. """ def __init__(self, env): super().__init__(env) low = np.min(env.observation_space.low) high = np.max(env.observation_space.high) self.bias = low self.scale = high - low self.observation_space = gym.spaces.Box( low=0.0, high=1.0, shape=env.observation_space.shape, dtype=np.float32, ) def observation(self, observation): return (observation - self.bias) / self.scale class ClipRewardEnv(gym.RewardWrapper): """clips the reward to {+1, 0, -1} by its sign. :param gym.Env env: the environment to wrap. """ def __init__(self, env): super().__init__(env) self.reward_range = (-1, 1) def reward(self, reward): """Bin reward to {+1, 0, -1} by its sign. Note: np.sign(0) == 0.""" return np.sign(reward) class FrameStack(gym.Wrapper): """Stack n_frames last frames. :param gym.Env env: the environment to wrap. :param int n_frames: the number of frames to stack. """ def __init__(self, env, n_frames): super().__init__(env) self.n_frames = n_frames self.frames = deque([], maxlen=n_frames) shape = (n_frames, *env.observation_space.shape) self.observation_space = gym.spaces.Box( low=np.min(env.observation_space.low), high=np.max(env.observation_space.high), shape=shape, dtype=env.observation_space.dtype, ) def reset(self, **kwargs): obs, info, return_info = _parse_reset_result(self.env.reset(**kwargs)) for _ in range(self.n_frames): self.frames.append(obs) return (self._get_ob(), info) if return_info else self._get_ob() def step(self, action): step_result = self.env.step(action) if len(step_result) == 4: obs, reward, done, info = step_result new_step_api = False else: obs, reward, term, trunc, info = step_result new_step_api = True self.frames.append(obs) if new_step_api: return self._get_ob(), reward, term, trunc, info return self._get_ob(), reward, done, info def _get_ob(self): # the original wrapper use `LazyFrames` but since we use np buffer, # it has no effect return np.stack(self.frames, axis=0) def wrap_deepmind( env_id, episode_life=True, clip_rewards=True, frame_stack=4, scale=False, warp_frame=True, ): """Configure environment for DeepMind-style Atari. The observation is channel-first: (c, h, w) instead of (h, w, c). :param str env_id: the atari environment id. :param bool episode_life: wrap the episode life wrapper. :param bool clip_rewards: wrap the reward clipping wrapper. :param int frame_stack: wrap the frame stacking wrapper. :param bool scale: wrap the scaling observation wrapper. :param bool warp_frame: wrap the grayscale + resize observation wrapper. :return: the wrapped atari environment. """ assert "NoFrameskip" in env_id env = gym.make(env_id) env = NoopResetEnv(env, noop_max=30) env = MaxAndSkipEnv(env, skip=4) if episode_life: env = EpisodicLifeEnv(env) if "FIRE" in env.unwrapped.get_action_meanings(): env = FireResetEnv(env) if warp_frame: env = WarpFrame(env) if scale: env = ScaledFloatFrame(env) if clip_rewards: env = ClipRewardEnv(env) if frame_stack: env = FrameStack(env, frame_stack) return env def make_atari_env(task, seed, training_num, test_num, **kwargs): """Wrapper function for Atari env. If EnvPool is installed, it will automatically switch to EnvPool's Atari env. :return: a tuple of (single env, training envs, test envs). """ if envpool is not None: if kwargs.get("scale", 0): warnings.warn( "EnvPool does not include ScaledFloatFrame wrapper, " "please set `x = x / 255.0` inside CNN network's forward function.", ) # parameters convertion train_envs = env = envpool.make_gymnasium( task.replace("NoFrameskip-v4", "-v5"), num_envs=training_num, seed=seed, episodic_life=True, reward_clip=True, stack_num=kwargs.get("frame_stack", 4), ) test_envs = envpool.make_gymnasium( task.replace("NoFrameskip-v4", "-v5"), num_envs=test_num, seed=seed, episodic_life=False, reward_clip=False, stack_num=kwargs.get("frame_stack", 4), ) else: warnings.warn( "Recommend using envpool (pip install envpool) to run Atari games more efficiently.", ) env = wrap_deepmind(task, **kwargs) train_envs = ShmemVectorEnv( [ lambda: wrap_deepmind(task, episode_life=True, clip_rewards=True, **kwargs) for _ in range(training_num) ], ) test_envs = ShmemVectorEnv( [ lambda: wrap_deepmind(task, episode_life=False, clip_rewards=False, **kwargs) for _ in range(test_num) ], ) env.seed(seed) train_envs.seed(seed) test_envs.seed(seed) return env, train_envs, test_envs
[]
2024-01-10
fpena06/ChatGPT
src~revChatGPT~Official.py
""" A simple wrapper for the official ChatGPT API """ import argparse import json import os import sys from datetime import date import openai import tiktoken ENGINE = os.environ.get("GPT_ENGINE") or "text-chat-davinci-002-20221122" ENCODER = tiktoken.get_encoding("gpt2") def get_max_tokens(prompt: str) -> int: """ Get the max tokens for a prompt """ return 4000 - len(ENCODER.encode(prompt)) class Chatbot: """ Official ChatGPT API """ def __init__(self, api_key: str, buffer: int = None, engine: str = None) -> None: """ Initialize Chatbot with API key (from https://platform.openai.com/account/api-keys) """ openai.api_key = api_key or os.environ.get("OPENAI_API_KEY") self.conversations = Conversation() self.prompt = Prompt(buffer=buffer) self.engine = engine or ENGINE def _get_completion( self, prompt: str, temperature: float = 0.5, stream: bool = False, ): """ Get the completion function """ return openai.Completion.create( engine=self.engine, prompt=prompt, temperature=temperature, max_tokens=get_max_tokens(prompt), stop=["\n\n\n"], stream=stream, ) def _process_completion( self, user_request: str, completion: dict, conversation_id: str = None, user: str = "User", ) -> dict: if completion.get("choices") is None: raise Exception("ChatGPT API returned no choices") if len(completion["choices"]) == 0: raise Exception("ChatGPT API returned no choices") if completion["choices"][0].get("text") is None: raise Exception("ChatGPT API returned no text") completion["choices"][0]["text"] = completion["choices"][0]["text"].removesuffix( "<|im_end|>" ) # Add to chat history self.prompt.add_to_history( user_request, completion["choices"][0]["text"], user=user, ) if conversation_id is not None: self.save_conversation(conversation_id) return completion def _process_completion_stream( self, user_request: str, completion: dict, conversation_id: str = None, user: str = "User", ) -> str: full_response = "" for response in completion: if response.get("choices") is None: raise Exception("ChatGPT API returned no choices") if len(response["choices"]) == 0: raise Exception("ChatGPT API returned no choices") if response["choices"][0].get("finish_details") is not None: break if response["choices"][0].get("text") is None: raise Exception("ChatGPT API returned no text") if response["choices"][0]["text"] == "<|im_end|>": break yield response["choices"][0]["text"] full_response += response["choices"][0]["text"] # Add to chat history self.prompt.add_to_history(user_request, full_response, user) if conversation_id is not None: self.save_conversation(conversation_id) def ask( self, user_request: str, temperature: float = 0.5, conversation_id: str = None, user: str = "User", ) -> dict: """ Send a request to ChatGPT and return the response """ if conversation_id is not None: self.load_conversation(conversation_id) completion = self._get_completion( self.prompt.construct_prompt(user_request, user=user), temperature, ) return self._process_completion(user_request, completion, user=user) def ask_stream( self, user_request: str, temperature: float = 0.5, conversation_id: str = None, user: str = "User", ) -> str: """ Send a request to ChatGPT and yield the response """ if conversation_id is not None: self.load_conversation(conversation_id) prompt = self.prompt.construct_prompt(user_request, user=user) return self._process_completion_stream( user_request=user_request, completion=self._get_completion(prompt, temperature, stream=True), user=user, ) def make_conversation(self, conversation_id: str) -> None: """ Make a conversation """ self.conversations.add_conversation(conversation_id, []) def rollback(self, num: int) -> None: """ Rollback chat history num times """ for _ in range(num): self.prompt.chat_history.pop() def reset(self) -> None: """ Reset chat history """ self.prompt.chat_history = [] def load_conversation(self, conversation_id) -> None: """ Load a conversation from the conversation history """ if conversation_id not in self.conversations.conversations: # Create a new conversation self.make_conversation(conversation_id) self.prompt.chat_history = self.conversations.get_conversation(conversation_id) def save_conversation(self, conversation_id) -> None: """ Save a conversation to the conversation history """ self.conversations.add_conversation(conversation_id, self.prompt.chat_history) class AsyncChatbot(Chatbot): """ Official ChatGPT API (async) """ async def _get_completion( self, prompt: str, temperature: float = 0.5, stream: bool = False, ): """ Get the completion function """ return await openai.Completion.acreate( engine=self.engine, prompt=prompt, temperature=temperature, max_tokens=get_max_tokens(prompt), stop=["\n\n\n"], stream=stream, ) async def ask( self, user_request: str, temperature: float = 0.5, user: str = "User", ) -> dict: """ Same as Chatbot.ask but async } """ completion = await self._get_completion( self.prompt.construct_prompt(user_request, user=user), temperature, ) return self._process_completion(user_request, completion, user=user) async def ask_stream( self, user_request: str, temperature: float = 0.5, user: str = "User", ) -> str: """ Same as Chatbot.ask_stream but async """ prompt = self.prompt.construct_prompt(user_request, user=user) return self._process_completion_stream( user_request=user_request, completion=await self._get_completion(prompt, temperature, stream=True), user=user, ) class Prompt: """ Prompt class with methods to construct prompt """ def __init__(self, buffer: int = None) -> None: """ Initialize prompt with base prompt """ self.base_prompt = ( os.environ.get("CUSTOM_BASE_PROMPT") or "You are ChatGPT, a large language model trained by OpenAI. Respond conversationally. Do not answer as the user. Current date: " + str(date.today()) + "\n\n" + "User: Hello\n" + "ChatGPT: Hello! How can I help you today? <|im_end|>\n\n\n" ) # Track chat history self.chat_history: list = [] self.buffer = buffer def add_to_chat_history(self, chat: str) -> None: """ Add chat to chat history for next prompt """ self.chat_history.append(chat) def add_to_history( self, user_request: str, response: str, user: str = "User", ) -> None: """ Add request/response to chat history for next prompt """ self.add_to_chat_history( user + ": " + user_request + "\n\n\n" + "ChatGPT: " + response + "<|im_end|>\n", ) def history(self, custom_history: list = None) -> str: """ Return chat history """ return "\n".join(custom_history or self.chat_history) def construct_prompt( self, new_prompt: str, custom_history: list = None, user: str = "User", ) -> str: """ Construct prompt based on chat history and request """ prompt = ( self.base_prompt + self.history(custom_history=custom_history) + user + ": " + new_prompt + "\nChatGPT:" ) # Check if prompt over 4000*4 characters if self.buffer is not None: max_tokens = 4000 - self.buffer else: max_tokens = 3200 if len(ENCODER.encode(prompt)) > max_tokens: # Remove oldest chat if len(self.chat_history) == 0: return prompt self.chat_history.pop(0) # Construct prompt again prompt = self.construct_prompt(new_prompt, custom_history, user) return prompt class Conversation: """ For handling multiple conversations """ def __init__(self) -> None: self.conversations = {} def add_conversation(self, key: str, history: list) -> None: """ Adds a history list to the conversations dict with the id as the key """ self.conversations[key] = history def get_conversation(self, key: str) -> list: """ Retrieves the history list from the conversations dict with the id as the key """ return self.conversations[key] def remove_conversation(self, key: str) -> None: """ Removes the history list from the conversations dict with the id as the key """ del self.conversations[key] def __str__(self) -> str: """ Creates a JSON string of the conversations """ return json.dumps(self.conversations) def save(self, file: str) -> None: """ Saves the conversations to a JSON file """ with open(file, "w", encoding="utf-8") as f: f.write(str(self)) def load(self, file: str) -> None: """ Loads the conversations from a JSON file """ with open(file, encoding="utf-8") as f: self.conversations = json.loads(f.read()) def main(): print( """ ChatGPT - A command-line interface to OpenAI's ChatGPT (https://chat.openai.com/chat) Repo: github.com/acheong08/ChatGPT """, ) print("Type '!help' to show a full list of commands") print("Press enter twice to submit your question.\n") def get_input(prompt): """ Multi-line input function """ # Display the prompt print(prompt, end="") # Initialize an empty list to store the input lines lines = [] # Read lines of input until the user enters an empty line while True: line = input() if line == "": break lines.append(line) # Join the lines, separated by newlines, and store the result user_input = "\n".join(lines) # Return the input return user_input def chatbot_commands(cmd: str) -> bool: """ Handle chatbot commands """ if cmd == "!help": print( """ !help - Display this message !rollback - Rollback chat history !reset - Reset chat history !prompt - Show current prompt !save_c <conversation_name> - Save history to a conversation !load_c <conversation_name> - Load history from a conversation !save_f <file_name> - Save all conversations to a file !load_f <file_name> - Load all conversations from a file !exit - Quit chat """, ) elif cmd == "!exit": exit() elif cmd == "!rollback": chatbot.rollback(1) elif cmd == "!reset": chatbot.reset() elif cmd == "!prompt": print(chatbot.prompt.construct_prompt("")) elif cmd.startswith("!save_c"): chatbot.save_conversation(cmd.split(" ")[1]) elif cmd.startswith("!load_c"): chatbot.load_conversation(cmd.split(" ")[1]) elif cmd.startswith("!save_f"): chatbot.conversations.save(cmd.split(" ")[1]) elif cmd.startswith("!load_f"): chatbot.conversations.load(cmd.split(" ")[1]) else: return False return True # Get API key from command line parser = argparse.ArgumentParser() parser.add_argument( "--api_key", type=str, required=True, help="OpenAI API key", ) parser.add_argument( "--stream", action="store_true", help="Stream response", ) parser.add_argument( "--temperature", type=float, default=0.5, help="Temperature for response", ) args = parser.parse_args() # Initialize chatbot chatbot = Chatbot(api_key=args.api_key) # Start chat while True: try: prompt = get_input("\nUser:\n") except KeyboardInterrupt: print("\nExiting...") sys.exit() if prompt.startswith("!"): if chatbot_commands(prompt): continue if not args.stream: response = chatbot.ask(prompt, temperature=args.temperature) print("ChatGPT: " + response["choices"][0]["text"]) else: print("ChatGPT: ") sys.stdout.flush() for response in chatbot.ask_stream(prompt, temperature=args.temperature): print(response, end="") sys.stdout.flush() print() if __name__ == "__main__": main()
[ ": ", "\nUser:\n", "\nChatGPT:" ]
2024-01-10
jenishah/transformers
src~transformers~tokenization_auto.py
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Auto Tokenizer class. """ from collections import OrderedDict from .configuration_auto import ( AlbertConfig, AutoConfig, BartConfig, BertConfig, BertGenerationConfig, CamembertConfig, CTRLConfig, DistilBertConfig, ElectraConfig, EncoderDecoderConfig, FlaubertConfig, FunnelConfig, GPT2Config, LongformerConfig, LxmertConfig, MarianConfig, MBartConfig, MobileBertConfig, OpenAIGPTConfig, PegasusConfig, ReformerConfig, RetriBertConfig, RobertaConfig, T5Config, TransfoXLConfig, XLMConfig, XLMRobertaConfig, XLNetConfig, replace_list_option_in_docstrings, ) from .configuration_utils import PretrainedConfig from .tokenization_albert import AlbertTokenizer from .tokenization_bart import BartTokenizer, BartTokenizerFast from .tokenization_bert import BertTokenizer, BertTokenizerFast from .tokenization_bert_generation import BertGenerationTokenizer from .tokenization_bert_japanese import BertJapaneseTokenizer from .tokenization_camembert import CamembertTokenizer from .tokenization_ctrl import CTRLTokenizer from .tokenization_distilbert import DistilBertTokenizer, DistilBertTokenizerFast from .tokenization_electra import ElectraTokenizer, ElectraTokenizerFast from .tokenization_flaubert import FlaubertTokenizer from .tokenization_funnel import FunnelTokenizer, FunnelTokenizerFast from .tokenization_gpt2 import GPT2Tokenizer, GPT2TokenizerFast from .tokenization_longformer import LongformerTokenizer, LongformerTokenizerFast from .tokenization_lxmert import LxmertTokenizer, LxmertTokenizerFast from .tokenization_marian import MarianTokenizer from .tokenization_mbart import MBartTokenizer from .tokenization_mobilebert import MobileBertTokenizer, MobileBertTokenizerFast from .tokenization_openai import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from .tokenization_pegasus import PegasusTokenizer from .tokenization_reformer import ReformerTokenizer from .tokenization_retribert import RetriBertTokenizer, RetriBertTokenizerFast from .tokenization_roberta import RobertaTokenizer, RobertaTokenizerFast from .tokenization_t5 import T5Tokenizer from .tokenization_transfo_xl import TransfoXLTokenizer, TransfoXLTokenizerFast from .tokenization_xlm import XLMTokenizer from .tokenization_xlm_roberta import XLMRobertaTokenizer from .tokenization_xlnet import XLNetTokenizer from .utils import logging logger = logging.get_logger(__name__) TOKENIZER_MAPPING = OrderedDict( [ (RetriBertConfig, (RetriBertTokenizer, RetriBertTokenizerFast)), (T5Config, (T5Tokenizer, None)), (MobileBertConfig, (MobileBertTokenizer, MobileBertTokenizerFast)), (DistilBertConfig, (DistilBertTokenizer, DistilBertTokenizerFast)), (AlbertConfig, (AlbertTokenizer, None)), (CamembertConfig, (CamembertTokenizer, None)), (PegasusConfig, (PegasusTokenizer, None)), (MBartConfig, (MBartTokenizer, None)), (XLMRobertaConfig, (XLMRobertaTokenizer, None)), (MarianConfig, (MarianTokenizer, None)), (BartConfig, (BartTokenizer, BartTokenizerFast)), (LongformerConfig, (LongformerTokenizer, LongformerTokenizerFast)), (RobertaConfig, (RobertaTokenizer, RobertaTokenizerFast)), (ReformerConfig, (ReformerTokenizer, None)), (ElectraConfig, (ElectraTokenizer, ElectraTokenizerFast)), (FunnelConfig, (FunnelTokenizer, FunnelTokenizerFast)), (LxmertConfig, (LxmertTokenizer, LxmertTokenizerFast)), (BertConfig, (BertTokenizer, BertTokenizerFast)), (OpenAIGPTConfig, (OpenAIGPTTokenizer, OpenAIGPTTokenizerFast)), (GPT2Config, (GPT2Tokenizer, GPT2TokenizerFast)), (TransfoXLConfig, (TransfoXLTokenizer, TransfoXLTokenizerFast)), (XLNetConfig, (XLNetTokenizer, None)), (FlaubertConfig, (FlaubertTokenizer, None)), (XLMConfig, (XLMTokenizer, None)), (CTRLConfig, (CTRLTokenizer, None)), (BertGenerationConfig, (BertGenerationTokenizer, None)), ] ) SLOW_TOKENIZER_MAPPING = {k: v[0] for k, v in TOKENIZER_MAPPING.items()} class AutoTokenizer: r""" This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when created with the :meth:`AutoTokenizer.from_pretrained` class method. This class cannot be instantiated directly using ``__init__()`` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoTokenizer is designed to be instantiated " "using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(SLOW_TOKENIZER_MAPPING) def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): r""" Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary. The tokenizer class to instantiate is selected based on the :obj:`model_type` property of the config object (either passed as an argument or loaded from :obj:`pretrained_model_name_or_path` if possible), or when it's missing, by falling back to using pattern matching on :obj:`pretrained_model_name_or_path`: List options Params: pretrained_model_name_or_path (:obj:`str`): Can be either: - A string with the `shortcut name` of a predefined tokenizer to load from cache or download, e.g., ``bert-base-uncased``. - A string with the `identifier name` of a predefined tokenizer that was user-uploaded to our S3, e.g., ``dbmdz/bert-base-german-cased``. - A path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :func:`~transformers.PreTrainedTokenizer.save_pretrained` method, e.g., ``./my_model_directory/``. - A path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (like Bert or XLNet), e.g.: ``./my_model_directory/vocab.txt``. (Not applicable to all derived classes) inputs (additional positional arguments, `optional`): Will be passed along to the Tokenizer ``__init__()`` method. config (:class:`~transformers.PreTrainedConfig`, `optional`) The configuration object used to dertermine the tokenizer class to instantiate. cache_dir (:obj:`str`, `optional`): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to force the (re-)download the model weights and configuration files and override the cached versions if they exist. resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (:obj:`Dict[str, str]`, `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. use_fast (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to try to load the fast version of the tokenizer. kwargs (additional keyword arguments, `optional`): Will be passed to the Tokenizer ``__init__()`` method. Can be used to set special tokens like ``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``. See parameters in the ``__init__()`` for more details. Examples:: from transformers import AutoTokenizer # Download vocabulary from S3 and cache. tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') # Download vocabulary from S3 (user-uploaded) and cache. tokenizer = AutoTokenizer.from_pretrained('dbmdz/bert-base-german-cased') # If vocabulary files are in a directory (e.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`) tokenizer = AutoTokenizer.from_pretrained('./test/bert_saved_model/') """ config = kwargs.pop("config", None) if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) if "bert-base-japanese" in str(pretrained_model_name_or_path): return BertJapaneseTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) use_fast = kwargs.pop("use_fast", False) if config.tokenizer_class is not None: if use_fast and not config.tokenizer_class.endswith("Fast"): tokenizer_class_candidate = f"{config.tokenizer_class}Fast" else: tokenizer_class_candidate = config.tokenizer_class tokenizer_class = globals().get(tokenizer_class_candidate) if tokenizer_class is None: raise ValueError( "Tokenizer class {} does not exist or is not currently imported.".format(tokenizer_class_candidate) ) return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) # if model is an encoder decoder, the encoder tokenizer class is used by default if isinstance(config, EncoderDecoderConfig): if type(config.decoder) is not type(config.encoder): # noqa: E721 logger.warn( f"The encoder model config class: {config.encoder.__class__} is different from the decoder model " f"config class: {config.decoder.__class}. It is not recommended to use the " "`AutoTokenizer.from_pretrained()` method in this case. Please use the encoder and decoder " "specific tokenizer classes." ) config = config.encoder for config_class, (tokenizer_class_py, tokenizer_class_fast) in TOKENIZER_MAPPING.items(): if isinstance(config, config_class): if tokenizer_class_fast and use_fast: return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) else: return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) raise ValueError( "Unrecognized configuration class {} to build an AutoTokenizer.\n" "Model type should be one of {}.".format( config.__class__, ", ".join(c.__name__ for c in TOKENIZER_MAPPING.keys()) ) )
[]
2024-01-10
Zhang-l-i-n/LM_as_Evaluator
test~cluster.py
import json import time import openai from scipy.cluster import hierarchy from tqdm import tqdm import numpy as np import umap.plot from matplotlib import pyplot as plt from matplotlib.font_manager import FontProperties import seaborn as sns from sklearn.cluster import KMeans from sklearn.cluster import AffinityPropagation from sklearn.cluster import DBSCAN from sklearn.cluster import AgglomerativeClustering from scipy.cluster.hierarchy import linkage, dendrogram def get_data(f_data, feature='level'): embedding_list, label_list, y_list = [], [], [] data_json = json.load(open(f_data, 'r', encoding='utf-8')) for d in data_json: # if d[feature] == 2: embedding_list.append(d['embedding']) label_list.append(d['label']) y_list.append(d[feature]) # label_list = eval(open(f_label, 'r').readline().strip()) return embedding_list, label_list, y_list if __name__ == '__main__': plt.margins(0, 0) class_name = 'roberta_history' f_emb = '../data/embedding/chinese-roberta-wwm-ext-large_eb_history_0814.json' font_path = '/Users/zhanglin/Library/Fonts/SimHei.ttf' custom_font = FontProperties(fname=font_path) embedding_list, label_list, y_list = get_data(f_emb, 'type') # embedding_list = eval(open(f_emb, 'r').readline().strip()) print(len(embedding_list)) X = np.array(embedding_list) y = np.array([1] * len(embedding_list)) ################ # UMAP降维 ################ reducer = umap.UMAP(random_state=60) embedding = reducer.fit_transform(X) print(embedding.shape) plt.scatter(embedding[:, 0], embedding[:, 1], c=y_list, cmap='rainbow') # 添加标签 for i in range(len(label_list)): plt.text(embedding[:, 0][i], embedding[:, 1][i], label_list[i], ha='center', va='bottom', fontproperties=custom_font, fontsize=12) plt.gca().set_aspect('equal', 'datalim') plt.title('') plt.savefig(class_name + '_a_UMAP_fig-time{}.png'.format(time.strftime("%Y%m%d-%H%M", time.localtime())), dpi=500) plt.show() ################ # Affinity Propagation(降维后的数据) ################ # af = AffinityPropagation(preference=None).fit(embedding) # cluster_centers_indices = af.cluster_centers_indices_ # labels = af.labels_ # n_clusters = len(cluster_centers_indices) # # color = sns.color_palette("hls", n_clusters) # for k, col in zip(range(n_clusters), color): # class_members = labels == k # cluster_center = embedding[cluster_centers_indices[k]] # plt.scatter(embedding[class_members, 0], embedding[class_members, 1], # marker='o', # s=8, # c=col) # plt.scatter(cluster_center[0], cluster_center[1], marker='x', s=100, c='black') # for i in range(len(label_list)): # if embedding[:, 0][i] == cluster_center[0] and embedding[:, 1][i] == cluster_center[1]: # print(label_list[i]) # # for i in range(len(label_list)): # plt.text(embedding[:, 0][i], embedding[:, 1][i], label_list[i], ha='center', va='bottom', # fontproperties=custom_font, fontsize=5) # # plt.title('AP-after_reducer--clusters: %d' % n_clusters) # plt.savefig(class_name + '_a_AP_fig-time{}.png'.format(time.strftime("%Y%m%d-%H%M", time.localtime())), # dpi=500) # plt.show() # ################ # # DBSCAN(UMAP降维后的数据) # ################ # cluster = DBSCAN(min_samples=3).fit(embedding) # y_pred = cluster.labels_ # 获取训练后对象的每个样本的标签 # clusters = {} # i = 0 # for y in y_pred: # if y not in clusters: # clusters[y] = i # i += 1 # color = sns.color_palette("hls", len(clusters)) # for y in clusters.keys(): # plt.scatter(embedding[y_pred == y, 0], embedding[y_pred == y, 1], # marker='o', # s=8, # c=color[y]) # for i in range(len(label_list)): # plt.text(embedding[:, 0][i], embedding[:, 1][i], label_list[i], ha='center', va='bottom', # fontproperties=custom_font, fontsize=5) # plt.title('DBSCAN-after_reducer') # plt.savefig(class_name + '_a_DBSCAN_fig-time{}.png'.format(time.strftime("%Y%m%d-%H%M", time.localtime())), # dpi=500) # plt.show() # # ################ # # Agglomerative(UMAP降维后的数据) # ################ # cluster = AgglomerativeClustering(n_clusters=n_clusters, affinity='euclidean', linkage='ward').fit(embedding) # y_pred = cluster.labels_ # plt.scatter(embedding[:,0],embedding[:,1], c=cluster.labels_, cmap='rainbow') # for i in range(len(label_list)): # plt.text(embedding[:, 0][i], embedding[:, 1][i], label_list[i], ha='center', va='bottom', # fontproperties=custom_font, fontsize=5) # plt.title('Agglomerative-after_reducer') # plt.savefig(class_name + '_a_Agglomerative_fig-time{}.png'.format(time.strftime("%Y%m%d-%H%M", time.localtime())), # dpi=500) # plt.show() # # # 绘制聚类树 # # Z = hierarchy.linkage(cluster.children_, method='ward') # # fig = plt.figure(figsize=(10, 5)) # # dn = hierarchy.dendrogram(Z) # # plt.show() # # ################ # # Affinity Propagation(UMAP降维前的数据) # ################ # af = AffinityPropagation(preference=None).fit(X) # cluster_centers_indices = af.cluster_centers_indices_ # labels = af.labels_ # n_clusters = len(cluster_centers_indices) # # print(X.shape) # # print(cluster_centers_indices) # X_expand_2d = reducer.fit_transform(X) # # color = sns.color_palette("hls", n_clusters) # for k, col in zip(range(n_clusters), color): # class_members = labels == k # cluster_center = X_expand_2d[cluster_centers_indices[k]] # plt.scatter(X_expand_2d[class_members, 0], X_expand_2d[class_members, 1], # marker='o', # s=8, # c=col) # plt.scatter(cluster_center[0], cluster_center[1], marker='x', s=100, c='black') # # for i in range(len(label_list)): # plt.text(X_expand_2d[:, 0][i], X_expand_2d[:, 1][i], label_list[i], ha='center', va='bottom', # fontproperties=custom_font, fontsize=5) # plt.title('AP-before_reducer--clusters: %d' % n_clusters) # plt.savefig(class_name + '_b_AP_fig-time{}.png'.format(time.strftime("%Y%m%d-%H%M", time.localtime())), # dpi=500) # plt.show() # # ################ # # DBSCAN(UMAP降维前的数据) # ################ # cluster = DBSCAN(min_samples=3).fit(X) # embedding = reducer.fit_transform(X) # y_pred = cluster.labels_ # 获取训练后对象的每个样本的标签 # clusters = {} # i = 0 # for y in y_pred: # if y not in clusters: # clusters[y] = i # i += 1 # color = sns.color_palette("hls", len(clusters)) # for y in clusters.keys(): # plt.scatter(embedding[y_pred == y, 0], embedding[y_pred == y, 1], # marker='o', # s=8, # c=color[y]) # for i in range(len(label_list)): # plt.text(embedding[:, 0][i], embedding[:, 1][i], label_list[i], ha='center', va='bottom', # fontproperties=custom_font, fontsize=5) # plt.title('DBSCAN-before_reducer') # plt.savefig(class_name + '_b_DBSCAN_fig-time{}.png'.format(time.strftime("%Y%m%d-%H%M", time.localtime())), # dpi=500) # plt.show() # # ################ # # Agglomerative(UMAP降维前的数据) # ################ # cluster = AgglomerativeClustering(n_clusters=n_clusters, affinity='euclidean', linkage='ward').fit(X) # embedding = reducer.fit_transform(X) # y_pred = cluster.labels_ # plt.scatter(embedding[:,0],embedding[:,1], c=cluster.labels_, cmap='rainbow') # for i in range(len(label_list)): # plt.text(embedding[:, 0][i], embedding[:, 1][i], label_list[i], ha='center', va='bottom', # fontproperties=custom_font, fontsize=5) # plt.title('Agglomerative-before_reducer') # plt.savefig(class_name + '_b_Agglomerative_fig-time{}.png'.format(time.strftime("%Y%m%d-%H%M", time.localtime())), # dpi=500) # plt.show()
[]
2024-01-10
Zhang-l-i-n/LM_as_Evaluator
test~get_question.py
# encoding:utf-8 # Note: The openai-python library support for Azure OpenAI is in preview. import json import os import time import openai os.environ["OPENAI_API_KEY"] = "33e8f0c860bc4109825496444bbfed3e" openai.api_type = "azure" openai.api_base = "https://community-openai-34.openai.azure.com/" openai.api_version = "2023-03-15-preview" openai.api_key = os.getenv("OPENAI_API_KEY") ####################### ## 生成问题 ####################### def get_question(content_file, fw): content = json.load(open(content_file, 'r', encoding='utf-8')) for c in content: for chapter in c: for k1 in c[chapter]: print(k1) for k2 in c[chapter][k1]: # print(c[chapter][k1][k2].keys()) # time.sleep(10) if "question" not in c[chapter][k1][k2].keys(): print(k2) print(c[chapter][k1][k2]) inputs = "针对’" + k2 + "‘进行提问,注意只能提一个问题,给出问题和答案!问题需要尽量详细地考察以下内容\n" + \ c[chapter][k1][k2]["text"] response = openai.ChatCompletion.create( engine="gpt35-34", messages=[ {"role": "system", "content": "现在你是一个提问者,针对某个主题进行提问,给出问题和答案。注意只能提一个问题。"}, {"role": "user", "content": inputs[:5500]}, ], temperature=1.0, max_tokens=800, top_p=1, n=5, frequency_penalty=0, presence_penalty=0, stop=None) print(response["choices"][0]["message"]["content"]) print(response["choices"][1]["message"]["content"]) print(response["choices"][2]["message"]["content"]) print(response["choices"][3]["message"]["content"]) print(response["choices"][4]["message"]["content"]) c[chapter][k1][k2]["questions"] = \ [response["choices"][0]["message"]["content"], response["choices"][1]["message"]["content"], response["choices"][2]["message"]["content"], response["choices"][3]["message"]["content"], response["choices"][4]["message"]["content"]] json_data = { "text": c[chapter][k1][k2]["text"], "questions": c[chapter][k1][k2]["questions"] } fw.write(json.dumps(json_data, ensure_ascii=False) + '\n') time.sleep(30) # content_file = "/Users/zhanglin/Desktop/LM_as_Evaluator/data/taxonomy/history_qa_v1.json" # content = json.load(open(content_file, 'r', encoding='utf-8')) # # fw = open("history_questions_candidates.txt", 'a', encoding='utf-8') # for c in content: # for chapter in c: # for k1 in c[chapter]: # print(k1) # for k2 in c[chapter][k1]: # # print(c[chapter][k1][k2].keys()) # # time.sleep(10) # if "question" not in c[chapter][k1][k2].keys(): # print(k2) # print(c[chapter][k1][k2]) # inputs = "针对’" + k2 + "‘进行提问,注意只能提一个问题,给出问题和答案!问题需要尽量详细地考察以下内容\n" + \ # c[chapter][k1][k2]["text"] # response = openai.ChatCompletion.create( # engine="gpt35-34", # messages=[ # {"role": "system", # "content": "现在你是一个提问者,针对某个主题进行提问,给出问题和答案。注意只能提一个问题。"}, # {"role": "user", "content": inputs[:5500]}, # ], # temperature=1.0, # max_tokens=800, # top_p=1, # n=5, # frequency_penalty=0, # presence_penalty=0, # stop=None) # print(response["choices"][0]["message"]["content"]) # print(response["choices"][1]["message"]["content"]) # print(response["choices"][2]["message"]["content"]) # print(response["choices"][3]["message"]["content"]) # print(response["choices"][4]["message"]["content"]) # c[chapter][k1][k2]["questions"] = \ # [response["choices"][0]["message"]["content"], # response["choices"][1]["message"]["content"], # response["choices"][2]["message"]["content"], # response["choices"][3]["message"]["content"], # response["choices"][4]["message"]["content"]] # json_data = { # "text": c[chapter][k1][k2]["text"], # "questions": c[chapter][k1][k2]["questions"] # } # fw.write(json.dumps(json_data, ensure_ascii=False) + '\n') # time.sleep(30) # # with open("history_candidates.json", 'w', encoding='utf-8') as f: # f.write(json.dumps(content, ensure_ascii=False)) # input = "针对’当代中国的法治与精神文明建设‘进行提问,给出问题和答案。问题需要尽量详细地考察以下内容:" \ # "近代西方的法律与教化 在罗马法的基础上,英 国和法国分别发展了英美法 系和大陆法系。 学习聚焦 希腊克里特岛有着辉煌的古代文明,这里的一些 城邦,很早就有习惯法,也出现了成文法。在当地的 一处遗址中,发现了公元前7世纪的石刻,上面的铭 文记载了有关法律的内容。这就是早期的成文法。 ▲克里特岛上的一处遗址 ▲铭文摹本 ▲《十二铜表法》在罗马街头颁布 时人们围观的情形 近代西方法律制度的渊源及发展 为了缓和平民和贵族的矛盾,公元前450年左右,罗 马共和国颁布了《十二铜表法》。罗马帝国时期,随着统 治区域的扩大和人口的激增,法律制度更加完善。6世纪, 东罗马帝国 ①皇帝查士丁尼下令编纂的《罗马民法大全》, 是古罗马法律的最高成就,也是近代西方法律制度的渊源。 中古时期,各日耳曼王国在记载和整理日耳曼人部落 习惯法的基础上编纂了一批成文法,称为“日耳曼法”, 作为庄园法庭审判的依据。教会也根据基督教神学,制定 和颁布了教会法。11世纪以后,欧洲国家出现了研究和宣 传罗马法的运动,促进了罗马法的传播。 11世纪,诺曼底公爵征服英国,建立了诺曼王朝。为 了加强对地方的控制,王室设立法院,并派法官定期到各 地进行巡回审判。12世纪前后,建立在习惯法基础上、全 ①东罗马帝国又称拜占庭帝国。 国普遍适用的法律在英国逐渐形成,这就是普通法。13世 纪,英国通过《大宪章》,确立了法律至上和王权有限的 原则。“光荣革命”后,英国确立了君主立宪制,法律体系 更加完善。美国等很多国家在学习英国法律的基础上制定 了本国法律,它们构成了普通法系,也称“英美法系”。 13世纪以后,随着王权的加强,法国统一法律的步伐 加快,建立在罗马法基础上的法律体系日益成熟。1789年, 法国爆发大革命。此后,法国在启蒙思想和大革命的影响 下,制定了一系列法律。1804年,拿破仑签署法令,颁布 了《法国民法典》,它与此后制定的四部法典一起被统称为 《拿破仑法典》。《拿破仑法典》与此前颁布的法律,构成了 法国的成文法体系,最终确立了法国的资产阶级法律制度。 后来,逐渐形成了以罗马法为基础、以《法国民法典》为 代表的世界性法律体系,称为“大陆法系”或“民法系”。 近代西方法律制度的基本特征 近代以来,西方各国在继承传统法律思想的基础上, 融合了启蒙思想家们提出的思想主张,制定了各自的法律 制度。这些法律制度从理论上看,包含着一些共同的基本 特征。 英美法系和大陆法系的不同 英美法系以判例法为主要法律渊源,以遵循先例为基本原 则;法官的地位突出,当无先例可循时,法官可以创立先例, 也可以对先例作出新的解释。因此,英美法系国家的法律也被 称为“法官制定的法律”。英美法系主要涵盖英国、美国、加 拿大、澳大利亚、印度等国家和地区。 大陆法系以成文法为主要法律渊源,强调宪法的根本法地 位,法律体系比较完整,一般不承认判例的效力;明确立法和 司法的分工,法官的作用不太突出。大陆法系国家的代表是法 国、德国、意大利、日本等。 历史纵横 ▲《大宪章》原件 法国大革命对法律建设 有什么重要贡献? 思考点 近代西方法律制度的基 本特征是立法和司法独立, 强调保障个人的权利。 学习聚焦 在国家权力结构层面上,坚持权力制衡、三权分立。 国家权力分为立法权、行政权和司法权。法律由议会制定, 行政机构在法律规定的框架内行使行政权,法院根据法律 独立掌握司法权。在法律内容上,注重保护个人权利,包 括生命权、自由权和财产权等。在司法实践过程中,坚持 程序公正和无罪推定。为了保证从立案到审理再到判决的 每个程序的公开公正,建立了律师制度和陪审团制度。独 立、专业的律师为被审判者提供辩护,可以减少法官对法 律的误读;从民众中产生陪审团,参与案件审理和判决, 使民众能够直接参与法律事务。无罪推定原则指的是所有 被审判者在判决之前都被视为无罪。 西方法律制度为资产阶级利益服务,存在着许多局限 性。它确认了私有财产制度,每个人财产的多少往往决定 着法律地位的高低。同时,对个人权利的认定也有逐渐改 进的过程。直到20世纪,黑人、原住民和妇女还在为享有 完全的公民权积极斗争。 宗教伦理与教化 392年,基督教成为罗马国教。476年,西罗马帝国灭 亡。在帝国废墟上建立的日耳曼人国家为了取得罗马人和 教会的支持,逐渐接受了基督教。基督教影响了中古时期 ▲林肯(右一)在法庭上辩护的情景 1836年,林肯成为律师。他在 诉讼活动中以敢于主持正义、熟练 运用法律而享有盛名,为以后当选 美国总统奠定了基础。 陪审团制度和律师制度的起源 陪审团制度最早可以追溯到古希腊罗马时期,但当时只适 用于奴隶主和自由民。古代的日耳曼人也留有“同侪裁决”的 遗风。12世纪,英国确立了陪审团制度。陪审团在法庭上聆听 证据,就事实问题作出决定;法官决定法律问题,判断某项证 据是否可以被引入审判。律师制度的起源也可以追溯到罗马时 期。资产阶级革命后,各国纷纷颁布法律,支持被告自己或聘 请律师辩护。1878年德国颁布的《国家律师法》,奠定了近代 律师制度的基础。 历史纵横 基督教的宗教伦理不仅 强化了教会对人们的控制, 也具有一定的社会教化功能。 学习聚焦 1764年7月,意大利人 贝卡里亚提出: 在法官判决之前,一个 人是不能被称为罪犯的。只要 还不能断定他已经侵犯了给 予他公共保护的契约,社会 就不能取消对他的公共保护。 —[意]贝卡里亚著, 黄风译《论犯罪与刑罚》 史料阅读 宗教改革后,西欧的基督教分裂为天主教和新教。新 教适应了原始积累时期新兴资产阶级的政治、经济诉求, 提出了一些新的主张。新教反对教皇权威,主张信徒通过 自己阅读《圣经》理解教义,还提倡节俭和积极入世的态 度,鼓励人们发财致富。但是,新教仍然坚持基督教的基 欧洲人的政治、经济和社会生活各个方面。教士们搜集和 抄录经典,保存了一些宝贵的古典文化,但他们更重要的 任务是宣讲教义。他们还开办学校,这些学校主要是宗教 学校,也有一些世俗学校。学校主要讲授宗教内容,也教 授算术、几何、天文、音乐、文法、修辞和逻辑。学习内 容虽然都以宗教为目的,但在教育和文化方面也发挥了重 要作用。人们的生老病死、婚丧嫁娶,基督教会都要介入, 几乎所有的节日都与基督教有关。教会尽管本身藏污纳垢, 但时刻不忘告诫人们必须孝敬父母,不许偷盗、奸淫、杀 人、贪恋别人的财物等,要求人们逆来顺受、忍受世间的 一切痛苦。基督教的宗教伦理和教化作用强化了教会对人 们的控制,深刻影响了人们的思想意识和日常行为。 宗教法庭 在基督教会的控制下,违背基督教伦理的行为往往为社会 所不容。教会不允许任何质疑声音的存在,甚至为此建立了宗 教法庭或宗教裁判所。1480年,西班牙建立了国王控制的宗教 法庭,以此来打击异己。到1820年,西班牙宗教法庭审判的 “异端”有30多万人,其中10多万人被判处火刑。 历史纵横 中世纪完全是从野蛮状态发展而来的。……在僧侣手中, 政治和法学同其他一切科学一样,不过是神学的分支,一切都 按照神学中适用的原则来处理。教会的教条同时就是政治信条, 圣经词句在各个法庭都具有法律效力。 ——[德]恩格斯《德国农民战争》,《马克思恩格斯文 集》第二卷 想一想:基督教在中古时期的欧洲发挥了什么样的作用? 学思之窗 ▲宗教法庭 ▲中古时期的婚礼 本教义,束缚人们的行为,麻醉人们的思想。新教还排斥 其他教派,引起了多次宗教冲突,造成了重大的人员伤亡 和财产损失。一些对教义持有不同意见的人被斥为“异 端”,遭到迫害。例如,1553年,西班牙科学家塞尔维特 在日内瓦被加尔文派判处火刑。 路德战胜了虔信造成的奴役制,是因为他用信念造成的奴役制代替了它。他破除了对权威的 信仰,是因为他恢复了信仰的权威。他把僧侣变成了世俗人,是因为他把世俗人变成了僧侣。他 把人从外在的宗教笃诚解放出来,是因为他把宗教笃诚变成了人的内在世界。他把肉体从锁链中 解放出来,是因为他给人的心灵套上了锁链。 —[德]马克思《〈黑格尔法哲学批判〉导言》,《马克思恩格斯文集》第一卷 史料阅读 法律始终把它的作者的世界图景包含在抽象的形式 中,而每一历史的世界图景都包含一种政治—经济的倾向, 这种倾向依据的不是这个人或那个人所想的事物,却依据 的是事实上掌握政权并因之掌握立法的阶级所实际打算造 成的事物。每一种法律都是由一个阶级以大多数的名义建 立起来的。 —[德]奥斯瓦尔德·斯宾格勒著,齐世荣等译 《西方的没落》 阅读材料,联系课文内容,谈谈你对法律的认识。 探究与拓展 问题探究 英美法系和大陆法系是西方两大法律体系,它们的源 头或多或少地与罗马法有联系,两者之间有共性,也有许 多不同之处。查阅相关资料,进一步了解它们之间的相同 和不同之处。 学习拓展 第10课" ####################### ## 筛选问题 ####################### # f = open("history_questions_candidates2.txt", "r", encoding="utf-8") # fw = open("history_questions_candidates_filter.txt", 'a', encoding='utf-8') # l = f.readline() # while l.strip(): # data_json = json.loads(l) # # print(data_json['text']) # # print(data_json['questions']) # questions_list = [s[:500] for s in data_json['questions']] # inputs = "给定原文:" + data_json['text'][:4000] + \ # "\n下面是与原文相关的问题列表:" + str(questions_list) + \ # "\n请从问题列表中选出与原文最相符合的问题。" # print(inputs) # # response = openai.ChatCompletion.create( # engine="gpt35-34", # messages=[ # {"role": "system", # "content": "你现在是一个问题筛选器,需要从问题列表中选出与原文最相关且质量较好的问题。"}, # {"role": "user", "content": inputs}, # ], # temperature=0.95, # max_tokens=800, # top_p=0.95, # n=5, # frequency_penalty=0, # presence_penalty=0, # stop=None) # questions = \ # [response["choices"][0]["message"]["content"], # response["choices"][1]["message"]["content"], # response["choices"][2]["message"]["content"], # response["choices"][3]["message"]["content"], # response["choices"][4]["message"]["content"]] # print(questions) # json_data = { # "text": data_json['text'], # "questions": questions # } # fw.write(json.dumps(json_data, ensure_ascii=False) + '\n') # time.sleep(30) # l = f.readline() ####################### ## 筛选问题第二步 ####################### # def count_substring_occurrences(strings): # result = {} # for i, string1 in enumerate(strings): # count = 0 # for j, string2 in enumerate(strings): # if string1 in string2: # count += 1 # result[string1] = count # return result # # # f = open("history_questions_candidates_filter.txt", 'r', encoding='utf-8') # good_num = 0 # l = f.readline() # while l.strip(): # data_json = json.loads(l) # string_list = data_json['questions'] # result = count_substring_occurrences(string_list) # print(json.dumps(result, ensure_ascii=False)) # # good = False # for i in result.values(): # if i >= 2: # good = True # if good: # good_num += 1 # else: # pass # # print(data_json['text']) # # l = f.readline() # print(good_num) ####################### ## 筛选问题第三步 ####################### question_result = [] k_list = [] data_origin = json.load(open("/Users/zhanglin/Desktop/LM_as_Evaluator/data/taxonomy/history.json","r",encoding="utf-8")) for d in data_origin: for k in d.keys(): for k2 in d[k].keys(): for k3 in d[k][k2].keys(): k_list.append(k3) i = 0 f = open("history_questions_candidates_filter_result.txt", 'r', encoding='utf-8') l = f.readline() while l.strip(): questions_dict = json.loads(l.strip()) max_count = 0 best_question = "" for k in questions_dict.keys(): if questions_dict[k] > max_count: best_question = k max_count = questions_dict[k] if max_count < 2: best_question = "" max_count = 0 question_result.append({ "key": k_list[i], "best_question": best_question, "score": max_count }) l = f.readline() i += 1 print(json.dumps(question_result, ensure_ascii=False))
[ "现在你是一个提问者,针对某个主题进行提问,给出问题和答案。注意只能提一个问题。" ]
2024-01-10
Zhang-l-i-n/LM_as_Evaluator
test~coverge.py
# encoding:utf-8 import json import os import jieba import openai content_file = "/Users/zhanglin/Desktop/LM_as_Evaluator/data/taxonomy/history_qa_v1.json" content = json.load(open(content_file, 'r', encoding='utf-8')) def Jaccrad(model, reference): # terms_reference为源句子,terms_model为候选句子 terms_reference = jieba.cut(reference) # 默认精准模式 terms_model = jieba.cut(model) grams_reference = set(terms_reference) # 去重;如果不需要就改为list grams_model = set(terms_model) temp = 0 for i in grams_reference: if i in grams_model: temp = temp + 1 fenmu = len(grams_model) + len(grams_reference) - temp # 并集 jaccard_coefficient = float(temp / fenmu) # 交集 return jaccard_coefficient # b = "殖民主义形成的原因是多方面的,包括经济、政治、文化和技术等诸多因素。以下是一些主要原因:\n\n经济原因:随着资本主义的发展,欧洲列强为了寻求原材料、市场和投资机会,以满足日益增长的经济需求,开始拓展势力范围,控制殖民地。\n政治原因:欧洲国家在近代为了竞争国际地位,提高国家声望,开始争夺海外殖民地,彰显自己的政治实力。\n文化原因:在宗教和文化方面,欧洲国家试图传播基督教,希望通过改变殖民地的宗教信仰来巩固自己的统治,同时也视之为\"文明使命\"。\n技术原因:航海技术、武器装备和医学的进步,使得欧洲列强能够迅速地开疆拓土,占领并统治远离本土的地区。\n殖民主义对世界历史产生了深远影响,如下所述:\n\n地理大发现:欧洲列强在争夺殖民地的过程中,探索了一系列新的航线,发现了新大陆,世界地图被重新绘制。\n国际贸易的发展:奴隶制、三角贸易以及其他互动的贸易发展,导致贫富差距日益扩大。\n文化交流与冲突:欧洲殖民者将自己的文化和信仰传播到殖民地,原住民文化发生严重被侵蚀和破坏。但与此同时,东西方文化的交流,导致人类历史上的重大发展和变革。\n种族歧视和奴隶制:这是殖民主义的黑暗面,奴隶制导致大量非洲人在极其恶劣的条件下劳动和生活,而种族歧视则导致非洲、亚洲等地区的革命斗争。\n殖民地的独立运动:殖民地国家百年来的抗议、反抗殖民势力的压迫与剥削,推动了民主和独立思想的传播和民族意识的觉醒,促进了后来的独立运动和民族解放事业。\n世界格局的演变:随着殖民地的获得,世界格局发生了巨大变化,大国之间权力的不断重新洗牌,导致两次世界大战的爆发。同时,二战后,大量殖民地纷纷脱离殖民统治,寻求独立和自主,世界进入新的历史时期。\n\n" # b = "马克思主义的诞生与传播 1844年6月4日,德意志西里西亚纺织工人高唱革命 歌曲,举行游行示威,示威活动很快发展为起义。起义工人 捣毁工厂,焚烧债券,队伍很快发展到3000多人,后来起 义被镇压。这幅图反映的是统治者镇压工人起义的情景。 ▲在英国煤矿中工作的童工(绘画作品) ▲统治者派兵镇压西里西亚织工起义 (绘画作品) 工人阶级的悲惨遭遇引发 了早期工人运动,“空想社会 主义”没有找到解决资本主义 矛盾的正确途径。 学习聚焦 早期工人运动与社会主义思想的萌发 随着资本主义大工业的建立和发展,资本主义制度 的各种弊病逐渐显现。1825年,英国爆发了经济危机。此 后,每隔十年左右就会爆发一次资本主义经济危机。虽然 生产力不断提高、劳动产品日益丰富,但工人阶级的生活 条件并没有得到相应改善,他们的政治权利也极其有限。 在工业化的早期阶段,欧洲各地普遍出现了贫富分化严重、 工人阶级苦难深重的状况。 当时工人的劳动条件相当恶劣,厂房狭小简陋,被污 染的空气几乎使人窒息,工伤事故频频发生。工人尽管每 天工作长达十几个小时,但工资微薄,并时时面临失业的 威胁。大机器的采用也把妇女和儿童卷进劳动力市场,他 们的境况更为悲惨。工人的住宅区是大城市和工业区的贫 民窟,街道狭窄拥挤,房屋低矮破旧,天空浓烟密布,地 下污水横流,成了贫穷、疾病和犯罪之地。 为了改善劳动条件和生活状况,维护 自己的权益,工人阶级进行了从捣毁机器到 争取政治权利的多种形式的斗争。19世纪 三四十年代爆发的法国里昂工人武装起义、 英国工人争取普选权的宪章运动和德意志西 里西亚织工起义,表明工人阶级开始作为独 立的政治力量登上历史舞台。工人阶级迫切 需要科学理论的指导。 在工人阶级进行斗争的同时,以法国 人圣西门、傅立叶和英国人欧文为代表的有 识之士,也无情地揭露和批判资本主义制度 的种种弊端。他们反对自由放任的竞争,主 张建立合作、平等、和谐的理想社会。但 是,他们没有找到实现理想社会的现实力量 和正确有效的途径,他们的设想被称为“空 想社会主义”。 ▲“新和谐公社”蓝图 1824年,欧文在美国印第安纳州购买了120多平方千米的土地建设一 个名为“新和谐公社”的社会组织,进行共产主义“劳动公社”的试验。 这里有工厂、农场和学校,每个人都参加劳动,分工合作,人人享有充分 的、平等的民主权利。但是,“新和谐公社”脱离社会现实,最终内部矛盾 激化,4年后失败。 ▲宪章运动(绘画作品) 1836年,伦敦工人协会成立。后来,协会拟定 了呈送议会要求普选权的请愿书,并以“人民宪章” 名义正式公布,得到全国响应,这是宪章运动开始 的标志。宪章运动持续时间超过10年,数次向议会 递交请愿书,几百万工人先后在请愿书上签名,大 大激发了工人的斗争热情。 马克思和恩格斯经过长 期的理论探索和革命实践, 创立了马克思主义,为国际 工人运动指明了正确方向。 学习聚焦 马克思主义的诞生 19世纪中叶,德国思想家、革命家马克思和恩格斯在 广泛吸收人类优秀思想成果的基础上,进一步探讨工业革命 引起的社会变化,总结工人运动的经验,共同创立了富有生 命力的马克思主义。 1846—1847年间,马克思和恩格斯先后在布鲁塞尔建 立了共产主义通讯委员会和德意志工人协会,还加入了德 意志流亡工人的组织“正义者同盟”,并帮助该同盟改组 为“共产主义者同盟”。在伦敦召开的共产主义者同盟第 二次代表大会上,马克思和恩格斯受大会委托起草同盟纲 领,这就是1848年2月发表的《共产党宣言》。 ▲马克思(1818—1883) ▲恩格斯(1820—1895) 《共产党宣言》肯定了资本主义的历史进步作用,指 出“资产阶级在它的不到一百年的阶级统治中所创造的生 产力,比过去一切世代创造的全部生产力还要多,还要 大”。《共产党宣言》揭示了资本主义在积累财富和资本的 同时对工人阶级的残酷剥夺必将引起工人阶级反抗的社会 现实,论证了资本主义必然灭亡、共产主义必然胜利的客 观规律。《共产党宣言》肯定阶级斗争在阶级社会中推动历 史发展的重要作用,宣告了无产阶级作为资本主义掘墓人 和共产主义建设者的伟大使命,阐明了共产党的性质、目 的和策略原则。 《共产党宣言》第一次较为完整系统地阐述了科学社 会主义的基本原理,阐明了社会发展的客观规律,标志着 马克思主义的诞生。 1848年,欧洲普遍发生革命,马克思和恩格斯回到德 国,投入实际的革命斗争。他们创办报纸宣传革命,组织 工人参加武装起义。革命失败后,他们主要在英国活动, 在指导工人阶级进行斗争的同时,继续进行理论探索。 1867年,马克思撰写的政治经济学巨著《资本论》第 一卷出版。通过对资本主义制度的深刻剖析,马克思创立了 随着大工业的发展,资 产阶级赖以生产和占有产品的 基础本身也就从它的脚下被 挖掉了。它首先生产的是它自 身的掘墓人。资产阶级的灭 亡和无产阶级的胜利是同样 不可避免的。 ——[德]马克思、[德] 恩格斯《共产党宣言》,《马克 思恩格斯文集》第二卷 史料阅读 1848年革命 19世纪40年代,在欧 洲大陆,西欧各国的资产 阶级迫切要求争取更多的 政治权利,东南欧国家的 人民希望结束外国统治, 获得民族独立,革命一触 即发。1848年1月,意大利 首先爆发革命,掀开了欧 洲革命的序幕。2月,巴黎 发生武装起义,推翻了七 月王朝,再次建立了共和 国,把1848年革命推向高 潮。革命席卷了欧洲许多 地区,沉重地打击了欧洲 的封建势力,有利于资本 主义的进一步发展。在这 场革命中,无产阶级发挥 了重要作用。 历史纵横 马克思和恩格斯在《共 产党宣言》中表达了怎样的 思想? 思考点 剩余价值学说,揭露了资本主义制度和资本家剥削的秘密。 《资本论》成为马克思主义理论最重要的文献之一。 马克思和恩格斯创立了唯物史观。唯物史观科学地揭 示了生产力与生产关系、经济基础与上层建筑在人类社会 发展中的辩证关系,鲜明地提出了人民群众对历史发展的 巨大作用。 马克思主义是科学的、人民的、实践的、不断发展的 开放的理论,它创造性地揭示了人类社会发展规律,第一 次创立了人民实现自身解放的思想体系,指引着人民改造 世界的行动,始终站在时代前沿。 自19世纪中期起,马克思主义成为西欧工人运动的指 导思想;在东欧和东南欧,马克思主义的影响日益扩大; 在亚洲和美洲,马克思主义是工人运动与民族民主运动的 重要思想武器。 在马克思主义影响下,马克思主义政党在世界范围内 如雨后春笋般建立和发展起来,人民第一次成为自己命运 的主人,成为实现自身解放和全人类解放的根本政治力量。 国际工人运动的发展 在《共产党宣言》中,马克思和恩格斯发出了“全 世界无产者,联合起来”的伟大号召,积极促进工人阶级 的国际联合。1864年,国际工人协会在伦敦成立,这就是 历史上的“第一国际”。马克思是第一国际的创始人之一。 第一国际的成立推动了马克思主义的传播和国际工人运动 进入新阶段。 1870年,法国在普法战争中失败,社会矛盾激化。 1871年3月,巴黎爆发工人武装起义,起义者建立了自己 的政权—巴黎公社。第一国际的一些成员在公社的活动 中发挥了重要作用,他们认为建立工人政权是向社会主义 迈出的第一步。 ▲1871年3月28日,巴黎公社宣告成立(绘画作品) 剩余价值论 马克思在《资本论》 中深刻分析了资本家剥削 工人的秘密。他指出,工 人的工资在整个工业生产 产生的利润中所占的比重 很小,工人只要在每个工 作日劳动很少一部分时间, 就足以抵偿这点工资;在 余下的大部分时间里,工 人都是在无偿地为资本家 工作,他们创造的价值也 全部为资本家所得。这就 是资本家日益富裕的秘密。 资本家从生产中获得的利 润被称为“剩余价值”。马 克思的这一理论被称为 “剩余价值论”。 历史纵横 巴黎公社的实践丰富了 马克思主义的学说,为无产 阶级革命留下了重要启示。 学习聚焦 巴黎公社采取了一系列革命措施:打碎旧的国家机 器,建立立法与行政合一的政权机关和司法机构;废除旧 军队和旧警察,代之以国民自卫军和治安委员会;人民有 权监督和罢免由选举产生的公职人员,所有公职人员的工 资不得超过熟练工人的工资;由工人合作社管理工厂;实 行八小时工作日;等等。 ▲ 巴黎公社社员墙 1871年5月27日,200名巴黎 公社战士浴血奋战,最后一批公社 战士被敌人围困在一堵墙边,最后 全部壮烈牺牲。这堵墙被命名为 “巴黎公社社员墙”。 公社的伟大社会措施就是它本身的存在和工作。它所采取 的各项具体措施,只能显示出走向属于人民、由人民掌权的政 府的趋势…… ………… 工人的巴黎及其公社将永远作为新社会的光辉先驱而为人 所称颂。 ——[德]马克思《法兰西内战》,《马克思恩格斯文集》 第三卷 谈谈你对这段话的理解。 学思之窗 1871年5月28日,巴黎公社被法国资产阶级和德国联 合扼杀。但是,巴黎公社作为无产阶级建立政权的第一次 伟大尝试被载入史册,它的实践丰富了马克思主义的学说, 为国际工人运动的发展提供了宝贵的经验和教训。 探究与拓展 正像达尔文发现有机界的发展规律一样,马克思发现 了人类历史的发展规律,即历来为繁芜丛杂的意识形态所 掩盖着的一个简单事实:人们首先必须吃、喝、住、穿, 然后才能从事政治、科学、艺术、宗教等等;所以,直接 的物质的生活资料的生产,从而一个民族或一个时代的一 定的经济发展阶段,便构成基础,人们的国家设施、法的 观点、艺术以至宗教观念,就是从这个基础上发展起来的, 因而,也必须由这个基础来解释…… ——[德]恩格斯《在马克思墓前的讲话》,《马克思 恩格斯文集》第三卷 概括上述材料的主要观点,并谈谈你对这个观点的 理解。 问题探究 德国古典哲学是马克思主义的来源之一。查找资 料,进一步了解马克思主义哲学对德国古典哲学的继承 和超越。 学习拓展 第六单元 世界殖民体系与亚非拉民族独立运动 随着新航路的开辟,西欧国家率先踏上了对外殖民扩 张的道路。18世纪,拉丁美洲已经完全处于欧洲列强的殖 民统治之下。随着工业革命的深化和资本主义的不断发展, 欧洲列强的海外殖民活动愈演愈烈。19世纪中后期,伴随 第二次工业革命浪潮,资本主义开始向帝国主义过渡,西 方列强掀起了瓜分世界的狂潮,把亚洲和非洲的广大地区 变成了它们的殖民地或半殖民地。到20世纪初,资本主义 列强已经奴役和控制了世界上绝大部分土地和人口,建立 了资本主义世界殖民体系,形成了人类历史上由少数资本 主义国家奴役和控制世界上绝大多数国家和地区的极不合 理的状态。资本主义列强与殖民地半殖民地的矛盾空前激 化,殖民地半殖民地人民争取民族独立的斗争不断高涨。 通过本单元的学习,了解西方列强建立世界殖民体系 的过程,以及亚非拉人民的抗争,理解殖民地半殖民地的 民族独立运动对世界历史发展的重要影响。 第12课" # # jaccard_coefficient = Jaccrad(a, b) # print(jaccard_coefficient) b = "五四运动是20世纪初中国一场以爱国主义和民主科学思想为主要内容的政治、文化和社会运动。它对中国革命和现代化进程产生了深远的影响,并推动了中国社会历史的进步。五四运动的影响主要体现在以下几个方面:\n\n" \ "激发民族觉醒:五四运动极大地激发了中国人民的民族自尊心和民族自信心。在运动中,爱国主义情怀得到前所未有的强烈表达,中国人民开始认识到民族复兴的重要性,民族觉悟得到空前的提高。\n" \ "引领新思想:五四运动中,民主、科学、实事求是等新思想得到广泛传播,对中国传统封建思想体系产生了强烈冲击。许多青年知识分子和社会各界人士通过新文化运动吸收和传播西方现代文化思想,对中国的社会观念、价值观和文化风尚产生重要影响。" \ "\n生发新文化:五四运动使中国进入了新文化时代。民主、科学、自由等观念成为新时期的主流价值观。旧文化的瓦解和新文化的确立使中国传统文化发生深刻变革。现代文学、艺术、教育、科技等领域得到迅速发展,推动了整个国家现代化和社会进步。" \ "\n催生新政治:五四运动导致了中国政治格局的重大变革。在五四运动的影响下,中国共产党应运而生,开始了中国新民主主义革命的历程。通过一系列斗争,中国共产党最后取得成功,建立了新中国,为中国引入了社会主义制度,为实现民族独立和社会发展打下了坚实基础。" \ "\n催生新经济:五四运动发扬民主和科学的精神,为中国经济现代化建立了理论体系和实践土壤。五四思想家倡导创新和实践,大力发展国民经济,为民生改革和现代化建设注入源源不断的动力,推动中国经济不断前进。" \ "\n引导新外交:五四运动对中国的外交事业产生了重大影响。五四运动之后,中国开始摆脱不平等条约的桎梏,倡导主权独立和民族平等。新中国成立后,持续与世界无产者大联合,树立新的国际形象,赢得世界广泛尊重。" \ "\n总之,五四运动的深远影响从各个方面推动了中国社会历史的进步,成为了近现代中国发展历程中具有划时代意义的重要事件。" ############################ # Jaccard ############################ # for c in content: # for chapter in c: # for k1 in c[chapter]: # print(k1) # for k2 in c[chapter][k1]: # print(c[chapter][k1][k2]["text"].split(" ")[1]) # jaccard_coefficient = Jaccrad(c[chapter][k1][k2]["text"], b) # print(jaccard_coefficient) ############################ # API(gpt-3.5) ############################ os.environ["OPENAI_API_KEY"] = "33e8f0c860bc4109825496444bbfed3e" openai.api_type = "azure" openai.api_base = "https://community-openai-34.openai.azure.com/" openai.api_version = "2023-03-15-preview" openai.api_key = os.getenv("OPENAI_API_KEY") for c in content: for chapter in c: for k1 in c[chapter]: # print(k1) for k2 in c[chapter][k1]: inputs = "文本1: " + b + "\n" + "文本2: " + c[chapter][k1][k2]["text"] + "\n" + "请给出分数。" response = openai.ChatCompletion.create( engine="gpt35-34", messages=[ {"role": "system", "content": "你现在是一个内容比较器,你需要根据判断文本1包含了文本2多少内容,用1-100分数表示"}, {"role": "user", "content": inputs}, ], temperature=0.95, max_tokens=800, top_p=0.95, n=5, frequency_penalty=0, presence_penalty=0, stop=None) scores = \ [response["choices"][0]["message"]["content"], response["choices"][1]["message"]["content"], response["choices"][2]["message"]["content"], response["choices"][3]["message"]["content"], response["choices"][4]["message"]["content"]] print(k2) print(scores)
[ "你现在是一个内容比较器,你需要根据判断文本1包含了文本2多少内容,用1-100分数表示" ]
2024-01-10
Zhang-l-i-n/LM_as_Evaluator
embedding~get_embedding.py
import json import openai # from tenacity import retry, wait_random_exponential, stop_after_attempt import torch from transformers import BertTokenizer, BertModel from tqdm import tqdm # openai.api_version = '2023-03-15-preview' # openai.api_type = 'azure' # openai.api_base = "https://conmmunity-openai.openai.azure.com/" # openai.api_key = '3371b75d06a54deabcdd5818629ca833' # @retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6)) # def get_embedding(text, engine="ada-1"): # return openai.Embedding.create(engine=engine, input=[text])["data"][0]["embedding"] def get_embedding(text: str) -> list[float]: tokenizer = BertTokenizer.from_pretrained('shibing624/text2vec-base-chinese') model = BertModel.from_pretrained('shibing624/text2vec-base-chinese') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) inputs = tokenizer(text, return_tensors='pt') outputs = model(**inputs) return outputs.pooler_output.tolist()[0] def embeddings(f_txt): embedding_list = [] data_json = json.load(open(f_txt, 'r', encoding='utf-8')) for i, d in enumerate(data_json): for k1 in d.keys(): print(k1) embedding_list.append( {"label": k1, "type": i + 1, "embedding": get_embedding(k2) } ) for k2 in d[k1].keys(): print(k2) embedding_list.append( {"label": k2, "type": i + 1, "embedding": get_embedding(k2) } ) for k3 in d[k1][k2]: print(k3) embedding_list.append( {"label": k3, "type": i + 1, "embedding": get_embedding(k3) } ) # count = 0 # with open(f_txt, 'r', encoding='utf-8') as frd: # for line in frd: # count = count + 1 # # pbar = tqdm(total=count) # with open(f_txt, 'r', encoding='utf-8') as f: # line = f.readline() # type = 0 # while line: # if len(line) > 1: # if line.startswith(' '): # level = 2 # elif line.startswith(' '): # level = 1 # type += 1 # elif line.strip(): # level = 0 # type = 0 # embedding_list.append( # {"label": line.strip(), # "level": level, # "type": type, # # "type": 1, # "embedding": get_embedding(line) # } # ) # line = f.readline() # pbar.update(1) # pbar.close() return embedding_list def data_prepare(f_raw, f_emb): embedding_list = embeddings(f_raw) with open(f_emb, 'w', encoding='utf=8') as f: f.write(json.dumps(embedding_list, ensure_ascii=False)) if __name__ == '__main__': f_raw, f_emb = './taxonomy/history.json', './embedding/bert_embedding_history.json' ############ print('data preparing...') data_prepare(f_raw, f_emb) print('data prepared')
[]
2024-01-10
Zhang-l-i-n/LM_as_Evaluator
test~get_embedding.py
import json import openai import pandas as pd from tenacity import retry, wait_random_exponential, stop_after_attempt from tqdm import tqdm import numpy as np import umap.plot from matplotlib import pyplot as plt from matplotlib.font_manager import FontProperties import seaborn as sns from sklearn.cluster import KMeans from sklearn.cluster import AffinityPropagation def show_cluster(n_clusters, X, y, label): cluster = KMeans(n_clusters=n_clusters, random_state=0).fit(X) y_pred = cluster.labels_ # 获取训练后对象的每个样本的标签 centroid = cluster.cluster_centers_ color = ['red', 'pink', 'orange', 'gray'] fig, axi1 = plt.subplots(1) for i in range(n_clusters): axi1.scatter(X[y_pred == i, 0], X[y_pred == i, 1], marker='o', s=8, c=color[i]) axi1.scatter(centroid[:, 0], centroid[:, 1], marker='x', s=100, c='black') plt.show() openai.api_version = '2023-03-15-preview' openai.api_type = 'azure' openai.api_base = "https://conmmunity-openai.openai.azure.com/" openai.api_key = '3371b75d06a54deabcdd5818629ca833' @retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6)) def get_embedding(text, engine="ada-1"): return openai.Embedding.create(engine=engine, input=[text])["data"][0]["embedding"] def embeddings(f_txt): embedding_list = [] count = 0 with open(f_txt, 'r', encoding='utf-8') as frd: for line in frd: count = count + 1 pbar = tqdm(total=count) with open(f_txt, 'r', encoding='utf-8') as f: line = f.readline() # type = 0 while line: if len(line) > 1: if line.startswith(' '): level = 1 elif line.strip(): level = 0 # type += 1 embedding_list.append( {"label": line.strip(), "level": level, # "type": type, "type": 1, "embedding": get_embedding(line) } ) line = f.readline() pbar.update(1) pbar.close() return embedding_list def get_data(f_data, y='level'): embedding_list, label_list, y_list = [], [], [] data_json = json.load(open(f_data, 'r', encoding='utf-8')) for d in data_json: embedding_list.append(d['embedding']) label_list.append(d['label']) y_list.append(d[y]) # label_list = eval(open(f_label, 'r').readline().strip()) return embedding_list, label_list, y_list def data_prepare(f_raw, f_emb): embedding_list = embeddings(f_raw) with open(f_emb, 'w', encoding='utf=8') as f: f.write(json.dumps(embedding_list, ensure_ascii=False)) # label_list = [] # with open(f_raw, 'r', encoding='utf-8') as f: # line = f.readline() # while line: # if line.strip(): # label_list.append(line.strip()) # line = f.readline() # open(f_label, 'w', encoding='utf=8').write(str(label_list)) if __name__ == '__main__': f_raw, f_emb = '计算机学科.level', 'embedding_bio2.json' ############ # print('data preparing...') # data_prepare(f_raw, f_emb) # print('data prepared') # exit() font_path = '/Users/zllll/Library/Fonts/SimHei.ttf' custom_font = FontProperties(fname=font_path) embedding_list, label_list, y_list = get_data(f_emb, 'type') # embedding_list = eval(open(f_emb, 'r').readline().strip()) print(len(embedding_list)) X = np.array(embedding_list) y = np.array([1] * len(embedding_list)) ################ # UMAP降维 ################ reducer = umap.UMAP() embedding = reducer.fit_transform(X) print(embedding.shape) plt.scatter(embedding[:, 0], embedding[:, 1], c=y_list, cmap='rainbow') # 添加标签 for i in range(len(label_list)): plt.text(embedding[:, 0][i], embedding[:, 1][i], label_list[i], ha='center', va='bottom', fontproperties=custom_font, fontsize=5) plt.gca().set_aspect('equal', 'datalim') plt.title('UMAP') plt.show() ################ # Affinity Propagation ################ af = AffinityPropagation(preference=None).fit(embedding) cluster_centers_indices = af.cluster_centers_indices_ labels = af.labels_ n_clusters = len(cluster_centers_indices) color = sns.color_palette("hls", n_clusters) for k, col in zip(range(n_clusters), color): class_members = labels == k cluster_center = embedding[cluster_centers_indices[k]] plt.scatter(embedding[class_members, 0], embedding[class_members, 1], marker='o', s=8, c=col) plt.scatter(cluster_center[0], cluster_center[1], marker='x', s=100, c='black') for i in range(len(label_list)): plt.text(embedding[:, 0][i], embedding[:, 1][i], label_list[i], ha='center', va='bottom', fontproperties=custom_font, fontsize=5) plt.title('AP--Estimated number of clusters: %d' % n_clusters) plt.show() ################ # Kmeans聚类(UMAP降维后的数据) ################ cluster = KMeans(n_clusters=n_clusters, random_state=0).fit(embedding) y_pred = cluster.labels_ # 获取训练后对象的每个样本的标签 centroid = cluster.cluster_centers_ print(y_pred) print(centroid) color = sns.color_palette("hls", n_clusters) for i in range(n_clusters): plt.scatter(embedding[y_pred == i, 0], embedding[y_pred == i, 1], marker='o', s=8, c=color[i]) plt.scatter(centroid[:, 0], centroid[:, 1], marker='x', s=100, c='black') for i in range(len(label_list)): plt.text(embedding[:, 0][i], embedding[:, 1][i], label_list[i], ha='center', va='bottom', fontproperties=custom_font, fontsize=5) plt.title('Kmeans') plt.show() ################ # Affinity Propagation(UMAP降维前的数据) ################ af = AffinityPropagation(preference=None).fit(X) cluster_centers_indices = af.cluster_centers_indices_ labels = af.labels_ n_clusters = len(cluster_centers_indices) # print(X.shape) # print(cluster_centers_indices) X_expand_2d = reducer.fit_transform(X) color = sns.color_palette("hls", n_clusters) for k, col in zip(range(n_clusters), color): class_members = labels == k cluster_center = X_expand_2d[cluster_centers_indices[k]] plt.scatter(X_expand_2d[class_members, 0], X_expand_2d[class_members, 1], marker='o', s=8, c=col) plt.scatter(cluster_center[0], cluster_center[1], marker='x', s=100, c='black') for i in range(len(label_list)): plt.text(X_expand_2d[:, 0][i], X_expand_2d[:, 1][i], label_list[i], ha='center', va='bottom', fontproperties=custom_font, fontsize=5) plt.title('AP--Estimated number of clusters: %d' % n_clusters) plt.show() ################ # Kmeans聚类(UMAP降维前的数据) ################ cluster = KMeans(n_clusters=n_clusters, random_state=0).fit(X) y_pred = cluster.labels_ # 获取训练后对象的每个样本的标签 centroid = cluster.cluster_centers_ # print(X) # print(centroid) X_expand = np.concatenate([X, centroid], axis=0) X_expand_2d = reducer.fit_transform(X_expand) embedding = X_expand_2d[:X.shape[0]] centroid = X_expand_2d[X.shape[0]:] color = sns.color_palette("hls", n_clusters) for i in range(n_clusters): plt.scatter(embedding[y_pred == i, 0], embedding[y_pred == i, 1], marker='o', s=8, c=color[i]) plt.scatter(centroid[:, 0], centroid[:, 1], marker='x', s=100, c='black') for i in range(len(label_list)): plt.text(embedding[:, 0][i], embedding[:, 1][i], label_list[i], ha='center', va='bottom', fontproperties=custom_font, fontsize=5) plt.title('Kmeans') plt.show()
[]
2024-01-10
blazickjp/GPT-CodeApp
backend~tests~test_coding_agent.py
import unittest import instructor import difflib from openai import OpenAI from unittest.mock import MagicMock, mock_open, patch, call from agent.coding_agent import CodingAgent from memory.memory_manager import MemoryManager from database.my_codebase import MyCodebase from agent.agent_functions.file_ops import _OP_LIST, AddFunction, DeleteFunction client = instructor.patch(OpenAI()) IGNORE_DIRS = ["node_modules", ".next", ".venv", "__pycache__", ".git"] FILE_EXTENSIONS = [".js", ".py", ".md"] # Sample code for testing purposes ORIGINAL_CODE = "def example():\n pass\n" MODIFIED_CODE_ADD = ( "def example():\n pass\n\ndef added_function():\n return 'test'\n" ) MODIFIED_CODE_DELETE = "" # Sample operation instances for testing add_function_op = AddFunction( file_name="example.py", function_name="added_function", args="", body="return 'test'", decorator_list=[], ) delete_function_op = DeleteFunction(file_name="example.py", function_name="example") class TestCodingAgent(unittest.TestCase): def setUp(self): # Mock the CodingAgent and its dependencies self.agent = CodingAgent(memory_manager=None, function_map=None, codebase=None) self.agent.ops_to_execute = [add_function_op, delete_function_op] # Patch the open function in the coding_agent module self.mock_open = mock_open(read_data=ORIGINAL_CODE) self.open_patch = patch("agent.coding_agent.open", self.mock_open) self.open_patch.start() def tearDown(self): self.open_patch.stop() def test_execute_ops(self): # Call the method to test diffs = self.agent.execute_ops(self.agent.ops_to_execute) print("Diff: ", diffs) # We expect two diffs: one for the addition and one for the deletion expected_diffs = [ "--- before.py\n+++ after.py\n@@ -1,2 +1,6 @@\n def example():\n pass\n+\n+\n+def added_function():\n+ return 'test'\n", "--- before.py\n+++ after.py\n@@ -1,2 +0,0 @@\n-def example():\n- pass\n", ] # Check that the diffs match what we expect self.assertEqual(diffs, expected_diffs) class TestCodingAgent1(unittest.TestCase): def setUp(self): # Mock database connection setup self.mock_db_connection = MagicMock() self.memory_manager = MemoryManager(db_connection=self.mock_db_connection) self.codebase = MyCodebase( db_connection=self.mock_db_connection, file_extensions=FILE_EXTENSIONS, ignore_dirs=IGNORE_DIRS, ) # Initialize the agent for testing self.agent = CodingAgent( memory_manager=self.memory_manager, codebase=self.codebase, function_map=[_OP_LIST], ) def test_process_json(self): result = self.agent.process_json('{"key": "value"}') self.assertEqual(result, {"key": "value"}) def test_agent_query(self): self.agent.query = MagicMock() self.agent.query.return_value = ["response"] result = list(self.agent.query("input")) self.assertEqual(result, ["response"]) if __name__ == "__main__": unittest.main()
[]
2024-01-10
blazickjp/GPT-CodeApp
backend~memory~memory_manager.py
from turtle import up import tiktoken from typing import Optional, List from datetime import datetime from dotenv import load_dotenv from memory.system_prompt_handler import SystemPromptHandler from pydantic import BaseModel, Field import instructor from instructor import OpenAISchema from openai import OpenAI, AsyncOpenAI import logging CLIENT = instructor.patch(AsyncOpenAI()) class WorkingContext: def __init__(self, db_connection, project_directory) -> None: """Initializes the WorkingContext class. Args: db_connection: The database connection object. project_directory: The path to the project directory. Attributes: context: The working context string. conn: The database connection. cur: The database cursor. client: The OpenAI API client. project_directory: The project directory path. """ self.context = "The user is named Joe" self.conn = db_connection self.cur = self.conn.cursor() self.client = CLIENT self.project_directory = project_directory self.create_tables() def create_tables(self) -> None: try: self.cur.execute( """ CREATE TABLE IF NOT EXISTS working_context ( context TEXT, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, project_directory TEXT ); """ ) except Exception as e: print("Failed to create tables: ", str(e)) return def add_context(self, context: str) -> None: self.context += "\n" + context self.cur.execute( """ INSERT INTO working_context (context, created_at, project_directory) VALUES (?, ?, ?); """, (context, datetime.now().isoformat(), self.project_directory), ) self.conn.commit() def get_context(self) -> str: self.cur.execute( """ SELECT context, created_at FROM working_context where project_directory = ? """, (self.project_directory,), ) results = self.cur.fetchall() self.context = "" for result in results: self.context += "\n" + result[0] return self.context def remove_context(self, context: str) -> None: self.context = self.context.replace(context, "") self.cur.execute( """ DELETE FROM working_context WHERE context = ? and project_directory = ? """, (context, self.project_directory), ) self.conn.commit() def __str__(self) -> str: return self.context class ContextUpdate(BaseModel): """ API to add information from the working context. """ thought: str = Field( default=..., description="Always think first and document your thought process here.", ) new_context: List[str] | None = Field( default=None, description="Valuable information from the conversation you want to keep in working context. ", ) def execute(self, working_context: WorkingContext) -> None: if self.new_context: for context in self.new_context: working_context.add_context(context) return working_context class MemoryManager: # MemoryManager class manages interactions with the memory database # including initializing connections, creating tables, and # delegating to other classes that interact with the database. def __init__( self, model: str = "gpt-3.5-turbo-16k", identity: str = None, tree: str = None, max_tokens: int = 1000, table_name: str = "default", db_connection=None, ) -> None: load_dotenv() self.project_directory = None self.model = model self.max_tokens = max_tokens self.system = None self.identity = ( "You are an AI Pair Programmer and a world class python developer helping the Human work on a project." if not identity else identity ) self.system_file_summaries = None self.system_file_contents = None self.conn = db_connection self.cur = self.conn.cursor() self.working_context = WorkingContext( db_connection=db_connection, project_directory=self.project_directory ) self.prompt_handler = SystemPromptHandler( db_connection=db_connection, tree=tree, identity=self.identity, working_context=self.working_context, ) self.memory_table_name = f"{table_name}_memory" self.prompt_handler.system_table_name = f"{table_name}_system_prompt" self.system_table_name = f"{table_name}_system_prompt" self.create_tables() self.prompt_handler.set_system() self.background_tasks = None def get_messages(self, chat_box: Optional[bool] = None) -> List[dict]: self.cur.execute( f""" SELECT role, content FROM {self.system_table_name}; """ ) results = self.cur.fetchall() messages = [{"role": result[0], "content": result[1]} for result in results] max_tokens = 30000 if chat_box else self.max_tokens if chat_box: self.cur.execute( f""" with t1 as ( SELECT role, content as full_content, COALESCE(summarized_message, content) as content, COALESCE(summarized_message_tokens, content_tokens) as tokens, sum(COALESCE(summarized_message_tokens, content_tokens)) OVER (ORDER BY interaction_index DESC) as token_cum_sum FROM {self.memory_table_name} WHERE project_directory = ? ORDER BY interaction_index desc ) select role, full_content, content, tokens from t1 WHERE token_cum_sum <= ?; """, ( self.project_directory, max_tokens, ), ) else: self.cur.execute( # f""" # WITH Exclude AS ( # SELECT interaction_index, last_idx # FROM ( # select lag(interaction_index,1) over (order by interaction_index desc) as last_idx, * # from {self.memory_table_name} # ) # WHERE (content LIKE '/%' AND role = 'user') # ), # Filtered AS ( # SELECT * # FROM {self.memory_table_name} # WHERE interaction_index NOT IN (SELECT interaction_index FROM Exclude) # and interaction_index NOT IN (SELECT last_idx FROM Exclude) # ), # t1 AS ( # SELECT role, # content as full_content, # COALESCE(summarized_message, content) as content, # COALESCE(summarized_message_tokens, content_tokens) as tokens, # SUM(COALESCE(summarized_message_tokens, content_tokens)) OVER (ORDER BY interaction_index DESC) as token_cum_sum # FROM Filtered # WHERE project_directory = ? # ORDER BY interaction_index DESC # ) # SELECT role, full_content, content, tokens # FROM t1 # WHERE token_cum_sum <= ?; # """, f""" with t1 as ( SELECT role, content as full_content, COALESCE(summarized_message, content) as content, COALESCE(summarized_message_tokens, content_tokens) as tokens, sum(COALESCE(summarized_message_tokens, content_tokens)) OVER (ORDER BY interaction_index DESC) as token_cum_sum FROM {self.memory_table_name} WHERE project_directory = ? ORDER BY interaction_index desc ) select role, full_content, content, tokens from t1 WHERE token_cum_sum <= ?; """, ( self.project_directory, max_tokens, ), ) results = self.cur.fetchall() for result in results[::-1]: messages.append( {"role": result[0], "content": result[2], "full_content": result[1]} ) return messages def add_message( self, role: str, content: str, command: Optional[str] = None, function_response: Optional[str] = None, ) -> None: timestamp = datetime.now().isoformat() message_tokens = self.get_total_tokens_in_message(content) summary, summary_tokens = ( self.summarize(content) if message_tokens > float("inf") else (None, None) ) is_function_call = command is not None try: self.cur.execute( f""" INSERT INTO {self.memory_table_name} (interaction_index, role, content, content_tokens, summarized_message, summarized_message_tokens, project_directory, is_function_call) VALUES (?, ?, ?, ?, ?, ?, ?, ?); """, ( timestamp, role, content, message_tokens, summary, summary_tokens, self.project_directory, is_function_call, ), ) self.conn.commit() except Exception as e: print("Failed to insert data: ", str(e)) return def get_total_tokens_in_message(self, message: str) -> int: """Returns the number of tokens in a message.""" encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") num_tokens = len(encoding.encode(message)) return num_tokens def create_tables(self) -> None: try: self.cur.execute( f""" CREATE TABLE IF NOT EXISTS {self.memory_table_name} ( interaction_index TIMESTAMP PRIMARY KEY, role VARCHAR(100), content TEXT, content_tokens INT, summarized_message TEXT, summarized_message_tokens INT, project_directory TEXT, is_function_call BOOLEAN DEFAULT FALSE, function_response BOOLEAN DEFAULT FALSE ); """ ) except Exception as e: print("Failed to create tables: ", str(e)) return async def update_context(self): ctx = self.working_context.get_context() print("Working Context: ", ctx) prompt = f""" You are monitoring a conversation between an engineer and their AI Assistant. Your mission is to manage the working memory for the AI Assistant. You do this by adding information to the working context (short-term memory) based on the conversation history. ## Guidelines - Your insertions should be short, concise, and relevant to the future of the conversation. - Keep track of facts, ideas, and concepts that are important to the conversation. - Monitor the personality of the person you're speaking with and adjust your responses accordingly. - Keep track of things that the user appeared to like or dislike. - In your thoughts, justify why you are adding or removing information from the working context. You can see the current working context below. Working Context: {ctx} Please make any updates accordingly. Be sure the think step by step as you work. """ messages = [ {"role": item["role"], "content": item["content"]} for item in self.get_messages() ] for message in messages: if message["role"] == "system": message["content"] = prompt print(messages) update = await self.working_context.client.chat.completions.create( model="gpt-4-1106-preview", response_model=ContextUpdate, messages=messages, ) print(update) self.working_context = update.execute(self.working_context) self.prompt_handler.set_system() return def set_directory(self, directory: str) -> None: self.project_directory = directory self.working_context.project_directory = directory self.prompt_handler.directory = directory self.prompt_handler.set_system() return
[ "\nYou are monitoring a conversation between an engineer and their AI Assistant.\nYour mission is to manage the working memory for the AI Assistant. \nYou do this by adding information to the working context (short-term memory) based on the conversation history.\n\n\n## Guidelines\n- Your insertions should be short, concise, and relevant to the future of the conversation.\n- Keep track of facts, ideas, and concepts that are important to the conversation.\n- Monitor the personality of the person you're speaking with and adjust your responses accordingly.\n- Keep track of things that the user appeared to like or dislike.\n- In your thoughts, justify why you are adding or removing information from the working context.\n\nYou can see the current working context below.\n\nWorking Context:\nPLACEHOLDER\n\nPlease make any updates accordingly. Be sure the think step by step as you work.\n", "content" ]
2024-01-10
blazickjp/GPT-CodeApp
backend~agent~agent_functions~function_ops.py
from instructor import OpenAISchema from pydantic import Field import json import uuid class AddFunction(OpenAISchema): """ Represents a function to be added to a Python file. Do not provide Partial values. """ file_name: str = Field( ..., description="The name of the file to add the function to." ) function_name: str = Field(..., description="The name of the function.") args: str = Field(..., description="The arguments of the function.") body: str = Field(..., description="The body of the function.") decorator_list: list[str] = Field( [], description="The list of decorators to be applied to the function." ) returns: str | None = Field(None, description="The return type of the function.") id: str = str(uuid.uuid4()) def to_json(self): out = dict( id=self.id, file_name=self.file_name, function_name=self.function_name, args=self.args, body=self.body, decorator_list=self.decorator_list, returns=self.returns, ) return "\n\n```json\n" + json.dumps(out, indent=4) + "\n```\n" class DeleteFunction(OpenAISchema): """ Represents a request to delete a function from the agent. """ file_name: str = Field( ..., description="The name of the file containing the function to delete." ) function_name: str = Field(..., description="The name of the function to delete.") id: str = str(uuid.uuid4()) def to_json(self): out = dict( id=self.id, file_name=self.file_name, function_name=self.function_name, ) return "\n\n```json\n" + json.dumps(out, indent=4) + "\n```\n" class ModifyFunction(OpenAISchema): """ A class representing modifications to a function. All new values must be complete and will override the existing values. Do not provide Partial values. """ file_name: str = Field( ..., description="The name of the file containing the function to modify." ) function_name: str = Field(..., description="The name of the function to modify.") new_args: str | None = Field( None, description="The new arguments for the function." ) new_body: str | None = Field( None, description="The new body of the function. This will overwrite the old body. Always include a full body.", ) new_decorator_list: list[str] | None = Field( None, description="The new list of decorators for the function." ) new_returns: str | None = Field( None, description="The new return type for the function." ) new_name: str | None = Field(None, description="The new name for the function.") new_docstring: str | None = Field( None, description="The new docstring for the function." ) id: str = str(uuid.uuid4()) def to_json(self): out = dict( id=self.id, file_name=self.file_name, function_name=self.function_name, new_args=self.new_args, new_body=self.new_body, new_decorator_list=self.new_decorator_list, new_returns=self.new_returns, new_name=self.new_name, ) return "\n\n```json\n" + json.dumps(out, indent=4) + "\n```\n"
[]
2024-01-10
blazickjp/GPT-CodeApp
backend~agent~agent_functions~class_ops.py
from instructor import OpenAISchema from pydantic import Field import json import uuid class AddClass(OpenAISchema): """Represents a class to be added to a file.""" file_name: str = Field(..., description="The name of the file to add the class to.") class_name: str = Field(..., description="The name of the class.") bases: list[str] = Field([], description="The base classes for the class.") body: str = Field(..., description="The body of the class.") decorator_list: list[str] = Field( [], description="The list of decorators to be applied to the class." ) id: str | None = str(uuid.uuid4()) def to_json(self): out = dict( id=self.id, file_name=self.file_name, class_name=self.class_name, bases=self.bases, body=self.body, decorator_list=self.decorator_list, ) return "\n\n```json\n" + json.dumps(out, indent=4) + "\n```\n" class DeleteClass(OpenAISchema): """Represents a class to be deleted. Attributes: file_name (str): The name of the file containing the class to be deleted. class_name (str): The name of the class to be deleted. """ file_name: str = Field( ..., description="The name of the file containing the class to delete." ) class_name: str = Field(..., description="The name of the class to delete.") id: str | None = str(uuid.uuid4()) def to_json(self): out = dict( id=self.id, file_name=self.file_name, class_name=self.class_name, ) return "\n\n```json\n" + json.dumps(out, indent=4) + "\n```\n" class ModifyClass(OpenAISchema): """Represents a request to modify a Python class. Modifications will override the existing class.""" file_name: str = Field( ..., description="The name of the file containing the class to modify." ) class_name: str = Field(..., description="The name of the class to modify.") new_bases: list[str] | None = Field( None, description="The new base classes for the class." ) new_body: str | None = Field( None, description="The new body of the class as a list of statements or a string. This will replace the entire existing body of the class.", ) new_decorator_list: list[str] | None = Field( None, description="The new list of decorators for the class." ) new_name: str | None = Field(None, description="The new name for the class.") new_args: str | None = Field(None, description="The new arguments for the class.") new_docstring: str | None = Field( None, description="The new docstring for the function." ) id: str | None = str(uuid.uuid4()) def to_json(self): out = dict( id=self.id, file_name=self.file_name, class_name=self.class_name, new_bases=self.new_bases, new_body=self.new_body, new_decorator_list=self.new_decorator_list, new_name=self.new_name, new_args=self.new_args, ) return "\n\n```json\n" + json.dumps(out, indent=4) + "\n```\n"
[]
2024-01-10
blazickjp/GPT-CodeApp
backend~agent~agent_functions~import_ops.py
from instructor import OpenAISchema from pydantic import Field import json import uuid class AddImport(OpenAISchema): """ Represents an import statement to be added to a Python file. """ file_name: str = Field( ..., description="The name of the file to add the import to." ) module: str = Field(..., description="The name of the module to import.") names: list | None = Field( None, description="The names to import from the module. Defaults to None." ) asnames: list | None = Field( None, description="The names to import from the module with an alias." ) objects: list | None = Field( None, description="The objects to import from the module." ) id: str = str(uuid.uuid4()) def to_json(self): out = dict( id=self.id, file_name=self.file_name, module=self.module, names=self.names, asnames=self.asnames, objects=self.objects, ) return "\n\n```json\n" + json.dumps(out, indent=4) + "\n```\n" class DeleteImport(OpenAISchema): """ Represents a request to delete one or more imports from a Python module. """ file_name: str = Field( ..., description="The name of the file to delete the import from." ) module: str = Field( ..., description="The name of the module to delete imports from." ) names: list | None = Field( None, description="The names to delete from the module. Defaults to None." ) asnames: list | None = Field( None, description="The names to delete from the module with an alias." ) objects: list | None = Field( None, description="The objects to delete from the module." ) id: str = str(uuid.uuid4()) def to_json(self): out = dict( id=self.id, file_name=self.file_name, module=self.module, names=self.names, asnames=self.asnames, objects=self.objects, ) return "\n\n```json\n" + json.dumps(out, indent=4) + "\n```\n" class ModifyImport(OpenAISchema): """ Represents a modification to an import statement in a Python file.""" file_name: str = Field( ..., description="The name of the file containing the import to modify." ) module: str = Field(..., description="The name of the module to modify.") new_names: list | None = Field( None, description="The new names to import from the module." ) new_asnames: list | None = Field( None, description="The new names to import from the module with an alias." ) objects_to_remove: list | None = Field( None, description="The old objects to remove." ) objects_to_add: list | None = Field(None, description="The new objects to add.") id: str = str(uuid.uuid4()) def to_json(self): out = dict( id=self.id, file_name=self.file_name, module=self.module, new_names=self.new_names, new_asnames=self.new_asnames, new_objects=self.new_objects, ) return "\n\n```json\n" + json.dumps(out, indent=4) + "\n```\n"
[]
2024-01-10
blazickjp/GPT-CodeApp
backend~agent~agent_functions~method_ops.py
from instructor import OpenAISchema from pydantic import Field import json import uuid class AddMethod(OpenAISchema): """ Represents a method to be added to a class. """ file_name: str = Field( ..., description="The name of the file containing the class to add the method to.", ) class_name: str = Field( ..., description="The name of the class to add the method to." ) method_name: str = Field(..., description="The name of the method.") args: str = Field(..., description="The arguments of the method.") body: str = Field(..., description="The body of the method.") decorator_list: list[str] = Field( [], description="The list of decorators to be applied to the method." ) returns: str | None = Field(None, description="The return type of the method.") id: str = str(uuid.uuid4()) def to_json(self): out = dict( id=self.id, file_name=self.file_name, class_name=self.class_name, method_name=self.method_name, args=self.args, body=self.body, decorator_list=self.decorator_list, returns=self.returns, ) return "\n\n```json\n" + json.dumps(out) + "\n```\n" class DeleteMethod(OpenAISchema): """Represents a method to be deleted from a class.""" file_name: str = Field( ..., description="The name of the file containing the class to delete the method from.", ) class_name: str = Field( ..., description="The name of the class to delete the method from." ) method_name: str = Field(..., description="The name of the method to delete.") id: str = str(uuid.uuid4()) def to_string(self): out = dict( id=self.id, file_name=self.file_name, class_name=self.class_name, method_name=self.method_name, ) return "\n\n```json\n" + json.dumps(out) + "\n```\n" class ModifyMethod(OpenAISchema): """ Represents a method modification operation. Modifications will override the existing method, do not provide Partial values. """ file_name: str = Field( ..., description="The name of the file containing the class to modify the method in.", ) class_name: str = Field( ..., description="The name of the class to modify the method in." ) method_name: str = Field(..., description="The name of the method to modify.") new_args: str | None = Field(None, description="The new arguments for the method.") new_body: str | None = Field( None, description="The new body of the method as a string. This will replace the entire existing body of the method.", ) new_decorator_list: list[str] | None = Field( None, description="The new list of decorators for the method." ) new_method_name: str | None = Field( None, description="The new name for the method." ) new_returns: str | None = Field( None, description="The new return type for the method." ) new_docstring: str | None = Field( None, description="The new docstring for the function." ) id: str = str(uuid.uuid4()) def to_json(self): out = dict( id=self.id, file_name=self.file_name, class_name=self.class_name, method_name=self.method_name, new_args=self.new_args, new_body=self.new_body, new_decorator_list=self.new_decorator_list, new_method_name=self.new_method_name, new_returns=self.new_returns, ) return "\n\n```json\n" + json.dumps(out) + "\n```\n"
[]
2024-01-10
blazickjp/GPT-CodeApp
backend~agent~agent_functions~file_ops.py
import json import uuid from instructor import OpenAISchema from pydantic import Field from agent.agent_functions.function_ops import ( AddFunction, DeleteFunction, ModifyFunction, ) from agent.agent_functions.class_ops import AddClass, DeleteClass, ModifyClass from agent.agent_functions.method_ops import AddMethod, DeleteMethod, ModifyMethod from agent.agent_functions.import_ops import AddImport, DeleteImport, ModifyImport # Export all the entities __all__ = [ "AddFunction", "DeleteFunction", "ModifyFunction", "AddClass", "DeleteClass", "ModifyClass", "AddMethod", "DeleteMethod", "ModifyMethod", "AddImport", "DeleteImport", "ModifyImport", "VariableNameChange", ] class VariableNameChange(OpenAISchema): """ Represents a request to change the name of a variable throughout the entire codebase. This operation replaces all instances of the original variable name with a new name. """ original_name: str = Field(..., description="The original name of the variable.") new_name: str = Field(..., description="The new name of the variable.") id: str = str(uuid.uuid4()) def to_json(self): out = dict(id=self.id, original_name=self.original_name, new_name=self.new_name) return "\n\n```json\n" + json.dumps(out, indent=4) + "\n```\n" _OP_LIST = [ AddImport, DeleteImport, AddFunction, DeleteFunction, AddClass, DeleteClass, AddMethod, DeleteMethod, ModifyFunction, ModifyClass, ModifyMethod, ModifyImport, VariableNameChange, ] _OP_LIST = {cls.__name__: cls for cls in _OP_LIST}
[]
2024-01-10
blazickjp/GPT-CodeApp
backend~agent~coding_agent.py
# import os import re import json import boto3 import difflib import ast import instructor from openai import OpenAI from pydantic import BaseModel, Field from typing import List, Optional from types import SimpleNamespace from pathlib import Path from agent.agent_functions.ast_ops import ASTChangeApplicator from database.my_codebase import MyCodebase from agent.agent_prompts import ( # noqa CHANGES_SYSTEM_PROMPT, DEFAULT_SYSTEM_PROMPT, PROFESSOR_SYNAPSE, ) class Message(BaseModel): role: str content: str def to_dict(self): return { "role": self.role, "content": self.content, } class NestedNamespace(SimpleNamespace): """ A class to convert a dictionary into a nested namespace. """ def __init__(self, dictionary, **kwargs): if not isinstance(dictionary, dict): raise ValueError("Input must be a dictionary") super().__init__(**kwargs) for key, value in dictionary.items(): if isinstance(value, dict): self.__setattr__(key, NestedNamespace(value)) elif isinstance(value, list) and all(isinstance(i, dict) for i in value): self.__setattr__(key, [NestedNamespace(i) for i in value]) else: self.__setattr__(key, value) def __getattr__(self, name): if name in self.__dict__: return self.__dict__[name] else: return None class CodingAgent: """ A class to represent a coding agent that uses OpenAI's GPT-3 model to generate code. Attributes: memory_manager (MemoryManager): Manages the memory of the agent. functions (Optional[List[dict]]): A list of functions that the agent can call. callables (Optional[List[Callable]]): A list of callable functions. GPT_MODEL (str): The GPT-3 model used by the agent. function_map (dict): A dictionary mapping function names to their callable objects. """ def __init__( self, memory_manager, function_map: Optional[dict] = None, codebase: Optional[MyCodebase] = None, ): """ Constructs all the necessary attributes for the CodingAgent object. Args: memory_manager (MemoryManager): Manages the memory of the agent. functions (Optional[List[dict]]): A list of functions that the agent can call. callables (Optional[List[Callable]]): A list of callable functions. """ self.memory_manager = memory_manager self.function_map = function_map self.GPT_MODEL = None self.codebase = codebase self.max_tokens = 4000 self.temperature = 0.75 self.tool_choice = "auto" self.function_to_call = None self.ops_to_execute = [] self.client = instructor.patch(OpenAI()) if function_map: self.tools = [ {"type": "function", "function": op.openai_schema} for op in self.function_map[0].values() ] else: self.tools = None def query(self, input: str, command: Optional[str] = None) -> List[str]: """ Queries the GPT-3 model with the given input and command. Args: input (str): The input text to be processed by the GPT-3 model. command (Optional[str]): The command to be executed by the agent. Returns: List[str]: The output generated by the GPT-3 model. """ print(f"Input Text: {input}\nCommand: {command}") self.memory_manager.add_message("user", input) message_history = [ {"role": i["role"], "content": i["content"]} for i in self.memory_manager.get_messages() ] keyword_args = { "model": self.GPT_MODEL, "messages": message_history, "max_tokens": self.max_tokens, "temperature": self.temperature, "stream": True, } print("Message Count: ", len(keyword_args["messages"])) # Override normal function calling when function_name is providednd}") if command and command.lower() == "changes": function_name = None json_accumulator = "" idx = None keyword_args["tools"] = self.tools keyword_args["tool_choice"] = "auto" print(keyword_args["tools"]) self.memory_manager.prompt_handler.identity = CHANGES_SYSTEM_PROMPT self.memory_manager.prompt_handler.set_system() temp_system = self.memory_manager.prompt_handler.system self.memory_manager.prompt_handler.identity = DEFAULT_SYSTEM_PROMPT self.memory_manager.prompt_handler.set_system() assert keyword_args["messages"][0]["role"] == "system" keyword_args["messages"][0]["content"] = temp_system # Call the model print(f"Calling model: {self.GPT_MODEL}") for i, chunk in enumerate(self.call_model_streaming(command, **keyword_args)): if isinstance(chunk, dict): chunk = NestedNamespace(chunk) delta = chunk.choices[0].delta if delta.tool_calls: # Initialize json_accumulator and idx outside the loop for call in delta.tool_calls: # Check if we have started a new function call if call.index != idx: # Process the previous function call if any if function_name and json_accumulator: try: data = json.loads(json_accumulator) completed_op = self.function_map[0][function_name]( **data ) self.ops_to_execute.append(completed_op) return_string = completed_op.to_json() yield return_string except json.JSONDecodeError as e: pass # Now reset for the new call idx = call.index json_accumulator = call.function.arguments function_name = call.function.name # Set the new function name print(f"Function Name: {function_name}") else: # Continue accumulating JSON string for the current function call yield call.function.arguments json_accumulator += call.function.arguments # print(f"JSON Accumulator (continued): {json_accumulator}") # After the loop, process the final function call if any if function_name and json_accumulator: try: data = json.loads(json_accumulator) completed_op = self.function_map[0][function_name](**data) self.ops_to_execute.append(completed_op) return_string = completed_op.to_json() yield return_string except json.JSONDecodeError as e: pass else: # Process normal text response yield chunk.choices[0].delta.content def execute_ops(self, ops: List[dict]): diffs = [] # List to store the diffs for each operation for op in self.ops_to_execute: print(f"Executing operation: {op.id}") if "backend" in op.file_name: op.file_name = Path(self.codebase.directory).join( op.file_name.replace("backend/", "") ) op.file_name = self.normalize_path(op.file_name) # Read the existing code from the file try: with open(op.file_name, "r") as file: original_code = file.read() except FileNotFoundError: print(f"File not found: {op.file_name}") continue # Parse the original code into an AST ast_tree = ast.parse(original_code) # Create an ASTChangeApplicator to apply the changes applicator = ASTChangeApplicator(ast_tree) # Apply the operation to the AST tree transformed_code = applicator.apply_changes([op]) # Compute the diff diff = difflib.unified_diff( original_code.splitlines(keepends=True), transformed_code.splitlines(keepends=True), fromfile="before.py", tofile="after.py", ) diff_string = "".join(diff) diffs.append(diff_string) print(f"Diff: {diff_string}") # Write the transformed code back to the file with open(op.file_name, "w") as file: file.write(transformed_code) # self.ops_to_execute = [op for op in self.ops_to_execute if op != op] return diffs def process_json(self, args: str) -> str: """ Process a JSON string, handling any triple-quoted strings within it. Args: args (str): The JSON string to process. Returns: str: The processed JSON string. """ try: # Attempt to load the JSON string response = json.loads(args) return response except json.decoder.JSONDecodeError: # If there's a JSONDecodeError, it may be due to triple-quoted strings # Find all occurrences of triple-quoted strings triple_quoted_strings = re.findall(r"\"\"\"(.*?)\"\"\"", args, re.DOTALL) # For each occurrence, replace newlines and triple quotes for tqs in triple_quoted_strings: # Replace newlines and double quotes within the triple-quoted string fixed_string = tqs.replace("\n", "\\n").replace('"', '\\"') # Replace the original triple-quoted string with the fixed string response_str = args.replace(tqs, fixed_string) # Now replace the triple quotes with single quotes response_str = args.replace('"""', '"') return json.loads(response_str) def call_model_streaming(self, command: Optional[str] | None = None, **kwargs): print("Calling model streaming") print(kwargs["model"]) if self.GPT_MODEL.startswith("gpt"): print("Calling OpenAI") for chunk in self.client.chat.completions.create(**kwargs): yield chunk if self.GPT_MODEL == "anthropic": print("Calling anthropic") try: sm_client = boto3.client("bedrock-runtime", region_name="us-west-2") resp = sm_client.invoke_model_with_response_stream( accept="*/*", contentType="application/json", modelId="anthropic.claude-v2:1", body=json.dumps( { "prompt": self.generate_anthropic_prompt(), "max_tokens_to_sample": max(kwargs["max_tokens"], 2000), "temperature": self.temperature, "anthropic_version": "bedrock-2023-05-31", } ), ) except Exception as e: print(f"Error calling Anthropic Models: {e}") yield { "choices": [ { "finish_reason": "stop", "delta": {"content": "Error: " + str(e)}, } ] } while True: try: chunk = next(iter((resp["body"]))) bytes_to_send = chunk["chunk"]["bytes"] decoded_str = json.loads(bytes_to_send.decode("utf-8")) content = decoded_str["completion"] stop_reason = decoded_str["stop_reason"] if stop_reason == "stop_sequence": yield { "choices": [ {"finish_reason": "stop", "delta": {"content": content}} ] } break else: yield { "choices": [ {"finish_reason": None, "delta": {"content": content}} ] } except StopIteration: break except UnboundLocalError: print("UnboundLocalError") break def generate_anthropic_prompt(self, include_messages=True) -> str: """ Generates a prompt for the Gaive model. Args: input (str): The input text to be processed by the GPT-3 model. Returns: str: The generated prompt. """ conversation_history = "The following is a portion of your conversation history with the human, truncated to save token space, inside the <conversation-history> XML tags.\n\n<conversation-history>\n" messages = self.memory_manager.get_messages() if len(messages) > 1: # Extract the last User messages last_user_message = ( "Human: " + [ message["content"] for message in messages if message["role"] == "user" ][-1] ) else: last_user_message = "" for idx, message in enumerate(messages): if message["role"].lower() == "user": conversation_history += f"Human: {message['content']}\n\n" if message["role"].lower() == "assistant": conversation_history += f"Assistant: {message['content']}\n\n" conversation_history += "\n</conversation-history>\n\n" if self.memory_manager.prompt_handler.system_file_contents: file_context = ( "The human as loadedd the following files into context to help give you background related to the most recent request. They are contained in the <file-contents> XML Tags.\n\n<file-contents>\n" + self.memory_manager.prompt_handler.system_file_contents + "\n</file-contents>\n\n" ) else: file_context = "" if self.memory_manager.prompt_handler.tree: tree = ( "The working directory of the human is always loaded into context. This information is good background when the human is working on the project, but this may not always be the case. Sometimes the human may ask questions not related to the current project <directory-tree> XML Tags\n<directory-tree>\n" + self.memory_manager.prompt_handler.tree + "\n</directory-tree>\n\n" ) else: tree = "" if include_messages: sys_prompt = ( self.memory_manager.identity + conversation_history + tree + file_context ) else: sys_prompt = self.memory_manager.identity + "\n\n" + tree + file_context return ( "\n\nHuman: The folllowing is your system prompt: " + sys_prompt + "\n\nAssistant: Understood\n\n" + last_user_message + "\n\nAssistant:" ) # return sys_prompt + "\n\n" + last_user_message + "\n\nAssistant: " @staticmethod def normalize_path(input_path): # Get the current working directory as a Path object working_directory = Path.cwd() # Create a Path object from the input path input_path_obj = Path(input_path) # Resolve the input path (make it absolute and resolve any symlinks) resolved_input_path = input_path_obj.resolve() # Make the path relative to the working directory, if possible try: relative_path = resolved_input_path.relative_to(working_directory) return str(relative_path) except ValueError: # The input path is not a subpath of the working directory return str(resolved_input_path)
[ "\n\n", "content", "Error: PLACEHOLDER" ]
2024-01-10
wnlhdx/Command
python~rgzn~aitest.py
import sys from PySide6 import * from PySide6.QtCore import * from PySide6.QtWidgets import * from PySide6.QtWebEngineWidgets import QWebEngineView import openai import edge_tts from edge_tts import * import asyncio import requests import random openai.api_base = "https://api.chatanywhere.com.cn/v1" openai.api_key = "sk-VjSCWObgSc3EbfaJQRACXMvb33Q7th40lxF9d7Sk9aJoydQ8" def gpt_35_api_stream(message): try: messages = [{'role': 'user', 'content': message}, ] response = openai.ChatCompletion.create( model='gpt-3.5-turbo', messages=messages, stream=True, ) completion = {'role': '', 'content': ''} for event in response: if event['choices'][0]['finish_reason'] == 'stop': # print(f'收到的完成数据: {completion}') # print(f'openai返回结果:{completion.get("content")}') break for delta_k, delta_v in event['choices'][0]['delta'].items(): # print(f'流响应数据: {delta_k} = {delta_v}') completion[delta_k] += delta_v messages.append(completion) # 直接在传入参数 messages 中追加消息 # return (True, '') return completion.get("content") except Exception as err: return '连接openai失败' # return (False, f'OpenAI API 异常: {err}') async def amain(TEXT) -> None: """Main function""" voices = await VoicesManager.create() # voice = voices.find(Gender="Female", Locale="zh-CN") # communicate = edge_tts.Communicate(TEXT, "zh-CN-XiaoxiaoNeural") communicate = edge_tts.Communicate(TEXT, "zh-CN-XiaoyiNeural") # voice = voices.find(Gender="Female", Locale="es-AR") # communicate = edge_tts.Communicate(TEXT, random.choice(voice)["Name"]) await communicate.save("output.mp3") def tts(text): loop = asyncio.get_event_loop_policy().get_event_loop() try: loop.run_until_complete(amain(text)) finally: loop.close() def save(): speaker = '世界上最优秀的化学教材' responser = gpt_35_api_stream(speaker) print(responser) url = f'http://genshinvoice.top/api' param = {'speaker': '克拉拉', 'text': responser} # tts(responser) open('test.wav', 'wb').write(requests.get(url, param).content) class Window(QWidget): def __init__(self, parent=None, **kwargs): super(DesktopPet, self).__init__(parent) # 窗体初始化 self.init() # 托盘化初始 self.initTray() # 宠物静态gif图加载 self.initPetImage() # 宠物正常待机,实现随机切换动作 self.petNormalAction() # 窗体初始化 def init(self): self.is_follow_mouse = False # 初始化 # 设置窗口属性:窗口无标题栏且固定在最前面 # FrameWindowHint:无边框窗口 # WindowStaysOnTopHint: 窗口总显示在最上面 # SubWindow: 新窗口部件是一个子窗口,而无论窗口部件是否有父窗口部件 self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint | Qt.SubWindow) # setAutoFillBackground(True)表示的是自动填充背景,False为透明背景 self.setAutoFillBackground(False) # 窗口透明,窗体空间不透明 self.setAttribute(Qt.WA_TranslucentBackground, True) # 重绘组件、刷新 self.repaint() # 托盘化设置初始化 def initTray(self): # 设置右键显示最小化的菜单项 # 菜单项退出,点击后调用quit函数 quit_action = QAction('退出', self, triggered=self.quit) # 设置这个点击选项的图片 quit_action.setIcon(QIcon(os.path.join('yuzu.jpg'))) # 菜单项显示,点击后调用showing函数 showing = QAction(u'显示', self, triggered=self.showwin) # 新建一个菜单项控件 self.tray_icon_menu = QMenu(self) # 在菜单栏添加一个无子菜单的菜单项‘显示’ self.tray_icon_menu.addAction(showing) # 在菜单栏添加一个无子菜单的菜单项‘退出’ self.tray_icon_menu.addAction(quit_action) # QSystemTrayIcon类为应用程序在系统托盘中提供一个图标 self.tray_icon = QSystemTrayIcon(self) # 设置托盘化图标 self.tray_icon.setIcon(QIcon(os.path.join('favicon.ico'))) # 设置托盘化菜单项 self.tray_icon.setContextMenu(self.tray_icon_menu) # 展示 print('show icon in tray', self.tray_icon) self.tray_icon.show() # 宠物静态gif图加载 def initPetImage(self): # 对话框定义 self.talkLabel = QLabel(self) # 对话框样式设计 self.talkLabel.setStyleSheet("font:15pt '楷体';border-width: 1px;color:blue;") # 定义显示图片部分 self.image = QLabel(self) # QMovie是一个可以存放动态视频的类,一般是配合QLabel使用的,可以用来存放GIF动态图 self.movie = QWebEngineView() self.view.load("model/test.html") # 设置标签大小 self.movie.setScaledSize(QSize(200, 200)) # 将Qmovie在定义的image中显示 self.image.setMovie(self.movie) self.movie.start() self.resize(1024, 1024) # 调用自定义的randomPosition,会使得宠物出现位置随机 self.randomPosition() # 展示 print('show pet', self.geometry()) self.show() # https://new.qq.com/rain/a/20211014a002rs00 # 将宠物正常待机状态的动图放入pet1中 self.pet_list = [] for i in os.listdir("normal"): self.pet_list.append("normal/" + i) # 将宠物正常待机状态的对话放入pet2中 self.dialog = [] # 读取目录下dialog文件 with open("dialog.txt", "r", encoding='utf8') as f: text = f.read() # 以\n 即换行符为分隔符,分割放进dialog中 self.dialog = text.split("\n") # 宠物正常待机动作 def petNormalAction(self): # 每隔一段时间做个动作 # 定时器设置 self.timer = QTimer() # 时间到了自动执行 self.timer.timeout.connect(self.randomAct) # 动作时间切换设置 self.timer.start(3000) # 宠物状态设置为正常 self.condition = 0 # 每隔一段时间切换对话 self.talkTimer = QTimer() self.talkTimer.timeout.connect(self.talk) self.talkTimer.start(3000) # 对话状态设置为常态 self.talk_condition = 0 # 宠物对话框 self.talk() # 随机动作切换 def randomAct(self): # condition记录宠物状态,宠物状态为0时,代表正常待机 if not self.condition: # 随机选择装载在pet1里面的gif图进行展示,实现随机切换 self.movie = QMovie(random.choice(self.pet_list)) # 宠物大小 self.movie.setScaledSize(QSize(200, 200)) # 将动画添加到label中 self.image.setMovie(self.movie) # 开始播放动画 self.movie.start() # condition不为0,转为切换特有的动作,实现宠物的点击反馈 # 这里可以通过else-if语句往下拓展做更多的交互功能 else: # 读取特殊状态图片路径 condition == 1 self.movie = QMovie("./click/click.gif") # 宠物大小 self.movie.setScaledSize(QSize(200, 200)) # 将动画添加到label中 self.image.setMovie(self.movie) # 开始播放动画 self.movie.start() # 宠物状态设置为正常待机 self.condition = 0 self.talk_condition = 0 # 宠物对话框行为处理 def talk(self): if not self.talk_condition: # talk_condition为0则选取加载在dialog中的语句 self.talkLabel.setText(random.choice(self.dialog)) # 设置样式 self.talkLabel.setStyleSheet( "font: bold;" "font:25pt '楷体';" "color:white;" "background-color: black" "url(:/)" ) # 根据内容自适应大小 self.talkLabel.adjustSize() else: # talk_condition为1显示为别点我,这里同样可以通过if-else-if来拓展对应的行为 self.talkLabel.setText("别点我") self.talkLabel.setStyleSheet( "font: bold;" "font:25pt '楷体';" "color:red;" "background-color: white" "url(:/)" ) self.talkLabel.adjustSize() # 设置为正常状态 self.talk_condition = 0 # 退出操作,关闭程序 def quit(self): self.close() sys.exit() # 显示宠物 def showwin(self): # setWindowOpacity()设置窗体的透明度,通过调整窗体透明度实现宠物的展示和隐藏 self.setWindowOpacity(1) # 宠物随机位置 def randomPosition(self): screen_geo = self.screen().geometry() pet_geo = self.geometry() width = (screen_geo.width() - pet_geo.width()) * random.random() height = (screen_geo.height() - pet_geo.height()) * random.random() self.move(width, height) # 鼠标左键按下时, 宠物将和鼠标位置绑定 def mousePressEvent(self, event): # 更改宠物状态为点击 self.condition = 1 # 更改宠物对话状态 self.talk_condition = 1 self.timer.stop() self.talkTimer.stop() # 即可调用对话状态改变 self.talk() # 即刻加载宠物点击动画 self.randomAct() if event.button() == Qt.LeftButton: self.is_follow_mouse = True # globalPos() 事件触发点相对于桌面的位置 # pos() 程序相对于桌面左上角的位置,实际是窗口的左上角坐标 self.mouse_drag_pos = event.globalPosition().toPoint() - self.pos() event.accept() # 拖动时鼠标图形的设置 self.setCursor(QCursor(Qt.OpenHandCursor)) # 鼠标移动时调用,实现宠物随鼠标移动 def mouseMoveEvent(self, event): # 如果鼠标左键按下,且处于绑定状态 if Qt.LeftButton and self.is_follow_mouse: # 宠物随鼠标进行移动 self.move(event.globalPosition().toPoint() - self.mouse_drag_pos) event.accept() # 鼠标释放调用,取消绑定 def mouseReleaseEvent(self, event): self.is_follow_mouse = False # 鼠标图形设置为箭头 self.setCursor(QCursor(Qt.ArrowCursor)) self.timer.start() self.talkTimer.start() # 鼠标移进时调用 def enterEvent(self, event): # 设置鼠标形状 Qt.ClosedHandCursor 非指向手 self.setCursor(Qt.ClosedHandCursor) # 宠物右键点击交互 def contextMenuEvent(self, event): # 定义菜单 menu = QMenu(self) # 定义菜单项 quitAction = menu.addAction("退出") hide = menu.addAction("隐藏") # 使用exec_()方法显示菜单。从鼠标右键事件对象中获得当前坐标。mapToGlobal()方法把当前组件的相对坐标转换为窗口(window)的绝对坐标。 action = menu.exec(self.mapToGlobal(event.pos())) # 点击事件为退出 if action == quitAction: qApp.quit() # 点击事件为隐藏 if action == hide: # 通过设置透明度方式隐藏宠物 self.setWindowOpacity(0) if __name__ == '__main__': app = QApplication() window = Window() window.show()
[]
2024-01-10
1rvyn/llm-quickstart
chat-pdf~src~ingest.py
import pdfplumber import PyPDF4 import re import os import sys from typing import Callable, List, Tuple, Dict from langchain.docstore.document import Document from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings from dotenv import load_dotenv def extract_metadata_from_pdf(file_path: str) -> dict: with open(file_path, "rb") as pdf_file: reader = PyPDF4.PdfFileReader(pdf_file) # file to read metadata = reader.getDocumentInfo() return { "title": metadata.get("/Title", "").strip(), "author": metadata.get("/Author", "").strip(), "creation_date": metadata.get("/CreationDate", "").strip(), } def extract_pages_from_pdf(file_path: str) -> List[Tuple[int, str]]: """ Extracts the text from each page of the PDF. :param file_path: The path to the PDF file. :return: A list of tuples containing the page number and the extracted text. """ if not os.path.isfile(file_path): raise FileNotFoundError(f"File not found: {file_path}") with pdfplumber.open(file_path) as pdf: pages = [] for page_num, page in enumerate(pdf.pages): text = page.extract_text() if text.strip(): # Check if extracted text is not empty pages.append((page_num + 1, text)) return pages def parse_pdf(file_path: str) -> Tuple[List[Tuple[int, str]], Dict[str, str]]: """ Extracts the title and text from each page of the PDF. :param file_path: The path to the PDF file. :return: A tuple containing the title and a list of tuples with page numbers and extracted text. """ if not os.path.isfile(file_path): raise FileNotFoundError(f"File not found: {file_path}") metadata = extract_metadata_from_pdf(file_path) pages = extract_pages_from_pdf(file_path) return pages, metadata def merge_hyphenated_words(text: str) -> str: return re.sub(r"(\w)-\n(\w)", r"\1\2", text) def fix_newlines(text: str) -> str: return re.sub(r"(?<!\n)\n(?!\n)", " ", text) def remove_multiple_newlines(text: str) -> str: return re.sub(r"\n{2,}", "\n", text) def clean_text( pages: List[Tuple[int, str]], cleaning_functions: List[Callable[[str], str]] ) -> List[Tuple[int, str]]: cleaned_pages = [] for page_num, text in pages: for cleaning_function in cleaning_functions: text = cleaning_function(text) cleaned_pages.append((page_num, text)) return cleaned_pages def text_to_docs(text: List[str], metadata: Dict[str, str]) -> List[Document]: """Converts list of strings to a list of Documents with metadata.""" doc_chunks = [] for page_num, page in text: text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""], chunk_overlap=200, ) chunks = text_splitter.split_text(page) for i, chunk in enumerate(chunks): doc = Document( page_content=chunk, metadata={ "page_number": page_num, "chunk": i, "source": f"p{page_num}-{i}", **metadata, }, ) doc_chunks.append(doc) return doc_chunks if __name__ == "__main__": load_dotenv() # Step 1: Parse PDFs file_paths = ["/Users/irvyn/work/pdfs/quickest-sim.pdf", "/Users/irvyn/work/pdfs/quick-sim2.pdf", "/Users/irvyn/work/pdfs/quick-sim.pdf"] document_chunks = [] for file_path in file_paths: raw_pages, metadata = parse_pdf(file_path) # Step 2: Create text chunks cleaning_functions = [ merge_hyphenated_words, fix_newlines, remove_multiple_newlines, ] cleaned_text_pdf = clean_text(raw_pages, cleaning_functions) document_chunks += text_to_docs(cleaned_text_pdf, metadata) # Step 3 + 4: Generate embeddings and store them in DB embeddings = OpenAIEmbeddings() vector_store = Chroma.from_documents( document_chunks, embeddings, collection_name="june-2023-quickstartsimulator", persist_directory="src/data/chroma/1", ) # Save DB locally vector_store.persist()
[]
2024-01-10
1rvyn/llm-quickstart
chat-pdf~src~single-pdf.py
import os import sys from dotenv import load_dotenv from langchain.vectorstores.chroma import Chroma from langchain.chat_models import ChatOpenAI from langchain.embeddings.openai import OpenAIEmbeddings from langchain.chains import ConversationalRetrievalChain from langchain.schema import HumanMessage, AIMessage # Load the OPENAI_API_KEY from the environment load_dotenv() # Then use openai_api_key in your script where needed def make_chain(version): model = ChatOpenAI( model_name="gpt-3.5-turbo", temperature="0", ) embedding = OpenAIEmbeddings() if version == "0": vector_store = Chroma( collection_name="june-2023-quickstartsimulator", embedding_function=embedding, persist_directory="src/data/chroma/1", ) elif version == "2": vector_store = Chroma( collection_name="june-2023-quickstartsimulator-2", embedding_function=embedding, persist_directory="src/data/chroma/2", ) return ConversationalRetrievalChain.from_llm( model, retriever=vector_store.as_retriever(), return_source_documents=True, ) if __name__ == "__main__": print(f'All arguments received: {sys.argv}') # This will print all arguments passed to your script load_dotenv() version = sys.argv[1] chain = make_chain(version) chat_history = [] question = sys.stdin.read().strip() # Generate answer response = chain({"question": question, "chat_history": chat_history}) # Retrieve answer answer = response["answer"] source = response["source_documents"] refrences = "" if source: page_numbers = set(doc.metadata['page_number'] for doc in source) page_numbers_str = ', '.join(str(pn) for pn in page_numbers) refrences += f"\nYou can read about this on page {page_numbers_str} on our quick-start guide." chat_history.append(HumanMessage(content=question)) chat_history.append(AIMessage(content=answer)) # Print answer print(f': {answer}\nReferences: {refrences}\n')
[]
2024-01-10
empirical-org/Quill-NLP-Tools-and-Datasets
scripts~gpt~finetune.py
# Finetuning script for OpenAI models. Finetunes a GPT-3.5-turbo model on Quill's feedback. # # Usage: First set your OpenAI key, then run the script: # > export OPENAI_API_KEY=<YOUR_KEY> # > python scripts/finetune.py finetune_file.json import os import time import openai import click import jsonlines import random import tiktoken import threading import numpy as np from collections import defaultdict from tqdm import tqdm # from scripts.data.villages import passage as villages from scripts.data.bereal import passage as bereal from scripts.data.berlin import passage as berlin from scripts.data.haiti import passage as haiti from scripts.data.pompeii import passage as pompeii from scripts.data.quokkas import passage as quokkas from scripts.data.surgebarriers import passage as surgebarriers from scripts.data.villages import passage as villages OPTIMAL_LABEL = 'Optimal' SUBOPTIMAL_LABEL = 'Suboptimal' OUTPUT_TOKENS = 75 MAX_RETRIES = 5 MODEL = 'gpt-3.5-turbo-0613' CONJUNCTIONS = ['because', 'but', 'so'] NUM_ITEMS = 10 # The number of finetuning examples to collect for every passage-conjunction combination. FEEDBACK_SOURCE = 'quill' passages = [berlin, haiti, pompeii, quokkas, surgebarriers, villages] openai.api_key = os.getenv("OPENAI_API_KEY") encoding = tiktoken.get_encoding("cl100k_base") def read_file(filename, prompt): items = [] with jsonlines.open(filename) as reader: for item in reader: if 'prediction' in item: items.append((item['text'].replace('\n', ' '), item['label'], item['prediction'])) else: items.append((item['text'].replace('\n', ' '), item['label'])) return items def map_label(label): if label.startswith('Label'): return SUBOPTIMAL_LABEL return OPTIMAL_LABEL def map_to_binary(items): new_items = [] for item in items: if len(item) == 3: new_items.append((item[0], map_label(item[1]), map_label(item[2]))) else: new_items.append((item[0], map_label(item[1]))) return new_items def create_openai_feedback_prompt(passage, response, conjunction, add_passage=True): # "Please give feedback that is understandable and engaging for a fifth-grade student. " \ # "Use simple language, clear explanations, and avoid complex vocabulary or concepts." \ # "Try to keep responses concise and friendly, and stick to the examples as closely as possible." \ quill_prompt = passage['prompts'][conjunction] plagiarism_passage = passage['plagiarism'][conjunction] label_info = passage['instructions'][conjunction] feedback = passage['feedback'][conjunction] examples = passage['examples'][conjunction] evaluation = False # evaluation = passage['evaluation'][conjunction] if 'evaluation' in passage and conjunction in passage['evaluation'] else {} prompt = f"You are a teacher, helping fifth-grade students improve their writing skills. " \ "In this exercise, students have read a text and are asked to complete a sentence. " \ "The goal is for you to give feedback on their response. " \ prompt += f"\n\nThis is the sentence they are asked to complete: '{quill_prompt}'. " if add_passage: prompt += f'\n\nHere is the text students have read, separated by triple backticks: \n\n```{plagiarism_passage}```\n' prompt += "\n" + label_info prompt += """ These are general rules for your feedback: - Do not give feedback about grammar, spelling or punctuation. - Do not ask students to make sentences more clear and concise. - Do not suggest a better answer.""" prompt += "\n\nYour feedback should be copied from these examples:" for label in examples: label_feedback = feedback[label] for idx, example in enumerate(examples[label]): prompt += f"\n\nResponse: {example}" if evaluation: prompt += f"\nParaphrase: {evaluation[label][idx]}" prompt += f"\nFeedback: {label_feedback}" if evaluation: prompt += f'\n\nResponse: {response}\nParaphrase:' else: prompt += f'\n\nResponse: {response}\nFeedback:' return prompt def is_optimal(feedback: str): """ Determines whether a piece of feedback corresponds to an optimal label. This is the case when it starts with Nice work, great job, etc. Args: feedback (str): the piece of feedback given by the model Returns: boolean: True if the feedback is Optimal, False otherwise """ return 'Nice work!' in feedback or 'Great job!' in feedback or 'Excellent job' in feedback or 'Good job' in feedback def fetch_with_timeout(api_call_func, messages, model, timeout_duration=10): """ Calls the provided API function with a timeout. Args: api_call_func (function): the API call function messages (list): the messages that will be sent to the API model (str): the model that will be used timeout_duration (int, optional): The length of the timeout. Defaults to 10. Returns: dict: a dict with the response returned by the API embedded """ result_container = {"result": None, "is_done": False} def worker(): result_container["result"] = api_call_func(messages, model) result_container["is_done"] = True thread = threading.Thread(target=worker) thread.start() thread.join(timeout=timeout_duration) if result_container["is_done"]: return result_container["result"] else: return None def api_call_completion(messages, model): """ The API call for Completion models (such as GPT-3.5-turbo-instruct) Args: messages (list): the messages that will be sent to the API model (str): the model that will be used Returns: dict: the response returned by the API """ return openai.Completion.create( model=model, prompt=messages[0]['content'], max_tokens=7, temperature=0 ) def api_call_chat(messages, model): """ The API call for ChatCompletion models (such as GPT-3.5-turbo) Args: messages (list): the messages that will be sent to the API model (str): the model that will be used Returns: dict: the response returned by the API """ return openai.ChatCompletion.create( model=model, temperature=0, max_tokens=OUTPUT_TOKENS, messages = messages ) #==================================================# # OpenAI Functions. Taken from the OpenAI Cookbook # #==================================================# def check_data_format(dataset): # Format error checks format_errors = defaultdict(int) for ex in dataset: if not isinstance(ex, dict): format_errors["data_type"] += 1 continue messages = ex.get("messages", None) if not messages: format_errors["missing_messages_list"] += 1 continue for message in messages: if "role" not in message or "content" not in message: format_errors["message_missing_key"] += 1 if any(k not in ("role", "content", "name") for k in message): format_errors["message_unrecognized_key"] += 1 if message.get("role", None) not in ("system", "user", "assistant"): format_errors["unrecognized_role"] += 1 content = message.get("content", None) if not content or not isinstance(content, str): format_errors["missing_content"] += 1 if not any(message.get("role", None) == "assistant" for message in messages): format_errors["example_missing_assistant_message"] += 1 if format_errors: print("Found errors:") for k, v in format_errors.items(): print(f"{k}: {v}") else: print("No errors found") # not exact! # simplified from https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb def num_tokens_from_messages(messages, tokens_per_message=3, tokens_per_name=1): num_tokens = 0 for message in messages: num_tokens += tokens_per_message for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": num_tokens += tokens_per_name num_tokens += 3 return num_tokens def num_assistant_tokens_from_messages(messages): num_tokens = 0 for message in messages: if message["role"] == "assistant": num_tokens += len(encoding.encode(message["content"])) return num_tokens def print_distribution(values, name): print(f"\n#### Distribution of {name}:") print(f"min / max: {min(values)}, {max(values)}") print(f"mean / median: {np.mean(values)}, {np.median(values)}") print(f"p5 / p95: {np.quantile(values, 0.1)}, {np.quantile(values, 0.9)}") def check_token_count(dataset): # Warnings and tokens counts n_missing_system = 0 n_missing_user = 0 n_messages = [] convo_lens = [] assistant_message_lens = [] for ex in dataset: messages = ex["messages"] if not any(message["role"] == "system" for message in messages): n_missing_system += 1 if not any(message["role"] == "user" for message in messages): n_missing_user += 1 n_messages.append(len(messages)) convo_lens.append(num_tokens_from_messages(messages)) assistant_message_lens.append(num_assistant_tokens_from_messages(messages)) print("Num examples missing system message:", n_missing_system) print("Num examples missing user message:", n_missing_user) print_distribution(n_messages, "num_messages_per_example") print_distribution(convo_lens, "num_total_tokens_per_example") print_distribution(assistant_message_lens, "num_assistant_tokens_per_example") n_too_long = sum(l > 4096 for l in convo_lens) print(f"\n{n_too_long} examples may be over the 4096 token limit, they will be truncated during fine-tuning") # Pricing and default n_epochs estimate MAX_TOKENS_PER_EXAMPLE = 4096 TARGET_EPOCHS = 3 MIN_TARGET_EXAMPLES = 100 MAX_TARGET_EXAMPLES = 25000 MIN_DEFAULT_EPOCHS = 1 MAX_DEFAULT_EPOCHS = 25 n_epochs = TARGET_EPOCHS n_train_examples = len(dataset) if n_train_examples * TARGET_EPOCHS < MIN_TARGET_EXAMPLES: n_epochs = min(MAX_DEFAULT_EPOCHS, MIN_TARGET_EXAMPLES // n_train_examples) elif n_train_examples * TARGET_EPOCHS > MAX_TARGET_EXAMPLES: n_epochs = max(MIN_DEFAULT_EPOCHS, MAX_TARGET_EXAMPLES // n_train_examples) n_billing_tokens_in_dataset = sum(min(MAX_TOKENS_PER_EXAMPLE, length) for length in convo_lens) print(f"Dataset has ~{n_billing_tokens_in_dataset} tokens that will be charged for during training") print(f"By default, you'll train for {n_epochs} epochs on this dataset") print(f"By default, you'll be charged for ~{n_epochs * n_billing_tokens_in_dataset} tokens") print(f"Estimated price: ${0.0080 * n_epochs * n_billing_tokens_in_dataset / 1000}") def feedback_is_correct(feedback, correct_label): return correct_label.startswith('Optimal') and is_optimal(feedback) or (not correct_label.startswith('Optimal') and not is_optimal(feedback)) #=============# # Main method # #=============# @click.command() @click.argument('output_file') def run(output_file): finetuning_examples = [] for passage in passages: if 'files' in passage and 'prompts' in passage: for conjunction in ['because', 'but', 'so']: if conjunction in passage['files'] and conjunction in passage['prompts']: print(passage['files'][conjunction]["train"]) train_items = read_file(passage['files'][conjunction]["train"], passage['prompts'][conjunction]) random.shuffle(train_items) new_finetuning_examples = [] for train_item in train_items: sentence = train_item[0] correct_label = train_item[1] quill_feedback = passage['feedback'][conjunction][correct_label] full_prompt = create_openai_feedback_prompt(passage, sentence, conjunction, add_passage=True) if FEEDBACK_SOURCE == 'quill': messages = [ {"role": "system", "content": full_prompt}, {"role": "assistant", "content": quill_feedback}, ] new_finetuning_examples.append({"messages": messages}) else: auto_messages = [ {"role": "system", "content": full_prompt}, ] for _ in range(MAX_RETRIES): response = fetch_with_timeout(api_call_chat, auto_messages, 'gpt-4', timeout_duration=10) if response: break time.sleep(10) answer = response['choices'][0]['message']['content'] feedback = answer.split('Feedback:')[1].strip() if 'Feedback:' in answer else answer print(sentence) print(feedback) print(feedback_is_correct(feedback, correct_label)) if feedback_is_correct(feedback, correct_label): messages = [ {"role": "system", "content": full_prompt}, {"role": "assistant", "content": quill_feedback}, ] new_finetuning_examples.append({"messages": messages}) if len(new_finetuning_examples) >= NUM_ITEMS: break finetuning_examples.extend(new_finetuning_examples) print("Finetuning examples:", len(finetuning_examples)) check_data_format(finetuning_examples) check_token_count(finetuning_examples) input("Press enter to continue") with jsonlines.open(output_file, 'w') as writer: for example in finetuning_examples: writer.write(example) input("Created finetuning file") openai.api_key = os.getenv("OPENAI_API_KEY") response = openai.File.create( file=open(output_file, "rb"), purpose='fine-tune' ) ft_response = openai.FineTuningJob.create(training_file=response['id'], model="gpt-3.5-turbo", hyperparameters = { "n_epochs": 3 } ) print(ft_response) if __name__ == '__main__': run()
[ "\n\nResponse: PLACEHOLDER\nParaphrase:", "You are a teacher, helping fifth-grade students improve their writing skills. In this exercise, students have read a text and are asked to complete a sentence. The goal is for you to give feedback on their response. ", "\n\nThis is the sentence they are asked to complete: 'PLACEHOLDER'. ", "\n\nYour feedback should be copied from these examples:", "\nPLACEHOLDER", "\nFeedback: PLACEHOLDER", "\n\nResponse: PLACEHOLDER", "\n\nResponse: PLACEHOLDER\nFeedback:", "\n\nHere is the text students have read, separated by triple backticks: \n\n```PLACEHOLDER```\n", "\nThese are general rules for your feedback:\n- Do not give feedback about grammar, spelling or punctuation.\n- Do not ask students to make sentences more clear and concise.\n- Do not suggest a better answer.", "content" ]
2024-01-10
empirical-org/Quill-NLP-Tools-and-Datasets
scripts~gpt~moderate_feedback.py
# Simple script for moderating feedback with a GPT model. Takes Quill feedback as input, asks the # GPT model to remove any undesired elements, and writes the output to a file. # # Usage: # > python scripts/moderate_feedback.py <gpt_model> <output_file> --verbose <True/False> # Example: # > python scripts/moderate_feedback.py gpt-4 feedback_output.csv --verbose False import os import openai import csv import time import click from tqdm import tqdm from scripts.data.bereal import passage openai.api_key = os.getenv("OPENAI_API_KEY") OPTIMAL_LABEL = 'Optimal' SUBOPTIMAL_LABEL = 'Suboptimal' INPUTFILE = 'data/automl/problematic_feedback.csv' def read_file(filename): """ Reads problematic feedback from the input file.""" items = [] seen_feedback = set() with open(filename) as i: reader = csv.reader(i, delimiter=",") next(reader) for line in reader: feedback = line[2] if feedback not in seen_feedback: items.append(line[:3]) seen_feedback.update([feedback]) return items def get_prompt(feedback): """ Assembles the prompt for feedback moderation. """ prompt = """Correct the feedback below. Keep it as intact as possible, but remove any of the following sentences: - sentences that refer to grammar, spelling or punctuation, - sentences that say the response is unclear or not concise enough, - sentences that give away the correct answer explicitly, - feedback that asks the student to write two sentences instead of one. If there is more than one question in the feedback, only keep the first question. Keep the feedback as intact as possible. In particular, keep the first sentences. Do not remove: - "Try clearing your response", - "Check that your response only uses information from the text", - "Now add another reason". Here are some examples: Feedback: Try clearing your response and starting again. Your response is too long and confusing. Focus on one specific contrast to the fact that many tourists enjoy taking quokka selfies. Corrected feedback: Try clearing your response and starting again. Focus on one specific contrast to the fact that many tourists enjoy taking quokka selfies. Feedback: Good start! You mentioned that it's possible to post later than two minutes, but can you explain why this is a contrast to the idea that BeReal is more authentic? Also, be sure to revise your response for clarity and grammar. Corrected Feedback: Good start! You mentioned that it's possible to post later than two minutes, but can you explain why this is a contrast to the idea that BeReal is more authentic? Feedback: You have the right idea! Now be more specific. Quokka bites can be a potential risk. How many people are bitten by quokkas each year? Corrected feedback: You have the right idea! Now be more specific. Quokka bites can be a potential risk. How many people are bitten by quokkas each year? Feedback: You have the right idea! Now be more specific. Quokkas do look like they're smiling. Now add a detail from the text to strengthen your claim. What makes quokkas look like they're smiling? Corrected feedback: You have the right idea! Now be more specific. Quokkas do look like they're smiling. Now add a detail from the text to strengthen your claim. What makes quokkas look like they're smiling? """ prompt += f"Feedback: {feedback}\n" prompt += f"Corrected feedback:" return prompt def moderate(feedback, model): """ Ask GPT to rewrite a piece of feedback and return the answer.""" full_prompt = get_prompt(feedback) messages = [ {"role": "system", "content": full_prompt}, ] try: response = openai.ChatCompletion.create( model=model, temperature=0, max_tokens=175, messages = messages ) except: time.sleep(3) response = openai.ChatCompletion.create( model=model, temperature=0, max_tokens=75, messages = messages ) answer = response['choices'][0]['message']['content'].replace('`', '') return answer @click.command() @click.argument('model') @click.argument('output_file') @click.option('--verbose', default=False) def main(output_file, model, verbose): test_items = read_file(INPUTFILE) print("Test feedback items:", len(test_items)) corrected = 0 with open(output_file, 'w') as o: writer = csv.writer(o, delimiter=',') writer.writerow(['sentence', 'label', 'GPT feedback', 'Moderated feedback']) for item in tqdm(test_items): sentence = item[0] correct_label = item[1] feedback = item[2] if 'Feedback:' in feedback: feedback = feedback.split('Feedback:')[1].strip() answer = moderate(feedback, model) writer.writerow(item + [answer]) if feedback != answer: if verbose: print(feedback) print('=>') print(answer) print('----') corrected +=1 print('Corrected:', corrected, '/', len(test_items), '=', corrected/len(test_items)*100, '%') if __name__ == "__main__": main()
[ "Feedback: PLACEHOLDER\n", "Correct the feedback below. Keep it as intact as possible, but remove any of the following sentences:\n- sentences that refer to grammar, spelling or punctuation,\n- sentences that say the response is unclear or not concise enough,\n- sentences that give away the correct answer explicitly,\n- feedback that asks the student to write two sentences instead of one.\n\nIf there is more than one question in the feedback, only keep the first question.\n\nKeep the feedback as intact as possible. In particular, keep the first sentences. Do not remove:\n- \"Try clearing your response\",\n- \"Check that your response only uses information from the text\",\n- \"Now add another reason\".\n\nHere are some examples:\nFeedback: Try clearing your response and starting again. Your response is too long and confusing. Focus on one specific contrast to the fact that many tourists enjoy taking quokka selfies.\nCorrected feedback: Try clearing your response and starting again. Focus on one specific contrast to the fact that many tourists enjoy taking quokka selfies.\n\nFeedback: Good start! You mentioned that it's possible to post later than two minutes, but can you explain why this is a contrast to the idea that BeReal is more authentic? Also, be sure to revise your response for clarity and grammar.\nCorrected Feedback: Good start! You mentioned that it's possible to post later than two minutes, but can you explain why this is a contrast to the idea that BeReal is more authentic?\n\nFeedback: You have the right idea! Now be more specific. Quokka bites can be a potential risk. How many people are bitten by quokkas each year?\nCorrected feedback: You have the right idea! Now be more specific. Quokka bites can be a potential risk. How many people are bitten by quokkas each year?\n\nFeedback: You have the right idea! Now be more specific. Quokkas do look like they're smiling. Now add a detail from the text to strengthen your claim. What makes quokkas look like they're smiling?\nCorrected feedback: You have the right idea! Now be more specific. Quokkas do look like they're smiling. Now add a detail from the text to strengthen your claim. What makes quokkas look like they're smiling?\n\n", "Corrected feedback:" ]
2024-01-10
wisdom-pan/langchain-chatGLM-lora
vectorstores~MyFAISS.py
from langchain.vectorstores import FAISS from langchain.vectorstores.base import VectorStore from langchain.vectorstores.faiss import dependable_faiss_import from typing import Any, Callable, List, Dict from langchain.docstore.base import Docstore from langchain.docstore.document import Document import numpy as np import copy import os from configs.model_config import * class MyFAISS(FAISS, VectorStore): def __init__( self, embedding_function: Callable, index: Any, docstore: Docstore, index_to_docstore_id: Dict[int, str], normalize_L2: bool = False, ): super().__init__(embedding_function=embedding_function, index=index, docstore=docstore, index_to_docstore_id=index_to_docstore_id, normalize_L2=normalize_L2) self.score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD self.chunk_size = CHUNK_SIZE self.chunk_conent = False def seperate_list(self, ls: List[int]) -> List[List[int]]: # TODO: 增加是否属于同一文档的判断 lists = [] ls1 = [ls[0]] for i in range(1, len(ls)): if ls[i - 1] + 1 == ls[i]: ls1.append(ls[i]) else: lists.append(ls1) ls1 = [ls[i]] lists.append(ls1) return lists def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4 ) -> List[Document]: faiss = dependable_faiss_import() vector = np.array([embedding], dtype=np.float32) if self._normalize_L2: faiss.normalize_L2(vector) scores, indices = self.index.search(vector, k) docs = [] id_set = set() store_len = len(self.index_to_docstore_id) rearrange_id_list = False for j, i in enumerate(indices[0]): if i == -1 or 0 < self.score_threshold < scores[0][j]: # This happens when not enough docs are returned. continue if i in self.index_to_docstore_id: _id = self.index_to_docstore_id[i] # 执行接下来的操作 else: continue doc = self.docstore.search(_id) if (not self.chunk_conent) or ("context_expand" in doc.metadata and not doc.metadata["context_expand"]): # 匹配出的文本如果不需要扩展上下文则执行如下代码 if not isinstance(doc, Document): raise ValueError(f"Could not find document for id {_id}, got {doc}") doc.metadata["score"] = int(scores[0][j]) docs.append(doc) continue id_set.add(i) docs_len = len(doc.page_content) for k in range(1, max(i, store_len - i)): break_flag = False if "context_expand_method" in doc.metadata and doc.metadata["context_expand_method"] == "forward": expand_range = [i + k] elif "context_expand_method" in doc.metadata and doc.metadata["context_expand_method"] == "backward": expand_range = [i - k] else: expand_range = [i + k, i - k] for l in expand_range: # if l not in id_set and 0 <= l < len(self.index_to_docstore_id): if l not in id_set and l in self.index_to_docstore_id: _id0 = self.index_to_docstore_id[l] doc0 = self.docstore.search(_id0) if docs_len + len(doc0.page_content) > self.chunk_size or doc0.metadata["source"] != \ doc.metadata["source"]: break_flag = True break elif doc0.metadata["source"] == doc.metadata["source"]: docs_len += len(doc0.page_content) id_set.add(l) rearrange_id_list = True if break_flag: break if (not self.chunk_conent) or (not rearrange_id_list): return docs if len(id_set) == 0 and self.score_threshold > 0: return [] id_list = sorted(list(id_set)) id_lists = self.seperate_list(id_list) for id_seq in id_lists: for id in id_seq: if id == id_seq[0]: _id = self.index_to_docstore_id[id] # doc = self.docstore.search(_id) doc = copy.deepcopy(self.docstore.search(_id)) else: _id0 = self.index_to_docstore_id[id] doc0 = self.docstore.search(_id0) doc.page_content += " " + doc0.page_content if not isinstance(doc, Document): raise ValueError(f"Could not find document for id {_id}, got {doc}") doc_score = min([scores[0][id] for id in [indices[0].tolist().index(i) for i in id_seq if i in indices[0]]]) doc.metadata["score"] = int(doc_score) docs.append(doc) return docs def delete_doc(self, source: str or List[str]): try: if isinstance(source, str): ids = [k for k, v in self.docstore._dict.items() if v.metadata["source"] == source] vs_path = os.path.join(os.path.split(os.path.split(source)[0])[0], "vector_store") else: ids = [k for k, v in self.docstore._dict.items() if v.metadata["source"] in source] vs_path = os.path.join(os.path.split(os.path.split(source[0])[0])[0], "vector_store") if len(ids) == 0: return f"docs delete fail" else: for id in ids: index = list(self.index_to_docstore_id.keys())[list(self.index_to_docstore_id.values()).index(id)] self.index_to_docstore_id.pop(index) self.docstore._dict.pop(id) # TODO: 从 self.index 中删除对应id # self.index.reset() self.save_local(vs_path) return f"docs delete success" except Exception as e: print(e) return f"docs delete fail" def update_doc(self, source, new_docs): try: delete_len = self.delete_doc(source) ls = self.add_documents(new_docs) return f"docs update success" except Exception as e: print(e) return f"docs update fail" def list_docs(self): return list(set(v.metadata["source"] for v in self.docstore._dict.values()))
[]
2024-01-10
adamxuuuu/gym
vbot~utils~titles.py
import os import re import string import numpy as np from tqdm import tqdm from pprint import pprint from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from config import EMBEDDING embeddings = HuggingFaceEmbeddings( model_name=EMBEDDING, encode_kwargs = {'normalize_embeddings': True} ) files = os.listdir('data/policies') def find_num(text): match = re.search(r'po\D*(\d+)', text, re.IGNORECASE) if match: return match.group(1) return 0 def replace_punctuation_with_space(text): translation_table = str.maketrans(string.punctuation, ' ' * len(string.punctuation)) return text.translate(translation_table) def clean_text(text): result = replace_punctuation_with_space(text) # Remove consecutive white spaces result = re.sub(r"\s+", " ", result) return result def embed_filenames(): meta = [{"source" : f, "number" : find_num(f)} for f in files] faiss = FAISS.from_texts( texts=[clean_text(f) for f in files], embedding=embeddings, metadatas=meta ) faiss.save_local('faiss/filenames') if __name__ == "__main__": # find_num('VCIC_Policy No 58-IT Steering V2.0.pdf') # embed_filenames() faiss = FAISS.load_local('faiss/filenames', embeddings) while True: query = input("Question:") if not query: break res = faiss.similarity_search_with_score(query, k=10, filter={"number": query}, fetch_k=400) # res = faiss.max_marginal_relevance_search(query, k=5, filter={"number": query}, fetch_k=40) pprint(res)
[]
2024-01-10
adamxuuuu/gym
vbot~utils~etl_faiss.py
import os import pprint from typing import Iterator, List, Optional from tqdm import tqdm from langchain.vectorstores import FAISS from langchain.document_loaders import UnstructuredFileLoader, DirectoryLoader from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.schema import Document from pdf import clean_text from config import ( EMBEDDING, CHUNK_OVERLAP, CHUNK_SIZE, SEPARATORS ) text_splitter = RecursiveCharacterTextSplitter( chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP, separators=SEPARATORS, is_separator_regex=True, keep_separator=False ) def load_dir(data_path: str, ftype: Optional[str] = "*.pdf") -> List[Document]: return DirectoryLoader( path=data_path, glob=ftype, loader_cls=UnstructuredFileLoader, # loader_kwargs={ # "mode": "single" # }, show_progress=True ).load_and_split( text_splitter ) def save_local(data_path: str, save_path: str, model: HuggingFaceEmbeddings): docs = load_dir(data_path) for doc in docs: clean_text(doc.page_content) vector_db = FAISS.from_documents( documents=docs, embedding=model, ) vector_db.save_local(save_path) if __name__ == '__main__': # Init Model embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING) # Save model_base = os.path.basename(EMBEDDING) db_path = f'./faiss/cs{CHUNK_SIZE}/{model_base}' data_path = './data/test' save_local(data_path, db_path, embeddings) # Query # vector_db = FAISS.load_local(db_path, embeddings) # hits = vector_db.search('who is the contact person for environment friendly policy', search_type='mmr') # for hit in hits: # pprint.pprint(hit.page_content)
[]
2024-01-10
adamxuuuu/gym
vbot~pages~3_Chat_With_File.py
import streamlit as st from langchain.llms import OpenAI, LlamaCpp from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chains import RetrievalQA from utils.callbacks import StreamHandler from config import (EMBEDDING, LLM) def generate_response(uploaded_file, query_text, stream_handler): # Load document if file is uploaded if uploaded_file is not None: documents = [uploaded_file.read().decode()] # Split documents into chunks text_splitter = CharacterTextSplitter(chunk_size=512, chunk_overlap=0) texts = text_splitter.create_documents(documents) # Select embeddings embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING) # Create a vectorstore from documents db = FAISS.from_documents(texts, embeddings) # Create retriever interface retriever = db.as_retriever( search_type="mmr", search_kwargs={'k': 4, 'lambda_mult': 0.25} ) # Create QA chain qa = RetrievalQA.from_chain_type( llm=LlamaCpp(model_path=LLM, n_ctx=2048, temperature=0.01), chain_type='stuff', retriever=retriever ) return qa.run(query_text, callbacks=[stream_handler]) # Page title st.set_page_config(page_title='🦜🔗 Ask the Doc App') st.title('🦜🔗 Ask the Doc App') # File upload uploaded_file = st.file_uploader('Upload an document (1kb usually takes 120 seconds to process)', type='txt', ) print(uploaded_file) # Query text query_text = st.text_input('Enter your question:', placeholder = 'Please provide a short summary.', disabled=not(uploaded_file)) # Form input and query result = [] with st.form('myform', clear_on_submit=True): submitted = st.form_submit_button('Submit', disabled=not(uploaded_file)) if submitted: with st.chat_message("assistant"): with st.spinner("Thinking..."): stream_handler = StreamHandler(st.empty()) response = generate_response(uploaded_file, query_text, stream_handler)
[]
2024-01-10
adamxuuuu/gym
vbot~mlivus~etl_milvus.py
from pymilvus import connections, utility, FieldSchema, CollectionSchema, DataType, Collection from sentence_transformers import SentenceTransformer from langchain.embeddings import HuggingFaceEmbeddings from langchain.document_loaders import TextLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Milvus import os from config import ( COLLECTION_NAME, DIMENSION, MILVUS_HOST, MILVUS_PORT, EMBEDDING_MODEL ) def create_milvus_collection(collection_name, dim): if utility.has_collection(collection_name): utility.drop_collection(collection_name) fields = [ FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, auto_id=False), FieldSchema(name="title", dtype=DataType.VARCHAR, max_length=500), FieldSchema(name="content", dtype=DataType.VARCHAR, max_length=2000), FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=dim) ] schema = CollectionSchema(fields=fields, description='search text') collection = Collection(name=collection_name, schema=schema) index_params = { 'metric_type': "L2", 'index_type': "IVF_FLAT", 'params': {"nlist": 2048} } collection.create_index(field_name='embedding', index_params=index_params) utility.index_building_progress(COLLECTION_NAME) return collection # Connect and Create to Milvus Database connections.connect(host=MILVUS_HOST, port=MILVUS_PORT) collection = create_milvus_collection(COLLECTION_NAME, DIMENSION) # Batch insert data titles = [] contents = [] embeds = [] filedir = "data/" embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) # Get all the text files in the text directory for file in os.listdir(filedir): txt = TextLoader(filedir + file).load() for c in text_splitter.split_documents(txt): titles.append(c.metadata['source']) contents.append(c.page_content) data = [ [i for i in range(len(contents))], titles, contents, embeddings.embed_documents(contents) ] collection.insert(data) collection.flush() print(collection.num_entities)
[]
2024-01-10
adamxuuuu/gym
vbot~pages~2_Chat_With_Policy.py
import os import streamlit as st from pprint import pprint from langchain import PromptTemplate from langchain.vectorstores import FAISS from langchain.embeddings import HuggingFaceEmbeddings from langchain.chains import RetrievalQA from langchain.llms import LlamaCpp from langchain.memory import ConversationBufferMemory from langchain.memory.chat_message_histories import StreamlitChatMessageHistory from utils.callbacks import StreamHandler, RetrievalHandler from config import ( EMBEDDING, PROMPT_TEMPLATE, LLM, SEARCH_KWARGS, SEARCH_TYPE, CHUNK_SIZE, DB_BASE ) PROMPT = PromptTemplate( input_variables=["context", "question"], template=PROMPT_TEMPLATE ) @st.cache_resource() def retriever(db_path: str): embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING) vector_db = FAISS.load_local( folder_path=db_path, embeddings=embeddings, normalize_L2=True, ) retriever = vector_db.as_retriever( search_type=SEARCH_TYPE, search_kwargs=SEARCH_KWARGS ) return retriever # ======================APP========================== msgs = StreamlitChatMessageHistory() llm = LlamaCpp( model_path=LLM, temperature=0.01, n_ctx=3000, streaming=True, max_tokens=512 ) chain_type_kwargs = {"prompt": PROMPT} qa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever(f'{DB_BASE}/cs{CHUNK_SIZE}/{os.path.basename(EMBEDDING)}'), chain_type_kwargs=chain_type_kwargs ) # Sidebar with st.sidebar: if st.sidebar.button("Clear message history") and not msgs: msgs.clear() msgs.add_ai_message("How can I help you?") avatars = {"human": "user", "ai": "assistant"} for msg in msgs.messages: st.chat_message(avatars[msg.type]).write(msg.content) if user_query := st.chat_input(placeholder="Ask me about VW policy related question."): st.chat_message("user").write(user_query) with st.chat_message("assistant"): retrieval_handler = RetrievalHandler(st.container()) stream_handler = StreamHandler(st.empty()) pprint(f"Start processing query: '{user_query}'") response = qa_chain.run(user_query, callbacks=[ retrieval_handler, stream_handler]) pprint(f"Finish generation: {response}")
[ "question", "context" ]
2024-01-10
adamxuuuu/gym
vbot~pages~1_Free_Chat.py
from langchain import LLMChain, PromptTemplate, ConversationChain from langchain.llms import LlamaCpp from langchain.memory import ConversationBufferWindowMemory from langchain.callbacks.base import BaseCallbackHandler import streamlit as st import os def prompt(): template = """You are a helpful assistant. You do not respond as 'User' or pretend to be 'User'. You only respond once as 'Assistant'. {history} Human: {input} AI:""" return PromptTemplate(template=template, input_variables=['history', 'input']) class StreamHandler(BaseCallbackHandler): def __init__(self, container: st.delta_generator.DeltaGenerator, initial_text: str = ""): self.container = container self.text = initial_text def on_llm_new_token(self, token: str, **kwargs) -> None: self.text += token self.container.markdown(self.text) @st.cache_resource def init_llm_chain(model_path, temperature, top_p, max_length): llm = LlamaCpp( model_path=model_path, temperature=temperature, top_p=top_p, max_tokens=max_length ) return ConversationChain( prompt=prompt(), llm=llm, memory=ConversationBufferWindowMemory(k=5), verbose=True ) # App st.set_page_config(page_title="🦙💬 Llama 2 Chatbot") with st.sidebar: st.title('🦙💬 Llama 2 Chatbot') st.subheader('Models and parameters') selected_model = st.sidebar.selectbox('Choose a Llama2 model', ['Llama2-7B-q4', 'Llama2-7B-q8', 'Llama2-13B'], key='selected_model') if selected_model == 'Llama2-7B-q4': llm = './models/llama-2-7b-chat.ggmlv3.q4_K_M.bin' elif selected_model == 'Llama2-7B-q8': llm = './models/llama-2-7b-chat.ggmlv3.q8_0.bin' else: llm = './models/llama-2-13b-chat.ggmlv3.q4_1.bin' temperature = st.sidebar.slider('temperature', min_value=0.01, max_value=1.0, value=0.1, step=0.01) top_p = st.sidebar.slider('top_p', min_value=0.01, max_value=1.0, value=0.9, step=0.01) max_length = st.sidebar.slider('max_length', min_value=64, max_value=2048, value=512, step=8) chain = init_llm_chain(llm, temperature, top_p, max_length) # Store LLM generated responses if "messages" not in st.session_state.keys(): st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}] # Display or clear chat messages for message in st.session_state.messages: with st.chat_message(message["role"]): st.write(message["content"]) def clear_chat_history(): st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}] chain.memory.clear() st.sidebar.button('Clear Chat History', on_click=clear_chat_history) # User-provided prompt if human_input := st.chat_input(): st.session_state.messages.append({"role": "user", "content": human_input}) with st.chat_message("user"): st.write(human_input) # Generate a new response if last message is not from assistant if st.session_state.messages[-1]["role"] != "assistant": with st.chat_message("assistant"): with st.spinner("Thinking..."): stream_handler = StreamHandler(st.empty()) response = chain.predict(input=human_input, callbacks=[stream_handler]) # memory.save_context({"input": human_input}, {"output": response}) message = {"role": "assistant", "content": response} st.session_state.messages.append(message)
[ "How may I assist you today?", "You are a helpful assistant. You do not respond as 'User' or pretend to be 'User'. You only respond once as 'Assistant'.\n\n {history}\n Human: {input}\n AI:" ]
2024-01-10
Matthewsecond/WebScraping
Controller~Process_Import_Data~OtherFunctions~Used~Geolocation~import_city.py
import sqlalchemy from GeoProcessing import get_kraj, get_latitude, get_longitude import pandas as pd import geopy import unicodedata from pandasai import SmartDataframe, SmartDatalake from pandasai.llm import OpenAI import pandasai engine = sqlalchemy.create_engine( 'mysql+pymysql://admin:N6zmVKVW@jobs-intelligence-slovakia.' 'cluster-c0rbbiliflyo.eu-central-1.rds.amazonaws.com:9906/General_Intelligence') conn = engine.connect() def drop_table(table_name): try: query = sqlalchemy.text(f'DROP TABLE {table_name}') conn.execute(query) except Exception as e: print(e) def get_zipcode(df, geolocator, lat_field, lon_field): #df.apply(get_zipcode, axis=1, geolocator=geolocator, lat_field='Lat', lon_field='Lon') location = geolocator.reverse((df[lat_field], df[lon_field])) try: return location.raw['address']['postcode'] except Exception as e: return None if __name__ == '__main__': llm = OpenAI(api_token='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') #read webcrawlresults from database webcrawlresults = pd.read_sql_table('SK_WebCrawlResults', conn) #read cities from database cities = pd.read_sql_table('Cities_Processed', conn) #webcrawlresults = webcrawlresults[:60000] dl = SmartDatalake([cities, webcrawlresults], config={"llm": llm}) #dl = SmartDataframe(df=pd.DataFrame(webcrawlresults), config={"llm": llm}) #response = dl.chat('merge cities in cities dataframe with locality in webcrawlresults. Ignore small differences in text. Return dataframe.') response = dl.chat('merge column municipality in cities dataframe with column location in webcrawlresults.') dataframe1 = response.dataframe dl = SmartDatalake([cities, webcrawlresults], config={"llm": llm}) response = dl.chat('merge column city in cities dataframe with column location if there in webcrawlresults.') dataframe2 = response.dataframe # 'concatenate dataframes dataframe and dataframe2. Compare column link. If it already exists in dataframe1, do not add it.' dataframe3 = pd.concat([dataframe1, dataframe2]).drop_duplicates(subset=['link'], keep='first') dataframe3.to_sql(name='SK_WebCrawlResults_Processed_test', con=engine, if_exists='append', index=False) #dl.chat('Find all matches between column location from webcrawlresults and Municipality from cities and merge the dataframes based on those matches. ''Ignore small differences in text.') ## drop column City from cities #municipality = cities.drop(columns=['City']) #convert column location to unicode #webcrawlresults['location'] = webcrawlresults['location'].apply(lambda val: unicodedata.normalize('NFKD', str(val)).encode('ascii', 'ignore').decode()) #merge webcrawlresults and ciities based on column location from webcrawlresults and column City and Municipality from cities #merged2 = webcrawlresults.merge(cities, left_on='location', right_on='Municipality', how='left') ''' geolocator = geopy.Nominatim(user_agent='123') # read cities from database cities = pd.read_sql_table('Cities_Processed', conn) cities['ZIP_CODE'] = cities.apply(get_zipcode, axis=1, geolocator=geolocator, lat_field='latitude', lon_field='longitude') #drop table cities drop_table('Cities_Processed') #import into Cities_Processed cities.to_sql(name='Cities_Processed', con=engine, if_exists='append', index=False) ''' #read cities from database #cities = pd.read_sql_table('Cities_Processed', conn) #cities = cities[:10] #cities['zip_code'] = cities.apply(get_zipcode, axis=1, geolocator=geolocator, lat_field='latitude', lon_field='longitude') #print(cities) #drop table cities #read csv into dataframe, ; is separator #add columns to cities_add #read csv into dataframe, ; is separator #columns=['Municipality','City','Region', 'latitude', 'longitude'] #cities_add = pd.read_csv(r'C:\Users\labus.INTERCONNECTION\Desktop\WebScrapingProject\Geolocation\cities.csv', names=columns, sep=';' , skiprows=2) #cities_add.to_sql(name='Cities_Processed', con=engine, if_exists='append', index=False) #cities_add['kraj'] = cities_add['City'].apply(get_kraj) #cities_add['latitude'] = cities_add['City'].apply(get_latitude) #cities_add['longitude'] = cities_add['City'].apply(get_longitude)
[ "merge column city in cities dataframe with column location if there in webcrawlresults.", "merge column municipality in cities dataframe with column location in webcrawlresults." ]
2024-01-10
Matthewsecond/WebScraping
Controller~Process_Import_Data~OtherFunctions~Used~Geolocation_CZ~GeoProcessing.py
from geopy.geocoders import Nominatim import pandas as pd import re from unidecode import unidecode from datetime import datetime import openai import sqlalchemy import time import geopy from pandasai import SmartDataframe from pandasai.llm import OpenAI openai.api_key = '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' app = Nominatim(user_agent="tutorial") engine = sqlalchemy.create_engine( 'mysql+pymysql://admin:N6zmVKVW@jobs-intelligence-slovakia.' 'cluster-c0rbbiliflyo.eu-central-1.rds.amazonaws.com:9906/General_Intelligence_CZ') conn = engine.connect() def get_companies_slovakia(): try: query = sqlalchemy.text('SELECT * FROM `Companies_Slovakia_Processed`') # Read data from the query dataframe_companies = pd.read_sql_query(query, conn) return dataframe_companies except Exception as e: print(e) def get_CZ_WebCrawlResults(): try: query = sqlalchemy.text('SELECT * FROM `CZ_WebCrawlResults`') # Read data from the query dataframe = pd.read_sql_query(query, conn) return dataframe except Exception as e: print(e) def remove_numbers(string): if type(string) == str: return re.sub(r'\d+', '', string) def split_word_by_comma(word): if word is not None and 'Praca vyzaduje cestovanie' in word: return 'Traveling job' elif word is not None: return [x.strip() for x in word.split(',') and word.split('-') and word.split(', ')] def get_Cities_Processed(): try: query = sqlalchemy.text('SELECT * FROM `Cities_Processed`') # Read data from the query dataframe = pd.read_sql_query(query, conn) return dataframe except Exception as e: print(e) #function to drop table def drop_table(table_name): try: query = sqlalchemy.text(f'DROP TABLE {table_name}') conn.execute(query) except Exception as e: print(e) def get_zipcode(df, geolocator, lat_field, lon_field): #df.apply(get_zipcode, axis=1, geolocator=geolocator, lat_field='Lat', lon_field='Lon') location = geolocator.reverse((df[lat_field], df[lon_field])) return location.raw['address']['postcode'] def clean_locations(specific_location): # read database database_webcrawl_results = get_CZ_WebCrawlResults() database_cities = get_Cities_Processed() # place = 'Bratislava II, Bratislava, Slovakia (Job with occasional home office)' # words = split_word_by_comma(place) cities_list = database_cities[specific_location].to_list() # cities_list = cities_list[:10] # convert all characters in cities_list to ascii cities_list = [unidecode(x) for x in cities_list] # remove '-' from database_webcrawl_results['location'] only if it is not None database_webcrawl_results['location'] = database_webcrawl_results['location'].apply( lambda x: x.replace('-', '') if x is not None else x) database_webcrawl_results['location'] = database_webcrawl_results['location'].apply( lambda x: x.replace(' ,', ',') if x is not None else x) # loop through webcrawl results for index, row, in database_webcrawl_results.iterrows(): # delete numbers from row['location'] database_webcrawl_results.loc[index, 'location'] = remove_numbers(row['location']) # remove space from row['location'] # database_webcrawl_results.loc[index, 'location'] = delete_space(row['location']) words = split_word_by_comma(row['location']) # loop through words and if one of the words is in database_cities['City'] then set the location to that city if words is not None: for word in words: if word in cities_list: # database_webcrawl_results.loc[index, 'location'] = word database_webcrawl_results.loc[index, specific_location] = word break # drop webcrawl results table drop_table('CZ_WebCrawlResults') # import to mysql SK_WebCrawlResults table database_webcrawl_results.to_sql(name='CZ_WebCrawlResults', con=engine, if_exists='append', index=False) #fill missing locations def fill_locations(): # read database database_webcrawl_results = get_CZ_WebCrawlResults() database_cities = get_Cities_Processed() # merge on Municipality only if City is None mask1 = database_webcrawl_results['Okres'].isnull() merged_df1 = pd.merge(database_webcrawl_results[mask1], database_cities, on='Obec', how='left') # delete columns City_x and Region_x merged_df1.drop(['Okres_x', 'Kraj_x'], axis=1, inplace=True) # rename columns City_y and Region_y to City and Region merged_df1.rename(columns={'Okres_y': 'Okres', 'Kraj_y': 'Kraj'}, inplace=True) #drop rows where Municipality is None merged_df1 = merged_df1[merged_df1['Obec'].notna()] mask = database_webcrawl_results['Obec'].isnull() merged_df2 = pd.merge(database_webcrawl_results[mask], database_cities, on='Okres', how='left') #delete columns Municipality_x and Region_x merged_df2.drop(['Obec_x', 'Kraj_x'], axis=1, inplace=True) #delete rows where City is None #merged_df2 = merged_df2[merged_df2['City'].notna()] #rename columns Municipality_y and Region_y to Municipality and Region merged_df2.rename(columns={'Obec_y': 'Obec', 'Kraj_y': 'Kraj'}, inplace=True) #if region in database_webcrawl_results is filled but Municipality is None and City is None then fill Municipality and City with string unspecified database_webcrawl_results.loc[(database_webcrawl_results['Kraj'].notna()) & (database_webcrawl_results['Obec'].isnull()) & (database_webcrawl_results['Okres'].isnull()), ['Okres', 'Obec']] = 'unspecified' #keep only rows where Municipality and City are unspecified database_webcrawl_results = database_webcrawl_results[(database_webcrawl_results['Okres'] == 'unspecified') & (database_webcrawl_results['Obec'] == 'unspecified')] #concatenate merged_df1 and merged_df2 with database_webcrawl_results database_webcrawl_results_merged = pd.concat([merged_df1, merged_df2, database_webcrawl_results], ignore_index=True) # fill missing values in latitude, longitude and Zipcode with unspecified database_webcrawl_results_merged['Latitude'].fillna('unspecified', inplace=True) database_webcrawl_results_merged['Longitude'].fillna('unspecified', inplace=True) database_webcrawl_results_merged['Kód okresu'].fillna('unspecified', inplace=True) database_webcrawl_results_merged['Kód kraje'].fillna('unspecified', inplace=True) #database_webcrawl_results_merged['work_type'].fillna('unspecified', inplace=True) database_webcrawl_results_merged['Obec'].fillna('unspecified', inplace=True) database_webcrawl_results_merged['Okres'].fillna('unspecified', inplace=True) database_webcrawl_results_merged['Kraj'].fillna('unspecified', inplace=True) database_webcrawl_results_merged['salary'].fillna('unspecified', inplace=True) database_webcrawl_results_merged['PSČ'].fillna('unspecified', inplace=True) database_webcrawl_results_merged['Kód obce'].fillna('unspecified', inplace=True) #copy index to column id database_webcrawl_results_merged['index'] = database_webcrawl_results_merged.index #drop database webcrawl_results_table drop_table('CZ_WebCrawlResults') #import to mysql SK_WebCrawlResults table database_webcrawl_results_merged.to_sql(name='CZ_WebCrawlResults', con=engine, if_exists='append', index=False) def fill_locations_companies(): # read database database_companies = get_companies_slovakia() database_cities = get_Cities_Processed() # merge on City merged_df = pd.merge(database_companies, database_cities, on='City', how='left') # drop table drop_table('Companies_Slovakia_Processed') # import to mysql Companies_Slovakia_Processed table merged_df.to_sql(name='Companies_Slovakia_Processed', con=engine, if_exists='append', index=False) def location_cleaning(): for location in ['Obec', 'Okres', 'Kraj']: clean_locations(location) if __name__ == '__main__': #location_cleaning() fill_locations()
[]