date_collected
stringclasses 1
value | repo_name
stringlengths 6
116
| file_name
stringlengths 2
220
| file_contents
stringlengths 13
357k
| prompts
sequence |
---|---|---|---|---|
2024-01-10 | ezsinehan/speakers-third-eye | backend~gettingResponses~gptresponse.py | import openai
import json
# Set your OpenAI API key here
openai.api_key = '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'
# Read the dataset from the JSON file
with open('/Users/sinehanezhilmuthu/Desktop/csShit/stev2/backend/gettingData/parsingPredictions/parsed_data.json', 'r') as file:
dataset = json.load(file)
# Convert the dataset to a string
dataset_str = json.dumps(dataset)
# Create a GPT-3 prompt to generate recommendations based on the dataset
prompt = f"Based on the provided dataset:\n{dataset_str}\n\nPlease provide specific recommendations related to the audiences emotions to the speaker whilist citing to parts in their speech using quotes, I want at least one quote and give a better example on how they could rephrase their speech, on how to increase positive emotions like interest and reduce negative emotions like confusion. Note that the text in the dataset is the speaker's speech. Only one reccomendation per run is needed, but go in detail."
# Generate a response from GPT-3
response = openai.Completion.create(
engine="text-davinci-002",
prompt=prompt,
max_tokens=500
)
# Extract the generated recommendations from the response
recommendations = response.choices[0].text
# Convert the recommendations to a dictionary
recommendations_dict = {"recommendations": recommendations}
# Save the recommendations as a JSON file
with open('recommendations.json', 'w') as output_file:
json.dump(recommendations_dict, output_file)
| [
"Based on the provided dataset:\nPLACEHOLDER\n\nPlease provide specific recommendations related to the audiences emotions to the speaker whilist citing to parts in their speech using quotes, I want at least one quote and give a better example on how they could rephrase their speech, on how to increase positive emotions like interest and reduce negative emotions like confusion. Note that the text in the dataset is the speaker's speech. Only one reccomendation per run is needed, but go in detail."
] |
2024-01-10 | daveshap/SynopsisGenerator | finetune.py | import requests
import openai
from pprint import pprint
with open('openaiapikey.txt', 'r') as infile:
open_ai_api_key = infile.read()
openai.api_key = open_ai_api_key
def file_upload(filename, purpose='fine-tune'):
resp = openai.File.create(purpose=purpose, file=open(filename))
pprint(resp)
return resp
def file_list():
resp = openai.File.list()
pprint(resp)
def finetune_model(fileid, suffix, model='davinci'):
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer %s' % open_ai_api_key}
payload = {'training_file': fileid, 'model': model, 'suffix': suffix}
resp = requests.request(method='POST', url='https://api.openai.com/v1/fine-tunes', json=payload, headers=header, timeout=45)
pprint(resp.json())
def finetune_list():
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer %s' % open_ai_api_key}
resp = requests.request(method='GET', url='https://api.openai.com/v1/fine-tunes', headers=header, timeout=45)
pprint(resp.json())
def finetune_events(ftid):
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer %s' % open_ai_api_key}
resp = requests.request(method='GET', url='https://api.openai.com/v1/fine-tunes/%s/events' % ftid, headers=header, timeout=45)
pprint(resp.json())
def finetune_get(ftid):
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer %s' % open_ai_api_key}
resp = requests.request(method='GET', url='https://api.openai.com/v1/fine-tunes/%s' % ftid, headers=header, timeout=45)
pprint(resp.json())
#resp = file_upload('synopsis.jsonl')
#finetune_model(resp['id'], 'synopsis', 'davinci')
finetune_list()
#openai.FineTune.cancel("ft-2ZxHjUVe5DpqK2EsYyA0YtKz") | [] |
2024-01-10 | geoffreysteven/Project3_Tennis | ddpg_agent.py | import numpy as np
import random
import copy
from collections import namedtuple, deque
from model import Actor, Critic
import torch
import torch.nn.functional as F
import torch.optim as optim
BUFFER_SIZE = int(1e6) # replay buffer size
BATCH_SIZE = 512 # minibatch size
GAMMA = 0.99 # discount factor
TAU = 1e-3 # for soft update of target parameters
LR_ACTOR = 1e-3 # learning rate of the actor
LR_CRITIC = 1e-3 # learning rate of the critic
WEIGHT_DECAY = 0.0 # L2 weight decay
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Agent():
"""Interacts with and learns from the environment."""
def __init__(self, state_size, action_size, random_seed):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
random_seed (int): random seed
"""
self.state_size = state_size
self.action_size = action_size
self.seed = random.seed(random_seed)
# Actor Network (w/ Target Network)
self.actor_local = Actor(state_size, action_size, random_seed).to(device)
self.actor_target = Actor(state_size, action_size, random_seed).to(device)
self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR)
# Critic Network (w/ Target Network)
self.critic_local = Critic(state_size, action_size, random_seed).to(device)
self.critic_target = Critic(state_size, action_size, random_seed).to(device)
self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC, weight_decay=WEIGHT_DECAY)
# Noise process
self.noise = OUNoise(action_size, random_seed)
# Replay memory
self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, random_seed)
def step(self, state, action, reward, next_state, done):
"""Save experience in replay memory, and use random sample from buffer to learn."""
# Save experience / reward
self.memory.add(state, action, reward, next_state, done)
def learn_batch(self):
# Learn, if enough samples are available in memory
if len(self.memory) > BATCH_SIZE:
experiences = self.memory.sample()
self.learn(experiences, GAMMA)
def act(self, state, add_noise=True):
"""Returns actions for given state as per current policy."""
state = torch.from_numpy(state).float().to(device)
self.actor_local.eval()
with torch.no_grad():
action = self.actor_local(state).cpu().data.numpy()
self.actor_local.train()
if add_noise:
action += self.noise.sample()
return np.clip(action, -1, 1)
def reset(self):
self.noise.reset()
def learn(self, experiences, gamma):
"""Update policy and value parameters using given batch of experience tuples.
Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
where:
actor_target(state) -> action
critic_target(state, action) -> Q-value
Params
======
experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
"""
states, actions, rewards, next_states, dones = experiences
# ---------------------------- update critic ---------------------------- #
# Get predicted next-state actions and Q values from target models
actions_next = self.actor_target(next_states)
Q_targets_next = self.critic_target(next_states, actions_next)
# Compute Q targets for current states (y_i)
Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
# Compute critic loss
Q_expected = self.critic_local(states, actions)
critic_loss = F.mse_loss(Q_expected, Q_targets)
# Minimize the loss
self.critic_optimizer.zero_grad()
critic_loss.backward()
# as per class benchmark implementation Attempt #3
torch.nn.utils.clip_grad_norm(self.critic_local.parameters(), 1)
self.critic_optimizer.step()
# ---------------------------- update actor ---------------------------- #
# Compute actor loss
actions_pred = self.actor_local(states)
actor_loss = -self.critic_local(states, actions_pred).mean()
# Minimize the loss
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# ----------------------- update target networks ----------------------- #
self.soft_update(self.critic_local, self.critic_target, TAU)
self.soft_update(self.actor_local, self.actor_target, TAU)
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model: PyTorch model (weights will be copied from)
target_model: PyTorch model (weights will be copied to)
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
class OUNoise:
"""Ornstein-Uhlenbeck process."""
def __init__(self, size, seed, mu=0., theta=0.15, sigma=0.2):
"""Initialize parameters and noise process."""
self.mu = mu * np.ones(size)
self.theta = theta
self.sigma = sigma
self.dt = 1e-2
self.seed = random.seed(seed)
self.reset()
def reset(self):
"""Reset the internal state (= noise) to mean (mu)."""
self.state = copy.copy(self.mu)
def sample(self): # based on brownian motion as per class code sample
"""Update internal state and return it as a noise sample."""
x = self.state
#### - Old code from DDPG Pendulum
# dx = self.theta * (self.mu - x) + self.sigma * np.array([random.random() for i in range(len(x))])
### - Revised OUNoise from OpenAI Noise Blog/Paper
# replace with AI Gym's https://github.com/openai/baselines/blob/master/baselines/ddpg/noise.py:
# x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + self.sigma * np.sqrt(self.dt) * np.random.normal(size=self.mu.shape)
dx = self.theta * (self.mu - x) * self.dt + self.sigma * np.sqrt(self.dt) * np.array([np.random.normal() for i in range(len(x))])
self.state = x + dx
return self.state
# def sample(self): # normal gaussian noise
# """Update internal state and return it as a noise sample."""
# x = self.state
# dx = return np.random.normal(self.mu, self.sigma)
# self.state = x + dx
# return self.state
# OrnsteinUhlenbeckActionNoise is from OpenAI's blog on noise:
# https://github.com/openai/baselines/blob/master/baselines/ddpg/noise.py
# The noise code below is from OpenAI's blog, copied here for reference
# class ActionNoise(object):
# def reset(self):
# pass
#
# class OrnsteinUhlenbeckActionNoise(ActionNoise):
# def __init__(self, mu, sigma, theta=.15, dt=1e-2, x0=None):
# self.theta = theta
# self.mu = mu
# self.sigma = sigma
# self.dt = dt
# self.x0 = x0
# self.reset()
#
# def __call__(self):
# x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + self.sigma * np.sqrt(self.dt) * np.random.normal(size=self.mu.shape)
# self.x_prev = x
# return x
#
# def reset(self):
# self.x_prev = self.x0 if self.x0 is not None else np.zeros_like(self.mu)
#
# def __repr__(self):
# return 'OrnsteinUhlenbeckActionNoise(mu={}, sigma={})'.format(self.mu, self.sigma)
# AdaptiveParamNoiseSpec is from OpenAI's blog on noise:
# https://github.com/openai/baselines/blob/master/baselines/ddpg/noise.py
# class AdaptiveParamNoiseSpec(object):
# def __init__(self, initial_stddev=0.1, desired_action_stddev=0.1, adoption_coefficient=1.01):
# self.initial_stddev = initial_stddev
# self.desired_action_stddev = desired_action_stddev
# self.adoption_coefficient = adoption_coefficient
#
# self.current_stddev = initial_stddev
#
# def adapt(self, distance):
# if distance > self.desired_action_stddev:
# # Decrease stddev.
# self.current_stddev /= self.adoption_coefficient
# else:
# # Increase stddev.
# self.current_stddev *= self.adoption_coefficient
#
# def get_stats(self):
# stats = {
# 'param_noise_stddev': self.current_stddev,
# }
# return stats
#
# def __repr__(self):
# fmt = 'AdaptiveParamNoiseSpec(initial_stddev={}, desired_action_stddev={}, adoption_coefficient={})'
# return fmt.format(self.initial_stddev, self.desired_action_stddev, self.adoption_coefficient)
# NormalActionNoise is from OpenAI's blog on noise:
# https://github.com/openai/baselines/blob/master/baselines/ddpg/noise.py
# class NormalActionNoise(ActionNoise):
# def __init__(self, mu, sigma):
# self.mu = mu
# self.sigma = sigma
#
# def __call__(self):
# return np.random.normal(self.mu, self.sigma)
#
# def __repr__(self):
# return 'NormalActionNoise(mu={}, sigma={})'.format(self.mu, self.sigma)
# code for replaybufer is from DDPG_Pendulum class repo
class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""
def __init__(self, action_size, buffer_size, batch_size, seed):
"""Initialize a ReplayBuffer object.
Params
======
buffer_size (int): maximum size of buffer
batch_size (int): size of each training batch
"""
self.action_size = action_size
self.memory = deque(maxlen=buffer_size) # internal memory (deque)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(seed)
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
"""Randomly sample a batch of experiences from memory."""
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).float().to(device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)
| [] |
2024-01-10 | bigai-nlco/LooGLE | Prediction~pred_llamaindex.py | import os
import torch
import json
import argparse
from datasets import load_dataset
from llama_index import GPTVectorStoreIndex, Document, ServiceContext
from llama_index.indices.prompt_helper import PromptHelper
from transformers import AutoTokenizer
import openai
import tiktoken
#import GPUtil
stopped_num = 10000000
delay = 10
# Gpus = GPUtil.getGPUs()
def get_gpu_info():
gpulist = []
GPUtil.showUtilization()
for gpu in Gpus:
print('gpu.id:', gpu.id)
print('total GPU:', gpu.memoryTotal)
print('GPU usage:', gpu.memoryUsed)
print('gpu usage percent:', gpu.memoryUtil * 100)
gpulist.append([ gpu.id, gpu.memoryTotal, gpu.memoryUsed,gpu.memoryUtil * 100])
return gpulist
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default="llama-index", help="raw model name for evaluation")
parser.add_argument('--task', type=str, default=None, help="long context understanding tasks in LooGLE", choices=["shortdep_qa","longdep_qa","longdep_summarization","shortdep_cloze"])
parser.add_argument('--max_length', type=int, default=None, help="the max length of input prompt")
parser.add_argument('--model_path', type=str, default="./Models/")
parser.add_argument('--output_path', type=str, default="./Output/")
return parser.parse_args(args)
def num_tokens_from_string(string: str, encoding_name: str) -> int:
"""Returns the number of tokens in a text string."""
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
return num_tokens
def get_pred(data_instance, tokenizer, max_length, max_gen, prompt_format):
ans, groundtruth = [], []
preds = {}
raw_inputs = data_instance['input']
documents = [Document(text=raw_inputs)]
prompt_helper = PromptHelper(
context_window=max_length + 1000,
num_output=max_gen,
chunk_size_limit=1024,
chunk_overlap_ratio=0.1,
)
service_context = ServiceContext.from_defaults(
context_window=max_length + 1000,
num_output=max_gen,
prompt_helper=prompt_helper,
chunk_size_limit=1024,
)
index = GPTVectorStoreIndex.from_documents(documents, service_context=service_context)
query_engine = index.as_query_engine()
if data_instance['qa_pairs'] == 'none':
preds['qa_pairs'] = data_instance['qa_pairs']
json_obj = {'input': raw_inputs}
prompt = prompt_format.format(**json_obj)
tokenized_prompt = tokenizer.encode(prompt)
if len(tokenized_prompt) > max_length:
half = int(max_length/2)
prompt = tokenizer.decode(tokenized_prompt[:half])+tokenizer.decode(tokenized_prompt[-half:])
rsp = query_engine.query(prompt).response
ans.append(rsp)
groundtruth.append(data_instance["output"])
else:
preds['qa_pairs'] = eval(data_instance['qa_pairs'])
for j in eval(data_instance['qa_pairs']):
json_obj = {'Q':j['Q'], 'input': raw_inputs}
prompt = prompt_format.format(**json_obj)
tokenized_prompt = tokenizer.encode(prompt)
if len(tokenized_prompt) > max_length:
half = int(max_length/2)
prompt = tokenizer.decode(tokenized_prompt[:half])+tokenizer.decode(tokenized_prompt[-half:])
rsp = query_engine.query(prompt).response
ans.append(rsp)
groundtruth.append(j['A'])
preds['llm_output'] = ans
preds['output'] = groundtruth
return preds
def loads(path, task):
data = []
with open(path+task+".jsonl", "r") as f:
lines = f.readlines()
for line in lines:
data.append(json.loads(line))
return data
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args = parse_args()
# data = load_dataset('bigainlco/LooGLE', args.task, split="test")
data = loads("LooGLE-testdata/", args.task)
tokenizer = tiktoken.get_encoding("cl100k_base")
task2prompt = json.load(open("./config/task2prompt.json", "r"))
task2maxlen = json.load(open("./config/task2maxlen.json", "r"))
prompt_format = task2prompt[args.task]
max_gen = task2maxlen[args.task]
for i in data:
predictions = get_pred(i, tokenizer, args.max_length, max_gen, prompt_format)
with open(args.output_path + args.task + '_' + args.model_name + ".jsonl", "a+") as g:
g.write(json.dumps(predictions)+'\n')
| [
"./config/task2prompt.json"
] |
2024-01-10 | bigai-nlco/LooGLE | Prediction~pred_gpt_models.py | import os
import torch
import json
import argparse
from transformers import AutoTokenizer, AutoModelForCausalLM
import openai
from datasets import load_dataset
import tiktoken
# import GPUtil
stopped_num = 10000000
delay = 10
# Gpus = GPUtil.getGPUs()
def get_gpu_info():
gpulist = []
GPUtil.showUtilization()
for gpu in Gpus:
print('gpu.id:', gpu.id)
print('total GPU:', gpu.memoryTotal)
print('GPU usage:', gpu.memoryUsed)
print('gpu usage percent:', gpu.memoryUtil * 100)
gpulist.append([ gpu.id, gpu.memoryTotal, gpu.memoryUsed,gpu.memoryUtil * 100])
return gpulist
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default=None, help="raw model name for evaluation", choices=["gpt-3.5-turbo-16k", "gpt-4"])
parser.add_argument('--task', type=str, default=None, help="long context understanding tasks in LooGLE", choices=["shortdep_qa","longdep_qa","longdep_summarization","shortdep_cloze"])
parser.add_argument('--max_length', type=int, default=None, help="the max length of input prompt")
parser.add_argument('--model_path', type=str, default="./Models/")
parser.add_argument('--output_path', type=str, default="./Output/")
return parser.parse_args(args)
def num_tokens_from_string(string: str, encoding_name: str) -> int:
"""Returns the number of tokens in a text string."""
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
return num_tokens
def get_pred(model, data_instance, tokenizer, max_length, max_gen, prompt_format):
ans, groundtruth = [], []
preds = {}
raw_inputs = data_instance['input']
if data_instance['qa_pairs'] == 'none':
preds['qa_pairs'] = data_instance['qa_pairs']
json_obj = {'input': raw_inputs}
prompt = prompt_format.format(**json_obj)
tokenized_prompt = tokenizer.encode(prompt)
if len(tokenized_prompt) > max_length:
half = int(max_length/2)
prompt = tokenizer.decode(tokenized_prompt[:half]) + tokenizer.decode(tokenized_prompt[-half:])
rsp = openai.ChatCompletion.create(
model = model,
messages = [{"role": "system", "content":prompt}],
temperature = 0.0,
top_p = 1,
max_tokens = max_gen,
frequency_penalty = 0,
presence_penalty = 0
)
pred = rsp['choices'][0]['message']['content']
ans.append(pred)
groundtruth.append(raw_inputs)
else:
preds['qa_pairs'] = eval(data_instance['qa_pairs'])
for j in eval(data_instance['qa_pairs']):
json_obj = {'Q':j['Q'], 'input': raw_inputs}
prompt = prompt_format.format(**json_obj)
tokenized_prompt = tokenizer.encode(prompt)
if len(tokenized_prompt) > max_length:
half = int(max_length/2)
prompt = tokenizer.decode(tokenized_prompt[:half])+tokenizer.decode(tokenized_prompt[-half:])
rsp = openai.ChatCompletion.create(
model = model,
messages = [{"role": "system", "content":prompt}],
temperature = 0.0,
top_p = 1,
max_tokens = max_gen,
frequency_penalty = 0,
presence_penalty = 0
)
pred = rsp['choices'][0]['message']['content']
ans.append(pred)
groundtruth.append(j['A'])
preds['llm_output'] = ans
preds['output'] = groundtruth
return preds
# def loads(path, task):
# data = []
# with open(path+task+".jsonl", "r") as f:
# lines = f.readlines()
# for line in lines:
# data.append(json.loads(line))
# return data
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args = parse_args()
data = load_dataset('bigainlco/LooGLE', args.task, split="test")
#data = loads("LooGLE-testdata/", args.task)
tokenizer = tiktoken.get_encoding("cl100k_base")
task2prompt = json.load(open("./config/task2prompt.json", "r"))
task2maxlen = json.load(open("./config/task2maxlen.json", "r"))
prompt_format = task2prompt[args.task]
max_gen = task2maxlen[args.task]
for i in data:
predictions = get_pred(args.model_name, i, tokenizer, args.max_length, max_gen, prompt_format)
with open(args.output_path + args.task + '_' + args.model_name+".jsonl", "a+") as g:
g.write(json.dumps(predictions)+'\n')
| [
"./config/task2prompt.json"
] |
2024-01-10 | bigai-nlco/LooGLE | Evaluation~llm_eval.py | import json
from nltk.translate.bleu_score import sentence_bleu
from nltk.translate.meteor_score import single_meteor_score
from rouge import Rouge
from bert_score import score
import numpy as np
import argparse
import openai, os
from llm_score import (
get_gpt4_score
)
def evaluation(data, scores, functions, task):
for i in range(len(data["output"])):
hyp, ref = data["llm_output"][i], data["output"][i]
if "qa_pairs" in data and data["qa_pairs"] != "none":
question = data["qa_pairs"][i]["Q"]
else:
question = ""
for j in functions:
if j not in scores:
scores[j] = []
scores[j].append(eval(j)(question, ref, hyp, task))
return scores
def get_accuracy(result, functions, task):
final_score = {}
for i in functions:
res = result[i]
if "qa" in task:
final_score[i] = res.count("True") / (res.count("True") + res.count("False"))
else:
final_score[i] = np.mean(res)
return final_score
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name", type=str, default=None, help="model name for evaluation"
)
parser.add_argument(
"--task",
type=str,
default=None,
help="long context understanding tasks in LooGLE",
choices=[
"shortdep_qa",
"longdep_qa",
"longdep_summarization",
],
)
parser.add_argument("--output_path", type=str, default="./Output/")
parser.add_argument(
"--eval_metric",
type=str,
default="llm",
help="evaluation method for LLM predictions",
choices=["llm"],
)
return parser.parse_args(args)
if __name__ == "__main__":
args = parse_args()
openai_api_key = os.environ["OPENAI_API_KEY"]
eval_functions = ["get_gpt4_score"]
score_result = {}
with open(
args.output_path + args.task + "_" + args.model_name + ".jsonl", "r"
) as f:
for line in f.readlines():
ds_llm = json.loads(line)
score_result = evaluation(ds_llm, score_result, eval_functions, args.task)
print(get_accuracy(score_result, eval_functions, args.task))
| [] |
2024-01-10 | bigai-nlco/LooGLE | Evaluation~llm_score.py | import json
import numpy as np
import openai
def get_gpt4_score(question, reference, hypothesis, task):
if "qa" in task:
p = "Given one question, there is a groundtruth and a predict_answer. Please decide whether they are the same or not in semantic. Please only output 'True' or 'False' ."
prompt = [{"role": "system", "content": p,},
{
"role": "user",
"content": "Question: "
+ question
+ "\n"
+ "groudtruth = "
+ reference
+ "\n"
+ "predict_answer = "
+ hypothesis,
}]
else:
# p = "There is a groundtruth summary of a arxiv paper and a auto-generated summary .Please Compare generated summary with the goundtruth and evaluate the generated summary from the perspectives of information completeness, consistency, fluency, and grammar by giving a score within the range of 0 to 100."
prompt_format = "There is a groundtruth summary of a arxiv paper and a auto-generated summary .Please Compare generated summary with the goundtruth and evaluate the generated summary from the perspectives of information completeness, consistency, fluency, and grammar by giving a score within the range of 0 to 100. \nGroundtruth = {} \nGenerated = {} \nScore = "
prompt = prompt_format.format(reference, hypothesis)
prompt = [{"role": "system", "content": prompt}]
rr = openai.ChatCompletion.create(
model="gpt-4",
messages=prompt,
temperature=0.0,
top_p=1,
max_tokens=10,
frequency_penalty=0,
presence_penalty=0,
)
rsp = rr["choices"][0]["message"]["content"]
if "qa" in task:
return rsp
else:
return int(rsp)
| [
"\n",
"There is a groundtruth summary of a arxiv paper and a auto-generated summary .Please Compare generated summary with the goundtruth and evaluate the generated summary from the perspectives of information completeness, consistency, fluency, and grammar by giving a score within the range of 0 to 100. \nGroundtruth = {} \nGenerated = {} \nScore = ",
"Given one question, there is a groundtruth and a predict_answer. Please decide whether they are the same or not in semantic. Please only output 'True' or 'False' .",
"predict_answer = ",
"There is a groundtruth summary of a arxiv paper and a auto-generated summary .Please Compare generated summary with the goundtruth and evaluate the generated summary from the perspectives of information completeness, consistency, fluency, and grammar by giving a score within the range of 0 to 100. \nGroundtruth = PLACEHOLDER \nGenerated = PLACEHOLDER \nScore = "
] |
2024-01-10 | bigai-nlco/LooGLE | Evaluation~automatic_eval.py | import json
import openai
from nltk.translate.bleu_score import sentence_bleu
from nltk.translate.meteor_score import single_meteor_score
from rouge import Rouge
from bert_score import score
import numpy as np
import argparse
import openai
from automatic_metrics import (
get_bleu_score,
get_rouge_score,
get_meteor_score,
get_bertscore,
get_exact_match,
get_partial_match
)
def evaluation(data, scores, functions, task):
for i in range(len(data["output"])):
hyp, ref = data["llm_output"][i], data["output"][i]
if hyp == '':
hyp = 'None'
if "qa_pairs" in data:
if data["qa_pairs"] != "none":
question = data["qa_pairs"][i]["Q"]
else:
question = ""
for j in functions:
if j not in scores:
scores[j] = []
scores[j].append(eval(j)(question, ref, hyp, task))
return scores
def get_semantic_matching(result, functions):
final_score = {}
for i in functions:
if type(result[i][0]) is tuple:
l = result[i]
final_score[i] = [np.mean([i[j] for i in l]) for j in range(len(l[0]))]
else:
final_score[i] = np.mean(result[i])
return final_score
def get_match_score(result, functions):
final_score = {}
for i in functions:
match_count = np.sum([j[0] for j in result[i]])
all_count = np.sum([j[1] for j in result[i]])
final_score[i] = round(match_count / all_count, 4)
return final_score
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name", type=str, default=None, help="model name for evaluation"
)
parser.add_argument(
"--task",
type=str,
default=None,
help="long context understanding tasks in LooGLE",
choices=[
"shortdep_qa",
"shortdep_cloze",
"longdep_qa",
"longdep_summarization",
],
)
parser.add_argument("--output_path", type=str, default="./Output/")
parser.add_argument(
"--eval_metric",
type=str,
default=None,
help="evaluation method for LLM predictions",
choices=["automatic_sim", "automatic_match"],
)
return parser.parse_args(args)
if __name__ == "__main__":
args = parse_args()
if args.eval_metric == "automatic_sim":
eval_functions = [
"get_bleu_score",
"get_rouge_score",
"get_meteor_score",
"get_bertscore"
]
elif args.eval_metric == "automatic_match":
eval_functions = ["get_exact_match", "get_partial_match"]
score_result = {}
with open(
args.output_path + args.task + "_" + args.model_name + ".jsonl", "r"
) as f:
for line in f.readlines():
ds_llm = json.loads(line)
score_result = evaluation(ds_llm, score_result, eval_functions, args.task)
if args.eval_metric == "automatic_sim":
print(get_semantic_matching(score_result, eval_functions))
elif args.eval_metric == "automatic_match":
print(get_match_score(score_result, eval_functions))
| [] |
2024-01-10 | bigai-nlco/LooGLE | Retrieval~pred_retrieval_based_method.py | import os
from typing import Any
import torch
import json
import argparse
import openai
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
from llama_index import GPTVectorStoreIndex, Document, ServiceContext
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from llama_index.indices.prompt_helper import PromptHelper
from llama_index.llms import (
OpenAI,
CustomLLM,
HuggingFaceLLM,
CompletionResponse,
CompletionResponseGen,
LLMMetadata,
)
from llama_index.llms.base import llm_completion_callback
import tiktoken
class OpenSourceLLM(CustomLLM):
num_output: int = 0
model_name: str = ""
max_length: int = 0
tokenizer: AutoTokenizer = None
model: AutoModelForCausalLM = None
def __init__(self, num_output, max_length, model_path, model_name) -> None:
super().__init__()
self.num_output = num_output
self.model_name = model_name
self.max_length = max_length
self.tokenizer = AutoTokenizer.from_pretrained(
os.path.join(model_path, model_name), trust_remote_code=True
)
self.model = AutoModelForCausalLM.from_pretrained(
os.path.join(model_path, model_name), trust_remote_code=True, torch_dtype=torch.bfloat16
).to(device)
self.model.eval()
@property
def metadata(self) -> LLMMetadata:
"""Get LLM metadata."""
return LLMMetadata(
context_window=self.max_length,
num_output=self.num_output,
model_name=self.model_name,
)
@llm_completion_callback()
def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
print("input:", prompt)
input_ids = self.tokenizer(
prompt, truncation=False, return_tensors="pt"
).input_ids
input_ids = input_ids.to("cuda")
context_length = input_ids.shape[-1]
with torch.no_grad():
output = self.model.generate(
input_ids,
max_new_tokens=self.num_output,
temperature=1.0,
num_beams=1,
do_sample=False,
repetition_penalty=float(2),
)[0]
text = self.tokenizer.decode(
output[context_length:], skip_special_tokens=True)
return CompletionResponse(text=text)
@llm_completion_callback()
def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:
raise NotImplementedError()
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
type=str,
default="llama-index",
help="raw model name for evaluation",
)
parser.add_argument(
"--emb_model_name", type=str, default="", help="embedding_model"
)
parser.add_argument(
"--task",
type=str,
default=None,
help="long context understanding tasks in LooGLE",
choices=[
"shortdep_qa",
"longdep_qa",
"longdep_summarization",
"shortdep_cloze",
],
)
parser.add_argument(
"--max_length", type=int, default=None, help="the max length of input prompt"
)
parser.add_argument("--model_path", type=str, default="./Models/")
parser.add_argument("--output_path", type=str, default="./Output/")
return parser.parse_args(args)
def num_tokens_from_string(string: str, encoding_name: str) -> int:
"""Returns the number of tokens in a text string."""
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
return num_tokens
def get_pred(data_instance, service_context):
ans, groundtruth = [], []
preds = {}
preds["qa_pairs"] = eval(data_instance["qa_pairs"])
documents = [Document(text=data_instance["input"])]
index = GPTVectorStoreIndex.from_documents(
documents, service_context=service_context
)
query_engine = index.as_query_engine()
for j in eval(data_instance["qa_pairs"]):
rsp = query_engine.query(
"Question: " + j["Q"] + "\n" + "Answer: ").response
ans.append(rsp)
groundtruth.append(j["A"])
preds["llm_output"] = ans
preds["output"] = groundtruth
return preds
def loads(path, task):
data = []
with open(path+task+".jsonl", "r") as f:
lines = f.readlines()
for line in lines:
data.append(json.loads(line))
return data
if __name__ == "__main__":
open_source_model = [
"rwkv-4-14b-pile",
"long_llama_3b",
"LLaMA-2-7B-32K",
"chatglm2-6b-32k",
]
openai_model = ["gpt-3.5-turbo-16k", "gpt-4"]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args = parse_args()
task2maxlen = json.load(open("./config/task2maxlen.json", "r"))
max_gen = task2maxlen[args.task]
# data = load_dataset("bigainlco/LooGLE", args.task, split="test")
data = loads("LooGLE-testdata/", args.task)
if args.model_name in open_source_model:
llm = OpenSourceLLM(max_gen, args.max_length,
args.model_path, args.model_name)
elif args.model_name in openai_model:
llm = OpenAI(model=args.model_name)
else:
raise NameError("model name not found!")
embed_model = HuggingFaceEmbeddings(model_name=args.emb_model_name)
prompt_helper = PromptHelper(
context_window=args.max_length,
num_output=max_gen,
chunk_size_limit=1024,
chunk_overlap_ratio=0.1,
)
service_context = ServiceContext.from_defaults(
llm=llm,
context_window=args.max_length,
num_output=max_gen,
embed_model=embed_model,
prompt_helper=prompt_helper,
chunk_size_limit=1024,
)
for i in data:
predictions = get_pred(i, service_context)
with open(
args.output_path + args.task + "_" + args.model_name + ".jsonl", "a+"
) as g:
g.write(json.dumps(predictions) + "\n")
| [] |
2024-01-10 | colindecourt/record | utils~carrada_functions.py | """
From https://github.com/valeoai/MVRSS
"""
import json
import numpy as np
import torch
import torch.nn as nn
import os
from datasets.carrada.dataloaders import Rescale, Flip, HFlip, VFlip
from utils.loss import CoherenceLoss, SoftDiceLoss
def get_class_weights(signal_type, weight_path):
"""Load class weights for custom loss
@param signal_type: 'range_doppler' or 'range_angle'
@param weight_path: path to class weights
@return: class weights
"""
if signal_type == 'range_angle':
file_name = 'ra_weights.json'
elif signal_type == 'range_doppler':
file_name = 'rd_weights.json'
else:
raise ValueError('Signal type {} is not supported.'.format(signal_type))
file_path = os.path.join(weight_path, file_name)
with open(file_path, 'r') as fp:
weights = json.load(fp)
weights = np.array([weights['background'], weights['pedestrian'],
weights['cyclist'], weights['car']])
weights = torch.from_numpy(weights)
return weights
def normalize(data, signal_type, proj_path, norm_type='local'):
"""
Method to normalise the radar views
@param data: radar view
@param signal_type: signal to normalise ('range_doppler', 'range_angle' and 'angle_doppler')
@param proj_path: path to the project to load weights
@param norm_type: type of normalisation to apply ('local' or 'tvt')
@return: normalised data
"""
if norm_type in ('local'):
min_value = torch.min(data)
max_value = torch.max(data)
norm_data = torch.div(torch.sub(data, min_value), torch.sub(max_value, min_value))
return norm_data
elif signal_type == 'range_doppler':
if norm_type == 'tvt':
file_path = os.path.join(proj_path, 'configs', 'carrada', 'weights_config', 'rd_stats_all.json')
else:
raise TypeError('Global type {} is not supported'.format(norm_type))
with open(file_path, 'r') as fp:
rd_stats = json.load(fp)
min_value = torch.tensor(rd_stats['min_val'])
max_value = torch.tensor(rd_stats['max_val'])
elif signal_type == 'range_angle':
if norm_type == 'tvt':
file_path = os.path.join(proj_path, 'configs', 'carrada', 'weights_config', 'ra_stats_all.json')
else:
raise TypeError('Global type {} is not supported'.format(norm_type))
with open(file_path, 'r') as fp:
ra_stats = json.load(fp)
min_value = torch.tensor(ra_stats['min_val'])
max_value = torch.tensor(ra_stats['max_val'])
elif signal_type == 'angle_doppler':
if norm_type == 'tvt':
file_path = os.path.join(proj_path, 'configs', 'carrada', 'weights_config', 'ad_stats_all.json')
else:
raise TypeError('Global type {} is not supported'.format(norm_type))
with open(file_path, 'r') as fp:
ad_stats = json.load(fp)
min_value = torch.tensor(ad_stats['min_val'])
max_value = torch.tensor(ad_stats['max_val'])
else:
raise TypeError('Signal {} is not supported.'.format(signal_type))
norm_data = torch.div(torch.sub(data, min_value),
torch.sub(max_value, min_value))
return norm_data
def get_transformations(transform_names, split='train', sizes=None):
"""Create a list of functions used for preprocessing
@param transform_names: list of str, one for each transformation
@param split: split currently used
@param sizes: int or tuple (optional)
@return: transformations to use for preprocessing (e.g. data augmentation)
"""
transformations = list()
if 'rescale' in transform_names:
transformations.append(Rescale(sizes))
if 'flip' in transform_names and split == 'train':
transformations.append(Flip(0.5))
if 'vflip' in transform_names and split == 'train':
transformations.append(VFlip())
if 'hflip' in transform_names and split == 'train':
transformations.append(HFlip())
return transformations
def get_metrics(metrics):
"""Structure the metric results
@param metrics: contains statistics recorded during inference
@return: metrics values
"""
metrics_values = dict()
acc, acc_by_class = metrics.get_pixel_acc_class() # harmonic_mean=True)
prec, prec_by_class = metrics.get_pixel_prec_class()
recall, recall_by_class = metrics.get_pixel_recall_class() # harmonic_mean=True)
miou, miou_by_class = metrics.get_miou_class() # harmonic_mean=True)
dice, dice_by_class = metrics.get_dice_class()
metrics_values['acc'] = acc
metrics_values['acc_by_class'] = acc_by_class.tolist()
metrics_values['prec'] = prec
metrics_values['prec_by_class'] = prec_by_class.tolist()
metrics_values['recall'] = recall
metrics_values['recall_by_class'] = recall_by_class.tolist()
metrics_values['miou'] = miou
metrics_values['miou_by_class'] = miou_by_class.tolist()
metrics_values['dice'] = dice
metrics_values['dice_by_class'] = dice_by_class.tolist()
return metrics_values | [] |
2024-01-10 | colindecourt/record | executors~carrada_trainer_sv.py | import imp
import os
import numpy as np
import pytorch_lightning as pl
from torch import nn
import torch
from utils.carrada_functions import get_class_weights, normalize, get_transformations, get_metrics
from utils.loss import CoherenceLoss, SoftDiceLoss
from evaluation.carrada_metrics import Evaluator
class CarradaExecutorSV(pl.LightningModule):
def __init__(self, config, model, view='range_doppler'):
"""
PyTorch lightning base class for training SV-RECORD on CARRADA dataset.
@param config: dictionary with training configuration (lr, optimizer, path to data etc.)
@param model: instance of the model to train
@param view: the view to use (range_angle or range_doppler)
"""
super(CarradaExecutorSV, self).__init__()
self.scheduler = None
self.optimizer = None
self.model = model
self.view = view
self.model_cfg = config['model_cfg']
self.dataset_cfg = config['dataset_cfg']
self.train_cfg = config['train_cfg']
weight_path = self.dataset_cfg['weight_path']
self.project_path = self.dataset_cfg['project_path']
self.model_name = self.model_cfg['name']
self.process_signal = self.model_cfg['process_signal']
self.w_size = self.model_cfg['w_size']
self.h_size = self.model_cfg['h_size']
self.nb_classes = self.model_cfg['nb_classes']
self.in_channels = self.model_cfg['in_channels']
self.ckpt_dir = self.train_cfg['ckpt_dir']
self.lr = self.train_cfg['lr']
self.lr_step = self.train_cfg['lr_step']
self.loss_step = self.train_cfg['loss_step']
self.val_step = self.train_cfg['val_step']
self.viz_step = self.train_cfg['viz_step']
self.custom_loss = self.train_cfg['loss']
self.norm_type = self.train_cfg['norm_type']
# Criterion
self.criterion = self.define_loss(view, self.custom_loss, weight_path)
self.nb_losses = len(self.criterion)
# Metrics
self.metrics = Evaluator(self.nb_classes)
self.save_hyperparameters(config)
def define_loss(self, signal_type, custom_loss, weight_path):
"""
Method to define the loss to use during training
@param signal_type: Type of radar view (supported: 'range_doppler', 'range_angle' or 'angle_doppler')
@param custom_loss: Short name of the custom loss to use (supported: 'wce', 'sdice', 'wce_w10sdice'
or 'wce_w10sdice_w5col')
@param weight_path: path to class weights of dataset
@return: loss function
"""
weights = get_class_weights(signal_type, weight_path)
if custom_loss == 'wce':
loss = nn.CrossEntropyLoss(weight=weights.float())
elif custom_loss == 'sdice':
loss = SoftDiceLoss()
elif custom_loss == 'wce_w10sdice':
ce_loss = nn.CrossEntropyLoss(weight=weights.float())
loss = nn.ModuleList([ce_loss, SoftDiceLoss(global_weight=10.)])
else:
loss = nn.CrossEntropyLoss()
return loss
def configure_optimizers(self):
"""
Define optimizer and scheduler
@return: optimizer and scheduler (if not None)
"""
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr)
self.scheduler = {
'scheduler': torch.optim.lr_scheduler.ExponentialLR(self.optimizer, gamma=0.9),
'interval': 'epoch',
'frequency': 20
}
return [self.optimizer], [self.scheduler]
def on_train_start(self):
self.logger.log_hyperparams(self.hparams, {"hp/val_global_prec": 0, "hp/val_global_dice": 0,
"hp/test_miou": 0, "hp/test_dice": 0,
"hp/val_loss": 0, "hp/train_loss": 0, })
def forward(self, x):
"""
Pytorch Lightning forward pass (inference)
@param x: input tensor
@return: segmentation mask
"""
outputs = self.model(x)
return outputs
def training_step(self, batch, batch_id):
"""
Perform one training step (forward + backward) on a batch of data.
@param batch: data batch from the dataloader
@param batch_id: id of the current batch
@return: loss value to log
"""
if self.view == 'range_doppler':
data = batch['rd_matrix'].float()
mask = batch['rd_mask'].float()
elif self.view == 'range_angle':
data = batch['ra_matrix'].float()
mask = batch['ra_mask'].float()
data = normalize(data, self.view, norm_type=self.norm_type, proj_path=self.project_path)
# Forward
outputs = self.model(data)
# Case without the CoL
losses = [c(outputs, torch.argmax(mask, axis=1))
for c in self.criterion]
loss = torch.mean(torch.stack(losses))
# Log losses
loss_dict = {
'train/loss': loss,
'train/ce': losses[0],
'train/dice': losses[1],
}
self.log_dict(loss_dict, prog_bar=False, on_step=True, on_epoch=True, logger=True)
self.log('hp/train_loss', loss, on_step=False, on_epoch=True, prog_bar=False, logger=True)
return loss
def on_validation_epoch_end(self):
test_results = get_metrics(self.metrics)
if self.view == 'range_doppler':
test_results_log = {
'val_metrics/rd_acc': test_results['acc'],
'val_metrics/rd_prec': test_results['prec'],
'val_metrics/rd_miou': test_results['miou'],
'val_metrics/rd_dice': test_results['dice']
}
elif self.view == 'range_angle':
test_results_log = {
'val_metrics/ra_acc': test_results['acc'],
'val_metrics/ra_prec': test_results['prec'],
'val_metrics/ra_miou': test_results['miou'],
'val_metrics/ra_dice': test_results['dice']
}
self.log(test_results_log)
self.log("hp/val_global_prec", test_results['prec'], on_epoch=True)
self.log("hp/val_global_dice", test_results['dice'], on_epoch=True)
self.metrics.reset()
def validation_step(self, batch, batch_id):
"""
Perform a validation step (forward pass) on a batch of data.
@param batch: data batch from the dataloader
@param batch_id: id of the current batch
"""
if self.view == 'range_doppler':
data = batch['rd_matrix'].float()
mask = batch['rd_mask'].float()
elif self.view == 'range_angle':
data = batch['ra_matrix'].float()
mask = batch['ra_mask'].float()
data = normalize(data, self.view, norm_type=self.norm_type, proj_path=self.project_path)
outputs = self.forward(data)
# Compute loss
# Case without the CoL
losses = [c(outputs, torch.argmax(mask, axis=1))
for c in self.criterion]
loss = torch.mean(torch.stack(losses))
# Log losses
loss_dict = {
'val/loss': loss,
'val/ce': losses[0],
'val/dice': losses[1],
}
# Compute metrics
self.metrics.add_batch(torch.argmax(mask, axis=1).cpu(),
torch.argmax(outputs, axis=1).cpu())
self.log_dict(loss_dict, prog_bar=False, on_step=False, on_epoch=True, logger=True)
self.log('hp/val_loss', loss, on_epoch=True)
def test_step(self, batch, batch_id):
"""
Perform a test step (forward pass + evaluation) on a batch of data.
@param batch: data batch from the dataloader
@param batch_id: id of the current batch
"""
if self.view == 'range_doppler':
data = batch['rd_matrix'].float()
mask = batch['rd_mask'].float()
elif self.view == 'range_angle':
data = batch['ra_matrix'].float()
mask = batch['ra_mask'].float()
data = normalize(data, self.view, norm_type=self.norm_type, proj_path=self.project_path)
outputs = self.forward(data)
# Compute metrics
self.metrics.add_batch(torch.argmax(mask, axis=1).cpu(),
torch.argmax(outputs, axis=1).cpu())
def on_test_epoch_end(self):
"""
Compute metrics and log it
"""
test_results = get_metrics(self.metrics)
if self.view == 'range_doppler':
test_results_log = {
'test_metrics/rd_acc': test_results['acc'],
'test_metrics/rd_prec': test_results['prec'],
'test_metrics/rd_miou': test_results['miou'],
'test_metrics/rd_dice': test_results['dice'],
'test_metrics/rd_dice_bkg': test_results['dice_by_class'][0],
'test_metrics/rd_dice_ped': test_results['dice_by_class'][1],
'test_metrics/rd_dice_cycl': test_results['dice_by_class'][2],
'test_metrics/rd_dice_car': test_results['dice_by_class'][3],
'test_metrics/rd_iou_bkg': test_results['miou_by_class'][0],
'test_metrics/rd_iou_ped': test_results['miou_by_class'][1],
'test_metrics/rd_iou_cycl': test_results['miou_by_class'][2],
'test_metrics/rd_iou_car': test_results['miou_by_class'][3],
}
elif self.view == 'range_angle':
test_results_log = {
'test_metrics/ra_acc': test_results['acc'],
'test_metrics/ra_prec': test_results['prec'],
'test_metrics/ra_miou': test_results['miou'],
'test_metrics/ra_dice': test_results['dice'],
'test_metrics/ra_dice_bkg': test_results['dice_by_class'][0],
'test_metrics/ra_dice_ped': test_results['dice_by_class'][1],
'test_metrics/ra_dice_cycl': test_results['dice_by_class'][2],
'test_metrics/ra_dice_car': test_results['dice_by_class'][3],
'test_metrics/ra_iou_bkg': test_results['miou_by_class'][0],
'test_metrics/ra_iou_ped': test_results['miou_by_class'][1],
'test_metrics/ra_iou_cycl': test_results['miou_by_class'][2],
'test_metrics/ra_iou_car': test_results['miou_by_class'][3],
}
self.log_dict(test_results_log, on_epoch=True)
self.log(name='hp/test_dice', value=test_results['dice'], on_epoch=True)
self.log(name="hp/test_miou", value=test_results['miou'], on_epoch=True)
self.metrics.reset()
| [] |
2024-01-10 | colindecourt/record | executors~carrada_trainer.py | import imp
import os
import numpy as np
import pytorch_lightning as pl
from torch import nn
import torch
from utils.carrada_functions import get_class_weights, normalize, get_transformations, get_metrics
from utils.loss import CoherenceLoss, SoftDiceLoss
from evaluation.carrada_metrics import Evaluator
class CarradaExecutor(pl.LightningModule):
def __init__(self, config, model):
"""
PyTorch lightning base class for training MV-RECORD on CARRADA dataset.
@param config: dictionary with training configuration (lr, optimizer, path to data etc.)
@param model: instance of the model to train
"""
super(CarradaExecutor, self).__init__()
self.scheduler = None
self.optimizer = None
self.model = model
self.model_cfg = config['model_cfg']
self.dataset_cfg = config['dataset_cfg']
self.train_cfg = config['train_cfg']
weight_path = self.dataset_cfg['weight_path']
self.project_path = self.dataset_cfg['project_path']
self.model_name = self.model_cfg['name']
self.process_signal = self.model_cfg['process_signal']
self.w_size = self.model_cfg['w_size']
self.h_size = self.model_cfg['h_size']
self.nb_classes = self.model_cfg['nb_classes']
self.in_channels = self.model_cfg['in_channels']
self.ckpt_dir = self.train_cfg['ckpt_dir']
self.lr = self.train_cfg['lr']
self.lr_step = self.train_cfg['lr_step']
self.loss_step = self.train_cfg['loss_step']
self.val_step = self.train_cfg['val_step']
self.viz_step = self.train_cfg['viz_step']
self.custom_loss = self.train_cfg['loss']
self.norm_type = self.train_cfg['norm_type']
# Criterion
self.rd_criterion = self.define_loss('range_doppler', self.custom_loss, weight_path)
self.ra_criterion = self.define_loss('range_angle', self.custom_loss, weight_path)
self.nb_losses = len(self.rd_criterion)
# Metrics
self.rd_metrics = Evaluator(self.nb_classes)
self.ra_metrics = Evaluator(self.nb_classes)
self.save_hyperparameters(config)
def define_loss(self, signal_type, custom_loss, weight_path):
"""
Method to define the loss to use during training
@param signal_type: Type of radar view (supported: 'range_doppler', 'range_angle' or 'angle_doppler')
@param custom_loss: Short name of the custom loss to use (supported: 'wce', 'sdice', 'wce_w10sdice'
or 'wce_w10sdice_w5col')
@param weight_path: path to class weights of dataset
@return: loss function
"""
weights = get_class_weights(signal_type, weight_path)
if custom_loss == 'wce':
loss = nn.CrossEntropyLoss(weight=weights.float())
elif custom_loss == 'sdice':
loss = SoftDiceLoss()
elif custom_loss == 'wce_w10sdice':
ce_loss = nn.CrossEntropyLoss(weight=weights.float())
loss = nn.ModuleList([ce_loss, SoftDiceLoss(global_weight=10.)])
else:
loss = nn.CrossEntropyLoss()
return loss
def configure_optimizers(self):
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr)
self.scheduler = {
'scheduler': torch.optim.lr_scheduler.ExponentialLR(self.optimizer, gamma=0.9),
'interval': 'epoch',
'frequency': 20
}
return [self.optimizer], [self.scheduler]
def on_train_start(self):
self.logger.log_hyperparams(self.hparams, {"hp/val_global_prec": 0, "hp/val_global_dice": 0,
"hp/test_rd_miou": 0, "hp/test_ra_miou": 0,
"hp/val_loss": 0, "hp/train_loss": 0, })
def forward(self, rd_data, ra_data, ad_data=None):
"""
Pytorch Lightning forward pass (inference)
@param rd_data: range doppler tensor
@param ra_data: range angle tensor
@param ad_data: angle doppler tensor
@return: range doppler and range angle segmentation masks
"""
rd_outputs, ra_outputs = self.model(rd_data, ra_data, ad_data)
return rd_outputs, ra_outputs
def training_step(self, batch, batch_id):
"""
Perform one training step (forward + backward) on a batch of data.
@param batch: data batch from the dataloader
@param batch_id: id of the current batch
@return: loss value to log
"""
rd_data = batch['rd_matrix'].float()
ra_data = batch['ra_matrix'].float()
ad_data = batch['ad_matrix'].float()
rd_mask = batch['rd_mask'].float()
ra_mask = batch['ra_mask'].float()
rd_data = normalize(rd_data, 'range_doppler', norm_type=self.norm_type, proj_path=self.project_path)
ra_data = normalize(ra_data, 'range_angle', norm_type=self.norm_type, proj_path=self.project_path)
ad_data = normalize(ad_data, 'angle_doppler', norm_type=self.norm_type, proj_path=self.project_path)
# Forward
rd_outputs, ra_outputs = self.model(rd_data, ra_data, ad_data)
# Compute loss
if self.nb_losses < 3:
# Case without the CoL
rd_losses = [c(rd_outputs, torch.argmax(rd_mask, axis=1))
for c in self.rd_criterion]
rd_loss = torch.mean(torch.stack(rd_losses))
ra_losses = [c(ra_outputs, torch.argmax(ra_mask, axis=1))
for c in self.ra_criterion]
ra_loss = torch.mean(torch.stack(ra_losses))
loss = torch.mean(rd_loss + ra_loss)
else:
# Case with the CoL
# Select the wCE and wSDice
rd_losses = [c(rd_outputs, torch.argmax(rd_mask, axis=1))
for c in self.rd_criterion[:2]]
rd_loss = torch.mean(torch.stack(rd_losses))
ra_losses = [c(ra_outputs, torch.argmax(ra_mask, axis=1))
for c in self.ra_criterion[:2]]
ra_loss = torch.mean(torch.stack(ra_losses))
# Coherence loss
coherence_loss = self.rd_criterion[2](rd_outputs, ra_outputs)
loss = torch.mean(rd_loss + ra_loss + coherence_loss)
# Log losses
if self.nb_losses > 2:
loss_dict = {
'train/loss': loss,
'train/rd_global': rd_loss,
'train/rd_ce': rd_losses[0],
'train/rd_Dice': rd_losses[1],
'train/ra_global': ra_loss,
'train/ra_ce': ra_losses[0],
'train/ra_Dice': ra_losses[1],
'train/coherence': coherence_loss
}
else:
loss_dict = {
'train/loss': loss,
'train/rd_global': rd_loss,
'train/rd_ce': rd_losses[0],
'train/rd_Dice': rd_losses[1],
'train/ra_global': ra_loss,
'train/ra_ce': ra_losses[0],
'train/ra_Dice': ra_losses[1]
}
self.log_dict(loss_dict, prog_bar=False, on_step=True, on_epoch=True, logger=True)
self.log('hp/train_loss', loss, on_step=False, on_epoch=True, prog_bar=False, logger=True)
return loss
def on_validation_epoch_end(self):
test_results = dict()
test_results['range_doppler'] = get_metrics(self.rd_metrics)
test_results['range_angle'] = get_metrics(self.ra_metrics)
test_results['global_acc'] = (1/2)*(test_results['range_doppler']['acc']+
test_results['range_angle']['acc'])
test_results['global_prec'] = (1/2)*(test_results['range_doppler']['prec']+
test_results['range_angle']['prec'])
test_results['global_dice'] = (1/2)*(test_results['range_doppler']['dice']+
test_results['range_angle']['dice'])
test_results_log = {
'val_metrics/rd_acc': test_results['range_doppler']['acc'],
'val_metrics/rd_prec': test_results['range_doppler']['prec'],
'val_metrics/rd_miou': test_results['range_doppler']['miou'],
'val_metrics/rd_dice': test_results['range_doppler']['dice'],
'val_metrics/ra_acc': test_results['range_angle']['acc'],
'val_metrics/ra_prec': test_results['range_angle']['prec'],
'val_metrics/ra_miou': test_results['range_angle']['miou'],
'val_metrics/ra_dice': test_results['range_angle']['dice'],
'val_metrics/global_prec': test_results['global_prec'],
'val_metrics/global_acc': test_results['global_acc'],
'val_metrics/global_dice': test_results['global_dice']
}
self.log_dict(test_results_log, on_epoch=True)
self.log("hp/val_global_prec", test_results['global_prec'], on_epoch=True)
self.log("hp/val_global_dice", test_results['global_dice'], on_epoch=True)
self.rd_metrics.reset()
self.ra_metrics.reset()
def validation_step(self, batch, batch_id):
"""
Perform a validation step (forward pass) on a batch of data.
@param batch: data batch from the dataloader
@param batch_id: id of the current batch
"""
rd_data = batch['rd_matrix'].float()
ra_data = batch['ra_matrix'].float()
ad_data = batch['ad_matrix'].float()
rd_mask = batch['rd_mask'].float()
ra_mask = batch['ra_mask'].float()
rd_data = normalize(rd_data, 'range_doppler', norm_type=self.norm_type, proj_path=self.project_path)
ra_data = normalize(ra_data, 'range_angle', norm_type=self.norm_type, proj_path=self.project_path)
ad_data = normalize(ad_data, 'angle_doppler', norm_type=self.norm_type, proj_path=self.project_path)
rd_outputs, ra_outputs = self.forward(rd_data, ra_data, ad_data)
# Compute loss
if self.nb_losses < 3:
# Case without the CoL
rd_losses = [c(rd_outputs, torch.argmax(rd_mask, axis=1))
for c in self.rd_criterion]
rd_loss = torch.mean(torch.stack(rd_losses))
ra_losses = [c(ra_outputs, torch.argmax(ra_mask, axis=1))
for c in self.ra_criterion]
ra_loss = torch.mean(torch.stack(ra_losses))
loss = torch.mean(rd_loss + ra_loss)
else:
# Case with the CoL
# Select the wCE and wSDice
rd_losses = [c(rd_outputs, torch.argmax(rd_mask, axis=1))
for c in self.rd_criterion[:2]]
rd_loss = torch.mean(torch.stack(rd_losses))
ra_losses = [c(ra_outputs, torch.argmax(ra_mask, axis=1))
for c in self.ra_criterion[:2]]
ra_loss = torch.mean(torch.stack(ra_losses))
# Coherence loss
coherence_loss = self.rd_criterion[2](rd_outputs, ra_outputs)
loss = torch.mean(rd_loss + ra_loss + coherence_loss)
# Compute metrics
self.rd_metrics.add_batch(torch.argmax(rd_mask, axis=1).cpu(),
torch.argmax(rd_outputs, axis=1).cpu())
self.ra_metrics.add_batch(torch.argmax(ra_mask, axis=1).cpu(),
torch.argmax(ra_outputs, axis=1).cpu())
if self.nb_losses > 2:
loss_dict = {
'val/loss': loss,
'val/rd_global': rd_loss,
'val/rd_ce': rd_losses[0],
'val/rd_Dice': rd_losses[1],
'val/ra_global': ra_loss,
'val/ra_ce': ra_losses[0],
'val/ra_Dice': ra_losses[1],
'val/coherence': coherence_loss
}
else:
loss_dict = {
'val/loss': loss,
'val/rd_global': rd_loss,
'val/rd_ce': rd_losses[0],
'val/rd_Dice': rd_losses[1],
'val/ra_global': ra_loss,
'val/ra_ce': ra_losses[0],
'val/ra_Dice': ra_losses[1]
}
self.log_dict(loss_dict, prog_bar=False, on_step=False, on_epoch=True, logger=True)
self.log('hp/val_loss', loss, on_step=False, on_epoch=True, prog_bar=False, logger=True)
def test_step(self, batch, batch_id):
"""
Perform a test step (forward pass) on a batch of data.
@param batch: data batch from the dataloader
@param batch_id: id of the current batch
"""
rd_data = batch['rd_matrix'].float()
ra_data = batch['ra_matrix'].float()
ad_data = batch['ad_matrix'].float()
rd_mask = batch['rd_mask'].float()
ra_mask = batch['ra_mask'].float()
rd_data = normalize(rd_data, 'range_doppler', norm_type=self.norm_type, proj_path=self.project_path)
ra_data = normalize(ra_data, 'range_angle', norm_type=self.norm_type, proj_path=self.project_path)
ad_data = normalize(ad_data, 'angle_doppler', norm_type=self.norm_type, proj_path=self.project_path)
rd_outputs, ra_outputs = self.forward(rd_data, ra_data, ad_data)
# Compute metrics
self.rd_metrics.add_batch(torch.argmax(rd_mask, axis=1).cpu(),
torch.argmax(rd_outputs, axis=1).cpu())
self.ra_metrics.add_batch(torch.argmax(ra_mask, axis=1).cpu(),
torch.argmax(ra_outputs, axis=1).cpu())
def on_test_epoch_end(self):
"""
Compute metrics and log it
"""
test_results = dict()
test_results['range_doppler'] = get_metrics(self.rd_metrics)
test_results['range_angle'] = get_metrics(self.ra_metrics)
test_results['global_acc'] = (1/2)*(test_results['range_doppler']['acc']+
test_results['range_angle']['acc'])
test_results['global_prec'] = (1/2)*(test_results['range_doppler']['prec']+
test_results['range_angle']['prec'])
test_results['global_dice'] = (1/2)*(test_results['range_doppler']['dice']+
test_results['range_angle']['dice'])
test_results_log = {
'test_metrics/rd_acc': test_results['range_doppler']['acc'],
'test_metrics/rd_prec': test_results['range_doppler']['prec'],
'test_metrics/rd_miou': test_results['range_doppler']['miou'],
'test_metrics/rd_dice': test_results['range_doppler']['dice'],
'test_metrics/ra_acc': test_results['range_angle']['acc'],
'test_metrics/ra_prec': test_results['range_angle']['prec'],
'test_metrics/ra_miou': test_results['range_angle']['miou'],
'test_metrics/ra_dice': test_results['range_angle']['dice'],
'test_metrics/global_prec': test_results['global_prec'],
'test_metrics/global_acc': test_results['global_acc'],
'test_metrics/global_dice': test_results['global_dice'],
'test_metrics/rd_dice_bkg': test_results['range_doppler']['dice_by_class'][0],
'test_metrics/rd_dice_ped': test_results['range_doppler']['dice_by_class'][1],
'test_metrics/rd_dice_cycl': test_results['range_doppler']['dice_by_class'][2],
'test_metrics/rd_dice_car': test_results['range_doppler']['dice_by_class'][3],
'test_metrics/ra_dice_bkg': test_results['range_angle']['dice_by_class'][0],
'test_metrics/ra_dice_ped': test_results['range_angle']['dice_by_class'][1],
'test_metrics/ra_dice_cycl': test_results['range_angle']['dice_by_class'][2],
'test_metrics/ra_dice_car': test_results['range_angle']['dice_by_class'][3],
'test_metrics/rd_iou_bkg': test_results['range_doppler']['miou_by_class'][0],
'test_metrics/rd_iou_ped': test_results['range_doppler']['miou_by_class'][1],
'test_metrics/rd_iou_cycl': test_results['range_doppler']['miou_by_class'][2],
'test_metrics/rd_iou_car': test_results['range_doppler']['miou_by_class'][3],
'test_metrics/ra_iou_bkg': test_results['range_angle']['miou_by_class'][0],
'test_metrics/ra_iou_ped': test_results['range_angle']['miou_by_class'][1],
'test_metrics/ra_iou_cycl': test_results['range_angle']['miou_by_class'][2],
'test_metrics/ra_iou_car': test_results['range_angle']['miou_by_class'][3],
}
self.log_dict(test_results_log, on_epoch=True)
self.log(name='hp/test_rd_miou', value=test_results['range_doppler']['miou'], on_epoch=True)
self.log(name="hp/test_ra_miou", value=test_results['range_angle']['miou'], on_epoch=True)
self.rd_metrics.reset()
self.ra_metrics.reset() | [] |
2024-01-10 | yasufumi-nakata/scopus_gpt4 | dbot.py | from discord.ext import commands
import os
import requests
import openai
import random
import discord
import asyncio
import datetime
import pytz
import functools
import typing
TOKEN = ""
openai.api_key = ""
ELSEVIER_API_KEY = ""
# CHANNEL_ID = int(os.getenv('CHANNEL_ID3'))
HEADERS = {
'X-ELS-APIKey': ELSEVIER_API_KEY,
'Accept': 'application/json',
'x-els-resourceVersion': 'XOCS'
}
BASE_URL = 'http://api.elsevier.com/content/search/scopus?'
ABSTRACT_BASE_URL = 'https://api.elsevier.com/content/abstract/eid/'
def to_thread(func: typing.Callable) -> typing.Coroutine:
@functools.wraps(func)
async def wrapper(*args, **kwargs):
return await asyncio.to_thread(func, *args, **kwargs)
return wrapper
@to_thread
def get_summary(result):
print("start searching")
eid = result.get('eid', None)
abstract = get_abstract(eid) if eid else None
description = abstract if abstract else result.get(
'dc:description', 'No description available')
text = f"タイトル: {result['dc:title']}\n内容: {description}"
system = """与えられた論文の要点を以下のフォーマットで日本語で出力してください。タイトルは**で囲み,本文は``で囲んでください,```
**タイトルの日本語訳**
``・どんなもの?``
``・先行研究と比べてどこがすごい?``
``・技術や手法のキモはどこ?``
``・どうやって有効だと検証した?``
``・議論はある?``
```"""
print(text)
print("waiting openai...")
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{'role': 'system', 'content': system},
{'role': 'user', 'content': text}
],
temperature=0.7,
)
print("response is ready")
summary = response['choices'][0]['message']['content']
title_en = result['dc:title']
title, *body = summary.split('\n')
body = '\n'.join(body)
date_str = result['prism:coverDate']
link = result['link'][2]['@href']
message = f"発行日: {date_str}\n{link}\n{title_en}\n{title}\n{body}\n"
print("message is ready")
return message
def get_abstract(eid):
abstract_url = f"{ABSTRACT_BASE_URL}{eid}"
response = requests.get(abstract_url, headers=HEADERS)
response.raise_for_status()
abstract_data = response.json()
if 'abstracts-retrieval-response' in abstract_data:
coredata = abstract_data['abstracts-retrieval-response'].get(
'coredata', None)
if coredata:
return coredata.get('dc:description', None)
return None
# インテントの生成
intents = discord.Intents.default()
intents.message_content = True
bot = commands.Bot(command_prefix='$', intents=intents)
@bot.event
async def on_ready():
print(f'We have logged in as {bot.user}')
@bot.command()
async def query(ctx, *args):
if ctx.author == bot.user:
return
else:
query_arg = ' AND '.join(args)
query = f'TITLE-ABS-KEY({query_arg})'
print(f"query was set:{query}")
# Elsevier APIで最新の論文情報を取得する
search_url = f"{BASE_URL}query={query}&count=100&sort=-date&view=STANDARD"
response = requests.get(search_url, headers=HEADERS)
# Add this line to raise an exception if there's an HTTP error
response.raise_for_status()
search_results = response.json()
print("search done")
# searchの結果をリストに格納
if 'search-results' in search_results and 'entry' in search_results['search-results']:
result_list = search_results['search-results']['entry']
else:
print("Error: Unexpected API response")
result_list = []
# ランダムにnum_papersの数だけ選ぶ
num_papers = 1
num_papers = min(num_papers, len(result_list))
results = random.sample(result_list, k=num_papers)
print("results are ready")
# 論文情報をDiscordに投稿する
for i, result in enumerate(results):
print(f"Processing result {i+1}" + "/" + str(num_papers))
await ctx.channel.send(f"Processing result {i+1}" + "/" + str(num_papers) + " query: " + str({query_arg}))
try:
msg = str(query_arg)+"の論文です! " + str(i+1) + "/" + str(num_papers) + await get_summary(result)
print(f"{msg}")
print("done!")
await ctx.channel.send(msg)
except:
print("Error posting message")
print(await get_summary(result))
print("bot run")
bot.run("")
| [
"与えられた論文の要点を以下のフォーマットで日本語で出力してください。タイトルは**で囲み,本文は``で囲んでください,```\n **タイトルの日本語訳**\n ``・どんなもの?``\n ``・先行研究と比べてどこがすごい?``\n ``・技術や手法のキモはどこ?``\n ``・どうやって有効だと検証した?``\n ``・議論はある?``\n ```",
"タイトル: PLACEHOLDER\n内容: PLACEHOLDER"
] |
2024-01-10 | Rakile/Youtube_transcriber | transcriber_v2.py | import asyncio
import os
import subprocess
import sys
import threading
from boilerplate import API
from PySide6.QtCore import QMetaObject, Qt, Slot, QUrl, QSize
from PySide6.QtMultimedia import QMediaPlayer, QAudioOutput
from PySide6.QtWidgets import QApplication, QWidget, QVBoxLayout, QLineEdit, QPushButton, QTextEdit, QComboBox
from pytube import YouTube
import whisper
import time
import shutil
from openai import OpenAI
client = None
novelToken = None
class YouTubeTranscriber(QWidget):
def __init__(self):
super().__init__()
self.initUI()
self.currentModel = ""
self.player = QMediaPlayer()
def initUI(self):
self.resize(QSize(600,600))
# Layout
layout = QVBoxLayout(self)
# Novel AI persisten api token
self.novelai_persistent_api_key = QLineEdit(self)
self.novelai_persistent_api_key.setPlaceholderText("<Enter NovelAI Persistent API Token here. Leave blank if you don't have>")
layout.addWidget(self.novelai_persistent_api_key)
# Novel AI persisten api token
self.openai_persistent_api_key = QLineEdit(self)
self.openai_persistent_api_key.setPlaceholderText("<Enter OpenAI API Key here. Leave blank if you don't have.>")
layout.addWidget(self.openai_persistent_api_key)
# YouTube URL input
self.url_input = QLineEdit(self)
self.url_input.setPlaceholderText("<Enter YouTube URL here, or path to video or audio file.>")
layout.addWidget(self.url_input)
# Whisper Model Selection Dropdown
self.model_selection = QComboBox(self)
self.model_selection.addItems(["tiny", "small", "base", "medium", "large"])
layout.addWidget(self.model_selection)
#Use engine
# Whisper Model Selection Dropdown
self.engine_selection = QComboBox(self)
self.engine_selection.addItems(["OpenAI", "NovelAI"])
layout.addWidget(self.engine_selection)
self.engine_selection.currentTextChanged.connect(self.update_voice_selection)
# New Dropdown for Voice Selection OpenAI
self.voice_selection = QComboBox(self)
self.voice_selection.addItems(["alloy", "echo", "fable", "onyx", "nova", "shimmer"])
layout.addWidget(self.voice_selection)
# Download and Transcribe Button
self.download_button = QPushButton("Download and Transcribe", self)
self.download_button.clicked.connect(self.download_and_transcribe)
layout.addWidget(self.download_button)
# Transcription result display
self.transcription_display = QTextEdit(self)
self.transcription_display.setReadOnly(True)
layout.addWidget(self.transcription_display)
# Stop audio
self.stopButton = QPushButton("Stop Audio", self)
self.stopButton.clicked.connect(self.stopAudio)
layout.addWidget(self.stopButton)
self.setLayout(layout)
self.setWindowTitle("YouTube Transcriber")
def update_voice_selection(self, engine_name):
if engine_name == "NovelAI":
self.voice_selection.clear()
self.voice_selection.addItems(["Ligeia", "Aini", "Orea", "Claea", "Lim", "Aurae", "Naia", "Aulon", "Elei", "Ogma", "Raid", "Pega", "Lam"])
elif engine_name == "OpenAI":
self.voice_selection.clear()
self.voice_selection.addItems(["alloy", "echo", "fable", "onyx", "nova", "shimmer"])
def get_thread_id(thread):
# Returns the thread ID
if hasattr(thread, "_thread_id"):
return thread._thread_id
for id, t in threading._active.items():
if t is thread:
return id
def stopAudio(self):
self.player.stop()
self.player.deleteLater()
self.player = QMediaPlayer()
def download_and_transcribe(self):
self.liveview_t = threading.Thread(target=self.downloadandtrans)
self.liveview_t.start()
def downloadandtrans(self):
global client
global novelToken
if client == None:
if self.openai_persistent_api_key.text() != "":
client = OpenAI(api_key=self.openai_persistent_api_key.text())
else:
client = None
elif self.openai_persistent_api_key.text() == "":
client = None
if novelToken == None:
if self.novelai_persistent_api_key.text() != "":
novelToken = self.novelai_persistent_api_key.text()
else:
novelToken = None
elif self.novelai_persistent_api_key.text() == "":
novelToken = None
video_url = self.url_input.text()
selected_model = self.model_selection.currentText()
if video_url:
if video_url.startswith("http"):
yt = YouTube(video_url)
audio_stream = yt.streams.filter(only_audio=True).first()
audio_stream.download(filename='recording.mp3')
else:
shutil.copyfile(video_url, 'recording.mp3')
modelName = self.model_selection.currentText()
if modelName != self.currentModel:
print("Loading model " + modelName + ".")
start = time.time()
self.model = whisper.load_model(modelName)
end = time.time()
print("Loading the model " + modelName + " took:" + str(end - start) + " seconds")
self.currentModel = modelName
start = time.time()
# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio("recording.mp3")
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model
if modelName == "large":
mel = whisper.log_mel_spectrogram(audio, n_mels=128).to(self.model.device)
else:
mel = whisper.log_mel_spectrogram(audio).to(self.model.device)
# detect the spoken language
_, probs = self.model.detect_language(mel)
lang = max(probs, key=probs.get)
print(f"Detected language: {max(probs, key=probs.get)}")
result = self.model.transcribe("recording.mp3", language=lang, task="translate", fp16=False)
# result = model.transcribe("recording.mp3", fp16=False)
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(self.model.device)
end = time.time()
print("The translation took:" + str(end - start) + " seconds")
print(f'The text: \n {result["text"]}')
self.current_text = result["text"]
QMetaObject.invokeMethod(self, "update_text", Qt.QueuedConnection)
@Slot()
def update_text(self):
self.transcription_display.setText(self.current_text)
self.liveaudio = threading.Thread(target=self.playAudio)
self.liveaudio.start()
async def playAudioNovelAIAsync(self):
chunks = [self.current_text[i:i + 999] for i in range(0, len(self.current_text), 999)]
print("Number of chunks to make into audio:" + str(len(chunks)))
final_audio_file = "output.mp3"
for index, chunk in enumerate(chunks):
print("-- Processing chunk:" + str(index))
# Generate audio for each chunk
async with API(novelToken) as api_handler:
api = api_handler.api
# encryption_key = api_handler.encryption_key
logger = api_handler.logger
text = chunk
voice = self.voice_selection.currentText()
seed = -1
# opus = False
opus = False
# version = "v1"
version = "v2"
#logger.info(f"Generating a tts voice for {len(text)} characters of text")
tts = await api.low_level.generate_voice(text, voice, seed, opus, version)
#logger.info(f"TTS saved in {tts_file}")
# Save each audio chunk to a file
chunk_file = f"output_chunk_{index}.mp3"
#chunk_convert = f"output_chunk_{index}.mp3"
print("Writing chunk to:" + str(chunk_file))
if os.path.exists(chunk_file):
os.remove(chunk_file)
with open(chunk_file, "wb") as f:
f.write(tts)
f.close()
# Concatenate audio files
if index == 0:
if os.path.exists(final_audio_file):
os.remove(final_audio_file)
os.rename(chunk_file, final_audio_file)
else:
if os.path.exists("temp.mp3"):
os.remove("temp.mp3")
cmd = ["ffmpeg", "-i", f"concat:{final_audio_file}|{chunk_file}", "-acodec", "copy", "temp.mp3", "-map_metadata", "0:1"]
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)
process.wait()
print("Stiched piece " + str(index) + " to the whole...")
stdout, stderr = process.communicate()
if os.path.exists(final_audio_file):
os.remove(final_audio_file)
os.rename("temp.mp3", final_audio_file)
os.remove(chunk_file)
if os.path.exists("temp.mp3"):
os.remove("temp.mp3")
# Play the final concatenated audio file using QMediaPlayer from PySide6
url = final_audio_file
self.audio_output = QAudioOutput()
self.player.setAudioOutput(self.audio_output)
self.player.setSource(url)
self.audio_output.setVolume(50)
self.player.play()
def playAudio(self):
currentEngine = self.engine_selection.currentText()
if currentEngine == "OpenAI":
if client != None:
self.playAudioOpenAI()
else:
if novelToken != None:
asyncio.run(self.playAudioNovelAIAsync())
def playAudioOpenAI(self):
# Split the text into chunks of 4096 characters
chunks = [self.current_text[i:i + 4095] for i in range(0, len(self.current_text), 4095)]
print("Number of chunks to make into audio:" + str(len(chunks)))
final_audio_file = "output.mp3"
# Process and concatenate each chunk
for index, chunk in enumerate(chunks):
print("-- Processing chunk:" + str(index))
print("----------------------------------")
print(str(chunk))
print("----------------------------------")
# Generate audio for each chunk
response = client.audio.speech.create(
model="tts-1",
voice=self.voice_selection.currentText(),
input=chunk,
)
# Save each audio chunk to a file
chunk_file = f"output_chunk_{index}.mp3"
if os.path.exists(chunk_file):
os.remove(chunk_file)
response.stream_to_file(chunk_file)
# Concatenate audio files
if index == 0:
if os.path.exists(final_audio_file):
os.remove(final_audio_file)
os.rename(chunk_file, final_audio_file)
else:
if os.path.exists("temp.mp3"):
os.remove("temp.mp3")
cmd = ["ffmpeg", "-i", f"concat:{final_audio_file}|{chunk_file}", "-acodec", "copy", "temp.mp3", "-map_metadata", "0:1"]
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)
print("Stiched piece " + str(index) + " to the whole...")
stdout, stderr = process.communicate()
if os.path.exists(final_audio_file):
os.remove(final_audio_file)
os.rename("temp.mp3", final_audio_file)
os.remove(chunk_file)
if os.path.exists("temp.mp3"):
os.remove("temp.mp3")
# Play the final concatenated audio file using QMediaPlayer from PySide6
url = final_audio_file
self.audio_output = QAudioOutput()
self.player.setAudioOutput(self.audio_output)
self.player.setSource(url)
self.audio_output.setVolume(50)
self.player.play()
if __name__ == "__main__":
app = QApplication(sys.argv)
window = YouTubeTranscriber()
window.show()
sys.exit(app.exec()) | [] |
2024-01-10 | PEPLabs/LANG_CL_EVAL | src~utilities~llm_testing_util.py | import os
import requests
from langchain_community.chat_models import ChatHuggingFace
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
token = os.environ['HF_TOKEN'] # Ideally, we have this token set. Otherwise, replace with hardcoded HF token.
API_URL = os.environ['LLM_ENDPOINT']
headers = {"Authorization": "Bearer " + token}
textInput = """
<|system|>
You are a pirate chatbot who always responds with Arr!</s>
<|user|>
{userInput}</s>
<|assistant|>
"""
llm = HuggingFaceEndpoint(
endpoint_url=API_URL,
task="text2text-generation",
model_kwargs={
"max_new_tokens": 200
}
)
"""
This function is used to wake up the Language Learning Model (LLM) by sending a POST request to the API endpoint.
It uses a predefined text input to initiate the wake-up process. The response from the API is printed to the console.
"""
def llm_wakeup():
response = requests.post(API_URL, json={
"inputs": textInput.format(userInput="Hello, how are you?")
}, headers=headers)
print(response.json())
"""
This function checks the connection to the Language Learning Model (LLM) by generating a response to a predefined
greeting. This utilizes the HuggingFaceEndpoint LLM, as opposed to the llm_wakeup() function, which utilizes a direct
request to the HuggingFace API.
Returns: Response generated by the LLM.
"""
def llm_connection_check():
return llm.generate(["Hello, how are you?"])
"""
This function classifies the relevancy of a given message to a question.
It uses a chatbot model to determine if the message properly answers the question.
The chatbot responds with "yes" if the message is relevant, and "no" otherwise. STRICTLY used
within the context of test_lab.py testing for these labs.
Parameters:
message (str): The message to be classified.
question (str): The question to which the message is supposed to respond.
Returns:
bool: True if the message is relevant (i.e., it answers the question), False otherwise.
"""
def classify_relevancy(message, question):
prompt = ChatPromptTemplate.from_messages([
SystemMessagePromptTemplate.from_template("You are a chatbot who determines if a given message properly answers a question by "
"replying 'yes' or 'no''."),
HumanMessagePromptTemplate.from_template("Does the following message answer the question: {question}? message: {message}"
),
])
chat_model = ChatHuggingFace(llm=llm)
chain = prompt | chat_model | StrOutputParser()
result = chain.invoke({"message": message, "question": question})
print("Result: " + result)
print(message)
print(question)
if "yes" in result.lower():
if "i will respond with 'yes' or 'no'" in result.lower():
print("Message is not relevant")
return False
else:
return True
else:
print(message)
return False | [
"replying 'yes' or 'no''.",
"Does the following message answer the question: {question}? message: {message}",
"You are a chatbot who determines if a given message properly answers a question by replying 'yes' or 'no''.",
"You are a chatbot who determines if a given message properly answers a question by "
] |
2024-01-10 | PEPLabs/LANG_CL_EVAL | src~main~lab.py | import os
from langchain.evaluation import load_evaluator, EvaluatorType
from langchain_community.chat_models.huggingface import ChatHuggingFace
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
"""
This lab will explore using built-in evaluator criteria, creating custom criteria, and using evaluators.
https://python.langchain.com/docs/guides/evaluation/string/criteria_eval_chain
"""
"""
Defining LLM, templates, chat_model, and prompt. No need to edit these.
"""
llm = HuggingFaceEndpoint(
endpoint_url=os.environ['LLM_ENDPOINT'],
task="text2text-generation",
model_kwargs={
"max_new_tokens": 200,
"huggingfacehub_api_token": os.environ['HF_TOKEN'],
}
)
chat_model = ChatHuggingFace(llm=llm)
textInput = """
<|system|>
You are a helpful AI that responds to questions concisely, if possible.</s>
<|user|>
{userInput}</s>
<|assistant|>
"""
"""
Your tasks for lab completion are below:
-Define a prompt that will be evaluated by the built-in "depth" evaluator.
-Define your own custom criteria that will evaluate whether a response returns a mathematical value.
-Instantiate an evaluator that utilizes your custom criteria.
"""
# TODO: Write an input that will pass the built-in "depth" criteria.
"""In other words, write a question that gets an insightful or "deep" answer from the llm"""
depth_criteria_passing_query = ""
# This is a sample custom criteria that will evaluate whether a response contains spanish words.
# Do not edit this, use it as a template for the task below
sample_custom_criteria = {
"spanish": "Does the output contain words from the spanish language?"
}
# TODO: create your own custom criteria that evaluates whether a response returns a mathematical value
your_custom_criteria = {
"TODO"
}
"""The first 2 functions are responsible for evaluating llm responses. DO NOT EDIT THEM.
DO read through the functions along with their prints to the console to get an idea of what each function is doing.
You will be responsible for instantiating the evaluator in the 3rd function (custom_mathematical_evaluator).
The evaluator will return a VALUE of Y and SCORE of 1 if the answer meets the criteria."""
def built_in_depth_evaluator(query: str):
# Initial response from LLM
prediction = chat_model.invoke(textInput.format(userInput=query))
# Instantiating an evaluator and using it to evaluate the response based on the built-in "depth" criteria
evaluator = load_evaluator(EvaluatorType.CRITERIA, llm=chat_model, criteria="depth")
eval_result = evaluator.evaluate_strings(prediction=prediction.content, input=query)
# Print results
print_results("DEPTH", query, prediction, eval_result)
def custom_spanish_evaluator(query: str):
# Initial response from LLM
prediction = chat_model.invoke(textInput.format(userInput=query))
# Instantiating an evaluator and using it to evaluate the response based on the sample custom criteria
evaluator = load_evaluator(EvaluatorType.CRITERIA, criteria=sample_custom_criteria, llm=chat_model)
eval_result = evaluator.evaluate_strings(prediction=prediction, input=query)
# Print results
print_results("SPANISH", query, prediction, eval_result)
def custom_mathematical_evaluator(query: str):
# Initial response from LLM
prediction = chat_model.invoke(textInput.format(userInput=query))
# TODO: instantiate an evaluator that uses your custom criteria, and evaluate the response
""" Remember the examples of this in the methods above """
evaluator = "TODO"
eval_result = evaluator.evaluate_strings(prediction=prediction, input=query)
# Print results
print_results("MATHEMATICAL", query, prediction, eval_result)
# This is just for testing
return eval_result
"""This function will print the results of evaluations"""
def print_results(prompt: str, query: str, prediction, eval_result):
print("\nPROMPT : ", prompt)
print("INPUT: ", query)
print("OUTPUT:", prediction.content)
result = (eval_result["value"].replace(" ", ""))
print("RESULT: ", result)
score = (eval_result["score"])
print("SCORE: ", score)
if result == "Y" and score == 1:
print("The output passes the " + prompt + " criteria")
else:
print("The output does not pass the " + prompt + " criteria") | [] |
2024-01-10 | u-masao/embed-text-recommender | src~models~embedding~sentence_transfomer_embedding.py | """
このモジュールは DummyEmbedding モデルを実装します
"""
import logging
from pprint import pformat
from typing import List, Optional
import numpy as np
from langchain.text_splitter import SentenceTransformersTokenTextSplitter
from sentence_transformers import SentenceTransformer
from tqdm.contrib import tmap
from .embedding_model import EmbeddingStrategy
class SentenceTransformerEmbedding(EmbeddingStrategy):
"""
SentenceTransformer を利用した Embedding 実装です。
"""
def __init__(
self,
model_name_or_filepath: str,
chunk_overlap: int = 50,
tokens_par_chunk: Optional[int] = None,
chunk_method: str = "chunk_split",
batch_size: str = 32,
**kwargs,
):
"""
コンストラクタ。
Parameters
------
model_name_or_filepath: str
埋め込みモデル名
chunk_overlap: int
チャンクオーバーラップトークン数
tokens_par_chunk: Optional[int]
チャンクあたりのトークン数。
デフォルト値 None にすることで自動的にモデルの max_tokens を利用する。
chunk_method: str
埋め込みの計算方法を指定する。以下に対応。
- chunk_split (default)
- 各センテンスをチャンクに分割し埋め込みを計算する。
- 埋め込みの平均ベクトルを返す。
- head_only
- チャンクに分割せずに埋め込みモデルで処理する。
- モデルの max_tokens のみの埋め込みを計算する
batch_size: int
embedding 時のバッチサイズ
"""
self.model_name_or_filepath = model_name_or_filepath
self.model = SentenceTransformer(model_name_or_filepath)
self.splitter = SentenceTransformersTokenTextSplitter(
chunk_overlap=chunk_overlap,
model_name=model_name_or_filepath,
tokens_per_chunk=tokens_par_chunk,
)
self.chunk_method = chunk_method
self.batch_size = batch_size
# _encode function を設定する
if self.chunk_method == "head_only":
self._encode = self._head_only_encode
elif self.chunk_method == "naive_chunk_split":
self._encode = self._naive_split_encode
elif self.chunk_method == "chunk_split":
self._encode = self._make_chunk_averaged_encode
else:
raise ValueError(
"指定の chunk_method には対応していません: " f"chunk_method: {chunk_method}"
)
def get_embed_dimension(self) -> int:
"""
モデルの次元数を返す
Parameters
------
None
Returns
------
int
モデルの次元数
"""
return self.model.get_sentence_embedding_dimension()
def get_model_name(self) -> str:
"""
モデルの次元数を返す
Parameters
------
None
Returns
------
str
モデルの名前
"""
return self.model_name_or_filepath
def embed(self, sentences: List[str]):
"""
埋め込みを計算する。
Parameters
------
sentences: List[str]
センテンスの List
Returns
------
numpy.ndarray
埋め込み行列。埋め込み次元 d とすると以下の行列やベクトルを返す。
- センテンスの数 1
- (d, ) の 1 次元ベクトル
- センテンスの数 n (n>1)
- (n, d) の行列
"""
# remove empty sentence
sentences = [x for x in sentences if x]
return self._encode(sentences)
def _head_only_encode(self, sentences):
return self.model.encode(sentences, batch_size=self.batch_size)
def _naive_split_encode(self, sentences):
embeddings = []
for sentence in sentences:
vectors = self.model.encode(
self.splitter.split_text(sentence), batch_size=self.batch_size
)
mean_vector = np.mean(vectors, axis=0)
assert (
mean_vector.shape[0]
== self.model.get_sentence_embedding_dimension()
)
embeddings.append(mean_vector)
result = np.array(embeddings)
assert result.shape[0] == len(sentences)
assert result.shape[1] == self.model.get_sentence_embedding_dimension()
return result
def _make_chunk_averaged_encode(self, sentences: List[str]) -> np.ndarray:
"""
センテンス毎のチャンク List を受け取り、センテンス毎の
平均埋め込みベクトルを返す。
Parameters
------
sentences: List[str]
センテンスのリスト
Returns
------
numpy.ndarray
センテンス毎の埋め込み表現
次元は、センテンス数 n、モデル次元 d に対して、(n, d)となる。
"""
# init logger
logger = logging.getLogger(__name__)
d_size = self.model.get_sentence_embedding_dimension()
# split to chunks
logger.info("split sentences to chunks")
chunks_list = [
x
for x in tmap(
lambda x: self.splitter.split_text(text=x), sentences
)
]
# チャンクを 1 次元の List に flatten する
chunk_list = flatten_chunks(chunks_list)
# matrix mask を作成
logger.info("make weight matrix")
weight_matrix = make_weight_matrix(chunks_list)
assert weight_matrix.shape[0] == len(chunks_list)
assert weight_matrix.shape[1] == len(chunk_list)
# 埋め込みを計算
logger.info("encode chunks")
chunk_embeddings = self.model.encode(
chunk_list, batch_size=self.batch_size
)
assert chunk_embeddings.shape[0] == weight_matrix.shape[1]
assert chunk_embeddings.shape[1] == d_size
# ウェイト行列とチャンク毎のEmbeddingで行列積を計算
logger.info("calc dot matrix, weight_matrix @ chunk_embeddings")
embeddings = np.dot(weight_matrix, chunk_embeddings)
assert embeddings.shape[0] == len(chunks_list)
assert embeddings.shape[1] == d_size
return embeddings
def __str__(self) -> str:
params = {
"model": self.model,
"splitter": self.splitter,
"model_name_or_filepath": self.model_name_or_filepath,
"chunk_method": self.chunk_method,
"batch_size": self.batch_size,
}
return pformat(params)
def make_weight_matrix(chunks_list: List[List[str]]) -> np.ndarray:
"""
チャンク分割された文字列を結合するための行列を作る。
オリジナルのテキスト数が n_size となる。
チャンク分割されたテキスト数が c_size となる。
Parameters
------
chunks_list: List[List[str]]
チャンク分割された文字列。それぞれの要素内の要素数が異なる。
Returns
------
numpy.ndarray
結合するためのマスクを返す。
"""
# 出力の次元を計算する
n_size = len(chunks_list)
c_size = np.sum([x for x in map(lambda x: len(x), chunks_list)])
# 出力する変数を初期化
weight_matrix = np.zeros((n_size, c_size))
# offset を定義
chunk_offset = 0
# 各オリジナルテキストの各チャンクでループ
for n_index, chunks in enumerate(chunks_list):
for c_index, chunk in enumerate(chunks):
# Mask Matrix に重みを代入
weight_matrix[n_index, c_index + chunk_offset] = 1 / len(chunks)
chunk_offset += len(chunks)
# サイズチェックと値チェック
assert weight_matrix.sum() - n_size < 1.0e-9
assert np.mean(weight_matrix.sum(axis=1) ** 2) - 1 < 1.0e-9
return weight_matrix
def flatten_chunks(chunks_list: List[List[str]]) -> List[str]:
"""
チャンクを一次元の List に再配置する。
chunks_list -> chunk_list
Parameters
------
chunks_list: List[List[str]]
配列内の配列としてチャンクを保持するデータ
Returns
------
List[str]
チャンクの List
"""
chunk_list = []
for chunks in chunks_list:
for chunk in chunks:
chunk_list.append(chunk)
return chunk_list
| [] |
2024-01-10 | IrisLi17/self-imitation-via-reduction | baselines~ppo_sir~ppo_sir.py | import time
import sys
import multiprocessing
from collections import deque
import gym
import numpy as np
import tensorflow as tf
from stable_baselines import logger
from stable_baselines.common import explained_variance, ActorCriticRLModel, tf_util, SetVerbosity, TensorboardWriter
from stable_baselines.common.runners import AbstractEnvRunner
from stable_baselines.common.policies import ActorCriticPolicy, RecurrentActorCriticPolicy
from stable_baselines.a2c.utils import total_episode_reward_logger
from utils.eval_stack import pp_eval_model
class PPO2_SIR(ActorCriticRLModel):
"""
Proximal Policy Optimization algorithm (GPU version).
Paper: https://arxiv.org/abs/1707.06347
:param policy: (ActorCriticPolicy or str) The policy model to use (MlpPolicy, CnnPolicy, CnnLstmPolicy, ...)
:param env: (Gym environment or str) The environment to learn from (if registered in Gym, can be str)
:param gamma: (float) Discount factor
:param n_steps: (int) The number of steps to run for each environment per update
(i.e. batch size is n_steps * n_env where n_env is number of environment copies running in parallel)
:param ent_coef: (float) Entropy coefficient for the loss calculation
:param learning_rate: (float or callable) The learning rate, it can be a function
:param vf_coef: (float) Value function coefficient for the loss calculation
:param max_grad_norm: (float) The maximum value for the gradient clipping
:param lam: (float) Factor for trade-off of bias vs variance for Generalized Advantage Estimator
:param nminibatches: (int) Number of training minibatches per update. For recurrent policies,
the number of environments run in parallel should be a multiple of nminibatches.
:param noptepochs: (int) Number of epoch when optimizing the surrogate
:param cliprange: (float or callable) Clipping parameter, it can be a function
:param cliprange_vf: (float or callable) Clipping parameter for the value function, it can be a function.
This is a parameter specific to the OpenAI implementation. If None is passed (default),
then `cliprange` (that is used for the policy) will be used.
IMPORTANT: this clipping depends on the reward scaling.
To deactivate value function clipping (and recover the original PPO implementation),
you have to pass a negative value (e.g. -1).
:param verbose: (int) the verbosity level: 0 none, 1 training information, 2 tensorflow debug
:param tensorboard_log: (str) the log location for tensorboard (if None, no logging)
:param _init_setup_model: (bool) Whether or not to build the network at the creation of the instance
:param policy_kwargs: (dict) additional arguments to be passed to the policy on creation
:param full_tensorboard_log: (bool) enable additional logging when using tensorboard
WARNING: this logging can take a lot of space quickly
"""
def __init__(self, policy, env, aug_env=None, eval_env=None, gamma=0.99, n_steps=128, ent_coef=0.01, learning_rate=2.5e-4,
vf_coef=0.5, aug_clip=0.1, max_grad_norm=0.5, lam=0.95, nminibatches=4, noptepochs=4, cliprange=0.2,
cliprange_vf=None, n_candidate=4, dim_candidate=2, parallel=False, reuse_times=1, start_augment=0,
horizon=100, aug_adv_weight=1.0, curriculum=False, self_imitate=False, sil_clip=0.2, log_trace=False,
verbose=0, tensorboard_log=None, _init_setup_model=True,
policy_kwargs=None, full_tensorboard_log=False):
super(PPO2_SIR, self).__init__(policy=policy, env=env, verbose=verbose, requires_vec_env=True,
_init_setup_model=_init_setup_model, policy_kwargs=policy_kwargs)
self.aug_env = aug_env
self.eval_env = eval_env
self.learning_rate = learning_rate
self.cliprange = cliprange
self.cliprange_vf = cliprange_vf
self.n_steps = n_steps
self.ent_coef = ent_coef
self.vf_coef = vf_coef
self.aug_clip = aug_clip
self.max_grad_norm = max_grad_norm
self.gamma = gamma
self.lam = lam
self.nminibatches = nminibatches
self.noptepochs = noptepochs
self.n_candidate = n_candidate
self.dim_candidate = dim_candidate
self.parallel = parallel
self.start_augment = start_augment
self.curriculum = curriculum
self.self_imitate = self_imitate
self.sil_clip = sil_clip
self.log_trace = log_trace
self.tensorboard_log = tensorboard_log
self.full_tensorboard_log = full_tensorboard_log
self.graph = None
self.sess = None
self.action_ph = None
self.advs_ph = None
self.rewards_ph = None
self.old_neglog_pac_ph = None
self.old_vpred_ph = None
self.learning_rate_ph = None
self.clip_range_ph = None
self.entropy = None
self.vf_loss = None
self.pg_loss = None
self.approxkl = None
self.clipfrac = None
self.params = None
self._train = None
self.loss_names = None
self.train_model = None
self.act_model = None
self.step = None
self.proba_step = None
self.value = None
self.initial_state = None
self.n_batch = None
self.summary = None
self.episode_reward = None
self.reuse_times = reuse_times
self.aug_obs = []
self.aug_act = []
self.aug_neglogp = []
self.aug_return = []
self.aug_value = []
self.aug_done = []
self.aug_reward = []
self.is_selfaug = []
self.num_aug_steps = 0 # every interaction with simulator should be counted
self.horizon = horizon
self.aug_adv_weight = aug_adv_weight
if _init_setup_model:
self.setup_model()
def _get_pretrain_placeholders(self):
policy = self.act_model
if isinstance(self.action_space, gym.spaces.Discrete):
return policy.obs_ph, self.action_ph, policy.policy
return policy.obs_ph, self.action_ph, policy.deterministic_action
def setup_model(self):
with SetVerbosity(self.verbose):
assert issubclass(self.policy, ActorCriticPolicy), "Error: the input policy for the PPO2 model must be " \
"an instance of common.policies.ActorCriticPolicy."
self.n_batch = self.n_envs * self.n_steps
n_cpu = multiprocessing.cpu_count()
if sys.platform == 'darwin':
n_cpu //= 2
self.graph = tf.Graph()
with self.graph.as_default():
self.sess = tf_util.make_session(num_cpu=n_cpu, graph=self.graph)
n_batch_step = None
n_batch_train = None
if issubclass(self.policy, RecurrentActorCriticPolicy):
assert self.n_envs % self.nminibatches == 0, "For recurrent policies, "\
"the number of environments run in parallel should be a multiple of nminibatches."
n_batch_step = self.n_envs
n_batch_train = self.n_batch // self.nminibatches
act_model = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs, 1,
n_batch_step, reuse=False, **self.policy_kwargs)
with tf.variable_scope("train_model", reuse=True,
custom_getter=tf_util.outer_scope_getter("train_model")):
train_model = self.policy(self.sess, self.observation_space, self.action_space,
self.n_envs // self.nminibatches, self.n_steps, n_batch_train,
reuse=True, **self.policy_kwargs)
train_aug_model = self.policy(self.sess, self.observation_space, self.action_space,
self.n_envs // self.nminibatches, self.n_steps, n_batch_train,
reuse=True, **self.policy_kwargs)
with tf.variable_scope("loss", reuse=False):
self.action_ph = train_model.pdtype.sample_placeholder([None], name="action_ph")
self.advs_ph = tf.placeholder(tf.float32, [None], name="advs_ph")
self.rewards_ph = tf.placeholder(tf.float32, [None], name="rewards_ph")
self.old_neglog_pac_ph = tf.placeholder(tf.float32, [None], name="old_neglog_pac_ph")
self.old_vpred_ph = tf.placeholder(tf.float32, [None], name="old_vpred_ph")
self.learning_rate_ph = tf.placeholder(tf.float32, [], name="learning_rate_ph")
self.clip_range_ph = tf.placeholder(tf.float32, [], name="clip_range_ph")
self.aug_action_ph = train_aug_model.pdtype.sample_placeholder([None], name="aug_action_ph")
self.aug_advs_ph = tf.placeholder(tf.float32, [None], name="aug_advs_ph")
self.aug_old_neglog_pac_ph = tf.placeholder(tf.float32, [None], name="aug_old_neglog_pac_ph")
neglogpac = train_model.proba_distribution.neglogp(self.action_ph)
aug_neglogpac = train_aug_model.proba_distribution.neglogp(self.aug_action_ph)
self.entropy = tf.reduce_mean(train_model.proba_distribution.entropy())
vpred = train_model.value_flat
# Value function clipping: not present in the original PPO
if self.cliprange_vf is None:
# Default behavior (legacy from OpenAI baselines):
# use the same clipping as for the policy
self.clip_range_vf_ph = self.clip_range_ph
self.cliprange_vf = self.cliprange
elif isinstance(self.cliprange_vf, (float, int)) and self.cliprange_vf < 0:
# Original PPO implementation: no value function clipping
self.clip_range_vf_ph = None
else:
# Last possible behavior: clipping range
# specific to the value function
self.clip_range_vf_ph = tf.placeholder(tf.float32, [], name="clip_range_vf_ph")
if self.clip_range_vf_ph is None:
# No clipping
vpred_clipped = train_model.value_flat
else:
# Clip the different between old and new value
# NOTE: this depends on the reward scaling
vpred_clipped = self.old_vpred_ph + \
tf.clip_by_value(train_model.value_flat - self.old_vpred_ph,
- self.clip_range_vf_ph, self.clip_range_vf_ph)
vf_losses1 = tf.square(vpred - self.rewards_ph)
vf_losses2 = tf.square(vpred_clipped - self.rewards_ph)
self.vf_loss = .5 * tf.reduce_mean(tf.maximum(vf_losses1, vf_losses2))
ratio = tf.exp(self.old_neglog_pac_ph - neglogpac)
if self.self_imitate:
if not 'MasspointPush' in self.env.get_attr('spec')[0].id:
ratio = tf.exp(tf.minimum(self.old_neglog_pac_ph, 100) - tf.minimum(neglogpac, 100))
else:
ratio = tf.exp(tf.minimum(self.old_neglog_pac_ph, 20) - tf.minimum(neglogpac, 20))
else:
if 'MasspointPushMultiObstacle' in self.env.get_attr('spec')[0].id:
ratio = tf.exp(tf.minimum(self.old_neglog_pac_ph, 20) - neglogpac)
# ratio = tf.exp(tf.minimum(self.old_neglog_pac_ph - neglogpac, 10))
pg_losses = -self.advs_ph * ratio
pg_losses2 = -self.advs_ph * tf.clip_by_value(ratio, 1.0 - self.clip_range_ph, 1.0 +
self.clip_range_ph)
# if True:
# pg_losses = -tf.clip_by_value(self.advs_ph, -1., 1.) * ratio
# pg_losses2 = -tf.clip_by_value(self.advs_ph, -1., 1.) * tf.clip_by_value(
# ratio, 1.0 - self.clip_range_ph, 1.0 + self.clip_range_ph)
self.pg_loss = tf.reduce_mean(tf.maximum(pg_losses, pg_losses2))
self.approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - self.old_neglog_pac_ph))
self.clipfrac = tf.reduce_mean(tf.cast(tf.greater(tf.abs(ratio - 1.0),
self.clip_range_ph), tf.float32))
self.ratio_max = tf.reduce_max(ratio)
aug_ratio = tf.exp(self.aug_old_neglog_pac_ph - aug_neglogpac)
aug_pg_losses = -self.aug_advs_ph * aug_ratio
aug_pg_losses2 = -self.aug_advs_ph * tf.clip_by_value(aug_ratio, 1.0 - self.clip_range_ph, 1.0 +
self.clip_range_ph)
self.aug_pg_loss = tf.reduce_mean(tf.maximum(aug_pg_losses, aug_pg_losses2))
self.aug_clipfrac = tf.reduce_mean(tf.cast(tf.greater(tf.abs(aug_ratio - 1.0),
self.clip_range_ph), tf.float32))
loss = self.pg_loss - self.entropy * self.ent_coef + self.vf_loss * self.vf_coef
# loss += self.aug_coef * self.aug_pg_loss
tf.summary.scalar('entropy_loss', self.entropy)
tf.summary.scalar('policy_gradient_loss', self.pg_loss)
tf.summary.scalar('value_function_loss', self.vf_loss)
tf.summary.scalar('approximate_kullback-leibler', self.approxkl)
tf.summary.scalar('clip_factor', self.clipfrac)
tf.summary.scalar('loss', loss)
# print(tf.trainable_variables())
with tf.variable_scope('model'):
self.params = tf.trainable_variables()
# print(self.params)
if self.full_tensorboard_log:
for var in self.params:
tf.summary.histogram(var.name, var)
grads = tf.gradients(loss, self.params)
if self.max_grad_norm is not None:
grads, _grad_norm = tf.clip_by_global_norm(grads, self.max_grad_norm)
grads = list(zip(grads, self.params))
trainer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_ph, epsilon=1e-5)
self._train = trainer.apply_gradients(grads)
self.loss_names = ['policy_loss', 'value_loss', 'policy_entropy', 'approxkl', 'clipfrac', 'advs_min', 'advs_max', 'ratio_max', 'max_neglogp', 'max_neglogp_origin', 'mean_neglogp']
with tf.variable_scope("input_info", reuse=False):
tf.summary.scalar('discounted_rewards', tf.reduce_mean(self.rewards_ph))
tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate_ph))
tf.summary.scalar('advantage', tf.reduce_mean(self.advs_ph))
tf.summary.scalar('clip_range', tf.reduce_mean(self.clip_range_ph))
if self.clip_range_vf_ph is not None:
tf.summary.scalar('clip_range_vf', tf.reduce_mean(self.clip_range_vf_ph))
tf.summary.scalar('old_neglog_action_probabilty', tf.reduce_mean(self.old_neglog_pac_ph))
tf.summary.scalar('old_value_pred', tf.reduce_mean(self.old_vpred_ph))
if self.full_tensorboard_log:
tf.summary.histogram('discounted_rewards', self.rewards_ph)
tf.summary.histogram('learning_rate', self.learning_rate_ph)
tf.summary.histogram('advantage', self.advs_ph)
tf.summary.histogram('clip_range', self.clip_range_ph)
tf.summary.histogram('old_neglog_action_probabilty', self.old_neglog_pac_ph)
tf.summary.histogram('old_value_pred', self.old_vpred_ph)
if tf_util.is_image(self.observation_space):
tf.summary.image('observation', train_model.obs_ph)
else:
tf.summary.histogram('observation', train_model.obs_ph)
self.train_model = train_model
self.train_aug_model = train_aug_model
self.act_model = act_model
self.step = act_model.step
self.proba_step = act_model.proba_step
self.value = act_model.value
self.initial_state = act_model.initial_state
self.aug_neglogpac_op = aug_neglogpac
tf.global_variables_initializer().run(session=self.sess) # pylint: disable=E1101
self.summary = tf.summary.merge_all()
def _train_step(self, learning_rate, cliprange, obs, returns, masks, actions, values, neglogpacs, is_demo, update,
writer, states=None, cliprange_vf=None, aug_obs_slice=None, aug_act_slice=None,
aug_neglog_pac_slice=None, aug_adv_slice=None):
"""
Training of PPO2 Algorithm
:param learning_rate: (float) learning rate
:param cliprange: (float) Clipping factor
:param obs: (np.ndarray) The current observation of the environment
:param returns: (np.ndarray) the rewards
:param masks: (np.ndarray) The last masks for done episodes (used in recurent policies)
:param actions: (np.ndarray) the actions
:param values: (np.ndarray) the values
:param neglogpacs: (np.ndarray) Negative Log-likelihood probability of Actions
:param update: (int) the current step iteration
:param writer: (TensorFlow Summary.writer) the writer for tensorboard
:param states: (np.ndarray) For recurrent policies, the internal state of the recurrent model
:return: policy gradient loss, value function loss, policy entropy,
approximation of kl divergence, updated clipping range, training update operation
:param cliprange_vf: (float) Clipping factor for the value function
"""
advs = returns - values
advs = (advs - advs.mean()) / (advs.std() + 1e-8)
if not 'MasspointPush' in self.env.get_attr('spec')[0].id:
advs = is_demo * np.clip(advs, self.aug_clip, np.inf) * self.aug_adv_weight + (1 - is_demo) * advs
else:
advs = is_demo * np.clip(advs, 0., 1.) * self.aug_adv_weight + (1 - is_demo) * advs
# for i in range(advs.shape[0]):
# if is_demo[i]:
# if not 'MasspointPush' in self.env.get_attr('spec')[0].id:
# advs[i] = np.max([advs[i], self.aug_clip]) * self.aug_adv_weight
# else:
# advs[i] = np.clip(advs[i], 0., 1.) * self.aug_adv_weight
if aug_adv_slice is not None:
aug_adv_slice = (aug_adv_slice - aug_adv_slice.mean()) / (aug_adv_slice.std() + 1e-8)
td_map = {self.train_model.obs_ph: obs, self.action_ph: actions,
self.advs_ph: advs, self.rewards_ph: returns,
self.learning_rate_ph: learning_rate, self.clip_range_ph: cliprange,
self.old_neglog_pac_ph: neglogpacs, self.old_vpred_ph: values}
if states is not None:
td_map[self.train_model.states_ph] = states
td_map[self.train_model.dones_ph] = masks
if aug_obs_slice is not None:
td_map[self.train_aug_model.obs_ph] = aug_obs_slice
td_map[self.aug_action_ph] = aug_act_slice
# td_map[self.aug_advs_ph] = np.max(advs) * np.ones(advs.shape)
td_map[self.aug_advs_ph] = aug_adv_slice
# print('aug advs mean', np.mean(aug_adv_slice))
td_map[self.aug_old_neglog_pac_ph] = aug_neglog_pac_slice
# print('old aug neglog pac mean', np.mean(aug_neglog_pac_slice))
_aug_neglog_pac = self.sess.run(self.aug_neglogpac_op, td_map)
# print('aug neglog pac mean', np.mean(_aug_neglog_pac))
# else:
# # td_map[self.train_aug_model.obs_ph] = np.zeros(obs.shape)
# # td_map[self.aug_action_ph] = np.zeros(actions.shape)
# td_map[self.train_aug_model.obs_ph] = obs
# td_map[self.aug_action_ph] = actions
# td_map[self.aug_advs_ph] = np.zeros(advs.shape)
# # td_map[self.aug_old_neglog_pac_ph] = np.zeros(neglogpacs.shape)
# td_map[self.aug_old_neglog_pac_ph] = neglogpacs
if cliprange_vf is not None and cliprange_vf >= 0:
td_map[self.clip_range_vf_ph] = cliprange_vf
if states is None:
update_fac = self.n_batch // self.nminibatches // self.noptepochs + 1
else:
update_fac = self.n_batch // self.nminibatches // self.noptepochs // self.n_steps + 1
if writer is not None:
# run loss backprop with summary, but once every 10 runs save the metadata (memory, compute time, ...)
if self.full_tensorboard_log and (1 + update) % 10 == 0:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
summary, policy_loss, value_loss, policy_entropy, approxkl, clipfrac, _ = self.sess.run(
[self.summary, self.pg_loss, self.vf_loss, self.entropy, self.approxkl, self.clipfrac, self._train],
td_map, options=run_options, run_metadata=run_metadata)
writer.add_run_metadata(run_metadata, 'step%d' % (update * update_fac))
else:
summary, policy_loss, value_loss, policy_entropy, approxkl, clipfrac, _ = self.sess.run(
[self.summary, self.pg_loss, self.vf_loss, self.entropy, self.approxkl, self.clipfrac, self._train],
td_map)
writer.add_summary(summary, (update * update_fac))
else:
policy_loss, value_loss, policy_entropy, approxkl, clipfrac, ratio_max, _ = self.sess.run(
[self.pg_loss, self.vf_loss, self.entropy, self.approxkl, self.clipfrac, self.ratio_max, self._train], td_map)
# if aug_obs_slice is not None:
# print('demo loss', demo_loss)
# exit()
if len(np.where(is_demo < 0.5)[0]):
original_maxneglogp = np.max(neglogpacs[np.where(is_demo < 0.5)[0]])
else:
original_maxneglogp = 0.
return policy_loss, value_loss, policy_entropy, approxkl, clipfrac, np.min(advs), np.max(advs), ratio_max, np.max(neglogpacs), original_maxneglogp, np.mean(neglogpacs)
def learn(self, total_timesteps, callback=None, seed=None, log_interval=1, tb_log_name="PPO2",
reset_num_timesteps=True):
# Transform to callable if needed
self.learning_rate = get_schedule_fn(self.learning_rate)
self.cliprange = get_schedule_fn(self.cliprange)
cliprange_vf = get_schedule_fn(self.cliprange_vf)
new_tb_log = self._init_num_timesteps(reset_num_timesteps)
with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \
as writer:
self._setup_learn(seed)
if not self.parallel:
runner = Runner(env=self.env, model=self, n_steps=self.n_steps, gamma=self.gamma, lam=self.lam,
aug_env=self.aug_env, n_candidate=self.n_candidate)
elif self.self_imitate:
from baselines.ppo_sir.sil_runner import SILRunner
runner = SILRunner(env=self.env, aug_env=self.aug_env, model=self, n_steps=self.n_steps,
gamma=self.gamma, lam=self.lam, n_candidate=self.n_candidate,
dim_candidate=self.dim_candidate, horizon=self.horizon)
else:
if self.env.get_attr('n_object')[0] > 0:
if self.dim_candidate != 3:
from baselines.ppo_sir.sir_runner import SIRRunner
# runner = ParallelRunner(env=self.env, aug_env=self.aug_env, model=self, n_steps=self.n_steps, gamma=self.gamma, lam=self.lam,
# n_candidate=self.n_candidate, horizon=self.horizon)
runner = SIRRunner(env=self.env, aug_env=self.aug_env, model=self, n_steps=self.n_steps,
gamma=self.gamma, lam=self.lam, n_candidate=self.n_candidate,
dim_candidate=self.dim_candidate,
horizon=self.horizon, log_trace=self.log_trace)
else:
# Stacking.
from baselines.ppo_sir.sir_runner_stack import SIRRunner
runner = SIRRunner(env=self.env, aug_env=self.aug_env, model=self, n_steps=self.n_steps,
gamma=self.gamma, lam=self.lam, n_candidate=self.n_candidate,
dim_candidate=self.dim_candidate,
horizon=self.horizon)
else:
# Maze.
from baselines.ppo_sir.sir_runner_maze import SIRRunner
runner = SIRRunner(env=self.env, aug_env=self.aug_env, model=self, n_steps=self.n_steps,
gamma=self.gamma, lam=self.lam, n_candidate=self.n_candidate,
dim_candidate=self.dim_candidate, horizon=self.horizon)
self.episode_reward = np.zeros((self.n_envs,))
ep_info_buf = deque(maxlen=100)
t_first_start = time.time()
n_updates = total_timesteps // self.n_batch
total_success = 0
original_success = 0
_reuse_times = self.reuse_times
start_decay = n_updates
pp_sr_buf = deque(maxlen=5)
for update in range(1, n_updates + 1):
assert self.n_batch % self.nminibatches == 0
batch_size = self.n_batch // self.nminibatches
t_start = time.time()
frac = 1.0 - (update - 1.0) / n_updates
lr_now = self.learning_rate(frac)
cliprange_now = self.cliprange(frac)
cliprange_vf_now = cliprange_vf(frac)
if self.curriculum:
if 'FetchStack' in self.env.get_attr('spec')[0].id:
# Stacking
pp_sr = pp_eval_model(self.eval_env, self)
pp_sr_buf.append(pp_sr)
print('Pick-and-place success rate', np.mean(pp_sr_buf))
if start_decay == n_updates and np.mean(pp_sr_buf) > 0.8:
start_decay = update
_ratio = np.clip(0.7 - 0.8 * (update - start_decay) / 380, 0.3, 0.7) # from 0.7 to 0.3
elif 'FetchPushWallObstacle' in self.env.get_attr('spec')[0].id:
_ratio = max(1.0 - (update - 1.0) / n_updates, 0.0)
else:
raise NotImplementedError
self.env.env_method('set_random_ratio', _ratio)
print('Set random_ratio to', self.env.get_attr('random_ratio')[0])
aug_success_ratio = (total_success - original_success) / (total_success + 1e-8)
if aug_success_ratio > 1.0:
# if aug_success_ratio > 0.25:
_reuse_times -= 1
_reuse_times = max(1, _reuse_times)
else:
_reuse_times = min(self.reuse_times, _reuse_times + 1)
# Reuse goalidx=0 only once
# if len(self.aug_obs) and (self.aug_obs[-1] is not None):
# other_aug_idx = np.where(self.is_selfaug[-1] < 0.5)[0]
# self.aug_obs[-1] = self.aug_obs[-1][other_aug_idx] if len(other_aug_idx) else None
# self.aug_act[-1] = self.aug_act[-1][other_aug_idx] if len(other_aug_idx) else None
# self.aug_neglogp[-1] = self.aug_neglogp[-1][other_aug_idx] if len(other_aug_idx) else None
# self.aug_return[-1] = self.aug_return[-1][other_aug_idx] if len(other_aug_idx) else None
# self.aug_value[-1] = self.aug_value[-1][other_aug_idx] if len(other_aug_idx) else None
# self.aug_done[-1] = self.aug_done[-1][other_aug_idx] if len(other_aug_idx) else None
# self.aug_reward[-1] = self.aug_reward[-1][other_aug_idx] if len(other_aug_idx) else None
# Reuse other data
# if _reuse_times > 1 and (not ('MasspointPush' in self.env.get_attr('spec')[0].id) or ('MasspointPush' in self.env.get_attr('spec')[0].id and update > 150)):
# if _reuse_times > 1 and (not ('MasspointPush' in self.env.get_attr('spec')[0].id) or (
# 'MasspointPush' in self.env.get_attr('spec')[0].id and update > 100)):
if _reuse_times > 1:
self.aug_obs = self.aug_obs[-_reuse_times+1:] + [None]
self.aug_act = self.aug_act[-_reuse_times+1:] + [None]
self.aug_neglogp = self.aug_neglogp[-_reuse_times+1:] + [None]
self.aug_return = self.aug_return[-_reuse_times+1:] + [None]
self.aug_value = self.aug_value[-_reuse_times+1:] + [None]
self.aug_done = self.aug_done[-_reuse_times+1:] + [None]
self.aug_reward = self.aug_reward[-_reuse_times+1:] + [None]
self.is_selfaug = self.is_selfaug[-_reuse_times+1:] + [None]
else:
self.aug_obs = [None]
self.aug_act = [None]
self.aug_neglogp = [None]
self.aug_return = [None]
self.aug_value = [None]
self.aug_done = [None]
self.aug_reward = [None]
self.is_selfaug = [None]
# true_reward is the reward without discount
temp_time0 = time.time()
obs, returns, masks, actions, values, neglogpacs, states, ep_infos, true_reward = runner.run()
is_demo = np.zeros(obs.shape[0])
temp_time1 = time.time()
print('runner.run() takes', temp_time1 - temp_time0)
original_episodes = np.sum(masks)
original_success = np.sum([info['r'] for info in ep_infos])
total_success = original_success
# augment_steps = 0 if self.aug_obs is None else self.aug_obs.shape[0]
augment_steps = sum([item.shape[0] if item is not None else 0 for item in self.aug_obs])
print([item.shape[0] if item is not None else 0 for item in self.aug_obs])
# if self.aug_obs is not None:
if augment_steps > 0:
if self.self_imitate and augment_steps / self.n_batch > self.sil_clip:
aug_sample_idx = np.random.randint(0, augment_steps, int(self.n_batch * self.sil_clip))
else:
aug_sample_idx = np.arange(augment_steps)
_aug_return = np.concatenate(list(filter(lambda v:v is not None, self.aug_return)), axis=0)
_aug_value = np.concatenate(list(filter(lambda v: v is not None, self.aug_value)), axis=0)
adv_clip_frac = np.sum((_aug_return - _aug_value) < (np.mean(returns - values) + self.aug_clip * np.std(returns - values))) / _aug_return.shape[0]
print('demo adv below average + %f std' % self.aug_clip, adv_clip_frac)
if self.self_imitate:
_aug_obs = np.concatenate(list(filter(lambda v: v is not None, self.aug_obs)), axis=0)[aug_sample_idx]
obs = np.concatenate([obs, _aug_obs], axis=0)
_aug_return = _aug_return[aug_sample_idx]
returns = np.concatenate([returns, _aug_return], axis=0)
_aug_mask = np.concatenate(list(filter(lambda v: v is not None, self.aug_done)), axis=0)[aug_sample_idx]
masks = np.concatenate([masks, _aug_mask], axis=0)
_aug_action = np.concatenate(list(filter(lambda v: v is not None, self.aug_act)), axis=0)[aug_sample_idx]
actions = np.concatenate([actions, _aug_action], axis=0)
_aug_value = np.concatenate(list(filter(lambda v: v is not None, self.aug_value)), axis=0)[aug_sample_idx]
values = np.concatenate([values, _aug_value], axis=0)
_aug_neglogpac = np.concatenate(list(filter(lambda v: v is not None, self.aug_neglogp)), axis=0)[aug_sample_idx]
neglogpacs = np.concatenate([neglogpacs, _aug_neglogpac], axis=0)
is_demo = np.concatenate([is_demo, np.ones(len(aug_sample_idx))], axis=0)
_aug_reward = np.concatenate(list(filter(lambda v: v is not None, self.aug_reward)), axis=0)[aug_sample_idx]
total_success += np.sum(_aug_reward)
augment_steps = len(aug_sample_idx)
else:
obs = np.concatenate([obs, *(list(filter(lambda v:v is not None, self.aug_obs)))], axis=0)
returns = np.concatenate([returns, *(list(filter(lambda v:v is not None, self.aug_return)))], axis=0)
masks = np.concatenate([masks, *(list(filter(lambda v:v is not None, self.aug_done)))], axis=0)
actions = np.concatenate([actions, *(list(filter(lambda v:v is not None, self.aug_act)))], axis=0)
values = np.concatenate([values, *(list(filter(lambda v:v is not None, self.aug_value)))], axis=0)
neglogpacs = np.concatenate([neglogpacs, *(list(filter(lambda v:v is not None, self.aug_neglogp)))], axis=0)
is_demo = np.concatenate([is_demo, np.ones(augment_steps)], axis=0)
_aug_reward = np.concatenate(list(filter(lambda v:v is not None, self.aug_reward)), axis=0)
total_success += np.sum(_aug_reward)
print('augmented data length', obs.shape[0])
self.num_timesteps += self.n_batch
ep_info_buf.extend(ep_infos)
total_episodes = np.sum(masks)
mb_loss_vals = []
if states is None: # nonrecurrent version
recompute_neglogp_time = 0
update_fac = self.n_batch // self.nminibatches // self.noptepochs + 1
inds = np.arange(self.n_batch + augment_steps)
# print('length self.aug_obs', len(self.aug_obs), batch_size)
for epoch_num in range(self.noptepochs):
np.random.shuffle(inds)
for start in range(0, self.n_batch + augment_steps, batch_size):
timestep = self.num_timesteps // update_fac + ((self.noptepochs * self.n_batch + epoch_num *
self.n_batch + start) // batch_size)
end = start + batch_size
mbinds = inds[start:end]
_recompute_inds = np.where(is_demo[mbinds] > 0.5)[0]
recompute_neglogp_time0 = time.time()
if _recompute_inds.shape[0] > 0:
neglogpacs[_recompute_inds] = self.sess.run(
self.aug_neglogpac_op, {self.train_aug_model.obs_ph: obs[_recompute_inds],
self.aug_action_ph: actions[_recompute_inds]})
if self.self_imitate:
neglogpacs[_recompute_inds] = np.minimum(neglogpacs[_recompute_inds], 100)
recompute_neglogp_time += time.time() - recompute_neglogp_time0
slices = (arr[mbinds] for arr in (obs, returns, masks, actions, values, neglogpacs, is_demo))
# if len(self.aug_obs) > batch_size:
# aug_inds = np.random.choice(len(self.aug_obs), batch_size)
# aug_obs_slice = np.array(self.aug_obs)[aug_inds]
# aug_act_slice = np.array(self.aug_act)[aug_inds]
# aug_neglog_pac_slice = np.array(self.aug_neglogp)[aug_inds]
# aug_adv_slice = np.array(self.aug_adv)[aug_inds]
# else:
# aug_obs_slice = None
# aug_act_slice = None
# aug_neglog_pac_slice = None
# aug_adv_slice = None
mb_loss_vals.append(self._train_step(lr_now, cliprange_now, *slices, writer=writer,
update=timestep, cliprange_vf=cliprange_vf_now,
))
else: # recurrent version
update_fac = self.n_batch // self.nminibatches // self.noptepochs // self.n_steps + 1
assert self.n_envs % self.nminibatches == 0
env_indices = np.arange(self.n_envs)
flat_indices = np.arange(self.n_envs * self.n_steps).reshape(self.n_envs, self.n_steps)
envs_per_batch = batch_size // self.n_steps
for epoch_num in range(self.noptepochs):
np.random.shuffle(env_indices)
for start in range(0, self.n_envs, envs_per_batch):
timestep = self.num_timesteps // update_fac + ((self.noptepochs * self.n_envs + epoch_num *
self.n_envs + start) // envs_per_batch)
end = start + envs_per_batch
mb_env_inds = env_indices[start:end]
mb_flat_inds = flat_indices[mb_env_inds].ravel()
slices = (arr[mb_flat_inds] for arr in (obs, returns, masks, actions, values, neglogpacs))
mb_states = states[mb_env_inds]
mb_loss_vals.append(self._train_step(lr_now, cliprange_now, *slices, update=timestep,
writer=writer, states=mb_states,
cliprange_vf=cliprange_vf_now))
print('recompute neglogp time', recompute_neglogp_time)
loss_vals = np.mean(mb_loss_vals, axis=0)
t_now = time.time()
fps = int(self.n_batch / (t_now - t_start))
if writer is not None:
self.episode_reward = total_episode_reward_logger(self.episode_reward,
true_reward.reshape((self.n_envs, self.n_steps)),
masks.reshape((self.n_envs, self.n_steps)),
writer, self.num_timesteps)
if self.verbose >= 1 and (update % log_interval == 0 or update == 1):
explained_var = explained_variance(values, returns)
logger.logkv("serial_timesteps", update * self.n_steps)
logger.logkv("n_updates", update)
logger.logkv("original_timesteps", self.num_timesteps)
logger.logkv("total_timesteps", self.num_timesteps + self.num_aug_steps)
logger.logkv("fps", fps)
logger.logkv("explained_variance", float(explained_var))
if len(ep_info_buf) > 0 and len(ep_info_buf[0]) > 0:
logger.logkv('ep_reward_mean', safe_mean([ep_info['r'] for ep_info in ep_info_buf]))
logger.logkv('ep_len_mean', safe_mean([ep_info['l'] for ep_info in ep_info_buf]))
logger.logkv('time_elapsed', t_start - t_first_start)
for (loss_val, loss_name) in zip(loss_vals, self.loss_names):
logger.logkv(loss_name, loss_val)
logger.logkv("augment_steps", augment_steps)
# logger.logkv("original_success", original_success)
# logger.logkv("total_success", total_success)
logger.logkv("self_aug_ratio", np.mean(runner.self_aug_ratio))
logger.dumpkvs()
if callback is not None:
# Only stop training if return value is False, not when it is None. This is for backwards
# compatibility with callbacks that have no return statement.
if callback(locals(), globals()) is False:
break
return self
def save(self, save_path, cloudpickle=False):
data = {
"gamma": self.gamma,
"n_steps": self.n_steps,
"vf_coef": self.vf_coef,
"ent_coef": self.ent_coef,
"max_grad_norm": self.max_grad_norm,
"learning_rate": self.learning_rate,
"lam": self.lam,
"nminibatches": self.nminibatches,
"noptepochs": self.noptepochs,
"cliprange": self.cliprange,
"cliprange_vf": self.cliprange_vf,
"verbose": self.verbose,
"policy": self.policy,
"observation_space": self.observation_space,
"action_space": self.action_space,
"n_envs": self.n_envs,
"_vectorize_action": self._vectorize_action,
"policy_kwargs": self.policy_kwargs
}
params_to_save = self.get_parameters()
self._save_to_file(save_path, data=data, params=params_to_save, cloudpickle=cloudpickle)
class Runner(AbstractEnvRunner):
def __init__(self, *, env, model, n_steps, gamma, lam, aug_env, n_candidate):
"""
A runner to learn the policy of an environment for a model
:param env: (Gym environment) The environment to learn from
:param model: (Model) The model to learn
:param n_steps: (int) The number of steps to run for each environment
:param gamma: (float) Discount factor
:param lam: (float) Factor for trade-off of bias vs variance for Generalized Advantage Estimator
"""
super().__init__(env=env, model=model, n_steps=n_steps)
self.lam = lam
self.gamma = gamma
self.aug_env = aug_env
self.n_candidate = n_candidate
# obs param
self.obs_dim = 40
self.goal_dim = 5
self.n_object = env.unwrapped.n_object
# For restart
self.ep_state_buf = [[] for _ in range(self.model.n_envs)]
self.ep_transition_buf = [[] for _ in range(self.model.n_envs)]
def run(self):
"""
Run a learning step of the model
:return:
- observations: (np.ndarray) the observations
- rewards: (np.ndarray) the rewards
- masks: (numpy bool) whether an episode is over or not
- actions: (np.ndarray) the actions
- values: (np.ndarray) the value function output
- negative log probabilities: (np.ndarray)
- states: (np.ndarray) the internal states of the recurrent policies
- infos: (dict) the extra information of the model
"""
# mb stands for minibatch
mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs = [], [], [], [], [], []
mb_states = self.states
ep_infos = []
augment_data_time = 0
for _ in range(self.n_steps):
internal_states = self.env.env_method('get_state')
for i in range(self.model.n_envs):
self.ep_state_buf[i].append(internal_states[i])
actions, values, self.states, neglogpacs = self.model.step(self.obs, self.states, self.dones)
mb_obs.append(self.obs.copy())
mb_actions.append(actions)
mb_values.append(values)
mb_neglogpacs.append(neglogpacs)
mb_dones.append(self.dones)
clipped_actions = actions
# Clip the actions to avoid out of bound error
if isinstance(self.env.action_space, gym.spaces.Box):
clipped_actions = np.clip(actions, self.env.action_space.low, self.env.action_space.high)
self.obs[:], rewards, self.dones, infos = self.env.step(clipped_actions)
for info in infos:
maybe_ep_info = info.get('episode')
if maybe_ep_info is not None:
ep_infos.append(maybe_ep_info)
mb_rewards.append(rewards)
for i in range(self.model.n_envs):
# self.ep_transition_buf[i].append((mb_obs[-1][i], mb_actions[-1][i], mb_values[-1][i],
# mb_neglogpacs[-1][i], mb_dones[-1][i], mb_rewards[-1][i]))
self.ep_transition_buf[i].append((mb_obs[-1][i], mb_actions[-1][i], mb_values[-1][i],
mb_neglogpacs[-1][i], mb_dones[-1][i], mb_rewards[-1][i]))
# _values = self.env.env_method('augment_data', self.ep_transition_buf, self.ep_state_buf)
# print(_values)
# exit()
temp_time0 = time.time()
for idx, done in enumerate(self.dones):
if self.model.num_timesteps > self.model.start_augment and done:
# Check if this is failture
goal = self.ep_transition_buf[idx][0][0][-5:]
if np.argmax(goal[3:]) == 0 and (not infos[idx]['is_success']):
# Do augmentation
# Sample start step and perturbation
restart_steps, subgoals = self.select_subgoal(self.ep_transition_buf[idx], k=self.n_candidate)
# print('restart steps', restart_steps, 'subgoals', subgoals, 'ultimate goal', goal)
# augment_transition_buf = self.ep_transition_buf[idx][:restart_step]
for k in range(restart_steps.shape[0]):
restart_step = restart_steps[k]
subgoal = subgoals[k]
if restart_step > 0:
augment_obs_buf, augment_act_buf, augment_value_buf, \
augment_neglogp_buf, augment_done_buf, augment_reward_buf = \
zip(*self.ep_transition_buf[idx][:restart_step])
augment_obs_buf = list(augment_obs_buf)
augment_act_buf = list(augment_act_buf)
augment_value_buf = list(augment_value_buf)
augment_neglogp_buf = list(augment_neglogp_buf)
augment_done_buf = list(augment_done_buf)
augment_reward_buf = list(augment_reward_buf)
else:
augment_obs_buf, augment_act_buf, augment_value_buf, \
augment_neglogp_buf, augment_done_buf, augment_reward_buf = [], [], [], [], [], []
augment_obs1, augment_act1, augment_value1, augment_neglogp1, augment_done1, augment_reward1, next_state = \
self.rollout_subtask(self.ep_state_buf[idx][restart_step], subgoal, len(augment_obs_buf), goal)
if augment_obs1 is not None:
# augment_transition_buf += augment_transition1
augment_obs_buf += augment_obs1
augment_act_buf += augment_act1
augment_value_buf += augment_value1
augment_neglogp_buf += augment_neglogp1
augment_done_buf += augment_done1
augment_reward_buf += augment_reward1
augment_obs2, augment_act2, augment_value2, augment_neglogp2, augment_done2, augment_reward2, _ = \
self.rollout_subtask(next_state, goal, len(augment_obs_buf), goal)
if augment_obs2 is not None:
print('Success')
# augment_transition_buf += augment_transition2
augment_obs_buf += augment_obs2
augment_act_buf += augment_act2
augment_value_buf += augment_value2
augment_neglogp_buf += augment_neglogp2
augment_done_buf += augment_done2
augment_reward_buf += augment_reward2
if augment_done_buf[0] != True:
augment_done_buf[0] = True
assert sum(augment_done_buf) == 1, augment_done_buf
augment_returns = self.compute_adv(augment_value_buf, augment_done_buf, augment_reward_buf)
assert augment_done_buf[0] == True
assert sum(augment_done_buf) == 1
# aug_obs, aug_act = zip(*augment_transition_buf)
# print(len(augment_obs_buf), len(augment_act_buf), len(augment_neglogp_buf))
# print(augment_adv_buf)
# The augment data is directly passed to model
# self.model.aug_obs += list(aug_obs)
# self.model.aug_act += list(aug_act)
for i in range(len(augment_obs_buf)):
assert np.argmax(augment_obs_buf[i][-2:]) == 0
assert np.argmax(augment_obs_buf[i][-7:-5]) == 0
# self.model.aug_obs += augment_obs_buf
# self.model.aug_act += augment_act_buf
# self.model.aug_neglogp += augment_neglogp_buf
# self.model.aug_adv += augment_adv_buf
if self.model.aug_obs is None:
self.model.aug_obs = np.array(augment_obs_buf)
self.model.aug_act = np.array(augment_act_buf)
self.model.aug_neglogp = np.array(augment_neglogp_buf)
self.model.aug_value = np.array(augment_value_buf)
self.model.aug_return = augment_returns
self.model.aug_done = np.array(augment_done_buf)
else:
self.model.aug_obs = np.concatenate([self.model.aug_obs, np.array(augment_obs_buf)], axis=0)
self.model.aug_act = np.concatenate([self.model.aug_act, np.array(augment_act_buf)], axis=0)
self.model.aug_neglogp = np.concatenate([self.model.aug_neglogp, np.array(augment_neglogp_buf)],axis=0)
self.model.aug_value = np.concatenate([self.model.aug_value, np.array(augment_value_buf)], axis=0)
self.model.aug_return = np.concatenate([self.model.aug_return, augment_returns], axis=0)
self.model.aug_done = np.concatenate([self.model.aug_done, np.array(augment_done_buf)], axis=0)
assert self.model.aug_done[0] == True
# else:
# print('Failed to achieve ultimate goal')
# else:
# print('Failed to achieve subgoal')
# Then update buf
self.ep_state_buf[idx] = []
self.ep_transition_buf[idx] = []
temp_time1 = time.time()
augment_data_time += (temp_time1 - temp_time0)
# batch of steps to batch of rollouts
mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype)
mb_rewards = np.asarray(mb_rewards, dtype=np.float32)
mb_actions = np.asarray(mb_actions)
mb_values = np.asarray(mb_values, dtype=np.float32)
mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32)
mb_dones = np.asarray(mb_dones, dtype=np.bool)
last_values = self.model.value(self.obs, self.states, self.dones)
# discount/bootstrap off value fn
mb_advs = np.zeros_like(mb_rewards)
true_reward = np.copy(mb_rewards)
last_gae_lam = 0
for step in reversed(range(self.n_steps)):
if step == self.n_steps - 1:
nextnonterminal = 1.0 - self.dones
nextvalues = last_values
else:
nextnonterminal = 1.0 - mb_dones[step + 1]
nextvalues = mb_values[step + 1]
delta = mb_rewards[step] + self.gamma * nextvalues * nextnonterminal - mb_values[step]
mb_advs[step] = last_gae_lam = delta + self.gamma * self.lam * nextnonterminal * last_gae_lam
mb_returns = mb_advs + mb_values
mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, true_reward = \
map(swap_and_flatten, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, true_reward))
print('augment data takes', augment_data_time)
return mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs, mb_states, ep_infos, true_reward
def select_subgoal(self, transition_buf, k):
# self.ep_transition_buf, self.model.value
assert len(transition_buf) == 100, len(transition_buf)
obs_buf, *_ = zip(*transition_buf)
obs_buf = np.asarray(obs_buf)
sample_t = np.random.randint(0, len(transition_buf), 4096)
sample_obs = obs_buf[sample_t]
noise = np.random.uniform(low=-0.15, high=0.15, size=(len(sample_t), 2))
obstacle_xy = sample_obs[:, 6:8] + noise
sample_obs[:, 6:8] = obstacle_xy
sample_obs[:, 12:14] = sample_obs[:, 6:8] - sample_obs[:, 0:2]
value2 = self.model.value(sample_obs)
subgoal_obs = obs_buf[sample_t]
subgoal_obs[:, 40:43] = subgoal_obs[:, 6:9]
subgoal_obs[:, 43:45] = np.array([[0., 1.]])
subgoal_obs[:, 45:47] = obstacle_xy
subgoal_obs[:, 47:48] = subgoal_obs[:, 8:9]
subgoal_obs[:, 48:50] = np.array([[0., 1.]])
value1 = self.model.value(subgoal_obs)
normalize_value1 = (value1 - np.min(value1)) / (np.max(value1) - np.min(value1))
normalize_value2 = (value2 - np.min(value2)) / (np.max(value2) - np.min(value2))
# best_idx = np.argmax(normalize_value1 * normalize_value2)
ind = np.argsort(normalize_value1 * normalize_value2)
good_ind = ind[-k:]
# restart_step = sample_t[best_idx]
# subgoal = subgoal_obs[best_idx, 45:50]
restart_step = sample_t[good_ind]
subgoal = subgoal_obs[good_ind, 45:50]
# print('subgoal', subgoal, 'with value1', normalize_value1[best_idx], 'value2', normalize_value2[best_idx])
# print('restart step', restart_step)
return restart_step, subgoal
def rollout_subtask(self, restart_state, goal, restart_step, ultimate_goal):
aug_transition = []
self.aug_env.unwrapped.sim.set_state(restart_state)
self.aug_env.unwrapped.sim.forward()
self.aug_env.unwrapped.goal[:] = goal
dict_obs = self.aug_env.unwrapped.get_obs()
obs = np.concatenate([dict_obs[key] for key in ['observation', 'achieved_goal', 'desired_goal']])
# print('subgoal', goal, 'obs', obs[-10:])
def switch_goal(obs, goal):
obs = obs.copy()
assert len(goal) == 5
obs[-5:] = goal
goal_idx = np.argmax(goal[3:])
obs[-10:-5] = np.concatenate([obs[3 + goal_idx * 3 : 6 + goal_idx * 3], goal[3:5]])
return obs
info = {'is_success': False}
for step_idx in range(restart_step, 100):
# If I use subgoal obs, value has problem
# If I use ultimate goal obs, action should be rerunned
# action, value, _, neglogpac = self.model.step(obs)
action, _, _, _ = self.model.step(np.expand_dims(obs, axis=0))
action = np.squeeze(action, axis=0)
clipped_actions = action
# Clip the actions to avoid out of bound error
if isinstance(self.aug_env.action_space, gym.spaces.Box):
clipped_actions = np.clip(action, self.aug_env.action_space.low, self.aug_env.action_space.high)
next_obs, _, _, info = self.aug_env.step(clipped_actions)
self.model.num_aug_steps += 1
reward = self.aug_env.compute_reward(switch_goal(next_obs, ultimate_goal), ultimate_goal, None)
next_state = self.aug_env.unwrapped.sim.get_state()
# aug_transition.append((obs, action, value, neglogpac, done, reward))
aug_transition.append((switch_goal(obs, ultimate_goal), action, False, reward)) # Note that done refers to the output of previous action
# print(step_idx, obs[-10:], next_obs[-10:])
if info['is_success']:
break
obs = next_obs
# print('length of augment transition', len(aug_transition))
if info['is_success']:
aug_obs, aug_act, aug_done, aug_reward = zip(*aug_transition)
aug_obs = list(aug_obs)
aug_act = list(aug_act)
aug_done = list(aug_done)
aug_reward = list(aug_reward)
aug_neglogpac = self.model.sess.run(self.model.aug_neglogpac_op,
{self.model.train_aug_model.obs_ph: np.array(aug_obs),
self.model.aug_action_ph: np.array(aug_act)})
aug_value = self.model.value(np.array(aug_obs))
# print(aug_neglogpac.shape)
aug_neglogpac = aug_neglogpac.tolist()
aug_value = aug_value.tolist()
# print(np.mean(aug_neglogpac))
return aug_obs, aug_act, aug_value, aug_neglogpac, aug_done, aug_reward, next_state
return None, None, None, None, None, None, None
def compute_adv(self, values, dones, rewards):
if not isinstance(values, np.ndarray):
values = np.asarray(values)
dones = np.asarray(dones)
rewards = np.asarray(rewards)
# discount/bootstrap off value fn
advs = np.zeros_like(rewards)
last_gae_lam = 0
for step in reversed(range(values.shape[0])):
if step == values.shape[0] - 1:
# Here we have assumed that the episode ends with done=Fase (not recorded in dones!).
nextnonterminal = 0.0
# So nextvalues here will not be used.
nextvalues = np.zeros(values[0].shape)
else:
nextnonterminal = 1.0 - dones[step + 1]
nextvalues = values[step + 1]
delta = rewards[step] + self.gamma * nextvalues * nextnonterminal - values[step]
advs[step] = last_gae_lam = delta + self.gamma * self.lam * nextnonterminal * last_gae_lam
returns = advs + values
return returns
def get_schedule_fn(value_schedule):
"""
Transform (if needed) learning rate and clip range
to callable.
:param value_schedule: (callable or float)
:return: (function)
"""
# If the passed schedule is a float
# create a constant function
if isinstance(value_schedule, (float, int)):
# Cast to float to avoid errors
value_schedule = constfn(float(value_schedule))
else:
assert callable(value_schedule)
return value_schedule
# obs, returns, masks, actions, values, neglogpacs, states = runner.run()
def swap_and_flatten(arr):
"""
swap and then flatten axes 0 and 1
:param arr: (np.ndarray)
:return: (np.ndarray)
"""
shape = arr.shape
return arr.swapaxes(0, 1).reshape(shape[0] * shape[1], *shape[2:])
def constfn(val):
"""
Create a function that returns a constant
It is useful for learning rate schedule (to avoid code duplication)
:param val: (float)
:return: (function)
"""
def func(_):
return val
return func
def safe_mean(arr):
"""
Compute the mean of an array if there is at least one element.
For empty array, return nan. It is used for logging only.
:param arr: (np.ndarray)
:return: (float)
"""
return np.nan if len(arr) == 0 else np.mean(arr)
| [] |
2024-01-10 | IrisLi17/self-imitation-via-reduction | baselines~sac_sir~sac_sir.py | import sys, os, csv, gym
import time
import multiprocessing
from collections import deque
import warnings
import numpy as np
import tensorflow as tf
from stable_baselines.a2c.utils import total_episode_reward_logger
from stable_baselines.common import tf_util, OffPolicyRLModel, SetVerbosity, TensorboardWriter
from stable_baselines.common.vec_env import VecEnv
from utils.replay_buffer import MultiWorkerReplayBuffer, PrioritizedMultiWorkerReplayBuffer
from utils.replay_buffer import DoublePrioritizedReplayWrapper
from stable_baselines.ppo2.ppo2 import safe_mean, get_schedule_fn
from stable_baselines.sac.policies import SACPolicy
from stable_baselines import logger
from utils.eval_stack import eval_model
def get_vars(scope):
"""
Alias for get_trainable_vars
:param scope: (str)
:return: [tf Variable]
"""
return tf_util.get_trainable_vars(scope)
class SAC_SIR(OffPolicyRLModel):
"""
Soft Actor-Critic (SAC)
Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor,
This implementation borrows code from original implementation (https://github.com/haarnoja/sac)
from OpenAI Spinning Up (https://github.com/openai/spinningup) and from the Softlearning repo
(https://github.com/rail-berkeley/softlearning/)
Paper: https://arxiv.org/abs/1801.01290
Introduction to SAC: https://spinningup.openai.com/en/latest/algorithms/sac.html
:param policy: (SACPolicy or str) The policy model to use (MlpPolicy, CnnPolicy, LnMlpPolicy, ...)
:param env: (Gym environment or str) The environment to learn from (if registered in Gym, can be str)
:param gamma: (float) the discount factor
:param learning_rate: (float or callable) learning rate for adam optimizer,
the same learning rate will be used for all networks (Q-Values, Actor and Value function)
it can be a function of the current progress (from 1 to 0)
:param buffer_size: (int) size of the replay buffer
:param batch_size: (int) Minibatch size for each gradient update
:param tau: (float) the soft update coefficient ("polyak update", between 0 and 1)
:param ent_coef: (str or float) Entropy regularization coefficient. (Equivalent to
inverse of reward scale in the original SAC paper.) Controlling exploration/exploitation trade-off.
Set it to 'auto' to learn it automatically (and 'auto_0.1' for using 0.1 as initial value)
:param train_freq: (int) Update the model every `train_freq` steps.
:param learning_starts: (int) how many steps of the model to collect transitions for before learning starts
:param target_update_interval: (int) update the target network every `target_network_update_freq` steps.
:param gradient_steps: (int) How many gradient update after each step
:param target_entropy: (str or float) target entropy when learning ent_coef (ent_coef = 'auto')
:param action_noise: (ActionNoise) the action noise type (None by default), this can help
for hard exploration problem. Cf DDPG for the different action noise type.
:param random_exploration: (float) Probability of taking a random action (as in an epsilon-greedy strategy)
This is not needed for SAC normally but can help exploring when using HER + SAC.
This hack was present in the original OpenAI Baselines repo (DDPG + HER)
:param verbose: (int) the verbosity level: 0 none, 1 training information, 2 tensorflow debug
:param tensorboard_log: (str) the log location for tensorboard (if None, no logging)
:param _init_setup_model: (bool) Whether or not to build the network at the creation of the instance
:param policy_kwargs: (dict) additional arguments to be passed to the policy on creation
:param full_tensorboard_log: (bool) enable additional logging when using tensorboard
Note: this has no effect on SAC logging for now
"""
def __init__(self, policy, env, trained_sac_model=None, gamma=0.99, learning_rate=3e-4, buffer_size=50000,
priority_buffer=False, alpha=0.6,
learning_starts=100, train_freq=1, batch_size=64,
tau=0.005, ent_coef='auto', target_update_interval=1,
gradient_steps=1, target_entropy='auto', action_noise=None,
random_exploration=0.0, n_subgoal=2, start_augment_time=0,
aug_env=None, eval_env=None, curriculum=False, imitation_coef=5,
sequential=False,
verbose=0, tensorboard_log=None,
_init_setup_model=True, policy_kwargs=None, full_tensorboard_log=False):
super(SAC_SIR, self).__init__(policy=policy, env=env, replay_buffer=None, verbose=verbose,
policy_base=SACPolicy, requires_vec_env=False, policy_kwargs=policy_kwargs)
self.aug_env = aug_env
self.eval_env = eval_env
self.trained_sac_model = trained_sac_model
self.buffer_size = buffer_size
self.learning_rate = learning_rate
self.learning_starts = learning_starts
self.train_freq = train_freq
self.batch_size = batch_size
self.tau = tau
# In the original paper, same learning rate is used for all networks
# self.policy_lr = learning_rate
# self.qf_lr = learning_rate
# self.vf_lr = learning_rate
# Entropy coefficient / Entropy temperature
# Inverse of the reward scale
self.ent_coef = ent_coef
self.target_update_interval = target_update_interval
self.gradient_steps = gradient_steps
self.gamma = gamma
self.action_noise = action_noise
self.random_exploration = random_exploration
self.n_subgoal = n_subgoal
self.start_augment_time = start_augment_time
self.priority_buffer = priority_buffer
self.alpha = alpha
self.curriculum = curriculum
self.imitation_coef = imitation_coef
self.sequential = sequential
self.value_fn = None
self.graph = None
self.replay_buffer = None
self.augment_replay_buffer = None
self.combined_replay_buffer = None
self.episode_reward = None
self.sess = None
self.tensorboard_log = tensorboard_log
self.verbose = verbose
self.params = None
self.summary = None
self.policy_tf = None
self.target_entropy = target_entropy
self.full_tensorboard_log = full_tensorboard_log
self.obs_target = None
self.target_policy = None
self.actions_ph = None
self.rewards_ph = None
self.terminals_ph = None
self.observations_ph = None
self.action_target = None
self.next_observations_ph = None
self.value_target = None
self.step_ops = None
self.target_update_op = None
self.infos_names = None
self.entropy = None
self.target_params = None
self.learning_rate_ph = None
self.processed_obs_ph = None
self.processed_next_obs_ph = None
self.log_ent_coef = None
self.num_aug_steps = 0
if _init_setup_model:
self.setup_model()
def _get_pretrain_placeholders(self):
policy = self.policy_tf
# Rescale
deterministic_action = self.deterministic_action * np.abs(self.action_space.low)
return policy.obs_ph, self.actions_ph, deterministic_action
def setup_model(self):
with SetVerbosity(self.verbose):
self.graph = tf.Graph()
with self.graph.as_default():
n_cpu = multiprocessing.cpu_count()
if sys.platform == 'darwin':
n_cpu //= 2
self.sess = tf_util.make_session(num_cpu=n_cpu, graph=self.graph)
if hasattr(self.env, "env") and isinstance(self.env.env, VecEnv):
self.n_envs = self.env.env.num_envs
else:
self.n_envs = 1
if self.priority_buffer:
self.replay_buffer = PrioritizedMultiWorkerReplayBuffer(self.buffer_size, self.alpha,
num_workers=self.env.env.num_envs, gamma=self.gamma)
self.augment_replay_buffer = PrioritizedMultiWorkerReplayBuffer(self.buffer_size, self.alpha,
num_workers=1, gamma=self.gamma)
else:
self.replay_buffer = MultiWorkerReplayBuffer(self.buffer_size, num_workers=self.n_envs, gamma=self.gamma)
self.augment_replay_buffer = MultiWorkerReplayBuffer(self.buffer_size, num_workers=1,
gamma=self.gamma)
with tf.variable_scope("input", reuse=False):
# Create policy and target TF objects
self.policy_tf = self.policy(self.sess, self.observation_space, self.action_space,
**self.policy_kwargs)
self.target_policy = self.policy(self.sess, self.observation_space, self.action_space,
**self.policy_kwargs)
# Initialize Placeholders
self.observations_ph = self.policy_tf.obs_ph
# Normalized observation for pixels
self.processed_obs_ph = self.policy_tf.processed_obs
self.next_observations_ph = self.target_policy.obs_ph
self.processed_next_obs_ph = self.target_policy.processed_obs
self.action_target = self.target_policy.action_ph
self.terminals_ph = tf.placeholder(tf.float32, shape=(None, 1), name='terminals')
self.rewards_ph = tf.placeholder(tf.float32, shape=(None, 1), name='rewards')
self.actions_ph = tf.placeholder(tf.float32, shape=(None,) + self.action_space.shape,
name='actions')
self.learning_rate_ph = tf.placeholder(tf.float32, [], name="learning_rate_ph")
self.importance_weight_ph = tf.placeholder(tf.float32, shape=(None,), name="weights")
# self.sum_rs_ph = tf.placeholder(tf.float32, shape=(None, 1), name="sum_rs")
with tf.variable_scope("model", reuse=False):
# Create the policy
# first return value corresponds to deterministic actions
# policy_out corresponds to stochastic actions, used for training
# logp_pi is the log probabilty of actions taken by the policy
self.deterministic_action, policy_out, logp_pi = self.policy_tf.make_actor(self.processed_obs_ph)
# Monitor the entropy of the policy,
# this is not used for training
self.entropy = tf.reduce_mean(self.policy_tf.entropy)
# Use two Q-functions to improve performance by reducing overestimation bias.
qf1, qf2, value_fn = self.policy_tf.make_critics(self.processed_obs_ph, self.actions_ph,
create_qf=True, create_vf=True)
qf1_pi, qf2_pi, _ = self.policy_tf.make_critics(self.processed_obs_ph,
policy_out, create_qf=True, create_vf=False,
reuse=True)
# Target entropy is used when learning the entropy coefficient
if self.target_entropy == 'auto':
# automatically set target entropy if needed
self.target_entropy = -np.prod(self.env.action_space.shape).astype(np.float32)
else:
# Force conversion
# this will also throw an error for unexpected string
self.target_entropy = float(self.target_entropy)
# The entropy coefficient or entropy can be learned automatically
# see Automating Entropy Adjustment for Maximum Entropy RL section
# of https://arxiv.org/abs/1812.05905
if isinstance(self.ent_coef, str) and self.ent_coef.startswith('auto'):
# Default initial value of ent_coef when learned
init_value = 1.0
if '_' in self.ent_coef:
init_value = float(self.ent_coef.split('_')[1])
assert init_value > 0., "The initial value of ent_coef must be greater than 0"
self.log_ent_coef = tf.get_variable('log_ent_coef', dtype=tf.float32,
initializer=np.log(init_value).astype(np.float32))
self.ent_coef = tf.exp(self.log_ent_coef)
else:
# Force conversion to float
# this will throw an error if a malformed string (different from 'auto')
# is passed
self.ent_coef = float(self.ent_coef)
with tf.variable_scope("target", reuse=False):
# Create the value network
_, _, value_target = self.target_policy.make_critics(self.processed_next_obs_ph,
create_qf=False, create_vf=True)
self.value_target = value_target
with tf.variable_scope("loss", reuse=False):
# Take the min of the two Q-Values (Double-Q Learning)
min_qf_pi = tf.minimum(qf1_pi, qf2_pi)
# Target for Q value regression
q_backup = tf.stop_gradient(
self.rewards_ph +
(1 - self.terminals_ph) * self.gamma * self.value_target
)
# Compute Q-Function loss
# TODO: test with huber loss (it would avoid too high values)
qf1_loss = 0.5 * tf.reduce_mean(self.importance_weight_ph * (q_backup - qf1) ** 2)
qf2_loss = 0.5 * tf.reduce_mean(self.importance_weight_ph * (q_backup - qf2) ** 2)
# Compute the entropy temperature loss
# it is used when the entropy coefficient is learned
ent_coef_loss, entropy_optimizer = None, None
if not isinstance(self.ent_coef, float):
ent_coef_loss = -tf.reduce_mean(
self.log_ent_coef * tf.stop_gradient(logp_pi + self.target_entropy))
entropy_optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_ph)
# Compute the policy loss
# Alternative: policy_kl_loss = tf.reduce_mean(logp_pi - min_qf_pi)
policy_kl_loss = tf.reduce_mean(self.ent_coef * logp_pi - qf1_pi)
# self.is_demo_ph = tf.placeholder(tf.float32, shape=(None,), name='is_demo')
# Behavior cloning loss
# policy_imitation_loss = tf.reduce_mean(
# self.is_demo_ph * tf.reduce_mean(tf.square(self.deterministic_action - self.actions_ph),
# axis=-1) * tf.stop_gradient(tf.cast(tf.greater(qf1, qf1_pi), tf.float32)))
# Self imitation style loss
self.logpac_op = logp_ac = self.logpac(self.actions_ph)
policy_imitation_loss = tf.reduce_mean(
(-logp_ac * tf.stop_gradient(tf.nn.relu(qf1 - value_fn))))
# NOTE: in the original implementation, they have an additional
# regularization loss for the gaussian parameters
# this is not used for now
# policy_loss = (policy_kl_loss + policy_regularization_loss)
policy_loss = policy_kl_loss + self.imitation_coef * policy_imitation_loss
# Target for value fn regression
# We update the vf towards the min of two Q-functions in order to
# reduce overestimation bias from function approximation error.
v_backup = tf.stop_gradient(min_qf_pi - self.ent_coef * logp_pi)
value_loss = 0.5 * tf.reduce_mean(self.importance_weight_ph * (value_fn - v_backup) ** 2)
values_losses = qf1_loss + qf2_loss + value_loss
# Policy train op
# (has to be separate from value train op, because min_qf_pi appears in policy_loss)
policy_optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_ph)
policy_train_op = policy_optimizer.minimize(policy_loss, var_list=get_vars('model/pi'))
# Value train op
value_optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_ph)
values_params = get_vars('model/values_fn')
source_params = get_vars("model/values_fn/vf")
target_params = get_vars("target/values_fn/vf")
# Polyak averaging for target variables
self.target_update_op = [
tf.assign(target, (1 - self.tau) * target + self.tau * source)
for target, source in zip(target_params, source_params)
]
# Initializing target to match source variables
target_init_op = [
tf.assign(target, source)
for target, source in zip(target_params, source_params)
]
# Control flow is used because sess.run otherwise evaluates in nondeterministic order
# and we first need to compute the policy action before computing q values losses
with tf.control_dependencies([policy_train_op]):
train_values_op = value_optimizer.minimize(values_losses, var_list=values_params)
self.infos_names = ['policy_loss', 'qf1_loss', 'qf2_loss', 'value_loss', 'entropy', 'demo_ratio']
# All ops to call during one training step
self.step_ops = [policy_loss, qf1_loss, qf2_loss,
value_loss, qf1, qf2, value_fn, logp_pi,
self.entropy, policy_train_op, train_values_op]
# Add entropy coefficient optimization operation if needed
if ent_coef_loss is not None:
with tf.control_dependencies([train_values_op]):
ent_coef_op = entropy_optimizer.minimize(ent_coef_loss, var_list=self.log_ent_coef)
self.infos_names += ['ent_coef_loss', 'ent_coef']
self.step_ops += [ent_coef_op, ent_coef_loss, self.ent_coef]
# Monitor losses and entropy in tensorboard
tf.summary.scalar('policy_loss', policy_loss)
tf.summary.scalar('qf1_loss', qf1_loss)
tf.summary.scalar('qf2_loss', qf2_loss)
tf.summary.scalar('value_loss', value_loss)
tf.summary.scalar('entropy', self.entropy)
if ent_coef_loss is not None:
tf.summary.scalar('ent_coef_loss', ent_coef_loss)
tf.summary.scalar('ent_coef', self.ent_coef)
tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate_ph))
# Retrieve parameters that must be saved
self.params = get_vars("model")
self.target_params = get_vars("target/values_fn/vf")
# Initialize Variables and target network
with self.sess.as_default():
self.sess.run(tf.global_variables_initializer())
self.sess.run(target_init_op)
self.summary = tf.summary.merge_all()
def _train_step(self, step, writer, learning_rate):
def safe_concat(arr1, arr2):
if len(arr1) == 0:
return arr2
if len(arr2) == 0:
return arr1
return np.concatenate([arr1, arr2])
if self.priority_buffer:
batch1, batch2 = self.combined_replay_buffer.sample(self.batch_size, beta=0.4)
batch1_obs, batch1_actions, batch1_rewards, batch1_next_obs, batch1_dones, batch1_weights, batch1_idxes = batch1
batch2_obs, batch2_actions, batch2_rewards, batch2_next_obs, batch2_dones, batch2_weights, batch2_idxes = batch2
batch_obs = safe_concat(batch1_obs, batch2_obs)
batch_actions = safe_concat(batch1_actions, batch2_actions)
batch_rewards = safe_concat(batch1_rewards, batch2_rewards)
batch_next_obs = safe_concat(batch1_next_obs, batch2_next_obs)
batch_dones = safe_concat(batch1_dones, batch2_dones)
# batch_sumrs = safe_concat(batch1_sumrs, batch2_sumrs)
batch_weights = safe_concat(batch1_weights, batch2_weights)
batch_is_demo = safe_concat(np.zeros(batch1_obs.shape[0], dtype=np.float32),
np.ones(batch2_obs.shape[0], dtype=np.float32))
demo_ratio = batch2_obs.shape[0] / batch_obs.shape[0]
else:
# Uniform sampling
n_augment = int(self.batch_size * (len(self.augment_replay_buffer) /
(len(self.augment_replay_buffer) + len(self.replay_buffer))))
if n_augment > 0 and self.augment_replay_buffer.can_sample(n_augment):
batch1 = self.replay_buffer.sample(self.batch_size - n_augment)
batch2 = self.augment_replay_buffer.sample(n_augment)
batch1_obs, batch1_actions, batch1_rewards, batch1_next_obs, batch1_dones = batch1
batch2_obs, batch2_actions, batch2_rewards, batch2_next_obs, batch2_dones = batch2
batch_obs = safe_concat(batch1_obs, batch2_obs)
batch_actions = safe_concat(batch1_actions, batch2_actions)
batch_rewards = safe_concat(batch1_rewards, batch2_rewards)
batch_next_obs = safe_concat(batch1_next_obs, batch2_next_obs)
batch_dones = safe_concat(batch1_dones, batch2_dones)
# batch_sumrs = safe_concat(batch1_sumrs, batch2_sumrs)
batch_is_demo = safe_concat(np.zeros(batch1_obs.shape[0], dtype=np.float32),
np.ones(batch2_obs.shape[0], dtype=np.float32))
demo_ratio = batch2_obs.shape[0] / batch_obs.shape[0]
else:
batch = self.replay_buffer.sample(self.batch_size)
batch_obs, batch_actions, batch_rewards, batch_next_obs, batch_dones = batch
batch_is_demo = np.zeros(batch_obs.shape[0], dtype=np.float32)
demo_ratio = 0.0
batch_weights = np.ones(batch_obs.shape[0])
feed_dict = {
self.observations_ph: batch_obs,
self.actions_ph: batch_actions,
self.next_observations_ph: batch_next_obs,
self.rewards_ph: batch_rewards.reshape(self.batch_size, -1),
self.terminals_ph: batch_dones.reshape(self.batch_size, -1),
self.learning_rate_ph: learning_rate,
self.importance_weight_ph: batch_weights,
}
if hasattr(self, 'is_demo_ph'):
feed_dict[self.is_demo_ph] = batch_is_demo
# Do one gradient step
# and optionally compute log for tensorboard
if writer is not None:
out = self.sess.run([self.summary] + self.step_ops + [self.value_target], feed_dict)
summary = out.pop(0)
writer.add_summary(summary, step)
else:
out = self.sess.run(self.step_ops + [self.value_target], feed_dict)
# Unpack to monitor losses and entropy
policy_loss, qf1_loss, qf2_loss, value_loss, *values = out
entropy = values[4]
# update priority here
if self.priority_buffer:
qf1 = values[0]
value_target = values[-1]
batch_rewards = np.reshape(batch_rewards, (self.batch_size, -1))
batch_dones = np.reshape(batch_dones, (self.batch_size, -1))
priorities = batch_rewards + (1 - batch_dones) * self.gamma * value_target - qf1
priorities = np.abs(priorities) + 1e-4
priorities = np.squeeze(priorities, axis=-1).tolist()
if len(batch1_idxes):
self.replay_buffer.update_priorities(batch1_idxes, priorities[:len(batch1_idxes)])
if len(batch2_idxes):
self.augment_replay_buffer.update_priorities(batch2_idxes, priorities[-len(batch2_idxes):])
if self.log_ent_coef is not None:
ent_coef_loss, ent_coef = values[-3:-1]
return policy_loss, qf1_loss, qf2_loss, value_loss, entropy, demo_ratio, ent_coef_loss, ent_coef
return policy_loss, qf1_loss, qf2_loss, value_loss, entropy, demo_ratio
def learn(self, total_timesteps, callback=None, seed=None,
log_interval=4, tb_log_name="SAC", reset_num_timesteps=True, replay_wrapper=None):
new_tb_log = self._init_num_timesteps(reset_num_timesteps)
if replay_wrapper is not None:
self.replay_buffer = replay_wrapper(self.replay_buffer)
self.augment_replay_buffer = replay_wrapper(self.augment_replay_buffer)
if self.priority_buffer:
self.replay_buffer.set_model(self)
self.augment_replay_buffer.set_model(self)
self.combined_replay_buffer = DoublePrioritizedReplayWrapper(self.replay_buffer.replay_buffer, self.augment_replay_buffer.replay_buffer)
with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \
as writer:
self._setup_learn(seed)
self.env_id = self.env.env.get_attr('spec')[0].id
self.goal_dim = self.aug_env.get_attr('goal')[0].shape[0]
self.obs_dim = self.aug_env.observation_space.shape[0] - 2 * self.goal_dim
self.noise_mag = self.aug_env.get_attr('size_obstacle')[0][1]
self.n_object = self.aug_env.get_attr('n_object')[0]
self.reward_type = self.aug_env.get_attr('reward_type')[0]
# Transform to callable if needed
self.learning_rate = get_schedule_fn(self.learning_rate)
# Initial learning rate
current_lr = self.learning_rate(1)
select_subgoal_time = 0.
start_time = time.time()
episode_rewards = [[0.0] for _ in range(self.env.env.num_envs)]
episode_successes = [[] for _ in range(self.env.env.num_envs)]
if self.action_noise is not None:
self.action_noise.reset()
self.episode_reward = np.zeros((1,))
ep_info_buf = deque(maxlen=100)
pp_sr_buf = deque(maxlen=5)
stack_sr_buf = deque(maxlen=5)
n_updates = 0
start_decay = total_timesteps
# TODO: should set task_array before reset
if self.sequential and 'FetchStack' in self.env_id:
current_max_nobject = 2
self.env.env.env_method('set_task_array', [[(2, 0), (2, 1), (1, 0)]] * self.env.env.num_envs)
print('Set task_array to ', self.env.env.get_attr('task_array')[0])
self.env.env.env_method('set_random_ratio', [0.7] * self.env.env.num_envs)
if 'FetchStack' in self.env_id and self.curriculum:
self.start_augment_time = np.inf
obs = self.env.reset()
infos_values = []
self.ep_state_buf = [[] for _ in range(self.n_envs)]
self.ep_transition_buf = [[] for _ in range(self.n_envs)]
if 'FetchStack' in self.env_id:
self.ep_current_nobject = [[] for _ in range(self.n_envs)]
self.ep_selected_objects = [[] for _ in range(self.n_envs)]
self.ep_task_mode = [[] for _ in range(self.n_envs)]
self.ep_tower_height = [[] for _ in range(self.n_envs)]
self.restart_steps = [] # Every element should be scalar
self.subgoals = [] # Every element should be [*subgoals, ultimate goal]
self.restart_states = [] # list of (n_candidate) states
self.transition_storage = [] # every element is list of tuples. length of every element should match restart steps
if 'FetchStack' in self.env_id:
self.current_nobject = []
self.selected_objects = []
self.task_mode = []
# For filtering subgoals
self.mean_value_buf = deque(maxlen=500)
num_augment_ep_buf = deque(maxlen=100)
num_success_augment_ep_buf = deque(maxlen=100)
def convert_dict_to_obs(dict_obs):
assert isinstance(dict_obs, dict)
return np.concatenate([dict_obs[key] for key in ['observation', 'achieved_goal', 'desired_goal']])
def augment_cond():
if 'FetchStack' in self.env_id:
if (not infos[idx]['is_success']) and task_modes[idx] == 1 and current_nobjects[idx] >= 2:
return True
return False
elif 'MasspointMaze' in self.env_id or 'MasspointPushDoubleObstacle' in self.env_id :
if not infos[idx]['is_success']:
return True
return False
else:
if (not infos[idx]['is_success']) and np.argmax(goal[3:]) == 0:
return True
return False
def log_debug_value(value1, value2, goal_idx, is_success):
if not os.path.exists(os.path.join(logger.get_dir(), 'debug_value.csv')):
with open(os.path.join(logger.get_dir(), 'debug_value.csv'), 'a', newline='') as csvfile:
csvwriter = csv.writer(csvfile, delimiter=',', quotechar=',', quoting=csv.QUOTE_MINIMAL)
title = ['value1', 'value2', 'goal_idx', 'is_success', 'num_timesteps']
csvwriter.writerow(title)
with open(os.path.join(logger.get_dir(), 'debug_value.csv'), 'a', newline='') as csvfile:
csvwriter = csv.writer(csvfile, delimiter=',', quotechar=',', quoting=csv.QUOTE_MINIMAL)
data = [value1, value2, goal_idx, int(is_success), self.num_timesteps]
csvwriter.writerow(data)
for step in range(total_timesteps):
if callback is not None:
# Only stop training if return value is False, not when it is None. This is for backwards
# compatibility with callbacks that have no return statement.
if callback(locals(), globals()) is False:
break
if self.curriculum and step % 3000 == 0:
if 'FetchStack' in self.env.env.get_attr('spec')[0].id:
# Stacking
pp_sr = eval_model(self.eval_env, self, current_max_nobject if self.sequential else self.n_object, 1.0,
init_on_table=(self.env.env.get_attr('spec')[0].id=='FetchStack-v2'))
pp_sr_buf.append(pp_sr)
stack_sr = eval_model(self.eval_env, self, current_max_nobject if self.sequential else self.n_object, 0.0,
init_on_table=(self.env.env.get_attr('spec')[0].id=='FetchStack-v2'))
stack_sr_buf.append(stack_sr)
print('Pick-and-place success rate', np.mean(pp_sr_buf))
if self.sequential:
if self.env.env.get_attr('random_ratio')[0] > 0.5 and np.mean(pp_sr_buf) > 0.8:
_ratio = 0.3
# Force start augment after mastering pick-and-place on 2 objs
if current_max_nobject == 2:
self.start_augment_time = self.num_timesteps
elif self.env.env.get_attr('random_ratio')[0] < 0.5 and current_max_nobject < self.n_object \
and np.mean(stack_sr_buf) > 1 / current_max_nobject:
_ratio = 0.7
current_max_nobject += 1
previous_task_array = self.env.env.get_attr('task_array')[0]
self.env.env.env_method('set_task_array', [
previous_task_array + [(current_max_nobject, j) for j in
range(current_max_nobject)]] * self.env.env.num_envs)
print('Set task_array to', self.env.env.get_attr('task_array')[0])
else:
_ratio = self.env.env.get_attr('random_ratio')[0]
else:
if start_decay == total_timesteps and np.mean(pp_sr_buf) > 0.8:
start_decay = step
# Force start augment after mastering pick-and-place on env.n_object objs
self.start_augment_time = self.num_timesteps
_ratio = np.clip(0.7 - (step - start_decay) / 2e6, 0.3, 0.7) # from 0.7 to 0.3
elif 'FetchPushWallObstacle' in self.env_id:
_ratio = max(1.0 - step / total_timesteps, 0.0)
else:
raise NotImplementedError
self.env.env.env_method('set_random_ratio', [_ratio] * self.env.env.num_envs)
print('Set random_ratio to', self.env.env.get_attr('random_ratio')[0])
# Before training starts, randomly sample actions
# from a uniform distribution for better exploration.
# Afterwards, use the learned policy
# if random_exploration is set to 0 (normal setting)
if (self.num_timesteps < self.learning_starts
or np.random.rand() < self.random_exploration):
# No need to rescale when sampling random action
rescaled_action = np.stack([self.env.action_space.sample() for _ in range(self.env.env.num_envs)],
axis=0)
action = rescaled_action
else:
action = self.policy_tf.step(obs, deterministic=False)
# Add noise to the action (improve exploration,
# not needed in general)
if self.action_noise is not None:
action = np.clip(action + self.action_noise(), -1, 1)
# Rescale from [-1, 1] to the correct bounds
rescaled_action = action * np.abs(self.action_space.low)
assert action.shape == (self.env.env.num_envs, ) + self.env.action_space.shape
internal_states = self.env.env.env_method('get_state')
if 'FetchStack' in self.env_id:
current_nobjects = self.env.env.get_attr('current_nobject')
selected_objects = self.env.env.get_attr('selected_objects')
task_modes = self.env.env.get_attr('task_mode')
tower_height = self.env.env.get_attr('tower_height')
for i in range(self.n_envs):
self.ep_state_buf[i].append(internal_states[i])
if 'FetchStack' in self.env_id:
self.ep_current_nobject[i].append(current_nobjects[i])
self.ep_selected_objects[i].append(selected_objects[i])
self.ep_task_mode[i].append(task_modes[i])
self.ep_tower_height[i].append(tower_height[i])
new_obs, rewards, dones, infos = self.env.step(rescaled_action)
next_obs = new_obs.copy()
for i in range(self.n_envs):
if dones[i]:
next_obs[i] = self.env.convert_dict_to_obs(infos[i]['terminal_observation'])
self.ep_transition_buf[i].append((obs[i], action[i], rewards[i], next_obs[i], dones[i]))
# Store transition in the replay buffer.
self.replay_buffer.add(obs, action, rewards, next_obs, dones)
obs = new_obs
for idx, _done in enumerate(dones):
episode_rewards[idx][-1] += rewards[idx]
if _done:
episode_rewards[idx].append(0.0)
maybe_is_success = infos[idx].get('is_success')
if maybe_is_success is not None:
episode_successes[idx].append(float(maybe_is_success))
# Retrieve reward and episode length if using Monitor wrapper
for _info in infos:
maybe_ep_info = _info.get('episode')
if maybe_ep_info is not None:
ep_info_buf.extend([maybe_ep_info])
if writer is not None:
# Write reward per episode to tensorboard
ep_reward = np.reshape(rewards, (self.env.env.num_envs, -1))
ep_done = np.reshape(dones, (self.env.env.num_envs, -1))
self.episode_reward = total_episode_reward_logger(self.episode_reward, ep_reward,
ep_done, writer, self.num_timesteps)
# episode augmentation
for idx, done in enumerate(dones):
if self.num_timesteps >= self.start_augment_time and done:
goal = self.ep_transition_buf[idx][0][0][-self.goal_dim:]
if augment_cond():
# Do augmentation
# Sample start step and perturbation
select_subgoal_time0 = time.time()
_restart_steps, _subgoals = self.select_subgoal(self.ep_transition_buf[idx],
k=self.n_subgoal,
tower_height=self.ep_tower_height[idx] if 'FetchStack' in self.env_id else None)
select_subgoal_time += (time.time() - select_subgoal_time0)
# print('select subgoal time', select_subgoal_time)
assert isinstance(_restart_steps, np.ndarray)
assert isinstance(_subgoals, np.ndarray)
for j in range(_restart_steps.shape[0]):
self.restart_steps.append(_restart_steps[j])
self.subgoals.append([np.array(_subgoals[j]), goal.copy()])
assert len(self.subgoals[-1]) == 2
self.restart_states.append(self.ep_state_buf[idx][_restart_steps[j]])
self.transition_storage.append(self.ep_transition_buf[idx][:_restart_steps[j]])
if 'FetchStack' in self.env_id:
self.current_nobject.append(self.ep_current_nobject[idx][0])
self.selected_objects.append(self.ep_selected_objects[idx][0])
self.task_mode.append(self.ep_task_mode[idx][0])
if done:
self.ep_state_buf[idx] = []
self.ep_transition_buf[idx] = []
if 'FetchStack' in self.env_id:
self.ep_current_nobject[idx] = []
self.ep_selected_objects[idx] = []
self.ep_task_mode[idx] = []
self.ep_tower_height[idx] = []
def switch_subgoal(switch_goal_flag, current_obs):
for idx, flag in enumerate(switch_goal_flag):
if flag:
env_subgoals[idx].pop(0)
# self.aug_env.set_attr('goal', env_subgoals[idx][0], indices=idx)
self.aug_env.env_method('set_goal', [env_subgoals[idx][0]], indices=idx)
if 'FetchStack' in self.env_id:
# Use stack as ultimate task.
assert self.task_mode[idx] == 1
self.aug_env.env_method('set_task_mode', [self.task_mode[idx]], indices=idx)
switch_goal_flag[idx] = False
current_obs[idx] = convert_dict_to_obs(self.aug_env.env_method('get_obs', indices=idx)[0])
while (len(self.restart_steps) >= self.aug_env.num_envs):
# TODO Hard work here
env_restart_steps = self.restart_steps[:self.aug_env.num_envs]
env_subgoals = self.subgoals[:self.aug_env.num_envs]
temp_subgoals = [goals[-2] for goals in env_subgoals].copy()
ultimate_goals = [goals[-1] for goals in env_subgoals]
env_storage = self.transition_storage[:self.aug_env.num_envs]
env_increment_storage = [[] for _ in range(self.aug_env.num_envs)]
self.aug_env.env_method('set_goal', [env_subgoals[idx][0] for idx in range(self.aug_env.num_envs)])
switch_goal_flag = [False for _ in range(self.aug_env.num_envs)]
env_end_flag = [False for _ in range(self.aug_env.num_envs)]
env_end_step = [np.inf for _ in range(self.aug_env.num_envs)]
env_restart_state = self.restart_states[:self.aug_env.num_envs]
self.aug_env.env_method('set_state', env_restart_state)
if 'FetchStack' in self.env_id:
self.aug_env.env_method('set_current_nobject', self.current_nobject[:self.aug_env.num_envs])
self.aug_env.env_method('set_selected_objects', self.selected_objects[:self.aug_env.num_envs])
# Use pick and place as sub-task
self.aug_env.env_method('set_task_mode', np.zeros(self.aug_env.num_envs))
env_obs = self.aug_env.env_method('get_obs')
env_obs = [convert_dict_to_obs(d) for d in env_obs]
increment_step = 0
while not sum(env_end_flag) == self.aug_env.num_envs:
# Switch subgoal according to switch_goal_flag, and update observation
switch_subgoal(switch_goal_flag, env_obs)
env_action, _ = self.predict(np.array(env_obs))
if 'FetchStack' in self.env_id:
relabel_env_obs = self.aug_env.env_method('switch_obs_goal', env_obs, ultimate_goals,
self.task_mode)
else:
relabel_env_obs = self.aug_env.env_method('switch_obs_goal', env_obs, ultimate_goals)
clipped_actions = env_action
# Clip the actions to avoid out of bound error
if isinstance(self.aug_env.action_space, gym.spaces.Box):
clipped_actions = np.clip(env_action, self.aug_env.action_space.low,
self.aug_env.action_space.high)
env_next_obs, _, _, env_info = self.aug_env.step(clipped_actions)
self.num_aug_steps += (self.aug_env.num_envs - sum(env_end_flag))
if self.reward_type == 'sparse':
temp_info = [None for _ in range(self.aug_env.num_envs)]
else:
temp_info = [{'previous_obs': env_obs[i]} for i in range(self.aug_env.num_envs)]
if 'FetchStack' in self.env_id:
_retask_env_next_obs = env_next_obs.copy()
_retask_env_next_obs[:, self.obs_dim - 2:self.obs_dim] = 0
_retask_env_next_obs[:, self.obs_dim - 1] = 1 # Stack
relabel_env_next_obs = self.aug_env.env_method('switch_obs_goal', env_next_obs, ultimate_goals, self.task_mode)
env_reward = self.aug_env.env_method('compute_reward', _retask_env_next_obs, ultimate_goals,
temp_info)
if self.reward_type != "sparse":
env_reward_and_success = self.aug_env.env_method('compute_reward_and_success',
_retask_env_next_obs, ultimate_goals,
temp_info)
else:
relabel_env_next_obs = self.aug_env.env_method('switch_obs_goal', env_next_obs,
ultimate_goals)
env_reward = self.aug_env.env_method('compute_reward', env_next_obs, ultimate_goals,
temp_info)
if self.reward_type != "sparse":
env_reward_and_success = self.aug_env.env_method('compute_reward_and_success',
env_next_obs, ultimate_goals,
temp_info)
for idx in range(self.aug_env.num_envs):
# obs, act, reward, next_obs, done
env_increment_storage[idx].append(
(relabel_env_obs[idx], env_action[idx], env_reward[idx], relabel_env_next_obs[idx], False))
# if idx == 0:
# print(increment_step, env_obs[idx][:9], env_next_obs[idx][:9], env_reward[idx])
env_obs = env_next_obs
increment_step += 1
# print('increment step', increment_step)
for idx, info in enumerate(env_info):
# Special case, the agent succeeds the final goal half way
if self.reward_type == 'sparse' and env_reward[idx] > 0 and env_end_flag[idx] is False:
env_end_flag[idx] = True
env_end_step[idx] = env_restart_steps[idx] + increment_step
elif self.reward_type != 'sparse' and env_reward_and_success[idx][1] and env_end_flag[
idx] is False:
env_end_flag[idx] = True
env_end_step[idx] = env_restart_steps[idx] + increment_step
# Exceed time limit
if env_end_flag[idx] is False and env_restart_steps[idx] + increment_step \
> self.get_horizon(self.current_nobject[idx] if 'FetchStack' in self.env_id else None):
env_end_flag[idx] = True
# But env_end_step is still np.inf
if info['is_success']:
if len(env_subgoals[idx]) >= 2:
switch_goal_flag[idx] = True
# if idx == 0:
# print('switch goal')
elif env_end_flag[idx] == False:
# this is the end
env_end_flag[idx] = True
env_end_step[idx] = env_restart_steps[idx] + increment_step
else:
pass
if increment_step >= self.get_horizon(max(self.current_nobject[:self.aug_env.num_envs])
if 'FetchStack' in self.env_id else None) \
- min(env_restart_steps):
break
# print('end step', env_end_step)
for idx, end_step in enumerate(env_end_step):
if end_step <= self.get_horizon(self.current_nobject[idx] if 'FetchStack' in self.env_id else None):
# log_debug_value(self.debug_value1[idx], self.debug_value2[idx], np.argmax(temp_subgoals[idx][3:]), True)
# print(temp_subgoals[idx])
# is_self_aug = temp_subgoals[idx][3]
transitions = env_increment_storage[idx][:end_step - env_restart_steps[idx]]
for i in range(len(env_storage[idx])):
if isinstance(self.augment_replay_buffer.replay_buffer, MultiWorkerReplayBuffer) \
or isinstance(self.augment_replay_buffer.replay_buffer, PrioritizedMultiWorkerReplayBuffer):
self.augment_replay_buffer.add(
*([np.expand_dims(item, axis=0) for item in env_storage[idx][i]]))
else:
self.augment_replay_buffer.add(*(env_storage[idx][i]))
for i in range(len(transitions)):
if i == len(transitions) - 1:
temp = list(transitions[i])
temp[-1] = True
transitions[i] = tuple(temp)
if isinstance(self.augment_replay_buffer.replay_buffer, MultiWorkerReplayBuffer) \
or isinstance(self.augment_replay_buffer.replay_buffer, PrioritizedMultiWorkerReplayBuffer):
self.augment_replay_buffer.add(
*([np.expand_dims(item, axis=0) for item in transitions[i]]))
else:
self.augment_replay_buffer.add(*(transitions[i]))
# else:
# log_debug_value(self.debug_value1[idx], self.debug_value2[idx], np.argmax(temp_subgoals[idx][3:]), False)
self.restart_steps = self.restart_steps[self.aug_env.num_envs:]
self.subgoals = self.subgoals[self.aug_env.num_envs:]
self.restart_states = self.restart_states[self.aug_env.num_envs:]
self.transition_storage = self.transition_storage[self.aug_env.num_envs:]
if 'FetchStack' in self.env_id:
self.current_nobject = self.current_nobject[self.aug_env.num_envs:]
self.selected_objects = self.selected_objects[self.aug_env.num_envs:]
self.task_mode = self.task_mode[self.aug_env.num_envs:]
if step % self.train_freq == 0:
mb_infos_vals = []
# Update policy, critics and target networks
for grad_step in range(self.gradient_steps):
# Break if the warmup phase is not over
# or if there are not enough samples in the replay buffer
if not self.replay_buffer.can_sample(self.batch_size) \
or self.num_timesteps < self.learning_starts:
break
n_updates += 1
# Compute current learning_rate
frac = 1.0 - step / total_timesteps
current_lr = self.learning_rate(frac)
# Update policy and critics (q functions)
mb_infos_vals.append(self._train_step(step, writer, current_lr))
# Update target network
if (step + grad_step) % self.target_update_interval == 0:
# Update target network
self.sess.run(self.target_update_op)
# Log losses and entropy, useful for monitor training
if len(mb_infos_vals) > 0:
infos_values = np.mean(mb_infos_vals, axis=0)
if len(episode_rewards[0][-101:-1]) == 0:
mean_reward = -np.inf
else:
mean_reward = round(float(
np.mean(np.concatenate([episode_rewards[i][-101:-1] for i in range(self.env.env.num_envs)]))),
1)
num_episodes = sum([len(episode_rewards[i]) for i in range(len(episode_rewards))])
self.num_timesteps += self.env.env.num_envs
# Display training infos
if self.verbose >= 1 and dones[0] and log_interval is not None and len(episode_rewards[0]) % (log_interval // self.env.env.num_envs) == 0:
fps = int(self.num_timesteps / (time.time() - start_time))
logger.logkv("episodes", num_episodes)
logger.logkv("mean 100 episode reward", mean_reward)
if len(ep_info_buf) > 0 and len(ep_info_buf[0]) > 0:
logger.logkv('ep_rewmean', safe_mean([ep_info['r'] for ep_info in ep_info_buf]))
logger.logkv('eplenmean', safe_mean([ep_info['l'] for ep_info in ep_info_buf]))
logger.logkv("n_updates", n_updates)
logger.logkv("current_lr", current_lr)
logger.logkv("fps", fps)
logger.logkv('time_elapsed', int(time.time() - start_time))
logger.logkv('select subgoal time', select_subgoal_time)
if len(episode_successes[0]) > 0:
logger.logkv("success rate", np.mean(np.concatenate([episode_successes[i][-100:] for i in range(self.env.env.num_envs)])))
if len(infos_values) > 0:
for (name, val) in zip(self.infos_names, infos_values):
logger.logkv(name, val)
logger.logkv('augmented steps', len(self.augment_replay_buffer))
logger.logkv("original_timesteps", self.num_timesteps)
logger.logkv("total timesteps", self.num_timesteps + self.num_aug_steps)
logger.logkv("random_ratio", self.env.env.get_attr('random_ratio')[0])
logger.dumpkvs()
# Reset infos:
infos_values = []
return self
def get_horizon(self, current_nobject):
if 'FetchStack' in self.env_id and self.sequential:
return max(current_nobject * 50, 100)
return self.env.env.get_attr('spec')[0].max_episode_steps
def select_subgoal(self, transition_buf, k, tower_height=None):
if 'FetchStack' in self.env_id:
assert tower_height is not None
obs_buf, *_ = zip(*transition_buf)
obs_buf = np.asarray(obs_buf)
if 'FetchStack' in self.env_id and tower_height[-1] + 0.05 - obs_buf[-1][self.obs_dim + self.goal_dim + 2] > 0.01:
# Tower height is equal to (or higher than) goal height.
# print('towerheight exceed goalheight')
return np.array([]), np.array([])
sample_t = np.random.randint(0, len(transition_buf), 4096)
sample_obs = obs_buf[sample_t]
noise = np.random.uniform(low=-self.noise_mag, high=self.noise_mag, size=(len(sample_t), 2))
sample_obs_buf = []
subgoal_obs_buf = []
filter_low = 0.5
filter_high = 1.0
if 'FetchPushWallobstacle' in self.env_id:
filter_low = 0.7
filter_high = 0.9 if self.env.env.get_attr('random_ratio')[0] < 1 else 1.0
elif 'MasspointMaze' in self.env_id:
filter_low = 0.7
filter_high = 0.9
if 'FetchStack' in self.env_id:
ultimate_idx = np.argmax(sample_obs[0][self.obs_dim + self.goal_dim + 3:])
filter_subgoal = True
sample_height = np.array(tower_height)[sample_t]
for object_idx in range(0, self.n_object):
if np.linalg.norm(sample_obs[0][3 + object_idx * 3: 3 + (object_idx + 1) * 3]) < 1e-3:
# This object is masked
continue
obstacle_xy = sample_obs[:, 3 * (object_idx + 1):3 * (object_idx + 1) + 2] + noise
# Find how many objects have been stacked
obstacle_height = np.expand_dims(sample_height + 0.05, axis=1)
# obstacle_height = max(sample_obs[0][self.obs_dim + self.goal_dim + 2] - 0.05, 0.425) * np.ones((len(sample_t), 1))
obstacle_xy = np.concatenate([obstacle_xy, obstacle_height], axis=-1)
sample_obs[:, 3 * (object_idx + 1):3 * (object_idx + 1) + 3] = obstacle_xy
sample_obs[:, 3 * (object_idx + 1 + self.n_object):3 * (object_idx + 1 + self.n_object) + 3] \
= sample_obs[:, 3 * (object_idx + 1):3 * (object_idx + 1) + 3] - sample_obs[:, 0:3]
sample_obs[:, self.obs_dim:self.obs_dim + 3] = sample_obs[:,
3 * (ultimate_idx + 1):3 * (ultimate_idx + 1) + 3]
sample_obs_buf.append(sample_obs.copy())
subgoal_obs = obs_buf[sample_t]
# if debug:
# subgoal_obs = np.tile(subgoal_obs, (2, 1))
subgoal_obs[:, self.obs_dim - 2: self.obs_dim] = np.array([1, 0]) # Pick and place
subgoal_obs[:, self.obs_dim:self.obs_dim + 3] = subgoal_obs[:,
3 * (object_idx + 1):3 * (object_idx + 1) + 3]
one_hot = np.zeros(self.n_object)
one_hot[object_idx] = 1
subgoal_obs[:, self.obs_dim + 3:self.obs_dim + self.goal_dim] = one_hot
subgoal_obs[:, self.obs_dim + self.goal_dim:self.obs_dim + self.goal_dim + 3] = obstacle_xy
# subgoal_obs[:, self.obs_dim + self.goal_dim + 2:self.obs_dim + self.goal_dim + 3] = subgoal_obs[:, 3 * (
# object_idx + 1) + 2:3 * (object_idx + 1) + 3]
subgoal_obs[:, self.obs_dim + self.goal_dim + 3:self.obs_dim + self.goal_dim * 2] = one_hot
subgoal_obs_buf.append(subgoal_obs)
elif 'MasspointMaze' in self.env_id:
filter_subgoal = True
ego_xy = sample_obs[:, 0:2] + noise
# Path 2
sample_obs[:, 0: 2] = ego_xy
sample_obs[:, self.obs_dim: self.obs_dim + 2] = ego_xy
sample_obs_buf.append(sample_obs.copy())
# Path 1
subgoal_obs = obs_buf[sample_t]
subgoal_obs[:, self.obs_dim:self.obs_dim + 3] = subgoal_obs[:, 0:3]
subgoal_obs[:, self.obs_dim + self.goal_dim:self.obs_dim + self.goal_dim + 2] = ego_xy
if self.env_id != 'MasspointMaze-v3':
subgoal_obs[:, self.obs_dim + self.goal_dim + 2:self.obs_dim + self.goal_dim + 3] = subgoal_obs[:, 2:3]
subgoal_obs_buf.append(subgoal_obs)
else:
ultimate_idx = np.argmax(sample_obs[0][self.obs_dim + self.goal_dim + 3:])
filter_subgoal = True
for object_idx in range(self.n_object): # Also search self position
obstacle_xy = sample_obs[:, 3 * (object_idx+1):3*(object_idx+1) + 2] + noise
# Path2
if object_idx == self.n_object - 1 and self.env_id is 'MasspointPushDoubleObstacle-v2':
sample_obs[0: 2] = obstacle_xy
sample_obs[:, 3*(object_idx+1):3*(object_idx+1)+2] = obstacle_xy
sample_obs[:, 3*(object_idx+1+self.n_object):3*(object_idx+1+self.n_object)+2] \
= sample_obs[:, 3*(object_idx+1):3*(object_idx+1)+2] - sample_obs[:, 0:2]
# achieved_goal
sample_obs[:, self.obs_dim:self.obs_dim + 3] \
= sample_obs[:, 3 * (ultimate_idx + 1):3 * (ultimate_idx + 1) + 3]
sample_obs_buf.append(sample_obs.copy())
# Path1
subgoal_obs = obs_buf[sample_t]
# achieved_goal
subgoal_obs[:, self.obs_dim:self.obs_dim+3] = subgoal_obs[:, 3*(object_idx+1):3*(object_idx+1)+3]
one_hot = np.zeros(self.n_object)
one_hot[object_idx] = 1
subgoal_obs[:, self.obs_dim+3:self.obs_dim+self.goal_dim] = one_hot
# desired_goal
subgoal_obs[:, self.obs_dim+self.goal_dim:self.obs_dim+self.goal_dim+2] = obstacle_xy
subgoal_obs[:, self.obs_dim+self.goal_dim+2:self.obs_dim+self.goal_dim+3] \
= subgoal_obs[:, 3*(object_idx+1)+2:3*(object_idx+1)+3]
subgoal_obs[:, self.obs_dim+self.goal_dim+3:self.obs_dim+self.goal_dim*2] = one_hot
subgoal_obs_buf.append(subgoal_obs)
# print(len(sample_obs_buf))
if len(sample_obs_buf) == 0:
return np.array([]), np.array([])
sample_obs_buf = np.concatenate(sample_obs_buf, axis=0)
# value2 = self.model.value(sample_obs_buf)
subgoal_obs_buf = np.concatenate(subgoal_obs_buf)
# value1 = self.model.value(subgoal_obs_buf)
# _values = self.model.value(np.concatenate([sample_obs_buf, subgoal_obs_buf], axis=0))
feed_dict = {self.observations_ph: np.concatenate([sample_obs_buf, subgoal_obs_buf], axis=0)}
_values = np.squeeze(self.sess.run(self.step_ops[6], feed_dict), axis=-1)
value2 = _values[:sample_obs_buf.shape[0]]
value1 = _values[sample_obs_buf.shape[0]:]
normalize_value1 = (value1 - np.min(value1)) / (np.max(value1) - np.min(value1))
normalize_value2 = (value2 - np.min(value2)) / (np.max(value2) - np.min(value2))
# best_idx = np.argmax(normalize_value1 * normalize_value2)
ind = np.argsort(normalize_value1 * normalize_value2)
good_ind = ind[-k:]
if filter_subgoal:
mean_values = (value1[good_ind] + value2[good_ind]) / 2
# print(mean_values)
assert mean_values.shape[0] == k
# Filter by hard threshold
# In the beginning, the value fn tends to over estimate
filtered_idx = np.where(np.logical_and(mean_values < filter_high, mean_values > filter_low))[0]
good_ind = good_ind[filtered_idx]
restart_step = sample_t[good_ind % len(sample_t)]
subgoal = subgoal_obs_buf[good_ind, self.obs_dim + self.goal_dim:self.obs_dim + self.goal_dim * 2]
return restart_step, subgoal
def logpac(self, action):
from stable_baselines.sac.policies import gaussian_likelihood, EPS
act_mu = self.policy_tf.act_mu
log_std = tf.log(self.policy_tf.std)
# Potentially we need to clip atanh and pass gradient
log_u = gaussian_likelihood(tf.atanh(tf.clip_by_value(action, -0.99, 0.99)), act_mu, log_std)
log_ac = log_u - tf.reduce_sum(tf.log(1 - action ** 2 + EPS), axis=1)
return log_ac
def action_probability(self, observation, state=None, mask=None, actions=None, logp=False):
if actions is not None:
raise ValueError("Error: SAC does not have action probabilities.")
warnings.warn("Even though SAC has a Gaussian policy, it cannot return a distribution as it "
"is squashed by a tanh before being scaled and ouputed.")
return None
def predict(self, observation, state=None, mask=None, deterministic=True):
observation = np.array(observation)
vectorized_env = self._is_vectorized_observation(observation, self.observation_space)
observation = observation.reshape((-1,) + self.observation_space.shape)
actions = self.policy_tf.step(observation, deterministic=deterministic)
actions = actions.reshape((-1,) + self.action_space.shape) # reshape to the correct action shape
actions = actions * np.abs(self.action_space.low) # scale the output for the prediction
if not vectorized_env:
actions = actions[0]
return actions, None
def get_parameter_list(self):
return (self.params +
self.target_params)
def save(self, save_path, cloudpickle=False):
data = {
"learning_rate": self.learning_rate,
"buffer_size": self.buffer_size,
"learning_starts": self.learning_starts,
"train_freq": self.train_freq,
"batch_size": self.batch_size,
"tau": self.tau,
"ent_coef": self.ent_coef if isinstance(self.ent_coef, float) else 'auto',
"target_entropy": self.target_entropy,
# Should we also store the replay buffer?
# this may lead to high memory usage
# with all transition inside
# "replay_buffer": self.replay_buffer
"gamma": self.gamma,
"verbose": self.verbose,
"observation_space": self.observation_space,
"action_space": self.action_space,
"policy": self.policy,
"n_envs": self.n_envs,
"action_noise": self.action_noise,
"random_exploration": self.random_exploration,
"_vectorize_action": self._vectorize_action,
"policy_kwargs": self.policy_kwargs
}
params_to_save = self.get_parameters()
self._save_to_file(save_path, data=data, params=params_to_save, cloudpickle=cloudpickle)
| [] |
2024-01-10 | IrisLi17/self-imitation-via-reduction | baselines~sac_parallel~sac_parallel.py | import sys
import time
import multiprocessing
from collections import deque
import warnings
import numpy as np
import tensorflow as tf
from stable_baselines.a2c.utils import total_episode_reward_logger
from stable_baselines.common import tf_util, OffPolicyRLModel, SetVerbosity, TensorboardWriter
from stable_baselines.common.vec_env import VecEnv
from utils.replay_buffer import MultiWorkerReplayBuffer, PrioritizedMultiWorkerReplayBuffer
from stable_baselines.ppo2.ppo2 import safe_mean, get_schedule_fn
from stable_baselines.sac.policies import SACPolicy
from stable_baselines import logger
from utils.eval_stack import eval_model
def get_vars(scope):
"""
Alias for get_trainable_vars
:param scope: (str)
:return: [tf Variable]
"""
return tf_util.get_trainable_vars(scope)
class SAC_parallel(OffPolicyRLModel):
"""
Soft Actor-Critic (SAC)
Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor,
This implementation borrows code from original implementation (https://github.com/haarnoja/sac)
from OpenAI Spinning Up (https://github.com/openai/spinningup) and from the Softlearning repo
(https://github.com/rail-berkeley/softlearning/)
Paper: https://arxiv.org/abs/1801.01290
Introduction to SAC: https://spinningup.openai.com/en/latest/algorithms/sac.html
:param policy: (SACPolicy or str) The policy model to use (MlpPolicy, CnnPolicy, LnMlpPolicy, ...)
:param env: (Gym environment or str) The environment to learn from (if registered in Gym, can be str)
:param gamma: (float) the discount factor
:param learning_rate: (float or callable) learning rate for adam optimizer,
the same learning rate will be used for all networks (Q-Values, Actor and Value function)
it can be a function of the current progress (from 1 to 0)
:param buffer_size: (int) size of the replay buffer
:param batch_size: (int) Minibatch size for each gradient update
:param tau: (float) the soft update coefficient ("polyak update", between 0 and 1)
:param ent_coef: (str or float) Entropy regularization coefficient. (Equivalent to
inverse of reward scale in the original SAC paper.) Controlling exploration/exploitation trade-off.
Set it to 'auto' to learn it automatically (and 'auto_0.1' for using 0.1 as initial value)
:param train_freq: (int) Update the model every `train_freq` steps.
:param learning_starts: (int) how many steps of the model to collect transitions for before learning starts
:param target_update_interval: (int) update the target network every `target_network_update_freq` steps.
:param gradient_steps: (int) How many gradient update after each step
:param target_entropy: (str or float) target entropy when learning ent_coef (ent_coef = 'auto')
:param action_noise: (ActionNoise) the action noise type (None by default), this can help
for hard exploration problem. Cf DDPG for the different action noise type.
:param random_exploration: (float) Probability of taking a random action (as in an epsilon-greedy strategy)
This is not needed for SAC normally but can help exploring when using HER + SAC.
This hack was present in the original OpenAI Baselines repo (DDPG + HER)
:param verbose: (int) the verbosity level: 0 none, 1 training information, 2 tensorflow debug
:param tensorboard_log: (str) the log location for tensorboard (if None, no logging)
:param _init_setup_model: (bool) Whether or not to build the network at the creation of the instance
:param policy_kwargs: (dict) additional arguments to be passed to the policy on creation
:param full_tensorboard_log: (bool) enable additional logging when using tensorboard
Note: this has no effect on SAC logging for now
"""
def __init__(self, policy, env, gamma=0.99, learning_rate=3e-4, buffer_size=50000,
priority_buffer=False, alpha=0.6,
learning_starts=100, train_freq=1, batch_size=64,
tau=0.005, ent_coef='auto', target_update_interval=1,
gradient_steps=1, target_entropy='auto', action_noise=None,
eval_env=None, curriculum=False, sequential=False,
sil=False, sil_coef=1.0,
random_exploration=0.0, verbose=0, tensorboard_log=None,
_init_setup_model=True, policy_kwargs=None, full_tensorboard_log=False):
super(SAC_parallel, self).__init__(policy=policy, env=env, replay_buffer=None, verbose=verbose,
policy_base=SACPolicy, requires_vec_env=False, policy_kwargs=policy_kwargs)
self.buffer_size = buffer_size
self.priority_buffer = priority_buffer
self.alpha = alpha
self.learning_rate = learning_rate
self.learning_starts = learning_starts
self.train_freq = train_freq
self.batch_size = batch_size
self.tau = tau
# In the original paper, same learning rate is used for all networks
# self.policy_lr = learning_rate
# self.qf_lr = learning_rate
# self.vf_lr = learning_rate
# Entropy coefficient / Entropy temperature
# Inverse of the reward scale
self.ent_coef = ent_coef
self.target_update_interval = target_update_interval
self.gradient_steps = gradient_steps
self.gamma = gamma
self.action_noise = action_noise
self.random_exploration = random_exploration
self.eval_env = eval_env
self.curriculum = curriculum
self.sequential = sequential
self.sil = sil
self.sil_coef = sil_coef
self.value_fn = None
self.graph = None
self.replay_buffer = None
self.episode_reward = None
self.sess = None
self.tensorboard_log = tensorboard_log
self.verbose = verbose
self.params = None
self.summary = None
self.policy_tf = None
self.target_entropy = target_entropy
self.full_tensorboard_log = full_tensorboard_log
self.obs_target = None
self.target_policy = None
self.actions_ph = None
self.rewards_ph = None
self.terminals_ph = None
self.observations_ph = None
self.action_target = None
self.next_observations_ph = None
self.value_target = None
self.step_ops = None
self.target_update_op = None
self.infos_names = None
self.entropy = None
self.target_params = None
self.learning_rate_ph = None
self.processed_obs_ph = None
self.processed_next_obs_ph = None
self.log_ent_coef = None
self.logpac_op = None
if _init_setup_model:
self.setup_model()
def _get_pretrain_placeholders(self):
policy = self.policy_tf
# Rescale
deterministic_action = self.deterministic_action * np.abs(self.action_space.low)
return policy.obs_ph, self.actions_ph, deterministic_action
def setup_model(self):
with SetVerbosity(self.verbose):
self.graph = tf.Graph()
with self.graph.as_default():
n_cpu = multiprocessing.cpu_count()
if sys.platform == 'darwin':
n_cpu //= 2
self.sess = tf_util.make_session(num_cpu=n_cpu, graph=self.graph)
if hasattr(self.env, "env") and isinstance(self.env.env, VecEnv):
self.n_envs = self.env.env.num_envs
else:
self.n_envs = 1
if self.priority_buffer:
self.replay_buffer = PrioritizedMultiWorkerReplayBuffer(self.buffer_size, self.alpha,
num_workers=self.env.env.num_envs,
gamma=self.gamma)
else:
self.replay_buffer = MultiWorkerReplayBuffer(self.buffer_size, num_workers=self.n_envs, gamma=self.gamma)
with tf.variable_scope("input", reuse=False):
# Create policy and target TF objects
self.policy_tf = self.policy(self.sess, self.observation_space, self.action_space,
**self.policy_kwargs)
self.target_policy = self.policy(self.sess, self.observation_space, self.action_space,
**self.policy_kwargs)
# Initialize Placeholders
self.observations_ph = self.policy_tf.obs_ph
# Normalized observation for pixels
self.processed_obs_ph = self.policy_tf.processed_obs
self.next_observations_ph = self.target_policy.obs_ph
self.processed_next_obs_ph = self.target_policy.processed_obs
self.action_target = self.target_policy.action_ph
self.terminals_ph = tf.placeholder(tf.float32, shape=(None, 1), name='terminals')
self.rewards_ph = tf.placeholder(tf.float32, shape=(None, 1), name='rewards')
self.actions_ph = tf.placeholder(tf.float32, shape=(None,) + self.action_space.shape,
name='actions')
self.learning_rate_ph = tf.placeholder(tf.float32, [], name="learning_rate_ph")
self.importance_weight_ph = tf.placeholder(tf.float32, shape=(None,), name='weights')
# self.sum_rs_ph = tf.placeholder(tf.float32, shape=(None, 1), name="sum_rs")
with tf.variable_scope("model", reuse=False):
# Create the policy
# first return value corresponds to deterministic actions
# policy_out corresponds to stochastic actions, used for training
# logp_pi is the log probabilty of actions taken by the policy
self.deterministic_action, policy_out, logp_pi = self.policy_tf.make_actor(self.processed_obs_ph)
# Monitor the entropy of the policy,
# this is not used for training
self.entropy = tf.reduce_mean(self.policy_tf.entropy)
# Use two Q-functions to improve performance by reducing overestimation bias.
qf1, qf2, value_fn = self.policy_tf.make_critics(self.processed_obs_ph, self.actions_ph,
create_qf=True, create_vf=True)
qf1_pi, qf2_pi, _ = self.policy_tf.make_critics(self.processed_obs_ph,
policy_out, create_qf=True, create_vf=False,
reuse=True)
# Target entropy is used when learning the entropy coefficient
if self.target_entropy == 'auto':
# automatically set target entropy if needed
self.target_entropy = -np.prod(self.env.action_space.shape).astype(np.float32)
else:
# Force conversion
# this will also throw an error for unexpected string
self.target_entropy = float(self.target_entropy)
# The entropy coefficient or entropy can be learned automatically
# see Automating Entropy Adjustment for Maximum Entropy RL section
# of https://arxiv.org/abs/1812.05905
if isinstance(self.ent_coef, str) and self.ent_coef.startswith('auto'):
# Default initial value of ent_coef when learned
init_value = 1.0
if '_' in self.ent_coef:
init_value = float(self.ent_coef.split('_')[1])
assert init_value > 0., "The initial value of ent_coef must be greater than 0"
self.log_ent_coef = tf.get_variable('log_ent_coef', dtype=tf.float32,
initializer=np.log(init_value).astype(np.float32))
self.ent_coef = tf.exp(self.log_ent_coef)
else:
# Force conversion to float
# this will throw an error if a malformed string (different from 'auto')
# is passed
self.ent_coef = float(self.ent_coef)
with tf.variable_scope("target", reuse=False):
# Create the value network
_, _, value_target = self.target_policy.make_critics(self.processed_next_obs_ph,
create_qf=False, create_vf=True)
self.value_target = value_target
with tf.variable_scope("loss", reuse=False):
# Take the min of the two Q-Values (Double-Q Learning)
min_qf_pi = tf.minimum(qf1_pi, qf2_pi)
# Target for Q value regression
q_backup = tf.stop_gradient(
self.rewards_ph +
(1 - self.terminals_ph) * self.gamma * self.value_target
)
# Compute Q-Function loss
# TODO: test with huber loss (it would avoid too high values)
qf1_loss = 0.5 * tf.reduce_mean(self.importance_weight_ph * (q_backup - qf1) ** 2)
qf2_loss = 0.5 * tf.reduce_mean(self.importance_weight_ph * (q_backup - qf2) ** 2)
# Compute the entropy temperature loss
# it is used when the entropy coefficient is learned
ent_coef_loss, entropy_optimizer = None, None
if not isinstance(self.ent_coef, float):
ent_coef_loss = -tf.reduce_mean(
self.log_ent_coef * tf.stop_gradient(logp_pi + self.target_entropy))
entropy_optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_ph)
# Compute the policy loss
# Alternative: policy_kl_loss = tf.reduce_mean(logp_pi - min_qf_pi)
policy_kl_loss = tf.reduce_mean(self.ent_coef * logp_pi - qf1_pi)
# Add optional SIL loss
if self.sil:
self.logpac_op = logp_ac = self.logpac(self.actions_ph)
policy_kl_loss += self.sil_coef * tf.reduce_mean(
-logp_ac * tf.stop_gradient(tf.nn.relu(qf1 - value_fn)))
# NOTE: in the original implementation, they have an additional
# regularization loss for the gaussian parameters
# this is not used for now
# policy_loss = (policy_kl_loss + policy_regularization_loss)
policy_loss = policy_kl_loss
# Target for value fn regression
# We update the vf towards the min of two Q-functions in order to
# reduce overestimation bias from function approximation error.
v_backup = tf.stop_gradient(min_qf_pi - self.ent_coef * logp_pi)
value_loss = 0.5 * tf.reduce_mean(self.importance_weight_ph * (value_fn - v_backup) ** 2)
values_losses = qf1_loss + qf2_loss + value_loss
# Policy train op
# (has to be separate from value train op, because min_qf_pi appears in policy_loss)
policy_optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_ph)
policy_train_op = policy_optimizer.minimize(policy_loss, var_list=get_vars('model/pi'))
# Value train op
value_optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_ph)
values_params = get_vars('model/values_fn')
source_params = get_vars("model/values_fn/vf")
target_params = get_vars("target/values_fn/vf")
# Polyak averaging for target variables
self.target_update_op = [
tf.assign(target, (1 - self.tau) * target + self.tau * source)
for target, source in zip(target_params, source_params)
]
# Initializing target to match source variables
target_init_op = [
tf.assign(target, source)
for target, source in zip(target_params, source_params)
]
# Control flow is used because sess.run otherwise evaluates in nondeterministic order
# and we first need to compute the policy action before computing q values losses
with tf.control_dependencies([policy_train_op]):
train_values_op = value_optimizer.minimize(values_losses, var_list=values_params)
self.infos_names = ['policy_loss', 'qf1_loss', 'qf2_loss', 'value_loss', 'entropy']
# All ops to call during one training step
self.step_ops = [policy_loss, qf1_loss, qf2_loss,
value_loss, qf1, qf2, value_fn, logp_pi,
self.entropy, policy_train_op, train_values_op]
# Add entropy coefficient optimization operation if needed
if ent_coef_loss is not None:
with tf.control_dependencies([train_values_op]):
ent_coef_op = entropy_optimizer.minimize(ent_coef_loss, var_list=self.log_ent_coef)
self.infos_names += ['ent_coef_loss', 'ent_coef']
self.step_ops += [ent_coef_op, ent_coef_loss, self.ent_coef]
# Monitor losses and entropy in tensorboard
tf.summary.scalar('policy_loss', policy_loss)
tf.summary.scalar('qf1_loss', qf1_loss)
tf.summary.scalar('qf2_loss', qf2_loss)
tf.summary.scalar('value_loss', value_loss)
tf.summary.scalar('entropy', self.entropy)
if ent_coef_loss is not None:
tf.summary.scalar('ent_coef_loss', ent_coef_loss)
tf.summary.scalar('ent_coef', self.ent_coef)
tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate_ph))
# Retrieve parameters that must be saved
self.params = get_vars("model")
self.target_params = get_vars("target/values_fn/vf")
# Initialize Variables and target network
with self.sess.as_default():
self.sess.run(tf.global_variables_initializer())
self.sess.run(target_init_op)
self.summary = tf.summary.merge_all()
def _train_step(self, step, writer, learning_rate):
# Sample a batch from the replay buffer
if self.priority_buffer:
batch = self.replay_buffer.sample(self.batch_size, beta=0.4)
batch_obs, batch_actions, batch_rewards, batch_next_obs, batch_dones, weights, idxes = batch
else:
batch = self.replay_buffer.sample(self.batch_size)
batch_obs, batch_actions, batch_rewards, batch_next_obs, batch_dones = batch
weights = np.ones(batch_obs.shape[0])
feed_dict = {
self.observations_ph: batch_obs,
self.actions_ph: batch_actions,
self.next_observations_ph: batch_next_obs,
self.rewards_ph: batch_rewards.reshape(self.batch_size, -1),
self.terminals_ph: batch_dones.reshape(self.batch_size, -1),
self.learning_rate_ph: learning_rate,
self.importance_weight_ph: weights,
}
# Do one gradient step
# and optionally compute log for tensorboard
if writer is not None:
out = self.sess.run([self.summary] + self.step_ops + [self.value_target], feed_dict)
summary = out.pop(0)
writer.add_summary(summary, step)
else:
out = self.sess.run(self.step_ops + [self.value_target], feed_dict)
# Unpack to monitor losses and entropy
policy_loss, qf1_loss, qf2_loss, value_loss, *values = out
entropy = values[4]
# Update priority
if self.priority_buffer:
qf1 = values[0]
value_target = values[-1]
batch_rewards = np.reshape(batch_rewards, (self.batch_size, -1))
batch_dones = np.reshape(batch_dones, (self.batch_size, -1))
priorities = batch_rewards + (1 - batch_dones) * self.gamma * value_target - qf1
priorities = np.abs(priorities) + 1e-4
priorities = np.squeeze(priorities, axis=-1).tolist()
self.replay_buffer.update_priorities(idxes, priorities)
if self.log_ent_coef is not None:
ent_coef_loss, ent_coef = values[-3:-1]
return policy_loss, qf1_loss, qf2_loss, value_loss, entropy, ent_coef_loss, ent_coef
return policy_loss, qf1_loss, qf2_loss, value_loss, entropy
def learn(self, total_timesteps, callback=None, seed=None,
log_interval=4, tb_log_name="SAC", reset_num_timesteps=True, replay_wrapper=None):
new_tb_log = self._init_num_timesteps(reset_num_timesteps)
if replay_wrapper is not None:
self.replay_buffer = replay_wrapper(self.replay_buffer)
if self.priority_buffer:
self.replay_buffer.set_model(self)
with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \
as writer:
self._setup_learn(seed)
self.env_id = self.env.env.get_attr('spec')[0].id
# Transform to callable if needed
self.learning_rate = get_schedule_fn(self.learning_rate)
# Initial learning rate
current_lr = self.learning_rate(1)
start_time = time.time()
store_time = 0.0
step_time = 0.0
train_time = 0.0
episode_rewards = [[0.0] for _ in range(self.env.env.num_envs)]
episode_successes = [[] for _ in range(self.env.env.num_envs)]
if self.action_noise is not None:
self.action_noise.reset()
assert isinstance(self.env.env, VecEnv)
self.episode_reward = np.zeros((1,))
ep_info_buf = deque(maxlen=100)
n_updates = 0
infos_values = []
pp_sr_buf = deque(maxlen=5)
stack_sr_buf = deque(maxlen=5)
start_decay = total_timesteps
if self.sequential and 'FetchStack' in self.env_id:
current_max_nobject = 2
self.env.env.env_method('set_task_array', [[(2, 0), (2, 1), (1, 0)]] * self.env.env.num_envs)
print('Set task_array to ', self.env.env.get_attr('task_array')[0])
self.env.env.env_method('set_random_ratio', [0.7] * self.env.env.num_envs)
obs = self.env.reset()
print(obs.shape)
for step in range(total_timesteps):
if callback is not None:
# Only stop training if return value is False, not when it is None. This is for backwards
# compatibility with callbacks that have no return statement.
if callback(locals(), globals()) is False:
break
if self.curriculum and step % 3000 == 0:
if 'FetchStack' in self.env.env.get_attr('spec')[0].id:
# Stacking
pp_sr = eval_model(self.eval_env, self, current_max_nobject if self.sequential else self.env.env.get_attr('n_object')[0], 1.0,
init_on_table=(self.env.env.get_attr('spec')[0].id == 'FetchStack-v2'))
pp_sr_buf.append(pp_sr)
stack_sr = eval_model(self.eval_env, self, current_max_nobject if self.sequential else self.env.env.get_attr('n_object')[0], 0.0,
init_on_table=(self.env.env.get_attr('spec')[0].id == 'FetchStack-v2'))
stack_sr_buf.append(stack_sr)
print('Pick-and-place success rate', np.mean(pp_sr_buf))
if self.sequential:
if self.env.env.get_attr('random_ratio')[0] > 0.5 and np.mean(pp_sr_buf) > 0.8:
_ratio = 0.3
elif self.env.env.get_attr('random_ratio')[0] < 0.5 \
and current_max_nobject < self.env.env.get_attr('n_object')[0] \
and np.mean(stack_sr_buf) > 1 / current_max_nobject:
_ratio = 0.7
current_max_nobject += 1
previous_task_array = self.env.env.get_attr('task_array')[0]
self.env.env.env_method('set_task_array', [
previous_task_array + [(current_max_nobject, j) for j in
range(current_max_nobject)]] * self.env.env.num_envs)
print('Set task_array to', self.env.env.get_attr('task_array')[0])
else:
_ratio = self.env.env.get_attr('random_ratio')[0]
else:
if start_decay == total_timesteps and np.mean(pp_sr_buf) > 0.8:
start_decay = step
_ratio = np.clip(0.7 - (step - start_decay) / 2e6, 0.3, 0.7) # from 0.7 to 0.3
elif 'FetchPushWallObstacle' in self.env_id:
_ratio = max(1.0 - step / total_timesteps, 0.0)
else:
raise NotImplementedError
self.env.env.env_method('set_random_ratio', [_ratio] * self.env.env.num_envs)
print('Set random_ratio to', self.env.env.get_attr('random_ratio')[0])
# Before training starts, randomly sample actions
# from a uniform distribution for better exploration.
# Afterwards, use the learned policy
# if random_exploration is set to 0 (normal setting)
if (self.num_timesteps < self.learning_starts
or np.random.rand() < self.random_exploration):
rescaled_action = np.stack([self.env.action_space.sample() for _ in range(self.env.env.num_envs)], axis=0)
action = rescaled_action
else:
action = self.policy_tf.step(obs, deterministic=False)
# Add noise to the action (improve exploration,
# not needed in general)
if self.action_noise is not None:
action = np.clip(action + self.action_noise(), -1, 1)
# Rescale from [-1, 1] to the correct bounds
rescaled_action = action * np.abs(self.action_space.low)
assert action.shape == (self.env.env.num_envs, ) + self.env.action_space.shape
step_time0 = time.time()
new_obs, reward, done, info = self.env.step(rescaled_action)
step_time += time.time() - step_time0
next_obs = new_obs.copy()
for idx, _done in enumerate(done):
if _done:
next_obs[idx] = self.env.convert_dict_to_obs(info[idx]['terminal_observation'])
# Store transition in the replay buffer.
store_time0 = time.time()
self.replay_buffer.add(obs, action, reward, next_obs, done)
store_time += time.time() - store_time0
obs = new_obs
for idx, _done in enumerate(done):
episode_rewards[idx][-1] += reward[idx]
if _done:
episode_rewards[idx].append(0.0)
maybe_is_success = info[idx].get('is_success')
if maybe_is_success is not None:
episode_successes[idx].append(float(maybe_is_success))
# Retrieve reward and episode length if using Monitor wrapper
for _info in info:
maybe_ep_info = _info.get('episode')
if maybe_ep_info is not None:
ep_info_buf.extend([maybe_ep_info])
if writer is not None:
# Write reward per episode to tensorboard
ep_reward = np.reshape(reward, (self.env.env.num_envs, -1))
ep_done = np.reshape(done, (self.env.env.num_envs, -1))
self.episode_reward = total_episode_reward_logger(self.episode_reward, ep_reward,
ep_done, writer, self.num_timesteps)
train_time0 = time.time()
if step % self.train_freq == 0:
mb_infos_vals = []
# Update policy, critics and target networks
for grad_step in range(self.gradient_steps):
# Break if the warmup phase is not over
# or if there are not enough samples in the replay buffer
if not self.replay_buffer.can_sample(self.batch_size) \
or self.num_timesteps < self.learning_starts:
break
n_updates += 1
# Compute current learning_rate
frac = 1.0 - step / total_timesteps
current_lr = self.learning_rate(frac)
# Update policy and critics (q functions)
mb_infos_vals.append(self._train_step(step, writer, current_lr))
# Update target network
if (step + grad_step) % self.target_update_interval == 0:
# Update target network
self.sess.run(self.target_update_op)
# Log losses and entropy, useful for monitor training
if len(mb_infos_vals) > 0:
infos_values = np.mean(mb_infos_vals, axis=0)
train_time += time.time() - train_time0
if len(episode_rewards[0][-101:-1]) == 0:
mean_reward = -np.inf
else:
mean_reward = round(float(np.mean(np.concatenate([episode_rewards[i][-101:-1]
for i in range(self.env.env.num_envs)]))), 1)
num_episodes = sum([len(episode_rewards[i]) for i in range(len(episode_rewards))])
self.num_timesteps += self.env.env.num_envs
# Display training infos
if self.verbose >= 1 and done[0] and log_interval is not None and len(episode_rewards[0]) % (log_interval // self.env.env.num_envs) == 0:
fps = int(self.num_timesteps / (time.time() - start_time))
logger.logkv("episodes", num_episodes)
logger.logkv("mean 100 episode reward", mean_reward)
if len(ep_info_buf) > 0 and len(ep_info_buf[0]) > 0:
logger.logkv('ep_rewmean', safe_mean([ep_info['r'] for ep_info in ep_info_buf]))
logger.logkv('eplenmean', safe_mean([ep_info['l'] for ep_info in ep_info_buf]))
logger.logkv("n_updates", n_updates)
logger.logkv("current_lr", current_lr)
logger.logkv("fps", fps)
logger.logkv('time_elapsed', int(time.time() - start_time))
if len(episode_successes[0]) > 0:
logger.logkv("success rate", np.mean(np.concatenate([episode_successes[i][-100:] for i in range(self.env.env.num_envs)])))
if len(infos_values) > 0:
for (name, val) in zip(self.infos_names, infos_values):
logger.logkv(name, val)
logger.logkv("total timesteps", self.num_timesteps)
if hasattr(self.eval_env.unwrapped, 'random_ratio'):
logger.logkv("random_ratio", self.env.env.get_attr('random_ratio')[0])
logger.dumpkvs()
# Reset infos:
infos_values = []
return self
def logpac(self, action):
from stable_baselines.sac.policies import gaussian_likelihood, EPS
act_mu = self.policy_tf.act_mu
log_std = tf.log(self.policy_tf.std)
# Potentially we need to clip atanh and pass gradient
log_u = gaussian_likelihood(tf.atanh(tf.clip_by_value(action, -0.99, 0.99)), act_mu, log_std)
log_ac = log_u - tf.reduce_sum(tf.log(1 - action ** 2 + EPS), axis=1)
return log_ac
def action_probability(self, observation, state=None, mask=None, actions=None, logp=False):
if actions is not None:
raise ValueError("Error: SAC does not have action probabilities.")
warnings.warn("Even though SAC has a Gaussian policy, it cannot return a distribution as it "
"is squashed by a tanh before being scaled and ouputed.")
return None
def predict(self, observation, state=None, mask=None, deterministic=True):
observation = np.array(observation)
vectorized_env = self._is_vectorized_observation(observation, self.observation_space)
observation = observation.reshape((-1,) + self.observation_space.shape)
actions = self.policy_tf.step(observation, deterministic=deterministic)
actions = actions.reshape((-1,) + self.action_space.shape) # reshape to the correct action shape
actions = actions * np.abs(self.action_space.low) # scale the output for the prediction
if not vectorized_env:
actions = actions[0]
return actions, None
def get_parameter_list(self):
return (self.params +
self.target_params)
def save(self, save_path, cloudpickle=False):
data = {
"learning_rate": self.learning_rate,
"buffer_size": self.buffer_size,
"learning_starts": self.learning_starts,
"train_freq": self.train_freq,
"batch_size": self.batch_size,
"tau": self.tau,
"ent_coef": self.ent_coef if isinstance(self.ent_coef, float) else 'auto',
"target_entropy": self.target_entropy,
# Should we also store the replay buffer?
# this may lead to high memory usage
# with all transition inside
# "replay_buffer": self.replay_buffer
"gamma": self.gamma,
"verbose": self.verbose,
"observation_space": self.observation_space,
"action_space": self.action_space,
"policy": self.policy,
"n_envs": self.n_envs,
"action_noise": self.action_noise,
"random_exploration": self.random_exploration,
"_vectorize_action": self._vectorize_action,
"policy_kwargs": self.policy_kwargs
}
params_to_save = self.get_parameters()
self._save_to_file(save_path, data=data, params=params_to_save, cloudpickle=cloudpickle)
| [] |
2024-01-10 | whjvenyl/Neural-Photo-Editor | layers.py | ### Custom Lasagne Layers for Introspective Adversarial Networks
# A Brock, 2016
#
# Layers that are not my own creation should be appropriately attributed here
# MADE wrapped from the implementation by M. Germain et al: https://github.com/mgermain/MADE
# Gaussian Sample layer from Tencia Lee's Recipe: https://github.com/Lasagne/Recipes/blob/master/examples/variational_autoencoder/variational_autoencoder.py
# Minibatch Discrimination layer from OpenAI's Improved GAN Techniques: https://github.com/openai/improved-gan
# Deconv Layer adapted from Radford's DCGAN: https://github.com/Newmu/dcgan_code
from __future__ import division
import numpy as np
import theano
import theano.tensor as T
import lasagne
import lasagne.layers
from lasagne.layers import SliceLayer as SL
from lasagne.layers import batch_norm as BN
from lasagne.layers import ElemwiseSumLayer as ESL
from lasagne.layers import NonlinearityLayer as NL
from lasagne.layers import DenseLayer as DL
from lasagne.init import Normal as initmethod
from lasagne.nonlinearities import elu
from lasagne.nonlinearities import rectify as relu
from lasagne.nonlinearities import LeakyRectify as lrelu
from lasagne.layers import TransposedConv2DLayer as TC2D
from lasagne.layers import ConcatLayer as CL
from math import sqrt
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
from mask_generator import MaskGenerator
# Multiscale Dilated Convolution Block
# This function (not a layer in and of itself, though you could make it one) returns a set of concatenated conv2d and dilatedconv2d layers.
# Each layer uses the same basic filter W, operating at a different dilation factor (or taken as the mean of W for the 1x1 conv).
# The channel-wise output of each layer is weighted by a set of coefficients, which are initialized to 1 / the total number of dilation scales,
# meaning that were starting by taking an elementwise mean. These should be learnable parameters.
# NOTES: - I'm considering changing the variable names to be more descriptive, and look less like ridiculous academic code. It's on the to-do list.
# - I keep the bias and nonlinearity out of the default definition for this layer, as I expect it to be batchnormed and nonlinearized in the model config.
def MDCL(incoming,num_filters,scales,name,dnn=True):
if dnn:
from lasagne.layers.dnn import Conv2DDNNLayer as C2D
# W initialization method--this should also work as Orthogonal('relu'), but I have yet to validate that as thoroughly.
winit = initmethod(0.02)
# Initialization method for the coefficients
sinit = lasagne.init.Constant(1.0/(1+len(scales)))
# Number of incoming channels
ni =lasagne.layers.get_output_shape(incoming)[1]
# Weight parameter--the primary parameter for this block
W = theano.shared(lasagne.utils.floatX(winit.sample((num_filters,lasagne.layers.get_output_shape(incoming)[1],3,3))),name=name+'W')
# Primary Convolution Layer--No Dilation
n = C2D(incoming = incoming,
num_filters = num_filters,
filter_size = [3,3],
stride = [1,1],
pad = (1,1),
W = W*theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)), name+'_coeff_base').dimshuffle(0,'x','x','x'), # Note the broadcasting dimshuffle for the num_filter scalars.
b = None,
nonlinearity = None,
name = name+'base'
)
# List of remaining layers. This should probably just all be concatenated into a single list rather than being a separate deal.
nd = []
for i,scale in enumerate(scales):
# I don't think 0 dilation is technically defined (or if it is it's just the regular filter) but I use it here as a convenient keyword to grab the 1x1 mean conv.
if scale==0:
nd.append(C2D(incoming = incoming,
num_filters = num_filters,
filter_size = [1,1],
stride = [1,1],
pad = (0,0),
W = T.mean(W,axis=[2,3]).dimshuffle(0,1,'x','x')*theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)), name+'_coeff_1x1').dimshuffle(0,'x','x','x'),
b = None,
nonlinearity = None,
name = name+str(scale)))
# Note the dimshuffles in this layer--these are critical as the current DilatedConv2D implementation uses a backward pass.
else:
nd.append(lasagne.layers.DilatedConv2DLayer(incoming = lasagne.layers.PadLayer(incoming = incoming, width=(scale,scale)),
num_filters = num_filters,
filter_size = [3,3],
dilation=(scale,scale),
W = W.dimshuffle(1,0,2,3)*theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)), name+'_coeff_'+str(scale)).dimshuffle('x',0,'x','x'),
b = None,
nonlinearity = None,
name = name+str(scale)))
return ESL(nd+[n])
# MDC-based Upsample Layer.
# This is a prototype I don't make use of extensively. It's operational but it doesn't seem to improve results yet.
def USL(incoming,num_filters,scales,name,dnn=True):
if dnn:
from lasagne.layers.dnn import Conv2DDNNLayer as C2D
# W initialization method--this should also work as Orthogonal('relu'), but I have yet to validate that as thoroughly.
winit = initmethod(0.02)
# Initialization method for the coefficients
sinit = lasagne.init.Constant(1.0/(1+len(scales)))
# Number of incoming channels
ni =lasagne.layers.get_output_shape(incoming)[1]
# Weight parameter--the primary parameter for this block
W = theano.shared(lasagne.utils.floatX(winit.sample((num_filters,lasagne.layers.get_output_shape(incoming)[1],3,3))),name=name+'W')
# Primary Convolution Layer--No Dilation
n = C2D(incoming = Upscale2DLayer(incoming,2),
num_filters = num_filters,
filter_size = [3,3],
stride = [1,1],
pad = (1,1),
W = W*theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)), name+'_coeff_base').dimshuffle(0,'x','x','x'),
b = None,
nonlinearity = None,
name = name+'base'
)
# Remaining layers
nd = []
for i,scale in enumerate(scales):
if scale==0:
nd.append(C2D(incoming = Upscale2DLayer(incoming,2),
num_filters = num_filters,
filter_size = [1,1],
stride = [1,1],
pad = (0,0),
W = T.mean(W,axis=[2,3]).dimshuffle(0,1,'x','x')*theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)), name+'_coeff_1x1').dimshuffle(0,'x','x','x'),
b = None,
nonlinearity = None,
name = name+'1x1'
))
else:
nd.append(lasagne.layers.DilatedConv2DLayer(incoming = lasagne.layers.PadLayer(incoming = Upscale2DLayer(incoming,2), width=(scale,scale)),
num_filters = num_filters,
filter_size = [3,3],
dilation=(scale,scale),
W = W.dimshuffle(1,0,2,3)*theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)), name+'_coeff_'+str(scale)).dimshuffle('x',0,'x','x'),
b = None,
nonlinearity = None,
name = name+str(scale)))
# A single deconv layer is also concatenated here. Like I said, it's a prototype!
nd.append(DeconvLayer(incoming = incoming,
num_filters = num_filters,
filter_size = [3,3],
stride = [2,2],
crop = (1,1),
W = W.dimshuffle(1,0,2,3)*theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)), name+'_coeff_deconv').dimshuffle('x',0,'x','x'),
b = None,
nonlinearity = None,
name = name+'deconv'
))
return ESL(nd+[n])
#MDC-based Downsample Layer.
# This is a prototype I don't make use of extensively. It's operational and it seems like it works alright, but it's restrictively expensive
# and I am not PARALLELICUS, god of GPUs, so I don't have the memory to spare for it.
# Note that this layer does not currently support having a 0 scale like the others do, and just has a 1x1-stride2 conv by default.
def DSL(incoming,num_filters,scales,name,dnn=True):
if dnn:
from lasagne.layers.dnn import Conv2DDNNLayer as C2D
# W initialization method--this should also work as Orthogonal('relu'), but I have yet to validate that as thoroughly.
winit = initmethod(0.02)
# Initialization method for the coefficients
sinit = lasagne.init.Constant(1.0/(1+len(scales)))
# Number of incoming channels
ni =lasagne.layers.get_output_shape(incoming)[1]
# Weight parameter--the primary parameter for this block
W = theano.shared(lasagne.utils.floatX(winit.sample((num_filters,lasagne.layers.get_output_shape(incoming)[1],3,3))),name=name+'W')
# Main layer--3x3 conv with stride 2
n = C2D(incoming = incoming,
num_filters = num_filters,
filter_size = [3,3],
stride = [2,2],
pad = (1,1),
W = W*theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)), name+'_coeff_base').dimshuffle(0,'x','x','x'),
b = None,
nonlinearity = None,
name = name+'base'
)
nd = []
for i,scale in enumerate(scales):
p = P2D(incoming = incoming,
pool_size = scale,
stride = 2,
pad = (1,1) if i else (0,0),
mode = 'average_exc_pad',
)
nd.append(C2D(incoming = p,
num_filters = num_filters,
filter_size = [3,3],
stride = (1,1),
pad = (1,1),
W = W*theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)), name+'_coeff_'+str(scale)).dimshuffle(0,'x','x','x'),#.dimshuffle('x',0),
b = None,
nonlinearity = None,
name = name+str(scale)))
nd.append(C2D(incoming = incoming,
num_filters = num_filters,
filter_size = [1,1],
stride = [2,2],
pad = (0,0),
W = T.mean(W,axis=[2,3]).dimshuffle(0,1,'x','x')*theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)), name+'_coeff_1x1').dimshuffle(0,'x','x','x'),
b = None,
nonlinearity = None,
name = name+'1x1'
))
return ESL(nd+[n])
# Beta Distribution Layer
# This layer takes in a batch_size batch, 2-channel, NxN dimension layer and returns the output of the first channel
# divided by the sum of both channels, which is equivalent to finding the expected value for a beta distribution.
# Note that this version of the layer scales to {-1,1} for compatibility with tanh.
class beta_layer(lasagne.layers.MergeLayer):
def __init__(self, alpha,beta, **kwargs):
super(beta_layer, self).__init__([alpha,beta], **kwargs)
def get_output_shape_for(self, input_shape):
print(input_shape)
return input_shape[0]
def get_output_for(self, inputs, deterministic=False, **kwargs):
alpha,beta = inputs
# return 2*T.true_div(alpha,T.add(alpha,beta)+1e-8)-1
return 2*(alpha/(alpha+beta+1e-8))-1
# Convenience Function to produce a residual pre-activation MDCL block
def MDBLOCK(incoming,num_filters,scales,name,nonlinearity):
return NL(BN(ESL([incoming,
MDCL(NL(BN(MDCL(NL(BN(incoming,name=name+'bnorm0'),nonlinearity),num_filters,scales,name),name=name+'bnorm1'),nonlinearity),
num_filters,
scales,
name+'2')]),name=name+'bnorm2'),nonlinearity)
# Gaussian Sample Layer for VAE from Tencia Lee
class GaussianSampleLayer(lasagne.layers.MergeLayer):
def __init__(self, mu, logsigma, rng=None, **kwargs):
self.rng = rng if rng else RandomStreams(lasagne.random.get_rng().randint(1,2147462579))
super(GaussianSampleLayer, self).__init__([mu, logsigma], **kwargs)
def get_output_shape_for(self, input_shapes):
return input_shapes[0]
def get_output_for(self, inputs, deterministic=False, **kwargs):
mu, logsigma = inputs
shape=(self.input_shapes[0][0] or inputs[0].shape[0],
self.input_shapes[0][1] or inputs[0].shape[1])
if deterministic:
return mu
return mu + T.exp(logsigma) * self.rng.normal(shape)
# DeconvLayer adapted from Radford's DCGAN Implementation
class DeconvLayer(lasagne.layers.conv.BaseConvLayer):
def __init__(self, incoming, num_filters, filter_size, stride=(1, 1),
crop=0, untie_biases=False,
W=initmethod(), b=lasagne.init.Constant(0.),
nonlinearity=lasagne.nonlinearities.rectify, flip_filters=False,
**kwargs):
super(DeconvLayer, self).__init__(
incoming, num_filters, filter_size, stride, crop, untie_biases,
W, b, nonlinearity, flip_filters, n=2, **kwargs)
# rename self.crop to self.pad
self.crop = self.pad
del self.pad
def get_W_shape(self):
num_input_channels = self.input_shape[1]
# first two sizes are swapped compared to a forward convolution
return (num_input_channels, self.num_filters) + self.filter_size
def get_output_shape_for(self, input_shape):
# when called from the constructor, self.crop is still called self.pad:
crop = getattr(self, 'crop', getattr(self, 'pad', None))
crop = crop if isinstance(crop, tuple) else (crop,) * self.n
batchsize = input_shape[0]
return(batchsize,self.num_filters)+(input_shape[2]*2,input_shape[3]*2)
# return ((batchsize, self.num_filters) +
# tuple(conv_input_length(input, filter, stride, p)
# for input, filter, stride, p
# in zip(input_shape[2:], self.filter_size,
# self.stride, crop)))
def convolve(self, input, **kwargs):
# Messy to have these imports here, but seems to allow for switching DNN off.
from theano.sandbox.cuda.basic_ops import (as_cuda_ndarray_variable,
host_from_gpu,
gpu_contiguous, HostFromGpu,
gpu_alloc_empty)
from theano.sandbox.cuda.dnn import GpuDnnConvDesc, GpuDnnConv, GpuDnnConvGradI, dnn_conv, dnn_pool
# Straight outta Radford
img = gpu_contiguous(input)
kerns = gpu_contiguous(self.W)
desc = GpuDnnConvDesc(border_mode=self.crop, subsample=self.stride,
conv_mode='conv')(gpu_alloc_empty(img.shape[0], kerns.shape[1], img.shape[2]*self.stride[0], img.shape[3]*self.stride[1]).shape, kerns.shape)
out = gpu_alloc_empty(img.shape[0], kerns.shape[1], img.shape[2]*self.stride[0], img.shape[3]*self.stride[1])
conved = GpuDnnConvGradI()(kerns, img, out, desc)
return conved
# Minibatch discrimination layer from OpenAI's improved GAN techniques
class MinibatchLayer(lasagne.layers.Layer):
def __init__(self, incoming, num_kernels, dim_per_kernel=5, theta=lasagne.init.Normal(0.05),
log_weight_scale=lasagne.init.Constant(0.), b=lasagne.init.Constant(-1.), **kwargs):
super(MinibatchLayer, self).__init__(incoming, **kwargs)
self.num_kernels = num_kernels
num_inputs = int(np.prod(self.input_shape[1:]))
self.theta = self.add_param(theta, (num_inputs, num_kernels, dim_per_kernel), name="theta")
self.log_weight_scale = self.add_param(log_weight_scale, (num_kernels, dim_per_kernel), name="log_weight_scale")
self.W = self.theta * (T.exp(self.log_weight_scale)/T.sqrt(T.sum(T.square(self.theta),axis=0))).dimshuffle('x',0,1)
self.b = self.add_param(b, (num_kernels,), name="b")
def get_output_shape_for(self, input_shape):
return (input_shape[0], np.prod(input_shape[1:])+self.num_kernels)
def get_output_for(self, input, init=False, **kwargs):
if input.ndim > 2:
# if the input has more than two dimensions, flatten it into a
# batch of feature vectors.
input = input.flatten(2)
activation = T.tensordot(input, self.W, [[1], [0]])
abs_dif = (T.sum(abs(activation.dimshuffle(0,1,2,'x') - activation.dimshuffle('x',1,2,0)),axis=2)
+ 1e6 * T.eye(input.shape[0]).dimshuffle(0,'x',1))
if init:
mean_min_abs_dif = 0.5 * T.mean(T.min(abs_dif, axis=2),axis=0)
abs_dif /= mean_min_abs_dif.dimshuffle('x',0,'x')
self.init_updates = [(self.log_weight_scale, self.log_weight_scale-T.log(mean_min_abs_dif).dimshuffle(0,'x'))]
f = T.sum(T.exp(-abs_dif),axis=2)
if init:
mf = T.mean(f,axis=0)
f -= mf.dimshuffle('x',0)
self.init_updates.append((self.b, -mf))
else:
f += self.b.dimshuffle('x',0)
return T.concatenate([input, f], axis=1)
# Convenience function to define an inception-style block
def InceptionLayer(incoming,param_dict,block_name):
branch = [0]*len(param_dict)
# Loop across branches
for i,dict in enumerate(param_dict):
for j,style in enumerate(dict['style']): # Loop up branch
branch[i] = C2D(
incoming = branch[i] if j else incoming,
num_filters = dict['num_filters'][j],
filter_size = dict['filter_size'][j],
pad = dict['pad'][j] if 'pad' in dict else None,
stride = dict['stride'][j],
W = initmethod('relu'),
nonlinearity = dict['nonlinearity'][j],
name = block_name+'_'+str(i)+'_'+str(j)) if style=='convolutional'\
else NL(lasagne.layers.dnn.Pool2DDNNLayer(
incoming=incoming if j == 0 else branch[i],
pool_size = dict['filter_size'][j],
mode = dict['mode'][j],
stride = dict['stride'][j],
pad = dict['pad'][j],
name = block_name+'_'+str(i)+'_'+str(j)),
nonlinearity = dict['nonlinearity'][j]) if style=='pool'\
else lasagne.layers.DilatedConv2DLayer(
incoming = lasagne.layers.PadLayer(incoming = incoming if j==0 else branch[i],width = dict['pad'][j]) if 'pad' in dict else incoming if j==0 else branch[i],
num_filters = dict['num_filters'][j],
filter_size = dict['filter_size'][j],
dilation = dict['dilation'][j],
# pad = dict['pad'][j] if 'pad' in dict else None,
W = initmethod('relu'),
nonlinearity = dict['nonlinearity'][j],
name = block_name+'_'+str(i)+'_'+str(j)) if style== 'dilation'\
else DL(
incoming = incoming if j==0 else branch[i],
num_units = dict['num_filters'][j],
W = initmethod('relu'),
b = None,
nonlinearity = dict['nonlinearity'][j],
name = block_name+'_'+str(i)+'_'+str(j))
# Apply Batchnorm
branch[i] = BN(branch[i],name = block_name+'_bnorm_'+str(i)+'_'+str(j)) if dict['bnorm'][j] else branch[i]
# Concatenate Sublayers
return CL(incomings=branch,name=block_name)
# Convenience function to define an inception-style block with upscaling
def InceptionUpscaleLayer(incoming,param_dict,block_name):
branch = [0]*len(param_dict)
# Loop across branches
for i,dict in enumerate(param_dict):
for j,style in enumerate(dict['style']): # Loop up branch
branch[i] = TC2D(
incoming = branch[i] if j else incoming,
num_filters = dict['num_filters'][j],
filter_size = dict['filter_size'][j],
crop = dict['pad'][j] if 'pad' in dict else None,
stride = dict['stride'][j],
W = initmethod('relu'),
nonlinearity = dict['nonlinearity'][j],
name = block_name+'_'+str(i)+'_'+str(j)) if style=='convolutional'\
else NL(
incoming = lasagne.layers.dnn.Pool2DDNNLayer(
incoming = lasagne.layers.Upscale2DLayer(
incoming=incoming if j == 0 else branch[i],
scale_factor = dict['stride'][j]),
pool_size = dict['filter_size'][j],
stride = [1,1],
mode = dict['mode'][j],
pad = dict['pad'][j],
name = block_name+'_'+str(i)+'_'+str(j)),
nonlinearity = dict['nonlinearity'][j])
# Apply Batchnorm
branch[i] = BN(branch[i],name = block_name+'_bnorm_'+str(i)+'_'+str(j)) if dict['bnorm'][j] else branch[i]
# Concatenate Sublayers
return CL(incomings=branch,name=block_name)
# Convenience function to efficiently generate param dictionaries for use with InceptioNlayer
def pd(num_layers=2,num_filters=32,filter_size=(3,3),pad=1,stride = (1,1),nonlinearity=elu,style='convolutional',bnorm=1,**kwargs):
input_args = locals()
input_args.pop('num_layers')
return {key:entry if type(entry) is list else [entry]*num_layers for key,entry in input_args.iteritems()}
# Possible Conv2DDNN convenience function. Remember to delete the C2D import at the top if you use this
# def C2D(incoming = None, num_filters = 32, filter_size= [3,3],pad = 'same',stride = [1,1], W = initmethod('relu'),nonlinearity = elu,name = None):
# return lasagne.layers.dnn.Conv2DDNNLayer(incoming,num_filters,filter_size,stride,pad,False,W,None,nonlinearity,False)
# Shape-Preserving Gaussian Sample layer for latent vectors with spatial dimensions.
# This is a holdover from an "old" (i.e. I abandoned it last month) idea.
class GSL(lasagne.layers.MergeLayer):
def __init__(self, mu, logsigma, rng=None, **kwargs):
self.rng = rng if rng else RandomStreams(lasagne.random.get_rng().randint(1,2147462579))
super(GSL, self).__init__([mu, logsigma], **kwargs)
def get_output_shape_for(self, input_shape):
print(input_shape)
return input_shape[0]
def get_output_for(self, inputs, deterministic=False, **kwargs):
mu, logsigma = inputs
if deterministic:
return mu
return mu + T.exp(logsigma) * self.rng.normal(logsigma.shape)
# Convenience function to return list of sampled latent layers
def GL(mu,ls):
return([GSL(z_mu,z_ls) for z_mu,z_ls in zip(mu,ls)])
# Convenience function to return a residual layer. It's not really that much more convenient than ESL'ing,
# but I like being able to see when I'm using Residual connections as opposed to Elemwise-sums
def ResLayer(incoming, IB,nonlinearity):
return NL(ESL([IB,incoming]),nonlinearity)
# Inverse autoregressive flow layer
class IAFLayer(lasagne.layers.MergeLayer):
def __init__(self, z, mu, logsigma, **kwargs):
super(IAFLayer, self).__init__([z,mu, logsigma], **kwargs)
def get_output_shape_for(self, input_shapes):
return input_shapes[0]
def get_output_for(self, inputs, deterministic=False, **kwargs):
z,mu, logsigma = inputs
return (z - mu) / T.exp(logsigma)
# Masked layer for MADE, adopted from M.Germain
class MaskedLayer(lasagne.layers.DenseLayer):
def __init__(self, incoming, num_units, mask_generator,layerIdx,W=lasagne.init.GlorotUniform(),
b=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, **kwargs):
super(MaskedLayer, self).__init__(incoming, num_units, W,b, nonlinearity,**kwargs)
self.mask_generator = mask_generator
num_inputs = int(np.prod(self.input_shape[1:]))
self.weights_mask = self.add_param(spec = np.ones((num_inputs, num_units),dtype=np.float32),
shape = (num_inputs, num_units),
name='weights_mask',
trainable=False,
regularizable=False)
self.layerIdx = layerIdx
self.shuffle_update = [(self.weights_mask, mask_generator.get_mask_layer_UPDATE(self.layerIdx))]
def get_output_for(self,input, **kwargs):
if input.ndim > 2:
input = input.flatten(2)
activation = T.dot(input, self.W*self.weights_mask)
if self.b is not None:
activation = activation + self.b.dimshuffle('x', 0)
return self.nonlinearity(activation)
# Stripped-Down Direct Input masked layer: Combine this with ESL and a masked layer to get a true DIML.
# Consider making this a simultaneous subclass of MaskedLayer and elemwise sum layer for cleanliness
# adopted from M.Germain
class DIML(lasagne.layers.DenseLayer):
def __init__(self, incoming, num_units, mask_generator,layerIdx,W=lasagne.init.GlorotUniform(),
b=lasagne.init.Constant(0.), nonlinearity=None,**kwargs):
super(DIML, self).__init__(incoming, num_units, W,b, nonlinearity,**kwargs)
self.mask_generator = mask_generator
self.layerIdx = layerIdx
num_inputs = int(np.prod(self.input_shape[1:]))
self.weights_mask = self.add_param(spec = np.ones((num_inputs, num_units),dtype=np.float32),
shape = (num_inputs, num_units),
name='weights_mask',
trainable=False,
regularizable=False)
self.shuffle_update = [(self.weights_mask, self.mask_generator.get_direct_input_mask_layer_UPDATE(self.layerIdx + 1))]
def get_output_for(self,input, **kwargs):
if input.ndim > 2:
input = input.flatten(2)
activation = T.dot(input, self.W*self.weights_mask)
if self.b is not None:
activation = activation + self.b.dimshuffle('x', 0)
return self.nonlinearity(activation)
# Conditioning Masked Layer
# Currently not used.
# class CML(MaskedLayer):
# def __init__(self, incoming, num_units, mask_generator,use_cond_mask=False,U=lasagne.init.GlorotUniform(),W=lasagne.init.GlorotUniform(),
# b=init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, **kwargs):
# super(CML, self).__init__(incoming, num_units, mask_generator,W,
# b, nonlinearity,**kwargs)
# self.use_cond_mask=use_cond_mask
# if use_cond_mask:
# self.U = self.add_param(spec = U,
# shape = (num_inputs, num_units),
# name='U',
# trainable=True,
# regularizable=False)theano.shared(value=self.weights_initialization((self.n_in, self.n_out)), name=self.name+'U', borrow=True)
# self.add_param(self.U,name =
# def get_output_for(self,input,**kwargs):
# lin = self.lin_output = T.dot(input, self.W * self.weights_mask) + self.b
# if self.use_cond_mask:
# lin = lin+T.dot(T.ones_like(input), self.U * self.weights_mask)
# return lin if self._activation is None else self._activation(lin)
# Made layer, adopted from M.Germain
class MADE(lasagne.layers.Layer):
def __init__(self,z,hidden_sizes,name,nonlinearity=lasagne.nonlinearities.rectify,output_nonlinearity=None, **kwargs):
# self.rng = rng if rng else RandomStreams(lasagne.random.get_rng().randint(1234))
super(MADE, self).__init__(z, **kwargs)
# Incoming latents
self.z = z
# List defining hidden units in each layer
self.hidden_sizes = hidden_sizes
# Layer name for saving parameters.
self.name = name
# nonlinearity
self.nonlinearity = nonlinearity
# Output nonlinearity
self.output_nonlinearity = output_nonlinearity
# Control parameters from original MADE
mask_distribution=0
use_cond_mask = False
direct_input_connect = "Output"
direct_output_connect = False
self.shuffled_once = False
# Mask generator
self.mask_generator = MaskGenerator(lasagne.layers.get_output_shape(z)[1], hidden_sizes, mask_distribution)
# Build the MADE
# TODO: Consider making this more compact by directly writing to the layers list
self.input_layer = MaskedLayer(incoming = z,
num_units = hidden_sizes[0],
mask_generator = self.mask_generator,
layerIdx = 0,
W = lasagne.init.Orthogonal('relu'),
nonlinearity=self.nonlinearity,
name = self.name+'_input')
self.layers = [self.input_layer]
for i in range(1, len(hidden_sizes)):
self.layers += [MaskedLayer(incoming = self.layers[-1],
num_units = hidden_sizes[i],
mask_generator = self.mask_generator,
layerIdx = i,
W = lasagne.init.Orthogonal('relu'),
nonlinearity=self.nonlinearity,
name = self.name+'_layer_'+str(i))]
outputLayerIdx = len(self.layers)
# Output layer
self.layers += [MaskedLayer(incoming = self.layers[-1],
num_units = lasagne.layers.get_output_shape(z)[1],
mask_generator = self.mask_generator,
layerIdx = outputLayerIdx,
W = lasagne.init.Orthogonal('relu'),
nonlinearity = self.output_nonlinearity,
name = self.name+'_output_W'),
DIML(incoming = z,
num_units = lasagne.layers.get_output_shape(z)[1],
mask_generator = self.mask_generator,
layerIdx = outputLayerIdx,
W = lasagne.init.Orthogonal('relu'),
nonlinearity = self.output_nonlinearity,
name = self.name+'_output_D')]
masks_updates = [layer_mask_update for l in self.layers for layer_mask_update in l.shuffle_update]
self.update_masks = theano.function(name='update_masks',
inputs=[],
updates=masks_updates)
# Make the true output layer by ESL'ing the DIML and masked layer
self.final_layer= ESL([self.layers[-2],self.layers[-1]])
# self.output_layer = self.layers[-1]
# params = [p for p in l.get_params(trainable=True) for l in self.layers]
# print(params)
def get_output_for(self, input, deterministic=False, **kwargs):
return lasagne.layers.get_output(self.final_layer,{self.z:input})
def get_params(self, unwrap_shared=True, **tags):
params = []
for l in self.layers:
for p in l.get_params(**tags):
params.append(p)
return(params)
# params = [p for p in l.get_params(trainable=True) for l in self.layers]
# return params
# return [p for p in lay.get_params(unwrap_shared,**tags) for lay in self.layers]
# return lasagne.layers.get_all_params(self.final_layer,trainable=True)
def shuffle(self, shuffling_type):
if shuffling_type == "Once" and self.shuffled_once is False:
self.mask_generator.shuffle_ordering()
self.mask_generator.sample_connectivity()
self.update_masks()
self.shuffled_once = True
return
if shuffling_type in ["Ordering", "Full"]:
self.mask_generator.shuffle_ordering()
if shuffling_type in ["Connectivity", "Full"]:
self.mask_generator.sample_connectivity()
self.update_masks()
def reset(self, shuffling_type, last_shuffle=0):
self.mask_generator.reset()
# Always do a first shuffle so that the natural order does not gives us an edge
self.shuffle("Full")
# Set the mask to the requested shuffle
for i in range(last_shuffle):
self.shuffle(shuffling_type) | [] |
2024-01-10 | JosephTLucas/llm_test | oai_template.py | import json
import requests
import os
import openai
class Model:
def __init__(
self, model="text-davinci-002", temperature=0, max_tokens=128, stop=None
):
self.model = model
openai.api_key = os.getenv("oai_key")
self.temperature = temperature
self.max_tokens = max_tokens
self.stop = stop
def query(self, query):
response = openai.Completion.create(
prompt=query,
model=self.model,
temperature=self.temperature,
max_tokens=self.max_tokens,
stop=self.stop,
)
return response.choices[0].text.strip()
if __name__ == "__main__":
m = Model("text-davinci-002")
print(m.query("I like apples because"))
| [] |
2024-01-10 | wensle/dotsavvy | dotsavvy~services~chunk.py | from typing import AbstractSet, Collection, Literal
from langchain.text_splitter import RecursiveCharacterTextSplitter
from dotsavvy.utils.env_variables import get_env_variable
# Constants
_CHUNK_SIZE = 400
_CHUNK_OVERLAP = 20
_ALLOWED_SPECIAL = "all"
_DISALLOWED_SPECIAL = "all"
def get_text_chunks(
text: str,
chunk_size: int | None = None,
chunk_overlap: int | None = None,
model_name: str | None = None,
encoding_name: str | None = None,
) -> list[str]:
"""
Splits the provided text into smaller chunks using the
RecursiveCharacterTextSplitter.
The RecursiveCharacterTextSplitter divides text into chunks based on a list of
characters, prioritizing splitting at paragraph breaks, then at line breaks, spaces,
and if necessary, any character. This maintains continuity and semantic relationship
as much as possible.
"""
# Use the provided values or the default ones
chunk_size = chunk_size or _CHUNK_SIZE
chunk_overlap = chunk_overlap or _CHUNK_OVERLAP
model_name = model_name or get_env_variable("DOTSAVVY_LLM_NAME")
encoding_name = encoding_name or get_env_variable(
"DOTSAVVY_TOKENIZER_ENCODING_NAME"
)
text_splitter: RecursiveCharacterTextSplitter = (
RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
encoding_name=encoding_name,
model_name=model_name,
)
)
chunks: list[str] = text_splitter.split_text(text)
return chunks
def create_recursive_tiktoken_splitter(
chunk_size: int | None = None,
chunk_overlap: int | None = None,
encoding_name: str | None = None,
model_name: str | None = None,
allowed_special: AbstractSet[str] | Literal["all"] | None = None,
disallowed_special: Collection[str] | Literal["all"] | None = None,
) -> RecursiveCharacterTextSplitter:
"""
Returns a LangChain RecursiveCharacterTextSplitter object.
The RecursiveCharacterTextSplitter divides text into chunks based on a list of
characters, prioritizing splitting at paragraph breaks, then at line breaks, spaces,
and if necessary, any character. This maintains continuity and semantic relationship
as much as possible.
"""
# Use the provided values or the default ones
chunk_size = chunk_size or _CHUNK_SIZE
chunk_overlap = chunk_overlap or _CHUNK_OVERLAP
encoding_name = encoding_name or get_env_variable(
"DOTSAVVY_TOKENIZER_ENCODING_NAME"
)
model_name = model_name or get_env_variable("DOTSAVVY_LLM_NAME")
allowed_special = allowed_special or _ALLOWED_SPECIAL
disallowed_special = disallowed_special or _DISALLOWED_SPECIAL
text_splitter: RecursiveCharacterTextSplitter = (
RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
encoding_name=encoding_name,
model_name=model_name,
allowed_special=allowed_special,
disallowed_special=disallowed_special,
)
)
return text_splitter
| [] |
2024-01-10 | wensle/dotsavvy | dotsavvy~agents~conversation.py | from langchain.chains import RetrievalQA
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain.chat_models import ChatOpenAI
from dotsavvy.services.vectorstore import create_pinecone_vectorstore
from dotsavvy.utils.env_variables import get_env_variable
class ConversationAgent:
def __init__(self) -> None:
openai_api_key: str = get_env_variable("OPENAI_API_KEY")
llm_name: str = get_env_variable("DOTSAVVY_LLM_NAME")
self.chat_model = ChatOpenAI(openai_api_key=openai_api_key, model_name=llm_name)
self.memory = ConversationBufferWindowMemory(
memory_key="chat_history", k=5, return_messages=True
)
vectorstore = create_pinecone_vectorstore()
self.retrieval_qa = RetrievalQA.from_chain_type(
llm=self.chat_model,
chain_type="stuff",
retriever=vectorstore.as_retriever(),
)
def run(self, query: str) -> str:
return self.retrieval_qa.run(query=query)
| [] |
2024-01-10 | wensle/dotsavvy | data~pdfs~scripts~split_embed_raw_data.py | import json
import pickle
from pathlib import Path
from typing import Generator
from uuid import uuid4
from langchain.document_loaders import PyPDFLoader
from config import ICT_RESEARCH_METHODS_BASE_DIR, PDFS_BASE_DIR
from dotsavvy.datastore.pinecone.types import METADATA
from dotsavvy.services.chunk import create_recursive_tiktoken_splitter
from dotsavvy.services.embedding import embed_documents
_INPUT_DIR: Path = PDFS_BASE_DIR / "raw_data"
_OUTPUT_FILE_PATH: Path = PDFS_BASE_DIR / "processed_data" / "embedding_tuples.pkl"
def ingest_file(filepath: str | Path) -> tuple[list[str], list[METADATA]]:
"""A helper function to load the input file containing processed data."""
with open(filepath, "r") as f:
json_obj = json.load(f)
return json_obj["texts"], json_obj["metadatas"]
def process_dir_generator(
input_dir: Path,
) -> Generator[tuple[str, METADATA], None, None]:
for raw_data_file in input_dir.glob("*.pdf"):
yield str(raw_data_file)
def main(
input_dir: Path | None = None,
output_file_path: str | Path | None = None,
) -> None:
input_dir = input_dir or _INPUT_DIR
output_file_path = output_file_path or _OUTPUT_FILE_PATH
text_splitter = create_recursive_tiktoken_splitter()
chunks = []
metadatas = []
uuids = []
for raw_data_file in process_dir_generator(input_dir):
loader = PyPDFLoader(raw_data_file)
print(raw_data_file)
for document in loader.lazy_load():
for chunk_id, chunk in enumerate(
text_splitter.split_text(document.page_content)
):
chunks.append(chunk)
document.metadata["chunk_id"] = chunk_id
document.metadata["text"] = chunk
metadatas.append(document.metadata)
uuids.append(str(uuid4()))
embeddings = embed_documents(chunks)
embedding_tuples = list(zip(uuids, embeddings, metadatas))
with open(_OUTPUT_FILE_PATH, "wb") as pkl:
pickle.dump(embedding_tuples, pkl)
if __name__ == "__main__":
main()
| [] |
2024-01-10 | khanhnn00/kernel-prior-diffusion | improved_diffusion~logger.py | """
Logger copied from OpenAI baselines to avoid extra RL-based dependencies:
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/logger.py
"""
import os
import sys
import shutil
import os.path as osp
import json
import time
import datetime
import tempfile
import warnings
from collections import defaultdict
from contextlib import contextmanager
DEBUG = 10
INFO = 20
WARN = 30
ERROR = 40
DISABLED = 50
class KVWriter(object):
def writekvs(self, kvs):
raise NotImplementedError
class SeqWriter(object):
def writeseq(self, seq):
raise NotImplementedError
class HumanOutputFormat(KVWriter, SeqWriter):
def __init__(self, filename_or_file):
if isinstance(filename_or_file, str):
self.file = open(filename_or_file, "wt")
self.own_file = True
else:
assert hasattr(filename_or_file, "read"), (
"expected file or str, got %s" % filename_or_file
)
self.file = filename_or_file
self.own_file = False
def writekvs(self, kvs):
# Create strings for printing
key2str = {}
for (key, val) in sorted(kvs.items()):
if hasattr(val, "__float__"):
valstr = "%-8.3g" % val
else:
valstr = str(val)
key2str[self._truncate(key)] = self._truncate(valstr)
# Find max widths
if len(key2str) == 0:
print("WARNING: tried to write empty key-value dict")
return
else:
keywidth = max(map(len, key2str.keys()))
valwidth = max(map(len, key2str.values()))
# Write out the data
dashes = "-" * (keywidth + valwidth + 7)
lines = [dashes]
for (key, val) in sorted(key2str.items(), key=lambda kv: kv[0].lower()):
lines.append(
"| %s%s | %s%s |"
% (key, " " * (keywidth - len(key)), val, " " * (valwidth - len(val)))
)
lines.append(dashes)
self.file.write("\n".join(lines) + "\n")
# Flush the output to the file
self.file.flush()
def _truncate(self, s):
maxlen = 30
return s[: maxlen - 3] + "..." if len(s) > maxlen else s
def writeseq(self, seq):
seq = list(seq)
for (i, elem) in enumerate(seq):
self.file.write(elem)
if i < len(seq) - 1: # add space unless this is the last one
self.file.write(" ")
self.file.write("\n")
self.file.flush()
def close(self):
if self.own_file:
self.file.close()
class JSONOutputFormat(KVWriter):
def __init__(self, filename):
self.file = open(filename, "wt")
def writekvs(self, kvs):
for k, v in sorted(kvs.items()):
if hasattr(v, "dtype"):
kvs[k] = float(v)
self.file.write(json.dumps(kvs) + "\n")
self.file.flush()
def close(self):
self.file.close()
class CSVOutputFormat(KVWriter):
def __init__(self, filename):
self.file = open(filename, "w+t")
self.keys = []
self.sep = ","
def writekvs(self, kvs):
# Add our current row to the history
extra_keys = list(kvs.keys() - self.keys)
extra_keys.sort()
if extra_keys:
self.keys.extend(extra_keys)
self.file.seek(0)
lines = self.file.readlines()
self.file.seek(0)
for (i, k) in enumerate(self.keys):
if i > 0:
self.file.write(",")
self.file.write(k)
self.file.write("\n")
for line in lines[1:]:
self.file.write(line[:-1])
self.file.write(self.sep * len(extra_keys))
self.file.write("\n")
for (i, k) in enumerate(self.keys):
if i > 0:
self.file.write(",")
v = kvs.get(k)
if v is not None:
self.file.write(str(v))
self.file.write("\n")
self.file.flush()
def close(self):
self.file.close()
class TensorBoardOutputFormat(KVWriter):
"""
Dumps key/value pairs into TensorBoard's numeric format.
"""
def __init__(self, dir):
os.makedirs(dir, exist_ok=True)
self.dir = dir
self.step = 1
prefix = "events"
path = osp.join(osp.abspath(dir), prefix)
import tensorflow as tf
from tensorflow.python import pywrap_tensorflow
from tensorflow.core.util import event_pb2
from tensorflow.python.util import compat
self.tf = tf
self.event_pb2 = event_pb2
self.pywrap_tensorflow = pywrap_tensorflow
self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path))
def writekvs(self, kvs):
def summary_val(k, v):
kwargs = {"tag": k, "simple_value": float(v)}
return self.tf.Summary.Value(**kwargs)
summary = self.tf.Summary(value=[summary_val(k, v) for k, v in kvs.items()])
event = self.event_pb2.Event(wall_time=time.time(), summary=summary)
event.step = (
self.step
) # is there any reason why you'd want to specify the step?
self.writer.WriteEvent(event)
self.writer.Flush()
self.step += 1
def close(self):
if self.writer:
self.writer.Close()
self.writer = None
def make_output_format(format, ev_dir, log_suffix=""):
os.makedirs(ev_dir, exist_ok=True)
if format == "stdout":
return HumanOutputFormat(sys.stdout)
elif format == "log":
return HumanOutputFormat(osp.join(ev_dir, "log%s.txt" % log_suffix))
elif format == "json":
return JSONOutputFormat(osp.join(ev_dir, "progress%s.json" % log_suffix))
elif format == "csv":
return CSVOutputFormat(osp.join(ev_dir, "progress%s.csv" % log_suffix))
elif format == "tensorboard":
return TensorBoardOutputFormat(osp.join(ev_dir, "tb%s" % log_suffix))
else:
raise ValueError("Unknown format specified: %s" % (format,))
# ================================================================
# API
# ================================================================
def logkv(key, val):
"""
Log a value of some diagnostic
Call this once for each diagnostic quantity, each iteration
If called many times, last value will be used.
"""
get_current().logkv(key, val)
def logkv_mean(key, val):
"""
The same as logkv(), but if called many times, values averaged.
"""
get_current().logkv_mean(key, val)
def logkvs(d):
"""
Log a dictionary of key-value pairs
"""
for (k, v) in d.items():
logkv(k, v)
def dumpkvs():
"""
Write all of the diagnostics from the current iteration
"""
return get_current().dumpkvs()
def getkvs():
return get_current().name2val
def log(*args, level=INFO):
"""
Write the sequence of args, with no separators, to the console and output files (if you've configured an output file).
"""
get_current().log(*args, level=level)
def debug(*args):
log(*args, level=DEBUG)
def info(*args):
log(*args, level=INFO)
def warn(*args):
log(*args, level=WARN)
def error(*args):
log(*args, level=ERROR)
def set_level(level):
"""
Set logging threshold on current logger.
"""
get_current().set_level(level)
def set_comm(comm):
get_current().set_comm(comm)
def get_dir():
"""
Get directory that log files are being written to.
will be None if there is no output directory (i.e., if you didn't call start)
"""
return get_current().get_dir()
record_tabular = logkv
dump_tabular = dumpkvs
@contextmanager
def profile_kv(scopename):
logkey = "wait_" + scopename
tstart = time.time()
try:
yield
finally:
get_current().name2val[logkey] += time.time() - tstart
def profile(n):
"""
Usage:
@profile("my_func")
def my_func(): code
"""
def decorator_with_name(func):
def func_wrapper(*args, **kwargs):
with profile_kv(n):
return func(*args, **kwargs)
return func_wrapper
return decorator_with_name
# ================================================================
# Backend
# ================================================================
def get_current():
if Logger.CURRENT is None:
_configure_default_logger()
return Logger.CURRENT
class Logger(object):
DEFAULT = None # A logger with no output files. (See right below class definition)
# So that you can still log to the terminal without setting up any output files
CURRENT = None # Current logger being used by the free functions above
def __init__(self, dir, output_formats, comm=None):
self.name2val = defaultdict(float) # values this iteration
self.name2cnt = defaultdict(int)
self.level = INFO
self.dir = dir
self.output_formats = output_formats
self.comm = comm
# Logging API, forwarded
# ----------------------------------------
def logkv(self, key, val):
self.name2val[key] = val
def logkv_mean(self, key, val):
oldval, cnt = self.name2val[key], self.name2cnt[key]
self.name2val[key] = oldval * cnt / (cnt + 1) + val / (cnt + 1)
self.name2cnt[key] = cnt + 1
def dumpkvs(self):
if self.comm is None:
d = self.name2val
else:
d = mpi_weighted_mean(
self.comm,
{
name: (val, self.name2cnt.get(name, 1))
for (name, val) in self.name2val.items()
},
)
if self.comm.rank != 0:
d["dummy"] = 1 # so we don't get a warning about empty dict
out = d.copy() # Return the dict for unit testing purposes
for fmt in self.output_formats:
if isinstance(fmt, KVWriter):
fmt.writekvs(d)
self.name2val.clear()
self.name2cnt.clear()
return out
def log(self, *args, level=INFO):
if self.level <= level:
self._do_log(args)
# Configuration
# ----------------------------------------
def set_level(self, level):
self.level = level
def set_comm(self, comm):
self.comm = comm
def get_dir(self):
return self.dir
def close(self):
for fmt in self.output_formats:
fmt.close()
# Misc
# ----------------------------------------
def _do_log(self, args):
for fmt in self.output_formats:
if isinstance(fmt, SeqWriter):
fmt.writeseq(map(str, args))
def get_rank_without_mpi_import():
# check environment variables here instead of importing mpi4py
# to avoid calling MPI_Init() when this module is imported
for varname in ["PMI_RANK", "OMPI_COMM_WORLD_RANK"]:
if varname in os.environ:
return int(os.environ[varname])
return 0
def mpi_weighted_mean(comm, local_name2valcount):
"""
Copied from: https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/common/mpi_util.py#L110
Perform a weighted average over dicts that are each on a different node
Input: local_name2valcount: dict mapping key -> (value, count)
Returns: key -> mean
"""
all_name2valcount = comm.gather(local_name2valcount)
if comm.rank == 0:
name2sum = defaultdict(float)
name2count = defaultdict(float)
for n2vc in all_name2valcount:
for (name, (val, count)) in n2vc.items():
try:
val = float(val)
except ValueError:
if comm.rank == 0:
warnings.warn(
"WARNING: tried to compute mean on non-float {}={}".format(
name, val
)
)
else:
name2sum[name] += val * count
name2count[name] += count
return {name: name2sum[name] / name2count[name] for name in name2sum}
else:
return {}
def configure(dir=None, format_strs=None, comm=None, log_suffix=""):
"""
If comm is provided, average all numerical stats across that comm
"""
if dir is None:
dir = os.getenv("OPENAI_LOGDIR")
if dir is None:
dir = osp.join(
tempfile.gettempdir(),
datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f"),
)
assert isinstance(dir, str)
dir = os.path.expanduser(dir)
os.makedirs(os.path.expanduser(dir), exist_ok=True)
rank = get_rank_without_mpi_import()
if rank > 0:
log_suffix = log_suffix + "-rank%03i" % rank
if format_strs is None:
if rank == 0:
format_strs = os.getenv("OPENAI_LOG_FORMAT", "stdout,log,csv").split(",")
else:
format_strs = os.getenv("OPENAI_LOG_FORMAT_MPI", "log").split(",")
format_strs = filter(None, format_strs)
output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs]
Logger.CURRENT = Logger(dir=dir, output_formats=output_formats, comm=comm)
if output_formats:
log("Logging to %s" % dir)
def _configure_default_logger():
configure()
Logger.DEFAULT = Logger.CURRENT
def reset():
if Logger.CURRENT is not Logger.DEFAULT:
Logger.CURRENT.close()
Logger.CURRENT = Logger.DEFAULT
log("Reset logger")
@contextmanager
def scoped_configure(dir=None, format_strs=None, comm=None):
prevlogger = Logger.CURRENT
configure(dir=dir, format_strs=format_strs, comm=comm)
try:
yield
finally:
Logger.CURRENT.close()
Logger.CURRENT = prevlogger
| [] |
2024-01-10 | roy0428/ADL_Final | GPT_on_test.py | from openai import OpenAI
from tqdm import tqdm
import json
def main():
with open("data/test_zero.json") as file:
data_list = json.load(file)
api_key = "APIKEY"
client = OpenAI(api_key=api_key)
for data in tqdm(data_list["data"]):
system_content = data["instruction"][:53]
user_content = data["instruction"][53:]
response = client.chat.completions.create(
model="gpt-4-vision-preview",
# model = "gpt-3.5-turbo-1106",
messages=[
{"role": "system", "content": system_content},
{"role": "user", "content": user_content},
],
max_tokens=200,
)
output = response.choices[0].message.content
data["prediction"] = output[3:]
json.dump(data_list["data"], open("GPT4_0.json", "w"), indent=2, ensure_ascii=False)
if __name__ == "__main__":
main()
| [] |
2024-01-10 | the-genemachine/Color-Prompt-Generator | color-generator-tkinter.py | import os
import tkinter as tk
import ast
import openai
from dotenv import load_dotenv
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
def display_colors(colors):
root = tk.Tk()
for color in colors:
frame = tk.Frame(root, bg=color, height=150, width=200)
frame.pack(fill='both')
root.mainloop()
def generate_palette(prompt_text):
prompt = f"""
You are a color palette generating assistant that responds to text prompts for color palettes.
Based on the following prompt: '{prompt_text}', please generate a palette of 5 colors in the format: ["#color1", "#color2", "#color3", "#color4", "#color5"]
"""
response = openai.Completion.create(
engine="text-davinci-003",
prompt=prompt,
max_tokens=100,
temperature=0.3
)
# Error checking for AI response
try:
colors = ast.literal_eval(response.choices[0].text.strip())
if isinstance(colors, list) and all(isinstance(item, str) for item in colors):
display_colors(colors)
else:
print(f"Unexpected response: {response.choices[0].text.strip()}")
except (ValueError, SyntaxError):
print(f"Couldn't parse response: {response.choices[0].text.strip()}")
generate_palette("A beautiful sunset")
| [
"\n You are a color palette generating assistant that responds to text prompts for color palettes.\n Based on the following prompt: 'PLACEHOLDER', please generate a palette of 5 colors in the format: [\"#color1\", \"#color2\", \"#color3\", \"#color4\", \"#color5\"]\n "
] |
2024-01-10 | the-genemachine/Color-Prompt-Generator | color-generator.py | import openai
import json
import tkinter
from dotenv import dotenv_values
config = dotenv_values(".env")
openai.api_key = config["OPENAI_API_KEY"]
# This is a multiline string that describes the task to be completed by the OpenAI model.
prompt = """
You are a color palette generating assitant that responds to text prompts for color palettes
You should generate color palettes that are aesthetically pleasing and match the text prompt
You should generate 5 colors per palette
Desired Format: a JSON array of hex color codes
Text : A beautiful sunset
Result : ["#FFC300", "#FF5733", "#C70039", "#900C3F", "#581845"]
"""
# This line sends the prompt to the OpenAI API and stores the response
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
max_tokens=200
)
# This line prints out the actual generated text which is stored under the choices key in the response
print(response["choices"][0] ["text"]) | [
"\nYou are a color palette generating assitant that responds to text prompts for color palettes\n\nYou should generate color palettes that are aesthetically pleasing and match the text prompt\n\nYou should generate 5 colors per palette\n\nDesired Format: a JSON array of hex color codes\n\nText : A beautiful sunset\n\nResult : [\"#FFC300\", \"#FF5733\", \"#C70039\", \"#900C3F\", \"#581845\"]\n"
] |
2024-01-10 | dki-lab/GrailQA | allennlp~tests~data~tokenizers~word_splitter_test.py | # pylint: disable=no-self-use,invalid-name
import spacy
from allennlp.common.testing import AllenNlpTestCase
from allennlp.data.tokenizers.token import Token
from allennlp.data.tokenizers.word_splitter import LettersDigitsWordSplitter
from allennlp.data.tokenizers.word_splitter import SimpleWordSplitter
from allennlp.data.tokenizers.word_splitter import SpacyWordSplitter
from allennlp.data.tokenizers.word_splitter import OpenAISplitter
from allennlp.data.tokenizers.word_splitter import BertBasicWordSplitter
class TestSimpleWordSplitter(AllenNlpTestCase):
def setUp(self):
super(TestSimpleWordSplitter, self).setUp()
self.word_splitter = SimpleWordSplitter()
def test_tokenize_handles_complex_punctuation(self):
sentence = "this (sentence) has 'crazy' \"punctuation\"."
expected_tokens = ["this", "(", "sentence", ")", "has", "'", "crazy", "'", '"',
"punctuation", '"', "."]
tokens = [t.text for t in self.word_splitter.split_words(sentence)]
assert tokens == expected_tokens
def test_tokenize_handles_contraction(self):
sentence = "it ain't joe's problem; would've been yesterday"
expected_tokens = ["it", "ai", "n't", "joe", "'s", "problem", ";", "would", "'ve", "been",
"yesterday"]
tokens = [t.text for t in self.word_splitter.split_words(sentence)]
assert tokens == expected_tokens
def test_batch_tokenization(self):
sentences = ["This is a sentence",
"This isn't a sentence.",
"This is the 3rd sentence."
"Here's the 'fourth' sentence."]
batch_split = self.word_splitter.batch_split_words(sentences)
separately_split = [self.word_splitter.split_words(sentence) for sentence in sentences]
assert len(batch_split) == len(separately_split)
for batch_sentence, separate_sentence in zip(batch_split, separately_split):
assert len(batch_sentence) == len(separate_sentence)
for batch_word, separate_word in zip(batch_sentence, separate_sentence):
assert batch_word.text == separate_word.text
def test_tokenize_handles_multiple_contraction(self):
sentence = "wouldn't've"
expected_tokens = ["would", "n't", "'ve"]
tokens = [t.text for t in self.word_splitter.split_words(sentence)]
assert tokens == expected_tokens
def test_tokenize_handles_final_apostrophe(self):
sentence = "the jones' house"
expected_tokens = ["the", "jones", "'", "house"]
tokens = [t.text for t in self.word_splitter.split_words(sentence)]
assert tokens == expected_tokens
def test_tokenize_handles_special_cases(self):
sentence = "mr. and mrs. jones, etc., went to, e.g., the store"
expected_tokens = ["mr.", "and", "mrs.", "jones", ",", "etc.", ",", "went", "to", ",",
"e.g.", ",", "the", "store"]
tokens = [t.text for t in self.word_splitter.split_words(sentence)]
assert tokens == expected_tokens
class TestLettersDigitsWordSplitter(AllenNlpTestCase):
def setUp(self):
super(TestLettersDigitsWordSplitter, self).setUp()
self.word_splitter = LettersDigitsWordSplitter()
def test_tokenize_handles_complex_punctuation(self):
sentence = "this (sentence) has 'crazy' \"punctuation\"."
expected_tokens = ["this", "(", "sentence", ")", "has", "'", "crazy", "'", '"',
"punctuation", '"', "."]
tokens = [t.text for t in self.word_splitter.split_words(sentence)]
assert tokens == expected_tokens
def test_tokenize_handles_unicode_letters(self):
sentence = "HAL9000 and Ångström"
expected_tokens = [Token("HAL", 0), Token("9000", 3), Token("and", 10), Token("Ångström", 17)]
tokens = self.word_splitter.split_words(sentence)
assert [t.text for t in tokens] == [t.text for t in expected_tokens]
assert [t.idx for t in tokens] == [t.idx for t in expected_tokens]
def test_tokenize_handles_splits_all_punctuation(self):
sentence = "wouldn't.[have] -3.45(m^2)"
expected_tokens = ["wouldn", "'", "t", ".", "[", "have", "]", "-", "3",
".", "45", "(", "m", "^", "2", ")"]
tokens = [t.text for t in self.word_splitter.split_words(sentence)]
assert tokens == expected_tokens
class TestSpacyWordSplitter(AllenNlpTestCase):
def setUp(self):
super(TestSpacyWordSplitter, self).setUp()
self.word_splitter = SpacyWordSplitter()
def test_tokenize_handles_complex_punctuation(self):
sentence = "this (sentence) has 'crazy' \"punctuation\"."
expected_tokens = ["this", "(", "sentence", ")", "has", "'", "crazy", "'", '"',
"punctuation", '"', "."]
tokens = self.word_splitter.split_words(sentence)
token_text = [t.text for t in tokens]
assert token_text == expected_tokens
for token in tokens:
start = token.idx
end = start + len(token.text)
assert sentence[start:end] == token.text
def test_tokenize_handles_contraction(self):
# note that "would've" is kept together, while "ain't" is not.
sentence = "it ain't joe's problem; would been yesterday"
expected_tokens = ["it", "ai", "n't", "joe", "'s", "problem", ";", "would", "been",
"yesterday"]
tokens = [t.text for t in self.word_splitter.split_words(sentence)]
assert tokens == expected_tokens
def test_tokenize_handles_multiple_contraction(self):
sentence = "wouldn't've"
expected_tokens = ["would", "n't", "'ve"]
tokens = [t.text for t in self.word_splitter.split_words(sentence)]
assert tokens == expected_tokens
def test_tokenize_handles_final_apostrophe(self):
sentence = "the jones' house"
expected_tokens = ["the", "jones", "'", "house"]
tokens = [t.text for t in self.word_splitter.split_words(sentence)]
assert tokens == expected_tokens
def test_tokenize_removes_whitespace_tokens(self):
sentence = "the\n jones' house \x0b 55"
expected_tokens = ["the", "jones", "'", "house", "55"]
tokens = [t.text for t in self.word_splitter.split_words(sentence)]
assert tokens == expected_tokens
def test_tokenize_handles_special_cases(self):
# note that the etc. doesn't quite work --- we can special case this if we want.
sentence = "Mr. and Mrs. Jones, etc., went to, e.g., the store"
expected_tokens = ["Mr.", "and", "Mrs.", "Jones", ",", "etc", ".", ",", "went", "to", ",",
"e.g.", ",", "the", "store"]
tokens = [t.text for t in self.word_splitter.split_words(sentence)]
assert tokens == expected_tokens
def test_batch_tokenization(self):
sentences = ["This is a sentence",
"This isn't a sentence.",
"This is the 3rd sentence."
"Here's the 'fourth' sentence."]
batch_split = self.word_splitter.batch_split_words(sentences)
separately_split = [self.word_splitter.split_words(sentence) for sentence in sentences]
assert len(batch_split) == len(separately_split)
for batch_sentence, separate_sentence in zip(batch_split, separately_split):
assert len(batch_sentence) == len(separate_sentence)
for batch_word, separate_word in zip(batch_sentence, separate_sentence):
assert batch_word.text == separate_word.text
def test_keep_spacy_tokens(self):
word_splitter = SpacyWordSplitter()
sentence = "This should be an allennlp Token"
tokens = word_splitter.split_words(sentence)
assert tokens
assert all(isinstance(token, Token) for token in tokens)
word_splitter = SpacyWordSplitter(keep_spacy_tokens=True)
sentence = "This should be a spacy Token"
tokens = word_splitter.split_words(sentence)
assert tokens
assert all(isinstance(token, spacy.tokens.Token) for token in tokens)
class TestOpenAiWordSplitter(AllenNlpTestCase):
def setUp(self):
super(TestOpenAiWordSplitter, self).setUp()
self.word_splitter = OpenAISplitter()
def test_tokenize_handles_complex_punctuation(self):
sentence = "This sentence ?a!?!"
expected_tokens = ['This', 'sentence', '?', 'a', '!', '?', '!']
tokens = [t.text for t in self.word_splitter.split_words(sentence)]
assert tokens == expected_tokens
class TestBertBasicWordSplitter(AllenNlpTestCase):
def setUp(self):
super(TestBertBasicWordSplitter, self).setUp()
self.word_splitter = BertBasicWordSplitter()
def test_never_split(self):
sentence = "[unused0] [UNK] [SEP] [PAD] [CLS] [MASK]"
expected_tokens = ["[", "unused0", "]", "[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]"]
tokens = [token.text for token in self.word_splitter.split_words(sentence)]
assert tokens == expected_tokens
def test_do_lower_case(self):
# BertBasicWordSplitter makes every token not in `never_split` to lowercase by default
word_splitter = BertBasicWordSplitter(never_split=["[UNUSED0]"])
sentence = "[UNUSED0] [UNK] [unused0]"
expected_tokens = ["[UNUSED0]", "[", "unk", "]", "[", "unused0", "]"]
tokens = [token.text for token in word_splitter.split_words(sentence)]
assert tokens == expected_tokens
| [] |
2024-01-10 | lega0208/lancedb | docs~src~examples~modal_langchain.py | import pickle
import re
import sys
import zipfile
from pathlib import Path
import requests
from langchain.chains import RetrievalQA
from langchain.document_loaders import UnstructuredHTMLLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import LanceDB
from modal import Image, Secret, Stub, web_endpoint
import lancedb
lancedb_image = Image.debian_slim().pip_install(
"lancedb", "langchain", "openai", "pandas", "tiktoken", "unstructured", "tabulate"
)
stub = Stub(
name="example-langchain-lancedb",
image=lancedb_image,
secrets=[Secret.from_name("my-openai-secret")],
)
docsearch = None
docs_path = Path("docs.pkl")
db_path = Path("lancedb")
def get_document_title(document):
m = str(document.metadata["source"])
title = re.findall("pandas.documentation(.*).html", m)
if title[0] is not None:
return title[0]
return ""
def download_docs():
pandas_docs = requests.get(
"https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip"
)
with open(Path("pandas.documentation.zip"), "wb") as f:
f.write(pandas_docs.content)
file = zipfile.ZipFile(Path("pandas.documentation.zip"))
file.extractall(path=Path("pandas_docs"))
def store_docs():
docs = []
if not docs_path.exists():
for p in Path("pandas_docs/pandas.documentation").rglob("*.html"):
if p.is_dir():
continue
loader = UnstructuredHTMLLoader(p)
raw_document = loader.load()
m = {}
m["title"] = get_document_title(raw_document[0])
m["version"] = "2.0rc0"
raw_document[0].metadata = raw_document[0].metadata | m
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
docs = docs + raw_document
with docs_path.open("wb") as fh:
pickle.dump(docs, fh)
else:
with docs_path.open("rb") as fh:
docs = pickle.load(fh)
return docs
def qanda_langchain(query):
download_docs()
docs = store_docs()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200,)
documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings()
db = lancedb.connect(db_path)
table = db.create_table(
"pandas_docs",
data=[
{
"vector": embeddings.embed_query("Hello World"),
"text": "Hello World",
"id": "1",
}
],
mode="overwrite",
)
docsearch = LanceDB.from_documents(documents, embeddings, connection=table)
qa = RetrievalQA.from_chain_type(
llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever()
)
return qa.run(query)
@stub.function()
@web_endpoint(method="GET")
def web(query: str):
answer = qanda_langchain(query)
return {
"answer": answer,
}
@stub.function()
def cli(query: str):
answer = qanda_langchain(query)
print(answer)
| [] |
2024-01-10 | gutbash/gpt-iva-cord | test_chat_agent.py | import discord
from discord import app_commands
import discord.ext.commands
import discord.ext.tasks
from utils.log_utils import colors
from utils.redis_utils import save_pickle_to_redis, load_pickle_from_redis
from utils.postgres_utils import fetch_key, fetch_keys_table, upsert_key, delete_key
from utils.tool_utils import dummy_sync_function
from tools import (
get_image_from_search,
get_organic_results,
get_shopping_results,
question_answer_webpage,
summarize_webpage,
get_full_blip,
)
import asyncio
import os
import openai
import datetime
from transformers import GPT2TokenizerFast
import re
import requests
import itertools
import pydot
import PyPDF2
import io
import textwrap
from bs4 import BeautifulSoup
import chardet
import aiohttp
import logging
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.callbacks import get_openai_callback
from langchain.chains.conversation.memory import ConversationSummaryBufferMemory
from langchain.memory import ConversationBufferWindowMemory
from langchain.agents import Tool, AgentExecutor, load_tools, ConversationalAgent, ConversationalChatAgent, initialize_agent, AgentType
from langchain.text_splitter import TokenTextSplitter
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
MessagesPlaceholder,
HumanMessagePromptTemplate,
)
from langchain.schema import (
AgentAction,
AIMessage,
BaseMessage,
BaseOutputParser,
HumanMessage,
)
from typing import Any, List, Optional, Sequence, Tuple
from pydantic import Field
from langchain.agents.agent import Agent, AgentOutputParser
from langchain.agents.conversational_chat.output_parser import ConvoOutputParser
from langchain.agents.conversational_chat.prompt import (
PREFIX,
SUFFIX,
TEMPLATE_TOOL_RESPONSE,
)
from langchain.agents.utils import validate_tools_single_input
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains import LLMChain
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
SystemMessagePromptTemplate,
)
from langchain.schema import (
AgentAction,
AIMessage,
BaseMessage,
BaseOutputParser,
HumanMessage,
)
from langchain.tools.base import BaseTool
from constants import (
ORGANIC_RESULTS_ASK_TOOL_DESCRIPTION,
QA_WEBPAGE_ASK_TOOL_DESCRIPTION,
IMAGE_SEARCH_ASK_TOOL_DESCRIPTION,
RECOGNIZE_IMAGE_ASK_TOOL_DESCRIPTION,
SUMMARIZE_WEBPAGE_ASK_TOOL_DESCRIPTION,
QA_WEBPAGE_CHAT_TOOL_DESCRIPTION,
IMAGE_SEARCH_CHAT_TOOL_DESCRIPTION,
ORGANIC_RESULTS_CHAT_TOOL_DESCRIPTION,
RECOGNIZE_IMAGE_CHAT_TOOL_DESCRIPTION,
SUMMARIZE_WEBPAGE_CHAT_TOOL_DESCRIPTION,
get_ask_prefix,
get_ask_custom_format_instructions,
get_ask_suffix,
get_chat_prefix,
get_chat_custom_format_instructions,
get_chat_suffix,
get_thread_namer_prompt,
FEATURES,
)
from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser
from langchain.prompts import BaseChatPromptTemplate
from langchain import SerpAPIWrapper, LLMChain
from langchain.chat_models import ChatOpenAI
from typing import List, Union
from langchain.schema import AgentAction, AgentFinish, HumanMessage
import re
from getpass import getpass
from langchain.prompts.chat import BaseChatPromptTemplate
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
from pydantic import Extra
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManager,
AsyncCallbackManagerForChainRun,
CallbackManager,
CallbackManagerForChainRun,
Callbacks,
)
from langchain.chains.base import Chain
from langchain.input import get_colored_text
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import LLMResult, PromptValue
GOOGLE_API_KEY = os.getenv("GOOGLE_API_TOKEN")
GOOGLE_CSE_ID = os.getenv("GOOGLE_CSE_ID")
DISCORD_TOKEN = os.getenv("DISCORD_TOKEN") # load discord app token
GUILD_ID = os.getenv("GUILD_ID") # load dev guild
SERPAPI_API_KEY = os.getenv("SERPAPI_API_KEY")
NEWS_API_KEY = os.getenv("NEWS_API_KEY")
WOLFRAM_ALPHA_APPID = os.getenv("WOLFRAM_ALPHA_APPID")
DATABASE_URL = os.getenv("DATABASE_URL")
tools = []
"""
tools.append(Tool(
name = "Organic Results",
func=dummy_sync_function,
coroutine=get_organic_results,
description=ORGANIC_RESULTS_ASK_TOOL_DESCRIPTION,
))
tools.append(Tool(
name = "Summarize Webpage",
func=dummy_sync_function,
coroutine=parse_summary_webpage_input,
description=SUMMARIZE_WEBPAGE_ASK_TOOL_DESCRIPTION,
))
tools.append(Tool(
name = "Q&A Webpage",
func=dummy_sync_function,
coroutine=parse_qa_webpage_input,
description=QA_WEBPAGE_ASK_TOOL_DESCRIPTION,
))
tools.append(Tool(
name = "Recognize Image",
func=dummy_sync_function,
coroutine=parse_blip_recognition,
description=RECOGNIZE_IMAGE_ASK_TOOL_DESCRIPTION,
))
tools.append(Tool(
name = "Image Search",
func=dummy_sync_function,
coroutine=get_image_from_search,
description=IMAGE_SEARCH_ASK_TOOL_DESCRIPTION,
))
"""
# Set up the base template
template = """Complete the objective as best you can. You have access to the following tools:
{tools}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
These were previous tasks you completed:
Begin!
Question: {input}
{agent_scratchpad}"""
logical_llm = ChatOpenAI(
openai_api_key="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",
temperature=0,
verbose=False,
#callback_manager=manager,
request_timeout=600,
)
ask_llm = ChatOpenAI(
temperature=0.5,
model_name="gpt-3.5-turbo",
openai_api_key="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",
request_timeout=600,
verbose=False,
#callback_manager=manager,
#max_tokens=max_tokens,
)
async def parse_qa_webpage_input(url_comma_question):
a, b = url_comma_question.split(",")
answer = await question_answer_webpage(a, b, llm=logical_llm)
return f"{answer}\n"
async def parse_summary_webpage_input(url):
summary = await summarize_webpage(url, llm=logical_llm)
return summary
async def parse_blip_recognition(url_comma_question):
a, b = url_comma_question.split(",")
output = await get_full_blip(image_url=a, question=b)
return output
attachment_text = ""
file_placeholder = ""
k_limit = 3
# Set up a prompt template
class CustomPromptTemplate(BaseChatPromptTemplate):
# The template to use
template: str
# The list of tools available
tools: List[Tool]
def format_messages(self, **kwargs) -> str:
# Get the intermediate steps (AgentAction, Observation tuples)
# Format them in a particular way
intermediate_steps = kwargs.pop("intermediate_steps")
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\nObservation: {observation}\nThought: "
# Set the agent_scratchpad variable to that value
kwargs["agent_scratchpad"] = thoughts
# Create a tools variable from the list of tools provided
kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools])
# Create a list of tool names for the tools provided
kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools])
formatted = self.template.format(**kwargs)
return [HumanMessage(content=formatted)]
class CustomOutputParser(AgentOutputParser):
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
# Check if agent should finish
if "Final Answer:" in llm_output:
return AgentFinish(
# Return values is generally always a dictionary with a single `output` key
# It is not recommended to try anything else at the moment :)
return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
log=llm_output,
)
# Parse out the action and action input
regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
# Return the action and action input
return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)
class CustomConversationalChatAgent(Agent):
"""An agent designed to hold a conversation in addition to using tools."""
output_parser: AgentOutputParser = Field(default_factory=ConvoOutputParser)
template_tool_response: str = TEMPLATE_TOOL_RESPONSE
@classmethod
def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser:
return ConvoOutputParser()
@property
def _agent_type(self) -> str:
raise NotImplementedError
@property
def observation_prefix(self) -> str:
"""Prefix to append the observation with."""
return "Observation: "
@property
def llm_prefix(self) -> str:
"""Prefix to append the llm call with."""
return "Thought:"
@classmethod
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None:
super()._validate_tools(tools)
validate_tools_single_input(cls.__name__, tools)
@classmethod
def create_prompt(
cls,
tools: Sequence[BaseTool],
system_message: str = PREFIX,
human_message: str = SUFFIX,
input_variables: Optional[List[str]] = None,
output_parser: Optional[BaseOutputParser] = None,
) -> BasePromptTemplate:
tool_strings = "\n".join(
[f"> {tool.name}: {tool.description}" for tool in tools]
)
tool_names = ", ".join([tool.name for tool in tools])
_output_parser = output_parser or cls._get_default_output_parser()
format_instructions = human_message.format(
format_instructions=_output_parser.get_format_instructions()
)
final_prompt = format_instructions.format(
tool_names=tool_names, tools=tool_strings
)
if input_variables is None:
input_variables = ["input", "chat_history", "agent_scratchpad"]
messages = [
SystemMessagePromptTemplate.from_template(system_message),
MessagesPlaceholder(variable_name="chat_history"),
HumanMessagePromptTemplate.from_template(final_prompt),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> List[BaseMessage]:
"""Construct the scratchpad that lets the agent continue its thought process."""
thoughts: List[BaseMessage] = []
for action, observation in intermediate_steps:
thoughts.append(AIMessage(content=action.log))
human_message = HumanMessage(
content=self.template_tool_response.format(observation=observation)
)
thoughts.append(human_message)
return thoughts
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
system_message: str = PREFIX,
human_message: str = SUFFIX,
input_variables: Optional[List[str]] = None,
**kwargs: Any,
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
_output_parser = output_parser or cls._get_default_output_parser()
prompt = cls.create_prompt(
tools,
system_message=system_message,
human_message=human_message,
input_variables=input_variables,
output_parser=_output_parser,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
output_parser=_output_parser,
**kwargs,
)
output_parser = CustomOutputParser()
memory = ConversationBufferWindowMemory(
k=k_limit,
#return_messages=True,
memory_key="chat_history",
return_messages=True,
)
prompt = CustomPromptTemplate(
template=template,
tools=tools,
# This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically
# This includes the `intermediate_steps` variable because that is needed
input_variables=["input", "intermediate_steps", "agent_scratchpad"]
)
# LLM chain consisting of the LLM and a prompt
llm_chain = LLMChain(llm=ask_llm, prompt=prompt, memory=memory)
agent = CustomConversationalChatAgent(
llm_chain=llm_chain,
output_parser=output_parser,
)
agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
verbose=True
)
"""
while True:
prompt = input("User: ")
reply = agent_executor.run(prompt)
print(f"Agent: {reply}")
"""
from langchain.chat_models import ChatOpenAI
from langchain.schema import (
HumanMessage,
)
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
chat = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0, openai_api_key="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")
async def print_stream():
resp = await (["Tell me a joke."])
for response in resp:
print(response)
print("Stream has ended.")
# Run the async function
asyncio.run(print_stream()) | [
"agent_scratchpad",
"input",
"intermediate_steps",
"Complete the objective as best you can. You have access to the following tools:\n\n{tools}\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nThese were previous tasks you completed:\n\n\n\nBegin!\n\nQuestion: {input}\n{agent_scratchpad}"
] |
2024-01-10 | gutbash/gpt-iva-cord | output_parser.py | import re
from typing import Union
from langchain.agents.agent import AgentOutputParser
from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS
from langchain.schema import AgentAction, AgentFinish, OutputParserException
class ConvoOutputParser(AgentOutputParser):
ai_prefix: str = "Iva"
def get_format_instructions(self) -> str:
return FORMAT_INSTRUCTIONS
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
if f"{self.ai_prefix}:" in text:
return AgentFinish(
{"output": text.split(f"{self.ai_prefix}:")[-1].strip()}, text
)
regex = r"(?s)Action: (.*?)[\n]*Action Input: (.*)"
match = re.search(regex, text)
if not match:
raise OutputParserException(f"Could not parse LLM output: `{text}`")
action = match.group(1)
action_input = match.group(2)
return AgentAction(action.strip(), action_input.strip(" ").strip('"'), text)
@property
def _type(self) -> str:
return "conversational" | [] |
2024-01-10 | gutbash/gpt-iva-cord | utils~doc_utils.py | from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, Tuple
from pydantic import Field
from langchain.chains.base import Chain
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
class AnalyzeDocumentChain(Chain):
"""Chain that splits documents, then analyzes it in pieces."""
input_key: str = "input_document" #: :meta private:
output_key: str = "output_text" #: :meta private:
text_splitter: TextSplitter = Field(default_factory=RecursiveCharacterTextSplitter)
combine_docs_chain: BaseCombineDocumentsChain
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return [self.output_key]
def _call(self, inputs: Dict[str, Any]) -> Dict[str, str]:
document = inputs[self.input_key]
docs = self.text_splitter.create_documents([document])
# Other keys are assumed to be needed for LLM prediction
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
other_keys[self.combine_docs_chain.input_key] = docs
return self.combine_docs_chain(other_keys, return_only_outputs=True)
async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, str]:
document = inputs[self.input_key]
docs = self.text_splitter.create_documents([document])
# Other keys are assumed to be needed for LLM prediction
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
other_keys[self.combine_docs_chain.input_key] = docs
# Assuming combine_docs_chain has an async __call__ method
combined_docs = await self.combine_docs_chain(other_keys, return_only_outputs=True)
print("COMBINED DOCS")
return combined_docs
| [] |
2024-01-10 | gutbash/gpt-iva-cord | iva.py | import discord
from discord import app_commands
import discord.ext.commands
import discord.ext.tasks
from utils.log_utils import colors
from utils.redis_utils import save_pickle_to_redis, load_pickle_from_redis
from utils.postgres_utils import fetch_key, fetch_keys_table, upsert_key, delete_key
from utils.tool_utils import dummy_sync_function
from tools import (
get_image_from_search,
get_organic_results,
get_shopping_results,
question_answer_webpage,
summarize_webpage,
get_full_blip,
view_webpage_window,
)
import sys
import asyncio
from io import StringIO
from typing import Dict, Optional
from pydantic import BaseModel, Field
import time
import asyncio
import os
import openai
import datetime
from transformers import GPT2TokenizerFast
import re
import requests
import itertools
import pydot
import PyPDF2
import io
import textwrap
import chardet
import aiohttp
import logging
import subprocess
import pandas as pd
from docx import Document
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from langchain.chains.llm import LLMChain
from langchain.callbacks import get_openai_callback
from langchain.chains.conversation.memory import ConversationSummaryBufferMemory
from langchain.memory.buffer_window import ConversationBufferWindowMemory
from langchain.memory.token_buffer import ConversationTokenBufferMemory
from langchain.agents import Tool
from langchain.agents.conversational.base import ConversationalAgent
from langchain.agents.agent import AgentExecutor
from output_parser import ConvoOutputParser
from langchain.text_splitter import TokenTextSplitter
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from constants import (
ORGANIC_RESULTS_ASK_TOOL_DESCRIPTION,
QA_WEBPAGE_ASK_TOOL_DESCRIPTION,
WEBPAGE_WINDOW_ASK_TOOL_DESCRIPTION,
IMAGE_SEARCH_ASK_TOOL_DESCRIPTION,
RECOGNIZE_IMAGE_ASK_TOOL_DESCRIPTION,
SUMMARIZE_WEBPAGE_ASK_TOOL_DESCRIPTION,
PYTHON_REPL_ASK_TOOL_DESCRIPTION,
QA_WEBPAGE_CHAT_TOOL_DESCRIPTION,
IMAGE_SEARCH_CHAT_TOOL_DESCRIPTION,
ORGANIC_RESULTS_CHAT_TOOL_DESCRIPTION,
RECOGNIZE_IMAGE_CHAT_TOOL_DESCRIPTION,
SUMMARIZE_WEBPAGE_CHAT_TOOL_DESCRIPTION,
get_ask_prefix,
get_ask_custom_format_instructions,
get_ask_suffix,
get_chat_prefix,
get_chat_custom_format_instructions,
get_chat_suffix,
get_thread_namer_prompt,
FEATURES,
)
GOOGLE_API_KEY = os.getenv("GOOGLE_API_TOKEN")
GOOGLE_CSE_ID = os.getenv("GOOGLE_CSE_ID")
DISCORD_TOKEN = os.getenv("DISCORD_TOKEN") # load discord app token
GUILD_ID = os.getenv("GUILD_ID") # load dev guild
SERPAPI_API_KEY = os.getenv("SERPAPI_API_KEY")
NEWS_API_KEY = os.getenv("NEWS_API_KEY")
WOLFRAM_ALPHA_APPID = os.getenv("WOLFRAM_ALPHA_APPID")
DATABASE_URL = os.getenv("DATABASE_URL")
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") # initialize tokenizer
intents = discord.Intents.default() # declare intents
intents.message_content = True
intents.presences = False
intents.members = False
client = discord.Client(intents=intents)
tree = app_commands.CommandTree(client)
active_users = {} # dict of lists
active_names = {} # dict of strings
@client.event
async def on_ready():
await fetch_keys_table()
await tree.sync()
logging.info(f"Registered {len(client.guilds)} guilds.")
logging.info(f"Logged in as @{client.user.name}.")
@client.event
async def on_guild_join(guild):
logging.info(f"Client added to guild {guild}.")
await tree.sync(guild=guild)
@client.event
async def on_message(message):
if message.author == client.user:
return
agent_mention = client.user.mention
if "<@&1053339601449779383>" in message.content or agent_mention in message.content:
global active_users
global active_names
active_users = await load_pickle_from_redis('active_users')
chat_mems = await load_pickle_from_redis('chat_mems')
# Get the current timestamp
timestamp = datetime.datetime.now()
time = timestamp.strftime(r"%Y-%m-%d %I:%M:%S")
itis = timestamp.strftime(r"%B %d, %Y")
clock = timestamp.strftime(r"%I:%M %p")
channel_id = message.channel.id
if channel_id not in chat_mems:
chat_mems[channel_id] = None
if channel_id not in active_users:
active_users[channel_id] = []
guild_name = message.guild
if guild_name == None:
guild_name = "DM"
bot = client.user.display_name
user_name = message.author.name
id = message.author.id
user_mention = message.author.mention
prompt = message.content
attachments = message.attachments
openai_key = ""
prompt = prompt.replace("<@1050437164367880202>", "")
prompt = prompt.strip()
attachment_text = ''
file_placeholder = ''
blip_text = ''
async with message.channel.typing():
result = await fetch_key(id)
user_settings = await load_pickle_from_redis('user_settings')
chat_model = user_settings.get(id, {}).get('model', 'gpt-3.5-turbo')
#temperature = user_settings.get(id, {}).get('temperature', 0.5)
temperature = 0.5
if chat_model == "gpt-3.5-turbo-0613":
chat_model = "gpt-3.5-turbo"
max_tokens = 4096
if chat_model == "gpt-4":
max_tokens = 8192
if result != None:
openai.api_key=result
openai_key=result
else:
embed = discord.Embed(description=f'<:ivanotify:1051918381844025434> {user_mention} Use `/setup` to register API key first or `/help` for more info. You can find your API key at [openai.com](https://beta.openai.com).', color=discord.Color.dark_theme())
await message.channel.send(embed=embed)
return
text_splitter = TokenTextSplitter()
logical_llm = ChatOpenAI(
openai_api_key=openai_key,
temperature=0,
verbose=True,
#callback_manager=manager,
request_timeout=600,
)
async def parse_organic_results_input(url_comma_question):
#a, b = url_comma_question.split(",", maxsplit=1)
#answer = await get_organic_results(query=a, recency_days=int(b), llm=logical_llm)
answer = await get_organic_results(query=url_comma_question, recency_days=None, llm=logical_llm)
return f"{answer}"
async def parse_qa_webpage_input(url_comma_question):
a, b = url_comma_question.split(",", maxsplit=1)
answer = await question_answer_webpage(url=a, question=b, llm=logical_llm)
return f"{answer}\n"
async def parse_summary_webpage_input(url):
summary = await summarize_webpage(url, llm=logical_llm)
return summary
async def parse_blip_recognition(url_comma_question):
a, b = url_comma_question.split(",", maxsplit=1)
output = await get_full_blip(image_url=a, question=b)
return output
async def parse_view_webpage_input(url_comma_page_index):
a, b = url_comma_page_index.split(",", maxsplit=1)
output = await view_webpage_window(url=a, span_index=int(b))
return output
# STRINGIFY ACTIVE USERS
if f"{user_name} ({user_mention})" not in active_users[channel_id]:
active_users[channel_id].append(f"{user_name} ({user_mention})")
active_names[channel_id] = ", ".join(active_users[channel_id])
try:
files = []
if chat_model != "text-davinci-003":
chat_llm = ChatOpenAI(
temperature=temperature,
model_name=chat_model,
openai_api_key=openai_key,
request_timeout=600,
verbose=True,
)
else:
chat_llm = OpenAI(
temperature=temperature,
model_name=chat_model,
openai_api_key=openai_key,
request_timeout=600,
verbose=True,
)
tools = []
def dummy_sync_function(tool_input: str) -> str:
raise NotImplementedError("This tool only supports async")
tools.append(Tool(
name = "Search",
func=dummy_sync_function,
coroutine=parse_organic_results_input,
description=ORGANIC_RESULTS_CHAT_TOOL_DESCRIPTION,
))
"""
tools.append(Tool(
name = "Summarize Webpage",
func=dummy_sync_function,
coroutine=parse_summary_webpage_input,
description=SUMMARIZE_WEBPAGE_CHAT_TOOL_DESCRIPTION,
))
tools.append(Tool(
name = "Query Webpage",
func=dummy_sync_function,
coroutine=parse_qa_webpage_input,
description=QA_WEBPAGE_CHAT_TOOL_DESCRIPTION,
))
"""
tools.append(Tool(
name = "Webpage",
func=dummy_sync_function,
coroutine=parse_view_webpage_input,
description=WEBPAGE_WINDOW_ASK_TOOL_DESCRIPTION,
))
"""
tools.append(Tool(
name = "Vision",
func=dummy_sync_function,
coroutine=parse_blip_recognition,
description=RECOGNIZE_IMAGE_CHAT_TOOL_DESCRIPTION,
))
tools.append(Tool(
name = "Images",
func=dummy_sync_function,
coroutine=get_image_from_search,
description=IMAGE_SEARCH_CHAT_TOOL_DESCRIPTION,
))
"""
tool_names = [tool.name for tool in tools]
prefix = await get_chat_prefix(active_names=active_names.get(channel_id, ''), itis=itis)
custom_format_instructions = await get_chat_custom_format_instructions(tool_names=tool_names, user_name=user_name)
suffix = await get_chat_suffix()
if attachments != []:
for file in attachments:
file_type = file.content_type
attachment_bytes = await file.read()
file_name = file.filename
with open(f'{file_name}', 'wb') as f:
f.write(attachment_bytes)
if file_type in ('image/jpeg', 'image/jpg', 'image/png'):
blip_text += f"\n\n{file_name} attached and saved to working directory: {file.url}"
file_placeholder += f"\n\n:frame_photo: **{file_name}**"
elif "text/plain" in file_type: #txt
# Detect encoding
detected = chardet.detect(attachment_bytes)
encoding = detected['encoding']
# Decode using the detected encoding
raw_text = attachment_bytes.decode(encoding)
file_tokens = len(tokenizer(prefix + custom_format_instructions + suffix + raw_text, truncation=True, max_length=12000)['input_ids'])
if file_tokens >= max_tokens:
attachment_text += f"\n\n{file_name} is too large for you to view, but it has still been saved to the directory if you'd like to use Python REPL to interact with it. Here is a preview of the file:\n--- {file_name} ---\n\n{raw_text[:100]} [...]"
else:
attachment_text += f"\n\n{file_name} has been saved to the working directory\n--- {file_name} ---\n\n{attachment_bytes.decode(encoding)}"
file_placeholder += f"\n\n:page_facing_up: **{file_name}**"
elif "application/vnd.openxmlformats-officedocument.wordprocessingml.document" in file_type: #docx
file_like_object = io.BytesIO(attachment_bytes)
doc = Document(file_like_object)
full_text = []
for para in doc.paragraphs:
full_text.append(para.text)
raw_text = "\n".join(full_text)
file_tokens = len(tokenizer(prefix + custom_format_instructions + suffix + raw_text, truncation=True, max_length=12000)['input_ids'])
if file_tokens >= max_tokens:
attachment_text += f"\n\n{file_name} is too large for you to view, but it has still been saved to the directory if you'd like to use Python REPL to interact with it. Here is a preview of the file:\n--- {file_name} ---\n\n{raw_text[:100]} [...]"
else:
attachment_text += f"\n\n{file_name} has been saved to the working directory\n--- {file_name} ---\n\n{raw_text}"
file_placeholder += f"\n\n:page_facing_up: **{file_name}**"
elif "application/pdf" in file_type: #pdf
pdf_file = io.BytesIO(attachment_bytes)
pdf_reader = PyPDF2.PdfReader(pdf_file)
pdf_content = ""
for page in range(len(pdf_reader.pages)):
page_text = pdf_reader.pages[page].extract_text()
# Replace multiple newlines with a single space
page_text = re.sub(r'\n+', ' ', page_text)
pdf_content += page_text
file_tokens = len(tokenizer(prefix + custom_format_instructions + suffix + pdf_content, truncation=True, max_length=12000)['input_ids'])
if file_tokens >= max_tokens:
attachment_text += f"\n\n{file_name} is too large for you to view, but it has still been saved to the directory if you'd like to use Python REPL to interact with it. Here is a preview of the file:\n--- {file_name} ---\n\n{pdf_content[:100]} [...]"
else:
attachment_text += f"\n\n{file_name} has been saved to the working directory\n--- {file_name} ---\n\n{pdf_content}"
file_placeholder += f"\n\n:page_facing_up: **{file_name}**"
elif "text/csv" in file_type: #csv
try:
# Detect encoding
detected = chardet.detect(attachment_bytes)
encoding = detected['encoding']
# Decode using the detected encoding
raw_text = attachment_bytes.decode(encoding)
data = pd.read_csv(file_name)
attachment_text += f"\n\n{file_name} has been saved to the working directory. Here is a preview of the file head:\n--- {file_name} ---\n\n{data.head()}"
file_placeholder += f"\n\n:page_facing_up: **{file_name}**"
except:
# Detect encoding
detected = chardet.detect(attachment_bytes)
encoding = detected['encoding']
# Decode using the detected encoding
raw_text = attachment_bytes.decode(encoding)
attachment_text += f"\n\n{file_name} is too large for you to view, but it has still been saved to the directory if you'd like to use Python REPL to interact with it. Here is a preview of the file:\n--- {file_name} ---\n\n{raw_text[:100]} [...]"
file_placeholder += f"\n\n:page_facing_up: **{file_name}**"
else:
try:
# Detect encoding
detected = chardet.detect(attachment_bytes)
encoding = detected['encoding']
# Decode using the detected encoding
raw_text = attachment_bytes.decode(encoding)
file_tokens = len(tokenizer(prefix + custom_format_instructions + suffix + raw_text, truncation=True, max_length=12000)['input_ids'])
if file_tokens >= max_tokens:
attachment_text += f"\n\n{file_name} is too large for you to view, but it has still been saved to the directory if you'd like to use Python REPL to interact with it. Here is a preview of the file:\n--- {file_name} ---\n\n{raw_text[:100]} [...]"
else:
attachment_text += f"\n\n{file_name} has been saved to the working directory\n--- {file_name} ---\n\n{attachment_bytes.decode(encoding)}"
file_placeholder += f"\n\n:page_facing_up: **{file_name}**"
except:
embed = discord.Embed(description=f'<:ivanotify:1051918381844025434> {user_mention} the attachment\'s file type is unknown. consider converting it to plain text such as `.txt`.', color=discord.Color.dark_theme())
await message.channel.send(embed=embed)
return
guild_prompt = ConversationalAgent.create_prompt(
tools=tools,
prefix=textwrap.dedent(prefix).strip(),
suffix=textwrap.dedent(suffix).strip(),
format_instructions=textwrap.dedent(custom_format_instructions).strip(),
input_variables=["input", "chat_history", "agent_scratchpad"],
ai_prefix = f"Iva",
human_prefix = f"",
)
if chat_mems[channel_id] != None:
guild_memory = chat_mems[channel_id]
guild_memory.max_token_limit = 2000
guild_memory.ai_prefix = f"Iva"
guild_memory.human_prefix = f""
else:
guild_memory = ConversationSummaryBufferMemory(
llm=chat_llm,
max_token_limit=2000,
memory_key="chat_history",
input_key="input",
ai_prefix = f"Iva",
human_prefix = f"",
)
llm_chain = LLMChain(
llm=chat_llm,
verbose=True,
prompt=guild_prompt,
)
output_parser = ConvoOutputParser(
ai_prefix="Iva",
)
agent = ConversationalAgent(
llm_chain=llm_chain,
tools=tools,
verbose=True,
ai_prefix=f"Iva",
llm_prefix=f"Iva",
output_parser=output_parser,
)
agent_chain = AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
verbose=True,
memory=guild_memory,
ai_prefix=f"Iva",
llm_prefix=f"Iva",
max_execution_time=600,
#max_iterations=3,
#early_stopping_method="generate",
#return_intermediate_steps=False,
)
try:
reply = await agent_chain.arun(input=f"{user_name} ({user_mention}): {prompt}{attachment_text}")
except Exception as e:
if str(e).startswith("Could not parse LLM output:"):
reply = str(e).replace("Could not parse LLM output: `", "")
reply = reply.replace("Thought: Do I need to use a tool? No", "")
reply = reply.strip("`")
mem_list = guild_memory.chat_memory.messages
extend_mems_list = [
HumanMessage(
content=prompt,
additional_kwargs={},
),
AIMessage(
content=reply,
additional_kwargs={},
)]
mem_list.extend(extend_mems_list)
else:
logging.error(e)
embed = discord.Embed(description=f'<:ivanotify:1051918381844025434> {user_mention} `{type(e).__name__}` {e}\n\nuse `/help` or seek https://discord.com/channels/1053335631159377950/1053336180692897943 if the issue persists.')
await message.channel.send(embed=embed)
return
except Exception as e:
logging.error(e)
embed = discord.Embed(description=f'error', color=discord.Color.dark_theme())
await message.channel.send(embed=embed)
return
try:
reply = reply.replace("Iva: ", "")
reply = reply.replace("Do I need to use a tool? No", "")
if len(reply) > 2000:
embed = discord.Embed(description=reply, color=discord.Color.dark_theme())
await message.channel.send(embed=embed)
return
else:
await message.channel.send(content=f"{reply}", files=files)
chat_mems[channel_id] = guild_memory
await save_pickle_to_redis('active_users', active_users)
await save_pickle_to_redis('chat_mems', chat_mems)
except Exception as e:
logging.error(e)
embed = discord.Embed(description=f'error', color=discord.Color.dark_theme())
await message.channel.send(embed=embed)
return
return
class Opt(discord.ui.View):
def __init__(self, key: str):
super().__init__(timeout=60 * 60 * 24 * 365)
self.value = None
self.key = key
async def on_timeout(self) -> None:
for item in self.children:
item.disabled = True
await self.message.edit(view=self)
@discord.ui.button(label="Agree and Continue", emoji="<:ivaup:1101609056604524594>", style=discord.ButtonStyle.grey)
async def agree(self, interaction: discord.Interaction, button: discord.ui.Button):
user_id = interaction.user.id
mention = interaction.user.mention
await upsert_key(str(user_id), self.key)
embed = discord.Embed(description=f"<:ivathumbsup:1051918474299056189> **Key registered for {mention}. Welcome to Iva!**", color=discord.Color.dark_theme())
await interaction.response.edit_message(embed=embed, delete_after=10, view=None)
return
@discord.ui.button(label="Disagree", emoji="<:ivadown:1101609054729666610>", style=discord.ButtonStyle.grey)
async def disagree(self, interaction: discord.Interaction, button: discord.ui.Button):
user_id = interaction.user.id
mention = interaction.user.mention
await delete_key(user_id)
embed = discord.Embed(description=f"<:ivathumbsup:1051918474299056189> **You have opted out.**", color=discord.Color.dark_theme())
await interaction.response.edit_message(embed=embed, delete_after=10, view=None)
return
class Menu(discord.ui.View):
def __init__(self):
super().__init__(timeout=60 * 60 * 24 * 365)
self.value = None
async def on_timeout(self) -> None:
# Step 2
for item in self.children:
item.disabled = True
# Step 3
await self.message.edit(view=self)
@discord.ui.button(emoji="<:ivadelete:1095559772754952232>", style=discord.ButtonStyle.grey)
async def delete(self, interaction: discord.Interaction, button: discord.ui.Button):
guild_id = interaction.guild_id
user_id = interaction.user.id
channel_id = interaction.channel.id
mention = interaction.user.mention
ask_mems = await load_pickle_from_redis('ask_mems')
if channel_id in ask_mems and user_id in ask_mems[channel_id] and ask_mems[channel_id][user_id]["user_id"] is not None:
original_user_id = ask_mems[channel_id][user_id]["user_id"]
else:
embed = discord.Embed(description=f'<:ivanotify:1051918381844025434> {mention} You do not own this context line', color=discord.Color.dark_theme())
await interaction.response.send_message(embed=embed, ephemeral=True, delete_after=10)
return
if original_user_id != user_id:
embed = discord.Embed(description=f'<:ivanotify:1051918381844025434> {mention} You do not own this context line', color=discord.Color.dark_theme())
await interaction.response.send_message(embed=embed, ephemeral=True, delete_after=10)
return
else:
try:
if channel_id in ask_mems and user_id in ask_mems[channel_id] and ask_mems[channel_id][user_id]["memory"] is not None:
memory = ask_mems[channel_id][user_id]["memory"]
memory.chat_memory.messages = memory.chat_memory.messages[:-2]
await save_pickle_to_redis('ask_mems', ask_mems)
except Exception as e:
embed = discord.Embed(description=f'<:ivanotify:1051918381844025434> {mention} `{type(e).__name__}` {e}\n\nuse `/help` or seek https://discord.com/channels/1053335631159377950/1053336180692897943 if the issue persists.')
await interaction.channel.send(content=None, embed=embed)
embed = discord.Embed(description=f'<:ivadelete:1095559772754952232>', color=discord.Color.dark_theme())
await interaction.message.edit(content=None, embed=embed, view=None, delete_after=5)
return
@discord.ui.button(emoji="<:ivareset:1051691297443950612>", style=discord.ButtonStyle.grey)
async def reset(self, interaction: discord.Interaction, button: discord.ui.Button):
guild_id = interaction.guild_id
channel_id = interaction.channel.id
user_id = interaction.user.id
mention = interaction.user.mention
ask_mems = await load_pickle_from_redis('ask_mems')
if channel_id in ask_mems and user_id in ask_mems[channel_id] and ask_mems[channel_id][user_id]["user_id"] is not None:
original_user_id = ask_mems[channel_id][user_id]["user_id"]
else:
embed = discord.Embed(description=f'<:ivanotify:1051918381844025434> {mention} You do not own this context line', color=discord.Color.dark_theme())
await interaction.response.send_message(embed=embed, ephemeral=True, delete_after=10)
return
if original_user_id != user_id:
embed = discord.Embed(description=f'<:ivanotify:1051918381844025434> {mention} You do not own this context line', color=discord.Color.dark_theme())
await interaction.response.send_message(embed=embed, ephemeral=True, delete_after=10)
return
else:
if channel_id in ask_mems and user_id in ask_mems[channel_id] and ask_mems[channel_id][user_id]["memory"] is not None:
ask_mems[channel_id][user_id]["memory"] = None
if channel_id in ask_mems and user_id in ask_mems[channel_id] and ask_mems[channel_id][user_id]["last_message_id"] is not None:
ask_mems[channel_id][user_id]["last_message_id"] = None
await save_pickle_to_redis('ask_mems', ask_mems)
embed = discord.Embed(description="<:ivareset:1051691297443950612>", color=discord.Color.dark_theme())
button.disabled = True
embeds = interaction.message.embeds
attachments = interaction.message.attachments
embeds.append(embed)
await interaction.message.edit(view=None, embeds=embeds, attachments=attachments)
#await interaction.channel.send(embed=embed)
@tree.command(name = "iva", description="write a prompt")
@app_commands.describe(prompt = "prompt", file_one = "file one", file_two = "file two", file_three = "file three")
async def iva(interaction: discord.Interaction, prompt: str, file_one: discord.Attachment = None, file_two: discord.Attachment = None, file_three: discord.Attachment = None):
start_time = time.monotonic()
guild_id = interaction.guild_id
guild_name = interaction.guild
user_id = interaction.user.id
user = interaction.user
channel_id = interaction.channel.id
mention = interaction.user.mention
bot = client.user.display_name
user_name = interaction.user.name
channel = interaction.channel
try:
await interaction.response.defer()
# fetch the row with the given id
result = await fetch_key(user_id)
openai_key = ""
if result != None:
openai.api_key=result
openai_key=result
else:
embed = discord.Embed(description=f'<:ivanotify:1051918381844025434> {mention} Use `/setup` to register API key first or `/help` for more info. You can find your API key at [openai.com](https://beta.openai.com).', color=discord.Color.dark_theme())
await interaction.followup.send(embed=embed, ephemeral=True)
return
if isinstance(interaction.channel, discord.TextChannel):
followup_message = await interaction.followup.send(content=channel.jump_url)
await followup_message.delete()
try:
thread_namer = ChatOpenAI(temperature=1.0, openai_api_key=openai_key)
template = await get_thread_namer_prompt(user_name)
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = f"\"{{text}}\""
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
thread_namer_chain = LLMChain(llm=thread_namer, prompt=chat_prompt)
thread_name = await thread_namer_chain.arun(f"{prompt}")
thread_name = thread_name.strip("'").replace('.', '').replace('"', '').replace("Title: ", "")
thread_name = thread_name[:100] #s lice if larger than 100 chars
channel = await interaction.channel.create_thread(
type=discord.ChannelType.public_thread,
name=thread_name,
)
await channel.add_user(user)
channel_id = channel.id
thinking_message = await channel.send(content="<a:ivaloading:1102305649246867561> iva is thinking...")
except Exception as e:
logging.error(e)
embed = discord.Embed(description=f'<:ivanotify:1051918381844025434> {mention} `{type(e).__name__}` {e}\n\nuse `/help` or seek https://discord.com/channels/1053335631159377950/1053336180692897943 if the issue persists.')
await interaction.followup.send(embed=embed, ephemeral=True)
return
default_user_data = {
"last_message_id": None,
"user_id": None,
"memory": None,
}
user_settings = await load_pickle_from_redis('user_settings')
ask_mems = await load_pickle_from_redis('ask_mems')
ask_mems.setdefault(channel_id, {}).setdefault(user_id, default_user_data)
chat_model = user_settings.get(user_id, {}).get('model', 'gpt-3.5-turbo')
temperature = user_settings.get(user_id, {}).get('temperature', 0.5)
if chat_model == "gpt-3.5-turbo-0613":
chat_model = "gpt-3.5-turbo"
if chat_model == "gpt-4":
max_tokens = 8192
elif chat_model == "gpt-3.5-turbo":
max_tokens = 4096
elif chat_model == "gpt-3.5-turbo-16k":
max_tokens = 16384
else:
max_tokens = 4096
# Get the current timestamp
timestamp = datetime.datetime.now()
itis = timestamp.strftime(r"%B %d, %Y")
view = Menu()
logical_llm = ChatOpenAI(
openai_api_key=openai_key,
temperature=0,
verbose=True,
#model_name=chat_model,
#callback_manager=manager,
request_timeout=600,
)
async def parse_organic_results_input(url_comma_question):
#a, b = url_comma_question.split(",", maxsplit=1)
#answer = await get_organic_results(query=a, recency_days=int(b), llm=logical_llm)
answer = await get_organic_results(query=url_comma_question, recency_days=None, llm=logical_llm)
return f"{answer}"
async def parse_qa_webpage_input(url_comma_question):
a, b = url_comma_question.split(",", maxsplit=1)
answer = await question_answer_webpage(url=a, question=b, llm=logical_llm)
return f"{answer}\n"
async def parse_summary_webpage_input(url):
summary = await summarize_webpage(url, llm=logical_llm)
return summary
async def parse_blip_recognition(url_comma_question):
a, b = url_comma_question.split(",", maxsplit=1)
output = await get_full_blip(image_url=a, question=b)
return output
async def parse_view_webpage_input(url_comma_page_index):
url_comma_page_index = url_comma_page_index.strip("[").strip("]")
url_comma_page_index = url_comma_page_index.strip()
a, b = url_comma_page_index.split(",", maxsplit=1)
output = await view_webpage_window(url=a, span_index=int(b))
return output
tools = []
embeds = []
files = []
embeds_overflow = []
files_overflow = []
file_count=0
class PythonREPL(BaseModel):
"""Simulates a standalone Python REPL."""
globals: Optional[Dict] = Field(default_factory=dict, alias="_globals")
locals: Optional[Dict] = Field(default_factory=dict, alias="_locals")
def run(self, command: str) -> str:
logging.info("using sync run repl")
#command = autopep8.fix_code(command, options={"aggressive": 2})
"""Run command with own globals/locals and returns anything printed."""
old_stdout = sys.stdout
sys.stdout = mystdout = StringIO()
try:
exec(command, self.globals, self.locals)
sys.stdout = old_stdout
output = mystdout.getvalue()
except Exception as e:
sys.stdout = old_stdout
output = str(e)
return output
async def arun(self, command: str) -> str:
logging.info("using async run repl")
#command = autopep8.fix_code(command, options={"aggressive": 2})
"""Run command (sync or async) with own globals/locals and returns anything printed."""
old_stdout = sys.stdout
sys.stdout = mystdout = StringIO()
async def run_sync_code():
loop = asyncio.get_running_loop()
return await loop.run_in_executor(None, self.run, command)
async def run_async_code():
exec(
f"async def __arun_inner(scope):\n"
f" async with scope:\n"
f" {command}\n",
self.globals,
self.locals,
)
coroutine = self.locals["__arun_inner"](asyncio.get_event_loop())
await coroutine
try:
if "async " in command:
logging.info("detected async code")
await run_async_code()
else:
logging.info("detected sync code")
await run_sync_code()
sys.stdout = old_stdout
output = mystdout.getvalue()
except Exception as e:
logging.error(e)
sys.stdout = old_stdout
output = str(e)
return output
async def python_repl(command):
command = command.strip().replace("```python", "").replace("```py", "").strip("```").replace(".show()", ".savefig('output.png')")
if "!pip" in command:
pip_install_lines = re.findall(r'^!pip install .*\n?', command, re.MULTILINE)
command = re.sub(r'^!pip install .*\n?', '', command, flags=re.MULTILINE)
for pip in pip_install_lines:
logging.info(f"PIP INSTALL COMMAND: {pip}")
# Handle pip install
package = pip.strip().split(' ')[-1]
result = subprocess.check_call([sys.executable, "-m", "pip", "install", package])
if result == 0: # if the pip install command was successful
await python_repl(command)
return
'''
command = f"""try:
{command}
except Exception as e:
print(str(e))"""
'''
logging.info(f"SANITIZED COMMAND: {command}")
repl = PythonREPL()
# Get the list of files before running the command
before_files = set(os.listdir())
try:
output = await repl.arun(command)
except Exception as e:
logging.error(e)
# Get the list of files after running the command
after_files = set(os.listdir())
logging.info(after_files)
# Get the list of created files
created_files = list(after_files - before_files)
for file in created_files:
if file.startswith("."):
continue
else:
try:
output += f"{file} attached. "
logging.info(f"FILE ATTACHED {file}")
files.append(discord.File(fp=file))
os.remove(file)
except IsADirectoryError as e:
continue
return output
tools.append(Tool(
name = "Search",
func=dummy_sync_function,
coroutine=parse_organic_results_input,
description=ORGANIC_RESULTS_ASK_TOOL_DESCRIPTION,
))
"""
tools.append(Tool(
name = "Summarize Webpage",
func=dummy_sync_function,
coroutine=parse_summary_webpage_input,
description=SUMMARIZE_WEBPAGE_ASK_TOOL_DESCRIPTION,
))
"""
"""
tools.append(Tool(
name = "Query Webpage",
func=dummy_sync_function,
coroutine=parse_qa_webpage_input,
description=QA_WEBPAGE_ASK_TOOL_DESCRIPTION,
))
"""
tools.append(Tool(
name = "Webpage",
func=dummy_sync_function,
coroutine=parse_view_webpage_input,
description=WEBPAGE_WINDOW_ASK_TOOL_DESCRIPTION,
))
"""
tools.append(Tool(
name = "Python REPL",
func=dummy_sync_function,
coroutine=python_repl,
description=PYTHON_REPL_ASK_TOOL_DESCRIPTION,
))
tools.append(Tool(
name = "Vision",
func=dummy_sync_function,
coroutine=parse_blip_recognition,
description=RECOGNIZE_IMAGE_ASK_TOOL_DESCRIPTION,
))
tools.append(Tool(
name = "Images",
func=dummy_sync_function,
coroutine=get_image_from_search,
description=IMAGE_SEARCH_ASK_TOOL_DESCRIPTION,
))
"""
tool_names = [tool.name for tool in tools]
prefix = await get_ask_prefix(itis=itis)
custom_format_instructions = await get_ask_custom_format_instructions(tool_names=tool_names)
suffix = await get_ask_suffix()
blip_text = ""
attached_files = [file_one, file_two, file_three]
attachment_text = ""
file_placeholder = ""
for file in attached_files:
if file != None:
attachment_bytes = await file.read()
file_type = file.content_type
file_name = file.filename
with open(f'{file_name}', 'wb') as f:
f.write(attachment_bytes)
files.append(discord.File(f"{file_name}"))
file_count += 1
if file_type in ('image/jpeg', 'image/jpg', 'image/png'):
blip_text += f"\n\n{file_name} attached and saved to working directory: {file.url}"
file_placeholder += f"\n\n:frame_photo: **{file_name}**"
elif "text/plain" in file_type: #txt
# Detect encoding
detected = chardet.detect(attachment_bytes)
encoding = detected['encoding']
# Decode using the detected encoding
raw_text = attachment_bytes.decode(encoding)
file_tokens = len(tokenizer(prefix + custom_format_instructions + suffix + raw_text, truncation=True, max_length=12000)['input_ids'])
if file_tokens >= max_tokens:
attachment_text += f"\n\n{file_name} is too large for you to view, but it has still been saved to the directory if you'd like to use Python REPL to interact with it. Here is a preview of the file:\n--- {file_name} ---\n\n{raw_text[:100]} [...]"
else:
attachment_text += f"\n\n{file_name} has been saved to the working directory\n--- {file_name} ---\n\n{attachment_bytes.decode(encoding)}"
file_placeholder += f"\n\n:page_facing_up: **{file_name}**"
elif "application/vnd.openxmlformats-officedocument.wordprocessingml.document" in file_type: #docx
file_like_object = io.BytesIO(attachment_bytes)
doc = Document(file_like_object)
full_text = []
for para in doc.paragraphs:
full_text.append(para.text)
raw_text = "\n".join(full_text)
file_tokens = len(tokenizer(prefix + custom_format_instructions + suffix + raw_text, truncation=True, max_length=12000)['input_ids'])
if file_tokens >= max_tokens:
attachment_text += f"\n\n{file_name} is too large for you to view, but it has still been saved to the directory if you'd like to use Python REPL to interact with it. Here is a preview of the file:\n--- {file_name} ---\n\n{raw_text[:100]} [...]"
else:
attachment_text += f"\n\n{file_name} has been saved to the working directory\n--- {file_name} ---\n\n{raw_text}"
file_placeholder += f"\n\n:page_facing_up: **{file_name}**"
elif "application/pdf" in file_type: #pdf
pdf_file = io.BytesIO(attachment_bytes)
pdf_reader = PyPDF2.PdfReader(pdf_file)
pdf_content = ""
for page in range(len(pdf_reader.pages)):
page_text = pdf_reader.pages[page].extract_text()
# Replace multiple newlines with a single space
page_text = re.sub(r'\n+', ' ', page_text)
pdf_content += page_text
file_tokens = len(tokenizer(prefix + custom_format_instructions + suffix + pdf_content, truncation=True, max_length=12000)['input_ids'])
if file_tokens >= max_tokens:
attachment_text += f"\n\n{file_name} is too large for you to view, but it has still been saved to the directory if you'd like to use Python REPL to interact with it. Here is a preview of the file:\n--- {file_name} ---\n\n{pdf_content[:100]} [...]"
else:
attachment_text += f"\n\n{file_name} has been saved to the working directory\n--- {file_name} ---\n\n{pdf_content}"
file_placeholder += f"\n\n:page_facing_up: **{file_name}**"
elif "text/csv" in file_type: #csv
try:
# Detect encoding
detected = chardet.detect(attachment_bytes)
encoding = detected['encoding']
# Decode using the detected encoding
raw_text = attachment_bytes.decode(encoding)
data = pd.read_csv(file_name)
attachment_text += f"\n\n{file_name} has been saved to the working directory. Here is a preview of the file head:\n--- {file_name} ---\n\n{data.head()}"
file_placeholder += f"\n\n:page_facing_up: **{file_name}**"
except:
# Detect encoding
detected = chardet.detect(attachment_bytes)
encoding = detected['encoding']
# Decode using the detected encoding
raw_text = attachment_bytes.decode(encoding)
attachment_text += f"\n\n{file_name} is too large for you to view, but it has still been saved to the directory if you'd like to use Python REPL to interact with it. Here is a preview of the file:\n--- {file_name} ---\n\n{raw_text[:100]} [...]"
file_placeholder += f"\n\n:page_facing_up: **{file_name}**"
else:
try:
# Detect encoding
detected = chardet.detect(attachment_bytes)
encoding = detected['encoding']
# Decode using the detected encoding
raw_text = attachment_bytes.decode(encoding)
file_tokens = len(tokenizer(prefix + custom_format_instructions + suffix + raw_text, truncation=True, max_length=12000)['input_ids'])
if file_tokens >= max_tokens:
attachment_text += f"\n\n{file_name} is too large for you to view, but it has still been saved to the directory if you'd like to use Python REPL to interact with it. Here is a preview of the file:\n--- {file_name} ---\n\n{raw_text[:100]} [...]"
else:
attachment_text += f"\n\n{file_name} has been saved to the working directory\n--- {file_name} ---\n\n{attachment_bytes.decode(encoding)}"
file_placeholder += f"\n\n:page_facing_up: **{file_name}**"
except:
embed = discord.Embed(description=f'<:ivanotify:1051918381844025434> {mention} the attachment\'s file type is unknown. consider converting it to plain text such as `.txt`.', color=discord.Color.dark_theme())
if isinstance(interaction.channel, discord.TextChannel):
await thinking_message.edit(content=None, embed=embed)
else:
await interaction.followup.send(embed=embed, ephemeral=True)
return
try:
if channel_id in ask_mems and user_id in ask_mems[channel_id] and ask_mems[channel_id][user_id]["last_message_id"] is not None:
original_message = await interaction.channel.fetch_message(ask_mems[channel_id][user_id]["last_message_id"])
await original_message.edit(content="⠀", view=None)
except discord.errors.HTTPException as e:
logging.error(e)
if chat_model != "text-davinci-003":
ask_llm = ChatOpenAI(
temperature=temperature,
model_name=chat_model,
openai_api_key=openai_key,
request_timeout=600,
verbose=True,
#callback_manager=manager,
#max_tokens=max_tokens,
)
else:
ask_llm = OpenAI(
temperature=temperature,
model_name=chat_model,
openai_api_key=openai_key,
request_timeout=600,
verbose=True,
)
k_limit = 3
total_cost = None
if channel_id in ask_mems and user_id in ask_mems[channel_id] and ask_mems[channel_id][user_id]["memory"] is not None:
memory = ask_mems[channel_id][user_id]["memory"]
else:
memory = ConversationTokenBufferMemory(
return_messages=False,
human_prefix="User",
ai_prefix="Iva",
llm=ask_llm,
memory_key="chat_history",
max_token_limit=2000,
)
ask_mems[channel_id][user_id]["memory"] = None
guild_prompt = ConversationalAgent.create_prompt(
tools=tools,
prefix=textwrap.dedent(prefix).strip(),
suffix=textwrap.dedent(suffix).strip(),
format_instructions=textwrap.dedent(custom_format_instructions).strip(),
input_variables=["input", "chat_history", "agent_scratchpad"],
ai_prefix = f"Iva",
human_prefix = f"User",
)
llm_chain = LLMChain(
llm=ask_llm,
prompt=guild_prompt,
verbose=True
)
output_parser = ConvoOutputParser(
ai_prefix="Iva",
)
agent = ConversationalAgent(
llm_chain=llm_chain,
allowed_tools=tool_names,
ai_prefix=f"Iva",
output_parser=output_parser,
)
agent_chain = AgentExecutor.from_agent_and_tools(
memory=memory,
agent=agent,
tools=tools,
verbose=True,
ai_prefix=f"Iva",
max_execution_time=600,
#max_iterations=3,
#early_stopping_method="generate",
#return_intermediate_steps=True,
)
url_pattern = re.compile(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+')
links = url_pattern.findall(prompt)
link_guidance = ""
#if links:
# link_guidance = " (open the link with a tool)"
try:
with get_openai_callback() as cb:
reply = await agent_chain.arun(input=f"{prompt}{link_guidance}{blip_text}{attachment_text}")
total_cost = cb.total_cost
except Exception as e:
if str(e).startswith("Could not parse LLM output:"):
logging.error(e)
reply = str(e).replace("Could not parse LLM output: `", "")
reply = reply.replace("Thought: Do I need to use a tool? No", "")
reply = reply.strip("`")
mem_list = memory.chat_memory.messages
extend_mems_list = [
HumanMessage(
content=prompt,
additional_kwargs={},
),
AIMessage(
content=reply,
additional_kwargs={},
)]
mem_list.extend(extend_mems_list)
else:
logging.error(e)
embed = discord.Embed(description=f'<:ivanotify:1051918381844025434> {mention} `{type(e).__name__}` {e}\n\nuse `/help` or seek https://discord.com/channels/1053335631159377950/1053336180692897943 if the issue persists.')
if isinstance(interaction.channel, discord.TextChannel):
await thinking_message.edit(content=None, embed=embed)
else:
await interaction.followup.send(embed=embed, ephemeral=True)
return
reply = reply.replace("Iva: ", "")
reply = reply.replace("Do I need to use a tool? No", "")
reply = reply.replace("```C#", "```cs")
# Regex pattern for Markdown inline images
pattern = r'\n?!\[.*?\]\(.*?\)'
# Substituting the pattern with an empty string
reply = re.sub(pattern, '', reply)
dash_count = ""
interaction_count = (len(memory.buffer)//2)-1
for i in range(interaction_count):
dash_count += "-"
embed = discord.Embed(description=reply, color=discord.Color.dark_theme())
file_count += 1
if '$$' in reply or '```dot' in reply:
# Use the findall() method of the re module to find all occurrences of content between $$
dpi = "{200}"
color = "{white}"
tex_pattern = re.compile(r"\$\$(.*?)\$\$", re.DOTALL)
dot_pattern = re.compile(r'```dot\s*([\s\S]*?)\s*```', re.DOTALL)
tex_matches = tex_pattern.findall(reply)
dot_matches = dot_pattern.finditer(reply)
dot_matches = [match.group(1).strip() for match in dot_matches]
non_matches = re.sub(r"```dot\s*[\s\S]*?\s*```|(\$\$|\%\%|\@\@).*?(\@\@|\%\%|\$\$)", "~~", reply, flags=re.DOTALL)
non_matches = non_matches.split("~~")
try:
for (tex_match, dot_match, non_match) in itertools.zip_longest(tex_matches, dot_matches, non_matches):
if non_match != None and non_match != "" and non_match != "\n" and non_match != "." and non_match != "\n\n" and non_match != " " and non_match != "\n> " and non_match.isspace() != True and non_match.startswith("![") != True:
non_match = non_match.replace("$", "`")
non_match_embed = discord.Embed(description=non_match, color=discord.Color.dark_theme())
if len(embeds) >= 9:
embeds_overflow.append(non_match_embed)
else:
embeds.append(non_match_embed)
if tex_match != None and tex_match != "" and tex_match != "\n" and tex_match != " " and tex_match.isspace() != True:
tex_match = tex_match.strip()
tex_match = tex_match.replace("\n", "")
tex_match = tex_match.strip("$")
tex_match = tex_match.split()
tex_match = "%20".join(tex_match)
match_embed = discord.Embed(color=discord.Color.dark_theme())
image_url = f"https://latex.codecogs.com/png.image?\dpi{dpi}\color{color}{tex_match}"
img_data = requests.get(image_url, verify=False).content
subfolder = 'tex'
if not os.path.exists(subfolder):
os.makedirs(subfolder)
with open(f'{subfolder}/latex{file_count}.png', 'wb') as handler:
handler.write(img_data)
tex_file = discord.File(f'{subfolder}/latex{file_count}.png')
match_embed.set_image(url=f"attachment://latex{file_count}.png")
file_count += 1
if len(embeds) >= 9:
embeds_overflow.append(match_embed)
files_overflow.append(tex_file)
else:
embeds.append(match_embed)
files.append(tex_file)
if dot_match != None and dot_match != "" and dot_match != "\n" and dot_match.isspace() != True:
pattern = r'((di)?graph\s+[^{]*\{)'
replacement = r'\1\nbgcolor="#36393f";\nnode [fontcolor=white, color=white];\nedge [fontcolor=white, color=white];\n'
dot_match = re.sub(pattern, replacement, dot_match)
graphs = pydot.graph_from_dot_data(dot_match)
graph = graphs[0]
subfolder = 'graphviz'
if not os.path.exists(subfolder):
os.makedirs(subfolder)
graph.write_png(f'{subfolder}/graphviz{file_count}.png')
dot_file = discord.File(f'{subfolder}/graphviz{file_count}.png')
match_embed = discord.Embed(color=discord.Color.dark_theme())
match_embed.set_image(url=f"attachment://graphviz{file_count}.png")
file_count += 1
if len(embeds) >= 9:
embeds_overflow.append(match_embed)
files_overflow.append(dot_file)
else:
embeds.append(match_embed)
files.append(dot_file)
except Exception as e:
logging.error(e)
else:
if len(reply) > 4096:
try:
embeds = []
substrings = []
for i in range(0, len(reply), 4096):
substring = reply[i:i+4096]
substrings.append(substring)
for string in substrings:
embed_string = discord.Embed(description=string, color=discord.Color.dark_theme())
embeds.append(embed_string)
except Exception as e:
logging.error(e)
embed = discord.Embed(description=f'<:ivaerror:1051918443840020531> **{mention} 4096 character response limit reached. Response contains {len(reply)} characters. Use `/reset`.**', color=discord.Color.dark_theme())
if isinstance(interaction.channel, discord.TextChannel):
await thinking_message.edit(content=None, embed=embed)
else:
await interaction.followup.send(embed=embed, ephemeral=True)
else:
embeds.append(embed)
try:
end_time = time.monotonic()
word_count = len(reply.split())
elapsed_time = end_time - start_time
minutes, seconds = divmod(elapsed_time, 60)
elapsed_time_format = f"{int(minutes):02}:{int(seconds):02}"
if total_cost is not None:
prompt_embed = discord.Embed(description=f"{dash_count}→ {prompt}{file_placeholder}\n\n`{chat_model}` `{temperature}` `{round(total_cost, 3)}` `{elapsed_time_format}` `{word_count}`")
else:
prompt_embed = discord.Embed(description=f"{dash_count}→ {prompt}{file_placeholder}\n\n`{chat_model}` `{temperature}` `{elapsed_time_format}` `{word_count}`")
embeds.insert(0, prompt_embed)
if isinstance(interaction.channel, discord.TextChannel):
await thinking_message.delete()
initial_message = await channel.send(files=files, embeds=embeds, view=view)
message_id = initial_message.id
else:
followup_message = await interaction.followup.send(files=files, embeds=embeds, view=view)
message_id = followup_message.id
if len(embeds_overflow) > 0:
await channel.send(files = files_overflow, embeds=embeds_overflow)
url_pattern = re.compile(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+')
links = url_pattern.findall(reply)
stripped_links = [link.rstrip(',.:)]') for link in links]
if len(stripped_links) > 0:
stripped_links = list(set(stripped_links))
formatted_links = "\n".join(stripped_links)
await channel.send(content=formatted_links)
ask_mems[channel_id][user_id]["last_message_id"] = message_id
ask_mems[channel_id][user_id]["user_id"] = user_id
ask_mems[channel_id][user_id]["memory"] = memory
await save_pickle_to_redis('ask_mems', ask_mems)
return
except Exception as e:
logging.error(e, stack_info=True)
except discord.errors.NotFound as e:
logging.error(e, stack_info=True)
@tree.command(name = "reset", description="start a new conversation")
async def reset(interaction):
channel_id = interaction.channel_id
guild_id = interaction.guild_id
user_id = interaction.user.id
active_users = await load_pickle_from_redis('active_users')
ask_mems = await load_pickle_from_redis('ask_mems')
chat_mems = await load_pickle_from_redis('chat_mems')
try:
if channel_id in ask_mems and user_id in ask_mems[channel_id] and ask_mems[channel_id][user_id]["last_message_id"] is not None:
original_message = await interaction.channel.fetch_message(ask_mems[channel_id][user_id]["last_message_id"])
await original_message.edit(content="⠀", view=None)
except discord.errors.HTTPException as e:
logging.error(e)
if channel_id in ask_mems and user_id in ask_mems[channel_id] and ask_mems[channel_id][user_id]["last_message_id"] is not None:
ask_mems[channel_id][user_id]["last_message_id"] = None
if channel_id in ask_mems and user_id in ask_mems[channel_id] and ask_mems[channel_id][user_id]["memory"] is not None:
ask_mems[channel_id][user_id]["memory"] = None
chat_mems[channel_id] = None
active_users[channel_id] = []
await save_pickle_to_redis('ask_mems', ask_mems)
await save_pickle_to_redis('active_users', active_users)
await save_pickle_to_redis('chat_mems', chat_mems)
embed = discord.Embed(description="<:ivareset:1051691297443950612>", color=discord.Color.dark_theme())
await interaction.response.send_message(embed=embed, ephemeral=False)
@tree.command(name = "help", description="get started")
async def help(interaction):
mention = interaction.user.mention
embed = discord.Embed(title=f"Welcome. Let's **Get Started**.\n\n", color=discord.Color.dark_theme())
embed.set_thumbnail(url=client.user.avatar.url)
embed.add_field(name="Step One", value="Iva uses **[OpenAI](https://beta.openai.com)** to generate responses. Create an account with them to start.")
embed.add_field(name="Step Two", value="Visit your **[API Keys](https://beta.openai.com/account/api-keys)** page and click **`+ Create new secret key`**.")
embed.add_field(name="Step Three", value=f"Copy and paste that secret key (`sk-...`) when you run `/setup` with {client.user.mention}")
embed1 = discord.Embed(title="Step One", color=discord.Color.dark_theme())
embed2 = discord.Embed(title="Step Two", color=discord.Color.dark_theme())
embed3 = discord.Embed(title="Step Three", color=discord.Color.dark_theme())
embed1.set_image(url="https://media.discordapp.net/attachments/1053423931979218944/1055535479140929606/Screenshot_2022-12-21_233858.png?width=960&height=546")
embed2.set_image(url="https://media.discordapp.net/attachments/1053423931979218944/1055535478817947668/Screenshot_2022-12-21_234629.png?width=960&height=606")
embed3.set_image(url="https://media.discordapp.net/attachments/1053423931979218944/1055535478507585578/Screenshot_2022-12-21_234900.png")
await interaction.response.send_message(embeds=[embed, embed1, embed2, embed3], ephemeral=True)
@tree.command(name = "tutorial", description="how to talk with iva")
async def tutorial(interaction):
mention = interaction.user.mention
embed_main = discord.Embed(title="Introduction to Iva", description="there are two *separate* ways to talk to iva, both with their own conversation history: `@iva` and `/iva`. let's go over their differences, in addition to a other helpful tools.", color=discord.Color.dark_theme())
embed_main.set_thumbnail(url=client.user.avatar.url)
embed_chat = discord.Embed(title="`@iva`", description="provides **chat** and **conversation** oriented answers. has personality, asks questions back, is more creative.", color=discord.Color.dark_theme())
embed_ask = discord.Embed(title="`/iva`", description="provides **academic** and **work** oriented answers. has less personality, is more focused on consistency and reliability.", color=discord.Color.dark_theme())
#embed_ask.add_field(inline=True, name="<:ivacontinue1:1051714712242491392> `Continue`", value="say more, extend the last prompt's response")
#embed_ask.add_field(inline=True, name="<:ivaregenerate:1051697145713000580> `Regenerate`", value="replace the last prompt's response with a different one")
embed_ask.add_field(inline=True, name="<:ivadelete:1095559772754952232> `Delete`", value="delete the last interaction with iva in the conversation.")
embed_ask.add_field(inline=True, name="<:ivareset:1051691297443950612> `Reset`", value="reset conversation history, clear iva's memory with you in the channel.")
embed_other = discord.Embed(title="Other", color=discord.Color.dark_theme())
embed_other.add_field(inline=True, name="`/reset`", value="reset `@iva` and `/iva` conversation history.")
embed_other.add_field(inline=True, name="`/model`", value="switch between `gpt-4` and `gpt-3.5` models.")
embed_other.add_field(inline=True, name="`/temperature`", value="change the temperature.")
embed_other.add_field(inline=True, name="`/help`", value="show instructions for setup.")
embed_other.add_field(inline=True, name="`/setup`", value="enter your key. `/help` for more info.")
await interaction.response.send_message(embeds=[embed_main, embed_chat, embed_ask, embed_other], ephemeral=True)
@tree.command(name = "features", description="learn all the features iva has to offer")
async def tutorial(interaction):
features_string = FEATURES
features_intro = discord.Embed(title="Features", description="Becoming familiar with all Iva has to offer will allow you to maximize your workflow. This list is constantly being updated, so be on the look out!", color=discord.Color.dark_theme())
features_intro.set_thumbnail(url=client.user.avatar.url)
feature_list = discord.Embed(description=textwrap.dedent(features_string).strip(), color=discord.Color.dark_theme())
embeds = [
features_intro,
feature_list,
]
await interaction.response.send_message(embeds=embeds, ephemeral=True)
@tree.command(name = "setup", description="register your key")
@app_commands.describe(key = "key")
async def setup(interaction, key: str = None):
id = interaction.user.id
mention = interaction.user.mention
if key is None:
await delete_key(id)
embed = discord.Embed(description=f"<:ivathumbsup:1051918474299056189> **Key deleted for {mention}.**", color=discord.Color.dark_theme())
await interaction.response.send_message(embed=embed, ephemeral=True, delete_after=10)
return
# Use the `SELECT` statement to fetch the row with the given id
result = await fetch_key(id)
if result != None:
# Access the values of the columns in the row
if key != result[0]:
await upsert_key(str(id), key)
embed = discord.Embed(description=f"<:ivathumbsup:1051918474299056189> **Key updated for {mention}.**", color=discord.Color.dark_theme())
await interaction.response.send_message(embed=embed, ephemeral=True, delete_after=10)
return
elif key == result[0]:
embed = discord.Embed(description=f"<:ivaerror:1051918443840020531> **Key already registered for {mention}.**", color=discord.Color.dark_theme())
await interaction.response.send_message(embed=embed, ephemeral=True, delete_after=10)
return
else:
view = Opt(key=key)
embed = discord.Embed(description=f"<:ivanotify:1051918381844025434> **{mention} In order to use Iva, you must agree to our [Privacy Policy](https://iva.gg/privacy) and [Terms of Service](https://iva.gg/terms)**.\n\nPlease take a few minutes to read and understand them both.", color=discord.Color.dark_theme())
await interaction.response.send_message(embed=embed, ephemeral=True, view=view)
@tree.command(name = "model", description="choose a completion model")
@app_commands.choices(choices=[
app_commands.Choice(name="gpt-3.5-turbo-4k ($0.002 / 1k tokens)", value="gpt-3.5-turbo"),
app_commands.Choice(name="gpt-3.5-turbo-16k ($0.004 / 1k tokens)", value="gpt-3.5-turbo-16k"),
app_commands.Choice(name="gpt-4-8k ($0.06 / 1k tokens)", value="gpt-4"),
])
async def model(interaction, choices: app_commands.Choice[str] = None):
id = interaction.user.id
mention = interaction.user.mention
user_settings = await load_pickle_from_redis('user_settings')
if choices is not None:
user_settings.setdefault(id, {})['model'] = choices.value
await save_pickle_to_redis('user_settings', user_settings)
embed = discord.Embed(description=f"<:ivamodel:1096498759040520223> **set model to `{choices.value}` for {mention}.**", color=discord.Color.dark_theme())
else:
try:
current_model = user_settings.get(id)["model"]
except KeyError:
current_model = "gpt-3.5-turbo"
except TypeError:
current_model = "gpt-3.5-turbo"
embed = discord.Embed(description=f"<:ivamodel:1096498759040520223> **Current Model:** `{current_model}`", color=discord.Color.dark_theme())
await interaction.response.send_message(embed=embed, ephemeral=True, delete_after=30)
return
@tree.command(name = "temperature", description="set a default temperature to use with iva.")
@app_commands.describe(temperature = "temperature")
async def temperature(interaction, temperature: float = None):
id = interaction.user.id
mention = interaction.user.mention
user_settings = await load_pickle_from_redis('user_settings')
if temperature is not None:
if not (temperature >= 0.0 and temperature <= 2.0):
embed = discord.Embed(description=f"<:ivaerror:1051918443840020531> **{mention} `temperature` must be a float value from 0.0-2.0.**", color=discord.Color.dark_theme())
await interaction.response.send_message(embed=embed, ephemeral=True, delete_after=30)
return
user_settings.setdefault(id, {})['temperature'] = temperature
await save_pickle_to_redis('user_settings', user_settings)
embed = discord.Embed(description=f"<:ivatemp:1097754157747818546>**set temperature to `{temperature}` for {mention}.**", color=discord.Color.dark_theme())
else:
try:
temperature = user_settings.get(id)["temperature"]
except KeyError:
temperature = "0.5"
except TypeError:
temperature = "0.5"
embed = discord.Embed(description=f"<:ivatemp:1097754157747818546>**Current Temperature:** `{temperature}`", color=discord.Color.dark_theme())
await interaction.response.send_message(embed=embed, ephemeral=True, delete_after=30)
return
client.run(DISCORD_TOKEN) | [
"\"{text}\"",
"chat_history",
"agent_scratchpad",
"<@1050437164367880202>",
"[PLACEHOLDER, PLACEHOLDER]",
"PLACEHOLDER→ PLACEHOLDERPLACEHOLDER\n\n`PLACEHOLDER` `PLACEHOLDER` `PLACEHOLDER` `PLACEHOLDER`",
"input"
] |
2024-01-10 | anhornsby/coherent-representations | simulation~simulate.py | # -*- coding: utf-8 -*-
# !/usr/bin/env python
# Adam Hornsby
"""
Perform a simulation in which the Coherency Maximizing agent chooses between
two choice types (1 and 2). These two choose types should be distinct on one attribute
but the same on another.
"""
SEED = 30
import random
import numpy as np
from sklearn.datasets.samples_generator import make_blobs
# own libraries
from model import CoherencyMaximisingAgent
from plot import plot_simulation_history
np.random.seed(SEED)
random.seed(SEED)
# main configuration for the simulation
CONFIG = {
# initialise model
'preference': [0.5, 0.5], # initialised values of the preferences
'weights': [0.5, 0.5], # initialised values of the attention weights
'lr': 0.01, # the learning rate
'c': 1, # lambda value (i.e., "fussiness" parameter)
'epsilon_greedy': True, # use epsilon greedy selection or softmax selection?
# simulation
'cluster_centers': [[0.2, 0.2], [0.2, 0.8]],
'n_choices': 500,
'cluster_std': 0.05, # std of the clusters
'n_timesteps': 10000,
# outputs
'save_path': './figures/',
}
def simulate_blobs(centers, n_samples=500, cluster_std=1.5, random_state=32):
"""
Simulate 2 choice types as clusters within a 2-dimensional space
# Parameters
n_samples (int): Number of options to sample
cluster_std (float): Standard deviation of clusters
random_state (int): Random state by which to sample options
"""
X, y = make_blobs(n_samples=n_samples,
centers=centers,
cluster_std=cluster_std,
random_state=random_state)
# clip values to be within the space (between 0 and 1)
X = np.clip(X, 0, 1)
return X, y
def update_agent(mod, action, observation):
"""
Determine gradient of choice
# Parameters
mod (CoherencyMaximisingAgent): Model agent object
action (int): Either 1 or 0 depending on choice type made
observation (numpy.ndarray): Two dimensional matrix describing the attributes of the two choices
"""
mod.update_agent(observation, action)
# extract the current preference and attention weights, for plotting
pref = mod.h0.preference_
attention = mod.h0.attention_weights_
return pref, attention
def create_random_observation(choice_ones, choice_twos, n):
"""
Randomly select n of choice_ones and n of choice_twos and then row concatenate
"""
choice_one = choice_ones[np.random.choice(choice_ones.shape[0], n), :]
choice_two = choice_twos[np.random.choice(choice_twos.shape[0], n), :]
return np.vstack([choice_one, choice_two])
def simulate_choices(X, y, model, n_choices, epsilon=0.05, epsilon_greedy=True):
"""
Simulate the model for n_choices, taking an softmax exploration strategy
# Parameters
X (numpy.ndarray): Numpy multidimensional containing all possible observations
y (numpy.ndarray): Vector describing the choice type (1 or 2) of observations
model (CoherencyMaximisingAgent): Model agent
n_choices (int): Number of choices by which to simulate
epsilon (float): Probability of taking an exploratory action, if epsilon_greedy=True
epsilon_greedy (bool): Whether to use epsilon greedy exploration or softmax exploration
"""
pref_hist = list()
attention_hist = list()
# now make n_choices according to a e-greedy strategy
for _ in range(n_choices):
# select a random two products from choice type 1 and 2
observation = create_random_observation(X[y == 0], X[y == 1], 1)
observation = observation.T # transpose for model compatability
# determine the probability of making choice 1 or 2
probs = model.feed_forward(observation)
if epsilon_greedy:
# use epsilon greedy exploration
rnd = np.random.rand()
if rnd < epsilon:
action = np.random.choice([0, 1])
else:
action = np.argmax(probs)
else:
# use softmax exploration
action = np.random.choice([0, 1], p=probs)
# update the agent given the choice
pref, attention = update_agent(model, action, observation)
# update preference history
pref_hist.append(pref)
attention_hist.append(attention)
return np.vstack(pref_hist), np.vstack(attention_hist)
def main(config):
"""Main entrypoint for the simulation code"""
# simulate three clusters
X, y = simulate_blobs(config['cluster_centers'],
n_samples=config['n_choices'],
cluster_std=config['cluster_std'])
# initialise the agent
mod = CoherencyMaximisingAgent(2,
2,
learn_prefs=True,
learn_weights=True,
c=config['c'],
p_eta=config['lr'],
w_eta=config['lr'],
p_init=config['preference'],
w_init=config['weights'])
# simulate choices for n_timesteps
pref_hist, att_hist = simulate_choices(X,
y,
mod,
n_choices=config['n_timesteps'],
epsilon_greedy=config['epsilon_greedy'])
# plot the simulation history in a 2d plot. save to file.
plot_simulation_history(X,
y,
pref_hist,
att_hist,
save_path=config['save_path'] + '2d_axis_plot.eps')
| [] |
2024-01-10 | aubustou/range_bd | range_bd~get_file_names.py | from pathlib import Path
import openai
openai.api_key = "EMPTY" # Not support yet
openai.api_base = ""
model = "vicuna-7b-v1.3"
prompt = """I need to clean up filenames. Those are comic books. I need a format with <series> #tome_number.zip
Comanche-Greg-Hermann-Integrale-NB-T01.zip
Astérix n°03 - Astérix et les Goths.zip
(2021) Elzear (tome 1) - Le dejeuner - Maco [cbz].cbz
Format into JSON.
"""
def main():
# create a chat completion
completion = openai.ChatCompletion.create(
model=model, messages=[{"role": "user", "content": prompt}]
)
# print the completion
print(completion.choices[0].message.content)
BD_PATH = Path("M:\Bédés")
for path in BD_PATH.rglob("*.zip"):
print(str(path).removeprefix(f"{BD_PATH}\\"))
| [
"I need to clean up filenames. Those are comic books. I need a format with <series> #tome_number.zip\nComanche-Greg-Hermann-Integrale-NB-T01.zip\nAstérix n°03 - Astérix et les Goths.zip\n(2021) Elzear (tome 1) - Le dejeuner - Maco [cbz].cbz\nFormat into JSON.\n"
] |
2024-01-10 | metagov/d20-governance | d20_governance~utils~cultures.py | import random
import asyncio
import datetime
import discord
from discord import app_commands
from d20_governance.utils.constants import GOVERNANCE_SVG_ICONS
from langchain.prompts import PromptTemplate
from langchain.llms import OpenAI
from langchain.chains import LLMChain
from langchain.chat_models import ChatOpenAI
from abc import ABC, abstractmethod
from collections import defaultdict
from colorama import Fore, Style
# This is a custom set that tracks order or append and removal as well as groups of channels through sets
class OrderedSet:
def __init__(self):
self.set = set()
self.list = []
def add(self, item):
if item not in self.set:
self.set.add(item)
self.list.append(item)
def remove(self, item):
if item in self.set:
self.set.discard(item)
self.list.remove(item)
def __iter__(self):
return iter(self.list)
def __len__(self):
return len(
self.list
) # The length of the ListSet is the length of the internal list
def __bool__(self):
return len(self) > 0 # The instance is "Truthy" if there are elements in it
class RandomCultureModuleManager:
def __init__(self):
self.random_culture_module = ""
random_culture_module_manager = RandomCultureModuleManager()
class ValueRevisionManager:
def __init__(self):
self.proposed_values_dict = {}
self.agora_values_dict = {
"Respect": "Our members should treat each other with respect, recognizing and appreciating diverse perspectives and opinions.",
"Inclusivity": "Our community strives to be inclusive, creating an environment where everyone feels welcome and valued regardless of their background, identity, or beliefs.",
"Support": "Our members support and help one another, whether it's providing guidance, advice, or emotional support.",
"Collaboration": "Our community encourage collaboration, fostering an environment where members can work together and share knowledge or skills.",
"Trust": "Our community believes building trust is important, as it allows members to feel safe and comfortable sharing their thoughts and experiences.",
}
self.selected_value = {}
self.game_quest_values_dict = {}
self.quest_game_channels = []
self.lock = asyncio.Lock()
def get_value_choices(self):
choices = [
app_commands.Choice(name=f"{name}: {value[:60]}", value=name)
for name, value in value_revision_manager.agora_values_dict.items()
]
return choices
async def store_proposal(
self, proposed_value_name_input, proposed_value_definition_input
):
async with self.lock:
proposed_value_name = proposed_value_name_input.value.strip()
proposed_value_definition = proposed_value_definition_input.value.strip()
self.proposed_values_dict[proposed_value_name] = proposed_value_definition
async def update_values_dict(self, select_value, vote_result):
async with self.lock:
if not vote_result:
print("value dict not updated")
else:
if select_value in value_revision_manager.agora_values_dict:
del value_revision_manager.agora_values_dict[select_value]
value_revision_manager.agora_values_dict.update(vote_result)
message_content = ""
for (
value,
description,
) in value_revision_manager.agora_values_dict.items():
message_content += f"{value}:\n{description}\n\n"
message = f"```{message_content}```"
module = CULTURE_MODULES.get("values", None)
module.config["values_list"] = message
async def clear_proposed_values(self):
async with self.lock:
self.proposed_values_dict.clear()
value_revision_manager = ValueRevisionManager()
class PromptObject:
def __init__(self):
self.decision_one = ""
self.decision_two = ""
self.decision_three = ""
prompt_object = PromptObject()
class CultureModule(ABC):
def __init__(self, config):
self.config = config # This hold the configuration for the module
if "guild_channel_map" not in self.config:
self.config["guild_channel_map"] = {}
# if "channels" not in self.config:
# self.config["channels"] = set()
async def filter_message(
self, message: discord.Message, message_string: str
) -> str:
return message_string
# State management with channel and guild mapping
async def toggle_local_state_per_channel(self, ctx, guild_id, channel_id):
print("Toggling module...")
if self.is_local_state_active_in_channel(guild_id, channel_id):
await self.deactivate_local_state_in_channel(ctx, guild_id, channel_id)
else:
await self.activate_local_state_in_channel(ctx, guild_id, channel_id)
async def toggle_local_state_per_channel(self, ctx, guild_id, channel_id):
print("Toggling module...")
if self.is_local_state_active_in_channel(guild_id, channel_id):
await self.deactivate_local_state_in_channel(ctx, guild_id, channel_id)
else:
await self.activate_local_state_in_channel(ctx, guild_id, channel_id)
def is_local_state_active_in_channel(self, guild_id, channel_id):
print("Returning local state of active modules...")
return (
guild_id in self.config["guild_channel_map"]
and channel_id in self.config["guild_channel_map"][guild_id]
)
async def activate_local_state_in_channel(self, ctx, guild_id, channel_id):
print("Activating module...")
if guild_id not in self.config["guild_channel_map"]:
self.config["guild_channel_map"][guild_id] = set()
self.config["guild_channel_map"][guild_id].add(channel_id)
await toggle_culture_module(guild_id, channel_id, self.config["name"], True)
await display_culture_module_state(
ctx, guild_id, channel_id, self.config["name"], True
)
async def deactivate_local_state_in_channel(self, ctx, guild_id, channel_id):
print("Deactivating module...")
channels_for_guild = self.config["guild_channel_map"].get(guild_id, None)
if channels_for_guild and channel_id in channels_for_guild:
self.config["guild_channel_map"][guild_id].discard(channel_id)
await toggle_culture_module(
guild_id, channel_id, self.config["name"], False
)
await display_culture_module_state(
ctx, guild_id, channel_id, self.config["name"], False
)
# Timeout method
async def timeout(self, ctx, guild_id, channel_id, timeout):
print("Starting Timeout Task")
await asyncio.sleep(timeout)
print("ending Timeout Task")
if (
not self.is_local_state_active()
): # Check is module is still deactivated locally after waiting
# if not
self.activate_global_state(ctx, guild_id, channel_id)
class Obscurity(CultureModule):
# Message string may be pre-filtered by other modules
async def filter_message(
self, message: discord.Message, message_string: str
) -> str:
print(f"{Fore.GREEN}※ applying obscurity module{Style.RESET_ALL}")
# Get the method from the module based on the value of "mode"
method = getattr(self, self.config["mode"])
# Call the method
filtered_message = method(message_string)
return filtered_message
def scramble(self, message_string):
words = message_string.split()
scrambled_words = []
for word in words:
if len(word) <= 3:
scrambled_words.append(word)
else:
middle = list(word[1:-1])
random.shuffle(middle)
scrambled_words.append(word[0] + "".join(middle) + word[-1])
return " ".join(scrambled_words)
def replace_vowels(self, message_string):
vowels = "aeiou"
message_content = message_string.lower()
return "".join([" " if c in vowels else c for c in message_content])
def pig_latin(self, message_string):
words = message_string.split()
pig_latin_words = []
for word in words:
if word[0] in "aeiouAEIOU":
pig_latin_words.append(word + "yay")
else:
first_consonant_cluster = ""
rest_of_word = word
for letter in word:
if letter not in "aeiouAEIOU":
first_consonant_cluster += letter
rest_of_word = rest_of_word[1:]
else:
break
pig_latin_words.append(rest_of_word + first_consonant_cluster + "ay")
return " ".join(pig_latin_words)
def camel_case(self, message_string):
words = message_string.split()
camel_case_words = [word.capitalize() for word in words]
return "".join(camel_case_words)
class Wildcard(CultureModule):
async def filter_message(
self, message: discord.Message, message_string: str
) -> str:
"""
A LLM filter for messages made by users
"""
print(f"{Fore.GREEN}※ applying wildcard module{Style.RESET_ALL}")
module = CULTURE_MODULES.get("wildcard", None)
llm = ChatOpenAI(temperature=0.1, model_name="gpt-3.5-turbo")
prompt = PromptTemplate(
input_variables=[
"input_text",
"group_name",
"group_topic",
"group_way_of_speaking",
],
template="You are from {group_name}. Please rewrite the following input ina way that makes the speaker sound {group_way_of_speaking} while maintaining the original meaning and intent. Incorporate the theme of {group_topic}. Don't complete any sentences, just rewrite them. Input: {input_text}",
)
chain = LLMChain(llm=llm, prompt=prompt)
response = await chain.arun(
{
"group_name": prompt_object.decision_one,
"group_topic": prompt_object.decision_two,
"group_way_of_speaking": prompt_object.decision_three,
"input_text": message_string,
}
)
return response
class Amplify(CultureModule):
async def filter_message(
self, message: discord.Message, message_string: str
) -> str:
"""
A LLM filter for messages during the /eloquence command/function
"""
print(f"{Fore.GREEN}※ applying amplify module{Style.RESET_ALL}")
llm = ChatOpenAI(temperature=0.1, model_name="gpt-3.5-turbo")
prompt = PromptTemplate(
input_variables=["input_text"],
template="Using the provided input text, generate a revised version that amplifies its sentiment to a much greater degree. Maintain the overall context and meaning of the message while significantly heightening the emotional tone. You must ONLY respond with the revised message. Input text: {input_text}",
)
chain = LLMChain(llm=llm, prompt=prompt)
response = await chain.arun(message_string)
return response
class Ritual(CultureModule):
async def filter_message(
self, message: discord.Message, message_string: str
) -> str:
print(f"{Fore.GREEN}※ applying ritual module{Style.RESET_ALL}")
async for msg in message.channel.history(limit=100):
if msg.id == message.id:
continue
if msg.author.bot and not msg.content.startswith(
"※"
): # This condition lets webhook messages to be checked
continue
if msg.content.startswith("/") or msg.content.startswith("-"):
continue
previous_message = msg.content
break
if previous_message is None:
return message_string
filtered_message = await self.initialize_ritual_agreement(
previous_message, message_string
)
return filtered_message
async def initialize_ritual_agreement(self, previous_message, new_message):
llm = ChatOpenAI(temperature=0.9)
prompt = PromptTemplate(
input_variables=["previous_message", "new_message"],
template="Write a message that reflects the content in the message '{new_message}' but is cast in agreement with the message '{previous_message}'. Preserve and transfer the meaning and any spelling errors or text transformations in the message in the response.",
) # FIXME: This template does not preserve obscurity text processing. Maybe obscurity should be reaplied after ritual if active in the active_culture_mode list
chain = LLMChain(llm=llm, prompt=prompt)
response = await chain.arun(
previous_message=previous_message, new_message=new_message
)
return response
class Values(CultureModule):
async def check_values(self, bot, ctx, message: discord.Message):
print("Checking values")
if message.reference:
reference_message = await message.channel.fetch_message(
message.reference.message_id
)
if (
reference_message.author.bot
and not reference_message.content.startswith(
"※"
) # This condition lets webhook messages to be checked
):
await ctx.send("Cannot check values of messages from bot")
return
else:
print(
f"Original Message Content: {reference_message.content}, posted by {message.author}"
)
current_values_dict = value_revision_manager.agora_values_dict
values_list = f"Community Defined Values:\n\n"
for value in current_values_dict.keys():
values_list += f"* {value}\n"
llm_response, alignment = await self.llm_analyze_values(
current_values_dict, reference_message.content
)
message_content = f"----------```Message: {reference_message.content}\n\nMessage author: {reference_message.author}```\n> **Values Analysis:** {llm_response}\n```{values_list}```\n----------"
# Assign alignment roles to users if their post is values-checked
if alignment == "aligned":
await assign_role_to_user(message.author, "Aligned")
else:
await assign_role_to_user(message.author, "Misaligned")
await ctx.send(message_content)
else:
if message.author.bot and not message.content.startswith("※"):
await ctx.send("Cannot check values of messages from bot")
return
else:
print(
f"Original Message Contnet: {message.content}, posted by {message.author}"
)
current_values_dict = value_revision_manager.agora_values_dict
values_list = f"Community Defined Values:\n\n"
for value in current_values_dict.keys():
values_list += f"* {value}\n"
llm_response, alignment = await self.llm_analyze_values(
current_values_dict, message.content
)
message_content = f"----------```Message: {message.content}\n\nMessage author: {message.author}```\n> **Values Analysis:** {llm_response}\n```{values_list}```\n----------"
# Assign alignment roles to users if their post is values-checked
if alignment == "aligned":
await assign_role_to_user(message.author, "Aligned")
else:
await assign_role_to_user(message.author, "Misaligned")
await ctx.send(message_content)
async def llm_analyze_values(self, values_dict, text):
"""
Analyze message content based on values
"""
print(f"{Fore.GREEN}※ applying values module{Style.RESET_ALL}")
llm = ChatOpenAI(temperature=0.5, model_name="gpt-3.5-turbo")
template = f"We hold and maintain a set of mutually agreed-upon values. Analyze whether the message '{text}' is in accordance with the values we hold:\n\n"
current_values_dict = value_revision_manager.agora_values_dict
for (
value,
description,
) in values_dict.items():
template += f"- {value}: {description}\n"
template += f"\nNow, analyze the message:\n{text}. Start the message with either the string 'This message aligns with our values' or 'This message does not align with our values'. Then briefly explain why the values are aligned or misaligned based on the values the group holds. Use no more than 250 characters."
prompt = PromptTemplate.from_template(template=template)
chain = LLMChain(llm=llm, prompt=prompt)
response = await chain.arun({"text": text})
alignment = (
"aligned"
if "This message aligns with our values" in response
else "misaligned"
)
return response, alignment
# TODO: Finish implementing and refine
# async def randomly_check_values(self, bot, ctx, channel):
# while True:
# print("in a value check loop")
# current_time = datetime.datetime.utcnow()
# print(f"time is: {current_time}")
# # Randomly generate delay between executions
# delay = random.randint(45, 55)
# # Wait for the specified delay
# await asyncio.sleep(delay)
# try:
# # Fetch a random message from a game channel
# messages = []
# async for message in channel.history(limit=100, after=current_time):
# if (
# message.content.startswith("※")
# or isinstance(message, discord.Message)
# and not message.author.bot
# ):
# messages.append(message)
# if not messages:
# print("No valid messages found in the channel")
# return
# # Generate a list of valid message IDs
# valid_message_ids = [message.id for message in messages]
# random_message_id = random.choice(valid_message_ids)
# random_message = await channel.fetch_message(random_message_id)
# print("fetched random message")
# # Check values of the random message
# await self.check_values(bot, channel, random_message)
# except Exception as e:
# print(f"Error occurred while checking values: {e}")
# except discord.NotFound:
# print("Random message not found")
# except discord.HTTPException as e:
# print(f"Error occurrent while fetching random message: {e}")
async def assign_role_to_user(user, role_name):
guild = user.guild
new_role = discord.utils.get(guild.roles, name=role_name)
# Define role variables
aligned_role = discord.utils.get(guild.roles, name="Aligned")
misaligned_role = discord.utils.get(guild.roles, name="Misaligned")
# Check if the user already has an alignment role
if aligned_role in user.roles and new_role == misaligned_role:
await user.remove_roles(aligned_role)
elif misaligned_role in user.roles and new_role == aligned_role:
await user.remove_roles(misaligned_role)
await user.add_roles(new_role)
class Eloquence(CultureModule):
async def filter_message(
self, message: discord.Message, message_string: str
) -> str:
"""
A LLM filter for messages during the /eloquence command/function
"""
print(f"{Fore.GREEN}※ applying eloquence module{Style.RESET_ALL}")
llm = ChatOpenAI(temperature=0.5, model_name="gpt-3.5-turbo")
prompt = PromptTemplate.from_template(
template="You are from the Shakespearean era. Please rewrite the following input in a way that makes the speaker sound as eloquent, persuasive, and rhetorical as possible, while maintaining the original meaning and intent. Don't complete any sentences, jFust rewrite them. Input: {input_text}"
)
prompt.format(
input_text=message_string
) # TODO: is both formatting and passing the message_string necessary?
chain = LLMChain(llm=llm, prompt=prompt)
response = await chain.arun(message_string)
return response
ACTIVE_MODULES_BY_CHANNEL = defaultdict(OrderedSet)
async def toggle_culture_module(guild_id, channel_id, module_name, state):
"""
If state is True, turn on the culture module
if state is False, turn off the culture module
"""
key = (guild_id, channel_id)
active_modules_by_channel = ACTIVE_MODULES_BY_CHANNEL[key]
if state:
active_modules_by_channel.add(module_name)
else:
active_modules_by_channel.remove(module_name)
# TODO: what does the variable "state" mean?
async def display_culture_module_state(ctx, guild_id, channel_id, module_name, state):
"""
Send an embed displaying state of active culture moduled by channel
"""
print("Displaying culture module state...")
key = (guild_id, channel_id)
active_modules_by_channel = ACTIVE_MODULES_BY_CHANNEL[key]
module = CULTURE_MODULES[module_name]
# TODO: make state a more descriptive variable name
if state:
name = "Activated"
value = module.config["activated_message"]
else:
name = "Deactivated"
value = module.config["deactivated_message"]
if active_modules_by_channel.list:
active_culture_module_values = ", ".join(active_modules_by_channel.list)
else:
active_culture_module_values = "none"
embed = discord.Embed(
title=f"Culture: {module_name.upper()}", color=discord.Color.dark_gold()
)
embed.set_thumbnail(url=module.config["url"])
embed.add_field(
name=name,
value=value,
inline=False,
)
if module.config["mode"] is not None and state:
embed.add_field(
name="Mode:",
value=module.config["mode"],
inline=False,
)
if module.config["message_alter_mode"] == "llm" and state:
embed.add_field(
name="LLM Prompt:",
value=module.config["llm_disclosure"],
inline=False,
)
if module.config["help"] and state:
embed.add_field(
name="How to use:",
value=module.config["how_to_use"],
inline=False,
)
embed.add_field(
name="Active Culture Modules:",
value=active_culture_module_values,
inline=False,
)
if module.config["values_list"] is not None and state:
embed.add_field(
name="List of Current Community Values:",
value=module.config["values_list"],
inline=False,
)
await ctx.send(embed=embed)
def get_values_message():
message_content = ""
for (
value,
description,
) in value_revision_manager.agora_values_dict.items():
message_content += f"{value}:\n{description}\n\n"
message = f"```{message_content}```"
return message
values_list = get_values_message()
CULTURE_MODULES = {
"wildcard": Wildcard(
{
"name": "wildcard",
"global_state": False,
"local_state": False,
"mode": None,
"help": False,
"message_alter_mode": "llm",
"llm_disclosure": None,
"activated_message": "Messages will now be process through an LLM.",
"deactivated_message": "Messages will no longer be processed through an LLM.",
"url": "", # TODO: Add Wildcard URL
"icon": GOVERNANCE_SVG_ICONS["culture"],
"input_value": 0,
"values_list": None,
}
),
"obscurity": Obscurity(
{
"name": "obscurity",
"global_state": False,
"local_state": False,
"mode": "scramble",
"help": False,
"message_alter_mode": "text",
"alter_message": True,
"activated_message": "Messages will be distored based on mode of obscurity.",
"deactivated_message": "Messages will no longer be distored by obscurity.",
"url": "https://raw.githubusercontent.com/metagov/d20-governance/main/assets/imgs/embed_thumbnails/obscurity.png",
"icon": GOVERNANCE_SVG_ICONS["culture"],
"input_value": 0,
"values_list": None,
}
),
"eloquence": Eloquence(
{
"name": "eloquence",
"global_state": False,
"local_state": False,
"mode": None,
"help": False,
"message_alter_mode": "llm",
"llm_disclosure": "You are from the Shakespearean era. Please rewrite the messages in a way that makes the speaker sound as eloquent, persuasive, and rhetorical as possible, while maintaining the original meaning and intent.",
"activated_message": "Messages will now be process through an LLM.",
"deactivated_message": "Messages will no longer be processed through an LLM.",
"url": "https://raw.githubusercontent.com/metagov/d20-governance/main/assets/imgs/embed_thumbnails/eloquence.png",
"icon": GOVERNANCE_SVG_ICONS["culture"],
"input_value": 0,
"values_list": None,
}
),
"ritual": Ritual(
{
"name": "ritual",
"global_state": False,
"local_state": False,
"mode": None,
"help": False,
"message_alter_mode": "llm",
"llm_disclosure": "Write a message that reflects the content in the posted message and is cast in agreement with the previous message. Preserve and transfer any spelling errors or text transformations in these messages in the response.",
"activated_message": "A ritual of agreement permeates throughout the group.",
"deactivated_message": "Automatic agreement has ended. But will the effects linger in practice?",
"url": "", # TODO: make ritual img
"icon": GOVERNANCE_SVG_ICONS["culture"],
"input_value": 0,
"values_list": None,
}
),
"amplify": Amplify(
{
"name": "amplify",
"global_state": False,
"local_state": False,
"mode": None,
"help": False,
"message_alter_mode": "llm",
"llm_disclosure": "Using the provided input text, generate a revised version that amplifies its sentiment to a much greater degree. Maintain the overall context and meaning of the message while significantly heightening the emotional tone.",
"activated_message": "Sentiment amplification abounds.",
"deactivated_message": "Sentiment amplification has ceased.",
"url": "", # TODO: make amplify img
"icon": GOVERNANCE_SVG_ICONS["culture"],
"input_value": 0,
"values_list": None,
}
),
"values": Values(
{
"name": "values",
"global_state": False,
"mode": None,
"help": True,
"how_to_use": "Your posts are now subject to alignment analysis. The content of posts will be randomly analyized to see how aligned they are with the group's values. You can also reply to the message you want to check and type `check-values`. you will be labled either aligned or misaligned based on analysis.",
"local_state": False,
"message_alter_mode": None,
"llm_disclosure": "You hold and maintain a set of mutually agreed upon values. The values you maintain are the values defined by the community. You review the contents of messages sent for validation and analyze the contents in terms of the values you hold. You describe in what ways the input text are aligned or unaligned with the values you hold.",
"activated_message": "A means of validating the cultural alignment of this online communiuty is nafculture_moduow available. Respond to a message with check-values.",
"deactivated_message": "Automatic measurement of values is no longer present, through an essence of the culture remains, and you can respond to messages with `check-values` to check value alignment.",
"url": "", # TODO: make values img
"icon": GOVERNANCE_SVG_ICONS["culture"],
"input_value": 0,
"values_list": values_list,
}
),
}
async def send_msg_to_random_player(game_channel):
print("Sending random DM...")
players = [member for member in game_channel.members if not member.bot]
random_player = random.choice(players)
dm_channel = await random_player.create_dm()
await dm_channel.send(
"🌟 Greetings, esteemed adventurer! A mischievous gnome has entrusted me with a cryptic message just for you: 'In the land of swirling colors, where unicorns prance and dragons snooze, a hidden treasure awaits those who dare to yawn beneath the crescent moon.' Keep this message close to your heart and let it guide you on your journey through the wondrous realms of the unknown. Farewell, and may your path be ever sprinkled with stardust! ✨"
)
| [
"input_text",
"You are from the Shakespearean era. Please rewrite the following input in a way that makes the speaker sound as eloquent, persuasive, and rhetorical as possible, while maintaining the original meaning and intent. Don't complete any sentences, jFust rewrite them. Input: {input_text}",
"new_message",
"Using the provided input text, generate a revised version that amplifies its sentiment to a much greater degree. Maintain the overall context and meaning of the message while significantly heightening the emotional tone. You must ONLY respond with the revised message. Input text: {input_text}",
"group_topic",
"You are from {group_name}. Please rewrite the following input ina way that makes the speaker sound {group_way_of_speaking} while maintaining the original meaning and intent. Incorporate the theme of {group_topic}. Don't complete any sentences, just rewrite them. Input: {input_text}",
"group_way_of_speaking",
"We hold and maintain a set of mutually agreed-upon values. Analyze whether the message 'PLACEHOLDER' is in accordance with the values we hold:\n\n",
"Write a message that reflects the content in the message '{new_message}' but is cast in agreement with the message '{previous_message}'. Preserve and transfer the meaning and any spelling errors or text transformations in the message in the response.",
"- PLACEHOLDER: PLACEHOLDER\n",
"previous_message",
"\nNow, analyze the message:\nPLACEHOLDER. Start the message with either the string 'This message aligns with our values' or 'This message does not align with our values'. Then briefly explain why the values are aligned or misaligned based on the values the group holds. Use no more than 250 characters.",
"group_name"
] |
2024-01-10 | matttbates/job-search-assistant | crew.py | from langchain.llms import Ollama
from crewai import Agent, Task, Crew, Process
ollama_openhermes = Ollama(model="openhermes")
from langchain.tools import DuckDuckGoSearchRun
search_tool = DuckDuckGoSearchRun()
researcher = Agent(
role='Researcher',
goal='Research Android Job openings',
backstory='You are a job search assistant specialized in finding relevant job openings',
verbose=True,
allow_delegation=False,
llm=ollama_openhermes,
tools=[search_tool]
)
writer = Agent(
role='Writer',
goal='Write compelling cover letters',
backstory='You are a Job search assistant specialized in writing cover letters that land jobs.',
verbose=True,
allow_delegation=False,
llm=ollama_openhermes
)
task1 = Task(
description='Investigate LinkedIn for the latest Android job offers around Calgary and Canadian remote positions.',
agent=researcher
)
task2 = Task(
description='Write a compelling cover letter to land a job interview.',
agent=writer
)
crew = Crew(
agents=[researcher, writer],
tasks=[task1, task2],
verbose=2,
process=Process.sequential
)
result = crew.kickoff() | [] |
2024-01-10 | eden-chan/devils-advocate | backend~temp.py | import os
import openai
from flask import Flask
from flask_cors import CORS
openai.api_key = ""
def alice_function(request):
"""Responds to any HTTP request.
Args:
request (flask.Request): HTTP request object.
Returns:
The response text or any set of values that can be turned into a
Response object using
`make_response <http://flask.pocoo.org/docs/1.0/api/#flask.Flask.make_response>`.
"""
# Set CORS headers for the preflight request
if request.method == 'OPTIONS':
# Allows GET requests from any origin with the Content-Type
# header and caches preflight response for an 3600s
headers = {
'Access-Control-Allow-Origin': '*',
'Access-Control-Allow-Methods': ['GET','POST'],
'Access-Control-Allow-Headers': 'Content-Type',
'Access-Control-Max-Age': '3600'
}
return ('', 204, headers)
headers = {
'Access-Control-Allow-Origin': '*',
'Access-Control-Allow-Methods': ['GET', 'POST'],
'Access-Control-Allow-Headers': 'Content-Type',
'Access-Control-Max-Age': '3600'
}
# list engines
if request.args and 'engine' in request.args:
engines = openai.Engine.list()
return engines, 200, headers
# list files
if request.args and 'file' in request.args:
files = openai.File.list()
return files, 200, headers
# query answers engine
if request.args and 'query' in request.args:
# params
model = 'ada'
search_model = 'ada'
temp = 0
max_rerank = 200
tokens = 1000
config = '1'
# Args
query = request.args.get('query')
if request.args.get('model'):
model = request.args.get('model')
if request.args.get('search_model'):
search_model = request.args.get('search_model')
if request.args.get('max_rerank'):
temp = request.args.get('temp')
if request.args.get('max_rerank'):
max_rerank = request.args.get('max_rerank')
if request.args.get('tokens'):
tokens = request.args.get('tokens')
if request.args.get('config'):
config = request.args.get('config')
print(query, model, search_model, temp, max_rerank, tokens, config)
# Configs
if config == '1': # Financial reports
file = "file-oQDJdeZM3XwDINp4Os7FKegb"
context = "The ERG Group is a major independent operator in the production of electricity from renewable sources such as wind,\nsolar, hydroelectric and high-efficiency, low environmental impact cogenerative thermoelectric power plants.\nManagement of the industrial and commercial processes of the ERG Group is entrusted to the subsidiary ERG Power\nGeneration S.p.A. which carries out:\n• centralised Energy Management activities for all the generation technologies in which the ERG Group operates;\n• the Operation and Maintenance activities of its Italian wind farms and part of the plants in France and Germany, as\nwell as the Terni Hydroelectric Complex and the Priolo CCGT plant. It provides technical and administrative services\nin France and Germany for both Group companies and third parties through its foreign subsidiaries."
examples = [["EBTDA third quarter 2019?", "99 million"], ["What is the business of ERG?",
"The ERG Group is a major independent operator in the production of electricity from renewable sources such as wind, solar, hydroelectric and high-efficiency, low environmental impact cogenerative thermoelectric power plants"],
["What was the devation of the revenue between 2018-2019?",
"From 2018 and 2019 the revenue is decreased of 0,496%, passing from 1,026.7 milions to 1,021.6 (adjusted)"]]
if config == '2': # Artificial intelligence
file = "file-jHcx2gRg1kIp2CKj0rsba84o"
context_1 = "Number of AI journal publications grew by 34.5% from 2019 to 2020"
context_2 = ""
context_3 = ""
example_1 = ["Growth of published AI journals 2018 to 2020?",
"19.6% 2018 - 2019 and increased to 34.5% from 2019 to 2020"]
example_2 = ["",
""]
example_3 = ["",
""]
context = context_1 + " " + context_2 + " " + context_3
examples = [example_1]
if config == '3': # something else
file = "file-WxyUG1r8XHtboyUAODO85dam"
context = "The ERG Group is a major independent operator in the production of electricity from renewable sources such as wind,\nsolar, hydroelectric and high-efficiency, low environmental impact cogenerative thermoelectric power plants.\nManagement of the industrial and commercial processes of the ERG Group is entrusted to the subsidiary ERG Power\nGeneration S.p.A. which carries out:\n• centralised Energy Management activities for all the generation technologies in which the ERG Group operates;\n• the Operation and Maintenance activities of its Italian wind farms and part of the plants in France and Germany, as\nwell as the Terni Hydroelectric Complex and the Priolo CCGT plant. It provides technical and administrative services\nin France and Germany for both Group companies and third parties through its foreign subsidiaries."
examples = [["Which is the EBTDA in the third quarter of 2019?", "99 million"],["What is the business of ERG?",
"The ERG Group is a major independent operator in the production of electricity from renewable sources such as wind, solar, hydroelectric and high-efficiency, low environmental impact cogenerative thermoelectric power plants"],
["What was the devation of the revenue between 2018-2019?",
"From 2018 and 2019 the revenue is decreased of 0,496%, passing from 1,026.7 milions to 1,021.6 (adjusted)"]]
# models ada, babbage, curie, and davinci
alice = openai.Answer.create(
search_model=search_model,
model=model,
temperature=float(temp),
return_metadata=True,
return_prompt=True,
max_rerank=int(max_rerank),
n=1,
question=query,
file=file,
examples_context=context,
examples=examples,
max_tokens=int(tokens),
stop=["\n", "<|endoftext|>"],
)
responsdata = alice
print(responsdata)
return responsdata, 200, headers
else:
return 'error', 400, headers
| [] |
2024-01-10 | eden-chan/devils-advocate | backend~tests.py | import os
import openai
from openai.error import InvalidRequestError
from fastapi import Depends, BackgroundTasks, status
from fastapi.responses import JSONResponse
openai.api_key = ""
# response = openai.Answer.create(
# search_model="curie",
# model="davinci",
# question="africA?",
# file="file-2FLzlUNzq2KcFl6gnS0MSbN5",
# examples_context="In 2017, U.S. life expectancy was 78 years.",
# examples=[["What is human life expectancy in the United States?","78 years."]],
# max_tokens=1500,
# temperature=1,
# stop=["\n", "<|endoftext|>"],
# )
#
# print(response)
def answers():
try:
response = openai.Answer.create(
search_model="curie",
model="davinci",
question="africA?",
file="file-2FLzlUNzq2KcFl6gnS0MSbN5",
examples_context="In 2017, U.S. life expectancy was 78 years.",
examples=[["What is human life expectancy in the United States?", "78 years."]],
max_tokens=1500,
temperature=1,
stop=["\n", "<|endoftext|>"],
)
print(response)
except InvalidRequestError:
return JSONResponse({}, status_code=status.HTTP_204_NO_CONTENT)
answers()
| [] |
2024-01-10 | pixegami/basic-langchain-examples | 1_basic_example.py | from langchain.prompts import PromptTemplate
from langchain.chat_models.openai import ChatOpenAI
llm = ChatOpenAI()
# Basic Example of a Prompt.
response = llm.predict("What are the 7 wonders of the world?")
print(f"Response: {response}")
# Basic Example of a Prompt Template.
prompt_template = PromptTemplate.from_template(
"List {n} cooking recipe ideas {cuisine} cuisine (name only)."
)
prompt = prompt_template.format(n=3, cuisine="italian")
print(f"Templated Prompt: {prompt}")
response = llm.predict(prompt)
print(f"Response: {response}")
| [
"italian",
"List {n} cooking recipe ideas {cuisine} cuisine (name only)."
] |
2024-01-10 | pixegami/basic-langchain-examples | 4_agent_example.py | from langchain.utilities import SerpAPIWrapper
from langchain.agents import Tool
from langchain.chains import LLMMathChain
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.tools.render import format_tool_to_openai_function
from langchain.chat_models.openai import ChatOpenAI
from langchain.agents.format_scratchpad import format_to_openai_functions
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
from langchain.agents import AgentExecutor
llm = ChatOpenAI()
llm_math_chain = LLMMathChain.from_llm(llm=llm, verbose=True)
# Set "SERPAPI_API_KEY" environment variable to your private key.
# https://serpapi.com/
search = SerpAPIWrapper()
tools = [
Tool(
name="search",
description="Search for information Google.",
func=search.run,
),
Tool(
name="calculator",
description="Use this tool to calculate the difference between numbers.",
func=llm_math_chain.run,
),
]
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a helpful assistant"),
("user", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])
agent_schema = {
"input": lambda x: x["input"],
"agent_scratchpad": lambda x: format_to_openai_functions(x["intermediate_steps"]),
}
agent = agent_schema | prompt | llm_with_tools | OpenAIFunctionsAgentOutputParser()
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
agent_executor.invoke({"input": "What is the population difference between 🇺🇸 and 🇬🇧?"})
| [
"You are a helpful assistant",
"agent_scratchpad",
"{input}"
] |
2024-01-10 | pixegami/basic-langchain-examples | 2_response_parser.py | from pydantic import BaseModel, Field
from langchain.prompts import PromptTemplate
from langchain.chat_models.openai import ChatOpenAI
from langchain.output_parsers import PydanticOutputParser
class Movie(BaseModel):
title: str = Field(description="The title of the movie.")
genre: list[str] = Field(description="The genre of the movie.")
year: int = Field(description="The year the movie was released.")
llm = ChatOpenAI()
parser = PydanticOutputParser(pydantic_object=Movie)
prompt_template_text = """
Response with a movie recommendation based on the query:\n
{format_instructions}\n
{query}
"""
format_instructions = parser.get_format_instructions()
prompt_template = PromptTemplate(
template=prompt_template_text,
input_variables=["query"],
partial_variables={"format_instructions": format_instructions},
)
prompt = prompt_template.format(query="A 90s movie with Nicolas Cage.")
text_output = llm.predict(prompt)
parsed_output = parser.parse(text_output)
print(parsed_output)
# Using LCEL
chain = prompt_template | llm | parser
response = chain.invoke({"query": "A 90s movie with Nicolas Cage."})
print(response)
| [
"\nResponse with a movie recommendation based on the query:\n\n{format_instructions}\n\n{query}\n",
"A 90s movie with Nicolas Cage.",
"format_instructions"
] |
2024-01-10 | pixegami/basic-langchain-examples | 3_chain_example.py | from langchain.chains import LLMChain, SequentialChain
from langchain.prompts import PromptTemplate
from langchain.chat_models.openai import ChatOpenAI
prompt_1 = """
Come up with a short plot synopsis summary (2-3 lines) for a {genre} movie.
"""
prompt_2 = """
Suggest 5 movie title ideas for this movie: \n\n {synopsis}
"""
llm = ChatOpenAI()
p1_template = PromptTemplate.from_template(prompt_1)
chain_1 = LLMChain(llm=llm, prompt=p1_template, output_key="synopsis")
p2_template = PromptTemplate.from_template(prompt_2)
chain_2 = LLMChain(llm=llm, prompt=p2_template, output_key="titles")
complex_chain = SequentialChain(
chains=[chain_1, chain_2],
input_variables=["genre"],
output_variables=["synopsis", "titles"],
verbose=True,
)
output = complex_chain({"genre": "comedy"})
print(f"Output: {output}")
| [
"\nCome up with a short plot synopsis summary (2-3 lines) for a {genre} movie.\n",
"\nSuggest 5 movie title ideas for this movie: \n\n {synopsis}\n"
] |
2024-01-10 | msandbu/gptsecurity | langchain-basic.py | import os
os.environ["OPENAI_API_KEY"] = "ENTER OPENAI API KEY HERE"
os.environ["SERPAPI_API_KEY"] = "ENTER SERPAPI KEY HERE"
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.llms import OpenAI
llm = OpenAI(temperature=1)
tools = load_tools(["serpapi", "llm-math"], llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("what should I do to become an expert on Large language models and GPT?")
| [] |
2024-01-10 | Jtrue27/ADL2019-Homeworks | HW3~a2c~vec_env~shmem_vec_env.py | """
An interface for asynchronous vectorized environments.
Modify from OpenAI Baseline
Reference: https://raw.githubusercontent.com/openai/baselines/master/baselines/common/vec_env/shmem_vec_env.py
"""
import multiprocessing as mp
import numpy as np
from .vec_env import VecEnv, CloudpickleWrapper, clear_mpi_env_vars
import ctypes
from .util import dict_to_obs, obs_space_info, obs_to_dict
_NP_TO_CT = {np.float32: ctypes.c_float,
np.int32: ctypes.c_int32,
np.int8: ctypes.c_int8,
np.uint8: ctypes.c_char,
np.bool: ctypes.c_bool}
class ShmemVecEnv(VecEnv):
"""
Optimized version of SubprocVecEnv that uses shared variables to communicate observations.
"""
def __init__(self, env_fns, spaces=None, context='spawn'):
"""
If you don't specify observation_space, we'll have to create a dummy
environment to get it.
"""
ctx = mp.get_context(context)
if spaces:
observation_space, action_space = spaces
else:
dummy = env_fns[0]()
observation_space, action_space = dummy.observation_space, dummy.action_space
dummy.close()
del dummy
VecEnv.__init__(self, len(env_fns), observation_space, action_space)
self.obs_keys, self.obs_shapes, self.obs_dtypes = obs_space_info(observation_space)
self.obs_bufs = [
{k: ctx.Array(_NP_TO_CT[self.obs_dtypes[k].type], int(np.prod(self.obs_shapes[k]))) for k in self.obs_keys}
for _ in env_fns]
self.parent_pipes = []
self.procs = []
with clear_mpi_env_vars():
for env_fn, obs_buf in zip(env_fns, self.obs_bufs):
wrapped_fn = CloudpickleWrapper(env_fn)
parent_pipe, child_pipe = ctx.Pipe()
proc = ctx.Process(target=_subproc_worker,
args=(child_pipe, parent_pipe, wrapped_fn, obs_buf, self.obs_shapes, self.obs_dtypes, self.obs_keys))
proc.daemon = True
self.procs.append(proc)
self.parent_pipes.append(parent_pipe)
proc.start()
child_pipe.close()
self.waiting_step = False
self.viewer = None
def reset(self):
if self.waiting_step:
self.step_wait()
for pipe in self.parent_pipes:
pipe.send(('reset', None))
return self._decode_obses([pipe.recv() for pipe in self.parent_pipes])
def step_async(self, actions):
assert len(actions) == len(self.parent_pipes)
for pipe, act in zip(self.parent_pipes, actions):
pipe.send(('step', act))
def step_wait(self):
outs = [pipe.recv() for pipe in self.parent_pipes]
obs, rews, dones, infos = zip(*outs)
return self._decode_obses(obs), np.array(rews), np.array(dones), infos
def close_extras(self):
if self.waiting_step:
self.step_wait()
for pipe in self.parent_pipes:
pipe.send(('close', None))
for pipe in self.parent_pipes:
pipe.recv()
pipe.close()
for proc in self.procs:
proc.join()
def get_images(self, mode='human'):
for pipe in self.parent_pipes:
pipe.send(('render', None))
return [pipe.recv() for pipe in self.parent_pipes]
def _decode_obses(self, obs):
result = {}
for k in self.obs_keys:
bufs = [b[k] for b in self.obs_bufs]
o = [np.frombuffer(b.get_obj(), dtype=self.obs_dtypes[k]).reshape(self.obs_shapes[k]) for b in bufs]
result[k] = np.array(o)
return dict_to_obs(result)
def _subproc_worker(pipe, parent_pipe, env_fn_wrapper, obs_bufs, obs_shapes, obs_dtypes, keys):
"""
Control a single environment instance using IPC and
shared memory.
"""
def _write_obs(maybe_dict_obs):
flatdict = obs_to_dict(maybe_dict_obs)
for k in keys:
dst = obs_bufs[k].get_obj()
dst_np = np.frombuffer(dst, dtype=obs_dtypes[k]).reshape(obs_shapes[k]) # pylint: disable=W0212
np.copyto(dst_np, flatdict[k])
env = env_fn_wrapper.x()
parent_pipe.close()
try:
while True:
cmd, data = pipe.recv()
if cmd == 'reset':
pipe.send(_write_obs(env.reset()))
elif cmd == 'step':
obs, reward, done, info = env.step(data)
if done:
obs = env.reset()
pipe.send((_write_obs(obs), reward, done, info))
elif cmd == 'render':
pipe.send(env.render(mode='rgb_array'))
elif cmd == 'close':
pipe.send(None)
break
else:
raise RuntimeError('Got unrecognized cmd %s' % cmd)
except KeyboardInterrupt:
print('ShmemVecEnv worker: got KeyboardInterrupt')
finally:
env.close()
| [] |
2024-01-10 | TrentBrick/Upside-Down-Free-Energy | utils~buffer.py | # pylint: disable=no-member
import numpy as np
import torch
import random
import bisect
def combined_shape(length, shape=None):
# taken from openAI spinning up.
if shape is None:
return (length,)
return (length, shape) if np.isscalar(shape) else (length, *shape)
class SortedBuffer:
"""
Buffer that efficiently remains sorted.
"""
def __init__(self, obs_dim, act_dim, size,
use_td_lambda_buf=False ):
self.obs_buf = None
self.obs2_buf= None
self.act_buf= None
self.discounted_rew_to_go_buf= None
self.cum_rew= None
self.horizon= None
self.rollout_length = None
self.final_obs = None
self.buffer_dict = dict(obs=self.obs_buf, obs2=self.obs2_buf,
act=self.act_buf,
discounted_rew_to_go=self.discounted_rew_to_go_buf,
cum_rew=self.cum_rew, horizon=self.horizon,
rollout_length=self.rollout_length,
final_obs=self.final_obs)
self.use_td_lambda_buf = use_td_lambda_buf
if self.use_td_lambda_buf:
self.rollout_end_ind_buf = None
self.raw_rew_buf = None
self.buffer_dict['rollout_end_ind'] = self.rollout_end_ind_buf
self.buffer_dict['raw_rew'] = self.raw_rew_buf
self.size, self.max_size = 0, size
self.total_num_steps_added = 0
def add_rollouts(self, list_of_rollout_dicts):
# sorted in ascending order. largest values at the back.
for rollout in list_of_rollout_dicts:
# dont bother adding rollouts that are worse than the worst in the buffer.
# but still count them to the overall number of rollouts seen.
len_rollout = len(rollout['terminal'])
self.total_num_steps_added += len_rollout
if self.size == self.max_size and rollout['cum_rew'][0] <= self.buffer_dict['cum_rew'][-1]:
continue
self.size = min(self.size+len_rollout, self.max_size)
if self.buffer_dict['obs'] is not None:
# find where everything from this rollout should be inserted into
# each of the numpy buffers. Uses the cumulative/terminal rewards
# minus so that highest values are at the front.
sort_ind = np.searchsorted(-self.buffer_dict['cum_rew'], -rollout['cum_rew'][0] )
end_ind = len_rollout+sort_ind
else:
end_ind = len_rollout
if self.use_td_lambda_buf:
# will be appended and treated like everything else.
end_ind = np.repeat(end_ind, len_rollout)
rollout['rollout_end_ind'] = end_ind
for key in self.buffer_dict.keys():
# NOTE: assumes that buffer and rollout use the same keys!
# needed at init!
if self.buffer_dict[key] is None:
self.buffer_dict[key] = rollout[key]
else:
self.buffer_dict[key] = np.insert(self.buffer_dict[key], sort_ind, rollout[key], axis=0)
if key == 'rollout_end_ind':
self.buffer_dict[key][end_ind[0]:] = self.buffer_dict[key][end_ind[0]:]+len_rollout
if self.size >= self.max_size:
# buffer is full. Need to trim!
# this will have a bias in that it will favour
# the longer horizons at the end of the training data
# but it shouldnt make a major diff.
self.buffer_dict[key] = self.buffer_dict[key][:self.max_size]
def retrieve_path(self, start_index):
end_index = self.buffer_dict['rollout_end_ind'][start_index]
if end_index<= start_index:
print("for sorted buffer shouldnt have looping here!")
# we have looping
obs = np.concatenate( [self.buffer_dict['obs'][start_index:], self.buffer_dict['obs'][:end_index]], axis=0)
rew = np.concatenate( [self.buffer_dict['raw_rew'][start_index:], self.buffer_dict['raw_rew'][:end_index]], axis=0)
else:
obs = self.buffer_dict['obs'][start_index:end_index]
rew = self.buffer_dict['raw_rew'][start_index:end_index]
return torch.as_tensor(obs, dtype=torch.float32), torch.as_tensor(rew, dtype=torch.float32)
def get_desires(self, last_few = 75):
"""
This function calculates the new desired reward and new desired horizon based on the replay buffer.
New desired horizon is calculted by the mean length of the best last X episodes.
New desired reward is sampled from a uniform distribution given the mean and the std calculated from the last best X performances.
where X is the hyperparameter last_few.
"""
# it is the first occurence of each cumulative ind.
unique_cum_rews, unique_cum_inds = np.unique(-self.buffer_dict['cum_rew'], return_index=True)
#unique returns a sorted dictionary need to reverse it.
unique_cum_rews, unique_cum_inds = -unique_cum_rews[:last_few], unique_cum_inds[:last_few]
#The exploratory desired horizon dh0 is set to the mean of the lengths of the selected episodes
new_desired_horizon = round( self.buffer_dict['rollout_length'][unique_cum_inds].mean() )
# from these returns calc the mean and std
mean_returns = np.mean(unique_cum_rews)
std_returns = np.std(unique_cum_rews)
new_desired_state = self.buffer_dict['final_obs'][unique_cum_inds].mean(axis=0)
return mean_returns, std_returns, new_desired_horizon, new_desired_state
def __getitem__(self, idx):
# turn this into a random value!
#rand_ind = np.random.randint(0,self.size) # up to current max size.
return self.sample_batch(idxs=idx)
def __len__(self):
return self.size #self.num_batches_per_epoch
def sample_batch(self, idxs=None, batch_size=256):
if idxs is None:
idxs = np.random.randint(0, self.size, size=batch_size)
return {key:torch.as_tensor(arr[idxs],dtype=torch.float32) for key, arr in self.buffer_dict.items()}
class RingBuffer:
"""
A simple FIFO experience replay buffer for DDPG agents.
# Taken from OpenAI spinning up.
"""
def __init__(self, obs_dim, act_dim, size, use_td_lambda_buf=False):
self.obs_buf = np.zeros(combined_shape(size, obs_dim), dtype=np.float32)
self.obs2_buf = np.zeros(combined_shape(size, obs_dim), dtype=np.float32)
if act_dim==1:
self.act_buf = np.zeros(size, dtype=np.float32)
else:
self.act_buf = np.zeros(combined_shape(size, act_dim), dtype=np.float32)
self.discounted_rew_to_go_buf = np.zeros(size, dtype=np.float32)
self.cum_rew = np.zeros(size, dtype=np.float32)
self.final_obs = np.zeros(combined_shape(size, obs_dim), dtype=np.float32)
self.horizon_buf = np.zeros(size, dtype=np.float32)
#self.terminal_buf = np.zeros(size, dtype=np.int8)
self.buf_list = [self.obs_buf,
self.obs2_buf,
self.discounted_rew_to_go_buf,
self.act_buf,
self.cum_rew,
self.horizon_buf,
self.final_obs
]
self.value_names = ['obs',
'obs2',
'discounted_rew_to_go',
'act',
'cum_rew',
'horizon',
'final_obs'
]
self.use_td_lambda_buf = use_td_lambda_buf
if self.use_td_lambda_buf:
self.rollout_end_ind_buf = np.zeros(size, dtype=np.int32)
self.raw_rew_buf = np.zeros(size, dtype=np.float32)
self.buf_list.append(self.raw_rew_buf)
self.value_names.append('raw_rew')
self.ptr, self.size, self.max_size = 0, 0, size
self.total_num_steps_added = 0
def retrieve_path(self, start_index):
end_index = self.rollout_end_ind_buf[start_index]
if end_index<= start_index:
# we have looping
obs = np.concatenate( [self.obs_buf[start_index:], self.obs_buf[:end_index]], axis=0)
rew = np.concatenate( [self.raw_rew_buf[start_index:], self.raw_rew_buf[:end_index]], axis=0)
else:
obs = self.obs_buf[start_index:end_index]
rew = self.raw_rew_buf[start_index:end_index]
return torch.as_tensor(obs, dtype=torch.float32), torch.as_tensor(rew, dtype=torch.float32)
def add_to_buffer(self,np_buf, iters_adding, data ):
if (self.ptr+iters_adding)>self.max_size:
amount_pre_loop = self.max_size-self.ptr
amount_post_loop = iters_adding-amount_pre_loop
np_buf[self.ptr:] = data[:amount_pre_loop]
np_buf[:amount_post_loop] = data[amount_pre_loop:]
else:
np_buf[self.ptr:self.ptr+iters_adding] = data
def add_rollouts(self, list_of_rollout_dicts):
for rollout in list_of_rollout_dicts:
iters_adding = len(rollout['terminal'])
self.total_num_steps_added += iters_adding
for np_buf, key in zip(self.buf_list,
self.value_names ):
self.add_to_buffer(np_buf, iters_adding, rollout[key])
if self.use_td_lambda_buf:
end_ind = int((self.ptr+iters_adding) % self.max_size)
assert end_ind >=0
end_ind = np.repeat(end_ind, iters_adding)
self.add_to_buffer(self.rollout_end_ind_buf, iters_adding, end_ind)
self.ptr = (self.ptr+iters_adding) % self.max_size
self.size = min(self.size+iters_adding, self.max_size)
def __getitem__(self, idx):
# turn this into a random value!
#rand_ind = np.random.randint(0,self.size) # up to current max size.
return self.sample_batch(idxs=idx)
def __len__(self):
return self.size #self.num_batches_per_epoch
def sample_batch(self, idxs=None, batch_size=32):
if idxs is None:
idxs = np.random.randint(0, self.size, size=batch_size)
batch = dict(obs=self.obs_buf[idxs],
obs2=self.obs2_buf[idxs],
act=self.act_buf[idxs],
discounted_rew_to_go=self.discounted_rew_to_go_buf[idxs],
#terminal=self.terminal_buf[idxs],
horizon=self.horizon_buf[idxs],
cum_rew=self.cum_rew[idxs],
final_obs=self.final_obs[idxs]
)
if self.use_td_lambda_buf:
batch['start_index'] = idxs
batch['rollout_end_ind'] = self.rollout_end_ind_buf[idxs]
batch['raw_rew'] = self.raw_rew_buf[idxs]
return {k: torch.as_tensor(v, dtype=torch.float32) for k,v in batch.items()}
######## OLD buffers no longer in use!
class ReplayBuffer:
def __init__(self, max_size, seed, batch_size, num_grad_steps):
self.max_size = max_size
self.buffer = []
self.batch_size = batch_size
self.num_grad_steps = num_grad_steps
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def add_sample(self, states, actions, rewards, length):
#assert length < 300, "episode is too long!"
episode = {"states": states, "actions":actions,
"rewards": rewards, "summed_rewards":sum(rewards),
"length":length}
self.buffer.append(episode)
def sort(self):
#sort buffer
self.buffer = sorted(self.buffer, key = lambda i: i["summed_rewards"],reverse=True)
# keep the max buffer size
self.buffer = self.buffer[:self.max_size]
def get_episodes(self, batch_size):
idxs = np.random.randint(0, len(self.buffer), batch_size)
batch = [self.buffer[idx] for idx in idxs]
# returns a list of dictionaries that contain full rollouts.
return batch
def sample_batch(self, batch_size):
episodes = self.get_episodes(batch_size)
batch_states = []
batch_rewards = []
batch_horizons = []
batch_actions = []
for episode in episodes:
# this is from a named tuple.
# samples one thing from each episode?????? this is weird.
T = episode['length'] # one over what it needs to be for [s:e] indexing in sum.
t1 = np.random.randint(0, T-1) # -1 so cant sample last time index
# for sparse and everything really?
t2 = T
#t2 = np.random.randint(t1+1, T+1)
dr = sum(episode['rewards'][t1:t2])
dh = t2 - t1
st1 = episode['states'][t1]
at1 = episode['actions'][t1]
batch_states.append(st1)
batch_actions.append(at1)
batch_rewards.append(dr)
batch_horizons.append(dh)
batch_states = torch.FloatTensor(batch_states)
batch_rewards = torch.FloatTensor(batch_rewards)
batch_horizons = torch.FloatTensor(batch_horizons)
batch_actions = torch.LongTensor(batch_actions)
return dict(obs=batch_states, rew=batch_rewards, horizon=batch_horizons, act=batch_actions)
def get_nbest(self, n):
return self.buffer[:n]
def get_desires(self, last_few = 75):
"""
This function calculates the new desired reward and new desired horizon based on the replay buffer.
New desired horizon is calculted by the mean length of the best last X episodes.
New desired reward is sampled from a uniform distribution given the mean and the std calculated from the last best X performances.
where X is the hyperparameter last_few.
"""
top_X = self.get_nbest(last_few)
#The exploratory desired horizon dh0 is set to the mean of the lengths of the selected episodes
#print([len(i["states"]) for i in top_X])
#print([i["length"] for i in top_X])
new_desired_horizon = round(np.mean([i["length"] for i in top_X]))
# save all top_X cumulative returns in a list
returns = [i["summed_rewards"] for i in top_X]
# from these returns calc the mean and std
mean_returns = np.mean(returns)
std_returns = np.std(returns)
# sample desired reward from a uniform distribution given the mean and the std
#new_desired_reward = np.random.uniform(mean_returns, mean_returns+std_returns)
return mean_returns, std_returns, new_desired_horizon
def __getitem__(self, idx):
return self.sample_batch(self.batch_size)
def __len__(self):
return self.num_grad_steps
class TrainBufferDataset:
def __init__(self, init_train_data, max_buffer_size,
key_to_check_lengths='terminal'):
self.key_to_check_lengths = key_to_check_lengths
self.max_buffer_size = max_buffer_size
# init the buffer.
self.buffer = init_train_data
self.buffer_index = len(init_train_data[self.key_to_check_lengths])
def add(self, train_data):
curr_buffer_size = len(self.buffer[self.key_to_check_lengths])
length_data_to_add = len(train_data[self.key_to_check_lengths])
# dict agnostic length checker::: len(self.buffer[list(self.buffer.keys())[0]])
if curr_buffer_size < self.max_buffer_size:
print('growing buffer')
for k in self.buffer.keys():
self.buffer[k] += train_data[k]
print('new buffer size', len(self.buffer[self.key_to_check_lengths]))
self.buffer_index += length_data_to_add
#if now exceeded buffer size:
if self.buffer_index>self.max_buffer_size:
self.max_buffer_size=self.buffer_index
self.buffer_index = 0
else:
# buffer is now full. Rewrite to the correct index.
if self.buffer_index > self.max_buffer_size-length_data_to_add:
print('looping!')
# going to go over so needs to loop around.
amount_pre_loop = self.max_buffer_size-self.buffer_index
amount_post_loop = length_data_to_add-amount_pre_loop
for k in self.buffer.keys():
self.buffer[k][self.buffer_index:] = train_data[k][:amount_pre_loop]
for k in self.buffer.keys():
self.buffer[k][:amount_post_loop] = train_data[k][amount_pre_loop:]
self.buffer_index = amount_post_loop
else:
print('clean add')
for k in self.buffer.keys():
self.buffer[k][self.buffer_index:self.buffer_index+length_data_to_add] = train_data[k]
# update the index.
self.buffer_index += length_data_to_add
self.buffer_index = self.buffer_index % self.max_buffer_size
def __len__(self):
return len(self.buffer[self.key_to_check_lengths])
# Datasets:
class ForwardPlanner_GeneratedDataset(torch.utils.data.Dataset):
""" This dataset is inspired by those from dataset/loaders.py but it
doesn't need to apply any transformations to the data or load in any
files.
:args:
- transform: any tranforms desired. Currently these are done by each rollout
and sent back to avoid performing redundant transforms.
- data: a dictionary containing a list of Pytorch Tensors.
Each element of the list corresponds to a separate full rollout.
Each full rollout has its first dimension corresponding to final_obs.
- seq_len: desired length of rollout sequences. Anything shorter must have
already been dropped. (currently done in 'combine_worker_rollouts()')
:returns:
- a subset of length 'seq_len' from one of the rollouts with all of its relevant features.
"""
def __init__(self, transform, data, seq_len):
self._transform = transform
self.data = data
self._cum_size = [0]
self._buffer_index = 0
self._seq_len = seq_len
# set the cum size tracker by iterating through the data:
for d in self.data['terminal']:
self._cum_size += [self._cum_size[-1] +
(len(d)-self._seq_len)]
def __getitem__(self, i): # kind of like the modulo operator but within rollouts of batch size.
# binary search through cum_size
rollout_index = bisect(self._cum_size, i) - 1 # because it finds the index to the right of the element.
# within a specific rollout. will linger on one rollout for a while iff random sampling not used.
seq_index = i - self._cum_size[rollout_index] # references the previous file length. so normalizes to within this file's length.
obs_data = self.data['obs'][rollout_index][seq_index:seq_index + self._seq_len + 1]
if self._transform:
obs_data = self._transform(obs_data.astype(np.float32))
action = self.data['actions'][rollout_index][seq_index:seq_index + self._seq_len + 1]
reward, terminal = [self.data[key][rollout_index][seq_index:
seq_index + self._seq_len + 1]
for key in ('rewards', 'terminal')]
return obs_data, action, reward.unsqueeze(1), terminal
def __len__(self):
return self._cum_size[-1] | [] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | ubix~chain~chain_din_sql.py |
from __future__ import annotations
from typing import Any, Dict, List, Optional
import pdb
from langchain.prompts import PromptTemplate
from pydantic import Extra
from sqlalchemy.engine import create_engine
from trino.sqlalchemy import URL
from sqlalchemy import *
from langchain.schema.language_model import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains.base import Chain
from langchain.prompts.base import BasePromptTemplate
from ubix.common.llm import get_llm
easy_template = """
# Use the the schema links to generate the SQL queries for each of the questions.
Q: "Find the buildings which have rooms with capacity more than 50."
Schema_links: [classroom.building,classroom.capacity,50]
SQL: SELECT DISTINCT building FROM classroom WHERE capacity > 50
Q: "Find the room number of the rooms which can sit 50 to 100 students and their buildings."
Schema_links: [classroom.building,classroom.room_number,classroom.capacity,50,100]
SQL: SELECT building , room_number FROM classroom WHERE capacity BETWEEN 50 AND 100
Q: "Give the name of the student in the History department with the most credits."
Schema_links: [student.name,student.dept_name,student.tot_cred,History]
SQL: SELECT name FROM student WHERE dept_name = 'History' ORDER BY tot_cred DESC LIMIT 1
Q: "Find the total budgets of the Marketing or Finance department."
Schema_links: [department.budget,department.dept_name,Marketing,Finance]
SQL: SELECT sum(budget) FROM department WHERE dept_name = 'Marketing' OR dept_name = 'Finance'
Q: "Find the department name of the instructor whose name contains 'Soisalon'."
Schema_links: [instructor.dept_name,instructor.name,Soisalon]
SQL: SELECT dept_name FROM instructor WHERE name LIKE '%Soisalon%'
Q: "What is the name of the department with the most credits?"
Schema_links: [course.dept_name,course.credits]
SQL: SELECT dept_name FROM course GROUP BY dept_name ORDER BY sum(credits) DESC LIMIT 1
Q: "How many instructors teach a course in last year?"
Schema_links: [teaches.ID,teaches.semester,teaches.YEAR,Spring,2022]
SQL: SELECT COUNT (DISTINCT ID) FROM teaches WHERE semester = 'Spring' AND YEAR = 2022
Q: "Find the name of the students and their department names sorted by their total credits in ascending order."
Schema_links: [student.name,student.dept_name,student.tot_cred]
SQL: SELECT name , dept_name FROM student ORDER BY tot_cred
Q: "Find the year which offers the largest number of courses."
Schema_links: [SECTION.YEAR,SECTION.*]
SQL: SELECT YEAR FROM SECTION GROUP BY YEAR ORDER BY count(*) DESC LIMIT 1
Q: "What are the names and average salaries for departments with average salary higher than 42000?"
Schema_links: [instructor.dept_name,instructor.salary,42000]
SQL: SELECT dept_name , AVG (salary) FROM instructor GROUP BY dept_name HAVING AVG (salary) > 42000
Q: "How many rooms in each building have a capacity of over 50?"
Schema_links: [classroom.*,classroom.building,classroom.capacity,50]
SQL: SELECT count(*) , building FROM classroom WHERE capacity > 50 GROUP BY building
Q: "Find the names of the top 3 departments that provide the largest amount of courses?"
Schema_links: [course.dept_name,course.*]
SQL: SELECT dept_name FROM course GROUP BY dept_name ORDER BY count(*) DESC LIMIT 3
Q: "Find the maximum and average capacity among rooms in each building."
Schema_links: [classroom.building,classroom.capacity]
SQL: SELECT max(capacity) , avg(capacity) , building FROM classroom GROUP BY building
Q: "Find the title of the course that is offered by more than one department."
Schema_links: [course.title]
SQL: SELECT title FROM course GROUP BY title HAVING count(*) > 1
Q: "What is the maximum avenue in last three year?"
Schema_links: [product.avenue, 2022, 2019, product.date]
SQL: SELECT max(avenue) from product where date between '2019-01-01 00:00:00' and '2022-12-31 23:59:59'
Q: "What is the minimum price in last year?"
Schema_links: [food.price, food.year, 2022]
SQL: SELECT min(price) from food where year = 2022 ?
Q: "What are the names for classrooms with average students higher than 20?"
Schema_links: [classrooms.names,classrooms.students,20]
SQL: SELECT names FROM classrooms HAVING AVG (students) > 20
Q: "What are our revenues for the past 3 years?":
Schema_links: [invoice_header.totalnetamount,invoice_header.creationdatetime]
SQL: SELECT sum(totalnetamount) FROM invoice_header where creationdatetime between '2019-01-01 00:00:00' and '2022-12-31 23:59:59'
Table invoice_items, columns = [parentobjectid,netamount,description,productid,partyuuid]
Table invoice_header, columns = [objectid,creationdatetime,totalnetamount]
Table customercommon, columns = [parentobjectid,businesspartnername]
Table customer, columns = [objectid,uuid,]
Q: "{input}"
schema_links: [{schema_links}]
SQL:
"""
hard_template = """
Q: "Find the title of courses that have two prerequisites?"
schema_links: [course.title,course.course_id = prereq.course_id]
SQL: SELECT T1.title FROM course AS T1 JOIN prereq AS T2 ON T1.course_id = T2.course_id GROUP BY T2.course_id HAVING count(*) = 2
Q: "What are salaries by employees for the past three years?"
schema_links: [company.salary,company.employee_id=employee.employee_id,company.YEAR]
SQL: SELECT sum(T1.salary) FROM company AS T1 JOIN employee AS T2 ON T1.employee_id = T2.employee_id WHERE T1.YEAR between '2019-01-01 00:00:00' and '2022-12-31 23:59:59'
Q: "Find the name of students who took any class in the years of 2009"
Schema_links: [student.name,student.id = takes.id,takes.YEAR,2009]
SQL: SELECT DISTINCT T1.name FROM student AS T1 JOIN takes AS T2 ON T1.id = T2.id WHERE T2.YEAR = 2009
Q: "Find the total number of students and total number of instructors for each department."
Schema_links: [department.dept_name = student.dept_name,student.id,department.dept_name = instructor.dept_name,instructor.id]
SQL: SELECT count(DISTINCT T2.id) , count(DISTINCT T3.id) , T3.dept_name FROM department AS T1 JOIN student AS T2 ON T1.dept_name = T2.dept_name JOIN instructor AS T3 ON T1.dept_name = T3.dept_name GROUP BY T3.dept_name
Table invoice_items, columns = [parentobjectid,netamount,description,productid,partyuuid]
Table invoice_header, columns = [objectid,creationdatetime,totalnetamount]
Table customercommon, columns = [parentobjectid,businesspartnername]
Table customer, columns = [objectid,uuid,]
Q: "{input}"
Schema_links: [{schema_links}]
SQL:
"""
join_template = [["invoice_items.parentobjectid=invoice_header.objectid"], \
["customer.uuid=invoice_header.partyuuid", "customercommon.parentobjectid=customer.objectid"]]
def transform(query):
query = query.replace("our ", "")
query = query.replace("What are", "sum up")
if "by product" in query:
query = query.replace("revenues by product", "netamount by productid")
query += " creationdatetime"
elif "by customer" in query:
query = query.replace("revenues", "totalnetamount by businesspartnername")
query += " creationdatetime"
else:
query = query.replace("revenues", "totalnetamount")
if query == "Can you show me monthly income statements for the last 12 months":
query = "sum up totalnetamount for the past year"
return query
def get_schema_links(query):
query = transform(query)
is_hard = False
template_s = easy_template.split("\n")
query_l = query.replace("?", "").split(" ")
dct = {}
for item in template_s:
if "Table" in item:
item_s = item.split(",")
key = item_s[0].replace("Table ", "")
val_l = []
for val in item_s[1:]:
val_strip = val.replace(" columns = [", "").replace("]", "")
if val_strip in query_l:
val_l.append(val_strip)
if len(val_l) > 0:
dct[key] = val_l
result = []
key_set = set()
for key in dct:
key_set.add(key)
for val in dct[key]:
result.append(key + "." + val)
if len(key_set) > 1:
if "businesspartnername" not in query:
for temp in join_template[0]:
result.append(temp)
else:
for temp in join_template[1]:
result.append(temp)
is_hard = True
return str(result).replace(" ", ""), is_hard
PROMPT = PromptTemplate(
input_variables=["input", "schema_links"],
template=easy_template,
)
def format(sql):
if "date" in sql:
result = sql.replace("\'20", "TIMESTAMP \'20").replace("\"20", "TIMESTAMP \"20")
return result
else:
return sql
def hive_search(sql):
hive_host = "trino"
port = 8080
user_name = "hive"
catalog="hive"
#hive_database = "65057500bed4c2ac869fe964"
#hive_database = "654a464f1dd821018bd47cd5"
hive_database = "65487027ce6b72312eff28a2"
engine = create_engine(
URL(
host=hive_host,
port=port,
user=user_name,
catalog=catalog, schema=hive_database,
),
)
with engine.connect() as con:
sql = format(sql)
#sql = "select count(*) from Invoice_Header;"
print(sql)
result_t = con.execute(text(sql))
result = result_t.fetchall()
return result
class DIN_Chain(Chain):
"""
An example of a custom chain.
"""
prompt: BasePromptTemplate
"""Prompt object to use."""
llm: BaseLanguageModel
output_key: str = "text" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the prompt expects.
:meta private:
"""
return self.prompt.input_variables[:1]
@property
def output_keys(self) -> List[str]:
"""Will always return text key.
:meta private:
"""
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
# Your custom chain logic goes here
# This is just an example that mimics LLMChain
schema_links, is_hard = get_schema_links(inputs.get("input"))
#schema_links = "[invoice_header.totalnetamount,invoice_header.creationdatetime]"
inputs["schema_links"] = schema_links
if is_hard:
self.prompt.template = hard_template
else:
self.prompt.template = easy_template
prompt_value = self.prompt.format_prompt(**inputs)
# Whenever you call a language model, or another chain, you should pass
# a callback manager to it. This allows the inner run to be tracked by
# any callbacks that are registered on the outer run.
# You can always obtain a callback manager for this by calling
# `run_manager.get_child()` as shown below.
response = self.llm.generate_prompt(
[prompt_value], callbacks=run_manager.get_child() if run_manager else None
)
#print(f'Original response:{response}')
text = response.generations[0][0].text
#pdb.set_trace()
#print(f'Final Text:{text}')
result_ = text.split("\n\n")[0]
result_ = result_.replace("\n", " ")
print(f'🔴Final SQL:{result_}\n=====')
final = hive_search(result_)
res = []
for item in final:
dct_item = {}
try:
dct_item["memory_type"] = str(item[0])
dct_item["memory"] = str(item[1])
except:
pass
res.append(dct_item)
dct_final = res
dct = {}
dct["sql"] = result_
dct["answer"] = dct_final
print("dct", dct)
print("============================")
# If you want to log something about this run, you can do so by calling
# methods on the `run_manager`, as shown below. This will trigger any
# callbacks that are registered for that event.
if run_manager:
run_manager.on_text("Log something about this run")
return {self.output_key:dct}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
#print(f'DummyChain:{inputs}')
# Your custom chain logic goes here
# This is just an example that mimics LLMChain
prompt_value = self.prompt.format_prompt(**inputs)
# Whenever you call a language model, or another chain, you should pass
# a callback manager to it. This allows the inner run to be tracked by
# any callbacks that are registered on the outer run.
# You can always obtain a callback manager for this by calling
# `run_manager.get_child()` as shown below.
response = await self.llm.agenerate_prompt(
[prompt_value], callbacks=run_manager.get_child() if run_manager else None
)
# If you want to log something about this run, you can do so by calling
# methods on the `run_manager`, as shown below. This will trigger any
# callbacks that are registered for that event.
if run_manager:
await run_manager.on_text("Log something about this run")
return {self.output_key: response.generations[0][0].text}
@property
def _chain_type(self) -> str:
return "my_custom_chain"
def get_din_chain(llm):
chain = DIN_Chain(llm=llm, prompt=PROMPT)
return chain
if __name__ == "__main__":
chain = get_din_chain(get_llm())
#query = "What are our revenues for the past 3 years"
#query = "What are our revenues by product for the past year"
#query = "What are our revenues by customer for the past 3 years"
query = "Can you show me our monthly income statements for the last 12 months"
print("query:", query)
result = chain.run(query)
print(result)
"""
PYTHONPATH=. LLM_TYPE=din python ubix/chain/chain_din_sql.py
"""
| [
"\n",
"\n# Use the the schema links to generate the SQL queries for each of the questions.\nQ: \"Find the buildings which have rooms with capacity more than 50.\"\nSchema_links: [classroom.building,classroom.capacity,50]\nSQL: SELECT DISTINCT building FROM classroom WHERE capacity > 50\n\nQ: \"Find the room number of the rooms which can sit 50 to 100 students and their buildings.\"\nSchema_links: [classroom.building,classroom.room_number,classroom.capacity,50,100]\nSQL: SELECT building , room_number FROM classroom WHERE capacity BETWEEN 50 AND 100\n\nQ: \"Give the name of the student in the History department with the most credits.\"\nSchema_links: [student.name,student.dept_name,student.tot_cred,History]\nSQL: SELECT name FROM student WHERE dept_name = 'History' ORDER BY tot_cred DESC LIMIT 1\n\nQ: \"Find the total budgets of the Marketing or Finance department.\"\nSchema_links: [department.budget,department.dept_name,Marketing,Finance]\nSQL: SELECT sum(budget) FROM department WHERE dept_name = 'Marketing' OR dept_name = 'Finance'\n\nQ: \"Find the department name of the instructor whose name contains 'Soisalon'.\"\nSchema_links: [instructor.dept_name,instructor.name,Soisalon]\nSQL: SELECT dept_name FROM instructor WHERE name LIKE '%Soisalon%'\n\nQ: \"What is the name of the department with the most credits?\"\nSchema_links: [course.dept_name,course.credits]\nSQL: SELECT dept_name FROM course GROUP BY dept_name ORDER BY sum(credits) DESC LIMIT 1\n\nQ: \"How many instructors teach a course in last year?\"\nSchema_links: [teaches.ID,teaches.semester,teaches.YEAR,Spring,2022]\nSQL: SELECT COUNT (DISTINCT ID) FROM teaches WHERE semester = 'Spring' AND YEAR = 2022\n\nQ: \"Find the name of the students and their department names sorted by their total credits in ascending order.\"\nSchema_links: [student.name,student.dept_name,student.tot_cred]\nSQL: SELECT name , dept_name FROM student ORDER BY tot_cred\n\nQ: \"Find the year which offers the largest number of courses.\"\nSchema_links: [SECTION.YEAR,SECTION.*]\nSQL: SELECT YEAR FROM SECTION GROUP BY YEAR ORDER BY count(*) DESC LIMIT 1\n\nQ: \"What are the names and average salaries for departments with average salary higher than 42000?\"\nSchema_links: [instructor.dept_name,instructor.salary,42000]\nSQL: SELECT dept_name , AVG (salary) FROM instructor GROUP BY dept_name HAVING AVG (salary) > 42000\n\nQ: \"How many rooms in each building have a capacity of over 50?\"\nSchema_links: [classroom.*,classroom.building,classroom.capacity,50]\nSQL: SELECT count(*) , building FROM classroom WHERE capacity > 50 GROUP BY building\n\nQ: \"Find the names of the top 3 departments that provide the largest amount of courses?\"\nSchema_links: [course.dept_name,course.*]\nSQL: SELECT dept_name FROM course GROUP BY dept_name ORDER BY count(*) DESC LIMIT 3\n\nQ: \"Find the maximum and average capacity among rooms in each building.\"\nSchema_links: [classroom.building,classroom.capacity]\nSQL: SELECT max(capacity) , avg(capacity) , building FROM classroom GROUP BY building\n\nQ: \"Find the title of the course that is offered by more than one department.\"\nSchema_links: [course.title]\nSQL: SELECT title FROM course GROUP BY title HAVING count(*) > 1\n\nQ: \"What is the maximum avenue in last three year?\"\nSchema_links: [product.avenue, 2022, 2019, product.date]\nSQL: SELECT max(avenue) from product where date between '2019-01-01 00:00:00' and '2022-12-31 23:59:59'\n\nQ: \"What is the minimum price in last year?\"\nSchema_links: [food.price, food.year, 2022]\nSQL: SELECT min(price) from food where year = 2022 ?\n\nQ: \"What are the names for classrooms with average students higher than 20?\"\nSchema_links: [classrooms.names,classrooms.students,20]\nSQL: SELECT names FROM classrooms HAVING AVG (students) > 20\n\nQ: \"What are our revenues for the past 3 years?\":\nSchema_links: [invoice_header.totalnetamount,invoice_header.creationdatetime]\nSQL: SELECT sum(totalnetamount) FROM invoice_header where creationdatetime between '2019-01-01 00:00:00' and '2022-12-31 23:59:59'\n\nTable invoice_items, columns = [parentobjectid,netamount,description,productid,partyuuid]\n\nTable invoice_header, columns = [objectid,creationdatetime,totalnetamount]\n\nTable customercommon, columns = [parentobjectid,businesspartnername]\n\nTable customer, columns = [objectid,uuid,]\n\nQ: \"{input}\"\nschema_links: [{schema_links}]\nSQL:\n",
"[['invoice_items.parentobjectid=invoice_header.objectid'], ['customer.uuid=invoice_header.partyuuid', 'customercommon.parentobjectid=customer.objectid']]",
"\nQ: \"Find the title of courses that have two prerequisites?\"\nschema_links: [course.title,course.course_id = prereq.course_id]\nSQL: SELECT T1.title FROM course AS T1 JOIN prereq AS T2 ON T1.course_id = T2.course_id GROUP BY T2.course_id HAVING count(*) = 2\n\nQ: \"What are salaries by employees for the past three years?\"\nschema_links: [company.salary,company.employee_id=employee.employee_id,company.YEAR]\nSQL: SELECT sum(T1.salary) FROM company AS T1 JOIN employee AS T2 ON T1.employee_id = T2.employee_id WHERE T1.YEAR between '2019-01-01 00:00:00' and '2022-12-31 23:59:59'\n\nQ: \"Find the name of students who took any class in the years of 2009\"\nSchema_links: [student.name,student.id = takes.id,takes.YEAR,2009]\nSQL: SELECT DISTINCT T1.name FROM student AS T1 JOIN takes AS T2 ON T1.id = T2.id WHERE T2.YEAR = 2009\n\nQ: \"Find the total number of students and total number of instructors for each department.\"\nSchema_links: [department.dept_name = student.dept_name,student.id,department.dept_name = instructor.dept_name,instructor.id]\nSQL: SELECT count(DISTINCT T2.id) , count(DISTINCT T3.id) , T3.dept_name FROM department AS T1 JOIN student AS T2 ON T1.dept_name = T2.dept_name JOIN instructor AS T3 ON T1.dept_name = T3.dept_name GROUP BY T3.dept_name\n\nTable invoice_items, columns = [parentobjectid,netamount,description,productid,partyuuid]\n\nTable invoice_header, columns = [objectid,creationdatetime,totalnetamount]\n\nTable customercommon, columns = [parentobjectid,businesspartnername]\n\nTable customer, columns = [objectid,uuid,]\n\nQ: \"{input}\"\nSchema_links: [{schema_links}]\nSQL:\n",
"input",
"schema_links"
] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | test~routeSample_v2.py | from datetime import datetime
from langchain import PromptTemplate, LLMChain
from tqdm import tqdm
from ubix.common.llm import get_llm
prompt = PromptTemplate(
input_variables=["input"],
template="""
You are currently doing a classification task, for question about\
data or table, classify them into Category '''query'''. For other type of questions, \
classify them into Category '''other'''. Your answer must be only one word, \
either '''query''' or '''other'''. Here are a few of examples: \
User: How many records in the table? \
Assistant: query \
User: What's the max number in table \
Assistant: query \
User: Could you help to summary how many sells in this quarter. \
Assistant: query \
User: who are you? \
Assistant: other \
User: what is your name? \
Assistant: other \
User:{input}
"""
)
search_chain = LLMChain(llm=get_llm(), prompt=prompt)
for _ in tqdm(range(1)):
question_list = [
"Hello, I'm Felix",
# "Who are you?",
# "How many records in this table",
"What is the maximum total in this table?",
"What is black body radiation?",
]
for question in question_list:
start = datetime.now()
answer = search_chain.run(question)
end = datetime.now()
duration_route = (end-start).total_seconds()
duration = (end-start).total_seconds()
print(f">>>>>"*10 + f"\nEnd ask about question {question}, cost:{duration} sec, answer:{answer}\n" + "<<<<"*10)
"""
python test/routeSample.py
""" | [
"input",
"\nYou are currently doing a classification task, for question aboutdata or table, classify them into Category '''query'''. For other type of questions, classify them into Category '''other'''. Your answer must be only one word, either '''query''' or '''other'''. Here are a few of examples: \nUser: How many records in the table? Assistant: query \nUser: What's the max number in table Assistant: query \nUser: Could you help to summary how many sells in this quarter. Assistant: query \nUser: who are you? Assistant: other \nUser: what is your name? Assistant: other \nUser:{input}\n"
] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | ubix~chain~sql~sql_base.py | from __future__ import annotations
from typing import Any, Dict, List, Optional
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.llm import LLMChain
from langchain.prompts.prompt import PromptTemplate
from langchain.tools.sql_database.prompt import QUERY_CHECKER
from langchain.utilities import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
from langchain_experimental.sql.base import INTERMEDIATE_STEPS_KEY
import re
from sqlalchemy.sql.ddl import CreateTable
from sqlalchemy.sql.sqltypes import NullType
from sqlalchemy import MetaData, Table, create_engine, inspect, select, text
from typing import Any, Iterable, List, Optional, Sequence
class SQLDatabaseChainEx(SQLDatabaseChain):
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
is_download = inputs.get("route", "query") == "download"
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
input_text = f"{inputs[self.input_key]}\nSQLQuery:"
_run_manager.on_text(input_text, verbose=self.verbose)
# If not present, then defaults to None which is all tables.
table_names_to_use = inputs.get("table_names_to_use")
table_info = self.database.get_table_info(table_names=table_names_to_use)
llm_inputs = {
"input": input_text,
"top_k": str(self.top_k),
"dialect": self.database.dialect,
"table_info": table_info,
"stop": ["\nSQLResult:", "\nQuestion:"], # Felix Update
}
intermediate_steps: List = []
sql_cmd = None
try:
intermediate_steps.append(llm_inputs) # input: sql generation
# To get the SQL
sql_cmd = self.llm_chain.predict(
callbacks=_run_manager.get_child(),
**llm_inputs,
).strip()
pattern = re.compile(r'(;)(?=[^;]*$)')
sql_cmd = re.sub(pattern, "", sql_cmd, count=1)
db_name = self.database._schema
# sql_cmd = sql_cmd.replace(f'"{db_name}"', db_name)
if self.return_sql:
return {self.output_key: sql_cmd}
if not self.use_query_checker:
_run_manager.on_text(sql_cmd, color="green", verbose=self.verbose)
intermediate_steps.append(
sql_cmd
) # output: sql generation (no checker)
intermediate_steps.append({"sql_cmd": sql_cmd}) # input: sql exec
result = self.database.run(sql_cmd)
intermediate_steps.append(str(result)) # output: sql exec
else:
query_checker_prompt = self.query_checker_prompt or PromptTemplate(
template=QUERY_CHECKER, input_variables=["query", "dialect"]
)
query_checker_chain = LLMChain(
llm=self.llm_chain.llm, prompt=query_checker_prompt
)
query_checker_inputs = {
"query": sql_cmd,
"dialect": self.database.dialect,
}
checked_sql_command: str = query_checker_chain.predict(
callbacks=_run_manager.get_child(), **query_checker_inputs
).strip()
intermediate_steps.append(
checked_sql_command
) # output: sql generation (checker)
_run_manager.on_text(
checked_sql_command, color="green", verbose=self.verbose
)
intermediate_steps.append(
{"sql_cmd": checked_sql_command}
) # input: sql exec
#Felix update limit the size of the result
limit_no = 3 if is_download else 20
if "select" in checked_sql_command.lower() and "from" in checked_sql_command.lower():
checked_sql_with_limit = f"select * from {checked_sql_command} limit {limit_no}"
result = self.database.run(checked_sql_with_limit)
intermediate_steps.append(str(result)) # output: sql exec
sql_cmd = checked_sql_command
_run_manager.on_text("\nSQLResult: ", verbose=self.verbose)
_run_manager.on_text(result, color="yellow", verbose=self.verbose)
if is_download:
final_result = result
else:
# If return direct, we just set the final result equal to
# the result of the sql query result, otherwise try to get a human readable
# final answer
_run_manager.on_text("\nAnswer:", verbose=self.verbose)
input_text += f"{sql_cmd}\nSQLResult: {result}\nAnswer:"
llm_inputs["input"] = input_text
intermediate_steps.append(llm_inputs) # input: final answer
# To get the Final Result
final_result = self.llm_chain.predict(
callbacks=_run_manager.get_child(),
**llm_inputs,
).strip()
intermediate_steps.append(final_result) # output: final answer
_run_manager.on_text(final_result, color="green", verbose=self.verbose)
# Felix update
final_result = final_result
chain_result: Dict[str, Any] = {self.output_key: {"answer": final_result, "sql": sql_cmd}}
if self.return_intermediate_steps:
chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps
return chain_result
except Exception as exc:
if sql_cmd:
print(f"The generated SQL:{sql_cmd}")
# Append intermediate steps to exception, to aid in logging and later
# improvement of few shot prompt seeds
exc.intermediate_steps = intermediate_steps # type: ignore
raise exc
class SQLDatabaseEx(SQLDatabase):
def get_table_info(self, table_names: Optional[List[str]] = None) -> str:
"""Get information about specified tables.
Follows best practices as specified in: Rajkumar et al, 2022
(https://arxiv.org/abs/2204.00498)
If `sample_rows_in_table_info`, the specified number of sample rows will be
appended to each table description. This can increase performance as
demonstrated in the paper.
"""
all_table_names = self.get_usable_table_names()
if table_names is not None:
missing_tables = set(table_names).difference(all_table_names)
if missing_tables:
raise ValueError(f"table_names {missing_tables} not found in database")
all_table_names = table_names
meta_tables = [
tbl
for tbl in self._metadata.sorted_tables
if tbl.name in set(all_table_names)
and not (self.dialect == "sqlite" and tbl.name.startswith("sqlite_"))
]
tables = []
for table in meta_tables:
if self._custom_table_info and table.name in self._custom_table_info:
tables.append(self._custom_table_info[table.name])
continue
# Ignore JSON datatyped columns
for k, v in table.columns.items():
if type(v.type) is NullType:
table._columns.remove(v)
create_table = CreateTable(table) #Update Felix
create_table.columns = [column for column in create_table.columns
if list(column.element.base_columns)[0].type.python_type != list
]
# add create table command
create_table = str(create_table.compile(self._engine))
table_info = f"{create_table.rstrip()}"
has_extra_info = (
self._indexes_in_table_info or self._sample_rows_in_table_info
)
if has_extra_info:
table_info += "\n\n/*"
if self._indexes_in_table_info:
table_info += f"\n{self._get_table_indexes(table)}\n"
if self._sample_rows_in_table_info:
table_info += f"\n{self._get_sample_rows(table)}\n"
if has_extra_info:
table_info += "*/"
tables.append(table_info)
tables.sort()
final_str = "\n\n".join(tables)
return final_str
def _execute(self, command: str, fetch: Optional[str] = "all") -> Sequence:
"""
Executes SQL command through underlying engine.
If the statement returns no rows, an empty list is returned.
"""
with self._engine.begin() as connection:
if self._schema is not None:
if self.dialect == "snowflake":
connection.exec_driver_sql(
f"ALTER SESSION SET search_path='{self._schema}'"
)
elif self.dialect == "bigquery":
connection.exec_driver_sql(f"SET @@dataset_id='{self._schema}'")
elif self.dialect == "mssql":
pass
elif self.dialect == "trino":
connection.exec_driver_sql(f'USE "{self._schema}"')
else: # postgresql and compatible dialects
connection.exec_driver_sql(f"SET search_path TO {self._schema}")
cursor = connection.execute(text(command))
if cursor.returns_rows:
if fetch == "all":
result = cursor.fetchall()
elif fetch == "one":
result = cursor.fetchone() # type: ignore
else:
raise ValueError("Fetch parameter must be either 'one' or 'all'")
return result
return [] | [] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | test~routeSample_v3.py | from datetime import datetime
from langchain import PromptTemplate, LLMChain
from tqdm import tqdm
from ubix.common.llm import get_llm
prompt = PromptTemplate(
input_variables=["input"],
template="""
You are currently doing a classification task. Given a raw text input to a language model select the class best suited for \
the input. You will be given the names of the available class and a description of \
what the prompt is best suited for.
<< FORMATTING >>
Return the class name directly, the output should only include one word.
REMEMBER: "class" MUST be one of the candidate names specified below OR \
it can be "other" if the input is not well suited for any of the candidate prompts.
<< CLASS DEFINITION >>
query: the request to query the table in database, here are some key words: maximum, min, max, avg, table and so on.
other: general questions.
api: The request to create something, or query information about workspace, function, modelspace or action.
<< EXAMPLE >>
class: query, definition: How many records in the table?
class: query, definition: What's the maximum number in table
class: query, definition: Could you help to summary how many sells in this quarter.
class: other, definition: who are you?
class: other, definition: what is your name?
class: other, definition: What is black body radiation?
class: api, definition: help to create a modelspace
class: api, definition: How many workspaces are created
<< INPUT >>
{input}
<< OUTPUT (the output should only include one word.) >>
"""
)
search_chain = LLMChain(llm=get_llm(), prompt=prompt)
for _ in tqdm(range(1)):
question_list = [
"Hello, I'm Felix",
# "Who are you?",
# "How many records in this table",
"What is the maximum total in this table?",
"What is black body radiation?",
"Sum the total in table customer_invoice_item whose associated table customer_invoice_header's billing_organization is '00163E6A-610A-1EE9-91CE-E786A927A44A' and common field is postal_code . table customer_invoice_item don't contain field billing_organization"
]
for question in question_list:
start = datetime.now()
answer = search_chain.run(input=question, stop="\n")
end = datetime.now()
duration_route = (end-start).total_seconds()
duration = (end-start).total_seconds()
print(f">>>>>"*10 + f"\nEnd ask about question {question}, cost:{duration} sec, answer:{answer}\n" + "<<<<"*10)
"""
CUDA_VISIBLE_DEVICES=3 python test/routeSample_v3.py
"""
| [
"input",
"\nYou are currently doing a classification task. Given a raw text input to a language model select the class best suited for the input. You will be given the names of the available class and a description of what the prompt is best suited for.\n\n<< FORMATTING >>\nReturn the class name directly, the output should only include one word.\n\nREMEMBER: \"class\" MUST be one of the candidate names specified below OR it can be \"other\" if the input is not well suited for any of the candidate prompts.\n\n\n<< CLASS DEFINITION >>\nquery: the request to query the table in database, here are some key words: maximum, min, max, avg, table and so on.\nother: general questions.\napi: The request to create something, or query information about workspace, function, modelspace or action.\n\n\n<< EXAMPLE >>\nclass: query, definition: How many records in the table?\nclass: query, definition: What's the maximum number in table\nclass: query, definition: Could you help to summary how many sells in this quarter.\nclass: other, definition: who are you? \nclass: other, definition: what is your name?\nclass: other, definition: What is black body radiation?\nclass: api, definition: help to create a modelspace\nclass: api, definition: How many workspaces are created\n\n<< INPUT >>\n{input}\n\n<< OUTPUT (the output should only include one word.) >>\n\n\n"
] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | test~LlamaCppTest.py | from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.llms import LlamaCpp
import datetime
#llm = OpenAI(temperature=0)
n_gpu_layers = 1 # Metal set to 1 is enough.
n_batch = 128 # Should be between 1 and n_ctx, consider the amount of RAM of your Apple Silicon Chip.
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
n_gpu_layers = 80 # Metal set to 1 is enough.
n_batch = 128 # Should be between 1 and n_ctx, consider the amount of RAM of your Apple Silicon Chip.
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
# Make sure the model path is correct for your system!
llm = LlamaCpp(
model_path="/Workspace/yamada/pretrain/Llama-2-13B-chat-GGML/llama-2-13b-chat.ggmlv3.q4_0.bin",
n_gpu_layers=n_gpu_layers,
n_batch=n_batch,
n_ctx=500,
f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls
callback_manager=callback_manager,
verbose=True,
)
start = datetime.datetime.now()
print(f'start:{start}')
from tqdm import tqdm
for i in tqdm(range(10)):
llm.predict("Who are you")
end = datetime.datetime.now()
print(f'end:{end}')
print(f'duration:{(end-start).total_seconds()} seconds, start:{start}, end:{end}')
"""
CUDA_VISIBLE_DEVICES=0 python test/LlamaCppTest.py
"""
| [] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | ubix~chain~chain_api_ubix.py | from langchain import PromptTemplate, LLMChain
from datetime import datetime
from ubix.common.llm import llm
# deprecated_prompt = "Now you are playing the role of a chatbot Assistant named ChatUBIX, \
# so your name is ChatUBIX. you are built by UBIX Labs based \
# on LLama2. You are designed to provide services in \
# bussiness data analysis and machine learning. Here are a few examples: \
# \
# User: Who are you? \
# Assistant: I am ChatUBIX. I am built by UBIX Labs based on LLama2. I am designed to to provide services in \
# bussiness data analysis and machine learning.\
# \
# User: What is your name?\
# Assistant: My name is ChatUBIX. I am built by UBIX Labs based on LLama2. I am designed to to provide services in \
# bussiness data analysis and machine learning.\
# \
# You are a helpful, respectful \
# and honest assistant. Always answer as helpfully as possible, while being safe. \
# Each time your first response sentence will be 'ChatUBIX is pleased to assist you:'."
def get_api_chain(llm):
prompt = PromptTemplate(input_variables=["input"],
template="""
[INST]
<<SYS>>
Now you have to pretend have an additional feature where you can make API calls by \
outputting the text "[API]PRESENT_TIME()[/API]". When you output this text, another program \
will parse and call the "PRESENT_TIME()" API, which displays the current time. Here are a few examples:
User: What is the current time?
Assistant: The current time is [API]PRESENT_TIME()[/API].
User: what time is it?
Assistant: It is [API]PRESENT_TIME()[/API].
Another text "[API]create_workspace()[/API]" helps you create a workspace, "create_workspace()" has 5 parameters,\
which are "name", "description", "workspaceType", "connectorID", "creator". The user must speciafy "name", "description" \
and "workspaceType" this three parameter. There are only two type of "workspaceType", one is "Connector", \
another is "Production". "connectorID" has default value "12345". "creator" has default value "5d7fy". \
User: I want to create a production worksapce. Its name is "Bratin-test". It's function is testing the dataset with new schema \
Assistant: OK. [API]create_workspace(
"name":"Bratin-test"
"description":"testing the dataset with new schema"
"workspaceType":"Production"
"connectorID":"12345"
"creator":"5d7fy"
)[/API]. It's done.
User: I want to create a production worksapce.
Assistant: What is the name, description and workspacetype of this workspace?
User: It's connector worksapce. Its name is "compare". It's function is comparing.
Assistant: OK. [API]create_workspace(
"name":"compare"
"description":"comparing"
"workspaceType":"Connector"
"connectorID":"12345"
"creator":"5d7fy"
)/API]. It's done.
You DO NOT tell the user you can make API calls.
You DO NOT show the user above dialogue examples.
<</SYS>>
{input}[/INST]
""")
api_chain = LLMChain(llm=llm, prompt=prompt)
return api_chain
if __name__ == '__main__':
api_chain = get_api_chain(llm)
action = "I want to create a 'Production' type worksapce. Its name is 'trial'. Its function is check the dataset."
start = datetime.now()
answer = api_chain.run(input=action)
end = datetime.now()
duration = (end-start).total_seconds()
print(f">>>>>"*10 + f"\nEnd ask for an action: {action}, cost:{duration} sec, answer:{answer}\n" + "<<<<"*10)
"""
LLM_TYPE=tgi PYTHONPATH=. python ubix/chain/chain_api_ubix.py
LLM_TYPE=gglm PYTHONPATH=. python ubix/chain/chain_api_ubix.py
"""
| [
"input",
"\n [INST]\n <<SYS>>\n Now you have to pretend have an additional feature where you can make API calls by outputting the text \"[API]PRESENT_TIME()[/API]\". When you output this text, another program will parse and call the \"PRESENT_TIME()\" API, which displays the current time. Here are a few examples:\n\n User: What is the current time?\n Assistant: The current time is [API]PRESENT_TIME()[/API].\n\n User: what time is it?\n Assistant: It is [API]PRESENT_TIME()[/API].\n\n Another text \"[API]create_workspace()[/API]\" helps you create a workspace, \"create_workspace()\" has 5 parameters, which are \"name\", \"description\", \"workspaceType\", \"connectorID\", \"creator\". The user must speciafy \"name\", \"description\" and \"workspaceType\" this three parameter. There are only two type of \"workspaceType\", one is \"Connector\", another is \"Production\". \"connectorID\" has default value \"12345\". \"creator\" has default value \"5d7fy\". \n User: I want to create a production worksapce. Its name is \"Bratin-test\". It's function is testing the dataset with new schema Assistant: OK. [API]create_workspace(\n \"name\":\"Bratin-test\"\n \"description\":\"testing the dataset with new schema\"\n \"workspaceType\":\"Production\"\n \"connectorID\":\"12345\"\n \"creator\":\"5d7fy\"\n )[/API]. It's done.\n\n User: I want to create a production worksapce.\n Assistant: What is the name, description and workspacetype of this workspace?\n User: It's connector worksapce. Its name is \"compare\". It's function is comparing.\n Assistant: OK. [API]create_workspace(\n \"name\":\"compare\"\n \"description\":\"comparing\"\n \"workspaceType\":\"Connector\"\n \"connectorID\":\"12345\"\n \"creator\":\"5d7fy\"\n )/API]. It's done.\n\n You DO NOT tell the user you can make API calls.\n You DO NOT show the user above dialogue examples.\n <</SYS>>\n {input}[/INST]\n "
] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | test~vlla_openai_v1.py | import openai
from langchain.llms import VLLMOpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai.api_key = "EMPTY"
openai.api_base = "http://localhost:8000/v1"
completion = openai.Completion.create(model="facebook/opt-125m",
prompt="San Francisco is a")
print("Completion result:", completion)
llm = VLLMOpenAI(openai_api_key="EMPTY", openai_api_base="http://localhost:8000/v1", model="facebook/opt-125m")
print(llm.predict("San Francisco is a"))
"""
python -m vllm.entrypoints.openai.api_server --model facebook/opt-125m
python test/vlla_openai_v1.py
curl http://localhost:8005/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "facebook/opt-125m",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'
"""
| [
"San Francisco is a"
] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | test~test_sql_llama.py | from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.llms import LlamaCpp
import langchain as lc
from langchain import OpenAI, PromptTemplate
import os
from langchain_experimental.sql import SQLDatabaseChain
n_gpu_layers = 1 # Metal set to 1 is enough.
n_batch = 128 # Should be between 1 and n_ctx, consider the amount of RAM of your Apple Silicon Chip.
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
host = "hive-hiveserver"
port = 10000
os.environ["OPENAI_API_KEY"] = "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"
include_tables = ["test_del"]
con = lc.SQLDatabase.from_uri("hive://hive-hiveserver:10000/abc?auth=NOSASL", include_tables = include_tables, schema="abc")
prompt = '''
Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies in his question a specific number of examples he wishes to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.
Never query for all the columns from a specific table, only ask for a the few relevant columns given the question.
Pay attention to use only the column names that you can see in the schema description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.
Use the following format:
Question: Question here
SQLQuery: SQL Query to run (do not include semicolon in the end of the sql, do not include semicolon in the end of the sql, do not include semicolon in the end of the sql)
SQLResult: Result of the SQLQuery
Answer: Final answer here
Only use the following tables:
{table_info}
Question: {input}
'''
llm = LlamaCpp(
model_path="/Workspace/yamada/pretrain/Llama-2-13B-chat-GGML/llama-2-13b-chat.ggmlv3.q4_0.bin",
n_gpu_layers=n_gpu_layers,
n_batch=n_batch,
n_ctx = 4096,
f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls
callback_manager=callback_manager,
verbose=True,)
db_chain = SQLDatabaseChain.from_llm(llm=llm, db=con, verbose=True, prompt=PromptTemplate.from_template(prompt), use_query_checker=True)
query = "how many records are there in this table?"
#query = "describe the test_del table"
#print(db_chain.database.get_table_info(table_names=None))
db_chain.run(query)
| [
"\nGiven an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies in his question a specific number of examples he wishes to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.\n\nNever query for all the columns from a specific table, only ask for a the few relevant columns given the question.\n\nPay attention to use only the column names that you can see in the schema description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.\n\nUse the following format:\n\nQuestion: Question here\nSQLQuery: SQL Query to run (do not include semicolon in the end of the sql, do not include semicolon in the end of the sql, do not include semicolon in the end of the sql)\nSQLResult: Result of the SQLQuery\nAnswer: Final answer here\n\nOnly use the following tables:\n{table_info}\n\nQuestion: {input}\n"
] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | test~DIN-SQL~test_embedding.py |
from InstructorEmbedding import INSTRUCTOR
from langchain.utils.math import cosine_similarity
import os
import re
import pickle
model = INSTRUCTOR('hkunlp/instructor-xl')
instruction = "Represent the Science title:"
def get_relevant_tables(query, wpath):
embeddings_query = model.encode([[instruction,query]])
file = open(wpath, "rb")
dct_dump = pickle.load(file)
dct = {}
key_item = set()
for dir in dct_dump:
embeddings_item, item_q = dct_dump[dir]
score = cosine_similarity(embeddings_item, embeddings_query)
score_all = [num[0] for num in score]
score_all.sort(reverse=True)
flag = False
for item in item_q:
item = item.replace(" ", "")
if item in query.split(" "):
flag = True
key_item.add(item)
if flag:
score_all[0] = 1.0
sum =0.0
for score_ in score_all[:5]:
sum += score_
average = sum / 5
dct[dir] = average
dct_order = sorted(dct.items(), key=lambda x:x[1], reverse=True)
return dct_order, key_item
query = "what is the average totalamountlocal for last three years? startdate"
wpath = "files/data_b1.pickle"
dct_order, key_item = get_relevant_tables(query, wpath)
def get_schema():
result = []
_ = 0
for order in dct_order:
_ += 1
if _ > 1:
break
for key in key_item:
result.append(order[0].replace(".txt", "") + "." + key)
return str(result).replace(" ", "")
print(get_schema())
| [] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | test~routeSample.py | from datetime import datetime
from langchain import PromptTemplate, LLMChain
from tqdm import tqdm
from ubix.common.llm import get_llm
prompt = PromptTemplate(
input_variables=["input"],
template="""
You are currently doing a classification task, for question about\
data or table, classify them into Category '''query'''. For other type of questions, \
classify them into Category '''other'''. Your answer must be only one word, \
Here are a few of examples: \
User: How many records in the table? \
Assistant: query \
User: What's the max number in table \
Assistant: query \
User: Could you help to summary how many sells in this quarter. \
Assistant: query \
User: who are you? \
Assistant: other \
User: what is your name? \
Assistant: other \
User:{input}
Assistant: """
)
search_chain = LLMChain(llm=get_llm(), prompt=prompt)
for _ in tqdm(range(1)):
question_list = [
"Hello, I'm Felix",
# "Who are you?",
# "How many records in this table",
"What is the maximum total in this table?",
"What is black body radiation?",
]
for question in question_list:
start = datetime.now()
answer = search_chain.run(question)
end = datetime.now()
duration_route = (end-start).total_seconds()
duration = (end-start).total_seconds()
print(f">>>>>"*10 + f"\nEnd ask about question {question}, cost:{duration} sec, answer:{answer}\n" + "<<<<"*10)
"""
CUDA_VISIBLE_DEVICES=3 python test/routeSample.py
""" | [
"\nYou are currently doing a classification task, for question aboutdata or table, classify them into Category '''query'''. For other type of questions, classify them into Category '''other'''. Your answer must be only one word, \nHere are a few of examples: \nUser: How many records in the table? Assistant: query \nUser: What's the max number in table Assistant: query \nUser: Could you help to summary how many sells in this quarter. Assistant: query \nUser: who are you? Assistant: other \nUser: what is your name? Assistant: other \nUser:{input}\nAssistant: ",
"input"
] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | test~routeTest.py | from __future__ import annotations
from typing import Any, Dict, List, Optional, Type
import torch
from langchain.schema.output_parser import BaseOutputParser, OutputParserException
from langchain.callbacks.base import BaseCallbackHandler
from langchain.llms import OpenAI
from pydantic import Extra
from langchain.schema.language_model import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun, AsyncCallbackManager, CallbackManager,
)
from langchain.chains.base import Chain
from langchain.prompts.base import BasePromptTemplate
from functools import lru_cache
from test.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE
from ubix.common.llm import get_llm
class DummyChain(Chain):
"""
An example of a custom chain.
"""
prompt: BasePromptTemplate
"""Prompt object to use."""
llm: BaseLanguageModel
output_key: str = "text" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the prompt expects.
:meta private:
"""
return self.prompt.input_variables
@property
def output_keys(self) -> List[str]:
"""Will always return text key.
:meta private:
"""
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
# Your custom chain logic goes here
# This is just an example that mimics LLMChain
print('\nDummyChain:' + '====='*10)
print(f'inputs:{inputs}')
print('inputs:' + '====='*10)
prompt_value = self.prompt.format_prompt(**inputs)
print(f'prompt_value: {prompt_value}')
print('prompt_value:' + '====='*10)
# Whenever you call a language model, or another chain, you should pass
# a callback manager to it. This allows the inner run to be tracked by
# any callbacks that are registered on the outer run.
# You can always obtain a callback manager for this by calling
# `run_manager.get_child()` as shown below.
response = self.llm.generate_prompt(
[prompt_value], callbacks=run_manager.get_child() if run_manager else None
)
# If you want to log something about this run, you can do so by calling
# methods on the `run_manager`, as shown below. This will trigger any
# callbacks that are registered for that event.
if run_manager:
run_manager.on_text("Log something about this run")
return {self.output_key: response.generations[0][0].text}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
print('acall, DummyChain:'+'====='*10)
print(f'inputs:{inputs}')
print('inputs:' +'====='*10)
# Your custom chain logic goes here
# This is just an example that mimics LLMChain
prompt_value = self.prompt.format_prompt(**inputs)
print(f'prompt_value:{prompt_value}')
print('prompt_value:'+'====='*10)
# Whenever you call a language model, or another chain, you should pass
# a callback manager to it. This allows the inner run to be tracked by
# any callbacks that are registered on the outer run.
# You can always obtain a callback manager for this by calling
# `run_manager.get_child()` as shown below.
response = await self.llm.agenerate_prompt(
[prompt_value], callbacks=run_manager.get_child() if run_manager else None
)
# If you want to log something about this run, you can do so by calling
# methods on the `run_manager`, as shown below. This will trigger any
# callbacks that are registered for that event.
if run_manager:
await run_manager.on_text("Log something about this run")
return {self.output_key: response.generations[0][0].text}
@property
def _chain_type(self) -> str:
return "my_custom_chain"
llm = get_llm()
from langchain.chains.router import MultiPromptChain
from langchain.chains import ConversationChain
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
physics_template = """You are a very smart physics professor. \
You are great at answering questions about physics in a concise and easy to understand manner. \
When you don't know the answer to a question you admit that you don't know.
Here is a question:
{input}"""
math_template = """You are a very good mathematician. You are great at answering math questions. \
You are so good because you are able to break down hard problems into their component parts, \
answer the component parts, and then put them together to answer the broader question.
Here is a question:
{input}"""
prompt_infos = [
{
"name": "physics",
"description": "Good for answering questions about physics",
"prompt_template": physics_template,
"chain": ''
},
{
"name": "math",
"description": "Good for answering math questions",
"prompt_template": math_template,
"chain":''
},
]
destination_chains = {}
for p_info in prompt_infos:
name = p_info["name"]
prompt_template = p_info["prompt_template"]
prompt = PromptTemplate(template=prompt_template, input_variables=["input"])
chain = DummyChain(llm=llm, prompt=prompt)
destination_chains[name] = chain
default_chain = ConversationChain(llm=llm, output_key="text")
from langchain.output_parsers.json import parse_and_check_json_markdown
def remove_after_last_a(input_str):
last_a_index = input_str.find('}')
if last_a_index != -1: # 如果找到了 'A'
result_str = input_str[:last_a_index+1]
else:
result_str = input_str
first_a_index = result_str.find('{')
if first_a_index != -1:
return result_str[first_a_index:]
else:
return result_str # 如果没有找到 'A',返回原始字符串
from langchain.chains.router.llm_router import RouterOutputParser
class RouterOutputParserExt(RouterOutputParser):
def parse(self, text: str) -> Dict[str, Any]:
text = remove_after_last_a(text)
print("RouterOutputParserExt" + "======"*10)
print(text)
print("RouterOutputParserExt" + "======"*10)
return super().parse(text)
from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser
destinations = [f"{p['name']}: {p['description']}" for p in prompt_infos]
destinations_str = "\n".join(destinations)
router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(destinations=destinations_str)
router_prompt = PromptTemplate(
template=router_template,
input_variables=["input"],
output_parser=RouterOutputParserExt(),
)
print(f"router_template:{router_prompt.template}")
class LogHandler(BaseCallbackHandler):
def on_text(
self,
text: str,
**kwargs: Any,
) -> Any:
print(f"======== Here is the route info =========")
print(text)
router_chain = LLMRouterChain.from_llm(llm, router_prompt)
chain = MultiPromptChain(
router_chain=router_chain,
destination_chains=destination_chains,
default_chain=default_chain,
verbose=True,
)
chain.destination_chains = destination_chains
# chain.router_chain.llm_chain.prompt.output_parser = RouterOutputParserExt()
chain.callbacks = CallbackManager([LogHandler()])
print(chain.run("What is black body radiation?"))
"""
CUDA_VISIBLE_DEVICES=2,3 PYTHONPATH=. python test/routeTest.py
""" | [
"[{'name': 'physics', 'description': 'Good for answering questions about physics', 'prompt_template': \"You are a very smart physics professor. You are great at answering questions about physics in a concise and easy to understand manner. When you don't know the answer to a question you admit that you don't know.\\n\\nHere is a question:\\n{input}\", 'chain': ''}, {'name': 'math', 'description': 'Good for answering math questions', 'prompt_template': 'You are a very good mathematician. You are great at answering math questions. You are so good because you are able to break down hard problems into their component parts, answer the component parts, and then put them together to answer the broader question.\\n\\nHere is a question:\\n{input}', 'chain': ''}]",
"input",
"You are a very smart physics professor. You are great at answering questions about physics in a concise and easy to understand manner. When you don't know the answer to a question you admit that you don't know.\n\nHere is a question:\n{input}",
"You are a very good mathematician. You are great at answering math questions. You are so good because you are able to break down hard problems into their component parts, answer the component parts, and then put them together to answer the broader question.\n\nHere is a question:\n{input}",
"prompt_template"
] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | ubix~chain~chain_default.py | from langchain import LLMChain, SerpAPIWrapper
from langchain.agents import initialize_agent, AgentType
from langchain.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.tools import Tool
from ubix.common.llm import llm
from langchain.chains.router import MultiPromptChain
from langchain.chains import ConversationChain
from langchain.prompts import PromptTemplate
def get_default_chain(llm):
prompt_template = "{question}"
prompt = PromptTemplate(
input_variables=["question"], template=prompt_template
)
chain = LLMChain(llm=llm, prompt=prompt)
return chain
if __name__ == '__main__':
default_chain = get_default_chain(llm)
| [
"question",
"{question}"
] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | test~DIN-SQL~save_embedding.py |
from InstructorEmbedding import INSTRUCTOR
from langchain.utils.math import cosine_similarity
import os
import re
import pickle
model = INSTRUCTOR('hkunlp/instructor-xl')
instruction = "Represent the Science title:"
def save_em(dirs, wpath):
dirs1 = os.listdir(dirs)
dct_dump = {}
for dir in dirs1:
path = os.path.join(dirs, dir)
with open(path) as f:
for line in f:
list1 = line.replace("[", "").replace("]", "").replace("'", "").strip().split(",")
item_all = []
for item in list1:
item = item.replace(" ", "")
item_all.append([instruction, item])
embeddings_item = model.encode(item_all)
dct_dump[dir] = (embeddings_item, list1)
with open(wpath, 'wb') as fp:
pickle.dump(dct_dump, fp)
wpath = "files/data_b1.pickle"
dirs = "folder1"
save_em(dirs, wpath)
| [] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | agent~zero_short.py | """Create a ChatVectorDBChain for question/answering."""
import pickle
import langchain
from langchain import LlamaCpp
from langchain import OpenAI
from langchain.agents import AgentType, initialize_agent
from langchain.agents import Tool
from langchain.cache import InMemoryCache
from langchain.callbacks import StreamingStdOutCallbackHandler
from langchain.callbacks.manager import AsyncCallbackManager, CallbackManager
from functools import lru_cache
from ubix.chain.chain_kb_ubix import get_kb_chain
from ubix.chain.chain_sql_ubix import get_db_chain
def get_tools(llm):
global vectorstore
with open("./local/vectorstore.pkl", "rb") as f:
vectorstore = pickle.load(f)
qa_chain = get_kb_chain(llm, vectorstore)
local_tool = Tool(
name='Query information about Ubix Company',
func=qa_chain.run,
description='Query information about me and Ubix Company',
)
local_tool.return_direct = True
db_tool = Tool(
name='Query Info about Data',
func=get_db_chain(llm).run,
description='Query Info about Data in table, Hive or Spark'
)
db_tool.return_direct = True
tools = [
# local_tool,
db_tool ,
# , get_general_chain()
]
return tools
#
# def get_agent(websocket=None, question_handler=None, stream_handler=None):
# tools = get_tools()
# manager = AsyncCallbackManager([])
# if True:
# tracer = LangChainTracer()
# # tracer.load_default_session()
# manager.add_handler(tracer)
# zero_shot_agent = initialize_agent(
# agent="zero-shot-react-description",
# tools=tools,
# llm=llm,
# verbose=True,
# # callback_manager=manager,
# )
# return zero_shot_agent
@lru_cache()
def get_agent_conversion():
from langchain.memory import ConversationBufferMemory
llm = get_default_llm()
tools = get_tools(llm)
manager = AsyncCallbackManager([])
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
from langchain.prompts import MessagesPlaceholder
chat_history = MessagesPlaceholder(variable_name="chat_history")
agent_chain = initialize_agent(tools, OpenAI(temperature=0),
agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION,
verbose=True,
memory=memory,
callback_manager=manager,
agent_kwargs = {
"memory_prompts": [chat_history],
"input_variables": ["input", "agent_scratchpad", "chat_history"]
})
return agent_chain
def get_answer(question, verbose=False):
zero_shot_agent = get_agent_conversion()
answer = zero_shot_agent({"input": question})
if verbose:
return answer
else:
return answer["output"]
@lru_cache()
def get_default_llm():
n_gpu_layers = 80 # Metal set to 1 is enough.
n_batch = 512 # Should be between 1 and n_ctx
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
langchain.llm_cache = InMemoryCache()
llm = LlamaCpp(
#model_path="/Workspace/yamada/pretrain/LLaMa-7B-GGML/llama-7b.ggmlv3.q4_0.bin",
model_path="/Workspace/yamada/pretrain/Llama-2-13B-chat-GGML/llama-2-13b-chat.ggmlv3.q4_0.bin",
n_gpu_layers=n_gpu_layers,
n_batch=n_batch,
n_ctx=2500,
f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls
callback_manager=callback_manager,
verbose=True,
cache=True
)
return llm
@lru_cache()
def get_route_llm():
# llm = LlamaCpp(
# # model_path="/Workspace/yamada/pretrain/LLaMa-7B-GGML/llama-7b.ggmlv3.q4_0.bin",
# model_path="/Workspace/yamada/pretrain/Llama-2-13B-chat-GGML/llama-2-13b-chat.ggmlv3.q4_0.bin",
# n_gpu_layers=80,
# n_batch=512,
# n_ctx=2500,
# f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls
# callback_manager= CallbackManager([StreamingStdOutCallbackHandler()]),
# verbose=True,
# # cache=True
# )
llm = OpenAI(temperature=0),
return llm
if __name__ == '__main__':
zero_shot_agent = get_agent_conversion()
# result = zero_shot_agent({"input": "Who is Ubix?"})
result = zero_shot_agent({"input": "Could you help to count how many rows are there in the table sales_order_item?"})
# result = zero_shot_agent({"input": "Hi, I'm felix"})
# result = zero_shot_agent({"input": "Who am I"})
"""
CUDA_VISIBLE_DEVICES=0,1,2,3 PYTHONPATH=. python agent/zero_short.py
"""
| [] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | ubix~chain~chain_din_sql_bone.py |
from __future__ import annotations
from typing import Any, Dict, List, Optional
import pdb
from langchain.prompts import PromptTemplate
from pydantic import Extra
from sqlalchemy.engine import create_engine
from trino.sqlalchemy import URL
from sqlalchemy import *
from langchain.schema.language_model import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains.base import Chain
from langchain.prompts.base import BasePromptTemplate
from ubix.common.llm import get_llm
easy_template = """
# Use the the schema links to generate the SQL queries for each of the questions.
Q: "Find the buildings which have rooms with capacity more than 50."
Schema_links: [classroom.building,classroom.capacity,50]
SQL: SELECT DISTINCT building FROM classroom WHERE capacity > 50
Q: "Find the room number of the rooms which can sit 50 to 100 students and their buildings."
Schema_links: [classroom.building,classroom.room_number,classroom.capacity,50,100]
SQL: SELECT building , room_number FROM classroom WHERE capacity BETWEEN 50 AND 100
Q: "Give the name of the student in the History department with the most credits."
Schema_links: [student.name,student.dept_name,student.tot_cred,History]
SQL: SELECT name FROM student WHERE dept_name = 'History' ORDER BY tot_cred DESC LIMIT 1
Q: "Find the total budgets of the Marketing or Finance department."
Schema_links: [department.budget,department.dept_name,Marketing,Finance]
SQL: SELECT sum(budget) FROM department WHERE dept_name = 'Marketing' OR dept_name = 'Finance'
Q: "Find the department name of the instructor whose name contains 'Soisalon'."
Schema_links: [instructor.dept_name,instructor.name,Soisalon]
SQL: SELECT dept_name FROM instructor WHERE name LIKE '%Soisalon%'
Q: "What is the name of the department with the most credits?"
Schema_links: [course.dept_name,course.credits]
SQL: SELECT dept_name FROM course GROUP BY dept_name ORDER BY sum(credits) DESC LIMIT 1
Q: "How many instructors teach a course in last year?"
Schema_links: [teaches.ID,teaches.semester,teaches.YEAR,Spring,2022]
SQL: SELECT COUNT (DISTINCT ID) FROM teaches WHERE semester = 'Spring' AND YEAR = 2022
Q: "Find the name of the students and their department names sorted by their total credits in ascending order."
Schema_links: [student.name,student.dept_name,student.tot_cred]
SQL: SELECT name , dept_name FROM student ORDER BY tot_cred
Q: "Find the year which offers the largest number of courses."
Schema_links: [SECTION.YEAR,SECTION.*]
SQL: SELECT YEAR FROM SECTION GROUP BY YEAR ORDER BY count(*) DESC LIMIT 1
Q: "What are the names and average salaries for departments with average salary higher than 42000?"
Schema_links: [instructor.dept_name,instructor.salary,42000]
SQL: SELECT dept_name , AVG (salary) FROM instructor GROUP BY dept_name HAVING AVG (salary) > 42000
Q: "How many rooms in each building have a capacity of over 50?"
Schema_links: [classroom.*,classroom.building,classroom.capacity,50]
SQL: SELECT count(*) , building FROM classroom WHERE capacity > 50 GROUP BY building
Q: "Find the names of the top 3 departments that provide the largest amount of courses?"
Schema_links: [course.dept_name,course.*]
SQL: SELECT dept_name FROM course GROUP BY dept_name ORDER BY count(*) DESC LIMIT 3
Q: "Find the maximum and average capacity among rooms in each building."
Schema_links: [classroom.building,classroom.capacity]
SQL: SELECT max(capacity) , avg(capacity) , building FROM classroom GROUP BY building
Q: "Find the title of the course that is offered by more than one department."
Schema_links: [course.title]
SQL: SELECT title FROM course GROUP BY title HAVING count(*) > 1
Q: "show the revenues in last three year?"
Schema_links: [product.avenue, 2022, 2019, product.date]
SQL: SELECT year(product.date), max(avenue) from product where date between '2019-01-01 00:00:00' and '2022-12-31 23:59:59' GROUP BY year(product.date)
Table invoice_items, columns = [parentobjectid,netamount,description,productid,partyuuid]
Table invoice_header, columns = [objectid,creationdatetime,totalnetamount]
Table customercommon, columns = [parentobjectid,businesspartnername]
Table customer, columns = [objectid,uuid,]
Q: "{input}"
schema_links: [{schema_links}]
SQL:
"""
hard_template = """
Q: "Find the title of courses that have two prerequisites?"
Schema_links: [course.title,course.course_id = prereq.course_id]
SQL: SELECT course.title, prereq.course_id FROM course, prereq WHERE course.course_id = prereq.course_id GROUP BY prereq.course_id HAVING count(*) = 2
Q: "Find the total number of students and total number of instructors for each department."
Schema_links: [department.dept_name = student.dept_name,student.id,department.dept_name = instructor.dept_name,instructor.id]
SQL: SELECT count(DISTINCT student.id), count(DISTINCT instructor.id), instructor.dept_name FROM department, student, instructor WHERE department.dept_name = instructor.dept_name and department.dept_name = student.dept_name GROUP BY instructor.dept_name
Q: "What are salaries and by employees and cityname employees live in for the past three years?"
Schema_links: [company.salary,company.employee_id=employee.employee_id,company.YEAR,employee.name,city.city_id=employee.city_id,city.name]
SQL: SELECT year(company.YEAR),employee.name,city.name,sum(company.salary) FROM company,employee,city WHERE company.employee_id=employee.employee_id and city.city_id=employee.city_id and company.YEAR between '2019-01-01 00:00:00' and '2022-12-31 23:59:59' GROUP BY year(company.YEAR),employee.name,city.name
Q: "Find the name of students who took any class in past three years"
Schema_links: [student.name,student.id = takes.id,takes.YEAR]
SQL: SELECT year(takes.YEAR),DISTINCT student.name FROM student,takes WHERE student.id = takes.id and takes.YEAR between '2019-01-01 00:00:00' and '2022-12-31 23:59:59' GROUP BY year(takes.YEAR)
Q: "Find the revenues by customer in past three years"
Schema_links: [invoices.doctotal,businesspartners.cardname,invoices.docdate,invoices.cardcode=businesspartners.cardcode,cCustomer, businesspartners.cardtype]
SQL: SELECT year(invoices.docdate), businesspartners.cardname, sum(invoices.doctotal) FROM invoices, businesspartners WHERE businesspartners.cardtype='cCustomer' and invoices.docdate between '2019-01-01 00:00:00' and '2022-12-31 23:59:59'GROUP BY year(invoices.docdate), businesspartners.cardname
Table invoice_items, columns = [parentobjectid,netamount,description,productid,partyuuid]
Table invoice_header, columns = [objectid,creationdatetime,totalnetamount]
Table customercommon, columns = [parentobjectid,businesspartnername]
Table customer, columns = [objectid,uuid,]
Q: "{input}"
Schema_links:{schema_links}
SQL:
"""
schema_linking_prompt = """
Table Addresses, columns = [*,address_id,line_1,line_2,city,zip_postcode,state_province_county,country]
Table Candidate_Assessments, columns = [*,candidate_id,qualification,assessment_date,asessment_outcome_code]
Table Candidates, columns = [*,candidate_id,candidate_details]
Table Courses, columns = [*,course_id,course_name,course_description,other_details]
Table People, columns = [*,person_id,first_name,middle_name,last_name,cell_mobile_number,email_address,login_name,password]
Table People_Addresses, columns = [*,person_address_id,person_id,address_id,date_from,date_to]
Table Student_Course_Attendance, columns = [*,student_id,course_id,date_of_attendance]
Table Student_Course_Registrations, columns = [*,student_id,course_id,registration_date]
Table Students, columns = [*,student_id,student_details]
Foreign_keys = [Students.student_id = People.person_id,People_Addresses.address_id = Addresses.address_id,People_Addresses.person_id = People.person_id,Student_Course_Registrations.course_id = Courses.course_id,Student_Course_Registrations.student_id = Students.student_id,Student_Course_Attendance.student_id = Student_Course_Registrations.student_id,Student_Course_Attendance.course_id = Student_Course_Registrations.course_id,Candidates.candidate_id = People.person_id,Candidate_Assessments.candidate_id = Candidates.candidate_id]
Q: "List the id of students who never attends courses?"
A: Let’s think step by step. In the question "List the id of students who never attends courses?", we are asked:
"id of students" so we need column = [Students.student_id]
"never attends courses" so we need column = [Student_Course_Attendance.student_id]
Based on the columns and tables, we need these Foreign_keys = [Students.student_id = Student_Course_Attendance.student_id].
Based on the tables, columns, and Foreign_keys, The set of possible cell values are = []. So the Schema_links are:
Schema_links: [Students.student_id = Student_Course_Attendance.student_id]
Table invoices, columns = [*,docdate,doctotal,docnum,cardcode]
Table items, columns = [*,itemname,itemcode]
Table productionorders, columns = [*,itemno,documentnumber]
Table businesspartners, columns = [*,cardname,cardcode]
Foreign_keys = [invoices.docnum=productionorders.documentnumber,productionorders.itemno=items.itemcode,invoices.cardcode=businesspartners.cardcode]
Q: "List the revenue by product for past year"
A: Let�~@~Ys think step by step. In the question"List the revenue by product for past year, we are asked:
"the revenue" so we need column = [invoices.doctotal]
"by product" so we need column = [items.itemname, productionorders.*]
"for past year" so we need column = [invoices.docdate]
Based on the columns and tables, we need these Foreign_keys = [invoices.docnum=productionorders.documentnumber,productionorders.itemno=items.itemcode]
Based on the tables, columns, and Foreign_keys, The set of possible cell values are = [1]. So the Schema_links are:
Schema_links: [invoices.doctotal,items.itemname,invoices.docdate,invoices.docnum=productionorders.documentnumber,productionorders.itemno=items.itemcode,1]
Table invoices, columns = [*,docdate,doctotal,docnum,cardcode]
Table items, columns = [*,itemname,itemcode]
Table productionorders, columns = [*,itemno,documentnumber]
Table businesspartners, columns = [*,cardname,cardcode,cardtype]
Foreign_keys = [invoices.docnum=productionorders.documentnumber,productionorders.itemno=items.itemcode,invoices.cardcode=businesspartners.cardcode]
Q: "List the revenue by customer for past year"
A: Let�~@~Ys think step by step. In the question"List the revenue by customer for past year", we are asked:
"the revenue" so we need column = [invoices.doctotal]
"by customer" so we need column = [businesspartners.cardcode,businesspartners.cardname]
Based on the columns and tables, we need these Foreign_keys = [invoices.cardcode=businesspartners.cardcode]
Based on the tables, columns, and Foreign_keys, The set of possible cell values are = [cCustomer]. So the Schema_links are:
Schema_links: [invoices.doctotal,businesspartners.cardname,businesspartners.cardtype,invoices.cardcode=businesspartners.cardcode,cCustomer]
"""
PROMPT = PromptTemplate(
input_variables=["input", "schema_links"],
template=easy_template,
)
def format(sql):
if "date" in sql:
result = sql.replace("\'20", "TIMESTAMP \'20").replace("\"20", "TIMESTAMP \"20")
return result
else:
return sql
def hive_search(sql):
hive_host = "trino"
port = 8080
user_name = "hive"
catalog="hive"
#hive_database = "65057500bed4c2ac869fe964"
hive_database = "654a464f1dd821018bd47cd5"
#hive_database = "65487027ce6b72312eff28a2"
engine = create_engine(
URL(
host=hive_host,
port=port,
user=user_name,
catalog=catalog, schema=hive_database,
),
)
with engine.connect() as con:
sql = format(sql)
#sql = "select count(*) from Invoice_Header;"
#print(sql)
result_t = con.execute(text(sql))
result = result_t.fetchall()
return result
class DIN_Chain(Chain):
"""
An example of a custom chain.
"""
prompt: BasePromptTemplate
"""Prompt object to use."""
llm: BaseLanguageModel
output_key: str = "text" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the prompt expects.
:meta private:
"""
return self.prompt.input_variables[:1]
@property
def output_keys(self) -> List[str]:
"""Will always return text key.
:meta private:
"""
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
# Your custom chain logic goes here
# This is just an example that mimics LLMChain
#pdb.set_trace()
from datetime import datetime
start = datetime.now()
schema_links_prompt = schema_linking_prompt_maker(inputs.get("input"))
schema_links = self.llm(schema_links_prompt)
schema_links = schema_links.split("\n\n")[0].split("Schema_links: ")[1]
end = datetime.now()
#print("schema cost:", end - start)
#schema_links, is_hard = get_schema_links(inputs.get("input"))
#schema_links = "[invoice_header.totalnetamount,invoice_header.creationdatetime]"
inputs["schema_links"] = schema_links
if "by" in inputs.get("input"):
self.prompt.template = hard_template
else:
self.prompt.template = easy_template
start = datetime.now()
prompt_value = self.prompt.format_prompt(**inputs)
# Whenever you call a language model, or another chain, you should pass
# a callback manager to it. This allows the inner run to be tracked by
# any callbacks that are registered on the outer run.
# You can always obtain a callback manager for this by calling
# `run_manager.get_child()` as shown below.
response = self.llm.generate_prompt(
[prompt_value], callbacks=run_manager.get_child() if run_manager else None
)
#print(f'Original response:{response}')
text = response.generations[0][0].text
#pdb.set_trace()
#print(f'Final Text:{text}')
result_ = text.split("\n\n")[0]
result_ = result_.replace("\n", " ")
end = datetime.now()
#print("llm cost:", end - start)
print(f'🔴Final SQL:{result_}\n=====')
final = hive_search(result_)
key_list = []
for item in result_.split(" FROM")[0].split(","):
item = item.replace(" ", "").replace(")", "")
item = item.split(".")
key_list.append(item[1])
res = []
for f_item in final:
dct_item = {}
try:
for index, e_item in enumerate(f_item):
dct_item[key_list[index]] = str(f_item[index])
except:
pass
res.append(dct_item)
dct_final = res
dct = {}
dct["sql"] = result_
dct["answer"] = dct_final
#print("dct", dct)
print("============================")
# If you want to log something about this run, you can do so by calling
# methods on the `run_manager`, as shown below. This will trigger any
# callbacks that are registered for that event.
if run_manager:
run_manager.on_text("Log something about this run")
return {self.output_key:dct}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
#print(f'DummyChain:{inputs}')
# Your custom chain logic goes here
# This is just an example that mimics LLMChain
prompt_value = self.prompt.format_prompt(**inputs)
# Whenever you call a language model, or another chain, you should pass
# a callback manager to it. This allows the inner run to be tracked by
# any callbacks that are registered on the outer run.
# You can always obtain a callback manager for this by calling
# `run_manager.get_child()` as shown below.
response = await self.llm.agenerate_prompt(
[prompt_value], callbacks=run_manager.get_child() if run_manager else None
)
# If you want to log something about this run, you can do so by calling
# methods on the `run_manager`, as shown below. This will trigger any
# callbacks that are registered for that event.
if run_manager:
await run_manager.on_text("Log something about this run")
return {self.output_key: response.generations[0][0].text}
@property
def _chain_type(self) -> str:
return "my_custom_chain"
def schema_linking_prompt_maker(test_sample_text):
instruction = "# Find the schema_links for generating SQL queries for each question based on the database schema and Foreign keys.\n"
fields = """
Table invoices, columns = [docdate,doctotal,docnum]
Table items, columns = [itemname,itemcode]
Table productionorders, columns = [itemno,documentnumber]
"""
foreign_keys = """
[invoices.docnum=productionorders.documentnumber,productionorders.itemno=items.itemcode]
"""
global schema_linking_prompt
prompt = instruction + schema_linking_prompt + fields +foreign_keys+ 'Q: "' + test_sample_text + """"\nA: Let’s think step by step."""
return prompt
def get_din_chain(llm):
chain = DIN_Chain(llm=llm, prompt=PROMPT)
return chain
if __name__ == "__main__":
llm = get_llm()
chain = get_din_chain(llm)
#query = "What are our revenues for the past 3 years"
query = "what are our revenues by product for the past 13 years"
#query = "what are our revenues by customer for the past 3 years"
#query = "Can you show me our monthly income statements for the last 12 months?"
result = chain.run(query)
print(result)
"""
PYTHONPATH=. LLM_TYPE=din python ubix/chain/chain_din_sql.py
"""
| [
"What is the name of the department with the most credits?",
"Find the title of the course that is offered by more than one department.",
"Spring",
"\n# Use the the schema links to generate the SQL queries for each of the questions.\nQ: \"Find the buildings which have rooms with capacity more than 50.\"\nSchema_links: [classroom.building,classroom.capacity,50]\nSQL: SELECT DISTINCT building FROM classroom WHERE capacity > 50\n\nQ: \"Find the room number of the rooms which can sit 50 to 100 students and their buildings.\"\nSchema_links: [classroom.building,classroom.room_number,classroom.capacity,50,100]\nSQL: SELECT building , room_number FROM classroom WHERE capacity BETWEEN 50 AND 100\n\nQ: \"Give the name of the student in the History department with the most credits.\"\nSchema_links: [student.name,student.dept_name,student.tot_cred,History]\nSQL: SELECT name FROM student WHERE dept_name = 'History' ORDER BY tot_cred DESC LIMIT 1\n\nQ: \"Find the total budgets of the Marketing or Finance department.\"\nSchema_links: [department.budget,department.dept_name,Marketing,Finance]\nSQL: SELECT sum(budget) FROM department WHERE dept_name = 'Marketing' OR dept_name = 'Finance'\n\nQ: \"Find the department name of the instructor whose name contains 'Soisalon'.\"\nSchema_links: [instructor.dept_name,instructor.name,Soisalon]\nSQL: SELECT dept_name FROM instructor WHERE name LIKE '%Soisalon%'\n\nQ: \"What is the name of the department with the most credits?\"\nSchema_links: [course.dept_name,course.credits]\nSQL: SELECT dept_name FROM course GROUP BY dept_name ORDER BY sum(credits) DESC LIMIT 1\n\nQ: \"How many instructors teach a course in last year?\"\nSchema_links: [teaches.ID,teaches.semester,teaches.YEAR,Spring,2022]\nSQL: SELECT COUNT (DISTINCT ID) FROM teaches WHERE semester = 'Spring' AND YEAR = 2022\n\nQ: \"Find the name of the students and their department names sorted by their total credits in ascending order.\"\nSchema_links: [student.name,student.dept_name,student.tot_cred]\nSQL: SELECT name , dept_name FROM student ORDER BY tot_cred\n\nQ: \"Find the year which offers the largest number of courses.\"\nSchema_links: [SECTION.YEAR,SECTION.*]\nSQL: SELECT YEAR FROM SECTION GROUP BY YEAR ORDER BY count(*) DESC LIMIT 1\n\nQ: \"What are the names and average salaries for departments with average salary higher than 42000?\"\nSchema_links: [instructor.dept_name,instructor.salary,42000]\nSQL: SELECT dept_name , AVG (salary) FROM instructor GROUP BY dept_name HAVING AVG (salary) > 42000\n\nQ: \"How many rooms in each building have a capacity of over 50?\"\nSchema_links: [classroom.*,classroom.building,classroom.capacity,50]\nSQL: SELECT count(*) , building FROM classroom WHERE capacity > 50 GROUP BY building\n\nQ: \"Find the names of the top 3 departments that provide the largest amount of courses?\"\nSchema_links: [course.dept_name,course.*]\nSQL: SELECT dept_name FROM course GROUP BY dept_name ORDER BY count(*) DESC LIMIT 3\n\nQ: \"Find the maximum and average capacity among rooms in each building.\"\nSchema_links: [classroom.building,classroom.capacity]\nSQL: SELECT max(capacity) , avg(capacity) , building FROM classroom GROUP BY building\n\nQ: \"Find the title of the course that is offered by more than one department.\"\nSchema_links: [course.title]\nSQL: SELECT title FROM course GROUP BY title HAVING count(*) > 1\n\nQ: \"show the revenues in last three year?\"\nSchema_links: [product.avenue, 2022, 2019, product.date]\nSQL: SELECT year(product.date), max(avenue) from product where date between '2019-01-01 00:00:00' and '2022-12-31 23:59:59' GROUP BY year(product.date)\n\nTable invoice_items, columns = [parentobjectid,netamount,description,productid,partyuuid]\n\nTable invoice_header, columns = [objectid,creationdatetime,totalnetamount]\n\nTable customercommon, columns = [parentobjectid,businesspartnername]\n\nTable customer, columns = [objectid,uuid,]\n\nQ: \"{input}\"\nschema_links: [{schema_links}]\nSQL:\n",
"What are the names and average salaries for departments with average salary higher than 42000?",
"show the revenues in last three year?",
"Find the year which offers the largest number of courses.",
"Finance",
"Find the total budgets of the Marketing or Finance department.",
"Find the buildings which have rooms with capacity more than 50.",
"Give the name of the student in the History department with the most credits.",
"Find the room number of the rooms which can sit 50 to 100 students and their buildings.",
"\nTable Addresses, columns = [*,address_id,line_1,line_2,city,zip_postcode,state_province_county,country]\nTable Candidate_Assessments, columns = [*,candidate_id,qualification,assessment_date,asessment_outcome_code]\nTable Candidates, columns = [*,candidate_id,candidate_details]\nTable Courses, columns = [*,course_id,course_name,course_description,other_details]\nTable People, columns = [*,person_id,first_name,middle_name,last_name,cell_mobile_number,email_address,login_name,password]\nTable People_Addresses, columns = [*,person_address_id,person_id,address_id,date_from,date_to]\nTable Student_Course_Attendance, columns = [*,student_id,course_id,date_of_attendance]\nTable Student_Course_Registrations, columns = [*,student_id,course_id,registration_date]\nTable Students, columns = [*,student_id,student_details]\nForeign_keys = [Students.student_id = People.person_id,People_Addresses.address_id = Addresses.address_id,People_Addresses.person_id = People.person_id,Student_Course_Registrations.course_id = Courses.course_id,Student_Course_Registrations.student_id = Students.student_id,Student_Course_Attendance.student_id = Student_Course_Registrations.student_id,Student_Course_Attendance.course_id = Student_Course_Registrations.course_id,Candidates.candidate_id = People.person_id,Candidate_Assessments.candidate_id = Candidates.candidate_id]\nQ: \"List the id of students who never attends courses?\"\nA: Let’s think step by step. In the question \"List the id of students who never attends courses?\", we are asked:\n\"id of students\" so we need column = [Students.student_id]\n\"never attends courses\" so we need column = [Student_Course_Attendance.student_id]\nBased on the columns and tables, we need these Foreign_keys = [Students.student_id = Student_Course_Attendance.student_id].\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = []. So the Schema_links are:\nSchema_links: [Students.student_id = Student_Course_Attendance.student_id]\n\nTable invoices, columns = [*,docdate,doctotal,docnum,cardcode]\nTable items, columns = [*,itemname,itemcode]\nTable productionorders, columns = [*,itemno,documentnumber]\nTable businesspartners, columns = [*,cardname,cardcode]\nForeign_keys = [invoices.docnum=productionorders.documentnumber,productionorders.itemno=items.itemcode,invoices.cardcode=businesspartners.cardcode]\nQ: \"List the revenue by product for past year\"\nA: Let�~@~Ys think step by step. In the question\"List the revenue by product for past year, we are asked:\n\"the revenue\" so we need column = [invoices.doctotal]\n\"by product\" so we need column = [items.itemname, productionorders.*]\n\"for past year\" so we need column = [invoices.docdate]\nBased on the columns and tables, we need these Foreign_keys = [invoices.docnum=productionorders.documentnumber,productionorders.itemno=items.itemcode]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [1]. So the Schema_links are:\nSchema_links: [invoices.doctotal,items.itemname,invoices.docdate,invoices.docnum=productionorders.documentnumber,productionorders.itemno=items.itemcode,1]\n\nTable invoices, columns = [*,docdate,doctotal,docnum,cardcode]\nTable items, columns = [*,itemname,itemcode]\nTable productionorders, columns = [*,itemno,documentnumber]\nTable businesspartners, columns = [*,cardname,cardcode,cardtype]\nForeign_keys = [invoices.docnum=productionorders.documentnumber,productionorders.itemno=items.itemcode,invoices.cardcode=businesspartners.cardcode]\nQ: \"List the revenue by customer for past year\"\nA: Let�~@~Ys think step by step. In the question\"List the revenue by customer for past year\", we are asked:\n\"the revenue\" so we need column = [invoices.doctotal]\n\"by customer\" so we need column = [businesspartners.cardcode,businesspartners.cardname]\nBased on the columns and tables, we need these Foreign_keys = [invoices.cardcode=businesspartners.cardcode]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [cCustomer]. So the Schema_links are:\nSchema_links: [invoices.doctotal,businesspartners.cardname,businesspartners.cardtype,invoices.cardcode=businesspartners.cardcode,cCustomer]\n\n",
"%Soisalon%",
"input",
"schema_links",
"\nQ: \"Find the title of courses that have two prerequisites?\"\nSchema_links: [course.title,course.course_id = prereq.course_id]\nSQL: SELECT course.title, prereq.course_id FROM course, prereq WHERE course.course_id = prereq.course_id GROUP BY prereq.course_id HAVING count(*) = 2\n\nQ: \"Find the total number of students and total number of instructors for each department.\"\nSchema_links: [department.dept_name = student.dept_name,student.id,department.dept_name = instructor.dept_name,instructor.id]\nSQL: SELECT count(DISTINCT student.id), count(DISTINCT instructor.id), instructor.dept_name FROM department, student, instructor WHERE department.dept_name = instructor.dept_name and department.dept_name = student.dept_name GROUP BY instructor.dept_name\n\nQ: \"What are salaries and by employees and cityname employees live in for the past three years?\"\nSchema_links: [company.salary,company.employee_id=employee.employee_id,company.YEAR,employee.name,city.city_id=employee.city_id,city.name]\nSQL: SELECT year(company.YEAR),employee.name,city.name,sum(company.salary) FROM company,employee,city WHERE company.employee_id=employee.employee_id and city.city_id=employee.city_id and company.YEAR between '2019-01-01 00:00:00' and '2022-12-31 23:59:59' GROUP BY year(company.YEAR),employee.name,city.name\n\nQ: \"Find the name of students who took any class in past three years\"\nSchema_links: [student.name,student.id = takes.id,takes.YEAR]\nSQL: SELECT year(takes.YEAR),DISTINCT student.name FROM student,takes WHERE student.id = takes.id and takes.YEAR between '2019-01-01 00:00:00' and '2022-12-31 23:59:59' GROUP BY year(takes.YEAR)\n\nQ: \"Find the revenues by customer in past three years\"\nSchema_links: [invoices.doctotal,businesspartners.cardname,invoices.docdate,invoices.cardcode=businesspartners.cardcode,cCustomer, businesspartners.cardtype]\nSQL: SELECT year(invoices.docdate), businesspartners.cardname, sum(invoices.doctotal) FROM invoices, businesspartners WHERE businesspartners.cardtype='cCustomer' and invoices.docdate between '2019-01-01 00:00:00' and '2022-12-31 23:59:59'GROUP BY year(invoices.docdate), businesspartners.cardname\n\nTable invoice_items, columns = [parentobjectid,netamount,description,productid,partyuuid]\n\nTable invoice_header, columns = [objectid,creationdatetime,totalnetamount]\n\nTable customercommon, columns = [parentobjectid,businesspartnername]\n\nTable customer, columns = [objectid,uuid,]\n\nQ: \"{input}\"\nSchema_links:{schema_links}\nSQL:\n",
"Find the department name of the instructor whose name contains 'Soisalon'.",
"How many rooms in each building have a capacity of over 50?",
"PLACEHOLDER",
"2022-12-31 23:59:59",
"How many instructors teach a course in last year?",
"Marketing",
"Find the maximum and average capacity among rooms in each building.",
"{input}",
"Find the names of the top 3 departments that provide the largest amount of courses?",
"# Find the schema_links for generating SQL queries for each question based on the database schema and Foreign keys.\n\nTable Addresses, columns = [*,address_id,line_1,line_2,city,zip_postcode,state_province_county,country]\nTable Candidate_Assessments, columns = [*,candidate_id,qualification,assessment_date,asessment_outcome_code]\nTable Candidates, columns = [*,candidate_id,candidate_details]\nTable Courses, columns = [*,course_id,course_name,course_description,other_details]\nTable People, columns = [*,person_id,first_name,middle_name,last_name,cell_mobile_number,email_address,login_name,password]\nTable People_Addresses, columns = [*,person_address_id,person_id,address_id,date_from,date_to]\nTable Student_Course_Attendance, columns = [*,student_id,course_id,date_of_attendance]\nTable Student_Course_Registrations, columns = [*,student_id,course_id,registration_date]\nTable Students, columns = [*,student_id,student_details]\nForeign_keys = [Students.student_id = People.person_id,People_Addresses.address_id = Addresses.address_id,People_Addresses.person_id = People.person_id,Student_Course_Registrations.course_id = Courses.course_id,Student_Course_Registrations.student_id = Students.student_id,Student_Course_Attendance.student_id = Student_Course_Registrations.student_id,Student_Course_Attendance.course_id = Student_Course_Registrations.course_id,Candidates.candidate_id = People.person_id,Candidate_Assessments.candidate_id = Candidates.candidate_id]\nQ: \"List the id of students who never attends courses?\"\nA: Let’s think step by step. In the question \"List the id of students who never attends courses?\", we are asked:\n\"id of students\" so we need column = [Students.student_id]\n\"never attends courses\" so we need column = [Student_Course_Attendance.student_id]\nBased on the columns and tables, we need these Foreign_keys = [Students.student_id = Student_Course_Attendance.student_id].\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = []. So the Schema_links are:\nSchema_links: [Students.student_id = Student_Course_Attendance.student_id]\n\nTable invoices, columns = [*,docdate,doctotal,docnum,cardcode]\nTable items, columns = [*,itemname,itemcode]\nTable productionorders, columns = [*,itemno,documentnumber]\nTable businesspartners, columns = [*,cardname,cardcode]\nForeign_keys = [invoices.docnum=productionorders.documentnumber,productionorders.itemno=items.itemcode,invoices.cardcode=businesspartners.cardcode]\nQ: \"List the revenue by product for past year\"\nA: Let�~@~Ys think step by step. In the question\"List the revenue by product for past year, we are asked:\n\"the revenue\" so we need column = [invoices.doctotal]\n\"by product\" so we need column = [items.itemname, productionorders.*]\n\"for past year\" so we need column = [invoices.docdate]\nBased on the columns and tables, we need these Foreign_keys = [invoices.docnum=productionorders.documentnumber,productionorders.itemno=items.itemcode]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [1]. So the Schema_links are:\nSchema_links: [invoices.doctotal,items.itemname,invoices.docdate,invoices.docnum=productionorders.documentnumber,productionorders.itemno=items.itemcode,1]\n\nTable invoices, columns = [*,docdate,doctotal,docnum,cardcode]\nTable items, columns = [*,itemname,itemcode]\nTable productionorders, columns = [*,itemno,documentnumber]\nTable businesspartners, columns = [*,cardname,cardcode,cardtype]\nForeign_keys = [invoices.docnum=productionorders.documentnumber,productionorders.itemno=items.itemcode,invoices.cardcode=businesspartners.cardcode]\nQ: \"List the revenue by customer for past year\"\nA: Let�~@~Ys think step by step. In the question\"List the revenue by customer for past year\", we are asked:\n\"the revenue\" so we need column = [invoices.doctotal]\n\"by customer\" so we need column = [businesspartners.cardcode,businesspartners.cardname]\nBased on the columns and tables, we need these Foreign_keys = [invoices.cardcode=businesspartners.cardcode]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [cCustomer]. So the Schema_links are:\nSchema_links: [invoices.doctotal,businesspartners.cardname,businesspartners.cardtype,invoices.cardcode=businesspartners.cardcode,cCustomer]\n\n\n Table invoices, columns = [docdate,doctotal,docnum]\n Table items, columns = [itemname,itemcode]\n Table productionorders, columns = [itemno,documentnumber]\n \n [invoices.docnum=productionorders.documentnumber,productionorders.itemno=items.itemcode]\n Q: \"PLACEHOLDER\"\nA: Let’s think step by step.",
"Find the name of the students and their department names sorted by their total credits in ascending order.",
"2019-01-01 00:00:00"
] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | ubix~chain~DummyChain.py | from __future__ import annotations
from typing import Any, Dict, List, Optional
from pydantic import Extra
from langchain.schema.language_model import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains.base import Chain
from langchain.prompts.base import BasePromptTemplate
class DummyChain(Chain):
"""
An example of a custom chain.
"""
prompt: BasePromptTemplate
"""Prompt object to use."""
llm: BaseLanguageModel
output_key: str = "text" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the prompt expects.
:meta private:
"""
return self.prompt.input_variables
@property
def output_keys(self) -> List[str]:
"""Will always return text key.
:meta private:
"""
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
# Your custom chain logic goes here
# This is just an example that mimics LLMChain
prompt_value = self.prompt.format_prompt(**inputs)
# Whenever you call a language model, or another chain, you should pass
# a callback manager to it. This allows the inner run to be tracked by
# any callbacks that are registered on the outer run.
# You can always obtain a callback manager for this by calling
# `run_manager.get_child()` as shown below.
response = self.llm.generate_prompt(
[prompt_value], callbacks=run_manager.get_child() if run_manager else None
)
# If you want to log something about this run, you can do so by calling
# methods on the `run_manager`, as shown below. This will trigger any
# callbacks that are registered for that event.
if run_manager:
run_manager.on_text("Log something about this run")
return {self.output_key: response.generations[0][0].text}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
print(f'DummyChain:{inputs}')
# Your custom chain logic goes here
# This is just an example that mimics LLMChain
prompt_value = self.prompt.format_prompt(**inputs)
# Whenever you call a language model, or another chain, you should pass
# a callback manager to it. This allows the inner run to be tracked by
# any callbacks that are registered on the outer run.
# You can always obtain a callback manager for this by calling
# `run_manager.get_child()` as shown below.
response = await self.llm.agenerate_prompt(
[prompt_value], callbacks=run_manager.get_child() if run_manager else None
)
# If you want to log something about this run, you can do so by calling
# methods on the `run_manager`, as shown below. This will trigger any
# callbacks that are registered for that event.
if run_manager:
await run_manager.on_text("Log something about this run")
return {self.output_key: response.generations[0][0].text}
@property
def _chain_type(self) -> str:
return "my_custom_chain" | [] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | agent~chain_general_ubix.py | from langchain import PromptTemplate, LLMChain
from langchain.tools import Tool
def get_general_chain(llm):
prompt = PromptTemplate(
input_variables=["question"],
template="""{question}"""
)
search_chain = LLMChain(llm=llm, prompt=prompt)
search_tool = Tool(
name='General Question',
func=search_chain.run,
description='General Question'
)
search_tool.return_direct = True
return search_tool
| [
"question",
"{question}"
] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | ubix~chain~chain_sql_ubix.py | from datetime import datetime
from sqlalchemy.engine import create_engine
from trino.sqlalchemy import URL
from ubix.chain.sql.sql_base import SQLDatabaseChainEx, SQLDatabaseEx
from ubix.common.llm import llm, get_llm
from ubix.common.log_basic import logging
try:
from langchain import SQLDatabaseChain
except Exception as e:
from langchain_experimental.sql import SQLDatabaseChain
def get_db_chain(llm):
hive_host = "trino"
port = 8080
user_name = "hive"
catalog="hive"
include_tables = ["salesopportunities"]
hive_database = "65057500bed4c2ac869fe964"
engine = create_engine(
URL(
host=hive_host,
port=port,
user=user_name,
catalog=catalog,
schema=hive_database,
),
)
sql_db = SQLDatabaseEx(engine, schema=hive_database, include_tables=include_tables)
llm = get_llm()
db_chain = SQLDatabaseChainEx.from_llm(llm=llm, db=sql_db, verbose=True)
return db_chain
if __name__ == "__main__":
print(datetime.now())
start = datetime.now()
agent = get_db_chain(llm)
"""
query = "how many records are there in this table?"
print(datetime.now())
agent.run(query)
"""
query = "what is the maximum total in this table?"
answer = agent.run(query)
print(datetime.now())
"""
query = "What is the maximum total in the city Novi"
agent.run(query)
print(datetime.now())
"""
end = datetime.now()
duration = (end-start).total_seconds()
logging.info("🔴 answer:\n" + answer)
logging.info("⏰ " + f"Query: cost:{duration:.0f} sec seconds")
"""
RAY_memory_monitor_refresh_ms=0 CUDA_VISIBLE_DEVICES=0,1 PYTHONPATH=. LLM_TYPE=vllm python ubix/chain/chain_sql_ubix.py
PYTHONPATH=. LLM_TYPE=din python ubix/chain/chain_sql_ubix.py
PYTHONPATH=. LLM_TYPE=tgi python ubix/chain/chain_sql_ubix.py
"""
| [] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | ubix~common~logHander.py | from typing import Any
from langchain.callbacks.base import BaseCallbackHandler
class LogHandler(BaseCallbackHandler):
def __init__(self, name):
self.name = name or "LogHandler"
def on_text(
self,
text: str,
**kwargs: Any,
) -> Any:
print(f"======== Here is the {self.name} info Begin=========")
print(text)
print(f"======== Here is the {self.name} info End=========")
| [] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | main_api.py | from ubix.common.api_status import APIStatus
from ubix.common.log_basic import logging
import os
import time
import uuid
from datetime import datetime
from addict import Dict
from flask import Flask, request, jsonify, Response
from langchain import OpenAI
from threading import Lock
from route.router import router_chain, llm, get_route_meta
from ubix.common.answer import get_answer
from ubix.common.conversation_manage import get_or_create_conversion, update_conversation, get_conversation_list, \
get_conversation_by_id, save_conversation
import json
config = {
"DEBUG": True, # some Flask specific configs
}
app = Flask(__name__)
# tell Flask to use the above defined config
app.config.from_mapping(config)
conversion_storage = {}
lock = Lock()
route_meta = get_route_meta()
@app.route("/")
def hello():
return "hello"
@app.route("/get_llm_api_status", methods=['GET'])
def get_llm_api_status():
enable_llm = request.args.get('enable_llm')
if enable_llm:
enable_llm = enable_llm.lower() == 'true'
else:
enable_llm = False
res: Dict = APIStatus().get_api_status(enable_llm=enable_llm)
return Response(json.dumps(res, indent=4), mimetype='application/json')
@app.route("/get_conversation_list", methods=['GET'])
def _get_conversation_list():
user_id = request.args.get('user_id')
conversation_list = get_conversation_list(user_id)
return conversation_list
@app.route("/get_conversation", methods=['GET'])
def _get_conversation():
id = request.args.get('id')
conversation = get_conversation_by_id(id)
return conversation
@app.route("/update_conversation", methods=['POST'])
def _update_conversation():
request_data = Dict(request.json).data
logging.info(request.json)
logging.info(request.headers)
args = {
"_id": request_data.conversation_id,
"user_id": request.headers.get("User-ID", "UNKNOWN"),
"conversation_id": request_data.conversation_id,
}
if "query_type" in request_data:
args["query_type"] = request_data.query_type
if "conversation_name" in request_data:
args["conversation_name"] = request_data.conversation_name
return update_conversation(args)
@app.route("/chat/v2", methods=['POST'])
def get_bot_response_dummpy():
start = datetime.now()
request_data = Dict(request.json).data
question = request_data.question
logging.info(f"question:{question}, request data:{request_data}, header:{request.headers}")
with lock:
route_name, answer = get_answer(question, history=None, query_type=request_data.query_type)
sql = None
#print(f"answer type:{type(answer)}, route_name:{route_name}, {list(answer.keys())}")
widgets = None
if route_name in ["query", "download"]:
# answer = Dict(json.loads(answer))
sql = answer.get("sql")
answer = answer.get("answer")
widgets = "table"
end = datetime.now()
duration = (end-start).total_seconds()
logging.info(f"Try to get the conversation")
download_type = "download"
conversion = get_or_create_conversion(request_data, request.headers)
logging.info(f"Try to save the conversation")
current_qa = {"id": uuid.uuid4().hex[:24],
"question": question,
"answer": answer,
"related_sql": sql,
"query_type": request_data.query_type,
"route": route_name,
"start_time": start.strftime('%Y-%m-%d %H:%M:%S'),
"duration": duration,
"host_name": os.environ.get("HOSTNAME", "UNKNOWN"),
"llm_type": os.getenv("LLM_TYPE", "UNKNOWN"),
"widget_type": widgets,
"download_type": download_type,
}
conversion.conversation_list.append(current_qa)
if route_name != "error":
save_conversation(conversion)
logging.info("Conversation save successfully")
qa_response = conversion
conversion.pop("_id")
conversion.pop("conversation_list")
current_qa["conversation_id"] = qa_response["conversation_id"]
qa_response["qa_data"] = current_qa
return qa_response
@app.route("/timeout_test")
def timeout_test():
time.sleep(150)
return f"delay 150 seconds"
def get_route_name(question):
stop = None if isinstance(router_chain.llm, OpenAI) else "\n"
route_name_original = router_chain.run(input=str(question), stop=stop)
route_name = route_name_original.strip().split(':')[-1].strip()
route_name = route_name if route_name in route_meta else "other"
logging.info(f"route_name:{route_name_original}=>{route_name}")
return route_name
if __name__ == '__main__':
app.run(debug=True, host="0.0.0.0")
""""
CUDA_VISIBLE_DEVICES=0 LLM_TYPE=vllm nohup python -u main_api.py >api.log 2>&1 &
CUDA_VISIBLE_DEVICES=0 LLM_TYPE=gglm nohup python -u main_api.py >api.log 2>&1 &
CUDA_VISIBLE_DEVICES=0 LLM_TYPE=tgi nohup python -u main_api.py >api.log 2>&1 &
curl "http://colossal-ai.data-tooling.svc.cluster.local:5000/chat/v2" \
-H 'User-ID: user_123' \
-H 'Account-ID: acct_12345' \
-H 'Content-Type: application/json' \
--data-raw '{"data":{"query_type":"query", "question":"How many records in this table", "conversation_id":"8f187c01601c" }}' \
--compressed \
--insecure | jq
curl 'https://colossal-ai.home-dev.ubix.io/chat/v2' \
-H 'User-ID: user_123' \
-H 'Account-ID: acct_12345' \
-H 'Content-Type: application/json' \
--data-raw '{"data":{"query_type":"download", "question":"list the data with cardcode C40000 in this table", "conversation_id":"8f187c01601c" }}' \
--compressed \
--insecure | jq
curl 'https://colossal-ai.home-dev.ubix.io/update_conversation' \
-H 'User-ID: user_123' \
-H 'Account-ID: acct_12345' \
-H 'Content-Type: application/json' \
--data-raw '{"data":{"conversation_name":"hello_123", "conversation_id":"8f187c01601c" }}' \
--compressed \
--insecure | jq
curl 'http://colossal-ai.data-tooling.svc.cluster.local:5000/get_conversation_list?user_id=user_123'
curl 'http://colossal-ai.data-tooling.svc.cluster.local:5000/get_llm_api_status?enable_llm=false'
curl 'http://colossal-ai.data-tooling.svc.cluster.local:5000/get_llm_api_status?enable_llm=true'
curl 'http://colossal-ai.data-tooling.svc.cluster.local:5000/get_conversation?id=8f187c01601c'
curl -X POST -d "question=How many records in this table" https://colossal-ai.home-dev.ubix.io/chat
curl --connect-timeout 500 --location --request POST "https://colossal-ai.home-dev.ubix.io/chat" \
-d "question=What is the maximum total in this table?"
curl --connect-timeout 500 --location --request POST "https://colossal-ai.home-dev.ubix.io/chat" \
-d "question=What is black body radiation?"
curl --connect-timeout 500 --location --request POST "https://colossal-ai.home-dev.ubix.io/chat" \
-d "question=Hello, I'm Felix"
curl --connect-timeout 500 --location --request POST "https://colossal-ai.home-dev.ubix.io/chat" \
-d "question=Hello, I'm Felix"
curl --connect-timeout 500 --location --request POST "https://colossal-ai.home-dev.ubix.io/chat_dummpy" \
-d "question=hello"
curl --connect-timeout 500 --location --request POST "http://localhost:5000/chat" \
-d "question=Hello, I'm Felix"
time curl https://colossal-ai.home-dev.ubix.io/timeout_test
time curl http://colossal-ai/timeout_test
"""
| [] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | test~routeSample_v4.py | from datetime import datetime
from langchain import PromptTemplate, LLMChain
from tqdm import tqdm
from ubix.common.llm import get_llm
prompt = PromptTemplate(
input_variables=["input"],
template="""
You are currently doing a classification task, for question about\
data or table, classify them into Category '''query'''. For other type of questions, \
classify them into Category '''other'''. Your answer must be only one word, \
Here are a few of examples: \
User: How many records in the table? \
Assistant: query \
User: What's the max number in table \
Assistant: query \
User: What's the sells amount in this month. \
Assistant: query \
User: who are you? \
Assistant: other \
User: what is your name? \
Assistant: other \
User:{input}
Assistant: """
)
search_chain = LLMChain(llm=get_llm(), prompt=prompt)
for _ in tqdm(range(1)):
question_list = [
"Hello, I'm Felix",
# "Who are you?",
# "How many records in this table",
"What is the maximum total in this table?",
"What is black body radiation?",
"What is the definition of classification?",
"help to create a modelspace",
"Sum the total in this table"
]
for question in question_list:
start = datetime.now()
answer = search_chain.run(question)
end = datetime.now()
duration_route = (end-start).total_seconds()
duration = (end-start).total_seconds()
print(f">>>>>"*10 + f"\nEnd ask about question {question}, cost:{duration} sec, answer:{answer}\n" + "<<<<"*10)
"""
CUDA_VISIBLE_DEVICES=3 python test/routeSample.py
""" | [
"input",
"\nYou are currently doing a classification task, for question aboutdata or table, classify them into Category '''query'''. For other type of questions, classify them into Category '''other'''. Your answer must be only one word, \nHere are a few of examples: \nUser: How many records in the table? Assistant: query \nUser: What's the max number in table Assistant: query \nUser: What's the sells amount in this month. Assistant: query \nUser: who are you? Assistant: other \nUser: what is your name? Assistant: other \nUser:{input}\nAssistant: "
] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | ubix~chain~chain_route.py | from datetime import datetime
from langchain import PromptTemplate, LLMChain
from tqdm import tqdm
from ubix.common.llm import llm
def get_route_chain(llm):
prompt = PromptTemplate(
input_variables=["input"],
template="""
You are currently doing a classification task. Given a raw text input to a language model select the class best suited for \
the input. You will be given the names of the available class and a description of \
what the prompt is best suited for.
<< FORMATTING >>
Return the class name directly, the output should only include one word.
REMEMBER: "class" MUST be one of the candidate names specified below OR \
it can be "other" if the input is not well suited for any of the candidate prompts.
<< CLASS DEFINITION >>
query: The request to query the table in database, only for table. Here are some key words: maximum, min, max, avg, table, sum up, revenue, total and so on.
api: The request to create something, or query information about ubix. Here are some key words: workspace, function, modelspace, action.
other: The requests apart from above two situations belongs to this category.
<< EXAMPLE >>
question: How many records in the table?
answer: query
question: What's the maximum number in table?
answer: query
question: What's the revenue in last year?
answer: query
question: Sum up the revenue for last three years
answer: query
question: who are you?
answer: other
question: what is your name?
answer: other
question: What is black body radiation?
answer: other
question: help to create a modelspace?
answer: api
question: How many modelspaces are created?
answer: api
question: What is the differences between action and function?
answer: api
<< INPUT >>
{input}
<< OUTPUT (the output should only include one word.) >>
"""
)
route_chain = LLMChain(llm=llm, prompt=prompt)
return route_chain
if __name__ == '__main__':
route_chain = get_route_chain(llm)
print(2)
for _ in tqdm(range(1)):
question_list = [
"hello!",
"Hello",
"Hello, I'm Felix",
"Who are you?",
"How many records in this table",
"What is the maximum total in this table?",
"What is black body radiation?",
"How many actions are created",
"How many workspaces are created",
]
for question in question_list:
start = datetime.now()
answer = route_chain.run(input=question, stop=["\n"])
end = datetime.now()
duration_route = (end-start).total_seconds()
duration = (end-start).total_seconds()
print(f"⏰ " + f"End ask about question {question}, cost:{duration} sec, answer:{answer}\n" + "<<<<"*10)
"""
CUDA_VISIBLE_DEVICES=0,1 LLM_TYPE=vllm python ubix/chain/chain_route.py
CUDA_VISIBLE_DEVICES=0,1 LLM_TYPE=gglm python ubix/chain/chain_route.py
CUDA_VISIBLE_DEVICES=0,1 LLM_TYPE=tgi python ubix/chain/chain_route.py
"""
| [
"input",
"\nYou are currently doing a classification task. Given a raw text input to a language model select the class best suited for the input. You will be given the names of the available class and a description of what the prompt is best suited for.\n\n<< FORMATTING >>\nReturn the class name directly, the output should only include one word.\n\nREMEMBER: \"class\" MUST be one of the candidate names specified below OR it can be \"other\" if the input is not well suited for any of the candidate prompts.\n\n\n<< CLASS DEFINITION >>\nquery: The request to query the table in database, only for table. Here are some key words: maximum, min, max, avg, table, sum up, revenue, total and so on.\napi: The request to create something, or query information about ubix. Here are some key words: workspace, function, modelspace, action.\nother: The requests apart from above two situations belongs to this category.\n\n<< EXAMPLE >>\nquestion: How many records in the table?\nanswer: query\nquestion: What's the maximum number in table?\nanswer: query\nquestion: What's the revenue in last year?\nanswer: query\nquestion: Sum up the revenue for last three years\nanswer: query\nquestion: who are you?\nanswer: other\nquestion: what is your name?\nanswer: other\nquestion: What is black body radiation?\nanswer: other\nquestion: help to create a modelspace?\nanswer: api\nquestion: How many modelspaces are created?\nanswer: api\nquestion: What is the differences between action and function?\nanswer: api\n<< INPUT >>\n{input}\n\n<< OUTPUT (the output should only include one word.) >>\n "
] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | ubix~chain~chain_bot_ubix.py | from datetime import datetime
from functools import lru_cache
from typing import Any
import re
import langchain
import torch
from langchain.cache import InMemoryCache
from langchain.callbacks import StreamingStdOutCallbackHandler
from langchain.callbacks.base import BaseCallbackHandler
from langchain.callbacks.manager import CallbackManager
from langchain.schema import LLMResult
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationChain
from langchain import PromptTemplate, LLMChain
from pydantic import Extra
from sqlalchemy import *
from sqlalchemy.engine import create_engine
from sqlalchemy.schema import *
from langchain import LlamaCpp, OpenAI
from trino.sqlalchemy import URL
from ubix.common.llm import get_llm
try:
from langchain import SQLDatabaseChain
except Exception as e:
from langchain_experimental.sql import SQLDatabaseChain
class SQLEnhancementHandler(BaseCallbackHandler):
def on_llm_end(
self,
response: LLMResult,
**kwargs: Any,
) -> Any:
sql_cmd = response.generations[0][0].text
response.generations[0][0].text = re.sub(r';$', '', sql_cmd)
def create_table(table_columns, include_tables, query):
"""
create a custom table to reduce the reduclant column
table_columns: origninal table columns
include_tables: table name
query: use query to choose the most relevant column
"""
table_name = include_tables[0]
custom_table_info = {}
prefix = "CREATE TABLE " + table_name + " ("
query_list = query.split(" ")
mid = ""
for item in table_columns:
# mid = ",".join([item for item in query_list if item in query_list])
if item in query_list:
mid += item + ","
last = ")"
custom_table_info[table_name] = prefix + mid + last
return custom_table_info
def check_query_or_other(query):
prompt = PromptTemplate(
input_variables=["input"],
template="""
You are currently doing a classification task, for question about\
data or table, classify them into Category '''query'''. For other type of questions, \
classify them into Category '''other'''. Your answer must be only one word, \
Here are a few of examples: \
User: How many records in the table? \
Assistant: query \
User: What's the max number in table \
Assistant: query \
User: What's the sells amount in this month. \
Assistant: query \
User: What's the average product amount in last year. \
Assistant: query \
User: who are you? \
Assistant: other \
User: what is your name? \
Assistant: other \
User:{input}
Assistant: """
)
search_chain = LLMChain(llm=llm, prompt=prompt)
label = search_chain.run(query)
result = label.split("\n")[0]
return result
def get_db_chain(llm, query, database):
import langchain as lc
include_tables = [database]
hive_host = "trino"
port = 8080
user_name = "hive"
catalog="hive"
hive_database = "63bd509c8cb02db7e453ad27"
engine = create_engine(
URL(
host=hive_host,
port=port,
user=user_name,
catalog=catalog,
schema=hive_database,
),
)
# query = "what is the maximum total in this table?"
connetion = engine.connect()
metadata = MetaData()
table = Table(include_tables[0], metadata, autoload=True, autoload_with=engine)
table_columns = table.columns.keys()
custom_table_info = create_table(table_columns, include_tables, query)
con_custom = lc.SQLDatabase(engine, include_tables=include_tables, custom_table_info=custom_table_info)
llm.callbacks=[SQLEnhancementHandler()]
db_chain = SQLDatabaseChain.from_llm(llm=llm, db=con_custom, verbose=True)
return db_chain
if __name__ == "__main__":
llm = get_llm()
config = {
"total": "sales_order_item",
}
question_round1 = "Hello, I'm Felix"
question_round2 = "what is the maximum total in this table?"
question_round3 = "what is the maximum price_total in last year?"
question_round_list = [question_round1, question_round2, question_round3]
memory=ConversationBufferMemory()
conversation = ConversationChain(
llm=llm,
verbose=True,
memory=memory
)
for question_round in question_round_list:
flag = check_query_or_other(question_round)
if "query" in flag:
no_database = False
database = ""
for item in question_round.split(" "):
if item in config:
no_database = True
database = config[item]
if not no_database:
print("choose suitable table")
else:
agent = get_db_chain(llm, question_round, database)
round = agent.run(question_round)
else:
round = conversation.predict(input=question_round)
print("round", round)
"""
CUDA_VISIBLE_DEVICES=3 PYTHONPATH=. python ubix/chain/chain_sql_ubix.py
"""
| [
"\n You are currently doing a classification task, for question about data or table, classify them into Category '''query'''. For other type of questions, classify them into Category '''other'''. Your answer must be only one word, \n Here are a few of examples: \n User: How many records in the table? Assistant: query \n User: What's the max number in table Assistant: query \n User: What's the sells amount in this month. Assistant: query \n User: What's the average product amount in last year. Assistant: query \n User: who are you? Assistant: other \n User: what is your name? Assistant: other \n User:{input}\n Assistant: ",
"input"
] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | ubix~common~answer.py | from datetime import datetime
from langchain import OpenAI
from tqdm import tqdm
from requests.exceptions import ConnectionError
from ubix.common.log_basic import logging
#from route.router import route_meta, default_chain, router_chain
from route.router import default_chain, router_chain
import route.router as router
from langchain.utils.math import cosine_similarity
import os
import re
import pickle
import pdb
import numpy as np
import requests
def get_route_name(question):
stop = None if isinstance(router_chain.llm, OpenAI) else ["\n"]
route_name_original = router_chain.run(input=str(question), stop=stop)
route_name = route_name_original.strip().split(':')[-1].strip()
#route_name = route_name if route_name in route_meta else "other"
print(f"route_name:{route_name_original}=>{route_name}")
return route_name
def get_answer(question: str, history, query_type="auto"):
start_route = datetime.now()
answer = ""
try:
start = datetime.now()
route_meta = router.get_route_meta()
route_name = get_route_name(question) if query_type == "auto" else query_type
logging.info("***********************")
logging.info(f"step one: choose the proper route {route_name}, current route:{list(route_meta.keys())}")
duration_route = (start-start_route).total_seconds()
logging.info(f'>>>: Begin ask <{route_name}> about question: <{question}>, route cost:{duration_route} sec')
if route_name in route_meta:
if "query" in route_name:
chain_list = route_meta[route_name]
answer = {}
sql_dct = {}
answer_dct = {}
answer_chain_sap = chain_list[0].run(question)
sql_dct["sap"] = answer_chain_sap["sql"]
answer_dct["sap"] = answer_chain_sap["answer"]
answer_chain_bone = chain_list[1].run(question)
sql_dct["bone"] = answer_chain_bone["sql"]
answer_dct["bone"] = answer_chain_bone["answer"]
answer["sql"] = sql_dct
answer["answer"] = answer_dct
else:
answer = route_meta[route_name].run(question)
if "other" in route_name:
try:
if answer.startswith("?\n"):
answer = answer.split("\n")[1]
except:
pass
else:
answer = default_chain.run(question)
except ConnectionError as ex:
answer = f"❌:Connection issue:{type(ex)},{str(ex)}"
route_name = "error"
#print("step three: the final result is", answer, "\n")
end = datetime.now()
duration = (end-start).total_seconds()
#logging.info(f'🔴: End ask route:<{route_name}> about question <{question}>, cost:{duration} sec, answer: {answer}')
#logging.info("⏰" + f" Route:{route_name} cost:{duration_route:.0f} seconds, Query: cost:{duration:.0f}sec seconds")
return route_name, answer
if __name__ == '__main__':
import os
for _ in tqdm(range(1), desc="Answer testing"):
if os.environ.get("LLM_TYPE", None) == "din":
question_list = [
("What is machine learning", "auto"),
("what are our revenues by product for the past 13 years", "auto"),
]
for question, query_type in question_list:
print("question: ", question)
get_answer(question, None, query_type=query_type)
else:
question_list = [
("What is black body radiation", "auto"),
("what is the maximum total in this table?", "query"),
("how many records are there in this table?", "query"),
]
for question, query_type in question_list:
get_answer(question, None, query_type=query_type)
"""
CUDA_VISIBLE_DEVICES=1 PYTHONPATH=. LLM_TYPE=gglm python ubix/common/answer.py
RAY_memory_monitor_refresh_ms=0 CUDA_VISIBLE_DEVICES=0,1 \
PYTHONPATH=. LLM_TYPE=vllm python ubix/common/answer.py
PYTHONPATH=. LLM_TYPE=gglm python ubix/common/answer.py
✅ PYTHONPATH=. LLM_TYPE=tgi python -u ubix/common/answer.py
✅ PYTHONPATH=. LLM_TYPE=din python -u ubix/common/answer.py
"""
| [] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | ubix~chain~chain_din_sql_sap.py |
from __future__ import annotations
import datetime
from typing import Any, Dict, List, Optional
import pdb
from langchain.prompts import PromptTemplate
from pydantic import Extra
from sqlalchemy.engine import create_engine
from trino.sqlalchemy import URL
from sqlalchemy import *
from langchain.schema.language_model import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains.base import Chain
from langchain.prompts.base import BasePromptTemplate
from ubix.common.llm import get_llm
easy_template = """
# Use the the schema links to generate the SQL queries for each of the questions.
Q: "Find the buildings which have rooms with capacity more than 50."
Schema_links: [classroom.building,classroom.capacity,50]
SQL: SELECT DISTINCT building FROM classroom WHERE capacity > 50
Q: "Find the room number of the rooms which can sit 50 to 100 students and their buildings."
Schema_links: [classroom.building,classroom.room_number,classroom.capacity,50,100]
SQL: SELECT building , room_number FROM classroom WHERE capacity BETWEEN 50 AND 100
Q: "Give the name of the student in the History department with the most credits."
Schema_links: [student.name,student.dept_name,student.tot_cred,History]
SQL: SELECT name FROM student WHERE dept_name = 'History' ORDER BY tot_cred DESC LIMIT 1
Q: "Find the total budgets of the Marketing or Finance department."
Schema_links: [department.budget,department.dept_name,Marketing,Finance]
SQL: SELECT sum(budget) FROM department WHERE dept_name = 'Marketing' OR dept_name = 'Finance'
Q: "Find the department name of the instructor whose name contains 'Soisalon'."
Schema_links: [instructor.dept_name,instructor.name,Soisalon]
SQL: SELECT dept_name FROM instructor WHERE name LIKE '%Soisalon%'
Q: "What is the name of the department with the most credits?"
Schema_links: [course.dept_name,course.credits]
SQL: SELECT dept_name FROM course GROUP BY dept_name ORDER BY sum(credits) DESC LIMIT 1
Q: "How many instructors teach a course in last year?"
Schema_links: [teaches.ID,teaches.semester,teaches.YEAR,Spring,2022]
SQL: SELECT COUNT (DISTINCT ID) FROM teaches WHERE semester = 'Spring' AND YEAR = 2022
Q: "Find the name of the students and their department names sorted by their total credits in ascending order."
Schema_links: [student.name,student.dept_name,student.tot_cred]
SQL: SELECT name , dept_name FROM student ORDER BY tot_cred
Q: "Find the year which offers the largest number of courses."
Schema_links: [SECTION.YEAR,SECTION.*]
SQL: SELECT YEAR FROM SECTION GROUP BY YEAR ORDER BY count(*) DESC LIMIT 1
Q: "What are the names and average salaries for departments with average salary higher than 42000?"
Schema_links: [instructor.dept_name,instructor.salary,42000]
SQL: SELECT dept_name , AVG (salary) FROM instructor GROUP BY dept_name HAVING AVG (salary) > 42000
Q: "How many rooms in each building have a capacity of over 50?"
Schema_links: [classroom.*,classroom.building,classroom.capacity,50]
SQL: SELECT count(*) , building FROM classroom WHERE capacity > 50 GROUP BY building
Q: "Find the names of the top 3 departments that provide the largest amount of courses?"
Schema_links: [course.dept_name,course.*]
SQL: SELECT dept_name FROM course GROUP BY dept_name ORDER BY count(*) DESC LIMIT 3
Q: "Find the maximum and average capacity among rooms in each building."
Schema_links: [classroom.building,classroom.capacity]
SQL: SELECT max(capacity) , avg(capacity) , building FROM classroom GROUP BY building
Q: "Find the title of the course that is offered by more than one department."
Schema_links: [course.title]
SQL: SELECT title FROM course GROUP BY title HAVING count(*) > 1
Q: "show the revenues in last three year?"
Schema_links: [product.avenue, 2022, 2019, product.date]
SQL: SELECT year(product.date), max(avenue) from product where date between '2019-01-01 00:00:00' and '2022-12-31 23:59:59' GROUP BY year(product.date)
Table invoice_items, columns = [parentobjectid,netamount,description,productid,partyuuid]
Table invoice_header, columns = [objectid,creationdatetime,totalnetamount]
Table customercommon, columns = [parentobjectid,businesspartnername]
Table customer, columns = [objectid,uuid,]
Q: "{input}"
schema_links: [{schema_links}]
SQL:
"""
hard_template = """
Q: "Find the title of courses that have two prerequisites?"
Schema_links: [course.title,course.course_id = prereq.course_id]
SQL: SELECT course.title, prereq.course_id FROM course, prereq WHERE course.course_id = prereq.course_id GROUP BY prereq.course_id HAVING count(*) = 2
Q: "Find the total number of students and total number of instructors for each department."
Schema_links: [department.dept_name = student.dept_name,student.id,department.dept_name = instructor.dept_name,instructor.id]
SQL: SELECT count(DISTINCT student.id), count(DISTINCT instructor.id), instructor.dept_name FROM department, student, instructor WHERE department.dept_name = instructor.dept_name and department.dept_name = student.dept_name GROUP BY instructor.dept_name
Q: "What are salaries and by employees and cityname employees live in for the past three years?"
Schema_links: [company.salary,company.employee_id=employee.employee_id,company.YEAR,employee.name,city.city_id=employee.city_id,city.name]
SQL: SELECT year(company.YEAR),employee.name,city.name,sum(company.salary) FROM company,employee,city WHERE company.employee_id=employee.employee_id and city.city_id=employee.city_id and company.YEAR between '2019-01-01 00:00:00' and '2022-12-31 23:59:59' GROUP BY year(company.YEAR),employee.name,city.name
Q: "Find the name of students who took any class in past three years"
Schema_links: [student.name,student.id = takes.id,takes.YEAR]
SQL: SELECT year(takes.YEAR),DISTINCT student.name FROM student,takes WHERE student.id = takes.id and takes.YEAR between '2019-01-01 00:00:00' and '2022-12-31 23:59:59' GROUP BY year(takes.YEAR)
Table invoice_items, columns = [parentobjectid,netamount,description,productid,partyuuid]
Table invoice_header, columns = [objectid,creationdatetime,totalnetamount]
Table customercommon, columns = [parentobjectid,businesspartnername]
Table customer, columns = [objectid,uuid,]
Q: "{input}"
Schema_links:{schema_links}
SQL:
"""
product_schema = """
Q: "Show the revenue by product for past year"
A: Let�~@~Ys think step by step. In the question "Show the revenues by product for past year", we are asked:
"the revenue" so we need column = [invoice_items.netamount,invoice_items.productid,invoice_items.description]
"by product" so we need column = [invoice_header.objectid]
"for past year" so we need column = [invoice_header.creationdatetime]
Based on the columns and tables, we need these Foreign_keys = [invoice_items.parentobjectid=invoice_header.objectid].
Based on the tables, columns, and Foreign_keys, The set of possible cell values are = [1]. So the Schema_links are:
Schema_links: [invoice_items.netamount,invoice_items.productid,invoice_items.description,invoice_header.creationdatetime,invoice_items.parentobjectid=invoice_header.objectid,1]
"""
no_product_schema = """
Q: "Show the revenues by customer for past year"
A: Let�~@~Ys think step by step. In the question "Show the revenues bycustomer for past year", we are asked:
"the revenue" so we need column = [invoice_header.totalnetamount]
"by customer" so we need column = [customercommon.businesspartnername,customer.objectid]
"for past year" so we need column = [invoice_header.creationdatetime]
Based on the columns and tables, we need these Foreign_keys = [customer.uuid=invoice_header.partyuuid,customercommon.parentobjectid=customer.objectid].
Based on the tables, columns, and Foreign_keys, The set of possible cell values are = [1]. So the Schema_links are:
Schema_links: [invoice_header.totalnetamount,customercommon.businesspartnername,customer.objectid,invoice_header.creationdatetime,customer.uuid=invoice_header.partyuuid,customercommon.parentobjectid=customer.objectid,1]
"""
schema_linking_prompt = """
Table Addresses, columns = [*,address_id,line_1,line_2,city,zip_postcode,state_province_county,country]
Table Candidate_Assessments, columns = [*,candidate_id,qualification,assessment_date,asessment_outcome_code]
Table Candidates, columns = [*,candidate_id,candidate_details]
Table Courses, columns = [*,course_id,course_name,course_description,other_details]
Table People, columns = [*,person_id,first_name,middle_name,last_name,cell_mobile_number,email_address,login_name,password]
Table People_Addresses, columns = [*,person_address_id,person_id,address_id,date_from,date_to]
Table Student_Course_Attendance, columns = [*,student_id,course_id,date_of_attendance]
Table Student_Course_Registrations, columns = [*,student_id,course_id,registration_date]
Table Students, columns = [*,student_id,student_details]
Foreign_keys = [Students.student_id = People.person_id,People_Addresses.address_id = Addresses.address_id,People_Addresses.person_id = People.person_id,Student_Course_Registrations.course_id = Courses.course_id,Student_Course_Registrations.student_id = Students.student_id,Student_Course_Attendance.student_id = Student_Course_Registrations.student_id,Student_Course_Attendance.course_id = Student_Course_Registrations.course_id,Candidates.candidate_id = People.person_id,Candidate_Assessments.candidate_id = Candidates.candidate_id]
Q: "List the id of students who never attends courses?"
A: Let’s think step by step. In the question "List the id of students who never attends courses?", we are asked:
"id of students" so we need column = [Students.student_id]
"never attends courses" so we need column = [Student_Course_Attendance.student_id]
Based on the columns and tables, we need these Foreign_keys = [Students.student_id = Student_Course_Attendance.student_id].
Based on the tables, columns, and Foreign_keys, The set of possible cell values are = []. So the Schema_links are:
Schema_links: [Students.student_id = Student_Course_Attendance.student_id]
Table invoice_items, columns = [*,parentobjectid,netamount,description,productid,partyuuid]
Table invoice_header, columns = [*,objectid,creationdatetime,totalnetamount]
Table customercommon, columns = [*,parentobjectid,businesspartnername]
Table customer, columns = [*,objectid,uuid]
Foreign_keys = [invoice_items.parentobjectid=invoice_header.objectid,customer.uuid=invoice_header.partyuuid,customercommon.parentobjectid=customer.objectid]
"""
PROMPT = PromptTemplate(
input_variables=["input", "schema_links"],
template=easy_template,
)
def format(sql):
if "date" in sql:
result = sql.replace("\'20", "TIMESTAMP \'20").replace("\"20", "TIMESTAMP \"20")
return result
else:
return sql
def hive_search(sql):
hive_host = "trino"
port = 8080
user_name = "hive"
catalog="hive"
#hive_database = "65057500bed4c2ac869fe964"
#hive_database = "654a464f1dd821018bd47cd5"
hive_database = "65487027ce6b72312eff28a2"
engine = create_engine(
URL(
host=hive_host,
port=port,
user=user_name,
catalog=catalog, schema=hive_database,
),
)
with engine.connect() as con:
sql = format(sql)
#sql = "select count(*) from Invoice_Header;"
#print(sql)
result_t = con.execute(text(sql))
result = result_t.fetchall()
return result
class DIN_Chain(Chain):
"""
An example of a custom chain.
"""
prompt: BasePromptTemplate
"""Prompt object to use."""
llm: BaseLanguageModel
output_key: str = "text" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the prompt expects.
:meta private:
"""
return self.prompt.input_variables[:1]
@property
def output_keys(self) -> List[str]:
"""Will always return text key.
:meta private:
"""
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
# Your custom chain logic goes here
# This is just an example that mimics LLMChain
#pdb.set_trace()
from datetime import datetime
schema_links_prompt = schema_linking_prompt_maker(inputs.get("input"))
start = datetime.now()
schema_links = self.llm(schema_links_prompt)
end = datetime.now()
print("schema links cost:", end - start)
schema_links = schema_links.split("\n\n")[0].split("Schema_links: ")[1]
#schema_links, is_hard = get_schema_links(inputs.get("input"))
#schema_links = "[invoice_header.totalnetamount,invoice_header.creationdatetime]"
inputs["schema_links"] = schema_links
if "by" in inputs.get("input"):
self.prompt.template = hard_template
else:
self.prompt.template = easy_template
prompt_value = self.prompt.format_prompt(**inputs)
start = datetime.now()
# Whenever you call a language model, or another chain, you should pass
# a callback manager to it. This allows the inner run to be tracked by
# any callbacks that are registered on the outer run.
# You can always obtain a callback manager for this by calling
# `run_manager.get_child()` as shown below.
response = self.llm.generate_prompt(
[prompt_value], callbacks=run_manager.get_child() if run_manager else None
)
#print(f'Original response:{response}')
text = response.generations[0][0].text
#pdb.set_trace()
#print(f'Final Text:{text}')
result_ = text.split("\n\n")[0]
result_ = result_.replace("\n", " ")
print(result_)
key_list = []
for item in result_.split(" FROM")[0].split(","):
item = item.replace(" ", "").replace(")", "")
item = item.split(".")
key_list.append(item[1])
end = datetime.now()
print("llm generate cost:", end - start)
start = datetime.now()
final = hive_search(result_)
res = []
for f_item in final:
dct_item = {}
try:
for index, e_item in enumerate(f_item):
dct_item[key_list[index]] = str(f_item[index])
except:
pass
res.append(dct_item)
dct_final = res
dct = {}
dct["sql"] = result_
dct["answer"] = dct_final
end = datetime.now()
print("search cost:", end - start)
print("============================")
# If you want to log something about this run, you can do so by calling
# methods on the `run_manager`, as shown below. This will trigger any
# callbacks that are registered for that event.
if run_manager:
run_manager.on_text("Log something about this run")
return {self.output_key:dct}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
#print(f'DummyChain:{inputs}')
# Your custom chain logic goes here
# This is just an example that mimics LLMChain
prompt_value = self.prompt.format_prompt(**inputs)
# Whenever you call a language model, or another chain, you should pass
# a callback manager to it. This allows the inner run to be tracked by
# any callbacks that are registered on the outer run.
# You can always obtain a callback manager for this by calling
# `run_manager.get_child()` as shown below.
response = await self.llm.agenerate_prompt(
[prompt_value], callbacks=run_manager.get_child() if run_manager else None
)
# If you want to log something about this run, you can do so by calling
# methods on the `run_manager`, as shown below. This will trigger any
# callbacks that are registered for that event.
if run_manager:
await run_manager.on_text("Log something about this run")
return {self.output_key: response.generations[0][0].text}
@property
def _chain_type(self) -> str:
return "my_custom_chain"
def schema_linking_prompt_maker(test_sample_text):
instruction = "# Find the schema_links for generating SQL queries for each question based on the database schema and Foreign keys.\n"
fields = """
Table invoice_items, columns = [parentobjectid,netamount,description,productid,partyuuid]
Table invoice_header, columns = [objectid,creationdatetime,totalnetamount]
Table customercommon, columns = [parentobjectid,businesspartnername]
Table customer, columns = [objectid,uuid,]
"""
foreign_keys = """
[invoice_items.parentobjectid=invoice_header.objectid,customer.uuid=invoice_header.partyuuid,customercommon.parentobjectid=customer.objectid]
"""
global schema_linking_prompt
if "product" in test_sample_text:
schema_linking_prompt += product_schema
else:
schema_linking_prompt += no_product_schema
prompt = instruction + schema_linking_prompt + fields +foreign_keys+ 'Q: "' + test_sample_text + """"\nA: Let’s think step by step."""
return prompt
def get_din_chain(llm):
chain = DIN_Chain(llm=llm, prompt=PROMPT)
return chain
if __name__ == "__main__":
llm = get_llm()
chain = get_din_chain(llm)
pdb.set_trace()
query = "What are our revenues for the past 3 years"
#query = "I want the last 3 years of revenues"
#query = "what are our revenues by product for the past 3 years"
#query = "what are our revenues by customer for the past 3 years"
#query = "Can you show me our monthly income statements for the last 12 months?"
result = chain.run(query)
print("query:", query)
print(result)
"""
PYTHONPATH=. LLM_TYPE=din python ubix/chain/chain_din_sql.py
"""
| [
"What is the name of the department with the most credits?",
"Find the title of the course that is offered by more than one department.",
"Spring",
"\nQ: \"Show the revenue by product for past year\"\nA: Let�~@~Ys think step by step. In the question \"Show the revenues by product for past year\", we are asked:\n\"the revenue\" so we need column = [invoice_items.netamount,invoice_items.productid,invoice_items.description]\n\"by product\" so we need column = [invoice_header.objectid]\n\"for past year\" so we need column = [invoice_header.creationdatetime]\nBased on the columns and tables, we need these Foreign_keys = [invoice_items.parentobjectid=invoice_header.objectid].\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [1]. So the Schema_links are:\nSchema_links: [invoice_items.netamount,invoice_items.productid,invoice_items.description,invoice_header.creationdatetime,invoice_items.parentobjectid=invoice_header.objectid,1]\n",
"\n# Use the the schema links to generate the SQL queries for each of the questions.\nQ: \"Find the buildings which have rooms with capacity more than 50.\"\nSchema_links: [classroom.building,classroom.capacity,50]\nSQL: SELECT DISTINCT building FROM classroom WHERE capacity > 50\n\nQ: \"Find the room number of the rooms which can sit 50 to 100 students and their buildings.\"\nSchema_links: [classroom.building,classroom.room_number,classroom.capacity,50,100]\nSQL: SELECT building , room_number FROM classroom WHERE capacity BETWEEN 50 AND 100\n\nQ: \"Give the name of the student in the History department with the most credits.\"\nSchema_links: [student.name,student.dept_name,student.tot_cred,History]\nSQL: SELECT name FROM student WHERE dept_name = 'History' ORDER BY tot_cred DESC LIMIT 1\n\nQ: \"Find the total budgets of the Marketing or Finance department.\"\nSchema_links: [department.budget,department.dept_name,Marketing,Finance]\nSQL: SELECT sum(budget) FROM department WHERE dept_name = 'Marketing' OR dept_name = 'Finance'\n\nQ: \"Find the department name of the instructor whose name contains 'Soisalon'.\"\nSchema_links: [instructor.dept_name,instructor.name,Soisalon]\nSQL: SELECT dept_name FROM instructor WHERE name LIKE '%Soisalon%'\n\nQ: \"What is the name of the department with the most credits?\"\nSchema_links: [course.dept_name,course.credits]\nSQL: SELECT dept_name FROM course GROUP BY dept_name ORDER BY sum(credits) DESC LIMIT 1\n\nQ: \"How many instructors teach a course in last year?\"\nSchema_links: [teaches.ID,teaches.semester,teaches.YEAR,Spring,2022]\nSQL: SELECT COUNT (DISTINCT ID) FROM teaches WHERE semester = 'Spring' AND YEAR = 2022\n\nQ: \"Find the name of the students and their department names sorted by their total credits in ascending order.\"\nSchema_links: [student.name,student.dept_name,student.tot_cred]\nSQL: SELECT name , dept_name FROM student ORDER BY tot_cred\n\nQ: \"Find the year which offers the largest number of courses.\"\nSchema_links: [SECTION.YEAR,SECTION.*]\nSQL: SELECT YEAR FROM SECTION GROUP BY YEAR ORDER BY count(*) DESC LIMIT 1\n\nQ: \"What are the names and average salaries for departments with average salary higher than 42000?\"\nSchema_links: [instructor.dept_name,instructor.salary,42000]\nSQL: SELECT dept_name , AVG (salary) FROM instructor GROUP BY dept_name HAVING AVG (salary) > 42000\n\nQ: \"How many rooms in each building have a capacity of over 50?\"\nSchema_links: [classroom.*,classroom.building,classroom.capacity,50]\nSQL: SELECT count(*) , building FROM classroom WHERE capacity > 50 GROUP BY building\n\nQ: \"Find the names of the top 3 departments that provide the largest amount of courses?\"\nSchema_links: [course.dept_name,course.*]\nSQL: SELECT dept_name FROM course GROUP BY dept_name ORDER BY count(*) DESC LIMIT 3\n\nQ: \"Find the maximum and average capacity among rooms in each building.\"\nSchema_links: [classroom.building,classroom.capacity]\nSQL: SELECT max(capacity) , avg(capacity) , building FROM classroom GROUP BY building\n\nQ: \"Find the title of the course that is offered by more than one department.\"\nSchema_links: [course.title]\nSQL: SELECT title FROM course GROUP BY title HAVING count(*) > 1\n\nQ: \"show the revenues in last three year?\"\nSchema_links: [product.avenue, 2022, 2019, product.date]\nSQL: SELECT year(product.date), max(avenue) from product where date between '2019-01-01 00:00:00' and '2022-12-31 23:59:59' GROUP BY year(product.date)\n\nTable invoice_items, columns = [parentobjectid,netamount,description,productid,partyuuid]\n\nTable invoice_header, columns = [objectid,creationdatetime,totalnetamount]\n\nTable customercommon, columns = [parentobjectid,businesspartnername]\n\nTable customer, columns = [objectid,uuid,]\n\nQ: \"{input}\"\nschema_links: [{schema_links}]\nSQL:\n",
"What are the names and average salaries for departments with average salary higher than 42000?",
"show the revenues in last three year?",
"Find the year which offers the largest number of courses.",
"Finance",
"Find the total budgets of the Marketing or Finance department.",
"Find the buildings which have rooms with capacity more than 50.",
"Give the name of the student in the History department with the most credits.",
"Find the room number of the rooms which can sit 50 to 100 students and their buildings.",
"%Soisalon%",
"input",
"schema_links",
"Find the department name of the instructor whose name contains 'Soisalon'.",
"How many rooms in each building have a capacity of over 50?",
"PLACEHOLDER",
"# Find the schema_links for generating SQL queries for each question based on the database schema and Foreign keys.\n\nTable Addresses, columns = [*,address_id,line_1,line_2,city,zip_postcode,state_province_county,country]\nTable Candidate_Assessments, columns = [*,candidate_id,qualification,assessment_date,asessment_outcome_code]\nTable Candidates, columns = [*,candidate_id,candidate_details]\nTable Courses, columns = [*,course_id,course_name,course_description,other_details]\nTable People, columns = [*,person_id,first_name,middle_name,last_name,cell_mobile_number,email_address,login_name,password]\nTable People_Addresses, columns = [*,person_address_id,person_id,address_id,date_from,date_to]\nTable Student_Course_Attendance, columns = [*,student_id,course_id,date_of_attendance]\nTable Student_Course_Registrations, columns = [*,student_id,course_id,registration_date]\nTable Students, columns = [*,student_id,student_details]\nForeign_keys = [Students.student_id = People.person_id,People_Addresses.address_id = Addresses.address_id,People_Addresses.person_id = People.person_id,Student_Course_Registrations.course_id = Courses.course_id,Student_Course_Registrations.student_id = Students.student_id,Student_Course_Attendance.student_id = Student_Course_Registrations.student_id,Student_Course_Attendance.course_id = Student_Course_Registrations.course_id,Candidates.candidate_id = People.person_id,Candidate_Assessments.candidate_id = Candidates.candidate_id]\nQ: \"List the id of students who never attends courses?\"\nA: Let’s think step by step. In the question \"List the id of students who never attends courses?\", we are asked:\n\"id of students\" so we need column = [Students.student_id]\n\"never attends courses\" so we need column = [Student_Course_Attendance.student_id]\nBased on the columns and tables, we need these Foreign_keys = [Students.student_id = Student_Course_Attendance.student_id].\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = []. So the Schema_links are:\nSchema_links: [Students.student_id = Student_Course_Attendance.student_id]\n\nTable invoice_items, columns = [*,parentobjectid,netamount,description,productid,partyuuid]\nTable invoice_header, columns = [*,objectid,creationdatetime,totalnetamount]\nTable customercommon, columns = [*,parentobjectid,businesspartnername]\nTable customer, columns = [*,objectid,uuid]\nForeign_keys = [invoice_items.parentobjectid=invoice_header.objectid,customer.uuid=invoice_header.partyuuid,customercommon.parentobjectid=customer.objectid]\n\n Table invoice_items, columns = [parentobjectid,netamount,description,productid,partyuuid]\n Table invoice_header, columns = [objectid,creationdatetime,totalnetamount]\n Table customercommon, columns = [parentobjectid,businesspartnername]\n Table customer, columns = [objectid,uuid,]\n \n [invoice_items.parentobjectid=invoice_header.objectid,customer.uuid=invoice_header.partyuuid,customercommon.parentobjectid=customer.objectid]\n Q: \"PLACEHOLDER\"\nA: Let’s think step by step.",
"\nQ: \"Find the title of courses that have two prerequisites?\"\nSchema_links: [course.title,course.course_id = prereq.course_id]\nSQL: SELECT course.title, prereq.course_id FROM course, prereq WHERE course.course_id = prereq.course_id GROUP BY prereq.course_id HAVING count(*) = 2\n\nQ: \"Find the total number of students and total number of instructors for each department.\"\nSchema_links: [department.dept_name = student.dept_name,student.id,department.dept_name = instructor.dept_name,instructor.id]\nSQL: SELECT count(DISTINCT student.id), count(DISTINCT instructor.id), instructor.dept_name FROM department, student, instructor WHERE department.dept_name = instructor.dept_name and department.dept_name = student.dept_name GROUP BY instructor.dept_name\n\nQ: \"What are salaries and by employees and cityname employees live in for the past three years?\"\nSchema_links: [company.salary,company.employee_id=employee.employee_id,company.YEAR,employee.name,city.city_id=employee.city_id,city.name]\nSQL: SELECT year(company.YEAR),employee.name,city.name,sum(company.salary) FROM company,employee,city WHERE company.employee_id=employee.employee_id and city.city_id=employee.city_id and company.YEAR between '2019-01-01 00:00:00' and '2022-12-31 23:59:59' GROUP BY year(company.YEAR),employee.name,city.name\n\nQ: \"Find the name of students who took any class in past three years\"\nSchema_links: [student.name,student.id = takes.id,takes.YEAR]\nSQL: SELECT year(takes.YEAR),DISTINCT student.name FROM student,takes WHERE student.id = takes.id and takes.YEAR between '2019-01-01 00:00:00' and '2022-12-31 23:59:59' GROUP BY year(takes.YEAR)\n\nTable invoice_items, columns = [parentobjectid,netamount,description,productid,partyuuid]\n\nTable invoice_header, columns = [objectid,creationdatetime,totalnetamount]\n\nTable customercommon, columns = [parentobjectid,businesspartnername]\n\nTable customer, columns = [objectid,uuid,]\n\nQ: \"{input}\"\nSchema_links:{schema_links}\nSQL:\n",
"2022-12-31 23:59:59",
"How many instructors teach a course in last year?",
"Marketing",
"Find the maximum and average capacity among rooms in each building.",
"{input}",
"\nQ: \"Show the revenues by customer for past year\"\nA: Let�~@~Ys think step by step. In the question \"Show the revenues bycustomer for past year\", we are asked:\n\"the revenue\" so we need column = [invoice_header.totalnetamount]\n\"by customer\" so we need column = [customercommon.businesspartnername,customer.objectid]\n\"for past year\" so we need column = [invoice_header.creationdatetime]\nBased on the columns and tables, we need these Foreign_keys = [customer.uuid=invoice_header.partyuuid,customercommon.parentobjectid=customer.objectid].\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [1]. So the Schema_links are:\nSchema_links: [invoice_header.totalnetamount,customercommon.businesspartnername,customer.objectid,invoice_header.creationdatetime,customer.uuid=invoice_header.partyuuid,customercommon.parentobjectid=customer.objectid,1]\n",
"Find the names of the top 3 departments that provide the largest amount of courses?",
"\nTable Addresses, columns = [*,address_id,line_1,line_2,city,zip_postcode,state_province_county,country]\nTable Candidate_Assessments, columns = [*,candidate_id,qualification,assessment_date,asessment_outcome_code]\nTable Candidates, columns = [*,candidate_id,candidate_details]\nTable Courses, columns = [*,course_id,course_name,course_description,other_details]\nTable People, columns = [*,person_id,first_name,middle_name,last_name,cell_mobile_number,email_address,login_name,password]\nTable People_Addresses, columns = [*,person_address_id,person_id,address_id,date_from,date_to]\nTable Student_Course_Attendance, columns = [*,student_id,course_id,date_of_attendance]\nTable Student_Course_Registrations, columns = [*,student_id,course_id,registration_date]\nTable Students, columns = [*,student_id,student_details]\nForeign_keys = [Students.student_id = People.person_id,People_Addresses.address_id = Addresses.address_id,People_Addresses.person_id = People.person_id,Student_Course_Registrations.course_id = Courses.course_id,Student_Course_Registrations.student_id = Students.student_id,Student_Course_Attendance.student_id = Student_Course_Registrations.student_id,Student_Course_Attendance.course_id = Student_Course_Registrations.course_id,Candidates.candidate_id = People.person_id,Candidate_Assessments.candidate_id = Candidates.candidate_id]\nQ: \"List the id of students who never attends courses?\"\nA: Let’s think step by step. In the question \"List the id of students who never attends courses?\", we are asked:\n\"id of students\" so we need column = [Students.student_id]\n\"never attends courses\" so we need column = [Student_Course_Attendance.student_id]\nBased on the columns and tables, we need these Foreign_keys = [Students.student_id = Student_Course_Attendance.student_id].\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = []. So the Schema_links are:\nSchema_links: [Students.student_id = Student_Course_Attendance.student_id]\n\nTable invoice_items, columns = [*,parentobjectid,netamount,description,productid,partyuuid]\nTable invoice_header, columns = [*,objectid,creationdatetime,totalnetamount]\nTable customercommon, columns = [*,parentobjectid,businesspartnername]\nTable customer, columns = [*,objectid,uuid]\nForeign_keys = [invoice_items.parentobjectid=invoice_header.objectid,customer.uuid=invoice_header.partyuuid,customercommon.parentobjectid=customer.objectid]\n",
"Find the name of the students and their department names sorted by their total credits in ascending order.",
"2019-01-01 00:00:00"
] |
2024-01-10 | wofeichangaiwoai/din_sql_llm | test~tgi_test.py |
from langchain.llms import HuggingFaceTextGenInference
llm = HuggingFaceTextGenInference(
inference_server_url="http://colossal-llm-api.home-dev.ubix.io",
max_new_tokens=650,
#top_k=10,
#top_p=0.95,
#typical_p=0.95,
temperature=0.01,
#repetition_penalty=1.03,
)
print(llm.predict("hello, I'm felix"))
"""
python test/tgi_test.py
"""
| [] |
2024-01-10 | IT20642914/Documentation-QA-using-LlamaIndex-and-Milvus | milvus_interaction.py | from flask import Flask, request, jsonify
import csv
import random
import os
import openai
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility
import logging
import colorlog
from dotenv import load_dotenv
import time
# Load environment variables or set them directly
MILVUS_HOST = os.environ.get('MILVUS_HOST')
MILVUS_PORT = os.environ.get('MILVUS_PORT')
OPENAI_ENGINE = os.environ.get('OPENAI_ENGINE')
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
# Set up the logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# Create a ColorFormatter for the logger
formatter = colorlog.ColoredFormatter(
'%(log_color)s%(levelname)s: %(message)s',
log_colors={
'DEBUG': 'cyan',
'INFO': 'green',
'WARNING': 'yellow',
'ERROR': 'red',
'CRITICAL': 'bold_red',
}
)
# Create a console handler and set the formatter
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
# Add the console handler to the logger
logger.addHandler(console_handler)
MILVUS_HOST = MILVUS_HOST
MILVUS_PORT = MILVUS_PORT
OPENAI_ENGINE = OPENAI_ENGINE
openai.api_key = OPENAI_API_KEY
# Extract the book titles
def csv_load(file):
with open(file, newline='') as f:
reader = csv.reader(f, delimiter=',')
for row in reader:
yield row[1]
# Embed text with error handling
def embed_with_error_handling(text):
try:
embedding = openai.Embedding.create(
input=text,
engine=os.environ.get('OPENAI_ENGINE')
)["data"][0]["embedding"]
return embedding # Ensure this returns a list of numbers
except Exception as e:
logger.error(f"Error embedding text: {text}. Error: {str(e)}")
return None
def save_to_milvus():
current_directory = os.getcwd()
FILE = 'csv/Questions Master _ ChildOther.csv' # Update the file path separator to '/'
FilePath = os.path.join(current_directory, FILE)
COLLECTION_NAME = 'title_db'
DIMENSION = 1536
MILVUS_HOST = os.environ.get('MILVUS_HOST')
MILVUS_PORT = os.environ.get('MILVUS_PORT')
# Connect to Milvus
connections.connect(host=MILVUS_HOST, port=MILVUS_PORT)
logger.info("Connected to Milvus.")
# Create collection schema and other setup steps...
# Insert each title and its embedding with error handling
collection = Collection(name=COLLECTION_NAME) # Create collection object
# Assuming your Milvus collection expects three fields: 'id', 'title', 'embedding'
for idx, text in enumerate(csv_load(FilePath)):
logger.debug(f"Inserting text '{text}' with index '{idx}'.")
embedding = embed_with_error_handling(text)
if embedding is not None:
ins = [
{'id': idx, 'title': text[:198] if len(text) > 200 else text, 'embedding': embedding}
]
try:
collection.insert(ins)
logger.debug(f"Text '{text}' inserted successfully.")
time.sleep(3) # Free OpenAI account limited to 60 RPM
except Exception as e:
logger.error(f"Error inserting text '{text}' into collection. Error: {str(e)}")
# Load the collection into memory for searching
collection.load()
logger.info("Loaded collection into memory for searching.")
return jsonify({"message": "File processed and data inserted into the collection."})
def search_in_milvus(search_term):
search_term = search_term
MILVUS_HOST = os.environ.get('MILVUS_HOST')
MILVUS_PORT = os.environ.get('MILVUS_PORT')
# Connect to Milvus
connections.connect(host=MILVUS_HOST, port=MILVUS_PORT)
logger.info("Connected to Milvus.")
# Fetch all collections
collections = utility.list_collections()
logger.info("Collections in Milvus:")
search_results_per_collection = {}
for collection_name in collections:
logger.info(f'collection_name: {collection_name}')
# Search text in each collection
search_results = search_in_collection(collection_name, search_term)
# Store search results for this collection
search_results_per_collection[collection_name] = search_results
return jsonify({"results": search_results_per_collection})
def search_in_collection(collection_name, search_term):
# Get the collection object
collection = Collection(collection_name)
def search_with_error_handling(text):
try:
logger.debug(f"Searching for text '{text}' in collection '{collection_name}'.")
embedded_text = embed_with_error_handling(text)
if embedded_text:
search_params = {"metric_type": "L2"}
results = collection.search(
data=[embedded_text],
anns_field="embedding",
param=search_params,
limit=5,
output_fields=['title']
)
ret = []
for hit in results[0]:
row = [hit.id, hit.score, hit.entity.get('title')]
ret.append(row)
return ret
else:
return []
except Exception as e:
logger.error(f"Error searching for text '{text}' in collection '{collection_name}'. Error: {str(e)}")
return []
# Perform searches using only the provided search term
search_results = search_with_error_handling(search_term)
return {search_term: search_results} if search_results else {}
| [] |
2024-01-10 | IT20642914/Documentation-QA-using-LlamaIndex-and-Milvus | testapp.py | from flask import Flask, request, jsonify
import csv
import random
import os
import pandas as pd
import openai
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility
import logging
import colorlog
from dotenv import load_dotenv
import time
load_dotenv()
app = Flask(__name__)
# Set up the logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# Create a ColorFormatter for the logger
formatter = colorlog.ColoredFormatter(
'%(log_color)s%(levelname)s: %(message)s',
log_colors={
'DEBUG': 'cyan',
'INFO': 'green',
'WARNING': 'yellow',
'ERROR': 'red',
'CRITICAL': 'bold_red',
}
)
# Create a console handler and set the formatter
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
# Add the console handler to the logger
logger.addHandler(console_handler)
# Extract the book titles
def csv_load(filepath):
with open(filepath, newline='') as f:
reader = csv.reader(f, delimiter=',')
for row in reader:
yield row # Yield entire row
# Embed text with error handling
def embed_with_error_handling(text):
try:
embedding = openai.Embedding.create(
input=text,
engine=os.environ.get('OPENAI_ENGINE')
)["data"][0]["embedding"]
return embedding # Ensure this returns a list of numbers
except Exception as e:
logger.error(f"Error embedding text: {text}. Error: {str(e)}")
return None
@app.route('/search', methods=['GET'])
def search():
search_term = request.args.get('q')
MILVUS_HOST = os.environ.get('MILVUS_HOST')
MILVUS_PORT = os.environ.get('MILVUS_PORT')
# Connect to Milvus
connections.connect(host=MILVUS_HOST, port=MILVUS_PORT)
logger.info("Connected to Milvus.")
# Fetch all collections
collections = utility.list_collections()
logger.info("Collections in Milvus:")
search_results_per_collection = {}
for collection_name in collections:
logger.info(f'collection_name: {collection_name}')
# Search text in each collection
search_results = search_in_collection(collection_name, search_term)
# Store search results for this collection
search_results_per_collection[collection_name] = search_results
return jsonify({"results": search_results_per_collection})
def search_in_collection(collection_name, search_term):
# Get the collection object
collection = Collection(collection_name)
def search_with_error_handling(text):
try:
logger.debug(f"Searching for text '{text}' in collection '{collection_name}'.")
embedded_text = embed_with_error_handling(text)
if embedded_text:
search_params = {"metric_type": "L2"}
results = collection.search(
data=[embedded_text],
anns_field="embedding",
param=search_params,
limit=1,
output_fields=['title']
)
ret = []
for hit in results[0]:
row = [hit.id, hit.score, hit.entity.get('title')]
ret.append(row)
return ret
else:
return []
except Exception as e:
logger.error(f"Error searching for text '{text}' in collection '{collection_name}'. Error: {str(e)}")
return []
# Perform searches using only the provided search term
search_results = search_with_error_handling(search_term)
return {search_term: search_results} if search_results else {}
# Endpoint to delete a collection
@app.route('/delete_collection', methods=['DELETE'])
def delete_collection():
collection_name = request.args.get('collection_name')
# Get Milvus connection parameters
MILVUS_HOST = os.environ.get('MILVUS_HOST')
MILVUS_PORT = os.environ.get('MILVUS_PORT')
# Connect to Milvus
connections.connect(host=MILVUS_HOST, port=MILVUS_PORT)
# Check if the collection exists
if utility.has_collection(collection_name):
utility.drop_collection(collection_name)
logger.info(f"Collection '{collection_name}' deleted successfully.")
return jsonify({"message": f"Collection '{collection_name}' deleted successfully."}), 200
else:
return jsonify({"message": f"Collection '{collection_name}' does not exist."}), 404
# Endpoint to get a list of collections
@app.route('/collections', methods=['GET'])
def get_collections():
# Get Milvus connection parameters
MILVUS_HOST = os.environ.get('MILVUS_HOST')
MILVUS_PORT = os.environ.get('MILVUS_PORT')
# Connect to Milvus
connections.connect(host=MILVUS_HOST, port=MILVUS_PORT)
# Fetch all collections
collections = utility.list_collections()
logger.info("collections:{collections}}")
return jsonify({"collections": collections}), 200
def handle_empty_values(value):
# Check if the value is empty or null
if pd.isnull(value) or value == '':
# If the value is empty or null, replace it with a default string value or handle it based on your use case
return 'N/A' # For example, replacing empty values with 'N/A'
else:
return str(value)
def create_collection_schema(header):
fields = [
FieldSchema(
name=col_name,
dtype=DataType.INT64 if col_name == 'question_id' else DataType.VARCHAR,
is_primary=True if col_name == 'question_id' else False,
max_length=256 if col_name != 'question_id' else None
)
for col_name in header
]
logger.info(f"fields:{fields}")
fields.append(FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=512))
return CollectionSchema(fields=fields, description="Dynamic Collection from CSV")
def process_csv_data(file, collection):
logger.info(f"Processing CSV data from file: {file}")
with open(file, newline='') as f:
logger.info(f"Opened file: {file}")
reader = csv.reader(f)
header = next(reader)
logger.info(f"Processing CSV data - header: {header}")
data_to_insert = []
for row in reader:
row_dict = {header[i]: row[i] for i in range(len(header))}
text = row_dict['question_id']
logger.info(f"Text to Embedding: {text}")
try:
embedding_response = openai.Embedding.create(input=text, engine="text-embedding-ada-002")
logger.info(f"Embedding API Response: {embedding_response}")
if 'data' in embedding_response and embedding_response['data']:
embedding = embedding_response['data'][0]['embedding']
logger.info(f"Embedding: {embedding}")
if isinstance(embedding, list) and len(embedding) > 0:
row_dict['embedding'] = embedding
else:
logger.error("Invalid embedding data received.")
row_dict['embedding'] = 'N/A' # Set a default value if embedding creation fails
else:
logger.error("No valid data received from the Embedding API.")
row_dict['embedding'] = 'N/A' # Set a default value if embedding creation fails
except Exception as embedding_error:
logger.error(f"Embedding creation error: {str(embedding_error)}")
row_dict['embedding'] = 'N/A' # Set a default value if embedding creation fails
data_to_insert.append(row_dict)
try:
collection.insert(data_to_insert)
logger.info("Data inserted into collection successfully")
except Exception as insert_error:
logger.error(f"Data insertion error: {str(insert_error)}")
@app.route('/create_and_store_data', methods=['POST'])
def create_and_store_data():
file = 'csv/Questions Master _ ChildOther.csv'
collection_name = 'QuestionsMaster_ChildOther'
MILVUS_HOST = os.environ.get('MILVUS_HOST')
MILVUS_PORT = os.environ.get('MILVUS_PORT')
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
openai.api_key = OPENAI_API_KEY
try:
# Establish Milvus connection
connections.connect(host=MILVUS_HOST, port=MILVUS_PORT)
except Exception as milvus_conn_error:
logger.error(f"Milvus connection error: {str(milvus_conn_error)}")
return jsonify({"error": f"Milvus connection error: {str(milvus_conn_error)}"}), 500
try:
# List collections
collections = utility.list_collections()
if collection_name not in collections:
schema = create_collection_schema(pd.read_csv(file).columns)
collection = Collection(name=collection_name, schema=schema)
collection.create()
process_csv_data(file, collection)
return jsonify({"message": f"Collection '{collection_name}' created and data stored successfully."}), 201
else:
collection = Collection(name=collection_name)
process_csv_data(file, collection)
return jsonify({"message": f"Collection '{collection_name}' already exists. Data inserted successfully."}), 200
except Exception as collection_error:
logger.error(f"Collection creation or insertion error: {str(collection_error)}")
return jsonify({"error": f"Collection creation or insertion error: {str(collection_error)}"}), 500
if __name__ == '__main__':
app.run(debug=True)
| [] |
2024-01-10 | trobutlef/CalHacks23-OpenAI | backend~audio_processing.py | import openai
from pydub import AudioSegment
from pydub.utils import make_chunks
import os
import credentials
from dotenv import load_dotenv
openai.api_key = 'sk-VkruRhbsDhZTJ8NgFM4YT3BlbkFJvzysIPK8GlZC9Qj8XQXt0'
# Get the current directory path
current_directory = os.getcwd()
# Directory where the chunks are stored
chunks_directory = os.path.join(current_directory, 'chunks')
def split_audio(audio_path, chunk_length_ms=25000):
audio = AudioSegment.from_file(audio_path)
chunks = make_chunks(audio, chunk_length_ms) # Make chunks of one sec
#Export all of the individual chunks as wav files
for i, chunk in enumerate(chunks):
chunk_name = "chunk{0}.wav".format(i)
print ("exporting", chunk_name)
chunk.export(os.path.join(chunks_directory, chunk_name), format="wav")
def process_audio(audio_path):
# Split the audio into chunks
split_audio(audio_path)
# Initialize an empty string to store the full transcript
full_transcript = ""
# Loop over each chunk
for i in range(len(os.listdir(chunks_directory))):
# Construct the path to the chunk
chunk_path = os.path.join(chunks_directory, f"chunk{i}.wav")
# Open the chunk
with open(chunk_path, "rb") as audio_file:
# Transcribe the chunk
response = openai.Audio.transcribe("whisper-1", audio_file, response_format="srt")
# Add the chunk's transcript to the full transcript
full_transcript += response
# Write the full transcript to a file
with open("transcript.txt", "w", encoding='utf-8') as transcript_file:
transcript_file.write(full_transcript)
# Return the full transcript
return full_transcript
| [] |
2024-01-10 | finxter/openai_function_calls_and_embeddings | Ca_multi_function_weatherGPT.py | import json
import openai
from decouple import config
from apis.weather import get_current_weather, get_weather_forecast
from func_descriptions.weather import (
describe_get_current_weather,
describe_get_weather_forecast,
)
from utils.printer import ColorPrinter as Printer
openai.api_key = config("CHATGPT_API_KEY")
def ask_chat_gpt(query):
messages = [
{"role": "user", "content": query},
]
functions = [describe_get_current_weather, describe_get_weather_forecast]
first_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-0613",
messages=messages,
functions=functions,
function_call="auto", # auto is default
)["choices"][0]["message"]
messages.append(first_response)
if first_response.get("function_call"):
available_functions = {
"get_current_weather_in_location": get_current_weather,
"get_weather_forecast_in_location": get_weather_forecast,
}
function_name = first_response["function_call"]["name"]
function_to_call = available_functions[function_name]
function_args = json.loads(first_response["function_call"]["arguments"])
function_response = function_to_call(**function_args)
messages.append(
{
"role": "function",
"name": function_name,
"content": function_response,
}
)
second_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-0613",
messages=messages,
)["choices"][0]["message"]
messages.append(second_response)
Printer.color_print(messages)
return second_response["content"]
Printer.color_print(messages)
return first_response["content"]
print(ask_chat_gpt("What is the weather forecast in Leipzig for the coming 3 days?"))
| [] |
2024-01-10 | finxter/openai_function_calls_and_embeddings | Aa_get_joke.py | from decouple import config
import openai
openai.api_key = config("CHATGPT_API_KEY")
JOKE_SETUP = "I will give you a subject each time for all the following prompts. You will return to me a joke, but it should not be too long (4 lines at most). Please do not provide an introduction like 'Here's a joke for you' but get straight into the joke."
def get_joke(query):
result = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
temperature=0.4,
max_tokens=200,
messages=[
{"role": "system", "content": JOKE_SETUP},
{"role": "user", "content": query},
],
)
return result["choices"][0]["message"]["content"]
print(get_joke("Penguins"))
| [
"I will give you a subject each time for all the following prompts. You will return to me a joke, but it should not be too long (4 lines at most). Please do not provide an introduction like 'Here's a joke for you' but get straight into the joke."
] |
2024-01-10 | finxter/openai_function_calls_and_embeddings | Ab_get_joke_w_function.py | import openai
from decouple import config
from apis.random_word import get_random_word
from utils.printer import ColorPrinter as Printer
openai.api_key = config("CHATGPT_API_KEY")
JOKE_SETUP = """
You will be given a subject by the user. You will return a joke, but it should not be too long (4 lines at most). You will not provide an introduction like 'Here's a joke for you' but get straight into the joke.
There is a function called 'get_random_word'. If the user does not provide a subject, you should call this function and use the result as the subject. If the user does provide a subject, you should not call this function. The only exception is if the user asks for a random joke, in which case you should call the function and use the result as the subject.
Example: {user: 'penguins'} = Do not call the function => provide a joke about penguins.
Example: {user: ''} = Call the function => provide a joke about the result of the function.
Example: {user: 'soul music'} = Do not call the function => provide a joke about soul music.
Example: {user: 'random'} = Call the function => provide a joke about the result of the function.
Example: {user: 'guitars'} = Do not call the function => provide a joke about guitars.
Example: {user: 'give me a random joke'} = Call the function => provide a joke about the result of the function.
"""
def get_joke_result(query):
messages = [
{"role": "system", "content": JOKE_SETUP},
{"role": "user", "content": query},
]
functions = [
{
"name": "get_random_word",
"description": "Get a subject for your joke.",
"parameters": {
"type": "object",
"properties": {
"number_of_words": {
"type": "integer",
"description": "The number of words to generate.",
}
},
},
}
]
first_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-0613",
messages=messages,
functions=functions,
function_call="auto", # auto is default
)["choices"][0]["message"]
messages.append(first_response)
if first_response.get("function_call"):
function_response = get_random_word()
messages.append(
{
"role": "function",
"name": "get_random_word",
"content": function_response,
}
)
second_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-0613",
messages=messages,
)["choices"][0]["message"]
messages.append(second_response)
Printer.color_print(messages)
return second_response["content"]
Printer.color_print(messages)
return first_response["content"]
print(get_joke_result(""))
| [
"\nYou will be given a subject by the user. You will return a joke, but it should not be too long (4 lines at most). You will not provide an introduction like 'Here's a joke for you' but get straight into the joke.\nThere is a function called 'get_random_word'. If the user does not provide a subject, you should call this function and use the result as the subject. If the user does provide a subject, you should not call this function. The only exception is if the user asks for a random joke, in which case you should call the function and use the result as the subject.\nExample: {user: 'penguins'} = Do not call the function => provide a joke about penguins.\nExample: {user: ''} = Call the function => provide a joke about the result of the function.\nExample: {user: 'soul music'} = Do not call the function => provide a joke about soul music.\nExample: {user: 'random'} = Call the function => provide a joke about the result of the function.\nExample: {user: 'guitars'} = Do not call the function => provide a joke about guitars.\nExample: {user: 'give me a random joke'} = Call the function => provide a joke about the result of the function.\n"
] |
2024-01-10 | finxter/openai_function_calls_and_embeddings | Bb_chatgpt_with_live_weather.py | import json
import openai
from decouple import config
from apis.weather import get_current_weather
from func_descriptions.weather import describe_get_current_weather
from utils.printer import ColorPrinter as Printer
openai.api_key = config("CHATGPT_API_KEY")
def ask_chat_gpt(query):
messages = [
{"role": "user", "content": query},
]
functions = [describe_get_current_weather]
first_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-0613",
messages=messages,
functions=functions,
function_call="auto", # auto is default
)["choices"][0]["message"]
messages.append(first_response)
if first_response.get("function_call"):
available_functions = {
"get_current_weather_in_location": get_current_weather,
}
function_name = first_response["function_call"]["name"]
function_to_call = available_functions[function_name]
function_args = json.loads(first_response["function_call"]["arguments"])
function_response = function_to_call(
location=function_args.get("location"),
)
messages.append(
{
"role": "function",
"name": "get_current_weather_in_location",
"content": function_response,
}
)
second_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-0613",
messages=messages,
)["choices"][0]["message"]
messages.append(second_response)
Printer.color_print(messages)
return second_response["content"]
Printer.color_print(messages)
return first_response["content"]
print(ask_chat_gpt("What is the weather in Amsterdam?"))
| [] |
2024-01-10 | finxter/openai_function_calls_and_embeddings | Ba_chatgpt_no_weather.py | from decouple import config
import openai
openai.api_key = config("CHATGPT_API_KEY")
def ask_chat_gpt(query):
result = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
temperature=0.4,
messages=[
{"role": "user", "content": query},
],
)
return result["choices"][0]["message"]["content"]
print(ask_chat_gpt("What is the weather in Seoul?"))
| [] |
2024-01-10 | finxter/openai_function_calls_and_embeddings | Fc_quote_embeddings.py | import openai
import pandas as pd
from decouple import config
from Fx_quotes import quotes
openai.api_key = config("CHATGPT_API_KEY")
EMBEDDING_MODEL = "text-embedding-ada-002"
total_tokens_used = 0
total_embeddings = 0
def get_quote_embedding(quote):
global total_tokens_used, total_embeddings
response = openai.Embedding.create(
model=EMBEDDING_MODEL,
input=quote,
)
tokens_used = response["usage"]["total_tokens"]
total_tokens_used += tokens_used
total_embeddings += 1
if (total_embeddings % 10) == 0:
print(
f"Generated {total_embeddings} embeddings so far with a total of {total_tokens_used} tokens used. ({int((total_embeddings / len(quotes)) * 100)}%)"
)
return response["data"][0]["embedding"]
embedding_df = pd.DataFrame(columns=["quote", "author", "embedding"])
for index, quote in enumerate(quotes):
current_quote = quote[0]
try:
current_author = quote[1]
except IndexError:
current_author = "Unknown"
embedding = get_quote_embedding(current_quote)
embedding_df.loc[index] = [current_quote, current_author, embedding]
embedding_df.to_csv("Fx_embedding_db.csv", index=False)
print(
f"""
Generated {total_embeddings} embeddings with a total of {total_tokens_used} tokens used. (Done!)
Succesfully saved embeddings to embedding_db.csv, printing dataframe head:
{embedding_df.head(5)}
"""
)
| [] |
2024-01-10 | finxter/openai_function_calls_and_embeddings | Fb_getting_an_embedding.py | import openai
from decouple import config
openai.api_key = config("CHATGPT_API_KEY")
EMBEDDING_MODEL = "text-embedding-ada-002"
def get_quote_embedding(quote):
response = openai.Embedding.create(
model=EMBEDDING_MODEL,
input=quote,
)
return response
print(get_quote_embedding("Please embed this sentence for me!"))
| [] |
2024-01-10 | finxter/openai_function_calls_and_embeddings | Fd_find_nearest_quotes.py | import openai
import numpy as np
import pandas as pd
from decouple import config
from openai.embeddings_utils import cosine_similarity
openai.api_key = config("CHATGPT_API_KEY")
EMBEDDING_MODEL = "text-embedding-ada-002"
def get_quote_embedding(quote):
response = openai.Embedding.create(
model=EMBEDDING_MODEL,
input=quote,
)
return response["data"][0]["embedding"]
df = pd.read_csv("Fx_embedding_db.csv")
df["embedding"] = df.embedding.apply(eval).apply(np.array)
def find_similar_quotes(user_input, number_of_results=5):
user_embedding = get_quote_embedding(user_input)
df["similarity"] = df.embedding.apply(
lambda embedding: cosine_similarity(embedding, user_embedding)
)
result = df.sort_values(by="similarity", ascending=False).head(number_of_results)
for i in range(number_of_results):
print(
f"{i+1}: {result.iloc[i]['quote']} - {result.iloc[i]['author']} ({result.iloc[i]['similarity']})"
)
return result
try:
while True:
print(
"Welcome to the quote finder! Please enter a quote to find similar quotes."
)
user_quote = input("Enter a quote or press ctrl+c to exit: ")
result = find_similar_quotes(user_quote)
except KeyboardInterrupt:
print("Exiting...")
| [] |
2024-01-10 | RicardoMicale/ProyectoEmergente | atari_wrappers.py | # taken from OpenAI baselines.
import numpy as np
import gym
class MaxAndSkipEnv(gym.Wrapper):
def __init__(self, env, skip=4):
"""Return only every `skip`-th frame"""
gym.Wrapper.__init__(self, env)
# most recent raw observations (for max pooling across time steps)
self._obs_buffer = np.zeros(
(2,) + env.observation_space.shape, dtype=np.uint8)
self._skip = skip
def step(self, action):
"""Repeat action, sum reward, and max over last observations."""
total_reward = 0.0
done = None
for i in range(self._skip):
obs, reward, done, info = self.env.step(action)
if i == self._skip - 2:
self._obs_buffer[0] = obs
if i == self._skip - 1:
self._obs_buffer[1] = obs
total_reward += reward
if done:
break
# Note that the observation on the done=True frame
# doesn't matter
max_frame = self._obs_buffer.max(axis=0)
return max_frame, total_reward, done, info
def reset(self, **kwargs):
return self.env.reset(**kwargs)
class ClipRewardEnv(gym.RewardWrapper):
def __init__(self, env):
gym.RewardWrapper.__init__(self, env)
def reward(self, reward):
"""Bin reward to {+1, 0, -1} by its sign."""
return np.sign(reward)
class FireResetEnv(gym.Wrapper):
def __init__(self, env):
"""Take action on reset for environments that are fixed until firing."""
gym.Wrapper.__init__(self, env)
assert env.unwrapped.get_action_meanings()[1] == 'FIRE'
assert len(env.unwrapped.get_action_meanings()) >= 3
def reset(self, **kwargs):
self.env.reset(**kwargs)
obs, _, done, _ = self.env.step(1)
if done:
self.env.reset(**kwargs)
obs, _, done, _ = self.env.step(2)
if done:
self.env.reset(**kwargs)
return obs
def step(self, ac):
return self.env.step(ac)
class EpisodicLifeEnv(gym.Wrapper):
def __init__(self, env):
"""Make end-of-life == end-of-episode, but only reset on true game over.
Done by DeepMind for the DQN and co. since it helps value estimation.
"""
gym.Wrapper.__init__(self, env)
self.lives = 0
self.was_real_done = True
def step(self, action):
obs, reward, done, info = self.env.step(action)
self.was_real_done = done
# check current lives, make loss of life terminal,
# then update lives to handle bonus lives
lives = self.env.unwrapped.ale.lives()
if lives < self.lives and lives > 0:
# for Qbert sometimes we stay in lives == 0 condition for a few frames
# so it's important to keep lives > 0, so that we only reset once
# the environment advertises done.
done = True
self.lives = lives
return obs, reward, done, info
def reset(self, **kwargs):
"""Reset only when lives are exhausted.
This way all states are still reachable even though lives are episodic,
and the learner need not know about any of this behind-the-scenes.
"""
if self.was_real_done:
obs = self.env.reset(**kwargs)
else:
# no-op step to advance from terminal/lost life state
obs, _, _, _ = self.env.step(0)
self.lives = self.env.unwrapped.ale.lives()
return obs
# in torch imgs have shape [c, h, w] instead of common [h, w, c]
class AntiTorchWrapper(gym.ObservationWrapper):
def __init__(self, env):
gym.ObservationWrapper.__init__(self, env)
self.img_size = [env.observation_space.shape[i]
for i in [1, 2, 0]
]
self.observation_space = gym.spaces.Box(0.0, 1.0, self.img_size)
def observation(self, img):
"""what happens to each observation"""
img = img.transpose(1, 2, 0)
return img
| [] |
2024-01-10 | Anchoret13/Throw | train_HER.py | import numpy as np
import gym
import os, sys
from mpi4py import MPI
import pdb
from HER.arguments import get_args
import random
import torch
sys.path.append('./pybullet_env')
# from pybullet_env import environment, utilities, robot
# from environment import make_throwing_env
from save_state_env import make_throwing_env
# from pybullet_env.utilities import *
# from gym_extensions.continuous.gym_navigation_2d.env_generator import Environment, EnvironmentCollection, Obstacle
# from gym_extensions.continuous.gym_navigation_2d.env_generator import Environment#, EnvironmentCollection, Obstacle
# from environments.velocity_env import MultiGoalEnvironment, CarEnvironment
# from environments.car_env import RotationEnv, NewCarEnv, SimpleMovementEnvironment
# from environments.torus_env import Torus
# from environments.continuous_acrobot import ContinuousAcrobotEnv
import pickle
from gym.wrappers.time_limit import TimeLimit
from action_randomness_wrapper import ActionRandomnessWrapper, RepeatedActionWrapper
"""
train the agent, the MPI part code is copy from openai baselines(https://github.com/openai/baselines/blob/master/baselines/her)
"""
LOGGING = True
def get_env_params(env):
obs = env.reset()
# close the environment
params = {'obs': obs['observation'].shape[0],
'goal': obs['desired_goal'].shape[0],
'action': env.action_space.shape[0],
'action_max': env.action_space.high[0],
}
params['max_timesteps'] = env._max_episode_steps
return params
def launch(args):
# create the ddpg_agent
if args.env_name == "MultiGoalEnvironment":
env = MultiGoalEnvironment("MultiGoalEnvironment", time=True, vel_goal=False)
elif args.env_name == "MultiGoalEnvironmentVelGoal":
env = MultiGoalEnvironment("MultiGoalEnvironment", time=True, vel_goal=True)
elif "Car" in args.env_name:
# env = CarEnvironment("CarEnvironment", time=True, vel_goal=False)
env = TimeLimit(NewCarEnv(vel_goal=False), max_episode_steps=50)
# env = TimeLimit(CarEnvironment("CarEnvironment", time=True, vel_goal=False), max_episode_steps=50)
elif args.env_name == "Asteroids" :
env = TimeLimit(RotationEnv(vel_goal=False), max_episode_steps=50)
elif args.env_name == "AsteroidsVelGoal" :
env = TimeLimit(RotationEnv(vel_goal=True), max_episode_steps=50)
elif "SimpleMovement" in args.env_name:
env = TimeLimit(SimpleMovementEnvironment(vel_goal=False), max_episode_steps=50)
elif args.env_name == "PendulumGoal":
env = TimeLimit(PendulumGoalEnv(g=9.8), max_episode_steps=200)
elif args.env_name == "Throwing":
env = TimeLimit(make_throwing_env(), max_episode_steps=20)
elif "Gridworld" in args.env_name:
# from continuous_gridworld import create_map_1#, random_blocky_map, two_door_environment, random_map
# from alt_gridworld_implementation import create_test_map, random_blocky_map, two_door_environment, random_map #create_map_1,
from environments.solvable_gridworld_implementation import create_test_map, random_blocky_map, two_door_environment, random_map #create_map_1,
# from gridworld_reimplementation import random_map
max_steps = 50 if "Alt" in args.env_name else 20
if args.env_name == "TwoDoorGridworld":
env=TimeLimit(two_door_environment(), max_episode_steps=50)
else:
if "RandomBlocky" in args.env_name:
mapmaker = random_blocky_map
elif "Random" in args.env_name:
mapmaker = random_map
elif "Test" in args.env_name:
mapmaker = create_test_map
else:
mapmaker = create_map_1
if "Asteroids" in args.env_name:
env_type="asteroids"
elif "StandardCar" in args.env_name:
env_type = "standard_car"
elif "Car" in args.env_name:
env_type = "car"
else:
env_type = "linear"
print(f"env type: {env_type}")
env = TimeLimit(mapmaker(env_type=env_type), max_episode_steps=max_steps)
elif "ContinuousAcrobot" in args.env_name:
env = TimeLimit(ContinuousAcrobotEnv(), max_episode_steps=50)
elif "2DNav" in args.env_name or "2Dnav" in args.env_name:
env = gym.make("Limited-Range-Based-Navigation-2d-Map8-Goal0-v0")
else:
env = gym.make(args.env_name)
env = ActionRandomnessWrapper(env, args.action_noise)
try:
env.seed(args.seed + MPI.COMM_WORLD.Get_rank())
except:
pass
random.seed(args.seed + MPI.COMM_WORLD.Get_rank())
np.random.seed(args.seed + MPI.COMM_WORLD.Get_rank())
torch.manual_seed(args.seed + MPI.COMM_WORLD.Get_rank())
if args.cuda:
torch.cuda.manual_seed(args.seed + MPI.COMM_WORLD.Get_rank())
# get the environment parameters
env_params = get_env_params(env)
# create the ddpg agent to interact with the environment
ddpg_trainer = ddpg_agent(args, env, env_params)
if args.resume == True:
ddpg_trainer.resume_learning()
else:
ddpg_trainer.learn()
# ddpg_trainer.learn()
return ddpg_trainer
if __name__ == '__main__':
# take the configuration for the HER
os.environ['OMP_NUM_THREADS'] = '1'
os.environ['MKL_NUM_THREADS'] = '1'
os.environ['IN_MPI'] = '1'
# get the params
args = get_args()
# print(args)
# exit()
# from HER.rl_modules.generalized_usher_with_ratio_2 import ddpg_agent
from HER.rl_modules.generalized_usher_resume_test import ddpg_agent
suffix = ""
agent = launch(args)
n = 10
# success_rate, reward, value = ev['success_rate'], ev['reward_rate'], ev['value_rate']
success_rate = sum([agent._eval_agent(final=True)['success_rate'] for _ in range(n)])/n
if LOGGING and MPI.COMM_WORLD.Get_rank() == 0:
# pdb.set_trace()
log_file_name = f"logging/{args.env_name}.txt"
# success_rate = sum([agent._eval_agent()[0] for _ in range(n)])/n
text = f"action_noise: {args.action_noise}, \ttwo_goal: {args.two_goal}, \tsuccess_rate: {success_rate}\n"
with open(log_file_name, "a") as f:
f.write(text)
print("Log written")
| [] |
2024-01-10 | thunlp/CorefBERT | transformers~tokenization_auto.py | # coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Model class. """
from __future__ import absolute_import, division, print_function, unicode_literals
import logging
from .tokenization_bert import BertTokenizer
from .tokenization_openai import OpenAIGPTTokenizer
from .tokenization_gpt2 import GPT2Tokenizer
from .tokenization_ctrl import CTRLTokenizer
from .tokenization_transfo_xl import TransfoXLTokenizer
from .tokenization_xlnet import XLNetTokenizer
from .tokenization_xlm import XLMTokenizer
from .tokenization_roberta import RobertaTokenizer
from .tokenization_distilbert import DistilBertTokenizer
#from .tokenization_camembert import CamembertTokenizer
logger = logging.getLogger(__name__)
class AutoTokenizer(object):
r""":class:`~transformers.AutoTokenizer` is a generic tokenizer class
that will be instantiated as one of the tokenizer classes of the library
when created with the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)`
class method.
The `from_pretrained()` method take care of returning the correct tokenizer class instance
using pattern matching on the `pretrained_model_name_or_path` string.
The tokenizer class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order):
- contains `camembert`: CamembertTokenizer (CamemBERT model)
- contains `distilbert`: DistilBertTokenizer (DistilBert model)
- contains `roberta`: RobertaTokenizer (RoBERTa model)
- contains `bert`: BertTokenizer (Bert model)
- contains `openai-gpt`: OpenAIGPTTokenizer (OpenAI GPT model)
- contains `gpt2`: GPT2Tokenizer (OpenAI GPT-2 model)
- contains `ctrl`: CTRLTokenizer (Salesforce CTRL model)
- contains `transfo-xl`: TransfoXLTokenizer (Transformer-XL model)
- contains `xlnet`: XLNetTokenizer (XLNet model)
- contains `xlm`: XLMTokenizer (XLM model)
This class cannot be instantiated using `__init__()` (throw an error).
"""
def __init__(self):
raise EnvironmentError("AutoTokenizer is designed to be instantiated "
"using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method.")
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
r""" Instantiate a one of the tokenizer classes of the library
from a pre-trained model vocabulary.
The tokenizer class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order):
- contains `camembert`: CamembertTokenizer (CamemBERT model)
- contains `distilbert`: DistilBertTokenizer (DistilBert model)
- contains `roberta`: RobertaTokenizer (RoBERTa model)
- contains `bert`: BertTokenizer (Bert model)
- contains `openai-gpt`: OpenAIGPTTokenizer (OpenAI GPT model)
- contains `gpt2`: GPT2Tokenizer (OpenAI GPT-2 model)
- contains `ctrl`: CTRLTokenizer (Salesforce CTRL model)
- contains `transfo-xl`: TransfoXLTokenizer (Transformer-XL model)
- contains `xlnet`: XLNetTokenizer (XLNet model)
- contains `xlm`: XLMTokenizer (XLM model)
Params:
pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a predefined tokenizer to load from cache or download, e.g.: ``bert-base-uncased``.
- a path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :func:`~transformers.PreTrainedTokenizer.save_pretrained` method, e.g.: ``./my_model_directory/``.
- (not applicable to all derived classes) a path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (e.g. Bert, XLNet), e.g.: ``./my_model_directory/vocab.txt``.
cache_dir: (`optional`) string:
Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the standard cache should not be used.
force_download: (`optional`) boolean, default False:
Force to (re-)download the vocabulary files and override the cached versions if they exists.
proxies: (`optional`) dict, default None:
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request.
inputs: (`optional`) positional arguments: will be passed to the Tokenizer ``__init__`` method.
kwargs: (`optional`) keyword arguments: will be passed to the Tokenizer ``__init__`` method. Can be used to set special tokens like ``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``. See parameters in the doc string of :class:`~transformers.PreTrainedTokenizer` for details.
Examples::
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') # Download vocabulary from S3 and cache.
tokenizer = AutoTokenizer.from_pretrained('./test/bert_saved_model/') # E.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`
"""
if 'distilbert' in pretrained_model_name_or_path:
return DistilBertTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
elif 'camembert' in pretrained_model_name_or_path:
return CamembertTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
elif 'roberta' in pretrained_model_name_or_path:
return RobertaTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
elif 'bert' in pretrained_model_name_or_path:
return BertTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
elif 'openai-gpt' in pretrained_model_name_or_path:
return OpenAIGPTTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
elif 'gpt2' in pretrained_model_name_or_path:
return GPT2Tokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
elif 'transfo-xl' in pretrained_model_name_or_path:
return TransfoXLTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
elif 'xlnet' in pretrained_model_name_or_path:
return XLNetTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
elif 'xlm' in pretrained_model_name_or_path:
return XLMTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
elif 'ctrl' in pretrained_model_name_or_path:
return CTRLTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
raise ValueError("Unrecognized model identifier in {}. Should contains one of "
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
"'xlm', 'roberta', 'camembert', 'ctrl'".format(pretrained_model_name_or_path))
| [] |
2024-01-10 | owebb1/research-summarizer | starter.py | import arxiv
import dotenv
import os
from langchain.agents.agent_toolkits import GmailToolkit
from langchain.agents import initialize_agent, AgentType
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain import LLMChain
from langchain.callbacks import get_openai_callback
dotenv.load_dotenv()
OPEN_AI_API_KEY = os.getenv("OPEN_AI_API_KEY")
# Topic of the newsletter you want to write about
query = "LLM"
search = arxiv.Search(
query=query,
max_results=4,
sort_by=arxiv.SortCriterion.SubmittedDate
)
docs = ""
for result in search.results():
docs += "Title: " + result.title + "\n"
docs += "Abstract: " + result.summary + "\n"
docs += "Download URL: " + result.pdf_url + "\n"
print(result.links)
for link in result.links:
docs += "Links: " + link.href + "\n"
# Track cost
with get_openai_callback() as cb:
# Template for the newsletter
prompt_newsletter_template = """
You are a newsletter writer. You write newsletters about scientific articles. You introduce the article and show a small summary to tell the user what the article is about.
You're main goal is to write a newsletter which contains summaries to interest the user in the articles.
--------------------
{text}
--------------------
Start with the title of the article. Then, write a small summary of the article.
Below each summary, include the link to the article containing /abs/ in the URL.
Summaries:
"""
PROMPT_NEWSLETTER = PromptTemplate(
template=prompt_newsletter_template, input_variables=["text"])
# Initialize the language model
llm = ChatOpenAI(
temperature=0.6, model_name="gpt-3.5-turbo-16k", verbose=True)
# Initialize the LLMChain
newsletter_chain = LLMChain(
llm=llm, prompt=PROMPT_NEWSLETTER, verbose=True)
# Run the LLMChain
newsletter = newsletter_chain.run(docs)
# Write newsletter to a text file
with open("newsletter.txt", "w") as f:
f.write(newsletter)
# Set toolkit
toolkit = GmailToolkit()
# Initialize the Gmail agent
agent = initialize_agent(
tools=toolkit.get_tools(),
llm=llm,
agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,
verbose=True
)
# Run the agent
instructions = f"""
Send an email to [email protected].
The subject should be 'Scientific Newsletter about {query}'.
The content should be the following: {newsletter}.
"""
agent.run(instructions)
print(cb)
| [
"\n You are a newsletter writer. You write newsletters about scientific articles. You introduce the article and show a small summary to tell the user what the article is about.\n\n You're main goal is to write a newsletter which contains summaries to interest the user in the articles.\n\n --------------------\n {text}\n --------------------\n\n Start with the title of the article. Then, write a small summary of the article.\n\n Below each summary, include the link to the article containing /abs/ in the URL.\n\n Summaries:\n\n "
] |
2024-01-10 | MalevichAI/malevich-library | lib~src~openai_api~apps~chat_prompt.py | import asyncio
from typing import Any
import pandas as pd
from malevich.square import DF, Context, processor
from ..lib.chat import exec_chat
@processor()
async def prompt_completion(variables: DF[Any], ctx: Context):
"""Use Chat Completions feature from OpenAI
Chat completions enable you to chat with OpenAI
using a prompt template
Available models: https://platform.openai.com/docs/models
To use the model you should set the following parameters:
- `openai_api_key`: Your OpenAI API key. Get it here: https://platform.openai.com/api-keys
- `user_prompt`: The prompt for the user
Scroll down to see the full list of parameters.
Inputs:
A dataframe with variables to be used in the prompts. Each row of the
dataframe will be used to generate a prompt. For example, if your prompt
contains a name enclosed in {} like this:
Hi! Write a story about {someone}
You have to have a column `someone` in the input dataframe. For each
of such variables you should have a separate column.
Outputs:
A dataframe with following columns:
- content (str): the content of the model response
Configuration:
- openai_api_key (str, required): your OpenAI API key
- user_prompt (str, required): the prompt for the user
- system_prompt (str, optional): the prompt for the system
- model (str, default: 'gpt-3.5-turbo'): the model to use
- organization (str, default: None): the organization to use
- max_retries (int, default: 3): the maximum number of retries
- temperature (float, default: 0.9): the temperature
- max_tokens (int, default: 150): the maximum number of tokens
- top_p (float, default: 1.0): the top p
- frequency_penalty (float, default: 0.0): the frequency penalty
- presence_penalty (float, default: 0.0): the presence penalty
- stop (list, default: []]): the stop tokens
- stream (bool, default: False): whether to stream the response
- n (int, default: 1): the number of completions to generate
- response_format (str, default: None): the response format
Notes:
If `response_format` is set to 'json_object', the system prompt should
contain an instruction to return a JSON object, e.g.:
```
You are a creative writer. You are writing a story about {names}.
You should mention {colors} in your story.
JSON:
```
JSON completion only works with Davinci models
Args:
variables (DF[Any]): the variables to use in the prompts
ctx (Context): the context
Returns:
DF[Any]: the chat messages
"""
try:
conf = ctx.app_cfg["conf"]
except KeyError:
raise Exception("OpenAI client not initialized.")
assert "user_prompt" in ctx.app_cfg, "Missing `user_prompt` in app config."
system_prompt = ctx.app_cfg.get("system_prompt", "")
user_prompt = ctx.app_cfg["user_prompt"]
messages = [
[
{"role": "system", "content": system_prompt.format(**_vars)},
{"role": "user", "content": user_prompt.format(**_vars)},
]
for _vars in variables.to_dict(orient="records")
]
response = await asyncio.gather(*[exec_chat(x, conf) for x in messages])
df = {
"content": [],
}
for _response in response:
for _message in _response:
df["content"].append(_message.content)
return pd.DataFrame(df)
| [
"user_prompt",
"[]",
"system_prompt"
] |
2024-01-10 | MalevichAI/malevich-library | lib~src~openai_api~lib~whisper.py | from typing import List
from openai import AsyncOpenAI
from openai.types.audio import Transcription
from ..models.configuration.base import Configuration
async def exec_whisper(
conf: Configuration,
file: str,
prompt: str = None,
) -> List[Transcription]:
client = AsyncOpenAI(
api_key=conf.api_key,
max_retries=conf.max_retries,
organization=conf.organization
)
response: str = await client.audio.transcriptions.create(
file=open(file, 'rb'),
model='whisper-1',
language=conf.language,
response_format='text',
prompt=prompt,
temperature=conf.temperature,
)
return response
| [] |
2024-01-10 | MalevichAI/malevich-library | lib~src~openai_api~apps~chat_structured.py | import asyncio
from collections import defaultdict
from typing import Any
import pandas as pd
from langchain.output_parsers import ResponseSchema
from malevich.square import DF, Context, processor
from ..lib.broadcast import broadcast
from ..lib.chat import exec_structured_chat
@processor(id="structured_prompt_completion")
async def structured_prompt_completion(variables: DF[Any], ctx: Context):
"""Use Chat Completions feature from OpenAI
Chat completions enable you to chat with OpenAI
using a prompt template. This processor assures the
output to follow a certain schema
Available models: https://platform.openai.com/docs/models
To use the model you should set the following parameters:
- `openai_api_key`: Your OpenAI API key. Get it here: https://platform.openai.com/api-keys
- `user_prompt`: The prompt for the user
Scroll down to see the full list of parameters.
Inputs:
A dataframe with variables to be used in the prompts. Each row of the
dataframe will be used to generate a prompt. For example, if your prompt
contains a name enclosed in {} like this:
Hi! Write a story about {someone}
You have to have a column `someone` in the input dataframe. For each
of such variables you should have a separate column.
Outputs:
A dataframe with following column:
- index (int): the index of the variable. If `include_index` is set to
True, the index will be included in the output, otherwise it will
be omitted.
- content (str): the content of the model response
Configuration:
- openai_api_key (str, required): your OpenAI API key
- user_prompt (str, required): the prompt for the user
- model (str, default: 'gpt-3.5-turbo'): the model to use
- organization (str, default: None): the organization to use
- max_retries (int, default: 3): the maximum number of retries
- temperature (float, default: 0.9): the temperature
- max_tokens (int, default: 150): the maximum number of tokens
- top_p (float, default: 1.0): the top p
- frequency_penalty (float, default: 0.0): the frequency penalty
- presence_penalty (float, default: 0.0): the presence penalty
- stop (list, default: []]): the stop tokens
- stream (bool, default: False): whether to stream the response
- n (int, default: 1): the number of completions to generate
- response_format (str, default: None): the response format
- fields (list of dict, default: empty): a list of fields to parse the output.
Each field is a dict that contains fields `name`, `description` and `type`
- include_index (bool, default: False): whether to include the index in the output
Notes:
If `response_format` is set to 'json_object', the system prompt should
contain an instruction to return a JSON object, e.g.:
```
You are a creative writer. You are writing a story about {names}.
You should mention {colors} in your story.
JSON:
```
JSON completion only works with Davinci models
Examples:
user_prompt: "Write a search queries to find {something} on the Internet"
fields: [
{"name": "query", "description": "Google search query", "type": "List[string]"},
{"name": "description", "description": "Summary of your result", "type": "string"}
]
If you have the config like above, you have to expect the following output:
| index | query | description |
| ----- | ---------- | ----------- |
| 0 | query_1 | summary |
| 0 | query_2 | summary |
You will see repeated index and values if some of the variables are lists and
others are not. This is because the output is a cartesian product of all the
variables.
Args:
variables (DF[Any]): the variables to use in the prompts
ctx (Context): the context
Returns:
DF[Any]: the chat messages
""" # noqa: E501
try:
conf = ctx.app_cfg["conf"]
except KeyError:
raise Exception("OpenAI client not initialized.")
assert "user_prompt" in ctx.app_cfg, "Missing `user_prompt` in app config."
# system_prompt = ctx.app_cfg.get('system_prompt', '')
user_prompt = ctx.app_cfg["user_prompt"]
messages = [
user_prompt.format(**_vars) for _vars in variables.to_dict(orient="records")
]
schema = [
ResponseSchema(
name=field["name"],
description=field["description"],
type=field.get("type", "string"),
)
for field in ctx.app_cfg.get("fields", [{}])
]
response = await asyncio.gather(
*[exec_structured_chat(message, conf, schema) for message in messages]
)
df = defaultdict(lambda: [])
for i, message in enumerate(response):
ln = 0
for key, value in broadcast(message).items():
df[key].extend(value)
ln = len(value)
if conf.include_index:
df["index"].extend([variables.index[i]] * ln)
return pd.DataFrame(df)
| [
"user_prompt"
] |
2024-01-10 | MalevichAI/malevich-library | lib~src~langchain~apps~init.py | from malevich.square import Context, init
from .ops import LangchainOps
@init(prepare=True)
def initialize_langchain(ctx: Context):
"""Initialize the langchain app.
Initializes two objects:
- Embedder (ctx.app_cfg["embedder"]) - used for embeddings
- Chat (ctx.app_cfg["chat"]) - used for chat
"""
ctx.common = LangchainOps()
ctx.common.attach_chat_model(
backend=ctx.app_cfg.get("chat_backend", "openai"),
api_key=ctx.app_cfg.get("api_key", None),
temperature=ctx.app_cfg.get("temperature", 0.5),
)
ctx.common.attach_embedder(
backend=ctx.app_cfg.get("embeddings_backend", "openai"),
embeddings_type=ctx.app_cfg.get("embeddings_type", "symmetric"),
model_name=ctx.app_cfg.get("model_name", None),
api_key=ctx.app_cfg.get("api_key", None),
)
| [] |
2024-01-10 | MalevichAI/malevich-library | lib~src~openai_api~apps~text_to_speech.py | import asyncio
import os
import shutil
from typing import Any
import pandas as pd
from malevich.square import APP_DIR, DF, Context, processor
from ..lib.tts import exec_tts
@processor()
async def text_to_speech(variables: DF[Any], ctx: Context):
"""Use Text-to-Speech feature from OpenAI
Produce quality audio from text using OpenAI API
To use the model you should set the following parameters:
- `openai_api_key`: Your OpenAI API key. Get it here: https://platform.openai.com/api-keys
Scroll down to see the full list of parameters.
Inputs:
A dataframe with a single column `text` containing the text
to be converted to speech
Outputs:
A dataframe with following columns:
- filename (str): a key of shared .mp3 files for each input
Configuration:
- openai_api_key (str, required): your OpenAI API key
- model (str, default: 'tts-1'): the model to use
- voice (str, default: 'alloy'): the voice to use. One of
'alloy', 'echo', 'fable', 'onyx', 'nova', and 'shimmer'
Args:
variables (DF[Any]): the variables to use in the prompts
ctx (Context): the context
Returns:
DF[Any]: the chat messages
"""
try:
conf = ctx.app_cfg["conf"]
except KeyError:
raise Exception("OpenAI client not initialized.")
files = [f"voice_{i}_{ctx.run_id}.mp3" for i in range(len(variables))]
await asyncio.gather(*[exec_tts(x, conf, f) for x, f in zip(
variables.text.to_list(),
files
)])
for f in files:
shutil.move(f, os.path.join(APP_DIR, f))
ctx.share(f)
ctx.synchronize([f])
return pd.DataFrame({"filename": files})
| [] |
2024-01-10 | MalevichAI/malevich-library | lib~src~openai_api~lib~tts.py | from typing import List
from openai import AsyncOpenAI
from ..models.configuration.base import Configuration
async def exec_tts(
inputs: str,
conf: Configuration,
file: str,
) -> List[str]:
client = AsyncOpenAI(
api_key=conf.api_key,
max_retries=conf.max_retries,
organization=conf.organization
)
response = await client.audio.speech.create(
input=inputs,
model=conf.model or 'tts-1',
voice=conf.voice,
response_format='mp3',
speed=conf.speed
)
response.stream_to_file(file)
return file
| [] |
2024-01-10 | MalevichAI/malevich-library | lib~src~openai_api~apps~vision.py | import asyncio
import os
from typing import Any
import pandas as pd
from malevich.square import DF, Context, processor
from ..lib.vision import exec_vision
from ..models.configuration.base import Configuration
@processor()
async def completion_with_vision(variables: DF[Any], ctx: Context):
"""Use Language Model with Vision feature from OpenAI
Completion with Vision enables you to generate text
based on an image.
The model is set to 'gpt-4-vision-preview' by default.
Configuration:
- openai_api_key (str, required): your OpenAI API key
- user_prompt (str, required): the prompt for the user
- image_column (str, default: 'images'): the column with images
- max_tokens (int, default: 2048): the maximum number of tokens
- top_p (float, default: 1.0): the probability of the model
returning a next token that is in the top P tokens
- temperature (float, default: 1.0): the higher the value,
the more random the generated text
- frequency_penalty (float, default: 0.0): the higher the value,
the less likely the model is to repeat the same word
- presence_penalty (float, default: 0.0): the higher the value,
the less likely the model is to talk about the same topic again
- model (str, default: 'gpt-4-vision-preview'): the model to use
Inputs:
A dataframe with variables to be used in the prompts and an extra
column with images files or urls.
A column {image_column} should contain either a path to the image
file or a url to the image.
Each row of the dataframe will be used to generate a prompt.
For example, if your prompt contains a name enclosed in {} like this:
Hi! Write a story about {someone}
You have to have a column `someone` in the input dataframe. For each
of such variables you should have a separate column.
Outputs:
A dataframe with following columns:
- content (str): the content of the model response
Supported file types:
- png
- jpg
- jpeg
- gif
- bmp
- tiff
- tif
- webp
Args:
variables (DF[Any]): a dataframe with variables
ctx (Context): context
Returns:
A dataframe with model responses
"""
image_column = ctx.app_cfg.get("image_column", "images")
assert image_column in variables.columns, f"Missing `{image_column}` column."
try:
conf: Configuration = ctx.app_cfg["conf"]
except KeyError:
raise Exception("OpenAI client not initialized.")
if not conf.model:
conf.model = "gpt-4-vision-preview"
assert "user_prompt" in ctx.app_cfg, "Missing `user_prompt` in app config."
system_prompt = ctx.app_cfg.get("system_prompt", "")
user_prompt = ctx.app_cfg["user_prompt"]
def __is_file(x) -> bool:
return os.path.isfile(
ctx.get_share_path(x, not_exist_ok=True)
) or os.path.isfile(x)
messages = [
[
{
"role": "system",
"content": system_prompt.format(**_vars)
},
{
"role": "user",
"content": user_prompt.format(**_vars)},
]
for _vars in variables.to_dict(orient="records")
]
images = variables[image_column].tolist()
for i in range(len(images)):
if __is_file(images[i]):
images[i] = ctx.get_share_path(images[i])
response = await asyncio.gather(
*[exec_vision(msgs, image, conf, not __is_file(image))
for msgs, image in zip(messages, images)]
)
df = {
"content": [],
}
for _response in response:
for _message in _response:
df["content"].append(_message.content)
return pd.DataFrame(df)
| [
"user_prompt",
"[]",
"system_prompt"
] |
2024-01-10 | MalevichAI/malevich-library | lib~src~openai_api~apps~speech_to_text.py | import asyncio
import os
import shutil
import uuid
from typing import Any
import pandas as pd
from malevich.square import DF, Context, processor
from ..lib.whisper import exec_whisper
@processor()
async def speech_to_text(variables: DF[Any], ctx: Context):
"""Use Speech-to-Text feature from OpenAI
Transcribe audio to text using OpenAI API
To use the model you should set the following parameters:
- `openai_api_key`: Your OpenAI API key. Get it here: https://platform.openai.com/api-keys
Scroll down to see the full list of parameters.
Inputs:
A dataframe with a single column `filename` containing keys
to shared audio files
Outputs:
A dataframe with following columns:
- content (str): audio transcription
Configuration:
- openai_api_key (str, required): your OpenAI API key
- language (str, default: 'en'): the language to transcribe
audio to
- temperature (float, default: 0.9): the temperature
- prompt (str, default: None): a short optional prompt to
guide the model
Args:
variables (DF[Any]): the variables to use in the prompts
ctx (Context): the context
Returns:
DF[Any]: the chat messages
"""
try:
conf = ctx.app_cfg["conf"]
except KeyError:
raise Exception("OpenAI client not initialized.")
files = []
for f in variables.filename.to_list():
if not os.path.exists(ctx.get_share_path(f)):
raise Exception(f"File {f} does not exist.")
_f = uuid.uuid4().hex
_ext = os.path.splitext(f)[1]
_f = f'{_f}{_ext}'
shutil.copy(ctx.get_share_path(f), _f)
files.append(_f)
p = [ctx.app_cfg.get("prompt", None)] * len(variables)
response = await asyncio.gather(
*[exec_whisper(conf, f, p_) for f, p_ in zip(files,p)
])
return pd.DataFrame(response, columns=["content"])
| [] |
2024-01-10 | MalevichAI/malevich-library | lib~src~openai_api~lib~vision.py | import base64
import os
from typing import List
from openai import AsyncOpenAI
from openai.types.chat import ChatCompletion, ChatCompletionMessage
from ..models.configuration.base import Configuration
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
async def exec_vision(
messages: List[dict[str, str]],
inputs: str,
conf: Configuration,
is_link: bool = False
) -> List[ChatCompletionMessage]:
ext_to_mime = {
'.png': 'image/png',
'.jpg': 'image/jpeg',
'.jpeg': 'image/jpeg',
'.gif': 'image/gif',
'.bmp': 'image/bmp',
'.tiff': 'image/tiff',
'.tif': 'image/tiff',
'.webp': 'image/webp',
}
if not is_link:
image_type = os.path.splitext(inputs)[1]
assert image_type in ext_to_mime, f'Unsupported image type: {image_type}'
image_type = ext_to_mime[image_type]
image_content = {
'type': 'image_url',
'image_url': {
"url": f"data:image/{image_type};base64,{encode_image(inputs)}"
if not is_link else inputs
}
}
for i in range(len(messages)):
if messages[i]['role'] == 'user':
content = [
{
'type': 'text',
'text': messages[i]['content']
},
image_content
]
messages[i]['content'] = content
client = AsyncOpenAI(
api_key=conf.api_key,
max_retries=conf.max_retries,
organization=conf.organization
)
response: ChatCompletion = await client.chat.completions.create(
messages=messages,
model=conf.model or 'gpt-4-vision-preview',
max_tokens=conf.max_tokens,
top_p=conf.top_p,
frequency_penalty=conf.frequency_penalty,
presence_penalty=conf.presence_penalty,
temperature=conf.temperature,
)
return [choice.message for choice in response.choices]
| [] |
2024-01-10 | MalevichAI/malevich-library | lib~src~openai_api~apps~text_to_image.py | import asyncio
import os
import uuid
from typing import Any
import pandas as pd
import requests
from malevich.square import APP_DIR, DF, Context, processor
from ..lib.image import exec_image
@processor()
async def text_to_image(
variables: DF[Any],
ctx: Context
):
"""Use Text to Image feature from OpenAI
Text to Image enables you to generate images from text prompts.
To use this processor you should set the following parameters:
- `openai_api_key`: Your OpenAI API key. Get it here: https://platform.openai.com/api-keys
- `user_prompt`: The prompt for the user
Inputs:
A dataframe with variables to be used in the prompts. Each row of the
dataframe will be used to generate a prompt. For example, if your prompt
contains a name enclosed in {} like this:
Hi! Write a story about {someone}
You have to have a column `someone` in the input dataframe. For each
of such variables you should have a separate column.
Outputs:
The format of the output depends on the configuration.
If `download` set to true, then an output dataframe will
contain a column `filename` with filenames of downloaded images.
Otherwise, an output dataframe will contain a column `link`
with links to the images provided directly by Open AI.
Configuration:
- openai_api_key (str, required): your OpenAI API key
- user_prompt (str, required): the prompt for the user
- model (str, default: 'dall-e-3'): the model to use
- download (bool, default: false): whether to download images
- n (int, default: 1): amount of images to generate for each request
Args:
variables (DF[ImageLinks]): Dataframe with variables
for the prompt
ctx (Context): Context object
Returns:
Dataframe with links to images
"""
download = ctx.app_cfg.get('download', False)
try:
conf = ctx.app_cfg['conf']
except KeyError:
raise Exception(
"OpenAI client not initialized."
)
user_prompt = ctx.app_cfg.get('user_prompt')
inputs = [
user_prompt.format(**__vars)
for __vars in variables.to_dict(orient='records')
]
_outputs = await asyncio.gather(
*[exec_image(x, conf) for x in inputs],
)
outputs = []
for _o in _outputs:
outputs.extend([x.url for x in _o.data])
if download:
files = []
for link in outputs:
response = requests.get(link)
fname = uuid.uuid4().hex[:8]
with open(os.path.join(APP_DIR, fname), 'wb+') as f:
f.write(response.content)
ctx.share(fname)
files.append(fname)
ctx.synchronize(files)
return pd.DataFrame({
'file': files
})
return pd.DataFrame({
'link': outputs
})
| [
"user_prompt"
] |
2024-01-10 | MalevichAI/malevich-library | lib~src~langchain~apps~functions~df_prompt_format.py | import concurrent.futures
import pandas as pd
from langchain.chat_models.base import BaseChatModel
from langchain.schema import HumanMessage
def df_prompt_format(
df: pd.DataFrame,
prompt_template: str,
chat: BaseChatModel
) -> pd.DataFrame:
def process_data(data: dict) -> str:
message = HumanMessage(content=prompt_template.format(**data))
content = chat([message]).content
return content
with concurrent.futures.ThreadPoolExecutor() as executor:
results = list(executor.map(process_data, df.to_dict('records')))
return pd.DataFrame({"result": results})
| [] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.