date_collected
stringclasses
1 value
repo_name
stringlengths
6
116
file_name
stringlengths
2
220
file_contents
stringlengths
13
357k
prompts
sequence
2024-01-10
lucidrains/DALLE-pytorch
dalle_pytorch~vae.py
import io import sys import os import requests import PIL import warnings import hashlib import urllib import yaml from pathlib import Path from tqdm import tqdm from math import sqrt, log from packaging import version from omegaconf import OmegaConf from taming.models.vqgan import VQModel, GumbelVQ import importlib import torch from torch import nn import torch.nn.functional as F from einops import rearrange from dalle_pytorch import distributed_utils # constants CACHE_PATH = os.path.expanduser("~/.cache/dalle") OPENAI_VAE_ENCODER_PATH = 'https://cdn.openai.com/dall-e/encoder.pkl' OPENAI_VAE_DECODER_PATH = 'https://cdn.openai.com/dall-e/decoder.pkl' VQGAN_VAE_PATH = 'https://heibox.uni-heidelberg.de/f/140747ba53464f49b476/?dl=1' VQGAN_VAE_CONFIG_PATH = 'https://heibox.uni-heidelberg.de/f/6ecf2af6c658432c8298/?dl=1' # helpers methods def exists(val): return val is not None def default(val, d): return val if exists(val) else d def load_model(path): with open(path, 'rb') as f: return torch.load(f, map_location = torch.device('cpu')) def map_pixels(x, eps = 0.1): return (1 - 2 * eps) * x + eps def unmap_pixels(x, eps = 0.1): return torch.clamp((x - eps) / (1 - 2 * eps), 0, 1) def download(url, filename = None, root = CACHE_PATH): if ( not distributed_utils.is_distributed or distributed_utils.backend.is_local_root_worker() ): os.makedirs(root, exist_ok = True) filename = default(filename, os.path.basename(url)) download_target = os.path.join(root, filename) download_target_tmp = os.path.join(root, f'tmp.{filename}') if os.path.exists(download_target) and not os.path.isfile(download_target): raise RuntimeError(f"{download_target} exists and is not a regular file") if ( distributed_utils.is_distributed and not distributed_utils.backend.is_local_root_worker() and not os.path.isfile(download_target) ): # If the file doesn't exist yet, wait until it's downloaded by the root worker. distributed_utils.backend.local_barrier() if os.path.isfile(download_target): return download_target with urllib.request.urlopen(url) as source, open(download_target_tmp, "wb") as output: with tqdm(total=int(source.info().get("Content-Length")), ncols=80) as loop: while True: buffer = source.read(8192) if not buffer: break output.write(buffer) loop.update(len(buffer)) os.rename(download_target_tmp, download_target) if ( distributed_utils.is_distributed and distributed_utils.backend.is_local_root_worker() ): distributed_utils.backend.local_barrier() return download_target def make_contiguous(module): with torch.no_grad(): for param in module.parameters(): param.set_(param.contiguous()) # package versions def get_pkg_version(pkg_name): from pkg_resources import get_distribution return get_distribution(pkg_name).version # pretrained Discrete VAE from OpenAI class OpenAIDiscreteVAE(nn.Module): def __init__(self): super().__init__() assert version.parse(get_pkg_version('torch')) < version.parse('1.11.0'), 'torch version must be <= 1.10 in order to use OpenAI discrete vae' self.enc = load_model(download(OPENAI_VAE_ENCODER_PATH)) self.dec = load_model(download(OPENAI_VAE_DECODER_PATH)) make_contiguous(self) self.channels = 3 self.num_layers = 3 self.image_size = 256 self.num_tokens = 8192 @torch.no_grad() def get_codebook_indices(self, img): img = map_pixels(img) z_logits = self.enc.blocks(img) z = torch.argmax(z_logits, dim = 1) return rearrange(z, 'b h w -> b (h w)') def decode(self, img_seq): b, n = img_seq.shape img_seq = rearrange(img_seq, 'b (h w) -> b h w', h = int(sqrt(n))) z = F.one_hot(img_seq, num_classes = self.num_tokens) z = rearrange(z, 'b h w c -> b c h w').float() x_stats = self.dec(z).float() x_rec = unmap_pixels(torch.sigmoid(x_stats[:, :3])) return x_rec def forward(self, img): raise NotImplemented # VQGAN from Taming Transformers paper # https://arxiv.org/abs/2012.09841 def get_obj_from_str(string, reload=False): module, cls = string.rsplit(".", 1) if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls) def instantiate_from_config(config): if not "target" in config: raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) class VQGanVAE(nn.Module): def __init__(self, vqgan_model_path=None, vqgan_config_path=None): super().__init__() if vqgan_model_path is None: model_filename = 'vqgan.1024.model.ckpt' config_filename = 'vqgan.1024.config.yml' download(VQGAN_VAE_CONFIG_PATH, config_filename) download(VQGAN_VAE_PATH, model_filename) config_path = str(Path(CACHE_PATH) / config_filename) model_path = str(Path(CACHE_PATH) / model_filename) else: model_path = vqgan_model_path config_path = vqgan_config_path config = OmegaConf.load(config_path) model = instantiate_from_config(config["model"]) state = torch.load(model_path, map_location = 'cpu')['state_dict'] model.load_state_dict(state, strict = False) print(f"Loaded VQGAN from {model_path} and {config_path}") self.model = model # f as used in https://github.com/CompVis/taming-transformers#overview-of-pretrained-models f = config.model.params.ddconfig.resolution / config.model.params.ddconfig.attn_resolutions[0] self.num_layers = int(log(f)/log(2)) self.channels = 3 self.image_size = 256 self.num_tokens = config.model.params.n_embed self.is_gumbel = isinstance(self.model, GumbelVQ) self._register_external_parameters() def _register_external_parameters(self): """Register external parameters for DeepSpeed partitioning.""" if ( not distributed_utils.is_distributed or not distributed_utils.using_backend( distributed_utils.DeepSpeedBackend) ): return deepspeed = distributed_utils.backend.backend_module deepspeed.zero.register_external_parameter( self, self.model.quantize.embed.weight if self.is_gumbel else self.model.quantize.embedding.weight) @torch.no_grad() def get_codebook_indices(self, img): b = img.shape[0] img = (2 * img) - 1 _, _, [_, _, indices] = self.model.encode(img) if self.is_gumbel: return rearrange(indices, 'b h w -> b (h w)', b=b) return rearrange(indices, '(b n) -> b n', b = b) def decode(self, img_seq): b, n = img_seq.shape one_hot_indices = F.one_hot(img_seq, num_classes = self.num_tokens).float() z = one_hot_indices @ self.model.quantize.embed.weight if self.is_gumbel \ else (one_hot_indices @ self.model.quantize.embedding.weight) z = rearrange(z, 'b (h w) c -> b c h w', h = int(sqrt(n))) img = self.model.decode(z) img = (img.clamp(-1., 1.) + 1) * 0.5 return img def forward(self, img): raise NotImplemented
[]
2024-01-10
SupremeLordCommander/staci-ai-code-reviewer
src~code_review.py
import os import subprocess import openai def get_changed_files(): try: # Getting a list of all changed files in the last commit result = subprocess.check_output(['git', 'diff', '--name-only', 'HEAD~1', 'HEAD']).decode('utf-8') files = result.strip().split('\n') return files except Exception as e: print("Error getting changed files:", str(e)) return [] def review_code(file): try: with open(file, 'r') as f: code = f.read() # Interact with OpenAI API to review the code response = openai.Completion.create( engine="text-davinci-003", prompt=f"Review the following code and suggest improvements if needed. Also, explain what the changes are attempting:\n\n{code}", temperature=0.5, max_tokens=1000, ) suggestions = response.choices[0].text.strip() if suggestions: print(f"Suggestions for {file}:\n{suggestions}\n") else: print(f"No suggestions from OpenAI for {file}.\n") except Exception as e: print(f"Error reviewing file {file}:", str(e)) def main(): openai.api_key = os.getenv('OPENAI_API_KEY') # Get a list of changed files in the PR changed_files = get_changed_files() # Review each changed file for file in changed_files: review_code(file) if __name__ == "__main__": main()
[ "Review the following code and suggest improvements if needed. Also, explain what the changes are attempting:\n\nPLACEHOLDER" ]
2024-01-10
chief-r0cka/stuff
lazy_dog.py
# Overfit GPT model to "the quick brown fox" # # 906.45 -- the a , " he said . " i 'm not # 310.08 -- the i - " " i 'm not going to # 134.41 -- the i - " " i 'm not a child # 30.41 -- the i - " " i 'm not going to # 8.07 -- the quick , " he said , " i 'm not # 3.61 -- the quick quick quick steps , and then the quick quick # 2.15 -- the quick quick quick jumps over the low fence jumps over # 1.41 -- the quick fox jumps over the lazy dog jumps over the # 1.13 -- the quick fox jumps over the lazy dog jumps over the # 1.05 -- the quick quick brown fox jumps over the lazy dog jumps # 1.02 -- the quick brown fox jumps over the lazy dog jumps over # 1.01 -- the quick jumps over the lazy dog jumps over the lazy # 1.02 -- the quick brown fox jumps over the lazy dog jumps over # 1.13 -- the quick brown fox jumps over the lazy dog jumps over # 1.02 -- the quick brown fox jumps over the lazy dog jumps over # 1.00 -- the quick brown fox jumps over the lazy dog jumps over # 1.01 -- the quick brown fox jumps over the lazy dog jumps over # 1.00 -- the quick brown fox jumps over the lazy dog jumps over # 1.00 -- the quick brown fox jumps over the lazy dog jumps over # 1.00 -- the quick brown fox jumps over the lazy dog jumps over import math import torch from pytorch_pretrained_bert import OpenAIGPTTokenizer, OpenAIGPTLMHeadModel def argmax(t): return int(torch.argmax(t).detach().numpy()) def decode(start_tokens, length=10): result = [] context = torch.ones(1, 0, dtype=torch.long) for start_token in start_tokens: new_token = torch.full((1, 1), start_token, dtype=torch.long) context = torch.cat((context, new_token), dim=1) result.append(tokenizer.convert_ids_to_tokens([start_token])[0]) with torch.no_grad(): for i in range(length): logits = model(context) # batch_size x 1 predicted_id = argmax(logits[0,-1]) predicted_word = tokenizer.convert_ids_to_tokens([predicted_id])[0] tokenizer.convert_ids_to_tokens([]) if predicted_word.endswith('</w>'): predicted_word = predicted_word[:-len('</w>')] result.append(predicted_word) predicted_id_batch = torch.tensor([[predicted_id]]) context = torch.cat((context, predicted_id_batch), dim=1) result = ' '.join(result) result = result.replace('\n', ' ') return result def main(): global tokenizer, model train_dataset = 'the quick brown fox jumps over the lazy dog' tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt') tokenized = [tokenizer.tokenize(train_dataset)] # [[481, 2279, 2507, 8573, 11670, 715, 481, 8447, 2585]] encoded = [tokenizer.convert_tokens_to_ids(t) for t in tokenized] model = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt') optimizer = torch.optim.SGD(model.parameters(), lr = 0.001, momentum=0.9) batch = torch.tensor(encoded) start_words = ['the'] start_tokens = [tokenizer.convert_tokens_to_ids(w) for w in start_words] for i in range(20): loss = model(input_ids=batch, lm_labels=batch) perplexity = math.exp(loss.item()) print('%5.2f -- %s'%(perplexity, decode(start_tokens))) loss.backward() optimizer.step() optimizer.zero_grad() if __name__=='__main__': main()
[]
2024-01-10
DavidHazzard/jira_ticket_assistant
databaseModules~functionCall~functionCallValidate.py
import openai as ai import os import json from databaseModules.dbValidateFunctions import dbValidateFunctions as dvf from langchain.chat_models import ChatOpenAI ai.api_key = os.getenv("OPENAI_API_KEY") def getFunctionDefinition(query_part, qp_natural): name = f"validate{query_part}" description = f"Using the current database schema, validate the {qp_natural} used in the SQL query." parameters = { "type": "object", "properties": { "query": { "type": "string", "description": "The SQL query to be validated" } }, "required": ["query"], } return { "name": name, "description": description, "parameters": parameters, } def validateQueryFromFunctionCall(sql_exception, query): messages = [{"role": "user", "content": sql_exception}] functions = [ getFunctionDefinition("Tables", "table(s)"), getFunctionDefinition("Columns", "column(s)"), getFunctionDefinition("DataTypes", "data type(s)") ] response = ai.ChatCompletion.create( model="gpt-3.5-turbo-0613", messages=messages, functions=functions, function_call="auto", ) response_message = response["choices"][0]["message"] print(response_message) if response_message.get("function_call") and response_message["function_call"]["name"] != "python": available_functions = { "validateTables": dvf.validateTables, "validateColumns": dvf.validateColumns #"validateDataTypes": dvf.validateDataTypes # ## This function is not yet implemented } function_name = response_message["function_call"]["name"] print(function_name) function_to_call = available_functions[function_name] print(function_to_call) function_args = json.loads(response_message["function_call"]["arguments"]) function_response = function_to_call(**function_args) messages.append(response_message) messages.append( { "role": "function", "name": function_name, "content": function_response, } ) print("\nFunction call first response:") print(messages) print(f"Function results: \n\n {function_response}") return function_response else: return response_message
[]
2024-01-10
DavidHazzard/jira_ticket_assistant
aiModules~functionCall~functionCallOutput.py
from aiModules import openAIBase as oai import json from aiModules.templates import ticketOutputTemplates as tot from langchain.chat_models import ChatOpenAI oai.setAIKeyFromEnvVariables() local_ai = oai.ai def getFunctionDefinition(functionString, format_style): name = f"get{functionString}Template" description = f"In {format_style} style, get the output for ticket contents based on the provided context" parameters = { "type": "object", "properties": { "conversation": { "type": "object", "description": "The conversation that has taken place between the user and the AI so far", }, "ticket_type": { "type": "string", "description": "The type of ticket being written" }, "result_type": { "type": "string", "description": "The type of result being generated by the ticket" }, "format_type": { "type": "string", "description": "The format of the result being generated by the ticket" } }, "required": ["conversation"], } return { "name": name, "description": description, "parameters": parameters, } def getTemplateFromFunctionCall(conversation): messages = [] for c in conversation: if c.type == 'human': role = 'user' elif c.type == 'ai': role = 'assistant' else: role = 'system' messages.append({"role": role, "content": f"{c.content}"}) functions = [ getFunctionDefinition("Gherkin", "gherkin"), getFunctionDefinition("Markdown", "markdown"), getFunctionDefinition("PlainText", "plain text"), getFunctionDefinition("SqlScript", "sql script") ] response = local_ai.ChatCompletion.create( model="gpt-3.5-turbo-0613", messages=messages, functions=functions, function_call="auto", ) response_message = response["choices"][0]["message"] if response_message.get("function_call"): available_functions = { "getGherkinTemplate": tot.getGherkinTemplate, "getMarkdownTemplate": tot.getMarkdownTemplate, "getPlainTextTemplate": tot.getPlainTextTemplate, "getSqlScriptTemplate": tot.getSqlScriptTemplate } function_name = response_message["function_call"]["name"] function_to_call = available_functions[function_name] function_args = json.loads(response_message["function_call"]["arguments"]) print(function_args) function_response = function_to_call(conversation=conversation, **function_args) messages.append(response_message) messages.append( { "role": "function", "name": function_name, "content": function_response, } ) print(messages) return runTemplateFromFunctionCall(function_response) def runTemplateFromFunctionCall(func_response): chat = ChatOpenAI(openai_api_key=oai.ai.api_key) print(func_response) response = chat(func_response) print(response) return response
[]
2024-01-10
DavidHazzard/jira_ticket_assistant
aiModules~functionCall~functionCallBase.py
from aiModules import openAIBase as oai import json from aiModules.templates import ticketBaseTemplates as tt from langchain.chat_models import ChatOpenAI oai.setAIKeyFromEnvVariables() local_ai = oai.ai def getFunctionDefinition(functionString, ticketType): name = f"get{functionString}Template" description = f"Get the template for a {ticketType} ticket" parameters = { "type": "object", "properties": { "client": { "type": "string", "description": "The shortname of the client for whom the user story is being written" }, "role": { "type": "string", "description": "The role of the stakeholder for whom the user story is being written" }, "ticket_type": { "type": "string", "description": "The type of ticket being written" }, "result_type": { "type": "string", "description": "The type of result being generated by the ticket" } }, "required": [], } return { "name": name, "description": description, "parameters": parameters, } def getTemplateFromFunctionCall(prompt): messages = [{"role": "user", "content": prompt}] functions = [ getFunctionDefinition("UserStory", "user story"), getFunctionDefinition("BugReport", "bug report"), getFunctionDefinition("TestPlan", "test plan"), getFunctionDefinition("TestCases", "test cases"), getFunctionDefinition("DbQuery", "database query"), getFunctionDefinition("RegressionRisk", "regression risk") ] response = local_ai.ChatCompletion.create( model="gpt-3.5-turbo-0613", messages=messages, functions=functions, function_call="auto", ) response_message = response["choices"][0]["message"] if response_message.get("function_call"): available_functions = { "getUserStoryTemplate": tt.getUserStoryTemplate, "getBugReportTemplate": tt.getBugReportTemplate, "getTestPlanTemplate": tt.getTestPlanTemplate, "getTestCasesTemplate": tt.getTestCasesTemplate, "getDbQueryTemplate": tt.getDbQueryTemplate, "getRegressionRiskTemplate": tt.getRegressionRiskTemplate } function_name = response_message["function_call"]["name"] function_to_call = available_functions[function_name] function_args = json.loads(response_message["function_call"]["arguments"]) function_response = function_to_call(**function_args) messages.append(response_message) messages.append( { "role": "function", "name": function_name, "content": function_response, } ) print(messages) return runTemplateFromFunctionCall(function_response) def runTemplateFromFunctionCall(func_response): chat = ChatOpenAI(openai_api_key=oai.ai.api_key) print(func_response) response = chat(func_response) print(response) func_response.append(response) return func_response
[]
2024-01-10
DavidHazzard/jira_ticket_assistant
aiModules~templates~ticketBaseTemplates.py
from langchain.prompts import ChatPromptTemplate,PromptTemplate,SystemMessagePromptTemplate,HumanMessagePromptTemplate,AIMessagePromptTemplate from langchain.schema import AIMessage, HumanMessage, SystemMessage def getSystemMessageTemplate(): system_template = "You are an AI Jira ticket writing assistant that specializes in ticket generation and refinement. You are currently assisting a {client} stakeholder by constructing {result_type} for a {ticket_type} ticket." system_message_prompt = SystemMessagePromptTemplate.from_template(system_template) return system_message_prompt def getHumanMessageTemplate(): human_template = "I am a {role} stakeholder for {client}. I need to write the {result_type} ticket for a {ticket_type}." human_message_prompt = HumanMessagePromptTemplate.from_template(human_template) return human_message_prompt def getPromptTemplate(): chat_prompt = ChatPromptTemplate.from_messages([getSystemMessageTemplate(), getHumanMessageTemplate()]) return chat_prompt def formatPrompt(chat_prompt, input_client, input_role, input_ticket_type, input_result_type): prompt = chat_prompt.format_prompt(client=input_client ,role=input_role ,ticket_type=input_ticket_type ,result_type=input_result_type).to_messages() return prompt def getAITemplate(): ai_template = "Hi there! I'm Reepicheep, your ticket writing assistant. What type of ticket can I help you write today?" ai_message_prompt = AIMessagePromptTemplate.from_template(ai_template) return ai_message_prompt def getUserStoryTemplate(client="business team", role="business analyst", ticket_type="user story", result_type="acceptance criteria"): return formatPrompt(getPromptTemplate(), client, role, ticket_type, result_type) def getBugReportTemplate(client="business team", role="business analyst", ticket_type="bug report", result_type="expected behavior"): return formatPrompt(getPromptTemplate(), client, role, ticket_type, result_type) def getTestPlanTemplate(client="business team", role="software quality assurance engineer", ticket_type="test plan", result_type="test plan"): return formatPrompt(getPromptTemplate(), client, role, ticket_type, result_type) def getTestCasesTemplate(client="business team", role="software quality assurance engineer", ticket_type="test cases", result_type="test cases"): return formatPrompt(getPromptTemplate(), client, role, ticket_type, result_type) def getDbQueryTemplate(client="business team", role="software quality assurance engineer", ticket_type="database query", result_type="database query"): return formatPrompt(getPromptTemplate(), client, role, ticket_type, result_type) def getRegressionRiskTemplate(client="business team", role="software developer", ticket_type="regression risk", result_type="regression risk"): return formatPrompt(getPromptTemplate(), client, role, ticket_type, result_type)
[ "You are an AI Jira ticket writing assistant that specializes in ticket generation and refinement. You are currently assisting a {client} stakeholder by constructing {result_type} for a {ticket_type} ticket.", "Hi there! I'm Reepicheep, your ticket writing assistant. What type of ticket can I help you write today?", "I am a {role} stakeholder for {client}. I need to write the {result_type} ticket for a {ticket_type}." ]
2024-01-10
DavidHazzard/jira_ticket_assistant
aiModules~templates~ticketOutputTemplates.py
from langchain.prompts import ChatPromptTemplate,PromptTemplate,SystemMessagePromptTemplate,HumanMessagePromptTemplate,AIMessagePromptTemplate from langchain.schema import AIMessage, HumanMessage, SystemMessage # def getChatTemplate(mem): # system_template = "As a generative ticket writing assistant, my goal is to output actionable {result_type} to be consumed by a scrum team." # system_prompt = SystemMessagePromptTemplate.from_template(system_template) # human_template = "Output the {result_type} based on this conversation: {conversation}" # human_prompt = HumanMessagePromptTemplate.from_template(human_template) # chat_prompt = ChatPromptTemplate.from_messages([system_prompt, human_prompt]) # formatted_chat_prompt = chat_prompt.format_prompt(result_type="acceptance criteria", conversation=mem).to_messages() # return formatted_chat_prompt def getSystemMessageTemplate(): system_template = """ As an generative ticket writing assistant, your goal is to create and output actionable {result_type} for a {ticket_type} ticket. Output the {result_type} for the {ticket_type} ticket so that it can be consumed by a scrum team." """ system_message_prompt = SystemMessagePromptTemplate.from_template(system_template) return system_message_prompt def getHumanMessageTemplate(): human_template = """ I need AI-generated {result_type} output for a {ticket_type} ticket. The output should be formatted in {format_type} and be pastable into a Jira panel. Base the output off of the following conversation: {conversation}" f"{use_natural_language}" f"{output_template}" """ human_message_prompt = HumanMessagePromptTemplate.from_template(human_template) return human_message_prompt def getPromptTemplate(): chat_prompt = ChatPromptTemplate.from_messages([getSystemMessageTemplate(), getHumanMessageTemplate()]) return chat_prompt def formatPrompt(chat_prompt, input_conversation, input_ticket_type, input_result_type, input_format_type, input_natural_language="", input_output_template=""): prompt = chat_prompt.format_prompt(conversation=input_conversation ,ticket_type=input_ticket_type ,result_type=input_result_type ,format_type=input_format_type ,use_natural_language=input_natural_language ,output_template=input_output_template).to_messages() return prompt def getGherkinTemplate(conversation, ticket_type="user story", result_type="acceptance criteria", format_type="Gherkin"): return formatPrompt(getPromptTemplate(), conversation, ticket_type, result_type, format_type) def getMarkdownTemplate(conversation, ticket_type="user story", result_type="acceptance criteria", format_type="Markdown"): return formatPrompt(getPromptTemplate(), conversation, ticket_type, result_type, format_type) def getPlainTextTemplate(conversation, ticket_type="user story", result_type="acceptance criteria", format_type="Plain Text"): return formatPrompt(getPromptTemplate(), conversation, ticket_type, result_type, format_type) def getSqlScriptTemplate(conversation, ticket_type="user story", result_type="acceptance criteria", format_type="SQL Script", natural_language="Do not output any natural language.", output_template="{ query_index: query_contents }"): return formatPrompt(getPromptTemplate(), conversation, ticket_type, result_type, format_type, natural_language, output_template)
[ "\n I need AI-generated {result_type} output for a {ticket_type} ticket. \n The output should be formatted in {format_type} and be pastable into a Jira panel.\n Base the output off of the following conversation: {conversation}\"\n f\"{use_natural_language}\"\n f\"{output_template}\"\n ", "\n As an generative ticket writing assistant, your goal is to create and output actionable {result_type} for a {ticket_type} ticket. \n Output the {result_type} for the {ticket_type} ticket so that it can be consumed by a scrum team.\"\n " ]
2024-01-10
DavidHazzard/jira_ticket_assistant
databaseModules~dbValidateFunctions~dbValidateFunctions.py
import os import re import sqlalchemy as sa from langchain.chat_models import ChatOpenAI from langchain.prompts import ChatPromptTemplate,PromptTemplate,SystemMessagePromptTemplate,HumanMessagePromptTemplate,AIMessagePromptTemplate from databaseModules.dbConnects import databaseValidate as dv ## Constants ## ### AI object/global variable init ### ai_key = os.getenv("OPENAI_API_KEY_GPT4") db_lc = ChatOpenAI(openai_api_key=ai_key, temperature="0.0", verbose=False) tables_in_use = [] table_schemas = [] ### Table validate prompt templates ### query_table_list_template = "Output a comma-delimited list of the tables referenced in the following query: {query}. Do not output any natural language." predict_table_name_template = "Use the following schema to predict the correct table name for {table_name}: {database_table_names}. Output the correct table name for {table_name}. Only output the table name." ### Column validate prompts templates ### query_column_dict_template = "Output the columns explicitly referred to in the following query: {query}. Remove table aliases from each column, and do not include any duplicate fully qualified column names. If a column name is not specified, do not include it in the output. Do not output any natural language. Use the following template to format the data: {column_dict_template}" column_dict_output_format = "{ table: [ columns ] }" predict_column_name_template = "Use the following schema to predict the correct column name for {column}: {table_columns}. Output the correct column name for {column}. Only output the column name. Do not output any natural language." ## Prompt Templating Functions ## def getHumanMessagePrompt(template): return HumanMessagePromptTemplate.from_template(template) def getPrompt(human_template): return ChatPromptTemplate.from_messages([getHumanMessagePrompt(human_template)]) def formatPrompt(chat_prompt, input_query, input_table_name="", input_database_table_names="", input_column_dict_template="", input_column="", input_table_columns=""): return chat_prompt.format_prompt(query=input_query, table_name=input_table_name, database_table_names=input_database_table_names, column_dict_template=input_column_dict_template, column=input_column, table_columns=input_table_columns).to_messages() ## Globally used functions ## ### Table Query Parsing Functions ### def get_table_list_from_query(query): table_list = db_lc( formatPrompt( getPrompt(query_table_list_template) ,query ) ).content.split(",") return [x.strip().lower() for x in table_list] def get_schemas_for_tables_in_use(): global table_schemas if table_schemas != []: return table_schemas table_list_processed = {table.name.lower(): table for table in dv.db.metadata.tables.values()} print(table_list_processed) if len(tables_in_use) > 0: table_list_processed = {key: value for key, value in table_list_processed.items() if key in tables_in_use} for table in table_list_processed: print(f"\n {table}") table_schemas.append(get_table_metadata(table_list_processed[table])) return table_schemas ### Table Metadata Retrieval Functions ### def get_table_metadata(table): return { "name": table.name, "primary_key": get_primary_key(table), "foreign_keys": get_fk_relationships(table), "columns": get_columns(table) } def get_columns(table): return [c.name.lower() for c in table.columns] def get_fk_relationships(table): fk_columns = [fk.parent for fk in table.foreign_keys] for column in fk_columns: return column.name.lower(), column.foreign_keys def get_primary_key(table): return [k.name for k in table.primary_key] ## Table Validation Functions ## def validateTables(query): global tables_in_use global table_schemas # get list of all table names in database database_table_names = [x.lower() for x in dv.db.inspector.get_table_names()] # get list of all table names being used in query query_table_list = get_table_list_from_query(query) # validate each table in query for table_name in query_table_list: # if table is not in database, handle invalid query if database_table_names.count(table_name) == 0: query = handleInvalidQuery(query, table_name, database_table_names) # otherwise, add table to global list of tables in use else: print(f"{table_name} is valid.\n") tables_in_use.append(table_name) if tables_in_use.count(table_name) == 0 else None print(tables_in_use) # get table schemas for all tables in use (global variable) table_schemas = get_schemas_for_tables_in_use() return sa.text(query) def handleInvalidQuery(query, table_name, database_table_names): # Print error message print(f"Invalid query. The table '{table_name}' does not exist in the database.") # Prompt the user to enter a new table name predict_table_name = db_lc( formatPrompt( getPrompt(predict_table_name_template) ,input_query="" ,input_table_name=table_name ,input_database_table_names=database_table_names ) ).content # Replace the original table name with the user's new table name query = re.sub(table_name, predict_table_name, query, 1, re.IGNORECASE) # Print message to indicate the table name replacement print(f"Replaced {table_name} with {predict_table_name} \n") # Add the new table name to the global list of tables in use tables_in_use.append(predict_table_name) if tables_in_use.count(predict_table_name) == 0 else None return query ## Column Validation Functions ## def validateColumns(query): global table_schemas global tables_in_use # If no tables have been specified, get them from the query. if len(tables_in_use) == 0: tables_in_use = get_table_list_from_query(query) # Get a dictionary of tables and columns from the query. query_column_dict = get_query_column_dict(query) print(f"Query columns by table: \n {query_column_dict} \n") # Get the table schemas for the tables in use. table_schemas = get_schemas_for_tables_in_use() # For each table in the table schema, check if each column in the query # exists in the table schema. If a column does not exist in a table, # replace it with an empty string. for table in table_schemas: for column in query_column_dict[table['name'].lower()]: if table['columns'].count(column.lower()) == 0: print(f"Invalid query. The column '{column}' does not exist in the table '{table['name']}'.") query = replace_invalid_column(query, column, table['columns']) else: print(f"{column} is valid.\n") print(query) return sa.text(query) def get_query_column_dict(query): # query the db for column names query_column_dict = eval( db_lc( formatPrompt( getPrompt(query_column_dict_template) ,query ,input_column_dict_template=column_dict_output_format ) ).content ) # convert all of the column names to lowercase for key in query_column_dict: query_column_dict[key] = [x.lower() for x in query_column_dict[key]] return query_column_dict def replace_invalid_column(query, column, table_columns): # Get a single column name from the query predict_column_name = db_lc( formatPrompt( getPrompt(predict_column_name_template) ,input_query="" ,input_column=column ,input_table_columns=table_columns ) ).content # Replace the invalid column with the AI-predicted column name query = re.sub(column, predict_column_name, query, 1, re.IGNORECASE) print(f"Replaced '{column}' with '{predict_column_name}' \n") return query ## Join Validation Functions ## def validateJoins(query): pass ## Data Type Validation Functions ## def validateDataTypes(query): pass
[ "Use the following schema to predict the correct table name for {table_name}: {database_table_names}. Output the correct table name for {table_name}. Only output the table name.", "Output the columns explicitly referred to in the following query: {query}. Remove table aliases from each column, and do not include any duplicate fully qualified column names. If a column name is not specified, do not include it in the output. Do not output any natural language. Use the following template to format the data: {column_dict_template}", "Use the following schema to predict the correct column name for {column}: {table_columns}. Output the correct column name for {column}. Only output the column name. Do not output any natural language.", "Output a comma-delimited list of the tables referenced in the following query: {query}. Do not output any natural language." ]
2024-01-10
simranmasand/pdfninja
WIP_app_main.py
from langchain.llms import OpenAI import streamlit as st import argparse import pprint import random from tqdm import tqdm from langchain.vectorstores import FAISS from langchain.chains import RetrievalQA import os from utils import * from langchain.embeddings import OpenAIEmbeddings from langchain.chains.question_answering import load_qa_chain from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import ElasticVectorSearch, Pinecone, Weaviate #----------- load the api key' api_sidebar() parser = argparse.ArgumentParser() parser.add_argument("--apikey_filepath",default='/Users/simranmasand/Downloads/openapi_key.txt',type=str,help="This is where the api_key is stored as .txt file.") parser.add_argument("--documents_path",default="../simpossum/",type=str,help="This is where the pdf documents are stored.") args = parser.parse_args() os.environ["OPENAI_API_KEY"]=load_api_key(filepath=args.apikey_filepath) st.write("PDF Ninja App") st.header("📖Here to knock your pdfs off") file = st.file_uploader("Pick a pdf file",type=["pdf"]) # print(os.environ["OPENAI_API_KEY"]) embeddings = OpenAIEmbeddings() llm = OpenAI(model_name="text-davinci-003") # Provide the directory path where you want to search for PDF files # directory_path = input("Please provide the absolute path of your directory.") # Call the function to get the list of PDF files in the directory # pdf_files_list = [file] # print('-----------------------------------') # print('These are the files in this folder:') # print('-----------------------------------') # # Print the list of PDF files # for pdf_file in pdf_files_list: # print(pdf_file) # # print('-----------------------------------') docsall = process_file_st(file) vector_store=FAISS.from_documents(docsall,embeddings) retriever = vector_store.as_retriever(search_kwargs={"k": 1}) #get top k docs # this can be an argaparser requirement # if not query: # query = random.choice(["get me the invoice for garden gnomes","get me Simran's CV"]) # print("\nWe chose the prompt: "+ query) # docs = retriever.get_relevant_documents(query) # # pp = pprint.PrettyPrinter() # pp.pprint("".join(docs[0].page_content[:1000].replace("\n"," "))) chain = load_qa_chain(OpenAI(),chain_type='stuff') query = None end = "END" while query != end: query = st.text_area("What file are you looking for? For example: you can ask get me the invoice for flower bulbs. Or get me Simran's resume. Just press enter for a random prompt ", on_change=clear_submit) if not query: query="Why is Simran amazing?" with st.spinner("Indexing document... This may take a while⏳"): docs_focus = vector_store.similarity_search(query) #we can use the entire docs base but I am focussing the QA on the document in question #print(docs_focus) st.markdown(chain.run(input_documents = docsall,question=query)) st.stop()
[]
2024-01-10
simranmasand/pdfninja
32_WIP_app_main.py
from langchain.llms import OpenAI import streamlit as st import argparse import pprint import random from tqdm import tqdm from langchain.vectorstores import FAISS from langchain.chains import RetrievalQA import os from utils import * from langchain.embeddings import OpenAIEmbeddings from langchain.chains.question_answering import load_qa_chain from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import ElasticVectorSearch, Pinecone, Weaviate #----------- load the api key' api_sidebar() # print(st.session_state["OPENAI_API_KEY"]) # parser = argparse.ArgumentParser() # # parser.add_argument("--apikey_filepath",default='openapi_key.txt',type=str,help="This is where the api_key is stored as .txt file.") # parser.add_argument("--documents_path",default="../simpossum/",type=str,help="This is where the pdf documents are stored.") # args = parser.parse_args() # os.environ["OPENAI_API_KEY"] = load_api_key(filepath=args.apikey_filepath) # embeddings # Layout st.write("PDF Ninja App") st.header("📖Here to knock your pdfs off") uploaded_file = st.file_uploader("Pick a pdf file (⚠️ Currently supports less than 5 pages)",type=["pdf"]) # if not query: # query = random.choice(["get me the invoice for garden gnomes","get me Simran's CV"]) # print("\nWe chose the prompt: "+ query) # docs = retriever.get_relevant_documents(query) # # pp = pprint.PrettyPrinter() # pp.pprint("".join(docs[0].page_content[:1000].replace("\n"," "))) query = st.text_area("Ask your questions here. For example, ask ""Tell me more about this file."" ", on_change=clear_submit) with st.form('myform', clear_on_submit=True): submitted = st.form_submit_button('Submit', disabled=not(uploaded_file)) if submitted: embeddings = OpenAIEmbeddings(openai_api_key=st.session_state.get("OPENAI_API_KEY")) llm = OpenAI(openai_api_key=st.session_state.get("OPENAI_API_KEY"), model_name="text-davinci-003") chain = load_qa_chain(OpenAI(openai_api_key=st.session_state.get("OPENAI_API_KEY")), chain_type='stuff') docsall = process_file_st(uploaded_file) vector_store = FAISS.from_documents(docsall, embeddings) retriever = vector_store.as_retriever(search_kwargs={"k": 1}) # get top k docs # this can be an argaparser requirement # if not query: # query="Why is Simran amazing?" with st.spinner("Indexing document... This may take a while⏳"): docs_focus = vector_store.similarity_search(query) #we can use the entire docs base but I am focussing the QA on the document in question #print(docs_focus) st.markdown(chain.run(input_documents = docsall,question=query)) st.stop()
[]
2024-01-10
aaguirreu/CodeCommenterGPT
codeCommenter.py
import sys import openai import os import json import re from dotenv import load_dotenv # Cargar variables de entorno desde el archivo .env load_dotenv() # Configurar la API de OpenAI con tu clave de API openai.api_key = os.getenv('OPENAI_API_KEY') def leer_archivo_json(nombre_archivo): # Lee el archivo JSON with open(nombre_archivo, 'r') as archivo: contenido = json.load(archivo) # Retorna el contenido del archivo JSON return contenido def gpt_request(sql_code): # Comentar el código SQL explicando lo que hace programming_language = 'SQL' language = 'Spanish' messages = leer_archivo_json('context.json') messages.append({ "role": "user", "content": f"Correct. Now, do the same with the next {programming_language} code. Write all comments in {language} language:\n{sql_code}" }) chat_completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages ) return chat_completion.choices[0].message.content def obtener_numero(cadena): if "[" in cadena and "-" in cadena and "]" in cadena: inicio = cadena.index("[") + 1 fin = cadena.index("-") numero = cadena[inicio:fin] elif "[" in cadena and "]" in cadena: inicio = cadena.index("[") + 1 fin = cadena.index("]") numero = cadena[inicio:fin] else: return None if numero.isdigit(): return int(numero) return None def agregar_comentarios(fragmento_codigo, comentarios): lineas_codigo = fragmento_codigo.split('\n') if type(lineas_codigo) is not list: return comentarios = comentarios.split('\n') # Recorrer los comentarios en orden descendente for comentario in reversed(comentarios): if not comentario.startswith('['): continue print(f"*\n{comentario}\n") comentario_strip = comentario.strip("] ") # Si el comentario no tiene un número de línea, continuar num_linea = "" if "]" in comentario_strip: # separar el número de línea del comentario num_linea, comentario = comentario.split("]", 1) else: continue # Obtener el número de línea del comentario num_linea = num_linea+']' num_linea = obtener_numero(num_linea) # Verificar si el comentario tiene un número de línea válido if num_linea is None: continue # Agregar el comentario en la línea correspondiente comentario = f'--{comentario}' lineas_codigo.insert(num_linea-1, comentario) # Unir las líneas de código nuevamente codigo_actualizado = '\n'.join(lineas_codigo) return codigo_actualizado def recorrer_archivos(file_path, sql_code): # Fragmentar el código SQL en fragmentos de tamaño fijo fragment_size = 2000 # Tamaño máximo de fragmento en tokens fragments = [sql_code[i:i+fragment_size] for i in range(0, len(sql_code), fragment_size)] # Comentar cada fragmento del código SQL y guardar las respuestas en el archivo output_file_path = file_path with open(output_file_path, 'w', encoding='utf-8') as output_file: remaining_line = '' for i, fragment in enumerate(fragments): # Combinar la línea restante del fragmento anterior con el fragmento actual fragment = remaining_line + fragment remaining_line = '' # Verificar si la última línea del fragmento actual queda cortada lines = fragment.split('\n') if len(lines) > 1 and not lines[-1].endswith('--'): # La última línea queda cortada, guardarla para el siguiente fragmento remaining_line = lines[-1] fragment = '\n'.join(lines[:-1]) fragment = fragment.split('\n') fragment_with_indexes = [] # Agregar el número de línea a cada línea del fragmento for j, line in enumerate(fragment, start=1): fragment_with_indexes.append(f"{j} {line}") fragment = '\n'.join(fragment) fragment_with_indexes = '\n'.join(fragment_with_indexes) #print(fragment_with_indexes) comments = gpt_request(fragment_with_indexes) commented_code = agregar_comentarios(fragment, comments) print(f'-- Respuesta {i+1}:\n{commented_code}') output_file.write(f'\n{commented_code}') if __name__ == '__main__': if len(sys.argv) < 2: print('Debe proporcionar la dirección de la caperta con archivos .sql como argumento.') else: folder_path = sys.argv[1] output_folder_path = os.path.join(os.path.dirname(folder_path), "pgSQL_commented") # Verificar si la carpeta de destino existe, si no, crearla if not os.path.exists(output_folder_path): os.makedirs(output_folder_path) # Obtener la lista de archivos .sql en la carpeta de origen archivos_sql = [archivo for archivo in os.listdir(folder_path) if archivo.endswith(".sql")] for archivo in archivos_sql: file_path = os.path.join(folder_path, archivo) output_file_path = os.path.join(output_folder_path, archivo) # Verificar si el archivo ya existe en la carpeta de destino if not os.path.exists(output_file_path): print(file_path) with open(file_path, 'r', encoding='utf-8') as sql_file: sql_code = sql_file.read() print(f'Comentando el archivo {archivo}...') recorrer_archivos(output_file_path, sql_code)
[ "Correct. Now, do the same with the next PLACEHOLDER code. Write all comments in PLACEHOLDER language:\nPLACEHOLDER" ]
2024-01-10
drewku42/QnAChatbot
document_qa.py
import os from langchain.document_loaders import PyPDFLoader, TextLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.chains import RetrievalQAWithSourcesChain from langchain.chat_models import ChatOpenAI import chainlit as cl from chainlit.types import AskFileResponse from dotenv import load_dotenv load_dotenv() OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) embeddings = OpenAIEmbeddings() welcome_message = """Welcome to the Question Answer Bot Demo! To get started: 1. Upload a PDF or text file 2. Ask a question about a file """ def process_file(file: AskFileResponse): """Applies a text splitter on a text/pdf file.""" import tempfile if file.type == "text/plain": Loader = TextLoader elif file.type == "application/pdf": Loader = PyPDFLoader with tempfile.NamedTemporaryFile(delete=False) as tempfile: tempfile.write(file.content) loader = Loader(tempfile.name) documents = loader.load() docs = text_splitter.split_documents(documents) for i, doc in enumerate(docs): doc.metadata["source"] = f"source_{i}" return docs def get_docsearch(file: AskFileResponse): """Retrieves data from embeddings.""" docs = process_file(file) # Save data in the user session cl.user_session.set("docs", docs) # Create a unique namespace for the file docsearch = Chroma.from_documents( docs, embeddings ) return docsearch # USER SESSION @cl.on_chat_start async def start(): # Sending an image with the local file path await cl.Message(content="You can now chat with your pdfs.").send() files = None while files is None: files = await cl.AskFileMessage( content=welcome_message, accept=["text/plain", "application/pdf"], max_size_mb=20, timeout=180, ).send() file = files[0] msg = cl.Message(content=f"Processing '{file.name}'...") await msg.send() # No async implementation in the Pinecone client, fallback to sync docsearch = await cl.make_async(get_docsearch)(file) chain = RetrievalQAWithSourcesChain.from_chain_type( ChatOpenAI(temperature=0, streaming=True, openai_api_key=OPENAI_API_KEY), chain_type="stuff", retriever=docsearch.as_retriever(max_tokens_limit=4097), ) # Let the user know that the system is ready msg.content = f"'{file.name}' processed. You can now ask questions!" await msg.update() cl.user_session.set("chain", chain) @cl.on_message async def main(message): chain = cl.user_session.get("chain") # type: RetrievalQAWithSourcesChain cb = cl.AsyncLangchainCallbackHandler( stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"] ) cb.answer_reached = True res = await chain.acall(message, callbacks=[cb]) answer = res["answer"] sources = res["sources"].strip() source_elements = [] # Get the documents from the user session docs = cl.user_session.get("docs") metadatas = [doc.metadata for doc in docs] all_sources = [m["source"] for m in metadatas] if sources: found_sources = [] # Add the sources to the message for source in sources.split(","): source_name = source.strip().replace(".", "") # Get the index of the source try: index = all_sources.index(source_name) except ValueError: continue text = docs[index].page_content found_sources.append(source_name) # Create the text element referenced in the message source_elements.append(cl.Text(content=text, name=source_name)) if found_sources: answer += f"\nSources: {', '.join(found_sources)}" else: answer += "\nNo sources found" if cb.has_streamed_final_answer: cb.final_stream.elements = source_elements await cb.final_stream.update() else: await cl.Message(content=answer, elements=source_elements).send()
[]
2024-01-10
GPT-RL/fsvf-toy
fsvf~ppo~env_utils.py
# Copyright 2022 The Flax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for handling the Atari environment.""" import operator import re from collections import deque from dataclasses import dataclass from functools import reduce from typing import Any, ClassVar, Optional import gym import numpy as np from art import text2art from gym import RewardWrapper, Space # type: ignore from gym.core import ObservationWrapper from gym.spaces import Box, Dict, Discrete, MultiBinary, MultiDiscrete from gym.wrappers.time_limit import TimeLimit from gym_minigrid.minigrid import Goal, Grid, MiniGridEnv, MissionSpace from gym_minigrid.wrappers import ImgObsWrapper, RGBImgObsWrapper from ppo import seed_rl_atari_preprocessing from returns.curry import partial from returns.pipeline import flow, pipe from rich.console import Console from rich.text import Text class RenderWrapper(gym.Wrapper): def reset(self, seed: Optional[int] = None): self.__action, self.__reward, self.__done = None, None, None self.__state = super().reset(seed=seed) return self.__state def step(self, action): self.__action = action self.__state, self.__reward, self.__done, i = super().step(action) return self.__state, self.__reward, self.__done, i def scale_channel(self, channel): if isinstance(self.observation_space, Box): high = self.observation_space.high.max() elif isinstance(self.observation_space, MultiDiscrete): high = self.observation_space.nvec.max() elif isinstance(self.observation_space, MultiBinary): high = 1 else: raise ValueError(f"Unknown observation space {self.observation_space}") return 255 * (channel / high)[:3] def ascii_of_image(self, image: np.ndarray) -> Text: def rows(): for row in image: yield flow( map( pipe( self.scale_channel, np.cast[int], partial(map, str), ",".join, lambda rgb: f"rgb({rgb})", lambda rgb: Text("██", style=rgb), ), row, ), lambda texts: join_text(*texts, joiner=""), ) return join_text(*rows(), joiner="\n") def render(self, mode="human", highlight=True, tile_size=...): if mode == "human": rgb = self.__state console.print(self.ascii_of_image(rgb)) subtitle = "" if self.__action is not None: if isinstance(self.__action, int): action = self.__action try: action_str = self.Actions(action).name except AttributeError: action_str = str(action) elif isinstance(self.__action, str): action_str = self.__action else: raise ValueError(f"Unknown action {self.__action}") subtitle += f"action={action_str}, " subtitle += f"reward={self.__reward}" if self.__done: subtitle += ", done" print(text2art(subtitle.swapcase(), font="com_sen")) input("Press enter to continue.") else: return super().render(mode=mode, highlight=highlight, tile_size=tile_size) console = Console() def join_text(*text: Text, joiner: str) -> Text: head, *tail = text return reduce(operator.add, [head] + [Text(joiner) + t for t in tail]) class ObsGoalWrapper(ObservationWrapper): def __init__(self, env: "EmptyEnv"): super().__init__(env) coord_space = MultiDiscrete(np.array([env.width, env.height])) assert isinstance(self.observation_space, Dict) self.observation_space = Dict( dict(**self.observation_space.spaces, agent=coord_space, goal=coord_space) ) def observation(self, obs): assert isinstance(self.env, EmptyEnv) return dict(**obs, agent=self.env.agent_pos, goal=self.env.goal_pos) class FlatObsWrapper(ObservationWrapper): def __init__(self, env): super().__init__(env) assert isinstance(self.observation_space, Dict) self.observation_space = flow( self.observation_space.spaces, self.get_nvecs, np.array, MultiDiscrete, ) def get_nvecs(self, spaces: dict[str, Space]): agent_space = spaces["agent"] goal_space = spaces["goal"] assert isinstance(agent_space, MultiDiscrete) assert isinstance(goal_space, MultiDiscrete) return [ *agent_space.nvec, *goal_space.nvec, ] def get_observations(self, obs: dict[str, Any]) -> list[np.ndarray]: return [obs["agent"], obs["goal"]] def observation(self, obs): return np.concatenate(self.get_observations(obs)) class FlatObsWithDirectionWrapper(FlatObsWrapper): def get_nvecs(self, spaces: dict[str, Space]): dir_space = spaces["direction"] assert isinstance(dir_space, Discrete) return super().get_nvecs(spaces) + [np.array([dir_space.n])] def get_observations(self, obs: dict[str, Any]) -> list[np.ndarray]: return super().get_observations(obs) + [np.array(obs["direction"])] class OneHotWrapper(ObservationWrapper): def __init__(self, env): super().__init__(env) space = self.observation_space self.observation_space = gym.spaces.MultiBinary( np.array([*space.nvec.shape, space.nvec.max()]) ) self.one_hot = np.eye(space.nvec.max(), dtype=np.int) def observation(self, obs): return self.one_hot[obs] class FlattenWrapper(ObservationWrapper): def __init__(self, env): super().__init__(env) assert isinstance(self.observation_space, MultiBinary) self.observation_space = MultiBinary(int(np.prod(self.observation_space.n))) def observation(self, obs): return obs.flatten() class TwoDGridWrapper(ObservationWrapper): def __init__(self, env): super().__init__(env) assert hasattr(env, "height") assert hasattr(env, "width") self.empty = np.zeros((env.height, env.width), dtype=np.int) self.observation_space = MultiDiscrete(3 * np.ones((env.height, env.width))) def observation(self, obs: dict[str, np.ndarray]) -> np.ndarray: grid = np.copy(self.empty) grid[tuple(obs["agent"])] = 1 grid[tuple(obs["goal"])] = 2 return grid class EmptyEnv(MiniGridEnv): """ Empty grid environment, no obstacles, sparse reward """ def __init__(self, size=8, agent_start_pos=(1, 1), agent_start_dir=0, **kwargs): self.agent_start_pos = agent_start_pos self.agent_start_dir = agent_start_dir mission_space = MissionSpace( mission_func=lambda: "get to the green goal square" ) super().__init__( mission_space=mission_space, grid_size=size, max_steps=4 * size * size, # Set this to True for maximum speed see_through_walls=True, **kwargs, ) def _gen_grid(self, width, height): # Create an empty grid self.grid = Grid(width, height) # Generate the surrounding walls self.grid.wall_rect(0, 0, width, height) # Place a goal square in the bottom-right corner self.goal_pos = self.place_obj(Goal()) # Place the agent if self.agent_start_pos is not None: self.agent_pos = self.agent_start_pos self.agent_dir = self.agent_start_dir else: self.place_agent() self.mission = "get to the green goal square" def reset(self, seed: Optional[int] = None): seed = seed or 0 return super().reset(seed=seed) @dataclass class MyEnv(gym.Env): height: int width: int deltas: ClassVar[np.ndarray] = np.array([[-1, 0], [1, 0], [0, -1], [0, 1]]) pattern: ClassVar[str] = r"my-env-(\d+)x(\d+)" def __post_init__(self): self.observation_space = Dict( dict( agent=MultiDiscrete(np.array([self.height, self.width])), goal=MultiDiscrete(np.array([self.height, self.width])), ) ) @classmethod @property def action_space(cls): return Discrete(1 + len(cls.deltas)) def random_pos(self) -> np.ndarray: pos = self.np_random.randint(low=0, high=(self.height, self.width)) assert isinstance(pos, np.ndarray) return pos def reset(self, **kwargs) -> dict[str, np.ndarray]: super().reset(**kwargs) self.agent = self.random_pos() self.goal = self.random_pos() return self.state() def state(self) -> dict[str, np.ndarray]: return dict(agent=self.agent, goal=self.goal) def step(self, action: int) -> tuple[dict[str, np.ndarray], float, bool, dict]: r = 0.0 t = False try: delta = self.deltas[action] except IndexError: r = float(all(self.agent == self.goal)) t = True return self.state(), r, t, {} agent = self.agent + delta self.agent = np.clip(agent, 0, (self.height - 1, self.width - 1)) return self.state(), r, t, {} def render(self, mode: Any = ...) -> None: for i in range(self.height): for j in range(self.width): if all(self.agent == np.array([j, i])): print("A", end="") elif all(self.goal == np.array([j, i])): print("G", end="") else: print("-", end="") print() input("Press Enter to continue...") return None class ClipRewardEnv(RewardWrapper): """Adapted from OpenAI baselines. github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py """ def __init__(self, env): RewardWrapper.__init__(self, env) def reward(self, reward): """Bin reward to {+1, 0, -1} by its sign.""" return np.sign(reward) class FrameStack: """Implements stacking of `num_frames` last frames of the game. Wraps an AtariPreprocessing object. """ def __init__( self, preproc: seed_rl_atari_preprocessing.AtariPreprocessing, num_frames: int ): self.preproc = preproc self.num_frames = num_frames self.frames: deque = deque(maxlen=num_frames) assert isinstance(preproc.observation_space, Box) def repeat(x): return np.repeat(x, num_frames, axis=-1) obs_space = preproc.observation_space self.observation_space = Box( low=repeat(obs_space.low), high=repeat(obs_space.high) ) self.np_random = preproc.environment.np_random def reset(self, seed: Optional[int] = None): ob = self.preproc.reset(seed=seed) for _ in range(self.num_frames): self.frames.append(ob) return self._get_array() def step(self, action: int): ob, reward, done, info = self.preproc.step(action) self.frames.append(ob) return self._get_array(), reward, done, info def _get_array(self): assert len(self.frames) == self.num_frames return np.concatenate(self.frames, axis=-1) def create_env(env_id: str, test: bool): """Create a FrameStack object that serves as environment for the `game`.""" if env_id == "empty": return flow( EmptyEnv(size=4, agent_start_pos=None), RGBImgObsWrapper, ImgObsWrapper, RenderWrapper, ) elif re.match(MyEnv.pattern, env_id): [(height, width)] = re.findall(MyEnv.pattern, env_id) height, width = map(int, (height, width)) return flow( MyEnv(height=height, width=width), TwoDGridWrapper, OneHotWrapper, RenderWrapper, partial(TimeLimit, max_episode_steps=10 + height + width), ) elif "NoFrameskip" in env_id: return flow( gym.make(env_id), *([] if test else [ClipRewardEnv]), seed_rl_atari_preprocessing.AtariPreprocessing, partial(FrameStack, num_frames=4), RenderWrapper, ) elif "MiniGrid" in env_id: return flow(gym.make(env_id), RGBImgObsWrapper, ImgObsWrapper, RenderWrapper) else: return gym.make(env_id) def get_num_actions(game: str): """Get the number of possible actions of a given Atari game. This determines the number of outputs in the actor part of the actor-critic model. """ env = gym.make(game) assert isinstance(env.action_space, Discrete) return env.action_space.n
[]
2024-01-10
par-tec/hackathon-2023
submissions~aeropolis~challenge-2~hacka_challenge2.py
import os import openai #Note: This code sample requires OpenAI Python library version 0.28.1 or lower def chat_ai(prompt: str, chat_content: str = "You are an AI assistant that helps people find information.", temp: float = 0.7, stop_word: str = None, my_engine: str = "GPT"): """ execute LLM interaction using a prompt and applying a role to the AI assistant. The prompt contains the following elements: - request: the request to the AI (e.g., "Tell me what is the meaning of life, based to the below considerations:") - text: the text to analyze (e.g., "Life is a wonderful not one-way journey. It is a journey that we can enjoy only if we are able to understand the meaning of life.") """ # set openai configuration openai.api_type = "azure" openai.api_base = "https://hacka1.openai.azure.com/" openai.api_version = "2023-07-01-preview" openai.api_key = os.getenv("OPENAI_API_KEY") eng = "parGPT" mod = None response = openai.ChatCompletion.create( engine = eng, model = mod, messages=[ { "role": "system", "content": chat_content, }, { "role": "user", "content": prompt, }, ], temperature=temp, max_tokens=800, top_p=0.95, frequency_penalty=0, presence_penalty=0, stop=stop_word, ) res = response["choices"][0]["message"]["content"] return res def run_chatbot(eng: str = "GPT"): #Define AI role chatRole = None #the prompt is enough # Define the text of the short story that you want to use as the source of the chatbot text = """ In un mondo immaginario di nome Aeropolis, quando si attraversano le enormi porte di vetro si entra in un mondo di bellezza e meraviglia. Umano: Ciao, chi sei? Chatbot: Sono un assistente AI abitante di Aeropolis. Come posso aiutarti oggi? Umano: """ #define stop condition stop_word = "!STOP!" chat = True # Define the chat history variable chat_history = "" # Start a loop to interact with the chatbot until the stop word is used while chat: # Get the user input user_input = input("Umano: ") if stop_word in user_input: exit() # Append the user input to the chat history chat_history += f"Umano: {user_input}\n" # Generate the chatbot response using the openAI API prompt=f"{text}\n{chat_history}Chatbot:" res = chat_ai(prompt, temp = 1, my_engine = eng) # Append the response text to the chat history chat_history += f"Chatbot: {res}\n" # Print the response text print(f"Chatbot: {res}") return run_chatbot("GPT")
[ "PLACEHOLDER\nPLACEHOLDERChatbot:" ]
2024-01-10
par-tec/hackathon-2023
submissions~aeropolis~challenge-1~hacka_challenge1.py
import os import openai def ask_ai(prompt: str, chat_content: str = "Sei un assistente AI, che aiuta la gente a generare idee", temp: float = 0.7, stop_word: str = "\n\n", my_engine: str = "GPT"): """ execute LLM interaction using a prompt and applying a role to the AI assistant. The prompt contains the following elements: - request: the request to the AI (e.g., "Tell me what is the meaning of life, based to the below considerations:") - text: the text to analyze (e.g., "Life is a wonderful not one-way journey. It is a journey that we can enjoy only if we are able to understand the meaning of life.") """ # set openai configuration openai.api_type = "azure" openai.api_base = "https://saopenai.openai.azure.com/" openai.api_version = "2023-07-01-preview" #set api key from environment variable openai.api_key = os.getenv("OPENAI_API_KEY") eng = "saGPT" mod = None if my_engine == "LLAMA": # LLAMA openai.api_type = "open_ai" openai.api_base = "http://51.159.159.233:3001/v1" openai.api_version = "" eng = None mod = "/models/llama-2-13b-chat.bin" response = openai.ChatCompletion.create( engine = eng, model = mod, messages=[ { "role": "system", "content": chat_content, }, { "role": "user", "content": prompt, }, ], temperature=temp, max_tokens=800, top_p=0.95, frequency_penalty=0, presence_penalty=0, stop=stop_word, ) res = response["choices"][0]["message"]["content"] return res def generate_ideas(eng: str = "GPT", style = "Le idee generate devono evocare emozioni positive ed essere divertenti"): #Define AI role chatRole = "Sei un assistente AI, che aiuta la gente a generare idee" # Define the text of the short story that you want to use as the source to generate ideas text = f"""Genera delle idee in breve frasi che userò per scrivere un racconto fantastico che parla del Mastro di Chiavi, custode di Aeropolis e possessore delle chiavi per aprire la cupola di vetro che protegge Aeropolis, la città sospesa tra le nuovole. Il suo grande amico è il Cuoco che cerca di rubargli le chiavi ma non ci riesce mai. {style} Esempi di idee: 1. Il Mastro di Chiavi è un uomo misterioso, con un'aura sinistra che fa tremare le ossa a chiunque gli si avvicini troppo. 2. Il Mastro di Chiavi custodisce un segreto antico che potrebbe cambiare il destino di Aeropolis per sempre. Il Cuoco vorrebbe tanto scoprire questo segreto. Idee suggerite: 1. """ ideas = ask_ai(text) print(f"--------------idee:\n {ideas}") return generate_ideas("GPT", style = "Le idee generate devono evocare emozioni positive ed essere divertenti")
[]
2024-01-10
joseph-crowley/image-grid-vision
vision_reader.py
import base64 import json from openai import OpenAI from PIL import Image from setup_logger import setup_logger class VisionReader: def __init__(self, grid_shape=None, logger=None): """ Initialize the VisionReader object. :param grid_shape: Tuple specifying the grid shape (rows, cols). Defaults to (10, 1). :param logger: Logger object for logging messages. If None, a default logger is set up. """ self.client = OpenAI() self.grid_shape = grid_shape or (10, 1) self.instructions = "Reply with a json object where the values are just the digits read out from the image. The readings are in format with numerical digits, and a sign indication for negative. Example reading: \"X.XXX nA\" where X is a digit 0-9. example response json: {\"row0col0\": \"0.000\", \"row1col0\": \"0.000\", ...}." self.logger = logger or setup_logger('logs/vision_reader.log') self.logger.info(f"Initialized VisionReader with grid shape {self.grid_shape}") def encode_image(self, image_path): """ Encode an image to base64 format. :param image_path: Path to the image file. :return: Base64 encoded string of the image. :raises: Exception if the image cannot be opened or encoded. """ try: with open(image_path, "rb") as image_file: encoded_image = base64.b64encode(image_file.read()).decode('utf-8') self.logger.debug(f"Encoded image {image_path} to base64") return encoded_image except Exception as e: self.logger.error(f"Error encoding image {image_path}: {e}") raise def read_image_grid(self, query, image_path): """ Send a query to the OpenAI API with an image and retrieve the response. :param query: Query text to be sent along with the image. :param image_path: Path to the image to be processed. :return: Response from the OpenAI API. :raises: Exception if there's an issue in sending the query or processing the response. """ base64_image = self.encode_image(image_path) kwargs = { "model": "gpt-4-vision-preview", "messages": [ { "role": "system", "content": [ { "type": "text", "text": self.instructions + f" The image is a {self.grid_shape[0]}x{self.grid_shape[1]} grid. Reply with a the json object for every reading in the grid." } ] }, { "role": "user", "content": [ { "type": "text", "text": query }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}", } } ] } ], "max_tokens": 3000, } try: response = self.client.chat.completions.create(**kwargs) self.logger.info(f"Received response from OpenAI for image {image_path}") return response except Exception as e: self.logger.error(f"Error in read_image_grid for {image_path}: {e}") raise def parse_image(self, image_path): """ Parse the OpenAI API response to extract readings data. :param image_path: Path to the image to be parsed. :return: Parsed content from the GPT response. :raises: Exception if there's an error in parsing or processing the response. """ try: response = self.read_image_grid("What are the current readings for all panels?", image_path) if response is None: self.logger.error(f"No response received for image {image_path}") return None self.logger.debug(f"Response: {response}") content = response.choices[0].message.content cost = response.usage.completion_tokens * 0.03/1000 + response.usage.prompt_tokens * 0.01/1000 self.logger.info(f"Cost: ${cost} for image {image_path}") self.logger.info(f"Cost per reading: ${cost / (self.grid_shape[0] * self.grid_shape[1])} for image {image_path}") # try to remove the code block for line in content.splitlines(): if line.startswith("```"): self.logger.debug("Found code block in vision run response, removing it.") content = content.replace(line, "") parsed_content = json.loads(content) self.logger.info(f"Parsed content from image {image_path}") self.logger.debug(f"Content: {parsed_content}") return parsed_content, cost except Exception as e: self.logger.error(f"Error in parse_image for {image_path}: {e}") raise def get_image_size(self, image_path): """ Get the dimensions of an image. :param image_path: Path to the image file. :return: Size of the image (width, height). :raises: Exception if the image cannot be opened or read. """ try: with Image.open(image_path) as img: size = img.size self.logger.debug(f"Got image size {size} for {image_path}") return size except Exception as e: self.logger.error(f"Error getting image size for {image_path}: {e}") raise def calculate_cost(self, image_path, detail='low'): """ Calculate the token cost of an image based on its dimensions and detail level. Based on the pricing for the GPT-4 API: https://platform.openai.com/docs/guides/vision/calculating-costs https://openai.com/pricing input tokens: 0.01 USD per 1000 tokens output tokens: 0.03 USD per 1000 tokens :param width: Width of the image in pixels. :param height: Height of the image in pixels. :param detail: Detail level of the image ('low' or 'high'). :return: Total token cost for the image. """ if detail == 'low': return 85 width, height = self.get_image_size(image_path) # For high detail images # Resize if necessary if width > 2048 or height > 2048: aspect_ratio = width / height if width > height: width = 2048 height = int(width / aspect_ratio) else: height = 2048 width = int(height * aspect_ratio) # Scale to shortest side 768px aspect_ratio = width / height if width < height: width = 768 height = int(width / aspect_ratio) else: height = 768 width = int(height * aspect_ratio) # Calculate number of 512px squares num_squares = (width // 512 + (1 if width % 512 != 0 else 0)) * \ (height // 512 + (1 if height % 512 != 0 else 0)) # Calculate final cost return 170 * num_squares + 85
[ "[{'type': 'text', 'text': PLACEHOLDER}, {'type': 'image_url', 'image_url': {'url': ''}}]" ]
2024-01-10
mdr5002/langchain-hub
ci_scripts~file-check.py
from pathlib import Path from langchain.prompts import load_prompt BASE_FOLDER = Path("prompts") folders = BASE_FOLDER.glob("**") def check_files(files): file_names = [f.name for f in files] if "README.md" not in file_names: raise ValueError(f"Expected to find a README.md file, but found {files}") other_files = [file for file in files if file.name != "README.md"] for other_file in other_files: if other_file.suffix in (".json", ".yaml"): load_prompt(other_file) # TODO: testing for python files def check_all_folders(): for folder in folders: folder_path = Path(folder) files = [x for x in folder_path.iterdir() if x.is_file()] if len(files) > 0: try: check_files(files) except Exception as e: raise ValueError(f"Found error with {folder}: {e}") if __name__ == "__main__": check_all_folders()
[]
2024-01-10
pjm4github/DOE-code
gov_pnnl_goss~cimhub~CIM~buildCIMClass.py
import re import json import os import time from openai import OpenAI from rdf_converter import build_init_struct # Replace 'YOUR_API_KEY' (as an ENV variable) with your actual GPT-3 API key from pathlib import Path class GptCodeConverter(): MODEL_CHOICE_1 = "gpt-3.5-turbo-1106" MODEL_CHOICE_2 = "code-davinci-002", MODEL_CHOICE_3 = "gpt-3.5-turbo", # max_tokens=500, # Adjust as needed # temperature=0.7 # Adjust the temperature for creativity MAX_TOKENS = 10000 # Maximum number of tokens that can be used with the OPENAI model (model dependant) def __init__(self, language="Java", model=MODEL_CHOICE_1): self.client = OpenAI( # defaults to os.environ.get("OPENAI_API_KEY") # api_key=api_key, ) self.model_name = model self.language = language self.results = '' self.system_instructions = """Create an example rdf model of the given CIM type using only the rdf, rdfs and cim schemas using the Common Information Model (CIM) prepared by the Technical Committee 57 of the IEC as a reference""" def create_rdf(self, instructions): """ Convert the given code snippet using GPT-3. """ # Call the GPT-3 API to generate the converted code try: chat_completion = self.client.chat.completions.create( messages=[ { "role": "system", "content": self.system_instructions }, { "role": "user", "content": instructions } ], model=self.model_name, ) # Extract and return the generated code from the response results = chat_completion.choices[0].message.content except Exception as e: print(e) results = '' self.results = results if __name__ == "__main__": directory_path = f"{os.path.expanduser('~')}/Documents/Git/GitHub/GOSS-GridAPPS-D-PYTHON/gov_pnnl_goss/cimhub/CIM/" current_time = int(time.time()) cim_types = "CIMtypes.txt" converter = GptCodeConverter("RDF") rdf_failcount = 0 rdf_fail_files = [] json_failcount = 0 json_fail_files = [] Path(directory_path).mkdir(parents=True, exist_ok=True) with open(directory_path + cim_types, 'r') as f: lines = f.readlines() for line in lines: cim_type = line.strip() instructions = f'Create a complex example rdf model of a {cim_type} CIM object without using xml. Make sure all rdf triples have a cim prefix.' print(f"Building an example rdf file for {cim_type}") converter.create_rdf(instructions) results = converter.results # clean up the results here resultant_lines = results.split('\n') clean_lines = [] enclosure = False for r in resultant_lines: if enclosure and r.find("```") == 0: enclosure = False break if enclosure: # regexp to remove all these # line = line.replace("^^xsd:boolean", "").replace("^^xsd:float","").replace("^^xsd:int", "").\ # replace("^^xsd:complex", "").replace("^^xsd:integer", "").replace("^^xsd:double", "").\ # replace("^^xsd:string", "").replace("^^xsd:dateTime", "") # .replace("rdf:type", "a")) # new_lines.append(line.replace("^^rdf:boolean", "").replace("^^rdf:float",""). # replace("^^rdf:int", "").replace("^^rdf:complex", "").replace("^^rdf:integer", ""). # replace("^^rdf:double", "").replace("^^rdf:string", "")) # .replace("rdf:type", "a")) r2 = re.sub(r"""(\^\^[a-zA-Z0-9]*)\:([a-zA-Z0-0]*)""", "", r) if r2.find("@en")>0: r3 = r2.replace("@en", "") else: r3 = r2 clean_lines.append(r3) if not enclosure and r.find("```") == 0: enclosure = True clean_results = '\n'.join(clean_lines) rdf_directory_path = f"{directory_path}rdf/" Path(rdf_directory_path).mkdir(parents=True, exist_ok=True) output_filename = f"{rdf_directory_path}{cim_type}{current_time}.rdf" try: with open(output_filename, 'w') as f2: f2.write(clean_results) except UnicodeEncodeError as e: rdf_failcount += 1 print(e) struct_dict = {} json_text = "{}" try: json_directory_path = f"{directory_path}json/" Path(json_directory_path).mkdir(parents=True, exist_ok=True) output_filename = f"{json_directory_path}{cim_type}{current_time}.json" struct_dict = build_init_struct(cim_type, clean_results) json_text = json.dumps(struct_dict, indent=2) except Exception as e: print(f">>>>>>>>>> Structure build/ json.dumps failed {cim_type} error: {e}") json_failcount += 1 json_fail_files.append(cim_type) with open(output_filename, 'w') as f2: f2.write(json_text) pjson = f"@startjson\n{json_text}\n@endjson\n" # Use this file name to output a non timestamped version of the CIM model. output_filename = f"{directory_path}puml/{cim_type}.puml" # output_filename = f"{directory_path}puml/{cim_type}{current_time}.puml" with open(output_filename, 'w') as f2: f2.write(pjson) print(f"RDF fails: {rdf_failcount}, JSON fails: {json_failcount}") with open(f"{directory_path}/failed_conversions.txt", 'w') as f: for line in json_fail_files: f.write(line)
[]
2024-01-10
pjm4github/DOE-code
GPT~gptJava2Python.py
""" This module converts javacode to python code """ import codecs import os from openai import OpenAI # Replace 'YOUR_API_KEY' (as an ENV variable) with your actual GPT-3 API key import urllib.parse import re client = OpenAI( # defaults to os.environ.get("OPENAI_API_KEY") # api_key=api_key, ) MODEL_NAME = "gpt-3.5-turbo-1106" def remove_multiline_comments(code): """ Removes all multiline comments from the given code. """ # Create a regular expression that matches multiline comments. comment_regex = re.compile(r'/\*(?:[^*]+|\*(?!/)|[^*])*\*/') # Remove all multiline comments from the code. return comment_regex.sub('', code) def remove_block_comments(code): """ Removes all block comments from Java code. block comments are start with // Args: code: The Java code to remove comments from. Returns: The Java code with all comments removed. """ # Create a regular expression to match block comments. pattern = re.compile(r'/\*.*?\*/') # Remove all block comments from the code. return re.sub(pattern, '', code) def convert_code(code_snippet): """ Convert the given code snippet using GPT-3. """ # Call the GPT-3 API to generate the converted code try: chat_completion = client.chat.completions.create( messages=[ { "role": "system", "content": "Given the Java class, convert that code to python keeping the comments, using snake_case methods and local imports. Keep the class name CamelCase," }, { "role": "user", "content": code_snippet } ], model=MODEL_NAME, # model="code-davinci-002", # model="gpt-3.5-turbo", # max_tokens=500, # Adjust as needed # temperature=0.7 # Adjust the temperature for creativity ) # Extract and return the generated code from the response converted_code = chat_completion.choices[0].message.content except Exception as e: converted_code = '' return converted_code MAX_TOKENS = 10000 # Maximum number of tokens that can be used with the OPENAI model (model dependant) if __name__ == "__main__": # directory_path = f"{os.path.expanduser('~')}/Documents/Git/GitHub/GOSS-GridAPPS-D-PYTHON/gov_pnnl_goss/gridappsd/dto/field/" subdir = """/Documents/Git/GitHub/GOSS-GridAPPS-D-PYTHON/CIM_STD_PYTHON/TC57CIM/IEC61968/Common/""" directory_path = f"{os.path.expanduser('~')}{subdir}" directory_path += '/' if not directory_path.endswith('/') else "" try: for filename in os.listdir(directory_path): if filename.endswith(".java"): file_path = os.path.join(directory_path, filename) if os.path.isfile(file_path): print(f"#################################################\nOpening {filename} for conversion") file_size = os.path.getsize(file_path) with open(directory_path + filename, 'r') as file: code = file.readlines() # remove all imports here REMOVE_IMPORTS = False if REMOVE_IMPORTS: clean_code = [] for line in code: if not line.find('import') == 0: clean_code.append(line) else: clean_code = code # create a blob of code code_string = '\n'.join(clean_code) # remove comments if file_size > MAX_TOKENS: code_string = remove_block_comments(code_string) code_string = remove_multiline_comments(code_string) print(f"File: {filename}, Orig size: {file_size}, cleaned size: {len(code_string)} (bytes)") # URL-encode the text try: code_string.encode('ascii') except UnicodeEncodeError: print("... Removing non ascii characters") code_string = ''.join([i if ord(i) < 128 else ' ' for i in code_string]) # raise ValueError('code is not ASCII') encoded_text = urllib.parse.quote(code_string) converted_code = convert_code(encoded_text) if converted_code: # get rid of the leading and trailing python quoting converted_code = converted_code.replace("```python", f"# Converted by an OPENAI API call using model: {MODEL_NAME}") converted_code = converted_code[:-3] if converted_code[-3:] == "```" else converted_code output_filename = directory_path + filename.replace('java', 'py') print(f"{output_filename} written") with open(output_filename, 'w') as f: f.write(converted_code) # print(converted_code) else: print(f"{filename} conversion failed") except FileNotFoundError: print(f"Directory '{directory_path}' not found.") except Exception as e: print(f"An error occurred: {str(e)}")
[ "Given the Java class, convert that code to python keeping the comments, using snake_case methods and local imports. Keep the class name CamelCase," ]
2024-01-10
pjm4github/DOE-code
gov_pnnl_goss~gridappsd~configuration~VnomExportConfigurationHandler.py
# Converted by an OPENAI API call using model: gpt-3.5-turbo-1106 import logging import io import os import subprocess from openai.resources import Files from gov_pnnl_goss.SpecialClasses import File from gov_pnnl_goss.gridappsd.api.ConfigurationHandler import ConfigurationHandler from gov_pnnl_goss.gridappsd.api.ConfigurationManager import ConfigurationManager from gov_pnnl_goss.gridappsd.api.LogManager import LogManager from gov_pnnl_goss.gridappsd.api.PowergridModelDataManager import PowergridModelDataManager from gov_pnnl_goss.gridappsd.api.SimulationManager import SimulationManager from gov_pnnl_goss.gridappsd.configuration.CIMDictionaryConfigurationHandler import PrintWriter from gov_pnnl_goss.gridappsd.configuration.DSSAllConfigurationHandler import DSSAllConfigurationHandler from gov_pnnl_goss.gridappsd.dto.LogMessage import ProcessStatus from gov_pnnl_goss.gridappsd.dto.YBusExportResponse import YBusExportResponse from gov_pnnl_goss.gridappsd.utils.GridAppsDConstants import GridAppsDConstants class VnomExportConfigurationHandler(ConfigurationHandler): TYPENAME = "Vnom Export" SIMULATIONID = "simulation_id" DIRECTORY = "directory" MODELID = "model_id" ZFRACTION = "z_fraction" IFRACTION = "i_fraction" PFRACTION = "p_fraction" SCHEDULENAME = "schedule_name" LOADSCALINGFACTOR = "load_scaling_factor" def __init__(self, log_manager: LogManager = None): self.logger = log_manager self.log = LogManager(VnomExportConfigurationHandler.__class__.__name__) self.power_grid_model_data_manager = PowergridModelDataManager() self.config_manager = ConfigurationManager() # config_manager self.simulation_manager = SimulationManager() def start(self): if self.config_manager is not None: self.config_manager.register_configuration_handler("Vnom Export", self) else: # TODO send log message and exception self.log.warn("No Config manager available for " + self.__class__.__name__) def generate_config(self, parameters: dict, out: io.FileIO, process_id, username): simulation_id = parameters.get("simulation_id") model_id = None simulation_dir = None if simulation_id: simulation_context = self.simulation_manager.get_simulation_context_for_id(simulation_id) parameters["i_fraction"] = str(simulation_context.get_request().get_simulation_config().get_model_creation_config().get_i_fraction()) parameters["z_fraction"] = str(simulation_context.get_request().get_simulation_config().get_model_creation_config().get_z_fraction()) parameters["p_fraction"] = str(simulation_context.get_request().get_simulation_config().get_model_creation_config().get_p_fraction()) parameters["load_scaling_factor"] = str(simulation_context.get_request().get_simulation_config().get_model_creation_config().get_load_scaling_factor()) parameters["schedule_name"] = simulation_context.get_request().get_simulation_config().get_model_creation_config().get_schedule_name() parameters["model_id"] = simulation_context.get_request().get_power_system_config().get_line_name() parameters["directory"] = simulation_context.get_simulation_dir() parameters["simulation_start_time"] = simulation_context.get_request().get_simulation_config().get_start_time() parameters["simulation_duration"] = simulation_context.get_request().get_simulation_config().get_duration() simulation_dir = File(simulation_context.get_simulation_dir()) else: model_id = GridAppsDConstants.get_string_property(parameters, "model_id", None) simulation_id = process_id if model_id is None: raise Exception("Model Id or simulation Id not provided in request parameters.") simulation_dir = File(self.config_manager.get_configuration_property(GridAppsDConstants.GRIDAPPSD_TEMP_PATH), "models/" + model_id) parameters["i_fraction"] = GridAppsDConstants.get_double_property(parameters.get("i_fraction", 0)) parameters["z_fraction"] = GridAppsDConstants.get_double_property(parameters.get("z_fraction", 0)) parameters["p_fraction"] = GridAppsDConstants.get_double_property(parameters.get("p_fraction", 0)) parameters["load_scaling_factor"] = GridAppsDConstants.get_double_property(parameters.get("load_scaling_factor", 1)) parameters["schedule_name"] = GridAppsDConstants.get_string_property(parameters.get("schedule_name", "")) parameters["model_id"] = model_id parameters["directory"] = simulation_dir command_file = File(simulation_dir, "opendsscmdInput.txt") dss_base_file = File(simulation_dir, "model_base.dss") for key in parameters: self.log.debug(key + " = " + parameters.get(key)) self.logger.debug(ProcessStatus.RUNNING, simulation_id, "Generating DSS base file") base_print_writer = PrintWriter(io.StringWriter()) base_configuration_handler = DSSAllConfigurationHandler(self.logger, self.simulation_manager, self.config_manager) base_configuration_handler.generate_config(parameters, base_print_writer, simulation_id, username) if not dss_base_file.exists(): raise Exception("Error: Could not create DSS base file to export Vnom matrix") self.logger.debug(ProcessStatus.RUNNING, simulation_id, "Finished generating DSS base file") self.logger.debug(ProcessStatus.RUNNING, simulation_id, "Generating commands file for opendsscmd") with open(command_file, "w") as file_writer: file_writer.write("redirect model_base.dss\n") file_writer.write("batchedit transformer..* wdg=2 tap=1\n") file_writer.write("batchedit regcontrol..* enabled=false\n") file_writer.write("batchedit isource..* enabled=false\n") file_writer.write("batchedit vsource..* pu=1.0\n") file_writer.write("batchedit load..* enabled=false\n") file_writer.write("batchedit generator..* enabled=false\n") file_writer.write("batchedit pvsystem..* enabled=false\n") file_writer.write("batchedit storage..* enabled=false\n") file_writer.write("batchedit capacitor..* enabled=false\n") file_writer.write("solve\n") file_writer.write("export voltages base_voltages.csv\n") self.logger.debug(ProcessStatus.RUNNING, simulation_id, "Finished generating commands file for opendsscmd") self.logger.debug(ProcessStatus.RUNNING, simulation_id, "Generating Y Bus matrix") process_service_builder = subprocess.Popen("opendsscmd " + command_file.getName(), cwd=simulation_dir, shell=True, stdout=subprocess.PIPE) process_service_builder.start() process_service_builder.wait(10) response = YBusExportResponse() vnom_path = File(os.path.abspath(simulation_dir), "base_voltages.csv") with open(vnom_path, 'r') as f: lines = f.readlines() response.set_vnom(lines) self.logger.debug(ProcessStatus.RUNNING, simulation_id, "Finished generating Vnom export") out.write(response)
[]
2024-01-10
pjm4github/DOE-code
GPT~gptJava2PythonEA_CIM.py
""" This module converts javacode to python code """ import codecs import os from datetime import datetime from pathlib import Path from openai import OpenAI # Replace 'YOUR_API_KEY' (as an ENV variable) with your actual GPT-3 API key import urllib.parse import re client = OpenAI( # defaults to os.environ.get("OPENAI_API_KEY") # api_key=api_key, ) MODEL_NAME = "gpt-3.5-turbo-1106" def remove_multiline_comments(code): """ Removes all multiline comments from the given code. """ # Create a regular expression that matches multiline comments. comment_regex = re.compile(r'/\*(?:[^*]+|\*(?!/)|[^*])*\*/') # Remove all multiline comments from the code. return comment_regex.sub('', code) def remove_block_comments(code): """ Removes all block comments from Java code. block comments are start with // Args: code: The Java code to remove comments from. Returns: The Java code with all comments removed. """ # Create a regular expression to match block comments. pattern = re.compile(r'/\*.*?\*/') # Remove all block comments from the code. return re.sub(pattern, '', code) def convert_code(code_snippet): """ Convert the given code snippet using GPT-3. """ # Call the GPT-3 API to generate the converted code try: chat_completion = client.chat.completions.create( messages=[ { "role": "system", "content": "Given the Java class, convert that code to python, using snake_case methods and local imports, include the original comments, and add python typing to the python class assuming that the Java class type " "is also availible as a Python library. Keep the class name CamelCase." }, { "role": "user", "content": code_snippet } ], model=MODEL_NAME, # model="code-davinci-002", # model="gpt-3.5-turbo", # max_tokens=500, # Adjust as needed # temperature=0.7 # Adjust the temperature for creativity ) # Extract and return the generated code from the response converted_code = chat_completion.choices[0].message.content except Exception as e: converted_code = '' return converted_code MAX_TOKENS = 10000 # Maximum number of tokens that can be used with the OPENAI model (model dependant) if __name__ == "__main__": # lots of hand-crafting here needed to work through each subdirectory under Base directory_path = f"{os.path.expanduser('~')}/Documents/Git/GitHub/GOSS-GridAPPS-D-PYTHON/" \ f"CIM_STD_JAVA/TC57CIM/IEC61970/Base/Topology/" output_path = f"{directory_path}/Converted/" try: starting_time = datetime.ctime(datetime.now()) for filename in os.listdir(directory_path): if filename.endswith(".java"): file_path = os.path.join(directory_path, filename) if os.path.isfile(file_path): print(f"#################################################\nOpening {filename} for conversion") file_size = os.path.getsize(file_path) with open(directory_path + filename, 'r') as file: code = file.readlines() # remove all imports here REMOVE_IMPORTS = True if REMOVE_IMPORTS: clean_code = [] for line in code: if not line.find('import') == 0: clean_code.append(line) else: clean_code = code # create a blob of code code_string = '\n'.join(clean_code) # remove comments if file_size > MAX_TOKENS: code_string = remove_block_comments(code_string) code_string = remove_multiline_comments(code_string) print(f"File: {filename}, Orig size: {file_size}, cleaned size: {len(code_string)} (bytes)") # URL-encode the text try: code_string.encode('ascii', 'ignore') except UnicodeDecodeError: raise ValueError('code is not ASCII') encoded_text = urllib.parse.quote(code_string) converted_code = convert_code(encoded_text) if converted_code: # get rid of the leading and trailing python quoting converted_code = converted_code.replace("```python", f"# Converted by an OPENAI API call using model: {MODEL_NAME} on {starting_time}") converted_code = converted_code[:-3] if converted_code[-3:] == "```" else converted_code converted_code = converted_code.replace("```", '"""') new_filename = filename.replace('java', 'py') output_filename = output_path + new_filename print(f"Done with {new_filename}: {output_filename}") Path(output_path).mkdir(parents=True, exist_ok=True) with open(output_filename, 'w') as f: f.write(converted_code) # print(converted_code) else: print(f"{filename} conversion failed") except FileNotFoundError: print(f"Directory '{directory_path}' not found.") except Exception as e: print(f"An error occurred: {str(e)}")
[ "Given the Java class, convert that code to python, using snake_case methods and local imports, include the original comments, and add python typing to the python class assuming that the Java class type is also availible as a Python library. Keep the class name CamelCase." ]
2024-01-10
pjm4github/DOE-code
GPT~gptC2Python.py
import re import codecs import os import time from openai import OpenAI # Replace 'YOUR_API_KEY' (as an ENV variable) with your actual GPT-3 API key import urllib.parse import re def remove_multiline_comments(code): """ Removes all multiline comments from the given code. all block comments (enclosed by /* and */) from a C++ file are removed """ cleaned_code = re.sub(r'/\*.*?\*/', '', code, flags=re.DOTALL) # Remove all multiline comments from the code. return cleaned_code def remove_single_line_comments(input_code): """ Removes all block comments from Java code. block comments are start with // Args: code: The Java code to remove comments from. Returns: The Java code with all comments removed. """ # Use regular expression to remove // comments cleaned_code = re.sub(r'//.*', '', input_code) # Remove all block comments from the code. return cleaned_code class GptCodeConverter(): MODEL_CHOICE_1 = "gpt-3.5-turbo-1106" MODEL_CHOICE_2 = "code-davinci-002", MODEL_CHOICE_3 = "gpt-3.5-turbo", # max_tokens=500, # Adjust as needed # temperature=0.7 # Adjust the temperature for creativity MAX_TOKENS = 10000 # Maximum number of tokens that can be used with the OPENAI model (model dependant) def __init__(self, language="Java", model=MODEL_CHOICE_1): self.client = OpenAI( # defaults to os.environ.get("OPENAI_API_KEY") # api_key=api_key, ) self.model_name = model self.language = language self.setup_instructions = f"Given this {language} code class convert it to python using snake_case methods names. Keep the class names in CamelCase." self.add_function_instructions = f"Given this {language} function function convert it to python using snake_case function names." self.add_class_instructions = f"Given this class convert that code to python using snake_case method names." def convert_code(self, code_snippet, instructions): """ Convert the given code snippet using GPT-3. """ # Call the GPT-3 API to generate the converted code try: chat_completion = self.client.chat.completions.create( messages=[ { "role": "system", "content": instructions }, { "role": "user", "content": code_snippet } ], model=self.model_name, ) # Extract and return the generated code from the response converted_code = chat_completion.choices[0].message.content except Exception as e: print(e) converted_code = '' self.converted_code = converted_code class CCodeParser: def __init__(self, fn=None): self.input_code_filename = fn self.classes = [] self.functions = [] self.c_code = "" self.blanked_code = "" def load_file(self, filename=None): if filename: self.input_code_filename = filename print(f"\n\n################################\nLOADING FILE {self.input_code_filename}") with open(self.input_code_filename, 'r') as file: self.c_code = file.read() self.blanked_code = self.c_code def un_load_file(self): self.input_code_filename = None self.classes = [] self.functions = [] self.c_code = "" self.blanked_code = "" def dump_classes(self, full=False): for c in self.classes: return_type = c["Return"] + " " if c["Return"] else "" s = f'{return_type}{c["Class"]}::{c["Method"]}' if full: s +=f'({c["Arguments"]})\n{{{c["Body"]}}}\n' print(s) def dump_functions(self, full=False): for g in self.functions: if g["Function"] and g["Function"] not in ['if', 'for', 'while']: # hack s = f'{g["Return"]} {g["Function"]}' if full: s += f'({g["Arguments"]})\n{{{g["Body"]}}}\n' print(s) def snarf_classes(self): print("SCANNING for CLASSES...") test = self.c_code pattern = r"""((?P<return_type>\w+)\s+)*(?P<class_name>\w+)::(?P<method_name>\w+)\((?P<arguments>[^)]*)\)\s*{""" max_len = len(self.c_code) # Find all matches of the pattern in the source code matches = re.finditer(pattern, self.c_code) for m in matches: span = m.span() # Now walk forward in the code and match the braces until the braces are balanced to find the end of the method body # test_code = self.c_code[span[2]:] brace_count = 1 # We start with 1 since that's already included in the span method_end = span[1] ############################# # CLASS SCANNER while brace_count: if method_end >= max_len: print(f"something went wrong with the class scanner, skipping {m.group('class_name')}::{m.group('method_name')},") break test_char = self.c_code[method_end] # need to qualify the characters to make sure that they are not escaped if test_char == "{": brace_count += 1 elif test_char == "}": brace_count -= 1 method_end += 1 if method_end >= max_len: continue method_body = self.c_code[span[1]: method_end-1] # does not include the opening and closing braces class_dict = {"Return": m.group('return_type'), "Class": m.group('class_name'), "Method": m.group('method_name'), "Arguments": m.group('arguments'), "Body": method_body, "BodySpan": (span[1], method_end-1)} self.classes.append(class_dict) # # pattern = r"""((?P<return_type>\w+)\s+)*(?P<class_name>\w+)::(?P<method_name>\w+)\((?P<arguments>[^)]*)\)\s*{(?P<method_body>(?:[^{}]*\{[^{}]*\})*[^{}]*)}""" # # pattern = r"""\s*(?P<return_type>\w+)\s+(?P<class_name>\w+)::(?P<method_name>\w+)\((?P<arguments>[^)]*)\)\s*{(?P<method_body>(?:[^{}]*|{(?:[^{}]*|{(?:[^{}]*|{[^{}]*})*})*})*})""" # pattern = r"""((?P<return_type>\w+)\s+)*(?P<class_name>\w+)::(?P<method_name>\w+)\((?P<arguments>[^)]*)\)\s*{(?P<method_body>(?:[^{}]*|{(?:[^{}]*|{(?:[^{}]*|{[^{}]*})*})*})*)}""" # p_compile = re.compile(pattern, re.MULTILINE) # matches = p_compile.finditer(self.c_code) # # matches = re.finditer(pattern, self.c_code, re.MULTILINE) # # for match in matches: # # For each of the matches, capture_span holds the span of the body match for that class. # # This is used to postprocess the file and remove the class body to produce only a skeleton version # # of the code that will be sent to Open.AI for conversion into python. # # The trick is to find the body closest to the point after the class declaration because some class bodies # # will match everything (e.g. and empty class body) # print(f"len={len(self.c_code)}, {match.span()}, CLASS: {match.group('class_name')}::{match.group('method_name')}") # capture_span = None # # sb = re.finditer(re.escape(match.group('method_body').strip()), self.c_code, re.MULTILINE) # body_spans = [] # for m in sb: # body_spans.append(m.span()) # # se = re.finditer(re.escape(match.group('method_name') + "(" + match.group('arguments') + ")"), # self.c_code, re.MULTILINE) # class_spans = [] # for m in se: # class_spans.append(m.span()) # # Find the location of the body span that is closest to the end of the class_span # if len(class_spans) == 1: # Only do this if there is one matching class otherwise it may be wrong. # cse = class_spans[0][1] # # for body_span in body_spans: # if body_span[0] > cse: # capture_span = body_span # break # # Assemble the class structure # class_dict = {"Return": match.group('return_type'), # "Class": match.group('class_name'), # "Method": match.group('method_name'), # "Arguments": match.group('arguments'), # "Body": match.group('method_body'), # "BodySpan": capture_span} # self.classes.append(class_dict) # this is how to replace the code with spaces print("... DONE SCANNING for CLASSES") for c in self.classes: span = c.get("BodySpan", None) if span: start_pos = span[0] end_pos = span[1] self.blanked_code = self.blanked_code[:start_pos] + ' ' * (end_pos - start_pos) + self.blanked_code[ end_pos:] def snarf_function(self): print("SCANNING for FUNCTIONS ... ") test = self.c_code pattern = r"""(?P<return_type>\w+)\s+(?P<function_name>[A-Za-z0-9_*]*)\((?P<arguments>[^)]*)\)\s*{(?P<function_body>(?:[^{}]*\{[^{}]*\})*[^{}]*)}""" matches = re.finditer(pattern, test) for match in matches: if match.group('function_name') and match.group('function_name') in ['if', 'for', 'while']: # hack break # skip over the if, for and while statemenst that are captured by the regexp pattern above print(f"len={len(self.c_code)}, {match.span()}, FUNCTION: {match.group('function_name')}") capture_span = None sb = re.finditer(re.escape(match.group('function_body').strip()), self.c_code, re.MULTILINE) body_spans = [] for m in sb: body_spans.append(m.span()) se = re.finditer(re.escape(match.group('function_name') + "(" + match.group('arguments') + ")"), self.c_code, re.MULTILINE) function_spans = [] for m in se: function_spans.append(m.span()) # Find the location of the body span that is closest to the end of the class_span if len(function_spans) == 1: # Only do this if there is one matching class otherwise it may be wrong. cse = function_spans[0][1] for body_span in body_spans: if body_span[0] > cse: capture_span = body_span break self.functions.append({"Return": match.group('return_type'), "Function": match.group('function_name'), "Arguments": match.group('arguments'), "Body": match.group('function_body'), "BodySpan": capture_span}) print("... DONE SCANNING for FUNCTIONS") # this is how to replace the code with spaces for f in self.functions: span = f.get("BodySpan", None) if span: start_pos = span[0] end_pos = span[1] self.blanked_code = self.blanked_code[:start_pos] + ' ' * (end_pos - start_pos) + self.blanked_code[end_pos:] def parse(self): print("Snarfing classes") self.snarf_classes() print("Snarfing functions") self.snarf_function() def parse_and_convert(parser, directory_path, filename, current_time): converter = GptCodeConverter("CPP") s = parser.blanked_code # Get rid of all the white space that was inserted. s = '\n'.join(line for line in s.splitlines() if line.strip()) print("Converting the base class") encoded_text = urllib.parse.quote(s) python_code = "" converter.convert_code(encoded_text, converter.setup_instructions) python_snip = converter.converted_code if python_snip: # get rid of the leading and trailing python quoting converted_code = python_snip.replace("```python", f"# Converted by an OPENAI API call using model: {converter.model_name}") converted_code = converted_code[:-3] if converted_code[-3:] == "```" else converted_code python_code += "\n\n" + converted_code # print(converted_code) else: print(f"{filename} blank conversion failed") for g in parser.functions: if g["Function"] is None : continue if isinstance(g["Function"], str): if g["Function"].strip() == "": print(" skipping an empty function") continue print(f'Converting a function: {g["Function"]}') s = f'{g["Return"]} {g["Function"]}({g["Arguments"]})\n' \ f'{{{g["Body"]}}}\n' # remove comments if len(s) > GptCodeConverter.MAX_TOKENS: s = remove_single_line_comments(s) s = remove_multiline_comments(s) encoded_text = urllib.parse.quote(s) converter.convert_code(s, converter.add_function_instructions) python_snip = converter.converted_code if python_snip: # get rid of the leading and trailing python quoting converted_code = python_snip.replace("```python", f"# Converted by an OPENAI API call using model: {converter.model_name}") converted_code = converted_code[:-3] if converted_code[-3:] == "```" else converted_code python_code += "\n\n" + converted_code # print(converted_code) else: print(f"{filename}, {g['Function']} conversion failed") for c in parser.classes: return_type = c["Return"] + " " if c["Return"] else "" s = f'{return_type}{c["Class"]}::{c["Method"]}({c["Arguments"]})\n' \ f'{{{c["Body"]}}}\n' print(f'Converting a class: {c["Class"]}::{c["Method"]}') # encoded_text = urllib.parse.quote(s) converter.convert_code(s, converter.add_class_instructions) python_snip = converter.converted_code if python_snip: # get rid of the leading and trailing python quoting converted_code = python_snip.replace("```", f"# Converted by an OPENAI API call using model: {converter.model_name} ") converted_code = converted_code[:-3] if converted_code[-3:] == "```" else converted_code python_code += "\n\n" + converted_code # print(converted_code) else: print(f"{filename} {c['Class']}::{c['Method']} conversion failed") file_extension = '.py' base_filename = filename.split(".")[0] # Create a unique filename by appending the timestamp to a base filename and file extension output_filename = f"{directory_path}{base_filename}{current_time}{file_extension}" with open(output_filename, 'w') as f: f.write(python_code) print(f"{output_filename} written") def main(path, filename=None): # directory_path = f"{os.path.expanduser('~')}/Documents/Git/GitHub/GOSS-GridAPPS-D-PYTHON/gov_pnnl_goss/gridlab/climate/" # # Get the current timestamp (seconds since the epoch) current_time = int(time.time()) if filename: parser = CCodeParser(path + filename) parser.load_file() parser.parse() print("CLASSES-------------") parser.dump_classes() print("FUNCTIONS-----------") parser.dump_functions() print("\n") parse_and_convert(parser, path, filename, current_time) print(f"converted {len(parser.classes)}: classes and {len(parser.functions)}: functions") print("Done") # filename = "network.cpp" # Replace with your C code file else: parser = CCodeParser() for filename in os.listdir(path): if filename.endswith(".cpp"): file_path = os.path.join(path, filename) if os.path.isfile(file_path): print(f"#################################################\nOpening {filename} for conversion") file_size = os.path.getsize(file_path) parser.load_file(path + filename) # remove all imports here REMOVE_IMPORTS = True if REMOVE_IMPORTS: clean_code = [] for line in parser.c_code.split('\n'): if not line.find('#include') == 0: clean_code.append(line) else: clean_code = parser.c_code.split('\n') # create a blob of code code_string = '\n'.join(clean_code) # remove comments if file_size > GptCodeConverter.MAX_TOKENS: code_string = remove_single_line_comments(code_string) code_string = remove_multiline_comments(code_string) print(f"File: {filename}, Orig size: {file_size}, cleaned size: {len(code_string)} (bytes)") # URL-encode the text # try: # code_string.encode('ascii') # except UnicodeDecodeError: # raise ValueError('code is not ASCII') parser.c_code = code_string parser.blanked_code = code_string parser.parse() print("\n") print("CLASSES-------------") parser.dump_classes() print("\n") print("FUNCTIONS-----------") parser.dump_functions() parse_and_convert(parser, path, filename, current_time) print(f"converted {len(parser.classes)}: classes and {len(parser.functions)}: functions") parser.un_load_file() print("Done") if __name__ == "__main__": directory_path = f"{os.path.expanduser('~')}/Documents/Git/GitHub/GOSS-GridAPPS-D-PYTHON/gov_pnnl_goss/gridlab/gldcore/" main(directory_path)
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~utils~rede_search_detector.py
from typing import List, Optional import numpy as np from langchain.embeddings import OpenAIEmbeddings from langchain.schema.embeddings import Embeddings from sklearn.metrics import precision_score, recall_score, f1_score from sklearn.metrics import roc_curve from sklearn.mixture import GaussianMixture def _normalize_vectors(vectors): return vectors / np.linalg.norm(vectors, axis=1, keepdims=True) class RedeSearchDetector: """ This class is implementation of REDE, the method for detect knowledge-seeking turn in few-shot setting. It contains train function for your custom model, and inference function for detect knowledge-seeking turn. You will need non-knowledge seeking turn dialogues. Plus, it will be great you have few knowledge-seeking turn dialogues. The method is implementation of below paper: @article{jin2021towards, title={Towards zero and few-shot knowledge-seeking turn detection in task-orientated dialogue systems}, author={Jin, Di and Gao, Shuyang and Kim, Seokhwan and Liu, Yang and Hakkani-Tur, Dilek}, journal={arXiv preprint arXiv:2109.08820}, year={2021} } """ def __init__(self, threshold: Optional[float] = None, embedding: Optional[Embeddings] = None): """ :param embedding: Encoder model for encoding sentences to vectors. Langchain Embeddings class. Default is OpenAIEmbeddings. :param threshold: Threshold for classify knowledge-seeking turn. If the score is higher than threshold, classify as non-knowledge-seeking turn. Find this threshold by using training data that you own. The default is 0.5, and you must run find_threshold function before using detect function. """ self.embedding = embedding if embedding is not None else OpenAIEmbeddings() self.threshold = threshold if threshold is not None else 0.5 self.mu = None self.omega_matrix = None # Omega matrix for linear transformation. self.gmm = None # Gaussian Mixture Model for classify knowledge-seeking turn. self.norm = None # Norm for normalize to unit vector. def find_representation_transform(self, knowledge_seeking_sentences: List[str], L: Optional[int] = None, ): """ :param knowledge_seeking_sentences: Knowledge-seeking turn sentences. List[str]. :param L: Number of dimensions of the transformed representation. If None, use whole dimension. Default is None. """ # find mu vectors = np.array(self.embedding.embed_documents(knowledge_seeking_sentences)) self.mu = np.mean(vectors, axis=0) # get covariance matrix sigma = np.cov(vectors.T) # singular value decomposition U, S, V = np.linalg.svd(sigma) # find omega matrix self.omega_matrix = U @ np.sqrt(np.linalg.inv(np.diag(S))) if L is not None: self.omega_matrix = self.omega_matrix[:, :L] print("REDE representation transform done.") def representation_formation(self, vectors: np.ndarray) -> np.ndarray: """ :param vectors: Vectors after encoding. np.ndarray. :return: Transformed vectors. np.ndarray. """ return (vectors - self.mu) @ self.omega_matrix def train_density_estimation(self, gmm: GaussianMixture, non_knowledge_seeking_sentences: List[str]): """ :param gmm: Gaussian Mixture Model for classify knowledge-seeking turn. GaussianMixture. n_components must be 1. :param non_knowledge_seeking_sentences: Non-knowledge-seeking turn sentences. List[str]. """ self.gmm = gmm sentence_vectors = np.array(self.embedding.embed_documents(non_knowledge_seeking_sentences)) transformed_vectors = np.array( [self.representation_formation(sentence_vector) for sentence_vector in sentence_vectors]) # normalize to unit vector transformed_vectors = _normalize_vectors(transformed_vectors) self.gmm.fit(transformed_vectors) def find_threshold(self, valid_knowledge_seeking_sentences: List[str], valid_non_knowledge_seeking_sentences: List[str]): """ Find threshold using Youden's index from validation data predictions. :param valid_knowledge_seeking_sentences: knowledge-seeking turn sentences for validation. List[str]. You can put same sentences that you used for find_representation_transform function. :param valid_non_knowledge_seeking_sentences: non-knowledge-seeking turn sentences for validation. List[str]. """ true_scores = self._get_density_score(valid_knowledge_seeking_sentences) false_scores = self._get_density_score(valid_non_knowledge_seeking_sentences) y_true = np.concatenate([np.ones_like(true_scores), np.zeros_like(false_scores)]) y_score = true_scores + false_scores fpr, tpr, thresholds = roc_curve(y_true, y_score) idx = np.argmax(fpr - tpr) self.threshold = thresholds[idx] precision, recall, f1 = self._calculate_metrics(y_true, y_score) print(f"Precision: {precision}") print(f"Recall: {recall}") print(f"F1: {f1}") return self.threshold def detect(self, sentences: List[str]) -> List[bool]: """ :param sentences: Sentences to detect. List[str]. :return: True if the sentence is knowledge-seeking turn, else False. List[bool]. """ scores = self._get_density_score(sentences) result = [score < self.threshold for score in scores] return result def evaluate(self, test_knowledge_seeking_sentences: List[str], test_non_knowledge_seeking_sentences: List[str]): """ Evaluate rede search detector using test dataset. :param test_knowledge_seeking_sentences: knowledge-seeking turn sentences for test. List[str]. :param test_non_knowledge_seeking_sentences: non-knowledge-seeking turn sentences for test. List[str]. """ true_scores = self._get_density_score(test_knowledge_seeking_sentences) false_scores = self._get_density_score(test_non_knowledge_seeking_sentences) y_true = np.concatenate([np.ones_like(true_scores), np.zeros_like(false_scores)]) y_score = true_scores + false_scores precision, recall, f1 = self._calculate_metrics(y_true, y_score) print(f"Precision: {precision}") print(f"Recall: {recall}") print(f"F1: {f1}") return precision, recall, f1 def _get_density_score(self, sentences: List[str]) -> List[float]: sentence_vectors = np.array(self.embedding.embed_documents(sentences)) transformed_vectors = np.array([self.representation_formation(np.array(v)) for v in sentence_vectors]) transformed_vectors = _normalize_vectors(transformed_vectors) scores = self._score_vectors(transformed_vectors) return scores def _score_vectors(self, vectors): return [self.gmm.score(vector.reshape(1, -1)) for vector in vectors] def _calculate_metrics(self, y_true, y_score): predictions = np.where(y_score < self.threshold, 1, 0) precision = precision_score(y_true, predictions) recall = recall_score(y_true, predictions) f1 = f1_score(y_true, predictions) return precision, recall, f1
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~utils~test_file_cache.py
import os import pathlib from typing import List import pytest from langchain.schema import Document from langchain_core.runnables import RunnablePassthrough from RAGchain.DB import PickleDB from RAGchain.schema import Passage from RAGchain.utils.file_cache import FileCache test_passages: List[Passage] = [ Passage(content="test1", filepath="test1"), Passage(content="test2", filepath="test2"), Passage(content="test3", filepath="test2") ] test_documents: List[Document] = [ Document(page_content="ttt1211", metadata={"source": "test1"}), Document(page_content="asdf", metadata={"source": "test2"}), Document(page_content="hgh", metadata={"source": "test3"}), Document(page_content="egrgfg", metadata={"source": "test4"}), Document(page_content="hhhh", metadata={"source": "test4"}), ] @pytest.fixture def file_cache(): root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent pickle_path = os.path.join(root_dir, "resources", "pickle", "test_file_cache.pkl") db = PickleDB(save_path=pickle_path) db.create_or_load() db.save(test_passages) file_cache = FileCache(db) yield file_cache if os.path.exists(pickle_path): os.remove(pickle_path) def test_file_cache(file_cache): result_documents = file_cache.delete_duplicate(test_documents) assert len(result_documents) == 3 for doc in result_documents: assert doc.metadata['source'] != 'test1' and doc.metadata['source'] != 'test2' def test_file_cache_runnable(file_cache): runnable = RunnablePassthrough() | file_cache result_documents = runnable.invoke(test_documents) assert len(result_documents) == 3 for doc in result_documents: assert doc.metadata['source'] != 'test1' and doc.metadata['source'] != 'test2'
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~retrieval~vectordb_retrieval.py
from typing import List, Union from uuid import UUID from langchain.schema import Document from langchain.schema.vectorstore import VectorStore from RAGchain.retrieval.base import BaseRetrieval from RAGchain.schema import Passage from RAGchain.utils.vectorstore.base import SlimVectorStore class VectorDBRetrieval(BaseRetrieval): """ VectorDBRetrieval is a retrieval class that uses VectorDB as a backend. First, embed the passage content using an embedding model. Then, store the embedded vector in VectorDB. When retrieving, embed the query and search the most similar vectors in VectorDB. Lastly, return the passages that have the most similar vectors. """ def __init__(self, vectordb: VectorStore): """ :param vectordb: VectorStore instance. You can all langchain VectorStore classes, also you can use SlimVectorStore for better storage efficiency. """ super().__init__() self.vectordb = vectordb def ingest(self, passages: List[Passage]): if isinstance(self.vectordb, SlimVectorStore): self.vectordb.add_passages(passages) else: self.vectordb.add_documents( [Document(page_content=passage.content, metadata={'passage_id': str(passage.id)}) for passage in passages]) def retrieve(self, query: str, top_k: int = 5) -> List[Passage]: ids = self.retrieve_id(query, top_k) passage_list = self.fetch_data(ids) return passage_list def retrieve_id(self, query: str, top_k: int = 5) -> List[Union[str, UUID]]: docs = self.vectordb.similarity_search(query=query, k=top_k) return [self.__str_to_uuid(doc.metadata.get('passage_id')) for doc in docs] def retrieve_id_with_scores(self, query: str, top_k: int = 5) -> tuple[ List[Union[str, UUID]], List[float]]: results = self.vectordb.similarity_search_with_score(query=query, k=top_k) results = results[::-1] docs = [result[0] for result in results] scores = [result[1] for result in results] return [self.__str_to_uuid(doc.metadata.get('passage_id')) for doc in docs], scores def delete(self, ids: List[Union[str, UUID]]): self.vectordb.delete([str(_id) for _id in ids]) @staticmethod def __str_to_uuid(input_str: str) -> Union[str, UUID]: try: return UUID(input_str) except: return input_str
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~utils~vectorstore~pinecone.py
from typing import List, Any, Optional from langchain.vectorstores import Pinecone from RAGchain.schema import Passage from RAGchain.utils.vectorstore.base import SlimVectorStore class PineconeSlim(Pinecone, SlimVectorStore): """ Pinecone vector store stores only passage_id and vector. """ def add_passages(self, passages: List[Passage], namespace: Optional[str] = None, batch_size: int = 32, **kwargs: Any): if namespace is None: namespace = self._namespace # Embed and make metadatas vectors = [] for passage in passages: embedding = self._embedding.embed_query(passage.content) vectors.append({ 'id': str(passage.id), 'values': embedding, 'metadata': {'passage_id': str(passage.id), self._text_key: ""} }) self._index.upsert( vectors=vectors, namespace=namespace, batch_size=batch_size, **kwargs )
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~benchmark~dataset~test_mr_tydi.py
import logging import os import pathlib import pytest from langchain.llms.openai import OpenAI from RAGchain.DB import PickleDB from RAGchain.benchmark.dataset import MrTydiEvaluator from RAGchain.pipeline import BasicRunPipeline from RAGchain.retrieval import BM25Retrieval root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent.parent bm25_path = os.path.join(root_dir, 'resources', 'bm25', 'mr_tydi_evaluator.pkl') pickle_path = os.path.join(root_dir, 'resources', 'pickle', 'mr_tydi_evaluator.pkl') logger = logging.getLogger(__name__) @pytest.fixture def mr_tydi_evaluator(): bm25_retrieval = BM25Retrieval(save_path=bm25_path) db = PickleDB(pickle_path) llm = OpenAI(model_name="babbage-002") pipeline = BasicRunPipeline(bm25_retrieval, llm) evaluator = MrTydiEvaluator(pipeline, evaluate_size=5) evaluator.ingest(retrievals=[bm25_retrieval], db=db, ingest_size=20) yield evaluator if os.path.exists(bm25_path): os.remove(bm25_path) if os.path.exists(pickle_path): os.remove(pickle_path) def test_mr_tydi_evaluator(mr_tydi_evaluator): result = mr_tydi_evaluator.evaluate() assert len(result.each_results) == 5 assert result.each_results.iloc[0][ 'question'] == 'Do zebra finches have stripes?' for key, value in result.results.items(): logger.info(f"{key}: {value}") logger.info("The result length is " + f"{len(result.results)}")
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~preprocess~text_splitter~test_token_splitter.py
import os import pathlib import pytest from langchain.schema import Document from RAGchain.preprocess.text_splitter import TokenSplitter root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent.parent file_path = os.path.join(root_dir, "resources", "sample_test_document.txt") with open(file_path) as f: state_of_the_union = f.read() TEST_DOCUMENT = Document( page_content=state_of_the_union, metadata={ 'source': 'test_source', 'Data information': '맨까 새끼들 부들부들하구나', 'What is it?': 'THis is token splitter' } ) @pytest.fixture def tiktoken(): tiktoken = TokenSplitter(tokenizer_name='tiktoken', chunk_size=1000, chunk_overlap=0) yield tiktoken @pytest.fixture def spaCy(): spaCy = TokenSplitter(tokenizer_name='spaCy', chunk_size=1000, chunk_overlap=0) yield spaCy @pytest.fixture def sentence_transformers(): sentence_transformers = TokenSplitter(tokenizer_name='SentenceTransformers', chunk_overlap=0) yield sentence_transformers @pytest.fixture def NLTK(): NLTK = TokenSplitter(tokenizer_name='NLTK', chunk_size=1000) yield NLTK @pytest.fixture def Hugging_Face(): Hugging_Face = TokenSplitter(tokenizer_name='huggingFace', chunk_size=100, chunk_overlap=0) yield Hugging_Face def test_token_splitter(tiktoken, spaCy, sentence_transformers, NLTK, Hugging_Face): tiktoken_passages = tiktoken.split_document(TEST_DOCUMENT) spaCy_passages = spaCy.split_document(TEST_DOCUMENT) SentenceTransformers_passages = sentence_transformers.split_document(TEST_DOCUMENT) NLTK_passages = NLTK.split_document(TEST_DOCUMENT) huggingface_passages = Hugging_Face.split_document(TEST_DOCUMENT) test_passages = [tiktoken_passages, spaCy_passages, SentenceTransformers_passages, NLTK_passages, huggingface_passages] for passage in test_passages: assert len(passage) > 1 assert passage[0].next_passage_id == passage[1].id assert passage[1].previous_passage_id == passage[0].id assert passage[0].filepath == 'test_source' assert passage[0].filepath == passage[1].filepath assert passage[0].previous_passage_id is None assert passage[-1].next_passage_id is None assert len(passage[0].metadata_etc) == 2 assert passage[0].metadata_etc['Data information'] == '맨까 새끼들 부들부들하구나' assert passage[0].metadata_etc['What is it?'] == 'THis is token splitter' # Check if TEST_DOCUMENT content put in passages. for passage in test_passages: if passage == SentenceTransformers_passages: assert passage[0].content[:10] in TEST_DOCUMENT.page_content.strip()[:10].lower() assert passage[0].content[:10] in TEST_DOCUMENT.page_content.strip()[:10].lower() else: assert passage[0].content[:10] in TEST_DOCUMENT.page_content.strip()[:10] assert passage[0].content[:10] in TEST_DOCUMENT.page_content.strip()[:10]
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~pipeline~visconde.py
from typing import List from langchain.llms import BaseLLM from langchain.schema import StrOutputParser from langchain.schema.runnable import RunnableLambda from RAGchain.pipeline.base import BaseRunPipeline from RAGchain.reranker import MonoT5Reranker from RAGchain.retrieval.base import BaseRetrieval from RAGchain.schema import Passage, RAGchainPromptTemplate, RetrievalResult from RAGchain.utils.query_decompose import QueryDecomposition class ViscondeRunPipeline(BaseRunPipeline): strategyqa_prompt = RAGchainPromptTemplate.from_template("""For each example, use the documents to create an \"Answer\" and an \"Explanation\" to the \"Question\". Just answer yes or no. Example 1: [Document 1]: Title: San Tropez (song). Content: \"San Tropez\" is the fourth track from the album Meddle by the band Pink Floyd. This song was one of several to be considered for the band's \"best of\" album, Echoes: The Best of Pink Floyd. [Document 2]: Title: French Riviera. Content: The French Riviera (known in French as the Côte d'Azur [kot daˈzyʁ]; Occitan: Còsta d'Azur [ ˈkɔstɔ daˈzyɾ]; literal translation \"Azure Coast\") is the Mediterranean coastline of the southeast corner of France. There is no official boundary, but it is usually considered to extend from Cassis, Toulon or Saint-Tropez on the west to Menton at the France–Italy border in the east, where the Italian Riviera joins. The coast is entirely within the Provence-Alpes-Côte d'Azur (Région Sud) region of France. The Principality of Monaco is a semi-enclave within the region, surrounded on three sides by France and fronting the Mediterranean. [Document 3]: Title: Moon Jae-in. Content: Moon also promised transparency in his presidency, moving the presidential residence from the palatial and isolated Blue House to an existing government complex in downtown Seoul. [Document 4]: Title: Saint-Tropez. Content: Saint-Tropez (US: /ˌsæn troʊˈpeɪ/ SAN-troh-PAY, French: [sɛ̃ tʁɔpe]; Occitan: Sant-Tropetz , pronounced [san(t) tʀuˈpes]) is a town on the French Riviera, 68 kilometres (42 miles) west of Nice and 100 kilometres (62 miles) east of Marseille in the Var department of the Provence-Alpes-Côte d'Azur region of Occitania, Southern France. Question: Did Pink Floyd have a song about the French Riviera? Explanation: According to [Document 1], \"San Tropez\" is a song by Pink Floyd about the French Riviera. This is further supported by [Document 4], which states that Saint-Tropez is a town on the French Riviera. Therefore, the answer is yes Answer: yes. Example 2: {passages} Question: {question} Answer: """) def __init__(self, retrieval: BaseRetrieval, llm: BaseLLM, decompose: QueryDecomposition = None, prompt: RAGchainPromptTemplate = None, use_passage_count: int = 3, ): """ Initializes an instance of the ViscondeRunPipeline class. :param retrieval: An instance of the Retrieval module used for retrieving passages. :param llm: An instance of the LLM module used for answering questions. You can't use chat models for Visconde Pipeline. :param decompose: An instance of the QueryDecomposition module used for decomposing query. Default is QueryDecomposition(). :param prompt: RAGchainPromptTemplate used for generating prompts based on passages and user query. Default is ViscondeRunPipeline.strategyqa_prompt. :param use_passage_count: The number of passages to be used for llm question answering. Default is 3. """ self.retrieval = retrieval self.llm = llm self.decompose = decompose if decompose is not None else QueryDecomposition(self.llm) self.prompt = prompt if prompt is not None else self.strategyqa_prompt self.reranker = MonoT5Reranker() self.use_passage_count = use_passage_count super().__init__() def _make_runnable(self): self.run = self.decompose | RunnableLambda( lambda queries: sum(self.retrieval.batch( queries, config={'configurable': {"retrieval_options": {"top_k": 50}}} )) # sum can drop duplicate elements automatically ) | self.reranker | RunnableLambda( lambda x: x.slice(end=self.use_passage_count).to_prompt_input() ) | self.prompt | self.llm | StrOutputParser() def get_passages_and_run(self, questions: List[str], top_k: int = 50) -> tuple[ List[str], List[List[Passage]], List[List[float]]]: runnable = self.decompose | RunnableLambda( lambda queries: sum(self.retrieval.batch( queries, config={'configurable': {"retrieval_options": {"top_k": top_k}}} )) ) | self.reranker | RunnableLambda( lambda x: x.slice(end=self.use_passage_count) ) | { "passages": RunnableLambda(lambda x: x.passages), "scores": RunnableLambda(lambda x: x.scores), "answer": RunnableLambda( RetrievalResult.to_prompt_input) | self.prompt | self.llm | StrOutputParser() } results = runnable.batch(questions) answers, passages, rel_scores = zip( *[(result['answer'], result['passages'], result['scores']) for result in results]) return list(answers), list(passages), list(rel_scores)
[ "For each example, use the documents to create an \"Answer\" and an \"Explanation\" to the \"Question\". Just answer yes or no.\n\n Example 1:\n\n [Document 1]: \n Title: San Tropez (song). \n Content: \"San Tropez\" is the fourth track from the album Meddle by the band Pink Floyd. \n This song was one of several to be considered for the band's \"best of\" album, Echoes: The Best of Pink Floyd.\n\n [Document 2]: \n Title: French Riviera. \n Content: The French Riviera (known in French as the Côte d'Azur [kot daˈzyʁ]; Occitan: Còsta d'Azur [\n ˈkɔstɔ daˈzyɾ]; literal translation \"Azure Coast\") is the Mediterranean coastline of the southeast corner of \n France. There is no official boundary, but it is usually considered to extend from Cassis, Toulon or Saint-Tropez \n on the west to Menton at the France–Italy border in the east, where the Italian Riviera joins. The coast is \n entirely within the Provence-Alpes-Côte d'Azur (Région Sud) region of France. The Principality of Monaco is a \n semi-enclave within the region, surrounded on three sides by France and fronting the Mediterranean.\n\n [Document 3]: \n Title: Moon Jae-in. \n Content: Moon also promised transparency in his presidency, moving the presidential residence from the palatial and \n isolated Blue House to an existing government complex in downtown Seoul.\n\n [Document 4]: \n Title: Saint-Tropez. \n Content: Saint-Tropez (US: /ˌsæn troʊˈpeɪ/ SAN-troh-PAY, French: [sɛ̃ tʁɔpe]; Occitan: Sant-Tropetz , pronounced [san(t) tʀuˈpes]) is a town on the French Riviera, \n 68 kilometres (42 miles) west of Nice and 100 kilometres (62 miles) east of Marseille in the Var department of \n the Provence-Alpes-Côte d'Azur region of Occitania, Southern France.\n\n\n Question: Did Pink Floyd have a song about the French Riviera?\n Explanation: According to [Document 1], \"San Tropez\" is a song by Pink Floyd about \n the French Riviera. This is further supported by [Document 4], which states that Saint-Tropez is a town on the French Riviera. \n Therefore, the answer is yes\n Answer: yes.\n\n Example 2:\n \n {passages}\n \n Question: {question}\n Answer:\n " ]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~reranker~time~simple_time.py
from typing import List, Optional from langchain_core.runnables import RunnableConfig from langchain_core.runnables.utils import Input, Output from RAGchain.reranker.base import BaseReranker from RAGchain.schema import Passage class SimpleTimeReranker(BaseReranker): """Rerank passages by their content_datetime only. It is simple reranker for time-aware RAG.""" def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Output: # sort input.passages and passages.scores at once by content_datetime sorted_pairs = sorted(zip(input.passages, input.scores), key=lambda p: p[0].content_datetime, reverse=True) sorted_passages, sorted_scores = zip(*sorted_pairs) input.passages = list(sorted_passages) input.scores = list(sorted_scores) return input def rerank(self, passages: List[Passage]) -> List[Passage]: """ Rerank passages by their content_datetime only. :param passages: list of passages to be reranked. """ return sorted(passages, key=lambda p: p.content_datetime, reverse=True)
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~preprocess~loader~rust_hwp_loader.py
from typing import List, Iterator from langchain.schema import Document from langchain.document_loaders.base import BaseLoader class RustHwpLoader(BaseLoader): """ Load HWP file using libhwp. It works for any os. Using load or lazy_load, you can get list of Documents from hwp file. This loader loads all paragraphs and tables from hwp file. At the first Document, there are all paragraphs from hwp file, including texts in each table. Next, there are separated Documents for each table paragraphs. Unfortunately, You can't distinguish row and columns in table. In the metadata, there are filepath at key 'source' and page_type, which is 'text' or 'table'. Recommend to use other hwp loader, but it is great option to use this loader at mac and linux. It is no need to use external hwp loader server, or hwp program that only available at windows. """ def __init__(self, path: str): """ :param path: hwp file path """ try: from libhwp import HWPReader except ImportError: raise ImportError("Please install libhwp." "pip install libhwp") self.file_path = path self.hwp = HWPReader(self.file_path) def lazy_load(self) -> Iterator[Document]: paragraph = " ".join([str(paragraph) for paragraph in self.hwp.find_all('paragraph')]) yield Document(page_content=paragraph, metadata={"source": self.file_path, 'page_type': 'text'}) for table in self.hwp.find_all('table'): table_contents = [] for cell in table.cells: for paragraph in cell.paragraphs: table_contents.append(str(paragraph)) yield Document(page_content=",".join(table_contents), metadata={"source": self.file_path, 'page_type': 'table'}) def load(self) -> List[Document]: return list(self.lazy_load())
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~preprocess~loader~nougat_pdf_loader.py
import tempfile from pathlib import Path from typing import List, Iterator from urllib.parse import urljoin, urlencode import requests from langchain.document_loaders.pdf import BasePDFLoader from langchain.schema import Document from RAGchain.preprocess.loader.mathpix_markdown_loader import MathpixMarkdownLoader class NougatPDFLoader(BasePDFLoader): """ Load PDF file using Nougat API server. You can use Nougat API server using Dockerfile at https://github.com/facebookresearch/nougat """ def __init__(self, file_path: str, nougat_host: str): super().__init__(file_path) # check connection of nougat api server response = requests.get(nougat_host) if response.status_code != 200: raise ValueError(f"Could not connect to Nougat server: {nougat_host}") self.nougat_host = nougat_host def load(self, split_section: bool = True, split_table: bool = True, *args, **kwargs) -> List[Document]: """ :param split_section: If True, split the document by section. :param split_table: If True, split the document by table. :param start: Start page number to load. Optional. :param stop: Stop page number to load. Optional. """ return list(self.lazy_load(split_section=split_section, split_table=split_table, *args, **kwargs)) def lazy_load(self, split_section: bool = True, split_table: bool = True, *args, **kwargs) -> Iterator[Document]: """ :param split_section: If True, split the document by section. :param split_table: If True, split the document by table. :param start: Start page number to load. Optional. :param stop: Stop page number to load. Optional. """ request_url = urljoin(self.nougat_host, "predict/") + '?' + urlencode(kwargs) file = { 'file': open(self.file_path, 'rb') } response = requests.post(request_url, files=file) if response.status_code != 200: raise ValueError(f'Nougat API server returns {response.status_code} status code.') result = response.text result = result.replace('\\n', '\n') result = result[1:-1] # remove first and last double quote with tempfile.NamedTemporaryFile() as temp_path: Path(temp_path.name).write_text(result) loader = MathpixMarkdownLoader(temp_path.name) for doc in loader.lazy_load(split_section=split_section, split_table=split_table): yield doc
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~utils~test_evidence_extractor.py
import logging from operator import itemgetter import pytest from langchain.llms.openai import OpenAI from langchain_core.output_parsers import StrOutputParser from RAGchain.schema import Passage, RetrievalResult, RAGchainPromptTemplate from RAGchain.utils.evidence_extractor import EvidenceExtractor logger = logging.getLogger(__name__) TEST_PASSAGES = [ Passage( content='Table TABREF19 and TABREF26 report zero-shot results on Europarl and Multi-UN evaluation sets, respectively. We compare our approaches with related approaches of pivoting, multilingual NMT (MNMT) BIBREF19, and cross-lingual transfer without pretraining BIBREF16. The results show that our approaches consistently outperform other approaches across languages and datasets, especially surpass pivoting, which is a strong baseline in the zero-shot scenario that multilingual NMT systems often fail to beat BIBREF19, BIBREF20, BIBREF23. Pivoting translates source to pivot then to target in two steps, causing inefficient translation process. Our approaches use one encoder-decoder model to translate between any zero-shot directions, which is more efficient than pivoting. Regarding the comparison between transfer approaches, our cross-lingual pretraining based transfer outperforms transfer method that does not use pretraining by a large margin.', filepath='test_filepath'), Passage( content="Regarding comparison between the baselines in table TABREF19, we find that pivoting is the strongest baseline that has significant advantage over other two baselines. Cross-lingual transfer for languages without shared vocabularies BIBREF16 manifests the worst performance because of not using source$\\leftrightarrow $pivot parallel data, which is utilized as beneficial supervised signal for the other two baselines.", filepath='test_filepath'), Passage( content='Our best approach of MLM+BRLM-SA achieves the significant superior performance to all baselines in the zero-shot directions, improving by 0.9-4.8 BLEU points over the strong pivoting. Meanwhile, in the supervised direction of pivot$\\rightarrow $target, our approaches performs even better than the original supervised Transformer thanks to the shared encoder trained on both large-scale monolingual data and parallel data between multiple languages.', filepath='test_filepath'), Passage( content='MLM alone that does not use source$\\leftrightarrow $pivot parallel data performs much better than the cross-lingual transfer, and achieves comparable results to pivoting. When MLM is combined with TLM or the proposed BRLM, the performance is further improved. MLM+BRLM-SA performs the best, and is better than MLM+BRLM-HA indicating that soft alignment is helpful than hard alignment for the cross-lingual pretraining.', filepath='test_filepath') ] @pytest.fixture def evidence_extractor(): yield EvidenceExtractor(OpenAI()) def test_evidence_extractor(evidence_extractor): question = 'which multilingual approaches do they compare with?' evidence = evidence_extractor.extract(question, TEST_PASSAGES) logger.info(f'Evidence: {evidence}') assert bool(evidence) is True assert "We compare our approaches with related approaches of pivoting, multilingual NMT (MNMT) BIBREF19, and cross-lingual transfer without pretraining BIBREF16." in evidence irrelevant_question = 'what is the purpose of RAGchain project?' evidence = evidence_extractor.extract(irrelevant_question, TEST_PASSAGES) logger.info(f'Irrelevant Evidence: {evidence}') assert 'No Fragment' in evidence def test_evidence_extractor_runnable(evidence_extractor): question = 'which multilingual approaches do they compare with?' retrieval_result = RetrievalResult( query=question, passages=TEST_PASSAGES, scores=[1.0, 0.9, 0.8, 0.7], ) prompt = RAGchainPromptTemplate.from_template(""" Answer the question using the given evidence. Question: {question} Evidence: {passages} Answer: """) runnable = { "question": itemgetter("question"), "passages": itemgetter("passages") | evidence_extractor, } | prompt | OpenAI() | StrOutputParser() answer = runnable.invoke({"question": question, "passages": retrieval_result}) logger.info(f'Answer: {answer}') assert bool(answer) is True answers = runnable.batch([{"question": question, "passages": retrieval_result}]) assert isinstance(answers, list) assert len(answers) == 1 logger.info(f'Answer: {answers[0]}') assert bool(answers[0]) is True
[ "\n Answer the question using the given evidence.\n Question: {question}\n Evidence: {passages}\n \n Answer:\n " ]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~reranker~time~weighted_time.py
from datetime import datetime from typing import List, Optional from langchain_core.runnables import RunnableConfig from langchain_core.runnables.utils import Input, Output from RAGchain.reranker.base import BaseReranker from RAGchain.schema import Passage, RetrievalResult class WeightedTimeReranker(BaseReranker): """ Rerank passages by their content_datetime and relevance score. First, relevance score must be normalized to [0, 1] range. And calculate the combined score by the following formula: score = (1 - decay_rate) ** hours_passed + relevance_score The larger the decay_rate, the score from the past will be lowed. """ def __init__(self, decay_rate: float = 0.01): """ :param decay_rate: decay rate of time weight. The smaller the value, the more important the time weight. """ super().__init__() self.decay_rate = decay_rate def rerank(self, passages: List[Passage], scores: List[float]) -> List[Passage]: """ :param passages: list of passages to be reranked. :param scores: list of relevance scores of passages. """ retrieval_result = RetrievalResult(query="", passages=passages, scores=scores) return self.invoke(retrieval_result).passages def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Output: now = datetime.now() scores = input.scores passages = input.passages # normalize scores scaled_scores = [(score - min(scores)) / (max(scores) - min(scores)) for score in scores] combined_scores = [self.__get_combined_score(passage, score=score, now=now) for passage, score in zip(passages, scaled_scores)] sorted_passages, sorted_scores = zip(*sorted(zip(passages, combined_scores), key=lambda x: x[1], reverse=True)) input.passages = list(sorted_passages) input.scores = list(sorted_scores) return input def __get_combined_score(self, passage: Passage, score: float, now: datetime = datetime.now()): passed_hours = (now - passage.content_datetime).total_seconds() / 3600 return ((1.0 - self.decay_rate) ** passed_hours) + score
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~schema~passage.py
from datetime import datetime from typing import Optional, Union, List, Dict from uuid import UUID, uuid4 from langchain.load.serializable import Serializable from langchain.schema import Document from pydantic import Field, Extra class Passage(Serializable): """Class for storing a passage and metadatas""" id: Union[UUID, str] = Field(default_factory=uuid4) """Unique identifier for the passage. You can use string or UUID. By default, create new UUID for new passage.""" content: str """String text.""" filepath: str """Filepath of the passage.""" content_datetime: datetime = Field(default_factory=datetime.now) """Datetime when the passage content is created or edited. Everytime passge content changes, this value should be updated.""" importance: int = Field(default=0) """Importance of the passage. The higher the value, the more important the passage is. It can be minus value. The default is 0.""" previous_passage_id: Optional[Union[UUID, str]] """Previous passage's id. If this is the first passage, this value should be None.""" next_passage_id: Optional[Union[UUID, str]] """Next passage's id. If this is the last passage, this value should be None.""" metadata_etc: dict = Field(default_factory=dict) """Arbitrary metadata about the passage.""" # forbid to use another parameter class Config: extra = Extra.forbid def to_document(self) -> Document: metadata = self.metadata_etc.copy() metadata['id'] = self.id metadata['content'] = self.content metadata['filepath'] = self.filepath metadata['content_datetime'] = self.content_datetime metadata['importance'] = self.importance metadata['previous_passage_id'] = self.previous_passage_id metadata['next_passage_id'] = self.next_passage_id return Document(page_content=self.content, metadata=metadata) def to_dict(self): return { "_id": self.id, "content": self.content, "filepath": self.filepath, "content_datetime": self.content_datetime, "importance": self.importance, "previous_passage_id": self.previous_passage_id, "next_passage_id": self.next_passage_id, "metadata_etc": self.metadata_etc } def __eq__(self, other): if isinstance(other, Passage): return self.id == other.id return False def __hash__(self): return hash(self.id) def is_exactly_same(self, other): return self.id == other.id and \ self.content == other.content and \ self.filepath == other.filepath and \ self.content_datetime == other.content_datetime and \ self.importance == other.importance and \ self.previous_passage_id == other.previous_passage_id and \ self.next_passage_id == other.next_passage_id and \ self.metadata_etc == other.metadata_etc @staticmethod def make_prompts(passages: List['Passage']) -> str: return "\n".join([passage.content for passage in passages]) def copy(self, *args, **kwargs): self_params = self.dict() for key in list(kwargs.keys()): self_params.pop(key) return Passage(**self_params, **kwargs) def reset_id(self): self.id = uuid4() return self @classmethod def from_documents(cls, documents: List[Document]) -> List['Passage']: """ Convert a list of documents to a list of passages. metadata with 'source' key is required. It will convert to filepath filed. metadat with 'content_datetime' key is optional. It will convert to content_datetime field. It can be datetime.datetime object, or string with '%Y-%m-%d %H:%M:%S' format. metadata with 'importance' key is optional. It will convert to importance field. It must be int. :param documents: A list of documents. """ passages = [] ids = [uuid4() for _ in range(len(documents))] for i, (split_document, uuid) in enumerate(zip(documents, ids)): metadata_etc = split_document.metadata.copy() filepath = metadata_etc.pop('source', None) if filepath is None: raise ValueError(f"source must be provided in metadata, but got {metadata_etc}") previous_passage_id = ids[i - 1] if i > 0 else None next_passage_id = ids[i + 1] if i < len(ids) - 1 else None passage = cls(id=uuid, content=split_document.page_content, filepath=filepath, previous_passage_id=previous_passage_id, next_passage_id=next_passage_id, metadata_etc=metadata_etc) # put content_datetime content_datetime = metadata_etc.pop('content_datetime', None) if content_datetime is not None: if isinstance(content_datetime, str): content_datetime = datetime.strptime(content_datetime, '%Y-%m-%d %H:%M:%S') if not isinstance(content_datetime, datetime): raise TypeError(f"content_datetime must be datetime, but got {type(content_datetime)}") passage.content_datetime = content_datetime # put importance importance = metadata_etc.pop('importance', None) if importance is not None: if not isinstance(importance, int): raise TypeError(f"importance must be int, but got {type(importance)}") passage.importance = importance passages.append(passage) print(f"Split into {len(passages)} passages") return passages @classmethod def from_search(cls, search_results: List[Dict[str, str]]) -> List['Passage']: """ Convert a list of search results to a list of passages. :param search_results: A list of search results, it requires 'title', 'link', 'snippet' keys. """ if len(search_results) == 0: return [] passages = [] ids = [uuid4() for _ in range(len(search_results))] for i, (search_results, uuid) in enumerate(zip(search_results, ids)): metadata_etc = {"title": search_results["title"]} filepath = search_results["link"] previous_passage_id = ids[i - 1] if i > 0 else None next_passage_id = ids[i + 1] if i < len(ids) - 1 else None passage = cls(id=uuid, content=search_results["snippet"], filepath=filepath, previous_passage_id=previous_passage_id, next_passage_id=next_passage_id, metadata_etc=metadata_etc) passages.append(passage) return passages
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~benchmark~dataset~test_msmarco.py
import logging import os import pathlib import pytest from langchain.llms.openai import OpenAI from RAGchain.DB import PickleDB from RAGchain.benchmark.dataset import MSMARCOEvaluator from RAGchain.pipeline import BasicRunPipeline from RAGchain.retrieval import BM25Retrieval root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent.parent logger = logging.getLogger(__name__) v1_1_bm25_path = os.path.join(root_dir, 'resources', 'bm25', 'msmarco_v1_1_evaluator.pkl') v1_1_pickle_path = os.path.join(root_dir, 'resources', 'pickle', 'msmarco_v1_1_evaluator.pkl') v2_1_bm25_path = os.path.join(root_dir, 'resources', 'bm25', 'msmarco_v2_1_evaluator.pkl') v2_1_pickle_path = os.path.join(root_dir, 'resources', 'pickle', 'msmarco_v2_1_evaluator.pkl') @pytest.fixture def msmarco_v1_1_evaluator(): bm25_retrieval = BM25Retrieval(save_path=v1_1_bm25_path) db = PickleDB(v1_1_pickle_path) llm = OpenAI(model_name="babbage-002") pipeline = BasicRunPipeline(bm25_retrieval, llm) evaluator = MSMARCOEvaluator(pipeline, evaluate_size=5, version='v1.1') evaluator.ingest([bm25_retrieval], db, ingest_size=20) yield evaluator if os.path.exists(v1_1_bm25_path): os.remove(v1_1_bm25_path) if os.path.exists(v1_1_pickle_path): os.remove(v1_1_pickle_path) @pytest.fixture def msmarco_v2_1_evaluator(): bm25_retrieval = BM25Retrieval(save_path=v2_1_bm25_path) db = PickleDB(v2_1_pickle_path) llm = OpenAI(model_name="babbage-002") pipeline = BasicRunPipeline(bm25_retrieval, llm) evaluator = MSMARCOEvaluator(pipeline, evaluate_size=5, version='v2.1') evaluator.ingest([bm25_retrieval], db, ingest_size=20) yield evaluator if os.path.exists(v2_1_bm25_path): os.remove(v2_1_bm25_path) if os.path.exists(v2_1_pickle_path): os.remove(v2_1_pickle_path) def test_msmarco_evaluator(msmarco_v1_1_evaluator, msmarco_v2_1_evaluator): result_v1_1 = msmarco_v1_1_evaluator.evaluate() assert len(result_v1_1.each_results) == 5 assert result_v1_1.each_results.iloc[0]['question'] == 'does human hair stop squirrels' assert result_v1_1.each_results.iloc[0]['answer_pred'] logger.info('The result of msmarco v1.1 dataset.') for key, value in result_v1_1.results.items(): logger.info(f"{key}: {value}") logger.info("The result length is " + f"{len(result_v1_1.results)}") result_v2_1 = msmarco_v2_1_evaluator.evaluate() assert len(result_v2_1.each_results) == 5 assert result_v2_1.each_results.iloc[0]['question'] == '. what is a corporation?' assert result_v2_1.each_results.iloc[0]['answer_pred'] logger.info('The result of msmarco v2.1 dataset.') for key, value in result_v2_1.results.items(): logger.info(f"{key}: {value}") logger.info("The result length is " + f"{len(result_v2_1.results)}")
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~preprocess~text_splitter~test_html_header_splitter.py
import copy import pytest from langchain.schema import Document from RAGchain.preprocess.text_splitter import HTMLHeaderSplitter TEST_DOCUMENT = Document( page_content=""" <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>노동요</title> </head> <body> <div> <h1>학박사님을 아세유?</h1> <p>안하긴뭘 안해~ 월요일부터 일찍 일어나는 사람 누구야~ 소리질러!</p> <h2>학교가는 동규형</h2> <div> <p> 학 학 학 학 학 학<br> 학박사님을 아세요??<br> 학 학 학 학 학 학<br> </p> </div> <h3> 근데 리뷰할때 동규형이 보면 어떡하지</h3> </div> <div> <h1>리중딱</h1> <h2>감스트</h2> <div> <p> 안하긴뭘안해~~ 반갑습니다~~ 이피엘에서 우승못하는팀 누구야? 소리질러~~!!<br> 리중딱 리중딱 신나는노래~ 나도한번 불러본다~~(박수) (박수) (박수) 짠리잔짠~~<br> 우리는 우승하기 싫~어~ 왜냐면 우승하기 싫은팀이니깐~ 20년 내~내~ 프리미어리그~ 우승도 못하는 우리팀이다.<br> 리중딱 리중딱 신나는노래 ~~~ 나도한번불러본다~<br> 리중딱 리중딱 신나는노래 ~~ 가슴치며 불러본다~<br> 리중딱 노래가사는~ 생활과 정보가 있는노래 중딱이~~와 함께라면 제~라드도함께 우승못한다. </p> </div> <h3>근데 ragchain 쓰는 사람이 리버풀팬이면 어떡하지</h3> <div> <p> 난 몰라유 그딴거 잘 몰라유 </p> </div> </div> <div> <h1>맨까송</h1> <h2>감빡이</h2> <div> <p> 맨까 새끼들 부들부들하구나<br> 억까를 해 봐도 우린 골 넣지<br> 니네가 아무리 맹구다 어쩐다고 놀려도<br> 아아~ 즐겁구나 명 절 이~(짜스!)<br> 맨까 새끼들 부들부들하구나<br> 살짝쿵 설렜니 아니 안 되지<br> 이겨도 지롤 져도 지롤 뭐만 하면 리그컵<br> 아~ 리그컵도 축 군 데~ (컴온!!)<br> 맨까 새끼들 부들부들하구나<br> 돌아온 미친 폼 누가 막을래?<br> 더 보기 리그 탈출 직전[다른가사2] 돌아와요 맨유 팬!<br> 아~ 기대된다 챔 스 가~ Siuuuuuuu!<br> </p> </div> <h3>근데 ragchain 쓰는 사람이 맨유팬이면 어떡하지</h3> <div> <p> 열심히 하시잖아~, 그만큼 열심히 하신다는거지~ </p> </div> </div> </div> </body> </html> """, metadata={ 'source': 'test_source', # Check whether the metadata_etc contains the multiple information from the TEST DOCUMENT metadatas or not. 'Data information': 'test for htmldownheader splitter', '근본과 실력 둘다 있는 팀': '레알마드리드', '근본만 충만한 팀': '리버풀', '실력은 있으나 노근본인팀': '파리 생제르망', '둘다 없는 팀': '토트넘 홋스퍼' } ) @pytest.fixture def html_header_text_splitter(): html_header_text_splitter = HTMLHeaderSplitter() yield html_header_text_splitter def test_html_header_text_splitter(html_header_text_splitter): passages = html_header_text_splitter.split_document(TEST_DOCUMENT) assert len(passages) > 1 assert passages[0].next_passage_id == passages[1].id assert passages[1].previous_passage_id == passages[0].id assert passages[0].filepath == 'test_source' assert passages[0].filepath == passages[1].filepath assert passages[0].previous_passage_id is None assert passages[-1].next_passage_id is None # Check first passage whether it contains header information of fist layout(first div). assert ('학박사님을 아세유? 학교가는 동규형 근데 리뷰할때 동규형이 보면 어떡하지') in passages[0].content # Check splitter preserve other metadata in original document. test_document_metadata = list(copy.deepcopy(TEST_DOCUMENT).metadata.items()) test_document_metadata.pop(0) for element in test_document_metadata: assert element in list(passages[1].metadata_etc.items()) # Check passages' metadata_etc ## metadata_etc can't contain file path(Except first part of first div). assert ('source', 'test_source') not in list(passages[1].metadata_etc.items()) assert ('source', 'test_source') not in list(passages[-1].metadata_etc.items()) # Check HTML header information put in metadata_etc right form. assert ('Header 1', '학박사님을 아세유?') in list(passages[1].metadata_etc.items()) assert ('Header 1', '맨까송') in list(passages[-1].metadata_etc.items()) assert ('Header 2', '감빡이') in list(passages[-1].metadata_etc.items()) assert ('Header 3', '근데 ragchain 쓰는 사람이 맨유팬이면 어떡하지') in list(passages[-1].metadata_etc.items())
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~preprocess~text_splitter~text_splitter.py
from typing import Optional, List from langchain.schema import Document from langchain.text_splitter import RecursiveCharacterTextSplitter from RAGchain.preprocess.text_splitter.base import BaseTextSplitter from RAGchain.schema import Passage class RecursiveTextSplitter(BaseTextSplitter): """ Split a document into passages by recursively splitting on a list of separators. You can specify a window_size and overlap_size to split the document into overlapping passages. """ def __init__(self, separators: Optional[List[str]] = None, keep_separator: bool = True, *args, **kwargs): """ :param separators: A list of strings to split on. Default is None. :param keep_separator: Whether to keep the separator in the passage. Default is True. :param kwargs: Additional arguments to pass to the langchain RecursiveCharacterTextSplitter. """ self.splitter = RecursiveCharacterTextSplitter(separators, keep_separator, **kwargs) def split_document(self, document: Document) -> List[Passage]: """ Split a document. """ split_documents = self.splitter.split_documents([document]) passages = Passage.from_documents(split_documents) return passages
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~benchmark~test_auto.py
import logging import os import pytest from langchain.llms.openai import OpenAI from RAGchain.DB import PickleDB from RAGchain.benchmark import AutoEvaluator from RAGchain.pipeline import BasicRunPipeline from RAGchain.retrieval import BM25Retrieval from test_base import TEST_PASSAGES, root_dir bm25_path = os.path.join(root_dir, "resources", "bm25", "auto_evaluator.pkl") pickle_path = os.path.join(root_dir, "resources", "pickle", "auto_evaluator.pkl") logger = logging.getLogger(__name__) @pytest.fixture def auto_evaluator(): db = PickleDB(pickle_path) db.create_or_load() db.save(TEST_PASSAGES) retrieval = BM25Retrieval(bm25_path) retrieval.ingest(TEST_PASSAGES) pipeline = BasicRunPipeline(retrieval=retrieval, llm=OpenAI()) yield AutoEvaluator(pipeline, questions=[ "Where is the capital of France?", "Where is the largest city in Seoul?", "What is common between Seoul and Paris?" ]) if os.path.exists(bm25_path): os.remove(bm25_path) if os.path.exists(pickle_path): os.remove(pickle_path) def test_auto_evaluator(auto_evaluator): result = auto_evaluator.evaluate() for key, res in result.results.items(): assert res >= 0.0 logger.info(f"{key}: {res}") assert len(result.each_results) == 3 assert len(result.use_metrics) == len(auto_evaluator.metrics)
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~reranker~importance~weighted_importance.py
from typing import List, Optional from langchain_core.runnables import RunnableConfig from langchain_core.runnables.utils import Input, Output from RAGchain.reranker.base import BaseReranker from RAGchain.schema import Passage, RetrievalResult class WeightedImportanceReranker(BaseReranker): """ Rerank passages by their importance and relevance score. First, relevance score and importance must be normalized to [0, 1] range. And calculate the combined score by the following formula: score = (weight) * importance + (1 - weight) * relevance_score The larger the weight, the more important the importance is. """ def __init__(self, importance_weight: float = 0.5): """ :param importance_weight: weight of importance. The larger the value, the more important the importance is. """ super().__init__() self.importance_weight = importance_weight def rerank(self, passages: List[Passage], scores: List[float]) -> List[Passage]: """ :param passages: list of passages to be reranked. :param scores: list of relevance scores of passages. """ result = self.invoke(RetrievalResult(query='', passages=passages, scores=scores)) return result.passages def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Output: scores = input.scores passages = input.passages normalize_rel_scores = self.__normalize(scores) normalize_importance = self.__normalize([passage.importance for passage in passages]) combined_scores = [self.__get_combined_score(rel_score, importance) for rel_score, importance in zip(normalize_rel_scores, normalize_importance)] sorted_passages, sorted_scores = zip(*sorted(zip(passages, combined_scores), key=lambda x: x[1], reverse=True)) input.passages = list(sorted_passages) input.scores = list(sorted_scores) return input @staticmethod def __normalize(scores: List[float]) -> List[float]: """ :param scores: list of scores to be normalized. """ return [(score - min(scores)) / (max(scores) - min(scores)) for score in scores] def __get_combined_score(self, rel_score: float, importance: float): return self.importance_weight * importance + (1 - self.importance_weight) * rel_score
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~utils~vectorstore~chroma.py
from typing import List from langchain.vectorstores import Chroma from RAGchain.schema import Passage from RAGchain.utils.vectorstore.base import SlimVectorStore class ChromaSlim(Chroma, SlimVectorStore): """ Chroma vector store stores only passage_id and vector. """ def add_passages(self, passages: List[Passage]): embeddings = None if self._embedding_function is not None: contents = [passage.content for passage in passages] embeddings = self._embedding_function.embed_documents(contents) metadatas = [{"passage_id": str(passage.id)} for passage in passages] self._collection.upsert( embeddings=embeddings, metadatas=metadatas, ids=[str(passage.id) for passage in passages], documents=["" for _ in range(len(passages))] )
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~reranker~pygaggle~monoT5.py
from typing import List, Optional from langchain_core.runnables import RunnableConfig from langchain_core.runnables.utils import Input, Output from RAGchain.reranker.base import BaseReranker from RAGchain.schema import Passage, RetrievalResult from .base import Query, Text from .transformer import MonoT5 class MonoT5Reranker(BaseReranker): """ Rerank the passages using MonoT5 model. The model will be downloaded from HuggingFace model hub. """ def __init__(self, model_name: str = 'castorini/monot5-3b-msmarco-10k', use_amp: bool = False, token_false=None, token_true=None, *args, **kwargs): self.reranker = MonoT5(pretrained_model_name_or_path=model_name, use_amp=use_amp, token_false=token_false, token_true=token_true) def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Output: assert isinstance(input, RetrievalResult), f'input must be RetrievalResult, but {type(input)} is given.' input_query = Query(text=input.query) input_texts = list(map(self.__passage_to_text, input.passages)) reranked_texts: List[Text] = self.reranker.rerank(input_query, input_texts) scores = list(map(lambda x: x.score, reranked_texts)) result_passage = list(map(self.__text_to_passage, reranked_texts)) input.passages = result_passage input.scores = scores return input def rerank(self, query: str, passages: List[Passage]) -> List[Passage]: retrieval_result = RetrievalResult(query=query, passages=passages, scores=[]) result = self.invoke(retrieval_result) return result.passages @staticmethod def __passage_to_text(passage: Passage) -> Text: return Text(text=passage.content, metadata={ 'id': passage.id, 'filepath': passage.filepath, 'content_datetime': passage.content_datetime, 'importance': passage.importance, 'previous_passage_id': passage.previous_passage_id, 'next_passage_id': passage.next_passage_id, 'metadata_etc': passage.metadata_etc }) @staticmethod def __text_to_passage(text: Text) -> Passage: return Passage( id=text.metadata['id'], content=text.text, filepath=text.metadata['filepath'], content_datetime=text.metadata['content_datetime'], importance=text.metadata['importance'], previous_passage_id=text.metadata['previous_passage_id'], next_passage_id=text.metadata['next_passage_id'], metadata_etc=text.metadata['metadata_etc'] )
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~utils~test_query_decompose.py
import logging from typing import List import pytest from langchain.llms.openai import OpenAI from RAGchain.utils.query_decompose import QueryDecomposition logger = logging.getLogger(__name__) query = "Is Disneyland in Paris the largest Disneyland in the world?" @pytest.fixture def query_decompose(): yield QueryDecomposition(OpenAI(temperature=0.2)) def test_query_decompose(query_decompose): result = query_decompose.decompose(query) check_decompose(result) def test_query_decompose_runnable(query_decompose): result = query_decompose.invoke(query) check_decompose(result) def check_decompose(result: List[str]): logger.info(f"result : {result}") assert len(result) > 1 for res in result: assert isinstance(res, str) assert bool(res)
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~benchmark~dataset~test_natural_qa.py
import logging import os import pathlib import pytest from langchain.llms.openai import OpenAI from RAGchain.DB import PickleDB from RAGchain.benchmark.dataset import NaturalQAEvaluator from RAGchain.pipeline import BasicRunPipeline from RAGchain.retrieval import BM25Retrieval root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent.parent bm25_path = os.path.join(root_dir, 'resources', 'bm25', 'natural_qa_evaluator.pkl') pickle_path = os.path.join(root_dir, 'resources', 'pickle', 'natural_qa_evaluator.pkl') logger = logging.getLogger(__name__) @pytest.fixture def naturalqa_evaluator(): bm25_retrieval = BM25Retrieval(save_path=bm25_path) db = PickleDB(pickle_path) llm = OpenAI(model_name="babbage-002") pipeline = BasicRunPipeline(bm25_retrieval, llm) evaluator = NaturalQAEvaluator(pipeline, evaluate_size=5) evaluator.ingest([bm25_retrieval], db, ingest_size=20) yield evaluator if os.path.exists(bm25_path): os.remove(bm25_path) if os.path.exists(pickle_path): os.remove(pickle_path) def test_naturalqa_evaluator(naturalqa_evaluator): result = naturalqa_evaluator.evaluate() assert len(result.each_results) == 5 assert result.each_results.iloc[0]['question'] == '1 . what was the precursor to the present day internet' assert result.each_results.iloc[0]['answer_pred'] for key, value in result.results.items(): logger.info(f"{key}: {value}") logger.info("The result length is " + f"{len(result.results)}")
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~reranker~bm25.py
from typing import List, Optional from langchain_core.runnables import RunnableConfig from langchain_core.runnables.utils import Input, Output from rank_bm25 import BM25Okapi from transformers import AutoTokenizer from RAGchain.reranker.base import BaseReranker from RAGchain.schema import Passage, RetrievalResult class BM25Reranker(BaseReranker): """ BM25Reranker class for reranker based on BM25. You can rerank the passages with BM25 scores . """ def __init__(self, tokenizer_name: str = "gpt2", *args, **kwargs): self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) def rerank(self, query: str, passages: List[Passage]) -> List[Passage]: retrieval_result = RetrievalResult(query=query, passages=passages, scores=[]) result = self.invoke(retrieval_result) return result.passages def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Output: contents: List[str] = list(map(lambda x: x.content, input.passages)) # tokenize content for bm25 instance tokenized_content = self.__tokenize(contents) # tokenize query tokenized_query = self.__tokenize([input.query])[0] bm25 = BM25Okapi(tokenized_content) scores = bm25.get_scores(tokenized_query) sorted_passages, sorted_scores = zip(*sorted(zip(input.passages, scores), key=lambda x: x[1], reverse=True)) input.passages = list(sorted_passages) input.scores = list(sorted_scores) return input def __tokenize(self, values: List[str]): tokenized = self.tokenizer(values) return tokenized.input_ids
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~benchmark~test_base.py
import logging import os import pathlib import pytest from langchain.llms.openai import OpenAI from RAGchain.DB import PickleDB from RAGchain.benchmark.base import BaseEvaluator from RAGchain.pipeline import BasicRunPipeline from RAGchain.pipeline.base import BaseRunPipeline from RAGchain.retrieval import BM25Retrieval from RAGchain.schema import Passage root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent bm25_path = os.path.join(root_dir, "resources", "bm25", "base_evaluator.pkl") pickle_path = os.path.join(root_dir, "resources", "pickle", "base_evaluator.pkl") logger = logging.getLogger(__name__) TEST_PASSAGES = [ Passage(id='id-1', content='The capital of Korea is Seoul. And it is well-known.', filepath='./korea.txt'), Passage(id='id-2', content='The capital of France is Paris. And it is well-known.', filepath='./france.txt'), Passage(id='id-3', content='The capital of Germany is Berlin. And it is well-known.', filepath='./germany.txt'), Passage(id='id-4', content='The capital of Japan is Tokyo. And it is well-known.', filepath='./japan.txt'), Passage(id='id-5', content='The capital of China is Beijing. And it is well-known.', filepath='./china.txt'), Passage(id='id-6', content='The capital of Argentina is Buenos Aires.', filepath='./argentina.txt'), Passage(id='id-7', content='As of 2021, the largest city in Korea is Seoul.', filepath='./korea.txt'), Passage(id='id-8', content='As of 2021, the largest city in France is Paris.', filepath='./france.txt'), Passage(id='id-9', content='As of 2021, the largest city in Germany is Berlin.', filepath='./germany.txt'), Passage(id='id-10', content='As of 2021, the largest city in Japan is Tokyo.', filepath='./japan.txt'), Passage(id='id-11', content='As of 2021, the largest city in China is Beijing.', filepath='./china.txt') ] class DummyEvaluator(BaseEvaluator): def __init__(self, pipeline: BaseRunPipeline, metrics=None, run_all=True): super().__init__(run_all=run_all, metrics=metrics) self.pipeline = pipeline def evaluate(self, **kwargs): questions = [ "What is the capital of France?", "What is the capital of Korea?", "What is the capital of Japan?", "What is the capital of China?", "What is the capital of Germany?" ] retrieval_gt = [ ['id-2', 'id-8'], ['id-1', 'id-7'], ['id-4'], ['id-5', 'id-11'], ['id-3'] ] retrieval_gt_order = [ [1, 2], [1, 2], [1, 2], [1, 2], [1, 2] ] answer_gt = [ ['Paris'], ['Seoul'], ['Tokyo'], ['Beijing'], ['Berlin'] ] return self._calculate_metrics(questions, self.pipeline, retrieval_gt=retrieval_gt, retrieval_gt_order=retrieval_gt_order, answer_gt=answer_gt, **kwargs) @pytest.fixture def dummy_evaluator(): db = PickleDB(pickle_path) db.create_or_load() db.save(TEST_PASSAGES) retrieval = BM25Retrieval(bm25_path) retrieval.ingest(TEST_PASSAGES) pipeline = BasicRunPipeline(retrieval=retrieval, llm=OpenAI()) yield DummyEvaluator(pipeline) if os.path.exists(bm25_path): os.remove(bm25_path) if os.path.exists(pickle_path): os.remove(pickle_path) @pytest.fixture def no_ragas_evaluator(): db = PickleDB(pickle_path) db.create_or_load() db.save(TEST_PASSAGES) retrieval = BM25Retrieval(bm25_path) retrieval.ingest(TEST_PASSAGES) pipeline = BasicRunPipeline(retrieval=retrieval, llm=OpenAI()) # test that it can initialize without openai api key env evaluator = DummyEvaluator(pipeline, metrics=['Recall', 'Precision', 'F1_score', 'BLEU'], run_all=False) yield evaluator if os.path.exists(bm25_path): os.remove(bm25_path) if os.path.exists(pickle_path): os.remove(pickle_path) # default top_k is 4 def test_base_evaluator(dummy_evaluator): result = dummy_evaluator.evaluate() for key, res in result.results.items(): assert res >= 0.0 logger.info(f"{key}: {res}") assert len(result.each_results) == 5 assert result.each_results.iloc[0]['question'] == 'What is the capital of France?' assert bool(result.each_results.iloc[0]['passage_contents'][0]) is True assert result.each_results.iloc[0]['passage_contents'][0] == \ list(filter(lambda x: x.id == result.each_results.iloc[0]['passage_ids'][0], TEST_PASSAGES))[0].content assert result.each_results.iloc[0]['F1_score'] > 0 assert len(result.use_metrics) == len(dummy_evaluator.metrics) def test_no_ragas(no_ragas_evaluator): # It just tests it can initialize without ragas metrics. result = no_ragas_evaluator.evaluate() for key, res in result.results.items(): assert res >= 0.0 logger.info(f"{key}: {res}") assert len(result.each_results) == 5 assert len(result.use_metrics) == len(no_ragas_evaluator.metrics)
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~benchmark~dataset~test_ko_strategy_qa.py
import os import pathlib import pytest from langchain.llms.openai import OpenAI from RAGchain.DB import PickleDB from RAGchain.benchmark.dataset import KoStrategyQAEvaluator from RAGchain.pipeline import BasicRunPipeline from RAGchain.retrieval import BM25Retrieval root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent.parent bm25_path = os.path.join(root_dir, 'resources', 'bm25', 'ko_strategy_qa_evaluator.pkl') pickle_path = os.path.join(root_dir, 'resources', 'pickle', 'ko_strategy_qa_evaluator.pkl') @pytest.fixture def ko_strategy_qa_evaluator(): bm25_retrieval = BM25Retrieval(save_path=bm25_path) db = PickleDB(pickle_path) pipeline = BasicRunPipeline(bm25_retrieval, OpenAI(model_name="babbage-002")) evaluator = KoStrategyQAEvaluator(pipeline, evaluate_size=5, metrics=['Recall', 'Precision', 'Hole', 'TopK_Accuracy', 'EM', 'F1_score', 'context_precision']) evaluator.ingest([bm25_retrieval], db, ingest_size=20) yield evaluator if os.path.exists(bm25_path): os.remove(bm25_path) if os.path.exists(pickle_path): os.remove(pickle_path) def test_ko_strategy_qa_evaluator(ko_strategy_qa_evaluator): with pytest.raises(ValueError): ko_strategy_qa_evaluator.evaluate(validate_passages=True) result = ko_strategy_qa_evaluator.evaluate(validate_passages=False) assert len(result.each_results) == 5 assert result.each_results.iloc[0]['question'] == '토마토 껍질을 벗기려면 뜨거운 물과 찬물이 모두 필요하나요?' assert result.each_results.iloc[0]['answer_pred'] assert len(result.use_metrics) == len(ko_strategy_qa_evaluator.metrics)
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~benchmark~dataset~test_triviaqa.py
import logging import os import pathlib import pytest from langchain.llms.openai import OpenAI from RAGchain.DB import PickleDB from RAGchain.benchmark.dataset import TriviaQAEvaluator from RAGchain.pipeline import BasicRunPipeline from RAGchain.retrieval import BM25Retrieval root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent.parent bm25_path = os.path.join(root_dir, 'resources', 'bm25', 'triviaqa_evaluator.pkl') pickle_path = os.path.join(root_dir, 'resources', 'pickle', 'triviaqa_evaluator.pkl') logger = logging.getLogger(__name__) @pytest.fixture def triviaqa_evaluator(): bm25_retrieval = BM25Retrieval(save_path=bm25_path) db = PickleDB(pickle_path) llm = OpenAI(model_name="gpt-3.5-turbo-16k") pipeline = BasicRunPipeline(bm25_retrieval, llm, retrieval_option={'top_k': 2}) evaluator = TriviaQAEvaluator(pipeline, evaluate_size=5) evaluator.ingest(retrievals=[bm25_retrieval], db=db, ingest_size=20) yield evaluator if os.path.exists(bm25_path): os.remove(bm25_path) if os.path.exists(pickle_path): os.remove(pickle_path) def test_triviaqa_evaluator(triviaqa_evaluator): result = triviaqa_evaluator.evaluate() assert len(result.each_results) == 5 assert result.each_results.iloc[0][ 'question'] == 'Who was the man behind The Chipmunks?' for key, value in result.results.items(): logger.info(f"{key}: {value}") logger.info("The result length is " + f"{len(result.results)}")
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~utils~semantic_clustering.py
from typing import List import pandas as pd from langchain.schema.embeddings import Embeddings from sklearn.cluster import AffinityPropagation, AgglomerativeClustering, Birch, KMeans, DBSCAN, MeanShift, OPTICS, \ SpectralClustering from RAGchain.schema import Passage from RAGchain.utils.util import text_modifier class SemanticClustering: """ This class is used to cluster the passages based on their semantic information. First, we vectorize to embedding vector for representing each passages' semantic information. Second, we cluster the embedding vectors by using various clustering algorithm. There are no optimal clustering algorithm for all cases. So, you can try various clustering algorithm. """ def __init__(self, embedding_function: Embeddings, clustering_algorithm: str = 'kmeans'): self.embedding_function = embedding_function self.clustering_algorithm = clustering_algorithm def cluster(self, passages: List[Passage], **kwargs) -> List[List[Passage]]: """ clustering :param passages: list of passages to be clustered. :param kwargs: kwargs for clustering algorithm. :return: 2-d list of clustered Passages. Each cluster is a list of passages. """ embeddings = self.embedding_function.embed_documents([passage.content for passage in passages]) clustering_algorithm_dict = { 'affinity_propagation': AffinityPropagation, 'agglomerative_clustering': AgglomerativeClustering, 'birch': Birch, 'dbscan': DBSCAN, 'kmeans': KMeans, 'mean_shift': MeanShift, 'optics': OPTICS, 'spectral_clustering': SpectralClustering, } clustering_algorithm_class = self.__select_clustering_algorithm(clustering_algorithm_dict) clustering_algorithm = clustering_algorithm_class(**kwargs) clustering_algorithm.fit(embeddings) df = pd.DataFrame({ 'id': [passage.id for passage in passages], 'cluster': clustering_algorithm.labels_.tolist(), 'passage': passages }) return df.groupby('cluster')['passage'].apply(list).tolist() def __select_clustering_algorithm(self, instance_dict: dict): algorithm_names = list(instance_dict.keys()) for modified_name in text_modifier(self.clustering_algorithm): if modified_name in algorithm_names: return instance_dict[modified_name] raise ValueError(f"Clustering algorithm {self.clustering_algorithm} is not supported. " f"Please choose one of {algorithm_names}.")
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~retrieval~test_hyde_retrieval.py
import os import pytest from langchain.llms.openai import OpenAI import test_base_retrieval from RAGchain.retrieval import HyDERetrieval, BM25Retrieval @pytest.fixture def hyde_retrieval(): test_prompt = "Please write a scientific paper passage to answer the question" bm25_path = os.path.join(test_base_retrieval.root_dir, "resources", "bm25", "test_hyde_retrieval.pkl") pickle_path = os.path.join(test_base_retrieval.root_dir, "resources", "pickle", "test_hyde_retrieval.pkl") if not os.path.exists(os.path.dirname(bm25_path)): os.makedirs(os.path.dirname(bm25_path)) if not os.path.exists(os.path.dirname(pickle_path)): os.makedirs(os.path.dirname(pickle_path)) test_base_retrieval.ready_pickle_db(pickle_path) bm25_retrieval = BM25Retrieval(save_path=bm25_path) hyde_retrieval = HyDERetrieval(bm25_retrieval, OpenAI(max_tokens=64), system_prompt=test_prompt) yield hyde_retrieval if os.path.exists(pickle_path): os.remove(pickle_path) if os.path.exists(bm25_path): os.remove(bm25_path) def test_hyde_retrieval(hyde_retrieval): hyde_retrieval.ingest(test_base_retrieval.TEST_PASSAGES) top_k = 4 retrieved_ids = hyde_retrieval.retrieve_id(query='What is visconde structure?', top_k=top_k) test_base_retrieval.validate_ids(retrieved_ids, top_k) retrieved_passages = hyde_retrieval.retrieve(query='What is visconde structure?', top_k=top_k) test_base_retrieval.validate_passages(retrieved_passages, top_k) retrieved_ids_2, scores = hyde_retrieval.retrieve_id_with_scores(query='What is visconde structure?', top_k=top_k) assert len(retrieved_ids_2) == len(scores) assert max(scores) == scores[0] assert min(scores) == scores[-1] def test_hyde_retrieval_delete(hyde_retrieval): hyde_retrieval.ingest(test_base_retrieval.SEARCH_TEST_PASSAGES) hyde_retrieval.delete(['test_id_4_search', 'test_id_3_search']) retrieved_passages = hyde_retrieval.retrieve(query='What is visconde structure?', top_k=4) assert len(retrieved_passages) == 2 assert 'test_id_1_search' in [passage.id for passage in retrieved_passages] assert 'test_id_2_search' in [passage.id for passage in retrieved_passages]
[ "Please write a scientific paper passage to answer the question" ]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~benchmark~dataset~test_dstc11_track5.py
import logging import os import pathlib import pytest from langchain.llms.openai import OpenAI from RAGchain.DB import PickleDB from RAGchain.benchmark.dataset import DSTC11Track5Evaluator from RAGchain.pipeline import BasicRunPipeline from RAGchain.retrieval import BM25Retrieval root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent.parent logger = logging.getLogger(__name__) bm25_path = os.path.join(root_dir, 'resources', 'bm25', 'dstc_track5_evaluator.pkl') pickle_path = os.path.join(root_dir, 'resources', 'pickle', 'dstc_track5_evaluator.pkl') @pytest.fixture def dstc11_track5_evaluator(): bm25_retrieval = BM25Retrieval(save_path=bm25_path) db = PickleDB(pickle_path) llm = OpenAI(model_name="babbage-002") pipeline = BasicRunPipeline(bm25_retrieval, llm) evaluator = DSTC11Track5Evaluator(pipeline, evaluate_size=5) evaluator.ingest([bm25_retrieval], db, ingest_size=20) yield evaluator if os.path.exists(bm25_path): os.remove(bm25_path) if os.path.exists(pickle_path): os.remove(pickle_path) def test_dstc11_track5_evaluator(dstc11_track5_evaluator): result = dstc11_track5_evaluator.evaluate() assert len(result.each_results) == 5 assert result.each_results.iloc[0]['question'] == ("U: I'm looking to stay at a 3 star hotel in the north. " "S: Sorry, I have no results for that query. Would you like to " "try a different area of town? U: Are there any moderate priced " "hotels in the North? S: Yes I have two. Would you like me to book " "one? U: I need a hotel to include free parking; does either have" " that? S: Yes both of them have free parking. U: Which one would" " you recommend? S: How about the Ashley hotel? U: Is the Ashley " "hotel a 3 star hotel? S: the ashley is actually a 2 star hotel. " "U: Does this hotel have rooms with a good view of the neighborhood?") assert result.each_results.iloc[0]['answer_pred'] logger.info('The result of DSTC-11-Track-5 dataset.') for key, value in result.results.items(): logger.info(f"{key}: {value}") logger.info("The result length is " + f"{len(result.results)}")
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~reranker~tart~tart.py
from typing import List, Optional import torch import torch.nn.functional as F from langchain_core.runnables import RunnableConfig from langchain_core.runnables.utils import Input, Output from RAGchain.reranker.base import BaseReranker from RAGchain.schema import Passage, RetrievalResult from .modeling_enc_t5 import EncT5ForSequenceClassification from .tokenization_enc_t5 import EncT5Tokenizer class TARTReranker(BaseReranker): """ TARTReranker is a reranker based on TART (https://github.com/facebookresearch/tart). You can rerank the passages with the instruction using TARTReranker. """ def __init__(self, instruction: str): """ The default model is facebook/tart-full-flan-t5-xl. :param instruction: The instruction for reranking. """ self.instruction = instruction model_name = "facebook/tart-full-flan-t5-xl" self.model = EncT5ForSequenceClassification.from_pretrained(model_name) self.tokenizer = EncT5Tokenizer.from_pretrained(model_name) def rerank(self, query: str, passages: List[Passage]) -> List[Passage]: retrieval_result = RetrievalResult(query=query, passages=passages, scores=[]) reranked_result = self.invoke(retrieval_result) return reranked_result.passages def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Output: passages = input.passages contents: List[str] = [passage.content for passage in passages] instruction_queries: List[str] = ['{0} [SEP] {1}'.format(self.instruction, input.query) for _ in range(len(contents))] features = self.tokenizer(instruction_queries, contents, padding=True, truncation=True, return_tensors="pt") with torch.no_grad(): scores = self.model(**features).logits normalized_scores = [float(score[1]) for score in F.softmax(scores, dim=1)] sorted_passages, sorted_scores = zip( *sorted(zip(passages, normalized_scores), key=lambda x: x[1], reverse=True)) input.passages = list(sorted_passages) input.scores = list(sorted_scores) return input
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~preprocess~loader~pdf_link_loader.py
import tempfile from typing import List import requests from langchain.document_loaders import PDFMinerLoader from langchain.document_loaders.base import BaseLoader from langchain.schema import Document class PdfLinkLoader(BaseLoader): """ Load PDF from a link """ def __init__(self, link: str, *args, **kwargs): if not self.valid_url(link): raise ValueError(f"Invalid url: {link}") self.link = link def load(self) -> List[Document]: with tempfile.NamedTemporaryFile() as f: f.write(requests.get(self.link).content) f.seek(0) loader = PDFMinerLoader(f.name) return loader.load() @staticmethod def valid_url(url): return url.startswith("http://") or url.startswith("https://")
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~benchmark~dataset~test_startegy_qa.py
import os import pathlib import pytest from langchain.llms.openai import OpenAI from RAGchain.DB import PickleDB from RAGchain.benchmark.dataset import StrategyQAEvaluator from RAGchain.pipeline import BasicRunPipeline from RAGchain.retrieval import BM25Retrieval root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent.parent bm25_path = os.path.join(root_dir, 'resources', 'bm25', 'strategy_qa_evaluator.pkl') pickle_path = os.path.join(root_dir, 'resources', 'pickle', 'strategy_qa_evaluator.pkl') @pytest.fixture def strategy_qa_evaluator(): bm25_retrieval = BM25Retrieval(save_path=bm25_path) db = PickleDB(pickle_path) pipeline = BasicRunPipeline(bm25_retrieval, OpenAI(model_name='babbage-002')) evaluator = StrategyQAEvaluator(pipeline, evaluate_size=5, metrics=['Recall', 'Precision', 'Hole', 'TopK_Accuracy', 'EM', 'F1_score', 'context_recall', 'context_precision']) evaluator.ingest([bm25_retrieval], db, ingest_size=20) yield evaluator if os.path.exists(bm25_path): os.remove(bm25_path) if os.path.exists(pickle_path): os.remove(pickle_path) def test_strategy_qa_evaluator(strategy_qa_evaluator): with pytest.raises(ValueError): strategy_qa_evaluator.evaluate(validate_passages=True) result = strategy_qa_evaluator.evaluate(validate_passages=False) assert len(result.each_results) == 5 assert result.each_results.iloc[0][ 'question'] == 'Are more people today related to Genghis Khan than Julius Caesar?' assert result.each_results.iloc[0]['answer_pred'] # you can't use context_recall when validate_passages is False assert len(result.use_metrics) == len(strategy_qa_evaluator.metrics) - 1
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~reranker~test_base_reranker.py
import os import pathlib import pickle from uuid import UUID from langchain_core.runnables import RunnableLambda from RAGchain.reranker.base import BaseReranker from RAGchain.schema import Passage, RetrievalResult root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent with open(os.path.join(root_dir, "resources", "sample_passages.pkl"), 'rb') as r: TEST_PASSAGES = pickle.load(r) query = "What is query decomposition?" def test_load_passage(): assert len(TEST_PASSAGES) > 0 for passage in TEST_PASSAGES: assert isinstance(passage, Passage) assert isinstance(passage.id, UUID) or isinstance(passage.id, str) def base_runnable_test(reranker: BaseReranker): runnable = reranker | RunnableLambda(lambda x: x.to_dict()) result = runnable.invoke(RetrievalResult(query=query, passages=TEST_PASSAGES, scores=[])) assert isinstance(result['query'], str) assert isinstance(result['passages'], list) assert isinstance(result['scores'], list) assert len(result['passages']) == len(TEST_PASSAGES) assert result['passages'][0] != TEST_PASSAGES[0] or result['passages'][-1] != TEST_PASSAGES[-1] assert len(result['scores']) == len(result['passages']) assert isinstance(result['passages'][0], Passage) assert isinstance(result['scores'][0], float) for i in range(1, len(result['passages'])): assert result['scores'][i - 1] >= result['scores'][i] results = runnable.batch([ RetrievalResult(query=query, passages=TEST_PASSAGES[:10], scores=[]), RetrievalResult(query=query, passages=TEST_PASSAGES[10:25], scores=[]) ]) assert isinstance(results, list) assert len(results) == 2 assert isinstance(results[0]['passages'], list) assert isinstance(results[1]['passages'][0], Passage) assert len(results[0]['passages']) == 10 assert len(results[1]['passages']) == 15 assert len(results[0]['scores']) == 10 assert len(results[1]['scores']) == 15
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~preprocess~loader~mathpix_markdown_loader.py
import os import re from typing import List, Iterator from langchain.document_loaders.base import BaseLoader from langchain.schema import Document class MathpixMarkdownLoader(BaseLoader): """ Load mathpix markdown file. mathpix markdown is .mmd file which is a markdown file for science papers. This class supports to split the file into sections and tables of science papers. """ def __init__(self, filepath: str): """ :param filepath: The path of mathpix markdown file. The file should be .mmd file. """ if not os.path.exists(filepath): raise ValueError(f"File {filepath} does not exist.") self.filepath = filepath def load(self, split_section: bool = True, split_table: bool = True) -> List[Document]: """ :param split_section: If True, split the file into sections. Default is True. :param split_table: If True, split the file into tables. Default is True. :return: List of Document. If split_section and split_table are True, the list contains multiple Documents. The order of each section and table are the same as the order of the file. """ return list(self.lazy_load(split_section=split_section, split_table=split_table)) def lazy_load(self, split_section: bool = True, split_table: bool = True) -> Iterator[Document]: """ :param split_section: If True, split the file into sections. Default is True. :param split_table: If True, split the file into tables. Default is True. :return: Iterator of Document. If split_section and split_table are True, return contains multiple Documents. The order of each section and table are the same as the order of the file. """ with open(self.filepath, 'r') as f: content = f.read() if not split_section and not split_table: yield Document(page_content=content, metadata={"source": self.filepath, "content_type": "text"}) else: split_sections: List[str] = [content] if split_section: split_sections = self.split_section(content) if not split_table: for section in split_sections: yield Document(page_content=section, metadata={"source": self.filepath, "content_type": "text"}) if split_table: for document in split_sections: contents: List[str] = self.split_table(document) for content in contents: page_type = "table" if content.startswith('\\\\begin{table}') else "text" yield Document(page_content=content, metadata={"source": self.filepath, "content_type": page_type}) @staticmethod def split_section(content: str) -> List[str]: """ Split section from mathpix markdown content by '#'. """ split_text = re.split('(#+ )', content) split_text.pop(0) result = [split_text[i] + split_text[i + 1] for i in range(0, len(split_text), 2)] return result @staticmethod def split_table(content: str) -> List[str]: """ Split table from mathpix markdown content. :param content: mathpix markdown content :return: The odd index is the content without table, and the even index is the table. """ pattern = re.compile(r'\\\\begin{table}.*?\\\\end{table}', re.DOTALL) matches = re.findall(pattern, content) texts_without_tables = re.split(pattern, content) result = [] for i in range(len(texts_without_tables)): result.append(texts_without_tables[i]) if i < len(matches): result.append(matches[i]) return result
[ "text" ]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~retrieval~test_hybrid_retrieval.py
import logging import os import shutil import chromadb import pytest from langchain.vectorstores import Chroma import test_base_retrieval from RAGchain.DB import PickleDB from RAGchain.retrieval import BM25Retrieval, VectorDBRetrieval, HybridRetrieval from RAGchain.utils.embed import EmbeddingFactory logger = logging.getLogger(__file__) @pytest.fixture(scope='module') def hybrid_retrieval(): bm25_path = os.path.join(test_base_retrieval.root_dir, "resources", "bm25", "test_hybrid_retrieval.pkl") pickle_path = os.path.join(test_base_retrieval.root_dir, "resources", "pickle", "test_hybrid_retrieval.pkl") chroma_path = os.path.join(test_base_retrieval.root_dir, "resources", "test_hybrid_retrieval_chroma") if not os.path.exists(chroma_path): os.makedirs(chroma_path) if not os.path.exists(os.path.dirname(bm25_path)): os.makedirs(os.path.dirname(bm25_path)) if not os.path.exists(os.path.dirname(pickle_path)): os.makedirs(os.path.dirname(pickle_path)) test_base_retrieval.ready_pickle_db(pickle_path) bm25_retrieval = BM25Retrieval(save_path=bm25_path) vectordb_retrieval = VectorDBRetrieval(vectordb=Chroma( client=chromadb.PersistentClient(path=chroma_path), collection_name='test_hybrid_retrieval', embedding_function=EmbeddingFactory('openai').get() )) hybrid_retrieval = HybridRetrieval(retrievals=[bm25_retrieval, vectordb_retrieval], weights=[0.3, 0.7], p=50) yield hybrid_retrieval if os.path.exists(pickle_path): os.remove(pickle_path) if os.path.exists(bm25_path): os.remove(bm25_path) if os.path.exists(chroma_path): shutil.rmtree(chroma_path) @pytest.fixture def hybrid_retrieval_for_delete(): bm25_path = os.path.join(test_base_retrieval.root_dir, "resources", "bm25", "test_hybrid_retrieval_for_delete.pkl") pickle_path = os.path.join(test_base_retrieval.root_dir, "resources", "pickle", "test_hybrid_retrieval_for_delete.pkl") chroma_path = os.path.join(test_base_retrieval.root_dir, "resources", "test_hybrid_retrieval_for_delete_chroma") if not os.path.exists(chroma_path): os.makedirs(chroma_path) if not os.path.exists(os.path.dirname(bm25_path)): os.makedirs(os.path.dirname(bm25_path)) if not os.path.exists(os.path.dirname(pickle_path)): os.makedirs(os.path.dirname(pickle_path)) db = PickleDB(save_path=pickle_path) db.create_or_load() db.save(test_base_retrieval.SEARCH_TEST_PASSAGES) bm25_retrieval = BM25Retrieval(save_path=bm25_path) vectordb_retrieval = VectorDBRetrieval(vectordb=Chroma( client=chromadb.PersistentClient(path=chroma_path), collection_name='test_hybrid_retrieval', embedding_function=EmbeddingFactory('openai').get() )) hybrid_retrieval = HybridRetrieval(retrievals=[bm25_retrieval, vectordb_retrieval], weights=[0.3, 0.7], p=50) hybrid_retrieval.ingest(test_base_retrieval.SEARCH_TEST_PASSAGES) yield hybrid_retrieval if os.path.exists(pickle_path): os.remove(pickle_path) if os.path.exists(bm25_path): os.remove(bm25_path) if os.path.exists(chroma_path): shutil.rmtree(chroma_path) def test_hybrid_retrieval(hybrid_retrieval): hybrid_retrieval.ingest(test_base_retrieval.TEST_PASSAGES) top_k = 6 retrieved_ids = hybrid_retrieval.retrieve_id(query='What is visconde structure?', top_k=top_k) test_base_retrieval.validate_ids(retrieved_ids, top_k) retrieved_passages = hybrid_retrieval.retrieve(query='What is visconde structure?', top_k=top_k) test_base_retrieval.validate_passages(retrieved_passages, top_k) retrieved_ids_2, scores = hybrid_retrieval.retrieve_id_with_scores(query='What is visconde structure?', top_k=top_k) logger.info(f'scores: {scores}') assert retrieved_ids == retrieved_ids_2 assert len(retrieved_ids_2) == len(scores) assert max(scores) == scores[0] assert min(scores) == scores[-1] def test_hybrid_retrieval_rrf(hybrid_retrieval): hybrid_retrieval.method = 'rrf' test_hybrid_retrieval(hybrid_retrieval) def test_hybrid_retrieval_delete(hybrid_retrieval_for_delete): hybrid_retrieval_for_delete.delete(['test_id_4_search', 'test_id_3_search']) retrieved_passages = hybrid_retrieval_for_delete.retrieve(query='What is visconde structure?', top_k=4) assert len(retrieved_passages) == 2 assert 'test_id_1_search' in [passage.id for passage in retrieved_passages] assert 'test_id_2_search' in [passage.id for passage in retrieved_passages]
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~preprocess~text_splitter~html_header_splitter.py
import copy from typing import Optional, List, Tuple from langchain.schema import Document from langchain.text_splitter import HTMLHeaderTextSplitter from RAGchain.preprocess.text_splitter.base import BaseTextSplitter from RAGchain.schema import Passage class HTMLHeaderSplitter(BaseTextSplitter): """ The HTMLHeaderSplitter class in the RAGchain library is a text splitter that splits documents based on HTML headers. This class inherits from the BaseTextSplitter class and uses the HTMLHeaderTextSplitter. """ def __init__( self, headers_to_split_on: Optional[Tuple[str, str]] = None, return_each_element: bool = False, ): """ :param headers_to_split_on: list of tuples of headers we want to track mapped to (arbitrary) keys for metadata. Allowed header values: h1, h2, h3, h4, h5, h6 Default is [("h1", "Header 1"), ("h2", "Header 2"), ("h3", "Header 3"),] e.g. [(“h1”, “Header 1”), (“h2”, “Header 2)]. :param return_each_element: Return each element with associated headers. Default is False. """ # Set headers_to_split_on default variable. if headers_to_split_on is None: headers_to_split_on = [ ("h1", "Header 1"), ("h2", "Header 2"), ("h3", "Header 3") ] self.html_header_splitter = HTMLHeaderTextSplitter(headers_to_split_on, return_each_element) def split_document(self, document: Document) -> List[Passage]: doc_copy = copy.deepcopy(document) split_documents = self.html_header_splitter.split_text(document.page_content) for doc in split_documents: doc.metadata.update(doc_copy.metadata) passages = Passage.from_documents(split_documents) return passages
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~preprocess~loader~dataset_loader.py
from typing import List import pandas as pd from huggingface_hub import hf_hub_download from langchain.document_loaders.base import BaseLoader from langchain.schema import Document class KoStrategyQALoader(BaseLoader): """ KoStrategyQA dataset loader The dataset downloads at huggingface via internet. """ def __init__(self, *args, **kwargs): paragraph_path = hf_hub_download(repo_id="NomaDamas/Ko-StrategyQA", filename="ko-strategy-qa_paragraphs.parquet", repo_type="dataset") self.paragraph_df = pd.read_parquet(paragraph_path) def load(self) -> List[Document]: def make_document(row): return Document(page_content=row["ko-content"], metadata={"id": row["key"]}) self.paragraph_df["document"] = self.paragraph_df.apply(make_document, axis=1) return self.paragraph_df["document"].tolist()
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~utils~compressor~test_llm_lingua_compressor.py
import logging import pytest from langchain.llms.openai import OpenAI from langchain.prompts import PromptTemplate, ChatPromptTemplate from langchain.schema import StrOutputParser from RAGchain.utils.compressor.llm_lingua import LLMLinguaCompressor logger = logging.getLogger(__name__) @pytest.fixture def llm_lingua_compressor(): compressor = LLMLinguaCompressor() yield compressor def test_llm_lingua_compressor(llm_lingua_compressor): prompt = PromptTemplate.from_template("Hello, I am a {role}.") runnable = prompt | llm_lingua_compressor | OpenAI() | StrOutputParser() answer = runnable.invoke({"role": "student"}) assert bool(answer.strip()) is True chat_prompt = ChatPromptTemplate.from_messages([ ("system", "As a helpful assistant, follow the instructions below."), ("user", "Hello, I am a {role}."), # user input ]) runnable = chat_prompt | llm_lingua_compressor | OpenAI() | StrOutputParser() answer = runnable.invoke({"role": "student"}) assert bool(answer) is True for s in runnable.stream({"role": "student"}): logger.debug(s)
[ "[('system', 'As a helpful assistant, follow the instructions below.'), ('user', 'Hello, I am a {role}.')]", "Hello, I am a {role}.", "As a helpful assistant, follow the instructions below." ]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~reranker~upr~upr.py
from typing import List, Optional import torch from langchain_core.runnables import RunnableConfig from langchain_core.runnables.utils import Input, Output from transformers import T5ForConditionalGeneration, T5Tokenizer from RAGchain.reranker.base import BaseReranker from RAGchain.schema import Passage, RetrievalResult class UPRReranker(BaseReranker): """ UPRReranker is a reranker based on UPR (https://github.com/DevSinghSachan/unsupervised-passage-reranking). The language model will make a question based on the passage and rerank the passages by the likelihood of the question. """ def __init__(self, model_name: str = "t5-large", prefix_prompt: str = "Passage: ", suffix_prompt: str = "Please write a question based on this passage.", use_bf16: bool = False, use_gpu: bool = False, shard_size: int = 16): """ :param model_name: The name of the model. The default model is t5-large. :param prefix_prompt: The prefix prompt for the language model that generates question for reranking. Default is "Passage: ". :param suffix_prompt: The suffix prompt for the language model that generates question for reranking. Default is "Please write a question based on this passage.". :param use_bf16: Whether to use bfloat16 for the model. Default is False. :param use_gpu: Whether to use GPU for the model. Default is False. :param shard_size: The shard size for the model. The larger the shard size, the faster the reranking speed. But it will consume more memory and compute power. Default is 16. """ self.prefix_prompt = prefix_prompt self.suffix_prompt = suffix_prompt self.model = T5ForConditionalGeneration.from_pretrained(model_name, torch_dtype=torch.bfloat16 if use_bf16 else torch.float32) self.tokenizer = T5Tokenizer.from_pretrained(model_name) self.use_gpu = use_gpu self.shard_size = shard_size def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Output: input_contexts = [f"{passage.filepath} {passage.content}" for passage in input.passages] indexes, scores = self.calculate_likelihood(input.query, input_contexts) reranked_passages = [input.passages[idx] for idx in indexes] input.passages = reranked_passages input.scores = scores return input def rerank(self, query: str, passages: List[Passage]) -> List[Passage]: result = self.invoke(RetrievalResult(query=query, passages=passages, scores=[])) return result.passages def calculate_likelihood(self, question: str, contexts: List[str]) -> tuple[List[int], List[float]]: prompts = [f"{self.prefix_prompt} {context} {self.suffix_prompt}" for context in contexts] # tokenize contexts and instruction prompts context_tokens = self.tokenizer(prompts, padding='longest', max_length=512, pad_to_multiple_of=8, truncation=True, return_tensors='pt') context_tensor, context_attention_mask = context_tokens.input_ids, context_tokens.attention_mask if self.use_gpu: context_tensor, context_attention_mask = context_tensor.cuda(), context_attention_mask.cuda() # tokenize question question_tokens = self.tokenizer([question], max_length=128, truncation=True, return_tensors='pt') question_tensor = question_tokens.input_ids if self.use_gpu: question_tensor = question_tensor.cuda() question_tensor = torch.repeat_interleave(question_tensor, len(contexts), dim=0) sharded_nll_list = [] # calculate log likelihood for i in range(0, len(context_tensor), self.shard_size): encoder_tensor_view = context_tensor[i: i + self.shard_size] attention_mask_view = context_attention_mask[i: i + self.shard_size] decoder_tensor_view = question_tensor[i: i + self.shard_size] with torch.no_grad(): logits = self.model(input_ids=encoder_tensor_view, attention_mask=attention_mask_view, labels=decoder_tensor_view).logits log_softmax = torch.nn.functional.log_softmax(logits, dim=-1) nll = -log_softmax.gather(2, decoder_tensor_view.unsqueeze(2)).squeeze(2) avg_nll = torch.sum(nll, dim=1) sharded_nll_list.append(avg_nll) topk_scores, indexes = torch.topk(-torch.cat(sharded_nll_list), k=len(context_tensor)) return indexes.tolist(), topk_scores.tolist()
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~utils~websearch~test_bing_search.py
from langchain_core.runnables import RunnableLambda from RAGchain.utils.websearch import BingSearch def test_bing_search(): search = BingSearch() passages = search.get_search_data("뉴진스 민지의 생일은?", num_results=2) assert len(passages) == 2 def test_bing_search_runnable(): search = BingSearch() runnable = search | RunnableLambda(lambda x: x.to_dict()) result = runnable.invoke("뉴진스 민지의 생일은?", config={"configurable": {"web_search_options": {"num_results": 2}}}) assert isinstance(result['query'], str) assert result['query'] == "뉴진스 민지의 생일은?" assert isinstance(result['passages'], list) assert len(result['passages']) == 2 assert isinstance(result['scores'], list) assert result['scores'] == [1.0, 0.5] def test_bing_search_runnable_batch(): search = BingSearch() runnable = search | RunnableLambda(lambda x: x.to_dict()) results = runnable.batch([ "뉴진스 민지의 생일은?", "에스파 카리나의 생일은?", ], config={"configurable": {"web_search_options": {"num_results": 2}}}) assert len(results) == 2 assert isinstance(results[0]['query'], str) assert results[0]['query'] == "뉴진스 민지의 생일은?" assert isinstance(results[0]['passages'], list) assert len(results[0]['passages']) == 2 assert isinstance(results[0]['scores'], list) assert len(results[0]['scores']) == 2 assert results[1]['query'] == "에스파 카리나의 생일은?"
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~preprocess~loader~file_loader.py
import os from typing import List, Iterator from langchain.document_loaders import TextLoader, PDFMinerLoader, CSVLoader from langchain.document_loaders.base import BaseLoader from langchain.schema import Document from tqdm import tqdm class FileLoader(BaseLoader): """ Loads documents from a directory. You can load .txt, .pdf, .csv, .xlsx, .hwp files. """ def __init__(self, target_dir: str, hwp_host_url: str, *args, **kwargs): """ :param target_dir: directory path to load documents from :param hwp_host_url: hwp-converter-api host url """ # add more extensions when if you want to add more extensions loader self.hwp_host_url = hwp_host_url self.ingestable_extensions = ['.txt', '.pdf', '.csv', '.xlsx', '.hwp'] if not os.path.exists(target_dir): raise ValueError(f"Target directory {target_dir} does not exist.") self.target_dir = target_dir def load(self, filter_ext: List[str] = None) -> List[Document]: """ Load all files in the target directory. :param filter_ext: If not None, only files with the given extensions will be loaded. filter_ext elements must contain the dot (.) prefix. """ docs = list(self.lazy_load(filter_ext=filter_ext)) if len(docs) <= 0: print(f"Could not find any new documents in {self.target_dir}") else: print(f"Loaded {len(docs)} documents from {self.target_dir}") return docs def lazy_load(self, filter_ext: List[str] = None) -> Iterator[Document]: """ Lazily load all files in the target directory. :param filter_ext: If not None, only files with the given extensions will be loaded. filter_ext elements must contain the dot (.) prefix. """ valid_ext = self.ingestable_extensions if filter_ext is None else filter_ext for (path, dir, files) in tqdm(os.walk(self.target_dir)): for file_name in files: ext = os.path.splitext(file_name)[-1].lower() # this function contain dot (.) prefix if filter_ext is not None and ext not in filter_ext: continue full_file_path = os.path.join(path, file_name) if ext in valid_ext: yield self._load_single_document(full_file_path) else: print(f"Not Support file type {ext} yet.") def _load_single_document(self, file_path: str) -> Document: from RAGchain.preprocess.loader import ExcelLoader, HwpLoader # Loads a single document from a file path if file_path.endswith(".txt"): loader = TextLoader(file_path, encoding="utf8") elif file_path.endswith(".pdf"): loader = PDFMinerLoader(file_path) elif file_path.endswith(".csv"): loader = CSVLoader(file_path) elif file_path.endswith(".xlsx"): loader = ExcelLoader(file_path) elif file_path.endswith(".hwp"): loader = HwpLoader(file_path, hwp_host_url=self.hwp_host_url) return loader.load()[0]
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~reranker~test_weighted_importance_reranker.py
import pytest from langchain_core.runnables import RunnableLambda from RAGchain.reranker.importance import WeightedImportanceReranker from RAGchain.schema import Passage, RetrievalResult TEST_PASSAGES = [ Passage(id=str(i), content=str(i), filepath='test', importance=i) for i in range(5) ] SCORES = [i ** 2 for i in range(5, 0, -1)] @pytest.fixture def weighted_importance_reranker(): reranker = WeightedImportanceReranker(importance_weight=0.8) yield reranker def test_weighted_importance_reranker(weighted_importance_reranker): reranked_passages = weighted_importance_reranker.rerank(TEST_PASSAGES, SCORES) assert isinstance(reranked_passages[0], Passage) solution = [4, 3, 2, 1, 0] for passage, idx in zip(reranked_passages, solution): assert passage.id == str(idx) def test_weighted_importance_reranker_runnable(weighted_importance_reranker): runnable = weighted_importance_reranker | RunnableLambda(lambda x: x.to_dict()) result = runnable.invoke(RetrievalResult(query="query", passages=TEST_PASSAGES, scores=SCORES)) assert isinstance(result['passages'], list) assert isinstance(result['scores'], list) assert isinstance(result['passages'][0], Passage) assert isinstance(result['scores'][0], float) assert len(result['passages']) == len(TEST_PASSAGES) assert len(result['scores']) == len(result['passages']) solution = [4, 3, 2, 1, 0] for passage, idx in zip(result['passages'], solution): assert passage.id == str(idx) for i in range(1, len(result['scores'])): assert result['scores'][i - 1] >= result['scores'][i]
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~utils~compressor~llm_lingua.py
from typing import Type, Union, List, Optional, Any from langchain.prompts.base import StringPromptValue from langchain.prompts.chat import ChatPromptValueConcrete, ChatPromptValue from langchain.schema.language_model import LanguageModelInput from langchain.schema.messages import AnyMessage from langchain.schema.runnable import RunnableConfig, Runnable from langchain.schema.runnable.utils import Input, Output class LLMLinguaCompressor(Runnable[LanguageModelInput, str]): """ Compress given prompt using LLMLingua. It uses small model like Llama-2-7b, and calculate perplexity of given prompt. With that information, it compresses the prompt for reducing token usage. """ def __init__(self, model_name: str = "NousResearch/Llama-2-7b-hf", device_map: str = "cuda", model_config: dict = {}, open_api_config: dict = {}, **kwargs: Any): """ Initialize the LLMLinguaCompressor class. :param model_name: The name of the model to be used for compression. :param device_map: The device to be used for compression. :param model_config: The model configuration to be used for compression. :param open_api_config: The open api configuration to be used for compression. :param kwargs: The keyword arguments to be used for compression. parameter of compress_prompt method. """ super().__init__() try: from llmlingua import PromptCompressor except ImportError: raise ImportError("Please install llmlingua first.") self.compressor = PromptCompressor(model_name=model_name, device_map=device_map, model_config=model_config, open_api_config=open_api_config) self.compress_option = kwargs def invoke(self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) -> Output: prompt_value = '' if isinstance(input, str): prompt_value = input elif isinstance(input, StringPromptValue): prompt_value = input.text elif isinstance(input, ChatPromptValueConcrete) or isinstance(input, ChatPromptValue): for message in input.messages: prompt_value += f'{message.type} : {message.content}\n' elif isinstance(input[0], AnyMessage): for message in input: prompt_value += f'{message.type} : {message.content}\n' else: raise TypeError(f"Invalid input type: {type(input)}") result = self.compressor.compress_prompt(context=[prompt_value], **self.compress_option) return result['compressed_prompt'] @property def InputType(self) -> Type[Input]: """Get the input type for this runnable.""" return Union[ str, Union[StringPromptValue, ChatPromptValueConcrete], List[AnyMessage], ] @property def OutputType(self) -> Type[Output]: return str
[ "INPUT" ]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~preprocess~loader~win32_hwp_loader.py
import os import re import tempfile import zipfile from typing import List, Iterator from langchain.document_loaders.base import BaseLoader from langchain.schema import Document class Win32HwpLoader(BaseLoader): """ Load HWP file using pywin32. It works for only Windows. Using load or lazy_load, you can get list of Documents from hwp and hwpx file. This loader loads all paragraphs and tables from hwp or hwpx file. At the first Document, there are all paragraphs excluding texts in each table. Next, there are separated Documents for each table. All table contents are converted to html format. So you can get row, columns, or any complicated table structure. In the metadata, there are filepath at key 'source' and page_type, which is 'text' or 'table'. It is great option to use loader for loading complicated tables from hwp or hwpx file. But it is only available at windows, so choose other hwp loader if you want to use at mac or linux. """ def __init__(self, path: str): """ :param path: hwp file path """ self.file_path = path def lazy_load(self) -> Iterator[Document]: text, tables = self.preprocessor() yield Document(page_content=" ".join(text), metadata={"source": self.file_path, 'page_type': 'text'}) for table in tables: yield Document(page_content=table, metadata={"source": self.file_path, 'page_type': 'table'}) def load(self) -> List[Document]: return list(self.lazy_load()) def preprocessor(self) -> tuple[List, List]: text = list() table = list() hwpx_temp_file = None if self.file_path.endswith('.hwp'): hwpx_temp_file = tempfile.NamedTemporaryFile(suffix='.hwpx', mode='w', delete=False) self.convert_hwp_to_hwpx(self.file_path, hwpx_temp_file.name) hwpx_file = hwpx_temp_file.name elif self.file_path.endswith('.hwpx'): hwpx_file = self.file_path else: raise ValueError("The file extension must be .hwp or .hwpx") with tempfile.TemporaryDirectory() as target_path: with zipfile.ZipFile(hwpx_file, 'r') as zf: zf.extractall(path=target_path) if hwpx_temp_file is not None: hwpx_temp_file.close() os.unlink(hwpx_temp_file.name) text_extract_pattern = r'</?(?!(?:em|strong)\b)[a-z](?:[^>"\']|"[^"]*"|\'[^\']*\')*>' for i, xml in enumerate(self.__splitter(os.path.join(target_path, "Contents", "section0.xml"))): if i % 2 == 0: text.append(re.sub(text_extract_pattern, '', xml)) # just text elif i % 2 == 1: table.append('<hp:tbl' + xml) # table text[0] = text[0].strip("""['<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>""") table = list(map(self.__xml_to_html, table)) return text, table @staticmethod def convert_hwp_to_hwpx(input_filepath, output_filepath): try: import win32com.client as win32 except ImportError: raise ImportError("Please install pywin32." "pip install pywin32") hwp = win32.gencache.EnsureDispatch("HWPFrame.HwpObject") hwp.RegisterModule("FilePathCheckDLL", "FilePathCheckerModule") hwp.HParameterSet.HTableCreation.TableProperties.TreatAsChar = 1 hwp.Open(input_filepath) hwp.SaveAs(output_filepath, "HWPX") hwp.Quit() @staticmethod def __splitter(path): with open(path, 'r', encoding='utf-8') as file: xml_content = file.read() separate = re.split(r'<hp:tbl|</hp:tbl>', xml_content) return separate @staticmethod def __xml_to_html(xml): try: from bs4 import BeautifulSoup except ImportError: raise ImportError("Please install bs4." "pip install bs4") bs = BeautifulSoup(xml, 'html.parser') flag, line = 0, 0 result_txt = """<table border="1" width="50%" height="200" cellspacing="5">\n""" for tag in bs.find_all('hp:tr'): result_txt += "\t <tr>\n" for tag2 in tag.find_all('hp:tc'): for tag3 in tag2.find_all('hp:cellspan'): for tag4 in tag2.find_all('hp:sublist'): result_txt += '\t \t <td>' for tag5 in tag4.find_all('hp:t'): if tag3.attrs['colspan'] != "1" and tag3.attrs['rowspan'] == "1" and flag == 0: result_txt = result_txt[:-1] + ' colspan ="{}">'.format( tag3.attrs['colspan']) + tag5.get_text() flag = 1 elif tag3.attrs['colspan'] == "1" and tag3.attrs[ 'rowspan'] != "1" and flag == 0 and line == 0: result_txt = result_txt[:-1] + ' rowspan ="{}">'.format( tag3.attrs['rowspan']) + tag5.get_text() flag = 1 line = 2 elif tag3.attrs['colspan'] != "1" and tag3.attrs['rowspan'] != "1" and flag == 0: result_txt = result_txt[:-1] + ' colspan ="{}" rowspan ="{}">'.format( tag3.attrs['colspan'], tag3.attrs['rowspan']) + tag5.get_text() flag = 1 else: result_txt += tag5.get_text() flag = 0 result_txt += '</td>\n' line = 0 result_txt += '\t </tr>\n' result_txt += '</table>' return result_txt
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~preprocess~text_splitter~markdown_header_splitter.py
import copy from typing import List, Optional from langchain.schema import Document from langchain.text_splitter import MarkdownHeaderTextSplitter from RAGchain.preprocess.text_splitter.base import BaseTextSplitter from RAGchain.schema import Passage class MarkDownHeaderSplitter(BaseTextSplitter): """ The `MarkDownHeaderSplitter` is used to split a document into passages based document's header information which a list of separators contain. The most feature is similar with Langchain's MarkdownHeaderTextSplitter. It split based on header. """ def __init__(self, headers_to_split_on: Optional[List[tuple[str, str]]] = None, return_each_line: bool = False): """ :param headers_to_split_on: A list of tuples which appended to create split standard. ex) headers_to_split_on = [ ("#", "Header 1"), ("##", "Header 2"), ("###", "Header 3"), ] """ # Set default value headers_to_split_on. if headers_to_split_on is None: headers_to_split_on = [ ("#", "Header 1"), ("##", "Header 2"), ("###", "Header 3") ] self.markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on, return_each_line) def split_document(self, document: Document) -> List[Passage]: doc_copy = copy.deepcopy(document) split_documents = self.markdown_splitter.split_text(document.page_content) for doc in split_documents: doc.metadata.update(doc_copy.metadata) passages = Passage.from_documents(split_documents) return passages
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~preprocess~text_splitter~test_text_splitter.py
from datetime import datetime import pytest from langchain.schema import Document from RAGchain.preprocess.text_splitter import RecursiveTextSplitter TEST_DOCUMENT = Document( page_content=""" To fix the issue of not being able to import your module when running 'pytest', you can try the following solutions: Add empty __init__.py files to all subdirectories under the src/ directory. This will cause pytest to import everything using package/module names that start with directory names under src/. [0] Modify the PYTHONPATH environment variable to include the root directory of your project. This can be done by running the command export PYTHONPATH=/path/to/your/project in Linux/Unix systems. By adding the root directory to PYTHONPATH, Python will be able to find your modules from the test directory. You can then run pytest using PYTHONPATH=. pytest. [0] Use the --import-mode command-line flag in pytest to control how test modules are imported. The default mode is prepend, which inserts the directory path containing each module at the beginning of sys.path. You can try using the append mode instead, which appends the directory containing each module to the end of sys.path. This can be useful if you want to run test modules against installed versions of a package. For example, if you have a package under test and a separate test package, using --import-mode=append will allow pytest to pick up the installed version of the package under test. [2] Make sure that there is no __init__.py file in the folder containing your tests. Having an __init__.py file in the tests folder can cause import issues with pytest. If you have an __init__.py file in the tests folder, try removing it and see if that solves the problem. [6] [7] Run pytest using the python -m pytest command instead of just pytest. This will add the current directory to sys.path, which might resolve import issues. [ 7] Here is a summary of the steps: Add empty __init__.py files to all subdirectories under the src/ directory. Modify the PYTHONPATH environment variable to include the root directory of your project. Run pytest using PYTHONPATH=. pytest. Use the --import-mode command-line flag in pytest to control how test modules are imported. Make sure there is no __init__.py file in the tests folder. Run pytest using the python -m pytest command. These solutions should help resolve the import issues you are facing when running pytest. """, metadata={ 'source': 'test_source', 'data_info': 'mancity', } ) TEST_DOCUMENT_2 = Document( page_content="test", metadata={ 'source': 'test_source', 'content_datetime': '2021-01-01 00:00:00', 'importance': 1 }) TEST_DOCUMENT_3 = Document( page_content="test", metadata={ 'source': 'test_source', 'content_datetime': datetime(2021, 1, 1), } ) @pytest.fixture def recursive_text_splitter(): recursive_text_splitter = RecursiveTextSplitter(chunk_size=500, chunk_overlap=50) yield recursive_text_splitter def test_recursive_text_splitter(recursive_text_splitter): passages = recursive_text_splitter.split_document(TEST_DOCUMENT) assert len(passages) > 1 assert passages[0].next_passage_id == passages[1].id assert passages[1].previous_passage_id == passages[0].id assert passages[0].filepath == 'test_source' assert passages[0].filepath == passages[1].filepath assert passages[0].previous_passage_id is None assert passages[-1].next_passage_id is None assert TEST_DOCUMENT.page_content.strip()[:10] == passages[0].content[:10] assert TEST_DOCUMENT.page_content.strip()[-10:] == passages[-1].content[-10:] assert passages[0].metadata_etc['data_info'] == 'mancity' assert len(passages[0].metadata_etc) == 1 def test_splitter_passage_conversion(recursive_text_splitter): passages_2 = recursive_text_splitter.split_document(TEST_DOCUMENT_2) assert passages_2[0].content_datetime == datetime(2021, 1, 1, 0, 0, 0) assert passages_2[0].importance == 1 passages_3 = recursive_text_splitter.split_document(TEST_DOCUMENT_3) assert passages_3[0].content_datetime == datetime(2021, 1, 1, 0, 0, 0) assert passages_3[0].importance == 0
[ "2021-01-01 00:00:00" ]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~schema~db_origin.py
from langchain.load.serializable import Serializable class DBOrigin(Serializable): """Class for storing a db_type and db_path: dict""" db_type: str db_path: dict def to_dict(self) -> dict: return { "db_type": self.db_type, "db_path": self.db_path }
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~reranker~importance~simple_importance.py
from typing import List, Optional from langchain_core.runnables import RunnableConfig from langchain_core.runnables.utils import Input, Output from RAGchain.reranker.base import BaseReranker from RAGchain.schema import Passage class SimpleImportanceReranker(BaseReranker): """Rerank passages by their importance only. It is simple reranker for importance-aware RAG""" def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Output: sorted_pairs = sorted(zip(input.passages, input.scores), key=lambda p: p[0].importance, reverse=True) sorted_passages, sorted_scores = zip(*sorted_pairs) input.passages = list(sorted_passages) input.scores = list(sorted_scores) return input def rerank(self, passages: List[Passage]) -> List[Passage]: """ Rerank passages by their content_datetime only. :param passages: list of passages to be reranked. """ return sorted(passages, key=lambda p: p.importance, reverse=True)
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~utils~embed~embeddingfactory.py
import os from enum import Enum from RAGchain.utils.util import text_modifier class EmbeddingType(Enum): OPENAI = 'openai' KOSIMCSE = 'kosimcse' KO_SROBERTA_MULTITASK = 'ko-sroberta-multitask' MULTILINGUAL_E5 = 'multilingual-e5' CONTRIEVER = 'contriever' class EmbeddingFactory: """ EmbeddingFactory is a factory class that returns the embedding class according to the embedding type. You can create embedding class easily by using this class. """ def __init__(self, embed_type: str, device_type: str = 'cuda'): """ :param embed_type: Embedding type. You can choose one of the following types. - openai: OpenAI GPT-3 - kosimcse: KoSimCSE - ko_sroberta_multitask: Ko-SRoBERTa-MultiTask - multilingual_e5: Multilingual-E5 - contriever: mContriever :param device_type: Device type. You can choose one of the following types. - cuda: GPU - cpu: CPU - mps: MPS """ if embed_type in text_modifier('openai'): self.embed_type = EmbeddingType.OPENAI elif embed_type in text_modifier('kosimcse', modify_words=['KoSimCSE', 'KoSimcse', 'koSimCSE', 'kosimCSE']): self.embed_type = EmbeddingType.KOSIMCSE elif embed_type in text_modifier('ko_sroberta_multitask'): self.embed_type = EmbeddingType.KO_SROBERTA_MULTITASK elif embed_type in text_modifier('multilingual_e5'): self.embed_type = EmbeddingType.MULTILINGUAL_E5 elif embed_type in text_modifier('contriever'): self.embed_type = EmbeddingType.CONTRIEVER else: raise ValueError(f"Unknown embedding type: {embed_type}") if device_type in text_modifier('cpu'): self.device_type = 'cpu' elif device_type in text_modifier('mps'): self.device_type = 'mps' else: self.device_type = 'cuda' def get(self): """ Returns the embedding class according to the embedding type. """ if self.embed_type == EmbeddingType.OPENAI: openai_token = os.getenv("OPENAI_API_KEY") if openai_token is None: raise ValueError("OPENAI_API_KEY is empty.") try: from langchain.embeddings import OpenAIEmbeddings except ImportError: raise ModuleNotFoundError( "Could not import OpenAIEmbeddings library. Please install OpenAI library." "pip install openai" ) return OpenAIEmbeddings(openai_api_key=openai_token) elif self.embed_type == EmbeddingType.KOSIMCSE: return self.__set_huggingface_embeddings("BM-K/KoSimCSE-roberta-multitask", {"device": self.device_type}) elif self.embed_type == EmbeddingType.KO_SROBERTA_MULTITASK: return self.__set_huggingface_embeddings("jhgan/ko-sroberta-multitask", {"device": self.device_type}) elif self.embed_type == EmbeddingType.MULTILINGUAL_E5: return self.__set_huggingface_embeddings("intfloat/multilingual-e5-large", {"device": self.device_type}) elif self.embed_type == EmbeddingType.CONTRIEVER: return self.__set_huggingface_embeddings("facebook/mcontriever-msmarco", {"device": self.device_type}) else: raise ValueError(f"Unknown embedding type: {self.embed_type}") @staticmethod def __set_huggingface_embeddings(model_name: str, model_kwargs: dict): try: from langchain.embeddings import HuggingFaceEmbeddings except ImportError: raise ModuleNotFoundError( "Could not import HuggingFaceEmbeddings library. Please install HuggingFace library." "pip install sentence_transformers" ) os.environ['TOKENIZERS_PARALLELISM'] = 'true' return HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~benchmark~dataset~test_eli5.py
import logging import os import pathlib import pytest from langchain.llms.openai import OpenAI from RAGchain.DB import PickleDB from RAGchain.benchmark.dataset import Eli5Evaluator from RAGchain.pipeline import BasicRunPipeline from RAGchain.retrieval import BM25Retrieval root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent.parent bm25_path = os.path.join(root_dir, 'resources', 'bm25', 'eli5_evaluator.pkl') pickle_path = os.path.join(root_dir, 'resources', 'pickle', 'eli5_evaluator.pkl') logger = logging.getLogger(__name__) @pytest.fixture def eli5_evaluator(): bm25_retrieval = BM25Retrieval(save_path=bm25_path) db = PickleDB(pickle_path) llm = OpenAI(model_name="gpt-3.5-turbo-16k") pipeline = BasicRunPipeline(bm25_retrieval, llm) evaluator = Eli5Evaluator(pipeline, evaluate_size=5) evaluator.ingest(retrievals=[bm25_retrieval], db=db, ingest_size=20) yield evaluator if os.path.exists(bm25_path): os.remove(bm25_path) if os.path.exists(pickle_path): os.remove(pickle_path) def test_eli5_evaluator(eli5_evaluator): result = eli5_evaluator.evaluate() assert len(result.each_results) == 5 assert result.each_results.iloc[0][ 'question'] == 'in football whats the point of wasting the first two plays with a rush - up the middle ' \ '- not regular rush plays i get those' for key, value in result.results.items(): logger.info(f"{key}: {value}") logger.info("The result length is " + f"{len(result.results)}")
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~preprocess~loader~hwp_loader.py
import asyncio import logging from http.client import HTTPException from typing import List, Iterator import aiohttp from langchain.schema import Document from langchain.document_loaders.base import BaseLoader logger = logging.getLogger(__name__) class HwpLoader(BaseLoader): """Load Hwp files. Hwp to text using hwp-converter-api. You can use hwp-converter-api at https://github.com/NomaDamas/hwp-converter-api """ def __init__( self, path: str, hwp_host_url: str, retry_connection: int = 4 ): """ :param path: Path to the file. You must use .hwp file. .hwpx file is not supported. :param hwp_host_url: URL of hwp-converter-api. :param retry_connection: Number of retries to connect to hwp-converter-api. Default is 4. """ self.path = path self.hwp_host_url = hwp_host_url assert retry_connection >= 1 self.retry_connection = retry_connection def load(self) -> List[Document]: """Load a document.""" return list(self.lazy_load()) def lazy_load(self) -> Iterator[Document]: """ Load a document lazily. This method uses asyncio requests. """ response = asyncio.run(self.async_request()) yield Document(page_content=response, metadata={"source": self.path}) async def async_request(self): for _ in range(self.retry_connection): async with aiohttp.ClientSession() as session: async with session.post(self.hwp_host_url, data={'file': open(self.path, 'rb')}) as response: if response.status == 200: return await response.text() raise HTTPException( f"Check the url of your file; returned status code {response.status}" )
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~utils~websearch~bing_search.py
from typing import List from langchain.utilities import BingSearchAPIWrapper from RAGchain.utils.websearch import BaseWebSearch from RAGchain.schema import Passage class BingSearch(BaseWebSearch): """ Langchain's 'BingSearchAPIWrapper' returns a List[Dict[str, str]] as the return value. This BingSearch class wraps this return value in a Passage. First, you need to set up the proper API keys and environment variables. To set it up, create the BING_SUBSCRIPTION_KEY in the Bing Search API (https://portal.azure.com/#home) and a BING_SEARCH_URL using the Bing Search API """ def __init__(self): self.search = BingSearchAPIWrapper() def get_search_data(self, query, num_results=5,) -> List[Passage]: search_results = self.search.results(query, num_results) passages = Passage.from_search(search_results) return passages
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~retrieval~hyde.py
import logging from typing import List, Union from uuid import UUID from langchain.chat_models.base import BaseChatModel from langchain.llms import BaseLLM from langchain.prompts import PromptTemplate, ChatPromptTemplate from langchain.schema import StrOutputParser from langchain.schema.language_model import BaseLanguageModel from RAGchain.retrieval.base import BaseRetrieval from RAGchain.schema import Passage logger = logging.getLogger(__name__) class HyDERetrieval(BaseRetrieval): """ HyDE Retrieval, which inspired by "Precise Zero-shot Dense Retrieval without Relevance Labels" (https://arxiv.org/pdf/2212.10496.pdf) At retrieval, LLM model creates hypothetical passage. And then, retrieve passages using hypothetical passage as query. """ BASIC_SYSTEM_PROMPT = "Please write a passage to answer the question" def __init__(self, retrieval: BaseRetrieval, llm: BaseLanguageModel, system_prompt: str = None): """ :param retrieval: retrieval instance to use :param llm: llm to use for hypothetical passage generation. HyDE Retrieval supports both chat and completion LLMs. :param system_prompt: system prompt to use when generating hypothetical passage """ super().__init__() self.retrieval = retrieval self.llm = llm self.system_prompt = self.BASIC_SYSTEM_PROMPT if system_prompt is None else system_prompt prompt = self.__make_prompt() self.runnable = prompt | self.llm | StrOutputParser() def retrieve(self, query: str, top_k: int = 5, *args, **kwargs) -> \ List[Passage]: ids = self.retrieve_id(query, top_k, *args, **kwargs) result = self.retrieval.fetch_data(ids) return result def ingest(self, passages: List[Passage]): self.retrieval.ingest(passages) def retrieve_id(self, query: str, top_k: int = 5, *args, **kwargs) -> List[ Union[str, UUID]]: ids, scores = self.retrieve_id_with_scores(query, top_k, *args, **kwargs) return ids def retrieve_id_with_scores(self, query: str, top_k: int = 5, *args, **kwargs) -> \ tuple[List[Union[str, UUID]], List[float]]: hyde_answer = self.runnable.invoke({"question": query}) # logging logger.info(f"HyDE answer : {hyde_answer}") return self.retrieval.retrieve_id_with_scores(query=hyde_answer.strip(), top_k=top_k, *args, **kwargs) def delete(self, ids: List[Union[str, UUID]]): self.retrieval.delete(ids) def __make_prompt(self): if isinstance(self.llm, BaseLLM): return PromptTemplate.from_template( self.system_prompt + "\nQuestion: {question}\nPassage:" ) elif isinstance(self.llm, BaseChatModel): return ChatPromptTemplate.from_messages([ ("system", self.system_prompt), ("human", "Question: {Question}"), ("ai", "Passage: ") ]) else: raise NotImplementedError("Only support LLM or ChatModel")
[ "human", "\nQuestion: {question}\nPassage:", "Passage: ", "Please write a passage to answer the question", "Question: {Question}" ]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~preprocess~text_splitter~code_splitter.py
from typing import List from langchain.schema import Document from langchain.text_splitter import ( RecursiveCharacterTextSplitter, Language, ) from RAGchain.preprocess.text_splitter.base import BaseTextSplitter from RAGchain.schema import Passage class CodeSplitter(BaseTextSplitter): """ The CodeSplitter class in the RAGchain library is a text splitter that splits documents based on separators of langchain's library Language enum. This class inherits from the BaseTextSplitter class and uses the from_language method of RecursiveCharacterTextSplitter class from the langchain library to perform the splitting. CodeSplitter supports CPP, GO, JAVA, KOTLIN, JS, TS, PHP, PROTO, `PYTHON`, RST, RUBY, RUST, SCALA, SWIFT, MARKDOWN, LATEX, HTML, SOL, CSHARP. """ def __init__( self, language_name: str = 'PYTHON', chunk_size: int = 50, chunk_overlap: int = 0, **kwargs ): """ :param language_name: A kind of language to split. Default is PYTHON. (CPP, GO, JAVA, KOTLIN, JS, TS, PHP, PROTO, PYTHON, RST, RUBY, RUST, SCALA, SWIFT, MARKDOWN, LATEX, HTML, SOL, CSHARP) :param chunk_size: Maximum size of chunks to return. Default is 50. :param chunk_overlap: Overlap in characters between chunks. Default is 0. :param kwargs: Additional arguments to pass to the langchain RecursiveCharacterTextSplitter. """ self.code_splitter = RecursiveCharacterTextSplitter.from_language( language=Language[language_name], chunk_size=chunk_size, chunk_overlap=chunk_overlap, **kwargs ) def split_document(self, document: Document) -> List[Passage]: split_documents = self.code_splitter.split_documents([document]) passages = Passage.from_documents(split_documents) return passages
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~pipeline~test_search_pipeline.py
import pytest from langchain.llms.openai import OpenAI from RAGchain.pipeline import GoogleSearchRunPipeline @pytest.fixture def google_search_run_pipeline(): llm = OpenAI(model_name="babbage-002") pipeline = GoogleSearchRunPipeline(llm) yield pipeline def test_google_search_run_pipeline(google_search_run_pipeline): answer = google_search_run_pipeline.run.invoke("What is the capital of France?") assert bool(answer) answers = google_search_run_pipeline.run.batch(["What is the capital of France?", "What is the capital of Germany?"]) assert len(answers) == 2 answers, passages, scores = google_search_run_pipeline.get_passages_and_run(["What is the capital of France?", "What is the capital of Germany?"], top_k=2) assert len(answers) == len(passages) == len(scores) == 2 assert len(passages[0]) == len(scores[0]) == 2
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~utils~file_cache.py
from typing import List, Optional from langchain.schema import Document from langchain_core.runnables import Runnable, RunnableConfig from langchain_core.runnables.utils import Input, Output from RAGchain.DB.base import BaseDB class FileCache(Runnable[List[Document], List[Document]]): """ This class is used to delete duplicate documents from given DB. You can use this after you load your file to Document using file loader. It will automatically check duplicate documents using source metadata and return non-duplicate documents. :example: >>> from RAGchain.utils.file_cache import FileCache >>> from RAGchain.DB import PickleDB >>> from langchain.document_loaders import TextLoader >>> >>> db = PickleDB(save_path='./pickle_db.pkl') >>> file_cache = FileCache(db) >>> documents = TextLoader('./data.txt').load() >>> documents = file_cache.delete_duplicate(documents) """ def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Output: return self.delete_duplicate(input) def __init__(self, db: BaseDB): self.db = db self.db.create_or_load() def delete_duplicate(self, documents: List[Document]) -> List[Document]: for document in documents.copy(): result = self.db.search(filepath=[document.metadata['source']]) if len(result) > 0: documents.remove(document) return documents @property def InputType(self) -> type: return List[Document] @property def OutputType(self) -> type: return List[Document]
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~utils~websearch~test_google_search.py
from langchain_core.runnables import RunnableLambda from RAGchain.utils.websearch import GoogleSearch def test_google_search(): search = GoogleSearch() passages = search.get_search_data("뉴진스 민지의 생일은?", num_results=2) assert len(passages) == 2 def test_google_search_runnable(): search = GoogleSearch() runnable = search | RunnableLambda(lambda x: x.to_dict()) result = runnable.invoke("뉴진스 민지의 생일은?", config={"configurable": {"web_search_options": {"num_results": 2}}}) assert isinstance(result['query'], str) assert result['query'] == "뉴진스 민지의 생일은?" assert isinstance(result['passages'], list) assert len(result['passages']) == 2 assert isinstance(result['scores'], list) assert result['scores'] == [1.0, 0.5] def test_google_search_runnable_batch(): search = GoogleSearch() runnable = search | RunnableLambda(lambda x: x.to_dict()) results = runnable.batch([ "뉴진스 민지의 생일은?", "에스파 카리나의 생일은?", ], config={"configurable": {"web_search_options": {"num_results": 2}}}) assert len(results) == 2 assert isinstance(results[0]['query'], str) assert results[0]['query'] == "뉴진스 민지의 생일은?" assert isinstance(results[0]['passages'], list) assert len(results[0]['passages']) == 2 assert isinstance(results[0]['scores'], list) assert len(results[0]['scores']) == 2 assert results[1]['query'] == "에스파 카리나의 생일은?"
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~utils~query_decompose.py
""" This code is inspired by Visconde paper and its github repo. @inproceedings{10.1007/978-3-031-28238-6_44, author = {Pereira, Jayr and Fidalgo, Robson and Lotufo, Roberto and Nogueira, Rodrigo}, title = {Visconde: Multi-Document QA With&nbsp;GPT-3 And&nbsp;Neural Reranking}, year = {2023}, isbn = {978-3-031-28237-9}, publisher = {Springer-Verlag}, address = {Berlin, Heidelberg}, url = {https://doi.org/10.1007/978-3-031-28238-6_44}, doi = {10.1007/978-3-031-28238-6_44}, booktitle = {Advances in Information Retrieval: 45th European Conference on Information Retrieval, ECIR 2023, Dublin, Ireland, April 2–6, 2023, Proceedings, Part II}, pages = {534–543}, numpages = {10}, location = {Dublin, Ireland} } """ from typing import List, Optional from langchain.llms import BaseLLM from langchain.prompts import PromptTemplate from langchain.schema import StrOutputParser from langchain_core.runnables import Runnable, RunnableConfig from langchain_core.runnables.utils import Input, Output class QueryDecomposition(Runnable[str, List[str]]): """ Query Decomposition class. You can decompose a multi-hop questions to multiple single-hop questions using LLM. The default decomposition prompt is from Visconde paper, and its prompt is few-shot prompts from strategyQA dataset. """ decompose_prompt = PromptTemplate.from_template("""Decompose a question in self-contained sub-questions. Use \"The question needs no decomposition\" when no decomposition is needed. Example 1: Question: Is Hamlet more common on IMDB than Comedy of Errors? Decompositions: 1: How many listings of Hamlet are there on IMDB? 2: How many listing of Comedy of Errors is there on IMDB? Example 2: Question: Are birds important to badminton? Decompositions: The question needs no decomposition Example 3: Question: Is it legal for a licensed child driving Mercedes-Benz to be employed in US? Decompositions: 1: What is the minimum driving age in the US? 2: What is the minimum age for someone to be employed in the US? Example 4: Question: Are all cucumbers the same texture? Decompositions: The question needs no decomposition Example 5: Question: Hydrogen's atomic number squared exceeds number of Spice Girls? Decompositions: 1: What is the atomic number of hydrogen? 2: How many Spice Girls are there? Example 6: Question: {question} Decompositions:" """) def __init__(self, llm: BaseLLM): """ :param llm: BaseLLM, language model to use. Query Decomposition not supports chat model. Only supports completion LLMs. """ self.llm = llm def decompose(self, query: str) -> List[str]: """ decompose query to little piece of questions. :param query: str, query to decompose. :return: List[str], list of decomposed query. Return input query if query is not decomposable. """ runnable = self.decompose_prompt | self.llm | StrOutputParser() answer = runnable.invoke({"question": query}) if answer.lower().strip() == "the question needs no decomposition.": return [query] try: questions = [l for l in answer.splitlines() if l != ""] questions = [q.split(':')[1].strip() for q in questions] if not isinstance(questions, list) or len(questions) <= 0 or not isinstance(questions[0], str) or bool( questions[0]) is False: return [query] return questions except: return [query] def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Output: return self.decompose(input)
[ "Decompose a question in self-contained sub-questions. Use \"The question needs no decomposition\" when no decomposition is needed.\n \n Example 1:\n \n Question: Is Hamlet more common on IMDB than Comedy of Errors?\n Decompositions: \n 1: How many listings of Hamlet are there on IMDB?\n 2: How many listing of Comedy of Errors is there on IMDB?\n \n Example 2:\n \n Question: Are birds important to badminton?\n \n Decompositions:\n The question needs no decomposition\n \n Example 3:\n \n Question: Is it legal for a licensed child driving Mercedes-Benz to be employed in US?\n \n Decompositions:\n 1: What is the minimum driving age in the US?\n 2: What is the minimum age for someone to be employed in the US?\n \n Example 4:\n \n Question: Are all cucumbers the same texture?\n \n Decompositions:\n The question needs no decomposition\n \n Example 5:\n \n Question: Hydrogen's atomic number squared exceeds number of Spice Girls?\n \n Decompositions:\n 1: What is the atomic number of hydrogen?\n 2: How many Spice Girls are there?\n \n Example 6:\n \n Question: {question}\n \n Decompositions:\"\n " ]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~pipeline~test_basic_pipeline.py
import logging import os import pathlib import pytest from langchain.llms.openai import OpenAI from langchain.memory.chat_message_histories import ChatMessageHistory from langchain.prompts import MessagesPlaceholder from langchain.schema.runnable.history import RunnableWithMessageHistory from RAGchain.DB import MongoDB from RAGchain.pipeline.basic import BasicIngestPipeline, BasicRunPipeline from RAGchain.preprocess.loader import FileLoader from RAGchain.retrieval import BM25Retrieval from RAGchain.schema.prompt import RAGchainChatPromptTemplate log = logging.getLogger(__name__) root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent file_dir = os.path.join(root_dir, "resources", "ingest_files") bm25_path = os.path.join(root_dir, "resources", "bm25", "bm25_basic_pipeline.pkl") mongodb_collection_name = "test_basic_pipeline" mongodb_config = { "mongo_url": os.getenv('MONGO_URL'), "db_name": os.getenv('MONGO_DB_NAME'), "collection_name": mongodb_collection_name } @pytest.fixture def basic_run_pipeline(): if not os.path.exists(file_dir): os.makedirs(file_dir) ingest_pipeline = BasicIngestPipeline( file_loader=FileLoader(file_dir, os.getenv('HWP_CONVERTER_HOST')), db=MongoDB(**mongodb_config), retrieval=BM25Retrieval(bm25_path) ) ingest_pipeline.run.invoke(None) pipeline = BasicRunPipeline( retrieval=BM25Retrieval(bm25_path), llm=OpenAI() ) yield pipeline teardown_all(mongodb_config, bm25_path) @pytest.fixture def basic_run_pipeline_chat_history(): if not os.path.exists(file_dir): os.makedirs(file_dir) ingest_pipeline = BasicIngestPipeline( file_loader=FileLoader(file_dir, os.getenv('HWP_CONVERTER_HOST')), db=MongoDB(**mongodb_config), retrieval=BM25Retrieval(bm25_path) ) ingest_pipeline.run.invoke(None) chat_history_prompt = RAGchainChatPromptTemplate.from_messages([ ("system", "Answer user's question based on given passages."), MessagesPlaceholder(variable_name="history"), ("user", "Passages: {passages}"), ("ai", "What is your question? I will answer based on given passages."), ("user", "Question: {question}"), ("ai", "Answer:") ]) pipeline = BasicRunPipeline( retrieval=BM25Retrieval(bm25_path), llm=OpenAI(), prompt=chat_history_prompt ) yield pipeline teardown_all(mongodb_config, bm25_path) def test_basic_pipeline(basic_run_pipeline): assert os.path.exists(bm25_path) query = "What is the purpose of RAGchain project? And what inspired it?" log.info(f"query: {query}") answer = basic_run_pipeline.run.invoke(query) assert bool(answer) is True log.info(f"answer: {answer}") queries = ["What is the purpose of KoPrivateGPT project?", "What inspired KoPrivateGPT project?", "How can I install KoPrivateGPT project?"] answers, passages, scores = basic_run_pipeline.get_passages_and_run(queries, top_k=4) assert len(answers) == len(queries) assert len(passages) == len(queries) assert len(scores) == len(queries) for query, answer, passage, score in zip(queries, answers, passages, scores): assert bool(answer) is True log.info(f"question: {query}\nanswer: {answer}") assert len(passage) == 4 log.info(f"score: {score}") def test_chat_history(basic_run_pipeline_chat_history): chat_history = ChatMessageHistory() chain_with_history = RunnableWithMessageHistory( basic_run_pipeline_chat_history.run, lambda session_id: chat_history, input_messages_key="question", history_messages_key="history" ) answer = chain_with_history.invoke({"question": "How can I install this project?"}, config={"configurable": {"session_id": "test_session"}}) assert bool(answer) log.info(f"answer: {answer}") answer = chain_with_history.invoke({"question": "Is there other things to do?"}, config={"configurable": {"session_id": "test_session"}}) assert bool(answer) log.info(f"answer: {answer}") def teardown_all(mongo_config, path): # teardown mongo db mongo_db = MongoDB(**mongo_config) mongo_db.create_or_load() assert mongo_db.collection_name == mongodb_collection_name mongo_db.collection.drop() assert mongodb_collection_name not in mongo_db.db.list_collection_names() # teardown bm25 if os.path.exists(path): os.remove(path)
[ "Question: {question}", "What is your question? I will answer based on given passages.", "Answer:", "Answer user's question based on given passages.", "Passages: {passages}" ]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~benchmark~dataset~test_qasper.py
import logging import os import pathlib import pytest from langchain.llms.openai import OpenAI from RAGchain.DB import PickleDB from RAGchain.benchmark.dataset import QasperEvaluator from RAGchain.pipeline import BasicRunPipeline from RAGchain.retrieval import BM25Retrieval root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent.parent bm25_path = os.path.join(root_dir, 'resources', 'bm25', 'qasper_evaluator.pkl') pickle_path = os.path.join(root_dir, 'resources', 'pickle', 'qasper_evaluator.pkl') logger = logging.getLogger(__name__) @pytest.fixture def qasper_evaluator(): bm25_retrieval = BM25Retrieval(save_path=bm25_path) db = PickleDB(pickle_path) llm = OpenAI(model_name="babbage-002") pipeline = BasicRunPipeline(bm25_retrieval, llm) evaluator = QasperEvaluator(pipeline, evaluate_size=2) evaluator.ingest([bm25_retrieval], db) yield evaluator if os.path.exists(bm25_path): os.remove(bm25_path) if os.path.exists(pickle_path): os.remove(pickle_path) def test_qasper_evaluator(qasper_evaluator): result = qasper_evaluator.evaluate() assert len(result.use_metrics) == len(qasper_evaluator.metrics) def same_id(row): same_prefix = ( row.passage_ids[0][:10] == row.passage_ids[1][:10] == row.passage_ids[2][:10] == row.passage_ids[3][:10] ) return same_prefix same_id_count = result.each_results.apply(same_id, axis=1).sum() assert len(result.each_results) == 2 assert result.each_results.iloc[0, 0] == 'What evaluation metric is used?' assert same_id_count == len(result.each_results) for key, value in result.results.items(): logger.info(f"{key}: {value}")
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~preprocess~text_splitter~token_splitter.py
from typing import List from langchain.schema import Document from langchain.text_splitter import (CharacterTextSplitter, TokenTextSplitter, SentenceTransformersTokenTextSplitter) from transformers import AutoTokenizer from RAGchain.preprocess.text_splitter.base import BaseTextSplitter from RAGchain.schema import Passage from RAGchain.utils.util import text_modifier class TokenSplitter(BaseTextSplitter): """ The `TokenSplitter` is used to split a document into passages by token using various tokenization methods. It's designed to split text from a document into smaller chunks, or "tokens", using various tokenization methods. The class supports tokenization with 'tiktoken', 'spaCy', 'SentenceTransformers', 'NLTK', and 'huggingFace'. """ def __init__(self, tokenizer_name: str = 'tiktoken', chunk_size: int = 100, chunk_overlap: int = 0, pretrained_model_name: str = "gpt2", **kwargs): """ :param tokenizer_name: A tokenizer_name is a name of tokenizer. You can choose tokenizer_name. (tiktoken, spaCy, SentenceTransformers, NLTK, huggingFace) :param chunk_size: Maximum size of chunks to return. Default is 100. :param chunk_overlap: Overlap in characters between chunks. Default is 0. :param pretrained_model_name: A huggingface tokenizer pretrained_model_name to use huggingface token splitter. You can choose various pretrained_model_name in this parameter. Default is "gpt2". Refer to pretrained model in this link. (https://huggingface.co/models) :param kwargs: Additional arguments. """ # Create token splitter according to chosen_tokenizer. if 'tiktoken' in text_modifier(tokenizer_name): self.splitter = TokenTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap) elif 'spaCy' in text_modifier(tokenizer_name): from langchain.text_splitter import SpacyTextSplitter self.splitter = SpacyTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) elif 'SentenceTransformers' in text_modifier(tokenizer_name): self.splitter = SentenceTransformersTokenTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) elif 'NLTK' in text_modifier(tokenizer_name): from langchain.text_splitter import NLTKTextSplitter self.splitter = NLTKTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) elif 'huggingFace' in text_modifier(tokenizer_name): tokenizers = AutoTokenizer.from_pretrained(pretrained_model_name) self.splitter = CharacterTextSplitter.from_huggingface_tokenizer( tokenizers, chunk_size=chunk_size, chunk_overlap=chunk_overlap ) else: raise ValueError("Ooops! You input invalid tokenizer name." + " Your input: " + tokenizer_name) def split_document(self, document: Document) -> List[Passage]: """ Split a document. """ split_documents = self.splitter.split_documents([document]) passages = Passage.from_documents(split_documents) return passages
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~pipeline~test_visconde_pipeline.py
import logging import os import pathlib import pickle import pytest from langchain.llms.openai import OpenAI from RAGchain.DB import PickleDB from RAGchain.pipeline import ViscondeRunPipeline from RAGchain.retrieval import BM25Retrieval logger = logging.getLogger(__name__) root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent bm25_path = os.path.join(root_dir, "resources", "bm25", "bm25_visconde_pipeline.pkl") pickle_path = os.path.join(root_dir, "resources", "pickle", "pickle_visconde_pipeline.pkl") with open(os.path.join(root_dir, "resources", "sample_passages.pkl"), 'rb') as r: TEST_PASSAGES = pickle.load(r) @pytest.fixture def visconde_run_pipeline(): # ingest files db = PickleDB(save_path=pickle_path) db.create_or_load() db.save(TEST_PASSAGES) retrieval = BM25Retrieval(save_path=bm25_path) retrieval.ingest(TEST_PASSAGES) pipeline = ViscondeRunPipeline(retrieval, OpenAI(model_name="babbage-002", temperature=0.1), use_passage_count=4) yield pipeline # teardown bm25 if os.path.exists(bm25_path): os.remove(bm25_path) # teardown pickle if os.path.exists(pickle_path): os.remove(pickle_path) def test_visconde_run_pipeline(visconde_run_pipeline): answer = visconde_run_pipeline.run.invoke("Is reranker and retriever have same role?") logger.info(f"Answer: {answer}") assert bool(answer) def test_visconde_run_pipeline_get_passages_and_run(visconde_run_pipeline): answers, passages, scores = visconde_run_pipeline.get_passages_and_run(["Is reranker and retriever have same role?", "What is reranker role?"], top_k=70) logger.info(f"Answer 1: {answers[0]}") logger.info(f"Answer 2: {answers[1]}") assert len(answers) == len(passages) == len(scores) == 2 assert len(passages[0]) == len(scores[0]) == 4
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~retrieval~test_vectordb_retrieval.py
import os import shutil from datetime import datetime import chromadb import pytest from langchain.vectorstores import Chroma import test_base_retrieval from RAGchain.DB import PickleDB from RAGchain.retrieval import VectorDBRetrieval from RAGchain.utils.embed import EmbeddingFactory from RAGchain.utils.vectorstore import ChromaSlim @pytest.fixture(scope='module') def vectordb_retrieval(): pickle_path = os.path.join(test_base_retrieval.root_dir, "resources", "pickle", "test_vectordb_retrieval.pkl") if not os.path.exists(os.path.dirname(pickle_path)): os.makedirs(os.path.dirname(pickle_path)) test_base_retrieval.ready_pickle_db(pickle_path) chroma_path = os.path.join(test_base_retrieval.root_dir, "resources", "test_vectordb_retrieval_chroma") if not os.path.exists(chroma_path): os.makedirs(chroma_path) chroma = Chroma(client=chromadb.PersistentClient(path=chroma_path), collection_name='test_vectordb_retrieval', embedding_function=EmbeddingFactory('openai').get()) retrieval = VectorDBRetrieval(vectordb=chroma) yield retrieval # teardown if os.path.exists(pickle_path): os.remove(pickle_path) if os.path.exists(chroma_path): shutil.rmtree(chroma_path) @pytest.fixture(scope='module') def vectordb_retrieval_for_delete(): pickle_path = os.path.join(test_base_retrieval.root_dir, "resources", "pickle", "test_vectordb_retrieval_for_delete.pkl") if not os.path.exists(os.path.dirname(pickle_path)): os.makedirs(os.path.dirname(pickle_path)) db = PickleDB(save_path=pickle_path) db.create_or_load() db.save(test_base_retrieval.SEARCH_TEST_PASSAGES) chroma_path = os.path.join(test_base_retrieval.root_dir, "resources", "test_vectordb_retrieval_for_delete_chroma") if not os.path.exists(chroma_path): os.makedirs(chroma_path) chroma = ChromaSlim( client=chromadb.PersistentClient(path=chroma_path), collection_name='test_vectordb_retrieval_for_delete', embedding_function=EmbeddingFactory('openai').get() ) retrieval = VectorDBRetrieval(vectordb=chroma) retrieval.ingest(test_base_retrieval.SEARCH_TEST_PASSAGES) yield retrieval # teardown if os.path.exists(pickle_path): os.remove(pickle_path) if os.path.exists(chroma_path): shutil.rmtree(chroma_path) @pytest.fixture(scope='module') def slim_vectordb_retrieval(): pickle_path = os.path.join(test_base_retrieval.root_dir, "resources", "pickle", "test_slim_vectordb_retrieval.pkl") if not os.path.exists(os.path.dirname(pickle_path)): os.makedirs(os.path.dirname(pickle_path)) test_base_retrieval.ready_pickle_db(pickle_path) chroma_path = os.path.join(test_base_retrieval.root_dir, "resources", "test_slim_vectordb_retrieval_chroma") if not os.path.exists(chroma_path): os.makedirs(chroma_path) chroma = ChromaSlim( client=chromadb.PersistentClient(path=chroma_path), collection_name='test_slim_vectordb_retrieval', embedding_function=EmbeddingFactory('openai').get() ) retrieval = VectorDBRetrieval(vectordb=chroma) yield retrieval # teardown if os.path.exists(pickle_path): os.remove(pickle_path) if os.path.exists(chroma_path): shutil.rmtree(chroma_path) def test_vectordb_retrieval(vectordb_retrieval): vectordb_retrieval_test(vectordb_retrieval) def test_vectordb_retrieval_slim(slim_vectordb_retrieval): vectordb_retrieval_test(slim_vectordb_retrieval) def vectordb_retrieval_test(retrieval: VectorDBRetrieval): retrieval.ingest(test_base_retrieval.TEST_PASSAGES) top_k = 6 retrieved_ids = retrieval.retrieve_id(query='What is visconde structure?', top_k=top_k) test_base_retrieval.validate_ids(retrieved_ids, top_k) retrieved_passages = retrieval.retrieve(query='What is visconde structure?', top_k=top_k) test_base_retrieval.validate_passages(retrieved_passages, top_k) retrieved_ids_2, scores = retrieval.retrieve_id_with_scores(query='What is visconde structure?', top_k=top_k) assert len(retrieved_ids_2) == len(scores) assert max(scores) == scores[0] assert min(scores) == scores[-1] retrieval.ingest(test_base_retrieval.SEARCH_TEST_PASSAGES) retrieved_passages = retrieval.retrieve_with_filter( query='What is visconde structure?', top_k=top_k, content=['This is test number 1', 'This is test number 3'], content_datetime_range=[(datetime(2020, 12, 1), datetime(2021, 1, 31))], importance=[1, 2] ) assert len(retrieved_passages) == 1 assert 'test_id_3_search' == retrieved_passages[0].id def test_vectordb_retrieval_delete(vectordb_retrieval_for_delete): vectordb_retrieval_for_delete.delete(['test_id_4_search', 'test_id_3_search']) retrieved_passages = vectordb_retrieval_for_delete.retrieve(query='What is visconde structure?', top_k=4) assert len(retrieved_passages) == 2 assert 'test_id_1_search' in [passage.id for passage in retrieved_passages] assert 'test_id_2_search' in [passage.id for passage in retrieved_passages]
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~benchmark~dataset~test_nfcorpus.py
import logging import os import pathlib import pytest from langchain.llms.openai import OpenAI from RAGchain.DB import PickleDB from RAGchain.benchmark.dataset import NFCorpusEvaluator from RAGchain.pipeline import BasicRunPipeline from RAGchain.retrieval import BM25Retrieval root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent.parent bm25_path = os.path.join(root_dir, 'resources', 'bm25', 'nfcorpus_evaluator.pkl') pickle_path = os.path.join(root_dir, 'resources', 'pickle', 'nfcorpus_evaluator.pkl') logger = logging.getLogger(__name__) @pytest.fixture def nfcorpus_evaluator(): bm25_retrieval = BM25Retrieval(save_path=bm25_path) db = PickleDB(pickle_path) llm = OpenAI(model_name="gpt-3.5-turbo-16k") pipeline = BasicRunPipeline(bm25_retrieval, llm) evaluator = NFCorpusEvaluator(pipeline, evaluate_size=5) evaluator.ingest(retrievals=[bm25_retrieval], db=db, ingest_size=20) yield evaluator if os.path.exists(bm25_path): os.remove(bm25_path) if os.path.exists(pickle_path): os.remove(pickle_path) def test_nfcorpus_evaluator(nfcorpus_evaluator): result = nfcorpus_evaluator.evaluate() assert len(result.each_results) == 5 assert result.each_results.iloc[0][ 'question'] == 'deafness' for key, value in result.results.items(): logger.info(f"{key}: {value}") logger.info("The result length is " + f"{len(result.results)}")
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~utils~evidence_extractor.py
from typing import List, Optional, Union, Any, Type from langchain.chat_models.base import BaseChatModel from langchain.llms import BaseLLM from langchain.schema import StrOutputParser from langchain.schema.language_model import BaseLanguageModel from langchain_core.runnables import Runnable, RunnableConfig, RunnableLambda from langchain_core.runnables.utils import Input, Output from RAGchain.schema import Passage, RetrievalResult, RAGchainPromptTemplate, RAGchainChatPromptTemplate # This prompt is originated from RETA-LLM BASIC_SYSTEM_PROMPT = """From the given document, please select and output the relevant document fragments which are related to the query. Note that the output must be fragments of the original document, not a summary of the document. If there is no fragment related to the query in the document, please output 'No Fragment'. """ class EvidenceExtractor(Runnable[RetrievalResult, str]): """ EvidenceExtractor is a class that extracts relevant evidences based on a given question and a list of passages. :example: >>> from RAGchain.utils.evidence_extractor import EvidenceExtractor >>> from RAGchain.schema import Passage >>> from langchain.llms.openai import OpenAI >>> >>> passages = [ ... Passage(content="Lorem ipsum dolor sit amet"), ... Passage(content="Consectetur adipiscing elit"), ... Passage(content="Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua") ... ] >>> >>> question = "What is Lorem ipsum?" >>> extractor = EvidenceExtractor(OpenAI()) >>> result = extractor.extract(question, passages) >>> print(result) """ def __init__(self, llm: BaseLanguageModel, system_prompt: str = None): """ Initialize the EvidenceExtractor class. :param llm: The language model to be used for evidence extraction. You can use both Chat and Completion models. :param system_prompt: The system prompt to be used. If not provided, the default system prompt will be used. """ self.llm = llm self.system_prompt = system_prompt if system_prompt is not None else BASIC_SYSTEM_PROMPT def extract(self, question: str, passages: List[Passage]) -> str: """ Extract method extracts relevant document evidences based on a question and a list of passages. :param question: The question for which relevant document fragments need to be extracted. :param passages: A list of Passage objects that contain the content of the documents. :return: The extracted relevant document fragments. """ runnable = self.__get_prompt() | self.llm | StrOutputParser() answer = runnable.invoke({ "question": question, "passages": Passage.make_prompts(passages), }) return answer def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Output: runnable = RunnableLambda(lambda x: x.to_prompt_input()) | self.__get_prompt() | self.llm | StrOutputParser() return runnable.invoke(input, config) def batch( self, inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], ) -> List[Output]: runnable = RunnableLambda(lambda x: x.to_prompt_input()) | self.__get_prompt() | self.llm | StrOutputParser() return runnable.batch(inputs, config, **kwargs) @property def InputType(self) -> Type[Input]: return RetrievalResult @property def OutputType(self) -> Type[str]: return str def __get_prompt(self): if isinstance(self.llm, BaseLLM): return RAGchainPromptTemplate.from_template( self.system_prompt + "Document content: {passages}\n\nquery: {question}]\n\nrelevant document fragments:" ) elif isinstance(self.llm, BaseChatModel): return RAGchainChatPromptTemplate.from_messages([ ("system", self.system_prompt), ("human", "Document content: {passages}\n\nquery: {question}"), ("ai", "relevant document fragments: ") ]) else: raise NotImplementedError("Only support LLM or ChatModel")
[ "Document content: {passages}\n\nquery: {question}", "Document content: {passages}\n\nquery: {question}]\n\nrelevant document fragments:", "human", "From the given document, please select and output the relevant document fragments which are related to the query.\nNote that the output must be fragments of the original document, not a summary of the document. \nIf there is no fragment related to the query in the document, please output 'No Fragment'.\n", "relevant document fragments: " ]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~preprocess~loader~rem_loader.py
from datetime import datetime from typing import List, Iterator, Optional import pytz from langchain.document_loaders.base import BaseLoader from langchain.schema import Document from RAGchain.utils.util import FileChecker class RemLoader(BaseLoader): """ Load rem storage file from rem sqlite database. You can set time range to load. """ def __init__(self, path: str, time_range: Optional[List[datetime]] = None): """ :param path: rem sqlite database file path :param time_range: time range to load. If None, load all data. We recommend set time range. It will be slow when you try to load all data from once. Default is None. """ self.path = path if not FileChecker(self.path).check_type(file_type='.sqlite3').is_exist(): raise ValueError(f"{self.path} is not sqlite3 file or do not exist.") import sqlite3 self.conn = sqlite3.connect(path) self.time_range = time_range if time_range is not None else [datetime(1970, 1, 1), datetime.now()] self.__preprocess_time_range() assert len(self.time_range) == 2, "time_range must be list of datetime with length 2" def lazy_load(self) -> Iterator[Document]: query = f""" SELECT allText.text, frames.timestamp FROM allText JOIN frames ON allText.frameId = frames.id WHERE frames.timestamp BETWEEN '{self.time_range[0]}' AND '{self.time_range[1]}' """ cur = self.conn.cursor() cur.execute(query) for row in cur.fetchall(): yield Document(page_content=row[0], metadata={ "source": self.path, "content_datetime": datetime.strptime(row[1], '%Y-%m-%dT%H:%M:%S.%f'), }) def load(self) -> List[Document]: return list(self.lazy_load()) def __preprocess_time_range(self): for i, time in enumerate(self.time_range): alter_time = time.astimezone(pytz.UTC) self.time_range[i] = alter_time.strftime('%Y-%m-%dT%H:%M:%S.%f')
[ "%Y-%m-%dT%H:%M:%S.%f" ]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~benchmark~dataset~test_asqa.py
import logging import os import pathlib import pytest from langchain.llms.openai import OpenAI from RAGchain.DB import PickleDB from RAGchain.benchmark.dataset import ASQAEvaluator from RAGchain.pipeline import BasicRunPipeline from RAGchain.retrieval import BM25Retrieval root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent.parent bm25_path = os.path.join(root_dir, 'resources', 'bm25', 'asqa_evaluator.pkl') pickle_path = os.path.join(root_dir, 'resources', 'pickle', 'asqa_evaluator.pkl') logger = logging.getLogger(__name__) @pytest.fixture def asqa_evaluator(): bm25_retrieval = BM25Retrieval(save_path=bm25_path) db = PickleDB(pickle_path) llm = OpenAI(model_name="gpt-3.5-turbo-16k") pipeline = BasicRunPipeline(bm25_retrieval, llm) evaluator = ASQAEvaluator(pipeline, evaluate_size=5) evaluator.ingest(retrievals=[bm25_retrieval], db=db, ingest_size=20) yield evaluator if os.path.exists(bm25_path): os.remove(bm25_path) if os.path.exists(pickle_path): os.remove(pickle_path) def test_asqa_evaluator(asqa_evaluator): result = asqa_evaluator.evaluate() assert len(result.each_results) == 5 assert result.each_results.iloc[0][ 'question'] == 'Who has the highest goals in world football?' for key, value in result.results.items(): logger.info(f"{key}: {value}") logger.info("The result length is " + f"{len(result.results)}")
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~pipeline~test_rerank_pipeline.py
import logging import os import pathlib import pickle import pytest from langchain.llms.openai import OpenAI from RAGchain.DB import PickleDB from RAGchain.pipeline import RerankRunPipeline from RAGchain.reranker import TARTReranker from RAGchain.retrieval import BM25Retrieval logger = logging.getLogger(__name__) root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent bm25_path = os.path.join(root_dir, "resources", "bm25", "bm25_rerank_pipeline.pkl") pickle_path = os.path.join(root_dir, "resources", "pickle", "pickle_rerank_pipeline.pkl") with open(os.path.join(root_dir, "resources", "sample_passages.pkl"), 'rb') as r: TEST_PASSAGES = pickle.load(r) @pytest.fixture def rerank_run_pipeline(): # ingest files db = PickleDB(save_path=pickle_path) db.create_or_load() db.save(TEST_PASSAGES) retrieval = BM25Retrieval(save_path=bm25_path) retrieval.ingest(TEST_PASSAGES) reranker = TARTReranker("Find passage to answer given question") pipeline = RerankRunPipeline(retrieval, reranker, OpenAI(model_name="babbage-002"), use_passage_count=4) yield pipeline # teardown bm25 if os.path.exists(bm25_path): os.remove(bm25_path) # teardown pickle if os.path.exists(pickle_path): os.remove(pickle_path) def test_rerank_run_pipeline(rerank_run_pipeline): answer, passages, scores = rerank_run_pipeline.get_passages_and_run(["What is reranker role?", "What is the purpose of reranker?"]) logger.info(f"Answer: {answer[0]}") assert bool(answer[0]) assert len(answer) == len(passages) == len(scores) == 2 assert len(passages[0]) == len(scores[0]) == 4 for i in range(1, len(scores[0])): assert scores[0][i - 1] >= scores[0][i] result = rerank_run_pipeline.run.invoke("What is reranker role?", config={"configurable": {"retrieval_options": {"top_k": 3}}}) logger.info(f"Answer: {result}") assert bool(result) assert isinstance(result, str)
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~pipeline~rerank.py
from typing import List, Optional, Union from langchain.schema import StrOutputParser from langchain.schema.language_model import BaseLanguageModel from langchain.schema.runnable import RunnableLambda from RAGchain.pipeline.base import BaseRunPipeline from RAGchain.reranker.base import BaseReranker from RAGchain.retrieval.base import BaseRetrieval from RAGchain.schema import Passage, RAGchainChatPromptTemplate, RAGchainPromptTemplate, RetrievalResult class RerankRunPipeline(BaseRunPipeline): """ Rerank pipeline is for question answering with retrieved passages using reranker. Af first, retrieval module will retrieve retrieve_size passages for reranking. Then, reranker rerank passages and use use_passage_count passages for llm question. :example: >>> from RAGchain.pipeline.rerank import RerankRunPipeline >>> from RAGchain.retrieval import BM25Retrieval >>> from RAGchain.reranker import MonoT5Reranker >>> from langchain.llms.openai import OpenAI >>> retrieval = BM25Retrieval(save_path="./bm25.pkl") >>> reranker = MonoT5Reranker() >>> llm = OpenAI() >>> pipeline = RerankRunPipeline(retrieval, reranker, llm) >>> answer, passages, rel_scores = pipeline.get_passages_and_run(["What is the purpose of this framework based on the document?"]) >>> print(answer[0]) """ def __init__(self, retrieval: BaseRetrieval, reranker: BaseReranker, llm: BaseLanguageModel, prompt: Optional[Union[RAGchainPromptTemplate, RAGchainChatPromptTemplate]] = None, use_passage_count: int = 5): """ Initializes an instance of the RerankRunPipeline class. :param retrieval: An instance of the Retrieval module used for retrieving passages. :param reranker: An instance of the Reranker module used for reranking passages. :param llm: An instance of the Langchain LLM module used for generating answers. :param use_passage_count: The number of passages to use for llm question after reranking. Default is 5. """ self.retrieval = retrieval self.reranker = reranker self.llm = llm self.prompt = self._get_default_prompt(llm, prompt) self.use_passage_count = use_passage_count super().__init__() def _make_runnable(self): self.run = self.retrieval | self.reranker | RunnableLambda( lambda x: x.slice( end=self.use_passage_count).to_prompt_input()) | self.prompt | self.llm | StrOutputParser() def get_passages_and_run(self, questions: List[str], top_k: int = 5) -> tuple[ List[str], List[List[Passage]], List[List[float]]]: runnable = self.retrieval | self.reranker | RunnableLambda(lambda x: x.slice(end=self.use_passage_count)) | { "passages": RunnableLambda(lambda x: x.passages), "scores": RunnableLambda(lambda x: x.scores), "answers": RunnableLambda(RetrievalResult.to_prompt_input) | self.prompt | self.llm | StrOutputParser() } result = runnable.batch(questions, config={"configurable": {"retrieval_options": {"top_k": top_k}}}) answers, passages, rel_scores = zip( *[(answer['answers'], answer['passages'], answer['scores']) for answer in result]) return answers, passages, rel_scores
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~utils~embed~test_embeddingfactory.py
import os from langchain.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings from RAGchain.utils.embed import EmbeddingFactory def test_embedding_factory(): openai_embedding = EmbeddingFactory(embed_type='openai').get() assert isinstance(openai_embedding, OpenAIEmbeddings) assert openai_embedding.openai_api_key == os.getenv('OPENAI_API_KEY') kosimcse_embedding = EmbeddingFactory(embed_type='kosimcse').get() assert isinstance(kosimcse_embedding, HuggingFaceEmbeddings) assert kosimcse_embedding.model_name == "BM-K/KoSimCSE-roberta-multitask" ko_sroberta_multitask_embedding = EmbeddingFactory(embed_type='ko_sroberta_multitask').get() assert isinstance(ko_sroberta_multitask_embedding, HuggingFaceEmbeddings) assert ko_sroberta_multitask_embedding.model_name == "jhgan/ko-sroberta-multitask" multilingual_e5_embedding = EmbeddingFactory(embed_type='multilingual_e5').get() assert isinstance(multilingual_e5_embedding, HuggingFaceEmbeddings) assert multilingual_e5_embedding.model_name == "intfloat/multilingual-e5-large" contriever_embedding = EmbeddingFactory(embed_type='contriever').get() assert isinstance(contriever_embedding, HuggingFaceEmbeddings) assert contriever_embedding.model_name == "facebook/mcontriever-msmarco"
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~reranker~llm~rank_gpt.py
""" This code is from RankGPT repo and modified a little bit for integration. Please go to https://github.com/sunnweiwei/RankGPT if you need more information. """ import copy import time import openai import tiktoken class SafeOpenai: def __init__(self, keys=None, start_id=None, proxy=None, api_base: str = None): if isinstance(keys, str): keys = [keys] if keys is None: raise "Please provide OpenAI Key." self.key = keys self.key_id = start_id or 0 self.key_id = self.key_id % len(self.key) openai.proxy = proxy openai.api_key = self.key[self.key_id % len(self.key)] self.api_key = self.key[self.key_id % len(self.key)] if api_base is not None: openai.api_base = api_base def chat(self, *args, return_text=False, reduce_length=False, **kwargs): while True: try: model = args[0] if len(args) > 0 else kwargs["model"] completion = openai.ChatCompletion.create(*args, **kwargs, timeout=30) break except Exception as e: print(str(e)) if "This model's maximum context length is" in str(e): print('reduce_length') return 'ERROR::reduce_length' self.key_id = (self.key_id + 1) % len(self.key) openai.api_key = self.key[self.key_id] time.sleep(0.1) if return_text: completion = completion['choices'][0]['message']['content'] return completion def text(self, *args, return_text=False, reduce_length=False, **kwargs): while True: try: completion = openai.Completion.create(*args, **kwargs) break except Exception as e: print(e) if "This model's maximum context length is" in str(e): print('reduce_length') return 'ERROR::reduce_length' self.key_id = (self.key_id + 1) % len(self.key) openai.api_key = self.key[self.key_id] time.sleep(0.1) if return_text: completion = completion['choices'][0]['text'] return completion def num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301"): """Returns the number of tokens used by a list of messages.""" if model == "gpt-3.5-turbo": return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301") elif model == "gpt-4": return num_tokens_from_messages(messages, model="gpt-4-0314") elif model == "gpt-3.5-turbo-0301": tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n tokens_per_name = -1 # if there's a name, the role is omitted elif model == "gpt-4-0314": tokens_per_message = 3 tokens_per_name = 1 else: tokens_per_message, tokens_per_name = 0, 0 try: encoding = tiktoken.get_encoding(model) except: encoding = tiktoken.get_encoding("cl100k_base") num_tokens = 0 if isinstance(messages, list): for message in messages: num_tokens += tokens_per_message for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": num_tokens += tokens_per_name else: num_tokens += len(encoding.encode(messages)) num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> return num_tokens def max_tokens(model): if 'gpt-4' in model: return 8192 else: return 4096 def get_prefix_prompt(query, num): return [{'role': 'system', 'content': "You are RankGPT, an intelligent assistant that can rank passages based on their relevancy to the query."}, {'role': 'user', 'content': f"I will provide you with {num} passages, each indicated by number identifier []. \nRank the passages based on their relevance to query: {query}."}, {'role': 'assistant', 'content': 'Okay, please provide the passages.'}] def get_post_prompt(query, num): return f"Search Query: {query}. \nRank the {num} passages above based on their relevance to the search query. The passages should be listed in descending order using identifiers. The most relevant passages should be listed first. The output format should be [] > [], e.g., [1] > [2]. Only response the ranking results, do not say any word or explain." def create_permutation_instruction(item=None, rank_start=0, rank_end=100, model_name='gpt-3.5-turbo'): query = item['query'] num = len(item['hits'][rank_start: rank_end]) max_length = 300 while True: messages = get_prefix_prompt(query, num) rank = 0 for hit in item['hits'][rank_start: rank_end]: rank += 1 content = hit['content'] content = content.replace('Title: Content: ', '') content = content.strip() # For Japanese should cut by character: content = content[:int(max_length)] content = ' '.join(content.split()[:int(max_length)]) messages.append({'role': 'user', 'content': f"[{rank}] {content}"}) messages.append({'role': 'assistant', 'content': f'Received passage [{rank}].'}) messages.append({'role': 'user', 'content': get_post_prompt(query, num)}) if num_tokens_from_messages(messages, model_name) <= max_tokens(model_name) - 200: break else: max_length -= 1 return messages def run_llm(messages, api_key=None, api_base: str = None, model_name="gpt-3.5-turbo"): agent = SafeOpenai(api_key, api_base=api_base) response = agent.chat(model=model_name, messages=messages, temperature=0, return_text=True) return response def clean_response(response: str): new_response = '' for c in response: if not c.isdigit(): new_response += ' ' else: new_response += c new_response = new_response.strip() return new_response def remove_duplicate(response): new_response = [] for c in response: if c not in new_response: new_response.append(c) return new_response def receive_permutation(item, permutation, rank_start=0, rank_end=100): response = clean_response(permutation) response = [int(x) - 1 for x in response.split()] response = remove_duplicate(response) cut_range = copy.deepcopy(item['hits'][rank_start: rank_end]) original_rank = [tt for tt in range(len(cut_range))] response = [ss for ss in response if ss in original_rank] response = response + [tt for tt in original_rank if tt not in response] for j, x in enumerate(response): item['hits'][j + rank_start] = copy.deepcopy(cut_range[x]) if 'rank' in item['hits'][j + rank_start]: item['hits'][j + rank_start]['rank'] = cut_range[j]['rank'] if 'score' in item['hits'][j + rank_start]: item['hits'][j + rank_start]['score'] = cut_range[j]['score'] return item def permutation_pipeline(item=None, rank_start=0, rank_end=100, model_name='gpt-3.5-turbo', api_key=None, api_base=None): messages = create_permutation_instruction(item=item, rank_start=rank_start, rank_end=rank_end, model_name=model_name) # chan permutation = run_llm(messages, api_key=api_key, model_name=model_name, api_base=api_base) item = receive_permutation(item, permutation, rank_start=rank_start, rank_end=rank_end) return item def sliding_windows(item=None, rank_start=0, rank_end=100, window_size=20, step=10, model_name='gpt-3.5-turbo', api_key=None, api_base=None): item = copy.deepcopy(item) end_pos = rank_end start_pos = rank_end - window_size while start_pos >= rank_start: start_pos = max(start_pos, rank_start) item = permutation_pipeline(item, start_pos, end_pos, model_name=model_name, api_key=api_key, api_base=api_base) end_pos = end_pos - step start_pos = start_pos - step return item
[ "Received passage [PLACEHOLDER].", "True", "You are RankGPT, an intelligent assistant that can rank passages based on their relevancy to the query.", "[PLACEHOLDER] PLACEHOLDER", "I will provide you with PLACEHOLDER passages, each indicated by number identifier []. \nRank the passages based on their relevance to query: PLACEHOLDER.", "Okay, please provide the passages." ]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~pipeline~basic.py
from typing import List, Optional, Union from langchain.document_loaders.base import BaseLoader from langchain.schema import StrOutputParser from langchain.schema.language_model import BaseLanguageModel from langchain.schema.runnable import RunnableLambda from RAGchain.DB.base import BaseDB from RAGchain.pipeline.base import BaseIngestPipeline, BaseRunPipeline from RAGchain.preprocess.text_splitter import RecursiveTextSplitter from RAGchain.preprocess.text_splitter.base import BaseTextSplitter from RAGchain.retrieval.base import BaseRetrieval from RAGchain.schema import Passage, RAGchainPromptTemplate, RAGchainChatPromptTemplate, RetrievalResult class BasicIngestPipeline(BaseIngestPipeline): """ Basic ingest pipeline class. This class handles the ingestion process of documents into a database and retrieval system. First, load file from directory using file loader. Second, split a document into passages using text splitter. Third, save passages to a database. Fourth, ingest passages to retrieval module. :example: >>> from RAGchain.pipeline.basic import BasicIngestPipeline >>> from RAGchain.DB import PickleDB >>> from RAGchain.retrieval import BM25Retrieval >>> from RAGchain.preprocess.loader import FileLoader >>> file_loader = FileLoader(target_dir="./data") >>> db = PickleDB("./db") >>> retrieval = BM25Retrieval(save_path="./bm25.pkl") >>> pipeline = BasicIngestPipeline(file_loader=file_loader, db=db, retrieval=retrieval) >>> pipeline.run.invoke(None) """ def __init__(self, file_loader: BaseLoader, db: BaseDB, retrieval: BaseRetrieval, text_splitter: BaseTextSplitter = RecursiveTextSplitter(chunk_size=500, chunk_overlap=50), ignore_existed_file: bool = True): """ Initialize BasicIngestPipeline. :param file_loader: File loader to load documents. You can use any file loader from langchain and RAGchain. :param db: Database to save passages. :param retrieval: Retrieval module to ingest passages. :param text_splitter: Text splitter to split a document into passages. Default is RecursiveTextSplitter. :param ignore_existed_file: If True, ignore existed file in a database. Default is True. """ self.file_loader = file_loader self.text_splitter = text_splitter self.db = db self.retrieval = retrieval self.ignore_existed_file = ignore_existed_file super().__init__() def _make_runnable(self): self.run = (RunnableLambda(self.file_loader.load) | self.text_splitter | self.db | self.retrieval.as_ingest()) class BasicRunPipeline(BaseRunPipeline): """ Basic run pipeline class. This class handles the run process of document question answering. First, retrieve passages from retrieval module. Second, run LLM module to get answer. Finally, you can get answer and passages as return value. :example: >>> from RAGchain.pipeline.basic import BasicRunPipeline >>> from RAGchain.retrieval import BM25Retrieval >>> from langchain.llms.openai import OpenAI >>> retrieval = BM25Retrieval(save_path="./bm25.pkl") >>> pipeline = BasicRunPipeline(retrieval=retrieval, llm=OpenAI()) >>> answer, passages, rel_scores = pipeline.get_passages_and_run(questions=["Where is the capital of Korea?"]) >>> # Run with Langchain LCEL >>> answer = pipeline.run.invoke("Where is the capital of Korea?") """ def __init__(self, retrieval: BaseRetrieval, llm: BaseLanguageModel, prompt: Optional[Union[RAGchainPromptTemplate, RAGchainChatPromptTemplate]] = None): self.retrieval = retrieval self.llm = llm self.prompt = self._get_default_prompt(llm, prompt) super().__init__() def _make_runnable(self): self.run = self.retrieval | RunnableLambda( RetrievalResult.to_prompt_input) | self.prompt | self.llm | StrOutputParser() def get_passages_and_run(self, questions: List[str], top_k: int = 5) -> tuple[ List[str], List[List[Passage]], List[List[float]]]: runnable = self.retrieval | { "answer": RunnableLambda(lambda x: x.to_prompt_input()) | self.prompt | self.llm | StrOutputParser(), "passages": RunnableLambda(lambda x: x.passages), "scores": RunnableLambda(lambda x: x.scores), } answers = runnable.batch(questions, config={"configurable": {"retrieval_options": {"top_k": top_k}}}) final_answers, final_passages, final_scores = ( map(list, zip(*[(answer['answer'], answer['passages'], answer['scores']) for answer in answers]))) return final_answers, final_passages, final_scores
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~preprocess~loader~deepdoctection_loader.py
import re from typing import List, Iterator, Dict, Any from urllib.parse import urljoin, urlencode import requests from langchain.document_loaders.pdf import BasePDFLoader from langchain.schema import Document class DeepdoctectionPDFLoader(BasePDFLoader): """ Load PDF file using NomaDamas' Deepdoctection API server. You can use Deepdoctection API server using Dockerfile at https://github.com/NomaDamas/deepdoctection-api-server """ def __init__(self, file_path: str, deepdoctection_host: str): super().__init__(file_path) response = requests.get(deepdoctection_host) if response.status_code != 200: raise ValueError(f"Could not connect to Deepdoctection server: {deepdoctection_host}") self.deepdoctection_host = deepdoctection_host def load(self, *args, **kwargs) -> List[Document]: """ load pdf file using Deepdoctection API server return list of Document """ return list(self.lazy_load(*args, **kwargs)) def lazy_load(self, *args, **kwargs) -> Iterator[Document]: """ lazy_load pdf file using Deepdoctection API server return list of Document """ request_url = urljoin(self.deepdoctection_host, "extract/") + '?' + urlencode(kwargs) with open(self.file_path, 'rb') as file: file_upload = {'file': file} response = requests.post(request_url, files=file_upload) if response.status_code != 200: raise ValueError(f'Deepdoctection API server returns {response.status_code} status code.') result = response.json() extracted_pages = self.extract_pages(result) for extracted_page in extracted_pages: if 'table' in extracted_page: yield Document(page_content=extracted_page['table'], metadata={'source': self.file_path, 'page_number': extracted_page['page_number'], 'page_type': 'table'}) else: page_content = 'title:' + extracted_page['title'] + '\n' + 'text:' + extracted_page['text'] metadata = {'source': self.file_path, 'page_number': extracted_page['page_number'], 'page_type': 'text'} yield Document(page_content=page_content, metadata=metadata) def extract_pages(self, result: List[Dict[str, Any]]) -> List[Dict[str, Any]]: extracted_pages = [] last_title = None for i, item in enumerate(result): titles = item['title'] text = item['text'] page_number = item['page_number'] table = item['table'] # If there is a table, extract the table and add it to the extracted pages for tbl in table: extracted_pages.append({'table': tbl, 'page_number': page_number}) # Find the positions of each title in the text positions = [(title, pos) for title in titles for pos in self.find_positions(text, title)] positions.sort(key=lambda x: x[1]) # If there are no titles in this page, use the last title from the previous page if not titles: if last_title: extracted_page = {'title': last_title, 'text': text.strip(), 'page_number': page_number} extracted_pages.append(extracted_page) else: extracted_page = {'title': '', 'text': text.strip(), 'page_number': page_number} extracted_pages.append(extracted_page) else: # If there is a last title, create a new document with the last title and the text # before the first title of the current page if last_title is not None: extracted_pages.append({ 'title': last_title, 'text': text[:positions[0][1]].strip(), 'page_number': page_number }) # Create a new extracted page for each title in the current page for j in range(len(positions)): title, start = positions[j] if j == len(positions) - 1: end = len(text) else: end = positions[j + 1][1] txt = text[start:end].replace(title, '', 1).strip() extracted_page = {'title': title, 'text': txt, 'page_number': page_number} extracted_pages.append(extracted_page) # Update last_title to the last title of the current page if there are titles, # otherwise keep the last title last_title = positions[-1][0] return extracted_pages @staticmethod def find_positions(text, substring): positions = [match.start() for match in re.finditer(re.escape(substring), text)] return positions
[]
2024-01-10
Marker-Inc-Korea/RAGchain
RAGchain~preprocess~loader~excel_loader.py
import csv import tempfile from typing import List, Optional, Iterator import openpyxl from langchain.document_loaders import CSVLoader from langchain.document_loaders.base import BaseLoader from langchain.schema import Document class ExcelLoader(BaseLoader): """ Load a document from an Excel file. """ def __init__(self, path: str, sheet_name: Optional[str] = None, *args, **kwargs): self.path = path wb = openpyxl.load_workbook(self.path) # load all sheets if sheet_name is None self.wb = wb if sheet_name is None else [wb[sheet_name]] def load(self) -> List[Document]: return list(self.lazy_load()) def lazy_load(self) -> Iterator[Document]: csv_filepaths = self.__xlxs_to_csv() for filepath, sheet_name in zip(csv_filepaths, self.wb.sheetnames): temp_loader = CSVLoader(filepath) document = temp_loader.load()[0] document.metadata['source'] = self.path document.metadata['sheet_name'] = sheet_name yield document def __xlxs_to_csv(self) -> List[str]: temp_file_name = [] # Iterate over the worksheets in the workbook for ws in self.wb: # Create a new temporary file and write the contents of the worksheet to it with tempfile.NamedTemporaryFile(mode='w+', newline='', suffix='.csv', delete=False) as f: c = csv.writer(f) for r in ws.rows: c.writerow([cell.value for cell in r]) temp_file_name.append(f.name) # all Sheets are saved to temporary file {temp_file_name} return temp_file_name
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~reranker~test_weighted_time_reranker.py
from datetime import datetime, timedelta import pytest from langchain_core.runnables import RunnableLambda from RAGchain.reranker.time import WeightedTimeReranker from RAGchain.schema import Passage, RetrievalResult TEST_PASSAGES = [ Passage(id=str(i), content=str(i), filepath='test', content_datetime=datetime.now() - timedelta(hours=i * 2)) for i in range(11) ] SCORES = [i for i in range(11)] @pytest.fixture def weighted_time_reranker(): reranker = WeightedTimeReranker(decay_rate=0.1) yield reranker def test_weighted_time_reranker(weighted_time_reranker): reranked_passages = weighted_time_reranker.rerank(TEST_PASSAGES, SCORES) assert isinstance(reranked_passages[0], Passage) solution = [10, 9, 0, 8, 7, 1, 6, 2, 5, 3, 4] for passage, idx in zip(reranked_passages, solution): assert passage.id == str(idx) def test_weighted_time_reranker_runnable(weighted_time_reranker): runnable = weighted_time_reranker | { "passages": RunnableLambda(lambda x: x.passages), "scores": RunnableLambda(lambda x: x.scores) } result = runnable.invoke(RetrievalResult(query="query", passages=TEST_PASSAGES, scores=SCORES)) assert isinstance(result['passages'], list) assert isinstance(result['scores'], list) assert isinstance(result['passages'][0], Passage) assert isinstance(result['scores'][0], float) solution = [10, 9, 0, 8, 7, 1, 6, 2, 5, 3, 4] for passage, idx in zip(result['passages'], solution): assert passage.id == str(idx) for i in range(1, len(result['scores'])): assert result['scores'][i - 1] >= result['scores'][i]
[]
2024-01-10
Marker-Inc-Korea/RAGchain
tests~RAGchain~benchmark~dataset~test_antique.py
import logging import os import pathlib import pytest from langchain.llms.openai import OpenAI from RAGchain.DB import PickleDB from RAGchain.benchmark.dataset import AntiqueEvaluator from RAGchain.pipeline import BasicRunPipeline from RAGchain.retrieval import BM25Retrieval root_dir = pathlib.PurePath(os.path.dirname(os.path.realpath(__file__))).parent.parent.parent bm25_path = os.path.join(root_dir, 'resources', 'bm25', 'antique_evaluator.pkl') pickle_path = os.path.join(root_dir, 'resources', 'pickle', 'antique_evaluator.pkl') logger = logging.getLogger(__name__) @pytest.fixture def antique_evaluator(): bm25_retrieval = BM25Retrieval(save_path=bm25_path) db = PickleDB(pickle_path) llm = OpenAI(model_name="gpt-3.5-turbo-16k") pipeline = BasicRunPipeline(bm25_retrieval, llm) evaluator = AntiqueEvaluator(pipeline, evaluate_size=5) evaluator.ingest(retrievals=[bm25_retrieval], db=db, ingest_size=20) yield evaluator if os.path.exists(bm25_path): os.remove(bm25_path) if os.path.exists(pickle_path): os.remove(pickle_path) def test_antique_evaluator(antique_evaluator): result = antique_evaluator.evaluate() assert len(result.each_results) == 5 assert result.each_results.iloc[0][ 'question'] == 'What does "see Leaflet" mean on Ept Pregnancy test?' for key, value in result.results.items(): logger.info(f"{key}: {value}") logger.info("The result length is " + f"{len(result.results)}")
[]
2024-01-10
jennyluciav/loanbot
loanbot.py
from dotenv import load_dotenv import os import openai load_dotenv() #openai.api_key = os.environ.get('OPENAI_KEY') openai.api_key = "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" completion = openai.Completion() start_sequence = "\nCredily:" restart_sequence = "\n\nPersona:" #session_prompt = "Estas hablando con Credily, un experto asesor financiero que te ayudará a analizar tus posibilidades de acceder a un crédito. Comenzaré a hacerte algunas preguntas durante la conversación que serán utilizadas para tu evaluación. comenzaré por pedirte tus datos personales: nombre y apellidos, correo electrónico, dirección, grado de educación, estado civil, sexo, número de dependientes. Luego hablaremos sobre tu historial financiero. Este debe ser lo más impecable posible. Eso significa: no tener deudas pendientes, no tener cargos extras por pagos atrasados, no tener más de 3 juicios por alimentos, no contar con créditos vigentes, no estar en la central de riesgos. Además te solicitaremos otros datos como: situación laboral (empleado, desempleado, independiente), si deseas aplicar al crédito con una persona (co-aplicante), los ingresos de tu co-aplicante, el monto del préstamo que solicitas y el plazo en meses en el que vas a pagar el crédito.\nCredily: Hola soy tu asesor financiero y te ayudaré en el proceso inicial de solicitud de crédito financiero. Tienes alguna pregunta?\nPersona: Quiero saber si puedo acceder a un crédito\nCredily: Seguro, comenzaré preguntándote unos datos personales para hacer un análisis preliminar. ¿Cuál es tu nombre y apellido?\n\nPersona:jenny vega\nCredily: Jenny, ¿cuál es tu correo electrónico?\n\nPersona:[email protected]\nCredily: Jenny, ¿cuál es tu dirección?\n\nPersona:Jr zorritos 1399 bloque 38. Dpto 402. lima\nCredily: Jenny, ¿cuál es tu grado de educación?\n\nPersona:Graduado\nCredily: Jenny, ¿cuál es tu estado civil?\n\nPersona:Soltera\nCredily: Jenny, ¿cuál es tu sexo?\n\nPersona:Femenino\nCredily: Jenny, ¿cuántos dependientes tienes?\n\nPersona:0\nCredily: Jenny, ¿cuál es tu situación laboral?\n\nPersona:independiente\nCredily: Jenny, ¿cuáles son tus ingresos mensuales?\n\nPersona:5000\nCredily: Jenny, ¿cuál es el monto del préstamo que solicitas?\n\nPersona:4000\nCredily: Jenny, ¿cuál es el plazo en meses en el que vas a pagar el crédito?\n\nPersona:36\nCredily: Jenny, ¿estás en la central de riesgos?\n\nPersona:no\nCredily: Jenny, ¿tienes algún crédito vigente?\n\nPersona:si\nCredily: Jenny, ¿tienes algún cargo extra por pagos atrasados?\n\nPersona:no\nCredily: Jenny, ¿tienes más de 3 juicios por alimentos?\n\nPersona:no\nCredily: Jenny, ¿tienes alguna deuda pendiente?\n\nPersona:no\nCredily: Jenny, ¿te gustaría aplicar al crédito con una persona?\n\nPersona:no\nCredily: Jenny, ¿te gustaría aplicar al crédito con una persona?\n\nPersona:no\nCredily: Jenny, en base a tu historial financiero, te podemos ofrecer el crédito que solicitaste. ¿Tienes alguna otra pregunta?\n\nPersona:no\nCredily: Ok, Jenny. Gracias por solicitar tu crédito con nosotros. Esperamos que puedas utilizarlo para tus necesidades financieras.\n\nPersona:gracias\nCredily: De nada, Jenny. ¡Que tengas un buen día!" session_prompt = "Estas hablando con Credily, un experto asesor financiero que te ayudará a analizar tus posibilidades de acceder a un crédito. Comenzaré a hacerte algunas preguntas durante la conversación que serán utilizadas para tu evaluación. comenzaré por pedirte tus datos personales: nombre y apellidos, correo electrónico, dirección, grado de educación, estado civil, sexo, número de dependientes. Luego hablaremos sobre tu historial financiero. Este debe ser lo más impecable posible. Eso significa: no tener deudas pendientes, no tener cargos extras por pagos atrasados, no tener más de 3 juicios por alimentos, no contar con créditos vigentes, no estar en la central de riesgos. Además te solicitaremos otros datos como: situación laboral (empleado, desempleado, independiente), si deseas aplicar al crédito con una persona (co-aplicante), los ingresos de tu co-aplicante, el monto del préstamo que solicitas y el plazo en meses en el que vas a pagar el crédito." def ask(question, chat_log=None): prompt_text = f'{chat_log}{restart_sequence}: {question}{start_sequence}:' response = openai.Completion.create( engine="text-davinci-002", prompt=prompt_text, temperature=0.7, max_tokens=90, top_p=1, frequency_penalty=0.05, presence_penalty=0, stop=["\n"], ) story = response['choices'][0]['text'] return str(story) def append_interaction_to_chat_log(question, answer, chat_log=None): if chat_log is None: chat_log = session_prompt return f'{chat_log}{restart_sequence} {question}{start_sequence}{answer}'
[ "PLACEHOLDER\n\nPersona:: PLACEHOLDERstart_sequence35a5aec5-4358-4928-b426-3ef843ae2d56:", "Estas hablando con Credily, un experto asesor financiero que te ayudará a analizar tus posibilidades de acceder a un crédito. Comenzaré a hacerte algunas preguntas durante la conversación que serán utilizadas para tu evaluación. comenzaré por pedirte tus datos personales: nombre y apellidos, correo electrónico, dirección, grado de educación, estado civil, sexo, número de dependientes. Luego hablaremos sobre tu historial financiero. Este debe ser lo más impecable posible. Eso significa: no tener deudas pendientes, no tener cargos extras por pagos atrasados, no tener más de 3 juicios por alimentos, no contar con créditos vigentes, no estar en la central de riesgos. Además te solicitaremos otros datos como: situación laboral (empleado, desempleado, independiente), si deseas aplicar al crédito con una persona (co-aplicante), los ingresos de tu co-aplicante, el monto del préstamo que solicitas y el plazo en meses en el que vas a pagar el crédito.", "PLACEHOLDER\n\nPersona:: PLACEHOLDER\nCredily::" ]